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ABSTRACT

In this dissertation, designing of two types of digital FIR filter_s
are studied using three techniques. Firstly, analysis of response-error
due to finite precisioﬁ' is considered. Then different types and structures
of FIR filters are given. Different approximation criteria used .for FIR
filter designing are also discussed.

In the first technique, equispaced samples of desired frequency -
response are taken. From these samples of frequency response, the filter
coefficients are calculated. In second technique, algorithm is presented
to minimize the error in frequency response when finite precision filter
coefficients are eyaluated by rounding-off the infinitely precision
coefficients.

At last, maximally flat passband linear phase FIR -filters are
considered. In this technique, désigning of linear phase FIR digital
filter having symmetric impulse fesponse is formulated as a constrained .
minimization problem. The constraints express the maximal flatness of the
fréquency response at the origin. The objective: function, which s
quadratic in filter coefficients, is formed as a convex combination of two
objective functions. The two objective functions represent the energy of
the error between the frequency response of the designed filter and a
scaled version of the frequency response of the ideal filter in both stop

and passbands.
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CHAPTER-ONE

PREVIEW

1.1 INTRODUCTION' . |

| Digital filters first were simulations of analog filters.- on 'general-
purpose computers. As computer technology advances, it provides faster
multipliers, more memory, and good analog-to-digital converters. Some. of
these computer simulations were implemented with special hardware to

replace the analog filters.

1.2 ADVANTAGES OF DIGITAL FILTERS [2]
Digital filter has following advantages over analog filter:
1. Programmable

Reliable and repeatable

Free from component drift

No tuning required

No precision components, no component matching

I

Superior performance (linear phase)

1.3 TYPES OF DIGITAL FILTERS |

Digital filtefs can be classified into two types:

{iy Finite Impulse response (FIR) filtersv

(i) tnfinite Impulse response (liR) filters

If the inpqt to the discrete-time system is x(n) then the output is
represented as y(n) and the impulse response of the (causél) system is

h{n). - Output can be represented in terms of input & impulse response as:



yin) = ): x(m) h(n-m) . (1.1)
or

yin) = Z h{m) x{n-m) ..(1.2)

m=0

This is as shown in Fig. 1.1

x(n) ————|System S|—-y(n)

Fig.1.1 A block diagram of discrete-time system
The z-transform of a digital filter can be expressed as a rational

polynomial in 2! J.e.,

Y(Z) i=0
H = =
(2) X(2) y
biz'
i=0
A
and bO = 1

The z-transform of impulse response is also known as its transfer function.
In non-recursive type of system current output y(n) depends entirely
on a finite number of past and present values of input. The above

equation, in terms of filter impulse response h(n), is written as:

v(in) = h{O)x(n) +h(1)x(n-1) +..... +h(N-1)x(n-N+1)



If the impulse response has infinite duration vas in Egs.(1.1) and
(1.2) .then the filter is an infinite-duration impulse-response (lIR)
filter[2]. |

If the impulse response of a causal system is zero fof all n>N-1

Eq.{1.2) becomes:

N-1
y(n) = ): h{m) x(n-m). ...{1.3)

m=0

and the filter is known as finite-duration impulse-response (FIR} filter.

1.4 FREQUENCY RESPONSE OF DIGITAL FILTERS
If the input to a causal, linear, stationary: system is gh" (complex

exponential) with frequency » then from Eq.(1.2)

]

yn) = ¥ him) g m
m=0
= " [ ) h(m)e““’"‘] ...(1.4)
m=0
vin) = “" . H{w)
where Hlw) = [ him)e™™ ...{1.5)
m=0 '

H(w) is called the frequency response because it describes the change
in magnitude and phase with frequency w.

As compared to continuous-time system, the frequency response of a
discrete-time system is always periodic with -a period of sampling

frequency, which is generally normalized to 2 radians per second.

'3



Frequency response of a discrete time system may be written as

1 8

Hlw + 2r) =

m=0

=]
= ) h{m)e™™ ™"
m=0

Hlw + 2n) = H(w)
So, discrete-time system is periodic with a period of 2a radians per
second.
H{w) = H(-w) ...(1.6)
The equation_ (1.6) shows that frequency response has an even magnitudé
function and an odd phase function. |
Hence, freq:uency;resp.onse plotslneed only be drawn for'pésitive
frequencies only. |
1.‘5 PHASE AND GROUP DELAY
Letting |H(w)| and e(w) as magnitude and phase of H(w) respectively,

the phase shift is written as
8(w)

P w
and the group delay is given by

_ -de{w)
9 dw

For a -bandpass signal, T, répresents the delay of carrier and T,

represents the delay of the envelope of the signal.

. 1.6 FILTER DESIGN
Filters are designed in two steps :
ti . Approximation problem-

(ii) - Realization problem



. The approximation part of the problem deals with the choice of

parameters. or coefficients in the filter’s transfer function to approximate

an ideal response. The approximation is performed by using the frequency

response. The realization part of the filter design deals with choosing a

structure to implement the transfer function. This structure may be in the

form of a circuit diagram using components or it may be a 'program to be

used on a general-purpose computer or a signal-processing microprocessor.

In this dissertation approximation problem is mainly considered.

1.7 PROPERTIES OF FIR FILTERS [1][6]

1.8

-_—

FIR filters have exactly linear phase.

Length-N FIR filter has a p.ole of ord(;r N-1 at the origiﬁ of z
plane. A pole at origin does not affect the magnitude of the
frequency response of the filter.

FIR filters have an impulse response that is symmetrical around
the (N-1)/2 point.

FIR filters are usually implemented in a non-recurisve way. This
guarantée_s stability.

Round-off noise, which is inherent in realizations with finite
precision arithmetic, can easily be made small for non-recursive

realizations of FIR filters.

. .FIR filters can be more easily altered in a dynamic fashion to

implement adaptive filtering functions.

APPLICATIONS OF FIR FILTERS [2](8][16] -

. 1 '

FIR filters have been used as band-select filters in FDM/TDM
translators and in touch-tone receivers.
FIR filter can be used as a matched filter in radar and as echo

cancellor in satellite communication.  FIR filters appear in

5



cascade with other filters, such as in long-distance
communication channel with repeater stafions.’

3. Optimal multi-dimensional FIR filters can be designed easily frorﬁ
1-D prototypes which can be used in image processing
applications. | '

4. Digital signal processing is used. in various stages of digital
television receivers. In television ‘transmission luniinanée &
chominance signals are interleaved with each other which can be
separated by using FIR bandpass and cqmb filters. FIR filters
can also be used to remove ghosf to improve pic;ture quality. |

5.  Digital Afilters are often used in ‘speech processing systems such
aé compact disk blay‘ers.‘ :

6. Linear phase filters are‘used where frequency dispersion dué' to
non-linear phase is harmful, e.g., speech processing and data'
transmission. )

7. FIR filters are also used in adaptive equalizers used for data
communication having simple tap coefficient adjustment

algorithms.

1.9 DISADVANTAGES OF FIR FILTER [1][6]

1. A large impulse response duration is required for sharp cut-off
filters. Hence a large amount of processing is required to
realize such filters. |

2-. The delay of linear phase FIR filters need not 'always be an
integer number of samples. This non-integer delay can lead to
problems in some digital signal processing applications such as
in digital feedback control system.

3. Closed form design formula for FIR filters do. notﬁ exist.. Thgs

FIR filter-design is always an approximation problem.

6



1.10 DIGITAL FIR FILTERS-BRIEF HISTORY

FIR digital' filters were initially analyzed by Kaiser using window
-functions, which indicated that lIR filters were much mdre efficient than
FIR filters. However, Stockham’s work on FIR digital filtering, indicated
“that implementation of higher-order FIR filters could be made extremely
efficient-computaionally . Thus comparison between FIR and 'HR filters are
no longer strongly biased towards the latter bnes. These fesults also
inspired significant research for efficient designs for FIR filters [1].

A class of selective non-recursive digital filters with independently
prescribed. equiripple passband and stopbénd attenuation and linear
phase (LP) are obtained b{/ numerical solutions of a set of non-linear
equations. Attenuation plots of linear phase filfers and experimental
results are also given[9]. | However, non-linear optimization procedure of
Herrmann [9] is relatively slow algorithm and limited to the design of
filters with few parameters. |

An analysis of the three possible types of quantization effects in
the direct form realization of FIR digital filters is presented in [4].
Based on analysis of quantization, statistical bounds on the error incurred
in the frequency response of a filter due to’ coefficient quantization were
developed and verified by experimental da}ta.' Using these bounds, a
procedure for appiying known techniques fof FIR filter design to the design
of filters with finite word length coéfficients were presented. In this,
direct form is shown to be a very attractive structure for realizing FIR
filters.

However, several papers have appeared on the subject of non-linear-
phase (NLP) filters. In [10] NLP filters were studied for minimizing the
order of a filter subjected to given gain response specifications.. It was
shown that most LP filters can be implemented moré efficiently than NLP

ones by taking into account the symmetry of their coefficients for filters

.7



with very wide passband. For certain special purpose, filters such as CCD
and those used for filtering a delta-moddlated or ADPCM signal, an NLP
implementation is usually more efficient. _ |

Simultaneous design in both magnitude and group delay of FIR filters
based on Multiple Criterion Optimization (MCO) was studied by G.Cortelazzo
and M.R.. Lightner. Examples of the optimal tradedff filters, both FIR non-’
linear phase filters and HR filters were presented in [11]. In this
paper, Chebyshev norm of magnitude and Chebyshev norm of the group delay
which are two design objectives used i—n design formulation. Minimizing
Chebys'hev norm of magnitude as well as group delay simultaneously are
useful performance objectives but very difficult to deal with
computationally.

K.Preuss gave algorithrﬁ that deals with complex error .functiAon, Aw‘hich
depends linearly on the coefficients of the filter to be designed [12].
The magnitude of this error function is minimized in the Chebyéhév sense
“"using Remez exchange. algorithm. The method can be used to design complex-v
valued-selective systems. This method takes large design time. |

In [21], iterative algorithfn for designing FIR filters by complex
Chebyshev approximation method .i'ntroduced by Preuss was considered again
and a modification was propo_sed \)ielding a significant acceleration. '

The algorithms by Preuss and Schulist do not converge. When thése
algorithms do converge, vit is not shown that they converge to optimal
fiters. In [20], algorithm to design the FIR filter with real coefficients
that best; approximates an arbitrary complex valued frequency resbonse is
presented. This algorithm computes the optimal filter by solving the dual
to the filter design problem. It is guaranteed to converge theoretically.

S.C.Pei & J.J.Shu gave the design of real FIR filters with arbitrary

complex frequency responses by two real Chebyshev approximations [13].



in [19), procedure for the design of finite-length impulse response
filters with linear phase is presented. The algorithm obtains the optimum
Chebyshev approximation on separate intervals corresponding to passbands
and or stopbands, and is capable of designing very long filters.

When digitai filters are implemented on a compUter or with s_pec,ial-
purpose hardwére, each filter coefficient has to be represented by. a finite
number of bits. The simplest and most widely used'approgch to the problem
is the rounding of the optimal infinite précision coefficients to its b-bit
'repreéehtation. The standard methods of optimal FIR digital filter design,
namely the Remez algorithm [19] do not work when finite precision
restriction is imposed. In [15], general purpose Integer-Programming
computer program for the design of optimal finite lwordlength FIR digital
filters is described. '

Medlin, Adams and Leondes [17] designed maximally flat linear phase
filters by minimizing the energy of fhe error between the desired and
* designed frequency responses only over the stdp.bands subjected to flatness
constraints at zero frequency. In [7], maximally flat linear phase fillters
were designed by' minimizing the energy of error betwéen the desired and
designed frequency responses over the stopband as well as over the passband

- subjected to flatness constraints.

1.11 STATEMENT OF PROBLEM

In -this dissertation, FIR filters are d'esigned using'th're‘e different
techniques

(i) Frequency sampling liil. Chebyshev approximation |

(iii}y Maximally Flat Approximation. |

Designing of FIR filters usiné‘ Frequency sampling: method requires
. following specifications: |

(i)  Filter length 'n’.



(il Pass band cutoff frequency ‘fp’.

(iii) Number of output frequency samples required ‘k’.

Designing of FIR filters using Chebyshev approximation method which
uses Linear Programming requires following specifications:

(i) Filter length ‘n’.

(ii) Number'-of bands ‘nbnd’,

(iii) Grid length ‘Igrd’.

(iv)] Band edges ‘edg’ (array).

(v} Desired frequency respbnse ‘fx' (array).

(vi) Weighting factor ‘wt’ (array).

(vii) Number of bits 'b’.

Designing of FIR filters using Maximally Flat Approximation requires
following specificatiqns: | |

(i) Filter length ‘N’.

(ii) Number of constraints at zero frequency ‘z’.

(i) Stopband (mean square) error scale factor ‘alpha’.

(iv) Normalized passband cutoff frequency ‘wp’.

Designed filter frequency response and filter coefficients using above
three methods are given in Chapter 6. The specifications of the filters to

be designed by three methods are given in Tables 1.1 to 1.3.

1.12 ORGANIZATION OF DISSERTATION
In this chapter an introduction to the subject and a brief history of

FIR filter designing over years is discussed.

Chapfer two deals with effects of rounding infinite precision
coefficients in FIR filter designing along with the analysis of all
possible types of quantization errors.  Fixed point arithmetic used for

realization of filter coefficients is also described.

10



Table-1.1 Specifications for the design. of low-pass FIR
filters using frequency sampling technique

Filter-1 | Filter-2 | Filter-3 | Filter-4
n 20 21 30 31
fp| 025 | 0.25( 025 0.25
Kk 80 84 120 124

Table-1.2 Specifications for the design of lowpass FIR filters
using Chebyshev approximation criterion & Linear

Programming technique

Filter-1 Filter-2 Filter-3 Filter-4

n 20 21 31 40

nbnd 2 2 2 2

Igrd 16 20 16 8

‘ledg | PB: 0.00-0.20-| PB: 0.00-0.20 | PB: 0.00-0.20 | PB: 0.00-0.20

TB: 0.20-0.25 | TB: 0.20-0.25 | TB: 0.20-0.25 | TB: 0.20-0.25
SB: 0.25-0.50 | SB: 0.25-0.50 | SB: 0.25-0.50 | SB: 0.25-0.50

f | PB: 1.0 PB: 1.0 PB: 1.0 PB: 1.0
SB: 0.0 SB: 0.0 SB: 0.0 SB: 0.0

wt | PB: 1.0 PB: 1.0 PB: 1.0 PB: 1.0
SB: 1.0 SB: 1.0 SB: 1.0 SB: 1.0 °

b 7 7 10

PB : Passband,

TB : Transition band,

11

SB : Stopband




Table 1.3 Specifications for the design of lowpass FIR filters

using- maximally flat approximation method

Filter Number N z alpha | wp
Filter -1 33 -3 0.01 0.15
Filter -2 33 3 0.50. 0.15
Filter -3 33 3 0.80 0.15
Filter -4 33 3 1 _ 0.15
Filter -5 21 3 1 0.15
Filter -6 22 3 1 0.16
Filter -7 . 33| 3 | 1 0.15
Filter -8 40 3 1 0.15
Filter -9 21 | 2 1 0.15.
Filter -10 21 3 1 0.15 |
Filter -11 21 4 1 0.15
Filter -12 21 5 1 0.15
Filter -13 33| 3| 0.01 |00
Filter -14 33 3 0.01 0.15
Filter -15 33 3 0.0 0.20
Filter -16 . 33 3 0.0 0.25
Filter -17 33| 2 | 060 | 0.16

12



Different forms of FIR filter and linear phase filter structures are
given in Chapter three. Four types of linear phase filters are also given.

