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ABSTRACT

The development of appropriate preventive measures to minimize the risk of
damage from earthquakes is dependent on the proper evaluation of seismic
hazard in the region. The source of damage lies most often with the strong

shaking caused by the waves set up by the earthquakes. The records of
strong ground motions from past earthquakes can serve to provide a wealth of
information that will be indispensable in the design of earthquake resistant

structures. In many regions like Himalayas, such records generated by past
earthquakes are few or absent and one needs to use theoretical predictions
for estimating the peak ground acceleration or complete time history of ground
from expected earthquakes in order to assess the seismic hazard. However
synthetic accelerograms are now increasingly being used in earthquake
engineering. A knowledge of regional and local seismicity and
seismotectonics, a suitable earth model and source characteristics of the
design earthquake are required for this purpose.

The work carried out in the present thesis has been divided into two parts. In
the first part, new empirical attenuation relationships for estimating peak
ground acceleration have been derived for Himalaya and northeast regions of
India. In the second part, an improved method of generating synthetic
accelerograms has been presented and discussed based on the convolution
model of seismogram.

The peak values of horizontal acceleration is one of the important parameter
that is considered in the earthquake safe design of structures. In the present
study, the strong motion data from eight earthquakes (three in Himalayan
region and five in Shillong area) has been used. The Himalayan region and
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Shillong area are characterised by two different tectonic environments, so
two different attenuation relationships are developed. An integrated

attenuation relationship has also been developed based on the relationships

available in literature. An exercise has also been done to find out the

attenuation relationship available in literature which predicts PGA values

nearer to the observed ones. After comparing these three attenuation

relationships it is observed that our developed relationships gives the good fit

with the observed values.

In the second part, a simple and fast method has been discussed and
presented for generating synthetic accelerograms based on the convolution
model of the seismogram. The spectrum of the ground motion expected at
recording site are first computed from the knowledge of source parameters
(source mechanism, size, geometry, time function, slip distribution on fault
plane, radiation pattern etc.) and medium properties (elastic properties of
earth materials in the immediate vicinity of the fault, geometrical spreading,
frequency dependent attenuation, local site geology etc.). This spectrum is
then inverse Fourier transformed to yield the desired synthetic accelerogram.

The suitability of the method has been demonstrated by comparing the
synthetic accelerograms with the observed accelrograms for two earthquake
events of Uttarkashi, 1991 and Chamoli, 1999. The synthetic and observed
accelerograms are compared at eight sites for Uttarkashi earthquake and at
five sites in case of Chamoli earthquake. The observed and synthetic
accelerograms are compared for selected portions of high amplitudes. The
extent of matching has been quantitatively expressed by computing the r.m.s.
errors. It has been found that matching between the synthetic and observed
is quite comparable.
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CHAPTER 1

Introduction

1.1 Preamble

Earthquakes pose a grave risk to life and property in seismically active

areas. Mitigating the risk of damage from imparting earthquakes in

such areas is of paramount importance. Prediction of the next big

earthquake may be a solution in this direction. However,

methodologies of earthquake prediction are not advanced to a stage

where an accurate prediction can be made. One important way which

will substantially reduce the risk of damage is earthquake resistant

design and construction of all civil structures in earthquake prone areas.

This will greatly reduce, if not eliminate, the risk of total collapse of a

building.

Earthquake resistant design of a civil structure depends critically on the

quality and accuracy of seismological data. A good and reliable
knowledge of some key parameters of strong ground motion such as

peak ground acceleration, duration of strong shaking, frequency content

will enable one to make a better estimate of design spectrum. This will

be adequate for designing ordinary structures. For a detailed dynamic

analysis of an important civil structure, a complete specification of entire
time history ofexpected ground motion will be more desirable.

For estimating peak ground acceleration at a site, available strong

motion data has been used to propose a number of attenuation

relationships. Generation of synthetic accelerograms is, however, a

much more formidable problem. It made a reliable estimate of source

1



parameters of an earthquake along with its location parameters. A

number of methods have been proposed for this purpose both in time

and frequency domains. These methods differ from each other in the

details of rupture process, velocity and attenuation models whether a

detailed waveform modelling is used or not. These methods are quite

successful in predicting strong ground motion sufficiently accurately.

1.2 A Review of Literature

In strong motion seismology, earthquakes of magnitude 5 or more are

considered important in view of their damage potential. The ground

motion recorded in the near field of large earthquakes is essentially of

high frequency. Such ground motion is not recorded very often. Peak

ground acceleration (PGA) is often used to characterise strong ground

motion. It is an important parameter in arriving at an acceptable design

spectrum which is considered for designing ordinary structures.

However, for earthquake resistant design of other important structures

like dams and nuclear power plants, located in seismically active areas,

it is desirable to have a reliable site specific acceleration time history.

On the basis of strong motion data available of past earthquake events

worldwide, a number of attenuation relationships are available in

literature to calculate the PGA values. A comparison of various

attenuation characteristics clearly shows that they are region specific

due to different geological characteristics and the seismic source

properties. This demands the careful examination of any available

relationship prior to use in a seismic design.

A number of computational methods have been presented in the

literature for solving the forward problem in strong motion seismology,



viz., predicting the synthetic accelerogram i.e. the acceleration time

history at a given point on the earth's surface for an earthquake with

prescribed source mechanism. The source mechanism includes
specification : location and orientation of the fault plane in terms of dip

and strike angles, distribution of slip on the fault plane, source time

function, dimension of the fault plane and the location of the point on

the fault plane (i.e. the focus) at which the rupture initiates. The

medium properties between the fault and receiving point on the earth's

surface, details of the recording instruments, properties of the

intervening medium in terms of velocity structure, Q structure etc. are

the other specifications which effect the source mechanism. In addition

the topography near the point ofobservation may also be considered.

A brief literature review has been given in subsequent sub-sections.

1.2.1 Development of Predictive Relationships

The ground motion is described commonly in the form of time histories

of acceleration, velocity and displacement. The directly obtained

parameters from time histories of accelerograms are their peak values.

Therefore, peak acceleration (a), peak velocity (v) and peak

displacement (d) are most widely used parameters. Apart from peak

values, the characterisation of earthquake ground motion in terms of its

response spectra are also used for earthquake resistant design. The

response spectra is obtained from ground motion and is related with

frequency content of accelerogram.

The correlation of peak ground acceleration with earthquake magnitude

and distance is characterised by large scattering and uncertainties.

Ritcher (1958) stated that the earthquake magnitude is conventionally



defined from the peak amplitude of intermediate or long term seismic

waves, whereas the peak acceleration is mostly associated with the

high frequency waves. Brune (1970) had came out with the result that

in the near field, very close to the seismic source, the peak acceleration

is mainly governed by the stress drop and not by the magnitude. Due to

the use of different data bases, various published empirical attenuation

relationships for peak ground acceleration produce widely varying

results. Further, the use of particular relationship for an area with

different geological and tectonic features would lead to the results

which may differ significantly from the actual values. Esteva &

Rosenblueth (1963), Milne et. al (1969), Donovan (1973), McGuire

(1977) and Cornell et. al (1979) have given attenuation relationships

based on the strong motion data for different parts of the world. Idriss

(1979), has given a comprehensive review of ground motion predictive

relationship developed before the 1979 Imperial Valley, California,

earthquake. Joyner & Boore (1981) has worked on world wide data for

rock sites and gave a reasonable values for distances less than 50 km.

Hasagava et. al. (1981) worked on Western & Eastern Data of Canada.

Campbell (1985) have reviewed the attenuation relationship published

up to 1984. Peng et.al (1985) have worked on data of China region.

Sabetta & Pugliese (1987) have given a relationship based on Italian

Data.

In 1989, Abrahamson & Litehiser have worked on worldwide data. They

used the two step regression procedure that is a hybrid approach of

Joyner & Boore (1981) & Campbell (1981) regression methods. They

found that site geology had a profound effect on peak acceleration

recorded during earthquake.



In 1990, Fukushima & Tanaka developed the relationship for the

standardised ground condition. They used the large amount of

acceleration data available in Japan supplemented by near sources data

from the United State and other part of the world. Campbell (1991) used

Loma Prieta, California earthquake data to study the empirical analysis.

He concluded that source directivity, radiation pattern and local site

conditions could be partly responsible for peak acceleration.

Anderson & Lei (1994) & Anderson (1996) developed a non-parametric

model for PGA for sub-duction zone event using data from Guerrero,

Mexico, accelerograph network. Abrahamson & Silva (1997) derived

empirical response spectral attenuation relationship for both the

horizontal & vertical components for ground motion. They used the data

of Western coastal regions of North America. Sadigh et.al (1997)

developed attenuation relationship for shallow crustal earthquakes

based on California Strong Motion Data. Youngs et. al (1997) developed

relationship for sub-duction zone events primarily based on recordings

from Japan &South America. Atkinson & Boore (1997 a,b) developed

attenuation relation for stable continent region, the input data spans

thousands of records from hundreds of Eastern North America

earthquakes in the magnitude range from 3-7 at distances from 10 to

1000 km. All the data was taken from hard-rock sites.

Based on the Indian strong motion data an attenuation relationship for

peak horizontal acceleration has been given by Gupta et.al. (1991) for
Koyna region and relationships for Himalayan region has been

developed by Singh et.al. (1996) and Sharma (1998).



1.2.2 Stochastic Simulation of Ground Motion

The earthquake ground motion is to be treated as random process. The

parameters of random process model could be determined directly by

statistical analysis provided ensemble of earthquake records are

available. This was not possible earlier because of availability of few

strong motion records. This forced researchers to propose various

stochastic models of ground motion based on few records. They can be

broadly classified into three categories (i) white noise (ii) stationary

process and (iii) non-stationary process.

Initially Housner (1947) had modeled earthquake acceleration as

random process. The acceleration was idealised, as a series of pulses,

which in fact is white noise. Housner (1955) improved the model by

taking accelerograms as sum of full period sine wave pulses with

frequency and amplitude taken from a calculated probability distribution.

Some investigators such as Hudson (1956), Rosenblueth (1956),

Bycroft (1960) identified earthquake accelerograms as white noise and

showed that velocity spectra obtained were similar to those of actual

earthquake records. Housner (1959) stated that despite the fact that the

white noise processes are unrealistic it was quite popular because of its

simplicity to use.

The stationary process models were an improvement over the white

noise model as they can be shaped to represent the frequency

characteristics of the actual ground motion closely. Nevertheless,

because of non-stationary and transient nature of earthquake ground

motion, engineers have tried to include it in strong ground motion

modelling by introducing non-stationary random process models. A

simplest of its kind, non-stationary model can be constructed by

6



multiplying a deterministic modulating function with stationary process

having specified auto-correlation or power spectral density.

Bolotin (1960) was perhaps the first to suggest modulated stationary

process. Maruyama (1963) and Burridge and Knopoff (1964) showed

that the body force equivalent of a point shear dislocation is a double

couple and that a synthetic seismogram can be constructed by a space-

time convolution of the slip function and Green's function. The slip

function describes the form of the fault displacement as a function of

time and position of the fault plane. Green's function is the response of

earth when an impulsive double couple is applied at a point on the fault

plane. The slip function and Green's function express quantitatively the

source and propagation effect, respectively, on seismic motion.

Housner & Jennings (1964), modeled earthquake accelerograms as

stationary Gaussian random process with a given power spectral

density and generated a ensemble of artificial earthquakes. Shinozuka
and Sato (1967) generated accelerograms by passing white noise

through a second order filter and imparting non-stationerity by an

enveloping function. Amin and Ang (1968) also suggested non-
stationary filtered Gaussian white noise process with a second order
filter as a suitable model for strong motion earthquake. Iyengar &

Iyengar (1969) included number of zero crossings and time dependent
variance function in to a modulated stationary random process. Penzein

&Liu (1969) used filtered stationary white noise process with given filter
parameters to model accelerograms.

The most fundamental synthesis of strong ground motion was carried

out by Aki (1968) and Haskell (1969) based on Green's function



approach. The response of horizontally layered crustal structure to a

double couple point source has been computed using a number of

techniques e.g., generalized ray theory (Helmberger, 1968; Heaton and

Helmberger, 1977, 1978), reflectivity method (Fuchs and Mueller,

1971), direct frequency domain integration (Herrmann, 1977), the

normal mode method (Swanger and Boore, 1978) and the discrete

wave-number method (Bouchon, 1979) and by the descrete wave

number/ finite element method (Olson, 1982). Some of these methods

generate the complete response of the medium, including all types of

body and surface waves.

The earthquake ground motion accelerograms consist of essentially

three phases namely a weak initial phase, a strong phase followed by

a weak phase, so it should be treated as non-stationary random

process. The popular approach has been to assume the strong motion

to be Gaussian stationary random process. The motion at any given

time can be considered as the superposition of a large number of wave

forms. Thus, the Central Limit Theorem may be invoked to argue that

the ground motion must be tending to be Gaussian. Gaussian random

process can be completely defined in terms of mean, standard

deviation and second order correlation function. The mean is generally

taken to be zero because of the to and fro of the oscillation.

Apart from these direct models, indirect modelling of strong ground

motion is also proposed in the literature. The earth is characterised by

lateral heterogenities, attenuation properties and local topographical

site effects in the vicinity of the faults. Due to these complexities

complete modelling with any of the given methods is difficult. To

overcome this difficulty, Hartzell (1978) presented a semi-empirical



approach in which strong ground motions from a large earthquake are

modeled by using the aftershocks as an empirical earth response. The

ground motion associated with a small event may be treated as Green's

function if its source can be approximated as a point source on the fault

on which a large earthquake takes place.

The models of earthquake source in the methods described above are

kinematic in nature. In these models some simplifying assumptions are

made in a arbitrary manner on the rupture propagation over the fault

plane and the displacement time history. For a comprehensive

understanding of complex ground motions in the near field in a event of

large earthquake, modelling of the actual rupture process must be

done. Haskell (1966) introduced a model involving statistical

randomness of fault slip along the fault plane. Das and Aki (1977 a,b)

A considered a fault plane having various barriers distributed over it.

