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ABSTRACT

Analytical technique for the design of control
systens 18 adopted to overcame the drawbacke of classical
triasl and error approach which is based on the system
response to & selected input in absence of noise, Statls-
tical properties of noise and input signals are uged to
nake the system design more realistic,

In this dlssertatim, énalytical design of esmpled
date systems, using statistical properties of signels, is
carried out, extending the technlque for design of continuous
data gystems, Optimization of sampled-data gystems is carridd
out in time-domain, minimizing the mean=-square value of error
gsequence, Z=- traneform, optimum-gystem pulse-transfer function
is obtained in terms of pulse-speciral density of input signals
and cross-spectral density of input, ldeal output signals,
Optimization is done for free and semi-free configurations,
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CHAPTER I

1.1 _JINTRODUCTION '

Sampled data gysteme have been in vogue recently,
Their usé is ina‘eas:lng'rapidly with advaences In other flelds
[ 4 .
of science and technology , Sampled data systems are the

systemg where the signal ilg sampled at one or more points,

‘ The sampling of the signal may be inherent, The
input to 2 radar 't‘:rack:ng gsystem is in the form of a pulse
train, In time multiplexed control or communication systems,
data from several channels is sampled and multiplexed for

)
transmission over the same channel,

Some times the sampling of the continuous signal
ig introduced intentlonally to improve the performance of
the system, Continuous system with transportation lag can
be stabilized by Introducing sampling systems with samx;led
data can, in general, facllitate the realization of adaptive
princii)lea. Pulged data systems are aleo used for :lmproved
eensitivity, by sampling the low power signal, the sensing
device can be made extremely gengitive in terms of power
gain, The sampling is also introduced, because of the ease
and accuracy with which the digital signals can be stored,
tranemitted and processed,

Some of the appllcations of sempled data systems
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1 Semi- Antomatic Ground Environment (SAGE) mystem
uged by U.5. Department of Defence, a large complex
syatem consisting of telemetry 1l1link for weapon
guidance,

2 Pulse control of low power motor,

3 Digital control in controlling machine tools, for

precision componente,

4 Communication and control systems for outerspace

communication use sampled data signals,

1.2, CIASSICAL DESIGN TECHNIQUES FOR CONTINUOUS~DATA CONTROL
SYSTEMS.

Control system transfer function can be represented
either in time domain or in the frequency domain, The methods
of design for control systems can algo be classified along
these lines, |

In time domain, transient and steady state behavior
of the gystem are of interest, System specifications, e,.g,,
maximun overshoot, time of f£irst overshoot, maximum settling
time etc,, can be expressed in terms of the demping ratio
and undamped natural frequency of the gyastem, Transient
behaviocur of a system 1s determined by the roots of the
characteristic equatilon,

1+G6(s)H(s) =0
where G(s) H(s) 1is open-loop transfer functioa of the



sy sten,

Stability roots are key to the dynamic performance
of a system, Root solution of thq characteristic equation
by direct smalytical method is laborious and impractical
for design.purposes, A graphical approach makes plotting
of root locus practical for complex eystems, This makes
available a ou'nple;.e picture of gbtability changes due to the
effect of individuasd 'elements, Original root locus ls
modified by insertion of compensatlon element that places
the roots of characteristic equation at a more favouradble
polnt,

Root locus approach is essentially an analytical
approach, where the characterlstic equation of the system

must be known,

Other method of control system design is that in
frequency damain, The system can be represented by its
response to a sinusoidal signal of congtant amplitude, Thise
is essentially a graphical method of system design, Frequency
responege transfer functlon of a gystem can be represented
by Polar plot, Bode plots or megnitude veréu.s Pbhasge ghift
plot, The frequency responege desi@.m_ethods are preferable,
because the experimental data is in the form of frequency
response and final design can 2lso be checked by frequency
analyeis, ’

Various frequency domain gpecifications are the

syetem bandwidth, responance peak,resonance frequency, w.toffi{'\‘

A



rate , gain ma:rg:ln phase margin etc)

Bode plot method of control systém desdgn and
compensation is preferred, because the effect of compensatiom
is easlly obtained by adding magnltude and phage shift
curves of individual elements,

5. _EXTENSION OF CIASSICAL DESIGN TECHNIQUES TO SAMPIED=- DATA

| SYSTRMS

Compensation and design technlques for the continmuous
data control systems also extended to the design of sampled-
deta systems (7) . But the sampling operation makes the
design of Ieed‘back system campensation more difficult,
Compensation of eampled- data gystems may be effected by

two generai methods,

1. Compensation by continuous devices, making use o:;'
‘ continuous data canpensation metworks in seriee

with other components of the system,

2, Compensation by pulsed data devices whose output
is sampled in synchronlem with ite input at a

congtant rate,

4

When the transfer function of a system is in factorised
form, it is preferable to work with Bode- diagram, because "
of the eage and simplicity with which the asymptotic Bode-

plot of & transfer function can be plotted and reshaped, &



Characteristic equation of & sampled data control system

| is a transoe:iental equation and open loop transfexr function
of the system 1s 2 transcedental function In s, Difflcul-
tles encountered in plotting of transcedental functions,
discourage the applicé,tion of Bode-plot techniques for fh.e
design of sampled data control systems, This difficulty is
overcane by converting +transcedental function in s into

a rational function in # , by the transformation

2 - esi‘

This procees maps the primary and camplementary strips of
left half of s - plane into unit circle in & plens ,
Bilineer traneformation, |

bl

1+ w

1 -w

maps, unlt circle in Z -~ plane onto Imaginary axis of another

plane w, and Interior of the unit circle into entire
left- helf of w « plane,

In the extension of root~loais techniques to the
design of sampled- data control systems, numerous difficulties
are encountered in construction of root- loci foms a starred
transfer function, because of infinite number of poles and
zeroes, Complicated nature of root-locus plot in & plane
makes 1t difficult to study the effect of added compensation,
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These difficulties are overcmme by the use of Z ~ transform

technique, The overall system characteristic equation is
traneformed to

1 +4A(z) =0
where , A(z) 1s open-loop pulse transfer function, a ratie
onal function of 'Z contalning a finite nnmbef of poles
and zeroes, Stable operation of the system requires that therocot

locus of sampled data system be confined to the unit cirecle
in 2 plane, i |

.

1.4, DRAWBACKS OF CIASSICAL DESIGN TECHNIQUES

ClassiBal design, tecniques suffer from several
drawbacks, that hamper the systematic design of ccntrol'

systems and compensating networks;

{1 ¢ Compensating networks and,controi systems are designed,
assuning, that a known input 1like transi-ent 1like
step, or sinusoidal, 1s availabvle, Such signals

do not oceur Iin general, and the design becomes

unrealistic,

2 Systen 1s &eaigged only for processing the signal,
No consideratlon is taken of inevitability of noime
in the system due to physical nature of the system,
e.8., shot noise iIn the tubes, manufacturing toler-

ances or other disturbances.
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"3, Clageical design techniques are baged on trial
and error approach, The deaigner makes some
. chenges in the system, studies the chsmges in
recponse, again makes changes In system parameter
until syste;fn performance is within the satisfactory
limits, The system designer, except experience
does not have any means to recognlze an inconsis-
tant set of apecifications, Irlal and error
cycles may be repeated one after the other, without
achieving the desired results,

1.5, ANAINTICAL DESIGN METHODS

To overcome the drawbacks of repeated trianls

and noise conslderations, analytical design approach is
adopted, In analytical procedure the design of control
gystem begiﬂs, with the specifications of gystem input

and desired output, By analytical approach, an inconsis-
tent set of gpecifications can be ‘recognised., and
either a new get of specificatlons is prescribed or the

- design is given-wup as not belng feasible,

Conglderable work hag been done on the analytlcal
design of control eystems with continuous signals, baged
on the mean equare error criterlon and integral square
error criterion (9,10,14,15) , Analytical design proce-
dure edopted by Newton, Gould and Kaiser (14) , requires
one more specification that is not explicitly used for
trial and error procedure, This concerns the degree of

freedmdllowed in campensation, The system to be designed
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or £ixed cmfiguration, according to , if there are no
constraints of the eys‘baﬂ configuration or fixed elements,
constraints of fixed elements only, and both the systems
conf jguration and the fixed elements belng specified,
Attempts have also been mede for the ;nalytical design

of systems with constraints like :satumtion(‘l«? ) or system
vandwidth (13), |

1.6, ANALYTICAL DESIGN METHODS BXTENDED TO SAMPLED- DATA
CONTROL SYSTEMS .

