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SYNOPSIS 

Recently a large number of papers have been 

published on the topic of Shielded Surface Waveguides. 

H.M. Barlow has been one of the earliest workers in 

this field. In his first paper on the 'topic
(3) he 

potn-ted out the possibility of a screened surface 

waveguide and followed it up with another paper (4), 

where he -presented an analysis of both the parallel plate 

and coaxial waveguide structures with dielectric coated 

guiding surfaces. Especially, he talks about the 

hybrid TEM dual surface waves which he considers to 

be the natural mode in two conductor transmission lines, 

the usual TEM mode being present ai only when the guiding 

surfaces are perfect conductors. Barlow maintains that 

this hybrid model under suitable circumstances, suffers 

an attenuation which is roughly one half of that exper-

ienced by the usual TEM mode • To support this modes 

one is to enhance the surface reactance by coating the 

surface with a practically loss-free dielectric • 

Through his experiments, whose results appeared in the 

literatures,  $ Barlow has been able to substantiate 

his observations • He has found that to reduce the 

attenuation one has to have an asymmetry in the field 

distribution, that is= the surfaces should be of un-

equal reactances and further, only one of the surfaces 



should be coated with dielectric,, the thickness of 

coating being optimum. 

Barlow's work thus revealed the possibility of 

propagating• in the usual transmission line structures, 

a surface wave mode, which is for less attenL ted 
'rhls 

compared to the usual TEM mode, naturally aroused the 

curiosity of other workers and Wait came up with his 

theory of Shielded Surface Wave guides(5)0 His con- 

clusions are rather interesting and they stimulated the 

present work. 

It is in order to mention that this work is 

an extension of Wait t s work. We have ventured to make 

a thorough investigation of the various modes which 

can exist in a parallel plate guide;, with reactive 

guiding surfaces• Wait has merely indicated the approach 

and what we have done is s to pursue this course to 

its logical end. We have analysed the symmetric case 

(i•e. s where the two surfaces are of equal reactances) 

and the unsymmetric case (i.e. surface reactances 

unequal). Also we have considered the case where one 

surface is inductive and the other is capacitive* 

In the course of these investigations we have 

come up with some new and interesting results. Mostly* 

the results have supported [Fait's conclusions• But 

on some counts we differ with him• A significant pahx~ 



of departure is in the f acts emerging out of this 

works that the modes are not orthogonal in the sense 

of Waits for the general un symmet ric case. Furthers 

Wait has not mentioned TE type modes existing in a 

guide with inductive guiding surfaces. It is shown 

that 'o would have TE type waveguide modes in such 

a structure though no TB type surface wave can exist. 

Another significant result is that there are two 

surface waves in general s of which* one vanishes at 

a particular value of surface reactance called the 

threshold value and turns into a zero order waveguide 

mode; Wait had said that this zero order mode would 

split into two surface waves at a particular value of 

reactance. Finally it is shown that one of the surface 

waves which stays on till zero frequency coincides with 

the type Barlow has been considering • Thus this work 

links the works of Barlow and Wait. Also a few new prob-

lems are brought to light as a result of this work. They 

are mentioned at the end. 

While writing this dissertatiai s we have 

divided it into f our Chapters. The first Chapter gives 

a brief but comprehensive introduction to surface waves 

This Chapter draws its material chiefly from references 

(1) and (2) . The second is devoted to a review of the 

past work in the field of Shielded Surface IVaveguides. 

The third constitutes the author's contribution • Here 

all the results of calculations performed on the IW 

1620 computer, along with fairly detailed analysis 

and discussions are presented. The last Chapter s 



after presenting in outline, the new results which 

have come to light after the present work, goes on 

to unf old areas for further work. 

Before we closes it is to be pointed out 

that much work is in progress on this topic. Recently 

papers have appeared which are critical of Barlowts 

approach and his conclusions. Especially n the plausi-

bility of reduced attenuation is being debated. 

Millington., Brown and Cullen have conducted theoretical 

investigations wherein they have examined the possibi- 

lity of reduced attenuation. Their results seem to div-

erge from Barlowts conclusions. As yet the last wore. 

has not been written on this topic. 	Already much 

absorbing work is going on and scientific world is 

awaiting the results. 

a 
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CHAPTER I 

AN INTRODUCTI(4 TO SURFACE WAVES 

101. 

A surface wave may be called as"an em wave 

that propagates without radiation along an interface 

between two different media" (1,,2)  When the media 

have finite losses* the main stream of energy direc-

ted along the interface will be required to supply 

these losses. 	When we say that the surface wave does 

not radiate, we mean to say that energy is not absorbed 

from the wave independently of the media supporting 

the waves Thus, when we say that the main stream has 

to supply energy to meet the losses in the supporting 

media, we are not violating the definition of a 

surface wave. We are interested in surface wave 

propagation because of its non-radiating characteristic 

and thus a surface wave can be employed for an efficient 

transmission of h."f. energy from one point to another, 

except in so far as demands are made on that energy to 

compensate for the losses occurring in the media. Usually 

one of the two media is a loss free dielectric, say air. 

We may note that the interOace must be straight in the 

direction of propagations though it may take a variety 

of forms in the transverse direction. The boundary of 
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the medium surrounded by the loss-free dielectric is 

usually culled the supporting surface. One can have 

flat surfaces or transversely cylindrical surfaces to 

support a surface wave. One would have encountered the 

Brewster angle in optics• s i.e., the angle of incidence 

for which no reflection takes place. One may put it in 

another way, that there is no radiation away from the 

surface under the circumstances. Bence one may expect 

to derive a surface wave by allowing a wave of the 

required field configuration to be incident at the Brewster 

angle on the surface. This turns out to be the case and 

this can be established for any flat surface. Sirce the 

p ouver f l cw is normal to the wavef ronts def ined as an 

equiphased surfaces it follows that the field distribut-

ion is to be evanescent over that surface, suffering a 

decay with increase of distance away from the surface. 

This folio-. s from the requirement that there shall be 

no radiation away from the surface. It is to be noted 

that both E.-modes and H- modes can propagate as surface 

waves. But the conditions for the support of E+-modes are 

more readily met than for the Hi-modes. Hence usually one 

is interested in the Es. modes. Another feature of 

surface waves existing on the interface between two homo. 

geneous media$ is that they do not experience any cut-off. 

is is because there is only one finite boundary condition 

to be satisfied• 

There are three distinctive forms of surface 

waves namely, 
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1. The zenneck or in homogeneous plane wave 

supported by a flat surface. 

2. The radial cylindrical 'wave also supported 

by a flat surface. 

3. The Sommerfeld - Goubaj.t wave supported 

by a transversely cylindrical surface. This is 

also called the axial cylindrical surface wave. 

Now we have to distinguish another tsurface 

waver encountered in the theory of ground wave 

propagation over a flat earth due to Dommerfeld. This 

ies not exactly the same as the surface wave under 

consideration. The confusion is unfortunate and 

is partly because Sommerfeld was responsible for 

some of the early work on the true surface wave. 

In his discussion of the problem of radiation from 

a vertical dipole over a flat earths Sommerfeld 

divided the ground wave into two parts: 

If The space wave and 2. The surface wave,. 

The surface wave part is respresented by 

one of the terms in the analysis of the total field 

and Its particular feature is that it tends to 

predominate near the earth's surface• Both parts 

are required simultaneously to satisfy Maxwell's 

equations• Sommerfeld was able to identify the surface 

wave part of the solution with the trite surface wave, 
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because  the expressions describing the two were 

similar in form. As yet there is a controversy 

over the interpretation of the various terms app-

earing in the analysis of the total field for the 

above radiation problem. Hence we rest by saying 

thato one has to distinguish between the true 

surface wave under consideration and the wave 

appearing as part of the solution of the radiation 

problem mentioned above. We give the field patt-

erns for the three kinds of surface wave in Fig. i• 

Now a brief outline of the features of 

the three types of surface wave follows 

(a)  THE ZENNECK WAVE 

Refer to fig. Ia for the field distribution 

of this wave e This wave is a particular solution 

of Maxwell's equations and it can be described as 

*a wave that travels without change of pattern 

over a flat surface bounding two homogeneous media 
(2) 

of different permi-ttivity and conductivity" 	• 

This is an inhomogeneous plane waves, for the field 

decays (exponentially in this case) over the wave 

front with increase of distance from the surface* 

In Fig. 1„v a and I and 2 	refer to the 

two media below and above the surface respectively. 
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The  surf ace lies in the X-Z plane at y = 0 , the 

media on both sides being homogeneous. For a wave 

propagating along the X- axis the three components 

satisfying the 2- dimensional wave equation are 

HZ  s Ex and Ey 

Where H and E stand for the magnetic and electric 

fields respectively. 

The general form of the field components 

is as follows: 

H 	= A  ejwt euly e., Y x 
21 

ui 	,cwt ut y —Y x 
Ext 	= A 	 e 	0 	e 

(o + J w C 2 

E 	A  L 	a jwt eul y e..Y x 
yl 

(os +Jw F1) 

Y < O 

These exist in medium I. 

U1 9 L1  are parameters of medium 1. Y = d + J /3 

is the longitudinal propagation constant. 

ul 	= ai  + J b1 	is the trans9erse propagation 

constants where a1  represents attenuation and b1  

stands for phase change for the wave travelling 

inward from the surface. 	 V 

d = attenuation constant A = phase constant 

as usual. 
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In  Medium 2 

That is above the surfaces we have 

Hz 2 	
= A e jwt e-u2y 	6-Y x 

U2 jwt u2y -(x  E 	
A 	a 	e 	e 

x2 (3w) y > 0 

EA 
	e jwt eu2y e ~-Y x 

y2 	(jw (Eo) ) 

He re u2 	= a2 - j b2 

For the wave not only suffers an !attenuation 

at the rate of a2 with increasing distance from the 

surface but also a progressive phase change b2 as it 

travels towards the surface. These characteristics 

are in accordance with the specification of a surface 

wave for which the power flow has two components one 

representing the main stream along the interface and 

subject to the usual attenuation d and phase change /3 

while the others usually a minor ones is directed into 

the surface to supply the losses. 	No radiation 

theref ore occurs. 

(b) THE RADIAL CYLINDRICAL WAVE 

Unlike the plane wave the wave front is 

limited in the horizontal direction. Refer Fig, lb s 
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for  field distribution. The components in this case 

are HQ , E19 and EX 

Inside the Surface 

H~ 	= A e jwt eulyH1 (2) (-J ( r ) 
1 

E ri 
U1 

(~s" + J w Fi} 
eJwt e1' H1{'-j(r) y( 0 

. ( 	jwt uiy (2) E Y* 	= A 	 •e 	e  
(o= +,1wEi ) 

Out side the Surface. 

jwt -u2y (2) 
H~2 -  A e  e  H1 	(-j'( r) 

u2 	Jwt 
E r2 = A ------- e 

w E 
0 

-
U 

3r 
 H(1) (- j ( r) y > o 

Y 	Jwt 
Ey2 = A - e 

0 

e`u2Y 
(2) 

(-3 'fir r ) 0 

One sees that the transverse variation is 

the same as for the plane wave case. But along 

the radial direction it decays according to a Henkel 

function which becomes at large distances as 
e-•Y r 

One would later see that this 
Jr 
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wave and the plane zenneck wave have much in common. 

(c) AXIAL C:►LIN'DRIC.AL WAVE 

Sommer fold was the first to point out that 

a transversely cylindrical surface could support a 

surf ace wave. Goubau developed the idea in its 

application to a wave guide consisting of a metal 

wire having a dielectric - coated or corrugated 

surface. When the radius of the cylindrical surface 

becomes infinite, the Goubau wave becomes identical 

with the Zenneck wave. See Fig• i.e for field 

distribution. 

For the Components 

(a) Inside the Surface. 

(Qri + 'j w E1 ) 	Jwt 	-Y x 
HQ1 = A 	 e 	e 	Jl (3 ui r) 

j u1 

. ~ E 	e wt a-,Y x 	Jo ( i ut r) 
xi 

E 	= A ( 	u ) e 
1x 

eJwt 	J1 (jui r) 
1 

r (S 

n 
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(b)  Out side the Surface 

"'r Eo 	jwt 	..Y x (1) 
HQ2 = A 	e 	e Hi 

U2 

,~XZ 	wt -Y x ol) E 	A e 	e 	H 	(Ju2 r ) 

(ju 2r) 

S 

wt -Y x (1) 
A (Y—) 	

j 
e e Hi (3u2r) 

E - 3u2 

1.2. SURFACE IMPEDANCE CONCEPT AND ITS SIGNIFICANCE 

The surface impedance Z 	is defined as the 
S 

ratio of the tangential components of the electric 

and magnetic field at the surface. In general Z 

is complex. 

i.e. Z 	= Rs + j X 	where R is the surf ace 
s 

resistance and Xs is the surface reactance. For any 

medium constitut ing a surface of finite conductivity 

and a thickness exceeding the Skin depths R and. X 
8  S 

cannot be separated physically. The existance of Rs 

implies the existance of X 	due to the penetration of 
s 

the field. But in loss-free media it is possible to 

have XS without Rs 	and this is approximated by a 

polythene coated smooth copper surface. If the radius 

of the surface is large compared to the skin depth 

a 
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one can add the reactance due to the dielectric to the 

reactance due to finite conductivity. As Rs  increases 

the inclination of the wavefront toward the surface 

as measured from the normals increases and this 

causes an increased phase velocity along the 

interface, in general an inductive surface slows 

down the wave whereas a capacitive surface speeds it up. 

(a) SURFACE IMPEDANCE FOR ZENNECK AND RADIAL CYLIN3 RICAL 

WAVES. 

Z = E x2 	at y = 0 for Zenneck wave. 
s 	H 

z2 

E  Z # -''H 	at y = 0 for the radia' wave. 
s 	Q2 

On substituting the values of the field components 

for the two cases, we get the result that Z 	is 
S 

identical for both the waves and this is given 

by 
1 

	

Z = 	 (b2  + Ja2 ) for both the waves. 
$ 	w E 

0 

$ 	 b2 ..•x = 2 	and R = 
w E 	 s 	w Eo  0 

Thus a2  , representing the rate of decay with 

distance from the surfaces is directly proportional 

to the reactance of the surface and b2  the phase 

factor depends only on the resistance, 



Now we may consider some methods of increasing 

the surface reactance. 

(1) DIELECTRIC COATING OF THE METAL SUf.FACE 

See Fig. 2. We perform the analysis assuming 

that a Zenneck wave is supported by the flat surface 

considered. Then we find that a standing wave exists 

in the dielectric. 

On solving for the resistance and reactance 

at the interface between dielectric and air, we get 

R 	w flo t~ 
s 

2 

w ,f.~ 	E2  
Xs 	0 	2 	E2 

Whe re to = skin depth. 

Assuming that a loss free dielecttic has been 

coated# we know that the reactance contributed by it 

(owing to 	 the storage of energy 

in the standing wave that exists in it ) can be added to 

the, reactance of the metal surface. Thus the additional 

component in the total reactance is 

` o w uo x 	E If we choose 

E2 
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E2 > Eo one can increase the reactance above the 

original reactance of the metal surface. Also one 

can increase the reactance by increasing the thick- 

ness of the coating. But this usually raises the 

surface resistance, because of the added losses in 

the dielectric. 

For a surface wave * We require that the 

decay factor in air surrounding the supporting surface 

be positive and finite . This can be satisfied for 

the Zenneck wave if we coat a metal surface with 

a dielectric. 

Higher the surf ace reactance and higher the 

frequency# greater is the decay factor and the wave 

clings to the surface more and more closely. 

(2) We can also corrugate the interface to increase 

the reactance. The pitch of the corrugations must 

be smaller than the wave length along the interface, 

to provide a uniformly distributed supplementary 

reactance. 