Rupture starts near one of the barriers and then propagates over the

fault plane until it is brought to rest or slowed to the next barrier.

Stochastic source model is the first realistic theoretical predictions of

strong ground motion. Two stochastic source models are available in
the literature, the barrier model of Papageorgiou and Aki (1983a,b) and

stochastic co-square model of Hanks and McGuire (1981). In the barrier

model a rectangular fault plane is covered by circular cracks of equal
diameter separated by unbroken barriers. This model is specified by
five basic parameters, fault length, fault width, maximum slip, rupture
velocity and barrier interval. Asixth parameter, the cohesive zone size,
is introduced to explain the cutoff of high frequencies in the spectrum.

9



The cutoff frequency fm (Hanks, 1982) is considered by Papageorgiou

and Aki (1983a) to be a source parameter that may vary with other

source parameter.

According to the Hanks-McGuire (1981) model, earthquake

accelerations are band-limited white noise in the band between the

corner frequency f0and fm, and the spectral shape is given by the Brune

(1970, 1971) spectrum. Hanks and McGuire (1981) used this model

with the aid of random vibration theory to predict horizontal peak

acceleration and rms acceleration and obtained excellent agreement

with empirical data over the magnitude range from 4.0 to 7.0. Boore

(1983) made use of both stochastic simulations and random vibration

theory to test the predictions of the Hanks- McGuire (1981) model for

peak horizontal velocity and response spectra as well as for peak

acceleration. Hanks and Boore (1984) showed that the model

predictions reproduce the correlation between log moment and local

magnitude ML for California earthquakes in the ML range form 0 to 7.

Boore (1986) compared model predictions with peak teleseismic P-

wave amplitudes given by Houston and Kanamori (1986) for

earthquakes with moment magnitude up to 9.5 and showed good

agreement.

Boore and Atkinson (1986) has given the spectral model by considering

the various factors such as, nature of earthquake source, distance to

the point of observation, geometrical spreading, frequency dependent

attenuation along the path of propagation of energy, local site geology

etc. Gaussian white noise is generated with a random number

generator. This noise is windowed with shaping function whose duration

is related to the source corner frequency. The amplitude of the window

10



is chosen such that the mean level of the spectrum is unity. Filtering is

then performed in the frequency domain by multiplying the spectrum of

the white noise by the spectral shape calculated previously. Fourier

transformation back to the time domain then yields the desired time

series.

Some of the recent attempts on new approaches to synthesize strong

ground motion and to obtain source parameters include those of

Somerville et.al. (1990, 1991), Abrahamson et.al. (1990), Makaris et.al.

(1992), Barker et.al. (1988,1989), Wald (1991), Zeng et.al. (1993 a,b),

Zeng et.al. (1994 a,b), Khattri et.al. (1994 a), Yu et.al. (1995) and

Kumar et.al. (1999).

Khattri et.al. (1994 b) and Yu et.al. (1995) carried out synthesis of

strong motion for the Uttarkashi earthquake. Khattri et.al. (1994 b)

carried out the forward modelling using the isochrone method and

inverted the observed accelerograms by recursive stochastic inverse

algorithm to obtain the earthquake source slip function. Yu et.al (1995)
generated synthetics using the composite source model and synthetic
green's function. The solution of forward problem carried out by Yu
et.al. (1995) have taken into account the velocity structure in the
Uttarkashi area and its Q structure. The method of generating

synthetics, depend on the knowledge of many input parameters like
velocity and Qstructure of the layered earth model. Kumar et.al. (1999)
used semi-empirical method for calculating synthetic accelerogram. He
divided the fault plane into the sub-faults. They generated envelop
waveform, instead of actual time history, corresponding to each

element of the fault plane.
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1.3 Plan of the Thesis

The plan of thesis is briefly as follow:

In Chapter 2 a generalised form of the attenuation model has been
presented. Subsequently, an attempt has been made to develop two
attenuation relationships for Himalayan and Northeast (Shillong)
regions of India.

In Chaper 3 gives the details of a simple method for generating the
synthetic accelerograms has been presented and some aspects of
computational strategy have been discussed.

In Chapter 4, the results of the computations in the form of synthetic
accelerograms have been presented and discussed. A comparison
between the synthetic and observed ground motion has been given
and it is found to be quite comparable. Synthetic accelerograms for a
hypothetical earthquake in Himalayan region have also been generated
and presented at few sites in Garhwal Himalaya.

In Chapter 5, a summary and conclusions are given. Few suggestions
for further research work have also been included.

12



CHAPTER 2
Empirical Attenuation

Relationships

2.1 Introduction

Due to severe earthquake, the prediction of peak ground acceleration

(PGA) is necessary for the assessment of seismic effects on structures

and their mitigation. The peak values of horizontal acceleration is one

of the important parameter that is considered in the earthquake safe

design of engineered structure. Accordingly, a number of studies have

been done to obtain the attenuation relations for peak ground

acceleration for various region of the world. Many of these

relationships are region specific and cannot be applied elsewhere. It

has been recognised that attenuation of strong ground motion with

distance from the source are also governed by tectonic environment of

the region, among other factors. Most of these studies are based on
regression or multiple regression analysis of large data sets of strong
motion acceleration records. Paucity of adequate set of strong motion

data, very few attempts have been made to develop attenuation
relationship for strong motion data of Indian region.

In the present Chapter, an attempt has been made to develop two
attenuation relationships for Himalayan region and Shillong area of
India because both the regions are governed by different tectonic

environment.
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2.2 Strong Motion Arrays in India

The earliest record of strong motion in India were obtained from 1967

Koyna Earthquake. These were manually digitized and analyzed by
Jai Krishna and Chandrasekaran (1969). The strong motion

instrumentation programme of the Department of Earthquake

Engineering, LIT., Roorkee has led to the installation of strong motion

arrays in Himalayan region of India, namely, the Kangra array in the

Himachal Pradesh (NW India), the Uttar Pradesh (UP) array (N-C

India), the Shillong array in Meghalaya and Assam (N-E India) and the

Bihar array in Bihar. Recently, a network of Strong Motion

Accelerograph has been installed in in Delhi region. Figure 2.1 shows
the locations of the arrays.

Kangra array has fifty strong motion accelerographs installed in the

region trends to NW to NE having a dimension of about 240 km. Most

of the stations in this array are located in Lesser Himalayas. There are

numerous faults and thrusts, but along these two are of Prominence

and can be traced all essentially thrust sheets. The tectonic feature

separating Tertiaries from Mesozoic is the main boundary thrust (MBT)

and Mesozoic from central crystalline of the Main Central Thrust (MCT).

Uttar Pradesh (U.P.) array or Uttaranchal array has 40 analog

accelerographs installed in the region. Physiographically the

Uttaranchal Himalayan region is represented by high hills and most of

the northern part of this Himalayan region is above perpetual snow line

and some peaks rises to more than 7500 m high.

14
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Himalayan ranges in Uttaranchal represent a wide variety of tectonic

features. Broadly the main tectonic features of this region is similar to

that of Himachal Himalayas. This array is deployed around main

boundary thrust (MBT) and main central thrust (MCT) in the

Uttaranchal Himalayas. The region has experienced high stress

condition which resulted in the formation of several tectonic features/

lineaments namely, the Tons thrust, the Srinagar thrust, the Uttarkashi

thrust and many other.

Shillong array is deployed with 45 analog accelrographs in the

Shillong massif in the states of Meghalaya and Assam. Northeastern

region of India has undergone various stages of tectonic activities and

present day seismicity is the testimony of the complex seismotectonic

setup. Two prominent tectonic features forming the boundary of the

Shillong plateau towards west, north Cachar hills and south are the

Dhubri and Dauki faults respectively.

The entire region has experienced intense compressive stress which

are attributed to slow movements of the Indian plate towards north and

east directions. This array primarily covers the central portion of

northeast India. The Shillong plateau forms a wedge shaped triangular

crustal block bounded by the Arunachal Himalaya towards north and

northeast, the Indo-Burma folded belt towards east and southeast, the
Bengal basins on the south and Rajmahal-Garo-Syhlet gap towards the
west. It comprises of Shillong massif and Mikir hills massif, which are

separated by an alluvial tract.

Bihar array has been installed in Bihar region. 15 strong motion
accelerographs are installed at various locations in Bihar.
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Recently, Central Building Research Institute, Roorkee has been
operating Strong Motion Accelerograph (SMA) Network in Delhi and
nearby region to collect the strong motion data generated in the region
as Delhi, the National capital, lies in Seismic zone IV and is fast
growing mega city. 16 triaxial digital strong motion acceelrographs are
installed within and aroung Delhi (Pandey et.al., 2001)

2.3 Strong Motion Data

There are eight earthquakes contributing data for the study undertaken,
one of which has been recorded by Kangra array, two by Uttaranchal
array and five by the Shillong array.

The arrays and the strong motion data of the above earthquakes are
well documented (Chandrasekaran and Das, 1990; 1995, IMD, 2000).
Some salient features of the above earthquakes are listed in Table 2.1.
The last column indicates the number of stations considered in the
present analysis.

The primary source of focal parameters for all Indian events is Indian
Meteorological Department (IMD). The SMA data is collected from
Department of Earthquake Engineering, IIT, Roorkee. The locations of
eight earthquakes under study are shown in Figure 2.2 which give the
tectonic features of the Himalayas. Figures 2.3 - 2.6 show the locations

of the epicenter of the earthquakes along-with the recording stations.

The peak ground accelerations (PGA), epicentral distance of these
earthquakes at various stations are tabulated in Appendix A. The site
type in the form of rock (R) or soil (S) is given. The sites marked "R"
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are generally deployed on granite/ quartize/ sandstone. The sites

marked "S" are those that are deployed on exposed soil cover on the

basement.

Table 2.1 : Locations of the earthquake events under study

Earthquake Magnitude

(mb)

Epicenter Focal

depth
(km.)

No. of

stations

Latitude Longitude
Dharmsala

(26 April 1986)
5.5 32.18°N 76.28°E 7 9

Shillong
(10 Sept. 1986)

5.5 25.42°N 92.08°E 28 12

N.E.

(18 May 1987)
5.7 25.27°N 94.20°E 50 14

N.E.

(6 Feb. 1988)
5.8 24.64°N 91.51°E 15 18

N.E.

(6 Aug. 1988)
5.8 25.14°N 95.12°E 91 33

N.E.

(1 Jan. 1990)
6.1 24.75°N 95.24°E 119 14

Uttarkashi

(20 Oct. 1991)
6.6 30.78°N 78.78°E 12 13

Chamoli

(29 Mar. 1999)
6.8 30.41°N 79.42°E 21 10

Source : Indian Meteorological Department (IMD), Delhi
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2.4 Ground Motion Attenuation Model

The peak ground acceleration at a site is affected by many factors.

These include

(i) the size of earthquake (represented by its magnitude)

(ii) distance of the site from the source

(iii) site conditions (whether rock or soil)

(iv) fault type (strike slip, normal or reverse) and

(v) tectonic environment (interplate or intraplate).

A number of attenuation models have been suggested to incorporate

the various parameters noted above. The basic functional form of the

attenuation model, as defined by Campbell ( 1985), is :

f(Y)= b,U (M) f2 (R) f3 (M,R) U(S) s -.. (2-1)

Where Y is the response variable (dependent variable), b1 is a constant

scaling factor, f-, (M) is a function of magnitude M, f2 (R) is a function of

source to site distance R, f3 (M,R) is a joint function of Mand R, f4 (S) is

a function representing parameters of earthquake path, site or structure

and sis a random variable representing the uncertainty in Y.

The estimated transformation of distance and PGA show a logarithmic

behavior, whereas the transformation of magnitude is seen to be

approximately linear. The functions of equation (2.1) were therefore

formulated as

f(Y)= log A ; U(M) =b2 M ; f2 (R) =b3 log R ... (2.2)
After applying relations (2.2) to relation (2.1), one gets the following

generalized form (Gupta et al., 1991)
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log A= b-i + b2M + b3logR+ b4S + £ ... (2.3)

To develop an attenuation relation of the type of equation (2.3) for a

region of interest, coefficients b-i, b2, etc. are evaluated by regression

analysis of the strong-motion data available. However, due to strong

dependence on regional geology, use of an attenuation relation for

another area with different geological and tectonic features may lead to

PGA values which are usually unacceptable for earthquakes resistant

design of amplitudes at close distances.

The geometrical spreading term b3logR in some of the attenuation

relations is taken as b3log(R+d) or b3log(R2+d2)1/2 or in some other

relations as b3log(R+aepM), where the additional parameters a and p or

d are also evaluated by regression analysis of the recorded data. But,

in general, there are not enough near source data on large magnitude

earthquakes to get realistic values for these parameters. Further, to

account for the effect of magnitude saturation, in some of the empirical

attenuation relations, the magnitude dependence is taken in the

quadratic form, b4M +b5M2. But, again, due to limited number ofdata on

very large magnitude earthquakes, it is normally not possible to get

realistic estimate for the additional coefficient b5.

2.5 Attenuation Relationships for Indian Region

The observed acceleration values from eight earthquakes (three in

Himalayan region and five in Shillong region) have been analysed. To

work out the attenuation relation, as a first step, a linear regression

analysis was carried out by considering a relation as

log(A) = b1-b2log(R) ... (2.4)
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where A is the acceleration in g, R is the epicentral distance and b-i and

b2are the regression coefficients. The results for eight earthquakes are

tabulated in Table 2.2, the figures in the brackets are the standard error

of each coefficient. The average value of decay parameter i.e. of b2 is

computed to be 1.24.

