
DESIGN AND IMPLEMENTATION
OF A PACKAGE FOR PROCESS MIGRATION

ON THE DECSYSTEM-2050

A DISSERTATION

submitted in partial fulfilment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

ELECTRONICS & COMMUNICATION ENGINEERING
COMPUTER SCIENCE & TECHNOLOGY)

AJIT MALAVIYA•

DEPARTMENT OF ELECTRONICS Et COMMUNICATION ENGINEERING
UNIVERSITY OF ROORKEE

ROORKEE-247 667 (INDIA)

April 1987

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented

in the dissertation entitled, 'DESIGN AND IMPLEMENTATION OF

A PACKAGE FOR PROCESS MIGRATION ON THE DECSYSTEM-2050', in

partial fulfilment for the award of the degree of MASTER OF

TECHNOLOGY in Electronics and Communication Engineering with

specialization in COMPUTER- SCIENCE AND TECHNOLOGY, submitted

in the Department of Electronics and Communication Engineering,

University of Roorkee, Roorkee, is an authentic record of my

own work carried out for a period of about eight months, from
August 1986 to' March, 1987, under the supervision of

Dr. (Mrs.) K-.Garg, Reader, Department of Electronics and

Communication engineering, University of Roorkee, Roorkee,

India.

The matter embodied in this dissertation has not been

submitted by me for the award of any other degree or diploma.

APRIL 2.7 ,1987
	

(AJIT MALAVIYA)

This is to certify that the above statement made by

the candidate is correct to the best of my knowl dge

Dr.(Mrs.)K. rg
Re de

Electronics and Communication
Engineering Department,
University of Roorkee,
Roorkee, U.P., INDIA.

ACKNOWLEDG44ENTS

I would like to express my gratitude to my

supervisor, Dr!. (Mrs.) K°.Garg, Reader, Department

of Electronics and Communication Engineering, Uni-

versity of Roorkee, Roorkee, for her invaluable assis-

tance. Her constant interest and excellent advice

helped me to complete this dissertation successfully.

My thanks are due to my friends for their help

and cooperation.

Finally, I am thankful to Mr-. D.C.Bhardwaj for

his excellent typing of this thesis.

AJIT MALAVIYA

PASO

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION
1.1 Introduction and Motivation
1.2 Objectives of the Work Undertaken
1.3 Organisation of the Thesis

2 . PROCESS MIGRATION AND THE OPERATING
ENVIRONMENT

2.1 Introduction:, Advantages of
Process Migration

2.2 Transparency in the Presence of
Process Migration
2,2.1 Distributed Operating Systems

versus Network Operating Systems
2.2.2 Object •-Oriented Software

Organisation

• • . 7

• • • 7

... 10

3. DESIGN ISSUES RELATED TO PROCESS MIGRATION 	. 15

3.1 Dynamic Process Scheduling 	 . . , 15
3-.1.1 Measuring Processer Load
3.1.2 Scheduling Algorithms.

~.2 Keeping Trao1c of a Migrating Process 	... 18
3,3 Distribution of Process Management

Functions 	 , .. 22
3.4 Physical Transportation of a Process 	... 25

contd...

CHAPTER PAGE NO

4 	A PROCESS MIGRATION PACKAGE ON
THE DECSYSTEM-2050 • 29 .
4.1 Overview of the TOPS-.20 Facilities ~ ., 	29

4.1.1 The Process Structure
4.1.2 Inter Process Communication

Facility
4.1.3 The Interrupt Facility

4.2 Operational •Organisation of
the Program ... 	34
4.2,.1 System Databases
4,2.2 The Initialization Routine
4.2.3 The User Interface
4.2 ..4 The IPC Handler
4.2.5 The Process Monitor
4.2.6 Common Routines

4-.3 Using the Package . 	49

5. 	CONCLUSION ... 	52
5.1 Summaryand Results .,. 	52
5.2 Suggestigns for Future Work ... 	53

REFERENCES
A?PENDIXb-A

APPENDIX-B

ABSTRACT

A distributed system has to operate in a reliable

and efficient manner in the presence of failures and

unbalanced resource demands. Process .Migration emerges

as a possible solution to these problems.

In this dissertation an environment for supporting

process migration on the]]ECSYSTEM-2050 has been imple-

mented. Problems associated with process migration have

been identified and solutions to some of these have been

given°.

CHAPTER - 1

INTRODUCTION

1.1 INTRODUCTION AND MOTIVATION

Computers have been becoming cheaper over the years,

and so using multiple computers in conjunction was an in-

evitable development-. In the earliest stages, this was done

on an adhoc basis, by connecting existing computers through

simple interfaces and adding the controlling software as

a separate utility, rather than as a .part of the system.

A simple network would, thus, have had a function-oriented

protocol, such as a File Transfer Protocol (FTP) built on

top of an interprocess.communication facility [1,2]. In

fact, functionally, such a network would have been nothing

more than a glorified telephone. Further developments brought

about some systemisation and standardisation. The concept of

expandibility of a network, its reliability and cost-

effectiveness came in with time.

In the context of the present state of art, inter-

connected systems generally fall into three categories -

multiprocessors, local area networks (LANs) and wide area or

long-haul networks [3]. Multiprocessors consist of small

computing units, very closely linked and synchronised, which

are meant to function as a single machine. Wide area networks

and interconnections of LANs,. Thee two systems do not hold

much relevance in the present discussion-. Here we shall be

N

dealing mainly with systems based on local area

networks'.

Depending on the type of operating systems they

support, one can classify networks as ordinary LANs or

as Distributed Systems-[3].. The term Distributed system

is not very clearly defined, and has been used to refer

to any thing from a multiprocessor to a wide area network

Throughout this dissertation, however, the term Distributed

system• will be used to refer to a loosely-coupled network

of autonomous computers which supports a system.. wide or

distributed operating systems.

A loosely-coupled network is one where computers do

not share memory. This zharacteristic is important to

exclude multiprocessors from the definition, as they invaria-

bly have a tightly-• coupled processor configuration. Some

networks do however, provide means for computers to share

memory, but not at the instruction level. That is, a computer

cannot execute a code that is remote without first copying

it into a local memory area.

Autonomous computer networks ex'e those that do not

have a maser-slave relationship. For instance, a system

based on the Intel 8086 and having an 8087 or 8089 co-processor

could not be classified as a Distributed system because one

processor is in complete control of the other. On the

3

other hand, systems connected hierarchically (like a tree)

can form a Distributed system; if they are functionally

independent. 	I

System-wise operating system refers to systems where

services are requested by name and not by location [4].

Traditionally such an operating system is called a' Distri-

batted operating system .

Network will be used to refer to a computer network

in the generic sense,. In later chapters, the difference

between a distributed system and a network will be brought out o.
more clearly., Till then it would suffice to say that a

distributed system, is a network with a large degree of.

cohesiveness and transparency.

As a comparatively recent development in the field

of networking, Distributed systems have been the subject of

a large amount of research. Most of this research is related

to the reliability of systems and optimization of their use.

This is particularly true when it comes to allocation of

system resources among users-. Resources of a system consist of

memory. diskspace-, . processor time and information:primarily•
Optimizing, or even controlling such a large amount of variables'

is no mean task, especially so, when the demand for- resources

do not follow a deterministic pattern. At a given time some

4

computers in a network might be heavily loaded while

others are running relatively free. One or more computers

might have failed, thereby reducing the amount of available

resources, while not necessarily reducing the demand.

In such circumstances the concept of process

migration becomes important. A process is the entity which

causes actual computation to be carried out. It is the

executing version of the whole or a part of a program.
All resources are allocated to or used by a process. Mig-

ration of a process refers to changing the environment in

which it is running-. More specifically, it describes the

movement of a process from one computer to another, without

the loss of its context. Processes are made to migrate for

the purpose of even-ing out the allocation of and demand for

system resources-.

Associated with process migration are the _problems

of when and where to migrate a process, how to migrate it ,

preserving its context [5], and ensuring that a change of

environment does not affect its execution'. Different

distributed systems have approached these problems in

different ways, adopting differing architectures and developing

many process management techniques. Increasing the system

efficiency without causing inconvenience to the user, has

of course, been the underlying theme;.

5

In this dissertation, a study of dist1ib.ted

systems has been made so as to bring out the:., chaPadtei

is-tics of an operating system that aid in making o'es

migration an asset. Various Issues related to process niagemet

have been discus sod. A- suitable environment for nig±Iig.

processes on the]DEY2050, has been desi.ghed and

implemented.

L..2 OBJECTIVES OF THE, WORK 	ERTA]KN

The objectives, of this' diSSetation Sre

(1J 	To stixdy, the mechanism of process mIgration

and the opepatLng sYgtem eniom 	Suited

j' it

(ill) 	To study the. problems 'so Ojated wth

process migration, and possible s'o1ution to

these problems.

(ill)' To design. a Softare paci5g.a that gen'eratos

partIally. 	envlrb.nthent of 5. distributed

systerg and to implement process' jtgrätion

or it.

1,3 ORGAIUSATION OF THE THESIS

After the introduction to the topic, which has

already been presented; ,process Migration is studied in

relation to the operating system environment,, in chapter-2.

The reason for preferring ,a Distributed Operating System

(DOS) to a Network Operating system (NOS) is mentioned.
Object-oriented software organisation is introduced and

shown to be better suited for operating system design.

In Chapter-3, the mechanism of Process Migration and

related issues have been presented. Here we have dealt with

process management details like dynamic process scheduling

and keeping track of migrating processes. Physical trans-

portation of a process based on the DEMOS/NP implementation

has been described.

Chapter-4 deals with the design of a package for

implementing process migration on the IIECSYSTEM-2050,.

Alter an overview of the facilities provided by the DECSYSTEM-

2050, the package design has been explained in detail.

We conclude with a summary of the work done and the

results achieved. Some suggestions as to what further work

can be done on the subject has been given!.

A list of references has been appended, detailing the

various sources consulted in the preparation of the dissertation.

The program for the package is given as an Appendix.

CHAPTER-2

pROCESS MIGRATION AND THE OPERATING ENVIRONMENT

2.1 INTRODUCTION ADVANTAGES OF PROCESS MIGRATION

Before taking up any discussion concerning the
t howt

or'Whatt of process migration, it is necessary to justify its

incorporation into a system.-'. In this section our aim is to show

how process migration goes towards enhancing the efficiency

and reliability of a system.

Consider a system that does not support any type of

process migration. The processes remain at the nodes on which

they were created. It is quite possible that the resource

requests be one sided, leading either to deadlock Situations

or a highly inefficient behaviour. Thus a process that

requires a large amount of primary memory will either prevent

other processes from being loaded or increase disk I/O

bar frequently demanding new pages (segments); depending

upon the memory management scheme..Many computation-

intensive processes scheduled on the sane processor

gompete for processor time leaving the I/O devices relatively

:dle°.

On the other extreme, running a large number of I/O

bound processes leads to wastage of computing power, as the

processes would be blocked for most of the time [6]. It

would be infinitely more desirable for the demands to be more

evenly balanced so that the resources are properly

utilized'.

In network based systems, another vital issue is

the traffic in the communication channelsi. Communicating

processes residing on distant computers tend to increase

this traffic. To reduce the communication load, the number

of hops per message should be reduced'. Alternatively, the

processes can be scheduled on nodes between which the

lines are under-utilized. All these cases require the

processes to be dynamically distributed'. Static scheduling,

that is, at creation time only - would not be desirable as

the system cannot have foreknowledge of the required

resources [71.

Another factor supporting process migration is the

sparse distribution of system processes in the network. In

order to save memory space, most systems prefer to keep

only a limited copy of system processes [8]. Depending on
the requirements wither the calling process or called process

Is made to migrate. It is possible for a utility routine to
be divided into separate task forces running and scheduled

Concurrently, giving rise to the need for process migration.

Reliability is of prime importance in any distributed

system, and is, in fact, one of the factors that led to their

development. Instead of having all computing power localised-

rhere a single failure can crash the whole system - it is

9

distributed over a number of autonomous systems. A failure,

then, will just partially reduce the available resource, or

in the worst case, deprive a small percentage of users of

it. Failing systems can save their processes by migrating

them elsewhere,. This is particularly useful in situation

where it is not possible to restart a process— like one

which modifies an important database-.

A very important advantage of having process migra-

tion is the support of a 'pool of processors* architecture [9].

In such a system, instead of the terminalsbeing controlled

by a host computer, they are connected directly to a network

through concentrators. Various computers are also connected to

th .s network. The- concept of ocal or remote resources is

completely removed. When the user needs processor time, any

Processor in the computer bank can be assigned to him'.

t)emands for devices can easily be met by migrating the

culling process to a dedicated processor controlling the

required device. In case of failure of a processor, its

processes can be rescheduled among the other computers in

t1 e bank without the user being aware of it. This failure of

a processor only reduces the available resources; providing
4 higher degree of reliability'.

2.2 TRANSPARENCY IN THE PRESENCE OF PROCESS MIGRATION

212.1 Distributed Operating stem versus._ Network 0 era-
tin Systems

A distributed system has to provide a degree of

transparency in its operate. on That is, the user of the

system must not be aware of the machine boundaries in

the system-. Coupled with process migration, this requirement

imposes certain restrictions on the system design and

layout; as a result of which it is preferable to have

a Distributed Operating System (DOS) rather than a Network

Operating System (NOS).

For instance, take the file system in a network.

This file system is not 'globally managed in an NOS, and so

to access a remote file it is necessary to specify the

machine or computer- on which the required directory resides.

In a system like the Newcastle Connection [10], which

operates in an UNIX environment, the path through direc-

tories has to be specified. As no directory connects two

computers, one has to assume a virtual superior directory

(Fig'.l)'. An OPENFILE request would take the form

open (1° /°../machine2/pathname",READ);

where %/°..' is the virtual superior directory.

MACHINE 1

VIRTUAL DIRECTORY

i
i 	►

i
/

i
I

	

MAC i-1I NE21 	 ` ! L ACHINE3

Sub- directories
and files

Fig. 1(a) Virtual Directory in an NOS

rn - ,- m nri nr

Sub-directories
and files

Fig. 1(b) Global Directory in a D$

11

Migrating processes face a severe problem

stemming from such a file management system. On the

initial open request• the system assignsa local logical

number. to the file being accessed. This number is

unique only in. the host machine boundary. If the

process is taken to another computer, the file number

it uses refers to an entirely different file. To solve

this problem, the system has to intercept each request of

a migrated process and re-direct it to the creating node,

resulting in a large amount of overhead.

A DOS would be having a global file name space

[1,ll]. Logical numbers assigned to a file anywhere in

the systeme unique, and independent of the caller's or

called locations. It is not necessary to specify the

location of a directory when requesting a file. On LOCUS [11],

another UNIX based system, the OPENFILE would be

open("/etc./passwd",READONLY);

where & etc4 is a global system directory,

Another area where machine boundaries become visible

Ls the CREATEPROCESS system call [1] . In an NOS the process

will be created on the host computer unless another node has

been specified, and a remote login performed. A DOS does not

require any remote login, and the new process is automatically

scheduled in the best suited environment.

12

Network and Distributed operating systemshave
different implementation schemes. An NOS is developed

by adding software on a native operating system, while

a DOS is designed from scratch; in a manner that supports

a global management scheme. This difference often gets

reflected in synchronisation signals like those used for
interrupts and interprocess communication, making it
uneconomical if not infeasible to support process mig

ration transparently in a Network Operating System [1].

