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ABSTRAC 

Analytical to chnique for the design of control 

systems is adopted to overcane the drawbacks of classical 

trial and error approach which is based on the system 

response to a selected Input in absence of noise. Statie•-

tical properties of noise and input signals are used to 

make the system design more realistic. 

In this dissertation, analytical design of sampled 

data systems, using statistical properties of signals, is 

carried out, extending the technique for design of continuous 

data systems. Optimization of sampled-data systems is carridd 

out in time-daaain, minimizing the mean-square value of error 

sequence. Z- transform, optimum-system pulse-transfer function 

is obtained in terms of pulse-epe ctral density of input signals 

and cross-spectral density of input, Ideal output signals, 

Optlinizaticn is done for free and semi-free configurations, 
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' • 	 CHAPTER 

I .1,,NTxODCTI,, • 

Sampled data systems have been in vogue recently, 

Their use is increasing rapidly with advances in other fields 

of science and technology • Sampled data systems are the 

systems where the signal is sampled at one or more points. 

The sampling of the signal may be. inherent. The 

kaput to a radar tracking system is in the form of a pulse 

train. In time multiplexed control or communication systems, 

data from several channels is sampled and multiplexed for t 

transmission over the same channel„ 

Some times the sampling of the continuous signal 

is introduced intentionally to improve the performance of 

the system. Continuous system with transportation lag can 

be stabilized by introducing sampling systems with sampled 

data can, in general,, facilitate the rea~.ization of adaptive 

principles. Pulsed data systems are also used for improved 

sensitivity, Vy sampling the low power signal, the sensing 

device can be made extremely sensitive in terms of power 

gain. The samples is also introduced, because of the ease 

and accuracy with which the digital signals can be stored, 

tran pitted and processed. 

Some of the applications of sampled data systems 

are : 
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I 	Semi- Automatic Ground Environment (SAGS) system 

used by U.S U.S. Department of Defence, a large complex 

system consisting of telemetry link for weapon 

guidance. 

2 	Pulse control of low power motor. 

3 	Digital control in controlling machine tools, for 

precision components. 

4 	Communication and control systems for outerepace 

communication use sampled data signals, 

1.2.  CLASSICAL DESIGN TECDNICATBS FOR CONTXNt30US-DATA CONTROL 
SYSTEMS. 

Control system transfer function can be represented 

either In time domain or in the frequency domain. The methods 

of design for control systems can also be classified along 

these lines. 

In time domain, transient and steady state behavior 

of the system are of interest. System specifications, e.g,, 

maximum overshoot, time of first overshoot, maximum settling 

time etc., can be expressed in terms of the damping ratio 

and undamped natural frequency of the system. Transient 

behaviour of a system is determined by the roots of the 

characteristic equation,  

1 + G(s) H(s) 	0 

where G(ø) H(s) is open-loop transfer function of the 
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system.. 
stability roots are key to the dynamic performance 

of a system. Root solution of they characteristic equation 

by direct analytical method is 1aboricas andImpractical 
for design• purposes. A graphical approach makes plotting 

of root locus practical for complex systems. This makes 

available a complete picture of ,stab 3 ity changes due to the 

effect of individua2 elements, Original root locus is 

modified by insertion of compensation element that places 

the roots of characteristic equation at a more favourable 

point. 

Root locus approach is essentially an analytical 

approach, where the characteristic equation of the Totem 

must be known, 

Other method of control system design Is that in 

frequency domain. 'rhe system can be represented by its 

response to a sinusoidal signal of constant amplitude. This 

is essentially a graphical method of system design.. Prequency 

response transfer function of a system can be represented 

by Polar plot, Bode plots or magnitude versus .phase shift 

plot. The frequency response desj,n methods are preferable, 

because the experimental data is in the form of frequency 

response and final design can also be checked by frequency 

analy Bis . n 

Various frequency domain apecificatione are the 

system bandwidth, reepcaauce peak,resonanoe frequency, cutoff;` 
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rate , gain margin phase margin etc, 

Bode plot method of control system design and 

compensation is preferred,, because the effect of compensatio* 

Is easily obtained by adding magnitude and phase shift 

curves of individual elements. 

1, 3 , EXTFNS ON OF C TSA CAI, DESIGN 	13 TO DAMP IZD- DATA 

Compensation and design techniques for the continuous 

data control systems also extended to the design of sampled-

data systems (7) , But the sampling operation makes the 

design of feedback system canpensation more difficult, 

C ommpensation of sampled- data systems may be effected by 

two general methods. 

1. Compensation by continuous devices, making use of 

continuous data compensation networks in series 

with other components of the system, 

2, Compensation by pulsed data devices whose output 

is sampled in synchronism with its input at a 

constant rate. 

When the transfer function of a system Is in factorised 

form, it is preferable to work with Bode- diagram, because 

of the ease and Simplicity with which the asymptotic Bode- 

plot of a transfer function can be plotted and reshaped, 	`' \ 



Characteristic equation of a sampled data control system 

is a traneoe%ental equation and open loop transfer function 

of the system Is a transcedental function in s. Difficul-

ties encountered in plotting of transcedental functions, 

discourage the application of Bode-plot tethniues for the 

design of sampled data control systems. This difficulty is 

overcame by converting transcedental function in s into 

a rational function in 9 , by the transformation 

a  - esi' 

This process maps the primary and canplementary strips of 

left half of s - plane into unit circle in G plane 

Bilinear transf ormation,  

1+w 
1 - W 

maps, unit circle in z - plane onto imaginary axis of another 

plane w, and interior of the unit circle into entire 

left-' half of w - plane, 

In the extension of root-loc is techniques to the 

design of sampled- data control systems, numerous difficulties 

are encountered In construction of root-- loci frram a starred 

transfer function, be cause of laf bite number of poles and 

zeroes, C plicated nature of root—locus plot in s plane 

makes it difficult to study the effect of added compensation. 
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These difficulties are over came by the use of Z - transform 

technique,. The overall system characteristic equation is 

trandormed to  
N 

I + A(z) ' 	0 

where,  , 1(z) is open--loop pulse transfer function, a rati-

onal function of + Z containing a finite number of poles 

• and zeroes, Stable operation of the system requires that theroot 

locus of sampled data system, be confined to the unit circle 
in, Z plane,  

1.4.  DRAWBACKS OP CL&SSICAL DBSIGN TECHNIQUES 

Classi$al design:  techniques suffer fran several 

drawbacks, that hamper the systematic design of control 
systems and compensatingnetworks; 

1 	Capensating networks and control systems are designed, 

assuming, that a known input like transi-ent like 

step, or sinusoidal, is available, Such signals 
do not occur in general, and the design  be cases 
unrealistic. 

2 	System is designed only for processing the signal. 

No consideration is taken of inevitability of noise 

in the system due to physical nature of the syet n, 

e.g., shot noise in the tubes, manufacturing toler-

ances,  or other disturbances. 



Classical design techniques are based on trial 

and error approach. The designer makes sai e 

changes in the system, studies the d=gee in 

response, again makes changes in system parameter 

until system performance is within the satisfactory 
limits, The system designer, except experience 

does not have any means to recognize an inconsis, 

tant set .of spe cif i.cations, Trial and error 

cycles may be repeated one after the other, without 

achieving the deel''ed resilts. 

1,5-
_ 

ANLL TICAL DE$IGN 1BTBOD$ 
~i1•~F• ~MYp~ i Y I M~•14M~YiY•IY~ • 

To overcome the drawbacks of repeated trials 

and noise considerations, analytical design approach is 

adopted, In analytical procedure the design of control 

system begins, with the specifications of system input 
and desired output. By analytical approach, an Inconsis-

tent set of specifications can be recognised, and 

either a new set of specifications is prescribed or the 

design is given • up as not being feasible. 

Considerable work has been done on the analytical 

design of control systems with continuous signals, based 

on the mean scare error criterion and integral square 

error criterion (9,10,14015) . Analytical design proce-

dure adopted by Newton, Gould and Kaiser (14) ,, requires 

one more specification that is not explicitly used for 

trial and error procedure. This concerns the degree of 

freedom Mowed in ccm►pensation. The system to be designed 



or fixed camfiguration, according to , if there are no 

constraints of the system configuration or fixed elements, 
constraints of faxed elements only, and both the systems 

cont figuration and the fixed elements being specified. 
Attempts have also been made for the gxkalytical design 
of systems with constraints like 'saturation(12) or system 
bandwidth (13) . 

1.6.  ANALYTICAL DESIGN METHODS XTHNDED TO s 'L 	D.A.T.. 

' 	CONTROL SYSTEMS 

Some work has been done on the analytical design 

of sampled-data systems. In a paper concerning the 
statistical treatment of sampled data control systems f arr 
random signals(1 1 ), Mori. , deals with the correlation 

function of time series, and pulsed-spectrel densities 

for sampled data control systems*  This paper also deals 
with modified Z- transforms, when the signals are consi. 
dered at sapling instants and during intervals between 
sampling instants. 

