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SYNOPSIS

Recently a large number of papers have bdeen
published on the topic of Shielded Surface Waveguidess
HeMs Barlosy has been one of the earliest workers in

this fielde In his first paper on the‘t0pic(3)3 he
potn=ted out the possibility of a screemed surface
wvaveguide and followed 1t up with another paper (4);

where he presented an analysis of both the parallel plate
and coaxial waveguide structures with dielectric coated
guiding surfacess LEspecially, he talks about the

hybrid = TEM dual surface waves which he considers to

be the natural mode in two conductor transmission lines,
the usual TEM mode being presentes only when the guiding
surfaces are perfect conductorse Barlow maintains that
this hybrid modey under suitable circumstancesy suffers
an attenuation which is roughly one half of that exper=
ienced by the usual TEM mode « To support this mode,

one is to enhance the surface reactance by coating the
surface with a practically loss-free dielectric e

Through his experiments, whose results appeared in the
litaraturés’?’s) Barlow has been able to substantiate
his obeervations « He has found that to reduce the
attenuation one has to have an asymmetry in the field

distributiony that isy the surfaces should bhe Of un=

equal reactances and furthery only one of the surfaces



should be coated with dielectrice the thickness of

coating being optimume

Barlow's work thus revealed the possibility of
pfOpagating, in the usual transmission line structures;
a surface wave modes which is for less attenua ted
compared to the usual TEM mod;:§ﬁturally aroused the
curiosity of other workers and Wait ceme up with his

theory of Shielded Surface Wave guides‘s). His cone

clusions are rather interesting and they stimulated the

present worke

Jt is in order toc mention that this work is
an extension of Wait's worke We have ventured to make
a thorough investigation of the various modes which
can exist in a parallel plate guidesy with reactive
guiding surfacese Wait has merely indicated the approach
and what we have done 1is » to0 pursue this course to
its logical ende We have analysed the symmetric case
(i¢eesy where the two surfaces are of equal reactances)
and the unsymmetric case (i.es« surface reactances
unedqual)e Also we have considered the case where One

surface 1is inductive and the other is capacitivee

In the course of these investigations we have
come up with some new and interesting resultse Mostly,
the results have supported Wait®s conclusionss But

on some counts we differ with hime A significant petnt



of departure is in the fact, emerging out of this

worky that the modes are not orthogonal in the sense

of Waity for the general unsymmetric casee Further,
Wait has not mentioned TE type modes existing in a
guide with inductive guiding surfacess It is shown

that we would have TE type waveguide modes in such

a structure though no TE type surface wave can exist.
Another significant result is that there are two

surface waves in general 5 of whichs one vanishes at

a pacticular value of surface reactance called the
threshold value and turns into a zero order waveguide
mode3 Wait had eaid that this zero order mode would
split into two surface waves at a parficular value of
reactances Finally it is shown that one of the surface
waves which stays on till zero frequency coincides with
the type Barlow has been considering ¢« Thus this work
links the works of Barlow and Waite Also a few new prob-
lems are brought to light as a result of this worka’They

are menticned at the ende

While writing this dissertatims we have
divided it into four Chapterse The first Chapter gives
a brief but comprehensive introduction to surface waves
This Chapter drews its material chiefly from references
(1) and (2) ¢« The second is devoted to a review of the
past wvork in the field of Shielded Surface Waveguides.
The third constitutes the author's contribution « Here
all the results of calculations performed on the IBM
1620 computer, along with feirly detailed anslysis

and discussiong are presentede The last Chapter ,



after presenting in outliney the new results which
have come t© light after the present work; goes On

to unfold areas for further worke

Bef ore we closey it is to be pointed out
that much work is in progress on this topice Recently
papers have appeared which are critical of Barlow's
appraach and his conclusionse Especially » the plausi=
bility of reduced attenuation is being debatede .
Millingtony Brown and Cullen have conducted theoretical
investigations wherein they have examined the possibi~
>11ty of reduced attenuation. lheir results seem to dive
erge from Barlow's conclusionss As yet the last word
hds not been written on this topice Already much
absorbing work is going on and scientific world is

awvaiting the results.



1.

2e

3.

CONTENTS

Page.
ACKNOWLEDGEMENT ceea
SYNOPSIS css cooe
INTRODUCTION TO SURFACE WAVES " eeea t
1.1, Introductory ideas R 1
1.2, Surface impedance concept and its significance 9
le¢ 3¢ Attenuation and phase velocity along the
surface in the direction of propagation 14
1.4 The Complex Brewster angle and its relation
to the Zenneck Surface waves sesee i6
145. Equiphase and Equiamplitude surfaces 18
1.6. The Evanescent Structure of the Field over
the wavefront of surface wave be .o 21
1¢7¢ Transmission line modes and their relatiOn
t0o surface wave ss csecae 24
1.8, Launching of surface waves c e
REVIEW OF PAST WORK ON SHIELDED SURFACE WAVEGUIDES g6
INVESTIGATION OF THE MODES IN A PARALLEL PIATE
GUIDE WITH REACTIVE GUIDING SURFACES. 44
3els Specification of the problem on hand and
indication of the manner of solution =
Derivation of the Modal equdtions for TM
and TE Mode Solutions ~ A summary of the
types of modes expected in the geometry.
34 2¢ Behavior of the Real Roots of the Modal
Equation for the TM case (Surface Reactances
(Unequal)y, 61
Discussion of the root behavior-Derivation of
the Threshold condition and an outline of the
implications of the thresholds
3e 30 Ebhavior of the real roots for the symmetrig
case (l.ee¢ reactances equal)
Discussion of the root behavior = Derivation
of the »root—hbehevtoer- threshold condition and
an outline of the implications of the threche
olde ~ Results of the calculations performed
on the Computer for both the symmetric and
unsymmetric casea and conclusionse 65



3e4s Investigation of the Imaginary Roots for
the Symmetric Case ' 65

Derivation of the defining equations for
imaginary roots = Discussion of the roots
behavior - Examination of the threshold
behavior in the case of imaginary roots-
Interpretation of this behavior - Results
of Calculations and conclusions.

3.5+ Characteristics of the modes existing in
the symmetric arrangement. 73

Examination of the "Transverse distribution
for both the surface wave and waveguide modes
in the symmetric case.

3.8+« Imaginary roots for the Unsymmetric case 76

Derivation of the defining equations for
the imaginary roots - A discussion on the
nature of these equations and their rootse-
Examination of the threshold behavior
Interpretation of this behavior - Results
of calculations and conclusionse.

3.7+ The Distinction between the two surface
waves ‘ . ‘ : - 84

Classification of the two surface waves
encountered in both unsymmetric and

symmetric cases on the basis of the

values of the longitudinal component

of the electric field at the plane of

symmetry = Derivation of the equations
describing the field lines in the X~y plane for
both symmetric and asymmetric cases = '
Discussion on the field patterns obtained

f rom the equations‘

3¢8¢ An 1nvestigation of the modes when one
surface is capacitive and the other ib

inductive. 02

Derivation of the model equatione Exami-
nat'ion of the real roots = Examination of
their behavior and the devivation of the
threshold condition . Derivation of the
defining equations for the imaginary
roots of the model equation- Investigation
of the threshold behavior of the imaginary
roots ~ Results of calculations of both
real and imaginary roots and conclusionse.




3¢98. Orthogonality 99

. A discussion on orthogohality of the
modes -~ results of calculations of
the concerned integral and the conclusions

reached therefrom.

3.10. (Conclusions 104
A summary of all the results obtained
in the various cases considered.
4, CONCLUDING: REMARKS AND A FEN SUGGESTIONS
FOR FUTURE WORK 110
REFERENCES cees 121
123

FIGURES cens

-y WM g mg



Figure

A it w2

la

1lc

3e

4.

Be

T

8a.

8 b.

e.

10.

LIST OF FIGURES

Field distribution of the Zenneck Wave.

Field distribution of the radial cylindrical wave.
Field distribution of the axial cylindrical wavee.
Dielectric coated metal surface.

Homogeneous plane wave travelling in the direction

PQ and incident on a flat surface at an angle ¢

the real part of the complex Brewster angle.

E-quiphase and Equipamplitude surfaces for the

Zenneck waves

The Zenﬁeck wave sinking into a l10ssy surface.

The evanescent E s modes ,

The field lines in a lossy transmission line with
small separation hetween the plates.

The field lines when the plate separation 1s large
for a lossy transmission lines

The field distribution of the hydrid - TEM dual
surface wave as obtained by Barlow for the parallel
plate waveguide with reactive walls when (i) the
surface reactances are equal (ii) when they are
unequal « ( i.eey the symmetric and unsymmetric
cases respectively)e

Variation of longitudinal attenuation o, with 'm*
while transverse attenuation 'a' 1s kept as a para-=

meter (Result due to Barlow).



11.

12,

13.

14.

15.

164

17

18.

Parallel plate waveguide with surface impedances

Z, and Zq @and separated by d.

Plot of Equation
X - P X -q | _  x
X + P X +Q

bhowing the intersections of the two curves,
represented by the LHS and the RHS « These

are the real roots of the above equatione

Graphical portrayal of the occurrence Of the

thresholdy in the unsymmetric cases

Plot of Equation

X -~ P + .-X

— = e showing the intersec=

X + P

tions of the curves represented by the LHS and
the RHS + They are the real roots of the above

equatione

Graphical 111ustration of threshold for the

symmetric casee

Results of calculations of the real roots for

the symmetric casee.

Result of calculation of the first real

root for the unsymmetric casee

Result of calculation of the second real root

for the unsymmetric case.



18.

20

21.

226

23,

24

Plot of the equation
— = Tan X showing the possible inter-

sectionse These represent bhe set of imaginary

roots Dor the symmetric cases

Plot of the equation

K,/ X = Cot X showing the possible inter-
sectionss These represent the second set of

imaginary roots for the symmetric cases

Plot of the first root of the equation Ky /X = Cot X

in the interval ( O 3 m/2) against P, as obtain=-

ed from calculationses

Plot of the equation K;/X = tan X . Showing the
possible intersections representing the first
set of imaginary roots for the TE case (Geometry

still symmetric).

Plot of the Equation - K;,/X = Coet X showing the
various interdections representing the second

set of 'imaginary roots for the TE case (Ge ometry

,8till symmetrical)e.

Plot of the curve

x3%- 5 o«?) - _l &+ o) &+ B2

(X (/B + 1)

for 8B =2 , =1,



25 ae

25 be

26

27

28.

29,

30.

[ ]

-~ Cot X =

- Cot X =

Plot of the Equation .
x2 - Ao) -,f(x2+ «3 «?+ £%3
o« X (A +1)

The intersections representing one set of

imaginary roots for the unsymmetric casee

o2 o - P rad o +h %)

Plot of Tam X = —
X (1 + /3)

The intersections represent the second set of

imaginary roots for the unsymmetric easee

Plot of the first root of the equation

x2- 5 o(z)-_lx(x2+é( 2yx®+ B2« 2y

X (1 +4)
in the interval (0 y T/2) against P with Q/P as

parameter as obtain from calculationse

Expected field distributions for the two surface

waves in the symmetric cases

Expected field distributions for the two surface

'
waves in the unsymmetric cases

Calculated field distribution for the surface

wave with E, = 0 at y = m y for the unsymmetric
casee

Calculated Field distribution for the surface wave
with dEx / dy =0 at y =m for the unsymmetriec

cases



31.

324

33

34.

35 8o

‘35. be

Calculated field distribution for the surface

wave with E. =0 at y = 0 for the symmetric case.

Calculated field distribution for the surface wave

with dE,/ dy = 0 at y = 0 for the symmetric

casee.

X-P X+Q _ .2

i
(1]

Plot of the equation
X+P X=~-Q

showing the real root for the case where One

surface is inductive while the other is capacitive.

Plot of the Curve

&2+ Bd -J(xz A &+ 24P

y = )
d X (1~ B)
for i) /3 = 2 o =1
ii) B = 5 o =1
ii1) B8 = 10 = 1

Plot of the equation

02+ Bo?) -+ A (X2 B2«

Tan X =

dX (1 =8

The intersections give one set of imaginary roots

of the equation = e .

X+P X =-Q

Plot of the equation

-Cot X =

o2+ B - ]k «?) (X2 8%
dX (1 - 8 )
lhe intersections specify the second set of imaginary

X=-=P X +Q -2 X
e

roots of the equation =

X+P X~-Q



36 ae Result of calculations of the real root of the

:"..e for
X + P X ~-Q

equation

varying Pwith Q / P as parameters

36 Dbe Result of calculations of the first root of the

equation

&2 + B «2) -_J(xz AP+ 8242

Tan X =
d X (1 - 8 )

in the interval ( 0 , T/2 ) for varying P with

'Q/P as parameters



CHAPTER I

AN INTRODUCTION TO SURFACE WAVES

1.1,

A surface wave may be called as"an em wave
that propagates without radiation along an interface
between two different media. *2) When the media
have finite lossesy the main stream of energy direc=
ted along the interface will be required to supply
these losse se When we say that the surface wave does
not radiate, Wwe mean t0 say that energy is not absorbved
from the wave independently of the media supporting
the wavee Thﬁs, when we say that the main stream has
to supply energy to meet the losses in the supporting
media; we are not violating the definition of a
surface Wwavees We are interested in surface wave
propagation because of its non-radiating characteristic
and thus a surface wave can be employed for on efficient
transmission of hefe energy from one point to another,
except in so far as demands are made on that energy to
compensate for the losses occurring in the mediae Usually
one of‘the two media 18 a loss free dielectrics, say aire.
We may note that the interface must be straight in the
direction of propagationy though it may take a variety

of forms in the transverse directione The bdoundary of
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the medium surrounded by the loss-free dielectric is
usually called the supporting surfacee One can have
flat surfaces or transversely cylindrical surfaces to
support a surface waves ©One would have encountered the
Brewster angle in opticses 1leeey the angle of incidence
for which no reflection tekes places One may put it in
'another ways that there 1s no‘radiation away from the
surface under the circumstancese HEnce one may expect
to derive a surface wave by allowing‘a wave of the
required field configuration t; be incident at the DBrewster
angle on the surfacee This turns out to be the case and
this can be established for any flat sur:aca. Since the
power flow is normal to the wavefronty defined as an
equiphased surfacey it follows that the field distribute
ion 1is to be evenescent over that surfacey suffering a
decay with increase of distance away from the surfaces
This follo.s from the requirement that there shall be
no radiation away from the surfaces It is to be noted
that both E=modes and H= modes can propagate as surface
wavese But the conditions for the support of E-~modes are
more readily met than for the He~modess Hence usually one
is interested in the Ee modeses Another feature of
surface waves existing on the interface between twg h omow~
geneous medias, 1is that they do0 not experience any cut=offe
%his is because there 1is only one finite boundary condition
to be satisfiede. )

There are three distinctive forms of surface

wvaves namelys



1. The zenneck or in homogeneous plane wave

supported by a flat surfaces

2 The radial cylindrical ‘wave also supported

by a flat surface.

3e The Sommerfeld ~ Goubau wave supported
by a transversely cylindrical surface. This is

alsoc called the axial cylindrical surface wavee.

Now we have to distinguish another tsurface
wave! encountered in the theory of ground wave
propagation over a flat earth due to EBemmerfelds This
ig not exactly the same as £ﬁe surface wave under
considerations The confuéion is unfortunate and
1s partly because gommerfeld was responsible for
some of the eariy work on the true surface wave.

In his discussion of the problem of radiation from
a vertical dipole over a flat earths Sommerfeld
divided the ground wave into two parts:

i The space wave and 2+ The surface waves

The surface wave part is respresented by
one of the terms in the analysis of the total fielad
and its particular feature is that it tends to
predominate near tﬁe eartht®s surfacees Both parts
are required simultaneously to satisfy Maxwell's
equationse Sommerfeld was able to identify the surface

wave part of the solution with the true surface wave,



because the expressions describing the two were
similar in forme As yet thefe is a controversy
over the interpretation of the various terms app=
earing in the analysis of the total field for the
above radiation probleme Hence'we rest by saying
thaty; one has to distinguish between the trué
surface wave under consideration and the wave
appearing as part of the solution of the radiation
problem mentioned abovee We give the field patt=-

- erns for the three kinds of surface wave in Fige 1.

