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Abstract

Landslides are complex natural phenomena that constitute a serious natural

hazard in the Himalayan region, causing damage to both property and life every year.

Identification of landslide-prone areas is essential for safer strategic planning of future

developmental activities. Therefore, landslide susceptibility zonation (LSZ) becomes

important whereby an area may be divided into near-homogeneous domains that are

ranked according to the degree of potential hazard due to landslides and mass

movements. The most important task for LSZ studies is the determination of weights

and ratings giving relative importance of factors and their categories respectively, for

landslide occurrence. These weights and ratings can be determined by implementing

different approaches, which at times are highly subjective in nature. Therefore,

developing suitable approaches for determination of weights and ratings objectively

and their implementation in a geographic information system (GIS) environment for

LSZ mapping is extremely important. Further, most of the landslide-related studies

culminate at providing LSZ maps only, therefore, procedures of landslide risk

assessment (LRA) needs attention.

The main objective of this research is to explore the potential of the advanced

techniques - fuzzy set theory and artificial neural network (ANN) for determination

of weights and ratings of causative factors and their categories, and to devise a fully

objective approach for GIS based LSZ and LRA mapping.

The study area covers a small region of about 254 km2 in Darjeeling Himalayas

(Latitude 26° 56'-27° 8' N and Longitude 88°10'-88°25' E). It is a part of Darjeeling

district of West Bengal State of India. The area lies within the Lesser- and Sub-



Himalayan belts. Tea plantations form the most widespread land use. The area in the

eastern part is dominated by thick forest.

The following datasets have been used to generate various thematic data layers:

a) Remote sensing images from IRS-1C LISS-1II multispectral and IRS-1D-PAN

b) Survey of India (SOI) topographic maps at 1:50,000 and 1:25,000 scale

c) Published geological map (Geological Survey of India)

d) Extensive field data on landslides and land use land cover

The LISS-III and PAN data have been precisely co-registered with the

topographic map. The LISS-III data have been corrected for atmospheric path

radiance. The various thematic data layers pertaining to causative factors of landslides

form the input layers for LSZ mapping and have been generated using remote

sensing-GIS tools.

The digital elevation model (DEM) of the study area has been generated by

digitization of contours on SOI topographic maps from which slope and aspect data

layers have been derived.

The lithology layer has been prepared by digitizing polygons from the co-

registered geological map. Minor modifications in lithologic boundaries at some

places have also been incorporated in the vector layer after field verification. The

layer was rasterized.

Lineaments have been interpreted from the PAN and LISS-III images. There is *•

no major thrust/fault reported in the study area, but major lineaments have been

identified. A lineament buffer layer was generated to deduce the influence of

lineaments on the occurrence of landslide. A drainage layer has been prepared from

the topographic maps and LISS-III image. The ordering of streams has been

performed on the basis of Strahler's classification scheme. A drainage buffer layer ^
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with 25m buffer zone along 1st and 2nd order drainages (only) has been generated for

further analysis.

Eight dominant land use land cover classes, namely, thick forest, sparse forest,

tea plantation, agriculture, barren, built up, water bodies and river sand in the area

have been deciphered. The four spectral bands of LISS-III image, DEM and

normalized difference vegetation index (NDVI) image have been integrated to

prepare a land use land cover layer by a multi-source classification process using the

most widely adopted maximum likelihood classifier.

The field data and high spatial resolution PAN and PAN-sharpened LISS-III

images have been used to produce a landslide distribution map. A total of 101

landslides have been identified, the majority of which have areal extent of 500 m2to

2000 m2.

For LSZ mapping, four different approaches have been implemented to

determine the weights and ratings. The most commonly used conventional weighting

approach involved assignment of weights and ratings to the factors and their

categories based on field knowledge. A landslide susceptibility index (LSI) map has

been generated by integrating the weighted layers and the range of LSI values has

been categorized into five landslide susceptible zones to prepare an LSZ map.

In order to minimize subjectivity in the weight assignment process, at the first

instance, ANN black box model has been attempted for LSZ mapping. A feed

forward multi-layer ANN with one input layer, two hidden layers and one output

layer has been designed. The input layer contained 6 neurons corresponding to 6

different causative factors. The LSZ map obtained from conventional weighting

approach has been used as the reference map. The training and testing datasets

consisted of 2500 mutually exclusive pixels corresponding to 500 pixels per landslide
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susceptibility zone. The Levenberg-Marquardt back-propagation algorithm has been

used to train the neural networks. A total of 39 neural network architectures were

designed, trained and tested. The network architecture 6/13/7/1 has been found to be

the most appropriate one. The connection weights obtained from this network have

been captured and subsequently used to determine the network output of all the pixels

in the dataset to prepare an LSZ map of the area.

However, the major limitation of the ANN black box approach is that the

weights and ratings of the factors and their categories remain hidden. In this research,

an attempt has been made to open the ANN black box. A novel approach to derive

weights for causative factors has been proposed, which has been referred to as ANN

connection-weight method. The assignment of weights in this fashion may reduce the

subjectivity. Moreover, to bring objectivity in the assignment of ratings, a new fuzzy

set concept has been utilized. As a result, two unique ways of LSZ map preparation

have been proposed here, namely fuzzy set based and combined neural and fuzzy

approaches.

In the fuzzy set based approach, ratings (r#) of each category of a given

thematic layer have been determined using the cosine amplitude method. The

integration of these values for various categories of thematic layers has been

performed to compute LSI values in two different ways: (a) using arithmetic

integration and (b) using fuzzy gamma operator. The range of LSI values thus

determined has been categorized into five landslide susceptibility zones using success

rate curves method to prepare the LSZ maps. The performances of the two methods

have been examined and it has been found that the arithmetic integration approach

has yielded better results than the fuzzy gamma operator in the present case.
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The combined neural and fuzzy approach has involved three main steps: (a)

determination of weights of thematic layers through ANN connection-weight

analysis, (b) determination of ratings for categories using cosine amplitude method

and (c) integration of ratings and weights to generate the LSZ map. A feed forward

back-propagation ANN with one input, two hidden and one output layers was

considered. The data for the input neurons correspond to the normalized ratings (r#)

of the categories. The output corresponds to the presence or absence of landslide at

the pixel. 100 neural network architectures were designed, trained and tested. The

adjusted weights of input-hidden, hidden-hidden and hidden-output connections for

each network were captured and analyzed to obtain the weights for thematic layers

corresponding to 6 factors. The integration of these weights for causative factors and

the ratings for the categories (obtained from cosine amplitude fuzzy similarity

method) has been performed to obtain distribution of LSI values across the area. The

range of LSI values has been categorized into five different landslide susceptibility

zones using success rate curves method to produce the LSZ map.

A comparison of the LSZ maps produced from different approaches is very

important. The LSZ maps have been compared and evaluated using three different

approaches: a) landslide density analysis, b) error matrix analysis and c) difference

image analysis.

Landslide density is defined as the ratio of the percent existing landslide area to

percent area of each landslide susceptibility zone, and is calculated on the basis of the

number of pixels. It has been found that the LSZ Maps produced from conventional

and ANN black box approaches have a similar trend of landslide densities for various

susceptibility zones. This result is on expected lines, as the conventional weighting

based LSZ map has been used as the reference map to generate ANN black box based



LSZ map. The LSZ Map produced from combined neural and fuzzy approach has a

much higher landslide density of VHS zone (>13) as compared to other LSZ maps.

Based on the landslide density analysis, it is inferred that the LSZ map produced from

combined neural and fuzzy approach is significantly better than those produced from

other approaches (fuzzy, conventional and ANN black box approaches).

Three error matrices for different LSZ map combinations have been generated

to understand the distribution of number of pixels in different LSZ maps. There was a

high degree of matching in the pixels of LSZ maps produced from the conventional

weighting and ANN black box approaches. There was also a general correspondence

in the LSZ maps produced from fuzzy and combined neural and fuzzy approaches.

There was a lot of mismatch in number of pixels between LSZ Maps produced from

the conventional weighting and combined neural and fuzzy approaches. This

mismatch is inferred to be due to the differences in weights and ratings of both the

approaches.

Difference image analysis elucidates how pixels shift from one landslide

susceptibility zone to another zone, based on the LSZ mapping approach adopted. A

difference image of LSZ maps produced from conventional and ANN black box

approaches showed a high degree of mutual correspondence and matching of

landslide susceptibility zones throughout the area. A difference image of maps

produced from fuzzy set based and combined neural and fuzzy approaches showed a

high degree of spatial matching, with about 50% pixels having full matching, and

47% pixels exhibiting only one-zone difference. About 3.0% pixels showed two-zone

difference and these mainly appeared to be related to a lithologic band in the northern

partof the area. The difference image of maps produced from conventional weighting

and combined neural and fuzzy approaches appeared to exhibit the widest spatial
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difference, with only 37.8% pixels fully matching, 46.4% pixels exhibiting one-zone

difference, 14.6% pixels exhibiting two-zone difference, and 1.2% pixels showing

~y three-zone difference. The most important was a two-zone difference band in the

northern part of the difference image marking a lithologic layer. As lithology has the

highest and significantly higher weight than other factors in combined neural and

fuzzy approach, the importance of lithology has been brought out in the difference

image. Further, the relative importance of drainage as observed in the field vis-a-vis

lineament as deduced from spatial-domain filtering is deduced and discussed.

As far as landslide risk assessment (LRA) is concerned, landslide risk is

considered to be a function of landslide potential (LP) and the resource damage

potential (RDP). In the present study, two different approaches namely, (I) LRA

using danger pixels and (2) LRA using Fuzzy Concept have been developed and

implemented to prepare LRA maps of the study area.

k A concept of danger pixel has been introduced for landslide risk assessment.

Danger pixels are considered as those pixels which lie in VHS and HS zones inall the

four LSZ maps produced from different approaches, i.e., the danger pixel map is an

intersection map of all the four LSZ maps with (VHS + HS) zones combined. A

resource map including all the existing land use land coverpatterns and also the road

network of the area has been prepared. The danger pixel map and the resource map

have been integrated to generate the LRA map of the study area. The LRA map

shows spatial distribution of different resource categories that appeared to be under

real danger due to landslides.

In the LRA using fuzzy concept approach, the LSZ map prepared using the

combined neural and fuzzy approach; the best LSZ map of the area, has been used as

an input to provide LP. Further, the resource map has been used as another input layer
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to provide information on RDP. Linguistic rules have been framed for landslide

susceptibility zones and resource categories and the fuzzy membership values

representing the LP and RDP based on these linguistic rules have been assigned.

Landslide risk values for different combinations of LP and RDP have been obtained

by integrating LP and RDP layers and have been represented in the form of a LRA

matrix. The range of landslide risk values has been segmented into five different

landslide risk zones and the LRA map of the area has been prepared. It is observed

that 2496 pixels (0.61% of total area) are under very high risk zone and 7204 pixels

(1.77% of total area) are under high risk zone. The LRA Map has revealed that

landslides pose very high risk to a few selected sites of habitation in Sonada.

Darjeeling and northeastern part of Tiger hill, and high risk to a section of road from

Sonada to Ghum.

It is considered that the approaches developed in this study for objective LSZ

and LRA mapping can be successfully implemented in other hilly regions that are

susceptible to landslides.
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Chapter 1

Introduction

1.1 General

Disasters caused by landslides are common in mountainous regions such as the

Himalayas. The landslide incidences in a region have been of serious concern to the

society due to loss of life, natural resources, infrastructural facilities, etc. and also

posing problem for future urban development. It has been estimated that, on an

average, the damage caused by landslides in the Himalayan range costs more than

US$ one billion besides causing more than 200 deaths every year (Naithani, 1999).

Since geologic, geomorphic and hydro-geological factors control the overall stability

of slopes in an area, evaluation on a regional scale is essential to identify areas

susceptible to landslides. Thus, altogether there appears to be an urgent need of

landslide susceptibility zonation (LSZ) mapping and risk assessment of regions

affected by landslides. The studies would help in minimizing loss of life, property and

other resources of the region due to landslides.



1.2 Research Objectives and Scope of the Work

A detailed literature survey of the techniques and approaches for LSZ mapping

adopted in different parts of the world has been carried out. Briefly, it isobserved that

several techniques for LSZ mapping have been developed which can be grouped into

two broad categories, viz., qualitative and quantitative. In qualitative techniques,

subjective decision rules are applied to define weights and ratings based on the

experience ofexperts. The qualitative techniques can be sub-grouped into three major

categories namely distribution analysis, geomorphic analysis and map combination

technique. To remove subjectivity in qualitative analysis, quantitative techniques have

been employed to determine the weights and ratings of factors and their categories

respectively for LSZ studies. However, it is found that this aspect needs more careful

and critical evaluation and development.

Thus, the main objective of the present research is to develop an approach for

LSZ mapping leading to risk assessment through the use ofadvanced techniques and

their implementation within the domain of remote sensing and GIS. Specific

objectives of the present study may therefore be enumerated as:

i) Implementation of conventional weighting approach for LSZ mapping and its

evaluation with ANN black box approach

ii) Development ofa fuzzy set theory based approach for computation of ratings in

an objective manner

iii) Development and implementation of combined neural and fuzzy approach, a

combination of ANN and fuzzy based techniques for determination of weights

and ratings offactors and their categories respectively to prepare the LSZ map

iv) A comparative evaluation of LSZ maps produced from different approaches to

examine their efficacy
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v) Development and implementation of an approach for landslide risk assessment

1.3 Study Area

The landslide incidences in Darjeeling Himalayas (parts ofWest Bengal State)

have been of serious concern to the preservation of natural beauties of the area,

maintenance of infrastructural facilities and future urban development. Therefore, an

area in the Darjeeling Himalayas which covers a part of Darjeeling district of West

Bengal State has been selected for this study.

Darjeeling derives its name from the Tibetan word 'Dorje' meaning a precious

stone or thunderbolt of Indra which is believed to have fallen at a place where now

stands Observatory Hill and 'Ling' means 'a place'. Hence 'Darjeeling' stands for

'land of thunderbolt'. Darjeeling presents an unforgettable view of the majestic

amphitheatre ofsnow covered Himalayan panorama flanked by Singalila range on the

west and Dongkya range in the east jeweled with peaks of Kanchenjunga and Mount

Everest. The flaming red rhododendrons, the vast spreads of undulating green tea

plantations, silvery fir forests, Yiga Cholling Monastery in Ghoom, toy train, sunrise

from Tiger Hill and specks ofclouds in hues ofevery shade justify Darjeeling as the

queen of hill stations (Figure 1.1). Darjeeling is a magnificent hill resort attracting

thousands of people for a leisurely respite far from the maddening crowd to all -

tourists, ornithologist, geologist, botanist, artist, photographer, trekker, etc. Darjeeling

tea is world famous for its superb flavour. There are many tea gardens in and around

Darjeeling.



1.3.1 Location

This study focuses on Darjeeling hill which lies within the latitudes 26°56' -

27°8'N and longitudes 88°10' - 88°25'E and covers an area of about 254 km2

(Figure 1.2). The study area is a part of Darjeeling district of West Bengal state. The

study area constitutes a part of Survey of India topographic map numbers 78 A/4, A/8,

B/l, B/5 (scale - 1:50,000). The main localities are Darjeeling, Sonada and

Sukhiapokhri. Darjeeling is located almost at the centre of the study area.

1.3.2 Physiography and Drainage

The district of Darjeeling in West Bengal lies between 26°3I' and 27°13' N

latitude and between 87°59' and 88°53' E longitude. It is somewhat triangular in

shape. The Darjeeling Himalayas, encompassing a total area of 3149 km2 rises

abruptly from the alluvial plains of West Bengal and attains a maximum elevation of

about 2500-3000 meters. The area lies between Sikkim on the North, Bhutan on the

north-east, Nepal on the west, Purnea district of Bihar abutting on the south and

district Jalpaiguri of West Bengal on the south-east. The southern foot hill region is

characterized by East-West trending highly dissected platform ofterrace deposits. The

southerly flowing Tista River more or less divides the region into two parts, the

eastern and western parts occupied by Kalimpong and Darjeeling hills respectively.

The principal town Darjeeling is the administrative headquarter of Darjeeling

district. The town Darjeeling is situated in the lower Himalayas in 27° 13' N latitude

and 38°16' Elongitude. Darjeeling falls into two distinct tracts, the Tarai immediately

beneath the hills and the ridges and deep valleys of the lower Himalayas. The Tarai

portion of the district is a low-lying belt, traversed by numerous rivers and streams

rushing down from hills and by the upland ridges which mark their courses.
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Figure 1.1: Some scenic views in Darjeeling Himalayas.
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The mountains belonging to the lower Himalayan zone consist of long tortuous

ranges, running generally from north to south throughout its length. The snowy range

lies far beyond the limits of the district to the north. This range forms the great

backbone of the Darjeeling Himalayas. To the north-west tower the giant peak of

Kanchanjungha and to the north-east Dongkya are situated.

The valleys ofDarjeeling hills are mainly drained by the Tista and its tributaries.

The southerly flowing Tista river is on the eastern side of the study area, but not

falling within it. Some of the important tributaries are Ragnu Khola, Sim Khola, Jhepi

Khola, Bhanjyang Khola and Jor Khola. The hill portion is like a labyrinth of ridge

and narrow valleys. There are no open valleys or plains or lakes. Most of the ridges

are forest clad and in the lower slopes, tea plantation and crop cultivation are done.

1.3.3 Climate

Due to altitude differences the climate within the hill areas varies greatly. In

general the hill areas enjoy pleasant summer, heavy rain in rainy season due to strong

monsoonal winds and cold winter with snowfall in higher altitudinal areas. In

Darjeeling hill areas, April, May, September and October form the peak tourist

seasons due to pleasant climatic conditions. Darjeeling receives about 3000 mm of

rainfall annually. The rainfall pattern is highly seasonal with the majority falling

during the monsoon months ofJune to October. The mean maximum temperature is

approximately 11.1 degree Celsius and minimum temperature is 1.7 degree Celsius.

1.3.4 Vegetation

Density ofvegetation varies in different parts ofthe area. Darjeeling represents a

combination oftemperate and sub-tropical areas ofthe State of West Bengal with the



tea gardens along with some agricultural land. It embodies more than 7000 species of

flowering plants along with numerous small and beautiful non-flowering plants.

Darjeeling represents one of the rich floras in the world. The richness and variety are

due to the physiographic and climatic conditions. Ihc main land use practice in the

study area is tea plantation. The agriculture lands are mostly present around the

habited areas. The area is dominated by thick forest particularly in the eastern part.

1.3.5 Geology

The lithologic units in the Darjeeling Himalayas occur in a reverse order of

stratigraphic succession represented by Siwalik Group in the south followed by the

Gondwana, Daling and Crystallines Group of rocks towards north. The rocks of the

region have been stratigraphically classified as follows (Roy, 1976; Acharya, 1989):

Group

Kanchenjangha Group

Darjeeling Group

Chungthang Group

Lingtse Granite

Daling Group

Gondwana Group

Siwalik Group

Formation

Paro Formation

Buxa Formation

Reyang Formation

Talchir Formation

10

Rock Type

Gneisses and quartzites

Gneisses

Quartzites and gneisses

Granite gneisses

Dolomites, quartzites and slates

Quartzites

Gorubathan Formation Feldspathic graywackes

Damuda Formation Sandstones, shales and coal beds

Slates, conglomerates and
boulder beds

Sandstones, shales and
conglomerates

^

^



In the present study area, the rocks of Daling Group, Lingtse Granite,

Chungthang Group and Darjeeling Group have been found. Daling Group in the study

area represents low grade metamorphic rocks namely Reyang quartzites and

feldspathic graywackes. Gneisses and granite gneisses are the high grade

metamorphic rocks in the area. In this study, the geological map prepared by Roy

(1976) and Acharya (1989) has been referred. The study area does not contain any

major thrust or fault. However, major lineaments are present there.

1.4 Organisation of the Thesis

In this chapter, the research objectives have been listed out, and a brief

description of the study area has been given. Chapter 2 provides a review on

landslides and various LSZ approaches, which have assisted in identifying the

research gaps in this direction and developing a suitable approach for this study. In

Chapter 3, the data sources used for this study and an overview of the methodologies

have been described. Chapter 4describes in detail the preparation ofvarious thematic

data layers. In Chapter 5, the details of implementation of conventional weighting

approach for LSZ mapping has been presented. The details of implementation of

neural and fuzzy approaches namely ANN black box approach, fuzzy set theoretic

based approach and combined neural and fuzzy approach for LSZ mapping have been

provided in Chapter 6. Acomparative evaluation of different LSZ maps thereby four

different LSZ mapping approaches have been presented in Chapter 7 to examine the

efficacy ofthese approaches. In Chapter 8, a review on landslide risk assessment and

the details of the proposed approach and its implementation for landslide risk

assessment have been presented. Finally, Chapter 9 provides summary and

conclusions.

I 1



Chapter 2

Landslides and Landslide Susceptibility
Zonation - A Review

2.1 Introduction

Landslides are one of the most widespread and damaging natural hazards in

hilly regions. The study of landslides has drawn global attention mainly due to

increasing awareness of its socio-economic impacts as well as increasing pressure of

urbanization on mountain environment (Aleotti and Chowdhury, 1999). Landslides

constituted 4.89% of the natural disasters that occurred worldwide during the years

1990 to 2005 (www.em-dat.net). According to Schuster (1996), this trend is expected

to continue in future also due to increased unplanned urbanization and development,

continued deforestation and increased regional precipitation as a result of changing

climatic conditions in landslide prone areas. Landslides cause loss of life and

property, and damage to natural resources, developmental projects and essential

commodities, etc. It has been estimated that, on an average, the damage caused by

landslides in the Himalayas costs more than US$ one billion, besides causing about



200 deaths every year, which amounts to 30% of such losses occurring world-wide

(Naithani, 1999). In 1998, due to massive landslides in Ukhimath area, Garhwal

Himalayas, 109 people were dead and several families were affected. Also, Malpa

landslide wiped out the whole Malpa village in Uttaranchal during 1998 and at least

210 people were dead (Juyal, 2002). Other major landslides namely Phata landslide of

2001, Budhakedar landslide of 2002 and Uttarkashi landslide of 2003 are burning

examples in Himalayas that have caused large-scale human tragedies, resources

damage and associated environmental-social hazards. Hence, landslide susceptibility

studies are essential for safer strategic planning offuture developmental activities in

the Himalayan region.

This chapter provides abrief overview of different causative factors responsible

for landslide occurrences and also a detailed review on approaches for landslide

susceptibility zonation (LSZ) that are in vogue around the world.

2.2 Landslides

Landslides are the natural processes, which occur and recur in specific geo-

environmental conditions. Landslide has generally been defined as the down slope

movement of soil or rock masses as a result of shear failure at the boundaries of the

moving mass (Skempton and Hutchinson, 1969). Another definition by Coates (1977)

states landslide as abrupt short lived geomorphic event that constitutes rapid motion

end of the mass spectrum.

2.3 Factors Responsible for Landslide Occurrence

Alandslide is seldom attributed to a single causative factor. It is offundamental

importance to identify the causative factors for landslide occurrences in a region,

14
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which often is difficult. It is also usually hard to establish the relationships between

various causative factors. Nevertheless, it may be possible to demarcate landslide

susceptible areas by identifying and analyzing the factors that have caused landslides

in the past (Aleotti and Chowdhury, 1999).

There are two types ofcausative factors responsible for landslide occurrences;

one relates to internal or preparatory, and the other to external or triggering (Crozier,

1986; Siddle et al., 1991). Internal factors assume a state which will allow the normal

fluctuation ofexternal factors to be sufficient to trigger a landslide. Although, internal

factors may change over a long period of time to reduce the resistance/shear stress

ratio, there is always an external factor which triggers the movement. The internal

factors represent the inherent attributes of the ground which make the slopes

susceptible to landslides.

Various researchers (e.g., Brabb, 1984; Carrara and Merenda, 1976; Cotecchia,

1978; Cruden and Varnes, 1996; Hansen, 1984; Hutchinson, 1996) have considered a

number of causative factors that may be responsible for landslide occurrences in a

region. These include (Varnes, 1984; Dikau et al., 1996; Naithani, 1999):

(A) Internal or preparatory factors: i. Lithology of slope material

ii. Structural features

iii. Geomorphology

iv. Vegetation

v. Hydrogeologic conditions

(B) External or triggering factors: i. Seismicity

ii. Climate

iii. Undercutting by river

15



iv. Anthropogenic factors:

(a) Land use change

(b) Unplanned construction

Lithology: Lithology basically involves the composition, texture, degree of

weathering, as well as other details that influence the physico-chemical and

engineering behaviours such as permeability, shear strength, etc. ofthe rocks and

soils. These characteristics in turn affect the slope stability. +

Structural features: In relation to landslides, the structural features include mainly

the geological discontinuities such as bedding, joints, faults, folds and shear zones

in the slopes. The inter-relationship between the slope and the discontinuities

plays an important role particularly in rock slopes to understand the mechanism of

failure. Further, the proximity of a slope to a tectonically active zone such as

major faults or thrusts or lineaments influences the landslide activity to a great >

extent.

Geomorphology: An important geomorphologic characteristic of slope instability is

to identify the nature and type of pre-existing landslides, as this governs the

behaviour of the terrain. The geomorphology also includes slope morphology of

the area i.e., slope angle and aspect and their physical features involving scarps, X-

concavity/convexity, bulging toes, etc. The slope angle has a direct bearing on

instability as the gravitational forces are accentuated with increasing slope angle.

Aspect, which represents the direction of slope face, may have a local effect on

slope stability.

Vegetation: Vegetation is an important factor in reducing the erosional activities on ^

the slopes. A thickly vegetated slope reduces the effect of erosion because of

16



*

natural anchorage provided by the tree roots whereas barren slopes are generally

more prone to erosional activity and therefore cause slope instability.

Hydrogeologic conditions: The water infiltration into the slope increases pore water

pressure and decreases the shear strength, thereby causing instability to the slopes.

The excessive surface run-off through drainages aggravates the erosional activity

on the slopes. Therefore, the hydrogeologic conditions indicating the drainage

network and the nature of distribution of surface and sub-surface water are also

important for landslide occurrences.

Seismicity: The earthquake shocks may be responsible for triggering new landslides

and reactivating old landslides. The vibrations due to earthquake may induce

instability, particularly in loose and unconsolidated material on steep slopes.

Climate: The climatic pattern due to change in geographic location may influence

landslide activities. High rainfall in tropical and sub-tropical climatic regions may

trigger landslides, as in the Himalayas.

Undercutting action of river: The undercutting action of river removes the toe

support to the slope thereby causing slope instability.

Land use change: The land use change, such as deforestation, exploitation of natural

resources, conversion of vegetated slopes into built up area, etc. may result into

landslide occurrences.

Unplanned construction: The overloading of slopes or removal of lateral support by

human interference is a prime concern for slope failures in many areas. The ill-

planned construction activities related to hill development programme such as

road cutting, housing, quarrying, mining, etc. aggravate the problem of slope

instability in hilly regions.

17



The effective selection of these causative factors is important and will depend

on the study area, mapping scale, reliability as well as accuracy of the data (Aleotti

and Chowdhury, 1999). *

2.4 Landslide Susceptibility Zonation (LSZ) Mapping

Spatial prediction of landslide is termed as landslide susceptibility, which is a

function of landslide and landslide related internal factors. The aim is to identify

places of landslide occurrence over a region on the basis of a set of internal causative -*•

factors. This is specifically known as landslide susceptibility zonation (LSZ), which

can formally be defined as the division of land surface into near-homogeneous zones

and then ranking these according to the degrees of actual or potential hazard due to

landslides (Varnes, 1984). Due to conceptual and operational limitations, landslide

hazard zonation is conceptually stated as landslide susceptibility zonation (Brabb,

1984). However, LSZ maps do not directly incorporate time and magnitude (Fell, -^

1994; Cruden and Varnes, 1996; Hsli, 1975; Sassa, 1988). LSZ maps also differ from

landslide inventory or distribution maps, which represent a database or catalogue of

existing landslides over a region.

2.4.1 Basic Assumptions ^

All the available approaches for LSZ mapping are based upon some widely

accepted assumptions (Varnes, 1984; Carrara et al., 1991; Hutchinson and Chandler,

1991; Hutchinson, 1996; Turner and Schuster, 1996), which can be stated as:

i) The past and present are keys to the future (Varnes, 1984; Carrara et al., 1991;

Hutchinson, 1996). This implies that landslides in future will more likely to ^

occur under similar geological, geomorphological, hydrogeologic and climatic

18



conditions, which were and are responsible for the occurrence of past and

present landslides. Hence, experiences on existing landslides will be more

-^ helpful for landslide susceptibility assessment.

ii) Landslides with distinct geomorphological features can be identified, classified

and mapped both through field surveys and remote sensing image

interpretations (Rib and Liang, 1978; Varnes, 1978; Hansen, 1984;

Hutchinson, 1988; Dikauetal., 1996).

iii) Landslides are controlled by identifiable internal factors (i.e., inherent

attributes of the ground) known as causative factors, which can also be

mapped from field surveys and remote sensing image interpretations (Dietrich

etal., 1995).

Nevertheless, a number of obstacles may be faced while producing LSZ maps

(Aleotti and Chowdhury, 1999). For example,

i) The discontinuous nature of landslides in space

ii) The difficulty in identifying the causative factors, which often is subjective

iii) Lack of complete historical data related to landslide occurrences.

2.4.2 Mapping Scale

The scale ofLSZ mapping depends on three basic factors (Aleotti et al., 1996a):

l) The purpose of the study

ii) The extent of the study area and

iii) Data availability

The choice of the mapping scale affects the selection of the approach (Aleotti

and Chowdhury, 1999). Thus, for example, geotechnical investigation based approach

may be suitable for studies concerning individual slopes or small areas, whereas LSZ

19



approach may be suitable for a regional scale study. Further, the mapping scale for a

landslide susceptibility zonation study will control the selection ofdifferent causative

factors and also the level of detailed mapping. Ascale of 1:25,000 to 1:50,000 is

generally used for delineation of landslide susceptibility zones in hilly regi
'ions.

2.4.3 Mapping Unit

A mapping unit is a land surface that is homogeneous in itself and show

heterogeneity with adjacent units (Hansen, 1984). LSZ requires the selection of a

suitable mapping unit, which depends on anumber of factors. These include type and

degree of details of landslides to be studied; the scale of study; the quality, resolution,

scale and type of input data; and the availability ofanalysis tools such as GIS and

remote sensing. For example, in raster-based GIS approach for LSZ mapping is

applied whereby the study area is divided into regular grids of pre-defined size

depending on the data availability. These grid-cells or pixels serve as the mapping

units of reference (Carrara, 1983; Bernknopf et al., 1988; Pike, 1988; van Westen,

1993, 1994; Mark and Ellen, 1995). In this approach, each pixel in the study area is

assigned a value ofimportance or weight corresponding to each causative factor and

the weights are integrated in GIS environment to generate araster output layer.

2.5 Landslide Susceptibility Zonation (LSZ) Approaches - A Review

The landslide susceptibility zonation is a complex task (Brabb, 1991). Several

approaches for LSZ mapping have been proposed. These approaches can be grouped

into two broad categories; qualitative and quantitative. The taxonomy of different

approaches for LSZ mapping is given in Figure 2.1. These LSZ approaches, which

have been reviewed in detail by Hansen (1984), Varnes (1984), van Westen (1994),
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Carrara and Guzzetti (1995), Hutchinson (1996), Mantovani, et al. (1996), Aleotti and

Chowdhury (1999), Guzzetti et al. (1999) and Saha et al. (2005), are summarized in

this section.

Distribution

Analysis

Landslide Susceptibility Zonation
(LSZ) Approaches

Qualitative Approaches Quantitative Approaches

Geomorphic
Analysis

I
Statistical

Analysis

Map Combination
Approach

Probabilistic

Approaches
Distribution-free

Approaches

Bivariate Statistical

Analysis
Multivariate Statistical

Analysis

Fuzzy Set Based
Approaches

1
Artificial Neural Network

Based Approaches

Figure 2.1: Flow chart showing taxonomy of LSZ approaches

2.5.1 Qualitative Approaches

In qualitative approaches, lot of subjectivity is introduced in preparation of

various thematic data layers contributing for landslide occurrences, which are

integrated to the generation of LSZ map of the area.
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2.5.1.1 Distribution Analysis

Distribution analysis is a straightforward approach for landslide susceptibility

zonation, which otherwise is known as landslide inventory. This approach shows the

distribution of existing landslides mapped from aerial photographs, field surveys

and/or historical data of landslide occurrences. These landslide inventory maps, in

most of the cases, provide a basis for other landslide susceptibility zonation

approaches. The main features and different contributors of this approach are listed in

Table 2.1.

Table 2.1: Distribution analysis approach for LSZ mapping

LSZ approach Main features References Approach used

>

P
<

<
D
O

Distribution

Analysis

Direct mapping
of landslides

and mass

movements and

representing in
a map, which
demarcates

areas of past
landslide

occurrences.

Wright and
Nilsen

(1974)

Landslide isopleths based on
density map of landslide
distribution

Canuti et al.

(1979)
Landslide activity maps
based on multi-temporal
aerial photo interpretation

Wieczorek

(1984)

Landslide inventory map
showing spatial distribution
of landslides as point feature
or as affected areas

Espizua and
Bangochea

(2002)

LSZ mapping based on
landslide inventory

The landslide inventory provides a spatial distribution of existing landslides

represented on a map either as the affected areas (polygons) or as point events

(Wieczorek, 1984). In another alternative, the landslide distribution was represented

as a density map (Wright et al., 1974). Landslide isopleths were drawn by

interpolating these density values. This method did not reflect the relationship
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between the landslides and their causative factors, but it was useful in presenting

landslide densities quantitatively (Turner and Schuster, 1996).

Espizua and Bengochea (2002) prepared susceptibility and risk zonation maps

based on an inventory of landslides generated through field work and interpretation of

aerial photographs. The purpose was to provide a practical basis for rational land use

planning. Landslide susceptibility and risk zones were mapped, in view of the natural

hazards and the degree of loss to elements at risk along roads and routes because of a

given magnitude of landslide.

The landslide inventory maps do not provide information on the temporal

changes in landslide distribution. Therefore, a modification in the inventory maps was

done in the form of landslide activity maps, which were based on multi-temporal

aerial photo interpretation (Canuti et al., 1979). These activity maps are useful to

study the effect of temporal changes in land use on landslide activity.

The distribution analysis approaches are very time consuming, cumbersome and

costly, but maps based on these approaches may be useful in providing first hand

information on the landslide activities of the area. These maps do not provide

information on the degree of susceptibility of future landslide activity.

2.5.1.2 Geomorphic Analysis

Geomorphological mapping of landslide susceptibility is a direct, qualitative

approach that relies on the ability of the investigator or expert to estimate actual and

potential slope failures (Guzzetti et al., 1999). The main features and different

contributors of this approach are listed in Table 2.2.

In this approach, the LSZ is carried out directly in the field by

scientists/geomorphologists, based on their experience in the subject, about the area
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and in other similar situations, without describing any rules which have led to this

assessment. The LSZ maps are directly evolved from detailed geomorphological

maps.

Table 2.2: Geomorphic analysis approach for LSZ mapping

LSZ approach Main features References Approach used

QUALITATIVE

Geomorphic
Analysis

Direct

qualitative
approach of geo
morphological
mapping of
landslides which

relies on the

ability of
investigator.

Carmassi et

al. (1992)

Landslide susceptibility
map based on field
geomorphic analysis

Hearn(I995)

Proposed a hazard
classification sheet for
mapping compiled
directly in the field for
different

geomorphological units
Soeters and

van Westen

(1996)and
van Westen et

al. (2003)

Digital
geomorphological LSZ
mapping

A lot of work on LSZ mapping using this approach has been carried out since

1970s (e.g., Carrara and Merenda, 1976; Kienholz, 1978; Fenti et al., 1979; Ives and

Messerli, 1981; Kienholz et al., 1983, 1984; Zimmerman et al., 1986; Rupke et al.,

1988; Seeley and West, 1990; Hansen et al., 1995; Soeters and van Westen, 1996; van

westen et al., 2000; van Westen et al., 2003). One ofthe most comprehensive projects

reported in the literature was the French ZERMOS maps (Humbert, 1977) which

involved analysis of active and inactive landslides with respect to the factors

responsible for landslide susceptibility and then extrapolation of similar physical

conditions for preparation of LSZ maps. These maps generally showed three different

classes with varying degrees of susceptibility (i) null or low susceptibility, (ii)

potential or uncertain susceptibility, and (iii) ascertained susceptibility. The ZERMOS

map of the Moyenne Vesubie region, France, prepared by Meneroud and Calvino
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(1976) showed four zones of instability defined on the basis of five factors such as

lithology, structures, slope, morphology and hydrology. Another ZERMOS map

prepared by Landry (1979) identified seven classes of susceptibility on the basis of

the factors like geological nature of the soil and sub-soil, slope angle, drainage and

local history of landslides. The LSZ map of Carmassi et al. (1992) was used to

identify the most favorable sites for construction of power plants. Hearn (1995)

developed an LSZ map compiled directly in the field based on geo-morphological

features at 1:10,000 scale. Soeters and van Westen (1996) and van Westen et al.

(2003) reported LSZ mapping based on the geomorphological criteria for slope

instability.

This approach allows a rapid assessment of landslide susceptibility in a given

area. The main disadvantages ofsuch approaches are (Leroi, 1996): (i) the subjective

decision rules that govern the landslide occurrences; this fact makes it difficult to

compare the LSZ maps prepared by different experts; (ii) difficult in updating the

susceptibility assessment as new data becomes available; and (iii) extensive field

surveys are required.

2.5.1.3 Map Combination Approach

The map combination approach for LSZ mapping involves a number of steps

(Soeters and van Westen, 1996):

(i) Selection and mapping of the causative factors

(ii) Thematic data layer preparation with relevant categories of the factors

(iii) Assignment of weights and ratings to factors and their categories

respectively

(iv) Integration of thematic data layersand
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(v) Preparation of LSZ map showing different zones

The main features and some recent developments on this approach are listed in

Table 2.3.

Table 2.3: Map combination approach for LSZ mapping

LSZ approach Main features References Approach used

Nagarajan et
al. (1998)

Qualitative map combnation
using GIS
Landslide Hazard Evaluation

Anbalagan Factor (LHEF) subjective
Direct or semi- (1992) rating scheme for LSZ
direct approach
in which several

mapping

Ordinal weighting-rating
causative factor Gupta et al.

(1999)

system based on relative

UJ maps are importance of causative
> combined factors and map combination
f—
<

Map
Combination

together to
generate LSZ

in GIS to generate LSZ map
Ordinal scale relative

-J

<
Approach map using weighting-rating technique to

subjective
Saha et al assign landslide susceptibility

decision rules

based on (2002) index based on relative
importance of causative

experience of factors and map combination
the earth

scientist.
in GIS to generate LSZ map
Qualitative map combination

Sarkar and in GIS using an ordinal rating
Kanungo system based on relative
(2004) importance of factors and

1 1their categories

A review of literature reveals that the pre-requisite for LSZ mapping is the

preparation of thematic data layers pertaining to different causative factors.

Commonly these factors include lithology, lineament, slope, aspect, land use land

cover, and drainage etc.

Early efforts on LSZ mapping considering lithology and slope as the causative

factors were made by Blanc and Cleveland (1968) and Radbruch-Hall and Varnes

(1973) in California, Bowman (1972) in Australia, Dobrovolny and Schmoll (1974) in
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Alaska, Radbruch-Hall and Crowther (1976) in United States, Rodriguez Ortiz et al.

(1978) in Spain and Obermeir (1979) in Virgenia. Brabb et al. (1972) first introduced

the landslide frequency analysis with respect to litho units (geology) and slope

categories by a simple superimposition method and produced an LSZ map. Varnes

(1984) prepared an LSZ map considering slope, soil thickness, land use practice and

drainage as the causative factors. Takei (1982) prepared adebris flow susceptibility

map in Japan considering rock types, fracturing, weathering characteristics, springs,

vegetation cover, valley slopes and historical records of large landslides as the

contributory factors. In New Zealand, Eyles (1983) identified different types of

erosion and their severity based on lithology, structure, slope and topography. In the

last two decades, LSZ mapping was conventionally carried out based on manual

interpretation ofavariety of thematic data layers and their superimposition (Seshagiri

and Badrinarayana, 1982; Anbalagan, 1992; Choubey and Litoria, 1990; Pachauri and

Pant, 1992; Gupta et al., 1993; Sarkar et al., 1995; Mehrotra et al., 1996; Virdi et al.,

1997; Turrini and Visintainer, 1998).

This approach is time consuming, laborious and uneconomical with data

collected over long time intervals. Also, error may be introduced at each stage, as the

process is largely manual.

In recent times, due to the availability of a wide range of remote sensing data

together with data from other sources in digital form and their analysis using GIS, it

has now become possible to prepare different thematic data layers corresponding to

the causative factors responsible for the occurrence of landslides in a region (Gupta

and Joshi, 1990; McKean et al., 1991; van Westen, 1994; Nagarajan et al., 1998;

Gupta, 2003). The integration of these thematic layers with weights assigned

according to their relative importance in a GIS environment leads to the generation of
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an LSZ map (Carrara et al., 1991; van Westen, 1994; Lakhera and Champatiray,

1996; Nagarajan et al. 1998; Gupta et al., 1999; Rautela and Lakhera, 2000; Saha et

al., 2002; Sarkar and Kanungo, 2004; Saha et al., 2005).

However, in this approach, the weights were assigned on the basis of the

experience ofthe experts on the subject and about the study area. The weights may

vary from expert to expert and also from region to region. The subjectivity in

assigning weights to each thematic data layer and to its categories is the major

limitation of this approach. Also, there is a difficulty in extrapolating a model

developed for a particular area to other areas.

2.5.2 Quantitative Approaches

In order to minimize subjectivity in the weight assignment process, quantitative

approaches, objective ways of quantifying the relative importance of various

causative factors, can be deployed to produce an LSZ map. Anumber ofapproaches

have been developed, which are summarized in the following sections:

2.5.2.1 Statistical Analysis

The statistical approaches have been adopted for LSZ studies to minimise the

subjectivity in weight assignment procedure associated with qualitative approaches.

The statistical approach compares the spatial distribution of existing landslides in

relation to different causative factors (Aleotti and Chowdhury, 1999). GIS tools are

quite useful in this analysis. Statistical approaches can broadly be classified into two

types: bi-variate and multivariate.
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a) Bi-variate statistical analysis

In bi-variate statistical analysis, each individual thematic data layer is compared

to the existing landslide distribution layer. The weight value of each category of

causative factors is assigned based on landslide density. This involves the overlay of

landslide distribution layer on each of the thematic data layers, and calculation of

respective landslide density values. Different approaches such as frequency analysis

approach (Pachauri and Pant, 1992, 1998; Sarkar et al., 1995; Mehrotra et al., 1996),

information value (InfoVal) approach (Yin and Yan, 1988; van Westen, 1997; Lin and

Tung, 2003; Saha et al., 2005), landslide nominal risk factor (LNRF) approach (Gupta

and Joshi, 1990) and land hazard evaluation factor (LHEF) approach (Anbalagan,

1992) can be adopted. The main features and some recent contributions on this

approach are listed in Table 2.4.

The frequency analysis approach involves determination of normalized

frequency distribution of landslides per unit area in each category of individual

factors. This is achieved by overlaying the landslide layeron each thematic data layer

manuallyor in GIS environment. These frequency values are used as the ratingsof the

respective categories of causative factors. Constant or arbitrary weights are assigned

to the causative factors. These ratings and weights for the factors and their categories

are integrated to produce the LSZ map.

The Information Value (InfoVal) approach for LSZ mapping considers the

probability of landslide occurrence within each category of thematic data layer. The

rating of a particular category of a thematic data layer is determined as:

Densclas

Densmap
W, =ln

NpixiS^/NpixiN,)

Y^NpixiS,) ±Npix{N)
(2.1)
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where, W, denotes the weight given to the i1" category ofa particular thematic data

layer; Densclas denotes the landslide density within the category; Densmap denotes

the landslide density within the thematic data layer; Npix(Sj denotes the number of

pixels, which contain landslides, in a category; NpixfN,) denotes the total number of

pixels in a category and n is the number of categories in a thematic data layer. The

thematic data layers are overlaid and the ratings in the form of InfoVal are added to

prepare a landslide susceptibility index (LSI) map, which is later categorized into fi

different landslide susceptibility zones to prepare an LSZ map.

ve

Table 2.4: Bi-variate statistical analysis for LSZ mapping

LSZ approach

>

P
<

P
Z
<
D
O

Bi-

variate

Statistical

Analysis

Main features

Indirect

methods in

which

statistical

approach
compares the
spatial
distribution of

existing
landslides with

that of

causative

factors and the

results are

applied to
areas currently
free of

landslides but

conditions

exist for

susceptibility
mapping.

Reference

Yin and Yan

(1988)
Gupta and
Joshi(1990)

Carrara et al.

(1991)
Pachauri and

Pant (1992;
1998)
Jade and

Sarkar(1993)
Mehrotra et

al. (1996)
Turrini and

Visintainer

(1998)
Lin and Tung
(2003)

Saha et

(2005)
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Approach Used

InfoVal method
mapping

for LSZ

Landslide nominal risk factor
(LNRF) rating scheme based on
statistical relationships of
factors

Statistical models for landslide
hazard evaluation

Weighted rating system based
on relationships between factors

LSZ mapping using Information
value method

Bi-variate statistics for category
rating

Bi-variate statistics for category
rating

InfoVal method for potential
analysis of factors for landslide
and structural equation model
for data integration/prediction
LSZ mapping using InfoVal
method and modified m-LNHF
technique
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Another approach, known as the landslide nominal risk factor (LNRF) approach,

was developed by Gupta and Joshi (1990), which determines the rating of each

category of thematic data layers. The LNRF is determined using the following

equation:

Npix{S,)
LNRF, =

f nJ.NpixisMn
(2.2)

where, Npix(Sj denotes the number of pixels containing landslides in ih category and

n is the number of categories present in the particular thematic data layer. Ahigher

value of LNRF (i.e., LNRF >l) implies more susceptibility to landslides than the

average; an LNRF value <1 indicates less susceptibility to landslides; whereas, an

LNRF value =1 indicates a category with an average landslide susceptibility. The

LNRF values were regrouped broadly into three classes for each thematic data layer,

and were assigned ratings 0, 1 and 2 for LNRFO.67 (low susceptibility),

0.67<LNRF<1.33 (medium susceptibility) and LNRF>1.33 (high susceptibility)

respectively. The thematic data layers were overlaid and the values were added to

prepare an LSI map. The LSI values were classified into three susceptibility zones:

low, medium and high. However, it has been observed that regrouping of LNRF

values into ordinal numbers (0, 1, 2) leads to coarsening of approach and reduction in

the relative importance ofvarious categories. Therefore, Saha et al. (2005) proposed a

modified LNRF approach known as modified landslide nominal hazard factor (m-

LNHF), where the computed ratings were directly used without any regrouping.