Work has been done on the statistical design of 
sampled data control systems, utilizing statistical proper-
ties of Input and out put signals (2, 3 , '16) . The design If 
control system is carried in Z- domain, minimizing the 
mean-oquere error between desired and actual outputs of 
the system. Tou hap also considered compensation of 

sampled-data control system In Z- domain (17) „ Toru has 
1 
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also considered design procedure for discrete-data 

control system subject to power l mitatione(17). Bergen 
(1 ) has considered statistical design of sampled-.data 

systems with randomly varying samp ing. 

4 	 The statistical design procedure has its on 

limitations, for example, design of systems using 
statistical, procedure is unrealistic, since the final 

result ,requirs poles and zeroes of the initial system 	4 

to be completely can celled out and poles and zeroes placed 

at new and more suitable locations by the equj.ljzer, 	S 

Statistical method of analytical design is 
highly restrictive as for as inputs are concerned. The 

Inputs are assumed to be stationery 'and igodio. In 

general the conditions of ergodicity are nebulous, it 

'may be rather difficult to deduce from the actual data 
whether the assumption of ergodicity is true or not. 

1,7 ,  TMM&T of THE P PROBIgM 

The problem under Investigation Is to analyti- 
catty design the sampled-data systems, utilizing the 

M 

statistical. properties of the desired signals, control 
signal component, and the noise. 

A control system can be calseified as a free, 
semi'free or faxed configuration system, depending whether, 
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system performance specifications alone, or system perf'or-

mance epde cif ic~ations alongwith some elements of the system, 
or system performance specifications alongwith the systemn 
configuration, are specified, 

In the prevent wor1, the design of sampled—data 

control rstem, has been attempted in the time domain. 

In the secozid chapter of this dissertation, eta-
tistical nature of. input sig als$ correlation techniques 
utilizing the statistical properties of the signals, 
appropriateness of mean—square error as performance 
index are considered for the statistical design procedure. 

In the Third Chapter, tlma—llamaia equation is 

developed for the opt mum sampled — data system weighting 
. sequences that gives minlxnum mean—square error, this 
equation Is similar to Wiener -- Hopf 'equation for the 
continuous data systmst 

Co 

dt2 wm( } Orr (t1.. t2) — Pri(tl) = O,for t%>,0 

where 

Wm (t) • -- weighting function of optimum linear 

control system, 
M 
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• (t,.. tL ) - auto correlation function of input signale 
rr 

tri  Of ) 	- Cross-correlation of function of input, 

i dal output signals. 

' An explicit solution is found for the pulse- 

transfer-£u 2ctiol of the o, timum jstem, with mean-

square value of error sequence. 

T me- domain solution * is extended to the 

optimum systems, in mean-square error senses  with fixed 

elements , or semi-free configuration systeme, 

A-"naa.ytical design  of sampled-data systems with 

determinist "ic signals is also attempted„ 

0 
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PRBLIPIINARY CONSIDERATIONS 

2,1 INTRODUCTION 

Inputs to the control yetems are of random nature, 

These random signals can be represented statistically, in 

terms of probability density functions, average value and 

moments of various orders, Mean. square value of the system 

error may be taken as a convenient criterion of system 

• performance, Integral-square error is a convenient perf or- 

 mance index for the control system with deterministic 

input s„ 

Wiener-Hopf equation gives the optimum-system 

impulse response, of the continuous data systems, in the 

mean-square sense. By modification of the Wiener-Hopf 

equation transfer function of the optimum system is obtained 

in terms of spectral densities of signals in the system. 

Touts approach to the designs of optimum npled-data systems 

is also considered in the second chapter,, 

2,2 STATISTICAL CHARACThRISTICS OP CONTROL I(GNAW 

An autcmatio control system is seldom designed to 

perform a task, which may be completely specified. beforehand. 

A control system is designed to perform a task selected at 
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random fran a range of possible tasks, but within certain 

limit s, Many perf orman ce inaccuracies are essentially 

random functions of time and con be prescribed In statis-

tical sense only , Because of the manufacturing tolerances 

in a system the sensitivity and other fixed parameters of 

operating 	 • components are subject to randan flu ctuations. 

When examined In detail all phyeioal processes are discon-

tlnuoue and indeterminate. The voltage output of a vacuum 

tube oscillator 1.s considered as s. continuous snooth fub,a-

tion, But , en microscopic examination, the wave is found 

to be relatively rough because of shot noise. 

Auto-and- cross correlation functions: and spectral 

densities for randan signals are given by 

auto correlation Aanction of signal (t) 
him 	__ I T 

err 	 ) 	~ T ---s oa 2 	
r (t) r (t+ 1`) dt 

• T 

Cross correlation 'function of signals r(t) and 1.(t) 

T 
(r) 	T-4 r~ 	

r(t) 1(t+'T )dt 
*.T 

Spectral density of signal r(t) 
oQ 

(W) 	—
X 
	('T) —iwl' a,r 

rr 	2 

• 

ri(` ) e jw~' d̀ t' ri 	2~ 
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2,3 CORKBLATION $J&NC1S AND EPECfiRAL DIS 1 t7R 

MA1? LI D SIGNAIrB 

Correlation sequences for sampled, random signals 
(11) are defined as follows # 

Auto correlation sequence, 
 N 

= 	-- 	r(nT) r (n+k )T 	(1) 
N --+ ao 2N+1 	n ~ 

Cross correlation sequence 

Urn 	N 

Pri (kT)  = 	... ...._.. 	r(nT) t(n+k)'T  
o0 2N+1  

Pulse spectral density is the Fourier -tranaEorm 
of the correlation function„ 

0 . 

3WkT 
frr (w) = T 	(kT) a  

Cross pulse spectral density, 

ao _ 	 -Jwk' ri (w) -- T 	ri (kT) a 	 .. (4) 

Correlation sequences and pul sed a epe ctral density 

of pulsed data signals are c .ara ct er iz ed by 
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ii (kT) 	= Pii(-kT) 	 .... 	.. (5 ) 

i4 ( ) 	- d(-k) 	 .... 	.. (6 } 

 (z"j) 	jii (z) 	 ... 	.. (7 ) 

is (z~1) 	1ci. (z)  

I the response of the pulsed data eyetem 

t (z) to an nut r* (t) is e* (t) , then the response of 

	

this system to an input 	kT) Is prc(kT) and 

the response of this system to snnn input per (kT) is 

'O (kT) 
ce  . 

Co 

9(nT) )Drr(kT —nT) 	Jbrc (k) 	+i• 	.14(9) 
n=-Ian 

00 

g(n~!) pc, (kl —nT) = 'Pec (kT) 	... 	;..(1A) 
n=—acs 
Pro(z) 	= G( z ) Orr (z) 	 ... 	..(11) 

G(z) ~ (z) 	... 	...(12) 

r (nT G1(z) 	c (nT) 	LG2Z 
1 	 1 	r2(nT} 	 c2(nT) 

pig. 1 
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• 

With reference to Fig. I cross correlation 
sequence and pulse cross spectral density for the output 

sequences of sampled data systems ( (z) and G2 (a) 

possess f ol.lowing characteristics ; 

CD 

r2 c1 
 

(kT) 	 9 g1(UT) )Dr 	(kT - nT) 	.. ( 13 ) 
n: c 	 2 1 

 
901 C2 (kT) 	

on
g2 (UT) C12 	(kT -nT) 	•,.(14) 

n..00 

ao 
Or * (kr) 	gu(nT) Orjr2 (kT —nT)  

1 2 fl=4 

9c2c~(kT) 	91(nT ) 	r (kT — nT) 	...(16) 
U=..~ 	1 

r2c(z) 	='G1 (z) 1D r2r1(z) 	 ...(17) 
1 

ac1c2(z} 	=  C1 x'2 

(z) 	' •G1(z 1 ) G2() (  z) 	 ...(18) 
c 	

r
1a2 	 12 

+~r1c2(z) 	G2(Z) Or1r2( 	 ...(19) 

i6 c(Z) 	G (z ) L0(Z) 

G1(z,) 02(z) br r (z) 	 ...(20) 
2 # 

 
21 

0 



17 

2 ,4 PKRFORMANCR INDEX 

.Performance index is defined as sane mathematical 

finction of measured ro spouse, the function being chosen 

to give emphasis to system specifications of interest(5,6 ) 

Principles for selection of a performance index are: 

1. Reliability : Performance index should express the 

quality of perf ormon ce as closely as possible. 

