
3D~1V!®DEL RECONSTRUCTION OF COMPLEX
OBJECTS FROM MULTIPLE IMAGES

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

I~AVIKANT AMUAOAS GEDAM

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2005

CANDIDATE'S DECLARATION

I here by declare that the work, which is being presented in this dissertation,

entitled "3D-MODEL RECONSTRUCTION OF COMPLEX OBJECTS FROM

MULTIPLE IMAGES", in partial fulfillment of the requirements for the award of the

degree of Master of Technology with specialization in Information Technology,

submitted in the Department of Electronics and Computer Engineering, Indian Institute of

Technology Roorkee, Roorkee, is an authentic record of my own original work carried

out from July 2004 to June 2005, under the guidance and supervision of Dr. Kuldip

Singh, Professor, Department of Electronics and Computer Engineering, Indian Institute

of Technology Roorkee, Roorkee, and Dr. Sumit Gupta, Lecturer, Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee,
Roorkee.

I have not'submitted the matter embodied in this dissertation for the award of any.
other degree.

Date: 750-aG-2oc5

Place: Roorkee 	 (RAVIKANT AMBADAS GEDAM)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the
best of my knowledge and belief.

Dr. KULDIP SINGH

Professor,

E & CE Deptt.,

BIT Roorkee, Roorkee

India— 247 667

r ~J

Dr. SUMIT GUPTA

Lecturer,

E & CE Deptt.,

IIT Roorkee, Roorkee

India — 247 667

1

ACKNOWLEDGEMENT

It is my privilege and pleasure to express my profound sense of respect, gratitude and

indebtedness to my guide, Dr. Kuldip Singh, Professor, Department- of Electronics

and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, for his

inspiration, guidance, constructive criticisms, and encouragement throughout this

dissertation work.

I would like to express deepest gratitude to my co-guide, Dr. Sumit Gupta, Lecturer,

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee, for his inspiration, guidance and support throughout the course of

the work. His insights on computer vision have given many fresh perspectives needed

to solve problems.

I express my sincere thanks to Dr. A. K. Sarje, Professor and H.O.D., Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee,

Roorkee, for providing necessary facilities:

I am greatly indebted to all my friends, who have graciously, applied themselves to the

task of helping me with ample morale support and valuable suggestions. Most of all I

would like to thank to my family. My parents provided me a perfect environment for

my studies and supported me throughout. Finally, I would like to extend my gratitude

to all those persons who directly or indirectly helped me in the process and

contributed towards this work.

(Ravikant Ambadas Gedam)

it

ABSTRACT

This thesis is primarily concerned with the design and construction of image-based

object reconstruction system from multiple silhouette images taken by a . natural

camera. We briefly explore two techniques of object reconstruction, voxelization and

reconstruction based on SOR properties.

We propose a view dependent image-based method to recover a 3D-model of generic

complex object. We discuss the problem of reconstruction to compute geometric

information by finding corresponding feature points among multiple reference

images. We exploit the geometry of single axis motion along with the surface of

revolution to acquire the surface properties of object from the sequence of multiple

homologous images. We further extend our technique to comply with non-

homologous images.

The constrained and controlled environment will enable us to avoid the need for

actual camera calibration.

CONTENTS
Page No

Candidate's Declaration 	--- I

Acknowledgement 	--- ii

Abstract ffl

CHAPTER 1. INTRODUCTION 1

1.1 Computer Vision 1

1.2 Overview 2

1.2.1 	Object-space rendering 3

1.2.2 	Image-space rendering 3

1.3 Problem Statement 4

1.4 Organization of the Report 5

CHAPTER 2. PRELIMINARIES 7

2.1 Pinhole camera model 7

2.2 Camera Calibration 8

2.3 Epipolar Geometry 11

2.4 VRML Representation 13

2.5 Texture Mapping 14

2.6 Rigid Body Transformation 15

CHAPTER 3. IMAGE-BASED MODELLING AND RENDERING 17

3.1 Overview 	.. 17

3.2 Related 	Work 	.. 18

3.2.1 	Volume Intersection 	.. 19

3.2.2 	Marching 	Cubes 	.. 20

3.2.3 	Metric 3D Reconstruction From SORs .. 21

iv

CHAPTER 4. 3D RECONSTRUCTION 	-------------------------- 23

4.1 Single 	axis 	motion 	
...

23

4:2 SOR 	geometry 	.. 25

4.3 Approach 	.. 26

4.3.1 	Avoiding a need for Camera Calibration 27

4.3.2 	Derivation of the Feature Points 	.. 28

4.3.3 	Surface 	Formation 	.. 30

4.3.4 	Texture Acquisition .. 31

CHAPTER 5. DESIGN AND IMPLEMENTATION ---------------- 33

5 :1 Image 	Reading 	.. 3 3

5:2 Edge 	Finding 	.. 35

5.3 Surface 	Formation 	.. 36

5.3.1 	2D Point 	 , ... 36

5.3.2 	3D Point 36

... 5.3.3 	Surface stitching 37

5.4 Texture Mapping 37

CHAPTER 6. RESULTS -- 39

6.1 Using Homologous images 	„

6.2 Using Reduced Number of Images 40

6.3 Using Non-homologous images 41

6.4 Limitations and Accuracy .. 41

CHAPTER 7. CONCLUSION AND FUTURE WORK -_---_------ 43

7.1 Conclusion 	 43

7.2 Future work 43

V

REFERENCES 	 45

APPENDIX- A -- I

APPENDIX- B -- II

vi

CHAPTER 1. 	 INTRODUCTION

1.1 Computer Vision

Computer vision is the science of making computer to see, i.e. giving human like

visibility to computer. It has received multiple accolades as a key phenomenon that

will change significantly, the way humans interact with computers/devices of

tomorrow. As a field it is an intellectual frontier. Like any other frontier, it is exciting

and interesting.

Computer vision's great trick is in extracting meaningful information of the real world

from pictures or sequences of pictures. For example, extracting information like, what

object is shown in the picture or what the shape of object is? The information that

users seek can differ widely between applications. For example, a technique known as

structure from motion makes it possible to extract a representation of what is depicted

and how the camera is moved from a series of pictures. People in the entertainment

industry make use of these techniques to build three-dimensional (3D) computer

models of buildings, typically keeping the structure and throwing away the motion.

These models are used where real objects cannot be used. For instance, virtually they

can be set fire to or blown up. Good, simple, accurate and convincing models can be

built using various computer vision techniques [11].

Computer vision is the subject of research for various researchers. The subject itself

has been around since the 1960s, but it is only recently that it has been possible to

build useful computer systems using ideas from computer vision. Computer vision

tries to provide artificial systems with a broader range of autonomy and action

capabilities, but this can not be achieved• without the key tasks: object detection,

object reconstruction, object recognition and scene interpretation. These are different

areas in computer vision by which it is heading towards making computer to see.

The human visual system performs these tasks very efficiently, _processing several

sources of implicit information (like shape, color, motion, etc.) from previous

experience and learning. Due to increase in the processing capability of computer and

advancements in information storing and retrieval, it is possible to make computer to

perform such complex tasks.

1

1.2 Overview

Object reconstruction has been the subject of research in recent year. The problem is

of considerable importance in the various industrial areas; such as Mobile Robotics,

Virtual Reality, Tele-Shopping, Entertainment and View-Invariant Recognition. Many

application environments enable the user interact with the models. In which the user

can rotate, scale, even deform the models; observe the models under different lighting

conditions; change the appearance (color, material, etc.) of the models; observe the

interaction of a model with the other models in the environment. Therefore, the

geometric properties of object must be clearly and robustly defined.

Recent advances in computer vision make it possible to acquire high resolution 3D-

models of scenes and objects [1] [11]. However, reconstruction of a complex rigid

objects from its two dimensional (2D) images is still a challenging computer vision

problem under general imaging conditions. Without a priori information about the

imaging environment (camera geometry, lighting conditions, object and background

surface properties, etc.), it becomes very difficult. to infer the 3D structure of the

object from its images. For practical purposes, the problem can be simplified by using.

controlled imaging environments.

In general, given a real world object, the reconstruction system of object involves the

problem of finding geometric shape and surface properties of an object. Figure 1.1

shows the typical computational steps of object reconstruction.

User Input 	Priori Knowledge

J Modelling Program ~

3D-Model

I Rendering Algorithm

I Virtual View

Figure 1.1: Typical computational steps of object reconstruction.

2

The most common way of creating 3D-models is manual design. This, approach is

suitable for the creation of the models of non-existing objects and mostly used in

Multimedia and Virtual Reality applications. However, it is cost expensive and time

consuming. Furthermore, the accuracy of the designed model for a real object may not
be satisfying. Therefore, the efforts are being made towards finding techniques to

automate the process of reconstruction under a simple but controlled environment.

Usually, these techniques recover the geometry of the real world scene and then

render it into the desired virtual view as depicted in Figure I.I. Such techniques are

broadly categorized in two approaches, namely, object-space rendering and image-

space rendering.

1.2.1 Object-space rendering

In object-space rendering, the geometry of real objects is acquired using active

scanning systems that capture directly 3D data [10]. Therefore, these techniques are

also referred as active techniques. Such systems are constructed -using expensive

equipments such as laser range scanners, structured light; touch based 3D scanners, or

3D digitizers. In most of these active scanning systems, the texture of the model is not

captured while the geometry of the object is acquired precisely as a set of points in the

3D space. This set can then be converted to polygonal model representations for

rendering.

1.2.2 Image-space rendering

In image-space rendering, the model of a real object is reconstructed from its real 2D

images [1] [4] [6] [8]. These methods are also known as passive methods or image-

based methods. Even using an off-the-shelf camera, considerably realistic looking

models with both geometry and texture is reconstructed.

Unlike active methods, the passive methods are not expensive as they do not require

very expensive equipments. Another advantage is that the shape information, such as

surface normal and curvature, can be easily obtained. In addition to this, the texture

properties of model can be easily captured which is very important for making

realistic model. The only limitation to these techniques is that, the very complex

objects can not be obtained with greater accuracy. This is due to the fact that, the

world contains wide variety of objects with distinctive shape characteristics.

3

1.3 Problem Statement

The objective is to create curvilinear, texture mapped, 3D-models from multiple

homologous images with no prior internal knowledge about the shape or topology.

A good amount of work in the reconstruction of 3D-model using image-based

modeling has been reported in [1] [4] [6] [8] [11]. Various techniques have been

implemented, analyzed and explored extensively. The technique used in this thesis

requires multiple images of the object to be modeled from different views. As such,

many requirements are set as given below:

1) As a low cost -solution is desired by any business and the layman, the

technique should be simple, flexible, and inexpensive.

2) It should not require any specialized hardware. Most of the image-based

technique uses a simple natural camera to acquire the images of the object.

