
ADAPTIVE CLONING APPROACH TO
AGENT MOBILITY

A DISSERTATION

submitted In partial fulfilment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND TECHNOLOGY

----S

cySG

By
1.

MAHENDAR ALETI

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247667 (INDIA)

JANUARY, 1999

CANDIDATE'S DECLARATION

I here by declare that the work which is being presented in this dissertation entitled

"ADAPTIVE CLONING APPROACH TO AGENT MOBILITY", in partial fulfilment of the

requirement for the award of the degree of Master of Technology (M.Tech.) in Computer Science

and Technology (C.S.T) in the department of Electronics and Computer Engineering, University of

Roorkee, Roorkee, is an authentic record of my own work carried out by me for a period of six

months form August 1998 to January 1999 under the supervision and guidance of Dr. MOHAN

LAL, Asst. Professor, New Computational Facility, and Dr A.K. SARJE, Professor, Department

of Electronics and Computer Engineering, University of Roorkee, Roorkee.

The matter embodied in this dissertation has not been submitted by me for the award of any

other degree or diploma.

Date: \k A " `\
O

\

Place: Roorkee 	 (MAHENDAR ALETI)

CERTIFICATE

This is to certify that the above statements made by the candidate are correct to the best of

our knowledge and belief.

(Dr. MOHAN LAL)
Asst. Professor,
New Computational
Facility,
University of Roorkee,
Roorkee- 247667
Date:
Place: Roorkee

(Dr.A.K.SARJE)
Professor
Dept. of Electronics, &
Computer Engineering
University of Roorkee
Roorkee - 247667
Date:
Place: Roorkee

(i)

ACKNOWLEDGEMENTS

It is my proud privilege to express my profound of gratitude to my guide Dr. MOHAN

LAL, Assistant Professor, New Computational Facility, Dr. AK. SARJE, Professor, Dept. of

Electronics & Computer Engineering, for their invaluable inspiration, guidance and continuous

encouragement throughout this dissertation work.

I express my sincere thanks to Dr. R C. Joshi, (Head of the Dept. of Electronics &

Computer Engineering, and Co-ordinator, NCF) and other staff members for providing necessary

facilities for successful completion of this work.

I would like to thank all of my friends for their help and constructive criticism during

development of software.

I am very much indebted to my parents for their moral support and encouragement to

achieve higher goals.

(MAHENDAR ALETI)

ABSTRACT

Multi Agent Systems provide efficient solutions for several computational problems. Multi

Agents systems are subject to performance bottlenecks in cases where agents cannot perform tasks

by themselves due to insufficient resources. Solutions to such problems include passing tasks to

others or agent migration to remote hosts. But, in this work, agent cloning used as an approach to

the problem of local agent overloads. Agent cloning is the action of creating and activating a clout

.agent (locally or remotely) to perform some or all of an agent's tasks.

Agent cloning subsumes the task transfer and agent mobility. Agent migration can be

implemented by creating a clone on a remote machine, transferring the tasks from the original

agent to the clone, and dying. Thus agent mobility is an instance of agent cloning. The

requirements of implementing a cloning mechanism and its benefits have been studied. The

reasoning, decision-making, and actions necessary for an agent with in the system. to perform-

cloning also have been studied. The merging of two agents or self-extinction of underutilized

agents is also discussed. For large number of tasks, cloning significantly increases the portion of

tasks performed by Multi Agent System. The program is written in Java under Linux operating

system.

CONTENTS

CANDIDATE'S DECLARATION-

ACKNOWLEDGEMENT

ABSTRACT

I INTRODUCTION

1.1 Statement of the Problem

1.2 Organization of the Dissertation

II AGENTS

2.1 Introduction to Agents

2.2 System-Level Issues

2.3 Language-Level Issues

2.4 Design Paradigms

2.5 Application of Mobile Agents

III AGENT CLONING

3.1 The Cloning Approach

3.2 Cloning Initiation

3.3 Optimizing when to Clone

3.4 The Cloning Algorithm

3.5 Merging of Agents

Page No.

(i)

(ii)

(iii)

1

3

3

5

5

9

13

17

22

25

25

27

29

30

34

3.6 Merging Approach

IV DESIGN AND IMPLEMENTATION

4.1 Method of Simulation

4.2 Simulation Parameters

4.3 Program Classes

V CONCLUSION

5.1 Discussion of Results

5.2 Concluding Remarks

5.2 Scope for Further Work

REFERENCES

APPENDIX A

APPENDIX B

APPENDIX C

SOFTWARE LISTING

CHAPTER 4

INTRODUCTION

An agent is a computational entity which[1]: -

• acts on behalf of other entities in an autonomous fashion

• performs its actions with some level of proactivity and/or reactiveness

• Exhibits some level of the key attributes of learning, co-operation and

mobility.

The number and type of application domains [1][2][3] in which agent

technologies are being applied, to include workflow management, network

management, air-traffic control, business process re-engineering, data mining,

information retrieval/management, electronic commerce, education, personal digital

assistants (PDAs),, scheduling/diary management, etc.

Multi Agent Systems:

Multi Agent System (MAS) can be defined[I] as " a loosely. coupled network

of problem solvers that work together to solve problems that are beyond their

individual capabilities". The members of the system may each receive tasks, and

perform or delegate for performance by others. Multi agent systems are subject to

performance bottlenecks in cases where agents cannot perform tasks by. themselves

due to insufficient resources. In Multi agents systems, distributed nature of the agents

may contribute to the ability to overcome overloading bottlenecks. MAS is a

framework which receives a stream of tasks, and agent in MAS assumed to be

0

autonomous, self-aware,- intelligent, and pro-active computational entity. A task is

either an executable code or a goal represented at a higher level abstraction.

An agent provides services by performing tasks which either it generates by

itself, or other agent delegate to it. If task represented as a higher level abstraction, an

agent should be able to transform the abstract goal into more concrete tasks. Concrete

tasks examined by . an agent to verify whether their perfornianee is within its

capabilities. If they are, the agent either performs tasks as given or further

decomposes to subtasks, otherwise, the tasks may be delegated to the appropriate

agents.

The agents have two important qualities:

• Capabilities, which indicate the types of tasks they can perform,

• Capacities, which indicate the amount of resources the agents, can access

for task execution.

The problem studied in this work concern to the situation where the task flow

to an agent overloads it. Such overloads are two different general categories:

• An agent in an MAS is overloaded, but the MAS as a whole has the

required capabilities and capacities

• The MAS as a whole is overloaded, that is, the agents which make up the

MAS do not have the necessary capacities (however, there may be idle

resources in the computational system where the agents situated)

As a result of such overloads, the MAS will not perform all of the tasks in

time, although the required resources may be available to it

2 ,

The solutions are:

• First case- Overloaded agents should pass tasks to other agents, which

have the capabilities and capacities to perform them

• Second case- Overloaded agents create new agents to perform excess tasks

and utilize unused resources or migrate to other hosts

In this work, "agent cloning"[4] is used as a means for implementing these

solutions and studied the reasoning, decision-making, and actions necessary for an

agent within the system to perform cloning. Agent cloning is the action of creating

and activating a clone agent (locally or remotely) to perform some or all of an agent's

tasks.

1.1 Statement of the Problem:

Objectives:

• To analyze the circumstances under which agents should consider cloning.

• To study how cloning affects the performance of an MAS.

• To study merging of two agents

1.2 Organization of the Dissertation:

Chapter 1: 	Introduces Agents, Multi Agent Systems, agent loading, and cloning

mechanism

Chapter 2:

	

	Deals with the concepts of agents, agent environment, and agent

infrastructure requirements. And it also discusses the design paradigms

and mobile code technologies.

3

Chapter 3: 	Discuss the cloning approach, and requirements for implementing a

cloning • mechanism. And also discusses the reasoning, decision

making, and actions necessary for an agent with in the system to

perform cloning. It also discusses the optimal time for cloning

mechanism, the merging of two agents, and merging approach used in

this work.

Chapter 4: Explains the simulation model of an agent and its environment. Design

and implementation of software is also discussed

Chapter 5: Discusses results and gives suggestion for further work

Appendix A: Cloning Pseudo-Code

Appendix B: Merging Pseudo-Code

Appendix C: Back-Propagation Algorithm

Appendix D: Lists the source code

4

CHAPTER 2

AGENTS

2.1 Introduction to Agents:

With the recent explosive development of computer networking and the

Internet, a gap has developed between the sheer amount of information that is

available and the ability to process or even locates the interesting pieces. The

increased number of available services has also lead to a profusion of mutually

incompatible user interfaces, making it difficult for people to actually take advantage

of all that is offered. Agents may show a possible way out of this dilemma program

that help their users perform routine chores and assist them during complex tasks. In a

computer network, mobile agents may move around on behalf of their users, seeking

out, filtering and forwarding information or even doing business in their name.

Agents, intelligent agents and agent-based systems have attracted considerable

interest from many fields of computer science, most notably artificial intelligence,

distributed systems, computer communications and software engineering.

Unfortunately there is little consensus among researchers about exactly what they

consider an agent to be. An agent can be defined in the general sense of'anybody who

acts on behalf or in the interest of somebody else'.

We need software agents because [1]: -

• more and more everyday tasks are computer-based

• the world is in a midst of an information revolution, resulting in vast

5

amounts of dynamic and unstructured information -

• increasingly more users are untrained

• And therefore users require agents to assist them in order to understand the

technically complex world we are in the process of creating.

Agents have the following attributes [5]:

• Autonomy (acts independently)

• Continuity (persists over time)

• Intelligence (can reason)

• Mobility (across machine boundaries)

• Personality (possesses a human-like persona)

• Adaptability (can learn)

•. Knowledge (about some domain)

• Conversation (is directed at a high level)

• Authority (has the rights of its human sponsor)

• Collaboration (interacts with other agents and people)

• Collaborative
learning agents

Smart Agents

eratx 	l arnutg

Autonomy
Collaborative Agents 	 Interface agents

p

Figure 2.1 shows one agent taxonomy [5], that involve some of the above attributes

6

Desirable Agent Characteristics [6]:

• Taskable: able to take the direction from humans or other agents

• Network-centric: distributed and self-organizing. When situations warrant,

agent mobility might also be desirable

• Semiautonomous: not always under direct human control. For example, in

information gathering task, because of the many potential requests for

information, humans would be swamped if they had to initiate every

information request. The user should be able to control the amount of

agent autonomy.

• Persistent: capable of long periods of unattended operation

• Trustworthy: able to reliably serve users needs so that users will develop

trust in the agents performance

• Anticipatory: able to anticipate user information needs so that users will

develop trust in the agents performance

• Active:, able to initiate problem solving activities (for example, by

monitoring the Infosphere for the occurrence of given patterns), anticipate

user information needs, and bring to the attention of users situation-

appropriate information, which involves deciding when to fuse

information or present "raw" information

• Collaborative: able to interact with humans and other machine agents.

Collaborative interactions allow agents to resolve conflicts and

inconsistencies in information, current tasks, and world models, thus

improving their decision-support capabilities

rM

• Flexible: able to deal with heterogeneity of other agents and information

resources

• Adaptive: able to accommodate changing user needs and task

environments

Multi Agent Systems:

Multi-Agent System, can be defined as "a loosely- .coupled network of

problem solvers that work together to solve problems that are beyond their individual

capabilities"

The motivation for the increasing interest in MAS[l] includes their ability: -

• To solve problems that are too large for a centralized single agent to do

due to resource limitations or the sheer risk of having one centralized

system;

• To allow for the interconnecting and interoperation of multiple .existing

legacy systems, e.g., expert systems, decision support systems,'etc.;

• To provide solutions to inherently distributed problems, e.g., air traffic

control

•. To provide solutions which draw from distributed information sources;

• To provide solutions where the expertise is distributed, e.g., in health care

provisioning;

• To enhance speed (if communication is kept minimal), reliability

(capability to recover from the failure of individual components, with

graceful degradation in performance), extensibility (capability to alter the

number of processors applied to a problem), the ability to tolerate

8

uncertain data and knowledge

• To offer conceptual clarity and simplicity of design.

