
AN ADAPTIVE AND EFFICIENT GRID SCHEDULER
WITH DYNAMIC LOAD BALANCING

A DISSERTATION

Submitted In partial fulfillment of the

requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

By

SHAH RUCHIRBHAI RAJENDRA

f (ASfl\ \\

 J'.

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE•247 667 (INDIA)

JUNE, 2006

Candidate's Declaration

I hereby declare that work, which is being presented in this dissertation, entitled "AN

ADAPTIVE AND EFFICIENT GRID SCHEDULER WITH DYNAMIC LOAD

BALANCING", in partial fulfillment of the requirements for the award of the degree

of MASTER OF TECHNOLOGY in COMPUTER SCIENCE AND

ENGINEERING, submitted in the department of Electronics and Computer

Engineering, Indian Institute of Technology, Roorkee is an authentic record of my

own work carried out from July 2005 to June 2006, under the guidance and

supervision of Dr. Manoj Misra, Associate Professor, Department of Electronics and

Computer Engineering, Indian Institute of Technology, Roorkee and Dr. Bharadwaj

Veeravalli, Associate Professor, Department of Electrical and Computer Engineering,

National University of Singapore, Singapore.

I have not submitted the matter embodied in this dissertation for the award of the any

other degree.

Shah Ruchirbhai Rajendra

Certificate

This is to certify that the above statement made by candidate is correct to the best of

our knowledge and belief.
r

Dr. aradwaj Veeravalli

Associate Professor

E & C Department

NUS, Singapore.

Dr. Manoj Misra

Associate Professor

E & CE Department

IIT Rporkee, India.

Acknowledgements

It is my privilege to express my profound sense of gratitude and thanks to my supervisors,

Dr. Manoj Misra (IITR, Roorkee) and Dr. Bharadwaj Veeravalli (NUS, Singapore), for

their valuable inspiration, guidance and suggestions throughout my dissertation work. I wish

to thanks Prof. Ravi Bhushan, coordinator for exchange program for IITR and NUS and Dr.
Ankush Mittal for their encouragement and faith on me.

I wish to thank technical staff of the Computer Networks and Distributed System (CLADS)

lab, NUS for maintaining excellent working facilities during my stay at NUS. I am also
thankful to staff member of software lab (E&CE Department, IITR) for their cooperation. I

wish to express thanks to Prof D. K. Mehra, Head, Department of E&CE, for providing

necessary facilities. to complete my dissertation.

I can never thank enough my parents and my sister for being a constant source of love,

encouragement and strength. They deserve special thanks for just being who they are and
taking me to this stage in my life. Finally, I thank God for being kind to me and driving me

through this journey.

Shah Ruchirbhai Rajendra
(Enrollment No: 044618)

iii

Abstract

Grid computing holds the great promise to effectively share geographically distributed

heterogeneous resources to solve large-scale complex scientific problems. Scheduling large

scale computationally intensive applications in the Grid environment is challenging issue

because target resources are heterogeneous and their load and availability may very with

time. Further, as resources are geographically distributed in large-scale Grid environments

and communication latency is significantly large due to Wide Area Network (WAN) through

which resources are connected, job migration cost becomes an imperative factor for load

balancing decision. Thus, performance of the Grid system depends greatly on the effective

task scheduling and load balancing algorithm.

We address this problem by proposing load balancing algorithms, which are MELISA

(Modified ELISA), R-MELISA (Receiver-initiated MELISA) and LBA (Load Balancing on

Arrival). The algorithms differ in the way load balancing is carried out and is shown to be

efficient in minimizing the response time on large and small scale Grid environments.

MELISA and R-MELISA, applicable to large scale systems, is a modified version of

ELISA[1] in which we consider job migration cost, resource heterogeneity and network

heterogeneity when taking load balancing decision. LBA algorithm, applicable for small

scale Grid systems, performs load balancing by estimating expected finish time of a job on

buddy processors. One of the unique characteristics of our algorithms is system parameter

estimation. Our algorithms estimate system parameters such as job arrival rate, CPU

processing rate, load at processor and balance the load by migrating jobs to buddy processors

taking into account all affecting factors for load balancing decision.

We quantify the performance of our algorithms using several influencing parameters such as,

job size, data transfer rate, status exchange period, migration limit, and we discuss the

implications of the performance and choice of our approaches. These load balancing

algorithms are simulated in C++ language using Dev C++ software tool.

V

Table of Contents

Candidate's Declaration ...i
Acknowledgements... iii
Abstract... 	... V

List of Figures ... ix

Listof Tables ..xi

1. Introduction ..1

1.1 	Overview ...1
1.2 	Motivation ..2
1.3 	Statement of Problem ..3
1.4 	Organization of The Report ...3

2. Background ..5

2.1 	What is Grid Computing? ...5
2.2 	Grid Components: A High-level Perspective6
2.3 	Grid System Taxonomy ..8
2.4 	Advantages of Grid Computing ...10
2.5 	Grid Scheduling System .. 11

2.5.1 	Definition of Grid Scheduling System12
2.5.2 	Challenges for Grid Scheduling ..13

3. Load Balancing in Grid ...17

3.1 	Need for Load Balancing ...17
3.2 	Classification of Load Balancing Algorithms18
3.3 	Steps for Performing Dynamic Load Balancing19
3.4 	Related Works in Load Balancing .. 20

4. Grid System Model .. 23

4.1 	Introduction ..23
4.2 	List of Notations and Terminology ..24
4.3 	Performance Metrics ... 24

vii

C

5. Design of Load Balancing Algorithms ... 27

5.1 	Introduction ... 27
5.2 	Modified ELISA (MELISA) ..29
5.3 	Receiver-initiated MELISA (R-MELISA) 31
5.4 	Load Balancing on Arrival (LBA) ...33
5.5 	Reference Algorithms ... 36

	

5.5.1 	Perfect Information Algorithm (PIA) 36
5.5.2 Estimated Load Information Scheduling Algorithm (ELISA)..........36
5.5.3 Load Balancing based on Load and processor Speed (LBLS)........ 36

6. Performance Evaluation and Discussion .. 37

6.1 	Simulation Model .. 37
6.2 	Performance of MELISA and R-MELISA .. 38

	

6.2.1 	Heterogeneous Case..38

	

6.2.2 	'Homogeneous Case ...39
6.2.2.1 Effect of job size ...41
6.2.2.2 Effect of data transfer rate ..41

6.3 	Performance of LBA ...47

	

6.3.1 	Random arrival and service rates ...47

	

6.3.2 	Effect of status exchange period .. 49

	

6.3.3 	Effect of uneven load distribution ..49

	

6.3.4 	Effect of migration limit .. .53

	

6.3.5 	Effect of job size .. 53

7. Conclusion and Future Work ..57

7.1 	Conclusion .. 57
7.2 	Future Work .. 5 8

References...59

Appendix..I
Appendix A : ELISA (Estimated Load Information Scheduling Algorithm)II
Appendix B : Source Code Listing III

viii

List of Figures

Figure 2.1 Virtual Organization:... 6
Figure 2.2 Grid Components ... 6
Figure 2.3 IntraGrid, ExtraGrid and InterGrid .. 9
Figure 2.4 Scheduler Function ..11
Figure 3.1 A distributed system with no load balancing .. 17
Figure 4.1 System Model ..23
Figure 5.1 Estimation and status exchange intervals ...27
Figure 5.2 Job migration decision in MELISA ..29
Figure 5.3 MELISA Load balancing algorithm ... 30
Figure 5.4 Job migration decision in R-MELISA ...32
Figure 5.5 R-MELISA Load balancing algorithm ..33
Figure 5.6 Job migration decision in LBA ... 34

Figure 5.7 Flowchart for LBA .. 35

Figure 6.1 Network topology.. 38

Figure 6.2 Performance measure for MELISA and R-MELISA for heterogeneous case.... 39

(a) ART comparison for heterogeneous case ..39
(b) Total Job Migrations comparison for heterogeneous case39

Figure 6.3 Performance measure of MELISA and R-MELISA for varying job size......... 43

(a) Effect ofjob size on ART ..43
(b) Effect ofjob size on Total Execution Time .. 43

(c) Effect ofjob size on Total Job Migrations ...43
Figure 6.4 Performance measure of MELISA and R-MELISA for varying data transfer

rate...:... 45

(a) Effect of data transfer rate on ART ... 45

(b) Effect of data transfer rate on Total Execution Time45
(c) Effect of data transfer rate on Total Job Migrations45

Figure 6.5 Performance measure of LBA for random arrival and service rates47
(a) ART comparison for random arrival and service rates 47

(b) Total Execution Time comparison for random arrival and service rates.......47
Figure 6.6 Effect of Status exchange period (Ts) on ART ...51

ix

Figure 6.7 Performance measure of LBA for uneven load distribution 51
(a) ART comparison for uneven load distribution ..51
(b) Resource Utilization comparison for uneven load distribution51

Figure 6.8 Effect of migration limit (ii) for LBA ..55
(a) Effect of 	on ART .. 55
(b) Effect of ,7 on Total Execution Time ...55

Figure 6.9 Performance measure of LBA for varying job size55
(a) Effect ofjob size on ART ..55
(b) Effect ofjob size on Total Execution Time .. 55

Figure A. 1 Estimation and status exchange intervals in ELISA ..II
FigureA.2 Working of ELISA ..II

x

List of Tables

Table 4.1 List of notations and terminology24
Table 6.1 Information used by algorithms ..37
Table 6.2 Parameter values ... 38

xi

Chapter 1 	Introduction

1.1 Overview
The Grid [2,3] is emerging as a wide-scale, distributed computing infrastructure that promises

to support resource sharing and coordinated problem solving in dynamic, multi institutional

Virtual Organizations [2]. The idea is similar to the former meta-computing [4] where the

focus was limited to compute resources while Grid computing takes a broader approach. On

one hand, Grid computing provides the user with access to locally unavailable resource types.

On the other hand, there is the expectation that a large number of resources are available. A

computational Grid is the cooperation of distributed computer systems where user jobs can be

executed either on local or on remote computer systems. With the Grid becoming a viable

high performance alternative to the traditional super-computing environment, various aspects

of effective Grid resource utilization are gaining significance. With its multitude of resources,

a proper scheduling and efficient load balancing across the Grid is required for improving the

performance of the system.

In a Grid system, jobs are assumed to arrive independently at the processors. Due to an

uneven and random arrival of jobs at different processors, and/or due to the difference in their

processing capacities, quite often there is a build-up of jobs at some processors, while other

processors remain under-loaded. To fully utilize the computational power offered by the

Grid, jobs from overloaded processors have to be rescheduled to under-loaded processors to

improve the overall processor utilization of the system. The problem of load redistribution in

distributed system is recognized as load balancing. It is expected that this will result in a

reduction of the average job response time (ART). Also the utilization of the Grid computers

and the job throughput is likely to improve due to the load balancing effect between the

participating systems.

Load balancing has been subject of intensive study for cluster computing and distributed

computing. However, there are a wide variety of issues that need to be considered for

heterogeneous Grid environment. For example, machine capacity in terms of processor speed

differs because of resource heterogeneity. Also their usable capacities vary from moment to

moment according to load imposed upon them. Network topology among resources is also

1

not fixed due to dynamic nature of the Grid. Further, as resources are distributed in multiple

domains in the Internet, underlying network connecting them is heterogeneous. The

heterogeneity results in different capabilities for job processing and data access. As resources

are geographically distributed and communication latency between them is very large due to

Wide Area Network (WAN) through which they are connected, job migration cost becomes

very important factor in load balancing decision. The focus of our work is to present load

balancing algorithms adapted to heterogeneous Grid computing environment which considers
all necessary factors such as load at processor, processor heterogeneity, network
heterogeneity and job migration cost for load balancing. Our proposed algorithms are based
on load estimation approach as carried out in the design of ELISA [1].

1.2 Motivation
In [5], it was pointed out that serious performance degradation will occur for slower networks

such as for Grid environment if data migration cost is not considered when scheduling jobs.

As resources are geographically distributed in Grid computing environment, communication

latency between them is very large. So job migration cost becomes an imperative factor for

load balancing. Further, to minimize total execution time of a job, load should be assigned to

each processor proportional to its performance, taking into account processor heterogeneity in

terms of its speed. Due to these reasons, in a heterogeneous Grid environment, performance

of the system is largely affected by resource heterogeneity, considerable communication

delay, dynamic changing environment of the Grid etc. In this work, we have proposed

dynamic, de-centralized and distributed load balancing algorithms which are applicable to

heterogeneous Grid environments and consider all necessary affecting factors for load

balancing. One of the important characteristics of our algorithms is to estimate system

parameters such as job arrival rate, processing rate and to perform proactive job migration.

These load balancing algorithms are shown to be applicable to balance the load depending

upon the size of the underlying Grid infrastructure. Thus, for smaller size Grids, one of our

algorithms, LBA (Load Balancing on Arrival) is shown to be effective whereas for large-

scale Grid systems, MELISA (Modified ELISA) and R-MELISA (Receiver-initiated

MELISA) are shown to have better control in balancing the loads. Our algorithms are highly
adaptive in nature in the sense that number of job migration performed for execution of N

jobs triggers by available network bandwidth, processor heterogeneity and current load at

processor.

2

1.3 Statement of Problem
The aim of our dissertation work is to design dynamic, de-centralized and distributed load

balancing algorithms which improve performance of the system by minimizing the Average

Response Time (ART) of the jobs for heterogeneous Grid environments. These load balancing
algorithms should be highly adaptive in nature and should take into account all necessary

factors which affect load balancing decision. These factors include resource heterogeneity in
terms of processor speed, network heterogeneity in terms of available network bandwidth, job

migration cost and arbitrary network topology due to dynamic behavior of the Grid.

1.4 Organization of The Report
This dissertation report is organized as - follows: Chapter 1 introduces objectives of the

dissertation. In Chapter 2, we give overview of Grid computing and Grid scheduling system.

Chapter 3 discusses necessity of load balancing in heterogeneous Grid environment and

discusses required steps to perform dynamic load balancing. In Chapter 4, we present Grid
system model considered in this work and also introduces performance metrics which are

used to compare results of our algorithms with reference algorithms. Chapter 5 gives design

details of our proposed load balancing algorithms. It also provides details for reference

algorithms. Performance of our algorithms and discussion of results are presented in Chapter

6. Finally, Chapter 7 presents conclusion and future work.

3

Chapter 2 . Background

2.1 What is Grid Computing?
Heraclites, an ancient Greek orator, is credited to saying that the only thing constant is

change. Notably, throughout history a small set of these changes have lead to some large
scale evolutions. For example, the invention of the steam engine in 1712 and later the

telegraph in 1836 are considered to be key innovations that drove the industrial revolutions.

More recently in 1948, the invention of the transistor opened the information age we live in

today, replacing inefficient vacuum tube technologies and forever changing the way

electronics impact our lives. Similarly, it is predicted that Grid Computing will have the

same, if not greater, effect on this world. It will revolutionize every aspect of Information

Technology and its vast networked technologies like bioinformatics, finance, physics,

chemistry, and business, to just name a few. So, what exactly is Grid Computing?

The term Grid comes. from an analogy to a power Grid. When you plug an appliance into a

receptacle, you expect that you will be supplied with electricity of correct voltage, whereas

you need not care where the power comes from and how it is generated. In mid-1990s,

inspired by the pervasiveness, reliability, and ease of use of electricity, Foster et al [3] began

exploring the design and development of an analogous computational power Grid for wide-

area parallel and distributed computing. According to definition given by Foster [2,3], Grid is

defined as an infrastructure that allows for flexible, secure, coordinated resource sharing

among dynamic collections of individuals, resources and organizations. Grid computing

strives to aggregate diverse, heterogeneous, geographically distributed and multiple-domain-

spanning resources to provide a platform for transparent, secure, coordinated, and high-

performance resource-sharing and problem solving. The resources that Grid computing is

attempting to integrate are various. They include supercomputers, workstations, databases,

storages, networks, software, special instruments, advanced display devices, and even people.
Knowing the distributed nature of Grid Computing and its focus on sharing resources among

organizations, notion of a Virtual Organization (VO) [2] is introduced. A set of individuals

and/or institutions defined by such sharing rules form what we call a Virtual Organization

(VO) (Refer Figure 2.1).

5

Figure 2.1 Virtual Organization

2.2 Grid Components : A High-Level Perspective
Now let us see at a high level the primary components of a'Grid environment. Depending on

the Grid design and its expected use, some of these components may or may not be required,

and in some cases they may be combined to form a hybrid component. (Refer Figure 2.2)

II 	 Ell
Portal

Deta mgmt ,

Job Mgmt

Figure 2.2 Grid Components

➢ Portal - User interface
Just as a consumer sees the power Grid as a receptacle in the wall, likewise a Grid user

should not see all of the complexities of the computing Grid. Though the user interface

could come in many forms and be application specific, for the purposes of discussion let

us think of it as a portal. Most users today understand the concept of a Web portal, where

their browser provides a single interface to access a wide variety of information sources.
A Grid portal provides the interface for a user to launch applications that will utilize the

resources and services provided by the Grid. From this perspective the user sees the Grid

0

as a virtual computing resource just as the consumer of power sees the receptacle as an

interface to a virtual generator.

> Security
A major requirement for Grid computing is security. At the base of any Grid

environment, there must be mechanisms to provide security including authentication,

authorization, data encryption, and so on. For example, Grid Security Infrastructure (GSI)
component of the Globus Toolkit [6, 7} provides robust security mechanisms. It also

provides a single sign-on mechanism, so once a user is authenticated, a proxy certificate

is created and used when performing actions within the Grid. The portal would then be

responsible for signing into the Grid, either using the user's credentials, or using a generic

set of credentials for all authorized users of the portal.

> Broker
Once authenticated, the user will be launching an application. Based on the application,

and possibly on other parameters provided by the user, the next step is to identify the

available and appropriate resources to utilize within the Grid. This taskcould be carried

out by a broker function. This service provides information about the available resources

within the Grid and their status.

> Scheduler
Once the resources have been identified, the next logical step is to schedule the individual

jobs to run on them. If a set of standalone jobs are to be executed with no

interdependencies, then a -specialized scheduler may not be required. However, if it is

desired to reserve a specific resource or to ensure that different jobs within the application

run concurrently (for instance, if they require inter-process communication), then a job

scheduler should be used to coordinate the execution of the jobs. It should also be noted

that there could be different levels of schedulers within a Grid environment. For instance,

a cluster could be represented as a single resource. The cluster may have its own

scheduler to help manage the nodes it contains. A higher level scheduler (sometimes

called a meta scheduler) might be used to schedule work to be done on a cluster, while the

cluster's scheduler would handle the actual scheduling of work on the cluster's individual

nodes.

7

➢ Data management
If any data (including application modules) must be moved or made accessible to the

nodes where an application's jobs will execute, then there needs to be a secure and

reliable method for moving files and data to various nodes within the Grid.

> Job and resource management
This is a core set of services that help perform actual work in a Grid environment. The
Grid Resource Allocation Manager (GRAM) of Globus [6, 7] provides the services to
actually launch a job on a particular resource, check on its status, and retrieve its results

when it is complete.

2.3 Grid System Taxonomy
Grid computing can be used in a variety of ways to address various kinds of application

requirements. According to the distinct targeted -application realms, Grid systems can be

classified into two categories. But there are actually no hard boundaries between these Grid
categories. Real Grids may be a combination of one or more of these types. The two

categories of the Grid systems are described below:

> Computational Grid
A computational Grid is a system that aims at achieving higher aggregate computational

power than any single constituent machine. According to how the computing power is

utilized, computational Grids can be further subdivided into distributed supercomputing

and high throughput categories. A distributed supercomputing Grid exploits the parallel

execution of applications over multiple machines simultaneously to reduce the execution

time. A high throughput Grid aims to increase the completion rate of a stream of jobs

through utilizing available idle computing cycles as many as possible.

➢ Data Grid
A data Grid is responsible for housing and providing access to data across multiple

organizations. Users are not concerned with where this data is located as long as they

have access to the data. For example, there can be two universities doing life science

research, each with unique data. A data Grid would allow them to share their data,

8

manage the data, and manage security issues. European DataGrid Project [8] is one

example of Data Grid.

On the other hand, Grids can be built in all sizes, ranging from just a few machines in a

department to groups of machines organized as hierarchy spanning the world. Grids can be

classified into three categories according to the topology of the Grid. The relationship

between the three Grid topologies is illustrated in Figure 2.3.

Figure 2.3 IntraGrid, ExtraGrid and InterGrid

> IntraGrid
A typical IntraGrid topology exist between a single organization. The single organization

could be made up of a number of computers that share a common security domain, which

are connected by a private high-speed local network. The primary characteristics of an

IntraGrid are a single administrative domain and bandwidth guarantee on the private

network. Within an IntraGrid, it is easier to design the scheduling system, since an

IntraGrid provides a static set of computing resources and communication capability

between machines.

> ExtraGrid
An ExtraGrid couple two or more IntraGrids. The ExtraGrid typically involves more than

one administrative domains and the level of management complexity increases. The

primary characteristics of an ExtraGrid are multiple domains and remote/WAN

connectivity. Within an ExtraGrid, the resources become more dynamic. A business

would benefit from an ExtraGrid if there was a business initiative integrating with

external trusted business partners.

LJ

➢ InterGrid

An InterGrid has an analogy with the Internet. It is most complicated form of Grid

topology. The primary characteristics of an InterGrid are dispersed security, multiple

domains and WAN connectivity. A business may deem an InterGrid necessary if there is

a need for a collaborative computing community, or simplified end to end processes with

the organizations that will use the InterGrid.

2.4 Advantages of Grid Computing
Grid computing is a promising paradigm with the following potential advantages:

➢ Exploiting underutilized resources
Studies [3] have shown that most low-end machines (PCs and workstations) are often

remain idle with utilization as low as 20%. And even for servers, only 50% of their

capacity is utilized. Grid computing provides a platform to exploit these underutilized

resources and thus has the possibility of increasing the efficiency of resource usage. A

simple case is that we can run a local job on a remote machine elsewhere in the Grid if

the local machine is busy.

> Resource balancing

After joining a Grid, users will have a dramatically larger pool of resources available for

their applications. When the local system is busy with heavy load, part of the workload

can be scheduled to other resources in the Grid. Thus the function of resource balancing is

achieved. This feature proves to be invaluable for handling occasional peak loads on a

single system.

➢ Distributed supercomputing capability

The parallel execution of parallel applications is one of the most attractive features of

computational Grids. A wide spectrum of applications is parallel in nature and these

applications are intended to be computation-intensive. In Grid systems, there are a large

number of computational resources available for one parallel application, such that

different jobs within the application can be executed simultaneously on a suite of Grid

resources.

10

➢ Virtual organizations for collaboration .
Another important contribution of Grid computing is to enable the collaboration among

wider-area members. Grid computing provides the infrastructure to integrate

heterogeneous systems to form a virtual organization. Under the virtual organization,

sharing is not limited to computational resources, but also includes various resources,
such as storages, software, databases, special equipments, and so on. Furthermore, the
sharing is more direct through using uniform interfaces. Although sharing in a virtual
organization is quite direct, security and local policy are guaranteed. Local resources are

protected securely against those who are not authorized to access._

➢ Reliability
High-end conventional computing systems use expensive hardware to increase reliability.

In the future, Grid computing provides a complementary approach to achieving high-

reliability nevertheless with little additional investment. The resources in a Grid can be

relatively inexpensive, autonomous and geographically dispersed. Thus, even if some of

the resources within a Grid encounter a severe disaster, the other parts of the Grid are

unlikely to be affected and remain working well.

With multitude of resources available for the Grid, a proper scheduling and efficient load

balancing across the Grid is required for improving the performance of the system. In the

following section, we will describe how to schedule a job in the Grid system and the

challenges which are faced by a Grid scheduler in general.

2.5 Grid Scheduling System
A scheduler is the interface between the consumers and the underlying resources and acts as

the mediate resource manager, as illustrated in Figure 2.4. Scheduling is a core function of

resource management systems.

I Consumers I

Stheduler

Roficy

Resources

Figure 2.4 Scheduler Function

11

In a distributed environment, on one hand, there is a suite of computational resources

interconnected by networks; on the other hand, there is a group of users who will submit

applications for execution on the suite of resources. The scheduling system of such a

distributed computing environment is responsible for managing the suite of resources and

dealing with the set of applications. In face of a set of applications waiting for execution, the
scheduling system should be able to allocate appropriate resources to applications, attempting

to achieve some performance goals.

2.5.1 Definition of Grid Scheduling System
In traditional parallel computing environments, the scheduling system is made much simpler

due to the uniform characteristics of both the target applications and the underlying resources.

However, a computational Grid has more diverse resources as well as more diverse

applications. According to GGF (Globus Grid Forum)'s [9] Grid scheduling dictionary, the

Grid scheduler is responsible for:

(1) Discovering available resources for an application

(2) Selecting the appropriate system(s), and

(3) Submitting the application.

In brief, Grid scheduling system is a software framework with which the scheduler collects

resource state information, selects appropriate resources, predicts the potential performance

for each candidate schedule, and determines the best schedule for the applications to be

executed on a Grid system subject to some performance goals.

In principle, scheduling in Grids means two things: ordering and mapping. When there are

more than one applications waiting for execution, ordering is performed in order to determine

by which order the pending applications are arranged. Ordering is necessary if applications

with priority or deadline are involved. Mapping is the process of selecting a set of appropriate

resources and 'allocating the set . of resources to the applications. For each mapping, the

performance potential is estimated in order to decide the best schedule.

In general, a scheduling system of Grid computing environments aims at delivering better

performance. Desirable performance goals of Grid scheduling includes: minimize average

response time, maximizing system throughput, maximizing resource utilization, minimizing

the execution time and fulfilling economical constraints.

12

2.5.2 Challenges for Grid Scheduling
Although a Grid also falls into the category of distributed parallel computing environments, it
has a lot of unique characteristics which make the scheduling in Grid environments highly

difficult. An adequate Grid scheduling system should overcome these challenges to leverage

the promising potential of Grid systems, providing high-performance services. The grand

challenges imposed by the Grid systems are following:

> Resource heterogeneity
A computational Grid mainly has two categories of resources: networks and

computational resources. Heterogeneity exists in both of the two categories of resources.

