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ABSTRACT

A spring is a natural outlet for concentrated discharge of

groundwater either on land surface or into a body of surface

water. Springs have been used as dependable and ready source of

water in many parts of the world. Springs could be of various

sizes from small trickles to large streams under both water table

and artesian conditions. An active spring can be treated as a

flowing well with constant head. This feature could be used

conveniently in the mathematical modelling of springflow. In the

analysis of regional groundwater flow, a spring can serve as a

boundary condition of Dirichlet type.

The physical process of release of spring water from

groundwater storage can be compared with the lower portion of the

recession part of a flood hydrograph in a river and can be

simulated by a linear reservoir. A linear reservoir is a

conceptual reservoir in which outflow is linearly proportional to

the storage. Combination of this postulation with continuity

equation gives the equation for base flow,

Q = Q k"
t Or

where k is the recession constant or depletion factor and is equal

to exp(-l/r ). r is a parameter of the spring and is designated

as the depletion time.



Bear (1979) suggested a simple mathematical model to simulate

the unsteady flow of a spring over the recession period for a

lumped recharge. Bear model assumes a linear relationship between

springflow and storage. A springflow model has been developed

using Bear's model and the convolution technique for simulating

springflow for a known time variant. recharge and aquifer

parameters. However, the time yariant recharge is not known. The

Newton-Raphson iterative method for solving non-linear equation

has been used to compute the time variant recharge, and the model

parameter, i.e., depletion time (r ) from the springflow. The

model has been tested on three springs. The springs are: (i)

Sulkovy Pramney springs, Czechoslovakia emerging from sandstone

strata (a third magnitude spring) (ii) Kirkgoz spring, Turkey

emerging from Karstic aquifer (a first magnitude spring) and (iii)

White Rock spring, Nevada from perched waters in volcanics tuffs

(a eighth magnitude spring). For the Kirkgoz spring, Turkey, the

added up monthly recharge for each year matched with the annual

rochniqo for c yonrn rompntod by nu nnrlior invent iqatoi uning

lieai 'a model .

In Bear's model, the logarithm plot of springflow with time

during the period of recession follows a straight line. It is

found that during the process of recession, the variation of

logarithm of flow with time follows a straight line, provided the

springflow domain is a closed one. A closed flow domain implies

that nil the rnchnrgn will appear nn npringflow.
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The Bear model assumes that an unsteady state is the

succession of the steady stale conditions and there is no time lag

between onset of recharge and emergence ol springflow at the

spring's threshold. But, in case, the transmission zone of the

spring in the flow domain is long and the hydraulic diffusivity is

low, there would be a time lag between the onset of recharge and

its appearance as springflow at the spring's threshold due to the

storage and translation effect in the transmission zone. In order

to simulate springflow for such a geohydrological system, a

mathematical model has been developed considering an unsteady

state for simulating springflow for a known time variant aquifer

recharge. Starting from the basic solution given by Carslaw and

Jaegar for flow in an aquifer of finite length and using

convolution technique, the unit pulse response function

coefficients for outflow due to unit recharge in the recharge zone

has been obtained. Using the unit pulse response function

coefficient and convolution technique, springflow has been

computed for the time varying recharge. The storativity of the

transmission zone reduces the magnitude of peak springflow and it

causes delay in the appearance of peak springflow. When storage in

the transmission zone is small, the springflows simulated by the

two models compare well.

With an initial guess of the range of values of the model

parameters i.e.,0 (specific yield), 0 (storage coefficient), T

(Transmissivity), LW /W (a linear dimension representing recharge
R S

area and spring width), 1 (length of transmission zone ), the time

variant recharge and model parameters are computed by random
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search technique. The recharge computed by the random jump

technique compares well with those obtained by the Newton-Raphson

technique.

The Bear's model and the model with long transmission zone

deal with one dimensional flow. However, the flow processes

associated with springflow will be two dimensional. Therefore,

using basic solution given by Hantush for the evolution of

piezometric surface due to recharge from a rectangular basin, a

two dimensional springflow model has been developed. The response

of the spring for unit pulse recharge through the rectangular

recharge zone of the spring has been obtained. Using these unit

response function coefficients, springflow for any time variant

recharge can be computed.

The variation of logarithm of springflow with time during

recession, does not follow a straight line. Only towards the

latter part of recession, the variation is approximately linear.

Using the random jump techniqeeand the springflow model for

an open flow domain, recharge area, spring opening, distance of

the spring from the recharge area, transmissivity and storativity

of the transmission zone and the recharge have been estimated from

observed springflow data. Since the domain is an open one, the

recharge computed by the model which is based on Hantush's

solution, is found higher than those computed using the model for

a closed system.
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NOTATIONS

The following notations have been used in this thesis. In

chapter 2, which deals with review of literature, attempts have

been made to retain the original notations and are explained

therein. The notations used in the other chapters are described

herein.

Notations Description Dimension

2

A Area of the recharge zone L

Ah Fall in groundwater in the recharge zone L

At Time interval, sampling period T

6(At,n) Discrete kernel coefficient for springflow T

5 (At,N) Discrete kernel coefficient for inflow L
o

to the transmission zone per unit width of

the transmission zone

6 (At,N) Discrete kernel coefficient for volume LT
V

of inflow into the transmission zone per

unit width of the transmission zone

6 Dirac delta function
D

6 (At,N) Discrete kernel coefficient for springflow L

per unit width of spring

6(At,N) Discrete kernel coefficient for springflow T

6(2L,W ;X ,X ; Discrete kernel coefficient for rise in
R 1 2

x ,x ;m) piezometric surface
1 2

4> Specific yield



0 Storage coefficient of the transmission

zone

h(t) Water table height in the recharge zone L

h Level of spring's threshold, L
2

initial level of groundwater table in

the recharge zone (in Chapter-3);

initial level of the piezometric

surface (in Chapter-4)

h (0) Water table height in the recharge zone at L
3

t=0 due to unit impulse recharge per unit

area

h Constant boundary head in the recharge zone L
4

k(t) Flow of a spring due to unit impulse recharge

through entire recharge area (in Chapter-3); T

k(NAt) Unit impulse response coefficient for

springflow (in Chapter-4) T

K(L) Unit atop reoponae coefficient for flow

(in Chapter-3)

K(t) Unit step response coefficient for spring

outflow (in Chapter-4)

1 Length of the transitu nniou zone L

N Impulse recharge per unit area L

Q(t) Discharge of the spring at time t L /T

Q (t) Component of springflow due to perturbation L /T
B

prior to time origin

Q(0) Spring discharge at time origin L /T
3 .

Q (t) Simulated springflow L /T

1 2Q (t) Flow per unit width L /T
o
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3 .

q(nAt) Springflow rate at time nAt L /T

r (-y) Pulse recharge per unit area
u

r(t) Time varying recharge rate through entire
3

recharge area L /T

R Total impulse recharge L

R(-y) Pulse recharge during 7th time step L

s Rise in piezometric surface
2

T Transmissivity L /T

t Depletion time T
0

t Dummy variable T

V (N) Cumulative volume of inflow to the
V

transmission zone upto Nth time step per
2

unit length of transmission zone L

V (t) Volume of water that enters to the
c

transmission zone per unit width upto time
2

t for constant head in the recharge zone L

V (t) Volume of water that enters to the
v

transmission zone per unit width for

2

variable head in the recharge zone L

W Width of the recharge zone L
R

W Width of the spring L
s

W ,W ,W Weightage factors for numerical integration
12 3

z Height of the spring's threshold above

datum L
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CHAPTER-1

INTRODUCTION

A spring is a natural outlet for concentrated discharge of

groundwater either on land surface or into a body of surface

water. Springs have been used as dependable and ready source of

water and had supported many ancient civilisations. In the Roman

empire, water was supplied from springs through elaborate

aqueducts and even presently the major source of water supply of

Rome is from two karst springs viz., Peschiera and Capore having

a total discharge of about 15 m s (Ozis,1987). In the eastern

Mediterranean area, spring water was often diverted to run small

water turbines before its use for irrigation and domestic

purposes. In 800 B.C., the water from a powerful spring (about 2-3
3-1 .

m s capacity) was conveyed by a 56 km. long canal and was

supplied to a town of eastern Anatolia in Turkey (Garbrech,1987).

Many towns and villages in Saudi Arabia depended on spring water

for major portion of their drinking and agricultural needs till

sometime back (Bazuhair and Sen,1994 ). Great rivers like Cauvery

in the southern part of India and Jhelum in the northern part of

India originate from springs and are shrouded with many religious

and mythological folklores which are popular even today. Springs

could be of vnrionn sizen from nmnl1 trickles to large streams and

emerge under both water table and artesian conditions. Springs in

cnrbonattt rocks have high discharge. The largest karat, spring,

viz., Krasnyi Klyuch in the western Ural area of Russia can meet



the total water requirement of Moscow city in springtime when the
snow melts. The springtime discharge of this spring varies between

30 to 52 m3s~ (Klimentov,1983) .

in India, springs are used as source ot water supply in
various regions, such as in the Himalayas, in the Western Ghats,
in the Khasi-Jaintia hills in the north east, in the Vindhyan
formation in central India and in many other places where it is
usually logistically difficult to create storage for water.
Exploitation of forested area for food, fibre, minerals and
urbanisation lead to deforestation and changes in the watershed
characteristics. This human interference in turn reduces
infiltration and increases runoff. As a consequence the springflow
diminishes which may lead to drying of the springs (Valdiya 1987;
Bahuguna, 1990; and Dewan 1990). Acharya (1986) reported the
rejuvenation of the hilly springs in Palampur, Himachal Pradesh
due to the restoration of the vegetative cover on the soil. Study
of springflow in ahilly forested area could serve as adiagnostic
tool for watershed management. As such the study of springflow has
relevance to rural water supply especially in the hilly region.

The fact that springs flow freely with no obvious source had
made them to appeal mysterious. Prior to the later part of the
eventeenth century, it was generally believed that the spring
ter could not be derived from the rain. Greek mathematician

Thal.es (7th century B.C.) stated that springs draw water from ocean
He believed that sea water is driven into the rocks by winds and

s

wa
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is elevated to the mountains by the pressure of the rocks.

Plato (427-347 B.C.) also stated in his discourse "Phaedon" that

water that forms the springs comes from vast caverns known as

Tartarus and all these waters return through various routes to

Tartarus. Aristotle (384-322 B.C.) developed a theory of

subterranean condensation drawing the parallel from the

condensation of atmospheric water vapour (Kulandaiswamy,1994). The

Roman architect Marcus Vitrivius (15 B.C. to 58 A.D.) realised

that the mountains receive large amounts of water from melting

snow that seeps through the rock strata and emerges as springs at

lower elevations( Walton,1970). Varahamihira, the famous Indian

mathematician (6th century A.D.), in his celebrated Sanskrit work

"Brhatsmhita" suggested a scientifically based system of exploring

underground springs on the basis of naturally occurring specific

signatures in the flora, fauna, rocks, soil and minerals of the

terrain (Rao,1971). It is of interest to note that verse 21 of the

thirty ninth chapter of the Quran (recorded between A.D. 611 and

622) is very explicit in stating that rainwater infiltrates into

the ground and appears as springs (Kashef, 1955 vide Kashef,

1986) .

The first hydrologic study of spring was conducted by French

scientist Pierre Perrault during the middle of seventeenth

century. After studying part of the Seine river basin during 1668

to 1670, he invalidated an age-old assumption that precipitation

does not support springflow. Because of his study and those

conducted by others afterwards, it was established that the

springs are natural outlets of concentrated groundwater flow on



the surface and the ultimate source of springwater is

precipitation (Tarbuck and Lutgens, 1990) .

An active spring can be treated as a flowing well with

constant head. This feature could be used in the mathematical

modelling of springflow. In the analysis of regional groundwater

flow,the spring can serve as a boundary condition of Dirichlet

type.

Study of springs help in the evaluation of groundwater

potential of an area. The location and magnitude of springs give a

good indication about the presence and possible potential of the

aquifer in a region. Emergence of large springs confined to valley

bottoms indicates the existence of aquifers of high permeability

and greater depth to watertable whereas abundant small springs on

valley sides and slopes of a hill are indicative of a shallow

watertable with a shallow circulation of subsurface water In

aquifers of poor permeability (Davis and Dewiest, 1966) . A few

large springs may indicate thick, transmissive aquifers, whereas

frequent small springs indicate thin aquifer of low transmissivity

(Bouwer,1978). Large flow from springs is usually associated

with aquifers with high permeability like cavernous limestone,

porous basalt and well sorted gravel. Variability of springflow is

usually low in volcanic and sandstone formations (Balek,1989). He

also related the occurrence of stable and perennial springs with

extensive aquifers. Presence of several horizons of springs along

the valley slope is due to stratification controlled by lithology

or structure (Karanth,1989). Conditions necessary to produce
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springs are many and are related to different conditions of

geologic, hydrologic, hydraulic, pedologic, climatic and even

biological controls.

The process of release of spring water from groundwater

storage can be compared with the lower portion of the recession

part of a flood hydrograph in a river and can be simulated by a

linear reservoir. A linear reservoir is a conceptual reservoir in

which outflow is linearly proportional to the storage. Combination

of this postulation with continuity equation gives the equation

for base flow

Q = Qk'
t Or

where k is the recession constant or depletion factor (Chow,1964)
r

and is equal to exp(-l/T ). t is a parameter of the spring and is
oo

designated as the depletion time. Singh (1989) reported wide use

of this equation for analysing base flow recession. Suggested

value of k is more than 0.9 but is less than unity.
r

Based on the above mentioned theoretical background, a few

conceptual linear one dimensional mathematical models have been

developed by various investigators for the modelling of springflow

and evaluation of the dynamic storage inside the spring flow

domain (M«ro,1963; Ba«r,X979j Mnndol find Mlii ftan, 19B1) . Therm

models assume that the springflow is linearly proportional to the

dynamic storage in the springflow domain and an exponential form

of springflow which is same as that used for baseflow has been



derived as

Q(t+At)«Q(t)exp(-At/T )

where, Q(t) =springflow at time t during recession, and At is the

time increment.

Bear's model (1979) is one such conceptual model to analyse

unsteady flow of a spring during recession period. The spring flow

domain has been hydrologically decomposed in two parts;-i)a

recharge zone, and ii) a transmission zone. The model is based on

the assumption that the springflow is linearly proportional to the

dynamic storage in the spring flow domain. The flow pattern is two

dimensional in the vertical plane. Dupuit- Forchheimer assumptions

are assumed to be valid in the spring's transmission zone and the

flow in transmission zone, as such, is in horizontal direction.

The model simulates the unsteady state flow by assuming that an

unsteady state is succession of steady state conditions. He

introduced a coefficient in the solution which takes care of the

aquifer characteristics and physical dimensions of flow domain and

the spring. Bear's model and the other existing springflow models

do not account for the time variant recharge and assume one time

recharge in the beginning. Therefore, Bear's model should .be

suitably adapted to simulate springflow for a time variant

recharge.



Flow from a spring and the various boundary conditions that

may exist in the springflow domain have not been related. For a
spring having a long transmission zone with low hydraulic
diffusivity, there will be a time lag between the onset of
recharge and its appearance as springflow at the spring's outlet
due to storage and translation effect in the transmission zone.

Springs with such configuration and geohydrological conditions
require a mathematical model which considers an unsteady state
flow in the flow domain of the spring to simulate springflow for a

time variant recharge.

Further, the groundwater flow processes associated with

springflow are two dimensional. As such, a two dimensional
springflow model is required to be developed. Such model will be
of use to simulate springflow for a spring or a group of springs

emerging from hill slopes and valley bottom.