In Chapter Four, analysis of diffefent approximation criteria used for
linear phase FIR filter designing is given. Advantages and disadvantages
of different criteria are also described.

Chapter Five deals with designing of FIR filter coefficients using
Frequency sampling, Chebyshev approximation and Maximally Flat
Approximation methods. Flow charts for the above three methods ‘are also
given. |

In Chapter Six, results and conclusion are discussed, impulse
response tables and frequency responses of some designed FIR filters are
also shown.

Software listing is given in Appendix.

13



CHAPTER-TWO

FINITE PRECISION EFFECTS ON DIGITAL FILTERS

FIR filters are implemented with a digital computer or digital
hardware. In these implementations, the sighal and coefficient values can
no longer be represented with arbitrary precision and unlimited émplitude.
Numbers must be represented as members of a finite set of values in a
digital processor. There are several schemes for approximately
representing real numbers digitally, but generally floating point and
fixed-point repfesentations are used. The minimum computing time can be
obtained by fixed-point arithmetic. |

Finite precision effects may be divided into three different
categjories:'

(i) Errors due to quahtization of input samples known as A-D noise.

(i) Errors due to finite-precision . arithmetic operations of addition, |
multiplication and storage known as round off noise. |

(iii)  Errors in representing . coefficients: as finite fixed-point numbers

known as filter response errors.

2.1 A-D NOISE

An analog-toﬂ-digital (A/D) converter is a device that operates on the
analog waveform, i.e., samples the continuous time s’ién‘a‘zls- vt'o; pr-oduce a
digital output consisting of é sequence of numbers. The sequence of
numbers thus produced approximates a corresponding sample of the inpui
waveform. Fig 2.’1‘ shows the block diagram of the 'A/D converter. The first

stage, i.e., sampler butput is the sequence s(n) =s(t)|,.,r IS created where

14



s{n} is expressed to infiﬁite precision. In the second stage the_ numerical
equivalént of each sample of s(n) is expressed by a finite number of bits
giving the sequence sqln). The difference ,sigrfal eln) =s(n) - sq(n)‘ is
called quantizing noise or A/D conversion noise.A

The input analog sign'al s(t) must be band limited _in order for the
'quantized output sgi(n) to be.' meaningful representation of s(t). So, a
presampling or antialiasing analog lowpéss ﬁlter precedes 'the A/D

‘converter as shown in Fig 2.2(b).

A/D Converter

Fig. 2.1 Block diagram of A/D converter

In Fig.. 2.2 (a), first Abloclk shows the conversion of continuous-time
signals to discrete-time signals. . This signal is then processed by digital
processor and the resultant signal is converted to continuoué—time signals.
The digital processor may be a digital filtér. ContinuoUs-time signals can
be converted to ,digitél form by using a sampler, anal-og ‘to digital
convertor and an anti-aliasing filter. In most cases, it is deéirabie to
minimize the sa'mplihg rate of a digital.system.‘ If the input is not band
limited, the Nyquist frequency of the input is too' high. So, prefiltering
is often used. A more realistic model of digitél filtering of continuous-
time signals is as shown in Fig. 2.2(b),  where digital processor is a

digital filter[3].

15
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Fig. 2.2(a) Block dyiagram showing ideal digital filtering
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Fig. 2.2(b) A more realistic model of digital filtering

of continuous-time signals

distributions of quantization noise may be obtained. -

| Rounding

Truncation

Sign-magnitude truncation
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Depending on the way in which s(n) is quantized, different



2.1.1 Rounding [1]

If the smallest quantization step size used in the' digital
rep;resentation of sq(n) is Q, then the relation between sq(n) and s(n) for
rounding is as shown in Fig. 2.3. Since there are only a finite number of
quantization levels, all signals either exceeding the largest ua) OF
falling below the smallest (-E,,) quantization level are rounded to these
numbers. Generally such overflows or underflows are avoided by judicious
choice of quantization step Q and by careful scaling of the analog input
waveform.

The error signal satisfies the relation

-Q/2 s e(n) s Q/2 for all n

If the distribution of the error signal is uniform then the
probability distribution of the quantization error for rounding is as shown

in Fig. 2.4.

2.1.2 Truncation

In this signal is represented by the highest quantization level that
is not greater than the signal. Fig 2.5 shows the relation between sg(n)
and s(n) for truncation.

Since truncation is equivalent to rounding less one-half a
quantization step, the probability distribution of the error signall1] is

as shown in Fig. 2.6.

2.1.3 Sign-magnitude truncation

It is identical to truncation for positive signals and negative
signals are approximated by the nearest quantization level that is greater
than the signal. Fig 2.7 shows the relation between sg(n) and s(n) for
sign-magnitude truncation. Thus, depending on whether so(n) is pqsitive or

negative, the distribution of Fig. 2.6 or it's mirror image is used([1].

17
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The quantization error has a mean value of O for rounding and sign-
magnitude truncation and Q/2 for straight truncation.

The quantized signal is considered to be the true signal s(n).with an
added noise e(n) as shown in Fig. 2.8.

The variance [2] of a random variable n is given by

1 2
ol = E{e(n)-E{e(n)}}
Where E{x} is the expected value of x. For rounding, the noise has

zero mean, E{e(n)}=0, and the variance
ol = fp(e) e’de

Probability density pR(e) = %

Q/2

o‘g = ——21—— Iezde

-Q/2

o2 = Q%12

The variance for truncation is also 02/_12. The variance for sign-
magnitude truncation is Q%3 or four times that of rdundihg or straight
truncation. Due to statistical consideratiohs, in  most practical
situations rounding is to be preferfed to t'h'e other rules for quantizing a
signal.

The errors that are made in converting a continuous-amplitude signal
into a discrete fepresehtation may be evaluated in ‘terms of signal-to-noise
ratio (SNR). The signal must be scaled [2] to limit the pdssibility of
overflow with the use of a scale factor or gain factor G, as shown in

Fig.2.9. A small value of G will ensure that overflow never occurs, but

the SNR will be reduced because the quantization noise level is fixed and a
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so(n)

MAX

2Q]

Fig.2.7 Quantizer characteristlc with

2Q

sign-magnitude truncation

s(n)

,(/

e(n)

>—so(n)

Fig. 2.8 Linear model of quantization noise
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small value of G reduces the signal component. If occasional overflow is
allowed, then the signal component will be larger and thus the SNR- will be -
increased. This trade-off between overflow and quantization noise is

always necessary when using fixed-point arithmetic.

v ‘ B-bit quantizer

G

Fig. 2.9 A block diagram showing signal scaling before quantization

2.2 ROUND OFF NOISE [4]

Quantization of results of arithmetic operations Within the filter
‘causes errors in the filter output, referred to as round off noise. To
each rounding point in the filter is associated a zero-mean white noise
source of-yariance Q%12 and all noise sources are assumed to . be
uncorrelated with each other and with the input signal. ‘

The round bff noise at the output of a direct form FIR filter depends
on the location of pbints in the filter where rounding is performed. |If
all multiplicatioh products 'are represented eXactIy and rounding' is
performé‘d only after they are summed (at the filter .output) then only one
noise source 'is present in the filter and it superimposes noise directly
onto the output signal. Thus independent of filter order, the output
roundoff noise is uniformly distributed between -Q/2 and Q/2 with l;nean zero |
and variance 02/12, where Q is the step size. | : |

If on the other hand all, t‘he _mUltiplication products are 'roulnded‘
before they are summed, the output noise is the sum of all noise sources at

each multiplication point. Let {ei(n)} the noise sequence produced by the
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iy, noise sequence and {E(n)} the noise sequence at 'the filter output. - -
C N2 ‘ | ' '
En) = ] eln)
n=0

The mean of the output noise is zero and variance is
A2

o2 = (N+1 J Q°
2 12

L
for a linear phase direct form FIR filter,

2.3 FILTER RESPONSE ERROR [3]

Direct form FIR system is expressed as

N-1
Hz) = T h(n)z"

n=0

If the coeffitients {h(n)} are quantized the resulting new set of
coefficients are ‘{h(n) = h(n) + ah(n)}. The transfer function'for the

quantized system is

N-1
Hiz) = [ﬁ(n)z‘” = H(z) + AH(z)
_ n=0
where
N-1 .
AH(z) = T ahinz™

n=0

: Heﬁce the quantized syste‘m'can be represented as shown in ng. 2.10.
In this, unq'uantized system is considered to be in. parallel with an error
system, whose impuise response is the sequence of quantization error
~-samples {ah(n)} and Whose system function is thé corresponding z-transform,A

AH(2).
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H(z)

x(n) y(n)

AH(z)

Fig. 2.10 Representation of coefficient quantization in FIR systems

Consider the case of odd length (N) FIR filter.

The frequency response is 'given by:

(N-3)/2
Hie") = E h(n)( gion L giwiN-1n) ) + h ([\li )e-jw(m-n/z

n=0

(N-3)/2

= [ Z 2h(n) cos[ (%—1 -n) w] + h (512_1) ]e"“"“’”’z
n=0 .

where H(e") denotes the magnitude function. Assume that rounding is
used as quantization process. Let {h (n)} be the sequence that results
when {h(n)} is rounded to a quantization step size of Q. Then
h'(n)=h(n) +e(n) and h (N-1-n)=h"(n) for O = n = (N-1)/2, where e(n) for
each n is a number that satisfies |e(n)] = Q/2. Let H(z) be the
z-transform of {h'(n)} and let H (e¥) = -H'(eiw)ei“’m'”lz.
Then the error function is defined as:

E (€)= H'(e") - Hie")
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(N-3)/2
EL(ei"’) = Z 2e(n) cos[ (%l -n) w‘] + e [M]

n=0

~ Since |e(n)| = Q/2, a upper bound on EL(ei‘") is given by:

(N-3)/2
)] < | z|¢(n)| '|._,c,os[ [N71-n] o] | + e [%]I
n=0 :
— (N-1/2
5%[1 +2 7 |cosnw|]
. n=1
ELs_g_[1+2.[M)] as Cos nw =1 -
EL SN:—%—

2.4 FIXED POINT ‘ARITHMETIC [1]

Consider a word Iength of b bits is chosen to répresent the numbers in
a digital filter. So, 2° different numbers may be represented exactly With
a b-bit word. In fixed point representation, it is assumed that the
position of the binary'point is fixed. The bits to the right represent the
fractional part of the number and those to the left represent the integer
part. Let l;é7, th‘e number with base 10 say -0.375 is represented as
10.01100 where the Binafy point is assumed to be located following the

second'bn. | | ’ |

N most fixed point. arithmetic realizations of digital filters, the
position of the binary point is éssumedv to be just to the right of the
first bit.‘ Thus the range of numbers that can be represented is from 1.0

to 1.0-2™" where b is the number of bits in the word. The input signal
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may be scaled to be within desired range as given in section 2.1. In case
of digital filter coefficients, the position of the binary point is often
moved further to the right to allow filter coefficients with magnitudes
greater than 1.0.

In the next chapter different forms of FIR filter structure used for

implementing FIR filter and four types of FIR filter are described.
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CHAPTER-THREE

STRUCTURES AND TYPES OF FIR FILTERS

3.1 STRUCTURES OF FIR FILTERS (3}
Causal FIR systems have only zeros and the difference equation is

given by
N-1
yln] = Zh(m) x(n-m)

n=0

and the transfer function is given by

N-1
H(z) = [h(m)z'"‘
m=0

The direct form realization of an FIR system is as shown in Fig. 3.1.
There is a chain. of delay elements across the top of the diagram. 'So, this
structure is also referred to as a tapped delay line structure or a
transversal filter structure. As shown in Fig. 3.1, the signal at the
adder input is- weighted by the appropriate coefficient (i.e., impulse
response value) and the resulting product is summed to form the output.

The transposed direct form for the FIR case is as shown in Fig 3.2.

3.2 STRUCTURE FOR LINEAR PHASE FILTERS [4]

For the case of odd length filter, the transfer function is given by
(N-3)/2

Hiz) = ] him[ 2" + 2™ ] + h (-'12'-1){‘“'”’2
n=0

where h(n) = h(N-1-n) 0O = n = N-1
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KZ{Ol hi1) Voo Y.

h([2] h[3] |h[N-2] h[N-1]

Fig. 3.1 Direct form realization of an FIR system

-~ yin}

yin)

hIN-1] ZilN-szlsl 4 Z>Inlzl thm Zg[m.

o—r— .-

x{n)

Fig 3.2 Transposition of the network of Fig. 3.1
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From above equation it is seen that linear phase filter requires
approximately half as many multipliers as that required for an arbitrary
phase filter. A block diagram of the linear phase direct form is shown in

Fig. 3.3.

Th[(N-3)/2] hI(N-1)/2]

. y(n)

Fig. 3.3 Block diagram of linear phase direct form FIR 'filter

3.3 TYPES OF LINEAR PHASE FIR FILTERS [2) ,
The discrete fourier transform (DFT) can be used to evaluate the
frequency response at certain frequencies. DFT ~of (length-N) impulse

response, hin) is defined as

N-1
Ckl = ¥ htne™™™ | k=0,1, 2, ..., N-1 | ..(3.1)
-n=0
or
Clk) = Hlw)|
W = 2mk/N
= H[ 2K, k= 4 (3.2
_H(_N_],k O, 10 voens N-1 | .32
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The DFT of hin} gives N samples of the frequency. response function
H{w)
H{w)

Rw) + jlw)
or Hiw = Mw) e
M(w) = |H(o)|

= [r2 + 2

d{w) = arctan (

)

DI

where M(w), dlw) are defined as maghitude and phase function
respectively. M(w) .is not analytic and d(Q) is no.t'continuou-s.
- So, Alw) = ¢ M or |Afw)| = M(u) is chosen to solve the above
problem. Magnitude and amplitude as well as phase for 'a linear-phase FIR
filter is as shown in Fig. 3.4. Now, H(l is given by
Hw = AW e®@ .33
For FIR filter to be linear, the phase function elw) = K+ sz' where
K and K2 are‘a_rbitrary"constants. Frequency reéponse of a Iéngth-N FIR

1
filter is given as

N-1 | : » -
Hlw) = ¥ h(nje™ . | (3.4
n=0 -
) N-1 R
n=0 :
where M = %l or M = N-M-1
\';{/:b) = ™™ [hy e + h, ™" + ... + by, gt ] w(3.5)
From Eq.(3.3) ‘ _
Hiw) = Afw) e1+¥2® | ..(3.6)

where A(w) is real-valued function of w.
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M(a
A()

-

Linear

(a")_ (b

Fig. 3.4 The magnitude and amplitude of a linear-phase FIR filter

(a) magnitude and phase (b) amplitude and phase
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From EQ.(3.5)

Hw) = ™ (h, + h, JeosM +i( h-h . sinM)

+[ h, +h, ]cos{w(M-1)}+j[ h-hy., ]sin{w(M-1)}+.... } .(3.7)

Eq.(3.7) can be put in the form of Eq.(3.6) if K1=0 or K1=1r/2

(i) For K1=O_
h(n) =h{N-n-1)
Hlw) = Alw)e®2¥

Eq.(3.7) can be written as

Hlw) = e™MA(w)

(a) for N odd (type-1)

M-1
Al = § 2h(n) cos{e(M-n)} + h(M)

n=0
(b) for N even (type-2)

N/2 - 1 ‘
Al) = )  2hin) cos{w(M-n)}

n=0

(ii) For K1 = n/2 .
~ _hin) -h{N-n-1)
Hiw) = jA{w)e™
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(a) for N odd (type-3)

M-1
Aw) = ¥ 2hin) sin{w(M-n)}

n=0

(b) for N even (type-4)
N/2 -1
Alw) = ) 2h(n) sin{u(M-n)}

. The type-1 and type-2 .formulae are useful in the design of low-pass
filters, type-3 and type-4 formulae are wuseful in the design of
differentiators and- Hilbert transformers. The Iowpass- filter design using
these formulae are given in Chapter 5. Different methods of designing FIR

lowpass filters are given in the next chapter.
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CHAPTER.FOUR

APPROXIMATION CRITERIA

Many techniques are available for design of FIR filters. The basic
filter designing involves the following steps:
1. Choose a desired ideal response, usually described in the frequency
domain. |
2. Choose a length - N FIR filter.
3. Establish an error criterion for the response of a filtef compared to
the desired response. - |
4, Develop a method to find the best member of the linear phase FIR
filters d»es'igned by varying length N (or other parameters).
~ When the best filter is désigned and evaluated, the desired response .
or error criterion might be changed and the filter woﬁid “then be
redesigned. The approach is generally used iteratively.
In this chapter mainly different criteria used for designing of
lowpass filters are considered. As shown ‘in Fig. 4.1(b), the pass band
extends fromw=0tow =w, and stopband from w =u, to w=n. The region between

pass-band and stopband, i.e., (w2-¢b1‘) is called transition region.

