
AN ACI'IYE NETWORK BASED APPROACH
IMPE 	 ATitlN OF DIFFERENTIATED SEIYIC

A DIUEWFATION

Submittedis partial fsdflbnent of the

,eemeJlts- for the award of she decree

of
MASTER OF TECHNOLOGY

hi
COMPUTER SCIENCE AND TECHNOLOGY

14 $Ie6o.
aoa, 	,.........,.

•

By

DWAK• KUMAR GOYAL

, TMENT OF ELECTRONICS AND COMPUTER ENGINEERING
UNIVERSITY OF ROORE
ROORKEE 247 107 (INDIA)

FEBRUARY. 2001

CANDIDATE'SDEcL4TION
1

I hereby declare that the work which is presented in the dissertati
"AN ACTIVE NETWORK BASED APPROACH FOR UdM [ENTATION
DIFFERENTIATED SERVICES ", in partial fulfillment of the requirements for thv
award of the degree of MASTER OF TECHNOLOGY with specialization in
COMPUTER SCIENCE AND .TECHNOLOGY submitted in the Department . of
Electronics & Computer Engineering, University of Roorkee, Roorkee, is an authentic
record of my own original work carried out from July-2000 to February-200 1 under the
supervision and guidance of Dr.(Mrs.) Kumkum, Carg, Professor, Department of
Electronics and Computer Engineering, University of Roorkee, Roorkee.
The matter embodied in this dissertation has not been submitted by me for the award of
any other degree.

Date 2.. o'~•'~

Place: Roorkee 	 (DEEPAK KtJMAR LOYAL)

CERTu ICATE

This is to certify that the above statement made by the candidate is correct to the best of
my knowledge and belief.

Date: 	~►ti • o z'' 0 ,
	

Dr. 	 Cerg
Place: Roorkee 	 Professor E&C Department

University of Roorkee
Roorkee-247667

ACKNOWLEDGEMENT

It is my pleasant dustt ` .all who have helped me in completing this dissertation. I

take the opportunity to express my deep sense of indebtedness and sincerest gratitude to

- my guide, Dr. (Mrs.) Kumkum Garg, professor, Electronics and Computer Engineering

Department, University of Roorkee, Roorkee for having extended her ever encouraging

and affable guidance and constant encouragement throughout the progress of this thesis.

She has displayed unique tolerance and understanding at every step of progress and

encouraged me incessantly. I deem it my privilege to have carried out the dissertation

work under her able guidance.

essor & Head of the E&C Dept.,) and

the successful completion of

this work.

I owe my gratitude to Aashish Suchdeva, Arvind Singh Sengar, Upendra Rajput, Dheeraj

Singh and thanks to all my friends for their constant encouragement and morale

boosting.

(DEEPAK KUMAR LOYAL)

Abstract

A lot of research is being carried out now a days towards an efficient and flexible

implementation of different type of services to provide different quality of services as per

requirements of the customer. 	This type of architecture, in which the routing and

forwarding functionality accommodates different types of services, is called

Differentiated Services architecture.

The concept of Active networks is also attracting a lot of attention, as a new approach to

network architecture. Active networks are more flexible as they incorporate intelligent

routers, which can be programmed by the received packets. All routers in an active

network are active and can perform packet marking and remarking functions, unlike in

existing networks where only edge routers can do so.

In this dissertation, we have proposed a scheme to implement differentiated services over

active networks. We show that this scheme gives a better implementation of

differentiated services, as compared with existing networks, in terms of bandwidth

utilization. The comparison is done by simulating a network and then studying the

throughput of different traffic flows at each active node.

The model is developed in JAVA 2 and tested in Win 98 environment.

Contents

Page no.
1. Introduction

1.1 Overview 	 1

1.2 Motivation for work done 	 4

1.3 Organization of the report 	 5

2. Active Networks 	 6

2.1 Why Active Networking? 6

2.2 Implementation approaches 7

2.2.1 Programmable Switch Approach 7

2.2.2 Capsule Approach 8

2.3 Existing Work in Active Networking 8

2.4 Infrastructure for Active Networks 13

2.5 ANEP (Active Network Encapsulation Protocol) 15

3., Differentiated Services 21

3.1 Differentiated Services Architecture 23

3.1.1 Differentiated Services Architectural Model 25

3.1.2 Differentiated Services Domain 26

3.1.3 Traffic Classification and Conditioning 27

3.2 Location of Traffic Conditioners and MF Classifiers 30

3.2.1 Within the Source Domain 31

3.2.2. At the Boundary of a DS Domain 31

3.2.3. In non-DS-Capable Domains 32

3.2.4. In interior DS Nodes 	 32

4. Differentiated Services in Active Networks 	 33

4.1 Packet format 33

4.2 Active Node architecture 35

4.3 Distributed packet marking scheme 36

5. Implementation 39

5.1 Simulation model 39

5.2 Topology 41

5.2.1. Active network 41

5.2.2. Differentiated Services Internet 42

5.3 Implementation detail 44

6. Conclusion 45

6.1 Discussion of results 	 45

6.2 Suggestions for Further Work 	 48

6.2.1 Multiple code. point implementation 	 48

6.2.2 New models and algorithms 	 48

6.2.3 Security issue 	 48

References

Appendix: Source Listing

Chapter 1

Introduction

1.1. Overview-

Internet growth in recent times has surpassed all other technologies preceding it,

including radio, television and the personal computer. It is expected that the Internet will

metamorphose into a medium for the convergence of voice, video and data

communications. These will require new services (e.g. guaranteed QoS, congestion

avoidance, resource reservation etc.) that cannot be promised by currently existing best

effort services model.

The present day Internet is of interconnected routers, which have a fixed, though highly

optimized, functionality for routing packets to their destinations. The packets themselves

are viewed as pure data. Only service providers who can configure and manage them to

provide service can program these routers, otherwise the routers are not programmable.

The current proposal to solve this problem is to use Differentiated Services architecture.

But this will require very large-scale updates and will also reduce the flexibility towards

newer customer requirements [1].

Unfortunately, any change at network level is a very time consuming process. It requires

standardization, development, and deployment by vendors and then enabling by

administrators. Currently, large-scale deployment of any concept takes years to do so.

Active Networks will fill the gap between user requirements and deployment of new

services to support them, as traditional slow process of consensus based standardization

can be avoided [2].

1

Active Networks offer a new approach where, a network is not just a passive carrier of

bits, but a more general computational model. Active networks may be simplistically

viewed as a set of active nodes that perform customized operation on the data flowing

through them. Unlike the traditional networks, in an active network the packets can

contain programs instead of passive data. Such packets are executed at routers or

switches in the network and further course of action depends on the outcome of this

execution.

The users also see Internet as a closed system, where they have little control over the

handling of their data or packets, after it has been put on the Internet. Active Networks is

an approach where packets contain control information that can affect the network

behavior of routers. Thus packets and routing elements can interact in novel ways.

Active Networks will have open programmable routers, on which users would be able to

deploy programs dynamically. ' The functionality of these routers will not be

standardized, but their execution environment will be, so that new innovative ideas are

not hindered. Besides this, present day networks provide the same service to all the

applications, thus removing any possibility for application specific processing.

Active Networks will also help in providing quality of services. As the computing cost

decreases, it is possible to add computing within the network, in order to support new

emerging applications, or to enhance performance of existing applications.

N

With programmable routers, not only will existing applications take new shape, but new•

applications can also be supported. These are unimaginable with the present day Internet.

Here we discuss some such applications.

a. Online Auction

In online auctions, a server collects client bids and processes them , for each available

item. Servers also respond to the requests for the current price. -Because of network

delay, information responding to such queries may be out of date by the time they reach

to the clients. Thus clients may submit a bid- much lower than the current price of the

item. Servers may have to receive many such bids and reject them. This unnecessary

flow of packets simply increases the network traffic and server load and makes whole

process slow [3].

In an active network environment, when a server is heavily loaded, it activates the routers

to serve as active routers by sending them the current prices of items. Active routers now

filter the incoming packets by rejecting low bids before they reach the server. Servers

periodically update these routers with the current prices. Since active routers can drop.a

major part of unnecessary bids, they free up the server resources for processing

competitive bids only.

b. Protocol Boosters

This application talks about building protocols dynamically. The idea is to have protocol.

elements that can be inserted into existing protocols to satisfy some particular

application, which could not be supported by the protocol previously. These protocol

3

elements can be removed from the protocols when not required. As the name suggests, it

will help in enhancing the performance of protocols by customizing them according to

applications. This can also help in evolving new network technologies [3].

c. Quality of Service

Currently, the Internet provides the same service to all applications, which may have

diverse quality of service expectations. The requirement is to extend the network

architecture to allow service differentiation mechanisms so that some applications can get

better services than others.

Active networks can be used to provide this service differentiation. Active routers can be

used to evaluate the packets and can provide different kinds of services depending on

origin or destination of packets or priority of one type of packets over others. Active

routers can dynamically reroute the packets along different paths in order to provide less

propagation delay and less packet loss rate to higher priority packets [4].

1.2 Motivation for work done

The present DS architecture requires large implementations to meet the projected

demands of the next generation networks. As said above, active networks can provide a

convenient and faster alternative. This dissertation work is done with an aim to

incorporate this concept in the Differentiated services model so as to optimize the

resource utilization in the network.

n

1.3 Organization of the report

Chapter 2 deals with general concepts related to active networking. It discusses about

motivations and applications of active networking. It gives an overview of the various

research activities going on in the field of active networking. This is followed by a

description of the infrastructure required for active networking and a protocol proposed

by Active Network Group (a group comprising of prominent researchers in the field of

Active Networking) called ANEP (Active Network Encapsulation Protocol).

Chapter 3 gives information about Differentiated services. It briefly discusses the

concept and the requirement of Differentiated services. 	An overview- of the

Differentiated services architecture, which is being implemented in existing Internet, is

also given.

Chapter 4 discusses an Active Networks based approach to implement the differentiated

;services. We will also see how this approach is different from the existing Differentiated

services and how they help in getting better performance from the network.

Chapter 5 gives details of simulation model used. It gives the description of used

topology and other assumptions, which are used for experiment. Last section of this

chapter gives implementation detail about the model of Active Network that is use for

this dissertation.

Chapter 6 concludes the dissertation with discussion of results, which makes graphical

comparison between new and existing approaches. The section gives suggestions for

future work.

61

Chapter 2

Active Networks

2.1. Why Active Networking.?

There are many new emerging applications, which require computing in the network.

These applications include web proxies, on-line auctions, firewalls, videoconferencing

etc. In the present model of the Internet we cannot change protocols easily to satisfy the

different service requirements of such applications as hardware and software are bundled

together. Thus different kinds of adhoc approaches are being used to fulfill the different

service requirements [5].

The goal is to replace all these adhoc approaches with a generic programming capability

of the network. Active networks can change the structure of networks by decoupling the

hardware and software. They will allow new services to be deployed at a faster pace to

suit the applications.

Major motivations for active networking can be listed as:

❑ To minimize the requirements of standard protocols to develop end-to-end

services and to support dynamic modification of network behavior.

❑ To provide mechanisms for supporting different levels/qualities/classes of

services.

❑ To maximize flexibility in service by supporting different services

simultaneously.

❑ To support network management at all levels.

❑ To support easy and fast deployment of new protocols.

0

2.2 Implementation approaches

Today, two approaches are being used for implementing active networks [6]. Each of

these approaches defines a different way of injecting programs in the network.

2.2.1 Programmable Switch Approach

In this approach, packets are of two categories: packets containing programs only and

simple data packets. This approach separates injection of these two types of packets. The

routers of the network are programmable switches [6]. Injecting program packets first

programs the routers, then data packets are sent on the network. The routers then work on

these data packets as dictated by the programs that have been loaded on to the various

routers.

In essence, this approach preserves the present structure of network by distinguishing

between data transfer and network management. This approach is well suited for network

administrators to control the network. It could also be useful in preventing malicious

programming of networks, because the people who may program the network should be

authorized.

The problem with this approach is that it does not provide full flexibility as promised by

active networking. The other problem is that, in general, we do not know which path is

going to be followed by a particular packet for a certain destination. Packets originating

from a common source and destined for a common destination may take different paths,

and it is not possible always to program all routers between source and destination.

2.2.2 Capsule Approach

In this approach, every packet, or capsule, contains a program. Data may also be

embedded within the program. When such packets arrive at a router, the program is

executed and the next action depends on the outcome of program execution. The

programs are of basic instructions that may operate on their data or may also program the

router itself [6].

The problems with this approach are of security and efficiency. A malicious user can

harm the whole network by programming the router. Besides since each packet has a

program that is executed at each router so the whole network is slow. Steps are being

taken to solve these problems. The security problem can be solved by restricting the

address space, which a packet can access and the performance problem can be solved by

making programs small and of basic instruction, which are stored on the router.

This approach solves the problem with previous approach of finding routers to program,

in a certain path. The capsule approach also provides full flexibility to the end-users for

providing customized processing on their data.

2.3 Existing Work in Active Networking

We now survey existing work on active networking that is currently ongoing at a number

of research institutes. The major areas of research are studying capsule and

programmable switch approaches, developing applications, languages and compilers for

active networks.

8

Massachusetts Institute of Technology

At MIT, researchers have developed an Active Network Tool Kit, ANTS (Active

Network Transfer System)[7]. ANTS is based on the capsule approach. It uses mobile

code for deployment of new protocols at both end systems and intermediate routers. The

aim of ANTS is to develop a standardized communication model that will support many

protocols simultaneously.

New protocols are introduced by specifying the routines to be executed at the routers on

the forwarded packets. The routines will be deployed online, thus avoiding an off-line

process of reconfiguring a router. In ANTS, communication is done by exchanging

capsules, rather than simple data packets. A router in ANTS is an active router on which

capsules are processed. New network services in ANTS are created by defining new

capsule types and their processing. There are mainly three components in ANTS

Capsules, Active routers and Code distribution.

