
ADAPTIVE CLUSTERING
IN

MOBILE, MULTIMEDIA, MULTIHOP
WIRELESS NETWORKS

A DISSERTATION

submitted in partial fulfilment of the
requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND TECHNOLOGY

• : Acc 7 ~~
'•.

, Ido• . ~ ..6 . 	 s'.
3~ t

By ';7l ̀ 	/~

SANJEEV WIRT •..,, .,.

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247 667 (INDIA)

JANUARY, 1999

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation titled "ADAPTIVE CLUSTERING IN

MOBILE, MULTIMEDIA MULTIHOP WIRELESS NETWORKS" in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer Science and

Technology, submitted in the Department of Electronics and Computer Engineering, University of

Roorkee, Roorkee, is an authentic record of my own work carried out during the period from July

1998 to January 1999 under the guidance of Dr. (Mrs.) KUMKUM GARG, professor, Department

of Electronics and Computer Engineering, University of Roorkee, Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other degree

or diploma.

Date: 214-1999
	

(SAN EV GTA)

Place: Roorkee

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of my

knowledge and belief.

Date: 2-.'I-1999

Place: Roorkee Dr. (.) UMKUM GARG
Professor
Department of Electronics &
Computer Engineering
University of Roorkee
Roorkee.

ACKNO WLEDGEMENTS

At the submission of this dissertation work, I take the opportunity to express my deep sense of

gratitude and indebtedness to my guide, Dr. (Mrs.) KUMKUM GARG, professor, Department of

Electronics and Computer Engineering, University of Roorkee, Roorkee for her invaluable, tireless

guidance and constructive criticisms throughout this dissertation. It is only due to her constant

motivation and moral support, I was able to pull through many difficult phases of the work and bring

it to a successful completion.

I would like to thank Dr. MANOJ MISHRA for his immense technical help.

Finally I would like to thank all my friends, who directly or indirectly helped me in completing this

task successfully.

SAN~EEV TA

ABSTRACT

The dissertation work simulates self-organizing wireless Mobile, Multimedia, Multihop(M3)

networks. The basis of the network is clustering, i.e. nodes are organized into non-overlapping

clusters. The clusters are independently controlled. Since the network supports mobility, these

clusters are to be dynamically reconfigured. This adaptive clustering algorithm very well takes care

of overheads for configuring and reconfiguring clusters. It is fast deployable, making it useful for

emergency networks. The network relies on a code-division multiple access scheme for multimedia

support. The main advantages of network architecture are, that it provides spatial reuse of

bandwidth, and that bandwidth can be shared or reserved in a controlled fashion in each. cluster.

(Simulation results confirm that this architecture provides an efficient and stable infrastructure for the

integration of different types of traffic in a dynamic radio network)

In our work, we first find the minimum transmission range within which all nodes can access all

j other nodes. We then implement the given clustering algorithm. We also suggest a modified

i clustering algorithm and show through simulation results, how our algorithm increases the number of

real time connections accepted((Further, this algorithm can sustain more mobility, that is, it requires

less reconfiguring on node movement))

The implementation is done in C language on the TATA ELAXI RISC system under UNIX

environment.

CONTENTS

Page no.

CANDIDATE'S DECLARATION 	 (i)

ACKNOWLEDGEMENTS 	 (ii)

• ABSTRACT 	 (iii)

1. INTRODUCTION AND BACKGROUND 	 1

1.1 	Introduction to M3 Network 	 1

1.2 Statement of Problem 	 2

1.3 Organization of Dissertation 	 3

2. ADAPTIVE CLUSTERING 	 4

2.1 The Multi-Cluster Architecture 	 4

2.1.1 Assumption and Definition 	 5

2.1.2 The Clustering Algorithm 	 6

2.2 Cluster Maintenance in the Presence of Mobility 	 7

2.3 Code Assignment 	 8

2.4 Network Initialization 	 9

3. MAC LAYER PROTOCOL 	 10

3.1 Channel Access scheme 	 10

3.1.1 Collision-Free Channel Access Scheme 	 10

3.1.2 The inter-cluster communication 	 11

3.2 Acknowledgement for Datagram 	 13

4. NETWORK LAYER PROTOCOL 	 15

4.1 	Bandwidth in Cluster Infrastructure 	 15

4.2 Bandwidth Reservation for VC Traffic 	 16

4.3 Adaptive Routing for Real-time Traffic 	 18

4.4 Routing for Datagram 	 20

5 DESGN AND IMPLEMENTATION 	 21

5.4 Simulation of Traffic 	 21

5.5 Simulation of Routing 	 22

5.6 Description of Function Used 	 22

6. CONCLUSION 	 24

6.4 	Discussion Of Result 	 24

6.5 Future Scope of Work 	 27

REFERENCES

APPENDICES: Software Listing

CHAPTER 1

Jr

7

INTROI? - CTIQN AND-BACKGROUND

1.1 MOBILE, MULTIMEDIA, MULTIHOP (M3) WIRELESS NETWORKS

Current wireless systems, such as cellular systems, have fixed network and fixed

base stations or servers that are linked by a wired backbone infrastructure. In

some cases such as emergency disaster relief, when the backbone is not available,

this type of architecture is infeasible. In this hesirs we discuss a network

architecture which overcomes these constraints. This is a wireless network, which

is adaptable to a variety of transmission environments, networks configurations

and user services (including data, voice and image). The architecture enables

rapid deployment and dynamic reconfiguration of a network of wireless stations.

In conventional cellular communication, a mobile node is only one hop away

from a base station. Another type of model based on radio to radio multihopping,

has been evolving to serve a growing number of applications which rely on a fast

deployable, multihop, wireless infrastructure. Classic applications for this are

battlefield communication, disaster recovery and search and rescue. A recent

addition to this set is the "adhoc" personnel communication network, which could

be rapidly deployable on a campus, for example, to support collaborative

computing and access to Internet during special events. The main advantage of

multihopping through wireless repeaters is to reduce battery power and to increase

network capacity (via spatial reuse).

More precisely, in the taes-ice" we are concerned with the design of efficient

Multihop, Mobile, Multimedia (M3) wireless networks. The M3 problem has

been recognized as a very difficult problem. Over a decade ago, the ARPA

sponsored Packet Radio Network did provide an efficient solution to multihop,

mobile requirement of battlefield and disaster relief communication. It fell short,

however~of supporting multimedia services.

Recently the M3 problem was revisited under the ARPA sponsored WAMIS and
I

GLOMO projects [9]. In this scheme the network is dynamically partitioned into

clusters where each cluster uses different spreading-codes. Clusters (with code

separation) improve spatial reuse. They also make it easier to manage real-time

connections since each cluster can manage its own bandwidth.

In this th.es,is. we have dealt with the above mentioned M3 wireless networks by

simulating them and doing a performance analysis based on cl i1stering algorithm

given in the [11j] . We tlen''show that, b}~ limiting the cluster size, a considerable '

improvement in real-time connection acceptance and datagram throughput can be

obtained(detailed-in-our modified-clustering-al-gor-ithm,-chapter 2).

j))

1.2 STATEMENT OF THE PROBLEM

The dissertation deals with the problem of

- 	simulating the M3 network

- 	finding the minimum transmission range within which every node can access

all other nodes

- 	simulating the clustering algorithm given in [11].

- 	simulating the modified clustering algorithm and comparing the various

cluster properties with the given algorithm's properties.

- 	finding the performance of the network in terms of real-time connections

accepted and datagram throughput.

2

1.3 ORGANISATION OF DISSERTATION

Including this introductory chapter in M3 networks, this dissertation is organized

as follows:

In chapter 2 we define the various terms used in M3 networks and then describe

the given adaptive clustering algorithm. The emphasis is on the important issue of

overheads while dealing with mobility of nodes. We also present our modified

clustering algorithm.

Chapter 3 describes the collision free channel access scheme and deals with the

reliability of datagrams through piggybacked reservation scheme.

Chapter 4 gives details of routing of real-time traffic and datagrams. It explains a

loop free highly dynamic routing algorithm for mobile nodes.

Chapter 5 shows the simulation model and explains the various functions and

routines used in the simulation of the above algorithms.

Chapter 6 gives details of the results obtained using both the given and the

modified clustering algorithms. It also lists the open problems in the area and

gives suggestion for further work.

Software listing is given in Appendices.

3

CHAPTER 2

ADAPTIVE CLUSTERING

In order to support multimedia traffic, the wireless network layer must guarantee

QoS (bandwidth and delay) to real-time traffic components. Our approach for

QoS to multimedia consists of the following two steps: 1) partitioning of

multimedia network into clusters, so that controlled, accountable bandwidth

sharing can be accomplished in each cluster; and 2) establishment of virtual

circuits with QoS guarantee.

2.1 THE MULTICLUSTER ARCHITECTURE [11]

Most hierarchical clustering architectures for mobile radio networks are based on

the concept of a clusterhead. The clusterhead acts as a local coordinator of

transmission within the cluster. It differs from the base station concept in current

cellular systems in that it does not have special hardware and in fact it is

dynamically selected among the set of stations. However, it does extra work with

respect to ordinary stations, and therefore it may become the bottleneck of the

cluster. To overcome these difficulties, in our approach, we abandon the

clusterhead approach altogether and adopt a fully distributed algorithm.

The objective of the clustering algorithm is to find an interconnected set of

clusters covering the entire node population.

4

2.1.1 ASSUMPTIONS AND DEFINITIONS

Each node contains an identical transceiver, which can either transmit or receive

at any given time. In addition, each node uses an omni-directional antenna for

transmission. We assume there is a particular set of spread spectrum code with

low cross-code interface. Since the number of codes we can use is very limited,

spatial reuse of codes will be important. Finally, all radio nodes use the same

power for transmission. The following definitions and notations will be frequently

used in the thesis.

