
ADAPTIVE BANDWIDTH MANAGEMENT FOR
UMTS NETWORKS

A DISSERTATION

Submitted in party! fulfilment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND

Oi l 	}

(
y .., No......... a►

+fib• 5.
I

BY 	I f r R J00E-
DEVENDRA SINGH

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

FEBRUARY 2003

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in the dissertation

entitled " Adaptive Bandwidth Management For UMTS Networks" in partial

fulfilment of the requirement of the award of degree of Master of Technology, in

Computer Science and Engineering, submitted in the department of Electronics

and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, is

an authentic record of my own work carried out from Aug 2002 to Feb 2003,

under the guidance of Dr. Mohan Lal, Asst. Professor, New Computational

Facility, and Dr. Manoj Misra, Associate Professor, Department of Electronics

and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee.

The matter embodied here, has not been submitted by me for the award of

any other degree or diploma.

Place: Roorkee

Date: 	 Devendra Singh

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge and belief.

(Dr. Mohan Lal)

Asst. Professor,

New Computational

Facility,

IIT Roorkee,

Roorkee-247667.

Date :

Place : Roorkee

Hn r—, M ;Sy--
(Dr. Manoj Misra)

Associate professor,

Dept. of Electronics &

Computer Engineering

IIT Roorkee,

Roorkee-247667.

Date :

Place : Roorkee

ACKNOWLEDGEMENT

I take this opportunity to thank all the magnanimous persons who rendered their

full support to my work directly or indirectly. I would like to express my deep

sense of gratitude to my guide Dr. Mohan Lal, Asst. Professor, New

Computational Facility, and Dr. Manoj Misra, Associate Professor, (Department

of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee.) for their valuable suggestions and cooperation throughout

this dissertation apart from providing useful material.

My special thanks to Dr. A. K. Sarje, Head of Department, Department of

Electronics and Computer Engineering, and Dr. R. P. Agarwal (Professor and

former H.O.D. E & CE Department.) for their constant support and advice, which

has helped me in completion of the dissertation.

I am thankful to my friends for their timely suggestions, cooperation and help. My

deep appreciation goes to my parents for the encouragement and support; at last

I gratefully acknowledge my deep indebtedness to all other persons who helped

me during the whole period of the work.

DEVENDRA SINGH

ABSTRACT

Universal Mobile Telecommunications system (UMTS) provides the technical

foundation to integrate all kind of services like speech, data, audio, video, e-mail,

web browsing etc. through the mobile hand set. The objective here is to improve

bandwidth utilization and quality of service of Universal Mobile

Telecommunications System.

To improve bandwidth utilization of Universal Mobile Telecommunications

System performance management information base (P-MIB) has been

implemented which dynamically adjusting the packet scheduler and admission

controller. The P-MIB also controls the system parameters to improve overall

quality of service. The key contribution of this dissertation is to compare the

performance of two packet scheduler i.e., weighted round robin scheduler and

weighted fair queuing schedulers. The two packet schedulers are implemented

so that maximum number of packets are transmitted in less time unit, which in

turn maximizes the bandwidth utilization.

The implementation is die in c++ language on Pentium IV system under

windows-98 environment.

nn

CONTENTS

CANDIDATE'S DECLARATION
CERTIFICATE
ACKNOWLEDGEMENT 	 II

ABSTRACT 	 III

1. INTRODUCTION
	

1

1.1 UMTS networks

1.2 UMTS network Architecture

1.3 Quality Of Service Classes 	 3

1.4 Statement of the Problem 	 3

1.5 Organization of the Dissertation 	 4

2. FRAMEWORK FOR ADAPTIVE PERFORMANCE MANAGEMENT
	

5

2.1 Admission Control
	

5

2.2 Adaptive Bandwidth Partitioning 	 6

2.3 Packet Scheduler
	 8

2.4 Weighted Round Robin Scheduling
	 9

2.5 Weighted Fair Queuing Scheduling
	 10

3. PERFORMANCE MANAGEMENT INFORMATION BASE
	

12

3.1 System Architecture For Adaptive Performance Management
	

12

3.2 Online Performance Monitoring
	 13

3.3 Updating Of System Parameters
	 14

4. SIMULATION STRATEGY
	

16

4.1 Simulation Model
	

16

4.2 Simulation Parameters And Assumptions
	 17

4.3 User Inputs 	 18

4.4 Program Structure And Classes 	 18

iv

5. RESULTS AND DISCUSSION
	

23
6. CONCLUSIONS
	

32
6.1 Conclusions 	 32

6.2 Scope for Future Work
	

32
REFERENCES
	

34
APPENDIX A: Flow charts 	 35
APPENDIX B: Software Listing 	 40

Chapter 9

INTRODUCTION

1.1 UMTS Networks

Universal mobile telecommunications system (UMTS) provides the technical

foundation for integrating the currently separate worlds of mobile and fixed

telecommunications services into a unified digital data environment. Universal

mobile telecommunications system (UMTS) is characterized by a migration from

voice-only to integrated services networks. Thus, applications such as e-mail,

web browsing, and corporate local network access, as well as video

conferencing, e-commerce, and multimedia can be supported over wireless data

channels.

1.2 UMTS network Architecture

The UMTS network architecture is divide into following parts

■ UMTS core network (CN)

■ UMTS access network (UTRAN)

■ User equipment.

The UMTS core network is responsible for handling circuit switched connections

and tunneling packet switched data to public networks (i.e., internet)

The UMTS access network i.e., the UMTS terrestrial radio access network

consists of a set of Radio Network Controller (RNC), Radio Base Station (RBS)

[1][2][14].

The main task of the RNC is to manage Radio Access Bearers (RABs) for user

data transport, manage and optimize the radio network resources and control

mobility, while the RBS provides the actual radio resources and maintains the

radio links.

Core Network

UTRAN
Iu

Radio Network 	 Radio Network
Controller 	 Controller

lub 	 lub 	 lub 	 lub

Node B 	Node B• 	Node B 	Node B
Uu

User Equipment

Fig 1 Architecture of UMTS.

The RNC is connected to the CN via the lu interface and the User Equipment

(UE) is connected to the RBS via the Uu (radio) interface.

Internally within RAN, the RNCs are interconnected via the lur interface to

support smooth handover for MS leaving the area covered by the serving RNC

and entering the area of a drifted RNC, as shown in figure 1[1].

The Node-B is physical unit of radio transmission/reception with cells. The Node-

B is the equivalent of BTS in GSM and typically serves a cell site. Several Node-

Bs are controlled by single RNCs over the lub interface. The main task of Node-B

is to measure quality and strength of the connection and determines the error

rate [1][2][12][14].

2

1.3 Quality Of Service Classes

Universal Mobile Telecommunications system provides, four different classes of

QoS[1][7].

1. Conversational class.

2. Streaming class.

3. Interactive class.

4. Background class.

The main distinguishing factor between these QoS classes lies in the delay

sensitivity of the traffic. The conversational class is meant for traffic, which is very

delay sensitivity while the background class is the most delay insensitive traffic

class. Conversational and streaming classes are mainly intended to be used to

carry RT traffic. A conversational RT traffic stream is characterized by requiring

low transfer delay and small delay jitter because of conversational nature of the

stream. The streaming traffic class consists of one-way RT traffic streams, e.g.,

viewing video clips or audio clips. Interactive class and background class are

mainly meant to be used by traditional Internet applications like WWW, e-mail

and FTP. The main difference between the interactive class and the background

class is that interactive class is mainly used for applications such as, interactive

Web browsing, while background class is meant for background download of e-

mail or background file downloading. Traffic in the interactive class has higher

priority than background traffic. Thus background application use transmission

resources only when interactive application do not need them [6][16].

1.4 Statement Of Problem

In this report the problem of improving bandwidth utilization of Universal Mobile

Telecommunications system is addressed and performance management

information base (P-MIB) has been designed which improves overall QoS of.

3

UMTS by controlling system parameters i.e., threshold, bandwidth portions and
queuing weights.

1.5 Organization of the Dissertation

The dissertation is organized as follow.

Chapter 2 describes the framework for the adaptive performance

management comprising of an admission controller and packet scheduler.

The two type of packet scheduler i.e., weighted round robin and weighted

faire queuing are being described under packet scheduler.

Chapter 3 provides the framework for online performance monitoring and

adaptively adjusting system parameters.

Chapter 4 describes the simulation strategy.

Chapter 5 presents the simulation results to show the benefit of

employing the framework for adaptive performance management and

packet scheduling strategy's.

Chapter 6 Finally concluding remarks and scope for future work is given.

APPENDIX A: flow charts.

APPENDIX B: source code.

4

Chapter 2

FRAMEWORK FOR ADAPTIVE PERFORMANCE MANAGEMENT

2.1 Admission control

The proposed framework distinguishes three different types of services

• Circuit-switched services.

• Packet switched real time services.

• Non- real time services.

In general circuit switched services are voice calls from a mobile station. Real

time services correspond to UMTS conversational and streaming class and non-

real time (NRT) services correspond to the UMTS interactive and background

class. The bandwidth available in a cell must be shared by calls of different

service classes and the different service requirements have to be met.

So whenever a mobile session starts, user has to specify its traffic characteristics

and desired performance requirements called as QoS profile. Then the

admission controller decides to accept or reject the users request based on QoS

profile and the current network state e.g., given by queue length. The purpose of

admission controller is to guarantee the QoS requirements of the user who

request admission while not violating QoS profile of already admitted users. The

call admission criteria will be different for each service class. Admission control of

RT session is based on a QoS profile that specifies a guaranteed bit rate that

should be provided to the application to work proper. If the network cannot satisfy

the desired bandwidth requirements the corresponding admission request is

rejected [1][8][13][14].

5

2.2 Adaptive Bandwidth Partitioning

The partitioning of the available bandwidth is performed to meet the QoS

requirements of the three service classes:

• Voice calls.

• RT session.

• NRT sessions.

Let B be the overall bandwidth available in one cell. A portion bh of the

bandwidth B is reserved for handover calls from neighboring cells in order to

reduce handover failures. A portion by is reserved for RT and NRT data packets,

i.e., packets only.

Packet Only
	A

bp.B

FCFS ..

NRT Packet
..

Voice Packet

Handover

Fig. 2.1. Adaptive bandwidth partitioning of the available bandwidth.

The remaining bandwidth (1-bh-bp)B can be allocated "on demand" by voice calls

and data sessions respectively. Because in future UMTS networks voice calls will

b,. Bp(t)

b„B

bhB

i

6

still play a major roll in bandwidth requirements. So a portion b„ of overall

bandwidth is allocated for voice calls. The remaining bandwidth is allocated on a

first-comes first-served (FCFS) basis to voice calls or RT sessions. In order to

give NRT traffic a certain amount of bandwidth, a portion b„ of the bandwidth

actually available for packet data is reserved for non-real-time packets. Let B(t)

be the bandwidth reserved for all voice calls at a certain time t, then for packet

data bandwidth of size B,(t)=B — B(t) is available. Different call type arriving in the

cell and the corresponding condition under which these call are admitted are as

follows:

1. For RT users, admission is based on the availability of the guaranteed

bandwidth specified in the QoS profile. Let Br(t) be the bandwidth already

allocated for RT traffic at time t and let Br be the bandwidth required by the

user who requested admission. The user will be admitted according to the

bandwidth partitioning [1].

For Real Time Call

• Br+ Br(t)<(1-bh)B- B,(t)

• Br+ Br(t)<(1-bn)(B- B,(t))•

That is after call admission the handover bandwidth is still available and a

portion bn of the overall packet bandwidth Bp(t) is also .still available for

NRT sessions

2. For Voice Call

■ New Voice Calls With Bandwidth requirement B„ will be admitted if

there is enough bandwidth in voice packet region (i.e. b.B).

■ If voice call can be accommodated in the first come first serve area

without violating bandwidth requirement of ongoing calls.

3. For NRT Call

■ For NRT session, the admission is based on availability of buffer

space in NRT Queue.

7

2.3 Packet Scheduler

Data packets from various connections are queued until bandwidth is available

for transmission. Packet scheduler controls the order in which packets are served

and how packets in transfer share the available bandwidth. Data packet that

arrive at the radio network controller are organized in two distinct

queues i.e., real-time queue and non-real-time queue. A transfer queue is also

implemented that contains the packets actually in transfer. The available

bandwidth capacity is shared over the packets in the queue according to their

QoS requirements and bandwidth partitioning. Each time one of the following

events occurs the available bandwidth is newly assigned to packets in transfer by
a packet scheduler:

Events

• Admission of new voice call or handover.

• Termination of a voice call due to call termination or handover.

• Transfer of a RT or NRT data packet is finished.

• Arrival of a RT packet of user I at the radio network controller with no RT

packet of user I waiting in the RTQ or been in transfer,

• Arrival of a NRT packet at a radio network controller with no NRT packet

waiting in the NRTQ and still bandwidth capacity available for NRT packets.

Queue RT

KRT_

Arriving
Queue NRT 	 Packet

IP packe 	 selected 	_._.-.-._,_.-
KNRT 	 for Trf.

Transfer queue

Fig. 2.2 RTQ, NRTQ and transfer queue.

8

In order to distinguish different priorities for NRT traffic, a weighted Round' Robin

scheduler or more complex scheduling strategies like weighted fair queuing

(WFQ) has been implemented. Whenever the packet scheduling is initiated due

to the occurrence of one of the events stated above, the available bandwidth is

newly assigned to packets in transfer [1][5].

