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ABSTRACT

Magnetotelluric method is used to delineate the subsurface conductivity structure of

earth using natural electromagnetic waves in the frequency range 10" Hz - 10 Hz as

source field. These natural fields are generated mainly by thunderstorm activity (>1 Hz)

and the interaction of solar wind with the earth's magnetosphere (<1 Hz) (Kaufman and

Keller, 1981). The horizontal electric and magnetic field components are measured at the

earth's surface and analyzed to infer electrical resistivity distribution in the earth's interior.

The two orthogonal horizontal electric field components are linearly related to the two

horizontal magnetic field components through appropriate transfer function (Tikhonov,

1950 and Cagniard, 1953). The depth of penetration of electromagnetic (EM) wave

depends upon its frequency and conductivity distribution of medium.

The EM fields are studied using Maxwell's equations, coupled in electric (E) and

magnetic field (B) vectors. These equations are transformed into vector Helmholtz equation

for decoupled E-field or B-field. The vector Helmholtz equation is used to solve for the

response ofa given earth model. Typical model parameters are geometry ofthe target and

spatial distribution ofconductivity. The estimation ofmodel parameters from the physical

fields, measured on earth surface, is termed as an inverse problem, while the mapping of

model parameters to measured fields is known as a forward problem. For a good inversion

algorithm, an efficient forward modeling code is needed. This work deals with the

development of an efficient 3Dforward modeling algorithm.

The popular numerical modeling schemes can be broadly classified into Integral

Equation Methods (IEM) and Differential Equation Methods (DEM) (Finite Difference

Method (FDM), Finite Element Method (FEM)). While IEM can be efficiently used only
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for computing the responses of confined targets buried in a layered earth, the DEMs are

capable of modeling arbitrary complex distributions of conductivity. The coefficient matrix

in case of IEM is full but small in size, while in case of DEM it is large but grossly sparse.

In DEMs use of staggered grid is popular, particularly in 3D case, because its use

analytically incorporates the divergence equation of magnetic field. FDM with staggered

grid is used in the present study.

Instead of using FDM to solve the complete Boundary Value Problem (BVP) with

sources, we have first studied fundamental nature of the eigenvalue problem obtained in

case of source free BVP. Eigenvalues and eigenvectors, collectively known as eigenmodes,

exhibit the basic characteristics of the response to a given physical property distribution in

the model. After estimating the eigenmodes for a given geometry and physical property

distribution, the EM response for a given source frequency can be obtained through

superposition of the eigenvectors. In geophysical applications, similar approach was

implemented by Druskin et al. (1994, 1999)and Stuntebeck(2003).

In the eigenmode method, the responses for additional frequencies can be obtained

in negligible time. In contrast, in case of traditional use of FDM to generate multifrequency

responses, one has to re-run the code for each frequency. During evaluation of

superposition coefficients, the eigenvalues appear in the denominator, implying that the

smaller eigenvalues contribute more significantly to the field. Therefore, one need compute

only a subset of the smallest eigenvalues and corresponding eigenvectors for a given

degree ofaccuracy of field values. For evaluation of this subset, the iterative methods serve

better than the direct methods, particularly in case of 3D problems where the matrix size is

extremely large.

IV
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The most widely used methods for evaluating a subset of eigenmodes are Krylov

subspace projection methods. In these methods, only product ofthe matrix with a vector is

needed and, therefore, only non-zero elements of the sparse coefficient matrix need be

stored. Lanczos and Arnoldi methods are two popular Krylov subspace methods. Former is

used for symmetric matrices while the latter is used for non-symmetric matrices.

Before launching the development of3D code, we gained experience ofeigenmode

method by developing ID and 2D forward modeling codes. The FDM coefficient matrix is

symmetric. In case of 3D, the symmetric coefficient matrix is of large size, which is

reduced in size by using the current divergence equation, to eliminate the z-component of

electric field from expressions. This step transforms the symmetric coefficient matrix to a

nonsymmetric one, albeit of much smaller size. So, Lanczos method is used to obtain the

eigenmodes in ID and 2D case while Arnoldi method is used in case of 3D. The

eigenmode evaluation subprogram of our algorithm is adapted from the routines of

ARPACK (1997) software which is based on Implicit Restarted Lanczos/Arnoldi Method

(IRLM/IRAM) given by Sorensen et al. (1992). ARPACK works in different modes such

as 'regular', 'shift and invert' etc. The regular mode is efficient in obtaining largest

magnitude eigenvalues while invert mode is efficient in obtaining smallest magnitude ones.

Since we are interested in the smallest eigenvalues, shift and invert mode is used. Further,

to circumvent the problem of loss ofLanczos vector orthogonality in case of degenerate

eigenvalues, their complete reorthogonalization has been employed.

The development of3D algorithm was carried out on a PC. As a result, we had to

introduce several I/O detours and had to work under severe limitations imposed on the size



of the grid. Therefore, we designed several appropriate experiments using the coarse grid to

validate the 3D algorithm.

The organization of seven chapters in the thesis is presented next.

In chapter one, the literature review is presented.

In chapter two, the theory for 3D Magnetotellurics using electric field vector

Helmholtz equation, obtained from Maxwell's equations, is discussed. Different types of

boundary conditions such as domain and interface boundary conditions are described. The

eigenmode problem is formulated and the eigenmodes are used to obtain the EM response

for multi-frequency case. The derivations of response functions, i.e. apparent resistivity and

phase corresponding to both 2D-TE and 2D-TM modes are discussed.

In chapter three implementation of FDM on staggered grid is described. The

domain is discretized into a grid comprising cuboids. We have followed the convention that

electric field components are defined on midpoints of edges while magnetic field

components are defined at the centers of surfaces. The derivation of matrix equation from

the governing partial differential equation and boundary conditions is presented next. The

coefficient matrix obtained is symmetric and about one third of its eigenvalues are zero.

These spurious zero eigenvalues do not contribute to field synthesis. This knowledge is

made use of in reducing the coefficient matrix size to the number of non-zero eigenvalues

by eliminating the vertical component of electric field and working only with the horizontal

components. This step transformed the symmetric coefficient matrix to a non-symmetric

one. A brief review of ARPACK subprograms adapted to determine the eigenmodes is

presented.
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In chapter four, the details of various stages of development of algorithm,

MT3DEA, are discussed. Starting with symmetric matrix eigenmode evaluation using

Singular Value Decomposition (SVD), the Lanczos and Arnoldi methods in 'regular' and

in 'shift and invert' modes are presented. In invert mode a matrix equation need be solved

so efficient matrix solvers based on Conjugate Gradient Method and various

preconditioners used are described next. Finally, the algorithm is presented along with

flow charts of important subprograms.

In chapter five, the synthetic experiments designed to test and validate the

algorithms MT_2D_EA and MT3DEA are discussed. First we performed different tests

such as grid convergence and no contrast case to check the consistency and accuracy. Then,

we compared the results of2D version ofour algorithm with published results. We studied

two 2D models (simple and complex) taken from COMMEMI (Zhdanov et al., 1997) and

obtained good match with the average values given in the paper. The RMS errors for

simple and complex models are 0.01 and 0.06 respectively. Next we studied the impact on

the field values of using different percentages of eigenmodes. We observed that for

obtaining accurate field values, 5% eigenmodes were sufficient for the conductive block

model whereas for the resistive block 20% eigenmodes were needed for same accuracy. In

the multi-frequency experiment, we studied Weaver (1976) model. We used two grids for

time periods Is and 10s and generated the responses (true) for these grids. Next we

generated the response at Is using 10s eigenmodes and vice versa and found excellent fit

with the corresponding true responses. In case of 3D, additional experiment conducted was

to verify that 3D apparent resistivity values converge to corresponding 2D values as the

strike length in one direction is extended. We compared our 3D response with the

vu



published apparent resistivity values of the model described as 3D-2 in COMMEMI report

and found a good fit.

In chapter six, we have used MT_3D_EA algorithm to generate 3D models whose

responses are commensurate with the MT field data acquired by Israil et al. (2008) in

Garhwal Himalaya. Tyagi (2007) and Israil et al. (2008) analyzed this data using WingLink

software, and proposed the first 2D geoelectric model. We used this model as base model

for our study. Using MT2DEA algorithm, we generated responses of this model at two

time periods and found excellent match with the corresponding WINGLINK responses.

Due to limited computer resources, we could not run the complex model using MTJDEA

algorithm. So, for 3D study we designed a simplified 3D model retaining the dominant

feature of conducting block. We generated the 3D responses for 4 strike length values (20

km, 50 km, 70 km and 100 km) of the conducting body. At 100 km strike length the 3D

response of the model matches well with the 2D response. Finally, we experimented with

the strike-length and the depth of burial of the block and generated equivalent 3D models

that would explain the conducting anomaly in the observed data. The 3D geometry of the

conductive block, buried under the Roorkee-Gangotri profile near MCT, can be taken as 70

km strike, 20-26 km width and 4 km depth and its resistivity is estimated as 8 Q-m.

However, the detailed 3D study suggests that the conductive block can be approximated as

a 2D one.

In chapter seven, we have discussed the strategies for further improvement of our

algorithm.
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CHAPTER 1

INTRODUCTION

The geoelectromagnetic method is an important branch of applied geophysics, in

addition to seismic, gravity and magnetic etc. The cardinal objective ofapplied geophysics

is to add a third dimension to geological maps. This is achieved by efficiently interpreting

the measured anomalies using scientific instruments whose function is to detect changes in

the physical properties of rocks concealed beneath the surface of the earth. Subsurface

geology - the third dimension of the geological map - is unfolded somewhat obscurely

through the pattern of anomalies observed above, on or under the air-earth interface. The

geological picture is only vaguely adumbrated in lines of equal anomaly and the

professional job ofgeophysicist isto interpret these observations ingeological terms.

The conductive rocks affect the geoelectromagnetic response to artificially or

naturally simulated electric and magnetic fields. The artificially simulated source field

methods are also called Controlled Source Methods that include Controlled Source EM

Method, Direct Current Resistivity Method and Induced Polarization Methods. In contrast,

the naturally simulated methods are Magnetotelluric, Telluric, Geomagnetic Depth

Sounding and Self Potential methods.

The Magnetotelluric method uses natural electromagnetic waves in the frequency

range 10" Hz - 105 Hz as source field. These fields are generated mainly by thunderstorm

activity (>1 Hz) and the interaction of solar wind with the earth's magnetosphere (<1 Hz)

(Kaufman and Keller, 1981). The orthogonal horizontal components of electric and

magnetic fields are measured at the earth's surface and analyzed in terms of electrical

resistivity distribution in the earth's interior. The two orthogonal horizontal electric field

1



components are linearly related to the two horizontal magnetic field components through

an appropriate transfer function (Tikhonov, 1950; Cagniard, 1953). The depth of

penetration of electromagnetic (EM) wave depends upon its frequency and conductivity

distribution of the medium.

1.1 Applications of Electromagnetic Methods

Electromagnetic methods can be used in two forms as Controlled source EM

(CSEM) and natural source EM (MT). In CSEM applications an active source is used while

in magnetotelluric method, naturally generated EM waves are used. MT is primarily used

to delineate the crustal structure of the earth as in MT we can get information upto several

hundreds of kilometers. Now a days, MT along with CSEM is also used in marine

environment to detect hydrocarbons. MT is also used in geothermal exploration, ground

water exploration (Petrick, 2005; Rao, 2008) and detection of waste hazards sites (Lima et

al., 1995; Tezkan, 2000). A brief literature review of salient EM field case studies where

3D modeling algorithms have been successfully employed follows.

1.1.1 Crustal studies

Magnetotellurics is widely used to determine the depth of crust in different regions

of the world. Most of the current field data interpretation exercises are carried out using

2D/3D modeling algorithms. Adam (1997) studied Neocene Pannonian Basin and observed

deep Bakes Graben at 7 kms. Above this structure a strong magnetotelluric (MT) phase

anisotropy (phase-deviation in two orthogonal directions) has been observed indicating

upwelling of the partially molten asthenosphere validating deep mantle structure. Wei et al.

(2001) detected wide spread presence of high conductivity fluid at a depth 15-20 km in
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southern Tibet and at a depth of 30-40 km in the northern Tibet. Unsworth et al. (2005)

also observed crustal melting in Himalayas from northern Tibet side. Pous et al. (2007)

observed conductive feature in Pyrenees related to the subduction of the Iberian plate

beneath Europe. In central Taiwan, Chen et al. (2007) ob served a low resistive zone

representing reduced viscosity zone that controls deformation of this active oregen. Tezken

(1994) also observed a highly conductive layer in the upper mantle beneath the Black forest

crystalline. Mauro et al. (1999) carried out MT investigations in seismically active region

of northwest Bohemia and observed a conductive structure at a depth range from 0.5 km to

3 km related to paliofluids in the gigantic massif. Rao et al. (2003) used EM technique to

study seismically active peninsular Indian region. Semenov et al. (2008) conducted the

project CEMES along the south-west margin of the east European Craton using long

period MT and their results indicate systematic trends in the deep electrical structure of the

two European tectonic plates. Tyagi (2007) and Israil et al. (2008) studied the Garhwal

Himalaya and observed a conductive feature near MCT.

1.1.2 Geothermal studies

Geothermal studies using MT were started in 80's (Hoover et al., 1978; Wright et

al., 1985; Pellerin et al., 1996). In Jammu and Kashmir ID geothermal study was done by

Harinarayana (2002). In Punga valley, Ladakh, India, the 2D geothermal MT investigations

were done by Abdul Azeez and Harinarayana (2007). They reported a ~ 400 m extent

conductive zone of 10-30 Q-m resistivity at 2 km depth and related it to a hot spring, In

Kos island, Greece, Lagios et al. (1998) reported a 3.5-7 Q-m conductor at 250-3000 m

depth. Patricia et al. (2002) performed geothermal investigations in Brazil. 3D

Magnetotellurics was used for geothermal exploration by Asaue et al. (2006) and they



found 1 km to 3 km conducting pillar at the hot spring site in the West Side Mt. Aso, Japan.

Lee et al. (2007) studied in Pohang, Korea and observed a conductor at 3 km and also

confirmed five layers resistivities with drilling results.

1.1.3 Marine EMstudies

Marine Magnetotellurics (MMT) is mainly used as a complement to MCSEM

(Marine Controlled Source Electromagnetic) to provide the background resistivity of the

sub-bottom sediments, that is, to constrain the inversions (resistivity vs. depth models)

produced from MCSEM data. First sea floor MT study was reported by Cox et al. (1980).

The recent developments in instrumentation for Marine MT were presented by Constable et

al. (1998). MCSEM is also used for studies of oceanic lithosphere (Cox, 1981; Constable

and Cox, 1996), Midocean ridges (MacGreger et al., 2001) and sea floor gas hydrate (Yuan

and Edwards, 2000). Recently, marine controlled source electromagnetic has shown great

potential in hydrocarbon exploration to detect thin resistive layers at depth below the sea

floor (MacGreger and Sinha, 2000; Ellingsurd et al., 2002; Eidsmo et al., 2002; Kong et al.,

2002, Johansen et al., 2005; Constable and Weiss, 2006; Constable and Srnka, 2007; Fox

and Ingerov, 2007; Weidelt, 2008; Weitemeyer, 2008).

1.2 Interpretation of EM Data

The whole operation ofdeducing a picture of the geology at depth from geophysical

measurements is termed as interpretation, a word which aptly implies its indeterminate

nature. The measurement of magnetotelluric anomaly is generally taken at the ground

surface and from these data one tries to outline the disturbing regions. This part of work is

closely controlled by well established physical and mathematical laws and is known as
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quantitative interpretation (Figures 1.1(a) and 1.1(b)). Although the quantitative

interpretation may often be ambiguous, the nature of ambiguity is well understood. The

next step is termed as geological interpretation, the step to translate the quantitative

interpretation into reasonable geological picture and the success in the endeavor depends

upon a proper appreciation and balancing of all the physical and geological factors.

The subject matter of this thesis is very largely concerned with the quantitative

interpretation of geoelectromagnetic data. The quantitative interpretation with confidence

level is synonymous with the solution of inverse problem. However, to obtain a solution of

inverse problem the solution of the forward problem is prerequisite. Therefore, the

quantitative interpretation is explained as a cascade of solution of forward problem as well

as the solution of inverse problem.

(a)

Real Problem Mathematical

Problem

Mathematical

Solution
—•

i V

< Interpretation — <

i '

Figure 1.1: (a) Block diagram of interpretation,



Real World

(b)

Idealization and approximation

based on experience and
understanding of the solution

Comparison

Conclusion Solution based on

mathematical experience

Real World

Model

Abstract

symbolic
representation

'' based on

mathematical

experience

Mathematical

Model

Figure l.lcontinued: (b) extended block diagram of interpretation.

The mapping of model to measurable field response is known as forward problem.

Typical parameters defining the model are the geometrical distribution and magnitude of

the physical properties of target. The difference between the observed field values and the

computed response values, obtained by forward modeling, is minimized in some optimal

sense iteratively to obtain a reliable model. Functional diagram for forward modeling and

inversion (Figure 1.2(a), 1.2(b)) is given below;

(a)

Synthetic model
parameters Model responseModel

(b)

Observed

field data

Estimated Model

parametersModel•

Figure 1.2: Functional diagram (a) forward modeling, (b) inverse modeling.



As described above, forward modeling is an essential part of inversion. Using trial

and error method, forward modeling itself can be used to find the solution for given field

data. The present work deals with the development of forward modeling algorithm for

Magnetotelluric problem. Logical flow diagram of forward problem can be sketched as

given below in Figure 1.3.

Physical laws governing the problem

Translate to

Partial differential equations with pre-specified
boundary and initial conditions

Apply numerical methods to get

System of algebraic equations

Solve by direct
or iterative matrix solver to get

Figure 1.3: Logic diagram for numerical solution of forward problem.



EM fields are studied using Maxwell's equations, coupled in electric (E) and

magnetic field (B). These equations are transformed into vector Helmholtz equation for E-

field and/or B-field. The vector Helmholtz equation is used to solve the response for a

given model.

The first set of modeling problems attempted pertained to a uniform conductivity

half space or the conductivity variation in a layered earth. The half space problems were

solved by Sommerfield (1909, 1926), Price (1962), Weaver (1971a, 1971b). Later, some

characteristics of EM waves as reflection and wave tilt were studied by Singh and Lai

(1980 a, 1980b) over a half space. To estimate the conductivity in a layered earth, people

solved one-dimensional problems. Several one-dimensional, conductivity variation in

vertical direction, algorithms were presented by Srivastava et al. (1963), Vozoff et al.

(1963), Backus and Gilbert (1970), Parker (1977), Dmitriev and Berdichevsky (1979),

Oldenburg (1979), Weidelt (1995) and Gupta et al. (1996).

After ID problems, the next set of problems pertained to 2D models, in which

conductivity varies only in one horizontal direction and in the vertical direction. Jones and

Pascoe (1971) and Coggon (1971) presented the first two-dimensional algorithms for MT

response computation. Other two-dimension algorithms were given by Brewitt-Taylor and

Weaver (1976), Pek (1985), Oldenburg (1993), Weaver (1994), Rastogi et al. (1997), de

Groot hedlin et al. (1990, 2004) and Pedersen et al. (2005).

