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ABSTRACT 

This thesis is primarily concerned with the design and construction of image-based 

object reconstruction system from multiple silhouette images taken by a .  natural 

camera. We briefly explore two techniques of object reconstruction, voxelization and 

reconstruction based on SOR properties. 

We propose a view dependent image-based method to recover a 3D-model of generic 

complex object. We discuss the problem of reconstruction to compute geometric 

information by finding corresponding feature points among multiple reference 

images. We exploit the geometry of single axis motion along with the surface of 

revolution to acquire the surface properties of object from the sequence of multiple 

homologous images. We further extend our technique to comply with non-

homologous images. 

The constrained and controlled environment will enable us to avoid the need for 

actual camera calibration. 
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CHAPTER 1. 	 INTRODUCTION 

1.1 Computer Vision 

Computer vision is the science of making computer to see, i.e. giving human like 

visibility to computer. It has received multiple accolades as a key phenomenon that 

will change significantly, the way humans interact with computers/devices of 

tomorrow. As a field it is an intellectual frontier. Like any other frontier, it is exciting 

and interesting. 

Computer vision's great trick is in extracting meaningful information of the real world 

from pictures or sequences of pictures. For example, extracting information like, what 

object is shown in the picture or what the shape of object is? The information that 

users seek can differ widely between applications. For example, a technique known as 

structure from motion makes it possible to extract a representation of what is depicted 

and how the camera is moved from a series of pictures. People in the entertainment 

industry make use of these techniques to build three-dimensional (3D) computer 

models of buildings, typically keeping the structure and throwing away the motion. 

These models are used where real objects cannot be used. For instance, virtually they 

can be set fire to or blown up. Good, simple, accurate and convincing models can be 

built using various computer vision techniques [11]. 

Computer vision is the subject of research for various researchers. The subject itself 

has been around since the 1960s, but it is only recently that it has been possible to 

build useful computer systems using ideas from computer vision. Computer vision 

tries to provide artificial systems with a broader range of autonomy and action 

capabilities, but this can not be achieved• without the key tasks: object detection, 

object reconstruction, object recognition and scene interpretation. These are different 

areas in computer vision by which it is heading towards making computer to see. 

The human visual system performs these tasks very efficiently, _processing several 

sources of implicit information (like shape, color, motion, etc.) from previous 

experience and learning. Due to increase in the processing capability of computer and 

advancements in information storing and retrieval, it is possible to make computer to 

perform such complex tasks. 
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1.2 Overview 

Object reconstruction has been the subject of research in recent year. The problem is 

of considerable importance in the various industrial areas; such as Mobile Robotics, 

Virtual Reality, Tele-Shopping, Entertainment and View-Invariant Recognition. Many 

application environments enable the user interact with the models. In which the user 

can rotate, scale, even deform the models; observe the models under different lighting 

conditions; change the appearance (color, material, etc.) of the models; observe the 

interaction of a model with the other models in the environment. Therefore, the 

geometric properties of object must be clearly and robustly defined. 

Recent advances in computer vision make it possible to acquire high resolution 3D-

models of scenes and objects [1] [11]. However, reconstruction of a complex rigid 

objects from its two dimensional (2D) images is still a challenging computer vision 

problem under general imaging conditions. Without a priori information about the 

imaging environment (camera geometry, lighting conditions, object and background 

surface properties, etc.), it becomes very difficult. to infer the 3D structure of the 

object from its images. For practical purposes, the problem can be simplified by using. 

controlled imaging environments. 

In general, given a real world object, the reconstruction system of object involves the 

problem of finding geometric shape and surface properties of an object. Figure 1.1 

shows the typical computational steps of object reconstruction. 

User Input 	Priori Knowledge 

J Modelling Program ~ 

3D-Model 

I Rendering Algorithm 

I Virtual View 

Figure 1.1: Typical computational steps of object reconstruction. 
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The most common way of creating 3D-models is manual design. This, approach is 

suitable for the creation of the models of non-existing objects and mostly used in 

Multimedia and Virtual Reality applications. However, it is cost expensive and time 

consuming. Furthermore, the accuracy of the designed model for a real object may not 
be satisfying. Therefore, the efforts are being made towards finding techniques to 

automate the process of reconstruction under a simple but controlled environment. 

Usually, these techniques recover the geometry of the real world scene and then 

render it into the desired virtual view as depicted in Figure I.I. Such techniques are 

broadly categorized in two approaches, namely, object-space rendering and image-

space rendering. 

1.2.1 Object-space rendering 

In object-space rendering, the geometry of real objects is acquired using active 

scanning systems that capture directly 3D data [10]. Therefore, these techniques are 

also referred as active techniques. Such systems are constructed -using expensive 

equipments such as laser range scanners, structured light; touch based 3D scanners, or 

3D digitizers. In most of these active scanning systems, the texture of the model is not 

captured while the geometry of the object is acquired precisely as a set of points in the 

3D space. This set can then be converted to polygonal model representations for 

rendering. 

1.2.2 Image-space rendering 

In image-space rendering, the model of a real object is reconstructed from its real 2D 

images [1] [4] [6] [8]. These methods are also known as passive methods or image-

based methods. Even using an off-the-shelf camera, considerably realistic looking 

models with both geometry and texture is reconstructed. 

Unlike active methods, the passive methods are not expensive as they do not require 

very expensive equipments. Another advantage is that the shape information, such as 

surface normal and curvature, can be easily obtained. In addition to this, the texture 

properties of model can be easily captured which is very important for making 

realistic model. The only limitation to these techniques is that, the very complex 

objects can not be obtained with greater accuracy. This is due to the fact that, the 

world contains wide variety of objects with distinctive shape characteristics. 
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1.3 Problem Statement 

The objective is to create curvilinear, texture mapped, 3D-models from multiple 

homologous images with no prior internal knowledge about the shape or topology. 

A good amount of work in the reconstruction of 3D-model using image-based 

modeling has been reported in [1] [4] [6] [8] [11].  Various techniques have been 

implemented, analyzed and explored extensively. The technique used in this thesis 

requires multiple images of the object to be modeled from different views. As such, 

many requirements are set as given below: 

1) As a low cost -solution is desired by any business and the layman, the 

technique should be simple, flexible, and inexpensive. 

2) It should not require any specialized hardware. Most of the image-based 

technique uses a simple natural camera to acquire the images of the object. 

We too,•use the natural camera which can be made easily available. 

3) The reconstructed 3D-model should be accurate from all perspectives and in a 

convenient format. 

4) The computer algorithm must be robust against noise and in the speed of 

execution. If possible, the number of views to be processed by the algorithm 

must be minimal. 

Motivation behind this thesis is that most of the image-based techniques available 

need to find parameters for the camera position, motion etc (called as camera 

calibration), we propose a method in which the need for actual camera calibration is 

avoided. 
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1.4 Organization. of the Report 

The work presented in this thesis combines insights, methods and algorithms 

developed in order to resolve the problem of 3D reconstruction of generic real world 

object. 

Chapter 2 highlights the preliminary information about the thesis as well as the basic 

concepts and fundamental theories of computer vision and general assumptions used. 

It also outlines the several principles considered in each stage of 3D reconstruction. 

A brief description to the existing techniques involved in image-based modeling and 

rendering is given in Chapter 3. This chapter briefly examines three such approaches, 

namely, Volume Intersection, Marching Cubes, and Metric 3D Reconstruction from 

Surface of Revolution. 

The complete theoretical information for 3D reconstruction is presented in Chapter 4. 

The invariant properties of single axis motion and surface of revolution are discussed. 

The surface formation process of 3D-model is described in details and certain criteria 

are outlined that have to be met in order to avoid actual camera calibration. 

The actual designing and implementation part is outlined with detailed information in 

Chapter 5. Extensive assessment of the method is made and the reconstruction results 

are presented in Chapter 6 along with limitations pertaining to proposed method. 

Conclusions are drawn in Chapter 7. 

Appendix - B includes source code listing of implementation. 
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CHAPTER 2. 	 PRELIMINARIES 

To understand how human vision, might be modeled computationally and replicated 

on a computer, we need to understand the image acquisition process. The role of the 

camera in machine vision is analogous to that of the eye in biological systems. 

This chapter introduces the camera model and defines the , epipolar or two view 

geometry. A perspective camera model is described in section 2.1, which corresponds 

to the pinhole camera. It is assumed throughout this thesis that effects such as radial 

distortion are negligible and are thus ignored. 

Section 2.3 defines the epipolar geometry that exists between two cameras. A special 

matrix will be defined that incorporates the epipolar geometry and forms, the building 

block of the reconstruction problem. 

2.1 Pinhole camera model 

The pinhole camera is the simplest, and the ideal, model of camera function [14]. It 

has an infinitesimally small hole through which light enters before forming an 
inverted image on the camera surface facing the hole. To simplify things, we usually 

model a pinhole camera by placing the image plane between the focal point of the 

camera and the object, so that the image is not inverted. This mapping of three 

dimensions onto two dimensions, is called a perspective projection (see Figure 2.1), 

and perspective geometry is fundamental to any understanding of image analysis. 

y- "  -'" Retinal Image 	 M (X, Y, Z) 
plane 

" 	 1 	
...... 

  

" 	 ............. 

C/ 	.... 	............................._...; 

-------------------------1► j- -  F_ x 

Focal length 	•'"~ 

Figure 2.1: Perspective projection in the pinhole camera model. 

The coordinates of a 3D point M = [X, Y, Z]T in a Euclidean world coordinate system 

and the retinal image coordinates in _ [u, v]T are related by the following equation: 

sm-=PM" 	 (2.1) 
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s is a scale factor, in-  _ [u, v, IT  and M _ [X, Y, Z, 1]r  are the homogeneous 

gates of vector ni and M respectively. And P is a 3x4 matrix which is called as 

perspective projection matrix. 