In the existing springflow model, the dynamic storage of

groundwater at any time during recession is assumed to be equal to
the product of depletion time and discharge of the spring at that
time. It is yet to be verified that spring discharge from an

aquifer conforming to a linear system would follow strictly an
exponential decay curve. Thus, there is a need to establish the
true relationship between springflow and dynamic storage which has

been assumed to be linear in all the existing models.



The raison d'etre of this study is to address the gaps in

springflow modelling to the possible extent within the scope of

groundwater modelling. The method of presentation in the thesis is

as follows:

Chapter 2 gives the literature survey pertaining to three

important aspects of springflow studies, viz.,occurrence of the

springs in various geologic formations and their classification;

mathematical modelling of springflow, and statistical analyses of

springflow data.

Chapter 3 describes a springflow model which has been

developed using Bear's model and the Duhamel's approach. The model

provides an expression for springflow for variable recharge. A

procedure has also been presented to compute the time variant

recharge and depletion time from the given springflow as the

inverse problem with the help of Newton-Raphson method for solving

the nonlinear equations. The procedure has been applied to three

springs. The springs are: (i) Sulkovy Pramney spring in

Czechoslovakia which emanates from sandstone aquifer (a third

magnitude spring), (ii) Kirkgoz spring, Turkey which emerges from

karstic rocks (a first magnitude spring), and (iii) White Rock

spring, southern Nevada - a relatively much smaller spring

emerging from volcanic tuffs.

Chapter 4 describes a model which is based on solution of

Boussinesq's equation given by Carslaw and Jaegar for flow in an

aquifer of finite length and addresses to the requirement of an

8



unsteady state flow in a springflow domain conforming to a

geohydrological system wherein the transmission zone of the spring

is long and is of low hydraulic diffusivity. With an initial guess

of the range of values of the model parameters, the time variant

recharge and model parameters are computed by random search

technique.

Chapter 5 deals with a springflow model that has been

developed by considering groundwater flow processes pertaining to

a spring as two dimensional. Hantush's basic solution for the

evolution of piezometric surface due to recharge from a

rectangular basin and convolution technique have been used in the

model. The expression for the springflow has been given in terms

of unit pulse response function coefficients. Using these

coefficients, the springflow for any time variant recharge can be

computed. It has been observed that during the recession period,

the springflow is not linearly proportional to the dynamic storage

in the spring. The inverse problem has been solved using random

search technique, and recharge and model parameters have been

determined.

The general conclusions based on the study are presented in

Chapter 6.



CHAPTER-2

REVIEW OF LITERATURE

2.0 GENERAL

The literature reviewed has been arranged under three main

aspects of springflow studies; - (i) hydrogeology of springs

depicting the variations in their occurrence and their

classifications, (ii) hydrological modelling of springflow and

movement of water in the springflow domain, and (iii) statistical

analysis of springflow data.

2.1 HYDROGEOLOGY OF SPRINGS

Occurrence of springs is mostly controlled by the local

geology, geomorphology and the drainage characteristics. Large

springs are usually associated with highly permeable aquifers like

cavernous limestone, porous basalt, and well sorted gravel,

whereas small springs may occur in all types of rock. Bouwer

(1978) provided the order of magnitudes of spring discharge from

various geological formations as given in Table 2.1.

Further, depending upon the various hydrogeological controls

and geomorphological conditions, the springs could occur in

different configurations. They could occur either as a single

spring or as a group of springs. A group of springs could be

10



Table 2.1 Expected springflow from various geological formations

(Bouwer,1978)

Expected springflow

SI.No. Geological formation , 3 , -i,
(m day )

1. Sorted or coarse sand gravels, 1000-20,000

porous basalts

2. Cavernous limestone 500-5000

3. Sand and gravel mixture, 100-2000

sandstones

Fractured and weathered 10-500

rocks

either along a line at the same elevation or at various

elevations. There are a variety of geological controls which give

rise to different types of springs with respect to their

occurrences, locations, magnitudes, and configurations. Lithology,

structure, and topography are the main and most important

geological controls that influence the occurrence of springs as

discussed below.

2.1.1 Lithological Control

Springs occur where downgradient parts of aquifer or other

water bearing materials with their lowex boundary are exposed to

Tl



the surface like at hill sides, canyons or dissection due to

erosional channel (Fig.2.la). It is common to find line of springs

where permeable sandstone or limestones form high ground and rest

on less permeable rocks such as shales or clay (Price, 1985).

Davis and Dewiest (1966) stated that such vertical variations ol

permeability associated with layered sedimentary rocks are the

cause of larger and permanent spriwjs.

Blocking of downward movement of groundwater by an aquiclude

forces water to move laterally and a line of springs results at

the outcrop of the permeable layer in a valley (Fig.2.lb). Outcrop

of bedrock or nearness of bedrock to surface is the controlling

factor. If this aquiclude is situated above the main water table,

a portion of the percolated water is intercepted by it and thereby

creates a localised zone of saturation - a perched water table.

This could give rise to springs if the aquiclude outcrops in the

valley (Fig.2.lc).

Springs are also developed as a result of lateral variation

in the geological material and ground slope as manifested in the

upper parts of the alluvial fans. The upper portion of the

alluvial fan consisting of coarsest grades of deposits has steep

slope, high permeability, porosity, and high water table gradient.

At the downslope, the aquifer is fine grained and laterally merges

into clay and silt formations, the latter forming confining beds.

Therefore, a part of the groundwater which is recharged in the

upper part of the fan is discharged on the ground surface where

the water table intercepts the land surface. The upper limit of

12
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this zone of rejected recharge of groundwater is marked by a

series of springs along the topographic contour as spring line

(Karanth, 1989) . Intersection of the water table with the land

surface la the controlling feature in the location of those

springs (Fig.2.2). As the alluvial material is very thick, the

deep underlying bed rock does not have any control over the flow

of these springs. Such situation occurs at the foot of the Siwalik

hills in Nainital district, India at the boundary between Bhabar

and Tarai. The northern boundary of Bhabar belt is in contact with

the Siwalik hill range and southern limit is the spring line which

defines the northern limit of the Tarai sediments (Pandey, Rao and

Raju, 1968). Discharge of such springs is usually small.

Similarly, springs occur when there is a compositional change in

the alluvial deposits. If an alluvial sand grades into a sandy

clayey sequence, the groundwater flow retards. As a result

groundwater level rises and springs occur at topographical low

(Klimentov, 1983) .

Large sub-marine springs often discharge groundwater through

opening to the sea in coastal areas that contain limestone and

volcanic rock aquifer. Such sub-marine springs are found along the

borders of the Mediterranean and Adriatic seas, in Hawaii, in New

Zealand and elsewhere (Todd, 1980) . t,

2.1.1.1 Springs from Carbonate Rocks

Carbonate rocks springs represent constricted discharge

at widely separated outlets. In the beginning, a number of

solution activity in these rocks of weak discharging springs may
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develop. The largest spring progressively captures the water

feeding its neighbours and the smaller springs become dry. This is

specially so in a strongly developed karstic rock. A karst

indicates the development of chemically enlarged openings in

soluble carbonate rocks and in other non carbonate rocks like

gypsum (Fig.2.3). The karst area is characterised by the scarcity

of surface stream. It is well established that groundwater flow in

karst aquifers is of two principal types, viz., diffuse and

conduit. The separation of spring discharge into baseflow

(diffuse) and storm flow (conduit) component can be made by means

of hydrograph analysis (Atkinson, 1977 vide Crowther, 1983). In a

typical karst region, drilling of wells is avoided due to

existence of large underground cavities at different levels and

the karst water as such is not filtered. Erosion of a karstic

valley may reach so deep that it reaches the groundwater level.

Lines of groundwater flow converge on the valley and dissolve

bedrock at a faster rate than for adjacent uplands. Less permeable

residual soils and floodplain sediments promote the formation of

line of springs at the contact of bedrock and valley fill

sediments and is illustrated in Fig.2.4 (Parizek, 1975).

The majority of important springs in karsts are located along

the perimeter of the erosion base. A common characteristic of

these springs, whether permanent or temporary, is the direct

dependence between precipitation and their outflows. It is

possible to have two closely spaced springs with greatly different

discharges. The two springs of the Pliva river near Jajce (in

16
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former Yugoslavia) are good example of such occurrence of springs

(Milanovic, 1981) .

Submarine springs and springs at the sea surface were formed

during continental phase when the base of erosion was lower than

at present. These springs are active only during the wet season.

At this time they discharge substantial quantities of fresh water

into the sea changing the salinity and temperature of the sea

water in the coastal belt. Their main characteristic is their

considerable variation in flow. More than 50 localities with

submarine springs have been discovered along the Adriatic coast in

Crotia. The submarine shelf, between Florida and the Bahama

Islands, is composed of karstified limestone and is covered with

thousands of sinkholes. Submarine springs are active in many of

them (Milanovic, 1981). There are quite a few submarine springs

off the coast of Nelson, New Zealand (Williams, 1977) . Using

thermal infrared scanning, Gandinc and Tonelli (1983) identified

more than 700 fresh water springs spread over 1500 km of Italian

shorelines with a total yield of about 150 m s .

Probably ,the largest known spring in the world is Ras

-el-Ain, Syria which is on a tributary of the river Euphrates. It

emerges from a massif of karstified limestone with an average flow

rate of approximately 40 m s . The spring is situated in a region

where the annual average rainfall is only 2B0 mm (Davis anil

Dewiest, 1966; Price, 1985), Karanjac and Gunay (19R0) declared

Duman.I i spring in Turkey as the largest spring of the world

issuing from one single orifice which has dry period flow rate of
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about 36 m s . The spring is in the Manavgat river canyon of

Turkey. It emerges from upper Cretaceous limestone on the thrusted

flank of an anticline. The spring discharge varies from 25 to more

than 100 m s with a mean discharge of about 50 m s . The spring

had been known from the Roman time but now is under the

submergence of high Oymapinar Dam, Turkey. The only outlets of the

large limestone aquifer in the coastal area of Israel are two

springs,-- the Yarkon spring and the Taninim spring (Bear, 1979).

Mnndel and Shlftgn (1981) reported the drying up of thy f ir*Si

spring and reduction of discharge to leaa than half for the second

spring due to large scale withdrawl of groundwater through

boreholes.

In the study of Gaula catchment in Nainital district, U.P.

(Kumaun Himalayas), the investigators of Kumaun University (1988)

observed that few springs emerge from carbonate rocks

characterised by cavities and solution channels. The yield of the

springs of the karst belt is very high being of the order of 3760

m d . The dolomitic limestone has a good network of joints and

there is a good deal of infiltration of water. Selective solution

along these fractures and joints has created a network of

subsurface water courses leading to almost complete lack of

perennial surface streams. The springs in the Nainital township

mainly the Parda spring and Sipahi spring emerge from the

carbonate rocks of Nainital area. The maximum and minimum

discharges as reported by Sharma (1990) are 3125 and 760 m'd^for

Parda spring, and 40190 and 30745 m3d_1for Sipahi spring

respectively. Coward et al. , (1972) studied five major karstic
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springs within a distance of 25 km in the Anantnag area in the
vale of Kashmir. All the five springs occur at the

limestone/alluvium contacts at an altitude of 1620 to 1940 m. The
geology, chemistry and hydrology of each spring was investigated.
At each spring site the rocks dip (30°-65°) was towards the

hillside and water moves predominantly along bedding planes. The
springs are at the lowest hydrologic points of the limestone
blocks which suggests that the limestone groundwater is well

integrated. The five springs are Kukarnag (1.8) , Verinag(2.8) ,
Achhhaba1(2.5), Bawan(1.4), and Anantnag (0.4) ; the figures in the

bracket are their respective mean annual discharges in mV\

Verinag spring is the source of river Jhelum and is of vauclusian
resurgence type. The spring pool is about 60 m in diameter and is

18 m deep. The spring discharges clear water and has its peak flow
in May and June. Karst springs also exist in the Late Proterozoic
Upper Vindhyan formations in Central India.

The Vaucluse spring in France is well known worldwide. It has

a recharge area of over 1600 km2 and emerges from strongly jointed
and karstified Neocomian limestone. This spring is a periodically
flowing one which works as a siphon and is termed as siphon spring
(Fig.2.5). The spring emerges from the huge grotto found in the

deep canyon. The annual average yield is 17 mV 'whereas the

maximum recorded yield during springtime is 152 mV\ The area

receives an average annual precipitation of 550 mm (Klimentov,
1983) . Big permanent Vauclusian springs are usually connected to

the lowest erosion base or sea level. Outflow from some of the

major vauclusian springs are given in Table 2.2 (Bogali, 1980):
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Table.2.2 Discharge from some of the major Vauclusian springs

(after Bogali, 1980)

.f> I.No . N.une of the Spring

3.

4 .

6.

Aachquelle Spring

(Germany)

Areusequelle

(Switzerland)

Fontaine De Vaucluse

(France)

Silver Spring

(Florida, USA)

Peschiera(Italy)

Big Spring

(Ozarks,USA)

Extreme values
,3 -I,
(m n )

1.3-24 . 1

0.18-100

4.5-200

Practically

no variation

Average,

(m S )

8.8

4 . 0

29.0

23 .0

18.0

12.0

2.1.1.2 Springs from Basalt

Out of all hard rock formations, basalts are amongst the

most productive because of numerous openings. Basalts are spread
2

all over the world : 500,000 km in India, the trap rocks of

Deccan; 650,000 km in North America; 900,000 sq,km in Brazil;

100,000 km2in Ireland and U.K. and in other places. They represent

extensive sources of groundwater (UNESCO, 1972). Springs emerging

from basalts or from associated gravel are among the largest kncwn

and compare in importance with those issuing from carbonate rocks.

The flow from the basalt springs may be relatively constant where

it is sustained by the large waterbody and where the fissures are
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narrow and ash is present. On the other hand, the flow may be

variable if wide fissures are well developed and abundant. Many

springs issue from the porous zones between successive lava beds,

forming well defined spring horizons along dip scarps formed by

the lava. Some of the spectacular basalt springs are in the

Hawaiian islands, Oregon, Washington, Nevada and Idaho in USA.

Average discharge of most of these springs is over 14

m s (Karanth, 1989). One of the largest series of basalt springs

are in Idaho,U.S.A. These springs emerge from pillow structure

formed due to submarine volcanic activity. The springs above the

canyon walls between Milner and King Davis have a discharge of

about 110 m s . The famous thousand springs along the Snake river

in Southern Idaho which rise from the jointed and vesicular

basaltic lava

Lutgens, 1990)

basaltic lava flows yield 15 to 20 m s (Meinzer, 1927; Tarbuck &

One group of basalt springs in California and Oregon, USA has

a combined discharge of 40 m s of which Datta spring alone

supplies 1.4 to 3 m s . The discharge of springs at Oahu and

Kaluaoopu islands in Pearl Harbour, Hawaii varies between 0.4 to

0.7 ms (UNESCO, 1972) . Ground water confined in between dikes in

basaltic terrain in oceanic island at times gives rise to

emergence of springs. Fragmentary material known as pyroclastic

material such as pumice, tuff etc. are associated with basalt.

Such pyroclastic material has high permeability provided the

material 1m not folded. In nome areas like In Java, Indonesia and

in Japan, river3 are fed substantially by springs emerging from

pyroclastic material.
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As stated in the report published by Kumaun University
(1988), the Bhimtal volcanics in Nainital district of Uttar

Pradesh, India, are vesicular and associated tuffite have in

addition vertical and horizontal joints and shear planes. The

depth of weathering varies from 60 cm to 2.5 m. About 9% of the

springs in the Gaula river catchment are located in Bhimtal

volcanics. An intrusive body within the Bhimtal volcanics act as a

barrier to the groundwater movement causing emergence of springs.
Like in Bhimtal volcanics and elsewhere , dikes, sills, layers of

tuff, and buried sills commonly control the location of springs in
volcanic rocks (Davis and Dewiest, 1966).

