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ABSTRACT

Data inversion is an interplay of physico-mathematical operators devised to

extract meaningful information about a system from an observed data set and to

appraise the quality of an inverse solution. In geoelectromagnetic methods, where

sources are natural electromagnetic (EM) fields, the earth is parameterized in terms

of electrical resistivity which is of special significance as itcarries information about the

lithology, porefluid, temperatureand chemical variations. The presentstudyis an effort

to improve the data inversion capabilitiesof EM data. For this purpose an efficient 2-D

inversion algorithm, EM2INV, for geoelectromagnetic data has been developed.

The EM field is a non-linear function of subsurface resistivity distribution. As a

result the inverse problem is quasi-linearized and solved iteratively. For each inversion

iteration, a new forward problem, yielding the response of current resistivitymodel, has

to be solved. Therefore, the forward algorithm is a prerequisite for an inversion

algorithm. For generation of EM response, a boundary value problem is solved

analytically or numerically. However, for the problems involving complex geometries

one has to seek numerical solutions only. Due to its simple mathematics and easy

implementation, finite difference method has been chosen over other numerical

techniques for solving the EM boundary value problem.

The research work was initiated with the implementation of finite difference

formulation of the forward EM problem (Brewitt-Taylor&Weaver, 1976). Since the use

of Dirichlet boundary conditions results in a large study domain, special finite domain,

integral and asymptotic boundary conditions are implemented. In the present work, an

integrated formulation of these boundary conditions has been developed.

The quasi-linearization of non-linear problem results in a matrix equation which

is solved using Bi-Conjugate Gradient Method (BCGM), a semi-iterative matrix solver

that dispenses with the necessity of explicit computation of Jacobian matrix. To fix the
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number of unknown block resistivities for all frequencies and throughout the inversion

process, a superblock notion has been developed. The initial guess is made on the

basis of observed anomaly and other a priori information.

The inversion algorithm EM2INV is the culmination of research that started with

the development of a primitive algorithm. The algorithm has been written in FORTRAN

77 and implemented on an IBM compatible EISA based PC-486 machine with 32 MB

RAM and 383 MB hard disk, using the SVR 4.0 version of Unix operating system and

F78 FORTRAN compiler. For a typical model, having 31 x 15 nodes, the algorithm

takes about 3 minutes for 10 inversion iterations.

EM2INV comprises 6120 lines, 42 subroutines and 3 function subprograms.

The main program has two basic modules - Forward and Inverse. Its special efficiency

features which result in cost effectiveness are - (i) Optimal grid generation based on

grid design thumb rules, (ii) Finitedomain boundary conditions, (iii) Interpolation matrix

that permits generation of response at observation points, (iv) Gaussian elimination,

the forward matrix solver, which enables reuse of already decomposed coefficient

matrix, (v) Use of logarithm of resistivity to ensure positive values of estimated

parameters, (vi) Superblock notion that reduces the number of blocks with unknown

resistivities and, in turn, the size of Jacobian matrix and (vii) BCGM matrix solver for

inverse problem. Besides beingefficient, EM2INV isversatileon account ofitsfeatures

like - (i) Inversion with field/synthetic data, (ii) Error free/erroneous synthetic data, (iii)

Inversion of MT/GDS data and (iv) Inversion of profiling/sounding data.

The algorithm has been rigorously tested by setting up exercises of diverse

nature and practical significance. Forestablishing the validity offorward computations,

the published results of various models have been reproduced after carrying out the

no contrast and mesh convergence studies. Similarly, for checking validity of inversion

computations, the synthetic anomalies have been inverted and compared with those

of the true model. The stability of the algorithm has been established by inverting the

synthetic response corrupted with Gaussian noise.

EM2INV has been employed in two different sets of experiments designed to

study the nature of forward and inverse problems. The forward experiments aim at

studying the impact of parameters like depth of burial, resistivity contrast, separation

between two bodies on model responses. Although a preliminary quantitative

discriminant analysis was attempted to design thumb rules for estimating size and
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resistivity of target yet it did not succeed. However, qualitative inferences have been

drawn.

The inversion experiments performed are aimed at gauging - (i) Relative

performances of response functions, (ii) Inversion quality fo two modes of polarization,

(iii) Efficacy of single and multifrequency inversions and (iv) Minimum number of

frequencies and observation points needed for successful data inversion. The inversion

of MT data provides better estimates of vertical position of the target, whereas the

inversion of GDS data deciphers the horizontal variations better. It has been observed

that the conductive and resistive bodies are better resolved by inversion of E- and B-

polarization data respectively. The results of multifrequency inversion imply that

increase in number of frequencies does not necessarily enhance the inversion quality

es ecially when the spread of observation points is sufficiently large to sense the

target. The study of minimum number of observation points highlights the importance

of single point inversion which furnishes useful information about the inhomogeneity.

After the design exercises, EM2INV has been exhaustively tested by inverting

synthetic data, field data, as well as data derived from models based on field studies.

Few geologically significant models are picked up from the literature for generation of

synthetic data. For these models, initially 1-D inversion is carried out at each point of

the profile which is then stacked to get the starting model for 2-D inversion. The

comparison of inverted model with the 1-D stacked model leads us to conclude that

2-D inversion substantially improves the quality of the inverted model.

Next, a study has been carried out on models derived from GDS or MT field

studies. The reliability of the estimates of resistivity is evident in the goodness of fit of

the computed and observed responses. Lastly, the algorithm EM2INV is tested on

Trans Himalayan conductor and COPROD2, GDS and MTfield data respectively. The

inverted models are in broad agreement with the published results. This supported the

confidence in the utility of the algorithm.

The results of various experiments and those of inversion of synthetic/field

geoelectromagnetic data in terms of resistivity model have established the veracity of

the algorithm and also amply displayed the capabilities of the inversion algorithm. Also

discussed, is the possible scope of future work in various directions for its upgradation

and extension to 3-D environment.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Deciphering the right messages from the signals is data interpretation. This
activity, which pervades all walks of life is something that we humans are particularly
good at. For example, most of us can recall faces even when we have not seen the

person for many years, we recognize voices over poor telephone lines, identify
thousands of species of plants and so on. However, insufficient and inaccurate

information can lead to misinterpretation. A classic example of such gross
misinterpretation is the story of five blind men who were trying to identify an elephant
by each feeling a different part of the elephant body.

Many interesting questions, concerning the properties of the physical world, can
be answered by analysing the indirectly measured or experimental observations. The
answers to these questions are stated in terms of numerical values/statistics of the

specific properties, termed as 'model parameters'. We assume that there is a specific
physico-mathematical theory that relates the model parameters to the data. The
prediction of results based on some general principles, a model and a set of specific
conditions relevant to the problem is termed as 'direct' or 'forward problem'. In contrast,
the estimation of model parameters from given data and general principles is termed
as 'inverse problem' (Fig. 1.1). Thus, quantitative interpretation of data is an inverse
problem and its solution is obtained through inverse theory.

Inverse theory is an organized set of mathematical procedures for reducing
data to obtain meaningful information about the physical world. Geophysicists term this
procedure as 'parameter estimation'. The model parameters can either be continuous
functions of one or more variables or discrete numerical quantities. Though discrete
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Introduction

parametrization of continuous functions is approximate and it introduces error yet it

allows use of theory of vectors and matrices rather than the complicated theory of

continuous functions and operators. Therefore, discrete inverse theory provides a good

starting point.

Observed

response/data

(a)

Estimate of model

parameters

(b)

Fig. 1.1 Functional diagram for (a) forward problem and (b) inverse problem.

The aim of geophysics is to obtain information about the subsurface of the

earth. Since it is impossible to take direct samples of the object of interest, the fields

such as elastic wave, potential, electromagnetic are employed to probe the unknown

object. These physical fields are generated by variations in the subsurface material

properties and measured at the surface. In this context, the mapping of model to

measured fields is known as forward problem while mapping of measured fields to the

model is known as inverse problem. Typical model parameters are the geometry,

orientation and physical properties of the target.

With reference to geophysics, the data interpretation is a two step procedure.

The first step involves quantitative interpretation where physical earth parameters are

estimated from observed data. This is followed by the second step, wherein, the

obtained geophysical model is translated in terms of meaningful geology. Thus, the

whole process of retrieving a reasonable geological structure from observations is

called geophysical data interpretation. The present study, however, deals only with the

first step, i.e. quantitative interpretation.

The earliest method used for quantitative interpretation can be described as

trial and error exercise. Starting with a model, with parameters chosen subjectively, the
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fit between the observed and the computed responses is resorted. In case of good
agreement the model is accepted otherwise an inference is drawn and the model is
modified accordingly. In contrast to this, data inversion is a guided search method
where model selection at each step is based on certain criteria . Besides this, the trial
and error method neither provides the confidence interval for the estimated model
parameters nor any measure for quality of interpretation. It is absolutely necessary to
evaluate the quality, as an interpretation unqualified by its quality index would be
doubtful. Further, all the elements of uncertainty must be resolved before attempting
to make a sensible interpretation of the observed data. We may often have to contend
with uncertainties about which we have no control or information. Even in such cases
it is essential to estimate and quantify these uncertainties before venturing in to
interpretation. Thus, data inversion which appraises quality of solution and assesses
reliability of interpretation is more objective than the ordinary quantitative interpretation.
It can be viewed as an attempt to obtain a representative solution of the inverse
problem with its level of confidence.

One form of data inversion is pattern recognition, which deals with techniques
assigning patterns to their respective classes. Here, pattern is a qualitative or
quantitative description of an entity of interest (Duda &Hart, 1973; Ripley, 1996). This
process is performed through statistical approaches like discriminant analysis (Prelat,
1977; Aminzadeh, 1987) or machine learning approaches like knowledge based expert
system (Devijver &Kittler, 1987; Raiche, 1991; Poulton et al., 1992) and artificial
intelligence (Palaz, 1986). For any one of these approaches, two types of methods can
be used: (i) Non-Parametric and (ii) Parametric methods. In non-parametric methods,
the models used are totally flexible, whereas in parametric methods these belong to
a specific family of models with a small number of parameters. In this study only
parametric inversion has been carried out.

In order to understand the physical behaviour of the system with simplified
assumptions, well established laws of physics and mathematics are translated into
governing partial differential equations. Apre-condition for the existence of an inverse
solution is that the forward solution must exist. The analytical solution of a forward
problem, comprising the governing equations, is either unique or, at most, a whole
class of solutions can be derived from it. Unfortunately, analytical solutions to many
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problems of interest either do not exist, or are restricted to idealized situations or are

too complex to evaluate. Therefore, one has to seek recourse to numerical methods

such as integral equation or differential equation method to obtain solution of the

forward problem (Fig. 1.2).

Concepts of physical system

Translate to

Partial differential equations
with specified boundary and

initial conditions

Apply numerical methods

System of algebraic equations

Solve by direct or
iterative matrix solver

Solution

Fig. 1.2 Logic diagram for obtaining numerical solution of forward problem.

Geophysical inverse problems are usually ill-posed and as such their solutions

are inherently non-unique (Backus & Gilbert, 1967; Tikhonov & Arsenin, 1977). The

ill-posedness is caused by inadequate and insufficient data or sometimes by invalid

assumptions used in defining the solution space of possible models while non-

uniqueness arises due to the existence of an infinite number of models which may

explain the data within the limits set by the accuracy of measurements. In addition, ill-

conditioned system having erroneous data lead to instability that is prone to getting

amplified during inversion. The problem is further compounded by non-linearity that
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is inherent in the mathematical relations describing the physical experiment. These
problems are regularized by replacing the ill-posed problem by an equivalent well-
posed problem. This replacement yields a stable, albeit approximate solution
possessing essential features of the exact solution.

For illustration of limitations and possible sources of error, the basic
characteristics of the numerical solution to a geophysical problem need to be
emphasized. Since a numerical solution depends upon the strategy and parameters
of discretization of the domain under study, unlike the analytical solution, it may not
be, and, in general, is not unique. Due to quantification of input data, coefficients and
intermediate computational results, the finite length register effects render the results
machine-dependent. Therefore, the resolution of inversion depends on inaccuracy of
model, insufficient and erroneous data, parameter coupling, the computational
methodology and numerical software employed in solving the inverse problem.

The geophysical data, observed to understand the processes taking place in
the earth's crust and mantle, have to be interpreted to retrieve the desired information.
Although the 1990s have witnessed an incredible growth in the power of technologies
available to the geophysicist to probe the earth's interior, many geophysical methods
are handicapped on account of their existing data inversion capabilities. The
development of more general and powerful data inversion algorithms is, therefore, the
need of the time. This is particularly true for two-dimensional (2-D) or three-
dimensional (3-D) inversion algorithms for electromagnetic (EM) data because even
today very few efficient and high precision numerical softwares are available. The
present study was taken up with this goal in mind to develop an economically viable
and efficient 2-D inversion algorithm for geoelectromagnetic studies of the geosphere.

1.2 Why geoelectromagnetic methods?

The electromagnetic methods provide estimates of electrical resistivity as a
function of depth and lateral distance. Awide range of these methods has been
successfully employed in the fields of mineral, hydrocarbon and geothermal
explorations, aeronomy, archaeology, oceanography, environment, engineering and
solid earth geophysics. Applications can be at any scale -exploration of ground water
in arid/semi-arid terrain, investigation of geothermal resources, estimation of basement
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depth for foundation works, mapping of industrial hazardous waste dump containing

heavy metals, study of deep geology of regional tectonic structures. In the last one

decade, the EMSLAB (Electro-Magnetic Sounding of Lithosphere And Beyond)

experiment, the largest EM study to date has played a significant role in popularizing

the applicability of these methods (EMSLAB, 1988).

The parametrization of earth in terms of electrical resistivity has special

significance due to its dependence on chemical composition and thermal state.

Resistivity is a good indicator of distinctive character of materials and a knowledge of

its spatial distribution provides a clue to theway different kinds of materials are present

in the deeper regions.

Depending upon the source, which can be natural or artificial, the

electromagnetic methods can be classified either as natural/passive source or as

artificial/active source methods. The natural source methods are also termed as

geoelectromagnetic methods. In contrast to the depth of investigation of few tens of

kilometres in artificial source methods, the geoelectromagnetic methods, where the

source is located in the earth's magnetosphere and ionosphere, can measure electrical

properties even up to hundreds of kilometres in the mantle. This is achieved by

selecting proper frequency range from the wide range of natural EM fields.

Suchdeep probing greatly facilitates notonly the studies on the earth's internal

constitution, but also in understanding the physical and geological processes such as

the convection currents, temperature induced phase changes in the deeper crust, the

presence of radioactive material, hot chambers, geothermal resources, extensive

conductive mineral deposits and of stress changes as a possible precursor to

earthquake prediction study. Moreover these methods are particularly useful in remote

areas where it would be difficult to transport the heavy source equipment, necessary

in artificial source electromagnetic methods.The two most populargeoelectromagnetic

methods are Magneto-Tellurics (MT) and Geomagnetic Depth Sounding (GDS) also

known as Magneto Variational Profiling (MVP) in East European literature. The recent

success of MT for hydrocarbon exploration in volcanic regions, where seismic

reflection methods failed, has provided a new impetus to research in

geoelectromagnetics. The choice of geoelectromagnetic methods was further motivated
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by the widespread applications of MT and GDS methods in diverse fields of earth
investigations, notably:

1. For mapping:

(i) Large and deep seated features of the earth's interior (Reddy &Rankin,
1972; Peeples &Rankin, 1973; Jones &Hutton, 1979; Adam et al.,
1982; EMSLAB, 1989; Roy et al., 1989; Jones &Craven, 1990;
ERCEUGT Group, 1992; Gupta et al., 1993; Hjelt &Korja, 1993; Jones
&Haak, 1993; Ingham, 1996).

(ii) Sedimentary basins in hydrocarbon exploration (Vozoff, 1972; Stanley
et al., 1985; Christopherson, 1990; Constable et al., 1994).

iii) Small scale structures for mineral exploration (Strangway et al., 1973;
Lakanen, 1986; Livelybrooks et al., 1996).

(iv) Structures beneath surface volcanics and metamorphic areas which are
difficult to explore using conventional seismic techniques (Orange,
1989; Singh et al., 1992; Jones &Dumas, 1993; Rao et al., 1996).

(v) Ground water zones (Vozoff et al., 1982; Bernard et al., 1990; McNeill,
1990).

(vi) Convergent and divergent plate margins (Kurtz et al., 1986;
Wannamakeret al., 1989a; Heinson et al., 1993; Jones, 1993; Ingham,
1994).

2. In seismo-electromagnetic studies as a precursor to earthquake (Rikitake,
1976; Honkura et al., 1977; Arora &Singh, 1992; Ernst et al., 1993; Park et
al., 1993; Parrot &Johnston, 1993; Rozluski &Yukutake, 1993; Honkura et
al.,1994; Park, 1994).

3. For detection of geothermal pockets (Hoover et al., 1978; Wright et al., 1985;
Pellerin et al., 1996).

4. For estimation of thickness of the permafrost by audio magnetotellurics (Koziar
& Strangway, 1978).

5. In oceanic studies (Filloux, 1981; Mackie et al., 1988; Palshin, 1988; Chave,
1990; Constable, 1990; Heinson et al., 1993; Lilley, 1993; Palshin, 1994).

6. To study coast effect (Rikitake, 1961; Fainberg, 1980; Chave &Cox, 1983;
Kuvshinov et al., 1990; Vanyan &Palshin, 1990; Takeda, 1991; Tarits, 1992).
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7. To detect large scale horizontal inhomogeneities of resistivity in crust and

upper mantle (Hutton, 1976; Singh, 1980; Beamish & Banks, 1983;

Chamalaun et al., 1987; Hjelt, 1988; EMSLAB, 1989; Arora & Singh, 1992;

Gough, 1992; Arora, 1993; Chamalaun & McKnight, 1993; Reddy & Arora,

1993; Brown, 1994).

8. Environmental applications (Bazinet & Legault, 1985; Chouteau et al., 1994).

1.3 STATE OF ART

The EM phenomenon in earth is of induction type. The observed EM field

variations are inverted to estimate the subsurface resistivity distribution. In general, one

never gets the true resistivity distribution from the data, as the problem is ill-posed

due to infinite number of parameters and finite number of observations. Therefore, a

simple model like layered earth or regular shaped body having finite number of

parameters is employed to obtain a meaningful solution to this problem.

The real earth can be represented by 3-D geometries. But the current status

of EM data inversion is such that even when the target being investigated is 3-D, the

inversion is carried out using one-dimensional(l-D) or sometimes 2-D approximation

of the true model. The reason for this is that inversion methodologies have been

adequately developed only for the 1-D case. Now 2-D inversion algorithms are also

being used (Weidelt, 1975b; Jupp & Vozoff, 1977; Pek, 1985; Sasaki, 1989; deGroot-

Hedlin & Constable, 1990; Smith & Booker, 1991; Oldenburg & Ellis, 1993; Yamane

et al., 1996), but for 3-D inversion of EM data only isolated attempt has been made

(Mackie and Madden, 1993b). However, with the lately achieved success of 3-D EM

forward modelling algorithms now serious attempts are afoot to develop viable 3-D

inversion algorithms. Limitations in computing power have been the principal barrier

to invert EM data using 2-D or 3-D models. With the advent of powerful workstations,

the 2-D inversion has now become tractable. Progress on 3-D inversion, however, is

still slow. Although the first endeavours in 2-D EM inversion started around 1975, it

gained momentum in nineties only, as the review of literature conducted in the next

section illustrates.

When the present study was launched in 1993, the bulk of quantitative data

interpretation of EMdata was carried out using trial and error methods or 1-D inversion

8
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yielding stacked model (Wannamaker et al., 1989b; Jones &Craven, 1990; Agarwal
et al., 1993). For EMSLAB, the quantitative interpretation of 3-D data was performed
using either the trial and error method of 2-D forward modelling (Wannamaker et al.,
1989b) or the 2-D inversion (Jiracek et al., 1989). Although many results obtained
using 2-D inversion algorithms were published in literature, yet these algorithms were
not in public domain. The critical assessment of all the existing algorithms led to the
conclusion that there still exists scope for further development in 2-D EM inversion.
When the 3-D data inversion algorithm comes in use, the 2-D inversion algorithm
would still be used to get the best possible initial guess model. Agood 2-D inversion
algorithm is thus aprerequisite for an efficient 3-D inversion algorithm. Due to simple
mathematical formulation of EM theory in frequency domain, the inversion algorithm
in this study has been developed for frequency domain.

The literature of electromagnetic modelling can be classified into two categories
- (i) developments in numerical techniques and (ii) developments in inversion
techniques. A brief review of literature for these two classes is presented here. The
review is constrained because of the limited library resources available.

1.3.1 Developments in numerical techniques
The simplest earth models are the one-dimensional ones, where resistivity is

assumed to vary only with depth. More realistic models of earth are the 2-D ones,
where the resistivity is allowed to vary in one horizontal direction as well.
Two-dimensional forward modelling can be performed analytically only for few idealized
models, but accurate numerical solutions are now provided by many efficient computer
programs in widespread use. The numerical methods employed for 2-D EM modelling,
are Integral Equation Method (IEM), Differential Equation Method (DEM) and Hybrid
Methods (HM).

IEM, where the anomalous region is discretized, results in a small but full
coefficient matrix. In fact, it is the most widely used method in EM modelling
(Hohmann, 1971; Raiche, 1974; Reddy et al., 1977; Ting &Hohmann, 1981;
Wannamaker etal., 1984a; Wannamaker, 1991;Xiong, 1992; Zhdanov &Fang, 1996).
Due to non-availability of efficient algorithms for computation of Green's functions in
other cases, the use of IEM is limited to confined targets buried in layered earth. The
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DEMs are popular for modelling of complex geometries. Thetwo popular DEMs, Finite

Difference Method (FDM) and Finite Element Method (FEM), give rise to large but

grossly sparse coefficient matrices as the whole study domain is discretized. The

recent advances in iterative solution techniques have made these methods more

popular (Sarkar, 1991). The simple mathematics and easy implementation of FDM

have led to its preference over FEM, particularly for geophysical problems (Jones &

Pascoe, 1971; Brewitt-Taylor & Weaver, 1976; Mackie & Madden, 1993a; Smith,

1996b; Weaver et al., 1996). HMs which are amalgamation of IEM and DEM are again

suited only for the confined bodies (Lee et al., 1981). For the present study the FDM

has been preferred. Although Weaver (1994) has compiled the chronological

development of 2-D EM modelling using FDM yet it is reviewed here for completeness.

The results of 2-D induction problem for quarter-space model, given by Jones

& Price (1970), had provided a foundation for all future works in this field. They had

extended their work for different types of models (Jones & Price, 1971). The first 2-D

FDM algorithm was given by Jones & Pascoe (1971) for a general structure buried in

layered earth. Besides theoretical development, the computer program was also

available in this paper. The method included a provision for variable grid size butcould

not be used for models having non-uniform surrounding region. This algorithm was

further modified by Pascoe &Jones (1972) for a more general case where the models

could be different at the two ends. Williamson et al. (1974) discovered an error in FDM

representation ofsecond derivatives as given by Jones &Pascoe (1971) for variable

grid spacings. In this context, Jones &Thomson (1974) explained that this error could

be reduced when grid spacings were not too irregular.

The 2-D induction problem had been reexamined and modified by Brewitt-

Taylor &Weaver (1976). They not only replaced the one-sided difference formula of

Jones & Pascoe (1971) by the central difference one but also modified the simple

average of conductivities by taking its weighted average. Here, an improved version

of 2-D EM forward formulation was proposed that became a landmark in the field of

FDM modelling. Weaver &Brewitt-Taylor (1978) formulated an asymptotic expansion

for greater accuracy of E-polarization boundary conditions. Chen &Fung (1989) tested

the discretization criterion of FDM mesh. In recent years, with the advancement in

iterative methods, significant progress has also been made in 3-D FDM forward

10
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modelling (Madden &Mackie, 1989; Xinghua et al., 1991; Mackie et al., 1993; Weaver,
1994; Smith, 1996a, 1996b). However, in 3-D grid it is difficult to define field and

resistivity values at the nodes. To overcome these difficulties, recently staggered grids
have been used in modelling where the separate nodes are assigned to each field
component (Mackie et al., 1993; Weaver, 1994; Smith, 1996a). On the other hand,
Weaver et al. (1996) have claimed that even fixed grids can be used with accuracy
comparable to that yielded by staggered grids.

Apart from the conventional ones, few alternative approaches are also
discussed in literature, e.g. analogy with equations for voltage and current in a
transmission surface (Madden &Swift, 1969), integration of differential equations over
rectangular domains surrounding each node (Doucet &Pham Van Ngoc, 1984). An
extension of finite difference to triangular elements has been developed by Aprea et
al. (1990) and Weaver (1994). There has been some work exclusively on the
development of appropriate boundary conditions at domain boundaries, e.g. Williamson
et al. (1974), Jones (1974), Weaver &Brewitt-Taylor (1978), Zhdanov et al. (1982) and
Weaver (1994). The work of Zhdanov et al. (1982) is important on account of its
discussion on quantitative analysis of model validity.

1.3.2 Developments in inversion techniques

In general, the 'inverse problem' is much more difficult to solve than the

corresponding 'forward problem'. This is particularly true for non-linear EM inverse
problem.

The solution of a non-linear inverse problem can be obtained using three
different approaches: (i) transformation of non-linear problem to alinear one, (ii) quasi-
linearization of the non-linear problem and (iii) use of non-linear methods. In the first

approach, which is a direct approach, the problem can be solved using any linear
method and, unlike the other two approaches it does not require an initial guess
model. The problem is solved iteratively for the other two indirect approaches.

Being the simplest approximation, 1-D model is still widely used. Most of the
EM literature is devoted to the modelling of layered earth model. Even today the 3-D
resistivity anomalies are mostly inverted using 1-D inversion algorithms. Although 1-D
inversion is well understood, yet it is beset with difficulties because no unique solution

11
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exists for the incomplete data sets available in practice. Several efficient 1-D inversion

algorithms such as Patrick &Bostick (1969), Weidelt(1972), Parker(1977), Oldenburg

(1979), Fischer et al. (1981), Parker &Whaler (1981), Whittall &Oldenburg (1992),

Weaver & Agarwal (1993), Gupta et al. (1996) provide specified one-dimensional

models that are consistent with the data.

The methodology for solving 2-D/3-D EM inverse problem is still not fully

developed. The available 2-D inversion algorithms - Weidelt (1975b), Jupp &Vozoff

(1977), Rodi et al. (1984), Pek (1985), Sasaki (1989), deGroot-Hedlin & Constable

(1990), Oldenburg (1990), Smith &Booker (1991), Oldenburg &Ellis (1993), Yamane

et al. (1996) - are still developing and yet to be rigorously tested on real earth data.

The 3-D inverse problem is still in its infancy (Mackie &Madden, 1993b). Therefore,

the geophysical community has been striving to develop versatile and economically

viable EM data inversion algorithms that can provide meaningful information about the

resistivity variations in the earth. Scarcity of such an algorithm motivated us to develop

our own 2-D inversion algorithm. Due to limitations of available computational

resources we could not undertake the 3-D problem and restricted ourselves to 2-D

inversion. Moreover, after gaining confidence in 2-D problems it would be easier to

handle the 3-D ones. The present work has resulted in the development of an efficient

finite difference based 2-D algorithm for inversion of geoelectromagnetic data and it

is christened as EM2INV.

1.4 Scope of the present work

Since direct formulation of 2-D inverse problem is not available, this non-linear

problem can be solved eitherthrough quasi-linearization or using non-linear methods.

However, the usage of non-linear methods, like simulated annealing or genetic

algorithm, is limited on account of their economic viability which is poor even for 1-D

problems (Dosso & Oldenburg, 1991; Schultz et al., 1994), Therefore, the inverse

problem is solved using an indirect quasi-linearization approach.

The literature survey revealed that 2-D inversion is mostly carried out using 1-D

inversion or its stacked results. However, there are few instances when 2-D inversion

algorithms have also been employed (Jiracek et al., 1989). Some available 2-D

inversion algorithms, like Rapid Relaxation Inversion (RRI) (Smith & Booker, 1991),

12
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Generalized Rapid Relaxation Inversion (GRRI) (Yamane et al., 1996), are basically
1-D exploiting the slow resistivity variation in horizontal direction and taking its care
only through 2-D forward modelling. Acomprehensive algorithm is needed to carry
out numerical modelling of geoelectromagnetic data. For the algorithm to be useful in
any meaningful study, it should be able to solve the forward and also the inverse
problems. This means that it should be able to (i) simulate MT/GDS response for a
given model and (ii) invert the observed response in terms of resistivity values.

The inversion algorithm EM2INV, based on FDM, is the outcome of athorough
and extensive research during which various versions of the algorithm were developed.
These versions were critically appraised and the derived inferences were incorporated
in the subsequent algorithms. This led to the development of EM2INV where the same
algorithm can be used for inverting synthetic or field data.

Initially, to start the research work, the FDM formulation of the forward problem
given by Brewitt-Taylor&Weaver (1976) was implemented. The final forward algorithm
includes features such as automatic grid design, integral boundary conditions at both
top and bottom boundaries of the grid and asymptotic boundary conditions at the
vertical boundaries of the grid. For quasi-linearization, the response vector is
expressed in Taylor series and only the linear terms of the series are retained. Thus,
the non-linear problem becomes linear in perturbations and is solved iteratively. The
economic viability of the algorithm highly depends on how efficiently one can solve the
inverse matrix equation obtained after quasi-linearization. Bi-conjugate gradient matrix
solver, which dispenses with the necessity of explicit computation of Jacobian matrix,
is used for this purpose. The current model is successively improved until the error
measure is within preassigned limit and the parameters are stable. Asuperblock
notion, to fix the number of unknown block resistivities for all frequencies and
throughout the inversion process, has been developed.

The developed algorithm is validated and rigorously checked. Its accuracy and
efficacy are established through few theoretical experiment design exercises. These
experiments of diverse nature are performed on certain features of forward and
inversion algorithm. The results of these exercises provide useful information,
necessary for successful planning of data procurement and for inversion of field data.
Lastly, the data inversion of synthetic and field data has been carried out.
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It may be alluded here that standard units, symbols and terminologies

recommended by Hobbs (1992) are used in the present work.

1.5 Organisation of chapters

The objectives of this study are fulfilled with the development of the software

package EM2INV which is capable of carrying out both forward modelling and data

inversion for geoelectromagnetic studies. The thesis has been organised into 8

chapters. A brief account of the contents in subsequent chapters of the thesis follows.

The mathematical formulation of forward problem is presented in Chapter 2

which covers a brief description of EM theory and ranges of electrical properties within

the earth. It also formulates a boundary value problem comprising the governing partial

differential equations and requisite boundary conditions. An integrated formulation of

special finite domain integral and asymptotic boundary conditions has been developed.

MT and GDS methods and their response functions are also summarized in the end.

The characteristics of ill-posed EM inverse problem and some techniques for

its alleviation are presented in Chapter 3. Besides the different methodologies for

solving inverse problem, the direct Straightforward Inversion Scheme (SIS) algorithm

for 1-D inverse problem and quasi-linearized scheme for 2-D inverse problem are also

presented.

In order to successfully implement the FDM for solving forward and inverse

problems, the discrete governing equations, discrete boundary conditions,

transformation matrices derived for response functions and the implicit computation

of Jacobian matrix are discussed in Chapter 4. Finally a discussion regarding the

choice of suitable matrix solvers for forward and inverse matrix equations is given.

Chapter 5 presents the sequence of development with a critical review of

various primitive versions of the algorithm. Description of salient efficiency and

versatility features, structure, control and grid parameters, important subprograms of

the algorithm and various hardware/software limitations of the computing environment

is also included.

The developed algorithm was tested and validated using synthetic models.

Several theoretical experiments, which were designed and performed to set up

guidelines for better data procurement and inversion quality, and their results are
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discussed in Chapter 6.

Chapter 7 presents the inversion results of data setsderived from synthetic and
field studies based models and also from field data.

Chapter 8 summarizes the achievements and limitations of the algorithm
developed in this thesis and suggests possible lines along on which the work can be
extended.

Appendix 1 contains derivation of recurrence relations for SIS algorithm. The

basic steps of bi-conjugate gradient method are given in Appendix 2. Appendix 3

contains documentation on input requirements of the inversion algorithm EM2INV.
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CHAPTER 2

FORMULATION OF

EM FORWARD PROBLEM

2.1 General

The geoelectromagnetic methods deal with the observation and analysis of EM

fields with a view to derive pertinent information about the geoelectric structure of

subsurface. The observed field can be viewed as a superposition of the primary and

secondary fields. Primary fields, generated by an external source, induce secondary

currents in the earth which, in turn, give rise to the secondary fields. If the earth model

is a uniform half-space, then the induced currents and the resulting secondary fields

follow a regularpattern. Inhomogeneities present in the real earth invariably disturb this

regular pattern of secondary currents and fields leading to perturbation of the total EM

fields. These perturbed fields, measured on the earth's surface, provide an insight into

the resistivitydistribution within the earth. This helps in deciphering the structure of the

earth and also in understanding the ongoing physical processes.

The mechanism of perturbed fields can be understood only when the capability

of generating responses of arbitrary resistivity distributions is fully developed. The

computation of EM response of a given earth model, with prescribed resistivities, is

known as the forward problem of EM induction.

An exhaustive knowledge of EM theory, based on the fundamental

Maxwell's equations, is essential for solving the forward problem. In literature there

exist a vast number of texts on EM theory differing in their emphasis on mathematical

background, computational aspects and applications. One can refer to Stratton (1941),

Smythe (1950), Morse & Feshbach (1953) and Jackson (1975) for fundamentals, to
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Mitra (1973,1975), Morgan (1990), Zhou (1993) and Taflove (1995) for computational
aspects and to Grant &West (1965), Rikitake (1966), Ward (1967), Porstendorfer
(1975), Rokityansky (1982), Wait (1982), Kaufman &Keller (1983), Berdichevsky &
Zhdanov (1984) and Nabighian (1988, 1991) for geophysical applications. For

completeness, a brief account of electromagnetic theory is presented here. Since the

foundation of the present study is the work of Brewitt-Taylor &Weaver (1976), the elwt
time dependence used by them has been followed here also.