In a broad sense, an agent is any program that acts on behalf of a (human)

user. Mobile agent then is a program that represents a user in a computer network and

can migrate autonomously from node to node, to perform some computation on

behalf of the user. Its tasks, which are determined by the agent application, can range

from online shopping to real time device control to distributed computing.

Applications can inject mobile agents into a network, either on a predetermined path

or one that the agents themselves determine based on dynamically gathered

information. Having accomplished their goals, the agents can return to their home site

to report their results to the user

2.2 System-Level Issues:

A mobile agent system[7][8] is an infrastructure that implements the agent

paradigm. Each machine that intends to host mobile agents must provide a protected

agent execution environment. Such agent server execute agent code and provide

primitive operations to agent programmers, such as those that allow agents to migrate,

communicate, or access host resources. A logical network of servers implements the

mobile agent system. Many useful agent applications will require Internet wide access

to resources. Because users will need to dispatch agents from laptops, regardless of

their physical location, the mechanisms used in the agent infrastructure should scale

up to the wide area networks. Agents can execute on many different hosts during their

lifetimes.

9

Agent Mobility:

A mobile agent's primarily identifying characteristic is its. ability to

autonomously migrate from host to host. Thus, support for agent mobility is a

fundamental requirement of the agent infrastructure. An agent can request that its host

server transport it to some remote destination. The agent server must then deactivate

the agent, capture its state, and transmit it to the server at the remote host. The

destination server must restore the agent state and reactivate it at the remote host, thus

completing the migration.

An agent state includes all its data, as well as the execution state of its thread,

which, at the lowest level, is represented by its execution context and call stack. If

this can be captured and transmitted along with the agent, the destination server can

reactivate the thread at the precisely the point where migration was initiated, which

can be useful for transparent load balancing or fault tolerant programs. Capturing

execution states at a higher level, in terms of application defined agent data, offers an

alternative. The agent code then can direct the control flow appropriately when the

state is restored at the appropriate destination. However this approach only captures

execution state at a coarse granularity[8] (such as function level), in contrast to

instruction level.

Most agent systems execute agents using commonly available virtual

machines or language environments, which usually do not provide thread-level state

capture. The agent system developer could modify these virtual machines for this

purpose, but such modification renders the system incompatible with standard

installations of those virtual machines. Because mobile agents are autonomous,

10

migration occurs only under explicit programmer control; thus state capture at

arbitrary points is usually unnecessary. Most current systems therefore rely on coarse-

grained execution state capture to maintain portability

Another issue in implementing agent mobility is the transfer of agent code. In

one approach, the agent carries all its code as it migrates, which lets it run on any

server that can execute the code. Some systems do not transfer any code at all and

require that .the agent's code be preinstalled on the destination server. In a third

approach, the agent does not carry any code but contains reference to its code base- a

server that provides code on request. During the agent's execution, if it needs to use

some code not already installed on the agent's current server, the server can contact

the code base and download the required code. This is some times called as code on

demand.

Naming:

Various entities in the system- such as agents, agent servers, resources, and

users -need names that uniquely identify them. An agent should be uniquely named,

so that its owner can communicate with or control it while it travels on its itinerary..

Having location transparent names at the application level is desirable and can take

two forms. The first approach provides local proxies for remote . entities, which

encapsulate their current location. The system updates this location information when

the entity moves, thus providing location transparency at the application level. The

alternative approach uses global, location-independent names that do not .change

when the entity relocates. This approach requires the provision of a name service,

which maps a symbolic name to the current location of the named entity.

m

Security Issues:

The introduction of mobile- code in to a network raises several security[8][9]

issues. The security-related requirements fall into these categories:

• Agent privacy and integrity;

• Agent and server authentication;

• Authorization and access control; and

• Meeting, charging, and payment mechanisms.

Privacy Integrity:

Agents carry their own code and data as they traverse the network.' Parts of

their state might be sensitive and might need to be kept secret when they travel on the

network. The agent transport protocol needs to provide privacy, . to prevent

eavesdropper from acquiring sensitive information. Also, an agent might not trust all

servers equally. it needs a mechanism to selectively reveal different portions of the

agent state to different servers.

Authentication:

When an agent attempts to transport it self to a remote server, the server needs

to ascertain the identity of the agent's owner, so that it can decide what rights and

privileges to grant the agent in the server environment.

Authorization and access control:

Authorization is the granting of specific resource-access rights to specific

principals (such as owners of agents). Because some principals are more trusted than

others are, their agents can be granted less restrictive. access. For this, resource

owners must specify policies for granting access to .their-resources, based either on

12

identities of principals, their roles in an organization, or their security classifications.

A user might place additional restrictions on her agents code, so as to limit the

damage caused by buggy code. These restrictions can be encoded into the agent's

state and enforced by the server.

Metering and charging mechanisms:

When agents travel on a network, they consume resources such as CPU time

and disk space at different servers, which might legitimately, expect monetary

reimbursement for providing such resources. Also, agents might access value-added

service or information provided by other agents, which could also expect payment. In

market place, users can send agents to conduct purchases on their behalf. Thus,

mechanisms must be available so that an agent can carry digital cash and use it to pay

for resources it uses.

2.3 Language-Level Issues:

The language level issues [7][8] fall into two categories:

• Agent programming languages and models

• Programming primitives. -

Agent Programming Languages and models:

The portability of agent code is a prime requirement, because an 'agent might

execute on heterogeneous machines with varying -operating system environments.

Therefore, most agent systems are based on interpreted programming languages that

provide portable virtual machines for executing agent code. Safety is another

important criterion in selecting an agent language. Languages that support type

13

checking, encapsulation, and restricted memory access are particularly suitable for

implementing protected servers.

Several systems use scripting languages such as Tel, Python, and Perl for

coding agents. These allow rapid prototyping for small to medium-size agent

programs. However, because script programs often suffer from poor modularization,'

encapsulation, and performance, some agent systems use object-oriented languages

such as Java, Telescript, Or Obliq. These system define agents as a first class objects

that encapsulate their state as well as code, while the system supports object

migration in the networks. Such systems offer the natural advantage of object

oriented in building agent-based" applications, complex agent programs are easier to

wrote and maintain using object oriented languages. A few systems have also used

interpreted versions, of traditional procedural languages such as C for agent

programming.

Mobile agent systems can defer significantly in the programming.. model used

for developing agents: In some cases, the agent program is merely a script, often with

little or no flow control. In others, the script languages borrows features from object

oriented programming and extensively supports procedural flow control. Some

system model the agent-based application as a set of distributed interacting objects,

each having its own thread of control and thus able to migrate autonomously across.

the network. Other user a call back based programming model in which the system

signals certain events at different times in the agent's life cycle. The agent then is

programmed as a- set of event handling procedures.

14

Programming primitives:

Agent programming primitives can be categorized into

• Basic agent management: creation, dispatching, cloning, and migration

• Agent-to agent communication and synchronization

• Agent monitoring and control: status queries, and recall and termination of

agents

• Fault tolerance: check pointing, exception handling and audit trials

• Security related: encryption, signing, and data signaling

Basic agent management primitives:

An agent-creation primitive [3][7]8] allows the programmer to create

instances of agents, there by partitioning the application task among its roving

components. This also introduces concurrency into the system. This could be a single

procedure to be evaluated remotely, a script, or a language-level object. In object

oriented systems, programmers usually create an agent by instantiating a class that

provided. an agent abstraction. The system can inspect the submitted code to ensure

that it conforms to the relevant protocols and doesn't violate security policy. Based on

agent creator's identity, the system might also generate a set of credentials for the

agent this time. These are transmitted as part of the agent, to allow other entities to

identify it unambiguously.

A newly created agent is just passive code, because it has not yet been

assigned a thread to execute it. For activation, it must be dispatched to a specific.

agent's server. The server authenticates the incoming agent using its credentials and

determines the privileges to grant it. It then assigns a thread to execute the agent code.

15

Variant of creation primitive, "agent cloning", allows an agent to create the identical

copies of itself, which can execute in parallel with it and potentially visit other hosts

performing the same task as their creator. Agent forking; in which the newly created

agent retains a parent-child relationship with its creator, is another variant that lets

programmers create agents that inherit their ownership and privileges for their

parents.

During an agent program's execution, it might determine that it needs to visit

another site on the network. To achieve this, it invokes a migration primitive. The

destination specified by the agent can be either absolute or relative.

Agent communication and synchronization primitives:

To. accomplish useful work, agents often must communicate or synchronize

with each other. Systems often use varying mechanisms for establishing inter agent

communication. One approach is to provide message passing primitives, which allow

agents to either send asynchronous datagram-style messages or setup stream-based

connections to each other.

Method invocation is another approach communication in object based

systems. If two agent objects are collocated of a server, they can be provided

references to each other, which they use to invoke each other. For agents that are not

collocated, the system can provide remote methods invocation.

Collective communication primitives can be useful in applications that use

groups of agent. for collaborative tasks. Such primitives can provide for

communicating with or within an agent group.

Communication can also be implemented by using shared data. Another

16

metaphor for agent communication is event signaling. Events are usually

implemented as asynchronous messages.

Agent monitoring and control primitives:

An agent's parent application might need to monitor the agent's status while it

executes on a remote host. If exceptions or errors occur during the agent's execution,

the application might need to terminate the agent, which involves tracking the agent's

current location and requesting its host server to kill it.

Primitives for Fault Tolerance:

A checkpoint primitive creates a representation of the agent's state that can

reside in nonvolatile memory. If an agent (or its host node/server) crashes, the owner

can initiate recovery, which can determine the agent's last-known checkpoint and

request the server to restart the agent from that state. In addition to the checkpoints

themselves, agent servers can also maintain an audit trial to let the owner trace the

agent's progress determine the cause of the crash.

Security related problems:

°

	

	Because agents might pass through untrusted hosts or networks, the agent

programmer needs primitive operations for protecting sensitive data. This includes

primitives for encryption and decryption that protects the privacy of data, as well as

message sealing or message digests that will detect any tampering of the code or data.

2.4 Design Paradigms:

The goal of design is the creation of a software architecture, which can be

defined as the decomposition of a software system in terms of software components

17

and interactions among them. Software architectures with similar characteristics can

be represented by. architectural styles or deign paradigms, which define architectural

abstractions and reference structures that may be instantiated into actual _ software

architectures. A design paradigm is not necessarily induced by the technology used to

develop the software systeih-it is a conceptually separate entity.

Traditional approaches to software design are not sufficient when designing a

large-scale distributed applications that exploit code mobility and dynamic

reconfiguration of software components. In these cases, the concepts of location,

distribution of components among locations, and migration of components to

different locations need to be taken explicitly into account during the design stage.

The paradigms themselves are independent of particular technology, and

could even be implemented of a particular technology; and could even be

implemented without using mobile technology at all.

Basic concepts:

Components are the constituents of software architecture. They can be further

divided into code components, that encapsulate the know-how to perform a particular

computation, resource-components, that represent data or devices used during the

computation, and computational components, that are active executors capable to

carry out a computation, is specified by a corresponding know-how. Interactions are

events that involve two or more components, e.g., a message exchanged among two

or, more computational components. Sites host components and support the execution

of computational components. A site represents the intuitive representation of

location, Interactions among components residing at the same site are consider less

18

expensive than interactions taking place among components located in different sites.

In addition, a computation can be actually carried out only when the know-how

describing the computation, the resources used during the computation, and the

computation a component responsible for execution are located at same site.

Design paradigms are described in terms of interaction patterns that define the

locations and co-ordinations among the components , need to perform a service.

Consider a scenario where a computational component A, located at a site SA needs

the results of a service. Assuming the existence of another site SB, which will involve

the accomplishment of the service.

There are three main design paradigms exploiting code mobility:

• Remote Evaluation(RE)

• Code on Demand(COD)

• Mobile Agent(MA)

These paradigms characterized by the location of components before and after

the execution of the service, by the computational component, which is responsible

for execution of code, and by the location where the computation of the service

actually takes place. (Table 2.1)[2]

This table shows the location of the components before and after the service

execution. For each paradigm, the computational component in bold face is the one

that executes the code. Components in the italics are those that have been moved.