Definition 1: (System Topology)

The system topology is a graph G=(V, E), where V is the set of nodes, and e is the

set of logical edges. It is used to represent a radio network. There is only one

transceiver in each node and the network operates in a half—duplex mode. A

logical edge (x, y) means that node y is node X's one-hop neighbor under the

current transmitting power, and vice-versa.

In Fig. 1 we have an example topology.

I 	 „ 	 , L 	1'7

Fig. I System topology

Definition 2: (Distance of two nodes)

The distance d(x, y) of two nodes x and y of G is defined to be the minimal

number of hops from x to y.

.5

Definition 3: (Cluster)

A cluster Ci is a set of nodes, where for any two nodes x, y which are elements of

Ci, d(x,y)<=2. Namely any two nodes in a cluster are at most two hops apart.

Definition 4: (Degree of a Topology)

The degree of a topology is the number of clusters in the topology.

Definition 5: (Repeater, Bridge and the Order of a Repeater)

For an edge u=(x, y), x and y are called repeaters if they belong to different

clusters. u is called a bridge. The number of clusters, which a repeater can reach

in one hop, is called

the order of the repeater. The order of a repeater includes the cluster, which it

belongs to. Thus, the minimal order of a repeater is 2.
c

2.1.2 THE CLUSTERING ALGORITHM

Let TI (x) be the set of one-hop neighbors of the node x, which has the maximum

number of one-hop neighbors.

1 i=0

2 x = min(v) .

3 Ci={x}UTI

V=v-Ci;

E=E -w(Ci)

4 If v is not { } then i = i+l and go to 2;

else stop.

We have made a modification in step3 of the algorithm by limiting the -size of

clusters; in case x has more than n/4 one-hop neighbors, we include only the

nearest [n/4] nodes.

So in the modified clustering algorithm Ci={x}U T2, where T2 is the set of the

nearest [n/4] nodes.

This is the centralized version of the clustering algorithm and the advantage of the

algorithm lies in the fact that it can be implemented in fully distributed manner i.e.

without need of any clusterhead.

6

4 	3

2.2 CLUSTER MAINTENANCE IN THE PRESENCE OF MOBILITY [1]

In the dynamic radio network, nodes can 1) change location, 2) be removed, and

3) be added. A topological change occurs when a node disconnects or connects

from/to all or parts of its neighbors, thus altering the cluster structure. System

performance is affected by frequent cluster changes. Therefore it is important to

design a cluster maintenance scheme to keep the cluster infrastructure as stable as

possible. In this respect, the proposed algorithm is more robust than the referred

one because it chooses those nodes, which are nearest. The cluster maintenance

scheme was designed to minimize the number of node transitions from one cluster

to another.

FA

Fig. 2(a) Clustering

5

Fig 2(b) Reclustering

7

Let us take an example, as shown in Fig. 2. There are five nodes in the cluster

and the hop distance is no more than two. Because of mobility, the topology

changes to the configuration shown in Fig 2(b) At this time, d(1, 5) -- d(2, 5) = 3

> 2, where d(i, j) is the hop distance between j and i. So the cluster needs to be

reconfigured. Namely, we should decide which nude(s) should be removed from

the current cluster. We let the highest connectivity node and its neighbors stay in

the original cluster, and we remove the other nodes. We know that each node

only keeps the information of its locality, that is, its one-hop and two-hop

neighbors. Upon discovering that member say x, of its cluster is no longer in its

locality, node y should check if the highest connectivity node is a one-hop

neighbor. If so, y removes x from its cluster. Otherwise, y changes cluster.

Two steps are required to maintain the cluster architecture:

Step 1: Check if there is any member of my cluster that has moved out of my

locality.

Step 2: If yes, decide whether I should change cluster or remove the nodes not in

my locality, from my cluster.

We see the example shown in Fig 2(b). Node 4 is the highest connectivity node.

Thus node 4 and its neighbors {1,2,3} do not change cluster. However node 5

should either join another cluster or form a new cluster. If a node intends to join a

cluster, it has to check first if all members of this cluster are in its locality. Only

in this case can it join the cluster.

2.3 CODE ASSIGNMENT [1]

Each node has a transceiver, which can either transmit or receive at any given

time. In the spread -spectrum code-division system, the receiver should be set to

R

the same code as the designated transmitter. We assume there is a small set of

good spread-spectrum codes, which have low cross-correlation. 	Since the

numbers of codes we can use are limited, the spatial •reuse of code will be

important. Thus each cluster is assigned a single code which is different from the

codes used in the neighbor clusters.

The essence of our transmitter based code assignment scheme is "within a cluster,

every node uses a common transmitting code so that there is no intercluster

collision. If no two nodes in a cluster are transmitting simultaneously, there will

be no intracluster collision"

2.4 NETWORK INITIALIZATION [1]

Initialization is carried out using a common "control" code. A node, which does

not yet belong to a cluster, listens-to a control code until timeout. Then it transmit

its own ID (using the control code), and repeats the procedure until it hears from

one of the neighbors. Channel access in this phase is CSMA. This basic

communication facility allows nodes to organize themselves in clusters following

the algorithm just described. Once a cluster is formed, the cluster leader

communicates with the neighbors (using the control code) to select the codes.

Only when the code assignment is completed (i.e. each cluster has been assigned

its code) can user data be accepted by nodes and transmitted in the network.

X

CHAPTER 3

MAC LAYER PROTOCOL

In this chapter, we introduce the medium access control (MAC) protocol. The aim here

is to support integrated traffic (datagram and real time) efficiently. We will assume fixed

packet size.

3.1 THE CHANNEL ACCESS SCHEME

The two nodes, which are communicating, may or may not belong to same cluster. So

communication between two nodes which belong to different clusters, requires two steps,

namely intracluster and intercluster communication.

3.1.1 COLLISION-FREE CHANNEL ACCESS SCHEME

Since our system is distributed and each cluster uses a common channel for packet

transmission, we employ a round-robin (RR) scheme, which completely •rotates the

access priority among the nodes, to make the channel access distributed and conflict-free.

The RR scheme gives each node in turn an opportunity to transmit a packet. In addition,

the short propagation-to-transmission time ratio makes CSMA suitable as an access

scheme. Thus, we implement RR over CSMA slotted ALOHA (CSMA-RR) for packet

transmission within a cluster. In this scheme, if a node, say x, relinquishes its turn to

transmit, its one-hop neighbors contend for this free time slot. The right to transmit in the

next time slot passes to the next node of x in logical sequence.

10

Since our system assumes a common transmitting code in each cluster, there is no

intercluster collision. The receiver must tune to transmitter's code to receive the packet.

It is relatively easy to maintain time (i.e. slot) synchronization within each cluster. So the

channel will be assumed slot synchronized. This is much easier than maintaining slot

synchronization across the entire network. It is important to note that in this scheme

synchronization is required only within a cluster.

3.1.2 INTER-CLUSTER COMMUNICATION

In addition to the two codes (for information and ACK) assigned to each cluster, two

codes are also assigned to each edge which connects a pair of adjacent clusters for inter-

cluster communication. Namely, there are two channels, the transmission (Xmt) channel

and the acknowledgment (Ack) channel, for each pair of adjacent clusters.

Each repeater must periodically listen to different codes (in fact, as many codes as its

order). We assume that the repeater, when it is free from voice traffic, shares its time

randomly among the various codes.

The access on the transmitting channel can be simply carried out in a CSMA unclotted

ALOHA fashion. Namely, if the channel is sensed busy, or if the transmission is

unsuccessful (no ACK), the packet is regarded as backlogged.

ti 	 t2 t3 	 t4 Time

Fig. 3.1 Random Delay

11

As Fig 3.1 shows, each backlogged packet repeatedly attempts to retransmit at randomly

selected times separated by random delays t. If the channel is idle at one of these times,

the packet is transmitted, which continues until such a transmission is successful. Upon

receiving a packet successfully, the receiver uses the Ack channel to transmit an explicit

ACK packet immediately.

At the first packet transmission, the voice source reports the spreading code, which is

different from the code used in Xmt channel and will be used for the following voice

packet transmission. Thus, after the first successful transmission, the receiver listens to

this spreading code. On the other hand, the voice source schedules its next transmission

at a fixed time Ts as intra-cluster communication and uses the piggyback reservation with

packet transmission to reserve the time slot.

Fig. 3.2

For example in Fig. 3.2, suppose that a voice stream is transmitting through edge (1,3).

The voice packets are encoded by another spreading code different from the code used in

Xmt channel. At this time, the node 4 can transmit a data packet to node 2 through Xmt

channel without collision at node 3.

12

frame

• • • •

free -slot

Fig. 3.3. Channel Access Frame within a Cluster

As shown in the Fig. 3.3, we assume that there are n nodes in a cluster. Time is divided

into slots, which are grouped into frames. In each frame, a free slot is reserved for a new

node joining the cluster. Using the control code, the nodes in the cluster take turns to

transmit periodically in the free slot, their cluster and code information, for the purpose of

attracting new nodes. When a node decides to join a cluster, it listens to the channel for a

period of time, and then uses this free slot to transmit packets temporarily. Since cluster

switches are infrequent, one free slot will suffice. The frame is readjusted after each

join/leave.

