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ABSTRACT 

The microstrip antennas in recent years, are gaining wide 

publicity due to their numerous advantages. 	The versatility 

of this class of antennas at microwave frequencies suggests 

a potential usefulness at millimeter-wave frequencies. However, 

it has become apparant that feed structures which operate quite 

well at microwave frequencies are not viable with millimeter-

waves, since the losses become significant in microstrip lines 

and co-axial feed components are not available above about 

50 GHz. 	For this reason, a new feeding technique for patch 

antenna, namely, 'waveguide feed', has been studied in this 

dissertation. 

In this work, a moment method analysis has been presented 

for a microstrip patch antenna coupled to a waveguide via an 

aperture in its ground plane. Equivalence theorem, in 

conjunction with the boundary conditions, has been used to set 

up two coupled integro-differential equations. 	These are then 

reduced to matrix form using the method of moments. 	Though 

the analysis is quite general, in the sense that no restrictions 

have been imposed on the shape and size of the patch and the 

aperture, analytical expressions have been derived for the 

particular case of a rectangular patch fed by a rectangular 

waveguide via a rectangular aperture in the ground plane. 



Based on the above analysis, a computer program has been 

developed in FORTRAN, to analyse the structure. Numerical 

results obtained from the program have been checked for the 

convergence and compared with the published work for a number 

of different problems. Some test data have also been presented 

for a waveguide fed microstrip patch antenna. 

Some experimental investigations were also carried out 

on the waveguide feed patch antenna which was constructed using 

RT/Duroid 5880. 	Experimental results have been reported here 

on the input characteristics, gain, and the radiation pattern 

of this antenna. 	Further, the effect of using a slide screw 

tuner for reducing the impedance mismatch and increasing the 

size of the ground plane has also been studied. 



9 

9 

9 

10 

46 

47 

64 

65 

65 

65 

65 

66 

66 

67 

69 

LIST OF FIGURES 

Fig. No. 	 Page No. 

1.1 	Rectangular microstrip antenna with equi- 
valent radiating slots. 

1.2 	Cavity model indicating electric and 
magnetic conductors. 

1.3 	Microstripline feed. 

1.4 	Co-axial feed. 

1.5 	Proximity coupled feeds. 

1.6 	Aperture coupled microstrip antenna. 

2.1 	Waveguide fed microstrip patch antenna. 

2.2 	Geometry of the original problem indicating 
various parameters and the coordinate 
system. 

2.3 	Equivalent models. 

2.4 	Measurement vector geometry. 

3.1 	Location of poles in the complex 	plane 
and the path of integration. 

3.2 	Main program. 

3.3 	READAT. 

3.4 	PROCES. 

3.5 	ROOT. 

3.6 	ZMN. 

3.7 	TIN. 

3.8 	YBIJ. 

3.9 	GQN. 

3.10 	GQER1. 



Fig. 	No. Page No. 

3.11 YAIJ. 70 

3.12 Result. 70 

3.13 Convergence 	of 	the 	imaginary 	part 	of 	the 71 
self 	impedance 	of 	a 	microstrip 	patch 
antenna, R11=0.167Q. 

3.14 Convergence 	of 	reflection 	coefficient 72 
(Case 	1). 

3.15 Distribution 	of 	normalized 	current 	on 73 
the aperture (Case 1). 

3.16 Radiation patterns 	(Case 1). 74 

3.17 Convergence 	of 	reflection 	coefficient 75 
(Case 	2). 

3.18 Distribution 	of 	normalized 	current 	on 76 
the aperture (Case 2). 

3.19 Radiation patterns 	(Case 2). 77 

3.20 Convergence of input reflection coefficient 78 
(Case 3). 

3.21 Distribution of normalized aperture current 79 
(Case 3). 

3.22 Convergence 	of 	reflection 	coefficient 80 
(Case 4). 

3.23 Distribution 	of 	normalized 	current 	on 81 
the aperture (Case 4). 

3.24 Distribution 	of 	normalized 	current 	on 82 
the patch 	(Case 4). 

3.25 Radiation patterns (Case 4). 83 

3.26 Input 	characteristics 	of 	a 	waveguide 	fed 84 
patch antenna. 

3.27 Input 	characteristics 	of 	a 	waveguide 	fed 85 
patch antenna around resonance. 

4.1 Microstrip 	patch 	antenna 	coupled 	to 	a 98 
rectangular 	waveguide 	via 	an 	aperture 
in the ground plane. 



(x) 

Fig. 	No. Page No. 

4.2 Measurement of VSWR and impedance. 99 

4.3 Measurement of radiation pattern. 99 

4.4 Input 	characteristics of 	a 	rectangular 100 
patch 	antenna 	coupled 	to 	a 	waveguide 	via 
an aperture 	in 	its ground plane as a func- 
tion of frequency. 

4.5 Input 	impedance as a 	function of 	frequency 101 
for a patch antenna. 

4.6 Radiation 	patterns of a 	patch antenna 104 
at 8.6 GHz. 

4.7 Radiation 	patterns of a 	patch antenna 105 
at 9.2 GHz. 

4.8 Radiation 	patterns of a 	patch antenna 106 
at 9.5 GHz. 

4.9 Radiation 	patterns of a 	patch antenna 107 
at 9.86 GHz. 

4.10 Radiation 	patterns of a 	patch antenna 108 
at 10.3 GHz. 

4.11 Radiation 	patterns of a 	patch antenna 109 
at 10.6 GHz. 

4.12 Radiation 	patterns of a 	patch antenna 110 
at 11 GHz. 

4.13 Radiation 	patterns of a 	tuned patch 111 
antenna at 8.6 GHz. 

4.14 Radiation patterns of a tuned patch antenna 112 
at 9.2 GHz. 

4.15 Radiation 	patterns of a 	patch antenna 113 
at 8.6 GHz 	(EGP). 

4.16 Radiation 	patterns of a 	patch antenna 114 
at 9.2 GHz 	(EGP). 

4.17 Radiation 	patterns of a 	patch antenna 115 
at 9.5 GHz 	(EGP). 

4.18 Radiation 	patterns of a 	patch antenna 116 
at 9.86 GHz 	(EGP). 



Q 

(xi) 

Page No. 

117 

118 

119 

120 

Fig. No. 

4.19 Radiation 	patterns of 	a 	patch antenna 
at 	10.3 GHz 	(EGP). 

4.20 Radiation 	patterns of 	a 	patch antenna 
at 	10.6 GHz 	(EGP). 

4.21 Radiation 	patterns of 	a 	patch antenna 
at 	11 GHz 	(EGP). 

4.22 Radiation patterns of a tuned patch antenna 
at 	8.6 GHz 	(EGP). 



CHAPTER 1 

INTRODUCTION 

The concept of microwave radiators was first proposed 

by Deschamps [1] in 1953, but the first practical antennas were 

developed only in the early 1970's by Howell [2] and Munson [3]. 

Since then, a considerable amount of research effort has been 

directed towards exploiting the numerous advantages of this 

class of antennas. 

The microstrip antenna consists of a radiating patch on 

one side of a dielectric substrate which has a ground plane 

on the other side. The patch can have any shape but is 

restricted to some geometrically regular patterns so that the 

analysis is simplified. 	A source of current located on the 

underside of the metallic patch antenna radiates an electro- 

magnetic wave. 	Some of the waves are diffracted and go back 

under the patch and store electromagnetic energy. Some radiate 

out into space and contribute to the useful radiation pattern 

of the antenna. 	Yet others, called the surface waves, remain 

within the dielectric substrate and propagate along the two 

dimensional air-dielectric interface [4]. 

Microstrip antennas are inherently narrow band devices 

and have a low power handling capability. 	However, since they 

are thin, light - weight, and conformable, they are very much 

suitable for applications such as in satellites and avionics. 
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In addition, 	this type of antennas can be mass produced using 

photolithographic technique. 

With the increasing popularity of microstrip antennas, 

the need for accurate modelling is also growing. 	Apart from 

accuracy, the models should be numerically efficient to suit 

the Computer-Aided-Design procedure. 

The earliest analytical model for the patch antenna, called 

the transmission line model, was published by Munson [3]. 	He 

modelled the patch as two radiating slots separated by a trans- 

mission line (Fig. 1.1). 	Although this model has the advantage 

of yielding very simple expressions for the radiation admittance, 

it does not take into account the mutual coupling between the 

main radiating slots and the influence of side slots on the 

radiation admittance. 	Derneryd [5,6] modified the model to 

account for the mutual coupling between the radiating slots. 

However, he did not consider the effect of side slots. Pues 

et al. [7] improvised the model to take into account all these 

shortcomings. 

The transmission line model gives very simple expressions 

to analyse the behaviour of patch antennas and is very well 

suited for rectangular patches. 	However, this model does not 

take into account the effect of surface waves, diffraction at 

the substrate and the ground plane edges, and contributions 

due to higher order modes. 

Lo et al. [8] 	developed 	an altogether different theory 

to 	analyse the patch 	antennas. The 	region between 	the patch 
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and the ground plane is treated as a cavity bounded by a magnetic 

wall all along the edge and electric walls above and below 

(Fig. 1.2). 	This model assumes that the thickness of the 

dielectric substrate is small. 	Therefore, the model fails to 

predict accurate results when the thickness is large in com- 

parison with the wavelength. 	Moreover, there is no convenient 

way to include the effect of surface waves in this model. 

Additionally, in both these models, length corrections are to 

be incorporated to take into account the fringing fields. 

The transmission line and the cavity models give good 

results for thin and low dielectric constant substrates. 

However, these models give relatively inaccurate results for 

thick or high dielectric constant substrates which are used 

in MMIC's. Moreover, since the effect of surface waves becomes 

much more pronounced in thicker substrates with high values 

of dielectric constant, it should be incorporated in the 

analysis. 

With the development of digital computers, a powerful 

numerical tool has become available to electromagnetic engineers 

in the form of method of moments. 	The moment method [91 

essentially utilises the exact Green's function for the grounded 

dielectric slab and, thus, inherently takes into account the 

effect of surface wave excitation. 	In addition, this method 

rigorously accounts for fringing fields and hence, no adhoc 

length corrections are needed. 
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Another important area in which a lot of recent research 

effort has been directed, is the development of feeding 

techniques for microstrip antennas. 	This has resulted in a 

number of feeding techniques, which can be classified into three 

categories as: 

* Direct contact feeds 

* Proximity coupled feeds 

* Aperture coupled feeds 

The earliest and simplest of all these feeds are the direct 

contact feeds, which include the microstripline feed and the 

co-axial line feed. 	In microstripline feed, the microstripline 

is etched along with the patch on the same substrate. 	It may 

touch the patch along the radiating or the non-radiating edge 

(Fig. 1.3). 	To obtain a proper impedance match between the 

feed and the patch, a matching network is also etched on the 

same substrate between the line and the patch. Alternatively, 

an impedance match can be provided by connecting the feed line 

at a suitable point along the radiating edge. 	The drawbacks 

of this feed system are that, the feed line also radiates along 

with the antenna causing degradation of the radiation pattern 

and the feed structure occupies a large area on the antenna 

substrate. 

The use of a matching transformer and unwanted radiations 

from the feed line can be avoided by using the co-axial feed. 

In this case, the inner conductor of the co-axial probe is 

connected to the patch through the substrate and the outer 
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conductor is connected to the ground plane (Fig. 1.4). 	The 

impedance matching can be obtained by adjusting the position 

of the feed point. 

In case of proximity coupled feeds [10,11], the antenna 

element is electromagnetically coupled by close proximity to 

a microstripline., The antenna element may be in the same plane 

as the feed line (Fig. 1.5(a)) or printed on a superstrate 

(Fig. 1.5(b)). 	Tighter coupling can be obtained in the latter 

case by having the antenna element overlap the feed line. The 

amount of power coupled to a proximity coupled element can be 

easily controlled by the spacing between the element and the 

microstripline. 

Pozar [12,13,14] suggested the aperture coupled feeds 

for the microstrip patch antennas. Here the microstrip antenna 

is proximity coupled to a small aperture in the ground plane 

which is coupled to a microstripline (Fig. 1.6). 	This type 

of feed arrangement is well suited for monolithic applications 

since one substrate can be of low permittivity, suitable for 

printed antenna purposes, while the other substrate can be of 

higher dielectric constant for active circuit fabrication. 

The ground plane reduces the spurious coupling from feed to 

the antenna element and the spurious radiation due to feed 

circuitry in the front halfspace. 

The versatility of the microstrip patch antenna suggests 

its potential usefulness at millimeter wave '(mm-wave) frequen- 

cies. 	However, the feed structures that operate very well at 
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microwave frequencies are not viable with mm-waves. At mm-wave 

frequencies, losses become significant in microstripline and 

co-axial feed components are not available above 50 GHz. 	The 

feed line losses can be very significant when one is dealing 

with an array antenna with its associated complex feed circuitry. 