Some work has been done on the analytical design
of sempled=-data systems, In a paper concerning the
statlietical treatment of sampled data control systems ‘fm:r
rendom signals(11), Mori , deals with the correlation
function of time seriles, and pulsed=spectral densities
for sampled data control systems, This paper also deals
with modified Z- transforms, when the signals are consi-
dered at sapPling instants and during intervals between
sampling instants,

Work has been done on the statigtlcal design of
sampled data control systems, utilizing statigtical proper—
ties of input and output slgnale (2,5,16), The design &f
control system is corried 4in %- damain, minimizing the
mean-gquare error,between desired and actual outputs of
the system, Tou hag also coneidered compemsation of

~ sampled-data control gystem in Z= domain (17) , Tou hasg
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also congldered de.sign procedure for dlscrete«data
control system subject to power limitations(17), Bergen
(1 ) has considered statistical deslgn of sampled-data
sy stems ‘with randomly varying sampling,

' The statisticel design procedure has its owm

, l:lmitatiéne, Tor exemple, design of systems using
statistical procedure is unrealistic, since the final
‘result.requircs poles and zeroes of the initial gystem

to be completely cancelled out and poles and geroes placed
at new and more suitable locations by the equilizer,

Statis‘bn.cal method of analytical design is
.h:lghly restrictive as fer as inputs are concerned, The
inputs are assumed to be stationery ‘and argodic, In
general the conditions of ergodicity are nebulous, it
‘may .h*e rather q.ii‘ficalt to deduce from the actual data

whether the aseumption of ergodicity is true or not,

1.,7. STATEMENT OF THE PROBIEM

The problem under investigation is to analyti-
eally design the sampled-data systems, utilizing the
statistical properties of the desired signals, control
signal can];onent, and the nolse,

A control gystem can be calsgified as a free,
semi-free or fixed configuration system, depending whether,
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aystem perfo.manoe specifications alone, or system perfor-
.mance specifications alongwith some elements of the system,
or system performance specifications alongwith the system
configuration, are specified,

»

In the present work, the design of sampled-data
control Qistem, has been attempted in the time d&nain.

In the second dzap;ter of this dissertation, sta=-
tistical nature of. input signals, camrelation techniques
utilizing the statistical properties of the signals,
appropria‘benegs of mea.n-éqmre Ierror ag performance

index are considered for the statlistical desigsn procedure,

In the Thj.rd Chapter, time-~domain equation is.
developed for the opilmum sampled -~ data system weighting
. sequences that gives minlmum mean~-square error, this
equatlon is similar +to Wlener - Hopf bquation for the
continuous data systems;

m .
/ %) w3 ) 2 (b4= %) = 2,,(%,) =0for 30
-0 _

where

W, ()« = weighting function of optimum linear

control system,



e 1

prr (t,- %, ) ~= subto correlation functiom of input signal,

”ri (%, ) -~ Cross-correlation of function of input,

ideal cubtput signals.

‘An explicit solution is found for the pulce~
transfer-function of the optimum eystem, with mean-

square value of error sequence,

Time~ danain solution , is extended to the
optinum gystems, In mcan-square error gense, with fixed

elements , or semi-free conflguration systemg,

A-nalytical deslgn of sampled~data gystems with
determinist ‘ic signals is algo attempted,



CE APTER II

PRELIMINARY CONSIDERATIONS

2.1 INTRODUCTION

Inputs fo the control gyetems are of random nature,
These random signals can be represented statistically, in
terms of probability density functlons, average value and
mements of varlous orders, Mean-sgquare value of the system
error may be fzaken as a convenient criterion of system
performance, Integral-square error is a .convenient perfor-
mance Index for the control system with deterministic
inputs,

Wiener-Hopf .eq\w.tion gives the optimm-system
Impulse responge, of the continuous data systemé, in the
mesn-square gsense, By modification of the Wiener-Hopf
equation tranafer function of the optimum system ig obtained
in terms of sgpectral densitles of signels in the systenm,
Touts approach to the design of optimum sompled-data systems
.is algo considered in the second chapter,

2,2 SIATISTICAL CHARACTERISTICS OF CONTROL SIGNALS ’

‘
An autanatic control system is seldom designed to

perform a task, which may be completely specified beforehand.
A ocontrol system 1s designed to perform a task selected at
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random from a range of posslble tasks, but within certain
limits, Many performance inaccuracies are essentially
random functione of time and ocen be prescribed In statis-
tical sense mly , Because of thb manufacturing tolerances
in & system the sengltivity and other fized parameters of
oparat.ing canx');nents are subject to random fiuctuatilons,
When examined in detail all phyelcal procasees are discon-
tinuous and indeterminate, The voltage output of a vacaum
tube oscillator ls oonsldered as & eontinuous smooth fuhe-
tion, But , em microscopic examination, the wave 1ls found

t0 be relatively rough because of shot noise,

Auto-and- cross correletion functions, and spectral

densities for randam signals are given by

autocorrelation function of signal r(t)
ﬂrr(‘f‘ ) = T-»oo 5 [ r(t) r(t+'T) at (1)

Croeg correlation function of signals r(t) and i(%)

| Lim . T
Py () = T on o 2T r(t) 1(t+'T )at 1.(2)
-7

Spectral density of signal r(t)

o0 ,
rr(w) = -2--’%_-/ ¢I’I‘ () 0-3VT G.I‘T' .e(3)
=00

1 (¢ 2 3 -jw“r‘ .
B.(w) = -2';‘;‘/00 Pri("") e ar ..(4)
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2,5 CORNBIATION SEQUENCES AND SEPECTRAL DENSITIES FOR
SAMPLED SIGNAIS

Correlation sequences for sampled, random signals
(11) are defined as follows 1

L]

Auto corz:elat lon sequence,

, 1im 1 ¥
Py (ET) = ) r(al) r(atk)T e (1)
Crosg correlation sequence
1im - N
¢ 1 (kT)- = r(xﬂ‘) ﬂ(n"'k)T 0.(2)
r He> 0 2§+14 o

Pulge spectral density is the Pourier -transform
of the correlation function,

. 0
. , ~JukT
irr (w) = 2 E Pm. (xkT) e «e(3)
k= -
Cfoss' Pulse spectral density,

0

B, ) = T > ey (kD) e . (4)

K==

c'or:.:elation sequences and pulsed=spectral density
of pulged data gignals are chaeracterized by
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Py (1) - Py, (<) e ea(5)
Piq (k1) = pci(u-k'z) ..(6)
g, = - £, (2) | SO
£, (;*‘) = §,, (2) | ..(8)

If +the response of the pulsed data gystem
G(z) to an ingut r* (%) is o*(t) , then the response of
thig system to an input prr(km) ia gc(m) and
the response of this system to an input P (KT) 44

p (kD)
ee

o0

D e P nt) = B () L ce(9)
D=0 . :

w .

> e p (@ w?) = P () L ve2(10)
D= QO

P.02)  =6(z) P (z) Y ¢ L D
Poolz) = 6(2) P (2) ver . eae(12)

' S —_— G,(2) |
r4 (o) G‘(z) ¢ (nT) T, (nT) 2 ca(nfl?)

Pig. 1
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With reference to Plg, 1 cross correlation
sequence and pulse cross spectral denalty for the outputb
sequences of sampled data systems &, (z) and G,(s)
possess following characteristics

’ (4]
kT) = . -
e, IZ_; g 1) A o (2 - uD) LD
g (k1) 2 (nT) P (kT -nT) .(14)
¢y = &s Bt/ c4Tp -0 oo
@ ) | s
’ar‘cz (kT) = qu_(ntl‘ ’Dr1r2 (kT =-nT) es.(15)
n=e0
‘(XT) . D
9,,2,,1 = n; &, (nT) ¢c2r1 (KT = n?) ...(16)
nrzc:z) ='8y(z) D lt.21,1(2) ve e (17)
Boyo, (@) = Gale) B, (a)
B (2) =%z e 5 (2) ... (18)
ey, T4¥2
ﬁr102(z) = Ga(z) D:u‘ra(ze 000(19)
Ec2c$2) = G1 (z) Dczr1 (z)
iczcgz) = @4(z) G-z(z-’) 3;.2,1(2) ...(20)
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2,4 PERFORMANCE INDEX

Performance Index is defined as some mathematicdl
function of measured rosponse, the function belng chosen
to give emphasis to system epecifications of interest(5,6)

Principles for gelection of a performance index are:

1. Rellability s Ferformence index should express the
quality of performence as closely as possible,

2, Selectivity ; Optimum value of systen paramete.ra
should be clearly dliscernible from some character=-
istics, such as a minimum value of the performance

. index. versus system parameters,

W
.