3.2 ACKNOWLEDGMENT FOR DATAGRAM

Datagram traffic is error sensitive. Thus, it is important to design a reliable transmission

for datagrams. Each cluster has a dedicated code for transmission. Since every node can

only transmit packets in its assigned TDMA slots, we use an implicit acknowledgement

scheme. Upon receiving a packet successfully, the intended receiver piggybacks the

13

acknowledgment on its data packet at its assigned slot. The transmitter listens to the

receiver's slot and code. If a time out occurs, it retransmit the packet.

X(a) 	code a 	Y(b) code b 	Z(c)

!

code b

Fig. 3.4 Implicit acknowledgement scheme

Fig. 3.4 illustrates this implicit ACK scheme. Node x uses code a to transmit its packet

to y, and listens to code b for ACK. Node y receives the packet successfully. When its

transmitting slot comes, y piggybacks an ACK for x on the packet, which it transmitted

to z.

14

CHAPTER 4

NETWORK LAYER PROTOCOL

A multimedia application such as digital audio or video has much more stringent QoS

requirement than a traditional datagram application. For a network to deliver QOS guarantees, it

must reserve and control resources. Routing is the first step in resource reservation. The routing

protocol first finds a path with sufficient resources. Then, the resource setup protocol makes the

reservations along the path.

4.1 BANDWIDTH IN CLUSTER INFRASTRUCTURE [11

The key resource for the multimedia QoS support is bandwidth. We define bandwidth in our

cluster infrastructure for the purpose of real-time connection support, as the number of real-time

connections that can pass through that node. Since, in our scheme a node can at most transmit

one packet per frame, the bandwidth of a node is given by

bandwidth = (int) (cycle time/frame time) 	.

here CYCLE TIME is the maximum interval between two real-time packets..

and frame time of a cluster depends on how many nodes there are in the cluster.

Frame

i

Lycle

Fig.4.1 Noise Bandwidth

15 	. S

Fig. 4.1 shows the slots dedicated to node i in the cycle, which correspond to node i's bandwidth

.For example, if cycle time is 24, consider cluster Cl, where frame size is equal to six slots. Thus

the node bandwidth in Cl is 24/6 = 4. Since there are three VCs passing through node c, the

available bandwidth for node c is one.

4.2 BANDWIDTH RESERVATION FOR VC TRAFFIC [1]

A real-time connection is set up using a fast reservation approach. We assume that real-time

packets arrive at constant time intervals. The first data packet in the multimedia stream makes

the reservation along the path. Once the first data packet is accepted on a link, a transmission

window is reserved (on that link) at appropriate time intervals for all of the subsequent packets in

the connection. The window is released when idle for a pre-specified number of cycles.

Each real-time connection is assigned to a VC which is an end-to-end path along which slots

have been reserved. The path and slot of a VC may change dynamically during the lifetime of a

connection due to mobility. Each node schedules each of its slots to transmit either datagram or

VC traffic. Since real time traffic needs guaranteed bandwidth during its active period, each

node has to reserve its own slots to the VC at connection set up time.

When a node intends to set up a VC to-its neighbor, it transmits the first session of the packet in

its TDMA slot. After successfully receiving the packet, the intended receiver will set up the

reservation for receiving the next packet, since the next transmission time is piggybacked on the

current packet. Since the sender always uses the same code to transmit packets, the intended

receiver only needs to lock on that code when the reserved slot comes. If the link is not broken

due to mobility, the subsequent packet will be received successfully.

16

Nodel
	

Nodel

I. 	 .I 	 Time

Cycle

Fig.4.2 Bandwidth Reservation

Let CYCLE be the maximum interval tolerated between two real-time packets. The first packet

of the real-time session is treated as a data packet and is transmitted using TDMA. It has higher

priority than data packets in the local queue. A real-time source schedules its next transmission

after a time CYCLE following a successful transmission, and piggybacks the, reservation with

the current transmission. Fig. 4.2 shows that node i successfully transmits the fist real-time

packet and it reserves the time slots for the real-time session. The receiver has to listen to the

sender's transmitting code when the reserved time slot comes. So, for real time sources,

transmission is always collision-free and the maximal delay is guaranteed. At the end of real-

time session (i.e., the reservation field is set to zero), the reservation is automatically canceled.

Because of the limitation of node bandwidth in a cluster, the number of real-time sessions which

can pass through a node, is restricted. Slots, which are not reserved by voice traffic, are accessed

according to a TDMA protocol. Datagram packets become backlogged when real-time traffic

starts building up. For example, we consider the case when bandwidth of a node is completely

used by a real-time session. Hence, there are [(CYCLEI((n+1)*t)] real-time sessions (in Fig. 4.2)

over a node, where n is the number of members`in the cluster and t is the packet transmission

time No other source can construct a VC which passes through the saturated node until one of

the VC's over the saturated node ends its transmission and bandwidth become available.

17

ADAPTIVE ROUTING FOR REAL-TIME TRAFFIC [4]

When real-time traffic is considered to transmit over the dynamic network, the objective of

routing protocol is to keep communication going. Routing optimality (e.g., shortest path) is of

secondary importance; the routing protocol must be capable of establishing new routes for real-

time sessions quickly when a topological change destroys existing routes. So we set the goal of

the bandwidth routing algorithm to "find the shortest path such that the free bandwidth this

above the minimum requirement".

To compute the bandwidth constrained shortest path, we use the DSDV (destination sequenced

distance vector) [4] routing algorithm which was proven to be loop free. Loop freedom follows

from the fact that the updates generated by a destination are sequentially numbered. In our

shortest path computation, the weight of each link is equal to one (i.e. minimal hop distance

routing). The bandwidth constraint, is simply accounted for by setting to infinity the weights of

all the links to/from a node with zero bandwidth. An advantage of this scheme is to distribute the

real-time traffic evenly across the network. A cluster with small frame size will allow more

connections to pass through it, since it has more " bandwidth" per node.

In addition to load balancing, our routing scheme also supports the alternative path. This is very

important in the mobile environment, where links will fail because of mobility. In such an

environment, routing optimality is of secondary importance. The used routing protocol is

capable of finding new routes quickly when a topological change destroys existing routes. To

this end, the algorithm proposes to maintain secondary paths, which can be used immediately

when the primary path fails.

18

0

s_route

N2

Fig. 4.3 Standby routing

For example in Fig. 4.3, each node uses the primary route to route its packets. When the first link

on the path (s, Ni) fails, the secondary path (s, N2) becomes the primary path, and another

standby path (s, N3) will be computed as shown in the Fig.4.4.

N3

0

Fig. 4.4 The primary route fails and the standby route becomes the primary route.

Another standby route is constructed.

It is to be pointed out that these routes are using different immediate successors to avoid failing

simultaneously.

19

The secondary route is easily computed using the DSDV algorithm. Referring to the Fig. 4.3, we

see that each neighbor of node S periodically informs S of its distance to D. The neighbor with

shortest distance yields the primary route The runner-up yields the secondary route. The scheme

guarantees that the first link is different for the two paths. Furthermore, the standby route

computation requires no extra table, message exchange or computation overhead. Also the

standby route is as loop free as the primary route is.

ROUTING FOR DATAGRAMS [1]

In order to minimize delay for real time traffic we choose even those paths which may not be

shortest, this is what we have achieved through the bandwidth constrained routing. But to

achieve efficiency, datagrams are always pushed into the network in a way so that they always

follows the shortest path from source to destination.

20

CHAPTER 5

IMPLEMENTATION AND DESIGN

The multicluster architecture is simulated using various C-structures. We performed several sets of

experiments in order to evaluate the performance as a function of traffic and system parameters.

The simulation is described in the following sections.

5.1 SIMULATION OF TRAFFIC

The channel rate is 800 Kbits/sec (the nominal rate of the radio under development, in the ARPA

sponsored WAMIS project). All data packets (datagram and real-time) are of 4 kbits.

The offered traffic consists of two components, real-time and datagram. A new real-time session

is generated on average every second (Poisson arrival model) between a random pair of nodes.

Session duration is exponential with average duration of 3 minutes. The real-time cycle is allowed

to vary from 1 pkt/sec to 10 pkts/sec.

We simulated the following condition by using two C-lists of structures, one for real-time and

another for datagrams. Each structure of real-time traffic has members to show number of packets

1) that will be transmitted in the session 2) after which the new real-time session will start 3)

source and destination between which the real-time session is to start. Another C-list is for

datagrams where each structure need to contains only source and destination information, because

in our experiments we assumed uniform datagram rate, namely 10 pkts/sec.

21

5.2 SIMULATION OF ROUTING

We used highly dynamic Destination-Sequenced Distance-Vector (DSDV) which guarantees loop

freedom. The routing for the real-time traffic is "bandwidth constrained shortest path" where as for

the datagram it is "shortest path".

We simulated the above mentioned properties of our routing technique by taking each node as a

structure. We assigned each node an initial available bandwidth, which is calculated on the basis of

number of nodes in the cluster to which the particular node belongs and CYCLE-time. Then for

each real-time session we find the path. If path is available (that is enough bandwidth is available

at all the nodes between source and destination) then we reserve the bandwidth along the path.

Each node then calculates the currently available bandwidth. Our strategy gives path as per

available bandwidth, that is, if enough bandwidth is not available along the shortest path, then less

efficient path will be given if enough slots are available along that path.

For the datagram case we set the currently available bandwidth to infinity, so it always follows the

shortest path. While finding the path we do not consider the node, which is already in the path, so

we ensure loop freedom.

5.3 DESCRIPTION OF FUNCTIONS USED

Many functions are used in the simulation work; we list here some important functions. However,

an exhaustive list of all functions used can be found in the APPENDICES.

random_deploy() : By this function we generate different topology with n uniformly distributed

nodes in a 100100 square area.

one_hop_neighbor() : The function finds the one-hop neighbor, if any, of all the nodes in the

topology. The transmission range is varied and for each value, it finds the one-hop-neighbors.

cluster_form() : The function makes the clusters with the help of function find_min which find

the nearest given number of minimum nodes.