19

Table 2.1 Mobile Code Paradigms

Paradigm SA Before SB Before SA After SB After

Client-Server A Know-how A Know-how

Resource Resource

B B

Remote Know-how Resource A Know-how

Evaluation A B Resource

B

Code 	on Resource Know-how Resource B

Demand A B Know-how

A-

Mobile Agent Know-how Resource - Know-how

A Resource

A

Client-Server:

This paradigm is well known and widely used. In this paradigm, a

computational component B (the server) offering a set of services is placed at site SB.

Resources and know-how needed for service execution are hosted by site Ss as well.

The client component A, located at site SA, requests the execution of a service with an

interaction with the server component B. As a response, B performs the requested

service by executing the corresponding know-how and accessing the involved

resources colocated with B. In general, The service produces some sort of result that

will be delivered back to the client with an additional interaction.

20 '

Remote Evaluation:

In the REV paradigm, a component A has know-how necessary to perform. the

service but it lacks the resources required, which happen to be located at remote site

S. Consequently, A sends the service know-how to a computational component B

located at the remote site. B, in turn, executes the code using the resources available

there. An additional interaction delivers the results back to A.

Code on Demand:

In the COD paradigm, component A is already able to access the resources it

needs, which are co-located with it at SA. However, no information about how to

manipulate such resources is available at SA. Thus, A interacts with a component B at

SB by requesting the service know-how, which is located at SB as well. Second

interaction takes place when B delivers the know-how to A, that can subsequently

execute it.

Mobile Agent:.

In the MA paradigm, the service know-how is owned by A. which is initially

hosted by SA, but some of the required resources are located on site S. Hence, A

migrates to SB, carrying the know-how and possibly some intermediate results. After

it has moved to SB, A completes the service using the resources available there. The

mobile agent paradigm is different from the other paradigms since the associated

interactions involve the mobility of an existing computational component. In other

words, while in EV and COD the focus is on the transfer of code between

components, In the mobile agent paradigm a whole computational component is

21

moved to a remote site, along with its state, the code it needs, and some resources

required to perform the task

2.5 Applications of Mobile Agents:

Mobile agents can be useful for many applications.[2][3][7] Information

retrieval on the network can be supported much more efficiently if an agent

representing a query can move to the place where the data are actually stored, rather

than having to move all of the data across the network for shifting (and subsequently

discarding most of the transmission). This works especially well for non anticipated

queries, i. e., the implementor of a database system cannot in general foresee

everything users might want to find out and provide code to do the relevant analysis.

Thus, if users have to write their own custom retrieval software,. an agent-based

approach can save a lot of network traffic. This is even more evident when taking into

account that agents can move to other sources of information if that seems more

promising. Techniques such as semantic routing—dispatching a query according to

where it is most Iikely to be answered, rather than according to some predetermined

addressing information—can be used to further boost such a system's utility and ease

of use.

Another area where mobile agents can profitably be used is network

management. In big networks, comprising hundreds or thousands of connected

computers, operations monitoring and fault detection is very difficult and involves

large amounts of logging data. It is not possible to prefabricate diagnostic programs

for every eventuality, but it would be feasible to use mobile agents to keep tabs on the

22

system, homes in on possible trouble spots or performance bottlenecks and brings

them to the attention of the maintainers.

Electronic commerce is another domain which seems amenable to mobile

agents. Business on the Internet is becoming a reality, and, as standards for electronic

payment are deployed, commercial 'premises' accessible via the net will probably

mushroom. Mobile agents can help locate the cheapest offerings, negotiate deals or

even conclude business transactions on behalf of their owners.

Finally, . an important application of mobile agents concerns mobile

computing. Portable computers become smaller and more powerful, but wireless

access to a fixed information infrastructure is likely to stay slow and cumbersome due

to restrictions on radio transmission. Besides, to minimize power consumption and

transmission costs, users will not want to remain on-line while some complicated

query is handled on their behalf by the fixed computing resources. Mobile agents

offer a promising way out of this dilemma, users simply submit mobile agents which

embody their queries and log off, waiting for the agents to deposit their results ready

to be picked up at a later time.

Obviously, none of these applications absolutely require the use of mobile

agents, most could be handled by stationary programs and some suitable

communications paradigm such as RPC. However, this could only be done at a price

of increased system (and network) load and, possibly, at the inconvenience of the

users. It is also important to point out that agents are not forced to move, even though

the system may allow then to do so. Some agents may be too big to move

comfortably, and for others there may be no necessity. Such stationary agents could

23

still communicate with their mobile counterparts to take part in an agent-based

system.

24

CHAPTER 3

AGENT CLONING

3.1 The Cloning Approach:

Cloning[4] is a possible response of an agent to overloads. Agent overloads

are either to the agent's limited capacity to process current tasks or to machine

overloads. Some approaches to overloads

• Task transfer: overloaded agents locate other agents, which are lightly

loaded and transfer tasks to them, is very similar to load balancing.

• Agent migration: overloaded agents or agents that run on overloaded

machine migrate to less overloaded machine, is closely related to process

migration and to recently emerging field of mobile agents.

A main difference between load- balancing and agent cloning is that while the

first explicitly discusses machine loads and agent migration, the latter, in addition,

considers a different type of load-the agent load.

Therefore, cloning is a superset of task transfer and agent migration: it

includes them and adds to them as well. Cloning does not necessarily require

migration to other machines. Rather, a new agent is created on either the local or a

remote machine. Note that there may be several agents running on the same machine,

and having one of them overloaded does not necessarily imply that the other are

overloaded. Agent overload does not imply machine overload, and therefore local

cloning (i.e., on the same machine) may be possible. Cloning takes advantage of these

25

idle processing capacities.

To perform cloning, an agent must reason about, its own load (current and

feature) and its host's load, as well as capabilities and]dads of other machines and

agents. Accordingly, it may decide to create a clone, pass tasks to clone, merge with

other agents, or die. Merging of two agents or self-extinction of under utilized agents

is an important mechanism to control agent proliferation with resulting overload of

network resources.

To avoid communication overhead in trying to access and reason about

remote hosts, reason regarding cloning begins by considering local cloning. When

this is found infeasible or non-beneficial, the agent proceeds to reason about remote

cloning. If remote cloning is decided on, an agent should be created and activated on

a remote machine. Assuming that the agent has an access and a permit to work on this

machine, there may be two methods to perform this cloning:

• Creating the agent locally and letting it migrate to the remote

machine(similar to mobile agent)

• Creating and activating the agent on the remote machine

While the first method requires very little on the part of the remote machine, it

requires mobilization properties as well as additional resource consumption. The

second method, while avoiding mobilization and local resource consumption, requires

that a copy of the agents code to be located on the remote machine. Similar

requirements are also hold for mobile agent applications, since an agent server or

agent dock required. Nonetheless, the amount of this code is small.

Since the agent 's own load and the loads of 'other agents may vary over time

26

in a non-deterministic way, the decision regarding whether and when to clone is

nontrivial. In this work, a stochastic model of decision-making based on the dynamic

programming used to determine the optimal timing for cloning.

Suppose a clone has been created and activated. Several questions remain with

respect to this clone. These regard its autonomy, tasks, lifetime, and access to

resources. Autonomy refers to independent vs. subordinate clone. Having been

created and activated, an independent clone is not controlled by its creator. Therefore,

such a clone will continue to exist after completion of the tasks provided by its

initiator agent. Hence, a mechanism for deciding what it should do afterward is

necessary. Such a mechanism must allow the clone to reason about the agent and task

environment, and accordingly decide whether it should continue to work other tasks,

merge with others, or perform self-extinction.

A subordinate-clone will remain under they control of its initiator. This will

prevent the complications arising in the independent clone case. However, in order to

mange a subordinate agent, the initiating agent must be provided with a control

mechanism for remote agents. Regardless of the details of such a mechanism, it will

require additional communications between the two agents, thus increasing the

communications overhead of such a cloning method and the MAS's vulnerability to

communication flaws. In addition, control of other agents is a partially centralized

solution, which might violate rather reason for using an MAS in first place.

3.2 Cloning Initiation:

An agent should consider cloning if:

27

• ' It cannot perform all of its tasks on time by itself or decompose

them so that they can be delegated to others

• There is no lightly loaded agent that can receive and perform its

excess tasks (or sub tasks when tasks are decomposable)

• There are sufficient resources for creating and activating a clone

agent

e The efficiency of the clone agent and the original agent is expected

to be greater than that of the original agent alone

The necessary information used by an agent to decide whether and when to

initiate cloning comprises parameters that describe both local and remote resources.

In particular, the necessary parameters are -

• The CPU and memory loads, both internal. to the agent (which

result from planning, scheduling and task execution activities of

the agents) and external (on the agent host and possibly on the

remote hosts)

• The CPU execution speed, both local and remote

• The load on communication channels and their transfer rate, both

local and remote

• The current queue of tasks, the resources required for their

execution, and their deadlines

• . The future expected flow of the tasks

To acquire the above information an agent must able to read the operating

system variables. In addition, the agent must have self-awareness on two levels: -

28

• Agent-internal level: internal self-awareness should allow the

agent to realize what part of the operating system retrieved values

are its own properties.

• An MAS level: system-wise self-awareness should allow the agent

to find, possibly via middle agents, information regarding possible

resources on remote machines.

With out middle agents, servers that are located on the remote hosts can

supplies such information. When such information is not available, an agent should

compute the expectation values of the attributes of remote machines relying on the

probability discussions either specifically by machine ID or groupwise by machine

type. Pseudo-code of the cloning approach is in Appendix A.

3.3 Optimizing When to Clone:

To maximize the benefits of cloning, an agent should decide on performing it

at the optimal time. Each decision regarding cloning has a value, calculated with

respect to loads and distances as a function of time. Here, loads referring to

processing load, memory load, and communication load. The distance between agents

is the cumulative distance according to the communication route between them. An

Agent AA has a valuation function Valk (loads, distances), where loads is a set of loads

of agents and distances is a set of distances to other agents. When measuring the time

in discrete units, the possible decisions of A~ can be described by decision tree. The

tree includes a set of decision points, which are the nodes of the tree. The edges of the

tree are decisions and each is attached a value. These values may be discounted over

29

time by a given discount rate r3. The discount rate is used in cases where the agent

assumes that the value of a. decision is discounted over time (otherwise r=0). A

recursive function to evaluate the decision making with dependency

	

Value(v) = 	0 	 if no decision taken

	

= 	Val (v) 	 if decision has no dependencies

	

= 	1/(1+rj) E p~ Value (vj) 	Otherwise
i=1

where the sum is over all the edges (v, vj) emanating from v, and pp is the

probability of edge (v, vj) and the corresponding decision being chosen. In this work

standard dynamic programming method used to compute the optimal decision with

respect to a given decision tree. For cloning mechanisms this implies a cloning timing

which is optimal with respect to the available information regarding future overloads.

3.4 The Cloning Algorithm:

Among load balancing algorithms, there are two main approaches:

• Overload processors that seek other idle processors to let them perform

part of the processes;

• Idle (or lightly loaded) processors that look for processes to increase their

load.