Capsule

In ANTS, a capsule is the entity which is sent between active routers. Unlike traditional

packets, capsules contain application data and describe the processing they require within

the network.

A new service is developed by related types of capsules, to create a protocol. The

processing, which a capsule will require at a router, is kept as a reference to a forwarding

routine in each capsule. Capsules belonging to the same protocol can communicate with

each other through shared variables available at active routers, while capsules belonging

7

to different protocols can't communicate. This is provided as a protection measure by

active routers.

Protocol/ 	 Shared header 	Rest of header 	 Payload
Capsule

Fig 2.1. ANTS packet format

An ANTS capsule format is given in Figure 2.1. The protocol field is an identifier for

the protocol and forwarding routine within that protocol. This identifier is based on a

secure hash of the forwarding routines in the protocol, which provides a fingerprint of the

code. Since it depends only on the fingerprint, thus no central authority is needed to

assign identifiers and also an active router can check it independently.

The rest of the packet consists of a common header present in all packets; a type checked

header that may be modified as the packet traverses the network and the payload.

Active routers

In ANTS, active routers provide the environment in which protocols are executed.

Active routers also restrict the access of executing programs to shared resources. They

also provide a set of primitives that are used to construct forwarding routines. Currently

following router primitives are available.

Environment primitives: These primitives give information about the router environment

like router location, state of links and routing tables [7].

Storage primitives: These primitives help in storage of application-defined objects,

icluding other capsules. The objects, which are stored, are not permanent. The

ID

primitives also help in deleting the old primitives so the network does not retain stale

information.

Control primitives: These primitives allow capsules to create other capsules and forward,

suspend and discard themselves. They are also used to route the capsules.

Capsule manipulation: These primitives are used to manipulate capsule header and

payloads.

Active router uses mobile code techniques to execute unauthenticated routines in

restricted environments. Active routers also limit resources that can be consumed by a

packet. For this, capsules carry a resource limit that is decremented by routers when

resources are consumed and a packet is discarded when it reaches zero.

Code distribution

The third component of ANTS architecture sends forwarding routines to the router where

they are required. Applications provide local routers the necessary forwarding routines,

which they will need to process capsules. These forwarding routines are transferred using

a lightweight protocol along the path that a capsule follows. When a capsule reaches a

router, which does not have the forwarding routine required for that capsule type, the

capsule is suspended.

The router then asks the forwarding routine from the previous router of the path the

capsule has followed. If the requested router has forwarding routines, then it immediately

sends them to the 'requesting router, else the request is propagated.

All this is done in'real time, so when a specified time expires and the router does not get

required forwarding routine, all the capsules belonging to that protocol is discarded. This

approach where a router relies upon previous router, creates a region in which every

router will soon have forwarding routines so code transfer is eventually not needed which

speeds up execution.

Currently at MIT research is focusing on new services that can be introduced to active

networks and how these services are useful for improving overall application

performance [7]

University of Columbia

The NetScript project at Columbia University consists of a programming language and

execution environment. The aim of project is to deploy new protocols and services in the

network to simplify the development of networks. The NetScript programming language

provides the means to script processing of packet streams. In NetScript, programs that

can be dynamically dispatched to routers are called agents.

Agents are executed at the remote hosts and are used to control the functions of

intermediate routers and for program management. An agent binds primitive router

functions with processing packet streams and allocates router resources. Agents can be

programmed to handle user-defined processing along with standardize protocols. Every

incoming packet stream is allocated to an appropriate agent deployed on the router that

performs the desired functionality of the protocol [8].

University of Pennsylvania

The Switchware project at UPenn proposes a programmable switch that allows type

checked modules to be loaded in routers of the network. The switch consists of input and

output ports controlled by software programmable elements. Active packets are sent to

inject the program in the network, and the switchware routers execute the code fragment

12

in each packet along its delivery path. The delivery path is controlled by the mobile code

itself.

A scripting language PLAN (Packet Language for Active Networks) has also been

developed for programming the interface of routers. Every active packet in switchware

carries PLAN program. PLAN is based on the lambda calculus [8].

Other research activities

At Georgia Institute of Technology, attempts are being made to develop trustworthy

services using active network concepts. They have developed effective congestion

control mechanisms by allowing applications to invoke special-purpose algorithms at the

time of congestion. At Bell Communications Research, efforts are to specify semantics

for active routers and investing these semantics in collaboration with the UPenn Team.

At Carnegie Mellon University, efforts are towards developing resource management

mechanisms for supporting application-aware networks. They are also exploring support

for sophisticated multi-party applications like video-conferencing.

At University of Arizona, researchers in the Liquid Software Project are exploring

mechanisms for building networked systems using liquid software. Liquid software refers

to software, which can easily flow from machine to machines. Their main focus is

towards fast compilation of mobile code, mobile search applications and OS support.

2.4 Infrastructure for Active Networks

As we know, a packet traverses through a number of routers during its communication

path from source to destination, so the program, that a packet may contain, will be

13

executed on variety of platforms. Thus, to satisfy the needs of these varieties of

platforms, a common framework has been proposed. It suggests a common programming

model for program encoding, router resources and services available at a router.

According to the model, the program should be able to execute on a variety of platforms.

This objective is achieved by choosing a platform-independent language like Java [9] for

program encoding. The other requirement for programs is of security i.e. the address

space a program can access on a router should be restricted.

Besides the above two requirements, execution of a program on a router should not

degrade network performance, so the program should be small and be composed of basic

instructions to facilitate rapid execution. These basic instructions, or services, could be

made available at a router dynamically. The services could do basic operations of packet

manipulation such as changing data or header. The services could also provide basic

functionalities to control flow.

The router resources, which a router can access, should also be standardized. The router

resources could be logical like routing table as well as physical like processing capacity,

storage and bandwidth etc.

The major issue with active networking is about its inter-operability with present

networks. Efforts are being made to use existing infrastructure without a complete

overhaul. The idea is to use tunneling. The active routers would tunnel their packets

through the legacy routers as done in the case of MBONE, where multicasting routers use

tunneling to pass their packets through non-multicasting routers.

14

To support this idea an extension to IP protocol, Active IP [10], has been suggested. The

extended IP protocol would use option field of normal IP packet for embedding program

fragment in the IP datagram.

IP Option

IP Header 	 User Data

Active option

Type 	Length 	Code type and value

Fig 2.2.Active IP Packet Format

As we know, legacy routers do not look at the option field, they will just pass the packet

as a simple IP packet, while active routers would execute the code fragment.

2.5 ANEP (Active Network Encapsulation Protocol)

An active network router is capable of dynamically loading and executing programs

written in a variety of languages. These programs are carried in the payload of an active

network frame. The program is executed by a receiving router in the environment

specified by the ANEP [11]. Various options can be specified in the ANEP header, such

as authentication, confidentiality, or integrity.

Next, we describe the syntax and semantics of ANEP. The details of handling the

contents of an active frame are left to the individual implementations/environments.

The .reasons an active network header is necessary are:

15

a) An active router receiving a packet must be able to uniquely and quickly determine the

environment in which it is intended to be evaluated.

b) To allow minimal, default processing of packets for which the intended evaluation

environment is unavailable.

c) So that information that does not fit conceptually or pragmatically in the encapsulated

program (such as security headers), can be placed in the header.

Packet Format

The format of the ANEP header [11] is given in fig 2.3.

Version Flags
Type ID

ANEP Header Length ANEP Packet Length

Options

Payload,

Fig 2.3 ANEP packet

All fields larger than one octet must be in network-byte order (big endian format). This

holds for all Options as well.

The Version field indicates the header format in use. This description is for version 1.

This field will be changed if the ANEP header should change. If an active router receives

a packet whose version number it does not recognize, it should discard the packet. The

length of this field is 8 bits.

The Flags field is 8 bits long. In version 1 of this protocol, only the most significant bit is

used, to indicate what the router should do if it does not recognize the Type ID. If the

M

16

value is 0, the router could try to forward the packet using the default routing mechanism

(if one is in use), if the necessary information is available in the Options part of the

Leader. If the value is 1, the router should discard the packet. The rest of the bits in this

field should be ignored by the router. It is recommended that they be set to zero by the

packet originator.

The ANEP Header Length field specifies the length of the ANEP header in 32 bit words.

If no options are included in the packet, then its value must be 2. The length of this field

is 16 bits.

The Type ID field indicates the evaluation environment of the message. The .active router

should evaluate the packet in the proper environment. The length of this Field is 16 bits.

r1 he proper authority for assigning Type ID values to interested parties is the Active

Networks Assigned Numbers Authority (ANANA). The Type ID value 0 is reserved for

possible future network layer informational and error messages. If the value contained in

this field is not recognized, the router should check the value of the most significant. bit of

the Flags field in deciding how to handle the packet.

The ANEP Packet Length field specifies the length of the entire packet, including the

packet payload, in octets. This field is used to recover the packet if it has been

transmitted over a lower layer that does not allow recovery of the packet length. The

length of this field is 16 bits. Notice, that unlike other length fields in this document, the

unit of measure is octets.

17

Options' in the form of TLVs (Type/Length/Value) can be included in the packet,

immediately following the basic header. The format of these options given in fig 2.4.

0 	2 	 16 	 31

FLG 	 Option Type 	 Option Length

Option Payload (Option Value)

Fig 2.4. Format of ANEP option

The Option Type field identifies the option. How the active router handles the Option

Payload depends on the Option Type value. The length of this field is 14 bits. The

following values have been reserved:

Source Identifier 	1

Destination Identifier 	2

Integrity Checksum 	3

N/N authentication 	4

All values intended for public use are under the authority of the Active Networks

Assigned Numbers Authority (ANANA). Other parties can use their own values for this

field if the most significant bit (Flags bit 0) is set. These Options are only meaningful

inside the specified evaluation environment, so the proper authority for assigning these

values is the Type ID owner.

III

The Option Length field contains the length of the TLV in 32 bit words. This includes the

length of the Flags, Option Type, and Option Length and Option Payload fields. This

value must never be less than l(for an option with a zero sized Option payload). If the

Option payload size is larger than the size of the data it carries, it is recommended that

the excess I - 3 octets be zero filled and be ignored by a receiving implementation. The

length of this field is 16 bits.

The two most significant bits of the first word in an Option (bits 0 and 1) are used as a

Flag field. Bit 0 (Private) is used to indicate that the Option Type is only meaningful

within the specified Type ID. The router should not try to parse the Option at packet

receipt if this bit is set. If the active router does not know how to process the indicated

Option Type, the action taken is defined by the value of bit I of the Flags field. If this is

0 this option is ignored and processing the header is continued. If it is 1 the packet is

discarded.

Defined Options

This section briefly discusses the options defined above.

Source Identifier

This Option includes a value, which uniquely identifies the sender of the packet within

the active network. The payload of this Option consists of a. 32-bit value, which

identifies the addressing scheme in use, followed by that scheme's data.

Destination Identifier

This Option includes a value which uniquely identifiers an ultimate destination of the

packet within the active network. The format of the payload of this Option is the same as

that of the Source Identifier TLV. This field could be used by active routers on which the

19

intended evaluation environment is unavailable in order to attempt to forward the packet

towards an active router capable of better handling the packet.

Integrity Checksum

The payload of this Option contains the 16 bits one's complement of the one's

complement sum of the entire ANEP packet, starting with the ANEP Version field. For

computing the checksum, the payload of this Option must be set to zero. The Option

Length field must be 2.

Non-Negotiated Authentication

This option is used to provide one-way authentication, with no prior negotiation between

the packet originator and processing router(s). The payload of this Option consists of a

32-bit value, which identifies the authentication scheme in use, followed by that scheme's

data.

It is expected that this option will be used when the number of packets that require

authentication is too small to justify the cost of a full negotiation, when the operation is

time critical, or when security negotiation cannot take place. The processing cost of this

option is expected to be higher than that of a negotiated authentication option, and it

might not provide guarantees as hard as the latter, especially with respect to replay

protection.

- Chapter 3

Differentiated Services

The transformation of the Internet into an important and ubiquitous commercial

infrastructure has not only created rapidly rising bandwidth demand but also significantly

changed consumer expectations in terms of performance, security, and services [4].

Consequently, service providers need to not only evolve their networks to higher and

higher speeds but also need to plan for the introduction of services of increasing

sophistication, so as to address the varied requirements of different customers. At the the

same time, Internet Service Providers (ISPs) would like to maximize the sharing of the

costly backbone infrastructure in a manner that enables them to control usage of network

resources in accordance with service pricing and revenue potential.

The two trends of rapidly rising bandwidth demand and rising need for differentiation has

resulted in intense efforts to build fast packet forwarding engines and in efforts to define

mechanisms for service differentiation. Isolating traffic from different customers and

providing minimum bandwidth guarantees in a customer specific manner, allows

customers of ISP services to determine the bandwidth they require to satisfy their needs

based on their own traffic requirements, just as they would with a leased line. They may

want the additional flexibility of being able to specify the manner in which their internal

traffic, from different sources, is allowed access to the available bandwidth.

r~

Furthermore, it may be desirable to define different levels of service [1] for different

types of traffic in a customer dependent manner. For example, some customers may

consider FTP or Web transfers to be low priority, and so for them the service provider

could aggregate multiple flows of these types. However, other customers may define

Voice-over-IP or database queries to be high priority, and therefore for them the service

provider must ensure good performance by giving these traffic types priority or

guaranteed minimum bandwidth from within that customer's available bandwidth.