Performance index should be easily calculable from

existing techniques

4, Pez;'fomance index should be unaffected by unlikely
short-lived deviations from the mean, or shifts in
'$1 me-oxls; instead it should be a meagure of the

mverage behaviour of control system,

The mean-gsguare error criterion ls widely uesed,

it is defined as follows 3

Y Llim 1
e‘“ -

T
1 o2 (t) a
" >0 2T -~

2

C1im P
.= 1L c(t) - i(t)] at
T - 00 27 N I
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Where

c(t) " & pcthal output of the system,
()’ = Ideal output of the system
a(t) = Error in the output

One of the main reason for wide usage of mean-
gquare error criterion stemes fram ite mathematicel conven=-
.iance. A different error ariterion may bve preferabie
except for attendant mathematical difficulties, Mean
square error criterion is adequate wherever the undesirable-
1ity of an error grows with the magnitude,

Mean square value of a Yrandan process 1s one
of the eaéier paraneteres to evaluate experimentally,
Mean-square error together with the mean value of a randmm
process jields information about the process when it is
Gaussian.ﬂ:()entral 1imit  theorem is often invoked to assume

Gausslan Process,

' Integral sguare error ls a measure of transient
responge of the system, It was first applied by 4,C, Hell,
ISE is defined as t

2
IsE _ foo [o(’c)] dt

]

Both integral-square error and mean-square error
can be represented in terms of the system impulse response
and correlation func.ctions amongst system input and desiréd
output, Both ISR and MSE criteria can be extended to
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the sampled data 'systems also the systems being charac-
terized as having sampled inpute and outputs,

Mean - square error,

1 @) = [iar) - o(nT) ]2

. ) . ) N . '
1im
= .....1_... Z o (nT)
. N —>@ 2N*v1 SN
Total square err-or o - 2
' n= ~-m
: 0
-= 2 *
z‘ ' e (nT)
N= «w (D

2,5 WIENER- HOPF BQUATION FOR OPTIMUM IINEAR SYSTEMS

In Newton, Gould and Eaiser approach (14) to
the deslgn of optimum linear systems, a system is classified

as free, semi-free or fixed configuration system, depend-
ing on the restrictions placed on configuration,

In the followlng section, the design of an optimum
free configuration, continuous - data asystem with minimwm

mean square error criterion i given (14).
i(+)

L w(t) , "
r(t) c(t) <+ e(t)

Fig, 2
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The error signal at the output of the system, with
reference to Fig, 2,, 1s defined as

L4

o(t) = e(t) = i(t) eoelt)

Where r(t) = actual random input to the system

1(t) = ideal autpﬁt of the system

e(t) = acfual output of the system

#n(t) = impulse response of optimum linear system

The mean square error expi'essed in terms of corre-
lation functionas of system input and ideal output is givem °*
by |

0 [/ |
) =[ / w () Wy () P, 0 ='R)ah an
e J-m .
©
- 2 w, (‘) pri(‘ﬁ ) atfy + py,¢ 0) ...(2)

The bar indicates time average of the function,

BY calenlus of variation, equation for optimum
syeten mjnimizing_ the mean square error is obtained, The
equation, lmown as Wlener - Hoff equation is as follows 1

S°° %(6) Por (F = B) A% =Bes(M) =0
= - for \1\0>r 0 .000(3) *

Tranefer function fo the »pptim;.m gystem, In

terms of spectral = and cross-spectral density of system
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input ardd ideal ocutput is given by the equation
%n( g) = ' P (4 )
*(s)

pl‘!‘

]

Where
| WE(Q) = frangfer function of the optimum system

¢§r+(8) , = Pactor of ﬂnr(s) which includes all the poles

end zeroes of ﬂ;r(s) in the Reft half plane,

g (s) = Pactor of . (s) which includes all the
rr pi g

‘poles ahd zeroes of ﬂ;r(s) in the right half

Plane, 7
(8} | 2.y ()
Pes = Component of —ox — , which has all ite
Pry (&) . | Prr (o)
poles In the left hali Plane,
(s ) i (s) .
”“f = Component of Py (o) , which has all
g.. (8) ) g;r"(s)

1ts poles iIn the right ‘half plane,

2,6 TQUts APPROACH TO DESIGN OF CPTIMUM FREE CONFIGURATION
SAMPLED DATA CONTROL SYSTEMS

According to J.T, Tou's approach(16), the
optimum design of a sampled~ data system is obtained
for sampled stochastic control signal rs( n?) and

sampled noise' gn( nT) . Both the signal and noise are
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TMT)

+ ] .

Pigure 3. '

. Ar ’
assumed to be stationgry randam functions,

For the system shown in Fig, 5 , Go(z) is the
pulse- transfer function of optimum comtrol syste ,G4(z)

is pulse trancfer function of the ideal eystem when,

there is no noige present,

Brror sequence of the gystem 1s,

e(n?) = c¢(a?) o 4(aT) L0
Where
!
T = gampling period,
Error sequence of the system may be written
as e(nl) = o (nT) + c (a?) -1 (n?) .. (2)
Where,

c (nT?) = BSystem'response to cotrol signal r (nT)
8 8
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c,(a?) = Sgstem response to control signal r, (nT )

The mean - square value of error sequence of the

gystem 1s defined as

lim N 5
ez(nT) = - Z e” (nT) «.(3)
N -» oo 2N+1 n==N

Lim ‘ (Z“[cz(nT)'!-cﬁ(nT) + 1§(n’.ﬂ) + és(nT)cn(nl‘)
Nepeo 20+ ™4 4 g (aT)oy(aT) ~g, (0P )e; (nT)-cy 6 1) (nl

=

~64(nT) ey (nl )«-ci(nT)c;(nm) ]

.. (4)

= ci(n'r) +c§(nﬁ3) + ii(nﬂl) -l'cs(ni‘) cn(nT) + cn(nT)cs(nT)

-qJnE)c (nT) = ¢ (n’.l!) Sy (n?) - c, (nT)c (nT)

- ci(nT) cs(nT) | ..(5)

From the equqtions 2,35-1 to 2,5«4 the mean square
value of error sequence may be wrltien in terms of correla-

tion sequences, and pulse - spectral densities,

“ar) =g (O)*+F _(0)+F  (0) *ﬂ‘c-cn“” Pe o

5% nn 11 8 ]

T B0, (0) o (0) A o (OF o (O L..(6)
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2 1
¢ o= 3 j{" @cscs(ﬂ ’ 23-"n"n(Z) ' gcici(Z)

o 0 (21 o (2) Fe o, (8)F; o (2)

F e c(Z) - {c a (Z)j . Z-zdz t¢(7)
sl is :

where , contour of integration T' 4a +the unit circle
in the z plane,

These pulse spectral densities may be expressed
in terms of pulse spectral densities of Input signals and
pulse transfer functions with the help of equations (2,3=13)
to (2,3-20),

ls«:ggcg(z) = b rr (2) G'O(Z) Go(z_i) ;-(SA)
88
| -1 .
icnqn(z) = Ernrn(Z) ¢ (=) G (z ) ..(8B)
Boyo,(®) TP g (2)0y82) 6,z"") .. (80)
' -1
‘°59h(2) = B”srh(Z) G éz) ¢ (z ) : ..(8D)
. y |
: §9n°s(z) =P rnréz) ¢ (z) 8 () .+ (88)
5 (z) =9 .(z)@& (z)6(s~1) ..(8F)
¢cc rY 1 o
n i ns
L (z) =8 (z)@ (z)Gi(z-‘) ..(86)

in g n
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= _1) .. (gH)
B, of®) B, () 8y(2) 8 (!
B, () =3, , (2) 6 (2) 6 () .. (81)
- 88

The mean square error ig reduced to

2 _ 1 -1
e (nT) CTE { bee(Z) Z . 4z «s(9)

Where
_ -1 -1
jee(z) E}o(z) —Gi(z)] E}o(z ) -6y (z )] b, . (z)

Talsg
+ Go(z) [o5(z71) -91(5'1{] 0, 4 (2)
+ Go(z! )[G-o(z) - Gi(z)] 5, . (2)
S nesg

* G (z) e (V) p By 2) ..(10)

Condition for the minimum mesn square sampled
error is obtained by applying calaulug of variationeg to the
integral of equation (2,6«9), The first order variation of

mean square error { GZ(DT) is obtained from equation (9)

. by substituting &, (z) + ”'l (z) for G4 (z) and (3»"0(:4"‘l )4"?_(2'1)

for 90(2-1 )

o e®(nT) =-2-?-R-5- £,\"Q(Z){Go (z"")h (z)~Gg(z"1) [I’r - (z)

8 8

-1 1 y
' isrlss’:.n(z):l}z e+ 2% j ép Mz ") |
{Go(zm(z)-ﬂrd(z) b, . (Z)+brnréz)]}z-1dz eeo (11

8 8

)

}
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Where
5 (z) =0, (z)*ib {.z)"'b (z) + 3, (2) . (12)

B g‘ ns

For reasons of stability all the poles and zeroes
of ’Go(z) and YL(z) lie inside the unit circle in z plane,
and +those of Go(z"'1) andrrL (z"") 1ie outeide the unit
circle, From equations 2,3-5 to 2,5-8

B (z) =3 () .. (13)

and d (z) may be written as

“' -
b (z)=5 (z) b (2) | e (14)
+ .
Where & (z) is a function of z with poles and zeroes
lying inside the unit circle in & pleme, and & (z) is &

function with poles and zeroes lying outside the uni%t circle,

Ca? (aT) = —2-’::-5 TYI(Z) Eo(z‘J) E."(z)ﬁ‘(z) -9'1(5‘1 ) [ﬁrsrs(Z)

o

13 | e (2)
*{ir (t)] z 2Kj§1 "'l z ofz

srn

* " (2)=64 (2 W 2 laz Lo
d (z) @& (z)"Gl(Z)[ Qrsre(z) +5”nre(z-] z dz (
, - G4 (=1 (z)*+a
= —1-4 (z) !l+(z) Go(z’i)'i (2)- 11z~) Q’a‘.'.a Te
L o

