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ABSTRACT

The microstrip antennas in recent years, are gaining wide
.publicity due to their numerous advantages. The vefsatility
of this class of antennas at microwave frequencies suggests
a potential usefulness at millimeter-wave frequencies. However,
it has become apparant that feed structures which operate quite
well at microwave frequencies are not viable with millimeter-
waves, sSince the losses become significant in microstrip lines
and co-axial feed components are not available above about
50 GHz. For this reason, a new feeding technique for patch
antenna, namely, 'waveguide feed', has been studied in this

dissertation.

In this work, a moment method analysis has been presented
for a microstrip patch antenna coupled to a waveguide via an
aperture in its ground plane. Equivalence theorenm, in
conjunction with the boundary conditions, has been used to set
up two coupled integro-differential equations. These are then
reduced to matrix form using the method of moments. Though
the analysis is quite general, in the sense thét no restrictions
have been imposed on the shape and size of the patch and the
aperture, analytical expressions have been derived for the
particular case of a rectangular patch fed by a rectangular

waveguide via a rectangular aperture in the ground plane.



(vii)

Based on the above analysis, a computer program has been
developed in FORTRAN, to analyse the structure. Numerical
results obtained from the program have been checked for the
convergence and compared with the published work for a number
of different problems. Some test data have also been presented

for a waveqguide fed microstrip patch antenna.

Some experimental investigations were also carried out
on the waveguide feed patch antenna which was constructed using
RT/Duroid 5880. Experimental results have been reported here
on the input characteristics, gain, and the radiation pattern
of this antenna. Further, the effect of using a slide screw
tuner for reducing the impedance mismatch and increasing the

size of the ground plane has also been studied.
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CHAPTER 1
INTRODUCTION

The concept of microwavg radiators was first proposed
by Deschamps [1] in 1953, but the first practical antennas were
developed only in the early 1970's by Howell [2] and Munson [3].
Since then, a considerable amount of research effort has been
directed towards exploiting the numerous advantages of this

class of antennas.

The microstrip antenna consists of a radiating patch on
one side of a dielectric substrate which has a ground plane
on the other side. The patch can have any shape but is
restricted to some geometrically regular patterns so that the
analysis 1is simplified. A source of current located on the
underside of the metallic patch antenna radiates an electro-
magnetic wave. Some of the waves are diffracted and go back
under the patch and store electromagnetic energy. Some radiate
out into space and contribute to the useful radiation pattern
of the antenna. Yet others, called the surface waves, remain
within the dielectric substrate and propagate along the two

dimensional air-dielectric interface [4].

Microstrip antennas are inherently narrow band devices
and have a low power handling capability. However, since they
are thin, light -~ weight, and conformable, they are very much

suitable for applications such as in satellites and avionics.



~In addition, this type of antennas can be mass produced using

photolithographic technique.

With the increasing popularity of microstrip antennas,
the need for accurate modelling is also growing. Apart from
accuracy, the models should be numerically efficient to suit

the Computer-Aided-Design procedure.

The earliest analytical model for the patch antenna, called
the transmission line model, was published by Munson [3]. He
modelled the patch as two radiating slots separated by a trans-
mission line (Fig. 1.1). Although this model has the advantage
of yielding very simple expressions for the radiation admittance,
it does not take into account the mutual coupling between the
main radiating slots and the influence of side slots on the
radiation admittance. Derneryd [5,6] modified the model to
account for the mutual coupling between the radiating slots.
However, he did not consider the effect of side slots. Pues
et al. [7] improvised the model to take into account all these

shortcomings.

The transmission line model gives very simple expressions
to analyse the behaviour of patch antennas and is very well
suited for rectangular patches. However, this model does not
take into account the effect of surface waves, diffraction at
the substrate and the ground plane edges, and contributions

due to higher order modes.

Lo et al. [8] developed an altogether different theory

to analyse the patch antennas. The region between the patch



and the ground plane is treated as a cavity bounded by a magnetic
wall all along the edge and electric walls above and below
(Fig. 1.2). This model assumes that the thickness of the
dielectric substrate is small. Therefore, the model fails to
predict accurate results when the thickness is large in com-
parison with the wavelength. Moreover, there is no convenient
way to include the effect of surface waves in this model.

Additionally, in both these models, length corrections are to

be incorporated to take into account the fringing fields.

The transmission 1line and the cavity models give good
results for thin and 1low dielectric constant substrates.
However, these models give relatively inaccurate results for
thick or high dielectric constant substrates which are used
in MMIC's. Moreover, since the effect of surface waves becomes
much more pronounced in thicker substrates with high values
of dielectric constant, it should be incorporated in the

analysis.

With the development of digital computers, a powerful
numerical tool has become available to electromagnetic engineers
in the form of method of moments. The moment method [9]
essentially utilises the exact Green's function for the grounded
dielectric slab and, thus, inherently takes into' account the
effect of surface wave excitation. In addition, this method
rigorously accounts for fringing fields and hence, no adhoc

length corrections are needed.



Another important area in which a lot of recent research
effort has been directed, 1is the development of feeding
techniques for microstrip antennas. This has resulted in a
number of feeding techniques, which can be classified into three
categories as:

* Direct contact feeds

* Proximity coupled feeds

* Aperture coupled feeds

The earliest and simplest of all these feeds are the direct
contact feeds, which include the microstripline feed and the
co-axial line feed. In microstripline feed, the microstripline
is etched along with thé patch on the same substrate. It may
touch the patch along the radiating or the non-radiating edge
(Fig. 1.3). To obtain a proper impedance match between the
feed and the patch, a matching network is also etched on the
same substrate between the line and the patch. Alternatively,
an impedance match can be provided by connecting the feednline
at a suitable point along the radiating edge. The drawbacks
of this feed system are that, the feed line also radiates along
with the antenna causing degradation of the radiation pattern
and the feed structure occupies a large area on the antenna

substrate.

The use of a matching transformer and unwanted radiations
from the feed line can be avoided by using the co-axial feed.
In this case, the inner conductor of the co-axial probe is

connected to the patch through the substrate and the outer



conductor 1is connected to the ground plane (Fig. 1.4). The
impedance matching can be obtained by adjusting the position

of the feed point.

In case of proximity coupled feeds [10,11], the antenna
element is electromagnetically coupled by close proximity to
a microstripline. The antenna element may be in the same plane
as the feed 1line (Fig. 1.5(a)) or printed on a superétrate
(Fig. 1.5(b)). Tighter coupling can be obtained in the latter
case by having the antenna element overlap the feed line. The
amount of power coupled to a proximity coupled element can be
easily controlled by the spacing between the element and the

microstripline.

Pozar [12,13,14] suggested the aperture coupled feeds
for the microstrip patch antennas. Here the microstrip antenna
is proximity coupled to a small aperture in the ground plane
which is coupled to a microstripline (Fig. 1.6). This type
of feed arrangement is well suited for monolithic applications
since one substrate can be of low permittivity, suitable for
printed antenna purposes,‘while the other substrate can be of
higher dielectric constant for active <circuit fabrication.
The ground plane reduces the spurious coupling from feed to
the antenna element and the spurious radiation due to feed

circuitry in the front halfspace.

The versatility of the microstrip patch antenna suggests
its potential usefulness at millimeter wave (mm-wave) frequen-

cies. However, the feed structures that operate very well at



microwave frequencies are not viable with mm-waves. At mm-wave
frequencies, losses become significant in microstripline and
co-axial feed components are not available above 50 GHz. The
feed line losses can be very significant when one is dealing
with an array antenna with its associated complex feed circuitry.
It is, therefore, necessary to consider a low loss transmission
medium, such as a waveguide, as a feed for microstrip antennas.
Some - preliminary investigationsf mainly experimental, were
carried out by Greenlee et al. [15] on such a feed system.

Their results indicate that an iris-coupled waveguide feed is
worthy of consideration, especially for mm-wave microstrip
antennas. However, they could not achieve a good impedance
match until the iris size was made equal to the waveguide
dimension. Since the performance of such an antenna depends
upoﬁ the waveguide-iris and the iris—patch interactions, which
can be rather complex, it is felt that more investigations are
required before any firm conclusion can be drawn. Further,
since a purely experimental investigation would be too costly,
time consuming, and prone to tolerance induced errors, an attempt
should be made to develop a suitable theoretical model for this

type of feed.

1.1 statement of the Problem
The problem treated in thié dissertation is divided into
two parts as follows:
(a) Analysis of a rectangular microstrip patch antenna coupled
to a rectangular waveguide via an aperture in its ground

plane using the method of moments.



(b) Experimental investigations on the proposed antenna.

1.2 Organisation of the Dissertation

The work embodied in this dissertation has been arranged
.in five chapters. In Chapter 2, a moment method formulation
is presented for analysing the problem of a waveguide fed patch
antenna. Explicit formulae have been derived for various
matrices and vectors for the particular case of a rectangular
patch coupled to a rectangular waveguide via a rectangular
aperture in the ground plane. The evaluation of input impedance
and the input reflection coefficient are also included in this
chapter. The far-field pattern has been computed for the
particular case of air-dielectric patch antenna. In Chapter 3,
the computer program is discussed and the numerical results
obtained from it are presented. In Chapter 4, results of the
experimentai study conducted on the patch antenna have been
presented. Finally, Chapter 5 concludes the dissertation
discussing éhe successes and failures of this work and suggesting

some problems for future work.

Also included are two appendices which contain the

procedure followed to solve some of the integrals.
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CHAPTER 2

PROBLEM FORMULATION

In this chapter, a general formulation is presented for
the analysis of a microstrip patch antenna coupled to a
rectangular waveguide via an aperture in its ground plane.
The equivalence principle, in conjunction with the appropriate
boundary conditions, is wutilised to describe the problem in
terms of a pair of coupled integro-differential equations, which
are reduced to a set of algebraic equations using the method
of moments. These can be solved using a digital computer,
yielding magnetic and electric currents on the aperture and
the patch respectively. Once the unknown currents are
determined, antenna characteristics <can be computed wusing

standard techniques.

The general formulation of the boundary value problem
and its reduction into matrix form is presented in Section 2.1.
Using the piecewise sinusoidal expansion and testing functions,
defined in Section 2.2, various matrices and excitation vector
are determined in Sections 2.3 through 2.5. The Section 2.6
describes the calculation of input impedance and input reflection
coefficient. In Section 2.7 radiated power is calculated along

with the .radiation pattern.
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2.1 Formulation

Figs. 2.1 and 2.2 illustrate the geometry of the problem,
the coordinate system, and various parameters used. A perfectly

conducting and infinitely thin patch with its centre at (x_. _,y_..)

cp “cp

and having dimensions Lp X wp is placed on the top of a

infinitely large grounded dielectric slab having a thickness

d and dielectric constant €. The patch 1is excited via a

rectangular opening in the ground plane of zero thickness having

dimensions L x W with its centre at (x ,y ). This structure
ap ap c -c

is excited by a rectangular waveguide of dimensions a x b, whose

axis coincides with the z axis.