Now a brief ocutline of the features of

the three types of gurface wave follows:

(a) THE ZENNECK WAVE

Refer to fige 1a for the field distribution

of this wave ¢ Thie wave is a particular solution
of Maxwell®s equations and it can be described as
ta wave that travels withogt change of pattern
over a flat surface bounding two homogeneous media
of different permittivity and conductivity"(2> .
This is an inhomogencous plane wave, for the field

decays (exponentially in thises case) over the wave

front with increase of distance from the surfacee

In Fige 1, & and 1 and 2 refer to the

twvo media bslow and above the surface respectivelye



The surface lies in the X«~Z plane at y = 0 5 the
media on both sides being homogeneouse For a wave
propagating along the X« axis the three components

satisfying the 2« dimensional wave equation are

Hz * Ex and Ey

Where H and E stand for the magnetic and electric

fields respectivelys

The general form of the field components

is as follows:

= a oVt .
H21 A e V1Y Y x
Tuyg Jwt uy Y %
Exi = A e e e
(o +3w &)
Y £ 0
A
E X = Y G A— eJWt etV e-—'{x
b 4
(o; +3w € ) ]

These exist in medium 1.

L) 31 are parameters of medium 1. ¥ = « + 3§ /A3

is the longitudinal propagation constante

u, = a; + Jbl is the transverse prOpagai;ion

constants where a, represents attenuation and b,

stands for phase change for the wave travelling

inward from the surfacee

d = attenuation constant A = phase constant

as usuale



In Medium 2

That isy above the surfaces we have

H,, = A oJvt o~ U2V edfx
u
(JWEO) y ‘>- o
E, = A Y o J¥Wt zu2y edYx
y Uw(EL))
Here u2 = az - Jb2

For the wave not only suffers ﬁn ’attenuatiQn
at the rate of a, with increasing distance from the
surface but also a progregsive phase change b2 as 4t
travels towards the surfacee. These characteristics
are in accordance with the specification of a surface
wave for which the power flow has two components oOne
representing the main stream along the interface and
subject to the usual attenuation « and phase change /3
while the othery; wusually a minor one, 1is directed into
the surface <t0 supply the lossess No radiation

theref ore oCcurss

(b) THE RADIAL CYLINDRICAL WAVE

Unlike the plane wave the wave front is

limited in the horizontal directione Refer Fige 1b ,



for field distributions The components in this case

are HQ , EN and E

X
Inside the Surface
2
HQi = A ert eu1yH1( ) (-3 ¥ r)
ot | vt uy (2)
E_, = - A e e H, (-3¥r) - ygO
r

(G‘;+ Jw q)
E y* = A OJW 91 Ho(-j‘(r )

(o; + 3 WE ) -
Qutside the Surface. 'f7~

wt =~u,y (2)
Hez = A °J e 2 H1. (=i Y r)

W2 wt ~uy (2)
v E 1 2
o
Y
wt 2)
Ey2 = A E""‘"e o~ W2¥ H, (=3 % r)
o <

One sees that the transverse variation is
the same as for the plane wave case. But along
the radial direction it decays according to a Henkel

function which becomes at large distances as
¥ T
» One would later see that this

i r

——



wave and the plane zenneck wave have much in commone.

(c) AXJAL CLLINDRICAL WAVE

Sommer feld was the first to point out that
a transversely cmylindrical surface could support a
surface wavees Goubau developed the idea in its
application to a wave guide consisting of a metal
wire havifxg ‘g dielectric =~ coated or corrugated
surfacee When the radius of the cylindrical surface
becomes infinite,; the Goubam wave becomes identical
with the Zenne‘ck waves See Figs lec for field‘

distributione

{a) Inside the Surface.

_ 1 1) gwt  Sfx
HQl = A e e J1 (Juir)
J u,
-y
E = Ao e ¥ g (iu ®
X4 o
Y - x Jwt
Er = A ( “‘3"‘;1) ) e - Jy Guyr)



(b) Outside the Surface

g

w E, Jwt <¥x )
e e H; (Ju ,7)

e
il
>

Q2

E = a ejwt -éY x H:l)

x2

v
2]

kjuz r) r

Y jwt =¥Yx (1)
A (——) e e H (Ju, )
r2 Ju2 1 .

=
]

1.2+« SURFACE IMPEDANCE CONCEPT AND ITS SIGNIFICANCE

The surface impedance Zs is defined as the
ratio of the tzngential components of the electric
and magnetic field at the surfacees In general Zs
is complexe

iece Z = Rs + J X8 - where R 1s the surface
8

resistance and X,s is the surface reactance. For any
medium constitut ing a surface of finite conductivity

and a thickness exceeding the Skin depth, Rs and Xs

cannot be separated physicallye The existance of Rs

implies the existance of Xs due to the penetration of
the filelde But in loss=free media it is possidble to
have Xs without Rs and this is appr oximated by a
polythene coated smooth copper surfacee If the radius

of the surface is large compared to the skin depth



®]1l0m

one can add the reactance due to the dielectric to the
reactance due to finite conductivity. As Ry imcreases
the inclination of the wavefront forard the surface

as measured from the normal, increases and this

causes an increased phase velocity along the
interfacee In general an inductive surface slows

down the wave whereas a capacitive surface speeds i1t upe

(a) SURFACE IMPEDANCE FOR ZENNECK AND RADIAL CYLIN) RICAL

WAVES.
E x2
Z = —_— at y = 0 for Zenneck wavee
s H
z2
-E
zZ ® r2 at y = 0 for the radiadh wavee
S Hez

On substituting the values of the field components
for the two casesy we get the result that Zs is

identical for both the waves &and this is given

by
1
Z = (bz + Jaz) for both the wavese
S w E
O
a b
2
e X = 2 and R = -
8 w B 8 w E
o o

Thus az » representing the rate of decay with
distance firom the surfaces is directly proportional
to the reactance of the surface and b2 the phase

factor depends only on the resistance.



Now we may consider some methods of increasing

the surface recactancees

(1) DIELECTRIC COATING OF THE METAL SURFACE

See Fige 2+ We perform the analysis assuming
that a Zenneck wave is supported by the flat surface
considereds Then we find that a standing wave exists

in the dielectrics

On solving for the resistance and reactance

at the interface between dielectric and airy we get

R _ w ﬂo A

.-

2
A -

X = w E — + E2 EO « 1

s 2 E

2

Where & = skin depth.s

Assuming that a 1loss free dielectyric has been
coated, we know that the reactance contributed by it
(owing t0 saesSepesmsssbest the storage of energy
in the standing wave that exists in it ) can be added to
the reactance of the metal surfacee Thus the additional

component in the total reactance is

-,

E - B
W Mo 1 S * N If we choose
B

2



E2 P Eo: one can increase the reactance above the
originalrreactance‘of the metal surfacee.s Also one
can increase the reacfance by increcasing the thick-
yness of the coatings But this usually raises the
surface resistance, because of the added losses in

the dielectrice

For a surface wave ¢ We require that the
decay factor in air surrounding fhe supporting surface
be positive and finite « This can be satisfied for
the Zenneck wave if we caat a metal surface with

a dielectrics

Higher the surface reactance and higher the
frequencys greater is the decay factor and the wave

clings to the surface more and more closelye

(2) We can also corrugate the interface to increase
the reactancee The pitch of the corrugations must

be smaller than the wave length along the interface,
to provide a uniformly distributed supplementary
reactancees

() SURFACE IMIEDANCE OF THE AXIAL CYLINDRICAL WAVE

- . ’Qﬂ
;r= (1) !
Z _ E uz HO (J u2 S) ]
s H N )
e | v E, H, Gy )
r—s | _.J
J u,

As s —3 @ one fiinds that Z_ —3

¢

v E
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as for the Zenneck wavee. Usually lJ u, s] € 0.05

Hence we can apply the small argument approximation

to the Hankel functions in ZS to get

-] qu
Zs'- RQ + J Xs “w Eo loge {0.89 uy s5)

with u2 = ay = J b o as bef ore

On an examination of the behavior of Rs and Xs

with varying values of the decay factor a, with the

phase factor b, fixedy oOne arrives at the following

conclusionse

For values of a, larger than that of the Smooth
metal surface, we must have an enhanced inductive

reactance at the surface and for a_A smaller; we require

2

a capacitive reactance at the surfacees Also the net
surface reactance can be positive’ Zero or negative
while sﬁlll providing for finite positive values
for ©both a, and b2 necessary to support the wave
This is in contrast with the reyuirement for the

Zenneck wave where Xs must be always positive to keep

&2 pPositivee.

At a large radial distance from the x~ axis

one can show by applying the large argument approxie

that

mation to the Hankel runctions“the wave impedance

looking toward the wire for a given radial propaga-
J“z

tion constant u2 is » whatever is the

w Eo
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radius of the wiree Hence for wires of large diameter
the impedance at the surface is the same as that for
a plane surface supporting a Zenneck wave with the

same value of u2 )

For wires of small diameter the curvature
of the equiphase surfaces near the wire has an imp=-
ortant effect on the wave impedancee This curvature

retards the phase of Ex while advancing that of Hb

s0 that the wave impedancé may change firom bveing

inductive at a large distance from the wire to capeci=-
tive near the wire. Thus in general for a cylindrical
surface wave, the wave impedance 1is inductive at large

distances from the surface

1.3. ATTENUATION AND PHASE VELOCITY ALONG THE SURFACE

IN THE DIRECTION OF PROPAGATION.

The attenuation constant .« 1lee., the real
part of the longitudinal propagation constant ¥ can
be written as

d~

s!<,

( a, 9?

Where V = velocity of light in free space and a, s b2
are respectively the real and imaginary parts of u2

the transverse propagation constante.
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Now to reduce attenmation one must keep as much
of the field as possible outside the guide so as to reduce
the losses in the guide and accommodate it in the surround-
ing air« But for practical purposes we have to confine the
f1eld close to the surfacee This means ap, will be large
and 80 this implies a larger attenuation «

PHASE VELOCITY OF ZENNECK AND RADIAL SURFACE WAVES

These waves behave identically as far as phase
velocity and attenuation are concernede.

o
Vv = phase velocity =
p

]
This can be shown to be
v oty A v
p -— -
. 7 V2 ) .
- ——— —— b -
16 w2 ( 2 *2 )

This 1is for Smooth Metal surface for which

2 2
b2 > a, e Hence Vp D> V. But by a déelectric

coating one can enhance the reactance thereby inc reasing

ay o With added dielectric a.2 increases faster than b,

(Because the dielectric has 'only small losses) « Hence we
) N

can make a, > b22 after coatinge Thus one can slow

dovn the wave i.ees Vp €< V. This is true for inductively

loaded surfacese Thus for such surface one can have Vp

greater than, equal to or o v e o
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less than V depending on the loadim appliedes

GOUBAN WAVE

’

For this wave supported by a smooth metal

) as ~J ‘
surface < ™ 2425 « Hence it is seen that Vp V.
2

Inductive loading further enhances the ratio a,/ b,
beyond 2425« Hence the wave 18 slowed down further.
With capacitive loading one can increase Vp'to V or

even beyond V.

/

/.

If one measures Vp one gets an opportunity

for measuring a, for a highly reactive surface for

which az')} b2 R

1.4+ THE COMPLEX BREWSTER ANGLE AND ITS REIATION TO

THE ZENNECK SURFACE WAVE

Let us consider a homogeneous plane wave travelling

in the direction of P§ and incident at an angle X/

on the flat surface of a logssless medium See Fige3 o
The Magnetic field component of such a wave above

the surface is given by

-1
H = Aejwt e 14

z2 © (x Sin ¢ -~y Cos § )

—
A = w | 4 E ee (1)

o o] o]

We know that there exists a certain critical angle of
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of incidences For which there is no ¥eflected wave,
this angle of incidence being the Brewster angle.

It ¢ coincides with the Brewster angle then

tan ¢ = ‘ Er . eme— 000(2)
£ - E1 (¥here E; 4is the permittivity
r B of the lossless medium 1. )
o

Now ¢' 1is reale

If the medium 1 has losses then E, Dbecomes

complexe isesy we have to replace Er by Er - J E*

- A

where E' =

r

w Eo

Siﬁce the analysis will be true for complex
as well as real values of impedances of the two
medias felation (2) giving the Brewster angle 1s still
valide The only modification is that the Brewster
angle becomes complexe That is instead of ¢' » We

have (¢-Jx >.

Hence (2) become s,

Z " —
tan ( W -3 ) Zo = J E - J B e (3)
1 r

If you replace ¢ by ( ¢ - JX ) in (1) we get the

Physical meaning of the complex Brewster angle.

Since there is no weflected wave, we see
that the field expression (1) in which ? has been
replaced by ( ¢ - J X ) must represent the total

field above the surfaces
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This is

sz = A FOLAN e-/aoy['-th 47 Sin hX - j Cos ¢ Cos h ¥

~

. s ﬁoxl-coinTSinh x +3 Sin)l’!ICosh XJ
0000(4)

The fiela is seen to decay exponentially in
amplitude and suffers a progresst ve advance in phase
with increasing distance above the surface. Moreover
the wave 15 attenuated along X direction and there is
a progressive lag in phase along the interfaces These
are the characteristics of a Zenneck wave supported

by a flat surfacee

Thus it is clear that one can establish the
Zenneck wave by having a inhomogeneous plane wave

incident at the Brewster angle.

1.5 EQUIPHASE AND EQUIAMPLITUDE SURFACES

For a homogeneous pl)e.ne" wave thé-se two surfaces
‘coincides But there are waves for which these do not
coincidees These are inhomogeneous wavess The genneck

and the Sommerfeld waves belong to this categorye

We now give the form of these surfaces for

the Zenneck wavee

Referring to (4) above, one sees that the

equiamplitude surfaces are planes given by ¢

x Cosil +Y Sin‘* = constant «...(5)
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The equiphase surfaces are also planes given by

X Sin ¢ _Aii Y Cos ¢ = (Constent ... (8)

We note that they are orthogonal to each other, 1if
you consider the medium above the surface to be loss=

free o See Fige 4.

The direction of propagation is normal to the
wavefront and hence is inclined at an angle ¢ with

respect to the normal,where ¢ is the real part of

the complex Brewster anglee

The wave can be sald to travel with out atten-
uation in a direction normal to the wavefronte The
decrease. in amplitude with increase 1ﬁ X can be inter=
pretted #s srising from the exponential variation of
amplitude across a wavefront as the_wave sinks through

the plane y = 0 ¢ See Ffge Bo

Since there is no reflected wave above the
surface one can regard the medium below the surface
to provide a nortched termination to the incident in=

homogeneous wavee

1.6. THE EVANESCENT STRUCTURE OF THE FIELD OVER THE
WAVEFRONT OF SURFACE WAVES

Since surface waves propagate without radiation

it follows that the field structure across the wavefront

’
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must be evanescente Wé wish to illustrate this furthers

by proceeding in another waye Refer to Fige 6e

Here the iu%ual X-Y coordinate axes have been

- |
rotated by an angle ( = - ¢I ) in the clockwise direction.

