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jt FACE 

In recent years noon-  uniformly spaced antenna 

arrays have received great att ent i-)n c-s witnessed by d 

large amount of publication in this areas The main int" 

erest seems to be in seeking a way to reduce the number 

of elements, or P equivalently, seeking a way to 

broaden the bandwidth and the scanning range of the array 

The work in this field has been started since 1960y but 

no rigorous theory has been developed yet,. The work so 

far done in the field is reviewed in Chapter II. 

Dynamic programming is studied in Chapter III 

and IV as an optimizing technique in synthesizing unequally 

spaced asymmetrical linear arrays. The criterion of 

optimization is to find an : element combination which 

has the highest sidelobe level over a specified angular 

interval less than the highest sidelobo of any other 

comb inat i. n. 

A 25 elem•ont array is synthesized with aperture 

length 5O• 	and spacing quantization " /2,. The synthesis 

technique is given in Chapter V 	Tito results obtained 

are quite encouraging. 

The calculations were performed on an IBM 7044 

Computer. 
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CH1~.PT ;Z 	I 

INTRODUCTION 

Linear arrays with variable interelement spacings 

have received increasing attentijn in recent years.. The 

reas.)n for this interest is primarily that a considerable 

saving in the number of array elements is possible in large 

directional antenna arrays where high resolution is impor•- 

tant,, as in the fields of Radar, Satellite communication, 

Radio Astronomy. Further, by changing the interelement 

phase the main beam of the radiation pattern can often be 

steered through a wider angle and over a much larger 

frequency bandwidth than in possible with equispaced arrays. 

Both equally and unequally spaced linear arrays are very 

simple to analyse. 	iell developed methods are also available 

for designing linear antenna arrays with equispaced elements 

that will produce a desired radiation pattern with reasonable 

accuracy. Most of these methods: the,, retical as well as 

experimental,%, make use of the fact that the radiation pattern 

of an array of equispaced elements can be expressed as 

polynomial, the coefficients of which are used to determine 

the array excitation coefficients. Dolph designed a theorem 

t ical optimum broadside array with equispaced elements making 

use of the properties of the Tchobyscheff .polynimials.o 
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buHamel 	extended Dolph's method to the caso  of an endue 

fire array with equispaced elements. For an arbitrary 

patterns Woodward and Lawson have given a method of 'des— 

igning a linear array of equispaced elements which will 

produce a radiation pattern that exactly equals a 

:es ired rad it ion patt err; in a r_wrLur of d2 irocti.uns in 

space which are chosen equidistant in Sin 0 	0 being 

the angle between the normal to the array axis and the 

direction of observation. 

The radiation pattern of an array of equispaced 

elements is a periodic function. It is thus generally 

necessary to chose the interelement spacing not larger 

than one half wavelength in order to avoid more than one 

periz d of the radiation pattern appearing in visible space 

In special cases where more than one period of radiation 

pattern can be allowed in 	visible space, a larger spacing 

can be chosen close to one wave length for a broadside array, 

before several pencil beams will appear. 

Spacings of less than one half wavelength are not 

very practical $ with such small spacings, the coupling 

between the elements of t},.e array will be strong and the 

preeribed excitation coefficients of the array may be 

hard to realize 	Therefore, a linear array of euispaced 

elements can seldon be used to cover a large bandwidth. 
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For arrays with variable interelement spacings, a 

prescribed radiati)n pattern can be approximated more clo- 

sely than with constant spacings. The reason for this 

is that by chasing the spacings as independent variables, 

an additional degree of freedom is gained which can be 

used to control the radiation pattern . This has been dis-

cussed  by Unz (1960). Very often, however, a good appro-

ximat ion to a rad iat i:.n pattern that is given in advance 

can still be obtained only when the average interelement 

spacing is not larger than one half wavelength. As an 

example, an array where the elements are spaced 

according to the zeros of Legendre p )lynomial of the 

same order as the number of elements can be made to 

approximate a given radiation pattern very closely. However, 

an average interelement spacing must be less then one half 

wavelength. 

,+dhen the arrajr to be used as a directi,nal 

antenna with high resolution, the unequally spaced array 

will often be much superio* to the equispaced arrays. The 

equally spaced array requires fewer elements to produce a 

certain resolution, and the main beam can be steered ovor 

a larger frequency bandwidth, than ii s possible with 

an equispaced array. However, there is a lower limit to 

the sidelube level attainable. 
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Although in recent years unequally spaced arrays 

have shown to to useful, a precise mathematical theory has 

not been fully developed. These arrays have been considered 

by methods involving a larger number of simultaneous 

equations, by perturDat ion methods, by computations for 

trial sets of element spacings and iterative procedures, 

and by approximating continuous aperture illuminations. 

These methods are by and large empirical and generally 

make use of the modern high-speed digital computers. The 

antenna arrays have been analysed by two sets of parameters, 

namely 1) Variable spacings in uniformly illuminated linear 

arrays and 2) Variable spacings and amplitudes in linear 

and planner arrays. In the past considerable attention 

has been paid to the former without considering the 

later , and the following conclusions have been derived, 

to The sidelobe level is closely related to the number of 

elements and to a much lesser degree to the aperture 

dimension. . ,xtremely high reduction can be achieved with 

very few elements . On the other hand for a given number 

of olomonts higher and higher resolution can be obtained 

by spreading the elements at random over a large 

aperture. 

2. The 3 db beamiwidth of the main lobe depends primarily 

on the length of the array. 
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3. The product of bandwidth and steerability can be made 

much larger than for conventional* equ is paced arraysir 

The following is the outline of the discussions 

In the coming Chapters. A brief but thorough account I 

of uniformly spaced array with Dolphr-Tchebyscheff optimi- 

sat ion .to show its inferiority in a large antenna des igh 

is d iscu ssod .. The work so far done in the field of non- 

uniformly spaced antenna arrays and their synthesis tech-

niques is reviewed. A good discussion about the non•uni- 

formly spaced antenna array with special reference to sido- 

lobe level$ length and gain considerations is given 	in 

which it has been shown that there is a saving in the 

number of elements. 

Dynamic programming is studied as an optimising 

technique in the synthesis of unequally spaced symmetrid'al 

linear antenna arrays.. The criterion of optimization is 

to find an element combination which has the highest side 

1obo  level over a specified angular interval, less then the 

highest sidel;;be level of any other combination. t1, 25 element 

array is synthesized with aperture length 50 and spacing 

quant izat i.:n ' /2 us ing an IBM 7044 computer. The results 

obtained have established conclusively that the dynamic 

programming method, if properly used, can yield excellent 

results, as is amply brought out by the fact that the results 

obtained are Considerably superior to those reported by 

other investigators using different techniques. 
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REVIEW OF THE CON aIBUTIONS TO TIE NON UNIFORMLY Si'ACi D 

ANTZi11" ALR..AYS AND THEIR SYNTHESIS TECHNIQUES 

2. 1. ELOALLY 5?,-&CZD ~aitx+AYS 

Before giving a detailed review of the contributions 

to the non uniformly spaced antenna arrays, a brief review 

of Dolph is derivation for the equ ispaced broadside arrays 

will be given. It is shown that the Tohebyschoff current 

distribution" may be calculated after either the sidelobe 

level or the position of the first null is spoaified. The 

"Tchebyscheff pattern" resulting from this current distri• 

but ion is optimum in the sense that a) if the sidelobe 

level is specified, the beam width of the resultant pattern 

is minimums or b) if the beam width is specified # the 

S idelobe level will be a minimum. 

The rad iat ion pattern of a linear equ ispaced 

"•~ro :'_.,1e: c;•_,:A;;tric -array of point sources as shown in the 

Figure N. 1 is proportional to 

	

N 	.1 2k-1 
H21 (€)) 	=; I Cos 	-------  k 

	

k-1 	 2 

21T d 
) Sin -0 
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N 27 d  
1k C08 	k 	 ?b

— ) Sin bl 

there (1) and (1') apply to an even number (2N) and 

an odd number (2N+1) of elements respectively. Ik 

represents the current in the k th element from the 

centre of the array. The above 	equations are valid 

only if all the currents are in phase along the arrgy. 

Only the even case will be discussed here. 

Introducing the new variable 
lT d Sin O 

	

U 	 ---- 	simplifies (1) to,  

N 

F2 N- 1(U) 	_ r. Ik Cos (21c- 1) U 	... (2 ) 
k=1 

where# henceforth, only the absolute values of all pattern 

expressions will be considered so that the absolute 

value signs may be omitted. 

A term of the form cos (nUt may be expanded 

into a polynomial in powers of Cos U wherever n 

is an integer 
k 

Co (211- 1) U= 	-- A2 k 1 	x2q-1 
 '.." 	2q•1 

q=1 

Where 	
p• i . 1 

	

2k-'1 	k-'q 	k 	 , ~ A 	-- (-1) _  

	

2q- 1 	 p" k q 	p- k+q 	2p 
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/ 

	

n 'w 	n•' 
x = Cos U and 	 = -`--^---,."-`r- 

	

m J 	m: (n-m).' 

Nhen (3) is substituted into (2) and the 

summation signs arranged, the pattern equatijn, 

F2 1 (U) , takes the po 9ynomial form, 

N 	N 
G 	(x) 	_ 	 I 	2k1 'C 	1 
2N Z 	 r k=q k 

	

Where 'X' is restricted to 	Ix 	= j Cos U 	1 

It will now be shown that with suitable 

values of the currents ~ 3k ) the antenna pattern de- 

scribed by the polynomial(4) may be made to coincide 

with the pattern of an appropriate Toh©byscheff polynomials 

which in turn possesses all the previous mentioned 

optimum properties. The normalized Tchcbyschef f 

polynomials are defined by 

	

n (z) = Cos (n arc Cos z) 	 1 	••.. (5 ) 

'Where •n' is an integer. Clearly the maxima and the 

nulls of (5) are givan by 

kn' 
I nT (z) l 	= I 	for z = Cos 	3 k = 0,1,2,.•.•n • ..(6) 

n 

ITn(z) I = 0 for z = Co. (2k-1).1 , k = 1,2,•. n 
2n 



T(z) is also of the form Cos n fJ , where 

= 

	

are Cos z 	and n is an integer. Therefore, 

it may be converted into a polynomial in powers of 

Cos !b 	- Cos ( are 	cos z) = z 

rxpe&Usion of T 	(z) 	using (3) yields 
2N"1 

	

[(2N.1)T2N- 1 (z) 	= Cis 	are Cos z ) 

	

N 	
21A 2q 1 

	

z 	 .... (7 ) 

	

q=1 	2q ..1 

Forms (5) and (7) of Tchebyscheff polynomial 

are equivalent. The two polynomials may be made to 

correspond exactly by restricting the variable in (7) 

to z 	z 	where z 	is an arbitrary parameter, 0 

and setting x = Cos U = z / zo  

2.quat i )n (7) may als now be written as 

	

N 	2N%*1 	2q-1 	2q-1 
T2N-1(zOx) 

	_ 5 	A 	z 	x 	.. (8) 

	

cj9" 2q-1  1 	 0 

Where I X1 .1 	. Gquat ions (8) representing 

Tchobyscheff polynomial limited to the region within 

+ Z 	and (4), representing the antenna pattern, r V 

are now in the same form. Corresponding coeff ie lonts 

may now be equated and solved for the currents . Thus 
N 	2k -1 	2N-1 	2q-1 

Ik 	A2 q,. 1 = 	A'2 q 1 	z 	, q1,2,3... N 
k=q 

. . . . . ( 9 ) 



Whence 	 ' 
 

1 	21.1 	2"1 	: N 	2k- 1 
-  Iq . _ 	I 

	
2 q« 	 k 1 	° 	k_ ,~,~ 	 2 c1 1

A 2 c~ .1 
4.1 (10) 

If I'a are computed from (10) j the resultant 

field pattern given by (4) will agree with Tehebyschef f 

pattern shown in (8) 1 The sidelobos and the 

nulls of the antenna pattern will coincide with the 

maxima and minima of the Tchebyseheff pattern given 

by (8) and will occur in the regimen 	ago x j ~~ i 

In the region 1 ,C /zx j ( zo i the Tchebyschef f 

Polynomial rises very steeply. This portion will re- 

present the main lobes whose shape may be deduced 

from the polynomial form of TN(ZoX) 	It was shown 

by Dolph that the Tchebyschatf pattern yields a minimum 

bean width when the sidelobc levels are known and a 

minimum sidelobe level when the beam width is specified. 

The adjustable parameter z,, 	may be calculated when 

either the side lobe level or the beam width (position 

of firs-L: . nulls) is given. In the first case zo 

must satisfy the equation T .- () = Y , where Y/1 

is the specified main beam to side lobe ratio. 