We too,•use the natural camera which can be made easily available.

3) The reconstructed 3D-model should be accurate from all perspectives and in a

convenient format.

4) The computer algorithm must be robust against noise and in the speed of

execution. If possible, the number of views to be processed by the algorithm

must be minimal.

Motivation behind this thesis is that most of the image-based techniques available

need to find parameters for the camera position, motion etc (called as camera

calibration), we propose a method in which the need for actual camera calibration is

avoided.

4

1.4 Organization. of the Report

The work presented in this thesis combines insights, methods and algorithms

developed in order to resolve the problem of 3D reconstruction of generic real world

object.

Chapter 2 highlights the preliminary information about the thesis as well as the basic

concepts and fundamental theories of computer vision and general assumptions used.

It also outlines the several principles considered in each stage of 3D reconstruction.

A brief description to the existing techniques involved in image-based modeling and

rendering is given in Chapter 3. This chapter briefly examines three such approaches,

namely, Volume Intersection, Marching Cubes, and Metric 3D Reconstruction from

Surface of Revolution.

The complete theoretical information for 3D reconstruction is presented in Chapter 4.

The invariant properties of single axis motion and surface of revolution are discussed.

The surface formation process of 3D-model is described in details and certain criteria

are outlined that have to be met in order to avoid actual camera calibration.

The actual designing and implementation part is outlined with detailed information in

Chapter 5. Extensive assessment of the method is made and the reconstruction results

are presented in Chapter 6 along with limitations pertaining to proposed method.

Conclusions are drawn in Chapter 7.

Appendix - B includes source code listing of implementation.

5

CHAPTER 2. 	 PRELIMINARIES

To understand how human vision, might be modeled computationally and replicated

on a computer, we need to understand the image acquisition process. The role of the

camera in machine vision is analogous to that of the eye in biological systems.

This chapter introduces the camera model and defines the , epipolar or two view

geometry. A perspective camera model is described in section 2.1, which corresponds

to the pinhole camera. It is assumed throughout this thesis that effects such as radial

distortion are negligible and are thus ignored.

Section 2.3 defines the epipolar geometry that exists between two cameras. A special

matrix will be defined that incorporates the epipolar geometry and forms, the building

block of the reconstruction problem.

2.1 Pinhole camera model

The pinhole camera is the simplest, and the ideal, model of camera function [14]. It

has an infinitesimally small hole through which light enters before forming an
inverted image on the camera surface facing the hole. To simplify things, we usually

model a pinhole camera by placing the image plane between the focal point of the

camera and the object, so that the image is not inverted. This mapping of three

dimensions onto two dimensions, is called a perspective projection (see Figure 2.1),

and perspective geometry is fundamental to any understanding of image analysis.

y- " -'" Retinal Image 	 M (X, Y, Z)
plane

" 	 1 	
......

" 	

C/ _...;

-------------------------1► j- - F_ x

Focal length 	•'"~

Figure 2.1: Perspective projection in the pinhole camera model.

The coordinates of a 3D point M = [X, Y, Z]T in a Euclidean world coordinate system

and the retinal image coordinates in _ [u, v]T are related by the following equation:

sm-=PM" 	 (2.1)

7

s is a scale factor, in- _ [u, v, IT and M _ [X, Y, Z, 1]r are the homogeneous

gates of vector ni and M respectively. And P is a 3x4 matrix which is called as

perspective projection matrix.

2.1 illustrates this process. The .figure shows the case where the projection

is placed at the origin of the world coordinate frame and the retinal plane is at Z

= f = 1. Then u = 	, v = 	and
z. z

P= [13x3 03]
	

(2.2)

optical axis passes through the centre of projection (camera) .0 and is orthogonal

to the retinal plane. The point c is called the principal point, which is the intersection

of the optical axis with the retinal plane. The focal length f of the camera is also

which is the distance between the centre of projection and the retinal plane.

If n1y the perspective projection matrix P is available, it is possible to recover the

of the optical centre or camera.

world coordinate system is usually defined as follows: the positive Y -direction is

upwards, the positive X-direction is pointing to the right and the positive Z-

ion is pointing into the page.

2.2 Camera Calibration

3D structure from images becomes a simpler problem when the images

taken with calibrated cameras. For our purposes, a camera is said to be calibrated

if 4ie mapping between image coordinates and directions relative to the camera center

are known. However, the position of the camera in space (i.e. its translation and

with respect to world coordinates) is not necessarily known.

For an ideal pinhole camera delivering a true perspective image, this mapping can be

ch acterized completely by just five numbers, called the intrinsic parameters of the

caniera. In contrast, a camera's extrinsic parameters represent its location and rotation

in space. The five intrinsic camera parameters are:

1. The x-coordinate of the center of projection, in pixels tuo)

The y-coordinate of the center of projection, in pixels (vo)

. The focal length, in pixels (f)

3

4. The aspect ratio (a)

5. The angle between the optical axes (a)

The camera calibration matrix, denoted by K, contains the intrinsic parameters of the
camera used in the imaging process. This matrix is used to convert between the retinal

plane and the actual image plane: tan a

f (tan a) f uo

	

P u 	 Py

	

K= 0 	f 	vo 	 (2.3)
P v

	

0 	0 	1

Here, the focal length f acts as a scale factor. Ina normal camera, the focal length

mentioned above does not usually correspond to 1. It is also possible that the focal

length changes during an entire imaging process, so that for each image the camera

calibration matrix needs to be reestablished.

The values p„ and p,, represent the width and height of the pixels in the image, c = [uo,

vo]T is the principal point and a is the skew angle. This is illustrated in Figure 2.2.

r.,

Pv Pixel

Pu

Figure 2.2: Illustration of pixel skew..

It is possible to simplify the above matrix:

•.f, s uo
K=0 f vo 	 (2.4)

0 0 1

01

w 	f„ and f„ are the focal lengths measured in width and height of the -pixels, s
ants the pixel skew and. the ratio f: f, characterizes the aspect ratio of the

We approximate the skew factor s to zero and f = f = c, then equation (2.4)

will 	to

c 0 u0
K= 0 c vo (2.5)

0 0 1

It is ossible to use the camera. calibration matrix to transform points from the retinal

Plankto points on the image plane:

11t- = K 111 R 	 (2.6)

Ther foie, equation (2.6) is very important in 3D reconstruction process.

Now let us consider extrinsic parameters. Camera Motion in a 3D scene is represented

by a rotation matrix R and a translation vector t. The motion of the camera from

coor mate C1 to C2 is then described as follows:

.~ 	R 	t C2_= O T 1 c1-

3 (2.7)

R is the 3x3 rotation matrix and t is the translation in the X-, Y - and Z-

'ons. The motion of scene points is equivalent to the inverse motion of the

~a (Pollefeys [16] defines this as the other way around):

RT —RTt
M2= L T 	

J M1 _

103 T 1.

Equa 	(2.1) with equations (2.2), (2.5) and (2.6) then redefine the perspective

proje, 	matrix:

-sni =K [R t 1 M_ whereP=K [R 	
(2.9)

10

Epipolar Line

-2

2.3 Epipolar Geometry

The epipolar geometry exists between a two camera systems [18]. With reference to

Figure 2.3, the two cameras are represented by Cl and C2. Point ml in the first image
and point m2 in the second image are the imaged points of the 3D point M. Points el
and e2 are the so-called epipoles, and they are the intersections of the line joining the
two cameras C, and C2 with both image planes and the projection of the cameras in
the opposite image.

Figure 2.3: Epipolar Geometry

The plane formed with the three points <C1MC2> is called the epipolar plane. The

lines hnI and Im2 are called the epipolar lines and are formed when the epipoles and

image points are joined.

The point m2 is constrained to lie on the epipolar line Im1 of point nil. This is called

the epipolar constraint. To visualize it differently: the epipolar line lml is the

intersection of the epipolar plane mentioned above with the second image plane 12.

This means that image point ml can correspond to any 3D point (even points at

infinity) on the line <C1M> and that the projection of <C1M> in the secondimage 12

is the line Im1. All epipolar lines of the points in the first image pass through the

epipole e2 and form thus a pencil of planes containing the baseline <C1 C2>.

The above definitions are symmetric, in a way such that the point of ml must lie on

the epipolar line Im2 of point m2.

Expressing the epipolar constraint algebraically, the following equation needs to be

satisfied in order for nil and m2 to be matched:

m2_T Fm1-=0
(2.10)

11

-e F is a 3 x 3 matrix called as the fundamental matrix. The following equation
holds:

4711 = Fml- 	
(2.11)

sin' a the point 1112 corresponding to point ml belongs to the line lmi [25]. The role of
the images can be reversed and then:

m~-T FTm2- = 0
(2.12)

ch shows that the fundamental matrix is changed to its transpose.

use of equation (2.9), if the first camera coincides with the world coordinate

then

simi^ = Ki [I3N 0] A^

s2m2-=K2 [R t 1 M
(2.13)

wh6 re K1 and KZ are the camera calibration matrices for each camera, and R and t
describe a transformation (rotation and translation) which brings points expressed in

the first coordinate system to the second one. The fundamental matrix can then be

exdressed as follows:

F = K2 _r [tkRKC ' 	
(2.14)

[t]x is the antisymmetric matrix.

Sine det([t]x) = 0, det(F) = 0 and F is of rank 2. The fundamental matrix is also only

defined up to a scalar factor, and therefore it has seven _degrees of freedom (7

ind 	ar e endent ameters among the 9 elements of F). ,P P g

A note on the •fundamental matrix: if the intrinsic parameters of the camera are

known, such as in equation (2.14), then the fundamental matrix is called the essential

mat~ix [25]. Another property of the fundamental matrix is derived from equations

(2.110) and (2.11):

Fe1-=FTej =0
(2.15)

, the epipolar line of epipole.et is F'ei.

12

2.4 VRML Representation

VRML (Virtual Reality Modeling Language) is an object oriented standard for the

representation of 3D-model [10]. More specifically, it is a scene-description language

in which set of objects is described hierarchically with their appearance information,

such as placement of object, events, transformation etc. VRML-code is a simple

ASCII type code.

Objects in VRML scenes can be broken into two components: their geometry, i.e. the

shapes which make them up, and their qualities such as colors, materials, textures; and

position or orientation. VRML uses the left-handed coordinate system; x is the width,

y is the height, and z is the depth.

After the file has been created, it could be easily published in the Web by placing it at

a Web site. And VRML models are easily viewed by a web browser that supports the

prevalent VRML file. Specifications to the file construction of VRML could be

sourced freely from [31].

The general structure that comprised the essential elements used in this work is shown

below. The files generated are called world files and have an extension '.wrl'.