2.1 illustrates this process. The .figure shows the case where the projection 

is placed at the origin of the world coordinate frame and the retinal plane is at Z 

= f = 1. Then u = 	, v = 	and
z. z 

P= [13x3 03] 
	

(2.2) 

optical axis passes through the centre of projection (camera) .0 and is orthogonal 

to the retinal plane. The point c is called the principal point, which is the intersection 

of the optical axis with the retinal plane. The focal length f of the camera is also 

which is the distance between the centre of projection and the retinal plane. 

If n1y the perspective projection matrix P is available, it is possible to recover the 

of the optical centre or camera. 

world coordinate system is usually defined as follows: the positive Y -direction is 

upwards, the positive X-direction is pointing to the right and the positive Z-

ion is pointing into the page. 

2.2 Camera Calibration 

3D structure from images becomes a simpler problem when the images 

taken with calibrated cameras. For our purposes, a camera is said to be calibrated 

if 4ie mapping between image coordinates and directions relative to the camera center 

are known. However, the position of the camera in space (i.e. its translation and 

with respect to world coordinates) is not necessarily known. 

For an ideal pinhole camera delivering a true perspective image, this mapping can be 

ch acterized completely by just five numbers, called the intrinsic parameters of the 

caniera. In contrast, a camera's extrinsic parameters represent its location and rotation 

in space. The five intrinsic camera parameters are: 

1. The x-coordinate of the center of projection, in pixels tuo) 

The y-coordinate of the center of projection, in pixels (vo) 

. The focal length, in pixels (f) 
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4. The aspect ratio (a) 

5. The angle between the optical axes (a) 

The camera calibration matrix, denoted by K, contains the intrinsic parameters of the 
camera used in the imaging process. This matrix is used to convert between the retinal 

plane and the actual image plane: tan a 

f  (tan a) f uo  

	

P u 	 Py 

	

K= 0 	f 	vo 	 (2.3) 
P v 

	

0 	0 	1 

Here, the focal length f acts as a scale factor. Ina normal camera, the focal length 

mentioned above does not usually correspond to 1. It is also possible that the focal 

length changes during an entire imaging process, so that for each image the camera 

calibration matrix needs to be reestablished. 

The values p„ and p,, represent the width and height of the pixels in the image, c = [uo, 

vo]T  is the principal point and a is the skew angle. This is illustrated in Figure 2.2. 

r., 

Pv Pixel 

Pu 

Figure 2.2: Illustration of pixel skew.. 

It is possible to simplify the above matrix: 

•.f, s uo 
K=0 f vo 	 (2.4) 

0 0 1 
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w 	f„ and f„ are the focal lengths measured in width and height of the -pixels, s 
ants the pixel skew and. the ratio f: f, characterizes the aspect ratio of the 

We  approximate the skew factor s to zero and f = f = c, then equation (2.4) 

will 	to 

c 0 u0 
K= 0 c vo  (2.5) 

0 0 1 

It is ossible to use the camera. calibration matrix to transform points from the retinal 

Plankto points on the image plane: 

11t- = K 111 R 	 (2.6) 

Ther foie, equation (2.6) is very important in 3D reconstruction process. 

Now let us consider extrinsic parameters. Camera Motion in a 3D scene is represented 

by a rotation matrix R and a translation vector t. The motion of the camera from 

coor mate C1 to C2 is then described as follows: 

.~ 	R 	t C2_= O T 1 c1- 

3 (2.7) 

R is the 3x3 rotation matrix and t is the translation in the X-, Y - and Z-

'ons. The motion of scene points is equivalent to the inverse motion of the 

~a (Pollefeys [ 16] defines this as the other way around): 

RT —RTt 
M2=  L T 	

J M1 _  

103 T 1. 

Equa 	(2.1) with equations (2.2), (2.5) and (2.6) then redefine the perspective 

proje, 	matrix: 

-sni =K [R t 1 M_ whereP=K [R 	
(2.9) 

10 



Epipolar Line 

-2 

2.3 Epipolar Geometry 

The epipolar geometry exists between a two camera systems [18]. With reference to 

Figure 2.3, the two cameras are represented by Cl  and C2. Point ml  in the first image 
and point m2 in the second image are the imaged points of the 3D point M. Points el 
and e2 are the so-called epipoles, and they are the intersections of the line joining the 
two cameras C, and C2  with both image planes and the projection of the cameras in 
the opposite image. 

Figure 2.3: Epipolar Geometry 

The plane formed with the three points <C1MC2> is called the epipolar plane. The 

lines hnI and Im2 are called the epipolar lines and are formed when the epipoles and 

image points are joined. 

The point m2  is constrained to lie on the epipolar line Im1 of point nil. This is called 

the epipolar constraint. To visualize it differently: the epipolar line lml is the 

intersection of the epipolar plane mentioned above with the second image plane 12. 

This means that image point ml can correspond to any 3D point (even points at 

infinity) on the line <C1M> and that the projection of <C1M> in the secondimage 12 

is the line Im1. All epipolar lines of the points in the first image pass through the 

epipole e2 and form thus a pencil of planes containing the baseline <C1 C2>. 

The above definitions are symmetric, in a way such that the point of ml must lie on 

the epipolar line Im2 of point m2. 

Expressing the epipolar constraint algebraically, the following equation needs to be 

satisfied in order for nil and m2 to be matched: 

m2_T Fm1-=0 
(2.10) 
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-e F is a 3 x 3 matrix called as the fundamental matrix. The following equation 
holds: 

4711 = Fml- 	
(2.11) 

sin' a the point 1112 corresponding to point ml belongs to the line lmi [25]. The role of 
the images can be reversed and then: 

m~-T FTm2- = 0 
(2.12) 

ch shows that the fundamental matrix is changed to its transpose. 

use of equation (2.9), if the first camera coincides with the world coordinate 

then 

simi^ = Ki [ I3N 0 ] A^ 

s2m2-=K2 [R t 1 M 
(2.13) 

wh6 re K1 and KZ are the camera calibration matrices for each camera, and R and t 
describe a transformation (rotation and translation) which brings points expressed in 

the first coordinate system to the second one. The fundamental matrix can then be 

exdressed as follows: 

F = K2 _r [tkRKC ' 	
(2.14) 

[t]x is the antisymmetric matrix. 

Sine det([t]x ) = 0, det(F) = 0 and F is of rank 2. The fundamental matrix is also only 

defined up to a scalar factor, and therefore it has seven _degrees of freedom (7 

ind 	ar e endent ameters among the 9 elements of F). ,P  P  g 

A note on the •fundamental matrix: if the intrinsic parameters of the camera are 

known, such as in equation (2.14), then the fundamental matrix is called the essential 

mat~ix [25]. Another property of the fundamental matrix is derived from equations 

(2.110) and (2.11): 

Fe1-=FTej =0 
(2.15) 

, the epipolar line of epipole.et is F'ei. 
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2.4 VRML Representation 

VRML (Virtual Reality Modeling Language) is an object oriented standard for the 

representation of 3D-model [10]. More specifically, it is a scene-description language 

in which set of objects is described hierarchically with their appearance information, 

such as placement of object, events, transformation etc. VRML-code is a simple 

ASCII type code. 

Objects in VRML scenes can be broken into two components: their geometry, i.e. the 

shapes which make them up, and their qualities such as colors, materials, textures; and 

position or orientation. VRML uses the left-handed coordinate system; x is the width, 

y is the height, and z is the depth. 

After the file has been created, it could be easily published in the Web by placing it at 

a Web site. And VRML models are easily viewed by a web browser that supports the 

prevalent VRML file. Specifications to the file construction of VRML could be 

sourced freely from [31]. 

The general structure that comprised the essential elements used in this work is shown 

below. The files generated are called world files and have an extension '.wrl'. 

#VRML V2.0 utf8 
Shape { 

appearance Appearance { 
material Material { 

} 	I 
geometry IndexedFaceSet { 

solid TRUE 
cooed Coordinate { 

point [ 

} 
coordIndex 

} 

Figure 2.4: General Format of VRML file. 
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2.5 Texture Mapping 

eating surface properties, like color etc, from an image and a 3D model can be 

of as the inverse of creating an image from the model with known appearance 

[19] [21]. In image formation, or rendering, the image plane samples the light rays 

enter ng the camera from the scene. Two basic techniques are used to simulate these 

light rays: forward projection of surfaces from the scene into the camera, and back 

proje tion of rays from the camera into the scene, called ray tracing. In the forward 

ro'e~tion of surfaces, each surface in the model is projected into the image, updating P J  P J 

the c for of the image if that surface is visible. In ray tracing, each pixel is mapped to 

a ray (or set of rays) that intersect the scene. The color of the pixel is set based on the 

of that surface. In either case, the surface color can be determined by 

mapping, which models the surface color with an image, called the texture 

map. 

Text rre mapping in VRML is basically the same as texture mapping in all other areas 

of 31 graphics. It is all based on the same fundamental concepts.. 

The Texture Nodes in VRML 2.0 are: 

Texture: defines a still texture map using an image file. 

exture: defines a moving texture map using a movie file. 

: defines a still texture map made from explicit pixel values. 

defines a 2D transformation applied to texture coordinates. 

: where the texture nodes live. 

Shap6: where the Appearance node lives. 

inate: defines a set of 2D coordinates to be used to map textures to the 

vertiles of subsequent geometry nodes like IndexedFaceSet or ElevationGrid. 

In th VRML 2.0 format, the Texture node exists as part of an Appearance node. 

Mate ial, texture, and texture transform are always related to one another (see [28] 

[15]). Also, the Appearance node exists inside of a Shape node. This associates a 

specific appearance with a specific geometrical object (in the example below, a cube). 

No other object in the file will have this appearance unless specified by the 

programmer. 

14 



2.6 Rigid Body Transformation 

This is an assumption that an object's size and shape are invariant to its translation or 

rotation in the Euclidean space. We have assumed this to be true and valid in the 

entire course of the work. This fundamental assumption, if it breaks down, would 

result in high degrees of complexity in 3D-model reconstruction. For instance, the 

task of modeling the deformity of a fluid object that changes in shape after a 

transformation needs consideration of the fluid mechanics principles. Figure 2.5 

shows an example of a rigid body object. 