The physical properties vary in all three directions i.e. both the horizontal directions

and the vertical direction. The most appropriate model to obtain the exact fit of its response

to data is three-dimensional. Thus, to obtain a good model from data, efficient 3D forward

modeling is the need of time as emphasized by Park and Torres-Verdin (1988) "3-D



modeling simply can not be avoided in complex geological environment''. Keeping this in

mind, we undertook the task of developing an efficient algorithm for 3D modeling ofthe

Magnetotellurics response.

The analytical solution for computation ofresponses is possible only for the simple

resistivity variation models, where the geometry of the modeling domain and of the

interfaces demarcating regions of different resistivity can be represented by a simple

expression that eases the implementation ofnecessary boundary conditions, e.g. the layered

earth one-dimensional problem can be solved analytically. To compute the response of

arbitrary resistivity variation models only way out is to undertake numerical 3D modeling.

A briefreview of literature on 3DMTmodeling is given next.

1.3 Numerical Modeling

The workers who initiated the study for 3D MT response simulation are Jones and

Pascoe (1972), Raiche (1974), Weidelt, (1975), Hohmann (1975, 1983), Hohmann and

Ting (1978), Reddy et al. (1977), Jones and Vozoff(1978).

Initially, electromagnetic methods were used in mining industry where one seeks

confined conductive bodies in a half space or layered structure. To compute the response of

such confined targets, the Integral Equation Methods (IEM) were used. In eighties, the 3D

algorithms were based on body in a layered earth (Das and Verma, 1981, 1982; Ting and

Hohman, 1981; Tabbagh, 1985; Wannamaker et al., 1984a; Wannamaker et al., 1984b;

Wannamaker, 1991; Xionget al., 1986; Xiong 1992).

IEMs can efficiently compute the responses of confined targets. However, for

general conductivity structure, the Differential Equation Methods (DEM) are preferred. In

IEM only the target is discretised, resulting in a small but full coefficient matrix, while in



DEM the whole domain is discretised, resulting in a large but highly sparse coefficient

matrix. There are two classes of DEM's: Finite Element Method (FEM) and Finite

Difference Method (FDM). Because of the efficient handling of curved boundaries, for

sometime the FEM became popular in geophysical literature after IEM, however, since

nineties FDM has become the most favored choice

In FEM, the matrix equations are derived using one of the several approaches,

popular one being use of either the weighted residual approach or the minimum theorem.

Both tetrahedral and hexahedral elements have been used for the modeling. Pridmore et al.

(1981) suggested that only hexahedral elements can give satisfactory results. Livelybrooks

(1993) developed 3Dfeem (3D finite element electromagnetic modeling) algorithm and

compared its results with 2D analytical solution. Xu et al. (1997) applied FEM to

implement Terrain corrections to MT problems. Shi et al. (2004) applied divergence

correction in their solution and observed that their algorithm is comparable with IEM in

computational speed. Now a days, people are using staggered grid to find accurate solution

(Mitsuhata and Uchida, 2004; Naam et al., 2007; Changsheng et al., 2008; Blome et al.,

2009).

Staggered grid was first introduced by Yee (1966) in his FDM algorithm developed

to solve electrical engineering problems. Later, it became popular in geophysics also. Now,

this approach is used in almost all algorithms due to implicit application of magnetic field

divergence correction. Monk and Suli (1994) observed that this scheme is also second

order convergent on a non-uniform mesh as it is on a uniform mesh.

Now one can handle curved boundaries even with FDM and it is easier to

implement than with FEM. The first 3D FDM code for electromagnetic problems in
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geophysics was given by Jones and Pascoe (1972) for general conductivity structure buried

in a layered earth. Brewitt-Taylor and Weaver (1976) not only used central difference but

also modified to weighted average the simple average conductivities that were used in the

code of Jones and Pascoe (1972) and Farquharson and Oldenburg (2002) used harmonic

average of conductivities. For E-polarization, asymptotic boundary condition was

introduced by Weaver and Brewitt-Taylor (1978) to improve accuracy. The 3D FDM code

given by Madden and Mackie (1989) used relaxation procedure as matrix solver rather than

the direct methods because although direct methods are quick for ID and 2D yet these

become inordinately inefficient for 3D problems. Smith et al. (1990) used Taylor series

expansion and his results agree with the Jones and Pascoe (1972). Mackie et al. (1993)

used impedance propagator algorithm to solve 3D MT response. Their solution converges

slowly as frequency approaches zero. Other programs were reported by Newman and

Alumbaugh (1997), Chen et al. (1998) for topographic responses. Siripunvaraporn et al.

(2002) formulated the problem for electric field and magnetic field. They observed that

electric filed formulation is less sensitive to grid resolution than the magnetic field

formulation. For sufficiently fine grid, both electric and magnetic field formulations gave

the same solution. However, for coarser grid, the electric field solution tends to be closer to

the exact solutions. We have also used Finite Difference Method with a staggered grid.

Hybrid methods, amalgamation of DEM and IEM, were developed by Lee et al.

(1981), Gupta et al. (1987) and Cerv et al. (1990). Discrete convolution method was used

by Porsani and Ulrych (1989).

In numerical methods, ultimately a matrix equation is obtained which need be

solved using either a direct or an iterative matrix solver. Direct solvers give satisfactory
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results in ID or 2D environment but for 3D environment iterative solvers serve better

because of the large matrix size and its sparse nature.

Of the various classes of iterative methods, those based on Conjugate Gradient

(CG) methods have become the popular choice. There are different variants of CG type

methods such as simple Conjugate Gradient (CG), Bi Conjugate Gradient (BiCG) and Bi-

Conjugate Gradient Stabilized (BiCGSTAB). Generally, CG is used to solve symmetric

coefficient matrix problems while BiCG and BiCGSTAB are used to solve non-symmetric

coefficient matrix problems.

Now several workers are using CG methods in 3D modeling. The 3D algorithm

given by Smith (1996a, 1996b) is based on BiCG (Bi-Conjugate Gradient) method with

Cholesky decomposition preconditioner. Xiong (1999) indicates BiCGSTAB (Bi-

Conjugate Gradient Stabilizer) offers best convergence for the solution. Other efficient

algorithms based on BiCG solver were proposed by Sasaki (2001), Xiong et al. (2000),

Fomenko and Mogi (2002), Farquharson and Oldenburg (2002).

In all these traditional methods, one has to re-run the code for each frequency.

While in the approach, based on eigenvalues and eigenvectors, there is no need to re-run

the algorithm for each frequency. Eigenvalues and eigenvectors, collectively known as

eigenmodes, represent the basic characteristics of the matrix and, in turn, of the model.

After estimating the eigenmodes for given geometry and physical property distribution, the

solution for multi-frequencies can be obtained using these eigenmodes within seconds.

Since eigenvalues have the basic characteristics of the physical properties irrespective of

source, we used this approach.
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The popular method to find the eigenmodes is Singular Value Decomposition (SVD). In

SVD, eigenvalues and eigenvectors (eigenmodes) are used to obtain the solution. Park and

Chave (1984) used SVD to estimate magnetotelluric response functions. In SVD the matrix

is needed explicitly and it is very difficult to store the matrix in 3D problems. Hence, the

iterative methods are widely used to solve for the eigenmodes. The classic iterative method

to find eigenvalue is power method. In addition to its role as an algorithm, the method

played a key role in the development, understanding, and convergence analysis ofall ofthe

iterative methods. This method was used to find the largest eigenvalue of the system

matrix. Krylov subspace projection methods are based upon the intricate structure of the

sequence of vectors naturally produced by the power method. Since we have used Krylov

space based method to obtain the eigenmodes, a brief survey of the literature on this topic

is given below.

1.4 Krylov Methods

Krylov methods are generalization of Conjugate Gradient methods. In these

methods, the coefficient matr ix is not needed explicitly, rather, an algorithm yielding

product of the coefficient matrix with a vector is sufficient. Saad (1980) used Krylov

method to find the eigenvalues ofunsymmetric matrices. Krylov methods are particularly

efficient when all eigenmodes are not desired, rather only a few, either largest orsmallest,

eigenvalues and corresponding eigenvectors are needed. The set of eigenvectors

determined constitutes the basis of Krylov subspace. The constructed approximate

eigenpairs from this subspace are known as Ritz vector with corresponding Ritz value.

This method was implemented by Druskin et al. (1994, 1999) in geophysical

applications with the name Spectral Lanczos Decomposition Method (SLDM). Recently,
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Stuntebeck (2003) used eigenmode method in air-borne applications of EM methods. To

find the eigenmodes, there are several variants of Krylov subspace method such as Jacobi-

Davidson, Lanczos and Arnoldi. We have used Lanczos and Arnoldi because of their easy

implementation.

1.4.1 Lanczos/Arnoldi methods

The Lanczos and Arnoldi algorithms are iterative algorithms invented by Cornelius

Lanczos (1950) and W. E. Arnoldi (1951) respectively. Both are adaptations of power

method to find eigenvalues and eigenvectors of a square matrix or the singular value

decomposition of a rectangular matrix. In Lanczos one deals only with (Hermitian)

symmetric matrices; while in Arnoldi method one finds the eigenvalues and eigenvectors of

general (possibly non-Hermitian) non-symmetric matrices. After Lanczos (1950), main

work on these methods was done by Paige (1970). He solved several extreme eigenvalues

and eigenvectors of large symmetric matrices. His work strengthened significantly the

Lanczos type methods Band Lanzos methods were tested by Ruhe (1979), Ericsson and

Ruhe (1980) to improve the computation cost.

In all these variants, the Krylov vectors are stored column-wise in a two-

dimensional array. In exact arithmetic, these columns form an orthonormal basis for the

Krylov subspace. These columns are referred to as the Lanczos vectors or Arnoldi vectors

respectively. However, in finite precision arithmetic, care must be taken to ensure that the

computed vectors are orthogonal within working precision. This operation gives rise to a

tridiagonal matrix for symmetric cases and upper Heisenberg for nonsymmetric cases, from

which the eigenvalues or Ritz values are estimated.
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To find out the desired subset (either largest or smallest) of eigenvalues and

corresponding eigenvectors restarting techniques were introduced. Using these techniques,

the desired eigenvalues were obtained using a very small number of Krylov vectors in

comparison to the dimensionof the matrix. There were two ways of restarting, explicit and

implicit restarting.

The explicit restarting technique for non-symmetric system of equations was

proposed by Saad (1984). It was based upon the polynomial acceleration scheme developed

by Manteuffel (1978) for the iterative solution of linear systems. In this approach, starting

vector is preconditioned so that it nearly lies in the invariant subspace of interest. This

preconditioning takes the form of a polynomial applied to the starting vector to damp the

unwanted components from the eigenvector expansion. Parlett and Scott (1979) observed

slow convergence of Lanczos for Tchebychev distribution for diagonal matrices. Duff

(1991) tried to solve the rightmost or left most eigenvalues of a real non-symmetric matrix

by using subspace iteration method with Chebychev acceleration. Meerbergen (2000)

developed a program based on explicit restarting named as 'EA16' in FORTRAN having

capabilities of ARPACK (1995). Tong et al. (1999) analyzed BiCG in finite precision

arithmetic and observed that loss of biorthogonality does not necessary deter convergence

of the residuals provided the polynomial acceleration factor is bounded. Emad et al. (2005)

developed an algorithm named Multiple Explicitly Restarted Arnoldi Method (MERAM)

and compared it with the Explicitly Restarted Arnoldi Method (ERAM) to discover

acceleration in convergence. For multiple eigenvalues, harmonic restarted Arnoldi

algorithm was proposed by Morgan et al. (2006) and their method avoids the need of block

methods but it needs explicit restart. Hernandz et al. (2007) studied the impact of re-
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orthogonalization in finite precision arithmetic in explicitly restarted Lanczos in terms of

parallel efficiency.

Another approach to restarting, that offers a more efficient and numerically stable

formulation, is known as implicit restarting. In this approach truncated form of implicitly

shifted QR iteration is used. In their landmark paper Sorensen et al. (1992) discussed

Arnoldi process using implicitly shifted QR iteration. They also studied loss of

orthogonality of eigenvectors and storage requirement and used exact shifts to update the

starting vector. Calvetti (1994) used Leja points to update the starting vector. However,

Baglama et al. (1998) find Leja points quite time consuming for large problems and they

modified it to Fast Leja points for faster computation. Subspace iteration methods were

used by some workers such as Meerbergen et al. (1994), Brizenski (2001), Hochstenbach

(2003) and Beattie (2005). The work of Lehoucq et al. (1996) on QR algorithms revealed

that these are the best choice for Schur decomposition of the matrix. They studied truncated

QR algorithm and observed that it is a generalization of Rayleigh-Ritz procedure on a

block krylov subspace for a non-Hermitian matrix and showed that it may be viewed as

truncated form of implicitly QR algorithm. Based on these works of Sorenson, Lehoucq

and others, a public domain code ARPACK was presented in FORTRAN to aid

development of complex professional softwares. Sorensen et al. (1995) described the

details of implementation of Implicitly Restarted Arnoldi Method (IRAM) in the ARPACK

user's guide (1996). Lehoucq et al. (1996) introduced the deflation procedure to improve

convergence of IRAM. Scott et al. (1997) and Morgan et al. (1996) observed that Arnoldi

method is more efficient than the subspace iteration method. Beattie et al. (2005) describe

exact shifts as best in implementation and Hetmanuik et al. (2006) showed that shift and
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invert method in Lanczos gave best result for determination of few eigenvalues as well as

eigenvectors. Tremblay et al. (2007) proposed unsymmetric Lanczos algorithm with

modification to resonance lifetimes and suggests how there is no need of storage of large

number of vectors. Joubert (1992) observed the phenomenon of breakdown and loss of

orthogonality of eigenvectors in a nonsymmetric system. Several workers have developed

strategies to overcome this loss of orthogonality. Firstly, DGKS (1976) method was given

to improve the orthogonality of eigenvectors. Problems related to orthogonalization are

also discussed in Cullum and Willoughby (1985). A good work was done by Langou

(2003) in his Ph. D. thesis. He suggests two improvements in classical Grahm-Schmidtt

procedure (a) modified Grahm-Schmidt generates well-conditioned set of eigenvectors, (b)

Grahm-Schmidt algorithm iterated twice gives an orthogonal set of vectors. Giraud et al.

(2003) also suggested selective reorthogonalization to compute orthogonal set of vectors.

1.5 About the Present Work

The objective of study is fulfilled with the development of softwares MT_2D_EA

(Magnetotelluric 2D Eigenmodes Algorithm) and MT_3D_EA (Magnetotelluric 3D

Eigenmodes Algorithm) which are capab le of generating MT responses for arbit rarily

distributed 3D electrical conductivity models. The thesis writeup has been organized into

seven chapters briefly summarized below.

In the present chapter 1, literature review is presented.

In chapter 2, the basic theory for 3D Magnetotellurics is discussed. Theoretical

development of eigenmodes determination and application of eigenmodes for multi-

frequency response computations is described. Various types of boundary conditions
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employed are discussed. The apparent resistivity computations are presented for both the

modes, one corresponding to 2D TE and the other corresponding to 2D TM.

In chapter 3, Finite Difference implementation on 3D staggered grid is presented. It

is discussed how the electric and magnetic fields are arranged on staggered grid. The

structure of the coefficient matrix, in various cases, is described and corresponding

implementation of Lanczos and Arnoldi Methods for evaluation of eigenmodes is

presented. Application of preconditioner with conjugate gradient methods is also discussed.

In chapter 4, several stages of development of the algorithms MT2DEA and

MT3DEA are discussed, starting from all eigenmode solution using SVD to Lanczos for

symmetric matrix and Arnoldi method for non-symmetric matrix.

In chapter 5, testing of the algorithms MT_2D_EA and MT_3D_EA are described.

It includes tests like (i) Response of electrically same models, (ii) Effect of different

percentage of eigenmodes on resistive and conductive bodies, (iii) Effect of coarseness of

grid on the solution, (iv) Multi-frequency response computation and (v) Comparison with

some published results.

In chapter 6, we applied our algorithm to field data. The data was acquired from

Roorkee to Gangotri in Garhwal Himalaya by our department and a robust 2D inverted

model, obtained using WingLink, was proposed by Tyagi (2007). Using our 2D algorithm,

first we obtained the response of the proposed complex model and found excellent match.

Next we designed a simple 3D model from the complex 2D model and computed its

responses for large strike length at two periods and found good fit with data. Due to limited

computer resources in 3D we could not run the complex version of 3D models so we

compared responses at large period and found acceptable match with data.
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In chapter 7, we discuss further improvement steps that need be taken to make the

algorithm more accurate, efficient and versatile.

Finally, the Appendix Al presents the integral boundary condition formulation. The

generation of matrix coefficients for ex, ey and ez components and sigma orthogonality of

eigenvectors ar e presented in Appendix A2. I n Appendix A3, the tables of algorithm

parameters for control and grid and various subprograms along with their purpose are

described. Sample input and output files are presented in Appendix A4.
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CHAPTER2

THEORY OF MAGNETOTELLURIC METHOD

2.1 Introduction

The Magnetotelluric (MT) method deals with the observation and analysis of

natural electromagnetic (EM) fields with a goal to derive pertinent information about the

geoelectric structure of the subsurface. The observed field can be calculated as total field or

it can be viewed as a superposition of the primary and secondary fields. Primary fields are

generated by an external source, while the secondary fields are generated by the induced

secondary currents in the earth. If the Earth model is a uniform half space, then the induced

currents and the resulting secondary fields follow a regular pattern. Inhomogenities present

>• in the real earth invariably disturb this regular pattern of secondary currents and of the

secondary fields leading to perturbation of the total EM fields. These perturbed fields,

measured on the earth surface, provide an insight into the resistivity distribution within the

earth. This provides information about the structure of the earth and also helps in

understanding the ongoing physical processes.

The mechanism of perturbed fields can be understood only when the capability of
7

generating responses of arbitrary resistivity distributions is fully developed. The

computation of EM response of a given earth model, with prescribed resistivities, is known

as the forward problem of EM induction.

An exhaustive knowledge of EM theory, based on the fundamental Maxwell's

equations, is essential for solving the forward problem. In literature there exists a vast pool

of texts on EM theory differing in their emphasis on mathematical background,
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computational aspects and applications. One can refer to Stratton(1941), Smythe (1950),

Morse and Feshbach (1953), Jackson (1975), Born and Wolf (2005, 7th edition) for

fundamentals, to Mitra (1973, 1975), Morgan (1990), Zhou (1993) and Taflove (1995) for

computational aspects and to Grant and West (1965), Rikitake (1966), Ward (1967),

Prostendorfer (1975), Rokityansky (1982), Wait (1982), Kaufman and Keller (1981),

Berdichevsky and Zhdanov (1984), Nabighian (1988, 1991) and Zhdanov (2009) for

geophysical applications. A brief description of EM theory is presented here.