2.2.2 Qji ct- Oriented Software Qr anisation

That a network has a DOS does not necessarily
ensure that it can handle process migration easily. Here

we introduce an Object-Oriented system which has been used

successfully in systems like EDEN [7] and AMEQBA [12].

It is not that a system not organised in this fashion

cannot efficiently support process -:_migration, but that

transparency in inherent, rather than forced, in a system
that is (organised in this manner).

In an object-oriented organisation a software
segment and its related databases together form a single
entity called an object, Any reference to the database
can be made only through the relevant object, a .message
being the initiator of an objects activity. An object is
the smallest entity that can be moved from one kernel to

13

another. A major advantage resulting from this software

abstraction is that of consistency. The whole object,

that is, the program and database are referred to by a

single location independent name. It is easy to standardise

the interface between objects. A user's request for the in-
Vocation of a remote request is the same as one invoking

a local object, providing a high degree of transparency.

Contrast this with a procedure calling system where a •

request sent to a remote node will be interpreted by the

kernel, compiled into possibly a chain of procedure calls,

executed., the result collected into a message and then

returned.

Another advantage of using an object oriented

organisation is that of an inherent global protection scheme.,.

It is usual to have a capability based addressing scheme [7,
12] in such .systems. Every object in the system.. is referred

to by alogical entity called a port. Accessibility of the

port address is itself the right to use that port and hence

that object [12]. in a migrating process, the port address

or the cap€bility is a part of its context and will thus be
present in the new environment also. A procedure-call system

like a DECSYSTEM..2050 specifies a process 's capability by

what is given to it by the creating process and not from its

context [13] .

14

The port addressing scheme is exactly similar to
the link based interprocess communication method preferred

by distributed systems [7,11,12]. A link is a unidirec=

tional logical communication channel. The 'link owner' is

the process that creates or requests for the creation of

the link, and can -receive a message sent on it Any process

that has the link number is a 1 link holder' and can send

messages on it. Possession of the link number is implicitly

the capability to use that link-.

As links and ports are very similar in their

characteristics, processes can easily be treated as objects

having a system-wide identifier, and thus giving uniformity

to the operating. systems organisation'.

C HAP^1ER 3

EESIGN ISSUES RELATED TO PROCESS
MIGRATION

Uptil now, we have discussed the environment in
which a process can, or cannot, migrate, and what causes
it to do so. This chapter deals with the mechanism of
actually transporting a process and the decision and book

keeping issues.

3.1 DYNAMIC PROCESS SCHEDULING

The first step towards migrating a process is

deciding which process to. migrate, and where. Such a decision

has to be taken with the whole system in consideration.

Thus there has to be some mechanism.by which information

about process status can be collected and processed globally.

We shall be presenting a possible algorithm for achieving
this. Later an algorithm for choosing a migratable process

• and its destination will also be given.. Both of these algorithms
provide sub-optimal solutions, as going in for an optimal

distribution is, uneconomical and time taking L14].

3.1.1 Meas.ur~ing Processor Load

The information collecting algorithm used by MOS[l4],

a Multi Computer Operating system is 'quite simple and can be

used to arrive at a sub-optimal. solutions.

i 	..

16

In. a system with ` n' computers (nodes) each one

maintains a load vector ILA" of size 'e. The first entry
of the vector L(0) holds a measure of the local processor
load and the remaining the load of an arbitrary subset of

nodes. This subset does not remain the same, but changes
with time-. A unit of time 't' is chosen for load balancing
considerations. Every 1t seconds the following steps are
taken by a -procersor'.

ST 	_ update the value of its own load vector.

STEP 2 -choose a r ando m number 1 < i < n.

Step 3 - send the first half of its vector L to node i.

If this node receives a load vector from some other

node, then

STEP 4 •- merge the received vector LR with its own vector
L according to the mapping (Fig.2)

L(j) -Y L(2j), 1 < j < L/2_1

LR(j)~ L(2j+1)90< j S ,(/2-1

While this algorithm does not provide every node

with the latest update, its has its own distinct advantages.

A comparatively small amount of message passing is required,

equal to the number of nodes in the systems. For a complete

update the number of messages would be n(n-1). The message

size is also considerably smaller, as the value of L is
kept lower than n [14]. By choosing the values of 1 and t

properly, it is possible to make the algorithm decently

efficient. Sometimes there may be duplication of vector

entries in a load vector, but this is unavoidable and permitted.

Received Vector
(0-3)

. Fig. 2 	Mapping Of Load. Vector:

Ori~oi

17

3.1.2 Scheduli. g Algorithms

Based on the information gathering policy discussed

above a scheduling algorithm can be run. MG [l4] uses

processor load as the only criteria for process migration.

The measure of load is the number of processes waiting for

processor time. This number is sampled at intervals of 'q'

seconds, where

t = u q; t = the load vector, update time.

The local load is measured as

u
Vt =(E Wi)/ (u -w)

i=1

where,
Wi = the number of processes waiting for processor

time during the interval (qi~l, qi).

w = the number of time quanta (q) out of u possible

quanta consumed as the operating system overhead.

If a node finds itself more heavily loaded than others,

it selects a process that has been running for some time (more

than a fixed minimum) and migrates it to the node with the

lowest load. The criteria of a process having had a minimum

amount of time at the host node prevents needless migration,

that is, only long running processes are migrated.

In this algorithm, the only criteria for load was the

number of processes that were waiting in a specified interval.

Ir

It might be desirable, however to include a larger number

of variables into the decision making algorithm. To achieve

this the Mc Culloch Ping evaluation procedure [15] can
be used-. A Me Culloch -Pitts neuran is a decision cell

with Excitation (E) and Inhibitions (I) (Fig.3). The output

of this cell is the sum of all Excitation, or zero if the
sum of Inhibition is non-zero,.

To select a candidate for migration, a process is

evaluated through this procedure in context of the current

environment. The process with the lowest output value but
not zero is the best candidate-. If desired, a certain

minimum value can be fixed, above which no process migrates.

The information collection algorithm is modified so that

each load entry contains information describing various factors

of the node status. Using this information a node is selected

to receive the process. Thereafter either the process is

migrated directly or bidding is performed to check whether

the receiver state has changed in the duration

3,2 KEEPING TRACK OF _A MIGRATING PROCESS

A long running process may be expected to migrate a

number of times in a distributed system. Functior~like

interprocess communication and calling system; processes

require the location of a specified process to be known, or

at least be traceable at any given time. Keeping track of

Excitations
E

I

Inhibitions

I In

RESULT

n 	m
E. if EI0

RES ULT = 1 y 	1
0 	otherwise

Fig. 3 	The McCL111och Pitts Neuron

19

a system process should normally be simple as the total
number of such processes is known before hand. A directory
indicating the last known location of a system process

is either maintained at every node, or one or more managers
take care of this task for the whole system. Except in
cases where the manager is totally centralised, updating a

process location on each directory for every move is not

economical. The number of messages involved would become

too large. In most systems, the managers which migrate a

process keep track of its last known destination. Any

requests are then forwarded, and depending on the current
process location may be reforwarded. Such a method, though
economical is not very dependable, especially in the face

of the failure of an intermediate node. The example given

below elucidates on this point.

Consider a system with four nodes. A process resides

on Node f{ 1 initially. With time the process migrates as

shown in Fig. 4(a)!. The record of migration history at the

nodes would be as in Fig. 4(b). Now suppose Node 2 fails

and in doing so migrates the process to Node 4 4. If Node
A 3 needs the process it sends a request to Node 4' 1 as per
its records.. Forwarding the request to Node # 2 is not

possible as it is gone off—line. The only alternative is

to conduct a search-. Implementing a simple searching algorithm,

the request could be forwarded to Node 0 (i+l) if Node 4E i is

Node

5
Node 1 • • Node 3

Node 2

I 	 Path 1-2-3-1-2-4 Taken By a Process i

NODE Pl ... Pi ... P n

1 2
2

3
4

OFFLINE

'Last Known Destinations' After
Failure of Node 2

Fir-. 4 Process Path and the Last Known
Destination.

20

off line. Clearly this will not work in our example,
as the request will be returned to Node / 3, forcing

it to deduce that the process is not available.

Another way out is to break the search into two

parts. Initially an attempt is made to track the process
through its migration history. When a missing link is`
encountered, a linear search is started afresh, ending

at the node where the search began (Node { 1) instead of

the node where the request- originated (Node , 3). Such
a method would be useful in highly reliable systems only,
where the probability of failure is very small, and migration

and request timings are such that on the average tracking

is faster' than searching, In less reliable systems a
linear search 	thaia tracking would be more efficient.

The searching=tracking combination can be improved upon by

providing the searching algorithm a history of the tracking.

That is during tracking every intermediate node adds its
identification to the message. When searching is performed

the nodes that have baen involved in tracking are skipped

entirely..

Most of. the systems do not keep a fully distributed

process directory 18,16], preferring to allocate the task

to a few selected nodes® A failing node then just has to

inform its manager- of the migration and so the records can

be kept upto date. If a manager-node fails, the resident

N

21

directory is transferred to some new node in the -group

which then acts as the manager. This node will inform

other managers, and its group of the change,_ and all

operations can then proceed as before.

Problems similar to these arise when one of the

two communicating user processes migrate. As user processes

are dynamically created and doleted, keeping a 'record of

all these processes would require a large amount of space,

especially in a system based on a network of time sharing

computer. Informing all relevant nodes about a migrated

processes is again infeasible because of the large amount

of overhead that would be incurred. A possible -solution

could be achieved by associating an entry with the logical

link the processes use to identify each other while commu-

nicating:. This entry would be resident in the Kernel and

would contain the last known castination of the link owner.

When a process migrates the entry would be transferred to

the new kernel as a part of the processes context._ As'u-
ming, that the processes communicate more frequently than
the migrate; any message will be delayed by a single hop

only. By, addressing every message through the kernel

instead of the link owner directly transparency is ensured [6]..

Where inecessary,. -a linear soarching algorithm can be

employed, though such occasion will not be. frequent. Having

communication through kernels has another advantage. The

22

relevant kernels know which processes are owners of

links, and when migrating- them keep a record for forwar-

ding messages. After the first redirection, both the ben-

ding and receiving kernels are informed and the record
deleted. Thus space is not wasted.

3.3 DISTRIBUTION OF PROCESS MANAGEMENT FUNCTIONS

In a centralised sysTtems, process management tasks

are generally shared by three entities [6]. The Traffic

Controller keeps track of the process state and resource

requirements. Which process is to be actually loaded and

started at a given instant ia- decided by the process

scheduler or Local Process Scheduler (as we shall be

referring to it). Assigning the required resources to the
process and starting it is the task of the Dispatcher.

A Distributed system requires a more complex process

management scheme. Processes not only have to be managed

locally within a node but also globally - requiring a

system-wide approach. It is convenient here, to split the

management scheme into two major segments. One segment takes

care of local scheduling and will consist of the three

entities mentioned earlier-. Global management deals with

deciding whether the process is runnable at the current

node, packing and sending a process to another node or

23

receiving one and including it in the local process list.

The- global management scheme is the one that is relevant

here.

There are two ways in which a node can receive a
process-. Some migrate to it through the bidding and

scheduling methods - that is through negotiation. Failing

nodes on the other hand might randomly distribute their

processes, the main concern being preventing the loss of a

process rather than their efficient distribution. Processes
falling in the former category. are guaranteed [17], their

resources dnd processor time being assured. Randomly migra-

ted processes, however cannot be guaranteed an-d might require

to be migrated further before they find a niche.

A possible configuration for a process manager

is the one shown in Fig. 5. The process manager exists in

two parts. Local process scheduling function are carried

out in each node as usual-. The traffic controller acts

as a go-between for the local and global management

functions as it keep track of internal resource require-

ments and assesses process characteristics provided by

external nodes. To migrate a process that is resident

in the node, the traffic controller and scheduling algorithm

cooperate-. Thereafter the bidder is instructed to send the

a)

I ~

00
W

aH Q _ _
1 H H

' 	I

I 	I

r--i

r=_a a

U)

UH
U 0 U)
a°wa

•Q

(I)

0
0
a

CJD

vW a
O 0 x aa~

O
U

H

. N
e)

i
0

Cd

Cd

U)
U)
Q)
U
0

0

0

0 0

Ul ~
r1
Q w

24

process to a suitable location. Processes migrated to a

'node are Checked by the bidder to see whether they have

been already accepted-. Processes that have been bid for

are marked as guaranteed-. They are then placed in the

local process list. If an unbid process arrives, the

guarantee routine in conjunction with the traffic controller

examines it. Depending on the availability of the resources,

it can be guaranteed and included in the local process list
or marked for migration and returned to the bidder. Bid

requests sent by other -nodes are processed by the bidder
with the traffic controller and scheduling algorithms.

The picture presented bve is a very general one.

Different operating systems would implement the configurations

in different ways'. In a totally decentralised system the

complete structure would be replicated in each node together

with an information collection algorithm to support dynamic

scheduling. However a system that broadcasts bid requests

instead of sending then to specific nodes would have no

need for scheduling or information collection algorithms..

Conversely, a system. can depend wholly on a scheduling

algorithm to specify a destination and thus eliminating

the bidding routines.. Another criteria for the configuration

is the amount of decentralisation permitted by the system.

:Only the local process manager might be replicated, while a

partially centralised process combines the bidder and

25

guarantee routine'. This process could either be a
self migrating one or could perform the operation remotely.
The scheduling algorithm can be run as a separate entity,
possibly on more than one, but not all nodes, and, in

constant communication with the bidding process. In fact,
the scheduling algorithm would preferably be a part of the

information collection routine,.

An object-oriented system` would further modify
this. Instead of having the local process list as a separate

data structure, it' would form a part of an object. Most

of the operations on this list are performed by the traffic
controller',. so it wo•gld be logical to include the functions

of the traffic, controller in this o'bj:ect. The local process

Scheduler' and dis-patcher wo bald- be. objects themselves and
operate by exchanging messages with the process 1-is'tt object.

:,,4 PP} S-ICAL TRANSPORTATION. OA A PROCrS'S

After making decisions, as which processes to migrate

and where. the final_ task of actually moving the process

remains.. This transportation requires the entire process.

context. to be saved and s,enCt. to the destination where it

will be reloaded. and started. again.: A process's' contexlt-

cons s.ts, of its entire object- code,, data segments and
allocated, system:" facilities.:.

26

The operating system recognises a process by a

logical number or handle [18]. Associated with this

identifier is.a table that lists information about the

process and which is used by the operating system [6]'.

This table is called the process Descriptor List (PDL)[8]

or, in an object oriented system, the Process Work Object

(PWO)[12]. In case of processes grouped together, like the

task forces of MEDUSA [8], another list called the Shared

Descriptor List (SDL) may be present to describe the group
characteristics. These descriptors are useful when a process

has to be migrated-. For scheduling purposes the information

gontained in such descriptors provides a picture of the

requirements of a process.

The object code, data and system utilities used by

a process can be called its working set [18]. Depending

upon the implementation, the Process Working Set (PWS) might

be organised as files, processes pages, segments, objects

or a combination of these. For the purpose of migration,

the P\VS has to be saved in a transmittable form. Typically

the PWS of a process is much larger than its PDL. Thus., whereas

the latter can easily be fit into a message, transporting

the former presents 4uite a few problems. Breaking up the

PWS into many .separate messages and transmitting them in

packets is ;possible,' but the overheads tend to increase due

27

to the large number of messages involved. Another solution
is to dump the whole PWS into one or more files and use a
File Transfer Protocol for moving the file. File specifica-
tions can be sent through an ordinary message packet, Some

systems provide a sort of $'bchable DMA link, using which

it co 4-1 be possible to transfcr the complete PWS at one go.

