Abstract:
.Thenon-isothermalPoiseuilleflowinporousmediahasbeena subjectofintenseresearch
foroverfourdecades.Thistypeofflowinpipe/channel/annulusisusedinmanyindustrial
situationssuchasextractionofbio-fuel[51],packed-bed chemicalreactors[2],oilrecovery
process[63],solid-matrixheatexchangersandcoolingofnuclearplants[54],etc.However,
mostoftheavailablestudiesaredoneinverticalchannelor pipe.Theresultsofchannel
orpipecannotbeusedtopredicttheflowmechanisminannular geometry.Therefore,to
understandtheflowconfigurationinannulargeometryformed bytwoconcentriccylinders
a stephasbeentakeninthepresentthesis.Bothlinearandnonlineartheorieshavebeen
usedtoexaminethestabilitymechanismoftheflow.Theobjectiveofthisstudyisto
investigatetheeffectofgapbetweenthetwoconcentriccylindersontheaboveflowfor
differentpermeablemediumaswellasnon-isothermalresources.Theannulusisfilled
withahomogeneousandisotropicporousmedium.Anexternal pressuregradientanda
buoyancyforce(duetotemperaturedifference)drivethefullydevelopedwaterflowin
theannularregion.Theinnerwalltemperatureoftheannulus increaseslinearlywiththe
axialcoordinatefromanupstreamreferencetemperatureand theouterwallisadiabatic.
Inthelimitoffullydevelopedflow,thissimulatesaconstant heatfluxconditiononthe
innercylinder.NotethatdependingonthesignofRayleighnumber,thefullydeveloped
flowmaybestablystratified(i.e.,thebuoyancyforceactsin thedirectionofforcedflow)
orunstablystratified(i.e.,buoyancyforceinthenegative directionofforcedflow).The
linearstabilityoftheaboveflowforbothstablystratifiedandunstablystratifiedcasesare
analyzedinthisthesis.FollowingthepreviouseffortsofYao&Rogers[123],theweakly
i
ii
nonlinearstabilityofnon-isothermalPoiseuilleflowinverticalannulusfilledwithporous
mediumisdeveloped.Thepresentthesisiscompiledinsixchaptersandthechapterwise
descriptionisgivenbelow.
Chapter1isanintroductoryandcontainssomebasicdefinitions,preliminariesofthe
flowinporousmedium,briefdescriptionofhydrodynamicstabilitytheory,workdoneby
variousauthorsinthefieldoflinearandnonlinearstability analysisofPoiseuilleflow,and
justificationregardingthemodel,whichhasbeenadoptedfor thisproblem.
Chapter2addressesthebasicflowcharacteristicofthenon-isothermalPoiseuilleflow
inverticalannulusfilledwithporousmedium.Bothstablystratifiedandunstablystratified
situationsareconsideredforthisstudy.Thenon-Darcy-Brinkman-Forchheimermodelis
used.Thegoverningequationsaresolvedanalyticallyfora specialcase:formdragequal
tozeroandnumericallybyChebyshevspectralcollocationmethod.Alongwiththeother
controllingparameters,aspecialattentionisgiventounderstandtheeffectofcurvature
parameter(C) oftheannulusontheflowconfigurationaswellasheattransferrate.The
numericalexperimentsshowthatreducingthevalueof C enhancesthemaximummagni-
tudeofthevelocityalongwithheattransferrateinthesystem.Theimpactof C (C > 10)
ontheflowprofileaswellasheattransferrateisnegligible. Furthermore,theanalysis
showsthatthetendencyofappearanceofbackflow,pointofinflectionandflowseparation
(incaseofunstablystratifiedflow)intheflowprofileishighly sensitiveto C. Apartfrom
this,forasmallincreasein Ra, adrasticchange(upsidedown)intheflowprofilecanalso
beseen.Theappearanceofflowseparationshiftedfromthevicinityoftheinnerwallto
theouterwall.Hence,toshedmorelightonthisphenomenonandtofindtheappropriate
non-isothermalparameterspaceasafunctionofgapbetween thetwoconcentriccylinders,
inwhichtheflowwillremainasfullydeveloped,stabilityanalysisisneeded.
Chapter3containsthelinearstabilityoftheabovePoiseuilleflowforstablystratified
case.Foragivenannulus,thestabilityofthebasicflowiscontrolledbydifferentparameters
suchasReynoldsnumber(Re),Rayleighnumber(Ra),Darcynumber(Da),Prandtlnumber
(Pr),heatcapacityratio(s ),viscosityratio(L),porosity (e ), andmodifiedForchheimer
iii
number(F′).Sincecurvatureparameter(C) playsavitalroletodescribethesizeofthe
annulus,thereforeimpactof C onthetransitionmechanismofbasicflowforrelatively
highpermeablemediumisconsideredinthischapter.Toavoid numerousparametricstudy
wehavefixedthevalueofsomeoftheparameterssuchas L, Pr, and s at1,7and1,
respectively.Thedisturbancemomentumandenergyequationsarenumericallysolved
byspectralcollocationmethod.Wehavealsoanalyzedtheenergybudgetspectrumat
criticalpoint.Thelinearstabilityresultsshowthatincreasing C aswellasdecreasing Da
stabilizesthebasicflow.However,beyond C = 10theimpactofcurvatureparameteron
thestabilizationofthebasicflowisalmostnegligible.From theenergyanalysisatcritical
levelitisobservedthatthethermal-buoyantinstabilityis theonlymodeofinstability.