Since 	Y, ?' 1 , z must be evaluated from the polynomial 

form of T2N-1(z) . 

it }......._._• 1/2-I   N 	~•--2----- 1/2N-1 
z 	- "' I (Y+ 	Y2 -1 ) 	+ (Y - I Y - 1 ) 

O 	s~ 

L ...(11) 
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or more easily from 

are Cash Y z 	- 	Cosh 	. -.~,...,» 	..._. 
 2NMI1 

From (6) the nulls of T 	(z x) 214.1 a are at 

z 	 2 
X  Co 	( ..._.._k- 1 	T ) o 	- 	s 	! '►  

2 2N "l 

lho re 

	

0 	 Ir 

	

z X i 	= Cos  
2 (2N- 1 ) 

defines the pos itin of the first null when 6 is 
0 

specified as the angular position of the first 	null' 

zo may be deduced from the relations 

I z 	- --- 0 
x 
1 

COs 	. ,_... 	..- 

2( 2i1) 

0 
X10 -- cos U 1 = Cos (~d ) Sin $ ) 

0 

It is evident that the numerical work 

involved in calculating the current distribution from 

(= U) and zo f r,.nm (11) can become extremely tedious 

as the number of element s increases. A simple method 

of calculating Is 	is given by lBarbiere (1952) 
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2.2 . UNEQUAU  Y- S?AC , D li3' .IY  5 

Considerable work has been done in recent years 

to develop synthesis tochniques for the design of 

linear non-uniformly spaced arrays. The work so far done 

in this field has been reviewed in this Chapter. 

H. Unz (1960) discussed a linear array with 

general arbitrary distributed elements. He deduced a 

matrix relationship between the elements of an array 

and its far zone pattern . As pointed out by various 

authors, it is difficult to make use of this matrix 

relationship to yield useful numerical results. 

D. a King et. al, (1960) gave the requirements 

for a broad-band, steerable linear array, and discussed 

the limitatiins due to grating lobes of an equally 

spaced array, xIfter studying several different unequally 

spaced arrays they showed that such arrays have two 

advantages over the equally spaced arrays (1) They 

require fewer elements f ,.r comparable beam width , (2) 

Grating lobes and minor lobes are replaced by sidelobes 

of unequal amplitude which are less then the main boam• 

Furthers  they developed a scheme for cent roll ing the 

cosine arguments in the radiation pattern formula which 

resulted in one of the best patterns of this study )f 

unequally space-! arrays. The array synthesized by this 
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0 
scheme is capable of steering a beam t 90 over a 

2 to 1 frequency bwiad with nosidel.;bes above -5 dbe 

It uses 21 elements, compared to 78 for an equally 

space(: array of similar beam width.. The results obtained 

indicated that further study of the cosine method 

and unequal spacing in general should result in bettor 

pattern characteristics. They computed the data by 

means of the frmula,.  n 
C + 2 	: Cos (24T U ~4-- ) 

N~ -- 
 

20 log 	__ . - 	- 

2n + C 

Where 

^; 	The magnitude of the pattern factor in db.. 

2n+C = Number of elements in the array. 

C = 1 p for an n:dd number of elements. 

C = 0 , for an oven number of elements., 
x k 

distance in wave length from the centre of 

the array. 

tJ - d 	(Sin)- Sin 4: ) min 	 o 

dm in - Th0 ismallost of the set of unequal spacings 

in wavelengths. 

-' The angle to which the beam is steered. 

- The azimuth angle measured from the broadside 

d irect i:Dn. 
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xk 21.1. ( -.-- ) = Arguments for the cosine term for k = 1,2, • •n 

Directive ga in was computed from relative power pattern 

data by numerical' integration with the interval chosen 

to be less then half of the half-power beam widths 

Gomparasion of array factors of two arrays of 

equal operturo is given in Table No. 1, 

So a. Sandler (1960) formulated a general analy-~ 

tical expression for unequally spaced arrays. These 

relat ijns allowed for the analysis of the non-uniformly 

spaced arrays in terms of its equivalent uniformly spaced 

array. Be discussed the inborent bro -d band qualities 

of the nonuniformly spaced arrays. Some equivalence was 

observed between the amplitude and the spatial variation 

with uniformly and nonuniformly spaced arrayi, He discu- 

seed the general synthesis problem and also considered 

an array with monotonically increasing interelement spacing. 

t. F. Harrington (1961) presented a perturbational 

procedure for reducing the sidelobe leval of discrete linear 

arrays with uniform amplitude excitation by using non- 

uniform element spacing . The calculation of the required 

element spacings is quite simple. The method can reduce 

the sidelobe level to about 2/N 	times the field intensity 

of the main lobe, where N is the total number of elements, 
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without increasing the beam width of the main lobe. 

J. D, Bruce and H. Unz (1962) predicted that nonn 

uniformly spaced antenna arrays are less sensitive to 

changes in frequency. They determined mathematically the 

condition for minimum sensitivity. Also they deduced an 

alternative method for obtaining the maximum broadband 

performance. 

!„,• Mwfftitt (1962) formulate an algorithm to 

describe the construction of arrays whose individual antenna 

are to be distributed nonuniformly over an aperture. 

From the distributi:n to which the algorithm is equivalent, 

a distribution if array factor values is inferred. He 

pointed out that an array of antenna elements can be nenw 

uniformly distributed so as to produce an array factor 

with a single major lobe from one fourth of the elements 

required by a uniform distribution at a sacrifice of 5 db 

in s idelobe and no 3acrif ice in main b r,am—width. 

Anders=-,n (1962) designed a variety of arrays 

with widely and variably spaced elements using both analog 

and digital computer techniques. All those arrays have 

many fewer elements than Dolph — Tehebysehef f arrays with 

the same beam width and sidelobe level. tine Of the arrays 

he designed has 21 elements and is 76 wavelengths 
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long  when used as a broadside array. The 3 db beamwidth is 

0.74 degrees, the sidolobe level is -7..4 db.. The array 

has a perfect steerability in a 1.8 s 1 bandwidth with 

no interelement spacing smaller then one-half wavelength 

in this band, The date of initial arrays and of the arrays 

synthesized from the initial array's are presented in 

the following table No. 2,. The initial arrays determined 

by the method of controlled cosines. 

Robert F. Willey (1962) presented a simplified  

theory of space tapered arrays al-)ng with methods of 

designing arrays for a given gain, beamwidth, and side 

lobe level using graphical techniques and simple mathema- 

tics. He indicated that the reduction in the number of 

elements of from 50 to 90 percent for m Berate and 

large size planar arrays is possible while retaining 

good pattern characteristics. He further ment i~nod 

that space tapering allows seperate transmitting and 

receiving elements to be placed in a single aperture. 

F ''s Brown (1962) considered a 4- element symm- 

etric array compared a Tchebyscheff 5 element r a'/2 

spaced, 20 db sidelobo array with a similar array nono, 

uniformly spaced, and noted that slightly asymmetrical 

arrays offer little prospect of producing desirable 

patt erns • 
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K Unz (1D62) considered nonuniformly spaced arrays 

with spacings larger than one wavelength and deduced a 

formula using the asymptotic series expansion of Bessel 

functions. The the-pry is used to find the maximum average 

spacing ( 	4 	) acceptable for arbitrary pattern synthesis. 

J. D Bruce and H, Unz(1962) synthesized nonuniform 

arrays having proscribed field patterns with different 

b eamw id the and s idol .)b e levels using mechanical quad ratures. 

A. Ishimaru (1962) presented a now approach to 

the. unequally spaced array problem, based on the use of 

?oisson"s sum formula and introducing a now functions 

the source position function" . By appropriate trans- 

formation, the original radiation pattern is converted into 

a series of integrals, each of which is equivalent to the 

radiation from a continuous source distribution whose ampl i-

Ludo and phase distributi,.•n clearly exhibit the effects of 

the unequal spacings, They :showed that an unequally spaced 

array of uniform amplitude with any desired sidelobo 

lovol may be designed by this method. Three examples are 

shown to illustrate thw effectiveness of this method. 

M.T. Ma (1963) presented a contribution to the 

perturbation method of pattern calculation of linear arrays 

consisting of n:n-uniformiy spaced, equiamplitudo inphse 

elements. He showed that the mnalysis holds good when the 



- 18- 

total number of elements is either even or odd . He cal- 

culated field patterns for 7 and 8 element arrays. 

Y.T. Lo (1963) compared the sidelobe level of 

various nununiformly spaced antenna arrays using two 

methods; (i) Systematic design with patterns being 

computed in each case, (ii) probabilistic estimates. 

He oonelud©d that since the agreement between the results 

obtained by the two methods is closes there is no essential 

difference between the various non-uniform spacings, 

unless they are specifically chosen for a low sidelobe 

level. He illustrated this by considering the Benelux- 

Mills -Croest leacopor each arm if which has a dimension 

102 	x 104' 4 	and one minute of are beamwidth. 

Maher and Cheng (1063) studded the problem of 

random removal of elements in a uniformly spaced array 

Their assumption that the removal any element 	is 

statistically Independent of the removal of others seems 

to preclude the validity of their analysis for a more 

interesting case when a large number of elements are to 

be removed. 

Snovor and Ferraro (1964)j discussed the pro- 

liuiinary results obtained by synthesizing closely spaced 

multi-element arrays by systematic variation of spacing 

in a computer programme in which the reduction of sidelobe 

level is the point of interest, They employed both current 



tapering (nonuniform current distribution) and non-tapering 

and presented the numerical results in two tables. They 

compared the results with tapered Tchebyscheff arrays 

of equ ipalent sidalobes 	level. 

Skolnik 	et al . (1164) described the applica- 

tion of the optimization technique known as dynamic pro-

gramming to the design of *thinned arrays with unequally 

spaced elements. R tinned array is one in which the 

number of elements is significantly less than the number 

of elements in a 'filled' array with elements spaced 

every half.-wavelength. Dynamic progtamming is a systamatic 

procedure for efficiently utilizing the capacbilities 

of modern high-speed digital computers to find solutions 

to problems not computati. nally feasible by conventional 

means. They applied it to the design of linear arrays 

of 25 elements spaced within a 50 wavelength aperture.. 

Y.T. to (1964) studied v?.rious probabilities 
properties of a large antenna array ;rith randomly 
spaced elements. he found that -eo r almost t-11 cses of 

interest the required number of elements is closely 

related to the desired sidelobo level and is almost 

independent of the aperture dimensionp the resolution 

dependsmainly on the aperture dimension and the directive 

gain in proportional to the number of elements used if 

the average spacing is large. He stated that starting 

with a given number of elements and a given aperture site, 
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it is possible to improve the resolution by a factor of 

tons a hundred or more by spreading these elements over 

a large aperture with little risk in obtaindng a much higher 

sidelobe level and a lower directive gain . He further 

stated that 	in addition, this analysis also gives a 

simple estimate of the sidelobe level of most non- uniformly 

spaced antenna arrays.. 

Sherman and Skolnik (1964) obtained an upper 

bound for the sidolobes of an unequally spaced array 

by applying a result from number theory known as Vander 

Corputs method. vVhen the number of elements is largo 

the sidelobe level is proportional to N1/2 who re 

2N+ I 	is the total number of elements in the array. 

Skolnik et ij.. (1964) considered the design of 

`thinned planar antenna arrays in which the density 

of the elements located within the aperture is made pro- 

port ional to the amplitude of the aperture illumination 

of a conventional "filled array". They indicated that 

density tapering permits go:d sidelobe performance from 

arrays of .equal radiating elements. 

Janis and Galojs (1964) developed a method of 

minimizing the sidel:obes of uniformly excited sPace 

tap-,red linear arrays. He indicated that it is possible 

to design space tapered linear arrays by representing the 

element pcxsitions by a polynomial and by formally minimizing 

the sidel~be energy averaged over a finite frequency band. 
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V. Galindo (1964) introduced the idea of non' 

linear arrays i that is the elements of a uniformly 

spaced array are displaced perpendicularly from their 

usual positjans ai ng a straight lines He discussed 

that such an array possessed some of the non " resonant 

properties of a linear non uniformly spaced array and 

hence has wide band frequency or scanning properties i 

Further this array has the unique advantage of having 

equal lateral spacing, Hence the problem of packaging 

phase shifters and other auxiliary 	networks between ale 

monts is greatly simplified; 

Ishimaru and Chen (1965) presented a thQo?y 

for designing a thinned or broad band antenna array by 

means of unequal spacings. They expressed the patterns 

in a series of Anger functi )ns and its sidelobe level 

Q' 6 	.0O4  is shown to decrease approximately y as N' 	or N 

adhere N is the total number of elements, and the gain 

is approximately equal to No They verified that the side- 

lobe level. can be improved by varying the amplitude die- 

tributi,n. 

C. Fi Tang (1965) gave a design procedure for 

non uniformly spaced linear arrays for which the pattern 

approxjmates to that of an equivalent uniformly spaced 

arrays or c)-ntinuous source with piece^wisp uniform oxc i- 

tat in. He indicated that the ap;,roximat i)n is best in 

the main lobe region and discussed the effect on the 
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sidelobo levels for several typical arrays with reductions 

of upto half the number if elements used in the uniformly 

spaced. arrays. 