Amplitude 1}
1.0
(a)
0] . -
° Yy . x
J J
4 i \/ :
Passband Stopband

Fig.4.1(a} Ideal lowpass FIR filter frequency response without
transntlon reglon
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Amplitude i
1.0 |
(b)
-t P ()
| - Jw1 & 7}
Passband  Stopt
assban | ’ t_opband
Transition
region

Fig.4.1(b) Ideal lonass FIR filter frequency response.

with transition reglon

4.1 APPROXIMATION CRITERIA -

(i)
(i)
(iii)

{iv)

Four error measures are generally used in FIR filter design.
Minimization. of'the peak Stopbahd ripple called frequency sampling

design,

~ Minimization of the averagé of the squared error in the frequency-

response, called-least squafed (LS) apprbximation. | |
Minimization of the maximum of fhe error over specified ?egions of
the frequency response, called Chebyshev appro'ximation.

Taylor series approximation to the desired résponse, called

Butterworth or maximally flat approximation,

4.2 ADVANTAGES AND DISADVANTAGES OF DIFFERENT CRITERIA

For designing FIR filtefs, frequency-sampling method is fast and

simple. ~ It is useful for adaptive filters or for an intermediate stage in

a more complicated algorithm.  But it provides least control over the total

frequency response.

The LS error method uses an error criterion that is related to the

gnergy of the signal or noise. The design equations are linear. "But. the
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design sometimes have oscillations or overshoot in the frequency response.
The oscillations or overshoot are undesirable.
‘Design algorithm based on Chebyshev error can be slow. If smoothness

of the response is needed, the maximally flat approximation is used.

4.3 FREQUENCY SAMPLING DESIGN TECHNIQUE [1]
FIR filters can be uniquely specified by impulse response coefficients
{h(n)} or by DFT coefficients {C(k)}.

As given in equation (3.1)

N-1
n=0
N-1
hin) = ﬁ C(k) el | .(4.1)
k=0

DFT samples C(k) for a FIR sequence can be regarded as samples of the
filter's z-transform evaluated at N points equally spaced around the unit

circle, i.e.,
C(k) = H(Z)l ejz-m(/N where k=O, 1,‘ ceeey N-1
2= ¢ .

The z-transform of a FIR filter can” be expressed in terms of its DFT

coefficiénts by substituting Eq. (4.1) into the'z-.transform as given below:

N-1
H(z) = Zh(n) z"

n=0



N-1 N-1

- z [_'L ZC(k) ej2nnk/N] 2"

n=0 k=0

Summation over the index n is interchanged with summation over index k

which gives:
N-1 N-1
s C(k) j2mnk/N _-1 1"
H(Z) = Z —N— Z [ e 2z ]
k=0 n=0
N-1 .
Clk) (1-e/2N 2N
N _J2TKIN 1
Mg B (1-e - B |
Since e?™ =1, the above equation reduces to
N N-1 C
(1-27) (k)
Hiz) = ) .
N -1 j2mk/N
k'0(1 ze )

The above equation shows that sampling in frequency at N equispaced
points around the unit circle and evaluating the continuous frequency
response by interpolation of the sampled frequency response gives f(equency
response having exactly zero approximation error at the sampling
frequencies and finite in between them.

The smoother the frequency response being approximated, the smaller
the error of interpolation between the sample points. This is as shown in

Fig. 4.2.
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(a)

4 g P—Puy. e
0 O n w
{ Hee®)
(b)
0 VAVA -—
0 n '

Fig. 4.2 (a) Desired fréquency response of a low pass filter
(b) Frequency response of filter using frequency 'sémpling
technique
The above procedure is used directly to design an FIR filter. To
improve the quality of the approximation, i.e., to make the appro»ximation
error smaller, a number of frequency samples can be made unconstrained

variables.

4.4 CHEBYSHEV APPROXIMATION .[5][15]

Assume a desired magnitude response as D(e*™), designed filter

magnitude response as H{e?™

) and a weighting function W(ei2™) which is
continuous on a compact subset F <[0,0.5] ‘where F represents normalized
frequency. Here sampling rate is assumed to be 2a radians. For a linear
phase filter, maximum absolute weighted error is to be minimized. Maximum

absolute weighted error is given by

llE(eiznf)ll — Taé W(e|21tf)|D(e;2m) - H(ejznf)] “.(4‘2)

€
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This error is to be minimized over a set of coefficients of H(e™ ™)

which are represented as h = [h , h , .., hJl. Minimization of
Eq.(4.2) is known as Chebyshev approximation problem.
In other words, it may be stated as to find the filter coefficients h

j2nf

of H(e””™) such that the Chebyshev-norm, i.e.,"max|E(e }| is minimized.

Mathematically it may be represented as

min { max |E(®™)
h { fesf"'| l}

where E(€”™) = W(e?™)D(e”™)-H(e?™))
The above problem may be formulated as:
Minimize E

SUbj_ected to : H(Ee®™) - E/w (ei?"kf)' < D(e?™f) -

L HEER™ - E/W(eiT™) < - D(el2™)
where k=0, 1, 2, ...., ngrd. |
and ngrd is number-of frequency points on which ideal frequenéy response is

sampled.

j21!f)

Fo‘r simplicity -H(e is represented as Hi(f) a‘nd in term of filter

coefficients it is given by
N-1
HH) = § hikje™™

k=0
where k=0, 1, 2, .... N-1

~As given by Egs. (3.8) and (3.11) H(f) can always be written as

HIf) = GIf) exp| %'- . ﬁz-‘—’ | 2xt
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where G(f) is a real valued function and L=0 or 1. As given in.
section 3.3 G(f) can be expressed in terms of coefficients h(k) as

(i) Type 1 : N odd , L=0 .
G(f) = h(n) + Zh(n-k)Zg(k,f)‘ V ...(4.3)
k=1 » ’

where n = (N-1)/2

glk,f) = cos(2nkf)
-{ii) For type 2, 3 and 4

Gif) = zh('n-k)ZQ(k,f).
’ k=1

where n = N/2 for N even

n = (N-1}/2 for N odd

' (a) for type 2 gik,f) = cos[ 2n(k - %) f)" N even, L=0
(b) for type 3 g(k,f) = sin(2rkf) N 6dd, L=1
(c) for type 4 g(k,f) = sin( 2un(k - %) f ] | N even, L=1

In terms of desired frequency response DIf) and a positive weighting
function W(f), both continuous on a compact subset F < [0, 0.5], Eq. 4.2

. can be written as 4 ,
|1 ElR]| = max:W(f)|D(f) - G(f)|
feF o

and the Chebyshev approximation problem can be written (for type i) as

Minimize E subject to constraints

hin) + § hin-k12g(k,H-E/V(H) < D)

k=1

< hin) - T hin-ki2g(k,-EMW() = - DIf » L 14.4)
’ k=1 '
where f ¢ F
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Similarly it can be written for other types also. Using this
.approximation criteria, filters having different lengths ‘are’ designed.
Filter length can be increased for having more attenuation in stopband.

Other way of achieving more attenuation in stopbanq is by using

'maxil-nally flat filters in cascadéd with these filfers. '

4.5 MAXIMALLY FLAT APPROXIMATION

- Maximally flat filters are the’filters that achieves a specified
degree of flatness- at w = 0 (for lowpass filters) or at reference frequency
in passband (for bandpass filters). It ,meéns that this typei of filters
have maximally flat passband.

This type of filter _has">an advantége of trade-off between .more:
flatness in the passband and better attenuation in the stopband.. Linear
phase . FIR filfers having very flat passbands and equiripple stopbands are
importaht for several applicétioh_s.' Consider an example of removal of high
frequehcy noise from a low. frequency signal by low-pass filtering. In~
order to reduce the distortion of the signal introdqced by the filt__er,‘ a
filter having a very flat passband is desirable and to -maximize the
stopband -attenuation, a filter ha\Zing equi'r‘ipplev"stqpband fs desira.bl,e »[8;].-
Filters having very flat passbands are also useful in applicationé in which
a filter appears in -cascade with other filters, such as in a long-distance
. communication charinel with repeater stations.-
| The design of linear. phase FIR filters having symmetric irhbulse'
response is formulated as constrained minimization problem. The
constraints express the maximal flatness of the frequency resporiée at the
origin.. .

The objective function, which is a quadratic form in the filter
coefficients is formulated as a convex combination of two criteria

representing the energy of the error between the frequency response in both
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the pass and stop bands. The constraints express the maximal flatness of

the frequency response at zero frequency for the case of a low-pass filter.

4.5.1 Maximal Flatness Consfraints (7]
| For linear phase FIR filters (having symmetric impulse respoﬁse) the
frequency response is given by
He") = e™™" H (u) ...(4.5)
where the amplitude function Ha("’) can be expressed as -

H () = s"(w).x - | ...(4.6)

{h(0.5(N~1))  2h{0.5(N-1)-1) ..... 2h(1) 2h(0)}
N odd

where X = Y5h(0.5N-1)  2h(0.5N-2) ..... 2h(1) 2n(0)} &7
N even '
: {1 cosw cos2w ... cos[0.5(N-1)wl} N odd
s lw = -
{cos(0.5w)cos(1.5w)cos(2.50w) ..... cos[0.5(N-1)u]} N even

’ ...(4.8)
~ As FIR filters with symmetric impulse response is used for designing
low-pass filters with maximally flat passband, the following flatness
conditions will be applied at zero frequency.

d*H, (w)

dw* w=0

=0, k integer ...(4.9)

From (4.6) and (4.9)

...{4.10)

For odd order derivatives (i.e. k=1,3,5,..), the above equation

becomes eq-ual to zero at w=0 because the kth derivative of cos(nw) is
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(n)sin(nw) when k is odd. Hence at w=0, it is equél to zero. It may be

expressed as

L
d’sfw) | - = 0 for k odd
do* ©=0

For even order derivatives (i.e.k=2,4,6, ...), Eq. (4.10) becomes

ds (1°%(0 1 2* [05N-11 N odd

w) =
dwk Iw:o -
(+1)%5%(0.5)% (1.5)% (2.5)* [0.5(N-1)1%} N even

.. (4.11)

The following normalization condition is always imposed:
Ha(w)lw=o = 1.0 ‘ ' ...(4.}2)(
From (4.6) and (4‘.5), the above condition becomes:
| M1 1x =1 ..(4.13)
Cbnstraint_ (4.13) & (z-1), i.e., k/2 constraints of the form of (4.9),

given by Eq. (4.11) for k=24, ...2(2-1) can be expressed as

Cx = K. | - o 44
or » | '
111 .1 ..... 1 oSN ] :
o 1 2? c [0.5(N-1)12 - 12h[0.5(N-1)-11] *© |0
0 1 2° 3L [0.5(N-1)1* 2h[0.5(N-1)-2]{ = |O
0 1 2%V gy [0.5(N-1)]%*" 2ht0 ][0

...k4.14a)

where N is odd.
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Similarly matrix C can be written for even N as

B L R R 1 )
138 5 L (N-1)?
C=11 3¢ 5* .. (N-1)* for N even
1 32(2—1) 52(2'1) .... (N_1)2(Z-1)

- ..{4.14b)
C is matrix forz * m & K is z-dimensional where_ m = (N+1)/2 for odd N

and z = m.

4.5.2 Mean Squared Error Criterion [7]

The error criterion will be derived as a quadratic form expressing the
energy between the frequency responsé of the designed filter 'énd .é scaled
version of the desired fréque'ncy response. In this, both pass & stop bands
are taken into account. o

The amplitude of ideal low-pass filter is'given by

1 O=<w=w

Hd(w) = '...(4.15)

0 w < w=n

where w and w_are the passband & stopband cutoff frequencies.

The weighted error in the stopband is

n
€, = [Wl el do | | ..(4.16)
J |

s

where W(w) is a positive weighting function and e (w) the stopband
error given by: '
elw) = Hlw-H o
s o a d
= H (w)
a .
e (o) = s'(uf . (4.17)
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Substituting (4.17) in (4.16)

n

xT[ J W(w) slw) s (o) dw] X

X P x
]

n
where P = ’[W(w)'s(w) s'(w) dw

Wg

For Wiw) = 1

P =
S

For N odd,

-

7]

where

€
)

-

(PB) lr,c =

T

Js(w) sT(w) dw

Ws

1
COS w
cos 2w

c’os(O.é(N-1 )w)J

...{4.18)

..(4.19)

[1 COS w COS 2w ....cos(O.5(N—1)w)] dw

r’'xi

r' = Q.5(N+1)

1
COS w
cos2w

(m - ws)

COS w
cosw
c0s2w COSw

r=c¢ =1

cos 2w

Txr’

...cos(0.5(N-1)u)

Ccos w COS 2w ...coS w cos[0.5(N-1)v]

c0s%2w

...c08(2w)cos[0.5(N-1)w]

cos(O,'S(N~1)w) [COS(O.'S(N-Hw)COSw] [cos(O.5(N-1)w)co's.2w] ...6032[0.5(N-1)w] J

dw



(PS) | r.c

. (PS) Ir,c

(P)|

(P)|

(PS’ !r,c

14
Icosz[(r-ﬂw]dw forr = c =1

)

T
_ 1 i
o f{ cosl2(r-1)e] + 1} dw

Wg

—

sin(2(r-1o) , "
2(r-1)

ws.

1 - sin(2(r-1)ws) _
5[ 2(r-1) +"""s]

0.25 sin(2(r~1)ws)
(r-1)

= 0.5n - O.5ws -

T

jcos[(c - 1)w] cosl(r-1)0] dw for rec, r#1 & c=1

Wy

T
= 0.5 jcos[(r+c-2)w] + cosl(r - c)u] dw

Wy

0 sin(r +c-2)w, | sin{{r-c)w,)
' (r+c-2) ' (r-c)

Hence for N-odd, Ps can be compactly expressed as

(PS) lr,c = J

n-w forr = ¢ =1

0.25 sin(2(r-1)ws)
(r-1)

forr = c# 1

0.5(n-wg) -

" forr=zc

sinlr+c-2] o sin[(r-clw,]
0 [ .