2.2 Electromagnetic Theory

The EM phenomenon is governed by Gauss law for electrostatics, Gauss law for

magnetostatics (i.e. non existence of monopoles), Faraday's law of induction and Ampere's

law for magnetic induction. Maxwell's equations, are the mathematical forms of these laws

and are given below for a source free case,

V-D = ^, (2.1)

V-B = 0, (2.2)

VxE = -—, (2.3)
dt

VxB = pJ+ju — , (2.4)
dt

where, V= i \- j \-k— .
dx dy dz

Here, D is dielectric displacement vector in coulomb/meter2 (C/m2), B is magnetic

induction vector in tesla (T), E is the electric field intensity vector in volt/meter (V/m) and

J is the electric current density vector in ampere/meter (A/m ). q, is the free electric

22



charge density in coloumb/meter3 (C/m3) and /u is the magnetic permeability in

henry/meter (H/m).

Equations (2.1) and (2.4) lead to the equation of continuity

dqfV-J +-^ =0. (2.5)

Equations (2.3) and (2.4) involve five vectors, making it an underdetermined

system. To make the system of vector equations deterministic, the following constitutive

relations are employed,

J =crE, (2.6)

D=sE, (2.7)

and

H=!b. (2.8)
M

Here, a is the electrical conductivity in siemens/meter (S/m) and s is the medium

dielectric permittivity in farad/meter (F/m). H is the magnetic field intensity vector in

ampere/meter (A/m). Equation (2.6) may be recognized as Ohm's law. The // andf can be

respectively expressed as

and

£=ers0.

Here /ur is the relative permeability andsr is relative electrical permittivity. Since

the primary physical property of interest in magnetotellurics is conductivity a, the
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magnetic permeability and dielectric permittivity of the medium are assumed to be equal to

corresponding free space values ju0 and s0, as;

,u0=4;rxl0"7 H/m

and

£0^\0-9/36tt F/m.

2.3 About Origin of MT Source

The magnetotelluric method is a passive electromagnetic technique that involves

measuring fluctuations in the natural electric and magnetic field at the surface of the earth.

The primary source field has its origin in the electric currents blowing in and beyond the

ionosphere which, in turn, arise from the complex interactions of solar radiations and

plasma flux with the earth's magnetosphere and ionosphere. The external inducing field

due to source, is horizontal and laterally uniform and therefore the signals can be treated as

a plane wave incident normally on the earth. The domain of study can be treated as source

free and the effect of source is accounted through the boundary conditions. The respective

boundary conditions for solving E or B are presented in section 2.4.

The magnetotelluric analysis is carried out in frequency domain. Taking time

dependence to be exp(icot), i.e. e(r) •exp(ia>t) equations (2.3) and (2.4) become

Vxe=-ia)b, (2.9)

Vxb = // j +id)jud, (2.10)

where co is the angular frequency (hertz).

It can be easily established that when b and d having continuous first and second

order derivatives, equation (2.1) can be derived from equations (2.5) and (2.10) while
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equation (2.2) can be derived from equation (2.9). The equation of continuity can be recast

in frequency domain as

V-j =-/©$,. (2.11)

2.4 Boundary Value Problem

The geomagnetic field variations can be studied by solving Maxwell's equations

(2.9) and (2.10). The solution can be achieved in terms of field vectors e or b, by

transforming these two equations into a well posed EM boundary value problem. For this,

Cartesian coordinate system is being used. The plane z = 0 is considered as air-earth

interface and z is taken to be +ve downward into the earth. Along withassumption of plane

wave propagating vertically downward, few more assumptions, given below, are made

about physical nature of earth,

1) Earth is considered to be source free and a passive medium,

2) Since the frequencies used are less than 105 Hz and the resistivities

commonly encountered in earth are less than 104 H-m, the free charge

decays almost instantaneously.

Therefore, equations (2.1) and (2.11) can be simplified as

V-d = 0, (2.12)

V-j=0. (2.13)

Equations (2.12) and (2.13) imply that for an isotropic medium the decay of charge is faster

than the propagation of EM wave and that the charge density will reach equilibrium in

negligible time. The surface charge may accumulate at the interface of two homogeneous

regions.
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Since the frequencies employed are less than 105 Hz (Ward and Hohmann,

1988), the displacement current term is negligible in comparison to the conduction current

term and therefore can be neglected. Using ohm's law the equation (2.10) becomes,

Vxb=//0cre (2.14)

and equation (2.9) remains unchanged,

Vxe=-/a>b. (2.15)

The complete statement of boundary value problem requires statement of the requisite

boundary conditions on electric field vector (e) or magnetic field vector (b).

There are two types of boundary conditions first one, termed as 'Interface Boundary

Condition', is at the interface where conductivity discontinuity occurs within the domain of

study and the second one, known as 'Domain Boundary Condition', at the domain

boundary.

2.4.1 Interface boundary conditions

It is imposed on an interface, separating two media, of different physical properties.

This is used to derive smooth resistivity function at the interface of different properties.

This may be obtained by simply replacing the operator V by the unit normal vector n and

setting the time derivative or else ioo term to zero in the Maxwell's equation as,

i) the normal components of d are discontinuous and it is equal to the

surface free charge density q^,

n-(d2-d1) = qf . (2.16)

ii) the normal component of b are continuous,

«•(£,-£,) =0. (2.17)

26

•i

7



iii) the tangential components of e are continuous,

«x(e2-e1) = 0. (2.18)

iv) the tangential components of h are discontinuous and it is equal to the

surface current density,

«x(h2-h,)= j

5T •-

f \. <*\ \
t__...

\ \ \
r_ v....

• • \ V

\ V V •
•v-ir---

\ • \ >. v
v 'v

V t • • N \ \ \ \ X

\: \, - :•, y.

\rv;o:
X • '• .....j...<ffe.....hx:...

\
\ I ii '•-.
• I ii

(2.19)

Figure 2.1: Presentation of interface boundary condition.

2.4.2 Domain boundaryconditions

These are imposed on the bounding surfaces of the domain. One can impose either

Drichilet or Neumann or mixed boundary conditions (BCs). Dirichlet BC means that the

EM field variable values are known at the boundary, while Neumann BC means that the

normal derivative of fields is known at the boundary. The mixed BC means that a linear

superposition of the field variable and its normal derivative is known.
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We would apply mixed boundary conditions, as used by Weaver (1994), at the four

vertical side surfaces of the solution domain. The bottom boundary surface is assumed to

be underlain by a perfectly conducting halfspace. Finally, at the top surface an integral

boundary condition (Appendix Al) that transfers the effect of air halfspace to the air-earth

interface, is imposed.

2.5 Eigenmode Formulation of EM Problem

Since in magnetotellurics, there is no active source term within the domain of study,

we consider the effect of external sources in terms of boundary conditions imposed on the

air-earth interface. After imposing all the domain boundary conditions, let the known right

hand side vector term be represented as the vector s0 . Under the assumption of negligible

displacement current, after eliminating B field in equation (2.3) and using equations (2.4)

and (2.6), the MT equation in time domain can be written as,

VxVxE(r,0 +yUoO"dE(r,/)=s0 . (2.20)
dt

The corresponding homogeneous equation will then be

VxVxE(r,/) +//0cr^^ =O. (2.21)
dt

Now, for eigenmode computation in real arithmetic, let us assume the time dependence as

E(r,0 = e(r)exp(-A/). (2.22)

Here X is the decay constant for EM fields.

This relation transforms equation (2.21) as

VxVxe(r) = A//0o-(r)e(r), (2.23)
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where X is the eigenvalue and e(r) is eigenfunction. Equation 2.23 states the EM

eigenproblem. Here, it may be emphasized that equation 2.23 states a generalized

eigenproblem and as a result the eigenfunctions will not be simple orthonormal rather these

will be sigma-orthonormal. The sigma-orthonormality condition is defined as

\cren(r).em(r)d3r =Smn, (2.24)
v

^ where 8mn is kronecker symbol.

As the general MT equation with harmonic time dependence of exp(icot), the

equation (2.20) can be recast as the vectorHelmholtz equationas,

Vx Vx e + ico/u0a e = sg . (2.25)

Since any vectorcan be expanded as a sum of orthonormal vectors, we expand e as

e(r,fl>) =£aB(a>>(r). (2.26)

Substituting equation (2.26) in equation (2.25) and using equation (2.23), we get

Mo X a« (An +i®)aen =S0. (2.27)
n

Multiplying by en on both sides, integrating over the whole domain and taking

sigma orthogonality into account, we get

a»(6)) = a t- ; I?« •e-dv • <2-28)J40(An+lG))J

This coefficient relation is valid when we are solving the total field problem. Using

these coefficients and equation (2.26) one obtains the total electric field.

The electric field is not continuous at boundaries between media with different

^ resistivities. This condition gives errors in numerical modeling using Differential Equation

Methods (DEM). To overcome this, secondary field formulation comes in use resulting
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from anomalies (Mogi, 1996). To avoid unnecessary calculation one prefers to work in

secondary fields. In secondary field formulation total field is described as

eT ep + es. (2.29)

Where subscript T denotes total field, P corresponds to primary and S corresponds to

secondary field.

Figure 2.2: Anomalous conductive block in a half space

Primary field is the response of layered ID model, while secondary field is the

response due to inhomogeneity present in the layered earth or halfspace. Figure 2.2 shows

3D inhomogeneity present in the half space. aP and crs respectively are the conductivities

of half space and anomalous region present in it. Thus, the total conductivity is defined as

sum,

Gj = <Jp + (7S . (2.30)
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So in wave number domain one can define k2 as

k2=k2P+kj, (2.31)

where k2 =io)/u0<r.

Substituting equations (2.29), (2.30)and (2.31) into (2.25), we get

(V2+*2)es=-£2ep, (2.32)

+ with the identity VxVx e = V(V •e) - V2 e.

Using equation (2.27) the coefficient relation is modified as,

«,» =—r^r- \<T1eT-endV. (2.33)

These coefficients are substituted in equation (2.26) to obtain the secondary field values, es.

These secondary field values are added with primary field to get the total electric field

values using equation (2.29). Equation (2.14) is used to solve for the magnetic induction

vector b and then equation (2.8) is used to obtain the magnetic field intensity vector h.

However, these field component values do not directly reflect effect of changes in the

subsurface resistivity in a perceptible manner. So, more representative response functions,

derived from these field values are discussed in the following.

2.6 MT Response Function

Although the response functions derived from the fields values also do not present a

direct functional relationship with the subsurface resistivity yet these reflect the bulk

information about the resistivity distribution.

The appropriate choice of response function is governed by the objective of the

study, whether lateral or vertical variation in resistivity is desired. The spatial variation can
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be studied in two modes, (i) profiling mode, for a given frequency, the observations are

taken at points along a profile, and (ii) sounding mode, the observations are taken at a

single point for different frequencies. Profiling delineates the lateral variations while

sounding helps in deciphering the vertical variation of resistivity.

2.6.1 MTapparent resistivity andphase

The magnetotelluric method was first described by Tikhonov (1950) and Cagniard

(1953) independently. Using the assumption of a plane wave source, the ratio of observed

horizontal electric field (ex or ey) and the orthogonal magnetic field component (hx or hy),

is called the impedance;

e ev
Z=~r=-~-- (2-34)

The impedance values are used to define the commonly used MT response function

as apparent resistivity, which may be defined as the resistivity of equivalent fictitious half

space. The apparent resistivity, pa, and the impedance phase, (b, are respectively given by

the relation

Pa= — |Z|2, (2.35)
cop:

and </> = tan~
'lm(Z)
vRe(Z)

where 0<^<90°.

For a homogeneous half space, phase will always be 45°. For a conductive body in

halfspace phase varies from 45° to 90°, while for a resistive body itvaries from 0° to 45°.

(2.36)
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The variation of resistivity in the earth is rarely one-dimensional, therefore above

definition of apparent resistivity and phase has only limited utility. To describe higher

dimensionality or anisotropy, Cantwell (1960) introduced a rank 2 impedance tensor Z.

or

Z„ Z.

Z Z
yx yy

(2.37)

e = Zh,

where Zxy, Zyx are principal impedances and Zxx, Zyy are additional impedances. Fora ID

earth,

^xy —^yx

•^•xx —^yy — U

In case of 3D one can find out the solution in any of the horizontal directions. If we

fix one direction as strike direction then we can find the solution for both E-polarization

and H-polarization analogous to 2D case. (This is case when we assume that our strike

direction is Y) Different field components for both cases are defined as

Stm = (5x, 0, 0), hTM = (0, hy, 0), (2.38)

ere = (0, ey, 0), hTE = (hx, 0, 0). (2.39)

For Hp0i (2D TM), the impedance and apparent resistivity and phase are defined as

^Im(Zxy)^

VRe(Z.)y
K =~S Pxy =—-|z*y|2. K =tan-l

nv G>Mo

Similarlyfor Ep0i (2D TM)
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*V =-5-, Pyx=-~-\Zy*\\ <t>yx =tan-l
hx cop0

'lm(ZyJ^
Re(Zyx)y

(2.41)

The vector Helmholz equation with requisite boundary conditions is posed as EM

eigenvalue problem. The theory of EM problem using eigenmode is presented. Total field

formulation, secondary field formulation, derivation of h field and the response functions

such as impedance, apparent resistivity and phase are described here. The EM eigenvalue

problem can not be solved analytically because the analytical solution does not exist for

boundary value problems with arbitrary variation of resistivity. Therefore, the EM

eigenvalue problem, in its generality, can only be solved using some numerical technique.

In present work the numerical technique Finite Difference Method is used to transform the

EM eigenvalue problem (2.23) to the corresponding matrix eigenvalue problem and

Lanczos/Arnoldi methods are used to solve for the eigenvalue/eigenvectors of the matrix.

These methods are discussed in the next chapter.
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CHAPTER 3

FINITE DIFFERENCE IMPLEMENTATION

3.1 Introduction

The EM data interpretation activity crucially depends upon the accuracy and

efficiency of the forward modeling algorithm. The analytical solutions of the governing

partial differential equation, derived from Maxwell's equations, exist only for models with

simple geometry and resistivity variation such as layered earth, sphere, etc. Even these

analytical solutions involve complex integral or infinite series. Hence, an exact solution of

most EM problems is not computable. The only alternative is to opt for numerical

solutions.

There are two broad classes of numerical methods; Integral Equation Method (IEM)

and Differential Equation Method (DEM). Both of these classes of methods have merits

and demerits in terms of their efficiency and versatility. Preference of one method over the

other is governed by the complexity of the model and available computer resources. These

methods translate the integro-differential operator equation into a matrix equation. In IEM,

the integral operator equation is transformed to the matrix equation through quardrature

formulae. In IEM only anomalous region is modeled, resulting in a small but full

coefficient matrix. However, the popular use of IEM is restricted to only finite volume

targets buried in a simple geometry host.

For arbitrary variation of conductivity, the DEMs, like Finite Difference Method

(FDM) and Finite Element Method (FEM), are commonly used. In these methods the

whole domain of study is discretized. This results in large but grossly sparse coefficient
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matrix. Recent advances in iterative matrix solvers, has resulted in these methods becoming

superior to IEM. In FEM, the differential operator is reduced to a matrix through functional

minimization while in FDM, it is reduced through finite difference equations. The

mathematics of FDM is easier to implement than that of FEM. In the present work, FDM is

used for 3D MT modeling.

3.2 Finite Difference Implementation

In FDM, the derivatives are approximated by the appropriate difference formula

obtained by the Taylor series expansion. For detailed description of FDM, one can refer to

standard texts like Forsythe and Wasow (1964), Hildebrand (1974), Mitchell and Griffiths

(1980), Taflove (1995). A brief account of FD formulation of EM problem follows.

The EM eigenproblem defined by equation (2.23) can be transformed using the

vector identitygiven in equation (2.32), to the differential equation

-V2e(r) =;t//0<Te(r) . (3.1)

This eigenproblem can be rewritten as

\\\v2(pdv=-^Ap0a(pdv, (3.2)
v v

where, cp denotes the scalar quantity representing any one of the three electric field

components. Using Gauss integral theorem, the left hand side of the equation (3.2) can be

transformed into surface integral equation

JJJV •(Vp) dv= jjV<p-hds, (3.3)
V s

This step transforms the second order partial differential equation into first order one

which is then approximated using central difference formulae.
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For implementation of FDM to solve equation (3.1), the 3D grid discretization of a

block domain is presented in the Figure 3.1. It is discretized by straight lines parallel to the

three- coordinate axes (x-, y-, z-) in cartesian coordinates.

X y/

z = =0
1 "X y/

/ / / y
/ /

/ / / /

i= 1 ' / / / s%
/ / y >' / >/ y„

k= 1 j = i J =ny

o(i,j,k;

k = nz

z

r

Figure 3.1: 3D Finite Difference grid.

3.2.1 Implementation ofstaggered grid

One can use either a normal grid or a staggered grid to implement FDM. In normal

grid all the six electric and magnetic field components are assigned to one node while in

staggered grid these are assigned to different points in a grid. As a result of numerical

computations, V•B is not exactly zero in case of normal grid. However, in case of

staggered grid, due to the arrangement of the electric and magnetic field values, V•B is

implicitly zero. Thus, the field values, computed using staggered grid, are less erroneous
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than those obtained using nodal grid. The staggered grid was introduced by Yee (1966) for

electrical engineering problems but is now widely used to solve the EM problems in

various disciplines.

Let the number of cells in the grid be nx, ny and nz in x-, y- and z- directions

respectively. Conductivity of the cell (ij,k) is represented as o(ij,k) and its volume as

v(i,j,k) = a(i).b(j).c(k), where a(i), b(j) and c(k) are the distances between two adjacent

nodes in x-, y- and z- directions respectively (Figure 3.2). The edges ofthe cube are (x(i),

x(i+l)), (y(j), yO+1)) and (z(k), z(k+l)). The cell edge centers are defined as xc(i), yc(j)

and Zg(k) with

*.<!> -*£±f& ,,.(/)=^)+2^+l>and ,.W=z(k) + z(k +1)

The distance between two adjacent midpoints are defined by ah(i), bh(j) and ch(k) in x-, y-

and z- directions respectively.

ex(ij,k)

ez(ij,k)

Figure 3.2: Arrangement of electric and magnetic field components onYee's
grid.
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In Yee's staggered grid implementation, the six field components (three electricand

three magnetic) are assigned to different points of each cell. In the current presentation

(Figure 3.2) electric field components are assigned to the centre of cell edges while

magnetic components are assigned to the centre of cell faces. In Figure 3.2, ex (i, j, k) is

defined at {xc(i), y(j) , z(k)} position, ey(i, j, k) at {x(i), yc(j), z(k)} and ez (i, j ,k) at

{x(i),y(j),Zc(k)} respectively.

At the air-earth interface (z = 0), the grid is artificially extended to half cell height

c(l)/2, into the air and the missing values are obtained by using field continuation

algorithm given in Appendix Al in detail. Rest of the five domain bounding surfaces are

assumed to be perfectly conducting and the homogeneous Dirichlet boundary condition i.e.

vanishing tangential component of electric eigenmodes at each surface, is imposed.