A modification of this DMA is used by M.PWA, the 	opera

tin g system. IIMDUSA o facilj for memory sharing

between processors is provided [8], By appropriate switching
of interconnection through K maps the destination processor

c-an connect to the source computer's memory. The PWS can

then be copied. It should be mentioned here that though

two processors can share their memories, it is not possible

for a computer to execute a remote object code as the

connections exists for very short periods. In fact, it is

this restriction that causes Cm* -to be classified as a

distributed system rather than a multiprocessor, where

memory can be shared at the instruction level.

Fig. (6) shows how process migration takes place

in DaIOS/MP [5]. The source processor (M// 1) is running a
process A originally'. Desirous of downloading itself,

or for any other reason, it initiates proceedings by sending

a bid request to machine M ; 2'. This node, finding enough

free resources to accomodate A, responds with an acceptance.

Cl)
N
W
U
0

d

w

0
2

1ED I a Y

N

U
O
it

a a d
D u w L o 1 z

w

Q U

-
N

c

N
a
w
H
U)

d
C

a 	o,
N 	c N _

N y
UI 	Io
0
 3~ Y

a
N
N

U

a`
U)

w
V
0
a
H
Q
H
N
w

W
a.
w
H U)

U)

W
V
0
cr a

Z_

0

Z

a-
W
I`

C

cf
a
w
I-
N u

0

a

N i
y C

O N
x a

a
I. O
I0

w w
U v U)
, o. z
U Q

L rJ
O

M
a

1J1 LU
la
N
N
O u

a

z
O_
H

w
X
w

O
X
w
N
U)
w
U
0

a-
w
0

w
X

a
w
M

a

O C (n

a`
U)
w

C7

. o
z
w
a
0

O w

co
a a
N w
N
O C ~

O N

a
N
N

-
O

N

d ®

C
L

Q Y

cn
w

0
a
a
D
i
z

w

28

Machine M #2 then creates a process shell (blank process)

locally,. One by one, various descriptors are sent by M # i t

received by M {l 2 and placed in the corresponding tables&

After sending the P1/1S, any messages addressed to A but

not processed yet arc forwarded to M { 2; Now the process

in M 1 is just an empty shell and is deleted: A forwarding

address is left with ' A at machine M f{ 1. Execution of the
process starts on machine M # 2 from the last Program Counter

value.

CHAPTER ►- 4

A PROCESS MIGRATION PACKAGE ON THE

DECSYS TEM•-2050

This chapter deals with tho implementation of a

software environment which supports process migration

on the DECSYSTEM-2050-. First of all, some of the faci-

lities provided by TOPS-20 -- the DECSYSTEM-2050 opera-

ting system-; have been detailed. These are the facilities

that have been widely used in our implementation, and

to a large extent, have decided its nature and opera-

tional features. Later sections discuss the program organi-

sation and it working'.

4.l OVERVIEW OF TOPS-20 FACILITIEa

4-.1-.1 The Process Structure

A Process (or Fork) is an executable entity [18].
It has its own 512-page (maximLun) address space, accumulators

and program counter. In TOPS-20 each process is scheduled

independently of the others. The highest process is the

E~CC program which. is created by the system when an

user logs-in. Other processes created either on the user' s

request or by the system are inferior to the EXEC and

form a tree structure (Fig.7), from which the term fork

is derived. It is clear from the tree that a process can

y TOPS -20
Process)

rented

(Lowermost Processes)

Fig. 7 Process Tree in TOPS-20

Depicts the Package Process
Hierarchy

Wnode, Xnode,Znode form the
Distributed System.

The Lowermost Processes Migrate.

30

have only one superior but many inferior . Processes sharing
the same superior are called parallel processes, though,
this does not mean that they are concurrent.

In order to exert control over its inferiors a process
be able to address then by Some identifier. This identifier,
in TOPS=20 is called a fork handle and is a quantity between
400000 and 400777 (both octal). Fork handles are relative,
That is, they are meaningful only th the process to which
they were given.

TOPS-20 provides a JSYS (Trap to system) CFORK for

creating a process. A process created in this manner is a
virgin process, having no address space. Its accumulators
and programm counters have not been set. The first step is
to provide it an address apace with an 'executable code.
there are two way to do this. One is using the PMAP JSYS to
assign a file page to the process-. This method Is not preferred
a6 each page has to be handled separately. Also, the entry

vector has to be properly read and set. Here, we have used

.e GET JSYS which can load a complete EYE file into the
Process address space.

A process can be started by one of the two JSYS-SFRKV
or SFORK. In our implementation, SFRKV has been used to
tart a process the first time. SFRKV does not need any
Btarting address to be specified as it is available from

3l

the entry vector. For restarting a halted process
from the last program counter value, SFORK has been used.

Various interrupt end Interprpcess communication

facilities are available to a process. These have been

dis.cused in the following section.

4.1.2 Iater-Pro ces s Communication Facil it5

The Interprocess Comrnunicaion Facility (IPCF) allows

mages to the sent between 000peatizig processes.[18,19],
Snder and receiver processes are identified by a unique

Process Identifier (pIP), which is. a 3&--bit quantity assigned

y 	special qystem program INFO. is the information
centre for IPGF. This program performs, functions, by which
nes and process identifiers are associated.

To avail itself of the IPC facility, a procs.s £rs,t

of all, has, to get a PID, This can be done using the MUTIL

1SYS.. As the PID, is, system assignod, it changes every- time a
roes.s is. reinitializcd'. It is therefore difficult, to

nitiato communication between two processes. For this

prpose, TOP-20 provides, the services of I-NFO,, which associates

PIP, w,ith a user specified logical name. C:ornmunicating process:es,

an be provided each others logical names before hand. Ass,ig-.

iiing a logical name to a PID. and asking the PID, of- a logical

me can be done by sending messages to IWO'. IO's m can
be asked for by specifying a special function code in the

RUTIL JSY

7

Flags

PID of Sender

PID of Receiver.

Length of
Message

Address of
Message

S ender' s User Number

Sender's Capabilities

Senders Directory Number

Pointer to Sender's
Account String
Pointer to Sender's
Node Name

•'~

Fig. 8 Format of the Packet Descriptor

32

A message packet in TOPS-20 has two parts. One is
an IPCF Packet Descriptor Block. Entries in this block
completely identify the sender of a message-. Fig. 8 shows
the format of the Packet Descriptor'. However only the first

four words are essential, and throughout our implementation,
onj,.y these have been used. The second part of the message

packet is the message itself whose length and storage

address in the sender's addiess space is specified in the
packet descriptor.

Message sending and reiving are performed by the

MSEND and MRECV J5YS respectively. MRECV copies the packet

de&criptor and message into areas specified by the receiver,

4~ 8Q.ftware channel assigned to a PID will cause a process to

be interrupted when a message is sent to it. This facility

permits. the process to use its time for .other functionsinstead
of polling for a message'.

4.1.3 The Interrupt Facili.ty

TOPS-20 provides thirty six interrupt channels,
etch being a software entity associated with an event [18,19],

Some channels are permanently assigned to . particular events

such as file data errors, process halt, etc'. Others can be

assigned by the programmer for terminal interrupts, IPCF

interrupt or program initiated interrupts'.

1 	 33

Two tables provided by the programmer are referred

to by the interrupt system-. These are the channel table

and level table, traditionally called CHNTAB and LEVTAB.

The channel table has thirtysix entries.(words) each

corresponding to one channel. In the left half of a

word, the priority (O.3) of the channel is specified and

the address of the service routine in the right half.
Interrupt priorities are in decreasing order from 1 through

3, 0 being a do-activated level. A high priority interrupt is

permitted to pre-empt a lower one.

The level table has three entries, each specifying the

PC storage location for the corresponding level. As two

interrupts of the same level cannot be processed at the same

time,, only one storage location per level is needed.

There are various stops in setting up the interrupt

system. The address of the tables CFII TAB and LEVTAB are

brought_ to the TOPS-20t s attention by the SIR JSYS. Then

BIR is used to enable the interrupt systems. Interrupt

channels being used by the process have to be separately

activated using the JSYS AIC. This system call accepts a

thirty six bit (one word) argument (one bit per channel),

with the bits that are set indicating the channels to be

activated.

For channels that have been permanently assigned events

no further initialization is needed. User defined channels

:54

have yet to be assigned events or terminal interrupts

the ATIsystem ai1 is used, There are thirty six possible
errupts origiftatiQn from 	TTY. Twentysix refers to the

co ntro, acter CTHLjA through QRTLTZ, are the relevant
ones here, One -of 'h.ëse has beer4 used for initiating the
user 	 (diusecter),

1FQ interrupt channels' are assigned using MUTIL,

after a PID for the prQces ha been 0-inec1. The 'hird

£nterrupt channel used by us is the prpoess termination

interrupt and is assigned to channel 19 by the system,

4.2 	:oNL ORGANISATION OF THEPROGJ\.M

The soft-ware routines of this package fall into four

independent segments. They.. are the Initialization. Roe,
the User Interface the IPC (Inter Process Cpmmunication)

Hnd1er and the Process Monitpr-. Each of these spgpqr3p has
a ppparate functioa and can operate entirely in.depend.ent of

the others, although not concurrently, A fifth segment c,oains

those subroutines which are used by the other foW., In a way

segment oan be -viewed as an object except for the shared

databases., If for some reason, one segment has to initiate

the services of another, it has to do so through the standard

p.terface, and not Dy directly calling an internal subroutine,

35

On system startup, the initialization routine is

automatically invoked. After setting up various databases,

it leads " the system (or node) into a wait state The other

three segments are interrupt driven. They become active

only on receiving a specified interrupt, and return to the

wait state after performing the desired functions.

Functioning as an operating system, the package

supports -various processes. Based on the DEMOS/MPC5]

organisation, processes have been classified into two catego-

ries- user process and system processes- user processes are

created on a specific request, and at a time, only one user

p1ocess can exist on a node. Those processes can be killed

restarted or migrated at the user's discretion. System

process are more priviledged. They are decided before system,

$tar up. A user is permitted to ask for the services of a

system process, but cannot kill or migrate them. Only one

popy of a system process can- exist in the system at a time

typically loaded' by the node that comes up first. However,

.f desired,a process can be marked to be loaded by a specified

node only, in' which case duplication of processes may result.

System processes migrate transparently•. That is,

when requested by a user, it can be transported from a remote

node to the o'urr ent one without the user being aware of it,

Similarly a failing system will distribute all its processes

among the other nodes that- are on line.

36

4.2,.1 System Databases

The system databases comprise of the different

tables and files that the package uses, either as a

working space or for initialization. Organisation of

the important databases has been discussed here.

SYSTEM PROCESS RECORD (SYSTAB). This table contains

a record of all processes in the system, whether or not
they are present on the current node. The structure of this

table is shown in Fig; 9(a).
Out of eight words reserved per process, only four

at'e being used in this version, the remaining are reserved
or possible future expansion. The maximum number of system
processes currently permitted is eight.

The process number is a code which gives information

about the global process number, the creating node and the

present (or last known) destination. This coding has been

derived from that of DEL1OS/MP-. As a process moves from node

to node the last known destination entry in the code changes.

In the case of system processes, the creating node entry

is useless, as the global process number is unique. It

has been included however, for compatibility with the numbering
systems employed for user created processes.

 6

SS Np FILE NAME 	i 	RESERVED

11JORDS

FORK

HA NDL E

Fig.9(ai) Format of SYS'T'AB

0 1 2 	78 	2n 21 	2A77

2BIIS 6 BITS 13 BITS 6BITS 9BITS
UN- PRESEN TUSED REATI N4 PROCESS

G NODE NUMBER

GLOBAL SYSTD~9
NUMBER PROCESS

UNIQUE
IDENTIFIER

LOCAL USER
NUBER PROCESS

UNTOUE IDENTIFIER

Fig. 9(b) The Clobal Naming Scheme.

35 BITS

37

A process name is actually the file name with the
extension (:EXE) in which the executable code for that

process is stored. This filename (without the extension) is
the one the user will use for referring to that process

Fork handle, as has been explained earlier, is an

18 bit sequence provided by TOP-20 and is used to refer to
a process. It is used internally by the package.

USER PROCESS RECORD (CURFRK, CURPRN)': As only one user.

process is permitted to exist at a time on one node, no

elaborate arrangements for its record have been made.- Two

locations for the current process number and current fork

number have been kept. A user process exists on a node either

when a user creates it or when one migrates from elsewhere

Similarly a node becomes free when the current process is

killed by the user or migrated to another node. To uniquely

identify a user process its local process nun ber (given by

the creating node) is concatenated . with the creating node

number (Fig-.9).

NODE IDENTIFICATION RECORD; In an actual distributed system ,

the nodes would be in communication with each other through a

network. Here this is effected by using the TOPS-20 Inter-

process Communication facility. Two tables- one for the

riode* s logical name (EPIDNM) and the other for the identifi.-

nation number (EPIDNO) are created. In EPIDNM, every possible

38

node on line or not •. has an entry. The logical name

is of the form EXGn, where 'n' is an integer from 1

upwords. EXC0 is the name used to refer to TOPS-20. These

logical names (except EXCO) are registered with TOPS-20,

and the corresponding number allotted is stored in EPIDNO.

As in EPIDNM, the node number is an index into EPIDNO, A
A zero is entered against that node that ih - not come on

line yet.

DIRECTORY OF IPC COMMANDS (MSGTAB):s This is a table which

contains addresses of all possible -commands received through

a message. The index of the table in the command code with

the corresponding service routine being the entry. An

advantage of using this approach is that no comparison or

interpreting of the message code is required-. Simple indirect

indexed subroutine calls are sufficient.

DIRECTORY OF USER COMMANDS (USRTAB)". Similar to the directory

of IPC commands, this table is used by the user interface.

]depending on the user's command, the index is assigned and an

indirect jump performed:.

SYSTEM INITIALISATION FILE (SYSTIIMI.TBL): All systems process

entries are stored in this file. It is used by a node during

the initialization phase-. The first entry is a number denoting

the total entries in the file. Subsequent entries are of the

foam

PROCESS CODE 	PROCESS (FILE) NA IE

39

The process code is a numbor specifying the node
which will load the particular process, I f it ;s zero,

the file is loaded by the first node coming on line,

Presently no provision has been made to specify a process
that would be loaded by every nod,.

Other less important databases are the stacks and

interrupt initialization tables, Entries for recording

the current node number, total number of system processes,

number of nodes on line and temporary workpads do not

require an explanation,.

4.27.2 The Initialization Routine

System startup is initiated by this routine. After

storing the system start time, it accepts the boot command

and the node number. The various operations performed

efterw ds are listed below.

LOADING THE SYSTEM TABLE I, The system file- is read in th e

correct format and corresponding entries into the table are

made. At this stage no files are loaded as the information

about other nodes on line is not available.

PERFORM IPC INITIALIZATION TASKS': Before a node is ready

to communicate with other nodes, it has to initialize the

various process identifiers. First of all th:: node has to

M,J

get a PID for itself and one for <SYSTEM>INFO-e Then it

registers its logical name with the system so that the

PID is available to other nodes. This is done by sending

a message to GSYSTE I>INFO -e The third phase is getting a
PID for other nodes on line. To do this, one by one the

logical naves of other nodes are sent to <SYSTEM>INFO and

the result stored. Finally the nodes that are on line are

informed about this node's startup.

INTERRUPT INITIALIZATION: Anode uses three interrupts.