In another scenario, some customers may require extremely reliable and predictable

performance for a small set of applications. They may indicate this requirement to the

network as dynamic reservations of exact bandwidth along with specification of delay

bounds. This indication may be by explicit signaling using a resource reservation

protocol like RSVP, or may be done implicitly by some other means. The service

provider's infrastructure must be capable of allowing end users to choose such a stringent,

although possibly expensive, service if they require it.

On the other hand, service providers want to maximize the sharing and multiplexing of

their infrastructure, service providers should have the flexibility to distinguish themselves

from other service providers by being able to tailor their service offerings in whatever

competitive manner they choose to do.

To meet the above requirements, the Network Working Group at IETF has proposed an

architecture called the DS-Architecture. The following sub sections discuss it.

22

3.1. Differentiated Services Architecture

This architecture is composed of a number of functional elements implemented in

network nodes, including a small set of per-hop forwarding behaviors, packet

classification functions, and traffic conditioning functions including metering, marking,

shaping, and policing.

Here scalability is achieved by implementing complex classification and conditioning

functions only at network boundary nodes, and by applying per-hop behaviors to

aggregates of traffic, which have been appropriately marked using the DS field in the

IPv4 or IPv6 headers [1]. Per-hop behaviors are defined to permit a reasonably granular

means of allocating buffer and bandwidth resources at each node among competing

traffic streams

This architecture is aimed at distinguishing the following:

• The service provided to a traffic aggregate,

• The conditioning functions and per-hop behaviors used to realize services,

• The DS field value (DS codepoint) used to mark packets to select a per-hop

behavior, and

• The particular node implementation mechanisms, which realize a per-hop behavior.

Service provisioning and traffic conditioning policies are sufficiently decoupled from the

forwarding behaviors within the network interior to permit implementation of a wide

variety of service behaviors, with room for future expansion.

This architecture only provides service differentiation in one direction of traffic flow and

is therefore asymmetric.

23

Next we give a general conceptual overview of the terms used in DS architecture:

DS behavior aggregate: - A collection of packets with the same DS codepoint crosses a

link in a particular direction.

DS codepoint.: - A specific value of the DSCP portion of the DS field, used to select a

PHB (Per Hop Behavior).

DS field: - The IPv4 header TOS octet or the IPv6 Traffic Class octet when interpreted in

conformance with the definition given in [1]. 	The bits of the DSCP field

encode the DS codepoint, while the remaining bits are currently unused.

DS region: - A set of contiguous DS domains, which can offer, differentiated services

over paths across those DS domains.

Per-Hop-Behavior (PHB): - The externally observable forwarding behavior applied at a

DS-compliant node to a DS behavior aggregate.

Service Level Agreement (SLA): - A service contract between a customer and a service

provider that specifies the forwarding service a customer should receive. A customer

may be a user organization (source domain) or another DS domain (upstream domain). A

SLA may include traffic conditioning rules, which constitute a TCA in whole or in part.

Source domain: - A domain, which contains the node(s), originating the traffic receiving

a particular service.

Traffic conditioner: - An entity, which performs traffic conditioning functions and which

may contain meters, markers, droppers, and shapers. Traffic conditioners are typically

deployed in DS boundary nodes only. A traffic conditioner may re-mark a traffic

24

stream or may discard or shape packets to alter the temporal characteristics of the

stream and bring it into compliance with a traffic profile.

Traffic conditioning: - Control functions performed to enforce rules specified in a TCA,

including metering, marking, shaping, and policing.

Traffic Conditioning Agreement: - An agreement specifying classifier rules Agreement

(TCA) and any corresponding traffic profiles and metering, marking, discarding and/or

shaping rules which are to apply to the traffic streams selected by the classifier A TCA

encompasses all of the traffic conditioning rules explicitly specified within a SLA along

with all of the rules implicit from the relevant service requirements and/or from a DS

domain's service provisioning policy.

Traffic profile: - A description of the temporal properties of a traffic stream such as rate

and burst size.

Traffic stream: - An administratively significant set of one or more microflows, which

traverse a path, segment. A traffic stream may consist of the set of active microflows,

which are selected by a particular classifier.

3.1.1 Differentiated Services Architectural Model

The differentiated services architecture is based on a simple model where traffic entering

a network is classified and possibly conditioned at the boundaries of the network, and

assigned to different behavior aggregates. Each behavior aggregate is identified by a

single DS codepoint. Within the core of the network, packets are forwarded according to

the per-hop behavior associated with the DS codepoint. In this section, we discuss the

25

key components within a differentiated services region, traffic classification and

conditioning functions, and how differentiated services are achieved through the

combination of traffic conditioning and PHB-based forwarding.

3.1.2. Differentiated Services Domain and Differentiated Services Region

A DS domain is a contiguous set of DS nodes, which operate with a common service

provisioning policy and set of PHB groups implemented on each node. A DS domain has

a well-defined boundary consisting of DS boundary nodes, which classify and possibly

condition ingress traffic to ensure that packets which transit the domain are appropriately

marked to select a PHB from one of the PHB groups supported within the domain.

. Nodes within the DS domain select the forwarding behavior for packets based on their

DS codepoint, mapping that value to one of the supported PHBs using either the

recommended codepoint->PHB mapping or a locally customized mapping.

a. DS Boundary Nodes and Interior Nodes

A DS domain consists of DS boundary nodes and DS interior nodes. DS boundary nodes
f

interconnect the DS domain to other DS or non-DS-capable domains, whilst DS interior

nodes only connect to other DS interior or boundary nodes within the same DS domain.

Both DS boundary nodes and interior nodes must be able to apply the appropriate PHB to

packets based on the DS codepoint; otherwise unpredictable behavior may result. In

addition, DS boundary nodes may be required to perform traffic conditioning functions as

rr.

defined by a traffic conditioning agreement (TCA) between their DS domain and the

peering domain.

Interior nodes may be able to perform limited traffic conditioning functions such as DS

codepoint re-marking. Interior nodes, which implement more complex classification and

traffic conditioning functions, are analogous to DS boundary nodes.

b. DS Ingress Node and Egress Node

DS boundary nodes act both as a DS ingress node and as a DS egress node for different

directions of traffic. Traffic enters a DS domain at a DS ingress node and leaves a DS

domain at a DS egress node. A DS ingress node is responsiblefor ensuring that the

traffic entering the DS domain conforms to any TCA between it and the other domain to

which the ingress node is connected.

c. Differentiated Services Region

A differentiated services region (DS Region) is a set of one or more contiguous DS

domains. DS regions are capable of supporting differentiated services along paths which

span the domains within the region.

3.1.3 Traffic Classification and Conditioning

Differentiated services are extended across a DS domain boundary by establishing a SLA

(Service Level Agreement) between an upstream network and a downstream DS domain.

27

The SLA may specify packet classification and re-marking rules and may also specify

traffic profiles and actions to traffic streams, which are in- or out-of-profile. The TCA

between the domains is derived (explicitly or implicitly) from this SLA.

The packet classification policy identifies the subset of traffic, which may receive a

differentiated service by being conditioned and, or mapped to one or more behavior

aggregates (by DS codepoint re- marking) within the DS domain.

Traffic conditioning performs metering, shaping, policing and/or re-marking to ensure

that the traffic entering the DS domain conforms to the rules specified in the TCA, in

accordance with the domain's service provisioning policy. The extent of traffic

conditioning required is dependent on the specifics of the service offering, and may range

from simple codepoint re-marking to complex policing and shaping operations.

a. Classifiers

Packet classifiers select packets in a traffic stream based on the content of some portion

of the packet header. We define two types of classifiers. The BA (Behavior Aggregate)

Classifier classifies packets based on the DS codepoint only. The MF (Multi-Field)

classifier selects packets based on the value of a combination of one or more header

fields, such as source address, destination address, DS field, protocol ID, source port and

destination port numbers, and other information such as incoming interface.

28

b. Traffic Conditioners

A traffic conditioner may contain the following elements: meter, marker, shaper, and

dropper. A traffic stream is selected by a classifier, which steers the packets to a logical

instance of a traffic conditioner. A meter is used (where appropriate) to measure the

traffic stream against a traffic profile. The state of the meter with respect to a particular

packet (e.g., whether it is in- or out-of-profile) may be used to affect a marking, dropping,

or shaping action.

When packets exit the traffic conditioner of a DS boundary node the DS codepoint of

each packet must be set to an appropriate value.

Fig.3.1 shows the block diagram of a classifier and traffic conditioner. Note that a traffic

conditioner may not necessarily contain all four elements. For example, in the case

where no traffic profile is in effect,

Meter

Packets 	 Shaper/
Classifier 	 Marker 	 Dropper

Fig.3.1. Logical View of a Packet Classifier and Traffic Conditioner

Meters

Traffic meters measure the temporal properties of the stream of packets selected by a

classifier against a traffic profile specified in a TCA. A meter passes state information to

other conditioning functions to trigger a particular action for each packet which is either

in- or out-of-profile (to some extent).

29

Markers

Packet markers set the DS field of a packet to a particular codepoint, adding the marked

packet to a particular DS behavior aggregate. The marker may be configured to mark all

packets which are steered to it to a single codepoint, or may be configured to mark a

packet to one of a set of codepoint used to select a PHB in a PHB group, according to the

state of a meter. When the marker changes the codepoint in a packet it is said to have

"re-marked" the packet.

Shapers

Shapers delay some or all of the packets in a traffic stream in order to bring the stream

into compliance with a traffic profile. A shaper usually has a finite-size buffer, and

packets may be discarded if there is not sufficient buffer space to hold the delayed

packets.

Droppers

Droppers discard some or all of the packets in a traffic stream in order to bring the stream

into compliance with a traffic profile. This process is known as "policing" the stream.

Note that a dropper can be implemented as a special case of a shaper by setting the shaper

buffer size to zero (or a few) packets.

3.2 Location of Traffic Conditioners and MF Classifiers

Traffic conditioners are usually located within DS ingress and egress boundary nodes, but

may also be located in nodes within the interior of a DS domain, or within a non-DS-

capable domain [1].

30

3.2.1 Within the Source Domain

Source domain is the domain containing the node(s), which originate the traffic receiving

a particular service. The traffic originating from the source domain across a boundary

may be marked by the traffic sources directly or by intermediate nodes before leaving the

source domain. This is referred to as initial marking or "pre-marking".

There are some advantages to marking packets close to the traffic source. First, a traffic

source can more easily take an application's preferences into account when deciding

which packets

should receive better forwarding treatment. Also, classification of packets is much

simpler before the traffic has been aggregated with packets from other sources, since the

number of classification rules, which need to be applied within a single node, is reduced.

3.2.2 At the Boundary of a DS Domain

Traffic streams may be classified, marked, and otherwise conditioned .on either end of a

boundary link (the DS egress node of the upstream domain or the DS ingress node of the

downstream domain). When packets are pre-marked and conditioned in the upstream

domain, potentially fewer classification and traffic conditioning rules need to be

supported in the downstream DS domain. In this case the downstream DS domain may

only need to re-mark or police the incoming behavior aggregates to enforce the TCA

3

3.2.3 In non-DS-Capable, Domains

Traffic sources or intermediate nodes in a non-DS-capable domain may employ traffic

conditioners to pre-mark traffic before it reaches the ingress of a downstream DS domain.

In this way the local policies for classification and marking may be concealed.

3.2.4 In Interior DS Nodes

The DS architecture allows the implementation of complex classification and traffic

conditioning functions in the interior of the network This approach- may have scaling

limits, due to the potentially large number of classification and conditioning rules that

might need to be maintained.

32

~ 	Chapter 4

Differentiated Services in Active Networks

As described in the last chapter, functions like marking, policing, traffic conditioning are

performed at the edge of the network. The core router of existing Internet is not allowed

to make any changes in the marking policies [4]. They just forward the packets

according to a pre-programmed forwarding behavior.

On the other hand, Active routers have no such type of constraint. They can make any

changes in the contents of the packet. So the traffic policing functions can be

programmed at any router in a very dynamic and flexible manner. Active routers also

share information regarding network state (e.g. presence and location of congestion) with

other routers. An -active router can also ask its neighboring active routers about an

alternative path to avoid congestion or to provide better quality of service.

In this chapter we describe the modified packet format and active node architecture that

support differentiated services. We also discuss a distributed packet-marking scheme that

is meant to optimize network resource utilization.

4.1 Packet format

The option field of ANEP [11] header has been modified to support differentiated

services.

Fig 4.1 shows the packet format of ANEP.

33

n
	 31

Version Flags Type ID

ANEP Header Length ANEP Packet Length

Options

Payload \
i i i

Source Identifier Destination Identifier

Type of service Priority

Session Identifier

Flow Identifier

Fig 4.1. ANEP packet Format

All fields except option field are same as described in section 2.6.

Source Identifier and destination Identifier can be IP address of source and destination

respectively.

Using Type of Service field, active routers identify the type of service agreement that

network have with particular flow or its packet.

The priority field defines the relative preference of this particular flow in comparison

with other flows in the network. This field may change at any node through out the

propagation of a packet from source to destination. In our experiment we use multiple

34

queues of different priority. On the basis of priority field, router decides in which- queue.

the packet should go.

The Session Identifier field is used to identify the specific session in which the Active.

packet will execute. The Flow identifier identifies different flows from same source or

different sources.

4.2 Active node architecture

In this dissertation an active node architecture shown in Fig. 4.2 is used. The various

components of this architecture are discussed below.

....
Network connection

TV P—L 1 	 V 	e.,F;.,., ...,..L..1

Fig. 4.2. Active router architecture for differentiated services

35

Diverter - a part of the router that enables it to divert the packets to active engine (AE)

based on their header. If it finds any IP packet, it directs it to routing manager. The new

generations of high performance IP routers have this option implemented as part of their

hardware [12].