Bultor and Unz (1965) 	introduced Fourier trans- 

form method for obtaind.ng the radiation pattern of a 

non unifarmly spaced array and also tO synthesize appro- 

ximat el y any arbitrary pattern. 

Y.L. Chow (1065) showed that the exponential 

spacing function is optimum in the sense that the plateau 

becomes flat. The pattern of a non-uniformly spaced array 

is 21n general an almost periodic function and as a result 

the grating beams are spread out into plateaux .., For 

uniformly illuminated elements the envelop of the 

plateau is flat if the element s?ac ins; increasing oxpon- 

entially. Because of tha characteristic flatness and 

low intensities of these plateaux# they optimized the 

array factor with respect to its grating plateoux. He 

also developed the theory of space factor gain of 

nonuniformly spaced arrays through the use of ?arseval's 

theorem. 

Lo and Lee (1965) used an  array of N isotropic 

elements placed at a prescribed positions in space as a 

model 	for the derivation of optimum SIN ratio for a 

non uniformly distributed no iso. They also pr.7posed two 

now methods to determine the sidelobe levels of nonuniformly 

spaced antenna arrays (1) Estimation of sidelobe level by 
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solving* Diophantine equation (2) 13stinmation of sidelobe 

level by Triangular Function approximation. 

C. IL Tang (1065) described a method of synthesiz-

ing the patterns of a non-uniformly spaced array based 

on considering the pattern of the array as an approximation 

of that due 	to a c_int inuous source. H0 achieved in 

designing specific s idelobe levele. _ =° further indicated 

that in order to got sidelobe levels better then those 

of a uniformly spaced array the non-uniformly spaced array 

must be thinned at tho end. 

A T. Ma(14~65) proposed another method for synth- 

esizing the non-uniformly spaced arrays. He applied 

Haar's theorome by varying b::th the amplitude excitations 

and the element spacings, but a rigorous theory has not been 

developed. 	 0 

Larson at J. (1 65) discussed the minimization 

of the grat ing lobes produced when the array elements 

are many wavelengths long, by c. special type of (linearly) 

nonuniform array with equal power division between the 

elements. Me summarised the results for a number of eased 

in the form of graphs and figures. 

H Unz (1£66) described a method of designing a 

non uniformly spaced array using Schmidt orthogonalisa"' 

tion procedure. He indicated that this method can be 
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performed by a digital computer, and avoids the inversion 

of large matrices and is applicable t) asymmetric as well' 

as to symmetric non-'uniform arrays.! 

Lo and Leo (1 E'66 ) rude an exhaustive study on a few 

small arrays and c.. 	to a co nclus inn that among a large 

number of possible arrangements, only very few yield 

roso:nably low s idolobo level. They made some statistical 

studies in order to relate the sidel:)be level to the 

element arrangement. Further they made a comparative study 

on 	some designs which are propQsod by a few authors and 
concluded that non, of them are turly optimum . Also 

they discussed the opt imizat inn of directivity and S/N 

ratio of an arbitrary antenna array. 

a. 1i Tang (14)66) presented numerical results on 

• the beamwiclth and the operating region of potterns for 

the arrays for which a numerical approximation method of 

synthesis has previously been given (1fl65 ). He also pro- 
sentud on the results obtained on the gain characteristics 

of nonnuniformly spaced arrays and the excitation coeffi-

dents for the optimum gain for the arrays. 

As Meyer (1066 ) discussed the use of convolution 

theorem and the general isod sampling theorem in evaluating 

arbitrary arrays. 



•.2540 

Chow and Yen (i966) studied a  class of nonce'  uniformly 

6paced planar arrays in which the elements are located on 

a lattice derivable from a conformal ma ,ping of a uniform 

lattice. They formulated the array space factor in a 

two dimensional Doissiun $s sum,, and determined the grating 

plateaux from a stationary phase integra=tion. Thy applied 

an aptimizati..n process to make the grating plateaux flat.• 

They concluded that the array derived is the conformal 

exponentially spaced array having characteristics very 

similar to those of th;: linear exponentially spaced array 

numerical ex .mple is included to justify the various 

apo?roximations they used in the analysis► 

La and Rimcoe (1c67) conducted an experimental 

investigation on the planar array with randomly spaced 

elements using diff®ction techniques. They tested two 

sample arrays, each consisting of 210 elements over a 

circular aperture of about 56 wavelengths in diameter 

at 71.25 GHz: They verified that the measured sidelobes 

12.8 db and 13 db were in oxcullont agreement with 

the theory which predicted below - 12: a db with fl0 percent 

probability an -13.3 db with 50  percent probability 

Further they indicated that one may consider the pattern 

in each plane cutt ing through the antenna as that of a 

linear random array, and thus one may study the sample 

distribution of the 	s0elobe levels of as many linear 

randL-m arrays as cuts. They obtained results which are 
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in nerely perfect agreement with the theory, despite the 

fact that in the theory the mutual coupling effect was 

neglected altogether. 

Thus different techniques of optimization have 

been attempted by many authors and nun of them formulates 

a rigorous mathematical theory. Is that there is no 

perfect theory available to date, the optimization problem 

becomes a real challenge. It can also be said that 

there is little possibility in obtaining an array with 

the lowest sidelobe level, unless a true optimization 

procedure is found . Thus, on should n.>t be surprised 

to find that there may be little difference botween many 

pseudo-optimum and trial- and -- miss methods• 



Cf"i ;Tlst2  III  

DYN M IC ?1XAMMING 

3. 1. INTaJDUCT If)N 

Dynamic programming theory by Etichard Bellman 

(1£,57) is one of the various branches of modern mathematics. 

It is a si:aple but powerful concept for the treatment of 

many novel and interesting problems both in this new 

discipline and in varius parts of classical analysis 

One of its various applications is in solving multistage 

decision,problems. 

The o•dj ect ive, " dynamic" indicates that time 

is a significant variable and the order of operat i,3ns 

may be crucial. However, many static processes can 

also be reinterpreted as dynamic processes in which  

time can be artificially introduced. 

The mathematical advantages of dynamic programming 

I. It reduces the dimensionality of the process to a 

convenient level, thus making the problem computa- 

tionally simpler. 

2, The reduced form obtained by techniques has a property 

like, " monotonicity of convergence", and therefore 

is well studied to applicat i,.,ns. 
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In dynamic programming a very difficult or unsol'- 

vable problem is transforinod into a class of simpler soly-

able pr)blems which are easy to handle. 

3.2.  rP  :INCI?L?.  *iF y1 L IMALITS' 

in optimum system design problem is visualised as 

a multistage decision 	lom; these multistage decision 

problems are bast solved by means of "functional 

equation 	approach". In each process the functional equation 

governing the 	process is obtained by an application 

of the following intuitive • 

"An optimal policy has the property that whatever 

the initial state and initial decisi•)n are, the remaining 

doeisi-Jns 	must constitute an optimal policy with 

regard to the 	state resulting from the first decision". 

By repeated application of the functional equation, 

the optimum decisi.>ns for a multistage process can be 

.,btained. For illustrat1 n lot us consider that a state 

of physical system is transformed from x•  to x2  by the 

t ransfoormation; 

x2  = y (x', m1) 

This ::peration will yield an output or return 

Lei  - r (x', m1) 	 ••..(2) 

dhere mi 	= decision number to be taken. 
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The decision which yields the maximum value of the 

return or criterion function, is referred to as the optimu~-i 

decisi.,n or optimal control strategy. 

The maximum return for this one stage decision 

process is given by 
Maximum 

~r r ( X 1, m
1 
) 
j 

... (3) 
L  

Consider now the case of a two stage decision 

process • From first transformation we have, 

2 
x 	= y (X' mi ) 

This is further transformed into x3 

x3 = Y (x2, 

The sequence of operation results in a total return 

$2 	= r (x', ml ) + r ( x2 , m2 ) 

11.nd the maximum return is given by 
il'aximum 

f2 (x ) = 	r (x', mi) + r (x2, m2 ) .. (B ) 
mfr m2 

The total result is maximized over the policy (m1, n2 ) 

and the policy which maximized a2 is called optimal 

pol icy. 

In general for an N-stage decision process, the 

problem is t.: cho o a N stage policy, ( Mi r m2 ' S . • m'N ) 
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as to maximize the total returns 

maximum 	N 

IM i I 	j=1 

wihe re 	 mj 	forms an N-stage control policy. 'Ih is 

functional equation so .:o of ~.ined can be solved by convent i~na1. 

techniques available. 
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LICATIVN OF DYN:'~,.'IIC bit . A1du; ING T,- ANTNNA. A7WIAY 

HS IS 

4. 2. 	DE,SCI TPT IiN 

A brief qualitative: descripti. n of dynamic programming 

and its a.)pl icat i,in to un 4uall y spac od array antennas is 

given. Dynamic programming is a 3tcp y step method by 

which a molt istage decision process is reduced to a se-' 

quence of single stake doeisi-)n proce<oses. 	he possibility 

:,f application of this mothod to tho design of antenna 

arrays with unequally spaced elements was originally 

proposed by 3kolnik et 	(1964 . Dynamic programming is 

a systematic pr.cadure for efficiently utilizing the 

capabilities of modern high speed dig _tal computers to 

find optimum solutions to certain problems not solvable 

by conventional means* It is used here to determine solutior 

which aparoximate the optimum configuration of element 

spacings for acwving a desired radiation pattern„ 

One possible method of designing an array with 

unequal spacings is that of total enumeration. In this 

approach all possibly combinations of spacings are 

examined, the rad iat ion pattern is comput ad for each 

comb mat ion, and the one which yields the 'pest pattern 
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is selected. Althiugh it is possible in principle to carry 

out such a brute-force procedure, it to geziarally not 

practical to do so except in the simplest of cases. If 

each of the N elements of an array can occupy any one 

of in possible positions within the anerture, there are 
N a total of in 	combinations that must be examined. 

Ten elements, each capable of occupying ten different 
10 

possible positions, result in a total of 10 	oombinat- 

ions.• Even with modern high speed cor~?puters, the brute - 

f )rce approach generally is not practical. 

The advantage of dynamic programming is that it 

drastically reduces the number of combinations that must 

be examined but nevertheless finds a set of spacings 

with a satisfactory radiation pattern nearly optimal. 

This is accomplished by converting a single IN-dimensional 

optimization problem into a sequence of N one dimensional 

optimization problems, In stead of the mN cases required 

for the brute-force approach , approximately  

cases need be examined with dynamic programming. 

4.2. OPTIMIZATION CRITERION 

,fin order to get desirable radiation patterns some 

criterion for optimization is t) b : established . There 

is little value in uti lizin. the rain bar.: paraneters 

as a design criterion since the 	shape of the main beam 

and tho maximum intensity are relatively unaffected by the 
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precise arrangement of a given number of elements within 

a given aperture. The sidolobes howev.r, are significantly 

dependent on tho arrangement of elements . Thus it seems' 

reas.~nab ie to establish the criterion on the basis of 

sidolobos properties.. The criterion best suited for 

our problem is that the optimum radiation pattern is one 

whose highest sidel3be peak over a specified angular 

interval is less than that of any other pattern. This 

is a special case of general criterion of minimizing tte 

maximum deviations. 

4.3. DERIVATION OF AADIATi Ii)N PATTERN 

The radiation pattern of, a linear array containing 

an odd number (2N+i) of isotropic elements symmetrically 

arranged about the centre as shown in Fir;. No..2. can 

be derived as fo*liowss  

Let xn -- the distance of the nth: pair of elements 

measured ,in wavelengths from tho. centre of 

the array. 

D ... 	array length 

Ax -- spacing. quantization  

xN - spacing of. Nth. pair of elements (D=2xN ) 

0• = ling'1a with respect to array normal. 



aX°SPACING QUANTIZATON 

/ 	ELEMENT LOCATIONS 

GEOMENTARY OF THE UNEQUALLY SPACED ARRAY SYMETRICALLY 
ARRANGED IN PAIRS ABOUT THE CENTRE 

FIG. NO. 2 
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The elements are energized so as to gt 	main lobe 

in any specified direction ado • Also the olements are 

allowed to occupy positions whose location from the 

array centre is an integral number of some specified 

value L x. 

Considering only the centre element and two other 

elements symmetrica -l.y placed about the centre g, the radia- 

tion pattern is given by 

_ , Q [1 +e ((A + 2 'R' x1Sinke) 	- (a( +27rx1$in E3 

xl = distance of the first element pair from the 

centre element in wavelengths. 

Current excitation 

1k 	- 	 c,veIength 

i~r~grossive phase shifty leading from left 

to right. 

Squatiori (1) can be written as 

F(xt vt) = too Ii + 2 Cis ( + 2 7r x1 Sin 0 ) 	...(2) 

at beam maximum, u( xl , kii ) is maximum and ii = W 



- 35.- 

Therefore Cos (c( + 2 11 x1  Sin 	) 	= 1 

or 	c( + 2 1r xl  Sin to 	= 0 

or 	c( = 	211 xi  Sin (io 	 • •• ( 3) 

Substituting equation (3) in (2) we get., 

Ao  i + 2 Cos 211 x1(Sin d - Sin cio ) 	.• (4) 

Defining u = Sin to - Sin in 	(the angu lc.r coordinate) 

and taking AQ as the unit current excitation s  the 

equation (4) becomes 

+(x1, u) = 1 + 2 Cos 2 11 x1  u 

For (2N+1) number of elements, the radiation pattern 

is 	 N. 