When employing FDM to solve the problem, it is better to take spatial average of

conductivity at a node (Weaver, 1976). The integration is taken over a prismcentered at the

point where the electric component is evaluated to calculate the volume weighted average

conductivity of the surrounding prism. The average conductivities, ax(i,j,k),

ay(i,j,k) and cJz(i,j,k), correspond to eigenmode components are ex(i,j,k), ey(i,j,k)

and ez(i,j,k) respectively. The average conductivity cfx(i,j,k), shown in Figure 3.3, is

defined as

a njk) - l [b(J)c(k)a{i, j,k) +b(j - l)c(k)a(i, j-\,k)+ 1
Wx (/, j, k) \b(J - \)c(k - \)a(i, j-\,k-l+b(j)c(k - \)a(i, j,k-\)Y

where Vx (/,j, k) = a(i)•bh (j) •ch (k). (3.4)
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ch(k)

1
Kcu-^^t;" m*)

Figure 3.3: The grid cells and associated electric (red colour) and magnetic (blue
colour) components required for the FD equation of ex(i,j,k). The
shaded prism isof averaged conductivity ox(i,j,k).

The Finite Difference (FD) approximation of eigenvalue equation for ex component is

obtained from equation (3.3),

hz(i,j,k)-bz(i,j-l,k) by(i,j,k)-by(i,j,k-\)
~b~u) ^ =W'W'tM'J'Q•v-v

Here, by and bz are magnetic field components in y and z directions and these are further

FD approximated, when applying equation (2.22) into equation (2.3) as

ey(/ +l,M)-ey(/,M) e,(i,/ +U)-e.(i,,;,*) .......
a(i) MJ) =^0,M). (3.6)

From the two equations (3.5) and (3.6), it is clear that each electric component is

connected with only surrounding twelve electric components. Therefore, the resulting

40

A



coefficient matrix will be 13 diagonal matrix. The symmetry of this matrix is conserved by

the transformation;

ex(i,j,k) =dx(ij,k)ex(i,j,k), (3-7)

where the transformation factor dx(i, j, k) is

dx(/, j,k)=jp0crx(i,j,k)Vx(i,j,k),

with Vx(i, j, k) being volume of the prism surrounding the point (i,j,k) where field is

evaluated.

The resulting final equation for all electric field components in all the three directions is

described in Appendix A2.

3.3 Description of System Matrix

After employing finite differences representation, the algebraic equations are

assembled to form a matrix equation;

Ae=Xe. (3-8)

The electric field components can be arranged in different ways. Using different

arrangements the eigenvalues and eigenvectors are not changed but the computational

efficiency may be affected. The matrix A is real, symmetric, semi-positive definite and

grossly sparse. The size of the matrix depends upon the total number of electric field

components. The numbers of three electric field components are,

number of excomponents = nx (ny-1) nz,

number of ey components = (nx-1) ny nz,

number of ez components = (nx-1) (ny-1) nz.

Thus, the size of the matrix is
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NA = Nhnz +(nx-1) (ny-1) nz. (3.9)

with Nh= nx (ny-1) nz + (nx-1) ny.

The system matrix has a maximum 13 non-zero elements in each row or column

besides the full block, due to field continuation, corresponding to the horizontal field

components at air-earth interface. This full block is of dimension Nh x Nh.

Firstly, the matrix eigenvalue problem is solved using the direct method of Singular

Value Decomposition (SVD). This method does not take into account symmetry and

sparsity and hence is not suitable for large size problems because of the explicit storage

requirement of the matrix. To check the working of eigenmode formulation, the method

was tested for halfspace model having resistivitylO Q,-m, discretized using a uniform grid

having 6x6x5 cells in x-, y- and z-directions respectively. The resulting eigenvalues are

plotted vs. eigenvalue number in Figure 3.4.

300 -

250 - 1
</) 200 - J

eigenval
oo

y^
50 - S^

0 -
_J

1 1 1 1 i

100 200 300

eigenvalue number

400 500

Figure 3.4: The eigenvalue plot for uniformly discretized half space.
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Striking feature of the full spectrum of eigenvalues, shown in Figure 3.4, is that

about one third of the total eigenvalues are equal to zero. In fact, the number of these zero

eigenvalues is exactly equal to the number of internal nodes of the grid which is also equal

to the number of ez components, i.e. {(nx-l)(ny-l)nz}. These zero eigenvalues are termed

as spurious eigenvalues and corresponding eigenvectors are also termed as spurious

eigenvectors as these do notcontribute to the field synthesis. Only the positive eigenvalues

contributes to the solution. The positive eigenvalues are generally simple but may be

multiple for degenerate case like, half space model. These positive eigenvalues are

bounded in a region (Xmax - Xmm) as given below,

The min value of eigenvalue ^min is defined as,

K

max

( 2 2\

-5—+ —
/A)°"max VAnax "^z J

nll<a<n. (3.10)

The maximum value Xmax is defined by,

, Y>\. (3.11)
f 1 _l _j^_

,^(Ax)2 +(Ay)2 +(Az)2j

Here, lower bound depends on the overall dimension of the model while the upper bound

depends upon grid discretization (Weidelt, 2009). Next section describes how these

spurious eigenvalues are eliminated.

3.4 Elimination of Spurious Eigenmodes

The spurious eigenvalues suggest that the system has less degree of freedom than

envisaged from the geometry. To study how these spurious modes can be eliminated, take

the divergence of the eigenvalue equation (2.23),

V-(VxVxe(r) - Ap0ae(r)) = 0, (3.12)
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V-(Ap0ae(r)) = 0, (3.13)

There are only two possibilities;

i) either X± 0 then V •(cr(r)e(r)) = V •j = 0

ii) or?i = 0then V-j*0.

In the second case, the divergence free current density condition is not satisfied. Thus, to

avoid spurious eigenmodes, the divergence free condition is enforced explicitly.

V-j=0, (3.14)

dx dy dz

Now, applying FD to this divergence equation we get,

~Ui,j,k)--h(i-\,j,k) }y(i,j,k)-jy(i,j-\,k) _}z(i,j,k)-]z(i,j,k - 1) _
+ +

«,(0 KU) ch(k)

(3.15)

0.(3.16)

The definition ofjx, jy and jz are,

Jx0',M) = ^AiJ,k)QK{i,j,k),

jy(*, j, *) = oTy (/,j, k)ey (/,j, k),

}z(i,j,k) = cfz(i,j,k)Qz(i,j,k). (3.17)

The number of spurious eigenmodes is equal to the number of ez components, solving

above equation for ez component,

],(iJ,k)-}x(i-\J,k)

. az(i,j,k-\)n ch(k)
ez(hj,k)= _ ,. . ,N ez(i,j,k-\)--

<rz(i,j,k) crz(Uj,k)
«*(0

]y(iJ,k)-}y{i,j-\,k)

KU)

+

Using Ohm's law to express jx and jy in terms of ex and ey respectively we get,
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-,. .,>. o-rO',y^-i)^0",y,A-i)_ ^(A)
ezO>M)=—_ ,. .,,,,. . ,,—ezOw,*-i)-a2(i,j,k)d2(i,j,k) <jz(i,j,k)dt(i,j,k) ^.\9)

ax(i,j,k)dxQ,j,k) ax(i-l,j,k)dx(i-l,j,k)
— eK(i,j,k) — ex(i-\,j,k) +

a„(i) ah(i)
a (i,j,k)d (i,j,k)_ a (j,j-\,k)d (i,j-\,k) _
— j—i eyQ,j,k) — -ey(i,7-l,t)

For first layer corresponding to k =1, the first term in above equation is zero

becausea\(z', y', £-l) =0. Thus, each vertical component can be represented by four

horizontal components of the same layer and four components of the layer just above it.

Thus, for each vertical component a total of 4 •k components are added to each row. This

equation is applied to all ez components, reducing the matrix dimension to NR = NA - Nv,

Nv being the number of ez components. In the reduced matrix, the number of non-zero

elements from the direct FD coefficient matrix reduces to 9 from 13 because of

replacement of four ez vertical components with horizontal components. This suggests a

maximum of 16•k replacements in general, and it leads to 6 •(Ik -1) non-zero elements in a

row of layer k.

This increase of additional elements in a row leads to loss of symmetry. Each layer

components are related to all the components of above overlying layers.

3.5 Reduced System Matrix

The reduced coefficient matrix structure is shown in Figure 3.5. The eigenvectors

have only the horizontal components. The dimension of reduced system matrix is

7V,; = \nx(n -\) +(nx -\)ny)n,. The matrix is real, non-symmetric, positive definite, and

smaller in size by a factor of approximately 1/3. It is less sparse in comparison with the

original symmetric matrix. The matrix elements are stored in compressed sparse row (CSR)
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format (Saad, 1994) because of its efficient performance for some of the standard matrix

operations.

Figure 3.5: Representation of reduced matrix structure.

After implementing the divergence correction, the final reduced matrix is obtained.

Now, the eigenmodes of this matrix are to be found using some efficient eigenmode solver.

3.6 Eigensolver for the Matrix

A variety of matrix eigensolvers such as direct, iterative and semi iterative are used

in EM problems (Sarkar et al., 1981). Direct solvers, where the complete matrix banded or

full matrix is stored, provide the solution in finite but large number of steps. In iterative

methods, on the other hand, where an initial guess is improved in a series of iterations, the

procedure can be stopped whenever the approximate solution with prescribed accuracy is

obtained. Iterative methods exploit sparsity structure of the matrix to the maximum

(Jacobs, 1981) and are therefore preferred for sparse systems. Though iterative solvers
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score on sparsity ground, yet their use is not recommended when diagonal dominance is

not guaranteed or when the matrix is indefinite. Semi-iterative methods based on Conjugate

Gradient (CG) method are commonly used even for indefinite matrices.

When the coefficient matrix is real, positive definite and large in size, iterative

methods are widely used to obtain the eigenvalues and eigenvectors. The oldest method to

find eigenvalue iteratively is the power method. This method was first used to find the

largest eigenvalue of the system matrix. Krylov subspace projection methods are based

upon the intricate structure of the sequence of vectors naturally produced by the power

method. In Krylov methods, only product of the matrix with a vector is needed. Arnoldi

and Lanczos are popular Krylov subspace methods. Lanczos is used for symmetric

matrices while Arnoldi is used for non-symmetric matrices. Since in our eigenmode

solution of EM field problem, only a small subset of smallest eigenvalues is needed, we

have adapted the 'ARPACK software' subprograms based on Arnoldi method, in the

development of our eigenmode solver to find the eigenvalues.

ARPACK (Arnoldi Package) (Lehoucq et al., 1997) is a collection of FORTRAN

subroutines used to solve large eigenvalue problems. This is based on implicit restart

scheme, known as Implicit Restarted Lanczos/Arnoldi Method (IRAM/IRAM), which is

very efficient in finding a small subset of desired (either smallest or largest) number of

eigenvalues and eigenvectors of a matrix. Storage requirement are of the order of

N •(0(k) + 0(k2)). This software is capable to determine the desired pre-specified number

of eigenvalues for largest magnitude (LM), smallest magnitude (SM), largest algebraic part

(LA) and smallest algebraic part (SA). To obtain the desired subset the implicit restarted

scheme is presented in the next section.
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3.6.1 Implicitly restarted Lanczos/Arnoldi method

Lanczos/Arnoldi method is a Krylov subspace based method. A basis of Krylov

subspace can be obtained from any arbitrary starting vector (V,) and its repeated product

with the system matrix A. The Krylov basis vectors not being orthogonal, are

orthogonalized and the orthogonalized basis vectors serve as Lanczos/Arnoldi vectors.

Lanczos/Arnoldi method was used to solve for all eigenvalues and eigenvectors of a

symmetric/nonsymmetric matrix using the relation

AV = VH + r, (3.20)

where A is the coefficient matrix, Fis the matrix of Lanczos/Arnoldi vectors of dimension

N column-wise, H is a symmetric tri-diagonal/upper Heisenberg matrix and r is the

residual vector. The Matrix A is of Nx N and the vector r is an A^dimensional vector.

Complete eigenanalysis of the tridiagonal/upper Hessenberg matrix H need be performed.

This, in turn, leads to eigenvectors of matrix ,4. Theoretically, r should be zero but in finite

precision arithmetic it has a prescribed very small value.

Presently, Lanczos/Arnoldi Method is widely used to find a desired subset of

eigenvalues as described by Sorensen (1992). In the present case, the interest is in M

smallest eigenvalues and corresponding eigenvectors. After the generation of M

Lanczos/Arnoldi vectors, the residual vector has a finite value. To find M smallest

eigenvalues and corresponding eigenvectors, we have to generate a subspace with M+P

Lanczos/Arnoldi vectors as given below

AVM+P=VM+PHM+P+rM+peTM+P. (3.21)

In this case V matrix is of the order of Nx(M+P) and H matrix is of the order of

(M+P)*(M+P). Eigenanalysis of this smaller dimensional matrix H is performed rather
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than full N*N matrix. The eigenvalues obtained from this M+P factorization reflects

characteristics of full spectrum of TV eigenvalues. We arrange M+P eigenvalues in

increasing order so that last P largest eigenvalues becomes unwanted ones. These P values

are used as shifts to update the first M values via QR iterations. In this updating process

Lanczos/Arnoldi vectors are forced to belong to the subspace corresponding to smallest

eigenvalues and the residual vector rM+p becomes very small iteratively. This technique is

known as Implicit Restart Techinque. It is recommended that P be greater than M. There

are two modes to find the subset of eigenvalues defined as 'regular mode' and 'shift and

invert mode' as discussed below.

3.6.1.1 Regular mode

In regular mode, one deals with the problem

Ax = Ax. (3.22)

In this mode only product of the matrix with a vector is needed. Arnoldi method converges

faster for larger magnitude eigenvalues; therefore to calculate smallest eigenvalues with

SM or SA it takes longer time.

3.6.1.2 Shift and invert mode

In shift and invert mode, the dealing equation is

(A-^iyix=xv, v=-±—. (3.23)

The eigenvalues converges near to applied shift '£'. This method converges faster

when determining the smallest eigenvalues. The main disadvantage of implementing this

mode is that one must provide a matrix solver, either direct or iterative, to obtain the term

(A-^iy'x.
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Any one of the conjugate gradient based methods can be used to solve for the

product (A-£,I)" x. There are different variants of conjugate gradient methods such as

Conjugate Gradient (CG), Bi-Conjugate Gradient (BiCG) and Bi-Conjugate Gradient

Stabilized (BiCGStab) methods. To increase efficiency of these methods, different

preconditioners such as Jacobi or incomplete factorization methods are also used.

Incomplete factorization method ILU (0) means that during LU factorization there is zero

fill in. Van der Vorst (2003) suggested that BiCGStab with ILU(O) gives better results. The

number of iterations needed to solve a matrix equation by various methods using the

preconditioner ILU (0), are given in Table 3.1. The matrix was of order 50 x 50.

Table 3.1: Comparison of different methods with preconditioners for best invert
matrix solver.

Method Number of iterations

CG 30

BiCG 20

BiCGStab 15

CG + ILU(0) 12

BiCGStab + ILU(0) 9

3.7 Synthesis of Full Eigenvector

The eigenvectors of the reduced matrix obtained using IRAM are orthogonal to

each other. As the reduced eigenvectors comprise only the horizontal components, these

have dimension Nr. The eigenvectors must be transformed into full eigenvectors for use in
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field synthesis. The remaining components of the eigenvectors are obtained by using

spurious eigenvector relation (3.19). The ez components are appended to the reduced

eigenvector components. A good feature is that these full eigenvectors are also numerically

orthogonal. Hence, there is no need to orthogonalize these full eigenvectors again

explicitly. However, these eigenvectors should follow the sigma orthogonality relation,

YJCT(m)tl(m)ea(m)V(m) = Sln. (3.24)

This condition yields a scaling factor nn, given in Appendix A2, which provides the final

sigma orthogonalized eigenvectors as,

eB=7B-e„, (3.23)

where e„ are back transformed from en using the transformation relation (3.13).

This completes the discussion of implementation of Finite Difference for the

solution of eigenmodes. These eigenmodes are used to solve for the superposition

coefficients using equation (2.33). Secondary field values are then solved using equation

(2.26) and finally equation (2.29) gives the total field values, St. These field values are next

used to derive the magnetic field h and the response functions: impedance, apparent

resistivity and phase. In next chapter, developmental details of the algorithms MT_2D_EA

and MT 3D EA are discussed. ^•^Z^tda7^>^
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CHAPTER 4

DEVELOPMEMNT AND DETAILS OF ALGORITHM

4.1 Introduction

We started with the development of 2D algorithm MT2DEA and finally

developed the 3D algorithm MT_3D_EA. In both these algorithms Finite Difference

Method (FDM) is used to obtain the discretized EM eigenvalue problem. The eigenmodes

of the corresponding coefficient matrix, obtained using Lanczos/Arnoldi method, are then

used to synthesize the electric field vector which, in turn, was used to obtain the magnetic

field vector and the derived MT response functions impedance, apparent resistivity and

phase. The sequence of development, highlighting the difficulties faced and the manner in

which these were overcome, is presented below.

4.2 Sequence of Development

The present study was spanned over a period of about five years. In this period ID,

2D and 3D modeling algorithms for magnetotelluric data were developed. In this section,

the different versions of algorithm are presented. It may be stressed here that MT_2D_EA

development took only 10% of the time spent on the development of MT_3D_EA. This

was so because in the 3D case, bulk of the time was spent in overcoming the problems

resulting from coarseness of the grid used. Use of a coarse grid became necessary because

of the limitation on size of the problem imposed by the available PC or work station. As a

byproduct, this study has led to a better understanding of the effect of coarseness of the

grid on MT response.
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4.2.1 Development ofMT 2D_EA algorithm

Initially, the 2D algorithm was developed using the same methodology as was to be

used in 3D case i.e. eigenmode analysis using FDM. In the first development, the Dirichlet

boundary condition was applied on all the four domain boundaries i.e. the two horizontal

and the two vertical sides. The problem was solved only for internal nodes using total field

formulation. The results were satisfactory at the centre of the model but these were

somewhat anomalous near the vertical domain boundaries. The problem was circumvented

by using autogrid and more appropriate boundary conditions. We replaced the manual grid

with an autogrid generated scheme employing the skin-depth EM field decay criterion.

Further, the application of integral boundary condition at the air earth interface and of

asymptotic boundary condition at the vertical sides provided the accurate results evenat the

vertical boundaries of the domain. Since in MT formulation, the derived observables:

impedance, apparent resistivity and phase, depend on the ratio of the components ofE and

H field values, we verified that for both E and H field boundary conditions the results are

same. Prior to this conclusion achieved, all the eigenmodes were computed and then used

to synthesize the electric field.

Sufficiently large time and memory is required for the solution of all eigenmodes.