22

random_rcdeploy() : In our simulation, every 100 ms, each node moves in a direction uniformly

distributed over the interval (0, 2I1), covering a distance of (0, 3).

Function redeploys the nodes as per defined mobility.

cluster_form() : With the help of many other function, this function does the important job of

making clusters.

modify_list2() : After the formation of cluster, the function removes all those nodes which were in

the cluster from the one-hop-neighbor list of another nodes. Thus the function ensure non-

overlapping clusters.

effected_node() : Because of mobility the nodes will migrate from one cluster to another or form a

new cluster. The function counts the number of nodes that are effected per 100 ms.

count_order() : The function finds order of each repeater respectively.

count_repeater() and count_bridges() : Functions find number of repeaters and order of each

repeater respectively.

count_bridgc() and clustcr_size() : Functions find the number of bridges and average size of

clusters in the topology.

real_traffic_generation() : The function generate the real-time traffic between the random pair of

nodes on average every second (Poisson arrival model). Session duration is exponential with 3-

minute average.

send_dataram() : The function generate the datargams between random pair of nodes at the

constant rate of 10 pkts/sec.

23

CHAPTER 6

CONCLUSION

We studied the problem of M3 networks in the following sequence as:

1. Finding the minimum transmission range within which each node can access all other

nodes.

2. Applying the given and modified clustering algorithm to nodes and then comparing

the various clustering parameters, namely, average cluster size, number of repeaters,

order of repeaters, average number of bridges and finally the number of nodes which

are affected due to mobility

We performed several sets of experiments with varying number of nodes namely, 20, 30

and 40. At each node, value we then vary the transmission range.

Finally, we studied the system performance in terms of number of real-time connections

and datargams accepted in a mixed traffic condition, where we vary the rate of real-time

traffic.

6.1 DISSCUSION OF RESULTS

Connectivity:

Connectivity is defined as the fraction of node pairs, which can communicate through

single or multiple hops. We want to see the impact of transmission range on connectivity.

We assumed an ideal network model where a link can be established between any two

nodes within transmission range of each other. We note in Fig. 6.1 that in order to

24

guarantee that all nodes can communicate with each other, the transmission range should

be more than 30 for n = 40 and more than 40 for n = 20.

Repeaters:

Repeaters relay packets from one cluster to another. Since our topology is dynamic the

reliability of packet routing is important to guarantee the integrity of network services.

Thus, the existence of at least one path between a pair of nodes is required. The number

of repeaters will affect the number of. paths. Namely, the larger the fraction of nodes

which are repeaters, the larger the number of alternate path.

Our modified algorithm is superior to the given one in this context, as can be seen by

comparing Fig. 6.2(a) and 6.2(b). In the given algorithm the number of repeaters starts

to decrease after the transmission range of 55 but in ours it continues to increase with

range, the peak is approximately 3/4 h̀ of the number of nodes which is more than the

peak obtained from the given algorithm.

Further, the number of bridges will also affect the number of paths, these are larger in

our clustering algorithm, as is seen from Fig. 6.3.

Average cluster size:

This parameter actually does not give the correct information about cluster size. At a

particular transmission range, say 45, with number of nodes 20, in the given algorithm,

since there is no restriction on cluster size, the typical clusters formed are of 13,4,1,1

(number of nodes) size respectively. Average cluster size comes out to, be 4. We see

that average cluster size in the previous algorithm does not reveal the fact that there is

25

need of restricting the size of clusters especially when transmission range is high, say,

above 70, where one of the clusters takes approximately 3/4 h̀ of the total nodes and the

other clusters are merely of size 1.

In our algorithm, we restrict the size of clusters so they are approximately of the

same size and it can be seen from Fig. 6.4(b) that it does not shoot up at high

transmission range as in Fig. 6.4(a).

Order of the repeater:

Every repeater is time shared among the set of adjacent clusters, that is, its spreading

code must be transmited to these clusters. So, the order of a repeater should be small in

order to maintain efficient operation, with as few code changes as possible (the minimal

order of repeater is two).

We see that our algorithm makes the operation of the system, a bit complex. Increasing

of the order of repeaters at high transmission range is not of concern because optimal

transmission range is far less than 100. At 20 nodes it is 40, where average order is

approximately 2.7 (2.5 in previous algorithm), at 30 nodes it is 35 where average order is

2.9 (2.7 in the previous algorithm) and at nodes 40 it is 30 where order is 3.0 (2.9 in

previous algorithm).

We see from Fig. 6.5(b) that increase in order of repeaters is marginal at the concerned

range of operation.

26

Affected node:

By comparing Figures 6.6 (a) and (b) we can say in our algorithm, node migration is

almost nil at the concerned range of operation, that is affected nodes are approximately

zero. It is important since it reduces the reconfiguration overheads.

Number of real-time connection accepted:

This is an important parameter for the improvement of which we compel to made

modification in the existing algorithm. We see from Fig. 6.7 that at transmission of 45,

with nodes 20 and real-time packet rate at 10 pkts/sec, in previous algorithm only 10 of

the request are accepted out of 100. Our algorithm improves it up to 30. We see if we

allow real-time connection to send only 5 pkts/sec almost all requests are accepted.

We conclude that our modification loses only marginally in controlling the order of

repeaters, but it improves various other parameters substantially of which great concern

were number of nodes migrated due to mobility, and real-time and datagrams accepted.

6.2 FUTURE SCOPE OF WORK

Our modified clustering algorithm improved the number of real-time connection

accepted and datagrani throughput. Further, the architecture now can bear more node

mobility . Our gain is substantial in terms of number of nodes effected due to mobility.

But the price paid is increase in the order of repeaters. We restricted the cluster size

irrespective of number of nodes. A proper selection of size with different number of

nodes can decrease the order of repeaters.

27

Further, in our network, we always give preference to real-time traffic and go on

reserving the bandwidth for real-time session till it is available. This will lockout

datagram traffic. System performance in this context can be improved if some optimal

fraction of bandwidth is made free for datagrams.

We have used DSDV routing algorithm to ensure loop freedom. There is need of finding

good functional values of few parameter of this routing algorithm such as average

convergence time, full update period, incremental update period.

28

t)
M

O
M

	

000
 co
	 O

II 	II 	II
co w CO

coo
C c

O O O

O O O Z z z

T- O 00 N CO CA d" M (V T 0
O 0 0 0 0 0 O 0 0

1 !A!;oauuo3 O J9AV

000
II 	II 	II

0 0 0

0 0 0
d d d
Z Z Z

•

O
N-

C)

(0 o
m U c --
cc N

LO C) o
C-

U) •~ 4-

M 0 o
- h' E

Z
m co

N

t

N
jj

O
T

C•1

d0' 	Com') 	COQ) 	N 	N 	
LA 	O 	Lf) 	O

sialeadaa

o O o
N C'') 'ct

II 	II
O O O
000
C C C

O O O
O O O
Z Z Z

o 0 	0 	0 	0f) 	0 	LC) 	O

sia}eadaa

0 N-

9

0
0 	0 	ccoo 	ion 	0 	 0 	0 T 0 N

sa6piag

0

0
co 	i4

000
II 	II 	II
N N N
0 0 0
C C C
0 0 0
O 7O O
z z z

O
N (p

U-

0

O
00000000000000
C4 	N O 00 C0 d' N O 00 CD d N
N N N N '1 T T r

sa6pia8

000
COD

it 	ii 	Ii
4) O a)

000
CCC
,- 4- 4 -O O O
O O O
Z z z

0 	
te

co 	

0
	N 	0 	10

sOPON 10 iogwnN

O
N

O"

O
O Ln O
T

0() 	 Nt' 	 M 	CV 	r

sOPON jo aagwnN

Y

O

0

0

0
d'

0
M

O
N

0
N

0
CO G)

DI

Mca

O C
0

Co

E
0

Co
1__.

0
2

O CD
N

U-

0

O
IA) 	I7' 	(Y) 	 N 	r 	N
N 	N. 	N 	CV 	N

sialaadaa jo aapip a6aIOAV

0
rn

0
co

cm

a 4-

U

o
C a)
m 0 c
b 2

cc
o ~
y

cr

• Cj
 = O

4?
F-

o
a)

o 0)
M 	(iS

d)

000
ccot
co u) Cl)

0 0 0
C C C
O 0 0
O 7O O z z z

C~ 	N N
UC Ln 	 CY C' C~ M 	N N N N

siaweadaa }o aapi a6eJ8AV

O ^
N

CD

O 	ii:

0

o c
00 	L

a)

U o 2

U
4)

o
O i

C a

o
U) O U

y ±~
N ~

O Cl) O

o

L O

C)

CO

O
N cc

F

0
N 00 (D '' N r OJ CO d- N O
r r r r 	O O O .O

Sw 001-/SOPON

Q O Q
II Ii

O W Q)
0 0 0 c O c
O O O
O O O z z z

Al u

CV Cd (d' N r OJ CO d' CV 0
r r r r 	O O O O

SW 00G/S PON

100

AN

70

Q 60

0 0
o

° 50
v ~
c ~
C
o~
U ~
E 40

CO a)
i

20

10

0

1 	2 	3 	4 	5 	6 	7 	8 	9 	10

Offered Real-time Load

Fig. 6.7 Throughput of Mix Traffic

REFERENCES

1. C.R, Lin and M.Gerla, "Adaptive Clustering for Mobile Wireless Networks", IEEE J. Select,

Areas Commun., pp. 1265-1275, Sept, 1997.