The problem can be separated into two distinct regions
by the application of equivalence theorem. The aperture is
covered by a perfectly conducting screen and equivalent magnetic
currents ﬁs and —ﬁs are placed on either side of it (Fig. 2.3).
This ensures the continuity of the electric field across the
aperture. The equivalent surface magnetic current is given

by

Es= Z x E (2.1)

where E is the aperture electric field of the original problem.
Similarly the patch is replaced by an equivalent electric current

Jp' given by

J =Hxz | (2.2)
P

where Z represents the unit vector in the positive direction
of the z-axis and H is the patch magnetic field of the original

problem.
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The application of the equivalence theorem has decoupled
the problem into two distinct regions, namely, region 'a’ and
region 'b'. Region ‘a‘' is a semi-infinite waveguide in which
the total field is produced by the impressed sources and the
equivalent magnetic current ﬁs. Region 'b*' is a halfspace with
an infinitely large grounded dielectric slab of thickness d.
The total field in region 'b' is due to the equivalent magnetic
current ;ﬁs on the surface S and the equivalent electric current

Ep on the patch.

The total tangential magnetic field on S in region ‘a',

ﬁi is given by
—a _ wsc |, [a(y
Ht Ht + Ht(Ms) over S (2.3)

where ﬁic is the tangential component of the magnetic field
of the original problem and ﬁi(ﬁs) is the tangential magnetic

field produced by the equivalent magnetic current ﬁ; over S.

In region 'b' the total tangential magnetic field over S, ﬁ?

is given by

=b _ #b7 =b
H Ht(Jp) + H(

¢ -M ) over S (2.4)

t s

where ﬁ:(jp) and ﬁ:(—ﬁs) are the tangential components of mag-
netic field due to the electric current Eb on the patch and

the magnetic current —Ms over S. The component of electric

field tangential to the patch, Es is given by

" ob _ zbs =
= 2.5
Ey Et(Jp) + B¢ Ms) over patch ( )

where EE(EP) and EE(—ES) are the tangential (to patch) components
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of electric fields due to electric current Ep on the patch and
the magnetic current —ﬁs on the surface 8. Using the linearity

of the operators ﬁt and E., (2.4) and (2.5) can be written as

t

b _ zb,;=  _ wbx¥

He = Ht(Jp) Ht(Ms) (2.6)
b _ b = =b =

E, = Et(Jp) - Et(Ms) (2.7)

Enforcing the boundary condition that the tangential component

of H is continuous across the aperture, we obtain from (2.4)

and (2.6)

) = H

=b, = _ sbw v _ 5w over S (2.8)
Ht(Jp) Ht(MS) Ht(MS t .

on enforcing the other boundary condition, that is, the tangen-
tial component of electric field vanishes on the patch, we get,

from (2.7)

—b & b=y _
Et(Ms) - Et(Jp) =0 | over patch (2.9)

It is worth noting at this juncture that all these fields are
to be evaluated with the aperture closed by a perfectly conduct-
ing screen. Equations (2.8) and (2.9) are a pair of coupled
integro-differential equations, which are to be solved for the
unknown currents Eé and 3;. An approximate solution for (2.8)

and (2.9) can be obtained by the method of moments.

In the method of moments, the currents ﬁs and Up are
expressed as a set of known expansion functions with some unknown
complex coefficients. Let two sets of expansion functions

{Enl n = 1'2""'Nl} and {ﬁj' j = 1,2,...,N2} be defined over
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the patch and the surface S, respectively, such that

Ny
J = £ 1 3J (2.10)
p n=1 n n
L
M = I V.M (2.11)
S 4oy 103

where En and ﬁj are the known vector basis functions and I
and Vj are the unknown complex coefficients to be determined.
Substituting (2.10) and (2.11) in (2.8) and (2.9) and using

the linearity of the operators, we get

=b, = b= wa T _ msc
r Ir1 Ht(Jn) - Z Vj Ht(Mj) - Z Vj »t(Mj) = Ht
n : J J
over S (2.12)
IV, EX(M.) - LI EXT) =0 over patch (2.13)
3 j ot ] n D t''n

Define an inner product for this problem as

“Ar1B>5(6r patch) éf A.B ds (2.14)
(or patch)

Let us now define two sets of testing functions {ﬁm, m=1,2,..,Nl}
and {Wi, i=l,2,..,N2} over the patch and the surface S respec-
tively. Taking the inner product of Wi with (2.12) and ﬁm with
(2.13), we get

P 1<, BT )> - LV, <A, ,E(W.)>

n P it 'n 3 j 1t )

— —a,= _ .5 @sc
- § Vj <Wi, Ht(Mj)> (Wi’Ht >

over S (2.15)



The equations

n

t

-3 1_ <0 ,E(
n m

(2.15)

and

]

(2.16)

J)>+ L V., <U
n .3 m

_b — _
IEt(Mj)> - O

over patch

can be written

in the

notation by defining the following matrices and vector.

(i)

(iii)

(iv)

(v)

(vi)

(vii)

An admittance matrix for region 'a‘’

[v?]

_ = ma
= [—<wi,Ht(Mj)>]N

2

X

N

2

An admittance matrix for region 'b'

b, _ S
[Y"] = [—<Wi,Ht(Mj)>]N

2

x N

2

A matrix due to coupling from patch to surface S

b, _ . = =b,=
[T°] = [<W, BD(T )>]

N

2

X

N

1

A matrix due to coupling from surface S to patch

b _
(€] = [<T_

An impedance matrix for the patch

b — —b,=
(2°] = [-<0,/Ep(T)>]

An excitation vector

(1Y) = (<A,

’

=S¢
Ht

>]

N

2

X

N

1

1

The coefficient vectors

(11 = (1.1,

1

X

1

X

N

1

16

(2.16)

matrix

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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(V] = ) (2.24)
2

Combining the two vectors (2.23) and (2.24)

. [1)
[VT] = [+] (2.25)
v
(N1+N2) x 1

Using the definitions (2.17) through (2.25) the equations (2.15)

and (2.16) may be written in matrix notation as

L0 I LAY [1] (1)
= ' (2.26)
(z°]  [cP] [V] 0
which is of the form
(Y1[V,) = () (2.27)
where
N (%)
[I] = (2.28)
0
(N1+N2) x 1
The solution of (2.27) is
(V) = [¥17Hd] (2.29)

It may be emphasized here that the formulation presented so
far is completely general and can be applied to aperture and
patch of arbitrary shape and size. However, larger the size

of the aperture and patch, more will be the requirements of



18

computer storage and run time, which places a practical

limitation on the size of the problem which can be solved.

2.2 Choice of Expansion and Testing Functions

For the solution of the problem under consideration, we
have chosen the same function for both expansion as well as
testing. This is known as "Galerkins procedure". Use of
Galerkins procedure reduces the computational efforts to a

considerable extent.

The rectangular aperture of dimensions Lap x Wap is
subdivided into a number of rectangular subareas of length Ax
in the x direction and Ay in the y direction. The set M. of
magnetic current expansion functions is further split into a
set of x-directed currents, ﬁ§ and a set of y-directed currents,
ﬁg. When the aperture is very narrow compared to the waveguide
dimensions, y-directed currents can be heglected. Hence,
assuming a narrow aperture, only x-directed magnetic current

expansion functions are considered over the aperture in the

present problem. These currents are defined as
=X _ =X PN St S
3 Ms+(t—-1)(Lx—l) *Myo=x Sglx-x.* Lap/z)

s
t

1,2,...,(L

l]2]-voILY

x~1) (2.30)

LI

) ST
Pt(y y.* Wap/Z)

where Lx and LY are, respectively, the number of subsections

X

along the x and y directions. S

and P{ are, respectively,

the piecewise sinusoidal and pulse functions, defined as
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x [ sin kap[Ax—ix+xl—sAx|]
Ss(x—xl) = Sin K Fx : xl+(s—1)Ax < x <
ap
x1+(s+1)Ax
(2.31)
| 0 : elsewhere
PY(Y"Y ) =["1/Ay i vy, +(t-1)Ay<y<y. +tAy
t 1 1 1
(2.32)
L O : elsewhere
where
X, = xc - Lap/2
(2.33)

Y1 7 ¥~ Wap/2

Similarly, the rectangulgr patch of 1length Lp and width
Wp along x and y directions, respectively, is subdivided into
pr subsections of length Axp along x and LY subsections of
length Ayp along y. The equivalent electric current En is split
into two components namely, Eﬁ along x direction and EZ along
y direction. For the present case, the x-directed currents,
Eﬁ on the patch will have negligibly small amplitudes as compared
with y-directed currents, Ez [16]. Thus, for the present ana-
lysis, only y-directed currents on the patch are considered.
These currents are defined as
=9 Jz =¥ J§+(t—l)L -
Xp
s=1,2,..,L

+ wp/z) P:(x—xcp+L /2) XP (2.34)

A QY
y S{(y-y
t cp P t=1,2,..,(Lyp-l)

where SZ and Pz are given by
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[ sin k [Ay -]y~ -
v _[s ol Y, |y Y1p tAypll _
Se(y-y, ) _ - ;
Sln(ke yp)
ylp+(t—l)Ay <y < ylp+(t+1)Ayp (2.35)
0 ; elsewhere
PX(x-x, ) = [[1/4x :
S lp ’
x, +(8-1)Ax < x < sAx +x 2.36
ppt(ST1)Ax < x < sAx +x (2.36)
O : elsewhere
with
= X - L /2
*1p cp p/
(2.37)
Y1p = Yep ~ Wp/2

The parameter, ke is called the effective propagation constant

and is given by

x =/ % (2.38)
e re [o]
e +1 e -1 -1/2
_ r 104
€ e = () + ()1 + =) | (2.39)
k = wu e (2.40)
(o) O O

The parameter, kap is given by

kap = (ko + ke)/2 (2.41)

where Gr is the relative dielectric constant of the dielectric

slab.
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2.3 Evaluation of [Ya]

From (2.17) an element of admittance matrix for the wave-

guide region, [Ya] is given by

a _ %  waw
Yij = < Mi, Ht(Mj)>

The magnetic field due to ﬁj' H Mj), can be expressed in terms

t

of the electric vector potential, Fj as

Ei(fij) = —jwfj + vv.Fj/(jwuoeo) (2.42)
with
Fj = e éf §m(r|r').Mj(r')ds' (2.43)

where r and r', respectively, denote the position vectors of
the field and the source points and am(flE') is the dyadic
Green's function corresponding to the electric vector potential

for the waveguide region and is given by [17]

g(FIE") = & T {ee /(abl )} {[RR(s8) (cC)
mn=0 n=0
+ §§(CC)X(SS)Y]p(m,n)
+ ﬁﬁ(cc)x(cc)y g(m,n)} (2.44)
B -T2
e Cosh(Pmnz ) z > z
p(m,n) = (2.45)
-T 2!
h_e mn cOsh(anz) z < 2!
u ;Pmnz
: ] ]
e Slnh(anz ) z > 2
q(m,n) = (2.46)
-r =z
e ™0 Sinh(T z) z < z!
L mn
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where
rin = (m1/a)% + (n71/b)% - ki (2.47)
(ss), = sinl(mn/a)(x+a/2)] Sin[(mn/a)(x'+a/2)] (2.48)
(CC)y = Cos[(n7n/b)(y+b/2)] cos[(nn/b)(y'+b/2)] (2.49)

and em, Gn are the Newman's numbers, defined as
1 for i=20 '
ei = (2.50)
2 for i>0

Since ﬁj has only x-directed components, the admittance matrix

[Ya] may be written as

[¥®1 = (v¥*%) (2.51)

The electric vector potential Fj may be obtained by substituting

(2.30) and (2.44) in (2.43) as (see Appendix A)

Fj = % e, mfo nfo(emen/(abrmn)) Sin[(mn/a) (x+a/2))
Cos[(nn/b)(y+b/2)]{FACT(s,t)} (2.52)
4 x k
FACT(s,t) = ap {Cos[(nm/b) (y,+t dy)

sin(kapr){kip—(mn/a)z}

-nﬂAY/(Zb)+(nﬂ/2)]}{Sin[(kap+(mﬂ/a))(AX/2)]}

. _ Sin(nwAy/(2b))
{sinl(k, - (mn/a)) (ax/2) ) HE o =]