2.2 Electromagnetic theory

The EM phenomenon isgoverned by the Biot-Savart law for magnetic induction

due to current, Faraday's law of induction, Coulomb's law of electric fields due to

charges and the law of non-existence of magnetic monopole. Maxwell's equations are

the concise mathematical statements of these laws that, assuming linear, isotropic

medium and an ei&" time-dependence, can be written as the following first order partial

differential equations

VxB=^J * iu^D, -(2.1)

VxE=-iuB, -(2.2)

V.D= q0 -(2-3)

V.£=0, -(2-4)

„ 3 -. d ". dp
where V = —/ + —J + —k.

dx dy dz

Here B, E, Dand J are the vectors representing the magnetic induction in Tesla, the

electric field in Volts/metre(m), the electric displacement in Coulombs/m2 and the
electric current density in Amperes/m2 respectively. Similarly, qe, w and u are the

scalars representing free electric charge density in Coulombs/m3, the spectral angular
frequency in Hertz and the magnetic permeability in Henry/m. It can be easily
established that, for B and D having continuous first and second derivatives, equation

(2.4) can be derived from equation (2.2), while equation (2.3) can be derived from
equation (2.1). The equation of continuity which states the law of conservation of
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electric charge can be written as

V../=-/(oc7, ...(2.5)

The two vector equations (2.1) and (2.2) involve four vectors. Therefore, the

constitutive relations are employed to express these equations in terms of two

independent EM vectors. These relations state the dependence of various vectors on

the gross material properties, the electrical conductivity, o, and the dielectric

permittivity, e, as

J=aE ...(2.6)

and

D=zE- ...(2.7)

Here, o in Siemens/m and e in Farad/m are the second order tensors which may be

functions of position vector r andspectral angular frequency co. Athird relation defines

the magnetic field intensity vector H, commonly mentioned in literature, as

B= *H ...(2.8)

where H is in Amperes/m. The constitutive relations are not always linear or single-

valued. For example, a and e may be functions of E. The constitutive relation (2.6),
in the linear case, may be recognised as a statement of Ohm's law. In order to

ascertain which of these functional dependencies are of relevance in the context of the

various EM methods, a discussion of geoelectromagnetic properties follows.

2.3 Electrical properties of earth

For an isotropic earth, the parameter tensors o, e and u reduce to scalars and

are, in general, functions of position only. The only other functional dependence of

importance is with respect to frequency. In some studies, the dependence of resistivity
on temperature has been used to gather information about the thermal gradient in

earth. Several texts have discussed the electrical properties of rocks and minerals,

notable amongst these being Grant &West (1965), Keller &Frischknecht (1966) and
Ward &Fraser (1967). Here, a brief account of the ranges of o, e and u widely
encountered in the earth, is presented.
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The parameter electrical conductivity o or its inverse, the electrical resistivity

p which is more popular in geophysical literature, has the widest range of all physical

parameters of earth. The resistivity varies in the range 108 - 1013 ohm-m for different

rocks and minerals. A resistivity value less than 105 ohm-m relates to a conductor

while one greater than 108 ohm-m relates to insulators. The intermediate values

correspond to semi-conductors. This wide range results from the diverse physical

phenomena that contribute to the resistivity of rocks. In the upper crust, the ionic

conduction of electrolytes in the pores of rocks is the primary contributor to resistivity

of rocks, while in the lower crust and upper mantle the electronic mode of conduction

is the primary contributor. In the former case, if it is desired to account for electrode

and membrane polarization through a change in resistivity, it becomes frequency

dependent and complex in nature. For surface rocks, water present in pore spaces is

the most important factor controlling the resistivity. It has been shown that the anomaly

caused by a target, buried in a conducting host medium, gets enhanced as the

contrast in the resistivity values of the target and host medium increases. However,

it asymptotically reaches a maximum value, rendering the cases, where the resistivity

contrast is greater than 1000, undiscemible from each other. Hence, such cases can

be modelled as if the target is suspended in free space.

The free space value ofelectric permittivity is e0 = 10"9/36n Farad/m. With the

exception of water (e/e0 ~ 80), electric permittivity rarely vary by more than an order

of magnitude. For most rocks and earth materials the typical value is e~9e0. The

primary contributions to e are only due to the microscopic phenomena like the

lengthening of bonds between the atoms and the preferred orientation of molecules

along the direction of the field. However, if the macroscopic phenomena, like electrode

and membrane polarization, are accounted through permittivity, e attains large values

and becomes frequency dependent.

The magnetic permeability p in most geophysical situations equals its free

space value p0 =4ti x 10"7 Henry/m. Only for the ferromagnetic minerals it goes upto

6p0. In the case of remanent magnetization studies, p becomes non-linear and

multivalued due to the phenomenon of hysteresis.
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2.4 The EM boundary value problem

The geoelectromagnetic field variations can be studied by solving the Maxwell's
equations (2.1) and (2.2). The solution can be achieved by transforming these
equations into a well posed EM Boundary Value Problem (BVP) in any one of the field
vectors Bor E. For this purpose a right-handed cartesian coordinate system, with z-
positive downward and air-earth interface at z = 0, is used here. Besides the

assumption of a plane wave propagating vertically downwards along the z-axis,
following assumptions are also made about the physical nature of earth:

(1) Earth is a linear and isotropic medium so that the change in output is
proportional to the change in input field and the physical variables o, e and p
are scalars. In particular p is assumed to beequal to p0, its free space value,
throughout.

(2) Earth is a source free and passive medium.

(3) The flat earth model is appropriate as only the EM fields with periods less than
1 day are to be studied.

(4) Since the frequencies used are less than 105 Hz and the resistivities commonly
encountered in earth are less than 104 ohm-m, the free charge decays
instantaneously.

In view of the assumption (4), equations (2.3) and (2.5) respectively get simplified as

VZ7= ° ...(2.9)

and

^O- ...(2.10)

These equations imply that for an isotropic medium the decay of charge is faster than
the propagation of electromagnetic wave and the charge density will reach equilibrium
in practically no time. The surface charges may, however, accumulate at the interface
of two homogeneous regions.

Further, for frequencies less than 105 Hz, the displacement current term in
equation (2.1) is negligibly smaller than the conduction current term and can, therefore,
be neglected. After using Ohm's law, the equation (2.1) gets simplified as

VxB=/uoE ...(2.11)
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while equation (2.2) is restated here for continuity as

VxE=-/uB -(2.12)

The fields governed by these equations are termed quasi-static because inspite

of the field being time dependent, its variation is very slow and at any given instant of

time it behaves like a static field. Thus, for the quasi-static case, the two equations

(2.11) and (2.12) are sufficient to describe the complete behaviour of EM fields.

The two steps for defining a BVP comprise development of the governing

partial differential equations and of the requisite boundary conditions for each of the

field vector B and E.

2.4.1 Governing partial differential equations

To eliminate E, from equations (2.11) and (2.12), take curl of the equation,

obtained after dividing equation (2.11) by o, and then use equation (2.12) along with

the following identity

Vx{Vxv) =v(V.iO-vV

h ^ a2 a2 a2
where \r=—+—+

dx2 dy2 dz2

The resulting equation satisfied by vector B is

sfBik2B+~x{VxB) =0, -(2.13)
o

where, k, the wave number or propagation constant, is defined as

A-2 =-/(o^a. -(2.14)

For a homogeneous region this equation reduces to the Helmholtz equation as

V>B+k2B=0. -(2.15)

Similarly, B can be eliminated from equations (2.11) and (2.12) by switching the roles

of equations (2.11) and (2.12) to get the equation satisfied by E as the following

Helmholtz equation

&E+k2E=0. -(2.16)
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The wave number k is related to skin depth 8(in metres), as

*• £' ...(2.17)

with i = \/-1 and 5 as

\ W/XT
...(2.18)

The skin depth is defined as the depth at which the amplitude of EM field is attenuated

by a factor of e. It is a useful guide to the depth of penetration of the field at a given

frequency. It may be alluded here that since the wave number k is a complex quantity,

the electromagnetic phenomenon in earth is a diffusion process. The induction fields,

therefore, do not propagate as EM waves, rather these diffuse through the electrical

conductor much like the heat flows through a thermal conductor.

2.4.1.1 Modes of polarization

The EM fields of an induction problem can be partitioned, depending upon the

direction of propagation of the electric and magnetic fields, into two modes of

polarization. In Transverse Electric (TE) or E-polarization mode, the electric field is

transverse to the z-axis while in Transverse Magnetic (TM) or B-polarization mode the

magnetic field is transverse to the z-axis. Since the EM wave is a transverse wave, the

vertical component of field, Ez or Bz for respective polarization, does not exist. Thus,

for a 3-D problem the non-vanishing electric and magnetic field components can be

expressed as sets for two polarizations. For E-polarization the five scalar components

are Ex, Ey, Bx, By and Bz while for the B-polarization these are Ex, Ey, Ez, Bx and By.

2.4.1.2 Two-dimensional equations

For 2-D problems, the model parameters, the field vectors and the source

characteristics are chosen to be independent of the horizontal coordinate, x-,

corresponding to the strike direction (Fig. 2.1 b). The vector equations (2.11) and (2.12)

reduce to the following six scalar equations

dBz dBv
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dB
-HOEy,

dz

dB,

dy
-fj.aEr

dEz dEy • a—•=. - —y = -/wB
x

dy dz

5^
dz

/uB„

dE

dy
* = iuB,

Air-earth •
interface

Pn-

z=0 > / 11 >> /1 > > > / > > / / > z=0

P.
(y,z)

•z=zN >/////////////* z=d

.(2.19/3)

.(2.19c)

...(2.190)

.(2.19©)

...(2.19/)

^y

• N r2

(a) (b)
Fig. 2.1 Typical earth models (a) 1-D and (b) 2-D. Also shown is the coordinate system.

These equations can be grouped on the basis of their dependence on Bx or Ex, as B-

and E- polarizations, respectively, as

B-polarization

dB
- f-lOEy,

dz

...(2.203)

dB
noE^ .(2.20$

dy

dEz dE . ..(2.20c)

dy dz
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E-polarization

dz
*=-fuBy, ...(2.214

—^/wfi, ...(2.21$
3/

—J.--JL = poEr ...(2.21c
By Bz *

The only non-vanishing magnetic field component in the B-polarization and the electric

field component in the E-polarization is parallel to strike of the 2-D structure. The field

component sets for the two polarizations are distinct and independent.

The x- component of the magnetic and electric fields in the two polarizations,

respectively satisfy the following partial differential equations

[L, (A)] Bx- l— +~- ~~~ ~~~ * k2]Bx- 0 ...(2.22)
dy2 dz2 o dydy o dz dz

and

[Z, {k)]Ex =[-^- +— +k2]Ex- 0. ...(2.23)
dyd dzd

2.4.1.3 One-dimensional equations

In case of a 1-D earth model, where there is no lateral variation in material

properties, the field components vary only with depth (Fig. 2.1 a). The equations for the

B- and E- polarizations reduce to following equations

a2^ 1 go BBX
dz2 o dz dz
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and

x+k2Ex-0. -(2.25)
dz2

Let, for simplification of notation, the suffix x be dropped so that

E=EX and B= By -(2.26)

Generally, it is simpler to solve the EM partial differential equations in terms of

the scalar or vector potential rather than in terms of the vector field. But in the case

of a 2-D problem there is no advantage in introducing potentials as the field can be

partitioned into two independent modes governed by two scalar equations.

For air, the non-conducting region where o = 0, the basic equation (2.11)

simplifies to

VxB=0. -(2.27)

Thus B becomes irrotational and is derivable from a magnetic scalar potential Q,

defined as

0=-VQ. -(2.28)

By virtue of (2.4), it follows that

^0 =0. -(2.29)

It serves as the governing differential equation for the magnetic field in air. The

equations (2.19b) and (2.19c) reduce to

dBx dBx

dz dy

Implying that

B=B0. -(2.30)
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B0 being the constant primary magnetic field in air due to the source. Thus, the primary
B-polarized field is constant in air.

2.4.2 Partitioning of fields

In order to solve the governing equations (2.22) or (2.23) one of the options is
to view the total EM fields as a superposition of the normal and anomalous fields as

F=F",F- ...(2.31)n ' ar

Here, F stands for any one of the electric or magnetic field components and the
subscripts 'n' and 'a' denote normal and anomalous fields respectively. The normal
field is the response of a simplified model while the anomalous field is the response
of the anomalous bodies or inhomogeneities present in the simplified model. For
example, as shown in Fig. 2.2, the 2-D model consisting of a buried body in a layered
earth can be viewed as if a body of anomalous conductivity is superimposed over the
normal layered earth model.

Air((7-=0)
>>>>>>>>>/'/>>>;///z=0

. °1

Fig. 2.2 Buried target in a layered earth model.

The conductivity at a point, o, is the sum of the layer conductivity, on, and the
anomalous conductivity, oa, which is non-zero only in the body. Thus

a = cV°V

°"n

z = zn

^n+l

This conductivity relation corresponds to the wave number relation

k2-k^kl
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On substituting these superposition relations in equations (2.22) and (2.23), the
equation gets partitioned into following two sets of equations for the magnetic and
electric fields respectively

[L, (kn)] (Bn) =0, -(2.34a)

WW {Ba) - [L,(ka)] Bn 4{o/a ♦ ofj {B„ *Ba) ...(2.34$

and

[L, {kn)\ (En) =0, -(2.35a)

H/ff] (Ea) =k2aE, -(2-35$

The anomalous magnetic field in air will become

B-B0=-VQ ...(2.36)

It may be emphasized here that as the sources are natural EM fields, the use

of homogeneous Helmholtz equations is justified in geoelectromagnetics. The primary
source fields have their origin in the electric currents blowing in and beyond the

ionosphere which, in turn, arise from the complex interactions of solar radiations and
plasma flux with the earth's magnetosphere and ionosphere. The primary field, the
external inducing field due to source, is horizontal and laterally uniform. Being a natural
source, the signals can be treated as plane wave incident normally on the earth.
Therefore, the domain of study can be treated as source free and the effect of source

is accounted through the boundary conditions.

In order to complete the statement of a well posed EM boundary value

problem, the necessary and sufficient boundary conditions for the equations (2.22),
(2.23), (2.24) or (2.25) must be identified.

2.5 The boundary conditions

There are two types of boundary conditions, first defined on any interface of
discontinuity and the second defined on domain boundaries. The former are either
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explicitly imposed or used to derive appropriate smooth resistivity function at a point

situated at the interface of different regions. The domain boundary conditions define

the asymptotic behaviour of field or its integrated effect on a boundary.

2.5.1 Interface boundary conditions

The necessary boundary conditions to be imposed on an interface, separating

two media, 1 and 2, with different physical properties (Fig. 2.3), may be obtained by

simply replacing the differential operator V by the unit normal vector n and by setting

the ico term to zero in equations (2.1) - (2.4). The resulting boundary conditions are

(1) The tangential components of H are discontinuous, the discontinuity being
equal to the surface current density Js, i.e.

nx{H2-HJ =Jg ...(2.37)

(2) The tangential components of E are continuous, i.e.

nx(Ei-Ei) =0.

(3) The normal components of B are continuous, i.e.

nXB^B,) =0.

...(2.38)

...(2.39)

(4) The normal components of Dare discontinuous, the discontinuity being equal
to the surface charge density qs i.e.

n.{D2 /?,) =qr ...(2.40)

Medium 1

•Medium 2

Fig. 2.3 The interface S between two regions with different material properties.
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2.5.2 Domain boundary conditions

Apart from the interface boundary conditions, the boundary conditions have to

be applied on the domain boundaries. These may either be Dirichlet or Neumann or

Mixed boundary conditions, which, respectively, specify either the field, or its normal

derivative or a linear superposition of the two. Since in geoelectromagnetics, the

source is of infinite extent, the primary field due to the source will remain constant

within the domain. However, due to attenuation in the conducting earth, the field does

tend to zero as z-*°°. The anomalous field, on the other hand, tends to zero as one

moves away from the anomalous target, i.e. as z or y-± *>. The boundary conditions

are imposed on all the four sides of the domain. For B-polarization the magnetic field

is already known at air-earth interface (vide equation 2.30). In E-polarization, to

account for slow attenuation of anomalous field in air, a thick subregion must be

introduced above the earth's surface. Dirichlet boundary conditions on all the domain

boundaries are the simplest choice.

The EM boundary value problem, in its generality, possessed very few analytic

solutions and that too for idealized conditions only. Hence, the general boundary value

problem has to be solved using some numerical method which means that the domain

boundaries must be placed at finite, albeit large, distances. However, one is never

certain whether the domain is large enough to justify the use of Dirichlet boundary

conditions defined for boundaries at infinity (Fig. 2.4a). Further, if the domain size is

too large, then it becomes too demanding on the computing resources. Therefore,

special boundary conditions have to be designed for placing domain boundaries at

optimal distances.

A numerical technique when applied for solving the EM boundary value

problem reduces it to a matrix equation. Bigger the domain, larger the coefficient

matrix size. The minimum possible domain size is the one when the domain

boundaries are placed right over the anomalous target (Fig. 2.4b). Besides the gradual

reduction in the matrix size, there results a reduction in sparsity structure of the

coefficient matrix as the domain size is reduced. The two extremes, the boundaries at

infinity and the boundaries at target surface, exhibit the trade-off between the domain

size and sparsity structure of the coefficient matrix. For the two cases, the coefficient

matrices are banded and full respectively.
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Air

Earth

*1^Anomalous
domain r

92
(b)

= 0

z = d

z=0

z = d

z = 0

Domain boundary

Air

Earth

/^Anomalous )
( domain ~^/

3l

z=d>>>>>>>>>>

(c)

Fig. 2.4 The three different choices of the modelling domain for boundary value problem.
Domain boundaries (a) at infinity, (b) right over the target and (c) at optimal finite
distances.

30



Formulation of forward problem

In the present work, we have followed an approach which is in between the two

extremes. The boundaries are placed at finite distances by placing the top boundary

at air-earth interface and the bottom one at an optimal vertical distance from the

basement (Fig. 2.4c). This results in both numerical accuracy and optimization of the
domain size. At the same time the banded structure of matrix is not significantly

disturbed. The integrated effect of the region lying outside the domain is accounted

through the designed boundary conditions.

2.5.2.1 The finite domain integrated boundary conditions - Integral form

Following Weaver (1994), the boundary conditions are designed for both the

pairs of horizontal and vertical boundaries of the finite domain. For the horizontal

boundaries, when the Helmholtz equation is solved in the overlying or the underlying

half-space, it results in integral boundary conditions. Whereas an asymptotic

expression for the integrals has been derived for the vertical boundaries.

The boundary condition, for a given horizontal interface z =s, has been derived

here, in a generalized form, by solving the following governing differential equation in

the overlying or underlying half-space

(V>+k2)F=0. -(2.41)

Here, F is either electric or magnetic field component. It may be alluded here that in

air, z < 0, k = 0.

Since no lateral variations are present in the overlying/underlying domain, the

equation (2.41) issolved in Fourier domain. The Fourier transform pair used, isdefined

as

oo

F{n) =!F(y)e">ydy ...(2.42$

and

oo

F(y) = 1 fF{r\)einydr\. ...(2.42$
271 J
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source is present in air at z = -°°, its effect has to be added to the field. The equation
(2.53) should, therefore, be modified as

oo

F'{y,Q) = i^B0 -1 f[F( kO) - F(y,0)] —i-dv. ...(2.55)
nL {v-y)2

In E-polarization these boundary conditions, termed as 'integral boundary

conditions', are imposed on both top and bottom boundaries of the domain. However,

in B-polarization these are applied only on the bottom boundary. On the top boundary

placed at air-earth interface, the magnetic field being constant, Dirichlet boundary

conditions are imposed. The integral boundary conditions are evaluated at the point
lying just outside the study domain, 0- or d+, and these are migrated to the

corresponding points within the domain by invoking the interface boundary conditions

on the tangential components of the fields. Unlike the tangential electric field which

remains continuous, the tangential components of magnetic field are discontinuous

across the interface whenever the surface currents are present.

2.5.2.2 The finite domain integrated boundary conditions - Series form

Brewitt-Taylor &Weaver (1976) derived the top integral boundary condition
equation (2.55) using the anomalous magnetic scalar potential and the convolution

theorem which led to Hilbert transform integral of the vertical magnetic field.

Another alternative derivation of these boundary conditions which in addition

leads to the asymptotic boundary conditions on the vertical boundaries is presented
here. In this approach, the field F(ti,s) appearing in the integral of equation (2.47) is
expanded in Maclaurin series.

Taking cue from Brewitt-Taylor &Weaver (1976), the field F(n,s) in equation
(2.47), is expressed in terms of two well behaved functions %{r\,$) and ?2(ti,s) as,

r,nd /ifa.$ \ (n,s)AM--C— —]. ...(2.56)
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The equation (2.47) can now be rewritten as

FM --f/[AM fAM ^ 5)e ^. ...(2.57)
2^i n \n\

The functions f^.s) and f2(-n ,s), being well behaved functions, can be expanded in

Maclaurin series and thereby the equation (2.57) can be expressed as

FM =-iJ^^T^ +rXn^°^] P(n,zs)e-ydn...{2.5B)
tJl -oo n >o '/ \n i /-o !/

On interchanging integration and summation operations in this equation, one gets

2t>o !/ /7 |n| i,

The above series is integrated term by term and the integral Tj, in the general term of
the series, can be expressed as

TH^f^.J^I ...(2.60$
dy dyn

•* /s

where the functions p and q, related to the functions f, and f2 respectively, are defined

as

oo

p(y,z) =-1 (P(n,z)e">ydn ...(2.60$
27T •'

and

oo

q{y,z) =— fsgnnP(n,z)e-">rdri- ...(2.60$
2tt •'

-00

The equation (2.59) is the desired boundary condition which can be imposed at any

horizontal or vertical interface.
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2.5.2.3 Asymptotic boundary conditions

In order to validate this formulation and to establish its utility, the boundary

conditions are derived for the vertical boundaries and the results are matched with the

asymptotic boundary conditions of Weaver & Brewitt-Taylor (1978). For a given

polarization, the vertical boundaries are chosen with respect to the decay of

anomalous field within the domain. In B-polarization these boundaries are close as the

attenuation of anomalous field is rapid in the conducting earth. The position of these

boundaries is crucial for E-polarization as the domain extends up in the air where the

decay of anomalous field is very slow. This implies that the vertical boundaries valid

for the conducting domain are to be pushed farther in air and this may lead to a very

large domain of study. Therefore, the integral equation (2.59) is solved in air for E-

polarization with E replacing F. From equation (2.21a), the vertical component of

electric field, in air, is

dE . _
-^ =_/w3>- -(2.61)

The integration of the above equation with respect to z gives

E= -i(oB0z+ Cv ...(2.62)

where C, is the constant of integration. On taking care of the source field, from

equation (2.59), the electric field in air is modified as

• E(y,z) -CA -iuB0z- J-f £\{!lJM +IlM }e^e^dn. ...(2.63)
2^/o i/ n \n\ L

The term by term integration leads to the result

fM . C, -/coV- 'W.0) tan+JL -iM log,. - 1̂ lll^M
tt \z\ In n r2

+0{—). ...(2.64)

This expression converges for large r, where r = (y2+z2)1'2 and thus, the higher order

terms can be neglected. Here, a trade-off exists between accuracy and the number of

higher order terms retained in the asymptotic approximation. The truncated expression
is termed as asymptotic boundary condition (Brewitt-Taylor &Weaver, 1976) and can
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be used for any horizontal interface, s. The generalized boundary condition valid with

accuracy 0(1/rn) was given by Zhdanov et al. (1982). At air-earth interface, z = 0, the

equation (2.64) reduces to

E{y,0) =C, --^(0,0) ^sgny- -^^°^ +0{\). ...(2.65)
n 2 n y r2

Using the condition that E(y,0) - E±(0), when y - ± °°, the constant and the coefficients

are evaluated to be

„ £"+(0) + E(0)
C, - - V =E{0)

and /;(0,0) = t[Et{0) - E{0)] - /A£(0),

where E.(0) and E+(0) are the 1-D fields at the left and right boundaries respectively.

Substituting these values in equation (2.64) and neglecting terms of order higher

than(1/r), one gets

E(y,z) - E(0) /w£0z+ MM arctan ^-. ...(2.66)
71 \Z\

-\
I

This is the same asymptotic boundary condition as derived by Brewitt-Taylor &Weaver

(1976). The first term becomes dominant as z- -» and for y- + «, it reduces into the

boundary condition for 1-D fields,

F(±oo,2) = £-±(0)-/w£0z. ...(2.67)

Ascrutiny of equation (2.64) suggests that by adding the derivatives of field in vertical

and horizontal directions the terms of order (1/r) will cancel out automatically.

Therefore, the vertical and horizontal components ofthe electric field are computed by

differentiating equation (2.64) with respect to z and y respectively as

f--i.B0 , LU(m ,1*f .0( i) ...(2.684
dz tt i2- n r r

37



Formulation of forward problem

Fourier transform of equation (2.41) with respect to y is

F"{n,z) =c2F(n,z) ...(2.43)

where the prime (') indicates z derivative and the constant c2 is given by

c2 =(n2 +/a2) ...(2.44)

with a2- ulio. ...(2.45)

It may be emphasized here that in air, where a is zero, c2 reduces to 112. The solution

of equation (2.43) is

F{n,z) =F(n,s)P{r},z-s), ...(2.46$

where P(t],z-s) is the solution defined as follows

P(n,z-s) =e-{*-sU°{n) ...(2.46$

with YoOl) = c2.

The inverse Fourier transform of equation (2.46a) may be written as

00

F(y,z) =~^fF(n,s)P(n,z 5) e /nydn. ...(2.47)
-00

From the tabulated Fourier transforms (Erdeiyi, 1954), the inverse Fourier transform

P(y,z) Of P (T1.2) is

K\{y2 +z2)V2a0/i]

(y2 * z2)'
P{y>*- -TJ-^2— -(2-48)

where K, is the modified Bessel function of order 1. However, in air the equation (2.48)
reduces to

FM =~~~~^. ...(2.49)
TT y^+z
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Using the convolution theorem, equation (2.47) can be written as

CM

F(y,z) =— f F(v,s)P(y v,zs)dv. ...(2.50)
2TT

This equation provides the field value at interface z = s. However, the integral

appearing in equation (2.50) becomes singular at v = y when z = s. To circumvent this

singularity, constant function F(y,s) is subtracted from both the sides and, after using

the fact that the integral of function P(y,z) with respect to y is unity, one gets

00 00

F(y,z) -F(ys) fP(y~v,zs)dv= -1 f[F(v,s) F{y,s)]P{y v,zs)dv. ...(2.51)
j 2rr •>
-00 -00

Now at z = s, the left hand side of the above equation becomes indeterminant. This

difficulty is overcome by differentiating the equation (2.51) with respect to z to get

00 00

F'{y,z) - —[F(y,s) (P[y-v,z-s)dv] =•!• (~{[F(v,s)-F(ys)] P{y-v,z-s))dv
dz i 2tt.jx8z

...(2.52)

The differentiation in equation (2.52) gets simplified as the factor (z-s) ensures that the

term involving the derivative of integral vanishes when z = s and the integral on right

hand side is interpreted as Cauchy Principal value. This Neumann boundary condition

can be imposed on any horizontal interface at the vertical level z = s. In particular, at

s = 0-, the air-earth interface, the equation (2.52) reduces to

oo

F'(y,0-) =- ([F(KO)-F(y,0)) ~rdv. ...(2.53)

Similarly, at s = d+, the bottom interface within the lower half-space, equation (2.52)

becomes

F>(y,*) ♦ oJiFiy,*) -^mf[F(v.+) -F(y.+)] K^^a/ildv. ...(2.54)

These equations are valid only in the absence of sources. Since we assume that the
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and

BE i zjjOO) / £(0,0) 1
T~ = ~ 5 S- + °(~1,)- ...2.68$

Multiplying equation (2.68a) by z and equation (2.68b) by y and adding the products

into equation (2.64), one gets the following more accurate mixed boundary condition

(1 +yd +z | )F(y,z) ~ £(0) - 2/go£0z+ A£(0) arctan r . ...(2.69)
dy dz n \z\

Here, the terms 0(1/r) get cancelled while the terms of 0(1/^) have been neglected.

This is more precise as the error is 0(1/^). On the air-earth interface (z = 0) the
equation (2.69) simplifies to

(Uyj-)E{y,0)*Et{0). ...(2.70)

The field decay is very rapid within the conductor, hence its second order

derivative with respect to y can be neglected for large but finite y. In that case the

governing E-polarization Helmholtz equation, for large y, becomes

E"(y,z) =-iu(xoE{yz). ...(2.71)

The solution of this equation is

E(yz) E{y,Q)0*** ...(2.72)

where E(y,0) is the surface field. At large horizontal distances, the field behaves like

that in a layered earth and becomes one-dimensional. The solution of equation (2.71),
for y =+» reduces to

Et{z) =E±(0) e*** ...(2.73)

where E(«,z) =Et(z) and £(«,0) =Et(0).
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Here, Et(0) and Et(z) are the 1-D field values at the surface and within the subsurface

respectively. Inside the conductor, the field becomes near zero well before the domain

boundaries. When the boundary is placed at infinity, the surface field values are E±(0)

while for boundaries at finite distance these are E(y,0) (Fig. 2.5). Therefore, the field

within the conductor is scaled in terms of the modified surface field values as

E(y,z) = E(y,0)
EM

.(2.74)

E_(0) E(y,0) E(y,0) E+(0)

z = 0

E(z) E(y,z) E+(z)

Fig. 2.5 Position of vertical boundaries when asymptotic boundary conditions are used.

This equation governs the field behaviour on the side boundaries of the domain. The

equations, (2.69) and (2.74), constitute the asymptotic boundary conditions and result

in reduction of the horizontal extent of the domain for E-polarization.

2.6 Solution of EM boundary value problem

The partial differential equation (2.22) or (2.23) together with the integral

boundary conditions (2.54) and (2.55) and the asymptotic boundary conditions (2.69)

and (2.74) define the complete EM boundary value problem. Analytic solutions of 2-D

problem exist only for idealized situations, the non-idealized problems are solved, in

general, using numerical methods. The implementation of a numerical method is

discussed in detail in Chapter 4.

Any numerical method reduces the BVP to a matrix equation such as

CF S, ..(2.75)
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where C is the coefficient matrix depending on the resistivity distribution, F is the

unknown field component vector and S is the known right hand side vector depending

upon the known boundary/1-D fields. For computation of right hand side vector S, the

1-D solution at the side nodes should be known. Therefore, first the solution of 1-D EM

problem must be obtained.

2.6.1 One-dimensional EM problem

The 1-D layered earth model is shown in Fig. 2.1 a where resistivity is a function

of only z. The layer resistivities are p,'s, I being the layer index ranging from 1 to N.

The 1-D EM problem can be solved analytically. Several texts have presented

alternative formulations of 1-D solutions, e.g. Keller & Frischknecht (1966), Wait

(1982), Ward &Hohmann (1988) and Weaver (1994). Weaver (1994), in Appendix A

of his book, has discussed the 1-D solution in compact form.

The basic steps of all these variations involvethe development of a recurrence

relation for computation of the response function at the layer interfaces. The values

evaluated at the air-earth interface are scaled with respect to the constant magnetic

field in air. Once the field is evaluated at the surface, it is computed at the other

interfaces using the already developed recurrence relation in reverse sequence.

The derivation ofthe response function, in terms ofa power series expansion,

is presented here. It is the basis of the Straightforward Inversion Scheme (SIS) of

Gupta et al. (1996), which is used in the present study for 1-D data inversion,

discussed in Chapter 3.

The surface impedance of an N-layered Earth, resting on a half-space, is

obtained by solving the appropriate 1-D Helmholtz equation, (2.24) or (2.25), subject

to the boundary constraints of continuity of the tangential components of EM field at

each interface. One can write the downward looking impedance Z, (Pedersen &

Hermance, 1986), defined as the ratio of horizontal orthogonal electric and magnetic

field components, at the top of the l-th layer, in terms of the following recurrence
relation

1 +R, e '2k'd'
Zi~-Z°' ^T7' /= 1,2,—,/V 1 ...(2.76)

1 - R,e -2k,d,
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where R„ the reflection function, is

Fir
zo/ _-5+1

...(2.77)

Here d, is thickness of the l-th layer. The intrinsic impedance zol and the propagation

constant k, are defined as

*6r ...(2.78)

and

k,= JTiojJof .(2.79)

The impedance at the surface of the deepest half-space is given by

^N~ Z<W ...(2.80)

Let the thickness d, of each layer be chosen in accordance with the equal

penetration depth criterion introduced by Kunetz (1972) and Loewenthal (1975) and

subsequently used by Parker (1980) to define his proxy parameter 'P' in H+

formulation. This choice would result in d/6, = a, a constant. Here 5,, the unit

frequency skin depth of the l-th layer, is

\
1l
TlfJ,

Now, let us define a parameter u as

u=0-z(uj)«Sft w=2nf.

...(2.81)

.(2.82)

where f is the linear frequency in Hertz. The two fold relations between impedance and

reflection function, equations (2.76) and (2.77), can be reexpressed, after some

algebraic steps, as the following recurrence relation for reflection function

/1 UR,(u)rM ...(2.83)
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with /?M1(</) =0, RN{u) =rNu

and R^(u)= r"U+^ u. ...(2.84)

Here, r„ the reflection coefficient at the l-th interface between the l-th and the (l+1)-th

layers, is given by

«.*£**..&£&. ...,2.85,

Now, since

\u\<l and \R,\<-\

the reflection function R,(u) can be expressed in terms of a power series in u
(Appendix 1) as

*/<")=£ R,mum- ...(2.86)
m= 1

Using this expression for R,(u) and RM(u) in equation (2.83) and performing some
simple algebraic steps (Appendix 1), the following recurrence relation between the

coefficients of same powers of u in the power series of RM and R, is obtained

Ri-\,\ =0-v ...(2.87)

/77-1

*=2

RM,m ~rU Ri, m-i ~fn Z R/, m-k RM,# ...(2.88)

with r/A - 1 - if_v

The expression for Z,(u) at the top of the l-th layer can also be written as the following
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power series

Z,(</)=v7^£ c,mum. ...(2.89)

For m>0, the coefficients, c,m, would be related to Rlm as

olm-Y.R,miClt -(2.90)
/-o

whereas

<vo =/p, -(2.91)

Equations (2.85) to (2.91) can be employed to compute the impedance at the air-earth

interface corresponding to I = 1.