(E) SURFACE IMPEDANCE OF THE AXIAL CYLINDRICAL WAVE 

(1) 
Ems 	uz 	Ho (,~ u2 S) 

Z- 	_ 	M~ . ~_z._~._  
s 

HQ2 	w Eo .. 

	

Hi 1, <J 	s) rs 

u' As 	s ---~ ac 	one minds that Z s — ' ~ 2 ._.2.... 
WE 

0 
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as for the Zenneck wave. Usually I j U2  sl C 0.05 

Hence we can apply the small argument approximation 

to the Hankel functions in Zs  to get 
2 -j u28 

Z - R + ,J X w E log (0.80 u2  s) 
o 	e 

with u = a2  - 3 b 2  as bef ore 

On an examination of the behavior of R and X S 	s 
with varying values of the decay factor a2  with the 

phase factor b2 	fixed, one arrives at the following 

conclusions. 

For values of a2  larger than that of the Smooth 

metal surface, we must have an enhanced inductive 

reactance at the surface and for a2  smalle rs  we require 

a capacitive reactance at the surface. Also the net 

surface reactance can be positive? Zero or negative 

while still 	providing for finite positive values 

for both a2  and b2  necessary to support the wave 

This is in contrast with the requirement for the 

Zenneck wave where X must be always positive to keep 

a2  positive. 

At a large radial distance from the x- axis 

one can show by applying the large argument approxi- 
that 

mation to the Hankel functionsAthe wave impedance 

looking toward the wire for a given radial propaga- 
u 

tion const ant u2  is 	? P 	whatever is the 
w  Eo 
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radius of the wire. Hence for wires of large diameter 

the impedance at the surface is the same as that for 

a plane surface supporting a Zenneck wave with the 

same value of U 
2 

For wires of small diameter the curvature 

of the equiphase surfaces near the wire has an imp-

ortant effect on the wave impedance. This curvature 

retards the phase of EX  while advancing that of H0  

so that the wave impedance may change from being 

inductive at a large distance from the wire to capaci- 

tive near the wire. 	Thus in general for a cylindrical 

surface waves the wave impedance is inductive at large 

distances from the surface . 

1.3. ATTENUATION AND PHASE VELOCITY ALONG THE SURFACE 

IN THE DIRECTION OF PROPAGATION. 

The attenuation constant -d i.e., the real 

part of the longitudinal 'propagation constant Y can 

be written as 

d — 	 4 a2  
w 

Where V = velocity of light in free space and a2  s b 
2 

are respectively the real and imaginary parts of u2  

the transverse propagation constant. 
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Nov to reduce attenuation one must keep as much 

of the field as possible outside the guide so as to reduce 

the losses in the guide and accommodate it in the surround-

ing air. But for practical purposes we have to confine the 

field close to the surface. This means a2  will be large 

and so this implies a larger attenuation a( 

PHASE VELOCITY OF ZENNECK AND RADIAL SURFACE WAVES 

These waves behave identically as far as phase 

velocity and attenuation are concerned. 
w" 

V 	= phase velocity = 
P 

This can be shown to be 

V ' 	 V 
P 

7 V2  

L' .. 16 w ( b22  . a22  ) 

This is for Smooth Metal surface for which 

b2 	2 

	

a2 	• Hence VP  ) V • 	But by a ddelectric 

coating one can enhance the reactance thereby inc reasing 

a2  • With added dielectric a2  increases faster than b2  

(Because the dielectric has only small losses) • Hence we 

can make 	a2 > b22  after coating.  Thus one can sl aur 

d wn the wave i.e. VP  <V. This is true for inductively 

loaded surfaces. Thus for such surface one can have VP  

greater than, 	equal to or  
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less than V depending on the l oadirg applied. 

GO1JBAU WAVE 

For this wave supported by a smooth metal 

surface --a2 	2.25 . Hence it is seen that V (V. 
b2 	 P 

Inductive loading further enhances the ratio a2/ b2 

beyond 2.25. Hence the wave is slowed down further. 

With capacitive loading one can increase V to V or 

even beyond V. 

If one measures V 	one gets an opportunity 

for measuring a2 for a highly reactive surface for 

which a2>> b2 • 

1.4. THE COMPLEX BREWSTE R ANGLE AND. ITS REIA:T ION TO 

THE ZENNECK SURFACE WAVE 

Let us consider a homogeneous plane wave travelling 

in the direction of 	and incident at an angle 
on the flat surface of a lossless medium See Fig•3 • 

The Magnetic field component of such a wave above 

the surf ace is given by 

Hz2 = Ae`~wt e -~J /3 0 (x Sin 	- y Cos 	) 

A 
0

rt0 E O 	 .. (i ) 

We know that there exists a certain critical angle of 
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of incidence. For which there is no Veflected wave► 

this angle of incidence being the Brewster angle. 

It 	coincides with the Brewster angle then 

tan 	E 	 .•• (2) 

 

_  r 

1 	Ei 	('Where E1 is the permittivity 

	

r 	E 	of the lossless medium !. ) 
0 

Now 4r is real • 

If the medium 1 has losses then Er becomes 

complex. i.e., we have to replace E 	by Er - j Ev 
r 

where Et ~1 
w E 

0 

Since the analysis will be true for complex 

as well as real values of impedances of the two 

medias relation (2) giving the Brewster angle is still 

valid. The only modification is that the Brewster 

angle becomes complex. That is instead of 4r 	, we 

	

have (1r 	- J 	)• 

Hence (2) become ss 
Zo 

tan (1f 	jbC), Z 	- P C 	J E+ 	..(3) 
1 

If you replace 4T 	by ( 4r - ,jxC ) in (1) we get the 

physical meaning of the complex Brewster angle. 

Since there is no Weflected wave► we see 

that the field expression (1) in which 1T has been 

replaced by ( f - J x ) must 	represent the total 

field above the surface. 
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This is 

c/3 y z2 = A e 	• e owt 	- 	
[Sin 	Sin Of - , Cos 1T Cosh ~t 

r 
o Cos 1 Sin h 	+ j Sin I Cos h 

The field is seen to decay exponentially in 

amplitude and suffers a progressL ve advance in phase 

with increasing distance above the surface. Moreover 

the wave is attenuated along 1 direction and there is 

a progressive lag in phase along the interface. These 

are the 'characteristics of a Zenneck wave supported 

by a flat surface. 

Thus it is clear that one can establish the 

Zenneck wave by having a inhomogeneous plane wave 

incident at the Brewster angle. 

• 5 • EQUIPHASE AND EQUTAMPLITUDE SURFACES 

For a homogeneous pbane wave these two surfaces 

coincide. But there are waves for which these do not 

coincide. These are inhomogeneous waves. The 3enneck 

and the Sommerfeld waves belong to this category. 

We now give the form of these surf aces for 

the Zenneck wave. 

Referring to (4) abovet 	one sees that the 

equiamplitude surfaces are planes given by 

)f 	Cos 	T + Y 	Sin f = 	constant 	• • • . (5 ) 
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The equiphase surf aces are also planes given by 

X Sin  Y Cas 	= Constant •.• (6) 

We note that they are orthogonal to each others, 	if 

you consider the medium above the surface to be 1008.. 

free . See Fig. 4. 

The direction of propagation is normal to the 

wavefront and hence is inclined at an angle 1J with 

respect to the normal where 	is the real part of 

the complex Brewster angle.. 

The wave can be said to travel witi out atten-

uation in a direction normal to the wavefront• The 

decrease_ in amplitude with increase in X can be inter-

pretted as arising from the exponential variation of 

amplitude across a waver rant as the wave sinks through 

the plane y = 0 . See Fig. S. 

Since there is no reflected wave above the 

surface one can regard the medium below the surface 

to provide a nortched termination to the incident in-

homogeneous wave. 

1.6. THE EVANESCENT STRUCTURE OF THE FIELD OVER THE 

WAVEFRONT CF SURFACE WAVES 

Since surface waves propagate without radiation 

it follows that the field structure across the wavefront 
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must be evanescent. We wish to illustrate this further, 

by proceeding In another way. Refer to Fig. 6. 

Here the uual X-Y coordinate axes have been 
7f 

rotated by an angle ( 2 -• f ) in the clockwise direction. 

The direction of power flow is inclined at an angle  

to the normal 

In Fig. 7 we have shown an evanescent Eoi 

mode 	between two parallel perfectly conducting 

plates separated by d and of infinite extents repre- 
d sented by the planes Xt - 	+ d • 
2 

In Figs 6 s the field expression for the 

wave travelling in the direction normal to the wavefront 

i or equivalently parallel to the X' - axis 1s given 

by 

H 	A e 	e•- 	y' Sin hX e -.J/   oX' Cos h X 
z2 

...(7) 

We see that the wave travels without attenuation in the 

Xt 	direct ions which is normal to the wave front. 

For the evanescent Eol mode in Fig. T• s the 

field is given by* 
r 	t 	' 	 (8 ) H 	= 2 A e c e cY Cos 	- 	-' 

z 	 d 
lXr 	 irxt 1 jwt do Yt ,.3 d 	 +J d 

Ae 	e 	e 	+e 	e 
- J 

2 	2 	'~  
with 	

2 
C( 	= - is 0 + ( a) 
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Thus  the evanescent mode consists .of a standing wave 

pattern formed by a pair If inhomogeneous plane waves 

travelling back and forth along the X' - axis* between 

the plates without having any net forward progress• 

If you compare (7) with (0) we see that (7) 

is identical to the first term in (9) if 

7P 
d 

and a( 
c 

/3 o  Cosh X 

/3 Sinh X 
0 

Thus the Zenneck wave is identical with the corres-

pondingly directed component wave of the evanescent 

Eo  , mode between two parallel perfectly conducting 

planes. 

Since d ( 2 	necessarily, we .see that the 

separation of the equiphase planes in a Zenneck wave 
►" o  

must be less than 2• Any plane wave complying with 

these conditions must have an evanescent structure in 

the direction parallel to its equiphase planes. 

From figure 6 it is also plain that the Zenneck 

wave progressively dkd into the plane Y = 0 , as it 

advances along X. 

i. 7.  TRANSMISSION LINE MODES AND THEIR REIAT ION TO 

SURFACE WAVES 

In a parallel plate transmission line, we 

usually assume that the plates are perfect conductors 
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and the separation is small compared to a wavelength• 

Then the only propagating mode is the simple TEM wave. 

Once there are losses we must have a longitudinal 

componen t of the electric field, to supply the losses. 

Hence the mode is not strictly TEM. 

Fig• 8 a shows the field lines for the lossy 

plates with small separation• 

A simple analysis sh ows that as the distance 

of separation is progressively increased the TEM wave 

gradually approaches the Zenneck wave. 

As we increase the separations Y 9 the 

propagation constant of the wave approaches that of 

the Zenneck wave. The field components are stronger 

near the plates and they resemble the Zenneck waves 

closely• See Fig. 8 b • In the central overlap region 

there is some interaction between# the individual 

Zenneck wave type fields associated with the two 

plates and it is the magnitude and phase of the inter-

action that determines how far the Y of the system 

departs from that for a time Zenneck wave. 

For a clear understanding of the aboves 

consider how the TEM type of wave bek een plates 

of finite conductivity varies as the distance of 

separation is varied. There are three types of propa-

gation which can be distinguished! as 2d varies in 
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relation to the length 

depth). 

A3 	~2 
and 	0 

	= skin 
A 

(a) Small. separation; 

A
3 

i.e. 2d 	~' < 	- 	• Then the wave is 
0 

essentially of the TEM pattern within the metal. 

Practically no energy travels in the narrow air gap 

between the plates.  
3 2 

(b) _ 	< 2d 	 a 	.. The usual 
A 

TEM wave assumed in Transmission line analysis. 

Attenuation generally small, phase velocity. slightly 

greater than that of Lightlmost of the energy travels 

in the region between the plates. 
X2 

(c) 2d >> 	° 

The wave tends to separate into two isolated 

Z enne ck waves one associated with each plate. Most 

of the energy travels between the plates and close 

to the plates. 

Actually these three regions are not sharply 

defined. One passes continuously from one type of 

propagation to another as the distance of separation 

is increased. 

. Similarly for parallel wire transmission lines, 

the TEM wave reduces to ' wo axial cylindrical surface 
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waves each of which is supported by one of the cond-

uctors,  as the distance is increased. Thus the surface 

waves are the limiting cases to TEM waves on 2- 

conductor systems* as the distance of separation is 

increased indefinitely. This is another link between 

surface waves and other knoarn types of propagating 

e. m• waves• 

i • 8. LkUNCH ING OF SURFACE WAVES 

The aim in launching is to convert a high 

percentage of energy in the sources which illuminates 

the launcher# into the surface wave + Usually in a de-

sign of he launcher* one arranges the geometry so 

that the higher order spurious modes get attenuated 

rapidly within a small distance from the launcher so as 

to have a reasonably pure surface wave at large 

distances from the launcher& The range of the sur-

face wave depends on the launching arrangement. Workers 

have advanced several arrangements claiming large laun-

ching efficiences. (lee., the ratio of surface wave to 

total power used). One of the earliest launching 

schemes employed the principle of the complex Brewster 

angle to launch the Zenneck wave. 

Here an inhomogeneous plane wave is incident 

at an angle 4l , the real part of the complex Brewster 

angle, on a flat surface. This produces the Zenneck wave• 
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The idea of using a horn to launch the surface wave 

has been tried. 

Since these early attempts many schemes 

for launching have been elaborated in the literature. 

Further, it is problem altogether different from what 

we propose to consider • Hence we do not. consider 

the launching problem in any detail. Those who are 

interested ILA this aspect of the problem are referred 

to the ample literature existing on the subject. 



CHAPTER 	II 

REVIEW CF PAST WORK ON SHIELDED SURFACE Wt'AVEGUIDES 

As we know surf ace ,%raves are •.m. Waves 

which travel along an interface between two different 

media without radiation. And the structures usually 

used to guide such waves are open or unbounded. Because 

of this featured there is only one finite boundary 

condition to be met and as a consequence these waves 

do not have any cut off. 

What is a shielded surface waveguide ? . The 

term can be twken to mean that a confining screen 

has been placed above the guiding structure. As we 

know , the surface wave field extends theoretically 

to infinity in the transverse direction. Hence if we 

are interested in limiting the extent of the field we 

contemplate the utilization of a screen. Then it follows 

that we have to match the screen to the field so as 

not to cause unwanted reflection. 

The theory of such a shielded guide was first 

advanced by H.M. Barlow 
(3) 

 . He considers both the 

planar and cylindrical guides. The above mentioned 

matching problem is tackled by him in two ways. 
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The first approach is to examine the wave 

impedances at the location of the screens in the trans-- 

verse direction. This turns out to be having a capac- 

tive reactance and a small negative resistance. So 

the surface needed cannot be passive but has to be 

actives which means bhe introduction of a generator 

of power at the operating frequency. If the losses  

are negligible, a tolerable match can be obtained by 

having a dielectric coated metal surface. But with 

significant dissipation in the media# we require an 

auxiliary source of power along with the passive react-

ive surface. 

The second method advanced by Baylow is inte-

resting. It is by setting up what Barlow calls as 

the dual surface waves that we seek to match the bound•- 

arie s. This involves the setting up of a second surface 

wave on the inside of the screens in addition to the 

main surface wave guided by the guiding structure. 

Under suitable circumstances* this wave would serve to 

limit the spread of the primary wave. Further we have 

simultaneously satisfied the boundary conditions at 

the screens in the process of setting up of the 

secondary surface wave on its inside surface• Now* 

the question may arise that the presence of the two 

surface waves might lead to a standing wave pattern 

across the guide. But we know that there can be 

no reflection of a surface wave at its guiding surface• 
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This is true for both the waves at their respective 

guiding surfaces. Hence there can be no standing wave 

across the guide as would be the case for a normal 

waveguide mode. This fact enforces the conclusion that 

the said combination of the two surface waves experiences 

no cut off. It is in order, to observe that the primary 

wave carries the major portion of the powers the secondary 

merely serving to limit the primary wave field. 