First, networks used to interconnect these computational resources may differ

significantly in terms of their bandwidth and communication protocols. A wide-area Grid

may have to utilize the best-effort services provided by the Internet. Second,

computational resources are usually heterogeneous in that these resources may have

different hardware, such as instruction set, computer architectures, number of processor,
physical memory size, CPU speed, and so on, and also different software, such as

different operating systems, file systems, cluster management software, and so on. The

heterogeneity results in differing capability of processing jobs. Resources with different

capacity could not be considered uniformly. An adequate scheduling system should

address the heterogeneity and further leverage different computing power of diverse

resources.

> Dynamic behavior
In traditional parallel computing environments, such as a cluster, the pool of resources is

assumed to be fixed or stable. In a Grid environment, dynamics exists in both the

networks and computational resources. First, a network shared by many parties cannot

provide guaranteed bandwidth. This is particularly true when wide-area networks such as

the Internet are involved. Second, both the availability and capability of computational

resources will exhibit dynamic behavior. On one hand new resources may join the Grid,

and on the other hand, some resources may become unavailable due to problems such as

network failure. The capability of resources may vary overtime due to the contention

among many parties who share the resources. An adequate scheduler should adapt to such

dynamic behavior. After a new resource joins the Grid, the scheduler should be able to

detect it automatically and leverage the new resource in the later scheduling decision

13

making. When a computational resource becomes unavailable resulting from an

unexceptional failure, mechanisms, such as checkpointing or rescheduling, should be

taken to guarantee the reliability of the Grid systems.

➢ Site autonomy
Typically a Grid may comprise multiple administrative domains. Each domain shares a

common security and management policy. Each domain usually authorizes a group of

users to use the resources in the domain. Thus applications from non-authorized users

should not be eligible to run on the resources in some specific domains. Furthermore, a

site is an autonomous computational entity. A shared site will result in many problems. It

usually has its own scheduling policy, which complicates the prediction of a job on the

site. A single overall Performance goal is not feasible for a Grid system since each site

has its own performance goal and scheduling decision is made independently of other

sites according to its own performance goal.

Local priority is another important issue. Each site within the Grid has its own scheduling

policy. Certain classes of jobs have higher priority only on certain specific resources. For

example, it can be expected that local jobs will be assigned higher priorities such that

local jobs will be better served on the local resources. Most traditional schedulers are

designed with the assumption of having complete control of the underlying resources.

Under this assumption, the scheduler has adequate information of resources and therefore

effective schedule is much easier to obtain. But in Grid environments, the Grid scheduler

has only limited control over the resources. Site autonomy greatly complicates the design

of effective Grid scheduling.

➢ Resource non-dedication

Because of non-dedication of resources, resource usage contention is a major issue.

Competition may exist in both computational resources and interconnection networks.

Due to the non-dedication of resources, a resource may join multiple Grids

simultaneously. The workloads from both local users and other Grids share the resource

concurrently. The underlying interconnection network is shared as well. One consequence

of contention is that behavior and performance can vary over time. For example, in wide

area networks using the Internet Protocol suite, network characteristics such as latency

and bandwidth may be varying over time. Under such an environment, designing an

14

accurate performance model is extremely difficult. Contention is addressed by assessing

the fraction of available resources dynamically, and using this information to predict the
fraction available at the time of application to be scheduled. With quality-of-service

(QoS) guarantees and resource reservation provided by the underlying resource

management system, predicting resource performance is made easier. A scheduler can

regard the fraction of those resources that are protected by QoS guarantees as "dedicated"
(contention-free) at the guaranteed level. Schedulers must be able to consider the effects

of contention and predict the available resource capabilities.

These challenges pose significant obstacles on the problem of designing an efficient and

effective scheduling system for Grid environments. Some problems resulting from the above
are not solved successfully yet and still are open research issues. In our system model, we

have considered resource heterogeneity in terms of processor speed, network heterogeneity in

terms of available network bandwidth, dynamic behavior of the Grid system and considerable

network delay to reflect real time scenario of the Grid..

15

Chapter 3 Load Balancing in Grid

3.1 Need for Load Balancing
A Grid system is considered as a collection of autonomous computer (nodes) located at

possibly different sites' and connected by a communication network. Through the
communication network, resources of the system can be shared by users at different

locations. Performance enhancement is one of the most important issues in distributed

systems. Obviously but expensive ways of achieving this goal are to increase the capacities of

the nodes and to add more nodes to the system. Adding more nodes or increasing the capacity

of some of the nodes may be required in cases in which all of the nodes in the system are

overloaded; however, in many situations poor performance is due to the uneven load

distribution throughout the system. As shown in Figure 3.1, due to an uneven and random

arrival of jobs at different processors, and/or due to the difference in their processing

capacities, quite often there is a build-up of jobs at some processors, while other processors

remain under-loaded. The performance of the system can often be improved to an acceptable

level simply by redistributing the load from highly loaded nodes to lightly loaded nodes.

Therefore, load distribution is a cost-effective way for performance enhancement. The

problem of load redistribution in distributed systems is recognized as load balancing.

Lightly loaded 	 Moderately loaded

Corn munscation network

Heavily loaded 	 Moderately loaded

Figure 3.1 A distributed system with no load balancing

17

3.2 Classification of Load Balancing Algorithms
Any load balancing algorithm for the Grid can be classified into following categories:

➢ Classification based on location policy

The location policy determines a suitably under-loaded processor. In other words, it

locates complementary nodes to/from which a node can send/receive workload to

improve overall system performance. Location based policies can be broadly classified as

sender-initiated, receiver-initiated or symmetrically-initiated [10, I1, 12, 13]. Sender-

initiated policies are those where heavily loaded nodes search for lightly-loaded nodes

while receiver-initiated policies are those where lightly loaded nodes search for suitable

senders. Symmetrically-initiated policies combine the advantages of these two by

requiring both senders and receivers to look for appropriate partners.

> Classification based on information policy

While balancing the load, certain type of information such as number of jobs waiting in

queue, job arrival rate, CPU processing rate, etc. at each processor as well as at

neighboring processors may be exchanged among the processors for improving the

overall performance. Based on the information that can be used, load balancing

algorithms are classified as static, dynamic or adaptive [13, 14, 15, 16]. In a static

algorithm, the scheduling is carried out according to a predetermined policy. The state of

the system at the time of the scheduling is not taken into consideration. On the other hand,

a dynamic algorithm adapts its decision to the state of the system. Adaptive algorithms

are a special type of dynamic algorithms where the parameters of the algorithm and/or the

scheduling policy itself is changed based on the global state of the system.

➢ Classification based on degree of centralization

According to another classification, based on the degree of centralization, load balancing

algorithms could be classified as centralized or decentralized [12, 16]. In a centralized

system, the load scheduling is done only by a single processor. Such algorithms are bound

to be less reliable than decentralized algorithms, where load scheduling is done by many,

if not all, processors in the system. However, decentralized algorithms have the problem

of communication overheads incurred by frequent information exchange between

processors.

18

➢ Classification based on degree of cooperation

If a distributed scheduling algorithm is adopted, the next issue that should be considered

is whether the nodes involved in job scheduling are working cooperatively or

independently (non-cooperatively). In the non-cooperative case, individual schedulers act

alone as autonomous entities and arrive at decisions regarding their own optimum objects

independent of the effects of the decision on the rest of system. Good examples of such

schedulers in the Grid are application-level schedulers which are tightly coupled with

particular applications and optimize their private individual objectives. In the cooperative

case, each Grid scheduler has the responsibility to carry out its own portion of the

scheduling task, but all schedulers are working toward a common system-wide goal. Each

Grid scheduler's local policy is concerned with making decisions in concert with the

other Grid schedulers in order to achieve some global goal, instead of making decisions

which will only affect local performance or the performance of a particular job.

3.3 Steps for Performing Dynamic Load Balancing
A practical approach to dynamic load balancing is to divide the problem into the following

five phases [14]:

1) Load Evaluation: Some estimate of a computer's load must be provided to first

determine that a load imbalance exists. Estimates of the workloads associated with

individual tasks must also be maintained to determine which tasks should be transferred

to best balance the computation.

2) Profitability Determination: Once the loads of the computers have been calculated,

the presence of a load imbalance can be detected. If the cost of the imbalance exceeds the

cost of load balancing, then load balancing should be initiated.

3) Work Transfer Vector Calculation: Based on the measurements taken in the first

phase, the ideal work transfers necessary to balance the computation are calculated.

4) Task Selection: Tasks are selected for transfer or exchange to best fulfill the vectors

provided by the previous step. Task selection is typically constrained by communication

locality and task size considerations.

19

5) Task Migration: Once selected, tasks are transferred from one computer to another.

State and communication integrity must be maintained to ensure algorithmic correctness.

3.4 Related works in Load Balancing
Computational grids have the potential for solving large-scale scientific problems using

heterogeneous and geographically distributed resources. However, heterogeneity of

resources, high communication delay and dynamic nature are the major technical hurdles that

must be overcome before this potential can be realized. One problem that is critical to
effective utilization of computational grids is the efficient scheduling of jobs. Numerous

researchers have proposed scheduling algorithms for parallel and distributed systems [1, 13,

15, 16, 17, 18] as well as for Grid computing environment [19, 20, 21, 22, 23, 24]. For a

-dynamic load balancing algorithm, it is unacceptable to frequently exchange state information

because of the high communication overheads. In order to reduce the communication

overheads, Anand et al. [1] proposed an estimated load information scheduling algorithm and

Michael [25] analyzed the usefulness of the extent to which old information can be used to

estimate the state of the system. Many job scheduling algorithms [19, 20, 23] have been

proposed to deal with the heterogeneity and dynamic nature of distributed systems so as to

optimize some figure of merit, for instance, minimize average job response time or better

resource utilization. Martin [26] studied the effects of communication latency, overhead and

bandwidth in cluster architecture to observe the impact on application performance. Arora et

al. [23] proposed a decentralized load balancing algorithm for Grid environment. Although

this work attempts to include communication latency between two nodes during triggering

process on their model, it did not consider the actual cost for job transfer. Our approach takes

job migration cost into account for load balancing decision. In Refs. [19, 20], sender

processor collects status information about neighboring processors by communicating with

them at every load balancing instant. This can lead to frequent message transfer. For large-

scale Grid environment where communication latency is very large, status exchange at each

load balancing instant can lead to large communication overhead. In our approach, the

problem of frequent exchange of information is alleviated by estimating load, based on

system state information received at sufficiently large interval of time.

We have -proposed algorithms for heterogeneous Grid environment which are based on

estimation approach as carried out in the design of ELISA [1]. In ELISA, load balancing is

carried out based on queue lengths. Whenever there is difference in queue length, jobs will be

migrated to lightly loaded processor ignoring job migration cost. This cost becomes

important factor when communication latency is very large such as for Grid environment

and/or jobs size is large. Further, for heterogeneous Grid environment, load balancing
decision should consider all affecting factors which are current load at processor, processor
heterogeneity, network heterogeneity and migration cost of a job. Our proposed algorithms

effectively balance the load by considering all affecting factors.

21

Chapter 4 Grid System Model

4.1 Introduction

Migrated Jobs 	 To Buddy Processor

Figure 4.1 System Model

Our Grid system model consists of a set of M heterogeneous resources, labeled as Pl, Pz, ...,

PM, connected by a communication network. The resources may be of different hardware

architecture and processing speed can be different for different resources. There is no

possibility of dropping of a job due to unavailability of buffer space as we assume that each

resource has an infinite capacity buffer. For any resource P,, jobs are assumed to arrive

randomly at the processors, the inter-arrival time being exponentially distributed with average

1/2,. The jobs are assumed to require service time that are exponentially distributed with

mean 1/µ,. All jobs are assumed to be mutually independent and can be executed on any

node. Thus, each node is modeled as a MIMI 1 Markov chain, with the number of jobs queued

up for processing at each node representing the state of the system. Job size is assumed to

have normal distribution with a given mean and variance. This job size includes both

program and data size. As Grid is dynamic in nature, there is no fixed network topology. In

our model, we consider arbitrary network topology to capture this constraint. Also data

transfer rate is not same for each link connecting two resources. Nodes which are directly

connected to a node constitute its buddy set. We also assume that each node has knowledge

about its, buddy nodes (in terms of processor speed and communication latency between

them) and load balancing is carried out within buddy sets only. It may be noted that two

neighboring buddy sets may have few nodes common to each set. Job arrival rates and
service rates are such that for some node (say Pi), 2, > u1 (that is, Pi is unstable), but whole
system always remains stable, that is

0491

M 	M Z A; < :,u; 	 (4.1)
i=1 	i=1

4.2 List of Notations and Terminology
We first describe notations and terminology that are used throughout the report below.

M Number of heterogeneous processors
N Number ofjobs to be processed
2, Actual arrival rate for P, 	(Poisson distribution)
1 / p; Actual mean service time for P, (Exponential distribution)
CST Current System Time
Ts Status exchange period
1'e Load estimation period
17 Migration Limit
Si Normalized measure of speed for P!
EFT/ Estimated Finish Time of job j on P,.

ERT J Estimated Run Time of job j on P,
tJ

C
Communication time for jobj

A; (T) Actual number of job arrivals for F, in time t
D. (T) Actual number of job departures for P,. in time t
EA; (T) Expected number of job'arrivals for P,. in time t
ED; (T) Expected number of job departures for P,, in time t
a Arrival rate estimation factor
fi Service rate estimation factor
2, (T) Estimated arrival rate for P1 at time T

,l, (T) Estimated service rate for P,, at time T

L, (T) Estimated load on P,, at time T

Lk , (T)T Estimated load on buddy processor Pk calculated by P, at time T

Q. (T) Number ofjobs waiting in queue for P,. at time T

Table 4.1 List of notations and terminology

4.3 Performance Metrics
In this work, we have considered four performance metrics of relevance at different levels. At

the job level, we consider the Average Response Time (ART) of the jobs processed in the

system as the performance metric. If N jobs are processed by the system, then ART can be

calculated as follows:
N

ART = 1 I (Finish, — Arrival;)
N ;=1

where Arrivals is the time at which the ith job arrives and Finish; is the time at which it leaves
the system. The delay due to job transfer, waiting time in queue and processing time, together
constitute the response time.

At the system level, we consider Total Execution Time as performance metric to measure

algorithm's efficiency. It indicates time at which all Njobs get executed.

At the processor level, we consider Resource Utilization as performance metric. It is ratio

between processor's busy time to sum of processor's busy and idle time.

_ Busy;
U` Busy; +Idler (4.3)

where Busy; indicates amount of time Pi remains busy and Idle; indicates amount of time P,

remains idle during total. execution time of Njobs.

We also consider Total Job Migrations as performance metric which indicates number of job

migrations performed for execution of Njobs. In the event of high migration cost, it is not

always advisable to perform job migration. This metric indicates adaptive-ness of an
algorithm in the event of varying job migration cost.

(4.2)

25

Chapter 5 Design of Load Balancing Algorithms

5.1 Introduction

In any distributed systems, even simple load sharing policies yields significant improvements
in performance over the no sharing case. But in a computational Grid, as resources are
geographically distributed and located at different sites, job transfer time from one site to

another site is very significant factor for load balancing. Communication latency is also very

large for Wide Area Network (WAN) through which Grid resources are normally connected.

Due to these reasons, one can not ignore job transfer cost when taking job migration decision.

Further, when resources are heterogeneous, we need to assign jobs to processors according to

its performance. Our proposed algorithms consider this fact. Our algorithms are based on

ELISA [1] and does parameter estimation and information exchange at regular intervals. We
shall first describe the process of parameter estimation and the way in which load balancing

is carried out in our algorithms, in general. This will also be useful in understanding the

terminology associated with the notations used.

T,

TT
tl I 	t2. 	t3

T,
Buddy load estimation and migration

Processor status estimation and

Figure 5.1 Estimation and status exchange intervals

As shown in Figure 5.1, at each periodic interval of time T,s, called the status exchange
interval, each P; in the system calculates its status parameters which are estimated arrival rate,
service rate and load on processor. Each P; in the system exchanges its status information
with the processors in its buddy set. The instant at which this information exchange takes
place is called a status exchange instant. In Figure 5.1, T„_, and T„ represent the status
exchange instant. Each P ; calculates its status information at status exchange instant T„_1
using following relationships:

27

2;(T„-,)=a*2,(T»-2)+(1—a)* (A,(T5)/TS) 	 (5.1)

(Tn—)=16*1",(Tn-2)+(1—/3)*(Di(TS)/TS) 	 (5.2)

(5.3)

Thus, in the above relationship, by tuning the parameter a (0 <= a <= 1), one can vary the

estimate. ,A value of 0.5 for a would mean that an equal weight has been considered for the

current period and the previous estimate of the arrival rate. Similarly, we tune the parameter j9
(0 <_/3 <=1) for service rate estimation.

Each status exchange period is further divided into equal subintervals called estimation

interval Te. These points are known as estimation instants. In Figure 5.1, ti, t2, ..., (j

represent estimation instants. As each processor balances the load within its buddy set, every

processor estimates the load in the processors belonging to its buddy set at each estimation

instants. Each P; calculates estimated load on its buddy processor Pk using following

equations:

Lkr(T„-,+ti)=(EAk(Te)— EDk(Te))// k(Tn—~)+Lk,,(T.— +t;-1) 	 (5.4)

where i = 1, 2, 3, ..., m-1 and

EAk (T,) = a such that

(-(T,,)7
) * (2 (T)*7')" 	1 	 (5.5).

x-O x!

EDk (T,) = d ' such that

1 	 (5.6)
x=O xl

Depending on the accuracy required, computations of EAk(Te) and EDk(Te) can be terminated

after computing a sufficiently large number of terms in equations (5.5) and (5.6).

The status _exchange instants and the estimation instants together constitute the set of transfer

instants (T,, -p, ti, t2, ..., t,,,_1, T,,) in Figure 5.1. At the transfer instants, rescheduling of jobs is

carried out. Thus, the decision to transfer jobs and the actual transfer of jobs is done at the

transfer instants. By making the interval between status exchange instants large, and by

Note that number of job departures can not be greater than number of job arrivals. That is,

EDk (Te) (EAk(Te)+Lk,;(T.,-1 +t;-1)* i k(T.-1))

28

restricting the exchange of information to the buddy set, the communication overheads are

kept at a minimum.

5.2 Modified _ELISA (MELISA)
Although ELISA primarily works on estimates, it is mainly proposed for cluster based super-
computing systems wherein communication cost is not very large as resources are connected
through high bandwidth network. However, for 'Grid based super-computing systems, the

transfer delays are significantly high contributing to a large communication cost. Thus direct
applicability of ELISA will yield inferior performance that is unacceptable for the Grid based

systems. Later, in our simulation study we highlight this fact. Further, when resources are

heterogeneous, we need to assign jobs to processors according to its performance. Due to

these reasons, one needs to take into account all affecting factors for load balancing to

achieve better performance. Hence, we revisit the design of ELISA and introduce the job

transfer, rate and resource heterogeneity explicitly in the formulation that is more akin for

Grids.

In ELISA, at every status exchange time period TS, each Pi communicates its status (queue

length, estimate of arrival rate) to all its buddy processors. At each estimation instant Tel

every processor calculates queue length on buddy processors using estimated arrival rate and

exact service rate of buddy processor. P; will take decision of job migration if its queue

length is greater than an average queue length in its buddy set.

T,.

job will arrive here on Pk

Te

ti l 	t 	13 1 	 to-1

c

If

EFT,1 > EFT , then migrate job j to Pk.

Processor status estimation and exchanger'

Figure 5.2 Job migration decision in MELISA

In the design of MELISA, as shown in Figure 5.2, each P; estimates its arrival rate, service

rate and the load using equations (5.1), (5.2), and (5.3) at each status exchange instant. At

29

each estimation instant, P; calculates load on its all buddy processors using equations (5.4),

(5.5), and (5.6). Based on this calculated buddy load, each processor calculates average load

in its buddy set. P, will take decision of job migration if its load is greater than an average

load in its buddy set and will try to distribute its load such that load on all buddy processors

get finished at almost same time taking into account node's heterogeneity in terms of
processor speed. This average buddy load can be calculated using following relationships.

Main Algorithm
At the status exchange instant, for each processor:
1. Estimate the arrival rate, service rate and load on processor using

equations (5.1), (5.2) and (5.3).
2. Communicate the status defined by a 3-tuple as: <estimated arrival

rate, estimated service rate, estimated load> to all processors in
the buddy set.

3. Call TRANSFER.
At the estimation instant, for each processor
1. Estimate the load for each processor in the buddy set using equation

(5.4), (5.5) and (5.6).
2. Call TRANSFER.

Procedure TRANSFER by Pi, 1=1,2, ...,M.
1. Estimate an average normalized buddy load using equation (5.7).
2. If load of a processor is greater than average load (as computed in

1), then
a) Construct active set as follows: if a processor in the buddy set has

load less than the average normalized buddy load, include
processor in active set.

b) Determine how much load can be transferred to buddy processors
in active set such that load on all processors gets finished at
almost same time.

c) Attempt to migrate the load in excess over average buddy load to
all buddy processors in active set by calculating EFTk on
destination processor and migrating job only if EFTk < EFT,' .

Figure 5.3 MELISA Load balancing algorithm

Let Si denote the weight of a. processor Pi which is a normalized measure of its speed. So a

value of 2 for S, means P, will take half amount of time to execute job than time taken by

reference processor2 having value of 1 for Si. Here, each P; will calculate normalized buddy

average load [(NBLa);] using value of Lk,(T) and Si by following equation:

2 This could be an abstract processor within the system.

30

E * Sk Lk,i lT)
(NBL

g
) i — kebuddyset!

ZS k
	 (5.7)

kebuddysel1

(NBL~g); indicates normalized average buddy load for reference processor. P; is considered
as a sender processor, if (NBLQ,,g)1 < S;*Ll(7). Now P, will try to transfer its extra load to all
receiver processors -Pk such that they receive extra load based on their current load (41(T))
and processor weight (Sk). After determining how much load P; can transfer to Pk, as shown
in Figure 5.2, P; will calculate expected finish time of job j on buddy processor (Pk) by

estimating load on Pk at time CST + t (where tJ is migration time for job j from P; to Pk).

Job will be migrated to Pk only if

EFTk < EFT' 	 (5.8)

where

EFT,, = Q; (CST) / ii; (T,) + ERT,.'
	

(5.9)

EFTk =max ((Lk;(CST)+(EAk (t')—EDk (t'))l~ck (T)), ti)+ERTk 	(5.10)

In equation (5.10), first term which is maximum of two values - approximate wait time of job

j on Pk and job transfer time - indicates expected starting time of job j on Pk. We assume that

these activities can be performed simultaneously. So job will be migrated only if its expected

finish time on destination processor is less than expected finish time on source processor. The

complete working of MELISA is shown in Figure 5.3.

5.3 Receiver-initiated MELISA (R-MELISA)
It is expected that receiver driven strategy gives better performance than sender initiated

policy since receiver can best determine how much load it can accept from other processors.

We also observed similar type of behavior when comparing sender-initiated policy and

receiver-initiated policy for ELISA. So we have designed receiver-initiated MELISA (R-

MELISA) to compare results of both sender-initiated and receiver-initiated policies. The

basic difference in this approach and in MELISA is that in R-MELISA, it is receiver

processor who will inform to sender processor how much load it can accept from sender

processor. In MELISA, it is sender processor who determines how much load it should

migrate to other buddy processor to balance the load in buddy set.

31

r 	 TS

CST\ Migrated job will arrive here on P;
Te

t11 	tl I 	I 	t3I 	 tm-1

	

/ VtN 	 Tn

If EFT < EFT/, then migrate job) to P;.

Processor status estimation and exchange

Figure 5.4 Job migration decision in R-MELISA

Here, similar to IvELISA algorithm, each processor Pi calculates its status parameters which

are estimated arrival rate, service rate and load at every status exchange period T,r using

equations (5.1), (5.2), and (5.3). This information gets exchanged to every buddy processor in

buddy set. At each estimation instant, Pi calculates load on its all buddy processors using

equations (5.4), (5.5), and (5.6). Based on this calculated buddy load, each processor

calculates average buddy load in its buddy set. Pi will take decision of accepting a job if its

load is less than an average load in its buddy set. This normalized buddy average load

[(NBLavg)i] is calculated using value of Lk ;(T) and S, by equation (5.7). P; is considered as a

receiver processor, if (NBLQ „g); > Si * L,(T). Now _P; will determine how much load it can

accept from all sender processor Pk (having (NBL g)t < Sk * Lk(T)) using buddy information

which is current buddy load (4,(T)) and processor weight (Sk). After determining how much
load P; can accept from Pk, it will inform to Pk the amount of load it can transfer to P. As

shown in Figure 5.4, Pk will calculate expected finish time of job j on buddy processor P; by

estimating load on P; at time CST + t~ . Job will be migrated to P;, only if,

EFT' < EFT, 	 (5.11)

where

EFTk = Qk (CST) I ,uk (T,_ L) +ERTk 	 (5.12)

EFT,.' = max ((Lik (CST)+(EA; (t~ }—ED; (tC))l µ; (T)),t')+ERT,.' 	(5.13)

So job j will be migrated to receiver processor P;, only if its expected finish time on
destination processor (P;) is less than expected finish time on source processor (Pk). Figure
5.5 shows complete working of R-MELISA.

32

Main Algorithm
At the status exchange instant, for each processor:
1. Estimate the arrival rate, service rate and load on processor using

equations (5.1), (5.2) and (5.3).
2. Communicate the status defined by a 3-tuple as: <estimated arrival rate,

estimated service rate, estimated load> to all processors in the buddy
set.

3. Call TRANSFER.
At the estimation instant, for each processor
1. Estimate the load for each processor in the buddy set using equations

(5.4), (5.5) and (5.6).
2. Call TRANSFER.

Procedure TRANSFER by P. i=1,2, ...,M.
1. Estimate an average normalized buddy load using equation (5.7).
2. If load of a processor is less than average load (as computed in 1), then

a) Determine buddy processors whose load is greater than average
normalized buddy load.

b) Determine how much load can be accepted from sender buddy
processors such that load on all processors gets finished at almost

same time.
c) Inform to all sender processors amount of load they can transfer to Pi.
d) Sender processor Pk will attempt to migrate the load in excess over

average buddy load to all receiver processors by calculating EFT,
on destination processor and migrating job only if EFT1 > EFT;'.

