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ABSTRACT

The dissertation work simulates self-organizing wireless Mobile, Multimedia, Multihop(M3)
networks. The basis of the network is c..lustering, i.e. nodes are organized into non-overlapping
clusters. The clusters are independently controlled. Since the network supports mobility, thése
clusters are to be dynamically reconfigured. This adaptive clustering algorithm very well takes care
of overheads for configuring and reconfiguring clusters. It is fast deployable, making it useful for
emergency networks. The network relies on a code-division multiple access scheme for multimedia
support. The main advantages of network architecture are, that it provides spatial reuse of

bandwidth, and that bandwidth can be shared or reserved in a controlled fashion in each cluster.
a
"‘ . . . 3 . . . . 2 .
! @mulallon results confirm that this architecture provides an efficient and stable infrastructure for the
! integration of different types of traffic in a dynamic radio network)

0noo :
% In our work, we first find the minimum transmission range within which all nodes can access all

|

| other nodes. We then implement the given clustering algorithm. We also suggest a modified

i
¥

/ clustering algorithm and show through simulation results, how our algorithm increases the number of
| real time connections accepted@*‘urther, this algorithm can sustain more mobility, that is, it requires
— less reconfiguring on node movemery)

The implementation is done in C lahguage on the TATA ELAXI RISC system under UNIX

environment.
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CHAPTER 1

~

INTRODUCTION AND BACKGROUND

1.1 MOBILE, MULTIMEDIA,‘ MULTIHOP (M3) WIRELESS NETWORKS
Al 40T
Current wireless systems, such as cellular systems, have fixed network and fixed
base stations or servers that are linked by a wired backbone infrastructure. In
some cases such as emergency disaster relief, when the backbone is not available,
’ @5‘“’_}3_
this type of architecture is infeasible. In this thesis"we discuss a network
arch'itecture which overcomes these constraints. This is a wireless network, which
is adaptable to a variety of transmission environments, networks configurations
and user services (including data, voice and image). The architecture enables
rapid deployment and dynamic reconfiguration of a network of wireless stations.
In conventional cellular communication, a mobile node is only one hop away
from a base station. Another type of model/based on radio to radio multihopping,
has been evolving to serve a growing number of applications which rely on a fast
deployable, multihop, wireless infrastructure. Classic applications for this are
battlefield comvmunication., disaster recovery and search and rescue. A recent
addition to this set is the “adhoc” personnel communication network, Which could
be rapidly deployable on a campus, for example, to support collaborative
computing and access to Internet during special events. The main advantage of
multihopping through wireless repeaters is to reduce battery power and to .increase
network capacity (via spatial reuse).

RN e ot | . .
More precisely, in the thesiS,” we are concerned with the design of efficient

Multihop, Mobile, Multimedia (M3) wireless networks. The M3 problem has



been recognized as a very difficult problem. Over a decade ago, the ARPA
sponsored Packet Radio Network did provide an efficient solution to multihop,
mobile requirement of battlefield and disaster relief communication. It fell short,
however/,o]c supporting multimedia services.

Recently} the M3 problem was revisited under the ARPA sponsored WAMIS and
GLOMO projects [9]. In this scheme the network is dynamically partitioned into
clusters where each cluster uses different spreading-codes. Clusters (with code
separation) improve spatial reuse. They also make it easier to manage real-time
connections since each cluster can manage its own bandwidth.

In_this Jh.esi‘sf‘Wc% have dealt with the above mentioned M3 wireless networks by
simulating them and doing a performance analysis based on{}\c’jlstermg algorithm

i DhIat o ANAEE R s e T A
given in }f{li[l/,lﬂ We t}’len \shov@ that b}3 11m1tmg the cluster size, a considerable

T T . \/’

J ‘improvement in rgal—time connection acceptance and datagram throughput can be
obtained\\l(detaﬂ ed-in-our modifi ed»clﬁster-in g-algorithm;-chapter2).
e
1.2 STATEMENT OF THE PROBLEM
The dissertation deals with the problem of
- simulating the M3 network
- finding the minimum transmission range within which every node can access
all other nodes
- simulating the clﬁstering algorithm given in [11].
- simulating the modified clustering algorithm and comparing the various
cluster properti;s with the given algorithm’s properties.
- finding the performance of the network in terms of real-time cpnnections

accepted and datagram throughput.



1.3 ORGANISATION OF DISSERTATION

Including this introductory chapter in M3 networks, this dissertation is orgar.ii'zedv
as follows: |

In chapter 2 we define the various terms used in M3 networks and then describe
the given adaptive clustering algorithm. The emphasis is on the important issue of
overheads while dealing with mobility bf nodes. We also présent our modified
clustering algorithm. |

Chapter 3 describes the collision free channel access scheme and deals with the
reliability of datagrams through piggybacked reservation scheme.

Chapter 4 gives details of routing of real-time traffic and datagrams. It explains a
loop free highly dynamic routing algorithm for mobile nodes.

Chapter 5 shows the simulation model and explains the various functions énd
routines used in the simulation of the above algdrithms. |

Chapter 6 gives details of the results obtained using both the given and the
modified clustering algorithms. It also lists the open problems in the area and
gives suggestion for further work.

Software listing is given in Appendices.



CHAPTER 2

ADAPTIVE CLUSTERING

In order to support multimedia traffic, thé wireless network layer must guarantee
QoS (bandwidth and delay) to real-time traffic componenl;s. Our approach for
QoS to multimedia consists of the féllowing two steps: 1) 'partitioning of
multimedia network into clusters, éo that controlled, accountable bandwidth
sharing can be accomplished in each cluster; and 2) establishment of virtual

circuits with QoS guarantee.

2.1 THE MULTICLUSTER ARCHITECTURE [11]

Most hierarchical clustering grch'itectures for mobile radio networks are based on
the concept of a clusterhead. The clusterhead acts as a local coordinator of
transmission within the cluster. It differs from the base station concept in current
cellular systems in that it does not have special hardware and in fact it is
dynamically selected among the set of stations. However, it does extra work with
respect to ordinary -stations, and therefore it may become the bottleneck of the
cluster. To overcome these difficulties, in our approach, we abandon the
clusterhead approach altogether and adopt a fully distributed algorithm.

The objective of the clustering algorithm is to find an interconnected set of

clusters covering the entire node population.



2.1.1 ASSUMPTIONS AND DEFINITiONS

Each node contains an identical transceiver, which can either ,tran’smit: or receive
at any given time. In addition, each node uses an omni-directionél‘a:lnteﬁna fori
transmission. We assume there is a particular set of spread spectrum cdde with
low cross-code interface. Since the qumber of codes we can use is very limited,
spatial réuse of codes will be important. Finally, al»l radio nodes use the sar'ngv
power for transmission. The following definitions and notations will be frequently
used in the thesis. |
Definition 1: (System Topology)

The system topology is a graph G=(V, E), where V is the set of nodes, :and e is the
set of logical edges. It is used to represent a radié network. There 1s only éne
transceiver in each node and the network operates in a half—drﬁplexj mode. A
logical edge (x, y) ;neans that node y is node X's oné—hop neighbo; under ‘the: |
current transmitting power, and vice-versa. | | |

In Fig. 1 we have an example topology.

Fig. 1 System topology

Definition 2: (Distance of two nodes) » S
The distance d(x, y) of two nodes x and y of G is defined to be the minimal

number of hops from x to y.



Definition 3: (Cluster)
A cluster Ci is a set of nodes, where for any two nodes x, y which are elements of

Ci, d(x,y)<=2. Namely any two nodes in a cluster are at most two hops apart.

Definition 4: (Degree of a Topology)

The degree of a topology is the number of clusters in the topology.

Definition 5: (Repeater, Bridge and the Order of a Repeater)

For an edge u=(x, y), x and y are called repeaters if they belong to different
clusters. u is called a bridge. The number of clusters, which a repeater can reach
in one hop, is called

the order of the repeater. The order of a repeater includes the cluster, which it
belongs to. Thus, the minimal order of a repeater is 2.

!

2.1.2 THE CLUSTERING ALGORITHM

Let T1(x) be the set of one-hop neighbors of the node x, which has the maximum

number of one-hop neighbors.

1 i=0

2 x=min(v).

3 Ci={xJUTI
V=v-Ci
E=E -w(Ci)

4 Ifvisnot{}theni=i+l and goto 2;

else stop.
We have made a modification in stép3 of the algorithfn by limiting the size of
clusters; in case x has more than n/4 one-hop neighbors, we include only the
nearest [n/4] nodes.
So in the modified clustering algorithm Ci={x}U T2, where T2 is the set of the

nearest [n/4] nodes.
This is the centralized version of the clustering algorithm and the advantage of the
algorithm lies in the fact that it can be implemented in fully distributed manner i.e.

without need of any clusterhead.