These approaches are sometime combined with additional heuristics, or even

merged. If these two approaches are utilized when designing a cloning algorithm for

agents, considerable difficulties arise. Both approaches require that an agent locate

other agents for task delegation. When using match making agents, the first approach

only requires that underloaded agents advertise their capabilities; thus overloaded

30

agents may contact them via match making. Similarly the latter approach requires that

overloaded agents may advertise their overload and required capabilities and

resources. In addition, it requires that underloaded machines will be known to the

overloaded agents as well, if there are no agents running on these machines. This

information is not given in open system. It could be provided if each machine runs an

agent whose sole task would be supplying such information. This leads to an

undesirable overhead of communication and computation. In this work first approach

is utilized. The cloning procedure consists of the following components:

Reasoning Before Cloning:

Includes reasoning about the (possibly dynamic) task list with respect to time

restrictions and capability requirements. The consideration of the task list as well as

agent capabilities, capacities, loads and machine loads results in a decision to clone or

transfer tasks to already existing agents

Dividing the List of Tasks:

Includes reasoning that considers the time intervals in which overloads are

expected and accordingly selects tasks to be transferred. Suppose the current and

future tasks have been scheduled. At each point in time, the required resources are the

sum of required resources for all of the tasks that are scheduled to be executed at this

time. Figure 3.1 shows an example of the sums of three resources: cpu (p), memory

(m), and communication (m), with respect to time. The maximum capacity of the

agent is depicted by the threshold horizontal line (th) leveled at 6. One can observe

overloads whenever any type of demand for resources crosses this threshold. A

periodic overload can be observed at times 4,9,14 with period of 5 time units. Other

31

Overload w.r.t. time

7

4 	fj "

0
- 	1 2 3 4 5 6 	7 8 9 10 	11 12 13 14 15 16 	17

Time

Figure 3.1 Cpu, memory, communication loads

32

overloads do not seem periodic. When attempting to prevent overloads, the agent first

look for tasks with a period that fits the period of the overloads and puts them in the

list of candidate tasks for division. After recomputing the loads, it transfers one-shot

tasks if still necessary.

Cloning:

Includes the creation and activation of the clone, the transfer of tasks, and the

resulting inevitable updates of connections between agents via match making. The

following are the basic actions to be taken:

• Create a copy of its code. This copy, however, may have to undergo some

modification.

• When cloning while performing a specific task, an agent should pass to its

clone only the relevant subtasks and information necessary for the tasks

passed to the clone.

Otherwise, the clone may face the same overload problem as its creator. This

is because the clone will have the same set of tasks as its creator had. Note that in

contrast to the typical approach to agent migration, the cloning paradigm does not

require the transfer of an agent state. The only transfer necessary is of the set of tasks

to be performed by the clone.

Reasoning After Cloning:

Collects information regarding the benefits of the cloning and environmental

properties (such as task stream distribution) and statically analyzes them as a means

of learning for future cloning.

While the reasoning of whether to initiate cloning is performed continually

33

(i.e., when there are changes in the task schedule or if previous attempts to clone have

failed), the task cloning itself is a one-shot procedure.

3.4 Merging of Agents:

Suppose a clone has been created and activated. Having been created and

activated, an independent clone is not controlled by its creator, because of agent's

autonomy. Therefore such a clone will continue to exist after completion of the tasks

provided by its initiator agent. Hence a mechanism for what it should do afterward is

necessary. Such a mechanism must allow the clone to reason about the agent and task

environment, and accordingly decide. whether it should do or continue to work on

other tasks, merge with others, or perform self-extinction.

An agent considers merging only if it is underloaded continuously. Before

considering merging, . agent has to reason about its tasks over a period of time,

because agent receives the tasks randomly (gaussian). So agent analyzes the task

environment over a period of time. To analyze, agent stores the information about the

loads and tasks. Then using this information agent expects the task list: In this work,

back propagation network is used to expect the task list. The neural network is trained

by using loads and tasks information. After this, the agent reasons about the

underload using the expected task list.

In case the agent is underloaded over a period of time, then agent analyzes the

agent environment, because one agent is underloaded does not mean total agents are

underloaded. So it is necessary to consider the host's overload as well as. the system's

overload. In the case, if the system and host environment is underloaded then agent

may not consider merging. And in the second case, the system is underloaded and the

34

host's is overoaded then agent migrates to remote host. In the last case, the host's is

underloaded or overloaded, and the system is overloaded the agent does not consider

merging, but the agent waits for the tasks from the overloaded agents. These peculiar

situations may not be possible, but it is necessary to define every situation.

Suppose, if the agent has decided to merge with other agents then agent has to

fmd out the other agents, which are also underloaded, and wants to merge. If there is

no such agent then agent has to reason about whether agent should die or not,

otherwise the mergable, underloaded agents should find out leader, so as to transfer

the responsibilities. _ Generally leader agent is the one who has maximum

responsibilities. The agent transfers the tasks and responsibilities to leader. and

releases the resources.

The agent acquires the resources from the host to perform the services. An

agent provides the services by performing the tasks which either it generates by itself,

or users or other agents delegate to it. If the agent is underloaded continuously the

resources acquired by the agent is not used. So the utilization of the network

resources is low. So to control the performance degradation of the system, merging of

agents is needed. Pseudo-code of this approach is in Appendix B.

3.5 Merging approach:

To perform merging, In this work following approach is used. In case the

agent is not overloaded, then agent reasons about the underloads. In the event the

agent is underloaded, then the underload count incremented. In the case, the

underload count exceeds the thresh hold count then agent tries to find out the list of

agents who also desire to merging, after setting the merge flag. If the mergable agent

35

list is empty then agent considers about the responsibilities. Suppose, if the agent

there are no responsibilities then agent dies after releasing the resources, otherwise

nothing can be done. But. there is another approach also possible. In this approach, the

agent reasons about the system overload with respect to the number of agents and

number of tasks. The agent finds out the number of tasks the system receives and the

number of agents in the system. In this work it is assumed that-the system able to .

provide the above information . The number of agents in the system above thresh

hold and the number of tasks the system is receiving is below average, then agent will

do the following mechanism. The agent will find out the list of agents, which are

underloaded, but not mergable. The agent transfers the tasks to that agent

(responsibilities) and dies after releasing the resources.

In the event the agent(mergable) list is not empty then those agents, elects one

leaders and all the agents transfer the responsibilities to that agent. The agent

selection depends on the communication costs from other agents to that selected agent

and the responsibility of that selected agent. In the case, if there is no underload then

agent unsets the merge flag and sets the value of to 0.

To evaluate the underload, the agent uses the back propagation neural

network. Back propagation algorithm is given in Appendix C. Suppose, the required

resources for the expected tasks is below the threshold resources then agent

considered to be under loaded.

But the basic disadvantage of the above method is that agent only depends on

the neural network and the thresh hold. But it is necessary to develop a theoretical

framework and consider the agent approach.

36 -

CHAPTER 4

DESIGN AND IMPLEMENTATION

To examine the properties of the cloning mechanism and its advantages, a

simulation was performed. The simulation shows that cloning increases (on average)

the performance of the MAS. That is, the performance enhancement as a result of

cloning outweighs the efforts put into cloning.

4.1 Method of Simulation:

Each agent represented by an agent thread that simulated the resource

consumption and tasks queue of a real agent. The simulated agent has a reasoning-

for-cloning method, which, according to the resource consumption parameters and

task queue, reasons about cloning. As a result of this reasoning it may create a clone

by activating another agent thread (either locally or remotely). Information collected

during the simulation is the usage of CPU and the memory and 'communication

consumption of the agents. Each agent thread receives a stream of tasks according to

a given distribution. For each task it creates a task object that consumes time and

memory and requires communication. Some of these task objects are passed to the

clone agent thread. The simulation was performed with and without cloning to allow

comparison.

An agent thread in simulation must be subject to CPU, memory, and

communication consumption similar to those consumed by an agent it models in the

MAS. The program written in Java[11][12] under Linux operating system.

37

4.2 Simulation Parameters:

The simulated agent system has the following parameters:

• Number of agents: 10-20

• Number of Clones allowed: 10

• Number of tasks dynamically arriving at the system: up to 1000

• Task distribution with respect to the required capabilities and resources for

execution: normal distribution, where 10 percent of the tasks are beyond

the ability of the agents to perform their particular deadlines.

• Agent capacity: an agent can perform 20 average tasks (i.e. requiring the

average amount of resources) simultaneously.

4.3 PROGRAM CLASSES:

Classes:

Agent Manager:-

This class creates agents and starts the agents. It also assigns the tasks to the

agents.

Attributes: -

agentThread:- it provides references to all agents

totalNumOfAgents:- it counts the num of agents

totalTasks:- tasks assigned to the Multi Agent System

out:- reference to log file

net:- a reference to network

38

Operations:

createAgents:- this method creates agents and starts the threads

assignTasks:- this method assigns the tasks to the system for service

increaseAgents:- agents registers the newly created cloned agent.

run:- main controling method of agent manager

Agents:

This is the main class of simulation. It simulates agent.

Attributes:

Some important attributes are-

cpu , memory, communication:- resource parameters of agent

epuLoad, memoryLoad, communicationLoad:- the loads of the agent

agentlD:- the id of agent for communication in the system

hostlD:— the host id on which agent has hosted

cloneFlag:— flag whether cloning is allowed or not

overload:— flag denotes whether agent is overloaded or not

out:— log file reference

random:— gaussian random variable

taskList:— list of tasks for servicing of agent, assigned by agent manager

taskSplit:- used for splitting the tasks so as to assign to remote agent

Operations:-

run:- main method of agent thread

reasonForCloning:- reasons about loads of itself and system.

reasonAboutOverloads: - finds the present and future loads of agent, and

39

reasons about overload

findUnderloadedAgents: - find the under loaded agents for task transfer

reasonForTaskSplit: - It will find out the periods of tasks and it splits the tasks

according to overload, otherwise it will split tasks serially until load is

decreased

transferTasks: - it transfers the from the taskSplit list to the remote agent

taskList for servicing

canCloneLocally: - it will find out whether local cloning is possible or not

cloneLocally: - it create the agent locally

canCloneRemotely: - finds whether any remote cloning is possible or not

cloneRemotely: - it creates the agent remotely (remote cloning)

reasonAfterCloning: - reasons for further cloning and the feasibility of cloning

getExpectedTaskFlow: — it finds the expected tasks using back propagation

network

getSelfCapacity: - fmds the self capacity of agent

totalResourcesRequired: - it find out the resources required for tasks(present

and future)

findPeriodsOfi'asks: - it find out the periods of tasks

Task: -

It represents a task object, which consumes resources.

Attributes: -

cpu, memory, and communication: - represents the resources required r a task

object

40

runningFlag: - denotes the whether a task is running or not

Operations. -

start: - it starts the task object for servicing

stop: - it stops the servicing of task object

isRunning: - finds whether an object is running or not

isCompleted: - find whether service of task is completed or not

Host: -

It represents a host in Multi Agent System:

Attributes: -

cpu, memory, and communication: - are the resources available at host

agentList: - it is a hash table for storing the agents Iist who are under service

hostID: - it is id of host

Opeartions: -

recoverResources: - releases the resources acquired by an agent

requsetForSevices: - request the host for resources, called by agent

requestForCloning: - request host for cloning (remote cloning)

41

CHAPTER 5

CONCLUSION

5.1 Discussion of Results:

The results of the simulation are depicted in Figure 5.1. The graph show that

for small number of tasks (0-100) a system which practices cloning performs (almost)

as well as a system with no cloning (although difficult to see in the graph, the

performance is slightly lower due to reasoning costs). However, when the number of

tasks increases the cloning system performs much better. Nonetheless, beyond some

threshold (around 350 tasks) even the cloning cannot help. Note that in the range 150-

350 tasks cloning results in task performance close to optimal, where optimality

refers to the case in which all of the available resources are efficiently used for task

performance.

5.2 Concluding Remarks:

Agent cloning is the action of creating and activating a clone agent (locally or

remotely) to.perform some or all of an agent's tasks. Cloning is performed when an

agent perceives or predicts an overload, thus increasing the ability of an MAS to

perform tasks., In this work agent cloning is used as a means for balancing the loads

and improving the task performance of an MAS running on several machines.

Methods of implementation are also studied and tested these methods by simulation.

It is found that for large number of tasks, cloning significantly increases the

43

Task Execution With and Without Cloning

a
7

V

E
0
U

0 	 200 	 400 	 Boo 	 000 	 1000 	 1200

Number of Tasks

Figure 5.1 Task Execution with and without cloning

44

portion of tasks performed by an MAS. In an MAS where tasks require information

gathering on the web, the additional reasoning needed for cloning is small compared

to task execution requirements. Merging of two agents or self-extinction of under

utilized agents proliferation with resulting overload of network resources -is also

discussed.

5.3 Scope of Future work:

In this work agent cloning used as a means for improving the performance of

an MAS. To perform cloning, an agent must reason regarding its own load, and its

host's load, as well as capabilities and loads of other-machines and agents.