Since the coefficients clm's are real, both the real and imaginary components

of impedance can be obtained simply by retaining the real and imaginary parts of the

term v/(iwp)um in the series. These can be respectively expressed as

[(/wm)1/2 um\Ra =4^2 emp [Cosmp +S/nmp] ...(2.92$

and

[(/M1'2 um]lm- -v^2 e-mp [Cosmp - Sinmp] ...(2.92$

where /3 =2 aVf.

Once Z,'s are evaluated, the magnetic field at the air-earth interface can be

computed by F, = 2B0, where B0 is the constant primary magnetic field in air. This

magnetic field value can be used to compute orthogonal electric field component using

Zv These EM field components can be continued downward using Z,'s in reverse

sequence.
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2.7 The response functions

The solution of EM boundary value problem provides the field values. The

obtained field values can be transformed into other field components by using

appropriate Maxwell's equations. These values measured at the surface of the earth

are the observations/data for the EM inverse problem. Since observations do not

evince any direct information about the physical property, i.e. electrical resistivity,

derived observables (response functions) are obtained from these. Although these
observables do not present a direct functional relationship with the subsurface

resistivity, yet these do reflect the bulk information about the resistivity distribution.

Such information is very helpful in designing the initial guess model for inversion. The

explicit relations between several response functions and the field component values
have been developed in literature (Cagniard, 1953; Schmucker, 1970).

The choice of response function is governed by the goal of study, whether the
interest lies in lateral or vertical variation of resistivity. The spatial variation of resistivity
can be studied in two modes. First is profiling, where, for a given frequency, the
observations are taken at points along a profile. Second is sounding, where, for
different frequencies the observations are taken at a single point. Profiling helps in
delineating lateral variations while sounding deciphers the vertical variations of

resistivity. To discover lateral variations at different depth levels, soundings must be
performed atseveral points along a profile oralternatively profiling must be carried out
at different frequencies. The Magneto-Tellurics (MT) uses sounding mode while
Geomagnetic Depth Sounding (GDS) uses profiling mode for studying the subsurface
resistivity distribution.

The details about these methods and their applications are available in

standard references like Kaufman &Keller (1981), Rokityansky (1982), Berdichevsky
&Zhdanov (1984), Nabighian (1988,1991) and Vozoff (1990, 1991).

The geoelectromagnetic methods use the natural earth's magnetic field with
time periods ranging from fraction of a second to several years or the frequency
ranging from 104 Hz to 104 Hz. The variations in the period ranging from 10 min to 24
hour are particularly suited for mapping electrical inhomogeneities in earth's crust and
upper mantle. The MT and GDS methods employ the ratio of different field

components as response functions. These functions are independent of strength of the

44



Formulation of forward problem

primary signal and are dependent only on the electrical properties of the earth. In MT,

the response function, impedance, is the ratio of horizontal and mutually perpendicular

electric and magnetic field components whereas in GDS it is the ratio of vertical to

horizontal magnetic field components.

The definitions of these response functions, based on linearity of Maxwell's field

equations, present the linear relationships between the different field components as

Ex=axB^pxBy ...(2.93$

Ey=ayBy +PyBy, ...(2.93$

and Ey--azBx +pzBy. ...(2.93$

where a's and P's are complex constants. The first two relations, equations (2.93a)

and (2.93b), are used to derive the MT response function, whereas the third one,

equation (2.93c), is used to define the GDS response function. The response functions

used and their relations with resistivity are outlined here.

2.7.1 MT response function

The MT method was first described independently by Tikhonov (1950) and

Cagniard (1953). Under the plane wave assumption, the ratio of the observed

horizontal electric field (Ex or Ey) and the orthogonal horizontal magnetic field (By orBx)

at the surface of the layered earth is called the impedance

Z-M^-M-J. -<2-*>)

The impedance values are used to define the commonly used MT response

function, apparent resistivity, as the resistivity of an equivalent half-space that gives

rise to same impedance value. The apparent resistivity, pa, and the impedance phase,

<j>, are respectively given by the relations

9a-—\A2 -(2-95)
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and

0 =tan-1[-^i^]. .(2.96)

with 0° <. (J) <, 90°. For a homogeneous half-space, the phase of impedance will always
be 45°. Further, the phase is more sensitive to change in frequency than the apparent
resistivity.

The earth rarely behaves as a one-dimensional and isotropic model, therefore,
the apparent resistivity and phase defined above have only limited utility. To describe
anisotropy or higher dimensionality, Cantwell (1960) introduced a rank 2 impedance
tensor Z as

or

(Ex\

KEV,

(z z \
xx xy

\ yx yyj

E--\A\B\

(B\B

KBy,

where Z^, Zyx are the principal and Z

^=4k=0

and

xy z/r

.(2.97)

...(2.98)

(I ^-yy are the additional impedances. For this

definition to be compatible, in case of 1-D earth, with the formulation of Cagniard
(1953)

For 2-D model, the coordinate system is so chosen that the x- axis coincide

with the strike direction of the model. In such cases, it is required to calculate apparent
resistivity in two orthogonal directions (Reddy &Rankin, 1973),

1
'xy

E F 2

(Ofu. Hv co Bu .(2.99)
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and

9y*= Ll§|2^lf|2 -(2-100)
X

Normally, the measurement axes are laid out insome predetermined directions

so that the measurement coordinate axes will be at some arbitrary angle to the

regional geologic strike. Therefore, it will be necessary to mathematically rotate, by

seeking the minimum of additional impedances, the impedance tensor to the principal

directions. In case ofa perfectly two-dimensional model, Z^ and Z^ will be zero.Thus,

(o Zji

KZy* °,
.(2.101)

2.7.2 GDS response function

The variations in geomagnetic field recorded on the surface are the sum of fields

due to external and internal origins. The GDS method utilizes the temporal variations

in internal field which consists of a normal and anomalous part, the latter being

interpreted in terms of resistivity signatures. However, the anomalies observed in the

variation studies may be due to either external or internal sources. This forms the

basis and objective of GDS (Rokityansky, 1982).

In 1-D earth, where lateral variations are not present, the observed fields are

the vector sum of external and internal fields and referred to as normal field

components (Schmucker, 1970). In the most simple form the effect of local resistivity

anomalies shows up in vertical component as distortion effects are superimposed on

the near vanishing 'normal' Bz field. Although anomalies of comparable magnitude are

produced in x and y components, yet these are small in proportion to the background

normal fields and hence cannot be easily seen. Bz is a totally anomalous field being

zero for 1-D models. For 2-D structures, since the Bx component does not exist for E-

polarization, the equation (2.93c) gets simplified as

Bz =pzBy ...(2.102)

This equation defines the two-dimensional GDS response function known as Induction
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vector, given by

B,
'iy=<-£' ...(2.103)

For 3-D models the real and imaginary parts of the complex constants a and p are

combined to form 2-D vectors called the magnetic response function. These vectors,

termed as 'induction arrows' or 'perturbation vectors', are drawn as lines ongeographic

maps and contain information about the depth and lateral extent of the conductive

structure.

2.7.3 Transformation matrices

It may be added here that the derived response functions can be written in

matrix notation as

R= 7F> ...(2.104)

where R is the derived response function vector, T is the transformation matrix derived

from the relationship between the response function and the respective field
components and F is the corresponding field component vector.

2.8 Closure

The governing Helmholtz equations and the requisite boundary conditions

define an EM boundary value problem which is solved using some numerical

technique. The solution in the form of field values/components do not contain direct

information about the resistivity, therefore, response functions are derived from these.

The derived response functions will be used as data for inversion as discussed in
Chapter 3.
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CHAPTER 3

FORMULATION OF
EM INVERSE PROBLEM

3.1 General

Data inversion is an educated interpretation exercise. It is more objective than
the simple quantitative data interpretation where one is only interested in a model
whose computed response fits the observed response. The aim of geophysical data
inversion is not only to infer, from a given set of observations, as much information
about the earth system as possible, but also to appraise the quality of inference
together with its level of confidence. For undertaking parametric inversion, the system
is defined in terms of the data and an operator. The latter is characterized by physics
of the problem and distribution of physical parameters of the model. The
interrelationship of data and operator govems the system characteristics.

In EM data inversion, the observed field values are interpreted to estimate the
unknown subsurface spatial variation of resistivity. The resistivity within the earth is a
continuously varying function p(x,y,z). Since it can vary arbitrarily, in general, infinite
parameters are needed to describe it precisely (Parker, 1977). The retrieval of general
3-D variation of resistivity, from the 2-D data procured over the air-earth surface, is not
feasible. According to Bailey (1970) and Weidelt (1972), only 1-D EM problem can
theoretically have a unique solution under idealized conditions and that too when the
data is defined as an exact distribution. However, the observations will always be finite
in number. As a result, the EM inverse problem becomes a grossly underdetermined
one. This implies that there may exist an infinity of models whose response will match
the observed data equally well. Such an eventuality is termed as 'non-uniqueness'.
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The observations are, in practice, corrupted with natural, observational and

instrumental noise. These erroneous observations may lead to inconsistency and

instability in the system. The inconsistency arises as a result of incompatibility of the

chosen model with the noisy data set. For an inconsistent system, the exact solution

does not exist. The instability is a characteristic of the operator which gets highlighted

in the presence of erroneous data. Due to instability, small errors in data may lead to

large errors in estimated parameters. Therefore, the non-uniqueness, inconsistency

and instability of the inverse problem suggest that the system under study is a

degenerate one.

On every count, postulated by Hadamard (1932) to define a well-posed

problem, the EM inverse problem is an ill-posed one due to insufficient and inaccurate

data (Jackson, 1972). The goal of data inversion is to design algorithms which can

alleviate this ill-posedness and yield approximate solution of such problems. Some of

the techniques, used for this purpose, are discussed here.

3.2 Alleviation of ill-posedness

The exact solution of an ill-posed EM inverse problem may not exist. If it is so,

the next best step is to look for schemes which can provide an approximate solution

having essential features of the exact solution. In such schemes an attempt is made

to regularize the problem. For regularization the ill-posed problem is replaced by an

equivalent well-posed one which possesses a solution that can be treated as an

approximate but reasonable solution of the original problem. Techniques used for the

regularization are widely discussed in literature, particularly in the standard references

like Backus &Gilbert (1967,1970), Sabatier (1974), Parker (1983), Tikhonov &Arsenin

(1977), Twomey (1977), Parker &Whaler (1981), Menke (1984), Oldenburg (1984),

Tarantola (1987), Hohmann & Raiche (1988), Hjelt (1992), Treitel et al. (1993), Meju

(1994) and Oldenburg (1994). A good review of the techniques used for solving EM

inverse problem is given by Sarkar et al. (1981b).

Various schemes developed for solving ill-posed problem are, in general,

introduced in matrix notations. For a given problem, let m and n be the number of

observations and unknown parameters respectively. The inverse problem can be

expressed in matrix form as

Ax-b. ;5SJ* ...(3.1)
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Here, A is the m x n coefficient matrix which simulates physics of the problem, x is the

n x 1 unknown parameter vector and b is the m x 1 known observation vector. The

equation (3.1) can be interpreted as the mapping, by the matrix operator A, of an n-

dimensional vectorx to the m-dimensional vector b. The solution of this problem seeks

the operator which would map the right hand side vector b to an n-dimensional vector

x.

The inverse problem can be solved when its inconsistency, non-uniqueness

and instability are controlled. These negative characteristics of the system may exist

eitherconcurrently or one at a time. The means that can be employed to handle these

features are discussed one by one.

3.2.1 Inconsistency

Theinconsistency presentin a systemis basically an interplay of the coefficient

matrix A and the data vector b. If the vector b can not be expressed as a linear

superposition of the column vectors of the matrix A then inconsistency arises. To

handle it, all one can do is to lower the acceptance level or quality of acceptable
solution.

3.2.2 Non-uniqueness

The quality of inversion largely depends on parametrization that is on the

choice of model parameters and the derived data needed to represent the model. The

choice of model is always made on the basis of a priori information. The a priori
knowledge in EM data inversion is derived from the geological information orfrom the

results of other geophysical methods. This helps in better approximation of real earth

models and, in turn, in improved interpretation (Jackson, 1979; Whitall, 1986). The

non-uniqueness of EM inverse problem can be rendered by restricting the complexity

of earth models. Aclass of simplified models, like a layered earth or the regular well
shaped body, can be used as an approximation of the real structures. A 3-D model

can be approximated by a 2-D or 1-D model depending upon the variation of physical
parameters and the source characteristics. The reduction in dimensionality of the

model results in smaller parameter space. The parametrization of real earth in terms

of finite dimensional models helps in reducing the non-uniqueness.
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3.2.3 Instability

The instability in a system implies that small changes in data may lead to large

changes in parameter values. Basically, the root cause of instability is ill-conditioning

ofthe coefficient matrix. An ill-conditioned matrixhas a large condition number, defined

as the ratio of the largest to smallest eigenvalue. It may be emphasized here that

although instability is inherent in the system, yet it is reflected only in the presence of

errors in computations and/or data.

In geoelectromagnetics, the equivalence is a commonly encountered problem

for layered earth models. Under equivalence, one can not determine the layer

resistivity and thickness independently, however, their product can accurately be

estimated. Due to this layer parameter coupling, the poor resolvability of individual

parameters leads to instability. However, the resolution of product itself, which

represents a bulk parameter, reduces both the non-uniqueness and instability.

Some of these measures of alleviating ill-posedness of the inverse problem

have been employed in the formulations of the 1-D/2-D EM inverse problem presented

here.

3.3 Classification of inverse problems

The system defined by equation (3.1) can be classified on the basis of rank of

the matrix A. The rank, p, is defined as the maximum number of independent rows or

columns of the matrix. If the rank is equal to the minimum of m and n, the system is

called 'full ranked', else it is termed 'rank deficient'. In simplified form, it can be stated

that for

full ranked system p = min (m,n)

while for

rank deficient system p < min (m,n).

An alternative classification of the system (3.1) can be given in terms of the relative

values of m and n. The categorisation can be listed as

(1) Evendetermined for m = n,

(2) Overdetermined for m > n and

(3) Underdetermined for m < n.

For a full ranked system the evendetermined, overdetermined and underdetermined
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cases are termed as 'perfectly evendetermined', 'perfectly overdetermined' and

'perfectly underdetermined' respectively. Since the exact solution exists only for the

perfectly evendetermined case, one has to look for approximate solutions for the

remaining cases. For the perfectly overdetermined and underdetermined cases,

operationally one has to look for operators which can transform the rectangular

coefficient matrix to a full ranked square one. Instead of listing the operational steps

ofvarious inverses, the logical sequence ofobtaining these inverses is presented here.

3.3.1 Least square inverse

A perfectly overdetermined system may suffer from inconsistency. The

inconsistency may be ascertained by determining the rank of augmented matrix [Alb].

If it issmaller than the rank of original matrix Athen the system is inconsistent. In such

a case, instead of looking for zero misfit, a minimum error solution is sought. The

model parameter vector, which minimizes the misfit between the model response and

the observations, is accepted as the desired solution. For this purpose, the norm, <J>,,
of the residual vector, e, is minimized. The minimization problem can be stated as

minimize 0,=- eTe, ...(3.2)

where e= b-Ax. ...(3.3)

The least square solution of equation (3.1), obtained by minimization of cj), with respect

to the components of the unknown vector x, can be written as

*= V4 ...(3.4)

where A? =(A TA) 1/1 T ...(3.5)

is termed as 'least square inverse' of matrix A (Lawson &Hanson, 1974). Here, the

superscript T and -1 stand for the matrix transpose and inverse operations

respectively. Generally the L, norm isusedas it results in a linear system of equations.

Further, it yields the best estimate when the error follows Gaussian distribution. It may
be emphasized again that the least square solution is a result of lowering the
acceptable level of accuracy of the solution.
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3.3.2 Minimum norm inverse

For the perfectly underdetermined system, the observations do not provide

enough information for unique determination of all the model parameters. As a result,

an infinity of solutions will exist for such a system. Therefore, some extraneous

constraints need be applied to seek a unique solution. For this purpose, the length of

the solution vector x is commonly minimized, subject to the constraint that the solution

satisfies the matrix equation (3.1). This constrained minimization problem can be

stated as

minimize <pm- xTx, ...(3.6)

subjecttoAx= b ...(3.7)

The minimum norm solution is obtained as

X= A^b, ...(3.8)

where Aj - A\AA r)~1 ...(3.9)

is the minimum norm inverse of matrix A. For the constrained minimization of the

objective function, <J>m, the Lagrange's method of undetermined multipliers is used. The

obtained solution is unique with respect to the chosen objective function.

3.3.3 Regularized inverses

The above two solutions exist only for the full ranked systems for which the

respective coefficient matrix products, ATA and AAT, appearing in their definitions, are
non-singular.

A rank deficient system is overdetermined or underdetermined, depending

upon the values of m and n. However, inherently it is underdetermined as p < n. As

a result, the inverse problem is neither completely overdetermined nor completely

underdetermined. Itmay be termed as a 'mixed determined' problem for which one can

neither seek the least square nor the minimum norm solution. For its solution, a new

objective function, 4>r, which minimizes a combination of the norms of error and

solution vectors, is defined as

0A=€(fir$ +(1 -<i)xTX. ...(3.10)
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In equation (3.10), e is a trade-off parameter that determines the relative importance

being given to the minimization of error or solution vector norms. The value of e can

vary between 0 and 1, leading to the minimum norm and the least square solutions for

these two extreme values. The objective function (3.10) can be written, in modified

form, as

4>r/= eTe +l2xTx ...(3.11)

or

<prm =vere+xrx, ...(3.12)

where X2 =^—^ and v2 =—.
6 A2

Equation (3.1), when solved using this objective function, provides a solution

analogous to the solution for perfectly overdetermined and perfectly underdetermined
cases respectively, as

x=(ATA +k2/)'ATb ...(3.! 3)

and

x=AT(AAr+v2/)'b ...(3.14)

In the above expressions the parameter Aor u play the role of a damping
factor which prevents theunbounded oscillations in the solution. Therefore, the method

is also known as 'Damped least square' or 'Damped minimum norm' method. This

method was independently developed by Tikhonov, Phillips, Twomey and Marquardt
in early sixties and is popularly known as 'Ridge-regression' or 'Marquardt method' in
geophysical literature with Aor u being termed 'Marquardt parameter' (Marquardt,
1970). As such, there is no precise criterion for choosing Aor u and, in general, the
experimental experiences are used to determine it. Initially one starts with a large
value of Aor u and keep on decreasing it till high oscillations set in the solution or the

desired numerical accuracy is achieved. In the former case, the solution corresponding
to the previous value of Aor u is accepted.

The ridge-regression method can also be used for full rank systems when the
coefficient matrix is ill-conditioned. The impact of small eigenvalues gets reduced by
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the addition of Marquardt parameter Aor u to these. The enhanced eigenvalues result

in improved stability. In a similar manner, a rank deficient system can also be solved

using this method.

3.3.4 Weighted inverses

Some observations are, in general, more accurate than the others. This a priori

knowledge can be used in assigning weights to scale the observations accordingly.

The more accurate observations will be assigned higher weights in comparison to the

less accurate ones. The model parameters can be obtained by introducing weighting

matrices, We for error vector and Wm for solution vector respectively. The inverse of

data error co-variance matrix, whenever available, is the most widely used weighting

matrix We. If not available, one may employ a diagonal matrix with inverse of data

errors as the diagonal entries. The Wm is constructed on the basis of the smoothness

or other constraints imposed on the solution vector. The new objective functions,

weighted residual or weighted length, are respectively defined as

<$>„,-eTWge ...(3.15)

and

********* -O-16)

The solution corresponding to these objective functions, termed as the 'weighted least

square' and the 'weighted minimum norm' solutions, are

x ={ATWgA) M TWeb ...(3.17)

and

x =WmA T{A WmA T)A b. ...(3.18)

Analogous to the weighted least square and weighted minimum norm solutions

for the perfectly overdetermined and underdetermined cases, the weighting can also

be applied to the ridge-regressed solutions. The solutions for these two cases,

depending on the values of m and n, will be

x =[ATWgA+\2Wm]^ATW0b ...(3.19)

and

x-W^A T[A Wj A r+ A2 We' ]b -(3.20)
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The special smoothness features desired in solution can be achieved by minimizing

the norm of higherorder differences of x components. Higher the order of difference,

smoother the solution. The trade-off then is between smoothness and finer details of

the solution. Ridge-regression is having simplestsmoothing function where norm ofall

the difference vectors of the unknown vector components is zero. In Occam's

inversion, the norm of first order differences are minimized (Constable et al., 1987).

Tikhonov regularization provides the flexibility that any a priori knowledge of system

can also be translated in terms of a function and used as a constraint. All these

inverses are one or the other kind of generalized inverses of matrix A (Rao &Mitra,
1971).

3.4 Appraisal of solution

Apart from deciphering the information about the model parameters, one also

wants to know about the resolving power of data, types of models that satisfy the data

and the effect of inaccuracies present in data. The resolution and resolvability of a
model provide its appraisal (Parker, 1980; Oldenburg, 1984; Hohmann & Raiche,

1988). Its main purpose is to find the unique properties of all acceptable solutions that

fit the observations at an acceptable level of confidence.

3.4.1 Measures of misfit

The simplest and most popular measure of quality of inversion is the degree

of misfit between the computed and the observed responses. Smaller the misfit, better

the estimate. For estimation of misfit, the commonly used parameters are the absolute

root mean square (rms) error and the relative rms error between the observed data

and the computed data, respectively, defined as

M

I
/ 1

eaz =Z[Ff°-F,e]i/M ...(3.21)

and

M

^£ \{F°-F')IF°\2IM. ...(3.22)
/=i

After computing this misfit, the quality of model is appraised by undertaking hypothesis
testing, using the significance tests like the F-test, Chi-square test. Quality or
effectiveness of the solution is determined by the variance of the parameters.
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Generally, the model which yields the best fit with the observed response is

accepted. But the mathematically best fit model may not ensure a geologically

reasonable model. If the model is geologically irrelevant, the parameters extracted from

it will be meaningless.

3.4.2 System characteristics matrices

The inherent characteristics of the system can be deciphered by studying the

behaviour of information density and resolution matrices. The quality ofsolution, ofan

iterative method, largely depends on the choiceofstarting model. Thus, the behaviour

of information and resolution density matrix can help in appraisal of the solution.

3.4.2.1 Information density matrix

The information density or data resolution matrix, Sm, characterizes the m-

dimensional data space and is defined as

Sm=AAg- ...(3.23)

Here Ag-1 is any one of the generalized inverses of the matrix A. This m x m square

matrix is a measure of independence of data. It describes the structure of misfit

between the computed and the observed data. If Sm=lm, lm being the m x m identity

matrix, all data values are independently contributing and the misfit is zero. This

implies the exact matching of computed response with the data.

3.4.2.2 Resolution density matrix

The model resolution matrix Rn, characterizing the n-dimensional parameter

space, is defined as

RnAgA ...(3.24)

The matrix Rn is a measure of resolvability of parameter. When Rn = ln, each model

parameter is uniquely resolved. If Rn is not an identity matrix, then estimates of model

parameters are the weighted averages of a set of true parameters.

3.4.2.3 Dirichlet spread function

Another measure of quality is the spread of diagonals of resolution matrices.

The resolution spread, based on the L, norm of differences between resolution matrix

and the identity matrix, is termed as 'Dirichlet spread function'. For ideal case, when

Rn = I, spread (RJ =0.
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3.5 Experiment designs

The matrices Sm and Rn highlight the characteristics of the system. Their

deviation from corresponding identity matrices gives an idea as to how much

confidence one can put in the system. If Sm(Rn) is a diagonally dominant matrix with

few adjacent off-diagonal elements being non-zero, then all the data

values(parameters) are significantly(uniquely) contributing(resolved), but these are not

entirely independent. If Sm(Rn) is not diagonally dominant then the data(parameter) is

not able to contribute(get resolved) significantly (uniquely) to(by) the interpretation

based on current model and these are not independent also. The

insignificant(unimportant) and the irrelevant data(parameters) resultfrom ill-posedness

of the inverse problem.

The information or the resolving power of data can be seen through these

matrices without actually performing the experiment. Therefore, these matrices can be

fruitfully used in experiment design exercises to improve the quality of resolution of

procured data.

3.6 Solution of EM inverse problem

The EM forward problem comprises computation of the response of a known

model with prescribed resistivities. The Helmholtz equation, which governs the EM

phenomenon, is solved using finite difference method and the final matrix equation is

CF= S. ...(3.25)

Here, C is the coefficient matrix depending on geometry and resistivity of the model,

F is the unknown field component and S is the known right hand side vector derived

from the boundary conditions. The field value, and therefore the response function

derived from it, is a non-linear function-of resistivity. Hence, the EM data inversion,

which is evaluation of model resistivity parameters from a given set of observations,

is a non-linear problem.

3.6.1 Different methodologies

The non-linear inverse problem can be solved using any one of the three

approaches. First, transform the non-linear problem into a linear one and solve for the

transformed parameters using a standard linear method. Second, quasi-linearize the

non-linear problem to set up a linear problem in perturbations and solve it iteratively.
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Lastly, use non-linear methods, like simulated annealing and genetic algorithm, for

solving the non-linear inverse problem. The inversion of transformed linear problem is

a single step procedure. For quasi-linearized and non-linear methods, however, the

procedure becomes iterative as the current model is successively improved until the

error measure is small and parameters are stable.

3.6.1.1 Trial and error method

The trial and error or curve matching method of quantitative data interpretation

is not only one of the earliest ones but still the widely used one. Starting with a general

model, the parameters are judiciously selected from a set of predetermined values. If

the agreement between the computed and the observed response is good, then the

model is accepted. In case of poor agreement the model is updated according to

drawn conclusions. This process continues till one gets the good fit. Whereas in data

inversion, the selection is based on certain criteria . The quasi-linearization method as

well as the other non-linear methods which are used for inversion, can all be viewed

as guided search methods.

3.6.1.2 Non-linear methods

The non-linear methods, i.e. simulatedannealing, genetic algorithm (Goldberg,

1989), are still in developmental stage. Dosso & Oldenburg (1991) used simulated

annealing for construction of extremal models for fitting 1-D models to MT data.

Schultz et al. (1994) used genetic algorithm to explore the possibility of solution of 1-D

MT problem. These algorithms can not gain popularity due to their poor economic

viability.

3.6.1.3 Direct and quasi-linearized methods

The direct algorithm of transforming the non-linear problem to a linear one

scores over the iterative ones, as it does not need an educated guess of the model

parameters to start the inversion process. In iterative methods, closer the initial guess

to the true model, faster is the convergence. Therefore all the available a priori

information is used while choosing the initial guess model. In direct methods, however,

the a priori information can not be incorporated directly. It has to be incorporated in

the form of a constraint and this necessitates modification of the algorithm. Hence,

choice of the inversion method, direct or iterative, is made keeping in view their

respective merits and demerits. Since the initial guess model controls the quality of

inversion in iterative algorithms, a proper choice of model and its parameter set will

lead to a stable solution.
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A 2-D inversion algorithm needs a good 1-D model for implementing boundary

conditions. For generating initial models, a 1-D inversion algorithm Straightforward

Inversion Scheme (SIS) (Gupta et al., 1996) has been adapted for the present work.

In SIS, the non-linear problem is solved by transforming it to a linear one. The basic

formulations of the two algorithms SIS and EM2INV are discussed here.

3.6.2 SIS algorithm for 1-D inversion

The SIS works with a layered earth model. It reduces the degree of non-

uniqueness by choosing a model with layers of uniform thickness, thickness being

expressed in units of skin depth. This way the layer thickness variable is eliminated.

Further the elimination of layer thickness parameter, appearing in exponential term of

the forward recurrence relation, alleviates the degree of non-linearity. The starting point

of the algorithm is recurrence relation for the reflection function (vide equation 2.83)

restated below

R[iuh^u
/1 ^R^u)^

Here, u, defined as

u^ e
2 (1 * i) af

...(3.26)

...(3.27)

is used as the variable of the following power series expression used in Chapter 2 to

compute impedance at the air-earth interface,

Z,(u) =yf/lojl £ clmw
/77=0

This relation can be rewritten in a matrix form as

UcZ„

where the coefficient matrix,

U- yfiwji

4 2
1 Uy UA

., 2
1 Ur, U?

1 U, Uj

um u2m

u

Uo

uj

u'
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the unknown column vector,

and the known impedance vector,

Zr[Zf(uJ,Z,(u2) Z,(uM)]r.

The minimum norm solution of equation (3.29) can be written as

cUTW -(3.30)

with

W[UUT]'Zt -(3.31)

The estimated solution vector c is used to assess the quality of inverse solution by first

computing the response vector

Z, = Uc -(3.32)

and then the misfit parameters absolute rms error ea and the relative rms error er

between the observed data Z, and the predicted data 2,. The equation (3.30) will yield
a unique solution only when equation (3.29) is consistent and the matrix U is full rank.

However, in the case of field data, where the inadequacy and the random errors of

measurement make consistency impossible, one may seek a regularized minimum

norm solution given by

c =UT{UUT+E)1Z, ...(3.33)

where E is the data error co-variance matrix. In case the error co-variance matrix is

not available it can be approximated by e2l, e being the average noise to signal ratio.

Equation (3.30) provides that

N
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c/o =£ {^i wr VP/ ...(3.34)
/ 1

and

0/m =lZ^m^n "»0- -(3.35)
/
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It may be added here that N is a sufficiently large number (between 1000-2000) so

that the contribution of remainder terms of the power series is negligible. The forward

recurrence relation between the coefficients of power series for two layers is rewritten

as

Clm =Rlm C/0 +R,,m-\ <71 +Rl,m-2 CI2 +-• +R/2 Cl.m-2 "Rn Vi" -l3-36)

The coefficients Rlm can be related to clm from above equation as

2i/pT Rlm ~- °lm R/o ' ct ^ Rn -clm2 R/2 -... c/2 R/m2- c„ R, mV ...(3.37)

Consequently, the following inverse recurrence relation is developed through equation
(2.88)

.. /77-1

R,^ =~[RM,m+rM £ R,^kR,.u].
0-i k=2

.(3.38)

The various reflection coefficients, r, and the layer resistivities p,, can be obtained as

rr Rn ...(3.39)

and

1 + /?,. .
Pai=It—«"] P/- -(3.40)

Once the resistivity of the l-th layer is obtained, its thickness can readily becomputed
through the expression

dra6/=a<Jp/ln/2 ...(3.41)

where a is layer thickness unit parameter defined in Chapter 2 (vide equation 2.45).
Thus, the solution of the inverse MT problem is completely obtained through equations
(3.29) to (3.41), in a linear fashion, without any initial model. However, the value of a

has to be judiciously chosen keeping in mind the expected thickness and resistivity of
the target layer which ought to be resolved.

In order to estimate the quality of inverted resistivity model, the misfit e,
between its response Z, andthe observation Z, iscomputed in a manner similar tothat

used for er. The vector c, obtained as the solution of equation (3.29) or (3.33), can be
looked upon as the initial condition of an initial value problem. This means that as the
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solution is continued downward, the error in c will propagate and may get enhanced.

This error propagation may sometimes lead to non-physical reflection coefficients lying

outside the (-1,1) interval. This should always be taken as a warning signal, that no

further downward continuation of resistivity profile is possible. Such an eventuality will

occur only when the regression parameter is not able to account for the error in data

and/or the 1-D model is incompatible with the real resistivity distribution. A possible

way out is to use higher regression parameter value. The higher regression parameter

value will lead to the increased misfit and blurred resistivity profile. In addition to this,

for smooth functioning of SIS algorithm, the inverted reflection coefficients should be

approximated as zero whenever these lie within a prescribed infinitesimal interval. In

the present study this interval is -.01 to .01.

The 1-D response, at vertical boundaries of 2-D model, computed through SIS,

is used as boundary conditions. Further the stacked 1-D inversion results at different

points of the profile provide a good initial guess for 2-D inversion algorithm.

For two-dimensional structures, a common question is how to choose between

1-D inversions of B- and E- polarizations as these may lead to different 1-D profiles.

The E-polarization is simpler to interpret than the B-polarization since the latter gets

more distorted by noise due to near-surface 2-D anomalies or 3-D structures (Wright,

1970; Reddy & Rankin, 1972; Jones & Hutton, 1979; Stanley, 1984). Unfortunately,

any structural variation along strike contaminates the E-polarization which, in turn,

disturbs the data interpretation. In contrast, the B-polarization is affected very little by

such variations. Thus, while the B-polarization is more complicated, its two-dimensional

quantitative interpretation is reliable even in the presence of substantial three-

dimensional structures (Park et al. 1983; Wannamaker et al., 1984b).

3.6.3 EM2INV algorithm for 2-D inversion

The 2-D non-linear EM inverse problem is solved through quasi-linearization.

Towards this end, the field/response vector is expressed in its Taylor series about an

initial guess parameter vector P° as

w -w°> •i |;<*/?> *\%i a|£, Vffft v. <*> <-
/=1,2,../77. ...(3.42)
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The equation (3.42) can be written concisely as

F(P) =F{P0) +J.&P+ 1APtH&Pk. . ...(3.43)

Here, J and H are the Jacobian and Hessian matrices respectively. For quasi-

linearization, the guess model P° is assumed to be sufficiently close to the unknown

true parameter vector P, so that only the linear terms of the parameter correction

vector need be retained in the series, which reduces to

F(P)^F(P°) +JAP ...(3.44)

The above equation, in simplified form, can be written as

AR= JAP. ...(3.45)

Here, AR is the difference vector between the observed, F(P), and the computed,

F(P°), response vectors; AP is the unknown correction vector to be applied to the
current resistivity parameter vector, P°, and J is the Jacobian matrix comprising partial

derivatives of data with respect to resistivity parameters. The matrix J is a measure

of how each data point would be affected by a change in a particular parameter and

also termed as 'sensitivity matrix'.

The equation (3.45) can be solved for AP using the ridge-regressed least

square or minimum norm estimators given below

LP (JHJ+ A2/) V"A/? ...(3.46)

and

AP= JH{JJH+ A2/)"1 t\R. ...(3.47)

The solution of equation (3.45) is used to update the current resistivity parameter

vector, P°, as

P=P° +AP .(3.48)

This updated parameter vector P is used as initial guess for the next iteration. After

each iteration, the solution is checked for convergence. The inversion process stops

when either the convergence is achieved or the iteration number exceeds the given
limit.
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From the inverse problem formulation, it is clear that the basic steps of each

inversion iteration are the solution of forward problem, the generation of Jacobian

matrix and the solution of inverse equation (3.45). Hence, a saving in any of these

steps can significantly reduce the total computation time.