#VRML V2.0 utf8
Shape {

appearance Appearance {
material Material {

} 	I
geometry IndexedFaceSet {

solid TRUE
cooed Coordinate {

point [

}
coordIndex

}

Figure 2.4: General Format of VRML file.

13

2.5 Texture Mapping

eating surface properties, like color etc, from an image and a 3D model can be

of as the inverse of creating an image from the model with known appearance

[19] [21]. In image formation, or rendering, the image plane samples the light rays

enter ng the camera from the scene. Two basic techniques are used to simulate these

light rays: forward projection of surfaces from the scene into the camera, and back

proje tion of rays from the camera into the scene, called ray tracing. In the forward

ro'e~tion of surfaces, each surface in the model is projected into the image, updating P J P J

the c for of the image if that surface is visible. In ray tracing, each pixel is mapped to

a ray (or set of rays) that intersect the scene. The color of the pixel is set based on the

of that surface. In either case, the surface color can be determined by

mapping, which models the surface color with an image, called the texture

map.

Text rre mapping in VRML is basically the same as texture mapping in all other areas

of 31 graphics. It is all based on the same fundamental concepts..

The Texture Nodes in VRML 2.0 are:

Texture: defines a still texture map using an image file.

exture: defines a moving texture map using a movie file.

: defines a still texture map made from explicit pixel values.

defines a 2D transformation applied to texture coordinates.

: where the texture nodes live.

Shap6: where the Appearance node lives.

inate: defines a set of 2D coordinates to be used to map textures to the

vertiles of subsequent geometry nodes like IndexedFaceSet or ElevationGrid.

In th VRML 2.0 format, the Texture node exists as part of an Appearance node.

Mate ial, texture, and texture transform are always related to one another (see [28]

[15]). Also, the Appearance node exists inside of a Shape node. This associates a

specific appearance with a specific geometrical object (in the example below, a cube).

No other object in the file will have this appearance unless specified by the

programmer.

14

2.6 Rigid Body Transformation

This is an assumption that an object's size and shape are invariant to its translation or

rotation in the Euclidean space. We have assumed this to be true and valid in the

entire course of the work. This fundamental assumption, if it breaks down, would

result in high degrees of complexity in 3D-model reconstruction. For instance, the

task of modeling the deformity of a fluid object that changes in shape after a

transformation needs consideration of the fluid mechanics principles. Figure 2.5

shows an example of a rigid body object.

Figure 2.5: A Steel Cooler

1-5

CHAPTER 3. 	 IMAGE-BASED MODELLING

3.1 Overview

Recently, the trends of image-based modeling and rendering to reconstruct 3D-models
have been reported in [1] [2] [4] [6] [8] [11]. Image-based modeling is a passive

technique that relies primarily on a sequence of images to build its virtual mode.

The basic idea is to take the views of an object from different angles (usually at least
3 cameras are used as shown in Figure 3.1). However, depth information is lost during
the image formation process when 3D structures in the world are projected onto 2D

images. Multiple images from different viewpoints can be used to resolve this

problem. Then, geometric information of the object of interest is extracted from each

of these views and finally a 3D-model representation of this object is reconstructed by
using computer graphic techniques.

Figure 3.1: Images of object are captured from different views with known angle.

However, this approach may also require high processing power, long training time

and large memory requirements. But it is generally deemed that image processing and

analysis of images in 2D domains are far easier than processing problems pertaining

to 3D model-based rendering. And we will not require specialized equipments; a

simple and cheap digital camera can be used to take images.

17

3.2 Related Work

his chapter introduces and reviews some of the existing techniques of computer

isi n in the area of computing a 3D Euclidean reconstruction using images of a scene
Lkel by a standard camera.

The reconstruction of a complex 3D object from multiple images has been a

fun iamental problem in the field of computer vision. Given a set of images of a 3D

obje t, in order to recover the lost third dimension, depth, it is necessary to compute

the elationship between images through correspondence. By finding corresponding
pri ~itives such as es oints, edges or regions between the images, 	that the p g g g

matching image points all originate from the same 3D object point, knowledge of the

cam ra geometry can be combined in order to reconstruct the original 3D surface.

So le of the research contributions in the field have proposed fully working systems

for pecific applications, some other have instead mostly focused on one or some of

the i volved aspects but provided a general application context. For example, Moezzi

et a. [22], [23], propose an entire specific system for image-acquisition, model-

and play-back interactive rendering, while Ofek et al. [21], mostly focus

on a Ctraction of textures from a generic video sequence for high-fidelity model-based

mapping.

can well be different ways of generating 3D models from single or multiple

images [1] [3] [16] [13] [17]. In this chapter, three of such approaches are discussed

y. Section 3.2.1 discusses the formation of 3D structure from multiple images

volume intersection technique. A survey of image-based volumetric scene

struction can be found in the works of Slabaugh et al. [11].

In section 3.2.2, a marching cube technique is discussed which is used for smoothing

of th@ surface generated in volumetric reconstruction technique.

Section 3.2.3 contains brief introduction of metric 3D reconstruction and texture

acquisition of surfaces of revolution from a single uncalibrated view.

18

3.2.1 Volume Intersection

This is a class of methods of converting the geometric information obtained from

images of an object into a set of cubes that best represents it [4] [8] [12]. This

technique exploits the idea that, a bigger component can be obtained by using number

of small basic components. This process is very much similar to the process of
building house using number of bricks.

Using number of small cubes as basic component, we can construct a complete

approximate 3D-model (see Figure 3.2). In computer vision literature such cubes are
called voxels and the process of fmding such cube is called voxelization.

(a)

Figure 3.2: (a) Number of cubes as building blocks, (b) Volume Intersection

Intuitively, one would assume that a proper voxelization simply ensures all voxels are

inclusive of the object body. Those that are not, are discarded away thus mimicking

an effect of "carving" the shapes and curves that resembles that of an original object
from independent views. Figure 3.3 shows.result of this method.

a) 	 -b)

Figure 3.3: (a) Actual image of Toy, (b) Extracted 3D-model of Toy using
voxelization

19

3.2.2 Marching Cubes

Cubes is an algorithm for rendering isosurfaces in volumetric data. It was

by William E. Lorensen and Harvey E. Cline to extract surface information

a 3D field of values [29].

basic notion is that we can define a voxel by the pixel values at the eight corners

of the cube. Therefore a potential 256 possible combinations of corner status is

obtained. By considering rotation, mirroring and Inverting the state of all corners it is

that out of this 256 corner status combinations only 15 are required.

Figure 3.4: 15 combinations of corner status.

As 	in Figure 3.4, if one or more pixels of a cube have values less than the user-

specified isovalue, and one or more have values greater than this value, we know the
must contribute some component of the isosurface [26]. By determining which

of the cube are intersected by the isosurface, we can create triangular patches
divide the cube between regions within the isosurface and regions outside. By

the patches from all cubes on the isosurface boundary, we get a surface

as shown in Figure 3.5.

Figure 3.5: Reconstructed•triangular patched surface using marching cube.

20

3.2.3 Metric 3D Reconstruction From SORs

Metric 3D reconstruction from surface of revolution (SOR) is very recent contribution
to image-based modeling. It was proposed by Carlo Colombo, Alberto Del Bimbo,

and Federico Pernici [1] [2]. They addressed a method for solution to the problem of

metric 3D reconstruction of a generic object and its texture acquisition from a single
uncalibrated view of SOR.

The proposed solution exploits the projective properties of imaged SORs, expressed

through planar and harmonic homologies. These geometric constraints induced in the

image by the symmetry properties of the SOR structure are used for camera
calibration. The required parameters for camera calibration are directly obtained from

the analysis of the visible elliptic segments of two imaged cross sections of the SOR.

The same elliptic segments are used together with the SOR apparent contour, to

reconstruct the 3D structure and texture of the SOR object, which are thus obtained

from calculations in the 2D domain.

Figure 3.6: Recovery of 3D structure.

In Figure 3.6, it is shown that, elliptic imaged cross sections of the SOR can be
used to recover the surface of generic imaged object. Since the homology

constraints are of general applicability, the solution can be applied under full

perspective conditions to any type of surface of revolution with at least two

partially visible cross sections.

21

CHAPTER 4. 	 3D RECONSTRUCTION

This Chapter will guide through the steps of solving problem for recovering the 3D

shape of object using surface of revolution from multiple uncalibrated perspective
views.

In first two sections basic geometry of Single axis motion and surface of revolution is

discussed. This is important in order to understand the underlying situation (geometry

and complexity) so that the problem can be simplified and a concise algebraic

solution computed.

4.1 Single axis motion

Given a static camera, and a generic -object rotating on a turntable (as shown in Figure

4.1), single axis motion (SAM) provides a sequence of different images of the object.

Now onward we will use the world coordinate system defined as follows: the positive

X-direction is pointing to the right, the positive Y-direction is pointing upwards, and

the positive Z-direction is pointing into the page.

Figure 4.1: Image acquisition system consists of a turn table, a camera and a

computer.

This sequence can be imagined as being produced by a camera that performs a virtual

rotation around the turntable axis while viewing a fixed object.

Single axis motion can be described in terms of its fixed entities —i.e., those geometric

objects in space or in the image that remain invariant throughout the sequence [24]. In
particular, the imaged fixed entities can be used to express orthogonality relations of

geometric objects in the scene by means of the image of the absolute conic (IAC) co —
23

an imaginary point conic directly related to the camera matrix K as co = K TK 1 [5].

Im ortant fixed entities for the SAM are the imaged circular points i,r and jr of the

it of planes .n orthogonal to the axis of rotation, and the horizon l,r = in— jr of

i pencil. The imaged circular points form a pair of complex conjugate points which

lie on CO:

l~T to Z~ = 0; 1T 	= 0 	 (4.1)

Figure 4.2: Basic projective properties for an imaged SOR.

In
	ice, as in and in' contain the same information, the two equations above can be

in terms of the real and imaginary parts of either point. Other relevant fixed

are the imaged axis of rotation la and the vanishing point vr, of the normal

to the plane passing through la and the camera center (see Figure 4.2). These

are in pole-polar relationship with respect to Co :

la = COVn 	 (4.2)

(4.1) and (4.2) were used separately in the context of approaches to 3D

from turntable sequences. In particular, (4.1) was used in [1] and in [5]

to rjecover metric properties for the pencil of parallel planes 7r given an uncalibrated

sequence. In both cases, reconstruction was obtained up to a 1D projective

, since the two linear constraints on Co provided by (4.1) were not enough

to calibrate the camera. On the other hand, (4.2) was used in [7] to characterize the

ipolar geometry of SAM in terms of la and v,, given a calibrated turntable sequence.

