ADAPTIVE CLONING APPROACH TO
AGENT MOBILITY

A DISSERTATION

submitted in partial fulfilment of the
requirements for the award of the degree
of
MASTER OF TECHNOLOGY
in
COMPUTER SCIENCE AND TECH.IE_Q_[..QQ‘Y.
,/(',';“j IRKEL Je‘;:;. |
& 286s | e
Acc ©, T2 ;

X, =
- DetetY 3537 E}
S

By ™4 iy
.'n.o ~ - b
. ROQpKE®

MAHENDAR ALET!

P
-
Y.

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247 667 (INDIA)

JANUARY, 1999

CANDIDATE’S DECLARATION

I here by declare that the work which is being presented in this dissertation entitled
“ADAPTIVE CLONING APPROACH TO AGENT MOBILITY?”, in partial fulfilment of the
requirement for the award of the degree of Master of Technology (M.Tech.) in Computer Science
and Technology (C.S.T) in the department of Electronics and Computer Engineering, University of
Roorkee, Roorkee, is an authentic record of my own work carried out by me for a period of six
months form August 1998 to January 1999 under the supervision and guidance of Dr. MOHAN
LAL, 4sst. Professar, New Computational Facility, and Dr A.K. SARJE, Professor; Departmenlt
of Electronics and Computer Engineering, University of Roorkee, Roorkee.

The matter embodied in this dissertation has not been submitted by me for the award of any

other degree or diploma.

© Date: Vo Y~ AR

o Ao M
Place: Roorkee (MAHENDAR ALETT)

CERTIFICATE

This is to certify that the above statements made by the candidate are correct to the best of

our llcnowledgc and belief.

b
e o

(Dr. MOHAN LAL) (Dr.A.K.SARJE)
Asst. Professor, Professor

New Computational Dept. of Electronics, &
Facility, Computer Engineering
University of Roorkee, University of Roorkee
Roorkee- 247667 Roorkee - 247667
Date: Date:

Place: Roorkee Place: Roorkee

ACKNOWLEDGEMENTS

It is my proud privilege to express my profound of gratitude to my guide Dr. MOHAN
LAL, Assistant Professor, New Computational Facility, Dr. AJK. SARJE, Professor, Dept. of
Electronics & Computer Engineering, for their invaluable inspiration, guidance and continuous
encouragement throughout this dissertation work.

[express my sincere thanks to Dr. R. C. Joshi, (Head of the Dept. of Electronics &
Computer Engineering, and Co-ordinator, NCF) and other staff members for providing necessary
facilities for successful completion of this work.

I would like to thank all of my friends for their help and constructive criticism during

development of software.

[am very much indebted to my parents for their moral support and encouragement to

achteve higher goals.

(Mh—IENDAR ALETI)

ABSTRACT

- -'Multi Agent Systems provide efficient solutions for several cqmputational problem_s. Mu1t1
Agents systems are subject to performance bottlenecks in cases where agt;nts cannot perform tasks
by themselves due to insufficient resources. Solutions to such problems include passing tasks to
others or agent migration to remote hosts. But, in this work, agent cloning used as an approach to
the problem of local agent overloads. Agent cloning is the action of creating and activating a clone
.agent (locally or remotely) to perform some or all of an agent's tasks.

Agent clomng subsumes the task transfer and agent moblhty Agent migration can be
impIemented ny creatmg a clone on a remote machine, transferring the tasks from the ongmal
agent to the clone, and dying. Thus agent mnbility is an instance of agent cloning. The
requlrements of implementing a clomng mechanism and 1ts benefits have been studied. The

- reasoning, decision-making, and actions necessary for an agent with in the system to petform.
cloning also have been studied. The merging of two agents or self-extinction of underutilized
agents is also discussed. For large number of tasks, cloning significantly increases the portion of
task; performed by Multi Agent System. The program is written in Jnva under Linﬁx operating

system.

(i)

CONTENTS

- i’age No.
CANDIDATE’S DECLARATION. : | 4]
| ' ACKNOWLEDGEMENT ~ | (i)
ABSTRACT | o (iif)
T INTRODUCTION A 1
1.1 Statement of fhe froblem ' _ | ‘ - ‘ -.3
1.2 Organization of the Dissertation - -3
II AGENTS . o 5
2.1 Introduction to Agents ’ o ,. , 5
2.2 System-Level Issues ‘ . 9
2.3 Language-Level Issues 13
2.4 Design Paradigms \ v : 17
- 2.5 Application of Mobile Agents 22 |
Il AGENT CLONING | ' \ . 25
3.1 The Cloning Approach | _ ' 25
3.2 Cioning Initiation | _ AR 27
3.3 Optimizing when to Clone 29
3.4 The Cloning Algorithm 30

3.5 Merging of Agents 34

3.6 Merging Approach

" IV DESIGN AND IMPLEMENTATION °

4.1 Method of Simulation
4.2 Simulation Parameters
4.3 Program Classes

v CONCLUSION
5.1 Discussion of Results
5.2 Concludiﬁg Remarks -

5.2 Scope for Further Work

REFERENCES

APPE_NDIX A

APPENDIXB

APPENDIX C

SOFTWARE LISTING

35

37
37

38

38

43

S

43

| 45
47
49
51

- 53

55

CHAPTER1

INTRODUCTION

An agent is a computational entity which[1]: -

¢ acts on behalf of other entities in an auto;lomous fashion

. performs its actionsv with some level of proactivity aﬁd/of reacﬁvenéss'

e Exhibits some level of the key attributes of lﬁﬁtning, éo-operation and

mobility.

The number and type of application domains [1][2][3] ’in Which agent
technologies are being applied to include workflow management, network
managenient, air-traffic control, business prdcess re-engineering, data' miﬂing,

. infgnnationl retrieval/management, electronic commerce, education, personal digital
Iassistants (PDAs), scheduling/diary management, etc. ‘ .
Multi Agent Systéms:

Multi 'Agent System (MAS) can be defined[1] as “ a lo§se1y coupled network - k

pf problem solvers that work together to solve problems that aré beyond their
) indiyidual cépabilities”. The members of the system may each' receive. tasks, and
perform or delegate for performance by others. Multi agent systems are subject to
performance bottlenhecks in cases where agents cannot perform ta‘ské by. themselves
due to insufﬁcient resources. In Muiti agents systems, distribﬁted nature of the agents .
may contribﬁte to the ébility to overcome ovgrloa‘ding bottlenecks. MAS is a

framework which receives a stream of tasks, and agent in MAS “assuméd to be

autonomous, self-aware, intelligent, and pro-active computational entity. A task is
either an executable code or a goal represented at a higher level abstraction.

An agent provides services by performing taské which either it generates by
itself; or other agent delegate to it. If task represented as a higherv level abstraction, an
" agent should be able to transform the abstract goal into'more concrete tasks. Concrete
tasks examined by.an agent to verify whether their performance is within its
capabilities. If they are, the agent g:ifher performs tasks as giveﬂ . or further
decomposes to subtasks, otherwise, the tasks may be delegated to the dppropriate
agents.

The agents have_two important qualities:
e Capabilities, which indicate the types of tasks they can perform,

e Capacities, which indicate the amount of resources the agenté{, can access

for task execution.

The pro.ble‘r-n studied in this work concem to the situation where the task flow
to an agent overloads it. Such overloads are two different general categories:

"o An agentin an MAS is overloaded, but the MAS as a whole has the
required capabilities and capacities » -
» e The MAS as a whole is overloaded, that i_s, the agents which méke up thé
MAS.do not have the necéssary capacities (however, there may be id}é

resources in the computational system where the agents situated)

As a result of such overloads, the MAS will not perform all of the tasks in

time, although the required resources may be available to it.

The solutions are:
o First case- Overloaded agents should pass tasks to other agents, which
have the capabilities and capacities to perform them
» Second case- Overloaded agents create new agents to perform excess tasks
and utilize unused resources or migrate to other hosts
In this work, "agent cloning"[4] is used as a means for implementing these
solutions and studied the reasoning, decision-aking, énd'b actions necessary for an
-agent within the system. to perforfn cloning. Agent cloning is the action of creating
and activating a clone agent (locally or remotely) to perform some or all of an agent's

tasks.

1.1 Statement of the Problem:

Objectives: v
¢ To analyze the circumstances under which agents should consider cloning.
¢ To study how cloning affects the performance of an MAS.

e To study merging of two agents

1.2 Organization of the Dissertation:
Chapter 1: Introduces Agents, Multi Agent Systems, agent loading, a.nd cloning -
" mechanism - A ‘
Chap‘ter 2:. Deals with the concepts of agents, agent environment, and agent
infrastructure requirements. And it also discusses the design paradigms

and mobile code technologies.

Chapter 3:

Chapter 4:

Chapter 5:

Appendix A:
Appendix B:
" Appendix C:

Appendix D:

Discuss the cloning approach, and requirefnents for implementing a
cloning -mechanism. And also discusses ‘the reasoming, decision
making, and actions necessary for an agent with in the system to
perform cloning. It also discusses the optimal time for -cloning
mechanism, the merging of two agents, and merging approach used in
this work.

Explains the simulation model of an agent and its environment. Design
and implementation of software is also discusséd '

Discusses results and gives suggestion for further work

- Cloning Pseudo-Code

Merging Pseudo-Code
Back-Propagation Algorithm

Lists the source code

‘CHAPTER 2

AGENTS

2.1 Intreduction to Agents:
With the recent explosive development of .computer networking and‘ the
Internet, a gap has developed between the sheer amount of . information that is
available and the ability to process or even locates the _interesti;ig pieces. The
-increased' number of available services has also lead to. a. pfofusion of mutually
i.ncompatible user interfaces, making it difficult for people to actually take advantage
of all that is offered. Agents may show a possible way out of this dilemma program
that help their users perform routine chores and assist them during éo;nplex tasks. In a
‘computer network, mobile agents may move around on behalf of thei:r users, seeking
out, ﬁltéﬁng anq forwarding information or even doing_businéss in their name.

Agents, intelligent agents and agent-based systems ha;re attracted éénsiderable
interest from many fields of computer science, most notably aﬂiﬁcial intelligence,
distributed ‘systems, computer communications and software engineering.
Unfortunately there is little consensus among researchers about exactly what they -
consider an ageﬁt to be. An agent can be defined in the general sense of "anybody who
acts on behalf or in the interest of somebody else'.

‘We need software agents because [1]: -
¢ more and more everyday tasks are computer-based

e the world is in a midst of an information revolution, resulting in vast

amouﬁts of dynamic and unstructured _infbmlation'
. increasigg'ly more users are untrained |
o And therefore users require agents to assist them in order to uﬁﬁerstﬁnd the
techhically cémplex world we are in the process pf creating.. . .
Agents have the following attributes [5]:
e Autonomy (acts independently)
e Continuity (persists over time)
. Intelligenk;é (can reason)
e Mobility (écross ‘machine boundaries)
. Personality (possesses a huinaﬁ-like peisona)
e Adaptability (can learn)
. Kndvélledge (about some doméin)
70 ‘ CanersaﬁOn (is ditected at a high level)
. Authority (has the rights of ifs human sponsor)

e Collaboration (interacts with other agents and people)

.Collaborative
learning agents

Collaborative Agent: Interface agents -

Figure 2.1 shows one agent taxonomy [5], that involve some of the above attributes

Desirable Agent Characteristics [6): ’

* Taskable: able to take the direction from humans or other agents

e Network-centric: distributed and self-organizing. When situation_s warrant,
agent mobility might also bé desirable

e Semiautonomous: not always under direct Ahuman control. For example, in
information gathe;ing task, because of the many potential requests for
information, humans would be swamped if they had to initiate every
information request. The user should be able to. control tﬁe ‘amount of
agent autonomy.

e Persistent: capable of long periods‘ of unattended operation

e Trustworthy: able to reliably serve users needs so that users will develop A

© trust in the agents performancé

. Anticipatory: able to anticipate user information needs so that users will
develop trust in the agents performance

. A(‘:tive:\-able to initiate problem solving activities (for‘iexample,b by
monitqring the Infosphere for tﬁe occurrence of gchn patterns), anticipate

~ user information needs, and bring to the attention of users situation-

appropriate information, which involves deciding when to fuse
information or present "raw" information

¢ Collaborative; able to interact with humans and Vother machine agents.
Collaborative interactions allow agents to resolve conflicts and
inconsistencies in information, current tasks, and world models, thus

improving their decision-support capabilities

e Flexible: able to deal with heterogénéity of other agents aﬁd iﬁfoﬂnafior'l
resources .
. Adaptivé: able to accommodate chariging user needs” and task
environments ’
Multi-Agent Systems:

Multi-Agent System, can be defined "as "a loosely-coupled net'workv o'f
problem solvers that work together to solve probleﬁls that are beyond their individual)
capabi_lities"

The motivation for the increasing interest in MAS[1] includes their ability: - '

"« To solve probléms that are too large for a centralized single ag’eﬁt to do-
due to resoutce limitations or the sheer risk ‘of having one centralizea
systcfn; » |

» To al_low for the interconnecting and interoperation of multiple .éxisting

legacy systems, e.g., expéﬂ systcms, decision supﬁort systems, etc.;

"o To provide solutions to inherently distributed problems, e:g., air"trafﬁc_ :
control

o To provide solutions which draw from distributed informzition SOurces; .