2. D.J. Baker, J. Wieselthier, and A. Ephermides, "A Distributed Algorithm for Scheduling the

Activation of Links in a Self Organizing, Mobile, Radio Network", in Proc. IEEE ICC'82, pp.

F.6.1- 2F.6.5.

3. C.E. Perkins and P.Bhagwat, "Highly Dynamic Destination-Sequenced Distance-Vector Routing

(DSDV) for Mobile Computers",in Proc. ACM SIGCOMM'94, pp. 234-244.

4. C.R.lin and M.Gerla, "A Distributed Architecture for Multimedia in a Multihop Dynamic Packet

Radio Network", in Proc. IEEE GLOBECOM'95, Nov., 1995, pp. 1468-1472.

5. C.R. Lin and M. Gerla, "Asynchronous Multimedia Multihop Wireless Networks", in Proc. IEEE

INFOCOM'97,

6. T. Hou and V. Li, "Transmission Range Control in Multihop Radio NETWORKs", IEEE Trans.

Commun. Pp 3 8-44,Jan. 1986

7. L. HU, "Topology Control for Multihop Packet Radio Networks", IEEE Trans. Commun., pp

1474-1481, Oct. 1993.

8. I. Chalmatac and S.S. Pinter, "Distributed Node Organization Algorithm for Channel Access in a

Multihop Dynamic Radio Network", IEEE Trans. Comput., pp. 728-737, June 1987.

9. A. Alwan, R.Bagrodia, N. Bambos, M. Gerla, L. Kleinrock, J. short and J. Villasenor, "Adaptive

Mobile Multimedia Networks", IEEE Personal Commun., pp 34-51, Apr 1996.

10. Andrew S. Tanenbaum, "Computer Networks", 3rd Edition, Chap. 4, Prentice Hall of India

Private Limited, 1997

11. C.R: Lin and M. Gerla , 'Multimedia Transport in Multihop Dynamic Packet Radio Network", in

Proc. IEEE INFOCOM'97.

APPENDIX A

/***************APPENDIX INCLUDES ALL HEADER FILES******************/

struct node {
int 	 - no,mark,one_hop_nei,cluster_id,order;
int 	 con_mark,avai_bw,temp_bw,cI uster_member,m_mark;
float 	 x,y;
struct one_hop *one;
struct node 	*next;

};
typedef struct node *pnode;

struct one_hop
int 	 mark,no;
struct one_hop *next;
struct node 	*member;

typedef struct one_hop *pone;

struct cluster {
struct one_hop 	*another_ cluster;
struct cluster 	*next;
int 	 total_member,cluster_id,cluster_size;

};
typedef struct cluster *pcluster;
pcluster m;
int 	cluster_no,repeaters;

struct real_traffic{
int 	 source,desti,no_of_packet,selection,next_sess_packet;
struct real_traffic *next;

typedef struct real_traffic *p_rtraffic;

struct hop {
int 	 nodeno,hopno;

}; struct hop 	*next;

typedef struct hop *phop;

struct data traffic {
struct data traffic 	*next;

phop 	 dpath;

typedef struct data_traffic *pdtraffic;

struct rem_path
phop 	ppath;
int 	 no_of_pack;
struct rem_path *next;

typedef struct rem_path *p_rem_path;

struct con_node {
pnode 	pn;
struct con_node *next;

typedef struct con_node *peon;

struct backlog_data {
phop 	 dpath;
struct backlog_data *next;

typedef struct backlog_data *pback;
pback backlist;

pnode getcon_node() {
peon p;
p=(pcon) mal loc(sizeof(struct con_node));
p->next=NULL;
return (p);

pnode getnode() {
pnode p;
p=(pnode) malloc(sizeof(struct node));
p->next=NULL;
p->mark=NO;
p->m_mark=N0;
p->one=NULL;
p->con_mark=NULL;
p->cluster_member=NULL;
return(p);

pcluster getclusterO I
pcluster p;
p=(pcluster) mal loc(sizeof(struct cluster));

p->next=NULL;
return(p);

pone getone_hop() {
pone p;
p=(pone) malloc(sizeof(struct one_hop));
p->next=NULL;
p->mark=NULL;
return(p);

p_rtraff1c getrtraffic() {
p_rtraffic p;
p=(p_rtraffic) malloc(sizeof(struct real_traffic));
p->next=NULL;
return(p);

pdtraffic getdatagram() {
pdtraffic p;
p=(pdtraffic) malloc(sizeof(struct data_traffic));
p->next=NULL;
return(p);

phop gethopO {
phop p;
p=(phop) malloc(sizeof(struct hop));
p->next=NULL;
return (p);

phop getbacklog() {
pback p;
p=(pback) malioc(sizeof(struct backlog_data));
p->next=NULL;
return(p);

p_rem_path getrem_path() {
p_rem_path p;
p=(p_rem_path) malloc(sizeof(struct rem_path));
p->next=NULL;
return(p);

int datagram;

/***FUNCTION RETURNS UNIFORM RANDOM NUMBER BETWEEN 0 AND 1***** /

#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
#define MEAN 1
long N =12345;
long *idum=&N;

float un_rand(long *idum)
{

int 	 j;
long 	k;
static long 	iy=O;
static long 	iv[NTAB];
float 	temp;

if(*idum<=011!iy) {
if(-(*idum)<1)

*idum=l;
else

*idum=-(*idum);
for(j=NTA B+7; j>=0;j --) {

k=(*idum)/IQ;
idum=lA (*idum-k*IQ)-IR*k;
if (*idum<O)
*idum+=lM;

if(j<NTAB)
iv[jj=*idum;

iy=iv[0];

k=(*idum)/IQ;
idum=lA (*idum-k*IQ)-IR*k;
if(*idum<0)

*idum+=IM;
j=iy/NDIV;
iy=iv[l];
iv [ill =*idum;
if ((temp=AM*iy)>RNMX)

return RNMX;
else

return temp;

/************************poi_rand.h***************************/

/******FUNCTION RETURNS POISSON DISTRIBUTED RANDOM NUMBER ******
***************WITH MEAN ARRIVAL RATE ONE*****************/

#define PI 3.141592

float poi_rand(float xm,long *idum)
{

float gammin(float xx);
float 	rant (long *idum);
static float sq,alxm,g,oldm=-(1.0);
float 	em,t,y;

if(xm<12.0)
{

if(xm!=oldm)
{

oldm=xm;
g=exp(-xm);

}
em=-1;
t=1.0;
do{

++em;
t*=un_rand(idum);

}while(t>g);
}
else
{

if(xm!=oldm)
{

oldm=xm;
sq=sqrt(2.0*xm);
alxm=log(xm);
g=xm*alxm-gammin (xm+1.0);

}
dol
dot

y=tan (PI*un_rand (idum));
em=sq*y+xm;

}while(em<0.0);
em=floor(em);
t=0.9* (1.0+y*y) *exp (em*a l x m-gamm In (em+1.0) -g);
} while(un_rand (idum)>t);

}
return(em);

float gammln(float xx)
{

double 	x,y,tmp,ser;
static double 	cof[6]= {76.180091,-86.505,24.014,1.2317,0.120e-2,-0.539e-5};
int 	 j;
y=x=xx;
tmp=x+5.5;
tmp-=(x+0.5) *log (tmp) ;
ser=1.0;
for(j=0;j<=5;j++) ser+=cof[j]/++y;
return (-tmp+log (2.5066*ser/x));

/***FUNCTION RETURNS EXPONENTIAL RANDOM NUMBER WITH MEAN 3***/

float exp_rand(float xm,long *idum)
{

float v,U;
U=un_rand (idum);
v=-xm*Iog(U);
return v;

APPENDIX B

/*****PROGRAM TO FIND MINIMUN TRANSMISSION RANGE****
**WHERE. EACH NODE CAN ACCESS ALL OTHER NODES ** /

#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include "random.h"
#define NULL 0

main() {
int 	i,n,g,h,pair_uncon,z,N,L;
float a,b,d,range,avg_con,net_avg_con;
pnode k,m,q,o;
conlist 1,c;
n=20;
do{

printf("1n\n no of nodes are n=%d",n);
range=4;

do{
net_avg_con=0;
for(L=O;L<100;L++) {

k=NULL;
pair_uncon=0;

for(i=n;i>=1;i--)
{

m = (pnode) malloc(sizeof(struct node));
m->no=i;
m->x=ran (&seed) * 100;
m->y=ran (&seed)*100;
m->next=k;
k=m;

list=k;

do{
k=list;
first=NULL;
a=k->x;
b=k->y;
if(list!=NULL) {

do{
k=list;

do{
d=sgrt((k->x-a)* (k->x-a)+(k->y-b) * (k->y-b));

if(d<range) {
if(first==NULL) {

p=(conlist) getponodeO;
first=p;
1=first;
c=p;

}
else{

p=(conlist) getponodeO;
1->next=p;

}
1=p;

1->t=k;

if (list==k) {
k=k->next;
list=k;
}

else{
q->next=k->next;
k=k->next;

}
} 1* END OF IF*/

else{
q=k;
k=k->next;

}while(k!=NULL);

q=list;
c=c->next;
if (c!=NULL) {

o=c->t;
a=o->x;

}
b=o->y;

}while((c&&list)!=NULL);

g=count con () ;
h=count_uncon()

z=g*h;
pair_uncon=g*h+pair_uncon ;
}/**END OF IF**/

}while(list!=NULL);
N=n*(n-1)/2;
avg_con=(float) (N-pair_uncon)/N;
net_avg_con=(net_avg_con+avg_con) ;