It is, therefore, necessary to consider a low loss transmission 

medium, such as a waveguide, as a feed for microstrip antennas. 

Some •preliminary investigations, mainly experimental, were 

carried out by Greenlee et al. [15] on such a feed system. 

Their results indicate that an iris-coupled waveguide feed is 

worthy of consideration, especially for mm-wave microstrip 

antennas. However, they could not achieve a good impedance 

match until the iris size was made equal to the waveguide 

dimension. 	Since the performance of such an antenna depends 

upon the waveguide-iris and the iris-patch interactions, which 

can be rather complex, it is felt that more investigations are 

required before any firm conclusion can be drawn. 	Further, 

since a purely experimental investigation would be too costly, 

time consuming, and prone to tolerance induced errors, an attempt 

should be made to develop a suitable theoretical model for this 

type of feed. 

1.1 Statement of the Problem 

The problem treated in this dissertation is divided into 

two parts as follows: 

(a) Analysis of a rectangular microstrip patch antenna coupled 

to a rectangular waveguide via an aperture in its ground 

plane using the method of moments. 
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(b) Experimental investigations on the proposed antenna. 

1.2 Organisation of the Dissertation 

The work embodied in this dissertation has been arranged 

in five chapters. 	In Chapter 2, a moment method formulation 

is presented for analysing the problem of a waveguide fed patch 

antenna. Explicit formulae have been derived for various 

matrices and vectors for the particular case of a rectangular 

patch coupled to a rectangular waveguide via a rectangular 

aperture in the ground. plane. The evaluation of input impedance 

and the input reflection coefficient are also included in this 

chapter. 	The far-field pattern has been computed for the 

particular case of air-dielectric patch antenna. In Chapter 3, 

the computer program is discussed and the numerical results 

obtained from it are presented. 	In Chapter 4, results of the 

experimental study conducted on the patch antenna have been 

presented. 	Finally, Chapter 5 concludes the dissertation 

discussing the successes and failures of this work and suggesting 

some problems for future work. 

Also included are two appendices which contain the 

procedure followed to solve some of the integrals. 
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Fig.1.1: Rectangular microstrip antenna with 
equivalent radiating slots. 

MAGNETIC 
WALL 

ELECTRIC 
CONDUCTORS 

Fig.1.2 : Cavity model indicating electric and 
magnetic conductors. 
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CHAPTER 2 

PROBLEM FORMULATION 

In this chapter, a general formulation is presented for 

the analysis of a microstrip patch antenna coupled to a 

rectangular waveguide via an aperture in its ground plane. 

The equivalence principle, in conjunction with the appropriate 

boundary conditions, is utilised to describe the problem in 

terms of a pair of coupled integro-differential equations, which 

are reduced to a set of algebraic equations using the method 

of moments. 	These can be solved using a digital computer, 

yielding magnetic and electric currents on the aperture and 

the patch respectively. 	Once the unknown currents are 

determined, antenna characteristics can be computed using 

standard techniques. 

The general formulation of the boundary value problem 

and its reduction into matrix form is presented in Section 2.1. 

Using the piecewise sinusoidal expansion and testing functions, 

defined in Section 2.2, various matrices and excitation vector 

are determined in Sections 2.3 through 2.5. 	The Section 2.6 

describes the calculation of input impedance and input reflection 

coefficient. 	In Section 2.7 radiated power is calculated along 

with the .radiation pattern. 
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2.1 Formulation 

Figs. 2.1 and 2.2 illustrate the geometry of the problem, 

the coordinate system, and various parameters used. A perfectly 

conducting and infinitely thin patch with its centre at (xcp,ycp) 

and having dimensions Lp  x Wp  is placed on the top of a 

infinitely large grounded dielectric slab having a thickness 

d and dielectric constant E. 	The patch is excited via a 

rectangular opening in the ground plane of zero thickness having 

dimensions L 	x W 	with its centre at (x ,y ). This structure 
ap 	ap 	 cc 

is excited by a rectangular waveguide of dimensions a x b, whose 

axis coincides with the z axis. 

The problem can be separated into two distinct regions 

by the application of equivalence theorem. 	The aperture is 

covered by a perfectly conducting screen and equivalent magnetic 

currents M and -M are placed on either side of it (Fig. 2.3). 
s 	s 

This ensures the continuity of the electric field across the 

aperture. 	The equivalent surface magnetic current is given 

by 

M = z x E 	 (2.1) 
s 

where E is the aperture electric field of the original problem. 

Similarly the patch is replaced by an equivalent electric current 

J , given by 
p 

J = H x z 	 (2.2) 
p 

where 2 represents the unit vector in the positive direction 

of the z-axis and H is the patch magnetic field of the original 

problem. 
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The application of the equivalence theorem has decoupled 

the problem into two distinct regions, namely, region 'a' and 

region 'b'. 	Region 'a' is a semi-infinite waveguide in which 

the total field is produced by the impressed sources and the 

equivalent magnetic current Ms. Region 'b' is a halfspace with 

an infinitely large grounded dielectric slab of thickness d. 

The total field in region 'b' is due to the equivalent magnetic 

current -Ms  on the surface S and the equivalent electric current 

Jp  on the patch. 

The total tangential magnetic field on S in region 'a', 

Ht is given by 

Ha  = Hsc  + H(i) 	over S 	(2.3) 
t t 	t s 

where Htc  is the tangential component of the magnetic field 

of the original problem and Ha(M3 ) is the tangential magnetic 

field produced by the equivalent magnetic current Ms  over S. 

In region 'b' the total tangential magnetic field over S, Hb 

is given by 

Hb  = i(T) + Hb(-Ms) 	over S 	(2.4) 

where H(J) and H(-M5) are the tangential components of mag-

netic field due to the electric current Jp  on the patch and 

the magnetic current -Ms  over S. The component of electric 

field tangential to the patch, Et is given by 

Et = Et(5 ) + Eb(-MS ) 	 over patch 	(2.5) 

where Eb(Jp) and E(-Ms) are the tangential (to patch) components 
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of electric fields due to electric current Jp  on the patch and 

the magnetic current -Ms  on the surface S. Using the linearity 

of the operators Ht  and Et, (2.4) and (2.5) can be written as 

Hb = ii(5) - Hb(M5) 	 (2.6) 

Eb = Eb(Jp) - Eb(s) 	 (2.7) 

Enforcing the boundary condition that the tangential component 

of H is continuous across the aperture, we obtain from (2.4) 

and (2.6) 

Hb(Jp) - Hb(MS ) - Ht(Ms) 	over S 
	(2.8) 

On enforcing the other boundary condition, that is, the tangen-

tial component of electric field vanishes on the patch, we get, 

from (2.7) 

Eb(Ms) - Eb(5 ) = 0 
	over patch 	(2.9) 

It is worth noting at this juncture that all these fields are 

to be evaluated with the aperture closed by a perfectly conduct- 

ing screen. 	Equations (2.8) and (2.9) are a pair of coupled 

integro-differential equations, which are to be solved for the 

unknown currents Ms  and Jp. 	An approximate solution for (2.8) 

and (2.9) can be obtained by the method of moments. 

In the method of moments, the currents Ms  and 3 are 
P 

expressed as a set of known expansion functions with some unknown 

complex coefficients. 	Let two sets of expansion functions 

{Jn, n = 1,2,...,N1} and {Mjr j = 1,2,...,N21 be 	defined 	over 
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the patch and the surface S, respectively, such that 

N1 

Jp = z In Jn  (2.10) 
n=1 

N2 

M = E V. M.  (2.11) 
s j=1 J J 

where J and M. are the known vector basis functions and In 

and V1 are the unknown complex coefficients to be determined. 

Substituting (2.10) and (2.11) in (2.8) and (2.9) and using 

the linearity of the operators, we get 

In Htb(5 ) - j V. H
b(M~ ) - z V] ffa(M]) = Hsc 

n 

over S  (2.12) 

E Vj E(M) - E In Et(Jn)  0  over patch  (2.13) 
j 	 n 

Define an inner product for this problem as 

<A,B>S(or patch)  Sf  KE ds  (2.14) 

(or patch) 

Let us now define two sets of testing functions {U m, m=1,2,..,N1 } 

and {Wi, i=1,2,..,N2} over the patch and the surface S respec-

tively. Taking the inner product of Wi with (2.12) and Um with 

(2.13), we get 

E I <Wi,Htb(5 )> - j V. <WirHt(Mj)> 

-  V. <Wi, Ha( Mj)> = <Wi,Htc> 

7 

over S  (2.15) 
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-E In <Um,Eb(7 )> + j V.  < Um,Eb(M
j
). > = 0 

n
n 

over patch  (2.16) 

The equations (2.15) and (2.16) can be written in the matrix 

notation by defining the following matrices and vector. 

(i) An admittance matrix for region 'a' 

[Ya] 	[-<Wi,Ht(Mj)>]N 2 x N2 	
(2.17) 

(ii) An admittance matrix for region 'b' 

[Yb] = [-<WiIHb(M.)>]N x N  (2.18) 
2 	2 

(iii) A matrix due to coupling from patch to surface S 

[Tb] = [<Wi, b(Jn)>]N x N  (2.19) 
2 	1 

(iv) A matrix due to coupling from surface S to patch 

[Cb] = [<UmIEt(Mj)>]N x N  (2.20) l
x 

(v) An impedance matrix for the patch 

[zb] = [-<Um ►Et(Jn)>]N x N  
(2.21) 

1 	1 

(vi) An excitation vector 

[I1] _ [<Wi~ Htc>]N x 1  (2.22) 
2 

(vii) The coefficient vectors 

[I) _ (In]N x 1 	 (2.23) 
1 
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["I =[V.]N x 1 	 (2.24) 

Combining the two vectors (2.23) and (2.24) 

[I] 
[V 	_ ( 2.25) T 	[ v]  

(N 1+N2 ) x 1 

Using the definitions (2.17) through (2.25) the equations (2.15) 

and (2.16) may be written in matrix notation as 

[Tb] 	[Yb  + Ya] 	[] 	[[cu J 

_ 	 (2.26) 

[Zb] 	[Cb] 	[V] 	0 

which is of the form 

[Y][VTI = [I] 	 (2.27) 

where 

[I1 ] 
[Z] = 

	

	 (2.28) 
(N1+N2) x 1 

The solution of (2.27) is 

[VT]  = [Y]-1[I] 
	 (2.29) 

It may be emphasized here that the formulation presented so 

far is completely general and can be applied to aperture and 

patch of arbitrary shape and size. However, larger the size 

of the aperture and patch, more will be the requirements of 



computer storage and run time, which places a practical 

limitation on the size of the problem which can be solved. 

2.2 Choice of Expansion and Testing Functions 

For the solution of the problem under consideration, we 

have chosen the same function for both expansion as well as 

testing. 	This is known as "Galerkins procedure". 	Use of 

Galerkins procedure reduces the computational efforts to a 

considerable extent. 

The rectangular aperture of dimensions Lap  x Wap  is 

subdivided into a number of rectangular subareas of length Ax 

in the x direction and Ay in the y direction. 	The set M. of 

magnetic current expansion functions is further split into a 

set of x-directed currents, Mx and a set of y-directed currents, 

M. When the aperture is very narrow compared to the waveguide 

dimensions, y-directed currents can be neglected. Hence, 

assuming a narrow aperture, only x-directed magnetic current 

expansion functions are considered over the aperture in the 

present problem. These currents are defined as 

MX = Mx 	 = x MX = x Sx(x-x + L /2) 
s+(t-1)(Lx-1) J s c ap 

Pt(Y-y c+ Wap/2) 	t = 1,2,...,Lyx
-1)  (2.30) 

where L and L are, respectively, the number of subsections 
x 

along the x and y directions. 	S and Pt are, respectively, 

the piecewise sinusoidal and pulse functions, defined as 
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x 	Sin kap[1x-ix-x1-spx1) 
Ss(x-xl) 
	Sin k px 	; x1+(s-1)px < x < 

ap 

x1+(s+l)Ax 
(2.31) 

0 	; elsewhere 

Pt(y-yl) = l/ 

Lo 

where 

xl  = xc  - Lap/2 

yl  == yc  - Wap/2  

y1+(t-1)py<y<y1+tpy 
(2.32) 

elsewhere 

(2.33) 

Similarly, the rectangular patch of length Lp  and width 

Wp  along x and y directions, respectively, is subdivided into 

Lxp  subsections of length Axp  along x and Lyp  subsections of 

length Ayp  along y. The equivalent electric current Jn  is split 

into two components namely, J along x direction and Jn along 

y direction. 	For the present case, the x-directed currents, 

Jn on the patch will have negligibly small amplitudes as compared 
with y-directed currents, Jn [16). 	Thus, for the present ana- 

lysis, only y-directed currents on the patch are considered. 