* To provide solutivon,s where the expertise is distribuf_ed, e.g., in health care

' . provisioning;

e To enhance speed (if communication is kept minimal), reliability

(capability to recover -from the failure of individual componénts, with .
graceful degradation in performance), extensibility (capability to alter the

number of processors applied to a problem), the ability to tolerate

’ " uncertain data and knowledge
» To offer conceptual clarity and simplicity of design.
In a broad sense, an agent is any program that acts on behalf of a.(human) .
user. Mobile agent then is a érogram that represents a user in a computer network and
. can migrate autonomously from node to node, to perform some c_omputat'ion on
behalf of the user. Its tasks, which are determined by the agent application, can range
from online shoi)ping to real time device control to distributed computing.
Applications can inject mobile agents into a network, either on a predeterminéd path -
| or one that the agents themselves determine based ‘on‘ dynamically gathered
info_ﬁnation. ‘Having_ accomplished their goals, the agents can return to t_heir home'site -

to report their results to the user’

2.2 SyStem'—Level Issues:
A mobile agent system[7][8] is an infrastructure_ that implements thé agent
' paradigm. Each machine that intends to host mobile agents must provide a protected
agent execution environmerit. Such agent server execute agent code and provide
primitive operations to agent ﬁrogrammérs, such as those that allow agents to migrate,
.communicate, or access host resources. A logical network of servers implements" the
mobile agent system. Many useful agent applications will require Internet wide access
tov‘reéources. Because users will need to dispatch agents from lai)tops, regardless of
their physical locaticn, the mechanisms used in the agent infrastructure should scale
up to the wide area networks. Agepts can execute on many different hosts during their

lifetimes.

Aéent Mobility:

A mobile agent's primarily identifying characteristic s its. ability to
autonomously migrate from host to host. Thus, support for agent mobility is a
funddmental requirement of the agent infrastructure. An agent can request that its host
server transport it to some remote destination. The agent server must then deactivate
the agent, capture its state, and transmit it to the serverr at the remote host. The
destination server must restore the agent state and reactivate ‘it at t1_16 remote host, thus
completing the migration.

| An agent state includes all its data, as well as the executioﬁ étate of its thread,
which, at the lowest level, is represented by its execution context and call stack. If
this can be captured and transmitted along with the agent, the destiﬂgtion server can
reactivate the thread at the precisely the point where migration was init_iated, which
can be useful for transparent load balancing or fault tolerant programs. Capturing
execution statf;s at. a higher level, in terms of application defined agent daté, offers an
alternative. The agent code then can direct thé contro] flow appropriately when the
state is restored at the appropriate destination. However this approach only captures
execution state at a coarse granularity[8] (such as function level), in contrast to
instruction level.

Most agent systems execuie agents using commonly available’ virtual
machines or language environments, which usually do not provide thread-level state
ﬁapturé. The agent system developer could modify these virtual machines for this
pLﬁpose, but such modification renders the system incompatible with standard

installations of those virtual machines. Because mobile agents are autonomous,

10

3

migration occur‘s> only under explicit programmer control; thus state ‘capture at
arbitrary points is usually unnecessary. Most current systems therefor_e rely oﬂ coarse-
grainéd execution state capture to maintain portability

Another issue in impleménting agent mobility is the transfer of agenf code. In
one approach, the agent caﬁes all its code as it migrates, which lets it run on any
server tﬁat can execute the code. Some systems do not transfer any code at all and
require that the agent's code be preinstalled oﬁ the. destination server. In a third
approach, the agent does not carry any code but contains reference to its code base- a
server that provides code on request. During the agent's éxecution, if it needs to use
some code not already installed on the agent's current server, the server can confact
the code base and download the required code. This is some times cailed as cocié on
demand.

Naming:

Vaﬁous entities in the system- such as agents, agent servers, resources, and
users -need names that uniquely identify them. An agent should be uniquely named, -
so that its owner can communicate with or control it while it travels on its itinerary. .
Having location transparent names at the application level is desirable and can take

‘two forms. The first approach provides local proxies for remote . entities, which
encapsulate their current location. The system updates this loéatiofl information when
the entity moves, thus providing location transparency at the application level._‘ The

. alternative a].Jproach uses global, location-independent names that do not .change
when Athe entity relocates. This approach requires the provision of a name service,

which maps a symbolic name to the current location of the named entity.

11

Sect_n'iiy Issues: : : -l .

The introduction of mobile. code in to a network raises several sécurity[S][9]
issues. The sec‘urity—related‘ requirefnents fall info these categories:

¢ Agent privacy and integrity;

. Agént and server authentication;

e Authorization and access control; and

¢ Meeting, charging, and payment mechanismfs.
Privqcy Integrity: ‘ .

Agents carry their own code anq data as they traverse the ﬂeMOfki Patts of
theéir ét;ité might be sénsitive and might need to be kept secret when they tr’a?ei 'on the
network. The agent transpért protocol needs “to p‘roﬁde privacy, .fo prchﬁt
eavesdropper from acquiring s‘ensijtive mfoﬁnation. Also, an agent rnight not trust all
servers equaily. it needs a mechanism to selectively reveal different portiéns of the
agent state to different servers. ‘
Authentication:

When an agent attempts to transport it self to a remote serveér, the server need?
to ascertain the identity of the agent's owner, so that it can decide what rights and
priviléges to grant the agent in the server environment.

A‘uthqrization and acéess control: »

Authorization is the grantij_]g of specific resource-access rights.t'o specific
principals (such as owners of agents). Because' some principals are more trusted than
otliers are, their ;':tgents can 'be granted less restrictive. access. For this, resource'

owners must specify policies for granting access to ‘theit-resources, based either on’

identities of principals, theéir roles in an organization, or their security classifications.
A user might place additional restrictions on her agents' code, so‘ as to limit the
.dam'age caused by buggy cede. These restrictions can be encoded into the agent's
- state and enforced by the server. |
Metering and charging mechanisms: : o .

When agents travel on a network, they consume resources such as CPU time
and disk space at different servers, whi;:h might legitimately. expect monétary
reimbursement for providing such resources. Also, agents might access value-added
service or information provided by other agents, which couid‘ .also expect péyrner_xt. In
market place, users can se;ld agents to conduct purchases oﬁ their behalf. Thus, .

" mechanisms must be available so that an agent can carry digital cash and use it to pay

for resources it uses.

2.3 Langﬁage-Level Issues:
Th.e language level issues [7][8] fall into two categories:
| s Agent programming languages and models .
® Programming primitives. -
Agent Programming Languages and modéls:

The portability of agent code is a prime requirement, because an agent might .
execute onm heterogeneous machines with varying ~operating system environments.
Therefore, most agent systems are based on interpreted programming !anguages that
provide portable virtual machines for executing agent code. Safety is another

important criterion in seiecting an agent.language. Languages that support .type

checking, encapéﬁlation, and restricted memory access are particularly sﬁitaBle fo.r"
implementing protected servers.

- Several systems use scripting lmguaées such as Tcl, Python, and Perl for
coding aéents. ‘Thévse allow rapid prototyping for small to medi@-size agent
programs. However, becauf;c script programs often suffer from poor modularizati_on,' o
encapsulation, and performance, sc;me agent systems use object—oﬁent_ed langunages
such as Java, Telescript, Or Oblig. These system define agents as a first class objects
théf pnc;apéula;e their state as well as code, whilg the 'systen‘.l suppotts object -
migration in the networks. Such systems offer the natural advantage of object
oriented in Buj]ding agent-baséd‘ ;pplicaﬁons, qomplex agent programs are easier to.
wrote and maintain using object oriented languages. A few systems have aléo use(i .
. infcrprctcd versions_ of traditional procedural languages such as C for agent
progr@ing. | ’ v o

M(l)bil.e‘ ﬁgeﬁt systems can defer significantly in the proﬁé‘mmingmodél used .
for developing agents. In some cases, the agent pfogram i_s>'1’nerely a script, ch'en with ’ .
little or 1o flow control. In others, the script languages borrows features from objépt
oriented programming and éxtcnsi.\rcly sﬁpports procedural flow control. Some
systen-l'v modé] the agent-based applicati,:on as a set of distributed interactiﬂg objects‘,.‘ ;
each having its own thread of cox_ltrol and thus able to migrate autonomousiy acrosvsA
* the network. Other user a call back based programming model in which the system
signals certain events at different times in the agent's tife cycle. The. ‘agcf;ﬁt then is

programmed as a sét of event handling procedures.

e i

4

Programming primitives:
Agent programming primitives can be categorized into -

e Basic agent management: creation, dispatching, cloning, and migration

e Agent-to agent communication and synchronization
e Agent monitoring and control: status queries, and recall and termination of
agents

¢ Fault tolerance: check pointing, exception handling and aﬁdit trials
e Security related: encryption, signing, and data sigqaling
Basic agent management pfimitives.' |

An agent-creation primitive [3]{7]8] allows the prograrﬁmer ‘to cfeate
instances of agents, there'ﬁy partitioning the application task among its rdving
components. Thjs also introduces concurrency into the system. This could be a single _
procedure to be evaluated remotely, a script, or a lénguage-level object. In object
oriented systems, programmers usually create an agent by instantia.t'i_ng a class that
provided an agent abstraction. The system can insp'ect the sﬁbrn'itte‘d code to ensure
that it conforms to the relevant protocols and doesn't violate security policy. Based on
agent creator's identity, the system might also generate a set of credentials for the
-agent this time. These are transmitted as pﬁrt of the agent, to allow other entitiés to
idenﬁfy it unambiguously.

A newly created agent is just passive code, because it has not yet been
assigned a thread to execute it. For activation; it must be dispatched to a spe.ciﬁ_c.-
agent's server. The server authenticates the incoming agent using its credentials and

determines the privileges to grant it. It then assigns a thread to execute the agent code.

i
Variant of creation primitive, "agent cloning", allows an agent to create the identical

copies of itself, which can execute in parallel with it and potentially yisit other hosts
performing the same task as their creator. Agent forking, in which ;;he ﬁewly created
agent retains a parent-child relationship with its creator, is another vaﬁaht that lets
programmers create aéents that inherit their ownership and privileges for their
parents. - -

During an agent program s execution, it rmght determine that it needs to visit
another site on the network. To acmcve this, it mvokes a mlgTatlon pnmltlve The’v
destma,tlon specified by the agent can be either absolute or relatlve.

Agent communicatioﬁ and synchronization primitives:

To accomplish useful work, agents often must communicate of syﬁcﬁronize'
* with each other. Systems often use varying meéhan_isms for establishing inter agent
communication. vOne approach is to provide message—passing primitives, which allow
agenté to either sénd_ﬁsynchronous aétagrmn-style mcss;iges or setu[; stream-based
c;)nne'ctian'to each other. » »

‘ ‘Method invocation _is another approach commu_ni»cation in objgc‘t based
systems. If two agent objects are collocated of a sel;ver, they can \be pmvid¢d‘
refereﬁces to each other, which they use to invoke each other. For..ztgents:that are not
collocated, the system can provide remote methods invocation.

Collective communicatiori primitives can be useful in applications that use
-groups of agent for collabﬁraﬁve tasks. Such primiﬁves can vprovide fox‘j
communicating with or within an agent group.

Communication can also be implemented by using shared data. Another

16

metaphor for agent communication is event signaling. Events are usually:
i.mplémented as asynchronous messages.
Agent monitoring and control primitives:

An agent's parent application might need to monitor the agent's status while i.t '
executes on a rehote host. If exceptions or errors occur during the agent's execution,
the application might need to terminate the agent, which involves tracking the agent's
current location and requesting its host server to kill it. . .
Primitives for Fault Tolerance:

| A clllevckpo‘int primitive creates a representation of tile agent's state that can
reside in nonvolatile memdry. If an agent (or its host node/server) crashes, the owner-
can initiate recovery, which can determine the agent's last-known cheékpoint and
requést the server to restart the agent from that state.. In addition to the checkpoints
themselves, agent servers can also maintain an audit trial to let the ownef H#ce the -
agént's proéress determine the cause of the crash.
Security related problems:

Because agents might pass through untrusted hosts or neﬁprks, the agent
f)rogrmrnner needs primitive operations for protecting sensitive data. This includes

‘primitives for encryption and decryption that protects the privacy of dafa, as well as

message sealing or message digests that will detect any tampering of the code or data.