In the expression of the superposition coefficient, in equation (2.27) or (2.32), the

eigenvalue appears in the denominator and thus smallest eigenvalues dominate in the field

synthesis. This observation suggested that use of only a small subset of smallest

eigenvalues and corresponding eigenvectors may accurately synthesize the electric field

values and thereby significantly reduce the computational time. For implementation ofthis

step, the Implicitly Restarted Lanczos Method (IRLM) is used. This implementation
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produces numerically accurate field values for 5% of eigenmodes in one fourth of the

computational time needed for all eigenmodes.

4.2.2 Development ofMT_3D_EA algorithm

In the case of 3D, taking cue from the experience of 2D algorithm, right from the

beginning we implemented the integral boundary condition (IBC) at air earth interface.

Following the formulation given in chapter 3, first the coefficient matrix (equation

(3.8)) was generated for all electric field components. The resulting matrix was a 13-

diagonal symmetric matrix. We used Singular Value Decomposition (SVD) to solve for the

eigenvalues and eigenvectors of this matrix. About one third (exactly equal to no. of

vertical electric field components) of the total eigenvalues of this symmetric matrix was

found to be zero. These zero eigenvalues and corresponding eigenvectors are termed as

'spurious' and these are not used for field synthesis. The secondary field values are

obtained without these spurious eigenmodes. Finally, the derived magnetic field and

response functions are calculated using the electric field values.

The zero eigenvalues create difficulty in getting the smallest non-zero eigenvalues.

This problem was resolved by using the current divergence equation (3.18) to eliminate the

vertical electric field components by expressing these in terms of the horizontal

components. However, in this process, the structure of resulting coefficient matrix is

changed from symmetric to non-symmetric. Due to this we were unable to use the IRLM

which is applicable only to symmetric matrices. Implicitly Restarted Arnoldi Method

(IRAM) is used for non-symmetric matrices. In IRAM to obtain smallest eigenmodes Bi

CGStab (Bi- Congugate Gradient Stabilizer) with preconditioner ILU(O) is used. Using the

IRAM, we observed that the convergence is achieved after two iterations itself. This
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process did result in the convergence of eigenvalues. However, inspite of the fact that the

remainder vector becomes null, the eigenvectors d id not converge. This problem gets

resolved, if in the next updating of eigenmodes, a non null vector (that is orthogonal to the

previous eigenvectors) is used. These eigenmodes are finally used for field synthesis and

response computations.

4.3 Salient Features of MT3DEA Algorithm

Besides the eigensolvers, various other steps are taken to enhance the efficiency and

versatility of the algorithm MT_3D_EA. Since the algorithm has a compact modular

structure, a subroutine can be plugged in or taken out easily without affecting the

remaining program. The features to enhance versatility or efficiencyare discussed below.

4.3.1 Responsefunctions

The algorithm is presently developed to get the responses for magnetotelluric

profiling. The responses are computed at the surface for a single frequency. The algorithm

can compute response functions like impedance, apparent resistivity and phase, for boththe

modes, 2D-TE and 2D-TM given by equations (2.41) and (2.40) respectively. The choice

of response modes is controlled by the counter modetype. The response functions

impedance and apparent resistivity and phase are computed in subroutine output_3D.

4.3.2 Source term

The program is so structured that the computations are carried out in terms of

secondary fields. Later on, for total field computations, the primary fields are added to'

these secondary fields. Thus, in order to incorporate the source effect, only a subroutine

computing the responses of primary layered earth model in the presence of given source, is
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added in lieu of the existing subroutines eigenmode ID and output ID which compute the

ID field due to a plane wave source.

4.3.3 BiCGStab method

Arnoldi method converges better in invert mode when evaluating the smallest

eigenvalue. In invert mode, the matrix solver Bi Conjugate Gradient Stabilized (BiCGStab)

is used because with appropriate preconditioner it provides the solution in optimal time.

4.3.4 Multi-frequency response

In the proposed approach, eigenmodes are independent of source or frequency and

these depends only on the model characteristics. In conventional FDM algorithms, the

program has to be re-run to generate the response for each frequency, while in our

approach, once the eigenmodes are evaluated, the responses for different frequencies can

be easily computed in negligible computer time.

4.4 Description of MT3DEA Algorithm

The algorithm, MT_3D_EA, employs FDM for solving the EM eigenproblem to

compute the 3D MT responses. The algorithm comprises 11005 lines and 60 subroutines. It

employs 4 complex arrays, 75 real arrays, 14 real variables and 24 integer variables. It

works in double precision arithmetic. In order to control dimension overflows, various

checks with error and stop messages are inserted in the program. The arrays are initialized

and reused to optimize the memory requirement. The description and salient features are

highlighted in the Figure 4.1.

Total seven I/O units are opened in the program. The parameters and data controls

are read from the input file. Two scratch files are used for buffer storage. The remaining

57



four output files are used for different outputs helpful in analyzing the results. Sample

input/output files are given in the Appendix A4.

Basic Algorithm Statistics

MT3DEA - 11005 Lines

Main program - 158 Lines

Subroutines - 10847 Lines

60 (40+20*)

* Adapted from other program

Methodology

Finite Difference Method to transform the EM eigenproblem to matrix

eigenproblem

Eigenmode Formulation to express the electric field components as a linear

superposition of eigenvectors of the EM eigenproblem

Bi-CGStab with ILU(0) Preconditioner to implement the shift and invert mode of

IRAM efficiently

Salient Features

Integral boundary condition at the air-earth interface

IRLM/IRAM for eigenproblem solution

Very fast Multi-frequency response computation using eigenmodes

Figure 4.1: Algorithm in nutshell.

4.5 Structure of MT 3D EA Algorithm

The main module of the algorithm MT_3DJEA provides the infrastructure and runs

the controls. In the main program the control parameters are defined, input and output files

are opened and the subprograms are called as shown in Figure 4.2. Input data and other
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parameters are read in the subroutine input. A list of various subprograms highlighting their

purpose and other details is given in Table A3.3 of Appendix A3.

The grid data can be read in two ways either as a manually generated grid or as a

logarithmically generated grid. The control parameters irx, iry and irz respectively control

the grid choice in x-, y- and z-directions. The logarithmic grids are computed in subroutine

grid. The resistivity or conductivity is read for the halfspace and for the anomalous prisms

and finally stored in 3D arrays sx, sy and sz. Calculations of the elements of coefficient

matrix, for all electric field components, are carried out in subroutine weight. Subroutine

weight ez is used for calculations for updating the elements corresponding to the horizontal

components of coefficient matrix in the reduced matrix case where the ez components are

replaced in terms of horizontal components ex and ey (equation (3.18)). Integral boundary

condition is implemented in subroutines contil, conti2, conti3 and conti4 depending upon

the uniformity and non-uniformity of grids in horizontal directions. The starting vector is

initialized in subroutine init.

The subroutine eigenmode ID is used for ID layered model coefficient matrix and

eigenmode computations and the subroutine outputlD generates primary field values for

given frequency. 3D eigenmodes are computed in subroutine eigenmode_3D. These

eigenmodes are used in subroutine output_3D for response function computations. The

responses are obtained, in subroutine output_3D, by computing (i) the superposition

coefficients using equation (2.33), (ii) the secondary field values using equation (2.26), (iii)

the total field values using equation (2.29), and (iv) the response functions impedance and

apparent resistivity and phase using equations (2.40) and (2.41) respectively.
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No. of freq>l

Define array dimension parameters

Open I/O units

Call INPUT to read input
parameters

Call WEIGHT to define weights for
ex, By and ez components

Call WEIGHT_EZ to replace e,
components with ex and ey

Call EIGENM0DE_1D to solve ID

eigenvalues and eigenvectors

Call EIGENMODE_3D to solve 3D
eigenmodes

•
Call 0UTFUT_1D to solve primary

field values

l
1 t

Call OUTFUT_3D to solve final total
3D response

'

STOP

Figure 4.2: Flow chart of main program.
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The subroutines outputlD and output_3D are recalled when the responses for multi-

frequencies are to be computed.

Bulk of the computer time is consumed in eigenmode computations carried out in

the subroutine eigenmode_3D whose flow chart is shown in Figure 4.3. It calls subroutine

eigenstep to generate the Hessenberg matr ix of Arnoldi formulation element and new

Lanczos/Arnoldi vector (equation (3.20)). eigenstep implements the updating of

eigenmodes using equation (3.21). This subroutine eigenstep is called twice if a subset 'k'

of eigenmodes is needed, first for computing k components and secondly for computing p

components (p>k). Eigenvalues and eigenvectors are solved in subroutine dlahqr. The

eigenvalues of the computed Hessenberg matrix are ordered increasingly and last p

eigenvalues are applied as shift to update first k eigenvalues in subroutine dnapps, adapted

from ARPACK. During the iterative process last p values are discarded after dnapps and

eigenstep is recalled for p component computation. This iterative process stops after

reaching a threshold value lanctolr. The outcome eigenvectors contains only ex and ey

components and remaining ez components are calculated in subroutine getez to constitute

full eigenvector.

Subroutine bicgstab is used in invert mode of IRAM (equation (3.23)) to solve a

subset of eigenmodes as desired in eigenstep for subset of eigenmodes computation as

shown in Figure 4.4. Subroutine ael is used for all eigenmode computation. In this

subprogram Arnoldi steps are applied twice to get numerically orthogonal eigenvectors.

Finally Hessenberg matrix is the outcome of this subprogram.
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Iter = iter + 1

Error < tolr

Initialize the arrays

Call EIGENSTEP to get first
0 to kev Arnoldi Vectors

Call EIGENSTEP to get kev+1 to
nstep Amoldi Vectors

Call DLAHQR to get eigenvalues and
eigenvectors of upper Hessenberg

matrix

Ordering in ascending manner and select
last np eigenvalues as exact shifts

Call DNAPPS to get eigenmodes
converged for smallest ones

Call GETEZ to get full eigenvector

Stop

Figure 4.3: Flow chart of EIGENMODE 3D subprogram.
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7

Applying ARNOLDI
steps twice

Obtaining upper
Hessenberg matrix

Yes

Figure 4.4: Flow chart of EIGENSTEP subprogram.
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The control parameters and their purpose and numerical value for different options

are listed in Table A3.1 of Appendix A3. The grid parameters and other run environment

parameters used in different subprograms are described in Table A3.2 of Appendix A3.

The description of development of algorithm is completed. The results of experiments

performed for checking and validation of MT_2D_EA and MT3DEA are presented in

the following chapter.
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CHAPTER 5

RESULTS AND DISCUSSION

After developing the requisite software it is natural to establish its efficiency and

accuracy. The accuracy is established by performing various consistency design

experiments and by reproducing the analytical results and the numerical results published

in literature. The development of 3D algorithm was preceded by the developments of ID

and 2D codes. Therefore, first the ID and 2D versions were tested and there after the 3D

version. However, only the comparison for the responses of 2D and 3D models is

discussed.

5.1 2D Experiments

The best check of any algorithm is the reproduction of established published results.

Two 2D models were taken from COMMEMI (Comparison Of Modeling Methods for

Electro-Magnetic Induction) paper (Zhdanov et al., 1997), one simple and other complex

one. In COMMEMI paper authors describe the results of different algorithms based on

Finite Difference, Finite Element and Integral Equation Methods for the same models for

confidence. The comparison is presented here for electric field and apparent resistivity

values only.

5.1.1 Simple model

The simple model, (2D-1) in the COMMEMI paper, is reproduced in Figure 5.1(a).

It comprises a symmetrical rectangular insert embedded in homogeneous half space. The

resistivity of the inserted block is 0.5 Q.-m while that of the halfspace is 100Q-m.
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Figure 5.1: (a) Simple model (Model 2D-1 of COMMEMI, distance in km and
resistivity in £2-m), (b) eigenvalue plot; Comparison of COMMEMI
(Zhdanov et al., 1997) and MT_2D_EA at 0.1s (c) electric field and (d)
apparent resistivities.
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The block, placed at a depth of 250 m from the earth surface, has a width of 1 km and

thickness 2 km. The response is computed at a period 0.1s. In Figure 5.1(b) the eigenvalue

plot for the model is presented and in Figure 5.1(c) and 5.1(d) respectively electric field

and apparent resistivityrespo nses are compared with the average values given i n the

COMMEMI paper. The RMS error between the two responses is 0.01.

5.1.2 Complex model

The complex model, (2D-4) of Zhdanov's paper, is given in Figure 5.2(a). It

consists of different blocks with resistivities varying from 2.5 Q-m to 1000 Cl-m and with

different widths and thicknesses. In the paper, they observed that the error is minimum at

Is. They also stated that due to the secondary field calculations, the error in apparent

resistivities varies in the range 5-10%. We are also using secondary field formulation, so

we compared the responses at the same period. The eigenvalue plot for the complex model

is given in Figure 5.2(b). The response of this model is compared in Figure 5.2(c). Again

comparison is with the average values published in the paper. The RMS error in apparent

resistivity is 0.06 or 6%, which is in the acceptance limits. We have observed that our

results are closer to the Integral Equation Method results.

After having a good response from the 2D modeling algorithm, we moved on to

study the performance of 3D algorithm. In case of 3D, due to limited computer facility, a

severe limitation on the number of grid points was imposed and we were able to run

models with very coarse grids. The effects of coarse grid led us to overcome several

spurious numerical problems. To test the algorithm, several tests are performed as

described below.
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Figure 5.2: (a) Complex model (Model 2D-4 of COMMEMI, distances in km and
resistivity in Q-m), (b) eigenvalue plot and (c) comparison between
apparent resitivities of COMMEMI and MT 2D EA at Is.
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5.2 3D Experiments and Results

For 3D modeling experiments, we designed a simple model, shown in Figure 5.3(a),

comprising a cube buried in a homogeneous half space. The dimensions of the cube are

500m x 500m x 500m, its resistivity is 0.1 Q-m while the resistivity of half space is 1.0 Cl

in. We term it as 3D test model.

The list ofconsistency and accuracy experiments conducted for 3D case is given below:.

1. Comparison with analytical solution

2. Convergence of electric field with the refinement of grid

3. No contrast study

4. Electrically same model

5. Reduced and full version responses

6. Effect of working with different percentages of eigenmodes

7. Multi-frequency response computation

8. Convergence of responses with Extending strike length to corresponding 2D

response

9. Comparison of our response of 3D-2 model of COMMEMI paper with their

response.

5.2.1 Comparison with analytical solution

In the first exercise, we compared the eigenvalues and eigenvectors for a halfspace,

discretized with uniform grid spacing in all three directions, with corresponding analytical

results. The code for obtaining the analytical eigenvalues-eigenvectors was provided by

Weidelt (2009). The eigenvalues and eigenvectors of full and reduced versions of the code

matched exactly with the analytical ones.
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5.2.2 Convergence ofelectricfield with the refinement ofgrid

To check the grid convergence, we chose three range of grids viz. coarse, medium

and fine. In the coarse grid, the number of nodes were 10, 10 and 7 with (minimum,

maximum) grid spacings being (250, 1000 m), (250, 1000 m) and (100, 1000 m) in X-, Y-

and Z- directions respectively. In the medium grid, the number of nodes were 14, 14 and 9

with (minimum, maximum) grid spacings being(125, 920 m), (125, 920 m) and (100, 1000

m). Finally, in the fine grid, the number of nodes were 16, 16 and 12 and the (minimum,

maximum) grid spacings were (80, 920 m), (80, 920 m) and (50, 1000 m) in X-, Y- and Z-

direction respectively.

The graphical presentations of eigenvalues for coarse, medium and fine grid cases

are shown in Figures 5.3(b), 5.3(c) and 5.3(d) respectively. In Figure 5.3(e) and 5.3(f) the

behavior of convergence of electric field and apparent resistivity is depicted for time period

Is. In the coarse grid case, the spread in electric field response curve in both horizontal and

vertical directions are maximum. In this case one can sense the presence of the conducting

body but its location can not be exactly marked. In the medium and fine grid cases, the

response curves are approximately same. So, one infer that as the grid is refined the

response values converge to limiting true values. In the medium and fine grid cases, the

horizontal position of the block can be clearly identified. In apparent resistivity curves the

coarse grid one shows minimum deviation at the position of the block. The convergence of

apparent resistivity response curves with refinement of grid is evident.

It may be mentioned that in all three cases, the refinement of the grid was primarily

carried out inside the cube and only one or two nodes were added outside the body. The
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RMS errors of coarse and medium grid with respect to fine grid are 0.045 and 0.006

respectively.
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Figure 5.3: (a) 3D Test model (distances in km); Eigenvalue plot (b) coarse
grid, (c) medium grid, (d) fine grid,
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Figure 5.3 continued: Plots for different grids at Is (e) electric field and (f)
apparent resistivities.
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5.2.3 No contrast study

Another test conducted on the algorithm is to verify the convergence of a buried

target response to that of half space when the resistivity of block is taken approximately

equal to that of half space. The resistivity of block is modified to 0.9 fi-m for this

experiment. The electric field and impedances are computed and found to be almost

identical to that of half space.

5.2.4 Electrically similar models

Next experiment is performed on electrically similar models to check the

consistency. The electrically similar model of 3D test model is 0.05 Q-m insert in a 0.5 Q.-

m half space with same dimensions at time period 2.0s. Theoretically both models should

produce the same results. The behavior of electric field and apparent resistivity

corresponding to 2D TE and 2D TM are shown in Figures 5.4(a), 5.4(b) and Figures 5.4(c),

5.4(d) respectively. These responses also match with each other exactly. Thus it can be

concluded that the algorithm is producing consistent results.

(a)

-•— 0.1 ohm-m in 1.0 ohm-m at 1s

V 0.05 ohm-m in 0.5 ohm-m at 2s

G

(b)

-•— 0.1 ohm-m in 1.0 ohm-m at 1s

•V 0.05 ohm-m in 0.5 ohm-m at 2s

500 1000 1500 2000 2500 3000 3500 4000 4500

Distance (m)

500 1000 1500 2000 2500 3000 3500 4000 4500

Distance (m)

Figure 5.4: Plots corresponding to 2D TE mode for electrically similar models (a) real
Ey field, (b) apparent resistivities,
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Figure 5.4 continued: Plots corresponding to 2D TM mode for electrically similar
models (c) Re Ex field and (d) apparent resistivities.

5.2.5 Reduced andfull version

Eventually in the final algorithm, we are using the reduced version and generating

full eigenvectors from the reduced eigenvectors. To check the effect of numerical errors in

the full eigenvectors obtained from reduced eigenvectors, we compared the response of

reduced version with the response computed using the full version. The response is

compared for both the modes; one is corresponding to 2D TE as shown in Figures 5.5(a),

5.5(b) and another corresponding to 2D TM as shown in Figures 5.5(c), 5.5(d). The

comparison is given here for electric field and apparent resistivity values. These curves

match exactly with each other. This means the reduced version is working accurately.
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Figure 5.5: Plots for reduced and full versions corresponding to 2D TE mode (a) Ey
field, (b) apparent resistivities; and Plots corresponding to 2D TM mode
(c) Re Ex field, (d) apparent resistivities.
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5.2.6 Effect ofworking with different percentage ofeigenmodes

As discussed in the chapter 2, the eigenvalues appear in the denominator of the

expression of superposition coefficient (equation (2.32)). So, in field synthesis, maximum

contribution comes from the smallest eigenvalues. The present experiment is designed to

know howmany eigenvalues and corresponding eigenvectors are sufficient for numerically

accurate response. In view of limited computer resources, we chose the coarse grid model

so that we can also understand the effect of coarseness on the responses with different

percentages of eigenmodes. In this experiment the percentage of eigenmodes taken are 5,

10, 15 and 20. For these four percentage cases, the real and imaginary parts of electric field

are compared with all eigenmode response in Figures 5.6(a) and 5.6(b) respectively.