One for each of the three interrupt driven routines, All

the three interrupt channels are assigned and activated

except the user interface interrupt, This will be the

final task in order to allow initialization to complete

before any commands are accepted.

STARTING SYSTEM PROCESSES: The system process table is

scanned and the processes loaded7. Each process is started
once and allowed to come to the first halt,

,ENTER THE WAIT STATE,;. All initialization tasks are

over at this stage. A message to this effect is printed

and the user interface activated. There after the node enters

a wait or 'sleep state.
41.2°..3 The User Interface

The, user interface is that part of the software which

accepts commands from the user: To initiate this segment

41

(or to call the attention of the systems) , the user has

to press a specified oontrol character on the keyboard.

Commands are given in the form of numbers which are listed

in the command menu. This approach has been taken to make

the implementation and use of the package simple.
Commands that the user can give are

CREATE PROCESS (CREATE)i Creates a user process from an
EKE file specified by the user. Any previously existing
process is automatically killed.

KILL PROCESS (KLLLPR): The current user process is killed

and the corresponding entries deleted:.

MIGRATE PROCESS (MGRATE) t- Migrates the current user process

to a specified node. Given error messages if no process is
running, or no .other node is on line. Another possible error

).s the specified node not being free. Actually this routine

just sends a bid request to the specified node, and .e it
lifter marking the node status as busy. Further processing

will be taken up by the IPC handl or. Thus if the remote node

accepts the process, it sends a reply to the bidding node, This
reply is received by the IPC handler which will pack and

migrate the process. In case the remote node is occupied ,

An error message is printed. Any of these responses terminate

in automatically initiating as interrupt on the user interface
channel. While bidding is in operation, the user will not b

able to give a new command.

42

GET A SYSTEM PROCESS (GETSYS)~: On initiation this routine

prints the system process list and corresponding global

process number. After the user selects the required process,

a search for the process is made internally'. If it is

present it_ is run, otherwise a request is sent to the last

known destination if possible, else a linear search is made.

As before the user interface exits, marked ibuuy•, and process

migration occurs or is refuted Re-entry to the

user interface is automatic,

RESTART CURRENT PROCESS (RESCPR)~: Restart the current user

process. A user process terminates either voluntarily or

is forced to do so by intrrupting from the key board.

LOGOUT FROM THIS NODE (LOGOUT): An exit from the user in-

terface is made, and the node goes into an idle state. It

however remain on line and can be awakened by pressing the

specified control character from the keyboard.

SYSTEM STATUS (SYSTA_T): Lists the number of nodes on

line and the status (online, offline) of each node.

EXIT FROM SYSTEM (SYSExT); The node goes offline,

effectively halting. Before doing so, it informs all the

other nodes of its intention and migrates any system processes.

In an actual system,:. this would be a privileged command

accessible only at the operator level. To give this affect,

here it demands a password.

43

4•.2°.4 The IPC Handler

TOPS-20 provides the facility of assigning an

interrupt channel to a PID -. Then, any message sent to that

PID will cause the specified interrupt service routine to

be initiated'. In our implementation, a message can be sent

either by the user Interface or by the IPC Handler, but

is received by the latter only. A standard message

structure has been decided upon. The first word always

specifies the sending and receiving node numbers, followed

by the message code. Arguments if any are sent in the following

words. The size of the message block is not fixed as different

codes are accompanied by diffei't argument lengths. This,

however, causes no problems as the .format of arguments for

every code is rigidly decided, and interpreted accordingly.

The message code acts as an index into the table of IPC

service routines, The routines are

SELF COMING Up (SLFUP;CODE,l)`t A new node coming up sends

this message to all other nodes that are already on line

during its initialization phase. On receiving such a message,

an entry in the PID table is made.

SELF GOING OFF-LINE (OFFLN; CODE :2): This message is sent
by a node that is going down, to all other nodes that are on

line'. The action taken against this message is the deletion

of the PID entry.

44

REQUEST FOR SYSTEM PROCESS (RoSYS: CODE 3); A requo t
for , a system process, - the number of which is given in
the first argument word-. The receiving node searches
its table for the system process: If it does not have .
that, proc essr the message is forwarded. In case the
,required system process is not aVailablei this request
will Ultimately reach the node from where it originated
This node recognising it will inform the user of non.

availability of the processand terminate the message.

To avoid redundant, message forwarding a special coriven-
tion for the header has been adopted'. When a node forwards
a .*nessage, it does not change the entry for the sending
node number. Thus this entry always points to the node where

the message originated and not 1z an intermediate node. A

ny action, 	 nY , like migrating the process is done directly
grid not by bao.ktracking..

OFNDING SYSTEM PROCESS (SYSPR: CODE=4): A process descrip-
Lion block is accompanied by this message when a system•
process is .being migrated-. The receiving node will ' load and
start the system process!.

The foul message codes that will be discussed now,

f6ria, the bidding messages for .process migration. As no

scheduling' algorithm has been implemented, the bidding is

initiated -manually by the user-.

44

REQUEST FOR SYSTEM PROCESS (RQSYS : CODE-3): A request
for a system process, -the number of which is given in
the first argument word-. The receiving node searches

its table for the system process'. If it does not have
that, process, the message, is forwarded. In case the

;required system process is not available, this request

will ultimately reach the node from where it originated.

This node recognising it will inform the user of non-

availability of the processand terminate the message.
T,O, avoid redundant, message forwarding a special corn en-

tion for the header has been adopted'. When a node forwards

a .essage, it does not change the entry' for the sending

ndde numbers Thus this entry always points to the node .where

4he message originated and not tb an intermediate node. Any
positive action, like migrating the process is done directly

and not by backtracking.

$ENDING SYSTEM PROCESS (SYSPR; CODE..): A process descrip-

-ion block is accompanied by this message when a 'system

process is being migrated. The receiving node will load and

start the system process:.
The four message codes that will be discussed now,

fdxrn the _bidding messages for process migration. As no

scheduling algorithm has been implemented, the bidding is

initiated 'manually by the user.

45

TAKE A (USER) PROCESS (TAKPRfCODE.s5): When the user

desires to migrate the current process, the node sends

this message to the specified node. The receiver will

either send an accptanoe or a rejection, depending upon

whether a free slot is available!;

ACCEPTING THE (.USER) PROCESS (ACCPR CODES)'t The response

to a bid request when accepted by a node. The node marks

'he process record as occupied.

NOT ACCEPTING THE (USER) PROCESS (NAKPR; CODE=7):' Refusal
o~ the bid. A message to this effect will be flashed to the

µsir who initiated the bid.

$ENDING A (USER) PROCESS (SNDPR; CODE_10)': When a bid

request is accepted, the bidding node sends the process

ç scriptor block prefaced by this code, and the process

Migrates

0LFLOADING (SYSTEM)PROCESSES (OFPLD;CODE=11)°s A systeni.

that is going down, uses this code with any system process

3.± might migrate. Response to this code on the receiver side

is the same as SYSPR = exoept that the process is not started.

.2.5

The Process Monitor

The role played by this routine is small but necessary

clue to synchronisation .00nsideraticns. Aniniterrupt is

initiated on the assigned channel of this routine whenever

46

a process halts either voluntarily or forcibly.

First of all the values of the current process

number and current process fork are tested: If they are

zero, the process halted was a system process and no

action is taken. Non-zero values of the mentioned

location implies the termination of a user process.

The status of the process is read to check whether the

termination was voluntary or forced-, A forced termination
needs no followup action, as the user interface itself had

caused the halt. Only in the case of a voluntary user process

halt is a forced initiation of the user Interface necessary-,

T1 s is soy because a prWoess termination must be followed
by the operating systems entry into the command phase.

T~.e user Interface is activated by causing a software
interrupt on the channel assigned to it.

44.6 CommonRoutines

This last segment contain those routine that are
u?,bd by the other segments'.

PACK, A PROCESS (PACKPR):` Packs a process into a transportable

1crrn'. This is the last stage; in migrating a process from a
node. The packed for is the one that in ultimately sent

1 the bidder-.
i

PACKPR accepts the process number in accumulator X
aid the process handle in W. Thy, process is then packed

into a process, descriptor and a file. Fig,. 10 shows the

WORD

0

1

2

3

22

23

24

25

NODE NODE
FROM TO

MESSAGE CODE

PRO.3S NUMBER

SAVED
ACCUI-'1ULATORS
0 — 1.7

PRD(RAN COUNTER

OBJECT—CODE
FILE NAME

Fig.10 Format of Process Descriptor Packet
(',;cord Numbers are Octal)

47

format of the process descriptor. The file contains

the saved executable code and variables of the process.
A problem that arises here is that of keeping the file -

neme unique for every migration instance. For this purpise

a special format for the filename has been decided Uponi

The file name is of the form MA.PNM#MAP. t N t and `M' are

variable quantities and are dynamically set by the

routine ® 'N' is the node number which is migrating the

process. I MI is an octal digit (between 1 and 7)• Starting

With is the number increases through 7 and returns to 1.

As the receiving, node deletes the file immediately after

J. ading it, duplication of filename is avoided.

The process :desoriptor is sent as a message, while
.the file would be managed by a File Transport Protoco16

He e, all nodes operate from the same directory, so no

FTP is required,

I,= A (MIGRAT D.)PROCESS (LDPROC)~:. The reverse of packing,,

this routine unpaoks the d:esariptor, creates a process,

and loads it, The MAP file is then deleted. Returns the

now fork handle i n accumulator W and the program counter

value in X.

GET THE NEXT PID (NXTPID) Scans the table EPIDNO sequen-
tially and returns the value of the next node on line and
its PID. It will, in no case, return the PID of the current
node for a result. By setting accumulator t Q" the search
can be restarted from the beginning of the table after
its end has been reached-. A negative value means that the
end of table has been reached with no returnable value.

SEND A MESSAGE (S_NDMSG);, I -nstead of the other routines
performing a direct message •s_end., this routine, .s called
after the ;mes,sage has been fully compiled;. The reason for
this is that a few processable errors can occur during .a
message send:. Most important of these is the message queue

-being full:. -If such an event occurs, a .constant polling ais

done until the -message can be'sent:.

GET THE ERROR NUMBER (ERRN IJM) Used for getting the error

code in case of a process able JS S error,

ERROR MESSAGE (.ERLEVn)s Non-processable JSYS errors are
intercepted and the _system error message, with the program
counter value is flashed:. Errors at different levels cause
Jumps to different location, •howevor the :result phase is
the ;same:.

49
4 ..3 LL J&H[E PACKAGE

The program was designed so that it could run on
different terminals (and hence different jobs), so that

it would closely resemble a distributed systems as far as
process migration is concerned. For this purpose IPCF

capability, a special TOPS-20 privilege is required.
Without IPCF capability it is not possible for processes
created by different jobs to communicate. As this capability
was not provided such a test cannot be carried out.

To run the package on one terminal, a special program

(Galled KERNEL here) has been written, which takes an EXE
file and loads it into a process'. Copies of the EXE version
cif the package with different terminal interrupts were created.

At a time only two copies of the package can be run as the
syt. 	does riot permit a job more than two PIDs.

On startup, the package (called node hereafter)

wjlJ. 'respond with a message and the date. It then prints
an asterisk, and waits for the Boot command, which is ,given
by pressing the key 'B'. No carriage return --linefeed
sequence (CRLF) is needed-. Next ft asks for the node number.
Again no CRLF is required. If any, system processes are to be
loaded by this node, their file n roes will be printed out
The node then .nform,sthe user that it is ready and enters
a wait .estate..

50

k`~ess n~ 	the specified control character on the
terminal will generate an interrupt to the user interface,

which asks for the command, As the command structure is

menu based, the user need only press the command number,

not followed by a CRLF. For the 'Command menu itself

either 0(zero) or the question mark may be pressed. For

system processes, when the command (no.4) is given a menu

of system processes is printed and the user can choose a

desired process.

In the present version a maximum of three nodes are
pQXmitted. In case more are desired, the value of.MAXND

in the file SYM.MAC should be changed. On compilation,

this file will produce a universal file called SYMBOL.UNV,
which contains all the important symbols used in the package.

Before booting a 'lode, the following points rust be

clearly considered. The system process file SYSTEM.TBL must exist
anc. be in the correct format. No arrangements have been made
for► processing data file errors. All processes must be

loaded from EXE files only. An EXE file can be created by

loading a program and then giving the SAVE (TOPS-20) monitor

command. It is better to give a SET monitor mode .command

before startup so that any assigned PIDs may be released.
Two nodes must not be assigned thu same terminal, interrupt,
as it leads to an unpredictable behaviour.

ROORKk 	C63v

51

As a final comment, we are, emphasising the difference

between commands 6(Log off from thjs node) and 8(log off
this node from the systems). Tho former sends the user

interface back into the wait state. However, the node

remains on line and can be awakened by the keyboard interrupt.

Command 8 causes the system to go off line, by migrating its
systems processes and exceuting a halt. The ,system then

flashes a l as t message indicating that it has been shut
do~r'n°. A shut down once initiated cannot be revoked.

CHAPTER - 5

CONCLUSION

5..1 S UV24ARY AND RESULTS.

The package developed here is actually the upper
level process manager of a Distributed Operating System.
As we were concerned only with the process migration aspect
of a distributed system, it was not necessary to widen the
scope of the program any further-. Among the facilities
given to the user, are the routines for process creation,
migration and termination. Transparent system process

migration, which is essential in a distributed system, has
been implemented. All interprocess communication occurs in
the background, without the user being aware of the network,
which again, is a plus point.

The program runs in the USER mode of TOPS-20 instead
of the F ECUTIVE_ replacing the (EC.- and, hence certain
Y,ostrictions automatically apply to its performance. It
Would have been desirable to modify the existing system
0alls, or at least add to them in a 'manner that Would provide
a greater freedom to our implementation:. Thus., all the resource
panagement functions are left to the host computer, as there
34 rio way by which the package can perform them. The only
tLrea where our. environment has any control is deciding which
process is not to be scheduled-. This is the reason for our

iot implementing any scheduling algorithm'.

53

It is obvious that a node behaves more like a

personal computer than a time-sharing one. That is,

one and only one process, in a node, can be active at a

given instant. This has been done so that the confusion

created by many processes reading from and writing on the

same terminal is avoided-.

Appendix-B lists three printouts showing how the

package would respond if the nodes communicated on diffe-

rent terminals. This has been done by directing the output of

a node to a file instead of the terminal. At every instant

the time has been output so that the sequence of events is

%stinguishable. Notice that only two nodes are on line at a
given instant because of TOPS-20 restrictions.

Despite these restriction, the system worked quite

well and gave satisfactory results.

j.2 SUGGESTIONS FOP, FUTURE WORK

Some problems associated with process migration

have been left untouched. One of these is directing the

output of a migrated process to the correct, node. For this,

some way has to be found to intercept or simulate a print

command-. A possible method is to force an interrupt on -

a channel that has been reserved by the superior process.

This causes a halting of the inferi it process and an

54

interrupt to the superior. The main problem associated

with such, a method is accessing the address space of the

inferior process. If-the superior and inferior share the

same address space, this access. is possible, but then

the inferior cannot be mapped to another file or process

and hence cannot be migrated'. This problem has not been

further persued.

Another possible addition is a scheduling algorithm.

This can be done by simulating resource demands. Similar

$jmulated resources can be assigned to every node. It

v~oad be interesting to study the behaviour of different

seaeduling algorithms in centralised, distributed and

replicated organisations.