A cloned agent will continue to exist after completion of tasks provided by its

initiator agent. Hence, a mechanism for what it should do afterward is necessary. In

this regard, following mechanism implemented in this work. The cloned agent, after

performing all the tasks, waits for the tasks. If the agent not receives the tasks from

other agent or user, for threshold duration of the time, it will merge with other agent

or dies. But it is necessary to develop a theoretical analysis to find out the optimal

time for merging or self-extinction.

Agent cloning subsumes the task transfer and agent migration, so this.

mechanism can be embedded in the existing systems so as to study practical

difficulties of the cloning.

One more important thing, in this work only three parameters cpu, memory,

communication are considered in simulation. This can be extended to other

parameters.

45

REFERENCES

[1] "Software Agents: Overview", by Shaw Green, Leon Hurst and others available

from www.es.ted.ie/researc_group/aig

[2] Fuggetta , G.Pieetro, G. Vigna "Understanding Code Mobility "IEEE

Transactions on Software Engg., May 1998, pp.342-361

[3] V.A. Pham, and A. Karmouvh, "Mobile Software Agents Overview" IEEE

commun. Magazine, July 1998,pp.26-37

[4] Onn Shehory, Katia Sycara, P.Chalasani, and Soesh Jha, "Agent Cloning: An

Approach to Agent Mobility and Resource Allocation" IEEE Communications,

July, 1998, pp58-67.

[5] G.Agha, "Actors and Agents", IEEE Concurrency, April-June, 1998, pp.24-28

[6] K.Sycara , A.Pannu, M.Williamson, and D. Zeng, "Distributed intelligent

agents," IEEE Expert, Dec., 1996, pp.36-45

[7] Anselm Lingnau Oswald Drobnik, "An infrastructure for Mobile Agents:

Requirements and architecture" Fachbereich Informatik (Telematik), Johann

Wolfgang Goethe-University " at Frankfurt am Main, Germany

[8] N.M.Karnik, A.R. Tripathi., "Design Issues In mobile Agent Programming

Systems,", IEEE Concurrency, July-September 1998, pp.52-61

[9] D.Chess, B. Grosof, and C. Harrison, "Itinerant agent for mobile computing",

IEEE Pers. Communications Magazine, June, 1995

[10] Adam Blum, "Neural Network in C++", First Edition, John Wiley & Sons, Inc.

[11] K.Decker , K.Sycara, and M Williamson, "Middle Agents for the Internet,"

47

Proc. IJCAI'97, Nagoya, Japan, 1997

[11] K.Decker, and K.Sycara ., "Designing behaviours for information agents," W.

Lewis Johnson, Ed., Proc. 1st Int'l Conf. Autonomous Agents, ACM Press 1997

[12] Sun Micro Systems, "The Java Language: An Overview", Technical Report,

Sun Micro Systems,1994

[13] Gosling, J. and McGilton, H. (1995). "The Java Language Environment: A

White Paper", Technical Report, Sun Microsystems.

48

APPENDIX A

Cloning Pseudo-Code:

//Main reasoning and cloning protocol

for each time interval t{

overloadAt[t]=reasonAboutOverloads(t);//current and future;

If(overloadAt[t]) (

CanPassTasks[t]=findUnderloadedAgents(t);

If(canPassTasks[t]) {

ReasonForTaskSplitO;

TransferTasksO;

}else if(canCloneLocallyO){

cloneLocallyO;

reasonForTaskSplitO;

transferTasksO;

}else if(canCloneRemotelyo){

cloneRemotelyO;

reasonForTaskSplitO;

transferTasks();

}else sorry("can't split or clone");

//The reasoning methods

reasonAboutOverloads(t)

{

49

getCurrentTaskListo ;

getExpectedTaskFlow(t);

requiredAt[t]=calculateRequiredResourcesAt(t);// current and future

selfCapacity=getSelfCapacity(t);

if(selttapacity >=requiredAt[t])

return true;

else

return false;

APPENDIX B

Merging Pseudo-Code:

for each time interval t {

underloadAt [t]=reasonAboutUnderloads(t);

if(underloadAt[t]) (

increment(underloadCount);

if(underloadCount > threshholdCount) {

mergeFlag--trae;

canMerge=fmdMergableAgentsListO;

iff canMerge) {

leader=selectLeader();

transferResponsibilitiesO;

releaseResourcesO;

stopO;// dying of an agent

}else if(no responsibilities){

releaseResourcesO;

stopO; I/dying of an agent

}

}else {

underloadCount=O;

mergeFlag=false;

}

}

51

// reasoning about under loads 	 -

reasonAboutUnderloadsO

if(overloadAt[t])

return false;

getCurrentTaskListQ;

if(!empty(taskList))

return false;

getExpectedTaskFlowUsingNeural(t);

requiredAt[t] = calculaeRequiredResouices(t);

selfCapacity=getSelfCapacityO;

if(requiredAt[t] < selfCapacity/2.5)

return false;

else

return true;

52

APPENDIX C

Back propagation Algorithm:

The back propagation model is applicable to, a wide class of problems.. It is

certainly the predominant supervised training algorithm. The algorithm is

2.3.1 Encoding:

Assign random values between —1 and +1 to the weights between the input

and hidden layers, the weights between the hidden and output layers, and the

thresholds for the hidden-layer and output-layer neurons.

Forward Pass:

I Compute the hidden-layer neuron activation:

h=F(iW1)

where h is the vector of hidden-layer neurons, i the vector- of input —layer

neurons, and W1 the weight matrix between the input and hidden layers.

2 Compute the output-layer neuron activations:

o=F(hW2)

where o represents the output layer, h the hidden layer, W2 the matrix of

synapses connecting the hidden and output layers, and FO is sigmoid

activation function.

Backward Pass:

3 Compute the output-layer error (the difference between the target and the

observed output):

d = o(1-o)(o-t)

53

where d is the vector of errors for each output neuron, o is the output-layer

vector, and t is the target (correct) activation of output-layer.

4 Compute the hidden-layer error:

e = h(l-h)W2d

where e is the vector of errors for each hidden-layer neuron.

5 Adjust the weights for the second layer of synapses:

W2 = W2 + AW2

where delta W2 is a• matrix representing the change in matrix W2. It is

computed as follows:

iW2t = a hd + 0 AW2t_1

where a is the learning rate and 0 is the momentum factor

6 Adjust the weights for the first layer of synapses:

W1 = W1 +.Wl t

where

W1t = a ie + 6 LtWIt-I

Repeat steps 1 to 6 on all patterns until the output-layer error (vector d) is

within the specified tolerance for each pattern and for each neuron

54

APPENDIX D

SOFTWARE LISTING

55

1*
This simple extension of the java.awt.Frame class
contains all the elements necessary to act as the
main window of an application. *1

import java.io.*;
import java.awt.*;

public class cloneFrame extends Frame implements Constants
{

static cloneFrame clone;
public cloneFrameO
{

setLayout(new BorderLayout(0,0));
setVisible(false);
setSize(405,364);
controlPanel = new java.awt.Panel();
controlPanel.setLayout(new FlowLayout(FlowLayout.CENTER,5,5));
controlPanel.setBounds(0,0,434,33);
controlPanel.setBackground(new Color(-12948347));
add("North", controlPanel);
startButton = new java.awt.ButtonO;
startButton. setLabel(" Start");
startButton.setBounds(79,5,39,23);
startButton.setBackground(new Color(12632256));
contro lP aneI. add(startB utton);
stopButton = new java.awt.ButtonO;
stopButton. setLabel(" Stop");
stopButton.setBounds(123,5,39,23);
stopButton.setBackground(new Color(12632256));
controlPanel.add(stopButton);
stopButton.setEnabled(false);
aboutButton = new java.awt.ButtonO;
aboutButton.setLabel("About...");
aboutButton.setBounds(167,5,54,23);
aboutButton.setBackground(new Color(12632256));
controlPanel.add(aboutButt6n);
quitButton = new java.awLButtonO;
quitButton. setLabel("Quit");
quitButton.setBounds(226,5,36,23);
quitButton.setBackground(new Color(12632256));
controlPanel.add(quitButton);
Group 1 = new CheckboxGroupO;
cloneRadioButton = new java.awt.Checkbox("Cloneable", Group1,

false);

57

cloneRadioButton.setBounds(267,5,87,23);
controlPanel.add(cloneRadioButton);
cloneRadioButton.setEnabled(false);
editPanel = new java.awt.PanelO;
GridBagLayout gridBagLayout;
gridBagLayout = new GridBagLayouto ;
editPanel. setLayout(gridB agLayo ut);
editPanel.setBounds(0,33,434,306);
editPanel.setBackground(new Color(-1254719));
add("Center", editPanel);
hostLabel = new java.awt.Label("Number Of Hosts");
hostLab el. setB ounds(60,24,96,27);
hostLabel.setForeground(new Color(0));
GridBagConstraints gbc;
gbc = new GridBagConstraintso;
gbc.gridx = 0;
gbc.gridy = 0;
gbc.gridheight = 2;
gbc.fill = GridBagConstraints.NONE;
gbc.insets = new Insets(24,60,0,0);
gbc.ipadx = -14;
gbc.ipady = 4;
((GridBagLayout)editPanel.getLayoutO).setConstraints(hostLabel,

gbc);
editPanel.add(hostLabel);
agentLabel = new java.awt.Label("Number Of Agents");
agentLabel.setBounds(60,60,108,26);
gbc = new GridBagConstraintsO;
gbc.gridx = 0;
gbc.gridy = 2;
gbc.gridwidth = 2;
gbc.fill = GridBagConstraints.NONE;
gbc.insets = new Insets(9,60,0,0);
gbc.ipadx = -7;
gbc.ipady = 3;
((GridBagLayout)editPanel.getLayout()).setConstraints(agentLabeI,

gbc);
editPanel.add(agentLabel);
hostField = new java.awt.TextFieldO;
hostField.setBounds(186,12,148,36);
hostField.setBackground(new Color(16777215));
gbc = new GridBagConstraintsO;
gbc.gridx = 2;
gbc.gridy = 0;
gbc.gridwidth = 3;
gbc.fill = GridBagConstraints.NONE;

58

gbc.insets = new Insets(12,12,0,0);
gbc.ipadx = 124;
gbc.ipady = 13;
((GridBagLayout)edi1Panel.getLayouto).setConstraints(hostField,

gbc);
editPanel.add(hostField);
agentField = new java.awt.TextFieldO;
agentField.setBounds(1 85,60,150,28);
agentField.setBackground(new Color(16777215));
gbc = new GridBagConstraintso;
gbc.gridx = 2;
gbc.gridy = 2;
gbc.gridwidth = 4;
gbc.gridheight =2;
gbc.fill = GridBagConstraints.NONE;
gbc.insets = new Insets(9,12,0,0);
gbc.ipadx = 126;
gbc.ipady = 5;
((GridBagLayout)editPanel.getLayout()). setConstraints(agentField,

gbc);
editP anel. add(agentField);
createNetButton = new java.awt.ButtonO;
createNetButton.setLabel("Create Net");
createNetButton.setBounds(96,108,85,36);
createNetButton.setBackground(new Color(12632256));
gbc = new GridBagConstraintso;
gbc.gridx = 0;
gbc.gridy = 4;
gbc.gridwidth = 3;
gbc.fill = GridBagConstraints.NONE;
gbc.insets = new Insets(20,96,0,0);
gbc.ipadx ="12;
gbc.ipady= 13;
((GridBagLayout)editPanel.getLayouto).setConstraints(

createNetButton, gbc);
editPanel.add(createNetButton);
createNetB utton. setEnabled(false);
createAgentsButton = new java.awt.ButtonO;
createAgentsButton.setLabel("Create Agents");
createAgentsButton.setBounds(228,108,85,40);
createAgentsButton.setBackground(new Color(12632256));
gbc = new GridBagConstraintsO;
gbc.gridx = 3;
gbc.gridy = 4;
gbc.gridheight = 2;
gbc.fill= GridBagConstraints.NONE;