A closer examination of the problem brings 

out the similarities between the dual surface wave' and 

the TEm wave usually assumed to be present in such 

geometries. (i.e., planar and coaxial). Both have 

no cut off • Further the field patterns stemmiig from 

the dual wave solution exhibit features of the TEm wave 

field patterns. In f act this wave combines the features 

of the TEM wave and the surf ace wave. So Barlow terms 

it as the hybrid TEm-dual surface wave mode• Barlow 

establishes that this is the natural mode that exists 

in parallel wire or coaxial transmission lines. The 

usual TEM wave solution is obtaining in the ideal 

situat ion• 

To arrive at the field components Barlov 

proceeded as follows. He assumes that the solution of 

the 2•. dimensional wave equation is representable as 

a linear combination of two surface waves. Cone guided 

by each of the two surfaces. For the planar geometry, 
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the components are EX  # Ey  • and HZ 	considering the 

Emode solution. It is to be noted that Barlow has 

tacitly assumed inductively loaded surfaces. For 

only such surfaces can support an E.-type surface wave 

mode. The transverse variation for the planar case is 

exponential whereas for the cylindrical case it Is 

governed by Hankel functions. 

Barlowls solution can be presented as follows: 

Namely, 

HZ  _ [Ai  euy + A2 euy 	a- 	jwt YX e  

Where Y = longitudinal propagation constant 

u = Transverse propagation constant 

= a- jb  

Thus the field is seen to be a superposition of two 

Z-enneck type • surface waves each of which is guided 

by one of the surfaces. 

Once H  is thus assumed, we may get E and E readily x 	y 

from it. 

Now Barlow makes a further stipulation tlMat 

Ex  = 0 at y = m i.e. at some level in the transverse 

direction 	the longitudinal component of the electric 

field vanishes. This leads us to infer that the two 

surfaces waves are in anti-phase, resulting in the 

cancellation of  the longitudinal component. The level 
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at which wuch a cancellation occurs depends on the 

relative amplitudes of the two surface waves. If 

they are equal in amplitude# then this level is at 

y = d/2 i• e. 	the central plane of symmetry. For the 

case of unequal amplitudes this occurs at a level 

nearer to one of the surfaces. It is to be noted that 

for the case of equal amplitudes, the two waves also 

travel with the same phase velocity and they are anti-

phase. Hence we get a complete cancellation of the com-

ponent EX  at the cent ral plane. For the case of un-

equal amplitudes, one of the waves travels faster than 

the other. Hence we cannot say that E x  = 0 at y = m. 

We can only say that E x  is minimum at this plane. This 

is because, we cannot get complete cancellation awing 

to the differing phase velocities of the two waves. 

We can say the same thing in terms of the 

impedances of the surfaces. If the two plates have 

identical reactances we get the two amplitudes equal. 

Hence E = 0 at the central plane. This we can call x 
the symmetric case. tf the two reactances are different, 

the wave amplitudes are different and Ex  = 0 	at a 

level off the middle. This is the asymmetric case•  

Barlow has taken E x  = 0 at y = m for the 

asymmetric case. This is not strictly correct as we 

have seen above. Ha ever, one can take it that the 
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minimum is close to zeros  if the phase velocities 

do not differ appreciably. Thus the field patterns 

which we derive  on the assumption that E = 0, at x 
y = in , are approximates However they throw con-

siderable light on the actual situation obtaining 

in the geometry. 

Barlow has obtained the equation of the 

electric field lines in the x- y plane. We show his 

results in a qualitative manner in Fig• Q. Referring to 

this figures we see that the surface wave feature is 

present alongside the TEM wave features. One may 

note that as the surface reactance . is reduced, we 

diminish the surface wave aspect and in the limit the 

field reduces to the TEM type., i.e. at zero surface 

reactance. The field pattern before us in Fig. 9,. is 

a distorted version of the TEM wave. Thus we can get 

the hybrid wave by a progressive increase of the 

surface reactance which accentrates the surface wave 

feature in the total field • And to enhance the 

surface reactance, we can coat the metal surface with 

a film of dielectric or introduce transverse corrugat-

ions in the metal surface: 

Barlow has extended this method of analysis 

to the coaxial case, by introducing suitable modif I-

cations warranted by a change of geometry from planar to 

cylindrical. His solution for this case is given by 
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(h r ) + C2H0(2)  (h r) 

and the components Er  and HQ are easily got from 

Maxwell's equations. Once again we see the superposition 

of two surface tC waves in the solutiob. 	Barlow lets Ex= 0 

at V = 	in the interspace between the two conductors. 

Thus we see that the calculations for the 

coaxial case t ,•a-re simple extensions of these in the 

planar case. The only difficulty is in the manipulation of 

the Hankel, functions while calculating the various 

quantities of interst like per density, for example, 

Barlow has obtained expressions for the impedances at 

the different interfaces. 

In an example which he considers in the same 

paper he has compared the two matching methods* and 

arrives at the conclusion that the setting up of the 

dual surface wave is the better alternative. In his 

second paper on the sane topic {4)  Barlow establishes that 

the hybrid mode is the natural mode whereas the 'TEM 

mode is a close approximation to the truth. Fort at high 

frequencies we have resistance as well as reactance 

exhibited by the supporting surfaces and so it is the 

hybrid mode that will be supported by the transmission 

lines By making the surfaces deliberately reactive,, 

we can alter the distribution of power flow across the 

cross section and th-is, in suitable circumstances will 
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will reduce the attenuation significantly as compared 

to the TEM mode. 

That the TEM mode can exist only in ideal 

conditions is clear because, we need a component of the 

field in •the direction of propagation to supply for the 

losses in the supporting surfaces. Thus, the hybrid mode 

with a longitudinal electric field compoten t is seen 

to fulfil the requirement better than the TEM wave. 

The two parts of this wave supported by the inner and 

outer conductor provide for a component of power toward 

the associated surfaces  thus over coming the surface 

losses. The degree of symmetry of this wave depends on 

the relative values of the two impedances. By deIi4era-

tely enhancing the surface reactance, we can accentuate the 

surface wave feature and thus make for reduced attenuation• 

Barlow analyses the st ripl ine and coaxial 

transmission line where the surfaces have been coated with 

thin films of dielectric• He assumes the hybrid mode 

as the only mode in the geometry* the w aveguide modes being 

cut off. Further he assumes that the longitudinal comp-

orient Ex  goes 'to  zero at a certain level in the transverse 

plane. 

With the solution as assumed above, the field 

components are readily evaluated and one can obtain the 

eigen value equation for the problem by matching the 

tangential field components at the various interfaces. 
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But the resulting equation is found to be complex. 

Hence Barlow assumes the transverse propagation 

c6nstant. Then for a given frequency the given para-

meters of the different media and the given separa-

tion between the plates, Barlow obtains the necessary 

thicknesses of coating t o 	and td  s for a range of 

values of m ( t8 corresponds to the thickness of 

coating on the lower plate and td to that on the upper 

plate) from the eigan value equation with the trans- 

verse attenuation as parameter. One can then obtain 

the longitudinal attenuations for each transverse 

attenuation• as a function of m. 

'We show the results in Fig. 10. We see from 

this figure that for the symmetric case the attenua-

tion is maximum. Thus to reduce attenuation one must 

interoduce asymmetry in the wave. Actually a minimum 

attenuation about half the maximum can be achieved 

when the zero level of the longitudinal component 

falls near one of the surfaces. Also there is a parti-

cular value for the thickness of coating corresponding 

to the minimum of attenuation.' 

Thus it is established that an accentuation 

of the surface wave feature and an introduction of 

asymmetry in the wave make for reduced losses or 

equivalently reduced attenuation which by a proper 

choice of the thickness of coating can be made to 
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be half that for the TEM wave. 

These results are once again confirmed for the 

coaxial case as well. 

Now these conclusions are to be valid at 

all f requencies• Hence, in particular at 50 c/s, 

we should be able to reap the advantage of reduced 

attenuation . But the usual dielectric coatings 

cannot result In large reactances at 50 c/s. Barlow, 

has employed Ferrite coated conductors. Actually 

Ferrite rings are incorporated in one of the c onduc-

tors. This is to circumvent the difficulty present.- 

ed by the brittle nature of Ferrates. It has been 
(7,8) 

experimentally verified by Barlow and Sen 	that 

it results in minimum attenuation when only one of 

the conductors is coated with the optimum thickness 

of 	dielectric and not while both are coated. Thus 

one can use thlkseferrite loaded conductors for a 

transmission line and benefit from the low attenua-

tion of the hybrid mode. This has been already expe.- 

riment ally demonstrated by Barlow and Sen. These results 

apply in the case of coaxia 1 lines as well. Millington 
(9) 

in his paper 	has expressed some doubts about the 

method of solution adopted by Barlow. The calculations 

of Barlow show that for a given t o  + t the attenua-

tion along the guide for the symmetrical case t o  = t 
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is equal to or greater than that for the quasi TEM 

mode t o  = td  = 0 o But there is a marked decrease 

in attenuation as to  + td 	is distributed more and 

more unevenly among the two surfaces. But as t o  ± td  

is increased the attenuation rapidly increases. 

Millington carrying out his own calculations finds 

that the attenuation is independent of the ratio t o/td  

at least for the case considered by Barlow Further 

there is not much variation in attenuation as t o  +td  

is varied. Millington also wonders how such large 

values of transverse attenuation can result from 

such thin films lot dielectric ehich figure in Barl owt s 

A 	 calculations. Further the conclusion obtained by 

Barlow that the attenuation is critical with the thick-

ness of coatings is, to Millington# rather surprising. 

He believes that these anomalies arise due to the 

manner of solution adopted. 

The direct method of attack would be for the 

assumed frequencys the constants of the media# the 

separation and the thicknesses of coating to and td  

one has to solve the eigen value equation so as to 

obtain the transverse attenuation. This is dasily 

done by numerical techniques. Then from the known 

transverse attenuation one is to obtain the lodgitu- 

dinal attenuation and from here the nature of the 

field is to be found out • 
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But Barlowt's method seems to be the reverse 

of the above. Barlow assumes Ex  = 0 at a given level 

y = m 	and the transverse attenuation as well. Then 

he solves the equations for the thicknesses. Thus 

the calculations become critical with the conditions 

assumed. Even though the assumption to start with is 

not far f corn the truth,# Millington believes that 

the computation however accurate would diverge from 

the true solution. 

Thus Barlow • s procedure a. side from being 

laborious is basically unsound, according to Millington. 

In a reply to Millington*s observations, B%rlow 

demonstrates the possibility of reducing the attenua-

tion by enhancing the surface reactances but he does not 

fully answer Millington''s objections. 

But theoretical procedures apart, the experimen- 
(6y?•8) 

t al work done by Barlow and Sen 	seem to 

uphold Barlow+s predictions. They have measured the 

Q. of a coaxial cavity resonator as a function of the 

thickness of coating on eithe r conductor. This 

demonstrated the existance of a particular value of 

coating thickness for which the loaded Q is a maximum. 

The attenuation due to the coaxial part of the resonator 

registers a minimum for the same value of thickness of 

coating. A measurement to determine the field distribu- 

tion 	in the coaxial line supporting the hybrid 



mode clearly illustrates the vanishing of the longi-

tudinal component E at a certain radius '4i ieh 

depends on the loading of the two surfaces. Further 

in another experiment they have found that we can 

get the minimum of attenuation provided we load one 

or the other surface and not both simultaneously. The 

loading of course has to be optimum. 

In a recent 	
(10) 

paper 	Barlow has attempted 

to explain the behavior of the hybrid mode in physical 

terms. Calculations show that the hybrid mode contains 

2010 more power than the quasi TEM mode for the same 

current in the inner conductor. Also the hybrid 

wave produces much less loss in the outer conductor, 

than the TEM wave. 

The calculations also show that the bybrid 

mode suffers less attenuation. This is brought about 

primarily by the redistribution of power across the 

cross section f of l o l ng the coating of the inner 

conductor. 

Because of the highly reactive inner conductor 

the field at the outer conductor is Ydeak. So the 

losses there are reduced. If the thickness is 

optimum, the added losses due to the dielectric are 

more than compensated and there is a reduction in 

attenuation. 
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Thus the experimental evidence is seen to 

support all that has been derived by Barlo' Especially 

the existence of a minimum of attenuation much lower 

than th-At for the quasi 	TEM mode, and a corro-s- 

ponding thickness of coating of dielectric s  the 

vanishing of the longitudinal component E  at a 

certain level in the transverse plane have been c on-

firmed. Th is leaves us in no doubt as to the e$is-

tence of the hybrid mode. The reduced attenuation 

is a physical reality and the method to achieve, this, 

namely by accentuating the surface wave feature which 

is in turn achieved by enhancing the surface reactances, 

has been vindicated• 

Another person who has contributed to the 
(5) 

theory of Shielded surface waveguides is J. R.Wait 

+fit is in order to observe that the present work is 

an extension of Wait's work. 

In a later Chapter we will have occasion to 

trace the steps formulated by Wait in his papers 

wherein he has attempted to obtain the various modes 

that would exist in a parallel plate waveguide with 

reactive guiding surfaces. Hence we rest by enumera-

ting the conclusions obtained by trait on his analysis 

of the problem. 

Wait assumes a TM type of solution comprising 

of the field components E 9  E and H . Sinc a we X y z 
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have a bounded structure,, Wait proposes a series 

solution for the wave equation. This series is made 

up of an orthogonal set of modes. (The orthogonality 

property is assumed by Wait). That is he takes 

_ 	 n  

	

H 	 an 	f n  (y) e 	
x  

z 	n 

	

Where a 	= amplitude of nth. mode n 

f n (y) = Transverse distribution of the nth mode. 

X 	= longitudinal wave number • n 
f n(y) is of the form 

f(y)  = C1 a-uny 	+ C2 euny 

where un  is the transverse wave Number of the nth 

mode. This form is obtained on substituting the series 

solution in the wave equation and solving the 

resulting differential equation in f n(y)• 

Wait then gets the modal equation an Imposing 

the boundary conditions at the two supporting surfaces 

on the field components. The modal equation is in 

variable u • Thus only those un  which satisfy the 

modal, equation can characterize the allowed modes 

in the structure. The real roots of the equation corres-

pond to surface wave modes and the imaginary roots 

denote waveguide type modes. Complex roots are not 

considered if we restrict our attention to lossless 

guides. 
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;gait *s conclusions are 

le There exists two surface waves in both the symmetric 

and a oymme t ric geometries. 

2. In the symmetric cases the field distribution are 

to be of even and odd types. 

3. There are an infinite number of waveguide modes. 

4+ The z- rO order waveguide mode is expected to 

degenerate into the two surface waves. 

In his consideration of the real and imaginary 

roots Wait has restricted himself to very special 

cases* perhaps for simplicity. Hence h 	results are 

not of much significance. 

On the assumption of the orthogonality of the 

diffe'ren* modest  Wait has solved the excitation problem. 

For the arrangement where a voltage has been set up 

across a slot at y = ys  in the transverse planes he 

has derived the expression for the amplitude of the 

nth mode and from there the power carried by the nth 

mode. The assumption of orthogonality really simplifies 

these conclusions. He obtains the ratio of surface 

per , to the power in the nth wave guide mode as 

P 	kpd 
e 	where 

Pn 

P 	= Surface wave power. 

Pn  = Power in nth waveguide mode. 
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p 	parameter relating free space impedance 

to surf ace impedance. 

k 	free space wave number 

d 	separation 

Thus if kd is large one can have more power in the 

surface wave. 