2.2 CLUSTER MAINTENANCE IN THE PRESENCE OF MOBILITY [1]

In the dynamic radio network, nodes can 1) change location, 2) be removed, and
3) be added. A topological change occurs when a node disconnects or connects
from/to all or parts of its neighbors, thus altering the cluster structure. System
performance is affected by frequent cluster changes. Therefore it is important to
design a cluster maintenance scheme to keep the cluster infrastructure as stable as
possible. In this respect, the proposed algorfthm is more robust than the referred
one because it chooses those nodes, which are nearest. The cluster maintenance

scheme was designed to minimize the number of node transitions from one cluster

to another.

Fig 2(b) Reclustering



Let us take an example, as shown in Fig. 2. There are five nodes in the cluster
and the hop distance’is no more than two. Because of mobility, the. topology

changes to the configuration shown in Fig 2(b) .At this time, d(1, 5) = d(2, 5) =3

> 2, where d(i, j) is the hop distance between j and i. So the cluster needs to be .
reconfigured. Namely, we should decide which node(s) should bc’removcd from

the current cluster. We let the highest connectivity node and its heighbors stay in

the original cluster, and we remove the other nodes. We know that each node

only keeps the information of its locality, that is, its one-hop and fwo-hop

neighbors. Upon discovering that member say X, of its cluster is no longer in its

locality, node y should check if the highest connectivfty node is a one-hop

neighbor. If so, y removes x from its cluster. Otherwise, y changes cluster.

Two steps are required to maintain the cluster architectﬁre:

Step 1: Check if there is aﬁy member of my cluster that has moved out of my

locality.

Step 2: If yes, decide whether I should change cluster or remove the> nodes not in

my locality, from my cluster.

We see the example shown in Fig 2(b). Node 4 is the highest connectivity node.

Thus. node 4 and its neighbors {1,2,3} do not change cluster. However node 5

should either join another cluster or form a new cluster. If a node intends to join a

cluster, it has to check first if all members of this cluster are in its locality. Only

in this case can it join the cluster.

2.3 CODE ASSIGNMENT [1]
Each node has a transceiver, which can either transmit or receive at any given

time. In the spread -spectrum code-division system, the receiver should be set to



the same code as the designated transmitter. We assume there is a small set of
good spread-spectrum codes, which have low cross-correlation. Since the
nurjnbers of codes we can use are limited, the spatial reuse of code will be
important. Thus each cluster is assigned a single code which is different from the
codes used in the neighbor clusters.

The essence of our tfansmitter based code assignment scheme is “within a cluster,
every node uses a common transmitting code so that there is no intercluster

collision. If no two nodes in a cluster are transmitting simultaneously, there will

be no intracluster collision” .

2.4 NETWORK INITIALIZATION [1]

Initialization is carried out using a common “control” code. A node, which does
not yet belong to a cluster, listens-to a control code until timeout. Then it transmit
its own ID (using the control code), and repeats the procedufe until it hears from
one of the neighbors. Channel access in this phase is CSMA. Thié basic
communication facility‘allows nodes to> organize themselves in clusters following
the algorithm just described. Once a cluster is formed, the cluster leader
communicates with the neighbors (using the control code) to select the codes.
Only when the code assignment is completed (i.e. each cluster has been assigned

its code) can user data be accepted by nodes and transmitted in the network.



CHAPTER 3

MAC LAYER PROTOCOL

In this chapter, we introduce the medium access control (MAC) protocol. The aim here

is to support integrated traffic (datagram and real time) efficiently. We will assume fixed

packet size.

3.1 THE CHANNEL ACCESS SCHEME
The two nodes, which are communicating, may or may not belong to same cluster. So

communication between two nodes which belong to different clusters, requires two steps,

namely intracluster and intercluster communication.

3.1.1 COLLISION-FREE CHANNEL ACCESS SCHEME

Since our system is distributed and each cluster»uses a common channel for packet
transmission, we employ a round-robin (RR) scheme, which completely rotates the
access priority among the nodes, to make the channel access distributed and conflict-free.
The RR scheme gives each node in turn an opportunity to transmit a packet. In. addition,
the short propagation-to-transmission time ratio makes CSMA sﬁitable as an access
scheme. Thus, we implement RR over CSMA slotted ALOHA (CSMA-RR) for packet -
transmission within a cluster. In this scheme, if a node, say x, relinquishes its turn to |
transmit, its one-hop neighbors c.ontend for this free time slot. The rigﬁt to transmit in the

next time slot passes to the next node of x in logical sequence.

10



Since our system assumes a common transmitting code in each cluster, there is no
intercluster collision. The receiver must tune fo transmitter's code to receive the packet.
It is relatively easy to maintain time (i.e. slot) synchronization within each cluster. So the
’channe] will be assumed slot synchronized. This is much easier than maintaining slot
synchrohization across the entire network. It is important to note that in this scheme

synchronization is required.only within a cluster.

3.1.2 INTER-CLUSTER COMMUNICATION

In addition to the two codes (for information and ACK) assigned to each cluster, two
codes are also assigned to each edge which connecls a pair of adjacent clusters for inter-
cluster communication. Namely, there are two channels, the transmission (Xmt) channel
and the acknowledgment (Ack) channel, for each pair of adjacent clusters.

Each repeater must periodically listen to different codes (in fact, as many codes as its

~ order). We assume that the repeater, when it is free from voice traffic, shares its time

randomly among the various codes.
The access on the transmitting channel can be simply carried out in a CSMA unslotted
ALOHA fashion. Namely, if the channel is sensed busy, or if ‘the transmission is

unsuccessful (no ACK), the packet is regarded as backlogged.

b T gl .

t1 t2 3 t4  Time

Fig. 3.1 Random Delay
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As Fig 3.1 shows, each backlogged packet repeatedly attempts to retransmit at randomly
selected times separated by random delays ¢ If the channel is idle at one of these times,
Vthe packet is transmitted, which continues until such a transmission is éuccessfu}. Upon
receiving a packet successfully, the receiver uses the Ack channel to transmit an explicit
ACK packet immediately.

At the first packet transmission, the voice sdu.rce reports the spreading code, which is
different from the code ﬁéed in Xmt channel and will be used for the following voice
packet transmission. Thus, after the first successful transmission, the receiver listens to
this spreading code. On the other hand, the voice source schedules its next transmission
at a fixed time T's as intra-cluster communication and uses the piggyback reservation with

packet transmission to reserve the time slot.

A

Fig. 3.2

For example in Fig. 3.2, suppose that a voice stream is transmitting thfough edge (1,3).
The voice packets are encoded by another spreading code different from the code used in .
Xmt channel. At this time, the node 4 can transmit a data packet to node 2 through Xm¢

channel without collision at node 3.

12



frame

free slot

Fig. 3.3. Channel Access Frame within a Cluster

As shown in the Fig. 3.3, we assume that there are n nodes in a cluster. Time is diyided
into slots, which are grouped into frames. In each frame, a free slot is reserved for a new
node joining the cluster. Using the control code, the nodes in the cluster take turns to
transmit periodically in the free slot, their cluster and code information, for the purpose of
attracting new nodes. When a node decides to join a cluster, it listens to the channe] for é
period of time, and then uses this free slot to transmit packets temporarily. Since cluster

switches are infrequent, one free slot will suffice. The frame is readjusted after each

join/leave.

3.2 ACKNOWLEDGMENT FOR DATAGRAM

Datagram traffic is error sensitive. Thus, it is important to design a reliable transmission
for datagrams. Each cluster has a dedicated code for transmission. Since every node can
only transmit packets in its assigned TDMA slots, we use an implicit acknowledgement

scheme. Upon receiving a packet successfully, the intended receiver piggybacks the

13



acknowledgment on its data packet at its assigned slot. The transmitter listens to the

receiver’s slot and code. If a time out occurs, it retransmit the packet.

X@ codea  Y(b) codeb  Z(o)

——
\\ l
N ‘,j

Fig. 3.4 Impliéit acknowledgement scheme

Fig. 3.4 illustrates this implicit ACK scheme. Node x uses code a to transmit its packet
to y, and listens to code b for ACK. Node y receives the packet successfully. When its
transmitting slot comes, y piggybacks an ACK for x on the packet, whicvhi it transmitted

to z.

14



CHAPTER 4

NETWORK LAYER PROTOCOL

A multimedia applicatign such as digital audio or video has much more stringent QoS
requirement than a tradi:;t"i(‘)nal datagra‘mI application. For a network to deliver QoS'guarantees, it
must reserve and control resources. Routing ig the first step in resource reservation. The routing
protocol first finds a pa£h with sufficient resources. Then, the resource setup protocol makes the

reservations along the path.