(a)

0.00

-0.02

-0.04 -

-0.06

-0.08

(b)

All eigenmodes
20% eigenmodes
15% eigenmodes
10% eigenmodes
5% eigenmodes

500 1000 1500 2000 2500 3000 3500 4000 45C

Distance (m)

500 1000 1500 2000 2500 3000 3500 4000 4500

Distance (m)

Figure 5.6: Electric field plots for different percentages of eigenmodes (a)
real part and (b) imaginary part.
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In both the plots, the maximum spread is observed for 5% and the responses

converge towards all eigenmodes response as percentage of eigenmodes increases from 5%

to 20%. The RMS errors for different percentage of eigenmodes with respect to all

eigenmodes are described in Table 5.1. This spread behavior is not expected, so we

conducted the same experiment on 2D version of this 3D test model termed as 2D test

model.

Table 5.1: RMS errors for different percentage of eigenmodes in case of 3D.

Percentage of eigenmodes Real e-field Imag e-field

5 0.0823 0.0851

10 0.0811 0.082

15 0.0798 0.08

20 0.0565 0.0583

In case of 2D, two grids are chosen to check the effect of coarseness with different

percentage, (i) the same coarse grid as used in 3D test model and (ii) the grid generated by

the auto grid generator, based on skin depth criterion. Figure 5.7(a) shows the 2D test

Model. Figures 5.7(b) and 5.7(c) show the eigenvalue curves for auto and coarse grids. In

auto grid the curve rises steeply while in the case of coarse grid the steepness is much less.

Figures 5.7(d) and 5.7(e) present the electric field and apparent resistivity responses for

auto grid while Figures 5.7(f) and 5.7(g) present the same responses for coarse grid.
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Figure 5.7: (a) 2D Test model (distances in km); Eigenvalue plot (b) skin-depth based grid,
(c) coarse grid,
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Figure 5.7 continued: Plots for different percentage of eigenmodes; For skin depth based
grid (d) Re-electric field and (e) apparent resistivities and for coarse
grid (f) Re-electric field, (g) apparent resistivity.
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In auto grid case, the response curves for the four percentage cases match well with

the all eigenmode case, even 5% of eigenmodes are sufficient for accurate field synthesis.

For the coarse 2D grid, a spread behavior similar to that in 3D case is observed. However,

with increasing percentage values, the responses do converge to that for all eigenmodes.

From this exercise we conclude that auto grids provide accurate field values even for small

percentage of eigenmodes.

We also conducted the experiment to observe the effect of different percentages of

eigenmodes on the response of a resistive block model. For this purpose the model

described as 2D-3 in COMMEMI report is considered. In this model the resistive and

conductive blocks are placed at the surface. The model is shown in Figure 5.8(a) and the

correspondingeigenvalue plot is presented in Figure 5.8(b).

(a)

40 60 80 (km) \'

Ola-m

(b)

500 1000 1500 2000

Eigenvalue number

2500 3000

Figure 5.8: (a) 2D-3 model of COMMEMI, (b) eigenvalue plot,
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Figure 5.8 continued: Plot for different percentage of eigenmodes at 10s (c) Real e-field
(d) apparent resistivity.

The response curves for 10s period are presented for 5, 10, 15 and 20% of

eigenmodes. Electric field and apparent resistivity curves for different percentages are

presented in Figures 5.8(c) and 5.8(d). In conductive block even 5% eigenmodes are

sufficient but in resistive block only 20% eigenmodes gives satisfactory results. Thus for

conductive block smaller number of eigenmodes are sufficient while for resistive block a

larger number of eigenmodes are required. The RMS errors for 5, 10 and 20% eigenmodes

with respect to all eigenmodes are 0.055, 0.122 and 0.255 respectively.

81



Tables (5.2) and (5.3) present RMS (Relative Root Mean Square) error values with

respect to all eigenmode response for both grids.

Table 5.2: RMS errors for different percentages using skin depth based grid.

% of Eigenmodes RMS Error

20 0.011

15 0.020

10 0.023

5 0.025

Table 5.3: RMS errors for different percentages using coarse grid.

% of Eigenmodes RMS Error

20 0.014

15 0.012

10 0.066

5 0.075

5.2.7 Multi-frequency response computation

In the proposed approach, eigenmodes are independent of source characteristics,

rather these depend only on the model characteristics. Once the eigenmodes are computed

for a grid, responses for any given set of frequencies can be obtained within insignificant

amount of time while for other traditional algorithms it takes same amount of

computational time for each frequency. We tested it on 3D test model for time periods
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ranging from 0.001s to 50.0s. The electric field curves are shown in Figure 5.9(a). The

0.001s curve senses only the upper halfspace and as time period increases the curves start

sensing the conducting block. Upto time period values 0.5s, the central dip in the curve

becomes more and more prominent as time period increases. However, for time periods

greater than 0.5s this dip in curve decreases to the extent that it becomes a horizontal

straight at 50s period.
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Figure 5.9: (a) Electric field plots for different frequencies in 3D; 2D
apparent resistivity curves using Is and 10s grid eigenmodes
(b) at Is, (c) at 10s.
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In order to study accuracy of the multi frequency response computations using

eigenmodes, we again considered the 2D model. We generated autogrids corresponding to

two time periods Is and 10s and computed the responses for the two time periods using

each one of these grids. The comparison of the response values for Is and 10s time periods

obtained using both the grids are respectively shown in Figures 5.9(b)and 5.9(c). The RMS

error with respect to true response for Is response is 0.014 and for 10s is 0.008. Hence, the

multi-frequency responses computed using eigenmodes are quite accurate.

5.2.8 Extension ofstrike length

We have observed that the all eigenmodes response of a 2D model lies in the same

range whether computed using a coarse grid or using a fine grid. Keeping this in mind, we

chose a model (Brewitt-Taylor and Weaver, 1976) with same resistivities as of the test

model but dimensions 1.0 km x 1.0 km x 0.65 km. In this experiment, the strike length of

the block is extended in Y-direction as 1.0 km, 2.0 km, 5.0 km and 10.0 km, keeping the X

and Z dimensions fixed. Figure 5.10(a) shows the model and Figure 5.10(b) shows the

eigenvalue plots for different strike lengths. In the eigenvalue plots, the smallest and largest

eigenvalues are same because the dimension of the body is fixed and smallest discritization

and maximum and minimum values of resistivities are same.
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The differences in the middle segments of the eigenvalue curves are due to the

change in the conductivities values as strike length increases. In Figures 5.10(c) and

5.10(d), the real part of electric field and the apparent resistivity plots for different strike

lengths are respectively presented. In both response curves, as strike increases the response

approaches towards the corresponding2D response and for the 10 km strike lengthcase the

3D curves are analogous to the corresponding 2D curves. The RMS errors for 1,2,5 and

10 km strike lengths are 0.386, 0.268, 0.142 and 0.009 respectively with respect to 2D

result.

5.2.9 Comparison with 3D-2 model ofCOMMEMI report

Finally, to establish accuracy of the algorithm, a comparison with published result

is presented. In case of 3D, the model is again taken from COMMEMI report, described as

3D-2 in the paper and presented here in Figure 5.11(a). In this model a conductive block of

1 Cl-m and a resistive block of 100 Q-mis embedded in a 10 D-m surface layer, the two

bottom layers are of 100 and 0.1 fl-m respectively.
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01ft-
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Figure 5.11: (a) 3D-2 model of COMMEMI,

86

40 60 80 (km)
•

X



1000

LU

001

1000 2000 3000 4000 5000 6000 7000

Eigenvalue number

E

cs

(c)

-•- COMMEMI_3D-2
O MT_3D_EA Response

20 40

Distance (km)

Figure 5.11 continued: (b) eigenvalue plot and (c) plots of apparent resistivity for
COMMEMI and MT 3D EA at 100s.

The comparison is given for 100 km strike length and for 100s time period. Figure

5.11(b) shows the eigenvalue pattern while Figure 5.11(c) presents the comparison between

the apparent resistivity values of our algorithm and those of COMMEMI report. The RMS

error between the two responses is 0.026.

Once the accuracy and efficiency checks have been performed satisfactorily, we

applied the algorithm, MT_3D_EA, on the MT field data obtained from Garhwal Himalaya

for a DST (Department of Science and Technology, New Delhi, India) sponsored research

project with the Department of Earth Sciences, IIT Roorkee. This exercise is described in

the following.
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CHAPTER 6

EXPERIMENT WITH FIELD DATA

6.1 General

After testing the algorithm on synthetic models, we conducted an exercise to

generate 3D models for updating the 2D interpretation of the MT field data available with

the Department of Earth Sciences, IIT Roorkee. During the period 2004-2006, a Broad

Band Magnetotelluric (BBMT) survey was carried out by Israil et al. (2008) to infer geo-

electrical structure of Garhwal Himalaya. The MT data was recorded in Garhwal Himalaya

on a profile from Roorkee to Gangotri. The location map of the region of study in

Himalaya is presented in Figure 6.1. The designed profile line, comprising 44 sites, is

shown in Figure 6.2. It crosses through major Himalayan Thrusts as, Himalayan Frontal

Thrust (HFT), Main Boundary Thrust (MBT) and Main Central Thrust (MCT). Himalaya

being a complex and inaccessible terrain, to minimize noise, the site interval was not

uniform overthe profile and varied from 2 km to 10 km. The observed data was processed

using the technique of Shalivahan et al. (2006) forerror minimization. They applied hybrid

processing technique along with remote reference, coherence weighted estimation and

Robust M estimation to reduce the errors in electric and magnetic field data. Tyagi (2007)

obtained impedances using this processing technique. He also used strike code of (Groom

and Bailey, 1989; McNeice and Jones, 2001) to get the regional strike and regional 2D

impedances. The data was rotated along and perpendicular to the geoelectric strike to get

TE- (Transverse Electric) and TM- (Transverse Magnetic) mode responses. He also
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considered the effect of topography and found that the effect of topography was below

noise level.

T<Mky* MkiMtaya
(TtwUn Stecmen&Ky S«nw)

OpMeMc Mm • ISub-Hkuliya

Figure 6.1: Location map of Himalayan region. NB: Namche Barwa; GT:
Gangdese Thrust; HKS: Hazara-Kashmir Syntaxis; ITSZ: Indus
Tsangpo Suture Zone; KOH: Kohistan Island arc; LB: Ladakh
Batholith; MBT: Main Boundary Thrust; MCT: Main Central
Thrust; HFT: Himalayan Frontal Thrust; MMT: Main Mantle
Thrust; NP: Nanga Parbat; NS: Northern Suture; SR: Salt Range;
SDTZ: South Tibetan Detachment Zone; UK: Uttarakhand
(Najman, 2006) (after Tyagi, 2007).
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Figure 6.2: Geological map of the study area (compiled from Virdi, 1988;
Sorkhabi et al., 1999; Kumar et al., 2002). 1- MT Sites; 2-
Thrust; 3- Cities; 4- Dehra Dun Reentrant; 5- Blaini-
Infrakrol-Krol; 6- DaMTha; 7- Garwhal Nappe; 8- Jaunsar-
Simla (Undifferentiated); 9- Sunder Nagar-Berinag Groups;
10- Undifferentiated Metamorphics; 11- Undifferentiated
Tertiaries; 12- Piedmont zone. MT data collected in the Indo-
Gangetic Plains, Siwalik, Lesser and Higher Himalayan
region in Garhwal Himalaya, (afterTyagi, 2007).
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Tyagi (2007) used WinGLink software to obtain the 2D inverted models from data. The

Final 2D models were obtained for TE-, TM- and joint TE-TM modes. We have considered

the joint TE-TM model, given in Figure 6.4, as the base model for our study. The location

of the earthquakes coincides with the conducting feature near MCT in the model proposed

by Tyagi (Figure 6.4). This is interesting in the lightof work of Khattri (1992) presenting a

distribution of local earthquakes in Garhwal-Kumaon Himalaya as shown in Figure 6.3.

From this, it is clear that majority of earthquakes occur near MCT. The association of the

conductive feature with the local earthquakes motivated us to further study the

characteristics of this feature in detail and try to decipher its 3D geometry.

DEPTH SECTION SW - NE

ORIGIN CORD (30.0, 78.0)

SW

HFT DEHR MBT

0* AN
MCT

100 150 km

Figure 6.3: Depth section showing local earthquakes recorded in Garhwal-
Kumaon Himalaya (Khattri, 1992) (after Tyagi, 2007).

NE

Our exercise was aimed at generating 3D models whose response will match the data. To

start the exercise, first we experimented with 2D models to decide upon a simple 3D

model.
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6.2 2D Experiment

The designed simple model from the complex 2D model proposed by Tyagi (2007)

is shown in Figure 6.5. To match the computed 2D responses with the field data and with

the inverted model response, we varied the model parameters. Multi frequency responses

were compared with corresponding field data. From the time period list of MAPROS

processing software, we chose two time periods 11.61s and 90.45s so that we can compare

our response values with actual data values. Of these two time periods 3D study was

carried out at 90.45s. This choice was made to meet the constraint on number of nodes in

3D grid necessitated by the existing limited computational facility.

Different experiments designed for 2D case are;

1) Study with different basement depths

2) Study with different block resistivities

3) Multi-frequency responses

4) Comparison with and without salient features
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Figure 6.4: 2D resistivity models of the crust derived from inversion of
joint TE-TM mode MT data (Tyagi, 2007).
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Figure 6.5: Gangotri simplified model.
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6.2.1 Study with different basement depths

In our code we have employed perfectly conducting basement. To study the effect

ofthis conductive basement, we experimented with two basement depth values, 50 km and

200 km. At 11.61s, there is no effect of basement depth as shown in Figure 6.6(a) where

the 50 km and 200 km curves overlap. However, at 90.45s period the effect of basement

depth isclearly visible as shown in Figure 6.6(b) where the two curves are separated. Since

we are using 90.45speriod for 3D case, the depth of the basement is finalized as 200 km.

(a)

0 0 2.0e+4 4 0e+4 6.0e+4 8.0e+4 10e*5 1.2e+5 1.4e+5

Distance (m)

1000

E

a

f 10

(b)

50 100
Distance (km)

Figure 6.6: 2D plot with different basement (a) at 11.61s, (b) at 90.45s.
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6.2.2 Studywith different block resistivities

Next, we varied the resistivity ofconductive block to find the appropriate resistivity

of blocks. The responses are compared in Figure 6.7(a) and Figure 6.7(b) at 11.61s and

90.45s periods respectively. Our main emphasis is on the study of the conductive feature

near MCT. We carried out the experiment with resistivity value of this blockas 5 and 8 Q-

m keeping other parameters unchanged. It is clear that the 8 Q-m response matches well

with the data. So, we finally used 8 Cl-m resistivity of the conductivity block for further

studies.

(a)

- Data aquired

WingLink response

5 ohm-m block

8 ohm-m block

60 80 100 120

Distance (km)

140 160 180

E

d

20 40 60 80 100 120 140 160 180

Distance (km)

Figure 6.7: 2D plot with resistivity variation of conductive block (a) at 11.61s, (b)
90.45s.
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6.2.3 Multi-frequency responses

Next we checked the multi-frequency response computed using present algorithm

and compared these with the field data. Two autogrids for periods 11.61s and 90.45s were

generated for this study. The responses at 11.61s using the 11.61s autogrid and the 90.45s

autogrid are compared with each other and with the field data and WinGLink response in

Figure 6.8(a). The responses for both grids matches well with each other. In Figure 6.8(b),

the 90.45s responses obtained using the 11.61s autogrid and the 90.45s autogrid are

compared and these also match well with each other and with the data values. This

experiment gives us confidence that the multi-frequency solution is not only accurate for

simple geometry models but also for complex models.

60 80 100

Distance (km)
60 80 100 120

Distance (km)

Figure 6.8: Response curves for mutifrequency using eigenmodes of 11.61s and
90.45s grid (a) at 11.61s (b) at 90.45s.
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6.2.4 Comparison with and without salientfeatures

Since we are interested in the conductive feature near MCT and we used 90.45s

period in 3D modeling, we tested the effect of other features, such as conductive layer and

resistive block, on the response at this period only. We removed these features one by one

and compared the responses with the response of model having only the conductive block

near MCT. The response curves plotted in the Figure 6.9 reveal that the curve segment over

the conductive block is not affected by other features. Thus the 2D experiments reveal that

study of single 8 ft-m block with basement at 200 km for time period 90.45s is good

enough for designing 3D models. The 3D nature of this conductive block can be studied as

if other features are not there.

E

d

< 10

- Actual data

WingLink fit
- only conductive block

Full model

50 80 100 120 140 160 180

Distance (km)

Figure 6.9: Curves with and without the features other than conductor.
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6.3 3D Experiment

From 2D experimentation it is clear that the conductive block near MCT is main

feature and its implication is presented in Figure 6.3 as many earthquakes occur near this

zone and different 3D experiments performed on this conductive block are

1) Effect of varying strike length

2) Effect of changing depth to top of the conductive block

3) Effect of varying the thickness and width of the block

6.3.1 Effect ofvarying the strike length

The first question that comes to mind in a 3D study is regarding the strike length of

the body. In this experiment, strike length is varied from 20 km to 100 km. The length of

the block in strike direction is taken as 20, 50, 70 and 100 km keeping other parameters

fixed. Figures 6.10(a) and 6.10(b) show the effect of strike length variation respectively for

2 km and 4 km depth to top of the block. In Figure 6.10(b), 70 km strike response lies

closest to the 2D response. From Figure 6.10(c) it is clear that the 3D response curves

approach the corresponding 2D response curve as the strike length increases.
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Figure 6.10: Strike variation curves for different depth to the top
(a) at 2 km, (b) 4 km and (c) 6 km.
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6.3.2 Effectofchanging depth to top ofthe conductive block

Next we experimented with different depths to the top as 2, 4 and 6 km. At 2 km

depth, curve did not follow the expected behavior outside the body as shown in Figure

6.11. In this figure the edges of the block are clearly identifiable but did not follow the 2D

response. At 4 km depth, response curve is smoother at the edges and finally it approaches

the behavior of 2D response at 70 km strike. At 6 km depth (as suggested by Tyagi (2007)

model), the response curve lies above the response curve of 4 km depth. Thus response

curve for 70 km strike and 4 km depth is the most suitable one.
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Figure 6.11: Plot for depth to the top of block.