Th-seA he proceeds to consider the lossy case. 

For this he merely extends the analysis for the loss-

free case. He replaces parameters p and q (q is the 

parameter similar to p which is defined above) by p(1-I 0) 

and q(1 - i S d ) respectively ( to take into account 

the surface losses ) in all his previous results. 

Hence Wait concludes that there are not only 

surface wave modes present, but also the enclosed waveguide 

modes, once we resort to shielding. So we have to take 

extra care to prevent contamination of the surface wave 

mode by the other waveguide modes. 

In the present works, to be presented in the next 

Chapter, the author has tried to verify Wait's conclu-

sions and especially his speculations. Accordingly a 

detailed analysis of the model equation with the 

help of the computer was made and this has confirmed 

some of 	results and has contradicted him on 

some point s• A case in point is that the zero order 

mode does not degenerate into two surface waves but 
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into only one surface wave. There is a surface wave 

which exists down to zero frequency and the other 

one turns into the waveguide mode of order zero as 

the frequency is varied. Further evidence on hand 

negates the type of orthogonality mentioned by 

1`°ait. This renders the excitation problem much more 

difficult. Lastely it has been possible to link. Barlow*s 

results to Wait's results. The wave which exists down 

to zero frequency is of the Barlow type and thus 

in Wait's language Barlow • s wave is got when there 

is a large interaction between the two component surface 

waves. For no interaction we have two surface waves 

disappeared and becomes a waveguide mode. By a suitable 

choice of frequency and parameters of the system, we can 

make this waveguide mode to be cut off. So we are left 

with only one surface wave which propagates and this 

is exactly the hybrid mode discussed by Barlow . It 

has also been dhown that proceeding similar to Barlow,ts 

approach we can arrive at the existance of a second 

surface wave. This is shown to be the type for which 

dE
x=  0 at 	y = in , Thus this work has bridged 

dy 

the ipp approaches. 
0 



CHAPTER III 

INVESTIGATION OF THE MODES IN A PARALLEL PLATE GUIDE 

WITH REACTIVE GUIDING SURFACES 

3.1. 	The problem to be solved is as described below. 

Given a system of Cartesian coordinates, x, y, z, 

we consider two parallel plates aligned as shown in 

Fig. 11. The lower of the two plates is defined by 

the plane y = -d/2 and the upper one is defined by 

the plane y = + d/2 . Further the lower plate has 

a surface impedance Zo  while the upper one has a 

surface impedance $d• The distance of separation 

measured along the y - axis is d . The plates extend 

to infinity in both x and z directions. 

We are interested in f inding the E and H 

configurations that can be supported by the two plates. 

In the solution we are trying to seek TM 

and TE type of field configurations which would meet 

the boundary conditions• 

The TM type of field solution is made up 

of the three components E E and H while the TE x y 	z 
type solution has E s H and H for its components. 

Y 
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Even though the surface impedances Z0 Z 
may in general s be complex we restrict our atten-

tion to the situation where they are both purely 

reactive. 

The dielectric which separates the two plates 

is assumed to be air and hence can be taken to be 

practically loss-free. Thus the whole structure is 

loss free. 

We express the surface reactances in terms 

of the free space wave impedance r~ (i.e. 120 Tr 

We means 

zo 	=J r; P 	; Zd 

_ 	k 
( —

E 
)p 

jr q 

k 

WE 

Here 	k = free space wave number 
0 

0 = free space wave length • 

1Y = 27t f 

f = frequency. 

E = free space permittivity. 

p and q are positive real parameters th1ch signify the 

comparative magnitude of the impedances Z. s Zd vrtith 

reference to the *ree space impedance. Further we 

are not concerned how the reactances are produced. 

We assume them to be already there. 



M 46 - 

Now we outline the procedure to arrive at 

the TM and TE type of solutions. Here we follow 
(s) 

Wait's approach as found in his paper • 

The Solution; 

We begin with the two Maxwell's equation 

of interest. 

• x H = JWEE 1 
...(1) 

vX E =- J W A H 

E s H 	refer to the electric and magnetic field 

intensities. E , k are the parameters of free 

spaces with their usual significance. 

J = imaginary Number. 

For the TM type solution one starts with 

H , the z- component of the magentic fields which 
Z 

is uniform in the z- direction. 

For the TE type solutions, we start with E z 
the z- component of the electric fields once again 

uniform in the z- direction. 

The uniformity of E and H in the z- direction z 	z 
is a natural consequence of the supposed infinite 

extent of the plates in the z- direction. Even though 

this is not practicable one may choose the z- dimension 

to be several times the y- dimension. 

We treat the two solutions parallelly, for 

this would bring out the duality between the two 
1 
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solut ion Be 

Wait utilizes a universal principle valid 

for all bounded structures in the course of his ana- 

lysis. That is the field solution pertaining to such 

a structure can be expressed as a discrete spectrum 

of modes that are mutually orthogonal. Or in other 

words one is obtaining a s eries solution for Maxwell's 

equations. The orthogonality property makes for the 

independent carriage of power by the different modes 

and this in turn helps one to expressthe total power 

carried as the sum of the powers in the individual 

modes. 

The form of the series solution proposed by 

Wait iss 

zE a n  f n  (Y) e.j  X  n x 	... (2 •) 

Here an  = amplitude coefficient of the nth mode. 

f(y) = Transverse variation Of the nth mOde. 

N 	= longitudinal wave number of the nth mode. 
n 

The separability of the wave equation in a 

cartesian coordinate system has been taken advantage 

of while writing H as a product of two functions z 
one of which depends on y only and the other depends 

on X only. There is no z•. variation because H z 
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is uniform in that direction. This is because of the 

essentially 2•• dimensional nature of the problem. 

From $Z s we easily get Ex and Ey as 

1  ~~ H 
z 

£x 	,fw E 	y 

1 	Hz 

Ey 	Jw E d x 

So to completely determine the field all one 

has to do is to find the following* i•e•s 

a 	s f 	(Y) and )̀ ri n 	n  

As one would see later, f n (y) is to be 

determined by inserting the form of Hz 	into the 2- 

dimensional wave equation written for the region 

d 	 d 

When we impose the boundary conditions on the fieldst 

we get the modal equation i.e., the equation to be 

satisfied by any field configuration that is to exist 

in the space between the two plates. Since the boundaries 

are defined by the planes y = + d/2 , one naturally 

expecto s these boundary conditions to determine the 

transverse variation of the fields. So these constraints 

would determine the transverse wave number Un • From a 



knowledge of un , 	aa $ be easily derived. 

To determine an one has to know the nature of 

the excitation. Given this it is easy to calculate the 

individual amplitudes if the, modes are orthogonal* Wait 

assumes, that they would be orthogonal. But during the 

present investigations evidence has been obtaire d which 

points to the contrary i.e., the modes are not orthogonal 

in the sense of Wait. Still the power  carried by the 

individual modes might be independent. For there are diff- 

erent kinds of orthogonality relations. It still remains 

to be established that precisely is the kind of ortho-

gonality that prevails in the system considered. We 

discuss this more fully in a latter section. 

Out object is to determine the form of f n(y) 

Now HZ 	has to satisfy the wave equation in 

the region (-d/2 , ç d/2 ) 

2 2 
-.. + 	a ._.,. + k2 HZ -- O  x2 a y2 

Inserting the form of Hy 	as given in (2) we have the following 

differential equation for f n(y) 	i.e., 

f" 	(Y) + ( k •-)n) fn(Y) 	= 	0 • • • (6 ) 

Write un 	= 2 (~, n 	k 2)1/2 

Then fn (y) - u2 fn (y) 	-- 0 ... 	.... (6) 
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is the differential equation. 

From this f n (yX can be easily deduced to 

be 

	

f n(y) = C1eun  Y 	+ C 2  e^unY 	.... (?) 

Derivation of the Model squat ion. 

For this we impose the boundary conditions, 

= Z 
H 	- d 	o 

Ex 	 - -Z 
d 

z  y= + 2 

i.e. the wave impedance looking in the direction of the 

plate in quest ion must equal to the surface impedance 

of that plates at that plates This is what we term 

as matching the field to the plate. 

Naw s 

	

I 	 f t n(Y) 

j3 	 .Jw C 	f n  (Y) z 

d ( f n  (y)) 
Where f' (y) 	- 	

dy 

Nov f n  (y) 	= C ()un y + C2 e  un y 

-u and f n (y) 	= un 	C1  a 	., CZ a  n Y 

The first boundary condition in (8) can be shown to 
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result in the equation, 

Ci ~un - ,~ w E Zo j - C2 eun 'Lun + WE Zo j 
= 0 	...(l0) 

The second condition in (8) similarly yields the 

equation 

Cl 
un + J w Z j - C2 e-und 

IU 
n - i w E Zd 

= 0  

For non trival values of C1 and C2 ' the determinant 

of the system of homogeneous equations in C1 and C 2 

(10,11) must vanish. 

This yields} 
-u d 

(un - j w E Zo ) ( un- 3 w C Z46d) e n 

u d 
( un + jJw EZ o) ( un + J w 	Zd ) e n. 

which in turn reduces to the identity, 

un - J w E Zo 	U ^ j w E d2 	-2 un d 
e 	=1 

un + J w E, Zo 	u n + J w E Zd 

.... ( 2) 

(12) is called the modal equation for the system. 

Each value of u 	that would be a solution of (12) 

characterizes an allowed mode.. 

We will consider real and imaginary roots 

of (12) . Complex roots are not of interest because 



-. 52 . 

the structure we take up is to be loss-free. 

As mentioned earlier, the real roots 

signify surface wave modes and the imaginary roots 

give the waveguide type of modes. As the root changes 

f.rom real to imaginary we go over from a surface 

wave mode Into a waveguide mode. 

The total field is thus composed of a combin-

ation of surface wave and waveguide modes. By wave-

guide modes we mean those modes which are common to 

parallel plate waveguides with perfectly conducting 

guide surfaces. We note that for Zenneck type of 

surface wave modes to be supported. the surface has 

to be inductively reactive ( we are having T 'f type 

of modes in our minds). Thus when the walls are per-

fectly conducting we cannot have Zenneck type surface 

waves. Then only the waveguide modes exist. As we 

enhance the reactance f the surface we start havdng 

the surface wave modes as well • 

In (12) let us put 

Z o  = 	J. ri p = 	J ( k/'WE ) p 
where the symbols 

( k /WE ) q 

their pre-assigned meanings. 

(12) becomes on this substitutions 

u - k p 	u- k q 
	1 	e 2 u d 

u+ k p 	 u+ k q 
.... (13) 
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(13) is the characteristic equation for the loss*►less 

case we are investigating. 

We now show that for the TE type solution, 

the modal equation is identical in form with that 

corresponding to the TM case. 

TE Type Solution: 

We start with Ez 	here and proceed exactly 

as we have done for the T M case. 

So we let 

X  
E = 7 an  f n(y) e-jXn 	... (14) 
z 

with symbols having their usual meanings. 

a Ez 

x  	'a x 

The corresponding boundary conditions are 

Ez  

- 	- .Z0 	at y - -* d /2 
X 	 ... (18) 

at y = + d/e 
Jx 

An examination shows that f (y) is still n 
the same as in the T (A case. 

An application of the conditions k16) on tie 

field components is found to yield the model equation 

for this case as 
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~ w 
u •. n 	Z 

0 

J w 4 
u + n Z 

0 

j w A 
Un Zd 	 -2 and 

e 	=1 
j w u 

un + ~. 
Zd 

. . . ('17) 

(%7) is the dual of k12) got for the TM case. 

H cwever one expects TE modes to be supported 

by capacitive surfaces. So defining 

Zro 	= - j r{' p 	=  

Zd 	- - J j q -  

and inserting these in (17) , we obtain 

_ 
L 

k l_ .. un 	k T 	u 
p._I 	 n 	q 	-.2 u d 

= e 	n 	.. ( 18 ) 

un + p 	 un + 
1 

Letting — = p' and q - q ~ y we p 

write (18) asp 

U n . k p t 	 U -. k q' 	.-2u d 
- e 	n 

un + kp * 	 u„ - kq I 

which is identical to (13) except for a change of 

p to pt and q to q• . But the behaviour of the roots 

would be the same. 
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Hence the roots,, real and imaginary, of (13) for the 

TM case with inductive boundaries) is identical 

with the roots real and imaginary of 19) which re-

lates to the TE case with capacitive boundaries. 

This is as expected. For the T M case is 

the dual of the TE case and the inductive boundary 

is the dual of the capacitive boundary. So from a 

consideration of duality TE type solutions are also 

possible. 

Now it is interesting to consider whether 

it is possible for T 14 type surface wave and wave 

guide type modes to be supported by capacitive sur-

face s. 

For this 	replace Zo  and Zd  by - J n p and 

- 3 1\  q 	respectively in b3) we get 

U U - kq '  i 	
n 	 2 un  d 

L = e 	.. (20 ) 
un  + kp 	un  : k q 

which shows that we do not have any real roots. But 

we do have imaginary roots. 

So one concludes that T (if type surface wave 

modes cannot be supported by capacitive surfaces. But 

we can have TM type waveguide modes supported by 

the same surfaces. 

Hence we can infer that TE type waveguide 

modes would be supported by inductive surfaces though 

not the TE surface waves. 
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So one might sum up the types of modes one 

expects in the geometry considered. 

%* consider the case of inductive boundaries. 

For the case of capacitive boundaries the same con-

clusions hold except, that we have to read TE for TAM and 

vice versa. 

Hence for an inductive boundary f we haves 

is TM type surface waves (real roots of equation (13)) 

ii. TM type waveguide modes (imaginary roots of equation 

(13)). 

iii. TE type waveguide modes (Imaginary roots of equatial 

(20) ). 

3.2. BEHAVIOR OF THE REAL ROCTFS CF THE MODEL EQUATION 

(FOR THE TM CASE) 

We recall that the model equation of interest is 

given by (13). 

un kp 	un - kq  
....~........_ 	.. 	._~. 	.,....._........ 	= 	0 
u + kp 	un + kd n 

We normalize the equation and write it an 
.1 

X _..~. P.~ 	a-2X ...(2t) 

X + P 	X + Q 

Where X = un d 
P = kpd 
Q = kq d 
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We plot equation (21) graphically in Fig. 12. 

The real roots are got by the intersection of the 
-2X 	 X-? Xh 

eatponential e 	with the cIrve 'pi = 	- 
X+P 	X + Q 

As we vary P and Q we can have different shapes for 

this curve and the intersections can be modified. 

We restrict our attention to positive values 

of X only, for reasons which are apparent. In general 

we have two intersections* that stand for two surface 

wave modes. 

The roots can be expressed generally as 

X1 	= P "► a1  s X2 =Q  + $2  

where 8 fs are variable quantities depending on the 

values of P and Q. 

For large values of P and QP0 

i.e.z the roots become nearly 

X1  r; P i X 3 Q • This is the case when P and 

Q both exceed 5. We always take Q >P0  

For values of P 1  2 ' P ( 5 , one sees 

that the b• s are small quantities. This is there is 

only a small departure from the previous case. 

For P still smalle rt the $'s become fairly 

large say Of the order of 0.25 to 0.5, and the departure 

is still more marked. From the figure it is clear that 

the root X1 	moves toward zero more rapidly than 
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X2  does as the values of P and Q are decreased. 

In fact at a certain value of 	P 	9 for a given 

Q9  X1  becomes zero, while X2 	has still some 

positive value. It turns out that X2  is different 

from zero as long as Q is non zero and becomes zero 

when Q equals zero. 

This is what can be called as the thresh-

old phenomenon. Ihat ia,there is a critical value 

of P i for a given Q s only above which these are 

two positive real roots. 	Blow this value p there 

is only one positive root (that is X2)• In physical 

terms: above this critical value of P (for a 

fixed Q ) we have two surface waves propagating 

and below this one of them disappears. 