These currents are defined as 

	

Jy ^ Jy 	ŷ Jy  

	

n y n 	s+(t-1)Lxp  

s=1,2,..,L 
y St(y-ycp 	p 	s 	c  + W/2) P(x-x p+Lp/2) 	xp 	(2.34) 

t=1,2,..,(Lyp-1) 

where St and P are given by 
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Sin ke(Ayp-Iy-ylp-tAyp ~) 
St(y-ylp) _ 

Sin(keAyp) 

ylp+(t-1)Ayp < y < ylp+(t+l)Ayp (2.35) 

0  ; elsewhere 

Ps(x-xlp) =  1/Axp 

xlp+(s-1)Axp < x < sAxp+xlp 	(2.36) 

0  ; elsewhere 

with 

xlp = xcp - Lp/2 

Ylp = Ycp - Wp/2 
(2.37) 

The parameter, ke is called the effective propagation constant 

and is given by 

ke = ire ko 	 (2.38) 

G +1 	G -1 	-1/2 
Ere = ( 2 ) + ( 2 )(1 + !Wd) 	(2.39) 

ko = w uo 
 

(2.40) 

The parameter, kap is given by 

kap = (k 0 + k
e)/2  (2.41) 

where E is the relative dielectric constant of the dielectric 
r 

slab. 
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2.3 Evaluation of [Ya] 

From (2.17) an element of admittance matrix for the wave-

guide region, [Y a] is given by 

Yi 	i• = <_M, Ht(M > 
J 	J)  

The magnetic field due to Mil Ht (Mj) , can be expressed in terms 

of the electric vector potential, F j  as 

Ha(Mj) _ -jWT + VVJ /(jwuoGo) 	(2.42) 

with 

F j  = Go  ff gm(rlr'). j(r')ds' 	 (2.43) 
S 

where r and r', respectively, denote the position vectors of 

the field and the source points and gm(rIr') is the dyadic 

Green's function corresponding to the electric vector potential 

for the waveguide region and is given by [17] 

= E 	E {E G /(abr )} {[(ss) (cc) y  
m 	m n 	mn 	x m=0 n=0 

+ yy(CC)x(SS)y]p(m,n) 

+ zz(CC)x(CC)y  q(m,n)} 	(2.44) 

-r 
e mn  Cosh(rmnz') 	z > z' 

p(m,n) _ 	 (2.45) -r z' 
e mn  Cosh(rmnz) 	z < z' 

-r 
e mn  Sinh(rmnz') 	z > z' 

q(m,n) _ 	 (2.46) 
-r z' 
e mn  Sinh(rmnz) 	z  < z' 
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where 

r2 	= (mn/a) 2  + (nit/b) 2  - k 	 (2.47) 

(SS)x  = Sin[(mii/a)(x+a/2)] Sin[(mt/a)(x'+a/2)] 	(2.48) 

(CC)y  = Cos[(nit/b)(y+b/2)] Cos[(nr/b)(y'+b/2)] 	(2.49) 

and Em , G n  are the Newman's numbers, defined as 

1 	for 	i = 0 
G. = 	 (2.50) 

2 	for 	i > 0 

Since Mi  has only x-directed components, the admittance matrix 

[Ya ] may be written as 

[Ya ]  = [Yaxx] 	
(2.51) 

The electric vector potential F may be obtained by substituting 

(2.30) and (2.44) in (2.43) as (see Appendix A) 

F
j 
 = x eo  E 	E (em  en/(abrmn )) Sin[(mi/a)(x+a/2)] 

m=0 n=0 

Cos[(nir/b)(y+b/2)]{FACT(s,t)} 	(2.52) 

4 x k 
FACT(s,t) _ - 	 2ap 	2 	{Cos[(nTF/b)(yi+t Ay) 

Sin(kapAx){kap-(miT/a) } 

-nrAy/(2b)+(nn/2)]}{Sin[(kap+(mT/a))(Ax/2)]} 

{Sin[( kap-(mii/a))(Ax/2) ]}{Si n(n7Ay/(2b))}  

{Sin[ (mit/a) (x1+sAx)+(mn/2)] } 	 (2.53) 

Taking the gradient of the divergence of the vector potential 

function, we obtain (noting thatF.
3 
 has only x component) 
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a2Fx  a2F.  a2FX 
0(D,F,) = X a 2 + y- 	y + z 	 (2.54) 

Substituting (2.54) in (2.42) and simplifying, we get 

_  a2Fx  a2Fx 
Ht(Mj) = x[-jwF~ + jwu E (  2j)]+Y[ jW' C (a  )] 

0 ox 	o o 

a 2 FX 
+z[jwuG(axaz  

(2.55) 
oo  

Multiplying (2.55), scalarly, by testing function, Mi 

_ 

Mi.Ht( Mj)  _ -jwF~M. + jwu E Mi  2  (2.56) 
0 o  ax 

Substituting (2.30), (2.52) and (2.56) in (2.17) and simplifying, 

we get 

Yaxx = E Z(EmGn/(abr )){jwGo+(1/jwuo)(m'i/a)2} 
m n 

{FACT(s,t)}{FACT(p,q)} (2.57) 

In equation (2.57) 

i = p+(q-1)(Lx-l) 
p=1,2,..,Lx-1 

(2.58) 

 

j = s+(t-1)(Lx-1) 
s=1,2,..,L -1 

x 

t=1,2,..,Ly 
(2.59) 

FACT(p,q) is given by (2.53) with s and t replaced by p and 

q respectively. 



2.4 Evaluation of [Yb], [Tb], [Cb] and [Zb] 

In this section, expressions have been derived for the 

evaluation of [Yb], [Tb], [Cb] and [Zb]. 	For the evaluation 

of these matrices, the fields due to a given current in the 

presence of a grounded dielectric slab are required. The fields 

can be obtained by convolving the given expansion function 

against the appropriate Green's function. The required Green's 

functions are the y-directed electric field and x-directed 

magnetic field due to a y-directed infinitesimal electric dipole 

at (xo,y o,d) and the same field components due to an x-directed 

infinitesimal magnetic dipole at (x0,y0  0) for the grounded 

dielectric slab, where the ground plane and dielectric to air 

interface are located at z = 0 and z = d respectively. 	These 

Green's functions are obtained in the spectral domain. In 

principle, the term, 'Spectral Domain Approach' refers to the 

application of integral transforms, such as Fourier transforms, 

to the solution of boundary value and initial value 

problems [18]. 

2.4.1 Grounded Slab Green's Functions [19] 

The Green's functions due to y-directed infinitesimal 

electric dipole at (xo,yo,d) are: 

(1) the y-directed electric field at z = d 

00 

GEJyy(xlydIxolY0Id) _ If QEJyy(kx,ky) 
jk (x-x )+jk (y-y ) 

e x o Y  ° dk dky 	(2.60) 
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4  (k ,k  
Z  (Erko-ky)k2Cos(kid)+j(ko-k2)k1Sin(kld) x 

EJyy x y
) - -j 

 4Tr2k  Te Tm 0 

Sin(k1d)  (2.61) 

(2) the x-directed magnetic field at z = 0 

CO 
GHJxy(x,y,OIxo,yo,d)  ff QHJxy(kx,ky) 

_CD 

jk (x-x )+jk (y-y ) 
e x 0 y 0 dk x  y  dk  (2.62) 

-G k k Cos(k d)+j{k2(0 -1)-k2}Sin(k d) 

QHJxy(kx'ky)  = 1
2  r 1 2  1  T  T  r  1  1  

(2.63) 
4ir 

 
em 

The Green's functions due to x-directed infinitesimal magnetic dipole at 

(x0,y010) are: 

(1) the x-directed magnetic field at z = 0 

CO 

GHMxx(x'y'OIxo,yo,0)  ff 4HMxx(kx,ky) 

jk (x-x )+jk (y-y ) 
e x 
 0 	y  ° dkx  dky 

 
(2.64) 

QHMxx(kx,ky) - 4
2k Z kl Te Tm 

 [jkxkl(Er 1)+ (Erko-kx)x 

00 

{k1k2(G +l)Sin(kld)Cos(kld)+j(Erk2Sin2(kld) 

-k2Cos2(k1d))}I 	 (2.65) 
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(2) the y-directed electric field at z = d 

00 

GEMyx(x,y,dlxo,yo,0) _ -If QEMyx(kx ~ky ) 

jk (x-x )+jk (y-y ) 
x  0 

 

e  y  o dkx dky  (2.66) 

QEMyx(kx,ky) = -QH,7xy(kx,ky)  (2.67) 

In the equations (2.60) - (2.67) 

Re(k ) > 0 
k =' Erk2-R2  

1 —  
(2.68) 

Im(kl ) < 0 

Re(k2 )   > 0 
k = ~2-52 	 (2.69) 
2  o  Im(k2) <0 

Te = k1Cos(k1d) + jk2Sin(k1d)  (2.70) 

Tm = Erk2Cos(k1d) + jkISin(k1d)  (2.71) 

k2 = w2p Go 	 (2.72) 

 

= k2 + k2  (2.73) 
x  y 

zo = u  (2.74) 

2.4.2 Evaluation of [Yb] 

From (2.18) an element of the matrix [Yb] is given by 

Yb. = -<Mi ,Hb(Mj ) > 
1J 	 t 
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The magnetic field due to Mj can be obtained by convolving the 

corresponding Green's function, eq.(2.64) with M. as 

00 

f f M~(xolyo) -
u II 4HMxx(kx,ky) 

yo xo 

jk (x-x )+jk (y-y ) 
e x 0 y ° dk dk dx dy  (2.75) 

Taking inner product of Mi with Hb(M.), we get 

Y. = - f f Mx(x,y) f J M~(x°,y°) If QHMxx(kx,k y x 	y x 	 - o o ~ 	 y 

jk (x-x )+jk (y-y 
e x  o  y  ° dkx dky dxo dy0 dx dy  (2.76) 

This six fold integral can be converted into a double integral 

by writing 

b 	 CO 
Yij 

_ _ 
 JJ QHMxx(k

x,ky) F*(Mx(x,y)) F(M~(xo,yo)) dkx dky 
-~ 

(2.77) 

where 

F*(Mx(x,y)) = F*x(kx,ky ) 
Mi 

x  jkxx+jk  
= f f M  

y 
(x,y) e  y dx dy  (2.78) 

y x 



F(M'(xo,yo)) = F x(kx,ky) 
M. 
J 

-jk x -jk y 

= f J M~(xo,yo) a  x o  y o dxo dyo (2.79) 

y xo 

are the complex conjugate of Fourier transform of Mx(x,y) and 

Fourier transform of M~(xo,yo) to be evaluated analytically. 

Equations (2.78) and (2.79) can be separated into k dependent 

and ky dependent functions as 

F*(k,k ) = F*x(k) F* (k )  (2.80) 
M  y  M  Mi y 

 

i  i  

FMx(k,k) = FMx(k) FMx(ky)  (2.81) 

 

J  J  J 

The double integral over k and k in (2.77) can be transformed 
x  y 

into polar coordinates by writing 

k = Cosa 	 (2.82) 
x 

k = aSina  (2.83) 
y 

Therefore, equation (2.77) can be written as 

	

211 	O0 

Yb. _ -  f  f 4  (k k )[F* (k ) F (k )] 

	

1J 	a=0 3=0 HMxx x y Mx x MJ x 

[F* (k ) F (k )]  d6 da  (2.84) 

MX y MX y 

These Fourier transforms can be obtained by direct integration 

of (2.78) and (2.79) as (see Appendix B) 
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2 k  Cos(k px)  jk (x +ppx) 
F* (k ) _ ~— [Cot(k px) -  x  ) e x 1 
Mx X  k2-k2  ap  Sin(kapAx 
i  x ap  (2.85) 

2 k  Cos(k px)  -jk (x +sAx) 
F x(kx) = 2 

ap 
[Cot(kap£x) - Sin(kx px ) ] e  

x 1 

Mj 	x ap k2-k2 	ap 
(2.86) 

Sink py/2) jk (y
1 
+(q-Z)py) 

(2.87) FMx( ky) _ (kypy 2) 	e Y 

Sink py/2) -jk (y +(t-z)py) 
FMx(ky) _ (k py 2 	e 	y 1 	(2.88) ) 

J 

Using (2.65), (2.82), (2.83), and (2.85) through (2.88), the 

equation (2.84) can be written as 

b 	
2Tr 	m 

y13 _ - 	f  
~~ 	a=0 S-0 HMxx 

ejsAx(p-s)Cosa + jRAy(q-t)Sina$ ds da 	(2.89) 

where 

4HMxx (a '~ ) = 	-] 	T T Ij(~Cosa) 2k2(G -1 ) 
4ir k0Z0 1 e m 

+(Erko-(SCosa)2){klk2(e +1)Sin(k1d)Cos(k1d) 

+ j(erk2Sin2(kld)-k2Cos2(kid))}] 	(2.90) 

4 kap  
	px) - Cos (SpxCos a) 

	