Figure 5.5 R-MELISA Load Balancing Algorithm

5.4 Load Balancing on Arrival (LBA)
The applicability of MELISA (and R-MELISA) is more appropriate to cases wherein Grid

infrastructure is large and communication delays are significant such as for InterGrid.

Moreover, the load balancing is done only at transfer instants (which can be estimation

instant or status exchange. instant) for ELISA and MELISA, which is acceptable as

communication delays are severe. However, this becomes an obvious inherent disadvantage
when either of these algorithms is applied to small scale Grids such as for IntraGrids. That is,

with these approaches, jobs need to wait till next transfer instant for migration and due to the

random arrival rate and service rate at each processor, it is possible that load does not get

distributed evenly across all processors. In this case, there can be large waiting times at

highly loaded processors whereas lightly loaded processors continue to remain idle. Jobs

from highly loaded processors will be migrated to lightly loaded processor after finite amount
of time depending on value of Te, T, and distance between highly loaded processor and lightly

loaded processor. This can lead to performance degradation even for moderate value of Te
and T. Our simulation results also support this observation. Consequently, there seems to be

a need for designing an alternate load balancing algorithm to take into account of such

situations.

We design and propose a new algorithm, referred to as Load Balancing on Arrival (LBA),

which balances load by transferring job on its arrival epoch rather than waiting for next
transfer instant. This is clearly a faster reaction to respond to higher arrival rates on smaller

Grids. In LBA algorithm, instead of estimating the expected finish time of a job at every

estimation time period Te , it will be calculated on each arrival of a job to a processor. Here

estimating finish time of a job is an aperiodic event and job migration will now happen

aperiodically. So when load is not distributed evenly across all processors, job will be

migrated to lightly loaded processors much faster in LBA approach than in (M)ELISA.

TS
New job
arrives 	Migrated job will arrive here on Pk

CST 	4

J 	 n
Tn_1 	 tc

If EFT,' > 	', migrate job to Pk 	

T

,Processor status estimation and exchange

Figure 5.6 Job migration decision in LBA

In this approach (refer to Figure 5.6), similar to MELISA algorithm, each processor P,

calculates its status parameters which are estimated arrival rate, service rate and load at every

status exchange period T,s using equations (5.1), (5.2), and (5.3). This information gets

exchanged to every buddy processor in buddy set. On every job arrival, processor P, will

calculate the expected fmish time of job j on buddy processor Pk by estimating load on Pk at

time CST + tj (where ti is communication time for job j from P; to Pk) using equation

(5.10). For this estimation, P, will calculate expected number of arrival and departure on

buddy processor Pk for time period t = CST + tt - 	If any buddy processor Pk can start

execution of this job before processor Pi, then that job will be migrated to Pk. Flowchart for

LBA is shown in Figure 5.7.

3 Here, T, is last status exchange instant.

01

Start

Calculate status information which is estimated arrival rate,
service rate and load using equations (5.1), (5.2), and (5.3).

A

Exchange this infornmation with all buddy processors in set

End

Start

Arrival of new j ob j fbr processor R

Yes 	 i is idle? 	No

Start pro cessing j ob j 	 Yes 	umb4

u,'ttrne

o
red

B EstiImteEFI3 using equation (5.9).
For every buddy processor k, calculate EFTk
using equation (5.10) and replacing tt vath
€ = C&T+t -TT4 for first term

If EFTT < EFT3 for at least one buddy processor k,
then migrate j ob j on buddy processor k,

Else put jobj onwaiting queue ofF;.

End

A: Processing by each P; on every status ex change instant (T,)
B: Processing by P; on arrival of job,

Figure 5.7 Flowchart for LBA

tjobj onwaitin
queue for P

35

5.5 Reference Algorithms
We have used three algorithms, which are relevant to our context, as reference algorithms to

compare results of our algorithms.

5.5.1 Perfect Information Algorithm (PIA)
In Perfect Information Algorithm (PIA), each processor has perfect information about the

state (in terms of load, arrival rate and service rate) of every other processor in its buddy set.

When a job arrives, processor computes job's finish time on all buddy processors using exact
information about current load of buddy processor, its arrival rate and service rate. Source

processor selects buddy processor with the minimum finish time and immediately migrate job

on that buddy processor if it can start job earlier than this processor. Although maintaining

up-to-date information about all buddy processors require plenty of message transmission,

this algorithm basically provides lower bound for our LBA algorithm.

5.5.2 Estimated Load Information Scheduling Algorithm (ELISA)
In ELISA [1], each processor estimates queue length of its buddy processor at estimation

instant using information exchanged at status exchange instant. Information exchanged at
status exchange instant includes queue length and estimated arrival rate. This algorithm

assumes to have perfect information about service rate of each processor. Refer to Appendix

A for a brief explanation of ELISA.

5.5.3 Load Balancing based on Load and processor Speed (LBLS)
Owing to resource heterogeneity, queue length is not always best criteria for determining load

imbalance. Instead, product of average processing time of a job and queue length provides

better load index for balancing load. In this approach, load balancing is done based on load

(in terms of expected time to execute all jobs waiting in queue) rather than based on queue

length. Here, P; will take decision of job migration if its load is greater than an average load

in its buddy set and will try to distribute its load such that load on all buddy processors get

finished at-almost same time on all buddy processors taking into account node's heterogeneity

in terms of processor speed.

36

Chapter 6 Performance Evaluation and Discussion

6.1 Simulation Model
Now, we present the results of our simulation study and compare the performance of our
proposed algorithms with reference algorithms discussed in Section 5.5. The amount of
information that is made available for use at the instant of decision making for transfer of
jobs is expected to have a significant effect on the relative performance of the algorithms.

Table 6.1 summarizes the information that the algorithms use for scheduling of jobs.

Algorithm orithm Arrival rate Service rate System state
ELISA Estimated Perfect Estimated

Information Information Information
LBLS Estimated Estimated Estimated

Information Information Information
PIA Perfect Perfect Perfect

Information Information Information
MELISA Estimated Estimated Estimated

Information Information Information
R-MELISA Estimated Estimated Estimated

Information Information Information
LBA Estimated Estimated Estimated

Information Information Information

Table 6.1 Information used by algorithms .

In our simulation model, we have considered 16 heterogeneous processors connected by

communication channels. Here heterogeneity exist in terms of processor speed, instruction set

and hardware architecture. We assume that any job can be run on any processor, but amount

of time taken to execute a job is different on.different processors and depends on processor

.speed. These processors are connected through an arbitrary network topology to reflect

dynamic behavior of the Grid. This network topology is generated by a graph generator tool

as shown in Figure 6.1. Weight on each link indicates data transfer rate in Mbps (Mega bits

per second). Various parameter values used for simulation are shown in Table 6.2. These

parameter values are used for all cases unless otherwise stated explicitly.

37

Figure 6.1 Network topology

Parameter Value
Mean inter-arrival time Exponentially distributed in [1,4]
Mean service time Exponentially distributed in [1,4]
Threshold level for load distribution 1
N 10000
T, 20
TQ 4
a 0.5
[3 0.5
'1 4
Job Size Normal distribution with p=50MB and u=10MB

Table 6.2 Parameter values

6.2 Performance of MELISA and R-MELISA
In this section, we will evaluate performance of our load balancing algorithms MELISA and

R-MELISA with ELISA and LBLS. As R-MELISA differs from MELISA only in who

initiates load balancing, it would be better to compare result of R-MELISA with MELISA.

6.2.1 Heterogeneous Case

For heterogeneous case, we considered different data transfer rate for each link as shown in

Figure 6.1. We also considered resource heterogeneity by setting value of S, to 2 for

randomly half of processors. Our algorithms MELISA and R-MELISA give better

performance for ART as can be seen from Figure 6.2(a). As from Figure 6.2(b), total number

of migration performed by our algorithms is less than other reference algorithms as it is not

38

always advisable to perform migration in event of low data transfer rate and resource

heterogeneity. Comparing results of MELISA and R-MELISA, we can conclude that both

algorithms give almost same performance in terms of ART. Also number of job migrations

performed by each algorithm is also same. So there is not much performance difference for

sender-initiated policy and receiver-initiated policy in MELISA case.

9

8
• 7
E

m
c
0 a4

3
>2 a

1

Wei

—.-- ELISA
—.---LBLS

MELISA

R-MELISA

2000 	4000 	6000 	8000 	10000

Number of jobs

(a) ART comparison for heterogeneous case

ELISA LBLS 	MELISA 	R-MELISA

(b) Total Job Migrations comparison for heterogeneous case

Figure 6.2 Performance measure of MELISA and R-MELISA for heterogeneous case

6.2.2 Homogeneous Case
This is a special case to our heterogeneous environment. In this case, we have considered all

nodes are homogeneous, that means S; is set to I for all processors. Also, network bandwidth

2000

1800

1600

1400

1200

1000

800

600

400

200

0

39

is fixed across link. The main difference between ELISA and MELISA (R-MELISA)

algorithm is that MELISA algorithm takes into account the job migration cost when

balancing the load across buddy processors. Job migration cost is influenced mainly by two

parameters: Job size and data transfer rate. So by varying job size and/or data transfer rate,

we can evaluate performance of MELISA and R-MELISA algorithms over ELISA. The
following two subsections compare results of MELISA and R-MELISA with ELISA and
LBLS for varying job sizes and data transfer rates.

6.2.2.1 Effect of job size
In this set of experiments, we vary job size to measure effect of job size on ART and

execution time. The job sizes in our experiments range from 5MB±1MB to 1000MB~200MB

and we set data transfer rate to 10Mbps. From Figure 6.3(a), we observe that as job size

increases, MELISA and R-MELISA give better . performance than ELISA and LBLS and

similar behavior is exhibited for execution time from Figure 6.3(b). However, when job sizes

are very small, job transfer time becomes negligible and the performance remains almost

same for all algorithms. But when job size is very large, clearly, MELISA and R-MELISA

outperform ELISA and LBLS, as job migration cost becomes an important factor for load

balancing decision. Further, the number of migrations carried out by these algorithms is

shown in Figure 6.3(c). From this figure, it may be observed that the number of job

migrations performed by MELISA and R-MELISA is significantly less when compared with

ELISA and LBLS in the case of large job size. This is an important property of MELISA (R-

MELISA) that makes it applicable for large-scale Grid systems.

6.2.2.2 Effect of data transfer rate
Here we consider the performance of our two algorithms under the influence of data transfer

rates. We vary the data transfer rates in the range between 0.5Mbps to 100Mbps. For this

analysis, we have set job size as 50MB~10MB. Results are shown in Figures 6.4(a) and

6.4(b). From the figures, we observe that MELISA and R-MELISA give better performance

when data transfer rate is very low. For higher data transfer rate, job migration cost is

negligible and performance is same for all algorithms. However, when data transfer rate is

very low, job migration cost is high and we should migrate job only if it is beneficial.

MELISA and R-MELISA take this migration cost into account and that is why total number

of migrations for lower data transfer rate is less than for higher data transfer rate, whereas, for

ELISA and LBLS, number of migrations remains almost same. (Refer Figure 6.4(c)).

41

250

p200

P
150

C
0 a 3 100
It
a
Q 50

U

•— ELISA

LBLS

MELISA

• R-MELISA

5±1 	50±10 100±20 500±100 1000±200

Job size (in MB)

(a) Effect of job size on ART

5±1 	50±10

3500
F
5 3000

2500

2000

1500

® ELISA
■ LBLS
o MELISA
DR-MELISA

100±20 500±100 1000±200

Job size (in MB)

(b) Effect of job size on Total Execution Time

3000

2500

2000
o_o

1500

1000

500

0
5±1 	50±10

I [I ■ ELISA

■ LB LS

❑ MELISA

.I 	____
❑ R-MELISA

RH
100±20 500±100 1000±200

Job size (in MB)

(c) Effect of job size on Total Job Migrations

Figure 6.3 Performance measure of MELISA and R-MELISA for varying job size

43

150

100

0

*E USA

T
- LBLS

I 	MELISA
- R-MELISA

500kbps 	1 Mbps 	2Mbps 	10Mbps 100Mbps

Data Transfer Rate

(a) Effect of data transfer rate on ART

ELISA
!.LBLS
O MELISA
o R-MELISA

500kbps 1Mbps 2Mbps 10Mbps 100Mbps

Data Transfer Rate

(b) Effect of data transfer rate on Total Execution Time

TIS

 flu Iii ~I iii

(c) Effect of data transfer rate on Total Job Migrations
Fisure 6.4 Performance measure of MELISA and R-MELISA for varying data transfer rate

45

6.3 Performance of LBA
In this section, we will evaluate the performance of our proposed algorithm Load Balancing

on Arrival (LBA) with ELISA and PIA. We have considered different cases to measure the

performance of LBA. Following subsections describe various cases and performance

analysis.

6.3.1 Random arrival and service rates
In this set of experiments, we have quantified the performance of our LBA algorithm for real-

life situations wherein arrival rates and service rates are completely random. As seen from

Figure 6.5(a), there is not much difference in ART for LBA and ELISA, that is, both the

algorithms exhibit an increasing tendency as we increase the arrival and service rates. Both

algorithms take almost same amount of time for execution of N jobs as we can observe it

from Figure 6.5(b). As expected, performance of PIA is better than LBA and ELISA as it

uses perfect information at the time of load balancing.

16

14

12
F

10

8

6

4

2

0

t ELISA
a LBA

—a-- PIA

2000 	4000 	6000 	8000 	10000

Number of Jobs

(a) ART comparison for random arrival and service rates

2000

15

1000

500

O i

— — — 	 ®ELISA

_ 	W ■ LBA
p PIA

2000 	4000 	6000 	8000 	10000

Number of Jobs

(b) Total Execution Time comparison for random arrival and service rates

Figure 6.5 Performance measure of LBA for random arrival and service rates

47

6.3.2 Effect of status exchange period
ELISA algorithm is highly sensitive to the magnitude of status exchange period T. That is, if

we set the value of status exchange period to be high, then its performance degrades. For

LBA, increasing value of TS also increases ART, but its performance is much better than

ELISA. As seen from Figure 6.6, by increasing the value of T5, there is very high increase in

ART for ELISA than for LBA. For PIA, there is no change in ART as it uses perfect

information about system state at each job migration decision. So for LBA algorithm, by
setting the value of status exchange period to be large, we can decrease the number of status

exchange messages and communication overheads can be kept at a low value.

6.3.3 Effect of uneven load distribution
One of the major advantages of LBA approach is that it attempts to balance load on each

processor "as soon as possible". Whenever a job arrives at a processor, that processor will

determine whether any of its buddy set members can execute the job earlier than itself. If it

finds such a member, then the job will be migrated to that processor. In this way, the load

will be balanced as soon as possible. However in ELISA, a job has to wait for next transfer

instant before migrating to a lightly loaded processor.

For this _ set of experiments, we set values of arrival rates and service rates of processors in

such a way that load distribution is uneven across all processors. Here (refer Figure 6.1),

processors 1, 2, 3 and 4 are highly loaded whereas processors 7, 8,15 and 16 are lightly

loaded. Other processors are moderately loaded. Results are shown in Figures 6.7(a) and

6.7(b). From the graphs, we observe that LBA gives much better performance for ART.

Figure 6.7(b) shows the results for minimum utilization of a processor, average utilization of

system, and maximum utilization of a processor, after executing all N jobs. These values

indicate how load has been balanced across processors. From Figure 6.7(b), it may be

observed that for ELISA, there is wide variation in terms of processor utilization. In LBA,

variation in processor utilization is less than for ELISA. For PIA, there is very little or no

variation in processor utilization.

-.-- ELISA

LBA

--1

E 20
15

10 -- -- 	-

Q 5

0

25

45

40

g 35 -
F 30

25
20

15

10

5

0
2000 4000 	6000 	8000 	10000

Number of Jobs

t ELISA

LBA

—h-- PIA

20 	40 	60 	80

Status Exchange Period

Figure 6.6 Effect of Status exchange period (Ts) on ART

(a) ART comparison for uneven load distribution

420

100

80 L----I ---- _ 	 m Min

	

60 	 "•; 	 ■ Avg
O Max

4

	

0 	
ELISA 	 LBA 	 PIA

(b) Resource Utilization comparison for uneven load distribution

Figure 6.7 Performance measure of LBA for uneven load distribution

51

6.3.4 Effect of migration limit
One of the important parameters for LBA is migration limit (denoted as ii), that is, how many

hops we should allow a job to migrate, before execution. Obviously, this decision depends on

network topology considered. Setting value of q to maximum path length of the graph, we

can obtain almost same result when ri is very large4. By restricting the value of ri to a finite

value, we can reduce job migration cost by reducing the total number of job migrations.

We have used a network topology shown in Figure 6.1 to capture this effect. As from Figure

6.8(a), when q > 4, there is hardly any change in ART. Also when q = 4, performance is

better for execution time (refer Figure 6.8(b)). Thus we observe that by setting value of ri
around maximum path length gives a better acceptable performance for LBA.

6.3.5 Effect of job size
As from LBA algorithm, job migration cost is also one of the factors for load balancing

across its buddy processors. Indeed, we can expect that it should give better performance

when we increase the job size. Figures 6.9(a) and 6.9(b) show the results for various job sizes

ranging from 5MB+1MB to 1000MB~200MB. As. it can be observed from Figures 6.9(a) and

6.9(b), for larger job size, performance of LBA is better than ELISA. This is due to the fact

that as the job size increases the migration cost is expected to increase which prevents

migration in LBA.

Remarks: As seen above, increase in job size would lead to increase in the job migration i

cost. However, this is handled differently by MELISA and LBA as follows. In MELISA (and

R-MELISA), for each transfer instant, P; will calculate expected finish time (EFT') of every

job j on buddy processor k. If EFTk < EFT.', then job will be migrated to buddy processor

Pk. In LBA, each P; will calculate EFT' for job j on buddy processor Pk only on its arrival. If

no buddy processor Pk can execute job earlier than P;, then job will be placed in waiting

queue of P;. In LBA, this job j will be never migrated to any buddy processor and will be

executed on P., whereas in MELISA, there is a possibility that this job can be migrated if,

after some time, there is at least one buddy processor who can execute job earlier than this

processor.

4 Theoretically setting to infinity.

53

• ELISA
T LBA
APIA

45

2750
• E

2700 c

1265

W

r- 2550

0 	 2~ 	1 	 I~
1 	2 	4 	5 	6 	10 	- 	 1 	2 	4 	5 	6 	10

Migration Um t 	 Myratlon Umit

	

(a) Effect of , on ART 	 (b) Effect of p1 on Total Execution Time
Figure 6.8 Effect of migration limit (i) for LBA

40

E 35
30 -

c25 --
0
020
oC 15

10
—

t

5

250

200

150

J ioo

50

0

3500
3300
3100

l 2900

2700
2500

~c 2300
W

2100

p 1900

1700
1cnn

511 	50±10 100120 500±100 10001200
Job size (in MB)

(a) Effect ofjob size on ART

f ELISA
TLBA

PIA
1

511 	50±10 	100120 5001100 10001200

Job size (in MB)

(b) Effect ofjob size on Total Execution Time

Figure 6.9 Performance measure of LBA for varying job size

Chapter 7 Conclusion and Future Work

7.1 Conclusion

In this work, we presented decentralized, scalable, adaptive, and distributed algorithms for

load balancing across resources for data intensive computations on Grid environments. The

objective is to minimize ART and total execution time for jobs that arrive to a Grid system for

processing. Several constraints such as communication delays due to underlying network,
processing delays at the processors, resource heterogeneity, and an arbitrary topology for the

Grid system, are explicitly considered in the problem formulation. Our algorithms are
adaptive in the sense that they estimate different types of strongly influencing system

parameters such as job arrival rate, processing rate, load on processor and use this

information for estimating finish time of job on buddy 'processor. Through this study, we

demonstrate the usefulness and effectiveness of load estimation approach to devise adaptive

and dynamic load balancing strategies for data-hungry computational Grid structures.

Our algorithms also consider overheads of job migration due to large communication latency

between Grid resources. MELISA and R-MELISA take decision of job migration based on its

expected finish time on buddy processor which also includes transfer time of the job.

MELISA and R-MELISA give better performance than ELISA for large-scale Grid

environments such as InterGrid that is when available bandwidth between two processors is

very low and/or job size is large. So MELISA is better suited for large-scale Grid

environments. We also observed that there is not much performance difference in MELISA

and R-MELISA. Both algorithms give almost same performance for all cases. LBA algorithm

performs load balancing on . each job arrival by estimating expected finish time on

neighboring processor instead of waiting for next transfer instant. Results show that LBA

algorithm gives much better performance when load is not evenly balanced across all

resources. For small scale Grids such as IntraGrid, LBA is the best solution for load

balancing across processors.

Through this study, we also observed the influence of 2 (the arrival rates) at the nodes. We

noted that by increasing the value of 2r for P;, ART of the system also increases. This can be
taken care by tuning the estimation time epoch Te. Thus, by decreasing value of Te (in case of

57

(M)ELISA), we can improve the performance of the system as the load is now balanced more

frequently. Further, there is a small non-zero probability that a load can shuttle between

processors. In our strategies, we prevented this through a control parameter, the migration

limit (denoted by ii). That is, if a job is migrated for r times, then it will be not transferred

again.

7.2 Future Work
This work can be extended in following ways:

➢ Although we have considered resource heterogeneity in terms of processor speeds, it

can be extended to heterogeneity in other dimensions such as, operating system,

available storage space, available programming environment etc. Due to this, all jobs

will not be eligible to run on all resources and performance of the system will be

affected by scheduling and load balancing algorithm.

> Our load balancing algorithms work only for independent jobs. That is, there should

not be any dependency among jobs. This can be extended for jobs with dependency.

This can be implemented using methods like Task Dependency Graph, Directed

Acyclic Graph (DAG), etc.

➢ In Grid computing systems, scheduler does not have complete control over resources

as resources are shared by users and scheduler need to implement user's policy. User

policy generally specifies when scheduler can use its resource, how much memory

can be used by job, how many jobs are allowed to run at a time etc. Our load

balancing algorithms can be enhanced to implement such user policy.

> Fault tolerance is also one of the important characteristics of any distributed systems.

Although main aim of this research work is to provide load balancing algorithm, this

work can be extended to provide fault tolerance in the Grid systems by using any fault

tolerant algorithms available for distributed systems such as heart-beat algorithm.

58

References

[1] L.Anand, D.Ghose, and V.Mani, "ELISA: An Estimated Load Information Scheduling
Algorithm for distributed computing systems", International Journal on Computers and

Mathematics with Applications, Vol.37, Issue 8, pp. 57-85, April 1999.
[2] I.Foster, C.Kesselman, and S.Tuecke, "The anatomy of the grid: Enabling scalable

virtual organizations", International Journal of High Performance Computing

Applications, Vol. 15, Issue 3, pp. 200-222, 2001.

[3] I.Foster and C.Kesselman, "The Grid : Blueprint for a future computing infrastructure",.

Morgan Kaufmann Publishers, USA, 1999.
[4] L.Smarr and C.E.Catlett, "Metacomputing", Communications of the ACM, Vol. 35,

Issue 6, pp. 44-52, June 1992.
[5] H.Shan, L.Oliker, R.Biswas, and W.Smith, "Scheduling in heterogeneous grid

environments: The effects of data migration", in Proceedings of ADCOM2004:

International Conference on Advanced Computing and Communication, Ahmedabad,

Gujarat, India, December, 2004.

[6] I. Foster and C. Kesselman, "Globus: A metacomputing infrastructure toolkit",

International Journal of Supercomputer Applications, Vol. 11, Issue 2, pp. 115-128,

1997.

[7] Globus Project website, http://www.globus.org
[8] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger, "Data

Management in an International Data Grid Project", Proceedings of the first IEEE/ACM

International Workshop on Grid Computing, India, 2000.
[9] GGF's working group on Grid scheduling dictionary,

http://www.fzj uelich.de/zam/RD/coop/ggflsd-wg.html.
[10] Y.Feng, D.Li, H.Wu, and Y.Zhang, "A dynamic Ioad balancing algorithm based on

distributed database system", Proceedings 4th International Conference on High

Performance Computing in the Asia-Pacific Region,China, pp. 949-952, May 2000.

[11] M.Willebeek-LeMair and A.Reeves, "Strategies for dynamic load balancing on highly
parallel computers", IEEE Transactions on Parallel and Distributed Systems, Vol. 9,

Issue 4, pp. 979-993, September 1993.

59

[12] N.Shivaratri, P.Krueger, and M.Singhal, "Load distributing for locally distributed

systems", IEEE Computer, Vol. 25, Issue 12, pp. 33-44, December 1992
[13] H.Lin and C.Raghavendra, "A dynamic load-balancing policy with a central job

dispatcher (LBC)", IEEE Transactions on Software Engineering, Vol. 18, Issue 2, pp.

148-158, February 1992.
[14] J.Watts and S.Taylor, "A practical approach to dynamic load balancing", IEEE

Transactions on Parallel and Distributed Systems, Vol. 9, No. 3, pp. 235-248, March
1998.

[15] G.Manimaran and C.Siva Ram Murthy, "An efficient dynamic scheduling algorithm for
multiprocessor real-time systems", IEEE Transactions on Parallel and Distributed

Systems, Vol. 9, Issue 3, pp. 312-319, March 1998.

[16] M.J.Zaki and W.Li.S.Parthasarathy, "Customized dynamic load balancing for a network

of workstations", Journal of Parallel and Distributed Computing, Vol. 43, Issue 2, pp.

156-162, June 1997.

[17] J.Krallmann, U.Schwiegelshohn, and R.Yahyapour, "On the design and evaluation of

job scheduling algorithms", In 5th Workshop on Job Scheduling Strategies for Parallel

Processing, Vol. LNCS 1659, pp. 17-42, 1999.

[18] D.G.Feitelson, L.Rudolph, U.Schwiegelshohn, K.C.Sevcik, and P.Wong, "Theory and

practice in parallel job scheduling", In 3rd Workshop on Job Scheduling Strategies for

parallel processing, Vol. LNCS 1291, pp. 1-34, 1997.