{Sin[(mn/a)(xl+sAx)+(mn/2)]} © (2.53)

Taking the gradient of the divergence of the vector potential

function, we obtain (noting that Fj has only x component)
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_ ST b S
V(V.Fj) = X -——laxz + YA ‘5‘;5% + Z m% (2.54)

Substituting (2.54) in (2.42) and simplifying, we get

2_Xx 2_X
°F 9 F.,
—a ;= - Sr_= X 1 ) j A 1 1
Ht(Mj) x JOF S # j‘”“oeo(ax2 )1+Y[jw“oeo(axsy)]
1 32p¥
2( 1)1 (2.55)

(2.56)

Substituting (2.30), (2.52) and (2.56) in (2.17) and simplifying,

we get

ya*¥* - 3 Z(Gmen/(abrmn)){jweo+(1/jwuo)(mﬂ/a)2}

ij mn
{FacT(s,t) }{FACT(p,q)} (2.57)

In equation (2.57)

p=1/2’../Lx“l
p+(q-1)(L_-1) (2.58)

q=112[..[Ly

.
i

S=l/21--[L -1
s+(t-1)(L_-1) X (2.59)

t=112/../LY

.
)

FACT(psq) is given by (2.53) with s and t replaced by p and

g respectively.
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2.4 Evaluation of [Yb], [Tb], [Cb] and [Zb]

In this section, expressions have been derived for the

evaluation of [Yb], [Tb], [Cb] and [zb

]. For the evaluation
of these matrices, the fields due to a given current in the
presence of a grounded dielectric slab are required. The fields
can be obtained by convolving the given expansion function
against the appropriate Green's function. The required Green's
functions are the vy-directed electric field and x-directed
magnetic field due to a y-directed infinitesimal electric dipole
at (xo,yo,d) and the same field components due to an x-directed

infinitesimal magnetic dipole at (xo,yo,o) for the grounded

dielectric slab, where the ground plane and dielectric to air

interface are located at z = 0 and z = d respectively. These
Green's functions are obtained in the spectral domain. In
principle, the term, 'Spectral Domain Approach' refers to the’

application of integral transforms, such as Fourier transforms,
to the solution of boundary value and initial value

problems [18].

2.4.1 Grounded Slab Green's Functions [19]

The Green's functions due to vy-directed infinitesimal

electric dipole at (xo,yo,d) are:
(1) the y-directed electric field at z = 4

0

Cogyy(X1¥8lx iy 1d) = [[o

_o mayy(Kxrky)

y

jk (x-x )+3ik (y~-y )
e X ° Y °© dk, dk (2.60)
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2 .2 1.2 42 .
L Zo (erko_ky)kZCOS(kld)+J(ko—#y)leln(kld)
QEJ (k Ik ) = =] 2 T
Yy x .y 417k Te m
(o}

X
Sin(kld) | (2.61)

(2) the x-directed magnetic field at z = 0

o0
GHny(x,y,O|xo,yo,d) - _if QHny(kx'kY)

jkx(x—xo)+jky(y—yo)

e dk_ dk (2.62)
X y

(2 23
o ASrklk2Cos(kld)+j{ky(er—l)-kl}Sln(kld)
QHny(kx'ky) ) T T

aT e m

(2.63)

The Green's functions due to x-directed infinitesimal magnetic dipole at

(xo,yo,o) are:

(1) the x-directed magnetic field at z = 0

e o]
GHMxx(x'Y'olxo'yolo) B dif QHMxx(kX'kY)

jk_(x-x )+ik (y-y )
e X ©O 7Y odkxdky (2.64)

) 1
Q (k_/k ) = - ]
HMxx x 'y 4ﬂ2koZo kl Te T

L 2,2 2 .2
[3kCK7 (€ ~1)+(6 k°-k0) x

. . 2.2
{klkz(er+1)81n(kld)Cos(kld)+j(erkzsln (kld)

—kaosz(kld))}] (2.65)



(2) the y-directed electric field at z = 4

(x,y/d|x_ .1y _,0) = ff Q k)

GEMyx EMyx x Y

jk_(x-x )+ijk_(y-y )
e X © y ° 4k dkx
x Y

EMyx(k ! y) - Hny(kx' y)

In the equations (2.60) - (2.67)

2.4.

2

= Re(k,) > O
kl=Je x2_p2 1
ro Im(k,) <0
o [Ee e 2
2 ° Im(k,.) < O
2 —_
Te = leos(kld) + jk281n(kld)
Tm = GrkZCos(kld) + jk181n(kld)
)
ko = W uoeo
2 .2 2
B = kx + Kk
_zo - uo/eo

Evaluation of [Yb]

From (2.18) an element of the matrix [Yb] is given by

— _<r wbyw
yij = <Mi,Ht(Mj)>‘
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(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)
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The magnetic field due to Mj can be obtained by convolving the

corresponding Green's function, eq.(2.64) with Mj as

[0}
._b_ _ oA X
Ht(Mj) =2/ Mj(xo'yo) I QHMxx(kx'ky)
Y, X -
o ‘o
ik (x-x_)+jk_(y-y )
e X ° Y °© gk dk_ dx_ dy (2.75)
x 'y o Yo
Taking inner product of Mi with EE(Ej)' we get
b X X 2
Yig = - D IwiGany T T i iy ) S ogy (ki)
Yy X y. ¥ —-®©
o "o
jk_(x-x )+3k_(y-y_)
X o Y o)
e dkx dky dxo dyo dx dy (2.76)

This six fold integral can be converted into a double integral

by writing
b < X X
= - *
Y54 “if QHMxx(kx,ky) F* (M7 (x,y)) F(Mj(xo,yo)) dk, dk_
(2.77)
where
X _
Fx (M (x,y)) = fo(kx,ky)
My

jk_x+jk vy
=[] M?(x,y) e X Y ax ay (2.78)
Y X
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Ii
o]

. .
F(Mj(xoryo)) (kx/ky)

“Ik X omIk Y,

Y
dxO dyo (2.79)

X
Yo %o

are the complex conjugate of Fourier transform of Mz(x,y) and
Fourier transform of Mg(xo,yo) to be evaluated analytically.
Equations (2.78) and (2.79) can be separated into kx dependent

and ky dependent functions as

F* (k ,k ) = F* (k) F* (k) (2.80)
M* * Y M* X ¥y

1l 1 1
F (k /k)=F (k) F _(k) (2.81)
M X Y N (R

j 3 3

The double integral over kx and ky in (2.77) can be transformed

into polar coordinates by writing
kx = BCosa (2.82)

ky = BSina (2.83)

Therefore, equation (2.77) can be written as

2T ol
b _
Yij C a:é B:g QHMxx(kx'ky)[Fag(kx) Fmg(kx)]
k k de d 2.84
[F;¥( y) FM¥( y)] B 4B da ( )
1 J

These Fourier transforms can be obtained by direct integration

of (2.78) and (2.79) as (see Appendix B)
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2 ka Cos(kXAx) jkx(x1+pr)
Bx (k) = =25 [Cot i, 0%) - sty ) @
M k_-k ap
X ap (2.85)
2 ka Cos(kxAx) -jkx(xl+sAx)
Foolhg) = 35 [ootle a0 = gy @
M. k_ -k ap
J X ap (2.86)

Sin(kyAy/Z) jky(yl+(q—%)Ay)

F* (k ) = e (2.87)
" (kyAi72)
Sin(kyAy/z) —jky(yl+(t—%)Ay)
FMx(ky) = % Ry72) e (2.88)
4 y

Using (2.65), (2.82), (2.83), and (2.85) through (2.88), the

equation (2.84) can be written as

b 21 e
Yij = - d=g B;g QHMXX(GIB){FI(GIB)}
ejBAx(p—s)Cosa + jBAy(q—t)SinaB ag da (2.89)
where
-5 1 . 2.2
0 (a,B) = J [§(BCosa) k(e _-1)
HMxx 4n2k 7 k1 Te Tm 1'7r
o O
+ (erki—(BCosa)z){klkz(er+l)Sin(kld)Cos(kld)
+ j(erkgsinz(kld)—kiCosz(kld))}] (2.90)
) - 4 kaE {C t(k Ax) _ COS(BAXCOSQ)}
F1(a,8) = (k2~k2 ) ot %, sin(k_ Ax)
X ap P
BAySina, 12
Sin(———) .
2"} (2.91)
(BAzSina)

2
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We note from (2.90) and (2.91) that QHMxx(a,B) and Fl(a,B) are

even functions of «a. Substituting 0 = ¢-1 in (2.89), we get
b " "
vo.=- [ [ o (0,8) }HF1(0,8) }[{Cos[B(p-s)AxCos0] x
1] B=0 O=-T HMx x

Cos[B(g-t)AySin®] - Sin[B(p-s)AxCosBO] x
Sin[B(g-t)AysSin@]l} + j{sin[B(p-s)AxCosO] x
Cos[B(g-t)AySin®] + Cos[B(p-s)AxCosO] x

Sin[B(g-t)Aysin©]}] B 40 4B (2.92)

Using the even and odd property of the integrand, (2.92) reduces

to

oo

.
Y?j = -2 B=£ e=£{QHMxx(@,B)}{Fl(@,B)}{Cos[B(p—s)AxCosO] x

Cos[B(g-t)Aysin@] + jSin[B(p-s)8xCosO] x

Cos[B(g-t)Aysin@]} B 46 4R (2.93)
Equation (2.93) may be written as

/2 o
f( ypaodas -2 |
0=0 B=0

2

T /
J ( ) B de as
0

¥, =2
1 B=0

(2.94)

Substituting © = a@ in the first integral and © = a+m in the

second integral of (2.94) and simplifying, we get

b © 7/2
Yiy = -4 B=£ a=£ {0 yy (@B HEFL(0,B)}

{cos[B(p-s)AxCos@] Cos[B(g-t)sSin@]} B da 4B (2.95)

which can be written as
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2
QHMXX(kX Iky) [zk—z—-—k-z—)-{kapcot(kapbx)
X ap
k_ Co k Ax Sin(k Ay/2
ap s ) ( v y/2)

2
Sin(k apAX) H (k,8y72) }] x Cos{k (p-s)Ax} x

Cos{ky(q—t)AY} B da dB (2.96)

In equation (2.96)

p=l,2,..,Lx—l
p+(qg-1) (L _-1) ' (2.97)
q=1/2[..[L

e
I

S=l/21..’Lx“l
s+(t—l)(Lx—l) (2.98)
t=1[2,../L ' )

.
]

2.4.3 Evaluation of [Tb]

From (2.19) an element of the matrix [Tb] is given by

Following the procedure of section (2.4.2) and using the Green's

function given by (2.62), we get

© 7/
b 2
T, =4 k +k )[——=——=—1{k__Cot(k_ Ax
in B:g a:g QHJXY( x' y)[(kz—kz ) @P ap )
X ap
kapCos(kxAx) 2
Sin(k__A4x) }ox 2 .2 {keCOt(keAyp)
ap (k> -k7)
y e
k Sln(k Ax /2)

“IHTE‘K§"T Cos(k AY YH = [ (k,, Ax /2) b

Sin(kyAy/2)
(kyAY/2)