24 Design Paradigms:
The goal of design is the creation of a software architecture, which can be

defined as the decomposition of a software system in terms of software components -

17

and interactions among them. Software architeetures with similar characteristics can
be represented by, architectural styles or deign paradigms, which define architectural
abstractions and reference structures that may be instantiated into actual software
afchitectures. A design paradigm is ﬁot necessarily ipducéd by the teéhnélogy used to
develop the software systetn-it is a conceptually separate entity. v

| Traditional approaches to software design are not sufficient When.des_igning a
large-scale distributed applications ﬁlat exploit code. mobility and dynamic
reconfiguration of software components. In these éases, the conéeptsk of location,
distribution of components among locaﬁom, and migratién 6f components to
different locations need to be taken explicitly into account during. t-hé de’sién‘stage.

The paradigms themselves are independent of particular technology, and

could even be implémented of a particular technology; and could e'x.fen _b'e'_
implemented without using mobile technology at all.
Basic cohcepts: .

. Components are the constituents of éoﬁwa.re architecture. They can be further
divided into code components, that encapsulate the know-how to perform a particular
computation, resomce—coﬁponents, that represent data or devices used dm'ing"th'_e
vcorhpl.ltation, and computational .components, that are active executors capable to
cairy out 4 computation, is specified by a corrésponding-know-how. Int%;ractions are
events that involve two or more components, €.g., a message exchanged among two
or, more computational components. Sites host components and suppmt the execution
of computational components. A site represents the intuitive representatlon of

location, Interactions among components residing at the same _site are consider less

18

expensive than interactions taking place among components iocated in different sites.

In addition, a corﬁputation can be actually carried out 6n1y when the know-how

. describing the computation, the resources used during the computation, and the
computation-a component responsible for execution are located al-same site.

Design paradigms are described in terms of interaction paitems that define the
locations and co-ordinations among the components need to perform a service.
Consider a scenario where a computational component A, located at a site Sy ﬂeedé
the results of a service. Assuming the existence of another site Sp, which will involve

‘ the accomplishment of the s’ewice. .
There are three main design paradigms exploiting code mobil_ity:

e Remote Evaluation(RE)

* Code on Demand(COD)

e Mobile Agent(MA)

The‘sé'paradigms characterized by the location of corhponents before and after

~ the execution of the service, by the computational component, which is responsible
for execution of code, and by the location where the computatioﬁ of the service)

dctually takes place. (Table 2.1)[2]

This table shows the location of the componerits before and after the service
execution. For each paradigm, the computational component in bold face is the one

that executes the code. Components in the italics are those that have been moved.

Table 2.1 Mobile Code Paradigms

Paradigm S, Before Sg Before Sa After Sp After
Client-Server | A Know-how A Know-how
Resource -| Resource
B B
Remote Know-how Resource A ‘Know-how
Evaluation A B Re;qmce
B
Code on | Resource Know-how Resource . B
Demand A B Know-how
. N
‘ Mobile Agent | Know-how Resource - Know-how
A .| Resource
A

Client-Sérver:

This paradigm is well known and widely used. In this paradigm, a

computational component B (the serverj offering a set of services is placed at site Sg.

Resources and know-how needed for service execution are hosted by site Sg as well.

The client component A, located at site S, requests the execution of a service with an

interaction with the server component B. As a response, B performs the requested

service by execiiting the corresponding know-how and accessing the involved

resources colocated with B. In geheral, The service produces some sort of result that

will be delivered back to the client with an additional interaction.

20

Remote Evaluation:

In the REV paradigm, a component A has know-how ne\ccssary to perform the
service but it lacks the resources required, which happen to be located at remote site
Sp. Consequently, A sends the service know-how to a computational component B
located at the remote site. B, in turn, executes the code using the résources available
there. An additional interaction delivers the results back to A.

Code on Det.nand:

In the COD paradigm, component A is already able to access the resources it
needs, which are co-located with it at S,. However, no information about how to
manipulate such resources is available at Ss. Thus, A interacts with a componeht_B at
Sp by requesting the service know-how, which i§ located at Sg as well. Second
interaction Atakes place when B delivers the know-how to A, that can subsequently

execute it,

Mobile Agent:.

In the MA paradigm, the service know-how is owned by A. which is initially
hosted by S, but some of the required resources are located on site .SB. Hence, A
'migrates to Sp, carrying the know-how and possibly some mtennediétc results. After
it has moved to Sg, A completes the service using the resources available there. The -
mobile agent paradigm is different from the other paradigms since the associated
interactions involve the mobility of an existing qomputational component. In other
" words, while in BV and COD the focus is on the transfer of code between

components, In the mobile agent paradigm a whole computational component is

21

moved to a remote site, along with its state, the code it riceds, and some resources

required to perform the task

2.5 Applications of Mobile Agents:

I Mobile agents can be useful for many applicati(')ns.[Z][B]:[7]v Iriforﬂlation
retrieval on the nefwork can be supported much more efﬁciexi.tly if an agent
representing a query can move to the place where the data are éctually sfoi‘ed, rather
than h:aving to move all of the daté écross the network for shiﬁing (and subsequently
discarding most of the tran‘smis.sion). This works especially well for non ahticipated
queries, 1. e., the implementor of a database systerﬁ cannot 1n géncrél foresee
everything users might want to find out and provide code to do the relevant analysis.
Thus, if uSérs have to write their owri custom retrieval software, an ‘agent-based
approach can save a ldt of network traffic, This is even more evident when faking into
account that agents can move to other sourcés of information if that seems moré
promising. Teéhr_liques such as semantic routing—dispatching a quéfy according fo

~ where it is most likely to be answered, rather than according to son;e predetermined
addressing information—can be used to further boost such a systeﬁ's utility and ease’
of ,use.l |
Another area where mobile ‘agents can profitably be used. is network
managément. In bi;g networks, comprising hundreds or tﬁousands of ‘connected
coﬁlpute‘rs, oﬁerations mom'tc‘)ring‘énd fault detection is very difficult and involves
large amounts 6f logging data. Itris ﬁot poésiblé to prcfaBﬁ(':ate diagnostid progra:ﬁs

i

for every eventuality, but it would be feasible to use mobile agents to keep tabs on the

22

system, homes in on poséi‘ple trouble spots or performa-nce boﬁleneci(s and brings
them to the attention of'the maintainers. |

Electronic commerce is another domain which seeﬁs amenable to mqbi]e
agents. Business on the Internet is Becoming a reality, and, as standards for electronic
payment are deployed, commercial 'premises’ accessible via the net will probably
mushroom. Mobile agents can help locate the cheapest offerings, negotiate deals or
even conclude business transactions on behalf of their owners. .

Finally, . an important application of mobile agents concerns mobile
computing. Portable computers become smaller and more powerful, but wireless
access to a fixed information infrastructure is likely to stay slow and cumbersome due
to restrictions on radio transmission. Besides, to minimize power cénsumptioﬁ and .
transmission costs, users will not want to remain on-line while some complicated . v
query is handled on their behalf by the fixed computing resources. Mo‘t;ile agents
offer a promising way out of this dilemma, users simply submit mobile agents which .

. embody their queries and log off, waiting for the agents to deposit‘tﬁévir results ready
to be picked up at a later time. o
Obviously, none of these applications absolutely require the use. of mobile
A agents, mosf could be handled by stationary programs and some suitable
communications paradigm such as RPC. However, this could on]y be done at a pﬁce
of increased system (and network) load and, possibly, at the iﬁconVeniencc of the
users. It is-also important to point out' that agents are not forced to move, even though .
the system may allow them to do so. Sqme z.ig_entsrmay be too big to rﬁové '

comfortably, and for others there may be no necessity. Such stationary agents could

23

still communicate with their mobile counterparts to take part in an .agent-based

system.

24

CHAPTER 3

AGENT CLONING

3.1 The Cloning Approach:

Cloning[4] is a possible response of an agent to overloads. Agent 6verloads ,
are either to the agent's limited capacity to process current tasks or to machine
overloads. Some approaches to overloads

e Task transfer: overloaded agents locate other ageﬁts,vwhich are lightly
loaded and transfer tasks to them, is very similar to load baiﬁncing.

s Agent migraiion: overloaded agents or agents that run on qverloa'ded
machine migrate to less overloaded machine, is closely related to process
migration and to reqently emerging field of mobile agents.

A main difference between load balancing and agent cloning is Vthat' while the
first explicitly discusses machine loads and agent migration, the- laﬁer, in addiﬁon,
considers a different type of load-the agent load.

Therefore, cloning is a superéet of task transfer and agent migration: it
lincludes them and adds to them as well. Cloning does not necessarily féquire
migration to other machines. Rather, a new agent is crc?ated on either the local ora
remote machine. Note that there may be several agents runﬁing ‘on the same machine,
and having one of them overloaded does not necessarily imply tha_t the other are
overloaded. Agent overload does not imply machine overload, and therefore lbcal

cloning (i.e.,.on the same machine) may be possible. Cloning takes advantage of these

25

idle processing capacities.

To perform cloning, an agent must reason about! its own-load (current and
feature) and its host's load, as well as capaBilities and loads of other m:achines and
" agents. Accordingly, it may decide to create a clone, pass tasks to clone, merge with
qther agents, or die. Merging of two agents or self-extinction of under utilized agents
is an important mechanism to control agent proliferation with resulting overload of
network ;esources.

T.o avoid communication’ overhead iﬁ trying to access and reason about
remote hosts, reason regarding cloning begins by considering local cloning. When
this is found infeas'ible or non-beneficial, the agent proceeds to reason aboutb remote
cloning. If remote éloning is decided on, an agent should be created and activat.ed‘on
aremote machine. Assuming that the agent has an access and a pemﬁt to work on this
i maéhine, there may be two methods to perform this cloning:

| e Creating the -agent locally and letting it migrate to the remote
machine(similar to mobile agent) '
o Creating ard activating the agent on the remote machine

While thé first method requires very little on the part qf the re’ﬁlote rhachinc, it
'rcquirés mobilization properties as well as additional resource consumption. The
second method, while avoiding mobilization and local resource consumption, requires
that a copy of the agents code to be located on the remote machine: Similar
requirements ate also hold for mobile agent applicationé, since an agent servet or

agent dock rquired. Nonetheless, tk;c émount of this code is small.

Since the agent 's own load and the loads of other agents may vary over time ‘

2%

in a non-deterministic way, the decision regarding whether and When to cloﬁe is
nontrivial. In this wbrk, a stochastic model of decision-making based on the dynamic
programming used to determine the optimal timing for cloning.

Suppose a clone has been created and activated. Several questions remain with
respect to this clone. Thesé regard its autonomy, tasks, lifetime, and‘ acqus to
resources. Autonomy refers to independent vs. subordinate clong. Having been
created and activated, an independent clone is not controlled by its creator. Therefore,
such a clone will continue to exist after completion of the tasks 'providedl by its
initiator agent; Hence, a mechanism for deciding what it should (io afterward is "

) ne;:essary. Such a mechanism must allow the clone to reason vabout fhe agent and task
environment, and accordingly decide whether it should continue to work other tasks, .
merge with others, or perform self -extinction.

A subordinate-clone will remain under the.control of its initiator. This will
prevent the complications arising in the independent clone case. However, in order to
mange a subordinate agent, the initiating agent must be providea with a coﬁtrol
mechanism for remote agents. Regardless of the details of such a mechanism, it will
require ad@itional communications between the two agents, thus »increasiﬁg the
communications overhead of such a cloning method and the MAS's Vumerabiﬁty to
communication ﬂaws. In addition, control of other agénts is a partially: centralized

* solution, which might violate rather reason for using an MAS in first place.

3.2 Cloning Initiation:

An agent should consider clonihg if: .

27

" It cannot perform all of its tasks on time by itself or decomposé

them so fhat they can be delegated to others

There is no lightly loaded agent that can receive and perform its

‘excess fasks (or sub tasks when tasks are decomposable)

There are sufficient resources for creating and activating a clone
agent

The efficiency of the clone agent and the original agent is expected.

Ctobe greater than that of the original agent albne -

The necessary information used by an agent to decide whether and when to

'

initiate cloning coriprises parameters that describe both local and remote resources.

In particular, the necessary parameters are -

The CPU and ﬁemory loads, both internal to the ;ageht ('which.'
result from planning, schedﬁling and task execution activities of ‘
the agents) and external (on the agent host and pos;ibly on the

ren;ote hosts) *

The CPU execution speed, both local arid remote

The load on communication channels and their transfer rate, both-

local and remote

The current queue of tasks, the resources required for their
execution, and their deadlines

The future expected flow of the tasks

To acquire the above information an agent must able to read the operating

system variables. In addition, the agent must have self-awareness on two levels: -

28

e Agent-internal level: internal self-awareness should allow the
agent to realize what part of the operating system retrieved values
are its own properties.

e An MAS level: system-wise self-awareness should aliow the agent
to find, possibly via middle agents, information regarding possible
resources on remote machines. '

With out middle agents, servers that are located on the remote' hosts can
supplies such information. Whén such information is not available,' an agent sﬁould
compute the expectation‘ values of the attributes qf remote mac}ﬁnes relying on the
probability discussions either specifically by machine ID or groupwise by machine

type. Pseudo-code of the cloning approach is in Appendix A.