, in this case, the a priori knowledge of intrinsic camera parameters allows one

24

to obtain an unambiguous reconstruction. In the case of an SOR object, assuming that

its symmetry axis coincides with the turntable axis, the apparent contour remains
unchanged in every frame of the sequence. Therefore, for an SOR object, the fixed

entities of the motion can be computed from any single frame of the sequence.
According to this consideration, an SOR image and a single axis motion sequence
share the same projective geometry: the fixed entities of SOR geometry correspond to

the fixed entities of single axis motion. In particular,

I. la corresponds to ls;

2. vn corresponds to v. ;

3. (hr , j ,r) correspond to (i, j);

4. L corresponds to l . i x j, where i and j denote the imaged circular points of the

SOR cross sections.

4.2 SOR geometry

Being a subclass of SHGC, SOR enjoy all of their properties [2]. A SOR can be

parameterized as a (0, y) = (p (y) cos 0, y, p (y) sin 0), where y is the (straight)

axis of revolution. In 3D space, all parallels (i.e., cross-sections with planes y =

constant orthogonal to the axis) are circles. The curves 8 = constant, called

meridians, are obtained by cutting the surface with planes passing through the axis,

and characterize the specific SOR shape through the scaling function p (y). Parallels

and meridians are locally mutually orthogonal in 3D space, but not in a 2D view (see

Figure 4.3).

(a) 	(b) 	(c)

Figure 4.3: (a) Parallels and meridians on a SOR, (b) Apparent contour, (c) Image of

the Meridian

25

observable curves in a SOR image are imaged parallels (which are
ellipses, being the perspective images of circular curves) and apparent
c (see Figure 4.3 (b)): the latter should not be confused with imaged

idians. In fact, while meridians are planar 3D curves, an apparent contour is the

of the (usually non planar) 3D curve of all the points at which the projection
are tangent to the surface, referred to as generating contour. Figure 4.3 (b) and

(c)remarks the difference between apparent contours and imaged meridians.

Approach

In his section we will describe the procedure of finding surface properties of the

object. First we will define some assumption which will ease the process of camera

bration and surface formation. Following are the requirements that should be

1. Generic object to be modeled must be a rigid body (i.e. shape of object must

be invariant to its translation or rotation in the Euclidean space, as section 2.6).

2. The axis of rotation must exactly coincide with the middle of the image.

3. Angle 0 = 100 should be constant between each pair of adjacent camera.

4. We will have T = 36, where T is the total no images.

5. We assume that, the aspect ratio and skew properties of natural camera to be
known and remains to be invariant.

6. Input sequence is the sequence of silhouetted image of the object taken by

natural camera. Suppose, we want reconstruct a ball then Figure 4.4 (a) shows

one instance of the silhouetted input image and Figure 4.4 (b) shows resultant

3D-model.

Figure 4.4: (a) Silhouetted Input Image, (b) Image of resultant object.

Ow

7. The vertical and horizontal sides of input image must exactly fit to the Retinal

Image Plane delineated in Figure 2.1. Such alignment simplifies the procedure

for projection and back projection between the 3D space and the image planes.

The aforementioned assumptions 2, 3, 5, and 7 form a constrained environment by

which 'we can avoid the need of actual camera calibration. Following section will
discuss the issues pertaining to the avoidance of camera calibration.

4.3.1 Avoiding a need for Camera Calibration

From equation 2.9, P matrix can be split into two matrices, M; , and Mex,, which
depend on the intrinsic and extrinsic camera parameters respectively.

i.e. P = M1 Mext where. Mint = K, and Mex, — [R t
(4.3)

Since we have cameras at different angles of rotation, 0 then for the 0' view, we
manipulate Equation (4.3) using equation (2.5) as:

c 	0 	uo cos k8 	0 	'sin k9 1- 0 	0 	Xo
Pk = 0 	c 	vo 0 	1 	0 0 	1 	0 	Yo 	' 	(4.4)

0. 0 	1— sin kO 	0 	cos k9 0 	0 	1 	Zo

cos k9 	0 	sin k9
where, Rk© = 0 	1 	0 and t = [x0 , 	, Zo f

sin k8 	0 	cos k8

Now, we will see the impact of changing Xo, Yo, and Zo one by one. First, let, us see

the impact of changing the Yo value. It can be seen clearly that by changing- the Yo

value, our camera coordinate system can be shifted up or down along that axis. This

does not affect the shape integrity of our extracted 3D-model. Thus, we set the Yo

value equal to 0.

Next, we align our set up in such a way that our Xo is also set to 0. This can be done

easily by intersecting the rotation axis with the center of the image. Thus, both of the

coordinate systems are aligned with one another and are translated along the z

direction only, i.e. into the page or outward to the page.

27

r, any imaged point (u, , v,) in input image taken from camera which is

by an angle 0 from its previous view. Now, we want to estimate its

rdinate in the virtual world coordinate system, and then from equation (2.1), we

X s,u1

	

sl y! = Mint R0M,.rf Z 	 (4.5)
S1

1

soljing equation (4.5), we get

X 	cos(6)s, (u, — uo)l c + (Zo — s,)sin(9)
Y = 	s,(v, —vo)/c 	 (4.6)
Z 	cos(8)(s, —Zo)+ sin(g)s,(u, —uo)lc

As Si, c, and Zo are constants, we can set them to any suitable value. The most

sul le assignment will be taking the focal distance to be equal to the displacement

the Z-direction.

Zo =Si = c

, equation (4.6) will be simplified as

X 	cos(8)(u1 —u0)

Y = 	(v, — v0) 	 (4.7)

Z 	sin(8)(u, — uo)

v, the only remained unknown in equation (4.7) is (uo , v0), which can be. easily

For this, we will consider the principal point (u0 , v0) to be coincided with

the image center whose value is half the dimensions of the images being captured (i.e.

input images). In equation_ (4.7), all unknown can be derived from the restricted and

environment discussed above. This equation can be used further for the

ivation of feature points. Hence, we have avoided the need for camera calibration.

Derivation of the Feature Points

In otder to compute geometric information we first extract interest points in the

Usually, we use high curvature points as they can be easily manipulated and

represented in projective geometry. To extract these points, we will trace the meridian
left to the axis of rotation. We may obtain the set of imaged feature points X,, as
shown in Figure 4.5.

Xl,~
X l..i+r 	- 	l-~, i

meridian : Axis of rotation
(y - axis)

(a)

j+r

meridian

(b)

Figure 4.5: (a) Computation of feature points along meridian. (b) Extracted Feature
Points.

These points are estimated in all images independently. Once these points are found,
we will use direct correspondence of points from image to the virtual 3D Space.

As shown in Figure 4.5, the only entity to be derived is X;j, where

X,, = (x,,., ,l',,j, z1,)
	

(4.8)

X;, will be the surface points and they can be integrated to form a complete surface of
3D-model. From the geometry of SAM, SORs, and equation (4.7), we can derive the
unknowns as bellow.

1. x,, j = r,, x cos (9)

2. yr, J = l;, J or (Image height / 2 —1;,,)

3. z,,~ = r,,~ x sin (B)

where,

i =0 tom — 1 (i.e. 0th image, 1St image, so on),

j=0ton-1,

m = total number of imaged points along parallels, (m = T).

n = total number of imaged points along meridian.

(4.9)

(4.10)

(4.11)

As we are using r;, (as a vector) to calculate the coordinates of X,1, it will confirm
that the imaged axis of rotation will pass through the origin and parallel to the y-axis

29

of our world coordinate system. Therefore, imaged axis of rotation will be the

pr9jection of y-axis. The entire process of finding feature points can be
summarized as bellow.

for (im = 0 to Total_No_Images)
{

for (i=0tom-1)
{

for(j=0ton-1)

{ Find (X;,l) //from ith image
}

}

Figure 4.6: Algorithmic summary of process of extracting feature points.

Surface Formation

In his step, we construct matched triangular meshes from the extracted feature points.

z et al. [20] has proposed a piecewise linear approximation method of adaptive

ygonization of regular surfaces of the Euclidean 3D space. In which it is suggested

triangulation is the best technique in order to form smooth surface. We too, try to

I the triangular pieces of the surface which are then integrated to form 3D-model.

7• .

a— (y - axis)
r, j+1

-------- -~

Xi+l,j+l

ith meridian 	11th meridian

Figure 4.7: Surface formation using feature points.

In IFi re 4.7, four extracted feature points are shown. These four points will
to the surface of resultant virtual object [20]. We can construct a portion of

using triangulation, for example, points X,, ~, X;, j+1 andX;+l, j will form one

iamgle and so others.

30

This process of surface formation can be easily visualized and understood by using
epipolar geometry, as shown in Figure 4.8.

C C2

R ,J
Figure 4.8: Epipolar geometry of two feature points from camera Ci and C2.

In above figure, there are two points M and Q (at same height) from two images taken
by two adjacent cameras Cl and C2. Points M and Q are equivalent to the feature
points X,,; and Xi+,, j of Figure 4.7 respectively. As these two points are at same height
and according to the epipolar constraints discussed in section 2.3, the line segment
<MQ> of two feature points will constitute a surface indicated by a vertical arrow.

We will use this simple and straightforward approach to form the surface. This will
also ease the process of texture acquisition and its mapping (discussed in 4.3.4).

4.3.4 Texture Acquisition

Texture mapping is a shading technique for image synthesis in which a texture is

mapped onto a surface in a three dimensional -scene, much as wallpaper is applied to a
wall [9]. A view dependant texture acquisition technique used to acquire surface

properties of object. If I is the image space then we will try to map it as

X,, —3 I (u1 , v1)

We will consider imaged points in pairs (i.e. point on the ith meridian and point on the

i+lth meridian). We will make use of all T = 36 images. For texture acquisition

following formulae can be used.

For points on ith meridian

X ,,.i = (x,, ,y,,,, z►,r) —3 (u; , v;) where,

u,= (Image width /2—r.,~)+ A

31

Fd,r points on i+l'h meridian

1.1 - (Xi+I , j,Y i+ I. j, zi+ I, j) -) (u 1+i vi+l)

1, = (Image width / 2— r;,)

+sgrt((x,+l—x1)2.+(z ;+ t--.z1)2)+ A

v1+1,=y1+I,1+ A

A = Error due to camera zooming/skew properties and/or misplacement of axis of

ro ation.

e pinhole camera model assumes that the imaging process is a perfect perspective

)jection from world to image coordinate frames i.e. from 3D to 2D. However, real

neras are not perfect perspective projections [24] (especially when used with a

rt focal length lens) and non-linear distortions are introduced into the imaging

cess. There are several different forms of non-linear distortion, where the error is a

ial displacement proportional to an even power of the distance from the centre of

image.

32

CHAPTER 5. 	DESIGN AND IMPLEMENTATION

In this chapter designing and software implementation of the project is discussed.