2.1.2 Structural Control

Springs are formed where discontinuties like faults,

tectonic fractures, dikes etc. create hydraulic barriers and force

groundwater to flow upward along the weak zones across confining
layers. Dikes, sills, layers of tuff and buried soils commonly

control the location of springs in volcanic rocks. Groundwater

confined in between dikes in basaltic terrain in oceanic island at

times give rise to the occurrence of spring. Earth movements cause

tilting and folding which bring permeable or impermeable beds near

the surface and springs emanate from a permeable bed. Joints and

joint systems commonly are responsible for small springs. This is

particularly true for exfoliation joints in massive granitic

rocks. Structural variability in rocks produces changes in

permeability and localises the occurrence of the springs. Fig.2.6

shows some of structural controls on the formation of springs.
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Investigators from Kumaun University (1988) observed

emergence of springs on the north and north east sloping flanks of

hills in different sub-catchments of Gaula river in Nainital

district of Uttar Pradesh, India. This essentially indicates
structural (dip) and topographical controls on the movement of

groundwater and the formation of springs. Highly fractured

crystalline rocks located on the lineaments and occupied by first

or second order streams in the Gaula river catchment give higher

discharge than the springs emerging from crystalline rocks with

less or negligible fracturing. In Bhimtal area in the Kumaun

Himalayas, springs emerge from the contact of the country rock and

the dolerite dike. Sharma (1990) reported the emergence of many
springs from the synclinally folded Krol belt which are mostly
active in the Sher ka danda slope towards the north eastern side

of Nainital lake. These springs generally follow faults and major
fractures and discharge very small amount of water (Sharma, 1990).

The springs in and around Shimla town in HimachnJ Pradesh, India

are well distributed and are controlled by the lithological

contacts, faults, shears,and prominent regional joints
(Singh, 1990) .

In Jeloya- Moss area of southern Norway, there are springs

which emerge from the fissured rock aquifers where the groundwater

surface is below the overlying Quaternary deposits. The springs

have very well defined water outlets because of the continuation

of the drainage fissures upto the spring. Englund and Meyer (1980)

studied five such springs. The average discharge of the five

springs studied is 60 m d .



2.1.3 Topographical Control

When an aquifer having groundwater under hydrostatic

pressure is exposed on a sloping ground surface, the groundwater

emerges as a concentrated discharge, and the spring so formed is

controlled by topography. The role of topographic control on the

emergence of springs is evident especially at the hill slopes.

Most of springs described in Figs.2.1, 2.2, and 2.6 have

topographical control associated with them. However, all the three

main control could play complimentary role in the emergence of a

spring or a group of springs. For example, in a basaltic terrain

if the topography is steep and if the water table cuts across the

topography, springs emerge. So, lithology and topography both

could influence the emergence of a spring. Likewise emergence of

springs between the dikes in a basaltic island is the

manifestation of all the three controls. All the springs of the

Kumaun region discussed in the preceding paragraphs have some kind

of topographical control.

2.1.4 Classification of Springs

One of the earliest classification of springs was given by

Keilhack (1935) based on ascending (artesian) and descending
(water table) water flow in the spring. Descending type of springs'
are usually periodically flowing. Discharging points of ascending
type of springs are more varied. They form erosion barrier and

structural springs (Ovchinnikov, 1968). However, Keilhack's

classification is based on the aquifer geometry only. Springs can
be classified according to the important controlling factors
related to geology, hydrology, and geomorphology. Some of these
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are: (i) character of the water bearing formations, (ii) quantity

of water discharged, (iii)uniformity and periodicity of the rate

of discharge, (iv) temperature of water, and (v) chemical quality

of water. Chow (1964) compiled the various important

classifications of the springs made by different investigators in

a comprehensive way. These are stated herein in Table 2.3.

Davis and Dewiest (1966) argued that there could be at most a

few hundred first magnitude springs in the world as combination of

large rainwater infiltration, large drainage area and favourable

geologic structure at a place that are needed to produce a first

magnitude spring, will be rare. Almost all first magnitude springs

issue from lava, limestone, boulder or gravel aquifers. But small

springs of magnitude 7 or 8 can be found in all types of rocks

e.g., loess, dolomite, graywacke, gypsum, serpentine etc. Most

springs of magnitude 8 are springs which flow only for a short

time following a period of precipitation.

Todd (1980) reported the relation of catchment area and

annual recharge to average spring discharge. This is depicted in

Fig.2.7. A spring with a few hectares of recharge area can supply

the needs of a single family whereas large recharge area with high

rainfall is necessary to produce a first magnitude spring.
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Table 2.3 Classification of springs (after Chow, 1964)

A. Classification based on the type of water-bearing formation or

type of opening (after Tolman, 1937)

I. Spring issuing from permeable veener formations overlying

relatively impermeable bedrock with irregular surface;

bedrock outcrop or near approach to surface is controlling

feature; includes contacts and so-called gravity springs,

perched, talus, pocket and barrier springs. Usually are

small, but some are large, and discharge may vary

periodically.

II. Springs issuing from thick permeable formations; water

movement unaffected by deeply lying impermeable bedrock.

Controlling feature is intersection of water table with the

land surface. Includes all water-table springs, among special

types of which are channel, valley, cliff, valley, dimple,

and boundary, or alluvial-slope springs. Discharge is usually

small.

III. Springs issuing from interstratified permeable and

impermeable formations; aquifers are stratiform and may be

structurally deformed. Control of springs is outcrop of

aquifer. Springs may draw on confined water (artesian springs)

or water may be unconfined. Include contact, monoclinal,

synclinal, anticlinal and unconformity springs. Discharge of

springs usually small, but some may be large.
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continued...Table 2.3

IV,

V

VI

Springs issuing from solution openings formed primarily

along fractures and bedding planes in carbonate rocks.

Discharge of these springs is often large and fluctuates

considerably.

Springs issuing from fractures and tubes in lava and from

thin interbedded porous strata. Discharge is often large and
usually steady.

Springs issuing from fractures intersecting permeable

materials and impermeable materials and fractures supplied in

part by waters of deep-seated unknown origin. For the most

part, discharge of such springs is small, but some may be
large.

B.Classification of springs according to magnitude of

discharge (after, Meinzer, 1923)

Magnitude Discharge

First 100 cfs or more

b 3 -1

(0.245x10 m d or more)

Second 10 to 100 cfs

(0.245xl05to 0.245xl06m3d"T)

Third 1 to 10 cfs

(2450 tO 24500 mV1)
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continued Table 2.3

Magnitude

Fourth

Fifth

Sixth

Seventh

Eighth

* 1 gallon = 8 pts.

Discharge

100 gpm to 1 cfs(448.8gpm)

545 to 2450 niV1)

10 to 100 gpm

54 to 545 mV1)

1 to 10 gpm

(5.4 to 54 m3d_1]

1 pt.to 1 gpm

1.3 to 5.4 m d"1)

less than 1 pt./min
(less than 1.3m d"1)

C.Classification according to variability and permanence of

discharge (after,Meinzer, 1923)

I. Perennial springs (springs that discharge continuously)

a) Constant - springs with a variability of not more

than 25 per cent

- springs with a variability of more than

25 per cent but not more than 100 per

cent

- springs with a variability of more than

100 per cent

b) Subvariable

c) Variabl*
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continued...Table 2.3

N.B.rvariability of a spring is defined by Meinzer as the ratio of

the discharge fluctuation to its average within a given period of

record. Thus, V = 100 (a-b)/c ,where V is the variability in per

cent, a the maximum, b the minimum, and c the average discharge.

II. Intermittent springs (all are variable since they

discharge only during certain periods and are dry at other times.)

D.Classification according to temperature (after, Meinzer, 1923)

I. Nonthermal springs

a.Ordinary springs whose waters have temperatures

closely approximating the local mean annual

temperature of the atmosphere

b.Cold springs whose waters have temperatures

appreciably below the local mean annual temperature

II. Thermal springs

a.Hot springs whose waters have temperatures higher than
o , o

98 F (36.6 C)

b.Warm springs whose waters have temperatures higher

than the local mean annual temperature but lower than

98°F (36.6°C)
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Low variability of discharge is normally found in volcanic

rocks and sandstone formations. High altitude springs may exhibit

fluctuation of flow which are associated with rainfall regime like

in Sulkovy Pramney spring in the hilly region of central

Czechoslovakia (Balek, 1989). He suggested a classification for

these springs emanating from sandstone aquifer on the basis of

Q /Q ratio of the springflow. Q and Q are the sprinq
10% 90% C = m% 90% * ^

discharges at 10% and 90% of the relative cumulative frequencies

respectively.

Kumaun University conducted geohydrological investigations of

the Gaula catchment (1988) . The investigators studied the

formation of the springs in the catchment. Based on the genesis,

nature of water bearing formations and conditions governing the

formation of the springs, the springs of the Gaula river catchment

are classified into 7 categories: i) Fracture-joint related

springs, ii) Lineament-fault related springs, iii) Colluvial

springs, iv) Springs related to fluvial deposits, v) Bedding plane

related spring, vi) Dike related springs, and vii) Karst springs.

2.2 Hydrological Modelling of Springflow

An active spring can be considered as a flowing well with

constant head and this feature could be used conveniently in the

hydrological modelling of springflow.. In the analysis of regional

groundwater flow, a flowing spring can serve as a boundary

condition of Dirichlet type. The elevation of the spring threshold

or outlet is considered as of fixed boundary head. But, when the

water table in the vicinity of the spring drops below the spring
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threshold at some point of time (which is a priori unknown) , the

spring ceases to exist and the boundary condition at the spring
does not prevail.

The discharge of a spring depends on (i) the difference

between the elevation of the water table (or piezometric head) in

the aquifer in the vicinity of the spring, and the elevation of

spring threshold, (ii) the geometry of the aquifer, and (iii)

aquifer parameters. During a dry season, the spring discharge is

derived from water stored in the aquifer. Consequently, the water

table in the aquifer gradually falls and spring discharge

declines. During the precipitation period, the aquifer gets

recharged and water table rises and spring discharge increases.

The fall and rise of springflow go on in a cyclic pattern. The

relationship between the discharge of dry and wet seasons and time

depends on dynamic storage characteristics of the aquifer and

transmissivity of the aquifer. Fig.2.8 shows a typical portion of

a spring hydrograph. On a semilog paper (with time on the linear

scale), the recession curve follows approximately a straight line.

2.2.1 Springflow Recession Curve

The lowest portion of the recession curve in a flood

hydrograph depicts the depletion of ground water storage and can

be simulated by a conceptual linear reservoir, in which outflow is

linearly proportional to the storage. Integration of the

storage-outflow relation with continuity equation and solution of

the first order differential equation gives the relation
(Chow, 1964)
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Qt =Q0^ ...(2.1)

where Q is springflow at any arbitrary time origin and Q is the
o -' t

springflow at any time t. k is the recession constant or depletion

factor which is normally greater than 0.9 but always less than 1.

The recession constant k has also been expressed as exp(-l/r )
1 o

where t^ is the depletion time. Anderson and Burt (1980) quoted

Barnes (1939) stating that Eq.(2.1) is capable of describing the

recession of individual components of runoff, i.e., overland flow,

throughflow and groundwater flow. Nutbrown and Downing (1976)

studied recession flow in rivers in U.K. and opined the same. They

suggested different values of depletion factor for modelling the

different components of the recession portion of a flood

hydrograph following a storm. They suggested the values of 1 and

0.99 as the depletion factor for the direct run-off and the

baseflow recession, respectively.

The analysis of recession curve defines the regime of flow of

a spring. The recession curve characterises the storage depletion

or base flow from an aquifer during the period of zero or

negligible precipitation (Karanjac and Altug, 1980) . Therefore,

recession curve of a springflow is used to estimate the dynamic

storage inside .a spring flow domain which is subsequently

discharge as springflow. The physical process of release of water

from groundwater storage is a phenomenon which can be described by

an exponential law which is same as that used for baseflow

(Chow, 1964; Singh, 1989). One of the convenient ways to express
the exponential law is
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Q(t+At)=Q(t)exp(-At/r ) ...(2.2)
o

where Q (t) =springflow at time t during recession, At is the time

increment, and t = a parameter of the sp

depletion time and has dimension of time

increment, and t = a parameter of the spring and is designated as

Eq. (2.2) is the most widely used equation derived by

Boussinesq as early as 1877 (vide Singh, 1989). Maillet(1905, vide

Ford and Williams, 1989) suggested Eq.(2.2) for the analysis of

spring's recession hydrograph. Karanjac and Altug (1980) stated

that recession curve analysis of a springflow hydrograph using the

exponential law is quite appropriate especially for relatively

large systems with no secondary groundwater accretion and use of

more sophisticated formula is not essential.

Either of the Eqs. (2.1) and (2.2) has been widely used for

the analysis of the recession curve of a springflow hydrograph all

over the world particularly in Europe and in the Mediterranean

area for karstic as well as for other type of springs. (Yevjevich,

1959 vide Knisel, 1972; Faulkner, 1975; Torbarov, 1975;

Milanovic, 1975; Magnin, 1975 vide Ford and Williams, 1989;

Atkinson, 1977; Karanjac and Altug, 1980; Karanjac and Gunay,

1980; Korkmaz, 1990; Bonacci, 1995).

2.2.2 Depletion Time (t )
o

According to Eq. (2.2) the variation of logarithm of

springflow with time is linear. The reciprocal of the product of

negative of the slope of the straight line (log Q versus t) and
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2.3, is designated as the depletion time in time unit. Depletion

time is a characteristic parameter for a groundwater flow domain

and can be treated as model parameter for mathematical models for

springflow. Any change in the slope of the line is indicative of

interference in the groundwater system. A progressive flattening

of the slope indicates the replenishment of the aquifer in the dry

season (probably due to return flow of irrigation/urban effluent

or seepage from reservoirs) and steepening of the slope indicates

groundwater abstraction from the aquifer and reduction in natural

recharge. Occurrence of earthquake can have effect on spring

discharge and on the slope of the time discharge line

considerably.

In a recent study of six major karstic springs in Greece by

Soulis (1991) , it was observed that each of the aquifers, from

which a spring emerges, was unique in respect of boundary

conditions and their internal organisations and consequently

different recession curves were obtained. The investigator

recommended the use of the characteristics of these different

recession curves for the classification of the aquifer system from

which the springs emanate. The depletion time representing

recession characteristic depends on the geology and geomorphology

of the basin. For a spring whose recharge area is small or the

aquifer from which it emerges has high permeability and low

porosity, the tq will be small. If the volume of water that is

stored in the flow domain of the spring is large, or its drainage

is slower, the 7 will be large. Karanjac and Altug (1980) studied

a number of springs in Turkey and suggested some values of
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depletion time according to type of porosity (Table 2.4) . They

showed that the dynamic storage inside the flow domain of a spring

during recession is Q .t where Q is the springflow at the onset

of recession.

Table 2.4 Range of values of depletion time ( r ) (after Karanjac
o

and Altug, 1980)

SI.No. Type of porosity

Flow is primarily through interbedding

joints and fissures (3rd Group of

openings)

Flow is primarily in larger

fractures, faults etc. (2nd Group

of openings)

Order of magnitude

of Depletion Time

(months)

33

3.3

Massive Karstified limestone terrains 0.33

with primary drainage through large flow
channels, interconnected solutional

features and other privileged ways
(1st Group of openings)

Englund and Meyer (1980) in their study of four springs which

have supplied drinking water for several decades in Norway

observed that springs emanating from strongly fractured

rocks, e.g., limestone, have depletion time in the range of 0.7-13

months while sandstones with minor fracturing give values around

13-33 months. The orders of magnitude of these values of j are
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comparable with the values given in si.no.3 and 1 respectively of

the Table 2.4. They further observed that a spring with longer

depletion time will be more stable and will emanate water with

higher concentration of dissolved solids during the period of no

recharge.