"1_<z) & (20 |ag(z) 8 (2)
Gi(z) 5 (z)+mr @) T
T( z) ]

~Vaz  ..(16)
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Second term in braces of equation (2,6-16) contains

poles inside the unit circle in Z« plane as well ag out-

plde the unit circle, 'l:h:ls may be written as

B}i(z ){I%(Z)*ﬁrnrs("")}]

Gy (, )[ﬁr (z)‘*ﬁn_&(i)

& (z)

I &
aa) [, o (21, ()]

Symbol[ ] inplies operation of picking part of a function

of 2 with poles outgide uni#i circle in Z= plane and[ ]

implies the operation of plcking part of a function of =z
with poles iInside unit circle in 2Z- plahe, The contour

integral vanishes, if the integrand has its poles either all

inside the unit circle or all outside the wunit cir cle,

Hence

1 +
5?'3§1" N8 (a)

1 Ha -
-é-;s- T’T{Z)r(z) Gi:(z )

¥

-
&  (z)*a, .. (3)

'1)[ i e’ ] 2~ azmo0
— a (2) -t
- .{lsa)
8, . (=), o (.2)] ‘
Lo ~= 214z = 0

8 (z)

..{18B)

The equation (2,7-15) is reduced to
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§e2(un) =, jéﬂ'vl(z)a'(z){a (z=)s (=)

-1
~[ )[a; (a )45 (z)j .
o (z) ]

e

*éj%s- "1(2“1)5~(z G () ﬁ* (z)

¢, (z)a
) i(z{fgrs(z)+arnrs(z)] L e a0

5.(2) +

If G (z) is overall pulse transfer function of the
optimum system which minimizes the mean square error of samplec

data system, the varlation & 92v(nT) should venish for

arbitrary qL(z) , hence the quantities in the brackets should

be zero, [' )
¢,(z) [ar (2) +5_ _ (z) ]
i r r
Go(z)ﬁ*(z)— L nse .] =0 ...(20)
& (z) 1.
The optimum Pulse—transfer function is given by
1(z) (z) +8y r (2) ]
Golz) ,.-.E [ ol 5rr J x 1 . e(21)
& () 1™ 5 %)
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2,7 T00's AP’ROACH TO THE DESIGN OF OPTIMUM SEMI FREB

le——— G1 (&) —"—"*“:
|
i L l
———————
T | | : l
_ s ————oo— I ===~~~ A (NT)
Lo | T i
|
e |
- Gg (Z) “**——Gg@) —|*
+ .
R _0/0 Zo - ccnT)
Tan(t) TAT | —_

Figure

The optimum-design of compensator pulsetransfer
function in the mean square sense, when the control system
leg partially specified can be achieved in a way similar to
that adopted in previous section (17). Sampled -data control
system 1s subjected to a sampied stochastic control signal

and a sempled rendom noise, both being stationary functions,

Por the sompled - data system, Fig, 4 , the symbols

uged are as follows 3

rg(nT) = Sampled stochastic control signal

r,(nT) = Sampled random noise

Gy(z) = Pulge trensfer function of ideal system

Gp(z) = Pulse transfer function of part of the system
pertlally specified,

G,(z) Pulse trensfer function of compensation eystem,
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BError sequence of the system is,
e(n?) = c¢(nT) - i(al) eeo(1)

Mean ~ gequare value of error sequence can algo be written

in terms of correlation sequences
e?(nT) = £,0(0) = 8., (0) = g, (o) *$,4(0) | s (2)

Writing e2(nT) in terms of spectral densities

2 1 -1 |
o l) = g0 8, (s)2 +a(3)
Where @ (= B (z) -84 (2)-8, (z)*d,,(z) - .o (4)

With the help of equations (2,3~13 to 2,3-20)and

Go(z) = Gc(g) 6, (2)

- -1 - -1
e2(n?) = arsrs(Z) [’GC(Z)Gf(z)-Gi(z)] FC(Z )G (2 1)_(}1(:5 1

r

+a, . (z) [G‘rc(z"1 JGp (2~ )"G:L(z—1 )] ¢ (z)ep(z)
& n |

“'ﬁ'rnrs(z) Gc(5)§ (z) .=~ Gi(z)] Gc(z"i)(}f(zd)

*arnrn(z) Go(z)ep (2) Gc(z"1 )Gf(z-1 )] ... (6%

By caleulus of variations, putting Gc(z) +"1(z)]

instead of G, (z) and [Gc(z" )+ "'L(z" )] instead

-1 |
of G(z ') (¢ (aT) firet order varietion of the

mean square value of error sequence is obtained,



¢

J\ 92(nT) =

21

—

. 2
5 @ (nT)

=2-}‘-;£"L(z) %f(Z)Gf(z-" )Gc(z“’)ﬁ(z)'(}i(zd )Gf(z). |

88

[61‘ r (=) *3 rsréz)] z~) az + ‘5;1"‘5 *l(z-i)

[Gf _z"’)ef(z)ec(z)a‘(z )=61 (2 )6 (z~1) l-gr . (28, ’(:z)-J]Z"Adz
- 88 nas

- SN ¢

Where g(z) = mrsra(z) + irerﬁ(z)*ﬁrnrs(z)*'ﬁr - (z) ..(8)

Defining & (z) = &' (z) & (z)

e : +
ef(z)afu-i)] _ [Gf(sz(z“‘)] ﬁf(z) Gx‘f"’] ..(10)

b

4+

g (z )] indicates selecting portion of function &(z)

oy

-

that 1lie within the unit circle and [l (z)] indicates

selecting the Portion of function & (z) that lie outside
the unit circle in Z~ plane

+ -
i + , -1 -l
- jﬁ ["{(z)i (2) | @y (2)a, (2 )] [eg(z)ep ™))

\

]
6 (1) §(s) Gy (2~ )Gf(z)[irsréz ﬁrsrn(z)]} -1
’ " (a) [o,(2) 0y (e ]
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- +
+;1§ [(z-1)5-1(z) (e 2021 [éf(z)ef(z:1z] & {z) Gel2)

- ]
A A [ﬁrsrs @ +anr,G)] | 1. a

T (2) [0g(z) o) ] (1)

The second term in the braces contains poles
inglde the unit circle in: the z~- plane, as well ag
outside the unit circle, The contour integral vanishesg if
the integral has 1ts polec either all inside the unit circle
or all outside the unit circle, Thus,

, oy
-| @ (z)e, (= )arsrs(3)+a'~.';(z

—- 6 (") &7 (2) [ 6, (=) & (=) -
2K 3|1 {— ¢ ¢ 8 (z)]Ge(z) G;(_;(z"1 )]

v (12)
)]4‘ 1(z)G‘ (z”')[;r m+ar (z)]{ »

Z 'dg =(

a (z)[Gf(z)Gf(z-l)] .. (13)

o~ - 4

+
2—;13 £_v"l(z)§ (z) [Gf ‘z )@, (z~1

where, eymboll- ] + implies the operation of picking the part

of a function of gz with poles inside the unit circle in 2~ plane,
and the symbol[ :I implies the operation of picking the part

of a function of z with poles outside the unit circle in z plane,

Hence equation (2.7-11) reduces to :



2%

i

S ' e | , -
 Can =gt @8 [Gf(z)Gt(zJ)]{Ft(z) g (51

03057 ey (a3, (2P 1, (2]
GC(Z-1 )a"(z ) hat’ . 2 + 2-1 dz
8" ()5 (=) 0y (7] )

L Y

) +
4.-2.1.5£_(z Ya (z>ﬁf(z)ef<z ')] [ef@)eﬁ(z ] G"(f) & (2)

[ @3(2) 6(a™!) | e p (@) * Bz () |
. 8. zZ A4z

@ (z) EG‘f(Z) Gf(z“)]j +|  ..(14)

e

For the compensation %o be optimum, giving :

. Dinimum mean square error, §e-(nl)’ should vanish for arbitrary ’UZ)

Optimum compensation is given by’
! : =
Gf(z"1 )Gi(z)[ﬁ rsré'z);o- %ngz)‘.l

* o4
Gc(z) [‘Gf(z.)(}f (Z~1 )] @ (Z) - = - , =(
- a (a) [og(a) ef(z-’)]

Ge(z™1) 8y(2) [@p » (2)* &, (z)-l 1 eeo(15)
a (z) E (:)G-s ¢z~) nfe ] N (z)6p(z=1) Tt )
[oe@Xe ] T | “oplaee 1] e
...(16)
Equation (2,7-16), gives the pulse-transfer function of the