Let t be the point in time when the packet scheduling is initiated. Voice calls are

assumed to be circuit switched, Therefore, each voice call allocates a fixed

amount of bandwidth during its lifetime. The bandwidth requirements Br(t)

needed to satisfy the guaranteed bit rate for RT users is computed. If a portion bn

of the remaining packet bandwidth is not anymore available for NRT packets

then RT sessions have to be degraded. This can only happen if bandwidth

requirements for RT packets are so exhaustive that they occupy the voice

packets areas and an additional voice call is admitted in the cell. The de-

gradation of RT sessions if performed stepwise i.e., in each degradation step all

RT sessions are degraded to a specified level before starting the next

degradation step if necessary. After assigning bandwidth to RT sessions the

remaining bandwidth is allocated to NRT traffic. If still bandwidth available then

degraded RT sessions can be increased to their guaranteed bandwidth again.

2.4 Weighted Round Robin Scheduling

In this type of scheduling strategy packets from different connection arrives and

are queued until bandwidth is available for transmission. The queues are treated

as a circular queue. A small unit of time, called a time quantum or time slice, is

defined. The scheduler goes around the queue, allocate the bandwidth to each

connection for a time interval up to a quantum in length [13][15].

Implementation

• On packet arrival

o Set the time quantum.

o Pick the first packet from the queue, allocate the bandwidth till the

time quantum is completed.

o If the packet size is larger than the time quantum, store the source

and destination address of the packet and put the packet at the tail

of queue.

o If the packet size is smaller than the time quantum, then select the

next packet of transmission.

Disadvantage

• It is better if packets are of same length.

• It gives more bandwidth to calls that uses large packets than to calls

that uses small packet.

2.5 Weighted Fair Queuing

In weighted fair queuing instead of a packet-by-packet round robin, it scans the

queue repeatedly, byte-for-byte, until it finds the tick on which each packet will

finished. The packet are then sorted in order of their finishing times and sent in

that order [13][15].

Implementation

■ On packet arrival

• Use source + destination address to classify it and look up finish

number of last packet served (or waiting to be served).

• Compute finish time.

• Insert in priority queue sorted by finish times.

• If no space, drop the packet with largest finish time.

• On service completion

• Select the packet with the lowest finish time.

10

Packet 	Fin. Time

C 8

B 16

D 17

E 18

A 20

A

B
C

D

E

Fig. 2.3. Finishing time for five packets.

In fig 2.3 Packet of length 2 to 6 bytes are specified. At clock tick 1, the first byte

of the packet on line A is sent. Then goes the first byte of the packet on line B,

and so on. The first packet to finish is C, after 8 ticks. The sorted order is given in

fig(2.3). The packets will be sent in the order listed, from C to A [13]. The main

objective of including scheduler is that maximum number of packets scheduled in

minimum amount of time.

For both type of scheduling scheme average turn around time is calculated.

Average Turn around time is the time taken to complete the transmission of

packet.

N

Where

Arg 	= Average turn around time

Sm = sum of time taken by each packet to transmit.

N 	=Number of packets

A comparison is done for both the scheduling schemes, to identify which

scheduling strategy is better so that bandwidth utilization is maximized.

Chapter 3

PERFORMANCE MANAGEMENT INFORMATION BASE

3.1 System Architecture For Adaptive Performance Management

The system architecture for adaptive performance management is being divided

into following parts

• Online performance monitoring

■ System parameters

• Performance management

Pattern

tiiiiii 	
Online Performance

Performance 	 I 	Monitoring

P-MIB 	 Management

Parameter update

Admission 	 System Parameter 	
Packet Scheduler

Controller

Fig. 3.1. System architecture for adaptive performance management.

To maximize QoS for the mobile users, a performance management entity has to

be introduced in a radio network controller that is responsible for corresponding

transceiver stations (i.e., Node B elements). Furthermore, a radio network

controller has to be extended by an online performance measurement

component that derives performance measures in a certain time window (e.g.,

12

handover failure probabilities of mobile users). These performance measures

form a system pattern. The system pattern is submitted in fixed time intervals to

the performance management entity, which subsequently updates the system
parameters (i.e., parameters of traffic controlling components like the admission

controller and packet scheduler). The update of system parameters is made as

specified in a P-MIB [1].

System parameters, which are adjusted by the performance management entity,

comprise of

1. Bandwidth portions i.e., handover bandwidth, real-time bandwidth non-

real-time and voice bandwidth.

2. NRTQ threshold (portion of buffer size),

3. Queuing weights wi for NRT packets with priority i.

3.2 Online Performance Monitoring

The online monitoring of QoS measures is performed by a sliding window

technique as depicted in Fig. 3.2. The width of the sliding window depends on the

number of relevant events that occur according to a performance value (e.g.,

NRT packet arrivals are relevant events for computing PLP). The upper part of

Fig. 3.2 shows the sliding window at a certain time point to. Assuming that at time

t, the next relevant event occurs the sliding window moves in time as shown in

the lower part of Fig. 3.2. After a certain number of relevant events are occurred

a system parameter update is performed based on the performance measure

derived from the sliding window (e.g., update of g according to PLP derived from

sliding window). To get expressive performance measures the sliding window

should not be too small. As a certain number of events representing the history of

the performance value have to be considered [1][8][13].

13

Sliding window with relevant events
for a performance measure

to 	t

Arrival of relevant
event at time t1

Update of corresponding system parameter

0 t1 t

Fig. 3.2. Online performance monitoring

3.3 Updating Of System Parameters

The UMTS system parameters can be updated by monitoring QoS measures,

which immediately affect these parameters. The QoS measures are handover

failure probability (HFP) and call/session blocking probability (CBP) to voice calls

and RT sessions respectively. The packet loss probability of the NRTQ is

abbreviated by PLP. The average number of active NRT sessions with priority 1,

2, and 3 is denoted by NRT1, NRT2, and NRT3. Determining the updates for the

system parameters, i.e., determining bh(new) and j7i"`"'i, and the updated queuing

weights w,"e1V) , wz"°'"), and w;"can be performed based on the dependencies

(1)—(3) to the corresponding old values and the actually observed QoS measures

HFP, CBP, PLP, NRT1, NRT2, NRT3. That is:

1. b ° , HFP, CBP -~ bh(new)

2. y/i"rrl PLP—"

14

3. NRTI, NRT2, NRT3-3wIAe4) wz"c")

The update of system parameters is performed as follow [11

After deriving the factors KHFP, Kcsp, and KPLP (which represents handoff failure

probability, call blocking probability and packet loss . probability), update the

bandwidth partition and threshold value according to dependencies (1) and (2)
• bh(new)=k 	(old) HFP•kcBP.bh 	.

■ Threshold(new) = kpLP.Threshold(old)

The update of the queuing weights i.e., determining w;"`"') , wz"`"") , andw; `"") is

made according to the measured average number of NRT sessions belonging to

priorities 1, 2, and 3 in the cell.

The queuing weights are updated according to (3) dependency.

• Wi (new) _ 4. NRT
W2

(new) 2. _ 	NRTZ W3 (new) __ 1. NRT
W 	 W 	 W

W=

15

Chapter 4

SIMULATION STRATEGY

4.1 System Model

The simulation model consists of a cell cluster comprising of seven hexagonal

cells. When a mobile user starts a new session, the session is classified as

voice-, RT, or NRT session, i.e., with the session the user utilizes voice-, RT, or

NRT services. The voice calls are assumed to be circuit-switched connections

that require a constant amount of bandwidth. Users have to specify the QoS

profile for RT and NRT sessions. For RT sessions the two QoS profile defines,

i.e., a low bandwidth profile comprising of a guaranteed bit rate corresponding to

streaming audio and a high bandwidth profile comprising of a guaranteed bit rate

corresponding to streaming video. Before a mobile user can start a new session,

user has to pass the admission controller. The amount of time that a mobile user

with an ongoing session remains within the cell is called dwell time. If the session

is still active after the dwell time, a handover toward an •adjacent cell takes place

[3][4][5]. Thus, in the simulation environment, a session of a mobile user is

completely specified by the following parameters: service class packet arrival

process, dwell time and QoS profile.

Simulation Model For Weighted Round Robin Scheduler

For modeling weighted round robin scheduler two queues are considered one for

real-time packets and another for non-real-time packets. Packets from different

connection arrive at radio network controller, which are 'queued until bandwidth, is

available. For performing weighted round robin scheduling a time quantum is

specified and weighted round robin scheduling is initiated whenever following

type of event occurs i.e., new call arrival, handoff, completion of NRT and RT

services. The scheduler picks the packet from the queue and checks whether

there is enough bandwidth or not. If bandwidth is available packets are given

bandwidth for transmission. Every packet is transmitted according to the time

16

quantum, if the time quantum expires before packet transmission that packet is

placed at the end of queue otherwise new packet is selected from the queue.

Priorities are assigned according to weights i.e,, any packet having higher weight

have higher priority. Packet with higher priority are served first.

Simulation Model For Weighted Fair Queuing
In weighted fair queuing simulation packets are scanned byte-by-byte and their
finish time is calculated. Finish time is the:time taken by packet to finish

transmission. A queue is maintained which store the packets according to their

finish time. The packet at the head of queue, will have minimum finish time while

the packet at the end will have maximum finish time. The packets are transmitted

from the queue i.e., the first packet to be frarismitted will have minimum finish

time. The weights are assigned for priorities. If packet have higher priority, than

at one clock tick more than one byte of that packet is transmitted.

4.2 Simulation Parameters And Assumptions

Simulation parameters are of fixed and adaptive type. Fixed parameters are

those parameter that remain static through out the simulation.

Fixed parameters are as follows:

Available bandwidth in one cell, B 	 7680 kbps

RTQ buffer size, KRT 	 1000 packets

NRTQ buffer size, KNRTQ 	 1000 packets.

Adaptive parameters are those parameters that can be adjusted by performance

management information base.

Adaptive parameters are as follows:
Handover bandwidth 5%

Voice call bandwidth 10%

Data packet bandwidth 20%

FCFS 65%

Bandwidth for NRT packets 10%

NRTQ threshold 90%

17

■ The amount of time a mobile user with ongoing sessions remains within

the cell is modelled by lognormal distribution.

■ The duration for voice calls and RT sessions is assumed to be

exponentially distributed.'

4.3 User Inputs

The software offers a certain degree of flexibility by allowing user entry of the

following simulation parameters

1. Service Class i.e., whether user wants to use voice, real-time or non-real-

time services.

2. Bandwidth required by each type of service.

3. Quality of service profile for each type of service.

4. Time quantum for weighted round robin scheduling.

4.4 Program Structures And Classes:

Structures:

List 	:This structure is used to store packets in a first in first out manner.

Attributes:

Next 	: next part is a pointer to next node.

Calls 	:Before a mobile session starts user has to specify the call type i.e.,

whether voice call, RT session or NRT session.

Attributes:

Type 	: which specify the type of call i.e., whether voice call, RT session

or NRT session.

atime 	: it specify the duration of the on going session.

Handover :When user moves from one cell to another, users information has

to be passed on.

Attributes :

18

Type 	: This specify the type of handover i.e, whether it voice handover or
real time handover.

Priority

	

	: This is being used to assign priority real time handover over voice

handover.

Classes :

Queue :This class is being used to store real-time and non real-time
packets.

Attributes:

Front : The first item that will be removed from the queue.

Rear : The last item in the queue, that is, the one most recently

added.
qptr : qptr is a pointer to the queue that tracks the front and rare

position of the queue.
Operations:.

Empty : Checks whether queue is empty or not.

Add : This function is used to added item to the queue.

Remove : Removes the item from the queue.

Events : This class is used to create object of events.

Attributes:

total calls : Total number of calls.

blocked : Total number of blocked calls.
ho success : Number of handover success.

ho fail : Number of handover failure.
next_call : Identify the next call

next_handover : This attribute is used for next handover type.

ho_delay : Handover delay.

busy_channels : Identify whether the channel is busy or not.
next_event type : Identify the event type.

max_q_len : Identify the maximum queue length.

Operations:

Events : Initialise all the parameters.

new call : This function is used when ever new call arrives and

identify the traffic characteristic.

new handover : This function checks for new handover call.

release channel : This function release the bandwidth allocated after the

completion of service.

q_scan : This function scans the queue for packets.

Simulation : This class is used to perform the simulation.

Operations:

Simulation : This function performs the simulation according to scheme

type i.e., weighted round robin or weighted fair queuing.

Traffic : This function generate the traffic.

Save : This function stores the result in a file.

Load : This function calculate overall load in the system.

Start : This function identify the next event type i.e., new call,

handover or channel release.

Functions:

Mobile_subchoice : when ever a mobile session starts it has to specify its

traffic characteristic i.e, voice call, real-time session or

non-real-time session.

Attributes:

Vbwidth 	: Bandwidth for voice calls.

Rtbwidth 	: Bandwidth for real-time sessions.

Ntbwidth 	: Bandwidth for non-real-time sessions.

Vadmission_check : Checks the required voice bandwidth against the available

bandwidth. If bandwidth is available the request is

20

accepted otherwise rejected.

Attributes:

Vbwidth 	: Bandwidth for voice calls.

rtadmission_check: Checks the required real-time bandwidth against the

available bandwidth. If bandwidth is available the request

is accepted otherwise rejected.

Attributes :

Rtbwidth 	: Bandwidth for real-time sessions.

ntadmission_check : Checks the required non-real-time bandwidth against the

available bandwidth. If bandwidth is available the request

is accepted otherwise rejected.