In the next experiment, the depth and strike are kept fixed to these values and only

the width of the block in other horizontal direction is varied.
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6.3.3 Effect ofvarying the thickness andwidth ofthe block

We observed that at 70 km strike the curve suitably lies in the best range. Then we

experimented by varying the dimension ofblock in orthogonal horizontal direction keeping

the depth of burial and strike fixed. The depth to the top is taken4 km and strike is fixed at

70 km. The width of block in other horizontal direction varies as 20, 26, 40 and 50 km and

the computed responses are shown in Figure 6.12. We can observe that as width increases

the curves started flattening while bottom of thecurve is approximately the same. At 50 km

width the curve seems roughly flat. Thus 20 or 26 km width may be the best for

comparison with 2D behavior.
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6.4 Conclusion

Figure 6.12: Variation in the block in
other horizontal direction.

From these experiments we conclude that the conductive block geometry can be

taken as 70 km strike, 20-26 km width and 4 km depth and its resistivity is 8 Cl-m. This 3D

study suggests that the conductive block is practically 2D in nature.

102



CHAPTER 7

SUMMARY AND CONCLUSION

The work on this thesis started with an objective of inversion of 3D magnetotelluric

data. It is well known that an efficient modeling algorithm is a prerequisite for developing a

competent inversion algorithm for data interpretation. The work presented herein is

description and discussion related with the development of an efficient 3D modeling

algorithm based on eigenmodes for magnetotelluric data.

The existing algorithms require re-run of the algorithm for each frequency. Thus, it

requires same amount of computational time for each frequency. However, using

eigenmode analysis, the multi-frequency responses are generated in negligible time once

the eigenmodes, independent of frequency, are evaluated. In this approach, the eigenmodes

depend only on the model characteristics. This efficiency is achieved by broadening the

scope of the approach given in Stuntebeck (2003). She developed the technique for limited

use of air-borne elctromagnetics for which theory is provided in her thesis. Based on that

theory we developed the algorithm for magnetotelluric data. In order to build up the sound

methodology of the algorithm, we started with ID modeling where closed form solution of

forward problem is available. After obtaining satisfactory results in ID case, we developed

the 2D algorithm named as MT_2D_EA and finally developed the 3D modeling algorithm

MT3DEA. For these algorithms, bulk of the computational time is taken for the

computation of eigenmodes. MT2DEA and MT3DEA were tested for its accuracy and

efficiency using number of 2D and 3D models, presented in the paper (Zhdanov et al.,

1997), that are numerically solved using different algorithms based on matrix solver. We

found that numerical responses obtained from the two approaches are same within
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numerical errors. We observed that when responses for only few frequencies are computed,

the computer time consumed by MT3DEA is more than the matrix solver based 7

algorithms. However, when responses for large number of frequencies are required, a need

for MT sounding, the total computer time requirement is less in case of eigenmode based

technique than the matrix solver techniques. This is important to note here that the

computed eigenmodes in forward modeling will be used as it is in computation of

sensitivity matrix while developing the inversion software for 3D MT data.

The algorithm is employed to generate 3D models for the field data, acquired by

Israil et al. (2008) in Garhwal Himalaya. On the basis of 2D interpretation of this data set,

Israil et al. (2008) proposed a 2D electrical model of the region. The key feature of this 2D

model is a conductor near MCT. We studied the 3D nature of this conductor and found that

the 2D approximation of the conductor was justified.

The present algorithm is based on solving the secondary field EM eigenvalue

problem using Finite Difference Method (FDM). The electric field values for any source

are evaluated as superposition of the eigenvectors. The staggered grid, as proposed by Yee

(1966), is used for accurate EM field computations. The FDM is used to transformed the

EM eigenproblem to a symmetric matrix eigenproblem. It is found that one third of the

eigenvalues of the 13-diagonal symmetric matrix becomes zero. As per concept of physics >

the zero eigenvalues and corresponding eigenvectors are not part of any physical system

and we termed these as spurious eigenmodes. These eigenvalues are taken out of the study,

by eliminating, using current divergence relation, the ez components from the system of

equations. Now the system of equations deals only with the horizontal components ex and

ey. This step reduces size of the resulting matrix to two third of the symmetric matrix.
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However, the outcome of this reduction converts the symmetric matrix to non-symmetric.

The eigenvalues and eigenvectors of the reduced non-symmetric matrix are computed. The

electric field is continued analytically into the air through integral boundary condition. This

step results in making nonzero all elements of the submatrix block corresponding to air-

earth interface nodes.

Lanczos/Arnoldi method is used for evaluating the eigenmodes of symmetric/non-

symmetric matrix. From the eigenmode formulation it is clear that, during superposition,

only a subset of the smallest eigenvalues contributes significantly to the synthesis of field

values. To get this subset of eigenmodes, Implicitly Restarted Lanczos/Arnoldi Method

(IRLM/IRAM) is used in invert mode where product of inverse of the matrix with a vector

is used. BiCGStab (Bi-Conjugate Gradient Stabilized) with preconditioner ILU(O) is used

to efficiently obtain this product.. During the iterations of Arnoldi method, the eigenvectors

loose their orthogonality. To reinstate orthogonality, the Arnoldi steps are applied twice.

Only the non-zero elements of the coefficient matrix are stored to reduce the memory

requirement. IRAM provides the eigenvalues and reduced eigenvectors, containingonly the

horizontal components ex and ey. For each eigenvector, the ez components are then obtained

by using the current divergence relation. These full eigenvectors are made sigma-

orthogonal. The eigenvalues and sigma-orthogonalized eigenvectors are next used to obtain

the secondary electric field values. The primary electric field is already computed using

layered earth model response. The total electric field values are obtained from primary and

secondary electric field values. The total electric field values are used to derive the

magnetic field. The electric field and magnetic field values are then used to compute

impedance, apparent resistivity and phase values.
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7.1 Conclusion

The algorithms, MT2DEA and MT3DEA developed in this thesis, are efficient

and reliable softwares respectively for 2D and 3D magnetotelluric modeling. The

algorithms have been rigorously and comprehensively tested within the limited time frame

of this study and under the severe constraint on size of the 3D problem imposed by

capacity of the available computer facility. This limitation, however, led us to perform

detailed study of the effect of coarse grid on the EM response. Numerous experiments were

performed to test the consistency and accuracy of the algorithms. These tests justified a

qualified faith in the algorithms MT_2D_EA and MT_3D_EA. The results of various

design exercises and comparison of the computed responses of different models with

published ones, lead us to following conclusions

• The algorithm is able to model a complex structure.

• The eigenmode computations consume bulk of the computer resources and

time. However, these are to be performed only once, even when responses for

numerous frequencies are to be computed.

• Given the eigenmodes, the algorithm is capable of generating muti-frequency

responses at a marginal cost.

• For conductive target use of only 5% eigenmodes is sufficient while for

resistive target one must use 20% eigenmodes. So, this algorithm, in its present

form, works better for conductive targets.

• In Garhwal Himalaya, the 3D geometry of the conductive block, buried under

the Roorkee-Gangotri profile near MCT, can be taken as 70 km strike, 20-26

km width and 4 km depth and its resistivity is estimated as 8 Cl-m. However, the
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detailed 3D study suggests that the conductive block can be approximated as a

2D one.

7.2 Limitations of the Algorithm

The limitations of the algorithm identified during testing are as follows.

• Presently, the manually generated grid is used in the algorithm.

• The algorithm takes major time in eigenmode computation.

• At the bottom of the modeling domain, perfectly conducting boundary condition

is employed in the algorithm. This constraint forces one to take bottom at

sufficient distance so that the tangential electric field will be zero at the domain

boundary.

• Presently the algorithm can be used only for the plane wave source.

• The isotropic medium can be modeled using the algorithm.

7.3 Suggestions for Future Work

The present thesis has turned out to be an exploratory effort during which the

computer programs MT2DEA and MT_3D_EA have been developed with an aim to

enable quantitative interpretation of 3D MT data. The limitations listed above suggest that

there exists a significant scope for further development. The limitations mentioned can be

minimized by taking following steps.

• Implementation of auto grid generator which employs the skin depth criterion.

• Significant improvement can be made in the eigenmode evaluation, especially

by using customized preconditioner in BiCGSTAB subprogram.
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• Implementation of integral boundary condition at the bottom boundary of the

domain.

• The algorithm can be modified for the computation of responses in case of

controlled source EM methods simply by replacing the present primary field

response computation subprogram with one corresponding to the given EM

source.

• Inclusion of anisotropy.

• Adaptation of the MT3DEA code for parallel programming.

Finally, it may be stressed that after the code is adapted for parallel programming,

the use of clusters of computers and supercomputers will significantly reduce the

computational time and make it possible to undertake development of 3D MT data

inversion algorithm.
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APPENDIX A1

INTERGRAL BOUNDARY CONDITION

The electric field is not constant at the air earth interface. It is decaying in the air

also. This effect is taken into account by applying, at the air-earth interface, the integral

boundary condition which models the continuation of electric field up to large distances in

air. The integral boundary condition is described below.

Al.l Integral Boundary Condition at the Air-Earth Interface

We are taking z +ve in downward direction. So, in the air, z is negative (z<0). In the

air (a = 0) Maxwell's vector equations are reduced to

VxE = -B, (Al.l)

VxB = 0. (A1.2)

Taking divergence of equation (Al.l) we get

V/3 = 0. (AL3)

Further, equation (Al .2) permits the substitution

B=V^. (A1.4)

Equations (A1.3) and (A1.4) together yield

VV = 0. (A1.5)

The equation (A1.5) can be recast as

d2</> _ d2</> d2(/>
dz2 ' dx2 dy2

rw.<L$.JL±-<LL, (A1.6)

Assuming exponential z-dependence of #(x,y,z), it can be expressed as
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0(x,y,z)=u(x,y)exp(%z). (A1.7)

Substituting this relation into equation (Al .6) we get,

(d2 d2^
ydx2 dy2

u(x,y) =%2u(x,y) (A1.8)

Let the plane at air-earth interface in discretized into nxy cells, the LHS of equation (A1.8)

after use of finite differences, gets transformed to a matrix F which is symmetric and

positive semi-definite. The discretized version of equation (A 1.8) can be written as

FuJ=z2JnJ>i = l,nXy. (A1.9)

Here, Uj is the eigenvector corresponding to the eigenvalue x) ofthe coefficient matrix.

Any vector can be expressed as linear superposition of orthogonal eigenvectors as

u=]Tcyu,. (ALIO)

The coefficient c/s can be evaluated using the known value of b. at air-earth interface

(z=0) which can be described as

b:=-f(z =0)=%2u(x,y) , (ALU)

and

u=—-br(z = 0). (A1.12)
Xj

Using equations (A1.12)and (ALIO), the coefficientof superposition can be evaluated as

cl=—-bz(z = 0)-ur (A1.13)
Xj

Finally, <j)(x, y, z) can recast using (A1.7), (A1.10) and (A1.13) as

"v, J
(/)(x,y,z) =YJ—^z(z =0)uJu) expO^z). (A 1.14)

J"1 Xj
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This integral boundary condition relation (Al.14) provides the matrix coefficients

due to electric field continuation in the air. Here, nxy is the number of horizontal electric

field components at air-earth interface.
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APPENDIX A2

MATRIX COEFFICIENTS AND SIGMA

ORTHONORMALIZATION

The eigenmode algorithm, using FDM, is described in Chapter 3. The components

of the electric field are described here along with the average volume and the average

conductivity definitions. The 13 non-zero coefficient values for all the three electric field

components are given. The eigenvectors are not simple orthogonal, rather these follow

sigma orthogonality and its implementation in terms of a constant factor multiplication to

the simply orthogonal eigenvector is discussed.

A2.1 Matrix Coefficients

The average conductivities crx,ay and <x, associated with the points of cell (i, j, k),

where ex, ey and ezcomponents are evaluated, are given by the following relations,

ax(i,j,k)-

o-v(i,j,k) =

vz(i,j,k) =

Wx(i,j,k)

b(j)
4Vy(i,j,k)

c(k)

4K(i,j,k)

~b(j)c(k)cj(i,j,k) + b(j-\)c(k)a(i,j-\,k)
+ b(j-\)c(k-\)cr(i,j-\,k-\) + b(j)c(k-\)o-(i,j,k-\)

a(i)c(k)<j(i,j,k) + a(i-\)c(k)cr(i-\,j,k)

+ a(i-\)c(k-X)a(i-\,j,k-\) + a(i)c(k-\)a(i,j,k-\)

a(i)b(j)cr(i, j, k) + a(i - \)b(j)cr(i -1, j, k)

+ a(i-\)b(j-\)a(i-\,j-\,k) + a(i)b(j-\)a(i,j-\,k)

-(A2.1)

Here, the volumes Vx, Vy and Vz are

Vx(i,j,k) = a(i)bh(j)ch(k) ,

V(i,j,k) = ah(i)b(j)ch(k),
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V,(i,j,k) = ah(i)bh(j)c(k).

The matrix symmetry is conserved by the transformations

ex (i, j, k) =yjp0Vx(i,j,k)crx(i,j,k)ex (i, j,k),

ey (h j,k) =^]p0Vy(i,j,k)cTy(iJ,k)ey (/, j,k),

e: (•', j,k) = •sIjuqV: (i, j, k)ax (i, j, k)ez (i, j, k).

(A2.2)

(A2.3)

This transformation is valid only for points with non-zero ax(i,j,k),av(i,j,k) and

a.(i,j,k). Using the abbreviations

dx(i, j,k) =\/jp0Vx(i,j,k)ax(i,j,k),

dy(i, j,k) =\l^p0Vy(i,j,k)ay(i,j,k),

dz(i, j,k) =\/^Jp0Vz(i,j,k)az(i,j,k), (A2.4)

the system equations for the transformed electric components become

Aex(i,j,k) = dx(i,j,k)-

a(i)ch(k) +a(i)ch(k) +a(i)bh(j) a(i)bh(j)
b(j) b(j-\)

a(i)ch(k)

c(k) c(k -1)
dx(i,j,k)ex(i,j,k)

b(j~D

a(i)bh(j)

dx (i, j -1, k) ex (i, j-\,k) - a(°y} dx (i,./ +1, k) ex (i, j+1, k)
b(j)

a(i)bh(j)
dx(i,j,k-l) ex(i,j,k-l)

c(k-l) """ c(k)

+ ch(k) dy(i,j-\,k) ey(i,j-\,k) - ch(k) dy(i +\,j-\,k) ey(i +\,j-\,k)
- ch(k)dy (i,j, k)ey (/,;',k)+ch(k)dy (i + \,j, k)ey (i+ \,j, k)

+bha)dz(i,j,k-l)e2(i,j,k-l)-bha)dz(i +l,j,k-l)ez(i +l,j,k-l)

- bh(j)dz (i, j, k)ez (i, j, k) + bh(j)dz (i + 1, /, k)e2 (i +1, j, k)
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AeJi,j,k) = dM,j,k)-<

A£z(i,j,k) = dz(i,j,k)>

ah(i)b(j) +ah(i)b(j) +b(j)ch(k) +b(j)ch(k)
c(k) c(k -1)

ah(i)b(j)

a(i) a(i-\)
dv(i,j,k)e(i,j,k)

c(k-l)

b(j)ch(k)

dy(i,j,k-l)ey(i/hk-l)-aKl^ij)dy(i,j,k +])ey(i,j,k +\)
c(k)

b(j)ch(k)
dv(i-\,j,k)e (i-\,j,k)

a(i-\) y '" ' ' a(i)
+ ah(i)dz(i,j,k-l)ez(i,j,k-l)-ah(i)dz(i,j + l,k-l)ez(i,j +l,k-l)

- ah(i)dz (i, j, k)ez (i, j, k) + ah(i)dz (i, j + \,k)e, (i, j +1,k)

+ ch(k)dx (i -1, j, k)ex (i -1, j, k) - ch(k)dx (i -\,j +1,k)ex (i -1, j + \,k)

- ch(k)dx(i, j, k)ex (i, j, k) + ch(k)dz(i, j + \,k)ez (i, j + \,k)

bh(j)c(k) bh(j)c(k) ah(i)c(k) ah(i)c(k)

a(i -1) aid)

bh(j)c(k)

a(i-\)

ah(i)c(k)

dz(i-\,j,k)ez(i-\,j,k)-

dz(i,j-\,k)ez(i,j-\,k)-
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b(j)

bh(j)c(k)

a(i)

ah(i)c(k)

60-D ' ' b(j)
+ bh(j)dx(i-\,j,k)ex(i-\,j,k)-bh(j)dx(i-\,j,k + \)ex(i-\,j,k + \)

- bh(j)dx (i, j, k)ex (i, j,k) + bh(j)dx(i, j,k + \)ex (i, j,k + \)

+ah(i)dy (i, j -1, k)ey (i, j -l,k)- ah(i)dy (i, j-\,k +\)ey (i, j - l,k+1)
- ah(i)dy (/', j, k)ey (i,j,k) +ah(i)dy (i,j,k + \)ey (/,j, k+1)

dv(i + \,j,k)e(i + \,j,k)

(A2.6)

d,(i,j,k)ez(i,j,k)

dz(i + \,j,k)ez(i + \,j,k)

dz(i,j + \,k)e:(i,j + \,k)

(A2.7)



In the above equations the bold terms do not contribute in the first layer, bounded by air-

earth interface, and these are replaced with field continuation coefficients given by

equation (A1.14) of Appendix Al. The complete system of equations can be represented as

Ae=Ae. (A2.8)

Here, A matrix contains elements due to field continuation as well as due to FD

approximation of equations (A2.5), (A2.6) and (A2.7).

The ez components are replaced with the horizontal components using the current

divergence relation (equation 3.19). This leads to a non-symmetric matrix as shown in

Figure 3.5. Now the reduced system of equation can be written as

ARe=^e, (A2.9)

where, Ar denotes the reduced matrix and e denotes the reduced eigenvector

having only horizontal components. These reduced eigenvectors, g, are orthogonal. The full

eigenvectors, e, are now reconstructed from these reduced eigenvectors, e using the

divergence relation again. These full eigenvectors are sigma-orthonormalized as discussed

below.

A2.2 Sigma Orthogonality of Eigenvectors

The full eigenvectors, e, are transformed, using equation (A2.3), into eigenvectors,

e. These transformed eigenvectors must be a-orthonormal as stated in Chapter 2. The a-

orthonormality relation as described in equation (2.24) is

jcT(r)enemd3r =Snm. (A2.10)

Let the final o-orthogonal eigenvectors, en, with weighted norm nn be defined as

e.(r)=i7„e.(r). (A2.ll)
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The orthogonality relation (A2.10) in discrete form can be written as

^(r)en(r)em(r)V(r)=Snm. (A2.12)

The norm factor nn is obtained by applying weighted normalization as follows

X a(r)e2n (r)V(r) =£ a(r)n2e2n (r)V(r) =1,
r=l /=!