Input to the project is a sequence of T =18 or 36 digital images, 576 x 768 pixel

dimension, taken at 0=20° or 10° radial graduations. They are read and stored in a 2D

array and its individual elements are accessed using iterations.'

The main software component is required to do calculations and tests to locate all

intersecting feature points. The implementation details of finding feature points are

described in section 5.2.

Section 5.3 and 5.4 describe the process of surface. formation and texture mapping

respectively. Section 5.1 contains the information about the representation of input

image format.

The source code listing is given in APPENDIX - B. The output is a 3D model in

VRML format.

5.1 Image Reading

Before the images can be computationally processed, a thorough understanding of

image format type is needed so as to extract intensity data from such files. The input

going into the image-reading module is 8-bit grayscale TIF file and the output is a 2D

integer array holding the intensity values of the image.

TIF is an image file format and it begins with an 8-byte image file header that points

to an Image File Directory (IFD). An IFD contains information about the image as

well as pointers to the actual image data.

Byte 0-1 : The byte order used within the file. The legal values are "IP' and "MM". In

the "II" format; byte order is always from the least significant byte, for both 16-bit

and 32-bit integers. In the "MM" byte order, the converse is true.

Bytes 2-3 : An arbitrary but carefully chosen number (42) that further identifies the

file as a TIFF file

Bytes 4-7 : The offset in bytes of the first (IFD). The directory may be at any location

in the file after the header. It is always used to refer to the beginning of the TIF file.

The structure of.TIF file is described in Figure 5.1.

33

0
2
4
6

Byte Order
42
Offset of 0th IFD

IF I IIFI

Image Image Image Image Image Image
Value 1 Value n 	Value 1 Value n 	Value I Value n

Figure 5.1: File Structure of the Tagged Image Format (TIF)

ith understanding of the tiff file format, the image-reading algorithm is devised as

own in Flowchart 1.

Load TIF File

Determine Byte order is
ascending /descending
& point to 0th IFD

Read Image values from
IFD into 2D short array
& Read offset & seek to
next IFD

No

Last IFD ?

Yes

Completed 2D
image array

Flowchart 1: Image Reading module

34

5.2 Edge Finding

The edges of an object in the image are nothing but the surface outlines. Edges have

special benefit in 3D reconstruction, as they provide the most reliable information

about the whole object. The most popular edge detection technique is Canny's edge

detection [30].

As the input images to the proposed method are binary images (i.e. black and white),

there is no difficulty in finding the edge points. We can follow the iterative approach

to find these surface points. Following are the steps involved in this process.

Step 1. The input image is read as discussed in section 5.1. The pixel

dimensions are of 576 x 768 sizes. The pixels comprising the object body are

assigned to value l and other pixels to 0.

Step 2. Now it is required to search for the pixel elements with values 1. This

can be done by using iterative algorithm row-wise or column-wise. We follow

the row-wise approach as shown in Figure 5.2.

Li
Figure 5.2: Iterative step of finding edge points.

In above figure there are 5 x 5 pixel elements depicted and a circular shape

is shown. We go on searching the pixel elements row-wise until we get the

pixel element with value 1.

Step 3. This process is repeated for the other rows. Not all rows are needed to be

searched. We can skip a known number of rows (three or four); but That

number should be constant throughout the process in order to get better

results.

These extracted image points are called interest points or feature points. Once these

points are found they need to be represented in a suitable mathematical form in order

to analyze the captured information. This is given in section 5.4.

35

Surface formation

this step the extracted feature points are integrated with each other in such a way

they are made to form the surface of 3D-model. These points are joined in the

. of uniform continuous grid of triangles as discussed in section 4.3.3. Intuitively,

grid is a mesh of piecewise linear surface, consisting of triangular faces pasted

along their edges. For our purposes it is important to maintain the distinction

the connectivity of the mesh and its geometry. This piecewise curvilinear

formation results into the surface of the body and it will also ease the process of

acquisition.

following two sub-sections we will define the representation of feature points in

form of 2D and 3D interpretation.

.3.1 2D Point

Image Plane

Figure 5.3: 2D Image Coordinate System.

Figure 5.3, a 2D image coordinate system is shown. We have to transform this 2D

ordinate system into the 3D world coordinate system. The 2D points in the image

ane are referenced from top-left corner which will have coordinated (0, 0). With

to this point, every point in this plane can be represented by vertical

displacement as X-coordinate and horizontal rightward displacement as Y-

te.

the pointp shown in Figure 5.3 can be represented as

q=[x,y]

.2 3D Point

2D point is transformed into the 3D point using equation (4.9), (4.10), and (4.11).

Q = [x,y,Z]

i

5.3.3 Surface stitching

By a surface we mean a "compact, connected, orientable two-dimensional manifold,
possibly with boundary, embedded in 3D coordinate system" [27]. Figure 5.4 depicts

the process of surface formation, in which six feature points are shown. These feature

points are used to form a piecewise triangular continuous grid of partial surfaces.

q2 	~' 	J R6
q4

Figure 5.4: Triangular grid formation from feature points.

The order of the formation of triangles is kept as discussed in section 4.3.3. This can

be done using following algorithm.

for (im = 0 to Total_No_Images)
{

for (i=0 to m — 1)
{

for(j=0ton-1)
{

Triangle_Formation ()
}

}
}

Figure 5.5: Algorithm describing the process of surface formation.

5.4 Texture Mapping

To allow texture-mapping, a surface must be parameterized onto a texture domain

by assigning texture coordinates to its vertices. Generally, most of the texture

mapping techniques involves the parameterization of a 3D surface onto the 2D

domain for the purpose of texture-mapping [28].

In VRML, texture mapping is achieved by assigning a 2D texture map coordinate

to each 3D vertex. The texture is then interpolated between vertices. The simplest

approach is to use a whole camera image as a texture map and provide the

correspondences between 3D model points and image points.

37

CHAPTER 6. 	 RESULTS

The experiments are performed on a personal computer with 256 MB of RAM, Intel
PIV 2.00GHz CPU and 32MB frame buffer. The images are captured with a 2/3"

Color Progressive scan CCD camera at a resolution of 1280x960.

The algorithm to find feature points, surface formation, and texture mapping are

successfully implemented in Visual C++. The experiments have been performed on

various shapes of objects. The _obtained results are compared with the 3D-models
derived using Voxelization.

6.1 Using Homologous images

Homologous images are the best suitable candidates for input to the proposed method.

Homologous images preserve the similarity in position, structure, etc. They can be

placed exactly bilateral symmetrical to the axis of rotation. There can be many

families of such homologous images. Figure 6.1 shows some homologous 'images of

simple geometrical shapes as inputs and their corresponding outputs.

(a) 	 C

(d) 	 (e) 	 (f)

Figure 6.1: (a), (d) Input Images; (b), (e) Output using Voxelization; (c), (f) Output

using Proposed Method.

In proposed method, texture acquisition can be done very easily and effectively as

discussed in section 4.3.4. Following figures show the texture mapped output.

39

I!.;.'
6.2: Top — Input: Homologous imaged objects, Bellow — Their corresponding

reconstructed 3D-models.

Using Reduced Number of Images

U till now, we have used all T = 36 or 18 images for 3D acquisition. We can make
an arrangement to use reduced number of images. This can be done by extracting
feaure points on the both sides of axis of rotation. The point on the right of the axis of
rotation can be thought of as being extracted from the image which is 1800 ahead of
cuirent image. In this way, by using first T/2 number of images we can construct
coiiplete 3D object. But for texture acquisition we have to use all images in order to
ca ture all information. Figure 6.3 shows object which is reconstructed using T = 4
n ber of views (i.e. 0=90°). Only first two images are used to extract feature points
ancj all four images are used to acquire texture information.

Figure 6.3: 3D-model of object is reconstructed using 4 views.

6.3 Using Non-homologous images

The non-homologous images exhibit structural differences amongst them. In
APPENDIX-A some sample of non-homologous images are shown. Though there

are structural differences they can be used to reconstruct 3D-models.

As these images are the resultant of image acquisition process discussed in section
4.1 and due to the inherent nature of single axis motion, these differences between

two images taken by adjacent cameras are not too much if we consider large

number of views. ith and i± 1th images slightly differ in their structure as the

camera is rotated by an angle 0. Usually, T = 36 number of images are enough to

reconstruct complete 3D-model as shown in Figure 6.4.

(a) (b) 	 (c)

Figure 6.4: (a) Input image of Toy, (b) Output using Voxelization, (c) Output using
Proposed Method.

6.4 Limitations and Accuracy

Limitations

1. As we have avoided camera calibration, we are able to derive 3D-models up to

an unknown scale factor. But it is found that object maintains shape integrity.

2. As the case with other image-based modeling, this method also suitable for

convex surfaced objects only.

3. This technique is extremely view as well as image dependent.

4. Texture mapping is highly sensitive to camera zooming and skew factor.

41

Cy

accuracy of any reconstruction depends on several factors: .

1. The number of images containing views of the same points increases the

number of rays back-projected when estimating the position of a point. This

should reduce the effect of errors introduced by image noise.

The distance between the camera centers, known as the baseline. If the

baseline is small, the angle between the back-projecting rays will be small, and

image noise can produce a large error in back-projection. However, if there is

a large baseline, the back-projecting rays are generally well-conditioned and

the image noise has a smaller effect.

3. The accuracy of the . information known about the. camera, - the motion

involved, and the objects in the scene, including:

— The camera motion. If for example, the camera is assumed to only

translate, with no rotation, then how close is the actual motion to this

assumption?

— Assuming a set of points lies on a planar surface in the scene.

— The camera calibration.

42

CHAPTER 7. 	CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis has explored the 3D reconstruction of real-world generic objects using

multiple homologous and view dependent images obtained by natural hand held

camera. An algorithm for finding feature points has been successfully implemented.

Furthermore, these- points are used for surface formation with its surface properties, in

order to implement texture mapping.

Following conclusions can be drawn:

— To avoid the need for camera calibration the constrained and controlled

environment can be provided by choosing aspect ratio to unity, ignoring skew

factor and choosing principal point to coincide with the centre of image.

— Therefore, the proposed method allows a computer to automatically generate a

realistic 3D model when provided with a sequence of images of an object or
scene.

— The results show that the 3D-models are fairly accurate and can be obtained

from homologous as well as non-homologous images.

— The technique employed is simple and straightforward.

7.2 Future work

While much research has been conducted in 3D reconstruction and reconstructions are

becoming increasingly photorealistic, improvements are still needed in order to

accurately and efficiently recover the 3D object from images.

The approach presented in this thesis can be extended in a number of ways.

Geometric accuracy, realistic surface reflectance and methods to account for complex

large-scale dynamic environments, and real-time 3D reconstruction from video

sequences remain areas , of research and development in the field of 3D scene

reconstruction.