Wait has called the cases wherein P and Q 

are quite large (says in particular > 5) as the 

case of ono interaction(. Here the two surface 

waves do not interact with each others or in 

other words they cling to their respective 

surfaces• and propagate with different phase 

velocities, one of them travelling faster than 

the other. 

For P and 	Q s moderately large,we 

have the case of 'small interactions, and the 

third case,with P sufficiently small becomes 
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the case of t Large interaction'. And it is only 

in this case of large interaction that we witness 

the threshold phenomenon i.e. wherein one of the 

surface wave disappears. 

Whenever there are two surface waves propaga-

ting in the geometry* the one attached to the lover 

plate travels faster than the other wave. Hence this 

wave attain,s the velocity of light first. At this 

point it disappears* while the the other wave still 

travels slower than light. 

We show in Fig. (13) the occurrence of the 

threshold graphically. For a particular choice of 
XIP 	X - 4' takes P and Q the curve y = 
X+P 	X +t 

the form (1)* in the figure and now it has two inter-

sections with the exponential. For a second choice 

of P and Q the curve becomes as in (2) in the same 

figure and now there is only one Intersection with 

the exponential. 	The number of intersections depend 

on the critical slope of the curve at (X = 0 9 ) = 1). 

Thus there should be a gradual transition 

from the one extreme to the other as this slope at 

(0,1) is varied. From the figure It is clear that 

if the slope of the curve at the said point is 

smaller than that of the exponential at the same 

point we have two intersections and if that slope 

~!r 
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is greater we have only one. So the case when the two 

slopes are equal* should define the transition point 

between the two extremes. At this point one of the 

roots just goes to zero. This is readily seen to 

be the threshold phenomenon. 

The slope of the curve is determined by P and 

Q • Hence the threshold condition is to be in terms 

of P and L . 	Thus one may get the threshold condition 

by equating the slopes of the curve and the exponential 

at (0,1) . i.e., 

d 	X- P 	X-  Q1 	 d 
dx I X+P X+QJ 	dx 

X=0 

which on evaluation reduces to 

1 	1  
+ 	= 1 	....(22) 

P 	 Q 

(22) is the threshold equation. 

If Q = Ps 

We find that the threshold value becomes, 

pth ' 2 (where p th = threshold value of P) 

For Q >) P  

Thus the threshold value of P range from 1 to 2 as 

Q takes different values with Q > P always . 
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Hence we see that under all circumstances we 

have one root s i.e., X2  = 	+ £6 (Q) , which 

vanishes only when Q = 0 1a (Q) Is the 	Increment 

depending on the, value of Q . 1(Q) varies inversely 

with . Hence we have one surface wave which propa•. 

gates down to zero frequency and its phase velocity 

is always smaller than that of light. 	And above 

the threshold value of P, which depends on the value 

of Q , there are two surface waves. 

3.3.  BEHAVIOUR OF REAL ROC7TS FOR THE SYMMETRIC CASE 

i.e. WHEN P=Q 

The characteris-tic equation becomes 

X -- P  
'` a 	...'23) X + P 	- 

In Fig. 14 . we shay the intersection of the 
x -p curves y = 	X +p with Y = + e~X. 	In - 

general# two intersections are possible with the 
__X  ""X  of the two exp onent ial s y= e 	and y= - e 

-X  y = + e 	always has an intersection with the curves 

whereas the other curve (-e-X) 	may or may not produce 

an intersection. Thus* at one point, depending on 

the value of P 9 there will be no intersection with 
.,X the - e 	curve. So once again we have the threshold 

in evidence. 
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That the curve will have an intersection 

with the negative exponential depends on the slope 

of the curve at (O~4) in relation to that of the 

-e X curve at the same point. If it is smaller 

compared to that of the exponential then we have 

an intersection and if it is larger there can be 

no intersection. Thus when the two slopes are equal 

at (Os-1) i one of the roots just goes to zero# as 

in the previous case. 

As the slope is determined by Ps the condi-

tion of equal slopes determines the threshold value 

of P 

i.e. 
X 

	

d 	(-e ) 	d _
____ 

	

dx 	 dx X+P 
X=O 	 X =0 

This yields 

Th = 2 

previous calculations. 

and this confirms our 

In Fig. (15) we demonstrate the threshold 

condition graphically. 

We see when P = $ 0 the curve is tanger1- 
-X tial to -e 	at X = 0 and this defines the transi- 

tion, point when one cP the roots just vanishes. 
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a.  Behaviour of Real Roots as P is Changed 

For large P , say in excess of 109  the roots 

are identical i.e. we have the repeated roots 

x = P s P. 

This means that there are two non-interacting 

surface waves, each travelling with the same phase 

velocity. They cling to their respective surfaces. 

(b) For moderately larges P s well below 10 but above 

22  there are two distinct roots represented by 

X1 	= P-ta (P) 

X2 	= P + L\ (P) 

where 	(P) is a quantity which varies inversely with 

P. L(0) signifies the amount of interaction. For 

large P It is nearly zero. 	ence it describes the 

case of no interaction. For moderately large P it is 

significants though small. This is the case of small 

interaction. 

(c) P <2 

For this case only one surface wave exists and 

it is characterized by the root 

X2 	= p + L\(P). This is the case of large 

into ra.ctiOn. 



Thus all the phenomena observed in the un-

s*gnet ric case are seen to occur for the symmetric 

case as well. It should be so, for it is only a 

special case of the more general unsymmetric case. 

Using the compute rs the roots of the charac-

teristic equations were calculated for both the 

symmetric and unsymmetric 	cases. For the 

symmetric case the variation of the roots with P 

was determined. For the ynsymmetric case the varia-

tion of the roots with P , was determined while 

as kept fixed. Furthers the calculat ions were rep-

eated for different values of Q/f . 

We display the results of the calculations 

for the symmetric case in Fig. 16. This figure 

confirms all our predictions. 

We see three distinct regions named, A,BsC 

in the figure. A is the region of large interaction 

B is that of small interaction while C is that of 

no interaction. Wait has confined his attention to 

regions B and C while we have extended the cal- 

culations to the region of large interaction. 	Here 

in region A we see the threshold phenomenon 

occurring* or in other words one of the roots vanishes. 

It is worthwhile to point out that Barlow has been 

considering region A when one surface wave has already 
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disappeared. 

The threshold value of P i.e. P 	= 2 has 

been confirmed by calculation. This is in accord 

ance with the threshold condition got for the 

symmetric case earlier. Thus our ideas about 

threshold have been verified. 

Next we show in Figs. 17 and 18 the results of 

calculations for the unsymmetric case. 

Here the variation of the two distinct roots 

with p (while Q/P is fixed] is shown. All our coni. 

clusions from the threshold equation 22) are confirmed 

by the calculations. This is evident from the figures. 

The threshold values as got from 22) for differettt 

Q/P values agree with the calculated values. Thus 

the threshold equation is established. The existence 

of three distinct regions of interaction is once 

again confirmed. 

3. 4.  INVEST IGA.T ION OF THE IMAGINARY ROCYTSQ' THE 

CHARACTERISTIC EQUkTIO FOR THE SYMMETRIC CASE 

For this one makes the substitution 

u = j k C' (where C is a positive real parameter) 

in the characteristic equation. 

For the symmetric cases one( making this 
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substitution for ut one gets 
2 

C - j k, 	- 
e 2 j k c d 	

..(24) 
C + j p 

Wait replaces 1 on the right hand side by a 	1m  

with in taking the values 0, 1, 2, 3...... Tt is found 

that this assumption is by no means necessary. In 

fact it does not yield anything new* ,',o we keep 

I as it is 

C_ j p 	 j kcd 
.. 	 _ + e 	 04(25) 

C + jp  

his is actually two equations, one resulting when 

we consider the positive sign and the other arising 

when we take the negative sign. We consider in 

particular 

C - jp 	_ e jkcd 
C + ip 

On some manipulation this can be written as 

jp 	 1.e  jkcd 

C 	 1 + e jkcd  

kc d 
- j tan 

2 
kcd  or p/C 	-- - tan _ _  

Similarly the second equation can be reduced to 

p/6 	= 	Cot kcd 	..... (27) 
2 
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(26) and (27) yield the imaitinary roots of the 

mod4l equation for the symmetric case and these 

roots in turn represent TM type waveguide modes 

that exist in the geometry. 

We can have TE type waveguide modes ms well. 

Proceeding on similarlines we obtain the equations 

which def ine the imaginary roots of the equation(20) 

These represent the TE type waveguide modes that 

can exist in the geometry. 

These are 

pt = 	tan ( ked) 	... (28) 
C 	 2 

= *at. ( kcd)  
C 	

... (29) 

where p' = 1/p. 

Now we turn our attention to the TM case. (26) 

and (27) yield each one of them an infinite number 

of waveguide modes. We represent the equation (26) 

graphically in Fig. 19. 

We normalize the equations (26) and k27) 

bef ore representing them on the graph. 

That is we have 

- K1  / X 	= Tan X and K1  /X = Cot X 

for the two equations. 
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kp d 	p 
Here K 	= 	= __,__ 

2 	2 

kcd 
and 	K 	= 	.r...._ 

2 

We confine our attention to the intersections 

on the right of the origin. This is because of symmetry 

considerations. These intersections on the lefts do 

not giveanthing new. 
A 

In Fig. 19, the positive roots lie in the inter- 

val 

r . (2n-,1)  Tr 

L 2  
n'R 

n= 1,2....etc. 

For large P ,. the roots are dose to 

On 	1) iT 	and for small P they are close to n 7►'. 
2 

n  = 1 gives the first order mode and n = 2 

and so on give the higher order modes. 

Now in Fig. (20) , we 	show equation 27). 

Now also there is an infinite number of wave-

guide modes. But these are distinct from the former 

set in that they have different cut off frequencies 

and they transverse variation ire different. 

We notice from the above figure that we may 

have an intersection in the interval (0,1r/2) or we 



we may not have. This depends solely on the parameter 

Kl 	In particular one notices that if K1  is ) 1. 

the curve K1/ X lies above the cotangent curve so 

there is no intersection possible . For KIC _A 

the curve Ki/ X lies below the cotangent curve 

and yields an inersection in the range (0 ,. V/2). 

If one remembers the inequality Tan 6 > 0 

(the equality obtaining for small 6) one would 

be able to comprehend the above argument. From 

the above inequality it follows that Cot 0 	1/6 

(equality holding for small 0) . Thus K1! $ with 

Ki  ? 1 	is definitely greater than Cot S for all 

6=in the range (01, 'Tr/2). Hence the corresponding 

Ki/ $ curve lies entirely above the cotangent 

curve yielding no intersection. Then Ki/ 6 with 

Ki  ( 1 	would be below Cot 6 for a certain range 

of 0 ( 0 , Bi ) , where $1 	0 	is the point of 

intersection between the cotangent curve and the 

hyperbola K1! a . 61  being "C lr /2 at the same 

time. Thus with K1  ) i we do not have an intersec-. 

tion and with Kl  <' i 	we have an intersection 

in the interval ( 0 , 7►` /2) . So Ki  = 1 should 

be the transition point where the intersection just 

goes to zero. 
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As  K1  is gradually increased from O to 1 the 

intersection point gradually moves from 'R /2 to zero 

and beyond K1  = 1  there is no intersection. Thus 

we have a threshold phenomenon. 

We call th$t mode represented by the inter- 

section in the range ( 0 , 7P/2) as the zero order 

mode. This zero order mode exists if K1  < I and it 

does not exist for K1  > 1 . 

K1 	= I means P = 2 . Thus the threshold 

condition for the zero order waveguide mode is also 

given by P = 2 . We recall that P -1 2 was the point 

at which one of the surface wave disappeared. 

Now if we say that the zero order mode becomes 

the surface wave at P = 2 we would be able to explain 

the results. As the reactance of the surface is gradu-

ally increased from zero# the zero order mode which 

is the dominant mode gradually tends -toward the 

surface wave. The cut off frequency of this wave-

guide mode gradually approaches zero as P tends to 

2. Then the' mode can not propagate as a waveguide 

mode; so it turns into a surface wave mode. With the 

computer calculations were made for the imaginary 

root in the interval ( 0 , 7r/2) and the variation of 

this root with P was. observed. The plot appears in 

Fig. 21. This figure confirms the above observations. 
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We see from this curve that X-) O as the 

reactance is increased. X-30 means k C -40 

Now C = 1 specifies the cut off condition. 

So kc ---~ 0 	as X-2k 0 

or 21T / c ~---) 0 as X-* 0 or  

This shows that as the reactance is increased* X c 
the cut - off wavelength of the zero order mode 

tends to infinity• But a TM type waveguide mode 

existing in a bounded structure cannot have this 

property. So It becomes a surface wave at the 

threshold. 

It has also been verified that there is only 

one intersection in the interval 

0< l X I ( lr /2 

For TE type modes which may also exist we 

have to consider the equations 

= Tan X  
X 
K 

— 	= Cot X  
X 

as derived earlier. 

:Equation. (30 ) is depicted in Fig. 22 once 

again we consider only positive roots• These are seen 

to be infinite in number. r1'hey lie In the interval 
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( n '►r , (2n + 1) Tr /2 ) n = Os.1:2.... etc. Thus 

we have a zero order mode here. This is found to 

exist for all values of P including zero. So there 
1 

is no threshold phenomenon. This is as it should 

be. For we have no real roots for the corresponding 

characteristic equations implying the absence of TE 

surface waves. Hence the wavegulde mode cannot 

become a surface wave or there is no threshold. 

Equation (31) Is shown in Fig. (23) . Here 

the positive roots lie in the interval ( ( 2n-1)*/2, 

n'►r` ) . They are once again infinite in number. But 

the modes represented by theses are different from 

the modes got from equation ( 30) in that their cut 

offs frequencies differ and their transverse varia-. 

tion is different. 
1 

Thus one finds that one has 

to Two TM type surface waves. 

2• Two types of TM waveguide modes. 

3. Two types of TE waveguide modes. 

The waveguide modes being infinitely many. 



I 

3.5. THE CHARACTERISTICS OF THE MC)ES EXISTING IN 

THE SYMMETRIC ARRANGEMENT (i. e. P = Q ) 

We now consider in more detail the transverse 

variation f n(y) for the symmetric case. 

We know 

u 	 - u y 
f n (y) = CI e ny 	+ C2 e 

we recall equation '10) i.e. 

C1 (un -, -I  E Z o) - C2 eun d (u + jw C Zo) =0 n 

This is got on the insertion of the Boundary condi- 

tions  as specified in (8) 

un " j w E Z o 	-u d 
Now C = 	 e n 	C1 

2 	Un +i w EZa 

Ro e^ and Cl 
un - •j w E Z 

Where    R = 	 o 
0 	un + J W E Zo 

For the reactive surf aces we are considering 

u + kp 
R 	= 	

n 	 ...(32) o 	un ` k p 

Now f n(y) can be written as 
_  ~u y 

f n (Y) 	= C1 [Guny + (Ro end ) e n 
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represents the odd type of surface wave which 

sin h (uy~} for its transverse variation. We remember 

that this real root vanished for a particular value 

of P. 

The other real root corresponding to the 

equation 

un kp 	-U d e n 
un + kp 

represents the even type of surface wave having Cosh (uy) 

for its transverse variation. "leis wave travels slower 

than the odd wave and does not vanish until P = 0 . 

con side ring imaginary roots we put u =3 k C in 

(33). 

This becomes 

R e-j kc d 	_ + 
0 

or 	C - g̀yp 	= 	+ eJ k cd 

	

C +yip 	- 

which coincides with the equations previously obtained 

while we were dealing with the imaginary roots. 