- - -1
] x Cos{kx(xl xlp)+kxAxp kxAxp(s )} x

Cos{k - +k A ~X)-kx Ay t} B da aB (2.99)
os y(yl ylp) v y(g-%) ¢2¥p
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In (2.99)

p=l,2,..,Lx—l

i = p+(g-1)(L,-1) (2.100)
q=l[2[..,Ly
S=l[2,.-;Lx
n = s+(t-1)(L ) P (2.101)
p t=l/2[-o/L —1
yp

2.4.4 Evaluation of [Cb]

From (2.20) an element of the matrix [Cb] is given by

b _ 5 =b
ij = <Jm'Et(Mj)>

Following the procedure of section (2.4.2) and using the Green's

function given by (2.66), we get

b. = 4 ﬁf2 ? Q (k sk )[———z————{k Cot(k__Ax)
mij 4=0 B=0 EMyx x' 'y (k2—k2 ) ap ap
X ap
kaPCOS(kxAX)} « —2 _{x cot(k_ay )
Sln(kapr) (k2-k2) e e 'p
y e
ke . Sin(kxAxp/2)
- §TﬁT§;K§;T os(kyAyp)}] x | (kxAxp72) ] x
Sin(kyAY/Z)

(kyEy/z) ] x [Cos{kx(xlp—xl)+kxAxp(u—%)—skxAx}] X

[Cos{ky(ylp-yl)—kyAy(t-%)+vkyAyp}] B dB da (2.102)

In (2.102)

u=l,2,..,pr
u+(v-l)(Lx ) (2.103)
p V=1,2:.-;L -1
yp

S=112’.';Lx-l

3
1]

.
1}

s+(t—1)(Lx—l) (2.104)

t=l[2'..[Ly
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2.4.5 Evaluation of [Zb]

From (2.21) an element of the matrix [Zb] is given by

b = b=
= < >
4o Jm'Et(Jn)

Following the procedure of section (2.4.2) and using the Green's

function given by (2.60), we get

b 7T ( 2__{ ( )
Z = - 4 Q k ;k )| ——=——{k Cot(k Ay
mn 0=0 B=0 EJyy "x'y (k2—k2) e e 'p
y e
kCos(k Ay )  sin(k Ax_/2) 2
. H } x Cosl[k (u-s)Ax ] x
Sln(keAyp) (kxAxp/2) X p
Cos[ky(vft)Ayp] B dB da (2.105)
In (2.105)
u=l,2,..,L
m = ut(v-1)(L_) Xp (2.106)
p V=l[21..,L -l
yp
s=l,2,..,L
n = s+(t—1)(pr) Xp (2.107)

t=l[2,..lLyp—l

os
2.5 Evaluation of Excitation Vector It

From (2.22) an element of the excitation vector is given

i = =5C

= < >
Ii Mi,Ht

The magnetic field of the original problem, tangential to S,

ESC

N is given by

=SC —inc —ref
= .108
HY He o+ HY (2 )
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where Eénc and Hzef are, respectively, the incident and reflected

magnetic fields tangential to S. Since the screen is a perfect

conductor, ﬁief = ﬁénc and (2.108) reduces to
=sC _ =inc :
Ht = 2 Ht (2.109)

Substituting (2.109) in (2.22) we get
inc>

i -
I.l = 2 <Mi'Ht (2.110)

For TEmn mode incidence, the tangential magnetic field on S

is given by [11]

. -T_ =z
H" =y e ™ 2 x3g (2.111)
t mn mn
where Ymn’ rmn and e, ares respectively, the characteristic

admittance, the propagation constant and the normalized modal

vector for the incident mode, and are given by

- [abemen/{(mb)2+(na)2}]% x [£(n/b)Cos{(mn/a)(x+a/2)} x

mn
sin{(nm/b) (y+b/2)} - §(m/a)Sin{(mn/a) (x+a/2)} x
Cos{(nm/b) (y+b/2)}] T-01/24""* min # 0 (2.112)
Ymn = —jrmn/(zoko) (2.113)

r is given by (2.47)
z is given by (2.72)

k is given by (2.74)

From (2.110) and (2.111) an element of the excitation vector

can be written as
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i . — -
I,=2Y £J M,.(2 x e ) ds (2.114)

Substituting (2.30) and (2.112) in (2.114) and simplifying,

we get

Ii = 2 Ymn Aimn (2.115)

where

Ao, = labe e /{(mb)2+(na)?}1/2

imn (m/a){FACT(p,q)} (2.116)

FACT(p,q) is given by (2.53) with s and t replaced by p and g

respectively.

In (2.115) and (2.116)
p=l,2,..;Lx'l

i = p+(g-1)(L,-1) (2.117)
q=1/2[../Ly

2.6 Evaluation of Input Characteristics

In this section, expressions for the calculation of input
characteristics like standing wave ratio,reflection coefficient
and  ’impedance are derived. First the reflection coefficient
is obtained in terms of complex amplitudes' of the current on
the aperture. Once the reflection coefficient is determined,

the other parameters can be obtained without any difficulty.

For the calculation of the reflection coefficient, let
2 = 0 be the reference plane. The reflection coefficient is

given by

r = v (2.118)

where vV and V- are the amplitudes of the incoming and outgoing
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waves at the reference plane. Assuming the energy is incident
in TElO mode, the total electric field transverse to the direc-

tion of propagation (z axis) in region ‘'a' is given by

=a _ =inc =ref = =
Et Et + Et + Et(Ms) (2.119) .
where Eénc and -Ezef are the transverse (to the direction of

propagation) components of the incident and reflected fields

and Et(ﬁs) is the transverse field produced by"ﬁs at z = 0.

The expressions for the above fields may be written as

=inc _I;Z -a

E, = e ° (2.120)

sref I‘oz -a

Et = -e e, (2.121)

N

ES(M_ ) = 22 v, EZ(M,) (2.122)

t s i=1 it 1
with

B2(H) - a, O & (2.123)

£t i io o

where the subscript 'o' denotes the dominant mode, Ei is the
normalized modal vector and Aio are the modal amplitudes given
by (2.112) and (2.116) with m =1 and n = 0, respectively.

At the interface (2.120) through (2.123) reduce to

—=inc _ -a
B, = e (2.124)
Eief = -8 (2.125)
N
EX(M ) = 22 v. E3(M.) (2.126)
t'''s - i Tt :
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with

ES3(M.) = A, e&°

a
t 1 10 o© (2'127)

Now, the amplitudes of the incoming and outgoing waves at the

interface can be written as

V = e (2.128)

N
V =-e + I V, A e (2.129)

From (2.118), (2.128) and (2.129) we obtain the value of the

input reflection coefficient as

N
r = -1+ I V, A, (2.130)

= 14T
in = 1-TF (2.131)
whereas, the voltage standing wave ratio, VSWR is
1+|T|
VSWR = ' (2.132)
1-| 1]

2.7 Far Field Calculations

The far field computation in this work has been carried
out with a view to verify the present theory by comparison with
previously published works. Since these include the radiation
from a waveguide aperture into free space with (or without) a
rectangular plate in its near field, we have considered only

the particular case of air-dielectric patch antenna.
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Fig. 2.4 shows the geometry for the measurement of a compo-
nent E_ of electric field at a point }m in the region z > O.
This measurement may be carried out by placing an electric dipole
ITmG(E—Em) at ;m and applying the reciprocity theorem to its
field and to the original field. The two sets of sources here
are the dipole at Em and the electric current Ep on the patch
and magnetic current ﬁs on the surface S, radiating in the
presence of a continuous ground plane at z = 0. On application

of image theory the ground plane can be removed and the two

sets of sources become

1. electric dipole at ;m
2. the magnetic current —Zﬁs over S, electric current EP
over the patch and the electric current -Sb over the

image of the patch.

Using the reciprocity theorem, the component of electric
field in the direction of ITm at ;m due to the second set of

sources may be written as [20]

I1E =2 [[¥ .B™ as + [ 3 .8" as - [ T .EM™ ds
m m S S patch p 1 Image of 2
patch
(2.133)

where ET and E; are respectively, the electric fields at patch
and its image due to the dipole at ;m while Em denotes the compo-
nent of f%‘ in the direction of dipole. Since the patch is

parallel to XY plane (2.133) reduces to
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- = M = Zm_=m
11 E_ 2] M .H ds + [/ 3 -(E{-E,) ds (2.134)
S patch

Substituting (2.10) and (2.11) in (2.134) we obtain

— = =m =m
11 E = II [ J - (E]-E,)) 8s
n patch
+253v, [[M,.8" as (2.135)
5 15 3

Since the scalar products in the integrands of (2.135) would

involve only the tangential component of fields, we can write

_ = (M _=m v
11_E_ = i 1 <T (E],-ED )> + 2 § v, <M ED (2.136)
oY
11 g = [B™ P2 I:E:I (2.137)
m m
>
v
where
rml = (s _gm
= [<Jn'(E1t E2t)>] (2.138)
pm2 [z<ﬁj,ﬁ‘t‘:‘>] (2.139)

In order to obtain a component Em on the radiation sphere, we
orient the dipole ITm perpendicular to }m and let ;m tend to
infinity. At the same time ITﬁ is adjusted so that it produces
a unit plane wave in the vicinity of the origin. The required

dipole moment is given by

. -jk r
1  _ jwu 3o m
I - amr € (2.140)
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and the plane wave produced in the vicinity of the origin is
E" =1_ e (2.141)

i = %(E x 0.) e (2.142)

A

where u is the unit vector specifying the polarisation of the
wave, fm is the wave number vector pointing in the direction
of wave travel and r is the position vector of any general point

on S or on patch. Substituting (2.140) in (2.137), we obtain

—Jmuo —]kor

- ‘m Zml m2, — -
Em = 47y e [P P ] I (2.143)
m >
—V—
-jk n -jk r R
_ 0 om ml M2, ~ -
= IiE e [P P 7] I (2.144)
A N
|V _
*ml *m2 .
Once the measurement vectors P and P are determined,

the far =zone electric field can be calculated using (2.144).

2.7.1 Determination of Measurement Vectors

_).
In order to determine Pml (equation (2.138)), we first

. =m —=m =m . .
determine Elt and E2t' Elt is the tangential ‘component of

electric field at any point on the patch. The position vector

of any point on the patch is given by
r = xX + yy + &2 (2.145)
For the geometry shown

k =-k_ r = - ko [Cos® X+5in0® Cos¢ §+Sin0O Sing Z] (2.146)
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Using (2.145) and (2.146) we may write

km.f = -k, [xCos®+ySin® Cos9p+dsSin® Sing) (2.147)

Similarly, Egt is the tangential component of electric field

at any point on the image of the patch. The position vector

of any point on the image of the patch is given by
r = xX + yy - az (2.148)

Using (2.146) and (2.148) we may write

km.E = -k, [xCosO+ySin® Cos¢-dSin® Sing] (2.149)

1

Let (P2 )zy be the measurement vector due to y component

of current on patch for y polarised wave in y = 0 plane (¢=90°).
Using (2.138), (2.141), (2.147) and (2.149) we can write

. L jk (xCos0+dsin®)
(P’r’l‘l)Y = [] F¥.5{e ©
Yy patch
jk _(xCos@-dSing)
-e ° } dx dy (2.150)
which can be integrated directly to obtain

k Ax_Cos0O
Sin( 5 )
= [4351n(k0d51ne)] k AX Coso X
(2P
2

l—Cos(keAyp) )
. (2.151
ke81n(keAyp)

Let (Pgl)gx be the measurement vector due to y component of

ml,y
P
(P, )yy

cﬁrrent on the patch for ¢ polarised wave in x = 0 plane (0=90°),

which can be written as
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. jk (yCos¢¥dsinw)
(MY = I Tpte ©
patch
jko(yCosw—dSin¢)
-e } dx dy (2.152)

On integrating we get

Sing
2 .2
{(kOCos¢) —ke}

ml\Y _ o 4ias .
(Pn )@x = [ 4381n(kod81n¢)]

k Cos(k Ay Cosg)
kecot(keAYp) - sin(keAYp) g

]ko(ylp+vAyp)Cos¢

e (2.153)

2

In order to evaluate P" (eg. 2.139), we first determine

H

r on aperture. The position vector r is given by

the tangential component of magnetic field at any point

r = xX + yy (2.154)
Let (P?z);y be the measurment vector due to x component of

current on the aperture for the y polarised wave in y = O plane
(¢=90°). The y polarised wave is given by (2.142) with ﬁm = y.