Table 2.2 : b^ and b2 values computed using equation (2.4)

Earthquake bi b2

Dharmsala 1986 1.036(0.725) 1.649(0.576)

NE Sept. 1986 0.702 (0.770) 1.067(0.443)

NE May 1987 1.843(0.786) 1.469(0.365)

NE Feb. 1988 0.189(1.207) 0.722 (0.567)

NEAug. 1988 1.196(1.234) 1.195(0.504)

NESept. 1990 2.436 (2.344) 1.461 (0.258)

Uttarkashi 1991 1.543(0.348) 1.436(0.190)

Chamoli 1999 0.373 (0.746) 0.904 (0.403)

Next, a general multiple regression analysis was performed for the

whole data set by assuming the basic regression model as

log(A) = b1-b2log(R)+b3M ... (2.5)

where M is the magnitude and b1 , b2 ,and b3 are the regression

coefficients. The value of the decay parameter b2 come out to be

0.351(0.059), which is much less than the average value. To overcome

this, two-step stratified regression analysis is used as suggested by

Fukushima and Tanaka (1990). This method also minimizes the

interaction of b-i estimates (Joyner and Boore, 1988).

The attenuation model considered is based on equation (2.3), which is

the general form of the attenuation relationship. The focal mechanism

26



term is not considered here because that is not well reported. The

regression model thus selected for the attenuation relation is as follows:

log (A) = d +c2M-b log (R+eC3M) + +c4 S ... (2.6)

where d , c2, c3, c4 and b are the regression coefficients. In first step b
is estimated using equation (2.4) as 1.24. In second step, b is fixed as

1.24 and coefficients c^, c2, c3and c4 are estimated applying non-linear
regression analysis using relation (2.6) with whole data set. The

following attenuation relationship is obtained:

log A=-1.962+0.659 M- 1.24 log (R+e0888M) - 0.0674S ... (2.7)

where A is PGA in units of g, the acceleration due to gravity, R is the

epicentral distance in km, Mis the surface wave magnitude and S is the

site type. The residual sum of squares and standard error for

coefficients are given in Table 2.3.

Table 2.3 : Residual sum &standard error for equation (2.7)

R squared = 1 - Residual SS / Corrected SS = .19808

Parameter Estimate

Asymptotic
Std. Error

Asymptotic 95 %
Confidence Interval

Lower Upper

Ci -1.9621659 .0619201 -2.0847845 1.8395472

C2 .6592139 .0000000 .6592139 .6592139

C3 .8883680 .0568071 .7758745 1.0008616

C4 -.0673746 .0656339 -.1973477 .0625984

The observed peak ground accelerations for all eight events are plotted

with the predicted values of PGA given by the relationship (2.7) with the
same magnitudes in Fig. 2.7.
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In general, the seismotectonic regions are characterised by their

specific focal mechanisms of earthquakes and attenuation relations are

governed by the regional geology. The strong motion data from eight

earthquakes used are from two different regions namely, Himalayan

region and Shillong region. These regions are characterised by

distinctly different tectonic environment. Hence, the strong motion data

from these regions has been treated separately and new relationships

developed. The regression model thus selected is of the form:

log (A) =c1 +c2M-b log (R+eC3M) ++c4 R ... (2.8)

For strong motion data of three Himalayan earthquakes (Dharmsala,

Uttarkashi and Chamoli) the attenuation relationship using (2.8) with 2-

step stratified non-linear analysis taking the value of bas 1.0 in Ist step,
is obtained as follows:

log A) =-t345 +0.309 M- log(R+e0312M) - 0.0006 R ... (2.9)

The residual sum of squares and standard error for coefficients are

given in Table 2.4.

The observed PGA values for all three earthquake events are plotted

with the predicted values of PGA as given by the relationships (2.9) with

the same magnitudes in Fig. 2.8.

28



Table 2.4 : Residual sum & standard error for equation (2.9)

R squared = 1 - Residual SS / Corrected SS = .48416

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

Ci -1.3449242 .0000000 -1.3449242 -1.3449242

C2 .3089307 .1192298 .0642912 .5535702

C3 .3122633 .0021984 .3077525 .3167741

C4 -.0005776 .2665110 -.5474131 .5462578

Then, after analysing the strong motion data of five earthquakes of

northeast region using equation (2.8) with geometrical spreading term

as c3/og (R2+d2) instead of b log (R+eC3M), the following attenuation
relationship is obtained:

log A = -2.995 +0.513 M-.577 log (R2+15 2)V2-0.0002 R

...(2.10)

The residual sum of squares and standard error for coefficients are

given in Table 2.5 for the above attenuation relationship.

Table 2.5 : Residual sum &standard error for equation (2.10)

R squared = 1 - Residual SS / Corrected SS = .37307

Asymptotic
Parameter Estimate Std. Error

Asymptotic 95 %
Confidence Interval

Lower Upper

Ci -2.9952990 .9805847 -4.9446370 -1.0459610

c2 .5130838 .0784630 .3571045 .6690631

c3 -.5770221 .5174821 -1.6057431 .4516988

d 15.1599191 4.3453673 -2.9957534 23.3155918

c4 -.0001731 .0012402 -.0026385 .0022923
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The observed PGA values are plotted with the predicted values of PGA

as given by the relationships (2.10) with the same magnitudes in Fig.

2.9.

2.6 Integrated Attenuation Relationship

To get consistently stable estimates of the PGA values with minimal

deviations from the real values for a wide range of earthquake

parameters, several well published attenuation relationships (listed in

Appendix B) have been integrated together to develop an average

attenuation relationship. This relationship has been then modified for

the near source saturation effects to get realistic values of PGA at very

close source to site distances.

A typical plot of the attenuation relations for different regions of the

world evaluated with magnitude 6.0 is given in the Fig. 2.10. From the

figure it is observed that there may be large regional variations in the

attenuation characteristics. The use of any attenuation relation for

some other region may not be suitable and does not come out with

considerable results. To minimize the error, the regional differences

have been averaged out by developing an integrated attenuation

relationship using all the well behaved relationships.

To scrutinize the behavior of the attenuation relations, the peak

acceleration values are computed for M = 4.0, 5.0, 6.0, 7.0 and 8.0 and

plotted as a function of distance for each of the relationships. Some

relationships have shown abnormal behavior such as increase linearly

to very large values with decrease in distance, some relations over

estimate the near-field acceleration values. The mean value, u., and the

standard deviation a, of the peak ground acceleration (PGA) values

obtained from these relationships were computed for five magnitude
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values M= 4.0, 5.0, 6.0, 7.0 and 8.0 and 196 distances from 5 km. to

200 km. at an interval of 1.0 km. By plotting these relationship along

with the ((.i ± a) band for each of the five magnitudes. It is observed

from the Figs. 2.11(a) to 2.11(c) plotted against the magnitude values

M=4.0, 6.0 and 8.0 that some of the relations lie outside the (u. ± a)

band or deviate significantly from the mean trend of attenuation for

certain magnitude and distance ranges. Thus, after deleting those

relationships, only 16 well-behaved remaining relations have been used

for further study as listed in Table 2.6.

The mean values of PGA have been obtained for above mentioned five

magnitudes and 196 distance levels from 5 km to 200 km which forms

the data set for further analysis. The following attenuation model has

been chosen for integrated relationship:

log (A) =c1 +c2 log(R) +c3 R+c4 M+c5M2 ...(2.11)

In the above relationship, A is the peak acceleration in units of

acceleration due to gravity (g), M is the earthquake magnitude and R is

the measure of the source-to-site distance.

The mathematical form of equation (2.11) is based on the physical

principal of seismology ana elastic wave propagation. First term is

related to the strength of earthquake source, second term accounts for

geometrical spreading of wave energy, third term describes the

anelastic attenuation and the fourth and fifth terms give the magnitude

scaling, where quadratic dependence has been selected to achieve the

magnitude saturation effects.
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Table 2.6 : Attenuation relations for different regions of the World

SI.

No.

Attenuation Relation Region Reference

1 8(0171/3') = 1230eU8M(R+25)~" Firm ground condition Esteva, L. (1970)

2 a(cW) =274 eUBMR-1Mi
Not applicable for R < 15 km.

DevenportA.G. (1972)

3 3(0171/5") = 1080 e USM ( R + 25) "1-M Rocky ground Denovan, N.C.(1973)

4 a(cm/sz) = 64.75x10 »•«" r-'••"• ;
O ma = 0.69
Not applicable for R < 15 km.

California region,
Rock and Alluvium

Orphal, D.L. & J.A.
Lahoud(1974)

5 a(cm/sVl.03huyx10 ^"R"1"';
R>15

Tanzania region Bath, M. (1975)

6 a(cm/s2)=472.0x10u^aM(R+25)-lJul
c ma = 0.62, Not applicable for R <
15km

Rock and Alluvium McGuire R.K. (1977)

7
/ \ n mne„ 0.89M B-l .3U1 ._• O.IB0*a(g) = 0.0306e R e

cj ma = 0.62 for rock sites

Western U.S. McGuire R.K. (1978)

8 a(g) =0.0160eU8B8M(R+0.61eu'M)-LU9;
ama = 0.37

Worldwide data Campbell (1981)

9 a(g) = 0.3480e1"M(R+25fuo;
CT|na = 0.71

California region Battis, J. (1981)

10 a(g)=0. 0239e1'4M(R+25)-'^;
O|na = 0.71 ,

Central U.S. Battis, J. (1981)

11 a(g)= 3.79x10"Je"5M(R"
j_n nnno/ic^2 1MX -0.415--0.00159R.+0.000346e ) e , cr !na

=0.55

Mississippi Valley Nuttli, O.W. and R.B.
Herrmann (1984)

12 Log a(cm/s') =- 0.474 + 0.613M -
0.873 log R-0.00206 R

NE China Peng K.Z., et.al. (1985)

13 Log a(cm/s') =- 0.437 + 0.454M -
0.739 log R-0.00279 R

NW China Peng K.Z., et. al. (1985)

14 Log a(g) =-0.62 +0.177M- 0.982 log
(R+eW84M) +0.132F-0.0008Er
o ma =0.277, F=1 for reverse or
reverse oblique fault, 0 otherwise,
Er=1 for interplate and 0 for intraplate
events.

Worldwide Abrahamson, N.A. and
J.J. Litehiser (1989)

15 Log a(cm/s') = 2.64 -0.01197 R-
0.0995log R- 0.6476M +0.10634M2

Koyna region, India Gupta I.D., Rambabu
V. & Joshi R.G. (1991).

16 Log a(g) = -0.87 + 0.217M- log R-
0.00117R;a,og a=0.26,

Europe Ambraseys N.M. &
Bommer J.J. (1991)
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The least square multiple regression analysis is applied to above

mentioned data set and the following integrated attenuation relationship
has been obtained:

logA = -1.72-0.878 log(R)-0.0016R+0.288M +0.0095M2

...(2.12)

The residual sum of squares and standard error for coefficients are

given in Table 2.7.

Table 2.7 : Residual sum &standard error for equation (2.12)

R squared = 1 - Residual SS / Corrected SS = q.855

Parameter Estimate
Asymptotic

Std. Error

Asymptotic 95 %
Confidence Interval

Lower Upper

Ci -1.720000 2.363E-10 -1.720000 -1.719999

c2 -.878000 5.918E-12 -.878000 -.878000

c3 -.001600 5.066E-13 -.001600 -.001600

c4 .288000 .0000000 .288000 .288000

c5 .009500 8.620E-11 .009500 .009500

The relationship (2.12) is found to describe very well the attenuation of

PGA for intermediate and large distances, but the peak acceleration is

seen to blow up for very small distances. Comparison of peak

acceleration values (solid curves) with the corresponding values

obtained from equation (2.12) (dashed curves) have been shown in

Fig. 2.12.

This relationship is not able to consider the effect of near distance

saturation of the peak accelerations. Most of the published attenuation

relations used to develop the relationship of eqn. (2.12) are based on
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strong motion data recorded at distances greater than about 20 km.

Thus, extrapolation of eqn (2.12) to small distances gives unrealistically

high values of PGA, particularly for large magnitudes. To compute the.

peak acceleration in the near field, eqn. (2.12) is required to be

modified to consider the saturation effects.

2.7 Modified Integrated Attenuation Relationship

Almost all the available empirical attenuation relations are based on

the point source approximation, according to which the entire seismic

energy is assumed to originates from a point, and the source-to-site

distance, R, refers to that point only. This assumption doesn't make

much difference at large distances, but as one approaches closer to

the source, the size of the fault starts exhibiting its effect. The point of

observation is influenced by the energy radiated from a limited portion

of the fault. By idealizing the fault plane by a circular area of radius R0

and assuming the site of observation to lie at a distance R on the axis

of the circle, the effect of the finite size of the fault can be accounted by

replacing the distance R with an equivalent distance Req, defined as

(Gupta et.al. 1997)

K, = K
rR2 + R^

R2
(2.13)

The peak ground acceleration in the near field is not governed by the

total area of the fault, such relations are not suitable to define the

radius R0 for computing the equivalent source-to-site distance. Thus to

get a realistic estimate of the equivalent distance from eqn. (2.12), it is

necessary to use the effective size of the fault, rather than its actual

physical size. Though there is no way to find the effective size of the

fault generating an earthquake, the empirical relations due to Trifunac
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and Lee (1990) can be used to conveniently obtain it for practical

applications.

In the present study, the effective radius R0 of the fault has been taken

equal to half the source size S for lowest period range (0.04 - 0.10 sec)

defined as

S = 0.2 +8.23 (M-3); R0 = S/2

The equivalent distance Req evaluated using this R0 would be able to

account for the near distance saturation effects in a very simple way.