Martin (1973, vide Ford and Williams, 1989 ) suggests that a

concept equivalent to the half life in nuclear physics would be

appropriate and defined a half-flow period (t ) as the time
0.5

required for the baseflow of the spring to halve. Hence, by

definition

2Q = Q ... (2.3)
T 0
0.5

Using Eq. (2.1) ,

Q = Q exp(- t / t )
T 0 0.5 0
0.5

or Q = Q exp( t / t )
0 T 0.50

0.5

or 2Q = Q exp(T i )
T T 0.50
0.5 0.5

or 2 exp(t /t )
0.5 0

or t = t lOg 2
0.5 0 e

or T = - log 2 / log k (2.4!
0.5 e e r
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The parameter 7 has the following properties:

( a) It is independent of Q and Q and of the time elapsed
0 c e

between them.

( b) It can take values in the range of zero to infinity.

( c) It can be easily evaluated from equation 7 =Const./loq k
0.5 e r

( d) It is a direct measure of rate of recession and therefore

can be used as a means of characterising exponential baseflow

recessions.

When k is large, i. e. ,when 7 is small, the recession is
r 0.5

steep, indicating rapid drainage of conduits and little

underground storage. But if k is small and 7 is large (meaninq
r 0.5 3

conduit function is less) , then very slow drainage of aquifer is

indicated from an extensive fissure or porous network and the

spring seems to have a large storage capacity and high resistance

to recharge throughout.

2.2.3 Non Linearity of Storage-Outflow Relationship

Mandel and Shiftan, (1981) stated the possibility of

depletion lines being composed of several linear segments with

different slopes. This could happen due to following reasons:

!• There is diversion of water upstream from the spring

discharge measuring point;

There is vertical variability of the product of pian
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area of the aquifer and aquifer storativity which the

model assumes to be constant;

3. Delayed runoff (interflow) enters the spring flow

domain through soil mantle;

4. More than one underground reservoir (common in fissured

and karstic rocks) contribute to the same spring.

During recession, the baseflow component, Q(t), of a river

partially penetrating an aquifer is equal to the total release

from groundwater storage and can be estimated from the solution of

the two-dimensional equation of ground water flow. Further, with

Dupuit's assumption of negligible vertical flow, Nutbrown (1975

vide Nutbrown and Downing, 1976) has shown that

n

Q(t) = E A KC ... (2.5)
i- 1 i i

where,K ,K ,...K are depletion factors of groundwater and
12 n

A A ...A are constant coefficients. Although theoretically the
1,2 n

summation in Eq.(2.5) includes infinite number of terms, in

practice, only a few of them will dominate at any particular time.

With this assumption, log Q(t) in t plane is fitted with several

straight lines of decreasing slope. The implication of Eq.(2.5) is

that the exhibition of these successive straight line segments

does not necessarily be the characteristic of a complex aquifer

structure. An aquifer may be perfectly uniform, with no



particularly unusual features, and still may exhibit the behaviour

implied by Eq. (2.5) in its baseflow contribution to the flow.

It has been noted in the analysis of baseflow recession

curves for many partially penetrating streams in U.K. that the

semi-log plot of baseflow against time is not a straight line but

rather a curve, even for uniform values of aquifer parameters. The

composite nature of discharge-recession curve could be attributed

to the release and subsequent discharge of water from different

parts of the aquifer under constantly varying heads. The complete

baseflow recession curve expressed as log Q vs t has an initial
1 o

steep slope followed by a flatter portion and there is a further

steep portion as the stream dries up. Nutbrown et al. (1976),

inferred that deviation of the plot from a single straight line is

due to the dynamics of ground water flow and normally not due to

the complex hydrological structure. It is quite normal that the

average catchment value of storage coefficient could fluctuate

markedly with baseflow decline even for a simple aquifer. Singh

and Stall (1971 vide Nutbrown et al., 1976), studied recession

Characteristic of baseflow in rivers which partially penetrates an

aquifer and defined a dimensionless parameter j as aquifer

response time and r =Tt/SL2 where T, S are transmissivity and
storage coefficient of the aquifer, respectively, t is the time

elapsed from the start of the recession and L is the distance

between the outflow point and the watershed divide. Under a wide

range of conditions, they concluded that for t > 0.2 plot of log Q

vs t will be a straight line and for t < 0.2 the plot curves away

from the straight line. Knisel (1972) while studying Goodenough
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springs near Comstock, Texas, found that there were changes of

slope several times in the log q vs t plot. He attributed these

changes of slope to variable porosity throughout the thickness of

saturated mantle. A steep portion of the recession indicates a low

porosity layers, whereby the hydraulic gradient would decrease

rapidly and causes a large change in discharge. On the other hand,

high porosity layers would have little change in hydraulic

gradient for a given discharge and the recession slope would be

flatter relative to low porosity layers. However, each layer in

the mantle is affected by the underlying layers and the spring

discharge represents an integration of flow through the system. As

the observed recession may be due to obscured stratification,

Knisel termed his arguments for the change of slope as conjectural

rather than factual.

If the resulting recession curve is found to be nonlinear, a

double exponential form of equation could be used to represent the

curve better.- A double exponential equation which was first

suggested by Horton (1933, 1935) and had been used by Yevjevich

(1963), Toebes and Strang (1964), and Toebes et al. (1969) (vide

Singh, 1989) is

Q = Q exp(-t"/r) ...(2.6)
to o

Eq.{2.6) in logarithm form is

Log (log (Q /Q )}= n log t + log (1/t ) - 0.369222
3iol 10 o t J io 10 o

and represents a straight line in log {log(Q /Q )} vs log t plot
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Alternatively, the equation developed by Boussinesq (1904),

for a case where a stream is located on an horizontal impermeable

lower boundary draining an aquifer with an initial curvilinear

water table and zero water table elevation in the stream, could be

used for springflow. The equation is given as (vide Singh,

1989,and vide Ford and Williams, 1989)

Q = Q /(1+Ct)" ...(2.7!
t o

l/n

)

the exponent n usually lies in the range of 0.5 and 2.

where C is a constant and is equal to (l/t) {(Q / Q ) -1 } and
o t

This equation has been used in Europe for estimation of

spring discharge by Maillet (1905), Hall (1968) and Toebes et al.

(1969) (vide Singh, 1989) . One difficulty with many recession

curves is that although they are non-linear they do not fit

Eq.(2.7). Maillet (1905) and Boussinesq (1904) (vide Hall,.1968)

solved this problem by assuming two components or sources of base

flow, one constant and one declining either as

or

Q = (Q - B)/(1+Ct)2 + B ...(2.8]
o

Q = (Q - B) exp (- a t) + B ... (2.9]
o

Boussinesq (1904 vide Hall,1968) showed that a recession fitted by

Eq.(2.8) could also be expressed by:

Q = Q exp(-a t) + Q exp(-a t) ...(2.10)
1 12 2
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Eqs.(2.9) and (2.10) are examples of principle of superposition

valid for linear system and are relatively easy to be handled.

Dooge (1960) and Kraijenhoff van de Leur (1958) (vide Hall, 1968)

have shown the advantages of using linear solutions to approximate

non linear systems. Dooge (1960) (vide Knisel, 1972) proposed two

equations to describe the rising and falling limbs of a hydrograph

from a linear groundwater system. The suggested discharge

equations for the recharge and recession periods respectively are

q = r{l - exp(-t/K)}, 0 < t < T ...(2.11)

q = r{ exp ( T/K)-l}exp(- t/K) , T < t < oo ...(2.12)

where r is the rate of recharge, T is the duration of uniform

recharge, t is the time, and K is the storage delay time of an

element.

2.2.4 Existing Springflow Models

Though the first reported work on springflow is almost a

century old, the efforts on mathematical modelling of springflow

is somewhat limited. Some of them are discussed earlier. Some

conceptual linear mathematical models have been developed during

last one decade or so to estimate springflow and to assess the

dynamic storage inside a spring flow domain (Bear, 1979; Mandel

and Shiftan, 1981; Kovacs, 1981) . These models assume that during

the recession period, the springflow is linearly proportional to

the dynamic storage inside the spring flow domain. These models
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are similar to each other and can accept only a-lumped recharge in

the beginning. The models simulate an unsteady state flow as a

succession of steady state flow. In the first model, i.e., in

Bear's model, the recession portion of a spring hydrograph could

be simulated for an one time recharge in the beginning. He

interpreted the recession constant in terms of hydraulic

diffusivity and the geometry of the aquifer. In the second model

developed by Mandel and Shiftan, the flow domain is conceptualised

as a tank having an outlet at the lower portion and the recharge

takes place at the open surface of the tank. The model, as such,

is known as Unicell model. These two models are essentially for

geological formation which has primary porosity. A third model by

Kovacs demonstrates the influence of fracture (secondary porosity)

on springflow. These three models are described herein.

Bear's Model

Bear (1979) suggested a simple tank model to analyse unsteady

flow of a spring (Fig. 2.9) . Assuming that at anytime during

recession period, the discharge Q = a h, where a is a constant,

and h is the potential difference causing flow, the decline in

dynamic storage from the spring flow domain during the recession

period is

Q(t) dt =CK h dt = -4> A dh ... (2.13)

where 0 is storage coefficient, and A is the plan area of the flow

domain. Rearranging Eq. (2.13) as

t di
i

a dt
i dh ... (2 .14)
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Integrating, and applying the initial conditions, i.e., at t = t ,

h=h , and Q = Q = a h , the solution of Eq. (2.14) is
0 0 10

it-t )= (0A/a ) ln(h /h) = (0A/a ) ln(Q /Q)
0 10 10

a

or Q (t) = Q exp{ - ——- (t " tQ) } ...(2.15)
o 0 A

The variation of Q(t) with t will plot as a straight line on a

semilogarithm paper (Q on logarithmic scale).

Bear suggested another simple model of a spring draining an

unconfined aquifer (Fig.2.10) with a view to giving an

interpretation of a .
i

The unconfined flow in Zone I has been approximated to follow

Dupuit's conditions and flow rate at any time has been expressed

as

Q=WK(h2- h2)/2 = WK(h + h )/2 * (h - h )/L =WT(h - h )/L ...(2.16;
L0 L0 L0 L0

where Q = rate of flow from spring, K = permeability of the

aquifer, T = average transmissivity of the aquifer, (h -h )

difference of head, L = length of transition zone and W = width of

the spring's threshold.
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FIG.2-10-ANOTHER SIMPLE MODEL OF SPRING FLOW
(BEAR, 1979).
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As the spring discharge is linearly proportional to the head

available, therefore, a = (WT/L) and we have
1

Q (t) = Q exp [-{WT/(AL0 )} (t-t )] ...(2.17)
o o

Thus, the depletion time r is equal to AL</> / (WT) .

If the aquifer contributing to the springflow is made up of

several separate subregions, then the each subregion will have its

own characteristic depletion time, r .
o

The coefficient, r , or any other coefficient in one form or
o

other appearing in the expression like Eq. (2.17) describing a

spring recession curve, is related to the aquifer's geometry,

transmissivity, and storativity. Therefore, as an inverse problem,

it is possible to investigate about these aquifer properties by

the analysis of the hydrograph of a spring discharge. It is

assumed in the above mentioned analysis that pumpage or recharge

does not take place during the recession period of the springflow.

Unicell Model

The Unicell model (Mandel and Shiftan, 1981) interprets the

time series of spring discharge data and predicts spring

discharge. It is assumed that the spring is perennial and has a

well defined outlet, and the flow of the spring is fed from a

thick aquifer. The flow domain of the spring is conceptualised as

a tank, with vertical walls filled with porous material. The tank

has a spout at the bottom (Fig.2.11).
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F1G.2-11-UNICELL MODEL FOR SPRINGFLOW
(MANDEL & SHIFTAN, 1981) .

One log cycle
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FIG.2-12-DETERMINATION OF DEPLETION TIME to
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The flow of the spring during the dry season, is computed

from the model. A description of model is given below.

For d >> h , h+d a b = Constant

V(t) = A0h(t) ...(2.18)

Q(t) = KbCh(t) ...(2.19)

Q(t) = -dV ... (2.20)
dt

where h(t) is the elevation of the water level above the outlet,

V is the volume of water stored above the outlet, d the aquifer

thickness below the outlet, A is the base area of the tank, 0, and

K are the storativity and permeability of the aquifer,

respectively, and C is a dimensionless parameter representing the

flow pattern.

The elimination h (t) from Eqs.(2.18) and (2.19) gives

V(t) = A0/(KbC)* Q(t)= Q(t)* t ...(2.21)

and substitution of the derivative dV in Eq.(2.20) yields
dt

Q(t)+ To^ =0 ...(2.22)
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Solving Eq. (2.22) and applying the initial condition that at t=0,

Q=Q , we have
o

Q(t) = Q exp(-t/r ) ... (2.23)
o o

or log Q(t) = log Q - (1/2.3)* (t/r ) ...(2.24)
o o

where t is depletion time.
o

The variation of log Q(t) vs t plots a straight line on a
1 o

semi logarithmic scale (Fig.2.12).

Aquifer replenishment between the end of one dry season and

the beginning of the next dry season can be estimated by Eq.

(2.21) with the aid of principle of continuity. Mass balance for

the period, t to t , during which the replenishment to the spring
1 2

flow domain occurs, is

t t

2 2

Q(t ) t + /A R(t) dt -- J Q (t) dt + Q(t ).7
10 2 0

t t
1 1

. . . (2.25)

where R is the replenishment (LT ), A is the replenishment area
2

of the spring (L ).

For a thin aquifer, (permeable veener formation overlying an

impermeable bedrock) the spout is assumed at the extreme bottom

and therefore, the aquifer thickness is a function of time.

So d = 0, and b=h (t) ... (2.26)
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Q(t) = K C h2 (t) ... (2.27)

Combining Eq.(2.27) with Eqs. (2.18) and (2.19), yields

A 0 dh ,2, ,
— = - K C h (t)
dt

and solution of which results in

h(t +At) = h(t)/ [1+ KC At h(t)/(A0)]

Squaring both sides of the above expression and then multiplying

both sides by KC, the solution becomes

KCh2 (t+At) = KC h2(t)/ [1+ {KC At h2(t)/(A0 h(t))}]2

Q(t)

or Q(t+At) = ...(2.28)
(1+ At/r )2

o

where t = V(t) /Q(t) .
o

The depletion time t is determined using Eq.(2.28) by

computing the ratio Q / Q for successive time intervals and
(t + Ac) t

averaging the resulting values. The Eq. (2.28) is essentially

applicable for intermittent springs.
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Model Depicting Influence of Fractures

Kovacs (1981) showed the influence of different sized

fractures on springflow. The model reported io very simple. It is

conceptualised as the depletion of a cylindrical reservoir. The

water leaves through a pipe, which is filled with porous material.

The length and area of the cross section of the pipe are 1 and f

respectively and the hydraulic conductivity of material filling

the pipe is K. (Fig.2.13a).

At a point of time t, the amount of the outflowing water is

equal to the change of storage.

Hence -F.dh = Q.dt = fK (h/l).dt ...(2.29)

t = -Fl/(fK)ln h + C ...(2.30)

h = h exp(-a(t-t ) ... (2.31)
o o

Q = Q exp(-a(t-t ) ...(2.32)
o o

where initial flow rate at a point of time t (i.e.,Q =h Kf/1)
ooo

depends on the height of the water level (h ) at the same point
o

of time. The constant a = fK/(lF) is inversely proportional to the

storage capacity of the system.