Thus each imaginary root of the characteristic 

equation represents either an, even or an odd mode, 

the even mode having a cosine distribution while 

the odd one has a sine distribution. Further it is 

easily seen that the odd waveguide mode of zero orders 
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-u d 
Where C2 has been replaced by Ro e n C1 

Say that we wish to have an odd or even distribut- 

ion in the transverse plane. That means f n (y) should 

be either an odd or even function of y 

Clearly this is possible whenever 

R0 0 and 	= + 1  ....(33) 

From (32) we can write (33) as 

un + kp 	U d • e 	n 	- 	+ 	1 
un + kp 	` 

or 
u - kp
~ -  -und - + e 
u n + kp 

'l his is nothing but the characteristic equation for 

the symmetric case. Th O. , every u 	1 h is h satisfies 

the characteristic equation would represent a mode 

of either even or odd symmetry. 

Thus for real roots we have even and odd 

types of surface waves and the imaginary roots give 

even and odd type of waveguide modes. 

In particular the real root which satisfies 

the equations 

- 	- d 
un 	kp 	.. 	_ e un 

un + kp 
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represents the odd type of surface wave which 

sin h (uy} for its transverse variation. We remember 

that this real root vanished for a particular value 

of P. 

The other real root corresponding to the 

equation 

un  "" kp 	-un  d 

un  + kp 

represents the even type of surface wave having Cosh (uy) 

for its transverse variation. ''his wave travels slower 

than the odd wave and does not vanish until P = 0 . 

won side ring imaginary roots we •put un  j k C in 

V33). 

This becomes 
-jkcd Ro  e 

or 	g̀yp 	= 
C + iP 

+ e j k ed 

which coincides with the equations previously obtained 

while we were dealing with the imaginary roots. 

Thus each imaginary root of the characteristic 

equation represents either an  even or an odd mode, 

the even mode having a cosine distribution while 

the odd one has a sine distribution. Further it is 

easily seen that the odd waveguide mode of zero order, 



- 73 - 

obtained while considering  the equation 

C -  j L_ 	= - e j kcd 

C +,jp 

exp,(rtences the threshold phenomenon• and goes 

over into the odd type of surface wave at the 

threshold value of P (i.e. P = 2 ) . It is 	thus 

in keeping with our expectation that the odd type of 

waveguide mode should become the odd type of surface 

wave and vice versa. 

For the TE case similarly we have odd and 

even types of waveguide modes, exactly akin to the 

types we encounter for the TM case. 

A physical reasoning would demand that for 

the symmetric case such even and odd types of modes 

exist. In fact :gait has predicted such a thing in his 

paper. kt is satisfying to note that the actual con-

clusions support the physical reasoning. 

3.6. IMAGINARY ROOTS FOR THE UNSYAD ETRIC CASE 

We start with the relations# 

C - ip 	C - jq - 	jkcd 
= e 	 ...(33)  

C+ ip 	C + Jq 

this was the result of putting u = jkc in the 

appropriate characteristic equation (13). 
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Taking square roots on - both sides of (33) 

we haves  

(C- J p ) (C-jq)  
(C+3 p) ( C+j q) 	" 

... (34) 

Taking first the positive sign before the exponential, 

we have, after effecting some algebraic manipulations' 

[(C2 - pq) + j (p+q) C 	- (C 2 - pq ) " j (p+q)C 

J
(C 

2.pq) +j (p+q)C 	+ 	(CZ -pq) - .J (p+q)C 

kcd 
--. .., J 	tan 	.... (35) 

2 	 2 
writing a = C - pq 

b = C(p+q) 

'e write (35) as 

a + jb 	- a - Jb 
kcd 

_-j tan  
a i+ jb + J a 	 2 

Simplifying LHS, 

we have 	2 	2 	 ked 
-----~ -- tan 

2 b 

Repeating the above for the negative sign before the 

exponential* we have for the second equations 



- 

	

a -. a2 + b2 	 kc d 
= 	Cot 	 • .. (38) 

b 	 2 
Thus the imaginary roots are given by the following 

set of equations* 

(C 2~ pq ) -I(C 2 + P2 ) (C2 + q2 ) 

C ( p + q) 
kc d 

= tan 
2 ... (39) 

	

or 	= - Cot kc d /2 

To verify the accuracy of the above calculation we put 

p = q in (39) . Then we get $ 

E 	 kc d 
= w. tan 2 

c 
ked or cot 
2 

This is the set of equations we had got for the symme- 

tric case earlier when we were finding the imaginary 

roots for that case . Thus we have reason to be 

satisfied that, our present approach to the unsymmetric 

case is valid. 

We wish to normalize the set (39) . Thus 

inserting in (39) X = kcd/2 	, and simplifying* 

We have for the L.H. S. of (39) 



2 2 	2 2 
(4 " 2  - P., ) - 	(4X +P ) 	(4X +Q ) 

L.H.S. _ 

2 X (P+Q) 

Where P = kpd 
4, = k qd 

Finally 	i t,7Sexting 	Q = /J P and c( = P/2, 

we have the final form of (39) asp 

2 	 2 	2 	2 2  - f3 d ) - + (X + 	) C X + / c( (X 	 ) 

of ( f3 + 1 ) 	X 

= tan kcd/2 

or 	 kc d 
- Cot ---- 

2 

Now we wish to investigate the LHS of (40). 

For small values of X s we can easily show 

that the LHS reduces to form given below 

L.H. S. 	= 	 ...(41) 

( k +1) X 

And for large values of X ! one can show that* 

- d ( /.A + 1) 
? 

	

	 ... (42) 
 2X 

Thus in both cases it behaves like a rectangular 

hyperbola. 

In (41) 	if we put /3 = i , we get 

L. H. S. 	= - o( /X 
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Therefore the equation (4t), reduces to 

kc d 
+ 	 - - tan ( 	-) X 	 2 

ked 
or 	= Cot ( ----) 2 

for small values of X . This is seen to coincide with 

the equations already got for the symmetric case. 

Thus, this check$ our calculations. 

We proceed to establish that this curve does 

not cross the Xu- axis for any real X. 

We are examining the function 

(X2  - f3 of 2 	- 	(X2  +o( 2 ) (X2  + /3 2  0 	) 
 •f 

c(( /d + 1 ) X 

This is seen to be an odd function of X and it is 

symmetric with respect to the origin. 

We are looking for a zero on the X-. axis. 

Hence equate numerator of the above expression to zero. 

i, e. X2  - /3 p( 2 	= 	(X2  + G(. 	) (X2  + d of 2) 

ox' (X2 . 40()  = (X2+ d 2 ) (X2+ , 2  0( 2  ) 

which finally reduces to the conditions 
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2 
(/3+ 1) 	= 0 

If we are to have a zero on the X-axis, 

then the above condition is to be true. 

But /3 ?+ I 	always . Hence (/3+i)2 is 

always positive. Hence *e can never satisfy the above 

conditions which means that the curve defined by the 

said function can never cross the X- axis. 

Now we can trace the LHS of (40 as a curve. 

This is daown in Fig. (24). 

In figs,  25 a and 25 b we represent the set of 

equations (40). 

From Fig. 25 as it is seen that we have an inf I-

nite number of intersections, corresponding to an infi-
nite number of wave guide modes. We restrict ourselves 

to the positive roots only. It is also seen that, the 

curve may or may not intersect vtith the cotangent curve 

in the interval ( 0 s  7r/2) . Thus a zero order mode 

may or may not exist. 

In Fig. 25 b : we see that once again there 

are an infinite number of roots giving an infinite 

number of waveguide modes. There is no intersection 

possible in (0s ?r/2g, for this case. So we have only 

the first and higher order modes and there is no mode 

of -zero order. The modes in this case have cut off 

4 
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frequencies differing from those of the modes considered 

in Fig. 25 a. Also they have a different transverse 

variation. 

From Fig. (25 a) it is clear that the threshold 

phenomenon is occurring. To find the condition for 

threshold s  we use the small argument approximation for 

the L. H. S. of (40). 

The small argument approximation desired is 

given by (41) 

i.e. L. H. S. = 	for small X 
X ( /3 + 1) 

where d = P/2 and A = Q/P 

Now this is a rectangular hyperbola of the form K/X 

and we have to examine its intersection with the -Cot X 

curve. From our previous experience in this matter 

we are in a position to say that we have an inter-

section when the coefficient of (1/X), is smaller 

than unity and there is no intersection when it is 

larger, than unity. When the coefficient of 1/,X a 

equals unity the root will just vanish. Thus the 

threshold candition'can ie got by equating the 

coefficient of 1/X to unity. We have discussed this 

matter in an elaborate way in the section devoted 

to the behavior of the imaginary roots in the, eyw#ebry 

symmetric case. Refer to Section IV• 
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So for the threshold conditions we must haves 

2 /3 d  
or ---- =1 

(/3 +1)  

this reduces to 1/P 	,. 1/Q 	= 1 • 

This agrees with the threshold condition we got for 

the real roots. That is when the real root just 

goes to zero,* we have the emergence of the imaginary 

root. i.e. s the surface wave disappearing to yield 

its place for the zero order waveguide mode. 

These observations agree with what we en-

countered in the symmetric case• with the computer 

actual calculations were performed to check the 

threshold behavior. The calculations were done with 

Q/P as parameter. In each case the results confirmed 

the predicted behaviour of the roots and further they 

established the threshold condition to be valid. 

We show the results in Fig. (26) . We have 

plotted the variation of the roots in the interval(O,7r/2) 

with P when Q/P is kept as a fixed parameter. This 

root corresponds to the first intersection of the 

curves given in the equation below 

	

(X2 - /`3 oC ) •- 	(X2 + 0( 2 ) (X2 + '?~3 2 2 ) 
—Cct X. 

	

d ( 16 	1 ) X 
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or in other words, it describes the zero order 

waveguide mode. We know that there is a particular 

P, called the threshold P a (f or each value of 4 /P) 

only below 'which we have the zero order mode. The 

curves in Fig. (28) show this threshold behavior. 

The threshold values obtained coincide with what we 

had already predicted. 

Thus it is established that the surface wave 

Which disappears at the threshold becomes the zero 

order wave guide mode. 

We can do the same calculations for the TE 
case as well. The procedure is identical and we 

will get the equations as , 

(X2  - ,Ci ct ) -J (X2  + d 2 ) (X2  + ,6 2 'd  2 ) 

d ( b + 1 ) X 

_ - tan X 
... (43) 

or 	= Cot X 

Thus there will result two types of TE waveguide 

modes, distinguished by tbhir transverse variation 

and different cut off frequencies. As we know already, 

there will not be any TE surface curve. 

3.7.  THE DISTINCTION BET+VEEN THE TWO SURFACE WAVES 

We know that there are two surface waves which 

may exist in the geometry. What is the dist*notion 
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between then' ? This question we proceed to answer. 

For the symmetric cases we got the transverse 

variations of the two waves ass f i (y) = Cosh (u y) 

and f 2 (Y) = Sinh (uy). For the first waves EXI has 

a y - distribtion given Sinh (uy ) . So one easily 

sees that 

Ex 	=o at y =0 . 
I 

For the second wave EXII has a y - distribution 
I 

 2x ii 

 by cosh (uy) or 

d E 
XII 	= 0 	at y = O . 
dy 

Because of symmetry, we expect the eldctric 

field to be zero or maximum at the central plane. 

Thus there are the two posibilities. The two surface 

waves which we have got represent the two cases. 

This leads us to expect the following field 

patterns for the two surface waves. See Fig. (27). 

In one case the field lines oppose each other 

at the control plane# whereas for the other case, they 

aid each other at the control plane. 

Now Barlow has discussed the TE1~ j dual 

surf ace wave (xef. 3) with ( Al a uy + A2 euy ) 

for 	its transverse distribution. He imposes the 

condition tb.ht 	E = 0 at y = m for this wave. 
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(He is discussing the unsymmetric case). 

From our experience with thesymmetric case s 

we expect that there might be a second surface wave 

for the unsymmetric case which is characterized by 

d Ex 	0 at y— m 
•dy 

The only departure from the symmetric cases is that the 

plane of symmetry of the fields is shifted to a plane 

different from the central plane. It is to be noted that 

the field lines are still symmetrical about a certain 

plane y = m , though. m ~ 0. 

Trying this idea we expect two waves for the 

unsymmetric case also. 

One of them characterized by  

0 	at y — ms 

while the other is given by 

d EX 
--- EX 	0 	at y = m 
dy 

Let us see *hat these conditions mean. 

-guy 	uy We know f(y) = (A1 e 	+ AZ e 	) in Barlowts 

not atiOn. 

Now Ex 	d 	( Al e.-uy — A2 euy) 

.•. E x 	= 0 aty = m ,, gives 

2 u Al / A 2 = e 	m  
...~) 
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d fix 	
of ( A e-uy + 	euy ) 

dy 	 1 Y 

• d Ex 	= 0 	at y = m , 	gives, 
•• 	dy 

Al_ - e2 um 	 ...II 
A2 

Hence the corresponding H components for the tw o 

waves would be a 

Yy„ 	 -Y x 
HZi = A2 

le
u + e u 2m)  	e 

.... (44) 

H 2 	2 	
a uy 	-u (y-2m) 	

e 
x 

e ~'.  

Putting in (44) m -= 0 , we get the symmetric case as 

it ishould be . Now we knav that Wait has assumed far 

f ty)r 

f (y) - euy + Ro e~uY 

In Barl cw * s notation it would be 

f(y) d euy+ 
A 
 a-uy . 

A2 

or we see Ro corresponds to &1/A2 

u + kp 
R _ 	 for reactive surfaces. We find that 
0 u kp 

Ro is positive real for one surface wave and it is 

negative real for the other surface wave. This is because 

one root Is smaller than kp while the other is larger 

than kp. Thus R. is in complete correspondence with 

A 1 / A2 which is positive for one wave and negative 
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for the other. 

Thus Barlow has been considering one of the 

two waves discussed by Wait. 

We recall that one of the two surface waves exper 

iences the threshold phenomenon and vanishes, at the 

threshold value of po • The other stays in the geometry 

down to zero frequency or in other words till P is 

reduced to zero. For this wave R. is'positive. 

Now for ,the wave considered by Barlow A / A2 is 

positive: Since Al / A2 is nothing but Ro it the wave is of 

the same character as we have encountered before. 	Thus 

it is seen that Barlow has been dealing with the case 

where one of the two surface waves has disappeared and 

only one remains. In Wait's language# he has been dealing 

with the region of large interaction. 

So we have established a link between the investiga-

tions of Wait and Barlow. 

Now we have an idea of the field patterns for the 

unsymmetric case mainly drawing from our previous asso~ a 

elation with the symmetric case. We display them in 

Fig. (28). We can get the equation to the field lines 

in the x-y plane. For this we have to solve the diffe-

rential equation. 
Re (Ex) ) 	dx 

— 	 ...(45) 
R0 (Er)  dy 
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We know the Vi 	components for the two waves. (See (44)). 

From these we can easily get the electric field com- 

ponents. Then we substitute them in 45 and integrate 

the resulting simple differential equation. -In our 

evaluation we assure Y = j /3 . 	he results of 

this integration are: 

	

[ euy 	wu (y.,2m) i + e  Sin /3 x 

	

C
euy 	- e•,  u (y-2m) 	Sin 43x 

const 	...(46) 

Const. ... (47) 

(46) gives the pattern for the first wave and (47) 

describes the pattern for the second w ave (The first 
d Ex wave has EX= 0 at y = m and the second. has 	= 0 
dy 

at y = m ) . (46) and (47) can be rewritten ass 

Cosh u 	(y-ln) Sin 43x = Const. ... (48) 

Sinh u 	(y•-m) Sin 43x = Const. .....(49) 

which clearly show symmetry about the plane y = in 

Setting in = 0 in these equation, we get the field 

lines for the symmetric cases as 

Cosh (uy) Sin Aix = Const.  