[19] Y.Murata, H.Takizawa, T.Inaba, and H.Kobayashi, "A distributed and cooperative load

balancing mechanism for large-scale P2P systems", International Symposium on

Applications and Internet Workshops (SAINT 06), pp. 126-129, Jan 2006.

[20] L.Oliker, R.Biswas, H.Shan, and W.Smith, "Job scheduling in heterogeneous grid

environment", Lawrence Berkeley National Laboratory, LBNL-54906, 2004.

[21] Z.Zeng and B.Veeravalli, "Design and analysis of a non-preemptive decentralized load

balancing algorithm for multi-class jobs in distributed networks", Computer

Communications, Vol. 27, pp. 679-693, 2004.

[22] V.Subramani, R.Kettimuthu, S.Srinivasan, and P.Sadayappan, "Distributed job

scheduling on computational grid using multiple simultaneous requests", Proceedings
of 11 h̀ IEEE Symposium on High Performance Distributed Computing (HPDC 2002),
July 2002.

[23] M.Arora, S.K.Das, and R.Biswas, "A De-centralized scheduling and load balancing

algorithm for heterogeneous grid environments", Proceedings of the International

Conference on Parallel Processing Workshops (ICPPW,2002), pp. 499-505, 2002.
[24] H.A.James and K.A.Hawick, "Scheduling independent tasks on metacomputing

systems", Proceedings ISCA 12th International Conference on Parallel and Distributed

Computing Systems (PDCS-99), Fort Lauderdale, USA, March 1999.

[25] M.Mitzenmacher, "How useful is old information?", IEEE Transactions on Parallel and
Distributed Systems, Vol. 11, Issue 1, pp. 6-20, 2000.

[26] R.Martin, A.Vandat, D.Culler, and T.Anderson, "Effects of communication latency,

overhead and bandwidth in a cluster architecture", Proceedings 24th Annual

International Symposium on Computer Architecture, pp. 85-97, June 1997.

61

List of submitted papers

(1) "On the Design of Adaptive and De-centralized Load Balancing Algorithms with

Load Estimation for Computational Grid Environments", submitted in IEEE

Transactions on Parallel and Distributed Systems (TPDS).
(2) "Estimation Based Load Balancing Algorithm for Data-Intensive Heterogeneous Grid

Environments", submitted in 13th IEEE International Conference on High

Performance Computing (HiPC 2006).

(3) "A Receiver-initiated Load Balancing Algorithm with Parameter Estimation for

Heterogeneous Grid Environments", submitted in 2"d International Conference on

Semantics, Knowledge and Grid (SKG-2006).

63

Appendix A: ELISA (Estimated Load Information Scheduling Algorithm)

In ELISA, as shown in Figure A. 1, the load is estimated at every estimation period Te using

status information (queue length, estimate of arrival rate) exchanged at status exchange
period Ts. The working of ELISA can be summarized as shown in Figure A.2:

T,

Te

t] I~ 	t2l 	t3

Tn-1
 T.

Buddy load estimation and migration

Processor status estimation and

Figure A. 1 Estimation and status exchange intervals in ELISA

Main Algorithm

At the status exchange epoch, for each processor.
1. Estimate arrival rate by averaging the number of arrivals over the

previous n status exchange intervals.
2. Communicate status (queue length and estimate ofarrival rate) to all

processors in the buddy set;
3. Call Transfer.

At the estimation epoch, for each processor:
1. Estimate the queue 1 ength for each pro ces sor in the buddy set.
2. Call Transfer.

Procedure Transfer (Computation of transfer possibilities and
transfer ofj obs.)

• Find average queue length of the processor in the buddy set.
If the queue length of a pro ces saris greater than the average queue

length (as computed in 1), then: 	 -
a) Construct the active set as follows: if a proces sor in the buddy set

has a queue length less than the average queue length, include the
processor in the active set

b) Compute the probability of transferring from the processor
(source) to each processor (destination) in the active set such that
the source processor load in excess of average queue length is
distributed among processors of active set.

Transfer the j ob s as p er the probabiliti es c omputer in 2(b)..

Figure A:2 Working of ELISA

II

Appendix B : Source Code Listing

**
File : Defmition.h
Description : This file contains general declaration of a program. **

/* Following two variables describe resource status'/
#define BUSY 1
#define IDLE 0

/*Following two variables are weighting factor for estimating arrival rate and service rate*/
#define ALPHA 0.5
#define BETA 0.5

/*TIME_PERIOD will indicates when information will be exchanged among buddy set*/
#define TIME PERIOD 20
#define EST PERIOD 5

/* NUMBER_ OF_ PROCESSORS indicates how many processors are there in system*/
#define NUMBER OF PROCESSORS 16

/*number of jobs to be processed*/
#define MAX JOBS 10000

/*Following two variables are for determining program size having normal distribution*/
#define PROGRAM _SIZE _MEAN 4.0* 1024* 1024*8
#define PROGRAM SIZE VARIANCE 2.0* 1024* 1024*8

/*Following variable is still not used, but can be used to indiacate threshold value*/
#define THRESHOLD 0
#define THRESHOLD 1 100

/*This indicates number of migration allowed for ajob*/
#define MIGRATION LIMIT 4

/*RANDOM_SEED is used to produce different random variable*/
#define RANDOM SEED 81

/*ACCURACY is used for determining probability*/
#define ACCURACY 0.98

/*commCost indicated transfer rate between two processor in system*/
double commCost1 = 10.0*1024.0*1024;

#define SPEED_FACTOR 0.0
/*This function will generate random number between 0 and 1*!
double getUniformRandomVariable()
{

return (((double)randO + 1)/ ((double)(RAND_MAX)+(double)(1)));

/*This function will generate exponential random varialbe given meanTime as beta*/
double getExponentialRandomVariable(double meanTime)

III

return -meanTime * log(getUniformRandomVariableO);
}

/*This function will generate normal random variable given mean and variance*/
double getNorrnalRandomVariable(double mean,double variance)
{

return mean + variance*getUniforrRandomVariableo;

/*This faction will return factorial of given number k*/
int factorial(int k)
{

int prod = 1;
for(int i = 2; i <=k; i++)

prod *= i;
return prod;

/*This function will return m^n, here n must be integer*/
double power(double m, int n)
{ 	.

double prod = m;
for(int i = 2; i <=n; i++)

prod *= m;
return prod;

********************************<***
File : Task.h
Description : This file contains class definition for task. For each job that need to executed in
system, object of class Task has to be created.

*
/* Class definition for Task*/
class Task
{

int jobID; 	 //Indicates job ID
double actualArrivaITime; //Indicates actual arrival time
'double arrivalTime; //Indicates arrival time can be migration time
double waitingTime; //Indicates waiting time for a job in system
double executionTime; //Indicates execution time for this job
double tasl:Size; //Indicates job size for this job
int assignedNodelD; //Indicates to which processor this job is assigned
double expectedExecutionTime;//Indicates expected execution time of ajob
double expectedFinishTime; //Indicates when job is likely to finish

- int noOfTimesMigrated; //Indicated how many times job is migrated

public:
Task *next; 	//Used to maintain linked list of Task objects

/*Following constructor initialize different variables of Task object*/
Task(int id, double. aTime, double eTime, double tSize, int nID, double expTime)
{

jobID = id;

actualArrivalTime = aTime;
arrivalTime = aTime;
waitingTime = 0;
executionTime = eTime;
expectedExecutionTime = expTime;
taskSize = tSize;
assignedNodeID = nID;
expectedFinishTime = -1;
noOfTimesMigrated = 0;
next = NULL; 	 //NULL indicates zero

/*This is a copy constuctor which performs same task as done by previous constructor.
This constructor initialize variables though object j

Task(Task &j)
{

joblD = j.getJobIDQ;
actualArrivalTime = j.getActualArrivalTirneO;
arrivalTime = j.getArrivalTimeO;
waitingTime = j.getWaitingTimeO;
executionTime = j.getExecutionTimeO;
expectedExecutionTime = j.getExpectedExecutionTimeO;
taskSize = j.getTaskSizeQ; .
assignedNodelD = j.getAssignedNodeIDQ;
expectedFinishTime = j.getExpectedFinishTimeQ;
noOfTimesMigrated = j.getNoOfTimesMigratedQ;
next = j.getNextTaskO;

/*This function will return job id of this object*/
int getJoblDQ

return joblD;
}

/*This function will return processor ID to which this job is assigned*/
int getAssignedNodelDQ
{

return assignedNodeID;

/*This function will return arrival time of this job. This time can be migration time also*/
double getArrivalTime()
{

return arrivalTime;

/*This function will set arrival time of job*/
void setArrivalTime(double time)
{

arrivalTime = time;

/*This function will return actual arrival time of job in the system*/
double getActualArrivalTimeo

1i1

{
return actualArrivalTime;

}

/*This function will set processor ID for this job. This function will be used when job will
migrated to some other processor. We need to call this funtion to set new processor id*/
void setAssignedNodeId(int id)
{

assignedNodelD = id;
}

/*This function will set waiting time for ajob in the system*/
void setWaitingTime(double time)
{

waitingTime = time;
}

/*This function will return waiting time of a job*/
double getWaitingTimeo
{

return waitingTime;
}

/*This function will set execution time for job*/
void setExecutionTime(double time)
{

executionTime = time;
Ii

/*This function will return execution time of this job*/
double getExecutionTimeo
{

return executionTime;
}

void setExpectedExecutionTime(double val)
{

expectedExecutionTime = val;
}

double getExpectedExecutionTimeo
{

return expectedExecutionTime;
}

/*This function will set size of this job*/
void setTaskSize(double tSize)
{

taskSize = tSize;
}

/*This function will return size of this job*/
double getTaskSize()
{

return taskSize;

VI

/*This function will set expected fmish time for this job for assignedNodeld processor*/
void setExpectedFinishTime(double time)
{

	

	 '
expectedFinishTime = time;

/*This function will return expected finish time for this job for processor assignedNodeld*/
double getExpectedFinishTime()
{

return expectedFinishTime;

/*This function will increment variable noOfTimesMigrated. This need to be called every time
job is migrated.*/

void incrementNoOfTimesMigratedO
{

noOfTimesMigrated = noOfTimesMigrated + 1;

/*This function will return how many times this job is migrated*/
int getNoOfTimesMigrated()
{

return noOfTimesMigrated;

/*Following function is used for linked list This will return next task in queue.*/
Task * getNextTask()
{

return next;

};

**

File : Node.h
Description : This file contains class definition for Processor. We need to create as many objects of
this class as there are processors in the system.

**
/*Class node definition*/
class Node
{

int ID; 	 // processor ID
int status; 	 // indicates status of processor
int buddySetCount; 	// indicates how many processors are there in buddy set
double speedFactor; 	// indicates relative speed of a processor
int *buddySet; 	 //this array will contain id of buddy processor
double *commSpeed; 	// this array will contain comm speed between two buddy processors
double *estBuddyAnivalTime; // this array will contain estimated arrival time of buddy processor
double *estBuddyServiceTime; // this array will contain estimated service time of buddy

processor
double *estBuddyLoad; 	// this array will contain estimated load of buddy processor
double nextArrival; 	// indicates when next job arrival event will take place
double nextDeparture; 	// indicates when next job departure event will take place

VII

double nextMigration; 	// indicates when next job migration will take place
double lastEventTime; 	//indicates time for last event
double totalIdleTime; 	// indicates total idle time for this processor
double lastIdleTimePeriod; //indicates how much time processor remain idle in last period

// this varaible is used for determining service rate of processor
int jobsWaitingInQueue; 	//indicates how many jobs are waiting in queue
int noOfArrivallnPeriod; 	// indicates how many jobs arrive in time period

// this is used to determine arrival rate
int noOfDeparturelnPeriod; // indicates how many departure takes place in time period
double estMeanArrivalTime; // indicates estimated mean arrival time of job
double estMeanServiceTime; // indicates estimated mean service time of job
double estCurrentLoad; 	// indicates estimated load of processor
Task *head,*tail,*headMigration; // variables used for implementing waiting queue using linked

list

public:
/*Constructor used to initialize variables*/
Node(int id = 0)
{

ID = id;
status = IDLE; 	//initially processor is idle
totalIdleTime = 0;
lastIdleTimePeriod = 0;
jobsWaitingInQueue = 0;
estMeanArrivalTime = 0.0;
estMeanServiceTime = 0.0;
nextA,rrival = INFINITY; 	//INFINITY = we do not when next arrival will take place
nextDeparture = INFINITY;
nextMigration = INFINITY;
lastEventTime = 0;
noOfArrivallnPeriod = 0;
noOfDeparturelnPeriod = 0;
head = NULL;
tail NULL;
headMigration = NULL;

/*This function will set buddySetCount and buddy ids for this processor*/
void setBuddySet(int id, int count, int *set, double *speed)
{

ID=id;
buddySetCount = count;
buddySet = new int[buddySetCount];
commSpeed = new double[buddySetCount];
estBuddyLoad = new double[buddySetCount];
estBuddyArrivalTime = new double[buddySetCount];
estBuddyServiceTime = new double[buddySetCount];
/*Following Ioop will set buddy id for this processor*/
for(int 1=0; i < buddySetCount; i++)
{

buddySet[i] = set[i];
commSpeed[i] = speed[i];
estBuddyLoad[i] = 0.0;
estBuddyArrivalTime[i] = 0.0;
estBuddyServiceTime[i] = 0.0;

VIII

Li

void setSpeedFactor(double value)
{

speedFactor = value;
6'
double getSpeedFactorO
{

return speedFactor;
}

/*Fuction will return number of buddy processors*/
int getBuddySetCountO
{

return buddySetCount;
}

/*Function will return buddy id for given index count*/
int getBuddyId(int count)
{

return buddySet[count];
}

/*Function will set node id for this processor*/
void setNodeID(int id)
{

•ID=id;
}

/*This function will return id for this processor*/
int getNodeIDO
{

return ID;
}

/*This will set status of this processor,either BUSY or IDLE*/
void setNodeStatus(int s)
{

status = s;
}

/*This function will return status of this processor*/
int getNodeStatus()
{

return status;
}

/*This function will increment node idle time by amount value*/
void incrementNodeIdleTime(double amount)
{

totalIdleTime += amount;
}

/*This function will return node idle time*/
double getNodeldleTime()
{

return totalIdleTime;

/*This function will return idle time for last period*/
double getLastIdleTimePeriodO
{

return lastIdleTimePeriod;

/*This function will increment idle time by time value for last time period*/
void inerementLastIdleTimePeriod(double time)
{

lastldleTimePeriod += time;

/*This function will reset variable lastIdleTimePeriod.
This is necessary once we have calculated mean service time for given period*/

void resetLastIdleTimePeriod()
{

lastldleTimePeriod = 0;

/*This function will set next arrival event for this processor*/
void setNextArrivalEvent(double time)
{

nextArrival = time;

/*This function will return next arrival event time*/
double getNextArrivalEvent()
{

return nextArrival;
}
/*This function will set next"departure event time for this processor*/
void setNextDepartureEvent(double time)
{

nextDeparture = time;

/*This function will return next departure event time*/
double getNextDepartureEvento
{

return nextDeparture;
}

/*This function will set next migration event time*/
void setNextMigrationEvent(double time)
{

nextMigration = time;

/*This function will return next migration event time*/

double getNextMigrationEventO
{

return nextMigration;

/*This will set last event time*/
void setLastEventTime(double time)
{

lastEventTime = time;

/*This will return last event time.*/
double getLastEventTime()
{

return lastEventTime;

/*Increment or decrement number of jobs waiting in queue.*/
void setJobsWaitinglnQueue(int amount)
{

jobsWaitingInQueue += amount;

/*This will return number of jobs waiting in queue*/
int getJobsWaitingInQueueQ
{

return jobs WaitingInQueue;

/*This function will return estimated mean arrival time of jobs for this processor*/
double getEstMeanArrivalTime()
{

return estMeanArrivalTime;

/*This function will set estimated mean arrival time of jobs for this processor*/
void setEstMeanArrivalTime(double time)
{

estMeanArrivalTime = time;

/*This function will return estimated mean service time of jobs for this processor*/
double getEstMeanServiceTime()
{

return estMeanServiceTime;

/*This function will set estimated mean service time of jobs for this processor*/
void setEstMeanServiceTime(double time)
{

estMeanServiceTime = time;

/*This function will return estimated current load of this processor*/
double getEstCurrentLoado

XI

return estCurrentLoad;
}

/* This function will set estimated current load to amount value*/
void setEstCurrentLoad(double amount)
{

estCurrentLoad = amount;
}
/*This will increment variable noOfArrivallnPeriod when new job arrives for this processor*/
void incrementNoOfArrivalInPeriodO
{

noOfAnrivallnPeriod = noOfArrivallnPeriod + 1;

/*This will reset variable noOfArrivallnPeriod.
Call this function once mean arrival time has been calculated for given time period*/

void resetNoOfArrivallnPeriod()
{

noOfArrivallnPeriod = 0;
}
/*This will increment variable noOfDeparturelnPeriod when job departures from this processor*/
void incrementNoOfDeparturelnPeriodO
{

noOfDepartureInPeriod = noOfDeparturelnPeriod + 1;

/*This will reset variable noOfDepartureInPeriod.
Call this function once mean service time has been calculated for given time period*/

void resetNoOfDepartureInPeriod()
{

noOfDeparturelnPeriod = 0;

/*This function will calculate estimated mean arrival time for given period*/
void calculateMeanArrivalTimeO

double meanArrivalTime = TIME_PERIOD;
/*Check whether there is at least one arrival in last interval*/
if(rioOfArrivallnPeriod != 0)

meanArrivalTime = TIME_PERIOD / (double)noOfArrivalInPeriod;
estMeanArrivalTime = ALPHA * estMeanArrivalTime + (1-ALPHA) * meanArrivalTime;
/*Reset variable noOfArrivallnPeriod*/
resetNoOfArrivallnPeriodO;

/*This function will calculate estimated mean serivce time in last interval*/
void calculateMeanServiceTime()

/*meanServiceTime indicates total busy time for this processor*/
double meanServiceTime = TIME_PERIOD - getLastIdleTimePeriod();
/*If no of departure > 0,then divide meanServiceTime by total departure in last interval*/
if(noOfDeparturelnPeriod != 0)

meanServiceTime = meanServiceTime / (double) noOfDepartureInPeriod;
estMeanServiceTime = BETA * estMeanServiceTime + (1-BETA) * meanServiceTime;

XII

/*Reset no of departure and last idle time period*/
resetNoOfDeparturelnPeriodO;
resetLastIdleTimePeriodo;

}

/*This function will calculate estimated finish time of job based on estimated service time for P;*/
void calculateExpectedFinishTimeofTasks(double currentSystemTime)
{

/*If no job to process, then return*/
if(head == NULL)

return;
Task *p = head;
/*Set expected finish time for job which is running on processor*/
double time = currentSystemTime - getLastEventTimeO;
time = estMeanServiceTime - time;
p->setExpectedFinishTime(time);
/*Following loop will set expected finish time of jobs waiting in queue*/
while(p->next != NULL)
{

p = p->next;
time += estMeanServiceTime;
p->setExpectedFinishTime(time);

}
}

/*This function will set exact finish time of jobs waiting in queue. This function will use
execution time of job directly. This is used when we used Perfect Information Algorithm.*/
void calculateExactFinishTimeofTasks(double currentSystemTime)
{

if(head = NULL)
return;

Task *p = head;
double time = currentSystemTime - getLastEventTimeO;
time = p->getExecutionTimeO - time;
p->setExpectedFinishTime(time);
while(p->next != NULL)
{

p = p->next;
time += p->getExecutionTimeO;
p->setExpectedFinishTime(time);

}
}

/*This function will set variable estCurrentLoad to current queue length*/
void calculateEstCurrentLoad(double currentSystemTime)
{

estCurrentLoad = getJobsWaitingInQueueQ;

void calculateEstCurrentLoadForNextPeriod(double currentSystemTime,double time)
{

double factor = time / estMeanArrivalTime;
double ePower = exp((-1) * factor);
double prob = ePower;

►:1111

int arrival = 1;
while(prob < ACCURACY)
{

prob += ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

}
factor = time / estMeanServiceTime;
ePower = exp((-1) * factor);
prob = ePower;
int departure = 1;
while(prob < ACCURACY)
{

prob +_ ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}
/* Add differece of arrival and departure to previous load value*/
estCurrentLoad = getJobsWaitinglnQueue() + (arrival - departure);
estCurrentLoad *= estMeanServiceTime;
if(estCurrentLoad < 0)

estCurrentLoad = 0;

/*This functiion will calculate estimated load on buddy processor. This load will be calculated for
time value`/
void calculateEstBuddyLoad(double time)
{

/*Loop for all buddy processors*/
for(int count = 0; count < buddySetCount; count++)
{

/*Find out number of arrival and departured in time*/
double factor = time / estBuddyArrivalTime[count];
double ePower = exp((- 1) * factor);
double prob = ePower;
int arrival = 1;
while(prob < ACCURACY)
{

prob += ((ePower * power(factor,arrival))/factorial(arrivaI));
arrival++;

}
factor = time / estBuddyServiceTime[count];
ePower = exp((- 1) * factor);
prob = ePower;
int departure = 1;
while(prob < ACCURACY)
{

prob += ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}
/* Add differece of arrival and departure to previous load value*/
estBuddyLoad[count] += (arrival - departure);
if(estBuddyLoad[count] < 0)

estBuddyLoad[count] = 0;

XIV

/*This function will calculate load on buddy processor in terms of execution time required*/
void calculateEstBuddyLoad 1 (double time)
{

/*Loop for all buddy processors*/
for(int count = 0; count < buddySetCount; count++)
{
double factor = time / estBuddyArrivalTime[count];
double ePower = exp((- 1) * factor);
double prob = ePower;
int arrival = 1;
while(prob < ACCURACY)
{

prob += ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

}
factor = time / estBuddyServiceTime[count];
ePower = exp((-1) * factor);
prob = ePower;
int departure = 1;
while(prob < ACCURACY)
{

prob += ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}
/*Find out total time required by new arrivals*/
estBuddyLoad[count] +_ ((arrival - departure) * estBuddyServiceTime[count]);
if(estBuddyLoad[count] < 0)

estBuddyLoad[count] = 0;

}
}

/*This function will return estimated buddy load of buddy processor.
Here count indicates index value for estBuddyLoad array*/
double getEstBuddyLoad(int count)
{

return estBuddyLoad[count];
}

/*This function will return estimated arrival time of buddy processor.
Here count indicates index value for estBuddyArrivalTime array*/
double getEstBuddyArrivalTime(int count)
{

return estBuddyArrivalTime[count];

/*This function will return estimated service time of buddy processor.
Here count indicates index value for estBuddyServiceTime array*/
double getEstBuddyServiceTime(int count)
{

return estBuddyServiceTime[count];

/*This function will set estimated buddy load of buddy processor to load value.