59

gbc.insets = new Insets(20,47,0,0);
gbc.ipadx = -7;
gbc.ipady = 17;
((GridBagLayout)editPanel.getLayoutQ).setConstraints(createAgen

tsButton, gbc);
editPanel.add(createAgentsButtoni);
createAgentsButton. setEnabled(false);
resultArea = new java.awt.TextAreaO;
resultArea. setEditable(fal se);
resultArea. setBounds(0,195,434,111);
resultArea.setForeground(new Color(-8563541));
resultArea.setBackground(new Color(8421504));
gbc = new GridBagConstraintsQ;
gbc.gridx = 0;
gbc.gridy = 6;
gbc.gridwidth = 7;
gbc.weightx = 1.0;
gbc.weighty = 1.0;
gbc.fill = GridBagConstraints.BOTH;
gbc.insets = new Insets(47,0,0,0);
gbc.ipadx = -8;
gbc.ipady = -76;
((GridBagLayout)editPanel.getLayoutO). setConstraints (resultArea
, gbc);
editPanel.add(resultArea);
setTitle("Agent Cloning");
setResizable(false);

//REGISTER_ LISTENERS
Sym Window aSymWindow = new SymWindow();
this. add WindowListener(aSymWindow);
SymAction 1SymAction = new SymActionO;
startButton.addActionListener(1SymAction);
createNetB utton. addActionListener(1SymAction);
stopButton.addActionListener(1SyrAction);
createAgentsButton.addActionListener(1SyinAction);
SymText 1SymText = new SymTextO;
hostField.addTextListener(1SymText);
agentField.addTextListener(ISymText);
quitButton.addActionListener(1SymAction);
Symltem 1Symltem = new SymltemO;
cloneRadioButton.addItemListener(1SymItem);

openLogFile();
}
Network net=null;

60

Print Writer out=null;
void openLogFile()
{

if(out!=null)
out.close();

try{
out=new PrintWriter(new FileOutputStream("output.txt"));

}catch(Exception e) {
setVisible(false);
disposeO;
System. out.println(e);
System.exit(1);

}
if(out=null)

System.out.println("Unable to open the file ");
}
public cloneFrame(String title)
{

thisO;
setTitle(title);

}

/**

* Shows or hides the component depending on the boolean flag b.
* @param b if true, show the component; otherwise, hide the component.
* @see java.awt.Component#isVisible */

public void setVisible(boolean b)
{

if(b)

setLocation(50, 50);:.

super. setVisib le(b);
}

static public void main(String args[])
{

clone=new cloneFrameO;
clone.openLogFileO;
clone. setV isible(true);

}

public void addNotify()
{
// Record the size of the window prior to calling parents addNotify.

61

Dimension d = getSizeo;
super.addNotifyO;
if (fComponentsAdjusted)

return;

// Adjust components according to the insets
setSize(insetsO.left + insetso.right + d.width, insetsO.top +

insetsO.bottom + d.height);
Component components[] = getComponentso;
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocationo ;
p.translate(insetsO.left, insetsO.top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

// Used for addNotify check.
boolean fComponentsAdjusted = false;

//DECLARE_ CONTROLS
java.awt.Panel controlPanel;
java.awt.Button startButton;
java.awt.Button stopButton;
java.awt.Button aboutButton;
java.awt.Button quitButton;
java.awt.Checkbox cloneRadioButton;
CheckboxGroup Group!;
java.awt.Panel editPanel;
java.awt.Label hostLabel;
java.awt.Label agentLabel;
java.awt.TextField hostField;
java.awt.TextField agentField;
java.awt.Button createNetButton;
java.awt.Button createAgentsButton;
java.awt.TextArea resultArea;
//

//DECLARE_ MENUS
//

class Sym Window extends java.awt.event.WindowAdapter

public void windowClosing(java.awt.event.WindowEvent event).
{

62

Object object = event.getSource();
if (object = cloneFrame.this)

Frame l _W indowClosing(event);
}

}

void Framel_WindowClosing(java.awt.event.WindowEvent event)
{

set Visible(false); 	// hide the Frame
disposeO; 	 // free the system resources
System.exit(0); 	 // close the application

}

class SymAction implements java.awt.event.ActionListener
{

public void actionPerformed(java.awt.event.ActionEvent event)
{

Object object = event.getSourceO;
if (object = startButton)

startButton_ActionPerformed(event);
else if (object = createNetButton)

createNetButton_ActionPerformed(event);
else if (object = stopButton)

stopButton_ActionPerformed(event);
else if (object = createAgentsButton)

createAgentsButton_ActionPerformed(event);
else if (object = quitButton)

quitButton_ActionPerformed(event);

}

void startButton_ActionPerformed(java.awt.event.ActionEvent event)
{

// to do: code goes here.
startButton. enable(fals e);
hostField.enable(true);
agentField.enable(true);
createNetButton.enable(true);
cloneRadioButton.enable(true);
stopButton.enable(true);
//{ {CONNECTION
// Set the Button's action command... Get Frame title
startButton. setActionCommand(getTitleo);
//}}

}

63

void aboutButtonMouseClicked(java.awt.event.MouseEvent event)
{

(new AboutDialog(this, true)).setVisible(true);
//CONNECTION
// Set the Button's action command... Get Frame title
aboutButton.setActionCommand(getTitleO);

void createNetButton_ActionPerformed(java.awt.event.ActionEvent event)
{

if(numOffosts>15 11 numOfHosts<5)
numOtHosts=NUMHOSTS;

hostField. setText(String.valueOf(numOfHosts));
createNetButton.enable(false);
createAgentsB utton. enable(true);
net=new Network(out,numOf -losts);
net.createNetworkO;
ho stField. enable(false);

GraphPanel g;
g=new GraphPanel(net,out);
g.resize(400,400);
g.showO;
// Set the Button's action command... Get Frame title
createNetButton.setActionCommand(getTitleO);
II))

DrawPanel drawPanel=null;
void stopButton_ActionPerfonned(java.awt.event.ActionEvent event)
{

net=null;
if(agentManager!=null)

agentManager.stopAgentsO;
if(drawPanel!=null)

drawPanel.stopO;
drawPanel=null;
agentManager=null;
startB utton. en ab l e(true);

64

hostField.enable(false);
agentField. enable(false);
createNetB utton. enab le(false);
createAgentsButton.enable(false);
cloneRadioButton.enable(false);
stopButton.enable(false);
System.gc();

//{ {CONNECTION
// Set the Button's action command... Get Frame title
stopButton. setActionCommand(getTitle());
II))

}
AgentManager agentManager=null;
void createAgentsButton_ActionPerformed(java.awt.event.ActionEvent

event)

if(numOfAgents<5 11 numOfAgents>15)
numOfAgents=NUMOFAGENTS;

agentField.setText(String.valueOf(numOfAgents));
createAgentsButton. enable(fal se);
clonableFlag=cloneRadioButton.getStateo ;
cloneRadioButton.enable(false);
Agents.cloinableFlag=clonableFlag;

agentField.enable(false);
agentManager=new AgentManager(net,out,numOfAgents,trae);

agentManager.startO;
drawPanel=new DrawPanelO;

drawPanel. setVisible(true);
drawPanel.startO;

createAgentsButton.setActionCommand(getTitleO);

class SymText implements java.awt.event.TextListener
{

public void textValueChanged(java.awt.event.TextEvent event)
{

Object object = event.getSourceO;
if (object = hostField)

hostField_TextValueChanged(event);
else if (object = agentField)"

agentField_TextValueChanged(event);

}
int numOfHosts=NUMHOSTS;
int numOfAgents=NUMOFAGENTS;

65

void hostField_TextValueChanged(java.awt.event.TextEvent event)
{
String str=hostField.getTexto;

try{
num0fHosts=lnteger.parselnt(str);
out.println("Num of Hosts"+numOfAgents);
catch(NumberFormatException e) {
System.out.printhi("exception in fonnattin"+e);

numOfHosts=NUMHOSTS;
hostField. setText(String.valueOf(numOfHosts));
} catch(NullPointerException e) {
}

// Show the TextField
agentField.setVisible(true);
//} }

void agentField_TextValueChanged(java.awt.event.TextEvent event)

String str=agentField.getTextO;
try{
numOfAgents=lnteger.parseInt(str);
out.println("Num of Hosts"+numOfAgents);
}catch(NumberFormatException e){
System.out.println("exception in formattin"+e);
numOfAgents=NUMOFAGENTS;
hostField.setText(String.valueOf(numOfAgents));
}catch(NullPointerException e) {
}

// Show the TextField
agentField.setVisible(true);
//} }

void quitButton_ActionPerformed(java.awt.event.ActionEvent event)
{

(new QuitDialog(this,true)).setVisible(true);
// Set the Button's action command... Get Frame title
quitButton.setActionConimand(getTitleO);
//}}

boolean clonableFlag=false;
class Symltem implements java.awt.event.ItemListener

66

public void itemStateChanged(java.awt.event.ItemEvent event)
{

Object object= event.getSourceO;
if (object = cloneRadioButton)

cloneRadioButton ItemStateChanged(event);,

}

void cloneRadioButton_ItemStateChanged(java.awt.event.ItemEvent event)
{

// Show the Checkbox
cloneRadioButton.setVisible(true);
//}}

s/*
A basic extension of the java.awt.Dialog class

*/

import java.awt.*;

public class AboutDialog extends Dialog {
public AboutDialog(Frame parent, boolean modal)
{

super(parent, modal);

//INITCONTROLS
setLayout(null);
setVisible(false);
setSize(300,250);
titleLabel = new java.awt.Label("Agent CIoning: A Mechanism to

load transfer");
titleLabel.setBounds(40,35,248,21);
add(titleLabel);
okButton = new java.awt.ButtonO;
okButton.setLabel("OK");
okButton.setBounds(168,108,66,27);
add(okButton);
setTitle("About Thesis");
setResizable(false);
//REGISTER_ LISTENERS
SymWindow aSymWindow = new SymWindowO;
this.addWindowListener(aSymWindow);
SymAction 1SymAction = new SymActionO;

67

okButton.addActionListener(1SymAction);
}
// constrcutor
public AboutDialog(Frame parent, String title, boolean modal)
{

this(parent, modal);
setTitle(title);

public void addNotifyO
{
// Record the size of the window prior to calling parents addNotify.

Dimension d = getSizeO;
super.addNotifyO;
// Only do this once.
if (fComponentsAdjusted)

return;

// Adjust components according to the insets
setSize(insetsO.left + insetsO.right + d.width, insetsO.top +

insets() bottom + d.height);
Component components[] = getComponentsO;
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocationO;
p.translate(insetsO.left, insetsO.top);
components[i].setLocation(p);

}
// Used for addNotify check.
fComponentsAdjusted = true;

public void setVisible(boolean b)

if (b)
{

Rectangle bounds = getParent0.boundsO;
Rectangle abounds = boundsO;
move(bounds.x + (bounds.width - abounds.width)/ 2,
bounds.y + (bounds.height - abounds.height)/2);

}

super.setVisible(b);
}

//{ {DECLARE_ CONTROLS

66

java.awt.Label titleLabel;
java.awt.Button okButton;

// Used for addNotify check.
boolean fComponentsAdjusted = false;

class SymWindow extends java.awt.event.WindowAdapter
{

public void windowClosing(java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object = AboutDialog.this)

AboutDialog_WindowClosing(event);

}

void AboutDialog WindowClosing(java.awt.event.WindowEvent event)
{

disposeO;
}

class SymAction implements java.awt.event.ActionListener
{

public void actionPerformed(java.awt.event.ActionEvent event)
{

Object object = event.getSourceO;
if (object = okButton)

okButton_Cliicked(event);
}

}

void okButton_Clickedoava.awt.event.ActionEvent event)
{

// Clicked from okButton Hide the Dialog
disposeO;

}

/*
A basic extension of the java.awt.Dialog class

*/

import java.awt.*;
import java.awt.event.*;