Active manager — the core of the active engine is active manager. This module

generates the session, co-ordinates data transfer to and from the session, and cleans up

after a session when it terminates. While a session is alive, the active manager monitors

session resource uses, and can decide to terminate its operation, if it consumes too much

resources (CPU time, bandwidth) or tries to violate its action permission.

The work of the meter, marker, and shaper [1] is the same as described in section 3.1.3.

4.3 Distributed packet marking scheme

The Differentiated services Architecture gives high priority and provides high reliability

to marked traffic. But this marked traffic may degrade other flows, which share the path

(or a segment of it) with the high priority flow. As shown in Fig. 4.3, there are three

different flows passing through the DS domain.

The one from Si to RI is the flow with a high priority, the others, from S2 to R2 and

from S3 to R3 are the ones with low priority. Router n9 has congestion on the outgoing

link to router n1O. So the requirement is that the high priority packets should not be lost

because of congestion and they should be forwarded on preference.

36

Fig 4.3 Active network Topology

In the present architecture of the Internet, for providing this service, we have to mark

packets at router nl. This will result in preferred forwarding behavior for the flow along

the path. But this may degrade the performance of the flow from S2 to R2. This

degradation depends on the forwarding behavior of router and different type of flows,

which are passing through the router. In Active Networks, the packet marking can be

done at any router. So, if packet marking is done at the router preceding the congested

router, we can improve the throughput of other flows, which share a segment of the path

with the high priority flow and which do not pass through the congested router.

37

Thus, if we mark the packets at router n7, service degradation of flow S2-R2 can be

avoided. Before marking at n7, these packets will be considered as normal packets.

When we mark packets at n7, router n9 will give them high priority and pass them with

preference. At router n10, we again mark them as normal packets. Further down the

path, these packets can be marked as per requirement.

38

~~— Chapter 5

Implementation

This chapter describes the simulation model that we have used for our experiment. This

will be followed by a description of various software routines • and entities used to

simulate the network behavior. This chapter also describes the topology of the network

simulated and the graphical user interface that is developed to present the simulation

model and the results.

5.1 Simulation model

In this thesis we have used event oriented approach for simulation. Event oriented

simulation is a useful tool for networking related studies. The followings events were

defined for the model

❑ Packet generation (El)

o Packet transmission (E2)

u Packet reception (E3)

o Handover packet to Active manager (E4)

❑ Handover packet to Routing manager (E5)

u En-queue the packet (E6)

Packet generation event occurs at the source node of a traffic flow. The source node

generates the packet, and schedules the corresponding packet transmission event. The

39

packets are generated so as to emulate desired traffic flow. We use a continuous

generation of packets at fixed intervals of time.

Packet Transmission event emulates the transmission of a packet on the outgoing

interface. This is done by making the outgoing link busy for duration of the transmission

interval.

Packet Reception event accepts the incoming packet and sets the status of the incoming

link free. The packet is then handed over to diverter. The diverter sends this packet for

processing.

Handover Packet to Active Manager event is scheduled by the Packet reception event.

The packet is passed to the active manager, which then processes the packet in the

context of the session specified by the session id field in the packet header. The active

manager then passes this to the routing manager

Handover to Routing Manager event is scheduled by the active manager. Routing

manager selects the particular routing paradigm to be followed for deciding the network

interface this packet should go to. In case no particular routing is specified, default

routing is used. It then schedules the En-queue Packet event.

En-queue Packet event is scheduled by the routing manager to put the packet in the queue

corresponding to the outgoing interface. The queue scheduler then schedules the Packet

Transmission event.

HE

5.2 Topology

In this section, we describe the two network topologies used in this thesis work.

5.2.1 Active Network

Figure 5.1 shows the active network topology we used. All the nodes in the network are

active and are capable of performing intelligent functions on the traffic flows. This

topology has 17 nodes marked (0 to 16) which are connected by 27 links as shown.

There are three sources s 1, s2, s3 that generate the traffic flows and three receivers rl, r2,

r3 respectively.

Fig 5.1. Network topology for Active Network

41

5.2.2 Differentiated services Internet

Figure 5.2 depicts the DS-Internet topology, which is used in this work. It is similar to

the Active network topology described earlier except the fact that all the nodes are not

active. Only edge nodes 0, 1, 8 are active and are allowed to perform intelligent

functions like marking of packets. Same source destination pairs are used to generate

traffic, which are used in the active network topology.

Fig 5.2. Network topology for DS-Internet

The traffic flow from S 1 to R1 is the flow with a high priority, which goes through path

(0-2-3-4-6-7-9-11). The others, from S2 to R2 flowing through path (1-2-3-4-5) and

from S3 to R3 flowing through path (8-7-9-10) are the ones with low priority. We call

42

I

them fO, fl and f2 respectively. In our scheme, we have taken fO as the high priority

flow, which has been promised a target throughput and better reliability, while fl and f2

are low priority flows.

In the first part of the simulation, packets are marked in a distributed manner as described

in section 4.3. In the second simulation packets are marked at boundary nodes. The

experiment simulates congestion at node 7. The relative performance of the two schemes

is measured in terms of throughput of each flow.

The graphical user interface is designed using Java's AWT (Abstract Window toolkit)[9]

package. This GUI runs under windows environment. The interface is presented as a

network topology. The throughput relating to any flow is available to the user, in the

form of a graph, by clicking on the particular node. The graph is available. during the

simulation interval too.

Parameters that we have, used for simulation are tabulated in Table 5.1.

Link delay,Bandwidth 2-4 ms,7Mbps

Queue size for each link 30 Packets

Packet size 10KB

Packet processing time 1-3 ms

Simulation time 2500 ms
Target bandwidth for
flow f0

4 Mbps

Target bandwidth for
flow fl

2.75 Mbps

Target bandwidth for
flowf2

3.5 Mbps

Table 5.1 Simulation Parameters

43

5.3 Implementation details

The software was developed in Java 2[9] under Windows 98 environment. Java is a

completely object oriented language which makes simulation very efficient. Further, it is

a platform independent language and provides software mobility. Also, JAVA provides

built-in packages (Abstract Windowing Toolkit) for a strong GUI support.

In event oriented simulation, an event list is maintained (a link list that contains different

types of event) which is sorted by time. An event-scheduler picks up the first event from

the event list, executes it and then moves over to the next event. This is done till all the

events are exhausted in the list. The link list provides ability to dynamically add and

remove events to and from the list.

Each event is an instance of the class event. The Event class contains, an event type

variable, a reference to the concerned packet, a node id at which the event executes and

time of occurrence of the event.

The network model is simulated by a class network, which encapsulates instances of class

node and class link. When we start the simulation, packets are generated at different

sources, according to type of traffic. In this way, we initiate the event list. The Event

Scheduler schedules the first event from the event list. This event may schedule another

event, which is inserted in the event list at appropriate place. The simulation time is kept

in the form of a long variable. This variable contains time in milliseconds. The Event

scheduler increases the value of event clock when it fetches an event from the event list.

44

Chapter 6

Conclusion

6.1 Discussion of results obtained

The simulation results were obtained as graphs depicting throughputs

corresponding to different flows measured at different nodes at equal intervals of

time.

Fig. 6.1 Comparison of throughputs (for fO and fl) at node 3 between
Active network and Internet

45

The simulated network faces congestion at node 7.

The graphs show statistics measured at node 3 for both the active network and the

DS-Internet. It is clear that while the DS-network provides better throughput to

the flow f0, it seriously degrades the flow fl. Also there is considerable variation

in the throughput. On the other hand, the graph relating to active network shows

an improvement in the throughput of the flow fl , with only a minor degradation

in the flow f0. Further, the active network implementation also reduces variation

in the throughput. 	 '

Fig. 6.2 Comparison of throughputs (for fO and fl) at node 4 between
active network and Internet.

Similar results are depicted by the throughput graph, shown in fig 6.2 for node 4.

flow id2 	•
flow idO

0
BW(Mbps)

6

4

2

,., 	 , X,

osho raph

flow id2 	;
flow idO

'

8
BW(Mbps)

6

2

show graph

Fig. 6.3 Comparison of throughputs (for f0 and f2) at node9 between
Active network and Internet.

This pair of graphs depicts the throughputs at node 9, which is situated

downstream from the congested node 7. The throughput for the flow f2 falls

because of congestion, as predictable. Further, the average throughput for the

flow fb is not affected as it is given a preferred treatment here. In both the

networks it turns out to be same. This is expected as the node 9 is now receiving

marked packets from its upstream neighbor for this flow, in both the networks.

The treatment to the marked packets is same in both networks.

47

Thus the proposed scheme improves network performance by dealing the low

priority flows more fairly than the DS-Internet without affecting the treatment

given to the high priority flow. So, the overall resource utilization of the network

is improved by introducing the concept of active networking.

6.2 Suggestions for future work

In this section we give suggestions for possible extensions in this area.

6.2.1 Multiple code point implementation:

In this thesis we have dealt with one pair of priorities. A more realistic approach

will be to use multiple priority code points, in this approach the active node

prioritize the packet according to network condition and traffic policies. This

may leads to better utilization of resources.

6.2.2 New models and algorithms

The single most prominent disadvantage of active networks is the increase in

processing overheads at routers. Thus a lot of work can be done in the design and

analysis of new models and algorithms for active networks that can reduce this

processing time.

6.2.3 Security issue

The programmable nature of an active network brings legitimate safety and

security concern. Incorporating issues related to security can further enhance the

implementation of active networks. Incorporating authentication procedures in the

routers may be a good future improvement.

Further, new applications for active networking can also be developed.

48

References

1. D. J. Wetherall and D. L. Tennenhouse, "The ACTIVE IP Option", 7 h̀ ACM

SIGOPS European Workshop, 1996.

2. Yechiam Yemini and Sushil da Silva, "Towards Programmable Networks",

IFIP/IEEE International Workshop on Distributed Systems: Operations and Management,

L'Aquila, Italy, October, 1996.

3. D. Scott Alexander, Bob Braden, Carl A. Gunter, Alden W. Jackson,

Angelos,D .Keromytis, Gary J. Minden, David Wetherall," Active Network

Encapsulation Protocol (ANEP)", Active Networks Group, Request for Comments:

DRAFT. 1997

4. D. L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall,

and Gary J. Minden,"A Survey of Active Network Research", IEEE Communications

Magazine, January 1997.

5. U. Legedza, D. Wetherall, and J. Guttag, "Introducing New Internet services:

Why and How", IEEE Network Magazine July/August 1998.

6. D. Black (EMC Corporation), M. Carlson (Sun Microsystems), E.Davies (Nortel UK),

S. Blake Torrent Networking Technologies, Z. Wang (Bell Labs Lucent Technologies),

W. Weiss (Lucent Technologies),"An Architecture for Differentiated Services",

Network Working Group Request for Comments: 2475, December 1998.

7. V.P. Kumar, T. V. Laxaman and D.Stiliadis, "Beyond Best Effort: Router

Architecture for differentiated Services of Tomorrow's Internet," IEEE

communication mag., vol. 36, no. 5, may 1998.

8. Ulana Legedza, David Wetheralland John Guttag, "Improving the performance of

distributed Application Using Active Networks", IEEE INFOCOM, San Francisco,

April 1998.

9.Danny Raz and Yuval Shavitt, "Active Network for Efficient Distributed Network

Management",IEEE Personal Communication mag. March 2000.

10. Patrick Noughton, Herbert Schildt, "The Complete Reference Java 2", 3'd Edition,

TMH, 1999.

11. David Wetherall, John Guttag, David Tennenhouse, "ANTS: Network Services

Without the Red Tape'', IEEE computer inag., April 1999.

12. D.L. Tennenhouse, S.J. Garland, L.Shrira and M.F. Kaashoek, "prom Internet to

ActiveNet", Request for Comment, Jan 1996.