The direction of power flow is inclined at an angle

Il’ to the normal e

I

In Fige 7 we have shown an evanescent EO1

mode betwoeen two parallel perfectly conducting

plates sgeparated by d and of infinite extents repre~

d
sented by the planes Xt = + o e
. = 3

In Fige 6 3 the field expression for the
wvave travelling in the direction normal to the wavefront

i or equivalently parallel to the X' « axis 4is given

by

H = Ae

-~/ Y' Sin hX -j/B Xt Cos h X
5 e O o o
Z

ooc(’l)

*

We see that the wave travels without attenuation in the

Xt directions which 1is normal to the wave fronte

For the evanescent E°1 mode in Fige 7+ the

field ies given by,
- ¥ - L\ 4
AL A Y TX ‘e (8)

= 2
H ” A e Cos 3 ___9

| g
J“'tﬂz«c Yt -3 79 mXXT 4
e e

X!
= Ae + @ e d

2 o 0 ceee (D)

with o = = B, + (’;;-)
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Thus the evanescent mode consists .of a standing wave
pattern formed by a pair #f inhomogeneous plane waves
traveliing back and forth along the X' = axis, between

the plates without having any net forward progresse

If you compare 7) with (9) we see that (7)

is identical to the first term in (9) if

I = 53 Cosh X
da [o]
and c( = /M Siph X
N o

Thus the Zenneck wave is identical with the corresw
pondingly directed component wave of the evanescent
‘Eo » mode between two parallel perfectly conducting

plane se.

y 8

Since a ¢ necessarily, we .see that the

separation of the fQuiphase planes in a Zenre ck wave
o ,

must be less than """""2 +» Any plane wave complying with

these conditions must have an evanescent structure in

the direction parallel to its equiphase planese

From figure 6 it is also plain that the Zenneck
wave progressively senks into the plane Y = 0 , as it

advances along X.

17+ TRANSMISSION LINE MODES AND THEIR RELATION TO
SURFACE WAVES

In a parallel plate transmission line, we

usually assume that the plates are perfect conductors



and the separation is small compared to a wWavelengths
Then the anly propagating mode is the simple TEM wave.
Once there are logses we must have a longitudinal
componen t of the electric fieldy to supply the losse se

Hence +the mode is not strictly TEM.

Fige 8 a2 shows the field lines for the lossy

plates with small separation.

A simple analysis shows that as the distance
of separation is progressively increased the TEM wave

gradually approaches the Zenneck waves

As we increase the separations Y tﬁe
propagation constant of the wave approaches that of
the Zenneck wavee The field components are stronger
near the plates and they resemble the Zenneck waves
closelye See Fige 8 b o In the central overlap region
there is some interaction betweens, the individual
Zenneck wave type fields associated with the two
plates and it is the magnitude and phase of the inter=-
action that determines how far the‘;Y of the system

departs from that for a time Zenneck wavee

For a clear understanding of the aboves
consider how the TEM type of wave bekween plates
of finite conductivity varies as the distance of
separation is varieds There are three types of propa=-

gation which can bhe distinguished, as 24 varies in



- 23 =

2
A° Sl
relaticn to the length —s—  and — @ = skin
N, A
depth).
(a) Small separation:
3
- T
{e0e 24 << — e ihen the wave 1s
[« ]

essentially of the TEM pattern within the metal.
Practically no energy travels in the narrow air gap

»

between the platese.

A3

(b)

2
< < 2a X __}:_n_. «» The usual
. . A

o]

TEM wave assumed in Transmission line analysise
R i
Axtenuation sgenera.lly small, phase velocity_ssl:lghtly
greater than that of Light;/most of the energy travels

in the region between the platese
,‘2

(c) 24 >>.____°___
A

The wave tends to separate into two isolated
Z enme ck waves one associated with each plates Most
of the energy travels between the pletes and close

to the plate se

Actually these three regions are not sharply
definede ©One passes continuously from one type of
propagation to another as the distance of separation

is increasede.

Similarly for parallel wire transmission lines,

the TEM wave reduces to ‘t._‘vo axial cylindrical surface
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waves each of which is supported by one of the cond~
uctorsy as the distance is increasede Thus the surface
ﬁgves are the limiting cases to TEM waves on 2=
conductor systemss as the distance of separation is
increased dindefinitelys This is another link between

surface waves and other knovn types of propagating

Cele WAVE Se

1.8. LAUNCHING OF SURFACE WAVES

The aim in launching is to convert a high
pgrcentage of energy in the sourcesy which illuminates
the launcher, into the surface wave « Usually in a de=
sign of Ghe launchery One arranges fhe geometry so
that the higher order spurious modes get attenuated
rapidly within a small distance from the launcher so as
to have a reasonably pure surface wave at large
distances from the launchere The range of the sure
face wave depends on the launching arrangemente Workers‘
have advanced several arrangements claiming large laun~-
ching efficiencese (ieee, the ratio of surface wave to
total power used)e DUne of the earliest launching
schemes employed the pr;nciple of the complex Brewster

angle to launch the Zenneck waves

Here an inhomogeneous plane wave 1s incident
at an angle ¢ » the real part of the complex Brewster

angley, on a flat surfaces This produces the Zenneck wavees



The i1dea of using a horn to0 launch the surface wave

has been tried.

Since these early attempts many schemes
for launching have been elaborated in the literature.
Further, it is problem altogether different from what
we propose to consider « Hence we do not consider
the launching problem in any detailes Those who are
interested fa this aspect of the problem are referred

t0 the ample literature existing on the subject.



CHAPTER  1II

REVIEW OF PAST WORK ON SHIELDED SURFACE WAVEGUIDES

As we know,surface wWaves are @.m. Waves
which travel along an inferface between two different
media without radiatione And the structures usually
used to guide such waves are open or uanunded- Because
of this featured there is only one finite boundary
condition to be met and as a conSGQuénce these waves

do not have any cut offe

. What is a shielded surface waveguide ? <+ The
term can be tzken to mean that a confining screen
has been placed above the guiding structure. As we
know 5, the surface wave fiéld extends theoretically
to infinity 1n'£he transverse directions Hence 1f we
are interested in limiting the extent of the field we
contemplate the utilization of a screene Then it follows

that we have to match the screen to the field so as

not to cause unwanted reflectiones

The theory of such a shielded guide was first
3)
advanced by H«eMs Barlow » He considers both the
planar and cyiindrical guidese The above mentioned

matching problem is tackled by him in two wayse
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The first approach is to examine the wave
impedances at the location of the screensy in the trans=
vercse directione This turns out to be having a capac=
tive reactance and a small negative resistancee So
the surface needed cannot be passive but has to be
activey which means éhe introduction of a generator
of power at the operating frequencye If the losses
are negligibles a tolerable match can be obtained by
having a dielectric coated metal surfacee But with
significant dissipation in the medilay, we reQuife an
auxiliary source of power along with the passive react=

ive surfacee

The second method advanced by Ba¥low 1s inte=
resting. It 1s' by setting up what Barlow calls aé
the duﬁl surface wavey that we seék to match the bounde=
ariese. This involves the setting up of a second surface
wave on the inside of the screens in addition to the
mailn surface wave guided by the guiding st;ucture.
Under suitable circumstancesy this wave would serve to
limit the spread of the primary wavees Further we have
simultaneously satisfied the boundary conditions at
the screen, in the process of setting up of the '
secondary surface wave on its inside surface. Now,
the question may arise that the presence of the two
surface wvaves might lead to a standing wave pattern
across the guide. But we know that there can be

no reflection of a surface wave at 1its guiding surfaces
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This is true for both the waves at theilr respective
guiding surfacese Hence there can be no standing wave
across the guide as would be the case for a normal
waveguide modes This fact enforces the conclusion that
the said sombination of the two surface waves experiences
no cﬁt offe It 4is in ordex)to observe that the primary

wave carries the major portion of the powery the secondary

merely serving to limit the primary wave f ielde

X closer examination of the problem brings
out the similarities between the dual surface wave and
the TEm wave usually assumed to be present in such
geometriese kioe-, planar and coaxial). Both have
no cut off . Further the field patterns steﬁmi@ f rom
the dual wave solution exhibit features of the TEm wave
field patternse In fact this wave combines the features
of the TEM wave and the surface wavee So Barlow terms
it as the h&brid TEm=dual surface wave modee Ba:lom/
establishes that this is the natural mode that exists
in parallel wire or coaxial traﬁsmission line se The
usual TEM wave solution is obhtaining in the ideal
situatione.

To arrive at the field components Barlov
proceede as followse He assumes that the solution of
the 2~ dimensional wave equation is representable as
a linear combination of two surface wave Se CChe guided

by each of the two surfacesa For the planar geometry,
'



the components are E_ » Ey + and Hé considering the
Ewmode solutione It is to be noted that Barlow has
tacitly assumed inductively loaded surfaceses For
only such surfaces can support an E«~type surface wave
modee The transverse variation for the planar case 1is
exponential whereeas for the cylindrical case it 1is

governed by Hankel functions.

Barlowt*s solution can be presented as follows:

Namely,
- u " =X wt
H‘,5 =[A1ey+A2ey‘le eJ

®Khere Y = longitudinal propagation constant

d +3 A8

0

u = Transverse propagation constant

a = Jb

Thus the field 1s seen to be a superposition of two
Z-enneck type: surface waves each of which is guidead
by one of the surfacese.

Once H, 1s thus assumed, we may get Ex and Ay reaadily

from 1ite

Ndw Barlow makes a further stipulation tkat
Ex =0 at y = m i.e. at some level in the transverse
direction the longitudinal component of the electric
field vanishess This leads us t0 infer t hat the two

surfaces waves are 1n anti-phase, resulting in the

cancellation of thellongitudinal components The level



at which wuch a cancellation occurs depends on the
relative amplitudes of the two surface wavese ir

they ere equal in amplifude, ther this level is at

y = d/2 1i.e+ the centrael plane of symmetrye For the
-case of unequal amplitudes thils occurs at a level
nearer to one of the surfaces. It is to be noted that
for the case of equal amplitudes, the two waves also
travel with the samp phase velocity and they are antiw-
phases Hence we get a complete cencellation of the come~
ponent E, at the central plane. For the case of un=
equal amplitudes, one of the waves travels faster than

the others Hence we cannot say that E_ =0 at y = me

We can only say that E, 4is minimum at this plane. This
is becauses we cunnot get complete cancellation owing

t0o the differing phase velocities of the two wavess

We can say the same thiﬁg in terms of the
impedances of the surface se If the +two plates have
identical reactances we get the two amplitudes equale.
Hence Ex = 0 at the central planees This we can call
the symmetric case. ?f the two reactances are different,

2

the wave amplitudes are different and E, ~ © at a

level off the middle« This is the asymmetric casee

Barlow has taken B < O at y = m for the
asymmetric casee This is not strictly correct as we

have seen aboves However, one can take 1t that the



minimum is close to zero, if the phase velocities
do not differ appreciablye lhus the field patterns
which we derive on the assumption that Ex = 0, at

Yy T m sy are approximates However they throw con=-
siderable 1light on the actual situation obtaining

in the geometrys

Barlow has obtained the equation of the
electric field lines in the X= y plane.\Wb show his
results in a qQualitative manner in Fige ¢ Referring to
this figurey we see that the surface wave feature is
present alongside the TEM wave features. ©One may
note that as the surface reactance 1is reducedy we
diminish the surface wave aspact and in the limit the
field'reduces to the TEM types, 1.ee¢ at zero surface
reactancee The fielad pattern before us in Fige 9y 1is
a distorted version of the TEM wavee Thus we can get
the hybrid wave by a progressive increase oOf the
surfac; reactance which accentrates the surface wave
feature in the total field « And to enhance the
surface reactancey we can coat the metal surface with
a f1lm of dielectric or introduce transverse corrugate

ions in the metal surfaces

Barlow has extended this method of analysis
to the coaxisel casey by dintroducing suitable modifi-
cations warranted by a change of geometry from planar to

cylindricale His solution for this case is given by
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- fx Q@) (2)
E, = o CH ~ (ar ) + CH, ' (r)

and the components Er and-HQ - are easily got from
Maxwell®s equationse Once again we see the superposition

of two surfaceé waves in the solutiobs PBarlow lets E,= O

at ¥ = ﬁm in the interspace between the two conductorse

Thus we see that the calculations for the
coaxial case wa-re simple extensions of these in the
planar casee The only difficulty 1is in the manipulation of
the Hankel functions while calculating the various
quantities of interst 1like power densitys fOr example,
Barlov has obtained expressions for the impedances at

the different interfacess

In an example which he considers in the same
paper he has compared the two matching methodss and
arrives at the conclusion that the setting up of the
dual surface wave is the better alternativee In his

4) Barlow establishes that

second paper on the sam +topiec
the hybrid mode is the natural mode whereas the TEM
mode 18 a close approximation to the truthe For, at high
frequencies we have resistance as well &s reactance
exhibited by the supporting suif&ces and so it 1s the
hybrid mode that will be supported by the transmission
lines By making the surfaces deliberately reactives

we can alter the distribution of power flow across the

cross section and the~iss in suitable circumstances will



will 1reduce the attenuation significantly as compared

to the TEM modees

That the TEM mode can exist only in ideal
conditions is clear because, we need a coﬁponent of the
field in the direction of propagation to supply for the
losses in the supporting surfacess Thuss the hybrid mode
with a longitudinal electric field compoent is seen
to fulfil the requirement better than the TEM wavee
The two parts of this wave supported by the inner and
outer conductor providg for a component of power toward
fhe associated surface, thus over coming the surface
lossese The degree of symmetfy of this wave depend? on
the relative values of the two 1mpeéances. By delidera-
tely enhancing the surface reactance, we can accamtuate the

surface wave feature and thus make for reduced attenuation-

Barlow analyses the stripline and coaxial
transmission 1ine where the surfaces have been coated with
thin films of dielectrice He assumes the hybrid mode
as the only mode in the geometry, the waveguide modes being
cut offe Further he assumes that the longitudinal comp-
onent Ex goes to zero at a certain level in the transverse

pPlanee

With the solution as assumed above, the fiald
components are readily evaluated and one can obtain the
eligen value equation for the problem by matching the

tangential field components at the various interfacese



But the resulting equation is found to be comple Xe
Hence Barlow assumes the tranéverse propagation
cénstante Then for a given frequency the given para-
meters of the different media and the given separa-
tion between the platesy, Earlow obtains the necessary
thicknesses of coafing t° and td s for a range of

" values of m ( kg correspond® to the thickness of
coating on the lower plate and t3 to that on the upper
plate) from the eigen value equation with the trans-
verse attenuation as paramefer. One can then obtain
the longitudinal attenuationsy for each t ransverse

attenuation, as a function of me

We show the results in Fig. 10. We see fromr
this figure that for the symmetric case the attenua=
tion is maximume Thus to reduce attenuation one must
inte roduce asymmetry in the wave. Actually a minimum
attenuatien about hﬁlf the maximum can be achieved
when the zero level of the longitudinal component
falls near one of the surfacese Also there is a parti-
cular value for the thickness of coating corresponding

t0o the minimum of attenuations’

Thus 1t 1= established that an accentuation
of the surface wave feature and an introduction of
asymmetry in the wave make for reduced losses or
equivalently reduced attenuation which by a proper

choice of the thickness of coating can be made to
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be half that for fhe TEM wavee

The se resultg are once again confirmed for the

coaxial case as welle

Now these conclusions are to be valid at
all frequencieSo‘ Hence, in particular at 50 c¢/s,
we should be able to reap the advantage of feduced
attenuation ¢« But the usual dielectric coatings
cannot result in large reactances at 50 c/s. Barlow,
has employed Ferrite coated conductorse Actually
Ferrite rings are incorporated in one of the csnduc—
torse This is to circumvent +the difficulty present~
ed by the brittle nature of Ferrites. It has been
experimentally verified by Barlow and Sen(7’8) that
it results in minimum attenuation when only one of
the conductors is coated with the optimum thickness
ofef dielectric and not while both are coatede Thus
one can use th@seferrite loaded conductors for a
transmission 1ine and benefit from the low attenua-
tion of the hybrid modee This has been already expe=
rimentally demonstrated by Barlow and Sens These results
apply in the case of coaxia 1 lines as welle Millington
in his paper(g) has expressed some doubts about the
method of solution adopted by Barlow, The calculations
of Barlow show that for a given to + td the attenua~

A

tion along the guide for the symmetrigal case to = td
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is equal to or greater than that for the duasi TEM
L

mode to = td = 0 e But there is a marked decrease

in attenuation as to + td is distributed more and

more unevenly among the two surfacese But as t, + td
is increased the attenuation rapidly increases.
Millington carrying out his own calculations finds
that the attenuation is independent of the ratio to/td
~at least for the case considered by Barlogws Further
there is not mych variation in attenuation as t +td
is variede Millington also wonders how such large
values of transverse attenuation can result from

such thin films fof dielectric ehich figure in Barlow's
calculationse Further the conclusion obtained by»

Barlow that the attcnuation is critical with the thick-
ness of coatings isy, to Millington, rather surprisinge

He believes that these anomalies arise due to the

manner of solution adopted.