3.3 Optimizing When to Clone:

To xﬁaximize the benefits of cloning, an agent should decide on performing it
at the optimal time. Each decision regarding cloning has a value, ‘.calculated v;/ith
reépect to loads and distances as a function of ﬁﬁe. Here, load's‘ referriﬁg to
processing load, memory load, and communication load. The distance between agents
is the cumulative distance according to the communication route between them. An
Agent A; has a valuation function Val; (loads, distances), where loads is a set of loads
of a‘génts and distances is a set of distances to other agents. When méasﬁring the time
in discrete units, the possible decisions of A; can be described by decision tree. The
tree includes a set of decision points, which are the nodes of the tree. The edges of the -

tree are decisions and each is attached a value. These values may be discounted over

29

time by a-given discount rate 1;. The discount rate is used in cases where the agent
assumes that the value of a decision is discounted over time (otherwise 1=0). A
recursive function to evaluate the decision making with dependency

Vale(v)= 0 ifno decision taken

Il

Val (v) if decision has no depeﬁdencies

1l

1/(1+1) jglpj Value (vj) Otherwise

where the sum is over all the edges (v, v;) emanating from v, and p; is the
pr'obabilityb of édge v, v) an& the corresponding decision being chosen. In this Work
staﬁdard dynamic programming method used to compute the optimal decision with
respect to a given decision tree. F;)r cloning mechanisms this implies ar cloning timing

which is optimal with respect to the available information regarding future overloads. -

3.4 The Cloning Algorithm:
Amoﬁg léad balancing algorithms, there are two main approaches:

e Overload processors that seck other idle processors to let them perform

part of the processes; |

‘e Idle (or lightly loaded) processors that look for processes to increase their

load.

These approaches are sometime combined with additional heuristics, or even
merged. If these two approaches an% .utilized when designing a cloning algorithm for
agents, considerable difficulties arise. Both approaches require that an agent locate
lother agents for task delegation. When using match making agénts, the ﬁrst‘ approach

only requires that underloaded agents advertise their capabilities; ‘thus overloaded

30

agents may contact them via match making. Similarly the latter approach requires that
overloaded agents may advertise their overload and required capabilities and
resources. In addition, it requires that underloaded machines will be known to the
overloaded agents as well, if there are no agents running on these machines. This
information is not given in open system. It could be provided if each machine runs an
agent whose sole task would be supplying such information. This leads to an
undesirable overhead of communication and computation. In this work first approach
is utilized. The cloning procedure consists of the following components:

Reasoning Before Cloning:

Includes reasoning about the (possibly dynamic) task list with respect to time
restrictions and capability requirements. The consideration of the task list as well as
agent capabilities, capacities, loads and machine loads results in a decision to clone or
transfer tasks to already existing agents
Dividing the List of Tasks:

Includes reasoning that considers the time intervals in which overloads are
expected and accordingly selects tasks to be transferred. Suppose the current and
future tasks have been scheduled. At each point in time, the required resources are the
sum of required resources for all of the tasks that are scheduled to be executed at this
time. Figure 3.1 shows an example of the sums of three resources: cpu (p), memory
(m), and communication (m), with respect to time. The maximum capacity of the
agent is depicted by the threshold horizontal line (th) leveled at 6. One can observe
overloads whenever any type of demand for resources crosses this threshold. A

periodic overload can be observed at times 4,9,14 with period of 5 time units. Other

31

‘Overload w.r.t. time

.. Load

*Figure 3.1 Cpu, memory, communication loads

32

overloads do not seem periodic. When attempting to prevent overloads, the agent first
look for tasks with a period that fits the period of the overloads and puts them in the
list of candidate tasks for division. After recomputing the loads, it transfers one-shot
tasks if still necessary.

Cloning:

Includes the creation and activation of the clone, the transfer of tasks, and the
resulting inevitable updates of connections between agents via match making. The
following are the basic actions to be taken:

e C(Create a copy of its code. This copy, however, may have to undergo some

modification.

e When cloning while performing a specific task, an agent should pass to its
clone only the relevant subtasks and information necessary for the tasks
passed to the clone.

Otherwise, the clone may face the same overload problem as its creator. This
is because the clone will have the same set of tasks as its creator had. Note that in
contrast to the typical approach to agent migration, the cloning paradigm does not
require the transfer of an agent state. The only transfer necessary is of the set of tasks
to be performed by the clone.

Reasoning After Cloning:

Collects information regarding the benefits of the cloning and environmental
properties (such as task stream distribution) and statically analyzes them as a means

of learning for future cloning.

While the reasoning of whether to initiate cloning is performed continually

33

(i.e., when there are changes in the task schedule or if previous attempts to clone have
failed), the task cloning itself is a one-shot procedure.
3.4 Merging of Agents:

Suppose a clone ha_s been created and activated. Having been 'cregted and
activated, an independent clone is not controlled by its creator, because of agent’s
éutonomy. Therefore such a clone will continue to exist aﬂe; conﬁpletion of the task.sv
provided by its initiator agent. Hence a mechanism for what it should do afterward is
necessary. Such a mechanism must allow the clone to reason about the agent and task
environment, and accordingly decide whether it should do or continue to work on
other tasks, merge with others, or perform self-extinction.

An agent considers merging only if it is underloaded conﬁnuqusly. Before
considering merging, agent has to reason about its tasks over a period of time,
-becﬁuse agent receives the tasks randomly (gaussian). So aéent analyzes the task
environment over a period of time. To analyze, agent stores the information about the
loads and tasks. Then using this information agent expects the task list. In this work,
back pré)pagation network is used to expect the task list. The neural network is trained
by using loads and tasks information. After this, the agent reasons about the
underload using the expected task list.

In case the agent is underloaded over a period of time, then agent aﬁafyzes the’
agent environment, because one agent is underloaded does not mean total agents afe
underloaded. So it is necessary to consider the host’s overload as well as.the system’s
overload. In the case, if the system and host environment is underloaded then agcgt)

.may not consider merging. And in the second case, the system is underloaded and the

34

host's is overoaded then agent migrates to remote host. In the last case, fhe host's is .
underloaded or overloaded, and the system is overloaded the agént does not consider -
merging, but the agent waits for the tasks from the ovverloaded agénts..‘ These peculiar
situations may not be possible, but it is necessary to define every situation.

Suppose, if the agent has decided to merge witﬁ other agents then agent has to
find out the other agerits, which are also underloaded, and wants to merge; If there is
no such agent then agent has to reason about whether agent-should die or not,
otherwise the mergable, underloaded agents should ﬁnd. ouf leader, 'so .as to transfer
the responsibilities. - Generaily leader agent is the one who has maximum
responsibilities. The agent transfers the tasks and responsibilities to leader and -
releases the resources. ‘

The agent acquires the resources from the host to perform the service_s. An

- agent provides the services by performing the tasks which eithef it'generates by itself,
or users or other agents delegate to it. If the agent is underloaded ééntinuously the
resourccé acquired by the agent is not used. So the utilization of the network
resources is low. So to control the performance degradation of the syétem, meréih'g of
agents is needed. Pseudo-code of this apf;roach isin Append_ix B.

35 ’Merging approach:

To perform merging, In this work following approach is uéed. In case the
agent is not overloaded, then agent reasons _about the underloads. In the event the -

L agent is underloaded, then the underload count iﬁcremented. In the case, the

undérload count exceeds the thresh hold count then agent tries to find out thé list of

agents who also desire to merging, after setting the merge flag. If the.'mergable agent

35

list is empty then agent considers about the responsibﬂities.‘S_uppose, if the agent
there are no responsibilities then agent dies after releasing the resources, otherwise
nothihg can be done. Bu;c_ there is another approach also possible. In this approach, the
agentl reasons about the system overload with respect to the number of agents and _
‘num}‘)er of tasks. The agent finds out the number of tasks the system 'recéives and the
number of agents in-the system. In this work it is assumed that the systém able to .
provide the above information . The number of agents in the system above thresh '
hold and the number of tasics the system is receiving is below average, then agent will
do the following mechanism. The agent will find out the list of agents, which are
underloaded, but not mergable. The agent transfers the tasks to - that agenf
(responsibilities) and dies after releasing the resources. . '

In the event the agent(mergabié) list is not empty then those agents:elects one
leaders and all the agents transfer the responsibilities to that agent. The agent
selection depends on the communication costs from other agenté to that seiected agent
and the responsibility of that selqct(;d agent. In the case, if there is no underload theﬁ
agent unsets the merge flag and sets the value of to 0.

To evaluate the underload, the agent uses the back propagation neural
‘_ network. Back propggaﬁon algorithm is given in Appendix C. Suppose, the reciuired
resources for the expected fasks is below the threshold resources then agent'
considered to be under loaded.

But the basic disadvant#ge of the above method is that agent only depends on
tile neural network and the thresh hold. But it is necessary to develop‘ a theoretical

framevork and consider the agent approach.

36.

CHAPTER 4

DESIGN AND IMPLEMENTATION

To examine the properties of the cloning mechanism and its advantages, a
simulation was performed. The simulation shows that cloning increases (on average)
the performance of the MAS. That is, the performance enhancement as a result of

cloning outweighs the efforts put into cloning.

4.1 Method of Si;nulation:

Each agent represented by an agent thread that simulated the resource .
consumption and tasks queue of a real agent. The sirﬁulated agent has a reasoning-
for-cloning method, which, according to the resource consumption parameters and
task queue, reagons about clo_ning. As a result of this reasoning it may create a clone
by activating another ageht thread (either locally or remotely). Information .cbllected .
‘ during the simulation is the usage of CPU and the memory and "communication
consumption of the agents. Each agent -filread receives a stream of tasks according to
a given distribution. For each task it creates a task object that consumes time and
memory> and requires communication. Some of these task objects ére passed tqi the
clone agent thread. The simulation was performed with and without cloningv to allow
cBméarison.

An agent thread in simulation must be subject to CPU; memory,‘ and
comununication consumption similar to those consgmed by an agent it mode]s- in the

MAS. The program written in Java[11][12] under Linux operating system.

37

4.2 Simulation Parameters:

The simulated agent system has the following parameters:

Number of agents: 10-20

Number of Clones allowed: 10

Number of tasks dynarﬁically arriving at the system: uﬁ to 1000

Task distribution with respect to the required capabilities and resources for
execution: normal distribution, where 10 percent of the tasks are beyond
the ability of the agents to perform their particular deadlines.

Agent capacity: an agént can perform 20 average tasks (i.e. requiring the

average amount of resources) simultaneously.

4.3 PROGRAM CLASSES:

Classes:

Agent Manager:-

This class creates agents and starts the agents. It also assigns the tasks to the

agents.

Attributes: -

agentThread:- it provides references to all agents

totalNumOfAgents:- it counts the num of agents

totalTasks:- tasks assigned to the Multi Agent System

out:- reference to log file

net:- a reference to network

38

Operations:-
createAgents:- this method creates agents and starts the threads
assignTasks:- this method asSigns thg tasks to the system for svervic_e
increaseAgents:- agents registers the newly created cloned-agent.
run:- main controling ‘method of agent manager’
Agents:
This is the main class of simulation. It simul.ates agent.
Attributes:
Some important attributes are-
cpu, memory, communication:- resource parameters of agént
cpuLoad, memoryLoad, communicationl.oad:- the loads of the é.gent
agentID:- the id of agent fo; communication in the system
hostID:~ the host id on which agent has hosted -
cloneFlag:— flag whether cloning is allowed or not
overload:— flag denotes whether agent is overloaded or not
out:— log file reference
random:— gaussian random variable
taskList:— list of tasks for servicing of agent,' assigned by agent manager
taskSplit:- used for splitting the tasl%s so as to assign to remote agent
Operations:- .
run:- main method of agent thread
reasoﬁForCioning:- reasons about loads of itself and éystem.

reasonAboutOverloads: - finds the present and future loads of agent, and

39

reasons about overload
findUnderloadedAgents: - find the u;lder loaded agents for £ask tréxlsfer
reasonForTaskSplit: - It will find out the periods of tasks and it splits the tasks
éccording to overload, otherwise it will split tasks 's;eﬁally until load is
decreased
transferTasks: - it transfers the from the taskSplit lis.t to the remote:agent
taskList for servicing - »
canCloneLocally: - it vﬁll find out whether local cloning is possible or not
_ cloneLocally: - it create the agent locally
canCloneRemotely: - finds whether any remote cloning is possible or not
cloneRemotely: - it creates the agent remotely (remote cloning)
reasonA fterCloning: - reasons for further cloning and the feasibility of cloning
’ getExpechdTaskFlow: ~ it finds the expected tasks using back propagation
network v |
getSelfCapacity: - f-'mds the self capacity of agent
totalResourcesRequired: - it find out the resources reqﬁired for tasks(present
and future)
findPeriodsOfTasks: - it find out the periods of tasks
Task: -
o It represénts 4 task object, which conéumes resources.
Attributes: -
¢pu, memory, and communication: - represents the resources requii‘ed ra task-

object

40

runningFlag: - denotes the whether a task is running or not
Operations: -
start: - it starts the task object for servicing
stop: - it stops the servicing of task object
isRunning: - finds whether an object is rmlﬁng or not
isCornpleted: - find whether service of task is completed or not
Host: -
It represents a host in Multi Agent System:
. Attributes: -
cpu, memory, and.communication: - are the resources available at host
agentList: - it is a hash table for storing the agents list who are under service
hostID: - it is id of host
Opeartions: -
recoverResources: - releases the resources acquirea by an agent
requsetForSevices: - request the host for resources, called by agent

requéstForCloning: - request host for cloning (rem'oté cloning)

41

CHAPTERS

CONCLUSION

5.1 Discussion of Results:

The results of the simulation are depicted in Figure 5.1. The graph show that
~ for small number_ of tasks (0-100) a system which practices cloning performs (almost)
a;s well as a system with no cloning (although difficult to see in the graph, the
performance‘is slighﬂy lower due to reasoning costs). However, when the number of
tasks increases the cloning system performs much better. Nonetheless, beyond some
threshold (around 350 tasks) even the cloning cannot help. Note that in the rénge 150-
350 tasks cloning results in task performance close to op-timal, where optimality
‘refers to the case in which all of the available resources are efficiently used for task

" performance.