The Jacobian matrix, appearing in equation (3.45), is obtained bydifferentiating

equation (3.25) with respect to the unknown resistivity parameter, P,, as

CdF+dCF=0, /=1,2,../7. -(3.49)
dPj dPj

Since the right hand side of equation (3.25) does not depend on resistivity parameter,

its derivative is set to zero.

Above equations can be combined into the following matrix equation

CJY -(3.50)

where the jlh columns of matrices J and Yare

Jr-^F and Yi--dCF. ...(3.51)
1 dPj ' dPj

The equation (3.25) and (3.50) have the same coefficient matrix C, therefore

in case of matrix solvers, based on direct methods, the already existing Lower and

Upper triangular (LU) decomposition of matrix C can be reused. Thus, each column

of Jacobian matrix J can be efficiently computed using equation (3.25) with

corresponding column of matrix Yas new right hand side. After obtaining the Jacobian

matrix J, the estimator given by equation (3.46) or (3.47) is used for inverse problem

solution.

For each inversion iteration, the equation (3.25) is solved as many times as the

number of unknown resistivity parameters. The Jacobian given by equation (3.51) is

for the field component corresponding to the polarization. The Jacobians for the

various response functions can be derived using the corresponding field components

using equation (2.104) as

lR= T^L+dJ-F. -(3.52)
dPj dPj dPj
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3.7 Closure

Thesolution ofill-posed EM inverse problem is obtained through regularization.

The non-linear 2-Dinverse problem is solved iteratively byquasi-linearization, whereas

the 1-D inverse problem is solved directly. Numerical implementations of 2-D forward

and inverse problems, based on finite difference method, are discussed next.
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CHAPTER 4

EM PROBLEMS - IMPLEMENTATION OF

FINITE DIFFERENCE METHOD

4.1 General

The EM data inversion capabilities crucially depend upon the accuracy and

efficiency with which one can solve the EM forward problem. This, in effect, means

obtaining solution of the boundary value problem. The analytical methods for solving

the partial differential equations, derived from Maxwell's equations, are restricted to

models with simple geometries and resistivity variations like layered earth or targets

such as sphere, cylinder or cuboid. Most of the available analytical solutions are either

of integral type with complicated integrands or of the infinite series type. The exact

evaluation of these solutions is not feasible. To overcome these limitations, the

alternative approach like numerical methods are usually used for modelling of EM

problems. An excellent review on computational electromagnetics is given by Miller

(1988).

The complex real earth can be modelled using any one of the available

numerical techniques that translate the integro - differential operator equation into a

matrix equation. These numerical methods can be grouped into two broad classes -

Integral Equation Methods (lEMs) and Differential Equation Methods (DEMs). Both

these classes have identified merits and demerits in terms of their respective

applicability. Preference of one method over the other is dictated by the complexity of

the model and the available computational resources.

In IEM, the integral operator is transformed, through quadrature formulae, to

a matrix operator. Here, only the anomalous region is modelled. This results in a small

but full coefficient matrix. In fact much of the earlier work in 3-D modelling was done
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using IEM only, e.g. Raiche (1974), Hohmann (1975), Weidelt (1975a), Wannamaker

et al. (1984a, 1984b), Wannamaker (1991), Xiong (1992), Zhdanov & Fang (1996).

However, inspite ofthese positive features the use of IEM is restricted to the modelling

of confined bodies in a layered earth. It is so because this method is constrained by

the necessity of efficient computation of Green's functions and the easily computable

Green's functions exist only for the layered earth primary model.

The DEMs, Finite Difference Method (FDM) or Finite Element Method (FEM),

are popular in simulating arbitrarily shaped geometries. In these methods the whole

domain of study need be discretized. This results in a large but grossly sparse

coefficient matrices. Earlier, their use was limited because of paucity of efficient large

matrix solvers. Recent advances in iterative solution techniques have helped in

establishing their superiority over IEM (Sarkar, 1991). The differential operator is

reduced to a matrix operator through difference approximation in case of FDM.

Whereas it is reduced through a functional minimization in case of FEM. The

mathematics of FDM is much simpler and easier to implement than that of FEM.

Further, FEM is very useful in solving problems with complex geometries having

curved boundaries (Coggon, 1971; Reddy & Rankin, 1977; Wannamaker et al., 1987;

Travis & Chave, 1989; Livelybrooks, 1993; Mogi, 1996). Now curved boundaries can

be modelled using FDM too (Taflove, 1995). In geophysics, where the main emphasis

is on the solution of inverse problem, any inversion method would have limited

resolution because of erroneous observations. Therefore, it may not be economically

viable to model refined curved boundaries instead of the simple linear boundaries.

Moreover, the matrix solvers for FDM are more efficient than those commonly used

for FEM.

Besides the methods belonging to the above two classes, there exist some

Hybrid methods where positive features of IEM and DEM are amalgamated. But these

methods are again applicable only to confined structures (Lee et al., 1981). Therefore,

in the present work FDM is preferred.

4.2 Finite difference implementation

The first finite difference algorithm for 2-D EM modelling was given by Jones

& Pascoe (1971). They solved the forward problem of geomagnetic perturbations due

to inhomogeneity and subsequently extended their work to three-dimensional models
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(Jones &Pascoe, 1972). Lines &Jones (1973a, 1973b) modified their algorithm to

incorporate variable grid size and permit the vertical discontinuities to extend right up

to grid boundaries. These algorithms employed Gauss-Seidel relaxation technique for

solving the resulting large sparse system Of equations. Although Gauss-Seidel or its

relaxation variants are simple, these do not work satisfactorily when the coefficient

matrix is ill-conditioned (Golub & Van Loan, 1983). As a result, the advanced semi-

iterative methods, like Conjugate Gradient Method (CGM), have become more popular

in case of indefinite coefficient matrices (Sarkar, 1991). In recent years, significant
progress has been made in efficient use of CGM in the FDM algorithms for

geoelectromagnetic modelling (Madden &Mackie, 1989; Xinghua et al., 1991; Mackie

&Madden, 1993a; Mackie et al., 1993; Smith, 1996b).

Concurrent to the modelling work, there has been appreciable work on the

development of appropriate boundary conditions that enable reduction in the domain

of modelling (Williamson et al. 1974; Jones 1974; Engquist &Majda, 1977; Brewitt-

Taylor &Weaver, 1976; Weaver&Brewitt-Taylor, 1978; Zhdanov et al., 1982; Weaver

1994). It may be stated here that bulk of the discussion of forward formulation

presented in this chapter has been adapted from Weaver (1994).

In FDM, the derivatives are approximated by the appropriate difference

formulae obtained by the Taylor series expansion. For detailed description of FDM,

reference is made to the standard texts like Forsythe &Wasow (1964), Hildebrand

(1974) and Mitchell & Griffiths (1980). A brief account of finite difference formulation

of the EM problem is presented here.

For deriving the governing finite difference equation, the partial derivatives

have to be translated to difference formulae. Let a smooth function f(x) be expanded

in Taylor series about x for small positive and negative increments, h, as

f(x+h) =f{x) +h?(x) *—f"(x) +0(h3) ...(4.1)

and

f(xh) =f{x) - hf (x) *--f"{x) +0(h3). ...(4.2)

Ignoring the terms 0(h2), multiplying equation (4.1) by a and (4.2) by p and adding,
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one gets

fl() af(x*h) +pf(x-h)-((np)f(x) (43)
(a-p)h

This equation represents a general expression of first difference which reduces to the
following three difference formulae for the three sets of a and p values

/f{x)_f(x+h)-f(x) /oAa =1i/3 =0> ...(4.4)
h

fa) *fM-'<*-* fora-0,p-A ...(4.5)
h

and

i (*) - f{X^ ' f{*~h) for a - 1/2, P- -1/2. ...(4.6)
c 2/7

In literature f',(x), f'b(x) and f'c(x) are known as the forward, backward and central first

differences respectively. The central difference, having a round off error of order h3,

is preferred over the other two differences having error of order h2. The difference

formulae for the second differences can be derived in a similar manner. The following

central difference formula for second order derivative again has less error in

comparison to its forward and backward difference equivalents

f,i {x) =f{x+h)~2f{x) +f{x-h) (4 7)
h2

The 2-D EM Boundary Value Problem (BVP) comprises the partial differential

equations (2.22) or (2.23), the integral boundary conditions (2.54) or (2.55) and the

asymptotic boundary conditions (2.69) and (2.74). In order to solve this BVP, using

FDM, the domain of study is discretized in the yz- plane by laying a grid with the help

of the horizontal lines, z = zn, (n=1,2 N), and the vertical lines, y = ym, (m=1,2 M)

intersecting at nodes (m,n). Here M and N are respectively the number of vertical and

horizontal grid lines. Like any other numerical method, the accuracy of FDM depends

on the grid spacing. Finer the mesh more accurate the results, albeit at a higher cost.
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Proper care should be taken while discretizing near discontinuity. Whereas the step

size can be coarse within a homogeneous region, it should be fine near discontinuity
as shown in Fig. 4.1.

1 2 M —*ym
z=oI

zn z

i i

I

*1
1 1

i / "

, . 1 m i

N-1

•

(Air-earth interface)

Fig. 4.1 A typical finite difference grid.

The cell's resistivity (or conductivity) is defined at the centre of cell pm+1/2 n+1/2.
Atypical node of the 2-D grid with its four neighbouring cells is shown in Fig. 4.2. The

top boundary of the grid is chosen at the air-earth interface at z = z, = 0 while the

bottom boundary is at z = zN, a minimal vertical level in the underlying half-space. The

side boundaries of the grid are defined by the lines y = y, and y = yM, on the left and

right hand side of the model. The variable nodal spacings, in positive y- and z-
directions, are given by

hm =y^-yn, <*»****-*» where ^m<M-\, 1</7<AM.

'm-1

T
(m-l^n-1)

3n-1 i-W

-- (m-1,n).

1 (m-1, n*l)*

1 _. 1
m—T-,n+

y=ym-1 --'m /=7m+1
Fig. 4.2 The parameters of the four blocks surrounding the node (m,n) in the 2-D finite

difference grid.

'm

(m, n-1) (m+1,n-1)
z=z n-1

2 ' 2

(m7n)
(m+1,n) Z=Zn

o-m+i n '

(m+1fn +1)Z*Zn+1

y=y„
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The finite difference equivalents of the governing partial differential equation and the

requisite boundary conditions are discussed here. It may be added here that the

choice of a particular difference formula is constrained by the location of the node. For

the boundary nodes, either the forward or the backward difference formula is used,

while for the internal nodes central difference formula is used.

4.2.1 Discrete governing equations

For internal nodes, the magnetic or electric field component is evaluated by

solving the respective governing Helmholtz equations for B- and E- polarizations. The

equations (2.22) and (2.23) are rewritten below

pi^E +H\ +p* §2. +p/ §1 =i^B ...(4.8)
dy2 dz2 dy y dz

and

S. r- ~S.tr

/u>fiE= 0. ...(4.9)#E c?E

dy2 dz2

Here, superscripts * and ' denote partial differentiation with respect to y and z

respectively. The governing differential equations are satisfied at all the internal nodes.

To obtain the equivalent finite difference equation, the basic step is to identify the

resistivity (conductivity) value to be assigned to a node surrounded by regions of

different resistivities. Following Weaver (1994), a linear variation is assumed and the

weighted average of resistivities (conductivities) is assigned as the resistivity

(conductivity) value at the node. The discrete forms of these equations are distinct for

the two modes of polarization. In order to describe these with clarity, the following

constants are defined

h*m = flm+hm-V d'n =4,+ aU

h'm -hm-h^

-hnhm-V

-'4,,-d^,

hi- -dn-dnV

ny- nJ>™ dqn- d-<

hm= "m-i "m> drn- dn-A-

•(4.10)
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4.2.1.1 B-polarization

The resistivity at node (m,n) is defined to be the weighted average of
resistivities of the four cells surrounding it, with cell areas being the weights, as

_ r-m,~ +t-m,n~\ +Pm 1,/; +Pot-1/j-1
p"." 7TZ -(4.11)

"md-

wnere Pm,n = hmknPm+i/2,n+i/2-The derivatives of resistivity in the y- and z- directions are
respectively defined as

* dp Prr»M2,n~ Pot-1/2,/?
Pot,/? ~ — (A -\0\

and

/ = 5p Pm,mV2__P_m,n-

M/2)*mn~Tz~ TTZT •••(4-13)

At the top and bottom boundaries, it is assumed that

Pot.1 = Pot,3/2- Pot,/V= Pot,/V-1/2 and Pot,1 = Pot./V =0. ...(4.14)

On approximating the derivatives by differences at internal node (m,n), equation (4.8)
can be written in discrete form after some algebra as

2Pm,n^mlPm.nB ^Pm,nhmP m.m R --P m.„* <*» lP 2PmndnPmM
h» hm dnq drn

- ( + " +'-*dBmif 2<m<M-\, 2</7</V-1. ...(4.15)
hm dnP

These (M-2)(N-2) internal nodes equations provide the coefficient matrix for the
evaluation of magnetic field at internal nodes.

4.2.1.2 E-polarization

Analogous to the definition of resistivity at a node in B- polarization, for E-
polarization also the weighted average of conductivity at node (m,n) is defined as

o
•m,~+ ^ot,/M + £ot-1,/?+ Cot-i n 1

m'n V* -(4-16)hmdn
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where Cmn =hmkn0m+i/2 -*«• The equation (4.9) can be written in discrete form as

E^" +Em-^ +^5*1 +Ss-S-l =(-1-+—+- /a2mn)Emn, ...(4.17)
^ ^ d< drn hpm dpn 2

where as = co uo, as defined in equation (2.45). Once the discrete governing equations

are derived the supplementary discrete boundary condition equations are to be

obtained next.

4.2.2 Discrete boundary conditions

As discussed in Chapter 2, the infinite domain can be modelled by imposing

appropriate boundary conditions on the boundaries placed at finite distances. For
horizontal boundaries, the Neumann boundary conditions given by equation (2.52)

account for the integrated effect of the overlying and underlying half-spaces. The

asymptotic boundary conditions, mixed in nature, are imposed for restricting the
horizontal extent of the domain in E-polarization. The finite difference implementation

of boundary conditions for both vertical and horizontal boundaries follows.

4.2.2.1 Asymptotic boundary conditions

For B-polarization, the magnetic field is constant at the surface (vide equation

2.30). Further, within earth the anomalous field decays exponentially as y-±~. As a

result, the field is 1-D at the side boundary nodes, i.e.

Bm - B0, BXn=B{zn), BMn-B\zn), ^m<M, 2<n<N. ...(4.18)

where B.(zn) and B+(zn) are 1-D magnetic fields at the left and right vertical boundaries.

For E-polarization from the asymptotic boundary conditions (2.74), the field at

the left and right boundary nodes respectively are

E(zn) ...(4.19)
*%* ^l£(0)J

and

F -F [/-^l ...(4.20)

for 2< n<N. Here E_(zn) and E+(zn) are 1-D electric fields at the left and right vertical

boundaries. For top nodes on the side boundaries, the FDM implementation of
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equation (2.70) led to the following expressions for the first and M* node respectively
(Weaver, 1994)

O-*,)^-^, =-€,£«» ...(4.21)

where e, =-1--- ii

and

^i.i-(i+€J^ki =-*«^(o) .(4.22)

The equations (4.21) and (4.22) replace the infinite domain Dirichlet boundary
conditions

E, - E(0) and Eu- £4(0). (423)

4.2.2.2 Integral boundary conditions

The Neumann boundary conditions imposed on the horizontal boundaries are
derived in Chapter 2for homogeneous underlying half-space (vide equation 2.52).
However, in the presence of layered substructure the boundary conditions get modified
to accommodate the effect of layering which is written here, for any interface z=s, as

oo

F'M *~[F(y,s) [ P(yv,z-s)dv) -
OZ J

-00

00

2n:/dz-F{v,s) F(y,s)]P(y v,zs)dv+ f'F{v,s)fT{yv)dv. ...(4.24)
-00

-00

The integral boundary condition is imposed only on nodes from 2to (M-1) as the fields
at the first and the last node of the interface are already expressed in terms of vertical
boundary condition. For this purpose, the first integral on the right hand side is solved
semi-analytically. Whereas the second integral, correction term due to layering, is
solved as discussed by Weaver (1994, p.175). Let the boundary condition be
evaluated at node pwith y=yp and the variable of integration vbe represented by an
arbitrary node m. Since the integrand becomes singular at node m=p, it is partitioned
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into five integrals as

oo /1 oo /p.1 p2 «1 ^™1

/-/♦/♦ J+0> E )/• -(4-25)
-oo -oo y^ /^, r rm

The first two integrals, where y, and ym are sufficiently far from the inhomogeneous
region to justify the 1-D field approximation, are evaluated analytically. For evaluation
of integrals under the summation signs, in the intervals ym<y<ymt„ m=1to p-1 or p+1
to M, the field variation is assumed to be linear and is represented as

fm -f„ *[r-y/mW'F">- -(4-26'
m

Here, Fstands for either the magnetic or the electric field component. Lastly, around
the singular point, yp, the field is approximated by a quadratic variation using the
parabola

FM - fp+ tJ1> [y-y) ♦ if (y-yf, -(4.27a)

passing through the three points FH, Fp and Fp+1. The coefficients Tp<1> and Tp(2> are

given by

7<i> =Op±F ,+ h-pFp- -hDF. ...(4.27/7)
P t Aw1 h h P P-<

and

j& =fp± _ Fp + F^ ...(4.27c)

Here h' =h +h ,. The equations (4.27b) and (4.27c) can be recognised as the finite
difference expressions for the first and second order derivatives of F respectively,
evaluated at (p,1). On substituting these approximations, the integrals can be solved

analytically.

For B-polarization, since the magnetic field is constant in air the Dirichlet
boundary condition is applied on the air-earth interface and the integral boundary
condition is imposed only at the bottom interface. As mentioned earlier, the tangential
magnetic field is discontinuous in the presence of surface currents. Therefore, special
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care must be taken while transferring the bottom integral boundary fields from d+ to

d-. From equation (2.20a), the tangential electric field can be expressed in terms ofthe

magnetic field as

B'm^ ~vir~B'm<*™ -(4-28)u1 Pot,/V

where o, is the conductivity of the bottom half-space. Multiplying equation (2.54) by

o,pmN, it gets modified to

[ lV ~tf 9 'Bm,N~ —-, Bm,N-\ ~ " \~~2)m.N
aM-\ -- aN\ z dy

v—;OT|/V- —-J [o(k,zj - BmN\-

1
+ —

2tt

2 »8r"- rr _V '-» ""' \ym-v\
00

/^^/^^oV. ...(4.29)

where p'mN = 0. This equation is the requisite boundary condition at d- for B-

polarization where the vertical derivative is evaluated using backward difference form.

On substituting the analytic values of integrals, the difference formula for derivatives

and the 1-D values at the side boundary nodes, the discrete form of boundary

conditions can be written as

a HO d 1 m'^ ^~^
[^--^Ov/v- Xpot,/v)]^iv (£ • E )wpimBjN

hm -- ]-2 i-m-2
-p TlO^d^ -|

+-Fm + ~<Pot,/V +-0 ^ot-iPot./v)] 3m1,/V+

\mp ~~ /Pot,/v , °am , 1 .- / . /a)^°/v-iv.[Mm - ira, (-— +— (pm/v- -hmPmJ *- —^1)] 5W/V

"K<)ot - Cjj 5. (^ +[(/V,X- G*] 5t W, 2<m±M-A ...(4.30)

The coefficients Qm1 and QmMare given by equation (5.21)-(5.22) of Weaver (1994,

p.164) while other coefficients Dmp, Wmp, Fmp , Mmp and N,p by equation (5.84)-(5.90)

of Weaver (1994, p.175) with his constant Bmp being Wmp here. The boundary
conditions represented by the equations (4.18) and the (M-2) equations (4.30) along
with the (M-2)(N-2) internal node equations (4.15) complete the linear system of
equations to be solved for the (M-2)(N-1) unknowns Bm n.
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In E-polarization, the Neumann integral boundary conditions are applied on
both top and bottom boundary interfaces. On substituting the difference formula and
using the asymptotic boundary condition, the top boundary condition can be stated in
the following discrete form

Pi £Jt1 ♦ PmMEM, ♦ (*4 +CJ E^ ♦ (^ Wm) Em„
"m hm

m~2 /W"1 / TT nd< nfd,a2mUr. n
♦<£ * L )^e»*l-«-j--i—^"''^

j-2 J'imZ U1 hm 1

=R}mEM +RmESO)-niuB0, 2<m<M^. -(4.31)

On the other hand, the discrete form of bottom boundary condition is

&mEtN+ (%E^ ("T1 ' A«> E^,n< (^7*Fm) E^N

+(E + E )B>»EJ.N+-Mm-—--—— ——)EmiN
j-2 J=/m2 UAM hm

Em.^ =S'mEizn)<sZESzn), 2</n<A*-1. -(4.32)
4na

The coefficients in equations (4.31) and (4.32) are defined in equations (5.11) - (5.18),
(5.50) - (5.66) and (5.87) - (5.91) of Weaver (1994, p.163-164, 169-170, 175) with his
constant UM being EM here. The (2N-2) asymptotic boundary condition equations (4.19)
and (4.20), the two equations (4.21) and (4.22) on the top end nodes, (2M-4)
equations (4.31) and (4.32) for the top and bottom interfaces, complete the boundary
condition equations. This, together with the (M-2)(N-2) internal node equations (4.17),
give a total of MN equations in unknowns Emn.

The linear system of equations for both modes of polarization can be compiled
and written in matrix form as

CF- S, -(4-33)

where C isthe coefficient matrix comprising the terms from equations (4.15) and (4.30)

or (4.17), (4.31) and (4.32), S is the known vector derived from boundary conditions
and F is the unknown magnetic or electric field component vector. The size of
coefficient matrix is nt x nt where n„ the number of unknowns, is

n, + (M-2) for B-polarization
nr =

n, + 2 (M-2) for E-polarization
where n, = (M-2) x (N-2), being the number of internal nodes.
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4.3. Structure of coefficient matrix

The EM boundary value problem for a homogeneous region, with uniformly

spaced grid and Dirichlet boundary conditions, results in the coefficient matrix having

the following special structure

(A I 0 0 .

/ A I 0

0 / A I

where I is a unit submatrix and A a tridiagonal submatrix written as

M 1 0 0

4 1 0

1 -4 1

.(4.34a)

.(4.34/7)

The order of matrix C is the total number of internal nodes, i.e. n, x n, while the order

of I and A is the number of internal nodes in one direction, i.e. (M-2) x (M-2) or (N-2)

x (N-2). The corresponding matrix equation can be solved using any special matrix

solver.

The structure of coefficient matrix gets perturbed with the change in the nature

of boundary. When the discrete Neumann boundary conditions are imposed ontopand

bottom boundaries, the field at a given node is related to all the nodes on the surface.

This destroys the tridiagonal nature of the top/bottom diagonal block submatrix and

becomes full. This loss in sparsity structure, however, is offset by the economy

resulting from the enormously reduced grid size, provided special matrix solvers which

optimally exploit the remaining structure are employed.

Thecoefficient matrix C of ordern, x n, is a complex and banded matrix having

the following special block tridiagonal structure

Pi Y, • •

a. 02 Y2

«2 Pi .(4.35)

a
/V1 Pn)
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The top and bottom block rows correspond to the respective integral boundary
conditions while the remaining rows correspond to rows of internal nodes. Here each
block matrix is of size (M-2) x (M-2) corresponding to the internal nodes on any
horizontal grid line. In particular, the submatrices cc's and y's are diagonal, p, and (JN
are full and Pn's, 1<n<N, are tridiagonal (Fig. 4.3).

/31

HN

81

BNJ

Fig 4.3 The structure of FDM coefficeint matrix when integral and asymptotic boundary
' conditions are employed. Here the submatrices P, and Pn are full; P,,i = 2,n-1 are

tridiagonal and cc, -y,.' = l.n-1 are diagonal.
The matrix C can be rewritten as

1 N-2 1

Mx M, 0'
M3 MA M5. -(4-36)

0 M6 M~

Here, M, and M7 are full submatrices, M2, M3, M6 and M6 are diagonal and M4 is a
tridiagonal matrix. For retaining the pentadiagonal structure of middle blocks, it is
essential to extend the asymptotic behaviour of fields, given by equations (4.21) and
(4.22), to the second node on left and to the (M-1),h node on right for each horizontal
level. If the field on these nodes were not computed analogous to those at boundary
nodes, then due to their relation with four neighbouring points, the first and last nodes
would have appeared as off diagonal elements in the diagonal block matrices a, and
a . This would have spoilt the pentadiagonal structure and the complete banded
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matrix would have to be considered. Here, we have traded in favour of economy. The
elements of matrix Care different for the two polarizations. For B-polarization, the p,h
row for internal nodes of the coefficient matrix C has the following five non-zero
elements

Cp,q1 =(Vi PaM.*3-1 +hp PAfl0-l) ldq3_v

Cp,q2=(dq3p^q3+ dq3A Pp-yq^lh^,

Cp,q3 =(Cp,qt +Cp,q2 +Cp,q4 +Cp.qs) +g"^ dq3, ...(4.37)

Cp,q4= (<Vi Pp,q^ +dq3ppq3) Ihp,

Cp,q5~ ihp Ppq3., +h^ Pp_yq3)ldq3,

where hp hp+h^, cTq3= dq3+ dq3_r

The column numbers q's are defined as

qf =p-M+2, q2=p-\, q3=p, q4= p^ and q5=p+M-2. ...(4.38)

Similarly, for E-polarization the five non-zero elements of pm row can be written as

C - 0-
P'q1~ <W

r dq3
"•q2~ "h~

c ., hP hP Jq3 dq3 !

+^ °Ui <Wi +hpdq3opq3, ...(4.39)

CA^-
4*J

A,f>

h\
^flff=

p

where the column number q's are given by equation (4.38). Once the main field
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component, Bx or Ex, is computed the other field components can be derived from it
by developing the requisite transformation matrices.

4.3.1 Transformation matrices for derived responses

4.3.1.1 B-polarization

For B-polarization only the horizontal electric field Ey is of practical interest,

that too only at the surface of the earth. It is derived using equation (2.20a). However,

if the node (m,1) lies on a vertical boundary then Ey can not bedefined uniquely atthat
node. In such situations, it is convenient to work with horizontal current density which

is continuous across the interface and equation (2.20a) can be written as

oE• ±dJ*. ...(4.40)
y n dz

Substituting the difference formula for vertical derivative of Bx, the equation for Ey

becomes

(5>*i ="^f-8^ ~Bo- ~\i*d&. -(4.41)

It can be written in matrix notation as

Ey-{TyB)B -(4.42)

Here TyB is the transformation matrix of order (M-2) xnt. The non-zero elements of its
pth row are

(^ ip,q3 ^ h~[ ji 2 V +rJFM np-\ d\ *• vpq piv

(77W=W
rpig J_ ...(4.43)

V *?'

where rPQ =hp ^ -*-n and r, =A, d: -f^-i*-
rv r ' (j r CO

Once Ey is evaluated, the impedance Z^ can be computed as

Z^kT^B

83
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The transformation matrix Tyx is given by

Tyx=\.DB)y Ty< ...(4.45)

where DBx is the diagonal matrix whose diagonal elements comprise the Bx values.
4.3.1.2 E-polarization

For E-polarization, the horizontal and vertical magnetic field components, B
and Bz, can be derived from equations (2.21a) and (2.21b) by approximating the
derivative by the corresponding difference formulas such as

{B^ "ildEm* +-r,E~" +TrE^ -{\'dAA ♦ ±*d'p)EmA] ...(4.46)
1 "m hm -- Oy fjP

and

hm^ hm _ h(B) -J \ mF mf n«-i c iWm - w[-E^ - EmA - E^. ...(4.47)
OT OT Hm

These field components, the impedance Z^ and the induction vector lyz can be written
in matrix notation as

By=Ty E' ...(4.48)

B*= Tz E' ...(4.49)

z*y T*yEi ...(4.50)

/zy= T-yE' ...(4.51)

where TyE, tze j^ and T^ are the (M-2) x n, transformation matrices. The non-zero
elements of the p,h row of different matrices are

(TE) =1 d'
Up
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,r*t 1 wiVP^ilVVP^ L^ - L± ...(4.52)

^W=w/v4
•7"

U''** CO <
and

(7"/)
*x / fy>

a;
,p(rf) ^[M.i^l-i-J-)^], -(4.53)

7>

(7' '** oo * <7

The transformation matrices for impedance and induction vector are given as

Tzy-\DBy\T!\ -(4-55)

where DBy, the diagonal matrix, comprises By values.

Thus, any field component, impedance or induction vector can be computed
using above stated relations. It can then be inverted by computing the corresponding

derived Jacobian.

4.4 Inverse formulation

The non-linear EM problem, after quasi-linearization, is solved iteratively

starting with an initial guess model. In general, since a rough guess about the location
and extent of the body can always be made from the observed response, there is no
need to invert for resistivity of the whole finite difference modelling domain. The

stacked 1-D inversions have proven to be very useful in providing accurate initial

guess. The good initial guess results in faster convergence and a much smaller region
encompassing the guessed body may be taken as the domain for inversion. The
response at surface nodes is the observation vector, whereas the parameter vector P
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comprises resistivities of the blocks lying within the inversion domain. The initial guess
values are the current estimates of p,, the resistivity of the j,h block. For numerical
accuracy, instead of p]t its logarithm given below is used as parameter vector

Py=logPy=-logO/ ...(4.56)

The derivative with respect to it is defined as

J 1 a _ 1 d
BPj P/ dp] Oj doj -(4-57)

It is more efficient to work with the logarithm of resistivity because of all the
model parameters, the resistivity varies over the widest range. The logarithm operation
not only properly scales this large variation but also guarantees that the resistivity has
only positive values.

In order to solve the inverse problem matrix equation (3.45), the Jacobian
matrix J need be evaluated using equation (3.50) which is rewritten below

GJ= Y' ...(4.58)

where the jth column of Yis given by

K=~dCF.
' dPj

The right hand side of equation (4.58) is computed by first differentiating the coefficient
matrix Cwith respect to the block resistivity parameter P, and then multiplying it with
the field vector F.

4.4.1 Derivative of coefficient matrix

The derivative of a coefficient matrix element is zero unless its expression
contains p. Since an internal node is associated with four regions, the elements of the
row corresponding to this node contain only these four block resistivities. As a result,
the matrix J is grossly sparse with each row having at most four non-zero entries in
column positions corresponding to the element whose resistivity is changed. For B-
polarization, the derivatives of different entries in the p,h row of matrix Care
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d3«± - ( HLxl
dPj djp;

dCP.q3 ,r +r +r +t? )— ...(4.59)—^" =-\CM1* LP,q2^ UP,<* UP.V* p]
i

dCp,q4 = _/ jh_\ J_
~dP- [ dj Pj

dCp,q5 _( _^\ J_

I

where q/s are given by equation (4.38).

For E-polarization, since the resistivity appears only in the imaginary term of
the diagonal element, all the off diagonal terms will vanish. The pm diagonal element
of derivative matrix is

dCP.q3_ ,„Hh d 1 -(4.60)-3Pj- /a)2VVv;
If the body is outcropping, in E-polarization, the top row block matrix,

corresponding to the top integral boundary condition equation (4.31), is to be
differentiated with respect to P-,. Since only the node at which the condition is being
evaluated contains a resistivity term, all other entries in the full block will vanish. The
derivative of the diagonal element of the top block is given by

dCV,?3 _ ir/coyu . VlJL ...(4.61)
:—"/»•? . „•dPj 2 q3 hpPj

Once the computation of derivative of the coefficient matrix Cis over, it is
multiplied with the corresponding field vector Fto construct the j,h column of the right
hand side matrix Y of equation (4.58).
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4.4.2 Computation of Jacobian/derived Jacobians

The Jacobian matrix J can be computed explicitly by solving equation (4.58)

using any standard matrix solver. The Jacobian JXE'B, corresponding to the main field

component, Bx or Ex, is used to derive the Jacobians for derived response functions.

For B-polarization, the j,h column of Jacobian, Jyx, of impedance Z^ can be
written as

^ •<•«,- UVr|* -V>J Vsf %. ...(4.62)
where DBx and DEy are the diagonal matrices for Bx and Ey respectively. From equation
(4.18), since the constant magnetic field does not depend on resistivity, the second

term will vanish and above equation will reduce to the following equation as

-Vr\P*?-T^ +?LLBl ...(4.63)

For E-polarization, the Jacobians Jxy for the impedance Zxy can be derived as

^•Wl-Vf^-WIPf^ ...(4.64)
On using equation (4.48), it reduces to the following equation

(•Vr \oBy wf zjrrf- zvfy ej. ...(4.65)

Here T'y is the derivative of transformation matrix Ty with respect to P.

For induction vector lzy, the j,h column of the Jacobian J^ can be written as

%-VJr Wtf^. -WJ Wef^: -(4.66)
Using the respective transformation matrices from equation (4.48) and (4.49), the
above equation reduces to the following equation

(d^r-^y KV ^ry)jf+(fz- izyfy) ej, ...(4.67)

where superscript (') indicates differentiation with respect to P.. The different form of
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Jacobian matrices can be written in a generalized form as

JR-T'F+TJ, -(4-68)

Depending upon the response vector AR, the transformation matrices are

developed and the derived Jacobians are computed. Once J is evaluated, the inverse
problem equation (3.45) can be solved using a suitable matrix solver. The criterion for
choosing an appropriate matrix solver is discussed next.

4.5 Choice of matrix solver

From the inverse formulation, given in Chapter 3, it is clear that for each

inversion iteration the solution of forward problem, generation of Jacobian matrix and

solution of equation (3.45) account for the major share of computer time. Therefore,
the total computation time can be reduced by saving it in any one of these steps. The
forward problem matrix equation, being a well posed one, has an exact solution while
the ill-posed inverse problem is to be regularised for obtaining a solution. The
computation time can also be significantly reduced by making a judicious choice of an

efficient matrix solver.