Attributes

Ntbwidth : Bandwidth for non-real-time sessions.

byte_scan : It scans packet byte_by_byte, calculate their finish time and

sort them in ascending order according to their finish time.

Attributes :
Pkt_size : Size of packet.

P_mib 	: It is'a performance management information base which

regularly checks packet loss probability, call blocking

probability and handoff failure probability and according to

these probabilities it generates new performance

controlling parameters i.e, new handover bandwidth, new

threshold, new weights.

Attributes:

HANDOFF_FAIL_PROB : Handoff failure probability.

PKT_LOSS_PROB 	: Packet loss probability.

CALL_BLOCK_PROB 	: Call blocking probability.

21

NEW THRESHOLD 	: New threshold value.

wl,w2,w3 	 : New weights.

Scheduling 	: This functions performs weighted round robin or

weighted fair queuing scheduling.

Attributes.
simulation time 	: This is the time quantum used for simulation.

22

Chapter 5

SIMULATION RESULTS AND DISCUSSION

The curves show the effect of adaptive performance management.

2 a
0.6 -

~

j 	? 	i
0.2

m 	i
x 0 ,

0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2 	2.2 	2.4

Call Arrival Rate

WAC --- P-MIB

Fig 5.1 Effect of adaptive performance management on handover failure

probability.

Fig. 5.1 plots the handover failure probability with and without adaptive

performance management. Curves with adaptive performance management are

denoted with MIB and WAC denotes curve with out adaptive control. From the

curve it is clear that with adaptive performance the handover failure probability

can be kept low. This is due to the fact that the handover bandwidth is updated

according to handover failure probability. As from Fig. 5.3, the adjusted

bandwidth for low arrival rate i.e., 1 arrival per second is kept constant which is

equal to 7%. As the arrival rate increases the portion of handover bandwidth

increases that's why the handover failure probability 'increases first arid then

decreases. The handover failure probability is calculated as follows

Handoff failure probability = bh/(call blocking probability)* bt(0 	.

23

1-

v
0.8

0.6

o 	1 m
- V v n 0.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Call Arrival Rate

—.— WAC —f— P-MIB I

Fig 5.2 Effect of adaptive performance management on new call. blocking

probability.

Fig. 5.2 shows the new call blocking probability, as from the curve the call

blocking probability for adaptive control is higher as compared to non-adaptive

control. This is due to the fact that for low arrival rate the handover bandwidth is

kept low but as the arrival rate is increased the bandwidth is also increased for

handover, which in turn increases the blocking probability.

call blocking probability =bh(new)/ bh(0k1) * (handoff failure probability)

24

0 100

v 80

60 M
m 40 m
v° 20
c
z 0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Call Arrival Rate

Fig 5.3 Adaptive adjustment of handover bandwidth.

Fig. 5.3 shows the adaptive adjustment of handover bandwidth. The handover

bandwidth is adjusted according to handover failure probability and new call

blocking probability. Whenever the handover failure probability increases the

handover bandwidth is increased as follows.

For low arrival rate i.e., up to larrival per second the handover is kept to equal

7% of the over all bandwidth. The handover bandwidth is updated according to

given formula i.e.,

bh("ew)=(handoff failure probability)*(call blocking probability)* bh(old)

7? 113°

N{ F. ROO

100

0
80

0 60

u) 40

20

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Call Arrival Rate

Fig 5.4 Adaptive adjustment of NRTQ threshold.

Fig. 5.4 Show the adjustment of NRTQ threshold. The NRTQ threshold is

adjusted according to

new threshold = (packet loss probability * old threshold)

The NRTQ threshold is kept constant to 90% for arrival rate below 1 arrivals per

time unit. And for high arrival rate the threshold is decreased. Therefore the

packet loss probability increases compared to the case without adaptive control,

which is shown in Fig. 5.5.

26

a 0.8
0
a` 0.6

0 0.4
i 	J

d 0.2

U 0 i 	lE a
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Call Arrival Rate

—•— WAC —.— P-MIB

Fig 5.5 Effect of adaptive performance management on packet loss probability.

Fig. 5.5 shows a significant improvement.for the packet loss probability due to

adaptively adjusting the threshold of non-real-time queue threshold..

packet loss probability = (total cells lost)/total cell generated. Adaptive packet

loss probability is calculated according to

new threshold = packet loss probability*old threshold.

Packet loss probability = (new threshold)/old threshold.

27

14

0 12

£ 8-
6-'

	

) 	4

2-

	

¢ 	0

1 	2 	3 	4 	5 	6 	7

Time Quantum

+WRR—•—WFQI

Fig 5.6 The average turnaround time at different time quantum for variable

packet size.

Fig. 5.6 represents the average turnaround time for different time quantum's.

Turnaround time is the time interval from the submission of the packet to the time

of completion of the transmission. From the graph it is clear that the average

turnaround time for weighted round robin scheduling is high as compared to

weighted fair queuing scheduling with variable packet size.

At different time quantum

Avg. tm time =(sum of time taken by each packet to transmit)/number of packets

28

60

'0 	50J

F?P 30~
a~ 20

10

-
1 	2 	3 	4 	5 	6

Time Quantum

[I-.—WFQ —.--WRRI

Fig 5.7 The average turnaround time at different time quantum for fixed packet

size.

Fig. 5.7 represents the average turnaround time for different time quantum, using

two scheduling scheme i.e., weighted round robin and weighted fair queuing.

From the graph it is clear that the average turnaround time for weighed round

robin scheduling is low with respect to weighed fair queuing at different time

quantum. The packets are of fixed size.

29

C 90
°- 75 .ro

60
45
30
15
0

0 100 200 300 400 500 600 700 800 900

Number of packet[fixed size]

tWFQ -f-WRR

Fig 5.8 bandwidth utilization for fixed packet size.

Fig. 5.8 represent bandwidth utilization of the system by using different

scheduling scheme. The bandwidth utilization is calculated for fixed packet size.

As from Fig. 5.7 the average turnaround time for weighted round robin is less

than the average turnaround time of weighted fair queuing scheduling, which

means that more number of packet's can be served in less time. Hence the

bandwidth utilization increases for weighted round robin scheduling.

Bandwidth utilization is calculated as follows

Bandwidth utilization = s6 *100
th

Sb=sum of bandwidth for each packet

tb=total bandwidth*100

30

°- 75 M

60
45

3 30

Ca 15
• 0

90

7 100 200 300 400 500 600 700 800 900

Number of packet[variable size]

-WFQ -WRR

Fig 5.9 bandwidth utilization for variable packet size.

Fig. 5.9 represents the bandwidth utilization of the system for variable size

packet. As the average turnaround time for weighted fair queuing is less than the

average turnaround time of weighted round robin scheduling. Hence the

bandwidth utilization in case of weighted fair queuing is much better then the

weighted round robin scheduling for variable size packets.

To derive variable size packets lognormal distribution is used i.e.,

Size of packet = 	1 	exp- -
(Inx 2 ,u)2

x 2~r6z 	2Q

Where x>0

N=1.8821 and 62 =5.4139 are fixed for each packet.

Bandwidth utilization = S- *100
th

Sb=sum of bandwidth for each packet

tb=total bandwidth*1 00

31

Chapter 6

CONCLUSIONS

6.1 Conclusions

In this dissertation P-MIB has been implemented for dynamically adjusting the

packet scheduler and admission controller of the Universal Mobile

Telecommunications System. The aim of this adaptive control framework lies in

improving bandwidth utilization of the Universal Mobile Telecommunications

System radio channels. This framework distinguishes three different type of

quality of services: circuit-switched services as well as packet-switched RT

service and NRT services. The P-MIB adaptively adjusts the system parameters

of the admission controller.

Controlled system parameters constitute the portion of bandwidth reserved for

handovers, the buffer threshold of NRTQ, and the queuing weights for scheduling

NRT packets by packet scheduler. The performance curves for various QoS

measures to illustrate the benefit of the P-MIB have been shown in chapter 5.

From the curves it is clear that the adaptive performance management achieves

a significant improvement handover failure probability and packet loss probability.

The weighted round robin packet scheduling is better for fixed packet size while

the weighted fair queuing is better to use in case if variable size packets are

considered.

6.2 Scope for further work

• In this dissertation the adaptive control framework is tailored for UMTS

networks and also the services and QoS profiles standardized for UMTS is

being considered. However considering other services and QoS profile,

the basic idea underlying the control framework can also be applied for

adaptive control of wire-line networks.

32

REFERENCES

[1]. Christoph Lindemann, Macro Lohmann, Axel Thummler. "Adaptive

performance management for universal mobile telecommunication system

networks", computer networks 38 (2002) 477-496.

[2]. Mitrevski Kivil, Zgonjanin Dus Ko." Principle of the UMTS terrestrial radio

access networks-UTRAN", Telecommunication forum telfor'2001,

Beograd.

[3]. J.F. Huber, D. Weiler, H. Brand," UMTS, the mobile multimedia vision for

IMT-2000: a focus on standardization", IEEE communication magazine

38(2000) 129-136.

[4]. Remco Litjens, "The Impact Of Mobility On UMTS Network Planning",

computer networks 38 (2002) 497-515.

[5]. E. A nderlind. J. Zander, "A traffic model for non real-time data users in a

wireless radio network", IEEE Communication Letters 1(1997) 37-39.

[6]. 3GPP, http://www.3gpp.org.

[7]. Javier Zamore, Stephen, Alexandros, Eleftheriadis, Shih-Fu Chang and

Dimitris," A Practical Methodology For Guaranteeing Quality Of Service

For Video-on-Demand", IEEE Transactions On Circuits and system For

Video Technology. Vol. 10, No.1. (2000).

[8]. D. Bertsekas and R.Gallager, Data Networks, Prentice-Hall Of India Pvt.

Ltd. 1999.

[9]. H. Zhang, "Service disciplines for guaranteed performance service in

packet-switched networks", Proceeding of the IEEE 83 (1995) 1374-1396.

[[10]. UMTS-Forum, UMTS-2000 spectrum, Report No. 6 1999,

http://www.etsi.org/.

[11]. T. Ojanpera, R. Prasad, " An overview of air interface multiple access for

IMT-2000/UMTS", IEEE Communications Magazine. 36 (9) (1998) 82-95.

[12]. Andrew S. Tenenbaum, computer networks, Third Edition, Prentice-Hall

of India Pvt. Ltd. 1998.

[13]. Jochen Schiller, Mobile Communications, Addison Wesley Longman,

33

Pearson Education Ltd. 2000.

[14]. V. Bharghavan, S. Lu, T. Nandagopal, " Fair queuing in wireless networks:

issue and approaches", IEEE Personal Communications 6 (1999) 44-53.

[15]. Nilsson, " Toward third-generation wireless communication", Ericsson

Review No.2, http://www.ericsson.com/.

34

Start

Traffic characteristics.
Enter QoS Profile.

Is QoS
Profile

for NRT?

Yes

No 	Is NRT
queue
empty?

Yes

Allocate bandwidth and
store NRT packets in NRT

queue.

icrement the
nber of blocked
,alts by one.

No 	Is QoS 	No 	Is QoS 	No

	

Profile 	 Profile for

	

for RT? 	 Voice?

Yes 	 Yes
Enter the

guaranteed bit rate
and minimum bit 	 Is 	No

rate. 	 channel
available ,/

Is 	 Increment the s bandwidth 	
number of blocked for ndwider

& 	No 	 calls by one.

NRT service

	

available? 	Allocate channel to the
voice call.

Yes

Allocate bandwidth and
store NRT packets in NRT

queue.

Flow chart for admission controller

Stop

36

Start

I Fnter tha nntion_ I

Check
Option?

2 	 3

About 	Weighted round 	 Weighted fair queuing
simulation 	robin scheduling. 	scheduling. Enter the

packet size.

Enter the time
quantum.

Is 	Yes

Select the first 	 < 	packet
packet from the 	 size>0?
queue and allocate
the bandwidth to it. 	 No

Scan the queue
byte-by-byte.
Calculate the finish
time of packets.

Is the packet 	Yes
Store packets in

transmitted before order of their finish

time quantum time, first packet
Pxnin-.0 with minimum finish

time.

No 	 I Send the packet in
Place the packet at 	that nrriar

the end of queue.

No 	
Is all the

Is all the 	 packet
packets 	 send?
caniwrl

Yes 	 Yes

No

Flow chart for packet scheduler

37

Start

Is
NRT1>NRT2

& NRT3?

Yes

No 	NRT2

NRT3 ?

Yes

Update weights.
W 1=4sgrt(NRTI)/W.
W2=2sgrt(NRT2)/W.
W3=sgrt(NRT3)/W.
W=4sgrt(NRTI)+2sgr
t(NRT2)+sqrt(NRT3)

tte weights.
4sqrt(NRTI)/W.
°sgrt(NRT2)/W.
2sgrt(NRT3)/W.
•sgrt(NRT 1)+sqrt
C2)+2sgrt(NRT3)

No 	 Is
NRT1>NRT2

& NRT3?

Yes

NRT1 N No

NRT3?

Yes

Update weights.
W 1=2sgrt(NRTI)/W.
W2=4sqrt(NRT2)/W.
W3=sgrt(NRT3)/W.
W=2sgrt(NRT1)+4sgr
t(NRT2)+sqrt(NRT3)

No

Is 	 No
NRT1>NRT
2 & NRT3?