G*c(z),'ﬂl

compengation that wlll optimize the system in the minimum mean
square error sense, Thig can be obtained in terms of pulse-transfer

function of fixed components and pulse spectral density of input
SignalSo



CEHARPTER II

0P TIMUM _SAMPIED DATA SYSTEMS

5,1 INTRODUCTION

L]

’

~ In the present Chapt er, optimum design for the
systems, whose input and output are sampled in synchroniem,
is carried out in time~domain, The optinum syatem équation
for sampled~date systems wlith random input signals, is obtain-~
ed by minimization of the mean-square value of error.sequonco,
The system equation cbtained is as follows

n%-oog(mmz) Pop (k00T - £, (K1) =0 i.f‘ir X34t O

Where . \

g(mT) - weighting sequence of ¥h.. “‘=yp ga Yled data eystems.
Prp (& =m)T « Autocorrelation sequence of the :..\ & signal

"ri (xT) - Input-idesl ou'tput cross- corredation sequence,

which is quite similar to Wiener-Hopf equation for optimum
continuous data systems, A solution of the equation is
sugges:bed and is carried out in z- domain, The equation is
modified as '

3 @) ,g:r (em)? =5 (o)

M™w 00

vhere 5. () 4 gefined by equations (3.3=4) and (3,3-9B)

)
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Pulse transfer function of the optimum system is
obtalned by teking z- Pransforms of both sides of the modi-
fled gymtem equation, Pulse transfer function of tl;e' optimun
sampled-data system in terms of spectral densities of systems
elgnals, 1ls glven by .
‘ | 1 < Bry (2)

|
M PR

Gplz) =

Where ’

Gy, (2) Optimum sysctem pulse~tranagfer funckion
$rp(7) Pulse-spectral density of imput rignale
8,.(z) Cross-spectral density of input-ideal output signals,

Optimization of the sampled~data with determinilstic
input signals, minimizing total square error, has also been
discussed and 1t is shown that an equation for sampled data

system wlth random input signals satisfying minimum mean square

error criterion can be obtained,

.

It is further shown that when the control signal
component and the noise enter the system at different points,

minimization of mean square error yields the optimum sampled=
data system equation, |

Z l—es(pr) p {k-p)T + g (2T) ,;ns(p-k)ﬂ’-“[-ﬁsi(kT) =0 for k>0

p==wl-

Vhere,

8g(nT) Weighting sequence for stochastic control signsl component.
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g,(nT)  weighting eequence for random noise component

rg(nT) input control signel component sequence

*h(nT)  input noige sequence

Optimization of sampled - data system has been extended
%o semi-free configuration eystems , Por randem input signals,
it is shown that the minimization of mean square error yields,
the optimum system | equation,

8o 0 00
Z gf(p‘lm) #I‘i (k1+ P‘)T - Z Z o gf(p1m)

=]

58(720) 6lpB)gy (k42 -k, -p, ! = 0 forky % O
Where

8¢ (pT) = Weight sequence of fixed olements

8¢(pT) « Welghting sequence of conpensation elements,

fulse transfer functicn of the compensation elements
in terms of pulee epectral densities of in,ut and ideal output-
signals and the pulses tranfer function of fixed elements is
obtained and the expression obtained iqjgollows:
g (5=1) Bpy (2)

1
z
E}f (z) Gf(”-1 ] Ba) E*f(“@f(z*1 )f Er;(Z)

Gelz) =

Noxt it is shown that when fixed element pulse=trancfer
function has all its poles and zeroes within the unit circle
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in ze plane, the pulse tranefer function of compensation

system is the ratio of pulse~transfer function of a free
configuration system,, with same performance specificationg,
and the pulse transfer function of f£ixed elements,

The expression for minimum - mean square error of the
sampled-data sxstem, has been obtained in terme of the optimum
system pulse transfer function and spectral densities of the
gy stem signals,

5.2 OPTIMAL SYSTEM EQUATION FOR FREE CONFIGURATION SAMPIED DATA

SYSTEM
1= - GA@® —
! [
: T |
————— oL gicnm L“—“_“Q/O'—J—! {(mT)
T L _ i
oy emt
~ Go () ~|4
+ . L
——4»6%} -0~ o So(nTy —- o o—L-= c(mT)
H 2y TTrmDn i T

Flg. 5

In free-configuration case, ther: are no constraints,
either on the form of the system desx configuration or of the
fixed elements and the designer has to choose both the form
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and elements, In the present section, time-damain equation
of the optimum , eampled date system welghting sequence, in
the mean squere sense has been derived for the free configurat-

ion case,

The output of a gystem, Fig, 5 , input and ocutput of
which are sampled in gynchroniem, will be glven by

- |
T) = (KT) p(nT=kT) oo 1)
c(nT) kz.:nif r(n

Where,

e(nT) - Sampled ocutput of the system at nth sempling ingtant
r(nT) . Sempled input of the system at nth sampling ingtent
g(kT) = Weighting sequence of sompled-date system.

7 - Sampling period

Difference between optimum system ocutput gc(hT) and
ideal output sequence , 1.e, system error sequence Equation

eg(n!!.‘)‘ will be given by

og(nT) = ¢(nT) . 4(nT) ..(2)
. 2
. o> (8) = R(al) _ p4(nT) 4(n?) +1°(al) .o (3)
g Taking mean square value of error sequence
e” (nT = i e

g Hewco 2NH1 E_N g ()

* Weighting epguence z(XT) 45 gero for negative values of k.



29

eg (nT) = cz(nT) - 2¢(nT) 4(nT) + 1%(al) L .(4)
cz(nT); lim ......L.Nz c(nT) o(nT)
H-so 2+t 1=N ,
' n
MR 5 gn)r(a-k)t m?;_g(mf)r(n%)m

N =500 zn+1 n==--N K=en

Since k, m & n are dumny variable.s :i.nterchanging them
cz(nm) ﬁ % g(kfl‘)g(mi‘) ENr(n-—k)l‘r(n-m)T

n=

{3

From equ-tion (2.3-1)

P & et gat) g (k) ee(5)

Similarly from equation (2,3-2)

o(HIL(uD) = T 60D gy (k0) .. (6)
and
12(!1T) = ﬁii (0) e see 00(7)

Hence, from equqtions (3.2-4),(3.2-5), (3.2-6),(3.2-7)

g(nT)#n(o)-z %‘_ g(kﬂl‘),g 1(@)4,2: E“ - &(kD)g(mT)g , (ke~m )T

0 Moo .. (8)

If the optimum system g(k®) 44 replaced by enother
system [g (kT) + G.h(kT)‘J » where h(kT) 44 gny arbitrarily

realizeble weighting sequence, ¢ is a parameter, that is
varied to test the optimality of g(kT) , Brror with
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[g(k'.n e h(kT)] is greater than that for optimal system and will
be given by

eg-'re%}(nﬂ!) = ﬁii(O) - aooz" [g(kg)) +éh(kgg)] ¢r1(km)
’ 00(9)

+ of: f Ez;(kT)* h(km)}[g(mﬂ?)*' h(mT)]%r(k-m)T
k=wo0 m=-

2 [92 (n’.t‘)] = =2 zm; h(kT)d, 4 (k2 )+ 2e‘f, ﬁ(km)h(mﬂf),;m(k-m)m

3e L &+ b K-ton oo

__mmji@(km)g(mm%h(mm)g(m)] "rr(k‘m)‘f ..(10)

E[eiﬂh(nm)_]sg;@- gfo*_ h(kT)h(mT)ﬁrr(k-m)T T el (11)

l==00 m=-00

S

B R |
-~ le (nT “is a positive quantity,
K [ s+eh )] P quantity

If g(kT) is the weighting sequence of optimum system

giving minimum mean squere error, then

£ - o |
:522- [ezg“"&h (nT)J =0 900(12)

€=0

From equation 3,2-9 +the condition of optimum weight:mg

gsequence is g:.ven by

h(k'r)[m. 1g(mT) ¢ (k—m)m - {km)] eee(13)

4

SMIRAL UKKARY UNIVEKSITY op KOORNEA
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Since h(kT) ig a realizable weighting sequence,

h(x?) =0 for kT< 0O or k<0 oe.(14)

BEquation (3,2«13) reduces to

'oorm

% h(k?) [xz;_mg(mT) #p (kom )T »pri(kﬂ?):l =0 for k>0 . (15)

Only way, the above equation can be satisfiled for
k20 , is for ‘the expression within the brackets to be
equal to zero for k2O

g@t) g, (kn)- g.,(k) = 0" for K0 ... (16).
=00

Optimum system, weighting sequence g(mT) 4n ‘the minimum

mean gsquare sense is given by the above equation,

5.7, SOIWTION OF TIME DOMAIN BQATION POR OPTIMUM SAMPIED DATA
SYSTEM

Weighting sequence g(mT) , of the optimum system that
will minimize mean square error, is given by 3

% g(nT) - (k- )T —ﬁri(k‘k) =0 for k >0 (1)
m w0

The above equation holds good for k20 , but need

not necessarily hold good for k<0 also, since (x7)