69

public class QuitDialog extends Dialog
{

public QuitDialog(Frame parent, boolean modal)

super(parent, modal);

setLayout(null);
setSize(insetsO.left + insets().right + 337,insetsO.top +

insets().bottom + 135);
yesButton = new java.:awt.Button(" Yes ");
yesButton.setBounds(iusetsO.left + 72,insetsO.top + 80,79,22);
yesButton.setFont(new Font("Dialog", Font.BOLD, 12));
add(yesButton);
noButton = new java.awt.Button(" No ");
noButton.setBounds(insetsO.left + 185,insetsQ.top + 80,79,22);
noButton.setFont(new Font("Dialog", Font.BOLD, 12));
add(noButton);
labell = new java.awt.Label("Do you really want to

quit?",Label.CENTER);
labell.setBounds(78,33,180,23);
add(labell);
setTitle("A Basic Application - Quit");
setResizable(false);
I/{ {REGISTER_ LISTENERS
Sym Window aSymWindow = new SymWindowo;
this.add WindowListener(aSymW indow);
SymAction 1SymAction = new SymActionO;
noButton. addActionListener(ISymAction);
yesButton.addActionListener(1SymAction);
II))

public void addNotify()
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotifyO;
if (fComponentsAdjusted)

return;

// Adjust components according to the insets
setSize(insets(),Ieft + insetsO.right + d.width, insetsO.top +

insetsQ.bottom + d.height);
Component components[] = getComponentsO;
for (int i = 0; i < components. length; i++)

70

Point p = components[i].getLocationO;
p.translate(insetsO.left, insetsO.top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

public QuitDialog(Frame parent, String title, boolean modal)
{

this(parent, modal);
setTitle(title);

/**
* Shows or hides the component depending on the boolean flag b.
* @param b if true, show the component; otherwise, hide the component.
* @see java.awt.Component#isVisible
*/
public void setVisible(boolean b)

{
if(b)
{

Rectangle bounds = getParento.getBoundso;
Rectangle abounds = getBoundsO;
setLocation(bounds.x + (bounds.width - abounds.width)/ 2,

bounds.y + (bounds.height - abounds.height)/2);
}
super.setVisible(b);

}

// Used for addNotify check.
boolean fComponentsAdjusted = false;

//DECLARE_ CONTROLS
java.awt.Button yesButton;
java.awt:Button noButton;
j ava. awt. L ab el lab e l l;
//
class Sym Window extends java.awt.event.WindowAdapter
{

public void windowClosing(java.awt.event.WindowEvent event)
{

Object object = event.getSourceO;
if (object = QuitDialog.this)

QuitDialog_WindowClosing(event);
}

71

void QuitDialog_WindowClosing(java.awt.event.WindowEvent event)

disposeO;
}

class SymAction implements java.awt.event.ActionListener
{

public void actionPerformed(java.awt.event.ActionEvent event)
{

Object object = event.getSource();
if (object = noButton)

noButton_Clicked(event);
else if (object = yesButton)

yesButton Clicked(event);

void yesButton_Clicked(java.awt.event.ActionEvent event)
{

Toolkit. getDefaultToolkito.getSystemEventQueueO.postEvent(new
WindowEvent((j ava. awt. W indow)getParentO,

WindowEvent.WINDOW CLOSING));

void noButton_Clicked(java.awt.event.ActionEvent event)
{

dispose();

class BackPropagation {

static float squash(float input)
//squashing function
// use sigmoid -- can customize to something
// else if desired; can add a bias term too
//
{

if (input < -50)
return (float)0:0;

else if (input > 50)
return (float)1.0;

else return (float)(1/(1+Math.exp(-(double)input)));

72

static float randomweight(int init)
{

// random number generator
// will return a floating point
// value between -1 and 1
return (float)(2*Math.randomO-1);

class BackPropagation {

static float squash(float input)
// squashing function
If use sigmoid -- can customize to something
// else if desired; can add a bias term too
//
{

if (input < -50)
return (float)0.0;

else if (input > 50)
return (float)1.0;

else return (float)(1/(1+Math.exp(-(double)input)));

static float randomweight(int init)
{

// random number generator
// will return a floating point
//value between -1 and I
return (float)(2*Math.randomO-1);

import java.io.*;
class Controller

float error tolerance=O. 1;
float total_error=0.0;
float avg_errorjer_cycle=0.0;
float error_last_cycle=0.0;
float avgerr per pattern=0.0; // for the latest cycle
float error last pattern=0.0;

73

float learning_parameter=0.02;
unsigned temp, startup;
long vectors_in_buffer;
long max_cycles;
long patterns_per_cycle=0;

long total_cycles, total_patterns;
int i;

network backp;
String str null;

void trainO
{
// open output file for writing
try{

trdout=new DataOutputStream(new FileOutputStream(OUPUT_FILE,"w"));
}catch(Exception e){

System.out.println("Error at"+OUTPUT_FILE+e);
System.exit(l);

// enter the training mode: 1=training on 0=training off
System.out.println 	 "
System. out.println (" C++ Neural Networks and Fuzzy Logic ");
System.out.println (" Backpropagation simulator ");
System.out.println (" 	version 1 ");
System.out.println (---").
System.out.println ("Please enter 1 for TRAINING on, or 0 for off: \n");
System.out.println ("Use training to change weights according to your");
System.out.println ("expected outputs. Your training.dat file should contain");
System. out.println ("a set of inputs and expected outputs. The number of');
System.out.println ("inputs determines the size of the first (input) layer");
System.out.println ("while the number of outputs determines the size of the");
System.out.println ("last (output) layer :\n");

cin >> temp;
backp. set_training(temp);

if (backp.get_training_valueO = 1)
{
System.out.println("--> Training mode is *ON*. weights will be saved");.
System.out.println("in the file weights'.dat at the end of the");
System.out.println("current set of input (training) data");

74

else
{
System.out.println("--> Training mode is *OFF*. weights will be loaded');
System.out.println("from the file weights.dat and the current");
System.out.println("(test) data set will be used. For the test");
System.out.println("data set, the test.dat file should contain");
System.out.println("only inputs, and no expected outputs.");
}

if (backp.get_training_valueQ°1)

// ---
// 	Read in values for the error_ tolerance,
// 	and the learning_parameter
// ---
System.out.println(" Please enter in the error_tolerance");
System.out.println(" --- between 0.001 to 100.0, try 0.1 to start —");
System.out.printlnO;
System.out.println("and the learning_parameter, beta");
System.out.println(" --- between 0.01 to 1.0, try 0.5 to start--
System.out.println(" separate entriesby a space");
System.out.println(" example: 0.1 0.5 sets defaults mentioned :fin");

try{
str=sysdin.readLineo;
error _tolearance=Float.valueOf(str).floatV alueO;
sti=sysdin.readLineQ;
leaming_parameter=Float.valueOf(str).floatValue();

} catch(Exception e) {
System.out.println("Error in reading"+e);
System.exit(l);

// open training file for reading
II---
try{

tdin=new DatalnputStream(new FileInputStream(TRAING FILE));
}catch(Exception e){

System.out.println("Error in opneing the file "+e);
System.exit(1);

}
ddin=tdin;
// Read in the maximum number of cycles
// each pass through the input data file is a cycle
System.out.println("Please enter the maximum cycles for the simulation");
System.out.println("A cycle is one pass through the data set.");

75

System.out.println("Try a value of 10 to start with'.');
try{

str=sysdin.readLineO;
max_cycles=Float.valueOf(str).floatValueO;

}catch(Exception e) {
System.out.println("Error in reading the maxcycles'+e);
System:exit(1)_;

}
else

{
try{

tdin=new DatalnputStream=new DatalnputStream(ne FilelnputStream(
TEST_FILE));

}catch(Exception e) {
System.out.println("Problem in opening the file ");
System.exit(1);
}
ddin=tdin;

// the main loop

//training: continue looping until the total error is less than
// 	the tolerance specified, or the maximum number of
// 	cycles is exceeded; use both the forward signal propagation
II. 	and the backward error propagation phases. If the error
// 	tolerance criteria is satisfied, save the weights in a file.
// no training: just proceed through the input data set once in the
// 	forward signal propagation phase only. Read the starting
// 	weights from a file.
// in both cases report the outputs on the screen

// intialize counters
total_cycles=0; // a cycle is once through all the input data
total pattems=0; I/ a pattern is one entry in the input data

// get layer information
backp.get_layer infoo;

76

// set up the network connections
b ackp. set_up_network();

// initialize the weights
if (backp.get_training_valueO=1)

{
// randomize weights for all layers; there is no
// weight matrix associated with the input layer
// weight file will be written after processing
// so open for writing
try{

wdoutew DataOutputStream(new
FileOutputStream(WEIGHTS_FILE));

} catch(Exception e) {
System.out.printin("problem in opening the output file ");
System.exit(1);

}
backp.randomize_weightsO;
}

else
{
// read in the weight matrix defined by a
// prior run of the backpropagation simulator
// with training on
try{

wdin=new DatalnputStream(new FilelnputStream(WEIGHTS_FILE));
}catch(Exception e) {

System.out.println("Error in opening the file "+e);
System.exit(l);

backp.read_weights(weights_file_ptr);
}

// main loop
// if training is on, keep going through the input data
// 	 until the error is acceptable or the maximum number of cycles
// 	 is exceeded.
// if training is off, go through the input data once. report outputs
// with inputs to file output.dat

startup=l;
vectors_in buffer = MAX_VECTORS; // startup condition

77

total error = 0;

while (((backp.get trainingvalueO=1)
&& (avgerr_per_pattem

> error tolerance)
&& (total_cycles < max_cycles)
&& (vectors in buffer 1=0))
II ((backp.get training _valueO=0)
&& (total_cycles < 1))
II ((backp•get_training_valueQ=1)
&& (startup=l))

{
startup=0;
error_last_cycle=0; // reset for each cycle
patterns_per_cycle=0;
// process all the vectors in the datafile
// going through one buffer at a time
//pattern by pattern

while ((vectors_ inbuffer==MAX_VECTORS))
{

vectors_ in buffer=
backp.fillIObuffer(datafrle_ptr); // fill buffer
if (vectors_in_buffer < 0)

{
System.out.println ("error in reading in vectors, aborting");
System.out.println ("check that there are on extra linefeeds");
System.out.println ("in your data file, and that the number");
System.out.println ("of layers and size of layers match the");
System.out.println ("the parameters provided.");
System.exit(l);
}

// process vectors
for (i=0; i<vectors_in_buffer; i++)

{
// get next pattern
backp.set_up_pattem(i);

total_pattems++;
patterns_per_cycle++;

78

// forward propagate

backp.forward_prop();

if (backp.get_training_valueo=O)
backp.write outputs(oiitput_file_ptr);

// back_propagate, if appropriate
if (backp.get_training_value()=1)

{

backp.backward_prop(error_last_pattern);
error last_cycle +_

error last_pattern*error_last_pattern;
backp.update_weights(learning_parameter);
// backp.list_weightso; // can
// see change in weights by
// using list_weights before and
// after back_propagation

error last_pattern = 0;

avgerr_per_pattern=((float)Math.sgrt((double)error_last_cycle/pattems_per_cycle));
total_error += error_last_cycle;
total_cycles++;

// most character displays are 25 lines
// user will see a corner display of the cycle count
// as it changes

System.out.println ("\n");
System.out.println (total_cycles +"\t" +" avgerr_per_pattern");

fseek(data_file_ptr, OL, SEEK SET); // reset the file pointer
%/ to the beginning of
// the file

vectors in buffer = MAX VECTORS; //reset

} // end main loop

System.out.println ("\n\n\n\n\n\n\n\n\n\n\n");
System.out.println ('--0);

79

System.out.println (" done: results in file output.dat");
System.out.println (" 	training: last vector only");
System.out.println (" 	not training: full cycleln");
if (backp.get_training_valueo=l)

{
backp.write_weights(weights_file ptr);
backp.write_outputs(output_frle_ptr);
avg_error_per_cycle= (float)Math.sgrt((double)total_er or/total_cycles);
error last_cycle=(float)Math.sgrt((double)error last cycle);

System.out.println(" 	weights saved in file weights.dat");
System.out.printlnO ;
System.out.println("---->average error per cycle = " + avg_error_per_cycle + " <--_');
System.out.println("---->er or last cycle =" + error_last_cycle +
System.out.println("->error last cycle per pattern=" + avgerr_per_pattern +