Now, if two reservoirs are drained through the same outlet

(Fig.2.13b), their flow rates have to be added to get the

instantaneous discharge at a point of time t.
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Hence Q= Q exp[-a (t-t )] + Q exp[-a (t-t)] ...(2.33)
01 1 0 02 2 0

The comparison of the springflow estimated by the

mathematical model with observed yields from karstic springs

proves the accuracy of such approximation of the recession curve

and the constants can be calculated from the observed springflow

data.

2.3 STATISTICAL ANALYSES OF SPRINGFLOW

2.3.1 Karstic Springs

Almost one third of Turkey is underlain by carbonate rock

formations which are mostly karstified. Many a karst spring has

emerged from these carbonate rock formations. Ozis and Keloglu

(1975) studied a group of karstic springs named Sarikiz springs in

Western Turkey for autocorrelation, spectral analysis, lag cross

correlation. A comparison of peaks of the springflow with that of

precipitation revealed a time lag of approximately 2.5 months for

the first and 7.5 months for the second peak. On the basis of

topographical and geological conditions, it was assumed that the

first lag was indicative of the water travel through karst

formations while the second lag represented the flow through

alluvium from the flooded surface areas. These large time lags

were indicative of extremely large underground water retention.

The random element of the annual data is fitted satisfactorily as

a normal probability distribution.
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Knisel (1972) made time series analyses of 3 Karstic springs
in USA. The three springs are from the limestone area of Texas
and Missouri, namely, i) the Goodenough spring near Comstock,
Texas ii) San Folipe spring at Deh Rio, Texas, and iii) the Big
spring near Van Buren, Missouri. Because of rapid response of
limestone aquifers to recharge, he inferred that the 1 day time
series would be inadequate and suggested the analyses of 12-hour
and 6-hr time series.

2.3.2 Springs from Sandstone

The Sulkovy Prameny spring together with certain other
springs, form the main drainage of the Lower Turonian sandstone
strata in Czechoslovakia. These sandstone strata have large
supplies of groundwater through fissures. Monthly discharge data
of Sulkovy Prameny spring are available from 1901-70 (Kriz,
1973). The water year for the area is from November to October.

The maximum observed discharge of the Sulkovy Prameny springs was
0.2422 mV1 (on March 12, 1941) while the minimum observed
discharge was 0.0357 mV1 (on June 16, 1954) within this 70-year
duration. In these 70 years Over one half of the annual maxima,
occur in the spring months (March to May) while the remaining are
evenly distributed over all the remaining months. The minimum

annual discharge of the springs was registered mainly from October
to January.

In the statistical treatment of the observed data for 70

years for Sulkovy Pramney springs (Kriz, 1973), the 3658 weekly
discharge values of the springs were divided into 22 classes by
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arranging the weekly discharge values in descending order between

240.1 and 40 litres per sec with a class interval of 10 litres per

second. Cumulative frequency for each class of discharge was

determined. The cumulative frequency curve of weekly discharge of

the springs for the period of 1901-70 was obtained by plotting the

mid values of each of the 22 intervals against the relative

cumulative frequency expressed in percentage.

Further, Kriz (1973) classified these springs on the basis of

ratio of values of discharge read from the cumulative frequency

curve at 10% and 90% of the relative cumulative frequency (Q
10 "o

/Q ) according to a 5-unit scale, namely, (i) extraordinary
9 0 "o

balanced (1 to 2.5), (ii) well balanced (2.6 to 5), (iii) balanced

(5.1 to 7.5), (iv) unbalanced (7.6 to 10.0), and (v) extraordinary

unbalanced (more than 10) . The rr.nge of values of the ratio is

given in the brackets for each unit of the scale. The values of

discharge for the Sulkovy Pramney springs at 10% and 90% relative

cumulative frequency are 148 and 68 litres per second

respectively. The Sulkovy Prameny spring is, as such, ranked as

"extraordinary balanced" with a ratio value of 2.2. Kriz also

classified the water years 1901 to 1970 on the basis of

probability of exceedence of a discharge during a year over the

annual average discharge for the same year into five classes. The

classes are: (i) extraordinary yielding, for a probability lower

than 11%, (ii) yielding, for the probability range of 11 to 40%,

(iii) average yielding, for the probability range of 41 to 60%,

(iv) dry years, for the probability 61 to 90%, and (v)

extraordinary dry years if the probability exceeds 90%. On the
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basis of the classification, out of 70 years, 11 years were

"extraordinarily high", 20 years were "high", 11 years were

"average", 20 years were "dry", and remaining 8 years could be

termed as "extraordinarily dry". He concluded that the variation

in the annual average discharge of the springs repeated in a 3 to

6-year cycle. It was found that a 3-year running average of

discharge data smoothed out the periodicity of fluctuations in

them.

2.4 CONCLUSIONS

From the review of literature following conclusions are made:

(i) Depending upon geology and geomorphology, springs could

have various types of flow domain and geohydrological

boundary conditions. Only a few of them have so far been

investigated and mathematically modelled.

(ii) An active spring has a constant head at the outlet and

could serve as a boundary condition of Dirichlet type in

mathematical modelling of groundwater.

(iii) The existing models for the simulation of springflow

assume one time recharge in the beginning. So, the

models should be suitably adapted such that the

springflow could be simulated for time variant recharge.
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(iv) Assumption that an unsteady state is the succession of

steady state conditions in the flow domain of the spring

in the existing models, inhibit the simulation of

springflow from a spring which have a long transmissive

zone with low diffusivity. Hence, there is a need to

develop a mathematical model for unsteady flow of a

spring.

(v) The flow processes associated with springflow are

two-dimensional. The presently available models deal

with one-dimensional groundwater flow. As such, in order

to simulate springflow from a spring or from a group of

springs emerging from the slopes and foothills, a

two-dimensional mathematical model is required to

simulate springflow.

(vi) Most of the existing models assume that the springflow

is linearly proportional to the dynamic storage inside

the spring flow domain. This assumption needs

verification.
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CHAPTER-3

ANALYSIS OF SPRINGFLOW BY BEAR'S MODEL

3 .0 INTRODUCTION

Bear's springflow model (1979) simulates the recession

portion of a spring hydrograph. The model is based on the

assumption that the springflow is linearly proportional to the

dynamic storage in the springflow domain. Bear also has

interpreted the recession constant to be a product of hydraulic

diffusivity of the aquifer and a coefficient representing the

geometry of the aquifer. The Bear's conceptual model which

simulates springflow during recession and the model which

interpretes recession constant have been shown in Fig.2.9 and 2.10

respectively in the earlier chapter. In this chapter integrating

the two models of Bear an unsteady flow from a spring is analysed

for variable recharge.

3 .1 STATEMENT OF THE PROBLEM

Let h be the initial level of groundwater table which is

equal to the level of the spring's threshold. Let the spring be

inactive before the onset of recharge. The spring flow domain has

been conceptualised to be consisting of two parts:- i) a recharge

zone, and ii) a transmission zone. The length of the transmission

zone is 1. A time varying recharge, r(t), through the entire

recharge area commences at time t=0 due to which the groundwater

table in the recharge zone rises to h(t) . Consequently,

immediately after the onset of recharge, the springflow emerges
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from the spout of the spring of width W^Fig.3.1). It is required
to find the variation of the springflow with time.

Assumptions:

(a)

(b)

(c)

As implied in the Bear's model, the flow in the recharge
zone is in the vertical direction, and the flow in the

transmission zone is in the horizontal direction. The

Dupuit Forchheimer's assumptions are valid in the
transmission zone.

Springflow occurs immediately after a recharge.

In the transmission zone, the unsteady state flow is

equivalent to succession of steady state flows.

The assumption mentioned at (b) implies that there is

storage effect in the transmission zone and the flow in the
transmission zone is pressure flow.

3.2 ANALYSIS

First an expression for springflow has been derived for a

unit impulse recharge and using the response of the spring aquifer
system to the unit impulse recharge, the response to a unit pulse
perturbation has been derived. The springflow for a time varying
input has been obtained using convolution technique and the unit
pulse response coefficients.
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time t=0. Let the spring be inactive during the time t < 0. Since,

it has been assumed that there is no storage effect in the

transmission zone, and the unsteady flow in the transmission zone

is succession of steady state flows, the flow at any section of

the transmission zone is equal to the discharge, Q(t), of the

spring. The depletion rate from the recharge zone, in turn, is

equal to the springflow. A water balance equation for the recharge

zone over the time period t to t+At is

t+At

/ Q(r)dr ~ 0.5[Q(t)+Q(t+At)] At
t

= -Ah 4> A ... (3.1)

where Ah is fall in groundwater table in the recharge zone during

the time interval At, A is area of the recharge zone and A=LWr,

W =width of the recharge zone and 0 is the specific yield of the
R 1

aquifer in the recharge zone. When At >0, Eq.(3.1) reduces to

Q(t)= -<)>A§ •••(3.2)
i dt

According to the Darcy's law, the flow in the transmission

zone is given by

Q(t)= W T{h(t) -h }/l •••(3.3!
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where T = average transmissivity of the aquifer. Combining Eq.
(3.2) and Eq.(3.3)

i! (>><"->>,) ...(3.4,
dt A10

i

The watertable height in the recharge zone at time t—>0, for
the impulse recharge of N per unit area at t=0, is given by

h(0)=h2+N/^ ...(3.5)

Solution of the linear differential Eq. (3.4) for the initial
condition given by Eq. (3.5) is

W Tt
s

h(t)« h + (N/0 )e A10!
2 1 . . . \ J . O )

Substituting the expression of h(t) in Eq.(3.3) and defining
the term A10 /(w T)=t

is o '

Q(t) = {w TN/(10 )} e"t/To
s 1

= {W TAN/(A1 0 )} e"t/To
S 1

=R/t e"t/To „ _,
o ...(3.7)

where R = AN and R is the total recharge in m3 occuring
instantaneously at t=0. The springflow at time t=0 is



Q(0)= R/t ...(3.8'
o

Thus, flow Q(t) can be written as

Q(t)= Q(0) e"t/To ...(3.9)

Eq (3.9) is the Bear's equation for springflow. The

parameter, r , is the depletion time and is equal to Al<£ /(W T) as
0 1 s

derived by Bear. Eq.(3.4) being linear, the Duhamel's principle

can be applied to derive the expression for discharge of a spring

due to variable recharge.

Let k(t) be defined as the flow of a spring due to a unit

impulse recharge through the entire recharge area, A, taken place

at t=0. Therefore, k(t)= Q(t) when R=l. Hence, putting R=l in

Eq.(3.7)

k(t)= (1/t ) e"t/7o ... (3.10)
o

For a varying recharge rate r(t), the corresponding

springflow rate, q(t), can be expressed as

t

J
o

q(t) = / k(t-r) r(T) dT ... (3.11)

Let the time span be discretised by uniform time steps of

size At. Thus,t=n At where n is a positive integer. The springflow

rate at the end of n th time step is
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At 2At

q(nAt)= / k(nAt-r) r(r) dr + J k(nAt-T) r(r) dr +
At

7At nAt

/ k(nAt-r) r(r) dr + + / k(nAt-T) r(r) dr
(T-DOt (n-l)At

..(3.12)

Let the recharge be represented by a train of pulses. Let

R(7) be the total recharge during 7 th time step. Hence, the

recharge rate, r(r), during 7 th time step =R(7)/At. Assuming that

the recharge rate is constant during a time step, but it varies

from time step to time step, Eq.(3.12) simplifies to

n 7At

q(nAt)= E R(T)/At / k(nAt-r) dr
7=1 (7-1)At

=ER(7)/At va /^ (i/r )e-(nAt-T)/To dr
7=1 (7-1)At 0

=ER(7)/At / (At/rJ e-At{<n-T+U-v}/T
7=1 0 0

v^n/ \l -(n-7 +1) At/T -(n-))At/T ,,-• E R(y) {-e 0 + e ' o}/At
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Equation (3.13) could be further simplified in terms of

discrete kernel coefficients in the following manner.

Let a discrete kernel coefficient 6(At,n) be defined as

6(At,n )=
At o

At

/ k( nAt-T dr (3.14)

6(At,n) is the response of the spring aquifer system due to

a unit pulse perturbation imparted during the first time step.

Incorporating the expression of k(t) in Eq. (3.14)

At - (nAt-T)/t

6(At,n) = -£- / (1/t )e
At 0 0

dr (3.15:

Let t =v At and dr= At dv. Making these substitutions in

Eq.(3.15) and integrating

i -At(n-i/)/T

5(At,n)= —— / (At/r ) e
At 0 o

dv

1 -nAt/r ( vLt/r
•— (At/r ) e o J e o dv
At 0 o

. -nAt/r -(n-1)At/r ,
= {-e o+e o)/At
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In terms of discrete kernel coefficients, Eq.(3.13) simplifies to

q(nAt) = E R(7) <5(At,n-7+l) ...(3.17)
7 = 1

If the depletion time, t , is in month unit, and At is in
o

month unit, the springflow rate, q(nAt) is in the unit of m per

month.

An observed springflow at any time n consists of two

parts; one part is the response to the recharge that has occurred

since the time origin and the other part is the response to the

perturbation prior to the time origin. The component q(nAt)

corresponds to the recharge taken place since the time origin.

Thus, using the convolution technique and the Bear's model, the

springflow for a time variant recharge can be simulated.

3.3 THE INVERSE PROBLEM

In the inverse problem, the unknowns are the time varying

recharge to the spring flow domain and the depletion time, t .

Using the measured discharge of the spring during recharge period

and atleast one value of the springflow during the non recharge

period, the unknowns can be computed.

Let K(t) be the unit step response function of a spring. The

unit step response function K(t), can be evaluated by integrating

k(t), the response function for a unit impulse recharge. k(t) has

been defined in Eq.(3.10).
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Hence

t t

K(t)= / k(r) dr = I(1/t ) exp( -t/t ) dr
0 0 0 0

1 -t/7= 1-e o

or K(nAt) = 1- {exp(-nAt/r )}

=l-yn ...(3.18)

where y = exp(-At/r ) and At = unit time step.
o

Further, the discrete kernel coefficient, 6(At,n), can be

expressed in terms of a unit step response function, K(nAt) , as

6(At,n)= (K(nAt)-K(nAt-At)}/At

Hence 6(At,1)=K(At)/At = (l-y)/At

5(At,2)={K(2At)-K(At)}/At = (y-y2)/At

6(At,n)={K(nAt) -K(nAt-At) }/At = (y""1- y") /At

.. . (3.19)
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The component of the springflow, Q (nAt), which is the
B

response to the perturbation prior to the time origin is given by

Q (nAt)= Q(0) exp(-nAt/r ) = Q(0) y
B 0

where Q(0) is the springflow at time t=0.

Hence Q (At) = Q(0) y
B

Q (2At)= Q(0) y2
B

Q (7At)= Q(0) y1
B

(3.20)

Q (nAt)= Q(0) y ... (3.21)
B

where Q (7 At) is the component of springflow rate at t=7At to
B

perturbation before time t=0.

Let Q(At), Q(2At), Q(3At)...,Q{(n-l)At}, Q(nAt) are the

springflow rate and R(l), R(2), R(3),....R(n-1) are the values of

corresponding recharge which are unknowns. The recharge R(n) is

equal to zero.