2, Selectivity t Optimum, value of system parameters 

should be clearly discernible from some character-

istics, such as a. minimum value of the performance 

index versus system parameters, 

3. Performance index should be easily calculable fray 

existing techniques 

4. Performance index should be unaffected by unlikely 

short-lived deviations from the mean, or shifts in 

ti me-axis; instead it should be a measire of the 

average behaviour of control system, 

-The mean squuare error criterion is widely used, 

it is defined as f oUbws I 
_ 	 T 

l .-.I 	e2 (t) d t 
T-400  2T J-T 

• 'l n 	
f

T r 2 
..'~I Ic(t) i(t) dt 

T -. co 	2T 	-T 

a 

3 
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Where 
o(t) 	Actual output of the system. 

Ideal output of the system 

e,(t) 	= Error In the output 

One of the main reason for wide usage of mean-

s quaro error criterion stems fran its mathematical conven-

ience, A d .f'f erent error criterion may be preferable 

except for attendant mathematical difficulties, Mean 

square error criterion is adequate wherever the undesira'bi-

lity of an error grows with the magnitude. 

Mean square value of a tandcm process is one 

of the easier parameters to evaluate experimentally. 
Mean-square error together with the mean value of a randan 

process yields i ormation about the process when it is 
Gaussian. kCentral  limit theorem is often invoked, to sasume 

Gaussian Process. 

a 	Integral square error is a measure of transient 

response of the system. It was first applied by A.0 A.C. Hall, 

ISE is defined as t  
[s(iJ2 dt 

• ISE  

Both integral-square error and mean-square error 

can be represented in terms of the system Impulse response 

and correlation functions amongst system input and de s irdd 
output, Both ISE and MSIR criteria can be extended to 
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the sampled data 'systems also the systems being charao-

terized as having sampled inputs and outputs. 

Kean - square error, 

1 e2 (UT) 	_ 	[i(nT) - c(nT) J 
2 

N-4r 2Ni 	nr-N 
e2 Eng ~ 

Total square err-or cD 

• t=-CD 

00 

n=-CO 

2 

F(nT) .. c(nT ) 

e (nT ) 

2,5 WIHNFR- HOPP EQUATION FOR fl1?TIWJM IINEAR SYSTEMS 

In Newton, Gould and Kaiser approach (14) to 
the design. of optJ,muffi linear systems, a system is classified 

as free, semi-free or fixed configuration system, depend-

ing on the restrictions Placed on configuration, 

In the following section, the design of an optimum 

free configuration, continuous - data system with minimum 

mean square error criterion is given (14), 

1 i(t) 
- 

r(t) 
	

c(t) + 	 e(t) 

Figs 2 



The error signal at the output of the system, with 

reference to `ig. 2, , is def fined as  

a(t) = 	c(t) -; j(t) 
	

• ..(1 ) 

Where r(t) = actual randcin Input to the system 

1(t) = ideal output of the system 

c(t) = actual output of the system 

va(t) = impulse response of optjmum linear system 

The mean square error expressed in terms of corre-

lation functions of system input and ideal output is given 

by 	00 op 

e2( t )  
wm(' 	W. (`~'L) 	► rr (~c% _ `~`,..) dr d~r,.. • 

moo 

CO 

2 	' (~ r3( ~~ 	, + Piit 0)  

The bar indicates time average of the function. 

By caloalus of variation, ' equation for optimum 

system minimizing the mean square error is obtained. The 

equation, known as Wiener - Hoff equation i.e as follows s 
cx~ 	 tai " '(1̀j d'a'y 4ri( 'f1) 	o 

	

for `f;>. o 	....43) 

Transfer function f o the optimum system, in 

terms of spectral. - and cross-ep. ctral, density of system 

a 

20 
i 
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input ad ideal output Is given by the equation
1 

O = 	 + 

Prr +(e) 

Where 
W1 (a) = thcansfor function of the optimum system 

A. 

= Factor of p ,(s) which includes all the poles 

and zeroes of JO (s) in the left half plane, 

40 
err (s) 	=Factor of prr (o) which includes all the 

poles and zeroes of p(  s) in the right half 

errs) 

9rr (a) 

plane. 
Orl (s) 

_= Component of  
err i(S) 

poles in the left half plane, 

which has all its 

e 
Component of r~' ( 	f which has ail 

rr (s ) 

its po'es in the right • half plane. 

2.6 T Q.J O S APYROACU TO DESIGN OF OPTIMUM FR .E CONPIGULTI(11  

SAMPISD DATA, CONTROL SYSTEMS  

According to J.T. Touts approach(16), the 

optimum design of a sampled— data system is obtained 

for sampled stochastic control elgnel r( n.E) and 

sampled noise ra( nT) 	Both the signal and noise are 

0 
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rU 

Gti(  

C TI T) r — ----°- 	 { ( T ) 

l I T- o(TT) 	°o  ---I C ('fll ). 

Pj.gqre 3. 

♦ n _ 

assumed to be statiouiry rendcm functions. 

For the system shown in Pig. 3 , G0(z) is the 

pulse- transfer function of optjimm control systel ,G j,(z ) 

is pulse transfer function of the ideal system when, 

there is no noise present, 

Error sequence of the system is, 

e (nT) = 	c(nT E 	,(nT) 	(1)  
f 

Where 
T 	Sampling period. 

Error sequence of the system may be written 

as o (n) = o0  (u) + cu  (nT) - i (uT)  

Where, 
(nT) 	System' res.?onse to •coo.trol signal r (nT) 

Ce 	 0 



en (nT) 	= $*stem response to control signal r$(nT ) 

The mean - square value of err oar sequence of the 

system is def hued as 

lm 	N 
e2 (nT) 	- --e2. (nT) 	.. (3 ) 

N ~y► coo 2N+1 n= -N 

LIm 	ItAI[C'(nT)+  
t 

 c (nT) + 4(nT)  + ce (nT) cn (nT ) 

K4CO 2N+1 In" + en (nT) c8 (nT) c~ (nT) c1(nT)-ch i T) C, (nT 

-ce(nT)ci(nT)..ci(nT)c (nT) 
s 

.,(4) 

	

cc(nT) +c, (nT) + 	(nT) +c$ (nT) , (nT) + c (nT) c$(nT ) 

• . cn nT Qi(nT) - (nT) ce (nT) - ce (nT) ci (nT ) 

- ci (nT) cB (nT ) 

• From the equgtions 2.3-1 to 2,3-4 the mean square 
value of error sequence may be written in terms of correla-
tion sequences, and pulse - spectral densities. 

02(nT) = ~c c(0) + 	c (0) + 0c a (0) + c (0) +o a (0) C505 	nn 	ii 	 c "  

"'$ceci(Q)-#cice(0)+.'- ... (6 ) 



24 

g2(nT) 	-~ 	T, [fee
(z)cs(z )♦ cc (z) +' c c (z) j

nn 	ii 

csch(Z )+ cncs(z ) 

of C(z) jC C (z)•Zi1dz 	•.(7) 
Si 	is 

where , contour of integration T' is the unit circle 

in the z plane. 

These pulse spectral densities may be expressed 

in terms of pulse spectral densities of input signals and 

pulse transfer functions with the help of equations (2,313) 
to (2,3-20), 

• c a (z) = b r (z) G0(z) G(z1) r 8 s S C 

15c (z) r r (z) n 
G 	(z) Go(Z 1 ) 

9a c (Z) r r (z) 4i$z) G
i

(z 	) 
i i ee 

(z) b 	(z)GSz)G (z) 
cs cn ~'e n o  

c c f Z) r r(z) G0(z) (IQ(Z uu1) 
n e n e 

(z) w (z) G 	(z)G( 1 ) 
cc 
n i 

rr 
us 

i 	o 

c (z) 76rw r (z) G 	(z )Gi (z-1 ) 
in en 

(OA) 

• •.(8B) 

..(BC) 

..(8D) 

..(8a) 
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Io (z) 	~, 1r
6' 

(z ) G (z ) G( - 1)  
s 1 	 s 	

o 
 

cc 	r r (z) G (z) G(z 1 ) 	 .. (8I ) 
ie' 	ss 

The mean square error is reduced to 

e2(nT)=2-1- 	X (z) Z ,~ dz  j 	ee 

Where 

(Z) [Go(z) ~'i(z )] [Go( 	) -G,(z ) 	76r ~,(z) 
ee ~  

+ Go(z) [Go (z-1 ) _G (z 1 )] rsr (z ) 

+ GO( 1)[Go(z ) Gi(Z)J 	r r (Z) ns 

+ Go(z) G (z 1̀ ) ID Ir r(z) 	 .. (1o) 
um 

ondition for the minimum mean square sampled 
error is obtained by applying calculus of variations to the 
integral of equation (2.6--9). The first order variation of 
mean square error & e2 (nT) 	is obtained fra i equation (9) 
by substituting Go (z) + I (z) for Go (z) and Q0(z"1 )+1(z) 

for  

e2(nT) 	2-A 
	Vz) Go (z"1) (z)gid( 1 ) br r (z ) 

e5 

I 
+ jDr r (z) z`=dz 	+ 2̀  ~" '1 (zr1 

	

®n 	 i 7' 

x r (z)+b r5 	z 1dz ...(11) 

s 
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Where 

	

b (z) ~Dr r (z)+ 	z)+) , (z) + 2, (~) 	"(12) 08 	nn 	8 	n i! 