'Sri
end fp.(k-m)T in general will not be zero for k<0 .
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Writing Arr(ki') as

* L
¢rr(M)=I§mﬁw (k~p)T g (T) oo (24)
Where  fn (2) = o for Lo . ... (2B)
p;r(pfn) = 0 for pYo cee (2€)

Multiplying both sides of equation (3.3~2A by 7k and
s\zmming for all values of k¥ from =-mto + ®,

. ) N . o
% PrpkD) 275 = f 2 g $ry (k «p)T ﬁrr(pm
k=woo 4 k=w0o -0 C

Changing order of summation,

S - -pT l o+ - (k=p)T
Ern(z) ;mﬁrr (s2) 2 kiﬁ’rr(k-y)m z -

Bp(e) = By 7() B (5) | 3

351.; (z) will have poles and zeroes inside the unit
circle in z - plane only, since ;Sr;(k'r) is zero for negative

values of k , Similarly, b“:c (z) will have poles and zeroes

unit circle in z-plene onlr in = (xP)
outgide th¢ zero for posig:fves va eu of k ., 1s

' By emation. (3.3-3) , spectral density Brr(z) can be
expressed as product of two parts, one containing poles and .
zeroes inside the unlt circle in z- plane, while the other '

has poles and zeroes outside the unit circle only,

Cross correlation sequence p " (kT) can be written as
r
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g,y (D) = ém Ble—pn) g7, (b1) @)
Substituting (3.3-»21); (3.,3=-4) in (3,3=1), me gets
S e S  epnir g, mn 1 bk £ G) =0
M==0 P 5..@ : ® o

for k>0 ..(5)

Rearranging terme,

; ﬁrr(PT g(mT) p (k-p-m)T - Blx~p)T - =0

m.-.-oa for k30 . ,,(6)

Fron equation(3,3 «2¢)

¢rr (p7) =0 for p5 o

Hence, the equation will hold good for p{ o , if the expression
within the brackets is zero,

or ﬁ g(nT) ﬁ (k-p-m)T - P(k~p)T = 0 for k3o , (1)
—-® & P <0
The obove equetiomt holds good for k3.0 , hence, it will
hold for k-=p2 o als\o, where p is a negétive nunber, fh'e
"equation (3.3-‘7) ma.y;; ‘witten as , with a change of veriable
@ = k-p |

00 +*
m'z;_ms(ﬂ) Prrlqm)T = B(aT) = 0,for ¢%0 ..(8)

for a realizable weighting sequence,
gmr) =0 for m< o
+-

also ﬁrr(mm) = 0 form < o
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First term of expression (3,3-8) is zero for ¢ <o ‘and m <o
but the second term may not be zerd for q <0 , Resolving
second tem?’(qm) in two parte

P = Bogn P )

such that . | |
Pe(r) = o for q <0 ..(9B)
p—(q’.ﬂ) = {f for ¢>0 ..(90):

Equation (3,3-8) reduces to

.i”: g(nl) ﬁrr". (gem)T = 9,,,((19‘.‘) for all values of q ,,(10)
m=00

BEquation (3.3~10) holds for =2ll values of q i,e,, it holds
good for the whole time range, This equetion differs fram (3,3-8)
that holda good only for positive values of g, ioy the term "q m),

Multiplying both sides of equation (3.3-10) by z * and

sunming it for all values of q fram - to +oo , one gets

[« -
? z 3 Y g(nt) ¢;(q-m)w = f‘ %(q ) g4

=~m ' == qz.m
. g@D)z™ * ~(em) 57 b, (q7) 2
or :i-of z | qi‘oo fop (g=0)T 2 qi;@*
¢z )8 (a) = [Po(z)] . T an

The symbol[ I+indicate g, ‘only that portion of the function
hes been taken which hag pokds Ingide the unit circle in z- plane,
Pear],

g ()

T

But taking transform of both sides of equation (%.3-4)

o G“Z) = on(‘z)
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6, (2) = Pa) 5. .+ (13)

From (3,3-12) and (3.3-13) optimum eystem pulse-

transfer function G(z) is given by ,

b (z)
6(z) 533;7) = ..(18)
Z -
Irr 5 Err (Z) +

If we consider the ideal output due to stochastic
control signal component r,(nT) only, while the actual input
to the 'c ntrol eystem consists of sampled stochastlc control
component rs(n‘i‘) and sampled random noise camponent r,(nT)

pulse-gpectral densities &.,(;) and B,.(z) can be writt-en

in terms of pulee-spectral densities of input signals and
pulge=~ transfer functions of ideal and optimum systems,

8,.,(z) = Gi(z) [Drsrs(z) + B, .. (Z)] «o{15)
n s

8n(z) = B,

erFZ)‘%r rg(2) * B o () + 3 (a) ..(16)

n's ] ~
6(z) = —w— Gi(z}tﬁrfrsm * )] . (17)
" irr (z) L (z) | '



46
A relatively shorter proof can also be given as
f_ollows 3

T he optimum sempled data system equation 3,2-16 ig

w v
mz_:._oog(mT) B (k=m )T ~ ﬁti(kT) =0 for k> o

.
Lot m‘éof(w) 8. (=m )T = g, (1) = a(kI)  for k<o ...(18)

q(kT) 44 jn general nonzero. for k(o , but vanishes
for l'ca o . The optimum gempled data system equation

can be written as

> (19)
g;_‘oog(xﬂ) 5rr(k-m)m-¢n(km) = q(1)

Teking z-transform of q(kT)
L8] -k
Q(z) 7_:_'.00 2

0

Q(z) * = kz: q(kr) 275 .. (20)

=00

Q(z) has poles outside the unit circle in z plane only,

Paking double sided z transform of equation 3.3-19,

Gplz) B(z) = By (2) = Q(z) _ o (21)

Bn,(z) is en even function and can be expressed
by 'equation (3.3=3) as the product of ir:: () and
Err-(Z) . Baquation (3,3=-21) can be written as

@,(z) 8 " (2) B "(z) - B,y0a) =Qa)

; )
¢,(z) B *(z) R (z = 9.(.2.__ ... (22)
m rr 5 - -

rr (%) v (z)
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Gm(z) has all its poles.inside the unit circle in z- plane

. _ +
for reasons of stablllity, Eﬁr (z) 2lso has poles and zeroes
ingide the unit circle, PFirst term of the left hand side

exprespion of equation 3,3-22 , has poles ingide unit
cicle only, '

bri(z) may have poles outside the unit circle, Qr;(z)
has zeroes outside the unit circle, the function [ﬁri(z)/ Er;(z§]

can have poles inside, as well as outside the unit cirdle,
It can be resolved in two parts, one having poles inside
the wnit circle cnly and the other outside the unit circle,

Bla) | [Bple) | By (a) ..(23)

B,.(2) '_’r;(z) B .(2) :

’
»

[:9(;) / ﬁrrzZ§] has poles outside the unit circle only,

Since Q(z) has poles outside the unit circle and B ﬁ(z)
T

has zeroes ocutside the unit cirzle only, <Thus equation
3.,3=22 can be written as

' 5 (z) & (z) Qly) |
N = — ..
ﬁrr(z) irr(Z) ﬁrr(z) :
PR

-y

o
Gm(z),ﬁrr (z)-

Considering the cquation 3,3-24 ineide the unit circle in
" z= Plane anly;
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B, (z)
6,z 5_12) - | 22 = 0 . (25)
T 8, . (z
rx +
Thus the optimum sempled data syetem pulse transfer function
ls given by
(z)
G . (z) = ! . Eri .. (26)
m" _ 5
°r (ﬁ) | b o z) +

When [51.1(2)/ 31":(2)] is not a rational function of z

8..(z)
1 % -k 1 Tl i
G = 2 — - a o-(27)
a'®) ﬁ:v.*:c.'.r(z) =0 2RIJT By (2) * ’

3.4 CPTIMUM DESIGN WITH DETERMINISTIC SIGNAILS

| 4(MT)
g (KT ——~————°§{*—‘é’e€fnﬂ

1)

T ™

R
- —

Fig, 6

Optimun design of a sampled data system for determi-
nistic signals can be achieved on the basis of total square

error" criterion in a wey analogus to the design of continuous
data control systems with integral square error «riterion,

BError Sequence for the Sampled data system shown in Fig, 6 is
given by

e(nT) = e(nT)~ i(nT) (1)
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Where, n J
c(nl) = 1;:’ g(kT) r(n-k)T . (2)

-

Output sequence

-l

r(n?) = Input sequence

i(n?) = Desired output sequence

g(kT) = Weighting sequence of optimum sampled data
systen,

Total square error, T may be defined as

- i‘ ¢ (a1)

N=-C0
® 5
T = z [c (nT) =2¢(nT)i(nT) +1 (nT)] e (3)

n==0o
Correla’ci_on sequences for deterministic signals may be defined as
£13(ET) = f: 1(nT) 1(nT +kT) .. (4)

= e D , :