Figure 2.5: A Steel Cooler 
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CHAPTER 3. 	 IMAGE-BASED MODELLING 

3.1 Overview 

Recently, the trends of image-based modeling and rendering to reconstruct 3D-models 
have been reported in [1] [2] [4] [6] [8] [11]. Image-based modeling is a passive 

technique that relies primarily on a sequence of images to build its virtual mode. 

The basic idea is to take the views of an object from different angles (usually at least 
3 cameras are used as shown in Figure 3.1). However, depth information is lost during 
the image formation process when 3D structures in the world are projected onto 2D 

images. Multiple images from different viewpoints can be used to resolve this 

problem. Then, geometric information of the object of interest is extracted from each 

of these views and finally a 3D-model representation of this object is reconstructed by 
using computer graphic techniques. 

Figure 3.1: Images of object are captured from different views with known angle. 

However, this approach may also require high processing power, long training time 

and large memory requirements. But it is generally deemed that image processing and 

analysis of images in 2D domains are far easier than processing problems pertaining 

to 3D model-based rendering. And we will not require specialized equipments; a 

simple and cheap digital camera can be used to take images. 

17 



3.2 Related Work 

his chapter introduces and reviews some of the existing techniques of computer 

isi n in the area of computing a 3D Euclidean reconstruction using images of a scene 
Lkel by a standard camera. 

The reconstruction of a complex 3D object from multiple images has been a 

fun iamental problem in the field of computer vision. Given a set of images of a 3D 

obje t, in order to recover the lost third dimension, depth, it is necessary to compute 

the elationship between images through correspondence. By finding corresponding 
pri ~itives such as es oints, edges or regions between the images, 	that the p  g  g  g 

matching image points all originate from the same 3D object point, knowledge of the 

cam ra geometry can be combined in order to reconstruct the original 3D surface. 

So le of the research contributions in the field have proposed fully working systems 

for pecific applications, some other have instead mostly focused on one  or some of 

the i volved aspects but provided a general application context. For example, Moezzi 

et a. [22], [23], propose an entire specific system for image-acquisition, model-

and play-back interactive rendering, while Ofek et al. [21], mostly focus 

on a Ctraction of textures from a generic video sequence for high-fidelity model-based 

mapping. 

can well be different ways of generating 3D models from single or multiple 

images [1] [3] [16] [13] [17]. In this chapter, three of such approaches are discussed 

y. Section 3.2.1 discusses the formation of 3D structure from multiple images 

volume intersection technique. A survey of image-based volumetric scene 

struction can be found in the works of Slabaugh et al. [11]. 

In section 3.2.2, a marching cube technique is discussed which is used for smoothing 

of th@ surface generated in volumetric reconstruction technique. 

Section 3.2.3 contains brief introduction of metric 3D reconstruction and texture 

acquisition of surfaces of revolution from a single uncalibrated view. 
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3.2.1 Volume Intersection 

This is a class of methods of converting the geometric information obtained from 

images of an object into a set of cubes that best represents it [4] [8] [12]. This 

technique exploits the idea that, a bigger component can be obtained by using number 

of small basic components. This process is very much similar to the process of 
building house using number of bricks. 

Using number of small cubes as basic component, we can construct a complete 

approximate 3D-model (see Figure 3.2). In computer vision literature such cubes are 
called voxels and the process of fmding such cube is called voxelization. 

(a) 

Figure 3.2: (a) Number of cubes as building blocks, (b) Volume Intersection 

Intuitively, one would assume that a proper voxelization simply ensures all voxels are 

inclusive of the object body. Those that are not, are discarded away thus mimicking 

an effect of "carving" the shapes and curves that resembles that of an original object 
from independent views. Figure 3.3 shows.result of this method. 

a) 	 -b) 

Figure 3.3: (a) Actual image of Toy, (b) Extracted 3D-model of Toy using 
voxelization 
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3.2.2 Marching Cubes 

Cubes is an algorithm for rendering isosurfaces in volumetric data. It was 

by William E. Lorensen and Harvey E. Cline to extract surface information 

a 3D field of values [29]. 

basic notion is that we can define a voxel by the pixel values at the eight corners 

of the cube. Therefore a potential 256 possible combinations of corner status is 

obtained. By considering rotation, mirroring and Inverting the state of all corners it is 

that out of this 256 corner status combinations only 15 are required. 

Figure 3.4: 15 combinations of corner status. 

As 	in Figure 3.4, if one or more pixels of a cube have values less than the user- 

specified isovalue, and one or more have values greater than this value, we know the 
must contribute some component of the isosurface [26]. By determining which 

of the cube are intersected by the isosurface, we can create triangular patches 
divide the cube between regions within the isosurface and regions outside. By 

the patches from all cubes on the isosurface boundary, we get a surface 

as shown in Figure 3.5. 

Figure 3.5: Reconstructed•triangular patched surface using marching cube. 
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3.2.3 Metric 3D Reconstruction From SORs 

Metric 3D reconstruction from surface of revolution (SOR) is very recent contribution 
to image-based modeling. It was proposed by Carlo Colombo, Alberto Del Bimbo, 

and Federico Pernici [1] [2]. They addressed a method for solution to the problem of 

metric 3D reconstruction of a generic object and its texture acquisition from a single 
uncalibrated view of SOR. 

The proposed solution exploits the projective properties of imaged SORs, expressed 

through planar and harmonic homologies. These geometric constraints induced in the 

image by the symmetry properties of the SOR structure are used for camera 
calibration. The required parameters for camera calibration are directly obtained from 

the analysis of the visible elliptic segments of two imaged cross sections of the SOR. 

The same elliptic segments are used together with the SOR apparent contour, to 

reconstruct the 3D structure and texture of the SOR object, which are thus obtained 

from calculations in the 2D domain. 

Figure 3.6: Recovery of 3D structure. 

In Figure 3.6, it is shown that, elliptic imaged cross sections of the SOR can be 
used to recover the surface of generic imaged object. Since the homology 

constraints are of general applicability, the solution can be applied under full 

perspective conditions to any type of surface of revolution with at least two 

partially visible cross sections. 
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CHAPTER 4. 	 3D RECONSTRUCTION 

This Chapter will guide through the steps of solving problem for recovering the 3D 

shape of object using surface of revolution from multiple uncalibrated perspective 
views. 

In first two sections basic geometry of Single axis motion and surface of revolution is 

discussed. This is important in order to understand the underlying situation (geometry 

and complexity) so that the problem can be simplified and a concise algebraic 

solution computed. 

4.1 Single axis motion 

Given a static camera, and a generic -object rotating on a turntable (as shown in Figure 

4.1), single axis motion (SAM) provides a sequence of different images of the object. 

Now onward we will use the world coordinate system defined as follows: the positive 

X-direction is pointing to the right, the positive Y-direction is pointing upwards, and 

the positive Z-direction is pointing into the page. 

Figure 4.1: Image acquisition system consists of a turn table, a camera and a 

computer. 

This sequence can be imagined as being produced by a camera that performs a virtual 

rotation around the turntable axis while viewing a fixed object. 

Single axis motion can be described in terms of its fixed entities —i.e., those geometric 

objects in space or in the image that remain invariant throughout the sequence [24]. In 
particular, the imaged fixed entities can be used to express orthogonality relations of 

geometric objects in the scene by means of the image of the absolute conic (IAC) co — 
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an imaginary point conic directly related to the camera matrix K as co = K TK 1 [5]. 

Im ortant fixed entities for the SAM are the imaged circular points i,r and jr of the 

it of planes .n orthogonal to the axis of rotation, and the horizon l,r = in— jr of 

i pencil. The imaged circular points form a pair of complex conjugate points which 

lie on CO: 

l~T to Z~ = 0; 1T 	= 0 	 (4.1) 

Figure 4.2: Basic projective properties for an imaged SOR. 

In 
	ice, as in and in' contain the same information, the two equations above can be 

in terms of the real and imaginary parts of either point. Other relevant fixed 

are the imaged axis of rotation la and the vanishing point vr, of the normal 

to the plane passing through la and the camera center (see Figure 4.2). These 

are in pole-polar relationship with respect to Co : 

la = COVn 	 (4.2) 

(4.1) and (4.2) were used separately in the context of approaches to 3D 

from turntable sequences. In particular, (4.1) was used in [1] and in [5] 

to rjecover metric properties for the pencil of parallel planes 7r given an uncalibrated 

sequence. In both cases, reconstruction was obtained up to a 1D projective 

, since the two linear constraints on Co provided by (4.1) were not enough 

to calibrate the camera. On the other hand, (4.2) was used in [7] to characterize the 

ipolar geometry of SAM in terms of la and v,, given a calibrated turntable sequence. 

, in this case, the a priori knowledge of intrinsic camera parameters allows one 
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to obtain an unambiguous reconstruction. In the case of an SOR object, assuming that 

its symmetry axis coincides with the turntable axis, the apparent contour remains 
unchanged in every frame of the sequence. Therefore, for an SOR object, the fixed 

entities of the motion can be computed from any single frame of the sequence. 
According to this consideration, an SOR image and a single axis motion sequence 
share the same projective geometry: the fixed entities of SOR geometry correspond to 

the fixed entities of single axis motion. In particular, 

I. la  corresponds to ls; 

2. vn  corresponds to v. ; 

3. (hr , j ,r) correspond to (i, j ); 

4. L corresponds to l . i x j, where i and j denote the imaged circular points of the 

SOR cross sections. 