N,/

Assign
weights
W1=4

Yes 	W2=2

NRT1 	No

NRT3?

Yes

Update weights.
W 1=2sgrt(NRT 1)/W.
W2=sgrt(NRT2)/W. 	E
W3=4sgrt(NRT3)/W. 	N
W=2sgrt(NRT1)+sqrt 	D
(NRT2)+4grt(NRT3)

Update weights. 	 Update weights.
W l=sgrt(NRTI)/W. 	W 1=sqrt(NRTI)/W.
W2=4sqrt(NRT2)/W. 	W2=4sqrt(NRT2)/W.
W3=2sgrt(NRT3)/W. 	W3=2sgrt(NRT3)/W.
W=sgrt(NRT 1)+4sgrt 	W=sgrt(NRT 1)+4sgrt
(NRT2)+2sqrt(NRT3) 	(NRT2)+2sgrt(NRT3)

— 	Stop

Flow chart for controlling weights

38

Start

Get handoff failure
probability, call
blocking probability
and packet loss
nrobabilitv.

Is HFP
is high?

Update handoff
bandwidth portion.
bhnew_HFP*CBPbe Id

Is PLP
is hiqh?

Update threshold
Thncw=PLP*Tho~d

No 	
Is clock 	

Yes

time=10

Increment
clock time
by one.

Stop

Flow chart for adjusting handover bandwidth and NRT threshold

39

APPENDIX- B

Software Listing

40

#include<iostream.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
#include<process.h>
#include<conio.h>
#include<dos.h>
#include<graph ics. h>
#include<string.h>
#include<math.h>
#include<fstream.h>

#include"d:\tc\bin\devs\queue. h"
#include"d:\tc\binldevs\rand. h"
#include"d:\tc\bin\devs\sml. h"

#define AVAILABLE_BANDWIDTH 7680
#define RTQ_BUFFER1000
#define NRTQ_BUFFER 1000
#define THRESHOLD 0.9
#define FCFS 0.65
#define HANDOVER BANDWIDTH 0.5
#define VOICECALL BANDWIDTH 0.1
#define DATAPACKET_BANDWIDTH 0.2
#define D 1
#define DRAW 1
#define DELETE 2

intWinLeft=5, WinTop=3, WinDepth=20, WinRight=75;
int flag=0;
void scroll(int x,int y,int,char *str, char, char);
void displayl (void);
int StructLen;
unsigned char bufferl[4000],buffer2[4000];
char*fileName;
FILE *source record;
int c=240;
int k;
uilnnulnllrlllilinlJUiinivauuulnnnllurniaJnJrnlluJ~rlunlinln111luluuulllnurlllrniurnalnllnununurluuaJJllnlu
struct MESSAGE{

char text[200];
}message;

Juun~nr~Jrn11~»~laualnalnullualu11~n1~Iru1lwa11JUi~unauu~~ulnnuai~umlJ~nnamalrununl~JUlnnlrallaunnJUr

typedef struct Menu
{
int no;
unsigned char item[40];
unsigned char help[50];

111111l11l1/!IlIJIIJIlllJ111/11llllllllll!llllll!lllll/1111/!l1111111111111111111l111111111/1llllll1111111lllllllll111/111I11llllllllllllllllll1111I1111111

uulrn~llnl~rlrmu111rlrlluunlau1111r1nu1aalnllaallrlalulallruuunullnnaluml!llilnlullrlunllnlill/r1111u11ra11/nr1111
struct

{
int no;
unsigned char name[10];
unsigned char help[50];
int xcord;
int ycord;
} MainMenu[4]=

{
{1,"CON ADM","1: NETWORK CONFIGURATION ",2,3},
{2,"TUT ADM","2: HELP TUTORIAL ",17,3},
{3,"SIM ADM","3: START SIMULATION",35,3},
{4,"CHECK ADM","4: CHECK RESULTS",45,3}

room/uunuuaaauuaaaum~mm~~runlaril/mnmllunafrruaulullrllmlunniul/lmluunllruurrlmluulu~nalnrl/111
struct Menu ConfigMenul]=

{
{1,"1: MOBILE SESSION ","ENTER I FOR TRAFFIC TYPE"},

Illlll!!ll/1ll/11l111111/1111//1111111/1111111/IIIIIJllll11111!/1111111111111f11/llllllllllllllllllrll11111111111/llll!/Ill/!/llllllllll!/lfllllllllll!l1I1
struct Menu TutMenuf=

{
{1,"1: ABOUT UMTS ","1 FOR UMTS INTRO"},
{2,"2: ABOUT UMTS ARCHITECTURE","2 FOR ARCHITECTURE INFORMATION"},
{3,"3: ABOUT QoS OF UMTS","3 FOR QoS "},
{4,"4: ABOUT ADMISSION CONTROL","4 FOR ADMISSION CONTROL "},
{99,"5: GRAPHICAL REPRESENTATION ","5 FOR DEMO STEPS")

Illll(/Ill/rl/I!/Ill(/1//!Ill/1111!/11111/I/Ill/Ill1llI/I/!I(Ill/ll/1//!/Il!/fllll/Ill/l/11!//l/11(ll/Il!IllIll/Ill//1!!1!/llll/I%/1!!1111111Ill/I/I/!Ill/1
struct Menu SimuMenu(]=

{
{1,"1: ABOUT SCHEDULING ","},
{2,"2: WEIGHTED ROUND ROBIN ","},
{99,'3: WEIGHTED FAIR QUEUING ",' '}

l/!/!!llllll!//lllll!!/!1lll/1lllll/llll/11IJ!!/!/llll/fl/IllIll/1/!I//I/ll!!f/JIl/1//1!111/1//Ill/I!/!J!/llll//1lll/11111/Ill/I(1/Jll!!!!1/1!!!/1111(1/!/!
struct Menu CheckMenu(]=

{
{1,"1: WEIGHTED ROUND ROBIN FILE ""},
{2,"2: WEIGHTED FAIR QUEUING FILE""},

n111m1u1/r1u11rlr11rrr111a111uan1rlunurnounr1rn1111u1aa1rfl/nn11hi1alllallruulaarnlllalrlr/1lll/n/n1n11rusnuuulaul
struct Menu Headingfl=

{
{1,"1: NETWORK CONFIGURATION MENU,'l:INITIALIZATlON "},
{2,"2: TUTORIAL MENU","2:INFORMATION AND GUIDELINES"),
{3,"3: SCHEDULING & SIMULATION MENU","3:STARTING THE
SIMULATION"},

{99,"4: CHECK RESULTS MENU","4:READ THE ASSOCIATED OUTPUT'}

Il1IllllIllI111111111r1111lrlllllrlllllll/llll/11111111111111111!l11111111111f1lllll11lI111111/!llllllllllllll!

/lIIII/1I7//I//I/I/1/1/1/1/I/1ll/l/1I7111/Illllll/1/!llllll/11I1///l/1111/1111!/lllllll/1/Ill//lllllllll/1ll/lllllIll/I/11111111111/llllll/1111/////////Ill
int DoMainChoice(int choice);
void Beep(void);
void DisplayHelpBox(void);
void DisplayMain(void);
void DrawBar(int ,int int ,int ,int);
void DisplayMenu(int c ,int n, struct Menu *temp);
int GetStructLen(struct Menu *TempStruct);
int GetChoice(int);
void Mobile_subchoice(int);
void DoSubChoice(int ch);
void DoSubChoicel(int ch);
void DoSubChoice2(int Choice);
void DoSubChoice3(int ch);
void ConfigAdmin(void) ;
void TutAdmin(void) ;
void CheckAdmin(void)
void Scheduling();
void disp();
void vadmission_check(float);
void rtadmission_check(int);
void ntadmissioncheck(int);
void byte _scan()_
void p_mib();
void fileread(FILE *);

Il/llllllllllllllllllllllllllll1I11/111111/lllJllllllllllllllllllllllll!!Illllllllll!lllllllllllll1111l11lllllllllll!lllllllllllllllllllllllllllllllll1l111

int main(void){
clrscr();
int choice;

int i;
clrscrO;
DisplayHelpBox();
DisplayMaino;
DisplayMenu(4,1,Heading);
StructLen=GetStructLen(Heading);
choice = GetChoice(StructLen);
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DELETE);
DoMai nCh oice(choice);
return(0);

}

lllllllll!lIlll111111111111!l!1llllllllllll!111111!lllllllllllllllllllllllll111IlI!11111!llllllllllllllllllllllJlll

void DisplayHelpBox(void
{
window(5,22,75,24);
textbackgrou nd(GR EEN);
clrscrO;

Jlllll1111/11111!llllllllllllllllllllll1ll111/1111111!lIIIlllllllllllllllllll111llll111111!llll~~~~l!l~~~~~llll!lllllll~~~~ll1111!11/Illllllllllllllll!lIll

ll11111111111111111lI!llIIIIIIIll11111/lllllllllllllllll111lllllllllllllllllllllllllllllllllllllll!1111

void DisplayMain(void)

int i;
static int j =1;
if(j==1)
{
displayl0;
j=j+1:
}
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DRAW);
gotoxy(23,2);
cputs(" UMTS MAIN MENU ");
gotoxy(23,3);
cputs(-------------------------');
for(i=0;i<4;i++)
{

gotoxy(Win Left+10, 5+i);
cputs(MainMenu[i]. help);

}
gotoxy(Win Left+10,WinTop+8);
cputs(" ENTER YOUR CHOICE,O EXIT :");
}

llll!l1/ll!l!llll!lllll1111111111111/1/ll1/1!1!l!l!ll1Jllllll1111111llllll!l1llJllllllllllJlllllll111/lll11lllll111lllJllll!l!!l!/!lIl1/111/IJl1/1/IIJlJll1
void DisplayMenu(int index,int Number,struct Menu MemberMenu[])

{
int i, Lenth;
clrscrO;
gettext(1,1,80,25, bufferl);
DisplayHeIpBox();
for(i=0; i<index; i++)
cputs(MemberMenu[i].help);
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DRAW);
gotoxy(23,2);
cputs(" UMTS MAIN MENU
Lenth=strlen(Heading[Number].item);
fo r(i=0; i <L e n th ; i++)
{

gotoxy(23+i, 3);
cputs("");
}

for(i=0; i<i ndex; i++)
{
g otoxy(W i n Left+ 10,5+i);
puts(MemberMenu[i].item);
}
gotoxy(Win Left+12,WinTop+i+4);
cputs("ENTER YOUR CHOICE ,0 TO EXIT: ");
}

llllllllllllllll!llllllll!ll!llllIIIIIII1lll1/llllllllll!lllllJllll!l!ll!l/Ill1!111/l!lllllll!!l1/1/1////1111111/1/IlIIIIIIIJIIIIJIl1/1111/1/l1/11/llllllll
int GetStructLen(struct Menu TempStruct[])
{
int i=0;
for(i=0;i<99;i++)
{

if(TempStruct[i}. no==99)
break;
}
retum(i);
}
llllllllllll/111111!/Il1111/1lllllllll//1111!1111111111!//!ll!/11111lI1JllllJll111111l1J111111l1/1lllllllllllll111111l1111!llllllllll/111l1I1l11111111f1!!I
int GetChoice(int Len)

int Choice;
Choice= (int)getche();

if((C hoice-48)> 9 1 1 (Choice-48)<0)

Beepo;

g otoxy(W i n Left+10, 7+Len);
cputs("
return(Choice-48);
}

Ill//llllllllll/111IJllllllll/11l1111111111/1111/111111llllll/111/lllllllll/llllllllllllJl/1/llll!/1lll111111111111/lllllllllllll/lllllllllllllllllllllllll
void Beep(void)

sound(3000);
delay(100);
nosound();
gotoxy(WinLeft,WinDepth-3);
cputs("WRONG ENTRY TRY AGAIN");
delay(100);
g otoxy(W i n Left, W i n D e pth-3);
cputs("

}
l/!ul!!l/nnuml~lillu!lJ/~uanlnllallnJl~l/nlulllllnlalr/nu~lnlurluullluall~unurnlllllllllulalam~lllll~ulllll/mlall~/1!
int DoMainChoice(int Choice)
{
int i;
switch(Choice)
{

case 1:
ConfigAdminO;
break;

case 2:
TutAdminO;
break;

case 3:
SchedulingO;
break;

case 4:
CheckAdmin();
gotoxy(5,5);
main();
break;

case 0:

exit(0);

default:
mainO;

retum(0);
}
u/mnulJUlrrmunrurrrlulJrrnrr/rrl~ru~r/lrulrlnlr/luJlrrrllrnlllalnln/!lnurJl!l11~llullJlllnnlnllulur/l~nllllnll~/nnnl/r!1
void CheckAdmin(void)

{
int i ,SubChoice;
clrscr();
DisplayMenu(2,1,CheckMenu);
StructLen=GetStructLen(SimuMenu);
SubChoice= GetChoice(StructLen);
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DELETE);
DoSubChoice3(SubChoice);

lll!llllll11111lll!lllllllllll11l!llllll11111lllll!!l!1/lllllllllllllllll1111ll1l1111/1!!1l11lI!!ll!!I!IlJlll11111111111111l1lIl!llllJllll!l!!!1!I!Jll11l11
void DoSubChoice3(int Choice)
{
int i;
intj;
switch(Choice)
{
case 1:

{
DisplayHelpBox();
cprintf(" \n out put are .");
DrawBar(WmnLeft,WinTop,WinRight,WinDepth,DRAW);
clrscr();
int i;
gotoxy(2,2);
cprintf("1nlrClearing the source log file");
for(i=0; i<5; i++)

cprintf(".");
delay(200);

remove("wrrobin");
source_record=fopen("wrrobin.txt","a+");
fclose(source_record);

source_record = fopen("wrrobin.txV,"r");
file read(sod rce_record);
fwrite(&message,strlen(message.text),1,source record);
fclose(source_record);

getchO;

main();
break;

}
case 2:

{
DisplayHelpBox();
cprintf(" \n out put are ..);
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DRAW);

clrscr();
int i;
gotoxy(2,2);
cprintf("1nlrClearing the source log file");
for(i=0;i<5;i++)

cprintf(".");
delay(200);

remove ("wfq u e u i n g") ;
source_record=fopen("wfqueu in g.txt","a+");
fclose(source_record);

source_record = fopen(wfqueuing.txt","r");
fileread(sourcerecord);

fwrite(&message,strlen (message. text), 1, sou rce—record);
fclose(sou rce_reco rd);
getchO;

main();
break;

default:
mainO;

}
}
nrrnrnnruunrnuinnnu~ruuur~rruu~nr~urunrunra~ranimurra~arurarrr~uarraraai~uirn~u~ra~rmrnurrruiarnrnurrrr
void fi!eread(FILE *fp)
{
char ch;
int i,j,x;
char str[2];
c!rscr();
gotoxy(1,1);

textbackgrou nd(YELLOW);
textcolor(RED);
textbackground(2);
textcolor(RED);
ch=fgetc(fp);
i=2,j=1,x=0;
while(ch!=EOF)
{
int a;
de!ay(10);
str[0]=ch;
str[1]='10';
if(str[O]=='1n')
{
printf(' n");

i=2;
x++:

else
{
gotoxy(i,j);

cprintfe %s",str);
}

if(x==16)

x=0;
getch();
clrscrO;
j=1;

}
ch=fgetc(fp);
i++;
}
getch();

111nunlnnlummuulnlnnnullHann///nlnllnnln111nn11/ lJ1un11111uunullr111nun1u11nulJnnnnlluuulllnnallnlann

void Scheduling()
{

char ch;
int i,c=240 ,SubChoice;
clrscrO;
DisplayMenu(3,1,SimuMenu);
StructLen=GetStructLen(Sim uMenu);
SubChoice= GetChoice(StructLen);
DisplayHelpBoxo;
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DELETE);
DoSu bChoice2(SubChoice);

void DoSubChoice2(int Choice)
{
int i;
switch(Choice)

case 1: {

DrawBar(WinLeft,WinTop,WinRight,WinDepth, DRAW);
gotoxy(5,5);
cputs("At radio network controller responsible for a cell");
gotoxy(5,6);
cputs("cluster, data packets from various connection arrive ");
gotoxy(5, 7);
cputs("and are queued until bandwidth for transmission is available");
gotoxy(5,8);
cputs("service discipline at this base station controls the order ");
gotoxy(5,9);
cputs("in which packets are served and how packets in transfer share ");
gotoxy(5,10);
cputs("the available bandwidth. ");
gotoxy(5,12);
cputs("scheduling policies are.");
gotoxy(5,13);

cputs("WEIGHTED ROUND ROBIN ");
gotoxy(5,14);
cputs("WEIGHTED FAIR QUEUING");
getch();
main();
break;
}

case 2:
{
int simulation time;
int avg_turnaround_time,num_of_packets;
DisplayHelpBoxO;
cprintf("HELP : \n Simulator will take this entered time as the initial time..");
cprintf(" If this option is not visited Simulator will take initial time to be zero");
DrawBar(W inLeft,W inTop,WinRight,W inDepth,DRAW);
gotoxy(5,5);
cputs('WEIGHTED ROUND ROBIN SCHEME IS SELECTED");
gotoxy(5,7);
cputs("Enter the time slice:");
scanf("%d", &si mu lati on_ti m e);
gotoxy(5,8);

cputs(" Radio channels to be Reserved: ");
scanf("%d",&resRadio);
gotoxy(5,9);
cputs("Save Results on File ");
cin»fileName;
gotoxy(5,10);
cputs("Enter the number of packets");
scaof("%d",&num_of packets);
simulation Rcell(WRR,fileName);
clrscro;
cputs(" Simulation for WEIGHTED ROUND ROBIN scheme ");
gotoxy(5,5);
cputs(" SIMULATING ");
gotoxy(5,8);

for(i=1;i<26;i++){
Rcell.traffic(c,50);
Rcell.startO;
Rcell.get packet_size(num_of packets):
Rcell. bandwidth_utilisatioh(int numofpkt);

Rcell.save();
c+=120;

delay(500);
}
Rcell.p_mib();

gotoxy(5,12);
cputs("END OF SIMULATION ");
gotoxy(5,13);
cputs("Pre8s any key...");

getch();
main();
break;
}

case 3:
{
int i,num_ofpackets;
DrawBar(WinLeft,W inTop,Win Right,WinDepth,DRAW);
gotoxy(5,5);

cputs("WEIGHTED FAIR QUEUING IS SELECTED");
gotoxy(5,6);
cputs("BYTEBY_BYTE SCANING OF QUEUE:, IS GONIG ON...");
delay(1500)_
byte scan I);

gotoxy(5,8);
cputs(" Radio channels to be Reserved: ");
scanf("%d",&resRadio);

gotoxy(5,9);
cputs("Save Results on File ");
cin>>fileName;
gotoxy(5, 10);

cputs("Enter the number of packets");
scanf("%d", &n um_of_packets);

simulation Mcell(WFQ,fileName);
clrscrO;

cputs("Simulation for WEIGHTED FAIR QUEUING scheme ");
gotoxy(5,4);
cputs("SIMULATING ");
gotoxy(5,8);

for(i=1;i<30;i++){
Mcell. traffic(c, 50);
Mcetl.start();
Mcell. get_packet_size(numof__packets);
Mcell. bandwidth_utilisation(irit numofpkt);

Mcell.save();
c+=120;
cputs("I~3,,);
delay(500);

}
M cell. p_mibQ;
gotoxy(5,12);
cputs("END OF SIMULATION ");
gotoxy(5,13);
cputs("Press any key...");
getchO;

main();
break;
}

default: main();
}

for(i=0;i<50;i++)
{
NEW_HANDOVER_BANDWIDTH[i]=HAN DOFF _FAIL _PROB[i]*CALL_ BLOCK_PROB[i]*HAND
OVER BANDWIDTH;
NEW_THRESHOLD[i]=PKT_ LOSS _PROB[i]*THRESHOLD;

int NRT1=400;
int NRT2=200;
int NRT3=100;
float w=4*sqrt(NRT1)+2*sqrt(NRT2)+sqrt(NRT3);
float wl =4*sgrt(N RT1)/w;
float w2=2*sqrt(NRT2)/w;
float w3=sgrt(NRT3)/w;

1lll!l!llllllllllllllllllllllllllllll!llllllllllll!llll!llllllllllllllIIIl111llllll111l!!lll111llllll1111 /lllllllllllllllllllllllllllllllll!lllllllll!!I!l!

void byte_scan()

int arr[25];
int static count=0, fin ish_time[20J, np;
for(int i=1;i<=np;i++)
for(int j=1;j<=8;j++)
fin ish_time[i]=count++;

int temp;
for(i=0;i<=np;i++)
{
if(arr[i+1]<arr[i])
{
temp=arr[i+1];
arr(i+1]=arr[i];
arr[ij=temp;

else
arr[i];
}

llIlllllll!lIIIIIIIIIIIlIIlll!1111 /!lllllll!l!llllllllllllll!!llllllllllllllllll illlll!!!Illllll111 /llllllllllllllllllllllllllllllllllll!lllll!llllll!llll!
void ConfigAdmin(void)

int i ,SubChoice;
clrscrQ;
gettext(1,1, 80,25,bufferl);
DisplayMenu(1,1,ConfigMenu);
StructLen=GetStructLen (ConfigMen u);
SubChoice= GetChoice(StructLen);
DrawBar(WinLeft,WinTop,WinRight,WinDepth, DELETE);
DoSu bChoice(Su bCh oice);

11llllllllll!l11l111/111/llllllll1111///llll!l1!lllll1111111/llllllllllllllflllllllllllllllllll111111/1!lllllllllllllllllll!llllllllJlll111111111111/1111/I

void DoSubChoice(int Choice)
{
int i;
intj;
switch(Choice)
{
case 1:

{

int get;
DisplayHelpBox();
cprintf("HELP : \n Please enter the traffic type.");
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DRAW),
gotoxy(30,3);
Gout«"MOBILE SESSION\n";
gotoxy(5,6);

cout<<"1. Voice Data\t";
cout<<"2. Real Time Datalt";
cout«"3. Non Real Time Data";
gotoxy(5,8);
cout<<"Enter your choice:";
cin»get;
Mobile_su bcho ice(get);

getchO;
main0;
break;
}

default: main();
}

}
~uiunumm~in~u~uuiaimur~ru~~air~nrunnnm~iuuu~nni~uuiru~i~~uiumninuumimuinnnnnu~iuu~uuia~in~niuu
void Mobile_subchoice(int c)
{

switch(c)

{
case 1:

int vbwidth;
DrawBar(WinLeft,Winlop,WinRight,WinDepth, DRAW);
gotoxy(5,3);

Gout«"voice data is selected.....:.;
gotoxy(5,5);
cout<<"Enter the required bandwidthlt";
cin>>vbwidth;
gotoxy(5,7);

cout<<"Admission control checking for "<<vbwidth<<" kbps bandwidth
vadmission_check(vbwidth);
getchQ;
mainO;
break;

case 2:
int rtbwidth;
DrawBar(WinLeft,WinTop, WinRight,WinDepth,DRAW);
gotoxy(5,3);
cout<<"real time data is selected.....:';

gotoxy(5,5);
Gout«"Enter the required bandwidthlt";
cin>>rtbwidth;
gotoxy(5,7);

cout<"Admission control checking for'<<rtbwidth<<kbps bandwidth
rtadmission check(rtbwidth);
getcho;
main0;
break;

case 3:
int ntbwidth;
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DRAW);
gotoxy(5,3);
Gout«"non real time data is selected........
gotoxy(5,5);
cout<"Enter the required bandwidthlt';
cin>>ntbwidth;
gotoxy(5,7);

cout<"Admission control checking for "«ntbwidth<< kbps bandwidth
ntadmission_check(ntbwidth);
getch();
mainO;
break;

default: main();

}
ll/llllll/111/1/11111/1111//1111111111111/11l/lllllllll/lllll///1111I111111lIlIllll/!/!l/llll/I1/111111111111111111lllllllllll/Illlllllllllllll/llll1111111

void vadmission_check(float voice)
(
float v;
v=AVAILABLE_BANDWIDTH*VOICECALL BANDWIDTH;
if(voice<v voice<FCFS"AVAILABLE_BANDWIDTH)

gotoxy(5,10);
delay(800);
cputs("ADMISSION IS ALLOWED...

else
{
gotoxy(5,10);
delay(800);
cputs("1nADMISSION IS NOT ALLOWED....");
}

!I!!lllll!!lllllll1111111111/1llllllllllllllllllll111l11111/1111/1l11llllllllllllll111111lI11/lllllllllllllll!llllllllllllllllllllllllllllllllll1111111111!

ll1/1111~~~11~~llll~1~~llllllllllllllll!lIl!~~~~~l!llllllllllllll1111lllll!11/ll111/llI!!l(l1111/l1/11/lIlll!lI!1111lllllllllllll!llllllllllllllllllll11111
void readmission check(int rt)
{
int rtbwidth_allocated=0;
int rtbwidth_needed=rtbwidth_allocated+rt;
intx=((1-HANDOVER_BANDWIDTH)*(AVAILABLE BANDWIDTH)-(rtbwidth_allocated));•
int y=(1-HANDOVER_BANDWIDTH)*(AVAILABLE_BANDWIDTH-rtbwidth_allocated);
if(rtbwidth_needed<=x && rtbwidth needed<=y)
{

gotoxy(5, 10);
delay(800);
cputs("ADMISSION IS ALLOWED...");
}

else
{
gotoxy(5, 10);
delay(800);
cputs("1nADMISSION IS NOT ALLOWED....");
}

!1!/!lllllllll!!Illll/11111111!!!/l/!!/I11111!/!!11!!!!/Il1Il/llrllllllll/l111111111111!/1111lIlI/llllllllllllllll/Illll/1111!/!ll/1lllll/lllllllrlllllllll
void ntadmission_check(int nt)

int nrtql;
nrtgl=THRESHOLD*NRTQ_BUFFER;
if(nt<=nrtql)

gotoxy(5,10);
delay(800);
cputs("ADMISSION IS ALLOWED...");
}

else

gotoxy(5,10);
delay(800);
cputs('1nADMISSION IS NOT ALLOWED
}
}

nlnllullrulnnia!lrrrllrnnnrinnulnlurrluanrlr~nlrlulnnrrlrnunrnulum~rnluulur~lrnuml1nr11urllllrlrllnllrrnllanrlr
void TutAdmin(void)