Using (2.142), (2.146) and (2.154) we can write

K x4 = - CosO £ + Sin® % (2.155)
m m
Em . r = - k [xCos® + ySino] (2.156)

Thus, the measurement vector may be written as

. jk xCosO

m2, X 25in0 —x . %o (2.157)
P. =z — ' .

( 3 )yy - éf MJ £ e dx dy

which may be readily integrated to get
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(sz)x -4 Sin® 1

. = k Cot(k_ _Ax)
J oYY n [(k Cos@)z—kz ] [: ap ap
te) ap

(2.158)

k Cos(k AxCos0) jk _(x,+sAx)Cos0O
ap o e © 1
Sin(k__Ax)
ap

Let (P?Z)gx be the measurement vector due to the x component
of current over the aperture for ¢ polarised wave in x = 0 plane

(6=90°). The ¢ polarised wave is given by (2.142) with & = §.

Therefore, we can write

~ Jk_yCosg

m2,x _ 2 =X
(Pj )(px =3 if Mj.@ e dx dy (2.159)

On integrating (2.159), we get

koAyCosw
(2% - __4 Sin(———) 1
j Tox nkap (kOAyCos¢) Sln(kapAi7
. 2
jk Ly, +(t-%)AylCose
- Cot(kapr) e (2.160)

At this juncture it may be emphasized that the yy components
of the measurement vector can be used to obtain the H field

pattern and ¢x components can be used to determine the E field

pattern.

2.7.2 Determination of Pattern Gain

" The directive gain, G(0,¢) of a radiating system in a
given direction is defined as the ratio of the radiation inten-

sity in that direction to the average radiated power. Thus,
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G(0,9) = &%@LQL (2.161)

av

If Py is the total complex power radiated, than the average

radiated power is

Real(P )

_ t
wav Sl T (2.162)

Also, the radiation intensity in a given direction is

ﬂ)(@l@) = (2.163)

where Em is the electric field intensity at the measurement
point and r is the distance of this point from the origin of
coordinate system. Substituting (2.162) and (2.163) in (2.161)

and using (2.144), we obtain

2
kon

4T Real(Pt)

G(0,9) = (2.164)

2.7.3 Determination of Complex Power

The complex power, Pt transmitted through the aperture

is

P, =J[ E x H*. % as (2.165)
t g ‘

where * denotes the complex conjugate. Using (2.1) Pt may be

written as

P, = gf M_ . H* ds (2.166)
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Using (2.4), (2.10) and (2.11), in (2.166), we obtain

N N
2 N1 R0
P, = I r v, I* M..(H (J_))* ds
t i=1 n=1 1 n s 1 t n
N, N, o
- I % v, VE[[ W (EP(H,))* as (2.167)
i=1 i=1 * J g Pt

Using (2.18) and (2.19) equation (2.167) can be written

in the matrix form as

P = [ V] o 0 I* (2.168)
[¥P1* [P+ v

2.8 Summary

In this chapter moment method has been used to analyse
a waveguide fed patch antenna. Although the basic forﬁulation
is quite general, the expressions have been developed for the
specific case of a rectangular patch antenna excited via a
rectangular aperture. Equations for the input characteristics
namely, VSWR, input impedance and input reflection coefficient
have been derived. Also, the expressions for the computation
of far field quantities have been determined for the particular

case of an air-dielectric patch antenna.
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Fig.2.2:Geometry of the original problem indicating various
parameters and the coordinate system.
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CHAPTER 3

NUMERICAL RESULTS

The analysis carried out in the previous chapter was
implemented on a digital computer. The results obtained from
this program were checked for the convergence and compared with
the earlier published work [20,21]. For the purpose of
comparison, different cases were considered, namely, an open
waveguide radiating into free space with and without a reflector
in front of it and an open waveguide radiating into a  homo-
geneous medium of constitutive parameter (uo,eoer). Finally,
the program was used to generate test data for a patch antenna.
In this chapter, the algorithm used to write the computer
program has been explained with the help of flow charts and

some numerical results are presented.

3.1 Numerical Considerations

Evaluation of the matrix elements for region 'b', namely,
the elements of [Zb], [Yb], [Tb] and [Cb], requires the
evaluation of integrals over @ and 8. One important consi-
deration common to all these integrals is the presence of simple
poles in the integrand. These are given by the =zeros of T
and Tm (Egns. 2.70 and 2.71), which are functions of B alone
(and not of «a). These can be thought of as representing trans-

verse electric (TE) and transverse magnetic (TM) surface wave

poles, respectively, which are located in the complex B-plane.

245374
¢entral Lihram ODIVersity oF Roorkex

AT g
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From (2.68) and (2.69), we obtain

2 2 _ 2
kl - k2 = AC . (3.1)
where
2 _ 2 2 2 _ 2 g2 2 _ 2
kl = erko B™ k2 ko B and AC™ = (er l)ko

In order to determine the roots of Te' k2 is substituted from

(2.70) in (3.1), giving the characteristic equation

[(ac)?-(x,0)2 + x

ld Cot(kld) =0 (3.2)

Similarly, the characteristic equation for finding the roots

of T is obtained by substituting k2 from (2.71) in (3.1) and

is given by

2
-e_ | (ac)?-(k,a)

2, k d tan(k @) = 0 (3.3)

Solution of the above equations yields the values of k from

ll
which B can be determined. It has been shown by previous

workers [22] that the number of poles is given by

0 ; for AC < 7/2
NTE = (3.4)
n ;s for (n=-%)T7 < AC < (n+%)7
NTM = n+l ; for nm <AC < (n+l)mw (3.5)
where NTE and NTM are, respectively, the number of TE and TM

surface wave poles. Since the first TM surface wave pole has
a zero cutoff frequency, there is always at least one surface
wave pole (unless er=1)[23]. These poles occur for real values

of B = B . such that X < B . </e k , if tan8= 0 (no loss).
oi o — oi r o
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If dielectric loss is present, the poles move off the real axis
to B = Boi—jy, Y >0. To avoid numerical difficulties while
integrating over B, the integration in the immediate vicinity
of the poles is performed analytically.. For example, if one
TE and one TM pole are present at Bl = Bol-jY and 82 = Boz—jY'

respectively, then the integral given by (2.96) can be written

in the form

m/2 © /2 Bol_(S Bol“S
J J(yagae= J { [ ()as+ ] () dB
a=0 B=0 =0 B=0 B.,-8
ol
802—6 B02+6 @
() ap + J () ap + J ( ) ag} dae  (3.6)
Bol+6 802—6 802+5

The second and the fourth integral on the right-hand side of

(3.6) can be written as

Bol“S . Bol+6 fl(B)
161 = J' ( ) dB - T_(_B-Y dB (3.7)

B .-§ B .-8 ™m

ol ol

and
Byt Boa®® £,(8) -

B -8 B -8 "e

o2 02

where fl(B) and f2(8) represent the non-singular portions of the

integrand.

To evaluate the integral in the vicinity of a pole say
161' the function Tm(B) is expanded in a Taylor series around

its zero, B,. Thus, the equation (3.7) can be written as

1



B ,+9
) f01 1
I = f(B ]

where prime indicates differentiation with respect to B.
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(3.9)

Considering only two terms in the Taylor series expansion and

noting that Tm(Bl) = 0, we get

: f(B,) Bol“S
Ts) = 7775 | (B—'Tie ds
m 1 Bol—d 1

which may be readily integrated to get

f(Bol—jY)

_ 8+3Y
Tor T TIUB =3V (557!

(3.11) can be written in the form

f(Bol—jY)

)
I = '——__y 1n [reJ ]
61 T (B _y-3Y

with

—l{—2Y6 }

Substituting (3.13) in (3.12) and simplifying, we get

_ J f(801—JY) -1 -2Y6
Is1 = F(B_-3y) tan { 2 5}
m ol Y-8

For the no loss case, which has been assumed

analysis, (3.14) reduces to

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

in the present
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-Jjm f(Bol)
Is1 = T8 ) (3.15)

“m ol

The integration in the vicinity of a TE pole can be carried

out in a similar manner.

The integration from O to the first pole, in between the
poles and after the last pole upto <« has been carried out
numerically, wusing the N-point Gauss quadrature technique
(Fig. 3.1). The convergence has been assumed to occur when
the value of an element changes by less than 0.5% over an integ-
ration interval of 10ko. This usually occurs in the range

100k < B < 200k .

3.2 Computer Program

Figs. 3.2 through 3.12 explain the logic used to develop
the computer program. For convenience, the program has been
broken up into a number of subroutines which are called from
the main program, The data, such as the dimensions of the
waveguide, patch and aperture, the dielectric constant and the
thickness of the dielectric slab, etc., are read in the
subroutine READAT. All the data are read 1in terms of
wavelength, and are then converted in terms of the operating
wavenumber (ko) in the subroutine PROCES, which also computes
the intermediate results required in the other subroutine by
calling STORE. The computation of the =zeros of Te and Tm is
carried out 1in the subréutine ROOT, using the Newton-Raphson
method. The method requires an initial guess, which is accepted

at this stage by the computer. The subroutines ZMN, TIN and
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YBIJ, respectively, compute the elements of the matrices [Zb],
[Tb] and [Yb]. These subroutines call the integration routine
GON, which ©performs the integration using N-point Gauss
quadrature technique. Depending on the origin of the call for
this routine, different functions are used as the integrand.
When the dielectric constant is unity, no poles are encountered
and hence a direct integration in two dimensions is carried
out to evaluate the matrix elements using the subroutine GQER1.
It is worth noting here that, due to the symmetry of the Green's
function and the use of Galerkin's method, only one row of [Zb]
and.[Yb] matrices need to be computed. The other elements are
filled up using the elements of this row. The elements of the

matrix [Cb] are obtained from Cb =—T?i'

ij
subroutine YAIJ results in the computation of the elements of

A call to the

the matrix [Ya] and the excitation vector [fi]; In this case,
only the lower triangular part of [Ya] is computed and the
remaining elements are filled up using these elements. Finally,
the subroutine RESULT stores these intermediate matrices 1in
a one dimensional array, which is inverted using the subroutine
INVRT. The inverted matrix is used to compute the complex
coefficients of the currents on the patch and the aperture,

which are then used for the computation of antenna parameters.

3.3 Convergence of the Procedure

The convergence of the imaginary part of the self
impedance of a microstrip antenna is shown in Fig. 3.13 as a

function of B/ko. For comparison, the results obtained by
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Pozar [21] are also plotted in the same figure. These results
were obtained by using a 10-point Gauss quadrature routine with
the effective dielectric constant taken as e = (€r+l)/2.