© , .
g, (KT) = 1(nT) c(nT+kT) «e(5)

ic n&

Total square error T may be expressed in terms of correlation .

sequencos and weighting sequence by equation (3.4-2) , (3.4—4),
(3.4"5) y 28

k__ﬁ}b pf'. s(kT)g(pm)prr(k-p)m-z fi‘ g(km),ari(km) 4.,,%;?)
If the optimum system g(XT) 35 yeplaced by another one g(kT)+& h(kT)

where h(kT) is arealisable weighting sequence eandeis
a parameter +to test optimality of g(kT) the ‘error will be

increasged, Increase In error is gilven by
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Sep=1 -1
&(kT)*+ h(kT) g(kT)

S22 B [2csomnan Snoanen)] 4, et

00 P==00 ©
" "'*Eg‘“’ Ara (k) oo (7)

m [4

-&(&m) = 2 é;;m) Z.j“’“”rr (k-p)? -;Sri(ki‘)]

0 Q0 _
v2€ 7" 7 n(er) n(em) g (s-2)1 ..(8)
K=won pm-00
av. o o o ) \
=~(8T) = n(kT) h(pT) p_ (k~p)T .. (9
2é im .t r
Por an opfimum systen
L2} 0

. 3! h(m)[z g(p?) g, (k-p)T - ﬁri(k'l!)] =0 L,.(10)

k=-00 p=-~00 o

Yince h(kT) dis a realizable sequencs,
h(k?) = 0 for k<0

Equation 3.4-10 willl hold good for k 2.0 , also,
if, the expression within brackets is equal to zero for k> ©

o :
V8 (1) o (k=p)T =g, (K1) =0  for k20 ., (11)
P==00
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Bquetion 3,4-11 gives the optimum gystem, with

ninimum total-squaro error criterion, since eb secn fraa

(5,4-9) __%?‘,z (51) is o pogitive quantity,
€

3.5 OPTIWN SYSTEM VITH SIGHWA L AUD WOISE AT DIFFERTIIT POINTS

{nT)
oo —~<d g‘t.('hT) E—“-O/@---—---‘L—(-“-—--j
! R J . !
| |
i :
| X
o/c__ 1 I g (’n‘T) — .O/li T—@ ——{t<®————-{-
T nm T L cinT) Se(nT)
s A Fnenm e J
Yn () Tn(nT) Cn(nT)

Pig. 1

In the present section, optimization of the campled
data eystem , Fig. 7 , 1o conpldered, vhen noige and signal
components enter the eystem at different points, In the
block diegrem chom in Fig, 7 &4(nT) ‘13 the weighting pe-
quence for the stochastic control signal components and cgn(n!l‘)
the wolghiing eequezice for randca noise samples, Both tho
slgnal and noise components are agsumed to be etatlonary

rendca functions.

Srror sequenco of the aysuca
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o(n?) = ¢ (n) + ¢ (aT) - 1(aT) (1)

Where

cB(nT) = output sequence due to signal component
cn(nT) - output s;aquenoe due to noise

e(n?) =~ output sequence of the system

i(nT) <« 1deal output sequence.

cs(nT) and ¢, (nT) con be written in terme of eystem

input and weighting sequence,
n

cglnr) = % &,(xT) r (n&-km) ..(2)
lg=-n
n

can®) = ) gy (i) r, (a=k)T .. (3)
k=-n

Mean square value of error seq uence, froam the

equ-ationﬁ 2.3"'1’ 2.3"’2 [} 3.5“" » 3.5"’2, 3.5-3 will be given
by

———————

1im N
e?(am) = 20 o%(am)
Nes® oy¢1 n==N

2( m) - , \
e (n‘l‘? = ﬁii(o)- 2 k’z;;:wga(km) g (m)*-qkm) pri(kT)]

[8) QO
bl |60 60,918, (02t (60 (21 Ciepn

+2g, (kT )gg (pT) g (k~p )'.P] .o (4)

Pollowing procedure, analogus to that followed

by free = configuration cape, when control signals and noise

components enter the gystem at the same polint , the optimum
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system equation obtained is,

@
;;._m[és(PT) pss(k-p)w +g, (pT )pns(p-k)TJ fer (k1) = 0
for k> 0 «e(5)

When the nolse and control siznal component are
statistically independent, cross sorrelation sequence ls zero

and optimum syetem equation reduces %o

% gs(pT) pss(k-p)T - ,sai(m) = 0 for k> o .o (6)
p=-o

3.6 QPTIMUM COMPBNSATION FOR SEMI FRBE SAMPIED DATA CONTROL SYSTEM

2—)——-————-0/0——1-—'—_'—1 N N OT/O_———I, 4(nT)
T L_ ______ | :
iy e(mm
—Ge(Z) - e G5 @) —|T
———~>®t—-o/ —o/ou '—o{ cenT)
) 4 TeT ] 1 - |

Big. 8

In thls section, the compensator, that gives minimum
mcan-sequars error, ls designed.Input to the pystem is apsumed
%0 be stationary and ergodid sampled signals, For the sampled
date eystem block disgrem of figure 8,G.(z ) is the pulse trane-
fer function of the fixed elements of the system, and G, (z)

compensator pulse tr.affer fuaction nas to be obtained,
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Output sequence of the system ig given by
n

c(nT) = Z €, (pT) rc(n-p)T eeo(1)
n
. c(ﬁ) ; ZQR & (pT) g, (k1) r (n-kip)T eeel2)

Vhere
r(nT) = input sequence to the gystem

&p(nT) - weighting sequence of fixed elements
g,(nT) - weighting sequence of campensating elements

Brror sequence of the system l1s given by

e(nT) = c(nT) - i(nT) eee(3)

Mean square value of err or - sequence is given by

"é"(—;)"' lim ¥ o,
n =
° Ne>t0 ZN‘P 1 nz...‘h ° (nm)
2 2
= ¢ (af) = 2¢(nT)i(nT) + i (n?) cee(d)

eé(nT) , mean~ square erxroer, for the optimum system
compensator welghting sequence gc(nT) , can be expressed,

meking uee of equatione 2,3=1 , 2,52 ag

2
egc(n¢) = (o) - 22 I:sg(m'ﬂ)gc(k,m) 8, (k1+p, )T:]

Py=~00 kr--oo

f: };: [&(P,T)Sf(PZT)gQ(k1T)g°(k21\)

p"n..mpz:z..m k1a-.m
$rp (Ko=Ky+Do=Dy )T] ..(5)
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Following the procedure, analogus to that adopted
for optimum system weighting sequence for free configuration
system, optimum compensation welghting sequence is given by
€ ® 93] '
p%-co k1>;~oo k}é;‘:f(y‘m)gf(pag) 8o(p ) (g pp-py )2

"?2:1 8¢ (pqT) ﬁri(kf*p?T = 0 for K> o ..(6)
{=~0

By explicit solution (section 3,3), the pulse =
tranefer function of the compensating system wlll be given by

1 l‘Gf(Z'd) gri(z)

‘ .. (T)
E}:E(z)(a‘rj;‘(.ﬂsm1 j-ﬁr;(z) lEf(Z) oz (™! )J-jrr‘(Z) +

G;(z ) =

When input to the actual system consists of stochastic

signal r (nT) eand random noise r,(nT) , both being sampled,

stationary and ergodic functims, The ideal ocutput corresponds

to the sampled control rs(n'i') o Prom equations. (2.3=-17 to 23 =2

@ (z) B, P (z) Drr (z) + (z) b ( ) ..(8)
2]
5,() =6 (a) [a,, OR <z)] .+(9)
8 8

Pulge trangfer function of compensation w’stem‘ is given by
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G (z~1) G5(z) Ersrs(Z) + irnre(?‘).] 56
-E}f(z)nf (2~ )]—[Erlsr s(z)+5rnrg(z)+§rsrn(2) +Ernrxiéz£| -

- ¥
_Gf (= )Gf (3-1 )]* [irsrs(z )+§1’ T, (z )+brgrn(z )+nrnrn(z‘ )]

Gc(z) =

ne ]
.o (10)

If Gp(z) , the pulse - transfer- function of the
fixed elements has no poles or zeroes outside the unit circle
in z~ plene , then

+ _ X
[Gf (z) Gf(z'1)J = qi,(z) .o(112)

[e£<z)ef(z‘f) ]' -.=Gf(z"') | ..(11B)

Pulse transfer function of optimum cmnpensatidn is

given by

: .
I ¢ (z) + B )]
: | . ]- 1(2)[% r 2 rnrs(z

En.*(z) l_ (z) s

Pulege transfer :f.‘unction of optimum system when no
fixed elements are pregent,

.. (12)

it

Pulge~ trangfer function of £ized elemente

5.7 MBAN SQUARE ERROR

Mean square error of wmampled data system is given by

e?(nT) = l:c(n‘l‘) - i(n’ﬂ)_]z (1)

e2(nT) = B o(0) * fpy(0) = Boy(0) = g (0) .o(2)
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raed