The bi-variate statistical approaches are based on the observed relationships

between each category of factors and the existing landslide distributions in the area.

Although, the bi-variate statistical approaches are considered to be a quantitative

approach for LSZ mapping, a certain degree of subjectivity exists, particularly in the
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weight assignment procedures for different causative factors. In all cases, constant

weights or arbitrary weights have been assigned to the causative factors for LSZ

mapping.

b) Multivariate statistical analysis

Multivariate approaches consider relative contribution of each thematic data

layer to the total susceptibility within a defined area. The procedure involves several

important steps (Aleotti and Chowdhury, 1999):

i) Identification of percentage of landslide affected areas in each pixel and their

classification into stable and unstable zones,

ii) Preparation of an absence/presence matrix of a given category of a given

thematic layer,

iii) Multivariate statistical analysis (e.g., discriminant and regression analyses)

and

iv) Reclassification of the area based on the results and their classification into

susceptibility classes.

These approaches involve analysis of large volume of data and are time

consuming. External statistical packages are generally used to support the GIS

packages. The statistical analyses most frequently used for LSZ mapping are

discriminant analysis (Carrara, 1983; Carrara et al., 1990) and multiple regression

analysis (Bernknopf et al., 1988; Yin and Yan, 1988; Jade and Sarkar, 1993;

Wieczorek et al., 1996; Atkinson and Massari, 1998; Chung and Fabbri, 1999; Clerici

et al., 2002). The main features and some recent contributions on this approach are

listed in Table 2.5.
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Table 2.5: Multivariate statistical analysis for LSZ mapping

LSZ approach Main features Reference Approach used

Indirect methods Kawakami LSZ mapping using
in which and Saito Quantification method II of
statistical (1984) Hayasi (1952) for
approach quantification of qualitative

UJ

compares the
spatial

data

Yin and Yan Regression analysis
> distribution of (1988) technique used as

<
Multi

variate

existing
landslides with

prediction model
Jade and LSZ mapping using

J2
Statistical that of causative Sarkar regressive multiple analysis

< Analysis factors and the

results are

(1993) technique
Dhakal et al. Quantification scaling type

applied to areas (2000) II discriminant analysis
currently free of (multivariate statistics) for
landslides but

conditions exist
LSZ

Clerici et al. Conditional analysis
for susceptibility (2002) method (multivariate
mapping. statistics) for LSZ

Carrara (1983) applied multivariate analyses approaches (e.g., discriminant

analysis and multiple regression analysis) for LSZ mapping in Southern Italy. These

approaches proved to be useful in predicting actual and potential landslide

susceptibility. In this study, a group of geological-geomorphological attributes, which

are directly or indirectly correlated with slope instability, were used in the

discriminant functions and in the regression equation. The slope units were

discriminated successfully into stable and unstable areas. It was reported that in

multiple regression analysis, lithology and its interaction with slope angle contributed

significantly in predicting the percentage of unstable areas. However, the result of

these statistical approaches underlined the need of other factors capable of improving

the efficiency of the approach.

Yin and Yan (1988) analysed 21 categories of different factors based on data

collected from field investigation and landslide mapping. Regression analysis was
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used to establish different degrees of instability for the preparation of LSZ map of the

area. Clerici et al. (2002) applied conditional analysis approach for LSZ mapping

which simultaneously took into account all the factors contributing to instability. The

landslide density of each pixel was computed in correspondence to different

combinations of causative factors and an LSZ map was prepared based on the

landslide density values. It has been observed that this approach is difficult to

implement and requires complex operations. Further, to achieve satisfactory results,

the procedure has to be repeated few times changing the combination of factors and

their categories.

The limitations of multivariate statistical approach can be listed as follows:

i) Discriminant and regression analyses require data derived from a normally

distributed population that is frequently violated,

ii) A mixture of continuous (i.e., slope, aspect, etc.) and categorical (i.e.,

lithology, land use land cover, etc.) factors leads to incorrect solution,

iii) Some of the factors may bear weak physical relationship with landslide

occurrences. Combination of such factors with other factors may generate data

which is very difficult to interpret.

2.5.2.2 Probabilistic Approach

The probabilistic approaches have also been used for LSZ studies to minimise

the subjectivity in weight assignment procedure. This approach compares the spatial

distribution of landslides in relation to different causative factors within a

probabilistic framework. Some of methods based on this approach include conditional

probability model, weight of evidence method under Bayesian probability model.
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certainty factor method under favorability mapping model, etc. The main features and

some recentcontributions on these approaches are listed inTable 2.6.

Table 2.6: Probabilistic approaches for LSZ mapping.

LSZ approach

>

f-
<

P
Z
<

O

Probabilistic

Approach

Main features

Indirect

methods of

analysis within
a probabilistic
framework

Reference

Chung and
Lee Iere

(1994)

Chung and
Fabbri

(1999)

Lee et al.

(2002a;
2002b)

Chung and
Fabri (1998)
Lee and

Min(2001)

Lan et al.

(2004)

Approach used

Favorability modeling (FM)
approach using certainty
factors (CF) for LSZ mapping
Joint conditional probability
model with five different
estimation procedures for LSZ
mapping

Bayesian probability model
using weight of evidence
method for landslide
susceptibility analysis
Probabilistic prediction model
based on likelihood ratio
function in combination with
Bayesian combination rule for
LSZ mapping
Certainty Factor Model for
LSZ

Favourability modeling (FM) approach is a good compromise, offering a valid

quantitative method, where subjectivity or expert knowledge can be incorporated in

the analysis, particularly when data are not sufficient or reliable. With FM, thematic

data can be transformed into continuous data, by considering the degree of

relationship between the landslides and the categories ofeach thematic data layer.

Each continuous or non-continuous category can be transformed into a value, called

favourability value. The certainty factor (CF) approach is one of the possible

proposed favorability functions (FF) to handle the problem. The CF, defined as a

function of probability, originally proposed by Shortliffe and Buchanan (1975) and

later modified by Heckerman (1986) can be given as:
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CF =

PPa ~ PPs .,
7, \ U PPa > PPs

PPaV-PPs)

PPa-PPs ifppa>pps (2J)
PPs0 -PPa)

where ppa is the conditional probability of having a number of landslide event

occurring in category a and pps is the prior probability of having the total number of

landslide events occurring in the study area. The range of CF values varies from -1 to

I. A positive value means an increasing certainty in landslide occurrence, while a

negative value corresponds to a decreasing certainty in landslide occurrence. A value

close to zero means that the prior probability is very similar to the conditional one. By

integrating the CF values ofthe categories ofthematic data layers, an LSZ map can be

prepared. This CF model was considered and experimentally investigated by various

researchers (e.g., Chung and Fabbri, 1993, 1998; Chung and Leclerc, 1994; Binaghi et

al., 1998; Luzi and Pergalani, 1999; Remondo et al., 2003; Lan et al., 2004).

Chung and Fabri (1999) proposed a conditional probability model for LSZ

mapping. Five different procedures namely direct estimation, Bayesian estimation

under conditional independence, regression model, modified Bayesian model and

modified regression model were adopted for estimating conditional probability of

landslide susceptibility. GIS-based existing landslide distribution layer and various

thematic data layers were used to prepare the LSZ map. The LSZ maps were validated

by comparing with the later landslides. It was observed that multivariate regression

analysis generated better results than other probability methods.

Lee et al. (2002a, 2002b) applied Bayesian probability model using the weight-

of-evidence method of Bonham-Carter (1994) for LSZ mapping. Using the location of

landslides and topographic factors, the method was used to calculate the weights
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(positive and negative) and contrast (difference of positive and negative weights) for

each category of different causative factors. The contrast was used as the rating of

each category. The contrast is positive for ahigher influence on landslide occurrences

and negative for a lower influence on landslide occurrences. The ratings of the

thematic data layers were summed to calculate the landslide susceptibility index

(LSI). The LSI values were categorized into different susceptibility zones to prepare

an LSZ map. van Westen et al. (2003) also used the weights of evidence approach to

^ generate statistically derived ratings for all categories of thematic data layers. On the

basis of these ratings, ajudicious choice of relevant thematic data layers was made for

preparation of an LSZ map.

The application of probabilistic prediction model based on likelihood ratio

function for LSZ mapping was discussed by Chung and Fabri (1998) and Lee and Min

(2001). The existing landslide locations and different thematic data layers were used

^ to implement the model. The probability frequency distribution functions of the

landslide affected and non-affected areas should be distinctly different. The likelihood

ratio function, which is the ratio of the two frequency distribution functions, can

highlight this difference. For each category of thematic data layers, two empirical

distribution functions for the landslide affected and non-affected areas were computed

^ and the likelihood ratio for all the categories were determined. The LSZ map was

prepared using the likelihood ratio values as the ratings ofthe categories.

The probabilistic approaches are based on the observed relationships between

each category of factors and the existing landslide distributions in the area within a

probabilistic framework. The thematic data (continuous and categorical) can be

transformed into continuous data, by considering the degree of relationship between
ip-

the landslides and the categories of each thematic data layer. Although, the
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probabilistic approaches are considered to be a quantitative approach for LSZ

mapping, a certain degree of subjectivity in the weight assignment procedures for

different causative factors exists.

2.5.2.3 Distribution-free Approaches

Generally, qualitative approaches are highly based on experts experience and

knowledge and can be considered as subjective (conventional). On the other hand, the

quantitative approaches, such as statistical (bi-variate and multivariate) and

probabilistic approaches, can be considered as more objective due to their data-

dependent character. However, success of these approaches is highly affected by the

number, quality and reliability of data (Ercanoglu and Gokceoglu, 2004). Therefore,

to overcome these limitations, some new approaches such as fuzzy logic, artificial

neural networks (ANNs), etc. may be adopted for LSZ mapping on a regional scale.

Recently, fuzzy set theory, neural networks and combined neural and fuzzy

approaches have been used to generate LSZ maps.

Fuzzy set theory can provide us with a natural method of quantitatively

processing multiple datasets. Fuzzy relations play an important role in fuzzy modeling

and in the context ofLSZ mapping; fuzzy relations can be established based on the

philosophy that landslides are related to some extent or unrelated to the causative

factors. On the other hand, the most attractive aspect of ANN approaches is the

ability to express the nonlinearities in the process to solve the problem similar to the

human brain reasoning. Due to uncertainties in the causative factors used in LSZ

mapping and the nonlinear character of landslides, utilization of these approaches can

be considered as useful alternatives. The fuzzy and ANN approaches are also free

from any distributional assumptions or bias of the data and the weights are computed
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in an objective manner. The main features and some recent contributions on these
approaches are listed in Table 2.7.

Table 2.7: Distribution-free approaches for LSZ mapping

LSZ approach

UJ

>

<

P
Z
<

O

Distribution-

free

Approaches

Main features Reference Approach used

Artificial

neural

networks

(ANNs) and
neuro-fuzzy
based

approaches,
which do not

depend on the
distributional

assumptions of
the data. The

weights here
are computed
in an objective
manner.

Chi et al.

(2002b)

Gorsevski

etal.

(2003)

Tangestani
(2003)

Ercanoglu
and

Gokceoglu
(2004)

Elias and

Bandis

(2000)
Arora et

al. (2004)

Lee et al.

(2004)

Gomez

and

Kavzoglu
(2005)
Yesilnacar

and Topal
(2005)
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Fuzzy inference network using
combination of fuzzy OR and
fuzzy gamma operator for LSZ
mapping

Combination of fuzzy k-means
classification and a Bayesian
approach for spatial prediction
of landslide hazard

Numerical ratings of LHEF
scheme of Anbalagan (1992)
were fuzzified for factor maps
and were combined to generate
susceptibility map using a fuzzy
gamma operator

Fuzzy relation concept to
determine the strength of
relationship between landslide
and factor categories and fuzzy
max operator for landslide
susceptibility mapping
Neurofuzzy system for LSZ
mapping

ANN Black Box approach for
landslide hazard zonation
Neurofuzzy approach for LSZ
mapping where the ratings for
factor classes were determined
using a probability method and
the weights of factors by ANN
method

ANN Black Box approach for
assessment for LSZ mapping

ANN and logistic regression
based landslide susceptibility
mapping and thejrj^ojrjparison^



Chi et al. (2002b) discussed the effectiveness of fuzzy set theory for landslide

susceptibility mapping. The relationships between input causative factors and past
landslides in terms of likelihood ratio functions of each thematic data layer were
computed and used as fuzzy membership values. These membership values were able

to highlight the difference between areas affected by past landslides and areas not

affected by past landslides. Fuzzy inference networks using a variety of different

fuzzy operators, especially combination of fuzzy OR and fuzzy Gamma operator were

used for data integration to prepare the LSZ map. It was observed that fuzzy Gamma

operator with high value could effectively integrate most datasets for LSZ mapping.

Tangestani (2003) also performed LSZ mapping using land hazard evaluation factor

(LHEF) rating scheme of Anbalagan (1992) for determination of fuzzy membership
values and fuzzy gamma operator for thematic data layer integration. The LSZ map
was validated based on past landslides. It was suggested to evaluate the efficacy of
fuzzy gamma operator for data integration in LSZ mapping.

Gorsevski et al. (2003) demonstrated that LSZ mapping can be achieved through
an integration of GIS, fuzzy *-means and Bayesian modeling approaches. In the

modeling approach, the optimal number of categories was derived by iterative

classification for a range of categories or from expert knowledge. The continuous

fuzzy k-means classification provided significant amount of information about the

character and variability of data and proved to be a useful indicator for landslide

susceptibility mapping. The probabilities were revised with Bayes theorem after the

categories with similar characteristics were grouped together by fuzzy *-means

approach. Abroad range of causative factors were integrated through continuous

fuzzy k-means classification to prepare an LSZ map. It was observed that the LSZ

mapping using the integrated fuzzy/Bayesian approach produced better spatial
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prediction of existing landslide locations than qualitative models. It was suggested to

analyze each individual model in greater detail to improve the understanding between

the processes.

Ercanoglu and Gokceoglu (2004) developed a model based on fuzzy relation

concept for preparation of LSZ map. The landslide distribution layer was analyzed in

relation to the categories of various thematic data layers to compute the fuzzy

membership values for each category. By integrating the fuzzy membership values,

+ the LSZ map was prepared. The LSZ map was validated with the existing landslides

in the area. The fuzzy relation concept is an objective approach for determination of

fuzzy ratings of different categories based on actual landslide data. Hence, this

approach introduces relativity concept in rating determination. However, other

quantitative approaches such as statistical and probabilistic ones consider the actual

landslide data for determination of rating in a crisp manner without employing the

~% relativity.

Arora et al. (2004) proposed an ANN black box approach for LSZ mapping.

This approach determines the weights objectively in an iterative process, but the

weights in this case remain hidden. The neural network training and testing datasets

were prepared using the attributes of various thematic data layers representing the

^ input neurons and the existing LSZ map (Saha et al., 2002) representing the single

output neuron. After successful training and testing of different neural network

architectures, the best architecture for this specific problem was selected based on the

highest training and testing accuracies. The adjusted connection weights of the best

network were used to generate the LSZ map of the area. The distribution of landslide

susceptibility zones derived from ANN showed similar trends as that observed with

the existing landslide locations in the field. A comparison of the results was made
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with an earlier produced GIS-based LSZ map of the same area and indicated that

ANN results were better than the earlier method.

Gomez and Kavzoglu (2005) also used ANN black box approach for LSZ

mapping. In this process, a multilayer perceptron with back propagation learning

algorithm was used. This approach used a wide range of causative factors and the

existing landslide distribution layer derived from digital elevation model, remote

sensing imagery and documentary data for neural network training and testing data

preparation. Neural network architecture of 9/28/1 (9 input neurons, 28 hidden

neurons and one output neuron) was used for training and testing. After the training

and testing process, an LSZ map was generated for the whole area. The existing

landslides were considered to validate the LSZ map. It was observed that the

predictions were close to reality, indicating a satisfactory performance of the model.

Yesilnacar and Topal (2005) prepared landslide susceptibility maps using both

logistic regression analysis and ANN approaches. For this purpose, 19 different

thematic data layers were used. In ANN approach, a feed forward back propagation

algorithm was adopted. They used single hidden layer neural network architecture.

The connection weights of neural networks have been used to determine the weights

for the chosen input thematic layers. The landslide susceptibility map produced using

the ANN approach predicted higher percentage of landslides, especially in high and -^

very high zones than the logistic regression analysis method.

Elias and Bandis (2000) proposed a neuro-fuzzy approach for LSZ mapping.

Fuzzy linguistic rules were used to assign fuzzy membership values to different

categories of thematic data layers. The fuzzy membership values were used to provide

data to the input neurons for neural network model. A single output neuron with +

values from 0 to 1 was considered to represent the degree of landslide susceptibility
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based on actual landslide data. The back error propagation neural network was used

for training and an LSZ map was prepared for the area. The trained network was also

used for another area to generate the LSZ map. The existing landslides in both the

areas were considered to validate the LSZ maps. It was observed that the predictions

were close to reality, indicating a satisfactory performance of the model.

Lee et al. (2004) attempted the development, application and assessment of

probabilistic and artificial neural network approaches for LSZ mapping. Landslide

locations and causative factors were used for analyzing landslide susceptibility. A

probabilistic method was used for determination of rating ofeach category and an

artificial neural network approach was used for determination ofweights ofcausative

factors. The rating of each category was determined using the likelihood ratio

function (Lee and Min, 2001). The weight of each factor was determined after

artificial neural network training (Hines, 1997). The existing landslide locations and

no-landslide areas were used to randomly generate ten sets oftraining data. The back

error propagation neural network was used to train the networks for all the training

datasets used. Neural network architecture of 7/15/2 (7 input neurons, 15 hidden

neurons and 2 output neurons) was considered for the study. The initial connection

weights between the neurons were assigned random values. After successful training

of the network, the weights of the factors were determined based on the weight

matrices analysis for all the 10 training datasets. The normalized average value often

different weights for a particular factor was considered as the weight of the

corresponding factor. The LSZ maps were prepared by integrating the ratings of the

categories only and also by integrating the ratings and the weights together. The two

LSZ maps were verified using the existing landslide locations. The verification results

were reasonable and acceptable.
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It can be observed from the above review that the distribution-free approaches

(i.e., fuzzy, ANN and neuro-fuzzy) are able to determine the weights and ratings of

the causative factors and their categories in an objective manner. These approaches

also have the ability to handle continuous, categorical and binary data pertaining to

various causative factors for LSZ mapping. However, the fuzzy set based approach

addresses the determination of ratings of the categories only. In most of the ANN

approaches for LSZ mapping, single neural network architecture has been attempted.

However, an optimal architecture exists for each specific problem of LSZ mapping, as

pointed out by Arora et al. (2004). It can also be observed that the weights for the

causative factors remain hidden in case of ANN black box approach.

2.6 Summary

The literature review presented in this chapter suggests that broadly there are

two groups of approaches: qualitative and quantitative approaches for LSZ mapping.

The qualitative approaches, such as distribution analysis, geomorphic analysis, map

combination methods, etc., were very popular at late 1970s among engineering

geologists and geomorphologists. The quantitative approaches became popular in the

last decades depending on the advancements in the developments of remote sensing

and GIS technologies. Advantages or disadvantages of different LSZ mapping

approaches have been commonly discussed by the experts in the field of landslide

studies in the literature. The qualitative approaches rely on expert knowledge or

experience which dictates the selection, the weighting and the combination function

of the factors and therefore, can be considered as conventional or subjective. The

quantitative models involve the use of mathematics and statistics to express the

relationships between the existing landslide distribution and the categories of factors.
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Therefore, these can be considered as more objective than conventional approaches

due to the fact that data-dependent character and much less experience is needed.

However, success of these approaches is highly affected by the quantity, quality and

reliability of data. Statistical and probabilistic approaches require the collection of

huge amount of data to produce good results. Also, these approaches contribute in

determining the ratings of the categories of factors only, but consider constant or

arbitrary weights for all the factors to generate the LSZ maps. Therefore, some

distribution-free approaches such as fuzzy set based and ANN based approaches have

been attempted to evaluate the landslide susceptibility in recent years. The fuzzy set

based approach addresses the determination of ratings of the categories only. In most

of the ANN black box approaches for LSZ mapping, single neural network

architecture has been attempted. However, an optimal architecture exists for each

specific problem of LSZ mapping. It can also be observed that the weights for the

causative factors remain hidden in case of ANN black box approach. The connection

weight analysis seems to be an alternative approach for determination of weights of

the causative factors. Moreover, a combination of ratings determined through fuzzy

set based approach and weights obtained through ANN connection weight analysis,

can be explored for LSZ mapping.
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Chapter 3

Data Sources and Overview of Methodology

3.1 General

This chapter describes different data sources with their specific use in the

present research study. Broad overview of the methodology and the theory behind

different LSZ approaches developed and implemented in the present study, have also

been discussed.

3.2 Data Sources

A variety of data from three different sources have been collected and processed

to achieve the research objectives. These sources are:

i) Remote sensing data

ii) Ancillary data

iii) Field data



3.2.1 Remote Sensing Data

Remote sensing data from Indian Remote Sensing (IRS) satellite have been

acquired from the National Remote Sensing Agency (NRSA), Hyderabad, India. The

IRS systems are under the umbrella or National Natural Resources Management

System (NNRMS) and the programme is coordinated at national level by the Planning

Committee of NNRMS (PC-NNRMS).

In recent times, data from sensors on-board IRS satellites are being used for a

diverse range of applications such as crop acreage estimation, drought monitoring, 4

flood risk zone mapping, hydro-geomorphological maps preparation for locating

underground water resources, land use and land cover mapping,, mineral prospecting,

etc.

In the present study, the preparation of thematic data layers such as land use

land cover, lineaments, drainage, landslide etc. is based on data collected by LISS and

PAN sensors placed in IRS-1C and IRS-1D satellites. The satellite payload consists of ^

three sensors, namely Panchromatic Sensor (PAN), Linear Imaging and Self-Scanning

Sensor (LISS-III) and Wide Field Sensor (WiFS) (Navalgund and Kasturirangan,

1983).

LISS-III sensor provides multi-spectral data in 4 bands. The spatial resolution

for visible (two bands) and near infrared (one band) bands is 23.5m with a ground +

swath of 141km whereas the fourth band (short wave infrared band) has a spatial

resolution of 70.5m with a ground swath of 148km. The PAN sensor provides data in

a single broad band with a spatial resolution of 5.8m and a ground swath of 70km at

nadir view. This data is highly useful in recognizing ground features. In this study, the

LISS-III and PAN data have been used for land use land cover classification, »
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lineaments mapping, drainage network mapping and landslide mapping. Brief
description of data used and sensor characteristics are presented in Table 3.1.

Table 3.1: Brief description of IRS-1C LISS-III and IRS-ID PAN data and
sensor characteristics.

Characteristics

Path/Row

Date ofacquisition

Spectral Bands

Spectral ranges

Spatial resolution

Swath

Quantization

IRS-1C LISS-III

107/52

22.03.2000

B2: 0.52 - 0.59um

B3:0.62-0.68um
B4: 0.77 - 0.86um

B5: 1.55-1.70um
B2-B4 :23.5m

B5 :70.5m

B2-B4 : 141km

B5 :148km

7 bit

IRS-ID PAN

107/52

03.04.2000

1

0.52 - 0.75um

5.8m

70km

6 bit

3.2.2 Ancillary Data

The ancillary data such as topographic maps and geologic map have been

collected from the relevant sources (Table 3.2). The Survey of India topographic maps
have been used to create the base map of the study area. Anumber of information

such as contours, drainage network, roads, etc. have been extracted from these maps.

The contours have been digitized to prepare digital elevation model (DEM), slope and

aspect data layers. Geological map has been used to generate data on lithologic
features in the studyarea.
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Table 3.2: Ancillary data used in this study.

Data type Specification Source

Topographic
Maps

Toposheet Nos.
78A/4, A/8, B/l
Scale: 1:50,000 Survey of India

(1960's)Toposheet Nos.
78A/8/2, A/8/3, A/8/6, B/5/1

Scale: 1:25,000

Geologic
Map

Scale: 1:250,000
Geological Survey of India
(Roy, 1976;Acharya, 1989)

3.2.3 Field Data

Field data are very important for any remote sensing and GIS based study to

evaluate the results. Extensive field data have been collected during the years 2001 to

2003 to get information on existing landslide distribution, lithologic contacts and to

collect training and testing areas for land use land cover classification. The months of

March and April were preferred for field data collection, as this season corresponded

to the date of acquisition of satellite pass.

3.3 Overview of Methodology

3.3.1 General

This study has been carried out using an integrated remote sensing-GIS

approach. The overview of the broad methodology adopted in the present study is

outlined in Figure 3.1. The input data sources have been described in this chapter. The

detailed descriptions of other steps (thematic data layer preparation, LSZ approaches,

their implementation and evaluation and landslide risk assessment) have been given at

relevant places in the chapters to follow. However, in the following section, a
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Figure 3.1: Flow diagram showing an overview of the methodology adopted in
this study.
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description of the LSZ approaches developed and adopted in the present study has

been outlined.

3.3.2 LSZ Approaches

The LSZ mapping has attracted disaster specialists, geomorphologists,

engineering geologists, scientists, academicians and others, and several approaches

for LSZ have been developed. A detailed review of these approaches has already been

given in Chapter 2. if

Although several approaches have been developed for LSZ mapping, a number

of issues that affect the performance of these approaches have been identified,

including the difficulties in handling both continuous (slope and aspect) and

categorical data together. However, only a few studies have been attempted and that

too at preliminary stage that consider the application of fuzzy logic and ANN

approaches to resolve these issues. The principal aim of the present study is to ^

develop and implement different approaches of LSZ for predicting areas susceptible

to landslides in parts of Darjeeling Himalayas using conventional, fuzzy logic, ANN

and combined neural and fuzzy concepts.

The following sections highlight the salient features of different approaches

adopted and developed in the present study to produce LSZ maps. ^

3.3.2.1 Conventional Weighting Approach

The weights of the causative factors (lithology, lineaments, drainage, land use

land cover, slope and aspect in the present case) and ratings of the categories can be

combined to generate an LSZ map of the area. The assignment of these weights and

ratings can be achieved by adopting a conventional (subjective) weighting approach.
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In this approach, the weights and ratings to the causative factors and their categories

are assigned based on the experience of the experts on the subject and about the study

area. These weights and ratings generally take numerical values at an ordinal scale of

0 to 9. Higher is the numerical value of weight or rating, greater is its influenceon the

occurrence of landslide.

The weighted thematic data layers are generated by arithmetically multiplying

the weight of the layer with the ratings of the corresponding categories of each layer.

These weighted data layers are then added together to generate an LSI map. Hence,

the LSI is a combined effect of both weights and ratings. Higher is the LSI, greater is

the landslide susceptibility. The LSI values, thus obtained for the study area, are

categorized into very high susceptibility (VHS), high susceptibility (HS), moderate

susceptibility (MS), lowsusceptibility (VHS) and very low susceptibility (VLS) zones

to prepare an LSZ map.

3.3.2.2 ANN Black Box Approach

ANN is a useful approach for regression and classification problems and

promises to be suitable for the delineation of landslide susceptibility zones as this

approach has the capability to analyse complex data patterns. Also, ANN can process

data at varied measurement scales such as continuous (slope, aspect, etc.), categorical

(lithology, land use land cover, etc.) and binary (presence or absence of landslide)

data, a scenario which is often encountered in LSZ mapping.

An ANN comprises of three layers such as input (I), output (O) and one or two

hidden (HA and HB) layers in between these two (Paola and Schowengerdt, 1995).

Each layer in a network contains sufficient number of neurons depending on the

specific problem. In the present case, six different thematic data layers (t) provide
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data to the six neurons (// to i6) in the input layer and a single neuron (o) in the output

layer represents the desired output (d) ofeither existing landslide locations or any of

the five landslide susceptibility zones (i.e., VHS, HS, MS, LS and VLS). The number

of hidden layers and their neurons arc often determined by trial and error (Gong,

1996). In this case, two hidden layers (HA and HB) with varying number of neurons (/)

have been considered. The neurons in a layer are connected to the neurons of the next

successive layer and each connection carries a weight (cy) (Atkinson and Tatnall,

1997). Each neuron responds to the weighted inputs it receives from the connected

neurons from the preceding layer (Lee et al., 2004).The ANN architecture is

illustrated in Figure 3.2.

Input Layer 1st Hidden Layer 2nd Hidden Layer Output Layer
(I) (HA) (HB) (O)

Figure 3.2: A schematic diagram of artificial neural network (6/8/5/1).

54

^

^



In the present study, two different cases with respect to preparation of datasets

have been examined. In the first case, pixels corresponding to existing landslide

ft locations have been considered whereas in the second case, pixels corresponding to

one of the landslide susceptibility zones of the LSZ map produced from conventional

weighting approach have been considered for data preparation of ANN processing.

Two independent training and testing datasets have been prepared for each case. Each

dataset consists of mutually exclusive pixels. The training dataset is used to train

various neural network architectures while the testing dataset is used to evaluate the

accuracy of neural network outputs. The testing dataset has also been used as

verification dataset to control the overtraining ofthe networks.

Data from input neurons is processed through hidden neurons to generate an

output in the output neuron. In this process, a feed-forward multilayer network is

generally used. Generally, the input that asingle neuron; in the 1st hidden layer (HA)

v receives from the neurons (/) in its preceding input layer (I) can be expressed as:

w'y=I>tfA (3.1)

where c0 represents the connection weight between input neuron / and hidden neuron

;, pi is the output from input neuron / and / is the number of input neurons (i.e., 6

different thematic data layers in the present case). The output value produced by the

hidden neuron;,/?,, is the transfer function,/ evaluated as the sum produced within

neuron;, netj. Hence, the transfer function/can be expressed as:

Pj=Anetj) (3.2)
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The function/is usually a non-linear function that is applied to the weighted

sum of the inputs and then the combined effect proceeds to the next layer. Any

differentiable nonlinear function can be used as a transfer function, but a sigmoid

function is generally used (Schalkoff, 1997). The sigmoid function constrains the

outputs of a network between 0 and I. As in case of LSZ mapping, the desired output

(d0) is represented by the presence/absence (1 or 0) of landslides and one of the five

landslide susceptibility zones from VLS to VHS (0.2 to 1.0), the sigmoid transfer

function has been used for input-hidden, hidden-hidden and hidden-output layers. The

sigmoid function in case of LSZmapping can be expressedas:

p =/^)=__ (3.3)
1 + e '

In this feed-forward process of neural network, the network output value for the

output neuron o, p0 is obtained. The error is calculated as the difference of desired

output (d0) and network output (pa). The error function, e, is a measure of network's

performance for the processing elements in the output layer and can be expressed as

follows:

e=0.5±{d„-pj (3.4)

where d0 is the desired output vector, pa is the network output vector and s is the

number of training samples (Arora et al., 2004).

The error gets back-propagated through the neural network and is minimized by

changing the connection weights between neurons of different layers. This can be
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executed through anumber of learning algorithms based on back propagation learning
(Ripley, 1996; Haykin, 1999; Zhou, 1999; Arora et al., 2004; Lee et al., 2004; Gomez

fc and Kavzoglu, 2005; Yesilnacar and Topal, 2005). The most widely used back
propagation algorithms are gradient descent and gradient descent with momentum.

These are often too slow for the solution of practical problems. The faster algorithms

use standard numerical optimizers such as conjugate gradient, quasi-Newton and

Levenberg-Marquardt approaches. Levenberg-Marquardt algorithm was designed to

^ approach the second-order training speed like quasi-Newton methods without having

to compute the Hessian Matrix (i.e., the second derivatives of the performance index

of weights). This algorithm uses an approximation to the Hessian matrix in the

following manner:

cu+l=cIJ-{jl J+tfYj'e (35)
*

where aj is a vector ofcurrent connection weights, J is the Jacobian Matrix which

contains first derivatives of the network errors with respect to connection weights, e is

a vector of network errors and u is a scalar. Unlike gradient descent algorithms, the

Levenberg-Marquardt algorithm does not consider learning rate and momentum factor

as its parameters. It takes into account important training parameters such as mu (u),

mu_dec and mu_inc. The parameter u is decreased by multiplying it with mu_dec

after each successful step (reduction in error) and is increased only when the error is

increased. The main scalar parameter uis modified in an adaptive fashion after giving

an initial random value. In this study, Levenberg-Marquardt algorithm (implemented

^ as TRA1NLM in MATLAB software) has been used for training the neural network.
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The details of this algorithm can be found in Hagan and Menhaj (1994) and Hagan et

al. (1996).

The processof back-propagating the error is repeated iteratively until the error is

minimized to an acceptable value over the training dataset and the adjusted

connection weights are captured. Ihc adjusted weights obtained from the trained

network have been subsequently used to process the testing dataset to evaluate the

generalization capability and accuracy of the network. The performance of the

network depends on the accuracy obtained over the training and testing datasets. A _±_

number of neural network architectures has been designed, trained and tested. The

optimal neural network architecture for the dataset is identified based on the training

and testing accuracies. The connection weights obtained from this network are

captured and subsequently used to determine the network output for the whole

dataset. The range of network output values, thus obtained, have been categorized into

VHS, HS, MS, LS and VLS zones to prepare the LSZ map of the study area. ^f

In this process, the network connection weights between different layers have

not been analyzed to determine the weights and ratings of the causative factors and

their categories. Thus, in this approach, the weights and ratings remained hidden.

Hence, this approach is called as ANN black box approach.

3.3.2.3 Fuzzy Set Based Approach

Fuzzy set theory was firstly introduced by Zadeh (1965) but has now been

commonly used in various research fields in different disciplines. Fuzzy relation

concept defined by Zadeh (1973) is based on the theory of fuzzy sets. In the fuzzy set

theory, membership degrees of elements have varying degrees of support or

confidence in (0,1) interval. Thus, a fuzzy set can be explained as a set containing

58



elements that have varying degrees of membership in the set (Ross, 1995). Fuzzy

relations play an important part in fuzzy modeling. Fuzzy relations are based on the

philosophy that everything is related to some extent or unrelated (Dubois and Prade,

1980). There are different ways such as Cartesian product, closed-form expression,

linguistic rules of knowledge, similarity methods in data manipulation, etc. to develop

numerical values characterizing a fuzzy relation. All these methods attempt to

determine some sort of similarity in data (Ross, 1995).

^, In this research, one of the well known similarity methods, cosine amplitude

method, has been used to determine the relationship between the landslide occurrence

and the factors responsible for such activity. The membership values of the categories

of each factor are calculated by the strength of the relationship (r0) between the

existing landslides and the factors.

Let n be the number of categories of the thematic layers represented as an array

^r x= {*/« x2, • • •, x„}, each of its elements, x„ is a vector of pixels/? (i.e., the size of the

image in the present context) and can be expressed as,

x,= {Xii,Xi2, xip} (3.6)

*

*

Each element of a relation, ry, results from a pair-wise comparison of a category of a

thematic layer i (i.e., layer corresponding to a causative factor) with a category of

thematic layer; (i.e., landslide distribution layer), sayjc, andxi containing elements x«

and xjk respectively. In the cosine amplitude method, r# (membership grades) between

categories of a thematic data layer and that of landslide distribution layer are

computed by the following equation with its values ranging from 0 to I (0 < r,y < 1),
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z*.* * x*

r»=^7
2M x Z*i

V*=i 7 V*=" 7

(3.7)

Values of r,y close to 0 indicate dissimilarity whereas values close to 1 indicate

the similarity between two datasets. The equation (2) leads to n-l ry images

corresponding to each category of the thematic layers under consideration. These

images show ry values at the pixels belonging to the category in question whereas

rests of the pixels indicate 0 values. The corresponding r% images for various

categories of a thematic layer are added together to generate an image for that

thematic layer, where / varies from / to / thematic layers belonging to each causative

factor (e.g., 6 thematic layers in the present case). Thus, six different Ri images are

produced. These Ri images have been arithmetically added to generate an LSI map of

the area. The range of LSI values in the LSI map has been categorized into VHS, HS,

MS, LS and VLS zones to prepare an LSZ map.

In this approach, only the ratings of the categories have been determined

through cosine amplitude fuzzy method. However, the weights of the causative

factors have been considered as constant or unity. Hence, a combined neural and

fuzzy approach has been attempted, where both the weights and ratings can be -^

determined objectively.

3.3.2.4 Combined Neural and Fuzzy Approach

The combined neural and fuzzy approach for LSZ mapping involved the

processes of rating determination of the categories through cosine amplitude fuzzy _

similarity method (as discussed in Section 3.3.2.3) and weight determination of
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causative factors through ANN connection weight analysis. In this approach, the

artificial neural network connection weights are used to characterize the input data

sources (e.g., the causative factors) in terms ofranks or weights. The procedures for

design of ANN architecture, ANN parameters and ANN training and testing are kept

same as discussed in Section 3.3.2.2. The output neurons in this approach represent

the landslide and no-landslide locations in the study area. Three independent training,

testing and verification datasets are formed. Each dataset consists of mutually

exclusive pixels corresponding to landslide and no-landslide pixels. The training

dataset is used to train various neural network architectures while the testing dataset is

used to evaluate the accuracy ofneural network outputs. The verification dataset has

been used to control the overtraining of the networks.

In this process, the connection weight matrices for input-hidden, hidden-hidden

and hidden-output layers are obtained for each two-hidden layer network. Simple

matrix multiplications of these weight matrices give rise to the final weight matrix

corresponding to the factors. For example, for a network of 6/14/8/1 architecture

considered, connection weight matrices of 6x14, 14x8 and 8x1 are obtained. The

product of 6x14 and 14x8 matrices gives a resultant matrix of 6x8. Subsequently, the

product of 6x8 and 8x1 matrices gives an output matrix of 6x1 which corresponds to

the weights of6causative factors. The absolute values ofthese weights are considered

in the present work to rank the factors. The factor with maximum absolute weight is

assigned as rank 1and the factor with the minimum absolute weight as rank 6. This

process ofweight and rank determination is illustrated in Figure 3.3.

Several neural network architectures are experimented with to finalize the rank

ofeach factor based on the rankings observed by these networks by applying the

majority rule. Finally, the absolute weights ofcorresponding networks for a particular
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Figure 3.3: Steps for computations of connection weight matrices of ANN to
characterize input data layers in terms of ranks and weights (in present
study, 1,-Land use land cover, I2-Lithology, I3-Slope, I4-Aspect, 15-
Drainage buffer and 1,,-Lincament buffer). Note: In step \5\,X: 1-6; Y: 1-
8.
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factor are averaged. The average weights of each factor are then normalized at ascale

of 0to 10. The weight thus obtained was treated as the final weight value assigned to
that causative factor.

The ratings of the categories obtained through cosine amplitude fuzzy similarity
method and the weights of the causative factors determined through ANN connection

weight analysis are integrated to generate an LSI map of the area. The LSI values thus

obtained has been categorised into VHS, HS, MS, LS and VLS zones to prepare an
LSZ map of the study area.

3.4 Computing Resources

Implementation of these approaches for LSZ mapping mainly includes thematic

data layers preparation, weight and rating determination through fuzzy and ANN

concepts and their raster-based integration. The manual (conventional) way of

implementing different phases of activities would have been just impossible keeping

in view the quantum of tasks involved in this study. To overcome this problem,

mostly an integrated remote sensing and GIS approach has been adopted.

The computing resources used for implementation of every phase of activities

involved in the present case are outlined in Table 3.3. Various thematic data layers

were prepared from the input data sources using an image processing (Erdas Imagine)

and aGIS (ArcView) software. The calculations for implementing cosine amplitude

fuzzy similarity concept are performed in MS Excel spreadsheet. The artificial neural

network processing has been implemented in Neural Network Tool Box ofMATLAB

Software. Each ofthe LSZ approach has been implemented in ArcView GIS software

to prepare the LSZ maps.
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Table 3.3: Computing resources used for implementation of different approaches
for LSZ mapping.

Activities Computing resources

Thematic Data Layer Preparation Erdas Imagine
ArcView GIS

LSZ

Mapping

Conventional Weighting Approach ArcView GIS

ANN Black Box Approach MATLAB

ArcView GIS

Fuzzy Set Based Approach MS Excel spreadsheet
ArcView GIS

Combined Neural and Fuzzy Approach
MATLAB

MS Excel spreadsheet
ArcView GIS
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4.1 Introduction

Chapter 4

Thematic Data Layer Preparation

Preparation of thematic data layers or maps is the most crucial step for GIS-

based landslide susceptibility zonation mapping in this research. A thematic data

layer represents the spatial distribution of an attribute or the spatial relationships

among several selected attributes of a particular theme, such as slope, land use land

cover, lineaments, etc. (Demers, 2000). Successful generation of an accurate LSZ

map depends upon the quality of input thematic data layers. Therefore, appropriate

methods and precautions have been used here in generating the thematic data layers,

which act as spatial database for this study. The spatial database mainly consists of

two parts: i) existing landslide distribution layer and ii) layers corresponding to

causative factors affecting landslides. These factors include lithology, DEM and its

attributes (slope and aspect), lineament, land use land cover and drainage. The

selected factors represent the inherent ground conditions or parameters of the terrain



which make the slope susceptible to landslides and thus, have been considered

responsible for the occurrence of landslides in the region. Soil types and soil depth

may also be important causative factors for landslide studies; however, in this study

area, the depth of weathering is very shallow and there is relatively thin soil cover. As

the bedrock is almost invariably exposed in road cuttings and as natural outcrops, soil

types and soil depth have not been considered in this study.

Moreover, rainfall and earthquakes are external (triggering) factors with heavy

dependence on temporal phenomena. Further, data on past records of landslide

occurrence in relation to rainfall and earthquakes are not available. Therefore, these

have also not been considered, as the aim here is to assess the probability of

occurrence of landslides at spatial level.

A thematic data layer corresponding to the existing landslide distribution has

been carefully prepared using remote sensing and field data. This is used to establish

spatial correlations between existing landslides and the factors for LSZ mapping of

the area.

This chapter deals in various aspects of data capturing, data pre-processing and

processing techniques to generate different thematic data layers. Both conventional

and advanced data processing techniques have been adopted. The tasks involved in

the preparation of different thematic data layers in this study can be enumerated as:

i) Pre-processing of remote sensing data

ii) Generation of DEM and extraction of attributes, such as slope, aspect

iii) Preparation of lithology data layer from existing geological map

iv) Generation of lineament and lineament buffer maps

v) Generation ofdrainage order and drainage buffer maps
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vi) Land use land cover map preparation using multi-source classification of

spatial data

vii)Preparation of landslide distribution map using remote sensing images and

field data

4.2 Pre-processing of Remote Sensing Data

The remote sensing images need to be pre-processed adequately before

proceeding for extraction ofuseful information from them. The images often contain

distortions with respect to its geometry and radiometry (e.g., atmospheric effects).

Therefore, it is necessary to rectify these distortions. The rectified image is then

subjected to a number of digital image processing operations, such as contrast

enhancement, image ratioing, image classification, etc. An overall framework of

various digital image processing operations adopted here for various tasks is shown in

Figure 4.1.

4.2.1 Geo-referencing

The digital images acquired from remote sensing satellites are fraught with

geometric distortions, which render them unusable, as these may not be directly

correlated to ground locations (Gupta, 2003). Geo-referencing involves the process of

assigning map coordinate information to the image data so that the geometric integrity

of the map in the image is achieved.
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Figure 4.1: An overall framework of various image interpretation operations
adopted in this study.
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Geo-referencing is commonly performed using the method of rubber-sheet

stretching that has been explained in many standard texts (e.g., Mather, 1999; Gupta,
2003). Anumber of ground control points (GCPs) uniformly distributed over the
entire study area are collected such that these can easily be located on both the image
to be geo-referenced and the reference image or map, such as atopographic map.

In this study, the geo-referencing of remote sensing data (IRS-1C LISS-III and

IRS-ID PAN images) has been performed. In the first step, the scanned topographic
maps have been geo-referenced to geographic coordinate system. In the process, input
ground control points (GCPs) have been taken on the grid points of the topographic
map and reference coordinates have been put through key board. To have a nominal

measurement in meters, the georeferenced topographic maps have been reprojected to

polyconic projection system with Modified Everest spheroid and datum. These maps
have been later used as reference maps for geo-referencing of satellite images and
geological map.

4.2.1.1 Geo-referencing ofLISS-III image

The IRS-1C LISS-III image has been geo-referenced with the topographic maps

by taking input GCPs from the LISS-III image and reference GCPs from topographic

maps. The intersections of higher order drainages/rivers are mostly considered as the

GCPs in view of the absence of other distinct features in the area. As the time

difference between the survey time for preparing topographic maps (1960s) and the

remote sensing data (2000) is about four decades, in such ahilly terrain the shifting of

the high order drainage/river can be assumed to be negligible within this span of time.

Therefore, it is believed that the GCPs identified for geo-referencing will be accurate

to a large extent. A total of 35 well distributed GCPs have been considered for
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registration and an RMS control point error of 0.83 pixel is obtained. Also, the
registration is checked with another set of independent 11 GCPs, which yielded an
RMS error of 0.96. It is found that the RMS errors obtained using Is' order
polynomial model for geometric correction is within the acceptable limit of one pixel.
The nearest neighbor resampling method has been adopted to produce the geo-
referenced LISS-III image (Figure 4.2), as this preserves the original brightness
values in the output image.

4.2.1.2 Registration of PAN image with LISS-III image

Co-registration of IRS-ID PAN with IRS-IC LISS-III image is essential in view

of the fact that the PAN image is used for selecting training and testing data samples
for multispectral (LISS-III) image classification. Therefore, the PAN image has been

registered with LISS-III image by taking input GCPs from the PAN image and

reference GCPs from LISS-III image. In this co-registration process, aset of 50 well

distributed GCPs produced an RMS control point error of 0.71 pixel and 15 check

GCPs yielded an RMS error of 0.68 pixel - both of which are within the acceptable
limit of less than a pixel. The Ist order polynomial model with nearest-neighbor
resampling method is used for this purpose. The registered PAN image thus obtained
is shown in Figure 4.3.

3

*

V

4.2.2 Atmospheric Corrections

The optical remote sensing images invariably contain the effect of selective

atmospheric scattering and absorption of the solar radiation. In the visible - near

infrared region of the electromagnetic spectrum, scattering is the most dominant f
process leading to path radiance. This has an additive role and affects the brightness
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Figure 4.2: IRS-IC LISS-III false colour composite (NIR=R, Red=G, Green=B).
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Figure 4.3: IRS-ID PAN image of the area. (Note: A portion of image is covered
with clouds).
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values (Jensen, 1996). The remote sensing data, therefore, need to be corrected.

Although, there are many techniques to perform this correction, the most widely used,

the 'dark object subtraction' technique (Chavez, 1988) has been adopted to correct the

atmospheric scattering. An empirical approach has been used to rectify the remote

sensing images for path radiance. The minimum DN values for green, red, near

infrared (NIR) and shortwave infrared (SWIR) bands were extracted and were

expected to be due to path radiance. These values were subtracted from DN values of

pixels in the respective bands to generate a path radiance corrected image.

The corrected LISS-III and PAN images formed the data sources for preparation

ofdifferent thematic data layers required for landslide susceptibility studies.