C~ 10.G0OR

Dsnet.java

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
class Event{

public int type of event;
public int nodeid;
public int time_of event;
public packet pkt;
public link 1;

Event(int type of_ event, int time_of_event,int
this.type_of event=type_of_event;
this . node id=node id;
this. time of event=time_of_event;
this.pkt=pkt;

}

Event(int type_ of_ event, int time of_ event, int
this. type_ of event=type_of_event;
this . node id=node id;
this, time of event=t line _of_event;
this.l=1;

node_id,packet pkt){

node id,link 1){

class Event list{
private static LinkedList el=new LinkedList();
public static int clock=0;
Event list(){}

public static void initialised event(int n)

Random r=new Random(567544);
int gt=r.nextlnt(5);
packet pkt=new packet (20,1000,0,22,0);
pkt . tos=l;
Event event=new Event(2,gt,0,pkt);
el.add(event);
for(int i=0;i<n-l;i++){
pkt=new packet(20,1000,0,22,i+1);
pkt .tos=1;
gt=gt+4;
event=new Event(2,gt,0,pkt);
put_event(event);

}

gt=r.nextlnt(5);
for(int i=0;i<n;i++){
pkt=new packet(20,1000,1,15,i);
pkt .tos=0;
•gt=gt+6;
event=new Event(2,gt,l,pkt);
put_event(event);

}

gt=r.nextInt(5);
for(int i=0;i<n;i++){
pkt=new packet(20,1000,2,21,i);

pkt.tos=0;
gt=gt+5;
event=new Event(2,gt,2,pkt);
System..out.println("event type"+event.type_of_event+"et="+

event.time_of_event+"nid"+event.node_id);
put event(event);

}

public static void put_event(Event event){
int i;
i=find location (event);
try{
el.add(i,event);
}catch(IndexOutOfBoundsException e){System.out.println("index is not

alow"+i);}
}

private static int find_location(Event event){
int j=0;

for(j=0;j<el.size();j++){

try{
if(((Event)el.get(j)) .time _of_event>event.time_of event)
return j;
}catch(IndexOutOfBoundsException e){System.out.println("index is not glow

in find location");)

return j;

}
public static Event get_next_event(){

Event event;
event =(Event)el.removeFirst();
return event;
}

public static int getsize(){
return el.size();
}

class packet{
public byte version;
public byte flags;
public int type Id;
public int hdr len;
public int pktlen;
public int source_address;
public int des address;
public long flow id;
public byte qos;
public byte tos;
public int pkt no;//for tst
public int inter _pkt_delay=3;
packet(){)

no of unmarked pkt=O;
this. targate_throughput= targate_throughput;
}

public void advance statistics_ of_session(packet pkt){
no of pkt++;
meter. get_ to_ meter (pkt);
observed_throughput=meter. get_ throughput();
if (pkt.gos==0)
no_of unmarked pkt++;
else 	+
no of marked pkt+;

class Meter{
private int throughput;
public int tharr [] [] ;
private int c_time;
private int 1time;
private int no of pkt;
private int bit count;
private int count;

Meter(){
rio_of_pkt=0;
ctime=0;
1time=0;
tharr=new int[1000][2];
bit_count=0;
count=0;
}

public void get to_meter(packet pkt){
no_of_pkt++;
bit _count+=pkt. get _pkt_ length();
if(Eventlist.clock-ltime>5){
c_time=Event_ list. clock;
measure throughput O ;

}
}

private void measure_throughput(){
throughput=bit count/(c time-1_time);
1 time=c_time;
bit count=0;
th_arr[count][0]=throughput;
th_arr[count++][1]=c_time;
}

public int get_throughput(){
return throughput;
}

public void print _th arr(){
for(int i=0;i<count;i++)
System.out.print(" "+th_arr[i][0]);System
}

class node{
private Random r;
public LinkedList fl;

out.println("")•

packet(int hdr len,int pkt_len,int s—add,int d_add,int pn){
pkt_no=pn;
this .hdrlen=hdrlen;
this .pktlen=pktlen;
source address=s add;
des _address=d_add;
qos=O;
}

public void assign flow_id(int flow id){
this. flowid=flowid;

public int get _pkt_length(){
return pkt_len;
}

public int data(){
int bw=pkt_len/inter_pkt_delay;
return bw;
}

}
class source{

private int sid;
private int router_id;//through which source is connected to the network
private int no_of_pkt;

source(int sid,int rid){
this.sid=sid;
no of pkt=O;
router_id=rid;
}

public void send(packet pkt){
no_of_pkt++;
//System.out.println("send in source");
pkt. assign _flow _id(sid);
send_ to_router(pkt);
}

private void send_ to_router(packet pkt){
Event event=new Event(O,Event_list.clock+l,router_id,pkt);
Event_ list. put_event(event);
}

class flow{
public long flow id;
public int s address;
public int d__address;
public int no_of_pkt;
public int no of marked pkt;
public int no of unmarked_pkt;
public int targate throughput;
public int observed throughput;
public Meter meter;

flow(long flow_id, int s_address,int d_address,int targate_throughput){
this. flow id=flowid;
this.saddress=saddress;
this.daddress=daddress;
meter=new Meter();
no ofpkt=0;
no of marked pkt=0;

public int nodeid;
public int no of flow;
public int no of pkt;
public int no of marked_pkt;
public int no of unmarked_pkt;
private int route _table[J[);

node(int nid){
r=new Random(34554);
fl=new LinkedList();
node id=nid;
no_of_flow=0;
no_of_pkt=0;
no of marked_pkt=0;
no_of_unmarked_pkt=0;
}

public void receive (packet pkt){
link l=find last hop (pkt);
1.link_status=false;
no_of_pkt++;
if(pkt.gos==0)
no of unmarked_pkt++;
else
no of marked_pkt++;
if (node _id==pkt. des _address) {
return;
1
send_ for typechacking(pkt);
)

void send to activeManager(packet pkt)(
flow f=find session (pkt);
f. advance _ statistics_ of_ session (pkt);

if(pkt.tos>O)
MarkingEngin. send for _typechacking(pkt,f);
int service_time=l+r.nextlnt(2);//random generation of service time
Event event=new Event (4,Event_list.clock+service_time,node_id,pkt);
Event_ list. put _event (event);

}
void send to routing_manager(packet pkt){

link 1=find_ next_hop(pkt);
boolean 1 status=l.is busy();
if(1_status==false&&l.l1. size ()==0)

schedule_send(pkt);

else{ 	 ,
int sending time=l.free_time+(l.delay*1.11.size());
if(pkt.gos==1)
1.1l.addFirst(pkt);
else
1.1l.addLast(pkt);
schedule _send (sending _time, 1);
}

}

void schedule send(int st,link 1)(
Event event=new Event(3,st,node id,l);

Event_list.put_event(event);
}

void schedule_send(packet pkt){
Event event=new Event(1,Event_list.clock,node_id,pkt);
Event list. put_event(event);
}

flow find session(packet pkt)(
flow f;
try{
for(int i=0;i(fl.size();i++){

f=(flow)fl.get(i);

if(f.flow_id==pkt.flow_id&&f.s_address==pkt.source_address&&f.d_address==p
kt.des address)

return f;
}

}catch(IndexOutOfBoundsException e)
{System.out.println("index is not alow in find location");)

f=new flow(pkt.flow_id, pkt.source_address,pkt.des_address,pkt.data());
fl.add(f);
return f;
}
public int no of flow(){
return Ifl .size () ;
}

public link find next_hop(packet pkt){
int nid=get next node (pkt);
link 1=Dsnet.Internet.linkarray[O];
for(int i=1;i<Dsnet.Internet.lc;i++){
if((l.get_sid()==node_id)&&(l.get_eid()==nid))
return 1;
1=Dsnet.Internet.linkarray[i];

}
return 1;
}

public link find last_hop(packet pkt){
int 1_nid=get_ last_node(pkt);
link 1=Dsnet.Internet.linkarray[O];
for(int i=1;i<Dsnet.Internet.lc;i++){
if((l.get_sid()==l_nid)&&(l.get_eid()==node_id))
return 1;
1=Dsnet. Internet .linkarray[i];

}
return 1;
}

public int send(packet pkt){
link 1=find_ next hop(pkt);
1. link status=true;
1. free time=Event_ list. clock+l.delay;
Event event=new Event(O,Event_list.clock+l.delay,l.get_eid(),pkt);
Event _list .put event(event);
return 1. get _eid();
}

public int send̀ from_queue(link 1){
try{
packet pkt=(packet)1.11.removeFirst();

l.linkstatus=true;
1. free time=Event list. clock+l.delay;
Event event- -new Event(O,Event_list.clock+l.delay,l.get_eid(),pkt);
Event list. put_event(event);
}catch(NullPointerException e){System.out.println("error");}
.return 1. get _eidO;

}
int get next_node(packet pkt){

int i=0;
try{
for (i=0;i<11;i++){

if(network.path[(int)pkt.flow_id][i]==node_id)
break;

}
}catch(ArrayIndexOutOfBoundsException e)

{System.out.println("out of network");}
return network.path[(int)pkt.flow_ Id] [++i];
}

int get last node(packet pkt){
int i=0;
try{

for(i=0;i<ll;i++)(
if(network.path[(int)pkt.flow id][i]==node_id)

break;
}

}catch (ArrayIndexOutOfBoundsException e)
{System.out.println("out of network");)

return network.path[(int)pkt.flow_ id] [--i];
}

class MarkingEngin
{

public static void send_to_marking_engin(packet pkt ,flow f){
pkt.gos=1;

class link{
private int start nid;
public LinkedList 11;
private int end nid;
public int capacity;
public int delay;
public boolean link_status;
public int free time;//when the link will be free

link(int st_id,int eid ,int cap,int dlay){
ll=new LinkedList();
start_nid=st_id;
link status=false;
free time=0;
end _nid=eId;
capacity=cap;
delay=dlay;

int get sid(){

return start nid;
}
int get_eid(){
return end_nid;
}

public boolean is_busy()
return link status;

class network{
Random r;
public 	node nodearray[];
public 	link linkarray[];
public 	source sourcearray[];
public int lc;//no of link
public static int
path[] []={{0,10,12,13,14,16,17,19,21}, {1,11,12,13,14,15}, {2,18,17,19,20));

network(int n){
r=new Random();
nodearray=new node[50];
linkarray=new link[200];
sourcearray=new source[15];
for(int i=0;i<n;i++)
nodearray[i]=new node(i);
int i=0;
int ld=3;
linkarray[lc++]=new link(0,10,10,ld);
linkarray[lc++]=new link(1,11,10,ld);
linkarray[lc++]=new link(2,19,10,ld);
linkarray[lc++]=new link(15,3,10,ld);
linkarray[lc++]=new link(20,4,10,ld);
linkarray[lc++]=new link(21,5,10,ld);
linkarray[lc++]=new link(10,12,10,ld);
linkarray[lc++]=new link(11,12,10,ld);
linkarray[lc++]=new link(12,13,10,ld);
linkarray[lc++]=new link(13,14,10,ld);
linkarray[lc++]=new link(14,15,10,ld);
linkarray[lc++]=new link(14,16,10,id);
linkarray[lc++]=new link(16,17,10,5);
linkarray[lc++]=new link(18,17,10,ld);
linkarray[lc++]=new link(17,19,10,4);
linkarray[lc++]=new link(19,20,10,ld);
linkarray[lc++]=new link(19,21,10,ld);
linkarray[lc++]=new link(20,.21,10,ld);
linkarray[lc++]=new link(23,21,10,ld);
linkarray[lc++]=new link(19,24,10,ld);
linkarray[lc++]=new link(24,25,10,ld);
linkarray[lc++]=new link(10,26,10,ld);
linkarray[lc++]=new link(10,11,10,ld);
linkarray[lc++]=new link(26,13,10,ld);
linkarray[lc++]=new link(26,22,10,ld);
linkarray[lc++]=new link(22,14,10,ld);
linkarray[lc++I=new link(22,15,10,ld);
linkarray[lc++]=new link(15,17,10,ld);
linkarray[lc++]=new link(15,20,10,ld);
linkarray[lc++]=new link(12,25,10,ld);

linkarray[lc++]=new
linkarray[lc++]=new
linkarray[lc++]=new
linkarray[lc++)=new
linkarray[lc++]=new
linkarray[lc++]=new

link(11,25,10,ld);
link (25, 14, 10, id) ;
link (25, 18, 10, ld) ;
link(18,24,10,ld);
link(24,19,10,1d);
link(24,23,10,ld);

sourcearray[0]=new
sourcearray [1] =new
sourcearray[2]=new
sourcearray[31=new
sourcearray[4]=new
sourcearray[5]=new

source (0, 10)
source (1,11);
source (2,18);
source (3, 10)
source (4,11);
source(5,19);

class gui extends Frame implements
WindowListener, MouseMotionListener,MouseListener{
private node node_arr[];
private link link_arr[];
Button b;
private int gx[]={70,70,130,190,250,300,300,360,320,

425,410,500,200,505,425,180,135};
private int gy[]={138,225,165,165,155,70,180,165,

245,175,95,130,85,185,233,235,85);
private int sx[]={0,0,300,283,530,405);
private int sy[]=(105,220,285,0,84,27};

gui(node node_arr[],link link arr[]){
b=new Button("Start Simulation");
b.addMouseListener(this);
add(b);
addMouseListener(this);
addWindowListener(this);
addMouseMotionListener(this);
setBackground(Color.pink);
setTitle("Differentiated -Services Internet");
• this.nodearr=nodearr;
• this .link_arr=link_arr;

this.setLayout(new FlowLayout());
setSize(650,420);
setVisible(true);
System.out.print("node_id="+node_arr[2].node,id+

"no_mpkt"+node_arr[2] .no _of marked_pkt);

}
public void mouseClicked(MouseEvent me){}
public void mouseEntered(MouseEvent me){}
public void mouseExited(MouseEvent me)(}
public void mousePressed(MouseEvent me){

int mx=me.getX();
int my=me.getY();
for(int i=0;i<17;i++){
if((mx>=gx[i]+20)&&(mx<=gx[i]+40)&&(my>=gy[i]+20)&&(my<=gy[i]+40)){
Graph graph=new Graph(node_arr[i+10),link_arr[i]);//link has to find out
break;

}

public void mouseReleased(MouseEvent me){}
public void mouseDragged(MouseEvent me){}
public void mouseMoved(MouseEvent me){}
public void windowActivated(WindowEvent we){}
public void windowClosed(WindowEvent we){}
public void windowDeactivated(WindowEvent we){}
public void windowDeiconified(WindowEvent we){}
public void windowIconified(WindowEvent we)(}
public void windowOpened(WindowEvent we){}
public void windowClosing(WindowEvent we) {System.exit(0);}
public void paintnet(){

Graphics g=getGraphics();
repaint () ;
g.setColor(Color.black);
g.drawString("Please click on any node to see it performance",100,400);

public void paint (Graphics g){
try{
g.setColor(Color.black);

for(int i=3,sx,sy,ex,ey;i<32;i++){

sx=gx[link_arr[i].get_sid()-10]+20;
sy=gy[link_arr[i].get_sid()-10]+20;
ex=gx[link_arr[i].get_eid()-10]+20;
ey=gy[link_arr[i].get_eid()-10]+20;
g. setColor(Color.black);
g.drawLine(sx+l0,sy+l0,ex+10,ey+10);