The springflow rate at the end of n th time step, Q(nAt), is

given by
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n -nAt/T

L R(7) 6(At,n-7+l) + Q(0)e '= Q(nAt)

n -nAt/r

or E R(7) <5(At,n-7+l) + Q(0)e ° - Q(nAt)=0

n

or E R(7) (yn~y - yn_T+1)/At+Q(0)yn-Q(nAt) = 0

(3.22)

Let r (7) =R(7)/At. The equations for each of the n

observations are

r(l) (1-y) + Q(0)y - Q(At) = 0

= f [r(l)., r(2), r(3) r(n-l), y]

r(l) (y-y2) +r(2) (1-y) + Q(0)y2- Q(2At) = 0

= f [r(l), r(2), r(3) r(n-l), y]

r(l) (y2-y3)+r(2) (y-y2)+r(3) (l-y)+Q(0)y3-Q(3At) = 0

= f3[r(l), r(2), r(3) r(n-l), y]
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,., n-1 n . . n-2 n- 1, , ., n-7 n-7+1,
r(l)(y - y ) +r(2)(y -y ) + r(7)(y -y ' ) +...+

. r n - (n -1 ) n-(n-2)i ,,n
r(n-l){y - y } + Q(0)y-Q(nAt) = 0

= f tr(l) , r(2) , r(3) ,
n

r(n-l), y] . . (3.23)

In Eq.(3.23), r(l), r(2), r (3) ,..,r (n-1) and y are the n

unknowns which are to be solved from the n equations. The

procedure for solving the set of nonlinear equations by Newton

Raphson iterative technique is well documented (Carnahan, 1969)

and is adopted here for finding the unknowns.

Let, r = r be a solution of the nonlinear system of

Eqs. (3.23) in which the vectors, r and r are

r = [r(l) , r(2) , r(n-l) , y] T

r = [r(D , r(2) , r(n-l), y ]

This means f (r)= f (r) =
1 2

= f (r) =0
n

If r approximates r, the increment from r to r is

Ar = r-r=

r(l)

r(2)

r(l)

r(2)

r(n-1)-r(n-1)

y - y
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The problem is to find the vector Ar, i.e., to find the

direction and distance to move from r to r . Rather than seeking

the exact increment Ar that satisfies f.(r+Ar)=0 for all i, the

Newton-Raphson technique suggests to find an approximate

increment, dr, that satisfies more easily the linear approximation
of

fi(r+dr)=0 for 1= 1, 2,...n

in which dr =[dr(l), dr(2), dr(n-l), dy]T

This means that

f (rU fi dr(l) afi dr(2) 5fi dr(n-l) dfi dy
i ar(i) + arT2T +-"--+ dTTrTTT) +^y— =°

f (r)+ df* dr(D + ^^ dr(2) df2 dr(n-l) af2 dy
2 3r(l) dr(2) dr(n-l) + dy

f #r» . "-1 dr(l) n-i dr(2) fn'-1 dr(n-l) afn-i dy
n-ilr;+ar(i) + a7(2T +••••+ aTTn^I) +~^T =°

f (r)+ n dr(l) n dr(2) dfn dr(n-l) dfn dy
}+ 3rd) +J7l2) +--'-+ arTn^I) +~dy~ =°n

(3.24)
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In matrix notation the Eqs. (3.24) can be written as

3f dt 3f 3f

3r(l) 3r(2) 3r(n-l) 3y
dr(l)

dt dt 3f 3f

3rd) dr(2) 3r(n-l) 3y
dr(2)

dt
n- 1

3f
n- 1

3rd) dr(2)

3f
n- i

3f
n- i

3r(n-l) 3y
dr(n-l)

n - 1

dt
n

3f
n

3rd) 3r(2;

dt
n

3f
n

3r(n-l) 3y
dy

or [a] tb] = [c] (3.25)

where [a] is the left hand side square matrix and is known as

Jacobian matrix, [b] is the left hand side column matrix, and [c]

is the right hand side column matrix.

3f.

In Eqs. (3.25), the partial derivatives, —-—— , and f. are

evaluated at currently known values of r=r .

The elements, a(i,j), of the Jacobian matrix for the present

problem are
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*

a(l,l) = 1-y ; a(l,j)=0 for j= 2, ,.,(n-l); and

a(l,n) = -r (1)+Q(0)

* *2 *
a(2,l) = y -y ; a(2,2)=l-y ; a(2,j)=0 for j = 3,....; (n-1) , and

a(2,n) = -r (2)+r (1) (l-2y ) + 2Q(0)y

* (n-1) *n . * (n-2) *(n-1)
a(n,l) = y -y a(n,2)= y -y

* * 2
a[n, (n-1) ] = y - y ; and

/ \ * ,-, n r / -, v *(«-2 ) *(n-l).a(n,n)=r (l)[(n-l)y -ny ]

* /~>\ r / ^\ *(n-3) . , , *(n-2)1+r (2) [ (n-2)y - (n-l)y ]

* /-.x r / -,v * (n- 4 ) , ^. *(n-3)n
+r (3) t (n-3)y - (n-2)y ]+....

+r*(n-l) (l-2y*)+nQ(0)y*<n'1> ... (3.26)

Following matrix inversion

[b] =[a]_1[c] ...(3.27)

* it -k

To start with, an initial guess of r (1) , r (2) , ..., y is
•

made and dr is solved using Eq.(3.27). Improved r values are then

obtained by adding the increment dr to the earlier r . The

iteration is continued till the modulus of the difference between

two successive iterated values is less than a small prescribed

value.
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3.4 RESULTS AND DISCUSSIONS

Bear's model, which can simulate springflow for a time

variant recharge, is based on solution of a linear differential

equation. This implies that the spring aquifer system in Bear's

model is a linear system. Therefore, it will be appropriate to

recheck that the springflow computed using Bear's model follows

the principles of proportionality and superposition.

For verification of the principle of proportionality, the

simulated springflow corresponding to a pulse recharge of 50

million cubic meter in the first month was compared with the

simulated springflow for a pulse recharge of 100 million cubic

meter in the first month. The springflow for the latter case is

found to be twice that of the former case. The respective

springflow values simulated for the two cases are presented in the

Table 3.1. In order to verify the principle of superposition,

springflow for three different recharge scenarios, viz., (i) 100

million cubic meter of recharge in the first month and no recharge

thereafter, (ii) 50 million cubic meter of recharge in the second

month and no recharge prior and afterwards, and (iii) 100 and 50

million cubic meter of recharge in the first and the second month,

respectively and no recharge afterwards, is compared. The

comparison of the simulated springflow for these three cases is

presented in Table 3.2. The summation of monthly springflow

simulated for the case (i) and case (ii) is equal to the monthly

springflow simulated in case (iii) . A depletion time of 8 month

has been used to compute the springflow. From the results shown in

Tables (3.1) and (3.2), it is verified that the Bear's springflow

model is a linear flow model as expected.
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Table 3.1 Springflow values for two different pulse recharge

computed using a depletion time, r = 8 month, At=l month

Springflow in million

Time cubic meter per month

(month) for a pulse recharge of

50 million cu m during

the first time step

1

2

3

4

5

6

7

8

9

10

11

12

5.875

5.185

4.576

4.038

3.563

3.145

2 .775

2 .449

2.161

1.907

1.683

1.485

81

Springflow in million

cubic meter per month

for a pulse recharge of

100 million cu m during

the first time step

11.750

10.370

9.152

8.076

7.126

6.290

5.550

4.898

4.322

3.814

3.366

2.970



Table.3.2 Simulated springflow for different pulse recharges

during different time steps, r = 8 month, At=l month

Time

(month)

1

2

3

4

5

6

7

8

9

10

11

12

Springflow in million cubic meter per month for

Recharge(1)

=100 million

cubic meter

11.750

10.370

9.151

8.076

7.127

6.289

5.550

4 .898

4 .323

3.815

3 .366

2.971

Recharge(1)=0

Recharge(2)

=50 million

cubic meter

0.000

5.875

5.185

4.576

4.038

3.563

3.145

2 .775

2 .449

2 .161

1. 907

1.683
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Recharge(1)

=100 M cu m

Recharge (2)

=50 million

cubic meter

11.750

16.245

14.336

12.652

11.165

9.852

8.695

7.673

6 .772

5.976

5.273

4.654



The unit pulse response coefficients, 6(At,n), are the

springflow due to a unit pulse recharge taken place during the

first time step and is defined in Eq.(3.14). Two sets of

coefficients are generated, using Eq. (3.16) for r = 8 and 16 month

and the variations of 6(At,n) with time are presented in Fig.3.2.

6(At,n) being the springflow due to a unit pulse recharge imparted

during the first time step through the entire recharge zone, area

under each of the graphs is one. The plot of logarithm of 6(At,n)

values with n, presented in Fig.3.3, follows a straight line

beyond n=l and the depletion time estimated from the slope of the

straight line is equal to the depletion time used to generate

6(At,n). The linear variation of log 6(At,n) with n during

recession verifies the linear relationship of springflow with

dynamic storage during recession period.

Assuming r = 8 month, springflow corresponding to a set of
o

time varying recharge is computed and presented in Fig.3.4. The

time varying recharge assumed is indicated in the figure. It is

noticed from the graph that if during two or more consecutive time

steps, slope of the graph does not change from negative to

positive, and magnitude of the slope remains the same, then during

these periods there is neither recharge to the springflow domain

nor abstraction from it. Further, it is observed that the plot of

logarithm of simulated springflow versus time, for a time varying

recharge and abstraction, follows a straight line only during the

period of no recharge and no abstraction. The depletion time

computed from the slope of the straight line during period of no

recharge and no abstraction is same as the depletion time
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parameter used to simulate the springflow by the model. As such

the periods of no recharge and no abstraction, could be

ascertained from the slope of the graph of logarithm of the

observed springflow versus time. The slope, a , of the graph

log Q(t) versus time t can be expressed as
1 o

a=(log Q(t+At) - log Q(t))/At ...(3.28)
2 10 10

For recession period, the slope is negative and the negative sign

can be used to segregate recession period from the recharge

period.

Estimation of Recharge and Depletion Time by the Newton-Raphson

Method

The Bear's springflow model has been applied to three springs

for which reasonably long springflow records are available. The

three springs are: (i) Sulkovy Pramney spring, Czechoslovakia,

emerging from sandstone strata (a third magnitude spring) (Kriz,

1973), (ii) Kirkgoz spring, Turkey, emerging from karstic aquifer

(a first magnitude spring) (Korkmaz, 1990), and (iii) White Rock

spring, Nevada from perched waters in volcanics tuffs ( a eighth

magnitude spring). From the available springflow data, the

respective periods of springflow which have been used in the

analyses are: (i) Sulkovy Pramney spring- March, 1961 to July,1969

(101 months), (ii) Kirkgoz spring- October, 1973 to May,1981 (92

months), and (iii) White Rock spring- October, 1982 to July, 1986

(46 months).
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At the outset, it has been assumed that all the springflow

data are free from any error. Since monthly springflow data

are reported, the time step size has been taken as one month. From

the springfflow data for each spring, the slope of the graph of

logarithm of springflow versus time for each time step is

calulated using Eq. (3.28) . The consecutive time steps in which the

slopes do not change their sign and do not differ much, say about

20% or so, are the time steps of no recharge or no abstraction

from the spring flow domain.

After ascertaining the period of no recharge and no

abstraction from the the spring flow domain, the Newton-Raphson

method for solving the set of non-linear equations has been used

to compute the time varying recharge and to estimate the depletion

time parameter, t , for each of the three springs. The springflow
o

values for each spring have been so arranged to form a number of

sets such that the last springflow value in each set corresponds

to a period of no recharge and no abstraction. The selection of

the last value of the springflow in a set is a critical task and

recharge or abstraction must be zero at that time step. However,

there may be other time steps in the set where the recharge or

abstraction is zero. The following guidelines are followed to

select the last value of a set.

1. There should be two or more consecutive negative values of

the slopes.

2. The magnitude of these negative slopes should not differ

much.
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3. If the Jacobian does not exist for a set, springflow values

adjacent to the last time step should be tried.

4. The last value of the set could be the lowest springflow

value in a set.

5. Abstraction rate and depletion time obtained for a

selected set should not be abnormal.

Sets of springflow values for each of the three springs are

formed with these guidelines. The first value of springflow in a

set of data has been used to estimate the component of springflow

due to perturbations prior to the cime origin. The last value of a

set is taken as the first value of springflow for the succeeding

set. Initial guess of depletion time parameter, T , and recharge

are made. It has been found that the Newton-Raphson method

performs well with any initial guess of the model parameter, T ,

and the recharge values. The iteration continued till the

difference between two successive iterated values of R became

less than 0.001.

The depletion times computed by all sets for a spring are

averaged and the recharge is computed for the average depletion

time. The computed recharge and depletion time parameters by the

Newton-Raphson method and the recharge computed with the average

depletion time by the Bear's model for each of the springs are

presented in Tables 3.3, 3.4, and 3.5. The selected sets of

springflow for the Newton-Raphson method are indicated in the

Tables.
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For the Kirkgoz spring, Turkey, the summations of monthly

recharge for water years 1974 to 1980 (October to September), are

compared with the annual recharge for these water years computed

by Korkmaz (1990) . It is found that the recharge values computed

by the model are of comparable magnitudes with the annual recharge

values estimated by Korkmaz, except for the water year 1978. The

comparison is presented in Table 3.6.
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Table 3.3(a) Observed springflow, recharge and depletion time

computed by Newton Raphson method, for Sulkovy

Pramney spring, Czechoslovakia

Time Observed

Springflow

mth) (10 cu m

per month)

0(3/61) .16615

1 .17680

2 .24470

3 .28280

4 .27110

5 .26850

6 .27370

7 .26280

8 .28360

9 .26360

10 .25870

11 .35040

12 .35720

13 .30510

14 .32450

15 .32660

16 .29100

17 .28070

18 .27220

19 .26330

Slope

{a )
2

(month

,1412

0628

0183

0042

,0083

0176

,0331

,0318

,0081

,1318

,0083

0685

0268

0028

0501

0157

0134

0144

0184

Pulse recharge computed by

Newton-Raphson

method

(10 cu m)

qi

.49

2.25

1.41

- .08

.19

.42

- .06

.89

- .32

.11

3.06

.55

1.23

.89

.38

- .76

- .02

.02

.00

06:30 month

Bear's Model

for average

t =2 5.8 month
o

10 CU III)

,45

,96

,25

,02

.20

,41

.01

.81

.24

.13

,67

,53

01

82

38

61

02

06

04



Table 3.3(b) Observed springflow, recharge and depletion time

computed by 'Newton Raphson method, for Sulkovy

Pramney spring, Czechoslovakia 4

Time Observed Slope Pulse recharge computed by
Springflow (a )

Newton-Raphson Bear's Model

method for average

t =25 .8 month
0

(month) (10 cu m (month ) (10 cu m) (10 cu m)

per month)

19 .263300

20 .27470 -.0070 .46 .56

21 .27030 -.0144 .19 .16

22 .26150 -.0038 .11 .04

23 .25920 .0057 .22 .20

24 .26260 .0138 .32 .35 ' ^

25 .27110 .0243 .41 .49

26 .28670 -.0112 .55 .68

27 .27940 -.1048 .15 .09

28 .21950 -.0586 -.79 -1.30

29 .19180 .0063 -.27 -.51

30 .19460 -.0436 .24 .27

31 .17600 -.0307 --.13 -.29

32 .16400 -.0209 - .04 -.14

33 .15630 -.0296 .03 -.03

34 .14600 .0856 -.03 -.11

35 .17780 .0347 .71 .98

36 .19260 .1628 .44 .57
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continued...Table 3.3(b)

Time Observed Slope Pulse recharge computed by

Springflow (a )
Newton-Raphson Bear's Model

method for average

r =25.8 month
o

(month) (10 cu m (month ) (10 cu m) (10 cu m)

per month)

•37 .28020 -.1819 1.75 2.50

38 .18430 -.0364 -1.43 -2.24

39 .16950 -.0778 -.08 -.20

40 .14170 .0218 -.32 -.56

41 .14900 -.0513 .27 .33

42 .13240 .0460 -.15 -.29

43 .14720 .0053 .39 .52

44 .14900 .0194 .17 .19

45 .15580 -.0232 .27 .33

46 .14770 -.0791 .02 -.06

47 .12310 .2215 - .29 -.50

48 .20500 .1324 1.59 2.28

49 .27810 -.0622 1.51 2.13

50 .24100 .2108 -.38 -.70

51 .39160 -.0656 2.93 4.20

52 .33670 -.0962 -.59 -1.05

53 .26980 -.0248 -.86 -1.42

54 .25480 -.0036 .00 - -.12

55 .25270 -.0504 .21 .20

56 .22500 -.0232 -.24 -.47

i
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continued...Table 3.3(b)

Time Observed

Springflow

Slope

{a )
2

Pulse recharge computed by

Newton-Raphson

method

(month) (10 cu m

per month)

(month ) (10 cu m)

Bear's Model

for average

t =25.8 month
o

10 cu m

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

.21330

.21150

.28510

.30850

.29520

.27780

.25250

.28253

.41705

.34862

.30845

.28149

.29393

.29575

.40280

.41368

.41031

.36910

.35225

.33255

0037 .02

1297 . 18

0343 1. 52

0191 . 70

0264 .07

0415 - .02

0488 - .17

1691 .78

0778 2.68

0532 - .80

0397 - .37

0188 - . 17

0027 . 50

1342 .32

0116 2.21

0036 . 59

0460 .35

0203 - .32

0250 .07

0430 .00

t =17.38 month
0

.08

.16

.14

90

04

16

38

04

82

38

71

40

,61

,34

,11

,69

33

67

07

17



Table 3.3(c) Observed springflow, recharge and depletion time

computed by Newton Raphson method, for Sulkovy

Pramney spring, Czechoslovakia

Time Observed

Springflow

Slope Ptilne recharge computed by

(a )
2 Newton-Raphson Bear's Model .

method for average

(month)
6

(10 cu m

per month)

(month ) (10 cu m)

t =25.8 month
0

(10 cu m)

76 .33255
.