RE}i ERENCES

1. 	Tanenbaum, A.S,, and Van Renesse, R., 'Distributed

Operating Systemst , ACM Computing Surveys, 17(4), Dec.85,
pp: 419*-470-;

2 ,. 	Watson# R.W6' and Fletcher, JAG:, 'An Architecture
for the Support of Network Operating System Services',
Computer Networks, 4(1980), pp " 33-49-.

3-. Tanenbaum„ A•S,, COMPUTER NETWORKS, Prentice-Hall of

India Pvt.Ltd,, Ncw Delhi, 1985.

4. Enslow, P.H.Jr,, 'What is a Distributed Data Processing
System' s IEEE Computer, 11(1), Jan.78, pp. 13-21.

. Powell, M.L., and Miller, B-.P., 'Process Migration in
DEMOS/MP', 9th Symposium on Operating System Principles,
1983, pp. 110--119.

6, Madnick, S.E,, and Donovan, J:J., OPERATING SYSTEMS,
McGraw Hill Book Company, 1902.

?. Lazowska, E.D., at -a- V 'The Architecture of the EDEN
System; , 8th Symposium on Operating System Principles,
1981, pp-• 148-159.

8. Ousterhout, J.K., S oelza, D.4., and S indhu, F.S.,
t i MEDUSAY An Experiment in Distributed Operating
System Design', Communication of the ACTS, 23(2)9

Feb. 80, pp. 92-104.

9. 	Wilkes, N.V., and Needham, R.M,," 'The Cambridge
Model Distributed System', Operating Systems Review,
14(1), Jan.80, pp. -21-29.

10, Brownbridge, D.R., at al, ' Tha Newcastle Connection-
An Unixes of the World Unites , Software- Practice and
Experience, 12(l2) D Dec .82, pp.1147-1162,

ll'. Walker, B-., Kline, C'., and Thiel, G.' 'The LOCUS
Distributed Operating Systenj, ' 9th Symposium on Operating.
System Principles, 1983, pp. 49-70..

12'. Tanenbaum, A.S., and Mullender, S.J., 'An Overview
of the AMEOBA Distributed Operating System', Operating
Systems Review, 15(3), Jul 81, pp.51-64.

13'• DECSYSTEM_20 Monitor Calls User Guide, Digital.

Equipment Corporation, Bedford, Masachussets, 1981,

Barak, A., and Shiloh, A., 'A Distributed Load Balancing
Policy for a Multi-computer t ,} Software_Practice and
Experience, 15(9), S ep.85, Pp.901-913,

15°. Stankov o :, J.A., and Sidhu, I.S., 'An Adaptive Bidding
Algorithm for Processes, Clusters and Distributed Groups,
Proceedings of the 4th International Conference on

Distributed Computing Systems, 1984, pp, 49--59.
16. Miller, B .P,, and Presotto, D,, `, XOS ; A Operating

System for the 4-TREE Architecture, Operating Systems
Review, 15(2), Apr 81, pp. 21-32.

17. Rama~rithan, K. and S tankovjo, JA., i Dynamic Task
Scheduling in Distributed Hard- Real Time Systems',

4th International. Conference on Listributed Computing
Systems1 1984, pp, 96.•107-,

18. Garth, R-,E., INTRODUCTION TO DECSYSTE .20 ASSEMBLY
LANGUAGE PROCRAmMJNG, Digital Equipment Corporation,
Bedford, Masaahussets, 1981,°

19. DECSYSTEM..20 Monitor Calls Reference Manual, Digital
Equipment Corporations, Bedford, Masachussets, 1981,

2Q• IEcSYSTIIK-.20 Macro Assembler Manuals Digital Equipment
Corporation, Bedford, Masachussets, 1981.

N
H

H
H
H
z
H

0 1
OH q~
f O

H H

cc) Ic

t N I H 	I
H I

t
r

w or

H H H W
U

H
rx u~ W

W H z

W

z
a 	W

I 	H
I 	S

I HH

o W
U U)H y
H

a)

a

0

-N
0
U

0

0 r-i C'4
r

7 c
H
w

F ig. A-2 Servicing a Terminal Interrupt

IPC, INTERRUPT

RECEIVE MS AGE

I
PROCESS MESS AGE

CHECK
EXI T

RETURN TO WAIT 	— — INITIATE S/W
TERMINAL
INTERRUPT

Fig. A-3 Servicing An IPC Interrupt.

PROCESS HALT JNTER11pT

YSTEMN YES
P ROC ES

we]

ORCED 	YES
HALT

RET URN
TO WAIT

I S/W INTERRUPT 	I

Fig,. A-4 Servicing a Process Halt Interrupt

a w 	v1
7_ W

O Q
00 ~E

d ~

pC~

W
Cl)

a

O

U 0
O

a ~s
W b0
H

C5 U2

Q)
0
0
1-4
114

1-4
O

W
CO

1-4

O

O
U
w

w 0

a • 0

O bD
U rt

(se

	

Q 	a

	

PQ 	U

t 	 W

	

;3 t 	O
U
a
H

	

I 	~ 	I
H 	 I 	I

t 	1

1 El
H 	 I 	I

(
PAGE; 	1

FUR PROCESS ;-1LGATj.Jj

• (-I THE iE(YST:i2V5)

•c_• 	:* 	c*) c-*

T.T't1 : Z[)t:

• r. 	 AKc' -1 	'Y

ACYf

k[J1P. SYSIMACM,

17 	rZ.IL3 	BLOCK 	:t.;c

1 	 OCK

P 	 LjflK 	STiKLE

21 	s T T 1 w E 	F hn(:K 	:1-

7'

I P ('5 	0 K 	1

• 2.:, 	 }LJCK 	4,,

ACiZ/F(C/

	

r-'< 	.riJ\XI\ .1

	

flCN 	2

• 7r 	 FflCN 	2

• ' 	 ' , ,
' J•' 	 , , SJFP

p

syspti
30- 	

AMR

p

7 	 / / •• j. P <

0

PAGE 	2

,S'fl)PR

, ,C'YLLJ

43.

1, ,1f2?1PR

&WGRATE

;:Tsys
RESUR

'• , ,LflflUT

4 9 2, ,SY3TAT

,SYSXT

,1OXCT

50-

90 CH71AHN

3, ,USiJ:NT

• '372 F;JPCN 	CHB+Jin. 9-.

I 	,

BLOCK 	(i113+' t.3I'-.

V
7 ' , PCJiV

•)

2

Cu2Pr

• 69 , PLUM

•7.."

• 7& Jj3XT: Aj/P/

72 EiJJ'..; A)Cji/1JJ7/
- 	•7 	3. rjj, •

• 74•_- WHO 5C7/Y5TEM. tFJ./

0

PAGE: 	3

fl.=

7: LSCIX/7PAS/

000 P. J. U

19 2 PWIV:

8 P:UV3 :
Aly PRICK:

'~ Qn SCu):

93; SJSASE; -

8 7 CS AC 1

88 CuM;:1l7 MENU

91 CtJM8IANl) 	NU CCJ1iAoD 	DESCRIPTION
• o , .

3 PR INT COMMAND MENU

CRT ATE L A PROCE66

Kibij 	(RR1T 	tNUCES5

- MIGRATE CURRUT PROCESS

RON SYSTEn PROCESS

5 CuTIJ1JE CURRENT 	PROCESS

5 LOG OFF 	FROM THIS NODE

7 SISTER STATUS

PRIVILEGED COM M ANDS - PASSWORD NEEDED

- 	j

8 LOG OFF TN i:s 	NODE 	'NOM SYSTEM

7 KET OF CCM-:ANp 	MENU>

6 /

ASCIZ/00CSYSTEM-20 5U PSE[.iDO 	DISTRIBUTED OPERATING SY STEM/

PAGE:: 4

11.2C

1i3c THR INJ;'rIALIZATJUN ROUTINE

[:1140

150

'1150 .S'J'ARTX: REST

URROX A,STTIME

11 MUVNI 6,1

19r? SETZ C,

2 OPTIM

2.1 TiME

01220 it)VEM A, SECDND

01230 10V 	P,[IOiD <1E,sTAc1c1]

[1240 CRrF

i.25O CRLF

HLROI A, MESSG1

[1270 PSOUT

HRR[31 A,ETTJME

i.4 3o0 POUT

11 1

01330

0AIT. FOR THE !00T COMMAND

'1 350

13 60

1370 5TRTX2 CRLi'

138t) CiLF

	

d1390 	MUVj1

	

p1400 	PUOUT

410

	

01420 	5UB.

43 J'JtiPE A, STRTX3

44) M(J Vg; I A,7

1450 POUT

'i. 460 ONST STRTX2

01470

01460

0

PACE; 	5

01490
015Q0 r 	 GOT THE-hUDL 	UMBER

520

01530 STRTX3- 	CRLF

x 	w_

!-hRuI A, CA3CIZ/NOi)E 	N0. a /a
r IS6G P3OUT

5.7O Pt3IN
01580 CAIGE 11,1„

5901 iRS`a' 6TRT'X3
C!ILE A,. IAXN!?+'r€~"

J k S'j S `t It TX 3
1 620 cu► j A~,r 	r,

MQVI M A,SELF'NO

01640 C t~ TJ F

`•Y1 	50, LfS1J.f; .

:1660 (.'. ;t L INITJJZ
1x,70

0 16F30 ----- — 	 -- — -- -----------------—-----w--- ----sae— T- (• ~ 	 ~~1 ~!l914IIIr .1Mb

):1690 READ 	SYSTEM.TBL 	A1ti1L) STORE 	IT
01700 F 	 IN 4 STAB

17 10 ---- v.----_--- --- --------- ---------------__ ----ww.9 -.70—~

0a.73i) '0V5T. A, (G0' SiIT: G0 %0LD)

0RR(J1 i 	,I iIE'TL,
01750 G`1,1FN

01760 E RCAI) ERI., ,VC!

01770 HRRZ ~1,A
1780 0 r, X, A ,

1790 ?•tQ1Jd, 6, r07O000,,0FoRDJ

0180 0

01810 E:hCAT E RJiF,VO

A,X

01040

~ s, 	5) ERCAL ERLEVO

:. r if 	q W , 	Y$F'L

HPp

:() TuVj ,SYSTJ'B

JJ1 TRj'X4; 	!]

PflTR

9NLI , 	 NPTR

\J1i' V

Li R ST

A,X

ECAU F RIV;

S

.3 A LI

:1 V:t C,77

[VST D,12

S1N

'7T

ALIP.i. 5,

1. C,

22.

R,SlP1X4

222 " A, X

0

PA12; 	7

22 	. (7.
p CAl, i-LEvu

--

it

2 JVIM X ,

HjVT A,
'VL'lT 13, :ic

.37

X ,5tJ1J(i

;LV:M Y,1P1.j1(.(X)

1L)R <SY''>i 	'f 1 'S 	PIE'
-. -------- 	- 	- - - -

,iV12 R,J.PCi

S,1PCL4i
1PC3+2

wV2J ,3

1)'J1J R,elpi:ENL

9

PAGE: 	8

7260 ;
02610 ; 	A3SOCIATE Pip WITH A LOGICALI NAME
02626 ; - 	s_ 	-
026

3260- SET7AM IPCh
02650 MOVLM Y,:pCL+1

02660 MOVEM R,IPCF3+2
02670 MOVE. R, [3, , TABL1EJ

0260,11, MkJVEM R,IPCI3+3
02690. MOW A,[1,,,1pcIu

2700 M(]VEM A, TABLE
SETZM TAF3LE+1

02720 MOVE. R,FP1ON(x)
02730 MOVtM R,TABL1E+2
02740 MOVE! A,4
02750 MDV: B, IPCB

02760 C I'll lL1 SNDMSG
02770 SET

02780 SfTZ

2790

02 '
02810 CHECK FOR OTHER NODES ON-LINE
02020 f ---.------------------a- ---------------------
02830

02840 S0RTX5 	AtjJ X,
0285G CAMN X,SELFt4[J

02860 3832 STRTX5

02870 CAILIE X,MAXND
Woo ORST STRTX6

0 2890, LETZM EPCI3

029o0 MOVE R,SELFNO
02910 MOVE W,EPIDNO(R)

:2920 MUVEM W,IPCB+i

02930 MOVE R,EPIDNO

02949 t1IJVLM R, 1PCBK

04950 McJVE S,[3,,TABLEJ

MUVEM S,IPCI3+3

E-AGE: 	8

LiCi. 1Aj 	P 1 	 NAME

•'12

TZM J:pCB

PCL~

, [3 	,TIEJ

iJJ4 X,IPCLi4

l 	[1, 	, 1PCLL J

:UV A,TA1}

TiAEf.

ftVj['1 R,TAHL+2

iZVEl i,ikCM

277: x

CHECK IF'OR 	CIN 	NJ)S 	O1jTNI
- 	 -

SJPTX5L.L)

X ,

STRIX5

CATLE X, 	AXND

H)rPCC

.)Nu C k)

IPCN4j.

, E;pi.Liu

Vt:bi R 	I 	CiH-2

• 'j, [jV TARJjEJ

3 	J.PCU+,3

GI 	9

.1PCI]

? ,
0 C/A3LF.f I

R,EPJD?JI1(X)

:3 	, Hu\i 	il , 	J:;,•.2

iVjT A,il

:jj\T' B, JPCB

3T 5, C,ij

, 1 P%TTJ

TALLi~1

rjVj ,SprF3+2

,TJ\BLL]

B,39C3.+3

MVEj /,4

uV1, fl,IPCB

3!.

C r 1

3V3M C,FP1DNu C ;)

Ju;pp: C,

"325

7

rn 	IJC JHB 	IN 	B 	U P T 	6 TFUCTuI;

• •$2: 	;

3 	.1: ?UVI:1 A , 	FHSJB

C H NTA S J

'$33

0

PAGE: lo

ENCAL1 j1iV
3 351) MDVL A, 	FUSF

E1R

G3370 ERLEVo

r[)V:I A,FH3LF

(339O MOVX H,IB1+1B2

AIC

ERLEV

3 j 3 n, jet ---

7 AOC].J\TE PI) 	WITH 	1NTERHUPT CIiA'L'EL
) 	4 5 —
)346O

347 NCVX A , 	MJPIC

ovEM

To, OVEM W,IPCB4i

NOVEl A,2

035c MOv[j B,IPCD

352 4D MullEN A,IPCii2

O3F3 0 OVEl A , 3

t'354O RUTh li

)355C EH CAL ERIJEVO

035 b

O3574' 	F - Q'nq.,. 	 _p_,

CHECK FOR 3YBTEN PR1JCES TO BE LOADED
03590 BY 	THIS NODE AND LOAD THEN

036o0 -- —
3F,2 NEROI A, EA60;/FILES LOADED/I

Pc 03630

364) CPU, F,

C365o CRLF

MOVE W

3670 JUNPE W , STRi 10

NOVEl x f 6y8TAb+l

 I, I.,CMPTR , .. SYSTA13J

37C 	STRTX7: LOB Z, Y

PGr;; 	11

572 UST STITX

d..:PL z,;!:,< 9

Z,

Z,RTRTXq
P370- f - Aomy X, i.