XV

Here count indicated index value for estBuddyLoad array*/
void setEstBuddyLoad(int count, double load)
{

estBuddyLoad[count] = load;

/*This function will set estimated buddy arrival time of buddy processor to time value.
Here count indicated index value for estBuddyArrivalTime array*/
void setEstBuddyArrivalTime(int count, double time)
{

estBuddyArrivalTime[count) = time;

/*This function will set estimated buddy service time of buddy processor to time value.
Here count indicated index value for estBuddyServiceTime array*/
void setEstBuddyServiceTime(int count, double time)
{

estBuddyServiceTime[count] = time;

/*This function will increment buddy processor's load by 1. Here id indicates ID of buddy
processor. This function should be called when load is in terms of queue length*/
void incrementEstBuddyLoad(int id)
{

int count =0;
for(count = 0; count < buddySetCount; count++)
{

if(id = buddySet[count])
{

estBuddyLoad[count]++;
break;

}
if(couct = buddySetCount)

cbut << "No match\n";
}

/*This function will increment buddy processor's load by amount value.
This function should be called when load is in terms of time*/

void incrementEstBuddyLoad(int id,double amount)
{

int count = 0;
for(count =0; count < buddySetCount; count++)
{

if(id = buddySet[count])

estBuddyLoad[count] += amount;
break;

}
if(count == buddySetCount)

cout << "No match\n";
}

/*This function will calculate estimated current load for amount time*/

XVI

void calculateEstimateCurrentLoad(double time)

{ double factor = time / getEstMeanArrivalTimeO;
double ePower = exp((-1) * factor);
double prob = ePower;
int arrival = 1;
while(prob < ACCURACY)

{ prob +_ ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

factor = time / getEstMeanServiceTimeO;
ePower = exp((-1) * factor);
prob = ePower;
int departure = 1;
while(prob < ACCURACY)

{ prob +_ ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}
estCurrentLoad +_ (arrival - departure);
if(estCurrentLoad < 0)

estCurrentLoad = 0;
}

/*This function will calculate exact current load using job's exact execution time*/
void calculateExactCurrentLoad(double currentSystemTime)
{

/*If head = NULL, then there is no job in queue*/
if(head == NULL)

estCurrentLoad = 0;
else
{

/*Loop for all jobs waiting in queue*/
Task *p = head;
double time = currentSystemTime - getLastEventTimeO;
time = p->getExecutionTime() - time;
while(p->next != NULL)
{

p = p->next;
time += p->getExecutionTimeO;

}
estCurrentLoad = time;
}

}

/*This function will calculate exact current load at time currentSystemTime + transferTime.
This function can be used for Perfect Information algorithm.*/
void calculateExactCurrentLoad(double currentSystemTime, double transferTime)
{

if(head = NULL)
estCurrentLoad = 0;

else
{
/*Find total execution time for jobs waiting in queue*/

XVII

Task *p = head;
double time = currentSystemTime - getLastEventTimeQ;
time = p->getExecutionTimeQ - time;
while(p->next != NULL)
{

p = p->next;
time += p->getExecutionTimeQ;

}
estCurrentLoad = time;
}
if(headMigration != NULL)
{
/*Add execution time for those jobs which will migrated to this processor
before transfer time */
Task *p = headMigration;
while(p! NULL)
{
if(p->getArrivalTimeQ < (currentSystemTime + transferTime))
{

estCurrentLoad += p->getExecutionTimeO;
p=p->next;

}
else

break;

/*This function will return exact current load for this processor*/
double getExactCurrentLoad()
{

return estCurrentLoad;

/*When new job arrives to the processor, this function will be called. This function will add new
job at tail end to maintain queue*/
void addNewTask(Task j)
{

Task *p = new Task(j);
p->next = NULL;
/*If there is no job in queue*/
if(head = NULL)
{

/*set both head and tail pointer here*/
head = p;
tail = p;

}
else
{

/*Set tail pointer to new job p as new job will be added at last*/
tail->next = p;
tail = p;

}
}

XVIII

/*This function will return first job in FIFO order*/
Task *getNextTaskInQueueo
{

/*If head is NULL, that means there is no job to process so return NULL*/
if(head = NULL)

return NULL;
/*Return first job in queue*/

/* Task *p = head;
Task *q=NULL;
while(p!=NULL)
{
if(p->getJobID() <= MAX_JOBS)
{

if(q != NULL)
{

q->next = p->next;
if(q->next = NULL)

tail = q;
p->next = head;
head=p;

}
break;

}
q=p;
p = p->next;
}*/
return head;

}

Task *getLastTaskInQueueo
{

if(head == NULL)
return NULL;

return tail;
}
1* When job gets executed, then call this function to remove it from queue*/
Task *deleteFirstTaskO
{

if(head = NULL)
return NULL;

Task *p = head;
head = head->next;
/*Now head will point to next task in queue*/
if(head = NULL)

tail = NULL;
return p;

}

/*This function will check migration possibility based on finish time only*/
Task * checkForMigration(double load, Task *p)
{

if(p = head)
p = p->next;

while(p != NULL)
{

XIX

if(p->getExpectedFinishTimeO > (load + p->getExecutionTimeO))
return p;

else
p = p->next;

}
return NULL;

/*This function will check migration possibility based on number of arrival and departure in
transfer time. If expected finish time is less, then migrate job*/
Task * checkForMigration(double bMeanArrivalTime, double bMeanServiceTime, double

bLoad, Task *p)

while(p != NULL)
{

double transferTime = p->getTaskSize() / commCost1;
/*factor = h * t */
double factor = transferTime / bMeanArrivalTime;
/*ePower = e^factor */
double ePower = exp((-1) * factor);
double prob = ePower;
/*arrival will indicate number of arrivals in transfer time*/
int arrival = 1;
while(prob <ACCURACY)
{

prob +_ ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

}
factor = transferTime / bMeanServiceTime;
ePower = exp((- 1) * factor);
prob = ePower;
/*departure will indicate number of departure in transfer time*/
int departure = 1;
while(prob < ACCURACY)
{

prob +_ ((ePower * power(factor,departure)) / factorial(departure));
departure++;

arrival += bLoad;
double expectedFinishTime = (arrival - departure) * bMeanServiceTime +

estMeanServiceTime;
if(expectedFinishTime - estMeanServiceTime < transferTime)

expectedFinishTime = transferTime + estMeanServiceTime;
/*If expected fmish time for this job is less than current time,
then migrate this job*/
if(expectedFinishTime < p->getExpectedFinishTimeo)

return p;
else

p = p->next;

return NULL;
I

/*This function will check migration possibility based on number of arrival and departure in
transfer time. If expected fmish time is less, then migrate job*/

xx

Task * checkForMigration(double bMeanArrivalTime, double bMeanServiceTime, double
bLoad, Task *p, double bSpeedFactor) 	 -

while(p != NULL)
{

double expectedFinishTime = bLoad * bMeanServiceTime + (estMeanServiceTime
getSpeedFactorO / bSpeedFactor);

/*If expected fmish time for this job is less than current time,
then migrate this job*/
if(expectedFinishTime < p->getExpectedFinishTimeQ)

return p;
else

p = p->next;

return NULL;
}

double getCommSpeed(int buddyId)
{

int count;
for(count = 0; count < buddySetCount; count++)
{

if(buddySet[count] = buddyld)
break;

}
return commSpeed[count];

/*This function will check migration possibility based on number of arrival and departure in
transfer time. If expected fmish time is less, then migrate job*/
Task * checkForMigration(double bMeanArrivalTime, double bMeanServiceTime, double

bLoad, Task *p, double commSpeed, double bSpeedFactor)

while(p != NULL)
{

double transferTime = p->getTaskSize() / commSpeed;
/*factor = h * t */
double factor = transferTime / bMeanArrivalTime;
/*ePower = e^factor */
double ePower = exp((-1) * factor);
double prob = ePower;
/*arrival will indicate number of arrivals in transfer time*/
int arrival = 1;
while(prob < ACCURACY)
{

prob +_ ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

}
factor = transferTime / bMeanServiceTime;
ePower = exp((- 1) * factor);
prob = ePower;
/*departure will indicate number of departure in transfer time*/
int departure = 1;
while(prob < ACCURACY)
{

0:10.41

prob += ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}
arrival += bLoad;
double exeTime = p->getExpectedExecutionTime() / bSpeedFactor;
double expectedFinishTime = (arrival - departure) * bMeanServiceTime + exeTime;
if(expectedFinishTime - exeTime < transferTime)

expectedFinishTime = transferTime + estMeanServiceTime;
/*If expected finish time for this job is less than current time,
then migrate this job*/
if(expectedFinishTime < p->getExpectedFinishTimeo)

return p;
else

p = p->next;
}
return NULL;

}

/*This function will insert migration task in migration linked list according to its arrival time*/
void insertMigrationTask(Task *p)
{

p->next = NULL;
if(headMigration = NULL)
{,

headMigration ='p;
setNextMigrationEvent(p->getArrivalTimeO);

}
else
{

Task *q = headMigration;
Task *ql = NULL;
while(q != NULL)
{

if(q->getArrivalTime() < p_>getArrivalTime())
{

ql=q;
q = q->next;

}
else

break;
}
p->next = q;
if(q 1 = NULL)
{

headMigration = p;
setNextMigrationEvent(p->getArrivalTimeo);

}
else

ql->next = p;
}

}

/*This function will return first migration task from it linked list*/
Task * removeFirstMigrationTask()
{

XXII

if(headMigration = NULL)
return NULL;

else
{

Task *p = headMigration;
headMigration = headMigration->next;
return p;

}
}

/*This fucntion will return first migration task*/
Task * getNextMigrationTaskO
{

return headMigration;
}

/*This function will remove given task p from linked list*/
Task * removeTask(Task *p, double currentSystemTime)
{

setJobsWaitingInQueue(-1);
if(head == p)
{

p->setExecutionTime(p->getExecutionTime() - (currentSystemTime -
getLastEventTimeQ));

head = head->next;
if(head = NULL)
{

tail = NULL;
setNextArrivalEvent(INFINITY);

}
p->next = NULL;
Task *j 1 = getNextTaskInQueueO;
if(j I = NULL)
{

setNodeStatus(IDLE);
setNextDepartureEvent(INFINITY);

}
else

{ j 1->setWaitingTime(currentSystemTime - j 1->getArrivalTimeO);
setNextDepartureEvent(currentSystemTime + j 1->getExecutionTime());

}
setLastEventTime(currentSystemTime);
return head;

else
{

Task *j = head;
while(j->next != p)
{

j = j->next;
}
j->next = p->next;
if(tail — p)

tail = j;

XXIII

p->next = NULL;
return j->next;

/*This function will print id of buddy set processor*/
void printBuddySetO
{

for(int count = 0;. count < buddySetCount; count++)
cout << buddySet[count] << "\t";

cout << "\n";

/*This function will print job id of tasks which are waiting in queue*/
void printTasksO
{

Task *p = head;
while(p != NULL)
{

cout << p->getJobIDQ << "\t";
p = p->next;

}
cout << "\n";

};

**
File : ELISA.cpp
Description : This file contains implementation of ELISA algorithm. ELISA algorithm will try to do
load balancing on each estimated time interval Te, based on estimated queue length of buddy
processor. On each status exchange period Ts, they will transfer information (queue length, arrival
time) to its buddy processors. **

#include <iostream>
#include <fstream>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
using namespace std;

/*definition.h contains declaration of all necessary parameters.*/
#include "definition.h"
/*task.h file contains implementation of class task*/
#include "task.h"
/*node.h file contains implementation of class node*/
#include "node.h"

int mainO
{

/* Declare necessary variables*/
• intt=0;
double currentSystemTime = 0.0; 	// currentSystemTime will indicate simulation time
int count, idCount = 0;
double nextTimePeriod = EST PERIOD; // nextTimePeriod will be set to Te value

XXIV

double statusPeriod = TIME_PERIOD;
intjobFinished = 0; 	 // jobFinised will indicate number of jobs finished
double totalResponseTime = 0; 	// It will find total response time of jobFinished jobs
double totalWaitingTime = 0; 	// It will find total waiting time of jobFinished jobs
intmax=0;
int totalEstimation = 0;

srand(RANDOM SEED); 	// This will just set random seed value

// Create as many object of Node as processors in system
Node *node = new Node[NUMBER_OF_PROCESSORS];
double meanArrivalTime[NUMBER_OF_PROCESSORS] _ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
double meanServiceTime[NUMBER OF PROCESSORS] _ {6,6,6,6,3,4,2,2,3,4,3,4,3,4,2,2};

/*graph.txt is input file for network topology. This file is generated by GraphGenerator tool.
File format : ProcessorID BuddySetCount BuddySetlD BuddySetlD ... linkspeedl linkspeed2 ...*/
ifstream inl ("graph.txt",ios::in);
ofstream out("output.txt",ios : :out);

int templD,tempCount,*tempBuddy;
double *tempCommCost;
double a = 0, s= 0;
/*Following loop will read from file graph.txt and will set topology accordingly. */
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

inl >> tempID;
inl >> tempCount;
tempBuddy = new int[tempCount];
int temp;
for(temp = 0; temp < tempCount; temp++)

inl >> tempBuddy[temp];
tempCommCost = new double[tempCount];
for(temp = 0; temp < tempCount; temp++)
{

inl >> tempCommCost[temp];
} tempCommCost[temp] = tempCommCost[temp] * 1024.0 * 1024.0;

node [count]. s etBuddySet(templD,tempCount,tempBuddy,tempC ommCost);
double uVar = getUniformRandomVariable();
node[count].setSpeedFactor(l .0 + uVar);
node [count]. setEstMeanServiceTime(meanServiceTime[count]);
delete [] tempBuddy;

}.
in l .closeO;
int migration =0;
double tempTime = 0;
/* Following loop will generate first arrival event for each processor*/
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

tempTime = getExponentialRandomVariable(meanArrivalTime[count]);
node [count] . s etNextArrivalEvent(count);

struct EventList
{

char eventType;
int nodeNo;
double eventTime;

} eventList;

idCount = NUMBER OF_PROCESSORS;
while(jobFinished < MAX_ JOBS)

eventList.eventType
eventList.nodeNo = -1;
eventList.eventTime = nextTimePeriod;

/*Following loop will find out which event will happen next : arrival, departure,
migration,estimation interval. And also for which processor will this happen*/

for(count = 0; count < NUMBER OF_PROCESSORS; count++)
{

if(node[count].getNextArrivalEvent(< eventList.eventTime)
{

eventList.eventType ='A';
eventList.nodeNo = count;
eventList.eventTime = node[count].getNextArrivalEventQ;

}
if(node[count].getNextDepartureEvent() < eventList.eventTime)
{

eventList.eventType ='D';
eventList.nodeNo = count;
eventList.eventTime = node[count].getNextDepartureEventO;

}
if(node[count].getNextMigrationEvent() < eventList.eventTime)
{

eventList.eventType ='M';
eventList.nodeNo = count;
eventList.eventTime = node [count].getNextMigrationEventO;

}
int nodeNo = eventList.nodeNo;
currentSystemTime = eventList.eventTime;
if(eventList.eventType ='A')
{

/*Next event to happen is arrival for processor nodeNo*/
node[nodeNo] .incrementNoOfArrivallnPeriodQ;
/* New job has arrived, so create execution time and program size for this job*/
double time = getExponentialRandomVariable(meanServiceTime[nodeNo]);
double size =
getNormalRandomVariable(PROGRAM_SIZE_MEAN,PROGRAM_SIZE_VARIANCE);

Task p(idCount,curientSystemTime,time,size,nodeNo,meanServiceTime[nodeNo]);
/*add this task in queue*/
node[nodeNo].addNewTask(p);
/*If processor is idle, then process job immediately*/
if(node[nodeNo].getNodeStatus(= IDLE)
{

node[nodeNo] . setNodeStatus(BUSY);
Task *j = node[nodeNo].getNextTaskInQueueQ;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTimeQ /

node [nodeNo] .getSpeedFactorO));

XXVI

node[nodeNo].incrementNodeIdleTime(currentSystemTime -
node [nodeNo].getLastEventTimeO);

if((statusPeriod-TIME_PERIOD) > node[nodeNo].getLastEventTime())
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime - (statusPeriod -
TIME_PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
node[nodeNo].getLastEventTimeO);

}
else
{

/*Put job in waiting queue*/
node[nodeNo].setJobsWaitingInQueue(1);

}
node[nodeNo]. s etLastEventTime(currentSystemTime);
/*Now set time for next arrival event for this processor if number of jobs in system is less

than MAX JOBS*/
time = getExponentialRandomVariable(meanArrivalTime[nodeNo]);
if(idCount < MAX JOBS)

node [nodeNo] .setNextAr ivalEvent(currentSystemTime + time);
else

node[nodeNo] . setNextArrivalEvent(INFINITY);
idCount = idCount + 1;

}
else if(eventList.eventType ='D')
{

/*Next event is departure for processor nodeNo*/
Task *j = node[nodeNo].deleteFirstTaskO;
if(j->getJobIDQ > MAX_JOBS)
t+=1;

j obFinished = j obFinished + 1;
/*Calculate response time and waiting time for this processor*/
totalResponseTime += (currentSystemTime - j->getActualArrivalTimeO);
totalWaitingTime += (currentSystemTime - j->getActualArrivalTime() -

j->getExecutionTimeO);
if(jobFinished%2000 =0)
{

cout << "\nAvg Response Time " << totalResponseTime / jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime /jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "dumber of migration" << migration;
cout << "\n\n";
out << totalResponseTime / jobFinished << "\t" << totalWaitingTime / jobFinished <<

"\t" <<currentSystemTime << "\t" «migration<<"\n";

delete j;
no de[nodeNo] . incrementNoOfDeparturelnPeriodO;
Task *j 1 = node[nodeNo].getNextTaskInQueueO;
/*If there is no job to process, then set processor to IDLE state*/
if(J 1 — NULL)
{

node[no deNo] . setNodeStatus(IDLE);
node [no deN o] . s etNextD ep arture Ev ent(INFINITY);

XXVII

else

/*If there is at least one job, then process that jon*/
j 1->setWaitingTime(currentSystemTime - j 1->getArrivalTimeO);
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j 1->getExecutionTime()

node[nodeNo] . getSpeed FactorO));
// decrement queue length by one
node[nodeNo] . setJobs WaitinglnQueue(-1);

node [nodeNo].setLastEventTime(currentSystemTime);
}
else if(eventList.eventType =='M')
{

//Next event is job arrival through. migration for processor nodeNo
Task *p = node [nodeNo] .removeFirstMigrationTaskQ;
node[nodeNo] . incrementNoOfArrivalInPerio dO;
//add job in queue
node [nodeNo] . addNewTask(*p);

//if processor is idle,then process this job directly
if(node[nodeNo].getNodeStatusO = IDLE)

node[nodeNo].setNodeStatus(BUSY);
Task *j = node[nodeNo].getNextTaskInQueueO;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTimeO /

node [nodeNo] . getS p eedFacto rO));
node[nodeNo].incrementNodeldleTime(currentSystemTime -

node[nodeNo] .getLastEventTime());
if((statusPeriod-TIME PERIOD) > node[nodeNo].getLastEventTimeO)

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime - (statusPeriod -
TIME_PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
node[nodeNo] .getLastEventTimeO);

else

//place job in waiting queue
node[nodeNo] . setJobs W aitingInQueue(1);

node[nodeNo] . setLastEventTime(currentSystemTime);
//set time for next migration event for this processor
p = node [nodeNo].getNextMigrationTask();
if(p == NULL)

node [nodeNo].setNextMigrationEvent(INFINITY);
else

node [nodeNo].setNextMigrationEvent(p->getArrivalTime(});
}
else

//it is either estimation time period or status exchange period
if((int)(currentSystemTime)%(TIME PERIOD) = 0)

statusPeriod += TIME PERIOD;

XXVIII

// this is status exchange period. Every processor will calculate its load, arrival rate and
// service rate

for(count =0; count < NUMBER OF PROCESSORS; count++)

if(node[count].getNodeStatus() — IDLE)
{

double time = currentSystemTime - node[count].getLastEventTime();
if(time > TIME–PERIOD)

node [count].incrementLastIdleTimePeriod(TIME PERIOD);
else 	 -

node [count] .incrementLastIdleTimePeriod(time);
}
node[count].calculateMeanArrivalTimeO;
node[count].calculateMeanS erviceTimeQ;
node[count].calculateExpectedFinishTimeofTasks(cun: entSystemTime);
node [count]. calculateEstCurrentLoad(currentSystemTime);

}
// Following loop will pass this information to all its buddy set
// so this is status exchange communication

for(count = 0; count < NUMBER OF PROCESSORS; count++)

for(tempCount = 0; tempCount < node[count].getBuddySetCountO; tempCount++)
{

int buddyld = node[count].getBuddyld(tempCount);
node[count].setEstBuddyArrivalTime(tempCount,

node [buddyId-1] .getEstMeanArrivalTimeO);
node[count] . setEstBuddyS erviceTime(tempCount,

node[buddyId-1] .getEstMeanServiceTimeO);
node[count]. setEstBuddyLoad(tempCount,

node[buddyId-1] .getEstCun: entLo adO);

}
}

else
{

// this is estimation period, so every processor will find load on its buddy processor
for(count = 0; count < NUMBER OF PROCESSORS; count++)

node[count].calculateEstBuddyLoad(EST_PERIOD);
totalEstimation = totalEstimation + node[count].getBuddySetCountO;

}
}
/* Now starts Load balancing code*/
double amountOfLoadAcceptance[NUMBER_OF_PROCESSORS]

[NUMBER OF PROCESSORS];
for(count = 0; count < NUMBER_ OF PROCESSORS; count++)
{

for(int countl = 0; count! <NUMBEROF_PROCESSORS; countl++)
ainountOfLoadAcceptance[count][countI] = 0.0;

}
double avgLoad[NUMBER_OF PROCESSORS];
// Following loop will do balancing for each processor if it load is
// above avg load of its buddy processor
for(count = 0; count < NUMBER_ OF PROCESSORS; count++)
{

// first fmd out avg load in buddy set
int buddyCount = node[count] .getBuddyS etC ountQ;
avgLoad[count] = node[count].getJobsWaitingInQueueO;
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

avgLoad[count] += node[count] .getEstBuddyLoad(temp Count);
}
avgLoad[count] = avgLoad[count] / (node[count].getBuddySetCountO + 1);
double myLoad = node[count].getJobsWaitingInQueueQ;

// if my load is greated than avg load, then transfer load
if(avgLoad[count] < myLoad)
{

double extraLoad = myLoad - avgLoad[count];
double availableCapacity = 0;
// fmd out how much i can tranfer to my buddy processor
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

double buddyLoad = node[count].getEstBuddyLoad(tempCount);
if(buddyLoad < avgLoad[count])
{

availableCapacity += (avgLoad[count] - buddyLoad);
}

}
// amountOfLoadAcceptance array will indicate how many jobs can be transferred
//to buddy processor
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyId = node[count].getBuddyld(tempCount);
double buddyLoad = node [count] .getEstBuddyLoad(tempCount);
if(buddyLoad < avgLoad[count])
{

double bCapacity = avgLoad[count] - buddyLoad;
amountOfLoadAcceptance[count][buddyld - 1] = bCapacity

extraLoad / availableCapacity;

}
}

}
//Now tranfer load to buddy processor
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

double myLoad = node[count].getJobsWaitingInQueueO;
if(myLoad > avgLoad[count])
{

double extraLoad = myLoad - avgLoad[count];
Task *p = node[count].getNextTaskInQueueO;
p = p->next;
for(tempCount = 0; tempCount < NUMBER_OF_PROCESSORS;

tempCount++)
{

iii i can tranfer to buddy having ID tempCount, then tranfer load
if(amountOfLoadAcceptance[count] [tempCount] > 0.5)
{

while(p != NULL)

xxx

Task *q = p;
//remove task from waiting queue
p = node[count].removeTask(p,currentSystemTime);
double commCost = node[count].getCommSpeed(tempCount + 1);
double transferTime = q->getTaskSizeO / commCost;
q->incrementNoOfl'imesMigratedO;
migration += 1;
if(max < q->getNoOfTimesMigratedO)

max = q->getNoOfTimesMigrated();
q->setArrivalTime(currentSystemTime + transferTime);
//insert task in buddy list after tranfer time
node [tempCount] .insertMigrationTask(q);
amountOfLoadAcceptance[count] [temp Count] --;
node [count] .incrementEstBuddyLoad(tempCount + 1);
extraLoad--;
if(amountOfLoadAcceptance[count] [tempCount] < 0.5 1 1 extraLoad

<=0)
break;

}
if(p = NULL 11 extraLoad <= 0)

break;

nextTimePeriod = nextTimePeriod + EST PERIOD;

// All jobs processed, so print final values
cout << "\nJob finished " << jobFinished;
cout << "\nAvg Response Time " << totalResponseTime / jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime / jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime; .
cout << "\n Number of migration " << migration;
cout <<"\n\nResource Utilization\tQueue Lengthen";
double avgUtil = 0.0;
double maxi = 0, min = 1;
for(count = 0; count <NUMBER_OF_PROCESSORS;.count++)
{

if(node[count].getNodeStatus(= IDLE)
node [count] . incrementNodeldleTime(currentSystemTime -

node[count] . getLastEventTime());
double util = (currentSystemTime - node[count].getNodeldleTime()) / currentSystemTime;
cout << util;
avgUtil += util;
if(util > maxi) maxi = util;
if(util < min) min = util;
cout << "\t" << node[count].getJobsWaitingInQueueO << "\n";

out << min << "\n" << maxi << "\n" << avgUtil / NUMBER_OF_PROCESSORS << "\n\n" <<
totalEstimation<< "\n";

cout << min << "\t" << maxi << "\t" << avgUtil / NUMBER_OF_PROCESSORS << °\t" <<
totalEstimation<< "\n";

cout << "\nAverage Utilization " << avgUtil / NUMBER_OF_PROCESSORS ;
out.closeO;
cout << "\nMax Migration " << max;
cout << "\nTotal Estimation " << totalEstimation;
cout<<"\nt="«t;
getchO;
return 0;
}

File : MELISA.cpp
Description : This file contains implementation of MELISA algorithm.