;(xi , x21  x 3? ...xN  , u) = 1 + 2 	Coos 2 iT xn  u 
n=1 

If the distance of the nth pair of elements is measured in 

half wavelengths instead of wavelengths the expression (5) 

bec cries, 
N 

	

(x1, x21  X3  '' ' xN 1  u) = 1 + 2 	Co s 17  xn  u . • • (6 ) 
n=1 

4. 4 	LI&IUY IN THS RADIATION ?ATTERN 

If the radiation pattern given by equation (5) 

is to be symmetrical about some value of u = uaI  then 

(uU  + I.1 u  } = F (u 	S u) ; thus we must have 

cos 2 tt x (uo  + Au) = Cos 2 Tr x (uo  -► L u) 
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,xpanding the casino terms we got 

Cos 27r xn uo Cos 27Txn(u - Sin 2Trxnu() ,Sin 21rx 4u 

= Cos 2'R xri uo Cos 2 'm xn du + Sin 2'irxnuo Sin 2TrxnAu 

The equation holds good if sin 27r xnAo = 0 	or if 

2 7r xn uo = 0 t j. iT 	f 2 7T 	.. • . • , , + k 7r ....• 

or 	xn U0= 0 , 	± 	 ..... 1 	► 	+ 3 	• 	+ k ••.., 

	

v 	«. 2 ~ 	2 

Vdhen the distance of the element pair from the contra 

element is a multiple of 2 /2 that is whenever xn 

is a multiple of 1/2 , then 	uo = i and the pattern 

is ssymmetrical about u() = Z • 

Vhen the distance of the element pair from the 

centre element is a n.ultirole of 	that is whenever xn 

is an integer, then uo = 1/2 , and the pattern is 

symmetrical about uo = 1/2 

Similarly whenever x {s a multiple of 1/4 then 

U. 	= 2 	and the patt ern is symmetrical about uo =2: 

and so on. 

4.5. iv ?ThjD .:F b 'F 1 ZAiIJN 

.Applying the dynamic proirramming technique we have 
to to 	locate a vector x = 	(xl 	, 	X2 	,f S .. S .XN) 	such that 
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Over some. V-a4jLzU i f 	• tho intsximum value of the summatj4pn 

x1► x2 ► X 3, .• .... x N ,u) 	1 + 2 	CAM (211' x u) is 3 

;ginitauraii 

the given LflPq1 Ori i'tiobs ar-- _ 

1.• 	aoh (n has ari up er, and 1 wer bound 

x 	b 	which is vari'kblo with n n -. 

2) The region of 	u over whi:,.h the ,.xpression 

is to b evaluat od is U  
Min `` 	MaX.6 

With the vaiuon the optimiza¢ Lon is carried out ► 

Sc, that the value of x' a 	are dete~.minad g Which minP4 
n 

sizes the maximum value o f this sumroat ion over the requLred 

value of ur 
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DESIGN kF LiN ,I # SYMM T3IC, NwI-UNIF.)RMIX S??C ,D AN] NNA, 

1.;tRiYS 	25 Eld- Nr • (SPACED I1HIN a 5o dAV.&LSNGTH 

t~,i'ERTL IRS ) 

5. 1. 	, `;4U.L .~;M NF5 

The main object in the design of non uniformly 

spaced antenna arrays is to control the radiation so as 

not to produce objectionably high sldolobes. The following 

characteristics were assumed while synthesizing the array. 

1a The array has a single narrow main beam steerable to 

60 from the and fire. 

2) rho array has all the sidolobos below the main beam 

levl. 

3) All the elements to be isotropic radiators. 

4) each element has unit amplitude illuminati-on. 
to 

5) The current fed - the nth pair of -Jemonta has a phase 

angle + 	2 IT xn Sin esa with respect to the centre 

element. 

6) The array is symmetrical about the centre. 

7) The coupling effect between the elements  is neglected. 

The array geometry is shown in Fig,. (2) .. The 

elements are allowed to occupy positions whose locations 

from the array centre are integral numbers of some prespeCi^' 

fied value of © x . That isi the element locations 
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are quantized. This not only makes the computations 

easier but is consistent with the practical array desi- 

gn .. The spacing of Nth pair of elements is fixed by the 

aperture dimension so that 2xN  = D I where D is the aperture 

length in wavelengths . 	Thus it remains to find the 

N-i \value of xn  • For example, in the 9 element array 

there are 3 spacings that must be determined while in 25 

element array there are 11 spacings to be determined. 

Further tho aperture length is 	quantized into 

2m + i locations by dividing it into 2 m equal parts. No 

consecutive elements may have a spacing between them which 

is less then the length of one interval . This simplifies 

the optimization process and results in pattern symmetry 

about some value of u as stated in (4.4). The problem 

is to determine a set of element locations for which the 

peak sidelobo level is smaller than that for any other 

element combination for a given odd number of elements# 

over a preassigned angular interval I  umin  ,C U "umax 

5.2. SYINTC L, 3I3 'F:, ii aTJ 

In dynamic programming the optimization process is ca 
(1966) 

rtod out in t,ze stags it .Il th. This reduces considerably the 

oomputati.nal work that would be involved if the optimizati 

wore to be achieved by trying all possible combinations of 

elements. The expression for radiation pattern as already 
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derived is 
N 

F (x1, x2 , x3, ... .. xN , u) = 1 + 2 	Cos 27Txnu 

Stage 1 

the first and socnd pair of elements are considered 

while remaining, elements are su j?posod to be absent, except 

for tho central (zeroth) clement and the outer meat pair 

of elements. For any particular value: ) f x 	say x 
2  2 

there is a corresponding value of xl , say x t p or which 

the peak sidolobe level is smaller then that for any 

other value of x 	in the range x 	+C x (x I 	 i(max) 1(min ) 	i  

vie express this by means of the functional equation 

2  1 
 Min 

x2 (znin) ( x2 / x2 (max) 

x1(max) 

f lax 	(x N, x2 P x i# u) 
uzin*~ u ,-<u max 

This equation provides 

X 	 +1 "t ptimal" pairs of value$ of x 2(max) 	2(rein)  
and xl expressed concisely ax  1(x) . These are computed 

and stored in the computer memory. 

UBkAkY (IN1VE,pOC/ ,c 
onnavc~ 	 ~~ 
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Stage  2: The next step is to determine the best combination 

of x1 and x2 for any chosen value of x3 ,. For every pair of 

chosen values of x2 and x3 	we assume that the optimal 

value of x1 is the same as was obtained in the previous 

stage for the same value of x2 . In other words we 

assume that the principle of optimality is valid 

for our problem. There may seem to be no valid justi-

fication for this assumption, despite that the tebh-

nique was applied and it was found that the results 

obtained compare fav-)urably with those obtained by 

other design procedures. The results of this stage 

may be expressed by means of functional equation: 
Mi. n 

u ) 2 	3 	 X3(min) 	x3 	x3(max ) 

x2(min) -. x2 ~~ '(mac) 

x i (X2 ) 

Max 
urain u ..uMax J&(xNPx3" x2, x1, u ) 

... (3) 

This will yield x3(max ) — x 	+1 	values o f 3(min ) 

x2 (X3) which are again stored in the computer memory. 

Stage 3 : Continuing the same process, the results 

of this stage may be expressed by means of the 

equation : 



IV!in 
S(x 6 f x 	s u ) = 	

x4 (min ) x4 C x4(Max ) 

X3(min)- x3 - x3(max ) 

x2 (x3 ) 

x1(x2(x3)) 

Max 

u lin fug Uma,x JS(xN;X4 X 	X 2,lx li u) 

This will yield x (max) 4 - x 	+1 	value of 4 (m x3 (x4) 

which are stored in the computer memory. 

Stage i (General Stage) : In the same manner we obtain 

for the general ith ) st aja ) 

Thin 

~(x +1 ,x'i ! u 	) 	x 	 x (min )1 xi+1 	i+1(max) 

x 	x 	x 
i(min) 	i 	i(max) 

x (x 

xi-2 (x1_1()) 

xz 	(x2 (x3(. 9 . xi )9 0 0 1 ) 

Max 

u u rain 	C max E(xNt x i+1 x♦ . x1 ,u) 

. . . . . (5 ) 



-43- 

- x 	+ i value of which will yield x i+1 (max) 	i+1 (*yin ) 
x(X i i+1) . 

Final Stage ; This corresponds to the optimum location of 

(N2) the element fur every (N- I) th element. The functional 

equation is 
Min 

	

XN-1 ' u ) - '~N- 1(nin) xN-1 	1(max) 

xN-2(min) XN-2 " x Nr2(max)  

xis 	( x 	) - 3 	N-2 
X1, 	(xI 3 (xN-2 )) 

x1 (x2 (x3(...x1... (xN~2 )... ))) 

3 u 	<uru 	A(xN, x 	,..x..x,x, u) min ̀~ 	max 	 I~ 1 	1 	2 1 

	

and this equation yields the optimum combination. 	lie 

corresponding radiation pattern is obtained by using this 

optimum combinati_)n in equatin (1). 

The number of stases de- ands upon the number ©f 

elements and is equal to N'B . For example in the fl element 

array the number of locations to be determined is 3 and 

th©refure the number of stages is 2 . In the 25 olemont 

array the number of locations is it and the number of 

stages is 10,. 
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5. 3. FIX-1TI.~N .. F DESIGN I T tS 

Th;; input parameters play an important role in the 

ojtiraization role. They are discussed in detail in the 

following article 

is Spacing 'quantization Ax 

I co nv ienent 	choice of Lax is 4/2 1 where l' 

is the free-space wavelength, that :!.s the element loca- 

tions are Quantized into ~'/?. intervals. This choice 

of ©x results in pattern symmetry about u = 1.0 

ii. zossjble Element iocativns in 

Each pair of elGGinents can be located any where 

within the aperture subject to the following two Const- 

raints : a) no two adjacent elements may be closer than 

a predetermined spacing, in this case 	half-wavelength, 

and b) the number of possible positions an element cdn, 

occupy is limited by quantizing the aperture into discrete 

increments in this case half-wavelength intervals. Both 

of these constraints are consistent with practical 

array design. 

The array length  considered is 5O 4 and tho 

number of elements is 25. wince the centre element 

and the and pair of elements is fixed , eleven optimum 
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element locations have to be computed to fix the loca- 

tions of the remaining eleven element pairs . Since 

the array length on either side of the centre element 

is 25 ~' , quantized into 4/2 	intervals and since 

there can be no more than one element at a particular 

location, the: first e -_ement can occupy any positions 

from 1 t. 	3£ , the second element from 2 to 40 , the 

third element 3 to 41 and co oa 	and finally 

the last (eleventh) element from 11 t., 4. 'Therefore 

m - 3C. 

iii. An; u lar Coordinate u 

The flexibility of dynamic programming can be 

employed to determine how the radiation pattern is aff- 

ected by varying the input conditi.ins. 	The angular 

regi..)n or the u- region, is of practical, importance 

because in many ap.lications increased sidelobes may 

be porimitt ed over some angular sector if reduced side-

1oes can be achieved within some specified sector. 

a. 	umin 

Generaiiy the angular region ovar which the 

sidelubes are to be optimized should not include the 

main beam. If U 	is too small it might include min 
a portion of the main beam and not give the optimum 

design . A um in 	that is to,-) large might cause the 
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sidelobe region in the vicinity of the main beam to be 

higher than 5esirod t that is it should not be so large 

as to miss any of the sidelobes which occur near the 

main lobe. ,16n aoL,roximate value of um#n can be 

ost imat Dd as follows t,. 

The expression for the radiation pattern as derived 

previously is 

R(x'u) 5 1 + 2 	Cos 2 it xh ut, 
n= l 

For 25 element case N = 12 with 0 x = A'/2 

The .I2st term of the summation is 2 Cos 2 7r x12 U. 