{
int i SubChoice;
clrscr();
DisplayMenu(5,1,TutMenu);
StructLen=GetStructLen(TutMenu);
SubChoice= GetChoice(StructLen);
DrawBar(WinLeft,WinTop, WinRight, WinDepth, DELETE);
DoSubChoicel (SubChoice);
}

r~~unnrl~iirrruaru~~~~~~urrnrnuuu~nriurranarlunaulrnurnriil~i~nrul~nr~ruurirnrnnuruunlrrnruinuanriinrinlrrrrai
void DoSubChoicel (int Choice)
{
int i;

gotoxy(8,12);
switch(Choice)
{
case 1:

clrscr();
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DRAW);
gotoxy(5,5);
cputs("UMTS is the UniversalMobile Telecommunication System Networks.");
gotoxy(5,6);
cputs("It works on the principle of W-CDMA.");
gotoxy(5,7);
cputs("It does have the capability to transfer audio,video,");
gotoxy(5,8);
cputs("graphical,textual etc. on mobile .");
getch();
mainO;
break;

case 2:
clrscr();
DrawBar(WinLeft,WinTop,WinRight,WinDepth, DRAW);
gotoxy(5,5);
cputs('The UMTS is a combination of core network and UTRAN ");
gotoxy(5,6);
cputs("UTRAN consists of a set of radio network controllers");
gotoxy(5,7);
cputs("that are connected to the core network.");
gotoxy(5,8);
cputs("The core network comprises of the same supporting nodes as in GSM.");
gotoxy(5,9);
cputs("the RNC is responsible for control of the connected nodes");
gotoxy(5,10);
cputs("i.e Transceiver stations and the radio link to the mobile station.");
getcho;
maino;

break;

clrscr();
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DRAW);
gotoxy(5,5);
cputs("QoS for UMTS are specified into four classes.");
gotoxy(5,6);
cputs("CONVERSATIONAL CLASS:Real Time Traffic(Most delay sensitive).");
gotoxy(5,7);
cputs("STREAMING CLASS:One Way Real Time Traffic.");
gotoxy(5,8);
cputs("INTERACTIVE CLASS:Are Mainly Used For Internet Application.");
gotoxy(5,9);
cputs("BACKGROUND CLASS:file Dowanloading and have less priority than IC.");
getchO;
main();
break;

clrscr();
DrawBar(WinLeft,WinTop,WinRight,WinDepth,DRAW);
gotoxy(5,5);
cputs("Before a mobile session starts, the mobile user specify its");

case 3:

case 4:

gotoxy(5,6);
cputs("traffic characteristics and desired performance requirements");
gotoxy(5,7);
cputs("which is called as QoS profile.");
gotoxy(5,8);
cputs("The admission controler then accept or reject the session");
gotoxy(5,9);
cputs("according to QoS profile and the current network state. ");
getch();
maino;
break;

case 5:

int gd = DETECT, gm;
initgraph(&gd,&gm,"d: \\tc\\bgi");
cleardevice();
setbkcolor(3);
setcolor(RED);
rectangle(270,1 0,400,35);
outtextxy(285,15,"core network");
rectangle(45,60,635,285);
rectangle(75,125,270,85);
outtextxy(80,100,"Radio Network Controller");
rectangle(400,125,595,85);
outtextxy(405, 1 00,"Radio Network Controller");
outtextxy(325,150,"UTRAN");
rectangle(50,200,150,250);
outtextxy(75,225,"Node B");
recta n g le(200, 200, 30 0, 250);
outtextxy(225,225,"Node B");
rectang le(350,200,450, 250);
outtextxy(375, 220,"Node B");
rectang le(530,200, 630, 250);
outtextxy(555,225,"Node B");
recta n g l e(25 0, 330, 450, 350);
outtextxy(300,335,"Mobile Station");
delay(1500);
line(335,35,173,85);
delay(1500);
line(335, 35,498, 85);
delay(1 500);
line(170,125,80,200);
delay(1 500);
line(1 70,125,250,200);
delay(1 500);
line(498,125,400,200);
delay(1 500);
line(498,125,580, 200);
delay(1 500);
li n e(330, 260, 300, 315);
delay(1 500);
line(360,260,330, 315);
delay(1 500);
line(330,260,330,31 5);
delay(1500);
line(270,105,400,105);

delay(1 500);
outtextxy(250,425,"UMTS ARCHITECTURE");
getch();
closegraph();
main();
break;

default:
main();

inrimm~n~~um~uunra~~~~~umumu~unnu~unnirn~~rr~n~nnnnai~~arau~nan~nuinnruuuunnm~nno~uuuuuni~rn~
void DrawBar(int left,int top,int right,int bottom,int fun)

int lenght,width,line;
int xax,yax;
switch(fun)
{
case DRAW:

gettext(1,1, 80,25, bufferl);
window(left,top, right, bottom);
textbackground(BLU E);
clrscr();
textcolor(WHITE);
lenght=bottom-top+1;
width=right-left+1;

for(xax=l;xax<=width;xax++)
for(yax=l;yax<=Ienght;yax++)
{

gotoxy(xax,yax);
putch(' ');

gotoxy(1,1);
putch('E');
gotoxy(width,1);
putch('»');
gotoxy(1, leng ht-1);
putch('E');
gotoxy(width,lenght-1);
putch(%');
gotoxy(1,lenght-1);insline();
for(]ine=2; line<=width-1; line++)
{
gotoxyS line ,1);
putch('I');
}
for(line=2; line<=Ienght-1;line++)
{
gotoxy(1, line);
putch('°');
}
for(Iine=2;lina<=width-1;line++)
{

gotoxy(Iine, lenght);
putch('(');

}
for(line=2;line<=lenght-1; line++)
{
gotoxy(width,line);
putch('°');
}

break;
case DELETE:

puttext(1 ,1 ,80,25,bufferl);
break;

}
ulnnnlrllrr/n1a11llllnlrn1111rar/nl1an11ulnrnaln/r1111nrllurnauurllal/n/n/lu!lnlunnul/nllulll!lnllllnluul/ruulnrll
void displayl(void)
{

int gd=DETECT,gm,i,j;
in itgraph(&gd, &g m,"d:\\tc\\bgi");
setcolor(RED);
setfillstyle(SOLID_FILL, RED);
rectangle(10,10,getmaxx()-10,getmaxyo-10);
rectangle(14,14,getmaxx()-14,getmaxyo -14);
floodfill(12,12,RED);
scroll(260,35,525,"Thesis On",0,4);
scroll(180,70,500,"ADAPTIVE PERFORFORMANCE MANAGEMENT ",0,0);
scroll(150,100,500,"FOR UNIVERSAL MOBILE TELECOMMUNICATION

SYSTEMS",O,O);
scroll(260,180,500,"submitted by :",0,5);
scroll(260,220,500,"Devendra Singh",0,0);
scroll (260, 230, 500,"M. Tech. (CST)", 0, 0);
scroll(260,240,500,"IIT Roorkee.",0,0);
scroll(35,300,200,"guided by :",0,5);
scroll(50,340,200,"Dr.Mohan Lal",0,0);
scroll(50,355,200,"Asst. Professor",0,0);
scroll(50,365,200,"New Computational Facility",0,0);
scroll(50,375,200,"IIT Roorkee.",0,0);
scroll(400,340,500,"Dr. Manoj Misra ",0,0);
scroll(400,355,500,"Associate Proffessor. ",0,0);
scroll(400,365,500,"E&C Deptt. ",0,0);
scroll(400,375,500,"IIT Roorkee. ",0,0);
getch();
closegraph();

}
!11/11111111!/11!llllllllll111111111lI!/1!lllllllllllllllllllllllllllllll/111lI11l1!!!!/111/11111111Il1111~~~~~~~~~~ll111lll/Illll!/1!I!Il111111111I1111111
void scroll(int x,int y,int maxx,char *str,char enlarge,char font)

int i,j,k=0;
char temp[80);
int poly[10];
settextstyle(font,0,1);
temp[0]=0;
for(i=maxx;i>x;i-=D) {

setcolor(0);
if(kbhit()lIflag) {

flag=1;

return;

if(i%5==0) k++;
if(k!=strlen(temp)&&k<=strlen(str)) {

strncpy(temp, str, k);
temp[k]=0;

}
outtextxy(i+D,y, temp);
setcolor(GREEN);
outtextxy(i,y,temp);
delay(5);

}
setfillsty!e(SOLID FILL 0);
po!y[O]=50; poly[1]=70;
poly[2]=500; po!y[3]=70;
po!y[4]=500; po!y[5]=100;
poly[6]=5O; poly[7]=100;
poly[8]5O; poly[9]=70;
if (enlarge)

for(k=2;k<5;k++) {
setco!or(0);
fi!!po!y(5,po!y);
if(kbhitOIlflag) {

flag=1;
return;

}
settextstyle(font, 0, k);
setcolor(GREEN);
outtextxy(i-(k-2)"35, y, str);
de!ay(150);

}

}
}
uurmnnnarmm~rniu~umnrrruaunrurnrrarrirnururu~nrnrniurnnruururnnwa~uuanrr~uumrrunuir~uurnrmimn

/..,...****Queue.h.,....,....,......,........:..........,....../
#include<iostream.h>
template<class T>
struct list{
T item;
int id;
list* next;

umlam~ulun~uuu~anlnmu~lulurinlmina/~millJnrnlulrnl~umJ/ulnul/nllr~unur~nllurml/rnlnrlulillulmlunula!
template<class T>
class queue{
protected:

list<T>* front, *rear,`gptr;
public:

int length,gid; 	-
queueQ;
—queue();
int isEmpty();
void add(T);
int remove(T&);
int del(int, int&);
void go();
void set(){gptr=rear;}
void print();

nuumuuuana~lu~nu~rlanai~Jliu~unnluulaul~ormrnlrrrrluuullaam~nuiummuuu~n~u~umil~i~nl~i~ulunnrainl!
template<class T>
queue<T>::queue(){
qptr=NULL;front=NULL;rear=NULL;
length=O;
}

template<class T>
queue<T>::—queueQ{
cout«endk<"queue destructor"

11111I11111111/Il1111111!/Il!/1111llllllllll!llllllllJ!/1111/lll//Il111111l11111111/1111111!11111/1/I/I/IJlllJlllll/lllllJl/1111/!Il11lI/!!/lll/1lrl/l11/11
template<class T>
void queue<T>::add(T i){
list<T>' newptr=new list<T>;
newptr->item=i;
//newptr->id=length;
++length;
if(isEmptyQ){

front=rear=newptr;
newptr->next=NULL;
qid=O;

else{
newptr->next=rear;
rear—newptr;
qid++;
}

newptr->id=qid;
}
wulnalununaluunaluullnnuullunnrlurmm~lnlaarl!!!ll~n~luunnlnunnurlunulrlrinuaalruaJnrlrmr~uarraul

lllrnnrnnnlruu!ln~nruailnna»rlJllnlnllnnln~mlliulnrrJln~Jluln!!»uulriarallmullrnlu~rr~lullll!lnrirounnniuuni
template<class T>
int queue<T>::isEmptyQ{
if(front==NULL)

return 1;
else 	return 0
}
ll!llIll111111/Illlllllll!lIlllllllllllllllllllllll111/llllllllllll!llJllllllllllllJlllllll!lll!!I1/1!11!lIll1/Illlllllllll!!Il!lllllll!lllllllllllllllllll
template<class T>
int queue<T>::remove(T& val){
list<T>*temp=rear;
if (isEmpty())

return 0;
else{

if (front==rear)
front=rear=NULL;

else{
while(temp->nextl=front)

temp=temp->next;
front=temp;
temp=temp->next;
front->next=NULL;

}

val=temp->item;
delete temp;
—length;

return 1;
}
lll/r!!I/llllllllllll/Illllllllllllllll11/1/!11lll!!llllllllllll!llllllll/llll/Illlllllllllll1111l11/11l/l1111/lllllll/llllll/lll/111/llllll/llllllllllllll
template<class T>
int queue<T>::del(int ind,int &call_type){
list<T>"temp,*ptr;
temp=ptr=rear;
if(ptr == NULL)
cout«rear;
if (isEmpty())

return 0;//delete fail
else{

while((ptr->id!=ind)&& (ptr!=NULL))
ptr=ptr->next;

}
if(ptr==NULL) {cout<<endl<<Fatal Error:delete fail,id not exist';

exit(1);}
if((ptr==rear) && (ptr==front)){// 1) only one node

ptr=front=rear=NULL;
}

else if(ptr==rear){ //2) ptr points to the rear node
rear=rear->next;
ptr->next=NULL;
ptr=NULL;
}

else if(ptr==front){ 113) ptr points to the last node
wh ile(temp->nextl=front)

temp=temp->next;

front=temp;
temp=ptr;
front->next=NULL;
ptr-NULL;
}

else{
while(temp->next!=ptr)
temp=temp->next;
temp-> n ext= ptr-> n ext;
temp=ptr;
ptr=NULL;
temp->next=NULL;
}

call_type=temp->item. type;
delete temp;
--length;

return 1;
}
rrrrrarru~nururrnunururrnrrnrrnrururnnunrn»r~urrroarnarrnrruurunnanruururnrrrrrrrrrrrurrrrrurrunrrurrurrrrurrr
template <class T>
void queue<T>::go(){
if(gptr==NULL)

gptr-rear;

if(gptr==front)
qptr=rear;

else
gptr-qptr->next;

}
template <class T>
void queue<T>::print(){
}
araarnrarnrrnrruuuurnnrurrrrarrnnrnnrnrnrrrrrrrfrnar~nrnrrrrnrnrrrfrnr~iaannuarmnrrrurnurnrrrrrrnnruarruruu