}/*END OF ITERATIONS*/
printf("\n range = %f",range);
printf(" the avg_con is = %f",net_avg_con/100);

/ 	 START OF ITERATIONS WITH NEW RANGE VALUE********/
range=range + 2;
} while(range<=40);

/********SRART OF ITERATIONS WITH NEW NUMBER OF NODES**********/
n=n+10;
} while(n<=40);
}

struct node {
int 	no;
float 	x,y;
struct node *next;

};
typedef struct node *pnode;
pnode list;

struct ponode {
pnode 	t;
struct ponode *next;

typedef struct ponode *conlist;
conlist first,p;

/************FUNCTION COUNT THE CONNECTED COUNT*****/
int count_con(,) {

int count;

count=O;
while(first!=NULL) {

count+=1;
first=first->next;

}
return(count);

/******FUNCTION COUNT THE UNCONNECTED NODES******/

intcount_uncon(){
int 	count;
pnode f;

count=O;
f=list;
while(f!=NULL) {

count+=1;
f=f->next;

return (count);

con list getponodeO {
p=(conlist) malloc(sizeof(struct ponode));
p->next=NULL;
return(p);

APPENDIX C

/*******PROGRAM FOR VARIOUS CLUSTERING PARAMETER********/

#include<stdio.h>
#include<math.h>
#include<malloc.h>
#define NO 0
#define NULL 0
#define YES 1
#include"un_rand.h"
#include"exp_rand.h"
#include"poi_rand.h"
#include"struct.h"

main()
{
int 	range,eff_node,eff,total_repeaters,avg_bridges, clusters, max_clustersize;
int 	a,b,n,c,q;
float 	count,total_order,avg_cluster_size;
pnode 	list;
pcluster list_of_cluster;

n=30;
dot

printf ("NODES ARE %d\n",n);
printf ("Range Avg_cluster_size\t Bridges\tRepeaters\t Order\t Effected_node\n\n");
max_ cluster_size=5;
range=40;

dot
avg_cluster_size=NULL;
eff=NULL;
total_order=NULL;
tota (_repeaters=NULL;
avg_bridges=NULL;
for(q=0;q<100;q++) {

list=(pnode) random_deploy(n);
one_hop_neighbour(list,range);
list_of_cluster=cluster_form (list,max_cluster_size);
count=count_order(I ist,range,n) ;
avg_bridges+=count_bridge(list);

if(repeaters==NULL) {

count=2;
repeaters=l;

else
total_repeaters+=repeaters;
total_order+=count/repeaters;
clusters=Iist_of_cluster->total_member;
avg_cluster_size+=total_of_cluster_size((pcluster) list—of—cluster)/clusters;
random_re_deploy(list,n);
count_d iff_cl uster(1 ist_of_cl uster,range);
eff_node=effected_node(list);
eff+=eff node;

printf ("%d\t%f\t%f\t%f\t%f\t%f\n\n", range,avg_cluster_s ize/100
, (float)avg_bridges/100, (float) total_repeaters/100, (float)total_order/100, (float) eff/1 00);
fflush(stdout);
range+=5;
} while(range<60);
n+=10;
}while(n<31);
}

/************FUNCTION RANDOMLY PLACES N NODES IN 100*100 AREA**********/
pnode random_deploy(int n)

{
pnode list,k,p;
int 	i;

p= (pnode) getnode();
I ist=p;
k=p;
k->no =n;
for(i=0;i<n;i++) {

p=(pnode) getnode();
p->no =i;
k->next =p;
k=p;
k->x=un_ra nd (i darn) * 100;
k->y=un_rand(idum)*100;

return(list);
}

/*********FUNCTION FINDS ONE -HOP NEIGHBORS OF ALL NODES*************/

void one_hop_neighbour(pnode list,float range)
{

pnode 	k,t;
float 	a,b,d;
pone 	p,q;
int 	count;
k=list->next;
do{

count=O;
t=k;
a=k->x;
b=k->y;
q=NULL;
k=list->next;

do{
d=
if ((d<range) &&(d!=0))

{
p=(pone) getone_hop();
if(q==NULL)
t->one =p;
else
q->next=p;
q=p;
q->member=k;

q->no=k->no;
count+=1;

k=k->next;
} while(k!=NULL);

k=t;

k->one_hop_nei=count;
k=k->next;

}while(k!=NULL);
}

/*FUNCTION FINDS THE NEAREST NODE TO THE CENTRE NODE******
** * OUT OF REMINING NODES***********/

find_min(pnode 0
{
int a,b;
pnode k,q;
float distance,min,d;
pone p,l;

l=t->one;
a=t->x;
b=t->y;
while ((I->member)->cluster_member==YES)
1=1->next;
q=l->member;
min=sgrt((q->x-a)*
P=1 ;

do{
1=1->next;
if(l!=NULL)

{
whit e((1!=NULL) &&(l->member) ->cluster_member==YES)
l=1->next;
if(l!=NULL)

{
q=l->member;

if(d<min)
{

min=d;
P=1 ;

}
}while(l!=NULL);
(p->member)->cluster_member=YES;

}

pone find_cluster_member(pnode t,int q)
{

pone 	y,k,l,m,a,b,templist,d,e,r;
int 	p,count,n;
pnode c;

k=NULL;
count=NULL;
p=q;
y=t->one;
t->cl uster_member=YES;

do{
find_min(t);
q-=1;

}while(q!=NULL);
q=p;
temp! ist=NULL;
do{

while ((y->m em ber) ->c l us ter_mem ber!=YES)
{

a=getone_hop();
a->no=y->no;
a->member=y->member;
if (tempi ist==NULL)

{
temp list=a;
b=a;

}
else{

b->next=a;
b=a;

y=y->next;
}

m=y;
count++;

if(k==NULL)
{

k=y;
1=k;

}
else

{
1->next=y;
I=y;

}
if (y! =NULL)
y=y->next;

}while((y!=NULL)&&(count!=q));
while(y!=NULL) {

a=getone_hopO;
a->no=y->no;
a->member=y->member;
if(templist==NULL)

{
templist=a;
b=a;

}
else{

b->next=a;
b=a;

}

y=y->next;

m->next=NULL;
r=(pone) modify_cluster(k,t);
whi le(templ ist! =NULL)

{
c=templist->member;
d=c->one;
e=(pone) modify_list2(r,d);
c->one=e;
if(e!=NULL)

{
n=count_member(e);
c->one_hop_nei=count;

}
else

c->one_hop_nei=NULL;
tempi ist=templ ist->next;

return(k);
}

/*************FUNCTION FORMS THE CLUSTER OF NEAREST NODES*********/
pcluster cluster form(pnode list)

{
int 	e,max,n,q,max_cluster_size;
pnode k,t,s,c;
pone 	x,y,z,u,f,l;
pcluster p,list_of cluster;

cluster_no=NULL;
p= (pcluster) getclusterO;
list_of_cluster=p;
p->cluster_id=cfuster_no;
m=p;
max_cluster_size=5;

max=NULL;
k=1 ist->next;
while(k->mark==YES)
k=k->next;
if((k->mark==NO)&&(k->one_hop_nei==NULL))

{
k->mark=YES;
list->no-=1;
1=getone_hop Q;
1->member=k;
make_cluster((pone) l,(pcluster) list_of cluster);
1->no=k->no;
}

else{
do{

if ((k->mark==NO) &&(k->one_hop_nei>max))
{

max=k->one_hop_nei;
t=k;

}
k=k->next;

} wh ile(k!=NULL);
e=conn t_cl_member(t->one) ;
q=max_cl us ter_size-1;
if (e<=q)

{
list->no=list->no-e-1;

y=t->one;
}

else
{

y=t->one;
y=find_cluster_member(t,q);
Iist->no=list->no-q-1;

}
t->mark=YES;
mark_Iist((pone) y);
f = (pone) modify_cluster((pone) y,(pnode) 0;

make_cluster((pone) f,(pcluster) list_of cluster);

s=y->member;
x=s->one;
if(x!=NULL)

x=(pone) modify_list2((pone) f,(pone) x);
z=x;
s->one=x;

while(z!=NULL)
{

c=z->member;
u=c->one;
u=(pone) modify_list2((pone) f,(pone) u);
c->one=u;
if (u!=NULL) {

n=count_member((pone) u);
c->one_hop_nei=n;

else
c-> o n e_h o p_n e i =NULL;
z=z->next;

y=y->next;
}while(y!=NULL);

}
} while(list->no>NULL);
return (l is t_of_cluster);

void mark_list(pone y)
phode o;
do{

o=y->member;
o->mark=YES;
y=y->next;

}while(y!=NULL);
}

/*********FUNCTION ADD THE CENTRE NODE TO ITS ONE-HOP NEIGHBOR******
**************ATO FORM THE CLUSTER***************************/

pone modify_cluster(pone y,pnode t) {
pone p;
p=(pone) getone_hop();
p->next=y;
Y=p;
y->member=t;
y->no=t->no;
return(y);

/*****FUNCTION MODIFIES ONE - HOP LIST AFTER CLUSTER FORMATION******/

pone modify_list2(pone ptl,pone pt2) {
pone 	k,y,x;
k=y=pt2;
if (y!=NULL)

{
do{
x=ptl;
while((x!=NULL)&&(y->member!=x->member))
x=x->next; .
if (x!=NULL)

if(y==pt2) {
pt2=pt2->next;
y=pt2;

else{
k->next=y->next;
y=y->next;

}
else{

k=y;
y=y->next;

}
} while(y!=NULL);