For reasons of stability all the poles and zeroes 

of Go (z) and I (z) lie inside the unit circle in z plane, 
and those of Go (z'" 1 ) and'-r1(z'1) lie outside the unit 
circle. From equations 2.3-5 to 2.3-8 

b (z) 	= ! (z"1) 	 ..(13) 

and ii (z) may be written a s 

b (z) = 15+(z} $ (z)  
Where + +I (z) is a function of z with poles and zeroes 

lying inside the unit circle in z plane, and 6 ~ (z ) is a 
function with poles and zeroes lying outside the unit circle. 

00 

(nT) ^ ...I... 	~ (z) Eo1) *(z )d (z) -G ,(z"1 ) [r r (z) 
2 V 

+H 	(k) 	z 1̀dz + -1--- 2 	(z_1 )[ Go (z) ~ r ~2 rern 	 3 

H+ (z) H'(z)-Gi(z) err  

	

s s 	n a 
# 	.1 	Gi(2Z1) dr r(z)+sir 

~(z) H (z) 4o(z ). (z)--  
~ 21c3 T 	

/
(z) 

2"1 dz + 	 (z) H (zI G0(z) 	(z )  

] 	z 

	

G (z) H 	(z)+ 	2' x (z ) 
rets 	no 	1 z 	x.(16) 

(z ) 
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Second term in braces of equation (2,6-.16) contains 

poles inside the unit circle In Z-. plane as well as out-

side the unit circle, this may be written as 

[Gi (z )(Sr r (z)+rnr (zt  C  ~ ~ 
~ 	 Y 

(z) 	C (Z) 	+ 

Gi(z) [rsr,(z)+k r (z) 
 ns 

Symbol [ ] implies operation of picking part of a function 

of z with poles outside unit circle in Z- plane and[ ] + 
Implies the operatioia bf picking parrt, of a function of z 
with poles inside unit circle in Z- plane, The contour 

integral vanishes, if the integrand has its poles either all 

inside the unit circle or all outside the unit cir clef 
Hence 

12j y-+ 	(Z) t} (z) 
B (Z )Br(Z)I _ ~[GZ-.IB  ) 	z dzzO 

(z) 

111r,r 	r
s 	n8 	1 z dz 0 
S'(z) 

..(83) 

The equation (2.7..15) is reduced to 



.e2(nT) - - '~'~(z)atz C~ofz}a-(z} 

ai(Zrl ) 	(z)+ar 	(z)J1l 	-1. 
err 	 dz 

	

(z) 	
Z 

 

+2 	(z Go(Z) + (z) 

G1(z arr (z)+arr (z)] 	_1 e a  n s  Z  dz ...(19) 

	

_ 

- - 

	 i+j 
If Go(z) is overall pulse transfer function of the 

optimum system which minimizes the mean square error of samples 
data system* 	the variation g e2 (AT) should vanish for 
arbitrary Vz) , hence the quantities in the brackets should 
be zero, 

# [ [jZ} 	r (z ) ..a
r 	,J 
nrs(z~ 

G0(z )f (z)- 	 9 B 	-  

The optimum Pulse-transfor function is 
Gi(z) Cay 	(Z } + ~ r (z ) 

G0( ) 	 srs 	n e 
d"(z ) 

von by 

•,(21) 
a }(z) 

= 0 ♦ f ♦ (2O) 



'Y (1) 

2 ,7 TcU I S AP?ROACH TO THE DESIGN OF OPTIMU?I SEMI FREE 

0NF1GURAT ION SANZL' 	ATA C ONT_RO 	S 

j
am-- G t ( ) — -- •-

i  

L____. 1   

eCnT) 

Gc (Z)  

C(T)  ) 

The optimum-desk of compensator pulsetransfer 

function In the mean square sense, when the control system 

is partially specified can be achieved in a way similar to 

that adopted in previous section (17). Sampled data control 

system is subjected to a sampled stochastic control signal 

and a sampled random noise, both being stationary functions. 

For the sampled - data system, F1i', 4 , the symbols 

used are as •follows : 

ra(nT) = Sampled stochastic control signal 

rn(nT) = Sampled random noise 

Gi(z) = Pulse transfer function of ideal system 

G f  (z) = Pulse transfer function of part of the system 

partially ape cif ied, 

G0(z) Pulse transfer function of compensation system. 
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.error sequence of the system iso 

e(nT) = c(nT) - i(nT)  

Mean - sequare value of error sequence can also be written 

in terms of correlation sequences 

e2(nT) ` 0cc(0) ~ci(o) - O1jo) +0(0)  

Writing e2(nT) in terms of spectral densities 

e2(nT ) 	' I dee($ )zo*l dz  2nd 

Where~Qa = Se:0(z) -dci(z)-mic (z)+t11(Z)  e 

With the help of equations (2.3-13 to 2.3-20)and 

Go(z) = G(z) G$( z ) 

e2(nT) 	'- ar r (z) [G c(z)Gf (z)--Gi(z} [Gc(z' )Gf (z 1̀ ) Gi(z-1 
ss 	 - 

+(r r (2) Gc(zw1 )Gf (z_1 )--Gi(z~1 ) Gc(z )Gf (z ) 
an 

*4r r (z) [GO(z) I (z).-' Gi(z) 	G0(z"I)Gf(z-1) 
A 8 

rn r(z) [GO(z)Gf(z) Gc(z-1)Gf(Z-1) 	...(6j 

By calculus of variations, putting [G0( z ) +(z)] 

instead of G4 (z) and 
I

G C(z-1 )+ '1 (z4 )J Instead 

of z) 	e2 ($ T) 	first order variation of the 

mean square value of error sequence is obtained. 
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j 
e2(nT) 

- 
 (z) 	

1  Zit j  

[rr  4 s) +t rsr z) 	z_1 	+ f-- (z' 1 ) 
ss 	 2i~i 

Gf(z" 1̀ )Gftz)GQ(z)11tz)-G~tz)GftZ- ) 	r r 	 jr ~z? Z 1dz [ (z)+ 

	

 s s 	n Q i(7) 

Where atz) 	r tz) + r r. (Z)+r r (z)+t 	(z) ..(8) Os 	a n 	us 	Arm 

Defining a (z) = a+ (z) a(z) 	 ...... t9 ) 

[G:r (z )Gj (z- 	[G,  (z)a,tz 1 ) 	Gf (z) G,(Z'i ) 	..(1O) 
F 

(z) 	indicates selecting portion of function a(z ) 

that lie within the unit circle and a )J Indicates 

selecting the Portion of function o (z) that lie outside 
the unit cir ale in Z- Plane . 

- ~'— 	 ) + [G:,(z)G,,(Z'"I)] 	[Of (z)Gf(Z J tis jJii 

Gi(z'1 )4 (z) 	tz 	(z)1l 1 fi G0(z"1) c(z) . 	f 	srg 	srn k Iza; 
a#(z) [G,(z) Gf (z' i )]+ 	Jj 
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+J__ 	(z'1)~ 1̀(z) t f(z)Gf(z 1 )  Gf(z)Gf(z'1 ) +I (z) G0(z) 

r 	

i(z) G (z+1) 	s dr xs (z) + 3 r r (z)~ n s 	Z-1, dZ 
67(z) [Gf (z ) G.(z- )J 	 ...(11 ) 

The second term in the braces contains poles 
inside the unit circle in 	the z- plane, as well is 
outside the unit circle, The contour integral vanishes if 
the integral has its poles either all inside the unit circle 
or all outside the unit circle, Thus* 

,..~ .  
 

- S r~-(z ) 	 (z) CGS (z)  
-(z) G f (z) G f (z"1 )  

L 

_  = o  ... (12) 
Gj(z)Gy (z:1)[ 

	

+(z)J
~  z-1  r 

C  .. 

 

2 	

(2)15+(z ) Gf (z )Gf (Z 1) 

 j 

where, symbol[ 	+ implies the operation of picking the part 

of a function of z with poles inside the unit circle In Z- plane, 
and the symbol[ ] 	implies the operation of picking the part 
of a function of z with poles outside the unit circle In z plane, 

hence equation (2.7-11) reduces to : 



rt (z) I+(z) G (z}G (z-1 ) 	~(z) Gi►(z 1 )~ 

Gi(ti 1 )G(z)r~ 	(z + 	r (z) i11  
Gc(z 1 )a-() _I 	 ter m 	Z"1dz 

(z )[c* (z) Of (z)J 	j  

[Gf (z )Gf ( z 1 )1 G0(z) rI (z) 
- 

+ 	(z 1̀ ) (z) [G,(z)Gf(z`1 )J 

G ,(z) Gf(z 1̀ ) 	dr r 
B 

(z) N(z) Gf(z_1 

(z) + re tZ) 
_i Z dz 

+  ,(14) 

For the campeneation to be optimum, giving 

minimum mean square error, r e2 (nT) ' should vanish for arbitrary y1(z) 

Optimum compensation is given by' 

r G(z—i )Gi(Z) r 	s nr8 ) ] 
a0(2) [Gf(z)Gf(z­1 ), &(z) -.  