Furthermore,theanalysisoflinearstabilityshowsthatalthoughtheimpactofformdrag
uptoathresholdvalueisnegligibleoninstabilitybutitscontributioninenergydissipation
issignificant.
InChapter4,wehaveinvestigatedthestabilityofstablystratifiednon-isothermalPoiseuille
flowofwaterinverticalporous-mediumannulususingweakly nonlinearstabilitytheory,
withparticularemphasisontheimpactofgapbetweenthetwo verticalaxisymmetriccylin-
ders.Foracomparativestudy,wehaveconsideredthreedifferentvalues(10−3,0.6,10)of
C forthreedifferentvalues(10−1, 10−2, 10−3) of Da. Theflowintheannulusisgoverned
bythevolume-averagedformsoftheNaiver-Stokesandcontinuityequationsderivedby
[117].Tocarryouttheweaklynonlinearanalysis,westarted byanalyzingtherangeof Ra,
beyondthecriticalpoint,inwhichthegrowthratevarieslinearlyusingperturbationseries
solutionapproach.Fromthisanalysisithasbeenfoundthat forhighpermeablemedium
thelinearrelationshipbetweengrowthrateand Ra holdsgoodforverysmallneighborhood
ofcritical(bifurcation)point,howeverforlowpermeable mediumitisrelativelylarge.
Thisgivesanimpressionthatthenonlinearinteractionisnoteffectiveforlowpermeable
medium,whichisalsosupportedbyfiniteamplitudeanalysis. Thefiniteamplitudeanaly-
sispredictsboththesupercriticalaswellassubcriticalbifurcationatandinthevicinityof
bifurcationpoint,whicharealsoinvestigatedbynonlinear energyspectrum.Theanalysis
iv
ofthenonlinearenergyspectrumforthedisturbancereveals thatincaseof Da = 10−2 or
C = 10−3 aninstabilitythatissupercriticalforsomewavenumbermay besupercriticalor
subcriticalatothernearbywavenumber.Theequilibriumamplitudeincreasesondecreas-
ingthemediapermeabilityaswellasreducingthegapbetween innerandoutercylinders.
Inthelimitingcase(i.e.,at C = 10)thefundamentaldisturbanceofstablystratifiednon-
isothermalPoiseuilleflow(SSNPF)ofwaterinverticalchannelfilledwithporousmedium
willhaveminimumamplitude.Theinfluenceofnonlinearinteractionofdifferentsuperim-
posedwavesonsomephysicalaspects:heattransfer,frictioncoefficient,nonlinearenergy
spectrum,andsteadysecondaryflowisalsoinvestigated.Investigationrelatedtoimpactof
superimposedwavesonthepatternofsecondaryflow,basedon linearstabilitytheorygives
animpressionthatcellsofflowpatternarejustshifted.This istheconsequenceofnegli-
giblemodificationinthebuoyantproductionofdisturbance kineticenergyandsignificant
modificationintherateoftheviscousdissipationofdisturbanceenergyfortheconsidered
setofparameters.
InChapter5,theinstabilitymechanismoftheaboveflowisanalyzedforunstablystrat-
ifiedcase.Linearstabilityanalysispredictsfirstazimuthalmodeastheleaststablemode
intheentirerangeof C for Da = 10−1 and10−3. For Da = 10−2 firstazimuthalmodeis
alsotheleaststablemodeexceptfor0.02 ≤ C < 0.1 wherezeroazimuthalmodeisthe
leaststablemode.However,for Da = 10−2 (exceptfor0.02 ≤C < 0.1)and10−3 theleast
stablemodeat n = 1 isunderR-T(Rayleigh-Taylor)mode.Energyanalysisatcriticallevel
showsthechangeinthecharacteristic:stabilizingtodestabilizing,ofdisturbedkineticen-
ergyduetoshearfactor(Es) onchanging C for Da = 10−1 and10−2, whichisthecauseof
changingtheshapeofsecondaryflowfromuni-cellulartobi-cellular.Moreover,depending
onthemediapermeabilityaswellascurvatureparameterthreetypesofinstabilitynamely,
thermal-buoyant,interactiveandRayleigh-Taylorareobserved.ThisRayleigh-Taylortype
instabilityisindependentof Re andbecomestheleaststablemodein(| Rac |, Re)-planeon
decreasing Da. C takesasignificantroleontheappearanceofRayleigh-Taylor instability.
Althoughforstablystratifiedcasenorelationbetweentheappearanceofpointofinflection
v
andinstabilityoftheflowisobservedbutforunstablystratifiedwaterflow,theappear-
anceofflowseparationisthesufficientconditionforinstability.Furthermore,toanalyze
thenatureoftheRayleigh-Taylorinstabilityandthefinite amplitudebehaviorofunstable
disturbancethatoccursbeyondthelinearstability,especiallywhenthepermeabilityofthe
mediumisrelativelylowwehaveusedweaklynonlinearstabilitytheoryintermsoffinite
amplitudeanalysis.OuranalysisonLandauconstantandamplitudeasafunctionof Ra
revealstwoimportantfacts.First,forboth Da = 10−2 and10−3 dependingon C aswell
as Ra, Rayleigh-Taylorinstabilityshiftsfromsupercriticalto subcritical(reverse)atand
beyond Rac. Second,theamplitudeprofileexperiencesasuddenjumpwheneverthetype
ofinstabilitychangesawayfromthecriticalpoint.
Finally,Chapter6presentsthesummaryandconcludingremarksofthisthesisandthe
possibledirectionsofthefuturescope.