4.1 BANDWIDTH IN CLUSTER INFRASTRUCTURE (1]
The key resource for the muitimedia QoS support is bandwidth. We define bandwidth in our‘_ :
cluster infrastructure for the purpose of real-time connection support, as the number of real-time
connections that can pass through that node. Since, in our scheme a node c‘a’n at most tranémit
-one packet per frame, the bandwidth of a node is given by
bandwidth = tint) (cycle time/frame time)
here CYCLE TIME is the mavxir_num interval between two .real-timevpa‘ckets. ,
and frame timé of a cluster depends on how many nodes there are in the cluster.

I Frame I

i . _ i

Cycle 1
Fig.4.1 Noise Bandwidth
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Fig. 4.1 shows the slots dedicated to node i in the cycle, which correspond to node i's bandwidth
For example, if cycle time is 24, consider cluster C1, where frame size is equal to six slots. Thus
the node bandwidth in C1 is 24/6 = 4. Since there are three VCs passing through node c, the

available bandwidth for node ¢ is one.

4.2 BANDWIDTH RESERVATION FOR VC TRAFFIC [1]

A real-time connection is set up using a fast reéervation approach. We assume that real-time
packets arrive at constant time intervals. The first data packet in the multimedia stream makes
the reservation along the path. Once the first data packet is accepted on a link, a transmission
window is reserved (on that link) at appropriate time intervals for all>of the subsequent packets in
the connection. The window is released when idle for a pre-specified number of cycles.

Each réal—time connection is assigned to a VC which is an end-to-end path along which slots
have been reserved. The paéh and slot of a VC may change dynamically during the lifetime of a
connection due to mobility. Each node schedules each of its slots to transmit either datagram or
VC traffic. Since real time traffic needs guaranteed bandwidth during its active period, each
node has to reserve its own slots to the VC at connection set up time. |

When a node intends to sef up a VC to jts neighbor, it transmits the first session of the packet in
its TDMA slot. After successfully receiving the packet, the intended receiver will set up the
reservation for receiving the‘ next packet, since the next transmissién time is piggybacked on the
current packet. Since the sender always uses the same code to transmit packets, the intendedv
receiyer only needs to lock on that code when the reserved slot comes. If the link is not broken

due to mobility, the subsequent packet will be received successfully.

16



Nodel . Nodel

}4 ' . ,l Time

Cycle

‘_.

Fig.4.2 Bandwidth Reservation

Let CYCLE be the maximum interval tolerated between two real-time packets. The firsF packet
.of the real-time session is treated as a data packet and is transmitted using TDMA. It has higher
priority than data packets in the local queue. A real-time source schedules its next transmission
after a time CYCLE following a successful transmission, and piggybacks the reservation with
the current transmission. Fig. 4.2 shows that node i sucéessfully transmits the fist real-time
packet and it reserves the time slots for the real-time session. The receiver h'asy to listen to the
sender’s transmitting code when the reserved time slot comes. So, for real time sources, - -
transmission is always collision-free and the maximal delay is guaranteed. At the end 6f real-
time session (i.e., the reservation field is se£ to zero), the reservation is auiomatica]ly canceled.
Because of the limitation of node bandwidth in a cluster, the number of feal-time sessions Which '
can pass fhrough a node, is restricted. Slots, which are not reserved by voice traffic, are accessed
aiccording to a TDMA protocol. Datagram packets become backlogged when real-time traffic
starts building up. For example, we cbnsider the case when bandwidth of a node is completely
used by a real-time sesgion. Hence, there are [(CYCLE/ ((n+1)*t)] real-time seSs‘ions (in Fig. 4.2) '
over a node, where n is the number of members‘in'the cluster and t is the packet transmission
* time .No other source can construct a VC which passes through the saturated nodg until one of

the VC’s over the saturated node ends its transmission and bandwidth become available.

17



ADAPTIVE ROUTING FOR REAL-TIME TRAFFIC [4]

When real-time traffic is considered to transmit over the dynamic network, the objective of
routing protocol is to keep communication going. Routing optimélity (e.g., shortest path) is ofv
secondary importance; the routing protocol must be capable of establishing new routes for real-
time sessions quickly when a topological chémge destroys existing routes. So we set the goal of
the bandwidth routing algorithm to *find the sllox:tcst path such that the free bandwidth this
above the minimum requirement”.

To compute the bandwidth constrained shortest path, we use the DSDV (destination sequenced
diétance vector) [4] routing algorithm which was proven to be loop free. Loop freedom follows
from the fact that the updafes generatéd by a destination are sequentially numbvered. In our
shortest path computation, the weight of eacﬁ link is equal to one (i.e. minimal hop distance
routing). The bandwidth constraint. is simply accounted for by setting to infinity the weights of
all the links to/from a node with zero bandwidth. An advantage of this scheme is to distribute the
real-time traffic evenly across the network. A cluster with small frame size will allow more
.connections to pass through it, since it has more “ bandwidth” per node.

In addition to load balancing, our routing scheme also supports the alternative path. This is very
important in the mobile environment, where links will fail because of mobility. In such an
environment, routing optimality is of secondary importance. The used routing protocol is
capable of finding new routes quickly when a topological change destroys existing routes. To
this end, the algorithm proposes.to maintain secondary paths, which can be used immediately

when the primary path fails.

18



N1 p_route

s_route
N2
Fig. 4.3 Standby routing

For example in Fig. 4.3, each node uses the primary route to route its packets. When the first link
on the path (s, N1) fails, the secondary path (s, N2) becomes the primary path, and another

standby path (s, N3) will be computed as shown in the Fig.4.4.

s_route

N3

N2

Fig. 4.4 The primary route fails and the standby route becomes the primary route.

Another standby route is constructed.

It is to be pointed out that these routes are using different immediate successors to avoid failing

simultaneously.

19



The secondary route is easily computed using the DSDV algorithm. Referring to the Fig. 4.3, we
see that each neighbor of n.ode S periodically informs S of its distance to D. The neighbor with
shortest distance yields the primary route .The runner-up yields the secondary route. The scheme
guarantees that the first jink is different for the two paths. Furthermore, the standby route

computation requires no extra table, message exchange or computation overhead. Also the

standby route is as loop free as the primary route is.

ROUTING FOR DATAGRAMS [1]

In order to minimize delay for real time traffic we choose even those paths which may not be
shortest, this is what we have achieved through the bandwidth constrained ro_uting. But to
achieve efficiency, datagrams are always pushed into the network in a way so that they always

follows the shortest path from source to destination.

20



CHAPTER S

IMPLEMENTATION AND DESIGN

The multicluster architecture is simulated using various C-structures. We performed several sets of

experiments in order to evaluate the performance as a function of traffic and system parameters.

The simulation is described in the following sections.

5.1  SIMULATION OF TRAFFIC

The channel rate is 800 Kbits/sec (the nominal rate of the radio under development, in the ARPA
sponsored WAMIS project). All data packets (datagram and real-time) are of 4 kbits.

The offered traffic consists of two components, real-time and datagram. A new real-time session
is generated on average every second (Poisson arrival model) between a random pair of nodes.
Session duration is exponential with average duration of 3 minutes. The real-time cycle is allowed
to vary from 1 pkt/sec to 10 pkts/sec.

We simulated the following condition by using two C-lists of structures, one for real-time and
another for datagrams. Each structure of real-time traffic has members to show number of‘packets
1) that will be transmitted in the session 2) after which the new real-time session will start 3)
source and destination between which the real-time session is to start. Another C-list is for
datagrams where each sfructure need to coh_tains only source and destination information, because |

in our experiments we assumed uniform datagram rate, namely 10 pkts/sec.
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5.2 SIMULATION OF ROUTING

We used highly dynamic Destination-Sequenced Distance-Vector (DSDV) which guarantees loop
freedom. The routing for the real-time traffic is "bandwidth constrained shortest path" where as for
the datagram it is "shortest path".

We simulated the above mentioned properties of our routing technique by taking each node as a
structure. We assigned each node an initial available bandwidth, which is calculated on the basis of
number of nodes in the cluster to which the particular node belongs and CYCLE-time. Then for
~ each real-time session we find the path. If path is available (that is enough bandwidth is available
at all the nodes between source and destination) then we reserve the bandwidth along the path.
Each node then calculates the currently availabl¢ bandwidth. Our strategy gives path as per
available bandwidth, that is, if enough bandwidth is not available along .the shortest path, then less
efficient path will be given if enough slots are available along that path.

For thg datagram case we set the currently availéble bandwidth to infinity, so it always follows the

shortest path. While finding the path we do not consider the node, which is already in the path, so

we ensure loop freedom.