#include <iostream>
#include <fstream>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
using namespace std;

/*definition.h contains declaration of all necessary parameters. */
#include "definition.h"
/*task.h file contains implementation of class task*/
#include "task.h"
/*node.h file contains implementation of class node*/
#include "node.h"

int mainO
{

/* Declare necessary variables*/
intt=0;
double currentSystemTime = 0.0; 	// currentSystemTime will indicate simulation time
int count, idCount = 0;
double nextTimePeriod = EST PERIOD; // nextTimePeriod will be set to Te value
double statusPeriod = TIME PERIOD;
intjobFinished = 0; 	 // jobFinised will indicate number of jobs finished
double totalResponseTime = 0; 	// totalResponseTime will find total response time of
jobFinished jobs
double totalWaitingTime = 0; // totalWaitingTime will find total waiting time of jobFinished jobs
int max = 0;
int totaIEstimation = 0;

srand(RANDOM SEED); 	// This will just set random seed value

// Create as many object of Node as processors in system
Node *node = new Node[NUMBER_OF_PROCESSORS];
double meanArrivalTime[NUMBER_OF_PROCESSORS] = {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
double meanServiceTime]NUMBER OF PROCESSORS] = {6,6,6,6,3,4,2,2,3,4,3,4,3,4,2,2};

ifstream in 1 ("graph.txt",ios:: in);
ofstream out("output2.txt" ,ios : :out);

XXXII

int tempID,tempCount,*tempBuddy;
double *tempCommCost;
double a = 0, s= 0;
/*Following loop will read from file graph.txt and will set topology accordingly.*/
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

in1 >> tempID;
inl >> tempCount;
tempBuddy = new int[tempCount];
int temp;
for(temp 0; temp < tempCount; temp++)

inl >> tempBuddy[temp];
tempCommCost = new double[tempCount];
for(temp = 0; temp < tempCount; temp++)
{

inl >> tempCommCost[temp];
tempCommCost[temp] = tempCommCost[temp] * 1024.0 * 1024.0;

}
node[count].setBuddySet(templD,tempCount,tempBuddy,tempCommCost);
double uVar = getUniformRandomVariable();
node[count].setSpeedFactor(1.0 + uVar);
node[count].setEstMeanServiceTime(meanServiceTime[count]);
delete [] tempBuddy;

}
in l .closeO;
int migration = 0;
double tempTime = 0;
/* Following loop will generate first arrival event for each processor*/
for(count = 0; count < NUMBER OF_PROCESSORS; count++)
{

tempTime = getExponentialRandomVariable(meanArrivalTime[count]);
node[count].setNextArrivalEvent(count);

struct EventList
{

char eventType;
int nodeNo;
double eventTime;

}eventList;

idCount = NUMBER OF PROCESSORS;
while(jobFinished < MAX JOBS)
{

eventList.eventType ='T';
eventList.nodeNo = -1;
eventList.eventTime = nextTimePeriod;

/*Following loop will find out which event will happen next : arrival, departure, migration,
estimation interval. And also for which processor will this happen*/
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

if(node[count].getNextArrivalEvent(< eventList.eventTime)
{

eventList.eventType ='A';

XXXIII

eventList.nodeNo = count;
eventList.eventTime = node[count].getNextArrivalEventQ;

}
if(node[count].getNextDepartureEvent() < eventList.eventTime)
{

eventList.eventType ='D ;
eventList.nodeNo = count;
eventList.eventTime = node [count].getNextDepartureEventO;

}
if(node[count].getNextMigrationEvent(< eventList.eventTime)
{

eventList.eventType ='M';
eventList.nodeNo = count;
eventList.eventTime = node[count].getNextMigrationEventQ;

}
jilt nodeNo = eventList.nodeNo;
currentSystemTime = eventList.eventTime;
if(eventList.eventType ='A')
{

/*Next event to happen is arrival for processor nodeNo*/
node [nodeNo] .incrementNoOfArrivallnPeriodO;
/* New job has arrived, so create execution time and program size for this job*/
double time = getExponentialRandomVariable(meanServiceTime[nodeNo]);
double size = getNormalRandomVariable(PROGRAM_SIZE_MEAN,

PROGRAM_SIZE_VARIANCE);
Task p(idCount,currentSystemTime,time,size,nodeNo,meanServiceTime[nodeNo]);
/*add this task in queue*/
node[nodeNo].addNewTask(p);
/*If processor is idle, then process job immediately*/
if(node[nodeNo].getNodeStatusO == IDLE)

node [nodeNo] . setNode Status (B U S Y);
Task *j = node[nodeNo].getNextTaskInQueueQ;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTime(/

node[nodeNo].getSpeedFactorO));
node [nodeNo].incrementNodeIdleTime(currentSystemTime -

node[nodeNo].getLastEventTimeQ);
if((statusPeriod-TIME_PERIOD) > node[nodeNo].getLastEventTimeO)

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime - (statusPeriod -
TIME_PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
node[nodeNo].getLastEventTimeQ);

}
else
{

/*Put job in waiting queue*/
node[nodeNo].setJobsWaitingInQueue(1);

node[nodeNo] . setLastEventTime(currentSystemTime);
/*Now set time for next arrival event for this processor if number of jobs in system is less
than MAX_JOBS*/

time = getExponentialRandomVariable(meanArrivalTime [nod eNo]);
if(idCount < MAX JOBS)

XXXIV

node[nodeNo].setNextArrivalEvent(currentSystemTime + time);
else

node[nodeNo] .setNextArrivalEvent(INFINITY);
idCount = idCount + 1;

}
else if(eventList.eventType ='D')
{

/*Next event is departure for processor nodeNo*/
Task *j = node[nodeNo].deleteFirstTask();
if(j->getJobIDQ > MAX_JOBS)
t+=1;
jobFinished = jobFinished + 1;
/*Calculate response time and waiting time for this processor*/
totalResponseTime += (currentSystemTime - j->getActualArrivalTimeO);
totalWaitingTime += (currentSystemTime - j->getActualArrivalTime() —

j->getExecutionTimeO);
if(jobFinished%2000 == 0)
{

cout << "\nAvg Response Time " << totalResponseTime /jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime /jobFinished;.
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\nNumber of migration" << migration;
cout <<
out << totalResponseTime /jobFinished << "\t" << totalWaitingTime /jobFinished <<

"\t" <<currentSystemTime << "\t" <<migration<<"\n";
}

delete j;
node [nodeNo] . incrementNoOfDeparturelnPeriodO;.
Task *j 1 = node[nodeNo].getNextTaskInQueueO;
/*If there is no job to process, then set processor to IDLE state*/
if(j 1 = NULL)
{

node[nodeNo] .setNo deStatus(IDLE);
node[nodeNo] .setNextDepartureEvent(INFINITY);

}
else
{

/*If there is at least one job, then process that jon*/
j 1->setWaitingTime(currentSystemTime - j 1->getArrivalTimeO);
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j 1->getExecutionTime() /

node [nodeNo] . getSpeedFactorO));
// decrement queue length by one
node[nodeNo].setJobsWaitingInQueue(-1);

}
node [nodeNo]. setLastEventTime(currentSystemTime);

}
else if(eventList.eventType = 'M')
{

//Next event is job arrival through migration for processor nodeNo
Task *p = node[nodeNo].removeFirstMigrationTask();
node [nodeNo] . incrementNoOfArrivalInPeriodO;
//add job in queue
node[nodeNo] .addNewTask(*p);
//if processor is idle, then process this job directly

if(node[nodeNo].getNodeStatus() = IDLE)
{

node [nodeNo]. setNodeStatus(BUSY);
Task *j = node[nodeNo].getNextTaskInQueueO;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTimeO /

node[nodeNo] .getSpeedFactorO));
node[nodeNo].incrementNodeIdleTime(currentSystemTime -

node [nodeNo] . getLastEventTimeO);
if((statusPeriod-TIME_PERIOD) > node[nodeNo].getLastEventTimeQ)

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime - (statusPeriod -
TIME PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
node[nodeNo] .getLastEventTime());

}
else
{

//place job in waiting queue
node[nodeNo].setJobsWaitingInQueue(1);

}
node[nodeNo].setLastEventTime(currentSystemTime);
//set time for next migration event for this processor
p = node[nodeNo].getNextMigrationTaskO;
if(p = NULL)

node[nodeNo].setNextMigrationEvent(INFINITY);
else

node [no deNo] . setNextMi grationEvent(p->getArrivalTimeO);
}
else
{

//it is either estimation time period or status exchange period
if((int)(currentSystemTime)%(TIME_PERIOD) == 0)
{

statusPeriod += TIME_PERIOD;
// this is status exchange period
// every processor will calculate its load, mean arrival time and service time
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

if(node[count].getNodeStatus() = IDLE)
{

double time = currentSystemTime - node[count].getLastEventTime();
if(time > TIME PERIOD)

node[count] . incrementLastl dleTimeP eriod(TIME_ PERIOD);
else

node [count].incrementLastIdleTimePeriod(time);
}
node [count] . calculateMeanArrivalTime O;
node [count] .calculateMeanServiceTime();
node[count].calculateExpectedFinishTimeofTasks(currentSystemTime);
node [count] .calculateEstCurrentLoad(currentSystemTime);

}
// Following loop will pass this information to all its buddy set
// so this is status exchange communication

for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

for(tempCount = 0; tempCount < node[count].getBuddySetCountQ; tempCount++)
{

int buddyId = node [count].getBuddyld(tempCount);
node[count] .setEstBuddyArrivalTime(tempCount,

node[buddyld-1] . getEstMeanArrivalTimeO);
node[count] .setEstBuddyServiceTime(tempCount,

node[buddyld-1].getEstMeanServiceTimeO);
node[count] . setEstBuddyLoad(tempCount,

node[buddyld-1].getEstCurrentLoadO);

}
}

else
{

// this is estimation period, so every processor will find load on its buddy processor
for(count = 0; count <N JMBER_OF_PROCESSORS; count++)
{

node[count] .calculateExpectedFinishTimeof Tasks(currentSystemTime);
node [count] . calculateEstBuddyLoad(ES T_PERIOD);
totalEstimation = totalEstimation + node[count].getBuddySetCountQ;

}
}
/* Now starts Load balancing code*/
double amountOfLoadAcceptance[NUMBER_OF PROCESSORS]

[NUMBER_ OF PROCESSORS];
for(count = 0; count < NUMBER_ OF PROCESSORS; count++)
{

for(int countl = 0; countl <NUMBER- OF PROCESSORS; countl++)
amountOfLoadAcceptance[count][countl] = 0.0;

}
double avgLoad[NUMBER_OF_PROCESSORS];
for(count =0; count < NUMBER_OF_PROCESSORS; count++)
{

// first fmd out avg load in buddy set
int buddyCount = node[count].getBuddySetCountO;
avgLoad[count] = node[count].getJobsWaitingInQueue() *

node [count].getEstMeanServiceTime() * node[count].getSpeedFactorO;
double totalWeight = node[count].getSpeedFactorO;
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyld = node[count].getBuddyld(tempCount);
avgLoad[count] +_ (node[count].getEstBuddyLoad(tempCount)
node[count].getEstBuddyServiceTime(tempCount) *

node [buddyld- 1] . getSpeedFactorO);
total Weight += node[buddyld - 1] .getSpeedFactorO;

}
avgLoad[count] = avgLoad[count] / totalWeight;
double myLoad = node[count].getJobsWaitingInQueueO

node[count].getEstMeanServiceTime() * node[courit].getSpeedFactorO;
double commLoad = avgLoad[count] * node[count].getSpeedFactorO;

//if my load is greated than avg load, then transfer Ioad
if(commLoad < myLoad)
{

double extraLoad = myLoad - commLoad;
double availableCapacity = 0;

XXXVII

// fmd out how much i can tranfer to my buddy processor
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyId = node[count].getBuddyld(tempCount);
double buddyLoad = node[count].getEstBuddyLoad(tempCount)

node[count].getEstBuddyServiceTime(tempCount) * node[buddyId -
11 .getSpeedFactorO;

if(buddyLoad < avgLoad[count] * node[buddyId - 1].getSpeedFactorO)
{

availableCapacity += (avgLoad[count] *
node[buddyId - 1].getSpeedFactorO - buddyLoad);

}
}
// amountOfLoadAcceptance array will indicate how many jobs can be transferred
to buddy processor
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyId = node[count].getBuddyId(tempCount);
double buddyLoad = node [count] .getEstBuddyLoad(tempCount)

node[count].getEstBuddyServiceTime(tempCount)
node[buddyId — 1].getSpeedFactor();

if(buddyLoad < avgLoad[count] * node[buddyId - 1].getSpeedFactorO)
{

double bCapacity = avgLoad[count]
node[buddyld - 1].getSpeedFactorO - buddyLoad;

amountOfLoadAcceptance[count][buddyId - 1] = bCapacity
extraLoad / availableCapacity;

}
}

}
//Now transfer load to buddy processor
for(count = 0; count < NUMBER_ OF PROCESSORS; count++)
{

double myLoad = node[count].getJobsWaitingInQueueO
node[count].getEstMeanServiceTimeO * node[count].getSpeedFactorO;

if(myLoad > avgLoad[count] * node[count].getSpeedFactorO)
{

double extraLoad = myLoad - avgLoad[count] * node[count].getSpeedFactorQ;
for(tempCount = 0; tempCount < NUMBER_OF_PROCESSORS;

tempCount++)
{

// if i can tranfer to buddy having ID tempCount, then tranfer load
Task *p = node[count].getNextTaskInQueueO;

p = p->next;
if(amountOfLoadAcceptance[count] [tempCount] > 0.5)
{

double bMeanArrivalTime =
node [tempCount] .getEstMeanArrivalTimeO;

double bMeanServiceTime =
node[tempCount] .getEstMeanServiceTimeO;

double bLoad = node[tempCount].getEstCurrentLoad();
double bSpeedFactor = node[tempCount].getSpeedFactorO;
double commCost = node[count].getCommSpeed(tempCount + 1);
while(p != NULL)

XXXVIII

p = node[count].checkForMigration(bMeanArrivalTime,
bMeanServiceTime, bLoad,p,commCost,bSpeedFactor);

if(p = NULL)
break;

Task *q = p;
//remove task from waiting queue
p = node[count].removeTask(p,currentSystemTime);
double transferTime = q->getTaskSizeO / commCost;
q->incrementNoOfTimesMigratedO;
migration += 1;
if(max < q->getNoOfTimesMigratedO)

max = q->getNoOfTimesMigratedO;
q->setArrivalTime(currentSystemTime + transferTime);
// insert task in buddy list after tranfer time
node [tempCount] .insertMigrationTask(q);
amountOfLoadAcceptance[count][tempCount] -.

node[count].getEstM eanServiceTimeQ *node [count]. getSpeedFactorO;
node [count] .incrementEstBuddyLoad(tempCount + 1,

node[count] .getEstMeanServiceTime()*
node[count] .getSpeedFactorO);

extraLoad -= node[count].getEstMeanServiceTime()
node[count].getSpeedFactorQ;

if(amountOfLoadAcceptance[count][tempCount] < 0.5 11 extraLoad
<=0)

break;

}
if(p = NULL II extraLoad <= 0)

break;

}
nextTimePeriod = nextTimePeriod + EST_PERIOD;

}
}

// All jobs processed, so print fmal values
cout << "\nJob finished " << jobFinished;
cout << "\nAvg Response Time " << totalResponseTime /jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime / jobFinished;
cout << "\nTotal Execution Time" << currentSystemTime;
cout << "\n Number of migration " << migration;
cout <<"\n\nResource Utilization\tQueue Length\n";
double avgUtil = 0.0;
double maxi = 0, min = 1;
for(count = 0; count <NUMBER_OF_PROCESSORS; count++)
{

if(node[count].getNodeStatus() = IDLE)
node[count].incrementNodeIdleTime(currentSystemTime -

node [count] . getLastEventTimeO);
double util = (currentSystemTime - node[count].getNodeldleTime()) / currentSystemTime;
cout << util;
avgUtil += util;

re • ♦

if(util > maxi)
maxi = util;

if(util < min)
min = util;

cout << "\t" << node[count].getJobsWaitinglnQueueo << °fin°;
}
out << min << "fin" << maxi << "\n" << avgUtil / NUMBER_OF_PROCESSORS << "\n\n'

totalEstimation<< "1n";
cout << "\nAverage Utilization " << avgUtil / NUMBER_OF_PROCESSORS ;
out.closeO;
cout << "\nMax Migration " << max;
cout << "\nTotal Estimation " << totalEstimation;
cout <<"\nt="<<t;
getchO;
return 0;
}

* k**

File : RMELISA.cpp
Description : This file contains implementation of R-MELISA algorithm.

******************>k************** k**

#include <iostream>
#include <fstream>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
using namespace std;

#include "definition.h"
#include "task.h"
#include "node.h"

int main()
{

/* Declare necessary variables*/
intt=0;
double currentSystemTime = 0.0; 	// currentSystemTime will indicate simulation time
int count, idCount = 0;
double nextTimePeriod = EST PERIOD; if nextTimePeriod will be set to Te value
double statusPeriod = TIME PERIOD;
int jobFinished = 0; 	 // jobFinised will indicate number of jobs finished
double totalResponseTime = 0; 	// totalResponseTime will find total response time of
jobFinished jobs
double totalWaitingTime = 0; 	// totalWaitingTime will find total waiting time of jobFinished
jobs
int max = 0;
int totalEstimation = 0;

srand(RANDOM SEED); 	// This will just set random seed value

Node *node = new Node[NUMBER_OF_PROCESSORS];
double meanArrivalTime[NUMBER_OF_PROCESSORS] = {4,3,4,2,4,3,4,4,3,4,4,3,4,2,4,4};
double meanServiceTime[NUMBER OF PROCESSORS] _ {3,3,2,3,2,1,3,1,4,4,3,3,1,3,3,3};

W

ifstream inl("graph.txt",ios::in);
ofstream out("output2.txt",ios::out);

int tempID,tempCount,*tempBuddy;
double *tempCommCost;
double a= 0, s= 0;
/*Following loop will read from file graph.txt and will set topology accordingly. */
for(count = 0; count <NUMBER_OF_PROCESSORS; count++)
{

in 1 >> tempID;
in 1 >> tempCount;
tempBuddy = new int[tempCount];
int temp;
for(temp = 0; temp < tempCount; temp++)

inl >> tempBuddy[temp];
tempCommCost = new double[tempCount];
for(temp = 0; temp < tempCount; temp++)
{

ml >> tempCommCost[temp];
tempCommCost[temp] = tempCommCost[temp] * 1024.0 * .1024.0;

node [count] .setBuddySet(templD,tempCount,tempBuddy,tempCommCost);
double uVar = getUniformRandomVariable();
node[count] .setSpeedFactor(1 .0 + uVar);
node[count] . setEstMeanServiceTime(meanS erviceTime [count]);
delete [] tempBuddy;

}
inl .closeO;
int migration =0;
double tempTime = 0;
/* Following loop will generate first arrival event for each processor*/
for(count = 0; count <NUMBER OF PROCESSORS; count++)

tempTime = getExponentialRandomVariable(meanArrivalTime[count]);
node[count] .setNextArrivalEvent(count);

struct EventList
{

char eventType;
int nodeNo;
double eventTime;

}eventList;

idCount = NUMBER OF_PROCESSORS;
while(jobFinished < MAX_JOBS)
{

eventList.eventType ='T';
eventList.nodeNo = -1;
eventList.eventTime = nextTimePeriod;

/*Following loop will find out which event will happen next : arrival, departure,
migration,estimation interval. And also for which processor will this happen*/
for(count = 0; count < NUMBER OF PROCESSORS; count++)

XLI

if(node[count].getNextArrivalEvent(< eventList.eventTime)

eventList.eventType ='A';
eventList.nodeNo = count;
eventList.eventTime = node[count] .getNextArrivalEventO;

}
if(node[count].getNextDepartureEvent() < eventList.eventTime)

eventList.eventType ='D';
eventList.nodeNo = count;
eventList.eventTime = node [count].getNextDepartureEventQ;

}
if(node[count].getNextMigrationEvent() < eventList.eventTime)

eventList.eventType = 'MI;
eventList.nodeNo = count;
eventList.eventTime = node [count]. getNextMigrationEvento;

}
}
int nodeNo = eventList.nodeNo;
currentSystemTime = eventList.eventTime;
if(eventList.eventType °'A')

/*Next event to happen is arrival for processor nodeNo*/
node [nodeNo] .incrementNoOfArrivallnPeriodO;
/* New job has arrived, so create execution time and program size for this job*/
double time = getExponentialRandomVariable(meanServiceTime[nodeNo]);
double size = getNormalRandomVariable(PROGRAM_SIZE_MEAN,

PROGRAM SIZE VARIANCE);
Task p(idCount,currentSystemTime,time,size,nodeNo,meanServiceTime[nodeNo]);
/*add this task in queue*/
node [nodeNo] .addNewTask(p);
/*If processor is idle, then process job immediately*/
if(node[nodeNo].getNodeStatus() = IDLE)

node[nodeNo].setNodeStatus(B US Y);
Task *j = node[nodeNo].getNextTaskInQueueO;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTimeo /

node[nodeNo].getSpeedFactorQ));
node [nodeNo].incrementNodeldleTime(currentSystemTirime -

node[nodeNo].getLastEventTimeO);
if((statusPeriod-TIME_PERIOD) > node[nodeNo].getLastEventTimeO)

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime - (statusPeriod -
TIME PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
node[nodeNo] .getLastEventTime());

else

/*Put job in waiting queue*/
node[nodeNo] . setJobsWaitinglnQueue(1);

}
node[nodeNo] . setLastEventTime(currentSystemTime);
/*Now set time for next arrival event for this processor

XLII

if number of jobs in system is less than MAX_JOBS*/
time = getExponentialRandomVariable(meanArrivalTime[nodeNo]);
if(idCount < MAX_JOBS)

node[nodeNo].setNextArrivalEvent(currentSystemTime + time);
else

node[nodeNo] .setNextArrivalEvent(INFINTTY);
idCount = idCount + 1;

}
else if(eventList.eventType = 'D')
{

/*Next event is departure for processor nodeNo*/
Task *j = node [nodeNo].deleteFirstTask();
if(j->getJoblDO > MAX_JOBS)
t+=1;

jobFinished = jobFinished + 1;
/*Calculate response time and waiting time for this processor*/
totalResponseTime += (currentSystemTime - j->getActualArrivalTimeO);
totalWaitingTime += (currentSystemTime - j->getActualArrivalTimeO -

j->getExecutionTimeO);
if(jobFinished%2000 =0)
{

cout << "\nAvg Response Time " << totalResponseTime /jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime /jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\nNumber of migration " << migration;
cout << VIVM11 ;
out << totalResponseTime / jobFinished << "\t" << totalWaitingTime / jobFinished

"\t" <<currentSystemTime << "\t" <<migration<<"\n";
}

delete j;
node [nodeNo] . incrementNoOfDepartureInPeriodO;
Task *j 1 = node[nodeNo].getNextTaskInQueueO;
/*If there is no job to process, then set processor to IDLE state*/
if(j 1 = NULL)
{

node [nodeNo] .setNodeStatus(IDLE);
node [nodeNo] .setNextDep artureEvent(INFINITY);

}
else
{

/*If there is at least one job, then process that jon*/
j 1->setWaitingTime(currentSystemTime - j 1->getArrivalTime());
node[nodeNo].setNextDepartureEvent(currentSystemTime + 01->getExecutionTime() /

node[nodeNo].getSpeedFactorO));
// decrement queue length by one
node[nodeNo].setJobsWaitingInQueue(-1);

}
node[nodeNo] .setLastEventTime(currentSystemTime);

}
else if(eventList.eventType ='M')
{

//Next event is job arrival through migration for processor nodeNo
Task *p = node[nodeNo].removeFirstMigrationTask();
node[nodeNo] . incrementNoOfArrivallnPeriodO;

XLIII

//add job in queue
node [nodeNo] . addNewTask(*p);

//if processor is idle,then process this job directly
if(node[nodeNo].getNodeStatusO = IDLE)

node[nodeNo] . setNodeStatus(BUSY);
Task *j = node[nodeNo].getNextTaskInQueueO;.
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTimeO /

node [nodeNo].getSpeedFactorO));
node[nodeNo].incrementNodeIdleTime(currentSystemTime -

node[nodeNo] . getLastEventTimeO);
if((statusPeriod-TIME_PERIOD) > node[nodeNo].getLastEventTimeO)

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -. (statusPeriod -
TIME_PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
node[nodeNo] . getLastEventTimeO);

else

//place job in waiting queue
node[nodeNo]. setJobs WaitinglnQueue(1);

node[nodeNo] . setLastEventTime(currentSystemTime);
//set time for next migration event for this processor
p = node[nodeNo].getNextMigrationTask();
if(p = NULL)

node[nodeNo].setNextMigrationEvent(INFINITY);
else

node[nodeNo]. setNextMigrationEvent(p->getArrivalTimeO);
}
else

//it is either estimation time period or status exchange period
-if((int)(currentSystemTime)%(TIME PERIOD) = 0)

statusPeriod += TIME_PERIOD;
// this is status exchange period
// every processor will calculate its load, mean arrival time and service time
for(count = 0; count < NUMBER OF_PROCESSORS; count++)

if(node[count].getNodeStatus() == IDLE)

double time = currentSystemTime - node[count].getLastEventTimeO;
if(time > TIME_PERIOD)

node [count] . incrementLastI dleTimeP eriod(TIME_PERI OD);
else

node [count].incrementLastIdleTimePeriod(time);

node[count].calculateMeanArrivalTimeO;
node [count] .calculateMeanServiceTime();
node[count] .calculateExpectedFinishTimeof Tasks(currentSystemTime);
node [count].calculateEstCurrentLoad(currentSystemTime);

XLIV

II Following loop will pass this information to all its buddy set
// so this is status exchange communication

for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

for(tempCount = 0; tempCount < node[count].getBuddySetCountO; tempCount++)
{

int buddyld = node[count].getBuddyId(tempCount);
node[count] .setEstBuddyArrivalTime(tempCount,

node[buddyld-1] .getEstMeanArrivalTimeO);
node[count] .setEstBuddyServiceTime(tempCount,

node [buddyld-1] . getEstMean ServiceTimeO);
node [count] . setE stB uddyL o ad(tempCount,

node [buddyld-1] .getEstCurrentLoadO);

}
}

else
{

// this is estimation period, so every processor will find load on its buddy processor
for(count = 0; count < NUMBER_ OF PROCESSORS; count++)
{

node[count].calculateExpectedFinishTimeof Tasks(currentSystemTime);
node [count] .calculateEstBuddyLoad(EST_PERIOD);
totalEstimation = totalEstimation + node[count].getBuddySetCountQ;

}
/* Now starts Load balancing code*/
double amountOfLoadAcceptance[NUMBER_OF_PROCESSORS]

[NUMBER_ OF_ PROCESSORS];
for(count = 0; count < NUMBER OF PROCESSORS; count++)

for(int countl = 0; countl <NUMBER_OF_PROCESSORS; countl++)
amountOfLoadAcceptance[count] [count 1] = 0.0;

}
double avgLoad[NUMBER_OF PROCESSORS];
// Following loop will do balancing for each processor if it load is
// above avg load of its buddy processor.
for(count = 0; count < NUMBER OF PROCESSORS; count++)

// first fmd out avg load in buddy set
int buddyCount = node[count].getBuddySetCountO;
avgLoad[count] = node[count].getJobsWaitingInQueue()

node[count].getEstMeanServiceTime() * node[count].getSpeedFactorQ;
double totalWeight = node[count].getSpeedFactorO;
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyld = node[count].getBuddyld(tempCount);
avgLoad[count] += (node[count].getEstBuddyLoad(tempCount)

node[count].getEstBuddyServiceTime(tempCount) *
node[buddyld-1] .getSpeedFactorO);

totalWeight += node[buddyld - 1].getSpeedFactorO;
}
avgLoad[count] = avgLoad[count] / totalWeight;

XLV

double myLoad = node[count].getJobsWaitingInQueueQ
node[count].getEstMeanServiceTimeQ
node[count] .getSpeedFactorO;

double commLoad = avgLoad[count] * node[count].getSpeedFactorO;
// if my load is less than avg load, then accept load
if(commLoad > myLoad)
{

double extraLoad = commLoad - myLoad;
double availableCapacity = 0;
// fmd out how much i can receive from my buddy processor
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyld = node[count].getBuddyld(tempCount);
double buddyLoad = node[count].getEstBuddyLoad(tempCount)

node[count].getEstBuddyServiceTime(tempCount)
node[buddyId - 1].getSpeedFactorO;

if(buddyLoad > avgLoad[count] * node[buddyId - 1].getSpeedFactorO)
{

availableCapacity +_ (buddyLoad - avgLoad[count]
node[buddyId - 1].getSpeedFactorO);

}
}
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyId = node[count].getBuddyId(tempCount);
double buddyLoad = node[count].getEstBuddyLoad(tempCount) *

node [count] . getEstBuddyServiceTime(tempCount)
* node[buddyld - 1].getSpeedFactor();

if(buddyLoad > avgLoad[count] * node[buddyId - I].getSpeedFactorO)
{

double bCapacity = buddyLoad - avgLoad[count]
node[buddyld - 1].getSpeedFactor();

amountOfLoadAcceptance[buddyld - I] [count] = bCapacity
extraLoad / availableCapacity;

}
}

}
//Now tranfer load to buddy processor
for(count = 0; count < NUMBER_OF_PROCES SORS; count++)
{

double myLoad = node[count].getJobsWaitingInQueueO
*node[count].getEstMeanServiceTimeO * node[count].getSpeedFactorO;

if(myLoad > avgLoad[count] * node[count].getSpeedFactorO)
{

double extraLoad = myLoad - avgLoad[count] * node[count].getSpeedFactorO;
for(tempCount = 0; tempCount <NUMBER_OF_PROCESSORS;

tempCount++)
{

// if i can tranfer to buddy having ID tempCount, then tranfer load
Task *p = node[count].getNextTaskInQueueO;
p = p->next;
if(amountOfLoadAcceptance[count][tempCount] > 0.5)
{

double bMeanArrivalTime =
node[tempCount] .getEstMeanArrivalTimeQ;

double bMeanServiceTime =
node [tempCount] . getEstMeanServiceTimeO;

double bLoad = node[tempCount].getEstCurrentLoadQ;
double bSpeedFactor = node[tempCount].getSpeedFactorQ;
double commCost = node[count].getCommSpeed(tempCount + 1);
while(p != NULL)
{

p = node[count].checkForMigration(bMeanArrivalTime,
bMeanServiceTime, bLoad,p,commCost,bSpeedFactor);

if(p = NULL)
break;

Task
//remove task from waiting queue
p = node[count].removeTask(p,currentSystemTime);
double transferTime = q->getTaskSize() / commCost;
q->incrementNoOfTimesMigratedO;
migration += 1;
if(max < q->getNoOffimesMigratedQ)

max = q->getNoOfTimesMigratedO;
q->setArrivalTime(currentSystemTime + transferTime);
//insert task in buddy list after tranfer time
node[tempCount] . insertMigrationTask(q);
amountOfLoadAcceptance[count][tempCount]

node[count].getEstMeanServiceTime()
node[count].getSpeedFactorO;

node[count].incrementEstBuddyLoad(tempCount + 1,
node[count].getEstMeanServiceTime(
node[count].getSpeedFactorQ);

extraLoad -= node[count].getEstMeanServiceTime()
node[count].getSpeedFactorQ;

if(amountOfLoadAcceptance[count][tempCount] < 0.5 11 extraLoad
<=0)

break;

}
if(p = NULL 11 extraLoad <= 0)

break;

nextTimePeriod = nextTimePeriod + EST PERIOD;
}

}

// All jobs processed, so print fmal values
cout << "\nJob fmished " << jobFinished;
cout << "\nAvg Response Time " << totalResponseTime /jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime / jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\n Number of migration " << migration;
cout <<"\n\nResource Utilization\tQueue Length\n";
double avgUtil = 0.0;

XLVII

double maxi = 0, min = 1;
for(count = 0; count <NUMBER OF PROCESSORS; count-+)

if(node[count].getNodeStatus(= IDLE)
node [count] .incrementNodeldleTime(currentSystemTime -

node [count].getLastEventTimeQ);
double util = (currentSystemTime - node[count].getNodeIdleTime()) / currentSystemTime;
cout << util;
avgUtil += util;
if(util > maxi)

maxi = util;
if(util < min)

min = util;
cout << "\t" << node[count].getJobsWaitingInQueueo << "\n";

}
out << min <"\n" << maxi <"\n" < avgUtil / NUMBER—OF—PROCESSORS << "\n\n" <<

totalEstimation<< "\n";
cout << "\nAverage Utilization " << avgUtil / NUMBER_OF_PROCESSORS ;
out.closeO;
cout << "\nMax Migration " << max;
cout << "\nTotal Estimation " < totalEstimation;
cout << "\n t =
getch();
return 0;
}

File : LBA.cpp
Description : This file contains implementation of load balancing on each arrival. It estimates
expected starting time for each new arrival and if expected starting time on buddy processor is less
than starting time on that processor, then job migration decision will be taken.