Sinh (uy) Sin /3 x = Const. • • .. (151) 

These four equations were plotted for different 

values of the constant appearing on the RHS of the 

equations and the graphs confirm our expectations. 

See F ig. 29, 309311,32. 
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Barlow calls his wave as the hybrid TEM dual 

surface wave. Now we are in a position to justify 

this name. We show previously that he has discussing 

the surface wave which remain down to zero frequency. 

See Fig. 29. Where the field pattern is given for this 

wave. 

One sees that It is the distorted version of 

the TEM wave. In the first chapter we had pointed 

out how the TEM wave gets distorted as we increase 

the separation between the two parallel plates• As 

the distance goes. on increasing the field pattern 

incorporates more and more of the surface wave features. 

We can produce a similar effect by enhancing the surface 

reactance. By doing this the wave attains a state which 

can be described as the superposition of two surface 

waves each associated with one of the surfaces. As 

Barlow terms its we introduce more and more of the 

surface wave as we increase the reactance. Since it 
Waves 

combines the features of the TEM and the surface it is 

called the hybrid TEM dual surface wave mode• The 

term 'dual surface wave* describes the presence of 

two surface waves each linked to one of the surfaces. 

Also it covers the fact that the field solution is 

described by the superposition of two surface waves 

(according to our original assumption). 



s+ 91 — 

When we see Fig. 30, we see the field pattern 

resembling a waveguide mode. nt%+ is, no lines cross 

the plane of symmetry y = m . Thus we can appreciate 

the fact that it is this surface wave which becomes 

a waveguide mode of order zero. 

In Fig• 299  the plane y = m is located near 

the lower surface. Now at y = m s Ex = O • This 

yields Zs  = 0 at y = m • And as we move from 

the plane y = m s Z 	gradually increases. We have 

assumed the lower surface to be of a smaller reactance 

than the upper surfaces Since Z 	increases with distance 

away• from the plane y = m s it is logical that this 

plane is located nearer to the lower surface than to the 

upper one• 

Similarly in Fig. 30, we see y = m is located 

near the upper surface. Now E is maximum at } = m 

for this case. or Z s  is maximum at y = m # and it 

falls off as we proceed away from the plane. Since once 

again the upper surface has a larger reactance than 

the lower ones it is to Le expected that the plane 

y = m lies nearer to the upper surface than to the 

lower one• 

Fig. 31 and 32 display the field patterns for 

the symmetric case. There is no difference exhibited except 

that the plane of symmetry is transferred from y = m 

to y = O. 
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Thus we note with satisfaction that all our 

expectations have been substantiated by the calculations• 

for both the symmetric and unsymmet ric cases. 

3.8. 	It was decided to explore another case wherein 

one of the Surfaces has a capacitive reactance while 

the other has an inductive reactance. 

3.8. AN I NVE ST I GAT ION CF THE MCDE S WHEN ONE OF THE 

SURFACES IS CAPACITIVELY REACTIVE AND THE OTHER 

IS INDUCTIVELY REACTIVE. 

So we take for this case 

k 
Zd 	= +•» 3 	( w 	) q 

Zo 	' + J t 	) a we 

We consider the TM type modes first. The characteristic 

equation reduces top 

X- P 	X+Q 	_ -2X 
X +P 	X 	e 	 ... (32) 

Where X = ud 

P = kpd 

Q = kqd 
We show the plot of this equation in Fig. 33. 

We see from the Figures there is only one real 

intersection and this is only for positive X. For large 
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N 
values of P X = 	P is the only root. This is so 

for values of P 3i 5 . 

For moderately large p, we have the root 

given by, 

x = P - A (P) 

Where L(  p) is a quantity which inversely varies with P. 

So we have one TM type surface wave. 

A look at the figure tells us that there is a 

threshold value for P for a given 4 , only above which 

we can have the real root. Analogous to the previous 

arguments we can get the threshold conditions by equating 

the slopes of the curve and the exponential at the 

point (O , 1 ). 

Doing this we get the condition as 

1  1 

Ti;- 	= 1 	 ....(53) 

If 	Q ~-3. P s then 0 m which means that if Q 'iP , 

then the wave does not experience the threshold phenomenons 

as long as P' O . For very large , P .4 	1• 
Tb 

So the threshold values vary from 0 to I 

If we set Q = P in the characteristic equation 

we have 

1 = e 
«•2X 	 ...e (54) 

ri 
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The only real solution of which is X = 0 • But this 

does not give any meanifigful result• 90 if the surfaces 

are of equal and opposite reactances* no surface wave 

exist s+ 

Imaginary Roots* 

For this we have to take the actuations 

C -'. jp 	'C + jq 	 jkcd 
_ + e 	...(55)  

C + ,gyp 	C - jq 

Proceeding exactly as we did in Section VIi we have 

the final normalized set of equations as 

( X2  + /3 d 2 ) 	(X2  + d 2 ) (X2  
- tanX 

C( X ( 1- / ) 

or 	= - Cot X 

Whe re 
A = Q / P 
o( = P/2 

We see that . by putting A = - A in equation 

(40) we get equation (56) • The same applies for the 

threshold condition. We replace Q by - Q (The same 

thing as A being replaced by - A ) p in equation (22) 

to get the threshold equation for the present case as 

given in (53). 

Now we examine the LHS of (56) for large and 

small X . The results are 
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For large X 

d ( ,$ 	1) 	
. L. PI. S. 	 ...(57)  

2X 

For small X 
X ( 4 - 1) 	 ...(58) 

L.H.S. 
2 d/~ 

Thus it behaves like a straight line y = mx , for 

small X and behaves like a rectangular hyperbola for 

large X . The function as given in L H.S. of (56) is 

odd and thus has symmetry about the origin. Further 

it is easily shown thatit does not cross the X- axis 

except at the origin. 

If we let r3 = 1 in L. F;. , of (5 6) we get 

it as the ratio 0/p • Evaluating this indeterminate 

quantity by L' Hospital t s rules we see that this 

tends to zero as A tends to 1 e Hence the curve reduces 

t o the X- axis for /3 = 1 • 

Now the curve approximate; a straight line near 

the origin •anSO°rectangular hyperbola near infinity, we 

expect it to attain a maximum in between. This maximum 

is more and more pronounced as you increase A3 beyond 1. 

We show the curve in Fig. (34). 

If Figs. 35 (a) , 35(b) 9 we show the plot of 

equation (56). 
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Seeing Fig. 85 bs we conclude that there is 

no possibility of thresholds whereas from Fig. 35a, 

we can see that the zero order mode may or may not 

exist. This can be readily seen if we recall the 

inequality* tax X > X except for small X. We 

know that for small X, the curve behaves like 

X  ( /~ 1 ) 
i.e. a straight line. 

f3 P 

f3 -1 
Now if the slope 	of the line is greater than 

,3p 
or equal to I then there is a possibility Of Inter- 

section. Ifs on the other hands it is less than to 

the tangent curve would lie always above the curve and 

no intersection would result. Thus the slope equated 

to 1 would give the threshold condition. 

/3 •. 1 
= 1 	is the condition• 

/3 p 

If P 	pTh 	' 	------- 	is less than  1. 

So no intersection is possible. or the zero order mode CeaSe 

to exist if P ;,, P 	and we have the surface wave. 
Th 

On the other hand if P ( P 
Th 

> 1 and we have an intersection 
A P 

or In other words, we have the zero order mode existing 

and there is no surface wave. This is as it should be 
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At P = P 	the surface wave mode becomes the 

Zero order wave guide mode. 

The exi st ance of TE modes 

Considering the characteristic equation for the TE 

case 1p (ii) we put 

w 
Zd = -J (----) q 

k 

Z o 	= j p t w— 
k 

-)  

This results in the equation 

X -.Q' 	X + P• 	-2X ----~----- 	- e 
X +Q' 	X - P* 

Where Q' = ktgs"d 	P* = k ptd 	and 

or 	qt = 1/q 	and p• _ i/p 

... (59) 

0 

Nov Q' < Pt 	(for q > p ) 	. So (59) is identical 

with equation (52) 	which was. obtained for the TM case. 

So we have the same conclusions as in the TM case. 

Thus for each TM wave we have a corresponding  TE wave, 

Hence in all there exist, 

1. 	A TM surface wave resembling a waveguide mode and 

which goes into the TM zero order waveguide mode at the 

threshold. 
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2. A TE surface wave resembling a waveguide mode 

and going into the TE zero order waveguide mode at the 

thresh old. 

3. Two sets of  TM waveguide modes. 

4. Two sets of TE waveguide modes. 

The Case when P = Q 

Here no surface wave exists but the waveguide 

modes are given by the roots of the equation 

1 t e ikcd - «, 

which reduces to 
kc d O = tan 
2 
	 ..(6O) 

kcd  O 	= 	cot • 2  

Thus the roots are nothing but the zeroes of tangent 

and cotangent functions. So we have two types of TM wave-

guide modes and similarly two types of TN waveguide 

modes. 

It can be seen that the cut off wavelengths are 

given by 

for the 1st set 
2n 

=  2d 	for the IInd set 
c 	2n+1 	n  = 0,1,2..... 



- 99 - 

For the TM Type Modes 

A little reelection shows that the TE modes 

have identical cut off wavelengths. That is,there is 

degeneracy•9 we have for each TM mode a TF mode having 

the same cut-off frequency. 	 _ 

For the case P ~ Q calculations were made, 

using the computer, of the real and imaginary roots. 

The behavior of the se roots as P was varied, for 

a fixed Q, 'was exactly as predicted. The threshold 

condition was established to be valid. Though the 

calculations were made for the TM case they hold for 

the TE case as well. 

We show the results in Figs. 36 a and 36b. 

3.9. ORTHOGONALITY 

In his paper(5) 
Wait has talked about the 

orthogonality of the modes comprising the series 

solutions . In particular he has said that the 

integral 

.1 
a 	fn (Y) ~; (y) = 0 for n ~ n' ... (1) 

0 

Where f(y) is the transverse variation of the nth 

mode and is given by , 
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f n +(y) = euny +R0 a uny 	Where 

u + kp 
R 
0  un ",kP 

Now we take up two modes characterized by 

the transverse wave numbers u1 and u2 respectively 

Then using the usual form of f n(y) we compute the 

integral in (61)+ This is 1;of as 

I d 

1 	ul + u2)y 	..(u1+ u2 )y 
e ~~ol~o2e 

lu I + u2 

C 

1 	(u2• u1 )y 	-*(u2MUdy 
+ -~------ 	a 	~- Ra2e 

(u2-ui ) 

Where Rol and Rot are the different Ro s for the 

two modes. 

To show I = 0 y we have to utilize the 

information provided by the characteristic equation 

which determines the u*s. 

It has been found that even after utilizing 

the fact that the u's are solutions of the modal 

equation we are not in a position to show that I = 0 • 

The expressions which arise in the calculation are prac-

tically incapable of reduction. On the other hand if 
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really,  the orthogonality principle in our above 

sense, did hold: the expressions would have reduced 

and we would have easily shown I = 0 . 

It was decided, therefore, to verify* 

for a few cases where the u's had been derived 

from the modal equation by an actual computation, 

whether the integral vanishes. Since it was suspected 

that the said kind of orthogonality may not hold, 

the argument was as follows. if even for one case 

the integral does not vanish! then Wait's assumpt-

ion -Of orthogonality is incorrect. 

Accordingly the intergral was calculated 

for three specific cases. These were three sets of 

real roots of the equation 

X . P 	X -Q 	 -2X 
e 	i.e., the 

X + P X + Q 
characteristic equation for the unsymmetric case. 

The roots were 

X 
1 

X 
2 

P Q 

a 	1.8648 10.0000 2 10.0 

b 	1.6910 4.0080 2 4.0 

Co 	2.9200 4.5055 3 4.8 

The integral values were, to slide rule accuracy, 

as follows 	a . I = 20.52 

I = -1650 
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• 

	

C. j 	= -13890 

So the integral clearly does not vanish. 

However for the symmetric c ase we see that the 

orthogonality of the above kind is found to holds as 

the integral 

d/2 
1 

	

a 	Cosh (uIY) Sinn (u2y) 	= 0 

-a 

Where the fact that the modes are of even and odd symm-

etry has been used. 

Thus for the general unsymimt ric case, which is 

of practical significance, this orthogonality-  princip'e 

does not hold• this means the excitation 	problem be- 

comes rather tough. In fact we have come face to 

face with another problem* i.e. the problem of excita-

tion. For we cannot enjoy the advantages of the situation 

wherein the orthogonality principle is valid. 

But still we may have independent carriage of 

power by the different modes. This is possible because, 

we have many kinds of orthogonality relations and 

our problem (which is once again a crucial one) would 

be to ascertain pre-cisely the kind of relations which 

would be valid for the present case. 
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Perhaps Wait has surmised that in keeping 

with the usual cases of 	bounded structures, the 

modes should be ortiXagonal. It is thought that he 

has not actually verified the vanishing of the 

concerned integral. 

But when one applies the Sturm-Lionville 

theory to the differential equation determining 

f n (y) 9 one is surprised to find that# at least 

apparently there is nothing to prevent the Orth o- 

Banality of the modes. But *hy Is it that we do not 

get the modes to be orthogonal on an actual evalua-

tion ? Obviously there is something wrong somewhere 

in the -application of the Gturem. Liouville Theory to 

this problem. Perhaps there is one condition which 

we overlook while applying the theory to this problem. 

The author is of the opinions that the fact that the 

guiding surfaces are reactive may be responsible for 

this anomaly. At least* to the author's knowledge* 

it is true that the Sturm - Liotiville theory has not 

been developed for such boundary conditions as we 

encounter in this problem. Hence we are not at 

liberty to apply the usual Sturm w Liouville theory 

to our problem and utilize its conclusions. 

In any case we come up with a new problem. !'hat 

is to determine the general orthogonality relations 
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valid for impedance boundaries. The problem is complex 

and little work has been done in this direction. 

However it is beyond the slope of this work to discuss 

any more of orthogonality and we rest by pointing out 

the problem that has emerged before use 

3.10.  CONCLUSIONS 

We have investigated the types of field con- 

figurations 	that may exist in a parallel plate wave- 

guide which is having purely reactive guiding surfaces. 

Tl 

 

We considered the following cases. 

I• Is Both the surfaces inductively reactive and of equal 

reactance. 

ii• Both the surfaces capacitively reactive and of 

equal reactance. 

lit. One of the surfaces inductive, the other surface 

capacitive but the reactances being of equal 

magnitude. 

II•i• Surfaces with unequal inductive reactances. 

ii• Surfaces with unequal capacitive reactances. 

iii. One surface with inductive reactance#  the other 

with capacitive reactance but the reactances being 

of unequal values. 

One may wonder why the case of equally reactive 

surfaces has been separately considered  when the more 
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general case of unequal reactances has been studied. 

It ffis also natural to expect that the results which 

hold for the general finsymmetric case will naturally 

follow for the particular case of equal reactances. 

But it is to be 	pointed out that the characteristic 

equations which one obtains for the symmetric case are 

markedly different from those obtained for the unsymm-

etric case. Though ultimately, we record the same 

behavior of modes here as in the unsymmetric case, that 

such a thing is true . is not readily obvious from a 

cursory glance at the modal equations for the symme-

tric ;.case. We just expect, from physical reasoning* 

that what holds for the unsymmetric case must be true 

for the special case of equal reactances. But that 

is just an intuitive guess. Also since the defining 

equations for the symmetric case are da-videdly 

different from the corresponding ones for the other case, 

one has to make sure by an actual calculation whether 

ultimately we get the same results (qualitatively) for 

the two cases. This is our justification for having 

devoted our time for the symmetric case as well. 