Fig. 2.12 shows the comparison of the peak acceleration values

(dashed curve) obtained directly from the attenuation relationship (2.12)

with those (solid curves) obtained by substituting Req in place of R in

relationship (2.12). The introduction of equivalent distance based on

the effective source size is able to give the near source saturation

effect in a very realistic way. To avoid the explicit computation of

equivalent distance for use in the relationship (2.13), the data

corresponding to the solid curves in Fig. 2.12 have been used to obtain

the following attenuation regression relationship

log A =-1.567-0.969 log(R+e 0107M)-0.0017R+0.288M +0.0098M2

...(2.14)

which is of the form

log (A) = 0^02 log(R+ eC3M) +c4 R+c5 M+ c6 M2

Here geometric spreading term is c2log(R+eC3M) in place of c2log(R)

which gives better estimates as clear from the following Table. The

residual sum of squares and standard error for coefficients are given in

Table 2.8.
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Table 2.8 : Residual sum & standard error for equation (2.14)

R squared = 1 - Residual SS / Corrected SS = .6543

Parameter Estimate

Asymptotic
Std. Error

Asymptotic
Confidence

Lower

95%

Interval

Upper

Ci -1.567212 2.363E-10 -1.567212 -1.567210

c2 -.969000 8.632E-10 -.969000 -.969000

c3 .107000 .0021400 .109150 .104870

c4 -.001700 2.012E-09 -.001700 -.001700

c5 .288000 .0000000 .288000 .288000

c6 .009800 5.880E-14 .009800 .009800

The PGA values predicted from relationship of eqn. (2.14) plotted by

dashes curves in Fig. 2.13, is seen to approximate very closely the solid

curves of Fig. 2.12. Thus the attenuation relationship of equation (2.14)

is able to account for the near-distance saturation effects and it also

gives the results which are the average values of the PGA obtained

from the 16 selected relationships. This equation can, therefore, be

considered independent of regional influences and biases.

2.8 Results and Discussion

Different authors have worked on different set of strong motion data

available worldwide and number of attenuation relationships for PGA

are available in literature. As discussed above a set of strong motion

data is available for Indian region. The observed acceleration data for

eight earthquake events have been plotted with the sixteen empirical

relationships as given in Table 2.7. As relationships use different

magnitude scales and distances, an appropriate conversion has been

made while preparing these graphs for proper comparisons.
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Observed acceleration values for Dharmsala, 1986, Uttarkashi, 1991

and Chamoli, 1999 earthquakes and five earthquakes events from

Northeast region (Sept. 1986, May 1987, Feb. 1988, Aug. 1988 and

Jan. 1990) are compared with the sixteen relationships and depicted in

Figures 2.14(1) to 2.14(xvi), 2.15(i) to 2.15(xvi), 2.16(i) to 2.16(xvi),

2.17(i) to 2.17(xvi), 2.18(i) to 2.18(xvi), 2.19(f) to 2.19(xvi), 2.20(i) to

2.20(xvi) and 2.21 (i) to 2.21 (xvi). Some relationships predicts higher

values at lower distances and others do the same at higher distances. It

is clear from the figures that none of the sixteen relations is adequate to

closely predict the observed acceleration values at all the distances.

Some relations show a slower rate as compared to the observed values

and over predict at large distances of 20-30 km. Other relations over

predict even at shorter distances as well.

The root mean square error (rmse) between the observed acceleration

values and the values predicted by the sixteen relations available have

been calculated for each of the earthquake studies using the following

formula:

i j

rmse^MN^A^-Ajy ... (2.15)

where Aobs and Acal are the observed and the calculated accelerations

respectively and N is the number of data points. Figures 2.22(a) to

2.22(c) show the rms error versus the relationships listed in Table 2.6

for Dharmsala, Uttarkashi and Chamoli earthquakes and the figures

2.23(a) to 2.23(e) show the rms error for five earthquake events for

Northeast region. The numbers on X-axis are corresponding to the

serial number (SI. No.) of the Table 2.6.
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It is noted from the Fig. 2.22(a) and Figs. 2.14(i) to (xvi) that the

relationship given by Battis (1981) for California region (at SI. No. 9 in

table 2.6) predicts satisfactorily for Dharmsala, 1986 earthquake as the

rms error produced by the attenuation relation 9 is minimum. Similarly,'

from Figs. 2.23(b), 2.23(c) and Figs. 2.15(i) to (xvi) and Figs. 2.16(i) to
(xvi) it is clear that for two earthquakes i.e. Uttarkashi, 1991 and

Chamoli, 1999, the attenuation relationship given by Peng (1985) for

North west China (at SI. No. 13 in table 2.6) give good prediction values

of PGAs.

It is clear from the Figs. 2.24(a) to (e) and similarly from the Figs. 2.17(i)

to (xvi), 2.18(i) to (xvi), 2.190) to (xvi), 2.20(i) to (xvi) and 2.21 (i) to (xvi),

that for the NE event of Sept. 1986 the attenuation relationship given

by McGuire (1977) predicts satisfactorily (at SI. No. 6 in Table 2.6), for

two events of May 1987 and Feb. 1988 the attenuation relationship

given by Battis (1984) for Central U.S. (at SI. No. 10 in Table 2.6) show

the rms error as minimum. For the remaining two NE events of Ee&^
1988 and Jan 1990 the attenuation relationship given by McGuire t -\

(1977) (at SI. No. 6 in Table 2.6) predict satisfactorily. ^U

The rmse are also calculated for developed relationships (2.9) and

(2.10), integrated relationship (2.14) and attenuation relationships

found suitable in literature as discussed above, for the observed data of

the three earthquake events of Himalayan region and five earthquake

events of Northeast region of India. These are shown in Table 2.9.

These observed PGA values were plotted against these attenuation

relationships in Figs. 2.24 to 2.31.
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Table 2.9 : RMS errors calculated for different earthquakes

Region RMS errors RMS errors RMS errors
for developed for integrated for best fit
relationship Relationship available in

literature
Dharmsala, 1986 0.0470 0.0508 0.0489

Uttarkashi, 1991 0.0464 0.0473 0.0468

Chamoli, 1999 0.0720 0.0841 0.0737

NESep. 1986 0.0300 0.0483 0.0342

NE May 1987 0.0168 0.0462 0.1550

NEFeb. 1986 0.0300 0.0483 0.0323

NE Aug.1986 0.1270 0.1255 0.1150

NE Jan. 1990 0.0631 0.0642 0.0551

On the basis of minimum rmse and observations from Figs. 2.24 to

2.31, the following conclusions have been drawn:

• The attenuation relationships derived in the present study give the

best fit with the observed peak acceleration values of strong motion
data.

• The integrated relationship (generalized relationship) is at par with

the best fitted relationship and can be used by computing PGA

values for earthquake resistant design particularly at sites and

regions where strong motion data is not available.
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CHAPTER 3

Synthetic Seismogram
Generation - Basics

3.1 Introduction

The elastic rebound model was proposed by H.F. Reid after the 1906

San Francisco earthquake. According to this model strains are built up

in the faulted rocks until a failure point is reached. Rupture then takes

place and the strained rocks rebound on each side of the fault under its

own elastic stress until the strain is largely or wholly relieved. The whole

movement is not instantaneous but proceeds in irregular steps. Rupture

starts suddenly and also stops suddenly producing vibrations which

propagate to large distances. The rupture propagation over the fault is

not smooth but is subject to irregular variations related to roughness of

the fault plane (Abrahamson and Bolt, 1986). This model forms the

basis for generation of synthetic accelerograms.

The generation of the synthetic accelerograms in the near field is based

on a dislocation moving over a fault plane. The computed ground

motions have to take into account the nature of rupture propagation

over the fault plane, radiation pattern effects, presence of free surface,

layering in the earth between the source and free surface and effect of

finite moving source. The slip on the causative fault is specified in terms

of shape, rise time and amplitude of the source time function. In

addition velocity of rupture propagation and final area over which slip

occurs are also specified.
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The computation of synthetic accelerograms in the present work is

based on the convolution model of the seismogram. The spectrum of
ground motion expected at a recording site are first computed from a

knowledge of source parameters and medium properties. This

spectrum is then inverse Fourier transformed to yield the desired
synthetic accelerogram.

This method has been successfully used by Boore (1983), and has
been further extended in the present thesis.

3.2 Convolution model of Seismogram

Let Y(t) represent the recorded seismogram at a point on the surface of

a layered half space produced by a point shear dislocation. This can be
written as

y(t) =Cs(t).a(t),d(t)>i(t) ... (31)

where C is a scalar, s(t) is the source time function, aft) represents the

impulse response of the layered medium between source and receiver,
dft) accounts for frequency dependent attenuation and ift) is the
impulse response of the seismograph. In frequency domain equation
(3.1) can be written as

Yfco) =C Sfco) Afco) Dfco) Ifco) ... (3.2)

where each function of angular frequency co represents the Fourier

transform of the corresponding time function. All these functions are

complex in co. In this way the phase of the above functions of co is also

taken into account.
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Scalar C used in the synthesis is given by

c=MoRpF,/

where M0 is the seismic moment which itself is the product of fault area,

average dislocation and rigidity of the medium in which fault is

embedded. (Kasahara, 1981). Rp is the radiation pattern term (for

details, see Appendix C) and Fs represents the effect of the presence

of free surface i.e. the factor by which ground motions are amplified by

the presence of free surface (for details, see Appendix D). The term p

is density of the medium, C represents the P or S-wave velocity (a or

(3) and r is the source-to-receiver distance (i.e. hypocentral distance).

S(co) represents the source spectral function and is discussed later.

The function A(co) accounts for the effect of intervening medium

between source and receiver. It can be expressed as the frequency-

dependent transfer function that results from wave propagation in a

stack of layers with a strong impedance contrast at the base of the

stack. As acoustic impedance decreases towards the earth's surface,

conservation of energy for waves travelling through materials with

decreasing velocity requires an increase in wave amplitude as the wave

speed slows down. Thus, as seismic waves approach the earth's

surface they are amplified by gradual decrease in seismic impedance.

In case of a homogeneous elastic half space, the amplification factor

A(co) can be taken as unity.

Diminution function D(co) accounts for the frequency dependent

attenuation due to the nature of the medium along the path followed by
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the seismic waves. The amplitude of the seismic waves from an

earthquake source decreases with increasing distance because of

geometrical spreading, energy partitioning at layer boundaries,

diffraction, scattering and frequency dependent attenuation resulting

from the absorption and conversion of seismic energy into heat.

The attenuation properties expressed by quality factor Q. The

attenuation coefficient a is given by

CO

ICQ
(3.4)

So attenuation for a given wave type (P or S) is defined as the inverse

of quality factor Q. Q has been found to be a function of frequency. A

form of Qthat fits a number of observations is given by (Boore, 1987)

Q = 29.4

1 +
CO

Q.6k

CO

Q.6n

2 9

... (3.5)

The following form has been chosen for the diminution factor D(co)
(Rovelli, 1987).

D(co) = exp [- a r] P (co,com ) ... (3.6)

where P(co,com) is a kind of high cut filter of arbitrary shape given by

P(co,com) = [1 + (co/com)n ]"1/2 ... (3.7)

where n is the power of a filter. The high-cut filter P is needed to

account for the general observation that acceleration spectra often

78

/



shows an abrupt depletion of high-frequency energy above some
frequency, (com = 2rcfmax).

Instrumentation response l(co) is a kind of filter used to shape the
spectrum so that the predicted motion correspond to the particular
ground motion measure of interest. It is given by

m =K»'-»v+w«'r "(3-8)
where V = static magnification

cor = natural frequency of seismograph

77 = fractional damping

3.3 Source Spectral Function

The shape of the spectrum of recorded ground motion is greatly

influenced by the spectral content of source time function, form of the

rupture process (unilateral, bilateral or circular rupture), velocity of

rupture propagation and finiteness of seismic source. In the

convolution model used by Boore (1983), a point earthquake source

was used and details of the rupture process were omitted. In the

present work the finiteness of the earthquake source has been

considered. The spectrum of source time function S(co) has been so

defined that it includes the effect of finiteness of the source.

S(co) is defined as

jFM^exp
X.

, ., CO L(1 cos w^
where X =

2 U c )
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f(co) = spectrum of the source time function.

v = rupture velocity

L = length of the fault rupture

Lfc )
— —cos^//
c\v J

(>;,.y/) - as defined in Fig. 3.1

The above form of source spectral function takes into account source

finiteness, the travel time r0/c from radiating point to the source and the

fact that in the far field the displacement is proportional to time

derivative of the source time function f(t).

The equation (3.2) for Y(co) can now be written in a modified form

R'Ff sinX„ (
exp

cor,.

M a r„ X.
aar„ + » - + X.

\ a
Y(co) =

Anprn

\

R" F" +2Rs,i sinX
P

P'rL X,
exp ~aar„ +'

(-ico F(co)). P(co,com). l(co)

W

J)

oar
~JL + XB

.. (3.10)

The fault plane is divided into a number of elementary faults or sub-

faults. The dimension of each sub-fault is so chosen that the

observation point is effectively in the far-field, in order to use the above

formulation that is valid only in the far field. The observation point will

be effectively in the far field if the distance between the nearest

radiating point on the fault and the observation point is several times

the dimension of the sub-fault.
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3.4 Synthetic Accelerograms in Garhwal Himalayas

The theoretical basis of computing synthetic accelerograms has been

discussed above. Now the computational procedure has been

discussed and presented to generate the synthetic accelerograms.

3.4.1 Seismotectonic Setup of Garhwal Himalayas

The Garhwal Himalaya falls in the main Himalayan Seismic Zone. This

region forms part of the boundary between the colliding Indian and the

Eurasian Plates. The region is characterised by three major northward

dipping thrust zones separated by geological/ physiographic sub-

provinces. The northern most province is the greater Himalaya which

has an average elevation of 5 km and is composed of crystalline

metamorphic and igneous rocks brought up along the Main central

Thrust (MCT). The sedimentary rocks in the south, which are mostly of

Paleozoic age, define the Lesser Himalaya sub-province, which is

delimited by the Main Boundary Thrust (MBT) to its south (Valdiya,

1988). The average elevation in this part is 2.5 km. These slightly

metamorphosed sediments are overlain, in places, by a thrust sheet of

the crystalline rocks. South of MBT lies Outer Himalaya or Sub-

Himalaya region with average elevation of a few hundred meters. This

zone consists of folded and faulted Siwalik mollase sediments of

Miocene age.