' L d(z) [Gf (z ) Gf(z"1 ) 

Gf(z-1) Gi(z) [drr.(Z)+ , r8 2~ 	1 	...(15) 

c 	 dt` (z) 	Gf(z)Gf(1z-,1)T  

 

J  +F 
,.(16) 

P quatici (2,7-16), gives the pulse-transfer function of the 

campeneation that will optimize the system in the minimum mean 
square error sense+. This can be obtained in terms of 	pulse-transfer 
function of fixed components and pulse spectral density of input 

signals. 



CHAPTER III 

QP TI1~UM SAP LED DATA SYSTEMS 

3.1 INTRODUCTION 
I 

In the present Chapter, optimum design for the 

systema, whose input and output are sampled in synchronism, 

is carried out in ttine-dana3n. The optimum system equation 

for sampled-data systems with random input signals, is obtain-

ed by minimization of the mean-aquae value of error sequence. 
The system equation obtained is as follows , 

g(mT) Arr(k-rn)T 	ri(kT) = 0 	,br k>,o... 

Where 

g(mT) -- weighting sequence of 	` +vin sad led data systems. 

(k n)T Autocorrelation sequence of the 	t signal 

(kT) 	- Input-ideal output cross- correlation sequence. 

which is quite similar to Wiener-Uopf equation for optimum 

continuous data systems. A solution of the equation is 
w 

suggested and is carried out in z- domain. The equation is 

modified as 	' 

L g (mT) + (q .m )T  MM.M O0 	Aar 	 ' ` 

where ,5 	(qT) is defined by equations (3.34) and (3.3-.9B) 

0 
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Pulse transfer function of the optimum system i.e 

obtained by taking z- transforms of both sides of the modi- 

f ied system equation. Pulse transfer function of the, optimum 

sampled-data system in terms of spectral densities of systems 

• signals, is given by 	 • 
I 	r3(z) 

Gm (z) a 	+ 	x .~.... 

rr (z) 	fir' (z) 	+ 

Where  

Gm (z) Opti um system pulse-transfer function 

Ø (z) 2ulse-spectral density of input •%ignals 

L(  z) Cross-spectral density of input-ideal output signals. 

Optimization of the sampled-data with deterministic 

input signals, minimizing total square error, has also berm 

discussed and it is shown that an equation .:or sampled data 

system with random input signals satisfying minimum mean square 

error criterion can be obtained. 
n 

It is further shown that when the control signal 

component and the noise enter the system at different points, 
minimization of mean square error yields the optimum sampled-
data system equation. 
00 

$B (IST) 	k-p )T + (pT) 	(8-k )2 -!~ (kT) 0 for k>, 0 ^ 	s a 	ei 

Where, 

gs (nT) Weighting sequence for stochastic control signal component. 
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gn,(nT) 	weighting; sequence for random noise component 

re (nT) 	input control psi final component sequence 

rn (nT) input noide sequence 

Optimization of sampled - data system has been extended 

to semi-free configuration systems . For random input signals, 
it is shown that the minimization of mean square error yields, 

the optimum system equation, 

6o 00 
gf (p1T) As i (k,+ p1 )T  p1=.Q0 112=. -aa k1"2 -op gf P1 ) 

g~ (P2T) gc(g2~! )gtrr (k2+p2-k1' 1 )T 	- 0 for k1 '>,. 

Where 

gf (pT) - Weight sequence of fixed elements 

gc(PT) - Weighting sequence quence of compensation elements, 

pulse transfer function of the compensation elements 
in terms of pulse spectral densities of in.~.iut and ideal output- 
signals and the pulse tranfer function of fixed elements is 

as 
obtained and the expression obtained is/follows: 

ref (z"~) j(z) 	1 	r 	i Ix 
[Gf(z) Gf' (z" )] 	rr(z) 	[Gf(z)t f (z~ 1̀ )Jt Irr+(z) 

Next it is shown that when fixed element pulse-transfer 
function has all its poles and zeroes within the unit circle 
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in z- plane, the pulse transfer function of compensation 

system is the ratio of pulse-transfer function of a free 

configuration ®yetom., with same performance specifications, 

and the pulse transfer function of fixed elements. 

The expression for mininu ► - mean square error of the 

sampled-data system, has been obtained in terms of the optimum 

system pulse transfer function and spectral densities of the 

system signals. 

3.2 OPTIMAL SYSTEM EQUATION FOR FR33 CONFIGURATION SAMPLED DATA 

t) 

G{() 	 y~  

_L_  g ( T1T) -----  o oT  

e ('n T) 
Go (Z) 	`1+ 

-oho- —.l c (fT ) 
1flT)l 	 T 

Fig. 5 

In free-configuration case, there are no constraints, 

either on the form of the system ezt configuration or of the 

fixed elements and the designer has to choose both the form 
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and elements. In the present section, time-dacnain equation 

of the optimum , sampled data system weighting sequence, in 

the mean square sense has been derived for the free configurat- 

ion case. 

The output of a w atem o  Pig. 5 , input and output of 

which are sampled in ayn hronism, will be given by 

c(nT) 	g (kT) r (nT-»QST)  
k-n 

Where, 

c(nT) - sampled output of the system at nth sampling instant 

r(nT) .. Sampled input of the system at nth sampling instant 

g(kT) - Weighting sequence of sampled--data system. 

T 	- Sampling period 

Difference between optimum system output ge(bT) and 

ideal output sequence , i.e, system error sequence Equation 

e(nT) will be given by 

eg(nT) = c(nT) _ j(nT)  

:. 	2  (nT) = 02 (nT) _ 2c(nT) i(nT) +12 (nT)  g 
•g2 	Taking mean square value of error sequence 
----- 	lim 	N •2g(UT) 	1 Y  eg (nT) 

) n=-N 

0 

* Weighting squence g(kT) is zero for negative values of k. 
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n 

eg (nT) 	a 	2e(nT) j(nT) 

c2  (nT ),. 1m  r_ NF_ c (nT) c(nT ) 

lam► 	N 
N..., 2N+1   nN 

n 
m=—n 

Since k, m & n. are dummy variables inter changing them 
c2 (nT) 	 g (kT )g (mT)  dim 1...r 	(n'+k )Tr (n-m )T 

L 	 N —c  o 2N+1 

Fran equ^tion (2,3-.1)  

o2(nT) 	 g(mT )  0 (k`m )T  • cotcog(kT) 
 rr 

Similarly from equation (2,3..2) 

c(nT) ,(nT) 	'g(kT) 	,i(kT) 	 ....' 	.(6)  k=-oo 

and 

12 (nT)  =iii (0) 	 ... 	... 	0 

Hence, from equ'gtions (3,2-4), (3.2.-5 ), (3.2-.6),(3.2.7) 

gtkTag(mT)Orr(k'm)T 

xt the optimum system g(kf) is  replaced by another 
system g (kT) + 4. h(kT )] , where h(kT) is any arbitrarily J 

realizable weighting sequence, 6 is a parameter, that is 
varied to test the optimality of g(kT) . Error with 
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[9(kT)*&h(kT] is greater than that for optimal system and will 

be given by 

 ø(o) _ 24° 	[g (kT) +(kT) o(kT) 

	

 

+ 	[g(kT)+   h (kT)}[g (mT )+ h (mT )J , (k m )T 
k-oo m-oo 

2 (nT) 	.2 	h(kT)tri(kT)+ 26 	t(kT)h(mT)(k-m)T 
g+ h 	k=~_to 	 k--_tom=-,00 	err  

+; 	[h(kT)g(mT)+h(mT)g(kT)J firr(kms)T ,,(1o) 

RC1 

	

aEg4<-h(nT) 	2 	- 	h(kT)h(mT)~ rr,(k-m)T 	•., (#1 ) 
k=-oo m=-oo 

-~--~- e2 	(nT) 	is a positive quantity. 

If g(kT) is the weighting sequence of optimum system 
giving minimum mean square error, then 

-..... e2g* & h (nT ) ,..(12) 
E =0 

Fresn equation 329 the condition of optimum weighting 
sequence is given by 
CD 	acs h(kT) 	(mT) err (k-m )T -jd rJkT )~ 	0 	•,.(13) 

4mIRAI 4NkRk UA+IYEkS'EI r tri 



h(kT) is a realizable weighting sequence, 

41 

h(k1) =0 for kT L 0 	or k 4 0 

Equation (3.213) reduces to 

h(kT) -  g(mT) frr(k..m)T I- rj(kT) =0 for k>,0 	.,(15)oo  k=o 

Only way, the above equation can be satisfied for 

k > 0 , is for the expression within the brackets to be 

equal to zero for k' 0 

L 

	

g(mT) ørr 	)T- 1(kT) = 0 	for k`-, 0 	... (16 ) 
m=-ao 

Optimum system, weighting sequence g(mT) in the minimum 

mean square sense is given by the above equation. 