The real part of the self impedancé converged to 0.1666 very

fast (B/ko < 10). It was also found that increasing the number

of points for integration does not change the results appre-

ciably.

To check the convergence of other parameters, wé have
considered the following four situations.
1. An open waveguide, (a=Lap=7.5mm; b=Wap=l.5mm),radiating
into free space.
2. An open waveguide, (a=L =22.86mm; b=W =10.16mm),
: ap ap
radiating into free space.
3. An open waveguide, (a=L =22.86mm; b=W =10.16mm),
ap ap
radiating into a homogeneous medium of dielectric
constant, Gr = 2.2.
4. An open waveguide, (a=L_ _=22.86mm; b=W__=10.16mm),
ap ap
with a reflector (or patch), (Lp=l2mm; Wp=9mm), in
front of 1it, at a distance d=1.5mm, such that the
centre of the reflector coincided with the axis of

the waveguide and radiating into free space.

In all the four cases, the open end of the waveguide was assumed
to be terminated in an infinite ground plane and the operating

frequency was 10 GHz.
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The convergence of the reflection coefficient for Case 1,
as a function of the number of subsections over the aperture
along the x direction, Lo is shown in Fig. 3.14, The number
of subsections along y direction, Ly, has been chosen to be
unity. It is seen that the results obtained by the present
procedure, using piecewise sinusoidal (PWS) functions, show
oscillatory behaviour. For comparison, the results obtained

by Sinha [20] are also plotted in the same figure.

In order to determine the source of the oscillatory
behaviour, a number of numerical tests were carried out on this
problem. First, the numerical values of the elements of the
matrix [Ya], obtained from the present method and the method
of [20], were compared and found to be almost same. The small
difference in numerical values can be attributed to the fact
that rooftop (RT) functions have been utilised in [20] while
PWS functions have been used in our case. This was confirmed
by using RT functions in the present method. The reflection
coefficient obtained from the present method using RT functions
has also been plotted in the Fig. 3.13, which also shows
oscillatory beghaviour. Thus, one may conclude that the matrix
[Ya] is not responsible for the ©peculiar nature of the

reflection coefficient in Fig. 3.14.

b
The elements of [Y ], on the other hand, obtained from
the present method using PWS functions and from [20], were of
the same order but having quite different numerical values.

This discrepancy could be attributed to the numerical errors
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introduced while performing the integration, and was confirmed
by analytically taking the Fourier transform of a known
function, exp(|x}|y|), and then evaluating the inverse Fourier
transform using 12-point numerical integration. The real part
in the results showed about one percent deviation from the
expected results but the imaginary part, rather than being zero,
was found to be of the order of 10_2. When the number of points
of integration was increased to 20, the accuracy of the results
also improved. These tests <confirmed the satisfactory

functioning of the integration routine, apart from confirming

the presence of slight numerical errors.

Since the reflection coefficient curve underwent sudden
jumps for L.=11 and 17, it was conjuctured that the ill-
conditioning of the admittance matrix might be the cause for
this behaviour. However, inspection of the condition number,
ol eea e e

these points too. An attempt was then made to study the

|} revealed that the matrix behaved well at

behaviour of the error matrix, [ERR], given by

b

(ERR] = [Y, i3

- [y;.]

2

where the subscripts 1 and 2 correspond to the present method

with PWS functions and [20], respectively. We defined

] 2
Noor = J.Z' | [ERR] |
1,7

for the error matrix. It was predicted that, any sudden change

in the elements of [ERR] should be reflected in the value of
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NERR' However, the values of NERR did not show any peculiar

behaviour when Lx was 11 and 17.

Fig. 3.15 shows the normalized equivalent magnetic current
on the aperture. The normalisation factor is the root-mean-
square value of the incident field. That is, M has been

normalized with respect to

ab guide

J 1 If |Elnc|2 dx dy
where the integration 1is over the waveguide cross-section.

The results obtained from this method using PWS functions are

found to be in close agreement with those obtained from [20].

The radiation patterns obtained from this method, using
PWS functions, and those obtained from [20] are shown in
Fig. 3.16 where a good agreement between the two is seen. It
may be noted that even at L,=11 and 17, radiation patterns

obtained from the two methods were in good agreement.

In the previous example, the dimensions of the waveguide
and the frequency were such that only the evanescent modes could
exist in ‘it. As the next example, an open waveguide radiating
into free space, with a propagating TEq g incident mode was
considered (Case 2), for which the reflection coefficient,
normalized equivalent magnetic current on the aperture and the
radiation patterns are plotted in Figs; 3.17 through 3.19,
resbectively. Even in this case, the refleétion coefficient

shows a slightly oscillatory behaviour, but with a reduced
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amplitude as Lx is increased. On the other hand, the equivalent
magnetic current on the aperture and the radiation patterns
obtained from this method using PWS functions are seen to be

in close agreement with those obtained from [20].

The reflection coefficient 1is plotted in Fig. 3.20 as
a function of L+ for the case of a open waveguide radiating
into a homogeneous medium (Case 3), and is found to be constant
within the plotting accuracy. In this <case, which was
approximated by considering a very thick (3Ao) dielectric slab
to be present in front of the open waveguide, a large
discrepancy 1is observed in the values of the reflection
coefficient and the aperture current distribution (Fig. 3.21)

obtained from the present method and those obtained from ([20].

As a last examplé, the convergence of reflection
coefficient for the case of .an open waveguide radiating into
free space with a reflector in front of it (Case 4) is shown
in Fig. 3.22. The results of [20] show no convergence in
reflection coefficient when the number of subsections along
the y direction on the aperture is unity. This indicates that
y-currents on the aperture and x-currents on the patch are to
be considered in the analysis. Again in this case, the present
procedure with PWS functions did not show convergence in the
reflection coefficient when the number of subsections, along

)
the y-direction, on the patch was increased (Fig. 3.22(b)).

Figs. 3.23 and 3.24 show the distribution of normalized

equivalent currents on the aperture and the patch, respectively.
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The current over the patch is normalized with respect to the
rms value of the incident magnetic field in the waveguide.

In this case, a marked discrepancy was seen between the currents
obtained by the present method with PWS functions and [20].
However, the radiation patterns (Fig. 3.25), obtained using

the present method with PWS functions and [20] were in close

agreement.

3.4 Waveguide Fed Patch Antenna

Although, the input reflection coefficient did not show
any convergence, the program was used to study the variation
of input impedance with frequency for a waveguide fed patch

antenna.

We considered a patch, (Lp=9.l89mm; Wp=ll.8585mm), with
aperture, (Lap=ll.43mm; Wap=l.5mm), in the ground plane of a
dielectric substrate of thickness 1.5mm and dielectric constant,
€, =2.2, fed by a waveguide, (a=22.86mm; b=10.16mm), such that
the centre of the patch coincided with the centre of the
aperture and the axis of the waveguide. Fig. 3.26 shows the
input characteristics, namely, the input VSWR and the real and
the imaginary parts of the input impedance as a function of
frequency using the effective dielectric constant €re=(€r+l)/2.
A well pronounced parallel resonance is observed at 15.3 GHz.
Although, another parallel resonance is observed around
26.2 GHz, it 1is not very well pronounced. Further, a series
resonance 1is also seen to occur between the two parallel

resonant points.
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Several authors have mentioned that (2.39) is a better
approximation for Gre' So an effort was made to study the
effect of this choice on the resonant frequency of the patch
antenna. Fig. 3.27 1is a plot of comparison of the input
characteristics, around resonance, for the two choices of Gre'

Although the shape of the curves remains the same, the resonant

frequency undergoes a definite shift when er as given by (2.39)

e
is used.

3.5 Summary

In this chapter, numerical considerations for the develop-
ment of a computer program, for the analysis presented in the
previous chapter, has been explained along with the logic flow
diagrams. The results obtained from this program, apart from
checking for the convergence, have been compared with the pub-
lished work by considering different situations. Finally, test

data has been presented for a waveguide fed patch antenna.
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CALL READAT

¥

CALL PROCES

v

CALL ROOT

¥

CALL ZMN

v

CALL YBI)

¥

CALL TIN

v

CALL YALS

v

CALL RESULT

Fig.3.2:Main program.
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Fig.3.3:READAT.

<

DETERMINE THE
NUMBER OF ROOTS

K

READ THE APPROXIMATE TE
ROOTS AND COMPUTE THE
ROOTS

¥

READ THE APPROXIMATE TM

ROOTS AND COMPUTE THE
ROOTS

Y

COMPUTE 8 AND
REARRANGE IN
ASCENDING ORDER

&

Fig.3.5:RO0T.

&

CONVERT DATA

IN TERMS OF
WORKING
WAVENUMBER

Y

CALL STORE

&

Fig.3.4:PROCES.

S

FUNC<"ZMN’

)

INITIALISE INDIGES FOR

GOMPUTATION OF ONE
ROW OF (zP3

NO YES

“ﬁALL GaN CALL GQER1

l_a,_;_‘,__..l

FILL UPOTHER ROWS

oF 1z%)

Fig.3.6:ZMN.
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Fig.3.9:(Continued).
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Fig.3.12: Result.
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Fig.3.14:Convergence of reflection coeff icient (Case1).
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Fig.3.15: Distribution of normalized current on
the aperture (Case1).
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Fig.3.18: Distribution of normalized current on
the aperture (Case 2).
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Fig.3.20:Convergence of input reflection coefficient (Case3).



Fig.3.21: Distribution of normalized aperture
current (Case3).
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,Fig.3.23: Distribution of normalized current on
the aperture (Case 4).
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Fig.3.24:Distribution of normalized current on
the patch (Case 4).
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, experimental results for a waveguide
fed patch antenna are presented. Various antenna parameters,
like the input voltage standing wave ratio (VSWR), input impe-~-
dance, gain and radiation pattern of the antenna were measured
in the 1laboratory. The effect of increasing the size of the
ground plane was also studied. The fabrication technique used
to construct the antenna is also explained alongwith the design

procedure.

4.1 Design of the Radiating Element [24]

Polytetrafluoroethylene (PTFE) Glass Microfiber Reinforced
RT Duroid 5880, having dimensions 6cm x 6cm, was used as the
dielectric substrate. The parameters of the substrate relevant

to the design procedure are,

Dielectric constant, €. : 2.2 £ 0.02
Overall thickness : 1.5mm

Claddiné thickness, t ¢ 0.03556mm
Dielectric thickness, h :1.42888mm.

The aim was to design a patch having a TMOl mode resonant
fregquency of 10 GHz. Fig. 4.1 1illustrates the experimental
patch antenna, where L is the dimension of the radiating edge
and W is the dimension of the non-radiating edge. The length

of the radiating edge, L is given by
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L = 5%- ( g ) 2 (4.1)

where
¢ : velocity of light in vacuum (m/s)
f_ : resonant frequency (Hz)

The line extension, AW, due to fringing effects is

(Ge+0.3)(L/h+O.264)

A= h x0.412 (g —5.258) (L/h+0.8) (4.2)
where ee is the effective dielectric constant, given by
€ _+1 e -1 € -1
=%
e, = (L) + (T + 2yTE T LN, (4.3)
: L/h
The length of the non-radiating edge is now obtained from
W= —"—" - 2AW (4.4)
2f €
r e

Using (4.1) through (4.4) the patch dimensions are determined.