#define MODULS 2147483647
#define MULTI 24112
#define MULT2 26143
/* set default seed for 100 streams */
static long zrng[] ={
193272912, 281629770,20006270,1280689831, 2096730329,1933576050

noun/unuumruru~ariannauallnaanmiruu~uuurnunululuuuu~ul~unnnuminnuulallmm~u~umnuriunuuuu
llgnerate next random
float rand (int stream)
{
long zi, lowprd, hi31;
zi =zrng[stream];
lowprd=(zi& 65535) * MULTI;
hi31 =(zi >> 16) * MULTI + (lowprd >> 16);
zi =((lowprd & 65535)- MODULS) + ((hi31 & 32767) << 16) + (hi31 >> 15);
if (zi<0) zi+=MODULS;
-lowprd=(zi & 65535)*MULT2;
hi31 =(zi>>16) * MULT2 + (lowprd >> 16);
zi =((lowprd & 65535) - MODULS) + ((hi3l & 32767) << 16) + (hi31 >> 15);
if (zi<0) zi+=MODULS;
zrng[stream] = zi ;
return ((zi >> 7 1 1) + 1)/16777216.0;

}
llrr~nn/naluluiuun/a/lu/amalnu/luuruuururn/rruurnruu~rlurrur/u/al/rlur/alluu~urnuuluur/urruuurru~unarur
II set the current zrng for stream "stream" to zset
void randst(Iong zset, int stream)

zrng[stream] = zset;
}

//retun the current zrng for stream "stream"
long randgt(int stream)
{
return zrng[streaml;

lnnlrurrmrmalnumlanuurnnuul~rluu~lllnlluumm~aaumruaullluunmullruiuuuamunnllrulluanulrnrnwun

int resRadio;
#define max_channels 30
#define WRR 1
#define WFQ 2

!!I//llllll/!!ll!/!/I!/1111//I/111l/I!/11/1/1/Il/!1/lll/1/llll/ll/I/!l111/!ll/l111!!llll/!/llllll!///!1/lll/11l/!/ll/llll/ll/Illllllllllllllll//lllll!/l/!I
struct calls{

float atime;
float end;
int type;

111111111//!1llll!!!ll!lllll!!llllllllllllllllllll111/Illll!lIlllllllllll11lll!!lllll!llllllllll!lll1111111llll!!1/11111l1/Illllllllllll!l!1lllll!lllllllll
struct handover{
float atime;
float priorty;
float q_time;
int type;

/!!ll/ll/11!/lllllll//1////ll/11/I/ll//1/IJ11/ll/lllll/11!!/11!////I/!11/1l/11111//l/11/!/11//l/11//I//1ll//l/11////1/lll!/I//ll/1//I/1l111lI11/Il/1111//11
class Random{
protected:

float uniform(float,float);
int int uniform(int);
float expon(float);

};
	int random_integer(float prob_dist[]);

/lll/ll!//ll/!1/1/llll/llll/I/1/11/1l!!//ll////lll!///lll//1/////1!l/111llllllll/!//1!!l/l/1//Ill//1l/lllll/1l/111//1!/111111/lllllllll/1/f/1/1/111/1l/1111
template <class T>
class ho_queue:public queue <class T>{
public:

T get(){return (qptr->item);}
void del();
void m_add(T);

////lll/I//1/ll/ll//I/ll/1//Ill/_ll/llll/!//I/llll//Illllll////ll/1lllllllllllllll//I/I//1//11//I///lll/11111111/111/Ill//Ill/11//Il/Il//ll/1l/I//l/11//llll
template <class T>
void ho_queue<T>::m_add(T i){

float val;
list<T>* newptr=new list<T>;
list<T>* temp=rear;
newptr->item=i;
val=i.q time;
++length;
if(isEmptyQ){

front=rear=newptr;
newptr->next=NULL
qid=0;

else {

if(rear->item. q_time<=val){

newptr->next=rear;
rear=newptr;
qid++;

}
else if(front->item.q_time>val){

front->next=newptr;
front=newptr;
front->next=NULL;
qid++;

else{
while((temp->next->item.q_time>val)&&(temp->next-

>next!=NULL))
temp=temp->next;

newptr->next=temp->next;
temp->next=newptr;
qid++;

}

newptr->id=qid

nruraurnrnrrarnurunnuaurrrurrururrrunurrururunrrrrrurrninrunuruurauuurrnnuumurnrnuuu~nrmamnmuru
template <class T>
void ho_queue<T>::del(){

list<T>`temp=rear;

if((qptr==rear) && (qptr==front)){
qptr=front=rear=NULL;
}

else if(gptr==rear){
rear-rear->next;
qptr->next=NULL;
qptr=rear;
}

else if(qptr==front){
while (temp-> n ext! =front)

temp=temp->next;
front=temp;
temp=temp->next;
front->next=NULL;
qptr=rear;
}

else{
wh ile(temp->next!=q ptr)

temp=temp->next;
temp-> n e xt=q ptr-> n ext;
temp=gptr;
qptr=qptr->next;
temp->next=NULL;

}
delete temp;
--length;

urraruanurrnirnru~rnrnrnnnnrrurunr~arnrnrnrnan~unrr~iu~nrn~urrnrnnnnnnnrnmi~urunrnmrn~~nnrnrrnnuinr
template<cfass T>
class calf_queue:public queue <class T>{
public:

void get(int&id,T&call){id=qptr->id ; call=qptr->item;}

/lll/lIl/Il!!lIll111111llll111//ll!lJlll!lI!l1/ll!lJIlllll11111//11Jlll1111!1111lllll!l!lll11llllllllllllll111l/l1/ll/lIIIJIIIJIIlIIIIIlI!!lIlJlllllll!!JI!
class Events:public Random{
public:

float clock,next_call,next_handover,ho_delay,miat,hmiat;
int busy_channels, next_event_type,max_q_len;
int scheme;
int call_id;
long int total_calls,blocked, new_success,q_len,ho_success,

ho_fail;
calls call;
call_queue<calls> call_list;
handover ho;
ho_queue<handover> q_ho;
Events(};
void new call();
void new_handoverO;
void release_channel(int);

private:
void q_scanO;

nr~lrr~uuuirruuunr~rrrarrrrauurrrrrrnirrrrrrmauurirmnrrunrr~rua~mnruru~rnrn~~rr~anrrrrarlrrrrunlruirri~Jruirrrr~ria
class simulation: public Events{
public:

simulation();
simulation(int,char`);
-simulation O{fout.closeO;)
void star.O;
void start(long int);
void traffic(float,int);
void report();
void saveO;

private:

float load;
ofstream fout;

void timing();
void intialize();

u1111rr11111u!111rnunrlmlulrlrmnlrn1nm11ilaarlrlllr1i1111unr1riulnminnlumululallnnnnlal111m11r1r1rnnllla~~u~Imi
/* Member functions implementation of Random class •1
float Random::expon(float mean)(
float u;
do{/**/u=rand(2);
}while(u==0);
float exp_u=-mean*log(u);
return exp_u;//-mean`log(u);
}
moll~nmirll~lullamiro~rlulrnlliluulna~nmrlulllilmulrlaunruaannnnlrnnnaarallulnnnuuaallllrulunullln~ul
/* Member functions implementation of Events class *!
Events:: EventsO{

next_call=0;
clock=O;
busy_channels=0;
blocked=0;
new_success=0;

ho success=0;
q_Ien=O;
ho_delay=0;
ho_fail=0;
max_q_len=0;
total_calls=0;
call Iist.length=0;
q_ho.length=O;

}
laimm~uii~uilulli~a~iuunimanu~mm~nnnaiuu~u~iu~ialuuii~amruuuulll~r~ualnui~r~u~~unrlimliluninnnllllrru
void Events::new_call()(
next_call=expon(m iat)+clock;
totai_calls++;
if(busy_channels + resRadio <max_channels)
{
busy_channels++;

call.end=expon(mcl)+clock;
call.atime=clock;

if (call_list.length > max channels)
cout" \nln new call :calls more than channels' ;
getchO;
exit(1);
}

call_list. add(call);

new_success++;
}

else{
blocked++;

llllllllllrllllllllll1111111111!llllllrllll111llll111111/111111IJllll111111111111111111111111111/1111/rl1111111l1111/111111111111111111111111/1111111111111

void Events::new_handoverO{
next _handover=expon(hmiat) +clock;
total_calls++;
if(busy_channels <max_channels){

busy_channels++;
call.end=expon(h mcl)+clock;
call.atime=clock;

if (call_list.length > max channels)
cout«"\n\handover :calls more than channels";
getchO;
exit(1);
}

call_list. add(call);
ho_success++;
ho_delay+=0;

}
else{

if((scheme==WRR)II(scheme==WFQ)){
ho_fail++;
}

else{

ho.atime=clock;
ho. priorty=0;
ho. q_time=expon(max_in_q);

if (q_ho.length > 999)
ho_fail ++;
}

q_!en++;
if(max_q_len < q_ho.length) max_q_len=q_ho.length;

}

}
II1/I1!/llll//llll/1//1/11//1////!Il/I!/lll/1111lllllllll/11111/1lll!/1!//1I111I111/I1/1l/ll/111(lllllllll/lllll/111!/ll/1/I/ll/11/1111//1111!!//Il/1//l1I1
void Events::release_channel(int ind)(
handover ho;

int ct;
call list. de l(i n d, ct);
busy_channeis--;
if(!q_ho.isEmpty())

while((Iq_ho.isEmpty()) && (busy_channels<max_channels)

q_scanO;
if(!q_ho.isEmptyO)(
q_ho. remove(ho);
busy_channels++;
call. end=expon (hmcl)+clock;
call.atime=clock;
if (call_list.length > max_channels)

cout<<\n Q handover ;calls more than channels' ;

getch();
exit(1);

call_ list.add(call);
ho_success++;
ho_delay+=clock-ho.atime;
}

}
}

n~nuimariniuimman~~~nal~nu~uulu~mmulmnnulnl~iiunllnu~Jnualnu~~iuulau~uumnunrrl~iauuarluiu~mo~l
void Events::qscan l{
handover ho;
int id, len;
q_ho.setO;
len=q_ho. length;
for(int i=O;i<len;i++){

ho=q_ho.get();
if ((clock-ho.atime)> ho.q_time/*max_in_q/*expon(max_in_q)*/){

ho fail ++;
q_ho.del();

}
else

q_ho.go();
}

}
simulation: :simulation(){
fout.open("ho.txt");

}
lllllllllllllllll~~~~~~lllllllll~~1~~ll!ll~~~~lllllllllll1111ll!lIII11/lllllllllll!!lIlII1111/lIlllllllllllllllllllllll1111/lIllllIlllllllll!111lllllllllll
simulation::simulation(int s,char* fileName){

scheme=s;
fout.open(fileName);
if(!fout){

cout«"can't open " <<fileName<<" ";
exit(0);
getchQ;

}
}
Jnnulnulallrllluuluuuilnul~nlu!lrlluuauull~l~ualulualllnaluila~~lmununluurinu~~nulmmannluu~lrniimmn
void simulation::startQ{
next_caIl=0;
next_handover-0;
intializeO;
while(total_calls<MAX_SAMPLES){

timing();
switch(next event type){

case NEWCALL: new_call();break;
case HANDOVER: new_handover();break;
case RELEASE : release_channel(call_id);break;
}

}

lnrunnnluulau11u1/luulunru/na/r/r~lul/auluuana/ulJnnrl~ululrr/nullJlunnr/uin/n/nnua~~lil~rluuulrJJnrinmrr
void simulation::traffic(float lint percentage){
load=l;

miat=(float(load)J100) * percentage;
hmiat=(float(load)/100) * (100-percentage);
miat=3600/miat;
hmiat=3600/hmiat;

uirllrlalllnrnulurnunnnuaulanlllu!lnlalrnuuumiaa~nlu~lulli~oll/laru~rulrai//rl~iiarinairnnnJr/Imri~i~u/nulm
void simulation::report(}(
}
I!!1!!llllllll!1111/l1/llll!ll~1~1~!!llllll!!lll!!111ll!l!!1!1/!lll111lI!!ll!lJ1J1111/ll1l!11!1111/I1111!111lll!11111 /11!!111Jl!lllllllllll!llllllllllll!l!

void simulation::saveO{
long int processed= new_success+blocked+ho_success+ho_fail;
fout<<load"<<load«'It ;
fout<<blocked"<<(float(blocked)lf10at(prDcesed)) «1t';
fout<<handover failure"<<(float(ho_fail)rfIaat(procesed)) <<'1t';
fout<"success" <(float(ho success + new_success) /ftoat(processed));
fout<<endl;

/luvlurf/i!r/ul1rntyllllallnuuun//ul!l1/1/lujrnml/nun!l~r/ura»r!/lilntrrar/r/ajriu/a/rl/rlrnuill/rnnllr~nrlrnrll/nrr/rr
void simulation::intialize(){

Events::EventsO;

Il/11/llll!/!!/1!/1//!/11/!1!!I!1/!/!11111!///!l/1!/!/11/J!/!!l/1l/I1/!/lll/lllfl/1ll/1l/!/11/1/1/11/l//1!I/1//!1//!!!//11l/Il//!11l11/!1/ll/I/11l1l1111111
void simulation::timing(){
float min_time_event=1.0e30;
calls tmpcall;
int id,len;
next_eventtype=RELEASE;
call_list.setQ;
len=call list.length;
for(int i=0;i<lenl*call_list.length*/;i++){

call_list.get(id,tmpcall);
if (tmpcall.end < min time_event){

min_time_event=tmpcall. end;
call_id=id;

