DSpace Repository

NOVEL MODEL ORDER REDUCTION AND CONTROLLER DESIGN TECHNIQUE USING BIG BANG BIG CRUNCH OPTIMIZATION ALGORITHM

Show simple item record

dc.contributor.author Biradar, Shivanagouda
dc.date.accessioned 2019-05-16T11:40:16Z
dc.date.available 2019-05-16T11:40:16Z
dc.date.issued 2016-05
dc.identifier.uri http://hdl.handle.net/123456789/14195
dc.description.abstract This dissertation focuses on a meta-heuristic optimization algorithm i.e. big bang big crunch optimization (BBBC) algorithm and major setbacks in BBBC algorithm with respect to its conceptual and working structure. A modi ed BBBC optimization algorithm is proposed, which works better than original BBBC. But, it is observed that BBBC and modi ed BBBC like many other meta-heuristic optimization algorithm su ers from the problem of getting trapped in local minima. Therefore, modi ed BBBC is combined with chaos which e ectively enhances the searching e ciency and greatly improves the searching quality. These algorithms validity is quanti ed using various benchmark function. Further, this thesis, contributes various results, techniques and focuses on application of BBBC in areas of System and Control. Starting with Model Order Reduction (MOR), which is an integral part of System Engineering. MOR techniques have proved to be an important technique for accelerating time-domain simulation in a variety of CAD tools for highly complex system and controller design. There are various reduction techniques available in literature and most of them are either complex i.e. they are too di cult to understand while other techniques work for particular class of problems. In this report, a novel MOR technique has been proposed using BBBC and time moment matching method, which works for many class of problems. Now, moving onto eld of Control Engineering, utility of this algorithm for controller design has been elaborated. In this method, a multi-objective function has been formulated and BBBC is used as an optimization tool for ne tuning the PID controller. Above work i.e. MOR and controller design have been validated on automatic voltage regulator system. Another contribution of this thesis is study of utility of statistical methods in area of Control System and Optimization. As it is known that BBBC is a relatively new optimization technique, before which, many famous techniques like PSO and GA are widely used in all eld of engineering and talked about in optimization society. But question always raises which one of these algorithms are better in respect to solution nding capability (e ectiveness) and computational e ciency. In this report we have used inferential statistics as a tool to analyze this problem and bring out a concrete conclusion in this regard. At last we have used Taguchi method, a statistical technique, combined with BBBC to ne tune the controller parameters. en_US
dc.description.sponsorship ELECTRICAL ENGINEERING IITR en_US
dc.language.iso en en_US
dc.publisher ELECTRICAL ENGINEERING IITR en_US
dc.subject meta-heuristic optimization algorithm en_US
dc.subject BBBC en_US
dc.subject local minima en_US
dc.subject e ectiveness en_US
dc.title NOVEL MODEL ORDER REDUCTION AND CONTROLLER DESIGN TECHNIQUE USING BIG BANG BIG CRUNCH OPTIMIZATION ALGORITHM en_US
dc.type Other en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record