4.2 SOR geometry 

Being a subclass of SHGC, SOR enjoy all of their properties [2]. A SOR can be 

parameterized as a (0, y) = (p (y) cos 0, y, p (y) sin 0), where y is the (straight) 

axis of revolution. In 3D space, all parallels (i.e., cross-sections with planes y = 

constant orthogonal to the axis) are circles. The curves 8 = constant, called 

meridians, are obtained by cutting the surface with planes passing through the axis, 

and characterize the specific SOR shape through the scaling function p ( y). Parallels 

and meridians are locally mutually orthogonal in 3D space, but not in a 2D view (see 

Figure 4.3). 

(a) 	(b) 	(c) 

Figure 4.3: (a) Parallels and meridians on a SOR, (b) Apparent contour, (c) Image of 

the Meridian 
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observable curves in a SOR image are imaged parallels (which are 
ellipses, being the perspective images of circular curves) and apparent 
c (see Figure 4.3 (b)): the latter should not be confused with imaged 

idians. In fact, while meridians are planar 3D curves, an apparent contour is the 

of the (usually non planar) 3D curve of all the points at which the projection 
are tangent to the surface, referred to as generating contour. Figure 4.3 (b) and 

(c)remarks the difference between apparent contours and imaged meridians. 

Approach 

In his section we will describe the procedure of finding surface properties of the 

object. First we will define some assumption which will ease the process of camera 

bration and surface formation. Following are the requirements that should be 

1. Generic object to be modeled must be a rigid body (i.e. shape of object must 

be invariant to its translation or rotation in the Euclidean space, as section 2.6). 

2. The axis of rotation must exactly coincide with the middle of the image. 

3. Angle 0 = 100  should be constant between each pair of adjacent camera. 

4. We will have T = 36, where T is the total no images. 

5. We assume that, the aspect ratio and skew properties of natural camera to be 
known and remains to be invariant. 

6. Input sequence is the sequence of silhouetted image of the object taken by 

natural camera. Suppose, we want reconstruct a ball then Figure 4.4 (a) shows 

one instance of the silhouetted input image and Figure 4.4 (b) shows resultant 

3D-model. 

Figure 4.4: (a) Silhouetted Input Image, (b) Image of resultant object. 
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7. The vertical and horizontal sides of input image must exactly fit to the Retinal 

Image Plane delineated in Figure 2.1. Such alignment simplifies the procedure 

for projection and back projection between the 3D space and the image planes. 

The aforementioned assumptions 2, 3, 5, and 7 form a constrained environment by 

which 'we can avoid the need of actual camera calibration. Following section will 
discuss the issues pertaining to the avoidance of camera calibration. 

4.3.1 Avoiding a need for Camera Calibration 

From equation 2.9, P matrix can be split into two matrices, M; , and Mex,, which 
depend on the intrinsic and extrinsic camera parameters respectively. 

i.e. P = M1  Mext where. Mint = K, and Mex, — [ R t 
(4.3) 

Since we have cameras at different angles of rotation, 0 then for the 0' view, we 
manipulate Equation (4.3) using equation (2.5) as: 

c 	0 	uo  cos k8 	0 	'sin k9 1- 0 	0 	Xo 
Pk  = 0 	c 	vo  0 	1 	0 0 	1 	0 	Yo 	' 	(4.4) 

0. 0 	1— sin kO 	0 	cos k9 0 	0 	1 	Zo  

cos k9 	0 	sin k9 
where, Rk© = 0 	1 	0 and t = [x0  , 	, Zo f 

sin k8 	0 	cos k8 

Now, we will see the impact of changing Xo, Yo, and Zo one by one. First, let, us see 

the impact of changing the Yo value. It can be seen clearly that by changing- the Yo 

value, our camera coordinate system can be shifted up or down along that axis. This 

does not affect the shape integrity of our extracted 3D-model. Thus, we set the Yo 

value equal to 0. 

Next, we align our set up in such a way that our Xo is also set to 0. This can be done 

easily by intersecting the rotation axis with the center of the image. Thus, both of the 

coordinate systems are aligned with one another and are translated along the z 

direction only, i.e. into the page or outward to the page. 
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r, any imaged point (u, , v,) in input image taken from camera which is 

by an angle 0 from its previous view. Now, we want to estimate its 

rdinate in the virtual world coordinate system, and then from equation (2.1), we 

X s,u1  

	

sl y!  = Mint R0M,.rf Z 	 (4.5) 
S1  

1 

soljing equation (4.5), we get 

X 	cos(6)s, (u, — uo  )l c + (Zo  — s,)sin(9) 
Y = 	s,(v, —vo )/c 	 (4.6) 
Z 	cos(8)(s, —Zo )+ sin(g)s,(u, —uo )lc 

As Si, c, and Zo are constants, we can set them to any suitable value. The most 

sul le assignment will be taking the focal distance to be equal to the displacement 

the Z-direction. 

Zo =Si  = c 

, equation (4.6) will be simplified as 

X 	cos(8)(u1  —u0 )  

Y = 	(v, — v0 ) 	 (4.7) 

Z 	sin(8)(u, — uo  ) 

v, the only remained unknown in equation (4.7) is (uo  , v0 ), which can be. easily 

For this, we will consider the principal point (u0  , v0 ) to be coincided with 

the image center whose value is half the dimensions of the images being captured (i.e. 

input images). In equation_ (4.7), all unknown can be derived from the restricted and 

environment discussed above. This equation can be used further for the 

ivation of feature points. Hence, we have avoided the need for camera calibration. 

Derivation of the Feature Points 

In otder to compute geometric information we first extract interest points in the 

Usually, we use high curvature points as they can be easily manipulated and 



represented in projective geometry. To extract these points, we will trace the meridian 
left to the axis of rotation. We may obtain the set of imaged feature points X,, as 
shown in Figure 4.5. 

Xl,~ 
X l..i+r 	- 	l-~, i 

meridian : Axis of rotation 
(y - axis ) 

(a) 

j+r 

meridian 

(b) 

Figure 4.5: (a) Computation of feature points along meridian. (b) Extracted Feature 
Points. 

These points are estimated in all images independently. Once these points are found, 
we will use direct correspondence of points from image to the virtual 3D Space. 

As shown in Figure 4.5, the only entity to be derived is X;j, where 

X,, = (x,,., ,l',,j, z1, ) 
	

(4.8) 

X;, will be the surface points and they can be integrated to form a complete surface of 
3D-model. From the geometry of SAM, SORs, and equation (4.7), we can derive the 
unknowns as bellow. 

1. x,, j = r,, x cos (9) 

2. yr, J = l;, J or (Image height / 2 —1;,,) 

3. z,,~ = r,,~ x sin (B) 

where, 

i =0 tom — 1 (i.e. 0th image, 1St image, so on), 

j=0ton-1, 

m = total number of imaged points along parallels, (m = T). 

n = total number of imaged points along meridian. 

(4.9) 

(4.10) 

(4.11) 

As we are using r;, (as a vector) to calculate the coordinates of X,1, it will confirm 
that the imaged axis of rotation will pass through the origin and parallel to the y-axis 
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of our world coordinate system. Therefore, imaged axis of rotation will be the 

pr9jection of y-axis. The entire process of finding feature points can be 
summarized as bellow. 

for ( im = 0 to Total_No_Images) 
{ 

for (i=0tom-1) 
{ 

for(j=0ton-1) 

{ Find (X;,l) //from ith image 
} 

} 

Figure 4.6: Algorithmic summary of process of extracting feature points. 

Surface Formation 

In his step, we construct matched triangular meshes from the extracted feature points. 

z et al. [20] has proposed a piecewise linear approximation method of adaptive 

ygonization of regular surfaces of the Euclidean 3D space. In which it is suggested 

triangulation is the best technique in order to form smooth surface. We too, try to 

I the triangular pieces of the surface which are then integrated to form 3D-model. 

7• . 

a— (y - axis) 
r, j+1 

--------  -~ 

Xi+l,j+l 

ith meridian 	11th meridian 

Figure 4.7: Surface formation using feature points. 

In IFi re 4.7, four extracted feature points are shown. These four points will 
to the surface of resultant virtual object [20]. We can construct a portion of 

using triangulation, for example, points X,, ~, X;, j+1 andX;+l, j will form one 

iamgle and so others. 
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This process of surface formation can be easily visualized and understood by using 
epipolar geometry, as shown in Figure 4.8. 

C C2 

R ,J 
Figure 4.8: Epipolar geometry of two feature points from camera Ci and C2. 

In above figure, there are two points M and Q (at same height) from two images taken 
by two adjacent cameras Cl and C2. Points M and Q are equivalent to the feature 
points X,,; and Xi+,, j of Figure 4.7 respectively. As these two points are at same height 
and according to the epipolar constraints discussed in section 2.3, the line segment 
<MQ> of two feature points will constitute a surface indicated by a vertical arrow. 

We will use this simple and straightforward approach to form the surface. This will 
also ease the process of texture acquisition and its mapping (discussed in 4.3.4). 

4.3.4 Texture Acquisition 

Texture mapping is a shading technique for image synthesis in which a texture is 

mapped onto a surface in a three dimensional -scene, much as wallpaper is applied to a 
wall [9]. A view dependant texture acquisition technique used to acquire surface 

properties of object. If I is the image space then we will try to map it as 

X,, —3 I (u1 , v1) 

We will consider imaged points in pairs (i.e. point on the ith meridian and point on the 

i+lth meridian). We will make use of all T = 36 images. For texture acquisition 

following formulae can be used. 

For points on ith meridian 

X ,,.i = (x,, ,y,,,, z►,r) —3 (u; , v;) where, 

u,= (Image width /2—r.,~)+ A 
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Fd,r points on i+l'h  meridian 

1.1 - ( Xi+I , j,Y i+ I. j, zi+ I, j) -) (u 1+i vi+l) 

1, = (Image width / 2— r;, ) 

+sgrt((x,+l—x1)2.+( z ;+ t--.z1)2 )+ A 

v1+1,=y1+I,1+ A 

A = Error due to camera zooming/skew properties and/or misplacement of axis of 

ro ation. 

e pinhole camera model assumes that the imaging process is a perfect perspective 

)jection from world to image coordinate frames i.e. from 3D to 2D. However, real 

neras are not perfect perspective projections [24] (especially when used with a 

rt focal length lens) and non-linear distortions are introduced into the imaging 

cess. There are several different forms of non-linear distortion, where the error is a 

ial displacement proportional to an even power of the distance from the centre of 

image. 
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CHAPTER 5. 	DESIGN AND IMPLEMENTATION 

In this chapter designing and software implementation of the project is discussed. 

