Abstract:
In thethesis,westudyapproximationpropertiesofsomewellknownoperatorsandtheir
q-analogues. Wedividethethesisintoeightchapters.Thechapter0includestheliterature
survey,basicdefinitionsandsomebasicnotationsofapproximationmethodswhichwill
be usedthroughoutthethesis.
In thefirstchapter,wediscussedtheSchurertype q-Bernstein Kantorovichoperatorwhich
wasintroducedbyLin.Weobtainalocalapproximationtheoremandthestatisticalcon-
vergenceoftheseoperators.Wealsostudytherateofconvergencebymeansofthefirst
order modulusofcontinuity,Lipschitzclassfunction,themodulusofcontinuityofthe
first orderderivativeandtheVoronovskajatypetheorem.
The secondchapterisconcernedwiththeStancu-Kantorovichoperatorsbasedon
P´olya-Eggenbergerdistribution.Weobtainsomedirectresultsfortheseoperatorsby
means oftheLipschitzclassfunction,themodulusofcontinuityandtheweightedspace.
Also, westudyanapproximationtheoremwiththeaidoftheunifiedDitzian-Totikmodu-
lus ofsmoothness ! (f; t); 0 1 and therateofconvergenceoftheoperatorsfor
the functionshavingaderivativewhichislocallyofboundedvariationon [0;1).
In thethirdchapter,weintroducetheSz asz-DurrmeyertypeoperatorsbasedonBoas-
Buck typepolynomialswhichincludeBrenke-typepolynomials,Shefferpolynomialsand
Appell polynomials.WeestablishthemomentsoftheoperatorandaVoronvskajatype
asymptotic theoremandthenproceedtostudytheconvergenceoftheoperatorswiththe
help ofLipschitztypespaceandweightedmodulusofcontinuity.Next,weobtainadi-
rect approximationtheoremwiththeaidofunifiedDitzian-Totikmodulusofsmoothness.
Furthermore, westudytheapproximationoffunctionswhosederivativesarelocallyof
bounded variation.
i
In thefourthchapter,weobtaintherateofapproximationofthebivariateBernstein-
Schurer-Stancutypeoperatorsbasedon q-integersbymeansofthemoduliofcontinuity
and Lipschitzclass.WealsoestimatethedegreeofapproximationbymeansofLipschitz
class functionandtherateofconvergencewiththehelpofmixedmodulusofsmooth-
ness fortheGBSoperatorof q-Bernstein-Schurer-Stancutype.Furthermore,weshowthe
comparisons bysomeillustrativegraphicsinMaplefortheconvergenceoftheoperators
to somefunctions.
In thefifthchapterwestudytheapproximationpropertiesofthebivariateextensionof
q-Bernstein-Schurer-Durrmeyeroperatorsandobtainedtherateofconvergenceofthe
operators withtheaidoftheLipschitzclassfunctionandthemodulusofcontinuity.
Here, weestimatetherateofconvergenceoftheseoperatorsbymeansofPeetre’s K-
functional. Then,theassociatedGBS(GeneralizedBooleanSum)operatorofthe q-
Bernstein-Schurer-Durrmeyertypeisdefinedanddiscussed.Furthermore,weillustrate
the convergencerateofthebivariateDurrmeyertypeoperatorsandtheassociateGBS
operators tocertainfunctionsbynumericalexamplesandgraphsusingMaplealgorithm.
In thesixthchapter,Wediscussthemixedsummationintegraltypetwodimensional q-
Lupas¸-Phillips-BernsteinoperatorswhichwasfirstintroducedbyHoneySharmain2015.
WeestablishaVoronovskajatypetheoremandintroducetheassociatedGBScase(Gener-
alized BooleanSum)oftheseoperatorsandwestudytherateofconvergencebyutilizing
the Lipschitzclassandthemixedmodulusofsmoothness.Furthermore,weshowtherate
of convergenceofthebivariateoperatorsandthecorrespondingGBSoperatorsbyillus-
trativegraphicsandnumericalexamplesusingMaplealgorithms.
In theseventhchapter,weobtainthedegreeofapproximationfortheKantorovich-type
q-Bernstein-Schurer operatorsintermsofthepartialmoduliofcontinuityandthePee-
tre’sK-functional.Finally,weconstructtheGBS(GeneralizedBooleanSum)operators
of bivariate q-Bernstein-Schurer-Kantorovichtypeandestimatetherateofconvergence
for theseoperatorswiththehelpofmixedmodulusofsmoothness.
In thelastchapter,weestablishtheapproximationpropertiesofthebivariateoperators
which arethecombinationofBernstein-ChlodowskyoperatorsandtheSz´asz operators
ii
involvingAppellpolynomials.Weinvestigatethedegreeofapproximationoftheopera-
tors withthehelpofcompletemodulusofcontinuityandthepartialmoduliofcontinuity.
In thelastsectionofthepaper,weintroducetheGeneralizedBooleanSum(GBS)of
these bivariateChlodowsky-Szasz-Appelltypeoperatorsandexaminetheorderofap-
proximation intheB¨ogel spaceofcontinuousfunctionsbymeansofmixedmodulusof
smoothness.