5 O ' 

	

vdbere x12 = 	 = ._.~.... 	25 

Therefore 	2 Cos 2 IT x12 u = 2 cos 50 IT u . This 

is a p®rriodis term having the highest frequency of all 

the terms in the summat.ion • umin is taken at that 

point where the first minimum ' occurs in the term 

Cos 5O 1T U. 

i.e, Cos 507T um in = ~ 1 

or 	507r u 	ITmin "`  

or 	u 	-- 1/50 	= 0.02 
min 

It is not possible to predict the precise location 

of u 	in an unequally spaced array. infact it is rain 
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sometitnes necessary to vary umin 	 m to determine that 

value whieh just excludes the main hear. In any case 

it shou]d not be less than 0,.02 in -ur pro's lem., but it 

can be great car. In fact the array was synthesized first 

by taking u 	0t  02 and then u 	0, 04 and it was 

	

min 	 min 
found that umin  -- 0! 04 is the most suitable vvalgot 

since it 	very nearly fulfils the above re4u#.rements. 

umin  is largely governed by the number of elements in 
the array~ since as the number of elements Increases tho 

main lobe becdmes 	narrower and um in  is accordingly 

ro duo od. 

b. 	a max 

The value of umax  is determined by the range over. 

which optimization is desired I or if optimization is 

desired over the entire spaces is set equal to the 

value about which tho pattern is syametrical,, which is 

governed by the spacing guantization 

Since the spacing quantization is fixed at 4 /2 

the pattern is symmetrical about u = 1 . tlith Umin  

	

0.04 , and u 	1.0 , the pattern is optimized over max 
the region 0.04 e u 	. This covers the entire 

space outside tho main b ec-rn.. U 	= 0.5 corresponds max 
U to the angular region 30 	to either side of the main 

beam 	when it points in the broadfire direction. If the 

spacing quantization is reduced 	from A'. /2 	to 	'' /4 • 
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U 	increases from 1 to 2 1  since the pattern is max 
symmetrical row about u = 2 

c.. Increment in u , ©► u 

If fact this does not come under the input parameters  

but it is worthwhile to discuss it here itself. The value 

of 	u is so chosen that while calculating the radiation 

pattern over the sidelobe region of interest it should not 

miss any of the peaks of the ssiselobos. A u also 

on the total aperture dimension and the total region of 

U ov.:r which the pattern is to be optimized. 'Vith the 

limitations in the storage capacity of the computer du was 
taken to be 0.0025. With this the programme 
has to oompute the pattern for about 400 discrete 

values of u in order to determine a particular eonf'i-

guration of elements,. The perdentage error incurred 

while chosing A u as 0.0025 can approximately be 

calculated as follows 

Inca again the highest frequency 

term in,  the radiation pattern is 

Cos 50 IT u. ache n u= 0 

maximum amplitude = 1 

yJhen u = Q2 = 0.00125 

maximum amplitude = dos 507Tx0.00125 

0. 0 8 0 8. 

Therefore the fall in peak 
1i 0.080£3 

amplitude = '— 1 	x 10C 

1.2 °b 
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-dith A u = 0,, 0025 error = 1,02 ' and discrete u 

calculati.,ns = 400 

For obt aini n,3 an error of i °fib the increment u 

shjuld be 

2  x Cos .i Z 
u = 

	

	 0.001.8 i  and the 
50 x 180 

discrete u calculation 	560 w It Is verified thtt 

tau = 0.0025 givjs sufficiently accurate results.• The 

case for 	u = 0.002 was also considered and further 

discussed in a later chapter. 

5. 4. 	B UT'1TI N  

The applicati.n of dynamic programming to antenna 

array synthesis necessitates the use of a modern high- 

speed digital computer. Before proceeding to, the synthesis 

of the 25 element array♦ a 9 	ele, ant array which was 

already synthesized by NL Nath (10Gv) was attempted 

again to make sure that the procedure followed was correct. 

r1 programme was written for the Ili;. 	1620 digital 

computer for the G element array case. The various 

input parameters taken are unin 	0. 1 , umrax - 1. 0  , 
A x = J- /2 , m = 16 y Au = 0. 01 and D = 10  

program.11e differ somewhat from that of Nath, but the 

final results obtained were exactly the same. `fie 
optimum element locations in half wave lengths obtained arc 
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xo 	O , x 1  = 1 j  x2  = 5 0 x 3  = 8 and x4 	1E. The peak 

sidelobe level was « 5.64 db below the main beam. 

The problem of 25 element array case is just 

an extension of the 0 element array case and a programme 

is written for the 	IBM 	7044 digital computer 

with the capacity of determining the optimum spacings• 

of upto 11 pairs of elements (25 elements total) . 

The IBM 7044 computer has a storage capacity of nearly 

3:i, 000 words which is roughly ly 8 times higher than that 

of IBM 1620 and is also 100 times faster then, I DI 1620, 

Qualitatively the dynamic programming procedure 

can be diseribed as follows.. The first element( or element 

pair of a symmetrical array) can be placed in any one of 

m possible locations likewise the second element can be 

placed in any one of a possible locations. In our 
can occupy locations 1,2,3,......3 while the Second elemon,  
problem the first element /ean 000Upy loeations 1  2, 3, 4,... 
,40 . I`hese possible locations ara clearly overlapwpling. 

The only restriction is that adjacent elements may not be 

placed closer than a predetermined spacing, in this case 

. For each location of the second element say oth all 

possible locations 1,2,......0-1 , of the first element 

are examined and the contribution of each to the radiation 

pattern is computed. The central element (zeroth) and thi 

last element are always taken into consideration while 
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computing the radiation pattern. For each location of 

the sec.-nd element there will be a particular .ocati-,n of 

the first 	elaz.lent which produces the best results 

(meeting the criterion already defined). The best location 

of the first element for each particular location of the 

sac-)nd element is noted and is stored in the computer 

memory. ii 1 other coombinations are discarded• Thus 

we have assumed t hat the optimal position of the first 

element depends only upon the positii n of the sec.>nd 

element. This assumption is not readily justifeablo and 

only approximates the actual optimum. The above procedure 

can further be illustrated as follows i- 

The radiation pattern over u m u < umax is 

lair (u) 	 + 2 (cos ~'R'x u + Cos it x2u + Cos 50 7r u ) j 
SS 

where x and x are numbers giving the distance of the 
1 	2 

13c and 2nd element pairs in half-wavelenths. The 

absolute value of peak silelobe level for each x2 and all 

Possible xis is calculated from th3 above expression 

and stored in the computer memory. 'L,-.-qn the be st xl 

associated with each x2 is selected by comparing 

the peak sirielobe levels of each combination and taking 

that combination having the minimum of the maximum side 

lobe lev©l. The best combinations are stored in the 
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computer  memory and all other combinations are discarded, 

-'he total number of cases considered here 

	

~ 	39 x 440 	= 780 

The next step is to consider the 3rd element 

which can be placed in any one of the locations  

	

41. For each 	location of the 3rd element it is necel,  

ssary to determine the best location of the second 

element and of the first element. ILwover part of 

this problem has b '-, n solved since the optimum location 

of first element for every location of second element 

was determined in the previous stage. This is the 

	

saving affored 	by attacking a multistage problem by 

dynamic plogramming. Each location of 3rd element will 

resu Lt in an optimum location of 2nd element and hence 

an optimum location of 1st element. The best location 

of 2nd element for each particular location of the 

3rd element is noted and is stored in the computer 

memory. .1,11 other combinations are discorded. 	gain 

	

the secjnd step is further illustrated as follows 	.: 

The radiation pattern in this step is 

= 	1 + 2 (Go s1Tx1u + Cos 1T x2u + Cos iT x 3u 

+Cos 50iTu). I 

t!Jhere x1  , x2  and x3  are members giving the distanee 
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,f  the 1st, 2nd and 3rd element pairs from the centre 

element in half-wavelengths. The absolute value of peak 

sidelobe level for each x3  and all possible x2 's and 

best 	x s 	is calculated from the above expression 

and is stored in the computer memory. The best x2  

associated with each x3  is selected by comparing the 

peak sidelobe 	level of each of the combinations 	and 

taking that 	combination having the minimum of the 

maximum sidaloba level. The best combinations are 

stro red in the computer memory and all other are discarded. 

tnce again the total number of cases considered 

here 	= 	30 x 40 	780. 
2 

The procedure is repeated in turn for each of the 

remaining elements. The calculation is made for various. 

locations of the (rr•1) et 	element with each possible 

location of (n-2) nd element. N0 further calculations 

with (rr-3)rd , (n".4)th, etc.-elements are necessary since 

their positions as a function of position of the (nn2)nd 

element only ware determined in th3 previous stages. It 

should be noted that each stage of the process does not 

determine the location of a particular element. It only 

specifies that if a certain location is chosen for the 

( n-i )st element the location of (n-2 )nd element is 

determined, which then determines that of (n3)rd element, 

and so one The precise configuration is not given until the 
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last but one element is examined and its optimum location 

is found. Thus the design of complete array is built 

up f r m successive designs of partial arrays.. 

Among th.; 25 elements the two and elements and 

the central lenient are kept fixed so the remaining 22 

elements are to be located along the aperture  length 
50 2  . S ince the array is  symmetrical about the 

central alern ent c om7utat ions are done to find tha optimum 

locations of 11 elements, and th 3 r,-maining 	21 elements 

can be placed syaroetrically about the central elements* 

The precise configuration will be obtained only after 

considering the 11th element and the total number of 

cases considered until now will be 

= 730 x 10 	=7800. 

That is total number of cases examined with dynamic 
m (m+1)  x (-2 ,) 

pro g ramm ink.; _ 	 --- 
2 

Total number of cases to be examined with brute-force 
11 app m ach = ra 	= 3£ 

This shows claarly the advantage of dynamic programming 

tech ni Sue. 

;A programme is written for IBM 7044 is given 

in appendix 	''• The computer will s3lect those element 

locations which give the boot pattern  meeting the critorio 

specified already. The pr gramme for calculating the 
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radiation pattern is given Ln tippendix. 131, Three different 

cases have been considered. 

First Case: The various input parametors tak3n are: 

D = S 0 2  I  Ax = 0.5 ' , m ' 30j uAin = 0.02, u  m a,x 
and G u = 0.0025 . The programme has to compute 303 

discrete values of u in determining a particular 

configuration of elements over the region of interest 

umin < u, u 	Because of the sym retry the pattern is a. 

optimized over the region 0.02 	u .t 	t.8 . The 

optimum spacings 	measured in half wavelengths from the 

centre of the array, of each pair of elements as found 

by the computer are 

x1  = 3,x2  = 8 	x3  = 10 l  x4  = 11 , x5  = 15 x6  = 17 

x =1g, x = 21 ;l x )  = 22 , x 0= 34 x12= 44 $ along with 
7 	II 

x0  = 0 and x 12  = 5 0. 

The radiation pattern for the above spacings is 

calculated and plotted in figure No. 3 from points spaced 

of increments of du = 0.0025 . The maximum sidel,abe 

level is Ce 1 db below the main beam. 	Since the pattern 

is symmetrical abut u = 1 	the region from u = 1 , to 

u = 2 is not plotted. The various element combinations 

obtained by the computer along with the absolute peak 

side lobe level are shown in Table N. 3• The run time for 

this programme is 15 minutes. Intermediate prints have 

been introduced in the programme at the and of th each 



ELEMENT LOCATIONS IN HALF WAVELRNGTHS 	1 MAXIMUM 	SIDELOBE 
SYMMETRICAL WITH RESPECT TO X = 0 	tSIDELOBE ' LEVEL WHEN 

%101 UMIN = 0.04, UMAX = 1.0 	1AMPLITUDE MAIN BEAM 
j DELTA X = 0.5 LAMBDAS D = 50 LAMBDA 	AMPLITUDE 

05 6- 7 8 9 10 13 15 1721 26 50 -7,780362 0.31121418 
0 5 6 7 8 9 10 13 15 17 21 41 50 8.188244 0.32752976 
0 5 6 7 8 9 10 13 15 17 21 32 50 8.271950 0.33087800 
v^ 5 6 7 8 9 10 13 15 17 21 24 50 8.339328 0.33357321 
0 5 6 7 8 9 10 13 15 17 19 22 50 8.369837 0033479348 
0 5 6 7 8 9 10 13 15 17 19 37 50 8.378109 0.33512436 
0 5 6 7 "8 9 10 13 15 17 19 36 50 8.391637 0.33566548 
0 5 6 7 8 9 10 13 15 17 21 31 50 8.407403 0.33629612 
0 '5 6 7 8 9 10 13 15 17 21 39 50 8.423352 0.33693408 
0 5 6 7 8 9 10 13 15 16 17 21 50 8.433839 0033735356 
0 5 6 7 8 9 10 13 15 17 21 27 50 8.455521 0.33822084 
0 5 6 7 8 9 10 13 15 17 19 34 50 8.496565 0.33986260 
0 5 6 7 8 9 10 13 15 17 21 33 50 8.521352 0.34085408 
0 5 6 7 8 9 10 13 15 17 19 23 50 8.530307 0.34121228 
0 5 6 7 8 9 10 13 15 17 21 47 50 8.617916 0.34471664 
0 5 6 7 8 9 10 13 15 17 21 25 50 8.618034 0.34472136 
0 5 6 7 8 9 10 13 15 17 21 40 50 8.618034 0.34472136 
0 5 6 7 8 9 10 13 15 17 21 46 50 8,617916 0,34472136 
0 5 6 7 8 9 10 13 15 17 19 35 50 8.628932 0.34515728 
0 5 6 7 8 9 10 13 15 27 19 42 50 8.644721 0.34578884 

10 5 6 7 8 9 10 13 15 17 19 30 50 8.648761 0.34595044 
0 5 6 7 8 9 10 13 15 17 19 38 50 8.655483 0.34611932 
0 5 6 7 8 9 10 13 15 17 21 46 50 8.668321 0.34673528 
~0 5 6 7 8 9 10 13 15 17 19 20 50 8.679398 0.34717552 
0 5 6 7 8 9 10 13 15 18 24 43 50 8.746396 0,34985584 
0 5 6 7 8 9 10 13 15 18 24 44 50 8.763917 0.35055668 
0 3 8 10 11 12 13 17 18 23 27 29 50 8.796426 0.35185704 
0 5 6 7 8 9 10 13 15 16 18 19 50 8.917588 0.35670352 

f O 5 6 7 8 9 10 13 15 17 19 49 50 8.947208 0.35788832 
!0 5 6 7 8 9 10 13 15 17 19 48 50 8.985638 0.35942552 

5 6 7 8 9 10 13 15 18 24 28 50 9.106205 0.36424820 
0 5 6 7 8 9 10 13 14 1.5 16 18 50 9.358913 0.37435652 

5 6 7 8 9 10 13 14 15 16 17 50 9.534455 0.38137820 
4 5 6 7 8 9 10 12 14 15 16 50 9.925904 0.39703616 

10 4 5 6 7 8 9 10 12 13 14 15 50 11,206920 0.44827680 
G 4 5 6 7 8 9 10 11 12 13 14 50 13.009469 0.52037876 
-' 3 4 5 6 7 8 9 10 11 12 13 50 13.878994 0.55515776 
0 2 3 4 5 6 7 8 9 10 11 12 50 15.941714 0.63766964 
10 1 2 3 4 5 6 7 8 9 10 11 50 17*800390 0671201560 

TABLE NO ► 
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stage to verify the execution of the computer. Had the 

intermediate prints mt been there► the run time would 

have bean about 12 minutes. 