(r+c-2) (r-c)
\
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for r=c=#1

...(4.20a)



For N even, -

cos(0.5w)
cos(1.5 w)
"l cos(2.50)
P8=J' . [cos(O.Sw) cos(1.5u) cos(2.5w)..cos(0.5(N-1)w)] dw
11’
wS
_cos(O.5(N-1)w)J .
where r' =0.5 N
(0082(0.50)) cos(0.5w)cos(1.5w) ...[c08({0.5w)cos(0.5(N-1}w)]
T | cos{1.50)cos(0.5u) cos?(1.5u) ...Icos(1.50)cos(0.5(N-1)w)]
PS=J cos(2.5w)cos(0.5w) cos{1.5w)cos(2.5w) ...[cos(2.5w)cos(0.5(N-1)w)] {dw
Wg I Z I '
[cos(0.5(N-1)w)cos(0.5w)] [cos(1 .5w)COS(O.5¢o(N-1))]...0052[0.5(N-1')w]

T .
P 1, = Icoszl(r-O.S)w]dw forr = ¢
ws
T
=1 ;
=3 f { cosi2(r-0.5)a] + 1} do
ws

. 2r-1

1 [sinuzr-nw) . w]"
2

—

- sin((2r-1)ws)
(Ps) Ir’c=‘—2—[ 5] + nt-w ]

b4
J’cosuc . 0.5)u) cosl(r-0.5)u] dw for r#c

w

P
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T
= 0.5 Icos[(r+c-1)w] + cosl{r - cjw} dw

Wg

(P)| =-08 [sm((r+c-1)w)s N sin((r-c)w,)

(r+c-1) (r-c)

Hence for N-even, P3 can be compactly expressed as

ro i 0.5 sin((2r-1)v )
.B(n-wg) - 2r) forr = ¢ ,
(P) | =1 ...(4.20D)
' sinl(r+c-1) v ] e ‘ :
-0. [ o+ sinl{r-cla,] forr = ¢
l (r+c-1) (r-c) '

The weighted square error measure in the pa‘ss’bahd is

(A}

P .
E; = j Wiw) ez () dw | .(4.21)
) .

where e () = H () - 7H (w)
e W = x5 - yH o) ..(4.22)

where y is a scale factor defined as
T
Ha(“’o) _ S (wo).x

= = ...{4.23)
H d(wo) H d(wo)

4

Where @, is the reference frequency usually taken as the frequehcy
corresponding to the maximum of Hd(w). For the case of lowpass filters

w =0.
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From (4.22) & (4.23)

. s (wo)
e (w) = X[ S W) - H (w) ] ...(4.24)
P H (w)

Substituting (4.24) in (4.21)

wp T
S(w) S (w)
= X ; 0 . 0 "
E = x J{ W) [s(w) et H (o) ][ s'(w) o H_(0) ] }dw X
0 d o d o
E = x"P x ...(4.25)
p p
where
“p slo,) s(w) T
- i H " ...(4.
p: jW(w) [s(w) Ao ] () ][ s(w) o] H () | do (4.26)
0

Putting wo=0, W(w) =1, lowpass (odd length) filter desired response is
unity at reference frequency w, & in the complete passband. Now Eq.(4.26)

can be written as

“p

P = f[ s(o) - slw) ][ s'(0) - sT(w) ] dw ...(4.27)
0

For N odd, substituting (4.8) in (4.27)

o5 | 0
E (cos w) -1

(Pp)|rc=J' . * [0 (cos w - 1)...(cos[0.5(N-1)w}-1)]dw
° 1cos[0.5(N-1)w)-1

where Pp is a matrix of r’ * ¢’ and r’ =c¢’ = 0.5 (N+1)
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[0 0 .. 0

ap| O (cosw-1)? | .. {cos[0.5(N-1)w]-1}(cosw-1)
()], .= [[0 (coszu-icoss-1) . {cos[0.5(N-1}u]-1}(cos2u-1) {du
A . .

0 {cos[0.5(N-1)u]-1}Hcosw-1) .. {cos[0.5(N-1)w]-1}?
...(4.28)

P),, =0 forr = 1orc =1
wp
(Ppllm = I{ cos[ (r-1)w] -1 }2 dv for r=c=1
Q
wp
= J{ cos?[ (~1)u ] + 1 - 2cosl(r-1)u} } du
0
wp
= f{% [cos [2(r1)u] +1] +1-2cos [(r1)0]}aw
) .

=‘I{%cos[2[r-1 )w] +g -2cos[(r-1 ]w]}dw

1 sin[2(r-1)w ] 2 sin{(r-1)w ]
- —E + 30 ] . P
2 2(r-1) P (r-1)

P)| =
p 're
wp

P, = H cos[ (c-1)u -1} » { coslir-1)ul-1 } du for rec, r=1, c=1
0

wp

= J{ cos[ (c-1)w ]cos[ (r-‘l)w] - cos[ (c-1)w ]-cos[ (r-1)w]+1 }dw
0

% 7G4



wp )
= I { 0.5cosl(r +¢c-2)w] + 0.5¢cas{(r-c)wl-cosl(c-1)w]-cos[(r-1)w] + 1 '}dw
) | |

0.5 sinl{r+c-2)0o I 0.5 sinl{r-clo ] sinl{c-1)w ]
Pl = 2+ £ - 2
pine (r+c-2) . (r-c) (c-1)

sin[(r-1)w ]
- P 4w

w1 %
Hence for N-odd, P can be compactly expressed as

o | ' for r=1 or c=1

0.25 sin[2(r-1)wp] 2sin[(r-1)wp]

1.5 © + 20r1) T for r=c=1
(PP)'r,cA=< :
0.5sin[{r+c-2)w ] 0.5sin[(r-c)w ] sin[(r-1)o 1 sinl{c-1)w ]
w + Py : P P . P
P (r+c-2} (r-c) (r-1) {c-1)

for r#c, r#1, c=1

...(4.29a)
For N even, substituting (4.8) in (4.27)
" cos(0.50)-1 .
cos(1.5w)-1
_ (Pp)|r0=j L [(cos(0.5w)-1)(cos(1.5w)-1)..(c0s(0.5(N-1)w)-1)] dw

® | cos[0.5(N-1)w]-1

where Pp is a matrix of r’".« ¢’ and r’ = ¢’ = 0.5N .
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(P)| =
p 're

{cos(0.50)-1}? | {[cos(0.5w)-1][cos(1.5w)-11}
" .
f {lcos(1.50)-1]lcos(0.60)-11} {cos(1.5u}-1}?
O . .
{[cos[0.5(N-1)ul-11[c0s(0.50)-11}  {Icos[0.5(N-1)wl-11[cos(1.50)-11}

... {Ic0s(0.50)-11[cos(0.5(N-1)w)-11} ]
... {[cos(1.5w)-1][cos(0.5(N-1)w)-11}

dw
... {Icos(0.5(N-1)u)-11}?
wp ‘ ,
PIl,, = J{ cos[(r-0.5)w] - 1 } de forr =c
0
wp
= I{ cos’[(r-0.5)u] + 1 - 2c0s((r-0.5)0] } du
o]
wp _
= I{O.S[COS[Z(r-O.S)w] + 11 + 1 - 2 cosl(r-0.5)u]} du
: ,
wp

= I{O‘Scos[(Zr-Hw] +1.5 - 2 cosl(r-0.5)v]} dw
(o]

sin({2r-1)w ] 2 sin[(r-0.5)w 1
e 30 ] . P
(2r-1) P {r-0.5)

P, =05 [

b2



wp

P, = j{cos[(c-o.s)wl-n * {cos[(r-0.5)w]-1} dw for rec
0

wp

= f{cos[(c-O.5)w]cos[(r-0.5)w]- cos[(c-0.5)w]-cosl(r-0.5)w] + 1} dw
" .

wp
= f{ 0.5cosl(r +c-1)w] +0.5cosl(r-c)w]-cos[(c-0.5)w}-cos[(r-0.5)w] + 1 }dw
! .

0.5 sinl{r+c-1)w ] 0.5 sin[(r-c)w 1 sinl(c-0.5)w ]
(P )I - - P + P P
p e (r+c-1) (r-c) (c-0.5)

sin[(r-O.S)wp]

TTos %

Hence for N-odd, Pp can be compactly expressed 'as

f 0.5 sinl(2r-1la]  2sinl(r-0.5)u ] -

1. . =

» 5 wp + VIE (1 0.5) for r=c

(P, = 0.6sinl(r+c-1)uw ]  O.5sinlir-clo ] sinl(r-0.5)0 1 sinl(c-0.5)0 ]
' w + P+ P P p
p (r+c-1) (r-c) (r-0.5) ‘(c-O.5)
i for r=c
...(4.29b)

In Egs. (4.20) & (4.28) r, ¢c=1,2,....m where m=0.5(N+1) for N odd and
m=0.6N for N even. From Eqs.(4.20) & (4.29), it is evident that the
matrices P_ and P are at least positive semidefinite. However, they are
positive definite except for the case of N odd where matrix Pp becomes

positive semidefinite as given by Eq. (4.28).
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The total mean squared error, E, is a convex combination of the mean

squared errors as given below:

E=oE + (1) E.  where O =os1 | ...(4.30)
Substituting (4.18), (4.25) in (4.30) .

E = x'Px ...(4.31)

where P = ocPs + (1-(1)Pp ' ...{4.32)

The symmetric matrix P is positive definite except in the extreme
cases of «=0 and N=odd where P becomes positive semidefinite matrix. So «
is restricted to the interval O < o = 1. »

The linear system of Eq. (4.14) is undetermined since z is less than
“the length of vector x. So linear system (4.14) is always consistent. So,
the problem can be written as:

Minimize E = x'Px subjected to constraint -

Cx = K R ..(4.33)
where matrix P is positive definite and symmeicric.

Linear phase maximally flat FIR filters are needed in many practical
situations, particularly in applications  requiring  extremely  high
atte_nﬁation in stopband.  Besides dire'ct'applicét-ions, maximally flat FIR
filters have been used as a building bl.ocké:to improve the performance of

equiripple filters [14].
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" CHAPTER.FIVE

DESIGNING OF FIR FILTER COEFFICIENTS

Many criteria are used for designihg of FIR filters. Some of the
methods used for designing FIR filters are already given in Chapter 4.  In
this chapter, designing of FIR filter coefficients is done using Frequency
sampling method, Chebyshev approximation method using' Lineéf 'Programming

and Maximally Flat Apprdximation method.

6.1 FREQUENCY SAMPLING DESIGN OF LINEAR PHASE -FIR FILTERS[2]

In this technique, N (filter length) equispaced samples of desired
frequency response are taken. From these N samples of frequency response,
the filter coefficients {h(n)} are calculated.

N equally spaced samples of frequency respoh'se are given by

C. = H(w)]mmwN = H(2zk/N) k =,b,1,2, e N1 (B0T)

and FIR filter (linear phase) coefficients are given by
N-1 ’

hin) = TL ] c e - o .(5.2)
k=0 | |
From (3.9}
M-1 ' .
_ - 2r(M-n)k |
A = T 2nm cos [-——N ] + hiM) ~(8.3)
n=0 '

where M=(N-1)/2 for N odd and h{(n) =h(N-n-1)

From (5.1) and (3.8)

_ 2nk y _ -j2kM/N : :
Ck = H[W] = Ak.e S - . ...(5.4)

b5



From (5.2) and (5.4)
N-1 :
_ 1 -j2kM/N j2mnk/N
h(n) = N Ze Ae

k=0

N-1
Z AkejZTI(n-M)k/N , . ..'(5.5)

k=0

h(n}) =

Zia

[ A, + Ae (n-MIN A Q2 MN-IN Azejzn(n M)ZIN

2l

+ A e

i2m(n-M(N-2/N
N-2 F o ]

h{n) = [Ao + A1e121t(n-M)/N + A e-jZH(n-M)/N + Azej4_1t("'M)/N

N-1

Z1o

As h(n) is real and symmetric, Ak = AN_

. Where k=1, 2, ..., M

h{n} can be expressed as:

hin) = FL [ A, + E‘ZAkcos(Ml%] ] N (5.6

where M=(Nj1)/2 for N odd
Due to symmetric property, i.e., h(n)=h(N-n-1) only M of h(n) need to
be calculated. Equation (5.6a) is used for calculating the filter

coefficients, where A (for k=0,1,2,..., M) are the samples of desired

frequency response.

From (3.10)
N/2 - 1
A = ) 2h(n) cOs(
n=0

where M=(N-1)/2 for N even and h{n)=h(N-n-1)

%

2n(M-n)k ] .(B.7)
N .
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From Eq. (5.5)
_ 1 j2T{n-M)IN j27(n-M){N-1)/N j2m(n-M)2/N
h(n) — F\] [ AO + A1e + AN_1e . + Aze .

. A J2Tn-M)N-2)/N + j2m{n-M}(0.5N-1)/N

+ A8

ji21n-M)(N-(0.5N-1))/N + Ao 5Ne]ﬂ(n-M) ] for N even.

+ A(0.5N +1 €

For type-2 filters i.e. when N is even

0.5N

and A = A, for k = 1,2, ...., ({N/2)-1)

So,

Zia

-j41T(n-M)/N ; j2T(n-M)(0.5N-1)/N
+ A ¢’ + s
N~Ze + A(0.5N-1)

+ A -j21(n-M){(0.5N-1)/N }

(0.5N+1)

N/i2 - 1 :
\ 2n{n-M)k S ,
[A, + I 2A cos [-_N__) ] . .(B.6b)
k=1
For odd symmetry, i.e., hin) = -h(N-1-n}

=]
h(n)—»N

(i) N odd
| M-1 |
A, = [ 2nin) sin( ZMnlk )

n=0



M

) sinf 2n(M-n)k
nin = | 20 ( 220k ]

k=1
(ii) N even
Ni2-1 o
Ak = Z 2h(n) sin( E% )
s
~/2-1 .
hin) = ,-11 [ 2Asin( 31'%) + A, sinfx(M-n)
.k=1 '

After having calculated the filter coefficients, the designed filter
frequency response can be obtained using Eqs. (5.3) or (5.7) for the case
of even symmetric low pass filters. . |

-Flow‘ chart of filter designing using frequency samplinglmethod' is
given in Fig.5.1. Desired frequency response is sampled at nﬁ points,
where m1=(N+1)/2 for N odd and m1=N/2 for N even. Desired response is
saved in array dis[ . From the desired response and using Eq. (5.6a) for
odd N of Eq. (5.6b) for even N, the filter coefficients are obtained. The
:-frequency response of the designed filtér is then obtained by using

function fresp( ).

5.2 FIR FILTER "DESIGN USING CHEBYSHEV APPROXIMATION.

CRITERION AND LINEAR PROGRAMMING Lis]

When digital’ifilters are i-mple'mented on a computer or with special-
purpose hardware, 9ach filteir coefficient has to be represented by a finite
number of bits. Th‘é simplest and most widely used approach to the problem '
is the rounding of the infinite precision coefficients to its ' b-bit

representation.
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1 Start ’

Read Filter Purameters
filter length n,
passbund edge fp,
No. of output frequency
samples k

Set desired frequency
response array, dis [ ]

Y

Filter coefficients for desired
frequency response is calcuiated
Filter coefficients are saved in

array h| ]
P

Frequency response of the designed
filter is obtained using function fresp ()

\ Stop

Fig. S.1: FLOW CHART OF FILTER DESIGNING USING
FREQUENCY SAMPLING TECHNIQUE
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To formulate the Chebyshev approximation problem required input
specifications are as described in section 4.4.

The set F must be replaced. by finite set of points‘-for implementation
on computer. A dense grid of points is used with spacing _be"tween points.
Spacing bet'ween points is given by (0.5/(lgrd » n) where n is the number of
cosine functions as g‘iven in section 4.4 and Igrd determines the number of
frequency points at which constraints are to be formed. Both D(e?™) and
W(e?™) are evaluated on this grid by functions effl( ) and wt1( )
respectively as given in Appendix.

The coefficients {h(n)} are found by solving Eq.(4.4} by linear
programming. The coefficients found are of finite precision. For usual
non-amplifying device |h‘(k)|s1. So, we can- express it in terms of 21,
where b is the number of bits.