The direct method of attack would be for the

assumed frequencys the constants of the medias the

separation and the ¢hicknesses of coating to and'td

one has to solve the eigen value equation s0 as to

obtain the transverse attenuatione This is dasily

!

done by numerical techniquese Then from the known
transverse attenuation one is to obtain the loagitue
¢

dinal attenuation and from here the nature of the

field i1is to be found oute
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But Barlowts method seems 10 be the reverse
of the above. Barlow assumes Ex = 0 at a given level
y = m and the transverse attenuation as welle Then
he solves the equations for the thicknessese Thus
the calculations become critical with the conditions
assumeds Kven though the assumption to start with is
not far fgom the truth, Millington believes that
the computation however accurate would diverge from

the true soclutione

Thus Barlow's procedure a side from being

laborious is basically unsounds according to Millington.

In a reply to Millingtont's observations, Barlow
demonstrates the possibility of reducing the attenua-
tion by enhancing the surface reactance, but he does not

fully answer Millingtonts objections.

But theoretical procedures sparty the experimen-
tal work done by Barlow and Sen(6'7’8) seen to
uphold Barlow's predictionse They have measured the
@ of a coaxial cavity resonator as a function of the
thickness of coating on eithe r conductore This
demonst rated the existance of a particular value of
coating thickness for which the loaded ( is a maximume.
The attenuation due to the coaxial part of the resonator
registers a minimum for the same value of thickness of

coatinges A measurement to determine the field distribu-

tion in the coaxial line supporting the hybrid
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mode clearly illustrates the vanishing of the longie
tudinal component Ex at a certain radius vh ich

depends on the loading of the two surfacess Further
in another experiment they have found that we can

goet the minimum of attenuation provided we load one

or the other surface and not both simultaneouslys The

loading of course has to be optimume

(10)
In a recent paper Barlow has attempted

to explain the bshavior of the hybrid mode in physical
termse Calculations show that the hybrid mode contains
20% more power than the quasi TEM mode for the same
currant invthe inner conductore Also the hybrid

wave produces much less 1loss in the outer conductor,

than the TEM wavee

The calculations also show that the bybrid
mode suffers less attenuatione This is brought about
primarily by the req1stribution of power across the
cross section foliaﬂ.ng the coating of the inner

conductore

Because of the highly rcactive inner cbﬂdnctor
the fileld at the outer conductor is weake vSo the
losses there are reducede If the thickness is
optimum, the added losses due to the dielectric are
more than compensated and there is a reduction in

attenuatione.
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Thus the experimental evidence is seen to
support all that has been derived by Barlo«i Especially
the existence of a minimum of attenuation much lower
than th-at for the quasi TEM mode, and a cOrro—-se
ponding thickness of coating of dielectric, the
vanishing of the longitudinal component Ex at a
certain level in the transverse plane have been ¢coOne
firmeds Th 15 leaves us in no doubt as to the exis~
tonce of the hybrid modes The reduced attenuation
is a physical reality and the method to achieve this,
namely by accentuating the surface wave feature which
is in turn achieved by enbhancing the surface reactances,

has been vindicatede.

Another person who has contributed to the

: G)
theory of Shielded surface waveguides 1is JeReWait

it 1is in order to observe that the present work is

an extension of Wait®'s worke

In a later €hapter we will have occasion to
trace the steps feormulated by Wait in his papers
wherein he has attempted to obtain the various modes
that would exist in a parallel platé waveguide with
reactive guiding surfacese Hence we rest by enumera-
ting the conclusions obtained by Wait on his analysis

of the probhleme

Wait assumes a TM type of solution comprising

of the field components E 4 E and Hé . Since we
x y



have a bounded structure, Wait proposes a series
solution for the wave equatione This series is made
up of an orthogonal set ‘of modese (The orthogonality

prOpert& 1s assumed by Wait). That is he takes

-i)s X
= n
H, ; ®n fn Gv) e
Where 8 = amplitude of nth mode
£,(y) = Transverse distribution of the nth mode.
Xra = lopngitudinal wave number .

£f,(y) is of the form

fn(y) = C1 e uny + CZ e ny

whera un 1é the transverse wave fumber of the nth
modes This form is obtained on substituting the series
ef solution in the wave equation and solving the

resulting differential equation in fn(y)-

Wait then gets the modal equation an imposing
the boundary conditions at the two supporting surfaces
on tﬁe field componentss The modal equation is in
variable u . Thus only those u which satisfy the
modal equation can characterize the allowed modes
in the structuree The real roots of the equation corresm
pond to surface wave modes and the imaginary roots
denote waveguide type modes. Complex roots are not
considered if wo restrict our attention to lossless

guide se
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"faitts conclusions are

1e There exists two surface waves in both the symmetric
and asynmet ric geoqetries-

2 In the symmetric cases the field distribution are
to be of ewen and odd type se

3e There are an infinite number of waveguide modese

4e The =z-@r0 order waveguide mode is expected toA

degenerate into the two surface wavese.

In his consideration of the real and imaginary
roots Wait has restricted himself to very special
casesy perhaps for simplicitys Hence his results are

not of much significances

On the assumption of the orthogonality of the
differen® modes, Wait has solved the excitation probleme.
For the arrangement where a voltage has been set up
across a slot at y = y_ in the transverse planes he
has derived the expreésion for the amplitude of the
nth mode and from there the power carried by the nth
modee The assumption of orthogonality really simplifies
these conclusionse He obtains the ratio of surface

pozer to the power in the nth wave guide mode as

P kpd
- = e where
Py
P = Surface wave powers
P = Power in nth waveguide mode.



P parameter relating free spnce impedane®
to surface impedances
k f ree space wave number

a separation

Thus if kd 1is large one can have more power in the
.surf&ce wavee

fhaa he proceeds to consider the lossy casees
For this he merely extends the analysis for the losse
free casee He replaces parametérs p and q (q 1s the
parameter similar to p which is defined above) by p(l-iso)
and q(l - 1 84 ) respectiyély { to take into account

the surface losses ) in all his prewious resultse.

Hence Wait concludes that there are not only
surface wave modes presentjbut also the encloséd waveguide
modés, once we resort to shieldinge SO we have to take
extra care to prevent contamination of the surface wave

‘mode by the other waveguide modese

In the present work, to be presented in the next
Chapter, the author has tried to verify Wait's conclu-
sions and‘especially his speculations. Accordingly a
detailled analysis of the model equation with the
help of fhe computer was made and this has conf irmed
some of Wait's results and has contradicted him on
some point sse A case in point 1s that the zero order

mode does not degenerate into two surface waves but
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into only one surface waves There is a surface wave
which exists down to zero frequency and the other

one turns into the waveguide mode of order zero as

the frequency is variede Further evidence on hand
negates the type of orthogonality mentioned by

\laite This renders the excitation problem much more
difficulte Lastely it has been possible to link Barlow's
results to Wait's resultse The wave which exists down
to zero frequency is of the Barlow type and thus

in Wait's 1language Barlow's wave is got when there

is a large interaction between the two component surface
wavess FOor no interaction we have two surface waves
disappeared and becomes a waveguide modee By a suitable
choice of frequency and parameters of the systemy we can
make this waveguide mode to be cut offe SO we are left
with o©only one surfacelwave which_prdpagates and this'

is exactly the hybrid mode discussed by Barlow « It
has also been éahown that proceeding similar to Barlow's
approach we can arrive at the existance of a second
surface wavee This is shown to be the type for which

a E.
ay

= 0 at y = my Thus this work has bridged

the 40P approache sa



CHAPTER III

INVESTIGATION OF THE MODES IN A PARALLEL PLATE GUIDE

WITH REACTIVE GUIDING SURFACES

3elos The problem fo be solved is as described belowe

given a system of cartesian coordinatess Xyyszs
we consider two parallel plates aligned as shown in
Fige 11« The lower of the two plates is defined by
the élane y = -«d/2 and the ubper one is definea by
the plane y = + d/2 « Further the lower plate has
a surface impedance Z while the upper one has a
surface 1impedance Sa- The distance of separation -

measured along the Y ~ axis is d +«+ The plates extend

to infinity in both x and z directionse.

We are interested in f inding the E and H

configurations that can be supported by the two plates.

In the solution we are trying to seek TM
and TE type of field configurations which would meet

the boundary conditionse

-

The TM type of field solution is made up
of the three components E* Ey and Hi while the TE

type solution has Ez » H ana Hy for its componentse
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Even though the surface impedances ZO; Z4
may in general , be complex we restrict our atten=-
tion to the situation where they are both purely

reactives

The dielectric which separates the two plates
is assumed t0o be air and hence can be taken to be
practically loss~freee Thus the whole structure is

loss freee

We express the surface reactances in terms

of the free space wave impedance n {i.e« 120 T .n ).

We means

Zo = J n p ;Zd = JIn a
i (=) —

= 3 — = —D)

wg ° I SN E
ar
He re k = free space wave number = x
o

}~° = free gpace wave length e«

W = 27T ¢

f frequencys

E = free space permittivity.

P and 9q are positive real parameters dich éignify the
comparative magnitude of the impedances Z, » Zd with
reference to the Aree space iImpedances Further we

are not concerned how the reactances are produceds

We assume them to be already therece.
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Now we outline the procedure to arrive at
the TM and TE type of solutions. Here we follow
(5)

Wait®'s approach as found in his paper .

The Solution:i

We begin with the two Maxwell's equation

of interests

#XH = JWE E
ese 1)
X E ==-3WA H
-
ﬁ ’ ﬁ refer to the electric and magnetic field

intensitiese E , # are the parameters of free
spacey with their usﬁal significancees
J  = imaginary Numbe re
For the TM type solution one starts with
Hz s the z~ component of the magentic field, which

15 uniform in the zZ- direction.

For the TE type solution, we start with Ez

the z=~ component of <the electric fields, once again

uniform in the z- directione.

The uniformity of Ez and Hz in the 2z~ direction
is a natural c¢onsequence of the sgpposed infinite
extent of the plates in the z~ directione Even though
this 1s not practicable one may choose the z~ dimemsion

to be several times the y=~ dimensione

We treat the two solutions parallellys for

this would bring ocut the duality between the two
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solutionse

Wait utilizes a universal principle valid
for all bounded structures in the course of his ana=
lysise That is the field solution pertaining to such
a structure can be expressed as a discrete spectrum

of modes that are mutually orthogonale Or in other

words one is obtaining a B8 eries solution for Maxwell®

equations. The orghogonality property makes for the
independent carriage of power by the different modes
and this in turn helps one to expressthe total power

carried as the sum of the povers in the individual

mode se
The form of the series solution proposed by
Wait iss
- -J)\»nx
Hz Zanfn (Y)e 00(2.)
Here an = amplitude ccefficient of the nth modes

fn(y) = Transverse variation O the nth mades

longitudinal wave number of the nth modes

-
]

The separability of the wave equation in a
carteslian coordinate system has been taken advantage

of while writing Hz as a product of two functions

one of which depends on y only and the other depends

on X onlys There is no =z~ variation because H
z
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is uniform in that directions This is because of the

essentially 2« dimensional nature of the probleme

o 1 et and E as
F? m Hz s Wo easilyg Ex n v

-

0.0(3)

So to completely determine the field all one
has to do is to find the following, i1.e.,

s £ ar
a2 £ (y) an 0

As one would see later, fn(y) is to be
determined by inserting the form of H, into the 2=

dimensional wave equation written for the region

a a
z < v & 3

When we impose the boundary conditions on the fields,

we get the modal equation i.e.y the equation to be
satisfied by any field cqnfiguration that is to exist

in the space between'the two platese Since the boundaries
are defined by the planes y = + d/2 , one naturally
expectges these boundary conditions to determine the

t ransverse variation of the fiweldse So these constraints

would determine the transverse wave number Uh. e« From a
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knowledge of u, ,)\n cafi be easily derivede.

To determine a, one has to know the nature of
the excitations Given this it is easy to calcula te the
individual amplitudes if the modes are orthogOnaiq Wait
assumes, that they would be orthogonal. But during the
present investigation, evidence has been obtaire d which
points to the contrary i.e.s the modes are not orthogonal
in the sense of Waite Still the power carried by the
individual modes might be independente. Foi there are diff=-
erent kinds of orthogonality relations. It still remains
to be established that precisely 1is the kind of ortho=-
gonality that prevails in the system considered. We

discuss this more fully in a latter section.
Out object is to determine the form of fn(y)

Now Hz has to satisfy the wave edquation in

the region (~a/2 5 €y ¢ /2 )

2 ,
2 + +k2 H =0 ...(4)
3 x2 d'yz z

Inserting the form of H, as given in (2) we have the following

differential equation for fn(y) ilee.y
2
r” y) + (x =2)) £ (y) = o oo (5)

_ 2 2. 1/2
Write u = (N, = X )

Then £" ( - u? =
n n y) un fn(y) 0 P -...(6)
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is the differential equatione.

From this fn(y) can be easily deduced to

be -u_ y -u_y :
- n n
fF(y) Cle v + C , ® eo e (?7)

Derivation of the Model Equatione.

For this we impose the boundary conditionss

Ex = yA
H a °
2 = om
y 2 e oo (8)
E, = -7
H_ d
- d
z y= + 5_ N

i.e+ the wave 1impedance looking in the direction of the
plate in qQuestion must equal to the surface impedance
of that plates at that plates This is what we term

as matching the field to the plates.

Now
E 1 f’n(y)
= = eee (9)
H . v B £ (y)
A

. a (. (y))
Yhere £t (y) = n

n ay
Now f = U ¥ -u,v

n(y) Cl ) | + 02 e

and Y (y) = u [—_C1 e - C2 e

The first boundary condition in (8) can be shown to



- 51 =

result in the edquation,

Cl I—un-_jWE ZO} -Cz eun d[un +sz°]

=0 eee (10)

The second condition in (8) similarly yilelds the
equation

Cl{:un +JwE Z;] - G, e—und {% a = JwEg Zd

= 0 oes(11)
For non trivai values of C, and Cz' the determinant
of the system of homogeneous equations in Cqy and C 4
{10,11) must vanish. S
This yielas,

=-u d
w, = JwWEZ,) Cu=~3wBZyd)em

n
. . u d
= (up, + 4w BE,) Cu, +JwEZy )en

which in turn reduces to the identity,

u -JwvEZ, u =~ Jjwvg,z -2 u_ d

un+JWEZ° un+JWEZ‘l

LI (32)

(12) 1s called the modal equation for the systeme
Each value of u, that would be a solution of (12)
characterizes an allowed mode..

We will consider real and imaginary roots

of (12) « Complex roots are not of interest because
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the structure we take up 1is to be loss—free.

As mentioned earlier the real roots
signify surface wave modes and the imaginary roots
give the waveguilde type of modes. As the root changes
f.rom real to imaginary we go over from a surface

wave mode #nto a waveguide mode.

The total field is thus composed of a combin~
ation of surface wave and waveguide modese. By wave=~
guide modes we mean those modes which are common to
parallel plate waveguides with perfectly conducting
guide surfacess. We note that for Zenneck type of
surface wave modes to be supported the surface has
to be inductively reactive € we are having T $4 type
of modes in our minds)s Thus whén the walls are perw
fectly conducting we cannot have Zenneck type surface

wavess Then_only the waveguide modes existe As we

)
enhance the reactance € the surface we start having

the surface wave modes as well .

In (12) let us put '

1]

Zo i p = § CxMNE) D

where the symbols

zd=3r\q =3 (Ck /WE ) g

their pre-assigaed meaningse
(12) beéomes on this substitution,

{' u -~ kK p u~- ka _ - 2 u d
- e
u + kp u + k q

ce.e(13)
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{(13) 1s the characteristic eyuation for the loss~less

case we are investigating.