3.3.  SOWTION OF TINE DOMLIIT E J'ATION POR OPTIMITh SAP lED  .DATA 
SYSTEM 

Weighting sequence g(mT) , of the optimum system that 

will minimize mean square error, is given by s 

g(mT) rr (k-m)T -A(kT) = 0 for k > 0 	(1 ) m =.»CD  

The above equation holds good for k 0 s  but need 

not necessarily hold good for k 0 also, since  
and Or  (k-m )T in general will not be zero for k L 0 



42 

Writing A,,5(ICT)  as 

Orr  (kT) = 	yds (k_p )T 0''r  (pp) 	... (2k) 

Where err (pT )  = 0 	for p 4 o 	... (2B) 

= 0 	for p >o 	.., (2b) rr 

Multiplying both sides of equation (3 34.2A by z k' and 

summi i.g for all values of k f'rc n -a> to + a . 

Orr  (kT) z"k 	z"k 	err  (k -p )T Orr(PT ) 

Changing order of summation, 

rn 	 ;co rr 	( p 

 # ` J̀ rr (z )  	{ z ) rn 

Orr (z )  will have poles and zeroes inside the unit 
circle in z. w plana only, since rr(kT) is zero for negative 

values of It .. Similarly, B (z) will have poles and zeroes 
wait . circle in z-plane onl rr  s3n ce o , . (k?)   is outside the zero for poli ve va1uéof  

By equation (3.3-3) , spectral density Lrr(z) can be 

expressed as product of two parts, one containingpoles and 

zeroes iaa side the unit circle in z- plane, while the other 

has poles and zeroes outside the unit circle only. 

Cross correlation sequence S (kT) can be written as 
ri 

I 

0 

0 
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0r ( 

 

IcT )= 	~(kT-pfl ) rr (pT) 	 * • (4) 

Substituting (3,3.2k), (3.3-4) In (3.3-1), one gets 

g(mT ) 	gr (k-p-m )T' ,(pT ) 	(k--p )T Arr(pT) =0 
ma—OD 	p =..m 	 OD 

for k ao 	„(5) 

Rearranging terms, 

(pT) 	g(mT) A (kkp-m)T - A(k-p)T 	=0 
rr 	for k>,,o 	.,(6) 

From equation(3,3 .2C) 

~ rr (pT) = 0 	for P) 0 

Hence, the equatic i will hold good for pe, o , if the expression 

within the brackets is zero. 
or 	g(mT) rr (k-p-m )T - 1' (k-p )T = 0 for k },.o 	(7) 

& 	p o 

The above equation holds good for k3. 0  , hence, it will 

.hold for k-$ >, o also, where p is a negative number. he 
equation (3.3-7) may Do ''iritten as , with a change of variable 

g(mT) lr*r(q-m)T 	(qT) 	0,for q,>.0  ma—Oo 

for a realizable weighting sequence, 
g(IDT) =0 	for zn 4 o 

also 	+ ~rr(mT) - 0 	for m t a 
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First term of expression (3.3-8) is zero for q e o 'mnd m &o 

but the second term may not be zerd for q C o , Resolving 

second term h' (qT) in two parts 

(q T) + 'P--(qT) 	 ..(9A) 
such that 

p+(qT) a 0 	for q L 0  
for q'> 0 	..(9C) 

Equation (3.3-8) reduces to 

g(mi) 1~ + ( m)T = 	(qT) for all values of 	.. (10) rr q  q m=-OD 

Equation (3.3i10) holds for 	all values of q i.e., it holds 

good for the whole 	time range. 	Th .s equation differs fran (.3-8) 
that holds good only for positive values of q,, by the term w ( T). 

Multiplying both 	sides of equation (3.3-90) by z' and 

summing it for all values of q from -OD to +oo , one 	gets 

Z—` 	g(mT) i+ 	(q-an)T 	~+(cj T)
rr  

or 'f g(mT)z~ 	err+(q 	)'T Z-(q- a)~ 	~,(qfl z ~. 
m =-oo -ov 	 q=o 

0(z } r+(z) 	p(z)] +  

The symbol [ J .indicates, only that portion of the function 

has been taken Which has p o1es inside the unit circle in z- plane. 
[(Z]4. 

:.  0(z)  '  ,.(j2) 
(z) 

But taking transform of both sides of equation ( .3-4 ) 
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Ari(z) a P' (Z) cr(z ) 	 ..(13) 

From (3.3~-12) and (3.3~-13) optlmwn system pulse-

transfer function G(a) is given by , 

ri ►Z 

rr 	•j + 

If we consider the ideal output due to stochastic 

control s3 al component rs (nT) only, while the actual input 

to the c ntrol system consists of sampled stochastic control 

component rg(nT) and asmpled random noise component rn(nT ) 

pulse-spectral densities i1ri(z S and L ,(z ) can be vx'itt--en 

in terms of -pulse-spectral densities of input signals and 

pulse-' transfer functions of ideal and optJnum systems. 

~riEz) 	Gi(z) ~r r (z) + rr  r (Z)1 
	..(15) B s 	n s 

rnrs(z) + Irsr (z) +(Z) ..(16) 

G(z) = 	
rr 

) 	 (z) 	 .. 17) 
• rr 	 ,t 
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A relatively shorter proof can also be given as 

follows s 
T he optimum sampled data system equation 3 ,2-16 is 
00 

m
7 ~g (mT) 	(k-m )T -- fi i(kT) = 0 	for k >, o 

co 
Jet L g(mT) 	

ri 
(mT) 4rr(k-.a )T - p~(kT) = q(kT) for k< o  

q(kT) is in general nonzero : for kK o , but vanishes 
for k > o . The optimum sampled data system equation 
can be written as 

o~ 
E g(irT) 4 (k-"m)T-tri(kT) 	q(kT) 	•..(19) 
m=-op 	rr 

Taking z-transform of q(kT)  
00 

Q(z) = 	q(kT) z~k 

Q(z) 	q.(kT) z.k  
Eoo 

Q(z) has poles outside the unit circle in z plane only, 

Taking double sided z transform of equation 3.3-19, 

	

am(z) Iirr(z) " 1jri (z) 	= Q(z) 	 • ,(21) 

rr(z) is an even function and can be expressed 
by equation (3.3-3) as the product of 	and 
irr (z) . Equation (3.3-21) can be written as 

m(z) rr* (z) rr (z) - jiri(z) = Q(z) 

	

(z) 	Q(z) ) Gm W rr ( z ) - ri 	=  
ibrr(z) 	 #rrr(z ) 

n 
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Gm (z) has all its poles inside the unit circle in z- Plane 

for reasons of stability, 	+ ~ (z) also has poles and zeroes 
e 

inside the unit circle. First term of the left hand side 

expression of equation 33-22 , has poles inside unit 

cicle only. 

ri(z) may have poles outside the unit circle, b~(z ) 

has zeroes outside the unit circles the function 	i(Z)/ Brr(z) 

can have poles inside, as well as outside the unit cirble. 

It can be resolved in two parts, one having poles inside 

the unit circle only and the other outside the unit circle, 

Irj1 	[ri(T 	1 ri(z)T 

L
rr(Z) 	$rr(z) 

	[ (z j  
+ 

[Q(z) /z  )l has poles outside the unit circle only, rr  

Since Q(z ) has poles outside the unit circle and 	(z) 
has zeroes outside the unit cirble only. Thus equation 
3.3 .22 can be written as 

G() t) 1~ 	
~r 

... 	...rte() 	ari(z 	q(z) 
• riz)  	 (z) 

Considering the equation 3.3-24 inside the unit circle in 

z- Plane only, 



Gm(zi rrjz) 
I4ri(z ) 

(z ~ 
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..(25) 

Thus the optimum sampled data system pulse transfer function 

is given by 

1 
	 .. (26 } Gm(z) = 	+ 

'Irr (z ) 	arrO (z) J + 

When Ari(z / rr (z )j Is not a rational function of z 

9 	 -k 	Mri (z ) 
G (Z ) 	 t z 	_..,. 	.... _ ( 	z 1 dz 	•.(27) m 	+ 	lo=0 	2`n r frr (z ) 

3.4 OPT I DESIGN WITH DET IrISTIC SIGNAI$ 

Opt3,mvm design of a sampled data system for determi-

nistic signals can be achieved on the basis of"total square 
error" criterion in a way analogus to the design of continuous 
data control systems with integral. square error criterion. 