Input to the project is a sequence of T =18 or 36 digital images, 576 x 768 pixel 

dimension, taken at 0=20° or 10° radial graduations. They are read and stored in a 2D 

array and its individual elements are accessed using iterations.' 

The main software component is required to do calculations and tests to locate all 

intersecting feature points. The implementation details of finding feature points are 

described in section 5.2. 

Section 5.3 and 5.4 describe the process of surface. formation and texture mapping 

respectively. Section 5.1 contains the information about the representation of input 

image format. 

The source code listing is given in APPENDIX - B. The output is a 3D model in 

VRML format. 

5.1 Image Reading 

Before the images can be computationally processed, a thorough understanding of 

image format type is needed so as to extract intensity data from such files. The input 

going into the image-reading module is 8-bit grayscale TIF file and the output is a 2D 

integer array holding the intensity values of the image. 

TIF is an image file format and it begins with an 8-byte image file header that points 

to an Image File Directory (IFD). An IFD contains information about the image as 

well as pointers to the actual image data. 

Byte 0-1 : The byte order used within the file. The legal values are "IP' and "MM". In 

the "II" format; byte order is always from the least significant byte, for both 16-bit 

and 32-bit integers. In the "MM" byte order, the converse is true. 

Bytes 2-3 : An arbitrary but carefully chosen number (42) that further identifies the 

file as a TIFF file 

Bytes 4-7 : The offset in bytes of the first (IFD). The directory may be at any location 

in the file after the header. It is always used to refer to the beginning of the TIF file. 

The structure of.TIF file is described in Figure 5.1. 
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0 
2 
4 
6 

Byte Order 
42 
Offset of 0th  IFD 

 

 

IF I IIFI 

Image Image Image Image Image Image 
Value 1 Value n 	Value 1 Value n 	Value I Value n 

Figure 5.1: File Structure of the Tagged Image Format (TIF) 

ith understanding of the tiff file format, the image-reading algorithm is devised as 

own in Flowchart 1. 

Load TIF File 

Determine Byte order is 
ascending /descending 
& point to 0th  IFD 

Read Image values from 
IFD into 2D short array 
& Read offset & seek to 
next IFD 

No 

Last IFD ? 

Yes 

Completed 2D 
image array 

Flowchart 1: Image Reading module 
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5.2 Edge Finding 

The edges of an object in the image are nothing but the surface outlines. Edges have 

special benefit in 3D reconstruction, as they provide the most reliable information 

about the whole object. The most popular edge detection technique is Canny's edge 

detection [30]. 

As the input images to the proposed method are binary images (i.e. black and white), 

there is no difficulty in finding the edge points. We can follow the iterative approach 

to find these surface points. Following are the steps involved in this process. 

Step 1. The input image is read as discussed in section 5.1. The pixel 

dimensions are of 576 x 768 sizes. The pixels comprising the object body are 

assigned to value l and other pixels to 0. 

Step 2. Now it is required to search for the pixel elements with values 1. This 

can be done by using iterative algorithm row-wise or column-wise. We follow 

the row-wise approach as shown in Figure 5.2. 

Li 
Figure 5.2: Iterative step of finding edge points. 

In above figure there are 5 x 5 pixel elements depicted and a circular shape 

is shown. We go on searching the pixel elements row-wise until we get the 

pixel element with value 1. 

Step 3. This process is repeated for the other rows. Not all rows are needed to be 

searched. We can skip a known number of rows (three or four); but That 

number should be constant throughout the process in order to get better 

results. 

These extracted image points are called interest points or feature points. Once these 

points are found they need to be represented in a suitable mathematical form in order 

to analyze the captured information. This is given in section 5.4. 
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Surface formation 

this step the extracted feature points are integrated with each other in such a way 

they are made to form the surface of 3D-model. These points are joined in the 

. of uniform continuous grid of triangles as discussed in section 4.3.3. Intuitively, 

grid is a mesh of piecewise linear surface, consisting of triangular faces pasted 

along their edges. For our purposes it is important to maintain the distinction 

the connectivity of the mesh and its geometry. This piecewise curvilinear 

formation results into the surface of the body and it will also ease the process of 

acquisition. 

following two sub-sections we will define the representation of feature points in 

form of 2D and 3D interpretation. 

.3.1 2D Point 

Image Plane 

Figure 5.3: 2D Image Coordinate System. 

Figure 5.3, a 2D image coordinate system is shown. We have to transform this 2D 

ordinate system into the 3D world coordinate system. The 2D points in the image 

ane are referenced from top-left corner which will have coordinated (0, 0). With 

to this point, every point in this plane can be represented by vertical 

displacement as X-coordinate and horizontal rightward displacement as Y- 

te. 

the pointp shown in Figure 5.3 can be represented as 

q=[x,y] 

.2 3D Point 

2D point is transformed into the 3D point using equation (4.9), (4.10), and (4.11). 

Q = [x,y,Z] 
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5.3.3 Surface stitching 

By a surface we mean a "compact, connected, orientable two-dimensional manifold, 
possibly with boundary, embedded in 3D coordinate system" [27]. Figure 5.4 depicts 

the process of surface formation, in which six feature points are shown. These feature 

points are used to form a piecewise triangular continuous grid of partial surfaces. 

q2 	~' 	J R6 
q4 

Figure 5.4: Triangular grid formation from feature points. 

The order of the formation of triangles is kept as discussed in section 4.3.3. This can 

be done using following algorithm. 

for ( im = 0 to Total_No_Images) 
{ 

for (i=0 to m — 1) 
{ 

for(j=0ton-1) 
{ 

Triangle_Formation ( ) 
} 

} 
} 

Figure 5.5: Algorithm describing the process of surface formation. 

5.4 Texture Mapping 

To allow texture-mapping, a surface must be parameterized onto a texture domain 

by assigning texture coordinates to its vertices. Generally, most of the texture 

mapping techniques involves the parameterization of a 3D surface onto the 2D 

domain for the purpose of texture-mapping [28]. 

In VRML, texture mapping is achieved by assigning a 2D texture map coordinate 

to each 3D vertex. The texture is then interpolated between vertices. The simplest 

approach is to use a whole camera image as a texture map and provide the 

correspondences between 3D model points and image points. 

37 



CHAPTER 6. 	 RESULTS 

The experiments are performed on a personal computer with 256 MB of RAM, Intel 
PIV 2.00GHz CPU and 32MB frame buffer. The images are captured with a 2/3" 

Color Progressive scan CCD camera at a resolution of 1280x960. 

The algorithm to find feature points, surface formation, and texture mapping are 

successfully implemented in Visual C++. The experiments have been performed on 

various shapes of objects. The _obtained results are compared with the 3D-models 
derived using Voxelization. 

6.1 Using Homologous images 

Homologous images are the best suitable candidates for input to the proposed method. 

Homologous images preserve the similarity in position, structure, etc. They can be 

placed exactly bilateral symmetrical to the axis of rotation. There can be many 

families of such homologous images. Figure 6.1 shows some homologous 'images of 

simple geometrical shapes as inputs and their corresponding outputs. 

(a) 	 C 

(d) 	 (e) 	 (f) 

Figure 6.1: (a), (d) Input Images; (b), (e) Output using Voxelization; (c), (f) Output 

using Proposed Method. 

In proposed method, texture acquisition can be done very easily and effectively as 

discussed in section 4.3.4. Following figures show the texture mapped output. 
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I!.;.' 
6.2: Top — Input: Homologous imaged objects, Bellow — Their corresponding 

reconstructed 3D-models. 

Using Reduced Number of Images 

U  till now, we have used all T = 36 or 18 images for 3D acquisition. We can make 
an arrangement to use reduced number of images. This can be done by extracting 
feaure points on the both sides of axis of rotation. The point on the right of the axis of 
rotation can be thought of as being extracted from the image which is 1800  ahead of 
cuirent image. In this way, by using first T/2 number of images we can construct 
coiiplete 3D object. But for texture acquisition we have to use all images in order to 
ca ture all information. Figure 6.3 shows object which is reconstructed using T = 4 
n ber of views (i.e. 0=90°).  Only first two images are used to extract feature points 
ancj all four images are used to acquire texture information. 

Figure 6.3: 3D-model of object is reconstructed using 4 views. 



6.3 Using Non-homologous images 

The non-homologous images exhibit structural differences amongst them. In 
APPENDIX-A some sample of non-homologous images are shown. Though there 

are structural differences they can be used to reconstruct 3D-models. 

As these images are the resultant of image acquisition process discussed in section 
4.1 and due to the inherent nature of single axis motion, these differences between 

two images taken by adjacent cameras are not too much if we consider large 

number of views. ith  and i± 1th  images slightly differ in their structure as the 

camera is rotated by an angle 0. Usually, T = 36 number of images are enough to 

reconstruct complete 3D-model as shown in Figure 6.4. 

(a) (b) 	 (c) 

Figure 6.4: (a) Input image of Toy, (b) Output using Voxelization, (c) Output using 
Proposed Method. 

6.4 Limitations and Accuracy 

Limitations 

1. As we have avoided camera calibration, we are able to derive 3D-models up to 

an unknown scale factor. But it is found that object maintains shape integrity. 

2. As the case with other image-based modeling, this method also suitable for 

convex surfaced objects only. 

3. This technique is extremely view as well as image dependent. 

4. Texture mapping is highly sensitive to camera zooming and skew factor. 
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accuracy of any reconstruction depends on several factors: . 

1. The number of images containing views of the same points increases the 

number of rays back-projected when estimating the position of a point. This 

should reduce the effect of errors introduced by image noise. 