We now show that for the TE type solution,
the model equation is identical 4in form with that

corresponding to the TM cases

TE Type Solution:

We start with Ez here and proceed exactly

as we have done for the T ] cases

So we let

-iN  x
- cee (14
Ez S a, fn(y) e n (14)

with symbols having their usual meaningse

¢ E
3 z eee(15)

1}

H
x w K 4 x

The corresponding boundary conditions are

E, -’

" = ~Z, at y = =a/2

g x evs(18)
B = S

H, Z, at ¥y + d/e

An examination shows that fn(y) is still
the same as in the T M cases

An application of the conditions &56) on te
field components is found to yield the model equation

for this case as
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N
Jw K 71 [ Jw K
B Zo “n Z, =2 upd
e = 1
3w H Jow K
u_*+ u_ o+
n 7 n
o
,J L Zd -
es e (17)
(£7) 41is the dual of flz) got for the THM case.

H ovever one expects TE modes to be supported

by capacitive surfacess So defining

Z

(o]

-Jdn q -3 (w & /x) q

and inserting these in (17) , we obtain

- - «
3] [ f]
p . n q | -2 und
p — = e 00(18)
k K
I:un +pJ Lun "‘E _l
1 1
Letting = = p*' and = = Q' 4 we
p ) * |
write (18) as,
u kK pt - . -
n - P w k q = e 2 un d
un +kp' un"‘ kq’ 000(19)

which

p to pt and 9@ to g*

-

would be the sames

is identical to (13) except for a change of

But the behaviour of the roots



Hence the roots, real and imaginary,of (13) for the

TM case with inductive Dboundaries,is identical

with the roots real and imaginary of {19) which re-

lates to the TE case with capacitive boundariese

This 1s as expectede For the T M case is
the dual of the TE case and the inductive boundary

is the dual of the capacitive boundarye So from a

consideration of duality TE type solutions are also

possiblee

Now it is interesting to consider whether

it is possible for TM type surface wave and wave

guide type modes to be supported by capacitive sur=

face se

For this replace Z  and Z(1 by - J n P

R}

-Jn q respectively in k13) we get

. n » n 2u 4

. (20)

which shows that we do not have any real rootss But

we do have 1maginary root se

and

So one concludes that T type surface wave

modes cannot be supported by capacitive surfacese But

we can have T type waveguide modes supported by
the same surfacese

Hence we can infer that TE type waveguide

modes would be supported by inductive surfaces though

not the TE surface wavess
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So one might sum up the types of modes one

expects in the geometry considerede

W: consider the case of inductive boundariess
For the casé of capacitive boundaries the same con=
clusions hold except that we have to read TE for TM and
vice versae

Hence for an inductive bdoundarys we have,
i« T™ +type surface waves (real roots of egquation (13))

iie TM type waveguide modes (imaginary roots of equation

(13)).

iite TE type waveguide modes (imaginary roots of equatim

3¢2+ BEHAVIOR OF THE REAL ROOTS OF THE MODEL EQUATION

(FOR THE TM CASE)

We recall that the model equation of interest is
given by (13).

u, - kp u, - kaq ~u. d

WS BN F Witk ¢ )

u <+ kp u_ + kg
n n

i

We normalize the equation and‘WrISG it as

r-«)i.._-.:....?- i ..§_..:....9. i = e‘-zx L IR ) (2#)
, X + P 1 I X + QJ
Where X = u d
P = kpd

Q = kqad
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We plot equation &21) graphically 1in Fige12.

The real roots are got by the intersection of the
X=-P X&
X+P X +Q

-2x :
exponential e with the cdrve ¥ =

As we vary P and Q we can have different shapes for
this curve and the intersections can be modified.

We restrict our attention to positive values
of X onlyy for reasons which are apparente In general
we have two intersectionsy that stand for two surface

wave mode se
The roots can be expressed generally as

X, = P=8 X =Q + §

where 8 's are variable quantities depending on the

values of P and Qe

For 1large values of P and Q 81 I~ Sz = 0

i.e¢y the roots become nearly

XI;:: P 3 X 4 Q +« This is the case when P and

Q both exceed 5« We always take Q >Po

For values of P 2 ( P 5 , one sees

that the 8's are small quantitiese This is there 1is

only a small departure from the previous casee

For P still smallery "the 8's become fairly

large say of the order of 0425 to 0.5, and the departure

is s8till more markede From the fiigure it is clear that

the root X1 moves toward zero more' rapidly than
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X does as the values of P and @ are decreased.

2
In fact at a certain value of P 4 for a given
Qs X, becomes zero, while X2 has still some
positive valuee It turns out that X, 1s different

from zero as long as W 1s non zero and becomes zero

when @ equals zero.

This is what can be called as the threshe
0ld phenomenone. That is,there is a critical value
of P for a given Q » only above which thewre are
two positive real rooté. Eelow this value , there
is only one positive root (that is XE)' In physical
termsy, above this cecritical vaiue of P (for a |

fixed Q@ ) we have two surface waves propsgating

and below this one of them disappearse

»

Wait has called the case, wherein P and Q
are quite large (says in particular-l> 5) as the

case Oof 'no interaction@C Here the two surface

waves do not interact with each other, or in
other words they cling to their respective
surfacese and propagate with different phase
velocitiesy one of them travelling faster than

the othere

For P and W@ » moderately large,we
have the case of 'small interactionts and the

third case,with P sufficiently small, becomes
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the case of ' Large interaction's And it is only
in this case of large interaction that we witness
the threshold phenomenon i.¢es wherein one of the

surface wave disappearses

Whenever there are two surface waves propaga=-
ting in the geometrys the one attached to the lower
plate travels faster than the other wave. Hence this
wave attains the velocity of light firste At this
point it disappearsy while the the other wave still

travels slower than lighte

We show in Figes (13) the @ccurrence of the

threshold graphicallye For a particular choice of
“X - P Xr- Q

P and @ the curve Y = ———— - takes
X + P X +Q

the form (1)y in the figure and now it has two fnter-

sections with the exponentiale For a second choice
of P and & the curve becomes as in (2) in the same
figure and now there is only one intersection with
the exponentials The number of intersections depend

on the critical slope of the curve at (X =0 , ¥ = 1),

Thus there should be a gradual transition
from the one extreme to the other as this slope at
(051) 1s variede Trom the figure it is clear that
if the slope of the curve at the said point is
smaller than that of the exponential at the same

point we have two intersections and if that slope



is greater we have only one. So the case when the two
slopes are egqualsy should define the transition point
between the two extremes, At this point one of the
roots Just goes to zeros This is readily seen to

be the threshold phenomenone

The slope of the curve.is determined by P and
@ « Hence the threshold condition is to be in terms
of P and Q » Thus one may get the threshold condition
by equating the slopes o0f the curve and the exponential

at (0’1) o 1eee

—

-2
d X- P X = QT - d o <%
ax X+P X +Q _| ax
X=0 X%0
which on evaluation reduces to
1 1
- + =1 o e (22)
P Q
(22) is the threshold equatione
Ir Q = P
We find that the threshold value becomes,
Pth = 2 (where Pth = threshold value of P)
For @ > P ’
P —_— 1
Th

Thus the threshold value of P range from 1 to 2 as

Q takes different values with Q > P always .
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Hence we see that under all circumstances we
have one root 5 ifsess X, = 4 + M (Q) « which
vanishes only when W = O B (Q) 1is the increment
depending on the value of @ « A(Q) varies inversely
with Wwe Hence we have one surface wave which propa=
gates down to zefo frequency and its phase velocity
is always smaller than that of lighte And abové
the threshold value of Py which depends on the value

of  » there are two surface wavesSe

3.3 BEHAVIOUR OF REAL ROOTS FOR THE SYMMETRIC CASE

{e @0 WEN P = Q

The characteris«tic equation becomes

X « P = s =X (
’ - e ev e
X + b - . 23)

In Fige 14 ¢« we show the intersection of the

- X =P X
curve s Y = " with Y = <+ @ In
X +P -
generaly two intersections are possible with the
¥ "
exponentials y = e and y = =~ e X of the two

y = + S-X always has an intersection with the curves
whereas the other curve (_e-X) may’ or may not produce
an intersections Thus, at one points depending on
the value of P , there will be no intersection with

-X

the «~ e curvees SO0 once again we have the threshold

in evidences



That the curve will have an intersection
with the negative exponential depends on the slope
of the curve at (051) 1in relation to that of the
-e-x curve at the same pointe If it is smaller
compared to that of the exponential then we have
an intersection and if it 1is larger there can be
no intersectione Thus when the two slopes are equal

at (0Osy=1) , one of the roots just goes to zeroe as

in the previous case.

As the slope is determined by Py the condi~

tion of equal slopes determines the threshold value

of P
1. co
-X
a (=~e ) - e X=P_
ax ax X+P
X=0 X =0
This yields
P = 2 and this confirms our

Th

previous calculations.

In Fige (15) we demonstrate the threshold

condition graphicallye
We see when P= 2 , the curve is tangen=

tial to =e at X = 0 and this defines the transi-

tion point when one o the roots just vanishess
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a. Behaviour of Real Roots as P is Changed

For large P 5 say in excess of 10, the roots

are identical i.e¢ we have the repeated roots

X = Ps P

This means that there are two non-interacting
surface wavesy each travelling with the same phase

velocitys They cling to their respective surfaces.

(b) For moderately larges P » well below 10 but above

2y there are two distinct roots repmesented by

X1 = P-D (P

X, = P+ A CP)
where A(P) is a dquantity which varies inversely with
Pe O(P) signifies the emount of interaction. For
large P it is nearly zeros fence it describes the
case of no interactione For moderately large P it is

significanty though smalle This is the case of small

interaction.

(c) P <2

For this case only one surface wave exists and
it is characterized by the root

X = P + O(P)e This is the case of large

2
interactione
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Thus all the phenomena observed in the un=
syametric case are seen to occur for the symmetric
case as welle It should be s0y for 1t is only a

special case of the more general unsymmetric casee.

Using the computery the roots of the charac=~
teristic equations were calculated for both the
symmetric and unsymmetric casese For the
symmetric case the variation of the roots with P
was determinede For the mynsymmetric cage the variae-
tion of the roots with P , was determined while @/P
was kept fixede Furthery, t he calculations were rep-

eated for different values of Q/P .

We display the results of the calculations
for the symmetric case in Fige 168s This figure

confirms all our predictions.

»

We sce three distinct regions named, A, B, C
in the figures A is the region of large interaction
B is that of small interaction while C is that of
no interactione Wait has confined his attention to
regions B and C while we have extended the cal=
culations to the region of large interactions Here
in region A we see the threshold phenomenon
occurrings oOr in other words one of the roots vamishese.
It is worthwhile to point out that Barlow has been

considering region A when one surface wave has already



- B85 =™
disappearedes

The threshold value of P ieee Pfh = 2 has
been confirmed by calculations This is in accord=
ance with the threshold condition got for the

symmetric case earliers Thus our ideas about

threshold have been verified.

Next we show in Figse 17 and 18 the results of

calculations for the unsymmetric case.

Here the variation of the two distinct roots
with P (While Q/P 4is fixed)X is showne All our con=
clusions from the threshold equation gzz) are confirmed
by the calculationse This is evident from the figures.
The threshold values as got frog 622) for different
/P vvalues agree with the calculated valuese Thus
the threshold equation is establisheds The existence
of three distinct regions of interaction is once

again confirmede.

3¢4. INVESTIGATION OF THE IMAGINARY ROOTSOF THE
CHABACTERISTIC EQUATION FOR THE SYMMETRIC CASE

For this one makes the substitution
u = J k Ct* (where C 1s a positive real parameter)

in the characteristic equationes

For the symmetric case, ond making this



substitution for us» one gets
2

C-4Jdo»p 2 kc a4
= e J oe (24)

C+3p

-2m
Wait replaces 1 on the right hand side by e im

with m taking the values 0319253c¢0eee¢lIt is found
that this assumption is by no means mecessaryes In
fact it does not yield anything new. So we keep

1 as it is

C=~J0p ' J k cd

e = + e ..(25)
C + Jp =

his 1s actually two equations, one resulting when
we consider the positive sign and the other arising
when we take the negative signe We consider in

particular

C = Jdp = goiked
C + jp
On some manipulation this can be written as
kcd
Jp le J
C ked
1 + eJ
kcad
2
ked '
or p/c = - tan — ....(26)
2

Similurly the second equaticn can be reduced to

ked
p/e = Cot ——— seeese {27)
2
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(26) and (27) yield the imaginary roots of the
mod&l equation for the symmetric case and these
roots in turn represent TM type waveguide modes

that exist in the geometry.

We can have TE type waveguide modes &s well.
Proceeding on similarlines we obtain the edquations
which define the imaginary roots of the equation(20)
The se represent-the TE type waveguide modes that
can exist in the geometry.

These are

p! ked

o~ tan ( ——-—) e e o (28)
c . 2
B = ean ( Xe4, eee (29)
C 2

where p' = 1/p.

Now we turn our attention to the TM case. (26)
and (27) yield each one of them an infinite numbe r
of waveguide modese We represent the equation €26)

graghically in Fige 169

We normalize the equations €28) and é27)

bef ore representing them on the graphe

That is we have

- K /X = Tan X and K /X = Cot X

s

for the two equation se



it

Here K = — E__
| 2

We confine our attention to the intersections
on the right of the origine This is because of symmetry
considerationse These intersections on the lefty, do

not give ar{th ing news

In Fige 18, the positive roots lie in the inter=

val

(2n--1) m .
e n~ 132¢e.0€tcCe
2 .

For 1large P » the roots are dose to

(2n -~ 1) T
2

and for small P they are close to n T.

n =1 gives the first order mode and n = 2

and so on give the higher order modes.
\
Now 1in Fige (20) , we show equation 527).

Now also there is an infinite number of wave=
guide modess Eut these are distinct from the former
set 1n that they have different cut off frequencies

and they transverse variation im differente

We notice from the above figure that we may

have an intersection in the interval (0,7 /2) or we



- 69 =

we may not havee lhis depends solely on the parameter
Ky + 1In particular one notices that if K, 1is > 1
the curve K1/ X 1lies above the cotangent curve so

there is no intemsection possible « For Ki( x*

the curve K3/ X 1lies below the cotangent curve

and yglelds an 1inersection in the range (0 » T/2).

If one remembers the inequality Tan © > ©
(the equality obteining for small ©) one would
be able to comprehend the above argumente From

the above inequality it follows that Cot 6 < 1/6

(equality holding for small ©) . Yhus Kl/ € with
K1‘> 1 is definitely greater than Cot 8 for all
6=1in the range (0, T/2). Hence the corresponding
K,/ 8 curve lies entirely above the cotengent
curve yielding no intersection. Then Kl/ € with
K, ( 1 would be below Cot © for & certain range
of © (0 , 61) s Where 61 > 0 is the point of
intersection between the cotangent curve and the
hyperbola K1/6 . 61 being X T/2 at the same
timee Thus with K1 2 1 we do not have an intersec=
tion and with K, ¢ 1 we have an intersection
in the interval (0 , ™ /2) . So Ky =1 should
be the transition point where the intersection just

g0es t0o zZero.



As K1 is gradually increased from O to 1 the
intersection point gradually moves from T/2 to zero
and beyond K; F 1 there is no intersection. Thus

we have a threshold phenomenone

We call thst mode represented by the inter-
section in the range ( O 5, T/2) as the zeroc order

modee This zero order mode exists if K1 £ 1 and it

does not exist for K1 > 1 .

K1 = 1 means P = 2 .« Thus the threshold
condition for the Zero order waveguide mode is also
given by P = 2 ¢« We recall that P ¥ 2 was the point

at which one of the surface wave disappearede

Now if we say that the zero order mode becomes
the surface wave at P = 2 we would be able to explain
the resultse As the reactance of the surface is gradu=-
ally increased from zeros the zero order mode which
is the dominant mode gradually tends toward the
surface waves The cut off frequency of this wavem=
guide mode gradually approaches aeroc as P tends to
2. Then the mode can not propagate as a waveguide
mode; s0 it turns into a surface wave mode. With the
computer calculations were‘made for the imaginary
root in the interval ( 0 4, T/2) and the variation of
this root with P was observede The plot appears in

Fige 21¢ This figure confirms the above observations.
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We see from this curve that X—>0 as the

reactance is increaseds X—2>0 means k C —» O

Now C = 1 specifies the cut off condition.