From the radiation pattern Fig, IN:). 31 it is 

found 	that u 	= 0,02 does include; a portion of the 

main b.am. For this value of um in  the amplitude is 5.7 

which does not fulfil the r>oquirements laid down in art 

5.3(iii) . Hence we may suspect that the results obtained 

are truly optimum► but still somewhat bettor than what 

M. I. Sko lnik at al. (1034) have obtained, 

Second Case: 	um in  is changed from 0,02 to 0.04 the 

other input parameters remaining the Same. The programme 

now computed 335 disc rote values of u in determining a 

particular configuration of elements over the region of 

interest u in 	u Cu • The pattern is optimized 

over the re.dion 0.04. Jul `< to C6 s Th optimum spacings 

measured in half wavelengths from the array centre of each 

pair of elements as found from the comput -;r are = 

Xi  = 51 x2  = 6 R  x3  = 7 ► x = 8 y X 5  = 6 ► x6  = 10 

x 7  =131 x 8 —.j5 	x 	= 17 	► X10=21 ► x11  = 26 
9 

along with Xo  = 0 and x12  = 50 • 

The radiation pattern for the above spacings 

is plotted in Fig. 	No • 	5 of 	at increments of 4u = 0.0025. 
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Because of the pattern Symmetry about u = 1 the 

region fnmm u = I to u = 2 , is not plotted. The 

maximum sidelobe level is 2. .14 db below the main 

beami a remarkable improvement over that obtained by 

the previous investigators . The Yariou5 element 

combinations obtained by the computer along with the 

absolute peak side lobe level are shown in Table No.• 4. 

It is interesting to see that three different element 

combinations (S.No. 16, 17} 18) have the same peak side- 

lobe level,• The run time for this programme is about 

15 minutes. 

From the radiation pattern it is seen that 

umin 	0.04 still includes only a- very little portion 

of the main beam but is closest to the first null and 

hence fulfils the requirements laid down in art 5.3(iii ). 

The results of the second case are further discussed in 

the last Chapter. 

Third Case • The effect of scanning of the radiation 

Pattern over a smaller angle is verified .hero. Other 

input parameter remaining the same u ax is taken as m 

0. 5 keeping umin = 0.02 • This corresponds to 

the angular region 300  to either side of the main 

beam of an, unscanned array. 



ELEMENT LOCATIONS 
SYMMETRICAL WITH 
UMIN  =  0.02,  UMAX 
DELTA  X =  0,5 LAMBDA, 

IN HALF 
RESPECT 
=  1.0 

D = 

WAVELENGTHS 
TO X = 0 

50 LAMBDA 

MAXIMUM 
SIDELOBE 
AMPLITUDE 

SIDELOBE 
LEVEL WHEN 
MAIN BEAM 
AMPLITUDE 
IS UNITY 

0 3 8 10 11 15 17 19 21 22 34. 44 50 8.752245 0.3500898C 
J 3 8 10 11 15 17 19 21 22 34 35 50 8.754927 0.3501970E 
0 3 8 9 13 20 22 23 26 29 31 33 50 8.866946 0.35467784 
0 3 8 10 11 15 17 19 21 22 34 49 50 8.896218 0.3558487, 
0 3 8 10 11 15 17 19 21 24 38 41 50 8.919292 0.35677161 
G 3 8 10 11 15 17 19 22 23 32 34 50 8.924178 003569671 
0 3 8 10 11 15 17 19 20 21 35 38 50 8.947821 0.3579128 
0 3 8 10 12 13 19 20 24 25 26 28 50 9.000000 0.3600000( 
0 3 ,8 10 11 15 17 19 20 21 36 37 50 9.007296 0.36029181 
0 3 8 10 12 13 19 20 24 25 27 39 50 90023040 0.3609216( 
0 3 8 10 1,1 15 17 19 20 21 35 42 50 9.038295 0.36153181 
C) 3 8 9 13 20 22 23 26 34 41 45 50 9.049490 0.3619796, 
0 3 8 10 11. 15 17 19 20 21 35 43 50 9.07923.3 0.3631693 
0 3 8 10 12 13 19 20 24 25 27 46 50 9.084659 0.36338,63 
0 3 8 9 13 20 22 23 26 28 30 32 50 9.100102 0.3640040 
G 3 8 10 11 15 17 19 20 21 35 36 50 9.1001286 0.3640514 
0 3 8 10 11 15 17 19 21 22 34 40 50 9.115643 0.3646257 

3 0 3 8 9 13 20 22 23 26 35 42 47 50 9.116827 0.3646730 
0 3 8 10 12 13 19 20 24 25 27 31 50 9.312800 0.3725120 
0 3 8 10 11 15 17 19 20 21 33 48 50 9.423503 0.3769401 
0 3 8 10 11 15 17 19 21 22 24 27 50 9.498632 0.3799452 
0 3 8 10 12 13 19 20 24 25 27 29 50 9.603656 0.3841462 

3 0 3 8 9 13 20 22 23 26 28 29 30 50 9.693265 0.3877306 
0 3 8 10 11 1.5 17 1.9 21 24 25 26 50 9.782430 0.3912972 
0 3 8 10 11 15 17 19 21 22 23 25 50 10.365898 0.4146359 

5 0 3 8 10 11 15 17 19 21 22 23 24 50 100672184 0.4268873 
0 3 8 10 11 15 17 19 20 2.1 22 23 50 11,66.2957 0.665l82 

3 0 3 8 1.0 11 12 16 17 18 19 20 22 50 12.458943 0.498357% 
0 3 8 10 11 12 16 17 18 19 20 21 50 12.756384 0.510255- 

8 10 12 13 14 16 17 18 19 20 50 134761580 0.550473 
3 8 10 11 12 13 14 15 16 17 19 50 13.925108 0.557004 

8 10 11 12 13 14 15 16 17 18 50 14.040417 0.561616E 
3 8 9 10 1.1 12 13 14 15 16 17 50 14.877515 0.587100E 

C 5 6 9 9 10 11 12 13 1+ 15 16 50 15,711099 0o628443C 
= 0 3 6 7 8 9 10 11 12 13 14 15 50 16.449099 0.657963' 

0 4 3 6 7 8 9 10 11 12 13 14 50 17.210695 0.688427E 
0? 4 5 6 7 8 9 10 11 12 13 50 17.900421 0.716016E 
9 2 3 4 5 6 7 8 9 10 11 12 50 18.515556 0.740622= 
~7 1 2 3 4 5 6 7 8 9 10 11 50 19.053673 0.742146` 

TABLE NO.'$ 
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The programme now computer 193 discrete values 

of u in determining the particular configuration of 

elements over t ha region of interest 0.02 	u 	0.50. 

The location of the element pair for the oj)timum case 

measured in half-wave lengths from the centre of the 

array as obtained by the computer are I 

= Q = 	x3 = 12 , x4 --~ 15 	J x5 = 19 
6 	x i = 	2 

X6 	22 ' x7 	25 , x8 = 28 , x 	= 32, x10= 40 

x11 - 43 	along with x 	0 	and x12 -- 	50, 

The radiation pattern for the ab-)Ve spacings 

is plotted in Fig. lib. 5 at increments of Du = 0.0025. 

Because of symmetry about U = 1 ,x the region from u =1i 

to u = 2 is not plotted 	The maximum sidelobe level 

in the region of optimization is 13. 54 db below the 

main lobe, a 3.4 db improvement over that obtained for 

the scanned array of Fig. 1e • 4 • in the remaining 

visible portion of the u regions however, the side 

lobe increases to 	a value of -3. 15 db. The various 

element combinations obtained by the computer along 

with the absolute peak sidelobe level are shown in 

Table Ne.5• The run time for this programme is 10 minutes! 

From they radiation pattern Fig. No, 5 it is 

	

seen that u 	= 0.02 does not include the main lobe 
min 



ELEMENT LOCA`tIONS 	IN HALF 
SYMMTRICAL WITH RESPECt 
UIN = 	0.024 UMAX 	= 	0.5 
DELTA X = 005 LAMBDAS D = 

WAVELENGTHS 
10 X = 0 

50 LAMBDA 

MAXIMUM 
SIDELOBE 
AMPLITUDE 

SIDELOBE 
LEVEL WHEN 
MAIN BEAM 
AMPLITUDE 
IS UNITY 

5.258C.2103559 ?. 0 	6 	9 	12 	15 	19 	22 	25 	28 	32 	40 	43 	50 
2 0 6 9 12 15.19 22 25 28 32 35 39 50 5.361791 0.21447164 
3 0 6 9 12 15 19 22 25 28 32 35 38 50 5.464385 0.21857540 
4 0 6 9 12 15 19 22 25 28 34 37 40 50 50695960 0.22783840 

6 9 12 15 19 22 25 28 32 40 47 50 5.756215 0023024860 
6 0 6 9 12 15 19 22 25 28 32 34 36 50, 5.784729 0023138916 
7 0 6 9 12 15 19 22 25 28 32 35 44 50 50851580 0023406320 
8 0 6 9 12 15 19 22 25 28 34 37 45 50 6,113975 0.24455900 
9 0 6 9 12 15 19 22 25 28 32 35 37 50 60120516 0.24482064 
10 0 6 9 12 15 19 22 25 28 31 39 46 50 60155243 0.24620972 
i1 0 6 9 12 15 19 22 25 26 28 31 42 50 6.171448 0.24685792 
12 0 6 9 12 15 19 22 25 28 38 41 48 50 6.259138 0025036552 
11 0 6 9 12 15 19 22 25 28 32  '34 35 50 60306362 0.25225448 
14 0 6 9 12 15 19 22 25 26 28 32 34 50 6.527634 0.26110536 
15 0 6 9 12 15 19 22 25 28 32 35 41 50 60538016 0.26152064 
16 0 6 9 12 15 19 22 25 28 38 41 49 50 6.911409 0.27645636 
170 6 9 12 15 19 22 25 26 28 31 33 50 7.031434 0.28125736 
18 0 6 9 12 15 19 22 25 26 27 28 32 50 7.691211 0.30764844 
19 0 6 11 15 19 22 25 26 27 28 31 50 8.138665 0032554660 
20 0 6 9 12 15 19 22 25 26 27 28 30 50 8.528853 0.34115412 
21 0 6 9 12 15 19 22 25 26 27 28 29 50 8.844890 0.35379560 
22 0 6 9 12 15 19 22 23 25 26 27 28 50 9,433110 0.37732440 
23 0 6 8 9 12 13 14 17 21 23 25 27 50 9.863588 0.39454352 
24 0 6 8 9 12 13 14 17 21 23 24 26 50 100114255 0.40457020 
25 0 6 8 9 12 13 14 17 21 23 24 25 50 10.239836 0.409.59344 
26 0 6 8 9 12 13 14 17 21 22 23 24 50 100660188 0042640752 

5 6 8 9 11 13 14 17 20 21 22 23 50 110705852 0.46833440- 
. 0 6 8 9 12 13 14 17 19 20 21 22 50 12,706504 0,50826016 

2 "' 6 8 9 12 13 14 17 18 19 20 21 50 130572016 0.54288064 
322 5 7 8 9 12 13 14 15 16 17 20 50 140083681 0.56334724' 

i31 0 5 7 8 9 12 13 14 15 16 17 19 50 140201896 0,56807584 
132 0 5 7 8 9 12 13 14 15 16 17 13 50 140317205 0.57254820 
•9 0 5 7 8 9 11 12 13 14 15 16 17 50 150006673 0.60026692 314. 0 4 6 7 8 9 10 12 13 144, 15 1.6 50 16.014779 0.64059116 
25 0 4 6 7 8 9 10 11 12 13 14 15 50 16.484152 0.67936608 

0 4 5 6 7 8 9 10 11 12 13 14 50 17,210695 0,68842780 
3 4 5 6 7 8 9 10 11 12 13 50 170900421 0.71601684 

55 2' 3 4 5 6 7 8 9 10 11 12 50 18.515556 0.74062224 
30  • 1 2 3 4 5 6 7 8 9 10 11 50 190053673 0076214692 

TABLE N4.5 
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1. 5 9• 

and is almost at the first null and hence it exactly 

fulfils the requirements laid down in art. 5.3(111). 