Avariety of matrix solvers, direct, iterative and semi-iterative in nature, are

used for matrix equations of EM problems (Sarkar et al., 1981a). For direct methods,
where the complete banded matrix is stored, the solution is obtained in finite number
of steps. The advantage of knowing number of steps a priori is, to a certain extent,
offset by the build up of truncation and round-off errors in these methods. Whereas in
the iterative methods, wherea chosen initial guess is improved in a series of iterations,

the procedure can be stopped in between whenever the approximate solution with
prescribed accuracy is obtained. As a result, the round off error is limited. Further,
since only the current row of the matrix is stored, these methods are preferred for
sparse systems as these exploit the sparsity structures to the maximum (Jacobs,
1981a). Though iterative methods score on above grounds, yet their use is not
recommended when diagonal dominance is not guaranteed apriori, orwhen the matrix

is indefinite or when the matrix equation is to be solved for a number of right hand

sides. For indefinite matrices, the semi-iterative method like conjugate gradient have

proven to be useful. The conjugate gradient methods (Hestenes &Stiefel, 1952) are
iterative methods but the maximum number of iterations needed for obtaining the

solution is known a priori. Generally, the solution is obtained in at most Qv iterations
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where Qv is the number of independent eigenvalues (Jennings, 1977). So it has
positive features of both the direct as well as iterative methods. However, like iterative
methods these are also constrained by the apriori knowledge of diagonal dominance.
The CGMs are widely used for real matrices. The suitable matrix solver has been
chosen according to matrix characteristics for the forward and inverse problems.

4.5.1 Forward matrix solver

The forward matrix equation has been solved using Gaussian elimination, a
direct method. Special measures are taken to exploit the special block tridiagonal
structure of the coefficient matrix. The FDM coefficient matrix Cis complex and has
distributed eigenvalues. To exploit its special sparsity structure the iterative methods
can be used. The early workers like Jones &Pascoe (1972), Hibbs &Jones (1976) did
use relaxation methods but they did not address in detail to its accuracy. Apart from
this, though the matrix is diagonally dominant, yet the off-diagonal elements,
corresponding to second and (M-1)th nodes, are almost equal to the diagonal one
restricting the use of iterative methods. Moreover, for solution of amatrix equation with
different right hand sides, the direct methods may score over iterative ones inspite of
the enormous sparsity of coefficient matrix.

Another alternative is to use the conjugate gradient method, a semi-iterative
method. Due to distributed eigenvalues of matrix Cit will result in as many number of
iterations as the order of matrix. Though number of iterations are less than needed in
iterative methods, yet because of complexity of each conjugate gradient iteration it
takes the same time as taken by iterative method. To overcome this inefficiency,
preconditioning, an algebraic procedure to generate atransformed system of equations
having a better eigenvalue spectrum, is used (Jacobs, 1981b). The widely used
preconditioner, the incomplete Cholesky decomposition (Meijerink &van der Vorst,
1977; Kershaw, 1978), works satisfactorily only for a real and positive definite matrix.
Another possible approach is to use augmented conjugate algorithm where the original
complex system is augmented by its adjoint (Sarkar et al., 1988). But since the positive
definiteness of the matrix is not known apriori, it can not be used. Mackie &Madden
(1993a) and Mackie et al. (1994) have used minimum residual algorithm for real
symmetric matrices (Axxelson, 1980) by neglecting the imaginary part of the diagonal
term. This approach can not be followed here as the coefficient matrix Cis not

(;l
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Furthermore, the equation (4.58), required for generation of Jacobian matrix,

has the same coefficient matrix as equation (4.33). In case of matrix solvers based on

direct methods, the already existing LU decomposition of matrix C can be reused.

Whereas in other methods, the whole procedure is to be done afresh each time. All

these points justified the use of direct method for solving the forward problem.

4.5.2 Inverse matrix solver

The EM inverse problem, in matrix form, is stated in equation (3.45). On
account of the finite and erroneous data, the problem is ill-posed and need be

regularised for obtaining an approximate solution. The problem, in general, is either
overdetermined orunderdetermined, depending upon the number of observations and

parameters. For such cases, ridge-regressed least square or minimum norm estimators

are used. These solutions are

bP=(JHJ+X2/)'JH&R -(4-69)

and £iP= J"{JHJ+ A2/)1 A/7 -(4-70)
To obtain least square or minimum norm solution, the matrix J should be

evaluated before hand using equation (4.58). Since the inverse matrix equation (3.45)

is to be solved only for single right hand side, semi-iterative methods can be used
instead of the direct ones. Due to real data which is invariably erroneous, the resulting

system of governing equations will be inconsistent. Therefore, only an approximate
solution can be sought. This means that inaccuracy in the estimation of unknown

parameters within a prescribed error range can be tolerated and this can be more
efficiently achieved through iterative or semi-iterative methods. But when solved using
direct or iterative methods the equation (4.33) is to be solved as many times as the

numberofblocks in the inversion domain, foreach inversion iteration. In case of CGM,

on the other hand, one avoids the explicit construction of J. Instead only the product

of J or of its Hermitian with a given vector need be known. It is so because the

coefficient matrix appears only in the product of the search vector P with itself. Hence,

the equation (4.33) is to be solved only twice for each inversion iteration.

Most of the literature on CGM has only dealt with the case of a real, symmetric

and positive definite matrix (Reid, 1971). However, the system of equation (3.45) is
complex. As a result, it is solved using the complex Bi-Conjugate Gradient Method
(BCGM) where matrix J or its Hermitian appears only in their product with the search
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vector q (Jacobs, 1986). Since resistivity is a real quantity, only the real part of the

correction vector AP is retained. The irregular behaviour of convergence is observed

in BCGM. Moreover, the obtained solution does not reflect the true behaviour of

resistivity. Hence, a way out has been found to recast the equation (3.45) into real

form and the regular steps of BCGM are modified to solve this equation for an

equivalent real system. The complex matrix and the right hand sideare broken up into

their real and imaginary parts and the equation (3.45) is written as

(Jr+/Jf)AP={LRr+ //?,), ...(4.71)

where the Vand 'i' subscripts denote the real and imaginary parts respectively. The
equation (4.71) can be rewritten as

LP
LR.

or JCLP- Re (4 72)
where subscript 'c' indicates complex quantity. The obtained solution, correction vector

AP, is real. There is no need of preconditioning as the system converges in two or
three iterations. The basic steps of BCGM are discussed in Appendix 2. The inverse
problem solution is obtained using BCGM to solve the matrix equation Ax =b, with the
coefficient matrix A and the right hand side vector b defined for the two estimators
given by equation (4.69) or (4.70), as

For least square

A = (JcHJc + A2|)

and b = JHe ARC

For minimum norm

A = (Jc JCH + \2\)

and b = ARC.

For minimum norm estimator, the solution vector x is multiplied by JCH to get
the estimate. Hence, for solving above equations the product (JcHJc)q or (JcJHc)q is
required. These can be computed as described below. Rewriting equation (4.58) in real
and imaginary parts as

(Cf+/C/)(Jr+iJl.)= yr+/y.. (473)
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Splitting equation (4.73) into two equations corresponding to real and imaginary parts

CrJr- C,Jr Yr -(4-74a)
and

C,J, «C,Jr Yr -(4-74/')

Above equations of real and imaginary parts can be combined and written in matrix

form as

Cr C)

P °r,

dr K

or

O.JL- K. -<475>c c c

Multiply equation (4.75) with an arbitrary vector q

CcJcq- Ycq ...(4.76)

or

J.*- cr: rcg. -W

Similarly, taking Hermitian of equation (4.75) as

/HrH= yh ...(4.78)
"e '-'c ' c

or

Jc"= rc"(ccV -(4J9)

and multiplying it with an arbitrary vector q we get

JcHq- YC"{CCV Q- "(4-80>

For each inverse problem iteration, the equation (4.33) issolved with as many

right hand sides as the number of blocks in case of direct methods while in case of
BCGM it is solved twice for each conjugate gradient iteration. Hence, BCGM scores

over direct method as long as the number of iterations needed for convergence is less
than half the number of blocks in inverted model. Further, BCGM is preferred to other

iterative matrix solvers by virtue of its faster convergence rate.
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The solution of forward problem, generation of Jacobian and the solution of

inverse problem constitutes one iteration of the quasi-linear inversion.

4.6 Solution of the inverse problem

In inverse problem there are two levels of iterations. The outer loop is on the
iterations of quasi-linearization, whereas the inner loop is on the iterations of the

BCGM used to obtain the parameter correction vector.

The obtained correction vector AP is added to the initial guess of parameter
vector P° from equation (3.48). Since P, is related to p, from equation (4.56), the
equation (3.48) gets modified

p/=P/0exp(A/^) (481)

The logarithmic parametrization works well for larger changes in the model
parameter resulting from larger dynamic range in the signals and therefore it stabilizes

the inversion procedure. The updated parameter vector P is used as initial guess for
the next iteration. After each iteration the solution is checked for convergence. The
convergence is checked on two counts, the degree of improvement in the parameter
vector and the level of fit. For fit, the computed response of the model is compared
with the observed one and the computed root mean square (rms) error is then
compared with apreassigned threshold value. The inversion process stops when either
the convergence is achieved, or the rms error is greater than that of previous iteration
or when the iteration number exceeds a given limit. The obtained model is accepted
as one of the possible solution of the inverse problem.

4.7 Closure

The FDM having simple mathematics and easy implementation is preferred
over other numerical methods for solving EM inverse problem. The direct matrix solver
is chosen for solving forward matrix equation while conjugate gradient method for
inverse matrix equation. The algorithm EM2INV, where the different aspects of finite
difference implementation have been programmed, is discussed in Chapter 5.
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CHAPTERS

DEVELOPMENT OF
ALGORITHM - EM2INV

5.1 General

The ultimate goal of any EM inversion algorithm is to find an optimum resistivity
model by employing a cost-effective technique. The usage of EM methods is limited

on account of their insufficient data inversion capabilities. Therefore, in the present
research work, an effort has been made to develop an efficient 2-D EM data inversion

algorithm EM2INV, by numerically implementing the forward and inverse formulations
discussed in Chapter 4.

5.2 Background

The survey of literature on EM data inversion had revealed that, in 1993, the
bulk of quantitative interpretation was carried out using 1-D inversion algorithms. Even
today, the multidimensional data inversion is carried out through stacking of results
obtained using 1-D inversion algorithm (Fischer et al., 1981; Constable et al., 1987;
Agarwal etal., 1993). For EMSLAB, one of the most significant experiment of EM data
procurement and analysis (EMSLAB, 1988), the trial and error forward modelling was
used for quantitative interpretation of 3-D data (Wannamaker et al., 1989b). Jiracek et
al. (1989), however, did use the 2-D inversion algorithm of Rodi et al. (1984) for
inversion of the same data.

The 2-D inversion algorithms are appearing in literature since late seventies,
e.g. Weidelt (1975b), Jupp &Vozoff (1977), Rodi et al. (1984), Pek (1985), Sasaki
(1987), deGroot-Hedlin &Constable (1990), Oldenburg (1990), Smith &Booker (1991),
Oldenburg &Ellis (1993), Yamane et al. (1996). Rapid Relaxation Inversion (RRI)
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scheme of Smith &Booker (1991) iteratively improves the 1-D inversion result whereas

the generalized RRI of Yamane et al. (1996) is based on a localized 2-D analysis.
Isolated attempts of 3-D data inversion have also been reported, e.g. by Mackie &
Madden (1993b). Although results of these inversion algorithms are available in
literature, yet these are in restricted circulation. After critical assessment of all the
available alternatives, it was concluded that there still exists a dire need of

development of an efficient 2-D inversion algorithm for EM data.

The Finite Difference Method (FDM) was chosen as the numerical technique

for modelling and inversion, primarily because of its simplicity and also because of its
exhaustive presentation by Brewitt-Taylor &Weaver (1976). Like any major exercise,
the algorithm EM2INV was also developed in various stages.

5.3 Sequence of development

The present research work, spanning over a period of more than three years,

started with the development of a primitive algorithm which implemented simple
boundary conditions and modelled simple geometries. During the course of time, the
different versions of inversion algorithm were developed. Some features of these

intermediate versions have survived in the final version, while others have been

dropped out. It must be emphasized here that some of the failures helped us in
learning lessons which, in turn, led to the improvements in the algorithm. The outcome
of this thorough and extensive research is the 2-D EM data inversion algorithm,
EM2INV. In order to give a flavour of the circuitous route of development, the various

versions of algorithm are briefly discussed.

5.3.1 Version I

The foundation of present research work is the paper of Brewitt-Taylor &

Weaver(1976) which described the finite difference modelling of 2-D induction
problems through the EM Boundary Value Problem (BVP) comprising the governing
Helmholtz equations and simple Dirichlet boundary conditions. Electromagnetic BVP
is solved, using finite difference method, for the magnetic and/or electric field
components. Resulting finite difference coefficient matrix is complex, symmetric and
pentadiagonal. The non-linear EM problem is quasi-linearized for solution of the
inverse problem. To start with, the algorithm was developed for profiling and
subsequently it was modified for sounding data.
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The Gaussian elimination method, exploiting the bandedstructure ofcoefficient

matrix, was used for solving the forward as well as inverse matrix equation. The

Jacobian matrix J was generated explicitly and stored. This means that for each

inversion iteration, the forward matrix equation was to be solved for as many right
hand sides as the number of blocks. The direct matrix solver, where the original Lower
triangular and Upper triangular (LU) decomposition was reused every time, was
considered more efficient for this purpose.

It was realized that inspite of being based on FDM recommendations the

manually generated grid was not optimized as simplest Dirichlet boundary conditions
were used. Although the algorithm version Iwas saving computation time in generation
of Jacobian matrix by using LU decomposition of the forward direct matrix solver, yet
the overall time taken in solving the inverse problem was quite large. The explicit
computation and storage of Jacobian matrix accounted for a major share of computer
time requirements.

For improving efficiency of the algorithm, an iterative method was employed to
solve the forward matrix equation in the algorithm version II.

5.3.2 Version II

The Alternating Direction Implicit Scheme (ADIS), an iterative scheme, was
used for solving forward problem. In ADIS, the 2-D forward problem was partitioned
to two 1-D problems, each of which resulted in tridiagonal FDM coefficient matrices.
The 2-D problem was solved, iteratively by solving the 1-D problem in two directions,
alternatively in each iteration. This resulted in a significantly fast forward algorithm.
However, it was discovered that large number of inversion iterations, increased the
total computation time. The interpolated field at interior nodes using boundary field
values was also used as initial guess for faster convergence. For some cases the
algorithm was faster than the version Ibut on the whole the inference in this regard
was inconclusive. Therefore, an alternate iterative method was tried in version III.
5.3.3 Version III

The structure of complex coefficient matrix was judiciously exploited in this
version of the algorithm (Rastogi et al., 1994). Aglance at equation (4.33) reveals that
the complex coefficient matrix Ccan be partitioned as the following sum of two real
submatrices

G'Ata ...(5.,)
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In equation (5.1), Ais a real, symmetric and pentadiagonal matrix depending only on
the grid geometry, while Dis a real diagonal matrix that depends on both, conductivity
structure and grid geometry. Using this decomposition, equation (4.33) was written as

(A+/D)F=S -(5-2)

to set up the following iterative relation for evaluation of field values F

F=A%S-/A}DF. •••(5.3)

Throughout the inversion process there is no change in grid geometry,

therefore, the matrix Aremains unchanged. This implies that Aneed beevaluated and

LU decomposed only once. However, due to updating of block resistivities after each
inversion iteration, the diagonal matrix D changes and needs reevaluation of the

second term of equation (5.3) each time.

This scheme was implemented in theversion III of the algorithm. The modified

algorithm scored over the previous one but it was constrained by following limitations:

(1) The algorithm worked only for the E-polarization.

(2) The grid spacings had to be uniform within the inversion domain to assign
equal weights to the elements of diagonal matrix D, which were weighted
average of conductivities of the surrounding four blocks at a particular node.

However, outside this domain it was non-uniform.

(3) The matrix D was treated as a perturbation in A. Therefore, to achieve
convergence in matrix solution the small grid spacing must be chosen. This
constrained the choice of test model size due to limitations of computer

memory.

To improve convergence for large grid spacings, the relaxation was also introduced
but it did not lead tomuch improvement. Although the algorithm was successfully tried

on initial models, yet it was found to be inefficient for large models.

5.3.4 Version IV

Around this time we came across the papers of Mackie & Madden (1993a,

1993b) on 3-D modelling and inversion using Conjugate Gradient Method (CGM). They
highlighted the advantages of CGM over other matrix solvers, especially for inverse
matrix equation as it dispenses with the explicit Jacobian computation. Inspired by their
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work, we incorporated CGM in our inversion algorithm also. Mackie &Madden (1993a)
worked with an approximate real problem, neglecting imaginary component, whereas
we preferred to work with complex inverse matrix equation and therefore used Bi-
Conjugate Gradient Method (BCGM). In the process we developed our own
subprogram for BCGM. The convergence rate of BCGM was dependent on the
coefficient matrix, in particular, on the number of distinct eigenvalues and their spread.
Fewer the numbers of distinct eigenvalues, lesser numbers of steps were needed to
obtain the solution (Jennings, 1977). Although the explicit generation of Jwas avoided,
yet the uniformly distributed eigenvalues of FDM coefficient matrix resulted in large
number of iterations for convergence. Hence, preconditioning, an algebraic procedure
to redistribute eigenvalues, was used so that the modified coefficient matrix had
clustered eigenvalues. The matrix was symmetric but it was not Hermitian as the
diagonal elements were complex. The incomplete Cholesky decomposition was
implemented in BCGM as FDM coefficient matrix was also aM-matrix (Meijerink &van
der Vorst, 1977). This modification resulted in faster convergence.

During the testing of version IV, it was observed that the rate of convergence
of BCGM was sensitive to the ratio of grid spacing to skin depth. Smaller this ratio,
faster was the convergence. However, the economy of BCGM was offset by the
increase in time of individual iteration due to the larger grid size. In view of this trade
off, the multigrid procedure was devised and implemented in the next version.
5.3.5 Version V

The multigrid procedure and multilevel inversion were implemented in version
IV of the 2-D inversion algorithm (Rastogi et al., 1997).

Starting with acoarse grid and an initial guess model the problem is solved in
anumber of steps in the multigrid procedure (McCormick, 1987). In subsequent steps,
the grid is refined and the last obtained coarse grid solution is interpolated for its use
as initial guess for the refined grid. The strategy is followed till the preassigned grid
refinement is achieved. The inversion being an iterative procedure, the initial guess for
each refined grid, provided by the solution of previous grid, is closer to the solution
than the one originally guessed and this results in faster convergence and it drastically
reduced computation time.

For further improvement of the inversion quality, the multilevel inversion was
attempted. From the first inverted result the top-level block resistivities are fixed and
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the inversion exercise is repeated with the reduced inversion domain, comprising the

remaining levels. This is done till the last level resistivities are finally estimated. In

subsequent iterations, the number of unknown blocks kept on reducing and thus

enhanced the convergence rate.

Besides the error free synthetic data, the inversion algorithm was also tested

for synthetic data with 5% Gaussian noise and modified for sounding data. The

problems faced with this version were due to the large domain of study which yielded

large grid sizes.

5.3.6 Version VI

The final version of inversion algorithm EM2INV was achieved after the forward

program was modified by incorporating features like automatic grid generator and the

integral and asymptotic boundary conditions The skeletons of subprograms for these
purposes were adapted from the program fr2d.for of Weaver (1995). Now an optimal

FDM grid, basedonstandard thumb rules, isgenerated. The exceptionally large extent

ofmodel domain is reduced byimposing integral boundary conditions on the horizontal

and asymptotic boundary conditions on the vertical boundaries of the domain. These

modifications result in FDM coefficient matrix which instead of a pentadiagonal

structure has only a block tridiagonal structure. Loss in sparsity structure of coefficient

matrix is, however, made up by the economy in grid size. This change in structure

forced usto forgo BCGM and use the direct matrix solver for the forward problem. The
Gaussian elimination method is used for forward matrix equation where the inverse of

each block submatrix is obtained using Gauss-Jordan method. These block inverses

are stored and used for solving the forward matrix equation for multiple right hand

sides during Jacobian based computations.

The inverse matrix equation is still solved using BCGM because of its special

feature of circumventing explicit computation of Jacobian matrix. Thesplitting into real

and imaginary parts has been implemented using the BCGM. The forward matrix

equation is solved only twice for each BCGM iteration. In addition to this, the Jacobian

matrix need not be stored. These savings in generation and storage of Jacobian

economize thecomputer time. Further, this saving in each BCGM iteration reduces the

time of each inversion iteration and, in tum, of overall inversion procedure. The salient

features of the final algorithm EM2INV are discussed next.
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5.4 Salient features

Besides the matrix solvers, various measures are taken to enhance the
efficiency and versatility of the algorithm EM2INV. Since the algorithm has a compact
modular structure, asubroutine can be plugged in or taken out easily without affecting
the remaining program. The special features result in a cost effective algorithm
providing good quality inversion. The various features, depending on whether they
enhance versatility or efficiency, are categorized in two groups and discussed in that
order below.

5.4.1 Versatility features

The versatility of an algorithm ascertains its applicability in diverse situations.
Different versatility features of inversion algorithm EM2INV pertain to types of response
functions, sounding data and noisy synthetic data.

5.4.1.1 Response functions

The algorithm EM2INV can be used for 2-D inversion of MT as well as GDS
data. For response functions like impedance, induction vector or apparent resistivity,
the transformation matrices are computed using the corresponding field component for
B- or E-polarization. These transformation matrices together with the Jacobian matrix
JxEB, corresponding to the main field component, then lead to the Jacobians for
response functions given by equations (4.63), (4.65) and (4.67). The transformation
matrices are computed in subroutines BDERIV or EDERIV, whereas subroutine
RESMAT is called for respective Jacobian based computations.

Further, for synthetic exercises, the inversion of different field components for
the B- and E- polarizations can also be performed.

5.4.1.2 Sounding data

The development of EM2INV was initiated with single frequency inversion using
the optimal grid generated by the grid generator routine during each inversion iteration.
Subsequently, the algorithm was modified for sounding enabling inversion of data over
a frequency range. Since the grid size is frequency-dependent, the grid generation
rules are in terms of skin depth. The change in frequency results in grid changes. The
different grid for various frequencies will give rise to different number of unknowns, i.e.
resistivities of blocks within the inversion domain. To keep these number of blocks
fixed, superblock notion, discussed later, has been devised.
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5.4.1.3 Source term

The program is so structured that initially the computations are carried out in

terms of secondary fields. Later on, for the total field computations, the secondary

fields are added to the primary fields. Therefore, in order to incorporate the source

effect only a subroutine, computing the response of primary layered earth model in

presence of source, is to be added in lieu of the existing ONEDF subroutine which

computes 1-D field due to a plane wave source.

5.4.1.4 Gaussian noise

In order to simulate erroneous characteristic of real data, the synthetic data is

corrupted with Gaussian noise. The function RAND is used for generating the noise

for a given signal to noise ratio. It generates mean, unit variance random noise

following Gaussian distribution.

5.4.1.5 Field and synthetic data

The inversion algorithm EM2INV can handle both field and synthetic data. For

synthetic models, first the forward response is generated, next, if desired, corrupted

with noise and then inverted.

5.4.2 Efficiency features

Efficiency is a measure of how much saving has been achieved in computer

time and memory to obtain a solution of given quality. In this respect, several notions

and computational techniques have been employed.

5.4.2.1 Superblock

During the implementation of sounding data in the algorithm EM2INV, the

ticklish problem was how to fix the number of blocks with unknown resistivity for all the

grids ofgiven frequencies. In order to keep this number of blocks constant throughout

the procedure, inversion was tried using the same grid for all frequencies. The choice

of this single frequency grid is crucial. The usage of the grid corresponding to the

lowest, an optimal intermediate or the highest frequency resulted in inaccurate results

as the response for otherfrequencies was erroneous. The errors were quitesignificant

and therefore, for all frequencies of the given range, same grid cannot be used.

Moreover, the small horizontal extent of highest frequency grid was too restricted for

other lower frequencies.
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As a result a frequency, considered ideal for tapping the target, is selected from

the given frequency range. The choice of this ideal frequency is governed by the
characteristics of the observed response and the expected target. The blocks within
the inversion domain, corresponding to the grid of this frequency, are termed as
'superblocks'. The superblocks, for standard frequency, are generated in the starting
of the inversion process. Later on, the grids are generated for other frequencies with
the inversion domain defined in such a manner that there exist grid lines corresponding
to the superblocks boundaries. If the generated grid is finer than the standard grid, a
few of its blocks are merged to form a superblock. As a result, the number of blocks
to be inverted remains constant throughout the inversion procedure. For example
superblocks formed by merging four subblocks are shown in Fig. 5.1. The superblock
notion results in reduction of Jacobian matrix size. This reduction in number of blocks,
in most of the cases, converts the minimum norm problem to a least square one.
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Fig. 5.1 Finite difference grid and nodes to demonstrate superblock notion. Thick lines
represent boundaries of superblocks formed by merging four subblocks.

For Jacobian matrix based computations the equation (3.49) is solved, where
the derivative of FDM matrix contains only four non-zero terms with respect to a
particular block resistivity. If a superblock is having more than one subblock, it is
associated with more than four nodes, thereby reducing the sparsity of J. These
computations, depending upon the number of subblocks and of the associated nodes,
are carried out in subroutine RHSMAT. The superblock notion is implemented through
subroutines SUPBLK, RHSV, RHSMAT, INVDOM.
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5.4.2.2 Grid generator

The FDM grid should be designed according to certain basic thumb rules. The

grid generator, GRIDYZ adapted from fr2d.for of Weaver (1995), generates an optimal

grid for a given frequency. By doing so, not only the manual labour is saved but it also

leads to more accurate results as accuracy of finite difference algorithm depends on

grid spacings.

5.4.2.3 Logarithm of resistivity

Logarithm of resistivity is used as unknown variable in the algorithm. It removes

the bias against the choice of conductivity or resistivity and ensures a positive value

of resistivity.

5.4.2.4 Interpolation matrix

The observation points, in general, do not coincide with the grid points and

therefore, the response has to be interpolated. For obtaining the response at

observation points, an interpolation matrix, lp, of order nobs x ny is computed where

nobs and ny are the number of observation and grid points in y direction respectively.

Linear interpolation has been used for this purpose.

During each inversion iteration, the interpolation matrix is computed only once.

Instead of storing the full matrix only the weights and the column positions of non-zero

elements in each row are stored. The product of interpolation matrix with the grid

response vector gives the desired interpolated vector.

5.4.2.5 Bi-Conjugate gradient method

The inverse matrix equation (4.58) is solved using the bi-conjugate gradient

method. This particular choice of matrix solver is governed by the fact that BCGM does

not need explicit computation of Jacobian matrix. All it needs is the product of this

matrix or its Hermitian with a vector and compute Jacobian matrix explicitly (see

section 4.5). Moreover, for each inversion iteration the forward matrix equation (4.33)

is solved only twice, in contrast to other matrix solvers where it has to be solved as

many times as is the number of blocks. So, till the number of iterations is less than half

the number of blocks, the BCGM will be more efficient than other methods.

5.4.2.6 Finite domain boundary conditions

Instead of imposing Dirichlet boundary conditions at sufficiently far placed

boundaries, the horizontal and vertical extent of domain is restricted by imposing the
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asymptotic and integral boundary conditions on vertical and horizontal domain

boundaries respectively. These boundary conditions not only result in grid economy
but also yields more accurate results.

5.5 Description of algorithm

The algorithm EM2INV, based on the finite difference formulation, is developed
for inversion of 2-D geoelectromagnetic data. It comprises 6120 lines, 42 subroutines
and 3 function subprograms. It employs 14 integer, 12 complex and 22 real arrays.
The 14 common statements, defined in main program, exchange information between
various subprograms. The program works in double precision arithmetic. In order to
control dimension overflows, various checks with error and stop messages are inserted
in the program. The arrays are initialized and reused to optimize the memory
requirements. The description and salient features of inversion algorithm are
highlighted in Fig. 5.2.

In total nine I/O units are opened in the main program. The parameter and data
controls are read from the file EM.DAT. The two scratch files are used for buffer
storage. The remaining six output files are used for outputs in different formats. The
documentation and the input requirements of EM2INV for various modes, along with
the corresponding input and output files, are given in Appendix 3.

5.5.1 Structure

The main module of the inversion algorithm EM2INV provides the infrastructure
and the run controls. It can be partitioned into two basic modules, i.e. Forward and
Inverse modules. The main program gets the control parameters by calling the
subroutine DTCTRL and then decides to which module it should get directed to. Two
operational subroutines FWDSOL and INVSOL constitute the forward and inverse
modules respectively. Flow chart of the main program is given in Fig. 5.3.

The parameters read in DTCTRL are nprnt, ninv, nert, npol, ncond and nper.
The frequency/period, whose grid is chosen as the standard, is termed as jfq. The
choice of base field component is governed by ntype. The co and uvalues for different
periods are computed and stored in arrays aomega and aomu respectively. The
control parameters, their purpose(s) and the numerical values for different options are
listed in Table 5.1.
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EM2INV - 6,120 Lines
Main Program 476 Lines
Subroutines (34+8") - 5,551 Lines
Functions (2+1") - 84 Lines

* Adapted from various programs

METHODOLOGY

Finite Difference Method.

Quasi-linearized inversion.

Bi-Conjugate Gradient matrix solver.

FORWARD MODELLING

EFFICIENCY FEATURES

- Automatic grid generation.
- Asymptotic boundary conditions on vertical boundaries.
- Integral boundary conditions on horizontal boundaries.
- Gaussian elimination, direct matrix solver.

VERSATILITY FEATURES

- Response functions for MT and GDS data.
- Gaussian noise.

- Profiling and Sounding data.

DATA INVERSION

EFFICIENCY FEATURES

- Jacobian matrix not explicitly computed.
- Ridge-regressed estimators.
- Superblock inversion.
- Logarithm of resistivity.
- Interpolation matrix.

VERSATILITY FEATURES

- Field/Synthetic data.
- Profiling and Sounding data.
- Transformation matrices for response functions.

Fig. 5.2 EM2INV, the inversion algorithm at a glance.
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Define array dimension
parameters

V'

Open I/O units

V

Call DTCTRL to read
program control parameters

Call FWDSOL for
generation of synthetic data

Call INVSOL to solve
inverse problem

( Stop )

CfnT)

Fig. 5.3 Flow chart of the main program of algorithm EM2INV.
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Table 5.1 Description of EM2INV control parameters

Parameter What it controls Values Description

nprnt Output of EM2INV 0

1

2

3

For final iteration

For each inversion

iteration

For each inversion

& BCGM iteration

Detailed results

ninv Problem type, i.e. forward or inverse -1

0

1

Only forward
Both forward &

inverse

Only inverse

nert Noise to be added in the synthetic
response

-1

0

Noise free

Gaussian noise

npol Mode of polarization 0

1

B-polarization
E-polarization

nder Order of differences whose norm is

minimizes in regression estimator
0

1

Minimum norm

Occam's inversion

ncond Indicates parameter data type 0

1

Conductivity
Resistivity

ntype Response type 1

2

3

4

5

6

B,, or Ex
By or Ey
Bz
Pyx °r Pxy
^•yx ul '•xy

5.5.2 Subprograms of EM2INV
Out of the 45 subprograms of the inversion algorithm EM2INV, 30 are

developed by us, 10 are adapted from Weaver's program fr2d.for and the remaining

5 are borrowed from the literature. The subprograms, categorized as forward

subprograms or inversion subprograms according to the module in which these are

called, are discussed below one by one. Grid parameters and other run environment

parameters used in subprograms are described in Table 5.2.
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Table 5.2 Brief description of grid parameters used in EM2INV

Parameter

ny

nz

nyz2 = (ny-2) x (nz-2)

nyzc = nyz2 + 2(ny-2)

nper

nobs

nobp = nper * nobs

nbl

mnter

mxter

eps

mni

mxi

epi

aps

jy

kz

jfq

ifq

Description

Number of nodes in y- direction

Number of nodes in z- direction

Number of internal nodes

Number of unknown field values

Number of time periods

Total number of observation points for a given period

Total number of observation points for all time periods
Number of superblocks in inversion domain

Minimum number of inversion iterations after which
convergence is checked

Maximum number of inversion iterations

Convergence threshold for inversion

Minimum number of BCGM iterations after which
convergence is checked

Maximum number of BCGM iterations

Convergence threshold for BCGM

Regression parameter

Running index of node in y- direction

Running index of node in z- direction

Index for standard frequency

Running index for general frequency

5.5.2.1 Forward subprograms

The forward subprograms are called in the forward module FWDSOL, which
is called for model response generation, for this purpose, the input data and other
parameters are read in the subroutine DTFWD. The subroutine RESPONSE is called
to compute the response for agiven frequency. In order to simulate real data, the
random noise can also be added by calling ERRADD (Fig. 5.4). The tree of various
subprograms, in the order they are called in FWDSOL, is shown in Fig. 55 Alist of
various subprograms along with their purpose, the subroutines these are called in and
subroutine they call is given in Table 5.3 for completeness.
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Call DTFWD to read

input data for synthetic
data generation

Set standard frequency
counter, ifq = jfq

Call RESPONSE

No

Call ERRADD to add

Gaussian noise for nert=0

Set frequency counter
ifq = 1

Call RESPONSE

Call ERRADD

ifq = ifq + 1

(Return )

(End)

Fig. 5.4 Flow chart of subroutine FWDSOL.
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Fig. 5.5 Tree of subprograms called in subroutine FWDSOL.
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Table 5.3 Various forward subprograms and their purpose(s)

Subprogram Purpose Called by Calls

APRES Computes apparent resistivity and
phase of impedance

BDERIV

EDERIV

X

ASYMP Convert obtained secondary field
values to total field values

Computes asymptotic boundary
conditions for E-polarization

FDMAT X

BESCOF Computes bottom integral
boundary condition coefficients
involving Bessel functions

FDMAT BESVV

BESWW

INTKO

MODBES

BESVV Computes zeroth order modified
Bessel functions

BESCOF X

BESWW Computes first order modified
Bessel functions

BESCOF X

BDERIV Computes derived field
components and response
functions for B- polarization

FWDSOL APRES

DTFWD Reads input for synthetic data
generation

FWDSOL X

DTTRNSF Transfers grid information to(from)
global from(to) local arrays

RESPONSE X

EDERIV Computes derived field
components and response
functions for E-polarization

FWDSOL APRES

ERRADD Adds random noise to synthetic
response

FWDSOL RAND

FDCOEF Calculates FDM coefficient

submatrix for internal nodes

FDMAT X

FDINTG Calculates top and bottom block
matrices of coefficient matrix for

integral boundary conditions

FDMAT BESCOF

FDMAT Generates entire FDM coefficient

matrix

RESPONSE FDCOEF

FDINTG
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FDSOLVE

FWDSOL

GRIDGEN

GRIDYZ

INPMAT

INPV

INTKO

INTZ

MODBES Calculates zeroth and first order
modified Bessel functions of
second kind

MAXMZ

ONEDF

RAND

REDUCE

RESOLVE

Development of algorithm

Solve forward matrix equation
(4.33)

Computes forward response of a
model for given frequencies

Controls optimal grid generation

Generates optimal grid lines in y-
or z- direction

Define interpolation matrix by
computing and storing weights and
column positions

Computes product of interpolation
matrix or fts transpose with a
vector

Computes integral over modified
Bessel function

Intializes an array to zero

Finds maximum magnitude
component of a vector

Computes 1-D field values at left
and right grid boundaries

Generates random numbers

Computes inverse of each block
matrix

Reduce block tridiagonal matrix to
upper bidiagonal matrix using
Gauss-Jordan method

Reduces the right hand side and
obtains solution by backsubstitution
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Main

RESPONSE

GRIDGEN

RESPONSE

RESPONSE

BESCOF

FWDSOL

INVSOL

BESCOF

INVSOL

RESPONSE

ERRADD

FDMAT

FDMAT

INTZ

FDMAT

REDUCE

RESOLVE

ASYMP

EDERIV

BDERIV

DTFWD

RESPONSE

ERRADD

SORT

GRIDYZ

RNDOFF
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Table 5.3 Contd.