F1( a, ) _ (k2-k2 ) {Cot(k  ap 	Sin (kap px) } 
x ap 

Sin(aAySina ) 	2 
2 

( ~pySina ) 
2 

(2.91) 
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We note from (2.90) and (2.91) that QHMxx(a,8)  and Fl(a,$) are 

even functions of a. 	Substituting 0 = a -it in (2.89), we get 

it b _ -f f 	J {4HMxx(0'S)}{F1(0,$)}[{Cos[S(p-s)AxCos0] x 
3=0 0=-lr 

Cos[S(q-t)AySinO] - Sin[8(p-s)AxCosO] x 

Sin[S(q-t)AySinO]} + j{Sin[R(p-s)AxCosO] x 

Cos[8(q-t)AySin0] + Cos[8(p-s)AxCos0] x 

Sin[8(q-t)AySinO]}] 8 dO d8 	(2.92) 

Using the even and odd property of the integrand, (2.92) reduces 

to 

11 
Y. = -2 	J 	f{QHMxx(0,8)}{F1(O,8)}{Cos[$(p-s)AxCosO] 

x 
s=o 0=0 

Cos[S(q-t)zysinO] + jSin[R(p-s)BxCosO] x 

Cos[8(q-t)DySinO]} S dO d8 	(2.93) 

Equation (2.93) may be written as 

1r/2  
Yb.=-2 	J 	J( ) sd0ds-2 	J 	Sc ) sd0ds 

s=o 0=0 	s=o 0=o 
(2.94) 

Substituting 0 = a in the first integral and 0 = a +Tr in the 

second integral of (2.94) and simplifying, we get 

00 712 
Yb = -4 	f 	f {4HMxx(a,8)}{Fl(a,$)} 
ii 	S=0 a=0 

{Cos[8(p-s)AxCos0] 	Cos[S(q-t)Sin0]} s da ds (2.95) 

which can be written as 
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Yi =QHMxx(k  X 
,k ) 

x 
22  2  

ap 	
a 	a  {k Cot(k Ax) 

S=0 a=0 	Y 	(k -k) 	P 	p 

k Cos(k Ax) Sink Ay/2) 	2  

- 	
x 	 y x Cos{k (p-s)Ax} x Sin(kapAx }{ ky  Ay /2) } 	x 

Cos{ky(q-t)Ay} 	dog dB 	 (2.96) 

In equation (2.96) 

p=1,2,..,L -1 
i = p+(q-1)(L x-1) 	

x 	
(2.97) 

q=1,2,..,Ly  

s=1,2,..,L -1 
j = s+(t-1)(Lx-1) 	x 	(2.98) 

t=1,2,..,Ly  

2.4.3 Evaluation of [Tb] 

From (2.19) an element of the matrix [Tb] is given by 

Tbn  = <Mi ,Hb(Jn)> 

Following the procedure of section (2.4.2) and using the Green's 

function given by (2.62), we get 

Tb 	ir/2 	2 
i T 	= 4 J 	f Q 	(k ,k )[ 	{k Cot(k Ax) n 	

R=0 «=0 HJxy x y (k2  k2 ) ap 	ap 
x ap 

k Cos(k Ax) 

Sink xx)} 
	22 

-k2) 
  {keCot(keAYp) 

ap 	(kye  

k 	 Sink Ax /2) 
Sink:Ayp Cos(kyAyp )}] x [ (kxAx p  2 	X 

Sink 
k Dy  2 	] x Cos{kx(xl-xlp)+kxAxp-kx pxp(s-2)} x 
Y 

Cos{ky(Yl-Ylp)+kyDY(q-z)-kyAyp0 

 

8 do d 	(2.99) 
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In (2.99) 

i = p+(q-1)(Lx-1) 

n = s+(t-1)(Lxp) 

2.4.4 Evaluation of [Cb] 

p=1,2,..,Lx-1 

q=1,2,.. ,Ly 

s=1,2,.. 

t=1,2,..,Lyp-1 

(2.100) 

(2.101) 

From (2.20) an element of the matrix [Cb] is given by 

Cmc _ <Jm,Eb( M~)> 

Following the procedure of section (2.4.2) and using the Green's 

function given by (2.66), we get 

1T = 4 	J2  2 Cb J 	j Q 	(k k )[ 	{k Cot(k Ax) 
mj 	n=0 S=0 EMyx x y (k-k2 p -ka ) ap 	ap 

k pCos(k Ax) 

Sin(k xx } x 
	22 2 {keCot(keAyp) 

ap 	(ky-k e) 

k 

	

	 Sin(k Ax /2) e 
Sin(k e Ay p Cos(ky Ayp ) }] x [ (kxAxp 

/2) 
	X 

Sin(k Ay/2) 
[ k 	2 	] x[Cos{kx(xlp-x1)+kxAxp (u-2)-skxAx}] x 

Y 

[Cos{ky (yip -yl)-kyAy(t-,)+vkyAyp}] B dB da 
	(2.102) 

In (2.102) 

u=1,2,..,L 
m = u+(v-1)(Lxp) 	xp 	(2.103) 

v=1,2,..,Lyp-1 

s=1,2,..,L -1 
I = s+(t-1)(Lx-1) 	x  (2.104) 

t=1,2,..,Ly 
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2.4.5 Evaluation of [Zb] 

From (2.21) an element of the matrix [Zb] is given by 

Zmn = <Jm,Eb(Jn)> 

Following the procedure of section (2.4.2) and using the Green's 

function given by (2.60), we get 

Zb  = - 4 7T/2 co  2  
mn  f 	f QEJ (k  'k  )   

e  e  {kCot(kAyp) 

 

a=0 S=0  yy x  y L(k2-k2ye) 

k Cos(k Ay ) Sin(k Ax /2) 2  

Sin(k A p  }{ (k px  p  }  x Cos[kx(u-s)Ax ] x 

 

e Ay  x p  p 

 

Cos[ky(v-t)Ayp] S ds da  (2.105) 

In (2.105) 

u=1,2,..,L 
in = u+(v-1)(Lxp)  xp  (2.106) 

v=1,2,..,Lyp-1 

s=1,2,..,L 
n = s+(t-1)(Lxp)  xp  (2.107) 

t=1,2,..,Lyp-1 

2.5 Evaluation of Excitation Vector I1  
From (2.22) an element of the excitation vector is given 

by 

Ii = <Mi,Htc  > 

The magnetic field of the original problem, tangential to S, 

Hoc  is given by 

Hsc = Hinc + Href  (2.108) 
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where Htnc  and Htef  are, respectively, the incident and reflected 

magnetic fields tangential to S. Since the screen is a perfect 

conductor, Href = Hinc and (2.108) reduces to 

Hsc  = 2 Htnc 	 (2.109) 

Substituting (2.109) in (2.22) we get 

Ii = 2 <Mi,Htnc> 	 (2.110) 

For TEmn  mode incidence, the tangential magnetic field on S 

is given by [11] 

-r inc 
 mn 	mn = Y 	

a mn z x e 	 (2.111) 

where Ymn' rmn and emn  are, respectively, the characteristic 

admittance, the propagation constant and the normalized modal 

vector for the incident mode, and are given by 

emn = [abGmEn/{(mb)2+(na)2}]i  x [x(n/b)Cos{(mn/a)(x+a/2)} x 

Sin{(nir/b)(y+b/2)} - y(m/a)Sin{(mn/a)(x+a/2)} x 

Cos{(nii/b)(y+b/2)}] m=0,1,2,...  m+n 0 	(2.112) 
n=0,1,2,... 	— 

Ymn = - jr mn/(Z0k0 ) 	 ( 2.113) 

rmn  is given by (2.47) 

Zo  is given by (2.72) 

ko  is given by (2.74) 

From (2.110) and (2.111) an element of the excitation vector 

can be written as 
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1 = 2 Ymn  ff Mi.(2 	x emn) ds 
S 

Substituting (2.30) and (2.112) 

we get 

I1 = 2 Y 	A. i 	mn imn 

(2.114) 

in (2.114) and simplifying, 

(2.115) 

where 

Aimn = [abGmGn/{(mb)2+(na)2}.]1/2  (m/a){FACT(p,q)} 	(2.116) 

FACT(p,q) is given by (2.53) with s and t replaced by p and q 

respectively. 

In (2.115) and (2.116) 

p=1,2,..,L -1 
i = p+(q-1)(Lx-1) 	x 	(2.117) 

q=1,2,..,Ly  

2.6 Evaluation of Input Characteristics 

In this section, expressions for the calculation of input 

characteristics like standing wave ratio, reflection coefficient 

and impedance are derived. 	First the reflection coefficient 

is obtained in terms of complex amplitudes of the current on 

the aperture. 	Once the reflection coefficient is determined, 

the other parameters can be obtained without any difficulty. 

For the calculation of the reflection coefficient, let 

z = 0 be the reference plane. 	The reflection coefficient is 

given by 

r = v+ 
V 

(2.118) 

where V  and V are the amplitudes of the incoming and outgoing 
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waves at the reference plane. Assuming the energy is incident 

in TE10  mode, the total electric field transverse to the direc-

tion of propagation (z axis) in region 'a' is given by 

Et = Etnc + Eref + Et(• ) 
	

(2.119). 

where Etnc  and Ete f  are the transverse (to the direction of 

propagation) components of the incident and reflected fields 

and Et(Ms) is the transverse field produced by Ms  at z = 0. 

The expressions for the above fields may be written as 

-rz 
Etnc  = e o  eo 	 (2.120) 

r z 
Etef 	-e o  eo = _ 	 (2.121) 

N2  

Et(Ms) = 	Vi  Ea(R 	 (2.122) 
i=1 

with 
rz 

Et(Mi ) = A 	e o  eo 	 (2.123) 

where the subscript 'o' denotes the dominant mode, eo is the 

normalized modal vector and Aio  are the modal amplitudes given 

by (2.112) and (2.116) with m = 1 and n = 0, respectively. 

At the interface (2.120) through (2.123) reduce to 

—inc _ eaa 	( 2.124) 

Eref = _e as  (2.125) 

N2  

Ea(Ms) = E Vi  Ea(Mi) 	 (2.126) 
i=1 



with 

t(Mi) = Aio 0 
	 (2.127) 
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Now, the amplitudes of the incoming and outgoing waves at the 

interface can be written as 

+ = eo V 	 (2.128) 

_ 	N2 
V = - 0 -a + E Vi  Aio  eo 	 (2.129) 

i=1 

From (2.118), (2.128) and (2.129) we obtain the value of the 

input reflection coefficient as 

N2  

r = -1 + E Vi  Aio 	 (2.130) 
i=1 

The normalized input impedance is now given by 

Zin = lIr 	

(2.131) 

whereas, the voltage standing wave ratio, VSWR is 

l+f rl 
VSWR = 	 (2.132) 

2.7 Far Field Calculations 

The far field computation in this work has been carried 

out with a view to verify the present theory by comparison with 

previously published works. Since these include the radiation 

from a waveguide aperture into free space with (or without) a 

rectangular plate in its near field, we have considered only 

the particular case of air-dielectric patch antenna. 
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Fig. 2.4 shows the geometry for the measurement of a compo-

nent Em  of electric field at a point rm  in the region z > 0. 

This measurement may be carried out by placing an electric dipole 

ilmd(r-rm) at rm  and applying the reciprocity theorem to its 

field and to the original field. The two sets of sources here 

are the dipole at rm  and the electric current Jp  on the patch 

and magnetic current Ms  on the surface S, radiating in the 

presence of a continuous ground plane at z = 0. On application 

of image theory the ground plane can be removed and the two 

sets of sources become 

1. electric dipole at rm  

2. the magnetic current -2M5  over S, electric current Jp  

over the patch and the electric current -Jp  over the 

image of the patch. 