4.3 Landslide Distribution Layer

Mapping of existing landslides is essential to understand the relationships

between the landslide distribution and the causative factors. As, it is just not possible

to map each and every landslide via field surveys in such a rugged terrain, a

comprehensive mapping of landslide was undertaken through remote sensing image

interpretation, aided by field verifications at sampled locations.

The identification of landslides on remote sensing image is based on the spectral

characteristics, shape, contrast and the morphological expression. In general, there is a

distinct spectral contrast between landslides and the background area. High spatial

resolution IRS-IC-PAN and PAN-sharpened LISS-III images have been used for

landslide identification, recognition and mapping.

On the PAN image, landslides appear as features of very light tones due to rock

debris without any vegetation on the slope. After enhancing the contrast of the PAN

75



image, landslides occurring in barren areas could also be identified. A few old

landslides were identified on the basis of their shape, landform and drainage.

Feature extraction and interpretation is highly effective by using PAN-sharpened

multi-spectral image products (Welch and Ehler, 1987; EOSAT, 1994; Sabins, 1996;

Sharma et al.. 1996; Saraf, 2000; Prakash, et al., 2001; Sanjeevi et al., 2001;

Shanmugam and Sanjeevi, 2001; Gupta, 2003). This product has the advantage of

having spatial characteristics from the PAN image and spectral information from the

multispectral image. For generating such product, the co-registered PAN and LISS-III *

images were used. The colour infrared composite of multispectral LISS-III image was

split or transformed into intensity-hue-saturation (IHS) components. The Intensity

component was replaced with the high resolution PAN image, which was followed by

a reverse transformation. The resultant false colour composite (FCC) is the PAN-

sharpened image (Figure 4.4). On the PAN-sharpened LISS-III image, the landslides

appear as bright-white features (due to high reflectance) that are easily distinguished

from other features. Further, landslides are also characterized by fan shape, sharp

lines of break in topography and sometimes due to local drainage anomaly. Often, the

toe part of the slide gives rise to a debris flow channel.

Many of the landslides identified on both PAN and PAN-sharpened LISS-III

images have also been verified in the field. A total of 101 landslides of varying ^

dimensions (180 m2 to 27400 m2) were identified from remote sensing images

(Figure 4.5) and field surveys. Field photos of some landslides are shown in

Figure 4.6. Majority of landslides have an areal extent of 500 m2 - 2000 m2. Most of

the observed landslides are rock slides. However, in some cases, complex types of

failure are also present.
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Figure 4.4: PAN-sharpened LISS-III image of the area. (Note: A portion of
image is covered with clouds. This portion was masked out in the
analysis).
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Figure 4.5: Comparison of (a) PAN-sharpened LISS-III image and (b) IRS-PAN
image for interpreting landslides. The same landslides are encircled
with same colour in both the images.
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(a) Landslide at Dandagaon (Lopchu) (b) Landslide in Phubsering Tea Garden

(c) Landslide on Darjeeling-Rock
Garden road

(d) Landslide in Badamtam tea garden

(e) Landslide in Ging tea garden

Figure 4.6: Field photographs of landslides in the study area.
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(f) Landslide and road sinking on
Ghum-Sukhiapokhri road



The landslides thus identified on the remote sensing images are digitized as

polygons in one separate vector layer. Further, the landslides mapped from field data

are also digitized in one vector layer. The two layers are then merged into single

landslide distribution layer (Figure 4.7). This layer is then converted to a rasterized

landslide distribution layer with a pixel size of 25m x 25m. This pixel size is

considered to match with the nominal spatial resolution of LISS-III image. In total,

there were 339 landslide pixels in the study area.

4.4 Digital Elevation Model (DEM)

DEM represents the spatial variation of elevation over an area. It is an important

basic component in LSZ studies. In this study, DEM has been used:

i) To derive terrain related attributes like slope and aspect used as inputs for

preparation of LSZ map.

ii) As an input layer to multi-source classification of remote sensing data for land

use land cover map preparation to minimize the error in classification due to

topographic variations.

The DEM has been prepared using the conventional and most prevalent method of

digitisingcontours from Surveyof India topographic maps.

4.4.1 DEM from Topographic Map

The contours at 10m and 20m intervals on 1:25,000 scale topographic maps and

40m interval on 1:50,000 scale maps respectively have been digitized onscreen. The

triangulated irregular network (TIN) method has been used to generate the DEM from

these digitized contours. A DEM at spatial resolution corresponding to pixel size of
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25m x 25m has been generated to match the nominal spatial resolution of LISS-III

image.

4.4.2 DEM based Derivatives

The DEM at 25m spatial resolution is used to derive slope and aspect data

layers, which are later used for the generation of LSZ map of the area.

4.4.2.1 Slope >

Slope is the angle formed between any part of the earth's surface and a

horizontal datum. Slope angle is one of the key factors in inducing slope instability of

the terrain. It has been widely shown that landslides tend to occur more frequently on

steeper slopes (Cookeand Doornkamp, 1990; McDermid and Franklin, 1995), but this

is not always the case. Slope failures tend to increase with slope angle but when the

slope becomes almost vertical, landslide occurrence is generally found to be very ^

scarce or absent (Selby, 1993).

Slope can be designated as the first derivative of DEM. A slope map is a raster

map in which the attribute of each pixel denotes the maximum slope at a particular

location. The slope map has been prepared from the DEM with 25m spatial

resolution. The slope map thus derived from the DEM shows the range of variation of ^

slopes from 0° to 90°, which have been further classified into 5 categories (Table 4.1)

as per slope classification given in other studies (Anbalagan, 1992; Gupta et al., 1999;

Dhakal et al., 2000). Figure 4.8 represents the slope data layer of the study area.

The areal distribution of different slope categories has been derived using GIS

and is listed in Table 4.1. It is observed that in the present study area, the most

frequent is the slope category of 15°-25°, followed by 25°-35°, 0°-15°, 35°-45°
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Figure 4.7: Existing landslide distribution layer of the area.
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Figure 4.8: Slope layer of the area.
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categories, the least frequent being the >45° slopecategory. It is also observed that the

slope category of 0°-15° exists mostly on ridge tops, whereas the other slope

categories are found to be well distributed all over the study area.

These slope categories are spatially correlated with the landslide pixels in the

area (Table 4.1). It is observed that the slope category of 25°-35° has the highest

incidence of landslides, followed by slope categories 15°-25°, 35°-45°, 0°-15° with

least landslides occurring in the slope category >45°.

Table 4.1: Distribution of existing landslides in different slopecategories.

Slope
Categories

Area of

slope
categories

(km2)

Percent

area

(%)

Landslide

area per

category
(km2)

Percent Landslide

area per category

(%)

0°-15° 32.1 12.6 0.014 6.6

15°-25° 91.8 36.1 0.073 34.6

25°-35° 90.3 35.5 0.082 38.9

35°-45° 31.4 12.3 0.036 17.1

>45° 8.9 3.5 0.006 2.8

Total 254.5 100.0 0.211 100.0

4.4.2.2 Aspect

Aspect is defined as the direction of maximum slope of any location on surface

of the earth. It is related to the distribution and density of vegetation on mountainous

slopes. As vegetation provides anchorage to the ground, the stability of slope is also

related to the aspect. Hence, aspect has an indirect influence on slope instability. In

general, south facing slopes have lesser vegetation density as compared to north

facing slopes and hence, the erosional activity is relatively more in former case (Sinha

et al, 1975). Marston et al. (1998) reported that soil exposed on south-facing slopes
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were subjected to several wetting and drying cycles, thus increasing landslide activity

in the Himalayas. Based upon the landslide distribution, south and east facing slopes

were considered susceptible to landslides by Dhakal et al., 2000. According to Lin

and Tung (2003), the southeast aspect displayed higher potential landslide risk than

other directions.

Aspect can be designated as the second derivative of DEM. The aspect map

generated from the DEM has shows slope directions from 0° to 360° with respect to

the north. These have been classified here into nine aspect categories (Table 4.2) as

per the classification given in other studies (Sarkar and Kanungo, 2004; Saha et al.,

2005). Figure 4.9 shows the aspect data layer of the study area. It is observed from the

aspect map that the northern part of the study area is dominated by N, NE and E

aspects, whereas the southern part is dominated S, SW, SE and W aspects. The central

portion is occupied by E, SW and NW aspect categories.

The areal distribution of different aspect categories has been derived and is

listed in Table 4.2. It is observed in the present area that the most frequent is the NW

aspect, followed by N, W, E, SE, NE, S, SW aspects, the least frequent being the

category of flat which ought to be the case in hilly terrain.

The spatial distribution of landslides in different aspect categories has been

obtained (Table 4.2). It is observed that the SE, E and S aspect categories have higher

percentage (22.6%, 21.7% and 14.6% respectively) of landslide occurrences in

comparison to other aspects. This also indicates that the southern, southeastern and

eastern facing slopes are more susceptible to landslide occurrences.
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Figure 4.9: Aspect layer of the area.
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Table 4.2: Distribution of existing landslides in different aspect categories.

Aspect
Categories

Slope directions
with respect to

north

Area of

slope
categories

(km2)

Percent

area

(%)

Landslide

area per

category
(km2)

Percent

Landslide area

per category
(%)

Flat Undefined 1.3 0.5 0.000 0.0

N 0°-22.5°, 337.5°-360° 37.4 14.7 0.014 6.6

NE 22.5°-67.5° 28.2 11.1 0.020 9.4

E 67.5°-112.5° 33.0 13.0 0.046 21.7

SE 112.5°-157.5° 28.5 11.2 0.048 22.6

S 157.5°-202.5° 23.5 9.2 0.031 14.6

SW 202.5°-247.5° 18.7 7.3 0.012 5.7

W 247.5°-292.5° 34.4 13.5 0.016 7.6

NW 292.5°-337.5° 49.5 19.5 0.025 11.8

Total 254.5 100.0 0.212 100.0

4.5 Lithology

The distribution of lithology in a region reflects different lithologic groups,

which indirectly represent the structure, strength and stress distribution of slopes as

well as the topography (Lan et al., 2004). Different rock types (or lithology) have

varied inherent characteristics such ascomposition, structure and compactness, which

contribute to the strength of the material. The stronger rocks give more resistance to

the driving forces as compared to weaker rocks, and hence are less susceptible to

landslides and vice versa. Therefore, lithology is an important factor for LSZ

mapping.

The geological map (scale 1:250000) of Sikkim-Darjeeling area published by

Roy (1976) and Acharya (1989) is used as the base map for preparing the lithology
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data layer. The rock types present in the area are Darjeeling gneiss, Paro gneiss,

Lingtse granite gneiss, feldspathic greywacke, and quartzites of the Paro sub-group

and the Reyang group. The Lingtse granite gneiss rocks are strongly foliated and

sheared showing very high weathering at most locations. The Paro gneisses are

stronger and coarse grained than the Darjeeling gneiss ofhigher metamorphic grade.

The quartzites are highly jointed and fractured. However, all the rocks are folded and

sheared to varying degrees and they have been subjected to high levels ofweathering

along the drainages. The competent rocks such as quartzite, greywacke are less

susceptible to landslides than the gneisses as more numbers oflandslides are observed

in gneissic rock in the field.

The geological map is geo-referenced with the topographic maps. The

boundaries between different rock types have been digitized on a vector layer and

transformed to polygons. Minor modifications in lithological boundaries at some

places have also been incorporated using field observations. Finally, the vector layer

has been rasterized (25m x 25m pixel size) to produce a lithology data layer

(Figure 4.10). It is observed from the lithology data layer that the northern part ofthe

study area is occupied by feldspathic greywacke, Lingtse granite gneiss, Reyang

quartzite and few patches of Paro quartzite. Darjeeling gneiss is present on the

southeastern part of the study area. One patch of Paro quartzite is present on the

southern part and rest ofthe area is covered by Paro gneiss.

The areal distribution of different rock types has been derived and is listed in

Table 4.3. It isobserved from Table 4.3 that the most frequent category of lithology is

the Paro gneiss, followed by Darjeeling gneiss, feldspathic greywacke, Lingtse granite

gneiss, Paro quartzite, the least being the Reyang quartzite.
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Figure 4.10: Lithology layer of the area.
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The spatial distribution of landslides in different rock types has been obtained

(Table 4.3). It is observed that Paro gneiss has maximum incidence of landslides in

comparison to other categories and quartzites and Lingtse granite gneiss have the least

occurrences of landslides.

Table 4.3: Distribution of existing landslides in different rock types (lithology
categories).

Rock types
(Lithology categories)

Area of

lithology
categories

(km2)

Percent

area

(%)

Landslide

area per

category
(km2)

Percent

Landslide area

per category

(%)
Darjeeling Gneiss 45.8 18.0 0.048 22.6

Feldspathic Graywacke 28.7 11.3 0.038 17.9

Paro Gneiss 154.5 60.7 0.099 46.7

Lingtse Granite Gneiss 13.0 5.1 0.009 4.3

Paro Quartzite 7.5 2.9 0.009 4.3

Reyang Quartzite 5.0 2.0 0.009 4.3

Total
—

254.5 100.0 0.212 100.0

4.6 Lineaments

Lineaments are the structural features which describe the zone/plane of

weakness, fractures and faults along which landslide susceptibility is high. The term

lineament is used as "a mappable simple or composite linear feature of a surface,

whose parts are aligned in a rectilinear or slightly curvilinear relationship and which

differs distinctly from the pattern of the adjacent features, and presumably reflects

subsurface phenomena" (O'Leary et al., 1976). Hence, the lineaments include all

structural, topographical, vegetational, soil and lithological trends, which are likely to

be the surface expressions of buried fractures and structures. The lineaments are
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related to the fracture systems, discontinuity planes, faults and shear zones in the

rocks. It has been generally observed that the probability of landslide occurrence

increases at sites which are close to lineaments (Greenbaum et al., 1995). The

lineaments, not only affect surface material structures but also make contribution to

the terrain permeability, favoring slope instability. On a photograph or an image,

lineaments (photo-lineaments) can be easily mapped by visual interpretation using

various image interpretation elements, such as tonal variation, texture, pattern,

association, etc. Remote sensing techniques have proven to be very successful for the

detection of lineaments (Suzen and Toprak, 1998; Gupta, 2003).

In this study, the lineaments are interpreted from the PAN and LISS III images.

The individual bands of LISS III image are processed using linear contrast stretching

and then 3*3 edge enhancement filters to enhance the high frequency features. Then,

all the four bands are stacked to produce the edge-enhanced image which has been

used to visually interpret the lineaments on the basis of tonal contrast, structural

alignments and rectilinear trends of morphological features and linear stream courses

that are conspicuous by their abrupt changes in the course. There is no major

thrust/fault reported in the study area, but mega lineaments are identified. The

interpreted lineaments are digitized onscreen and are subsequently rasterized on a

spatial resolution of 25m to produce the lineament data layer (Figure 4.11).

4.6.1 Preparation of Lineament Buffer Layer

Generally, the incidence of landslide decreases with the increase in distance

from the lineaments. The 'distance' function of ArcView GIS has been used to find out

the shortest distance of each pixel to any of these lineaments and a buffer zone is
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Figure 4.11: Lineament layerof the area.
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created around each lineament. The lineaments make the materials more susceptible

to landslide because of material weakening and variations in stress accumulation or

tectonic activity at different distances from lineaments. Therefore, there is not a

consensus amongst the researchers about the distances to the lineaments (width of

buffer zone) to be considered for LSZ studies. As a result, different researchers have

used different distances (i.e., 500m to 2km) with respect to the closeness to the

lineaments (Gupta and Joshi, 1990; van Westen and Bonilla, 1990; Mehrotra et al.,

1991; Anbalagan, 1992; Pachauri and Pant, 1992; Maharaj, 1993; Mejia-Navarro et

al., 1994; Gupta et al., 1999; Luzi and Pergalani, 1999; Donati and Turrini, 2002;

Saha et al., 2005).

Keeping these in view, buffer zones at 250 m intervals are initially created. The

spatial distributions of existing landslides in these buffer zones are examined and it is

found that 98% of landslide pixels occur in 1st two buffer zones (up to 500 m). Hence,

it is decided to consider four buffer zones at 125 m intervals up to 500 m and another

buffer zone beyond 500 m to establish the influence of lineaments on landslide

occurrence. Thus, a lineament buffer layer consisting of five buffer categories namely

0-125 m, 125-250 m, 250-375 m, 375-500 m and >500 m has been prepared. The

lineament buffer layer of the study area is shown in Figure 4.12. The spatial

distributions of existing landslides in these five categories have been determined and

are given in Table 4.4. It isobserved from this table that the lineament buffer category

of 0-125m has the highest incidence of landslides, followed by categories 125-250m,

250-375m, 375-500m with least landslides occurring in the lineament buffer

category of >500m. Hence, it can be stated that as the distance from lineaments

increases, the landslide susceptibility decreases.
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Table 4.4: Distribution ofexisting landslides in different lineament buffer
zones.

Lineament

Buffer

Categories

Area of Lineament

Buffer Categories
(km2)

Percent

area

(%)

Landslide

area per

category
(km2)

Percent

Landslide area

per category
(%)

0-125m 91.7 36.0 0.152 71.7

l25-250m 68.0 26.7 0.022 10.4

250-375m 45.2 17.8 0.022 10.4

375-500m 25.7 10.1 0.011 5.2

>500m 23.9 9.4 0.005 2.3

Total 254.5 100.0 0.212 100.0

4.7 Drainage

Most of the landslides in hilly areas occur due to the erosional activity

associated with drainage. Therefore, adrainage layer has been prepared by digitizing

the drainage lines from the topographic maps in a vector layer. Later, this layer is

overlaid on LISS-III image for modifying the changes in drainage lines. This is felt

necessary as most ofthe 1st order drainages, which are generally not present in the

topographic maps, are easily interpreted from the LISS-III image, which also shows

change in the course of the river and other major drainages at some places. This layer

is used for drainage ordering and preparation of drainage buffer layer. Drainage

ordering of all the drainage lines is done to consider the lower order drainages for

LSZ mapping as these play important role in initiating erosional activities in the form

of landslides in hilly terrains.

102



88°10'E

27°08'N —
- 27°08'N

*

*

26°56'N — - 26°56rN

88°10'E 88°25'E

Figure 4.12: Lineament buffer layer of the area.
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4.7.1 Drainage Ordering

The ordering of the drainage lines has been performed on the basis of Strahler

classification (Strahler, 1964). It is a simple method of classifying stream segments

based on the number and type of tributaries in the upstream. A stream with no

tributaries (headwater stream) is considered as a first order stream. A segment,

downstream of the confluence of two first order streams is a second order stream.

Thus, an n' order stream always starts downstream ofthe confluence oftwo (n-lf

order streams. This has been illustrated in the Figure 4.13. As per Strahler's

classification, the drainage lines in the study area are classified into different drainage

orders. The drainage order layer thus prepared (Figure 4.14) shows that the drainages

up to 6th order are present in the study area. Subsequently, this layer has been

rasterised at 25m spatial resolution for its use in preparing the drainage buffer layer

which will serve as an input thematic data layer for LSZ mapping.

4.7.2 Preparation of Drainage Buffer Layer

Buffer zones of 25m width on either side of the drainage lines for all the

drainage orders are created to consider the influence of drainages on landslide

occurrences. It is observed from the spatial distribution of existing landslides in these

buffer zones (Table 4.5) that majority of landslides occur in the 1st and 2nd order

drainage buffers only. This is also the fact that in hilly terrains, the lower order

drainages play an important role in initiating erosional activities in the form of

landslides. Therefore, 25m buffer zones along 1st and 2nd order drainages only are

considered to create a drainage buffer layer (Figure 4.15) for further analysis.
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Table 4.5: Distribution of existing landslides in different drainage buffer zones.

Drainage
Buffers

(25m)

Number

of pixels
Area

(km2)

Landslide

pixels per
category

Landslide area

per category
(km2)

1st Order 116168 72.6 102 0.064

2nd Order 27690 17.3 44 0.027

3rd Order 10294 6.4 4 0.002

4th Order 6025 3.8 11 0.007

5th Order 4708 2.9 18 0.011

6th Order 2766 1.7 0 0.000

Total 167651 104.7 179 0.111

4.8 Land Use Land Cover Classification

The land use land cover information of an area is quite essential for proper

planning, management and monitoring of natural resources. It is an important input

for many geological, hydrological, ecological and agricultural models. Land use land

covermap generally shows distribution of forest cover, water bodies and types of land

use practices. Many studies (e.g., Coppin and Richards, 1990; Selby, 1993; Mehrotra

et al., 1996) have revealed a clear relationship between vegetation cover and slope

instability. Parameters, such as cohesion and friction angle of soil and pore-water

pressure, tend to get modified substantially by the presence of vegetation. The

incidence of landslide is inversely related to the vegetation density. Hence, barren

slopes are more prone to landslide occurrence as compared to the vegetated surfaces.

Therefore, the land use land cover information has been is considered as one of the

factors responsible for landslide occurrences, as considered in other studies (e.g.,

Gupta et al., 1999; Saha et al., 2002; Sarkar and Kanungo, 2004; Saha et al., 2005).

Remote sensing images help in gathering quality land use land cover

information at local, regional and global scales because of its synoptic view, map like
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Figure 4.13: The drainage order scheme (Strahler, 1964).
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Figure 4.14: Drainage order layer of the area.
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format and repetitive coverage (Csaplovics, 1998; Foody, 2002). Further, in

mountainous regions like the Himalayas, particularly in the inaccessible areas due to

high altitudes and ruggedness in the terrain, remote sensing images are quite useful

for mapping. Over the years, land use land cover mapping in these areas using remote

sensing data have been reported with varying degrees of success. This may be

attributed to the factors that influence the remote sensing data processing and

interpretation, particularly in mountainous terrains. These factors include the presence

of cloud cover, shadows due to high altitudes, steep slopes, low sun angle and

differential vegetation cover. Hence, due to changes in topographical and

environmental conditions, spectral characteristics also change from region to region

(Arora and Mathur, 2001). Therefore, the approach for land use land cover

classification that incorporates ancillary data from other sources may be more

effective than that is based solely upon multi-spectral data from one sensor. The data

from other sources include the topographic maps (Bruzzone et al., 1997), geological

(Gong, 1996) and other maps. The topographic maps are useful in generating the

DEM, which alongwith its attributes, such as slope and aspect, provide the basis for

multi-source classification (Strahler et al., 1978; Jones et al., 1988; Frank, 1988;

Janssen et al., 1990; Saha et al., 2005). Multi-sensor classification approach for

vegetation mapping can also be adopted by combining data from different remote

sensing sensors (Michelson et al., 2000). Furthermore, the derivatives ofmultispectral

images like principal components analysis (PCA) and normalised difference

vegetation index (NDVI) may also be useful to improve the land use land cover

classification from remote sensing data in mountainous regions (Eiumnoh and

Shrestha, 2000; Saha et al., 2005).
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In mountainous terrain, such as Himalayas, shadow is the major problem in

achieving the accurate land use land cover classification from remote sensing data.

The effect of shadow in mountainous region can be minimized. Majority of the

shadow suppressing methods are based on shaded relief models that are produced

from DEM. But, many studies (e.g., Kawata et al., 1988; Civco, 1989; Colby, 1991;

Curran and Foody, 1994), have shown that the correction for shaded slopes may get

over-estimated due to the errors in creating DEM and also the way the DEM is

applied in the classification process. The use ofNDVI image as an additional layer for

classification has been recommended to overcome this problem, since the band ratio

derivatives may help in nullifying the topographic effect to some extent (Holben and

Justice, 1981; Apan, 1997). However, NDVI alone may not be able to eliminate the

shadow effect completely. Later, Eiumnoh and Shrestha (2000) and Saha et al. (2005)

incorporated both NDVI and DEM images as additional layers in the classification

process and found a significant improvement in the classification accuracy.

In this study, the IRS-IC LISS-III image has been used as the primary data

source along with NDVI and DEM images as additional data layers to implement

multi-source land use land cover classification process. Separability analysis using

transformed divergence is performed to examine the significance of various spectral

bands in the classification process. Most widely used maximum likelihood classifier

(MLC) is used to perform the classification. A very small portion covered by the

cloud and its shadow in the original LISS-III image has been masked and then used as

the primary data to perform land use land cover classification. The PAN image is used

as the reference data for generating training and testing datasets. This is in accordance

with other studies on land use land cover classification ofremote sensing data, where

finer resolution data have also been used as reference data (Fisher and Pathirana,
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1990; Foody and Arora, 1996; Shalan et al., 2003; Saha et al., 2005). The preparation

of reference data is ably supported with field data as well as information from

topographic maps.

4.8.1 Methodology

A multi-source image classification involves a number of steps which include

generation of ancillary data layers (NDVI and DEM), image classification and

accuracy assessment (Figure 4.16).

4.8.1.1 Normalised Difference Vegetation Index (NDVI)

During field surveys, different types ofvegetation were observed in the study

area. Hence, NDVI has been used as an ancillary data layer in the classification

process to enhance the separability among various vegetation classes, and also to

reduce the effect ofshadow due totopography. The NDVI can be stated as,

NDVI = (NIR band - Red band) / (NIR band + Red band) (4.1)

The DN values of pixels of the NDVI image thus produced range from 0.00 to

0.83 with higher values indicating increasing biomass. The positive values represent

various types of vegetation classes. Near zero values indicate non-vegetation classes,

such as water, river sand and barren land.
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Figure 4.16: Steps for multi-source land use land cover classification.
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4.8.1.2 Image Classification

Image classification process is based on several steps, as listed below:

a) Selection of land use land cover classification scheme

b) Formation of training dataset

c) Separability analysis and

d) Maximum likelihood classification (MLC)

a) Selection of land use land cover classification scheme

A classification scheme defines the land use land cover classes to be considered

to prepare land use land cover map from remote sensing image data. Sometimes, a

standard classification scheme, such as Anderson's land use land cover classification

system (Anderson et al., 1976) may be used, while at other times the number of land

use land cover classes may be chosen according to the requirements of the specific

project for a particular application (Arora and Mathur, 2001; Saha et al., 2005). In this

study, during field visits, eight land use land cover classes were identified in the study

area. These classes are thick forest, sparse forest, tea plantation, agriculture, barren,

built up, water bodies and river sand. This scheme of classification was adopted

keeping in view the land use land cover scenario in the region and also the schemes

adopted in other studies (e.g., Sarkar and Kanungo, 2004; Saha et al., 2005) for the

purpose of LSZ mapping. Some of these classes as they appear in the field are shown

in Figure 4.17. Detailed description of all these classes along with their interpretative

characteristics on the FCC of LISS-III image and PAN image (Figure 4.18) isgiven in

Table 4.6. These information are used to identify the training and testing areas on the

image for carrying out supervised classification and accuracy assessment.
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Table 4.6: Characteristics of land use land cover classes.

Land use

land cover

class

Description Interpretation on
LISS-III false

colour composite

Interpretation on
PAN image

Thick

forest

Tall dense trees Dark red with rough
texture

Dark tone with rough
texture

Sparse
forest

Scanty tall trees and
low vegetation
density with

exposed ground
surface

Dull red to pinkish Light tone with dark
patches

Tea

plantation
Tea plants with

moderate vegetation
density

Pink and smooth

appearance

Light tone with
smooth patches

Agriculture Crops on hill
terraces as step

cultivation

Dull red and smooth

appearance

Step like arrangement
of fields and bright
tone with smooth

texture

Barren land Exposed rocks/soils
without vegetation

Yellowish Very bright tone

Built up
area

Towns and villages;
block like

appearance

Bluish Typical blocky
appearance with light

tone

Water

bodies

Rivers and lakes Cyanish blue to blue
according to the

depth of water and
sediment content

Dark tone

River sand River sediments on

the bank

Cyanish Bright tone

b) Formation of training dataset

Training dataset preparation is a key step in supervised image classification

process. The success of image classification highly depends on the quality of training

dataset which in turn depends on the capability of image interpretation and knowledge

on the land use land cover patterns of the study area (i.e., field verification). Hence,

the training areas for different land use land cover classes must be selected from the

regions that are representative of the land use land cover classes under investigation

and also from relatively homogeneous areas containing these classes. The collection

of training data is generally a tedious, time consuming and costly affair and, therefore,
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Figure 4.17: Field photographs showing various land use land cover classes.
(Tf - Thick forest; Sf - Sparse forest; Tp - Tea plantation;
Ag - Agriculture; Hb - Habitation; Ls - Landslide; Bl - Barren
land).
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Figure 4.18: A sub-scene of IRS-ID PAN image showing various land use land
cover classes. (Tf - Thick forest; Sf - Sparse forest; Tp - Tea
plantation; Ag - Agriculture; Hb - Habitation).
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the size of the training dataset must be kept small. On the other hand, the number of

pixels in each class constituting the training dataset must be large enough to

accurately characterize and classify the land use land cover classes (Saha et al., 2005).

As a thumb rule, the number of training pixels for each class may be kept at 30 times

the number of bands under consideration (Mather, 1999). In this study, the number of

training pixels for each class (Table 4.7) was defined in accordance with the

proportion of the area covered by the respective classes on the ground. Similar to

other studies, the fine spatial resolution PAN image and topographic maps were used

as reference data for ground truths to demarcate the training pixels on the LISS-III

image. All the eight land use land cover classes were visually interpreted on the PAN

image based on the characteristics defined in Table 4.6. The PAN image derived land

use land cover information and ground truth data from field survey were used to

demarcate training areas on LISS-III image for all the classes. Majority of training

areas were normally distributed, which is a basic requirement of the maximum

likelihood classifier used in this study.

Table 4.7: Number of training pixels for each land use land cover class used in
image classification.

Land use land cover class Number of training pixels

Thick forest 1129

Sparse forest 622

Tea plantation 1127

Agriculture 639

Barren land 204

Built up area 288

Water bodies 193

River sand 273
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c) Separability analysis

A separability analysis was performed with multi-source data layers using the

training dataset of all the eight land use land cover classes to observe the spectral

discrimination between these classes. In this study, a combination of six data layers

comprising of Green, Red, NIR and SWIR bands of multispectral LISS-III image,

NDVI and DEM data layers were used as the input dataset for multi-source

classification. Separability is a statistical measure devised on the basis of spectral

distances computed from a combination of bands. Out of a number of separability

measures, the transformed divergence (TD) measure (Janssen et al., 1990) has been

adopted in this study. The separability analysis through transformed divergence is a

widely used measure and computes the spectral distance between the mean vectors of

each pair of signatures. This separability analysis is related to the maximum

likelihood decision rule and helps the user to predict the results of a maximum

likelihood classification. The TD values range from 0 to 2000. A value close to 2000

indicates the best separability between the classes. The values between 1800 and 2000

are generally considered adequate to proceed for classification. The separability

analysis for the present study has been performed using a combination of six data

layers (four bands of LISS-III image, NDVI and DEM) and the TD values obtained

are listed in the form of a matrix (Table 4.8). The average TD value is 1977, which ir

has been considered appropriate for performing classification. The lowest TD value of

1723 is obtained for the signatures of barren land and agriculture. This is on expected

lines as the agriculture lands without cultivation appear to be barren lands. Hence, a

low separability between these two classes is observed.
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d) Maximum likelihood classification (MLC)

A number of classifiers have been developed and tested for remote sensing

image classification. Each of these classifiers has itsown merits and demerits in terms

of efficiency and accuracy. The maximum likelihood classifier was found to be the

most accurate and most widely used for image classification, when the data

distribution assumptions are met. The MLC is based on the decision rule that pixels of

unknown class membership are allocated to those classes with which they have the

highest likelihood of membership (Foody et al., 1992). The details on this classifier

may be found in Richards and Jia (1999).

In this study, the MLC has been used to produce land use land cover map, as it

takes the variability of classes into account via covariance matrix.

Table 4.8: Transformed divergence (TD) matrix for land use land cover classes
using combination of Green, Red, NIR and SWIR bands of LISS-III
image, NDVI and DEM data layers.

Land use land

cover classes
Tf Sf Tp Ag Bl Bu Wb Rn

Thick forest (TO 0 1870.3 1999.6 2000 2000 2000 2000 2000

Sparse forest
(SO

1870.3 0 1987.7 2000 2000 2000 2000 2000

Tea plantation
(Tp)

1999.6 1987.7 0 1982.7 1996.9 1999.6 2000 2000

Agriculture (Ag) 2000 2000 1982.7 0 1723 1881.9 2000 2000

Barren land (Bl) 2000 2000 1996.9 1723 0 1916.9 2000 2000

Built-up area
(Bu) 2000 2000 1999.6 1881.9 1916.9 0 2000 2000

Water body
(Wb)

2000 2000 2000 2000 2000 2000 0 2000

River sand (Rn) 2000 2000 2000 2000 2000 2000 2000 0

123



4.8.1.3 Accuracy Assessment of Land Use Land Cover Classification

A testing dataset has been prepared with the help of reference data (PAN image

and field data). The class allocation of each pixel in the classified image is compared

with the corresponding class allocation on reference data to determine the

classification accuracy. The pixels of agreement and disagreement are compiled in the

form of an error matrix where the rows and columns represent the number of land use

land coverclasses and the elements of the matrix represent the number of pixels in the

testing (reference) dataset. A number of accuracy measures, such as overall accuracy,

user's accuracy and producer's accuracy can be estimated from the error matrix

(Congalton, 1991). The overall accuracy indicates the accuracy of classification as a

whole, where as user's and producer's accuracy measures indicate the accuracy of

individual land use land cover classes. The overall accuracy can be defined as the

ratio of the number of correctly classified pixels to the total number of pixels in the

error matrix. User's accuracy is defined as the probability that a pixel classified on the

map actually represents that class on the ground or reference data. The producer's

accuracy is defined as the probability of a pixel on reference data being correctly

classified (Congalton, 1991).

a) Formation of testing dataset

The choice of suitable sampling scheme and the determination of appropriate

sample size for testing dataset play a significant role in the accuracy assessment of

image classification (Arora and Agarwal, 2002). In the present study, field data on

land use land cover classes and finer resolution PAN image have been used as

reference data to prepare testing dataset for accuracy assessment. The testing pixels

for each land use land cover class have been randomly selected. These pixels are
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distributed all over the study area and are larger than 75 to 100 pixels per class as

recommended by Congalton (1991) for accuracy assessment purposes. The number of

testing pixels considered for each class in this study is listed in Table 4.9.

Table 4.9: Number of testing pixels for each land use land cover class used in
accuracy assessment of image classification.

Land use land cover class Number of testing pixels

Thick forest 368

Sparse forest 254

Tea plantation 366

Agriculture 387

Barren land 113

Built up area 114

Water bodies 11

River sand 151

b) Assessment of classification accuracy

The classified image has been compared with the class identity of testing data

(reference data) and the agreement/disagreement of the pixels have been compiled

(Table 4.10).

The user's and producer's accuracies(Table 4.11) have been computed from

the error matrix as the percentage of the number of pixels correctly classified to the

classified totals (C) and the reference totals (R) ofeach individual class respectively.

The overall classification accuracy of 94.7% has been obtained as the percentage of

the total number of correctly classified pixels (1766 pixels) to the reference or

classified totals (1864 pixels).
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Table 4.10: Error matrix of the classified image with respect to the reference
data (Diagonal elements of the matrix (as underlined) represent the
number of pixels in the classified image correctly matching with
those in the reference data).

Land use land

cover classes in the

classified image

Classes on reference data Total number of

pixels in
classified image

(C)
Tf Sf Tp Ag Bl Bu Wb Rn

Thick forest (TO 363 6 0 0 3 0 0 0 372

Sparse forest (Sf) 4 247 3 1 3 5 3 2 268

Tea plantation (Tp) 0 1 363 9 5 8 0 5 391

Agriculture (Ag) 0 0 0 371 7 7 0 0 385

Barren land (Bl) 0 0 0 3 93 5 0 0 101

Built-up area (Bu) 1 0 0 3 2 89 0 0 95

Water body (Wb) 0 0 0 0 0 0 99 3 102

River sand (Rn) 0 0 0 0 0 0 9 141 150

Total number of

pixels in the
reference data (R)

368 254 366 387 113 114 111 151 1864

Table 4.11: Producer's accuracy and user's accuracy of individual land use land
cover classes derived from accuracy assessment of classification.

Land use land

cover classes

Producer's

accuracy

User's

accuracy

Thick forest 98.6% 97.6%

Sparse forest 97.2% 92.2%

Tea plantation 99.2% 92.8%

Agriculture 95.9% 96.4%

Barren land 82.3% 92.1%

Built-up area 78.1% 93.7%

Water body 89.2% 97.1%

River sand 93.4% 94.0%
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A glance at the values of the producer's accuracy values (Table 4.11) and the

error matrix (Table 4.10) shows that most ofthe land use land cover classes except

barren lands, built-up areas and water bodies have shown more than 90% producer's

accuracy. The class barren land has been misclassified to some extent with the classes

agriculture and tea plantation whereas the class built-up area has been misclassified

with the classes tea plantation, agriculture, barren land and sparse forest. The class

water body has been considerably misclassified with the class river sand.

4.8.1.4 Post-classification Filtering

The classified image, thus, produced may contain some stray pixels. To

generate a smooth image by removing these stray pixels, a 3 x3 pixels majority filter

has been applied which assigns the most dominant class to the central pixel.

Subsequently, the land use land cover information ofthe masked portion in the

original LISS III image has been replaced by the information collected from the

topographic maps and some field data. The land use land cover layer thus prepared is

shown in Figure 4.19.

It can be observed from Figure 4.19 that the northeastern, southeastern and

southwestern parts of the area are dominated by thick forests. Tea plantation and

sparse forests are the major land use land cover categories, which are distributed all

over the area.

The areal distribution of different land use land cover categories has been

derived and is listed in Table 4.12. It is observed from Table 4.12 that the most

frequent categories of land use land cover are tea plantation and sparse forest,

followed by thick forest, agriculture land, barren land, habitation, the least being

water bodies and river sand.
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Table 4.12: Distribution of existing landslides in different land use land cover
categories.

Land use land

cover categories

Area of land

use land cover

categories
(km2)

Percent

area

(%)

Landslide

area per

category
(km2)

Percent

Landslide area

per category
(%)

Agriculture 22.3 8.8 0.053 25.0

Tea Plantation 89.1 35.0 0.052 24.6

Thick Forest 45.4 17.8 0.024 11.3

Sparse Forest 81.1 31.9 0.041 19.3

Barren Land 8.9 3.5 0.036 17.0

Habitation 6.5 2.6 0.006 2.8

Water 0.6 0.2 0.000 0.0

River Sand 0.6 0.2 0.000 0.0

Total 254.5 100.0 0.212 100.0

The spatial distribution of landslides in different land use land cover categories

has been obtained (Table 4.12). It is observed that agriculture and tea plantation

categories have maximum incidence of landslides in comparison to other categories

and water bodies and river sand categories are devoid of landslides.

4.9 Summary

In the foregoing sections, a detailed description of thematic data layer preparation

was presented. It can be observed from Figure 4.7 that a total of 101 existing

landslides of varying dimensions are identified in the area. Most of the observed

landslides are rock slides.

It is also observed that the most frequent is the 15°-25° slope category and the

least frequent being the >45° slope category in the present area. Further, the slope

category of 25°-35° has the highest incidence of landslides with least landslides

128

*



♦

88°10'E 88°25'E

27°08'N -1 A 1 -

Ja/i

•Pvi ^1 H^ Land use iand cover
'4R »H j^r ^]Agriculture land/ A * *"*BP

f**-fii #/ "' |^3H '"''ivRffi f^ ^ Tea plantation
•t^t" *'i' aSw^y^W B^ BTnick forestJG ^•'•£TyfcA''**»',^r* *V]^ ^r 1 Sparse forest

M^^pfa^/l ^fll 1^^ [] Barren land
v83l ^8^^**&•-»_"''" ^^^L ' T HHabitation

Kf?jfeg^arfflL;- ' %S& S ^vefsandr\f*
Eii

*£jj3S 10 12 Kilometers

26°56TM

I i

- 27°08'N

- 26°56'N

88°10'E 8°25'E

Figure 4.19: Land use land cover layer of the area.

129



i

occurring in the slope category >45° (Table 4.1). It can be observed from the spatial

distribution of different aspect categories in the present area that the most frequent is

the NW aspect and the least frequent being the category 'flat' which ought to be the

case in hilly terrain. It is observed that the S, SE and E aspects have the maximum

incidenceof landslides in comparison to other aspects (Table 4.2).

The most frequent category of lithology observed in the area is the Paro gneiss,

followed by Darjeeling gneiss, feldspathic greywacke, Lingtse granite gneiss, Paro

quartzite, the least being the Reyang quartzite. It is observed that Paro gneiss has

maximum incidence of landslides in comparison to othercategories and quartzites and

Lingtse granite gneiss have the least occurrences of landslides (Table 4.3).

A lineament buffer layer has been derived from the lineament data layer with a

buffer width of 125m. It is observed that the lineament buffer category of 0-125m has

the highest incidence of landslides with least landslides occurring in the lineament

buffer category of >500m (Table 4.4). Hence, it can be inferred that the landslide

susceptibility decreases as the distance from lineaments increases.

A drainage buffer layer has been prepared with 25m buffer width along all the

drainage lines. It is observed from the spatial distribution of existing landslides in

these buffer zones (Table 4.5) that majority of landslides occur in the 1st and 2nd order

drainage buffer categories only. This indicates the fact that in hilly terrains, the lower

order drainages play an important role in landslide occurrences. Therefore, 25m

buffer zones along 1st and 2nd order drainages only have been considered for landslide

susceptibility studies.

It can be observed from the land use land cover map (Fig. 4.19) that tea

plantation and sparse forests are the major land use land cover categories, which are

distributed all over the area. It is observed from the spatial distribution of landslides
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that agriculture and tea plantation categories have maximum incidence of landslides

in comparison to other categories and water bodies and river sand categories are

devoid of landslides (Table 4.12).

These thematic data layers pertain to the causative factors that influence the

landslide susceptibility of the study area. In the next chapters, different approaches

developed for landslide susceptibility zonation (LSZ) and risk assessment mapping

have been discussed and implemented using these thematic data layers.
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Chapter 5

Landslide Susceptibility Zonation Using
Conventional Weighting Approach

5.1 Introduction

As mentioned earlier, the LSZ mapping has attracted disaster specialists,

geomorphologists, engineering geologists, scientists, academicians and others, and

several approaches have been developed. A detailed review of these approaches has

already been given in Chapter 2. Although several approaches have been developed

for LSZ mapping, a number of issues that affect the performance of these approaches

have been identified, including the difficulties in handling both continuous and

categorical data together.

The present chapter deals with the implementation of the simplest and the most

widely adopted conventional (subjective or qualitative) weighting approach for LSZ

mapping in Darjeeling Himalayas. This has been attempted to evaluate the

performance of any advanced objective approach such as neural and fuzzy approaches

with respect to the conventional one.



5.2 Implementation of Conventional Weighting Approach

The LSZ mapping is performed to classify the area into different zones of

varying degrees of landslide susceptibility, based on an estimated influence of

causative factors and their categories in landslide occurrences. Therefore, the basic

pre-requisite for LSZ studies is to assign/determine the relative importance of

causative factors (thematic layers) and their categories in terms of weights and ratings

respectively for landslide occurrences. This chapter highlights the implementation of

conventional (subjective) weighting approach to produce the LSZ map. This approach

involves assigning of weights and ratings to the causative factors and their categories

respectively based on the knowledge of the study area and the experience on the

subject. The integration of these subjective weights and ratings produces the LSZ map

of the area. Salient steps used in this approach for LSZ mapping are given in the form

of a flow diagram (Figure 5.1).

5.2.1 Weight and Rating Assignment

The identification of potential landslide areas (landslide susceptibility zones)

depends on the cumulative importance of causative factors and their categories for

landslide occurrences. This can be achieved by developing a weighting scheme in

which factors and their categories are assigned numerical values. A weighting scheme

has been developed based on the importance of causative factors and their categories

for landslide occurrences as observed from field survey and also based on the

knowledge from previous works. In this scheme, the factors have been assigned

numerical weights on a 1-9 scale in order of importance. Ratings have also been

assigned to the categories of the factors on a 0-9 scale. The higher weight or rating

indicates more importance towards landslide occurrences. The weights and ratings
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assigned to the causative factors and their categories in this study are given in

Table 5.1.

Table 5.1: Weights and ratings for causative factors and their categories
(conventional weighting approach).

Causative Factors Weights Categories Ratings
Drainage Buffer 9 25m along Is' order drainage 9

25m along 2nd orderdrainage 5

Lineament Buffer 8 0-125m 9

125-250m 7

250-375m 5

375-500m 3

>500m 1

Slope 7 >45° 9

35°-45° 7

25°-35° 5

15°-25° 3

0°-15° 1

Lithology 6 Lingse Granite Gneiss 9

Darjeeling Gneiss 7

Paro Gneiss 5

Feldspathic Greywacke 3

Paro Quartzite 1

Reyang Quartzite 1

Land use land cover 4 Barren land 9

Sparse forest 7

Agriculture land 5

Tea plantation 3

Habitation 2

Thick forest 1

River sand 0

Water body 0

Aspect 1 South (S) 9

Southeast (SE) 8

East (E) 7

Southwest (SW) 6

Northeast (NE) 4

West (W) 3

Northwest (NW) 2

North (N) 1

Flat 0
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In the study area, it has been observed that most of the landslides are associated

with drainages and hence the maximum weight has been assigned to the drainage
layer. Also, maximum rating 9has been assigned to 1st order drainage buffer category

as most of the landslides initiate from the lower order drainages. The next important

factor considered is lineament. Here, the maximum rating of 9has been given to the

0-I25m lineament buffer category because of the well established fact that the

nearness to the lineaments controls the occurrence of landslide. The ratings for the

categories of lineament buffer have been assigned in a decreasing trend as the

distance increases. Since the steeper slopes are more prone to landslide, the slope

classes have been given ratings in descending order of slope angles. The competent

rocks such as quartzite, greywacke are less susceptible to landslides than the gneisses

and hence, the ratings to lithology categories have been assigned accordingly.

Occurrence of landslides also depends on the type of land use land cover. Barren

slopes are more susceptible to erosion as compared to areas with thick forest and

hence, maximum rating has been assigned to the barren slopes and minimum to the

thick forest. The slope aspect has an indirect influence on slope instability. Based

upon the existing landslide distribution, south and east facing slopes have been

considered more potential for landslides (e.g., Dhakal et al., 2000). Accordingly,

ratings for slope aspect categories have been assigned.

The weighted thematic data layer for each factor has been generated by

multiplying the weight ofthe factor with the ratings ofthe corresponding categories

(as mentioned in Table 5.1). In the'present case, six different weighted thematic data

layers corresponding to the causative factors have been produced.
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5.2.2 Data Integration

The weighted thematic data layers have been integrated arithmeticallyaccording

to the following equation to generate a landslide susceptibility index (LSI) map in

GIS,

LSI = Li + Lu + Sl + As + Lb + Db (5.1)

where Li, Lu, SI, As, Lb and Db are abbreviations for the weighted thematic layers for

lithology, land use land cover, slope, aspect, lineament buffer and drainage buffer

respectively.