43

REFERENCES

[1] Carlo Colombo, Alberto Del Bimbo, and Federico Pernici, "Metric 3D
Reconstruction and Texture Acquisition of. Surfaces of Revolution from om a Single

Uncalibrated View", IEEE Transactions on Pattern Analysis And Machine
Intelligence, Vol. 27 (1), January 2005.

[2] C. Colombo, D. Comanducci, A. Del Bimbo, and F. Pernici, "Accurate

Automatic Localization of Surfaces of Revolution for Self-Calibration and Metric

Reconstruction", Proc. IEEE Workshop Perceptual Organization in Computer

Vision, 2004.

[3] Kristen Graunman, Gregory Shakhnarovich, and Trevor Darrell, "Inferring 3D

Structure with a Statistical -linage-Based Shape Model", MIT Computer Science

and Artificial Intelligence Laboratory, pp. 483-484, 2004.

[4] Kristen Grauman, Gregory Shakhnarovich, and Trevor Darrell, "Virtual Visual

Hulls: Example-Based 3D Shape Inference from Silhouettes", MIT Computer

Science and Artificial Intelligence Laboratory, pp. 485-486, 2004.

[5] G. Jiang, H. Tsui, L. Quan, and -A. Zisserman, "Geometry of Single Axis

Motions Using Conic Fitting", IEEE Trans. Pattern Analysis and Machine

Intelligence, Vol. 25 (10), pp. 1343-1348, October 2003.

[6] Yen-Hsiang Fang, Hong-Long Chou, and Zen Chen, "3D shape recovery of

complex objects from multiple silhouette images ", Pattern Recognition Letters,

Vol. 24, pp 1279-1280, June 2003.

[7] K.-Y. K.Wong, P. R. S. Mendonca, and R. Cipolla, "Camera calibration from

surfaces of revolution," IEEE Trans. on Pattern Analysis and Machine

Intelligence,-Vol. 25 (2), pp. 147-161, February 2003.

[8] Kuzu Yasemin, and Sinram 0, "Volumetric Reconstruction of Cultural Heritage

Artifacts", CIPA XIX t" International Symposium, Antalya, Turkey, pp. 93-98,

2003.

[9] - Vitor Sequeira, and Joao G.M. Goncalves, "3D Reality Modelling: Photo-

Realistic 3D Models of Real World Scenes", Proc. of the First International

Symposium on 3D Data Processing Visualization and Transmission, 2002.

[10 Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd,

Joshua L. Richmond, and Som H. Yau, "Scanning Physical Interaction Behavior
3D Objects", ACM SIGGRAPH, August 2001.

[111 G. Slabaugh, W. B. Culbertson, T. Malzbender, and R. Schafer, "A survey of
is scene reconstruction methods from photographs", Proc. of Joint IEEE

G and Eurographics Workshop, pp. 81-100, June 2001.

[12 Kuzu Yasemin, and Rodehorst Volker, "Volumetric modeling using shape from.
ilhoueue", Fourth Turkish-German Joint Geodetic Days, pp. 469-476, 2001.

[13]~ Caleb Lyness, Otto-Carl Marte, Bryan Wong, and Patrick Marais, "Low-Cost

Reconstruction from Image Sequences", First International Conference on

omputer Graphics, Virtual Reality and Visualization, pp 131-132, 2001.

[14] Arne Henrichsen, "3D Reconstruction and Camera Calibration from 2D

', Dissertation University of Cape Town, pp. 8-30, December 2000.

[1 5} Arzu Coltekin, Jussi Heikkinen, Petri Ronnholm, "Studying Geometry, Color

Texture in VRML", Journal Article (English), Surveying Science in Finland,

ol. 17 (1), pages 65-90, October 1999.

[16]l M. Pollefeys, "Self-Calibration and Metric 3D Reconstruction from

calibrated Image Sequences", PhD thesis, ESAT-PSI, K.U. Leuven, 1999.

[17] 1 David P. Gibson, Neill W. Campbell, and Barry T. Thomas, "The Generation of

Models Without Camera Calibration", Computer Graphics And Imaging,

CTA Press, pp 146-149, June 1998.

[18] 1 Z. Zhang, "Determining the Epipolar Geometry and its Uncertainty: A Review",

International Journal of Computer Vision, Vol. 27 (2), pp.161-195, March

1

[19] Frederick M. Weinhaus Venkat Devarajan, "Texture Mapping 3D Models of

-World Scenes", ACM Computing Surveys, Vol. 29-(4), December 1997.

[20] uiz Velho, Luiz Henrique de Figueiredo, and Jonas Gomes, "A Methodology

Piecewise Linear Approximation of Surfaces", Computer Graphics and Image

ing, pp. 2-7 ,September, 1997.

[21] E. Ofek, E. Shilat, A. Rappoport, and M. Werman, "Highlight and reflection-
independent multiresolution textures from image sequences", IEEE Computer
Graphics and Applications, Vol. 17 (6), March—April 1997.

[22] S. Moezzi, L. Tai, and P. Gerard, "Virtual view generation for 3d digital video",
IEEE Multimedia, Vol. 4 (1), pp.18-26, January—March, 1997.

[23] S. Moezzi, A. Katkere, D. Kuramura, and R. Jain, "Reality modeling and
visualization from mulitple video sequences", IEEE Computer Graphics and
Applications, Vol. 16 (6), pp. 58-63, November 1996.

[24] M. Armstrong, "Self-Calibration from Image Sequences," PhD thesis, Univ. of
Oxford, England, 1996.

[25] Q.-T. Luong and O. Faugeras, "The Fundamental matrix: theory, algorithms,
and stability analysis", The International Journal of Computer Vision, Vol.I (17),
pp.43-76, 1996.

[26] C. Montani, R. Scanteni, and R. Scopigno, "Discretized Marching Cube", IEEE
conference, pp. 281-287, 1994.

[27] Hugues Hoppe, "Surface Reconstruction from Unorganized Points", PhD thesis,

University of Washington, pp. 15-16, 1994.

[28] P. Heckbert, "Fundamentals of Texture Mapping and Image Warping", MS

thesis, CS Division, Univ. of California, Berkeley, 1989.

[29] Lorensen, W.E. and Cline, H.E., "Marching Cubes: a high resolution 3D
surface reconstruction algorithm," Computer Graphics, Proc. of SIGGRAPH,
Vol. 21 (4), pp. 163-169, 1987.

[30] Canny j., "A computational approach to edge detection", IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 8 (6), pp. 679-698, 1986.

[31] Web 3D Consortium, http://web3d.org

47

APPENDIX

APPENDIX - A

Samples of Non-homologous Images and their silhouettes

Calibration images

Calibration images

—B

Name: image_open.cpp
file contains the code listing required to open image file and to read it

The input file is in the form of TIF format.
his code listing contains the implementation of storing and retrieving information
>ntained in the input file.

////////////I////////////////////I////////I///////////I//I//I///l/I//I/////I
#include "Cips.h"
#include <stdio.h>
4iort **allocate image_array(long Iength,long width)

int i;
short **the array;
the array = malloc(length * sizeof(short *));
for(i=0; i<length; i++) {

the_array[i] = malIoc(width * sizeof(short));
if(the_array[i] _ '\O') {

printf("\n\tmalloc of the_image[%d] failed", i);
} /* ends if */

} /* ends loop over i */
return (the_array) ;
/* ends allocate image_array */

l tiff image(char image_file_name[],short **the_image)

char *buffer, /* CHANGED */
rep[80];

int bytes_read,
closed,
position,.
i,
j;

FILE *image_file;
float a;
long line_length, offset;

-t tiff_header struct image header;
tiff header(image_file_name, &image_header);

/***
* Procedure:
* Seek to the strip offset where the data begins. Seek to the first line you want.
* Loop over the lines you want to read. Seek to the first element of the line.
* Read the line. Seek to the end of the data in that line.
**/
iage_file = fopen(image_file_name, "rb");
image_file !NULL)

II

position =.fseek(image_file,
image_header.strip_offset,
SEEK_SET);

for(i=0; i<image_header.image_length; i+t-){

bytes_read = read line(image_file, the_image,
i, &image header,
0, image_header.image_width);

} /* ends loop over i */
closed = fclose(image_f le);

} /* ends if file opened ok */
else{

printf("\nRTIFF.C> ERROR - cannot open ravi2 "
"tiff file");

} /* ends read—tiff image */

/**

* read_line(...
* This function reads bytes.from the TIFF. file into a buffer, extracts the numbers
* from that buffer, and puts them into a ROWSxCOLS array of shorts. The

process
* depends on the number of bits per pixel used in the file (4 or 8).

read_line(FILE *image_fle,short **the_image,int line_number,
struct tiff header struct * image _header,int ie,int le)

char *buffer, first, second;
float a, b;
int bytes_read, i;
unsigned int bytes_to_read;
union short char_union scu;
buffer = (char *) malloc(image_header->image_width * sizeof(char));
for(i=O; i<image_header->image_width; i++)

buffer[i] =
/**
* Use the number of bits per pixel to
* calculate how many bytes to read.

bytes_to_read = (le-ie)/
(8/image_header->bits_per_pixel);

bytes_read = fread(buffer, 1, bytes_to_read,
image_file);

for(i=0; i<bytes_read; i++) {
/***

* Use unions defined in cips.h to stuff bytes into shorts.

if(image_header->bits_per_pixel == 8){
scu.s_num 	= 0;
scu.s alpha[0] 	= buffer[i];

III

the_image[line_number][i].= scu.s_num;
} /* ends if bits_per_pixel = 8 */
if(image_header->bits_per_pixel = 4){
scu.s_num 	= 0;
second 	= buffer[i] & OX000F;
scu.s_alpha[0] 	= second;
the_image[line_number][i*2+1] = scu.s_num;
scu.s_num 	= 0;
first 	= buffer[i] >> 4;
first 	= first & Ox000F;
scu.s_alpha[0] 	= first;
the_image[line_number][i*2] = scu.s_num;
) /* ends if bits_per_pixel = 4 */
/* ends loop over i */

ree(buffer);
•eturn(bytes_read);
/* ends read line *f

tiff header(char file name[],struct tiff header struct *image_header)

har buffer[12], response[80];
ILE *image file;

nt bytes_read, closed, i, j, lsb, not_finished, position;
ong bits_per_pixel, image_length, image_width,length_offield, offset to_ifd,

st ip_offset, subfile, value;
hort entry count, field type, s_bits_per_pixel,s_ image _length,s_image_width,

s trip_offset, tag_type;
mage_file = fopen(file_name, "rb");
f(image_file == NULL)

• printf("\n Warning %s" , file_name);
exit(0);

f(image_file !NULL)(
/*************************************

* Determine if the file uses MSB first or LSB first

)ytes_read = fread(buffer, 1, 8, image_file);
f(buffer[0] = 0x49)
lsb = 1;

Isb = 0;

/*************************************

* Read the offset to the IFD

ract long_from_buffer(buffer, lsb, 4, &offset_to_ifd);
finished = 1;

ile(not f nished) {
/*************************************
* 	* Seek to the IFD and read the entry count, i.e. the number of
* entries in the IFD.