0 = |hik) | = (1-27)
or

0= |hik)| = (2% - 1) 27 ...(5.8)

Since most iinear-programming techniques require that discrete
variable_s are non-negative, so, the following substitution is used.
h'tk) = 2%"thik) + 1) ...{(5.9)

and the constraints in Eq. (4.4) for type-1 can be written as:

n

2‘*"”[ hin)+1+ § (1 +h(n-k)).2g(k,f) - E/W(f) ]

k=1

s 2% (D + 1+ T 20k)

k=1

where n=(N-1}/2
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or
h'(n) + Zh'(n-k).zg(k,f) - 2% Envid)

k=1
n

P 2“"”.[ Dif) + 1 + T 2g(k,f)]
' k=1 _
Now the Chebyshev approximation problem for type-1 FIR filter becomes:

Minimize E subjected to constraints:

h'(n) + § hin-k).2g(k,f) - 2% E/wie)

k=1

N n.
=2*"( o) + 1 + T 2g(k.f) )
k=1

-h'(n) - {hf(n-k).zg(k,ﬂ - 20 Epwie)

k=1

i ] n
s -2‘*"”.( DIf) + 1 + Zzg(k,f)] -~ ..(8.10)
. ) - k=1 ‘

where h'(k) € [1,2,3, ..., 21]

The constraints in ‘Eq. (4.4) for type-2 FIR filters can be written as:

2‘*’;"{ [ [-h(n-k) + 1 ] 2g(k,f) - E/W(f)} |

k=1

s 2% (o) + 22g(k,f)]

k=1

where n=N/2
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or

} h'(n-k).2g(k.f) - 2%V E/w(f)

k=1
n

s‘Z(b'”.[ Dl + | 2g(k.f ]
k=1
Now the Chebyshev approximation problem for type-2 becomes:

Minimize E. subjected to constraints:

'Z h'(n-k).2g(k.f) - 2° " E/W(f)

k=1
n

=2""( D + T 2g(k.f) )

k=1

- ¥ h'(n-k).2g(k,f) - 20 /W)

k=1

n . .
=-2""( o + T 290k,f) ) ..(6.11)

k=1 -

Flow chart of filter designing using Chebyshev approximation criterion
and linear programming is given fn Fig. 5.2. In this, number of frequency
points at which constraints are to be formed is calculated.and saved in
variable ngrd. Constraints are formed by using Egs. (5.10) and (5.11) for
type-1 and type-2 filters respectively. |

The Chebyshev approximation problem is solved for type-1 and type-2
fiters using function malpp( ). In function malpp( ), two sub-function
dspp1( ) and spp2( ) are used for calculatihg the pivoted row and column
using dual simplex and simplex methoc}s. After selecfing the pivot using
functions dsrow( ) and dscol( ) or scol( } and s;ow( ), condensed table is

formed using function pctab( ). When optimum solution is found the filter
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{ Start ’

A

Read filter parameters
Filter length n,

No. of bands nbnd,
Grid length lgrd,

Band edges edg | ],
Desired response tx | ],
Weighting factor wt | ],
No. of bits b

¥

Set dense array grid grd [ ')
with spacing = 0.5/(lgrd * nfns)

. ¥

Set up array of desired response dis [ ]
" and weighting function wat [ ] using
functions eff | and wt]

Set up 2% ng}d constraints for minimizing
error E where ngrd is the number of
elements in array grd [ ]

1

Minimize error E using linear programming

Desired coefficients are arranged in
order using function arrg ()

T

Frequency response obtained using
function outfrg ( )

Fig. 5.2 : FLOW CHART OF FILTER DESIGNING USING CHEBYSHEV
APPROXIMATION CRITERION AND LINEAR PROGRAMMING
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coefficients are arranged in order using function arrg( ) and then the

frequency response of designed filter is_obtained using function outfrq({ ).

5.3 FILTER DESIGNING USING MAXIMALLY FLAT APPROXIMATION [7][17][18]

In this technique, matrix C, K, P and P, are calculated using
" Eqgs.(4.14), (4.20) and (4.29), where matrix C is of order of z *+ m, K is
of order of z + 1 and P_and P are of order of m « m. Number of
constraints (one normalization condition plus even: ordér derivative
constraints) are z and m=(N+1)/2 for N odd o.r'm=N/2 for N even. Using P l‘

and Pp matrix P-is formed by using Eq.(4.32).

The linear system of (4.14) 'is undetermined since z is less than the
length of vector x. So, linear »system (4.14) is always -consistent. And

the problem can be written as:

Minimize E X Px subjected to constraints

Cx = K ...(5.12)
where matrix P is positive definite and symmetric.

This has family of solutions for z < m. To select the member of this

family, Lagrange multipliers technique is used to get the unique solution.

The above problem (5.12) can be solved by -the association 'of'a
Lagrange multiplier, A, with passband cthtraints in Eq. (4.9). The
| ’L'agrange multiplier vector is then A = A 2, AZ]T, where z dénotes
the number of constraints at a parti_cula‘r frequehcy, i.e., ‘w = 0 for low-

pass filters.
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As objective function E and constaints Cx are differentiable"w.r.t., X,
a function d(x) differentiable: w.r.t. x and defined by d{x} = Cx - K is
introduced. Then the problem can be restated as
Minimize E = x'Px sujbect to the constraints:
dix) = 0
For finding the necessary and sufficient condition for a minimum value
~of E, a new functioh is f'orme.d by introduéing a Lagrange multipl.i'er A, 88’
Lix,A) = X'Px - A'd(x)
Lixa) = xPx - AT(Cx - K)
" The vector A is unknown constant vector and the functioni Lix\) is
called the Lagrangian functio_n, with Lagrange multiplier A. The necessary

condiﬁon for @ minimum of E subject to dv(x) = 0O are thus given by
sLixA) _ o
- 8X

and

aL(x,A)
A

or | _
vyL=0 -  L.(B43)
wL=0 | : “ ..{5.14)

oL _ 8E T ad

=2Z=_ ' &
ax ax - ax
b _ 4
aAa

where L, d stands for L(x,A), d(x) respectively.

The necessary conditions for a minimum solution are given by

9E _ 7 8dx) o - ..;(5..‘15).“ |
éXx ax . A ‘
dix) =0 N , ...(5.16)



The necessary condition becomes sufficient condition for a minimum if
the objective function is convex and side constraints are 'in the form of.
equalities.

As the objective function of Eq. (5.12) is convex and_cdnstraihts are
in the form of equalities, Eqgs.(6.15) and (5.16) are the necesséry and’
sufficient conditions for a minimum of E, '
From Eqs.(5.15) and (6.16)

| % Px = a C'
-Cx + K=20

or these can be written in matrix form as

1 T x |’ 0

P -C

2 . =

C 0 A -K
or % Px -C™A = 0 - . (5.17)

Cx + K =0 ...(5.18)
From Eq. (5.18) x = C' K , ...(5'.19;
From Eq. (5.17) x = P'CTaa . ..(6.20)
or Px = CT.2a | ..(6.21)
From Egs. (5.19) and (5.21)

PC'K = C".2a

or 22 = (€)' PCt K
or 22 = (CP'ch!' K ...(5.22)

From Egs. (5.20) and (5.22)

x = P'CT(cP'CcTy 'k ...(5.23)
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‘So,,the solution of problem (5.12) is given by EQq.{5.23) .and the
solution is unique as matrix C is assumed to be having full row rank and
rr_1ati'i>4<-P'1 is non-singular and conséquently (CP'CT) is no.n-singulaf.v From
vector X the filter coefficients are calculated as given by Eq.(4.7).

Flow chart of designing of filter using maximally flat approximation
criterion is given in Fig.5.3. Filter coefficients are obtained using
Egs.(5.23) and (4.7). From the designed filter coefficients, filter
frequency response is obtained. Program listing using MATLAB for odd and

even Iength filters are given in Appendix.
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Start

Specify Filter Parameters

N - Filter length

z - number of constraints
at zero frequency

alpha - Scale factor of
stopband mean
square errar

wp - Normalized passband
cutoff frequency

Set up Constraint Matrix C_1
using functionc ( )orce ()

Set up passband and stopband esror
matrix, temp 2 and temp | respectively

Calculate the total error matrix p_1
using function p()orpe()

A

Set up a Vector k formed by value of
| Ha(w) | and even order derivatives
of Ha(w) at zero frequency

'

Calculate the filter coefficient matrix X_1
or Xel using function x () or xe ()

I

Calculate the frequency response
of the designed filter

Fig. 5.3 : FLOW CHART OF FILTER DESIGNING USING ,
MAXIMALLY FLAT APPROXIMATION TECHNIQUE
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CHAPTER-SIX

RESULTS, CONCLUSION AND FUTURE SCOPE

6.1 RESULTS

The impulse response for the designed fiitérs using different
techniques are given in Tables 6.1 ‘to 6.7 as' pei' the Specifications
méntioned in chapter-1 (Tables 1.1 to 1.3).‘

Four lowpass filters are designed using frequency sampling technique
as given in section 5.1. The impulse response of these filters are given
in Table 6.1 and the obtained frequency responses are shown in Figs.6.1 to
.s _ e

Four lowpass filters are also designed using Chebyshev approximation
_criterion and Linear Programming technique as described in section 5.2.
The obtained frequency responses are shown in Figs.6.5 to 6.8. The impulse
response of the designed filters are given in Table 6.2. It is found that
the desired specifications are met using above mentioned technid'Ues.'

Finally, seventeen more filters are designed using Maximally Flat
Approximation Technique as described in section 5.3. The obtained
frequency responses are shown in Figs.6.9 to 6.16. The corresponding
inipulse response of the designed filters are given in Tables 6.3 to 6.7.
In Fig. 6.9, different curves are plotted for scale factor élpha‘=0.01, 0.5,
0.8, 1; when the filter length N=33, number of constraints z=3 ‘and the
passband cutoff frequency wp=0.15. In these graphs, log magnitude is
plotted against the normalized frequency (frequency is normalized to 2n).

Figs.6.10 to 6.13 are the plots for lowpass filters with z=3, wp=0.15,
alpha=1 and N=21, 22, 33, 40. In Fig.6.14, different curves. are plotted |
for lowpass filters with N=21, wp=0.15, alpha=1 and z=2, 3, 4, 5. In
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Fig.6.15, different curves are plotted for lowpass filters with N=33, z=3,
alpha =-0.01 and wp=0.1, 0.15, 0.2, 0.25. Fig.6.16 is the graph for lowpass
filter with N=33, z=2, wp=0.15 and alpha=0.5.

By looking at the Figs.6.9 to 6.16, it is found that best results are
obtained for filter length N=33, wp=0.15 when alpha=0.5 and number of

constraints z=2.
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Table-6.1 Finite impulse response of lowpass filters

Technique - 1 (Designing using frequency sampling technique)

[ Filter-1 Filter-2 Fiter3 | Filter4
Length of filter n 20 - 21 30 31
h(0) -0.032573 | -0.032480 | -0.023603 | -0.023410
h(1) 0.043843 | 0.038188 | 0.023864| 0.021257
h(2) 0.020711 | 0.028817 | 0.024402| 0.026350
h(3) -0.057021 | -0.047619 | -0.025247| -0.019651
hi4) -0.005159 | -0.026427 | -0.026453 | -0.030492
h(5) 0.076761 | 0.065171| 0.028104| 0.018447
h(6) -0.022339 | 0.024916 | 0.030329| 0.036624
h(7) -0.120711 | -0.106999 | -0.033333 | -0.017551
hig) 0.111910 | -0.024078 | -0.037453 | -0.046441
h(9) 0.484588 | 0.318607 | 0.043277| 0.016904
h(10) 0.523810 | 0.051918( 0.064348
h(11) .0.065771 |-0.016466 |
h(12) -0.091068 |-0.106513
h(13)  0.150672| 0.016212
h(14) 0.450364| 0.318446
h(15) 0.483871

Note : As the filter is symmetric, h(i) = h(n-i-1)
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Table-6.2 Finite impulse responsé of lowpass filters

Technique-2 (Designing using Chebyshev approximation
criterion & Linear Programming)

Filter-1 | Filter-2 | Filter3 | Filter-4
Length of filter (n) | - 20 21 31 40
h(0) 2 . 1 1 3
h(1) 1 0 1 3
h(2) 3 -2 0 3
 h(3) 0 0 -1 -4
h(4) 3 3 0 2
h(5) 1 2 1 6
h(6) 6 | -4 o | o
h(7) -4 -5 -2 -9
h(8) 11 4 2 5
h(9) 27 20 2 .9
h(10) 28 3 9
h(11) -3 -9
h(12) -6 17
h(13) 3 6
h(14) 20 27
h(15) 29 1
h{16) 44
h(17) .22
h(18) 93
h(19) 210

Note : As the filter is symmetric, h{i) = h(n-i-1)‘

Rounded b bit coefficients multiplied by 2"
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Table-6.3 Finite impulse response of lowpass fllters
Technique-3 (Designing using maximally flat approxnmatlon method)
For N=33, z=3, wp=0.15

Filter-1 Filter-2 Filter3 Filter-4
Scale factor 0.01 0.5 0.8 1

‘alpha’ ~ .

~ h(0) 3.4052e-3| -3.9687e-3| 7.0355e-3| 3.1783e-4
h(1) 1.7453e-2| 1.1961e-2| 7.6266e-3| 1.0237e-3|
h(2) ,8.1769e-3 8.9008e-3| -3.713e-3 | 2.0070e-3
h(3) 1 2.3451e-2| -8,6018e-3 | -1.8814e-2 2.6828¢-3
h(4) - 6.4041e-3| -2.3981e-2| -2.4157e-2| 2.0407e-3
h5) | -2.2609¢-2| -2.0822e-2 | -1.1060e-2 | -9.4821e-4
h(6) -2,9166e-2| 3.1804e-3| 1.58066-2| -6.592e-3
h(7) -2.0280e-3( 3.1807e-2| 3.8736e-2| -1.3696e-2
h(8) 3.3649e-2| 4.0628e-2| 3.8124e-2| -1.9200e-2
h(9) 3.8740e-2| 1.6149e-2 7.6916e-3| -1.8640e-2
h(10) | -1:2615e-3| 2.9932e-2| -3.6743¢-2| -7.5330e-3
h(11) | -5.5860e-2| -6.3309e-2 | -6.28116-2| 1.66886-2
h(12) | -6.7647e-2| -4.7279¢-2 | -4.0084¢-2| 5.2973¢-2
h{13) 2.6563e-3| 3.1539e-2| 3.9223e-2 | 9.6006e-2
h(14) | 1.3943e-1| 1.4954e-1| 1.5095e-1 | 1.3715e-1
h(15) 2.7465e-1| 2.5534e-1| 2.4856e-1 1.6686e’-1
h(16) 3.3094e-1{ 2.977e-1 | 2.8723e-1 | 1.7770e-1
h{17) |

Note : As the filter is éymmetric, h{i) = h{N-i-1)
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Table-6.4 Finite |mpulse response of lowpass filters.