}
return(pt2); 	 }

make_cluster(pone f,pcluster list_of_cluster)
{

pcluster p;
p=getclusterO;
list_of cluster->total_member+=1;
m->next=p;
m=p;
m->another_cl us ter=f;
++cluster_no;
m->cluster_size=(f->member)->one_hop_nei+1;
p->cluster_id=cluster_no;
put_cluster_no((pone) f);

count_member(pone u)
{

mt count;
count=O;
do{

count+=1;
u=u->next;

} while(u!=NULL);
return(count);

put_cluster_no(pone f)
{
while(f!=NULL) {

(f->member)->cIuster_id=cluster_no;
f=f->next;

/*****FUNCTION RE-DEPLOY NODES AFTER THEIR RANDOM MOVEMENT****/

random_re_depIoy(pnode list,int n)
{

pnode k;
int 	i;

k=list->next;
for(i=l;i<=n;i++) {

k->x=k->x+(3*un_rand(idum))*cosf(2*3.1415*un_rand(idum));
k->y=k->y+(3*un_rand (i dum)) *s inf (2*3.1415*un_rand (idum));

k=k->next;
}

count_diff_cluster(pcluster list_of_cluster,int range)
{

pcluster 	k;
pone 	o,m,save_node;
int 	save,new_nei;

k=l ist_of_cluster->next;

if(k->cluster_size==1)
{

o=k->another_cluster;
m_mark_node((pone) o);

else{
o=k->another_cl uster;
m=o;
new_nei=node_new_nei((pone) a,(pone) m,(int) range);

if(new_nei==k->cluster_size)
m_mark_node((pone) o);

else {
save=NULL;

do{
new_nei=node_new_nei ((pone) o, (pone) m,(int) range);

if (new_nei>save)
{

save=new_nei;
save_node=o;

o=o->next;
} while(o!=NULL);

now_m_mark_node((pone) save_node, (pone) m,(int) range);

}
k=k->next;

}while(k!=NULL);

/*FUNCTION MARK ALL THE WHICH GET EFFECTED DUE TO MOVEMENT **/

m_mark_node(pone p)
{

pnode t;

do{
t=p->member;
t->m_mark=YES;
p=p->next;
while(p!=NULL);

node_new_nei(pone o,pone m,int range)
{

pnode 	t,p;
float 	a,b;
int 	count;

count=NULL;
t=o->member;
a=t->x;
b=t->y;
do{

p=m->member;
if(sqrt((p->x-a)*(p->x-a)+(p->y-b)*(p->y-b))<=(float) range) count++;
m=m->next;

}while(m!=NULL);
return(count);

now_m_mark_node(pone o,pone m,int range)
{

pnode t,p;
float 	a,b;

t=o->member;
a=t->x;
b=t->y;
do{

p=m->member;

if(sqrt((p->x-a)*(p->x-a)+(p->y-b)*(p->y-b))<=(float) range) p->m_mark=YES;
m=m->next;

} while(m!=NULL);

/*******FUNCTION COUNT THE EFFECTED NODES*********/
effected_node(pnode list)

{
pnode k;
int count;
count=NULL;

k=list->next;

do{
if(k->m_mark==NO) count++;

k=k->next;
}while(k!=NULL);

return(count);
}

APPENDIX D

/**PROGRAM FOR REAL-TIME SESSION AND DATAGRAM THROUGHPUT*'

#include<stdio.h>
#include<math.h>
#include<malloc.h>
#define NO 0
#define NULL 0
#include"un rand.h"
#include"exp_rand.h"
#include"poi_rand.h"
#include"struct.h"
#define YES 1
#define FOUND 1
#define NOTFOUND 0
#define NOPATH 0
#define DISCARDED 0

mainO

int 	time,discarded,real_packet_dispatched,cycle time,connected,before_new.
int 	total_packet,range,eff_node,eff;
int 	a,b,n,c,q,nullcount,pathcount,totaldatagram,packet,data,ti,null,pah,poi_m(
float 	data_gram_rate,x,data_gram_in_cycle,exp_mean;
pnode 	list;
pcluster 	Iist_of_cluster;
p_rtraffic 	rtraffic,save;
p_rem_path path_list;
phop 	path;
pback 	backlist;

range=5;
c= 1;
do{

printf("c is %d\n",c);
printf ("Rej ected\tAccepted\tDatagram\tTime\n\n");
eff=NULL;
null=NULL;

data=NULL;
ti=NULL;
pah=NULL;

for(q=0;q<10;q++) {

time=NULL;
datagram=NULL;
nullcount=0;
pathcount=0;
n=20;
exp_mean=3.000;
poi_mean=l;
cycle_time=100*c;
data_gram_rate= (float) 1/100;
x=data_gram_i n_cycle=cycl e_ti me*data_gram_rate;
path_I ist=NULL;
backlist=NULL;

list=(pnode) random_deploy(n);
one_hop_neighbour(I ist,rahge);
I ist_of_cluster=cluster_form (list);
one_hop_neighbour(l ist,range);
set_initial_bw(list_of_cluster,list,cycle_time);
rtraff ic=(p_rtraff ic);

real_traffic_generation (exp_mean,poi_mean,n,cycle_time);

save=rtraffic;

a=rtraffic->source;
b=rtraffic->desti;
connected=con_ check (1 ist,a,b,range);

if (connected!=1)

rtraffic->selection=DISCARDED;
before_n ew_sess=rtraff ic->next_sess_packet;
packet=x*before_new_sess;
backlist=send_backlog(backlist, list);
backlist=send_datagram(packet,n,backlist,list);
time+=packet;
modify_path_I ist(path_list,before_new_sess,I ist);
rtraff ic=rtraff ic->next;
nullcount++;

}
else

f
path=find_path (a,b,list);
if (path==NULL)

{
rtraffic->selection=DISCARDED;

before_new_sess=rtraffic->next_sess_packet;
packet=x*before_new_sess;
backlist=send_backlog(backl ist,list);
backlist=send_datagram(packet,n,back list, list);
time+=packet;
rtraf f i c=rtraffic->next;
nullcount++;

else

pathcount++;
set_avai_bw (path, I ist);

{
} while(! (connected&&path)&&(rtraffic));

if(rtraffic!=NULL)

before_new_sess=rtraffic->next_sess_packet;
total_packet=rtraff i c->no_of_packet;

if (before_new_sess>total_packet)
{

f ree_b w (path, I ist) ;
if (path_]ist!NULL)
modify_path_list(path_list,before new_sess,Iist);

packet=x*before_new_sess;
backi ist=send_backlog (backlist,list);
back I is t=send—datagram (packet, n, back I is t, list);
time+=packet;

else

packet=x*before_new_sess;
back I ist=s end_backlog(backlist,list);
backl is t=send_datagram (packet,n,backl ist, list);
time+=packet;
path_list=(p_rem_path) add_in_path_list(path,path_list,total_packet);
path_list=(p_rem_path) modify_path_list(path_list,before_new_sess,1

rtraffic=rtraffic->next;

) while (rtraffic ! =NULL);
printf ("%d\t\t%d\t\t%d\t\t%d\t\t\n",nul I count,pathcount,datagram,ti me);
null+=nullcount;
pah+=pathcount;
data+=datagram;

ti+=time;
random_re_depIoy(Iist,n);
count—d if f—cl us ter (I ist—of—cl uster, range);
eff_node=effected_node(Iist);
eff+=eff_node;
ffIush(stdout);
}
printf("\nAvg rejected Avg accepted Avg datagram Avg time\n");
printf ("%d\t\t%d\t\t%d\t\t%d\t\t\n", nu I l/10,pah/10,data/10,ti/10) ;
printf("\n");
c=c+1;
}while(c<2);
}

/******FUNCTION CHECKS WHETHER THE SOURCE*****************
****** AND THE DESTINATION ARE CONNECTED*****************/

con_check(pnode list,int first,int sec,int range)
{

pnode k,t,savel;
pcon p,c,l;
float a,b,d;

k=list->next;
save1=k;
t=k;

do(
if (t->no!=first)
t=t->next;

} while(t!=NULL&&t->no!=first);
t->con_mark=YES;
p=(pcon) getcon_nodeO;
c_p;

1=c;
p->pn=t;

do(
k=savel;
t=c->pn;
a=t->x;
b=t->y;

do{

while((k!=NULL)&&(k->con_mark==YES))
k=k->next;
if(k!=NULL)

{
d=sgrt((k->x-a)* (k->x-a)+(k->y-b)* (k->y-b));

if (d<range&&k->no==sec)
{

makeall_NO((pnode) savel);
return (FOUND);

}
else if(d<range)

{
p=(pcon) getcon_node();
->next=p;

p->pn= k;
k->con_mark=YES;
I=p;

k=k->next;
}

}while(k!=NULL);

c=c->next;
} while(c!=NULL);

if (c==NULL)
{

make_al l_NO((pnode) savel);
return (NOTFOUND) ;

}
}

make_all_NO(pnode savel)
{
while(savel !=NULL)

{
saveI->con_mark=NO;
savel=savel->next;

/**********FUNCTION PREPARE THE LIST OF REAL TIME SESSION*******/

p_rtraffic real_traffic_generation(float exp_mean,int poi_mean,int n,int cycletime)
{

int 	i,t,k;
p_rtraffic p,rtraffic,l;

rtraffic=NULL;
for(i=0;i<100;i++)

{
t=0;
k=0;
p=getrtrafficO;

if (rtraffic==NULL)

rtraffic=p;
1=p;

}
else

{
1->next=p;
1=p;

}
do{

p->source=un_rand (idum)* (n-1);
p->desti=un_rand (idum)*(n-1);