In a widely accepted tectonic model (Seeber at.al., 1981), a detachment

of fault represents the top surface of the northward underthrusting

Indian plate over which the wedges of Himalayan rock units are

thrusted southwards. The detachment fault represents a decollement
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dipping gently less than 10° below the Outer and Lesser Himalaya at

depth about 15-20 km. The local seismic activity in this region is largely

concentrated in a relatively narrow belt, close to and primarily south of

the surface trace of MCT. Most earthquakes are located between part

of Lesser Himalaya and immediate south of Higher Himalaya extending
from Nepal through Kumaun and Garhwal and Western Himachal

Pradesh. The tectonic features of the Garhwal region are shown in
Fig. 3.2.

3.4.2 Velocity Model

Two layer P velocity model has been based on result of micro

earthquake investigations (Khattri, 1992). According to this model the P

wave velocity in the top layer is 5.2 km/sec and that in the second layer,
6.0 km/sec. The top later is 16 km thick. The density of half space is

chosen to be 2700 kg/m3. These velocities correspond to a material
with Poisson's ratio of 0.25 which signifies that half space is made up of
well consolidated rocks.

3.4.3 Source Model

For the purpose ofgenerating synthetic accelerograms, a source model

has to be specified. This includes spatio-temporal parameters of

earthquake focus, fault geometry (dip and strike of the fault), slip
distribution over the fault plane and source time geometry. For the

sake of simplicity source is supposed to be a rectangular fault buried in

a homogeneous half space.
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3.4.4 The Source Time Function

For the purposes of present study a ramp function with rounded

shoulders is chosen as the source time function. The formula for the

same is given below (Ben-Menahem and Singh, 1981):

f(t) =
o , ,<o

{t IT0){\ - sin o)JIcoJ) , 0<t<Tt> ...(3.11)
1 t > T

where TQ. is the rise time and co0 = 27t/T0. This function is continuous

everywhere and is easily differentiable. The above form is chosen to

model slip as a function of time at a point on the fault. The velocity and
acceleration pulses emanating from the source are given below

v (t) = (1/ T0) (1 -cosco0t), 0<t<To ... (3.12)

a (t) = (co0/T0) sinco0t, 0<t<To ...(3.13)

The three wave functions f(t), v(t) and a(t) are shown in Fig 3.3 for T0 =

0.25 sec and sampling interval of 0.02 sec, the same as for recorded

accelerograms. In Fig. 3.4, the amplitude spectra of these functions are

also shown. This type of source time function has been used by Ben-

Menahem and Singh (1981) for generating synthetic accelerograms.

3.4.5 Source Size

For generating synthetic accelerograms in the near field, the size of the

source i.e. the fault plane, has to be specified. The following method

was followed.
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Firstly, an estimate of the length of the fault was obtained. For this the
following relation was used (Kasahara, 1981):

logLm= 3.2 +0.5 M (3 14)

where Lm is in cm and denotes the upper limit of the fault length for a
given magnitude M. M is the surface wave magnitude. Using the
following Mb - M(body wave - surface wave magnitude) relationship
given by Richter (1958)

M= 1.59 Mb- 3.97 .(3 15)

the above relation can also be rewritten as

log Lm= 1.215+ 0.795 Mb ...(3.16)

3.4.6 Slip Distribution over the Fault Plane v

For the purpose of generating synthetic accelerograms, the whole fault
has been considered to be made of a number of sub-faults each of size
Ikm xIkm. To properly model the ground acceleration at the recording
site which is nearby to the epicentre, the slip distribution over the fault
plane should be specified. In the present work the slip is assumed to
be distributed randomly. For such a slip distribution a set of random

numbers has been generated with mean zero and standard deviation

unity. The average slip over the fault has been calculated or estimated

separately. Asuitable value was selected for standard deviation of slip
over the fault. So the set of random numbers was converted into

another set of random numbers with mean equal to the average slip
and suitably distributed over the fault plane. Many such distributions

are possible having the same mean. The objective was to model the
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chaotic nature of fault slip in an approximate manner. The direction of

slip was however kept constant all over the fault plane.

3.4.7Choice of Coordinate System

Global

The coordinates of epicenter and stations locations are available in

terms of their latitudes and longitudes. These were converted into

Cartesians coordinates x^ and x2 with epicenter as origin, x^ positive

towards north and x2 positive towards east. The third coordinates x3

was taken positive downwards. All the stations were considered to be

situated on the same elevation as the epicentre (above sea level) and

the difference between their elevations was ignored. Following formula

given by Lee and Stewart (1981) were used to obtain coordinates of

stations on x^ - x2 plane.

x, = 60 A (X - X0) ...(3.17)

x2 = 60 B (<J> - <j)0) ••• (3-18)

where Xand <j> are the longitude and latitude of the station and X0 and cb0

are the longitude and latitude of the epicentre in the equations (3.17)

and (3.18) respectively. The values for A and B in these equations are

obtained as given below:

A* 1.8553654 + 0.0062792 sin20+ 0.0000319 sin > ... (3.19)

A* 1.8428071 + 0.0187098 sin20+0.0001583 sin 40 ... (3.20)

where O = 1/z (co + cp0)
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Local

A local (i.e.fault based) coordinate system (y1t y2 y3) was chosen in the

following manner. The focus which lies on the foot-wall side of the fault,
is chosen as the origin. A line on the fault plane parallel to strike of the

fault is chosen as the yraxis with y2-axis in the up dip direction and

perpendicular to the yraxis. The y3-axis is chosen perpendicular to the

fault plane and penetrating the hanging wall. Fig. 3.5 shows the global
and local coordinate systems on a fault with cbs as strike angle and 5 as

the angle of dip. The seismic ray makes an angle i0 at the focus. The

line joining the origin to the recording station makes an angle <j> with the
xraxis.

Let (y1( y2, 0) be the location of a point on the fault plane. The following
relations convert these local coordinates (y1f y2, 0) to global coordinates
(xi, x2, 0)

x1 = yi cos (|)s - y2 sin <j)s cos 5 ...(3.21)

x2 = y1 sin cps - y2 cos cbs cos 5 ...(3.22)

x3 = y, sin 5+h (3.23)

where ^s is the strike, 5 is the dip and h is the depth of focus.

3.4.8 Rotation of the Axes

The horizontal components of the generated synthetic accelerograms
are in the north and east directions which are also the directions of x^ -
and x2 - axes respectively of the global coordinate system. The

horizontal components of the recorded accelerograms are not in these

directions. These have been termed longitudinal (L) and transverse (T)
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components, the directions of which vary from station to station as

given in Table 3.2 and 3.3. For the purpose of comparison, the

synthetic accelerograms were rotated so that the rotated components

lie in the L and T directions for the given recording station. The

following relations have been used for rotation from x^ and x2 directions

to L and T directions:

uL = ux1 cos cpr - ux2 sin cbr ...(3.24)

uT = ux1 sin<j)r + ux2 cos cpr ...(3.25)

Where <j>r is the angle which the L component makes with the north

measured clockwise, ux1 and ux2 are horizontal components of the

synthetic accelerograms and uL and uT are those of the recorded data
by Lfor longitudinal and T for transverse respectively.

3.4.9 Generation of Gaussian Random Noise

To generate a Gaussian random noise, a random number seed is
needed initially. An approximation to a normally distributed or Gaussian
random sequence can be obtained by summing uniformly distributed
random numbers with mean zero and variance one (Stearns and david

(1988). The final random series obtained is normalised against its peak
value. A number of seeds are specified to generate number of random

series and the resulted series was finally used after summed and

averaged.

3.4.1OSource Parameters for Uttarkashi &Chamoli Earthquakes

For the purpose of applying the proposed method for generating

synthetic accelerograms, two earthquake events are selected which
were recorded at number of recording station in Uttaranchal region (as
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discussed in detail in Chapter 2). These earthquakes are the Uttarkashi
earthquake of October 20, 1991 and Chamoli earthquake of March 29,
1999. Ashort account of relevant features of these two earthquakes
are given below:

Uttarkashi Earthquake

The Uttarkashi earthquake occurred on October 20, 1991 at 02:53
(1ST) in the Uttarkashi region in the northwestern Himalayas. The focal
mechanism solution is given in Table 3.1. The centroid Moment Tensor
focal mechanism solution by Harvard University (PDE, Monthly, Oct.
1991) has been chosen in this study as the initial model. The fault plane
chosen for modelling strong ground motion is the one having
parameters corresponding to NP1 as given in Fig. 3.6. Fig. 3.7 shows
the fault in vertical section parallel to strike of the fault along with the
two layer Pvelocity model obtained as described above. The fault plane
lies entirely in the top layer. Fig. 3.8 shows a three dimensional view of
the fault plane.

Chamoli Earthquake

Chamoli earthquake occurred on March 29, 1999 at 03:55 hrs (1ST)
north of Chamoli in Lesser Himalayas. The focal mechanism solution

is given in Table 3.1. Fig. 3.9 shows the fault in vertical section parallel
to strike of the fault.

The hypocentral distance and other parameters for some of the

recording stations are given in Table 3.2 and 3.3 for both the

earthquakes. The fault plane lies entirely in the top layer for this

earthquake event also same as in the case of Uttarkashi earthquake.
Fig. 3.10 shows a three dimensional view of the fault plane.

88



The body wave magnitude for the Uttarkashi earthquake has been

given as 5.5 Mb, which gave an estimate of fault length as 24.13 km

using equation (3.16). Accordingly a value of 24 km was chosen as the

length of the fault. Since the fault is found to be dipping at a low angle

(14°). Accordingly the causative fault is taken to be 24 km long and 16

km wide. In this way the size of the causative fault has been obtained.

Similarly, the fault size for Chamoli earthquake has been taken as 36

km long and 20 km wide. The amount of dislocation was adjusted with

estimates of the length and width of causative fault in such a way that

correct value of seismic moment is obtained. Source parameters for

both the earthquakes are given in Table 3.4.

3.4.11 Computational Procedure

To generate the synthetic accelerograms, a number of numerical

experiments were conducted to arrive at the optimum values of some

key parameters which greatly affect the arrival times and phases of

recorded pulses. These source parameters are rise time (T0), rupture

velocity (v), slip angle (A.) and focal depth h. Three rupture models

were used, namely, unilateral, bilateral and circular rupture. Finally it

was found that circular rupture gives most satisfactory results.

The slip distribution patterns are given in Figs. 3.11 and 3.12 for

Uttarkashi and Chamoli earthquakes. The slip angle is kept same in

each sub-fault. The inverse of quality factor Q versus frequency is

shown in Fig. 3.13 as given by equation (3.5).

As discussed earlier that a rectangular fault has been taken and divided

into number of sub-faults. To determine the duration of strong ground
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motion at the recording site, P and S-wave travel times were computed

from each of the four corners of the fault. The largest S - wave travel

time and the smallest P-wave travel time were selected. The travel time

of P-wave directly from the focus was also computed which is smallest.

If the smallest P travel time from any of the corners of the fault

happened to be smaller than that directly from focus, that time was

taken as the smallest P-wave travel time.

Amplitude spectrum of ground acceleration as shown in Fig. 3.14, is
then calculated by summing contribution from each sub-fault. It takes

into account slip distribution (assumed random) on the fault plane, slip
angle (assumed constant all over the fault), finiteness of the source,
diminution factor and instrument response.

This spectrum is then multiplied by the spectrum of Gaussian white

noise to give the spectrum shown in Fig. 3.15. This is inverse Fourier

transformed to yield the time history shown in Fig. 3.16. This

represents the synthetic accelerogram as if each point on the fault had

radiated an impulse. Convoluting this with source time function shown

in Fig. 3.17 (the acceleration pulse) yields the final synthetic
accelerogram shown in Fig. 3.18(b). This procedure is repeated for
every site where synthetic accelerogram has been generated.
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Table 3.1 : Focal mechanism of Uttarkashi and Chamoli earthquakes

SI.

No

Source Focal Mechanism Size (M0)
(dyne-cm.)

1. Uttarkashi Earthquake

CMT

(Harvard)

Centroid Moment Tensor Solution

NP1 : strike 317°, dip 14°, slip 115°

NP2 : strike 112°, dip 78°, slip 84°

1.8x102b

2. Chamoli Earthquake

NP1 : strike 274°, dip 8°, slip 100° 1.8 x 1026

M0: Seismic moment
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Table 3.2 : Details of the selected stations for Uttarkashi
earthquake

SI.

No.

Station Station

Coordinates
Epicentral
Distance (A)
(km)

Components

1. Almora 29.58° N
79.65° E

162.30 L

T

N53W

N37E
2. Barkot 30.80° N

78.22° E
61.55 L

T

N10E

N80W
3. Bhatwari 30.80° N

78.60° E
19.40 L

T

N85E

N05W
5. Karnprayag 30.25° N

79.23° E
77.75 L

T

N05W

N85E
6. Koteshwar 30.23° N

78.57° E
65.03 L

T

N30W

N60E
7. Purola 30.87° N

78.08° E
77.78 L

T

N65W

N25E
8. Tehri 30.36° N

78.50° E
55.61 L

T

N63W

N27E
9. Uttarkashi

—

30.73° N

78.45° E
36.41 L

T

N15W

N75E

A :E Dicentral distance, L : Longitudinal, T : Transverse
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Table 3.3 : Details of the selected stations For Chamoli

earthquake

SI.

No.

Station Station

Coordinates

Epicentral
Distance A

(km)

Components

1. Almora 29.58° N
79.65° E

94.44 L N53W

T N37E

2. Barkot 30.80° N
78.22° E

141.58 L N10E

T N80W

3. Gopeshwar 30.25° N
79.23° E

27.92 L N70W

T N20E

4. Ukhimath 30.50° N
79.01°E

46.76 L N15E

T N75W

5. Tehri 30.36° N
78.50° E

102.65 L N63W

T N27E

A : Epicentral distance, L : Longitudinal, T : Transverse
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Table 3.4 : Source parameters for Uttarkashi and Chamoli
earthquake

SI.

No.