Technique-3

For z=3, alpha=1, wp=0.15

(Designing using maximally ﬂat approximation method)

Filter-8

| Filter-5 Filter-6 Filter-7

Lengt’llw\yof filter 21 22 33 40
h(O) 8.7938¢-3| 6.8862e-3| 3.1783e-4| 3.6544e-5
h(1) 4.7021e-3| 5.3027e-3| 1.0237e-3| 1.7251e-4
h(2) -7.0270e-3| -3.1267e-3| 2.0070e-3| 4.8838e-4
h(3) 2.2130e-2 | -1.6603¢-2| 2.6828¢-3| 1.0182-3
h(4) :3.0182e-2| -2.75050-2| 2.0407e-3| 1.6541e-3
h(5) -1.8844¢-2 | -2.4665e-2 | -9.4821e:4| 2.0607e-3
h(6) 1.9205e-2| 1.1761e-3| -6.5920e-3| 1.6748¢-3
h(7) ' 8.0392e-2| 5.1335¢-2| -1.36966-2 -1.3914¢-4
hig) 1.4926e-1| 1.1612e-1| -1.92e-2 | -3.7603¢-3
h(9) 2.0367e-1| 1.7705e-1| -1.8640e-2 | -8.8872¢-3
~ hi10) 2.2435e-1| 2.1430e-1| -7.5330e-3 | -1.4191e-2
h{11) 1.6689¢-2| -1.7267e-2
h(12) '5.2973¢-2| -1.50386-2
h(13) 9.60066-2| -4.6226e-3
h(14) 1.3715e-1| 1.5555e-2
h(15) 1.6686e-1| 4.4797e-2
h(16) 1.7770e-1| 7.9720e-2
hi17) | 1.1469-1
h(18) 1.4306e-1
h(19) 1.6898e-1|
h(20)

Note : As the filter is symmetric, h(i) = h(N-i-1)
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Table-6.5 Finite impulse response of lowpass filters
Technique-3 (Designing using maximally flat approximation method)
For N=21, alpha=1, wp=0.15 '

Filter-9 | Filter-10 Filter-11 Filter-12
Number -of 2 3 4 5
cons‘tr,amts
¥4
hO) . | -2.9437e-3| 8.7938e-3| -1.3421e-2| 1.0412e-2
h(1) -7.6981e-3| 4.7021e-3| 2.1207e-2| -3.9387¢-2
h(2) -1.2741e-2| -7.0270e-3| 2.0243e-2| 2.6956e-2
h(3) -1.4057e-2| -2.2130e-2| -5.8195e-3| 4.1512e-2
h(4) -6.4670e-3 | -30182e-2 | .3.6902¢-2 -6.1871e-3
h(5) - 1.4151e-2| -1.8844e-2| -4.6960e-2 | -5.9305¢-2
h(6) 4.8330e-2| 1.9205e-2| -1,6828e-2| -5.8145e-2
h(7) 9.1499e-2 8.03926-2 5.81140-2| 1.9567e-2| |
h8) | 1.3451e-1| 1.4926e-1| 1.5339e-1| 1.4666e-1
h(9) 1.6636e-1| 2.0367e-1| 2.3356e-1| 2.6301e-1
h{10) 1.7812e-1| 2.2435e-1| 2.6485e-1| 3.0984e-1
Note : As the filter is symmetric, h(i) = h(N-i-1) |
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Table-6.6 Finite impulse response of lowpass filters

Technique-3 (Designing using maximally flat approximation methdd)
For N=33, z=3, alpha=0.01 '

Filter-13 Filter-14 Filter-15 Filter-16
Passband cutoff 0.10 0.15 0.20 0.25
frequency ‘wp’ .
h(O) 1.9566e-2| 3.4052e-3| -1.0429e-2| -5.0791e-3
h(1) -1.6802e-2 | -1.7453e-2| 1.6528e-2{ 1.9793e-2
h(2) -2.4544¢-2 | 8.1769e-3| 1.0947e-2| -2.3859¢-2
h(3) -1.0348e-2| 2.34516-2| -1.9618e-2| -2.4164e-3
h(4) - 1.2412e-2| 6.4041e-3| -1.718e-2 | 2.7660e-2
h(5) 2.9035e-2| -2.2609e-2| 1.8132e-2| -9.7632e-3
h(6) 2.9264e-2| -2.91666-2| 2.6344¢-2| -2.86896-2
h7y 1.1322e-2| -2.028e-3 | -1.2845e-2| 2.1522e-2
h(g) - -1.7333e-2| 3.3649e-2| -3.9205e-2| 2.9221e-2 |
h(8) -4,283e-2 | 3.8740e-2| -1.6914e-3| 3.5389%-2
h(10) -5.0265e-2| -1.2615e-3|. 5.12e-2 . | -2.9185e-2 |
h(11) - -2.9680e-2 | -5.5860e-2| 2.8035e-2| 5.6901e-2
h(12) 1.9601e-2 | -6.7647e-2| -6.1880e-2| 2.9226e-2
h(13) 8.7906e-2 | 2.6563e-3| -8.2639¢-2| -1.0220e-1
h{14) 1.6789%-1 | 1.3943e-1| 6.9510e-2| -2.9270e-2
h(15) 2.1010e-1 | 2.7465e-1| 3.1053e-1| 3.16966e-1
h(16) 2.2940e-1 | 3.3094e-1| 4.2852e-1| 5.2915e-1
Note : As the filter is symmetric, h{i) = h(N-i-1)
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Table 6.7 Finite impulse response of a lowpass filter -
(Designing using maximally flat approximation method)

For N=33, z=2, alpha=0.5, wp=0.15

Filter - 17
h(0) 4.4900e-3
h(1) 1.5133e-2 |
h(2) 8.3210e-3
h(é) 1.1637e-2
h(4) -2.8398e-2
h(8) -2.5753e-2
h6) | -1.5865e-3
h(7) 2.7711e-2
h(8) 3.7551e-2
h(9) 1.4302e-2
h(10) | -3.0465e-2
h(11) | -6.2548e-2
hi12) | -4.5336e-2
h{13) 3.4478e-2
h(14) 1.5324e-1
h(15) 2.5950e-1
h(16) 3.0201e-1
Note : As the filter is symmetric, h(i) = h(N-i-1)
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6.2 CONCLUSION

In this dissertation, three methods of designing of lowpass digital
FIR filter coeﬁ;iciénts are reviewed which include recent procedures that.
lead to efficient implementations. Although many modified algorithms were
introduced in latter years to minimize the error between responses of ideal
and actual filters but they are not suitable for all classes of filters.

Frequency sampling design method is the simplest and the most straight
forward design method. In this method, m1 (where m1 = (N +1)/2 for odd N, and
m1=N/2 for evén N) samples of a desired frequency response are used to find
the N filter coefficients. Graphs (Figs. 6.1 to 6.4) are plotted for

passband cutoff frequency =0.25 and varying filter length.

{a) For N=20, méximum amplitude of signal in stopband is=-15.7dB and 3dB
bandwidth =0.269. | -
(b) For N=21, maximum amplitude of signal in stopband is=-15.8dB and 3dB
bandwidth =0.256.
(c) For N=30, maximum amplitude of signal in stopband is=-16.2dB and 3dB
bandwidth =0.246.
(d} For N=31, maximum amplitude of signal in stopband is=-16.2dB and 3dB
bandwidth =0.238. |
So, as the filter length is increased, the stopband .attenuation
increases. The passband and stopband performance for N=20 is very close to
that of filter witvh”N_=21 but the location of passband edge for N=20 is |
slightly higher as compared to that for N=21. Similarly the passband and
stopband frequency responsé for N=30 is very élose to that of filter with
N=31 but the bénd edge for N=30 is slightly higher as compared to that for
N=31. In this method, the stopband attenuation increases slightly with

increase in filter length. This happens, because rounding the filter

coefficients to six places of decimal point does not guarantee that higher

!
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order filters will be better than lower ones. 'So,'lower orde_r‘filter ‘can
be preferred to meet the same specifications. | |

in the second rhethod, linear programming. is uééd to design FIR lowpass
fiters which proved quite successful " in solving the Chebyshev
| approximation problem. In this method; number of constraints are formed at
dense frequency grid points and the objective is to minimize the maximum
-absolute weighted error between the desifed and fﬁe actUal filter frequency
response. |

Graphs'(Figs. 6.5 to 6.8) are plotted for passband edge =0.20, stopband
edge =0.25, -weighting factor in passband as well as in the stopband =1.0 and

varying the filter length.

(a) For N¥20, maximum amplitude of signal in stopband 'is=-18.4dB.
(b) For N=21, ma‘ximum amplitude of éignal in stopband is=-21.7dB.
{c) . For N=31, maximum amplitude of Signal in stopband is ¥-31.8dB.:
(d) For N=40, maximum amplitude of signal in stopband is=-36.1dB.

So, - as the filter length increases the attenuation in stopband
increases. The error measure using Cheybshev approximation criterion is
less than design using frequency sampling method and error decreases as
filter length is increased. The frequency sampling design method can be
used directly to design FIR filters. However, it may ‘also be used as a
starting point or intermediate stage in a more complicated method as it is
a simple and fast method.

Design using linear programming is costly in terms of computer time in
.designing | higher order filters. | In fact, COmpu‘ter- time increases
exponentially w.r.t. the order of filters. L-ine‘ar programming is useful

when there is a frequency response to be met with given tolerance limit

using fixed coefficient wordlength.
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In .third method, design of linear phase lowpass FIR digital filters
having symmetric impulse response is formulated as a conétrained
minimization problem. The constraints express the maximal flatness of the
frequency response at the origin. The objective function, which is a
quadratic form in the filter coefficients, is formed as- a convex
combination of mean squared errors over the stopband and passband.

As stopband mean squared error scale factor ‘alpha’ is increased,
amplitude of the unwanted signal decreases. Graph (Fig.6.9) is plotted for
filter length N =33, number of constraints =3, passband cutoff frequency=0.15

and varying scale factor alpha between zero and unity.

{a) For «=0.01, maximum amplitude of signal in stopband is= -16dB
(b) For «=0.5, maximum amplitude of signal in stopband is= -22dB
(c) For «=0.8, maximum amplitude of signal in stopband is= -24dB
(d) For a=1, ‘maximum amplitude of signal in stopband is = -72dB

So, for more attenuation in stopband scale factor alpha can 'be_
increased. Maximum value of alpha can be set to unity. As Shown in the
above stated graph (Fig.6.9), the passband specifications ‘_‘a"ré met for
smaller values of alpha. » |
{a) For «=0.01, 3dB passband width=0.159
(b} For «=0.5, 3dB passband width=0.146
(c) For a«a=0.8, 3dB'passband width=0.143
(d) For «=1, 3dB passband width=0.076

So, for maximum flatness of passband in frequency response, - scale
factor alpha is set near to zefo. | '

Hence if more attenuation in stopband is required, scalé factpr alpha
is unity or if maximum flatness in passband is more important then scale
factor alpha is set near to zero. This happens, because when scale factor

alpha is set to unity, mean squared stopband error is equal to total mean
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squared error E, .which‘ is the objective function' in the constrained
~ minimization problem and is given by E=aEs+(1-a)Ep. So, only st_opband mean
squared error is minimized and passband mean squared 'error is not
considered in the minimization problem when scale factor alpha is equal to
unity. | _

When scale factor alpha is set near to zero, passband mean squared
error is contributing much more as compared to stopband r'nean squared error
in the total. mean squared error. So, passband mean squared error, in the
objective function of constrained minimization problem is minimizéd much
more as ‘compared to stopband mean squared error.

As the filter length is increased, attenuation in stopband increases.
:Graph’s (Figsr.6.10‘ to. 6.13) are plotted for number of constraints=3,
péssband_cutof_f frequency =0.15, _scale factor alpha =1 and for various

lengths of filter.

(a) For filgér-length='21, maximum amplitude of signal in stopband is=-32dB

(b) For filter length =22, maximum afnplitude of signal in stopband is =-35dB

(c) For filter Iéngth=33. maximum amplitude of signal in stopband i$ =-70dB

(d) For filter length =40, maximum amplitude of signal in stopband is =-95dB
So, more attenuation in the stopband can be achieved by increasing théA

leﬁgth of filter and other parameters of filter remains unchanged. o
Passband bandwidth specification can be met by increasing the number

of constraints at zero frequency. Graph (Fig.6.14) is plotted for filter

Iengfh =21, scale factor alpha=1, passband cutoff frequency=0.15 and varying

the number of constraints.

{a) Number of constraints=5, 3dB passband width=0.15

(b) Number of constraints=4, 3dB passband width=0.123

(c) Number of constraints=3, 3dB passband width=0.1

(d) Number of constraints=2, 3dB passband width =0.077
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For more flatness of freqﬁe_ncy response throughout the passband,
number of constraints at zero freq’uency'can be increased, so-; as to satisfy
passband bandwidth specification. As the number of constraints at zero
-frequency are increased, the stopband attenuation decreases. From the
- graph (Fig.6.14) drawn for filtervlength-=21,ﬂ scale factor alpha=1, passband
cutoff frequen6y=0.15 amplitude of signal in stopband are gi\)en below for
varying the number of constraints.

(a) Number of constraints=5, ‘maXImum.amplitude of signal ih stopband
is=-14dB.~ “

(b) Number of constraints=4, maximum amplitude of signal in stopband
is =-19dB. | |

(c) Number of constraints=3, maximum amplitude of signal in stopband
is =-32dB.

(d) Number of constraints=2, maximum amplitude of signa‘l in stopband
is =-50dB.

So, for more . attenuation in stopband, the length of filter c¢an be
increased or the number of constraihts at zero- frequency can be reduced.
As the length of filter increases or as the humberlof cohstraAints_ at zero
frequency reduces, the solution space of Cx=K has higher dimension and
hence there is more freedom to mjnimize the objective function, E=x"Px ,
resulting in an improved stopband frequency response.

Graph (Fig.6.15) is also plotted for filter length=33, scale
alpha=0.01, number of constraints=3 and for varying the passband cutoff
frequency (normalized to 2n radians).

(a) For passband cutoff fr.equen_cy=0.10,- 3dB passband width=0.113
(b) For passband cutoff freduency=0f15', 3dB passband width=0.161
(c) For passband cutoff frequency=0.20, 3dB _péssband»Width #0.21_0
(d) For passband cutoff frequency =0.25, 3dB passband width=0.262
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So, the passband spebifications are approximately met for scale factor
‘alpha = 0.01.

Hence, there is a freedom of trade-off between the flatness of
frequency response in the passband and higher attenuation in the stopband.

Graphs are also plotted for N=33, passband cutoff frequency=0.15, and
for various combinations of ‘alpha’ and ‘number of constraints’. It is
found that ‘best result is obtained when alpha = 0.5 and number of
constraints=2. As shown in Fig.6.16, the maximum amplitude of signal in

stopband at these values is = - 22dB-and the passband width = 0.145.

6.3 FUTURE SCOPE

The desngn of linear phase FIR filters with real coefficients can also
be extended to design arbitrary function- both in magnitude and phase. The
work can also be extended for the design of complex coefficient finite
- impulse’ respon‘se_filters to attain specified arbitrary multi-band magnitude
and linear or arbitrary phase responses.