77 .30119 -.0094 - .62 - .49

78 .29471 -.0497 .10 .13

79 .26283 -.0100 - .67 - .54

80 .25687 -.0486 . 08 .10

81 .22965 .0646 - .57 - .46

82 .26646 .0665 1.35 1.20

83 .31052 .0516 1.60 1.43

84 .34966 .0058 1.50 1.34

85 .35433 -.0573 .48 .47

86 .31052 - .0966 - .97 - .80

87 .24857 -.0749 -1.57 -1.32

88 .20917 .0531 .95 - .79

89 .23639 - .0160 1.03 .93

90 .22784 -.0100 - .02 .01

91 .22265 - .0046 .07 .09

92 .22032 -.0193 .15 .16

93 .21073 - .0065 - . 07 -.03

94 .20762 .0389 .11 .13

95 .22706 .0657 . 80 .72

96 .26412 .0593 1.35 1.20

97 .30275 - .0421 1.44 1.28

98 .27475 -.0116 - .54 -.43

99 .26749 - .0145 . 05 . 08

100 .25868 .0048 .00

T =29.89
0

.03
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Table 3.4(a) Observed springflow, recharge and depletion time

computed by Newton Raphson method,for Kirkgoz spring,

Turkey

Time Observed Slope Pulse recharge computed by
Springflow , .

(a )
2 Newton-Raphson Bear's Model

method for average

t =6.1 month
o

(month) (10 cu m (month ) (10 cu m) (10 cu m)

per month)

0(10/73) 28.12 -.0017

1 28.01 -.0075 26.86 27.44

2 ' 27.53 .0584 22.52 24.76

3 31.49 .1933 72.78 53.76

4 49.14 -.0060 233.18 148.23

5 48.47 -.0089 41.48 44.69

6 47.49 -.0088 37.27 41.96

7 46.53 -.0365 36 .51 41 .19

8 42.79 -.0632 3.79 21.75

9 36.99 -.0851 -23.48 04.47

10 30.41 -.0431 -38.20 -06.53

11 27.54 -.0398 -02.38 11.42

12 25.13 .0350 00.00 11.58

r =10.92 month
o •
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Table 3.4(b) Observed springflow, recharge and depletion time

computed by Newton Raphson method,for Kirkgoz spring,

Turkey

Time Observed Slope Pulse recharge computed by
Springflow

(or )
2 Newton-Raphson Bear's Model

method for average

t =6.1 month
o

(month) (10 cu m (month ) (10 cu m) (106 cu m)
per month)

12 25.13

13 • 27.24 -.0024 39.13 39.08

14 27.09 .0490 26.24 26.26

15 30.33 .0458 48.58 48.50

16 33.70 .0383 52.69 52.61

17 36.81 .0380 54.33 54.27

18 40.18 .0343 59.17 59.09

19 43.48 -.0192 62.07 62.03

20 41.60 -.1146 31.00 31.05*

21 31.95 -.0240 -22.43 -22.22

22 30.23 -.0742 20.53 20.57

23 25.48 -.0710 -01.28 -1.16

24 21.64 .0762 00.00 00.08

• t = 6.12 month
o
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Table 3.4(c) Observed springflow, recharge and depletion time

computed by Newton Raphson method,for Kirkgoz spring,

Turkey

Time Observed Slope Pulse recharge computed by

Springflow , .
(<y )
2 Newton-Raphson Bear's Model

method for average

t =6.1 month
o

(month) (10 cu m (month ) (10 cu m) (10 cu m)

per month)

24 21.64

25 25.79 .0849 45.83 49.09

26 31.36 .1321 58.26 62.63

27 42.51 .1115 96.37 105.08

28 54.95 -.0352 115.04 124.79

29 50.67 -.0720 29.99 26.67

30 42.93 .0348 5.53 -00.51

31 46.52 -.0353 63.86 66.62

32 42.89 -.1097 25.35 22.52

33 33.32 -.0700 -12.91 -20.40

34 28.36 -.0396 4.39 00.51

35 25.89 -.0816 13.95 12.02

36 21.45 .0086 00.00 -03.44

t = 5.31 month
o
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Table 3.4(d) Observed springflow, recharge and depletion time

computed by Newton Raphson method,for Kirkgoz spring,

Turkey

Time Observed Slope Pulse recharge computed by
Springflow

(ot )
2 Newton-Raphson Bear's Model

method for average

t =6.1 month
o

(month) (10 cu m (month ) (10 cu m) (10 cu m)

per month)

36 21.45

37 21.88 .0846 23.82 24.28

38 26.58 .0966 47.86 52.99

39 33.20 .0392 63.17 70.37

40 36.34 .0167 50.55 53.95

41 37.77 -.0509 44.24 45.77

42 33.59 .0300 14.66 10.17

43 36.00 -.0257 46.91 49.48

44 33.92 -.1525 24.50 22.30

45 23.88 -.0867 -21.57 -32.50

46 19.56 .0590 00.00 -04.71

t = 5.01 month
o
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Table 3.4(e) Observed springflow, recharge and depletion time

computed by Newton Raphson method,for Kirkgoz spring,

Turkey

Time Observed Slope Pulse recharge computed by

Springflow
(CK )

2 Newton-Raphson Bear's Model

method for average

r =6.1 month
o

(month) (10 cu m (month ) (10 cu m) (10 cu m)

per month)

46 19.56

47 22.40 -.1280 31.93 38.38

48 16.68 .0383 -02.53 -15.41

49 18.22 .0407 23.39 26.85

50 20.01 .2779 26.02 30.07

51 37.95 .2257 98.20 138.64

52 63.81 -.0089 150.67 208.98

53 62.52 -.0166 58.18 55.27

54 60.17 -.0175 52.27 46.97

55 57.79 -.0880 49.79 44.41

56 47.18 -.0683 11.54 -12.34

57 40.32 -.1131 17.27 01.77

58 31.07 -.0470 00.00 -20.83

t =3.84 month
o-



Table 3.4(f) Observed springflow, recharge and depletion time

computed by Newton Raphson method,for Kirkgoz spring,

Turkey

Time Observed Slope Pulse recharge computed by
Springflow

2 Newton-Raphson Bear's Model
method for average

t =6.1 month
o

(month) (106cu m (month"1) (106 cu m) (10 cu m)
per month)

58 31.07

59 27.88 -.0246 12.75 10.00

60 26.35 .0028 :. 19.09 17.72

61 26.52 .0414 27.32 27.46

62 29.17 .1723 41.73 44.04

63 43.36 .2599 110.64 123.07

64 78.88 -.0561 247.29 278.29

65 69.33 -.1313 24.04 15.68

66 51.24 -.0391 -34.53 -50.28

67 46.83 .0579 25.92 22.07

68 53.51 -.0831 85.18 90.99

69 44.19 -.0485 00.00 -08.10

t = 5.22 month
o
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Table 3.4(g) Observed springflow, recharge and depletion time

computed by Newton Raphson method,for Kirkgoz spring,

Turkey

Time Observed Slope Pulse recharge computed by

Springflow (a )
Newton-Raphson Bear's Model

method for average

t =6.1 month
o

(month) (10 cu m (month ) (10 cu m) (10 cu m)

per month)

69 44.19

70 39.53 -.0414 12.84 13.32

71 35.93 -.1406 15.31 15.73

72 25.99 .1694 -30.93 -29.80

73 38.39 .0391 109.40 107.98

74 42.01 .0936 62.74 62.34

75 52.12 -.0287 110.01 108.86

76 48.78 -.0074 29.65 30.05

77 47.95 -.0059 43.19 43.30

78 47.30 -.0106 43.57 43.67

79 46.17 -.0203 39.69 39.80

80 44.06 -.0699 31.97 32.25

81 37.51 -.0428 00.00 00.74

t = 6.21 month
o



Table 3.4(h) Observed springflow, recharge and depletion time

computed by Newton Raphson method,for Kirkgoz spring,

Turkey

Time Observed Slope Pulse recharge computed by
Springflow

2 Newton-Raphson Bear's Model

method for average

t =6.1 month
o

(month) (106cu m (month ) (10 cu m) (10 cu m)
per month)

81 37.51

82 33.99 -.0370 14.38 14.22

83 31.22 -.1160 15.79 15.65

84 23.90 .0348 -16.86 -17.19

85 25.89 .0787 36.97 37.10

86 31.04 .2122 59.72 59.90

87 50.60 .0460 159.53 160.39

88 56.25 .0724 87.71 87.97

89 66.45 -.0664 123.26 123.70

90 57.02 -.0717 4.50 04.13

91 48.34 -.0035 00.00 -00.40

t =6 .05 month
0 '
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Table 3.5(a) Observed springflow, recharge and depletion time

computed by Newton Raphson method, for White Rock

spring, Nevada

Time Observed Slope Pulse recharge computed by

Springflow , ,
(a )
2 Newton-Raphson Bear's Model

method for average

t =6.43 month
o

(month) (cu m (month ) (cu m) (cu m)

per month)

0 3.90(10/82)

1 3.90 .0110 3.90 3.90

2 4.00 .1222 4.80 4.59

3 5.30 .1270 15.70 13.03

4 7.10 .1078 21.50 17.80

5 9.10 .0744 25.10 20.99

6 10.80 -.0422 24.40 20.90

7 9.80 -.1162 01.80 3.86

8 7.50 .0058 -10.90 . -06.17

9 7.60 .0057 08.40 8.19

10 7.70 .0273 08.50 8.29

11 8.20 .0500 12.20 11.17

.12 9.20 -.0946 17.20 15.14

13 7.40 -.0304 -07.00 -03.30

14 6.90 -.0395 02.90 3.93

15 6.30 -.0512 01.50 2.73

16 5.60 -.0406 00.00 1.44

T - 8.49 month
o

i
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Table 3.5(b) Observed springflow, recharge and depletion time

computed by Newton Raphson method, for White Rock

spring, Nevada

Time Observed Slope Pulse recharge computed by

Springflow

2 Newton-Raphson Bear's Model

method for average

r =6.43 month
o

(month) (cu m (month ) (cu m) (cu m)

per month)

16 5.60

17 5.10 -.0263 03.27 2.13

18 4.80 .0000 03.70 3.02

19 4.80 -.0280 04.80 4.80

20 4.50 .1663 03.40 2.72

21 6.60 .1805 14.25 19.08

22 10.00 -.0655 22.38 30.21

23 8.60 -.1216 03.50 0.28

24 6.50 -.1053 -01.15 -05.98

25 5.10 .1185 00.00 -03.22

t = 4.14 month
o
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Table 3.5(c) Observed springflow, recharge and depletion time
computed by Newton Raphson method, for White Rock

spring, Nevada

Time

(month)

25

26

27

28

29

30

31

Observed

Springflow

Slope

(a )
2,

(cu m (month ')
per mon th)

5.10

6 .70 .0982

8 .40 - .0212

8 .00 -.1178

6 .10 -.0611

5.30 -.0615

4.60 -.0293

Pulse recharge computed by

Newton-Raphson

method

(cu m)

17 .21

19.57

05 . 37

-06.38

-00.04

00.00

.7 = 7.04 month
o

Bear's Model

for average

t =6.43 month
o

(cu m)

16 .21

18 . 50

5 .62

-05.19

.55

.44

Table 3.5(d) Observed springflow, recharge and depletion time

computed by Newton Raphson method, for White Rock

spring, Nevada

Time

(month)

31

32

33

34

35

Observed

Springflow

Slope

(a )
2

(cu rr (month )

per month)

4.60

4.30 - .0314

4.00 -.0580

3 .50 - .0669

3 .00 - .0147

Pulse recharge computed by

Newton-Raphson

method

(cu m)

02.50

02.20

00.50

00 .00

6.48 month

106

Bear's Model

for average

t =6.43 month
o

(cu m)

2.52

2.22

.53

.03



Table 3.5(e) Observed springflow, recharge and depletion time

computed by Newton Raphson method, for White Rock
spring, Nevada

Time Observed Slope Pulse re<charge computed by
Springflow (a )

2

Newton-Raphson Bear's Model

method for average

t =6.43 month
o

•

(month) (cu m (month ) (cu m) (cu m)
per month)

35 3.00

36 2.90 .0561 02.35 2.31

37 '3.30 .0256 05.50 5.68

38 3.50 -.1127 04.60 4.69

39 2.70 .0310 -01.70 -2.05 .

40 2.90 .0817 04.00 4.09

41 3.50 .0580 06.80 7.07
•

42 4 .00 - .1249 06.75 6.97

43 3.00 -.0621 -02.50 -2.94

44 2.60 - .0726 00.40 0.22

45 2.20' - . 0414 00. 00

r = 5.98
0

month

-.18

Table 3.6 Annual recharge to the Kirkgoz spring,Turkey

'

Water year Recharge estimated Re<:harge estimated
by Korkmaz on annual by the model on

basis monthly basis
no cu m) do'

0

1 cu m)

1974 426 .8 474 .4

1975 349 .3 393 .8

1976 439 .5 458 .6

1977 317 .7 347 .7

1978 604 .6 500 .1

1979 564 . 0 609 .2

1980 486 .8 500 .4
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3.5 CONCLUSIONS

Based on the study presented in this chapter, the following

conclusions have been made:

(i) The flow domain of a spring in Bear's model performs

as a linear system.

(ii) The linearity assumption between springflow and the dynamic

storage in the spring flow domain is valid for the Bear's

model in which the flow domain is a closed system. A closed

flow domain implies that all the recharge will appear as

springflow.

(iii) The logarithm plot of observed springflow with time follows

a straight line only during the period of no recharge and no

abstraction. The slope of the straight line during the

periods of no perturbation equals the negative of the

reciprocal of 2.3 times the depletion time.