5.2 Concluding Remarks:

Agent cloning is the action of creating and activating a clone agent (locally or
remotely) to perform some or all of an agent’s tasks. Cloning is performed when an
agent perceives or predicts a.n overload, thus increasing the ability of an MAS to
perform tasks. In this work agent cloning is used as a means for balancing the loads
and improving the task performance of an MAS running on several machines. '

Methods of implcrnentatiori are also studied and tested these methods by simulation.

1t is found that for large number of tasks, cloning significantly increases the

43

Completed Tasks

Task Execution With and Without Cloning

200 400 600 800
Number of Tasks

- Figure 5.1 Task Execution with and without cloning

44

1200

portion of tasks performed by an MAS. In an MAS where tasks require information
gathering on the web, the additional reasoning needed for cloning is small compared

to task execution requirements. Merging of two agcﬁts or self-extinction of under
utilized agents proliferation with resulting ovetload of network resources is also .

discussed.

5.3 Scope of Future work:
In this work agent cloning used as a means for imprdving the parformank:e of
an MAS. To perform clohing, an agent must reason régarding its owﬁ load, and its
host's load, as well as capabilities and loads of other-machines and ageﬁts. .
7 A cloned agent will continue to exist after cémpletion of tasks provided by its
initiator agént. chcc, a mechanism for what it should do aﬁerw'ardis'-necessary. In
this regard, following mechanism implemented in this work. The cloned agent, after
performing all the taslh(s, waits for the tasks. If the agent not receives the task-s from '
other agent or user, for threshold duration of the time, it will merge with othe_:r agent .
or dies. But it is necessary to develop a theoretical analysis to find out the optinial
: R .

time for merging or self-extinction. "

- Agent cloning subsumes the task transfer and agent migration, sov this
- mechanism can be embedded in the existing systems so as to study practical
difficulties of the cloning.

One more important thing, in this work only.' three parameters cpu, memory,

communication are considered in .sir"r’_lulati.on. This can be ex.tended to other

parameters.

45

REFERENCES

[1] “Software Agents: Overview”, by Shaw Green, Leon Hurst and others available

(2]
(3]
(4]

(3]
{6]

[7]

(8]

9]

from www.cs.ted.ie/researc_group/aig
Fuggetta , G.Pieetro, G. Vigna "Understanding Code Mobility "IEEE
Transactions on Software Engg., May 1998, pp.342-361

V.A. Pham, and A. Karmouvh, "Mobile Software Agents Overview" IEEE

‘commun. Magazine, July 1998,pp.26-37

Onn Shehory, Katia Sycara, P.Chalasani, and Soesh Jha, "Agent Cloning: An

Approach to Agent Mobility and Resource Allocation” IEEE Communications, -

July, 1998, pp58-67.

G.Agha, “Actors and Agents”, IEEE Concurrency, April-June, 1998, pp.24-28 .
K.Sycara , A.Pannu, M.Williamson, and D. Zeng, "Distribﬁted intelligent
agents," IEEE Expert, Dec;, 1996, pp.36-45 » o
Anselm Lingnau Oswald Drobnik, “An infrastructure for.iMobile Aggnts:
Requirements and architecture” Fachbereich Informatik (Telematik), Johann
Wolfgang Goethe-University ™ at Frankfurt am Main, Germany v
N.M.Kamik, A.R. Tripathi.,, "Design Issues In mobile Agent Prograrpming
Systems,", IEEE Concurrency, July-September 1998, pp.52-61

D.Chess, B. Grosof, and C. _i—Iarrison, "Itinerant ag;:nt for mobile (;omputing",

IEEE Pers. Communications Magazine, June,1995

[10] Adarh Blum, “Neural Network in C++7, First Edition, John Wiley & Sons, Inc.

[11] K.Decker , K.Sycara, and M Williamson, "Middle Agents for the Internet,"

47

Proc. IJCAI'97, Nagoya, Japah, 1997
[11]" K.Decker, and K.Sycara ., "Designing behaviours for information agents," W.
Lewis Johnson, Ed., Proc. 1st Int'l Conf. Autonomous Agents, ACM Press 1997
[12] Sun Micro Systems, “The Java Language: An Overview”, Technical Report, ’
Sun Micro Systems,1994 _'
[13]7 Gosling, J. and McGilton, H. (1995). "The Java Language Environment: A

White Paper”, Technical Report, Sun Microsystems.

48

APPENDIX A
Cloning Pseudo-Code:
//Main reasoning and cloning protocol
for each time interval t{
overloadAt[t]=reasonAboutOverloads(t);//current and future;
If(overloadAt[t]) {
CanPassTasks[t]=findUnderloadedAgents(t); '
If(canPassTasks[t]){
ReasonForTaskSplit();
TransferTasks();
}else if{canCloneLocally(){
cloneLocally(};
reasonForTaskSplit();
transferTasks();
}else if{canCloneRemotely()){
cloneRexr}qulyO;
reasonForTaskSplit();
transferTasks();

}else sorry(“can’t split or clone’);

//The reasoning methods

reasonAboutOverloads(t)

{

49

getCurrentTaskList();
getExpectedTaskFlow(t);
requiredAt[t]=calculateRequiredResourcesAt(t);// current and future
selfCapacity=getSelfCapacity(t);
if(selfCapacity >=requiredAt[t])

refurn true;
else

return false;

APPENDIX B

Merging Pseudo-Code:
for each time interval t {
underload At [t]=reasonAboutUnderloads(t);
if(underload At[t]){
increment(underloadCount);
if(underloadCount > threshholdCount) {
mergeFlag=true;
canMerge=fmdMergab1eAgentsLi§t(); '
if{canMerge){
leader=selectLeader();
transferResponsibilities();
releaseResources();
stop();// dying of an agent
telse if(no responsibilities) {
releaseResources();

stop(); //dying of an agent

telse {
underleadCount=0;

mergeFlag=false;

}

51

// reasoning about under loads

- reasonAboutUnderloads()
{ .
if(overload At[t])
retumn false;
getCurrentTaskList();
. if(lempty(taskList))

return false;
gctExpeétedTaskFlowUsingN eural(t);
requiredAtft] = calculéeRequiredResources(t);
selfCapacity=getSelfCapacity();
if(required At[t] < éelfCapacity/ZS)

return false; .
else

return true;

52

APPENDIX C

Back propagation Algorithm:

The back propagation model is applicable to, a wide class of problems. It is
certainly the predominant supervised training algoritﬁm. The algorithm is
2.3.1 Encoding:

Assign random values between —1 and +1 to the Weights"b’_etwccn the input
and hidden layers, the weights between the hidden and -output layers, and the
. thresholds for the hidden-layer and output-layer neurons. v
quward Pass:

1 Compute the hidden-layer neuron activation:

h=F(iw1)
where h is the vector of hidden-layer neurons, i the vector of input —layer
neurons, and W1 the weight matrix between the input and hidden layérs.

2 Compute the output-layer neuron activations: »

o=F(bW2)
where o represents the outp_pt(layer, h the hidden layer, W2 the matrix of
synapses connecting the hidden and output layers, and F(} is sigmoid
activation function.
Backward Pass:

3 Compute the output-layer error (the difference between the target and the

observed output): |

d = o(1-0)(o-t)

53

where d is the vector of errors for each output neuron, o is thé outplit-layef ‘
vector, and t is the target (correct) activation of output-layer.
4 Compute the hidden-layer error:
e= h(1-h)W2d
where e is the vector of errors for each hidden-layer neuron.

5 Adjust the weights for the second layer of synapses:

W2=W2+AW2

¢

where delta W2 is a matrix representing the change in matrix ‘W2. It is

computed as follows:
AW2;=q hd + 0 AW2,
where o is the leanﬁng rate and 0 is the momentum factor
: 6 Adjust the weights for the first layer of synapses:
W1="W1+WI,
where
Wit=aie+ 0 AWl

* Repeat steps 1 to 6 on all paiterns until the output-layer error (vector d) is

within the specified tolerance for each pattern and for each neuron -

54

APPENDIX D

SOFTWARE LISTING

55

/*
This simple extension of the java.awt.Frame class
contains all the elements necessary to act as the
main window of an application.

import java.io.*;

import java.awt.*;

public class cloneFrame extends Frame implements Constants
{

static cloneFrame clone;

public cloneFrame()

{

setLayout(new BorderLayout(0,0));
setVisible(false);
setSize(405,364);

- controlPanel = new java.awt.Panel();
controlPanel.setLayout(new FlowLayout(FlowLayout.CENTER,5 5))
controlPanel.setBounds(0,0,434,33);
controlPanel.setBackground(new Color(-12948347));
add("North", controlPanel);
startButton = new java.awt.Button();
startButton.setLabel(" Start");
startButton.setBounds(79,5,39,23);
startButton.setBackground(new Color(12632256));
controlPanel.add(startButton);
stopButton = new java.awt.Button();
stopButton.setLabel("Stop”);
stopButton.setBounds(123,5,39,23);
stopButton.setBackground(new Color(12632256));
controlPanel.add(stopButton);
stopButton.setEnabled(false);

. aboutButton = new java.awt.Button();
aboutButton.setLabel("About...");
aboutButton.setBounds(167,5,54,23);
aboutButton.setBackground(new Color(12632256));
controlPanel.add(aboutBution);
quitButton = new java.awt.Button();
quitButton.setLabel("Quit");
quitButton.setBounds(226,5,36,23);
quitButton.setBackground(new Color(12632256));
controlPanel.add(quitButton);

Groupl = new CheckboxGroup();
cloneRadioButton = new java.awt.Checkbox("Cloneable", Groupl,
false);

57

cloneRadioButton.setBounds(267,5,87,23);
controlPanel.add(cloneRadioButton);
cloneRadioButton.setEnabled(false);
editPanel = new java.awt.Panel();
GridBagLayout gridBagLayout;
gridBagLayout = new GridBagLayout();
editPanel setLayout(gridBagLayout);
editPanel.setBounds(0,33,434,306);
editPanel.setBackground(new Color(-1254719));
add("Center", editPanel);
hostLabel = new java.awt.Label("Number Of Hosts");
hostLabel.setBounds(60,24,96,27);

~hostLabel setForeground(new Color(0));
GridBagConstraints gbe;
gbe =new GridBagConstraints();
gbe.gridx = 0;

. gbe.gridy = 0;
gbe.gridheight = 2;
ghe.fill = GridBagConstraints. NONE;
gbe.insets = new Insets(24,60,0,0);
ghe.ipadx = -14;
gbe.ipady = 4;
((GridBagLayout)editPanel. getLayout()) setConstralnts(hostLabel,

gbe);
editPanel, add(hostLabel)
agentLabel = new java.awt.Label("Number Of Agents");
agentLabel.setBounds(60,60,108,26);
gbc = new GridBagConstraints();
ghe.gridx = 0;
gbe.gridy =2;
gbe.gridwidth = 2;
gbe fill = GridBagConstraints. NONE;
gbe.insets = new Insets(9,60,0,0);
gbe.ipadx =-7;
gbc.ipady = 3;
((GridBagLayout)editPanel.getLayout()). setConstramts(agentLabeI
gbe);

editPanel.add(agentLabel);
hostField = new java.awt. TextField();
hostField.setBounds(186,12,148,36);
hostField.setBackground(new Color(16777215));
gbe = new GridBagConstraints();
gbe.gridx = 2;
ghe.gridy = 0;
gbe.gridwidth = 3;
gbe.fill = GridBagConstraints. NONE;