Parameter Value

Uttarkashi Chamoli

1 Length of the Fault 24 km 36 km

2 Width of the Fault 16 km 20 km

3 Focal Depth 10 km 15 km

3 Dip of the Fault 14° 8°

4 Strike of the Fault 317°N 274° N

5 Rise Time 0.25 sec 0.25 sec

6 Rupture Velocity 2.30 km/sec 2.50 km/sec

7 P-wave velocity 5.2 km/sec 5.2 km/sec

8 S-wave velocity 3.0 km/sec 3.0 km/sec

9 Slip Angle 115° 100°

10 Rupture Model Circular Rupture Circular Rupture

11 Source Time Function Modulated Ramp Modulated Ramp

12 Average Slip 80 cm 75 cm

13 Maximum Slip 170 cm 160 cm

14 Natural Freq. of
Instrument

25 Hz 25 Hz

15 Damping Constant 0.70 0.70
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Observation Point
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V Aii /

*i

Fig. 3.1 : y/ is the angle between the direction to the receiver
and the direction of rupture propagation and r is the
hypocentral distance
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Fig. 3.2 :Tectonic features of the Garhwal Himalayan region
(after Kumar, 1981)
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Frequency

Frequency

10

Frequency

Fig. 3.4 :Spectrum of source time function (a) slip displacement
spectrum (b) slip velocity spectrum (c) slip acceleration
spectrum
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Fig. 3.5 Global and local coordinate systems tys : strike, 5 : dip,
X: slip angle, i0: take off angle, <j>: azimuth of recording
station, A: epicentral distance E : epicentre and

fault normalV
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Fig. 3.6 : Fault plane solution, NP1 : strike 317°, dip 14°,
NP2 : strike 112°, dip 78°, for Uttrakashi, 1991
earthquake, as used in this study.
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•

Fig. 3.7 : Vertical section perpendicular to the strike of the
Fault showing that the fault lies in the first layer
(Uttarkashi earthquake)
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Surface of the earth

First Layerc<=5-2 Km/s

Second Layer qr= 6 Km/s

Fig. 3.8 : Strike of the fault plane and dip in three dimensional
view (Uttarkashi earthquake )
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274.

Fig. 3.9 :Vertical section perpendicular to the strike of the fault
showing that the fault lies in the first layer
(Chamoli earthquake)
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Surface of the earth

Second Layeror>6 km/s

Fig. 3.10 :Strike of the fault plane and dip in three dimensional
view (Chamoli earthquake )
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Fig.3.11 : Slip distribution pattern over the fault plane for
Uttarkashi earthquake
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Fig.3.12 Slip distribution pattern over the fault plane for
Chamoli earthquake
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Fig. 3.16 : Ground acceleration when each point on the fault
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CHAPTER 4
Results and Discussion -

Synthetic Accelerograms

4.1 Introduction

Following the method described in the last chapter strong motion

accelerograms have been synthesized at eight selected sites which

recorded the Uttarkashi, 1991 earthquake and at five sites for Chamoli,

1999 earthquake. The locations of these recording sites alongwith the

epicentre of the earthquake have been shown in Figs. 2.3 and 2.4.

The objective of this exercise is to examine the usefulness of the

proposed method in generating synthetic accelerograms. This has

been done by comparing the synthetic accelerograms with the

observed ones for two earthquakes in the Himalayan region.

The accelerographs which recorded the two Himalayan earthquakes

were analog recording devices. The recording of strong ground motion

data was done when these instruments were triggered by a strong

pulse. In the case of these two earthquakes the instruments were-€te-

not seen to have triggered by the first P-wave. The later arriving S-

waves are clearly seen on most records. The arrival of P and S waves

in observed and synthetic accelerograms are given in Table 4.1 and 4.2

for both the earthquakes. It may have been due to the fact that the first

P-wave was quite weak or the trigger level of instrument was some

what higher. As a result the starting pulse on the observed

accelerograms can not be taken to be the first P-arrival. This is borne

out the computations carried out in the present study. It has been

found that calculated S-P intervals match the hypocentral distances

from known values of earthquake parameters, whereas the S-arrivals
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on observed accelerograms occur at smaller intervals after the initiation
of the record. Consequently the interval on the synthetic
accelerograms before the arrival of S-waves is of longer duration than
that ofobserved accelerograms.

4.2 Results and Discussion

Figs. 4.1(a) to (d) to Figs. 4.8(a) to (d) show the synthetic and observed
accelerograms and the synthetic accelerograms superimposed over the
observed ones for Uttarkashi, 1991 earthquake. Figs. 4.9(a) to (d) to
Figs.4.13(a) to (d) show the synthetic and observed accelerograms and
the synthetic accelerograms superimposed over the observed ones for
Chamoli, 1999 earthquake.

In Figs. 4.1(a) &(c) to Figs. 4.13(a) &(c) the synthetic accelerograms
begin earl.er than that the observed ones. Both the synthetic and
observed accelerograms are plotted on the same time scale. The
match between the two sets of accelerograms is quite good. The
details of the superimposed accelerograms for observed over the
synthetic one are given in Table 4.3 and 4.4 for both the earthquakes.
The Figs. 4.1(b) &(d) to Figs. 4.13(b) &(d) showing the synthetic
accelrograms over the observed ones show nearly complete matching
of a number of peaks. The peaks which nearly match have been
marked with an arrow. The amplitudes and shapes matched pulses do
not agree entirely but their position on the accelerogram does. In order
to determine the degree to which the two sets of accelerograms match,
root mean square erros (rmse) have been determined over the portion
on which the two sets of accelerograms have been superimposed.
These errors in percentage (%) are given in Table 4.5 and 4.6. None
of these exceed 20% and of the 26 sets of accelerograms compared,
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15 have r.m.s. errors less than 10%. The differences in the two sets

of accelerograms can be ascribed to following causes:

1. The effect of amplification of ground motion by near surface

unconsolidated materials has not been taken into account. The

earth model chosen for the present study is that of a uniform and

homogeneous half space. In real earth there are number of

inhomogeneties which lead to scattering of high frequency energy.

Such scattering effects have been ignored.

2. The tail of the accelerogram consists of surface waves and back

scattered waves. Such effects have not been taken into account.

3. In the Himalayan region effects of topography in the vicinity of

recording station are likely to be important on recorded ground

motion. The record of ground motion of a recording station located

on the side or bottom of a valley will be influenced by the shape of

the valley. These effects are not easy to predict and have not been

considered in the present study.

4. The recorded accelerogram is influenced by closeness of the

causative fault, its size, the pattern of slip distribution, the form of

source time function, rise time, rupture velocity and model of rupture

propagation (unilateral, bilateral, circular or other). The size of the
fault can be estimated. However other properties of the source are

not known in advance. To match the synthetic accelerograms with

the observed ones, a set of values for the parameters are tried in a

systematic manner before an acceptable match between synthetic
and observed data is obtained. There are likely to be several

possible combinations of these parameters which may give rise to
an acceptable match. No unique set of values can, perhaps, ever be
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determined because of the non-unique nature of geophysical inverse
problems. There are likely to be some other parameters which are

unknown but may be important. These factors that have not been

accounted for in synthetic experiments will result in the mismatch

between synthetic and observed data.

As stated earlier the objective of the present study is to determine the
usefulness of a method of synthetic seismogram generation proposed
herein. The synthetic accelerograms generated in the present study
show a good match with the observed ones demonstrating the
usefulness of the method of synthetic seismogram generation
described in the present thesis.

4.3 Synthetic Accelerograms for a Hypothetical Earthquake

The Himalayan region is a highly active seismic region. To mitigate risk
from future earthquakes all buildings especially the larger structures
such as dams, should account for earthquake forces in their design. For
this purpose a knowledge of probable time history of strong motion at
the site of construction is a must. The method proposed in the present
study has been used to generate accelerograms at a few selected sites

produced by a hypothetical earthquakes of magnitude.7.0. The source

region of this earthquake lies along the main central thrust near

Rudraprayag as shown in Fig. 4.14. The epicentral location has been

taken to be 30.50° N 79.00° E with a focal depth of 12 km. The other

source parameters have been setup and listed in Table 4.5. The

locations of six sites at which the synthetics have been are given in
Table 4.8 and shown in Fig. 4.14.

The synthesized accelerograms for all the six sites are shown in Figs.
4.15 to 4.21 for one horizontal component. The peak ground
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acceleration has the highest value of 405.72 cm/sec2 at Rudrapyayag.

The synthetic accelerograms can be taken to be a realistic depiction of

the probable ground motion in the region and can be used for

earthquake resistant design of important civil structures.

Table 4.1 : Arrivals of P and S waves in observed and synthetic
accelerograms for Uttarkashi earthquake

SI.

No.

Station Hypocentral
Distance A

(km)

Observed Synthetic

tP ts tP ts
1. Almora 165.35 0.0 14.20 35.73 55.20

2. Barkot 61.55 0.0 3.84 12.12 20.57

3. Bhatwari 19.40 0.0 2.60 3.75 6.48

4. Karnprayag 77.75 0.0 7.25 16.75 25.96

5. Koteshwar 65.03 0.0 6.66 13.20 21.81

6. Purola 77.78 0.0 4.26 16.77 26.00

7. Tehri 55.61 0.0 5.82 11.21 18.54

8. Uttarkashi 36.41 0.0 3.20 7.52 12.15
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Table 4.2 : Arrivals of P and S waves in observed and synthetic
accelerograms for Chamoli earthquake

SI.

No.

Station Hypocentral
Distance A

(km.)

Observed Synthetic

tP ts tP ts

1. Almora 96.33 0.0 9.18 19.42 32.13

2. Barkot 142.85 0.0 11.52 28.81 47.62

3. Gopeshwar 31.69 0.0 2.90 6.39 13.90

4. Ukhimath 50.47 0.0 4.01 10.92 16.86

5. Tehri 103.74 0.0 9.82 20.81 34.57
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Table 4.3 : Details of the superimposed accelrograms for
Uttarkashi, 1991 earthquake

SI.

No.

Station Shown in

Figures
Observed (s) Synthetic (s)

from to from to

1. Almora Figs. 4.1(b) &
4.1(d)

0.50 10.50 39.50 49.50

2. Barkot Figs. 4.2(b) &
4.2(d)

2.50 10.50 16.50 24.50

3. Bhatwari Figs. 4.3(b) &
4.3(d)

4.00 10.50 7.50 14.00

4. Kamprayag Figs. 4.4(b) &
4.4(d)

0.50 8.00 25.00 32.50

5. Koteshwar Figs. 4.5(b) &
4.5(d)

7.00 17.00 19.50 29.50

6. Purola Figs. 4.6(b) &
4.6(d)

2.50 10.50 18.00 26.50

7. Tehri Figs. 4.7(b) &
4.7(d)

5.50 14.50 16.00 25.00

8. Uttarkashi Figs. 4.8(b) &
4.8(d)

3.50 7.50 9.80 13.80

118



Table 4.4 : Details of the superimposed accelrograms for
Chamoli, 1999 earthquake

SI.

No.

Station Shown in

Figures
Observed Synthetic

from - to from to
1. Almora Figs. 4.9(b) &

4.9(d)
0.00 9.00 30.50 39.50

2. Barkot Figs. 4.10(b) &
4.10(d)

0.50 36.50 7.50 43.50

3. Gopeshwar Figs. 4.11(b) &
4.11(d)

3.00 9.00 8.00 14.00

4. Ukhimath Figs. 4.12(b) &
4.12(d)

0.00 16.50 4.00 20.50

5.

[
Tehri Figs. 4.13(b) &

4.13(d)
0.00 30.50 6.00 36.50
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Table 4.5 : RMS errors (%) for superimposed portion of the
accelrograms for Uttarkashi, 1991 earthquake

SI.

No.

Station Hypocentral
Distance A (km)

L Component T Component

1. Almora 165.35 6.225312 2.961601

2. Barkot 61.55 7.419318 7.870909

3. Bhatwari 19.40 6.126514 11.370815

4. Karnprayag 77.75 11.385312 8.063941

5. Koteshwar 65.03 17.350282 10.035124

6. Purola 77.78 8.958166 4.560196

7. Tehri 55.61 19.729436 14.768013

8. Uttarkashi 36.41 8.075476 8.309871
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Table 4.6 : RMS errors (%) for superimposed portion of the
accelrograms for Chamoli, 1999 earthquake

SI.

No.

Station Hypocentral
Distance A (km)

L Component T Component

1. Almora 96.33 15.043584 11.410245

2. Barkot 142.85 11.380425 8.887654

3. Gopeshwar 31.69 9.631586 8.526439

4. Ukhimath 50.47 4.195476 5.648671

5. Tehri 103.74 11.621656 14.921087
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Table 4.7 : Source parameters of hypothetical earthquake of

magnitude = 7.0

SI.

No.

Parameter Value

1 Length of the Fault 60 km

2 Width of the Fault 16 km

3 Focal depth 12 km

3 Dip of the Fault 8°

4 Strike of the Fault 287° N

5 Rise Time 0.30 sec

6 Rupture Velocity 2.30 km/sec

7 Slip Angle 120°

8 Rupture Model Circular Rupture

9 Source Time Function Modulated Ramp

10 Average Slip 90 cm.

11 Maximum Slip 175 cm.
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Table 4.8 : Details of the selected stations for hypothetical
earthquake

Epicentral Location : 30.50° N 79.00° E

SI.

No.

Station Station

Coordinates
Epicentral
Distance A

(km.)

Components

1. Bhatwari 30.80° N

78.60° E
55.61 L N85E

T N05W
2. Ghansali 30.42° N

78.65° E
40.25 L N00E

T N90W
3. Karnprayag 30.25° N

79.23° E
36.25 L N05W

T N85E
4. Rudraprayag 30.27° N

78.98° E
25.60 L N53E

T N37W
5. Tehri 30.36° N

78.50° E
57.83 L N63W

T N27E
6. Uttarkashi 30.73° N

78.45° E
66.37 L N15W

T N75E

A : Epicentral distance, L : Longitudinal, T : Transverse
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CHAPTER 5

Summary and Conclusions

5.1 Summary

In the present work two empirical relationships have been developed

based on the strong motion data for Himalayan and northeast region of

India. In addition a fresh approach has been presented for obtaining

synthetic accelerograms. Its suitability has been demonstrated

successfully by modelling the accelerograms from two Himalyan

earthquakes i.e. Uttarkashi, 1991 and Chamoli, 1999 earthquakes.