5.3 DESCRIPTION OF FUNCTIONS USED

Many functions are used in the simulation work; we list here some important functions. However,
an exhaustive list of all functions used can be found in the APPENDICES.

random_deploy( ) : By this function we generate different topology with n uniformly distributed
nodes in a 100*100 square area.

one_hop_neighbor( ) : The function finds the one-hop neighbor, if any, of all the nodes in the
topology. The transmission range is varied and for each value, it finds the one-hop-neighbors.

cluster_form() : The function makes the clusters with the help of function find_min which find

the nearest given number of minimum nodes.
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random_rcdéploy() + In our simulation, every 100 ms, each node moves in a direction uniformly
distributed over the interval (0, 2IT), covering a distance of (0, 3).

Function redeploys the nodes as per defined mobility.

cluster_fdrm( ) + With the help of many other function, this function does the important job of

making clusters.

modify_list2() : After the formation of cluster, the function removes all those nodes which were in
the cluster from the one-hop-neighbor list o.f another nodes. Thus the function ensure non-
overlapping clusters.

effected_node() : Because of mobility the nodes will migrate from one cluster to another or form a
new cluster. The function counts the number of nodes that are effected per 100 ms.
count_order() : The function finds order of each repeaier respectively.

count_repeater( ) and éount_bridges( ) + Functions find number of repeaters and order of each
repeater respectively.

count_bridge( ) and cluster_size( ) : Functions find the number of bridges and average. sizé of
clusters in the topology.

real_traffic_generation() : The function generate the real-time traffvic between the random pair of
nodes on average every second (Poisson arrival model). Session duration is exponential with 3-
minute average.

send_data_gram( ) : The function generate the datargams between random pair of nodes at the

constant rate of 10 pkts/sec.
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CHAPTER 6

CONCLUSION

We studied the problem of M3 networks in the following sequence as:
1. Finding the minimum transmission range within which each node can access all other

nodes.

2. Applying the given and modified clustering algorithm to nodes and then comparing
the various clustering parameters, namely, average cluster size, number of repeaters,
order of repeaters, average number of bridges and finally the number of nodes which
are affected due to mobility

We performed several sets of experiments with varying number of nodes nameély, 20, 30

and 40. At each node, value we then vary the transmission range.

Finally, we studied the system performance in terms of number of real-time connections

and datargams accepted in a mixed traffic condition, where we vary the rate of real-time

traffic.

6.1 DISSCUSION OF RESULTS

Connectivity:

Connectivity is defined as the fraction of node pairs, which can communicate through
single or multiple hops. We want to see the impact of transmission range on connectivity.
We assumed an ideal network model where a link can be established betweeﬁ any two

nodes within transmission range of each other. We note in Fig. 6.1 that in order to
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guarantee that all nodes can communicate with each other, the transmission range should

be more than 30 for n = 40 and more than 40 for n = 20.

Repeaters:

Repeaters relay packets from one cluster to another. Sihce our topology is dynamic the
reliability of packet routing is important to guarantee the integrity of network services.
Thus, the existence of at least one path betweeﬁ a pair of nodes is required. The number
of repeaters will affect the number of. paths. Namely, the larger the fraction of nodes
which are repeaters, the larger the number of alternate path.

Our modified algorithm is superior to the given one in this context, as can be seen by
comparing Fig. 6.2(a) and 6.2(b). In the given algorithm the number of repeaters starts
to decrease after the transmission range of 55 but in ours it continues to increase with
range, the peak is approximately 3/4" of the number of nodes which ‘is more than the
peak obtained from the given algorithm.

Further, the number of bridges will also affect the number of paths, these are larger in

our clustering algorithm, as is seen from Fig. 6.3.

Average cluster size:

This parameter actually does not give the correct information about cluster size. At a
particular transmission range, say 45, with number of nodes 20, in the given algorithm,
since there is no restriction on éluster size, the typical clusters formed are of 13,4,1,1
(number of nodes) size respectively. Average cluster size comes out to, be 4. We see

that average cluster size in the previous algorithm does not reveal the fact that there is
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need of restricting the size of clusters especially when transmission range is high, say,
above 70, where one of the clusters takeé approximately 3/4™ of the total nodes and the
other clusters are merely of size 1.

In our algorithm, we restrict the size of clusters so they are approximately of the
same size and it can be seen from Fig. 6.4(b) that it does not shoot up at high

transmission range as in Fig. 6.4(a).

Order of the repeater:

Every repeater is time shared among the set of adjacent clusters, that is, its spreading
code must be transmited to these clusters; So, the order of a repeater should be small in
order to maintain efficient operation, with as few code changes as possible (the minimgl
order of repeater is two).

We see that our algorithm makes the operation of the system, a bit complex. Incréasing
of the order of repeaters at high transmission range is not of concern because optimal
transmission range is far less than 100, At 20 nodes it is 40, where average order is
approximately 2.7 (2.5 in previous algorithm), at 30 nodes it is 35 where average order is
2.9 (2.7 in the previous algorithm) and at nodes 40 it is 30 where order is 3.0 (2.9 in
previous algorithm).

We see from Fig. 6.5(b) that increase in order of repeaters is marginal at the concerned

range of operation.
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Affected node:
By comparing Figures 6.6 (a) and (b) we can say in our algorithm, node migration is
almost nil at the concerned range of operation, that is affected nodes are approximately

zero. It is important since it reduces the reconfiguration overheads.

Number of real-time connection accepted:

This is an important parameter for the improvement of which we compel to made
modification in the existing algorithm. We see from Fig. 6.7 that at transmission of 45,
with nodes 20 and real-time packet rate at 10 pkts/sec, in previous algorithm only 10 of
the réquest are accepted out of 100. Our algorithm improves it up to 30. We see if we
allow real-time connection to send only 5 pkts/sec almost all requests are accepted.

We conclude that our modification loses only marginally in controlling the order of
repeaters, but it improves various other parameters substantially of which great concern

were number of nodes migrated due to mobility, and real-time and datagrams accepted.

6.2 FUTURE SCOPE OF WORK

Our modified clustering algorithm improved the number of real-time connection_
accepted and datagram throughput. Further, the architecture now can~be'ar more node
mobility . Our gain is substantial in tgrfns of number of nodes effected due to mobility.
But the price paid is increase in the order of repeaters. We restricted the cluster size
irrespective of number of nodes. A -prober selection of size with different ﬁumbe'r of

nodes can decrease the order of repeaters.
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Further, in our network, we always give preference to real-time traffic and go on
reserving the bandwidth for real-time session till it is available. This will lockout
datagram traffic. System performance in this context can be improved if some optimal
fraction of bandwidth is made free for datagrams.

We have used DSDV routing algorithm to ensure loop freedom. There is need of finding
good functional values of few parameter of this routing algorithm such as average

convergence time, full update period, incremental update period.
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APPENDIX A

ek R kR kR g £ o ekl olololooks kool )

struct node {

int - no,mark,one_hop_nei,cluster_id,order;
int con_mark,avai_bw,temp_bw,cluster_member,m_mark;
float X,Y;

struct one_hop *one;
struct node *next;

b

typedef struct node *pnode;

struct one_hop {
int
struct one_hop
struct node
&

typedef struct one_hop *pone;

struct cluster {
struct one_hop
struct cluster
int
b
typedef struct cluster *pcluster;
pcluster m; _'
int cluster_no,repeaters;

struct real_traffic{
int

mark,no;
*next;
*member;

*another_cluster;
*next;
total_member,cluster_id,cluster_size;

source,desti,no_of_packet,selection,next_sess_packet;

struct real_traffic  *next;

b

typedef struct real_traffic *p_rtraffic;

struct hop {

int nodeno,hopno;
struct hop *next;

I
typedef struct hop *phop;

struct data_traffic {

struct data_traffic  *next;



phop dpath;

typedef struct data_traffic *pdtraffic;

struct rem_path {

int

phop ppath;

no_of_pack;

struct rem_path *next;

I

typedef struct rem_path *p_rem_path;

struct con_node {

pnode pn;

struct con_node  *next;

typedef struct con_node *pcon;

struct backlog_data {

phop dpath;

struct backlog_data *next;

1

typedef struct backlog_data *pback;

pback backlist;

pnode getcon_node() f

pnode getnode() {

}

peluster getcluster() {

pcon p;

p=(pcon) malloc(sizeof (struct con_node));
p->next=NULL;

return(p);

pnode p;

p=(pnode) malloc(sizeof(struct node));
p->next=NULL;

p->mark=NO;

p->m_mark=NO;

p->one=NULL;

p->con_mark=NULL;
p->cluster_member=NULL;

return(p);

pcluster p;
p=(pcluster) malloc(sizeof(struct cluster));



p->next=NULL;
return(p);

}

pone getone_hop() {
pone p;
p=(pone) malloc(sizeof(struct one_hop));
p->next=NULL;
p->mark=NULL;
return(p);

)

p_rtraffic getrtraffic() {
p_rtraffic p; _ :
p=(p_rtraffic) malloc(sizeof (struct real_traffic));
p->next=NULL;
return(p);