So kc——)o as X=> 0

or 27 /}\c*——) 0 as X—> 0 or }*c'——" @

This shows that as the reactance is increaseds kc
the cut = off waveléngth of the zero order mode
tends to infinitye But a TM type waveguide mode
existing in a bounded structure cannot have this
propertyo So it becomes a surface wave at the

thresholde.

It has also been verified that there is only

one intersection in the interval

o < ¢ X3} ¢ T/2

For TE type modes which may also exist we

haeve to consider the equations

*"}—<1" = Tan X o-oo.(30)
X
- K1 ‘
s = Cot X oooo(31)
X

as derived earliere

Equation €30 ) 1s depicted in Fige 22 once
again we consider only positive rootse These are seen

to be infinite in number. 1hey lie in the interval
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( nT , 2n + 1) T /é ) n = 051,2¢.00etce Lhus
wve have a zero order mode heree This i1is found to
exist for all values of P éncluding zeroe So therxe
is no threshold phenomenone ihis ig as it should
bes For we have no real roots for the corresponding
characteristic equationy implying the absence of TE
surface wave se Hence the waveguide mode cannot

become a surface wave or there is no threshold.

quation (31) is shown in Fige (23) « Here
the positive roots lie in the interval ( ( 2n~1)ﬁ/2,
nmr ) . Théy-are once again infindite in numbers. But
the modes represented by thesey, are different from
the modes got (from equation (30) in that their cut

offe frequencies differ and their transverse varia=

tion is differﬁnto

Thus one finds that one has
1. Two TM +type surface wavess
2. Two types of TM waveguide mode se
3¢ Two types of TE waveguide modese

The waveguide modes being infinitely many.



3¢5+ THE CHARACTERISTICS OF THE MUDES EXISTING IN

THE SYMMETRIC ARRANGEMENT (i.ee P = & )

We now consider in more detail the transverse
variation f _(y) for the symmetric case.

We know

u.y ' -
£ y) = C en +C e nVY

we recall equation ‘10) ie ©o

un g4 _ =
C,luy = ywEZ)) = C, e u + 3w B Z,) =0

This 1s got on the insertion of the Boundary condi-
tions as specified in (8)

u ~-jwB®2Z,

Now C =1
2 U, +3wB2Z,

Where R

il

° un+JWEZ°

For the reactive surfaces we are considering

u + kp
R o cee (32)

o
un kp

Now f,(y) can be written as,

- ~u ¥y
t o = c [euny + (R, e™¥n% ) o 1 -]

n
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represents the odd type of surface wave whicﬁ
sin h (u&} for its trans&erse variation. iie remember
that this real root vanished for a particular value

of Pe

The other real root corresponding to the

equation

u, = kp -u d

b
o
o

un + kp

represents the even type of surface wave having Cosh (uy)
for its transverse variatione. This wave travels slower

than the odd wave and does not vanish until P = 0 .

“Onsidering imaginary roots we put u, “Jk C in

~

€33).
This becomes
Ro e—chd - + 1
C =
or Jp - + oJ K cd

C + Jjp

which coincides with the equations previously obtained

while we were dealing with the imaginary rootse

Thus each imaginary root of the characteristic
equation represents either an even or an odd mode,
the even mode having a cosine distribution while
the odd one has & sine distributions Further it is

easily seen that the odd waveguide mode of zero orders
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-u_d
~Where C, has been replaced by R e 1 C,

Say that we wish to have an odd or even distribute

ion in the transverse plane. That means fn(y) should
be either an odd or even function of y

Clearly this is possible whenever

Roe n —4 i» 1 .000(33)

From (32) we can write (33) as

u + kp - u
n . © n d = + 1
un + kp
or k
u_ = Kp -~
n = + o u,a
a, + kp

l'h:l,ss is nothing but the characteristic equation for

the symmetric case. Thak:ievery u, Wwh ich satisfies
the charecteristic edquation would represent a mode

of either even or odd symmetry.

Thus for real roots we have even and odd
types of surface waves and the imaginary roots give

even and odd type of waveguide modess

In particular the real root which satisfies
the equation.

- - d
un kp u

()
o
5

+
un kp
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represents the odd type of surface wave which
sin h (u&} for its transverse variation. We remember

that this real root vanished for a particular value

of Ps
The other real root corresponding to the
equation
u - Kk -
n P - e.un d
u, + kp

represents the even type of surface wave having Cosh (uy)
for its transverse variatione. This wayve travels slower

than the odd wave and does not vanish until P = O .

“Yonsidering imaginary roots we put u, ~Jk C in

~

€33).
This becomes
=jked
Ro e J = 3 1
C =
or Jp - + ol X cd

C + Jp

which coincides with the equations previously obtained

while we were dealing with the imaginary rootse

Thus each imaginary root of the characteristic
equation represents either an even or an odd mode,
the even mode having a cosine distribution while
the odd one has a sine distributions Further it is

easily seen that the odd waveguide mode of zZero order,



obhtained while considerinz the equation

C - 3.‘9-- = - eJ kcad

C + jp

expaeetences the threshold phenomenons and goes
over into the odd type of surface wave at the
threshold value of P (ieese P =2 ) . it is thus
in keeping with our expectation that the odd type of
waveguide mode should become the odd type of surface

wave and vice versae

For the TE case similarly we have odd and
even types of waveguide modes, exactly akin to the

" types we encounter for the TM cases

A physical reasoning would demand that for
the symmetric case such even and odd types of modes
existe In fact WNait has predicted such a thing in his
papers ft is satisfying t0 note that the actual con=~

clusions support the physical reasoning.

3¢6. IMAGINARY ROOCTS FOR THE UNSYMMETRIC CASE

We start with the relations,

C = Jp C -~ Jja 2 Jkecd
- = e 0:0(33)
C + Jp C + jaq

This was the result of putting u = jkc in the

appropriate characteristic equation (13).
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Taking square roots on both sides of (33)

we haveys

(C~ jp ) (C~jaq) jked

+ 00 (34)

i
1+
o

(C+jp)( C+ja)

Taking first the positive sign before the exponential,

we havyey; after effecting some algebraic manipulations?

«® - Pa) + 4 (p+a) C = J(C °- pa ) = 3 (p+e)C

-—

‘J(Cz-pq) + j (p+a)C + ‘J (C2~pQ) - J(p+qa)C

ked
= = 3 tan -

00-0(35)

2 2

writing a = C = pgq

b = C{(p+q)

Ve write (35) as

‘n a + jb -Ea - jb
: ked

= =3 tan

«ees (368)
‘I a @ jb + J a - jb 2

Simplifying LHS,

we have 2 2 ked
.. R—— .0.(37)

Repeating the above for the negative sign before the

exponentialy, we have for the second equation,



a - a + b kecd

N = - Cot 2

ees (38)

Thus the imaginary roots are given by the following

sef of equations,

¥ o 1
(C 2. pa ) -.J<c2 + p2 ) ( 02 + q2 )

C (p + 4q) -
kecd
= tan =
2 ts e (39)
or = = Cot kcd/2
-

To verify the accuracy of the above calculation we put

P = 4 in €(39) « Then we get,

kecd
c
ked
or ¢ ot
2

This is the set of equations we had got for the symme-
tric case earlier when we were finding the imaginary
roots for thet case « Thus we have reason to be

satisfied <thaty our present approach to the unsymmetric

case is valide.

We wish to normalize the sct (39) ¢« Thus
inserting in (39) X = kxecd/2 y and simplifying,

We have for the L.H.S' of (39)



- 2 2 2 | 2 2
% -pP2) - 4X +P) (4X +d )
LeHe Se = .
2 X (P+D)
Where P = kpd
Q@ = k ad
Finally i.1tnse¥ting Q = AP and o = P/2,

we have the final form of (39) as,

| .2 2 2 2
()(2-/3(:(2 ) - | X +d4& ) (X +62d)

X ( B+ 1) X

oee (40)
= tan kcd/2 -
r kcd
o = - Cot ——
2

Now we wish to investigate the IHS of (40).
For small values of X » we can easily show

b

that the ILHS reduces to & form given below 3

-2 8
« 0..(41)

LOHOSO =
(A8 +1) X

And for large values of X 5 one can show that,

‘ - ( B+ 1)
'L‘HQ'SQ = LI ] (42)
) 2 X

Thus 4in both cases it behaves like a rectangular

hyperbolae.

In (41) 1f we put B =1 , we get

La I’.{‘ S‘ = bl 0( / X
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Therefore the equation (49, reduces to

-

. @ kcd
= =~ tan ( )
X : 2
ked i
or = Cot ( —;“)

for small values of X « This is seen to coincide with
the equations already got for the symmetric casees

Thuss this checkg§ our calculationse

We proceed to establish that this curve does

not cross the X~ axis for any real Xe.

We are examining the function

& - B 2y - J(x2+o<2) &2+ B2E )

(B +1 )X

This 1s seen to be an odd function of X and it is

symmetric with respect to the origine

We are looking for a zero on the X~ axise

Hence equate numerator of the above expression to zero.

teee X - 8 o2 i@ ) o Bu
or X~ Bx)? = 0P+ «%) P+ B2u?)

which finally reduces to the condition,

(o5 113
» ) _ ’./».

.
ce e

ée v i
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2
(B + 1) = 0
If Wwe are to have a zero on the X-axis,

then the above condition is to be true.

2
But /A > 1 always . Hence (/3 +1) is

-
alvays positives Hence we can never satisfy the above
conditiony which means that the curve defined by the

said function can never cross the X~ axise

Now we can trace the ILHS of (4 as a curves

This is &own in Fig. (24).

In figsy 25 a and 25b_we represent the set of

equations (40).

From Fige 25 a, 4t 1is seen that we have an infie
nite number of intersectionss corresponding to an infi-
nite numbér of wave guide modes. We restrict ourselves
to the positive roots onlye. It is a-lso‘ seen thats the .
curve may Or m&y-not intersect with the cotangént curve
in the interval ( 0 , T/2) « Thus a zero order mode

may or may not existe

In Fige 25 b » we see that once again there
are an infilinite number of roots giving an infinite
number of waveguide fnodes- There is no intersection
ﬁossible in (0, T/3y for this case. So we have only
the first and higher order modes and there i1is no mode

of =zero orders The modes in this case have cut Off
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frequencies differing from those of the modes considered

in Fige 25 ae¢ Also they have a different transverse

variationes

From Fige (25 a) 1t is clear that the threshold
phenomenon is occurrings To find the condition for
threshold; we use the small argument approximation for

the LsHe Se of (40).

The small argument approximation desired is

given by (41)
-2 M3 «

1eee L.H. S = for small X
X (B8 + 1)

where = P/2 and &8 = Q/P

Now this is a rectangular hyperbola of the form = K/X
and we have ho examine its intersection with the «=Cot X
curvee From our previous experience in this mattér

we are in a position to say that we have an inter=
section when the coefficient of (1/X), is smaller
than unity and there is no intersection when it is
largers than wunitys When the coefficient of 1/X ,
eqtéals unity the rocot will just vanishe Thus the
thteshold condition'can ® got by edquating the
coefficient of 1/X to unitye We have discussed this
matter in an elaborate way in the section devoted

to the behavior of the imaginary roots in the symheawry

symmetric casee Refer to Section IV.
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So fer the threshold condition, we must have,

2 B /B P
= 1 or . =
(3 +1) ‘ (/5+1)
1his reduces to 1/P. + 7 =1,

This agrces with the threshold condition we got for
the real rooés. That is when the real root just
goes to zeroy we have the emergence of the imaginary
root. i.e.y the surface wave disappearing to yield

its place for the zero order waveguide mode.

These observations agree with what we en=
countered in the symmetric cases Vith the computer
actual calculations wefe performed to check the
threshold behaviore The calculations were done with
Q/P as paramete re In each case the results'confirmed
the predicted behaviour of the roots and further they

established the threshold condition to be valide

We show the results in Fige (28) « We have
plotted the variation of the roots in the interval{0,7/2)
with P when Q/P is kept as a fixed parameter. This
root corresponds to the first intersection of the

curves given in the equation below ?

&C-BL ) - _J<x2 +a?y x? + 2«

= =wCat Xe

d A+ 1 )X
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or 1h other wordsy it describes the zero order
waveguide modeo. We know <that there is a particular
Py called the threshold P » (for each value of Q/P)
only below which we have the zero order modes. The
curves in Fige (26) show this threshold Dehaviore

The threshold values obtained coincide with what we

had already predicted.

Thus it is established that the surface wave
which disappears at the threshold becomes the zero

order wave guide mode.

We <can do the same calculations for the TE
case as welle The procedure is identical and we

will get the equations as , -y

R R P N N PR

d (B8 +1 )X

= = tan X
ees (43)

Cot X

or

—
Thus there will result two types of TE waveguide

modes, disteinguished by their transverse variation
and different cut off freQuenciese As we know alreadys

there will not be any TE surface curves

3«7 THE DISTINCTION BETWEEN THE TWO SURFACE WAVES

We know that there are two surface waves which

may exist in the geometrys. What is the disttnection



between then'? This question we proceed to answer.

For the symmetric case, we got the transverse

varietions of the two waves ass fl(Y) = Cosh (u y)

and fz(y) = Sinh (uy). For tbe first wave, ExI has

& y = distribtion given Sinh (uy ) « So one easily

seecs that

By, =0 at y=o.

For the second wave EXII has a y = distribution

9

given by cosh (uy) or

d E

X11

e

=0 a.ty=0.
dy

Because of symmetrys; we expect the eldctric
field to be zero or maximum at the central planee.
Thus thege are the two posibilitiese The two surface

-waves which we have got,represent the two casess

This leads us to expect the following field

patterns for the two surface wavese See Fige (27).

In one case the field lines oppose each other
at the control planesy whereas for the other case, they

eid each other at the control plane.

Now Barlow has discussed the TEM dual

surface wave (Hef. 3) with ( Ay e 7 + A oY )
. 2

for its transverse distributione. He imposes the

condition thht Ex =0 at y = m for this wave.



i
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(He 1is discussing the unsymme tric case).

From our experience with the symmetric case,
we expect that there might be a second surface wave
for the unsymmetric case which is characterized by

dBX = o at vy.= m

The only departure from the symmetric case, is that the
prlane of symmetry of the fields is shifted to a plane
different from the central planee It is to be noted t hat
the field lines are still symmetrical about a certain

plane y * m , though m # 0.

Trying this idea we expect two waves for the
unsymmetric case also.
One of them characterized by
Ex = 0 at y = my
while the other is given by |

d E -

=0 at y  m

dy

Ilet us see what these conditions mean.

-1 u
We know f(y) = (A1 o Y + Aye y ) in Barlowts

notatione.

~uy uy
Now Ex d ( Al e - AZ e )
o E x =0 aty = m, gives

— 2 unmnm '

Al / A 2 - e ese I)




a B
p 3 -u u
o (A e ¥ +A, e Y
dy 1
2. ¢ Bx - at y = m , give s,
dy
A1 = o 92 um : ..OOOII

Hence the corresponding Hz components for the two

waves would be 1
=Y x
- —2
H = A e"ly + e u (y=2m) e
zl 2
veea (44)
_ uy =uly~2m) - x
sz . Az { e e e
) o

Putting in (44) m = 0 , we get the symmetric case as

it ®hould be « Novw we know that Wait has assumed for

t(y), .
I -
£ (y) = [euy + Ro o uy

In Barlowt®s notation it would be

uy A -
t(y) e + =L oW

2

or we see R, corresponds to Al/Az .

u + kp
R = - for reactive surfacese We find that
(o] 1) kp

Ro is positive real for one surface'wave and it is

negative real for the other surface waves This is because
one root is smaller than kp while the other is larger
than kpe Thus'Ro is in complete correspondence with

A 4 / A, which is positive for one wave and negative



for the others
Thus Barlow has been considering one of the

"two waves discussed by Waite.