The distance between the camera centers, known as the baseline. If the 

baseline is small, the angle between the back-projecting rays will be small, and 

image noise can produce a large error in back-projection. However, if there is 

a large baseline, the back-projecting rays are generally well-conditioned and 

the image noise has a smaller effect. 

3. The accuracy of the . information known about the. camera, - the motion 

involved, and the objects in the scene, including: 

— The camera motion. If for example, the camera is assumed to only 

translate, with no rotation, then how close is the actual motion to this 

assumption? 

— Assuming a set of points lies on a planar surface in the scene. 

— The camera calibration. 
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CHAPTER 7. 	CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

This thesis has explored the 3D reconstruction of real-world generic objects using 

multiple homologous and view dependent images obtained by natural hand held 

camera. An algorithm for finding feature points has been successfully implemented. 

Furthermore, these- points are used for surface formation with its surface properties, in 

order to implement texture mapping. 

Following conclusions can be drawn: 

— To avoid the need for camera calibration the constrained and controlled 

environment can be provided by choosing aspect ratio to unity, ignoring skew 

factor and choosing principal point to coincide with the centre of image. 

— Therefore, the proposed method allows a computer to automatically generate a 

realistic 3D model when provided with a sequence of images of an object or 
scene. 

— The results show that the 3D-models are fairly accurate and can be obtained 

from homologous as well as non-homologous images. 

— The technique employed is simple and straightforward. 

7.2 Future work 

While much research has been conducted in 3D reconstruction and reconstructions are 

becoming increasingly photorealistic, improvements are still needed in order to 

accurately and efficiently recover the 3D object from images. 

The approach presented in this thesis can be extended in a number of ways. 

Geometric accuracy, realistic surface reflectance and methods to account for complex 

large-scale dynamic environments, and real-time 3D reconstruction from video 

sequences remain areas , of research and development in the field of 3D scene 

reconstruction. 
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APPENDIX - A 

Samples of Non-homologous Images and their silhouettes 

Calibration images 

Calibration images 



—B 

Name: image_open.cpp 
file contains the code listing required to open image file and to read it 

The input file is in the form of TIF format. 
his code listing contains the implementation of storing and retrieving information 
>ntained in the input file. 

////////////I////////////////////I////////I///////////I//I//I///l/I//I/////I 
#include "Cips.h" 
#include <stdio.h> 
4iort **allocate image_array(long Iength,long width) 

int i; 
short **the array; 
the array = malloc(length * sizeof(short *)); 
for(i=0; i<length; i++) { 

the_array[i] = malIoc(width * sizeof(short )); 
if(the_array[i] _ '\O') { 

printf("\n\tmalloc of the_image[%d] failed", i); 
} /* ends if */ 

} /* ends loop over i */ 
return (the_array) ; 
/* ends allocate image_array */ 

l tiff image(char image_file_name[],short **the_image) 

char *buffer, /* CHANGED */ 
rep[80]; 

int bytes_read, 
closed, 
position,. 
i, 
j; 

FILE *image_file; 
float a; 
long line_length, offset; 

-t tiff_header struct image header; 
tiff header(image_file_name, &image_header); 

/*********************************************** 
* Procedure: 
* Seek to the strip offset where the data begins. Seek to the first line you want. 
* Loop over the lines you want to read. Seek to the first element of the line. 
* Read the line. Seek to the end of the data in that line. 
************************************************/ 
iage_file = fopen(image_file_name, "rb"); 
image_file !NULL) 

II 



position =.fseek(image_file, 
image_header.strip_offset, 
SEEK_SET); 

for(i=0; i<image_header.image_length; i+t-){ 

bytes_read = read line(image_file, the_image, 
i, &image header, 
0, image_header.image_width); 

} /* ends loop over i */ 
closed = fclose(image_f le); 

} /* ends if file opened ok */ 
else{ 

printf("\nRTIFF.C> ERROR - cannot open ravi2 " 
"tiff file"); 

} /* ends read—tiff image */ 

/********************************************** 

* read_line(... 
* This function reads bytes.from the TIFF. file into a buffer, extracts the numbers 
* from that buffer, and puts them into a ROWSxCOLS array of shorts. The 

process 
* depends on the number of bits per pixel used in the file (4 or 8). 
********************************  

read_line(FILE *image_fle,short **the_image,int line_number, 
struct tiff header struct * image _header,int ie,int le) 

char *buffer, first, second; 
float a, b; 
int bytes_read, i; 
unsigned int bytes_to_read; 
union short char_union scu; 
buffer = (char *) malloc(image_header->image_width * sizeof(char )); 
for(i=O; i<image_header->image_width; i++) 

buffer[i] = 
/******************************************** 
* Use the number of bits per pixel to 
* calculate how many bytes to read. 
******************************************* 

bytes_to_read = (le-ie)/ 
(8/image_header->bits_per_pixel); 

bytes_read = fread(buffer, 1, bytes_to_read, 
image_file); 

for(i=0; i<bytes_read; i++) { 
/********************************************* 

* Use unions defined in cips.h to stuff bytes into shorts. 

if(image_header->bits_per_pixel == 8){ 
scu.s_num 	= 0; 
scu.s alpha[0] 	= buffer[i]; 
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the_image[line_number][i].= scu.s_num; 
} /* ends if bits_per_pixel = 8 */ 
if(image_header->bits_per_pixel = 4){ 
scu.s_num 	= 0; 
second 	= buffer[i] & OX000F; 
scu.s_alpha[0] 	= second; 
the_image[line_number][i*2+1] = scu.s_num; 
scu.s_num 	= 0; 
first 	= buffer[i] >> 4; 
first 	= first & Ox000F; 
scu.s_alpha[0] 	= first; 
the_image[line_number][i*2] = scu.s_num; 
) /* ends if bits_per_pixel = 4 */ 
/* ends loop over i */ 

ree(buffer); 
•eturn(bytes_read); 
/* ends read line *f 

tiff header( char file name[],struct tiff header struct *image_header) 

har buffer[12], response[80]; 
ILE *image  file; 

nt bytes_read, closed, i, j, lsb, not_finished, position; 
ong bits_per_pixel, image_length, image_width,length_offield, offset to_ifd, 

st ip_offset, subfile, value;  
hort entry count, field type, s_bits_per_pixel,s_ image _length,s_image_width, 

s trip_offset, tag_type; 
mage_file = fopen(file_name, "rb"); 
f(image_file == NULL) 

• printf("\n Warning %s" , file_name); 
exit(0); 

f(image_file !NULL)( 
/************************************* 

* Determine if the file uses MSB first or LSB first 

)ytes_read = fread(buffer, 1, 8, image_file); 
f(buffer[0] = 0x49) 
lsb = 1; 

Isb = 0; 

/************************************* 

* Read the offset to the IFD 

ract long_from_buffer(buffer, lsb, 4, &offset_to_ifd); 
finished = 1; 

ile(not f nished) { 
/************************************* 
* 	* Seek to the IFD and read the entry count, i.e. the number of 
* entries in the IFD. 
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position = fseek(image_file, offset_to_ifd, SEEK SET); 
bytes read = fread(buffer, 1, 2, image_file); 
extract_short_from_buffer(buffer, lsb, 0,&entry_count); 

** Now loop over the directory entries. Look only for the tags we need. These 
* are: ImageLength ImageWidth BitsPerPixel(BitsPerSample) StripOffset 

for(i=O; i<entry_count; i++){ 
bytes_read = fread(buffer, 1, 12, image_file); 
extract_short_from_buffer(buffer, Isb, 0, &tag_type); 
switch(tag_type) { 

case 255: /* Subfile Type */ 
extract_short_from_buffer(buffer, lsb, 2,&field_type); 
extract_short_from_buffer(buffer, lsb, 4, &length_of field); 
extract_iong_from_buffer(buffer, Isb, 8, &subfile); 
break;. 

case 256: /* ImageWidth */ 
extract_short_from_buffer(buffer, Isb, 2, &field_type); 
extract_short_from_buffer(buffer, lsb, 4, &length_of field); 
if(field_type = 3){ 
extract_short_from_buffer(buffer, lsb, 8,&s_image_width); 
image_width = s_image_width; 

else 
extract_long_from_buffer(buffer, lsb, 8,&image_width); 
break; 

case 257: 1*  ImageLength */ 
extract_short_from_buffer(buffer, Isb, 2, &field_type); 
extract_short_from_buffer(buffer, lsb, 4, &length_of field); 
if(field type = 3){ 
extract_short_from_buffer(buffer, lsb, 8, &s_image_length); 
image length = s_image_length; 

else 
extract_long_from_buffer(buffer,_lsb, 8, &image_length); 
break; 

case 258: /* BitsPerSample */ 
extract_ short_from_buffer(buffer, lsb, 2, &field_type); 
extract_short_from_buffer(buffer, lsb, 4,&Iength_of_field); 
if(field type = 3) { 
extract_short_from_buffer(buffer, lsb, 8, &s_bits_per_pixel); 
bits_per_pixel = s_bits_per_pixel; 

else 
extract_long_from_buffer(buffer, lsb, 8,&bits_per_pixel); 
break; 

case 273: /* StripOffset */ 
extract_short_from_buffer(buffer, Isb, 2, &field_type); 
extract_short_from_buffer(buffer, lsb, 4, &length_of field); 
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if(field_type = 3) { 
extract short from _buffer(buffer, Isb, 8, &s_strip_offset); 
strip_offset = s_strip_offset; 

} 
else 
extract_long_from_buffer(buffer, lsb, 8, &strip_ offset); 
break; 

default: 
break; 

} /* ends switch tag_type */ 
} /* ends loop over i directory entries *1 
bytes_read = fread(buffer, 1, 4, image_file); 
extract_long_from_buffer(buffer, lsb, 0,&offset_to ifd); 
if(offset_to ifd == 0) not finished = 0; 
/* ends while not_finished */ 

aage_header->1sb 	= Isb; 
nage_header->bits_per_pixel =. bits_per_pixel; 
nage_header->image_length 	= image_length; 
nage_header->image_width 	= image_width; 
n age _head er->strip_offset 	= strip_offset; 
losed = fclose(image_file); 
/* ends if file opened ok */ 

printf("\n\nTIFF.C> ERROR - could not open raviI" 
"tiff file"); 

ends read—tiff header */ 

*************************************** 

* extract_long_from_buffer(... 
* This takes a four byte long out of a buffer of characters. It is important to 

w the byte order LSB or MSB. 