IV

position = fseek(image_file, offset_to_ifd, SEEK SET);
bytes read = fread(buffer, 1, 2, image_file);
extract_short_from_buffer(buffer, lsb, 0,&entry_count);

** Now loop over the directory entries. Look only for the tags we need. These
* are: ImageLength ImageWidth BitsPerPixel(BitsPerSample) StripOffset

for(i=O; i<entry_count; i++){
bytes_read = fread(buffer, 1, 12, image_file);
extract_short_from_buffer(buffer, Isb, 0, &tag_type);
switch(tag_type) {

case 255: /* Subfile Type */
extract_short_from_buffer(buffer, lsb, 2,&field_type);
extract_short_from_buffer(buffer, lsb, 4, &length_of field);
extract_iong_from_buffer(buffer, Isb, 8, &subfile);
break;.

case 256: /* ImageWidth */
extract_short_from_buffer(buffer, Isb, 2, &field_type);
extract_short_from_buffer(buffer, lsb, 4, &length_of field);
if(field_type = 3){
extract_short_from_buffer(buffer, lsb, 8,&s_image_width);
image_width = s_image_width;

else
extract_long_from_buffer(buffer, lsb, 8,&image_width);
break;

case 257: 1* ImageLength */
extract_short_from_buffer(buffer, Isb, 2, &field_type);
extract_short_from_buffer(buffer, lsb, 4, &length_of field);
if(field type = 3){
extract_short_from_buffer(buffer, lsb, 8, &s_image_length);
image length = s_image_length;

else
extract_long_from_buffer(buffer,_lsb, 8, &image_length);
break;

case 258: /* BitsPerSample */
extract_ short_from_buffer(buffer, lsb, 2, &field_type);
extract_short_from_buffer(buffer, lsb, 4,&Iength_of_field);
if(field type = 3) {
extract_short_from_buffer(buffer, lsb, 8, &s_bits_per_pixel);
bits_per_pixel = s_bits_per_pixel;

else
extract_long_from_buffer(buffer, lsb, 8,&bits_per_pixel);
break;

case 273: /* StripOffset */
extract_short_from_buffer(buffer, Isb, 2, &field_type);
extract_short_from_buffer(buffer, lsb, 4, &length_of field);

V

if(field_type = 3) {
extract short from _buffer(buffer, Isb, 8, &s_strip_offset);
strip_offset = s_strip_offset;

}
else
extract_long_from_buffer(buffer, lsb, 8, &strip_ offset);
break;

default:
break;

} /* ends switch tag_type */
} /* ends loop over i directory entries *1
bytes_read = fread(buffer, 1, 4, image_file);
extract_long_from_buffer(buffer, lsb, 0,&offset_to ifd);
if(offset_to ifd == 0) not finished = 0;
/* ends while not_finished */

aage_header->1sb 	= Isb;
nage_header->bits_per_pixel =. bits_per_pixel;
nage_header->image_length 	= image_length;
nage_header->image_width 	= image_width;
n age _head er->strip_offset 	= strip_offset;
losed = fclose(image_file);
/* ends if file opened ok */

printf("\n\nTIFF.C> ERROR - could not open raviI"
"tiff file");

ends read—tiff header */

* extract_long_from_buffer(...
* This takes a four byte long out of a buffer of characters. It is important to

w the byte order LSB or MSB.

_long_from_buffer(char buffer{],int lsb,int start, long *number)

nti;
nion long_char_union Icu;

~
f(lsb = 1){
lcu.1_alpha[0] = buffer[start+0];
lcu.l_alpha[1] = buffer[start+l];
lcu.l_alpha[2] = buffer[start+2];
lcu.l_a.lpha[3] = buffer[start+3];

} /* ends if lsb = 1 */
if(lsb = 0){.

Icu.l_alpha[O] = buffer[start+3];
Icu.l_alpha[1] = buffer[start+2];
lcu.l_alpha[2] = buffer[start+1];
lcu.l_alpha[3] = buffer[start+0];

} /* ends if lsb =-0 	*/
*number = lcu.1_num;

VI

} /* ends extract long_from_buffer */
/**
* *

extract_ short_ from_ buffer(... This takes a two byte short out of a buffer of
characters. * It is important to know the byte order * LSB or MSB.

extract short_ from_buffer(char buffer,int lsb, int start,short* number)
{ int i;

union short_ char_ union Icu;
if(lsb == 1){ 	 -

lcu.s_alpha[O] = buffer[start+0];
lcu.s_alpha[1] = buffer[start+l];

} /* ends if lsb = 1 */
if(lsb = 0){

lcu.s_alpha[O] = buffer[start+l];
lcu.s_alpha[1'] = buffer[start+O];

} /* ends if lsb = 0 	*/
*number = lcu.s_num;

} /* ends extract_short_from_buffer */

VII

File Name: My_Binary_Matrix.h
This file contains code. listing to store and retrieve binary matrix of Os and Is.

class My_Binary_Matrix
{

private:
unsigned int * matrix;
int col_size;

public:
My_Binary_Matrix();
My_Binary_Matrix(int,int);////to get size of matrix
void set_val_of_row_col(int no of_rows,int no_of cols);
unsigned int *get_address(int r,int c); 	r
void assign_value_at(int r,int c,int value);
'int get_value_from(int r,int c);
unsigned int get_u_int_value(int r,int c);

e Name: My_Binary_Matrix.cpp
is file contains code listing to store and retrieve binary matrix of Os and Is.

#include "My_Binary_Matrix.h"
nclude <stdlib.h>
#include <iostream.h>
#jnclude <string..h>

y_Binary_Matrix::My_Binary_Matrix()
{

matrix = NULL;
col_size = 0; }

My_Binary_Matrix::My_Binary_Matrix(int no_of rows,int no_of cols)

if((no_of_cols % (8 * .sizeof(unsigned int))) = 0)
col_size = no_of_cols / (8 * sizeof(unsigned int));

else
col_size = no_of cols / (8 * sizeof(unsigned int)) + 1;

matrix = new unsigned int[no_of_rows * col_size];
for(int i = O;i < 3;i++)

for(intj = O;j <3j-i-+)
{

matrix[i * col_size + j] = 0;

id My_Binary_ Matrix: :set_val_of row_col(int no_of rows,int no—of cols)

if((no_of cols % (8 * sizeof(unsigned int))) == 0)

VIII

col size = no_of cols / (8 * sizeof(unsigned int));
else

col size = no_of_cols / (8 * sizeof(unsigned int)) + 1;
matrix = new unsigned int[no_of_rows * col size];
for(int i = O;i < 3;i++)

for(int j = O;j < 3;j++)
{.

matrix[i * col size +j] = 0;
}

}
void My_Binary_Matrix::assign_value_at(int r,int c,int value)
{

if(value == 0 11value = 1)
{

unsigned int * address;
address = get_address(r,c I (8 * sizeof(unsigned int)));
if (value == 0)
{

unsigned int temp = 2147483648;1/32768;
temp = temp >> c % (8 * sizeof(unsigned int));
temp = — temp;
*address = *address & temp;

}
else
{

unsigned int temp = 2147483648;
temp = temp >> c % (8 * sizeof(unsigned int));
*address = *address f temp;

}
else
{

cout<<endl<<"Error : Binary Matirix Element can't be other than 0 or
1 "<<endl;
exit(0);

int My_Binary Matrix:: get_value_from(int r,int c)
{

///check for valid r, c - here is no check made in this function

unsigned int temp;
temp = get_u_int_value(r,c);
temp ='temp <<c % (8 * sizeof(unsigned int));
temp =. temp >> (8 * sizeof(unsigned int)) - 1;
return temp;

}
unsigned int * My_Binary_Matrix:get_address(int r,int c)

IX

{
return &matrix[r * col_ size + c];

}
unsig ' ed int My_Binary_Matrix::get_u_int value(int r,int c)

return matrix[r * col size + Cl (8 * sizeof(unsigned int))];
}

Fileame: global.h
This file contains code listing for the global parameters

1define PI 3.14159265358979

#define HEIGHT 576
/define WIDTH 768

#de ine h_DIST I
#define w_DIST I
#de~lfine SIZE ((h_DIST)*(w_DIST))
#d fine INC SIZE ((h_DIST+I)*(w_DIST+I))
#ddfine PERCENTAGE I

#dfine ANGLE 10
#d fine No_Of_V iews 36

#d~ fine Ii RANGE 9
#dfine w RANGE 6

// define Scale 40 -- safi
#define Scale 0

Total_Pieces wrt_Height;

X

File Name: main.cpp
This file contains code listing for extracting feature points and formation of surfaces

#include "rvrml.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "global.h"

#include "image open.h"
#include "My_Binary_Matrix.h"
//#include "octreenode.h"
//#include "process_image.h"
int h Next of first_img,h_Next_of Next_img = 0;

//void find_matrix(short **image_i,char matrix[] [WIDTH]);
void find_matrix(short **image_i,My_Binary_Matrix &matrix);

void main()

int im,ij;
My_Binary_Matrix matrix[No_Of_Views];
char s[20];
char filename{100];
short **image_i;

image_i = allocate_image array(HEIGHT, WIDTH);
for(im = O;im < No_Of_Views; im++)
{

strcpy(filename,"G:\\Try\\image_source\\New_Folder_61\\bw
^

 shoe");
sprintf(s,"%d",((im % No_Of_Views)*ANGLE)); //*N
ttrcat(filename,$);
strcat(filename,".tif`);
read - tiff_image(filename, image_i);
matrix[im].set_val_of_row_col(HEIGHT, WIDTH);
find_matrix(image_i,matrix[im]);

}
free memory_of image_array(image i,HEIGHT, WIDTH);

point first_point,second_point,third_point,fourth_point;

int c= O,Point Flag = 0, Write Flag = 0;

rvrml v;

for(im = 1; im <=No_Of_Views; im++)
him = I;

XI

/// for texture map

rcpy(filename, "G:\\martch_cube\\Try_marching\\output\\temp_fi le.txt");
•v.set_temp_file_name(filename);
strcpy(fi l en ame,"colored_ shoe");
strcat(fi lename,". j pg");
v.new_shape(filename);