System.out.println("------------>total cycles =" + total cycles +---");
System.out.println("------------>total patterns =" +total_patterns+ " +---");
System.out.println(---).
// close all files

import java.util.*;
import java.io.*;
/ * ///
Agent manager creates agents and provides the references of all agents.
Agent Manager also assign the tasks to agents according to the gaussian
distribution

class AgentManager extends Thread implements Constants
static Agents agentThread[]; // agent references list
static int totalNumOfAgents; // total number of agents in the list
static int totalTasks=O; 	// total tasks submitted to the system
GausRandom random; 	// gaussian random varaible
int scheduledTasks; 	// scheduled Tasks to be executed
Print Writer out=null; 	// log file
Network net=null; 	// network reference

long startTime;
ThreadGroup agentThreadGroup=null;// thread group;

static int totalTime=1000;
// constructor of agent manager

80

AgentManager(Network net,PrintWriter out,int numOfAgents,boolean
isCloned,int num)

{
this.net=net;
this.out=out;
scheduledTasks=num;
random=new GausRandom(77889765);
totalNumOfAgents=numOfAgents;
Agents.isClonable=isCloned;
agentThreadGroupew ThreadGroup("Agent Cloning");
System.out.println("Agent Manager Created...");

}
// This method will create the agent threads intially
// and start the threads

void createAgentsO
{

System.out.println("Creating the Agents ...");
agentThread=new Agents[totalNumOfAgents];
for(int i=O;i<agentThread.length;i++)

agentThread[i]=new Agents(i,net,out,agentThreadGroup);
for(int i=0;i<agentThread.length;i++)

agentThread[i].startO;
System.out.println("Agents created ...fin");

}
// adds the newly created cloned thread to reference list

static synchronized void increaseAgents(Agents cloneThread)
{
Agents[] temp;

if(totalNumOfAgents= agentThread.length) { // check for array size
temp=new Agents [2*agentThread.length];
for(int i=O;i<agentThread.length;i++)

temp [i] = agentThread[i];
temp [agentThread.length]=cloneThread;
agentThread=temp;

} else
agentThread[totalNumOfAgents]=cloneThread;

totalNumOfAgents++;
}

// assigns the tasks to agents according to the gaussion distribution
void assignTasks(int numOfTasks)
{
int agentNum;
int numTasks;
Task task[];

for(int i=O;i<totalNumOfAgents && totalTasks<=numOfrasks;i++) {
agentNum=random.unifonnRandom(totalNumOfAgents);

81

numTasks=random.gausRandom(10);
totalTasks+=numTasks;
task=new Task[numTasks];
forint j=0;j<numTasksj++)

task[j]=new Task();
agentThread[agentNum].assignTasks(task);

// controling method of agent manager thread
public void run()
{
int i;
int time;
int numOfAgents;
Runtime runtime=Runtime.getRuntimeo;

numOfAgents=totalNumOfAgents;
for(i=scheduledTasks;i<=scheduledTasks;i+=100) {

time = totalTime* 1000/i;
startTime=System.currentTimeMillisO;
totalTasks=0;
Agents.completedTasks=;
totalNumOfAgents=numOfAgents;
createAgentso ;
while(totalTasks<i) {

try{
Thread.sleep(time);

Icatch(InterruptedException e)
System.out.println(e);

assignTasks(i);

out.println("total Tasks "+ totalTasks);
out.println("Completed Tasks"+Agents.completedTasks);
for(int j=0j<totalNumOfAgents;j++)

agentThread[j]. stopJob sQ;
for(int j=0;j<totalNumOfAgents;j++)

agent'Thread [j].releaseResourcesO;
// 	 for(int j=numOfAgents;j<totalNumOfAgents;j++)
// 	 if(agentThreadD].isAliveO)
// 	 agentThread[j].stopO;

System.out.println("Proceeding for the "+ i +" Tasks");
System.out.println("Total Tasks "+ totalTasks);
System.out.println("Completed Tasks "+

Agents.completedTasks);
agentThreadGroup.stopO;

82

II 	 for(int j=0;j<totalNumOfAgents;j++)
// 	 agentThread[j].stopO;
// 	 agentThreadGroup.stopO;

stop();

// 	 output layer

import java.io.*;

class OutputLayer extends Layer{

protected float[] weights;
protected float[] output_errors; // array of errors at output
protected float[] back_errors; // array of errors back-propagated
protected float[] expected- values; /I to inputs

public OutputLayer(int iii, int out)
{

num_inputsin;
num_outputs=out;
weights=new float[num_inputs* num_outputs];
output errors new float[num outputs];
back_errors=new float[num_inputs];
outputs = new float[num_outputs];
expected_values = new float[num outputs];

public void calc_outO
{
int i,j,k;
float accumulator=0.0f;

for (j=0; j<num_outputs; j++) {
for (i=0; i<num_inputs; i++) {
k=i*num_outputs;
if (weights[k+j]*weights[k+j] > 1000000.0)
{ 	

System.out.println("weights are blowing up");
System.out.println("try a smaller learning constant");
System.out.println("e.g. beta=0.02 aborting...");
System.exit(1);

83

outputs[j]=weights[k+j]* inputs[i]
accumulator-=outputs [j];

// use the sigmoid squash function
outputs [j]=B ackPropagation. squash(accumulator);
accumulator=0;

!/ calculates the error
public float calc_error(float error)
{
int i, j, k;
float accumulator=0;
float total_error=0;

for (j=0; j<numoutputs; j++)
{

output_errors[j] = expected_values[j]-outputs{j];
total_error+=output_errors[j];

}
error=total_error;
for (i=0; i<num_inputs; i++)
{

k=i*num_outputs;
for (j=0; j<num_outputs; j++)
{

back_errors[i]= 	weights[k+j]*output_errors[j];
accumulator+=back_errors[i];

}
backerrors[i]=accumulator;
accumulator=0;

//now multiply by derivative of
// sigmoid squashing function, which is
//just the input*(1-input)
back — errors [i] *=inputs [i] *(1-inputs[i]);
}

return error;
}

// randomize the weights of the network
public void randomize_weightsO
{
int i, j, k;
final int first—time=l;
final int not _first time=0;
float discard;

84

discard=B ackPropagation.randomweight(first_time);
for (i=0; i< num inputs; i++)
{

k=i*num_outputs;
for (j=0; j< num_outputs; j++)

weights [k+j]=B ackPropagation. randomweight(not_first_time);
}

public void update_weights(fmal float beta)
{
int i, j, k;

// learning law: weight_change =
// 	 beta*output_error*input

for (i=0; i< numinputs; i++)
{

k=i*nun outputs ;
for (j=0; j< num_outputs; j++)
weights[k+j] +_
beta*output_errors[j] *inputs[i] ;

}
// list weights

public void list_weights()
{
int i, j, k;

for (i=O; i< num_inputs; i++)
{

k=i*num outputs;
for (j=0; j<num_outputs; j++)

System.out.println("weight["+i+","+j+"] is: "+
weights[k+j]);

}
// lists the errors

public void list_errorsO
{
int i, j;

for (i=O; i< num inputs; i++)

85

System.out.println("backerror["+i+"] is : "+back_errors[i]);

for (j=0; j< num_outputs; j++)
System.out.println("outputerrors["+j+"] is: "+output_errors[j]);

void write weights(int layer no,DataOutputStream out)
{
int i, j, k;

// assume file is already open and ready for
//writing
// prepend the layer_no to all lines of data
// format:
// 	layer_no 	weight[0,0] weight[0,1] ...
// 	layer_no 	weight[1,0] weight[1,1] ...
// 	...

try{
for (i=0; i< num_inputs; i++)
{

out.writelnt(layer no);
out.writeChar('\n');
k=i*num_outputs;
for (j=0; j< num_outputs; j++) {

out.writeFloat(weights[k+j]);
out.writeChar('\n');

}
}catch(Exception e){)

}
// read the weights

public void read_weights(int layer no,DatalnputStream din)
{
inti,j,k;

// assume file is already open and ready for
//reading
// look for the prepended layer_no
// format:
// 	layer_no 	weight[0,0] weight[0,1] ...
// 	layer_no 	weight[1,0] weight[l,l] ...
//

try{
while (true)

86

j=din.readlntO;
din.readCharO;
if (j=layer_no)

break;
else
{

for(int p=0;p<numoutputs;p++) {
din.readFloato;
din.readCharO;

}

// continue getting first line
i=0;
for (j=0; j< num_outputs; j-H-) {

weights[j]=din.readFloato;
din.readCharO;

}
// now get the other lines

for (i=1; i< num_inputs; i++)
{

layer_no=din.readlnt();
din.readCharO;
kri*num outputs;
for (j=0; j<numoutputs; j++)
{

weights [k+j]=din. readFloatO;
din.readCharO;

}
}catch(Exception e) {}

}
// lists the outputs

public void list_outputs()
{
int j;

for (j=0; j<num_outputs; j++)
{
System.out.printhi("outputs["+j+"] is: "+outputs[j]);
}

87

import java.util.*;
import java.io.*;
//this class creates the network
class Network implements Constants{

int spDist[][]; 	//shortest path from one node to another
int pred[][]; 	//predecessor matrix
Host hostServer[]; // reference to all servers
GausRandom random; // gaussian random varaible
PrintWriter out=null; // log file reference
static int numOfRosts; //number of hosts
// constructor of network

Network(PrintWriter out,int numOfHosts)
{
int x,y;

this.out=out;
random=new GausRandom(688888885);
hostServer=new Host[numOfHosts];
this.numOfHosts=numOfHosts;
Host.numOfHosts=numOtHosts;
for(int i=0;i<numOfHosts;i++) {

do {
x=random.uniformRandom(MAXX);
y=random.uniformRandom(MAXY);

} while(checkForPosition(i,x,y));
hostServer[i]ew Host(i,x,y);

}
spDist=new int[numOfHosts][numOfHosts];

pred=new int[numOfHosts][numOfHosts];
}

If checks for the position concidence with other host
boolean checkForPosition(int index,int x,int y)
{
boolean done=false;

for(int i=0;i<index&& !done ; i++)
if(Math.abs(hostServer[i].x -x)<10 &&

Math. abs(hostServer[i].y-y) <10)
done=true;

return done;
}

// creates the network and find out shortest path
public void createNetworkO
{

floydRoutingO;
for(int i=0;i<numOfHosts;i++)

88

setRoutes(i);
showOutputo ;

}
// checks for connection between two nodes

boolean isConnected(int i,intj)
{
boolean done=false;

for(int k=0;k<hostServer[i].connection.length && !done; k++)
if(hostServer[i].connection[k] = j)

done=true;
return done;

}
// find the distance between two nodes

int findDist(int i,intj)
{
double sum=0;

if(isConnected(i,j)) {
sum=(hos tServer[i].x-ho stServer[j].x)

(hostServer[i].x- hostServer[j].x);
sum+=(hostServer[i].y-hostServer[j].y) *

(hostServer[i].y -hostServer[j].y);
return (int) Math.sgrt(sum);

} else
return INFINITY;

}
// finds the shortest path in the network using floyd algorithm

public void floydRouting()
{

for(int i=0;i<numOfHosts;i++)
for(int j=0;j<numOfHosts;j++){

if(i! j)
spDist[i][j j=findD ist(i j);

else
spDist[i][i]=0;

pred[i][j]=i;
}
for(int k=0;k<nwnOfHosts;k++)
for(int i=0;i<numOfHosts;i++)
for(int j=0;j<numOfHosts;j++)
if(spDist[i][j]> spDist[i][k]+spDist[k][j]) {

spDist[i] U]=spDist[ij[k]+spDist[k][j];
pred[i] b]==pred[k] [ii;

// set the routes of the id
void setRoutes(int id)

for(int i=0;i<numOfHosts;i++){
hostServer[id].dist[i].distance=spDist[id] [i];
hostServer[id].dist[i].pred=pred[id] [i];

}
// shows the output path of a server

void showOutput()

System.out.println("Showing the output");
for(int i=0;i<numOfHosts;i++){
for(int j=0;j<numOfHosts;j++)

System.out.print(spDist[i](j] +" "+pred[i][j]+" ");
System.out.println();

	title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