}

pdtraffic getdatagram() {
pdtraffic p; _
p={pdtraffic) malloc(sizeof(struct data_traffic));
p->next=NULL;
return(p);

phop gethop() {

phop p;
p=(phop) malloc(sizeof(struct hop));

p->next=NULL,;
return(p);

}

phop getbacklog() {
pback p;
p=(pback) malloc(sizeof (struct backlog_data));
p->next=NULL,;
return(p);

}

p_rem_path getrem_path() {
: p_rem_path p;

p=(p_rem_path) malloc(sizeof (struct rem_path));

p->next=NULL;

return(p);



int datagram;
[Rickkikiokkckkioik ook rand, ikl kik ki

/¥ FUNCTION RETURNS UNIFORM RANDOM NUMBER BETWEEN 0 AND 1+ /

#define 1A 16807
#define 1M 2147483647
#define  AM (1.0/IM)
#define  1Q 127773
#define IR 2836

#define NTAB 32
#define  NDIV (1+(IM-1)/NTAB)
#define  EPS 1.2e-7
#define RNMX (1.0-EPS)
#define MEAN 1

long N =12345;

long *idum=&N;

float un_rand(long *idum)

{

int Js

long k;

static long iy=0;
static long iv[NTAB];
float temp;

if(kidum<=0llliy){
~if(-(*idum)<1)
*idum=1;
else
*idum=-(*idum);
for(j=NTAB+7;j>=0;j--){
k=(*idum)/IQ;
*idum=IA*(*idum-k*IQ)-IR*k;
if (*idum<0)
*dum+=IM;
if(j<NTAB)
iv[jl=*idum;

iy=iv[0];
}
k=(*idum)/IQ;
*idum=IA* (*idum-k*I1Q)-IR*k;
if *idum<0)



*idum+=IM;

j=iy/NDI1V;

iy=iv[jl;

iv[jl=*idum;

if (temp=AM*iy)>RNMX)
return RNMX;

else
return temp;

}
[k R Rk 0f _rand kb ook

/#3445 FUNCTION RETURNS POISSON DISTRIBUTED RANDOM NUMBER ik
sk ok WITH MEAN ARRIVAL RATE OQNE##sitksiarskotoiokoksiok

#define PI 3.141592

float poi_rand(float xm,long *idum)
{ ,
float gammin(float xx);
float ranl(long *idum);
static  float sq,alxm,g,0ldm=-(1.0);
float. em,Ly;

if(xm<12.0)
{
if(xm!=oldm)
{
oldm=xm;
g=exp(-xm);

em=-1;
t=1.0;
do{
++em;
t*=un_rand(idum);
}while(t>g);

else

if(xm!=oldm) -
{
oldm=xm;
sq=sqrt(2.0%*xm);
alxm=log(xm);
g:xm*alxm-gammln(xm+1 .0);



}
dof{
do{
y=tan(PT*un_rand(idum));
em=sq*y+xm;
}while(em<0.0);
em=floor(em);
t=0.9%(1.0+y*y)*exp(em*alxm-gammIn(em+1.0)-g);
}while(un_rand(idum)>t); ,
}
return(em);

|

float gammin(float xx)

{

double X,Yy,tmp,ser;

static double cof[6]= {76.180091,-86.505,24.014,1.2317,0.120e-2,-0.53%¢-5};
int J; '

Y=X=XX;

tmp=x+5.5;

tmp-=(x+0.5)*log(tmp);

ser=1.0;

for(j=0;j<=5;j++) ser+=cof[jl/++y;
return(-tmp+log(2.5066*ser/x));

[estkiidoiosiiotexp_rand,hiekiikisiisicl ko]

/*¥FUNCTION RETURNS EXPONENTIAL RANDOM NUMBER WITH MEAN 3%/

float exp_rand(float xm,long *idum)
{
float v,U;
U=un_rand (idum);
v=-xm*log(U);
return v;



APPENDIX B

(#*%%%%¥PROGRAM TO FIND MINIMUN TRANSMISSION RANGE##¥%#
*+*WHERE EACH NODE CAN ACCESS ALL OTHER NODES ** /

#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include "random.h"
#define NULL O

main() {
int  i,n,gh,pair_uncon,z,N,L;
float a,b,d,range,avg_con,net_avg_con;
pnode k,m,q,0;
conlist l,c;
n=20;
do{
printf("\n\n no of nodes are n=%d",n);
range=4; '
do{
net_avg_con=0;
for(L=0;L<100;L++){
k=NULL;
pair_uncon=0;
for(i=n;i>=1;i--)
{
m = (pnode) malloc(sizeof (struct node));
m->no=i;

. m->x=ran(&seed)*100;
m->y=ran(&seed)*100;
m->next=k;
k=m;

list=k;

do{
k=list;
first=NULL;
a=k->x;
b=k->y;
if(list'=NULL) {
do{
k=list;



do{
d=sqrt((k->x-a)*(k->x-2)+(k->y-b)* (k->y-b));
-~ if(d<range){
if (first==NULL){

p=(conlist) getponode();
first=p;
I=first;
c=p;

}

else{
p=(conlist) getponode();
|->next=p;

I=p;
}

|->t=k;

if (list==k){
k=k->next;
list=k;

}

else{
g->next=k->next;
k=k->next;

}
}“END OF IF#/

elsef{
q=k;
k=k->next;

J

}while(k!=NULL);

q=list;

c=c->next;

if(c!=NULL){
0=C->t;
a=0->X;
b=0->y;

}

}while((c&&list) =NULL):

g=count_con() ;
h=count_uncon() ;



z=g*h;
pair_uncon=g*h+pair_uncon ;
}/#¥END OF IF#¥/
Ywhile(list!=NULL);
N=n*(n-1)/2;
avg_con=(float) (N-pair_uncon)/N;
net_avg con=(net_avg_con+avg_con);
}/#END OF ITERATIONS*/ 5
printf("\n range = %f" range); '
printf("  the avg_con is = %f",net avg_con/lOO)

prssdsdskadRk START OF ITERATIONS WITH NEW RANGE VALUE********/
range=range + 2;
}while(range<=40);

Pk SRART OF ITERATIONS WITH NEW NUMBER OF NODES#sikiicticis/
n=n+10;
}while(n<=40);
) .

struct node {
int no;
float X,Ys
struct node *next;
K
typedef struct node *pnode;
pnode list;

struct ponode {
pnode t;
struct ponode *next;
3
typedef struct ponode *conlist;
conlist first,p;

[FxFRRkRkRRRF FUNCTION COUNT THE CONNECTED COUNT:##sk/
int count_con( ) {
int count;

count=0;
while(first!=NULL) {
count+=1;
first=first->next;
}

return{count);



}
Pk FUNCTION COUNT THE UNCONNECTED NODES ¥t/

int count_uncon() {

int  count;

pnode f;

count=0;

f=list;

while(f'=NULL){
count+=1;
f=f->next;

return(count);

}

conlist getpénode() {
p=(conlist) malloc(sizeof (struct ponode));

p->next=NULL;
return(p);

}



APPENDIX C

[exkxxk¥PROGRAM FOR VARIOUS CLUSTERING PARAMETER##s##sisksiek/

#include<stdio.h>
#include<math.h>
#include<malloc.h>
#define NO 0
#define NULL 0
#define YES 1
#include"un_rand.h"
#include"exp_rand.h"
#include"poi_rand.h"
#include"struct.h"

main()
{
int range,eff_node,eff,total_repeaters,avg_bridges,clusters,max_cluster_size;
int a,b,n,c,q;
float count,total_order,avg_cluster_size;
pnode  list; o

pcluster list_of_cluster;

n=30;
dof
printf("NODES ARE %d\n",n);
printf("Range Avg_cluster_size\t Bridges\tRepeaters\t Order\t Effected_node\n\n");
max_cluster_size=5;
range=40; -
dof
avg_cluster_size=NULL;
eff=NULL;
total_order=NULL;
total_repeatersﬁN ULL;
- avg_bridges=NULL;
for(q=0;q<100;q++){

list=(pnode) random_deploy{n);
one_hop_neighbour(list,range);
list_of_cluster=cluster_form(list, max_cluster_size);
count=count_order(list,range,n);
avg_bridges+=count_bridge(list);

if(repeaters==NULL) {



count=2;
repeaters=1;
}
else
total_repeaters+=repeaters;
total_order+=count/repeaters;
clusters=list_of_cluster->total_member;
avg_cluster_size+=total_of_cluster_size((pcluster) list_of_cluster)/clusters;
random_re_deploy(list,n);
count_diff_cluster(list_of “cluster,range);
eff_node=effected_node(list);
eff+=eff_node; :
}
printf("%d\t %\t %\t %\t %\t %f\n\n",range,av g_cluster_size/100
,(float)avg_bridges/100,(float)total_repeaters/100, (float)total_order/100 (float)eff/lOO)
fflush(stdout);
range+=5;
}while(range<60);
n+=10;
}while(n<31);
}

peiticirrickik FUNCTION RANDOMLY PLACES N NODES IN 100%100 AREA# kst
pnode random_deploy(int n)

pnode list,k,p;
int I;

p= (pnode) getnode();
list=p;
k=p;
k->no =n;
for(i=0;i<n;i++) {

: p=(pnode) getnode();
p->no =i;
k->next =p;
k=p;
k->x=un_rand(idum)*100;
k->y=un_rand(idum)*100;

return(list);