#include <iostream>
#include <fstream>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
using namespace std;

#include "definition.h"
#include "task.h"
#include "node.h"

int mainQ
{

intt=0;
double currentSystemTime = 0.0; 	//it indicates current simulation time
int count, idCount = 0;
double nextTimePeriod = TIME_PERIOD;
int jobFinished = 0; 	 I/it indicates how many jobs have finished
double totalResponseTime = 0; 	//it is total response time of jobFinished jobs
double totalWaitingTime = 0; 	I/it is total waiting time ofjobFinished jobs
int totalEstimation = 0;

XLVIII

srand(RANDOM SEED); 	// this will set random seed

Node *node = new Node[NUMBER_OF_PROCESSORS];
double meanArrivalTime[NUMBER_OF_PROCESSORS] = {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
double meanServiceTime[NUMBER OFPROCESSORS] = {6,6,6,6,3,4,2,2,3,4,3,4,3,4,2,2};

ifstream in1("graph.txt",ios::in);
ofstream out("outputl .txt",ios::out);

int tempID,tempCount,*tempBuddy;
double *tempCommCost;
double a= 0, s = 0;
/*Following loop will read from file graph.txt and will set topology accordingly.*/
for(count =0; count < NUMBER_OF_PROCESSORS; count++)
{

inl >> tempID;
in! >> tempCount;
tempBuddy = new int[tempCount];
int temp;
for(temp = 0; temp < tempCount; temp++)

in1 >> tempBuddy[temp];
tempCommCost = new double[tempCount];
for(temp = 0; temp < tempCount; temp++)
{

ml >> tempCommCost[temp];
tempCommCost[temp] = tempCommCost[temp] * 1024.0 * 1024.0;

no de [count] .setBuddySet(templD,tempCount,tempBuddy,tempCommCost);
double uVar = getUniformRandomVariable();
node[count].setSpeedFactor(l.0 + uVar);
node[count].setEstMeanServiceTime(meanServiceTime[count]);
delete [] tempBuddy;

}
in l .closeO;
int migration =0;
double tempTime = 0;
/* Following loop will generate first arrival event for each processor*/
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

tempTime = getExponentialRandomVariable(meanArrivalTime[count]);
node[count] . s etNextArrivalEvent(count);

struct EventList
{

char eventType;
int nodeNo;
double eventTime;

} eventList;

idCount = NUMBER OF PROCESSORS;

while(jobFinished < MAX JOBS)

eventList.eventType =
eventList.nodeNo = -1;
eventList.eventTime = riextTimePeriod;
/*Following loop will find out which event will happen next : arrival, departure,

migration,estimation interval. And also for which processor will this happen*/
for(count = 0; count < NUMBER OF PROCESSORS; count++)

if(node[count].getNextArrivalEvent() < eventList.eventTime)

eventList.eventType ='A';
eventList.nodeNo = count;
eventList.eventTime = node [count].getNextArrivalEventO;

}
if(node[count].getNextDepartureEvent() < eventList.eventTime)

eventList.eventType ='D;
eventList.nodeNo = count;
eventList.eventTime = node [count].getNextDepartureEventO;

}
if(node[count].getNextMigrationEventO < eventList.eventTime)

eventList.eventType ='M';
eventList.nodeNo = count;
eventList.eventTime = node[count].getNextMigrationEventO;

}
int nodeNo = eventList.nodeNo;
currentSystemTime = eventList.eventTime;
if(eventList.eventType =='A')

/*Next event to happen is arrival for processor nodeNo*/
/* New job has arrived, so create execution time and program size for this job*/
double time = getExponentialRandomVariable(meanServiceTime[nodeNo]);
double size = getNormalRandomVariable(PROGRAM_SIZE_MEAN,

PROGRAM_SIZE VARIANCE);
Task p(idCount,currentSystemTime,time,size,nodeNo,meanServiceTime[nodeNo]);
/*If node is idle, then directly process this job*/
if(node[nodeNo].getNodeStatus()= IDLE)

node [no deNo].incrementNoOfArrivallnPeriodO;
node [nodeNo] . addNewTask(p);
node[nodeNo] .setNodeStatus(BUSY);
Task '*j = node[nodeNo].getNextTaskInQueueo;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTimeO /

node[nodeNo] . getSpeedFactorQ));
node[nodeNo]-.incrementNodeldleTime(currentSystemTime -

node [nodeNo].getLastEventTimeO);
ii((nextTimePeriod-TIME_PERIOD) > node[nodeNo].getLastEventTimeQ)

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
(nextTimePeriod - TIME _PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -

node[nodeNo] . getLastEventTime());

L

else
{

/*Node is not idle*/
time = currentSystemTime - nextTimePeriod + TIME_PERIOD;
/*Calculate total load on this processor*/
node[nodeNo] .calculateEstCurrentLoad(currentSystemTime);
/*This will be job's expected starting time on this processor*/
double totalLoad = node[nodeNo].getEstCurrentLoadQ

node [nodeNo] . getEstMe anS ervi ceTimeO;
/*THRESHOLD value is not used, so it is set to zero*/
if(totalLoad < THRESHOLD)
{

node[nodeNo].incrementNoOfArrivallnPeriodO;
node[nodeNo].addNewTask(p);
no de[nodeNo] .setJobs WaitingInQueue(1);

}
else
{

double minTime = totalLoad + p.getExecutionTimeO /
node[nodeNo].getSpeedFactorO;

int migrateToNode = nodeNo;
/*Now find number of arrivals and departures that can take place
on buddy processors in time (transferTime + time)*/
/*Loop for each buddy processor in set*/
for(tempCount = 0; tempCount < node[nodeNo].getBuddySetCountO;

tempCount++)
{

int buddyId = node[nodeNo].getBuddyId(tempCount);
double commCost = node[nodeNo].getCommSpeed(buddyld);
double transferTime = p.getTaskSize() / commCost;
double totalTime = transferTime + time;
double bMeanArrivalTime =

node[nodeNo].getEstBuddyArrivalTime(tempCount);
double bMeanServiceTime =

node[nodeNo] . getEstBuddyS ervi ceTime(tempCount);
double factor = totalTime / bMeanArrivalTime;
double ePower = exp((-1) * factor);
double prob = ePower;
/*First find number of arrivals which can be possible*/
int_arrival = 1;
while(prob < ACCURACY)
{

prob += ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

}
factor = totalTime / bMeanServiceTime;
ePower = exp((-1) * factor);
prob = ePower;
int departure = 1;
/*Now find number of departures which can be possible*/
while(prob < ACCURACY)
{

prob += ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}

LI

/*Now estimate expected starting time of this job on buddy processor*/
arrival += node[nodeNo].getEstBuddyLoad(tempCount);
double expFinishTime = (arrival - departure) * bMeanServiceTime;
/*If this time is less than transfer time, then set time to transfer time*/
if(expFinishTime < transferTime)

expFinishTime = transferTime;
expFinishTime += p.getExecutionTime() / node[buddyld - 1].getSpeedFactorQ;
totalEstimation++;
/*If expected starting time is less than current mintime,
then set this time as minTime and this node as destination node*/
if(minTime > expFinishTime)
{

minTime = expFinishTime;
migrateToNode = buddyld - 1;
break;

}
}
/*If migrateToNode != nodeNo, then we have taken decision of migrating a job*/
if(migrateToNode != nodeNo)
{

p.incrementNoOfrimesMigratedO;
p.setExpectedFinishTime(minTime);
migration += 1;
double commCost = node[nodeNo].getCommSpeed(migrateToNode + 1);
double transferTime = p.getTaskSize() / commCost;
/*set arrival time for this job after tranfer time'/
p.setArrivalTime(currentSystemTime + transferTime);
Task *q = new Task(p);
/*insert this job in migration queue of destination processor*/
node[migrateToNode] . insertM igrationTask(q);
node [nodeNo] .incrementEstBuddyLoad(migrateToNode +

1,p.getExecutionTimeO/node[migrateToNode].getSpeedFactorO);
}
else
{

/*we are not migrgating this job, so add it to waiting queue of this processor*/
node[nodeNo] . incrementNoOfArrivalInPeriod();
node [nodeNo] . addNewTask(p);
node [nodeNo].setJobsWaitingInQueue(1);

}
}

}
node [no deNo] . setLastEventTime(currentSystemTime);
time = getExponentialRandomVariable(meanArrivalTime[nodeNo]);
/*set next arrival event for this processor*/
if(idCount < MAX_JOBS)

node [no deNo] .setNextArrivalEvent(currentSystemTime + time);
else

node[nodeNo] .setNextArrivalEvent(INFINITY);
idCount = idCount + 1;

}
else if(eventList.eventType =='D')
{

/*departure event is taken place for node nodeNo*/
Task *j = node[nodeNo].deleteFirstTaskO;

LII

if(j->getJoblDQ > MAX_JOBS)
t+=1;
/*increment no of job finished and calculate response time and waiting time
of this processor*/
jobFinished = jobFinished + 1;
totalResponseTime += (currentSystemTime - j->getActualArrivalTime());
totalWaitingTime "+-_ (currentSystemTime - j->getActualArrivalTimeO —

j->getExecutionTimeO);
if(jobFinished%2000 = 0)
{

cout << "\nAvg Response Time " << totalResponseTime /jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime / jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\nNumber of migration" << migration;
cout << "\n\n";
out << totalResponseTime / jobFinished << "\t" << totalWaitingTime / jobFinished <<

"\t" << currentSystemTime << "\t" << migration << "\n";
}
delete j;
node[no deNo] . incrementNoOfDeparturelnPeriodO;
/*Check for new task in queue*/
Task *j 1 = node[nodeNo].getNextTaskInQueueO;
if(j 1 == NULL)
{

/*No job in queue, so set node status to IDLE*/
node[nodeNo].setNodeStatus(IDLE);
no de[no deNo] . setNextDepartureEvent(INFINITY);

}
else
{

/*There is at least one job in queue, so start processing jon*/
j 1->setWaitingTime(currentSystemTime - j I ->getArrivalTime());
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j 1->getExecutionTimeQ /

node [nodeNo] . getSpeedFactor()));
node[nodeNo].setJobsWaitinglnQueue(-1);

}
node[nodeNo].setLastEventTime(currentSystemTime);

}
else if(eventList.eventType ='M')
{

/*Migration event has taken place for node nodeNo*/
Task *p = node[nodeNo].removeFirstMigrationTask();
/*this node is idle, so start processing this migrated job*/
if(node[nodeNo].getNodeStatusO = IDLE)
{

node [nodeNo] . incrementNoOfArrivallnPeriodO;
node [nodeNo] . addNewTask(*p);
node [nodeNo] . setNodeStatus(BUSY);
Task *j = node[nodeNo].getNextTaskInQueueQ;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTime() /

node [nodeNo] . getSpeedFactorO));
node[nodeNo].incrementNodeldleTime(currentSystemTime -

node[nodeNo].getLastEventTimeO);
if((nextTimePeriod-TIME PERIOD) > node[nodeNo].getLastEventTime())

LIII

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
(nextTimePeriod - TIME PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -

node[nodeNo].getLastEventTimeO);
}
/*If this job is already migrated upto MIGRATION_ LIMIT,
then place it in waiting queue as it can not be further migrated*/
else if(p->getNoOfTimesMigratedO >= MIGRATION_LIMIT)
{

node[nodeNo] . incrementNo OfArrival InPeriodO;
node[nodeNo] . addNewTask(*p);
node [no deNo] . setJobs W a itingInQueue(1);

}
else
{

/*Try to find out any buddy processor which can process this job faster than me.*/
double time = currentSystemTime - nextTimePeriod + TIME PERIOD;
node[nodeNo] . calcu lateEstCurrentLo ad(currentSystemTime);
double totalLoad = node[nodeNo].getEstCurrentLoadO *

node [nodeNo] .getEstMeanServiceTimeO;
if(totalLoad < THRESHOLD)
{

node [nodeNo]. incrementNoOfArrivallnPeriodO;
node[nodeNo] . addNewTask(*p);
node[nodeNo]. setJ'obs WaitinglnQueue(1);

}
else
{

double minTime = totalLoad + p->getExecutionTime() /
node[nodeNo].getSpeedFactor();

int migrateToNode = nodeNo;
/*This will loop for each buddy processor in set*/
for(tempCount = 0; tempCount < node[nodeNo].getBuddySetCountO;

tempCount++)

int buddyld = node[nodeNo].getBuddyId(tempCount);
double commCost = node[nodeNo].getCommSpeed(buddyId);
double transferTime = p->getTaskSize() / commCost;
double totalTime = transferTime + time;
double bMeanArrivalTime =

node[nodeNo] .getEstBuddyArrivalTime(temp Count);
double bMeanServiceTime =

node[nodeNo].getEstBuddyServiceTime(tempCount);
double factor = totalTime I bMeanArrivalTime;
double ePower = exp((-1) * factor);
double prob = ePower;
/*Find number of possible arrivals */
int arrival = 1;
while(prob < ACCURACY)
{

prob += ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

}
factor = totalTime / bMeanServiceTime;

LIV

ePower = exp((-1) * factor);
prob = ePower;
/*find number of possible departures*/
int departure = 1;
while(prob < ACCURACY)
{

prob +_ ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}
//estimate expected starting time of job on buddy processor*/
arrival += node[nodeNo].getEstBuddyLoad(tempCount);
double expFinishTime = (arrival - departure) * bMeanServiceTime;
/*if expected starting time is less transfer time,then set it to transfer time*/
if(expFinishTime < transferTime)

expFinishTime = transferTime;
expFinishTime += p->getExecutionTimeO /

node[buddyId - 1].getSpeedFactorO;
totalEstimation++;
/*If expected starting time is less than my time, then transfer job */
if(minTime > expFinishTime)
{

minTime = expFinishTime;
migrateToNode = buddyId - 1;
break;

}
if(migrateToNode != nodeNo)
{

//we will migrate this job on processor havin ID migrateToNode
p->incrementNoOfTimesMigratedO);
p->setExpectedFinishTime(minTime);
migration += 1;
double commCost = node[nodeNo].getComniSpeed(migrateToNode + 1);
double transferTime = p->getTaskSize() / commCost;
p->setArrivalTime(currentSystemTime + transferTime);
//place this job on migration queue of destination processor
node[migrateToNode] . insertMigrationTask(p);
node[nodeNo].incrementEstBuddyLoad(migrateToNode + 1,

p->getExecutionTimeo / node[migrateToNode].getSpeedFactor());
}
else
{

//there is no processor which can start processing job faster than this
// so we will not migrate this job on any processor

node[nodeNo]. incrementNoOfArrivallnPeriodO;
node[nodeNo]. addNewTask(*p);
node[nodeNo].setJobs WaitinglnQueue(l);

}
node[nodeNo] .setLastEventTime(currentSystemTime);
p = node[nodeNo].getNextMigrationTaskO;
if(p = NULL)

node[nodeNo]. setNextMigrationEvent(INFINITY);
else

LV

node [nodeNo]. setNextMigrati onEvent(p->getArrivalTime());
}
else
{

/*This is status exchange period
Every prcoessor will calculate its load, arrival time and service time*/
for(count = 0; count <NUMBER OF PROCESSORS; count++)

if(node[count].getNodeStatus() = IDLE)
{

double time = currentSystemTime - node[count].getLastEventTime();
if(time > TIME_PERIOD)

node [count] . incrementLastIdleTimePeriod(TIME_PERIOD);
else

node [count] . incrementLastIdleTimePeriod(tim e);
}
node[count].calculateMeanArrivalTimeO;
node[count].calculateMeanS erviceTime();
node [count] . calculateEstCurrentLoad(currentSystemTime);

}
/*Now every processor will pass information to its buddy processor.
Follwoing loop will do the same task*/
for(count = 0; count < NUMBER OF PROCESSORS; count++)

for(tempCount = 0; tempCount < node[count].getBuddySetCountQ; tempCount++)
{

int buddyId = node[count].getBuddyld(tempCount);
node[count]. setEstBuddyArrivalTime(tempCount,

node[buddyld- 1].getEstMeanArrivalTime());
node[count].setEstBuddyServiceTime(tempCount,

node[buddyld- 1].getEstMeanServiceTime());
node[count]. setEstBuddyLoad(tempCount,

node[buddyld-1].getEstCurrentLoad());
}

}
nextTimePeriod = nextTimePeriod + TIME_PERIOD;

}
}

cout << "\njob finished " <<jobFinished;
cout << "\nAvg Response Time " << totalResponseTime /jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime / jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\nNumber of migration " << migration;
cout <<"\n\nResource Utilization\tQueue Length\n";
double avgUtil 0;
double maxi = 0, min = 1;
for(count = 0; count < NUMBER OF PROCESSORS; count++) f 	 — -

if(node[count].getNodeStatus()= IDLE)
node[count]. incrementNodeIdleTime(currentSystemTime -

node[count].getLastEventTimeO);
double util = (currentSystemTime - node[count].getNodeIdleTime()) / currentSystemTime;
cout << util;
avgUtil += util;
if(util> maxi)

LVI

max! = util;
if(util < min)

min = util;
cout << "\t" << node[count].getJobsWaitingInQueue() <<

}
out << min <<'\n" << maxi <<"\n" << avgUtil / NUMBER_OF_PROCESSORS << "\n\n"

totalEstimation<< "\n";
cout<<\n\n";
cout << min << "\t" << max! << "\t" << avgUtil / NUMBER_OF_PROCESSORS <<"\t" <<

totalEstimation<< "\n";
out.closeO;
cout <<"\nAvg Utilization "<<avgUtiIINUMBER_OF_PROCESSORS;
cout << "\nTotal Estimation "<<totaIEstimation;
cout<<"\nt="<<t;
getchQ;
return 0;
}

File : PIA.cpp
Description : This file contains implementation of PIA algorithm.

#include <iostream>
#include <fstream>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
using namespace std;

#include "defmition.h"
#include "task.h"
#include "node.h"

int mainQ
{

double currentSystemTime = 0.0;
int count, idCount = 0;
double nextTimePeriod = TIME _PERIOD;
int jobFinished = 0;
double totalResponseTime = 0;
double totalWaitingTime = 0;
int totalEstimation = 0;

srand(RANDOM_SEED);

Node *node = new Node[NUMBEROF_PROCESSORS];
double meanArrivalTime[NUMBER_OF_PROCESSORS] = {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
double meanServiceTime[NUMBER OFPROCESSORS] _ {6,6,6,6,3,4,2,2,3,4,3,4,3,4,2,2};

ifstream in! ("graph.txt",ios::in);
ofstream out("output3.txt", ios::out);

int templD,tempCount,*tempBuddy;

LVII

double *tempCommCost;
double a = 0, s = 0;

for(count = 0; count < NUMBER OF PROCESSORS; count++)

inl >> tempID;
inl >> tempCount;
tempBuddy = new int[tempCount];
int temp;
for(temp = 0; temp < tempCount; temp++)

inl >> tempBuddy[temp];
tempCommCost = new double[tempCount];
for(temp = 0; temp < tempCount; temp++)
{

inl >> tempCommCost[temp];
tempCommCost[temp] = tempCommCost[temp] * 1024.0 * 1024.0;

node[count] .setBuddyS et(templD,tempCount,tempBuddy,tempCommCost);
double uVar = getUniformRandomVariableO;
node [count] .setSpeedFactor(1 .0 + uVar);
node [count] . s etEstMeanArrivalTime(meanArrivalTime[count]);
node [count].setEstMeanServiceTime(meanS erviceTime[count]);
delete [] tempBuddy;

inl .closeO;
int migration = 0;
double tempTime = 0;
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

tempTime = getExponentialRandomVariable(meanArrivalTime[count]);
node[count] .setNextArrivalEvent(count);

struct EventList
{

char eventType;
int nodeNo;
double eventTime;

}eventList;

idCount = NUMBER OF_PROCESSORS;
while(jobFinished < MAX_JOBS)
{

eventList.eventType ='T;
eventList.nodeNo = -1;
eventList.eventTime = nextTimePeriod;

for(count = 0; count < NUMBER_ OF PROCESSORS; count++)
{

if(node[count].getNextArrivalEvento < eventList.eventTime)
{

eventList.eventType ='A';
eventList.nodeNo = count;
eventList.eventTime = node[count].getNextArrivalEvento;

LVIII

if(node[count].getNextDepartureEvent() < eventList.eventTime)

eventList.eventType ='D';
eventList.nodeNo = count;
eventList.eventTime = node[count].getNextDepartureEvent();

}
if(node[count].getNextMigrationEvent(< eventList.eventTime)

eventList.eventType ='M;
eventList.nodeNo = count;
eventList.eventTime = node[count].getNextMigrationEventO;

}
int nodeNo = eventList.nodeNo;
currentSystemTime = eventList.eventTime;
if(eventList.eventType ='A')

double time = getExponentialRandomVariable(meanServiceTime[nodeNo]);
double size = getNormalRandomVariable(PROGRAM_SIZE_MEAN,

PROGRAM_SIZE VARIANCE);
Task p(idCount,currentSystemTime,time,size,nodeNo, meanServiceTime[count]);
if(node[nodeNo].getNodeStatusO == IDLE)

node [nodeNo] .incrementNo OfArrivallnPeriodO;
node [nodeNo] . addNewTask(p);
node [nodeNo] .setNodeStatus(BUSY);
Task *j = node[nodeNo].getNextTaskInQueueQ;
node[nodeNo].setNextDepartureEvent(currentSystemTime + 0->getExecutionTime() /

node[nodeNo].getSpeedFactorO));
node [nodeNo].incrementNodeIdleTime(currentSystemTime -

node[nodeNo].getLastEventTimeO);
if((nextTimePeriod-TIME_PERIOD) > node[nodeNo].getLastEventTime())

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
(nextTimePeriod - TIME PERIOD));

else
node [nodeNo].incrementLastIdleTimePeriod(currentSystemTime -

node[nodeNo] .getLastEventTimeO);

else

time = currentSystemTime - nextTimePeriod + TIME_PERIOD;
node [nodeNo] . calculateExactCurrentLoad(currentSystemTim e);
double totalLoad = node [nodeNo].getExactCurrentLoadO;
if(totalLoad < THRESHOLD)

node [nodeNo].incrementNoOfArrivalInPeriodO;
node [nodeNo]. addNewTask(p);
node [nodeNo]. setJobsWaitingInQueue(l);

}
else

double minTime = totalLoad + p.getExecutionTimeO
node[nodeNo].getSpeedFactorO;;

int migrateToNode = nodeNo;

for(tempCount = 0; tempCount < node[nodeNo].getBuddySetCountO;
tempCount++)

{
int buddyId = node[nodeNo].getBuddyId(tempCount);
double commCost = node[nodeNo].getCommSpeed(buddyId);
double transferTime = p.getTaskSizeO / commCost;
double totalTime = transferTime + time;
double bMeanArrivalTime = node[buddyld - 1].getEstMeanArrivalTime();
double bMeanServiceTime = node[buddyld - 1].getEstMeanServiceTimeQ;
double factor = transferTime / bMeanArrivalTime;
double ePower = exp((-1) * factor);
double prob = ePower;
int arrival = 1;
while(prob < ACCURACY)
{

prob +_ ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

}
factor = transferTime / bMeanServiceTime;
ePower = exp((-1) * factor);
prob = ePower;
int departure = 1;
while(prob < ACCURACY)
{

prob +_ ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}
node[buddyId-1].

