dc.description.abstract |
This thesispresentsapproximationoffunctionsbyseveralwellknownpositivelin-
ear operators,bytheirgeneralizedformsandintegralmodi cations.Wedividethe
thesis intoninechapters.Chapter0isanintroductorypartofthethesiswhichdeals
with theupbringingofapproximationtheory,literaturesurvey,somenotationsand
basic de nitionsofapproximationmethodswhichareusedthroughoutthethesis.
In the rstchapter,wede neagenuinefamilyofBernstein-Durrmeyertype
operatorsbasedonPolyabasisfunctions.Weestablishaglobalapproximationthe-
orem, localapproximationtheorem,Voronovskaya-typeasymptotictheoremanda
quantitativeestimateofthesametype.Lastly,westudytheapproximationoffunc-
tions havingaderivativeofboundedvariation.
The secondchapterisacontinuationofthe rstoneinwhichweintroducethe
B eziervariantofgenuineDurrmeyertypeoperatorsandgivedirectapproximation
results andaVoronovskayatypetheorembyusingtheDitzian-Totikmodulusof
smoothness.Therateofconvergenceforfunctionswhosederivativesareofbounded
variationisalsoobtained.Further,weshowtherateofconvergenceoftheseopera-
tors tocertainfunctionsbyillustrativegraphicsusingtheMatlabalgorithms.
In thethirdchapter,wede netheSz asz-Durrmeyertypeoperatorsbymeansof
i
multipleAppellpolynomials.WestudyaquantitativeVoronovskayatypetheorem
and Gr uss-Voronovskayatypetheorem.Wealsoestablishalocalapproximation
theorem intermsoftheSteklovmeansandVoronovskayatypeasymtotictheorem.
Further,wediscussthedegreeofapproximationbymeansofaweightedspace.
Lastly,we ndtherateofapproximationoffunctionshavingderivativesofbounded
variation.
In thefourthchapter,weintroducetheB eziervariantofDurrmeyermodi cation
of theBernsteinoperatorsbasedonafunction : Wegivetherateofapproximation
of theseoperatorsintermsofusualmodulusofcontinuityandthe Kfunctional.
Next, weestablishthequantitativeVoronovskajatypetheorem.Inthelastsection
weobtaintherateofconvergenceforfunctionshavingderivativesofboundedvari-
ation.
In the fthchapter,wede neasequenceofStancutypeoperatorsbasedonthe
same function as de nedintheprecedingchapterandshowthattheseoperators
presentabetterdegreeofapproximationthantheoriginalones.Wegiveadirect
approximationtheorembymeansoftheDitzian-Totikmodulusofsmoothnessand
a Voronovskayatypetheorem.
In thesixthchapter,weintroducetheB eziervariantofmodi edSrivastava-
Gupta operatorsandgiveadirectapproximationtheorembymeansoftheDitzian-
Totikmodulusofsmoothnessandtherateofconvergenceforfunctionswithderiva-
tivesequivalenttoafunctionofboundedvariation.Furthermore,weshowthe
comparisons oftherateofconvergenceoftheSrivastava-Guptaoperatorsvis-a-vis
its B eziervarianttoacertainfunctionbyillustrativegraphicsusingMaplealgo-
rithms.
ii
In theseventhchapter,weconstructtheStancu-Durrmeyer-typemodi cationof
q-Bernstein operatorsbymeansofJacksonintegral.Here,weestablishbasiccon-
vergencetheorem,localapproximationtheoremandanapproximationresultfora
Lipschitztypespace.Also,weestablishtheKorovkintype A-statistical approxi-
mation theoremandratesof A-statistical convergenceintermsofthemodulusof
continuity.
The lastchapterisancontinuationofourworkinchapterseven.Here,wecon-
struct abivariategeneralizationofStancu-Durrmeyertypeoperatorsandstudythe
rate ofconvergencebymeansofthecompletemodulusofcontinuityandthepartial
moduliofcontinuity.Subsequently,wede netheGBS(GeneralizedBooleanSum)
operatorsofStancu-Durrmeyertypeandgivetherateofapproximationbymeans
of themixedmodulusofsmoothnessandtheLipschitzclassofB ogel-continuous
functions. |
en_US |