}catch(Exception e){System.out.println("lskd");}
try{
for(int i=0;i<17;i++){
g.setColor(Color.blue);
g.draw0val(gx[i].+20,gy[i]+20,21,15);
g.setColor(Color.white);
g.fillOval(gx[i]+20,gy[i]+20,20,15);
}
g.setColor(Color.blue);
for(int i=0;i<17;i++)
g.drawString(new Integer(i).toStringO,gx[i]+22,gy[i]+33);

g.setColor(new Color(255,255,200));
g. fillRect(0,390,500,20);
catch(Exception e){System.out.println("skd");)

g. setColor(Color.black);
g.drawString("Please click on any node to nee it performance",100,400);
}

public void movepkt(int startnode,int nextnode){
int i;Graphics gl=getGraphicsO;

int xl=gx[startnode-10];
int x2=gx[nextnode-10];
int yl=gy[startnode-10];

int y2=gy[nextnode-10];
int x3=x1;.
int y3=yl;
if (x2=-=xl)
if(y2>yl)

{
for(i=(int)yl;i<(int)y2;i+=3){

try{

gl.setColor(Color.blue);
gl.drawRect ((int) x3-7, (int) y3, 6, 10) ;
Thread.sleep(100);
gl.setColor(getBackgroundO);
gl . drawRect ((int) x3-7, (int) y3, 6, 10) ;

y3=y3+5;

}catch(InterruptedException e){}

}
if (y2<yl)

{
for(i=(int)y2;i<(int)yl;i+=3){

try{

gl.setColor(Color.blue);
gl.drawRect((int)x3-7,(int)y3,6,10);
Thread.sleep(100);
gl.setColor(getBackground());
gl.drawRect((int)x3-7,(int)y3,6,10);

y3=y3-5;
}catch(InterruptedException e){)

}
if(x2>xl){int m=0;

for(i=20;i<(x2-xl)-6;){
try{x3=xl+i;
if(y2!=yl)
{
m=6;
i+=1;

}
else{

i+=3;
m=0;

}
gl.setColor(Color.blue);
gl . drawRect ((int) x3+m, (int) y3-1, 10, 6) ;
Thread. sleep (0);
gl.setColor(getBackgroundO);
gl.drawRect((int)x3+m,(int)y3-1,10,6);
y3=((y2-yl)/(x2-xl))*i+yl;
if(y2!=yl)

{
m=6; -
i+=1;

}
else{

i+=3;
m=0;

}
}catch(InterruptedException e){System.out.println("error");}

}
if(x2<xl){

for(i=6;i<(xl-x2);i+=3){
try{

gl.setColor(Color.blue);
gl.drawRect ((int) x3, (int) y3-5, 6, 10) ;
Thread. sleep (1);
gl.setColor(getBackgroundO);
gl.drawRect ((int) x3, (int) y3-5, 6, 10) ;
x3=xl-i;
y3=((y2-yl)/(x2-xl))*(-i)+yl;

}catch(InterruptedException e){}

}
class Graph extends Frame implements

WindowListener, MouseMotionListener,MouseListener{
int x;
int y;
node n;
link 1;

• Button b;
Graph(node n,link 1){

b=new Button("show graph");
b. addMouseListener(this-);

• add(b);
addMouseListener(this);
addWindowListener(this);
addMouseMotionListener(this);
this.n=n;
this. l=1;
this.setLayout(new FlowLayout(FlowLayout.RIGHT));
setSize(500,250);
setTitle("statistics of node no "+((n.node_id)-10));
setVisible(true);
}

public void paint(Graphics g1){}
public void mouseClicked(MouseEvent me){}

public void plot _graph(){
Graphics g=getGraphics();

int ox=70;

int oy=200;

int scaled=4;

int x, y;
for(int j=0;j<n.fl.size();j++)

flow f=(flow)n.fl.get(j);

g.setColor(Color.black);
g.drawString("flow id"+f.flow_ Id, 10,40+j*l0);

if(f.flowid==0)
g.setColor(Color.blue);

else

if(f. flow id==1)
g.setColor(Color.magenta);

else
g.setColor(Color.black);
g.drawLine(60,35+j*10,100,35+j*10);

}
g. setColor(Color.red);

g.drawLine(ox,oy,ox,80);

g.drawLine(ox,oy,600,oy);

for(int i=ox,j=0;i<=600;i+=20,j+=100){

g.drawLine(i,oy-2,i,oy+2);

g.drawString(""+(float)j/1000,i-10,oy+12);

}
for(int i=80,j=4;i<=oy;i+=30,j--){

g.drawLine(ox-2,i,ox+2,i);

if (j !=0)
g.drawString(""+j*2,ox-20,i+10);

}
g.setColor(Color.black);

g.drawString("Time(s)",ox+150,oy+30);

g.drawString("BW(Mbps)",ox-65,oy-100);

q.setColor(Color.blue);

fdr(int j=0;j<n.fl.size();j++)
{
for(int i=0;i<195&&(((flow)n.fl.get(j)).meter.th_arr[i][1]<10000);i=i+5){

if(((flow)n.fl.get(j)).flow_id==0)

g.setColor(Color.blu'e);

}
else
if(((flow)n.fl.get(j)).flow_id==l)

g.setColor(Color.magenta);

}
else

g. setColor(Color.black);

g.drawLine(ox+(((flow)n.fl.get(j)).meter.tharr[i][1]/4),oy-

(((flow)n.fl.get(j)).meter.tharr[i][0]/4),ox+(((flow)n.fl.get(j)).m

eter.th_arr[i+5][l)/4),oy-low)n.fl.get(j)).meter.th_arr[i+5](0]/4));
}

}
}

public void mouseEntered(MouseEvent me)(}

public void mouseExited(MouseEvent me){}
public void mousePressed(MouseEvent me){

Object source=me.get Source();

if(source==b){
plot_graph();
}

}
public void mouseReleased(MouseEvent me){}
public void mouseDragged(MouseEvent me){}
public void mouseMoved(MouseEvent me){}

public void windowActivated(WindowEvent we){}

public void windowClosed(WindowEvent we){}
public void windowDeactivated(WindowEvent we){}

public void windowDeiconified(WindowEvent we){}

public void windowIconified(WindowEvent we){}
public void windowOpened(WindowEvent we){}

public void windowClosing(WindowEvent we){
setVisible(false);

class Dsnet {
public static network Internet;

public static void main(String arg[])throws Exception{

Internet=new network(50);
gui ani.ma.tion=new gui(Internet.nodearray,Internet.linkarray);

Event list. initialised _event (500);

int d=0;
while(Eventlist.getsize()!=0){//simulation start

try{
Event event=Event_list. get _ next_ event();

Event list .clock=event. time of event;

if (event . type _of_event==0){
Internet.nodearray[event.node_id]. receive (event.pkt);

}
if (event . type _of_event==1)

{
d=Internet.nodearray[event.node id].send(event.pkt);

animation.movepkt(Internet.node,!r' y[event.node_id].node_id,d);

}
if(event.type_of_event==2)

Internet.sourcearray[event.node_id]. send(event.pkt);

if(event.type_of_event==3)
{

Internet.nodearray[event.nnv!~ id].send from queue(event.1);
}
if(event.type_of_event==4),

Internet.nodearray[event .node _id) .send _ to routing_ manager(event.pkt);

}catch(IndexOutOfBoundsException e){System.out.println("error");}
}animation. paintnet();

for(int i=10;i<16;i++)(
node n=Internet.nodearray[i];

system.out.print("@@node_id="+Internet.nodearray[i].node_id+"no_mpkt
"+Internet.nodearray[i].no of_ marked _pkt+"!!"+i+"!!!!"+Internet.node
array[3].no_of marked_pkt);

for(int j=0;j<n.fl.size();j++){
flow f=(flow)n.fl.get(j);
System.out.print("node id="+Internet.nodearray[i].nodeid);
System.out.print("flowid"+f.flow_id+"mar pkt"+f.no_of_marked_pkt);
f.meter.print_th_arr();

}
}//end of while

}//end of main

}// end of class

Simulate. j ava

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
class Event

{
public int type of event;
public int node_id;
public int time_of_event;
public smart_pkt spkt;
public link 1;

Event(int type_of_event,int time_of event,int node_id,smart_pkt spkt) {'
this.type_of event=type_of event;
this.node_id=node_id;
thi s.time_ofevent=time_o f event;
this.spkt=spkt;

.}
Event(int type__of event,int

{
time _of event,int node _id, link I)

this.type_of event=type_of event;
this. node_id=node_id;
this .time_ of event=time_ of event;
this.1=1;

}
}

class Event_list
{
private static LinkedList el=new LinkedListO;
//public static int event_no=0;
public static int clock=O;
Event_listO { }

public static void initialised_event(int n)
{

Random r=new Random(567544);
int gt=r.nextInt(5);
smart_pkt spkt=new smart_pkt(20,1000, 0,22,0);
spkt.tos=l;
Event event=new Event(2,gt,O,spkt);
System.out.println("event type"+event. type_of_event+"et="
+event.time_ofevent+"nid"+event.node_id);
el.add(event);
for(int i=0;i<n_ 1;i++) {
spkt=new smart_pkt(20,1000,0,22,i+1);
spkt.tos=1;
gt=gt+4;
event=new Event(2,gt,0,spkt);

//System.out.println(""+i);
put_event(event);

}

(fit

new s at~t_pkt(20,1000,1,15,i);

event=new Event(2,gt, 1 ,spkt);
//System.out.println("event type"+event.type_of event+"et="+
event.time_of_event+"n d"+event node_id);
put_event(eve nt);

}
gt r.nextint(5);
for(int iO <n;i++) {
spkt"new art 0,1000,2,21,i);
spkt tos ;
gt=gt+5;
event=new Event(2,gt,2,spkt);
System.out.println("event type"+event.type of event+
"et="+event.tiine_of event+"nid"+event.node_id);
put event(even-t);

)11c static void put_event(Event event) {
int i;
i=find_location(event);
try{

el.add(i,event);
Systein.out println("in pe"+i+" 	"+el.sizeO);

}catch(IndexOutOfBaundsException e)
(Systern.out.println("index is not alow"+i);}

}

private static int find_location(Event event)
{
int j=0;
for(j=0; j<el.size();,j++)
{
Systetn.out.println(„in fl"+j+” 	"+el.sizeO);

{
• if(((Event)el.get(j)).time_of event>event.time_of event)

re j;
} catch(IndexOutOfBoundsException e)

{System.out.println("index is not alow in find location");)

return j;

public static Event get_ next_ event() {
Event event;
event =(Event)el.removeFirst();
return event;

public static int getsize() {
return el.size();

class smart_pkt{
public byte version;
public byte flags;
public int type_id;
public int hdr_len;
public int pkt_len;
public int source address;
public int des_address;
public long flow__id;
public byte qos;
public byte tos;
public int pkt_no;//for tst
public int inter_pkt_delay=3;
smart_pkt() { }

smart_pkt(int hdr_len,int pkt_len,int s_add,int d_add,int pn) {
pkt_no=pn;
this .hdr_l en=hdr_l en;
this .pkt_len=pkt len;
source _address=s_add;
des_address=d_add;
qos=O;
}

public void assign_flow_id(int flow_id) {
this.flow_id=flow_id;
}
public int get_pkt_length() {
return pkt_len;
}

public int data() {
int bw pkt_len/inter_pkt_delay;
return bw;
}

}
class source{

private int sid;
private int router_id;//through which source is connected to the network
private int no_of_pkt;

source(int sid,int rid) {
this.sid=sid;
no_of_pkt=0;
router_id=rid;
}

public void send(smart_pkt spkt)
no_of_pkt++;
//System.out.println("send in source");
spkt.assign_flow_id(sid);
send to_router(spkt);
}

private void send_to_router(smart_pkt spkt)
Event event=new Event(O,Event_l ist.clock+ 1,router_id,spkt);
Event_list.put_event(event);
}

class flow{
public long flow_id;
public int s_address;
public int d_address;
public int no_of_pkt;
public int no_of_marked_pkt;
public it no_of_unmarked_pkt;
public int targate_throughput;
public int observed throughput;
public Meter meter;

flow(long flow_id, int s_address,int d_address,int targate_throughput){
this.flow_id=flow_id;
this. saddress=s_address;
this.d_address=d_address;
meter=new MeterO;
no_of_pkt=0;
no_ ofmarked_pkt=0;
no_ofunmarked_pkt=0;
this. targate_throughput= targate_throughput;
}

public void advance_ statistics_of_session(smart_pkt spkt)
{
no_of_pkt++;
meter. get_ to_meter(spkt);
if(no_of_pkt%5==0) {
observed_throughput=meter. get_throughput();

}
if(spkt.qos==0)
no of unmarked_pkt++;
else
no_of_marked_pkt++;
}

class Meter{
private int throughput;
public int th_arr[] [];
private int c_time;
private int l_time;
private int no_of_pkt;
private int bit_count;
private int count;

Meter()
{
no_of_pkt=0;
ctime=0;
1_time=0;
th arr=new int[1000J[2J;
bit_count=0;
count=0;
}

public void get_to_meter(smart_pkt spkt)
{
no_of_pkt++;
bit_count+=spkt.get_pkt length();
if(Event_list.clock-1_time>5) {
i f(no_of_pkt%5==0) {
c_time=Event_list. clock;
measure_throughput();