For the chosen data, these values are

]

L 11.8585mm

W

9.1895mm

The patch antenna is coupled to a standard X-band waveguide
(a = 22.86mm, b = 10.16mm) via a rectangular aperture 1in its
ground plane. The aperture, having dimensions AL = 11.43mm,
AW = 1.5mm, is so locaﬁed- that the centres of the patch and

the aperture coincide with the axis of the waveguide.
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4.2 Fabrication

The fabrication of a microstrip antenna is a very
systematic exercise, involving a number of steps. These are

explained below.

4.2.1 Artwork

The artwork is the drawing of the microstrip antenna.
This is prepared either on a tracing sheet or on a tracing film.
The tracing sheet deforms, by absorbing moisture, when exposed
to humid atmosphere. Hence tracing film was used for this
purpose. The tracing film has a ground and a shiny surface.

The artwork 1is prepared on the ground surface.

Depending on the actual size, the ‘scale for the artwork
is chosen. For the present work a 4:1 scale was chosen. A
rubylith film [25] was simulated using the tracing film by
pasting opague cellophane tapes.on it. The patch was cfeated
on the film by cutting out the unwanted portions of the tape.
This was found to give better edges than the 'printed circuit
board' drafting aids. The actual dimensions were decided with
the help of vernier calipers having a least count of 0.0lmm.

A travelling microscope would have improved the accuracy.

Onvanother piece of film, the aperture area was marked
using the same technique. A number of markings in the form
of crosses (+) were made on both the films with the help of
a drawing pen (Rotr{ng, variant-B, art.1102). These markings
were used to align the two masks while printing the image on

the substrate.
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4.2.2 Mask Preparation

The next stage is to reduce the artwork to the actual
size and prepare the masks. The reduction and mask preparation
follows the usual black and white photography technique. Since
the patch area consisted of too many narrow strips, direct
illumination and exposure of the artwork did not produce good
quality masks. Hence, an indirect procedure was followed.
A contact print was obtained by illuminating the artwork from
bottom. This print had a uniform surface and, hence, could

be reduced to the actual size without any difficulty.

4.2.3 Screen Preparation and Printing on to the Substrate

Once the masks are ready, the images on the masks have
to be transferred on to the substrate. This was accomplishéd
by screen printing technique. The basic concept of screen
printing process is that of forcing a viscous material through
predetermined openings in a stencil screen to obtain the desired
image on the substrate. The screen was prepared by placing
a positive of the mask on a screen printing film and exposing
them to light. The exposed part of the film hardened and the
unexposed portion dissolved in the developer. This was pasted
on a porous screen made up of silk thread and allowed to dry.
This is called the screen. Next, the screen was placed above
the substrate, which was first cleaned to remove dirt and
grease, and a special dye was squeezed over the screen. The
dye passing through the openings in the film deposited on the

substrate and was allowed to dry.
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The screen for the other side was also prepared using
the same technique. The other side of the substrate was also
printed after aligning the two images, which was carried out
with the help of markings on the second screen and the holes
drilled through the substrate. When the dye was completely
dry, visual inspection was carried out to locate any pin holes,

which were covered up with the dye.

4.2.4 Etching

The next step 1is to remove or etch out the unwanted
portion of copper from the substrate which is not covered by
the dye. Ferric chloride was used as the etchent. The
substrate was introduced into the ferric chloride solution
which was occasionally stirred to increase the speed of etching.
The completion of etching was detected by visual inspection.
After the completion of etching, the dye on the substrate was
removed with the help of a solvent to expose the patch and the

ground plane.

4.2.5 Power Launcher

A rectangular waveguide was soldered to the ground plane
of the antenna in such a way that the axis of the guide aligned
with the centre of the aperture. The alignment was done with
the help of markings on the waveguide and the ground plane.
To obtain a good contact between the two, the waveguide walls
were made very sharp at the end by filing (Fig. 4.1). Visual

inspection of the inside of the waveguide revealed that there
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were no holes in the joint and no solder had leaked into the

guide, ensuring a good joint.

4.3 Experimental Setup

In this section the experimental setup used to measure
the different parameters has been illustrated. Since the
standard techniques were followed [26] to perform the measure-

ments, only the precautions are listed in this section.

4.3.1 VSWR and Impedance Measurement

Fig. 4.2 illustrates the experimental setup used to
measure the VSWR and the input impedance. Since any disturbance
in front of the antenna changes the input characteristics,

microwave absorbers were placed in front of the antenna.

4.3.2 Radiation Pattern Measurement

The setup shown in Fig. 4.3 was used to measure the
radiation pattern. The test antenna, placed on a turntable
with graduations, was utilised as the transmitting antenna.
Both the antennas were polarization matched and aligned. The
distance between the two antennas was kept greater than 2D2/X;
where D is the longer antenna dimension and X is the operating
wavelength. When the turntable 1is rotated to measure the
radiation pattern, the transmitting antenna should not change,
its orientation. This was ensured by securely padding the
fixture used to hold the antenna. The frequency meter in this
setup was placed on the receiver side as there was no space

on the turntable.
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4.4 Results and Discussion

Experiments were carried out to study the behaviour of
the patch with a small ground plane and with an extended ground
plane (EGP). Various parameters 1like the input VSWR, input

impedance, gain and radiation patterns were measured.

Fig. 4.4 illustrates the input characteristics of a
waveguide fed patch antenna with a 6cm x 6cm ground plane.
Three different parameters, namely, the VSWR, real part of input
impedance (resistance) and imaginary part of input impedance
v(reactance) are plotted in the same graph as a function of
frequency. The input impedance plot indicates the presence
of alternate parallel and series resonant frequencies. The
series resonance is characterised by a low value of resistance
and the reactance changing from capacitive to inductive. On
the other hand, a peak value of resistance alongwith the
reactance changing from inductive to capacitive denotes a
parallelv resonant frequency. The parallel resonance points
are arising due to the excitation of different modes. The
resonant frequency of a tuned circuit is defined as the
frequency at which the input impedance has no reactive part

(£ ). In microstrip antennas, however, this frequency may

X=0
not coincide with the frequency at which the real part of the
input impedance reaches a peak (fR-max) because of reactive
loading due to the feed. To avoid any ambiguity, we have chosen

the resonant frequency as the one at which the real part of

the input impedance reaches a peak [27]. The variation of input
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impedance with frequency 1is also plotted on Smith charts
(Fig. 4.5). It is seen that the loci of the input impedance
are circular in nature and symmetric about the X = 0 line.

However, there is a 1large impedance mismatch at all the

frequencies, resulting in a high reflection loss.

Both the E- and the H-plane radiation patterns were
measured at various series and parallel resonant frequencies
and are shown in Figs. 4.6-4.12. Using a standard gain horn
(Scientific Atlanta Model 12-8.2 ) as a reference, the gain of
the patch antenna was measured at each of these frequencies
in the broad-side direction. For the purpose of comparison,

the various antenna parameters are tabulated in Table 4.1.

A study of the radiation patterns reveals that both the
E- and the H-plane patterns are gquite broad and exhibit
amplitude fluctuations. These fluctuations can be attributed
to the finite size of the ground plane, which causes the
diffraction of the surface waves. As the operating frequency
is increased, the electgical thickness of the substrate
increases. This results in increased surface wave powers and,
therefore, the undulations in the pattern increase in amplitude.
Also, it is observed that, in general, the undulations are more
pronounced at series resonant frequencies, although at 10.6 GHz,
a parallel resonant frequency, the undulations are found to

be quite high.

In the case of a co-axial feed patch antenna, the patch

dimensions determine the resonant frequency of a mode, but the
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feed 1location determines as to which mode will be excited.

Thus, the overall radiation pattern depends upon the feed-patch
interaction. In the present case, the feed-patch interaction
is much more complex since the self susceptance of the aperture
is also a strong function of frequency. It is conjectured that
here a number of modes are being simultaneously excited, albéit
with varying amplitudes, affecting the input impedance and the
radiation pattern. The most smooth pattérn was obtained at
8.6 GHz, where the measured gain was also positive (Table 4.1).
Since the input impedance was initially measured with 200 MHz
increments in freéuency, this frequency was estimated as a
parallel resonant frequency. However, measurements with smaller
frequency increments (50 MHz) revealed that the resonance
actually occurs at 8.5 GHz. It is, therefore, believed that
the fundamental TMOl mode is being excited at this frequency.
The low value of gain at broad-side can be attributed to a high
reflection 1loss. When the reflection 1loss 1is taken into
account, the gain is of the order of 8 dB,.with respect to an
isotropic antenna, at 8.6 GHz. However, at 10.3 GHz and above,
the gain comes out to be negative even after taking the
reflection loss into account. This is because a large portion

of the input power is being lost in the side lobes.

In order to reduce the reflection loss, a slide screw
tuner was utilised to match the antenna. The corresponding
VSWR and uncorrected gain are given in Table 4.1. The measured
patterns at 8.6 GHz and 9.2 GHz (Figs. 4.13 and 4.14) indicate

that the antenna has become more directive, thus, increasing
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the gain substantially. However, a number of distinct and high
side lobes appear in the visible region. It seems that the
inclusion of the tuner affects the loading of the patch and

drastically changes the current distribution.

The effect of increasing the size of the ground plane
was also studied by soldering a 18cm x 18cm x 1;59mm brass sheet
to the ground plane of the antenna. The radiation patterns
at variogs series and parallel resonant frequencies
(Figs. 4.15-4.21) show that the patterns have become
comparatively smooth. This is due to the reduction in the
secondary radiations caused by the diffraction of surface waves
at the edge of the substrate. Asymmetry in the H-plane pattern
at 8.6 GHz may be due to reflections from the ground. It can,
therefore, be concluded that improved results shall be obtained

by using a larger substrate.

The use of a slide screw tuner to match the antenna with

EGP again resulted in high side lobe levels (Fig. 4.22).

Since both the E- and H-plane patterns have wide beam
widths, reflection.from ground and the walls have a considerable
effect on the radiation pattern. The use of microwave absorbers
would improve the results. Though the slide screw tuner
provides a good match at the input, its use is not recommended
as it changes the patch current distribution and hence the
radiation pattern. An impedance transformer may perhaps be
used to obtain a better match, but its effect on the patch

current distribution is yet to be studied. Although maximum
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care was taken while performing the experiments, accurate,
reliable and repeatable results can only be obtained by using

a network analyzer.

4.5 Summary

In this chapter, design and fabrication of a microstrip
patch antenna coupled to a rectangular waveguide via an aperture
in its ground plane have been explained. Various antenna
parameters, like the input VSWR, input impedance, gain and
radiation pattern have been presented. With the help of these
results the TMOl mode resonant frequency has been determined.
The effect of increasing the size of the ground plane and use

of a slide screw tuner to obtain a match on the parameter has

also been studied.
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CHAPTER 5
CONCLUSIONS

In the preceding chapters, some investigations have been
reported on a waveguide feed rectangular patch antenna. A
moment method formulation has been presented for analysing the
antenna and the expressions for various matrices and vectors
have been derived. Based upon the analysis, a computer program
has been developed, the results of which have also been
presented. In this chapter, a 'critical examination of the
analysis, the computer program and the numerical and the
experimental results has been carried out and some of the areas

which require further investigations have been identified.

5.1 The Analysis

A moment method analysis has been presented for a patch
antenna fed by a waveguide. The formulation is completely
general, 1in the sense that the shape and the size of the
aperture and the patch can be arbitrary. However, for the
actual evaluation of the matrix elements, a rectangular patch
and a rectangular aperture have been considered. For the sake
of simplicity, only the x-directed currents on the aperture
and the y-directed currents on the patch have been assumed to
be present, which is true for narrow apertures. Piecewise
sinusoidal (PWS) functions have been used for both expansion

as well as testing (the Galerkin's procecdure). While carrying
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out the numerical experiments, rooftop (RT) fuﬁctions were also
utilised in a Galerkin's procedure. However, it was found that
both the PWS and the RT functions give similar results. The
matrix elements for the waveguide region have been evaluated
using the waveguide dyadic Green's function for the electric
vector potential in the spatial domain, while the other matrices

have been evaluated using spectral domain Green's functions.