Now we summarise the re suit s• 

• • For this case we ,find that in general there are 

two surface waves of the even and odd type• One 

of them has Ex  = 0 at the central plane of s-ymme- 

t r$td and for the other Ex  is maximum at the saws 

plane. 
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The former is of the even type and has a field pattern 

which mixes the features of the TEM and surface waves. 

Hence it is called the hybrid TEM dual surface wave. 

The second wave has a field pattern resembling a wave-

guide mode. We also find that there is a critical 

value of the surface reactance, for which , this second 

i*ave disappears and turns into the zero order wave-

guide mode which is of the odd type. This is what we 

have called the threshold phenomenon• For values 

of reactance above the threshold value, the surface 

wave of the odd type propagates along with the surface 

wave of the even type while for reactances less than 

the threshold reactance the zero order mode of the 

odd type exists. Also it Is found that the cut-

of' f frequency of the zero-order waveguide mode which 

is of the odd type becomes zero at the threshold. Hence 

this mode can no longer propagate as a TM type wave-

guide mode and consequently it becomes a surface 

wave mode of the odd type. The even type of surface 

wave is found to propagate till the reactance is reduced 

to zero. 

We d.l so find that there are an infinite number 

of waveguide modes and they possess either even or 

odd Symmetry. Of these. in the odd type of modest the 

zero order mode may or may not exist depending on the 

value of reactance. The critical value of reactance 

for which this zero order mode just disappears coincides 
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with the critical value of reactance at which the 

surface wave of the odd type just appears. 

• So far we have been talking about TM type 

waveguide modes. It is found that TE type waveguide 

modes can exist in the geometry, though surface 

waves of the TI type cannot exist. Once again we 

have even and odd TE waveguide modes. The zero order 

mode of the TE type is even while the corresponding 

TM mode is odd. The cut off frequencies of the TE 

modes do not coincide with those of the TM modes. 

Since there are no TE surface waves• we find that 

there is no threshold phenomenon observed. 

I ii. 	This is the dual of the above case. If we 

substitute TE for TM and vice versa we can have the 

conclusions for this case. We summarise them as: 

to Two TE surface waves. One is evens while the 

other is odd. The odd type becomes the zero order TE 

waveguide mode of the odd type. 

2• TE type waveguide modes of even and odd types. 

3. TM type waveguide modes of even and odd types. 

It is to be noted that in the field patterns 

the roles of electric field in the TM ease are played 

the magnetic field in the TE case. We replace HZ  • 

Ex  r Ey  of the TM case by EZ 	: H x  s Hy  in the 

TE cases Thus the electric field pattern in TM case is 
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identical with the magnetic field pattern for the 

TE case. Thus the TE case is a perfect dual of the 

TM case. But we are not very much interested in this 

case. Fora practically speaking, it is easier to 

provide surfaces of inductive reactances than capa-

citively reactive surfaces• So the TAI solution is 

of more practical utility• 

I iii• Here there are no surface waves propaga-

ting. But there are two sets of T1V1 and two other 

sets of TE waveguide modes. The essential feature is 

that for each TE mode there is a corresponding TM 

mode of the same cut-off frequency. Thus there is 

degeneracy . The cut off frequencies are given by 

the zeroes of tangent and catengent functions for 

both the cases. 

Even this case is n.At of practical interest. 

11. 1. All the results which were obtained for the 

symmetric case 1(i) are found to be true for this 

case also.# except that the modes are no longer even 

or odd* But they are symmetric about a plane y = m 

instead of y = 0 for the symmetric case. 

He 	one of the surface waves is charac- 

terized by EY  = 0 at y = m and the other is 

described by d  x 	= 0 at y = m . The latter 
dy 
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mode re semble s a waveguide mode and becomes the zero 

order waveguide mode at the threshold value of rea-

ctance. The former mode propagate till the reactances 

are reduced to zero. Once again this mode is the 

hybrid TEM dual surface wave mode. 

There are two types of TM and two types of 

TE waveguide modes. These are non-degenerate. The 

threshold condition is found to be 

1 	1 

P + 	 1 . 	Thus it depends on the relative 

magnitudes of the two reactances. 

II ii. We d o not discuss this case In any detail # 

for it is simply the dual of the above case. Further 

it is not of much practical interest. In any case 

the results of I (ii) follow with the modification 

that the modes are asymmetric. 

LI. iii. Here we have one TM surf ace wave and one 

TE surface wave. Both possess field patterns resembling 

a waveguide mode pattern. Both experience the threshold 

phenomenon and turn into corresponding zero order wave-

guide modes. The threshold condition is given by 
1  1  

P ~ Q 	~ 1 
Also Two sets of TM and two sets of TE waveguide 

modes exist. These are non degenerate. 



CHAPTER 	IV 

CONCLUDING REM RKS AND A FEW SUGGESTION FOR FUTURE WORK 

Thus by this work we have been able to subs=-

tantiate a majority of the conclusions arrived Eby Wait 
(5 ) 

in his paper 	• At the same time we  have found occa- 

sions to differ with Wait. The first occasion arises 

in connection with the threshold phenomenon. Wait 

does indicate the possibility of a waveguide mode turning 

into a surface wave. But he speculates that the zero 

order waveguide mode would degenerate into the two 

surface waves at a suitable value of reactance• But 

this has not been found to be the case. On the 

contrary► this zero order v aveguido 	mode which is 

also the dominant mode turns into only one surface wave 

and does not split into two surface waves. . This is a 

significant point of departure from Wait's con-clusions. 

Further Wait has not worked out the precise 

relation for the threbbold conditiob. He,merely, using 

his intuitiva s guesses the possibility of a threshold. 

And we have •been able to formulate the threshold equaa-

tions for all the cases we have considered and these 

have been amply supported by our conclusions performed 

with the computer. 



The second occasion arises when we consider 

the defining equations to be used for the evaluation 

Of the imaginary roots. Wait has considered  only the 

unsyminetric case. And there too the approach he 

adopts, in the author's opinions is not very s-ound. 

For he makes a few assumptions which. one is not Compe- 

lied to make. It has been demonstrated in this work, 

that these assumptions are by no means necessary . The 

procedure adopted here has beenvindieated by the results 

obtained . Wait does not talk of two types of waveguide 

modes, while intact they seem to exist in reality. He 

restricts himself to a single infinite set of modes. 

Further the results he has obtained for cut off freq.. 
uency etc. a are not of much significance because they 

have been derived for a very special case. In the 

analysis given in Chapter 1119 we have not restricted 

ourselves to any particular case. Thus the form of the 

defining equations for the waveguide modes is the most 

general, and the solution of these equations would give 

us exact results. Once again our calculations have 

demonstrated the validity of the adopted procedures 

and we were able to go to the symmetric case from the 

unsymmetric case fly putting P = Q in the equations 

for the unsymmetric case. 

j nother occasion arises when we consider the 

possibility Of the TE type modes co-existing with the 
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TM type modes. Th ough. TE surface waves are ruled out 9 

we can have TE waveguide mode ss once again two sets of 

them* coexist ing with two sets of TM waveguide modes. 

Wait does not mention the possibility of TE modes at all. 

Once again this is considered to be an important omi-

ssion by Waits for while we are interested in isolating 

the surface wave from the contaminating waveguide modest 

it is of paramount concern to know precisely all types 

of waveguide modes that may exist. Only on such knowledg. 

can Me design a suitable excitation arrangements which 

would help eliminate the undesired modes. 

While talking a bout the degeneration of wave-

guide mode of zero order into a surface wavey we also 

must emphasize that the other surface wave exists for 

all values of reactance greater than zero. Below the 

thresholds this surface wave will coexist with the 

dominant zero order waveguide mode. And by a suitable 

choice of dimensions  of the guides and the operating 

frequency p we can make the zero order mode to be cut-

of I and thus havdng only one surface wave in the 

geometry. This possibility has not been mentioned by 

Waits perhaps because the has not carried out a detailed 

analysis of the problem. 

Lastly we have yet another occasion to differ 	 , 

with Wait when he assumes the orthogonality of 

the modes,. On t calculations point to the contrary. 
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Hence it is suspected that, the principle may not 

hold for the ansymmetric case though it is valid for 

the symmetric case . Perhaps Wait has assumed ortho-

gonality on the basis of Sturm-Liouville theory and 

on the strength of experience with bounded straatures 

in general,. It is thought that the Sturm -Liouville 

theory may not be applicable for a system with reactive 

boundaries. 

Now we come to the practical aspect of the 

problem w This means we are to consider the unsymmetric 

case where the surfaces are inductively reactive and 

that brings us in contact with the TM type of modes. 

13 plow in his experiements has found it expe-

dient to have one of the surfaces highly reactive while 

the other is only slightly so. Now the former surface 

becomes the main guiding surface while the latter merely 

serves as a shield which primarily limits the spread 

of the main wave field. Since he has succeeded in 

supporting the hybrid mode under these circumstances 

and has obtained some useful results p It is worthwhile 

to consider this case more closely. 

Now coming to the problem: we i:ind that there 

are two surface waves of the TM types two sets of TM 

waveguide modes and two sets of TE waveguide modes. 
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First of all we eliminate the TE type modes 

by choosing a proper type of source* Then we are left 

with two TM surface waves and two sets of TM 

waveguide modes. By a proper choice of frequency and 

a suitable choice of dimensions: one can do away with 

all the higher order waveguide modes. 

Then we have two surface waves. But it is 

desirable to have only one of them. So we choose the 

reactance below the threshold value. This makes the 

surface wave with E maximum at the plane y = m go x 
into the zero order wave guide mode of the , TM type. By 

choosing a small enough reactance for the lower sur•- 

faces well below the threshold value,, one can raise 

the cut off frequency of the zero order modes which 

is also the dominant modes This makes it simpler to 

eliminate the zero order mode also. For one can adjust 

the dimensions and the operating frequency so. that this 

zero order mode is cut off. 

Thus we are left with only one surface wave 

which is the hybrid.- TEM dual surface wave of Barlow. 

That what we have said so far is a physical reality 

has been amply proved by Barlaw's success in having only 

the hybrid mode in the guide system. That stable opera-

tion has been possible with this mode is also quite 

satisfying. Further Barlow has experimentally determined 
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the field distribution of this mode and this coincides 

with our description of the same mode. Also Barlow has 

proved that this mode,when supported by suitably chosen 

reactances, has an attenuation which is almost half 

of what a normal quasi •- TEM wave would 'experience. 

It is to be noted that we should have only small 

reactances for the supporting surfaces if we can have 

a pure surface wave uncontaminated by others. It is 

found that Barlow has used only small reactances for 

the support of the hybrid mode. This supports our 

previous arguments. 

We propose to illustrate the above by a numeri-

cal example. 

We cl000se the case where 

P =0.25 	f o  = 1 Gc/s 

Q = 0.50 	d 	= 10 cm 	= 30 cm. 

P = kpd 	Q = k qd 
1 

For this case k = 2'9/}. 	= 0.209 cm 	d = 10 ems 
0 

.'. 	p = 0.119. 

Nov 	O Z o 	_ n,,  p 	= 120 IF x 0.119 	=  45  

I Zd I 	2 	Z o  = 90 

Zo  and Zd  are surface impedances. We find the cut off 

wavelength of the zero order waveguide mode. This is 
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given by the root of equation (4Q) in the interval 

(09 1T/2) . For the assumed values of P and Q ! this 

first root is 
X  _ 	k c d 	= 1.442 

2 

k c d 	= 2.884 

Now C = 1 gives the cut off condition. 

21T d 
.. 	 — 2.884 

C 

• ), 	= 2.18d 	= 21.8 cros• 
•• 	C 

So 21.8 ems is the cut—off wavelength of the zero order 

mode. Since the free space wavelength is 	30 cmsp this 

mode is cut off. 

So we have only one surface wave mode that is 

propagating and it is the hybrid mode. 

It is of interest to calculate the phase velocity 

of the wave. 

w 
VP  = 

ut2 	+ k2  

The tvansverse wave number u s can be got from the real 

root of the characteristic equation (13) 	. 
This is got as 

ud 	— 	0.905 

or u = 	0.0905 	cm'1 	for d = 10 cm. 
9 

V  2 7T x 10 	 = 2.75 x 10 	cm/sec. 
p (0.0082 + 0.044)1/2 

 /2 
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This is 91.7 %> of the velocity of light. Reducing 

d - t 	5 cros, we find that the zero order mode is 

still cut off s but the phase velocity reduces to 969 

of the velocity Of light. Finally* if d = 1 cm. with 

all other things the d same ► we get a phase velocity 

which is only 22.57o of the velocity of light. 

So by choosing a low enough frequency of opera-

tion and a very small distance of separation one can 

reduce the phase velocity to any desired fraction of the 

velocity of light. H10weve r in practice difficulties in 

real iz ing purely reactive surf aces will come in the ways! 

of this reduction in phase velocity. So there will be 

a 1imit, beyond which we cannot reduce the phase 

velocity. Since our boundary conditions are hypothetical 

we got the result that there is no apparent limit to 

the extent of reduction. of Itthe phase velocity. 

Even though the possibility of having slow 

waves in the structure would point towards an applica-

tion in the design of slow - wave structures used in 

travelling wave tubes, one has to be cautious in his 

pronouncements. For we need really slow waves In the 

case of travelling wave tubes, (i.e waves which travel 

at a frew percent of the velocity of light) and it is 

doubtful if we can realize this in practical guiding 

structureso Further there may be other considerations 

in the travelling wave interaction which would render 
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the structure considered, unsuitable . But at least 

this can be used as a phase shifter. When used as a 

delay line, we need only a smaller length as compared 

to the usual line lengths for we have slow wave propa-

gating  in the structure. 

It might be anticipated that many of the results 

deduced for the parallel plate case may also hold for 

the coaxial cases which is more suited for practical 

applications. Already Barlow has proved that the 

hybrid mode can be propagated in the coaxial system. 

Also this mode is such that EX = 0 at r = rm s a cer-

tain radius. This is experimentally established. Hence 

we might expect that there might be two surface waves 

one of the hybrid TEM types the other of the coaxial 

waveguide mode type. There might be a threshold value 

of reactance below which the surface i ave of the wave-

guide mode type becomes the lowest order coaxial mode. 

Once again by a proper choice of frequency# the surface 

reactances and of the geometrical proportions, it is 

possible to propagate only the hybrid mode. That this 

is possible has been proved by Barlow in his experiments. 

Thus the entire analysis of the parallel plate system 

can be extended to the coaxial system with suitable modi-

fications on account of the changed geometry. Since the 

coaxial system is most used in practices we are satisff.ed 

that the experience gained in respect of the parallel 
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plate systems will stand us in good stead. 

Thus one area of extension of the present 

work will be to determine the various quantities for 

the coaxial case. Further one can determine the various 

wave impedances# per densities etc.* for the parallel 

plate case itself• Also the cut off frequencies of the 

different wave guide modes can be found out from the 

imaginary roots of the characteristic equation. 

One can consider the effect of surface losses 

on the results obtained. Also the attenuation of the 

various modes can be computed} while travelling through 

a lossy dielectric that separates the two plates. 

T-hen there is the excitation problem i.e. the 

proper choice of source and its location so that we might 

get maximum per in the surface wave. In this direc-

tion already some work has been done by several persons. 

But still there is further scopes, because we have to 

design the launcher to that TE mode ss which are a definite 

possibility# do not get excited. 

Closely linked with the aboves, 	problem, is 

the determination of the orthogonality relations, if any 

that are valid in the present case. Also we would like 

to have the set of orthogonality relations that hold for 

the general case of impedance boundaries. This problem has 
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has not been solved satisfactorily as ,yet. 

Thus we come to a chose after pointing 

out a few areas for further work, 
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