• 31) SUJG

(.rp,')
: lnoq R,

351 Y

WE

/

101 STRTX8: OWN \, (GtJhTGj;u)

x
'7 • çriç;i

-•

cFORK

IRIJ'/LJ

_3o

-398 1TIEVj

-•

2 - ''

3 Sam
4

4

PAGE: 12

A,X

U 7

3 C

7 •1 - 	- - -. - -
1 1' iTii1R 	DE 	OF STARTUP

- - 	- - -
l 	•-•

SJRC SC1Z X,

I 9 u V r 5! 	JF' iJ

3 1 1PIDR0(R)

3ViL , .$JUP

2 3 'Jji A, TARJjE-1

IPCb

TAF.ij

• V 	PA A,1PCL3+3

A,X

NXTPT
JJjSIpJJ 5L'RTi1

X,A

A ,TAU1i

tVRM B, 111 CU+2

/,4

MuVET. B, Ipci

47f:

S, 1"

FRr1 A, lASCrZ/ 	P[UD03 	i! 	UPERAT1ON/J

UT

CR

0

PAGE; 	13

,{, 	r c,rAP .t'iir 	l,ipUT 	2; UF'rR 	AN1 	AS,3J. 	N 	A

A,

2; 't; C' 11, LlRTJP,vi,

VI A, .FR1

rc5~ it ;[l,L F;i~i,r V (.

rs i; 	1'T

EI 	LiEi/i,~

O it i.it`;` ~'~~1 	 ~• .

;PC~.r A, [1SC.tZ/PRESS 	CTFI\Z 	FOR 	ATTENTION/]
r, 	,r,UT

;:i;T;:;P H E; 	A 1'r 	STJ17'f;

FFs

•:t. 7, 	;a 1.:I. X l j' 	{ n

}S' ?ST AI l_`) A

'i77 i, ELI Y, . E> l 	"t'R

PAGE; 	14

VASS', WE Y, LPUINJT 	7,ILfAM,27)
LOS B, Y

AL)D R

BBS

4B3c RUVEJ A, Huff

187 Y,lP1DNM

1480 SETZ X,

S,{PiDNs

rNrY2: 	L\OJ A,

AHJ V

ruvEm S, JP1Ji)J(X)

PPB

195': X , .ttAXIij)

U J$1 1i

49 3 B

5199,)

5

252

5fl3: ; 	INTERRUPT SERVICE 	R(JL1it 	'OB

75' 40 T;1I;Ali iiTkuP'fS
DT

I Sr 7:

A5 4 UD USPJJ:i; 	t'1iiVi,t A, 	icc:

r51 i1uVT A, 	PRIi.N

5 13 ECAJ

MY' , McJV X , S1CUDB

CAT X,1.

USR2

5 17 CAN X,2

0

PAGE; 	15

	

CAIN 	X,3

"52v. 	 UST 	USROI;T

Ci

(JSRUV'r

L1S1

S2.r TJSP2

525'. 	 JU P PE 	Y, L1?3

CiE

SETu

AM 	MOVE 	A,CUR1H1

WFnRK

I

1E32 	t:SR$

IJV1I 	A , .P± Ii

53

5' 	 A [TICCZ, ,1]

1537 	 NTT

	

}...I 	A, U\CIZ/(IUSYi/i

541 " 	 PflIJT

CiUE

:543 	 Jp

54('

~ 5AW 	 s: 	I /G 	,tjrv;FAcE

15460 	R5Pfl6 in TERAINAL 1NTELRUPT CTRh/Z

5 5

552 EXICIn HRROT 	A, [ASCIZ/ 	<COMMJ\NL) LEVEL>/'J

p 553 	 PSflJT

C. 5540 	 ciJp-
r 555;. chlF

0

PAGE: 	16

c55t; EXX MOVEI i
P13I1UT

MOVEI A, 	PRIOU

1ijVrf. 13,1

C. , 777(

Mir MR,

UiI A, !>t

PflL'

565:. Ri?OI A, EAScz/c 	ANI) 	/J

PUT. s

CAIN 4

Vji A,

CiJiF.

ExC;

"570 suml A 	!!fl

06?P1) A,ExcF:i
37r.

075'' CHLI-

CALL DiStT

.577 CArL -USRTAf(X)

7n POVE

IR1T

L'Pr X,EXFC2

EXX
c 	fl EX - 	r 	-

WAF

13Ri A, [SCIZ/iLUJ:GAL 	COMMAND/3

PflUT

Exco CRY",

5, T EX
OEM P,T

-3920 N

PAGE": 	17

IC Y; ,,,

C11 F'ATE A 	Pr.O('i 	 ;
•'~~54r' - --------------+e ---------- _--- --w®,ww--wwaa---aww w--------

59)

7:' ("i C F'.'5 	Ir:RiI A, [A5ClZ/CR[AF 	?A 	PROCESS/]

Fi 	uI Ap fA 	C 	%/F' I1 	/]

• `4r h° ._; 1 	! A , c(;,JS-i 	Q(U%C)T)„!r ,oI,'NSpGj%CE M)

5`19 CRTER

nUVx A,l_,R 	CAP

i;t;Li V3

A, A

n. :°. "tjI A, LA'CT,Z/;_ TART'I` G 	F4 0(T:S 	/)

f'P:T,F
n li V' n p I'0(.f1 	i

x',777

1-

R,3TFASE

~liir,. C'L'1ir, A,

PAGE: 	1$

rIrAu EFJEv3

'C1'I Z, i
3 	r• movEm Z rSJCJ[IE

A,Z

3 RCT

16

037 CETERA! H6UI A, [ASCl//1(i 	SPACE 	FOR 	i\ 	MEW 	PROCESS/]

MUT

A,

RET

MY CRTER22 C OVEY A,

2 t\JFf'.

CAL ELCV3

P!: ui
MT, CAYE A,32

CRT;R4

ALORT

SETZ A ,

r053n CTi3 UV; A,Y

KtflK

MQ 1j'13;1.1 (ktP

HPUJ A, f ASCl/E} 	CR 	I]

IUT

HtLI B, _F'FSIJV

UVI A, .PR1IIU

EMU 3

LJHJ

SETZ A,

 ms

'•• 	•
vo

• u\

EAGE; 	19

57 	AOWt: 	Rui 	A, L:isc/ 	XXX/]

;.rkJT

. Q73.

-
'17 	 CUkihT iPWC}SS

	

7h K=!:1P : - flfli 	A, A3Cl//KIjL CURRENT PROCESS/]

7 7 	 T 0u

A, Kt.LEk

Ci1iPP.1

CU R FR K

Li

	

ill F-11 T 	A, [A.CIZ/PktJCESS 	ILLED/J

jj

P3OiJT

CL

;K 1. 	7-1i ruil 	A, Cl Cz/cJ RRflCES 11 UN1NG/]

	

-L;TzD 	A STCCJD

• cRATE 	 i-,: 	PRflCrSS

- 7 	MGRATN HRui: 	A , C ASCI Z/11G ATE CURRF:IQ PR{JCESS/ i
.' 	 2c1)iJrp

0

PAGE: 20

7

SAPc

7 	7 St. PC

7 •9 HnRtjt

7

7

LSJ

7

117

7 	.'

17K T IN

722

•

72b , POVEM

-727 kWh

~729 - WWI

7Th• QUM

7 	1• MKI
4 732P luv'!

73 ,

0 73b , NUVEN

Ti 	b: Ni.

7 K

CUR P N 2

MG N

N ODES

MG R ER 3

A, [ASCIZ/O NODE NO. :/J

I

A, SELEMIJ

N GM P

A, MAXN L)

i (, RE !

N , P 1. P N P (A)

R E i

i PC P

X ,

5, 17 PID!Ci (>

S ,

P , IPCu+

, r 2 	EJ

A A

A& ME

,

A, 4.

, . PC t

S P s G

x , 2

, S a' coo E

?, 1

0

PAGE; 	21

(JI A, CACJ ?/L 	:>p(;S 	1UNN tNG/]

7 	2. A

'Rj; iuT A, 1ASCr/.O 	NODES 	OEt-LINE/J

752 'fh:.p: OI A, LACJZ/CANuT 	 IGAT: 	TO 	SELE/]

7T OP: A, 	 J1)DE 	NU./]

Ju

7f'

tL: i[A, u-\scI/,/;oiPE 	0kF-T1NE/J
:7y

L7. 	c

/T'.

7 7 [Sy3; 	nocisi
• 0077

. -

7 j

7 7 C''3yO A, [ASCiL/E. 	6 YsTJ: 	fRoc:ss/j
P_fl 	1

77 ck

/ 77

PAGE 	22

• H1i)T A, 1j\S 	JZ/OCESS 	No, 	;/]

779- PflhjT

C';, 	• II,!,
'F

12 Ij;
	1-'I 4, (T;F2

c 0 "T' •,-

I

(75H

•7 0I

itT A 	ic

1 70- R,3yFTAB(a)

J 	Pu R&TSER2

X, C.r:i, ,syr- j

791 A-D X,I\

7"i (TS2

,SYSTAfl(A)

7

4 •

rr•c4 1 7 EMU

U, A

PAGE: 23

• I 	Z 	- -, V V

I MA A,

•. 	:-; V ,

S 	r

I '•z

X , siim;

Z 	1 1:JC:34. I

Vri ',i.P(.i±

Z, 13, ,TAi•E]
,1; Z,IPCh+3

27" J Y 'x

VTABLE'

:7- Z,AEFf1

QY A r

rDtS

•L'I i\,S

TW 't' USTCUPE

: 	/

611 ,

-'r 	/ 	CJ/.fl.'i'X,!..)Ii1 	PiOC3S/]

2

CSTF

A,

:J7; MAU CALF

•SJ•j_i A,(ASCTZ/PUUCES6 NOT AVAILABLE NOW/]

A

!1

0

PAGE; 24

-
R;T'r (JRj\T PROCE:ss

--

	

ECP; 1PLJT 	A, 1ASCIZ/ESTApp CUREN PPOCESS/j
i;OUT

A, CURpp.

	

JL13 	A,TCPE2
1ÜV! 	A, CUR 1 r!,

ERi1V3

A, CII EP

-
7 .: 	 (AL 	EIthE1! 3
7 'JV3] 	A,l,

A, TCOnF
Li

7G 	RCPEP2 	FtJ: 	A, [AC1Z/Nfl PROCE$1 RIJNI' I1jG/i

A,

11, PT

3

33 	I (OHI' TH IS NU1)E FPUi SYSTFM

	

- 	 -
; CALL

A

PA(; 	25

zt

TZ
cI)r

SATO 15 17.1 S,

CAM 5,MSFi,

093'' JoST SXT3

:':;iI Y 	j.

Y 	3

• ••) rIc i\ ,

NQ Qz

F

-. 	i 	. 5 1 LPii i

0

7:

POW A

i• •) vi.,i L,]i-Ct••i;

P 31 U

"Ovim P,PCU-t•i

r 	13G., ,ru!.vi

S' B, ,T.P('I.f 3

9 	 7 Y , 3

X,SV31AU(Y)

5:1 C AL[PACKPIl

iLVU'11 A 	.U['E'IJL1

,
LI

0

PAGE; 26

HiV

27 , P 	XiiU CX)

:, 1pCd41

1PCP

X , 	F

X 	if PCB~3

F'Ij

NU VEM X , 	Afi+ I

Win, IS I
-'F

•0r17, ?-;;çT'/, 	;

IY ,

UV;I }, IPCb

-

1 ,?

IQ i'f5 : foyx A , .muos,-
"Mm ;\, 1 PCh

25 -)v2

5\q.;1 j\, 	lPCFi 1

I A , 2

, 1

1)

55 EEJ.EV 3

HURD! A, [ASCI Z/

C'iP

• •-

- .TAiYi'X

YSTEi9 SHUT DOWN/J

PACE: 27 	 '

..') 9 6 	; o-soy.-------------w r_ -- ---- ----- ..—..------o--------w---ca w,.w

; [u'I' FROM THIS NODE

aawolemlM_w_wl_i 	 —w~e wll~ww

!967n I0Go11 	= 	I;!-?RaI A, CASCIZ/r OGGING OUT FROM FR 1Jt1 NUDE/a

99 c. ;l
` A T 	P; STCODE

SE~' lAJm cUi PR I',i

972" SETZM CURF RK

r= 	% 	 -- M °-'..mw"..-- 	w..e.onm....we...ww..- ..wr,..o..,,.n+.n.,.e...~..n...----..io+..ew_---wn.------

97 J ' TIPLEMENTEn 	f'CiM 	r1tu1)
a78:'. ~— ".w ..n__.--- ----_------.,----___ 	—w..--w..w
9799 NCNXCT . 	[+t 	rT, A, [ASCII,/ 	nL 	r~r,ry!rF;o 	c w.1MAr,?u/J

r.J$j q'. GRIP'

LETZ A

att. SC)i`, w---- ----w-----------w—_-------------------w---- -w-w---w—

f

n 4;. Ci11ft ti 	HRPDX 	, j EII Li

9999 	 TZ

yQ`7a ;Elyz 	A

r 9939 F, err
994

.,sww—••—wenwe.wer•a«uwwwwwr~s~w•+ar ~rwwurw,o, yes ~ewwewww

1995; 	PRINT LIST OF SYSTEM PRnCE;SS-
----- ------------A-Ab llm_Ob 	 wb

9 98

9993 SYS1JS'!:; HR^DT 	A, [AS CIl/SYSTEM PROCESSES/7

PAGE: 2

TTTZ

1ç).

1 ISPUT

(Ts-Lf

cGF: X •

I 	I. Y5 	2

I--

I

-,
A;V 	FOR A-SNORD

27 	PSPO: Ci\SIZ/i?A5$WflND;/J

I. C1L CH ii

X , 1PO 	NT 	7 , TAFiJ

X

PACE: 29

	

CAME 	,
'1 	 3:
1 	 CJr

C' }iir 	A, 	 PASS4ORD/J

cj

t' -

SY1E41 STATUS

7; 	J\ :

• C, 	 HiROI 	A, ASCtz/sYSTjF;M STATUS/]

PFT

	

uI 	A, 1ASCl/JuNt3Ep, OF MOOES I1ä SYSTEM ; [1

LIT

	

rL1 V,I. 	A,

01 U,

C.

	

LIVI 	13,

	

H3VEI 	C, 'LL

F:RIj;\r3
7

71: 	 :Tz

7' SYS2; Ifl

73 	 CITL,E 	X, .:iAXfL

PAGE: 30

1 .70-1 POVE Y,EPIDNUC)

IiflQJ A, [ASCtZ/ M ODE 	/1
77r

rrVI A,

A,\

Pr1JUT

Y 	•.L 1UMPE Y,S\'ST3

: 	2 X,SiLENO

WT SYT4
PF.IROI \ , I ASCIZ/ SELV/1

• EOiJT

2

.1 - SK SYSTA IIE:POI A, [ACIZ/ CJFVL,iNE/]

fl')•'• PSOUT

.1

j,qy~ UST SVST2

. 	.-2' SOTO HRROI A, [ASCl/ MUM]
'• 	93 v & fl LT

JEST SYST2

ST5 ; SETZM

crr7

RRU PT 	S, ERV 1 CE 	P O(lTI NE

11 -30 FOR POCL'FS 	1 ALj

---,•
PUNT 3'k A,FL%SYS •

i: 1 .11Pi l\)p)

A,L L1IC

PAGE; 	31

I i1

"T' Z' 1L%1 IC
• i) IIJ A, Plj-

1 'PENT 	PROCESS TERMINATED,]

CJE'

5TCOr

I I .iVEI A,

,1u1

TtC

12 EkOAL

71 1 2 	fl

1 	22

7• i 9 'RJI3:'P EFvifl 	F:cJI;:CNE
' FOR JPC MF:sAoFs

. 131

I 	32k' O1NT ; 	J5i SAVAC3

3r' R - RoI A, t ASCZ/5Ac;E 	R:cE:Ivo 	Al' 	ODE 	/j
Pr1'J

I tv A, 	PRjr1nJ

C, 	D8

I T 	' Tj

PITI,

iPCi3

JIPCt3+i

R , E:PIL'Nu (S
1 	A7' 'ijj " 	1LCi.3+2

PAGE; 32

R, [ji, ,

VF;N R,]
i iTT IT\,4

JViI

. 	A

CM ERLV I

MKRGI A, [ASCI Z/iESAGE 	CODE 	/J

A 5T ;\T C, ^08

A 5n E 0,AflLE+1,

59: 43UT

CUP

A

WK CALL

A, 	C2

r'CVI A, 	f'R:t1;

I CiTJ F, k, LEVi

' iA\i;T A, _v'Rsrj

WETZM STCJi.
! 	7:- 	.