58

gbc.insets = new Insets(12,12,0,0);

gbc.ipadx = 124,

gbc.ipady = 13;
((GridBagLayout)editPanel.getLayout()).setConstraints(hostField,

gbce);
editPanel.add(hostField);
agentField = new java.awt.TextField();
agentField.setBounds(185,60,150,28);
agentField.setBackground(new Color(16777215));
gbc = new GridBagConstraints();
gbe.gridx = 2;
gbe.gridy = 2;
ghbe.gridwidth = 4;
ghe.gridheight = 2;
ghe.fill = GridBagConstraints. NONE;
gbc.insets = new Insets(9,12,0,0);
gbc.ipadx = 126;
ghbe.ipady = 5;
((GridBagLayout)editPanel.getLayout()). setConstramts(agentFleld
gbe);
editPanel.add(agentField);
createNetButton = new java.awt.Button();
createNetButton.setLabel("Create Net");
createNetButton.setBounds(96,108,85,36);
createNetButton.setBackground(new Color(12632256)),
gbe = new GridBagConstraints();
ghe.gridx = 0;
gbc.gridy = 4;
ghbc.gridwidth = 3;
gbe.fill = GridBagConstraints. NONE
gbce.insets = new Insets(20 96,0,0);
gbe.ipadx = 12
ghc.ipady =
. ((GridBagLayout)editPanel. getLayout()).setConstraints(
createNetButton, gbc);
editPanel.add(createNetButton);
createNetButton.setEnabled(false);
createAgentsButton = new java.awt.Button();

" createAgentsButton.setLabel("Create Agents");
createAgentsButton.setBounds(228,108,85,40);
createAgentsButton.setBackground(new Color(12632256));
gbe = new GridBagConstraints();
gbc.gridx =3;
gbe.gridy = 4;
gbe.gridheight = 2;
gbe.fill = GridBagConstraints. NONE;

59

gbc.insets = new Insets(20,47,0,0);
ghe.ipadx =-7;
gbe.ipady = 17;
((GridBagLayout)editPanel, getLayout()) setConstraints(createAgen
tsButton, gbc);

editPanel. add(createAgentsButton),
createAgentsButton sctEnabled(false);
resultArea = new java.awt. TextArea();
resultArea.setEditable(false);
resultArea.setBounds(0,195,434,111);
resultArea.setForeground(new Color(-8563541));
resultArea.setBackground(new Color(8421504));
gbc = new GridBagConstraints();
gbe.gridx = 0;
gbe.gridy = 6;

" gbe.gridwidth = 7;
gbe.weightx = 1.0;

" ghc.weighty = 1.0;
gbe.fill = GridBagConstraints. BOTH,
gbe.insets = new Insets(47,0,0,0);

ghe.ipadx =-8;

gbe.ipady = -76;

((GridBagLayout)editPanel. getLayout()) setConstramts(resultArea
, gbe); .

editPanel.add(resultArea);
setTitle(" Agent Cloning");
setResizable(false);

//REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow(); _
.this.addWindowListener(aSymWindow);
SymAction ISymAction = new SymAction();
startButton.addActionListener(1SymAction);
createNetButton.add ActionListener(1SymAction);
stopButton.addActionListener(ISymAction);
_createAgentsButton. addActlonLlstencr(lSymActlon),
SymText ISymText = new SymText();
hostField.addTextListener(1SymText);
agentField.addTextListener(ISymText);
quitButton.addActionListener(ISymAction);
Symltem 1Symltem = new Symltem();
cloneRadioButton.addItemListener(1SymItem);

openLogFile();
}

Network net=nu11;‘

60

PrintWriter out=null;
void openLogFile()

if(out!=null)
out.close();

try{ ,
out=new PrintWriter(new FileOutputStream("output.txt"));

}catch(Exception e){
setVisible(false);
dispose();
System.out.println(e);
System.exit(1);

if(out=null)
System.out.println("Unable to open the file ");

}
public cloneFrame(String title)

{
this();
setTitle(title);

/**
* Shows or hides the component depending on the boolean flag b.
* @param b if true, show the component; otherwise, hide the component.
* @see java.awt.Component#is Visible
*/
public void setVisible(boolean b)

if(b)
{
setLocation(50, 50);:

}
super.setVisible(b);
} .

static public void main{String args[])
¢ !
clone=new cloneFrame();
/ clone.openLogFile();
clone.setVisible(true);

}
public void addNotify()
{

// Record the size of the window prior to calling parents addNotify.

61

Dimension d = getSize();

super.addNotify();”

if (fComponentsAdjusted)
‘return;

/! Adjust components according to the insets

setSize(insets().left + insets().right + d.width, insets().top +
insets().bottom + d.height);

Component components[] = getComponents();

for (int i = 0; i < components.length; i++)

{
Point p = components[i].getLocation();
p.translate(insets().left, insets().top);
componentsfi].setLocation(p);

}

fComponentsAdjusted = true;
}

// Used for addNotify check.
boolean fComponentsAdjusted = false;

//DECLARE_CONTROLS
_java.awt.Panel controlPanel;
Jjava.awt.Button startButton;- -
java.awt.Button stopButton;
java.awt.Button aboutButton;
Jjava.awt.Button quitButton;
java.awt.Checkbox cloneRadioButton;
‘CheckboxGroup Groupl;
java.awt.Panel editPanel;
java.awt.Label hostLabel;
java.awt.Label agentLabel;

java.awt. TextField hostField;
java.awt. TextField agentField;
java.awt.Button createNetButton,;
java.awt.Button createAgentsBution;
java.awt.TextArea resultArea;

/"

//DECLARE_MENUS
i

class SymWindow extends java.awt.event. WindowAdapter

{.

public void windowClosing(java.awt.cvent. WindowEvent event).

{

62

Object object = event.getSource();
if (object = cloneFrame.this)
Framel WindowClosing(event);

}

void Framel_WindowClosing(java.awt.event. WindowEvent event)
{
~ setVisible(false); // hide the Frame]
dispose(); // free the system resources
System.exit(0); /f close the application

}

class SymAction implements java.awt.event.ActionListener

{

public void actionPerformed(java.awt.event.ActionEvent event)

{
Object object = event.getSource();
if (object = startButton)

startButton ActionPerformed(event);

else if (object == createNetButton)
createNetButton ActlonPerformed(event)

else if (object = stopButton)
stopButton_ActionPerformed(event);

else if (object = createAgentsButton)
createAgentsButton_ActionPerformed(event);

else if (object = quitButton)
quitButton_ActionPerformed(event);

void startButton_ActionPerformed(java.awt.event. ActionEvent event)
{ .
// to do: code goes here.
startButton.enable(false);
hostField.enable(true);
agentField.enable(true);
createNetButton.enable(true);
cloneRadioButton.enable(true);
stopButton.enable(true);
//{{CONNECTiON
// Set the Button's action command... Get Frame title
startButton. setAc,tmnCommand(getTltleO)

14}

63

_void aboutButton_MouseClicked(java.awt.event. MouseEvent event)
{
(new AboutDialog(this, true)).setVisible(true);
//ICONNECTION

// Set the Button's action command... Get Frame title
aboutButton.setActionCommand(getTitle());

void createNetButton_ActionPerformed(java.awt.event.ActionEvent event)

{

ifinumOfHosts>15 || numOfHosts<5)
numOfHosts=NUMHOSTS; .

hostField.setText(String. valueOf(numOfHosts))

createNetButton.enable(false);

createA gentsButton.enable(true);

net=new Network(out,numOfHosts);

net.createNetwork();

hostField.enable(false);

GraphPanel g;

g=new GraphPanel(net,out);

g.resize(400,400);

g.show();

// Set the Button's action command... Get Frame title
createNetButton setActionCommand(get Title());

I3}
}

DrawPanel drawPanel=null; _
void stopButton_ActionPerformed(java.awt.event. ActionEvent event)

{

net=null;

if(agentManager!=null)
agentManager. stopAgentsO,

if(drawPanel!=null)
drawPanel.stop();

drawPanel=null;

agentManager=null;

startButton.enable(true);

64

hostField.enable(false);
agentField.enable(false);
createNetButton.enable(false);
create AgentsButton.enable(false);
cloneRadioButton.enable(false);
stopButton.enable(false);
System.gc();

//{{CONNECTION)
// Set the Button's action command... Get Frame title
stopButton.setActionCommand(getTitle());

as

AgentManager agentManager=null;
void createAgentsButton_ActionPerformed(java.awt.event. ActionEvent
event)
{
if(lnumOfAgents<5 || numOfAgents>15)
numOfAgents=NUMOFAGENTS;
agentField.setText(String. valueOf(numOngents))
createAgentsButton.enable(false);
clonableFlag=cloneRadioButton. getState(),
cloneRadioButton.enable(false);
Agents.clonableFlag=clonableFlag;
agentField.enable(fzlse);
agentManager=new AgentManager(net,out,numOfAgents,true);
agentManager.start(); ’
drawPanel=new DrawPanel();
drawPanel.setVisible(true);
drawPanel.start();
createAgentsButton.setActionCommand(getTitle());
} .

class SymText implements java.awt.event. TextListener

public void textValueChanged(java.awt.event. TextEvent event)

{
Object object = event.getSource();
if (object == hostField)
hostField TextValueChanged(event),
else if (object = agentField)
agentField_TextValueChanged(event);
h

}
int numOfHosts=NUMHOSTS;
int numOfAgents=NUMOFAGENTS;

65

{

void hostField TextValueChanged(java.awt.event. TextEvent event)

String str=hostField.getText();

,

try{
numOfHosts=Integer.parselnt(str);

out.println("Num of Hosts"+numOfAgents);
catch(NumberFormatException €){
System.out.println("exception in formattin"+e);
numOfHosts=NUMHOSTS;
hostField.setText(String. valueOf(numOfHosts));
}Yeatch(NullPointerException e) {

}

// Show the TextField
agentField.setVisible(true);

1}

void agentField TextValueChanged(java.awt.event. TextEvent event)

{

,

' String str=agentField.getText();

try{ ‘
numOfAgents=Integer.parseInt(str);
out.println("Num of Hosts"+numOfAgents); -
}eatch(NumberFormatException e){ :
System.out.println("exception in formattin"+e);
numOfAgents=NUMOFAGENTS;
hostField.setText(String. valueOfinumOfAgents));
}eatch(NullPointerException €){

}

// Show the TextField
agentField.setVisible(true);

1y

void quitButton_ActionPerformed(java.awt.event. ActionEvent event)

{

} .

(new QuitDialog(this,true)).setVisible(irue);
// Set the Button's action command... Get Frame title
quitButton.setActionCommand(getTitle());

1y} '

boolean clonableFlag=false;
class SymlItem implements java.awt.event.ItemListener

66

public void itemStateChanged(java.awt.event.ltemEvent event)

{ R
Object object = event.getSource();
if (object = cloneRadioButton)
cloneRadioButton ItemStateChanged(event);
}
}
void cloneRadioButton_ItemStateChanged(java.awt.event.JtemEvent event)
// Show the Checkbox
cloneRadioButton.setVisible(true);
33
}
}
s/*
A basic extension of the java.awt.Dialog class
*/

import java.awt.*;

public class AboutDialog extends Dialog {
public AboutDialog(Franie parent, boolean modal)
{ :

super(parent, modal);

//INIT_CONTROLS
setLayout(null);
setVisible(false);
setSize(300,250);
titleLabel = new java.awt.Label("Agent Cloning: A Mechanism to
load transfer");
titleLabel.setBounds(40,35,248,21);
add(titleLabel);
okButton = new java.awt.Bufton();
okButton.setLabel("OK");
okButton.setBounds(168,108,66,27);
- add(okButton);
- setTitle(" About Thesis");
setResizable(false);
//REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow);
SymAction ISymAction = new SymAction();

67

okButton.addActionListener(1SymAction);
}

// constrcutor i
public AboutDialog(Frame parent, String title, boolean modal)

this(parent, modal);
setTitle(title);

)

public void addNotify()

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSize();
super.addNotify();
// Only do this once.
if (fComponentsAdjusted)
return;

// Adjust components according to the insets

setSize(insets().left + insets().right + d.width, insets().top +
insets().bottom + d.height);

Component components[] = getComponents();

for (int i = 0; i < components.length; i++)

{ .
Point p = components]i].getLocation();
p.translate(insets().left, insets().top);
components[i].setLocation(p);

}
// Used for addNotify check.
fComponentsAdjusted = true;

S}
public void setVisible(boolean b)

if (b)
{
Rectangle bounds = getParent().bounds();
Rectangle abounds = bounds();
move(bounds.x + (bounds.width - abounds.width)/ 2,
bounds.y + (bounds.height - abounds.height)/2);

} .

super.setVisible(b);
}

//{{DECLARE_CONTROLS

68

/*

*/

java.awt.Label titleLabel,
java.awt.Button okButton;

// Used for addNotify check.

boolean fComponentsAdjusted = false;

class SymWindow extends java.awt.event. WindowAdapter
{

public void windowClosing(java.awt.event. WindowEvent event)

{
Object object = event.getSource();
if (object = AboutDialog.this)
AboutDialog WindowClosing(event);
}

}

void AboutDialog WindowClosing(java.awt.event. WindowEvent event) »

dispose();
}

class SymAction implements java.awt.event. ActionListener

public void actionPerformed(java.awt.event. ActionEvent event)

{ .
‘Object object = event.getSource();
if (object = okButton) -
okButton Clicked(event);
} .