Using the reciprocity theorem, the component" of electric 

field in the direction of I1 at r due to the second set of m 	m 

sources may be written as [201 

Ii E = 2 ff M.Hm  ds + 	ff J .Ei ds - 	ff 	J .E2 m 	s  ds 
S 	patch p 	Image of p  

patch 
(2.133) 

where E1  and E2 are respectively, the electric fields at patch 

and its image due to the dipole at r while E
m 
 denotes the compo- 

nent of Em  in the direction of dipole. 	Since the patch is 

parallel to XY plane (2.133) reduces to 
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Ii E = 2 f f R - Hm ds + 	f f 	JT . (Em-E2) ds 	(2.134) ) 
S 	patch 

Substituting (2.10) and (2.11) in (2.134) we obtain 

Ilm Em = E In  ff Jn.(EM-E2) ds 
n 	patch 

+ 2 Z V. ff Mj.Hm ds 	 (2.135) 
j  S 

Since the scalar products in the integrands of (2.135) would 

involve only the tangential component of fields, we can write 

Ilm E 	<J m = E In 	n ,(EM -Em t )> + 2 E V. <M.,Ht > 	(2.136) 
n 	 j > 

or 

Ii m Em = [pml 
	Pmt) 	I 	 (2.137) 

V 

where 

Pml =[<Jn~(Eit-E 2t 
(2.138) 

Pm2 = [2<M.,Ht>1 	 (2.139) 

In order to obtain a component Em on the radiation sphere, we 

orient the dipole Ilm perpendicular to r and let rm tend to 

infinity. At the same time Ilm is adjusted so that it produces 

a unit plane wave in the vicinity of the origin. The required 

dipole moment is given by 

 

13wu e-jkorm  (2.140) I1 	4lrr m 	m 



and the plane wave produced in the vicinity of the origin is 

-jk .r 
Em 

 

	

= m  e 
	m 	 (2.141) 

-jk .r 
Hm  = n(Km  x um) e 	m 	 (2.142) 

where um  is the unit vector specifying the polarisation of the 

wave, km  is the wave number vector pointing in the direction 

of wave travel and r is the position vector of any general point 

on S or on patch. Substituting (2.140) in (2.137), we obtain 

Em = 4lrruo e ]korm [Pml 
	Pm2] 	

I 	(2.143) 

	

m 	 ,, 

[VI  
= 4TTro n  e  lkorm [;ml 	Pmt] 	

I 	(2.144) 
•m 	 ; IV]  

Once the measurement vectors Pml  and Pmt  are determined, 
the far zone electric field can be calculated using (2.144). 

2.7.1 Determination of Measurement Vectors 

In order to determine Pml  (equation (2.138)), we first 

determine Eit  and E. 	is the tangential component of 

electric field at any point on the patch. The position vector 

of any point on the patch is given by 

r = xx + yy + dz 	 (2.145) 

For the geometry shown 

km  = -ko  rm  = - ko  [CosO x+SinO Coscp 9-i-Sino Sincp z] (2.146) 
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Using (2.145) and (2.146) we may write 

km.r = -k0 [xCosO+ySinO Coscp+dSinO Sincp]  (2.147) 

Similarly, E2t is the tangential component of electric field 

at any point on the image of the patch. The position vector 

of any point on the image of the patch is given by 

r = xx + yy - dz  (2.148) 

Using (2.146) and (2.148) we may write 

km.r = -k [xCosO+ySinO Cos~p-dSinO Sinop]  (2.149) 

Let (Pm1 )yy be the measurement vector due to y component 
n

of current on patch for y polarised wave in y = 0 plane (cp=90°). 

Using (2.138), (2.141), (2.147) and (2.149) we can write 

_  jk (xCosO+dSinO) 
(Pnl) yy =  If Jn.y {e ° 

patch 

jk (xCosO-dSinO) 
- e °  } dx dy  (2.150) 

which can be integrated directly to obtain 

k Ax CosO 

ml  
Sin( ° p 

2  
(Pn )yy = [4jSin(kodSinQ)]  k px Coso  

L ( 0 2 	) 

1-Cos(keAy ) 

keSin ceAyp 1 (2.151) 

Let (Pml)y be the measurement vector due to y component of n cpx 
current on the patch for cp polarised wave in x = 0 plane (0=90°), 

which can be written as 



42 

jk (yCoscp+dSincp) 
(Pml)Y =  J J 5 . {e o 
n x patch n 

jk (yCoscp-dSincp) 
- e 

 0 

 } dx dy 	(2.152) 

On integrating we get 

(Pml )Yx = [-4jSin(kodSinp)]  
Sincp2 2 	x 

n {(koCoscp) -ke} 

keCos(k0Ay Coscp) 

LkeCot(ke~yp) -  Sin(keAyp  

jk0 (ylp+vAyP )Coscp 
e 	 (2.153) 

In order to evaluate Pm2 (eq. 2.139), we first determine 

Ht, the tangential component of magnetic field at any point 

r on aperture. The position vector r is given by 

r = xx + yy  (2.154) 

Let (P~2)yy be the measurment vector due to x component of 

current on the aperture for the y polarised wave in y = 0 plane 

(CP=90°).  The y polarised wave is given by (2.142) with  

Using (2.142),(2.146) and (2.154) we can write 

k x u = - CosO 2+ SinO x 
m m 

= - k0[xCos® + ySinO] 

Thus, the measurement vector may be written as 

m2 x  2Sin0 	_x ^ jk0xCosO 

(PJ )Yy -  n  Jf M•x e 	dx dy 
S 

(2.155) 

(2.156) 

(2.157) 

which may be readily integrated to get 
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(Pm2)x _ 4 Sin® 	1 2 2 	k Cot(k Ax) 
J YY  '1  [(k0Cos®) -k2p)  ap p  ap 

k Cos(k txCos0) 1 jk (x +sAx)Cos0 

opsin ko ~x  e ° 1 	(2.158) 
ap 

Let (Pm2)xx be the measurement vector due to the x component 

of current over the aperture for cp polarised wave in x = 0 plane 

(0=900). 	The cp polarised wave is given by (2.142) with u = cp. 

Therefore, we can write 

jk yCoscp (Pm2)x = 2 ff Mx.O e ° 	dx dy 	(2.159) 
J cPx 	n S 	J 

On integrating (2.159), we get 

kAyCoscp 
(Pm2)x - -  4 	Sin(

0 

2 	) 	1 
J cpx 	rn k ap 	r k0AyCoscp` 	Sin (kapAx 

1 	jk [y +(t-Z)Dy]Coscp 
- Cot(k 	x) 	e ° 1 	(2.160) ap  

At this juncture it may be emphasized that the yy components 

of the measurement vector can be used to obtain the H field 

pattern and cpx components can be used to determine the E field 

pattern. 

2.7.2 Determination of Pattern Gain 

' The directive gain, G(0,cp) of a radiating system in a 

given direction is defined as the ratio of the radiation inten- 

sity in that direction to the average radiated power. Thus, 



G (O, y) _ 	(i' E)' p)) 

*a v 
(2.161) 

If Pt is the total complex power radiated, than the average 

radiated power is 

Real(Pt) 

fav = 	4ir 	 (2.162) 

Also, the radiation intensity in a given direction is 

	

( 0, gyp) = 
r 	

I Em 12 	 (2.163)  n 

where Em is the electric field intensity at the measurement 

point and rm is the distance of this point from the origin of 

coordinate system. Substituting (2.162) and (2.163) in (2.161) 

and using (2.144), we obtain 

k 2 ro 
G(®,cp) = 4TrReal(Pt ) 

~Pml Pm2~ I 2 

V 

(2.164) 

2.7.3 Determination of Complex Power 

The complex power, P transmitted through the aperture 

is 

Pt = ff E x H*. z ds 
S 

where * denotes the complex conjugate. 

written as 

(2.165) 

Using (2.1) Pt may be 

Pt = .15  Ms . H* ds 
S 

(2.166) 
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Using (2.4), (2.10) and (2.11), in (2.166), we obtain 

N2  N1  

Pt  = E 	z Vi  In f! Mi•(Hb(Jn))* ds 
i=1 n=1 	S 

N2  N2  

- E 	E Vi  V* ff i .(Hb(M.))* ds 	(2.167) 
i=1 i=1 	I  S 	J  

Using (2.18) and (2.19) equation (2.167) can be written 

in the matrix form as 

Pt  = [I V) 0 0 	* 
	

(2.168) 

[Tb]* 	V* 

2.8 Summary 

In this chapter moment method has been used to analyse 

a waveguide fed patch antenna. Although the basic formulation 

is quite general, the expressions have been developed for the 

specific case of a rectangular patch antenna excited via a 

rectangular aperture. 	Equations for the input characteristics 

namely, VSWR, input impedance and input reflection coefficient 

have been derived. 	Also, the expressions for the computation 

of far field quantities have been determined for the particular 

case of an air-dielectric patch antenna. 
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Fig.2.2:Geometry of the original problem indicating various 
parameters and the coordinate system. 



71ELECTRIC 
5UB5TRATE 

NO PLANE 

GI S 

(0) Model valid for regionb 

S 

EGUIDE 

(b) Model valid for region`o' 

Fig.2.3: Equivalent models. 



N 

V 
1-  

Ii.) y 	d 
o 
~ 

\_ •r 
W 



CHAPTER 3 

NUMERICAL RESULTS 

The analysis carried out in the previous chapter was 

implemented on a digital computer. The results obtained from 

this program were checked for the convergence and compared with 

the earlier published work [20,21]. 	For the purpose of 

comparison, different cases were considered, namely, an open 

waveguide radiating into free space with and without a reflector 

in front of it and an open waveguide radiating into a'homo-

geneous medium of constitutive parameter (uo'Eo€r). Finally, 

the program was used to generate test data for a patch antenna. 

In this chapter, the algorithm used to write the computer 

program has been explained with the help of flow charts and 

some numerical results are presented. 

3.1 Numerical Considerations 

Evaluation of the matrix elements for region 'b', namely, 

the elements of 	[Z b], 	[Yb], 	[T b and 	[Cb], requires the 

evaluation of integrals over ci and . One important consi-

deration common to all these integrals is the presence of simple 

poles in the integrand. 	These are given by the zeros of Te 

and Tm (Eqns. 2.70 and 2.71), which are functions of S alone 

(and not of 0). These can be thought of as representing trans-

verse electric (TE) and transverse magnetic (TM) surface wave 

poles, respectively, which are located in the complex R-plane. 

SGS 37~ 
OntrA3 iRON Oniv rsitU of t ►r r~ 
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From (2.68) and (2.69), we obtain 

k - k = AC2 	 (3.1) 

where 

k2 = Erk2 - ~2 ; k = ko - ~2 and AC2 = (Er-1)k2 

In order to determine the roots of Te, k2 is substituted from 

(2.70) in (3.1), giving the characteristic equation 

(AC)2-(k1d)2 + k1d Cot(k1d) = 0  (3.2) 

Similarly, the characteristic equation for finding the roots 

of T m, is obtained by substituting k2 from (2.71) in (3.1) and 

is given by 

-er (AC)2-(k1d)2 + k1d tan(k1d) = 0  (3.3) 

Solution of the above equations yields the values of k1, from 

which  can be determined.  It has been shown by previous 

workers [22] that the number of poles is given by 

0 	for 	AC < 'T/2 
(3.4) 

NTE 	n 	; for 	(n-2) < AC < (n+2)  

NTM = 	n+l 	; 	for 	nil < AC < (n+l) tr 	 (3.5) 

where NTE and NTM are, respectively, the number of TE and TM 

surface wave poles. 	Since the first TM surface wave pole has 

a zero cutoff frequency, there is always at least one surface 

wave pole (unless er=1)[23]. These poles occur for real values 

of 	= R 	such that k < S</ k , if tan d= 0 	(no 	loss). 01 	 0 — of 	r o 
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If dielectric loss is present, the poles move off the real axis 

to $ = 	 y, y > 0. To avoid numerical difficulties while 

integrating over S, the integration in the immediate vicinity 

of the poles is performed analytically. 	For example, if one 

TE and one TM pole are present at B1 = Sol-jy and B2 = 
So2-jy, 

respectively, then the integral given by (2.96) can be written 

in the form 

11/2 	°° 	 7T/2 	 ol-S 	Sol+S 

J 	J ( ) ds da = 	f { J 	( ) d + j 	( ) d~ 
a=0 R=0 	 a=0 3=0 - a01 

o2- 6 	
So2+ 6 

$ 	( ) d + $ 	( ) d + j 	( ) d~} da 	(3.6) 
ol +6 	Ro2-6 	 +6 ~o2 

The second and the fourth integral on the right-hand side of 

(3.6) can be written as 

+6 	 +6 ol 	 o1 	f (B) 
I61 = f 	( ) d~ = f 	TT) d 

	 (3.7) 

Sol-S 	 Sol-S m 

and 

	

+ d 	 S+ S o2 	 o2 f 2 ) 
IS2 = f 	( ) dR = j 	T ( 	dR 	 (3.8) 

	

ao2-S 	6o2-6 e 

where f1(6) and f2(a) represent the non-singular portions of the 

integrand. 

To evaluate the integral in the vicinity of a pole say 

IS1, the function Tm(S) is expanded in a Taylor series around 

its zero, Sl. Thus, the equation (3.7) can be written as 
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ol+ d 
~ I dl 	f( 	 1 ~l) 	-d Tm l +-S1 Tm 	S +... d  (3.9) 

of  1 

where prime indicates differentiation with respect to . 