1174, 	 .\iAC.$;

yovEm P 	i;CTA3+A7
::\JI P,I\CTAF-.3

WE P 	[J,OI) 	STKUSM,STACK31

470'.

I P, 	CTA3

P,7

MY',

 2 3

rowE; j -

1 	 SiEr COMING ON-L1NE

1

1 19V SPJP: HER

S,1pC13+I

1193" IV, UV1 S,EPILWO()

_19 A Mi?V1 5,1

I tijvi;I W ,
A 97 RA W, .C'PTR

, J5YFi
1 	i< SL2

CAME Z,

LIRST Sil'3

Y,W

Y, .PPTR

LL)P Z,Y
Z ,

JRST SW

71 PPP

2' HRRZ Z,Z
AoDl Z,2

, (Z)

KFORK

Allyn c 	 Tj E1jV2

SETtJ
fl ADDH Z, S1SFL

I25 SijI3: L-11 i(;

s -uic', x ,
A,

122 1

PAGE; 34

2 f `aw_______,.n____,__.._.. .ww..rww w+ww +. gvs_eq w.n ~r a•"w w•s _rw wanu_wos_awis

1.223 1DER GOING OFE wi~TNG;
'q a•was•a nw n.gwsm.o es__~ewws.w._w__ai_.a_

122S ClE'E(LP±: HOP R,TABL1

12270 SETZM EP'TDNO(R)

i22s' ISETh Z,

12290 ADD11.1 Z,NNr.)DE6
r3 SET> k

1231 RE:T

► 2320

233 ; -- -

1234 SE r̀ J OER WANTS A SYSTEM PROCESS

1.2350)_ :-- . ~.r_sw.w_s~ewo

, 12370 RhSYS a HLRZ R,TABLE
J 23:?" CAP4L',i

JRS'T RQS2
S, [O PRCNO, , TABL1E+2J

124:V HP,RS S,TA3bE+2

1242' TLO'B Z, 3

12 430 ImIILiI Z, 10,
?. 244 AUI)I 7,_3

1245-0 MOVE Y, JYST'ArB(Z)
i,46 pbTj711Ai Y,SYSTA!(Z)
12473 HRRZ Y,Y

MOVE W, LPNPTR, ,S 	67 J. I1Il }

5UPI Z,3
I 25ir M1JV Y,, 	1' 	'l'I,f3(Z)
try 	r- An 0 W ,7

1.. 5 3 r° fl
1254-0 MOi1IE ti 	Y

CALL PACKPR

T.1U1r5$ TA BI.,k,

') S7fp ~UVEI A, .SYSPR
',taVENI A,TAELF?+I.

PAGE: 	35

XPCB

MUTE RAEUNG
MOVE SIEPIDNOCE)

1262,'' Muvsm S, J)CB+

s,EpIiNo(R)
. :A5 VUVEM S, IpC+2

PC, R,

1 i 1TjM },tPC+3
:vi:I A,4

UVEI 3,IPCE3

1270-1. CALL

27 1 SZTZ A,

272

I

12743 Ri.2: Ht1JI Al, [AscJ.z/PRLICESS 	NOTAVAILABLE/]
)fl1JT

277 STCUflc

•2

MOVE I 	, ,

AFfl

Y,Z

'280! flJ.1pN X ,

CP,JJ[) I'1XTPT D

2 WE X,A

1201, posm SETZM Will
120 2'', movE MEMO

R,EpIj)ç (J)

v;fr F,JPCB+J

MOVEM X, I

PAGE: 	
3 6

X, C), ,T\}iLEJ
2c7' !L;VEi X, Ic+3
44 I 	Ti3Lb

uv;i ,4

• vj; ,IpCf

1 $

5 JrcypVrj ppj33 	iT GRAT1iE)

*
j 	7

Jd: S1 Y, 	 c,,,, p, 	,TAIE42]

[!1)1

ii• , 	 ,SY3IABJ

fs $

•315.

S,V

: 	32. LTL)1

iA

I)22 X

SEOFK

$2 iFCAL

323 1 ,

L 	2 ii RE

i 327

ERIEv2
1• $7,-\ SLTZ1 STCUDE

J'ij A,

33 2

PAGE: 37

.i_ ; r 	.> f 	-- '--- 	— -----,--_r--------------- ------ -- ---- ---
; BI D

	

R'EIJII ES T 	F'Rw; 	,. r' 'v i) j3R

1. .i 5
~ : 7 : r w.a 	— v. ., .,. -----------------.-

133

a. 	i 3pa: S :.`r J;°1 I P CR

. 339', :ry;_eiif R,:r 'C[34-1

'3 	. Jr:.;v 	~ $, 1PC35+2

-i-1

"rl'M ? r -?Cbs 	2

r.' 	T S r 	r r `1'AfBirE]
4 	.~.r

~~ 1 Vi:, 	~ ~~ r 	PC 	1'+ 33

CuRPR

? TK n•,

I 	... 	:i7 !'F , P~~i~ 1̀ t',1 tom\ r 	ACCPR

'

CVEI A,4

7 Ci r 	i~•Jr— .:T , r ~,IPC5
S 	t 	iSG

3 ' i V :;1 A, 4 r

" 	S`.tC0DF

SUTZ

PET

%-'i''irEI'1 R, T AF~j i', 	1

r 	rr,t; UVET I, r t

.' 	. ' 'Vii;? f3, 	PC:

$42U L! E r

PET

1 3 U 1

f --- 	— --n-- maw-- f------w!a —m°slyw W---------: ----it-t----M----fit--

a1.D 	ACC L'P T 	F'RUi-t 	SENii 	p

s.J 1l J — 	 .—--ws—m mi ns .swrsr

36 4, n

,iii^ ACCPR 1L)V53 'TABLE

PAGE; 	38

V R, 	3Ni)pR
3 7 L R, T/3jiE+ 1.

R1PCF-1

4JV 5 r IPCI3+2
uI'1 S,I(ii

7 V:'M R, IPCk.42
3 0 , ,TAbLi:J

3 7 M)VEM 8,IPC6+3
1 37r;

01 v X , CU}PPN
CA1L PAC1Pi

.3 12 i JV;I Ai
.V;I t,IPCJ

3
H?QI A, [A$CIZ/PROCE$S 	1IGRATrD/]

f 35

7 TZ M CURPJ
17

I 3C iTt)

A
I 31
I 	C)

I J) 3
'34 ______s

JF'V5ED 11 	5EDIR
, ---

I. 39V'
11ROI A, CASCIZ/ 	L3CIFIED 	NODE BUSY/]
'C1tT

A r
PT

Iy\

PAGE: 	39

!
	— ----- AIPI~R,

• A IJ' I''i:% t RUCI S5 i' TGRA'PL;P

	

- 	 m qwa wwyismmom 4ya-----F -w-------1~1-----1

1,

R,CU;RP i= J.

'. 41. 	 PR)

r

:' 21 	 Sh I1RK

... 	? VF:T 	A,1
'N 	A,S'1'COp

1'G 	A r

7'. 	--- - ------s-mm — ,w s.--Mwolw-----------------ai-------m ba ~t•A--mss os---aR

rl yl •' 	 v. l~ t r 	ni r,1,nAl` C"'EG >Y;'rt ?t PROCESS
-I 	 RmmPR.f^A•stis

n

	
fli%'} jE;^ 	r.11 11j 	`'' r l ,Pit('..I'ifl 	,I1 I3I,h• +21
 rLn 	5,

.. d .55 	 .•Jtil ii 	RrSIy 1J 'Nl-)

,, I PIN ,TR, ISY :TABI

•r ,

.

r ..

P 	 t / {. La 	 L! i) p -R 13 c

AUDI 	S, 3

PAGE: 40

SLT

A: 7

1

01MOt }tjiJTTNE

¶ 	Z

4 	4 \ -, 	 -

PACK A PRUCES$ 	FOR 	r-iIRATInN

f 1

X , TAJ:jjE.+2

F3r ft;V1

RFSTS

FRCAL ERLiV4

H - PM

CVjj' P , EILiJi

CTTN

1 	. SiTZ

P ,

IALJ R,2
1• AC') P

P , TABlE-f2

I 	7Y R,FIJIExT

cjVp R,TABLE-t-25

CVSI A, (GLJ 	S1-T 	C.

1. I 8 	TAI3.iEi-24

I. ELCAr

PAGE; 41

EJZ A,A

KJ, toil

q J'UVE i, C7'17760 2i , ,

fRLEV4

A

. 	?7

I ECi\L
PG

-. 	-, 	- - 	 -
UPACK A 	iIGRArnifl PRflCrSS

- 	-
CL •

. •?5 LL)FFOC 	MCJVX A , (.R%CAP

CFr)R

W- 	7 ERiV4

H1-2Z A

P, 'TA 13LE+3

'FACS

T 2 E - CAI

A, (GJ3E-T G%Qi2j))

5 	4• }ir B, TABJEi--2'

1,3 ERLEV4

HZ Tt

3f

CI 	TI EJiEV4

2

, (C%sT-iT)
Iz pL 1 E+24

P R) riv4

7 DE1F

PAGE:; 	42

ERT`,'~ I 	.

j,52 	!:

Y 2:~'. a 	 y...ro ~n r®.~.,T-.~.~A,._,..,e~r...,, .®m.

1 	,'?;_ P,f~r DI 	 AWE A 	t?r)

152; 	̀ 1s.. ,o _--,.

uV1t' A,ABC!

529 r 	t A0 p hi i)E irl)

a 	' 't:v : P, 1 PCC?>+ ~.

i532 1': 1J E I A , 2

!11 L,? r; , IPCI3

5353 EPr l;V4
PT

9.33 7

?̀.°s ~;'• i ---' -- 	v, 	—.,...T,s•vy.es.,.,o....,o.—

çr(1 	THE NEXT 	P11)

S - n—w- ----ww------ ----mo 	-- 	of--Mew— w---------a--. ----~o---

AA L; r.1 A,

A, 1IT1L)

n ..~:1~•.O` { ~.tl'._~.~' i~!Vii,

J UMP{; 13 0 MXTP'.iP

lr ,_ 	n T 	t:s 	,^ rIXP3

SST , A,

135 = 'I S'T t.'XTpTl;:
l554. "XP3 r fs TQ A ,

PAGE: 43

1555 	 PHT

1.55y
1C7r ;

553 	; 	SE;i[) A MHSS'GE A. 1 1̀11D PROCESS ANY ERPOIIS
fl

561 S1 flNSG PUSH 	P,A

1 5 6 PUS

.563

RJMP
565C POP PB

15615T' PUP P,A

567(PET
1568 5 	D 	R!,N, 	CiLj
:569 i N A,601022

S MS 0 2
CAXiI A, 601023

i572 JRsr SMS (Illy 2
573 ERCALJ ERLEV4

i574 83flSG2 	PUP P,U

1575 PUP P,P.

157) J15P SNDMSG
157Th
157 	o ----- - --------
1579A TEflfH\Jj ECHO 	fli'F

1 55o0 -----------------------

N0E(HO MOVE 	A ,.PRIIfi
8 3 RFMUD

8 , rN Ci'L ERrEv4
158 PUSH P,R

CVX R,T5.%ECD

PMr)CM P,P

P S'MLJD

rRcAL rR1E;v4

159 PUP P,R

1591U RET

PAGE: 44

15920

- .J -i ~ - - -,n,----------------m- -------u.----- 	- -•~..~-------------~

1S94r : 	TERMINAL ECHO ON

15950 r -----A------ ---ei—:i--------..-------------------tea---m--. -----

A 5960

1597(ECH00',! MUvEI A,.PRITM
15980 RFMOD

15990 E<<CALi F Ri V44

y o u
Mj1Vx R,TTo CC

PET

l6"(, ; ----.. -- --s — - e,s.--- —a—« --.---e-------..,..,..----~. ~...~.~...,...,r~

t „ e
 :, z i P: r~p IN TERRUPT

 	
r +
	p F

(y _f a r j ---------------------.s,.m.--- -- 	 ---

9611

1 f 'Q 	fi, 	1. `` 	y 	A '{(7' 	q 	i} 	r F

16130 	 'JR

'.. •) .:,. ~ . 	J i r F~, ~ ~ Y ~.L~ m 	t': t~ ~ ~ ~ 1 	f 1 ~ • I L~ L7. !,

16140 	ERCA.Ij 	ELI v4

161St) 	 RL,T

16160

16170
3, h1 ` 	Asp---o--

1619t) I 	fISAT.6r: THIS 1N?'E Upm STRUCTURE
I 62:10 f 	 --o.a....---sw+4w.......e,no.- -----oe .e n~.----see.------s------..s

62

16220 OI6j!'t T 	I`IU HES. 	Ar aFli6)fj."

6230 	 PIR
?.t"24(E,,RCAI.i 	ERIV4

1625:: 	 RET
1626

16270-

16230

PAGE: 45

16290 ;---

t=f;P THE CODE OF' THE TOAST ERROR
-- 6 '] 	— 	.• 	 —,•-- ----------A-sa----------

	

3 A p 	~a cs se !w v~ ms v~ u• avr ne .~ se ww er a •n v cs a oe w eei

16 32° 	Cr R. J5J)`1 ° To U\TE I 	+ire 7"7l 1JLi,

	

J iJ' 	 t_EEm,R

16340 	 E UCA LJ 	ERL#;sV4

.~. 4J 3o-3r 	 HRR I 	 A, R

16370

.s 	
PRTUUT SYSTEM ER ROH MUSA(ES

E SAS j. s; l i 	tl'E IJS'.,' J"i 	j1't:JP

I 644; ELEV2 	OP
6' : _e 17Rr4I1V.3

16470 	 HHRR01 	A r [ASCII/ERROR IN JS S AT PC /1

	

t)A*'8f4 	 P1SOI T

1o490 	 1OVI 	A, .PRIOU

':UVr: I 	C, "li
165; 0 	 POP 	P f3 _ r

1t520 	 HRRZ 	4 r f3

16530 	 SUB 	B,2

1t540 	 ?'OTT

1655: : 	E CPt,

	

56,., 	 CRIB' 	 -

16570 	 MUVEx 	A r 4 PRIIN

16580 	 "Ii GI 	I), . k HS1bF
16 590

3. 	 1L CL

16610 	iG Ct,

16620 	Cir1p

16630 	- 	Tf" t 1iJ riF

.JPST 	ST'ARTX
).h650 i. D ST'RTX

PAGE: 1

00010 ;#**#******#*##*#######**#*;*#*##*######*#*###****

00020 r. 	UNIVERSAL .'FILE CONTAINING THE SYMBOLS
00030 ° 	 USED EXTENSIVELY IN .THF.- PACKAGE
00040. ; 	COMPILES TO GIVE THE FILE SYMBOL,UNV
00050 ,##* #**######### #**#*#*# ## #* ###* #**##*#

00060

00070

00080 	 UNIVERSAL 	SYMBOL
00090 SEARCH MONSYM

00100

00110

00121. maw®away..wa~ews~iw~rf~e~we,w_~o wr.sw~~ew~w~ne~w~.wasrww®®wt

00130; 	ASSIGN \THE FOLLOWING. SYMBOLS TO THE
00140;; 	 ACCUMULATORS
00150 ; ~s.sai ®w+ ws.aw~~wassa`aw~iwwwser.w~s®~*rwrrw.~arwa®wwwi~w®sn wss~.~

00160

00170

00180

00190 A=1

00200 8=2

00210 C=3

00220. 	D=4

00230 Q=5

00240 	 V=6
00250 	L,7

00260 	M=10.

00270: 	RII
00280 5=12

00290 W=13

00300 	X=-14

00310 Y=1S

00320 a=16

00330 P 7

00340

00350

40:36#

00370

PAGE;.. 	2

00.380 7w~.a lelwlwly.w !!!4wleee wi., welslww!l~rpwwswsw~!lwsswswls!