RESPONSE Computes model response for
single frequency

FWDSOL

INVSOL

INTZ

GRIDGEN

INVDOM

SUPBLK

DTNEW

DTTRNSF

ONEDF

FDSOLVE

INPMAT

INPV

RNDOFF Rounds off grid spacings GRIDGEN x

SORT Sorts out grid spacings in
increasing order

GRIDGEN X

Few important forward subprograms are briefly described here.
Subroutine DTFWD is called only for synthetic problems where the forward

response is to be computed for data generation. Here the data is read in two parts.
Firstly, it reads in arrays cy, cz the y, z coordinates of constant resistivity subregions
and in arrays dy, dz the spacings. The resistivity or conductivity is read in array res.
The scaling factor for grid spacing values, scale, is read later. The second set is read
only when random noise is to be added to the computed response. The number of
data points, neran, where noise is to be added and the percentage of noise level rns
are read. If noise isnot to be added at all points then use arrays Ierr and aerr location

and percentage of noise level for the selected point are additionally read.
Subroutine RESPONSE computes the model response for single frequency. Its

operations include FDM grid generation, 1-D field computations and the model
response computations. First, GRIDGEN is called for grid generation. In case of an
inverse problem, the subroutines DTNEW, INVDOM and SUPBLK, described under
inversion subprograms, are also called. The relevant grid information is stored into
global arrays by calling DTTRNSF. The subroutine ONEDF next computes 1-D
boundary field. Finally, the FDMSOLVE is called for computing the model response.
If the observation points are not grid points then the response is interpolated by calling

INPOL and INPV as shown in flow chart 5.6.

Subroutine GRIDGEN, adapted from Weaver's program fr2d.for, is called for

optimal grid generation. The model coordinates and resistivity/conductivity read in
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DTFWD and/or DTINV are used as input. The grid lines are generated in y- and z-
directions one after the other in three steps. The subroutines SORT, GRIDYZ and
RNDOFF are called for sorting the input coordinate data in increasing order, for grid
generation and for rounding off grid spacings.

Subroutine FDSOLVE computes the unknown field values at surface/internal
nodes for a given model and mode of polarization. For this purpose, the coefficient
matrix elements are generated by calling the subroutine FDMAT. It may be stressed
here that the coefficient matrix is generated for each horizontal grid line and the
resulting block matrices are reduced to upper bidiagonal form and the reduction is
complete. The solution is obtained by calling RESOLVE. For inverse problem the
Hermitian of FDM coefficient matrix is also reduced and stored. The final solution
comprises the secondary field values at nodes. These field values are converted to
total field values by adding primary field in ASYMP. For E-poiarization the asymptotic
boundary conditions are employed to modify the field values at first and last nodes of
the top interface. Once the base field component, corresponding to polarization mode,
is computed the other field components can be derived using BDERIV or EDERIV as
shown in flow chart 5.7.

Subroutine REDUCE is called for reducing the FDM block tridiagonal coefficient
matrix to an upper bidiagonal block matrix during the solution of forward matrix
equation (4.33). It is so programmed as to exploit the block diagonal structure of
coefficient matrix. The reduction is carried out in two steps. The first step is to compute
the inverse of diagonal subblock using Gauss-Jordan method while the second step
is to reduce the corresponding block row of FDM matrix. The block matrix inverses are
written on records and stored in buffer.

Subroutine RESOLVE reduces the right hand side of equation (4.58) and
performs backsubstitution to obtain the solution. For backsubstitution, it reads the
record from buffer one by one to retrieve the inverse of block matrix.

Subroutine INPMAT generates an interpolation matrix for interpolating agiven
vector when the observation points do not coincide with the grid nodes. The size of
interpolation matrix is nobs xny. In place of storing the full matrix only the value wt
and the column positions, ipcol, of non-zero elements are stored. If grid is smaller than
the observation profile, the field is taken as 1-D for the points to the left of the first grid
point or to the right of the last grid point.
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Transfer input grid generation
data in temporary arrays

Call GRIDGEN

Call DTNEW

Call DTTRNSF to

store grid information

Call ONEDF

Call FDSOLVE

Yes

No

No

Call INPV to interpolate results

CReturn)

(jndT)
Fig. 5.6 Flow chart of subroutine RESPONSE.
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Initialize temporary arrays

Set horizontal grid line
kz=1

Set vertical grid line
jy=2

Call FDMAT

jy=jy+1

Call REDUCE for
block matrix

Yes

—>—

Call REDUCE for Hermitian
block matrix

Yes

->—

No
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From step 12

i
Call RESOLVE to obtain

nodal field values

it

Yes

E - polarization 1^

f No

> >

V

Call BDERIV

»'

\

( Return J

GnD

Fig. 5.7 Flow chart of subroutine FDSOLVE.

Subroutine ERRADD is called to simulate realistic field response by adding

given levels of random noise tosynthetic data through the control parameter nert. The

Gaussian noise can be added at all or selected data points as desired. It is possible

to add random noise with zero mean and unit variance, having Gaussian (nert>0)

distribution. The function RAND, used for this purpose, was adapted from Stearns &

David (1988). With this option, noise-free response (nert=0) of a model can be

compared with response(s) computed with different noise levels.

5.5.2.2 Inversion subprograms

The inversion subprograms are used in inversion module INVSOL which is

called for computation of inverse problem solution. If observation points are not grid

points then inverse matrix equation gets modified as

KLP= A/7 .(5.4)

where matrix K, the modified Jacobian, is

K=/pJ. ..(5.5)
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In equation (5.5), lp is the interpolation matrix which is identity when grid points are
the observation points. For reading the input data pertaining to the initial guess model,
the inversion domain geometry and other inversion parameters, the subprogram DTINV
is called. For each inversion iteration, first the model response and the right hand side
of matrix equation (4.58) are computed for standard frequency by calling the
subprograms RESPONSE and RHSMAT respectively. Subsequently, the superblocks
are defined and the response and right hand sides are generated for other
frequencies. The misfit between the observed and computed response is expressed
in terms of root mean square (rms) error and the convergence is checked. The flow
chart and the tree of subprograms used in INVSOL are given in flow charts 5.8 and
5.9 respectively. A brief description of inversion subprograms, along with their
purpose(s), subroutines they are called in and subroutines they call, is given in Table
5.4. The important inversion subprograms are also discussed in brief.

Table 5.4 Various inversion subprograms and their purpose(s)

Subprogram Purpose Called

by
Calls

CGINV Solves inverse matrix equation
(5.4) using BCGM

INVSOL DTTRNSF

JDELT

JHDELR

NORM

DTINV Reads inpu da a for ini ial
guess model, inversion control
parameters and field data, if
necessary

INVSOL

"

DTNEW Modifies original input grid
generation data

RESPONSE X

INVDOM Identifies grid blocks bounding
the inversion domain

RESPONSE X

INVSOL Inverts the given/generated
data

Main DTINV

RESPONSE

RHSMAT

CGINV

DTNEW
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Table 5.4 Contd.

JCBV Performs Jacobian based

calculations for various

response functions using
transformation matrices

CGINV

JDELT

JHDELR

INPV

JDELT Computes product of Jacobian
matrix with a vector

CGINV JCBV

RESOLVE

RHSV

OUTMAT

JHDELR Computes product of Hermitian
of Jacobian matrix with a vector

CGINV JCBV

RESOLVE

RHSV

OUTMAT

NORM Computes inner product of a
vector with its complex
conjugate

CGINV X

OUTMAT Computes product of derivative
of transformation matrix with a

vector for outcropping body

CGINV

JHDELR

JDELT

INPV

RESMAT Computes transformation
matrices for derived field

components and response
functions

RHSMAT X

RHSMAT Computes right hand side of
equation (4.58) for Jacobian
based computations

INVSOL RESMAT

RHSV Computes product of right hand
side matrix or its Hermitian with

a vector

CGINV

JDELT

JHDELR

INPV

SUPBLK Computes number of subblocks
in each superblock, for a given
grid

RESPONSE X

Insubroutine DTINVfirst the parameters of the initial guess model, on the basis

of observed response, are read. Next, the iteration and convergence parameters

mnter, mxter, eps and mni, mxi, epi are read for inversion and the BCGM iterations

respectively. The inversion domain is chosen to encompass the inhomogeneity. The

left and right corner coordinates of inversion domain ylc and yrc and the top and

bottom corner coordinates zuc and zdc are read. The rhoin, the initial guess of

resistivity, within the inhomogeneity is read. The permissible range of resistivity values,
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identified on the basis of thumb rules, is read. The romn and romx are the minimum

and maximum values. The aps is the Marquardt parameter. In the end, for field
problem, field data -nobs, the number of observation points, yobs their y- coordinates
and resp, the response value - is read.

Subroutine INVDOM is called to define inversion domain for the inverse

problem. The number of blocks for which resistivities are to be inverted is calculated.

For the standard grid, these blocks define the superblocks and the initial guess of
resistivity is transferred to these blocks.

Subroutine SUPBLK is called for defining the number of subblocks in each
superblock for a given frequency. For standard frequency each superblock has only
one subblock. The number of subblocks is stored separately for the y- and z-
directions.

In subroutine DTNEW the grid lines within the inversion domain of the standard
grid are used for modifying the original input grid generation data for other frequencies.
The modified grid input data is used for generating grid at other frequencies to ensure
grid lines at superblock boundaries.

Subroutine DTTRNSF stores in (retrieves from) the necessary grid information
and related parameters global arrays from (into) local arrays. The choice of transfer
from global to local or vice-versa is governed by a counter. The number of records
needed to store the reduced FDM coefficient matrix is calculated in accordance with
the given buffer size.

Subroutine RHSMAT is called for the right hand side matrix of equation (4.58)
which is needed for Jacobian based computations. It is the product of field vector with
the coefficient matrix derivative with respect to resistivity parameter. Its flow chart is
shown in Fig. 5.10.

If a superblock is having one subblock, only four nodes are associated with it.
As a result the derivative of coefficient matrix has sparse structure with only four terms
being non-zero in each row. As the number of subblocks in a superblock increases,
so does the number of associated nodes. Therefore, the derivative of matrix is
calculated accordingly. This right hand side matrix is stored for each frequency. The
subroutine RESMAT is called for Jacobian of derived field components and response
functions.
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±
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From Step 14

Reduce regression parameter

Call CGINV to solve
inversion matrix equation

3E
Update block resistivities

and store in temporary arrays
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all block resistivities"
out of range ?

Set outliers to the
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• iter = iter + 1

Yes

Convergence not
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Convergence
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Yes

Consider last solution

as final solution
-»-( Return")—( End )

Fig. 5.8 Flow chart of subroutine INVSOL.
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Fig. 5.9 Tree of subprograms called in subroutine INVSOL.
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Initialize temporary arrays

v Yes

Differentiate top row of
FDM matrix

Differentiate FDM matrix
with respect to block

resistivities

No

Call RESMAT for computation
of tranformation matrix

( Return ")

End

Fig. 5.10 Flow chart of subroutine RHSMAT.
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In subroutine RESMAT the transformation matrices for field derivatives and

response functions are computed in subprograms BDERIV and EDERIV for B- and E-
polarization respectively. These matrices are generally banded with maximum of four
diagonals which are stored in four vectors. According to the response type, i.e.
impedance or induction vector, the transformation matrices are updated in RESMAT

(Fig. 5.11).

Subroutine CGINV solves the inverse matrix equation using bi-conjugate

gradient matrix solver which is implemented through splitting of real and imaginary
parts. The counter, invtr, is defined as -1, 0 and 1 for least square, exact and
minimum norm inverses respectively. According to the counter invtr the product of

matrices are computed. The basic steps for obtaining these inverses are discussed

below.

Least square solution

The least square solution of inverse problem can be written as

LP-{KHK+\2l)AKHb.R. -(5.6)

First the product KHAR is computed, from equation (5.5), as

V,=K"LR=JHlpTLR -(5.7)

For the product of Hermitian of Jacobian matrix with a vector subroutine JHDELR is

called. The least square inverse is now found out iteratively. The product KV, is

computed using equation (5.5) as

V2KV^IpJVA -(58)

and then

VZ-KHV2 -(5-9)

is computed. For each iteration, the products KV, and KHV2 are computed and
subroutines JDELT and JHDELR are called for this purpose. Since we are seeking the

ridge regressed solution, AsV, is added to the final product V3. The iterative process

is continued till convergence is achieved.
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Minimum norm solution

LP=KH{KKH*\2h%R -(5-1°)

Unl ke least s ua e solut on, the te at ons a e set n the sta t ng tself. The oduct V,
=KHAR and V2= KAR are computed using equations (5.7) and (5.8) and subroutines
JHDELR and JDELT arecalled for eachBCGM iteration. For ridge- regressed solution,

/UAR is added to the product V2. Once convergence is achieved the final solution, V3
=KHV2, is obtained by calling JDELR. The various steps of CGINV are shown in flow
chart 5.12.

The product of generalized Jacobian with a vector, given in equation (4.68), is

obtained as

JRAR QLR+ TJXAR. ...(5.11)

where matrix Q =T'F. In terms of modified Jacobian equation (vide equation 4.77) the

equation (5.11) becomes

KAR- lpJ„L\R- lp OA/?+ lp T{Cy' YAR -(5-12)

The first term is computed only for outcropping body by calling subroutine OUTMAT.
For second term, the subroutine RHSV is called for the product of right hand side

matrix with a vector YAR. After this product RESOLVE is called for solution (C) 1YAR.
Lastly for computation of the final product the subroutine JCBV is called. The flow
chart of subroutine JDELT is given in Fig. 5.13.

Analogous to subroutine JDELT, subroutine JHDELR is called for product of

Hermitian of Jacobian with a vector as

jJ?LR= Q"AR> J?ThAR. -(5.13)

In terms of modified Jacobian K the equation (5.14) can be written as

KHLR= J„IPTAR- QHIPTLR * YH{CV tpLR •(5-14)

If body is outcropping the subroutine OUTMAT is called for the first term which
is zero otherwise. Here the order of computations for second term are reversed, in

comparison to that of JDELT. First the Jacobian is modified according to the response
type by calling JCBV, then RESOLVE is called for solution (CH)"1IPTAR and finally
RHSV is called as shown in flow chart 5.14.
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5.6 Computing environments

EM2INV is an efficient and versatile algorithm. However, it is in place here to

list hardware as well as software limitations under which it was developed.

5.6.1. Hardware limitations

The algorithm is written in FORTRAN 77. It is developed and debugged on an
IBM compatible EISA based PC-486 machine with 32 MB RAM and 383 MB hard disk.
The SVR 4.0version of Unix operating system and F78 FORTRAN compiler are used.

The various dimension control parameters andtheir maximum values used in EM2INV

are given in Table 5.5.

Table 5.5 Description and values of dimension control parameters

Parameter Description Value

mxbl Maximum number of blocks in inversion domain 100

mxdy Maximum number of nodes in y- direction 90

mxdz Maximum number of nodes in z- direction 60

mxpr Maximum number of time periods/frequencies 15

mxsb Maximum number of nodes in a superblock 50

mxyy Maximum size of block matrix, mxdy x mxdy 8100

mxyz Maximum size of FDM coefficient matrix, mxdy x mxdz 5400

nersiz Maximum size of buffer 4000

nesiz Maximum size of buffer in bytes, 16 x nersiz 64000

5.6.2. Software limitations

Since algorithm EM2INV is based on quasi-linearization it needs judicious

choice of convergence criterion. The use of regularised estimators makes the choice

of regression parameter crucial. The inherent equivalence ambiguity is also present.

In its present version, the inversion domain should encompass all the inhomogeneities.

As a result the algorithm is found to be more efficient for confined targets.

5.7 Closure

The developed inversion algorithm EM2INV for 2-D EM data is the final result

of through research. Its validity and applicability are tested through various theoretical
exercises designed especially for this purpose. The experiment design exercises and

inferences drawn from these are discussed in Chapter 6.
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CHAPTER 6

ALGORITHM TESTING AND

EXPERIMENT DESIGN EXERCISES

6.1 General

Once a software is developed, it is essential to ascertain its accuracy and

evaluate its efficiency. Every aspect of the algorithm EM2INV is checked bydesigning

exercises of diverse nature. The accuracy is established through these exercises and

reproduction of published results. The applicability of the algorithm is illustrated via

various theoretical experiment design exercises of practical significance. For

understanding the relationship between various model parameters and the computed

responses, experiments for forward algorithm have been especially devised. The

results of these experiments help in setting up the guidelines that can be used for

successful inversion of real data. Some important findings of this whole process are

presented here.

6.2 Validation of EM2INV

EM2INV, being a quasi-linearized algorithm solves the forward problem a

number of times. Therefore, the forward algorithm has to be validated first.

6.2.1 Forward algorithm

First the mesh convergence and no contrast tests are performed and then the

published results of certain models have been reproduced for validation. Since the

development of our algorithm was started with the paper by Brewitt-Taylor &Weaver

(BW) (1976), their model is used for these tests. This model comprises a 500 x 500

m2 square target of resistivity 0.1 ohm-m, buried at a depth of 100 m, in a half-space
of 1 ohm-m (Fig. 6.1a). The Dirichlet boundary conditions are imposed at the domain

boundaries and the BW grid comprises 41 x41 nodes. Horizontally the body is located
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at the centre of the grid. The real and imaginary parts of electric field, Ex, at grid points
are plotted against horizontal distance and found to be in good agreement as shown
in Fig. 6.1b and c respectively.

0-5 H

z=0 o.» -

X

Sam
o

0.7 •

Weaver
EM2INV

35 3 ! I i i
Distance (km)

Weaver
EM2INV

"J 1 1 i
Distance (km)

Fig. 6.1 The BW model (a), the real (b) and imaginary (c) components of electric field for E-
polarization.

6.2.1.1 Mesh convergence test

Mesh convergence test is of crucial importance for proving the efficacy of any

numerical field algorithm. The accuracy of finite difference method depends on grid

spacings of the mesh (Chen &Fung, 1989).

For mesh convergence study, the comparison between various coarser and

finer versions of BW grid, along with the optimal grid used by EM2INV, has been

made. The mesh spacings which are four and two times of the original grid spacings

result in the coarser grids of 11 x 11 and 21 x 21 nodes, respectively, whereas the

finer 81 x 81 nodes grid is obtained when spacings are reduced by half. The size of

EM2INV grid, generated by automatic grid generator, GRIDYZ, is 31 x12. The real and
imaginary components of the electric field for all these grids along with those of original
grid are presented in Fig. 6.2. These plots exhibit results of higher accuracy of with the
finer grid. Further, the improvement in accuracy becomes smaller and the results
converges to a limit, the true solution. After this the further refinement of optimal grid

does not improve the results at all. The reduction in size of the optimal grid renders

significant reduction in computation time.
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Fig. 6.2 Mesh convergence test: The real and imaginary components of electric field of BW
model computed using five different grids having 11 x 11, 21 x 21, 41 x 41 (BW), 81
x 81 and 31 x 12 (optimal grid) nodes.

6.2.1.2 No contrast study

Another test conducted on the algorithm EM2INV is to verify the convergence

of the buried target response to that of a half-space when the resistivity contrast is

reduced to 1. The resistivity of the rectangular target of BW model is modified to 0.9

ohm-m for this test. The impedances for the two polarizations are computed and found

to be identical within computational errors.

6.2.1.3 Reproduction of published results

The comparison of results obtained by the developed algorithm with the

published ones is an important aspect of validation. After reproducing the results of

BW model, to gain more confidence, the forward results of EM2INV were matched for

the modelstaken from the report ofan international project on comparison ofmodelling

methods for EM induction problems (Zhdanov et al., 1990). In this report the results

ofdifferent numerical methods used by various workers are compiled. Here, however,

only for two models the results of EM2INV along with those of other modelling

techniques are presented.

The first model (Fig. 6.3a) is a two-layer one with the layers having resistivities

100 and 10 ohm-m. Two conductive blocks of resistivities 0.01 and 0.1 ohm-m are

embedded at a depth of 7 km, in the first resistive layer. The second model (Fig. 6.3d)

has 10 km thick inhomogeneities outcropping in the top layer. The real components
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Fig. 6.3 The two models chosen from report of Zhdanov et al., (1990) (a,d). Comparison of
EM2INV results with some of the results given in report (b,c) and (e, f) are plots of real
parts of Ex and Hx for the two models respectively.
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of base electric field, Ex, and magnetic field, Hx, are computed for these models at

periods 1000 s and 100 s respectively. The EM2INV results, Ex and Hx, are compared
in Figs. 6.3b and e and Figs. 6.3c and f for the two models respectively.

6.2.2 Inversion algorithm

The validity of inversion computations has been checked by inverting the

synthetic responses and comparing the results with the true model responses.

Subsequently, the stability of EM2INV has been established by inverting the synthetic
responses corrupted with random Gaussian noise.

6.2.2.1 Inversion of synthetic responses

The synthetic conductive block model of Agarwal et al. (1993) has been chosen

for illustration. The model comprises a block of width 20 km, thickness 10 km and

resistivity 10 ohm-m. It is embedded in a medium of 100 ohm-m resistivity with its top
surface at a depth of 10 km. The first layer, which is 40 km thick, is underlain by a
conductive layer of 10 ohm-m. The horizontal extent of the model ranges from -100

to 100 km, whereas its vertical extent is 100 km. The model, along with its parameters

and geometry, isdisplayed in Fig. 6.4a. On the basis of forward response, an inversion

domain of resistivity 40 ohm-m, ranging from -30 to 30 km in horizontal direction and

5 to 25 km in vertical direction, has been identified.

Since the body is sensed bestat period 80s the E-polarization impedance, Z ,

computed at this period has been inverted. The detailed inversion results are shown

in Fig. 6.5. Both the real and imaginary components of the impedance of inverted

model fit those of the true model (Fig. 6.5a). The root mean square (rms) error of

inversion is continuously decreasing with increasing iteration number (Fig. 6.5b) and
this signifies acceptable inversion quality. The resistivity contours (in ohm-m) within the

inversion domain of final model are plotted in Fig. 6.5c. The top horizontal and the

vertical boundaries of the body are well resolved, whereas the bottom horizontal

boundary can be inferred reasonably well.

6.2.2.2 Check on stability

The stability has been checked through inversion of noisy data. In order to
simulate real data the random Gaussian noise of different signal to noise ratio has
been added to the synthetic response before carrying out the inversion. The addition
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Fig. 6.4 The models studied - (a) the conductive block model, (b) the resistive block model and
(c) the model having both conductive and resistive blocks.
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of noise results in high frequency oscillations into the otherwise smooth response

curve. Inversions of the corrupted Zxy responses of the conductive block model have

been carried out. It has been observed that the quality of inverted model is acceptable

as long as the noise level is lower than or equal to 5%. The inversion algorithm

EM2INV is, therefore, robust and can tolerate noise up to 5% level.

The inversion results for noise free, 2% and 5% Gaussian noise cases are

shown in Fig. 6.6. The results illustrate the comparison of true and inverted model

responses (Figs. 6.6a-c), resistivity contours of inverted models (Figs. 6.6d-f) and

convergence of rms error of inversion (Figs. 6.6g-i) for the three cases.

6.3 Experiment design exercises

The algorithm EM2INV has been employed to study the nature of forward and

inverse problems. In this process the forward response generation as well as data

inversion capabilities of algorithm are not only rigorously tested but also enhanced. For

this purpose, severaldesign exercises have been set up. Sincethe initial guess model

for inversion has to be obtained from observed anomaly, the forward experiments aim

at studying the impact of model parameters on forward responses, whereas the

inversion experiments aim at gauging the inversion quality under different situations.

These experiments help in improving quality of inversion and also in planning of data

procurement.

Forthese studies the theoretical models chosen from literature (Agarwal et al.,

1993) are - a conductive block, a resistive block and a conductive and resistive block

pair buried in a two-layer earth. The conductive block model has already been

described in section 6.2.2.1.

The resistive block model is similar to the conductive one except that the block

resistivity is now 1000 ohm-m in place of 10 ohm-m (Fig. 6.4b). In the third model,

which has both conductive and resistive blocks, the two blocks of width 10 km,

thickness 10 km having resistivities 10 and 1000 ohm-m, respectively, are buried in

the host of 100 ohm-m. The separation between these two blocks is 40 km (Fig. 6.4c).

The conductive block, resistive block and conductive and resistive block pair models

are referred to as model 1, model 2 and model 3 in the text respectively. Model 1 has
been used more frequently for undertaking the design exercises.
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6.3.1 Experiments on forward algorithm

The algorithm, like any other inversion algorithm possess the capability to
generate the forward response for various types of synthetic models. In order to
develop thumb rules, which can be used to derive information about the initial guess
model, a set of apparent resistivity vs distance curves, for a given set of model

parameters, are generated for B- and E-polarization.

The parameters studied in case of models 1 and 2 are the resistivity contrast
between the block and host and the depth of burial to the top of the block. In model

3, the parameters studied are the resistivity contrast between the two blocks and the
horizontal separation between them. During experiment, only the parameter under
study is allowed to vary keeping rest of the parameters fixed. The different values of
host and block resistivity contrast ratio, used for response computation, are 2, 5, 10,
100 and 1000 for model 1 and 10, 50 and 100 for model 2. The depth of burials are

(in km) - 0 (outcropping body), 10, 30, 40 and 50. The separation values taken
between the two blocks of model 3 are (in km) - 0, 10, 20, 30 and 40. As the body is

sensed best at period 80 s, all these responses are generated for this period.

Different parameter sets can result in similar responses. Therefore, a

preliminary discriminant analysis to plan guidelines for estimation of target resistivity
and size has been attempted. Although concrete quantitative rules could not be

derived, yet the qualitative inferences, based on these forward responses, have been

drawn and are discussed.

6.3.1.1 Effect of resistivity contrast

For B- and E-polarization, the apparent resistivity curves for different contrast

ratios are generated for models 1and 2for a given depth of burial and for model 3for
a given separation value. These plots are shown for B- and E- polarizations,
respectively, in Figs. 6.7 - 6.8 for model 1, in Figs. 6.9 - 6.10 for model 2 and in Figs.
6.11 - 6.12 for model 3. The base models are retained with the change in desired

parameter.

According to these plots the anomaly peak sharpens with increase in resistivity
contrast ratio. But this sharpness is perceptible only up to a certain depth of burial
beyond which even a large contrast ratio does not help in detecting the body. For the

143



0.0028 -,

0.0024-

0.0020 -

N

0.0016 -

0.0012

25 I
-30 -20

Noise free
(a) 0.0028 -i

0.0024 -

0.0020 H

X

N

0.0016-

i I I I I | i i i i i | i I I I I | I I I I I | I I I I I | I I I I I |

-210 -140 -70 0 70 140 210

Distance (km)

0.0012

Noise free
(d)

2% Gaussian Noise

Re (Inv)

lm (Inv)
11 i | 11 i i i I i i i i i | i i i i i | i

-210 -140 -70 0 70 140 210

Distance (km)

2% Gaussian Noise

(b) 0.0032 -i

0.0028 -

0.0024-

J*
0.0020 -

0.0016-

| l I I I I | 0.0012

-210 -140 -70 0 70 140 210

Distance (km)

(e)
5% Gaussian Noise (f)

15-:

20 30

Horizontal Block Coordinate

-30 -20 -10 10 20

Horizontal Block Coordinate

-20 -10 10

Horizontal Block Coordinate

- 75

'E
70

65

E 60

o hh

.£> 50

> 4b

40

w 35
e
or 3U

ri. 25

Q. ?n
<

15

20 30

ite

10

Fig. 6.6 Contd.



Experiment design exercises

0.10-1

0.10

0.10-,

0.09-

w 0.08-

0.07-

0.06

Noise free
(g)

i r~i—•—i—i—i—i
3 5 7 g

Iteration No.

2% Gaussian Noise

i •—i—i—i
3 5 7

Iteration No.

5% Gaussian Noise

T

5 7

Iteration No.

Fig. 6.6 Inversion of synthetic Zxy data for conductive block model with increasing random
JT0o/ The C°Tfr!S°nS °f tme and inverted model responses for (a) noise free
mwthinl? (C)h% n0iSe' PartS (d) •(f) Sh°W the contoure of »*•** On oSSm) wfthln Inversion domain while (g) - (i) show the convergence of rms error in
inversion for noise free, 2% and 5% noise respectively.

145

(h)

T •
9



Experiment design exercises

same contrast ratio, the magnitude of anomaly is greater for the conductive block in

comparison to that of the resistive block. The conductive block is sensed better by E-
polarization (Fig. 6.8) whereas the resistive block is by B-polarization (Fig. 6.9). The
responses of model 3clearly support this observation, as pxy curves do not reflect the
presence of resistive block at all and merge into half-space values (Fig. 6.12).

6.3.1.2 Impact of depth of burial

This study has been performed only on models 1 and 2. The apparent
resistivities are computed at different depths of burial for a given resistivity contrast

ratio. These response curves for B- and E- polarizations are given in Figs. 6.13 -6.14
for model 1 and in Fig. 6.15 for model 2 respectively.

It has been observed that due to attenuation of signal the magnitude of

anomaly decreases with increase in depth of burial. The study reveals that for burial
depths greater than 30 km one cannot infer any information about the body as
anomalies are almost flat. The outcropping body is distinct in B-polarization responses

due to the sudden jump in p^ values at the edges, which helps in estimating the
horizontal extent of the body as represented in Fig. 6.13 and Figs. 6.15a-c.

6.3.1.3 Effect of separation between two bodies

For different separation values the apparent resistivities, pyx and pxy, of model
3are computed for a fixed contrast ratio. The effect of separation between two blocks
is reflected better in pyx plots (Fig 6.16) than in pxy plots (Fig. 6.17). For p^, this effect
is perceptible only when the block is conductive in comparison to the host (Figs. 6.17a
and 6.17b). As the block becomes resistive the response curves become almost

similar for different separation values.

6.3.2 Experiments on inversion algorithm
The inversion algorithm EM2INV is a versatile algorithm and can be used to

invert various response functions. In addition, the profiling as well as sounding data
can be inverted. Numerous factors like choice of response function, mode of

polarization, number of periods used for inversion, spread of observation points
individually or jointly, affect the quality of inversion. In order to study their influence,
some theoretical experiments have been designed which further establish the efficacy

of EM2INV.
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These exercises are conducted on simple models with synthetically generated

'experimental' data. Models 1 and 2, the conductive block model and the resistive
block model, respectively, are used for this purpose. Apart from using the a priori
information about 1-D layered earth models, the better initial guess models, which

provide a rough idea about the body, are constructed on the basis of forward
anomalies. Forthe chosen models, the inversion domain encompassing the true body

ranges from -30 to 30 km horizontally and 5 to 25 km vertically. The assumed
resistivities of inversion domains for models 1 and 2 are 40 and 500 ohm-m

respectively.

The grids used to invert data are different from the ones used in forward
computations. Agarwal et. al (1993) have used 15 periods (in s) -2, 3, 5, 8,10,15,20,
40, 80, 160, 320, 640, 1280, 2560 and 5120, for generation of synthetic responses.

Since during inversion periods smaller than 10 s result in large numerical grids which
cannot be handled on available facility, only 11 periods, starting from 10 s to 5120 s,

are used here.

The choice of standard frequency is crucial because the inversion domain

blocks of its grid are used as superblocks in subsequent inversion iterations. For its
selection, the single frequency inversion at each period(frequency) of the given range
has been carried out. Since the inversion of response computed at period 80s isgood

and economic, this particular period is taken for standard frequency. The 31 grid points

of standard frequency grid, extending from -204 km to 204 km, are used as
observation points for inversion. The observation points are (in km) - -204, -144, -114,
-99.3, -84.3, -69.3, -58, -46.7, -35.5, -24.2, -17.1,-13.6, -10, -6.6, -3.3, 0, 3.3, 6.6, 10,
17.1, 24.2, 35.5, 46.7, 58, 69.3, 84.3, 99.3, 114, 144, 204. The optimum value of
Marquardt parameter used, is 0.1. The minimum and maximum limits of resistivity
values are, respectively, 1-100 ohm-m and 100-5,000 ohm-m for models 1 and 2
respectively. Before 2-D inversion, the computed responses are corrupted with 2%
random Gaussian noise to simulate erroneous nature of real data. The experiments

performed and their important results are discussed here.

6.3.2.1 Relative Performances of response functions

The impedance and the induction vector, the response functions of MT and
GDS methods respectively, can be inverted using EM2INV. In order to analyse the
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relative performance of impedance Zxy with the induction vector lzy these responses
are computed at standard frequency for model 1 and then inverted. Fig. 6.18 shows
the detailed inversion results. It is clear that the responses from inverted model fit the

true Z^ and l^ response (Figs. 6.18aand b). Inspite of greater % rms error in inversion

of MT data (Fig. 6.18e), it estimates the body resistivity better than that estimated by
GDS data. Moreover, it also resolves the exact depth of burial while the GDS data

demarcates the horizontal extent of body better. The sudden change in resistivity
gradient is reflected in the form of dense contours (Figs. 6.18c and d). The lower end
of the body cannot be resolved by any of the responses.