Considering only two terms in the Taylor series expansion and 

noting that Tm(R1) = 0, we get 

f ( R ) 	Sol+S 

IS1 T 1 f--5 ) ds 	 (3.10) 
1 ol-S 1 

which may be readily integrated to get 

I = 
	In  

dl Tm of-jy) 	
{- +j 	 (3.11) 

(3.11) can be written in the form 

f ( 	-]Y) 

161  
T'(S  

~Y In [re~01  (3.12) 
m ol  

with 

r = 1 

0 = tan-1{-2'621 	 (3.13) 
2Y -d 

Substituting (3.13) in (3.12) and simplifying, we get 

_ 	1 -2y6 - { 	} 	(3.14) 161 	Tm of JY 	
tan 	Y2-d2 

For the no loss case, which has been assumed in the present 

analysis, (3.14) reduces to 
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-ill f( ol) 	
(3.15) 161 	T' 01)  01) 

The integration in the vicinity of a TE pole can be carried 

out in a similar manner. 

The integration from 0 to the first pole, in between the 

poles and after the last pole upto - has been carried out 

numerically, using the N-point Gauss quadrature technique 

(Fig. 3.1). 	The convergence has been assumed to occur when 

the value of an element changes by less than 0.5% over an integ- 

ration interval of 10k0. 	This usually occurs in the range 

100k0 
 < g < 200ko. 

3.2 Computer Program 

Figs. 3.2 through 3.12 explain the logic used to develop 

the computer program. For convenience, the program has been 

broken up into a number of subroutines which are called from 

the main program. 	The data, such as the dimensions of the 

waveguide, patch and aperture, the dielectric constant and the 

thickness of the dielectric slab, etc., are read in the 

subroutine READAT. 	All the data are read in terms of 

wavelength, and are then converted in terms of the operating 

wavenumber (ko) in the subroutine PROCES, which also computes 

the intermediate results required in the other subroutine by 

calling STORE. 	The computation of the zeros of T and T is 
e 	m 

carried out in the subroutine ROOT, using the Newton-Raphson 

method. The method requires an initial guess, which is accepted 

at this stage by the computer. 	The subroutines ZMN, TIN and 
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YBIJ, respectively, compute the elements of the matrices 

[Tb] and [Yb]. 	These subroutines call the integration routine 

GQN, which performs the integration using N-point Gauss 

quadrature technique. 	Depending on the origin of the call for 

this routine, different functions are used as the integrand. 

When the dielectric constant is unity, no poles are encountered 

and hence a direct integration in two dimensions is carried 

out to evaluate the matrix elements using the subroutine GQER1. 

It is worth noting here that, due to the symmetry of the Green's 

function and the use of Galerkin's method, only one row of [Zb] 

and [Yb] matrices need to be computed. The other elements are 

filled up using the elements of this row. The elements of the 

matrix [Cb] are obtained from Cb l  =-Tbi . 	A call to the 

subroutine YAIJ results in the computation of the elements of 

the matrix [Y
a
] and the excitation vector [P]. 	In this case, 

only the lower triangular part of [Ya] is computed and the 

remaining elements are filled up using these elements. Finally, 

the subroutine RESULT stores these intermediate matrices in 

a one dimensional array, which is inverted using the subroutine 

INVRT. 	The inverted matrix is used to compute the complex 

coefficients of the currents on the patch and the aperture, 

which are then used for the computation of antenna parameters. 

3.3 Convergence of the Procedure 

The convergence of the 	imaginary 	part 	of the self 

impedance of a microstrip antenna is shown in Fig. 3.13 as a 

function of s/ko. 	For comparison, the results obtained by 



56 

Pozar [211 are also plotted in the same figure. These results 

were obtained by using a 10-point Gauss quadrature routine with 

the effective dielectric constant taken as ere =  

The real part of the self impedance converged to 0.1666 very 

fast (B/ko  < 10). 	It was also found that increasing the number 

of points for integration does not change the results appre-

ciably. 

To check the convergence of other parameters, we have 

considered the following four situations. 

1. An open waveguide, (a=L =7.5mm; b=W =1.5mm),radiating 
ap 	ap 

into free space. 

2. An open waveguide, 	(a=L 
ap 
 =22.86mm; b=Wap=10.16mm), 

radiating into free space. 

3. An 	open waveguide, 	(a=Lap=22.86mm; 	b=W ap=10.16mm), 

radiating into a homogeneous medium of dielectric 

constant, er  = 2.2. 

4. An 	open waveguide, 	(a=Lap=22.86mm; b=Wap=10.16mm), 

with a reflector (or patch), (Lp=12mm; Wp=9mm), in 

front of it, at a distance d=1.5mm, such that the 

centre of the reflector coincided with the axis of 

the waveguide and radiating into free space. 

In all the four cases, the open end of the waveguide was assumed 

to be terminated in an infinite ground plane and the operating 

frequency was 10 GHz. 
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The convergence of the reflection coefficient for Case 1, 

as a function of the number of subsections over the aperture 

along the x direction, Lx, is shown in Fig. 3.14. 	The number 

of subsections along y direction, Ly, has been chosen to be 

unity. 	It is seen that the results obtained by the present 

procedure, using piecewise sinusoidal (PWS) functions, show 

oscillatory behaviour. 	For comparison, the results obtained 

by Sinha [20] are also plotted in the same figure. 

In order to determine the source of the oscillatory 

behaviour, a number of numerical tests were carried out on this 

problem. 	First, the numerical values of the elements of the 

matrix 
['a], 

 obtained from the present method and the method 

of [20], were compared and found to be almost same. The small 

difference in numerical values can be attributed to the fact 

that rooftop (RT) functions have been utilised in [20] while 

PWS functions have been used in our case. 	This was confirmed 

by using RT functions in the present method. 	The reflection 

coefficient obtained from the present method using RT functions 

has also been plotted in the Fig. 3.13, which also shows 

oscillatory beghaviour. Thus, one may conclude that the matrix 

a 
[Y ] 	is not responsible for the peculiar nature of the 

reflection coefficient in Fig. 3.14. 

The elements of [Yb], on the other hand, obtained from 

the present method using PWS functions and from [201 , were of 

the same order but having quite different numerical values. 

This discrepancy could be attributed to the numerical errors 
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introduced while performing the integration, and was confirmed 

by analytically taking the Fourier transform of a known 

function, exp(-Ix~-Iyl), and then evaluating the inverse Fourier 

transform using 12-point numerical integration.  The real part 

in the results showed about one percent deviation from the 

expected results but the imaginary part, rather than being zero, 

was found to be of the order of 10-2. When the number of points 

of integration was increased to 20, the accuracy of the results 

also improved. These tests confirmed the satisfactory 

functioning of the integration routine, apart from confirming 

the presence of slight numerical errors. 

Since the reflection coefficient curve underwent sudden 

jumps for Lx =11 and 17, it was conjuctured that the ill-

conditioning of the admittance matrix might be the cause for 

this behaviour.  However, inspection of the condition number, 

(.i [Y] 	[Y] -1 Il) revealed that the matrix behaved well at 

these points too.  An attempt was then made to study the 

behaviour of the error matrix, [ERR], given by 

- 

[ERR] = [Ybj]1 
 [Ybj]2 

where the subscripts 1 and 2 correspond to the present method 

with PWS functions and [20], respectively. We defined 

ERR~ 
I[ERR]I2 

i,j 

for the error matrix. It was predicted that, any sudden change 

in the elements of [ERR] should be reflected in the value of 

I 



M 

NERR. However, the values of N
ERR  did not show any peculiar 

behaviour when L was 11 and 17. x 

Fig. 3.15 shows the normalized equivalent magnetic current 

on the aperture. The normalisation factor is the root-mean- 

square value 	of the 	incident field. 	That is, M has been 

normalized with respect to 

b fj 	IEinc12 dx dy 

guide 

where the integration is over the waveguide cross-section. 

The results obtained from this method using PWS functions are 

found to be in close agreement with those obtained from [20]. 

The radiation patterns obtained from this method, using 

PWS functions, and those obtained from [20] are shown in 

Fig. 3.16 where a good agreement between the two is seen. 	It 

may be noted that even at Lx  =11 and 17, radiation patterns 

obtained from the two methods were in good agreement. 

In the previous example, the dimensions of the waveguide 

and the frequency were such that only the evanescent modes could 

exist in it. 	As the next example, an open waveguide radiating 

into free space, with a propagating TE10  incident mode was 

considered (Case 2), for which the reflection coefficient, 

normalized equivalent magnetic current on the aperture and the 

radiation patterns are plotted in Figs. 3.17 through 3.19, 

respectively. 	Even in this case, the reflection coefficient 

shows a slightly oscillatory behaviour, but with a reduced 



amplitude as L is increased. On the other hand, the equivalent 

magnetic current on the aperture and the radiation patterns 

obtained from this method using PWS functions are seen to be 

in close agreement with those obtained from [20]. 

The reflection coefficient is plotted in Fig. 3.20 as 

a function of Lx, for the case of a open waveguide radiating 

into a homogeneous medium (Case 3), and is found to be constant 

within the plotting accuracy. In this case, which was 

approximated by considering a very thick (3X0) dielectric slab 

to be present in front of the open waveguide, a large 

discrepancy is observed in the values of the reflection 

coefficient and the aperture current distribution (Fig. 3.21) 

obtained from the present method and those obtained from [20]. 

As a last example, the convergence of reflection 

coefficient for the case of an open waveguide radiating into 

free space with a reflector in front of it (Case 4) is shown 

in Fig. 3.22. 	The results of [20] show no convergence in 

reflection coefficient when the number of subsections along 

the y direction on the aperture is unity. This indicates that 

y-currents on the aperture and x-currents on the patch are to 

be considered in the analysis. Again in this case, the present 

procedure with PWS functions did not show convergence in the 

reflection coefficient when the number of subsections, along 

the y-direction, on the patch was increased (Fig. 3.22(b)). 

Figs. 3.23 and 3.24 show the distribution of normalized 

equivalent currents on the aperture and the patch, respectively. 
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The current over the patch is normalized with respect to the 

rms value of the incident magnetic field in the waveguide. 

In this case, a marked discrepancy was seen between the currents 

obtained by the present method with PWS functions and [20]. 

However, the radiation patterns (Fig. 3.25), obtained using 

the present method with PWS functions and [20] were in close 

agreement. 

3.4 Waveguide Fed Patch Antenna 

Although, the input reflection coefficient did not show 

any convergence, the program was used to study the variation 

of input impedance with frequency for a waveguide fed patch 

antenna. 

We considered a patch, (Lp=9.189mm; Wp=11.8585mm), with 

aperture, (Lap 11.43mm; Wap 1.5mm), in the ground plane of a 

dielectric substrate of thickness 1.5mm and dielectric constant, 

Er=2.2, fed by a waveguide, (a=22.86mm; b=10.16mm), such that 

the centre of the patch coincided with the centre of the 

aperture and the axis of the waveguide. 	Fig. 3.26 shows the 

input characteristics, namely, the input VSWR and the real and 

the imaginary parts of the input impedance as a function of 

frequency using the effective dielectric constant 9re=(Er+
1)/2. 

A well pronounced parallel resonance is observed at 15.3 GHz. 

Although, another parallel resonance is observed around 

26.2 GHz, it is not very well pronounced. 	Further, a series 

resonance is also seen to occur between the two parallel 

resonant points. 
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Several authors have mentioned that (2.39) is a better 

approximation for Cre. 	So an effort was made to study the 

effect of this choice on the resonant frequency of the patch 

antenna. 	Fig. 3.27 is a plot of comparison of the input 

characteristics, around resonance, for the two choices of G. 

Although the shape of the curves remains the same, the resonant 

frequency undergoes a definite shift when Ere  as given by (2.39) 

is used. 

3.5 Summary 

In this chapter, numerical considerations for the develop-

ment of a computer program, for the analysis presented in the 

previous chapter, has been explained along with the logic flow 

diagrams. 	The results obtained from this program, apart from 

checking for the convergence, have been compared with the pub-

lished work by considering different situations. Finally, test 

data has been presented for a waveguide fed patch antenna. 
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START 
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CALL ZMN 

CALL VBIJ 

CALL TIN 

CALL YAIJ 

CALL RESULT 

STOP 

Fig.3.2:Main program. 
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Fig.3.12: Result. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

In this chapter, experimental results for a waveguide 

fed patch antenna are presented. 	Various antenna parameters, 

like the input voltage standing wave ratio (VSWR), input impe-

dance, gain and radiation pattern of the antenna were measured 

in the laboratory. 	The effect of increasing the size of the 

ground plane was also studied. 	The fabrication technique used 

to construct the antenna is also explained alongwith the design 

procedure. 

4.1 Design of the Radiating Element [24] 

Polytetrafluoroethylene (PTFE) Glass Microfiber Reinforced 

RT Duroid 5880, having dimensions 6cm x 6cm, was used as the 

dielectric substrate. The parameters of. the substrate relevant 

t.o the design procedure are, 

Dielectric constant, Er 	2.2 ± 0.02 

Overall thickness 	: 1.5mm 

Cladding thickness, t 	: 0.03556mm 

Dielectric thickness, h 	: 1.42888mm. 