00390 ; 	DEFINITION OF THE CODES . USED IN
00400 ; 	 'INTERPROCES s COMMUNICATION

00410 7 it-ater--s-----a!!!iw---seq.------S w 	55 55wa aSs

00420

00430.

00440

00450 	.SSL4FUP==_ 	1
00460 	..OFFGN== 	2
00470 .RQSYS== 3

00480 	.,SYQPR==. 	4
00490 	wTAKPR==. 	5
00500 	ACCPR== 	6
00510 	.NIAKPR== 	7
00520 	.SNDPR== 	to
00530 OFFLD== Ii

00540

00550

00560

00570 ; 	DEFINITION OF THE MAXIMUM NUMBER

0 5$0 ; 	 OF NODES IN THE SYSTEM
00590

0061,0 	 MMAXND .:. 	3
00610

00620.

00630 stelal. r. lwsra!!S!!!!!!la. !.A!!_wl®ww_we4wlRwiees

00640 ; DEFINITION OF THE POINTERS TO

00650 ; VARIOUS .FIELtDS IN A PROCESS NAME

00660 f ~a~~ew~~wwe~.srw+ l~~. .e.r~soewewwasw.e~~law.w.r~e*rwrw.~wiwe~lw

00670

00680

00690 	..PNPTR==340600. 	;PRESENT NODE PPOINTER
00700 	. .CNPTR==1iO600. 	;CREATING NODE POINTER
00710 	 PRCNO==1100. 	;;LOCAL PROCESS NUMEER
00720

00730

00740

PAGE: 3

Q075 seee ~e wsswsawwwswwwwsswewwnewwwwwmwww~rww~.~wiwwwwwwww ww

00760 ; DEFINITION OF OPERANDS

007770 ; wa~e~.w•www..wwww~..wwrwwsfewwwwwrw®wwwwwaswwwAwl~wawwss~.w

00780

00790 OPDEF' 	CALL 	[PLJSHJ p,
00800 OPGEF 	RET 	[POPJ P,3
00810

00820

00830

0084 ; ~rw wewawewwwwwmw ~w wow ~eawawwswwsswas wvwwpwwww ww~ws~ewww

00850 ; 	DEFINITION OF COMMONLY USED MACROS
00860 ewa,..wwwww.~rwwwwww~®~waiwwswwww~ewwwawtwwwwwwwww~w~rww•

00870

00880 DEFINE CRLF

00890 	 HRRDI A, "[BYTE (7) 15,121
00900 	 PSOUT
00910

00920

00930 DEFINE DEFERR <

00940 	 CRLF
00950 HRRQI A,[ASCIZ/ERROR:/]

00960 	 PSOUT
00970 	 t OVEI 	A, PRIIN
00980 	 HRLOI 	B,F 'HSLF
00990 	 ERSTR
01000 	 CRLF
01010 	 JFCL
01020 	 JFCL
01030

01040

01050

01060 END

APPENDIX B

Three printouts, showing the operation of ZNODE,
XNODE and WNODE are attached;

First ZNODE and XNODE are run as nodes 1 and 2

respectively; XNODE then goes down and VJNODE comes up as
node 3.

At various intervals the time is output to clarify
the sequence of operations;

To get these printouts separately, the nodes were
forced. to take their input directly from files and give

their outputs to other files: Only terminal interrupts were
given manually.

INTERACTION OF ZNIiDE - NODE I 	
PAGE 	1

DECSYTEM-205Q PSEUDO DISTRIBUTED UPEEATING SYSTEM

24-APRB1 12:13:34

*F3

NODE NO, 1

FILES LOADED

PROCESS RESPONDING

TIMER,EXE

PSEUDO IN OPERATION

PRS CTRr1\? FOR ATTENTION

<COMMAND iEVEJ,>

<12:13:39>

COMMAND; 0

COMMAND MENU

COMMAND NO. 	 COMMAND DESCRIPTION

0 	 PRINT COMMAND MENU

I 	 CREATE A PROCESS

2 	 KIbL CURRENT PROCESS

3 	 MIGRATE CURRENT PROCESS
4 	 RUN SYSTEM PROCESS
5 	 CONTINUE CURRENT PROCESS

6 	 LOG OFF FROM THIS NODE

7 	 SYSTEM STATUS

- INTERACTION OF zNimE - NODE I 	
PAGE: 	2

(PRIVILEGED COMMANDS -- PASSWORD NEEDED)

8 	 LOG OFF THIS NODE FROM SYSTEM

<END OF COMMAND MENU>

<12:13: 39>

COMMAND: 7

SYSTEM STATUS

NUMBER OF NODES IN SYSTEM :3

NODE 	1 	SELF

,NODE 	2 	OFF-LINE
NODE 	3 	Ot"F-LINE

<12:13:39>
COMMAND: 4
GET SYSTEM PROCESS
SYSTEM PROCE83E
0 	TIMER

PROCESS MD, 0
PROCESS TIMER
REQUEST NO.: I
MODE. WORD 	0
t24-APR-87 12:13:391

EXIT

<12:13:39>

0

INTERACTION OF ZNODE 	NODE 1
	 PAGE: 	3

COMMAND: ô

LOGc;xNc OUT FE<OM ;ur

<COMMAND LEVEL>

<12:14;'011 7>

COMMAND: 7

SYSTEM STATUS

NUMBER OF NODES 1111 SYSTEM :3

NODE 	1 	SEIIF

NODE 	2 	ON-LINE

NODE 	3 	OFFLINE

<12:14:27>

COMMAND: 7

GET SYSTEM PROCESS

SYSTEM PROCESSES

TIMER

PROCESS NO. ;

PROCESS TIMER

REQUEST NQ; 3

MODE WORD

[24-APR-7 12:14;38J

EXIT

<12: 1 : 3 3>

COMMAND: I

CREATE A PROCESS

INTERACTION OF ZNQDE 	NODE I
	 PAGE: 	4

FILE: TEST.EXE

STARTING PROCESS

PROCESS STATUS : 500

PROCESS STATUS : 477

PROCESS STATUS : 476

PROCESS STATUS 	475

PROCESS STATUS ; 474

PROCESS STATUS : 473

PROCESS STATUS 	472
PROCESS STATUS : 471
PROCESS STATUS ; 470

PROCESS STATUS 	467

PROCESS STATUS 	466

PROCESS STATUS : 465

PROCESS STATUS 	464

PROCESS STATUS : 463

PROCESS STATUS : 462

PROCESS STATUS : 461

PROCESS STATUS 	460

PROCESS STATUS : 457

PROCESS STATUS : 456

PROCESS STATUS : 455

PROCESS STATUS : 454

PROCESS STATUS : 453

PROCESS STATUS : 452

PROCESS STATUS ; 451

PROCESS STATUS : 450

PROCESS STATUS : 447

PROCESS STATUS : 446

PROCESS STATUS : 445

PROCESS STATUS : 444

PROCESS STATUS : 443

PROCESS STATU5 : 442

PROCESS STATUS ; 441

PROCESS STATUS : 440

PROCESS STATUS : 437

INTERACTION OF ZNODE 	NODE I 	
PAGES.5

PROCESS STATUS : 436

PROCESS STATUS : 435

PROCESS STATUS ; 434

PROCESS STATUS : 433
PROCESS STATUS 	432

PROCESS STATUS 	431

PROCESS STATUS : 430

PROCESS STATUS : 427

PROCESS STATUS : 426

CURRENT PROCESS TEEMINAED

<COMMAND LEVEL>

<12:14:43>

COMMAND; 3

MIGRATE CURRENT PROCESS

TO NODE NO. :2

PROCESS MIGRATED

<COMMAND LEVEL>

<12:15:05>

COMMAND; 6

LOGGING OUT FROM NODE

<COMMAND LEVEL>

<12:17:0 5>

COMMAND: 7

SYSTEM STATUS

NUMBER OF NODES IN SYSTEM :3

	

11 	 1 	SELF

	

NODE 	2, 	flFFLINE

	

NODE 	3 	ON-LINE

INTERACTION OF ZNODE - NODE I 	
PAGE

<COMMI\Ni) LEVEL>

<12:17:05>

COMMAND; 6

LOGGING OUT FROM NODE

<COMNANO LEvEl4>

<12;17:19>

COMMAND: 7

SYSTEM STTTu5

NUMBEN OF NUDES IN SYSTEM :3

NODE 	I 	SELF'

NODE 	2 	OFF-LINE

NODE 	3 	ON-LINE

<12:17:20>

COMMAND; 8

P A SSW Li RU:

SYSTEM SHuT DOWN

IPTERACTIOti OF XNODE 	NODE 2 	
PACE;

DECSY$TEM2o5o PSEUDO DISTRIBUTED OPERATING SYSTEM
24-APR-87 12:14:03

41 B

1'ODE NO.:2

FILES LOADED

PSEIJDDS IN OPERATION

PRESS CTRJ\X FOR ATTENTION

<COMMAND LEVEL>

<12:14:10>

COMMAND: 0

COMMAND MENU

COMMAND NO. 	 COMMAND DESCRIPTION

0 PRINT COMMAND MENU

I CREATE A PROCESS

2 KILL CURRENT PROCESS

3 MIGRATE CURRENT PROCESS

4 RUN SYSTEM PROCESS

5 CONTINUE CURRENT PROCESS
6 LOG OFF FROM THIS NODE

7 SYSTEM STATUS

(PRIVILEGED COMMANDS 	PASSWORD NEEDED)

I

LOG OFF THIS NODE FROM SYSTEM

PAGE: 	2 INTERACTION OF XiiOi)E 	NODE 2

<END OF COMMAND MENU>

020400> 10>

COMMAND; 7

SYSTEM STATUS

NUMBER OF NODES IN SYSTEM 3

NODE 	1. 	ONLINE

NODE 	2 	SELF

NODE 	3 	QFFLaINE

<12: 14;10>

COMMAND: 4

GET SYSTEM PROCESS

SYSTEM PROCESSES

C 	TIMER

PROCESS NO. :0

PROCESS TIMER

REO[JEST NO.: I

MODE WORD : 0

[24—APR87 12:14:21J

EXIT

<12: 14:22>

COMMAND: e

LOGGING OUT FROM POPE

PAGE: 	3 IfTERACTIrjN [IF XNODE 	NODE 2

PROCESS STATUS : 425

PROCESS STATUS : 424.

PROCESS STATUS : 423

PROCESS STATuS 	4,22

PROCESS STATUS : 421

PROCESS STATUS ; 420

PROCESS STATUS : 417

PROCESS STATUS : 416

PROCESS STATU$: 415

PROCESS STATUS : 4, 14.

PROCESS STATUS : 413

PROCESS STATUS : 412

CURRENT PROCESS TERMINATED

<COMMAND iEVEL>

<12:15:35>

COMMAND: 8

PASSWORD:

SYSTEM SHUT DOWN

3 	
PAGE;

LUDE 	NUDJ

0 PSLJn

6:3

COMMAND MENU

COMMAND NO 	 COMMAND DESCRIPTION

0 	 PRINT COMMAND MENU

I 	 CREATE A PROCESS

2 	 KJ[.d4 CURRENT PROCESS

3 	 MIGRATE CURRENT PROCESS

4 	 RUN SISTEM PROCESS

5 	 CONTINUE CURRENT PROCESS

6 	 LOG OFF FROM THIS NODE

7 	 SYSTEM STATUS

(pRxvIIQ:GEo COMMANDS - PASSWORD NEEDED)

s

<END OF COMMAND NEU>

<t2;16:45>

COMMAND: 7

SYSTEM STATUS

MUMFER OF NODES IN SYSTEM :3

NODE 	 SELF

NODE 	2 	OFF-LINE
NODE 	3 	OFF-LINE

<12:16:45>

COMMAND; 4
GET SYSTEM PROCESS
SYSTEM PROCESSES

0 	TIM;R

PROCESS NO. :0

PROCESS TIMER

REQUEST NO .-; 4
NODE WORD g 0

t24-APR'87 12; 16:57j
EXIT

<:12: 1.: 57>
COMMAND: 6
LOGGING OUT FROM NODE

OF NODE- NODE-3 	 I

PSuio DISTRIBUTED OPERATINc; SYSTEM

JfJ j;i

\\ 	&M 	r opF'J3-ION

''f)R ATTENTION

\ND LEVEL1

<1 	'Jo:45>

C(1t414111iiD: 0

COMMAND MENU

COMMAND N0. 	 COMMAND DESCRIPTION

0 	 PRINT COMMAND MENU

1 	 CREATE A PROCESS

2 	 KILiI-1 CURRENT PROCESS

3 	 MIGRATE CURRENT PROCESS

4 	 RUN SYSTEM PROCESS

5 	 CONTINUE CURRENT PROCESS

6 	 LOG OFF FROM THIS NODE

7 	 SYSTEM STATUS

(PRIVII.EGEr) COMMANDS -- PASSWORD NEEDED)

F W NODE 	NO PAGE; — 	DE-3

PS;UDo DISTRIBUTED OPERATING SY5TEM

Jo It

pp, 	 OpEffkTION

:6 : 3 8

OR ATTENTION

ND LiVEL>

CñI/f4N/)
,d

N

COflMAI) MENU

------ - -----

COMMAND N. 	 COMMAND DESCRIPTION

V 	 PRINT COMMAND MENU

I 	 CREATE A PROCESS

2 	 KILL CURRENT PROCESS

3 	 MIGRATE CURRENT PROCESS

4 	 RUN SYSTEM PROCESS

5 	 CONTINUE CURRENT PROCESS

6 	 LOG OFF FROM THIS NODE

7 	 SYSTEM STATUS

(PRIVILEGED COMMANDS 	PASSWORD NEEDED)

INTERACTION OF WN[JDE: - NODE 3
8 	 I,OG OFF THIS NODE FROM

<ENL) OF COMMAND MEFJ>

<12 16:45>
COMMAND: 7

SYSTEM STATUS

NUMBER OF NODES IN SYSTEM :3
NODE 	I 	SELF
NODE 	2 	OFF-LINE
NODJ 	3 	OFF-LINE

<12:1.6:45>
COMMAND; 4

GET SYSTEM PROCESS

SYSTEM PROCESS

TIMER

PROCESS NO. :0

PROCESS TIMER

REQUEST NO,: 4

MODE, WORD : 0

L24-APR87 12:i6:57J
EXIT

<t2:A657>

COMMAND: 6

LOGGING OUT FROM NODE

VT 	
NODE 3
	 PAC;E:

CO4A1 E

P ASSWOR D,.

SYSTEM s -1i)ON

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