_long_from_buffer(char buffer{],int lsb,int start, long *number) 

nti; 
nion long_char_union Icu; 

~
f(lsb = 1){ 
lcu.1_alpha[0] = buffer[start+0]; 
lcu.l_alpha[1] = buffer[start+l]; 
lcu.l_alpha[2] = buffer[start+2]; 
lcu.l_a.lpha[3] = buffer[start+3]; 

} /* ends if lsb = 1 */ 
if(lsb = 0){. 

Icu.l_alpha[O] = buffer[start+3]; 
Icu.l_alpha[1] = buffer[start+2]; 
lcu.l_alpha[2] = buffer[start+1]; 
lcu.l_alpha[3] = buffer[start+0]; 

} /* ends if lsb =-0 	*/ 
*number = lcu.1_num; 
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} /* ends extract long_from_buffer */ 
/**************************************** 
* * 

 

extract_ short_ from_ buffer(... This takes a two byte short out of a buffer of 
characters. * It is important to know the byte order * LSB or MSB. 

extract short_ from_buffer(char buffer,int lsb, int start,short* number) 
{ int i; 

union short_ char_ union Icu; 
if(lsb == 1){ 	 - 

lcu.s_alpha[O] = buffer[start+0]; 
lcu.s_alpha[1] = buffer[start+l]; 

} /* ends if lsb = 1 */ 
if(lsb = 0){ 

lcu.s_alpha[O] = buffer[start+l]; 
lcu.s_alpha[1'] = buffer[start+O]; 

} /* ends if lsb = 0 	*/ 
*number = lcu.s_num; 

} /* ends extract_short_from_buffer */ 
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File Name: My_Binary_Matrix.h 
This file contains code. listing to store and retrieve binary matrix of Os and Is. 

class My_Binary_Matrix 
{ 

private: 
unsigned int * matrix; 
int col_size; 

public: 
My_Binary_Matrix(); 
My_Binary_Matrix(int,int);////to get size of matrix 
void set_val_of_row_col(int no of_rows,int no_of cols); 
unsigned int *get_address(int r,int c); 	r  
void assign_value_at(int r,int c,int value); 
'int get_value_from(int r,int c); 
unsigned int get_u_int_value(int r,int c); 

e Name: My_Binary_Matrix.cpp 
is file contains code listing to store and retrieve binary matrix of Os and Is. 

#include "My_Binary_Matrix.h" 
# nclude <stdlib.h> 
#include <iostream.h> 
#jnclude <string..h> 

y_Binary_Matrix::My_Binary_Matrix() 
{ 

matrix = NULL; 
col_size = 0; }  

My_Binary_Matrix::My_Binary_Matrix(int no_of rows,int no_of cols) 

if((no_of_cols % (8 * .sizeof(unsigned int))) = 0) 
col_size = no_of_cols / (8 * sizeof(unsigned int)); 

else 
col_size = no_of cols / (8 * sizeof(unsigned int)) + 1; 

matrix = new unsigned int[no_of_rows * col_size]; 
for(int i = O;i < 3;i++) 

for(intj = O;j <3j-i-+)  
{ 

matrix[i * col_size + j] = 0; 

id My_Binary_ Matrix: :set_val_of row_col(int no_of rows,int no—of cols) 

if((no_of cols % (8 * sizeof(unsigned int))) == 0) 

VIII 



col size = no_of cols / (8 * sizeof(unsigned int)); 
else 

col size = no_of_cols / (8 * sizeof(unsigned int)) + 1; 
matrix = new unsigned int[no_of_rows * col size]; 
for(int i = O;i < 3;i++) 

for(int j = O;j < 3;j++) 
{. 

matrix[i * col size +j] = 0; 
} 

} 
void My_Binary_Matrix::assign_value_at(int r,int c,int value) 
{ 

if(value == 0 11value = 1) 
{ 

unsigned int * address; 
address = get_address(r,c I (8 * sizeof(unsigned int))); 
if (value == 0) 
{ 

unsigned int temp = 2147483648;1/32768; 
temp = temp >> c % (8 * sizeof(unsigned int)); 
temp = — temp; 
*address = *address & temp; 

} 
else 
{ 

unsigned int temp = 2147483648; 
temp = temp >> c % (8 * sizeof(unsigned int)); 
*address = *address f temp; 

} 
else 
{ 

cout<<endl<<"Error : Binary Matirix Element can't be other than 0 or 
1 "<<endl; 
exit(0); 

int My_Binary Matrix:: get_value_from(int r,int c) 
{ 

///check for valid r, c - here is no check made in this function 

unsigned int temp; 
temp = get_u_int_value(r,c); 
temp ='temp <<c % (8 * sizeof(unsigned int)); 
temp =. temp >> (8 * sizeof(unsigned int)) - 1; 
return temp; 

} 
unsigned int * My_Binary_Matrix:get_address(int r,int c) 
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{ 
return &matrix[r * col_ size + c]; 

} 
unsig ' ed int My_Binary_Matrix::get_u_int value(int r,int c) 

return matrix[r * col size + Cl (8 * sizeof(unsigned int))]; 
} 

Fileame: global.h 
This file contains code listing for the global parameters 

1define PI 3.14159265358979 

#define HEIGHT 576 
/define WIDTH 768 

#de ine h_DIST I 
#define w_DIST I 
#de~lfine SIZE ((h_DIST)*(w_DIST))  
#d fine INC SIZE ((h_DIST+I)*(w_DIST+I)) 
#ddfine PERCENTAGE I 

#dfine ANGLE 10 
#d fine No_Of_V iews 36 

#d~ fine Ii RANGE 9 
#dfine w RANGE 6 

// define Scale 40 -- safi 
#define Scale 0 

Total_Pieces wrt_Height; 
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File Name: main.cpp 
This file contains code listing for extracting feature points and formation of surfaces 

#include "rvrml.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include "global.h" 

#include "image open.h" 
#include "My_Binary_Matrix.h" 
//#include "octreenode.h" 
//#include "process_image.h" 
int h Next of first_img,h_Next_of Next_img = 0; 

//void find_matrix(short **image_i,char matrix[] [WIDTH]); 
void find_matrix(short **image_i,My_Binary_Matrix &matrix); 

void main() 

int im,ij; 
My_Binary_Matrix matrix[No_Of_Views]; 
char s[20]; 
char filename{100]; 
short **image_i; 

image_i = allocate_image array(HEIGHT, WIDTH); 
for(im = O;im < No_Of_Views; im++) 
{ 

strcpy(filename,"G:\\Try\\image_source\\New_Folder_61\\bw
^ 

 shoe"); 
sprintf(s,"%d",((im % No_Of_Views)*ANGLE)); //*N 
ttrcat(filename,$); 
strcat(filename,".tif`); 
read -  tiff_image(filename, image_i); 
matrix[im].set_val_of_row_col(HEIGHT, WIDTH); 
find_matrix(image_i,matrix[im]); 

} 
free memory_of image_array(image i,HEIGHT, WIDTH); 

point first_point,second_point,third_point,fourth_point; 

int c= O,Point Flag = 0, Write Flag = 0; 

rvrml v; 

for(im = 1; im <=No_Of_Views; im++) 
him = I; 
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/// for texture map 

rcpy(filename, "G:\\martch_cube\\Try_marching\\output\\temp_fi le.txt"); 
•v.set_temp_file_name(filename); 
strcpy(fi l en ame,"colored_ shoe"); 
strcat(fi lename,". j pg"); 
v.new_shape(filename); 

////texture 
cout << "Processing "<<im<<" irnage"<<endl; 

for(i = O;i < HEIGHT; i+= h RANGE) 

if(i >= HEIGHT) 
break; 

for(j = 0;j <= WIDTH/2; j++) 

if(matrix[im% No_Of Views].get_value from(i,j) 

first_point.p = i; 
first_point.q =j; 
first_point.view = im% No_Of_Views; 
Write_Flag = 1; 
Total_Pieces_wrt_1-leight++; 
break; 

} 
for(j = O;j <= WIDTI-I/2; j++) 

if(matrix[(im+l)%No Of Views].get_value_from(i,j)== 1) 

second_point.p = i; 
second_point.q = j; 
second_point.view = (im+l) % No_Of_Views; 
Write Flag = 1; 
break; 

if(Point Flag = 0 && Write Flag = 1) 

////first ponit 
v.write(convert_2d_to_3d_point(first-  point,-I));, 
////second ponit 
v.write(convert 2d to_3d_point(second_point,-1)); 

} 
else 
{ 

if(Write_Flag = 1) 
{ 
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////third ponit 
v.write(convert 2d to_3d_point(first_point,-1)); 

////fourth point 
v.write(convert 2d to_3d_point(second_point,- 

1)); 	4 

} 
} 
Point_Flag = (Point_Flag + 1) % 2; 
Write_Flag = 0; 

} 
v.end_shape(im); 
Total Pieces wrt Height = 0; 

} 
cout<<endl<<"c = "«c; 

I] 

void find_matrix(short * * image_i,My_Bi nary_Matrix &matrix) 
{ 

int i,j; 
for (i=0;i<HEIGHT;i++) 
{ 

fo r(j =0;j <W IDTH; j++) { 

matrix.assign_valu e_at(i, j,0); 
if (image_i[i][j] = 255) ///for back black & object white 
//if (image i[i][j] = 0) ///for back white & object black 
{ 

image_i[i][j]=1; 