This work can be extended to design 2-D FIR filters. 1-D Linear phase’
FIR filters can be transformed to 2-D linear phase FIR filters with the
help of frequency transformation. The advantage is that less time is

required to design 1-D filters.
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- APPENDIY



/* **********************************/

/* Program to obtain the filter cofficients  */
/* as well as frequency response using?*/
/* frequency sampling design technique */

/* ****************************‘******/

/* Input Parameters */
/* Filter length ‘n’, Passband edge ‘fp’, */
/* Number of output frequency samples ‘k’ */

#include <stdio.h>

#include <math.h>

#define PI2 6.28318530717959
void fresp(float *,double *,int , int );

int main()

int n,dc,k,m,m1,i,n2,y,np,j.z;
float fp,am,f;

double q,xt;

float h{101],dis{101];
double ab[1000]; '
FILE *ifp = stdin;
FILE *ofp = stdout;
char *in;

char *out;

in = "inl.dat";

out = "out1.dat";

if({ifp = fopen{in,"r")) = =NULL)

fprintf(stderr,"inpo.c : could not open %%s\n",in);
return 1;

}
if((lofp = fopen(out,"w")) = =NULL)

fprintf(stderr,"inpé.c : couldn’t open %s\n",out);
fcloselifp); ~
return 1;

}

for(z =0;2<2;z+ +)

printf("If you want to enter new data yes = 1,n0 = O\n");
scanf("%d",&y);

%rintf(“\nFreq. -sampling design of a lowpass filter\n");

ifly == 1)

printf(*Enter :N,FP,DC,K : *);
scanf("%d %f %d %d",&n,&fp,&dc,&K);
tseek(ifp,12,SEEK_SET);

else : -
fscanf(ifp,"%d %f %d %d",&n,&fp,&dc,&k);
printf(" %d, %f, %d, %d.\n",n,fp,dc k);
m = (n-1)/2;
am = ((float)n -1.0 )/2.0;printf("am = %f\n",am);



m1 =n/2+1;
g =PI2/n;
n2 = n/2;
if(dc !=0)
np =n*fp+0.5;
else
np = n*fp+1;

/* Set desired frequency response array dns[] */
for(j =0;j<np;j+ +)

dis(jl =1.0;
for(j = np;j<m1;j+ +)
dis{jl =0.0;

/* Finding the filter cofficients */
iffdc == 0)

for(j =0;j<=m;j+ +)

xt = dis[01/2.0;

forli =1i<=m;i+ +)

Xt ——xt+d|s[a]*cos(q*(am-1)*u),
?[J] = 2.0*xt/n;

}

else
for(j = O;i<=m;j+ +)

xt =0;
for(i =0;i<n2}i+ +)

xt =xt+dis[i]*cos(g*(am-j)*(i+0.5));
iflfam==m)

Xt =xt +d|s[ml*cos(3 141592654*(am ])/2),
hijl =2*xt/n;

}

/* Output frequency response of designed filter */
for(j =0;j<=m;j+ +)

if(j%5 = =0)
printf("\n");
printf(" %f\t",h{jl);

)
printf("\n");
fresp(h,ab,n,k);
for(j =0;j<k+1;j+ +)

if(j%1 = =0)

: fprmtf(ofp,"\n");

f =0.5*j/k,;

fpnntf(ofp,"%f %e %.2 e",f fabs(ab[j]) 20*(iog10(fabs(ablj)));

fprlntf(ofp,"\n")
} /* end of for loop */



if(ferror(ifp))

foprintf(stderr,"inpo.c:error in reading input \n"};
return 1;

}
fcloselifp);
fclose(ofp);
return O;
} /* end of main */

/* Function to calculate frequency response */
void fresp (float *h,double *ab,int n,int k)

float am = ((ﬂoat)n -1.0)/2.0;
int m = (n-1)/2;

int n2 = n/2;
double q = Pl2/(2.0%k);
double at;
int i,j;
for(j = O;j<k+1;j+ +)
at =0;
if{fam == m)

at = 0.5 *h[m];
for(i =0;i<n2;i+ +)

?t = at+h[i]*cos(q*(am-i}*j);
ab[j] =2*at;

} /* end of function */ .



************~********************************/

Program to obtain the constraints used for minimizing */
the error in Chebyshev - Approximation method*/

************.*************'******ﬁ*************/

Input Parameters */
Filter length ‘n’, Number of bands(ie. passband and */
stopband  in frequency response) ‘nbnd’, *l.

Grid length “Igrd’( it determines the number of */

frequency points at which constraints are to be */

formed),Band edges(of pass and stop bands)’edg’ (array)*/
Desired response in  different bands are saved in
array 'fx’, Weighting factor for pass and stop bands- */_
are saved in array ‘wt’, Number of bits used to */
represent the filter coefficients ‘b’ */

*

#include < stdio.h>

#include <math.h>

#define Pl 3.1415926

#define PI2 6.283185

#define SPACE " "

#define NMAX 80

#define ED 50

#define RES 1000 .

float eff1(float ,float *,mt ,int );
float wt1(float ,float * ,float * ,int ,|nt ),
void error();

int main()

{

int n,ltyp,nbnd,lgrd,Ib,i,j,b,ng,nd,nfns, lbnd nf,m;

int no,mm,nn,k[ED], I[RES] i1,j1, ngrd '

float edg[ED] fx[ED] wt[ED], grd[RES] dis{RES], wat[RES],
float gf[RES][ED] dif,fp,tmp,y[RES][ED],gsum;

FILE *in = stdin; =~ -

FILE *out = stdout,*ot2 = stdout;
char *in1 = "rx2.dat",*ot1 = "o3.dat";
char *out1l = "out2.dat";

if(lin = fopen(in1,"r")) = =NULL)

printf("main2:couldn’t open %s\n",m1),
return 1 _

} .
if((out .= fopen(oyﬂ,"w")) = =NULL)

printf{("main2:couldn’t open %s\n",out1);
fclosel(in}; -
return 1;

:|f}((ot2 fopen(ot1,"w")) == NULL)

printf("main2:couldn’t open %s\n",ot1);
fclose(in);fclose(out); fclose(ot2),
return 1; .

/* Input parameters are defuned *
fscanf(in,"%d %d %d %d",&n,&ltyp,&nbnd, &lgrd);

printf(" %d; %d, %d, %d",n Ityp,nbnd Igrd);



/* Check whether the input parameters are in desired limits */
if((n>NMAX) || n<3)
{

error();

}return 1;
if(nbnd<=0) nbnd = 1;
if(lgrd ==0) Igrd = 10;
Ib = 2*nbnd; '
forli = 0;i<lIb;i+ +)
fscanf(in," %f",&edglil);
forli = O; i<nbnd; i+ +)
fscanf(in," %f", &fx[il);
for(i = O;i<nbnd; i+ +)
fscanf(in,”" %f", &wtlil);
fscanf(in,” %d",&b);
if(ltyp = =0)

error();
return 1;

}

/* Calculate grid points(ie. frequency points */
/* at which constraints are to be formed), */
/* weight function & desired values arrays */

/* at grid points */
ng = 1;
if(ltyp ==1) ng = 0;
nd = n/2; :
nd =n-2*nd; /* set for n odd reset for n even */
nfns =n/2; /* nfns = N/2 for N even */
iffnd == 1 & & ng == 0)

nfns = nfns+1; /* nfns = (N+1)/2 for N odd */
grd[0] = edglOl;
dif = {float)lgrd *nfns;

{* To set up spacing between two */
/* adjacent frequency points at which */
/* constraints are to be calculated */
dif = .5/dIf;printf("\t dIif = %f",dIf);
if((lng! =0) && (edglOl<dIf)) grdl0] = dIf;
for{j = 0,i =0,lbnd =0; Ibnd<nbnd ; )

fp = edglj+1];
/* printf("fp = %f",fp); */
pr{intf ("\n desired values in band %d \n",lbnd);
do
if(i%4 = =0) printf("\n");
tmp = grdli];
disli] = eff1({tmp,fx,lbnd,ltyp);
watlil = wt1(tmp,fx,wt,lbnd,ityp);
printf("%d %-6.2f : %-6.2f/%f %1s",i,disli},watli],grdli}, SPACE);
grd[ + +i] =tmp +dlf;
Jwhile(grd(i] <= fp); ,
printf("\n");printf("fp = %f",fp);printf("grdlil = %f",grdl(il);
grd(--il = fp;
dislil] =eff1(grdlil,fx,lbnd,ltyp);
wat[i] = wt1{grdlil.fx,wt,lbnd,ltyp);
+ +1bnd;



+=2;
grd{ + +il = edgljl;

ngrd = i;printf("\ni = %d",i);

ifflng == nd) && ( grdlngrd-11 > (.5-dIf) ) )
ngrd = ngrd-1;

printf(' \nno of grid pts = %d\t", ngrd)
iffnd==1) nf =(n-1)/2;

else nf =n/2;

for (i=0;i< =ngrd;i+ +)

if (i%3= =0)printf("\n");
rintf(" %-6.2f:%-6.2f/%f% 1s",dis[il, wat[i] grd[t] SPACE),
s) printf("\n"); _

/* Forming the constraints */
if{ng <= 0)

for(i =0; i< ngrd; i+ +)

printf("i is =%d",i);
for(j1 =0,j =1; j<= nf;j1 ++, i+ +)

if(j%5 == 0)
printf("\n"};
ifind ==1) . |
gflil[j1] = 2*cos(PI2*(float)j*grdlil);

gflillj1] = 2*cos(PI2*({float)j-.5)*grdlil);
prmtf(" %f\t",gf[l][]1]) .

else

prlntf("\n"),

}

else
for(i = O; i<ngrd; i+ +)

printf("i is = %d",i); _
for(j1 = 0,j = 1;j< =nf; j+ +)

{
if(j%5 = —O)prmtf("\n")

ifind = =1}
gflil{j1] =2*sin(PI2* (float)j grd[|])
else

gflillj1]1= 2*SIn(Pl2 *{(float)j-.5)* grd[I]),
printf(" % f\t",gflil[j1]); p

printf("\n");

m =2*ngrd+1;
no =nf+3;
fprintfout,"%d .%d %d %d %d %d" n,ng,nd,b,ltyp,nf);
fprintf(out,” %d %d",m,no); ,
mm = m-1; ,
nn = no-1;
for(j =0; j<nn; j+ +)
kKljl =1
forli = O;i<mm; i+ +)



il =nn+i;
IImm] = 1000;
printf("k");

for(j =0; j<nn; j+ +)

if (%12 ==0) fprintflout,"\n");
fprintf(out,"%3d",kl[jl); :

printf("\nl");
for(i=0;i<m;i+ +)

{
if(i%12 ==0) fprintflout,"\n");
fprintf{out,"%5d ",I[il);

printf("\n");

/* Form the table for applying Linear */
/* Programming using constraints */
/* saved in matrix gff]l] */
~forli =0; i<mm; i+ +)

{

if(ltyp = =1 && nd ==1)
if(i<ngrd) vyli]l0] =1;
else yli][0) =-1;

else yl[il[0] =0;

forli1 =0,i =0; i1< ngrd ; i1+ +,i+ +)‘

gsum =0;
f?r(ﬂ =1, = 0;j1< no; j1+ +)

gsum = gsum + gflilljl;

yli11lj1]1 =gflilljl;

j+ +;

if(j> =nf) break;
yli1]llnn-1] = -pow(2.0,(b-1.0))/watli]; -
iflnd==1)
yli1llno-11 = pow(2.0,(b-1.0))*(dis[i] + 1 + gsum);

else
yli1llno-1] -= pow(2.0,(b-1.0)) *(dis[i] +gsum);

forli =0,i1 = ngrd; il<mm; i+ +,i1+ +)
gsum =0; .
fori = 0,j1 =1, j1<no;j1 + +)

Vi) =-gflily;

gsum = gsum + gflillj];

P+ +;

if(j> =nf)break;
yli11[nn-1] =-pow(2.0,(b-1.0))/watlil;

iflnd==1) o
yli11lno-1] =-pow(2.0,(b-1.0)) *(dis[i] + 1 + gsum);
else , :

yli1lino-11 =-pow(2.0,{b-1.0)) *(disi} +gsum);



for(j =0; j<no; j+ +)

ylmm]ljl =0;

ylmm]nn-1] =-1;

forli =0;i<m ; i+ +)
for{j = 0; j< no; j+ +)
fprintf(ot2," %f ",y[illj]);
fprintf(ot2,"\n"};

if(ferror(in))

printf("\nmain2:error in reading input\n");
return 1; '

fclose(in);fclose(out);fclose(ot2);
return O;
} /* end of main */

/* funcﬁon to evaluate desired values at grid points */ -
float eff1{float tmp,float *fx,int Ibnd,int Ityp)

if(ltyp= =2)
return fx[lbnd]*tmp;
else

return fx[ibndl;

}

/* function to evaluate weight values at grid points */
float wt1(float tmp,float *fx,float *wt,int lbnd,int ityp)

iflityp ==2)
if(fx[Ibnd] <.0001) return wtlibnd];
else ,
return wtilbnd}/tmp;
else ,
return wt(lbnd];

/* function to inform about errors */
void error{)

printf("\n Error in input data file\n");



/* ******************************i‘******/

/* Program to minimize the error E in Chebyshev*/

/* approximation criterion using Linear */
/* Programming and the constraints formed by*/
/* previous program */

/* *************************************/

#include <stdio.h>
#include <math.h>
#define C 100
#define RES 1000
#define ED 100
#define CXL 4
#define HUN 100

int dsrow(float y{l[C],int,int,int *);

int dscol{float y[l[C],int,int,int,float *,int *);

int scol(float y[l[Cl,int,int,int *);

int srow(float y[l[Cl,int,int,int,float *);

void pctab(float y[][C],int *,int *,int,int,int,int);

void dspp1(fioat y[lICl,int *,int,int,int *,int *,float *,int *);
void spp2(float y(I[Cl,int *,int,int,int *,int *, float *);

void malpp(float y[l[C],int,int,int *,int * ,FILE *);

void arrglint,int,int,int,float y[l[Cl,int *,float *, float,FILE *);
void outfrq(float *,double *,int,FILE *);

void frequy(float *,double *,int,int);

int main{)

float err,y[RES](ED],x[11[ED], w[RESI,xI[RESI[CXL],h[HUNI;
double ab[1001];

int n,ng,nd,b,ltyp,nf,m,int1,no,mm,nn,i,j,nn1,m1;

int k[EDLI[RESI;

FILE *ifp1,*ifp2,*ofp1,*ofp2;

char *in1,*in2,*out1, *out2;

in1T = "out2.dat"; "

in2 "03.dat";
outl = "wx5b.dat";
out2 = "wx7.dat";

if((ifp1 = fopen(in1,"r")) = =NULL)

printf("smp.c:couldn’t open %s\n",in1);
return 1;

)
if((ifp2 = fopen(in2,"r"}) = =NULL)

printf("smp.c:couldn’t open %s\n",in2);
fcloselifp1);return 1;

if(lofp1 = fopen{outl,"w")) = =NULL)

printf("smp.c :couldn’t open %s\n",out1);
fcloselifp1);fcloselifp2);
return 1,

}



if((ofp2 = fopen(out2,"w")) = =NULL)

printf("smp.c:coul'dn’-t opeh' %s\n",out2);
fclose(ifp1);fclosel(ifp2);fclose(ofp1);
return 1;

fsganf(lfm "%d %d %d %d %d %d %d %d",&n, &ng &nd &b, &Ityp,&nf &m &no);
mm = m-1;
nn = no-1; ,

prlntf("\nn = %d,ng=%d,nd = %d,b =%d,Ityp=%d,nf

= %d,mm = %d,nn = %d",n,ng,nd,b, ltyp,nf mm,nn);
for(;—O j<nn;j+ +)

fscanf(ifp1 " %3d", &kl[jl);

printf("\n");
for(i=0ji<m;i+ +)

\ !scanf(ifm " %5d", &llil);
for(i=0;i<m;i+ +)

for(j=0;j<no;j+ +)
fscanf(ifp2," %f", &ylillj]);

malpp(y,m,no,l,k,ofp1);

printf("\n Problem is optimized");

arrg(mm nn,nd,b,y,l,h,err,ofp1);

printf("\n m nn = %d m nf = %d",nn nf),
outfrq(h,ab,n,ofp2); -

|f(ferror(|fp1 ))

printf(",smp.c:error in readlng mput 1\n").
return 1;

'a)f(ferror(ifp2))

printf("smp.c: error in reading lnput2\n"),
return 1;