Error Sequence for the Sam.9led data system shown in Fig. 6 is 
given by 

o(nT) = c(nT)- i(nT) 	 ..(1) 
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Where, c 	n (nT) 

= 'E g(kT) r(n-k)T  

Output sequence 

r (nT) . Input sequence 

i(nT) a Desired output sequence 

g(kT) . = Weighting sequence of optimum sampled data 

gystem. 

Total square error,, T may be defined as 

T = 	82 (nT ) 

n=-moo 
oe 

T 	' 	[c(nT 2 c(nT )j (nT) +i2 (nT)  
nl.00 

Correlation sequences for deterministic signals may be defined as 

~ii(kT) 	i i(nT) i(nT +kT) 	 ..(4) 
n=-co 

gic(n) = ' ~
co' i(nT) c(nT+1kT)  

nT 
Total square error T may be expressed in terms of correlation 
sequences and weighting sequence by equation (3.4-2) y (3.4.4), 
(3.4-5) , as 
T 

' 
	 g(kT)g(pT)~rr(k_p)T-z 	(kT) j( ) 

If the optimum 	g(kT) is replaced by another one g(kT)+ h(kT ) 
where h(kT) is arealisable weighting sequence andtis 
a parameter to test optimality of g(kT) the error will be 
increased. 	Increase In error is given by 
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T T g(k )+ h(kT) 	g(kT ) 

T a 

 

[2-6 g (pT )h (kT )+ 4211 (kT  
ao 

- 2e 	1i(k~) drj(kT)  

., 	( T) = 2 	h(kT) 	g(pT) rr (k-p)T  

Qo aD 

+2c 	Y h(kT) h(p) Arr(k-p)T 
mss.. °pp=c ~ 

2 	' 

	

a ( ) = 2 	as 
~ h(kT) h(p) 4ør2 ,0)T  k-- o p=-ao 

..(8) 

Por an optimum system 

(c~iT 

 

= 0 
 

aE 	c=o 

or  
L h(kT) I 	~rr(k`P)T - 

since h(kT) is a realizable sequence, 

h(kT) = 0 	fox k&0 

Equation 3.4-10 will hold good for k > 0 , also! 
if, the expression within brackets is equal to zero for k .. C 

L g (pT) Arr(k-p)T -Sri(kT) 	0 	for k 0 	...(11) 

n 
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Rquation 3.441 Gives the optimum cry etema i-iith 

minimum total-.equaro error criterion, ©inco ab sear from 

— ~) is a positive quant .ty' 

3.5 OPTION SYSTEM WITH SIGHA L AN]) AOTSE AT DIPPER`''UT POIUTS 

I 	 't (T T) 
r - -'- dt (T1T) I-----0 4 	 --------- I 	 I 

 
T 

S 

,1,"), C Z )T 'Y C'f T) 	 I- 	T 

In tho present section, optimization of the tiplod 

data systemm , Pie. 7 , is considered, -vrhon noise and signal 

components enter tho system at different points. In tho 

block diagram rbOl!fl in Fig. 7 Co(nT) Is the ueighting se 

cruence for the stochastic control signal components and (nT) 

the TOightne3 erquencca for randcn noica sexaplec, Both the 

signal and noise components are assumed to be stationary 

rondc , functions. 

error ooque co of the oycvcm 

O 
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e(nT) = cg(nT) + n(nT) i(nT)  

Where 

ee(nT) 	= output sequence due to signal component 

cn(nT) 	- output sequence due to noise 

c (nT) 	- output sequence of the system 

j (nT) 	- ideal output sequence. 

cg(nT) and q1(nT) can be written in terms of system 

input and weighting sequence, 
n 

e$(nT) = 	ge(kT) re(nT-kT) 	 ..(2) 
k=-n 
n 

ea(nT) 	L gn(kP) rn(ni-k)T 	 ..(3) 
k~»n 

Mean. square value of error seq uence, fran the 

equations 2.3-1, 2.3-2 , 3.5-1 , 3.5-2, 3.5-3 will be given 

1.3m 
e2 (iiT) = 	e2 (nT ) N--gym 	+1 n=-.N 

e2(nT? 	ø(o)- 2 	 (kT) 4:. (kT)+ckT ) Or~(JET) 

co 	co 
+  

] -aa p3-oo 	e 

+2g(kT)90(PT) Ana(k'P)T  

Following procedure, analogue to that f oll.owed 

by free •- configuration case, when control signals and noise 
components enter the system at the same point . the optimum 
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system equation obtained is, 

(k-p)T %(T )Ons(p-k)T -~S  (kT) = 0 
PGD 	 as 

for k30  

When the noise and control signal cc nponent are 

statistically independent, cross correlation sequence is zero 

and optJmvza system equation reduces to 

I: 

 

g5(pp) ,jss(k-p )T - t si(kT) _= 0 	for k> o 	. • (6 ) 

3.6 0PTDMIl CP.aNSAPION FOR 5245 FREE SA LPIID DATA C0IT ROL SY; TEN 

~..~---- G t ( ) --- 

TL - - - -- - - 	T 

Tit)T 

 —Ge(Z) 	-~.-.— 

L_i-4 
G~ 	 - 

CcY1T) 

r a 	w 

In this section, the compensator, that Gives minimum 

mean-square error, is designed. input to the system is assumed 

to be stationary and ergodic sampled signals. For the eempled 

data system block diagram of figure 8, (} f (z ) is the pulse trans.-

f er function of the fixed elements of the system, and ( c(z ) 

compensator pulse tr., Cer :Cunot Lon rias to be obtained. 
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Output sequence of the system is given by 
n 

c(nT) 	gf (PT) r¢(n»P)T 

n n 
c(nT) = 	 Ti cr (PT) ge(kT) r (n~-k4p )T 

-n IIP-n 

Where 
r(nT) s input sequence to the system 

8g (nT) - weighting sequence of fixed elements 

g (nT) - weighting sequence of compensating elements 

Error sequence of the system is given by 
e(nT) = c(nT) i(nT) 

Mean square value of err or - sequence is given by 
lim 	N 

e (nT) 	- I---~ ) 	e2 (nT ) N-.-co 2N+ 1 n==14 

• a c2(nT) - 2c(nT)i(nT) + i (nT) 

e2(nT) , mean- square error, for the optjmur system 

compensator weighting sequence gc(nT) , can be expressed, 

making use of equations 2.3-1 , 2.3-2 as 

e (nT) 	~ .~(o) - 2 [gf (plT)g0(k1T) $ (kq+pi )T 
c 	 ;~=;-oD -  k -aa 	ri 

E 
	[gr(P1T)(P2T)g0(k1T)g(T)    'gf         k.1=~ usco k2~-0D 	 a 

Orr(l -k1+p2-P1 )T]  
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Following the procedure, analogue, to that adopted 

for optimum system weighting sequence for free configuration 
system, optimum compensation weighting se q en ce ie given by 
ad 	U) 	CD E~ E 	(P=T)gf ~P2T) go(kZT)~ r1(k2,.k1+p2..p j )T j=CO  

CD 

` E 	(Pi ) bri(kj+p1T 	0 	for ki > 

By explicit solution (section 3.3 ), the pulse -: 
transfer function of the ccan,je4sating system twill be given by 

Gf(z 1 ) Yr .(Z~ 
G,(z) 	 ..(7) 

~[G (a )G f(z 4 i #(z) 	(z) Gf{Z-1 ~,]i~rr rr 	 + 

When input to the actual system consists of stochastic 
signal rs(nT) and random noise rn(nT) , both being aampled, 
stationary and ergodic functions, The ideal output corresponds 
to the sampled control rs(nT) . From equations (2.3-17 to 3 

11' (z) ,= Lr r (z) #'Dr r (a) +')r r (z) +'5r r (z)  
00 	en 	no 	n n 

Ori(z) ` G (a) 111r,r (a)+ibrr(z)  
 s 	no 

Puloe transfer function of compensation yet is given by 
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of (z-l ) Gi (z) lar r a (z) + ~rr0 (z) 	56 

[Gf (z)*:r(z-1 )] ♦ F~~,~re(z)+~irnrB(z}~br n(z) +~rnr z  
G(z) = - 	 ---Y-- 
o 
	

[G:C(z)Gf(z' 	~'r r ~z)+rr z)+ 	(z)~'~rr(z)  J es 	 s  
.,.(1o) 

If G(  z) , the pulse - transfer- function of the 
fixed elements has no poles or zeroes cut side the unit circle 

in z- plane f then 

	

[Gf (z ) Gf (z- ) • 
	G(z)  

	

[Gf (z) G(z 1 ) T - 	W c(z) 	 ..(1IB) 
J 

Pulse transfer function of optimum empensatie i is 

given by 

AS 

C 	(z) 	 *r {z) 	 + 
Pulse transfer function of optimum system when no 

fixed elements are present. 