. calculateExactCurrentLo ad(currentSystemTime,transferTime);
double expFinishTime = (arrival - departure) * bMeanServiceTime +

node[buddyId - 1] .getExactCurrentLoadO;
if(expFinishTime < transferTime)

expFinishTime = transferTime;
expFinishTime += p.getExecutionTimeO / node[buddyld - 1].getSpeedFactor();
if(minTime > expFinishTime)
{

minTime = expFinishTime;
migrateToNode = buddyld - 1;

}
totalEstimation++;

}
if(migrateToNode != nodeNo)
{

p. incrementNoOf TimesMigrate dO;
p.setExpectedFinishTime(minTime);
migration += 1;
double commCost = node[nodeNo].getCommSpeed(migrateToNode + 1);
double transferTime = p.getTaskSizeQ / commCost;
p.setArrivalTime(currentSystemTime + transferTime);
Task *q = new Task(p);
node[migrateToNode] . inse rtMigrationTask(q);

}
else
{

node[nodeNo] . incrementNoOfArrivallnP eriodO;

LX

node[nodeNo].addNewTask(p);
node[nodeNo].setJobsWaitingInQueue(1);

}
}

}
node[nodeNo] .setLastEventTime(currentSystemTime);
time = getExponentialRandomVariable(meanArrivalTime[nodeNo]);
if(idCount < MAX_JOBS)

node[nodeNo].setNextArrivalEvent(currentSystemTime + time);
else

node[nodeNo] . setNextArrivalEvent(INFINITY);
idCount = idCount + 1;

}
else if(eventList.eventType ='D')
{

Task *j = node[nodeNo].deleteFirstTaskO;
jobFinished = jobFinished + 1;
totalResponseTime +_ (currentSystemTime - j->getActualArrivalTimeO);
totalWaitingTime +_ (currentSystemTime - j->getActualArrivalTime(—

j->getExecutionTimeO);
if(jobFinished%2000 = 0)
{

cout << "\nAvg Response Time " << totalResponseTime / jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime / jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\nNumber of migration " << migration;
cout <<
out << totalResponseTime / jobFinished << "\t" << totalWaitingTime / jobFinished

"\t" << currentSystemTime << "\t" <<migration << "\n";
}
delete j;
node[nodeNo]. incrementNoOfDepartureInPeriodO;
Task *j 1 = node[nodeNo].getNextTaskInQueueO;
if(j 1 ==NULL)
{

node[nodeNo].setNodeStatus(IDLE);
node[no deNo] .setNextDepartureEvent(INFINITY); }

else
{

jl-->setWaitingTime(currentSystemTime - jl->getArrivalTimeO);
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j 1->getExecutionTime() /

node [no deNo]. getSpeedFactorO));
node[nodeNo].setJobsWaitingInQueue(-1);

}
node[nodeNo].setLastEventTime(currentSystemTime);

}
else if(eventList.eventType ='M')
{

Task *p = node[nodeNo].removeFirstMigrationTask();
if(node[nodeNo].getNodeStatus() _= IDLE)
{

node[nodeNo].incrementNoOfArrivallnPeriod();
node [no deNo] . addNewTask(* p);
node[no deNo] . setNodeStatus(BUSY);

LXI

Task *j = node[nodeNo].getNextTaskInQueueO;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTime(/

node[nodeNo].getSpeedFactorO));
node [nodeNo] .incrementNodeldleTime(currentSystemTime -

node[nodeNo].getLastEventTimeQ; .
if((nextTimePeriod-TIME_PERIOD) > node[nodeNo].getLastEventTimeO)

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
(nextTimePeriod - TIME_PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -

node [nodeNo] .getLastEventTimeO);
}

' else if(p->getNoOfTimesMigrated(>= MIGRATION_LIMIT)
{

node [nodeNo] . incrementNoOfArrivalInPeriodO;
node [nodeNo] . addNewTask(* p);
node [no deNo]. setJobs WaitingInQueue(1);

}
else
{

double time = currentSystemTime - nextTimePeriod + TIME_PERIOD;
node [nodeNo] .calculateExactCurrentLoad(currentSystemTime);.
double totalLoad = node [nodeNo] .getExactCurrentLoadO;
if(totalLoad < THRESHOLD)
{

node[nodeNo] . incrementNoOfArrivallnPeriodO;
node [no deNo]. addNewTask(*p);
node[nodeNo]. setJobsWaitingInQueue(1);

}
else
{

double minTime = totalLoad + p->getExecutionTime() /
node[nodeNo] . getSpeedFactorO;

int migrateToNode = nodeNo;
for(tempCount = 0; tempCount < node[nodeNo].getBuddySetCountQ;

tempCount++)

int buddyld = node[nodeNo].getBuddyld(tempCount);
double commCost = node [nodeNo].getCommSpeed(buddyld);
double transferTime = p->getTaskSize() / commCost;
double bMeanArrivalTime = node[buddyld - 1].getEstMeanArrivalTime();
double bMeanServiceTime = node[buddyld - 1].getEstMeanServiceTimeO;
double factor = transferTime / bMeanArrivalTime;
double ePower = exp((-1) * factor);
double prob = ePower;
int arrival = 1;
while(prob < ACCURACY)
{

prob +_ ((ePower * power(factor,arrival))/factorial(arrival));
arrival++;

}
factor = transferTime / bMeanServiceTime;
ePower = exp((-1) * factor);
prob = ePower;
int departure = 1;

LXII

while(prob < ACCURACY)
{

prob += ((ePower * power(factor,departure)) / factorial(departure));
departure++;

}
node[buddyId - 1].

calculateExactCurrentLoad(currentSystemTime,transferTime);
double expFinishTime = (arrival - departure) * bMeanServiceTime +

node[buddyld - 1].getExactCurrentLoadO;
if(expFinishTime < transferTime)

expFinishTime = transferTime;
expFinishTime +.= p->getExecutionTimeO /

node[buddyId - 1].getSpeedFactorO;
if(minTime > expFinishTime)
{

minTime = expFinishTime;
migrateToNode = buddyId - 1;

}
totalEstimation++;

}
if(migrateToNode != nodeNo)
{

p->incrementNoOf TimesMigratedO;
p->setExpectedFinishTime(minTime);
migration += 1;
double commCost = node[nodeNo].getCommSpeed(migrateToNode + 1);
double transferTime = p->getTaskSize() / commCost;
p->setArrivalTime(currentSystemTime + transferTime);
node[migrateToNode].insertMigrationTask(p);

}
else
{

node [nodeNo] . incrementNoOfArrivallnPeriodO;
node [nodeNo] . addNewTask(*p);
node [nodeNo].setJobsWaitingInQueue(1);

}
}

}
node[nodeNo].setLastEventTime(currentSystemTime);
p = node [nodeNo].getNextMigrationTask();
if(p = NULL)

node[nodeNo].setNextMigrationEvent(INFINITY);
else

node[nodeNo].setNextMigrationEvent(p->getArrivalTimeO);
}
else
{.

for(count =0; count < NUMBER OF PROCESSORS; count++)
{

if(node[count].getNodeStatus() == IDLE)
{

double time = currentSystemTime - node[count].getLastEventTime();
if(time > TIME_PERIOD)

node [count].incrementLastIdleTimePeriod(TIME PERIOD);
else

LXIII

node [count]. incrementLastIdleTimePerio d(time);

}
nextTimePeriod = nextTimePeriod + TIME _PERIOD;

}
}

out.closeO;
cout << "\nAvg Response Time _" << totalResponseTime / MAX_JOBS;
cout << "\nAvg Waiting Time " << totalWaitingTime / MAX_JOBS;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\nNumber of migration " << migration;
cout <<"\n\nResource Utilization\tQueue Length\n";
double avgUtil = 0;
for(count = 0; count <NUMBER OF PROCESSORS; count++)
{

if(node[count].getNodeStatusQ = IDLE)
node [count] .incrementNodeldleTime(currentSystemTime -
no de [count] . getLastEventTime Q);

double util = (currentSystemTime - node[count].getNodeldleTimeQ) / currentSystemTime;
cout << util;
avgUtil += util;
cout << "\t\t\t" << node[count].getJobsWaitingInQueue(<< "\n";

cout <<"\nAvg Utilization "<<avgUtil/NUMBER OF_PROCESSORS;
cout << "\nTotal Estimation " << totalEstimation;
getchO;
return 0;
}

*
File : LBLS.cpp
Description : This file contains implementation of LBLS algorithm.

#include <iostream>
#include <fstream>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
using namespace std;

/*definition.h contains declaration of all necessary parameters. */
#include "definition.h"
/*task.h file contains implementation of class task*/
#include "task.h"
/*node.h file contains implementation of class node*/
#include "node.h"

int mainO
{

/* Declare necessary variables*/
intt=0;
double currentSystemTime = 0.0; 	// currentSystemTime will indicate simulation time
int count, idCount = 0;
double nextTimePeriod = EST PERIOD; // nextTimePeriod will be set to Te value

LXIV

double statusPeriod = TIME_PERIOD;
int jobFinished = 0; 	 // jobFinised will indicate number of jobs finished
double totalResponseTime = 0; // totalResponseTime will find total response time of jobFinished
jobs
double totalWaitingTime = 0; // totalWaitingTime will find total waiting time of jobFinished jobs
intmax=0;
int totalEstimation = 0;

srand(RANDOM SEED); 	// This will just set random seed value

Node *node = new Node[NUMBER_OF_PROCESSORS];
double meanArrivalTime[NUMBER OF_PROCESSORS] _ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
double meanServiceTime[NUMBER OFPROCESSORS] _ {6,6,6,6,3,4,2,2,3,4,3,4,3,4,2,2};

ifstream inl("graph.txt",ios::in);
ofstream out("outputl .txt",ios::out);

int tempID,tempCount,*tempBuddy;
double *tempCommCost;
double a = 0, s= 0;
/*Following loop will read from file graph.txt and will set topology accordingly.*/
for(count = 0; count < NUMBER OF PROCESSORS; count++)

inl >> templD;
ml >> tempCount;
tempBuddy = new int[tempCount];
int temp;
for(temp = 0; temp < tempCount; temp++)

ml >> tempBuddy[temp];
tempCommCost = new double[tempCount];
for(temp = 0; temp < tempCount; temp++)
{

ml >> tempCommCost[temp];
tempCommCost[temp] = tempCommCost[temp] * 1024.0 * 1024.0;

node[count].setBuddyS et(templD,tempCount,tempBuddy,tempCommCost);
double uVar = getUniformRandomVariableO;
node[count] .setSpeedFactor(1.0 + uVar);
node[count]. setEstMeanServiceTime(meanServiceTime[count]);
delete [] tempBuddy;

}
inl.closeO;
int migration = 0;
double tempTime = 0;
/* Following loop will generate first arrival event for each processor*/
for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

tempTime = getExponentialRandoinVariable(meanArrivalTime[countj);
node [count] . s etNextArrivalEvent(count);

struct EventList
{

char eventType;
int nodeNo;

LXV

double eventTime;
}eventL.ist;

idCounr: = NUMBER_ OF_ PROCESSORS;
while(jobFinished < MAX_JOBS)
{

eventList.eventType ='T';
eventList.nodeNo = -1;
eventList.eventTime = nextTimePeriod;

/*Following loop will find out which event will happen next : arrival, departure,
migration,estimation interval. And also for which processor will this happen*/

for(count = 0; count < NUMBER_OF_PROCESSORS; count++)
{

i f(node[count].getNextArrivalEvent() < eventList.eventTime)
{

eventList.eventType ='A';
eventList.nodeNo = count;
eventList.eventTime = node[count].getNextArrivalEventO;

}
ii(node[count].getNextDepartureEvent() < eventList.eventTime)
{

eventList.eventType ='D';
eventList.nodeNo = count;
eventList.eventTime = node [count] .getNextDepartureEventO;

}
iR:(node[count].getNextMigrationEvent() < eventList.eventTime)
{

eventList.eventType ='M;
eventList.nodeNo = count;
eventList.eventTime = node [count] . getNextMigrationEvent();

}
int nodeNo = eventList.nodeNo;
currentSystemTime = eventList.eventTime;
if(eventList.eventType =='A')
{

/'Next event to happen is arrival for processor nodeNo*/
node[nodeNo]. incrementNoOfArrivallnPeriodO;
/* New job has arrived, so create execution time and program size for this job*/
double time = getExponentialRandomVariable(meanServiceTime[nodeNo]);
double size =

getNormalRandomV ariable(PROGRAM_SIZE_MEAN,PROGRAM_S IZE_VARIANCE);
Task p(idCount,currentSystemTime,time,size,nodeNo,meanServiceTime[nodeNo]);
/add this task in queue*/
node[nodeNo] .addNewTask(p);
/*If processor is idle, then process job immediately*/
if(node[nodeNo].getNodeStatus(== IDLE)
{

node[nodeNo].setNodeStatus(BUSY);
Task *j = node[nodeNo].getNextTaskInQueueO;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTimeO /

node[nodeNo] . getSpeedF actorO));
node[nodeNo].incrementNodeldleTime(currentSystemTime -

node [nodeNo] .getLastEventTimeO);

if((statusPeriod-TIME_PERIOD) > node[nodeNo].getLastEventTime())
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime - (statusPeriod -
TIME_PERIOD));

else
node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime -
node [nodeNo].getLastEventTimeO);

}
else
{

/*Put job in waiting queue*/
node[nodeNo] .setJobs WaitinglnQueue(1);

}
node[nodeNo] .setLastEventTime(currentSystemTime);
/*Now set time for next arrival event for this processor
if number of jobs in system is less than MAX_JOBS*/
time = getExponentialRandomVariable(meanArrivalTime[nodeNo]);
if(idCount < MAX_JOBS)

node[nodeNo].setNextArrivalEvent(currentSystemTime + time);
else

node[nodeNo].setNextArrivalEvent(INFINITY);
idCount = idCount + 1;

}
else if(eventList.eventType =='D')
{

/*Next event is departure for processor nodeNo*/
Task *j = node[nodeNo].deleteFirstTaskO;
if(j->getJoblD(> MAX JOBS)
t+=1;
jobFinished = jobFinished + 1;
/*Calculate response time and waiting time for this processor*/
totalResponseTime +_ (currentSystemTime - j->getActualArrivalTimeO);
totalWaitingTime +_ (currentSystemTime - j->getActualArrivalTime(-

j->getExecutionTimeO);
if(jobFinished%2000 == 0)
{

cout << "\nAvg Response Time " << totalResponseTime /jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime / jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\nNumber of migration" << migration;
cout <<
out << totalResponseTime / jobFinished << "\t" << totalWaitingTime / jobFinished <<

"\t" <<currentSystemTime <<"\t" <<migration<<"\n";
}
delete j;
node [nodeNo] . incrementNoOfDepartureInPeriodO;
Task *j 1 = node[nodeNo].getNextTaskInQueueO;
/*If there is no job to process, then set processor to IDLE state*/
if(j 1 = NULL)
{

node[nodeNo] .setNodeStatus(IDLE);
node[nodeNo] . setNextDepartureEvent(INFINITY);

}
else
{

/*If there is at least one job, then process that jon*/

LX VII

j 1->setWaitingTime(currentSystemTime - j 1->getArrivalTime());
node[nodeNo].setNextDepartureEvent(currentSystemTime + 01->getExecutionTime() /

node[nodeNo] . getSpeedFacto rO));
// decrement queue length by one
node[nodeNo].setJobsWaitingInQueue(-1);

}
n,)de[nodeNo] . setLastEventTime(currentSystemTime);

}
else if(eventList.eventType ='M')
{

//Next event is job arrival through migration for processor nodeNo
Task *p = node [nodeNo].removeFirstMigrationTask();
n.ode[nodeNo] . incrementNoOfArrivalInPeriodQ;
/i add job in queue
r,.ode[nodeNo] . addNewTask(* p);
//if processor is idle,then process this job directly
flnode[nodeNo].getNodeStatusO = IDLE)
{

node[nodeNo] .setNodeStatus(BUSY.);
Task *j = node[nodeNo].getNextTaskInQueueO;
node[nodeNo].setNextDepartureEvent(currentSystemTime + (j->getExecutionTime() /

node [nodeNo] .getSpeedFactor()));
node[nodeNo].incrementNodeIdleTime(currentSystemTime -

no de [no deNo] . getL astEve ntT im e Q);
if((statusPeriod-TIME_PERIOD) > node[nodeNo].getLastEventTimeO)

node[nodeNo].incrementLastIdleTimePeriod(currentSystemTime - (statusPeriod -
TIME_PERIOD));

else
node[nodeNo].incrementLastldleTimePeriod(currentSystemTime -

node [nodeNo] .getLastEventTimeO);
}
else
{

//place job in waiting queue
node[nodeNo].setJobsWaitingInQueue(1);

}
n ode[nodeNo] .setLastEventTime(currentSystemTime);
Ii set time for next migration event for this processor
p = node [nodeNo].getNextMigrationTask();
i:(p = NULL)

node[nodeNo]. setNextMigrationEvent(INFINITY);
else

node[nodeNo] . s etNextMigrati onEvent(p->getArrivalTime());
}
else
{

//it is either estimation time period or status exchange period
if((int)(currentSystemTime)%(TIME_PERIOD) =0)
{

statusPeriod += TIME_PERIOD;
// this is status exchange period
// every processor will calculate its load; mean arrival time and service time
i:or(count = 0; count < NUMBER OF PROCESSORS; count++)

if(node [count] .getNodeStatus() == IDLE)

LX VIII

{
double time = currentSystemTime - node[count].getLastEventTimeO;
if(time > TIME PERIOD)

node [count] .incrementLastldleTimePeriod(TIME PERIOD);
else 	 -

node [count] . incrementLastIdleTimePeriod(time);
}
node[count].calculateMeanArrivalTimeO;
node [count] . calculateMean S erviceTimeO;
node [count] . calculateExpectedFinishTimeof Tasks(currentSystemTime);
node [count] . calculateEstCurrentLoad(currentSystemTime);

}
// Following loop will pass this information to all its buddy set
// so this is status exchange communication

for(count = 0; count < NUMBER OF PROCESSORS; count++)

for(tempCount = 0; tempCount < node[count].getBuddySetCountQ; tempCount++)
{

int buddyId = node[count].getBuddyId(tempCount);
node[count] .setEstBuddyArrivalTime(tempCount,

node[buddyld- 1] .getEstMeanArrivalTimeO);
node[count] .setEstBuddyServiceTime(tempCount,

node[buddyld-1] .getEstMeanServiceTimeO);
node[count] . setEstBuddyLoad(tempCount,

node[buddyId-1] .getEstCurrentLoad());

}
}

else
{

// this is estimation period, so every processor will find load on its buddy processor
for(count = 0; count <NUMBER_ OF PROCESSORS; count++)

node[count] . calculateExpectedFinishTimeof Tasks(currentSystemTime);
node[count].calculateEstBuddyLoad(EST_PERIOD);
totalEstimation =•totalEstimation + node[countj.getBuddySetCountO;

}
}
/* Now starts Load balancing code*/
double amountOfLoadAcceptance[NUMBER_OF_PROCESSORS]

[NUMBER OF PROCESSORS];
for(count = 0; count <NUMBER_OF_PROCESSORS; count-++)
{

for(int countl = 0; countl <NUMBER_OF_PROCESSORS; countl++)
amountOtLoadAcceptance[count][countI] = 0.0;

}
double avgLoad[NUMBER_OFPROCESSORS];
// Following loop will do balancing for each processor
for(count = 0; count < NUMBER_ OF PROCESSORS; count++)
{

// first fmd out avg load in buddy set
int buddyCount = node[count].getBuddySetCountO;
double total Weight = node[count].getSpeedFactorO;
avgLoad[count] = node[count].getJobsWaitinglnQueueO *

node [count] .getEstMeanServiceTime() * node[count].getSpeedFactoro;

LXIX

for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyId = node[count].getBuddyId(tempCount);
totalWeight += node[buddyld - 1]_ getSpeedFactorO;
avgLoad[count] += (node[count].getEstBuddyLoad(tempCount) *

node[count].getEstBuddyServiceTime(tempCount)
node[buddyld- 1] .getSpeedFactorQ);

}
avgLoad[count] = avgLoad[count] / totalWeight;
double myLoad = node[count].getJobsWaitingInQueueO

node[count].getEstMeanServiceTime() * node[count].getSpeedFactorO;
double commLoad = avgLoad[count] * node[count].getSpeedFactorO;
// if my load is greated than avg load, then transfer load
if(commLoad < myLoad)
{

double extraLoad = myLoad - commLoad;
double availableCapacity = 0;
// find out how much i can tranfer to my buddy processor
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyId = node[count].getBuddyId(tempCount);
double buddyLoad = node[count]. getEstBuddyLoad(tempCount)

node[count].getEstBuddyServiceTime(tempCount) *
node[buddyId - 1].getSpeedFactorO;

if(buddyLoad < avgLoad[count] * node[buddyld - 1] .getSpeedFactorO)
{

availableCapacity +_ (avgLoad[count]*
node[buddyId - 1].getSpeedFactorO - buddyLoad);

}
}
// amountOfLoadAcceptance array will indicate how many jobs can be transferred

to buddy processor
for(tempCount = 0; tempCount < buddyCount; tempCount++)
{

int buddyId = node[count].getBuddyld(tempCount);
double buddyLoad = node[count].getEstBuddyLoad(tempCount) *
node[count] .getEstBuddyServiceTime(tempCount)*

node[buddyId - 1].getSpeedFactorQ;
if(buddyLoad < avgLoad[count]*node[buddyId - 1] .getSpeedFactorO)
{

double bCapacity = avgLoad[count] *
node[buddyId - l].getSpeedFactorO - buddyLoad;

amountO#LoadAcceptance[count] [buddyld - 1] = bCapacity
extraLoad / availableCapacity;

}
}

}
//Now tranfer load to buddy processor
for(count = 0; count < NUM BER_OF- PROCESSORS; count++)
{

double myLoad = node[count].getJobsWaitingInQueue() *
node[count].getEstMeanServiceTimeO * node[count].getSpeedFactorO;

if(myLoad > avgLoad[count] * node[count].getSpeedFactoro)
{

10:10:1

double extraLoad = myLoad - avgLoad[count]* node[count].getSpeedFactorO;
for(tempCount = 0; tempCount < NUMBER_OF_PROCESSORS;.

tempCount++)

iii i can tranfer to buddy having ID tempCount, then tranfer load
Task *p = node[count].getNextTaskInQueueO;
p = p->next;
if(amountOfLoadAcceptance[count][tempCount] > 0.5)
{

double bMeanArrivalTime
node[tempCount] . getEstM eanArr ivalTim e Q;

double bMeanServiceTime =
node [tempCount] . getEstMean ServiceTimeO;

double bLoad = node[tempCount].getEstCurrentLoad();
double bSpeedFactor = node [tempCount].getSpeedFactorO;
while(p != NULL)
{.

p = node[count].checkForMigration(bMeanArrivalTime,
bMeanServiceTime, bLoad,p,bSpeedFactor);

if(p = NULL)
break;

Task *q = p;
//remove task from waiting queue
p = node[count].removeTask(p,currentSystemTime);
double commCost = node[count].getCommSpeed(tempCount + 1);
double transferTime = q->getTaskSizeO / commCost;
q->incrementNoOf fimesMigratedO;
migration += 1;
if(max < q_>getNoOfTimesMigratedO)

max = q->getNoOffimesMigratedO;
q->setArrivalTime(currentSystemTime + transferTime);
// insert task in buddy list after tranfer time
node[tempCount]. insertMigrationTask(q);
amountOfL,oadAcceptance[count] [tempCount]

node [count] . getEstMean ServiceTime(}*
node[count] .getSpeedFactorO;

node[count].incrementEstBuddyLoad(tempCount + 1,
node [count] . getEstMean S ery iceTimeO *
node [count].getSpeedFactorO);

extraLoad -= node[count].getEstMeanServiceTime()*
node [count] . getS p e ed F act o r O;

if(amountOfLoadAcceptance[countl[tempCount] <0.5 11 extraLoad
<=0)

break;

if(p = NULL 11 extraLoad <= 0)
break;

nextTimePeriod = nextTimePeriod + EST_PERIOD;
}

}

II All jobs processed, so print final values
cout.<< "\nJob finished " <<jobFinished;
cout << "\nAvg Response Time " << totalResponseTime / jobFinished;
cout << "\nAvg Waiting Time " << totalWaitingTime / jobFinished;
cout << "\nTotal Execution Time " << currentSystemTime;
cout << "\n Number of migration " << migration;
cout <<"\n\nResource Utilization\tQueue Length\n";
double avgUtil = 0.0;
double maxi = 0, min = 1;
for(count = 0; count <NUMBER OF PROCESSORS; count++)

if(node[count].getNodeStatus(= IDLE)
node [count]. incrementNodeldleTime(currentSystemTime -
node [count].getLastEventTimeO);

double util = (currentSystemTime - node[count].getNodeldleTime()) / currentSystemTime;
cout << util;
avgUtil += util;
if(util > maxi)

maxi = util;
if(util < min)

min=util;
cout << "\t" << node[count].getJobsWaitingInQueueo << "\n";

}
out << min << "\n" << maxi << "\n" << avgUtil / NUMBER—OF—PROCESSORS << "\n\n" <<

totalEstimation<< "\n";
coot << "\nAverage Utilization " << avgUtil / NUMBER_OF_PROCESSORS ;
out. close 0;
coat << "\nMax Migration " << max;
cou.t << "\nTotal Estimation " << totalEstimation;
cout <<"\nt= " <<t;
geti;hO;
return 0;

LXXII

	Title

	Abstract

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	Chapter 7

	References

	Appendix