Synthetic accelerograms have been compared with the observed ones

for some of the recording stations.

In Chapter 2, two empirical attenuation relationship have been

developed, one for Himalayan and the other for northeast region. The

available data for eight earthquakes, three from Himalayan region and

five from northeast region of India have been used to develop these

relationships. These predict the peak ground acceleration in the absence

of strong motion data. The data to be provided are magnitude of

earthquake and source to site distance (epicentral distance).

An integrated attenuation relationship has also been developed based

on the various relationships available in the literature. The root mean

square errors have been calculated with the observed acceleration

values for all the eight earthquakes with the developed relationships and

integrated relationship. These errors have been found to be less than

5% in all cases.
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In Chapter 3, a simple method has been discussed and presented for
generating synthetic accelerograms based on the convolution model of
the seismogram. The spectrum of the ground motion expected at
recording site is first computed from the knowledge of source
parameters (source mechanism, size, geometry, time function, slip
distribution on fault plane) for a source buried in a half space. This
spectrum is then inverse Fourier transformed to yield the desired
synthetic accelerogram.

In Chapter 4, the suitability of the method has been demonstrated by
comparing the synthetic accelerograms with the observed ones for two
earthquakes, Uttarkashi, 1991 and Chamoli, 1999. The extent of
matching has been quantitatively expressed by computing the r.m.s.
errors. It has been found that synthetic accelerograms match fairly well
with the observed ones, r.m.s. errors being less than 20% in all cases.

The synthetic accelerograms have also been generated at six sites of
Garhwal Himalaya region for a hypothetical earthquake of magnitude 7.0
in the Himalayan region.

5.2 Conclusions

1. The empirical attenuation relationships derived in the present study
for predicting PGA values give good fit with the observed peak
acceleration values of strong motion data.

2. The integrated (generalized) relationship is at par with the other
relationships of the same type and can be used for computing PGA
values at sites and regions where strong motion data is not
available.
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3. The method presented in the present thesis for generating the

synthetic accelrograms, though simple, successfully tested with the

observed data of two earthquakes events that occurred in the

Himalayan region.

4. The method presented is found to be quite suitable for generating

the synthetic accelerograms for earthquakes up to moderate

magnitudes (~ 7.0).

5. Inclusion of new features in the spectral modelling method

presented here has made it computationally very efficient and can

be applied to simulate strong ground motion for sites in seismically

active regions.

5.2 Suggestions for Further Research

1. The strong motion arrays installed in India should be further

strengthened by installing more seismographs in the northern

Himalayan belt. As and when more strong motion data is available

the attenuation relations will be further modified. More parameters

like topographical effect, local site geology etc. should be taken into

account for developing the attenuation relationships.

2. The convolution method for generating the synthetic accelerograms

can be further modified by incorporating the effect of surface

inhomogeneous layers, effect of topography near the recording

station, stochastic variability in the rupture process thereby making

the model more in tune with the natural phenomenon.
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APPENDIX A

Earthquake Locations with their Peak Ground Horizontal

Accelerations etc.

Earthquake stations PGA

(cm/s*s)
Epicentral
Distance

(km)

Magni
tude

(Mb)

Depth
(km)

Site

Type
(R/S)

Dharamsala,1986
Earthquake

Bandlakhas 142.90 24.18 5.5 7 R

Baroh 61.80 21.21 5.5 7 R

Bhawarna 39.30 24.50 5.5 7 R

Dharamsala 244.30 437 5.5 7 R

Jawali 19.70 26.73 5.5 7 R

Kangra 160.40 9.33 5.5 7 R

Nagrota-Bagwan 147.10 12.29 5.5 7 R

Shahpur 265.00 9.98 5.5 7 R

Sihunta 57.20 23.06 5.5 7 R

Shillong
Earthquake

Baithalangso 45.41 79.50 5.5 28 S
Dauki 93.52 27.16 5.5 28 R

Khliehrait 50.85 30.15 5.5 28 R

Nongkhlaw 92.33 52.76 5.5 28 R

Nongpoh 66.15 57.01 5.5 28 R

Nongstoin 20.53 81.80 5.5 28 R

Panimur 59.05 76.63 5.5 28 S

Pynursla 102.07 21.68 5.5 28 R

Saitsama 147.97 44.79 5.5 28 S

Ummulong 112.56 12.83 5.5 28 R

Umrongo 38.15 55.92 5.5 28 S

Umsning 124.43 39.39 5.5 28 R

N.E. Earthquake
(May 1987)

Baithalangso 33.94 178.30 5.7 50 S

Bamungao 21.82 137.83 5.7 50 S

Berlongfer 88.49 110.36 5.7 50 s

Bokajan 68.74 93.88 5.7 50 s

Diphu 85.55 105.03 5.7 50 s
Gunjung 53.48 119.76 5.7 50 s

Haflong 60.32 119.22 5.7 50 R
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Hajadisa
Hathikhali

Laisong
Nonarjoh

86.87

38.30

63.35

91.28

117.30

89.76

5.7

5.7

5.7

50

50

50

S i

S

S

Panimur

Saitsama

ny.uz

46.45

48.74

243.29

147.08

188.42

5.7

5.7

5.7

50

50

50

R

S

s 1Umrongso 28.48 159.95 5.7 50 s
N.E. Earthquake
(Feb. 1988)

Baigao 25.53 159.27 5.8 15 s
Baithalangso
Bamungao
Dauki

Gunjung
Haflong

33.67

17.27

29.98

42.26

36.19

182.55

203.60

79.06

167.63

161.94

5.8

5.8

5.8

5.8

5.8

15

15

15

15

15

s

s

s

R

s
Hatikhali

Katakhal

Khliehriat

Mawphlang

24.91

9.57

78.43

87.61

194.87

114.86

116.49

93.52

5.8

5.8

5.8

5.8

15

15

15

15

R

S

S
R

Nongkhlaw
Nongpoh
Pynursla

138.70

84.61

51 67

116.27

144.70
R"3 OR

5.8

5.8

15

15

R

R

Saitsama

Shillong
Ummulong
Umrongso

77.33

46.87

63.00

46.59

OO.^D

147.71

109.22

116.24

147 11

5.8

5.8

5.8

5.8
5 R

15

15

15

15

R

S

R

R

Umsning
N.E. Earthquake
(August 1988)

Baigao
Baithalangso

60.49

247.47
1 70. ft/I

126.79

230.05

o.o

5.8

6.8

15

15

91

S

R

S

Bamungao
Bearlongfer

[Bokajan
Cherrapunji
Dauki

Diphu

105.52

344.57

219.99

58.38

107.71

269.65

228.08

200.93

167.21

341.26

311.97

6.8

6.8

6.8

6.8

6.8

6.8

91

91

91

91

91

91

S

S

S

s ,
R I

Doloo

Gunjung
Hajadisa
Harengajao
Hojai

ODD.00

64.25

135.58

105.29

77.53

144 87

189.94

237.12

214.06

185.78

228.55
OAP\ 09.

6.8

6.8

6.8

6.8

6.8

91

91

91

91

91

R

S

S

S

S

Jellalpur 31.68 269.40
bo

6.8

91

91

S

s
Jhirighat
Kalain

118.62
R.Q AC)

207.07 J 5.8 91 R

Katakhal 74.29

do/ .52

253.44
3.8

3.8

91

91

S
s

Khliehriat 73.12 278.52 (3.8 91 R

A-2

>

Y



Koombur 49.38 213.58 6.8 91 S
Loharghat 57.98 377.51 6.8 91 S
Mawkyrwat 50.98 368.81 6.8 91 R
Mawphlang 115.09 339.47 6.8 91 R
Mawsynram 85.88 357.43 6.8 91 R
Nongkhlaw 144.52 355.55 6.8 91 R
Nongstoin 61.84 289.93 6.8 91 R
Panimur 166.71 240.78 6.8 91 S
Pynursla 58.75 324.34 6.8 91 R

Saitsama 262.22 282.32 6.8 91 S
Shillong 83.17 327.85 6.8 91 R

Silchar 89.72 237.49 6.8 91 S
Ummulong 159.88 301.27 6.8 91 R

Umrongso 88.44 254.41 6.8 91 S
Umsning 152.40 331.83 6.8 91 R
N.E. Earthquake
(January 1990)

Baigao 63.51 250.65 6.1 119 S

Baithalangso 88.42 297.90 6.1 119 S

Bamungao 33.28 257.48 6.1 119 s

Berlongfer 177.06 230.01 6.1 119 s

Diphu 103.72 222.81 6.1 119 s

Gunjung 71.90 233.42 6.1 119 s

Hajadisa 85.12 207.57 6.1 119 s

Hojai 42.29 275.99 6.1 119 s

Laisong 70.98 201.13 6.1 119 s

Maibang 74.67 220.54 6.1 119 s

Panimur 78.26 265.49 6.1 119 s

Saitsama 68.94 306.24 6.1 119 s

Ummulong 51.54 321.61 6.1 119 R

Umrongso 35.90 275.98 6.1 119 s

Uttarkashi, 1991
Earthquake

Almora 22.27 150.64 6.6 12 R

Barkot 103.88 61.40 6.6 12 R

Bhatwari 871.63 25.45 6.6 12 R

Ghansiali 141.98 41.84 6.6 12 R

Karnprayag 84.74 65.94 6.6 12 R

Koteshwar 99.08 64.15 6.6 12 R

Kosani 31.58 144.86 6.6 12 R

Koti 41.09 105.01 6.6 12 R

Purola 96.13 75.68 6.6 12 R

Rudraprayag 65.27 54.60 6.6 12 R

Srinagar 65.77 59.56 6.6 12 R

Tehri 73.63 54.53 6.6 12 R

Uttarkashi 313.09 39.25 6.6 12 R
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Chamoli, 1999
Earthquake

Almora 95.03 27.24 6.1 21 R
Barkot 155.78 22.26 6.1 21 R
Chinyalisur 145.57 81.84 6.1 21 R
Ghansali 123.81 50.65 6.1 21 R
Gopeshwar 33.78 352.83 6.1 21 R
Joshimath 23.01 69.55 6.1 21 R
Karnprayag 40.54 31.08 6.1 21 R
Lansdown 143.19 11.01 6.1 21 R
Tehri 50.31 94.71 6.1 21 R
Ukhimath 133.73 61.06 6.1 21 R
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APPENDIX B

Attenuation Relations available in Literature

1. Esteva, L. (1970)
a(cm/s2) = 1230e08M(R+25)~2 ; Firm ground condition

2. Mickey, W.V. (1971)
log a(cm/s2) = 1.325 + 0.466M -1.4 log R ; Not applicable
for R < 15 km.

3. Denham, D.G. and G.R. Small (1971)
log a(cm/s2) = 2.80 + 0.20 M- 1.10 log R ;Australia,
unconsolidated soil

4. Devenport, A.G. (1972).
a(cm/s2) = 274 e08MR-164 ;
Not applicable for R < 15 km.

5. Denovan, N.C. (1973V
a(cm/s2) = 1080e05M ( R+25)~1 32 ; Rocky ground.

6. Esteva, L. and R. Villaverde (1973).

a(cm/s2) =5600 e °8M (R +40) ~2 ;a ,n a =0.64,R > 15 km.

7. Merz, H.A. and C.A. Cornell (1973).
a(cm/s2)=1200 e08MR~2 ; a,na =0.2,

8. Orphal, D.L and J.A. Lahoud (1974).
a(cm/s2) =64.75x10 o.4M r -1..39 ;G|na =0 69
California region, Rock and Alluvium, Not applicable for R < 15 km.

9. Bath, M. (1975).
a(cm/s2) = 1.03h06x10 °54MR-15 ;
Tanzania region, R >15 km.
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10. Trifunac, M.D. (1976)
log a(cm/s2) =M+log A0 (R)+0.898P+1.789M-6.217-0.06s-0.186M2

Applicable for M= 4.8- 7.5, log A0 ( R) is Richter's attenuation function
p is confidence level, s=0 for alluvium, 2for rock and 1for intermediate
type of geology.

11. McGuire R.K. (1977)
a(cm/s2)=472.0x10° 278M( R+25-1301; a,na =0.62
Rock and Allluvium, Not applicable for R < 15km

12. Ohashi et al (1977).
a(cm/s2)=46 x100208 (R +10V0686; Rock sites
a(cm/s2) =24.5 x100333M( R+10)°924; Stiff soil
Based on Japanese data.

13. Donovan, N.C. and A.E. Bornstein (1978)
a(g) =2198e( °046 +0193 ln R> MR-21 (R +25) -2.515 +0.21 mr
California region, Rock and stiff soil sites.

14. McGuire, R.K. (1978).
a(g) =0.0306e 089M R"11V0020s: a lna =0.62
s= 0 for rock and 1 for soil sites in Western U.S.

15. Cornell, C.A. , H. Banon and A. F. Shakal (1979)
a( g) =0.863e° 86M( R+25) ~1 8; a ln a=.0.57, Western U.S.

16. Espinosa, A. F. (1980)
a(g) =1.119x10 ~6e2 3M R-0n-0.22.nR. Westem y s

17. Battis, J. (1981).
a(g) =0.3480e *™ (R +25)-2o8; alna =0.71 ,California region.
a(g)= 0. 0239e 124M(R +25) "124; alna =0.71 , Central U.S

18. Campbell K.W. (1981).
a(g) =0.0159e0868M(R +0.0606e 07M) "1 °9; CT,na= 0.37,
World wide data, Rock sites, R< 50km

19. Hasegawa, H.S., P.W. Basham and M.J. Berry (1981)
a(g) = 1.02 x 102e1 3M R"1 5; Western Canada
a(g) = 3.47 x 103e 13M R-1-1; Eastern Canada
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20. Joyner, W.B. and D.M. Boore (1981).
a(g) = 0.0955e 0573M Rl"°-V°00587R1 ° 5; alna = 0.60
Ri= (R2+7.32)05;
Western North America.