}
call_list.go();

if(next_call<min_time_event){
min time_event=next_call;
next event_type=NEWCALL;

if(next_ha ndover<min_time_event){
miin_time event=next_handover;
next_event_type=HAN DOVER;
}

clock=min_time_event;
}
lrr~rlil~lrr~r/ilniuuwruurnruurn~Jr~l/ri~iJUl~urnurrrun~anlrnrrrlur/unrulrrr~anrunniluiimrrrrinu/Jn/r~riliui~urlr~li~r

////lllll//Ill//l 	UMTS queue 	1111/I/Il1/l1l/!/
struct Header

int source ;
int destination
int gen_time
int serviced

struct UMTS cell
{
Header header;
int data

};

struct Queue_cell
{
UMTS cell atm cell ;
Queue_cell next;

struct Queue

Queue_cell *front
Queue_cell *rear;
long cells_present ;
long cells_passed ;
long cells_lost ;

void init_queue(Queue *p)
{
p->front = NULL;
p->rear = NULL;
p->cells_present = 0
p->cells_passed = 0;
p->cellslost = 0

}
ant is_empty(Queue *p)
{

if((p->front==NULL)&&(p->rear==NULL))
return 1

else
return 0

void enter_queue(Queue *p,UMTS_cell a_cell)

Queue_cell *q_cell = new Queue_cell
q_cell->atm_cell = a_cell
q_cell->next = NULL;
if((p->front)==NULL && (p->rear)==NULL) 	// queue is empty

p->front = q_cell
else

(p->rear)->next = q_cell
p->rear = q_cell ;
p->cells_present++ ;

UMTS_cell leave_queue(Queue *p)

Queue_cell *temp;
UMTS cell a_ce'll ;
temp = p->front ;
if((p->front==NULL.) && (p->rear:==NULL))
{

cout<<\nQueue is empty I ;
exit(1) ;

(p->front) == (p->rear))

(p->front) = NULL;
(p->rear) = NULL

}

else
p->front = (p->front)->next

a_cell = temp->atm_cell
p->cells_present--
delete temp
return a cell

!!///1llll!////////!/I/ cell loss probability ////////1///llll/////////////!//!//////////

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#include"d:\tc\bin\dev\q ueue. h"

#define IP_LENGTH 1000
#define OP_LENGTH 1000
long tot_cells lost_at_opQ;
long tot_cells_lost_atip();

Queue *ip_queue[10]
Queue *op_queue[10]

float tot cells_generated=0.0;
int temp[10];
long total_loss=0.0;
int dest[10];

UMTS_cell gen_UMTS_cell(int sou,int des)
{
UMTS_cell a_cell ;

(a_cell.header).source = sou
(a_cell.header).destination = des;
(a_cell.header).serviced = 0;
tot_cells_generated++
return a_cell

}

for(int i=0 ; i<10 ;
{

dest[i]=random(10) ;
}
for(i=0;i<10;i++)
{

UMTS_cell a_cell=gen_UMTS_cell(i,dest[i]) ;
if((ip_queue[]->cells_present)<IP_LENGTH

enter_queue(ip_queue[i],acell) ;
else

(ip_queue[i]->cells_lost)++ ;

if((op_queue[i]->cells_present)<OP LENGTH)
{

enter_queue(op_queue[i],(((ip_queue[temp[i]])->front)->atm cell)) ;
break;
}

else
(op_queue[i]->cells_lost)++

total_loss=tot_cells_lost_at_i p()+tot_cells_lost_at_op();
float clp=(tot_cells_generated-total_loss)/tot_cells_generated;
cout<<clp;

long tot_cells_lost_at_op()
{
long tot=0
for(int i=0;i<10;i++)
{

tot+=op_q ueu e[i]->cel ls_lost;

}
return (tot)

}

long tot_ cells_lost_at_ip()
{

long tot=0
for(int i=0 ; i<10 ; i++)
{

tot+=ip_queue[i}->cells_lost ;
}
return (tot)

///lll///!/////1/// simulation file //!/////ll////////////////!//!///////

int resRadio;
int Total Bandwidth=7680;
//#include"d:\tc\bin\umtspkt.h"
#define max_channels 30
#define MAX_SAMPLES 100000
#define HANDOVER_BANDWIDTH 0.5
#define THRESHOLD 0.9
#define WRR 1
#define WFQ 2

struct calls{
float atime;
float end;
int type;

struct handover{
float atime;
float priorty;
float q_time;
int type;

class Random{
protected:

float uniform(float,float);
int int_uniform(int);
float expon(float);
int random_integer(float prob_distp);

template <class T>
class ho_queue:public queue <class T>{
public:

T get()(return (qptr->item);}
void del();
void madd(T);

template <class T>
void ho_queue<T>::m_add(T i)(

float val;
list<T>* newptr=new list<T>;
list<T>* temp=rear;
newptr->item=i;
val=i.q_time;
++length;
if(isEmptyO){

front=rear=newptr;
newptr->next=NULL;
qid=0;

}
else

if(rear->item.q_time<=val){
newptr->next=rear;
rear=newptr;
qid++;

}
else if(front->item.q_time>val){

front->next=newptr;
front=newptr;
front->next=NULL;
qid++;

else{ while((temp->next->item.q_time>val)&&(temp->next-
>next!=NULL)

}

newptr->id=qid;
}

}

template <class T>
void ho_queue<T>::del(){

list<T>*temp=rear;

temp=temp->next;
n ewptr->next=temp->n ext;
temp->next=newptr;
qid++;

}

if((qptr==rear) && (gptr==front)){
q ptr=front=rear=NULL;
}

else if(qptr==rear){
rear=rear->next;
qptr->next=NULL;
qptr=rear;
}

else if(gptr==front){
while(temp->next! =front)

temp=temp->next;
front=temp;
temp=temp->next;
front->next=NULL;
qptr=rear;
}

else(
while(temp->next!=qptr)

temp=temp->next;
temp->next=qptr->next;
temp=gptr;
gptr=gptr->next;
temp->next=NULL;
}

delete temp;
--length;

template<class T>
class call_queue:public queue <class T>{
public:

void get(int&id,T&call){id=qptr->id ; call=qptr->item;}

class Events:public Random{

public:
float clock,next_call,next_handover,ho_delay,miat,hmiat,sum,sumof_bandwidth;
int busy channels, next_event_type,max_q_len,num;
int scheme;
int call_id;
int clp;
long int total_calls,blocked, new_success,q_len,ho_success,

ho_fail;
calls call;
call_queue<calls> call_list;
handover ho;
ho_queue<handover> q_ho;
EventsO;
void new_call(;
void new_handover();
void release_channel(int);

private:
void q_scan();

class simulation: public Events{
public:

simulation();
simulation(int,char*);
-simulation(}{fout.close();}
void start();
void get_packet_size(int);
void bandwidth._ utilisation(int);
void p_mib();
void start(long int);
void traffic(float,int);

void report();
void save();

private:

float load;
ofstream fout;
void timing():
void intializeO;

void simulation::p_mib()

float NEW_HANDOVER_BANDWIDTH[30],NEW_THRESHOLD[30];
for(int i=0;i<30;i++)
{
NEW_HANDOV ER_BANDW IDTH[i]=ho_fail*blocked*HANDOVER_BANDW IDTH;
NEW_TkRESHOLDfi]=clp*THRESHOLD;

}
int NRT1=400;
int NRT2=200;
int NRT3=100;

float w=4*sgrt(NRT1)+2*sgrt(NRT2)+sgrt(NRT3);
float w1=4`sgrt(NRT1)/w;
float w2=2*sgrt(NRT2)(w;
float w3=sgrt(NRT3)/w;

for(i=0;i<30;i++)
{
fout <NEW_HANDOVER BANDWIDTH[i];
fout<<NEWTHRESHOLD[i];

ho_fail=NEW_HANDOVER_BANDWIDTH[i]/(blocked*HANDOVER_BANDWIDTH);
clp=NEW_THRESHOLD[i]/THRESHOLD;
fout<<ho_fail;
fout<<clp;

void simulation:: get_ packet_size(int num)
{

float first[100],val[100];
int x;
float I,b;

for(x=1;x<num;x++)

first[x]=x*sgrt(2*3.14*5.4139);
b= (log(x)-1.8821);
1= exp((-b*b)/2*5.4139);
val[x]=first[x]*I;

float time[100],sum=0.0;
for(int i=1;i<num;i++)
{
clock_t start[100], end[100];
start[i] = clock;
delay(200);
end[i] = clock;
time[i]=((end[i] - start[i]) / CLK_TCK);

sum+=time[i];

}
1! cout<<"average turnaround time:"<<sum/num;

void simulation:: bandwidth_ utilisation(int numofpkt)

float first[100],val[100],sumof_bandwidth=0.0;
int x;
float I,b;

for(x=1;x<numofpkt;x++)
{
fi rst[x]=x* sgrt(2*3.14* 5.4139);
b= (log(x)-1.8821);
1= exp((-b*b)/2*5.4139);
val[x]=first[x]*I;
sumof_bandwidth+=val[x];

/* Member functions implementation of Random class `/
float Random::expon(float mean){
float u;
do{
u=rand(2);
)while(u==0);
float exp_u=-mean*log(u);
return exp_u;
}

/* Member functions implementation of Events class `/
Events:: Events(){
next call=O;
clock=0;
busy channels=0;
blocked=b;
new_success=O;
ho_success=0;
qIen=O;
ho_delay=0;
ho_fail=0;

max_q_len=O;
total _calls =0;
call_list.length=0;
q_ho.length=0;

}
void Events::new_call(){
next_call=expon(miat)+clock;
total_calls++;
if(busy_channels + resRadio <max_channels)
{

busy channels++;
call.end=expon(miat)+clock;

call.atime=clock;

if (call_list.length > max_channels)
cout<<"\n\n new call :calls more than channels";
getchO;
exit(1);
}

call_ list. add (call);

new success++;
}

else(
blocked++;

}
clp=random(11)/10;

void Events::new_handover{){
next_handover=expon(hmiat) +clock;
total calls++;
if(busy_channels <rnax_channels){

busy_channels++;
call.end=expon(hmiat)+clock;
call.atime=clock;
if (call_list.length > max_channels)

cout<<"\n\handover :calls more than channels";
getch();
exit(1);

call list.add (call);
ho_success++;
ho_delay+=0;

else{

{
ho fail++;

//else{

ho.atime=clock;
ho.priorty=O;
ho. q_time=expon(max_i n_q);

if (q_ho.length > 999)
ho fail ++;
}

q_len++;
if(max_q_len < q_ho.length) max_q_len=q_ho.length;

}

void Events::release_channel(int ind){
handoverho;

int ct;
call_ list.del(ind,ct);
busy channels--;
if(!q_ho.isEmpty())

while((!q_ho.isEmpty()) && (busy_channels<max_channels)
{
q_scan();

if(!q_ho.isEmpty()){
q_ho.remove(ho);
busy_channels++;
call.end=expon(hmcl)+clock;
call.atime=clock;

if (call_list.length > max_channels) {
cout<< \n Q handover :calls more than channels";

getch();
exit(1);

call_list.add(call);
ho_success++;
ho_de l ay+=clock-h o. ati m e;

}

void Events::q_scan(){
handover ho;
int id, len;
q_ho.set();
len=q_ho. length;
for(int i=0;i<len;i++){

ho=q_ho.get();
if ((clock-ho.atime)> ho.q_time){

ho fail +•r;
q_ho.del();

}

else
q_ho.go();

}
simulation:: simulation(){

fout. open("ho.txt");

simulation::simulation(int s,char* fileName){
scheme=s;

fout.open(fileName);
if(!fout){

tout«"can't open " <<fileName<<-.";
exit(0);
getch();

}
void simulation::start()(
next_caii=0;
next_handover=0;
intialize();
while(totalcalls<MAX_SAMPLES){

timing;
switch(next_event_type){

case NEWCALL : new_call();break;
case HANDOVER: new_handover();break;
case RELEASE: release_channel(call_id);break;
}

}
}
void simulation::traffic(float I,int percentage)(
load=l;

miat=(float(load)/100) * percentage;
hmiat=(float(load)/100) * (100-percentage);

miat=3600/miat;
hmiat=3600/hmiat;

}

void simulation::report(){

void simulation::save(){

long int processed= new_success+blocked+ho_success+ho_fail

fout<<'load"<<load;
fout«"CLBF<<(float(blocked)/float(processed));
fout<<HFP"<<(float(ho_fail)/float(processed));
Pout«"SUCC"<<(float(ho_success + new_success) /float(processed));
tout<<agti m e:<<s u m/n u m ;

foul«^bndutl:"<<(sumof__bandwidth/Total_Bandwidth);
foutccendl;

}
void simulation::intialize(){

Events:: Events();
}
void simulation::timingQ{

float min_ time _event=1.0e30;
calls tmpcall;
int id.len;
next event_type=RELEASE;
call_list.setO;
len=call_list.length;
for(int i=0;i<len;i++){

call_list.get(id,tmp call);
if (tmpcalt.end < min_time event){

min time event=tmpcall.end;
call id=id;

}
call_Iist.goQ;

if(next_call<min_time event){
min time _event=next_call;
next_even t_type= N E W CA LL ;
}

if(n ext_handover<min_ti me_event){
min_time_event=next handover;
next_even t_type= HAN DO VE R ;
}

clock=m in_time_event;

,- jflL LI ,~~

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