////texture
cout << "Processing "<<im<<" irnage"<<endl;

for(i = O;i < HEIGHT; i+= h RANGE)

if(i >= HEIGHT)
break;

for(j = 0;j <= WIDTH/2; j++)

if(matrix[im% No_Of Views].get_value from(i,j)

first_point.p = i;
first_point.q =j;
first_point.view = im% No_Of_Views;
Write_Flag = 1;
Total_Pieces_wrt_1-leight++;
break;

}
for(j = O;j <= WIDTI-I/2; j++)

if(matrix[(im+l)%No Of Views].get_value_from(i,j)== 1)

second_point.p = i;
second_point.q = j;
second_point.view = (im+l) % No_Of_Views;
Write Flag = 1;
break;

if(Point Flag = 0 && Write Flag = 1)

////first ponit
v.write(convert_2d_to_3d_point(first- point,-I));,
////second ponit
v.write(convert 2d to_3d_point(second_point,-1));

}
else
{

if(Write_Flag = 1)
{

XII

////third ponit
v.write(convert 2d to_3d_point(first_point,-1));

////fourth point
v.write(convert 2d to_3d_point(second_point,-

1)); 	4

}
}
Point_Flag = (Point_Flag + 1) % 2;
Write_Flag = 0;

}
v.end_shape(im);
Total Pieces wrt Height = 0;

}
cout<<endl<<"c = "«c;

I]

void find_matrix(short * * image_i,My_Bi nary_Matrix &matrix)
{

int i,j;
for (i=0;i<HEIGHT;i++)
{

fo r(j =0;j <W IDTH; j++) {

matrix.assign_valu e_at(i, j,0);
if (image_i[i][j] = 255) ///for back black & object white
//if (image i[i][j] = 0) ///for back white & object black
{

image_i[i][j]=1;

//v.write(' 1');
}
//else

//v.write(");

int k=0,1=0,sum=0;
//for(i = 0;i < HEIGHT ;i += h DIST)//64

//for(j = 0;j <WIDTH j += w_DIST)//256
for(i = 0;i < HEIGHT -h_DIST;i += h_DIST)//64

ford = 0; j <WIDTH -w DIST ;j += w_DIST)//256
{

sum=0;
for(k = i; k< i+h_DIST; k++)

• for(1= j;l< j+w DIST;I++)
{

if(image_i[k][l] >= 1)
• sum++;

XIII

if(((double)sum/SIZE)>=PERCENTAGEII((double)sum/SIZE)<= 0.0)
{

sum=0;
for(k = i; k< i+h_DIST+1; k++)
for(I = j;l< j+w_DIST+1;1+--)
{

if(image_i[k][1] >= 1)
sum++;

if(((double)sum / [NC SIZE) >= PERCENTAGE)
continue;

else
if(((double)sum / INC_SIZE) <= 0.0)

continue;
else
{

//cout<<endl<<((double)sum/SIZE);
for(k = i;k < i+h_DIST+I;k-++)
{

if(image_i[k][j] >= 1)
matrix.assign_value at(k,j, 1);
//cout<<"rav i";

if(image_i[k][j+w_DIST-1] >= 1)
matrix.assign_value_at(k, j+w_DIS T-

)
for(1= j;1 < j+w_DIST+1;1++)
{

if(image_i[i][1] >= 1)
matrix.assign_value_at(i,1, I);
//cout<<"ravi";

if(image_i[i+h_DIST-I][1] >= 1)
matrix.assign_value_at(i+h_DIST-1,1,1);

}

//cout<<endl<<((double)sum/SIZE);
for(k = i;k < i+h_DIST;k++)
{

if(image_i[k][j] >= 1)
matrix.assign_value_at(k,j,1);
//cout<<"ravi";

if(image_i[k][j+w_DIST] >= 1)
matrix.assign_value_at(k,j+w_DIST,1);

}
for(l = j;l < j+w_D1ST;l++)
{

if(image_i[i][I] >= 1)
matrix.assign value_at(i,1,1);
//cout<<"ravi";

if(image_i[i+h_DIST][1] >= 1)
matrix.assign_value_at(i+h_DIST,1,1);

xv

File Name: vrml.h
This file contains code listing for VRML file creation

// rnode2.h: interface for the mode class.
//
lllllllllll iii/iilllllllllllliI/iiilllll/ll///till//1/llllllllliilll
#include <iostream.h>
#includ <fstream.h>

struct point
{

ant p,q;///p - h direction , q - w direction
lint view;

struct point_3d
{

double x,y,z;

point_ d convert_2d_to_3d_point(struct point,int d);
class rvnnl
{
privat

int count;

fstream ofile,temp_file;

pub'
//ObNode rnd[20193];
/tint index;
/tint view[20193];///// 1,-1 for +ve,-ve X

%//// 2,-2 for +ve,-ve Y
/////3,-3 for +ve,-ve Z

rvrml();
///void write(float,float,float,int);////x, y,z,size
void write();
void write(char);
void write(point_3d);
void new_shape(char str[]);
void end_shape(int view);
void set temp_file_name(char str[]);
void write_ to_temp_file(point & one,point & two,int height,int width);
void wrt_form_temp_to_main_fileO;
void close_temp_file();
virtual —rvrml();

i"M

File Name: vrml.cpp
This.file contains code listing for VRML file creation

// vrml.cpp: implementation of the vrml class.
//
/IIIIIIIIIIIII //1II ///II ///I f///II ///I /I /II ///III //III //I u////f /I //I //

//////I ////////////////f////////////////I /f///////I f///I f////I //I /////
// Construction/Destruction

point_3d convert 2d to 3d_point(point dot,int d)///d - direction form left or right

point_3d temp;

if(d=-1)
{

temp.x = -((dot.q - WIDTH/2 - 1)*sin((dot.view *ANGLE)*PI/1 80));//
+(WIDTH-HEIGHT));
temp.z = ((dot.q - WIDTH/2 - 1)*cos((dot.view
*ANGLE)*PI/180));///+(WIDTH-HEIGHT));
temp.y = dot.p;

}
else
{

temp.x = -(dot.q- - WIDTH/2 - 1)*sin((dot.view *ANGLE' +
180)*Pl/180);

temp.z = (dot.q - WIDTH/2 - 1)*cos((dot.view *ANGLE +
180)*PI/180);

temp.y = dot.p;
}

return temp;
}
rvrml::rvrmlO 	 -
{

count = 0;
//index = 0;
ofile.open("G :/martch_cube/Try_march ing/output/test_out.wrl",ios:: injios::out

);
//fofile is used to as Read/Write file
if(!ofile)
{

cout<<endl<<"unable to open file "<<endl;

ofile << "#VRML V2.0 utf8\n";
0

XVII

void rurml::new_shape(char str[])
{

ofile << "Shape { \n";
ofile << "\t appearance Appearance { \n";
ofile << "\t\t material Material { \n";
ofile << "\t\t 	diffuseColor 0.81 0.71 0.23\n";
ofile << "} "•

ofile << "\t texture ImageTexture { \n";
ofile << "url [" <"\"<<str<<"\"]\n";

ofile << "\n\t\t} 	 \t\t} \n";

ofile << "geometry IndexedFaceSet {\n";
ofile <<"\t solid TRUE\n";
ofile << "\t coord Coordinate { \n";
ofile << "\t 	point [\n";

}
vol rvrml::end_shape(int view)
{

ofile << "] 	#end point\n ";
ofile << "

ofile << "texCoord TextureCoordinate {\n";
file << "point [\n";

temp_fi le.seekg(0000L);

for(int j = 0; j <Total_Pieces_wrt_Heightj++)
{

ofile << (double)((view-1) * WIDTH/No_Of_Views)/WIDTH <<"
1-((double)(] * HEIGHT/(Total_Pieces_wrt_Height-1))/HEIGHT)<<"

. ofile << (double)((view-1) 	* 	WIDTH/No_Of Views +

	

)TH/No_Of_Views)/WIDTH 	<<" 	 "<<I-((double)(]
GHT/(Total Pieces_wrt_Height-1))/HEIGHT);

ofile <<endl;
}

close temp_file();

ofile << "] \n";
ofile << "} # end textcoord\n";

ofile <<" 	coordlndex [\n";

for(int im = 0; im < count; im += 2)
{

ofile<<endl<<im+0<<","<<im+2<<","<<im+l<<",-1, ";

XVIII

ofile<<im+I«„ "<<im+2«n "<<im+3<" 1 n.

//ofile<<im+0«°,"<<im+4<<",°«im+5<<",-1, ";
.//ofile<<im+0«","<<im+5«°,"<<im+1«",-1, „;

ofile << " 	 }1n"
ofile << "texCoord Index [\n";

for(im = 0; im < count; im. += 2)
{

ofile<<endl<<im+0<<","<<im+2<<","<<im+l <<",-I, n;

ofile<<im+1«" °<<im+2«„ "<<im+3«" I ".
}

ofile << "] # end\n";
ofile << "} #. end geometry\n";.
ofile << "} # end shape\n";

count = 0;
}

void rvrml::write(char ch)
{

ofile << ch;
}

void rvrml::write(point_3d dot)
{

ofile<<dot.x«" "<<dot.y<<" "<<dot.z<<", "<<endl;
count++;

}

void rvrml::writeO
• {

double xl = O,yl = 100, zI = 100;
double x2 = O,y2 = 0, z2 = 100;

• for(int im = 0; im < 36; im++)
{

ofile<<xI <<",,<<yI << ",, <<zI «,,,,.
ofile <<x2«""<<y2 << "<<z2<< ",\n";

}
}

void rvrml::set_temp_file_name(char str[])
{

temp_f le.open(str,ios:: inhios::out);
if(!ofile)
{

cout<<endl<<"unable to open temp file :"<<str<<endl;
exit(0);

XIX

id rvrml::write to temp_file(point & one,point & two,int height,int width)

point 3d temp_dot 1 ,temp_dot2;
temp_file <<(double)one.q / width<< °«I- (double)one.p / height<<" H;

temp_dotl = convert_ 2d_ to_ 3d_point(one,-1);
temp_dot2 = convert 2d to_3d_point(two,-1);

temp_file <<(double)(one.q + Scale + sgrt(pow((temp_dotl.x -
t mp_dot2.x),2) + pow((temp_dotl.z - temp_dot2.z),2)))/width<<" "<<1-
(ouble)one.p / height<<" ";
}
oid rvrml::close_temp_file()

{
temp_file.closeO;

oid rvrml::wrt_form_temp_to_main_file()

double temp;
while(!temp_file.eof())
{

-for(int i =0 ;i<l;i++)
{

• temp_file >> temp;
• ofile << temp<<' "•

temp_file >> temp;
ofile << temp<<", "«endl;

• }
}

1::-rvrml()

ofile << "Navigatiohlnfo { \n";
ofile << "type \"EXAMINE\" \n";
ofile <<") # end NavigationInfo";

XX

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