}
}

private void measure_throughput()
{
throughput=bit_count/(c_time-l_time);
1 time=c_time;
bit count=0;
th_arr[count] [0]=throughput;
th_arr[count++] [I]=c_time;
System.out.println(" count" +count+" "+throughput);
}

public int get_throughputO
{
return throughput;
}

public void print_th_arr(){
for(int i=O;i<count;i++)
System.out.print(" "+th_arr[i][0]);System.out.println("");
}

class node{
private Random r;
public LinkedList FI;
public int node_id;
public int no_of_flow;
public int no_of_pkt;
public int no_of_marked_pkt;
public int no_of_unmarked_pkt;
private int route table[][];
public boolean next_hop_congestion;
private boolean is_congestion;

node(int nid)
{
r=new Random(34554);
fl=new LinkedListO;
node id=nid;
no_of flow=0;
no_of pkt=0;
no_of_marked_pkt=0;
no_of unmarked_pkt=0;
next_hop_congestion=false;
}

public int[][] get_routetable()
{
return route_table;
}

public void receive(smart_pkt spkt)
{
send_to_diverter(smart_pkt spkt);
link 1=find_ last_hop(spkt);
I.I ink_status=false;
no_of_pkt++;
if(spkt.qos==O)
no_ of_unmarked_pkt++;
else
no_of_marked_pkt++;
if(node_id==spkt.des_address) {
//System.out.println("pkt has received");
return;}
send_ to_ activeManager(spkt);
//System.out.println("receive in node"+node_id+" 	"+nno_ofpkt);
}

void send_ to diverter(smart_pkt spkt){
if(spkt.type_id== 0){
send_to_routi ng_manager(spakt); }

if(spkt.tos>O) send_ to_marking_engin(spkt, f);
MarkingEngin. send_ to_marking_engin(spkt, f);
int service time=l +r.nextlnt(2);//random generation of service time
Event event=new Event(4,Event_list.clock+service_time,node_id,spkt);
Event list.put_event(event);

public void send_to_marking_engin(smart pkt spkt ,flow E) {

if(is_congesion)

spkt.qos=1;
else
spkt.qos=0;
}

void send to_routing_manager(smart pkt spkt) {
link 1=find_next hop(spkt);
boolean 1_status=l.is_busy();
i f(l_statu s==false&&1.11. s i ze Q==O)

schedule_send(spkt);

else

int sending_time=l.free_time+(l.delay*1.11.sizeO);
System.out.println("+I.11.size());
if(spkt.qos==1)
1.11.addFirst(spkt);
else
1.11.addLast(spkt);
schedul e_send(sending_time,l);
}

}
void schedule_send(int st,link 1) {

Event event=new Event(3,st,node_id,l);
Event_list.put_event(event);
}

void schedule_send(smart_pkt spkt) {
Event event=new Event(1,Event_list.clock,node_id,spkt);
Event list.put_event(event);

flow find session(smart pkt spkt)
flow f;
try{
for(int i=0;i<fl.sizeQ;i++) {
System.out.println("queue size"+fl.size());

f=(flow)fl.get(i);

if(f.flow_id==spkt.flow_id&&£s_address==spkt. source_address&&f. d_address==spkt. des_address)

return f;
}

} catch(IndexOutOfBoundsException e)
{System.out.println("index is not alow in find location");}

f=new flow(spkt. flow _id, spkt.source_address,spkt.des_address,spkt.data());
fl.add(f);
return f;
}

public int no_of_flowO

return fl.sizeO;
}

public link find_next_hop(smart_pkt spkt)
{
int nid=get_next_node(spkt);
link 1=simulate.activenet.linkarray[O];
for(int i=1;i<simulate.activenet.lc;i++) {
if((1 get_sid()==node_id)&&(l.get_eid()==nid))
return I;
1=simulate. activenet.linkarray[i];
}
return 1;
}

public link find_last_hop(smart pkt spkt) {
int 1_nid=get_ last_node(spkt);
link 1=simulate activenet.linkarray[0];
for(int i=1;i<simulate.activenet.lc;i++) {
if((I.get sid()==l_nid)&&(l.get_eid()==node_id))
return 1;
1=simulate.activenet.linkarray[i];

}
return l;
}

public int send(smart_pkt spkt)
{
//System.out.println("send to node"+node_id);
//it nid=get_next_node(spkt);
link l=find_next_hop(spkt);
1.link_status=true;
I. free_time=Event_l ist. clock+l. delay;
Event event=new Event(O,Event_Iist.clock+l. delay,l.get_eid(),spkt);
Event_list.put_event(event);
return l.get_eid();
}

public int send_from_queue(link 1)
{
//System.out.println("send to node"+node_id);
//int nid=get_ nextnode(spkt);
//link l=flnd_next_hop(n_id);
try{
smart pkt spkt=(smart pkt)1.I1.removeFirst();

l.link_status=true;
1. free _time=Event_list.clock+l .delay;
Event event=new Event(O,Event_list. clock+ I .del ay,l. get _eid(),spkt);
Event_list.put_event(event);
}catch(NullPointerException e){System.out.println("8888888deepak i a m goyal");}
return l.get eid();
}

int get_next_node(smart_pkt spkt)
{
int i=0;
try {
for(i=0;i<l l;i++) {//System.out.println("&&&&&"+network.path[(int)spkt.flow_ id] [1]);

if(network.path[(int)spkt. flow_id] [i]==n ode_id)
break;

}
}catch(ArraylndexOutOfBoundsException e) (System. out.println ("out of network");}
return network.path[(int)spkt.flow_id][++i];
}

int get_ last_node(smart_pkt spkt) {
int i=0;
try{
for(i.=0;i<II ;i++) f//Sy stem.out.println("&&&&&"+network.path[(int)spkt.flow_id][i]);

if(network.path[(int)spkt, flow_id] [i]==node_id)
break;

}
}catch(ArraylndexOutOfBoundsException e) {System.out.println("out of network");)
return network.path[(int)spkt.flow_id][--i];
}
}

class MarkingEngin {
public static void send_to_marking_engin(smart_pkt spkt ,flow f) {
spkt.qos= 1;
if(next hop_congestion==true) {

if(f.observed throughput<f.targate_throughput) {
spkt.qos=1;
}
else
spkt.qos=0;
}
}

class link{
private int start nid;
public LinkedList 11;
private int end_nid;
public int capacity;
public int delay;
public boolean link_status;

public int free_time;//when the link will be free
link(int st_id,int eid ,int cap,int dlay) {
11=new LinkedListO;
start_nid=st_id;
link status=false;
free_time=0;
end_nid=eid;
capacity=cap;
delay=dlay;

int get_sid()
{
return start_nid;
}
int get eid()

return end_nid;
}

public boolean is_busy()
{
return link_status;
}

class network

Random r;
public node nodearray[];
public link linkarray[];
public source sourcearray[];
public int lc;//no of link
public static int path[][]={{0,10,12,13,14,16,17,19,21},{1,11,12,13,14,15},{2,18,17,19,20}};

network(int n) {
r=new Random();
nodearray=new node[501;
linkarray=new link[200];
sourcearray=new source[151;
for(int i=0;i<n;i++)
nodearray[i]=new node(i);
int i=0;
int ld=3;
linkarray[lc++]=new link(0,10,10,ld);
linkarray[lc++]=new link(1,11,10,ld);
linkarray[lc++]=new link(2,19,10,ld);

/* 	linkarray[lc++]=new link(15,3,10,ld);
linkarray[lc++I=new link(20,4,10,ld);
linkarray[lc++]=new link(21,5,10,ld);*/
linkarray[lc++]=new. link(10,12,10,ld);
linkarray[lc++]=new link(l 1,12,10,ld);
linkarray[lc++]=new link(12,13,10,ld);
linkarray[Ic++]=new link(13,14,10,ld);

linkarray[lc++]=new link(14,15,10,ld);
linkarray[lc±+]=new link(14,16,10,ld);
linkarray[lc++]=new link(16,17,10,ld);
linkarray[lc++]=new link(18,17,10,ld);
linkarray[lc++]=new link(17,19,10,4);
linkarray[lc++]=new link(19,20,10,ld);
linkarray[lc++]=new link(19,21, l0,ld);
linkarray[lc++]=new link(20,21,10,ld);
linkarray[lc++]=new link(23 ,2 1,1 0,ld);
linkarray[lc++]=new link(19,24, l 0,ld);
//I inkarray[l c++]=new link(24,25, 10,ld);
linkarray[lc++]=new link(10,26,10,ld);
linkarray[lc++]=new link(I0,11,10,ld);
linkarray[lc++]=new link(26,13,10,ld);
linkarray[lc++]=new link(26,22, 10,ld);
linkarray[lc++]=new link(22,14,10,ld);
linkarray[lc++]=new link(22,1 5,1 0,ld);
linkarray[lc++]=new link(15,17,10,ld);
linkarray[lc++]=new link(15,20, l0,ld);
linkarray[l c++] =new link(12,25,10,ld);
linkarray[lc++]=new link(11,25,10,ld);.
linkarray[lc++]=new link(25,14, 1 0,Id);
linkarray[lc++]=new link(25,18,10,Id);
linkarray[lc++]=new Iink(18,24,10,1d);
linkarray[lc++]=new link(24,19,10,ld);
linkarray[lc++]=new 1fink(24,23,10,1d);

sourcearray[0]=new source(0,10);
sourcearray[1]=new source(l,l 1);
sourcearray[2]=new source(2,18);
sourcearray[3]=new source(3, 10);
sourcearray[4]=new source(4,11);
sourcearray[5]=new source(5,19);

class gui extends Frame implements
WindowListener, MouseMotionListener,MouseListener{
private node node_arr[];
private link link_arr[];
Button b;
private int gx[]={70,70,130,190,250,300,300,360,320,425,410,500,200,505,425,180,135 };
private int gy[]={138,225,165,165,155,70,180,165,245,175,95,130,85,185,233,2.35,85};
private int sx[]={0,0,300,283,530,405};
private int sy[]={105,220,285,0,84,27};

gui(node node_arr[],1ink link_arr[]) {
b=new Button("Start Simulation");
b.addMouseListener(this);
add(b);
addMouseListener(this);
add WindowListener(this);

addMouseMotionListener(this);
setBackground(Color.pink);
setTitle("Active Network");

this.node_arr=node_arr;
this .link_arr=link_arr;
this.setLayout(new FlowLayout());
setSize(650,420);
setVisible(true);
System .out.print("node_id="+node_arr[2].node_id+"no_mpkt"+node_arr[2].no_of marked_pkt);

public void mouseClicked(MouseEvent me){}
public void mouseEntered(MouseEvent- me){}
public void mouseExited(MouseEvent me){}
public void mousePressed(MouseEvent me) {
int mx=me.getX();
int my=me.getY();
for(int i=0;i<17;i++) {
if((mx>=gx[i]+20)&&(mx<=gx[i]+40)&&(my>=gy[i]+20)&&(my<=gy[i]+40)) {
Graph graph=new Graph(node_arr[i+10],link_arr[i]);//link has to find out
break;

}
public void mouseReleased(MouseEvent me){}
public void mouseDragged(MouseEvent me) {}
public void mouseMoved(MouseEvent me){}
public void windowActivated(WindowEvent we) {
public void windowClosed(WindowEvent we) { }
public void windowDeactivated(WindowEvent we) { }
public void windowDeiconified(WindowEvent we){}
public void windowlconified(WindowEvent we) { }
public void windowOpened(WindowEvent we){}
public void windowClosing(WindowEvent we) {System.exit(0);}

public void paintnet(){
Graphics g=getGraphics();
repaint();
g.setColor(Color.black);
g.drawString("Please click on any node to see it performance",100,400);

public void paint(Graphics g) {
try{
g.setColor(Color.black);

for(int i=0,sxl,syl,exl,eyl;i<6;i++){
sxl=sx[link_arr[i] .get _sid()-10]+20;
sy 1=sy[link_arr[i].get_sid()-10]+20;
ex1=sx[link_arr[i].get_eido -10]+20;
ey l=sy[l ink _arr[i].get_eidQ-10]+20;

g,setColor(Color.black);
g.drawLine(sx1+l0,sy1+10,ex 1+10,ey1+10);

for(int i=3,sx,sy,ex,ey;i<32;i++) {

sx=gx [link_arr[i] . get_si dO-10]+20;
sy=gy [link_arr [i] . get_si d()-10]+20;
ex=gx[link_arr[i].get_eid()-10]+20;
ey=gy[link_arr[i].get_eidO-10]+20;
g.setColor(Color.black);
g.drawLine(sx+ 1 0,sy+ 10,ex+ 10,ey+ 10);

} }catch(Exception e) {System.out.println('lskd");
try{
for(int i=0;i<6;i++) {
g.setColor(Color.black);
g.drawRect(sx[i],sy[i],20,20);
}
for(int i=0;i<17;i++) {
g.setColor(Color.blue);
g. drawOval (gx [i]+20, gy [i]+20, 21,15);
g.setColor(Color.white);
g.fillOval(gx[i]+20,gy[i]+20,20,15);
}
,g.setColor(Color.blue);
for(int i=0;i<17;i++)
g.drawString(new Integer(i).toString(),gx[i]+22,gy[i]+33);
g.setColor(new Color(255,255,200));
g.fillRect(0,390,500,20);

} catch(Exception e) {System.out.println("skd"); }

g.setColor(Color.black);
g.drawString("Please click on any node to see it performance", 100,400);
}

public void movepkt(int startnode,int nextnode) {
int i;Graphics gl=getGraphics();

int xl=gx[startnode-10];
int x2=gx[nextnode-10];
int y l =gy [startnode-10];
int y2=gy[nbxtnode-10];

System.out.println("*********** "+gx[startnode-10]+" "+gx[nextnode-10]+" "+gy[startnode-10]+"
"+gy[nextnode-10]);

int x3=x1;
int y3=y1;
if(x2==xl){

if(y2>y 1)
{

addMouseMotionListener(this);
setBackground(Color.pink);
setTitle("Active Network");

this.node_arr=node_arr;
this .Iink_arr=link_arr;
this.setLayout(new FlowLayouto);
setSize(650,420);
setVisible(true);
System.out.print("node_id="+node_arr[2].node_id+"no_mpkt"+node_arr[2].no_of marked_pkt);

public void mouseClicked(MouseEvent me){}
public void mouseEntered(MouseEvent me){}
public void mouseExited(MouseEvent me) { }
public void mousePressed(MouseEvent me) }
int mx=me.getXO;
int my=me.getY();
for(int i=0;i<17;i++)'{
if((mx>=gx[i]+20)&&(mx<=gx[i]+40)&&(my>=gy[i]+20)&&(my<=gy[i]+40)) {
Graph graph=new Graph(node_arr[i+10],link_arr[i]);//link has to find out
break;