The aim was to design a patch having a TM01  mode resonant 

frequency of 10 GHz. 	Fig. 4.1 illustrates the experimental 

patch antenna, where L is the dimension of the radiating edge 

and W is the dimension of the non-radiating edge. 	The length 

of the radiating edge, L is given by 



87 

E +1 _ 
L = 2f 	2 	2 	 (4.1) 

r 

where 

c : velocity of light in vacuum (m/s) 

fr  : resonant frequency 	(Hz) 

The line extension, AW, due to fringing effects is 

(E +0.3)(L/h+0.264) 
DW = h x 0.412 	e 	 (4.2) 

(Ee-0.258)(L/h+0.8) 

where Ee  is the effective dielectric constant, given by 

Ee  = (
E2+1)  + (E

2r  
-1)(1  + 10h)-Z - Gr-1, 	t/h) 	(4.3) 

L h 

The length of the non-radiating edge is now obtained from 

W = 	c 	- 2LW 
2f E 
r e 

(4.4) 

Using (4.1) through (4.4) the patch dimensions are determined. 

For the chosen data, these values are 

L = 11.8585mm 

W = 9.1895mm 

The patch antenna is coupled to a standard X-band waveguide 

(a = 22.86mm, b = 10.16mm) via a rectangular aperture in its 

ground plane. 	The aperture, having dimensions AL = 11.43mm, 

AW = 1.5mm, is so located• that the centres of the patch and 

the aperture coincide with the axis of the waveguide. 



4.2 Fabrication 

The fabrication of a microstrip antenna is a very 

systematic exercise, involving a number of steps. 	These are 

explained below. 

4.2.1 Artwork 

The artwork is the drawing of the microstrip antenna. 

This is prepared either on a tracing sheet or on a tracing film. 

The tracing sheet deforms, by absorbing moisture, when exposed 

to humid atmosphere. 	Hence tracing film was used for this 

purpose. 	The tracing film has a ground and a shiny surface. 

The artwork is prepared on the ground surface. 

Depending on the actual size, the scale for the artwork 

is chosen. 	For the present work a 4:1 scale was chosen. A 

rubylith film [25] was simulated using the tracing film by 

pasting opaque cellophane tapes on it. The patch was created 

on the film by cutting out the unwanted portions of the tape. 

This was found to give better edges than the 'printed circuit 

board' draftinq aids. 	The actual dimensions were decided with 

the help of vernier calipers having a least count of 0.01mm. 

A travelling microscope would have improved the accuracy. 

on another piece of film, the aperture area was marked 

using the same technique. 	A number of markings in the form 

of crosses (+) were made on both the films with the help of 

a drawing pen (Rotring, variant-B, art.1102). 	These markings 

were used to align the two masks while printing the image on 

the substrate. 



4.2.2 Mask Preparation 

The next stage is to reduce the artwork to the actual 

size and prepare the masks. The reduction and mask preparation 

follows the usual black and white photography technique. Since 

the patch area consisted of too many narrow strips, direct 

illumination and exposure of the artwork did not produce good 

quality masks. 	Hence, an indirect procedure was followed. 

A contact print was obtained by illuminating the artwork from 

bottom. 	This print had a uniform surface and, hence, could 

be reduced to the actual size without any difficulty. 

4.2.3 Screen Preparation and Printinq on to the Substrate 

Once the masks are ready, the images on the masks have 

to be transferred on to the substrate. 	This was accomplished 

by screen printing technique. 	The basic concept of screen 

printing process is that of forcing a viscous material through 

predetermined openings in a stencil screen to obtain the desired 

image on the substrate. 	The screen was prepared by. placing 

a positive of the mask on a screen printing film and exposing 

them to light. 	The exposed part of the film hardened and the 

unexposed portion dissolved in the developer. 	This was pasted 

on a porous screen made up of silk thread and allowed to dry. 

This is called the screen. Next, the screen was placed above 

the substrate, which was first cleaned to remove dirt and 

grease, and ,a special dye was squeezed over the screen. 	The 

dye passing through the openings in the film deposited on the 

substrate and was allowed to dry. 



The screen for the other side was also prepared using 

the same technique. 	The other side of the substrate was also 

printed after aligning the two images, which was carried out 

with the help of markings on the second screen and the holes 

drilled through the substrate. 	When the dye was completely 

dry, visual inspection was carried out to locate any pin holes, 

which were covered up with the dye. 

4.2.4 Etching 

The next step is to remove or etch out the unwanted 

portion of copper from the substrate which is not covered by 

the dye. 	Ferric chloride was used as the etchent. 	The 

substrate was introduced into the ferric chloride solution 

which was occasionally stirred to increase the speed of etching. 

The completion of etching was detected by visual inspection. 

After the completion of etching, the dye on the substrate was 

removed with the help of a solvent to expose the patch and the 

ground plane. 

4.2.5 Power Launcher 

A rectangular waveguide was soldered to the ground plane 

of the antenna in such a way that the axis of the guide aligned 

with the centre of the aperture. The alignment was done with 

the help of markings on the waveguide and the ground plane. 

To obtain a good contact between the two, the waveguide walls 

were made very sharp at the end by filing (Fig. 4.1). 	Visual 

inspection of the inside of the waveguide revealed that there 
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were no holes in the joint and no solder had leaked into the 

guide, ensuring a good joint. 

4.3 Experimental Setup 

In this section the experimental setup used to measure 

the different parameters has been illustrated. 	Since the 

standard techniques were followed [26] to perform the measure-

ments, only the precautions are listed in this section. 

4.3.1 VSWR and Impedance Measurement 

Fig. 4.2 illustrates the experimental setup used to 

measure the VSWR and the input impedance. Since any disturbance 

in front of the antenna changes the input characteristics, 

microwave absorbers were placed in front of the antenna. 

4.3.2 Radiation Pattern Measurement 

The setup shown in Fig. 4.3 was used to measure the 

radiation pattern. 	The test antenna, placed on a turntable 

with graduations, was utilised as the transmitting antenna. 

Both the antennas were polarization matched and aligned. 	The 

distance between the two antennas was kept greater than 2D2/X; 

where D is the longer antenna dimension and A is the operating 

wavelength. 	When the turntable is rotated to measure the 

radiation pattern, the transmitting antenna should not change 

its orientation. 	This was ensured by securely padding the 

fixture used to hold the antenna. The frequency meter in this 

setup was placed on the receiver side as there was no space 

on the turntable. 
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4.4 Results and Discussion 

Experiments were carried out to study the behaviour of 

the patch with a small ground plane and with an extended ground 

plane (EGP). 	Various parameters like the input VSWR, input 

impedance, gain and radiation patterns were measured. 

Fig. 4.4 illustrates the input characteristics of a 

waveguide fed patch antenna, with a 6cm x 6cm ground plane. 

Three different parameters, namely, the VSWR, real part of input 

impedance (resistance) and imaginary part of input impedance 

(reactance) are plotted in the same graph as a function of 

frequency. 	The input impedance plot indicates the presence 

of alternate parallel and series resonant frequencies. The 

series resonance is characterised by a low value of resistance 

and the reactance changing from capacitive to inductive. 	On 

the other hand, a peak value of resistance alongwith the 

reactance changing from inductive to capacitive denotes a 

parallel resonant frequency. 	The parallel resonance points 

are arising due to the excitation of different modes. The 

resonant frequency of a tuned circuit is defined as the 

frequency at which the input impedance has no reactive part 

In microstrip antennas, however, this frequency may 

not coincide with the frequency at which the real part of the 

input impedance reaches a peak (f 
R=max) 

 because of reactive 

loading due to the feed. To avoid any ambiguity, we have chosen 

the resonant frequency as the one at which the real part of 

the input impedance reaches a peak [27]. The variation of input 
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impedance with frequency is also plotted on Smith charts 

(Fig. 4.5). 	It is seen that the loci of the input impedance 

are circular in nature and symmetric about the X = 0 line. 

However, there is a large impedance mismatch at all the 

frequencies, resulting in a high reflection loss. 

Both the E- and the H-plane radiation patterns were 

measured at various series and parallel resonant frequencies 

and are shown in Figs. 4.6-4.12. 	Using a standard gain horn 

(Scientific Atlanta Model 12-8.2 ) as a reference, the gain of 

the patch antenna was measured at each of these frequencies 

in the broad-side direction. 	For the purpose of comparison, 

the various antenna parameters are tabulated in Table 4.1. 

A study of the radiation patterns reveals that both the 

E- and the H-plane patterns are quite broad and exhibit 

amplitude fluctuations. 	These fluctuations can be attributed 

to the finite size of the ground plane, which causes the 

diffraction of the surface waves. As the operating frequency 

is increased, the electrical thickness of the substrate 

increases. 	This results in increased surface wave powers and, 

therefore, the undulations in the pattern increase in amplitude. 

Also, it is observed that, in general, the undulations are more 

pronounced at series resonant frequencies, although at 10.6 GHz, 

a parallel resonant frequency, the undulations are found to 

be quite high. 

In the case of a co-axial feed patch antenna, the patch 

dimensions determine the resonant frequency of a mode, but the 
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feed location determines as to which mode will be excited. 

Thus, the overall radiation pattern depends upon the feed-patch 

interaction. 	In the present case, the feed-patch interaction 

is much more complex since the self susceptance of the aperture 

is also a strong function of frequency. It is conjectured that 

here a number of modes are being simultaneously excited, albeit 

with varying amplitudes, affecting the input impedance and the 

radiation pattern. 	The most smooth pattern was obtained at 

8.6 GHz, where the measured gain was also positive (Table 4.1). 

Since the input impedance was initially measured with 200 MHz 

increments in frequency, this frequency was estimated as a 

parallel resonant frequency. However, measurements with smaller 

frequency 	increments (50 MHz) 	revealed that the resonance 

actually occurs at 8.5 GHz. 	It is, therefore, believed that 

the fundamental TM01  mode is being excited at this frequency. 

The low value of gain at broad-side can be attributed to a high 

reflection loss. 	When the reflection loss is taken into 

account, the gain is of the order of 8 dB, with respect to an 

isotropic antenna, at 8.6 GHz. However, at 10.3 GHz and above, 

the gain comes out to be negative even after taking the 

reflection loss into account. 	This is because a large portion 

of the input power is being lost in the side lobes. 

In order to reduce the reflection loss, a slide screw 

tuner was utilised to match the antenna. 	The corresponding 

VSWR and uncorrected gain are given in Table 4.1. The measured 

patterns at 8.6 GHz and 9.2 GHz (Figs. 4.13 and 4.14) indicate 

that the antenna has become more directive, thus, increasing 



the gain substantially. However, a number of distinct and high 

side lobes appear in the visible region. 	It seems that the 

inclusion of the tuner affects the loading of the patch and 

drastically changes the current distribution. 

The effect of increasing the size of the ground plane 

was also studied by soldering a 18cm x 18cm x 1.59mm brass sheet 

to the ground plane of the antenna. The radiation patterns 

at various series and parallel resonant frequencies 

(Figs. 4.15-4.21) 	show 	that 	the 	patterns 	have 	become 

comparatively smooth. This is due to the reduction in the 

secondary radiations caused by the diffraction of surface waves 

at the edge of the substrate. Asymmetry in the H-plane pattern 

at 8.6 GHz may be due to reflections from the ground. It can, 

therefore, be concluded that improved results shall be obtained 

by using a larger substrate. 

The use of a slide screw tuner to match the antenna with 

EGP again resulted in high side lobe levels (Fig. 4.22). 

Since both the E- and H-plane patterns have wide beam 

widths, reflection from ground and the walls have a considerable 

effect on the radiation pattern. The use of microwave absorbers 

would improve the results. 	Though the slide screw tuner 

provides a good match at the input, its use is not recommended 

as it changes the patch current distribution and hence the 

radiation pattern. 	An impedance transformer may, perhaps be 

used to obtain a better match, but its effect on the patch 

current distribution is yet to be studied. 	Although maximum 
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care was taken while performing the experiments, accurate, 

reliable and repeatable results can only be obtained by using 

a network analyzer. 

4.5 Summary 

In this chapter, design and fabrication of a microstrip 

patch antenna coupled to a rectangular waveguide via an aperture 

in its ground plane have been explained. Various antenna 

parameters, like the input VSWR, input impedance, gain and 

radiation pattern have been presented. 	With the help of these 

results the TM01  mode resonant frequency has been determined. 

The effect of increasing the size of the ground plane and use 

of a slide screw tuner to obtain a match on the parameter has 

also been studied. 
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CHAPTER 5 

CONCLUSIONS 

In the preceding chapters, some investigations have been 

reported on a waveguide feed rectangular patch antenna. A 

moment method formulation has been presented for analysing the 

antenna and the expressions for various matrices and vectors 

have been derived. Based upon the analysis, a computer program 

has been developed, the results of which have also been 

presented. 	In this chapter, a critical examination of the 

analysis, the computer program and the numerical and the 

experimental results has been carried out and some of the areas 

which require further investigations have been identified. 