//v.write(' 1'); 
} 
//else 

//v.write("); 

int k=0,1=0,sum=0; 
//for(i = 0;i < HEIGHT ;i += h DIST)//64 

//for(j = 0;j <WIDTH j += w_DIST)//256 
for(i = 0;i < HEIGHT -h_DIST;i += h_DIST)//64 

ford = 0; j <WIDTH -w DIST ;j += w_DIST)//256 
{ 

sum=0; 
for(k = i; k< i+h_DIST; k++) 

• for(1= j;l< j+w DIST;I++) 
{ 

if(image_i[k][l] >= 1) 
• sum++; 
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if(((double)sum/SIZE)>=PERCENTAGEII((double)sum/SIZE)<= 0.0) 
{ 

sum=0; 
for(k = i; k< i+h_DIST+1; k++) 
for(I = j;l< j+w_DIST+1;1+--) 
{ 

if(image_i[k][1] >= 1) 
sum++; 

if(((double)sum / [NC SIZE) >= PERCENTAGE) 
continue; 

else 
if(((double)sum / INC_SIZE) <= 0.0) 

continue; 
else 
{ 

//cout<<endl<<((double)sum/SIZE); 
for(k = i;k < i+h_DIST+I;k-++) 
{ 

if(image_i[k][j] >= 1) 
matrix.assign_value at(k,j, 1); 
//cout<<"rav i"; 

if(image_i[k][j+w_DIST-1] >= 1) 
matrix.assign_value_at(k, j+w_DIS T- 

) 
for(1= j;1 < j+w_DIST+1;1++) 
{ 

if(image_i[i][1] >= 1) 
matrix.assign_value_at(i,1, I); 
//cout<<"ravi"; 

if(image_i[i+h_DIST-I][1] >= 1) 
matrix.assign_value_at(i+h_DIST-1,1,1); 

} 

//cout<<endl<<((double)sum/SIZE); 
for(k = i;k < i+h_DIST;k++) 
{ 

if(image_i[k][j] >= 1) 
matrix.assign_value_at(k,j,1); 
//cout<<"ravi"; 

if(image_i[k][j+w_DIST] >= 1) 
matrix.assign_value_at(k,j+w_DIST,1); 

} 
for(l = j;l < j+w_D1ST;l++) 
{ 



if(image_i[i][I] >= 1) 
matrix.assign value_at(i,1,1); 
//cout<<"ravi"; 

if(image_i[i+h_DIST][1] >= 1) 
matrix.assign_value_at(i+h_DIST,1,1); 
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File Name: vrml.h 
This file contains code listing for VRML file creation 

// rnode2.h: interface for the mode class. 
// 
lllllllllll iii/iilllllllllllliI/iiilllll/ll///till//1/llllllllliilll 
#include <iostream.h> 
#includ <fstream.h> 

struct point 
{ 

ant p,q;///p - h direction , q - w direction 
lint view; 

struct point_3d 
{ 

double x,y,z; 

point_ d convert_2d_to_3d_point(struct point,int d); 
class rvnnl 
{ 
privat 

int count; 

fstream ofile,temp_file; 

pub' 
//ObNode rnd[20193]; 
/tint index; 
/tint view[20193];///// 1,-1 for +ve,-ve X 

%//// 2,-2 for +ve,-ve Y 
/////3,-3 for +ve,-ve Z 

rvrml(); 
///void write(float,float,float,int);////x, y,z,size 
void write(); 
void write(char); 
void write(point_3d); 
void new_shape(char str[]); 
void end_shape(int view); 
void set temp_file_name(char str[]); 
void write_ to_temp_file(point & one,point & two,int height,int width); 
void wrt_form_temp_to_main_fileO; 
void close_temp_file(); 
virtual —rvrml(); 
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File Name: vrml.cpp 
This.file contains code listing for VRML file creation 

// vrml.cpp: implementation of the vrml class. 
// 
/IIIIIIIIIIIII //1II ///II ///I f///II ///I /I /II ///III //III //I u////f /I //I // 

//////I ////////////////f////////////////I /f///////I f///I f////I //I ///// 
// Construction/Destruction 

point_3d convert 2d to 3d_point(point dot,int d)///d - direction form left or right 

point_3d temp; 

if(d=-1) 
{ 

temp.x = -((dot.q - WIDTH/2 - 1)*sin((dot.view *ANGLE)*PI/1 80));// 
+( WIDTH-HEIGHT) ); 
temp.z = ((dot.q - WIDTH/2 - 1)*cos((dot.view 
*ANGLE)*PI/180));///+( WIDTH-HEIGHT) ); 
temp.y = dot.p; 

} 
else 
{ 

temp.x = -(dot.q- - WIDTH/2 - 1)*sin((dot.view *ANGLE' + 
180)*Pl/180); 

temp.z = (dot.q - WIDTH/2 - 1)*cos((dot.view *ANGLE + 
180)*PI/180); 

temp.y = dot.p; 
} 

return temp; 
} 
rvrml::rvrmlO 	 - 
{ 

count = 0; 
//index = 0; 
ofile.open("G :/martch_cube/Try_march ing/output/test_out.wrl",ios:: injios::out 

); 
//fofile is used to as Read/Write file 
if(!ofile) 
{ 

cout<<endl<<"unable to open file "<<endl; 

ofile << "#VRML V2.0 utf8\n"; 
0 
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void rurml::new_shape(char str[]) 
{ 

ofile << "Shape { \n"; 
ofile << "\t appearance Appearance { \n"; 
ofile << "\t\t material Material { \n"; 
ofile << "\t\t 	diffuseColor 0.81 0.71 0.23\n"; 
ofile << "} "• 

ofile << "\t texture ImageTexture { \n"; 
ofile << "url [" <"\"<<str<<"\"]\n"; 

ofile << "\n\t\t} 	 \t\t} \n"; 

ofile << "geometry IndexedFaceSet {\n"; 
ofile <<"\t solid TRUE\n"; 
ofile << "\t coord Coordinate { \n"; 
ofile << "\t 	point [\n"; 

} 
vol rvrml::end_shape(int view) 
{ 

ofile << " 	 ] 	#end point\n "; 
ofile << "  

ofile << "texCoord TextureCoordinate {\n"; 
file << "point [\n"; 

temp_fi le.seekg(0000L); 

for(int j = 0; j <Total_Pieces_wrt_Heightj++) 
{ 

ofile << (double)((view-1) * WIDTH/No_Of_Views)/WIDTH <<" 
1-((double)(] * HEIGHT/(Total_Pieces_wrt_Height-1))/HEIGHT)<<"  

. ofile << (double)((view-1) 	* 	WIDTH/No_Of Views + 

	

)TH/No_Of_Views)/WIDTH 	<<" 	 "<<I-((double)(] 
GHT/(Total Pieces_wrt_Height-1))/HEIGHT); 

ofile <<endl; 
} 

close temp_file(); 

ofile << "] \n"; 
ofile << "} # end textcoord\n"; 

ofile <<" 	coordlndex [ \n"; 

for(int im = 0; im < count; im += 2) 
{ 

ofile<<endl<<im+0<<","<<im+2<<","<<im+l<<",-1, "; 
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ofile<<im+I«„ "<<im+2«n "<<im+3<" 1 n. 

//ofile<<im+0«°,"<<im+4<<",°«im+5<<",-1, "; 
.//ofile<<im+0«","<<im+5«°,"<<im+1«",-1, „; 

ofile << " 	 }1n" 
ofile << "texCoord Index [\n"; 

for( im = 0; im < count; im. += 2) 
{ 

ofile<<endl<<im+0<<","<<im+2<<","<<im+l <<",-I, n; 

ofile<<im+1«" °<<im+2«„  "<<im+3«" I ". 
} 

ofile << "] # end\n"; 
ofile << "} #. end geometry\n";. 
ofile << "} # end shape\n"; 

count = 0; 
} 

void rvrml::write(char ch) 
{ 

ofile << ch; 
} 

void rvrml::write(point_3d dot) 
{ 

ofile<<dot.x«" "<<dot.y<<" "<<dot.z<<", "<<endl; 
count++; 

} 

void rvrml::writeO 
• { 

double xl = O,yl = 100, zI = 100; 
double x2 = O,y2 = 0, z2 = 100; 

• for(int im = 0; im < 36; im++) 
{ 

ofile<<xI <<",,<<yI << ",, <<zI  «,,,,. 
ofile <<x2«""<<y2 << "<<z2<< ",\n"; 

} 
} 

void rvrml::set_temp_file_name(char str[]) 
{ 

temp_f le.open(str,ios:: inhios::out); 
if(!ofile) 
{ 

cout<<endl<<"unable to open temp file :"<<str<<endl; 
exit(0); 
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id rvrml::write to temp_file(point & one,point & two,int height,int width) 

point 3d temp_dot 1 ,temp_dot2; 
temp_file <<(double)one.q / width<< °«I- (double)one.p / height<<" H; 

temp_dotl = convert_ 2d_ to_ 3d_point(one,-1); 
temp_dot2 = convert 2d to_3d_point(two,-1); 

temp_file <<(double)(one.q + Scale + sgrt(pow((temp_dotl.x - 
t mp_dot2.x),2) + pow((temp_dotl.z - temp_dot2.z),2)))/width<<" "<<1-
(ouble)one.p / height<<" "; 
} 
oid rvrml::close_temp_file() 

{ 
temp_file.closeO; 

oid rvrml::wrt_form_temp_to_main_file() 

double temp; 
while(!temp_file.eof()) 
{ 

-for(int i =0 ;i<l;i++) 
{ 

• temp_file >> temp; 
• ofile << temp<<' "• 

temp_file >> temp; 
ofile << temp<<", "«endl; 

• } 
} 

1::-rvrml() 

ofile << "Navigatiohlnfo { \n"; 
ofile << "type \"EXAMINE\" \n"; 
ofile <<") # end NavigationInfo"; 
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