Thus, the results of this experiment support the fact that the MT response is
better for estimating vertical position and the extent of the body while the GDS
response is better for horizontal variations.

6.3.2.2 Inversion quality for B- and E- polarizations

The MT data is available in both modes of polarization. If data for both
polarizations, B- as well as E-, are given then the questions arises as which one to

prefer. Astudy which investigates and compares the inversion quality for these two
modes of polarization, on conductive and resistive model, has been carried out.

The responses of models 1and 2for the B- and E- polarizations are generated
for the standard frequency and then inverted as shown in Figs. 6.19 and 6.20. The
inversion of Z^ data images the body better (Fig. 6.19d) than that of Z^ data (Fig.
6.19c) for model 1 which is conductive in nature. Especially the top level of body is
distinct in resistivity contour plots of the inverted model. In contrast to this, the
inversion results for resistive model (Fig. 6.20), indicates superior inversion of Z^
response, as the body gets shifted upwards in inversion of Zxy response. The lower
end of the body is not clear in either mode of the polarization for any model. The
lateral boundaries are well imaged by inversion of Z^ response for both the models as
indicated in Figs. 6.19c and 6.20c. This is in accordance with the charge accumulation
on the boundaries. The % rms errors in inversion for the two models are shown in
Figs. 6.19e and 6.20e respectively.

The results of the above mentioned study indicates that the conductive bodies
are better resolved by inversion of E-polarization data while the resistive bodies by
inversion of B-polarization data.
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6.3.2.3 Efficacy of single and multifrequency inversion
The different depth levels of inhomogeneity can be tapped by controlling the

choice of frequencies which, in turn, control the penetration depth. Generally, the large
number of frequencies are used as a means for improving the resolution. This results
in overall increase of computation time that is linearly proportional to the number of
frequencies used. Atheoretical exercise that demonstrates the impact of the number
of frequencies used for inversion on the quality of inversion has been devised. It also
identifies the minimum number of frequencies necessary for performing efficient
inversion. The experimental results are demonstrated through inversion of Zxy

responses of model 1.

Initially, the model response generated at the standard frequency is inverted
using all observation points. In subsequent steps, the number of frequencies have
been increased one by one. The period, lying on either side of the standard frequency,
is selected from the given range, i.e. 10 s to 5120 s. The procedure is repeated till all
the frequencies of the range are included and inversion is carried out for each step.

Here only the selected inversion results, i.e. performed using single (80 s),
three (40, 60 and 80 s) and six (20, 40, 80, 160, 320 and 640 s) frequencies are
displayed in Fig. 6.21 for comparison. Figs. 6.21a and bare graphical displays of the
corresponding %rms error plots and computation timings of algorithm for three cases.
It has been observed that with increase in the number of frequencies, there is no
remarkable difference in respective inversion results (Figs. 6.21 c-e). Though this
increase in number of frequencies used for inversion continuously decreases the %
rms error but at significant increase in computing time. Hence, in lieu of economic
viability the single frequency inversion is preferred to the multifrequency one.

We conclude from these results that if the extent of profile length is large

enough to tap the target, then increase in number of frequencies does not improve the
inversion quality.

6.3.2.4 Minimum number of observation points

Besides the frequency, the spread of observation points also controls the
penetration depth. Larger the spread deeper will be the penetration. Next, an
experiment, analogous to the previous one, which aimed at finding out the minimum
number of observation points needed for good quality inversion has been carried out.
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Initially all the 31 observation points, extending from -204 to 204 km, are used

for inversion of impedance Zxy, computed at standard frequency. Gradually two
observation points, one on each flank have been removed till only one observation
point, the central point of the profile, is left. If the set of frequencies used is not able
to invert the data properly then another frequency is added.

The inversion results using 31, 19, 5and 1observation points are given in Fig.
6.22. The periods (in s) used for inversion are 80 for 31 points, 80 and 160 for 19

points, 80, 160, 320 and 640 for 5 points and 80, 160, 320, 640 and 1280 for single
observation point. The profile for standard frequency (in km) extends from -204 to 204,
-58 to 58, -6.6 to 6.6 and zero length, respectively, for 31, 19, 5 and 1 observation
points.

The body is best resolved when inversion is performed using 31 observation
points (Fig. 6.22a) but even when very few, i.e. 5 or 1observation points, are used for
inversion it helps in deciphering the approximate model. The most interesting result is
when inversion is carried out using only one observation point (Fig. 6.22e). These
results illustrate that even a single observation point of profile contains significant
information about the body and can yield approximate model when used for inversion.

The result highlights the applicability of 2-D inversion in comparison to 1-D one, where
the point inversion provides only a layered earth model.

6.4 Closure

After validation and exhaustive testing of the inversion algorithm EM2INV,

through theoretical experiments, its applicability has been established. For this, data

inversion exercises and feasibility studies are carried out on synthetic as well as on
field data as discussed in Chapter 7.
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CHAPTER 7

RESULTS AND DISCUSSIONS

7.1 General

The experiment design exercises of diversified nature using synthetic data,

discussed in the Chapter 6, validate the inversion algorithm EM2INV. However, an

algorithm cannot be used confidently unless it is tested on a large number of synthetic

data sets and field data. The inversion related studies reported here are categorized,

depending upon the nature of models and data, into three classes based on (i) purely

synthetic data, (ii) data derived from models based on field studies and (iii) purely field

data. Asummary of different models, used for inversion studies, and their description
is given in Table 7.1.

Table 7.1 Various models chosen for testing of EM2INV

Model Type of
response

Source Model description

Horst MT (synthetic) Agarwal et al. (1993) Conductive block of

10 ohm-m buried in

host of 1000 ohm-m.

Conductive block MT (synthetic) Agarwal et al. (1993) Conductive block of

10 ohm-m buried in a

layered earth.

Resistive block MT(synthetic) Agarwal et al. (1993) Resistive block of

1000 ohm-m buried in

a layered earth.

Conductive and

resistive block pair
MT (synthetic) Agarwal et al. (1993) Conductive and

resistive blocks of 10

and 1000 ohm-m

buried in a layered
earth.
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Table 7.1 Contd.

Sedimentary basin MT (synthetic) Madden & Mackie

(1989)
Conducting basin of 5
ohm-m buried in half-

space of 300 ohm-m.

Transverse

structure

GDS (field study
based)

Arora & Mahashabde

(1987)
Asthenospheric ridge
of 2 ohm-m at a

depth of 15 km.

Trans Himalayan
conductor

GDS (field study
based and field)

Arora (1990) Two blocks of 3 ohm-

m embedded in a

layered earth.

Graben structure MT (field study
based)

Peeples & Rankin
(1973)

Conductive graben of
15 ohm-m in resistive

host of 400 ohm-m.

C0PR0D2 MT (field) Jones (1988) NACP anomaly

A 2-D model can be obtained using 2-D inversion scheme and also through

stacked results of 1-D inversion. The results and inferences drawn from these studies

are presented here.

7.2 Inversion of synthetic data

The algorithm EM2INV is first tested on several data sets derived from

synthetic models. The basic structures, commonly encountered during exploration or

solid earth studies, are horst, sill, dyke, faulted block, conductive block, resistive block,

salt dome, sedimentary basin etc. The two-dimensional models, representing the

geologically meaningful situations, have been selected through a comprehensive

literature survey. Various workers, Patra & Mallick (1980), Pek (1985), Madden &

Mackie (1989), Oldenburg (1990), Zhdanov et al. (1990), Smith & Booker (1991),

Agarwal et al. (1993), have given simple 2-D geophysical models. These models have

been used as standard test of several 2-D inversion schemes (Pek, 1985; deGroot-

Hedlin & Constable, 1990; Oldenburg, 1990; Smith & Booker, 1991; Agarwal et al.,

1993). Agarwal et al. (1993) have not only described the basic models but have also

presented their 2-D models based on stacked 1-D inversion results.

The models selected for the present study are horst, a resistive block, a

conductive block and conductive resistive block pair, embedded in a two-layer earth

(Agarwal et al., 1993) and the sedimentary basin model (Madden &Mackie, 1989).
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A study, to ascertain whether the obtained 1-D stacked models can be improved
further by 2-D inversion or not, has been conducted on the models picked up from
Agarwal et al. (1993). As a result the inversion has become a two step procedure. In
the first step, the 1-D inversion of a chosen model is carried out at each observation

point for given time periods and then the obtained inverted models are stacked

together toderive a starting 2-D model. In thesecond step, this starting model is used
for 2-D inversion to obtain a final model. The Straightforward Inversion Scheme (SIS)
has been used for the first step (Gupta et al., 1996) while for the second step EM2INV
is used . Being linear, the SIS is a non-iterative scheme and it dispenses with the
choice of an initial guess model. However, it requires the number of layers in the
model and the constant layer thickness units of layer skin depth. The number of layers
assumed for the present inversion are, in general, 100. For EM2INV, the inversion

domain encompassing the true body, and its resistivity is defined on the basis of
derived 1-D stacked model.

The forward responses, computed for the given period range at specified
observation points and corrupted with 2% Gaussian noise, are used as data for SIS.

In contrast, for EM2INV, only the significant periods at which the body is better sensed
are used for efficient inversion. For a general model, where responses are to be
computed at 9 observation points and for 6 periods, the CPU time for SIS is about

120s for one observation point, i.e. 1080 s for obtaining the stacked model. For
EM2INV, which uses all the observation points but only 2 periods the CPU time is
about 816 s.

The graphical display of the basic results is divided into two sets (i) 2-D
pseudosections, with depth rather than period on vertical axis, derived from SIS

inversion and (ii) the resistivity contour plots (in ohm-m) within the inversion domain

of the 2-D model obtained from EM2INV. In most of the cases the convergence has
been achieved in 10-12 iterations. However, in the basin model the convergence is
achieved in 16 iterations. The computed results agree to observed results within 2%
of rms error. In SIS the regression parameter e2 is taken as 0.02 for 2% Gaussian

noise. The chosen models and their inversion results are presented here.

7.2.1 Horst model

This simple geophysical model can be regarded as an upwelling of upper-
mantle material into the crust. The resistivities of the crust and mantle are taken as

1000 ohm-m and 10 ohm-m respectively, the thickness and width of the horst are 20
km each, and the crust-mantle boundary is at a depth of 30 km (Fig. 7.1a).
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The SIS 1-D inversion is carried out for B- and E- polarizations using six
periods (in s) -2, 10, 50, 200, 1000 and 5000 and at the nine sites (in km) -100, -50,
-25, -10, 0, 10, 25, 50 and 100 while the EM2INV 2-D inversion employs only two
periods 50 sand 200 s. From the SIS derived model, the inversion domain identified
lies between -20 to 20 km and 5 to 30 km in horizontal and vertical directions,
respectively, and its resistivity is 30 ohm-m. In Fig. 7.1, the inversion results indicate
that the horst has been imaged well. Directly over the anomaly, the a arent res st vity
value is fairly accurately recovered from Zxy response but it is much less in comparison
to that recovered from Z^ which gives far too large avalue. It is concluded that the
horizontal extent is better resolved in case of B-polarization (Fig. 7.1b) while the
localization of the boundaries in the vertical direction as well as the resistivity
estimates have been better resolved in case of E-polarization (Fig. 7.1 c). The inversion
results shown in parts of Figs. 7.1 dand e support the above view and highlight the
superior quality of 2-D inversion.

7.2.2 Resistive block model
The resistive block model, already discussed in section 6.3, is described here

again for clarity. Ablock of width 20 km, thickness 10 km and resistivity 1000 ohm-m
is embedded, with its top surface at a depth of 10 km, in a crust of 100 ohm-m
resistivity (Fig. 7.2a). The crust mantle boundary is at adepth of 40 km and the mantle
resistivity is 10 ohm-m. The responses for SIS are generated for 15 periods (in s) -2,
3, 5, 8, 10, 15, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120 at the 15 sites (in km) -
100, -75, -50, -30, -20, -10, -5, 0, 5, 10, 20, 30, 50, 75 and 100. In contrast, for
EM2INV the inversion has been carried out using only two periods, 80 s and 160 s. On
the basis of the 1-D stacked models the inversion domain, with resistivity 150 ohm-m,
has been demarcated from -20 to 20 km in horizontal and 5 to 25 km in vertical
direction.

Fig. 7.2 exhibits the pseudosections of 1-D stacked model along with the
resistivity contours, within the specified inversion domain of the model, obtained from
2-D inversion. Acomparison of the inversions of Z^ and Zxy responses in Figs. 7.2b
and cdemonstrates the better quality of Zyx inversion than that of Zxy. It is interesting
to observe that these features get more pronounced in 2-D inversion results and
horizontal dimensions and depth of burial of the block are determined correctly. The
block resistivity has been fairly well reproduced in 7^ inversion (Fig. 7.2d).

170



.E 10-
"E
o

O

IS

Results and discussion

L LA^L^L i_

40-

60- 10

80

'00 'i 1111111111111111111111111111 •• • • •

-80 -40 0

1-D Inversion of Zyx

-60 -20 20 60

Distance (km)

(b)

2-D Inversion of Z

-10 10

Horizontal block Coordinate

(d)

(a)

10O1
100 -100

40 80

1-D Inversion of Zxy

-20 20

Distance (km)

(c)

2-D Inversion ofZxy

-10 10

Horizontal Block Coordinate

(e)

E" 1900

E
1500

o
1200

&
1000

> 700
•^

CO 500
(/>

CD

or
300

mo
cL
CL 60

100

1000

700

500

300

200

100

90

70

50

30

20

10

Fig. 7.1 (a) Horst model with positions of observation points marked on the horizontal axis by
arrows; (b) and (c) the pseudosections obtained from SIS for the B and E-
polarizations; (d) and (e) resistivity contour plots of model obtained from EM2INV for
both B and E- polarizations.

171



100
-100

Results and discussion

•J/ \l/ \j. sUnL'WN^ \&r \L \l/ 4-
10§

20-
100

40-

60-

80-

100 lllll|
-80

!-D Inversion of Zyx

-60 -20 20 60

Distance (km)

(b)

2-D Inversion of Zyx

-10 10

Horizontal Block Coordinate

(d)

10

i'i 11 i 11 r i i i i i 11

-40 0

(a)

100

40

in11 |i i ii

80

1:D inversion ofZxy

-60 -20 20

Distance (km)

.(C)

2-D Inversion ofZxy

-10 10
Horizontal Block Coordinate

(e)

Fig. 7.2 As in Fig. 7.1 but for the resistive block model.

172

100



Results and discussion

7.2.3 Conductive block model

This model is identical to the resistive one except that the block having

resistivity 10 ohm-m is now moreconductive than its host crustal layer (Fig. 7.3a). The

data is generated for the same periods and observation points as in the case of

resistive block model for both SIS and EM2INV inversions. For EM2INV, however, the

guessed resistivity of the inversion domain is 30 ohm-m.

Being the conductive model, the block and the underlying structure are more

accurately revealed by 1-D inversion of Z^ response than of Zyx, as is evident from
Figs. 7.3b and c. In ZyX inversion the lateral boundaries are better imaged, however,

the block being elongated in vertical direction. The remaining Figs. 7.3d and e present

the resistivity contour plots within the inversion domain of final 2-D model where the

high density of contours due to sudden change in resistivity value signifies the

presence of boundary.

7.2.4 Conductive and resistive block pair model

The two isolated blocks discussed in the previous two sections are brought

together in this model, having a distance of 40 km between them (Fig. 7.4a).

The responses for SIS and EM2INV have been calculated for thesame periods

as before, but the numberofsites is increased to 19 specifically (in km) -100, -75, -50,

-40, -35, -30, -25, -20, -10, 0, 10, 20, 25, 30, 35, 40, 50, 75 and 100, to cover the full

width of the region containing the anomalous bodies. The domain used for 2-D

inversion ranges from -40 to 40 km in horizontal and 10 to 25 km in vertical direction.

Since the inversion of starting model with variable depth of burial does not succeed,

the exact burial depth of blocks has been taken. The assumed resistivities of inversion

domain are 150 and 30 ohm-m, respectively, for Z^ and Zxy inversions.

The basic inversion results, pseudosections and resistivity contours, resulting

from 1-D and 2-D inversions, respectively, are shown in Fig. 7.4. For the block pair
model, the results turn outto be similar to single block models (Figs. 7.2and 7.3). The

Zy,, inversion indicates the presence of resistive block in a better manner (Figs. 7.4b
and d), whereas theZxy inversion reproduces conductive block more prominently (Figs.
7.4c and e). Figs. 7.4d and e present the 2-D resistivity contour plots and further
support this observation by giving better estimates of resistivities and, in turn, better

2-D models. This shows that the results of B- and E- polarizations are complimentary
to each other and can be used for estimating the comprehensive true model.
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7.2.5 Sedimentary basin model

The inversion of the response of a simple basin model, used by Madden &

Mackie (1989), has been performeddirectly using EM2INV. Fig. 7.5a portrays the 2-D

model with a 2:1 vertical exaggeration. The conductive basin of 5 ohm-m resistivity is

buried in a resistive host of 300 ohm-m. A numerical value 9999 ohm-m is assigned

to the highly resistive basement.

Since the model is conductive, as expected, the inversion of Z^ response

scored over that of Zyx response. Moreover, in this particular case the inversion results
of ZyX responses are not very satisfactory. Hence, results only for the Z^ response are
presented. The forward response has been computed for period 10 s and inversion

has been carried out using all the grid points as observation points. Based on a priori

information of 1-D model and forward anomaly, the inversion domain has been

assumed from -7 to 7 km and 0 to 9 km respectively in the horizontal and vertical

directions with the assumed resistivity being 100 ohm-m. The misfit between the true

and inverted response, the resistivity contour plots and the % rms error plot are

shown in Figs. 7.5b, c and d respectively. The response of the inverted model matches

with the Zxy response. The inverted model is able to identify the bottom boundary of
the basin. Being Z^ inversion, the resistivity is underestimated in the inverted model
(Fig. 7.5c). The % rms error is high in the first iteration. As soon as the true parameter

values are approached in subsequent iterations, the error estimates get reduced and

convergence is achieved after few more iterations (Fig. 7.5d).

7.3 Inversion of data derived from field studies based models

Further test of the algorithm for simulating geologically interesting and real

features has been carried out on models based on field studies. These model were

obtained using trial and error method of forward modelling by various investigators.

The following discussion presents a summary of basic results of investigating the

efficacy of EM2INV.

The field studies conducted for MT and GDS have been chosen from the

literature. Two sets of GDS data (Arora & Mahashabde, 1987; Arora, 1990) and one

set of MT data (Peeples & Rankin, 1973) have been considered. In order to assess

the quality of inversion, the computed responses have been inverted and the inverted

models are compared with the original models. The plot of % rms error vs iteration

number graphically displays the convergence of the inversion. Finally, the inverted

model resistivity contour plots (in ohm-m) within the inversion domain are presented.
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7.3.1 Transverse conductive structure

The 1979 and 1984 magnetometer array studies over northwest India led to the

discovery of a major conductivity structure across the Ganga basin in the foothills of

the Himalayas (Lilley et al., 1981; Arora &Mahashabde, 1987). An examination of data

for period 46 min resulted in the estimation of the position, orientation and extent of

the structure.

In above mentioned study, the conductivity structure is modelled using the 2-D

formulation of Jones & Pascoe (1971). On the basis of numerical modelling results,

Arora & Mahashabde (1987) found that the observed induction pattern for 46 min

alongthe lesser Himalayas belt, could be explained byasthenospheric ridge, about 45

km wide with its top at a depth of 15 km and a resistivity of 2 ohm-m (Fig. 7.6a). The

profile with station locations is displayed on top of the model. The observed GDS

response, both real and imaginary components, are shown in Fig. 7.6b.

During validity check of model, when computed and observed responses were

compared for period 46 min, it was found that the computed result totally differ from

the observed one. Singh &Pedersen (1988) also claimed that the response reported

is notcompatible with the observations. It appears that there was something inherently

wrong with the response computations carried out by Arora & Mahashabde (1987)

otherwise such a drastic difference in forward response is not possible at all. It is

interesting to note that this fact was accepted by Arora (1990) wherein he has

attributed to improperly chosen grid dimensions.

The possible changes in the model by keeping the forward response

unchanged have also been attempted. The change in lithosphere resistivity, from

10,000 ohm-m to 1,000 ohm-m, resulted in almost the same anomaly. Even when the

top layer resistivity is reduced to 100 ohm-m the results do not seem to be affected

much.

Next, 2-D inversion of the proposed model response using EM2INV has been

performed. The extent of the grid for period 46 min ranges from -14,000 km to 11,300

km, whereas the sites are located from -90 to 130 km (Fig. 7.6a). Since the 7 station

data has been used in deriving the field model the GDS response of initial guess

model has also been computed at these points. The inversion domain has been

identified from -40 to 40 km and 15 to 100 km in horizontal and vertical directions
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respectively. The attempts to invert data with 7 observation points and single

frequency failed miserably and the convergence is not achieved for any of the models

tried. This means that the data is insufficient for unconstrained 2-D inversion. To

overcome this problem of limited a priori information, inversion has been attempted

by increasing the number of observation points by adding points gradually on the left

and right flanks of the profile till the convergence is achieved.

This exercise identified 19 observation points with the extent ranging from -250

to 200 km as the minimum number ofdata points needed for successful inversion. The

inversion using the initial guess model with variable depth of burial could not succeed

as it is difficult to derive vertical information from single period data. As a result, the

initial guess model with exact vertical extent has been taken. Besides, the inversion

has also been performed using all the 40 grid points as observation points. The% rms

error for 19 and 40 observation points is .015 and .01 respectively. Figs. 7.6c and d

indicate the excellent agreement between the observed and computedGDS response

curvesfor both the real and imaginary components. Since the GDS resolves the lateral

variations, theedges of the ridge have been recovered in the resistivity contours within

specified inversion domain. Increase in data points results in further refinement of the

estimated model as is evident from Figs. 7.6e and f plotted, respectively, for 19 and

40 observation points.

7.3.2 Trans Himalayan conductor

The highly differing responses, obtained by Arora &Mahashabde (1987) and

Singh &Pedersen (1988) or EM2INV for a given model, may be an artifact of the

inadequate choice of grid dimensions (Arora, 1990). Furthermore, the accuracy of the

computed response depends on both the size and uniformity of the grid adopted in

numerical modelling. Chamalaun et al. (1987) have discussed about the factors

contributing to the non-uniqueness of the proposed models. The uncertainty, which

arises due to the large station spacing, resulted in a poor definition of the observed

response profile which ultimately determines the model parameters and their

interpretation. The more realistic constraints on the best fitting model can be provided

by comparing the responses over a wide range of frequencies. In addition, the denser

network of stations need be considered to define depth and boundaries of conductive

bodies and the shape parameters of the conductor.
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Being aligned transverse to the Himalayan mountains, the conductive structure

has been named Trans Himalayan' conductor (Arora, 1990). The location sites of
magnetometers together with theprincipal tectonic features of the region arediscussed
in detail by Arora (1990, 1993).

Arora (1990) found that real part of GDS responses at periods 46, 62 and 82
min could be reproduced by induction response of two tabular blocks of 3 ohm-m as

shown in Fig. 7.7a. The left block is approximated to have a width of 25 km, a
thickness of 12 km with its top at a depth of 8 km. The right block with its top at a
depth of 12 km is approximated to have a width of 38 km and thickness of 18 km. The

inclusion of a surface conducting layer of thickness 2-3 km simulating conducting
sediments of 15 ohm-m in the Indo-Gangetic plains, improves the fit for the real part
of the anomaly (Arora, 1993). The reliability of the proposed model was tested by
comparing real part of the observed and calculated responses at three periods using
2-D FDM modelling approach of Brewitt-Taylor &Weaver (1976).

The computed synthetic responses of the proposed model at periods 46, 62
and 82 min have been inverted. ForEM2INV, the inversion domain has been identified
as ranging from -40 to 60 km in horizontal and 5 to 35 km in vertical directions. The
resistivity is assumed to be 15 ohm-m. The inversion has been performed using 12
sites as observation points. The convergence is achieved in 6 iterations and the
continuous decrease in misfit with iteration number indicates the good quality of
inversion. Though individual block boundaries are not clear yet the side boundaries,
which distinguish the block from the host are distinct in resistivity contours plotted for
the inversion domain in Fig. 7.7c. Fig. 7.7d displays the goodness of fit between real
parts of the observed (blue curve) and computed (pink curve) responses at the three
periods; the sites are marked on the horizontal axis.

7.3.3 Graben structure

Peeples &Rankin (1973) conducted a field MT study for the buried graben in
the Western Canadian sedimentary basin, flanked on the north-east by the Canadian
shield. The basin comprises low resistivity sediments overlying the more resistive
basement. Measurements of the data, on twenty locations along two profiles, were
made in the period range 10 s to 1000 s to determine sedimentary and crustal
resistivities for this region. The details of data procurement, analysis and interpretation
are discussed in detail by Peeples &Rankin (1973).
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Peeples & Rankin (1973) proposed a 2-D model for the graben on the basis

of transmission surface analogy technique of Madden &Thompson (1965) and Swift

(1967). The tensor apparent resistivity curves which are rotated into the principal

directions of resistivity for the six selected recording locations, along a traverse across

the strike of the structure, has been used as data for modelling. Their model consists

of a low density fill layer of 15 ohm-m embedded in the resistive host of 400 ohm-m.

The graben structure is overlain by a layer of 8 ohm-m low resistive sediments as

represented in Fig. 7.8a. The horizontal line at the top of the model shows the location

of stations across the MT profile.

The 1-D layered earth model has been assumed as the initial guess for

carrying out 2-D inversion using EM2INV. For this purpose, the inversion domain

considered, ranges from 30 to 120 km and 3 to 12 km in horizontal and vertical

directions respectively. Further, the three periods 10s, 40s and 50s have been used

for inversion. Figs. 7.8b, c and d exhibit the rms error plot along with resistivity contour

plots of inverted model for both the B- and E-polarization responses. Although the Zxy

response hastaken large number of inversion iterations in comparison toZyX response,

yet the %rms error is still smaller for Z^ as shown in Fig 7.8b. The conductive graben
structure, as expected, is recovered better by Z^ response (Fig. 7.8d).

7.4 Inversion of field data

After gaining confidence with the successful inversion of synthetic data derived

from theoretical and field study based models, an attempt has been made to invert the

field data using EM2INV. For this purpose, the 2-D inversion of the GDS data ofTrans

Himalayan conductor and COPROD2 MT data have been undertaken.

7.4.1 Trans Himalayan conductor data

The proposed model of Trans Himalayan conductor (Fig. 7.7a) and other

relevant details have already been discussed in section 7.3.2. Field data was recorded

only at 12 observation points (in km): -180, -90, -80, -50, -40, -10, 0, 55, 90,100,140

and 180 for periods 46, 62 and 82 min. Only real component of observations,

induction vector, is available. The domain used for inversion and its resistivity is

identical to the synthetic exercise carried out in section 7.3.2. This implies that

inversion domain of 10 ohm-m ranges from -40 to 60 km and 5 to 35 km in horizontal

and vertical directions respectively.

182



10

1 20
c

2 30
a.

«S 20

400

0.12-,

Results and discussion

Distance in Km

-30 -20 -10 0 10 20 30 40 80

— r—i ^Sec
•-^^ Layer

.*» t-^^AJn

f '-«»
Anomolous zone

1000 TLm

Lithosphere

10-TLm

Asthenosphere

(a)

-20 20 40

Horizontal Block Coordinate

App. Resistivity (ohm-m)

6 8 10 12 14 16 18 20 22 24

(C)

-r~ —r~ —i 1

2 3 4 5 6

Iteration No.

60

0.4-1

0.4-i

-0.4 ->

0.4-i

I I' i i i I i i i i i I i i

-200 -100

(d)

'I I

100 200

Fig. 7.7 (a) Proposed geoelectrical model for the Trans-Himalayan conductor (after Arora,
1990). (b) % rms error plot representing convergence, (c) Resistivity contours of the
real part of GDS response of the inverted model within inversion domain, (d)
Comparison of the real part of GDS response of the true model with the computed one
for three periods.

183



oo

Depth(km)

(a) o

10

(C)

20
I

30 40

z
o

I-

<

o

40

X

01
in
o

60

in

Z
o

I-
<
o

a

80

Q

a:
<

o
z

o •-

100 120 140 160 170 (Km)
_i_

S = 8-0.m SEDIMENTS

S=15Am

*FILL LAYER

S=400Am

Inversion of Z,

50 60 70 80 90 100

Horizontal Block Coordinate

120

0.25-,

(b)

30 40

i • i—'—r
5 7 9

Iteration No.

Inversion of Z

11

50 60 70 80 90 100

Horizontal Block Coordinate

Fig. 7.8 (a) Proposed graben model based on the MT field study (after Peeples &Rankin,1973). (b) Comparison of convergence of %rms error for Zyx and
Z^ inversions, (c) and (d) Resistivity contour plots within the inversion domain for Z^ and Z^ responses respectively.



Results and discussion

Comparison of real components of the inverted model responses with

observations is shown is Fig. 7.9a for 3 periods where observation sites are shown in

the bottom part of the figure. The error bars of the observations are marked by dots.

Fig. 7.9b presents % rms error of inversion. The rms error and number of iterations

have increased in comparison to that of synthetic exercise (Fig. 7.7b). The resistivity

contours within inversion domain of the inverted model are plotted in part c of Fig. 7.9.

Here too the lateral boundaries of the blocks have been recovered.

7.4.2 COPROD2 data

The MT data, recorded along a profile across the Phanerozoic Williston Basin

in south Saskatchewan, Canada, have been corrected for static shifts (Jones, 1988).

Jones & Craven (1990) had performed 1-D Occam's inversion by trial and error 2-D

forward modellingwhile Nong et al. (1993) used Rapid relaxation inversion scheme for

this purpose. On the basis of data analysis Jones &Craven (1990) had suggested two

prominent conductivity anomalies - (i) the North American Central Plains (NACP)

anomaly, with its centre in the array and top surface at a depth of 10 km reaching

possibly to the base of crust and, (ii) the Thompson Belt (TOBE) anomaly to the east

of the survey area, with its top surface virtually at the base of sediments and having

a width of about 5 km. Since the two anomalies are separated by more than 100 km,

these can be studied independently. Moreover, it is not feasible to investigate both

these anomalies together because of the constraints on the grid dimensions imposed

by the available computer memory.

In this section, only the inversion of NACP anomaly, the larger one, has been

reported. The reduced data set (COPROD2R), covering the NACP anomaly, at the 20

sites has been taken from Agarwal et al. (1993). The sites selected are located at

positions -113.5, -100.9, -93.0, -84.6, -74.4, -64.9, -55.7, -45.8, -35.0, -25.9, -14.6, -5.9,

4.9, 22.8, 41.8, 54.5, 64.2, 79.5, 96.2 and 117.3 km.

The strategy used for inversion of synthetic models, which is a two step
process, has been followed for field data too (see section 7.1). First the separate 1-D
inversions using SIS at various MT sites of the array have been performed. The 1-D

inverted results of all observation points are then stacked to derive a pseudosection.
The derived model is used as a starting model for EM2INV.

Agarwal &Weaver (1993) have obtained the final model using automatic 1-D
inversion scheme (Weaver &Agarwal, 1993). Since the model is obtained through
minimum number of columns by the data it is called the 'least blocked' model. Their
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Fig. 7.9 (a) Comparison of real part of inverted GDS response of Trans Himalayan conductor
model with the observations for three periods, (b) Convergence plot of % rms error
of inversion, (c) The resistivity contours of the inverted model within the inversion
domain.
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final model, a 4 column one, has been obtained using data of sites -100.9, -14.6, -5.9

and 117.3 at seven periods 10.7,21.3,42.7, 85.3, 170.7, 341.3 and 682.7 s (Agarwal

et al., 1993). For SIS, initially the apparent resistivity and phase of field data has been

converted to impedance data and used for inversion. The regression parameter ez is

taken as 0.05 assuming 5% noise while the number of layers are assumed to be 100

with a = 0.2. Since the NACP anomaly is conductive, the E-polarization gives better

model than B-polarization. Hence, the 1-D inversion has been performed only for E-

polarization. The pseudosection, constructed by assembling 1-D inversion results, is

shown in Fig. 7.10a, whereas the model derived from it is displayed in Fig. 7.10b. The

thickness (3 km) and the resistivity (3 ohm-m) of the Palaeozoic sedimentary layer at

the surface are well resolved. The model is terminated at a fixed depth of 60 km by

a uniform half-space. The inversion domain ranging from -113 to 118 km and 3 to 60

km in horizontal and vertical directions with resistivity 50 ohm-m, derived from the

model shown in Fig. 7.10b, is used as the starting model for 2-D inversion carried out

for the same locations and 5 periods, i.e. 21.3, 42.7, 85.3, 170.7 and 341.3 s. Fig.

7.11a exhibits the resistivity contours within the inversion domain of the final model.

It showsthat the low resistivity NACP anomaly is situated in the centreextending from

84 km left to 35 km right of the centre. Below 20 km, the lower crust to the left of

anomaly is much more resistive than that to the right. A close scrutiny of Fig. 7.11a

reveals that the resistivity range is too large to accommodate the finer details of the

middle conductive structure. As a result the solution domain has been divided vertically

into two parts to increase the resolution of the resistivity plot. The first part, which

extends from 3 to 20 km, is shown in Fig. 7.11b. Since the resistive structure on the

extreme right of the lower crust (Fig. 7.11a) is well resolved it is not included in the

second part which extends from -84 to 118 km in horizontal and 20 to 60 km in vertical

direction. The model obtained by us is similar to the one obtained by Agarwal et al.

(1993) except that the resistivity values of the surrounding crust are very high in their
case.