For the calculation of the reflection coefficient and

hence, the input impedance, a TE mode 1is assumed to be

10
incident in the waveguide. The radiation patterns have been
determined for the particular case of an air-dielectric patch

antenna.

5.2 The Computer Program

Based on the analysis, a computer program has been
developed in FORTRAN. The program has been written in the
modular form, as a result of which; any mﬁdifications can easily
be incorporated in it. The variables have been named in such
a way that the same names can be retained when the analysis
is extended to take into account the y-directed currents on
the aperture and the x-directed currents on the patch. A single
integration routine has been used which is called several times
from different subroutines. However, most of the variables
in this routine do not change from one call to another call.
Therefore, suitable modifications in the program, say, storing
the numerical values of these variables in a database during
the first call and using these variables in the subsequent

calls, can greatly improve the speed of computation.
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5.3 The Numerical Results

The results obtained from the computer program have been
checked for the convergence and compared with the . published
results. Though, the self impedance of the patch and the
elements of the waveguide admittance matrix had a good agreement
with the published data in almost all the cases, the input
reflection coefficient, instead of showing convergence, showed
instability with the increase in the number of subsections.
Although a number of numerical tests were carried out to
identify theAsource of this instability, no suitable explanation

for the peculiar nature of the curves could be found.

When the aperture is narrow in the y-direction, it can
be approximated as a magnetic dipole with only a x-directed
current distribution. Thus, the electric current induced on
the patch will have only a y-directed component. An open
waveguide, on the other hand, cannot be approximated as a
dipole. Further, when a reflector is placed in front of the
waveguide, the field distribution over the aperture is disturbed
and no longer corresponds to that of the TElO mode. Therefore,
both the x and the y directed currents on the aperture as well

as on the patch need to be considered to obtain reliable

results.

Finally, test data has been generated for a waveguide
fed microstrip patch antenna. The input characteristics
indicated the ©presence of alternate series and ©parallel

resonances. The input impedance, measured at the plane
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containing the aperture, is a very strong function of
waveguide-aperture and aperture-patch interactions. Since the
resonant frequency has been obtained b? considering the
impedance referred to the plane of the aperture, it does not
coincide with the resonant frequency of an isolated patch.

The exact shift and its behaviour can be known only after

carrying out more detailed investigations.

5.4 The Experimental Results

An effort was also made to study the characteristics of
a waveguide feed patch antenna experimentally. The input
characteristics showed the presence of alternate series and
parallel resonances, a behaviour which is also predicted by
the numerical results. These several parallel resonant points
are arising due to the excitation of different modes. With
the help of the input <characteristics, namely, the input
impedance and the VSWR, and the far-field quantities, namely,
the radiation patterns and the gain, the resonant frequency
of the patch antenna has been predicted. Since the gain was
too low due to a high reflection loss at the aperture, a slide
screw tuner was used to improve the gain. Though it resulted
in an increased gain, the antenna patterns were seriously
affected. Hence the wuse of a slide screw tuner 1is not
recommended. Further, in view of the strong dependence of the
input impedance on the location and size of the aperture, more
detailed studies need to be carried out to find out an optimum

location of the aperture vis-a-vis the patch.
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In an effort to reduce the undulations in the radiation
patterns, the size of the ground plane was increased which

resulted in improved radiation patterns.

Since the radiation patterns are quite broad in both the
planes, the reflections from the ground and the walls had a
considerable effect on them. Use of microwave absorbers would
have minimised these undesirable feflections. Further, the
use of a network analyzer would have resulted in more accurate,

reliable and repeatable measurements.

5.5 Recommendations for Further Work

In almost all the cases considered in this work, the
reflection coefficient showed an oscillatory behaviour. Since,
no suitable explanation could be found for this behaviour,

further studies are required to resolve this problem.

It was found that at all the frequencies, the input
mismatch was unacceptably high. Since, the input charac-
teristics depend on the waveguide-aperture and aperture-patch
interactions, more investigations are required to determine
the optimum location and size of the aperture for obtaining
a good impedance match. Since a purely experimental
investigation is costly, time consuming and prone to tolerance-
induced errors, a detailed theoretical study of the structure

is recommended.

In order to study the effect of coupling via a wide slot,

both the x and the y'directed currents on the patch as well
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as on the aperture have to be considered. Although it would
increase the complexity of the problem, this investigation is
necessary to fully characterise the waveguide feed patch

antenna.

Another interesting problem to be analysed 1is the
excitation of the patch antenna by a shunt slot in the broad
wall of a rectangular waveguide, Studies have to be made to
determine the 1location of the  patch and the aperture with
respect to the waveguide for optimal coupling into the antenna
due to both electric and magnetic dipoles. A sliding short
circuit terminating the waveguide beyond the antenna could be
used to vary the positions of the peaks and nulls in the
waveguide standing wave pattern to increase coupling into the

antenna.

Finally, application of the aperture feed structure to
. arrays of microstrip patch antennas have to be considered.

Feeding of several patches via longitudinal slots in the broad
wall of a waveguide shall reduce the complexity of the feed

structure.



APPENDIX A

Evaluation of the Electric Vector Potential

in the Waveguide Region (Eq. 2.52)

The electric vector potential given by (2.43) can be

written in the form

T = = ol [l =X, =, wY T '
F, =€, £J’ g (F|T LML (£1)+M (2 1)) ds (A.1)

Since Mj has only x-directed components, (A.l) reduces to
F.=¢_ [ g (E|E').ﬁ§(i') ds' (A.2)

The integrand of (A.2) can be written using (2.30) and (2.44)

as
g (T|r").MA(r") = % i i [e e /(abl )] (8S) (cc)y
SZ(X'—xC+Lap/2) PZ(y'—yc+Wap/2) (A.3)

Substituting (A.3) in (A.2)

A

Fj = X eo i g [emen/(abrmn)] Sin[(mn/a) (x+a/2)]

Cos[(nm/b) (y+b/2)] £f Sy(x'=x +L_ /2) P{(y'-y +W_ /2)

Sin[(m7m/a)(x'+a/2)] Cos[(nn/b)(y'+b/2)] dx' dy' (A.4)
To evaluate the integral in (A.4), we write
I, = éj S;(x'—xc+Lap/2) PZ(y'—yc+Wap/2) sin[(mn/a) (x'+a/2)]

Cos[(nm/b)(y'+b/2)] d&x' dy’ (A.5)
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Substituting (2.31) and (2.32) in (A.5) with appropriate limits,

we get
*b Sin{kap[Ax—|x'-x1—sAx|]}
= 1 ] ]
I1 f STn(k B%) Sin[(mm/a)(x'+a/2)] dx
X ap
a
¥y
[ (1/Ay) sin[(nn/b)(y'+b/2)] dy' (A.6)
Ya
= Ii . I{ (say)
where
X, = xl+(s—1)Ax Xy = xl+(s+1)Ax
(r.7)
y, = yy+(t-1)dy Y, = vy ttdy .

The integral with respect to y' in (A.6) can be evaluated as

p
¥ = [ (1/ay) sin[(n7/b)(y'+b/2)] &y’
Ya

(1/8y) [2/(n7/b)] Cos[ZE (v +y,+b)] Sin[ZT (v, -y,)]

(A.8)
The integral with respect to x' in (A.6) within the limits xé

to Xy may be seﬁarated into two integrals, given by

P .
b Sin{k [Mx-|x'-x_ -sbx]|]}
X = ap l 1 l Sin[(m7n/a)(x'+a/2)] dx'

1 X Sln(kapr)

a (A.9)
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. Ve
c Sln{kap[Ax+x X5 sAx]}

X
= I Sin(k__Ax)
X ap

Sin[{(mn/a)(x'+a/2)] dx!

*b sin{k [Ax-x'+x +sbx]}
! X agin(kapr) Sin[(mm/a)(x'+a/2)] dx' (A.10)

o1

where

X, = X, + sAx (n.11)

On integrating (A.10), we get

X
1

I [l/Sin(kapr)]{Cos[(kapr/2)—(mﬂ/a)(xl+sAx).

Sin[{kap—(mn/a)}(Ax/z)]
[kap-(mﬂ/a)T

+(§£)Ax—(mﬂ/2)]

-Cos[(kapr/2)+(mn/a)(x1+sAx)—(§§)Ax+(mn/2)]

sin[{kap+(mn/a)}(AX/2)]
[kap+(mn/a)]

+c°s[(kapr/z)-(mn/a)(xl+sAx)-(gg)Ax-(mn/z)]

Sin[{—kap—(mn/a)}(Ax/Z)]
[-kap—(mn/a)]

—Cos[(kapr/2)+(mn/a)(x1+sAx)+(§g)Ax+(mn/2)]

Sin[{—kap+(mn/a)}(AX/2)]
[—kap+(mn/a)]

(A.12)

which can be simplified further to get
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. (nmAy
sin{ } 4 k

1’1‘ = [1/sin(k_ ax)] ——ﬁ-gf;b— > 2p .
35 kap™(M1/2)

cos[(nm/b) (y1+tAy)—(§-g)Ay+(nn/z) ]
Sin[{kap+(mn/a)}(Ax/2)] Sin[{kap—(mn/a)}(Ax/Z)]
Sin[(mn/a)(xl+sAx)+(mn/2)] (A.13)

Substituting (A.6), (A.8) and (A.13) in (A.4), we obtain expres-

sion for the electric vector potential.



APPENDIX B

Fourier Transform of Basis Functions

The kx dependent part of the Fourier transform of

M?(xo,yo) is given, from (2.78) and (2.80), as

— x - -
F x(kx) = [ Ss(xo xc+Lap/2) e
Mj xo

X
X 0 ax (B.1)
o]

Using (2.30) in (B.1l), we get

X +{s+1)Ax

1 Sin[k_ (Ax-]x -x -sAx|)]  -jk_x
F x(kx) = apSin(k oAx% e * e dxo
Mj x1+(s~1)Ax ap
(B.Z)
(B.2) can be separated as
xl+sAx Sin{k (Ax+x -xl—sAk)] —jkxxo
F x(kx) - f agin(k OAx) e dxo
Mj xl+(s—l)Ax ‘ap
PSP gintk. (Ax-x_+x.+sbx) ] -3k_x
+ f ap_ OA 1 e X0 ay
xl+sAx Slrl(kap X) °
(B.3)
Integrating (B.3) by parts and then simplifying, we get
2ka Cos(kxAx) -jkx(xl+sAx)
] X ap (B.4)

The ky dependent part of the Fourier transform of

Mg(xolyo) is given, from (2.78) and (2.80), as
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-ik_ Yy
= Yig - y'o
FMx(ky) ] PL (Y, yc+Wap/2) e dy (B.5)
. Yo
Using (2.30) in (B.5), we get
yl+tAy 'jkyyo
F (k) =] (1/8y) e dy, | (B.6)
M Y y,+(t-1) 4y

(B.6) is readily integrated to get

Sin(kyAy/2) —jky[yl+(t—%)Ay]

FM)f(kY) = (kyAy/Z) e (B-7)
]

Following the same procedure, conjugate Fourier transform of

M% can be obtained.
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