}

close(lfp1) fclose(lpr) fclose(ofp1) fclose(ofp2),

return O; '
} /* end of main  */

/* function for minimizing the objective */
/* value using Linear programming */
void malpp(float y[][C],int m,int no,int *l,int *k,FILE *ofp)

int i,j, |pd |pq ip,iq ;
int w[RES];int v[C];int z[C],
int mm = m-1;int nn = no-1;

float dp,ddq;

ip = -2;
iq =-2;
dp = -2.0;
ddg = -2.0;

printf("\n. mi nn .= %d",nn);



if([lmm] !=1000)

for(j =0; j<nn; j+ +)
yimmlljl = -ylmmljl;
IImm] = 1000;

for(i =0;i<mm;i+ +)

wii] = 0O;
for(j =0; j<no; j+ +)
vijl = O;
for(j =0; j<no; j+ +)
z[j] = O;
f(or( v )
dspp1(y.w,m,no,&ip,&iq,&ddq,z);
ipd = ip;
ipq = iq;
spp2(y,v,m,no,&ip, &iq,&dp);
if(iq == -1)
ip = ipd;
Iq = 1pq;
)
if(ipt=-1)

printf("\n ddq =%f,dp = %f",ddq,dp);
iffddq>dp)

pd;
pPq; _
ddq ip = %d,iq = %d\n",ip,iq);

ip =
i =

i
i
printf("\t

printf("\t ip = %d,iq = %d\n",ip,iq);
pctab(y,k,l,m,no,ip,iq);

else break;

for(i =0; i<m; i+ +)

wli] =0;
forj =0; j<no; j+ +)
vij] =0;

forli =0; i<m; i+ +)
for(j =0; j<no; j+ +)

{
if(fabs(y[il{jl-(int)y[il[jl) < = 1e-4)
ylilljl = (float){(int)ylil(jl);

printf("\n Optimum Sol.");



/* function for finding pivoted row and */

/* column wusing .dual simplex method */
void dspp1(float y[I[Cl.int *w,int m,int no,int *ip1,int *|q float
*ddq,int *2)

int ip =-1;

int nn = no-1;
int i;

int mm = m-1;
float ds; ,

forl( ; 3)

*ip1 = dsrow(y,m,no,w};
ip = *ipl;
iflip ==-1)

*ddq =-1;
*ig =-1;
break;

}

else

*iq = dscol{y,m,no, lp,&ds z);
if((*iq)! =-1)

*ddq =fabs(yliplinn] * ds),
break;

else wlip] =1;
}
}
}
/* function for finding pivoted row and - ¥/

/* column . using .simplex -method — */
void spp2(float y[][C] int *v,int m,int no, |nt *|p int *ig1,float *dp)

int iq,j;

float s;

int mm = m-1;

for( ; ;)

~ *ig1 = scol(y,m,no,v);
iq = *iq1;’
if((*iq1) == -1) break;
*ip = srowly,m,no,iq,&s);
if((*ip)! = -1)
*dp = fabs(v[mmlllq]*s),
break;

else viigl =1;



/* function for finding pivoted row" */
/* using dual simplex method - ¥

in{t dsrow(float y[][C],int m,int no,int '*W)

float b =0;

int i,mm,nn;

int ip =-1;

mm = m-1;

nn = no-1;

f?r“ =0; i<mm ; i+ +)
if{(ylilinn] +.1-5) <O) &&(wlil < =0))
if((ylillnn]-b) <O) "

b = ylillnn];
ip =i
}
}
Yoo
return ip,
/* function for finding pivoted column - */
/* using dual simplex method */

int dscol(float y[]J[C],int m,int no, int ip,float *ds1,int *z)
float r,ds; ‘
int-j,mm,nn,iqg. = -1;
*ds1 = 1.e19;
nm = no-1;
mm = m-1;
ds = *ds1;
for(j =0; j<nn ; j+ +)
if(({ylipl(jl1 +.1e-5) <O)&&({yImm][j] +.1e-5) > =0)) "
iflzljl< =0)

r = -ylmml](jl/ylipl(j];

if((ds-r) >.0) /* select min ratio *
*ds1 =r; /* ds =-ylmmiliqlyliplli]  */
’_ds = *ds1; o -
1q =)
}
-}
z[liql = 1;

return iq;



/* function for finding pivoted */
/* column using simplex method */
int scol(float y[][C], int m, int no, int *v)

{

float b =0;

int j;

int nPn=no-1,mMm=m-1,iq =-1;
for(j =0 ; j<nn; j+ +)

if((v[jl< =0)&&({ylmmlI[j] +.1e-5)<0))
{if((y[mm][j]-b) <0) |

b

b

= ylmmi(jl;
)
}

return iq;

/* function for finding pivoted - | .y
/* row using simplex method - */
int srow(float y[][C],int m,int no,int iq,float *s1)

int ip = -1,i,mm,nn;
float r,s;

*s1 = 1.e19;

mm =m-1;

nn = no-1;

s =%*s1;

for(i = O;i<mm; i+ +)

{
if(((y[i][iql-.1e-5-)>O)&&((v['i][n'n’] +.1e-5)> =0))
r = ylillnnl/ylilliql;

if((s-r) >0) /* select min. ratio */
*s1 =7,
s = *s1;
p =0
}
)
Yo
return Ip;
- /* function for  arranging the . */
/* filter coefficients in order . ¥

void arrg(lnt mm,int nn,int nd,int b, ﬂoat ylIClint *|,float *h,float
eEr ,FILE *ofp) .

int nn1 = nn-1,j1,i,j2,mm1' = mm'—1,nf» = nn-2;
float h1[HUN};

printf{("\na nf = %d,a nn = %d",nf,nn);



for(j1 =0;j1<nn1;j1+ +)
for(i =0;i<mm;i+ +)

{j2 =nf-j1;
if(llil = =j1)
h1(j2] =vylilinn};

h1[j2] = h1[j2]-pow(2.0,(b-1));
hlj21 = h1[j2]/pow(2.0,{b-1));

if(h1[j21<0)
h1(j2] = h1[j2]-0.5;
else

h1[j2] = h1[j2]1+0.5;
fprintf(ofp,"\nh1[%d] = %d\n",j2,(int)h1[j2]);
break;

else
{ hlj2] =0;h1lj2] =0; }

for(i =0;i<mm;i+ +)

if(lli} == nn1)

- err =y[i][nn];

for(j2 =0;j2<nf ;j2+ +)
fprintf(ofp,"hl[%d] = %f\n",j2,hlj2]);
ifind ==1) .
fprintf(ofp,"h[%d] = %f\n",nf,hinfl);

/* Write output frequency response */ |
void outfrq(float *h,double *ab,int n,FILE *ofp)

float f;

intk = 4 *n,j;
frequy(h,ab,nk);

for(j = 0;j<k+1;j++)

f =.5%/k;
f;})rlntf(ofp,"%f %e %.2 e\n",f,fabs(abljl),20*(log10(fabs(ab[jl})});
}
/* function for calculating the */
/* frequency response */
void frequy(float *h,double *ab,int n,int k)

float am = ((float)n-1.0)/2.0;

int m = (n-1)/2,i,j,n2 = n/2;

double q = 6.28318530717959/(2.0*k),at = O;
for{j = 0;j < k41 ;j+ +)

at = 0;
iffam == m) at = 0.5*h[m];
fori =0; 1 < n2; i+ +)



at = at+hl[i]*cos{q*(am-i) *j);
ablj] = 2*at;

}
}
/* function for forming the pivoted */
/* condensed table */

void pctab(float y{l[Cl,int *k,int *l,int m,int no,int ip,int iq)

float r = 1/yliplliql;
int x,i,j; '

for(j =0; j<no ; j+ +)
ylipllil = r*yliplljl;
yliplligl = r;

forli =0; i<m; i+ +)

{
if((i-ip)! =0)

for(j =0;j<no;j+ +)
if({j-iq)! =0) o
vlilljl = vylilljl-ylilliq] *y(ipl(j1;

ylilligl = -r*ylilliql;

x} = kligl;
kligl = Ilipl;
llip] =x;
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% Program to obtain frequency response of FIR lowpass odd
% length filter using maximally flat approximation method

% (22 A AR AR AR R RE R R R R R R R R ERE R R RS R EEREEREEEE NN E]

% Input Parameters

% N : length of filter

%z : degree of flatness at w = O

% wp : passband cutoff frequency

% ws : stopband edge

% alpha : scale factor of stopband error
% % Example

% N = 33
% z = 3

% wp = 0.15
% alpha = 1

% ws = wp

N=,input('enter the value of N {(odd) =');

=input(‘enter the value of z =');
wp input(’ enter the value of wp lies between O & 0.5 =');
wp=wp./0.5 .
alpha =input{’ enter the value of alpha {O<alpha< —1) ');
WS = Wp;

if rem(N,2) == % check whether filter length is odd
disp('N must be odd’)

+1)/2

else

3z

e
Z
Z %

><13 '_3

( zwp ws,alpha);
m:-1:1)./2;

1
m), % filter coefficients are obtained

3

33
N x

ol =
o.
.
lI '—:x

—lﬁ

—

go.o:':'
—
-

...01

2
at = ‘at+hli).*(cos(q. * (m-i). *j));

end % for loop i

ablj+1) = 2 .*at;
end % for loop ]
f1 = 0 :(0.6./1) :
Iab(1 L+1) =20. *(Iog10(abs(ab(1 L+1)))),
mi1 = [f1’ lab’];
plot{f1,20.*(log10(abs(ab))),’ w- ')
% frequency response of designed filter is obtalned

end %end of if

-
o
-



% function to calculate the error matrix P

function y = p(ws,wp,alpha,N)
m = (N+1) ./2;
for i=1:m
for j=1:m
if (i==1 & j==1)
temp1(i,j) = pi-ws;
elseif (i==j & i~=1 & j~=1) :
temp1(i,j) =(pi ./2)-lws ./2)-(sin(2 .*(i-1).*ws)./(4 .*(i-1)));
else '
temp1(i,j) =-0.5 .*((sin((i +j-2). *ws)./{i +]-2)) + (sin({i-j). *ws)./(i-})));
% Matrix 'Ps is obtained
end %endif

end %end for j
end %end for i
for i=1:m

for j=1:m

if i==11]j==1)
temp2(i,j) =0;
elseif (i==j & i~=1 & j~=1),
temp2(i,j) .= ((wp ./2).*3) +(sin(2 .*(i-1).*wp)./(4 .*
G=10-(2 . *sin((i-1). *wp)./(i-1));
else
t_1.=(sin{(i +j-2). *wp)./(2 . *(i+]-2));
t_2=(sin((i-j}. *wp)./(2 .*(i-]);
t_3=(sin{(i-1).*wp) ./(i-1));
t_4 =(sin{(j-1).*wp)./{j-1));
temp2(i,j) =wp +t_1 +t_2-t_3-t_4;
% Matrix Pp is o_bta‘ihed
end %endif
end %end for j
end %end for i |
y =(alpha*temp1) +((1-alpha) *temp2);% Matrix P is obtained



% function to calculate the constraint matrix C

function y = c(z,N)

m = (N+1)./2;
fori =1:2
for j =1:m
if (i==1)
yii,jl=1;
else

y(ij) =(-1) (2 .*(i-1));
end %end if
end %end for j
end %end for i

% function to calculate the vector x

function y=x(N,z,wp,ws,alpha)
k =zeros(1,2);

k(1)=1;

k=Kk';
p_1=plws,wp,alpha,N);
c_1=clz,N);

p_2=invip_1) *c_1’ ;
p_3=inv(c_1 * (inv(p_1)) * c_1');
V=p_2 * p_3 *k;
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Program to obtain frequency response of FIR lowpass even
length filter using maximally flat approximation method

LA R B R E X EESERZEREJERJZE®EJENRXENNEERNEIRNEFENNERENENERNENNENNENRER]
Input Parameters

N : length of filter

z : degree of flatness at w = O

wp : passband cutoff frequency

ws : stopband edge

alpha : scale factor of stopband error

% Example
N = 40

z2 =3

wp = 0.15
alpha = 1

ws = wp

= input(‘enter the value of N{even) = ');
if rem(Ne,2)~ =0 % check whether filter length is even
disp(‘N must be even’)

else
me = Ne./2; _
ze = input(‘enter value of z = ');
wpe = input(’ enter the value of wp lies between O & 0.5 = ’);

wpe = wpe./0.5.*pi;
alphe = input(‘enter the value of alpha(O<alpha< =1) =');
wse = wpe;

Le = 4.*Ne;
ame =me-0.5;
Xel = xe(Ne,ze,wpe,wse, alphe),
h{1:me) = Xel(me:-1:1). /2 % filter coefficients are obtained
ge = pi./Le; :
RLe =le-1;
for j = O:RLe,
at = 0;
fori = 1:me
at = at+hli).*(cos(qe.*(ame-i+1).*)));
end % end of for loop i
abe(j+1) =2.*at,
end %end of for loop j

fel = 0:(0.5/Le):(0.5-(0.5/Le)};
plot(fe1,20.*(log10(abs(abe)}),” w-’)
% frequency response of designed filter is obtained
lab(1:RLe+1) = 20. *(Iog10(abs(abe(1 RLe +1))));
mi1 = (f1' lab‘];

end %end of if



% function to calculate the error matrix P

function ye = pe(Wse,wpe,aIphe,Ne)

me = Ne./2;
fori =1:me

for j = 1:me
if (i==))

teal = (pi./2)-(wse./2);
tea2 = sin({{2.%i-1).*wse)./(2.*(2.*i-1));
temp1(i,j) = teal-tea2;
else
.teal = sin((i+j-1).*wse)./i+j-1);
tea2 = sin((i-j).*wse)./{i-j);
temp1(i,}) = -0.5.*(tea1 +tea2);

end % end of if
% Matrix Ps is obtained
end % end of for loop j
end % end of for loop i
fori = 1:me
for j=1:me
if {i==j)

teb1 = (1.5.*wpe) +(sin((2.*i-1). *wpe)./(2.*(2.*i-1)));
teb2 = 2.*(sin((i-0.5).*wpe)./(i-0.5));
temp2 = teb1-teb2;

else
© td1 = wpe + (sin{{i+j-1).*wpe)./(2.*(i +j-1)));
td2 = sin{(i-}). *wpe)./(2.*(i-}));
td3 = sin({i-0.5).*wpe)./{i-0.5);
td4 = sin{((j-0.5).*wpe)./(j-0.5);
temp2(i,j) = td1 +td2-td3-td4;
end % end of if
% Matrix Pp is obtained
end % end of for loop j
end % end of for loop i

ye = (alpha =« temp1) + ((1-alpha)*temp2);
% Matrix P is obtained



% function to calculate the constraint matrix C

function ye = celze,Ne)
me = Ne./2;
for i = 1:ze
for j = 1:me
if i==1|j==1)

.yeli,j) = 1;
else :
yeli,j) = (2.%j-1).7(2*(i-1));
end % end of if
end % end of for loop j
end % end of for loop i

% function to calculate the error matrix P

function ye = pel(wse,wpe,alphe,Ne)
me = Ne./2;
fori =1:me
for j = 1:me
if {i==j) ,
teal = {pi./2)-(wse./2);
tea2 = sin((2.%i-1).*wse)}./(2.*(2.%i- 1)),
temp1{i,jj = teal-tea2;
else -
teal = sin({i+j-1).*wse)./(i+]j-1);
tea2 = sin({i-j).*wse)./(i-j); .
temp1(i,j) = -0.5.*(teal +tea2); -
end . % end of if '
% Matrix Ps is obtained

end % end of for loop j .
end % end of for loop i

teb1 = (1 5. wpe)+(sm((2 *i-1). *wpe) /(2.%(2.*
teb2 = 2.*(sin((i-0.5).*wpe)./(i-0.5));
‘temp2 = teb1-teb2; : L

= wpe + (sin(li+j-1).*wpe).A2.* (i +j-11);
td2 = sin{{i-j). *wpe)./(2.*(i-}));

td3 sin((i-0.5). *wpe)./(i-0.5);
td4 sin{(j-0.5).*wpe)./(j-0.5);
temp2(i,j) = td1 +td2-td3-td4;
end % end of if
% Matrix Pp is obtained
end % end of for loop |
end % end of for loop i

(alpha * temp1) + ({1 alpha)*tempZ),
% Matnx P is obtained

i-1)));
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