We recall that one of the two surface waves exper
iences the threshold phenomenon and vanishesey at the
threéhold value of P, ¢ The other stays in the geometry
down to zero frequency or in other words t11ll P is

reduced to zeros For this wave R, is positives

Now for the wave considered by Barlow A / A, is
positives Since A, / Azis nothing but Ro 3 the wave is of
the sane cﬁaracter as we have encountered before. Thus
it is seen that Barlow has been dealing with the case
- where one of the two surface waves has disappaared and
only one remainses In Waitt's languages he has been dealing

with the region of large interactione.

So we have established a link between the investiga-

tions of Wait and Barlows

Now we have an idea of the field patterns for the
unsymmetric case mainly drawing from our previous assom
ciation with the symmetric cases We display them in
Fige (28). We can get the equation to the field lines
in the x~y planes For this we have to solve the diffe=-
rential equat;o;.

Rg ( Ex ) dx

Rg ( Ey) . dy

eee€a5)




m 8O e

We know the Hz components for the two waves« (See (44)).
From these we can easily get the electric field com=- ‘
ponentse Then we substitute them in 45 and integrate
the resulting simple differential equatione -In our

evaluation we assure Y= 38 .. The results of

this integration ares

- -2 ‘
[euy ‘*‘Ae u(y=2m) } Sin B x

[e“y - ™ U (y-2m)J Sin B x

1]

const LIRS (46)

conste o, €47)

(46’ gives the pattern for the first wave and (47)

describes the pattern for the second wave{The first
a Ex

L]
=]

wave has Ex= 0 at y *  m and the second has 4
. : y
at y = m ) « (48) and (47) <can be rewritten as,

Cosh u (y-m)iﬂ Sin /A x

i

COnStO e e 2 (48)

Const. esess (40)

Sinh u (y-—m):ﬂ Sin B x

which clearly show symmetry abcat the plame y = nm .
Setting m = 0 in these equationy we get the field

lines for the symmetric case, as

Cosh (uy) Sin Bx = Conste eee. (50)

S:lnh (uy) Sin /-3x Coust- cs e (51)

These four equations were plotted for different
values of the constant aeppearing on the RHS of the
equations and the graphs confirm our exXpectationse

See Yige 28, 30,31,32.
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Barlow c¢alls his wave as the hybrid TEM dual
surface waves Now we are in a position to justify
this namee We show previously that he trtas discussing
the surface wave wWhich remain down €0 zZzero frequencye
See Fige 29¢ Where the field pattern is given for this

wavee

One sees that it is the distorted version of
the TEM wavee. In the first chapter we had pointed
out how the TEM wave gets distorted as we increase
the separation between the two parallel platese As
the distance-goes.on increasing the field pattern
incorporates more and more of the surface wave featurese
We can produce a siﬁilar effect by enhancing the surface
reactancees By doing thisy the wave attains a state which
can be described as the superposition of two surface
waves each associated with one of the surfacess As
Barlow terms its; we introduce more and more of the
surface wave as we increase the reactances Since 1t
combines the features of the TEM and the surfacgkgqa;s
called the hybrid TEM dual surface wave modee The,
term *dual surface wave'! describes the presence of
two surface waves each linkéd to one of the surfaces.
Also it covers the fact that the field solution is
described by the superposition of two surface waves

(according to our original assumption).
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When we see Fige 30, we see the field pattern
resembling a waveguide mode. That isy no lines cross
the plane of symmetry y = m o Thus we can appreciate
the fact that it is this surfsve wave wWhich becomes

a waveguide mode of order zerxoOe

In Fige 29, the plane y = m 1is located near
the lower surfacee Now at y = m y Ex = 0 &« This
yields Zé =0 aty T m e And as we move from
the plane y = m » Zs ~ gradually increases. We have
essumed the lower surface to Se of a smaller reactance
than the upper surfaces Since Zs increases with distance
aways from the plane y  m ¢ it is logical that this
plane is located nearer to the lower surface than to the

upper onee

Similarly in Fige 30y we see y = m 1is located
near the upper surfaces Now Ex is maximum at ¥ = m
for this casees or Zs is maximum at y = m o and it
fells off as we proceed away from the planes Sincé once
again the upper surface has a larger reactance than
the lower ones it is to e expected that the plane-
y = m 1lies nearer to the upper surface than to the

lower onees

Fige 31 and 32 display the field patterns for
the symmetric casee. There is no difference exhibited except
that the plane of symmetry is transferred from y = m

»

t0y=0.
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Thus we note with satisfaction that all our
expectations have been substantiated by the calculationse

for both the symmetric and wnsymmetric casese

3¢ 8¢ It was decided to explore another case wherein
one of the Sgrfaces has a capacitive reactance while

the other has an inductive reactances

3.8. AN INVESTIGATION OF THE MCODES WHEN ONE OF THE

SURFACES IS CAPACITIVELY REACTIVE AND THE OTHEDR

IS INDUCTIVELY REACTIVE.

So we take for this case

k

Z =m=3 ( ) a
d wg
- ‘k

z, = + J (wE)n

We consider the TM type modes firsts. The characteristic
equation reduces to,

X -~ P X + @

-2X
——— % - Q = e cee(52)
Where X = ud
= kpd
= kad

We show the plot of this equation in Fig. 33.

We see from the Figurey there is only one real

intersection and this is only for positive Xe For large
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. ~
values of P X = P 4is the only roote This is so

for values of PZS .

For moderately large Py we have the root

given bys

X =pP~8 (P

Where M(P) is a quantity which imversely varies with P.

So we have o¢one TM type surface waves.

A look at the figure tells us that there is a
threshold value for P for a given & » only adbove which
we can have the real roots Analogous to the previous
arguments we can get the threshold conditions by e.Qua.t:I.ng.

the slopes of the curve and the exponential at the

point (0s1).

Doing this we get the condition as

1 1
P

Q ees (33)

fl
[

If W -—>P s then P.—> 0 m which means that if Q VP »

then the wave does not experience the threshold phenomenons

as long as P> 0 « For very large s PTh._; 1.

So the threshold values vary from O to 1

If we set Q = P in the characteristic equation

we have

1 = e } ocoo(54)



The only real solution of which is X = O « But this
does not give any meanifigful results So if the surfaces

are of equal and opposite reactances, no surface wave

existse

Imaginary Rootsé

For thisy, we have to take the equation,

C = Jp C + ja ' jkeca
” e

=+ eee (55)

C + Jp C - Jjg

Proceeding exactly as we did in Section VI, we have

the final normalized set of equations as

(X% ¥ Ba?). _l(x?‘ roLHa® +n2ad : -
5 : - = tan X
X (1= A )
le.¢58)
or = =~ Cot X J‘
-
Where
A =9/ P
of = PpP/2

We see that. by putting B = -~ B in eQu‘a.t ion
.(40) we get equation (56) ¢« The same applies for the
threshold conditicne We replace G by = Q@ (The same
thing as 4 being replaced by ~ B ) 4 in equation (22)
to get the threshold equation for the present case as

given in (63).

Now we examine the LHS of (56) for large and

small X « The results are
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For large X

| o« (3 = 1) |
L.I-I.'S. = L (57)
2 X
For small X
X ( /3"’ 1) s ve 8
LeHe Se =~ ‘ (58)
2 « A3

Thus it behaves like a straight line y = mx o for
small X and behaves like & rectangular hyperbola for
iarge X « The function as given in L H.S.of (56) is
odd and thus has symmetry about the origine Further
it is easily shown that it does not cross the X=- axis

‘except at the origine

If we let /A =1 4in L.He S. of (58) we get
it as the rattio O/o « Evaluating this indeterminate
quantity by L' Hospital's ruley we‘ see that this
tends to zero as A tends to 1 « Hence ‘the curve reduces

to the X~ axis for B8 =1 ,

pr the curve approximatera straight line near
the origin -and®rectangular hyperbola near infinity, we
expect 1t to attain a maximum in betweene This maximum
is more and more pronounced as you increase /3 beyond 1.

We show the curve in Fige (34).

If Figse 35(a) , 35(b) 5 we show the plot of

equation (58).
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Seeing Figze 65 bs we conclude that there is
no possibility of thresholds whercas from Fié. 35ay
we can see that the zero order mode may Or may not
existe This can be readily seen if we recall the
inequality, tai X > X except for small X. We
knov that for small X, the curve behaves like

X ( A~ 1)

iees a straight line.
/3 P

3 ~-1

RP
or equal to 1 then there 1is a possibility of inter=-

Now if the slope of the line is greater than
sectione Ifs on the other hands it is less than 1,
the tangent curve would lie always above the curve and
no intersection would resulte Thus the slope equated

to 1 would give the threshold conditione.

B o= 1
:. —_—— =1 is the conditione.
B P
- 3 -1
It P> th ’ is less than 1 .

3P

So no intersection is possiblee or the zero order mode Cease

to exist if .P‘} P&h and we have the surface wave.,

On the other hand if P ¢ P ,

B - %
B P

» 1 and we have an intersection

or in other wordss; we have the zero order mode existing

and there is npno surface wavee This is as it should b .



At P = P the surface wave mode becomes the

Th

Zero order wave guide mode.

The existance of TE- modes |,

Considering the characteristic equation for the TE

casey, (17) we put

_ K w
Zy R | ) aq
X .
- w K
Z, = 3 ( - ) p

T”his results in the eQﬁation

X =-Qt X + pv -2X
; ' = e ees (59)
X +Q* = X - pt
Where Qf = ktqtd Pt = k p'ad and
or qQt = 1/q and p' = 1/p

Now Q' € pt¢ (for q 2 p ) « So (59) is identical
with equation (52) which was obtained for the TM case.

So we have the same conclusions as in the TM cases
Thus for each TM wave we have a corresponding TE wave.

Hence in all there exist,
1. A TM surface wave resembling a waveguide mode and
which goes into the TM zero order waveguide mode at the

thresholde
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2. A TE surface wave resembling a waveguide mode
and going into the TE zero order wagveguide mode at the

thresholde

3. Two sets of TM waveguide mode se

4. Two sets of TE waveguide mode se

The Case when P = Q

Here no surface wave exists dDut the waveguide

modes are given by the roots of the equation

1 - : e1kcd
which reduces to N
Q = tan ked
2
es (60)
_ ot_kcd
0 c 5

Thus the roots are nothing but the zeroes of tangent
and cotangent functionse So we have two sypes of TM wave-

guide modes and similarly two types of TH waveguide

mode se
It can be seen that the cut off waveleagths are
given by
d
7‘-0 = for the 1st set
2n
n=0,1,2..-.....
y 8 =—£27—— for the IInd set
] 2n+l

n = 0,1,2.....
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For the TM Type Modes

A little reglection shows that the TE modes
have identical cut off wavelengthse That is,there is
degeneracyjwe have for each T™ mode a TE mode having

the same cut=off frequencye

For the case P # @ calculations were made,
using the computer, of the real and imaginary root ss
The behavior of these roots as P was variedy for
a fixed Wy Was exactly as prediétedo The threshold
condition was established to be valide Though the
calculations were made for the TM case they hold for

the TE case as well.

We show the results in Figse. 36 a and 36be

3¢ 9¢  ORTHOGONALITY

3)
In his paper Wait has talked about the

" orthogonality of the modes comprising the series
solutions « In particular he has said that the

integral

d
1
d oj. fn(y) fn'l (y) =0 for n ¥ nt eve 1)

where fn(y} is the transverse variation of the nth

mode and is given by ,
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_ u,y -u_y .
fn(y) =e " +_Ro e N Whe re

un + Kkp

u, = . kp

Now we take up two modes characterized bdy

the transverse wave numbers u, and u, respectively

Then wusing the usual form of fn(y) we computé the

integral in (61)e This is got as
_d

1 Cuy + uydy —(u1+ u2)y
e -R R

e
+ . ol o2
[u1 u2]

=
)
Q|

1 (uy= uy)dy | =(uy~uydy

e -Roze

Where R and R are the different R* s for the
ol 02 o

two mode se

To show I = 0 , we have to utilize the
information provided by the characteristic egquation
which determines the ut's.

It has been found that even after utilizing
the fact that the u¥s are solutions of the modal
equation we are not in a position to show that I = O o
The expressions which arise in the calculation are prac=

tically incapable of reductione ©On the other hand if
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really the orthogonality principle in our above
sense did hold, the expressions would have reduced

and we would have easily shown I = O

It was decided, therceforey, to verify,
for a few cases where the u's _had been derived

from the modal equation by an actual computation,

whether the integral vamishese Since it was suspected

that the said kind of orthogonality may not hold,
the argument was as foOllowse if even for one case
the integral does not vanishy then Wait's assumpt=-

ion -of orthogonality is incorrect.

Accordingly the intergral was calculated
for three specific casese These were three sets of
real roots of the equation

' - : = e
X + P X + W
characteristic equation for the unsymmetric casee

ieeey the

The roots were

X ! : ]
X1 A P Q
a 1.8648 10. 0000 100
b 1.6910 4.0080 4.0
c. 24 9200 45055 4.8
l
The integral values were, to slide rule accuracy,
as follows: a e = 20.52

= =1650
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e, 1 = -138860

So the integral clearly does not vanishe

However for the symmetric case we see that Ythe

orthogonality of the above kind is found +t0 hold, as

the 1integral
ar/z

. .
" Cosh (gly) Sinh (uzy) = 0

-d

Where the fact that the modes are of even and odd symn-

etry has been usede

Thus for the general unsymmtric case, which 1is
of practical significance, this orthogonality principde
does not holde This means the exditation problem he-

comes rather toughe In fact we have come face to

face with another problemy i.es the problem of excita-

tione For we cannot enjoy the advantages of the situation

wherein the orthogonality principle is valide

But still we may have independent carriage of

pover by the different modese This is possible because,

we have many kinds of orthogonality relations and
our problem (wvhich is once again a criwcial one) woulg

be to aseertain pre~cisely the kind of relations which

would W valid for the present casees
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Perhaps Wait has surmised that in keeping
with the usual cases of bounded structures, the
modes should be orthegonale It is thought that le
has not actually verified the vanishing of the

concerned integrale

But.When one applies the Sturm-Liogville
theory to the differential equation determining
fn(y) » one is surprised to find that, at least
apparently there is mothing t¢ prevent the ortho~
ganality of the modese DBut why 1s it that we do nog
get the modes to be orthogonsal on an actual evalua~
tion ? Obviously there is something wrong somewhere
in the application of the Sturam. Liouville Theory to
this probleme Perhaps there is one condition which
we overlook while applying the theory to this problem.
The author i1is of the opiniony, that the fact that the

guiding surfaces are reactive may be responsible for

this anoemalye At leasty to the authort's knowledgey
it is true that the Sturm =~ Liotiville theory has not
been developed for such boundery conditions as we
encountér in this probleme Hence we are not at
liberty to apply the usual Sturm -~ Liouwville theory

to our problem and utilize its conclusionses

In any case we come up with a new problems That

is to determine the general orthogonality relations
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valid for impedance boundariess The problem 15 complex
and little work has been done in this dire;:tion.
However it is beyond the sé&ope of this work to discuss
any more of OrthogOnality and we rest by pointing out

the problem that has emerged before use

3010+ CONCLUSIONS

We have investigated the types of field con=
figurations that may exist in a parallel plate wave=~
guide which is having purely reactive guiding surfaces.