7.5 Closure

The inverted models obtained by EM2INV, under various categories, are in

broad agreement with the true or published models. The critical analysis of inversion

results of exercises discussed above reveals that 2-D inversion does improve the
model estimate in comparison to the 1-D stacked model.
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CHAPTER 8

CONCLUSIONS AND

SUGGESTIONS

8.1 Concluding remarks

The algorithm EM2INV, developed in this thesis, is an efficient and reliable

software package for inversion of 2-D geoelectromagnetic data. The algorithm has

been as rigorously and comprehensively tested as was possible within the limited time

frame of this study and available computing facility. All the studies conducted to

investigate the efficacy of this algorithm yielded encouraging results. The comparison

of the results of EM2INV with those obtained using other algorithms highlighted

efficiency of the algorithm. This justified a qualified faith in the algorithm, EM2INV.

However, there exists a scope for further studies on this algorithm. Primarily from

results of design exercises and inversion studies using different types of data sets, the

following conclusions have been drawn which are listed under achievements and

limitations of the algorithm.

8.1.1 Achievements of the algorithm

The present study helps in setting up the guidelines for data procurement and

enhances the inversion quality optimally as discussed below :

1. Choice of time periods, employed for observations, should not only be

constrained by skin depth criterion but also by the spread of observation points,

i.e. length of profile. If profile length is sufficiently large then increase in number

of periods does not improve the inversion quality.

2. For a wide spectrum of frequencies even a single observation point on the

profile contains significant information about inhomogeneity. 2-D inversion of

such a data set does yield an approximate model.

3. The inversion of MT data provides better estimates of vertical variations in

inhomogeneities, whereas GDS data deciphers the horizontal variations better.
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4. The conductive and resistive bodies are better resolved by inversion of E- and

B-polarization responses respectively.

5. The localization of vertical boundaries is better achieved by inversion of B-

polarization data in comparison to E-polarization one which is good in

demarcating the horizontal boundaries.

6. The inverted resistivity values are over estimated in B-polarization data, in

comparison to that obtained in E-polarization data.

7. An initial guess model derived from 1-D stacked results substantially improves

the inversion quality in comparison to the one using the guess model

constructed on the basis of 2-D forward anomaly.

8.1.2 Limitations of the algorithm

The limitations of algorithm EM2INV identified during its testing are :

1. Since EM2INV is based on quasi-linearization, it has all the pitfalls of a quasi-

linearized procedure, such as necessity of a close initial guess model and

choice of a judicious convergence criterion.

2. Presently, the algorithm can be used only for a plane wavesource, i.e. natural

sources, however, its modular structure permits replacement of the present 1-D

field computation routine by subroutines written for other sources.

3. Although the algorithm can handle large variations in horizontal direction, yet

it is sensitive to the vertical extent of inversion domain.

4. In its present form, the algorithm is so programmed that it can have only one

inversion domain with single resistivity. As a result the initial guess model

sometimes is a gross approximation of true model. This can be modified in

subsequent versions.

8.2 Suggestions for future work

The present thesis has turned out to be an exploratory effort during which a

computer program EM2INV as been developed with an aim to enable quantitative

interpretation of 2-D EM data. However, for betterunderstanding ofthe complex nature

of the EM inverse problem, detailed studies on ceratin aspects of the problem will be

performed. There exists significant scope for further development, which may possibly

be carried out on the following lines :

1. The displacement current term can be incorporated for extension of algorithm

to shallow exploration geophysics problems.
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2. Automatic grid generator should be refined to incorporate generation of
staggered grid (Mackie et al., 1993; Weaver, 1994; Smith, 1996a, 1996b;
Weaver et al., 1996).

3. Significant improvement in matrix equation solver routine is possible. It is
suggested that the upcoming versions of conjugate gradient matrix solver

(Sarkar et al., 1988; Ashby et al., 1990) should be tried.

4. The weighting matrices for error norm and solution norm computations should
be designed for better noise models and for smooth/compact inversion.

5. Joint inversion of B- and E-polarization data can be performed for better
resolution of a problem having resistive as well as conductive structure.

6. Frequency stepping can be used for upgradation of the algorithm to a time
domain inversion algorithm.

7. For better understanding of the complex electromagnetic field variations the
algorithm can be extended to a 3-D environment.

8. In order to reduce the high requirements of computer time and storage the
possibility of pipelining and parallel processing approaches will have to be

considered (Hjelt, 1989; MacDonald &Agarwal, 1994).
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APPENDIX 1

Derivation of Recurrence relation (2.88)

In order to understand the structure of relation (2.83), explicitly write the expressions for
reflection functions R,(u) for I = N+1, N and N-1 as power series in u

^Mi^)=0 =E/?Mi.m^OT with /?M1|OT=0V/n.

Rfku) =rNu=YJRNmum with RN1=rN and RNm=0 V m>-\

1 ♦ ftM(u)fa

u(tou+fa)0 +farNuy\

fa u+toil-fa) Ei-tor^u"",
m=0

with R^A =rM1 and R^m=rN fa (~v, to)1** v m>^.

Here fa =(1 - fa).

This implies that the function R,(u) and RM(u), appearing in relation (2.83), can be expressed
as
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and

Using these relations in equation (2.83) and cross-multiplying we get

E fa.m"m* rM t Rn.mumiRlkuk- t Rlmu^ ♦ rn u
m=\ n>\ k-\ m=\

<jo m-\

or (/?M>1 -/•„)£/+£ [/?A1fW- /?^, +r,X fa,k^k\ um-0
m=2 AM

or (/?„., - rAt) £/+ £ [ /?AMf- (1-/"A1 /?A1i1 /7^,100 ♦ rA1 £ ^M^»] "" =0.
/7?=2 *=2

On equating the coefficients of various powers of u to zero as this relationship is valid for all

possible values of u, we get

fas. = -^ ~ 'ai) "//= r/-i "//'

/7?-1

^•1,/n =AA1 ^1 ~rnlZ fa,k Ri,m-k m> 1
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APPENDIX 2

Basic steps of Bi-conjugate gradient method
to solve matrix equation Ax = b

To solve Ax = b

Start with x0 - an initial estimate of the solution

Residual r0 = b - Ax0

Bi-residual f0 = r0"

Initial search vector p0 =r0

Bi- search vector p0 = p0*

For iteration i = 0,1,2,

Step length coefficient
(r„r()

«i=

(Mp.)

New estimate xi+1 =x, +a,p,

New residual ri+1 =r, - t^Ap,

Bi-residual fUl =fr - a,' AHp

Bi-conjugacy coefficient

(AHp„r1+1)
P,«

(Pi.Ap,)

New search vector pw =rM +p.Pi

Bi-search vector pi+1 =f(+1 + p^,

and continue until r,+1 = 0.

In above steps, H indicates Hermitian conjugate, the inner product (x y) =xHv and
denotes the complex conjugate. y
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Documentation on input requirements of the inversion algorithm
•EM2INV*

Author

Objective

Methodology

Modes

Files

Input data

Anupma Rastogi, Department of Earth Sciences,
University of Roorkee, Roorkee - 247 667, India.

2-D inversion of geoelectromagnetic data.
Different response functions can be inverted, these include
1. Induction vector for GDS
2. Impedance for MT

Program uses FDM for computation of the response.
For inversion, quasi-linearized approach has been followed and
Bi-Conjugate gradient method is used for solving inverse matrix
equation. Inversion of the response is carried out with the help of the
ridge-regression method.

Program works in two basic modes -
1. Forward response computations for synthetic models
2. Inversion of response for data using

a. response generated from synthetic models
b. field data.

Output is two-dimensional model of resistivity distribution.

Total nine files are opened, one for reading control parameters and
input data, six for writing outputs in different formats and remaining
twoscratch files for buffer storage. The unit and unit number on which
file is opened, corresponding file name and its status are given below -

Unit & unit number
np1 =1
np2 = 2
np3 = 3
np4 = 4
nr

nw

nu

no

nt

= 5

= 6

= 7

= 8

= 9

(The unit numbers
requirements)

File name

FWD.DAT

REG.DAT

INV.DAT

RMS.DAT

EM.DAT

EM.OUT
EM.RES

can be changed

Status

Output file
-do-

- do -

-do-

Input file
Output file
-do-

Scratch file

-do-

according to computer

to be read from file EM.DAT

lnPut 1 : nprnt, ninv, nert, nder - control parameters

nprnt =0 for printing rms error and corrected resistivity values for final
inversion iteration.
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= 1 for printing rms error and corrected resistivity values for
each inversion iteration.

= 2 for printing rms error and corrected resistivity values for -,
each inversion and rms error for each BCGM iteration.

= 3 for printing detailed inversion results, 1-D solution, grid
spacings, computed responses and corrected resistivity
values for each inversion iteration.

ninv = -1 for forward computations only
= 0 for forward and inverse computations
= 1 for inversion to be carried out

nert = 0 for no noise (error free)
= 1 for Gaussian noise

nder = 0 for minimum norm of the solution

= 1 for minimum norm of the first derivative

Input 2 : npol - control for polarization type
npol = 0 for B-polarization

= 1 for E-polarization

Input 3 : ncond - control for parameter type

ncond = 0 for data in conductivity i
= 1 for data in resistivity

Input 4 : scale - scaling factor for spacing values

scale < 0 for scaling in terms of host skin depth
= 0 for no scaling
> 0 for scaling in terms of read factor

Input 5 : nper, jfq - number of periods and choice of standard
frequency

nper - number of periods/frequencies
jfq - period/frequency for standard grid >

Input 6 : (period(i), i=1,nper) - nper periods to be read
(nper- cards)

Input 7 : ntype - control parameter for response type
= 1 for Ex or Bx
= 2 for Ey or By
= 3 forBz
= 4 for Pxy or Pyx
= 5 forZ^orZ^
= 6 for ^

if (ninv. le. 0) then
Input 8 : nobs - number of observation points
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nobs <0 for adding noise only at selected observation points
= 0 for grid points are observation points
> 0 for reading observation points and their positions

if (nobs. gt. 0) then
input_? :(yobs(i), 1-1, nobs) - position of observation points
(nobs-cards)

End of nobs control

End of ninv control

if (ninv.le.O) then
Read forward model

lnPut 1° : (cy(i), cz(i), dy(i), dz(i), res(i), i=1,mxsb)

cy - horizontal location of the left edge of each bloc (km)
cz - vertical location of the top corner of each block (km)
dy - horizontal width of each block (km)
dz - vertical depth of each block (km)
res - conductivity/resistivity of block in S/m or ohm-m respectively
5555 - indicates end of rectangular blocks in model or end of data

file

if (nert. gt. 0) then
lnPut11: neran - number ofobservation points atwhich noise

to be added
meran = abs(neran)

if (nobs. It. 0) then
lnPut 12 : (ierr(i), aerr(i), 1=1,meran) - points, %response
(meran -cards)
ierr - points
aerr - % of response

else

lnP"t 13 : rns - %noise to be added at all points
End of nobs control

End of nert control

End of ninv control

if (ninv. le. 0) then
Read initial guess model
!oput_l4 :(cy(i), cz(i), dy(i), dz(i), res(i), I=1,mxsb)

cy - horizontal location of the left edge of each block (km)
cz - vertical location of the top corner of each block (km)
dy - horizontal width of each block (km)
dz - vertical depth of each block (km)
res - conductivity/resistivity of block in S/m or ohm-m respectively
5555 - indicates end of rectangular blocks in model or end of

data file
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Input 15 : nind, istdr - inversion domain position and counter
for inversion grid

nind - position of inversion domain in input data
istdr - counter for choice of grid for inversion

= 0 for using same grid for inversion
= 1 for using standard grid for inversion

Read iteration and convergence parameters
Input 16 : mnter, mxter, eps, deps, epsd

All parameters needed during inversion
mnter - minimum number of inversion iterations permitted
mxter - maximum number of inversion iterations permitted
eps - convergence threshold value
deps - decrement of eps
epsd - eps difference factor

Input 17 : mni, mxi, epi
All parameters needed during BCGM iterations

mni - minimum number of iterations permitted
mxi - maximum number of iterations permitted
epi - convergence threshold value

Input 18 : ylc, yrc, zuc, zdc
All parameters defining geometry of inversion domain

ylc - horizontal location of left edge
yrc - horizontal location of right edge
zuc - vertical location of top boundary
zdc - vertical location of bottom boundary

Input 19 : romn, romx, aps, daps, mnaps
Parameters defining resistivity range and Marquardt
parameter

romn - minimum value of resistivity
romx - maximum value of resistivity
aps - starting value of Marquardt parameter
daps - decrement of Marquardt parameter
mnaps - minimum number of iterations after which decrement starts

End of ninv control
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Sample Input and Output Files of the algorithm EM2INV

Input File : EM.DAT

1,0,1-° ! nprnt,ninv,nert,nder
!npol
! ncond

1000.0 |scale

'>' !nper.mpr
80 !(period(i), i=1,nper)
5 !ntype
31 !nobs
-204. -144. -114. -99.3 -84.3 -69.30
-58. -46.7 -35.5 -24.2 -17.1 -13.60
-10. -6.67 -3.33 0.0 3.33 6.67
10. 13.6 17.1 24.2 35.5 46.7
58. 69.3 84.3 99.3 114. 144.

204- !(yobs(i),l =1,nobs)
-100 0 200 10 100
-100 20 200 20 100
-100 40 200 60 10
-100 10 90 10 100
10 10 90 10 100

"Iccc 1° 2° 1° 1° !(cy(i)' CZW' dM' dzW, res(i), i=1,mxsb)
5555 0 0 0 0 ! indicates end of data

31

.02

-100 0 200 5 100
-100 25 200 15 100
-100 40 200 60 10
-100 5 70 20 100
30 5 70 20 100

'«« « 6° 2° 4° I(cy(i), cz(i), dy(i), dz(i), res(i),i =1,mxsb)
5555 0 0 0 0 ! indicates end of data

6,0 ! nind, istdr
5,20,.001,.25,0 Imnter,mxter,eps,deps,epsd
1,100,.05 ! mni.mxi.epi
-30,30,5,25 | y|c,yrc,zuc,zdc
10,100.,.2,.8,5 | romn,romx,aps,daps,mnaps

218



Appendices

Output File : EM.OUT

CONTROL PARAMETERS

** output type counter "nprnt" = 1
** prhoblem type counter "ninv" = 0
** error control counter "nert" = 1

** smoothness derivative counter "nder" = 0

E- POLARIZATION," npol" = 1
he coun er for resVcond." ncond " = 1

scaling factor" scale" = 1.00E+03
no. of time periods " nper" = 1
time period for std grid "mpr" = 1
time periods are: 8.00E+01
** response type "ntype" = 5
no. of observation points: 31

Observation points :
-2.04E+05 -1.44E+05

-5.80E+04

-1.00E+04

1.00E+04

5.80E+04

2.04E+05

-4.67E+04

-6.67E+03

1.36E+04

6.93E+04

-1.14E+05

-3.55E+04

-3.33E+03

1.71E+04

8.43E+04

-9.93E+04

-2.42E+04

0.00E+00

2.42E+04

9.93E+04

-8.43E+04

-1.71E+04

3.33E+03

3.55 E+04

1.14E+05

-6.93E+04

-1.36E+04

6.67E+03

4.67E+04

1.44E+05

FORWARD DATA

Add Noise in data

no. of obs. points to add noise " neran"
Noise is to be added at all points
signal to noise ratio " rns" = 2.00E-02

= 31

period = 80.00000000000000 s
ny 31
ypts -204.2985139537807

-99.26161054810237

-57.99711272423501

-24.23525086834354

-10.00000000000000

-2.3841857910156250E-07

10.00000000000000

24.23525086834354

57.99711272423501

99.26161054810237

204.2985139537807

nz 14

zpts 0.0000000O00000000E+OO
10.00000000000000

20.00000000000000

29.99999976158142

40.00000000000000

144.2774263072963

-84.25633861215060

-46.74315877227119

-17.11762543417177

-6.666666746139526

3.333333015441895

13.55881271708589

35.48920482030736

69.25106667619883

114.2668824840541

3.333333253860474

13.33333325386047

23.33333325386047

33.33333301544189

43.55881271708589

219

-114.2668824840541

-69.25106667619883

-35.48920482030736

-13.55881271708589

-3.333333492279053

6.666666269302368

17.11762543417177

46.74315877227119

84.25633861215060

144.2774263072963

6.666666507720947

16.66666650772095

26.66666650772095

36.66666626930237
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symbol res
0 10.00

1 100.00

cond skin depth
0.10000 14.235
0.10000E-01 45.016

111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111000000111111111111
111111111111000000111111111111
111111111111000000111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
000000000000000000000000000000
Grid size :ny.nz 31 14

Inversion Starts

INVERSION DATA

position of inv. domain in data "npinv "= 6
counter for std grid inversion "istdr" = 0

** data for inversion **
minimum iterations
maximum iterations

conv. threshold value
eps increment factor

mnter'

mxter

eps"
deps "

eps difference factor" epsd " =

5

20

1.00E-03

2.50E-01

0.00E+00

minimum iterations
maximum iterations
conv. threshold value

mni

' mxi

epi

= 1

= 100

• 5.00E-02

left and right co-ordinates "ylc, yrc"
up and down co-ordinates " zuc.zdc"

-3.00E+04 3.00E+04
5.00E+03 2.50E+04

conductivity range :
minimum resistivity
maximum resistivity
marquardt parameter
aps increment factor

= 1.0000E+01

= 1.0000E+02
= 2.0000E-01

= 8.0000E-01
mm. iterations for aps = 5

inverse iteration 1
ny

ypts

31

-224.2985139537808
-119.2616105481025

-77.99711272423507

-44.23525086834356

-22.88237456582822

-3.6069267395077986E 07

-164.2774263072965
-104.2563386121507

-66.74315877227123

-37.11762543417178
-15.76474913165644
8.647122976099318

220

-134.2668824840543
-89.25106667619890
-55.48920482030739

-30.00000000000000

-8.647123697484666
15.76474913165644



nz

zpts
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22.88237456582822 30.00000000000000
44.23525086834356 55.48920482030739
77.99711272423507 89.25106667619890

119.2616105481025 134.2668824840543
224.2985139537808

9

0.0000000000000000E+00 5.000000000000000
18.33333301544189 25.00000000000000

35.00000000000000 40.00000000000000

symbol res
0 10.00

1 40.00

2 100.00

cond skin depth
0.10000 14.235

0.25000E-01 28.471

0.10000E-01 45.016

222222222222222222222222222222
222222222222222222222222222222

222222222221111111122222222222

222222222221111111122222222222
222222222221111111122222222222
222222222222222222222222222222

222222222222222222222222222222

222222222222222222222222222222

000000000000000000000000000000

Grid size: ny.nz 31 9
Inversion domain block co-ordinates

jbljbr = 12,20
kbu.kbd = 3, 6
nbly= 8, nblz = 3
total no. of blocks " nbl" = 24

37.11762543417178

66.74315877227123

104.2563386121507

164.2774263072965

11.66666650772095

30.00000000000000

47.11762543417178

iter =

ny

ypts

14 rmsp = 3.5697E-02
49

-224.2632624178652

-119.2263590121869

-77.96186118831949

-44.19999933242798

-30.00000000000000

-22.90000000000000

-15.80000000000000

-8.650000000000000

-3.6000000000000005E-07 2

8.650000000000000 11

15.80000000000000 18

22.90000000000000 25

30.00000000000000 33

44.19999933242798 55

77.96186118831949 89

119.2263590121869 134

224.2632624178652

rms = 3.3259E-02 aps =3.3554E-02

-164.2421747713809

-104.2210870762351

-66.70790723635565

-37.09999966621399

-27.63333344459534

-20.53333344459534

-13.41666655540466

-5.766666793823243

.883333084595337

03333344459534

16666655540466

26666655540466

.54999983310700

.45395328439182

.21581514028333

.2316309481387
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-134.2316309481387

-89.21581514028333

-55.45395328439182

-33.54999983310700

-25.26666688919067

-18.16666688919067

-11.03333311080933

-2.883333587646485

5.766666529190674

13.41666688919067

20.53333311080933

27.63333311080933

37.09999966621399

66.70790723635565

104.2210870762351

164.2421747713809
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nz 18

zpts O.OOOOOOOOOOOOOOOOE+O 1.666666626930237
5.000000000000000

11.70000000000000

18.30000000000000

25.00000000000000

36.25000000000000

7.233333349227905

13.90000004768372

20.53333334922791

28.75000000000000

40.00000000000000

symbo res cond skin depth
a 10.000 0.10000 14.235
b 11.274 0.88703E-01 15.115
c 12.924 0.77374E-01 16.183
d 19.508 0.51262E-01 19.882
e 22.647 0.44157E-01 21.422
f 22.802 0.43855E-01 21.496

g 25.461 0.39275E-01 22.715

h 31.446 0.31800E-01 25.243

i 33.250 0.30076E-01 25.957

J 34.688 0.28829E-01 26.513

k 35.740 0.27980E-01 26.912
I 37.231 0.26859E-01 27.467
m 37.824 0.26438E-01 27.685
n 38.754 0.25804E-01 28.024
o 42.159 0.23720E-01 29.229

P 46.943 0.21302E-01 30.843

q 48.289 0.20709E-01 31.281
r 50.919 0.19639E-01 32.122
s 51.701 0.19342E-01 32.368

t 57.039 0.17532E-01 33.998

u 64.409 0.15526E-01 36.127
v 71.680 0.13951 E-01 38.112
w 74.247 0.13469E-01 38.789

X 74.724 0.13383E-01 38.913

y 75.981 0.13161 E-01 39.239

z 100.00 0.10000E-01 45.016

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzvvvwwwuuuoookkktttxxxyyyzzzzzzzzzzzz
zzzzzzzzzzzzvvvwwwuuuoookkktttxxxyyyzzzzzzzzzzzz
zzzzzzzzzzzzvvvwwwuuuoookkktttxxxyyyzzzzzzzzzzzz
zzzzzzzzzzzzrrrqqqdddfffeeejjjpppssszzzzzzzzzzzz
zzzzzzzzzzzzrrrqqqdddfffeeejjjpppssszzzzzzzzzzzz
zzzzzzzzzzzzrrrqqqdddfffeeejjjpppssszzzzzzzzzzzz
zzzzzzzzzzzzmmmjjjhhhbbbcccfffhhhlllzzzzzzzzzzzz
zzzzzzzzzzzzmmmjjjhhhbbbcccfffhhhlllzzzzzzzzzzzz
zzzzzzzzzzzzmmmjjjhhhbbbcccfffhhhlllzzzzzzzzzzzz
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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9.466666698455811

16.10000009536743

22.76666669845581

32.50000000000000

43.98017108747022
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Grid size : ny.nz 49 18
Inversion domain block co-ordinates
jbl,jbr= 13 37
kbu,kbd= 4 13

iter = 15 rmsp = 3.3259E-02 rms = 3.5801 E-02 aps =2.6844E-02
convergence not achieved after 15 iterations
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Output File : EM.RES

I " EM2INV" run on Mon Dec 9 07:33:35 I

1,0,1,0
1

1

1000.0

1.1
80

5

31

-204.

-58.

-10.

10.

58.

204.

-100

-100

-100

-100

10

-10

5555

31

.02

-100

-100

-100

-100

30

-30

5555

6,0

5,20,.001,.25,0
1,100,.05

-30,30,5,25
10,100.,.2,.8,5

-144.

-46.7

-6.67

13.6

69.3

0

20

40

10

10

10

0

0

25

40

5

5

5

0

114.

-35.5

-3.33

17.1

84.3

200

200

200

90

90

20

0

200

200

200

70

70

60

0

-99.3

-24.20

0.0

24.2

99.3

10

20

60

10

10

10

0

•84.3

•17.1

3.33

35.5

114.0

100

100

10

100

100

10

0

5

15

60

20

20

20

0

100

100

10

100

100

40

0

Forward response for standard period
Grid size.nobs 31 14

nprnt,ninv,nert,nder
npol
ncond

scale

nper.mpr

(period(i),i=1,nper)
ntype
nobs

-69.30

-13.60

6.67

46.7

144.

! (yobs(i), i=1,nobs)

(cy(i), cz(i), dy(i), dz(i), res(i), i = 1,mxsb)
indicates end of data

(cy(i), cz(i), dy(i), dz(i), res(i), i = 1,mxsb)
indicates end of data
nind, istdr

mnter,mxter,eps,deps,epsd
mni,mxi,epi
ylc,yrc,zuc,zdc
romn,romx.aps.daps,mnaps

1 80.00000000000000
31
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Zxy-observed
1.88E-03

1.86E-03

1.80E-03

1.65E-03

1.54E-03

1.45E-03

1.54E-03

1.65E-03

1.80E-03

1.86E-03

1.88E-03

2.66E-03

2.65E-03

2.60E-03

2.26E-03

1.83E-03

1.67E-03

1.83E-03

2.26E-03

2.60E-03

2.65E-03

2.66E-03

1.88E-03

1.84E-03

1.76E-03

1.60E-03

1.51 E-03

1.49E-03

1.57E-03

1.72E-03

1.82E-03

1.87E-03

2.66E-03

2.64E-03

2.55E-03

2.06E-03

1.74E-03

1.68E-03

1.95E-03

2.45E-03

2.63E-03

2.66E-03

the error added synthetic anomaly
1.87E-03 2.65E-03 1.83E-03 2.59E-03
1.85E-03 2.64E-03 1.85E-03 2.66E-03
1.80E-03 2.60E-03 1.75E-03 2.53E-03
1.62E-03 2.22E-03 1.62E-03 2.09E-03
1.52E-03 1.81 E-03 1.46E-03 1.68E-03
1.46E-03 1.68E-03 1.46E-03 1.64E-03
1.55E-03 1.84E-03 1.58E-03 1.96E-03
1.70E-03 2.32E-03 1.68E-03 2.39E-03
1.83E-03 2.65E-03 1.77E-03 2.56E-03
1.86E-03 2.65E-03 1.92E-03 2.73E-03
1.80E-03 2.54E-03

1.87E-03

1.82 E-03

1.72E-03

1.57E-03

1.49 E-03

1.51 E-03

1.60E-03

176E-03

1.84E-03

1.88E-03

1.81 E-03

1.81 E-03

174E-03

1.59 E-03

1.45E-03

1.47E-03

1.56E-03

1.79 E-03

1.79 E-03

1.91 E-03

2.66 E-03

2.63 E-03

2.45E-03

1.95 E-03

1.68E-03

1.74E-03

2.06E-03

2.55E-03

2.64E-03

2.66E-03

2.58E-03

2.61 E-03

2.48 E-03

1.97E-03

1.64E-03

1.69 E-03

2.02 E-03

2.59E-03

2.57E-03

2.70 E-03

Computed response for standard period
Grid size.nobs 31 9

80.00000000000000

Zxy-computed
1.89E-03 2

1.86E-03 2

1.81 E-03 2

1.75E-03 2

1.71 E-03 1

1.71 E-03 1

1.71 E-03 1

1.75E-03

1.81 E-03

1.86E-03

1.89E-03

66E-03

64E-03

54E-03

00E-03

85E-03

82E-03

85E-03

.00E-03

54E-03

64E-03

.66E-03

rho (initial guess)
4.00E+01 4.00E+01

4.00E+01

4.00E+01

4.00E+01

44444444

44444444

44444444

cginv : itr,rmsp,rms
Grid size,nobs

4.00E+01

4.00E+01

4.00E+01

1.88E-03

1.85E-03

1.79E-03

1.73E-03

1.71 E-03

1.71 E-03

1.72E-03

1.77E-03

1 83E-03

1.87E-03

31

2.65E-03

2.62E-03

2.45E-03

1.90E-03

1.84E-03

1.83E-03

1.87E-03

2.27E-03

2.59E-03

2.65E-03

1.87E-03

1.83E-03

1.77E-03

1.72E-03

1.71 E-03

1.71 E-03

173E-03

1.79E-03

1.85 E-03

1.88E-03

2.65E-03

2.59E-03

2.27E-03

1.87E-03

1.83E-03

1.84E-03

1.90E-03

2.45E-03

2.62 E-03

2.65E-03

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

4.00E+01

1

49

5.51E-15

9

1.54E-18

31
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Appendices

iter= 2 rmsp =7.2930E-02 rms =6.9519E-02 aps =2.0000E-01

rhocorr

3.96E+01

3.86E+01

3.79E+01

3.90E+01

44433334

44433334

44433344

cginv : itr.rmsp.rms

3.94E+01

3.92E+01

3.84E+01

3.86E+01

3.90E+01

3.95E+01

3.87E+01

3.84E+01

3.82E+01

3.92E+01

3.91 E+01

3.87E+01

1 3.61 E-15 2.50E-18

3.77E+01

3.89E+01

3.95E+01

3.89 E+01

3.82E+01

3.82E+01

3.93E+01

3.92E+01

iter = 14 rmsp = 3.5697E-02
rhocorr

7.17E+01 7.42E+01 6.44E+01 4.22E+01
7.47E+01 7.60E+01 5.09E+01 4.83E+01
1.95E+01 3.47E+01 4.69E+01 5.17E+01
2.55E+01 1.29E+01 1.13E+01 2.28E+01
67643577

54322345

33211233

cginv : itr,rmsp, rms :

rms = 3.3259E-02 aps =3.3554E-02

1 6.34E-16 5.80E-17

3.57E+01

3.88E+01

3.78E+01

3.14E+01

5.70E+01

2.26E+01

3.32E+01

3.72E+01

iter= 15 rmsp =3.3259E-02 rms =3.5801 E-02 aps =2.6844E-02
convergence not achieved in inversion after iter. 15
rms error = 0.4815938863325104

total time taken :

realtime = 5.85E+02
user time = 1.36E+10
systime = 0.00E+00
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Appendices

Output File : REG.DAT

y- coordinate

-3.0000E+01

-2.6450E+01

-3.0000E+01

-2.6450E+01

-3.0000E+01

-2.6450E+01

-2.6450E+01

-1.9350E+01

-1.9350E+01

-1.9350E+01

-1.9350E+01

-1.9350E+01

-1.2225E+01

-1.2225E+01

-1.2225E+01

-1.2225E+01

-1.2225E+01

-4.3250E+00

-4.3250E+00

-4.3250E+00

-4.3250E+00

-4.3250E+00

4.3250E+00

4.3250E+00

4.3250E+00

4.3250E+00

4.3250E+00

1.2225E+01

1.2225E+01

1.2225E+01

1.2225E+01

1.2225E+01

1.9350E+01

1.9350E+01

1.9350E+01

1.9350E+01

1.9350E+01

2.6450E+01

2.6450E+01

3.0000E+01

2.6450E+01

3.0000E+01

2.6450E+01

3.0000E+01

coordinate obtained resistivity

5.0000E+00

8.3500E+00

1.5000E+01

1 5000E+01

2.1650E+01

2.1650E+01

2.5000E+01

5.0000E+00

8.3500E+00

1.5000E+01

2.1650E+01

2.5000E+01

5.0000E+00

8.3500E+00

1.5000E+01

2.1650E+01

2.5000E+01

5.0000E+00

8.3500E+00

1.5000E+01

2.1650E+01

2.5000E+01

5.0000E+00

8.3500E+00

1.5000E+01

2.1650E+01

2.5000E+01

5.0000E+00

8.3500E+00

1.5000E+01

2.1650E+01

2.5000E+01

5.0000E+00

8.3500E+00

1.5000E+01

2.1650E+01

2.5000E+01

5.0000E+00

8.3500E+00

8.3500E+00

1 5000E+01
1.5000E+01

2.1650E+01

2.5000E+01

228

7.1680E+01

7.1680E+01

5.0919E+01

5.0919E+01

3.7824E+01

3.7824E+01

3.7824E+01

7.4247E+01

7.4247E+01

4.8289E+01

3.3250E+01

3.3250E+01

6.4409E+01

6.4409E+01

3.8754E+01

2.5461 E+01

2.5461 E+01

4.2159E+01

4.2159E+01

2.2647E+01

1.2924E+01

1.2924E+01

3.5740E+01

3.5740E+01

1.9508E+01

1.1274E+01

1.1274E+01

5.7039E+01

5.7039E+01

3.4688E+01

2.2802E+01

2.2802E+01

7.4724E+01

7.4724E+01

4.6943E+01

3.1446E+01

3.1446E+01

7.5981 E+01

7.5981 E+01

7.5981 E+01

5.1701 E+01

5.1701 E+01

3.7231 E+01

3.7231 E+01



Appendices

Output File : INV.DAT

Inverted model response for standard time period: 80.00

y-distance (km) real comp

-2.0400E+02

-1.4400E+02

-1.1400E+02

-9.9300E+01

-8.4300E+01

-6.9300E+01

-5.8000E+01

-4.6700E+01

-3.5500E+01

-2.4200E+01

-1.7100E+01

-1.3600E+01

-1.0000E+01

-6.6700E+00

-3.3300E+00

0.0000E+00

3.3300E+00

6.6700E+00

1.0000E+01

1.3600E+01

1.7100E+01

2.4200E+01

3.5500E+01

4.6700E+01

5.8000E+01

6.9300E+01

8.4300E+01

9.9300E+01

1.1400E+02

1.4400E+02

2.0400E+02

1.8795E-03

1.8702E-03

1.8589E-03

1.8482E-03

1.8310E-03

1.8028E-03

1.7711 E-03

1.7287E-03

1.6770E-03

1.6126E-03

1.5656E-03

1.5430E-03

1.5219E-03

1.5056E-03

1.4936E-03

1.4877E-03

1.4895E-03

1.4984E-03

1.5127E-03

1.5327E-03

1.5549E-03

1.6019E-03

1.6688E-03

1.7230E-03

1.7673E-03

1.8002E-03

1.8296E-03

1.8474E-03

1.8584E-03

1.8701 E-03

1.8795E-03

229

imag comp

2.6596E-03

2.6563E-03

2.6541 E-03

2.6495E-03

2.6383E-03

2.6110E-03

2.5676E-03

2.4863E-03

2.3426E-03

2.1145E-03

1.9700E-03

1.8990E-03

1.8294E-03

1.7736E-03

1.7329E-03

1.7112E-03

1.7145E-03

17433E-03

1.7939E-03

1.8638E-03

1.9396E-03

2.0962E-03

2.3328E-03

2.4806E-03

2.5646E-03

2.6095E-03

2.6378E-03

2.6494E-03

2.6541 E-03

2.6564E-03

2.6597E-03



Appendices

Output File : INV.DAT

Iteration no. rms Error

1 7.2930E-02
2 6.9519E-02
3 6.7514E-02

4 6.2151 E-02
5 6.1340E-02
6 6.0649E-02
7 5.9659E-02
8 5.8109E-02
9 5.5620E-02

10 5.1918E-02
11 4.6756 E-02
12 4.0361 E-02
13 3.5697E-02
14 3.3259 E-02
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