Pulse- transfer function of fixed elements 

3.7 MEAN $QUARS ERROR 

Mean square error of sampled data system is given by 

e2(nT) = [C(UT) - i(nT)  

e2(nT) 	l~cc(o) + 4i(o) - Aci(o) "  
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O  
r C t) 	T Tc  

Fig. 9 

Mean square error also can be given in terms of pulse spectral 
densities 

022 (nT) - 2 - [jb..(z)+j),,(z) `"~c~.~ Z 	.c~Z 	z 1 dz 
Jrr 

Mean square error of an optimum sampled data system may be given 

by 
 2 

$opt(nT)i 	gm(kT) r(n-k)T  
[kft 

Where g(k) - weighting sequence of the optimum system. 

= 	g( ) g(mT) 4(k-m)T _2'L-(kT)Ar j T} 
e (nT) 	 _~ oPt 	W~-oD rrk-aD 	 k- Oo 

+ 

Frcm the optimum system equgtion, (3.2-•16) i 

g (mT) ~rr -Ari (kT) = 0 	f or k: o 

Co 

e2 (nT) = s$ (o) r 1: 9
.m (kT) 0r~PkT) 	... (5 ) 



Pulse transfer function of the optimum sampled data system is 

given by 

(_ rr-(Z) J 
and can also be written as, 

to 
aD 

15rr (Z) 

-f'( ]c! ) z~-k 

~ri(z 7 	1 
z 	ttz 	000(7 ) irr ) 

Co 
.. E ~ri(kT)2 	{~) 	 d~ 	.( ) 

1-00 	3 

Where 	
---j--- 
21c 

.. 62 opt, 

Co 
e2 (nT) =y~ ~ o )- 2 ori (kT . 	z z 	..,1,~... 	M(kT) k 
opt 	i3.. k=—o3 	2 ic3 T 	~rr 	o 

Interchanging the summation limits, 

e2 t (nT) = ~d (o) — 	`~'(kT )--1 - 	dam- -,~--- 	0~i (kT) Zak 	.. (10 ) 
rr 

1 	dz 2~1• tri(Z)  

•~.eo t(nT) 	~dii(o) -. Z # (kT)  
p 	 k =o 

The equation (3.7-12), gives the minimum value of mean 

ogmre error for the oitlmum sampled data system, 
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3.8 XXAMP I 

G c (Z) --  

• CO(`  t + 	—~~rENSATO~ tea GhCS~ _ G5 Cs> 1 
ecn-r 

FLg. 10 

A sampled data system has the coifflguration, as 

shown in pig. 10. The transfer functions and input signals 

. are described by 

1+ 0.0©50 1e 
B 

4.5 
sre(e a 	(0.25 - e2 ) 

0.1 ' r r (e ~= -----  nn 

or5rn (e) - 0 

Sampling period is taken as 0.1 second, The design of 

sampled data canpensator is to be carr led o Lt, that will 

minimize the mean square sampled error e2 (nn ) . 

The block diagram of sampled data systema Fig. 40, 

can be reshaped as that d f Fig. 4. Here G1(e) and G0(z) 

are the ideal and optimum a items respectively. 



Fran the tables of z transforms, following resu.lte 

are obtained. 
- 1.436 z 

11 	(z) = 	 r 92, "Z) 0.0318 
rsa 	(z-0.9512) (z-1J 513) 	n n 

2r r(z) = Or r (z) = 0 
an 	n 

¢hGO(z) 	0.0096 (z2-8.87z +1,845) 
(z-1)(z2-0.786z +0.368) 

a (2) 	'er5(z) 	ar r(z) ' r r 
s 
(a) +fir r (2;) 

n~ 	n 	~3 
0.0318 (z-47,08) (zr-0.0212 ) 

(z-0.9512) (z-4.4S1a) 
Pactorising rr(z ) into ,r+(Z) andrr-(z ), following results 

are obtained. 
0.178 (z-0.0212) 

:.a () 
(z- 0,9512) 
0.178 (z..47.08) 

ar;( z ) = (z-1.0513) 

or the system under consideration, G, (Z) = 1 • 

Here, 
Gj(z) [a(  z) +  $.06 z 

(z-0.9512)(z-47 .06) 
0,162 	8.2 

z.'0.9512 	z-47.06 
Picking part of C01(z) []5rr,(,z)  +arnr®(z )] /Arr" (Z ) 

that has poles inside the unit circle in z - plane. 
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~) + br r (z) G1(z ) 

	

ne 	 0 162 
~(z) 
 t 	

z'0.9512 
r  

Pulse transfer function of apt 3rnum system ie given by 
1r 	(z) +Isrs rn

(z)1 G(z)    
t 	 J 

oz) 	
rr #(z) 	g rrz) 	 + 

0.162 	x 	z=0.9512 

	

z-0.9512 	0.178 (zu-0.0212 ) 

0.907 
z - 0.0212 

Pulse transfer function of optimum system 

by 	 I G0Cz ) 
C( 	G G9 (z) 	I .. Ga(z) 

bs  
(z-1) (z2--0.7862 +0.368) , 
0.0096 (z2- 8.87z+1.845 ) 

compensator is given 

0.907 

i.ro'9282 

94.5 (z-t)(z2— 0.7862 + 0.368) 

(z-0.9282) (z .r8 ,87z +1.845) 
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S ARY  AND CO CWSIONS  

4.1 

In the present dissertation, statistical design of 

sampled-data control systems in time dc main has been considered. 

In the first Chapter, limitations of class ,cal. 

approach to the design of control systems have been pointed 

out,namely,, this is a trial and error approach for design with 

idealized signals only, disregarding random nature and the 

presence of noise, The drawbacks of classical design tech-

niques are overccane by analytical design approach. The 

analytical design proceeds directly from. the system specifi-

cations. It considers both control system component and 

noise in the system, as well as the random nature of input 

signals to an actual system. 

The control signal component and noise component 

can be represented only statistically, For random signal 

input to a control system, mean-square value of error output 

is the most convenient performance index, because of its 
mathematical amenability, besides being selective, For deter-

ministic signal inputs, integral square error is a convenient 

performance index. 
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In the second Chapter$, the Wiener-iopf equation, 

that gives optimum system i pulse response, in terms of 

correlation functions of system input and ideal output was 

considered. 

Optimization of sampled - data systems following Touts 

approach has also been considered . In Tou' s approach the 

random system Input consists of control-signal cc ponent 

and noise cemponent, the  system is optimized by minimizing 
the mean-..square value of error sequence in Z- plane, and the 

pulse-transfer function obtained, 

In the third chapter of the present dissertation, 

the statistical design of a sampled data control system is 

carried out in t ante de6aain. An equation, similar to Wiener 

1opf equation for continuous data systems, has been. obtained 

for the sampled data systems with random signals.. by minimiz-

ing the mean square value of error sequence. The optimum 

system equation is modified and taking z transforms, the 

pi}lee transfer function of the optimum system is obtained 

in terms of pulse spectral density of input signals, cross-

spectral density of the input and desired output. Optimum 

system pulse transfer function is also obtained, when Input 

consists of noise and control system component. The ideal 

output is due to control signal component only. The express-

ion for optimum system pulse transfe r function is identical 
to the one obtained by Touts .. approach. 
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Optimization equation for compensator has also been r 
obtained for the semi-free configuration. .Pulse transfer 

function of the compensator has been obtained in terms of the 

pulse spectral densities of input signal pulse-transfer 

functions of ideal system and fixed elements * If the fixed-

element pulse transfer function has no poles or zeroes outside 

the unit circle In z- plane pulse-transfer function of the 

compensator, is the ratio of pulse-transfer function of the 

optimum system without fixed elements, and the fixed element 

pulse transfer function. 

Optimum system equation has also been obtained for the 

sampled data systems, where the control signal and noise 

enter the syy st em at different points, 

4 • 2  FURTHER PROBI MM StJGGEWED BY THIS INVESTIGATION 

The study of statistical design is restricted to 

the sampled.-data control systems with infinitesimal sampling 
duration, But all the physical sampled data system have 
finite sampling duration, The design will be more eealistig 
especially when the time constant of the system is not large 
enough compared to the sampling duration, if the finite width 
of sampled pulses is also considered. 

Optimum sampled data system design Is restricted to 
the cases, where the input and output signals are sampled In 

synchronise, It should be possible to extend the statistical 
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design approach to the systems with input and output being 

sampled at different rate-s, The technique may also be 

extended to the systems where sampling itself is random. 

Statistical design procedure for sampled data systems 

is restricted to the systems, where control siLal component 

and noise enter the system at the same point. It should be 

possible to extend the concept to the systems, whore control 

signal component and the noise enter the system at different 

points, as well as to the multiple input systems. 

With the advancements in mathematical techniques, it 

should be possible to extend the statistical design approach 

to the nonlinear sampled—data control systems, and also the 

time varying systems. 

In conclusion it can be said that the problem of 

statistical design of sampled data control systems in time 

domain, has been discussed briefly in this dissertation. 

It is hoped that further investigations in this field will 

lead to more worthwhile results. 
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