We considered the following casese

I i« Both the surfaces inductively reactive and of equal
reactance.
ii« Both the surfaces capacitively reactive and of
equal reactancee
iide Ope of the surfaces inductive, the other surface
capacitive but the reactances being of edqual
magnitudes
IT.i. Surfaces with unequal inductive reactancess
iie Surfaces with unedqual capacitive reactancess
iiie One surface with inductive reactance, the other
with capacitive reactance but the reactances being

of unequal valuese

One may wonder why the case of equally reactive

surfaces has been separately considered when the more
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general case Of unequal reactances has been studied.
It Bs also natural to expect that the results which
hold for the general fNnsymmetric case'will naturally
follow for the particular case of equal reactancese
But it is to de pointed out that the characteristic
equations which one obtains for the symmetric case are
markedly different from those obtained for the unsymm=
etric cases Though ultimately, we recofd the samne
behavior of modes here as in the unsymmetric cases that
such & thing is true is not readily obvious from a
cursory glance at the modal equations for the symme-
tric acases W@ just expecty from physical reasoning,
that what holds for the unsymmetric case must be true
tfor the special case of equal reactancess But that

is just an intuitive guesse Also since the defining
equations for the symmetric case are dé¢eidedly
different from the corresponding ones for the other case,
one has to make sure by an actual calculatipn whether
ultimately we get the same results (qdalitatively) for
the two cases. This is our Jjustification for having

devoted our time for the symmetric case as welle
Now we summarise <the resultse

Je i For this case we find that in general there are
two surface waves of the even and odd typee One
of them has Ex = 0 at the central plane of sS-ymme=~
trgd and for the other Ex is maximum at the sam

planee
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The former is of the even type and has a field pattern
which mixes the features of the TEM and surface waves.
Hence it is called the hybrid TEM dual surface wavee
The se§ond wave has a field pattern resembling a wave-
guide modes We also find that there is a critical
value of the surface reactance, for which , this second
wave disappears and tuﬁ;s into the zero order wave~
guide mode which is of the odd typee This is what we
have called the threshold phenomenon. For values

of reactance above the threshold valuey the surface
wave of the odd type propagates along with the surface
wave of the even type while for reactances less than
the threshold reactanﬁe the zero ordex mode of the

odd type existse Also it is found that the cut-

of f frequency of the zero=-order waveguide mode which -
is of the odd type becomes zero at the thresholde Hence
this mode can no longer propagate as a TM type wave~-
guide mode and consedquently it becomes a surface

wave mode of tﬁe odd typee The even type of surface
wave is found to propagate till the reactance is reduced

to zero.

We flso find that there are an 1infinite numbér
of waveguide modes and they possess either even or
odd Symmetrye Of these, in the odd type of modes, the
zero oOorder mode may Or may not exist depending on the
value of reactances The critical value of reactance

for which this zero order mode Jjust disappears coincides
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with the critical value of reactance at which the

surface wave of the odd type just appe arse

So far we have been talking.about TM type
waveguide mode se It is found that TE type waveguide
modes can exist in the geometrysy though surface
waves of the TE type cannot exists Once again we
have even and odd TE waveguide modess. The Zero order
mode of the TE type is even while the corresponding
TM mode is odde The cut off frequencies of the TE
modes do not coincide with those of the TM mode se
Since there are no TE surface waves, we find that

there is no threshold phenomenon observed.

I 114. This is the dual of the above cases If we
substitute TE for TM and vice versa we can have the
conclusions for this casee. We summarise them as:

i« Two TE sgrface wavess One is eveny while the
other is odde The odd type becomes the zero order TR

waveguide mode of the odd type.

2. TE type waveguide modes of even and odd typeses

3¢ TM type waveguide modes of even and odd typese

It is to be noted that in the field patterns
the roles of electric field in the TM ease are played
the magnetic field in the TE case. We replace Hz )
E_., E, of the TM case by E, » Ho» Hy in the

TE cases Thus the electric field pattern in TM case is
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identical with the magnetic field pattern for the
TE casee Thus the TE case 1Is a perfect dual of the
TM casee But we are not very much interested in this
cases Fory practically speaking, it is easier to
provide surfaces of 1inductive reactances than capa=
citively reactive surfacese So the TM solution is

of more practical utilitys

I 4idii. Here there are no surface waves propaga-
tinges But there are two sets of TM and two other
sets of TE wavéguide mode se The essential feature is
that for each TE mode there is a corresponding TM?®
mode of the same cut=~off frequencye Thus there is
degeneracy -« The cut off frequencies are given by
the zeroes of tangent and catengent functions for

both the cases.
Even this case is not of practical interests

I1.is All the results which were obtained for the
symmetric case [(1i) are found to be true for this

case alsos.y except that the modes are no longer even

—

or odds But they are symmetric about a plane y < m

instead of y = 0 for the symmetric cases

Here one of the surface waves is charace~

terized by E‘ = at y = m and the other is

0
d E .
described by x =0 at y = m s+ LThe latter

dy
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mode resembles a waveguide mode and becomes the zero
order waveguide mode at the threshold value of rea-
ctance. The former mode propagate till the reactances
are reduced t0 zeroe Once again this mode is the

hybrid TEM dual surface wave mode.

There are two types of TM and two types of
TE waveguide modese These are non-degenerates The
threshold condition is found to be

1 =
+ 5 1. Thus it depends on the relative

magnitudes of the two reactancess

II ii. We do not discuss this case in any detail,
for 1t is simply the dual of the above casees Further
it 1is not of much practical interest. In any case

the results of I (ii) follow with the modification

that the modes are asymmetrice

IT1. iiis Here we have one TM surface wave and one

TE surface wave. Both possess field patterns resembling
& waveguide mode pattern. Both experience the threshold
phenomencon and turn into corresponding zero urder wavew=

guide modess The threshold condition is given by
1 1
— P — —3 1

P Q
Also Two sets of THM and two sets of TE waveguide

modes exXxiste These are non degeneratees



CHAPTER Iv

CONCLUD ING REMARKS AND A FEW SUGGESTION FOR FUTURE WORK

Thus by this work we have been able to subs=
tantiate a majority of the conclusio;s arrive;uby Wait
in his paper(s) « At the same time we have found occa=
sions to differ WIth Waite The first occasion arises
in connection with the threshold phenomenone Wait
does indicate the possibility of a waveguide mode turning
into a surface waves But he speculates that the zero
order waveguide mode would degenerate into the two
surface waves at a suitable value of reactances But
this has not been found +t0 be the cases On the
contrarys this zero order wayveguide mode which is
also the dominant mode <turns into only one surface wave
and does not split into two surface wavese .This is a

significant point of departure from Wait's con~clusionss

Further Wait has not worked out the precise
relation for the threBhold conditiob. He,merely, using
his intuitieva » guesses the possibility of a threshold.
And we bave been able to formulate the threshold equaa-
tions for all the cases we have considered and these
have been amply supported by our conclusions performed

with the computers
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The second occasion arises when we consider
the defining equations to be used for the evaluation
of the imaginary rootse. Wait has considered only the
unsymmetric case. And there too the approach he
adoptsy in the authorfs opinions is not veey s=-ounds
For he makes a few assumptions which one 18 not compe=
l1led to makee It has been demonstrated in this work,
that these assumptions are by no means necessary e The
.procedure adopted here has beenvindicated by the results
obtaiﬁed s Wait does not talk of two types of waveguide
modesy while infact they seem to exist in realitye He
restricts himself to a single infinite set of modess
Further the results he has obtained for cut off freq=
uency etce, are not of much significance because they
have been derived for a very special casee In the
'analysis given in Chapter II1Il, we have not restricted
ourselves to any particular cases Thus the form of the
defining equations for the waveguide modes is the most
general, and the solution of these equations would give
us exact resultse Once again our calculations have
demonstrated the validity of the adopted procedure,
and we were able to go fo the symmetric case from the
unsymmetric case Dy putting P = Q 1in the equations

for the unsymmetric casees

Another occasion arises when we consider the

possibility of the TE type modes co-existing with the
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THM type modess Thoggh TE surface waves are ruled outs
we can have TE waveguide modess once again two sets of
themy coexisting with two sets of TM waveguide modes.
Wait does not mention the possibility of TE modes at alle
Once again this is considered to be an important omie=
ssion by Waits for while we are interested in 1isclating
the surface wave from the contaminating waveguide modes,
it is of paramount concern to know precisely all types
of waveguide modes that may existe Only on such knowledge
can \We design a suitable excitation arrangements which

wwould help eliminate the undesired modess

While talking a bout the degeneration of wave=
guide méde of zero order into a surface wavey Wwe also
must emphasize that the other surface wave exlists for
all values of reactance greater than zeroe Below the
thresholdy this surface wave will coexist with the
dominant Zero order waveguide mode. And by a suitable
choice of dimensions of the guide, and the operating
frequencys we can make the zero order mode to be cut~
off and thus havéng only one surface wave 1in the
geometryes This possibility has not been mentioned by
Waity perhaps because Yhe has not carried out a detailed

analysis of the problems

/
Lastly we have yet another occasion to differ
with Wait when he assumes the orthogonality of

the modes,e ©Ou t calculations point to the contrarye
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Hence it is suspected thaty the principle may not

hold for the ansymmetric case though it is valid for
the symmetric case ¢« Perhaps Wait has assumed ortho~
gonality on the basis of Sturm—Liouv;lle theory and
on the strength of experience with bounded straatures
in generale It is thought +that the Sturm =~Liouville
theory may not be applicable for a system with reactive

boundarie se

Now we come to the practical aspect of the
problenm « This means we are to consider the unsymmetric
case where the surfaces are inductively reactive and

that brings us in contact with the TM <type of modes.

Barlow 1in his experiements has found it expe=~-
dient to have one of the surfaces highly reactive while
the other is only slightly sos Now the former surface
becomes the main guiding surface while the latter merely
serves as a shield which primarily limits the spread
of the main wave fielde Since he has succeeded in
supporting the hybrid mode wunder these circumstances
and has obtained some useful resultsy it is worthwhile

to consider this case more closelye.

Now céming to the problem, we £ind that there
are two surface waves of the TM types two sets of TM

waveguide modes and two sets of TE waveguide mode se
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First of all we eliminate the TE type modes
by choosing a proper type of sourcees Then we are left
with fwo TM surface waves and two sets of TM
waveguide mode se By a prOpgr choice ;f frequency and

a suitable choice of dimensionsy one can do away with

all the higher order waveguide mode se

Then we have two surface wavese But it is
desirable to have only one of theme So we choose the
reactance below the threshold valuee This makes the
surface wave with Ex maximum at the plane y = m go
into the zero order wave guide mode of the' TM typee By
choosing a small emough reactance fér the lower sur-
facey weli below the threshold valuep one can raise
the cut off frequency of the zero order modes which
is also the dominant modee This makes 1t simpler to
eliminate the zero order mode alsoOe Fér one can adjust
the dimensions and the operating freduency sqnthat this

zZzero order mode is cut offe

Thus we are left with only one surface wave
which is the hybride TEM dual surface wave of Barlowe
That what we have said so0 far is a physical reality

has been amply proved by Barlow®s success in having only
the hybrid mode in the guide systeme That stable opera~
tion has been possible with this mode is also quite

satisfyinge Further Barlow has experimentally determined
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the field distribution of this mode and this coincides

with our description of the same modee Als0 Barlow has

proved that this mode,when supported by suitadbly chosen
reactances,; has an attenuation which is almost half

of what a normal quasi = TEM wave would experiences

It 1is to be noted that we should have oniy small
reactances for the supporting éurfaces if we can have
a pure surface wave uncontaminated by otherse It is
found that Barlow has used only small reactances for
the support of the hybrid modes This supports our

previous argument ss

We propose to 1llustrate the above by a numeri-
cal exampleas

We clhoose the case where

P = 0.25 £, = 1 Ge/s
Q@ = 0.50 d = 10 cn )‘o = 30 cmse
P = kpd Q = k qd

. -]
For this case k = ZE/)\O = 0209 cm . d = 10 cms

0.0 P = 0.1190

Now 12,1 = n » = 1207 x 0.118 =45 V.
|24 ] = 2 Z, = o0 V\
Z, and Zd are surface impedancese We find the cut off

wavelength of the zero order waveguide modee This is
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given by the root of equation (4¢0) 1in the interval
(0y T/2) « For the assumed values of P and Q s this

first root is
kc¢c a
2

= 1.442

X

k c a = 2.888

Now C =1 gives the cut off conditions

.e —————— = 24884
A
Cc
Lo N = 2418 a = 21,8 cmse

So 21¢8 cms is the cut~off wavelength of the zero order
modees Since the free space wavelength 1is 30 cmsy this

mode is cut offe

So we have only one surface wave mode that is

propagating and it is the hybrid modee.

It is of interest to calculate the phase veloclity

of the waves

H

Vo

The ¢vansverse wave number u » can'be got from the real
root of the characteristic equation (13) .
This is got as
ud = 04905
or u = 0.0805 cm~~ for d = 10 cm.

)
27T x 10 10
v = = 2.75 x 10 cm/sece

P (0.,0082 + 0.044)17/2
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This is 917 % of the velocity of lighte HReducing

d = to 5 cmsy we find that the zero order mode is
st1ill cut off 4 but the phase velocity reduces to §6%
of the velocity of lighte Finallys if d = 1 cme with
all other things the J samey we get a ﬁhase velocity

‘'which 1is only 225% of the velocity of 1ighte

So by choosing a low enough frequency Of Operaw
tion and a very small distance of separation one can
-reduce the phase velocity to any desired fraction of the
velocity of lighte However in practice difficulties in
realizing purely reactive surfaces will come in the wayd
of this reduction in phase velocitye So there will be
2@ 1limit Ybeyond which we cannot reduce the phase
yelocitys Since our boundary conditions are hypothetical
we got the 1result that there is no apparent 1limit to

the extent of reduction of Hthe phase velocitye

Even though the possibility of having slow
waves 1in the structure would point towards an applica=~
tion in the design of slow - wave structures used in
travelling wave tubes, one has to be cautious in his
pronouncementse For we ﬂeed really slow waves in the
case of travelling wave tubesy (iee waves which travel
at a frew percent of the velocity of light) and it 1is
doubtful 1f we can realize this in practical guiding
structurese Further there may be other considerations

in the travelling wave interaction which would render
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the structure considereds unsuitable « But at least
this can be used as a phase shiftere When uséd as a
delay lines we need only a smaller length as compared
to the usual line lengths for we have slow wave propa=

gating in the strucfurec

It might be anticipated that many of the results
deduced for the parallel plate case may &also hold for
the coaxial case, which is more suited for practical
applicationse Already Barlow has proved that the
hybrid m;de can be propagated in the coaxial system.
Also this mode 1is such that'Ex =0 at r = r, » &cer-
tain radiuse This is experimentally establishede Hence
we might expect that therermight be two surface waves
one of the hybrid TEM types the other of the coaxial
waveguide mode'type- There might be a th:eshold value
of reactance below which the surface wave of the wave~
guide mode type becomes the lowest order cOaiial modee.
Once again by a proper choice of frequencys the surface
reactances and of the geometrical proportions, 1t 1is
possible to propagate only the hybrid m§de. That this
is possibdle has been proved bf Barlow in his experimentse
Thus the entire analysis of the parallel plate system
can be extended to the coaxial system with suitable modi=
fications on account of the changed geometrye Since the
coaxial system ic most used in practice, we are satisffled

that the experience gained in respect of the parallel
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Thus one area of extension of the present
work will be to determine the various quantities for-
the coaxial casee Further one can determine the various
wave 1impedancesy power densities etcey fOr the parallel
plate case itselfe Also the cut off frequencies of the
different wave guide modeé can be found out from the

imaginary roots of the characteristic equations

One can congider the effect of surface losses
on the results obtainede Also the attenuation of the
various modes can be computed, while travelling through

a lossy dielectric that separates the two platess

T=hen there is the excitation problem ieees the
proper choice of source and its loccation so that we might
get maximum power Jin the surface wavee In this direc=
tion already some work has been done by several personse
But st1l1l1 there is further scopey because we have to

design the launcher #0 that TE modesy which are a definite

possi bilitys, do not get excitede.

Closely linked with the abesves problem, is
the determination of the orthogonality relations, if any
‘that are valid in the present case. Also we would like
to have the set of orthogonality relations that hold for

the general case of impedance boundariess This problem has
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has not been solved satisfactorily as yete

Thus we coame to a chose after pointing

out a few areas for further worke

-y gy wmg -
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