21. Nuttli, O.W. and R.B. Herrmann (1984)
a(g)=3.79x10-3e115M(R2+0.000346e2lM)-0415e-000159R;alna=0.55
Mississippi Valley

22. Sabetta, F. and A. Pugliese (1987)
log a(g) = - 1.562 + 0.306M- log (R2 +5.8 2)°5 + 0. 169s ;
s=0 for rock sites and 1 for soft sites, Italian data.

23. Peng K.Z., F.T. Wu and L. Song (1985)
log a(cm/s2) =- 0.474 + 0.613M - 0.873 log R - 0.00206 R; NE China
log a(cm/s2) =- 0.437 + 0.454M - 0.739 log R - 0.00279 R; NW China

24. Abrahamson, N.A. and J.J. Litehiser (1989)
log (g) =- 0.62 +0.177M- 0.982 log (R +e0284M) + 0.132F- 0.0008Er;
cj|na= 0.277, F=1 for reverse or reverse oblique events, 0 otherwise
Er = 1 for interplate events and 0 for intraplate events.

25. Fukushima, Y and T. Tanaga (1990).
log a(cm/s2) = 0.41 M- log (R + 0.032 x 10°41M) - 0.0034R + 1.30;
Japan region

26. Gupta I.D., V. Rambabu and R.G. Joshi (1991).
log a(cm/s2) = 2.64 - 0.01197 R- 0.0995 log R- 0.6476M + 0.10634M2
Koyna region, India

27. Crouse, C.B. (1991)
lna(cm/s2)= 6.36+1.76M - 2.731 In (R + 1.58e 0608M) + 0.00916h;
aina= 0.773
Cascadia subduction zone

28. Ambraseys, N.M. and J.J. Bommer(1991)
log a(g) = -0.87 + 0.217M- log R-0.00117R; o,og a=0.26,
Europian data

29. Theodulidin, N.P. and B.C. Papazachos (1992)
In a(cm/s2) = 3.88+1.12M-1.65ln(R+15)+0.41 s; a ,n a=0.71
s=1 for rock and 0 for alluvial sites, Greece.
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30. Niazi, M. and Y. Bozorgnia (1991)
In a(g) =- 5.503 +0.936M- 0.816ln (Rh+ 0.407e 0455M); o,na =0.461,
NE Taiwan.

31. Tento, A., L. Franceschina and A. Marcellini (1992)
In a(cm/s2) =4.73 +0.52M- In R- 0.002R; a ,n a=0.67,
Italian sites.

32. Singh et.al. (1996)
log a(cm/s2) = 1.140 +0.31M- 0.6151log R ;
Himalayan region of India.

33. Sharma M.L. (1998)
log a(cm/s2) =- 1.072 +0.39M- 01.210 log (R +e 0587M);
Himalayan region of India.
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APPENDIX C

Radiation Pattern in Terms of Fault Parameters

The radiation pattern terms in equation (3.3) should be expressed in terms of

parameters of the fault having arbitrary orientation. These parameters are the

dip and the strike of the fault. The direction of slip is expressed in the form of

slip angle or rake. The fault has two surfaces, called hanging wall and foot

wall. Slip u the direction in which hanging wall moves relative to foot wall.

Rake X is the angle between strike direction and slip. This is illustrated in Fig.

C.1, in which X^ - axis is taken positive towards north, X2-axis positive

towards east and X3-axis positive downwards. The origin of the cartesian

coordinate system is taken to coincide with the epicentre E of the earthquake

with focus F lying on the fault. The strike of the fault is denoted by <j>s and dip

by 5. Rake Xis measured on the fault plane in the counter clockwise direction.

For a strike slip fault, 5= tc/2 and >,=0 or n corresponding to left lateral or right

lateral strike slip fault respectively. For a dip-slip fault 5= nl2 and X= tc/2 or 3

Tt/2. If 5 is less than n/4 and X is within the range (0, n) the fault is termed

thrust fault. For 5 > /4, it is termed reverse fault if 0 < X< n and normal fault

if 7i <X<2n.

The expressions for Rp, Rsv and RSH in terms of various angles are given

below (aki and Richards, 1980):

Rp = Cos^ sin5 sin2i0 sin2((Hs)

+ sinX cos2§ sin2i0sin((|)-<j)s)

+ sinA, sin28 [cos2i0-sin2i0 sin2(<p-cps)]

- cos Xcos 5 sin2i0 cos (<t)-<t>s) ••• (c-1)
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Rsv =+ Vz (CosA sin5 sin2i0 sin2(4>-<)>s)

+ smX cos25 cos2i0sin(<|>-(|)s)

-1/2 sinA sin28 sin2i0 (1 + sin2(c})-4)s)

- cos Xcos 8 cos2i0 cos (<|>-<j)s)

RSH =CosA sin5 sini0 cos2((j)-(j)s)

+ sinA cos28 cosi0cos (<|>-<|>s)

- 72 sinA sin28 sini0sin2 ((j)-<j)s)

+ cos Xcos 8 cosi0 sin(4>-<|>s)

(C.2)

(C.3)

The expressions for Rp, Rsv and RSH can also be expressed in matrix form as
follows:

R1' [>i P2 A V
Rsr

= S, s2 S3 s4
Rs" _7'. T2 T3 T*.

cos X sin <J

sin X cos 2<5

sin X sin 2J

cos A cos 8

... (C.4)

where P1( P2, etc. are coefficients of corresponding terms in the column vector

on the R.H.S. and can be obtained from equations (C.1) to (C.3), e.g.

Pi =sin2i0 sin2((M>s), S2=cos2i0sin((j)-^)s), T3 =- (1/2) sini0 sin2(<p-<ps), etc.

The radiation pattern terms are thus seen to be made up of contributions from

four elementary faults. If X=0, 8= n/2 (vertical strike slip fault), only the first
column of the matrix (C.4) contributes to the radiation pattern, since all but the

first element of the column vector on R.H.S. of the equation (C.4) are zero.

Four cases arise: (a) for A=0, 8= tt/2 (vertical strike slip fault) only first

column contributes; (b) for X= 3tt/2, 8= tt/2 (vertical dip slip fault) only the
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second column contributes; (c) for X= tt/2, 8= 7i/4 (reverse slip on a 45°

dipping fault plane) only the fourth column contributes; and (d) for X=0, 8=0

(slip on a horizontal plane) only the fourth column contributes. For arbitrary X

and 8, all the 12 elements of the matrix contribute. When i = tt/2, it

corresponds to surface focus. For a point strike slip fault with surface focus,

the radiation pattern is given by Sin2(cp-4>s) which gives the familiar four lobe

radiation pattern for P waves.

For the four elementary faults the radiation pattern for P-, SV- and SH- are

shown in Fig. C.2 for surface focus (i.e., i0=0). Due to this reason there will

be no radiation of P and SH for cases (b) and (d) and no radiation of SV for

cases (a) and (c).

Strong ground motion records are obtained by accelerographs placed on

earth's surface. The free surface of the earth modifies the amplitudes of

waves incident from below.
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North

x3

Fig. C.1 : Notations used to obtain explicit dependence of
Radiation Pattern terms on (<|>s, 8, X, i, <f>)
(Modified after Aki and Richards, 1980)
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/T\

e
A

la) Vertical strike slip fauli

(b) Vertical dip slip fault

(c) Reverse sliP on a 45° dipping plane

(d) Slip on a horizontal fault

Fig. C.2 Radiation Pattern terms for P, SV and SH waves for four
elementary faults for an earthquake with focus on the surface
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APPENDIX D

Free Surface Effect

In Fig. D.1 a receiver R is placed below the free surface which receives direct.

P, reflected PP and reflected PS waves from a buried focus F. The record of

ground motion made by this receiver shows three distinct events. When the

depth of the receiver below the surface is decreased the three events are

observed at shorter time intervals. When the receiver lies at the free surface

the three events coalesce giving a single event, which then expresses the

effect which the presence of free surface has on the wave incident from

below. In a similar way incident SV waves are also affected by the presence

of free surface. The amplitude of SH waves is doubled as a consequence of

the presence of the free surface.

The formula for computing free surface effect on incident P-waves are given

below in terms of horizontal uH and vertical u3 components of P-wave

displacement (Aki and Richards, 1980).

upH =A[sin i + RppSin i + Rpscos j] ...(D.1)

U) =A[-cos i + Rppcos i + Rpssin j] ... (D.2)

and those for incident SV waves are

u;" =B[cos j + Rsp sin i + Rsscosj] ... (D. 3)

u"=B[sin j + Rsp cos i + Rsssin j] ... (DA)

where A, B are the amplitude of P and SV waves in an infinite medium.
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In the above formulae the horizontal component of the displacement is in the

plane of incidence containing the receiving station, ray path and the focus.

The angle i is the angle of incidence for the P waves and j for the SV waves at

the free surface. These angles are related by Snell's law.

sin/ sin /

— -— -<a5>

where a and p are P and S wave velocities in the half space. RPP, Rps are

reflection coefficients for incident P waves and Rss, Rsp those for incident SV

waves when waves are incident on the surface of half space from below.

These are given below:

Rpp = -0//?2-2p2)2+4^2[(cos/7g][(cos77^]
+{\l(32-2p2)2+4p2[(cosi)la][{cosjlp] '" [ '

Rp = 4(a//3)p(cosi/a)(\/pl2-2p2)
PS {\lp2 -2p2)2+4p2(cosi/a)(cosj/j3) '" { '

Rsp = 4(j3/a)p(cosj/0){l/p2-2p2)
(1//32 -2p2)2 +4/?2(cos i/a)(cosj//3) " '

R (V P2 ~2p2)2 -4p2(cosila){cosjl (3)
Kss = --, t~-> 1 ... (D.9)(l//?2 -2p2)2 +4p2(cosi/a)(cosj/fi) V '

The formula (D.3) and (D.4) for incident SV waves are valid only for j<jc where

jc=sin"1(p/a) is the critical angle for incident SV waves. When j > jc, the
reflected wave becomes inhomogeneous travelling along the free surface and

decaying in the vertical direction. The reflection coefficient Rsp becomes

complex. The reflected S wave does not decay with depth. However, Rss is

complex and its magnitude becomes unity for all angles j>jc. In formula (D.6)

and (D.7), Rps and Rss are evaluated as complex numbers treating cos i as

imaginary quantity given by iV(p2a2-1) where p=sin j/p is the ray parameter.
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The horizontal and vertical components of SV- displacement at the free

surface are also given by (D.8) and (D.9) with the difference that Rsp and Rss

must now be treated as complex quantities.

For incident SH waves the displacement are simply doubled to take into

account the free surface effect. The P, SV and SH wave displacements on

free surface are now given by

up = upH cos<j> ei + upH sine)) e2 + u£ e3 ... (D.10)

usv = usvH cos<|> e1 + u£ sine)) e2 + uf e3 ... (D.11)

uSH = -c sin<j> + c cos<|> ...(D.12)

where c is the amplitude of the SH wave in an infinite medium. The formula

given by equations (D.10) to (D.12) yield P, SV and SH wave displacements

on the surface of a half space due to a point shear dislocation with radiation

pattern of the source and free surface effect having been taken into account.

For a moving source the effect of rupture propagation has to be taken into

account. A rectangular fault of length L and width W is considered as shown

in Fig. D.2. The rupture initiates along the side AB of the fault and propagates

perpendicular to AB at the speed of rupture propagation vr.
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Receiver

P Focus S Focus

Fig. D.1 : Direct and reflected rays emanating from a buried
source and received at a buried receiver
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Fig. D.2 : Unilateral faulting on a rectangular fault plane
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Errata of the thesis

Chapter II

Page 23 : The epicentre of fifth earthquake is out of range from the figure on Page 23.
Corrected figure is attached herewith.

Page 27 : There is only one '+' sign before last variable in equation 2.6.
Page 28 : There is only one '+' sign before last variable in equation 2.8.

There is one extra ')' in equation 2.9.

Page 33 : There is '-' sign before last variable in place of'+' sign in equation 2.12.
Page 63 : Corrected Fig. 2.21(i-viii) is attached.
Page 64 : Corrected Fig. 2.21(ix-xvi) is attached.
Page 74 : Corrected Fig. 2.31 is attached.

Chapter III

Page 75 : The reference referred on the page is added as
Abrahamson N.A. and Bolt B.A. (1986),Array Analysis and Synthesis
Mapping of Strong Seismic Motion, Ch. 2 in Seismic Strong Motion
Synthetics, B.A. Bolt (Ed.), Academic Press, INC. (London), pp 55-88.

Page 79 : The denominator term in equation 3.8 should be

[(u)2-u)r2)+4n2cv2u)r2]1/2
Page 82 : "top later" should be "top layer" in the second paragraph of the page.
Page 87 : The reference referred on the page is added as

Stearns S.D. and David R.A., Signal Processing Algorithm, Published in
1988.

Chapter IV

Page 112 The word "do" is omitted from the fourth line of the second paragraph.
Page 176 At Y-axis the value is 30.40 in place of 40.40.
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Fig. 2.6: Locations ofthe five earthquakes and recording stations
of the northeast region

26



0.001

10 100

Distance (km)

1000

10 100 1000

Dlstanco (km)

. Rel 5

oi N. ♦

eration
o

\ *
g 0.01 N.

3
< >.

0.001 Nv,

(v)

10 100 1000

Distance (km)

10 100 1000

Distance (km)

0.01

0.001

10 100

Distance (km)

1000

10 100 1000

Dlstanco (km)

Rel 6

D)
♦

:eleration
o oP

^^^S
<

0.001

(vi)

10 .100

Distance (km)

.1000

0.001

10 100

Distance (km)

(viii)

1000

Fig. 2.21 (i-viii): Plot of the observed acceleration with distance for Northeast
earthquake of Jan. 1990 and the regression curves of the
empirical relations for Table 2.6
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earthquake ofJan.1990 and the regression curves ofthe
empirical relations for Table 2.6
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