It is found from the LSI map that the LSI values range from 21 to 310 in the study

area.

5.2.3 Segmentation of LSI Values into Landslide Susceptibility Zones

The LSI values need to be segmented to generate very high, high, moderate, low

and very low landslide susceptibility zones. Two methods for this have been used:

(a) Segmentation using natural breaks in distribution

(b) Segmentation using success rate curve method

5.2.3.1 Segmentation Using Natural Breaks in Distribution

A judicious way for segmenting LSI values is to search for abrupt changes

(Davis, 1986) in the range of LSI values. The classification procedure reported by

Sarkar and Kanungo (2004) has been followed. For this purpose, a frequency

distribution curve of LSI values has been prepared which shows many oscillations.
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Hence, moving averages with moving intervals of 5, 9 and 13 have been considered to

smoothen the curve. A moving interval of 5 means that the frequency value in the

corresponding curve at any point is an average of the five consecutive values centered

at that point.

The class boundaries have been drawn at significant breaks in the curve and

found to occur at LSI values of68, 137, 176 and 236 in this case (Figure 5.2). Thus,

the LSZ map has been prepared with class intervals 21-68, 69-137, 138-176, 177-236

and 237-310, which are designated as very low susceptibility (VLS), low

susceptibility (LS), moderate susceptibility (MS), high susceptibility (HS) and very

high susceptibility (VHS) zones. The LSZ map thus prepared is referred here as LSZ

Map IA (Figure 5.3).

Visual inspection of LSZ Map IA suggests that all five zones are distributed all

over the study area. The map thus does not show any well defined pattern for the

distribution of susceptibility zones. It is again observed from this map that the VHS

and HS zones have represented mostly the 1st and 2nd order drainage buffer areas.

Thus, it can be inferred that there is a major control of drainage order on landslide

incidence and LSZ mapping.

The area covered by different landslide susceptibility zones and also the

landslide distribution in different susceptibility zones have been calculated (Table

5.2).

It is inferred from Table 5.2 that the VHS zone occupies 6.5% of the study area,

whereas the HS, MS, LS and VLS zones occupy 26.8%, 30.2%, 34.9% and 1.6% of

the study area respectively. This shows that the area wise coverage of different

susceptibility zones is skewed towards lower susceptibility zones, which should not

be the case. The distribution of landslides in different susceptibility zones has been
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compared. It has been found that 10.6% landslide incidence occurs in VHS zone,

while 48.1%, 26.5%, 14.5% and 0.3% landslide area fall in HS, MS, LS and VLS

zones respectively. Hence, it can be stated that 33.3% of HS and VHS areas together

contain 58.7% of existing landslide areas. Also, this shows that the distribution of

landslides over VHS to VLS zones is skewed towards the higher susceptibility zones,

which should in fact be the case.

Table 5.2: Landslide distribution in landslide susceptibility zones of LSZ Map IA
(segmentation using natural breaks in distribution of LSI in
conventional weighting approach).

Landslide

Susceptibility
Zones

Area

(km2)

Percent

Area

(%)
(a)

Landslide

Area per
Class

(km2)

Percent Landslide

Area per Class
(%)
(b)

Landslide

Density
(b/a)

VHS 16.6 6.5 0.023 10.6 1.63

HS 68.4 26.8 0.102 48.1 1.79

MS 77.1 30.2 0.056 26.5 0.88

LS 88.8 34.9 0.031 14.5 0.41

VLS 4.0 1.6 0.001 0.3 0.19

Further, the landslide density for each susceptibility zone has been determined

as the ratio of percent existing landslide area to percent area of that susceptibility zone

(Table 5.2). Ideally, the landslide density should be highest for VHS zone and should

attain a successively decreasing trend from VHS to VLS zones. In Map IA, it is

observed that the landslide densities for VHS and HS zones are almost equal. This

map has a systematic and reasonable trend of variation in landslide density values

only from HS to VLS zones. For VHS and HS zones combined, the landslide density

is 1.76. Hence, it is inferred from Table 5.2 that these higher susceptibility zones do

not have much higher landslide density values as compared to other susceptibility

zones.
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5.2.3.2 Segmentation Using Success Rate Curve Method

Another way for segmenting the range of LSI values statistically is by using

success rate curve method. This method has been adopted to avoid the subjectivity, if

any, in segmentation based on natural breaks. Success rate is defined as percentage of

landslide occurrence in any susceptibility zone.

To implement this method, the observed mean (po) and standard deviation (o0)

from the probability distribution curve of the range of LSI values (21 to 310) have

been determined and are found to be 158.7 and 47.9 respectively. The LSI values

have been divided into five distinct classes (susceptibility zones) with boundaries at

(Po - 1.5wa0), (po - 0.5/wo"o), (po + 0.5woo) and (u<, + 1.5mo0) where m is a positive,

non-zero value. Several LSZ maps of the area have been prepared for different values

of m. The suitability of any LSZ map can be judged by the fact that more percentage

of landslides must occur in VHS zone as compared to other zones. Therefore, the

cumulative percentage of landslide occurrences in various susceptibility zones

ordered from very high susceptibility (VHS) to very low susceptibility (VLS) have

been plotted against the cumulative percentage of area of the susceptibility zones for

LSZ maps with different values of m. These curves have been defined as the success

rate curves (Chung and Fabbri, 1999; Lu and An, 1999; Lee et al., 2002b) and have

been used to select the appropriate value of m to decide the suitability ofan LSZ map.

Five representative success rate curves corresponding tom= 1.1, 1.2, 1.3, 1.4

and 1.5 have been produced (Figure 5.4). It has been observed that for 10% of the

area in VHS zone, the curves corresponding to m=\.\, 1.2, 1.3, 1.4 and 1.5 show the

landslide occurrences of 16.3%, 17.5%, 16.5%, 15.5% and 13.0% respectively.

Hence, for the first 10% area in VHS zone, the curve corresponding to m=\2 has the

highest success rate. Based on this analysis, the LSZ map corresponding tom= 1.2
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appears to be the most appropriate one for the study area. Accordingly, with m= 1.2,

the landslide susceptibility zone boundaries have been fixed at LSI values of 72, 129,

187 and 225. The LSZ map has been prepared with class intervals 21-72, 73-129,

130-187, 188-225 and 226-310, which are designated as VLS, LS, MS, HS and VHS

zones. The LSZ map thus produced is referred here as LSZ Map 1r (Figure 5.5)

Visual inspection of LSZ map IB suggests that all five zones are distributed all

over the study area. The map thus does not show any well defined pattern. It is again

observed that the VHS and HS zones have represented mostly the 1st and 2nd order

drainage buffer areas. It can be inferred that there is a major control of drainage order

on landslide incidence and LSZ mapping.

The area covered by five different landslide susceptibility zones and the

landslide distribution in different susceptibility zones have also been determined

(Table 5.3).

Table 5.3: Landslide distribution in landslide susceptibility zones of LSZ Map Ib
(success rate curve method of segmentation in conventional weighting
approach).

Landslide

Susceptibility
Zones

Area

(km2)

Percent

Area

(%)
(a)

Landslide

Area per
Class

(km2)

Percent Landslide

Area per Class

(%)
(b)

Landslide

Density
(b/a)

VHS 10.6 4.1 0.016 7.4 1.80

HS 61.1 24.0 0.08 37.7 1.57

MS 108.1 42.4 0.088 41.6 0.98

LS 69.9 27.4 0.027 13.0 0.47

VLS 5.2 2.1 0.001 0.3 0.14

It is inferred from Table 5.3 that the VHS zone occupies 4.1% of the study area,

whereas the HS, MS, LS and VLS zones occupy 24.0%, 42.4%, 27.4% and 2.1% of

the study area respectively. This shows that the area wise coverage of different

susceptibility zones is normally distributed, which should be the case. The distribution
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of landslides in different susceptibility zones has been compared. It has been found

that 7.4% landslide incidence occurs in VHS zone, while 37.7%, 41.6%, 13.0% and

0.3% landslide area fall in HS, MS, LS and VLS zones respectively. Hence, it can be

stated that 28.1% of HS and VHS areas together contain 45.1% ofexisting landslide

areas. Also, it is inferred that the existing landslides are normally distributed over

VHS to VLS zones, which should not be the case.

Further, the landslide densities of all the five susceptibility zones have been

determined (Table 5.3). In case of Map IB, it is observed that the landslide densities

for VHS and HS zones are almost equal. This map has a systematic and reasonable

trend of variation in landslide density values only from VHS to VLS zones. For VHS

and HS zones combined, the landslide density is 1.60. Hence, it is inferred from Table

5.3 that these higher susceptibility zones do not have much higher landslide density

values as compared to other susceptibility zones.

5.3 Summary

Visual inspection of LSZ Maps IA and IB suggests that all five susceptibility

zones are distributed all over the study area. The maps thus do not show any well

defined pattern for the distribution of susceptibility zones. It is again observed from

these maps that the VHS and HS zones have represented mostly the 1st and 2nd order

drainage buffer areas. It can be inferred that there is a major control of drainage lines

on landslide incidence and LSZ mapping.

The area wise coverage of different susceptibility zones in case of LSZ Map IB

is normally distributed, whereas that in case of LSZ Map lA is skewed towards lower

susceptibility zones. The distribution oflandslides over VHS to VLS zones is skewed
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towards the higher susceptibility zones in case of LSZ Map IA, whereas in case of

LSZ Map IB it is normally distributed.

In general, it is observed that there is not much difference in landslide densities

of different susceptibility zones for both the LSZ maps. It is also observed that for

VHS and HS zones combined, the landslide density is better for LSZ Map lA (1.76)

than LSZ Map lB (1.60). Also, the LSZ Map 1A has a skewed landslide distribution

towards higher susceptibility zones.

In conventional weighting approach, the weights and ratings are assigned based

on the field observation, where field of view is limited. Considering the distribution of

landslides in field along drainage lines, we presumably considered drainage line to be

the most important causative factor for LSZ and generated the LSZ maps. However,

the causative factors in terms of their importance may have adifferent order, which

may not be decided with alimited field of view. Further, the weights and ratings in

this approach have been assigned on 1-9 and 0-9 scales respectively. However, it may

happen to be a different level of scale differences between the causative factors

(weights) as well as their categories (ratings). Hence, there is alot of subjectivity in

the order and value of importance in terms of weights and ratings of the causative

factors and their categories.

Therefore, to overcome this subjectivity and bias in assigning weights in

conventional weighting approach, advanced techniques like neural and fuzzy

approaches have been attempted for LSZ mapping. The LSZ Map IA has been used as

reference map for evaluating the output of neural and fuzzy approaches (Chapter 6).

But, success rate curve method has been used for segmenting the range of LSI values

statistically to generate the LSZ maps in the later cases.
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Chapter 6

Neural and Fuzzy Set Theoretic Approaches
for Landslide Susceptibility Zonation

6.1 Introduction

Conventional weighting approaches for LSZ mapping have been widely adopted

worldwide. In Chapter 5, a detailed description of this approach as implemented in the

present study area was provided. As has been understood earlier, this approach is

highly subjective in assigning weights and ratings to the causative factors and their

categories respectively. In order to minimize the subjectivity in the weight assigning

process, an objective approach needs to be developed for LSZ mapping.

Recently, the use of artificial neural networks (ANN) have been found to be

advantageous for LSZ mapping (Arora et al., 2004; Lee et al., 2004; Gomez and

Kavzoglu, 2005; Yesilnacar and Topal, 2005) as these have the capability to analyze

complex data patterns and can also handle continuous and categorical data. In

addition, fuzzy set theory has also been found useful for such studies (Chi et al.,

2002b; Gorsevski et al., 2003; Tangestani, 2003; Ercanoglu and Gokceoglu, 2004).



Here, a fuzzy set can be utilised to assign varying degree of memberships to the

categories of causative factors according to their importance in the process. These

membership values can be determined using fuzzy relation concept. Afully objective

approach can be evolved using the neural and fuzzy set theoretic concepts. In this

study, three different approaches, namely ANN black box approach, fuzzy set based

approach and combined neural and fuzzy approach have been developed. The aim is

to demonstrate the utility of these approaches in mapping landslides in an objective

manner. The detail theoretical background of these was provided in Chapter 3. In this

Chapter, the implementation ofthese approaches for LSZ has been described.

6.2 LSZ Using ANN Black Box Approach

The basic concept of ANN black box approach has been discussed in Section

3.3.2.2 of Chapter 3. A flow diagram showing different steps followed in

implementation ofANN black box approach is given in Figure 6.1.

6.2.1 Implementation

A feed forward back-propagation multi-layer artificial neural network with one

input layer, two hidden layers and one output layer has been considered. The input

layer contains 6neurons each representing athematic data layer (i.e., causative factor)

that contributes to the occurrence of the landslide. The output layer contains a single

neuron that represents either the landslide pixels (Case I) or the landslide

susceptibility zones (Case II). Thus, two different datasets have been considered for

implementing the respective cases.
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Figure 6.1: Flow diagram showing different steps of ANN black box approach.
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6.2.1.1 Case 1- Using Existing Landslide Locations

A AW A rchitecture

A schematic representation of ANN architecture, adopted in this case, is given

in Figure 6.2. The ANN architectures with one input layer, two hidden layers and one

output layer have been considered. The input layer contains 6 neurons corresponding

to 6 different causative factors and the output layer contains a single neuron

corresponding to existing landslide locations. The data supplied to input neurons

correspond to the normalized attributes, as given in Table 6.1. The attribute of each

category has been normalized with respect to the highest attribute within the

corresponding thematic data layer (causative factor). The desired output data supplied

to output neuron corresponds to 1.0 for existing landslide location. Initially, a few

ANN architectures were designed by varying the number of neurons in hidden layers.

These networks were trained and tested to evaluate their performance. Subsequently,

the number of networks was increased and a total of 24 ANN architectures were

designed, trained and tested to evaluate their generalization capabilities and

accuracies in the present case.

Data Preparation

The dataset consisted of 339 existing landslide pixels (see Section 4.3). The

complete dataset was divided into two parts, one each for training and testing data

consisting of 170 and 169 independent pixels respectively. The testing dataset was

also used as the verification dataset to control the overtraining of networks.
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Figure 6.2: A schematic diagram of ANN architecture in ANN black box
approach (Case I - using existing landslide locations).

Training and Testing ofANN

The Levenberg-Marquardt back-propagation learning algorithm (implemented

as TRAINLM in MATLAB software) has been used to train the neural networks.

Unlike conventional gradient descent algorithm, it does not consider parameters like

learning rate and momentum factor. In contrast, it takes into account mu (u), mudec

and muinc as training parameters. The parameter p is decreased by multiplying it

with mudec after each successful step (reduction in performance function) and is

increased only when the performance function is increased. The detail description on

these parameters has been provided in Hagan and Menhaj (1994) and Hagan et al.

(1996). The important training parameters considered in this study are listed in Table

6.2. The default values for these parameters as listed in this table have been used and

assumed fixed. No attempt has been made to change the values of these training

parameters for effective comparison across various networks.
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Table 6.1: Normalized attributes of categories of thematic layers used as input
data to ANN black box approach.

Thematic

Layers

Categories Attributes Normalized Attributes

of Categories Used as
Input to ANN

Drainage
Buffer

25m along Is' order drainage 1 0.500

25m along 2nd orderdrainage 2 1.000

Lineament

Buffer

0-125m 1 0.200

125-250m 2 0.400

250-375m 3 0.600

375-500m 4 0.800

>500m 5 1.000

Slope 0°-15° 1 0.200

15°-25° 2 0.400

25°-35° 3 0.600

35°-45° 4 0.800

>45° 5 1.000

Lithology Reyang Quartzite 1 0.167

Paro Quartzite 2 0.333

Feldspathic Greywacke 3 0.500

Paro Gneiss 4 0.667

Darjeeling Gneiss 5 0.833

Lingse Granite Gneiss 6 1.000

Land use

land cover

Water body 1 0.125

River sand 2 0.250

Thick forest 3 0.375

Habitation 4 0.500

Tea plantation 5 0.625

Agriculture land 6 0.750

Sparse forest 7 0.875

Barren land 8 1.000

Aspect Flat 1 0.111

North 2 0.222

Northeast 3 0.333

East 4 0.444

Southeast 5 0.555

South 6 0.667

Southwest 7 0.778

West 8 0.889

Northwest 9 1.000
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Table 6.2: Values of different training parameters as used in ANNtraining.

Training Parameters Value as used

Epochs 10000

mingrad lx|0"10

maxfail 5

mu(u) 0.001

mudec 0.1

muinc 10

mu_max 1010

The training process is initiated by assigning arbitrary initial connection

weights, which are constantly updated until an acceptable training accuracy is

reached. The adjusted weights obtained from the trained network have been

subsequently used to process the testing data to evaluate the generalization capability

and accuracy of the network.

The performance of the networks has been evaluated by determining both

training and testing data accuracies in terms of correlation coefficient, root mean

squared error (RMSE) (Freund, 1992) and percent correct or overall classification

accuracy (Congalton, 1991). The training and testing accuracies for all the 24

networks are given in Table 6.3. The overall accuracy plot is shown in Figure 6.3.

From Table 6.3, it is observed that the training accuracies are quite high, as can

be gauged from high correlation coefficients (0.533 to 0.971), low RMSE values

(0.118 to 0.033) and high overall accuracy (73.5% to 97.1%). However, the testing

data accuracies are very low, as can be seen from low correlation coefficients (0.018

to 0.365), high RMSE values (0.358 to 0.131) and low overall accuracy (45.0% to

72.8%). The trend in increase in training data accuracy and decrease in testing across

various ANN architectures can clearly be seen from Figure 6.3. As the number of

neurons in both the hidden layers is changed, the overall training accuracy has
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increased up to the order of 97%. However, the overall testing accuracies have

decreased to the order of 50%. Thus, there exists a significant difference in training

and testing accuracies, which should not happen. This shows that the networks are

able to get trained to a high accuracy, but could not attain the generalization

capability. This may be due insufficient number of training and testing samples

because of paucity of field data. Therefore, similar to earlier studies (Arora et al.,

2004), the LSZ Map IA obtained from conventional weighting approach has been

considered as reference map, to derive representative training and testing samples

with known LSZ class. This corresponds to Case II, as explained in the next section.

Table 6.3: Training and testing accuracies for Case I in ANN black box
approach.

ANN

Architecture

Correlation

Coefficient
RMSE Overall Accuracy (%)

Training Testing Training Testing Training Testing

Difference

in training
and testing
accuracies

6/3/1/1 0.533 0.365 0.118 0.131 73.5 68.0 5.5

6/3/2/1 0.749 0.306 0.092 0.144 84.7 72.8 11.9

6/3/3/1 0.817 0.199 0.080 0.213 85.3 68.6 16.7

6/3/6/1 0.861 0.177 0.071 0.277 90.0 65.1 24.9

6/3/9/1 0.869 0.119 0.069 0.236 90.0 59.2 30.8

6/4/2/1 0.743 0.309 0.093 0.156 81.8 59.8 22.0

6/4/3/1 0.828 0.357 0.078 0.162 87.6 63.9 23.7

6/5/2/1 0.844 0.266 0.074 0.198 90.0 61.5 28.5

6/5/3/1 0.709 0.272 0.098 0.171 82.9 69.8 13.1

6/5/4/1 0.871 0.292 0.068 0.185 88.8 64.5 24.3

6/6/2/1 0.810 0.099 0.082 0.241 88.8 60.9 27.9

6/6/3/1 0.881 0.316 0.066 0.177 92.3 68.0 24.3

6/6/4/1 0.932 0.106 0.050 0.298 95.3 51.5 43.8

6/6/9/1 0.971 0.233 0.033 0.244 97.1 66.3 30.8

6/7/3/1 0.924 0.224 0.053 0.292 94.1 50.9 43.2

6/7/6/1 0.966 0.274 0.036 0.298 97.1 52.1 45.0

6/7/12/1 0.971 0.195 0.033 0.358 97.1 50.9 46.2

6/8/2/1 0.922 0.248 0.054 0.260 94.7 71.6 23.1

6/8/5/1 0.970 0.234 0.034 0.289 97.1 60.4 36.7

6/9/4/1 0.971 0.324 0.033 0.248 97.1 61.5 35.6

6/12/5/1 0.971 0.274 0.033 0.254 97.1 58.6 38.5

6/12/10/1 0.971 0.018 0.033 0.327 97.1 45.0 52.1

6/13/7/1 0.971 0.236 0.033 0.311 97.1 53.8 43.3

6/14/5/1 0.971 0.284 0.033 0.306 97.1 49.7 47.4
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Figure 6.3: Graph showing training and testing accuracies for Case I in ANN
black box approach.

6.2.1.2 Case II - Using LSZ Map IA

ANNArchitecture

A schematic representation of ANN architecture, adopted in this case, is given

in Figure 6.4. The ANN architectures with one input layer, two hidden layers and one

output layer have been considered. The input layer contains 6 neurons corresponding

to 6 causative factors and the output layer contains a single neuron representing one

landslide susceptibility zone. The data supplied to input neurons correspond to the

normalized attributes, as given in Table 6.1. The desired output data supplied to

output neuron corresponds to the normalized attribute values 0.2, 0.4, 0.6, 0.8 and 1.0
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of different landslide susceptibility zones (VLS, LS, MS, HS and VHS) in order of

increasing susceptibility.

Land use land cover

Lithology

Slope

Aspect

Lineament buffer

Drainage buffer

Input Layer Hidden Layers

Landslide

Susceptibility
Zones

(LSZ Map lA)

VLS 0.2

LS 0.4

MS 0.6

HS 0.8

VHS 1.0

Output Layer

Figure 6.4: A schematic diagram of ANN architecture in ANN black box
approach (Case II - using LSZ Map IA).

Initially, a few neural network architectures were designed by varying the

number of neurons in hidden layers. These networks were trained and tested to

evaluate their performance. Subsequently, the number of networks was increased and

a total of 39 network architectures were designed, trained and tested to evaluate their

generalization capabilities and accuracies in the present case.

Data Preparation

In this case, the LSZ Map IA obtained from conventional weighting approach

has been considered as reference map. Two independent training and testing datasets

are formed. Each dataset consists of 500 mutually exclusive pixels corresponding to

one landslide susceptibility zone as identified from LSZ Map IA. Since, there are five

zones, in total 2500 pixels as training and another 2500 pixels for testing datasets
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have been considered. The pixels in both the datasets were mutually exclusive. The

testing dataset has also been used as verification dataset to control the overtraining of

the networks.

Training and Testing ofANN

The Levenberg-Marquardt back-propagation algorithm is used to train the neural

networks. The training parameters used in this case is already given in Table 6.2. The

training process is initiated by assigning arbitrary initial connection weights, which

are constantly updated until an acceptable training accuracy is reached. The adjusted

weights obtained from the trained network have been subsequently used to process the

testing data to evaluate the generalization capability and accuracy of the network. The

performances of the networks are evaluated by different measures as described earlier

(see Section 6.2.1.1). The training and testing accuracies for 18 networks (out of 39

networks) showing better accuracies comparative to other networks are given in Table

6.4. The overall accuracy plot is shown in Figure 6.5.

In the present case, it can be seen from this table that in general both training

and testing data accuracies are high for all the networks. The noticeable feature, as

can be gauged from Figure 6.5, is that both the training and testing data accuracies are

more or less similar for all the networks. The overall training accuracies vary from

65% to 74% whereas the overall testing accuracies varied from 63% to 73% for

different networks. This clearly shows that the network has achieved generalization

capability besides getting trained at high accuracy. Further, from Figure 6.5, a

variation in both training and testing data accuracies can be noticed as the neural

network architecture changes. This suggests that there exists an optimal neural

network architecture for a given dataset. In the present case, the highest overall
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training and testing accuracies have been achieved for 6/13/7/1 network. Moreover,

the difference between the training and testing accuracies for this network is the least,

which in fact should be the case. Therefore, the network 6/13/7/1 has been found to be

the most appropriate one for this case. Hence, the connection weights obtained from

this network are captured and subsequently used to determine the network output of

all the pixels in the dataset to prepare the LSZ map of the study area.

Table 6.4: Training and testing accuracies for
approach (underline indicates the best

Case II in ANN black box

acceptable architecture).

ANN

Architecture

Correlation

Coefficient
RMSE Overall Accuracy (%)

Training Testing Training Testing Training Testing

Difference

in training
and testing
accuracies

6/4/2/1 0.877 0.870 0.136 0.139 64.9 63.2 1.7

6/5/2/1 0.886 0.875 0.131 0.137 67.4 65.0 2.4

6/6/4/1 0.892 0.881 0.128 0.134 68.0 65.3 2.7

6/7/5/1 0.906 0.893 0.120 0.127 71.0 69.3 1.7

6/8/5/1 0.908 0.891 0.119 0.128 70.8 68.7 2.1

6/9/5/1 0.911 0.893 0.117 0.127 72.1 68.6 3.5

6/10/4/1 0.912 0.893 0.116 0.128 71.4 69.8 1.6

6/11/3/1 0.915 0.897 0.114 0.125 73.9 70.0 3.9

6/12/4/1 0.912 0.892 0.116 0.128 72.9 70.9 2.0

6/13/5/1 0.915 0.899 0.114 0.124 73.8 70.3 3.5

6/13/7/1 0.918 0.896 0.112 0.126 74.4 72.6 IA

6/13/9/1 0.918 0.893 0.112 0.128 73.2 68.0 5.2

6/14/3/1 0.912 0.892 0.116 0.128 71.9 70.1 1.8

6/15/4/1 0.919 0.891 0.112 0.128 74.2 69.2 5.0

6/15/6/1 0.915 0.894 0.114 0.127 73.8 69.5 4.3

6/15/8/1 0.914 0.894 0.115 0.127 72.9 69.6 3.3

6/16/3/1 0.917 0.890 0.113 0.129 72.7 69.0 3.7

6/16/7/1 0.920 0.889 0.111 0.130 73.8 67.2 6.6
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Figure 6.5: Graph showing training and testing accuracies for Case II in ANN
black box approach.

LSZ Map Preparation

The neural network outputs of the study area range from 0.062 to 0.993. This

range has been categorized into one of the five landslide susceptibility zones to

produce the LSZ map, as per the classification criteria given in Table 6.5. The

boundaries of various landslide susceptibility zones have been fixed arbitrarily.

Table 6.5: Classification criteria for categorizing neural network output values
to various landslide susceptibility zones (ANN black box approach).

Range of values Landslide Susceptibility Zones

<0.3 VLS

>0.3 and <0.5 LS

>0.5 and <0.7 MS

>0.7 and <0.9 HS

>0.9 VHS
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Using this classification criteria, an LSZ map (referred here as Map II) has been

produced and is shown in Figure 6.6. It can be seen from this map that the various

susceptibility zones have been distributed all over the area. Thus, the Map II does not

show any well defined pattern for the distribution of landslide susceptibility zones. It

is also observed from Map 11 that the VI IS and IIS zones have represented mostly the

1st and 2nd order drainage buffer areas. It can therefore be inferred that there is a major

control of drainage lines on landslide incidence and LSZ mapping, as has been

observed in case of LSZ Map IA. This may be attributed to the fact that the LSZ Map

IA has been used as the reference map for training and testing of neural networks to

generate the LSZ Map II. It may also be stated that these results are highly data

dependent and may vary from one dataset to another.

Further, the area covered by different landslide susceptibility zones, the area of

landslides occupied per class and the landslide densities of different zones have also

been determined (Table 6.6).

Table 6.6: Landslide distribution in landslide susceptibility zones of LSZ Map II
(ANN black box approach).

Landslide

Susceptibility
Zones

Area

(km2)

Percent

Area

(%)

(a)

Landslide

Area per
Class

(km2)

Percent Landslide

Area per Class

(%)
(b)

Landslide

Density
(b/a)

VHS 19.4 7.7 0.022 10.3 1.34

HS 68.4 26.9 0.086 40.4 1.50

MS 90.0 35.4 0.077 36.1 1.02

LS 65.6 25.8 0.027 12.7 0.49

VLS 10.7 4.2 0.001 0.5 0.12

It can be observed from this table that 7.7% of the total area is occupied by VHS

zone whereas 26.9%, 35.4%, 25.8% and 4.2% area are occupied by HS, MS, LS and

VLS zones respectively. This shows that the area wise coverage of different
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susceptibility zones is normally distributed, which in fact, should be the case. The

distribution of landslides in different susceptibility zones has also been compared. It

has been found that 10.3% of landslide area have been predicted over VHS zone

while 40.4%, 36.2%, 12.7% and 0.5% of landslide area have been predicted over HS,

MS, LS and VLS zones respectively. Hence, it can be stated that 34.6% of HS and

VHS areas together contain 50.7% of existing landslide areas. This shows that the

distribution of landslides over VHS to VLS zones is skewed towards the higher

susceptibility zones, which should in fact be the case.

Further, it is observed from Table 6.6 that the landslide densities for VHS and

HS zones are almost equal. This demonstrates that the Map II has a systematic and

reasonable trend of variation in landslide density values only from HS to VLS zones.

For VHS and HS zones combined, the landslide density is 1.46. Hence, it is inferred

from Table 6.6 that these higher susceptibility zones do not have much higher

landslide density values as compared to other susceptibility zones.

From the analysis of results from ANN black box approach for the two cases, it

can be stated that the nature and size of reference data for the output neuron in a

neural network influence the training and testing data accuracies. Moreover, as

expected there is lot of similarity between the LSZ Map IA and LSZ Map II.

6.3 LSZ Using Fuzzy Set Based Approach

The limitation of ANN black box approach is that the importance in terms of

weights and ratings of the thematic data layers and their categories respectively for

LSZ mapping is hidden and thus is not known. This happens to be a key limitation of

the ANN black box approach, where the weights and ratings can not be quantified and
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therefore the contribution of a particular factor is not known. Alternative approaches

are therefore sought. Recently, an ANN connection weight analysis has been

proposed, which shall be implemented here (see Section 6.4.1.3). This method

however provides information about the weights of the factors only. The contribution

of each category of the factor may not be known. The fuzzy set based approach looks

attractive to determine the ratings of the categories of thematic data layers (causative

factors). Unlike defining crisp ratings to each category, as is done in conventional

weighting approach, the fuzzy set theory determines ratings on a 0 to 1 continuous

scale thereby providing more realistic values. Based only on the ratings of categories

as determined through a fuzzy set based approach and keeping the weights of

causative factors constant, an LSZ map of the area has been generated. It is expected

that a fuzzy set based LSZ map shall be able to depict more natural variation of

landslide susceptibility zones in the area in comparison to conventional weighting

approach based map. The flow diagram showing different steps followed in

implementation of fuzzy set based approach for LSZ mapping isgiven in Figure 6.7.

T

6.3.1 Rating Determination by Cosine Amplitude Method

The cosine amplitude method of fuzzy relation concept (see Section 3.3.2.3 in

Chapter 3) has been adopted to determine the ratings of the categories of thematic ^

data layers. The landslide distribution and different categories of thematic layers taken

one at a time have been considered as two datasets for the computation of rating or

strength of relationship (rtj). The pixels in the landslide areas are assigned a value of

1.0, whereas rests of the pixels are assigned a value of 0.0 in the landslide distribution

layer. Similarly, a value of 1 is assigned to a particular category of a thematic layer
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and a value of 0 to rest of the pixels. Hence, in total 36 data layers in binary form are

generated, which correspond to 35 layers of categories of thematic data layers and one

layer of landslide distribution. These layers have been used to determine ry (see Eq.

3.7). The number of pixels and number of landslide pixels in each category of

thematic data layers (fable 6.7) have been determined using these 36 binary layers.

With the help of these data, ratings for all the 35 categories (/*/,) (Table 6.7) have been

calculated in MS Excel spreadsheet using the Eq. (3.7).

It can be observed from Table 6.7 that the highest fuzzy rating (0.0638) has been

attributed to the barren land category of land use land coverand the lowest (0.0144) to

the lineament buffer category given as >500m. The categories namely water bodies,

river sand and flat areas have zero fuzzy rating zero. This is true also since usually

landslides will not occur in these areas. This also proves the performance of fuzzy set

based approach. The 25m buffers along 1st and 2nd order drainage categories have

fuzzy ratings of 0.0296 and 0.0399 respectively. Within the lineament buffer

categories, 0-125m buffer has the highest rating of 0.0407 and >500m buffer has the

lowest rating of 0.0144. This indicates that the probability of landslide occurrences is

high at locations that are closer to lineaments. Further, within the slope categories,

35°-45° slopes have the highest rating of 0.0340 and 0°-15° slopes have the lowest

rating of 0.0212. This indicates that steeper slopes are more prone to landslide

occurrences in the area. Amongst the lithology categories, Reyang quartzites have the

highest rating of 0.0416 and Paro gneiss has the lowest rating of 0.0253. In this case,

quartzitic rocks have higher ratings than other rocks as they are highly jointed and

fractures and more prone to landslide occurrences. Within the land use land cover

categories, barren land has the highest rating of 0.0638 and thick and sparse forests

have the lowest ratings of 0.0229 and 0.0223. This reflects that the incidence of
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Table 6.7: Fuzzy ratings for different categories of causative factors.

Thematic

layers
(Causative

Factors)

Categories Number

of pixels
Number of

Landslide

pixels

Fuzzy
Rating

(nj)

Drainage
Buffer

25m along 1st orderdrainage 116168 102 0.0296

25m along 2nd order drainage 27690 44 0.0399

Lineament

Buffer

0-125m along a lineament 146761 243 0.0407

125-250m along a lineament 108929 35 0.0179

250-375m along a lineament 72380 36 0.0223

375-500m along a lineament 41360 17 0.0203

>500m along a lineament 38317 8 0.0144

Slope 0°-15° 51380 23 0.0212

15°-25° 146974 117 0.0282

25°-35° 144495 131 0.0301

35°-45° 50246 58 0.0340

>45° 14329 10 0.0264

Lithology Darjeeling Gneiss 73371 77 0.0324

Feldspathic Graywacke 45938 61 0.0364

Paro Gneiss 247242 158 0.0253

Lingtse Granite Gneiss 20926 15 0.0268

Paro Quartzite 12154 14 0.0339

Reyang quartzite 8089 14 0.0416

Land use

land cover

Agriculture Land 35692 85 0.0488

Tea Plantation 142541 84 0.0243

Thick Forest 72685 38 0.0229

Sparse Forest 131088 65 0.0223

Barren Land 14237 58 0.0638

Habitation 10341 9 0.0295

Water 970 0 0

River Sand 1005 0 0

Aspect Flat 2072 0 0

North (N) 59880 22 0.0192

Northeast (NE) 45077 32 0.0266

East (E) 52868 73 0.0372

Southeast (SE) 45689 77 0.0411

South (S) 37630 49 0.0361

Southwest (SW) 29860 20 0.0259

West (W) 55132 26 0.0217

Northwest (NW) 79148 40 0.0225
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landslide is inversely related to the vegetation density. Hence, barren slopes are more

prone to landslide activity as compared to the forest areas. Amongst the aspect

categories, southeast (SE) facing slopes have the highest rating of 0.0411 and north

(N) facing slopes have the lowest rating of 0.0192. It is observed from the ratings of

aspect categories that the south facing slopes have higher ratings than north facing

slopes. This also supports the fact that the south facing slopes have lesser vegetation

density as compared to the north facing slopes and hence, the landslide activity is

relatively more in former case (Sinha et al., 1975).

These results demonstrate that the fuzzy set based approach has been able to

appropriately assign relative importance (ratings) to different categories of thematic

data layers in an unbiased and objective manner. This has the advantage over

conventional weighting approach, where the ratings are assigned based on the field

observation, where field of view is limited and also the ratings are crisp at 0-9

categorical scale.

6.3.2 Data Integration and LSZ Map Preparation

By assigning the ratings of the 35 categories in the corresponding binary layers

of categories, 35 images of/-y have been generated. The corresponding ri} images for

various categories of a thematic layer have been composited together to generate an Rt

image for that thematic layer, where / varies from / to / thematic layers corresponding

to each causative factor (e.g., 6 thematic layers in the present case). The integration of

these 6 thematic layers (/?/ images) representing the ratings of the categories (/•/,-) have

been performed using two methods. First method corresponds to the conventional

simple arithmetic overlay operation, which is generally applied. Another method is
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based on a novel concept offuzzy combination ofrules using fuzzy gamma operator.

Thus, via this method, fuzziness in the integration process can also be introduced.

6.3.2.1 Data Integration Using Arithmetic OverlayOperation

The integration of6different R, images has been performed using the following

equation to obtain the LSI for each pixel of the dataset.

LS7 =£(*,)
M

(6.1)

where / is the number of/?/ images (i.e., 6 images in the present case).

The LSI values for the whole area have been found to lie between 0.014 and

0.252. This range of LSI values has been divided into five different susceptibility

zones with boundaries located at (p^ - 1.5/wa0), (Uo - 0.5wao), (Uo + 0.5wa„) and (p<, +

1.5mo0) values where observed mean (u^) is 0.150, standard deviation (rj0) is 0.024

and m is a positive, non-zero value (Saha et al., 2005). This classification is adopted

to fix the boundaries of classes statistically and also, to avoid the subjectivity in

arbitrarily selecting the boundaries of classes. Several LSZ maps have been prepared

and different success rate curves (as described in conventional weighting approach in

Chapter4) have been plotted for various values of m. Five representative success rate

curves corresponding tom = 0.8, 1.0, 1.1, 1.2 and 1.4 are shown in Figure 6.8. The

suitability of any LSZ map can be judged from the fact that more percentage of

landslides should occur in very high susceptibility zone as compared to other zones. It

can be observed from Figure 6.8 that for 10% of the area in very high susceptibility

zone, the curves corresponding tom = 0.8, 1.0, 1.1, 1.2 and 1.4 show the landslide
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occurrences of 42.7%, 47.7%, 48.6%, 47.3% and 41.8% respectively. Hence, for the

first 10% area, the curve corresponding to w=l.l shows the highest success rate and

the corresponding LSZ map appears to be the most appropriate one. Accordingly,

putting the values of p<, as 0.150, a0 as 0.024 and was 1.1, the landslide susceptibility

zone boundaries have been fixed at LSI values of 0.1 I I (^ - l.5mo0), 0.137 (p<, -

0.5moo), 0.163 (po + 0.5moo) and 0.189 (po + l.5ma0). The five different

susceptibility zones thus categorized along with the range of LSI values are given in

Table 6.8.

Table 6.8: Classification of LSI values into landslide susceptibility zones (using
arithmetic overlay operation in fuzzy set based approach).

Landslide

Susceptibility Zones Range of LSI Values

VLS 0.014 < LSI < 0.111

LS 0.111 < LSI < 0.137

MS 0.137 < LSI <0.163

HS 0.163 < LSI < 0.189

VHS 0.189 < LSI < 0.252

The LSZ map (referred here as Map III) thus produced is shown in Figure 6.9.

The visual inspection of the LSZ Map HI depicts an overall NNE-SSW landslide

susceptibility zonation trend in the area. It can be observed that the southeast and east

facing slopes are more susceptible to landslides than other slopes. Hence, it can be

stated that there is a topographic control over this LSZ map. It is also observed from

this map that the VHS and HS zones have represented mostly the 1st and 2nd order

drainage buffer areas. It can therefore be inferred that there is also a control of

drainage lines on landslide incidence and LSZ mapping.
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Figure 6.8: Success rate curves for choosing the best segmentation in LSI values
for LSZ classification in fuzzy set based approach (arithmetic
overlay operation for thematic layers integration).
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Figure 6.9: LSZ Map III produced from fuzzy set based approach (arithmetic
overlay operation for thematic layers integration).
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The area covered by different landslide susceptibility zones, the area of

landslides occupied per class and the landslide densities ofdifferent zones have been

determined and are provided in Table 6.9.

Table 6.9: Landslide distribution in landslide susceptibility zones ofLSZ Map III
using arithmetic overlay operation (fuzzy set based approach).

Landslide

Susceptibility
Zones

Area

(km2)

Percent

Area

(%)
(a)

Landslide

Area per
Class

(km2)

Percent

Landslide Area

per Class

(%)
(b)

Landslide

Density
(b/a)

VHS 15.4 6.1 0.087 41.0 6.72
HS 57.9 22.7 0.053 25.1 1.10
MS 100.3 39.4 0.055 25.9 0.66
LS 77.6 30.4 0.017 8.0 0.26

VLS 3.6 1.4 0.000 0.0 0.00

It can be observed from Table 6.9 that 6.1% of the total area is occupied by

VHS zone while 22.7%, 39.4%, 30.4% and 1.4% areas are occupied by HS, MS, LS

and VLS zones respectively. This shows that the area wise coverage of different

susceptibilityzones is normally distributed, which should be the case. The distribution

of landslides in different susceptibility zones has been compared. It is found that

41.0% of landslide area is predicted over VHS zone while 25.1%, 25.9%, 8.0% and

0.0%o of landslide area are predicted over HS, MS, LS and VLS zones respectively.

These results show that 28.8% area of VHS and HS zones could predict 66.1%

landslide area, which indicate that the distribution of landslides over VHS to VLS

zones is skewed towards the higher susceptibility zones. This should indeed be the

case.

Further, it is observed from Table 6.9 that the landslide density for VHS zone

(i.e., 6.72) is much higher than those for other LS zones. The Map III has a systematic

trend in variation of landslide density values from VHS to VLS zones. Hence, this
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corroborates the belief that LSZ Map III produced from fuzzy set based approach

represents a reasonably accurate LSZ map of the study area.

6.3.2.2 Data Integration Using Fuzzy Gamma Operators

Generally, the integration is performed based on simple arithmetic operations.

These have limitations in the sense that the integration takes place in a crisp form, as

the categories of the thematic layers are nominal. A more suitable approach may be to

introduce fuzziness in the integration process also so as to depict the real situations on

the ground. Fuzzy set theory suggests a variety of fuzzy operators that may be

employed to combine different thematic layers once the fuzzy membership values of

the categories have been defined on some basis.

In the present study, the integration of different thematic layers for the

generation of LSZ map has been performed using fuzzy gamma operator. The goal is

to investigate the contribution and interaction of membership values of thematic maps

in the integration process.

In this process, the integration of 6 different Ri images has been performed. The

membership value for each pixel in an R/ image represents the rating of the category

(r,j) of the corresponding thematic data layer. The integrated image represents the

combined membership values, termed as Landslide Susceptibility Index (LSI) for

each pixel of the dataset. The process is based on determination of fuzzy algebraic

product, fuzzy algebraic sum and fuzzy gamma operators using the following

relations,

LSI =(Fuzzy Algebraic Sumy x(Fuzzy Algebraic Product) ~Y (6.2)
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Fuzzy Algebraic Product = U Ri (6 3)

Fuzzy Algebraic Sum =1- n {l - R/) (6.4)

where gamma (y) is a parameter chosen in the range (0,1). When y is 1, the LSI is

equal to the fuzzy algebraic sum and when y is 0, the LSI equals the fuzzy algebraic

product.

Initially, random pixels have been selected with each pixel representing 6

different membership values (R,) for 6 different thematic layers. With different

gamma values varying from 0 to 1, the combined membership values as per Eq.(6.2)

for all random pixels have been determined and plotted against the gamma values to

select a suitable gamma value for integration. The output for one such pixel is

explained in Figure 6.10. The minimum and maximum average gamma values

obtained are 0.79 and 0.94 respectively. Thus, the gamma value >0.94 has an

increasive effect of the fuzzy algebraic sum and the gamma value <0.79 has a

decreasive effect of the fuzzy algebraic product. Ajudicious gamma value should lie

between 0.79 and 0.94 to ensure a compromise between the increasive and decreasive

tendencies.

Thus, using gamma values of 0.79 and 0.94, the LSI for all the pixels of the

dataset have been determined using Eq. (6.2). The range of LSI values has been

categorized into five susceptible zones such as VHS, HS, MS, LS and VLS with

boundaries fixed by using success rate curves method (see Section 6.3.2.1). The most

appropriate LSZ maps for gamma values of 0.79 (LSZ Map IIIA) and 0.94 (LSZ Map

IIIb) have been selected using the success rate curves method for further
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interpretation. The area covered by different landslide susceptibility zones, the area

of landslides occupied per class and the landslide densities of different zones have

been determined (Table 6.10).

Table 6.10: Landslide distribution in landslide susceptibility zones of LSZ Maps
IIIA and IIIB using fuzzy Gamma operation (fuzzy set based
approach).

Landslide

Susceptibility
zones

LSZ Map IIIA
j = 0.79

LSZ Map II1B
y = 0.94

Percent

Area

(%)

(a)

Percent

Landslide

Area per Class
(%)
(b)

Landslide

Density
(b/a)

Percent

Area

(%)

(a)

Percent

Landslide

Area per Class
(%)
(b)

Landslide

Density
(b/a)

VHS 10.1 24.2 2.40 4.9 19.2 3.92

HS 24.4 18.9 0.77 25.3 40.4 1.60

MS 8.7 32.1 3.69 32.6 31.3 0.96

LS 56.8 24.8 0.44 36.6 9.1 0.25

VLS
0

0 0.00 0.6 0 0.00

It is observed from Table 6.10 that the area wise coverage of different

susceptibility zones is not normally distributed in case of Map IIIA, whereas it is

almost normally distributed in case of Map IIIB. Further, it is observed that 34.5%

area of VHS and HS zones could predict 43.1% landslide area in case of LSZ Map

IIIa, whereas 30.2% areaof VHS and HS zones could predict 59.6% landslide area in

case of LSZ Map IIIB. Also, in case of Map IIIA, MS zone shows maximum landslide

density (i.e., 3.69). However, the landslide density values do not have a successively

decreasing trend from VHS to VLS zones. But, in case of Map IIIB, VHS zone shows

maximum landslide density (i.e., 3.92) and the landslide density values show a

successively decreasing trend from VHS to VLS zones which should be the case.
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From these results, it is inferred that the gamma value of 0.94 has given

comparatively better results in terms of landslide occurrences in different

susceptibility zones than that of0.79. These results further give an insight that the use

ofhigher gamma values may also produce more accurate map.

Therefore, higher gamma values of 0.95 and 0.97 have also been considered to

generate the LSZ maps. The LSZ maps corresponding to gamma values of 0.95 and

0.97 have been referred here as LSZ Maps IIIC and IIID. The area covered by different

landslide susceptibility zones, the area of landslides occupied per class and the

landslide densities ofdifferent zones have also been determined (Table 6.11).

Table 6.11: Landslide distribution in landslide susceptibility zones ofLSZ Maps
IIIc and IIID using fuzzy Gamma operation (fuzzy set based
approach).