5.1 The Analysis 

A moment method analysis has been presented for a patch 

antenna fed by a waveguide. The formulation is completely 

general, in the sense that the shape and the size of the 

aperture and the patch can be arbitrary. 	However, for the 

actual evaluation of the matrix elements, a rectangular patch 

and a rectangular aperture have been considered. For the sake 

of simplicity, only the x-directed currents on the aperture 

and the y-directed currents on the patch have been assumed to 

be present, which is true for narrow apertures. 	Piecewise 

sinusoidal (PWS) functions have been used for both expansion 

as well as testing (the Galerkin's procecdure). While carrying 
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out the numerical experiments, rooftop (RT) functions were also 

utilised in a Galerkin's procedure. However, it was found that 

both the PWS and the RT functions give similar results. 	The 

matrix elements. for the waveguide region have been evaluated 

using the waveguide dyadic Green's function for the electric 

vector potential in the spatial domain, while the other matrices 

have been evaluated using spectral domain Green's functions. 

For the calculation of the reflection coefficient and 

hence, the input impedance, a TE10  mode is assumed to be 

incident in the waveguide. 	The radiation patterns have been 

determined for the particular case of an air-dielectric patch 

antenna. 

5.2 The Computer Program 

Based on the analysis, a computer program has been 

developed in FORTRAN. 	The program has been written in the 

modular form, as a result of which, any modifications can easily 

be incorporated in it. The variables have been named in such 

a way that the same names can be retained when the analysis 

is extended to take into account the y-directed currents on 

the aperture and the x-directed currents on the patch. A single 

integration routine has been used which is called several times 

from different subroutines. 	However, most of the variables 

in this routine do not change from one call to another call. 

Therefore, suitable modifications in the program, say, storing 

the numerical values of these variables in a database during 

the first call and using these variables in the subsequent 

calls, can greatly improve the speed of computation. 
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5.3 The Numerical Results 

The results obtained from the computer program have been 

checked for the convergence and compared with the published 

results. 	Though, the self impedance of the patch and the 

elements of the waveguide admittance matrix had a good agreement 

with the published data in almost all the cases, the input 

reflection coefficient, instead of showing convergence, showed 

instability with the increase in the number of subsections. 

Although a number of numerical tests were carried out to 

identify the source of this instability, no suitable explanation 

for the peculiar nature of the curves could be found. 

When the aperture is narrow in the y-direction, it can 

be approximated as a magnetic dipole with only a x-directed 

current distribution. 	Thus, the electric current induced on 

the patch will have only a y-directed component. An open 

waveguide, on the other hand, cannot be approximated as a 

dipole. 	Further, when a reflector is placed in front of the 

waveguide, the field distribution over the aperture is disturbed 

and no longer corresponds to that of the TE10  mode. Therefore, 

both the x and the y directed currents on the aperture as well 

as on the patch need to be considered to obtain reliable 

results. 

Finally, test data has been generated for a waveguide 

fed microstrip patch antenna. The input characteristics 

indicated the presence of alternate series and parallel 

resonances. 	The input impedance, measured at the plane 
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containing the aperture, is a very strong function of 

waveguide-aperture and aperture-patch interactions. 	Since the 

resonant frequency has been obtained by considering the 

impedance *referred to the plane of the aperture, it does not 

coincide with the resonant frequency of an isolated patch. 

The exact shift and its behaviour can be known only after 

carrying out more detailed investigations. 

5.4 The Experimental Results 

An effort was also made to study the characteristics of 

a waveguide feed patch antenna experimentally. 	The input 

characteristics showed the presence of alternate series and 

parallel resonances, a behaviour which is also predicted by 

the numerical results. These several parallel resonant points 

are arising due to the excitation of different modes. 	With 

the help of the input characteristics, namely, the input 

impedance and the VSWR, and the far-field quantities, namely, 

the radiation patterns and the gain, the resonant frequency 

of the patch antenna has been predicted. 	Since the gain was 

too low due to a high reflection loss at the aperture, a slide 

screw tuner was used to improve the gain. 	Though it resulted 

in an increased gain, the antenna patterns were seriously 

affected. 	Hence the use of a slide screw tuner is not 

recommended. 	Further, in view of the strong dependence of the 

input impedance on the location and size of the aperture, more 

detailed studies need to be carried out to find out an optimum 

location of the aperture vis-a-vis the patch. 
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In an effort to reduce the undulations in the radiation 

patterns, the size of the ground plane was increased which 

resulted in improved radiation patterns. 

Since the radiation patterns are quite broad in both the 

planes, the reflections from the ground and the walls had a 

considerable effect on them. Use of microwave absorbers would 

have minimised these undesirable reflections. 	Further, the 

use of a network analyzer would have resulted in more accurate, 

reliable and repeatable measurements. 

5.5 Recommendations for Further Work 

In almost all the cases considered in this work, the 

reflection coefficient showed an oscillatory behaviour. Since, 

no suitable explanation could be found for this behaviour, 

further studies are required to resolve this problem. 

It was found that at all the frequencies, the input 

mismatch was unacceptably high. Since, the input charac-

teristics depend on the waveguide-aperture and aperture-patch 

interactions, more investigations are required to determine 

the optimum location and size of the aperture for obtaining 

a good impedance match. 	Since a purely experimental 

investigation is costly, time consuming and prone to tolerance-

induced errors, a detailed theoretical study of the structure 

is recommended. 

in order to study the effect of coupling via a wide slot, 

both the x and the y directed currents on the patch as well 
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as on the aperture have to be considered. Although it would 

increase the complexity of the problem, this investigation is 

necessary to fully characterise the waveguide feed patch 

antenna. 

Another interesting problem to be analysed is the 

excitation of the patch antenna by a shunt slot in the broad 

wall of a rectangular waveguide. 	Studies have to be made to 

determine the location of the patch and the aperture with 

respect to the waveguide for optimal coupling into the antenna 

due to both electric and magnetic dipoles. 	A sliding short 

circuit terminating the waveguide beyond the antenna could be 

used to vary the positions of the peaks and nulls in the 

waveguide standing wave pattern to increase coupling into the 

antenna. 

Finally, application of the aperture feed structure to 

arrays of microstrip patch antennas have to be considered. 

Feeding of several patches via longitudinal slots in the broad 

wall of a waveguide shall reduce the complexity of the feed 

structure. 



APPENDIX A 

Evaluation of the Electric Vector Potential 

in the Waveguide Region (Eq. 2.52) 

The electric vector potential given by (2.43) can be 

written in the form 

F~ = Eo If gm(rlr').{M~(r')+M~(r')) ds'  (A.1) 
S 

Since M. has only x-directed components, (A.1) reduces to 

F. = Eo ff gm(rIr t )  r') ds' 
S 

(A.2) 

The integrand of (A.2) can be written using (2.30) and (2.44) 

as 

gm(rIr').MX(r') = x E E [EmEn/(abrmn)] (Ss)x (CC) 
m n  y 

S)(x'-x
c
+Lap/2) PY(y'-yc+Wap/2)  (A.3) 

t 

Substituting (A.3) in (A.2) 

F. = x Eo E Z [G Gn/(abrmn)] Sin[(mir/a)(x+a/2)] 
m n 

Cos[(nr/b)(Y+b/2)] ff SC(x'-xc+Lap/2) PY(Y'-Yc+Wap/2) t
S 

Sin[(m1T/a)(x'+a/2)] Cos[(nir/b)(y'+b/2)] dx' dy' (A.4) 

To evaluate the integral in (A.4), we write 

Il = ff SX(x'-xc+Lap/2) P"(Y'-Yc+Wap/2) Sin[(mn/a)(x'+a/2)] 
s 

Cos[(nir/b)(y'+b/2)] dx' dy' 	(A.5) 
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Substituting (2.31) and (2.32) in (A.5) with appropriate limits, 

we get 

xb Sin{k [Ax-lx'-x -sAxI]} 

I1  J  apSin  
Sin[(mn/a)(x'+a/2)] dx' 

k 	x)  
xa 	ap 

Yb 

f (1/Dy) Sin[(nrr/b)(y'+b/2)] dy' 
 

(A.6) 

Ya 

= Ii . Ii (say) 

where 

xa = x
1+(s-1)Ax 
	xb = x1+(s+l)Ax 

(A.7) 
ya = y1+(t-1)Ay 
 

yb = yl+tAy 

The integral with respect to y' in (A.6) can be evaluated as 

yb 
Ii = f (1/Ay) Sin[(nir/b)(y'+b/2)] dy' 

Ya 

nit  nil 
_ (1/~Y) [2/(nor/b)] Cos[2b (Ya+Yb+b)] Sin[2b  

(A.8)  

The integral with respect to x' in (A.6) within the limits xa 

to xb may be separated into two integrals, given by 

xb Sin {k [ Ax- I x' -x -s Ax ~ ] } 

 

1 - f  apSin k  x)  
Sin[(m7/a)(x'+a/2)] dx' 

 

X  ap 
(A.9)  
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X Sin{kap[Ax+x'-xl-SAXD 

	

J 	Sink px a 	
Sin[(mfr/a)(x'+a/2)] dx' 

	

x 	 ap 

xb Sin{k [Ax-x'+x +sAx]} 

	

+ f 	aSin k 	A x) c 	
Sin[(mfr/a)(x'+a/2)] dx' (A.10) 

	

x 	 ap 

where 

X
C 
 = x l  + sAx 	 (A.11) 

On integrating (A.10), we get 

I1 = [1/Sin(kap x)]{Cos[(kap Ax/2)-(mit/a)(x1+sAx). 

Sin[{k p-(mir/a)}(Ax/2)] 

	

+(2a)Ox-(mgr/2) 	[k -(mit/a)]  ap 

-Cas[(kapAx/2)+(m7/a)(xl+SAx)-(2a)Ax+(mgr/2)] 

Sin[ {kap+(mgr/a)}(px/2)] 

[kap+(mlr/a)]  

+Cos[( kapAx/2)-(mff/a)(x1+sAx)- (2a )Ax-(mgr/2)] 

Sin[{-kap-(mir/a)}(Ax/2)] 

[-k -(mit/a)]  ap 

-Cos[(kappx/2)+(mx/a)(xl+sAx)+(2a)px+(mfr/2)] 

f -kap  +(mvr/a)}(Ax/2)] 
-k + mir a 	} 	 (A.12) 

ap 

which can be simplified further to get 
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x 	Sin{n2by} 	4 k
aA  I1  = [1/Sin(k ax)] 	nip 	2 	2 ap 

	2by} 
	kap-(mTr/a) 

Cos[(nir/b)(yl+tpy)-(b)Ay+(nn/2)] 

Sin[{kap+(mr/a)}(Ax/2)] 	Sin[{kap-(mi/a)}(Ax/2)] 

Sin[(mi/a)(x1+spx)+(mi/2)] 
	

(A.13) 

Substituting (A.6), (A.8) and (A.13) in (A.4), we obtain expres-

sion for the electric vector potential. 



APPENDIX B 

Fourier Transform of Basis Functions 

The k dependent part of the Fourier transform of 

x 
Mj(xo,yo) is given, from (2.78) and (2.80), as 

F x(kx) = J SX 0 C a (x -x+L /2) e Jkxxo dx 
MX  xo  P  0 (B.1) 

Using (2.30) in (B.1), we get 

x1+(s+1)ix Sin[k
a (Ox-ixo-xl-sLxI)] -jkxxo 

F x(kx )  f  pSin k  x  e  dxo 
Mj  x1+(s-1)Ax  p a 

(B.2)  

(B.2) can be separated as 

F (k 

- Xl+sax  
Sin[kap(Ax+xo-xl-sdx)] -jkxo 

xx) xl+(s-1)x  a 
Sin (k ap  

X 
e  dx o 

M~  

x1+(s+l)1x Sin[kap(AX-xo+xl+sAx)] -jkxxo 

+  e  dx 
X +SAX  Sin kap x  0 
1 

(B.3)  

Integrating (B.3) by parts and then simplifying, we get 

(k ) - 2ka  Cos(k Ax)  -jk (x +sAx) 
FMx x 	k2 p-- [Cot (k 	) - Sin(kxY1x ___ e 	

x 1 
J  x ap  ap 

(B.4)  

The k y dependent part of the Fourier transform of 

x 
MX(xo,yo) is given, from (2.78) and (2.80), as 
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-jk y 
FMX(ky) = f Pt(Yo-yc+Wap/2) e  y o dyo 

J  yo 

Using (2.30) in (B.5), we get 

(B.5)  

yl+tAy 

F (k) = f 
M~ y y1+(t-l)Ay 

-jk y 

( 1/AY) e  yo dy0 
(B.6)  

(B.6) is readily integrated to get 

Sin k Ay/2) -jkY[y1+(t-½)Y] 
FMx(ky)  (kyAY 2-)  e 

J 

(B.7)  

Following the same procedure, conjugate Fourier transform of 

MX can be obtained. 
J 
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