[k FUNCTION FINDS ONE -HOP NEIGHBORS OF ALL NODES*draskatetkafodrs/

void one_hop_neighbour(pnode list,float range)

pnode  k,t;
float a,b,d;
pone  p,qg;
int count;
k=list->next;
do{
count=0;
t=k;
a=k->x;
b=k->y;
q=NULL;
k=list->next;

do{
d= sqrt((k->x-a)*(k->x-a)+(k->y-b)*(k->y-b));
if((d<range)&&(d!=0))
{

p=(pone) getone_hop();
if(q==NULL)
t->one =p;
else
- g->next=p;
q4=p;
q->member=k;

g->no=k->no;
count+=1;

}

k=k->next;
}while(k!=NULL);

k=t;

k->one_hop_nei=count;
k=k->next;
}while(k!=NULL);
}



/4FUNCTION FINDS THE NEAREST NODE TO THE CENTRE NODE#s##kk:
wkkkrkikkk OUT OF REMINING NODESH sksksoioksstor/

find_min(pnode t)
{
int a,b;
pnode k,qg;
float distance,min,d;
pone ol

[=t->one;

a=t->x;

b=t->y;
while((I->member)->cluster_member==YES)
I=l->next;

g=l->member;
min=sqrt({q->x-a)*(q->x-a)+(q->y-b)*(g->y-b));
p=l

do{
|=l->next;
if(I1=NULL)

{
while((I'=NULL)&&(I->member)->cluster_member==YES)
I=l->next;
if(I'=NULL)

{
g=Il->member;
d=sqrt((g->x-a)*(q->x-a)+(q->y-b)*(q->y-b));
if(d<min)
{
min=d;
p=l;

}
} . .
}while(l!=NULL);
(p->member)->cluster_member=YES;

}

pone find_cluster_member(pnode t,int g)
{
pone y.k,I,m,a,b,templist,d,e,r;
int p.count,n;
pnode c;



k=NULL;

count=NULL;

p=q; '

y=t->one;
t->cluster_member=YES;

dof
find_min(t):
q-=1
}while(q!=NULL);
g=p;
templist=NULL;
dof{ _
while((y->member)->cluster_member!=YES)
{

_ a=getone_hop();
a->no=y->no;
a->member=y->member;
if (templist==NULL)

{
templist=a;
b=a;
}
“elsef
b->next=a;
b=a;

J

y=y->next,
}
m=y;
count+;

if(k==NULL)

if(y!=NULL)
y=y->next;



}while((y!=NULL)&&(count!=q));
while(y!=NULL){
~ a=getone_hop();
a->no=y->no;
a->member=y->member;
if(templist==NULL)
{
templist=a;
b=a;
}
else{
b->next=a;
b=a;

}

y=y->next,;

}

m->next=NULL;
r=(pone) modify_cluster(k,t);
while(templist!=NULL)

{
c=templist->member;
d=c->one;
e=(pone) modify_list2(r,d);
c->one=e;
if(e!=NULL)

{
n=count_member(e);
c->one_hop_nei=count;
}
else
c->one_hop_nei=NULL;
templist=templist->next;

return(k);

}

[k FUNCTION FORMS THE CLUSTER OF NEAREST NODES#kskeietokok/
pcluster cluster_form(pnode list)
{
int e,max,n,q,max_cluster_size;
pnode  kits,c;
pone  x,y,z,u,fl;
pcluster p,list_of_cluster;



cluster_no=NULL;
p= (pcluster) getclus
list_of_cluster=p;
p->cluster_id=cluste
m=p;
max_cluster_size=5;

dof

ter();

_no,;

max=NULL;
k=list->next;
while(k->mark==YES)

k=k- :
if((k->mark==NO)& & (k->one_hop_nei==NULL))

A

>next;

k->mark=YES;

list->no-=1;

|=getone_hop();

I->member=k;

make_cluster((pone) 1,(pcluster) list_of_cluster);
->no=k->no;

}

else{

do{

{
max=k->one_hop_nei;
t=k;

}

k=k->next;
}while(k!=NULL);
e=coun t_cl_member(t->one) ;
g=max_cluster_size-1;
if(e<=q)
{
list->no=list->no-e-1;
y=t->one;
}
else
{
y=t->one;
y=find_cluster_member(t,q);
list->no=list->no-q-1;
}
t->mark=YES;
mark_list((pone) y);
f = (pone) modify_cluster((pone) y,(pnode) t);

if((k->mark==NQ) &&(k->one_hop_nei_>max))



make_cluster((pone) f,(pcluster) list_of_cluster);

do {
s=y->member;
X=8->0N€;
if (x!=NULL){
x=(pone) modify_list2((pone) f,(pone) x);
Z=X;
s->0one=x;

while(z!=NULL)
S
c=z->member;
u=c->one;
u=(pone) modify_list2((pone) f,(pone) u);
c->one=u;
if(u!=NULL){
n=count_member((pone) u);
c->one_hop_nei=n;

}
else
c->one_hop_nei=NULL;
z=z->next;
}
}
y=y->next,

Jwhile(y!=NULL);
}
}while(list->no>NULL);
return(list_of_cluster);

void mark_list(pone y) {

priode o;

dof{
o=y->member;
o->mark=YES;
y=y->next;

ywhile(y!=NULL);
}



ferieierixk FUNCTION ADD THE CENTRE NODE TO ITS ONE-HOP NEIGHBOR*##:x
skl k TO FORM THE CLUSTER #kskekekstokoskokskskokskookekeskekofotofsototok /-
pone modify_cluster(pone y,pnode t) {
pone p;
p=(pone) getone_hop();
p->Next=y;
Y=ps
y->member=t;
y->no=t->no,
return(y);

/FRxFUNCTION MODIFIES ONE - HOP LIST AFTER CLUSTER FORMATION*##x3/

pone modify_list2(pone pt1,pone pt2) {

pone  Kky,x;
k=y=pt2;
if(y!=NULL)
{
dof{
x=ptl;
while((x!=NULL)&& (y->member!=x->member))
. X=X->next;.
if(x!=NULL)
{
if(y==pt2){
pt2=pt2->next;
y=pt2;
}
else{
k->next=y->next;
y=y->next,
}
}
else{
k=y;
y=y->next;

}
}while(y!=NULL);

}
return(pt2); }



make_cluster(pone f,pcluster list_of_cluster)
{

pcluster p;
p=getcluster();
list_of_cluster->total_member+=1;
m->next=p;
m=p;
m->another_cluster=f;
++cluster_no; ,
m->cluster_size=(f->member)->one_hop_nei+1;
p->cluster_id=cluster_no;
put_cluster_no((pone) f);

}

count_member(pone u)

{

int count;
count=0;
do{
count+=1;
u=u->next;
}while(u!=NULL);
return(count);

}

put_cluster_no(pone f)

{

while(fl=NULL){
(f->member)->cluster_id=cluster_no;
f=f->next;

[k FUNCTION RE-DEPLOY NODES AFTER THEIR RANDOM MOVEMENT ¥4/

random_re_deploy(pnode list,int n)
{
pnode k;
int i;

k=list->next;

for(i=1;i<=n;i++){ :

k->x=k->x+(3*un_rand (idum))*cosf(2#3.1415%un_rand (idum));
k->y=k->y+(3*un_rand (idum))*sinf(2%3.1415%un_rand(idum));



k=k->next;

}

count_diff_cluster(pcluster list_of_cluster,int range)

{

pcluster  k;
pone o,m,save_node;
int save,new_nei;

k=list_of cluster->next;
do{

if (k->cluster_size==1)
{ .
o=k->another_cluster;
m_mark_node((pone) 0);

else{
o=k->another_cluster;
m=o;
new_nei=node_new_nei((pone) o,(pone) m,(int) range);

if(new_;iei==k->cluster_size)
m_mark_node((pone) o);

else{
save=NULL;

dof
new_nei=node_new_nei{(pone) o,(pone) m,(int) range);

if(new_nei>save)
save=new_nei;
save_node=o;

}.