Landslide

Susceptibility
zones

LSZ Map IIIC
y = 0.95

LSZ Map IIID
y = 0.97

Percent

Area

(%)

(a)

Percent

Landslide

Area per
Class (%)

(b)

Landslide

Density
(b/a)

Percent

Area

(%)

(a)

Percent

Landslide

Area per
Class (%)

(b)

Landslide

Density
(b/a)

VHS 2.3 15.0 6.52 2.3 15.1 6.56

HS 24.7 41.9 1.70 23.7 45.4 1.91

MS 43.0 36.0 0.84 45.2 33.3 0.74

LS 29.6 7.1 0.24 28.4 6.2 0.22

VLS 0.4 0.0 0.00 0.4 0.0 0.00

It is observed from Table 6.11 that the area wise coverage of different

susceptibility zones is normally distributed in both Maps IIIC and IIID. Further, it is

observed that 27% area of VHS and HS zones is able to predict 56.9% landslide area

in case of LSZ Map IIIC, whereas 26% area of VHS and HS zones could predict

60.5% landslide area in case of LSZ Map IIID. In both the Maps IIIC and IIID, VHS

zone shows maximum landslide density (i.e., 6.52 for Map IIIC and 6.56 for Map lib)
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and the landslide density values show a successively decreasing trend from VHS to

VLS zones. However, LSZ Map IIID shows a slightly higher landslide density than

that of Map lib and also the differences/separations in landslide density values of

different LS zones arc slightly higher in case of Map lib than Map IIIc- From these

results, it is inferred that the LSZ Map lib with gamma value of 0.97 has yielded

better result than the LSZ maps with lower gamma values.

The LSZ map lib is shown in Figure 6.11. The visual inspection of the LSZ

Map IIID depicts an overall NNE-SSW zonation trend in the area. The southeast and

east facing slopes are more susceptible to landslides than other slopes. Hence, there is

a topographic control in this LSZ map also. It is also observed that the VHS and HS

zones have represented mostly the 1st and 2nd order drainage buffer areas. It can be

inferred that there is also a control of drainage lines on landslide incidence and LSZ

mapping.

The integration of thematic maps (layers) for LSZ mapping using fuzzy gamma

operator indicates that as the gamma value increases, the accuracy of final integrated

product (i.e., LSZ map) also increases. In the present study, the LSZ map prepared

after integration of various thematic maps with fuzzy gamma operator having the

highest value has reflected a more real situation in terms of landslides in the study

area. Hence, the fuzzy gamma operator can be a suitable approach to introduce

fuzziness in the integration process so as to depict the real physical situations on the

ground.

The comparative analysis also shows that there is a lot of similarity between

LSZ Map III (produced by fuzzy set based approach using arithmetic overlay

integration process) and Map IIID (produced by fuzzy set based approach using fuzzy

gamma integration process). However, the comparison of landslide density values of
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Figure 6.11: LSZ Map IHD produced from fuzzy set based approach (fuzzy
Gamma operation for thematic layers integration with y = 0.97).
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these LSZ maps shows that the landslide density ofVHS zone in case ofMap III (i.e.,

6.72) is marginally better than that in case ofMap IIID (i.e., 6.56). Therefore, the LSZ

Map III has later been selected used for its comparative evaluation with other LSZ

maps prepared from different approaches.

6.4 LSZ Using Combined Neural and Fuzzy Approach

In conventional weighting approach, the weights and ratings have been assigned

based on experts' opinions and the field situations, where field of view is limited.

However, in real field situations, the relative weights and ratings of factors and their

categories may differ. Thus, this approach induces lot of subjectivity in weight and

rating assignment process, though it is very widely used.

The ANN black box approach is one of the advanced objective approaches for

LSZ mapping. But, in this case, the weights are hidden as the connection weights

between different layers ofthe neural network have not been opened up and analyzed,

as observed in this study (see Section 6.2) also.

In the fuzzy set based approach, only the ratings of the categories of factors

have been determined using cosine amplitude method. In this approach, the weights of

the factors were considered unity thereby giving equal importance to all the factors.

However, in real situations on the ground, different causative factors may also have

varying degree of importance (i.e., weights) in initiating a landslide activity in a

region.

Hence, to overcome these limitations, a novel approach named as ANN

connection weight analysis has been implemented here to determine the weights of

the causative factors. These weights have been combined with ratings obtained
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through fuzzy set based approach. Thus, a combined neural and fuzzy approach has

been developed for LSZ mapping in this study.

The combined neural and fuzzy approach involves three main steps:

i) Determination of weights of thematic layers through ANN connection-weight

approach

ii) Determination of ratings for categories of thematic layers using fuzzy set

based approach

iii) Integration of ratings and weights using GIS to produce the LSZ map.

The methodology for LSZ using this approach is shown in Figure 6.12.

6.4.1 ANN Implementation

6.4.1.1 ANN Architecture

A schematic representation of ANN architecture, adopted in this case, is given

in Figure 6.13. The ANN architectures with one input layer, two hidden layers and

one output layer have been considered. The input layer contains 6 neurons

corresponding to 6 different causative factors and the output layer contains a single

neuron corresponding to the presence or absence of existing landslide. The data

supplied to input neurons correspond to the normalized ratings (rtj) of the categories

of different thematic layers, as given in Table 6.12. The desired output data supplied

to output neuron corresponds to 1 or 0 for the presence or absence of existing

landslides. Initially, a few ANN architectures were designed by varying the number of

neurons in hidden layers. These networks were trained and tested to evaluate their

performance. Subsequently, the number of networks was increased and a total of 100
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Figure 6.13: A schematic diagram of ANN architecture in combined neural and
fuzzy approach.

network architectures were designed, trained and tested to evaluate their

generalization capabilities and accuracies in the present case.

6.4.1.2 Data Preparation

Three independent training, testing and verification datasets are formed. Each

dataset consists of 226 mutually exclusive pixels, which correspond to 113 existing

landslide pixels and remaining 113 no-landslide pixels. The pixels in all the three

datasets were mutually exclusive. The verification dataset has been used to control the

overtraining of the networks.

6.4.1.3 Training and Testing of ANN

The Levenberg-Marquardt back-propagation algorithm is used to train the neural

networks. The training parameters used in this case is already given in Table 6.2. The
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Table 6.12: Normalized fuzzy ratings for different categories of causative factors
used as input attributes for ANN implementation in combined
neural and fuzzy Approach.

Thematic

layers
(Causative

factors)

Categories
Fuzzy Ratings

Normalized Fuzzy
Ratings

Drainage
Buffer

25m along 1st orderdrainage 0.0296 0.4259

25m along 2nd order drainage 0.0399 0.5741

Lineament

Buffer

0-125m 0.0407 0.3521

125-250m 0.0179 0.1548

250-375m 0.0223 0.1929

375-500m 0.0203 0.1756

>500m 0.0144 0.1246

Slope

0°-15° 0.0212 0.1515

15°-25° 0.0282 0.2016

25°-35° 0.0301 0.2151

35°-45° 0.0340 0.2430

>45° 0.0264 0.1887

Lithology

Darjeeling Gneiss 0.0324 0.1650

Feldspathic Graywacke 0.0364 0.1853

Paro Gneiss 0.0253 0.1288

Lingtse Granite Gneiss 0.0268 0.1364

Paro Quartzite 0.0339 0.1726

Reyang quartzite 0.0416 0.2118

Land use

land cover

Agriculture Land 0.0488 0.2306

Tea Plantation 0.0243 0.1148

Thick Forest 0.0229 0.1082

Sparse Forest 0.0223 0.1054

Barren Land 0.0638 0.3015

Habitation 0.0295 0.1394

Water 0 0

River Sand 0 0

Aspect

Flat 0 0

N 0.0192 0.0834

NE 0.0266 0.1155

E 0.0372 0.1615

SE 0.0411 0.1785

S 0.0361 0.1567

SW 0.0259 0.1125

W 0.0217 0.0942

NW 0.0225 0.0977
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training process is initiated by assigning arbitrary initial connection weights, which

are constantly updated until an acceptable training accuracy is reached. The adjusted

weights obtained from the trained network have been subsequently used to process the

testing data to evaluate the generalization capability and accuracy of the network. The

overall training accuracies observed for all the 100 networks are of the order of 75%

to 90%, whereas the testing accuracies are of the order of 60% to 70%. The

connection weights thus captured for each of the 100 networks are further analyzed to

determine the weights for the causative factors.

6.4.1.4 Weight Determination of Factors by ANN Connection Weight Approach

The connection weights of the neurons from input-hidden, hidden-hidden and

hidden-output layers for each of the 100 networks are further analyzed to determine

the weights of the causative factors for each neural network. Thus, three different

weight matrices are obtained for the connection weights from input-hidden, hidden-

hidden and hidden-output layers of each network. Simple matrix multiplication has

been performed on these weight matrices to obtain a final 6x 1 weight matrix for each

network which represents the weights of six causative factors in this study. These

causative factors are ranked according to the corresponding absolute weights for each

network (Appendix-I), which means higher is the value of absolute weight of a factor,

more crucial is that factor for the occurrence of landslide. Considering all the 100

networks, the rank of a factor is decided based on the rank observed by maximum

number of networks (majority rule). Out of 100 networks, 41 networks categorize

lithology as rank 1 (most important), 31 networks for lineament as rank 2, 30

networks for slope as rank 3, 27 networks for aspect as rank 4, 33 networks for land

use land cover as rank 5 and 49 networks for drainage as rank 6 (least important).
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These results are summarized in Table 6.13. Subsequently, the normalized average of
the weights of these networks at ascale of0to 10 for aparticular factor is calculated
and assigned as the weight of that factor (fVd for preparation of LSZ map. The
weights thus obtained through ANN connection weight approach for all the factors
listed in Table 6.14.

are

Table 6.13: Ranks of factors based on majority rule in combined neural and
fuzzy approach (the entries in the matrix represent the number of
networks categorizing a factor to a particular rank and the rank
corresponding to the maximum number of networks for a factor
(underlined) represents the final rank of that factor)

Factors

Rank 1 Rank 2

Number of networks

Rank 3 Do^la

Final rank

(Majority

Land use land cover 1 8 10 22

Kank 5

33

Rank 6

26

rule)

5

Lithology li 21 12 10 10 6 I

Slope 23 24 30 9 9 5 3
Aspect 13 15 22 27 12 11 4

Drainage buffer 0 1 2 17 31 49 6

Lineament buffer 22 il 24 15
• ,

5 3 2

Table 6.14: Weights of factors derived through ANN (combined neural and fuzzy
approach). J

Factors

Lithology
ANN derived weights

4.8

Lineament Buffer 2.1

Slope 1.3

Aspect 1.1

Land use land cover 0.5

Drainage buffer 0.2

It can be observed from Table 6.14 that lithology is the most important

(weight =4.8) and drainage buffer is the least important (weight =0.2) causative
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faces for landslide occurrences in ft. area. Lineament buffer shows .he Vrank with
aweigh, of 2.1. whereas slope shows ft. * rank with aweigh, of 1.3, aspec. shows
.he 4* rank wi.h aweigh, of I. Iand ,and use land cover has .he 5* rank wi.h aweigh,
of 0.5. Th. weights dcermined .hrough ANN (Table 6,4) and .he wcigh.s assigned
in conven.ional weigh.ing approach (Table 5.1) have also been compared. In
conven.ional weigh.ing approach, as believed .o be import, .hrough field
observafions, drainage buffer was considered as .he mos, importan, (weigh. - 9) and
aspec. as .he leas, importan, (weigh. - I) causa.ive fac.ors. LUhology was considered
as 4* from .op in order of importance (weigh, - 6) in .his case. In .he field due ,o
limted field of view, only drainage fines couid be seen. Considering .he dis.ribu.ion
of existing landslides along drainage lines, we initially considered drainage .0 be .he
mos. importan, factor for LSZ. However, .he lineaments mark many drainage lines
and the ANN derived weights reveal .ha. .he real fea.ure of importance is me
Uneamen, buffer, which could no, be ascertained from conventional approach.
Further, the importance of lithology which was no. so obvious from field data has
been found to be ,he mos, important factor for LSZ mapping.

Thus, it can be inferred that in conventional weigh.ing approach, .he weights are
assigned based on .he field observation, where field of view is limited. The fully
objective approach (combined neural and fuzzy) could bring out .he relafive
importance (weighls and ratings) of different thematic data layers in an unbiased
manner.

6.4.2 Data Integration and LSZ Map Preparation

The weights for factors determined through ANN and the ratings for the
categories determined through fuzzy set based approach have been considered in the
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integration process to prepare the LSZ map. The integration of 6 thematic data layers

representing the ratings for the categories (/?/) of the factors and weights for the

factors (Wi) has been performed by using simple arithmetic overlay operation in GIS.

Hence, this approach has been named here as combined neural and fuzzy approach.

The LSI for each pixel of the study area is obtained by using the following equation:

LSI^W.xR,)
1=1

(6.5)

where t is the number of thematic data layers (i.e., 6 causative factors in this case).

The LSI values have been found to lie in the range from 0.030 to 0.408. The

range of LSI values has been categorized into five susceptible zones such as VHS,

HS, MS, LS and VLS with boundaries fixed by using success rate curves method (see

Section 6.3.2.1). The observed mean (po) and standard deviation (o0) from the

probability distribution curve of these LSI values are 0.276 and 0.032 respectively.

Using these values, several LSZ maps of the study area have been prepared for

different values of m. Five representative success rate curves corresponding to m =

1.2, 1.3, 1.4, 1.5 and 1.6 are shown in Figure 6.14. It can be seen that for 10% of the

area in VHS zone the curves corresponding to m= 1.2, 1.3, 1.4, 1.5 and 1.6 show the

landslide occurrences of 43.9%, 45.6%, 46.7%, 43.3% and 43.9% respectively.

Hence, for the first 10% area, the curve corresponding to w=1.4 has the highest

success rate. Based on this analysis, the LSZ map corresponding to m• 1.4 appears to

be the most appropriate one for the study area. Accordingly, putting the values of u<,

as 0.276, (To as 0.032 and m as 1.4, the landslide susceptibility zone boundaries have

been fixed at LSI values of 0.208 (pQ - 1.5ma0), 0.253 (p0 - 0.5mcro), 0.299 (j.t0 +
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0.5mao) and 0.344 (p0 + \.5ma0). Hence, the five different susceptibility zones have

been categorized with the range of LSI values as given in Table 6.15.

Table 6.15: Classification of LSI values into landslide susceptibility zones (using
combined neural and fuzzy approach).

Landslide

Susceptibility Zones
Range of LSI Values

VLS 0.030 < LSI < 0.208

LS 0.208 < LSI < 0.253

MS 0.253 < LSI < 0.299

HS 0.299 < LSI < 0.344

VHS 0.344 < LSI < 0.408

The LSZ map (referred here as Map IV) thus produced is shown in Figure 6.15.

The map reflects a preferential distribution of higher landslide susceptibility zones

along structural discontinuities (lineaments), which should indeed be the case. Owing

to landslide susceptibility of the terrain, the buffer zones of lineaments ought to leave

some traces, called as 'ghost-effect' (Saha et al., 2005), on the LSZ map. These 'ghost

effects' are clearly indicated by the VHS and HS zones in the N and SE parts of the

area. Also, the Darjeeling gneiss rock type in south-eastern part, feldspathic

greywacke and Reyang quartzite in the northern part of the study area have clearly

indicated moderate to very high susceptibility zones. Most of the lineaments up to

125m buffer zone in these rock types have indicated high and very high susceptibility

zones. Hence, it depicts the importance of lithology (i.e., rock types) as well as

lineaments on the LSZ map.

The area covered by different landslide susceptibility zones, the area of

landslides occupied per class and the landslide densities of different zones have been

determined (Table 6.16).
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w=1.2

Area of landslide susceptibility zones
in cumulative percentage (%)

90 100

VLS

7W=1.3 m=1.4 7W=1.5 m=1.6

Figure 6.14: Success rate curves for choosing the best segmentation in LSI values
for LSZ classification in combined neural and fuzzy approach.
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Figure 6.15: LSZ Map IV produced from combined neural and fuzzy approach.
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Table 6.16: Landslide distribution in landslide susceptibility zones of LSZ Map
IV (combined neural and fuzzy approach).

Landslide

Susceptibility
Zones

Area

(km2)

Percent

Area

(%)

(a)

Landslide

Area per Class
(km2)

Percent

Landslide

Area per Class

(%)
(b)

Landslide

Density
(b/a)

VHS 5.9 2.3 0.064 30.1 13.09

HS 51.5 20.2 0.068 31.9 1.58
MS 123.3 48.4 0.056 26.5 0.55
LS 73.4 28.8 0.024 11.5 0.40

VLS 0.8 0.3 0.000 0.00 0.00

It can be observed from Table 6.16 that 2.3% of the total area have been

occupied by VHS zone while 20.2%, 48.4%, 28.8% and 0.3% area have been

occupied by HS, MS, LS and VLS zones respectively. This shows that the area wise

coverage of different susceptibility zones is normally distributed, which should be the

case. The distribution of landslides in different susceptibility zones has been

compared. It has been found that 30.1% of landslide area is predicted over VHS zone

while 31.9%, 26.5%, 11.5% and 0.0% of landslide area are predicted over HS, MS,

LS and VLS zones respectively. These results show that 22.5% area of VHS and HS

zones could predict 62.0% landslide area. Further, the distribution of landslides over

VHS to VLS zones is skewed towards the higher susceptibility zones, which should in

fact be the case.

It can also be observed from Table 6.16 that the landslide density for VHS zone

(i.e., 13.09) is much higher than those for other landslide susceptibility zones. The

Map IV has a systematic and a decreasing trend of variation in landslide density

values from VHS to VLS zones. Hence, it is inferred from these results that LSZ Map

IV produced from combined neural and fuzzy approach is reasonably excellent

representation of landslide susceptibility zones in the study area.

205



6.5 Summary

In this thesis, neural and fuzzy set theoretic based approaches have been

developed and implemented for LSZ mapping to overcome the problem of

subjectivity in weight and rating assignments to the factors and their categories. Three

different objective approaches namely ANN black box approach, fuzzy set based

approach and combined neural and fuzzy approach were implemented and the results

discussed.

In the ANN black box approach, the weights and ratings remain hidden and are

not known. The LSZ Map II produced through this approach showed a lot of

similarity with the LSZ Map lA of conventional weighting approach as was expected

also. This was due to the fact that the LSZ Map IA was used as the reference map to

generate the LSZ Map II.

Therefore, a fuzzy set based approach using cosine amplitude similarity method

was adopted to determine the ratings of the categories of factors for LSZ mapping.

This could bring out the relative importance (ratings) of different categories of

thematic data layers in terms of landslide occurrences in an unbiased manner. In this

approach, the integration of different weighted thematic layers was performed using

arithmetic overlay operation as well as a new method based on fuzzy gamma

operators. It was observed that fuzzy gamma operator appeared to be auseful way for

data integration so as to introduce fuzziness in the integration process thereby

depicting the real physical situations on the ground. The LSZ Map prepared after

integration of various thematic layers using fuzzy gamma operator having higher

gamma value reflected a more real situation in terms of landslides in the area as

compared to lower gamma values. However, in the present case, the LSZ map

produced using arithmetic overlay operation for data integration (Map III) reflected a
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comparatively more real situation in terms of landslides than LSZ map produced

using fuzzy gamma operator (Map IIID) in the study area. The major limitation in

fuzzy set based approach was that a constant and unit weight was used for all the

factors thereby giving equal importance to all the factors for LSZ mapping.

To overcome this limitation of constant and unit weight for all the causative

factors in fuzzy set based approach, the ANN connection weight analysis was

developed and implemented to determine the weights of different factors. It was

observed that lithology was the most important and drainage buffer was the least

important causative factors for landslide occurrences in the area. Lineament buffer

showed the 2nd rank from the top. However, in conventional weighting approach, the

drainage buffer was considered as the most important and aspect as the least

important causative factors based on field inspection. Lithology was considered as 4th

rank from top in order ofimportance, as these were not visible due to limited field of

view. Drainage lines, which were obvious, were initially considered to be the most

important factor for LSZ. However, the ANN derived weights showed that the real

feature of importance was the lineaments. Further, the importance of lithology which

was not so obvious from the field data was found to be the most important factor for

LSZ mapping through weights derived from ANN connection weight approach.

Hence, a fully objective approach (combined neural and fuzzy) of analysis could

bring out the relative importance of different thematic data layers via weights and

ratings in an unbiased manner.

Combination of the ANN derived weights and the ratings determined through

fuzzy set based approach produced the LSZ Map IV, which showed systematic and a

decreasing trend of variation in landslide density values from VHS to VLS zones.

Also, an extremely high landslide density (i.e., 13.09) for VHS zone from this map
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i„dica,ed areal physical si.ua.ion on .he ground. Hence, it was inferred from .hese
results .ha. LSZ Map IV genera.ed .hrouEh combined neural and fuzzy approach is

the best.

Amore rigorous comparison and evaluation of LSZ maps produced from
different approaches in this study has been given in the next chapter.
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Chapter 7

Comparative Evaluation of LSZ Maps

7.1 Introduction

In Chapters 5 and 6, the preparation of LSZ maps of the study area using four

different approaches, namely conventional weighting approach (LSZ Map IA), ANN

black box approach (LSZ Map II), fuzzy set based approach (LSZ Map III) and

combined neural and fuzzy approach (LSZ Map IV) was described. A comparative

evaluation of these LSZ maps may throw invaluable light on their relative efficacy

and mutual compatibility. This chapter deals with the comparative evaluation of the

LSZ maps using three different analyses:

a) Landslide Density Analysis

b) Error Matrix Analysis

c) Difference Image Analysis



7.2 Landslide Density Analysis

Landslide density is defined as the ratio of the existing landslide area in percent

to the area of each landslide susceptibility zone in percent, and is calculated here on

the basis of the number of pixels. Landslide density values for each of the

susceptibility zones (i.e., VHS, HS, MS, LS and VLS) for different LSZ maps have

been calculated separately (Table 7.1). Usually, an ideal LSZ map should have the

highest landslide density for VHS zone as compared to other zones and there ought to

be a decreasing trend of landslide density values successively from VHS to VLS zone.

Table 7.1: Landslide densities of different susceptibility zones for various LSZ
maps.

Landslide

Susceptibility
Zones

Landslide Density (computation based on pixel numbers)

Map IA Map II Map III Map IV

VHS 1.63 1.34 6.72 13.09

HS 1.79 1.50 1.11 1.58

MS 0.88 1.02 0.66 0.55

LS 0.41 0.49 0.26 0.40

VLS 0.19 0.12 0 0

It is observed from Table 7.1 that the landslide densities for VHS zone of LSZ

Maps III and IV are much higher as compared to those obtained for other

susceptibility zones. There is also a decreasing trend of landslide density values from

VHS zone to VLS zone for Map III and IV. On the other hand, in case of LSZ Maps

IA and II, the landslide density is found to be only marginally higher for HS zone than

VHS zone. It is also observed from Table 7.1 that the LSZ Maps IA and II have a

similar trend of landslide densities for various susceptibility zones, which is expected,

since the LSZ Map IA has been used as the reference map to generate the LSZ map II.
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As far as the landslide density in VHS zone is concerned, it is observed that the

LSZ Map IV has a much higher landslide density (>13) in this zone than that

observed in same zone of other LSZ maps (e.g., 1.63 for Map IA, 1.34 for Map II and

6.72 for Map III). Further, the Map IV also has a more systematic and reasonable

trend of variation in landslide density values from VHS to VLS zones. Thus, the LSZ

Map IV is interpreted to be the best LSZmap of the area (also see Section 7.4.3).

Thus, based on the landslide density values of different zones and their trend

from VHS zone to VLS zone for all the LSZ maps, it is inferred that the combined

neural and fuzzy approach developed and implemented for LSZ mapping appears to

be significantly better than other approaches (i.e., conventional weighting, ANN black

box and fuzzy set based approaches) used here.

7.3 Error Matrix Analysis

For a comparative evaluation of various LSZ maps, it is also important to

investigate how pixels match or mismatch across LSZ maps based on different

approaches. This aspect is discussed through error matrix analysis.

In the present context, the error matrix analysis of each LSZ map with respect to

other LSZ maps is defined as the cross tabulation of distribution of pixels in various

landslide susceptibility zones in a particular LSZ map and corresponding zones in

another LSZ map. This analysis is based on cumulative number of pixels falling in

each landslide susceptibility zone rather than on pixel by pixel basis (as discussed

under another evaluation method in Section 7.4). The cells of error matrix provide a

comparison on map-to-map basis to evaluate how pixels match or mismatch in

different LSZ maps taken two at a time.
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Here, three such error matrices have been generated to understand the

distribution of number of pixels in various landslide susceptibility zones across the

maps.

(a) Error matrix for LSZ Maps lA and II

(b) Error matrix for LSZ Maps III and IV

(c) Error matrix for LSZ Maps IA and IV

The reasons for selecting the above combinations are given below.

7.3.1 Error Matrix for LSZ Maps IA and II

As has been described earlier, the LSZ Map IA has been generated through

conventional weighting approach and it has been used as a reference map for LSZ

Map II, based on the ANN black box approach. Therefore, for comparing the two

maps, an error matrix for these two LSZ maps has been generated (Tables 7.2).

Table 7.2: Error matrix of LSZ Maps IA and II.

LSZ

Map II

LSZ MapIA
Total

VHS HS MS LS VLS

VHS 23703 7306 94 10 0 31113

HS 2686 90112 16237 362 0 109397

MS 43 11448 98700 33831 5 144027

LS 49 548 7498 96541 320 104956

VLS 2 10 769 11338 6135 18254

Total 26483 109424 123298 142082 6460 407747

Table 7.2 shows that there is a high degree of agreement in the pixels of LSZ

Maps IA and II, particularly for VHS, HS, MS and LS zones, which is quite expected.

However, there is some degree of mismatch in the VLS zone which is reflected by the
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population of 6460 pixels in the VLS zone of LSZ Map IA as against a population of

18254 pixels in this zone in LSZ Map II.

7.3.2 Error Matrix for LSZ Maps III and IV

The LSZ Maps III and IV have been prepared using two objective weight-rating

approaches - the Map III based on fuzzy set based approach and the Map IV based on

combined neural and fuzzy approach. Therefore, it is interesting to compare the two

maps through error matrix (Tables 7.3).

Table 7.3: Error matrix of LSZ Maps III and IV.

LSZ1vlap III
Total

LSZ

Map IV

VHS HS MS LS VLS

VHS 4687 3511 1259 0 0 9457

HS 15219 32495 31922 2766 0 82402

MS 4817 54190 89885 47707 1023 197622

LS 17 2392 37466 73475 3692 117042

VLS 0 2 20 110 1092 1224

Total 24740 92590 160552 124058 5807 407747

The error matrix, given in Table 7.3 shows that there is a general agreement

between these LSZ maps (Maps III and IV). About 50% pixels (201634 pixels out of

total 407747 pixels), as indicated by the diagonal of the matrix, match in different

zones. The VHS zone of LSZ Map IV has shown much focused population of 9457

pixels, whereas the LSZ Map III has a population of 24740 pixels in the VHS zone.

This is responsible for some mismatch in the VHS zone.

The match or mismatch may be related to the type of weight/rating approaches

adopted for the preparation of the two maps. The weights for the factors are

considered as constant (i.e., unit weight for all the factors) in case of fuzzy set based
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approach and only ratings for the categories obtained from fuzzy set based approach

have been used for generating Map III. On the other hand, the ratings for the

categories obtained from fuzzy set based approach have been integrated with the

weights for the factors (obtained from ANN connection weight procedure) to prepare

the LSZ Map IV. Therefore, in case of combined neural and fuzzy procedure, the

factors have varied importance in terms of weights. This may be responsible for

differences in the two maps and mismatch between LSZ Maps III and IV.

7.3.3 Error Matrix for LSZ Maps IA and IV

It has been mentioned that the LSZ Map IV, prepared using fully objective

combined neural and fuzzy approach, is seemingly the best LSZ map and shows a

much focused distribution of pixels in VHS zone. The LSZ Map IA has been

generated using the most widely used conventional weighting approach. Therefore, a

comparison of the two Maps lA and IV has been carried out via error matrix (Table

7.4).

Table 7.4: Error matrix of LSZ Maps IA and IV.

LSZ MapIA
Total

LSZ

Map IV

VHS HS MS LS VLS

VHS 1114 2897 3433 2013 0 9457

HS 11583 25584 27478 17150 607 82402

MS 11344 56584 65401 61058 3235 197622

LS 2442 24340 26952 61323 1985 117042

VLS 0 19 34 538 633 1224

Total 26483 109424 123298 142082 6460 407747

The first point to be noted is that in LSZ Map IV, there is a big difference in the

population of pixels in various landslide susceptibility zones. On the other hand, in
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case of LSZ Map IA, the population of pixels is quite the same in HS, MS and LS

zones.

The error matrix shows that there is barely 37.8% match in number of pixels

(154055 pixels out of total 407747 pixels), as indicated by the diagonal of the matrix.

Thus, there is a lot of mismatch in number of pixels allocated to various zones in LSZ

Maps IA and IV. This mismatch may be due to the weight and rating assignment

approaches of conventional weighting approach (resulting into LSZ Map IA) versus

combined neural and fuzzy approach (resulting into LSZ Map IV). As the weights and

ratings have been assigned in a purely subjective manner in the former case and in a

purely objective manner in the later case, the weights for the factors and the ratings

for the categories significantly differ in both the approaches. This has resulted into

two different LSZ maps (LSZ Maps IA and IV), with a rather high mismatch. This

point is further discussed in Section 7.4.3.

7.4 Difference Image Analysis

Difference image analysis elucidates how pixels shift from one landslide

susceptibility zone to another zone across each LSZ map. Attributes of 1, 2, 3, 4 and 5

have been assigned respectively to the VLS, LS, MS, HS and VHS zones of all the

four LSZ Maps. Difference images are generated by subtracting pixel attributes of one

LSZ map from the other. Thus, a difference image can have a maximum of five

different classes; viz, no difference, one-zone difference, two-zone difference, three-

zone difference and four-zone difference. Fully matching pixels in the two LSZ maps

would correspond to the no difference class in the difference image. Thus, the

difference images show the spatial consistency between LSZ maps in terms of

matching/mismatching of pixels in various landslide susceptibility zones.
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For this analysis, the same three different combinations of LSZ maps (i.e., Maps

IA & II, Maps III & IV and Maps IA & IV) have been taken for mutual comparison, as

has been done for the error matrix analysis, the logic of selecting the combination

being the same. The results of these three difference images are presented in terms of

cumulative number of pixels and percent areas covered in each of the difference

classes (Table 7.5).

Table 7.5: Results of difference images of LSZ maps.

Figure
Difference

images

No

difference

One-zone

difference

Two-zone

difference

Three-zone

difference

Four- zone

difference

Number

of pixels
%

Area

Number

of pixels
%

Area

Number

of pixels
%

Area

Number

of pixels
%

Area

Number

of pixels
%

Area

7.1 IA~II 315191 77.3 90664 22.2 1821 0.5 69 0.0 2 0

7.2 III-IV 201634 49.5 193817 47.5 12277 3.0 19 0.0 0 0

7.3 U~IV 154055 37.8 189075 46.4 59536 14.6 5081 1.2 0 0

7.4.1 Difference Image of LSZ Maps IA and II

The LSZ Map IA, prepared using conventional weighting approach, and Map II

using the ANN black box approach, appear quite alike (see Figures. 5.3 and 6.6). A

difference image of the two (Figure 7.1a) also shows a high degree of mutual

correspondence and matching of landslide susceptibility zones throughout the area.

This is in agreement with the results based on error matrix analysis (Table 7.2). About

77.3% pixels have full mutual matching and 22.2% pixels exhibit one-zone

difference. Barely 0.5% pixels have two-zone difference (Figure 7.1b), and these

appear to be related to a lithologic band in the northern part of the area. However, in

general, there is a high degree of correspondence between LSZ Maps IA and II.
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Figure 7.1: (a) Difference image of LSZ Maps Ia~II and
(b) Frequency distribution of pixels in difference image classes.
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7.4.2 Difference Image of LSZ Maps III and IV

The LSZ Map III (prepared using fuzzy set based approach) (Figure 6.9) and the

LSZ Map IV (prepared using combined neural and fuzzy approach) (Figure 6.15)

have been generated based on objective weight-rating approaches. A difference image

of the two (Figure 7.2a) shows a high degree of spatial matching. 49.5% pixels have

full mutual matching and 47.5% pixels exhibit only one-zone difference (Figure 7.2b).

3.0% pixels have two-zone difference and these mainly appear to be related to a

lithologic band in the northern part of the area, as discussed below.

It may be recalled that in case of LSZ Map III, prepared using fuzzy set based

approach, all the causative factors have been given equal or unity weights whereas the

importance of different categories of factors differ in terms of ratings. Ratings of

categories vary between 0 and 1 for a causative factor (thematic layer) according to

the fuzzy relation. In case of LSZ Map IV, the weights for factors derived from ANN

and the ratings determined through fuzzy relation concept have been used. This has

been done objectively without any bias. Therefore, the two LSZ maps differ slightly

from each other.

In case of ANN derived weights, lithology has been assigned the highest weight

of 4.8 (Rank 1) whereas weights for other causative factors (lineament buffer, slope,

aspect, land use land cover and drainage buffer) vary from 2.1 to 0.2. As lithology has

the highest and significantly higher weight than other factors, the importance of

lithology has been brought out in the difference image (Figure 7.2a).

Further, for LSZ Map IV, the ANN derived weights for lineament buffer, slope,

aspect, land use land cover and drainage buffer are 2.1, 1.3, 1.1, 0.5 and 0.2

respectively. On the other hand, for LSZ Map III, all these weights have been

considered as equal and unity. Therefore, in difference image III—IV, the impact of
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these factors is limited to fully matching and one-zone difference classes only

(Figure 7.2a).

7.4.3 Difference Image of LSZ Maps IA and IV

As mentioned earlier, the LSZ Map IA has been prepared by using subjective

weighting approach whereas the Map IV has been prepared using objective weight-

rating approach based on combined neural and fuzzy. The two maps (Figures. 5.3 and

6.15) appear to exhibit the widest spatial difference, as was also seen through the error

matrix analysis (Table 7.4). This is again confirmed in the difference image

(Figure 7.3a), where only 37.8% pixels are found to be fully matching, 46.4% pixels

exhibit one-zone difference, 14.6% pixels have two-zone difference and 1.2% pixels

have three-zone difference (Figure 7.3b). This indicates a significant level of

difference between the Maps IA and IV.

A deeper look into the pattern of LSZ Maps IA and IV reveals a wealth of

interesting information. For preparing Map IA, various important thematic layers

considered (that we believed to be important through field observations) in that order,

are: drainage buffer (weight = 9), lineament buffer (weight = 8), slope (weight = 7),

lithology (weight = 6), land use land cover (weight = 4) and aspect (weight = 1)

(Table 5.1). For this reason, the Map IA shows a significant impact of drainage

lines/buffers and a little impact of lithology.

On the other hand, by objective approach (combined neural and fuzzy) the

weights of the factors obtained are: lithology (weight = 4.8), lineament buffer (weight

= 2.1), slope (weight = 1.3), aspect (weight = 1.3), land use land cover (weight = 0.5)

and drainage buffer (weight = 0.2) (Table 6.14). The Map IV (Figure 6.15)
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Figure 7.2: (a) Difference image of LSZ Maps III-IV and
(b) Frequency distribution of pixels in difference image classes.
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distinctly exhibits the impact of lithologic banding and lineament buffer, in

accordance with the weights.

The image (Map IA~ Map IV) (Figure 7.3a) clearly shows the differences in the

two LSZ maps, the most important being a band of two-zone difference lying in the

northern part of the area which apparently relates to a lithologic band (as confirmed

from the geologic map). Note that lithology has the highest rank (=1) in Map IV but a

low importance (4th from top) in Map IA. This difference in importance is responsible

for the prominent band in the difference image in Figure7.3a.

Two-zone differences are also seen at several places in the western and southern

parts ofthe area (Figure 7.3a). These are apparently related to drainage buffer (highest

importance in Map IA and lowest importance in Map IV).

In the south-eastern part of Figure 7.3a, most pixels exhibit only no or one-zone

difference. This is owing to the superimposition/coincidence of lineament buffer vis

a-vis drainage buffer here, i.e., the pixels being treated under drainage buffer in Map

IA and under lineament buffer in Map IV. This is quite possible in situations where

drainage lines follow lineaments, i.e., lineaments are marked by

(rectilinear/rectangular/angular) drainage. In essence, lineaments lead to fracturing of

the terrain along which developmentof drainage takes place. However, in field due to

limited field of view, drainage appears as a very conspicuous feature, and lineament is

hardly observed. Considering the distribution of landslides in the field along the

drainage lines, we presumably initially considered drainage line to be the most

important input thematic layer for LSZ and produced the Map IA. However, as a result

of the objective spatial-domain regional analysis, drainage is reflected to the lowest

rank (=6) in Map IV, and it is revealed that the real feature of importance is

lineament, and drainage is only an apparent manifestation of the same at places.
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Further, the importance of lithology which was not so obvious from field data (Map

IA) is brought to light by the fully objectively derived Map IV.

Thus, the comparative analysis shows the limitation of conventional weighting

approach. In this approach, the weights are assigned based on the field observation,

where field of view is limited. The fully objective approach (combined neural and

fuzzy) of analysis on the other hand could bring out in an unbiased manner the

relative importance (weights) of thematic data layers. Therefore, the above analysis

brings out the fact of relative advantages of fully objective approach vis-a-vis

conventional weighting approach.
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Chapter 8

Landslide Risk Assessment

8.1 Introduction

Landslide Risk Assessment (LRA) is an extremely important aspect in practical

applications of landslide studies. In general, risk can be defined as "the potential for

adverse consequences, loss, harm or detriment by the hazard to human and the things

that humans value" (Lee and Jones, 2004). In a more scientific way, risk has also been

defined as a combination of the probability or frequency of occurrence of a particular

hazard and the magnitude of the consequences of occurrence (Royal Society, 1992).

This definition is quite useful as it identifies the importance of a phenomenon

(landslides in the present case) in generating risk and the significance of consequences

in the assessment of risk.

There is a range of risk assessment procedures varying from quantitative to

qualitative estimations of risk, with the latter based more and more on expert

judgement. Suitability of either qualitative or quantitative assessments depends on



both the desired accuracyof the outcome and the natureof the problem. Generally, for

a large area, there is scarcity of available data for any quantitative analysis; a

qualitative risk assessment may be more applicable. On the other hand, for specific

sites, a detailed quantitative risk assessment may be required.

In this chapter, a brief review of the approaches for qualitative landslide risk

assessment has been provided. This is followed with implementation of a novel

landslide risk assessment approach developed in this study.

8.2 Landslide Risk Assessment (LRA) - A Brief Review

LRA approaches can be applied at different stages in the decision-making

process, starting from developmental planning to specific site evaluation. Hence, risk

assessment will also vary from a general indication of the threat across a region, to

specific statements on levels of risk at a particular site. Thus, the LRA can be regional

or site-specific in nature, depending upon the varied applications at different stages of

the decision-making process. LRA can lead to the identification of areas with

different levels of threat to human beings and the things that value to them. This

information can be used for planning developmental activities in the area.

As mentioned earlier, LRA depends on two factors: (1) the probability of

landslide hazard in a region and (2) the vulnerability of resources at risk.

The spatial distribution of landslide risk may be obtained by integrating

landslide probability and vulnerability of population or property at spatial level in a

GIS environment (Leone et al., 1996). The resulting map can be subdivided into areas

of different risk zones.

The probability of landslide occurrences depends on both the inherent factors

and triggering (external) factors. However, the triggering factors may change over a
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very short time span and are thus very difficult to estimate. If triggering factors are

not taken into account, the term "susceptibility" may be used to define the likelihood

ofoccurrence ofa landslide event as has been done in the present case (see Chapters 5

and 6).

Vulnerability may be defined as the level of potential damage, or degree of loss,

of resources at risk, subjected to a landslide of a given intensity (Fell, 1994; Leone et

al., 1996; Wong et al., 1997). Vulnerability assessment involves the understanding of

the interaction between a given landslide and the affected resources. Generally, the

vulnerability to landslide may depend on the volume and velocity of sliding, the

distance of transportation of slided material, the resources at risk, their nature and

proximity to the landslide (Finlay and Fell, 1995). The assessment of vulnerability is

somewhat subjective and may be largely based on historic records. The appropriate

vulnerability factor may be assessed systematically by expert judgement and can be

expressed at a scale of 0 to 1.

In the present context of LRA, the probability of landslide hazard has been

considered as landslide susceptibility, and vulnerability of resources at risk has been

taken as resource damage potential (discussed later in Section 8.3). The LRA is aimed

at providing a risk map that depicts the level of risk, in terms of different resources of

a given region.

In the present study, LRA has been carried out at a regional scale. Therefore, a

brief review of only qualitative landslide risk assessment approaches is given in this

chapter. A number of qualitative LRA approaches can be found in the literature (e.g.,

Lee and Zones, 2004). These approaches are:

a) Risk registers

b) Relative risk scoring
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c) Risk ranking matrices

d) Relative risk rating

e) Failure modes, effects and criticality analysis (FMECA)

8.2.1 Risk registers

A risk register is a document which keeps all the records of the known risks due

to landslides in an area or at a particular site and also the decisions taken in

monitoring and managing these risks. This register can serve the purpose of historical

landslide data base. This is also useful in screening out the areas with minor or

negligible landslide problems for planning developmental activities and also

prioritizing landslide problems at an early stage of a project. Details on risk register

concept and historic landslides have been discussed in several studies (e.g., Lee et al.,

1998a; Lee, 1999; Lee and Clark, 2000 and Lee and Zones, 2004).

8.2.2 Relative Risk Scoring

In most cases, evaluation of risk in absolute terms is inappropriate due to the

difficulties in assigning exact values for the hazard, for resources at risk and their

possible consequences. Hence, it is expedient to assess the relative risk potential at

different sites posed by particular hazards based on subjectiveappraisal.

The relative risk scoring approach uses the definition of risk as a function of

hazard probability and adverse consequences. The landslide hazard probability and

adverse consequence elements (resources at risk) are represented by relative scores or

rank values and the risk is the product of these scores. The risk numbers thus

produced are then used to classify each site within an arbitrarily defined scale of risk

classes. This allows some comparison between different sites and provides a basis for
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taking management decisions. The details of this approach along with examples are

given in Lee and Zones (2004).

Boggett et al. (2000) used such approach to evaluate the problems of rockfalls

and rockslides in South Shore Cliffs, Whitehaven, UK and identified the required

remedial works. McDonnell (2002) developed and implemented an approach at a

World Heritage site of basalt cliffs in Northern Ireland. The cliffline was divided into

different sections and the risk within each section was calculated. The relative risk

score was considered as a cumulative effect of the hazard score, visitor concentration

score and visitor perception score. The hazard score was obtained by summation of

four different components such as stability number (indicates hazard potential and

obtained from slope stability analysis), slope angle, presence or absence of springs

and water seeps, and presence or absence of dumped material. The resources at risk at

this heritage site were visitors only. Thus, the concepts of visitor concentration score

and visitor perception score were introduced. The perception score reflected visitor's

awareness about the landslide hazard. The relative risk scores for all cliff sections

were obtained and categorized into different risk classes.

Rautela and Lakhera (2000) prepared the vulnerability map of parts of

Himalayas in Sirmur district, Himachal Pradesh, India, using 1991 census data and an

LSZ map. The population of the area (1991 census) was categorized into five classes

and was used to formulate the vulnerability coding of populations to devastation

caused by landslides (Table 8.1). In this case, only population data was used for

vulnerability studies, but not other resources/infrastructures were considered.
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Table 8.1: Vulnerability coding of population classes to devastation caused by
landslides (Rautela and Lakhera, 2000).

Landslide

hazard

classes

Population class

Sparse Low Moderate High Very high

Least
Low

Vulnerability
Low

Vulnerability
Low

Vulnerability
Low

Vulnerability
Moderate

Vulnerability

Low
Low

Vulnerability
Low

Vulnerability
Low

Vulnerability
Moderate

Vulnerability
Moderate

Vulnerability

Moderate
Low

Vulnerability
Moderate

Vulnerability
Moderate

Vulnerability
High

Vulnerability
High

Vulnerability

High
Moderate

Vulnerability
Moderate

Vulnerability
High

Vulnerability
Very High

Vulnerability
Very High

Vulnerability

Chau et al. (2004) presented landslide risk for Hong Kong as a function of

hazard and exposure. Landslide hazard was represented by the LSZ map and the

exposure was represented by population data (2001 census). The classification of the

population was made based on the criterion that all the population classes have equal

area (i.e., numbers of pixels). The class numbers of the susceptibility and population

classes were normalized with respect to maximum class number in each category to

obtain the index values. These normalized values represented the hazard index and

exposure index. These indices of each pixel were multiplied to obtain the risk values

of the area and the risk values were categorized to prepare the risk map of the area.

8.2.3 Risk Ranking Matrices

In this approach, risk is represented in the form of a risk matrix where subjective

ranking of different risk levels is done as the likelihood of landslide hazard measured

against the increasing severity of adverse consequences. This is fully based on expert

judgements to make appropriate assessments of the likelihood of landslide events and

adverse consequences.
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Anbalagan and Singh (1996) implemented the LRA approach in mountainous

terrain of Kumaun Himalayas, India, using a risk assessment matrix. Risk was

considered as a function of hazard probability and damage potential. The damage

potential was evaluated as very low (VLDP), low (LDP), moderate (MDP), high

(HDP) and very high (VHDP) in terms of loss of life and/or injuries as well as lossof

land and property (Table 8.2). For example, damage potential of resources damage to

>50 dwellings or damage of very thick vegetated area or damage of >2000m of road,

is treated as VHDP.

Table 8.2: Damage potential of different resources at risk (Anbalagan and Singh,
1996).

Damage
potential

(DP)

Number of

dwellings likely
to be damaged

Land use land cover categories Length of road
damage (m)

VLDP <2 Barren <100

LDP 2-5 Sparsely vegetated 101-500

MDP 5-10 Mod. Vegetated/ agricultural land 501-1000

HDP 10-50 Thickly vegetated 1001-2000

VHDP >50 Very thickly vegetated >2000

The hazard probability of slope facets such as very low (VLHP), low (LHP),

moderate (MHP), high (HHP) and very high (VHHP) was obtained from the LSZ

map. These datasets on damage potential and hazard potential were integrated

manually based on a slope facet concept and a risk assessment matrix was formed

with a five fold classifications such as very low risk (VLR), low risk (LR), moderate

risk (MR), high risk (HR) and very high risk (VHR).

233



van Dine et al. (2002) used the concept of risk matrices for a qualitative risk

assessment ofa forest land at Perry Ridge under British Columbia Ministry of Forests.

The probability of landslide hazard was rated as high, moderate, low, very low or

none based on the past occurrence of landslides, independent of their sizes. The

consequences were rated as high, moderate or low based on the resources at risk

(people, property and water supply). Three different risk matrices were developed,

one for each of the resources at risk. The very high, high, moderate, low and very low

risk zones for different combinations of hazard and consequences to resources were

assessed based on the risk matrices and landslide management recommendations were

made for different locations.

Cardinali et al. (2002) used both relative risk scoring and risk ranking matrices

approaches to describe the landslide risk assessment of parts of Umbria, Central Italy.