£a(r)e>F(r)=l//7n2. (A2.13)
r=l

Using the relation (A2.3), the eigenvectors en transformed into eigenvectors en , the norm

factor simplifies to

Vn= =f= r/^=v^o~> (A2.15)
\ \ NA \Na

V/+0tf vtf

assuming |e„| =l.

Thus, the eigenvectors en with weighted norm, which are needed for eigenmode synthesis,

are determined directly from the orthonormal eigenvectors en by

en(r)=^„e(r)=7^o"^(r)e„(/-). (A2.16)
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APPENDIX A3

ALGORITHM PARAMETERS AND SUBPROGRAMS

The algorithm description is given in Chapter 4. The input data and other

parameters are controlled by several counters. The details of these counters along with their

default values and descriptions are presented in Table A3.1. The grid control parameters

are given in Table A3.2. In Table A3.3, the list of subprograms is presented along with

their purposes.

Table A3.1: Description of control parameters.

Parameter Controls Value Description

irx Grid generation in
x-direction

0

I

Manual grid
Logarithmic grid

iry Grid generation in
y-direction

0

1

Manual grid
Logarithmic grid

irz Grid generation in z-
direction

0

1

Manual grid
Logarithmic grid

irt No of time periods
in decades

0

1

Manual time period
Logarithmic time

period

irun Generation of

eigenmodes
0

1

Generate

eigenmodes
Reused eigenmodes

modetype Response
computation

corresponding to 2D

0

1

corresponding to 2D
TE mode

Corresponding to
2D TM mode

preconditioner Which

preconditioner
0

1

2

No preconditioner
9-diag

precconditioner
Block

preconditioner
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.Table A3.1 continued

restart Eigenmode
computation

0

1

All eigenmodes
Desired Eigenmodes

Table A3.2: Grid parameters description.

Parameter Description

nx Number of cells in x-direction

ny Number of cells in y-direction

nz Number of cells in z-direction

ne Number of ex+ eycomponents

nef Total number of unknowns (ex + ey + ez
components)

np Number of anomalous prisms

nt Total number of time periods

qx(irx.eq.l) Logarithmic grid control parameter in x-
direction

qx (irx.eq.l) Logarithmic grid control parameter in y-
direction

qx (irx.eq.l) Logarithmic grid control parameter in z-
direction

tz(irt.eq.l) Logarithmic time distribution control
parameter

rhoO Halfspace resistivity

rhol,...np Anomalous resistivity

ixa Starting cell number of anomalous prism in
x-direction

ixb Ending cell number of anomalous prism in
x-direction
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.Table A3.2 continued

iya Starting cell number of anomalous prism in
y-direction

iyb Ending cell number of anomalous prism in
y-direction

iza Starting cell number of anomalous prism in
z-di rection

izb Ending cell number of anomalous prism in
z-direction

kev Number of eigenmodes to be calculated

npv In restarting > kev

Bicg_itmax Maximum number of iterations for

BiCGStab convergence

Lancztolr Threshold value for accurate eigenmodes
during a subset computation

Table A3.3: Various subprograms and their purpose.

Subprogram Purpose Called by Calls

ael Matrix-vector

multiplication
eigenstep, bicgstab fpresO, conti 1,

conti2, conti3,
conti4

ael_reduced Multiplication of
reduced elements

with vector

Precondi 3D

bicgstab To solve inverse of

matrix

eigenstep ael,
preconditioner 3D,

block_pre,
Precondi 3D

CGS Block

preconditioner
block_pre localpre

conti 1 Integral boundary
condition when x-

and y- grids are non
uniform

ael tridi

conti2 Integral Boundary ael tridi, fft
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condition when x-is

non-uniform and y-
is uniform

conti3 Integral boundary
condition when x-is

uniform and Y-is

non-uniform

ael tridi, fft

conti4 Integral boundary
condition when both

x- and y- are
uniform

ael fft

dlahqr Eigenmode
computation of 3D

eigenmode_3d

dnapps Updation of a subset
of eigenmodes

eigenmode_3d Adepted/taken from
ARPACK

eigenmodelD Eigenmode
computation for ID

layered structure

Main Tridi

eigenmode_3D Computing 3D
eigenmodes

Main dnapps, eigenstep,
dlahqr, gramsmdt,

get ez

eigenstep Generation of

Heisenberg matrix
and new starting

vector

eigenmode_3d ael, bicgstab

extremal Limits of

eigenvalues
computation

Main

fft Forward/Inverse

Fourier transform

conit2, conti3,
conti4

fpresO Surface field

computation
ael printr

getez Solving ez
components of

eigenvectors from
reduced

eigenmode_3d
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eigenvectors

gramsmdt Orthogonalization
of new eigenvector

with previous
eigenvectors

eigenmode_3d

grid Generation of

logarithmic grid
input

init Initialization of

starting vector
Main

input Read input and
control parameters

Main grid, sigmaO,
sigma1, sigma2

local_pre Local (block wise) CGS

method Identification of

uniform or non

uniform grid

Main

outputld Primary field
computation

Main

output_3d Total E-field,
Impedance,

Apparent resistivity
and Phase

computation for 3D

Main

Prel To multiply
continuation

element for

preconditioning

block_pre conti 1, conti2,
conti3, conti4

Pre_2 Multiplication of
Reduced

components for
preconditioning

block_pre

Pre_3 Multiplying each
block with the

vector element

CGS

Pre_4 Preconditioner

element

Prel
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Precondi_3D First 9-diagonal
preconditioner the
reduces element

iteratively

bicgstab Preconditioner 3D,

aelreeduced

Preconditioner_3D 9-diag
preconditioner

bicgstab, Pre_3

printi Print 3D integer
array

sigmaO

printr Print resistivity 3D
array

sigmal, sigma2

sigmaO Defining halfspace
resistivity to all

nodes

input printr

sigmal Defining anomalous
nodal resistivity

values

input printr

sigma2 Average resistivity
computation

input printr

tridi Eigenmodes
computation of

Symmetric
tridiagonal matrix

conti 1, conti2,
conti3,

eigenmodeld

weight Coefficient

computation for ex,
ey and ez

components

Main

weightez Coefficient

corresponding to
replacing ez into ex
and ey components

Main
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APPENDIX A4

SAMPLE INPUT AND OUTPUT FILES

Input.dat
*** title (max 75 characters):

sfd: large horizontal grid
*** grid:(1260+567)
0 !irx

10 !nx

0.

1000.

1500.

2000.

2250.

2500.

2750.

3000.

3500.

4000.

5000. !x(nx+l
0 !iry
10 !ny
0.

1000.

1500.

2000.

2250.

2500.

2750.

3000.

3500.

4000.

5000. !y(ny+l)
0 !irz

7 !nz

0.

100.

350.

600.

850.

1100.

1500.

2500. !z(nz+l)

125



*** resistivity:
1.0

1

0.1

005 006 005 006 002 003

9

0

0

*** time lags:

0

1

1.0

*** error bounds

1.0E-16

14000

1.0E-06

1.0E-16

IrhoOO (halfspace resistivity)
!np (number of anamalous prisms)
IrhoOl (resistivity of prisms)
!ixa,ixb,iya,iyb,iza,izb
!iws0

liwsl

!iws2

!irt

!nt

lit

!lancz_tolr
Ibicgitmax
Ibicgtol
Ibicgstol

*** parameters controlling the Lanczos process:
1 Irestart (0-> computing all eigenvalues, l-> computing desired eigenvalues)

Ipreconditioner (0-> no pre, l-> 9 diag pre, 2-> block pre)
!mmax

!kev,npv
lirun (0-> regenerate, l-> reused eigenvectors)
Imodejype (l-> corresponds to 2D TE, 0-> 2D TM)

0

1300

1260,0

0

0

126



*** title (max 75 characters)
sfd: large horizontal grid

*** grid:( 1260+567)
0 !irx

10 !nx

0.

1000.

1500.

2000.

2250.

2500.

2750.

3000.

3500.

4000.

5000. !x(nx+l)
0 !iry
10 !ny
0.

1000.

1500.

2000.

2250.

2500.

2750.

3000.

3500.

4000.

5000. !y(ny+l)
0 !irz

7 !nz

0.

100.

350.

600.

850.

1100.

1500.

2500. !z(nz+l)
*** resistivity:
1.0

1

0.1

005 006 005 006 002 003

Output_main.dat

IrhoOO (halfspace resistivity)
!np (number of anamalous prisms)
IrhoOl (resistivity of prisms)
!ixa,ixb,iya,iyb,iza,izb
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9 liwsO

0 liwsl

0 !iws2

*** time lags:
0 !irt

1 !nt

1.0 lit

*** error bounds

1.0E-16 llancztolr

14000 Ibicgitmax
1.0E-06 !bicg_tol
1.0E-16 Ibicgstol
*** parameters controlling the Lanczos process:
1 Irestart (0-> computing all eigenvalues, l-> comput
0 Ipreconditioner (0-> no pre, l-> 9 diag pre, 2-> bl
1300 Immax

1260,0 !kev,npv
0 lirun (0-> regenerate, l-> reused eigenvectors)
0 Imodejype (1-> corresponds to 2D TE, 0-> 2D TM)

sfd: large horizontal grid

nx==1U, tx=5uuu.uu, axmin= z:5U.UU

i x(i) a(i) xc(i) ah(i)

1 0.00 1000.00 500.00 1000.00

2 1000.00 500.00 1250.00 750.00

3 1500.00 500.00 1750.00 500.00

4 2000.00 250.00 2125.00 375.00

5 2250.00 250.00 2375.00 250.00

6 2500.00 250.00 2625.00 250.00

7 2750.00 250.00 2875.00 250.00

8 3000.00 500.00 3250.00 375.00

9 3500.00 500.00 3750.00 500.00

10 4000.00 1000.00 4500.00 750.00

11 5000.00 1000.00

ny==10, ty= 5000.00, dymin= 250.00

J y(j) b(j) ycG) bh(j)
1 0.00 1000.00 500.00 1000.00

2 1000.00 500.00 1250.00 750.00

3 1500.00 500.00 1750.00 500.00

4 2000.00 250.00 2125.00 375.00

5 2250.00 250.00 2375.00 250.00

6 2500.00 250.00 2625.00 250.00

7 2750.00 250.00 2875.00 250.00

8 3000.00 500.00 3250.00 375.00
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•*s

9 3500.00 500.00 3750.00 500.00

10 4000.00 1000.00 4500.00 750.00

11 5000.00 1000.00

nz= 7, tz= 2500.00, dzmin= 100.00
k z(k) c(k) zc(k) ch(k)

1 0.00 100.00 50.00 100.00

2 100.00 250.00 225.00 175.00

3 350.00 250.00 475.00 250.00

4 600.00 250.00 725.00 250.00

5 850.00 250.00 975.00 250.00

6 1100.00 400.00 1300.00 325.00

7 1500.00 1000.00 2000.00 700.00

8 2500.00 1000.00

dhniin= 250.00, dmin== 100.00

background resistivity rho0= 1.0000E+00 Ohm*m

relative position of prisms:

i ixa ixb iya iyb iza izb
15 6 5 6 2 3

resistivity and absolute position of prisms:

i rho[Ohm*m] xa[m] xb[m] ya[m] yb[m] za[m] zb[m]
1 0.10000 2250.0 2750.0 2250.0 2750.0 100.0 600.0

iws0= 7: symbolic display of resistivity in the uppermost 7 levels
iwsl=0: no display of resistivity
iws2=0: no display of averaged conductivity
smin= l.OOOE+OOS/m, smax= 1.000E+01 S/m

is

is - level 1:

123456789 10

10 0000000000

9 0000000000

8 0000000000

7 0000000000

6 0000000000

5 0000000000

4 0000000000

3 0000000000

2 0000000000

1 0000000000
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s - level 2:

123456789 10

10 0000000000

9 0000000000

8 0000000000

7 0000000000

6 00001 10000

5 00001 10000

4 0000000000

3 0000000000

2 0000000000

1 0000000000

is - level 3:

123456789 10

10 0000000000

9 0000000000

8 0000000000

7 0000000000

6 0000110000

5 0000110000

4 0000000000

3 0000000000

2 0000000000

1 0000000000

is - level 4:

123456789 10

10 0000000000

9 0000000000

8 0000000000

7 0000000000

6 0000000000

5 0000000000

4 0000000000

3 0000000000

2 0000000000

1 0000000000

is - level 5:

123456789 10

10 0000000000

9 0000000000

8 0000000000

7 0000000000
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6 0000000000

5 0000000000

4 0000000000

3 0000000000

2 0000000000

1 0000000000

is - level 6:

123456789 10

10 0000000000

9 0000000000

8 0000000000

7 0000000000

6 0000000000

5 0000000000

4 0000000000

3 0000000000

2 0000000000

1 0000000000

is - level 7:

123456789 10

10 0000000000

9 0000000000

8 0000000000

7 0000000000

6 0000000000

5 0000000000

4 0000000000

3 0000000000

2 0000000000

1 0000000000

explanation:
0:rho= 1.00Ohm*m

l:rho= 0.10Ohm*m

time lags and extremal diffusion lengths:

it t[s] d_min[m] d_max[m] d_bgr[m]
1 1.000E+00 2.821E+02 8.921E+02 8.921E+02

bgr=background
convergence check after mstep=1260 iterations

alphmin= 7.8540E-03, alphmax= 1.6000E+02
meth=l: no-fft grid in x- and y-direction
ID eigenvalues: no., value

1 6.95E+01 2 4.33E+01 3 2.75E+01 4 1.34E+01 5 5.13E+00
6 1.15E+00
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.15E+02 3.15E+02 3.20E+02 3.23E+02 3.27E+02 3.27E+02 3.28E+02 3.28E+02 3.33E+02

.33E+02 3.36E+02 3.37E+02 3.45E+02 3.45E+02 3.50E+02 3.51E+02 3.52E+02 3.52E+02

.61E+02 3.62E+02 3.62E+02 3.66E+02 3.66E+02 3.66E+02 3.66E+02 3.70E+02 3.70E+02

78E+02 3.83E+02 3.83E+02 3.94E+02 3.98E+02 3.98E+02 4.26E+02 4.26E+02 4.50E+02

time period= 1.00000000000000
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8 3.75E+03 -2.37E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.37E+02

9 4.50E+03 -2.36E+02 -2.35E+02 -2.36E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.36E+02 -2.35E+02 -2.36E+02

* Re(Zxy) *

X- node nos.: 1 2 3 4 5 6 7 8 9 10

X- coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03

iy y-coord ,.Re(Zxy)-values...
1 1.00E+03 2.07E-03 2.09E-03 2.09E-03 2.10E-03 2.10E-03 2.10E-03 2.10E-03 2.09E-03 2.10E-03 2.07E-03

2 1.50E+03 2.07E-03 2.08E-03 2.07E-03 2.07E-03 2.08E-03 2.08E-03 2.07E-03 2.07E-03 2.08E-03 2.07E-03

3 2.00E+03 2.08E-03 2.04E-03 2.01 E-03 2.04E-03 2.11 E-03 2.11 E-03 2.04E-03 2.01 E-03 2.04E-03 2.08E-03

4 2.25E+03 2.08E-03 2.04E-03 1.98E-03 1.90E-03 2.23E-03 2.24E-03 1.90E-03 1.98E-03 2.04E-03 2.08E-03

5 2.50E+03 2.08E-03 2.04E-03 1.97E-03 1.82E-03 2.26E-03 2.26E-03 1.82E-03 1.97E-03 2.04E-03 2.08E-03

6 2.75E+03 2.08E-03 2.04E-03 1.98E-03 1.90E-03 2.24E-03 2.23E-03 1.90E-03 1.98E-03 2.04E-03 2.08E-03

7 3.00E+03 2.08E-03 2.04E-03 2.01 E-03 2.04E-03 2.11 E-03 2.11 E-03 2.04E-03 2.01 E-03 2.04E-03 2.08E-03

8 3.50E+03 2.07E-03 2.08E-03 2.07E-03 2.07E-03 2.08E-03 2.08E-03 2.07E-03 2.07E-03 2.08E-03 2.07E-03

9 4.00E+03 2.07E-03 2.10E-03 2.09E-03 2.10E-03 2.10E-03 2.10E-03 2.10E-03 2.09E-03 2.09E-03 2.07E-03

* Im(Zxy) *

X- node nos.: 1 2 3 4 5 6 7 8 9 10

X- coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03

ly y-coord ..lm(Zxy)-values....
1 1.00E+03 1.86E-03 1.83E-03 1.83E-03 1.83E-03 1.84E-03 1.84E-03 1.83E-03 1.83E-03 1.82E-03 1.86E-03

2 1.50E+03 1.83E-03 1.83E-03 1.83E-03 1.82E-03 1.82E-03 1.82E-03 1.83E-03 1.83E-03 1.83E-03 1.83E-03

3 2.00E+03 1.82E-03 1.80E-03 1.82E-03 1.78E-03 1.79E-03 1.79E-03 1.78E-03 1.82E-03 1.80E-03 1.82E-03

4 2.25E+03 1.81E-03 1.81E-03 1.80E-03 1.61 E-03 1.52E-03 1.52E-03 1.61 E-03 1.80E-03 1.81 E-03 1.81 E-03

5 2.50E+03 1.81E-03 1.84E-03 1.79E-03 1.59E-03 1.44E-03 1.44E-03 1.59E-03 1.79E-03 1.84E-03 1.81 E-03

6 2.75E+03 1.81E-03 1.81E-03 1.80E-03 1.61 E-03 1.52E-03 1.52E-03 1.61 E-03 1.80E-03 1.81 E-03 1.81 E-03

7 3.00E+03 1.82E-03 1.80E-03 1.82E-03 1.78E-03 1.79E-03 1.79E-03 1.78E-03 1.82E-03 1.80E-03 1.82E-03

8 3.50E+03 1.83E-03 1.83E-03 1.83E-03 1.83E-03 1.82E-03 1.82E-03 1.82E-03 1.83E-03 1.83E-03 1.83E-03

9 4.00E+03 1.86E-03 1.82E-03 1.83E-03 1.83E-03 1.84E-03 1.84E-03 1.83E-03 1.83E-03 1.83E-03 1.86E-03

* (RHOxy) *

X- node nos.: 1 2 3 4 5 6 7 8 9 10

X- coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03

iy y-coord ...(RHOxy)-values.
1 1.00E+03 9.83E-01 9.78E-01 9.79E-01 9.82E-01 9.86E-01 9.86E-01 9.82E-01 9.78E-01 9.76E-01 9.81 E-01

2 1.50E+03 9.68E-01 9.73E-01 9.64E-01 9.66E-01 9.67E-01 9.67E-01 9.65E-01 9.64E-01 9.71 E-01 9.67E-01
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date time_mainstart=
20090823

105149.921

date and time start_eigenstepl:
20090823

105149.984

date and time end_eigenstepl =
20090823

105302.953

date and time start_eigenstep2=
20090823

105302.953

date and time end_eigenstep2=
20090823

105302.953

date and time start_dlahqr=
20090823

105303.015

date and time end_dlahqr=
20090823

105319.015

date time_mainend=
20090823

105409.328

Output_time.dat
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