0=0->next;
}while(o!=NULL);
now_m_mark_node((pone) save_node,(pone) m,(int) range);



}
k=k->next;
}while(k!=NULL);
} .
AFUNCTION MARK ALL THE WHICH GET EFFECTED DUE TO MOVEMENT *#/

m_mark_node(pone p)

{

pnode t;

do{
t=p->member;
t->m_mark=YES;
p=p->next;

while(p!=NULL);
!

node_new_nei(pone o,pone m,int range)

{

pnode  t,p;
- float .a,b;
int count;
count=NULL;
t=0->member;
a=t->x;
b=t->y;

do{

p=m->member;
if(sqrt((p->x-a)*(p->x-a)+(p->y-b)*(p->y-b))<=(float) range) count++;
m=m->next;
}while(m!=NULL);
return(count);

J

now_m_mark_node(pone o,pone m,int range)
{
pnode t,p;
float  a,b;

t=0->member;
a=t->x;
b=t->y;
dof
p=m->member;



if(sqrt((p->x-a)*(p->x-a)+(p->y-b)*(p->y-b))<=(float) range) p->m_mark=YES;
m=m->next;
}while(m!=NULL);

ek FUNCTION COUNT THE EFFECTED NODES####kickick/
effected_node(pnode list)

{
pnode k;
int count;
count=NULL;

k=list->next;

do{
if (k->m_mark==NO) count-++;

k=k->next;
Jwhile(k!=NULL);

return(count);



APPENDIX D

/##PROGRAM FOR REAL-TIME SESSION AND DATAGRAM THROUGHPUT#*

#include<stdio.h>
#include<math.h>
#include<malloc.h>
#define NO O

#define NULL 0
#include"un_rand.h"
#include"exp_rand.h"
#include"poi_rand.h"
#include"struct.h"
#define YES 1

#define FOUND 1
#define NOTFOUND 0
#define NOPATH 0 _
#define DISCARDED 0

main()
{

int time,discarded,real_packet_dispatched,cycle_time,connected,before_new.
int total_packet,range,eff_node,eff;
int a,b,n,c,q,nullcount,pathcount,totaldatagram,packet,data,ti,null,pah,poi_me
float data_gram_rate,x,data_gram_in_cycle,exp_mean;
pnode list;
pcluster list_of_cluster;
p_rtraffic rtraffic,save;
p_rem_path  path_list;
phop path;
pback backlist;
range=>5;
c=1;

dof
' printf("c is %d\n",c);
printf("Rejected\tAccepted\tDatagram\tTime\n\n");
eff=NULL;

null=NULL;

data=NULL;

ti=NULL;

pah=NULL;

for(q=0;q<10;q++) {



time=NULL;
datagram=NULL;
nullcount=0;
pathcount=0;

. n=20;
exp_mean=3.000;
poi_mean=1;
cycle_time=100%c;
data_gram_rate=(float)1/100;
x=data_gram_in_cycle=cycle_time*data_gram_rate;
path_list=NULL; '
backlist=NULL;

list=(pnode) random_deploy(n);
one_hop_neighbour(list,range);
list_of_cluster=cluster_form(list);
one_hop_neighbour(list,range);

set_initial_bw (list_of_cluster,list,cycle_time);
rtraffic=(p_rtraffic);
real_traffic_generation(exp_mean,poi_mean,n,cycle_time);

save=rtraffic;

dof{
dof

a=rtraffic->source;
b=rtraffic->desti;
connected=con_check(list,a,b,range);

if(connected!=1)
{
rtraffic->selection=DISCARDED;
before_new_sess=rtraffic->next_sess_packet;
packet=x*before_new_sess;
backlist=send_backlog(backlist,list);
backlist=send_datagram(packet,n,backlist,list); '
time+=packet;
modify_path_list(path_list,before_new_sess,list);
rtraffic=rtraffic->next;
nullcount++;
}
else
{
path=find_path(a,b,list);
if(path==NULL)
{
rtraffic->selection=DISCARDED;



before_new_sess=rtraffic->next_sess_packet;
packet=x*before_new_sess;
backlist=send_backlog(backlist,list);
backlist=send_datagram(packet,n,backlist,list);
time+=packet;
rtraffic=rtraffic->next;
nullcount++;
}
else
{
pathcount+-+;
set_avai_bw/(path,list);
}
}
}while(!(connected& &path) & & (rtraffic));
if(rtraffic!=NULL)
{ B
before_new_sess=rtraffic->next_sess_packet;
total_packet=rtraffic->no_of_packet;

if(before_new_sess>total_packet)
{
free_bw (path,list);
if(path_list!=NULL)
modify_path_list(path_list,before_new_sess,list);
packet=x*before_new_sess;
backlist=send_backlog(backlist,list);
backlist=send_datagram(packet,n,backlist,list);
time+=packet;

else
{
- packet=x*before_new_sess;
backlist=send_backlog(backlist,list);
backlist=send_datagram(packet,n,backlist,list);
time+=packet;
path_list=(p_rem_path) add_in_path_list(path,path_list,total_packet);
path_list=(p_rem_path) modify_path_list(path_list,before_new_sess,l
}
rtraffic=rtraffic->next;
}
Ywhile(rtraffic!=NULL);
printf("%d\t\t%d\t\t%d\t\t%d\t\t\n" ,nullcount, pathcount,datagram,time);
null+=nullcount;
pah+=pathcount;
data+=datagram;



ti+=time;

random_re_deploy(list,n);
count_diff_cluster(list_of_cluster,range);
eff_node=effected_node(list);
eff+=eff_node;

fflush(stdout):

}
printf("\nAvg rejected Avgaccepted Avgdatagram Avg time\n");

printf("%d\t\t%d\t\t%d\(\t%d\t\t\n",null/10,pah/10,data/10,ti/10);
printf("\n");

c=c+l1;

}while(c<2);

}

ik FUNCTION CHECKS WHETHER THE SOURCE##tkoskosioskfickik
sowiesiok AND THE DESTINATION ARE CONNECTED##kkcksiotioksckseick

con_check(pnode list,int first,int sec,int range)

{

pnode k,t,savel; -
pcon p,c,l;
float a,b,d;

k=list->next:
savel=k;
t=k;

dof{
if (t->no!=first)
t=t->next;
}while(t!=NULL&&t->no!=first);
t->con_mark=YES;
p=(pcon) getcon_node();
oe=pr
I=c;
p->pn=t;

dof{
k=savel;
t=c->pn;
a=t->x;
b=t->y;

do{



while((k!=NULL)& & (k->con_mark==YES))
k=k->next;
if(k!=NULL)
{
d=sqrt((k->x-a)*(k->x-a)+(k->y-b)*(k->y-b));

if(d<range& &k->no==sec)
{
make_all_NO((pnode) savel); -
return(FOUND);
}
else if(d<range)

{

p=(pcon) getcon_node();

I->next=p;
p->pn=k;
k->con_mark=YES;
I=p;
}
k=k->next;
} ,

}while(k!I=NULL);

c=c->next;
}while(c!=NULL);

if(c==NULL)
{ _
make_all_NO({(pnode) savel);
return(NOTFOUND);
| .
}

make_all_NO(pnode savel)
{
while(savel!=NULL)
{ .
savel->con_mark=NQO;
savel=savel->next;

}
}

MFxerkxrkk FUNCTION PREPARE THE LIST OF REAL TIME SESSION#k#kxkk/

p_rtraffic real_traffic_generation(float exp_mean,int poi_mean,int n,int cycletime)

{



int i,t,k;
p_rtraffic  p,rtraffic,;

rtraffic=NULL;
for(i=0;i<100;i++)
{
t=0;
k=0;
p=getrtraffic();

if(rtraffic==NULL)
{

rtraffic=p;
I=p;

else
{
[->next=p;
I=p;
}
do{ :
p->source=un_rand(idum)*(n-1);
p->desti=un_rand (idum)*(n-1);
}while(p->source==p->desti);
p->no_of_packet=(60%1000.0/cycletime)*exp_rand(exp_mean,idum);
while(t==0)
{
t=poi_rand(poi_mean,idum);
if (t==0)
k+=(1000.0/cycletime);
} .
if (t!=0)
p->next_sess_packet=k+(1000.0/cycletime)/t;
}
return(rtraffic);

}

FeEFkikk FUNCTION RETURNS THE POINTER OF THE NUMBERD NODE*##4#/

pnode get_source_poi(pnode list,int source)

{
pnode k;



k=list->next;
while(k->no!=source)
k=k->next;

return(k);

}
[eFFxERFFEFJNCTION RETURNS ONE IF DESTINATION IS REACHED ELSE ZERO*%/

check_path(phop I,int desti)

while((I'=NULL)& & (I->nodeno!=desti))
I=I->next; -
if(I!=NULL)

return(1);

else

return(0);

}

ks FUNCTION RETURN THE NUMBER OF HOPS IN THE PATH####s#/
path_hops(phop hoplist,int desti)
{

phop k;

k=hoplist;
while(k->nodeno!=desti)
k=k->next;
return(k->hopno);