The study area was divided into a series of landslide susceptibility zones and the risk

within each susceptibility zone was determined as a function of susceptibility and

vulnerability. Landslide hazard for each susceptibility zone was defined in terms of

landslide frequency and intensity. Levels of hazard were defined using a two-digit

coding, one each for landslide frequency and intensity. Such coding system was used

to determine whether the hazard was due to high frequency of landslides or intensity

or both. Estimates of vulnerability of each type of resource at risk were based on the

relationship between intensity and type of landslide and the likely damage due to the

landslides. Three different levels of damage such as aesthetic, functional and

structural were envisaged. A risk matrix was prepared using the coding system of

landslide hazard and different levels of damage. Here also, a unique coding value

termed as specific risk index was used in the risk matrix instead of qualitative terms

such as low, medium and high. In order to provide a measure of total risk, the specific
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landslide risk indices for each susceptibility zone were categorized into one of the

landslide risk zones such as very high, high, moderate and low.

8.2.4 Relative Risk Rating

Relative risk rating approach adopts method similar to those used in the relative

risk scoring and risk ranking matrices approaches. It is a descriptive approach in

which a range of risk categories are defined, each with a certain degree ofhazard and

level ofconsequence. According to Palmer et al. (2002), this approach has proved its

usefulness in situations where the resources at risk are uniform or broadly similar

throughout an area, but have spatial variation in the degree ofhazard. This technique

also provides a means of identifying the relative risk throughout the area.

In this approach, the area is divided into different units based on the ground

characteristics such as geology, landform, soil, topography, etc. Information on the

distribution, nature and frequency of landslides, various resources at risk and the

expected levels of consequences within each unit are then gathered. Risk categories

are assigned to each unit based on the hazard and consequence conditions within it.

8.2.5 Failure Modes, Effects and Criticality Analysis (FMECA)

The FMECA approach provides a structured framework for the qualitative

analysis of various components of an engineered slope using engineering judgement

to generate scores or rankings. The details of this approach are discussed in Lee and

Zones (2004). However, this technique is applicable only for the risk assessment of

structural failures in an engineered slope. The FMECA approach has been used as a

risk assessment tool in the dam industry (Sandilands et al., 1998; Hughes et al., 2000),

coastal slopes (Lee, 2003), etc.
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8.3 Landslide Risk Assessment Approaches Developed

The above literature review on qualitative landslide risk assessment reveals that

the risk register approach is a heuristic approach that utilizes field records of risks

related to landslide occurrences in this study. Other approaches namely relative risk

scoring, risk ranking matrices and relative risk rating are quite similar to each other.

In these approaches, linguistic coding of various resources at risk with respect to their

damage potential is done. In most cases, only the population as resource element has

been taken into consideration for risk assessment. The other resources (e.g., land use

land cover) that humans value have not been generally considered. The risk

assessment matrix has also been generated in terms of linguistic coding only.

In the present study, landslide risk has been considered as a function of landslide

potential or susceptibility and the resource damage potential and is given as,

LR=f(LP,RDP) (8.1)

where LR is the landslide risk, LP is the landslide potential and RDP is the resource

damage potential. Two different approaches for landslide risk assessment have been

developed and implemented to prepare the LRA maps of the study area.

(a) LRA using danger pixels

(b) LRA using Fuzzy Concept

8.3.1 LRA Using Danger Pixels

Danger pixels can be defined as pixels those appear to be under real risk due to

landslides. The steps involved in this approach, LRA using danger pixels, are given in

Figure 8.1. Danger pixels have been considered as those pixels which lie in VHS and
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LSZ Maps Using Different Approaches

LSZ Map IA LSZ Map II LSZ Map III

Danger Pixel Map
(Intersection Map of LSZ Maps IA,
II, III & IV consideringonly VHS

and HS pixels)

LSZ Map IV

Resource Map
(Land use land cover
map including road

network)

Data Integration

Landslide Risk

Assessment (LRA) Map

Figure 8.1: Steps for landslide risk assessment (LRA) using danger pixels.

HS zones in all the four LSZ maps - Maps IA (conventional weighting approach),

Map II (ANN black box approach), Map III (fuzzy set based approach) and Map IV

(combined neural and fuzzy approach). For generating a danger pixel map, the VHS

and HS zones in each LSZ map were merged together and the remaining landslide

susceptibility zones (MS, LS and VLS) were masked out. Various LSZ maps were

then integrated to generate the danger pixel map (Figure 8.2). Hence, the danger pixel

map is an intersection map of all the four LSZ maps with (VHS + HS) zones

combined. In other words, these pixels do not lie in MS/LS/VLS zone in any of the

four LSZ maps (IA, II, III and IV). The danger pixel map represents pixels that appear

to be under real danger from landslide point ofview. Hence, the danger pixel map is a

binary image with a value of 1 for danger pixels and a value of 0 for masked areas.
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The next step consists of generating a resource map that has included all the

existing land use land cover categories and the road network of the area. The road

network has been digitized from the topographic maps of the area in a vector layer

and then rasterized. The land use land cover map (refer Figure 4.19) described earlier

in Chapter 4, has been integrated with the road network layer to prepare the resource

map of the area (Figure 8.3). This includes different resource categories namely thick

forest, sparse forest, tea plantation, agricultural land, barren land, habitation, road,

water body and river sand. Hence, the resource map is an image with different

numerical attributes for different resource categories. In the danger pixel map (Figure

8.2), out of a total number of 33935 danger pixels, 2585 pixels fall under barren land

category. As barren land is not an important resource category from damage point of

view, these pixels are ignored for landslide risk assessment. Hence, the remaining

31350 pixels covering different resource categories (habitation, road, agriculture, tea

plantation, thick forest and sparse forest) have been considered under risk due to

landslides. The danger pixel map and the resource map have been multiplied to

generate the LRA map (referred as LRA Map I) of the study area. The LRA Map I

(Figure 8.4) shows spatial distribution of different resource categories that appear to

be under real danger due to landslides. The distribution of danger pixels in different

resource categories is given in Table 8.3.
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Figure 8.2: Danger pixel map of the study area.
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Figure 8.3: Resource map of the study area.

241



27°08'N

26°56

88°10'E

n—
88°25'E

N I - 27°08'N

| Habitation at risk
• Road at risk
H /Agriculture at risk
I Tea plantation at risk
| Thickforest at risk
• Sparse forest at risk
J No risk

1 0 1 Kilometers

26°56'N

88°25'E

Figure 8.4: Landslide risk assessment map (LRA Map I) using danger pixels.
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Table 8.3: Distribution of pixels of various
danger pixels.

resource categories under risk using

Resource Categories under Risk Number of Pixels

Habitation 1015

Road 921

Agriculture 4517

Tea Plantation 10517

Thick Forest 5760

Sparse Forest 8620

Total 31350

It is observed from LRA Map I (Figure 8.4) that the habitation around

Darjeeling and Ghum are under risk due to landslides. Aportion of road from Sonada

to Ghum is also under risk due to landslides. Mostly the tea plantation in the southern

part and thick forests in the southeastern part of the study area are under risk due to

landslides.

8.3.2 LRA Using Fuzzy Concept

This approach is an extension of risk ranking matrices approach of Anbalagan

and Singh (1996). According to them, the landslide potential and the damage potential

of various resource elements have been categorized into qualitative terms such as very
low, low, moderate, high and very high. Also, the risk ranking matrices have been

developed in qualitative terms. However, in this approach, the landslide potential and

the damage potential of various resource elements can be quantified in terms of fuzzy

membership values as per their relative importance to risk assessment. Thus, the risk

assessment matrix can be generated with numerical values, which can be classified

into different risk zones. In the present study, aqualitative approach based on fuzzy
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linguistic rules has been developed and implemented for the generation of LRA map

of parts of the study area in a raster based GIS environment.

This approach is a combination of risk scoring and risk matrix. The best LSZ

map of the area namely Map IV, prepared using the combined neural and fuzzy

approach, has been used as an input layer to provide landslide potential. Further, land

use land cover map including the road network has been used as the input layer to

correspond to the resource map, which has been used to derive information on

resource damage potential. 4

The fuzzy membership values for landslide susceptibility zones and different

land use land cover categories have been assigned on the basis of a linguistic scale

derived from expert knowledge. These two layers in terms of their fuzzy membership

values have been multiplied in a raster GIS environment to generate a LRA map

which has been classified into different risk zones.

The implementation of this approach has been carried out using three different

steps; as shown in Figure 8.5:

a) Risk scoring of LSZ Map IV to yield landslide potential raster layer

b) Risk scoring of Resource Map to yield resource damage potential raster

layer

c) Generation of LRA Map >

a) Risk scoring of LSZ Map IV to yield landslide potential raster layer

The LSZ Map IV (Figure 6.15) has five different landslide susceptibility zones

namely VHS, HS, MS, LS and VLS. As per definition, the VHS zone has the highest

landslide potential as compared to other susceptibility zones and the VLS zone has the v
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Figure 8.5: Steps for landslide risk assessment (LRA) using fuzzy concept
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least landslide potential. Accordingly, linguistic rules have been designed for risk

scoring of these susceptibility zones. Fuzzy membership values representing the

landslide potential (LP) based on these linguistic rules have been assigned to each

susceptibility zone for landslide risk assessment (Tabic 8.4).

Table 8.4: Linguistic rules for risk scoring of various landslide susceptibility
zones.

Landslide

Susceptibility
Zone

Linguistic Rules for Risk Scoring
Fuzzy Membership
value for Landslide

Potential

VHS
On-going severe landslides widespread.
Landslide almost certain to occur. 1.0

HS

On-going landslide activities evident at
many places. Most likely occurrence of
landslides under adverse conditions.

0.8

MS

Landslides have occurred in the past
locally. Possible occurrence of landslides
under adverse conditions.

0.55

LS
Landslides unlikely to occur. Slopes are
generally stable. 0.3

VLS
Very rare or no occurrence of landslides.
Inherently stable slopes naturally. 0.1

b) Risk scoring of resource map to yield resource damage potential raster layer

The resource map (Figure 8.3) has nine different categories namely habitation,

road, thick forest, sparse forest, tea plantation, agricultural land, barren land, water

body and river sand. These resource categories will be subjected to landslides

resulting in resource damages. The damage potential ought to be related to the

importance of these categories to the society. Keeping this in view, the habitation area

(buildings and property etc.) has been assigned the highest damage potential, since the

damage in this case could be in the form ofdirect deaths, injuries and property loss.

The next important resource category is the road network, as it will have a direct
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impact on the essential infrastructure/services (i.e., road network) ofthe society. The

damage in this case will result in lack of connectivity in the area and also will affect

the rescue and rehabilitation process during post-disaster management stage. The

agricultural land and tea plantation areas have been treated at par, given the same

damage potential due to landslides. In this case, there is not likely to be any direct

impact on the population, but the effect will be on the economy. The resource

categories like thick forest and sparse forest have been considered to be of quite

similar importance, as far as damage potential is considered, as these will not have

any direct impact on the society. The rest of the categories like barren land, water

body and river sand have been considered as having little landslide damage potential.

Accordingly, the linguistic rules have been developed for risk scoring of these

resource categories and the fuzzy membership values representing the resource

damage potential (RDP) based on these linguistic rules have been assigned to each

resource category for landslide risk assessment (Table 8.5).

c) Generation of LRA map

It has been mentioned earlier that the landslide risk is a combination of landslide

potential and resource damage potential at a particular site. In the earlier paragraphs,

landslide potential and resource damage potential have been given fuzzy membership

values. Thus, there are two input layers: one corresponding to landslide potential and

another corresponding to resource damage potential. In both layers, each pixel has

fuzzy membership values. Hence, landslide risk can be obtained by the following

equation:
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LR = LP* RDP (8.2)

where landslide risk, landslide potential and resource damage potential are

represented by LR, LP and RDP respectively. Thus, landslide risk values for different

combinations of landslide potential and resource damage potential can be represented

in the form of an LRA Matrix (Table 8.6).

Table 8.5: Linguistic rules for risk scoring of various resource categories for
damage potential.

Resource

Category Linguistic Rules for Risk Scoring

Fuzzy
Membership

Value for

Damage
Potential

Habitation

Direct impact on population and assets such as
buildings and property etc. Damages in the
form of deaths, injuriesand property loss.

1.00

Road

Impact on essential infrastructure/services (i.e.,
road network). Damage in the form of lack of
connectivity in the area, that could also affect
the rescue and rehabilitation process during
post-disaster management stage.

0.60

Agriculture
Direct impact on economy (earnings) and
essential food items for survival.

0.35

Tea

plantation
Direct impact on economy (earnings). 0.35

Thick

forest

Loss of forest resource of the nation, though no
direct impact on individual economy. 0.15

Sparse
forest

Loss of some forest resource of the nation,
though no direct impact on individual
economy.

0.15

Barren land Little damage 0.05

Water Little damage 0.05

River sand Little damage 0.05
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Table 8.6: LRA matrix for different combinations of landslide potential and
resource damage potential, (red - very high risk, pink - high risk,
yellow - moderate risk, blue - low risk and green - very low risk).

Resource

Damage
Potential

(RDP)

Agriculture
(0.35)

Tea Plantation

(0.35)
Thick Forest

(0.15)

Sparse Forest
(0.15)

Barren

(0.05)
River Sand

(0.05)
Water

(0.05)

0.15 0.12 0.08 0.05 0.02

0.05 0.04 0.03 0.02 0.01

0.05 0.04 0.03 0.02 0.01

0.05 0.04 0.03 0.02 0.01

It is observed from the above table that the LRA values have a range from 1.00

to 0.01. The value is 1.00 for very high landslide potential in habitated areas, and the

value is 0.01 for very low landslide potential in resource categories such as barren

land, water bodies and river sand. The range of landslide risk values from 0.01 to 1.00

has been segmented into five different landslide risk zones as per the scheme in Table

8.7 and the LRA map (referred as LRA Map II) (Figure 8.6) of the area has been

prepared.
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Table 8.7: Scheme of segmentation of landslide risk values into various landslide
risk zones.

Landslide Risk Values Landslide Risk Zones Colour

0.0<LR<0.1
Very Low Risk Zone

(VLR)
Green

0.1 <LR<0.2 Low Risk Zone (LR) Blue

0.2<LR<0.4
Moderate Risk Zone

(MR)
Yellow

0.4 < LR < 0.6 High Risk Zone (HR) Pink

LR>0.6
Very High Risk Zone

(VHR)
Red

The LRA Map II has been superimposed on the resource map to determine the

spatial distribution of different risk zones in various resource categories (Table. 8.9).

Table 8.8: Spatial distribution of risk zones and resource categories

Risk

Zones

Number of pixels in different resource categories
(% of total area)

Total

number

of

pixels
(% of

total

area)

Habita

-tion
Road

Agricul
-ture

Tea

Planta

-tion

Thick

Forest

Sparse
Forest

Barren

Land
Water

River

Sand

VHR
2496

(0.61)
0

(0.00)
0

(0.00)
0

(0.00)
0

(0.00)
0

(0.00)

0

(0.00)
0

(0.00)

0

(0.00)
2496

(0.61)

HR
4422

(1.09)
2782

(0.68)
0

(0.00)
0

(0.00)
0

(0.00)
0

(0.00)
0

(0.00)
0

(0.00)
0

(0.00)

7204

(1.77)

MR
2820

(0.69)
7140

(1.75)

13040

(3.20)
27415

(6.72)
0

(0.00)
0

(0.00)
0

(0.00)
0

(0.00)
0

(0.00)

50415

(12.36)

LR
0

(0.00)
4797

(1.18)

20246

(4.96)

108097

(26.51)

16246

(3.98)
23627

(5.80)

0

(0.00)

0

(0.00)
0

(0.00)
173013

(42.43)

VLR
8

(0.00)
316

(0.08)

121

(0.03)

527

(0.13)

54570

(13.38)

103735

(25.44)

13319

(3.27)
892

(0.22)
935

(0.23)

174619

(42.83)

Total
9746

(2.39)
15035

(3.69)
33407

(8.19)
136039

(33.36)

70816

(17.36)

127362

(31.24)
13319

(3.27)
892

(0.22)
935

(0.23)

407747

(100)
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Figure 8.6: Landslide risk assessment map (LRA Map II) of the study area using
fuzzy concept.
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It can be observed from Table 8.8 that 2496 pixels (0.61% of total area) are

under VHR zone. This is due to a combination of habitation resources being located

under very high landslide susceptibility zone. Further, 7204 pixels (1.77% of total

area) are under HR zone and this comprises partly habitation (4422 pixels) and partly

road (2782 pixels). The MR zone occupies 12.36% of the total area (50415 pixels)

that is mainly covered by tea plantation (6.72%), agriculture (3.20%), and road

(1.75%). An area of 42.43% (173013 pixels) is represented by LR zone that is mainly

covered by tea plantation (26.51%), sparse forest (5.80%), agriculture (4.96%) and

thick forest (3.98%). Further, a largearea of 42.83% (174619 pixels) is represented by

VLR zone that is covered mainly by sparse forest (25.44%) and thick forest (13.38%).

Finally, a closer look at the LRA Map II (Fig.8.6) reveals that landslides pose

very high/high risk to the following resources:

- Habitation in and around Sonada, Darjeeling and northeastern part of Tiger

hill is under VHR zone.

- A section of road from Sonada to Ghum is under HR zone.

8.4 Summary

The LRA Map I produced from danger pixel concept does not infer the degree

of severity of risk to different resource categories due to landslides. However, the

LRA Map II produced from fuzzy concept depicts different degrees of severity of risk

from VHR to VLR for various resource categories due to landslides.

It can be observed that in case of LRA Map I, the habitations in and around

Sonada, Darjeeling and northeastern part of Tiger hill is under VHR zone and a

section of road from Sonada to Ghum is under HR zone, whereas in case of LRA Map

I, these habitations and road section are inferred to be under risk due to landslides.
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Thus, broadly both the LRA Maps I and II agree. However, other finer details such as

roads in some other sections of Darjeeling-Lamahata, Darjeeling-Limbu Basti and

Darjeeling-Rishihat have been inferred under HR zone.

Further, four different LSZ maps produced from conventional weighting, ANN

black box, fuzzy set based and combined neural and fuzzy approaches have been used

as an input to generate LRA Map I using danger pixel concept whereas only the LSZ

map produced from combined neural and fuzzy approach (as has been found to be the

best LSZ map of the area) has been used as an input to generate the LRA Map II using

fuzzy concept. Hence, both these LRA Maps I and II can not be compared spatially.
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Chapter 9

Summary and Conclusions

Landslides happen to be the most common natural hazards in the Himalayan

regions that cause damage to both property and life every year. The study of

landslides has drawn global attention mainly due to increasing awareness of its socio

economic impacts and also due to increasing pressure of urbanization on the mountain

environment. Hence, identification of landslide-prone areas is essential for safer

strategic planning of future developmental activities. Therefore, landslide

susceptibility zonation (LSZ) becomes important whereby an area is divided into

different potential zones due to landslides and mass movements. The relative

importance of factors (weights) and their categories (ratings) plays a vital role in LSZ

studies. These weights and ratings can be determined by implementing different

approaches, which at times are very subjective in nature. Therefore, developing a

suitable approach for determination of weights and ratings objectively and their



implementation in a geographic information system (GIS) environment for LSZ

mapping is highly important and is an active research area even today.

Several approaches for LSZ mapping have been developed which can be

grouped into two broad categories such as qualitative and quantitative. In qualitative

approaches, subjective decision rules are applied to define weights and ratings based

on the experience of experts (Nagarajan et al. 1998; Gupta et al. 1999; Rautela and

Lakhera, 2000; Saha et al., 2002; Sarkar and Kanungo, 2004; etc.).The qualitative

approaches can be sub-grouped into three major categories namely distribution

analysis, geomorphic analysis and map combination approaches. To remove

subjectivity in qualitative analysis, some quantitative approaches have been employed

to determine the weights and ratings of factors and their categories respectively for

LSZ studies. These quantitative approaches can be sub-grouped into five major

categories namely statistical analysis, deterministic analysis, probabilistic models,

distribution free approaches and landslide frequency analysis. During the last five

years, bivariate statistical models (Lin and Tung, 2003; He et al., 2003; Suzen and

Doyuran, 2004; Saha et al., 2004; etc.), multivariate statistical models (Dhakal et al.,

2000; Clerici et al., 2002; etc.) and probabilistic prediction models (Lee et al., 2002a;

2002b; Chi et al., 2002a; Lan et al., 2004; etc.) have been implemented for LSZ

studies. Apart from these approaches, distribution-free approaches such as fuzzy set

based models (Chi et al., 2002b; Gorsevski et al., 2003; Tangestani, 2003; Ercanoglu

and Gokceoglu, 2004; Metternicht and Gonzalez, 2005), artificial neural network

models (Arora et al., 2004; Gomez and Kavzoglu, 2005; Yesilnacar and Topal, 2005)

and combined neural and fuzzy models (Elias and Bandis, 2000; Lee et al., 2004)

have also been proposed for LSZ studies.
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Research Objectives and Scope of the Work

The literatures on LSZ mapping indicates that different approaches have been

adopted in different parts of the world. In view of the gaps identified based on the

available literatures, the main objective of the present research was to develop an

approach for LSZ mapping leading to risk assessment through the use of advanced

approaches and their implementation within the domain of remote sensing and GIS.

Specific objectives of the present study were therefore enumerated as:

i) Implementation of conventional weighting approach, ANN black box

approach, fuzzy set based approach and combined neural and fuzzy

approach for LSZ mapping,

ii) Arigorous evaluation of LSZ maps generated from different approaches to

examine their relative efficacy,

iii) Development and implementation of fuzzy set based approach for

landslide risk assessment.

Study Area, Data Used and Software Tools

The study area is located in Darjeeling Himalayas and is bounded by latitude

26°56' - 27°8' Nand longitude 88° 10' - 88°25' Ecovering an area of about 254 km2.

The Darjeeling Himalayas lie within the Lesser- and Sub-Himalayan belts. The

tectonic units in the area occur in inverted order of stratigraphic superposition. The

Daling Group of rocks comprises of low-grade metamorphic rocks, which includes

slate, phyllite, schist, quartzite, greywacke and epidiorite. The Darjeeling Group

consists primarily of foliated gneisses. Rocks of the Paro Sub-group, which have

similar lithologic characteristics as that of the Darjeeling Group, are present at lower
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elevations. The main land use practice in the area is tea plantation. The area in the

eastern part is dominated by thick forest.

Data from following sources was collected to generate various thematic data

layers:

a) Remote sensing images from IRS-IC LISS-III multispectral sensor

(acquired on 22nd March, 2000) and IRS-ID-PAN sensor (acquired on 3rd

April, 2000)

b) Survey of India (SOI) topographic maps at 1:50,000 scale (Sheet Nos. 78

A/4, A/8, B/l) and 1:25,000 scale (Sheet Nos. 78 A/8/2, A/8/3, A/8/6,

B/5/1)

c) Published Geological map (Geological Survey of India)

d) Extensive field data on landslides and land use/land cover

The remote sensing images were processed in ERDAS imagine software. The

GIS analysis was carried out in ArcView software. The fuzzy set based approach was

implemented through MS Excel spreadsheet and the ANN approaches were

implemented in MATLAB software.

Thematic Data Layer Preparation

Various thematic data layers pertaining to causative factors were prepared using

the above mentioned data for LSZ mapping. These were generated using remote

sensing and GIS tools.
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Digital elevation model and its derivatives

The Digital Elevation Model (DEM) isan excellent source to derive topographic

attributes responsible for landslide activity in a region. Therefore, a DEM was

generated by digitization of contours at 20 m and 40 m interval from the topographic

maps. The DEM was subsequently used to derive slope and aspect data layers at a

spatial resolution corresponding to the nominal pixel size of 25 m (approximately

equivalent to IRS LISS III image pixel resolution) using standard processes in raster

GIS.

Lithology

Different rock types have varied composition and structure, which contribute to

the strength of the material. The stronger rocks give more resistance to the driving

forces as compared to the weaker rocks, and hence are less prone to landslides and

vice versa. The lithology data layer was prepared by digitizing the polygons from the

geo-referenced geological map of Sikkim-Darjeeling area. Minor modifications in

Iithological boundaries at some places were also incorporated in this vector layerafter

field verification. This lithology data layer was later rasterized at 25 m spatial

resolution to match the nominal resolution of IRS LISS-III image for further

processing.

Lineament buffer

Lineaments are the structural features which describe the zone/plane of

weakness, fractures and faults along which landslide susceptibility is higher. It has

generally been observed that the probability of landslide occurrence increases at sites

close to lineaments. Lineaments were interpreted from the PAN and LISS III images.
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There was no major thrust/fault reported in the study area, but mega lineaments were

identified. A distance buffer map was generated with four buffer zones at 125 m

intervals up to 500 m and another bufferzone beyond 500 m to establish the influence

of lineaments on landslide occurrence.

Drainage buffer

Many landslides in hilly areasoccurdue to theerosional activity associated with

drainage. Therefore, a drainage data layer was prepared by digitizing the stream lines +

from the topographic maps. This layer was updated by overlaying it on LISS-III

image. The orderingof streams was performedon the basis of Strahler's classification

scheme. A distance buffer map with 25 m buffer zone around 1st and 2nd order

drainages only was considered for further analysis.

Land use land cover *

Land use land cover is also a key factor responsible for landslide occurrences.

The incidence of landslide is inversely related to the vegetation density. Eight

dominant land use land cover classes namely thick forest, sparse forest, tea plantation,

agriculture, barren, built up, water bodies and river sand in the area have been

deciphered. The four spectral bands of LISS III image, DEM and NDVI images were ±

integrated to prepare a land use land cover map by a multi-source classification

process using the most widely adopted maximum likelihood classifier. The accuracy

of the map was 94.7%. A very small portion of the study area was covered by cloud

and its shadow in the LISS III image. Initially, this portion was masked out.

Subsequently, masked portion of the land use land cover map thus prepared was filled
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with the land use land cover information obtained from topographic maps and field

surveys.

Existing landslide distribution

The mapping of existing landslides is essential to study the relationship between

the actual landslide distribution in the area and the causative factors. High spatial

resolution IRS-IC-PAN and PAN-sharpened LISS-III images were used to produce a

landslide distribution map, which was verified from field surveys. A total of 101

landslides showing areas occupied by sliding activity were identified. The majority of

landslides have areal extent of 500 m2to 2000 m2.

Landslide Susceptibility Zonation (LSZ) Maps

Four different approaches (Conventional weighting, ANN black box, fuzzy set

based and combined neural and fuzzy approaches) were implemented to generate LSZ

maps.

Conventional Weighting Approach

The most commonly used conventional weighting approach involved

assignment of weights and ratings to the thematic data layers and their categories

based on the knowledge of the study area and the opinions of experts on the subject.

The weighted data layers were generated by multiplying the weight of the layer with

the ratings of the corresponding categories of each layer. A Landslide Susceptibility

Index (LSI) map was generated by arithmetically integrating the weighted layers. The

LSI values ranged from 21 to 310, which were categorized into five susceptible zones

with class boundaries at 68, 137, 176 and 236 using segmentation by natural breaks.
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Further, success rate curves method for segmentation wasalso adopted to fix the

boundaries of landslide susceptibility zones statistically and to minimise subjectivity

in arbitrarily selecting the natural boundaries of different zones and accordingly an

LSZ map was prepared. A comparison of the outputs of both the segmentation

methods was carried out.

Both the LSZ maps did not show any definite pattern for the distribution of

susceptible zones. It was found that VHS and HS zones together occupied 33.3% of

total area and contained 58.7% of existing landslide area in case of segmentation

using natural breaks, whereas in case of success rate curves method of segmentation,

VHS and HS zones together occupied 28.1% of total area and contained 45.1% of

existing landslide area. Finally, the LSZ map prepared through conventional

weighting approach using segmentation by natural breaks was used for comparative

evaluation with other LSZ maps.

ANN Black Box Approach

A feed forward multi-layer ANN with one input layer, two hidden layers and

one output layer was designed. The input layer contained 6 neurons each representing

a causative factor. The output layer contained a single neuron corresponding to

existing landslide locations. But, due to rather less number of existing landslides as

identified from field and remote sensing images, the neural network accuracies were

very low. Therefore, the LSZ Map obtained from conventional weighting approach

was considered as reference map, to derive representative sample of pixels with

known LSZ class. Two independent training and testing datasets were formed. Each

dataset consisted of 2500 mutually exclusive pixels corresponding to 500 pixels per

landslide susceptibility zone of the reference map. The Levenberg-Marquardt back-
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propagation algorithm was used to train the neural networks. A total of 39 neural

network architectures were designed, trained and tested. The network architecture

6/13/7/1 (i.e., 6 neurons in input layer, 13 neurons in 1st hidden layer, 7 neurons in 2nd

hidden layer and one neuron in output layer) with high training data accuracy

(correlation coefficient of 0.918, RMSE 0.112 and 74.4% correct) and high testing

data accuracy (correlation coefficient of 0.896, RMSE 0.126 and 72.6% correct) was

found to be the most appropriate one. This network was used to prepare the LSZ map

of the entire study area.

It is found that VHS and HS zones together occupied 34.6% of total area and

contained 50.7% existing landslide area. There is lot of similarity between LSZ maps

prepared using conventional weighting approach and ANN black box approach. This

may be due to the fact that the conventional one was used as the reference map for

generating the ANN black box based LSZ map.

Fuzzy Set Based Approach

In the fuzzy set based approach, ratings of each category of a given thematic

layer were determined using the concept of fuzzy relation. The cosine amplitude

similarity method was used to determine the membership degrees of categories by

establishing the strength of relationship (ry) between the existing landslides and the

categories.

By assigning the ratings of the 35 categories, 35 images of rywere generated.

The corresponding rt] images for various categories of a thematic layer were

composited together to generate an R/ image for that thematic layer, where / varies

from / to / thematic layers (e.g., 6 thematic layers in the present case). The integration

of these 6 thematic layers (R/ images) was performed to obtain landslide susceptibility
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index (LSI) using arithmetic overlay operation. The range of LSI values obtained

varied from 0.014 to 0.252 and were divided into five landslide susceptibility zones

using success rate curves method. Accordingly, the most appropriate landslide

susceptibility zone boundaries were fixed at LSI values of 0.111, 0.137, 0.163 and

0.189. The spatial distribution of existing landslides in the LSZ map showed that VHS

zone occupied 6.1% of total area and contained 41.0% of existing landslide area.

Further, HS and VHS zones together occupied 28.8% of the total area and contained

66.1% of existing landslide area.

To bring fuzziness in the integration process also, fuzzy gamma operator was

also used. However, it yielded inferior results and was not pursued further. Hence, the

LSZ map prepared through fuzzy set based approach and integrated using arithmetic

overlay operation was used for further analysis and comparison.

Combined Neural and Fuzzy Approach

This approach involved three main stages:

(a) Determination of weights of thematic layers through ANN connection-weight

analysis.

(b) Determination of ratings for categories using cosine amplitude similarity

concept.

(c) Integration of ratings and weights in GIS to generate an LSZ map.

In this approach, the ANN connection weights are used to characterize the input

data sources (e.g., the thematic layers) in terms of ranks or weights. The connection

weight matrices for input-hidden, hidden-hidden and hidden-output layers are

obtained for a two-hidden layer network. Simple matrix multiplications of these

weight matrices give rise to the final weight matrix corresponding to the causative

266



factors. The absolute values of these weights were considered to rank the factors

meaning thereby that the factor with maximum absolute weight is assigned as rank 1

and the factor with the minimum absolute weight as rank 6.

A feed forward back-propagation ANN with one input layer, two hidden layers

and one output layer was considered. The data for the input neurons corresponded to

the normalized ratings (ry) of the categories. The output corresponded to the presence

or absence of landslide at the pixel. 100 neural network architectures were designed,

trained and tested. The adjusted weights of input-hidden, hidden-hidden and hidden-

output connections for each network were captured and analyzed to obtain the weights

for thematic layers corresponding to six causative factors. These factors were ranked

according to their absolute weights for each network. Considering all the 100

networks, the rank of a factor was decided based on the rank observed by the

maximum number of networks (majority rule). Subsequently, the normalized average

of the weights of these networks at a scale of 0-10 for a particular factor was

calculated and assigned as the weight of that factor. The arithmetic integration of six

thematic data layers representing the ratings of the categories (obtained from fuzzy set

based approach) and weights for the layers was done to obtain the LSI for each pixel.

The LSI values ranged from 0.030 to 0.408. Here also, the success rate curve method

was used to classify the LSI values into five different susceptibility zones to produce

the LSZ map. Accordingly, the most appropriate boundaries of landslide susceptibility

zones were fixed at LSI values of 0.208, 0.253, 0.299 and 0.344.

In this LSZ map, VHS zone occupied only 2.3% of the total study area and

contained 30.1% of landslide area. Further, VHS and HS zones together occupied

22.5% of the total area and contained 62% of existing landslide area. This LSZ map

showed preferential distribution of higher landslide susceptibility zones along
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structural discontinuities (lineaments), which should indeed be the case. Also, the

Darjeeling gneiss rock type in south-eastern part, feldspathic greywacke and Reyang

quartzite in the northern part of the study area clearly indicated moderate to very high

susceptibility zones.

Comparative Evaluation of LSZ Maps

The LSZ maps produced using four different LSZ mapping approaches namely

conventional weighting approach, ANN black boxapproach, fuzzy set based approach

and combined neural and fuzzy approach were rigorously evaluated using three

different approaches:

a) Landslide density analysis

b) Error matrix analysis

c) Difference image analysis.

Landslide DensityAnalysis

Landslide density is defined as the ratio of the percent existing landslide area to

percent area of each landslide susceptibility zone, and can be calculated on the basis

of the numberof pixels. It was found that the LSZ Maps produced from conventional

and ANN black box approaches had a similar trend of landslide densities for various

susceptibility zones. This result was on expected lines, as the conventional weighting

based LSZ map was used as the reference map to train ANN. Landslide densities of

VHS zone for fuzzy and combined neural and fuzzy based LSZ Maps were found to

be much higher as compared to those of other susceptibility zones. There was also a

decreasing trend of landslide density values from VHS zone to VLS zone for these

maps. The LSZ Map produced from combined neural and fuzzy approach had a much
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higher landslide density (>13) of VHS zone as compared to other LSZ maps. Based

on the landslide density analysis, it is inferred that the LSZ map produced from

combined neural and fuzzy approach appears to be significantly better than those

produced from other approaches (fuzzy, conventional and ANN black box

approaches).

Error Matrix Analysis

Three different error matrices for different LSZ map combinations were

generated to understand the distribution of number of pixels in different LSZ maps.

There was a high degree of matching in the pixels of LSZ Maps produced from

conventional and ANN black box approaches, particularly for VHS, HS, MS and LS

zones, which was expected. There was also a general correspondence between the two

LSZ Maps produced from fuzzy and combined neural and fuzzy approaches. The

VHS zone of LSZ Map produced from combined neural and fuzzy approach showed

much focused population in comparison to LSZ Map produced from fuzzy approach.

This is responsible for some mismatches in the VHS zone. The match or mismatch in

number of pixels between these two LSZ Maps may be due to the fact that the weights

of the factors are considered as constant (i.e., equal importance for all the factors) in

case of fuzzy set based approach, whereas in case of combined neural and fuzzy

approach the factors have varied importance in terms of weights. There was a lot of

mismatch in number of pixels between LSZ Maps produced from conventional and

combined neural and fuzzy approaches. This mismatch may be attributed to the

differences in weight and rating assignment procedures of conventional weighting

approach versus combined neural and fuzzy approach.
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Difference Image Analysis

Difference image analysis elucidates how pixels shift from one landslide

susceptibility zone to another zone, based on the LSZ mapping approach adopted.

Three different combinations of LSZ maps were taken for mutual comparison. A

difference image of LSZ maps produced from conventional and ANN black box

approaches showed a high degree of mutual correspondence and matching of

landslide susceptibility zones throughout the area. This was in agreement with the

error matrix result. About 77.3% pixels had full mutual matching and 22.2% pixels

exhibited one-zone difference. Barely 0.5% pixels had two-zone difference, and these

appeared to be related to a lithologic band in the northern part of the area. A

difference image of maps produced from fuzzy and combined neural and fuzzy

approaches showed a high degree of spatial matching. About 49.5% pixels had full

mutual matching and 47.5% pixels exhibited only one-zone difference. About 3.0%

pixels had two-zone difference and these mainly appeared to be related to a lithologic

band in the northern part of the area. The two LSZ maps slightly differed from each

other because of the differences in the weights of the factors in these two approaches.

As lithology has the highest and significantly higher weight than other factors in

combined neural and fuzzy approach, the importance of lithology has been brought

out in the difference image. Since, there was not much difference between ANN

derived weights for lineament buffer, slope, aspect, land use land cover and drainage

buffer and unity weights in fuzzy set based approach, the impact of these factors was

limited to fully matching and one-zone difference classes only in this difference

image. The difference image of maps produced from conventional and combined

neural and fuzzy approaches appeared to exhibit the widest spatial difference, where

only 37.8% pixels were found to be fully matching, 46.4% pixels exhibited one-zone
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difference, 14.6% pixels had two-zone difference and 1.2% pixels had three-zone

difference. The most important was a two-zone difference band in the northern part of

the difference image marking a lithologic band in the study area. This is because of

the fact that lithology has the highest weight in combined neural and fuzzy approach

compared to a lower weight in conventional approach based LSZ map. Further, a

large number of two-zone differences are also seen in the western and southern parts

of the area, which are apparently related to drainage buffer. In the south-eastern part,

most pixels exhibit only no difference or one-zone difference. This is interpreted to be

related to the fact that drainage lines follow lineaments. In brief, the LSZ mapping

and comparative analysis has brought out the relative advantages of fully objective

approach vis-a-vis other approaches.

The following broad conclusions may be drawn based on the comparative

evaluation of different LSZ maps produced from conventional weighting, ANN black

box, fuzzy and combined neural and fuzzy approaches:

a) The LSZ maps produced from conventional and ANN black box approaches are

quite similar to each other, as indicated by landslide density values, error matrix

and difference image. This is also expected as the LSZ map of conventional

approach was used as the reference map for producing the LSZ map using ANN

black box approach.

b) The LSZ maps produced from fuzzy set based and combined neural and fuzzy

approaches exhibit similarity to each other in terms of landslide density values,

error matrix and difference image analysis. This is because both the maps have

been generated using objective data processing techniques.
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c) The LSZ maps produced from conventional weighting and combined neural and

fuzzy approaches are found to exhibit the widest mutual spatial differences. This is

again considered to be related to the manner in which the two maps have been

generated - the previous one being based on highly subjective conventional

weighting approach and the later one being derived from fully objective combined

neural and fuzzy approach.

d) The LSZ map produced from combined neural and fuzzy approach isconsidered to

be the best LSZ map of the area. This is because of the fact that it has a much

higher landslide density value for VHS zone (> 13), as compared to other maps

(1.63 for Map I, 1.34 for Map II, and 6.72 for Map III), and has a more systematic

and reasonable trend ofdecreasing landslide values from VHS through VLS zones.

e) As far as the effects ofvarious thematic layers on the spatial patterns ofLSZ maps

are concerned, it is observed that each one of the LSZ maps genuinely reflects the

relative weights of the input thematic layer. For example, in the conventional

weighting approach, drainage buffer has been given the highest weight, and this is

well seen on LSZ map produced from conventional weighting approach as well as

the LSZ map produced from ANN black box approach. Further, in the combined

neural and fuzzy approach, the highest weight pertains to lithology, followed by

lineament buffer, and the effects of these causative factors are well observed on the

LSZ map.

0 Adifference image analysis of LSZ maps produced from conventional weighting

and combined neural and fuzzy approaches is highly revealing. Firstly, the

importance of lithology, which was not so obvious from field data (in LSZ map

using conventional approach), is brought to light by the fully objectively derived

LSZ map using combined neural and fuzzy approach. Further, it is seen that there
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is a coincidence of lineament buffer vis-a-vis drainage buffer at places, i.e., the

same pixels are treated under drainage buffer in the LSZ map produced from

conventional approach and under lineament buffer in the LSZ map produced from

combined neural and fuzzy approach. This implies that drainage at places follows

lineaments, i.e. lineaments have led to fracturing of the terrain along which

drainage has developed. Although in the field, drainage lines appear to control the

distribution of landslides, the objective spatial domain regional analysis reveals

that the real feature of importance is the lineament.

Thus, the comparative analysis of LSZ maps shows the limitation of

conventional weighting approach, where weights are assigned based on field

observations, which has its obvious limitations of limited perspective views (e.g.

drainage being given highest weight etc.). The fully objective approach (combined

neural-fuzzy) on the other hand could bring out in an unbiased manner the relative

importance (weights) of thematic data layers (lithology and lineament). Therefore, the

above analysis elucidates the relative advantages of fully objective approach vis-a-vis

conventional weighting approach for LSZ mapping

Landslide Risk Assessment

In the present study, landslide risk is considered to be a function of landslide

potential or susceptibility and the resource damage potential. Two different

approaches namely (I) LRA using danger pixels and (2) LRA using Fuzzy Concept,

for landslide risk assessment were developed and implemented to prepare the LRA

maps of the study area.
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LRA using danger pixels

A novel concept of danger pixel was introduced for landslide risk assessment.

Danger pixels are considered as those pixels which lie in VHS and HS zones in all

four LSZ maps produced from different approaches. The danger pixel map is an

intersection map of all the four LSZ maps with (VHS + HS) zones combined. A

resource map including all the existing land use land cover types (thick forest, sparse

forest, tea plantation, agricultural land, barren land, habitation, water body and river

sand) and the road network of the area was also prepared. In this case, danger pixel

map contributed to landslide potential and the resource map contributed to resource

damage potential. The danger pixel map and the resource map were integrated to

generate the LRA map of the study area. The LRA map showed spatial distribution of

different resource categories that appeared to be under real danger due to landslides. It

can be observed from the LRA map that the habitation around Darjeeling and Ghum

are under risk due to landslides. A portion of road from Sonada to Ghum is also under

risk due to landslides. Mostly the tea plantation in the southern part and thick forests

in the southeastern part of the study area are under risk due to landslides. The LRA

map produced using danger pixels does not infer the degree of severity of risk to

different resource categories due to landslides.

LRA using Fuzzy Concept

The landslide potential and the damage potential of various resource elements

can be quantified in terms of fuzzy membership values as per their relative

importance to risk assessment. Thus, the risk assessment matrix can be generated with

numerical values, which can be classified into different risk zones. In the present

study, a qualitative approach based on fuzzy linguistic rules has been developed and
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implemented for the generation of LRA map of parts of the study area in a raster

based GIS environment.

In this approach, LSZ map, prepared using the fully objective combined neural

and fuzzy approach and which was found to be the best LSZ map of the area, was

used as an input to provide landslide potential. Further, the resource map was used as

another input layer to derive information on resource damage potential. Linguistic

rules were developed for risk scoring of landslide susceptibility zones and resource

categories and the fuzzy membership values representing the landslide potential (LP)

and resource damage potential (RDP) based on these linguistic rules were assigned to

each susceptibility zone and resource category for landslide risk assessment.

Landslide risk values for different combinations of landslide potential and resource

damage potential were obtained by integrating LP and RDP layers and were

represented in the form of a LRA matrix. The range of landslide risk values was

segmented into five different landslide risk zones and the Landslide Risk Assessment

(LRA) map of the area was prepared. It was observed that 2496 pixels (0.61% of total

area) is under very high risk zone. This is due to a combination of habitation resources

being located under very high landslide susceptibility zone at selected places. Further,

7204 pixels (1.77% of total area) is under high risk zone and this comprises partly

habitation (4422 pixels) and partly road (2782 pixels). The LRA Map revealed that

landslides pose very high risk to selected sites of habitation in Sonada, Darjeeling and

northeastern part of Tiger hill, and HR to a section of road from Sonada to Ghum. The

LRA Map produced from fuzzy concept depicts different degrees of severity of risk

from VHR to VLR for various resource categories due to landslides.

Thus, it can be concluded that the LRA map produced from danger pixel

concept does not infer the degree of severity of risk to different resource categories
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due to landslides whereas the LRA map produced from fuzzy concept depicts

different degrees of severity of risk from very high risk to very low risk. Broadly,

both the LRA maps agree in identifying some habitations and road section under risk

due to landslides. However, finer details with different degrees of severity of risk can

be inferred from the LRA map produced using fuzzy concept.