Another case was tried in which tau is taken 

as 0.002 to have more percentage accuracy, sacrificing 

at tha same time the element locations from 39 to 29. 

The modified programme was written for IBM 7044, and a 

slightly different of element locat:on, was obtained. 

oweverr the peak sidolobes in the two cases were within 

a tenth of a db, hence the r;-sults have not been given 

here. 

The peak sidelobe level obtained by various 

design techniques available so far for the 25 element 

array is given In the Table 1b.. 6. 



Synthesis Techniques Peak sidelobo l3vel when the main 
b .am amplitude is unity. 

-0.4 
By Ishimaru and (2N+1) 0,480(-6..19db ) 
Chan ,s formula -0.5 (2N+1) 0.348 	(-9.17 db ) 

Dynamic programing Umax 	1 0.3.63 	(-8..8,.db ). 
techniqu3 as applied 
by Skolnik et al U 	=0,5  0.240 	(-12.6 db) max 

U 	
1 - 0.358 	(8.9db 	) 

Statistical mothod max 

o f Lco 	and 	Lee 
U 	= 0.5 - min 

Dynamic programming U 	1 0.311 	(-10.14 db) max 
as appli. d here • 

U 	= 0.5 0.210 	(-13.4 dl,) mm 	V V 	

. 

'dab l e No. 6. 



CH1 Th 	VI 

CONCLUSIONS AND DISCUSSIONS 

The opt tmizat i.)n problem considered here is very 

complex and is very difficult t_. find a general analytical 

oxpressi_-)n which can predict the sidelobe level without 

much computations. The method of dynamic programming tothe 

synthesis of a 25 element array located within a 50 wave-

length aperture was first applied by Skolnik et. al•(1964 ). 

However, the results jbtained were not truly optimum as 

slightly better results were reported by Lo and Lee(1966) 

using the mott od of space topering and total enumarat ion. 

Their star ,ist.ical study indicated that the d. amic programming 

technique was not very efficient in searching for an element 

arrangement produc3.ng low sidelobes. The use of dynamic 

programming is reinvestigated here considering the same 

example as that of Skolnik. The results obtained are very 

much superior to those .Dbtained by the previous investtg tors 

(See Table No. 6 , Chapter V) 	For the 9 element case the 

results are infact truly optimum As they teo,pide with 

those obtained 	by total enumeration , It seems that the 

calculations of the original authors nam .y Skolnik et, at. 

are in error . Once again from Table 4 Chapter 5 it is 

seen that out of 39 sots of element. combinations obtained 

by the computers as many as 30 sets give peak sidelobe 
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levels which ar-, lower then thosa obtained by previous 

investigators. The, b ~,st aler,~ent combination of Skolnik 

et 0'l. for a similar array has a peak sjdolobe level 

8! 8. db below the main beam; that of 	IA and ,ee has 

a peak side lobo level 8. 8 db below the main beam. 

Dynamic programming may b used to explore 

the properties of array antennas by varying the input 

parameters, examining the r3 su It j an'. making proper 

deductions as to tho array behaviour , It do 'a s not yield 

closed form answers. But it has the important advart age 

that it can supply useful answers where other more elegant 

techniques fail to provide practical- solutions. 

Computational difficulties 	might be encountered 

using dynamic programming 	if the number of elemert s 

become too large. However other techniques suffer from 

the same limitations. Th0 computer ;lro ramma that 

generated the results reported here can be extended to 

enlarge the scope of tha Investigation. This programme 

was performed using only the rapid access storage of 

the computer and involved in additional storage. 	The 

upper limit of array complexity that dynamic program— 

ming can o onomicaliy handle is a subject of future 

exploration, but it can be said that it is practical 

to design considerably large arrays than described 

hero. 
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Dynamic programming has proved to be a useful 

tool for the design of one class of antenna arrays and 

promises to be of value for other antenna. array problems. 

In conclusion it can be said that with confidence that 

out of various synthesis methods available so far, 

dynamic programming technique is the bo st and the 

results obtain3d by this method will be very close to 

optimum if it truly optimums 
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APPENDIX—A 

PROGRAM FOR THE DESIGN OF NON-UNIFORMLY SPACED ANTENNA ARRAYS OF 25 

ELEMENTS SPACED WITHIN A 50 WAVELENGTH APERTURE 

JOB 	0CG026 
IBJOB 
IBFTC MAIN  NODECK 

NA CORRESPONDS TO POSITIONS ALLOTED TO 1ST ELEMENT (1 TO 39) 
NB CORRESPONDS TO POSITIONS ALLOTED TO 2ND ELEMENT (2 TO 40) 
NC CORRESPONDS TO POSITIONS ALLOTED TO 3RD ELEMENT (3 TO 41) 
ND CORRESPONDS TO POSITIONS ALLOTED TO 4TH ELEMENT (4 TO 42) 
NE CORRESPONDS TO POSITIONS ALLOTED TO 5TH ELEMENT (5 TO 43) 
NF CORRESPONDS TO POSITIONS ALLOTED TO 6TH ELEMENT (6 TO 44) 
NG CORRESPONDS TO POSITIONS ALLOTED TO 7TH ELEMENT (7 TO 45) 
NH CORRESPONDS TO POSITIONS ALLOTED TO 8TH ELEMENT (8 TO 46) 
NO CORRESPONDS TO POSITIONS ALLOTED TO 9TH ELEMENT (9 TO 47) 
NP CORRESPONDS TO POSITIONS ALLOTED TO 10TH ELEMENT (10 TO 48) 
NO CORRESPONDS TO POSITIONS ALLOTED TO 11TH ELEMENT (11 TO 49) 
JLAST REFERS TO POSITION OF FIXED ANTENNA (50) 
KLAST IS SUCH THAT FOR SOME VALUE OF K GIVES U MAX 
INVE REFERS TO INITIAL POSITION FOR THE 2ND ELEMENT (2) 
HI IS SUCH THAT K = 1 GIVES U MIN 
H REFERS TO INCREMENT IN U (0 0025) 
ABEL)) CORRESPONDS TO ABSOLUTE SUM 
DIMENSION Z(50,393) 
DIMENSION X(50),Y(393),ABE(393)9A(39),M(40)9AD(40)iB(40),KA(41) 
DIMENSION AF(41),C(41)>KB(42),3F(42)9VA(43),KC(43)9FA143),V8(43) 
DIMENSION FB(44),JD(44),VC(44),JE(45)9FC(45),VD(45)gJF(46)9FD(46) 
DIMENSION VE(46)sFE(47)9J~-!(47)9VF(47)gJO(48),FF(46),JP(49)9FG(49) 
DIMENSION VG(48),MPG(48) 

700 READ 100,HI,H,JLAST,KLAST,INVF 
101 FORMAT (2F1006,12,I3,I2) 

PY = 301415927 
DO 60 I = 1~JLAST 
XX=I 

60 X(I) = PY4 XX 
DO 61 K = 1sKLAST 
YY = K 

61. Y(K) = HI+H*YY 
DO 900 I = 19JLAST 
DO 900 K = 1,KLAST 
S = COS(X(I)*Y(K)) 

90n Z(I,K) = S+ 



STAGE 1 
DO 1 NB = INVE,40 
Ni = NB--1 
DO 2 NA = 1,N1 
DO 3 J = 19KLAST 

3 ARE(J) = A.RS(1.o+Z(NA,J)+Z(NB,J) +Z(JLAST,J)) 
AR = AE E (1 ) 

A (NA )AR 
DO 4 K = 29KLAST 
IF(AR—=ABE(K) )59494 

5 AR = ABE(K) 
A(NA) = AR 

4 CONTINUE 
2 CONTINUE 

AC = A(1) 
AD(NB) = AC 
M(NB) = 1 
IF(N1-1)11911944 

11 GO TO 1 
42 DO 9 NA = 29N1. 

IF(AC—A(NA) )9,10910 
10 AC = A(NA) 

AD(NB)= AC 
M(N3) = NA 

9 CONTINUE 
1 PRINT 30,NB,M(NB)9AD(NB) 

30 FORMAT (IXI29I4,F1006) 

STAGE 2 
00 12 NC = 3,41 
11= NC-1 
00 13 NB = 2,I1 
MN = M(NB) 
DO 14 J = 1,KLAST 

14 ARE(J) = ABS( 1o+Z(NC, J)+Z(NEs9J)+Z(MN,J)+Z(JLAST,J)) 
AE = ABE(1) 
"(NB) = AE 
DO 16 K = 29KL.AST 
IF(AE—ABE(K) ) 1591616 

15 AF _ ,ABE(K) 
B(NE) = AF 

16 CONTINUE 
13 CONTINUE 

AF1 = B(2) 
AF(NC) = AF1 
KA(NC)  = 2 
KANC = 2 
IF(11-2) 51 951,52 

51 GO TO 12 
52 DO 18 NB = 3911 

IF(AF1—B(NB)) 18919,19 
19 AFI = B(NB) 

AF(NC) = AF1 
KA(NC) = NB 
KANC = KA(NC) 

18 CONTINUE 

12 PRINT 300,NC,KA(NC),M(KANC),AF(NC) 
300 FORMAT (1Y,I2,2I4,F10v6) 



STAGE 3 
DO 6 ND = 4942 
J.l = ND 1 
DO 7 NC = 39J1 
MA. = KA(NC) 
MD = MM(MA) 
0 8 J = 19KLGST 

8 ARE(J) = ABS( 10 +Z(ND,J)+7(NC9J)+Z(MA,J)+Z(Mr iJ)+Z(JL.AST,J) 
AC2 = ABE(1) 
C(NC) = AC2 
DO 23 K = 29KLAST 
IF(AC2-'ABE(K)) 22923,23 

22 AC2 = ADF(K) 
C(NC) = AC2 

23 COQ%ITINU!E 
7 CONTINUE 

AF? = C(3) 
= AF2 

KE(ND) =3 
KB1 = 3 
KD = KA(KP7 ) 
IF(J1-3) 24,24,25 

24 GO TO 6 
25 DO 27 NC = 49J1 

IF(AF2—C(NC)) 27,28,28 
28 AF2 = C(NC) 

BF(ND) = AF2 
KB(ND) = NC 
KB1 = KB(ND) 
KD =KA(KB1) 

27 CONTINUE 
6 PRINT 29,ND,KB(ND),KA(KBI),iM(KD),RF(ND) 
29 FORMAT (1XI2,3I49F1006) 

STAGE 4 
DG 31 NE = 5,43 
_ = NE-1 

DO 3? ND = 4 9 12 
MC = KB(ND) 
MD = KA(MC) 
ME = M(MD) 
DO 33 J = 1,KLAST 

33 ABE(J)=A85(1o+Z(NE,J)+Z(ND,J)±-Z(MC,J)+Z(MD,J)+Z(ME,J)+ZCJLAST,J' 
AC3 = ABE(1) 
VA (ND) = AC3 
DO 34 K= 2,KLAST 
IF(AC3—ARE(K)) 35934,34 

35 AC3 = ABE(K) 
VA(NP) = AC3 

34 CONTINUE 
32 CONTINUE 

AF3 = \/A(4) 
FA(NE) = AF3 
KC(NE) = 4 
K52 = 4 
KP = KB(K82) 
KO = KA(KP) 
IF(I2-4) 37,37,38 

37 GO TO 31 
38 DO 39 ND = 5,12 



(iv ) 

IF(AF3-VA(ND)) 39,40940 
40 AF3 = VA(ND) 

FA(NE) = AF3 
KC(NE) = ND 
KB2 = KC(NF) 
KP = KB(KB2) 
KGB = KA(KP) 

39 CONTINUE 
31 PRINT 41,NE9KC(NE),KB(K62) ,KA(KI'),M(KQ) 9FA(NE) 
41 FORMAT (1XI2,4I49F1036) 

STAGE 5 
DO 43 NE = 6,44 
I3 = NF-1. 
DO 44 NE = 5,13 
MF = KC(NE) 
MG = KB(MF) 
Mlh = KA( liG) 
MO = M(MH) 
DO 45 J = 1,KLAST 