- phop make_path_list(phop hoplist,pnode k,int total_hop,phop t)
{ |

pone a;
phop x,p; »
a=k->one;
do{
x=hoplist;
while((x!=NULL) & & (a->no!=x->nodeno))
X=X->next;

if ((x!=NULL)&& (x->hopno==total_hop))
{ |
p=(phop) gethop();
t->next=p;
p->hopno=total_hop;
p->nodeno=x->nodeno;



t=p;

return(t);
!
a=a->next;
$while(a!=NULL);
return(t);

}

phop get_path(pnode list,phop hoplist,int desti)

int total_hop;

phop path,t,p;
pnode k;

path=NULL;

" total_hop=path_hops(hoplist,desti);
p=(phop) gethop();

if(path==NULL)
{
path=p;
t=p;
p->nodeno=desti;
p->hopno=total_hop;

do{
total_hop-=1;
k=get_source_poi(list,t->nodeno);
t=make_path_list(hoplist,k,total_hop, t)
}while(total_hop!=NULL);

return(path);

}

add_member(pone t,phop I,phop hoplist)

{

int  hno;
phop p,m,i;
hno=I->hopno;
dof

m=l;



|=l->next;
}while(I'=NULL);
do{
i=hoplist;
- while((i'=NULL) & &(t->no!=i->nodeno))
i=i->next;

if ((==NULL) & & ((t->member)->avai_bw!=NULL))
{
p=(phop) gethop();
m->next=p;
m=p;
m->nodeno=t->no;
m->hopno=hno+1;
}
t=t->next;
}while(t!'=NULL);
) _

prskkriis FUNCTION RETURNS THE POINTER TO THE PATH## koot
wrperockoss BETWEEN THE GIVEN SOURCE AND DESTINATION##sskssksstototok/

phop find_path(int source,int desti,pnode list)
{
pnode  k;
pone t;
phop p.hoplist,l,m,path;
int get; ‘

hoplist =NULL,;

p=gethop();
if (hoplist==NULL)
{
hoplist=p;
I=p;
p->nodeno=source;
p->hopno=NULL,;
}
k=(pnode) get_source_poi(list,source);
if (k->avai_bw==NULL)
return(NOPATH);
t=k->one;



dof
if (t'=NULL)
{
add_member(t,],hoplist);
get=check_path(l,desti);
if(get==1)
break;
else
I=]->next;
}
else
I=1->next;

if(I'=NULL)
{ .
k=get_source_poi(list,I->nodeno);
t=k->one;

}

}while(I!=NULL);

if(get==1)

{
path=(phop) get_path(list,hoplist,desti);
return(path);

}

else
return(NOPATH);

)

set_avai_bw(phop path ,pnode list)
{
pnode k,t;
k=list->next;

t=k;

do{
t=k;
while(t->no!=path->nodeno)
t=t->next; '
if (t->avai_bw>0)
t->avai_bw -=1;
path=path->next;

}while(path!=NULL);
}



fFHFxxkk  FUNCTION REMOVES THE POINTER OF PATH FROM THE PENDING LIST ##%
fefokpkloliolokkioiokkioiolelok [ R TS SESSION IS COMPLETED skt kskskoofokoksksk /

p_rem_path modify_path_list(p_rem_path path_list,int no,pnode list)

{

p_rem_path Kk.t; -
t=k=path_list;

if (path_list!=NULL)
{
dof
k->no_of_pack-=no;
if (k!=NULL)&& (k->no_of_pack<1))
{
free_bw (k->ppath,list);

if (k==path_list)
{

k=k->next;
t=k;
path_list=k;
}
else
{
t->next=k->next;
k=k->next;
}

}
else if(k!I=NULL)
{
t=k:
k=k->next;

ywhile(k!=NULL);
}

return(path_list);

}

pRxrrikixk FUNCTION ADD THE POINTER TO PATH IN PATHLIST#k#sokokok
ekl R JTS PACKETS ARE PENDING kkkskskkstokkorokok/

p_rem_path add_in_path_list(phop path,p_rem_path path_list,int total_packet)
{ A _



p_rem_path p;

p=getrem_path();
p->ppath=path;
p->no_of_pack=total_packet;

if (path_list==NULL)
path_list=p;
else
{
p->next=path_list;
path_list=p;
}
return(path_list);

}

[HRsksorkoiokik FUNCTION FREE BANDWIDTH ALONG ALL THE NODES OCCUPIED ks
ook WHERE SLOTS WHERE RESERVED FOR THE JUST COMPLETED SESSION*#/

free_bw(phop path,pnode list)

{

pnode k,t;

k=list->next;

t=k;

do{
t=k;
while((path->nodeno)!=(t->no))
t=t->next;
t->avai_bw+=1;
path=path->next;

}while(path!=NULL);
}

count_cl_member(pone o)

{

int count;
count= NULL;
while(o!=NULL)

{ .
count++;
0=0->next;

}

return(count);



fFrrRkrkekx FUNCTION ASSIGN THE INITIAL BANDWIDTH TO ALLTHE ###®fkdoksrsk
NODES DEPEDING ON THE CLUSTER'S NODE STRENGTH TO WHICH THEY BELONG/

set_initial_bw(pcluster list_of_cluster,pnode list,int cycle)

{

pone 0;
‘pcluster  k;

pnode  t,p;

int member,bw;

k=list_of cluster->next;
t=list->next;
p=t;
dof
o=k->another_cluster;
member=count_c|_member(o);
bw=(cycle)/(5*member);
dof{
t=p;
while(o->no!=t->no)
t=t->next;
t->avai_bw=bw;
0=0->next;
}while(o!=NULL);
k=k->next;
twhile(k!=NULL);
}

set_bw_original(pnode list)
{
pnode t;
t=list->next;
while(t'=NULL)
{
t->avai_bw=t->temp_bw;
t=t->next;
}
}

set_bw_infinite(int n,pnode list)
{
pnode t;
t=list->next;
while(t!=NULL)
{

t->temp_bw=t->avai_bw;



t->avai_bw=n;
t=t->next;
}
}

PRk FUNCTION GENERATE THE DATAGRAM OF FIXED SIZE##stekokiciok/

pdtraffic datagram_traffic_generation(int no,int n,pnode list)
{ _
pdtraffic dtraffic, p,l;
int i,source,desti;

dtraffic=NULL;
for(i=0;i<no;i++)
{

p=getdatagram();
if(dtraffic==NULL)
( A
dtraffic=p;
I=p;
}
else
{
|->next=p;
I=p;
}
dof
source=un_rand(idum)*(n-1);
desti=un_rand(idum)*(n-1);
}while(source==desti);

p->dpath=find_path(source,desti,list);
}

return{(dtraffic);

}

is_bw_avai(phop k,pnode list)
{

int n;

pnode t;

n=k->nodeno;
t=(pnode) get_source_poi(list,n);
return(t->avai_bw);



frikEUNCTION SEND THE DATAGRAM WAITING IN THE QUEUE###44k/

pback send_backlog(pback backlist,pnode list)
{ _

pback  k;
phop m,l;
int n;

if(backlist!'=NULL)
{
k=backlist;
t=k;
do
{
m=k->dpath;
do
{

n=is_bw_avai(m,list);

if(n>=1)

{
l=m;
m=m->next;
free(l);

else
break;-
}while(m!=NULL);
if(m!'=NULL)
{
t=k;
k->dpath=m;
k=k->next;
}
else
{
datagram++;
if(backlist==k)
{
k=k->next;
free(backlist);
backlist=k;
t=k;
}
else

{



t->next=k->next;
free(k);
k=t->next;
}
)
Jwhile(k!=NULL);
)

return(backlist);

J

pessksrik FUNCTION ADD THE DATAGRAM IN THE WAITING LIST SINCE NO ik
sk BANDWIDTH IS AVAILABLE ALONG THE SHORTEST PATH kckioricittsotr/

pback add_in_backlist(pback p,pback backlist) -
{ .
if(backlist==NULL)
backlist=p;
else

{

p->next=backlist;
backlist=p;
}

return(backlist);

}

pback send_datagram(int no,int n,pback backlist,pnode list)

{

phop k,t;

int q;
pdtraffic 1,dtraffic;
pback  p;

set_bw_infinite(no,list);
dtraffic=datagram_traffic_generation(no,n,list);
set_bw_original(list);

|=dtraffic;
while(l!=NULL)
{
dtraffic=l;
k=dtraffic->dpath;
do
{
q=is_bw_avai(k,list);
if(q>=1)
{



t=k;
k=k->next;
free(t);
]
else
break:
}while(k!I=NULL);-
if(k!=NULL)
{
p=(pback) getbacklog();
p->dpath=k;
backlist=(pback) add_in_backlist(p,backlist);

else

datagram++;

|I=l->next;

free(dtraffic);
}

return(backlist):
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