Scope for Future Research

Briefly, as far as methodology is concerned, the use of fuzzy and combined

neural and fuzzy approaches has been the novelty of this research, as this has

increased the objectivity in the weight assignment process for LSZ mapping. Further,

image based comparative analysis of LSZ maps and approaches involving 'danger

pixel' concept and fuzzy concept for risk assessment are other important contributions

in this work. Nevertheless, this study has led to some further research areas which can

be targeted in future. These can be enumerated as,

a) Increase in the computational efficiency of neural and fuzzy set based

approaches for LSZ mapping. Further refinements can be made so that these

can be used at operational level.

b) Development of technique for detail mapping of site specific risk elements

with the help of high resolution satellite stereo data aimed at quantitative risk

assessment.
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Appendix-I

Absolute weights of the factors for 100 networks and their ranks (in brackets)
in Combined Neural and Fuzzy Approach (I - Input layer, HA - 1st hidden layer,
HB - 2nd hidden layer and O- Output layer)

Network

architecture

(Number of
neurons)

Weights/Ranks

I HA HB 0 Landuse lithology Slope
Slope

Aspect
Drainage Lineament

6 3 1
777.28

(5)

2079.90

(2)
2411.26

(1)

1800.36

(3)
223.01

(6)
1566.76

(4)

6 3 2
6179.52

(2)
73.08

(6)

9656.00

(1)

4392.46

(3)
392.65

(5)
3429.80

(4)

6 3 3
667.32

(2)

273.60

(6)

1275.30

(1)

520.10

(4)
380.92

(5)
592.75

(3)

6 3 6
586.66

(1)

528.97

(2)
504.45

(3)
14.38

(6)

259.72

(4)

174.22

(5)

6 3 9
1888.67

(2)
509.38

(6)

1414.31

(5)
1657.50

(3)
1656.19

(4)

1963.04

(1)

6 3 12
864.19

(3)
997.12

(2)
3803.06

(1)

284.80

(4)
270.54

(5)

256.54

(6)

6 3 15
957.52

(3)
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(6)
3231.73

(1)

818.30

(4)
245.78

(5)
2818.30

(2)

6 4 2
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(6)

4892.39

(1)

3016.78

(3)
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(5)
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(4)
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(2)

6 4 3
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(1)
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(2)
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(4)
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2216.54
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6 5 10
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6 6 15
>

220.44

(5)
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(1)

2364.05

(2)

315.42

(4)

200.13

(6)

1579.98

(3)
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6 7 15
473.81

(5)

5488.43

(1)

7.92

(6)

665.88

(3)

646.88

(4)

1505.49

(2)

6 7 11
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7353.68

(1)
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4894.85

(2)
6

7 10
1524.44
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6 9 6
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(1)
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(4)

6 9 9
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(4)

6 9 11
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(3)

6 9 12
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6 9 15
184.32

(5)

6626.27

(1)

2556.05
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(3)

1237.61
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1204.41

(2)

6 10 13
296.16

(5)

1456.71
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6
11 9
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(6)
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2626.81
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(4)
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2501.71

(1)
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4850.02
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305.85

(4)
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(3)
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(6)

1507.12

(1)

6 13 5
402.39

(5)

438.27

(4)

858.77

(1)

770.98

(2)

178.95

(6)

668.86

(3)

6 13 8
708.64

(4)

278.39

(5)

879.03

(3)

982.14

(2)

40.04

(6)

1093.78

(1)

6 13 10
536.98

(2)

360.85

(3)

221.54

(5)

254.59

(4)

1.45

(6)

643.68

(1)

6 13 11
974.54

(2)

198.60

(5)

1044.4

(1)
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(3)

21.06

(6)

596.81

(4)

6 13 12
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(6)
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(1)
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1271.56
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(1)
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(5)
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(2)
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(4)
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(3)
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(4)
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(1)

1106.0

(2)
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(5)
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(6)

901.74

(3)

6 13 15
1882.72

(4)

12553.39

(2)

14454.7

(1)

203.93

(6)

883.18

(5)

4654.30

(3)

6 14 5
1872.10

(5)

3616.66

(2)

2899.08

(3)

1934.07

(4)

764.00

(6)

4022.12

(1)

6 14 8
474.74

(5)

4373.27

(1)

1082.22

(3)

814.52

(4)

244.70

(6)

1742.11

(2)

6 14 10
49.01

(6)

5887.91

(1)

511.92

(3)

285.19

(4)

180.10

(5)

2660.06

(2)

6 14 11
316.80

(4)

1321.94

(2)

1205.20

(3)

247.71

(5)

108.61

(6)

2629.64

(1)

6 14 12
1452.91

(4)

2569.58

(2)
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(3)

1013.99

(5)
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(6)

2999.28

(1)

6 14 13
3906.12

(4)

36871.42

(1)
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(2)

3337.9

(5)

1161.31

(6)
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(3)

6
15 5
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(5)
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(4)

1274.36

(2)

788.27

(3)
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(6)
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(1)
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1388.94

(6)

5683.37

(1)
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(2)
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(4)

2248.74

(5)

3496.00

(3)
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3716.74

(4)

11945.31

(2)

22117.0

(1)

7655.26

(3)

568.63

(6)

1416.85

(5)

6 15 12
153.07

(5)

1778.14

(2)

1773.22

(3)

1022.02

(4)

26.75

(6)

2882.96

(1)

6 15 13
776.58

(3)

2786.48

(1)
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17.19
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Abstract

Landslides are one of the most destructive phenomena of nature that cause damage to both property and life every year, and
therefore, landslide susceptibility zonation (LSZ) isnecessary for planning future developmental activities. In this paper, apart from
conventional weighting system, objective weight assignment procedures based on techniques such as artificial neural network
(ANN), fuzzy settheory andcombined neural and fuzzy settheory have been assessed for preparation of LSZ maps ina part of the
Darjeeling Himalayas. Relevant thematic layers pertaining to thecausative factors have been generated using remote sensing data,
field surveys and Geographic Information System (GIS) tools. In conventional weighting system, weights and ratings to the
causative factors and their categories are assigned based on the experience and knowledge of experts about the subject and the
studyareato prepare the LSZmap(designated hereas Map I). In thecontextof objective weight assignments, initially the ANN as
the black boxapproach has been used to directly produce an LSZ map (Map II). In this approach, however, the weights assigned
are hidden to the analyst. Next, the fuzzy set theory has then been implemented to determine the membership values for each
category of the thematic layerusing the cosine amplitude method (similarity method). These memberships are usedas ratings for
each category of the thematic layer. Assuming weights of each thematic layer as one (or constant), these ratings of the categories
are used for the generation of another LSZ map (Map III). Subsequently, a novel weight assignment procedure based on ANN is
implemented to assign the weights to each thematic layer objectively. Finally, weights of each thematic layerare combined with
fuzzy set derived ratings to produce another LSZ map (Map IV). The maps I-IV have been evaluated statistically based on field
dataof existing landslides. Amongst all theprocedures, theLSZ map based on combined neural andfuzzy weighting (i.e., Map IV)
has been found to be significantly better than others, as in this case only 2.3% of the total area is found to be categorized as very
high susceptibility zone arid contains 30.1% of the existing landslide area.
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1. Introduction

Landslides are amongst the most damaging natural
hazards in the hilly regions. The study of landslides has
drawn global attention mainly due to increasing
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awareness of its socio-economic impacts and also
increasing pressure of urbanization on the mountain
environment (Aleotti and Chowdhury, 1999). Land
slides have represented 4.89% of the natural disasters
that occurred worldwide during the years 1990 to 2005
(www.em-dat.net). According to Schuster (1996) and
Ercanoglu and Gokceoglu (2004), this trend is expected
to continue in future due to increased unplanned
urbanization and development, continued deforestation
and increased regional precipitation in landslide prone
areas due to changing climatic patterns. Hence, the
identification of landslide-prone areas is essential for
safer strategic planning of future developmental activ
ities in the region. Therefore, Landslide Susceptibility
Zonation (LSZ) of an area becomes important whereby
the area may be divided into near-homogeneous
domains and ranked according to degrees of potential
hazard due to mass movements (Varnes, 1984). The area
may thus be categorized as very high susceptibility
(VHS), high susceptibility (HS), moderate susceptibility
(MS), low susceptibility (LS) and very low susceptibil
ity (VLS) zones to produce an LSZ map.

Landslide susceptibility zonation studies in the
Himalayas have conventionally been carried out based
on manual interpretation of a variety of thematic maps
and their superimposition (Anbalagan, 1992; Pachauri
and Pant, 1992; Gupta et al., 1993; Sarkar et al., 1995;
Mehrotra et al., 1996; Virdi et al., 1997). However, this
approach is time consuming, laborious and uneconom
ical with data collected over long time intervals. In recent
times, due to the availability of a wide range of remote
sensing data together with data from other sources in
digital form and their analysis using GIS, it has now
become possible to prepare different thematic layers
corresponding to the causative factors that are respon
sible for the occurrence of landslides in a region (Gupta
and Joshi, 1990; van Westen, 1994; Nagarajan et al.,
1998; Gupta, 2003). The integration of these thematic
layers with weights assigned according to their relative
importance in a GIS environment leads to the generation
of an LSZ map (Gupta et al., 1999; Saha et al., 2002;
Sarkar and Kanungo, 2004; Saha et al., 2005). However,
in the studiescited above, the weights were assignedon
the basis of the experience of the experts about the
subject and the area. The weighting system was thus
highly subjective and might therefore contain some
implicitbiases towards the assumptions made.

Forminimizing thesubjectivity andbias in theweight
assignment process, quantitative methods, namely,
statistical analysis, deterministic analysis, probabilistic
models, distribution-free approaches and landslide
frequency analysis may be utilized. During the last

5 years, bivariate statistical models (Lin and Tung, 2003;
He et al., 2003; Suzen and Doyuran, 2004; Saha et al.,
2005; etc.), multivariate methods (Dhakal et al., 2000;
Clerici et al., 2002; etc.) and probabilistic prediction
models (Chi et al., 2002a; Lee et al., 2002a,b; Lan et al.,
2004; etc.) have been implemented for LSZ studies.
Apart from these methods, some work on distribution-
free approaches such as fuzzy set based methods (Chi
et al., 2002b; Gorsevski et al., 2003; Tangestani, 2003;
Mettemicht and Gonzalez, 2005; Ercanoglu and Gok
ceoglu, 2004), artificial neural network (ANN) models
(Arora et al., 2004; Gomez and Kavzoglu, 2005;
Yesilnacar and Topal, 2005) and neuro-fuzzy models
(Elias and Bandis, 2000; Lee et al., 2004; Kanungo et al.,
2005) have recently been attempted for LSZ studies. Due
to some success ofneural networks and fuzzy set theories
in these studies, an attempt has been made here to
develop an objective procedure that takes into account
the advantages of both neural networks and fuzzy set
theory for landslide susceptibility zonation in a part of
Darjeeling Himalayas.

2. Weight assignment procedures

The basic pre-requisite for landslide susceptibility
zonation studies is the determination of weight and
rating values representing the relative importance of
factors and their categories respectively for landslide
occurrence. These weights and ratings can be deter
mined based on the subjective expert opinions as well as
based on an objective analysis. Four different proce
dures have been implemented here to determine the
weights and ratings in order to generate LSZ maps.
This section highlights the salient features of these
procedures.

2.1. Conventional weighting procedure

In this weightingscheme, factors and their categories
are assigned numerical values based on the experience of
experts on the subject and about the study area. The
numerical values (generally at an ordinal scale from 0 to
9) assigned to factors are termed as weights and those
assigned to categories of factors are termed as ratings
(Lee et al., 2004). Higher is the numerical value of
weight or rating, greater is its influence on the occurrence
of landslide.

2.2. Artificial neural network procedure

ANN, which is a useful technique for regression and
classification problems,has been successfully applied in
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Fig. 1. Aschematic diagram of artificial neural network for LSZ using ANN black box procedure.

Output
Layer

other fields, and promises to be suitable for the deline
ation of areas prone to landslide activity. It has been
found that ANNs have several advantages for LSZ
mapping, as these are non-linear and thus have the
capability to analyse complex data patterns. Also, ANN
can process data at varied measurement scales such as
continuous, ordinal and categorical data, a scenario
which is often encountered in LSZ mapping.

An ANN comprises of a number of neurons that work
in parallel to transform input data into output classes. A
feed-forward multilayer network is generally adopted,
which consists of three layers namely input, output
and hidden layers in between these two (Paola and
Schowengerdt, 1995). Each layer in a network contains
sufficient number of neurons depending on the specific
application. The neurons in a layer are connected to the
neurons in the next successive layer and each connection
carries a weight(Atkinson and Tatnall, 1997). The input
layer receives the data from different sources (e.g., the
matic layers). Hence, the number of neurons in the input
layer depends on the number of input data sources. The
hidden and output layers actively process the data. The
number of hidden layers and their neurons are often
determined by trial and error (Gong, 1996). The number
of neuronsin output layers is fixed by the applicationand
is represented by the class being mapped (e.g., LSZ
classes in the present case). Each hidden neuron responds
to the weighted inputs it receives from the connected
neuronsfrom the preceding input layer (Lee et al., 2004).
Once the combined effect on each hidden neuron is

determined, the activation at this neuron is determined via

a transfer function (Yesilnacar and Topal, 2005). Any
differentiable nonlinear function can be used as a transfer
function, but a sigmoid function is generallyused though
there are many other functions (Schalkoff, 1997). The

sigmoid function constrains the outputs of a network
between 0 and 1.

An important characteristic of a neural network is its
capability to learn from the data being processed. The
network weights are adjusted in the training process,
which can be executed through a number of learning
algorithms based on backpropagation learning (Ripley,
1996; Haykin, 1999; Zhou, 1999; Lee et al., 2004;
Gomez and Kavzoglu, 2005; Yesilnacar and Topal,
2005). The most widely used backpropagation algo
rithms are gradient descent and gradient descent with
momentum. These are often too slow for the solution of

practical problems. The faster algorithms use standard
numerical optimizers such as conjugate gradient, quasi-
Newton and Levenberg-Marquardt approach. In this
study, Levenberg-Marquardt algorithm (implemented
as TRAINLM in MATLAB software) has been used for
trainingthe neural network. The detailsof this algorithm
can be found in Hagan and Menhaj (1994) and Hagan
et al. (1996). Unlike gradient descent algorithms, it does
not consider learning rate and momentum factor as its
parameters. However, the main scalar parameter in
volved in this algorithm is mu (fi), which is modified in
an adaptive fashion after giving an initial random value.

In back propagation learning, the difference (i.e.,
error) between the neural network outputs and target
outputs is back propagated through the neural network
and is minimized by updating interconnection weights
between the layers (Arora et al., 2004; Lee et al., 2004).
The process of back propagating the error is repeated
iteratively until the error is minimized to an acceptable
value and the adjusted weights are obtained, which are
then used to determine the network outputs. The per
formance of the network depends on the accuracy ob
tained over a set of testing dataset. If the network is
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trained and tested to an acceptable accuracy, then the
adjusted weights are used to determine the outputs of
each unknown data sample. This approach has been
called as ANN black box approach.

In this study, a feed forward multi-layer ANN with
one input layer, two hidden layers and one output layer
has been considered to produce an LSZ map. The input
layer contains 6 neurons each representing a causative
factor that contributes to the occurrence of the landslide.

The output layer contains a single neuron representing
one of the five LSZ classes (VLS, LS, MS, HS and
VHS) for a given set of input values for a pixel.

By varying the number of neurons in both the hidden
layers, the neural networks are run several times to
identify the most appropriate neural network architec
ture based on training and testing accuracies. A
schematic diagram of the best neural network architec
ture is given in Fig. 1. The whole dataset of the study
area is then processed with the most accurately trained
and tested network to generate the LSZ map of the study
area. The neural network processing has been imple
mented in Neural Network Tool Box of MATLAB

Software.

2.3. Fuzzy set based procedure

Fuzzy relation concept defined by Zadeh (1973) is
based on the theory of fuzzy sets. A fuzzy set can be
explained as a set containing elements that have varying
degrees of membership in the set (Ross, 1995). Fuzzy
relations play an important part in fuzzy modeling and
are based on the philosophy that everything is related to
some extent (Dubois and Prade, 1980). In this paper, one
of the well known similarity methods, cosine amplitude
method (Ross, 1995; Ercanoglu and Gokceoglu, 2004),
has been used to determine the relationship between the
landslide occurrence and the categories responsible for
such activity. The membership degrees of categories of
each factor are determined by establishing the strength
of the relationship (ry) between the existing landslides
and the categories.

Let n be the number of categories of a thematic layer
represented as an array X= {xu x2, ..., x„], each of its
elements, xh is a vector of pixels p (i.e., the size of the
image in the present context) and can be expressed as,

Xf — \Xi] ,Xi2,. . ,,Xjpj :n

Eachelement of a relation, ry, results from a pairwise
comparison of a category of a thematic layer i (i.e., layer
corresponding to a causative factor) with a category of

thematic layer,/' (i.e., landslide distribution layer), say x,
and jcj containingelementsxik and x/k respectively. In the
cosine amplitude method, for example, r:j (membership
grades) between categories of a thematic layer and that
of the landslide distribution layer are computed by the
following equation with its values ranging from 0 to 1
(0<r,7<l).

p

J2 xik*ik
U=l

Js4)(s4
(2)

Thery valuefora category canbe defined as the ratio
of total number of landslide pixels in the category to the
square root ofthe multiplication oftotal number ofpixels
in that category and the total number of landslide pixels
in the area. Values of ryclose to 0 indicatedissimilarity,
whereas values close to 1 indicate the similaritybetween
the two datasets. Eq. (2) leads to (n-l) ry images
corresponding to each category of the thematic layers
under consideration. These images show ry values at the
pixels belonging to the category in question, whereas rest
of the pixels indicate 0 values. The corresponding rv
images for various categories of a thematic layer are
composited together to generate an ry image for that
thematic layer and is represented as Rh where / varies
from 1 to t thematic layers belonging to each causative
factor (e.g., 6 thematic layers in the present case). The
fuzzy processing has been implemented in MS Excel
spreadsheet and ArcView GIS software.

2.4. Combined Neural andfuzzy procedure

In another procedure, the ANN connection weights
may be used to characterize the input data sources(e.g.,
the causative factors) in terms of ranks or weights. In this
process, the connection weight matrices for input-
hidden, hidden-hidden and hidden-output layers are
obtained for a two-hidden layer network. Simplematrix
multiplications of these weight matrices give rise to the
final weight matrix corresponding to the factors (Olden
et al., 2004). For example, if a network of 6/14/8/1
architecture (representing 6 neurons in the input layer, 14
neurons in the 1st hidden layer, 8 neurons in the 2nd
hidden layer and one neuron in the output layer) is con
sidered, connection weight matrices of 6* 14, 14x 8 and
8><1 are obtained. The product of 6*14 and 14x8
matrices gives a resultantmatrix of 6x8. Subsequently,
the product of 6 * 8 and 8 « 1 matrices gives an output
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351

Fig. 2. Steps for computations ofconnection weight matrices ofANN to characterize input data layers in terms of ranks and weights (in the
present study, I,—Land use land cover, I,—Lithology, I,—Slope, I4—Aspect, I,—Drainage buffer and I6—Lineament buffer); Note: Instep 151
X: 1-6; Y: 1-8.
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Fig. 3. The study area with landslide distribution in Darjeeling Himalayas.

matrix of 6 x 1 which corresponds to the weights of 6
factors. The absolute values of these weights are
considered in the present work to rank the factors
meaning thereby that the factor with maximum absolute
weight is assigned as rank 1 and the factor with the
minimum absolute weight as rank 6. This has been
illustrated in Fig. 2.

3. Study area

The Darjeeling Himalayas, encompassing a total area
of 3000 km2 rise abruptly from the alluvial plains of
West Bengal and attain a maximum elevation of about
2600 m. The area lies between Sikkim in the North,
Bhutan in the east and Nepal in the west. The southern
foot hill region is characterized by East-West trending
highly dissected platform of terrace deposits. The
southerly flowing river Tista approximately divides the
Darjeeling Himalayas into two parts, the eastern and the
western parts occupied by Kalimpong and Darjeeling
hills respectively. The Tista River however, does not fall
within the study area. The study area encompasses
Darjeeling hill which lies between latitude 26°56'-
27°8'N and longitude 88°10'-88°25'E and covers an
area of about 254 km2 (Fig. 3). The main habitat areas
are Darjeeling, Sonada and Sukhiapokhri.

The study area is highly dissected by many ridges and
valleys. The maximum elevation of2584 m occurs at the
Tiger hill. The area is dominated by slopes ranging
between 15° and 35° while steep slopes of >35° occupy
smaller area. In general, the gentle slopes of0-15° were
found on the ridges and at places in the region of lower
relief also.

The Darjeeling Himalayas lie within the Lesser and
Sub Himalayan belts. The tectonic units in the area
occur in inverted order of stratigraphic superposition.
Various rock groups have been named locally (Acharya,
1989). The Daling group of rocks comprises of low-
grade metamorphic rocks and includes slate, phyllite,
schist, quartzite, greywacke and epidiorite. The Darjee
ling Group consists primarily offoliated gneisses. Rocks
of the Paro Sub-group, which have similar character
istics to the Darjeeling Group, are present at lower
elevations.

The annual rainfall in the area is of the order of

3000 mm to 6000 mm. The rainfall pattern is highly
seasonal with a maximum rainfall during the monsoon
season from June to October. The main land use practice
in the study area is tea plantation. The agriculture land is
mostly developed around the habitat areas. In general,
the area is dominated by thick forest particularly in the
eastern part.
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4. Thematic data layer preparation

Various thematic data layers corresponding to
causative factors namely lithology, slope, aspect, linea
ments, land use land cover and drainage have been
prepared. These factors fall under the category of pre
paratory factors, which make the slope susceptible to
movement without actually initiating it and thus, are
considered responsible for the occurrence of landslides
in the region for which pertinent data can be collected
from available resources as well as from the field. The
triggering factors suchas rainfall andearthquakes, set off
the movement by shifting the slope from a marginally
stable to an actively unstable state. Further, the attributes
of the ground (internal factors) in terms of landslide
susceptibility have been considered here. Rainfall and
earthquakes are external factors and temporal phenom
ena. Also, past data on these external factors in relation to
landslide occurrence are not available. Therefore, these
factors have not been included in this study. A thematic
layercorresponding to the landslidedistribution maphas
also been prepared to establish a spatial correlation
between existing landslides and the causative factors,
which will be helpful for the preparation and evaluation
of LSZ maps of the area using different weighting
procedures.

The IRS-1C-LISS-III (acquired on 22nd March,
2000) and ID-PAN (acquired on 3rd April, 2000) data
along with Survey of India topographic maps at
1:25,000 and 1:50,000 scale, and the geological map
at 1:250,000 scale published by Acharya (1989) are the
main data sources used to generate these thematic data
layers. Extensive field data have been collected during
the years 2001 to 2003 to collect informationon existing
landslidedistribution to assist in creation of training and
testing datasets, finding out fuzzy membership values
and validation of LSZ maps. The months of March and
April were preferred for field data collection as these
coincided with the date of remote sensing data
acquisition. All the thematic data layers have been
resampled to match the nominal spatial resolution (i.e.,
25 m) of IRS-LISS-III multispectral image.

4.1. Landslide distribution map

The mapping of existing landslides is essential to
study the relationship between the landslide distribution
and the causative factors. As, it is not possible to map
each and every landslide through field surveys in such a
terrain, a comprehensive mapping of landslide has been
undertaken through remote sensing image interpreta
tion. The identification of landslides on remote sensing

image is based on the spectral characteristics, shape,
contrast and the morphological expression. In general,
there is a distinct spectral contrast between landslides
and the background area. High spatial resolution IRS-
IC-PAN andPAN-sharpened LISS-III images have been
used for landslide mapping. On the PAN image, land
slides appear as features of very light tones due to rock
debris without any vegetation on the slope. After
enhancing the contrast of the PAN image, landslides
occurring in barren areas can also be identified. A few
old landslides are identified on the basis of their shape,
landform and drainage. On the PAN-sharpened LISS-III
image, the landslides appear as bright-white features
(due to high reflectance) that are easily distinguished
from other features. Further, landslides are characterized
by fan shape, sharp lines of break in topography and
sometimes a local drainage anomaly. Often, the toe part
of the slide gives rise to a debris flow channel. Many of
the landslides identified on remote sensing images have
also been verified in the field.

Atotal of 101 landslides ofvarying dimensions (180 m2
to 27400 m2) have been identified from remote sensing
images and field surveys. A majority of landslides have
areal extent of 500 m2-2000 m2. Most of the observed
landslides are rock slides. However, in some cases, com
plex types of failure are also possible.

The landslides thus identified have been digitized as
polygons in separate vector layers one each for remote
sensing derived and field mapped, which are then
merged into single landslide layer. This layer has been
converted to a rasterized landslide distribution map
(Fig. 3) for further analysis.

4.2. Digital elevation model and its derivatives

The Digital Elevation Model (DEM) is an excellent
source to derive topographic attributes responsible for
landslide activity in a region. Therefore, a DEM at a
spatial resolutioncorresponding to pixel size 25 m x 25 m
has been generated by digitization of contours on the
topographic maps. The DEM is subsequently used to
derive the slope and aspect data layers.Slopeangle is one
of the key factors in inducing slope instability. The slope
data layerconsistsof 5 classes with 10°interval as per the
slope classification used in other studies (Anbalagan,
1992; Gupta et al., 1999; Dhakal et al., 2000). Aspect is
defined as the direction of maximum slope of the terrain
surfaceand has an indirect influence on slope instability.
In general, the south facing slopes have lesser vegetation
density as compared to the north facingslopesand hence,
the erosional activity is relatively more in the former case
(Sinha et al., 1975). The aspect data layer derived here
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represents nine classes, namely, N, NE, E, SE, S, SW, W,
NWand flatas per theclassification givenin otherstudies
(Sarkar and Kanungo, 2004; Saha et al., 2005).

4.3. Lithology

Different rock types (or lithology) have varied com
positionandstructure,whichcontributeto the strengthof
the material. The stronger rocks give more resistance to
the driving forces as compared to the weaker rocks, and
hence are less prone to landslides and vice versa. The
lithology data layer has been prepared by digitizing the
polygons from the co-registered geological map of
Sikkim-Darjeeling area (Acharya, 1989) in a vector
layer. Necessary modifications have also been incorpo
rated in this vector layer after field verification. This
lithology data layer is later rasterized at 25 m spatial
resolution. The six rock types present in this data layer
are Darjeeling gneiss, Paro gneiss, Lingtse granite
gneiss, feldspathic greywacke, and quartzites of the
Paro sub-group and the Reyang group.

4.4. Lineaments

Lineaments are the structural features which describe

the zone/plane of weakness, fractures and faults along
which landslide susceptibility is higher. It has generally
been observed that the probability of landslide occur
rence increases at sites close to lineaments, which not
only affect the surface material structures but also make
contribution to terrain permeability causing slope in
stability. Lineaments have been interpreted from the
PAN and LISS-III images. The individual bands ofLISS-
III image are enhanced using linear contrast stretching
followed with a 3 x 3 edge filters to highlight high fre
quency features. Subsequently, all the four bands are
layer stacked to produce the edge-enhanced image which
has been used for visual interpretation of lineaments. The
lineaments have been interpreted based on the tonal
contrast, structural alignments and rectilinear trends of
morphological features and linear stream courses that are
conspicuous by their abrupt changes in the course. There
is no major thrust/fault reported in the study area, but
mega lineaments have been identified. The interpreted
lineaments have been digitized on-screen and subse
quently rasterized to produce the lineament data layer.
Initially, buffer zones at 250 m intervals were created.
These buffer zones were spatially cross-correlated with
the landslide pixels in the area and it was observed that
98% of landslide pixels occurred in 1st two buffer zones
(up to 500 m). Hence, it was decided to consider four
buffer zones at 125 m intervals up to 500 m and another

buffer zone beyond 500 m to establish the influence of
lineaments on landslide occurrence. Thus, a lineament
buffer layer consisting of five classes such as 0-125 m,
125-250 m, 250-375 m, 375-500 m and >500 m has
been prepared.

4.5. Drainage

Many of the landslides in hilly areas occur due to the
erosional activity associated with drainage. Therefore, a
drainage data layer has been prepared by digitizing the
drainages from the topographic maps in a vector layer.
Later, this layer has been overlaid on IRS-LISS-III image
for updating the drainages. This was felt necessary as
most of the 1st order drainages, which were not present
on the topographic maps, could be interpreted from the
LISS-III image, which also showed change in the course
of the river and other major drainages at some places.
The ordering of the drainage has been performed on the
basis ofStrahler's classification scheme (Strahler, 1964).
Drainages up to 6th order have been observed in the
study area. Subsequently, the vector layer has been
rasterized at 25 m spatial resolution. Initially, 25 m buffer
zones on either side of the drainages for all the drainage
orders were created. It was observed from the spatial
correlation of landslide distribution in these buffer zones

that majority of landslide pixels occurred in the 1st and
2nd order drainage buffers only. Therefore, 25 m buffer
zones around these drainages only have been considered
to create a drainage buffer layer for further analysis.

4.6. Land use land cover

Land use land cover is also a key factor responsible
for landslide occurrences. The incidence of landslide is

inversely related to the vegetation density. Hence, barren
slopes are more prone to landslide activity as compared
to the forest area. Eight dominant land use land cover
classes namely thick forest, sparse forest, tea plantation,
agriculture, barren, built up, water bodies and river sand
have been considered similar to other studies (Sarkar and

Kanungo, 2004; Saha et al., 2005). Avery small portion
of the study area is covered by cloud and its shadow in
the LISS-III image. Initially, this portion was masked.
The four spectral bands of LISS-III image, Digital
Elevation Model (DEM) and Normalized Difference
Vegetation Index (NDVI) image have been considered to
prepare a land use land cover map in a multi-source
classification process using the most widely adopted
maximum likelihood classifier. The map has been pre
pared at an overall classification accuracy of 94.7%.
Subsequently, masked portion of the land use land cover
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Fig. 4. Flow diagramshowing different stages of preparing LSZ map using conventional weighting procedure.

map thus prepared has been filled with the land use land
cover information obtained from field surveys to
generate the final land use land cover layer.

5. Implementation of various procedures for LSZ

The LSZ mapping was performed in GIS environ
ment to categorize each and every pixel of the dataset to
one of the landslide susceptibility zones. GIS tool allows
for the storage and manipulation of information con
cerning different factors as distinct layers and thus
provide an excellent tool for LSZ mapping. The thematic
data layers were prepared in GIS platform and the data
were stored as attributes for further analysis. The weights
and ratings of the thematic layers and their categories
respectively were determined using four different
weighting procedures as mentioned earlier. All the four
procedures were implemented in ArcView GIS software
to generate LSZ maps.

5.1. LSZ using conventional weighting procedure

5.1.1. Implementation
The conventional weighting procedure involves as

signment of weights and ratings to the thematic layers
and their categories respectively based on the knowledge
of the study area and the experience on the subject.

Differentstepsof thisprocedureforLSZaregiveninFig.
4. Such weighting scheme was used by Sarkar and
Kanungo (2004) with a different combination of them
atic layers and their categories.

In the study area, it was observed that most of the
landslides were associated with drainage channels and
hence the maximum weight was assigned to the drainage
layer. Also, maximum rating of 9 was assigned to 1st
order drainage buffer category as most of the landslides
initiate from the lower order drainages. The next
important factor considered was the lineament. Here,
the maximum rating was given to the 0-125 m lineament
buffer category as the nearness to the lineaments controls
the occurrence of the landslide. Since the steeper slopes
are more prone to landslide, the slope classes were given
ratings in the descending order. The competent rocks
such as quartzite, greywacke are less susceptible to
landslides than the gneisses as more number of land
slides are observed in gneissic rock in the field. Hence,
the ratings to lithology categories were assigned ac
cordingly. Occurrence of landslides also depends on the
type of the land use land cover. Barren slopes are more
susceptible to erosion as compared to areas with thick
forest and hence, maximum rating was assigned to the
barren slopes and minimum to the thick forest. The slope
aspect has an indirect influence on slope instability.
Based upon the landslide distribution, south and east
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Table 1

Weights and ratings for thematic layers and their categories
(conventional weighting procedure)

Thematic layers Categories Weights Ratings

Drainage buffer 1. 1st order

2. 2nd order

9 9

5

Lineament buffer 1.0-125 m 8 9

2. 125-250 m 7

3. 250-375 m 5

4. 375-500 m 3

5. >500 m 1

Slope 1.0-15°

2. 15-25°

3. 25-35°

4. 35-45°

5. >45°

7 1

3

5

7

9

Lithology 1. Darjeeling gneiss
2. Feldspathic greywacke
3. Paro gneiss
4. Lingse granite gneiss
5. Paro quartzite

6. Reyang quartzite

6 7

3

5

9

1

1

Land use land cover 1. Agriculture land
2. Tea plantation
3. Thick forest

4. Sparse forest

5. Barren land

6. Habitation

7. Water body
8. River sand

4 5

3

1

7

9

2

0

0

Aspect l.Flat

2. North

3. Northeast

4. East

5. Southeast

5. South

7. Southwest

8. West

9. Northwest

1 0

1

4

7

8

9

6

3

2

facing slopes were considered more prone to landslides
than the other slopes (Dhakal et al., 2000). Considering
these facts and field observations, ratings for slope aspect
categories were assigned accordingly. The weights and
ratings thus assigned to each thematic layer and their
categories are given in Table 1.

The weighted thematic data layers were generated by
algebraically multiplying the weight of the layer with the
ratings of the corresponding categories of each layer. In
thepresentcase,six weightedthematic data layersnamely
lithology, land use land cover, slope, aspect, lineament
buffer and drainage buffer were produced. These layers
were laid over one anotherand arithmetically added ac
cording to the following equation to generate a Landslide
Susceptibility Index (LSI) map in GIS,

LSI = Li + Lu + SI + As + Lb + Db (3)

where Li, Lu, SI, As, Lb and Db are abbreviations for the
weighted thematic layers for lithology, land use land
cover, slope, aspect, lineament buffer and drainage buffer
respectively.

The LSI values range from 21 to 310, which were then
categorized to produce landslide susceptibility classes. A
judicious way for such classification is to search for
abrupt changes in values (Davis, 1986). The classifica
tion procedure reported by Sarkar and Kanungo (2004)
was followed. The class boundaries were drawn at LSI

values of 68, 137, 176 and 236 to obtain five sus
ceptibility zones. The LSZ map (referred here as Map I),
thus obtained is shown in Fig. 5a. The area covered by
five different landslide susceptibility classes and the area
of landslides occupied per class have also been deter
mined (Table 2).

5.1.2. Analysis of the output LSZ Map I
The five susceptibility zones in LSZ Map I were

distributed all over the study area. The map did not show
any definite pattern for the distribution of susceptibility
zones. It can be inferred from Table 2 that 33.3% of HS

and VHS areas together could predict 58.7% ofexisting
landslide area. It was again observed from this map that
the VHS and HS zones represented mostly the 1st and
2nd order drainage buffer areas. This happened as the
drainage layerwas assigned the maximum weight in this
conventional procedure.

5.2. LSZ using ANN Black Box procedure

5.2.1. Implementation
The flow diagram indicating the different steps fol

lowed in this procedure is shown in Fig. 6. Initially, the
field data on landslides (i.e., existing landslide distribu
tion) were used to process the neural network. But, due
to less number of landslide pixels, the neural network
accuracies were found to be very low. Therefore, similar
to earlier studies (Arora et al., 2004), the map obtained
from conventional approach was considered as refer
ence map, to derive representative sample sizes. Two
independent sets of training and testing data were
randomly selected with their land slide susceptibility
class known from the LSZ map I. Each dataset consisted
of 500 mutually exclusive pixels corresponding to each
landslide susceptibility zone (Foody and Arora, 1997).
The training dataset was used to train various network
architectures while the testing dataset was used to
control the overtraining of the network and to evaluate
the accuracy of the networks. The input values for
neural network processing correspond to the attributes
of the category of a thematic layer (as mentioned in 2nd
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column of Table 2), which were normalized with
respect to the highest value within each thematic
layer. The normalized attribute values of different
landslide susceptibility zones (VLS, LS, MS, HS and
VHS) in the desired output in order of increasing
susceptibility correspond to 0.2, 0.4, 0.6, 0.8 and 1.0
respectively.

A total of 39 neural network architectures were

created by varying the number of neurons in both the

Table 2

Distribution of landslide susceptibility zones and landslides in different LSZ maps

hidden layers. The training process was initiated by
assigning arbitrary initial connection weights, which
were constantly updated until an acceptable accuracy
over training data was reached. These adjusted weights
obtained from the trained network were subsequently
used to process the testing dataset to examine the
generalization capability of the network.

The performance of the networks was evaluated by
determining both the training and testing data accuracies

Landslide susceptibility zones LSZ

Area

vlap I

Landslide area

LSZ

Area

Map II

Landslide area

LSZ

Area

Map III

Landslide area

LSZ Map IV

Area Landslide area

(%) occupied

(%)

3er class (%) occupied

(%)

)er class (%) occupied

(%)

ier class (%) occupied per class

(%)

Very high susceptibility zone 6.5 10.6 7.7 10.3 6.1 41.0 2.3 30.1
High susceptibility zone 26.8 48.1 26.9 40.4 22.7 25.1 20.2 31.9
Moderate susceptibility zone 30.2 26.5 35.4 36.1 39.4 25.9 48.4 26.5
Low susceptibility zone 34.9 14.5 25.8 12.7 30.4 8.0 28.8 11.5
Very low susceptibility zone 1.6 0.3 4.2 0.5 1.4 0.0 0.3 0.0
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Fig. 6. Flow diagram showing different steps of ANN black box procedure.

in terms of correlation coefficient, root mean squared
error (RMSE) (Freund, 1992) and also by the percent
correct or overall classification accuracy (Congalton,
1991). The training and testing accuracies for some
networks are given in Table 3. A variation in both
training and testing data accuracies can be seen as the
neural network architectures change. This infers that
there exists an optimal network architecture for a given
dataset. In the present case, the network architecture 6/
13/7/1 with training data accuracy (correlation coeffi
cient of 0.918, root mean square error 0.112 and 74.4%
correct) and the testing data accuracy (correlation coef
ficient of 0.896, root mean square error 0.126 and
72.6% correct) was the most appropriate one. There
fore, weights obtained from this network were
subsequently used to obtain the network output of
each pixel. The output values ranged from 0.062 to
0.993, which were categorized into one of the five
landslide susceptibility zones (Table 4) to produce the

LSZ map in GIS. The LSZ map (referred here as Map
II) thus produced is shown in Fig. 5b. Thearea covered
by different landslide susceptibility zones and the area
of landslides occupied per class were also determined
(Table 2).

5.2.2. Analysis of the output LSZMap II
It can be inferred from Table 2 that in case of

LSZ Map II, an area of 34.6% belonging to VHS and
HS zones put together could predict only 50.7%
landslide area. Further, the map does not depict any
definite pattern, as the susceptibility zones are
distributed all over the area. Moreover, the drainage
buffer layer has a major control on this LSZ map
also. This may be due to the fact that the LSZ Map I
was used as the reference map for training the
network to produce an ANN black box based LSZ
map (Map II). Hence, there is lot of similarity
between LSZ Maps I and II.
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Table 3

Training and testing data accuracies ofANN black box procedure (bold indicates the best acceptable architecture in this study)
NN

architecture

Correlation coeffi( ient RMSE Accuracy (%)

Training Testing Training Testing Training Testing Diff.

6-4-2-1 0.877 0.870 0.136 0.139 64.9 63.2 1.7
6-5-2-1 0.886 0.875 0.131 0.137 67.4 65.0 2.4
6-6-4-1 0.892 0.881 0.128 0.134 68.0 65.3 2.7
6-7-5-1 0.906 0.893 0.120 0.127 71.0 69.3 1.7
6-8-5-1 0.908 0.891 0.119 0.128 70.8 68.7 2.1
6-9-5-1 0.911 0.893 0.117 0.127 72.1 68.6 3.5
6-10-4-1 0.912 0.893 0.116 0.128 71.4 69.8 1.6
6-11-3-1 0.915 0.897 0.114 0.125 73.9 70.0 3.9
6-12-4-1 0.912 0.892 0.116 0.128 72.9 70.9 2.0
6-13-5-1 0.915 0.899 0.114 0.124 73.8 70.3 3.5
6-13-7-1 0.918 0.896 0.112 0.126 74.4 72.6 1.8
6-13-9-1 0.918 0.893 0.112 0.128 73.2 68.0 5.2
6-14-3-1 0.912 0.892 0.116 0.128 71.9 70.1 1.8
6-15-4-1 0.919 0.891 0.112 0.128 74.2 69.2 5.0
6-15-6-1 0.915 0.894 0.114 0.127 73.8 69.5 4.3
6-15-8-1 0.914 0.894 0.115 0.127 72.9 69.6 3.3
6-16-3-1 0.917 0.890 0.113 0.129 72.7 69.0 3.7
6-16-7-1 0.920 0.889 0.111 0.130 73.8 67.2 6.6

5.3. LSZ usingfuzzy set based procedure

5.3.1. Implementation
In the fuzzy set based procedure, ratings of each

category of a given thematic layer were determined on
the basis of cosine amplitude similarity method, which
werethen integrated in GIS by consideringthe weightof
each thematic layer as one (or constant) to generate the
LSZ map.

The cosine amplitude method as described earlier
was adopted to determine the ratings of the categories of
factors. The landslide distribution map and different
categories of thematic layers taken one at a time were
consideredas two datasets for the computation of rating
or strength of relationship (ry). In the landslide dis
tribution layer, pixels belonging to landslides were
assigned as 1 and the rest were assigned as 0. Similarly,
a value of 1 was assigned to a pixel belonging to a
particular category ofa thematic layer and a value of0 to
the rest. Hence, in total 36 data layers in binary form
were generated, which contained 35 layers ofcategories
of thematic layers (Table 5) and one layer of landslide
distribution. These layers were used for the determina
tion of ry in GIS so as to generate35 imagesdenoting rt/
values. The ryvalues thus obtained are listed in Table 5.

The corresponding ry images for various categories
of a thematic layer were combined together to generate
an R/ image for that thematic layer. The integration of
these Ri images for various thematic layers can be
performed in several ways to compute LSI values. The
simplest approach is to add this arithmetically which is

similar to any other conventional GIS integration pro
cess. Alternatively, to bring fuzziness in the integration
process also, the use of fuzzy algebraic sum, fuzzy
algebraic product and fuzzy gamma operatorcan be put
forth. In view of this, the LSI values were computed in
two different ways: (a) using arithmetic integration and
(b) using fuzzygamma operator. The performance of the
two methods was also examined. It was found that the

arithmetic overlay approach of thematic layer integra
tion yielded better results than the fuzzy gamma ope
rator for this dataset. Therefore, this approach was
considered further.

In the arithmetic overlay approach, the LSI for each
pixel of the study area was obtainedusing the following
equation,

LSI I> (4)
/=!

The LSI values were found to lie in the range from 0.014
to 0.252. The observed mean (p0) and standard

Table 4

Classification scheme for neural network output values for LSZ
mapping (ANN black box procedure)

Range of values

0-0.3

0.3-0.5

0.5-0.7

0.7-0.9

>0.9

Landslide susceptibility zone

Very low susceptibility zone
Low susceptibility zone
Moderate susceptibility zone
High susceptibility zone
Very high susceptibility zone
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Table 5

Fuzzy ratings for different categories of factors

Thematic layers corresponding to factors Categories Number of pixels Number of landslide pixels Fuzzy rating (r(/)

Land use land cover Agriculture land 35,692 85 0.0488

Tea plantation 142,541 84 0.0243

Thick forest 72,685 38 0.0229

Sparse forest 131,088 65 0.0223

Barren land 14,237 58 0.0638

Habitation 10,341 9 0.0295

Water 970 0 0

River sand 1005 0 0

Lithology Darjeeling gneiss 73,371 77 0.0324

Feldspathic greywacke 45,938 61 0.0364

Paro gneiss 247,242 158 0.0253

Lingtse granite gneiss 20,926 15 0.0268

Paro quartzite 12,154 14 0.0339

Reyang quartzite 8089 14 0.0416

Slope 0-15° 51,380 23 0.0212

15-25° 146,974 117 0.0282

25-35° 144,495 131 0.0301

35-45° 50,246 58 0.0340

>45° 14,329 10 0.0264

Aspect Flat 2072 0 0

N 59,880 22 0.0192

NE 45,077 32 0.0266

E 52,868 73 0.0372

SE 45,689 77 0.0411

S 37,630 49 0.0361

SW 29,860 20 0.0259

w 55,132 26 0.0217

NW 79,148 40 0.0225

Drainage buffer 25 m along 1st order drainage 116,168 102 0.0296

25 m along 2nd order drainage 27,690 44 0.0399

Lineament buffer 0-125 m 146,761 243 0.0407

125-250 m 108,929 35 0.0179

250-375 m 72,380 36 0.0223

375-500 m 41,360 17 0.0203

>500m 38,317 8 0.0144

deviation (er0) from the probability distribution curve of
these LSI values are 0.150 and 0.024 respectively. The
LSI values were divided into five distinct classes

(susceptibility zones) with boundaries at (p.0
-1.5 ma0), (uo-0.5 maQ), (po+ 0.5 ma0) and (p.0
+1.5 maQ) where m is a positive, non-zero value (Saha
et al., 2005) which controls in fixing the most
appropriate boundaries within the LSI range for
landslide susceptibility classes. This classification
scheme was adopted to fix the boundaries of classes
statistically and also to avoid the subjectivity in
arbitrarily selecting the boundaries of classes as was
done in the conventional procedure.

Several LSZ maps of the study area were prepared
for different values of m. The cumulativepercentage of
landslide occurrences in various susceptibility zones
ordered from VHS to VLS were plotted against the
cumulative percentage of area of the susceptibility

zones for these LSZ maps. These curves, defined as
success rate curves (Chung and Fabbri, 1999; Lu and
An, 1999; Lee et al., 2002b), were used to select the
appropriate value of m to decide the suitability of a
LSZ map. Five representative success rate curves cor
responding to /m = 0.8, 1.0, 1.1, 1.2 and 1.4 are shown
in Fig. 7a. The suitability of any LSZ map can be
judged by the fact that more percentage of landslides
must occur in VHS zone as compared to other zones. It
can be seen from Fig. 7a that for 10% of the area in
VHS zone, the curves corresponding to wj = 0.8, 1.0,
1.1, 1.2 and 1.4 show the landslide occurrences of

42.7%, 47.7%, 48.6%, 47.3% and 41.8% respectively.
Hence, for the first 10% area, the curve corresponding
to m= 1.1 has the highest success rate. Based on this
analysis, the LSZ map corresponding to m=\.\
appears to be the most appropriate one for the study
area. Accordingly, the landslide susceptibility class
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Fig. 7. Success rate curves to select theappropriate LSZ map. (a) Fuzzy set based procedure, (b) Combined neural and fuzzy procedure.

boundaries were fixed at LSI values of 0.110, 0.136,
0.163 and 0.189. The LSZ map (referred here as Map
III) thus produced is shown in Fig. 5c. The area
covered by different landslide susceptibility zones and
the area of landslides occupied per class are also given
in Table 2.

5.3.2. Analysis ofoutput LSZ Map III
The visual inspection of the LSZ Map III depicts

an overall NNE-SSW zonation trend in the area. It

has been observed that the southeast and east facing
slopes are more prone to landslides than other slopes.
Hence, it can be stated that there is a topographic
control over this LSZ map. Further, the spatial
correlation between the landslide distribution and the

LSZ map shows that 41.0% of landslide area has
predicted over 6.1% area of VHS zone. It can also be
stated that 28.8% of the total area occupied by HS and
VHS zones are able to predict 66.1% of the total
landslide area (Table 2).

5.4. LSZ using combined neural andfuzzy procedure

5.4.1. Implementation
The combined neural and fuzzy approach involves

three main stages:

1) determination of weights of thematic layers through
ANN connection-weight approach

2) determination of ratings for categories of thematic
layers using cosine amplitude method

3) integration of ratings and weights using GIS to arrive
at the LSZ map.

The methodology for LSZ using this procedure is
shown in Fig. 8.

A feed forward back-propagation multi-layer ANN
with one input layer, two hidden layers and one output
layer was considered to determine the weights of the
causative factors. The number of neurons in the input
layer equals the number of input thematic layers. The
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data at each neuron of the input layer correspond to
the weighted normalized rating or ry of the correspon
ding category (i.e., last column of Table 5). The output
layer consists of a single neuron representing presence
or absence of landslide for a pixel. Hence, the output
value is either 0 or 1. The number of neurons in the

hidden layers is varied by running the networks several
times to achieve the desired training and testing data
accuracies.

One set each of training, verification and testing data
were randomly generated from the study area. The
datasets consist of 226 pixels each, out of which 113

pixels were landslide pixels and rest 113 pixels were no
landslide pixels. All the pixels in the datasets were
mutually exclusive (Foody and Arora, 1997). The
training dataset was used to train different network
architectures while the verification dataset was used

simultaneously with the training dataset to control the
overtraining of the network. The testing dataset was
used to evaluate the accuracy of the networks. Similar to
ANN black box approach, the well known back-
propagation learning algorithm was used to train the
neural networks. 100 neural network architectures were

designed, trained and tested. The training process was
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initiated witharbitrary initial connection weights, which
were constantly updated until an acceptable accuracy
was reached. The training accuracy observed for the
networks was of the order of 75% to 90%.