) while(p->source==p->desti);
p->no_of_packet=(60*1000.0/cycletime)*exp_rand(exp__mean,iduin);
while(t==0)

{
t=poi_rand (poi mean, idum);
if(t==0)
k+=(1000.0/cycletime);

}
if(t!=0)
p->next_sess_packet=k+(1000.0/cycletime)/t;

return (rtraffic);
}

/**********FUNCTION RETURNS THE POINTER OF THE NUMBERD NODE****/

pnode get_source_poi(pnode list,int source)
{

pnode k;

k=list->next;
while(k->no!=source)
k=k->next;
return(k);

}

/********FUNCTION RETURNS ONE IF DESTINATION IS REACHED ELSE ZERO**/

check_path(phop I,int desti)
{

while((I!=NULL)&&(1->nodeno!=desti))
1=1->next;
if !=NULL)
return (1)
else
return(0);

/*********FUNCTION RETURN THE NUMBER OF HOPS IN THE - PATH******/

path_hops(phop hopl1st,int desti)
{

phop k;
k=hoplist;
while(k->nodeno!=desti)
k=k->next;
return (k->hopno);

phop make_path_I 1st (phop hoplist,pnode k,int total_hop,phop t)
{

pone a;
phop x,p;

a=k->one;
do{

x=hoplist;
while((x!=NULL)&&(a->no!=x->nodeno))
x=x->next;
if((x!=NULL) && (x->hopno==total_hop))

{
p=(phop) gethop();
t->next=p;
p->hopno=tota(_hop;
p->nodeno=x->nodeno;

• t=p;
return (t);

}
a=a->next;

}while(a!=NULL);
return (i)

}

phop get_path(pnode Iist,phop hoplist,int desti)
{

int 	total_hop;
phop path,t,p;
pnode k;

path=NULL;

total hop=path_hops (hopl ist,desti);
p=(phop) gethop();

if(path==NULL)
{

path=p;
t=p;
p->nodeno=desti;
p->hopno=total_hop;

do(
total_hop-=1;
k=get_source_poi (list,t->nodeno);
t=make_path_l ist(hopI ist,k,total_hop,t);

} while(total_hop!=NULL);

return(path);

add_member(pone t,phop I,phop hoplist)
(
int 	hno;
phop p,m,i;

hno=1->hopno;

do{
m=1;

1=1->next;
}while(I!=NULL);

do{
i=hopl1st;
while((i!=NULL)&&(t->no!=i->nodeno))
i=i->next;

if((i==NULL) && ((t->member) ->avai_bw !=NULL))
{

p=(phop) gethop();
m->next=p;
m=p;
m->nodeno=t->no;
m->hopno=hno+1;

t=t->next;
}while(t!=NULL);

}

/***********FUNCTION RETURNS THE POINTER TO THE PATH**************
***********BETWEEN THE GIVEN SOURCE AND DESTINATION************/

phop find_path(int source,int desti,pnode list)
{

pnode k;
pone 	t;
phop 	p,hoplist,l,m,path;
int 	get;

hoplist =NULL;

p=gethop O;
if(hoplist==NULL)

{
hoplist=p;
1=p;
p->nodeno=source;
p->hopno=NULL;

k=(pnode) get_source_poi (1ist,source);
if(k->avai_bw==NULL)
return(NOPATH);
t=k->one;

do{
if(t!=NULL)

{
add _member(t,1,hoplist);
get=check_path(I,desti);
if (get==1)
break;
else
1=l->next;

}
else
1=l->next;

if(1!=NULL)
{

k=get_source_po 1(I ist, l->nodeno);
t=k->one;

}
} while (I!=NULL);

if(get==1)

path= (phop) get_path (l ist,hopl ist,desti);
return (path);

}
else
return(NOPATH);
}

set_avai_bw(phop path ,pnode list)
{

pnode k,t;
k=list->next;

t=k;

do{
t=k;
while(t->no!=path->nodeno)
t=t->next;
if(t->avai_bw>O)
t->avai_bw -=1;
path=path->next;

}while(path!=NULL);

/*********FUNCTION REMOVES THE POINTER OF PATH FROM THE PENDING LIST ***
********************IF ITS SESSION IS COMPLETED********************/

p_rem_path modify_path_list(p_rem_path path_list,int no,pnode list)
{

p_rem_path k,t;

t=k=path_list;

if(path_list!=NULL)
{
do{

k->no_of_pack-=no;
if ((k!=NULL) &&(k->no_of_pack<1))

{
f ree_bw (k->ppath, list) ;

if (k==path list)
{

k=k->next;
t=k;
path_Iist=k;

}
else

{
t->next=k->next;
k=k->next;

}
}

else if(k!=NULL)
{

t=k;
k=k->next;

}
}while(k!=NULL);

}
return (path_I ist);
}

/**********FUNCTION ADD THE POINTER TO PATH IN PATHLIST********
************************ IF ITS PACKETS ARE PENDING***************/

p_rem_path add_in_path_list(phop path,p_rem_path path_list,int total_packet)
{

p_rem_path p;

p=getrem_path 0;
p->ppath=path;
p->no_of_pack=total_packet;

if (path_I ist==NULL)
path_list=p;
else
{
p->next=path_Iist;
path_I ist=p;

}
return(path_Iist);

}

/**********FUNCTION FREE BANDWIDTH ALONG ALL THE NODES OCCUPIED*****
******** WHERE SLOTS WHERE RESERVED FOR THE JUST COMPLETED SESSION**/

free_bw(phop path,pnode list)
{
pnode k,t;
k=list->next;
t=k;
do{

t=k;
while((path->nodeno)!=(t->np))
t=t->next;
t->avai_bw+=1;
path=path->next;

} while(path!=NULL);

count_cl_member(pone o)
{

int count;
count= NULL;
while(o!=NULL)

{
count++;
o=o->next;

}
return(count);

}

/***********FUNCTION ASSIGN THE INITIAL BANDWIDTH TO ALLTHE **********
NODES DEPEDING ON THE CLUSTER'S NODE STRENGTH TO WHICH THEY BELONG/

set_initial_bw(pcluster list_of_cluster,pnode list,int cycle)
{

pone 	o;
pcluster k;
pnode 	t,p;
int 	member,bw;

k=l ist_of_cluster->next;
t=list->next;
p=t;
do{

o=k->another_cluster;
member=count_cl_member(o);
bw=(cycle)/(5*member);
do{

t=p;
while(o->no!=t->no)
t=t->next;
t->avai_bw=bw;
o=o->next;

} while(o!=NULL);
k=k->next;

}while(k!=NULL);

set_bw_original(pnode list)
{

pnode t;
t=list->next;
while(t!=NULL)
{

t->avai_bw=t->temp_bw;
t=t->next;

set_bw_infinite(int n,pnode list)
{

pnode t;
t=list->next;
while (t! =NULL)
{

t->temp_bw=t->avai_bw;

t->avai_bw=n;
t=t->next;

/***********FUNCTION GENERATE THE DATAGRAM OF FIXED SIZE*********/

pdtraffic datagram_traffic_generation(int no,int n,pnode list)
{

pdtraffic dtraffic, p,l;
int 	i,source,desti;

dtraffic=NULL;
for(i=0;i<no;i++)
{

p=getdatagram();
if(dtraffic==NULL)
{

dtraffic=p;
l=p;

}
else
{

l->next=p;
=p;

}
do{

source=un_rand (idum)* (n-1);
desti=un_rand(idum)*(n-1);

} while(source==desti);

p->dpath=find_path(source,desti,list);
}
return(dtraffic);

is_bw_avai(phop k,pnode list)
{

int 	n;
pnode t;

n=k->nodeno;
t=(pnode) get_source_poi(list,n);
return (t->avai_bw);

/*******FUNCTION SEND THE DATAGRAM WAITING IN THE QUEUE*********/

pback send_backlog(pback backlist,pnode list)
{

pback 	k,t;
phop 	m,l;
int 	n;

if(backlist!=NULL)
{

k=backlist;
t=k;
do

{
m=k->dpath;
do
{

n=is_bw_avai (m,Iist);

if(n>=1)
{

1=m;
m=m->next;
free(l);

}
else
break;

} while(m!=NULL);
if(m!=NULL)
{

t=k;
k->dpath=m;
k=k->next;

}
else
{

datagram++;
if(backIist==k)

k=k->next;
free(backlist);
backlist=k;
t=k;

}
else
{

t->next=k->next;
free(k);
k=t->next;

) while(k!=NULL);

return(backlist);
}

/***********FUNCTION ADD THE DATAGRAM IN THE WAITING LIST SINCE NO *****
********BANDWIDTH IS AVAILABLE ALONG THE SHORTEST PATH****************/

pback add_in_backlist(pback p,pback backlist)
{

if (backl ist==NULL)
backlist=p;
else
{

p->next=backlist;
backlist=p;

return(backlist);
}

pback send_datagram(int no,int n,pback backlist,pnode list)
{

phop 	k,t;
int 	q;
pdtraffic l,dtraffic;
pback p;

set_bw_infinite(no,Iist);
dtraffic=datagram_traffic_generation (no,n,1 ist);
set_bw_original (list);

l=dtraffic;
while(l!=NULL)
{

dtraffic=l;
k=dtraffic->dpath;
do
{

q=is_bw_avai (k, l ist);
if(q>=1)
{

t=k;
k=k->next;
free(t);

else
break;

} while (k ! =NULL);
if(k!=NULL)

p=(pback) getbacklog();
p->dpath=k; .
backlist=(pback) add_in_backlist(p,backlist);

else
datagram++;
=I->next;

free(dtraffic);

return (backlist);

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

