DSpace Repository

STUDY ON COVERGENCE OF CERTAIN LINEAR POSITIVE OPERATORS

Show simple item record

dc.contributor.author Sidharth, Manjari
dc.date.accessioned 2021-08-17T11:32:00Z
dc.date.available 2021-08-17T11:32:00Z
dc.date.issued 2017-09
dc.identifier.uri http://localhost:8081/xmlui/handle/123456789/15034
dc.guide Agrawal, P. N.
dc.description.abstract In thethesis,westudyapproximationpropertiesofsomewellknownoperatorsandtheir q-analogues. Wedividethethesisintoeightchapters.Thechapter0includestheliterature survey,basicdefinitionsandsomebasicnotationsofapproximationmethodswhichwill be usedthroughoutthethesis. In thefirstchapter,wediscussedtheSchurertype q-Bernstein Kantorovichoperatorwhich wasintroducedbyLin.Weobtainalocalapproximationtheoremandthestatisticalcon- vergenceoftheseoperators.Wealsostudytherateofconvergencebymeansofthefirst order modulusofcontinuity,Lipschitzclassfunction,themodulusofcontinuityofthe first orderderivativeandtheVoronovskajatypetheorem. The secondchapterisconcernedwiththeStancu-Kantorovichoperatorsbasedon P´olya-Eggenbergerdistribution.Weobtainsomedirectresultsfortheseoperatorsby means oftheLipschitzclassfunction,themodulusofcontinuityandtheweightedspace. Also, westudyanapproximationtheoremwiththeaidoftheunifiedDitzian-Totikmodu- lus ofsmoothness ! (f; t); 0 1 and therateofconvergenceoftheoperatorsfor the functionshavingaderivativewhichislocallyofboundedvariationon [0;1). In thethirdchapter,weintroducetheSz asz-DurrmeyertypeoperatorsbasedonBoas- Buck typepolynomialswhichincludeBrenke-typepolynomials,Shefferpolynomialsand Appell polynomials.WeestablishthemomentsoftheoperatorandaVoronvskajatype asymptotic theoremandthenproceedtostudytheconvergenceoftheoperatorswiththe help ofLipschitztypespaceandweightedmodulusofcontinuity.Next,weobtainadi- rect approximationtheoremwiththeaidofunifiedDitzian-Totikmodulusofsmoothness. Furthermore, westudytheapproximationoffunctionswhosederivativesarelocallyof bounded variation. i In thefourthchapter,weobtaintherateofapproximationofthebivariateBernstein- Schurer-Stancutypeoperatorsbasedon q-integersbymeansofthemoduliofcontinuity and Lipschitzclass.WealsoestimatethedegreeofapproximationbymeansofLipschitz class functionandtherateofconvergencewiththehelpofmixedmodulusofsmooth- ness fortheGBSoperatorof q-Bernstein-Schurer-Stancutype.Furthermore,weshowthe comparisons bysomeillustrativegraphicsinMaplefortheconvergenceoftheoperators to somefunctions. In thefifthchapterwestudytheapproximationpropertiesofthebivariateextensionof q-Bernstein-Schurer-Durrmeyeroperatorsandobtainedtherateofconvergenceofthe operators withtheaidoftheLipschitzclassfunctionandthemodulusofcontinuity. Here, weestimatetherateofconvergenceoftheseoperatorsbymeansofPeetre’s K- functional. Then,theassociatedGBS(GeneralizedBooleanSum)operatorofthe q- Bernstein-Schurer-Durrmeyertypeisdefinedanddiscussed.Furthermore,weillustrate the convergencerateofthebivariateDurrmeyertypeoperatorsandtheassociateGBS operators tocertainfunctionsbynumericalexamplesandgraphsusingMaplealgorithm. In thesixthchapter,Wediscussthemixedsummationintegraltypetwodimensional q- Lupas¸-Phillips-BernsteinoperatorswhichwasfirstintroducedbyHoneySharmain2015. WeestablishaVoronovskajatypetheoremandintroducetheassociatedGBScase(Gener- alized BooleanSum)oftheseoperatorsandwestudytherateofconvergencebyutilizing the Lipschitzclassandthemixedmodulusofsmoothness.Furthermore,weshowtherate of convergenceofthebivariateoperatorsandthecorrespondingGBSoperatorsbyillus- trativegraphicsandnumericalexamplesusingMaplealgorithms. In theseventhchapter,weobtainthedegreeofapproximationfortheKantorovich-type q-Bernstein-Schurer operatorsintermsofthepartialmoduliofcontinuityandthePee- tre’sK-functional.Finally,weconstructtheGBS(GeneralizedBooleanSum)operators of bivariate q-Bernstein-Schurer-Kantorovichtypeandestimatetherateofconvergence for theseoperatorswiththehelpofmixedmodulusofsmoothness. In thelastchapter,weestablishtheapproximationpropertiesofthebivariateoperators which arethecombinationofBernstein-ChlodowskyoperatorsandtheSz´asz operators ii involvingAppellpolynomials.Weinvestigatethedegreeofapproximationoftheopera- tors withthehelpofcompletemodulusofcontinuityandthepartialmoduliofcontinuity. In thelastsectionofthepaper,weintroducetheGeneralizedBooleanSum(GBS)of these bivariateChlodowsky-Szasz-Appelltypeoperatorsandexaminetheorderofap- proximation intheB¨ogel spaceofcontinuousfunctionsbymeansofmixedmodulusof smoothness. en_US
dc.description.sponsorship Indian Institute of Technology Roorkee en_US
dc.language.iso en en_US
dc.publisher I.I.T Roorkee en_US
dc.subject Lipschitz class function en_US
dc.subject continuity en_US
dc.subject unified Ditzian en_US
dc.subject Lipschitz type space en_US
dc.title STUDY ON COVERGENCE OF CERTAIN LINEAR POSITIVE OPERATORS en_US
dc.type Thesis en_US
dc.accession.number G28471 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record