The final adjusted weights of the trained network
were used to derive outputs of the testing data to
evaluate the performance of the network. The testing
accuracy observed for the networks was of the order of
60% to 70%. The adjusted weights of input-hidden,
hidden-hidden and hidden-output connections for each
network were captured for further analysis. Simple
matrix multiplication was performed on these weight
matrices to obtain a 6 x 1 weight matrix for each network
which represents the weights of six causative factors
(thematic layers) in this study. These causative factors
were ranked according to the corresponding absolute
weights for each network which means the higher the
value of absolute weight, the more crucial the factor is
for the occurrence of landslide. Considering all the 100
networks, the rank of a factor was decided based on the
rank observed by the maximum number of networks
(majority rule). Out of the 100 networks, 41 networks
categorized lithology as rank 1 (most important), 31
networks categorized lineament as rank 2, 30 networks
categorized slope as rank 3, 27 networks categorized
aspect as rank 4, 33 networks categorized land use land
cover as rank 5 and 49 networks categorized drainage as
rank 6 (least important). These results are summarized in
Table 6. Subsequently, the weighted normalized average
of the weights of these networks at a scale of 0-10 for a
particular factor was calculated and assigned as the
weight of that factor (W,) for the preparation of LSZ
map. The weights thus obtained through ANN for all the
factors are listed in Table 7.

It has been observed that the network with archi

tecture 6/14/8/1 has been found to be the best for this

dataset as it produced the same ranking pattern as
mentioned above. The normalized weights obtained
through this network at a scale from 0 to 10 for litho
logy, lineament buffer, stope, aspect, land use land cover
and drainage buffer are 5.007, 1.996, 1.239, 0.933,
0.544 and 0.281 respectively (Fig. 2). These weights are
almost at par with the weights obtained through majority
rule (Table 7) which have been finally considered for
producing the LSZ map.

The integration of 6 thematic layers representing the
ratings for the categories (R/) of the layers (obtained
from fuzzy logic) and weights for the layers (Wt)
(obtained from ANN) was performed by using simple
arithmetic overlay operation in GIS. Hence, this pro
cedure has been named here as combined neural and

fuzzy weighting procedure. The LSI for each pixel of

the study areawas thus obtained by using the following
equation.

LSI =^ (W,xR, (5)
i=\

The LSI values were found to lie in the range from
0.030 to 0.408. The success rate curve approach was
used to classify the LSI values into five different
susceptibility zones to produce the LSZ map. Five
representative success rate curves corresponding to
m=\.2, 1.3, 1.4, 1.5 and 1.6 are shown in Fig. 7b. It can
be observed that for 10% of the area in VHS zone the

curves corresponding to m=1.2, 1.3, 1.4, 1.5 and 1.6
show the landslide occurrences of 43.9%, 45.6%,
46.7%, 43.3% and 43.9% respectively. Hence, for the
first 10% area, the curve corresponding to m=1.4 has
the highest success rate. Based on this analysis, the LSZ
map corresponding to m=1.4 appears to be the most
appropriate one for the study area. Accordingly, the
boundaries of landslide susceptibility zones were fixed
at LSI values of 0.208, 0.253,0.299 and 0.344. The LSZ
map (referred here as Map IV) thus produced is given in
Fig. 5d. The area covered by different landslide
susceptibility zones and the area of landslides occupied
per class are also given in Table 2.

5.4.2. Analysis ofoutput LSZ Map IV
In LSZ Map IV, only 2.3% of the total study area was

occupied by the VHS zone and 30.1% of landslide area
was predicted over this zone. It was also inferred that
22.5% of the total area occupied by VHS and HS zones
could predict 62% of landslide area (Table 2). Further,
this LSZ map has shown preferential distribution of
higher landslide susceptibility zones along structural
discontinuities (lineaments), which should indeed be the
case. The buffer zones of lineaments have clearly indi
cated the VHS and HS zones in the north and southeast

parts of the area. Therefore, it indicates the "ghost-effecf"
of lineaments on LSZ map as stated by Saha et al. (2005).
Also, the Darjeeling gneiss rock type in southeasternpart,
feldspathic greywacke and Reyang quartzite in the
northern part of the study area have clearly indicated
moderate to very high susceptibility zones. Most of the
lineaments up to 125 m buffer zone in these rock types
have indicated high and very high susceptibility zones.
Hence, it depicts the importance of lithology (i.e., rock
types) as well as lineaments on the LSZ.

6. Comparative analysis and discussion

The LSZ maps were prepared using four different
weighting procedures in a GIS-based approach. The
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Table 6

Ranks of factors based on majority rule in combined neural and fuzzy weighting procedure (the number represents the number of artificial neural
networks out of 100 networks categorizing a factor with respect to a particular rank and the rank corresponding to the maximum number of neural
networks for a factor represents the final rank of that factor)

Factors Number of networks Final rank

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6
(majority rule)

Land use land cover 1 8 10 22 33 26 5

Lithology 41 21 12 10 10 6 1

Slope 23 24 30 9 9 5 3

Aspect 13 15 22 27 12 11 4

Drainage buffer 0 1 2 17 31 49 6

Lineament buffer 22 31 24 15 5 3 2

comparative analysis of different LSZ maps has been
described below.

The pattern of percent area distribution of suscepti
bility classes in different LSZ maps prepared in this
study appears to be quite similar to that obtained in other
LSZ studies in the Himalayan regions (Gupta et al.,
1999; Arora et al., 2004; Sarkar and Kanungo, 2004;
Saha et al., 2005). However, in the LSZ Map I prepared
using conventional weighting procedure, the LS zone
occupied the maximum percent area (34.9%) in
comparison to the MS zone which occupied 30.2% area.

Further, the VHS zone in the LSZ Map IV occupied
2.3% of the total study area, whereas in all other LSZ
maps the area occupied by VHS is more than 6% of total
area. Subsequently, the landslide distribution map was
spatially cross-checked with all the four LSZ maps. The
landslide distribution in the VHS and HS zones of LSZ

maps (Table 2) indicate that the LSZ maps produced by
fuzzy and combined neural and fuzzy procedures could
predict more landslides in these zones as compared to
other two LSZ maps.

Moreover, it can also be observed that the LSZ map
produced by combined neural and fuzzy procedure shows
preferentialdistribution of higher landslide susceptibility
zones along structural discontinuities (lineaments) as
compared to other LSZ maps, which may indeed be the
case. Overall, the buffers of lineaments have left traces on

the LSZ map. Owing to the landslide susceptibility of the
terrain, the lineamentsought to leave some traces (termed
as "ghost effect" in Saha et al., 2005) on the LSZ map.

Furthermore, the Darjeeling gneiss rock type in
southeastern part, feldspathic greywacke and Reyang
quartzite in the northern part of the study area have
clearly indicated MS to VHS zones. Most of the line
aments up to 125 m buffer zone in these rock types have
indicated HS and VHS zones. Hence, it depicts the
importance of lithology (i.e., rock types) as well as
lineaments on LSZ.

On the basis of these results, it can be concluded that

the LSZ map derived from combined neural and fuzzy
weighting procedure appears to be the best amongst all
the weighting procedures and may thus be a useful way
of assigning weights to the factors in an objective
manner thereby minimizing the subjectivity.

7. Conclusions

In this study, four different weighting procedures viz.
conventional based on subjective weighting, ANN black
box, fuzzy logic and combined neural and fuzzy were
applied for LSZ mapping in part of Darjeeling Hima
layas and a comparative evaluation was carried out. The
combined neural and fuzzy weighting integration
produced the most accurate LSZ map. This may be
attributed to the following reasons:

1) It represents an objective approach where weights for
factors are determined through ANN connection
weight approach and ratings of the categories of
factors are determined through cosine amplitude
similarity method based on fuzzy relation concept.

2) The LSZ map reflects preferential distribution of
higher landslide susceptibility zones along linea
ments which may indeed be the case.

Table 7

Weights of thematic layers derived through ANN (combined neural
and fuzzy weighting procedure)

Thematic layers

Lithology
Lineament buffer

Slope
Aspect

Land use land cover

Drainage buffer

ANN derived weights

4.807

2.113

1.318

1.065

0.495

0.202

*

-a
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3) It delineates a relatively small area (only 2.3% of
total area) for VHS zone, which can be more
meaningful for practical applications.

Therefore, the integration of different factors in GIS
environment using the combined neural and fuzzy wei
ghting procedure may serve as one of the key objective
approaches in this direction because of the fact that it
can narrow down the potential susceptibility zones in a
meaningfulway for planning future developmental acti
vities and implementation of disaster management pro
grammes in hilly terrains.

References

Acharya, S.K., 1989. The Daling Group, its nomenclature, tectono-
stratigraphy and structural grain: with notes on their possible
equivalents. Geol. Surv. Indones., Spec. Publ. 22, 5-13.

Aleotti, P., Chowdhury, R., 1999. Landslide Hazard Assessment:
Summary,Review and New Perspectives. Bull. Eng. Geol. Environ.
58,21-44.

Anbalagan, R., 1992. Landslide Hazard Evaluation and Zonation
Mapping in Mountainous Terrain. Eng. Geol. 32, 269-277.

Arora, M.K., Das Gupta, A.S., Gupta, R.P., 2004. An artificial neural
network approach for landslide hazard zonation in the Bhagirathi
(Ganga) Valley, Himalayas. Int. J. Remote Sens. 25 (3), 559-572.

Atkinson, P.M., Tatnall, A.R.L., 1997. Neural networks in remote

sensing. Int. J. Remote Sens. 18, 699-709.
Chi, K-H., Park, N.-W, Lee, K., 2002a. Identification of Landslide

Area using Remote Sensing Data and Quantitative Assessment of
Landslide Hazard. Proc. IEEE Int. Geosciences and Remote

Sensing Symp., 19 July, Toronto, Canada.
Chi, K.-H., Park, N.-W.,Chung, C-J., 2002b. Fuzzy logic integration

for landslide hazard mapping using spatial data from Boeun,
Korea. Proc. of Symp. on Geospatial Theory, Processing and
Applications, Ottawa.

Chung, C.-J.F, Fabbri, A.G., 1999. Probabilistic prediction models for
landslide hazard mapping. Photogramm. Eng. Remote Sensing 65,
1389-1399.

Clerici, A., Perego, S., Tellini, C, Vescovi, P., 2002. A procedure for
landslide susceptibility zonation by the conditional analysis
method. Geomorphology 48, 349-364.

Congalton, R.G., 1991. A review of assessing the accuracy of classi
fications of remotely sensed data. Remote Sens. Environ. 37, 35-46.

Davis, J.C., 1986. Statistics and Data Analysis in Geology. John Wiley
& Sons, New York. 646 pp.

Dhakal, A.S., Amada, T, Aniya, M., 2000. Landslide hazard mapping
and its evaluation using GIS: an investigation of sampling schemes
for a grid-cell based quantitative method. Photogramm. Eng. Re
mote Sensing 66 (8), 981-989.

Dubois, D., Prade, H., 1980. Fuzzy Sets and Systems: Theory and
Applications. Academic Press, New York.

Elias, P.B., Bandis, S.C, 2000. Neurofuzzy systems in landslide
hazard assessment. Proc. 4th Int. Symposium on Spatial Accu
racy Assessment in Natural Resources and Environmental Sci
ence, pp. 199-202.

Ercanoglu, M., Gokceoglu, C, 2004. Use offuzzy relations to produce
landslide susceptibility map of a landslide prone area (West Black
Sea Region, Turkey). Eng. Geol. 75 (3&4), 229-250.

Foody, G.M., Arora, M.K., 1997. An evaluation of some factors
affecting the accuracy of classification by an artificial neural
network. Int. J. Remote Sens. 18, 799-810.

Freund, J.E., 1992. Mathematical Statistics, Fifth Edition. Printice-
Hall of India Pvt. Ltd., New Delhi, India.

Gomez, H., Kavzoglu, T., 2005. Assessment of shallow landslide
susceptibility using artificial neural networks in Jabonosa River
Basin, Venezuela. Eng. Geol. 78 (1-2), 11-27.

Gong, P., 1996. Integrated analysis ofspatial dataformultiple sources:
usingevidential reasoning and artificial neuralnetwork techniques
for geological mapping. Photogramm. Eng. Remote Sensing 62,
513-523.

Gorsevski, P.V., Gessler, P.E., Jankowski, P., 2003. Integrating a fuzzy
i-means classification and a bayesian approach for spatial
prediction of landslide hazard. J. Geogr. Syst. 5, 223-251.

Gupta, R.P., 2003. Remote Sensing Geology, 2nd Edition. Springer-
Verlag, Berlin Heidelberg, Germany.

Gupta, R.R, Joshi, B.C., 1990. Landslide Hazard Zonation using the
GIS Approach—A case Study from the Ramganga Catchment,
Himalayas. Eng. Geol. 28, 119-131.

Gupta, V., Sah, M.R, Virdi, N.S., Bartarya, S.K., 1993. Landslide
Hazard Zonation in the Upper Satlej Valley, District Kinnaur,
Himachal Pradesh. J. Himal. Geol. 4, 81-93.

Gupta, R.R, Saha, A.K., Arora, M.K., Kumar, A., 1999. Landslide
HazardZonationina partof BhagirathyValley, GarhwalHimalayas,
using integrated Remote Sensing—GIS. J. Himal. Geol. 20 (2),
71-85.

Hagan, M.T., Menhaj, M„ 1994. Training feedforward networks with
the Marquardt algorithm. IEEE Trans. Neural Netw. 5 (6),
989-993.

Hagan, M.T., Demuth, H.B., Beale, M.H., 1996. Neural Network
Design. PWS Publishing, Boston, MA.

Haykin, S., 1999. Neural Networks: A Comprehensive Foundation,
Second edition. Prentice Hall, New Jersey.

He, Y.P., Xie, H., Cui, P., Wei, F.Q., Zhong, D.L., Gardner, J.S., 2003.
GIS-based hazard mapping and zonation of debris flows in
Xiaojiang Basin, Southwestern China. Environ. Geol. 45, 286-293.

Kanungo, D.P, Arora, M.K., Gupta, R.P., Sarkar, S., 2005. GIS-
based landslide hazard zonation using neuro-fuzzy weighting.
Proc. 2nd Ind. Int. Conf. on Artificial Intelligence (IICAI-05),
Pune, pp. 1222-1237.

Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y, Li, R.H., 2004.
Landslide hazard spatial analysis and prediction using GIS in the
Xiaojiang Watershed, Yunnan, China. Eng. Geol. 76, 109-128.

Lee, S., Choi, J., Chwae,U., Chang, B., 2002a.Landslidesusceptibility
analysis using weight of evidence. Proc. of IEEE Int. Geosciences
and Remote Sensing Symposium, 19 July, Toronto, Canada.

Lee, S., Choi, J., Min, K., 2002b. Landslide susceptibility analysis and
verification using the bayesian probability model. Environ. Geol.
43, 120-131.

Lee, S., Ryu, J., Won, J., Park, H., 2004. Determination and application
of the weights for landslide susceptibility mapping using an
artificial neural network. Eng. Geol. 71, 289-302.

Lin, M.-L., Tung, C.-C, 2003. A GIS-based Potential Analysis of the
Landslides induced by the Chi-Chi Earthquake. Eng. Geol. 71,
63 77.

Lu, P.F., An, P., 1999. A metric for spatial data layers in favorability
mapping for geological events. IEEE Trans. Geosci. Remote Sens.
37, 1194-1198.

Mehrotra, G.S., Sarkar, S., Kanungo, D.P, Mahadevaiah, K., 1996.
Terrain analysis and spatial assessment of landslide hazards in
parts of Sikkim Himalaya. Geol. Soc. India 47, 491-498.



366 D.P. Kanungo et al. / Engineering Geologv 85 (2006) 347-366

Metternicht, G., Gonzalez, S., 2005. FUERO: foundations of a fuzzy
exploratory model for soil erosion hazard prediction. Environ.

Model. Softw. 20 (6), 715-728.

Nagarajan, R., Mukherjee, A., Roy, A., Khire, M.V., 1998. Temporal
remote sensing data and GIS application in landslide hazard
zonation of part of Western Ghat, India. Int. J. Remote Sens. 19,
573-585.

Olden, J.D., Joy, M.K., Death, R.G., 2004. An accyrate comparison of
methods for quantifying variable importance in artificial neural
networks using simulated data. Ecol. Model. 178, 389-397.

Pachauri, A.K., Pant, M., 1992. Landslide hazard mapping based on
geological attributes. Eng. Geol. 32, 81-100.

Paola, J.D., Schowengerdt, R.A., 1995. A review and analysis of
backpropagation neural networks for classification of remotely
sensed multi-spectral imagery. Int. J. Remote Sens. 16,3033-3058.

Ripley, B., 1996. Pattern Recognition and Neural Networks. Cam
bridge Univ. Press, Cambridge.

Ross, T.J., 1995. Fuzzy Logic with Engineering Applications.
McGraw-Hill, New York.

Saha, A.K., Gupta, R.P., Arora, M.K., 2002. GIS-based landslide
hazard zonation in a part of the Himalayas. Int. J. Remote Sens. 23,
357-369.

Saha, A.K., Gupta, R.R, Sarkar, I., Arora, M.K., Csaplovics, E„ 2005.
An approach for GIS-based statistical landslide susceptibility
zonation—with a case study in the Himalayas. Landslides 2,
61-69.

Sarkar, S., Kanungo, D.P, 2004. An integrated approach for landslide
susceptibility mapping using remote sensing and GIS. Photo
gramm. Eng. Remote Sensing 70 (5), 617-625.

Sarkar, S., Kanungo, D.P., Mehrotra, G.S., 1995. Landslide hazard
zonation: a case study in Garhwal Himalaya, India Moun. Res.
Dev. 15(4), 301-309.

Schalkoff,R.J., 1997. ArtificialNeural Networks. Wiley,New York.
Schuster, R., 1996. Socioeconomic significance of landslides. In:

Turner, A.K., Schuster, R.L. (Eds.), Landslides: Investigation and
Mitigation: Special Report, vol. 247. National Academic Press,
Washington, DC, pp. 12-36.

Sinha, B.N., Varma, R.S., Paul, D.K., 1975. Landslides in Darjeeling
district (West Bengal) and adjacent areas. Bull. Geol. Surv. India,
Ser. B36, 1-45.

Strahler, A.N., 1964. Quantitative geomorphology of basins and
channel networks. In: Chow, V.T. (Ed.), Handbook of Applied
Hydrology. Mcgraw Hill, New York.

Suzen, M.L., Doyuran, V., 2004. Data driven bivariate landslide
susceptibility assessment using geographical information systems:
a method and application to Asarsuyu Catchment, Turkey. Eng.
Geol. 71,303-321.

Tangestani, M.H., 2003. Landslide susceptibility mapping using the
fuzzy gamma operation in a GIS, Kakan Catchment Area, Iran.
Proc. of Map India Conference,

van Westen, C.J., 1994. GIS in landslide hazard zonation: a review,
with examples from the Andes of Colombia. In: Price, M.,
Heywood, I. (Eds.), Mountain Environments and Geographic
Information System. Taylor & Francis, Basingstoke, pp. 135-165.

Varnes, D.J., 1984. Landslide Hazard Zonation: A Review of

Principles and Practice. UNESCO, Paris, pp. 1-63.
Virdi, N.S., Sah, M.P., Bartarya, S.K., 1997. Mass wasting, its

manifestations, causes and control: some case histories from

Himachal Himalaya. In: Agarwal, D.K., Krishna, A.P., Joshi, V.,
Kumar, K., Palni, M.S. (Eds.), Perspectives of Mountain Risk
Engineering in the Himalayan Region. Gyanodaya Prakashan,
Nainital, pp. 111-130.

www.em-dat.net EM-DAT: The OFDA/CRED International Disaster

Database. Universite Catholique de Louvain, Brussels, Belgium.
Yesilnacar, E., Topal, T, 2005. Landslide susceptibility mapping: a

comparison of logistic regression and neural networks methods in
a medium scale study, Hendek region (Turkey). Eng. Geol. 79,
251-266.

Zadeh, L.A., 1973. Outline of a New Approach to the Analysis of
Complex Systemsand Decision Processes. IEEE Trans.Syst. Man
CybernSMC-3(l), 28-46.

Zhou, W., 1999. Verification of the nonparametric characteristics of
backpropagation neural networks for image classification. IEEE
Trans. Geosci. Remote Sens. 37, 771-779.



2nd Indian International Conference on Artificial Intelligence (IICAI-05)

GIS based Landslide Hazard Zonation using
Neuro-Fuzzy Weighting

D. P. Kanungo1, M. K. Arora2, R. P. Gupta3, S. Sarkar1

'Geotechnical Engineering Division, Central Building Research Institute, Roorkee 247 667,
India

j dpk_cbri@yahoo.com, shantanu_cbri@yahoo.co.in
Department ofCivil Engineering, Indian Institute ofTechnology Roorkee, Roorkee 247 667,

India

manojfcegiitr.ernet.in
Department ofEarth Sciences, Indian Institute ofTechnology Roorkee, Roorkee 247 667,

India

rpgesfes@iitr.ernet.in

Abstract. Landslides are one of the most frightening and destructive
phenomena ofnature that cause damage to both property and life every year
especially in the Himalayas. Landslide Hazard Zonation (LHZ) is therefore
necessary for planning future developmental activities and implementation of
disaster management programmes in mountainous terrains. A number of
qualitative and quantitative methods have been used for the LHZ studies. The
conventional approaches for LHZ suffer from the subjective weighting system
where weights are assigned to causative factors responsible for landslide activity
based on the experience of experts. In this study, an objective weighting
approach based on neuro-fuzzy technique has been implemented for LHZ in a
part of the Darjeeling Himalayas. This is considered to be a distribution free
approach. Relevant thematic layers pertaining to the causative factors related to
landslide activity have been generated using remote sensing and Geographic
Information System (GIS) techniques. The membership values for each category
ofthe thematic layers have been determined using the cosine amplitude method
(similarity method) and are used as ratings for each category of the thematic
layer. Artificial neural networks (ANNs) have been applied to determine the
weights for each causative factor represented by a thematic layer. The
integration ofthese weights and ratings, determined through a combined neuro
fuzzy approach in GIS environment led to the generation of LHZ map of
acceptable accuracy in terms of areas estimated foreach landslide hazard zone.

1 Introduction

Landslides are amongst the most damaging natural hazards in the hilly regions. The
study oflandslides has drawn global attention mainly due to increasing awareness of
its socio-economic impacts and also increasing pressure of urbanization on the
mountain environment [1]. Hence, the identification of landslide-prone areas is
essential for safer strategic planning offuture developmental activities in the region.
Therefore, Landslide Hazard Zonation (LHZ) becomes important whereby an area
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may be divided into near-homogeneous domains and ranked according to degrees of
potential hazard due to mass movements [2].

Landslide hazard zonation studies in the Himalayas have conventionally been
carried out based on manual interpretation of a variety of thematic maps and their
superimposition ([3], [4], [5], [6], [7], [8]). However, this approach is time
consuming, laborious, uneconomical with data collected over long time intervals and
fraught with errors. In recent times, due to the availability of a wide range of remote
sensing data and their analysis using GIS, it has now become possible to prepare
different thematic layers representing causative factors that are responsible for the
occurrence of landslide in a region ([9], [10], [11], [12]). The integration of these
thematic layers with weights assigned according to their relative importance in GIS
environment leads to an LHZ map ([13], [14], [15], [16]). In these studies, the
weights were assigned on the basis of the experience of the experts about the subject
and the area. The weighting system was thus subjective and might therefore contain
some implicitbias towards the assumptions made.

In order to minimize the subjectivity and bias in the weight assignment process,
the Artificial Neural Network (ANN) and fuzzy concepts may be applied. These are
distribution free approaches and have been applied in various studies related to
landslides ([17], [18], [19], [20]). Due to the successful implementation of neural
networks and fuzzy set theories in these studies, an attempt has been made here to
develop a weight assignment process that combines neural network and a fuzzy set
based techniques for landslide hazard zonation in a part of Darjeeling Himalayas.

2 Neuro-Fuzzy Approach

The fuzzy relation concept has been applied to determine the ratings of the categories
of thematic layers whereas ANN has been applied to determine the weights of each
thematic layer. In the present context, the rating of a category of a thematic layer
represents the contribution of that category for the occurrence of landslides whereas
the weight of a thematic layer (factor) defines the relative importance of that factor
with respect to other factors responsible for landslide activities in the terrain. This
sectionhighlights the salientfeatures of fuzzy relation conceptand the ANN.

2.1 Fuzzy relation concept

Fuzzy relation concept defined by [21] is based on the theory of fuzzy sets. In the
fuzzy set theory, membership degrees of elements have varyingdegrees of supportor
confidence in (0,1) interval. Thus, a fuzzy set can be explained as a set containing
elements that have varying degrees of membership in the set [22]. Fuzzy relations
play an important part in fuzzy modeling. Fuzzy relations are based on the philosophy
that everything is related to some extent or unrelated [23]. There are different ways
such as Cartesian product, closed-form expression, linguistic rules of knowledge,
similarity methods in data manipulation, etc. to develop numerical values
characterizing a fuzzy relation. All these methods attempt to determine some sort of
similarity in data [22].
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In this paper, one of the well known similarity methods, cosine amplitude
method, has been used to determine the relationship between the landslide occurrence
and the factors responsible for such activity. The membership degrees of the
categories of each factor are calculated bythe strength of the relationship (ry) between
the existing landslides and the factors.

Let n be the number of categories of the thematic layers represented as an array
X= {xi,x2,. .. ,*„}, each of its elements,*,, is a vector of pixels p (i.e., the size of the
image in the present context) and can be expressed as,

•*i i-*//j *w> • • • »Xipf (i)

Each element of a relation, ry, results from a pairwise comparison of a category of a
thematic layer i (i.e., layer corresponding to a causative factor) with a category of
thematic layery (i.e., landslide distribution layer), sayx, andXj containing elements xik
and Xjk respectively. In the cosine amplitude method, ry (membership grades) between
categories of a thematic layer and that of landslide distribution layer are computed by
the following equationwith its values ranging from 0 to 1 (0 < ry < 1).

ru =

zX xx
Jk

k=\

Ex*HZ*>*
.*=!

P \
2

(2)

Values of ry close to 0 indicate dissimilarity whereas values close to 1 indicate the
similarity between two data sets. The equation (2) leads to n-l rtj images
corresponding to each category of the thematic layers under consideration. These
images show ry values at the pixels belonging to the category in question whereas rest
of the pixels indicate 0 values, and thus may be treated as binary images. The
corresponding ris images for various categories of a thematic layer are composited
together to generate an ry image for that thematic layer and is represented as /?/, where
/ varies from / to t thematic layers belonging to each causative factor (e.g., 6 thematic
layers in the present case).

2.2 Artificial Neural Networks

An ANN comprises of a number of neurons that work in parallel to process the input
data into output classes. A feed-forward multilayer network is generally used, which
consists of three layers such as input, output and a hidden layer in between these two.
Each layer in a network contains sufficient number of neurons depending on the
specific problem. The neurons in a layer are connected to the neurons of the next
successive layer and each connection carries a weight. The input layer receives the
data from different sources (e.g., thematic layers). Hence, the number of neurons in
the input layer depends on the number of data sources. The hidden and output layers
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actively process the data. Generally, the number of neurons in input and output layers
is fixed by the application. The number of hidden layers and their neurons are often
determined by trial and error [24], The hidden layers introduce non-linearity to the
network to produce an output through an activation function. The most common
activation function is a sigmoid function [25].

The important characteristic of a neural network is its capability to learn or train.
The network weights are adjusted in the training process that depends on the type of
learning algorithm used. The most widely used learning algorithm is the back-
propagation algorithm. This algorithm computes and minimizes the error based on the
desired and network-derived outputs iteratively. This process stops when the error
converges to some minimum value and the network weights are adjusted. The error
function, E, can be expressed as follows.

E=0.5±(T,-O,f
;=1

(3)

where Tt is the target output vector, O, is the network output vector and 5 is the
number of training samples [18]. The adjusted weights of a trained network are used
to determine the network outputs of a testing dataset with known desired outputs. The
performance of the network depends on the accuracy of the testing dataset. If the
network is trained and tested to an acceptable accuracy, then the network connection
weights may be used to characterize the input data sources (e.g., the causative factors)
in terms of ranks or weights. In this process, the connection weight matrices for input-
hidden, hidden-hidden and hidden-output layers are obtained for a two-hidden layer
network. Simple matrix multiplications of these weight matrices give rise to the final
weight matrix corresponding to the factors [26]. For example, if a network of 6-5-4-1
architecture is considered, connection weight matrices of 6*5, 5*4 and 4*1 are
obtained. The product of 6*5 and 5><4 matrices gives a resultant matrix of 6*4.
Subsequently, the product of 6*4 and 4*1 matrices gives an output matrix of 6*1
which corresponds to the weights of 6 factors. The absolute values of these weights
are considered in the present work to rank the factors meaning thereby that the factor
with maximum absolute weight is assigned as rank 1 and the factor with the minimum
absolute weight as rank 6.

Several neural network architectures were experimented with to finalize the rank
of each factor based on the rankings observed by these networks by applying the
majority rule. Finally, the absolute weights of corresponding networks for a particular
factor were averaged. The average weights of each factor were then normalized at a
scale of 0 to 10. The weight thus obtained was treated as the final weight value
assigned to that factor.

3 Study Area

The Darjeeling Himalayas, encompassing a total area of 3000 km2 rises abruptly from
the alluvial plains of North Bengal and attains a maximum elevation of about 2600
meters. The area lies between Sikkim in the North, Bhutan in the east and Nepal in
the west. The study area encompasses Darjeeling hill which lies within the latitude
26° 56' - 27° 8' N and longitude 88°10' - 88°25' E and covers an area of about 250
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km (Fig.l). The area is traversed by many ridges and valleys. The major ridges are at
the elevation of2000 mto 2600 mwhereas valleys are at elevation range of500 mto
1000 m. The maximum elevation in the area occurs atTiger hill at 2584 m.

The annual rainfall in the area is of the order of 3000 mm to 6000 mm. The
rainfall pattern is highly seasonal with maximum rainfall falling during the monsoon
months of June to October. The maximum monthly rainfall of 580 mm was observed
in July 2001 at Darjeeling [15].

The Darjeeling Himalaya lies within Lesser and Sub Himalayan belt. The
tectonic units in the area occur in a reverse order ofstratigraphic superposition. In the
study area, the Daling group is comprised oflow-grade metamorphic rocks, while the
Darjeeling Group consists primarily ofgneisses. Rocks ofthe Paro Sub-group, which
have similar characteristics to the Darjeeling Group, are present at lower elevations
[27]. The presence oflineaments, hot springs, lakes, water falls, abrupt changes in the
river gradient and erraticity inthe terrace distribution suggested that the area has been
undergoing differential uplift along a number of regional and local sub-vertical faults
[28].

INDIA

Fig.l. Study area

4 Thematic Data Layer Preparation

1926

27°08'N

0 1 Kilomiliri



2nd Indian International Conference on Artificial Intelligence (IICAI-05)

Various thematic data layers corresponding to causative factors such as slope, aspect,
lithology, lineament, landcover and drainage responsible for the occurrence of
landslides in the region were prepared. A thematic layer corresponding to the
landslide distribution map was also prepared. The data sources utilized to generate
these thematic data layers were Survey of India toposheets (1:25000 and 1:50000
scale), published geological maps, satellite IRS-1C-LISS III multispectral image
(March, 2000) and IRS-ID-PAN image (April, 2000). For verification and accuracy
assessment of landslide, land use land cover and geological features, field surveys
were also carriedout. All the thematicdata layerswere resampled to 25m pixel size to
match the nominal spatial resolution of IRS-LISS III multispectral image.

4.1 Landslide Distribution Map

The mapping of existing landslides is essential to study the relationship between the
landslide distribution and the causative factors. A landslide distribution map was
prepared using field data and the interpretation of satellite remote sensing data. The
detection of landslides in remote sensing data is based on the spectral characteristics,
size, shape, contrast and the morphological expression. The interpretability is
influenced by the contrast that results from the spectral difference between the
landslide and its surroundings.

In this study, PAN and PAN-sharpened LISS III images were used for landslide
detection. As the landslides were mostly devoid of vegetation, they showed high
reflectance. They were found to be mostly circular to elliptical in shape. Majority of
the landslides observed were debris slide. However, in some cases, rotational and
complex types of failure were also present. Few rock falls of small magnitude were
also identified in the field. The landslide distribution map thus prepared contained
101 landslides showing the areas occupied by sliding activity. It includes source area
and debris cover. The majority of landslides have aerial extent of 500 m2 - 2000 m2.
The landslides identified onthe satellite images were digitized aspolygons in a vector
layer. The field identified landslides were digitized ina separate vector layer and later
merged into the landslide layer generated from PAN sharpened image. This layer was
rasterized to produce the landslide distribution map for further analysis.

4.2 Digital Elevation Model and its derivatives

The Digital Elevation Model (DEM) has been used to derive information on
topographic variations in the area which are responsible for landslide activity. DEM
was generated from digitized contours of 10m and 20m from toposheets. From the
DEM, slope and aspect data layers were derived. Slope angle isone of the key factors
in inducing slope instability. The slope map represents the spatial distribution ofslope
values in the area. These were classified into 5 classes with 10° interval as per slope
classification given inother studies ([3], [13], [29]). Aspect is defined as thedirection
ofmaximum slope ofthe terrain surface. The aspect map derived here represents nine
classes, namely, N, NE, E, SE, S, SW, W, NW and flat.
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43 Lithology

Different rock types (or lithology) have varied inherent characteristics such as
composition and structure, which contribute to the strength of the material. The
stronger rocks give more resistance to the driving forces as compared to weaker
rocks, and hence are less prone to landslides and vice versa. The lithology map was
derived from the geological map (scale 1:250000) of Sikkim-Darjeeling area [27]
which was scaled to 1:25000 for field investigation. Necessary modifications were
incorporated after field verification to prepare the lithology map. The six rock types
present in the area were Darjeeling gneiss, Paro gneiss, Lingtse granite gneiss,
feldspathic greywacke, and quartzites ofthe Paro sub-group and the Reyang group.
The Lingtse granite gneiss rocks were strongly foliated and sheared showing very
high weathering at most locations. The Paro gneisses were stronger and coarse
grained than the Darjeeling gneiss ofhigher metamorphic grade. The quartzites were
stronger than the other rocks in the area. However, all the rocks were folded, faulted
and sheared to varying degrees and they have been subjected to high levels of
weathering along the drainage channels.

4.4 Lineament

It has been generally observed thattheprobability of landslide occurrence is increased
atsites which are close to lineaments. The lineaments, not only affect surface material
structures but also make contribution to terrain permeability, favoring slope
instability. The lineaments showing fractures, discontinuities and shear zones were
interpreted from the PAN and PAN-sharpened LISS III images. There was no major
thrust/fault reported in the study area, but mega lineaments were identified from the
satellite data. These lineaments were mapped from the sharpened image by visual
interpretation onthe basis of tonal contrast, structural alignments, rectilinear trends of
morphological features and linear stream courses that were conspicuous by their
abrupt changes in the course. These were digitized and subsequently rasterized to
generate a lineament data layer. Five buffer zones with 125m intervals were generated
to establish the influence of lineaments on landslide occurrence.

4.5 Drainage

Most of the landslides in hilly areas are generally initiated due to the erosional
activity associated with drainage, and thus it is an important factor. The drainage map
was prepared from the topographic maps by digitizing the streams in a vector layer.
Later, this layer was overlaid on IRS LISS III image for cross-checking and
modification of themap. The ordering of the drainages was performed on the basis of
Strahler classification [30]. Subsequently, this map was rasterized. As the 1st and 2nd
orderdrainages play an important role in initiating landslides, a 25m buffer zone for
both these drainage orders was created and considered for further analysis.

1928



2nd Indian International Conference on Artificial Intelligence (IICAI-05)

4.6 Land use land cover

Land use land cover map in hilly areas generally shows distribution of forest cover,
water bodies and types of land use practices. This is one of the key factors for
landslide occurrences. The incidence of landslide is inversely related to the vegetation
density. Hence, barren slopes are more prone to landslide activity as compared to the
forest area. In this study, eight classes of land use land cover were considered. These
classes are thick forest, sparse forest, tea plantation, agriculture, barren, built up,
water bodies and river sand. This land use land cover layer was generated by T
employing supervised digital image classification approach using four spectral bands
of LISS III image, Digital Elevation Model (DEM) and NDVI image. Maximum
likelihood classifier was used to classify these data to produce a land use land cover
classification with an overall accuracy of 94.39%. Subsequently, the land use land
cover information in a very small portion of the classified image, which was masked
by the cloud and its shadow in the original LISS III image, was obtained from field
surveys. The remotely sensed derived land use land cover classification was updated
with the field derived information for the masked region.

5 Methodology and Implementation

A neuro-fuzzy approach has been adopted in this study to carry out landslide hazard y
zonation mapping. This involves three main stages; i) determination of ratings for
categories of thematic layers using cosine amplitude method, ii) determination of
weights of thematic layers through ANN implementation and iii) integration of
ratings and weights using GIS to arrive at the final LHZ map. The sequence of stages
of methodology for LHZ is given in Fig. 2.

5.1 Implementation of fuzzy relation concept via cosine amplitude method

The cosine amplitude method as described earlier has been adopted to determine the
ratings of the categories of factors. The landslide distribution and the different
categories of thematic layers taken one at a time were considered as two data sets for ^
the computation of rating or strength of relationship (ry). The pixels in the landslide
areas were assigned as 1 and rest of the pixels were assigned as 0 in the landslide
distribution layer. Similarly, a value of 1 is assigned to a particular category of a
thematic layer and a value of 0 to rest of the pixels. Hence, in total 36 data layers in
binary form were generated, which contain 35 layers of categories of thematic
layers (Table 1) and one layer for landslide distribution. These layers were used for
determinationof ry in GIS. The results are provided in Table 1.

!
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Table 1. Fuzzy ratings for different categories of factors

Thematic

layers
Categories Number

of pixels
Number of

Landslide

pixels

Fuzzy
Rating

(/•„)
Land use

land cover

Agriculture Land 35692 85 0.0488

Tea Plantation 142541 84 0.0243

Thick Forest 72685 38 0.0229

Sparse Forest 131088 65 0.0223

Barren Land 14237 58 0.0638

Habitation 10341 9 0.0295

Water 970 0 0

River Sand 1005 0 0

Lithology Darjeeling Gneiss 73371 77 0.0324

Feldspathic Graywacke 45938 61 0.0364

Paro Gneiss 247242 158 0.0253

Lingtse Granite Gneiss 20926 15 0.0268

Paro Quartzite 12154 14 0.0339

Reyang quartzite 8089 14 0.0416
Slope 0°-15° 51380 23 0.0212

15°-25° 146974 117 0.0282

25°-35° 144495 131 0.0301

35°-45° 50246 58 0.0340
>45° 14329 10 0.0264

Aspect Flat 2072 0 0
N 59880 22 0.0192

NE 45077 32 0.0266

E 52868 73 0.0372
SE 45689 77 0.0411

S 37630 49 0.0361
SW 29860 20 0.0259
w 55132 26 0.0217
NW 79148 40 0.0225

Drainage
Buffer

1* Order 116168 102 0.0296
2ndOrder 27690 44 0.0399

Lineament

Buffer

0-125m 146761 243 0.0407

125-250m 108929 35 0.0179

250-375m 72380 36 0.0223
375-500m 41360 17 0.0203
>500m 38317 8 0.0144

5.2 ANN Implementation

Afeed forward back-propagation multi-layer artificial neural network with one input
layer, two hidden layers and one output layer was considered todetermine the weights
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of the causative factors in order to produce aLHZ map. The neurons in the input layer
represent different thematic layers corresponding to causative factors. A pixel
corresponds to a set ofinput values to ANN. The output corresponds to the presence
or absence of landslide in the pixel. Hence, the output value is either 0 or 1. The
number ofneurons in the hidden layers was varied by running the networks several
times toachieve the desired training and testing data accuracies.

One set each oftraining, verification and testing data were randomly generated
from the study area. The data sets consist of 226 pixels each, out of which 113 pixels
were landslide pixels and rest 113 pixels were no landslide pixels. AH the pixels in the
datasets were mutually.exclusive [31]. The training dataset was used to train different
network architectures while the verification dataset was used simultaneously with the
training dataset to control the overtraining of the network. The testing dataset was
used to evaluate the accuracy of the trained networks. The training, verification and
testing data files for the input layer are two-dimensional matrices with rows
representing values ofthe categories ofeach thematic layer and columns representing
the number ofpixels. The values ofthe categories in the input layer correspond to the
weighted normalized rating or r0 ofthe corresponding category (last column ofTable
1). Similarly the training, verification and testing data files for the desired output are
two-dimensional matrices with rows representing the presence orabsence of landslide
with values 1or0respectively and columns representing the number ofpixels.

The well known back-propagation learning algorithm was used to train theneural
networks. About 100 neural network architectures were designed by varying the
number of neurons in both the hidden layers. In this study, Levenberg-Marquardt
algorithm (TRAINLM in MATLAB 6.1) for training function, gradient descent with
momentum as learning function, mean squared error as performance function and
sigmoid transfer function were used to train the networks. The maximum number of
epochs was setat 10000 for each network. The training process was initiated and the
arbitrary initial connection weights were constantly updated as the training
progressed, until an acceptable accuracy was reached. The training accuracy observed
for the networks was of the order of 75% to 90%.

The final weights ofthe trained network were used to simulate the testing data to
evaluate the performance of the network. The testing accuracy observed for the
networks was of the order of 60% to 70%. The adjusted weights of input-hidden,
hidden-hidden and hidden-output connections for each network were finally captured
for further calculations. Simple matrix multiplication was performed on these weight
matrices to obtain a final 6x1 weight matrix for each network which represents the
weights of six causative factors in this study. These causative factors were ranked
according to the corresponding absolute weights for each network which means
higher the value of absolute weight, more crucial the factor is for the occurrence of
landslide. Considering all the 100 networks, the rank of a factor wasdecided based on
the rank observed by maximum number of networks. Out of 100 networks, 41
networks categorized lithology as rank 1 (most important), 31 networks for lineament
as rank 2, 30 networks for slope as rank 3, 27 networks for aspect as rank 4, 33
networks for land use land cover as rank 5 and 49 networks for drainage as rank 6
(least important).

Subsequently, the weighted normalized average of the weights of these networks
for a particular factor was calculated and assigned as the weight of that factor for
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preparation of LHZ map. The weights thus obtained through ANN for all the factors
are listed in Table 2.

Table 2. Weights of thematic layers derived through ANN approach

Thematic layers ANN derived weights

Lithology 4.807

Lineament Buffer 2.113

Slope 1.318

Aspect 1.065

Land use land cover 0.495

Drainage buffer 0.202

5.3 GIS based LHZ

The integration of 6 thematic layers representing the ratings for the categories (Ri) of
the factors and weights for the factors (Wj) was performed by using simple arithmetic
overlay operation in GIS. The Landslide Hazard Index (LHI) for each pixel of the
studyarea was obtainedby using the following equation.

un =Yfir,*R,)
i=\

(4)

The LHI values were found to lie in the range from 0.03042 to 0.40796. The
observed mean (uj and standard error (a0) from the probability distribution curve of
these LHI values are 0.27605 and 0.03259 respectively. The LHI values were divided
into five distinct classes (hazard zones) with boundaries at (u,, - 1.5mo0), (u<, -
0.5moo), (po + 0.5moo) and (\i^ + 1.5mc0) where m is a positive, non-zero value (Saha
et al., 2005). Several LHZ maps of the study area were prepared for different values
of m. The cumulative percentage of landslide occurrences in various hazard zones
ordered from very high hazard (VHH) to very low hazard (VLH) were plotted against
the cumulative percentage of area of the hazard zones for these LHZ maps. These
curves, defined as success rate curves by [32], [33], [34], were used to select the
appropriate value of m to decide the suitability of a LHZ map. Five representative
success rate curves corresponding to m = 1.2, 1.3, 1.4, 1.5 and 1.6 are shown in Fig.3.
The suitability of any LHZ map can be judged by the fact that more percentage of
landslides should occur in very high hazard zone as compared to other zones. It was
observed from Fig.3 that for 10% of the area in very high hazard zone the curves
corresponding to m = 1.2, 1.3, 1.4, 1.5 and 1.6 show the landslide occurrences of
43.9%, 45.6%, 46.7%, 43.3% and 43.9% respectively. Hence, for the first 10% area,
the curve corresponding to m=1.4 has the highest success rate. Based on this analysis,
the LHZ map corresponding to m = 1.4 appears to be the most appropriate one for the
study area. Accordingly, the landslide hazard class boundaries were fixed at LHI
values of 0.20761, 0.25324, 0.29886 and 0.34449.

1933

y

>



2nd Indian International Conference on Artificial Intelligence (IICAI-05)

100

90

80

70

60

50

40

30

20

10

0

m =1.2

m =1.3

m =1.4

m=1.5 _

m =1.6

J.

/

/
/'

-4

0 10 20 30 40 50 60 70

VHH LHZ area in cumulative percentage

90 100

VLH

Fig.3. Success rate curves to select the best LHZ map

6 Results and Discussion

The LHZ map (Fig.4) was prepared using theabove GIS-based neuro-fuzzy approach.
The map shows that 2.3% of total area falls in very high hazard zone, 20.2% in high
hazard zone, 48.4% in moderate hazard zone, 28.8% in low hazard zone and 0.3% in
very low hazard zone. The percent areadistribution of these hazard classes appears to
be quite similar to thatobtained in other LHZ studies in the Himalayan regions ([13],
[15], [16], [18]). This confirms the usefulness of theapproach developed inthis study.
Subsequently, the landslide distribution map was spatially cross-checked with the
neuro-fuzzy derived LHZ map. The results show that about 30.1% of landslide area
falls in very high hazard zone, 31.9% in high hazard zone, 26.5% in moderate hazard
zone, 11.5% in low hazard zone and the very low hazard zone is devoid of landslides.
From this LHZ map, it can also be observed that the buffers of lineaments have
clearly indicated the very high and high hazard zones in the northern and south
eastern parts of the area. Overall, the buffers of lineaments have left traces on the
LHZ map. Owing to the landslide susceptibility of the terrain, the lineaments ought to
leave some traces on the LHZ map. Therefore, it indicates major influence of
lineaments on landslide hazard zonation. Also, the Darjeeling gneiss rock type in
south-eastern part, feldspathic greywacke and Reyang quartzite in the northern part of
the study area have clearly indicated the hazard zones. Hence, it depicts the
importance of lithology (i.e., rock types) on landslide hazard zonation. On the basis of
these results, it can be concluded that the LHZ map derived from neuro-fuzzy
weighting approach appears to conform with the real situations of landslide
occurrences in the region and may thus be a useful way of integrating several factors
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in an objective manner thereby minimizing the subjectivity in the weight assignment
process.

Landslide Hazard Zones

I Very High Hazard
High Hazard
Moderate Hazard

Low Hazard

Very Low Hazard

27°08'N

26°56'N

88°10'E 8°25'E

Fig.4. LHZ map using neuro-fuzzy weighting approach

7 Conclusions

Landslides are one of the major concerns worldwide because of loss of life and
property every year in mountainous terrain. Hence, landslide hazard zonation
mapping is essential to delineate potential disaster prone areas. In this study, a GIS-
based neuro-fuzzy approach has been applied for the preparation of LHZ map. This
methodology may serve as one of the successful objective approaches in this direction
because of the fact that it can narrow down the potential hazard zones in a meaningful
way for practical applications.
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