}

void okButton_Clicked(java.awt.event.ActionEvent event)

// Clicked from okButton Hide the Dijalog
dispose();

A basic extension of the java.awt.Dialog class

import java.awt.*;
import java.awt.event.*;

69

public class QuitDialog extends Dialog

{

public QuitDialog(Frame parent, boolean modal)

{

-

super(parent, modal);

setLayout(null);

setSize(insets().left + insets().right + 337,insets().top +
insets().bottom + 135);

yesButton = new java.awt.Button(" Yes ");

yesButton.setBounds(inssts().left + 72,insets().top + 80,79,22);

yesButton.setFont(new Font("Dialog", Font. BOLD, 12));

add(yesButton);

noButton = new java.awt.Button(" No ");

noButton.setBounds(insets().left + 185,insets().top + 80,79,22);

noButton.setFont(new Font("Dialog", Font BOLD, 12));

add(noButton);

labell = new java.awt.Label("Do you really want to \

quit?",Label. CENTER);

labell.setBounds(78,33,180,23);

add(labell);

setTitle("A Basic Application - Qult")

setResizable(false);

JI{{REGISTER_LISTENERS

SymWindow aSymWindow = new SymWindow();

this.addWindowListener(aSymWindow);

SymAction 1SymAction = new SymAction();

noButton.addActionListener(ISymAction);

yesButton.addActionListener(ISymAction);

iy

public void addNotify()

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSize();

super.addNotify();
if (fComponentsAdjusted)
return;

// Adjust components according to the insets

setSlze(msets() left + insets().right + d.width, insets().top +
insets().bottom + d.height);

Component components{] = getComponents();

for (int i = 0; i < components.length; i++)

{

70

Point p = components[i}.getLocation();
p-translate(insets().left, insets().top);
components[i].setLocation(p);

}

fComponentsAdjusted = true;

}

public QuitDialog(Frame parent, String title, boolean modal)
{
this(parent, modal);
setTitle(title); »

/**
* Shows or hides the component depending on the boolean flag b.
* @param b if true, show the component; otherwise, hide the component
* @see java.awt. Componem#lsVISIble
*/
public void setVisible(boolean b)
{

if(b)
Rectangle bounds = getParent().getBounds();
Rectangle abounds = getBounds(); :
setLocation(bounds.x + (bounds.width - abounds width)/ 2,
bounds.y + (bounds.height - abounds.height)/2);
} .
super.setVisible(b);

}

. // Used for addNotify check.
boolean fComponentsAdjusted = false;

//DECLARE_CONTROLS

java.awt.Button yesButton;

java.awt.Button noButton;

java.awt.Label labell;

/f

class SymWindow extends java.awt.event. WmdowAdapter
{

public void windowClosing(java.awt.event. WindowEvent event)

Object object = event.getSource();
if (object = QuitDialog.this)
QuitDialog WindowClosing(event);

71

}

void QuitDialog_WindowClosing(java.awt.event. WindowEvent event)

{
dispose();

class SymAction implements java.awt.evcnt'.ActionListener

A
public void actionPerformed(java.awt.event. ActionEvent event)
{
Object object = event.getSource();
if (object = noButton)
noButton_Clicked(event);
else if (object = yesButton)
yesButton_Clicked(event);
}
}
void yesButton_Clicked(java.awt.event. ActionEvent event)
{ ; :
Toolkit.getDefaultToolkit().getSystemEventQueue().postEvent(new
‘ WindowEvent((java.awt. Window)getParent(),
WindowEvent. WINDOW_CLOSING));
}
void noButton_Clicked(java.awt.event.ActionEvent event)
dispose();
}

}
class BackPropagation {

static float squash(float input)
// squashing function
// use sigmoid -- can customize to something
// else if desired; can add a bias tefm too
"
{
if (input < -50)
return (float)0.0;
¢lse if (input > 50)
return (float)1.0;
else return (float)(1/(1+Math.exp(-(double)input)));

72

}

static float randomweight(int init)

{ .
// random number generator
// will return a floating point
// value between -1 and 1
return (float)(2*Math.random()-1);
}

}

class BackPropagation {

static float squash(float input)

// squashing function

// use sigmoid -- can customize to something
/1 else if desired; can add a bias term too

1/
{
if (input < -50)
return (float)0.0;
else if (input > 50)
return (float)1.0;
else return (float)(1/(1+Math.exp(-(double)input)));
}

static float randomweight(int init)

// random number generator

// will return a floating point

/f value between -1 and [

return (float)(2*Math.random()-1);

}

import java.io.*;
class Controller {

float error_tolerance=0.1;

float total error=0.0;

float avg_error_per_cycle=0.0;

float error_last_cycle=0.0;

float avgerr_per pattern=0.0; // for the latest cycle
float error_last_pattern=0.0;

73

float learmning_parameter=0.02;
unsigned temp, startup;

long vectors_in_buffer;

long max_cycles;

long patterns_per_cycle=0;

long total_cycles, total_patterns;
int i;

network backp;
String str=null;

void train()

/! open output file for writing
try{ '
trdout=new DataOutputStream(new FileOutputStream(OUPUT_FILE,"w");
}Ycatch(Exception e){ .
System.out.println("Error at"+OUTPUT_FILE+e);
System.exit(1);

// enter the training mode : 1=training on O=training off

System.out.println (" ")
System.out.println (" C++ Neural Networks and Fuzzy Logic ");
System.out.println (" Backpropagation simulator ");

System.out.printin (" version 1 "); .
System.out.println (" "),
System.out.printIn ("Please enter 1 for TRAINING on, or 0 for off: \n");
System.out.println ("Use training to change weights according to your");
System.out.printIn ("éxpected outputs. Your training.dat file should contain");
System.out.println ("a set of inputs and expected outputs. The number of");
System.out.println ("inputs determines the size of the first (input) layer");
System.out.println ("while the number of outputs determines the size of the");
System.out.println ("last (output) layer :\n");

cin >> temp;
backp.set_training(temp);

if (backp.get_training_value() = 1)
{ .
System.out.printIn("--> Training mode is *ON*. weights will be saved");.
System.out.println("in the file weights.dat at the end of the');
System.out.println("current set of input (training) data');

}

74

else

{
System.out. prlntln("——> Training mode is *OFF*. weights will be. loaded"),

System.out.printin("from the file weights.dat and the current™);
System.out.println("(test) data set will be used. For the test");
System.out.println("data set, the test.dat file should contain");
System.out.printIn("only inputs, and no expected outputs.");

if (backp.get_training value()==1)

{

/"

/ Read in values for the error_tolerance,
/" and the learning parameter

/!

System.out.printIn(" Please enter in the etror_tolerance™); .
System.out.printIn(" --- between 0.001 to 100.0, try 0.1 to start --");
System.out.println();

System.out.println("and the learning_parameter, beta");
System.out.println(" --- between 0.01 to 1.0, try 0.5 to start -- \n");
System.out.println(" separate entries by a space");
System.out.println(" example: 0.1 0.5 sets defanlts mentioned :\n");

try{

" str=sysdin.readLine(};
error_tolearance=Float.valueOf{(str).floatValue();
str=sysdin.readLine();
leaming_parameter=Float.valueOf(str).floatValue();

}catch(Exception ¢){ -
System.out.printIn("Error in reading"+e);
System.exit(1);
}
/
// open training file for reading
1/
try{
tdin=new DatalnpuiStream(new F: 11eInputStream(TRAlN G_FILE)),
}catch(Exception e){
System.out.println("Error in opneing the file "+¢);
System.exit(1);
ddin=tdin;

// Read in the maximum number of cycles

// each pass through the input data file is a cycle
System.out.printIn("Please enter the maximum cycles for the simulation™);
System.out.println("A cycle is one pass through the data set.");

75

System.out.println("Try a value of 10 to start with");
try{ |
str=sysdin.readLinz();
max_cycles=Float.valueOf{str).floatValue();
}yeatch(Exception €) {
System.out.printin{"Error in reading the maxcycles'+e);

System.exit(1) ;
}
}
else
{
try{
tdin=new DataInputStnea.m—new DataInputSLream(ne FilelnputStream(
TEST_FILE));
~ }eatch(Exception e){
- System.out.println("Problem in opening the file "); - -
System.exit(1);
!
ddin=tdin;
}

// the main loop

1

/1 trairting: continue looping until the total error is less than

/ the tolerance specified, or the maximum number of

" cycles is exceeded; use both the forward signal propagation
i and the backward error propagation phases. If the error

/" tolerance criteria is satisfied, save the weights in a file.

// no training: just proceed through the input data set once in the

I/ forward signal propagation phase only. Read the starting

/" weights from a file.

// in both cases report the outputs on the screen

// intialize counters
total_cycles=0; // a cycle is once through all the input data
total_patterns=0; // a pattern is one entry in the input data

// get layer information
backp.get_layer_info();

76

// set up the network connections
backp.set_up_network();

// initialize the weights
if (backp.get_training valueO——l)
{

// randomize weights for all layers; there is no
// weight matrix associated with the input layer
// weight file will be written after processing

// so open for writing

try{
wdout=new DataOutputStream(new
FileOutputStream(WEIGHTS_FILE));
‘ }catch(Exception €) {
System.out.printIn("problem in opening the output file ");
System.exit(1);

backp.randomize_wéightso;
}

{
// read in the weight matrix defined by a

// prior run of the backpropagation simulator
// with training on

ry{

else

wdin=new DatalnputStream(new FileInputStream(WEIGHTS_FILE));
}catch(Exception €) {

System.out.printin("Error in opening the file "+e);
. System.exit(1);

}
backp.read weights(weights_file ptr);
}

// main loop

// if training is on, keep gomg through the input data

" 'until the error is acceptable or the maximum number of cycles
I is exceeded.

1/ if training is off, go through the input data once. report outputs

// with inputs to file output.dat

startup=1;
vectors_in_buffer = MAX_VECTORS; // startup condition

77

total_error = 0;

while (

{
startup=0;

((backp.get_training_value()=1)
&& (avgerr_per_pattern

~ >error_tolerance)
&& (total_cycles < max_cycles)
&& (vectors_in_buffer 1=0))
|| ((backp.get_training_value()==0)
&& (total_cycles < 1))
|| ((backp.get_training_value(y=1)
&& (startup==1))
) N

error_last_cycle%; // reset for each cycle

patterns_per_cycle=0;

// process all the vectors in the datafile
// going through one buffer at a time

// pattern by pattern

while ((vectors_in_buffer==NMAX_VECTORS))

{

vectors_in_buffer=

backp.fill_IObuffer(data_file ptr); // fill buffer
if (vectors_in_buffer < 0)

1

System.out.println ("error in reading in vectors, aborting");
System.out.printin ("check that there are on extra linefeeds”); -
System.out.println ("in your data file, and that the number");
System.out.printin ("of layers and size of layers match the");
System.out.println ("the parameters provided.");

System.exit(1);

// process vectars
for (i=0; i<vectors_in_buffer; i++)

{
// get next pattern

backp.set up pattern(i);

total_patternst+;
patterns_per_cycle++;

78

/! forward propagate
backp.forward_prop();

if (backp.get_training value()==0)
backp.write_outputs(output_file ptr);

// back_propagate, if appropriate
if (backp.get _training_ value()==1)
{

backp.backward_prop(error_last_pattern);

error_last cycle +=
error_last_pattern*error_last_pattern;

backp.update weights(learning_parameter);

// backp.list_weights(); // can

// see change in weights by

// using list weights before and

// after back_propagation

}

}

error_last_pattern = 0,

}

avgerr_per_pattern=((float)Math.sqrt{(double)error_last cycIe/pattems _per_ cycle)),
total _error += error_last_cycle;
total_cycles++;

// most character displays are 25 lines
// user will see a corner display of the cycle count
// as it changes

‘System.out.pxinﬂn ("n\n");
System.out.println (total_cycles +"\t" +" avgerr_per_pattem");

fseek(data file ptr, OL, SEEK SET); // reset the file pointer
// to the beginning of
// the file

vectors_in_buffer = MAX VECTORS; // reset

} // end main loop

System.out.println { "\n\n\n\n\n\n\n\n\n\n\n");
System.out.println (" —--=");

79

- System.out.println (" done: results in file output.dat");'