}
public void mouseReleased(MouseEvent me){}
public void mouseDragged(MouseEvent me){}
public void mouseMoved(MouseEvent me) { }
public void windowActivated(WindowEvent we) {}
public void windowClosed(WindowEvent we){}
public void windowDeactivated(WindowEvent we) { }
public void windowDeiconified(WindowEvent we){}
public void windowlconified(WindowEvent we) { }
public void windowOpened(WindowEvent we) { }
public void windowClosing(WindowEvent we) {System,exit(0);}

public void paintnet() {
Graphics g=getGraphicsQ;
repaint();
g.setColor(Color.black);
g.drawString("Please click on any node to see it performance",100,400);

public void paint(Graphics g) {
try{
g.setColor(Color.black);

for(int i=0,sx l ,sy l ,ex l ,ey 1; i<6; i++) {
sx 1=sx[link_arr[i] .get _sid()-10]+20;
sy 1=sy[link_arr[i].get_sid()-10]+20;
exl=sx[l ink _arr[i] .get _eidO-10]+20;
ey 1=sy[link_arr[i].get_eid()-10]+20;

g.setColor(Color.black);
g.drawLine(sx1+l O,sy1+10,ex1+10,ey 1+10);

for(int i=3,sx,sy,ex,ey;i<32;i++){

sx=gx[link_arr[i].get_sid()-10]+20;
sy=gy[link_arr[i] .get_sid()-10]+20;
ex=gx[l ink_arr[i] . get_ei d()-10]+20;
ey=gy [l i nk_arr [i] .get ei d ()-10]+20;
g.setColor(Color.black);
g.drawLine(sx+l0,sy+I O,ex+ I 0,ey+ 10);

} }catch(Exception e) {System.out.println("lskd");}
try{
for(int i=0;i<6;i++) {
g.setColor(Color.black);
g. drawRect(sx[i],sy[i],20,20);
}
for(int i=0;i<17;i++) {
g.setColor(Color.blue);
g.drawOval(gx[i]+20,gy[i]+20,21,15);
g.setColor(Color.white);
g.fihlOval(gx[i]+20,gy[i]+20,20,15);
}
,g.setColor(Color.blue);
for(int i=0;i<17;i++)
g.drawString(new Integer(i).toString(),gx[i]+22,gy[i]+33);
g.setColor(new Color(255,255,200));
g. fillRect(0, 3 90, 500, 20);

} catch(Exception e) {System.out.println("skd"); }

g.setColor(Color.black);
g.drawString("Please click on any node to see it performance",100,400);
}

public void movepkt(int startnode,int nextnode) {
int i;Graphics gl=getGraphics();

int xl=gx[startnode-10];
int x2=gx[nextnode-10];
int y l =gy[startnode-10];
int y2=gy[nextnode-10];

System.out.println("*********** "+gx[startnode-10]+" "+gx[nextnode-10]+" "+gy[startnode-10]+"
"+gy[nextnode-10]);

int x3=xl;
int y3=yl;
if(x2=x 1) {

if(y2>yl)
.{

for(i= (int)y 1;i<(int)y2;i+=3) {
try{

g 1. setColor(Color.blue);
g 1.drawRect((int)x3-7,(int)y3,6,10);
Thread.sleep(100);
g 1. setColor(getBackground(});
g I .drawRect((int)x3-7 ,(int)y3 ,6, 10);

y3=y3+5;// 10->5

} catch(InterruptedException e) { }

if(y2<y 1)
{

for(i=(int)y2;i<(int)y1;i+=3) {
try{

g 1.setColor(Color.blue);
g 1.drawRe ct((int)x3-7, (int)y3,6,10);
Thread.sleep(100);
g I .setColor(getBackgroundO);
g I .drawRect((int)x3-7, (int)y3 ,6, 10);

y3=y3-5;// 10->5

} catch(InterruptedException e) { }

}
i f(x2>x 1) {int m=0;//workable

for(i=20; i<(x2-x 1)-6;) {
try {x3=x 1 +i;

if(y2!=y1)
{
m=6;
i+=1;

}
else{

i+=3;
m=0;

g 1.setColor(Color. blue);
gl.drawRect((int)x3+m,(int)y3-1,10,6);
Thread.sleep(0);
g I .setColor(getBackground());

gl.drawRect((int)x3+m,(int)y3-1,10,6);
y3=((y2-y 1)/(x2-x 1))*i+y 1;
if(y21=y l)
f
m=6;

}
else{

i+=3;
m=0;

}
}catch(InterruptedException e) { System .out.printin("**99999*"); }

}
if(x2<x l) {

for(i=6;i<(x I -x2);i+=3) {
try{

g 1.setColor(Color.blue);
g I .drawRect((int)x3 ,(int)y3 -5,6,10);
Thread.sleep(1);
g I .setColor(getBackground());
g I . drawRect((int)x3,(int)y3 -5,6,10);
x3=x l -i;
y3=((y2-y 1)/(x2-x I)) * (-i)+y I;

}catch(InterruptedException e){}
}

}

}
class Graph extends Frame implements

WindowListener, MouseMotionListener,MouseListener{
int x;
int y;
node n;
link 1;
Button b;

Graph(node n,link 1) {

Font f=new Font("Times New Roman",Font.BOLD,8);
setFont(f);
setBackground(Color.gray);
b=new Button("show graph");

g.drawString("Time(s)",ox+150,oy+30);
g.drawString("B W (Mbps)",ox-65,oy-100);
g. setColor(Color.blue) ;System.out.println("hi "+n. no_of_pkt+" "+n.fl.size());
for(int j=0;j<n.fl.size();j++)
{

for(int i=0;i<195&&(((flow)n.fl.get(j)).meter.th_arr[i][I]<10000);i=i+5)
{
System.out.println("hi ");
System.out.println(" "+ox+" "+(oy-(((flow)n.fl.get(j)).meter.th_arr[i][0]/4)));

if(((flow)n.fl.get(j)).flow_id==0)
{

g.setColor(Color.black);
g.fil lOval(ox+i,oy-(((flow)n.fl.get(j)).meter.th_arr[i] [0]14),5,5);
g.setColor(Color.blue);
g.drawLine(ox+(((flow)n.fl.get(j)).meter.th_arr[i] [I]/4),oy-

(((flow)n. fl.get(j)).meter.th_arr[1] [0]/4),ox+(((flow)n.fl.get(j)).meter.th_arr[i+5] [1]/4),oy-
(((flow)n. fl.get(j)).meter.th_arr[i+5] [0]/4));

g.drawLine(ox+i,oy-(((flow)n.fl.get(j)).meter.th_arr[i][0]/4),ox+i+5,oy-
(((flow)n. fl.get(j)).meter.th_arr[1+5] [0]/4));

}
else
if(((flow)n.fl.get(j)).flow_id==1)
{

g.setColor(Color.magenta);
}
else
g.setColor(Color.black);

g.fillRect(ox+i,oy-(((flow)n.fl.get(j)).meter.th_arr[i] [0]/4),5,5);
g.drawLine(ox+i,oy-(((flow)n.fl.get(j)).meter.th_arr[i] [0]/4),ox+i+5,oy-
(((flow)n. fl.get(j)).meter.th_arr[i+5] [0]/4));
g.drawLine(ox+(((flow)n.fl.get(j)).meter.th_arr[i] [1]/4),oy-
(((flow)n.fl.get(j)).meter.th_arr[i] [0]/4),ox+(((flow)n.fl.get(j)).meter.th_arr[i+5] [1]/4),oy-
(((flow)n. fl.get(j)).meter.th_arr[i+5] [0]/4));

}
}

}
public void mouseEntered(MouseEvent me){}
public void mouseExited(MouseEvent me) { }
ublic void niousePressed(MouseEvent me) {

Object source=me.getSource();
if(source==b) {

plot_graph();
}

}
public void mouseReleased(MouseEvent me) {
public void mouseDragged(MouseEvent me){
public void mouseMoved(MouseEvent me) J }
public void windowActivated(WindowEvent we){}
public void windowClosed(WindowEvent we){}
public void windowDeactivated(WindowEvent we) { }

b. addMouseListener(this);
add(b);
addMouseListener(this);
addWindowListener(this);
addMouseMotionListener(this);
this.n=n;
this.1=1;
this.setLayout(new FlowLayout(FlowLayout.RIGHT));
setSize(500,250);
setTitle("statistics of Active node no "+((n.node_id)-10));
setVisible(true);
}
public void paint(Graphics gl){}

public void mouseClicked(MouseEvent me) { }

public void plot_graph() {
Graphics g=getGraphicsO;

setFont(new Font("Times New Roman" ,Font.BOLD, 10));
int ox=70;
int oy=200;//180
int scaled=4;
int x,y;
for(int j=0;j<n.fl.size();j++)
{
flow f=(flow)n.fl.get(j);

g.setColor(Color.black);
g.drawString("flow id"+f.flow_id,10,40+j * 10);

if(f;flow_id==0)
g.setColor(Color.blue);
else

if(f.flow_id==1)
g.setColor(Color.magenta);
else

g.setColor(Color.black);
g.drawLine(60,35+j * 10,100,35+j * 10);

g.drawString("no of marked pkt="+f.no_of_marked pkt,10,40+j * 10);
}

g.setColor(Color.red);
g.drawLine(ox,oy,ox, 80);
g.drawLine(ox,oy,600,oy);
for(int i=ox,j=0;i<=600;i+=20;j+=100) {
g. drawLine(i, oy-2, i, oy+2);
g.drawString("+(float)j/ l 000,i-10,oy+ 12);
}
for(int i=80,j=4;i<=oy;i+=30,j--){
g.drawLine(ox-2,i,ox+2,i);
if(j !=0)
g.drawString("+j *2,ox-20,i+10);

g.setColor(Color.black);

public void windowDeiconified(WindowEvent we) {}
public void windowlconified(WindowEvent we) { }

public void window0pened(WindowEvent we) { }
public void windowClosing(WindowEvent we){

setVisible(false);

class simulate {
public static network activenet;

public static void main(String arg[])throws Exception{
activenet=new network(50);

gui animation=new gui(activenet.nodearray,activenet.linkarray);
try {Thread.sleep(l000);

Event_ list. initialised _event(500);
for(int i=0;i<Event_list.getsize();i++) {
Event event=Event_list.get_next_event(i);

System.out.println(" event type"+event.type_ofevent+" etime="+event.time_of event+"
nid"+event.node_id);

int d=0;
while(Event_list.getsize() =0) {//simulation start
try{
Event event=Event_list.get_next_eventO;
Event_list.clock=event.time_ofevent;
if(event.type_of event==0) {

acti venet.nodearray [event.node_i d] .recei ve(event. spkt);
}

if(event.type_of event==1)
{
d=activenet.nodearray [event.node_id] .send(event.spkt);
// animation.movepkt(activenet.nodearray[event.node_id].node_id,d);

//activenet.nodearray[event.node_id] .send(event.spkt));

}
if(event.type_of event==2)

activenet.sourcearray[event.node_id]. send(event.spkt);
if(event.type_ofevent==3)

// animation.movepkt(activenet.nodearray[event.node_ id] .node_id,
//activenet.nodearray[event.node_id].send_from_queue(event.l));

activenet.nodearray[event.node_id] . send_from_queue(event.l);
}
if(event.type_of event==4)

activenet.no dearray [event. node_id] . send_to_routing_manager(event. spkt);

}catch(IndexOutOfBoundsException e) { System.out.println(" i deepak goyal");}
} animation.paintnet();

System.out.println(" after 	"+Event_list.getsizeO);

for(int i=0;i<Event_list.getsize();i++)

Event event=Event_ list.get_next_event();
if(event.node_id==14&&event.type_of event==0){
Thread.sleep(50);

System. out. print("event type"+event.type_of event);//
System. out. print(" etime="+event.time_of_event+" nid"+event.nodeid);
try{
System.out.println("pkt no"+event.spkt.pkt_no);
}catch(NullPointerException e){System.out.println("deepak goyal"+event.type_of event);}

for(int i=0;i<Event_list.getsizeO;i++)
System.out.println(""+Event_list.get_next_event(i)+" after 	"+Event_list.getsizeO);
System.out.println("+Event_list.getsizeo);
for(int i=0;i<Event_list.getsizeQ;i++){
Event event=Event_list.get_next_event(i);
System.out.print(" "+event.node id+"&"+event.time of event+"&"+cvent.type_of event);

}catch(NullPointerException e){ System.out.println("deepak goyal"),
for(int i=network.path[0][0],j=1;j<9;i=network.path[0][j++])
node n=activenet.nodearray[i];
flow f=n.fl.get(0);
f.meter.print_th_arr();
}
for(int i=network.path[1][O],j=1;j<5;i=network.path[11[j++]){

node n=activenet.nodearray[iJ;
flow f=n.fl.get(1);
f.meter.print_th_arrO;
}
for(int i=10;i<16;i++) {
node n=activenet.nodearray[i];

System.out.print("node_id="+activenet.nodearray[i].node_id+"no_mpkt"
+activenet.nodearray[i].no__of_marked pkt);
for(int j=0;j<n.fl.sizeO;j++){
flow f=(flow)n.fl.get(j);
System. out. print("node_id="+activenet.nodearray[i].node_id);
System.out.print("flow_id"+f.flow_id+"mar pkt"+f.no_of_markcd_pkt),

f. meter.print_th_arr();

}
gui disco=new gui(activenet.nodearray,activenet.linkarray),

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References