T° T LS F'ST) {’? é e(mT)

e e

Pig. 9

Mean square error also can be given in terms of pulse spectral
dengities

o2 (nT) = -é;—;'-fr [ﬁcc(z)-l'?)ii(z) -iici(z)-bic(z)j] 1 az

Mesn squere error of an optimum sampled data system may be given

by
°§pt(“""') = [lssz-oo; g (kT) r(n=k)T =i(al )] .o (3)

Where & (kT) - welghting sequence of the optimum system,

—_y—— CO
‘ kT )g..,

e‘:’)pt(n'r) = ém mﬁf(k‘f) g(mT) frp(k-m)T 2 Z;;s.zo )03 (KT)
+ ﬁii(O) 000(4)

Fram the optimum system equqbtion,(3.2-16) ,

% g(mt) g (k-m)T =g, (KT) = 0 for k>0

M=o
 R— ®
eopt(nT) = gsii(o) - Emg‘“(km Py (KT) ...(ﬁ)
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Pulse trangfer function of the optimum sampled data system ks

given by

B _(z)
6 (2) = —¢ x4 o (6)
B (2) | B (2) .
and can algo be writlen as,
® -~k
¢ (z)= -"-1-—‘—— Zo (&) 2
Err (Z) .
Where o o _.(z) -1
Y (x2) = ! i r'i_ z 4z ...(7)
] 2x j 8 . (z) '
. 2 - v -1
o eopt'(n'l‘) = py,(0) - ;.5”1(“)2:? g (z) .27z (@)

2 _1__ ~1[ 1 (kT),~k
ves(9)

'Interchanging the summation limlte,

2 o@1) = g, (o) Z_:y(m)--j{r z__z.;_.

3By, (k0)2E | (10)

(2 k=~
-1 Brylz) ‘-
a”li Z'\r(k'ﬂ)—— dz 2 ——-—:—-—' ...(1‘)
8. (z)
el (aD) = g,(0) - 2 Y ’ () v (12)

k =0
The equation (3.7-12), gives the minimum value of mean

sguare error for the optimum sempled data eystem,

L]
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3.8 _BRANPIR

G (&) — ~1 1L (B TE0
| o
|
i

o]
[ — elnT)
+ [ . [ .
! ol _COMPENSATOR} Lo~ - {ChSh .. 4Gs <S>--——j
+ - | e =
¢

Plg, 10

A sampled data gystem has the configuration, as

ghown in Fig, 10, The transfer functions and input signals
. are destribed by

1+ 0,005§ 1-e®
GB(B) = ’ Gh(S) =
5 8
o [1+8mdo)”]
4.5 i 0.1
- . ” ( - .
ﬁrsrs(s) 0.5 - ) s Fr r @ -

¢ = 0

L (g) |
Sampling period 1s taken as 0,1 gecond, The design of
sampled data compensator is to be carr led out, that will

minimize the mean square sampled error 6% (nT)

The block diagram of sampled dats gystem Fig, &0,
can be rechaped as that 4 £ Pig, 4, Here G;(z) eand Golz)
are the ideal and optimum systems respectively.
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Fran the tables of 2 transforms, following results
are obtained,

- 10436 2
5 (z)= , B, {z)= 0,0318
T (2=0,9512) (z-10513) n'n |

grsgiz) i} a*n?u(Z) =0

2. +
a0, (z) = 0.,0096 (: 8,87z +1,845)
(z-1)(2°-~0,7862 +0,368)

" a:rz'(i") = Brorgla) * ;fnrgz) * i‘srn:::'E,(Z) Ty (2)
~ 0,0318 (2~47,08) (2-~0.0212)

. (2-0.9512) (2-4.0613)
Factorieing B (z) into B..%(z) end §_~(z), following results
' r

=

are obtained, .
+ 0.178 (2=0,0212)
..‘ 5 ‘z) =
rr

(Z" on9512)
0.178 (2~47,08)

or (=) = (z=1,0513)
For the system under consideration, G4(z) = 1.
Here,
61(s) [ Bz (2) * —c .6 s
B (29 i (2=0.9512)(2-47.08)

0,162 8.2
-1 o
Picking part of [Gi(Z) [hrsrs(z) . T (z)]] /8" (2)
n's '

that has poles ingide the unit circle in z - plane,
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+ B
Erfs(Z) rnrs(z)] B1(z) 0,162

8. (2) . 2~0,9512

-

i
i)r}’\ S

Pulse tranesfer function of optimum system is given by
(z) +B (z)] 64(z)
I A R
; X

- 5..~(
° urr (Z) | b i A ,5) +
0,162 XV z - 0,9512
= . *
z=-0,9512 - 0,178(2=0,0212)
0.807
= ” )
Z - 0.0212

Pulge transfer function of optimum eystem compensator is given

'byG ( | 1 GQ(Z)
ol2) GhGQ(z) —1 - Gc(ﬁ) .

(z-1)(22~0.7863 +0.368) . [ 0.907 ]
=

0,0096 (z°- 8,87z+1,845) 2=0.9282

94.5 (z~1)(z°~ 0.786z + 0,368)

(z-0.9282 )(zz-8 87z > .845)



CHAPTER IV

SUMMARY AND CONCIUSIONS

4.1 SUMMARY

In the present dissertation, statistical design of

sampled=-data control gystems in time domain has been considered,

In +the first Chapter, limitations of clasefcal
approach to the design of control systems have been pointed
out,namely,this is a trial and error approach for design with
ldealized signals only, dlsregarding random nature and the
. Presence of noigse, The drawbacks of classicﬁl design tech=-
niques are overcame by analytical design approach, The
analytical design proceeds directly from. the system specifi-
cations, It considers 'Poth control system component and
noise in the system, as well as the random nature of input
signals to an actual system,

The control signal component and noise component
can be repremented only statistically, For random glgnal
input to a control system, mean-square value of error output
ie the most convenient performance index, becausge of its
mathematical amenability, besides being selectiye. Por deter-
ministic gignal inputs, integral square error is a convenient

performance index,
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In the second Chapter, the Wiener-Hopf equation,
that gives optimum system impulse response, in terms of
correlation functions of system input and ideal output was

considered,

Optimization of sampled - data eystems following Tou's
approach hag also been considexed , In Tou's approach the
randon system input consists ¢f control-signal component
and noise component, The system is optimized by minimizing
the mean~square value of e,;rror sequence in Z- plane, and the

pulge=transfer function ofntained.

.

_ In the third chapter of the present dissertation,
the statistical design of a sampled data control gystem ie
carried out in t ime donain, An equation, similar to Wiener
Hopf equation for continuous data systems, has been obtained
for the sampled data sgystems with random elgnels,.by minimiz-
ing the ;xxean square value of error sequence, The optimum
system equation is modified end taking z trensforms, the
Pylee transfer function of the optimum syétem is obi;ained
in terme of pulse spectral density of input signals, cross=
epectral density of the input and desired output, Optimum
system pulse trans:i‘er funr‘ation‘ is also obtained, when input
consisbs of noise and control system component, The ldeal
output is due to control signai conponent only, The express-
ion for optimum system pulse tranefe r function is identical
to the one obtained by Tou's . i. approach,
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éptﬁmization equation for compensator has also been
obtained for the semi-free configuration, FPulse transfer
function of the campensator has been obtalned in terms of the
pulse spectral densitles of input signal pulse-tranefer
functiong of ideal system and fixed elements , If the‘fixed—
element pulse transfer function has no poles or zeroes mtside
the unit circle in z~ plane pulge~transfer function af the
compensator, is the ratio of pulse~transfer function of the
optimum system without fixed elemente, and the fixed element

pulse trangfer fuaction,

Optimum system equation has also been obtained for the
gsampled data systeme, where the control signal and noise
enter the eystem at different points,

4.2 FURTHER PROBIEMS SUGGESTED BY THIS INVESTIGATION

The study of statigblceal design 1s restricted to
the sampledw~detea control gystems with infinitesimal sampling
duration, But all the physical sampled data system have |
finite eampling duration, The design will be more mealistig
egpecially when the time conastant of the system 1s not large
enough compared to the sampling duration, if the finite width

of sampled pulses is also coneidered,

Optimum sampled data system design is restricted to
the cases, where the input and output signals are eempled in
synchroniam, It should be possible to extend the statistical
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design approach to the systems with input and output being
gampled at different rrtes, The technique may also be
extended to +the systems where sampling itself is random,

Statistical design procedure for sampled data systems
is restricted to the systems, where control siznal componentd
and noise enter the system at the same point, 1y should be
possible to extend the concept to the sys'tems; where control
gignal camponent and the noise enter tho gystem at different
points, as well as to the mulilple input syctems,

With the advancements in mathematical techmiques, it
should be posasible to extend the statistical design approach
to the nonlinear sampled-data control gyestems, and also the
time varying systems,

In conclusion it can be said that the problem of
statistical design of sampled data control eystems in time
domain, has been discussed briefly in this dissertation,
It 1s hoped that further investigations In thie field will

lead to more wozjthwhile resulte,
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