System.out.println (" training: last vector only");
System.out.println (" not training: full cycle\n");
if (backp.get_training value()==1)

{

backp.write_weights(weights_file ptr);
backp.write_outputs(output_file ptr);

avg_error_per_cycle= (float)Math.sqrt((double)total_error/total_cycles);
error_last_cycle=(float)Math.sqrt((double)error_last_cycle);

System.out.printIn(" weights saved in file weights.dat");

System.out.printIn() ; :

System.out.println("---->average error per cycle =" + avg_error_per_cycle + " <---");
System.out.printin("---->error last cycle =" + error_last cycle +" <---");
System.out.println("->error last cycle per pattern="+ avgerr_per_pattern + " <---");

}
System.out. println("-------==-- >total cycles =" + total_cycles +"---");
System.out.println("-~-~------- >total patterns =" +total_patterns+ " +---");
System.out.println(” ..)
// close all files ’ .
}

1

import java util.*;

import java.io.*;

/*///

Agent manager creates agents and provides the references of all agents
Agent Manager also assign the tasks to agents accordlng to the gaussian
distribution

g

class AgentManager extends Thread implements Constants {
static Agents agentThread[]; // agent references list
static int totalNumOfAgents; // total number of agents in the list
static int totalTasks=0; // total tasks submitted to the system

GausRandom random; // gaussian random varaible
int scheduledTasks; /1 scheduled Tasks to be executed
PrintWriter out=null; . // log file
“Network net=null; // network reference
long startTime;

ThreadGroup agentThreadGroupmuIl // thread group;
static int total Time=1000;
/I constructor of agent manager

80

AgentManager(Network net,PrintWriter out,int numOfAgents,boolean
isCloned,int num)
¢
this.net=net;
this.out=out;
scheduledTasks=num;
random=new GausRandom(77889765);
totalNumOfA gents=numOfAgents;
Agents.isClonable=isCloned;
agentThreadGroup=mnew ThreadGroup("Agent Cloning");
System.out.println(" Agent Manager Created...");

// This method will create the agent threads intially
// and start the threads
void createAgents()

System.out.println("Creating the Agents ...");
agentThread=new Agents[totalNumOfAgents];
for(int i=0;i<agentThread.length;i++) .
agentThread[i]J=new Agents(i,net,out,agentThreadGroup);
for(int i=0;i<agentThread.length;i++)
agentThread[i].start();
_ System.out.println(" Agents created ...\n");

/1 adds the newly created cloned thread to reference list
static synchronized void increaseAgents(Agents cloneThread)

Agents[] temp;
'if(totalNumOfAgents=— agentThread.length) { // check for array size
temp=new Agents[2*agentThread.length];
for(int i=0;i<agentThread.length;i++)
temp[i] = agentThread[i];
temp[agentThread.length]=cloneThread;
‘ agentThread=temp;
telse .
agentThread[totalNumOfAgents]=cloneThread;
totalNumOfA gents++; '

/! assigns the tasks to agents according to the gaussxon distribution
void assignTasks(int numOfTasks)

int agentNum;
int numTasks;
Task task[];
for(int i=0;i<totalNumOfAgents && totalTasks<—numOfTasks s+ {
agentNum=random.uniformRandom(totalNumOfA gents);

81

numTasks=random.gausRandom(10);
totalTasks+=numTasks;
task=new Task[numTasks];
for(int j=0;j<numTasks;j++)

task[j]=new Task(); :
agentThread[agentNum].assignTasks(task);

}

// controling method of agent manager thread

public void run()

v

inti;

int time;

int numOfAgents;

Runtime runtime=Runtime.getRuntime();
numOfAgents=totalNumOfAgents; -
for(i=scheduledTasks;i<=scheduled Tasks;i+=100){

time = total Time*1000/i;
startTime=System.current TimeMillis();
totalTasks=0;
Agents.completedTasks=0;
totalNumOfAgents=numOfAgents;
createAgents();
while(totalTasks<i) {
try{
Thread.sleep(time);
}eatch(InterruptedException €) {
System.out.println(e);

}
assignTasks(i);

out.println("total Tasks "+ totalTasks);

out.println("Completed Tasks"+Agents. completedTasks),

for(int j=0;j<totalNumOfAgents;j++)
agentThread][j].stopJobs();

for(int =0;j<totalNumOfAgents;j++)
agentThread[j].releaseResources();

/ for(int j=numOfAgents;j<totalNumOfAgents;j++)
" if(ageniThread[j].isAlive())
/I : agentThread[j].stop();

. System.out.printIn("Proceeding for the "+ i +" Tasks");
System.out.println("Total Tasks "+ totalTasks);
System.out.println("Completed Tasks "+

Agents.completedTasks);

-agentThreadGroup.stop();

}

82

i

"

}

i
/!

for(int j=0;j<totalNumOfAgents;j++)

agentThread[j].stop();
agentThreadGroup.stop();
stop();
}
output layer

import java.io.*;

class OutputLayer extends Layer{

protected float[] weights;

protected float[] output_errors; / array of errors at output
protected float[] back_errors; / atray of errors back-propagated
protected float[] expected_values; // to inputs

public OutputLayer(int in, int out)

{
num_inputs=in;
num_outputs=out,
weights=new float[num_inputs* num_outputs];
output_errors=new float[num_outputs];
back_errors=new float[num_inputs];
_ outputs = new float[num_outputs];
expected_values = new float[num_outputs];
}
public void calc_out()
{
int i,j,k;

float accumulator=0.0f;

for (j=0; j<num_outputs; j*++) {
for (i=0; i<num_inputs; 1++){
k=i*num_outputs;
if (we1ghts[k+_]]*welghts[kﬂ] > 1000000.0)

System.out.println("weights are blowing up");
System.out.printIn("try a smaller learning-constant”);
System.out.println("e.g. beta=0.02 aborting...");

/f System.exit(1);

83

outputs[j[=weights[k+j]* inputs[i] ;
accumulator+=outputs[j];

}

// use the sigmoid squash function
outputsj|=BackPropagation.squash(accumulator);
accumulator=0;

}

// calculates the error
" public float calc_error(float error)
{
int 1, j, k;
float accumulator=0;
float total_error=0;

for (j=0; j<num_outputs; j++)

output_errors[j] = expected_ values[y] outputs[)],
total_error+=output_ errors[]] -
}
error=total_error,
for (i=0; i<num_inputs; i++)
{
k=i*num_outputs;
for (j=0; j<num_outputs; j++)
{
back errors[i}= welghts[kﬂ]*output errorsD]
accumulator+=back_errors[i];
} .
back_errors[i]=accumulator;
accumulator=0;
// now multiply by derivative of
// sigmoid squashing function, which is
// just the input*(1-input)
back_errors[i]*=inputs[i] *(1-inputs[i]);
}

return error;

// randomize the weights of the network
public void randomize_weights()
{
inti,j, k;
final int first_time=1;
final int not_first_time=0;
- float discard;

84

discard=BackPropagation.randomweight(first_time);
for (i=0; i< num_inputs; i++)
{

k=i*num_outputs;

for (j=0; j< num_outputs; j++)

weights[k+j]=BackPropagation.randomweight(not_first_time);
} .
}

public void update weights(final float beta)
{

inti,j, k;

// learning law: weight change =
" beta*output_error*input
for (i=0; i< num_inputs; i++)
{
k=i*num_outputs;
for (j=0; j< num_outputs; j++)
weights{k+] +=
beta*output_errors(j]*inputs[i];

t
}
// list weights)
public void list weights()
{ .
inti,j, k;
for (i=0; i< num_inputs; i++)
{
k=i*num_outputs;
for (j=0; j< num_outputs; j++) .
System.out.printIn("weight["-+i+","+j+"] is: "+
weights[k+]);
}
}

// lists the errors
public void list_errors()

{

int i, j;

for (i=0; i< num_jinputs; i++)

85

System.out.println("backerror["+i+"] is : "+back_errors[i]);

for (j=0; j< num_outputs; j++)
' System.out.println("outputerrors["+j+"] is: "+output_errors[j]);

void write_weights(int layer_no,DataOutputStream out)
mti, j, k;

// assume file is already open and ready for

// writing
// prepend the layer_no to all lines of data
/f format:
7 layer_no weight[0,0] weight[0,1] ...
/" layer_no weight[1,0] weight[1,1] ...
/!
try{
for (i=0; i< num_inputs; i++)
{
out.writeInt(layer_no);
out.writeChar("n');
k=i*num_outputs;
for (7=0; j< num_outputs; j++){
out.writeFloat(weights[k+j]);
out.writeChar(\n");
}
i
}eatch(Exception €){}
/1 read the weights
public void read_weights(int layer_no,DatalnputStream. din)
{
inti, j, k;

// assume file is already open and ready for

// reading
// look for the prepended layer_no
// format:
/" - layer_no weight[0,0] weight[0,1] ...
/ layer_no weight[1,0] weight[1,1] ...
I/ ’ “
try{
while (true)
i

86

Jj=din.readInt(};
din.readChar();
if ==layer_no)
break;
else
{
for(int p=0;p<num_outputs;p++){
din.readFloat();
din.readChar();

3

// continue getting first line

i=0;

for (j=0; j<num_outputs; j++){
weights[j]=din.readFloat();
din.readChar();

// now get the other lines
for (i=1; i< num_inputs; i++)
{
layer_no=din.readlInt();
din.readChar();
k=i*num_outputs; .
for (j=0; j< num_outputs; j++) .
{
weights[k+j]=din.readFloat();
din.readChar();

}
}catch(Exception €) {}

// lists the outputs
public void list_outputs()
L '
mt j;
for (j=0; j< num_outputs; j++)

" System.out.printIn("outputs["++"] is: "+outputs[j]);
¥

87

import java.util.*;
import java.io.*;
// this class creates the network
class Network implements Constants {
int spDist[][]; //shortest path from one node to another
int pred[][}; /Ipredecessor matrix
Host hostServer[]; //reference to all servers
GausRandom random; // gaussian random varaible
PrintWriter-out=null; //log file reference
static int numOfHosts; // number of hosts
// constructor of network
Network(PrintWriter out,int numOfHosts)
{
int X,y;
this.out=out;
random=new GausRandom(688888885);
hostServer=new Host[numOfHosts];
this.numOfHosts=numOfHosts;
Host.numOfHosts=numOfHosts;
for(int i=0;i<aumOfHosts;i++) {
do {
x=random.uniformRandom(MAXX);
y=random.uniformRandom(MAXY);
}while(checkForPosition(i,x,y));
hostServer[i}=new Host(i,x,y);
}
spDist=new int[numOfHosts][numOfHosts];
pred=new int[numOfHosts][numOfHosts];

// checks for the position concidence with other host
boolean checkForPosition(int index,int x,int y)
A
boolean done=false;
for(int i=0;i<index&& !done ; i++)
if(Math.abs(hostServer[ij.x -x)<10 &&
Math.abs(hostServer[i].y-y) <10)
done=true; :
return done; .

// creates the network and find out shortest path
public void createNetwork()
{
floydRouting();
for(int i=0;i<numOfHosts;i++)

88

setRoutes(1);
showOutput();

}

// checks for connection between two nodes
boolean isConnected(int i,int j)

{

boolean done=false;
for(int k=0:k<hostServer{i].connection.length && !done ; k++})

if(hostServer[i].connection[k] == j)
done=true;
return done;
}
// find the distance between two nodes
int findDist(int i,int j})
{
double sum=0;
if{isConnected(i,;}) {
sum=(hosiServer[i].x-hostServer[j].x) *
(hostServer[i].x- hostServer[j].x);
sum+=(hostServer(i].y-hostServer[jl.y) *
(hostServer[i].y -hostServer[j].y);
return (int) Math.sqrt(sum);
telse
return INFINITY;

}
// finds the shortest path in the network using floyd algorithm

public void floydRouting()
£

for(int 1=0;i<numOfHosts;i++)
for(int j=0;)<numOfHosts;j++){
if(i'=))
spDist{i]{j]=findDist{i,});
clse
spDist[i}[1]=0;
pred{il[j]=i;
}
for(int k=0;k<numOfHosts;k++)
for(int i=0;i<numQfHosts;i++)
for(int j=0;j<numQOfHosts;j++)
if(spDist[i][j]> spDist[i][k]+spDist[k][j]) {
spDist[1][j]=spDist[i][k]+spDist{k]{j1;
pred(i](j]=pred[k][];
}
}
/! set the routes of the id
void setRoutes(int 1d)

89

for(int i=0;i<numOfHosts;i++){
hostServer{id].dist[i}.distance=spDist[id][i];
hostServer{id)].dist[i].pred=pred[id][i];

b

}

// shows the output path of a server

void showQOutput() '

{
System.out.println("Showing the output ");
for(int i=0;i<numOfHosts;i++){
for(int j=0;)<numOfHosts;j++)

System.out.print(spDist[i][j] + " "+pred[i][j]+ " ")

System.out.printin();
}

}

80

	title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