45 ABE(J)=AES(1 +Z(NF9J)+Z(NE,J)+Z(MF,J)+Z(MG9J)+Z(MH,J)+Z(MO,J)+ 
1Z(JLAST,J)) 
AC4 = ABE(1) 
VB(NE) = AC4 
DO 46 K = 29KLAST 
IF(AC4-ARE(K)) 47,46946 

47 AC4 = ABE(K) 
VB (NE) =AC4 

46 CONTINUE 
44 CONTINUE 

AF4 = VB(5) 
F3(NF) = AF4 
JD(NF) = 5 
KB3 = 5 
KR = KC(K53) 
KS = KB(KR) 
KT = KA(KS) 
IF( I3-5) 50950,49 

50 GO TO 43 
49 DO 53 NE = 6,13 

IF(AF4--VB(iNF)) 53,54,54 
54 AF4 = VB(NE) 

FB(NF) = AF4 
JD(NF) = NE 
KB3 = JD(NF) 
KR = KC(K93) 
KS = KB (KR ) 
KT = KA(KS) 

53 CONTINUE 
43 PRINT 55,NF,JD(NF),KC(KB3),KB(KR) 9KA(K5) 3Mr(KT),FEi(NF) 
55 FORMAT (1.X12,5I4,Fl0.6) 



(v ) 

C 	STAGE 6 
DC 56 MG = 7,4 

14 = NC-]. 
D<) 57 NF = 69I4 
MP = JD(NF)• 
MO = KC(MP)  

KB (MO) 
MS = KA(MR) 
MT = M(MS) 
DO 58 J = i.9KLAST 

58 ABE(J)=A S(l.o Z(,1G,J)+7.-( !F-.))a7_(v!P9J)+Z((v,n9J)+Z(MR5J1 7_(MS9J)+ 
2Z(MT , J)+Z(JLA: T,J) ) 
AC5 = A5E(1) 

VC(NF) _ AC5 
DO 62 K = 29KLAST 
IF(AC5--ABE(K)) 59962962 

59 AC5=ABE(K) 
VC (MF) = p.CS 

62 CONTINUE 
57 CONTINUE 

AF5 = VC(6) 
FC(NG) = A.FS 
JE(NG) = 6 
K534 = 6 
KU = JD(KB4) 
KV = KC(KU) 

K1! = K'B (KV ) 
KX = Ki~(KW) 
IF(I4-6) 64964965 

64 GO TO 56 
65 DC 67 NF = 79I~ 

IF(AF5-VC(NF)) 67,68968 

68 AFS=VC(NF) 
FC(NG) = AFc, 

JE(NG) = NF 

K'PL = JE(NG) 
KU = JD(KB4) 
KV - KC(KU) 
KW = KB(KV) 
KX = KA(KU') 

67 CONTINUE 
56 PRINT 699NG9JE(NG),JD(K84)~KC(KtJ)9KB(KV)9KA(KW)9P1(KX),FC(NG) 

69 FORMAT (1XI296I49FIOo6) 

C  STAGE 7 

DO 70 NH = 8946 

I5 = NH—i. 
DG 71 NO = 791 5 
MU = JE(NG) 
MV = JD ( MU 
MW = KC(MV) 
MX = KB(MW) 
MY = KA(MX) 



(vi ) 

M7..= M(MY) 
DO 72 J 	1,KLAST 

72 ARE'(J) =ABS( I0+Z.(NH,J)+7_(N,JG9J) +Z(N1U ,J)+Z(MV J)+Z(MW9J)+Z(MX,J)+ 
3Z(MY,J)+Z(MZ,,,))+Z(JLAST,J) ) 
'AC6 = A.BE (]. ) 
VD(NG) = AC6 
DO 73 K = 21KLAST 
IF(AC6-ABE(K)) 74,73,73 

74 AC6 = ABE(K) 
VD(NG) = AC6 

73 CONT+NUE 
71 CONTINUE 

AF6 = VD(7) 
FD(NH) = r.FE 
JF(NH) = 7 
KB5 = 7 
IA = JE(K85) 
IF = JD(IA) 
IC = KC(IB) 
ID = K!B(IC) 
IE = KA(ID) 
IF(I5.7) 76976,77 

76 GO TO 70 
77 D^ 78 NG = 8,I5 

IF(AF6—VD(NG)) 78,79,79 
79 AF6 = VD(NG) 

FD(NH) _ AF6 
JF(NH) = NG 
KB5 = JF(NH) 
IA = JE(KB5) 
IB = JD(IA) 
IC 	KC(IB) 
ID = KB(IC) 
IE = KA(ID) 

78 CONTINUE 
70 PRINT 80,NH,JF(NH),JE(KB5),JD(IA),KC(ID),KBI+C),K,A(ID),M(IE), 
4FD(NH) 

80 FORMAT (1.XI2,7I4,F10o6) 

C 	STAGE 8 
DO 	81 NO = 	9,47 
I6 	= NO—I 
DO 82 NH 	= 	8,16 
LD = JF(NH) 
LE = JE(LD) 
LF 	= JD(LE) 
LG = KC(LF) 
LH = KB(LG) 



LO = KA(LH) 
LP = M(L0) 
DO 83 J = 1,KLAST 

83 ABE(J) =ABS(1.+ Z(NO,J)+Z(NH,J)+Z(LD,J)+Z(Lr_,J)+Z(LF,J)+Z(LG,J)+ 

8Z(LH,J)+Z(L09J)+Z(LP9J)+Z(JLAST,J)) 
AC7 = ABE(1) 
VE(NH) = AC7 
DO 84 K = 2,KLAST 
IF(AC7'-ABE(K)) 85984984 

85 ACT = ABE (K 
VE(Nkl) = AC7 

84 CONTINUE 
82 CONTINUE 

AF7 =VF(8) 
FE(NO) = AF7 
JH(NO) = 8 
K86, = 8 
10 = JF(KB6) 
IP = JE(IG) 
IQ = JD(IP) 
IR = KC(IQ) 
IS = KB(IR) 
IT = KA(IS) 
IF(I6'-8) 87,87,88 

87 GO TO 81 
88 DO 89 NH = 9916 

IF(AF7-VE(NH)) 89990,90 
90 AF7 = VE(NH) 

FE(NO) = AF7 
JH(NO) = NH 
KB6 = JH(NO) 
IO = JF(KB6) 
IP = JE(IO) 
In 	JD(IP) 
IR 	KC(IQ) 
IS = KB(IR) 
IT - K'',(IS) 

89 CONTINUE 
81 PRINT 91,NO,JH(N0),JF(KB6)9JE(I0),JD(IP),KC(±Q),KB(IR),KA(IS), 

5M(IT),FE(NO) 
91 FORMAT (1XI2,8I49F10,6) 

C 	STAGS 9 
DO 92 NP = 10,48 
I7 = NP-1 
DO 93 NO = 9,17 
L0 = JH(N}0) 
LR = JF(LQ) 
LS = JE(LR) 



L,T 	JD(LS) 
LU 	KC(LT) 
LV 	KB(LU) 
LW 	KA(LV) 
LX = M(LW) 
DO 94 J -3 19KLAST 

94 ABE(J)  
6Z(LU,J)+4( IV5J)+Z(LWOJ)+Z(LX,J)+Z(JLAST,J)) 
AC8 	ASS (1) . 
VF(N01 	AC8 
DO 95 K = 2,KLAST 
IF(A(8 A E_(K)) 96,95,95 

96 ACS=AEE(K) 
VF (NO) AC8 

95 CONTINUE 
93 CONTINUE 

AF8 = VE(9) 
FF(NP) = AF8 
JO(NP) _ 9 
KB7 = 9 
IAl 	)H(K37) 
IBI. = JE(IA1 ) 
IC1 = JEtI8i.) 
Ibl = JD(ICI) 
IE1. = KC(ID1) 
IFl 	K,B( E1 ) 
IG1 = KA(IFI) 
IF(I7-9) 98498,99 

98 GO TO 92 
99 DO 101 NO = 10,17 

tF(AF8-VF(N0)) 101,102,102 
102 AF8=VF(NO) 

FF(NP) = AFS 
JO(NP) = NO 
KB? = JO(NP) 
IA1 = JH(KB7) 
rrl. = JF(IA1) 
IC1 = JE(IBl) 
ID1 = JD(I01. ) 
IE1 = KC(ID1) 
IF1. = KB(IEI ) 
IG1 = KA(IFI) 

101 CONTINUE 
92 PRINT 103,NP,.!0(NP),JH(KB7)J(=(IA1),JE(IB1),JD(IC1),KC(ID1), 

9KB(IE1),KA(IFJ.),M(101),FF(NP) 
103 FORMAT (1XI2,9I49F10e6) 



STAGE 10 
DO 104 NO = 11.949 
t8 = NQ-1 
b0 105 NP = 10,18 
MAL = JO(NP) 
MBM = JH(MAL) 

= JF (MBM ) 
MDO = JF(MCN) 
MEP = JD(4D0) 
MFQ = KC(MEP) 
MGR = K8(MFQ) 
MHS = KA(MGR) 
MNT = M(MHS) 
DO 106 J = 1,KLAST 

106 A,B_E(J) =ABS( lA+Z(NQ,J)+7(NP,J)+Z(MAL,J)+Z(MFM4J)+Z(MCN,J)+ 
1Z(MMDQ ,J)+Z(MFP,J)+Z(MFQ,J)+Z.(MGR9J)+Z(MHS,J)+Z(MN!T±J)+Z(JLAST9J) 
AC9 = ABE(1) 
VG(NP) = AC9 
iVIPG(NP) = 1 
DO 10.7 K = -,KLAST 
IF(AC9-ABE(K)) 108,107,].07 

108 AC9=ABE(K) 
VG(NP)=AC9 
MPG(NP) = K 

107 CONTINUE 
105 PRINT 109,NQ,NP,JO(NP),MPG(NP),VG(NP) 
109 FORMAT (1XI2,2I4,I6,FI.006) 

AF9 = VG(10) 
FG(NQ) = AF9 
JP(NO) = 10 
K P ,8 = 10 
MA1 = J0(KB8) 
MB1 = JH(MA1) 
MB2 = JF(MB1) 
MB3 = JF(MB2) 
MF 4 =- JD  (MB3  ) 
M55 = KC(MB4) 
M86 = KB(MB5) 
MR7 = KA(MP6) 
IF(18-10) 110,1)0,111 

1 1O GO 10 104 
i11 DO 112 NP = 11I8 

IF(AF9-VG(NP)) 112'113'113 
x.13 AF9=VG(NP) 

rG(NQ) = ,F9 
JP(NQ) = NP 
K88 - JP(NQ) 



(x) 

MA1. = JO(KR8) 
MRl- = JH(MA1) 
M92 = JF(MR1) 
MR3 = JF(MMR2) 

MF4 = JD(MR3) 
MB5 = KC(MR4) 

MR7 = KA(MP6) 
112 CONTINUE 
104 PRINT I14,NQ+JP(NO),J'O(KPA),JH(MA1),JF(MB1) ^JF(MB2) 

2!KC((MR4),KB(M95),KA(MB6),M(M37),FG(NO) 

114 FORMAT (1XI2,10I4,F1C.6) 
GO TO 7000 

For, STOP 
E N r) 

ENTRY 

 

.0175  .0025  5(393 2 

 

.0025  50385 2 

 

.0175  .0025  50193 2 

+Jr)(MB3), 



APPENDIX—B 

PROGRAM FOR RADIATION  PATTERN 

$JOB  0CG027 
SIBJOB 
$IBFTC MAIN  NODECK 

DIMENSION X(50),Y(401),Z(50'401),FOXU(401) 
900 READ 20,NA,NB,NC,ND,NE'NF,N0,NH,NO,NPgNQ 
20 FORMAT (11I2) 

PY = 3e1.415927 
DO 60 I w 1,50 
XX = I  

60 X(I) = PY*XX 
DO 61 K = 1,401 
YY = K-1 

61 Y(K) = 000025*YY 
DO 62 I = 1,50 
DO 62 K  1401 
S = COS(X(I)*Y(K)) 

62 Z(I,KI w S+5 
DO 6 K = 1,401 
FXA = 1o+Z(NA,K)+Z(NB,K)+Z(NC.K)+Z(ND+K1+Z(NE,K)+Z(NF,K H-Z(NG+K) 
FXB = Z(NH,K)+Z(NO,K)+Z(NP,K)+Z(NQ,K)+Z(50,K) 

6 FOXU(K) = FXA+FXB 
PRINT 30,(Y(K)9F0XU(K),K=1,401) 

30 FORMAT (3XF8o5,F10.5,F8e5►F10o5,F8e5,F10o5,F8,5oF1Oe59F8e5+F10,5) 
GO.TO 900 

50 STOP 
ENO 

$ENTRY 
0308101115171921223444 
050607O809 1013 15 172 126 
0609121519222528324043 
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