(iv) The inverse problem can be solved using the Bear's model.

The time variant recharge and the depletion time parameter

are the unknowns. The unknowns could be computed by the

Newton-Raphson iterative method by solving a set of

nonlinear equations with any initial guess of model

parameters to begin with.
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CHAPTER-4

A ONE DIMENSIONAL GROUNDWATER FLOW MODEL FOR SPRING

4.0 INTRODUCTION

The Bear's springflow model, that has been used in chapter 3

to simulate springflow for variable recharge, assumes that an

unsteady state flow is succession of steady state flows. The

implication of this assumption is that there is no time lag

between onset of recharge and change in springflow. In reality,

there will be a time lag between onset of recharge and consequent

change in springflow because of the storativity of the

transmission zone. If the transmission zone of the spring flow

domain is long and the hydraulic diffusivity is low, the time lag

between the perturbation to the spring aquifer system and response

of the system will be more pronounced. In order to simulate

springflow in such a geohydrological system, an unsteady state

flow condition needs to be considered. A mathematical model for a

spring which has a long transmission zone with low diffusivity is

described herein to predict the springflow for variable recharge.

The configuration of the model is given in Fig.4.1.
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4.1 STATEMENT OF THE PROBLEM

The flow domain of the spring has been hydrologically

decomposed into i) a recharge zone and ii) a transmission zone.

Let L and 1 be the length of recharge zone and transmission zone

of the spring, respectively. In the recharge zone, the flow is in

the vertical direction and in the trasmission zone, the flow is in

the horizontal direction.

Let the base of the aquifer be chosen as the datum. Let h be
2

the height of the outlet point (P) of the spring from the datum.

Let the spring be initially at rest condition. Hence, before the

onset of recharge, the level of water in the recharge zone is

equal to h . Let T and </> be the transmissivity and storage

coefficient of the homogeneous, isotropic confined aquifer which

is acting as transmission zone for the spring. Let the specific

yield of the recharge zone be designated as 4> . Let the water

table in the recharge zone rise to a height h (0) instantaneously

at t= 0 due to a unit impulse recharge per unit area of the

recharge zone, h (0)is given by the relation

{h (0)-h }0 =1
3 2' 1

or h (0)=h +1/0 , (4 i<
3 2 1 \ • ,

It is aimed to find i) the flow from the spring in response

to the unit impulse recharge, and ii) the unit pulse response

function coefficients and the discharge from the spring due to

time variant recharge.



4.2 ANALYSIS

The differential equation which governs the unsteady flow in

the transmission zone is the one-dimensional Boussinesq's equation

and is given by

a2h 4> dh ...(4.2!
. 2 ~ t at
a x

where h = height of the piezometric surface above the datum, <f>

storage coefficient, and T = transmissivity.

The pertinent boundary conditions to be satisfied are

h(0,t) = h (t)
3

h(l,t) = h ... (4.3)
2

The initial condition to be satisfied is

h(x,0) = h ... (4.4)
2

The variation of h (t) with time is not known, only

h (0) is known from Eq. (4.1) . Determination of h (t) is part of
3 3

the solution being sought.

The solution for a varying head boundary condition is

obtained from the solution for a constant head boundary condition.

Let h(0,t) be equal to h . The solution of the Boussinesq's
4



equation for the initial condition stated in Eq.(4.4) and constant

head boundary conditions, i.e.,h (0,t)=h ; and h(l,t)=h ; is given
4 2

by (Carslaw and Jaeger, 1959)

03

X 2 1 2 2 2

h = h [— ♦ — E - sin(n7rx/l) exp{-n 7r Tt/ (61 )}]
2l7Tn=in l '

oo

X 2 1 ? ? ?

+h [l- -r - — £ — sin(nirx/l)exp(-n it Tt/ (Al ) }]
4 1 7T n = i n l '

... (4.5)

The rate of flow from the recharge zone into unit width of

the transmission zone of the spring is given by

dh
Q (t)= - T —— . . . (4.6)

o ax x=o

Differentiating Eq. (4.5) with respect to x and evaluating the

differential at x= 0, and substituing it in Eq. (4.6), the rate of

flow into unit width of the transmission zone for constant head

boundary condition is derived as

00

T 2T ,22
Q (t) - - h [— + — E exp{-n tt Tt/ (61 )}]
O 2 1 1 n = 1

oo

T 2T ,22
+ h [ — + t— E exp{-n tt Tt/ (61 )}] ... (4.7)

4 1 1 n = 1
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According to Duhamel's principle, the rate of flow into unit

width of the transmission zone for variable head boundary

condition is given by

00

T 2T ,22
Q (t) = - h [ — + — E exp{-n tt Tt/ (61 )}]
O 2 1 1 n • 1 '

oo

T 2T .22
+ h (o) [ — + — E exp {-n tt Tt/ (61 )}}

3 1 1 n = 1

t dh (t) oo
r 3 . T 2T ,22 2 ,

+ J —2 [tt + — E exp{-n tt T(t-r)/(01 )}]dT
OOT 1 1 n = 1 J

(4.8)

Let, the time parameter be discretised by uniform time steps

of size At and let t be equal to NAt, where N is an integer. Let

the slope of the temporal variation of the water table height in

ah (t)

the recharge zone, — , be assumed to be constant within a
or

time step At but be varying from time step to time step as shown

in Fig.4.2.

Let a discrete kernel coefficient 5 (At,N) be defined as
o

Ac oo

6 (At,N)= / [—- + -— e exp{-n27r2T(NAt-T)/(012) }]dr
0 oil n-1 '
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h3(t)

MO)

M T

At

dh3(At)
"dT~'At

2At

•— dh3(2At)
:_ dC

dhUJ!.At
dr

Z TJ+a t "C+ 2A t

TIME , t

F1G.4-2-VARIABLE HEAD IN THE RECHARGE ZONE .



Integrating

00

6 (At,N)= ^f+^E — [exp{-n27r2TAt(N-l)/(012)}
0 1 2 n=l 2 '

7r n

exp{-n27r2TNAt/(012) }]
. (4.10)

The rate of flow from the recharge zone into unit width of

the transmission zone for varying boundary head can be expressed

as

00

T 2T 2 2
Q (NAt) = -h [—- + — L exp{-n tt TNAt/(01 )}]

0 2 1 1 n - 1 '

oo

T 2T ,22
+h (o) [—+ — E exp {-n 7r TNAt/ {61 )}]

3 1 1 n-l '

+ E 6 (At,N-7+l){h (7)-h (7-l)}/At
7=1 0 l 3 3 '

. (4.11)

In particular, at the end of first time step, the rate of flow is

00

T 2T ,22
(At)= -h [ —r- + — E exp {-n tt TAt/ (01 )}]

2 1 1 n= 1 '

oo

T 2T 2 2 2
+h (o) [ — + — E exp {-n 7r TAt/ (01 )}]

3 1 1 n = 1

+5 (At,l){h (l)-h (0)}/At ...(4.12)
0 3 3

i
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Starting from Eq. (4.7), the volume of water, V (t) , that
c

enters into unit width of the transmission zone from the recharge

zone upto time t for fixed head boundary condition,i.e., h(0,t)=h
4

and h(L,t)=h , is obtained as
2

t

V (t)= / Q (t) dr
c 0 0

t 00

T 2 T ? ? ?
=-h / [— + — E exp{-n ir Tt/(01 ) }]dr

20 1 1 n-l

t oo
T 2 T 2 2 2

+h J [—- + — E exp{ -n 7r Tt/ (01 ) }] dr
4 0 11 n=l

oo

=_h [ IH + *$± E_i_ {i-exp(-n27r2Tt/(012))}]
2 1 2 n=l 2

TT n

00

+h [ 4^ + — E-^{l-exp(-n27r2Tt/(012))}]
4 1 2 n= 1 2 l

.. . (4.13)

The volume of water, V (t) , that will enter into unit width
V

of the transmission zone from the recharge zone for varying

boundary head, h (t), is given by
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00

TT/i_\ , rTt 2(il .1 . 22 ?
Vv(t)=_h2[T + 2 n?i~T (1-exp(-n 7r2Tt/(012))}]

7T n

oo

1 , ~ ^ r Tt 201 1 , 2 2 2+h (0) [— + -£- e -—{1-exp (-n27r2Tt/(012))}]
J J- 2 n = 1 2

7T n

t dh (t) , , oo
r 3 rT(t-T) 201 1, 2 2 2•0J —7 [—i +—~ nE1—j{l-exp C-n tt T(t- r)/(01 ))}]dr

Tt n

...(4.14;

Let a discrete kernel coefficient, 6 (At,N), be defined as

, h „, r \T(NAt-T) 201 " i , 22 26v(At,N)=QJ [ +_J!l__nEi—{ 1-exp (-n tt T(NAt-t) /(012) )}]dT

Integrating

x ,**. »i rTAt2(2N-i) 20lAt " l , 0 l2 22 25 (At,N) =[ — +_£__£ {l+ -2 (exp(-n27r2TNAt/(012))-
7r n n 7T TAt

exp(-n27r2TAt(N-l) /(012) ))}]

. . . (4.15)

Applying Duhamel's principle, the cumulative volume of water

that leaves the recharge zone and enters into unit width of the
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transmission zone upto N th time step is expressed in terms of

discrete kernel coefficients as

.TNAt 201V (N) = -h [i^- + -^± E—^-{l-exp(-n27r2TNAt/(012))}]
v 2l 2 n = 1 2 '

n

03

rTNAt 201

2
7T n

. , .mat ^ffll 1 . ,22 2
+h (0) [— + —— E {l-exp(-n tt TNAt/ (01 ))}]

( N- 1 )

+ E 6 (At,N-7*l){h (7)-h (7-l)}/At
7=1 v l 3 3 ' '

+6 (At,l){h (N)-h (N-1)}/At ...(4.16)
v 3 3

The cumulative volume of water that enters upto (N-1) th time

step into unit width of the transmission zone is

00

V (N-l)=-h [T(N"1)At+^- E— {l-exp(-n27r2T(N-l)At/(012))}]
v 2l 2 n = 1 2 '

7T n

oo

+h (Q)[T(N-l)At+_201 E j_ (.n^2T(N-l)At/(012))}]
3 1 2 n = 1 2

7T n

(N-1 )

+ E 6v(At,N-Y) {h (7)-h (7-l)}/At ...(4.17)
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The volume of water that leaves the recharge zone through

unit width of the transmission zone during N th time step is given

by

03

V (N)-V (N-l)=-h [2££i + -^ E {1-exp (V 7r2TNAt/ (012 ))}]
v v 2l 2 n = 1 2

00

+h (0) [HJl + -^i E — {l-exp(-nVTNAt/ (0l") )}]
3 1 2 n = 1 2

7T n

(N- 1 )

+ E 6 (At,N-7 +l){h (7)-h (7-Dl/At
7=1 V 3 3

+ 6 (At,l){h (N)-h (N-i)}/At
v 3 3

rTNAt TAt 201 1 . ,2 2m/>T , , . 2, . , .
+h — ——+ —*— E {l-exp(-n tt T(N-l)At/(01 ))}]

2 1 1 2 n= 1 2
t\ n • .

00

.h (0)[™1 -I^+^E-i {l-exp(-n27T2T(N-l)At/(012))}]
3 1 1 2 n = 1 2 l

7T n

(N- 1 )

- E 6 (At,N-7){h (7)-h (7-1)}/At
7=1 v 3 3

. .. (4.18)

Equating depletion rate in the recharge zone with inflow rate

to the transmission zone, the following expression is obtained.
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{h (N)-h (N-1)}L W 0 = {V (N) -V (N-1)}W
v 3 3 R 1 V v £

or -0 (h (N)-h (N-1)}LW /W =-h [-^- E -{1-exp (-n2 ?r2TNAt/ (012 ))}]
ll3 3 R S 2 2 n =1 2 l

7T n

+h [.TAt +201 z _j_ /1_exp(-n27r2T(N-l)At/(012))}]
2 1 2 n= 1 2

7T n

+h (0) [ i^L z _J_ {i-exp(-nVTNAt/(0 l2))}]
3 2 n = 1 2

7T n

.h (0) [.1*1 +MI_ e — {l-exp(-n27r2T(N-l)At/(012))}]
3 1 2 n = 1 2

7T n

(N- 1 )

+ E 6 (At,N-7+l){h (7)-h (7-l)}/At
7=1 v 3 3

( N - 1 )

- E 6 (At,N-7){h (7)-h (7-l)}/At
7= 1 V 3 3

+ 6 (At,l){ h (N)-h (N-1)}/At ...(4.19)
v 3 3

121



where W and W are the width of the recharge zone and width of
R S

the spring's outlet, respectively.

Rewriting Eq. (4.19)

h (N)= h (N-1)
3 3

00

201 1 ,22
{L0W /W +6 (At,l)/At}[-h2^-^n?i—T(1-eXp(-n * ™*t/(*l )>)}

1 R S v 7T

, , TAt 201 1 2 2 2
"h2{ 1 + — E —-(1-exp (-n tt T(N-l)At/(01 )))}

7r n

201 1 ,22
+h (0){ —— E (l-exp(-n n TNAt/(01 )))}

3 2n=12 -r i i i
TT n

03

. ,n. , TAt 201 1 2 2 2-h3(0){-— + -J£Y-nEi j (l-exp(-n tt T(N-1) At/ (01 )))}
7T n

(N- 1 )

+ E 6 (At,N-7+l){h (7)-h (7-l)}/At
7= 1 v 3 3

(N- 1 )

- E 6 (At,N-7){h (7)-h (7-l)}/At]

... (4.20)



In particular for N = 1, Eq. (4.20) becomes

h (l)=h (o) -{h (o) -h }[{ — E— (l-exp(-n27r2TAt/ (012) ))}+TAt/l]/
3 3 * 3 2' 2 ii =. 1 2

7T n

{L0 W /W +6 (At,l)/At)
1 R S V

(4.21)

The flow from the transmission zone at the exit is given by

Q1(t) =
ah

W T —
s ax x=l

(4.22)

where Q (t) is the springflow from the entire width of the spring.

Differentiating Eq. (4.5) with respect to x and evaluating the

differential at x=l and substituting it in the Eq.(4.22),

the springflow, Q (t), for constant head boundary is obtained as

Q, (t)=WTh [-t " T £ (-Dnexp{-n tt Tt/ (01 )}]
1 S 2 1 1 n=l

+W Th [ v + T £ (-l)"exp {-n27r2Tt/(012) }]
S 4 1 1 n= 1
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Applying Duhamel's principle for the variable boundary condition,
the springflow is

.T 2TQ1(t)=-Wsh2[I ♦ ^nEi{(-l)nexp(-n27r2Tt/(012))}]

„ 03
T 2T

+WSh3 (0) [ 1 +1~ n?i{ <-1)"exP(- n27T2Tt/ (012) )}]

c ah (t) oo

+Ws oJ "IT1- [1+T n?1{(-1)nexp(-n27r2T(t-T)/(012))}]dT

...(4.24)

Let a discrete kernel 5 (At,N) be defined as

At oo

61(At,N)=o/ [- ♦ _ nE(-l)nexp{-n27r2T(NAt-T)/(012)}]dT

Integrating

00 , . , n
f. tA*. *t\ TAt 201 (-1) " 2 2 •?61(At,N)=—r +-2- nEx-i—i- {exp(-n27r2T(N-l)At/(012))

7T n

2 2.
-exp(-n tt TNAt/(01 ) ) }

. . . (4.25)



So,for variable head boundary condition, the springflow is

00

,T 2T , n ,2 2.
Q (NAt)=-W h [- + — E (-1) exp{-n tt TNAt/ (01 )}]

1 S2l ln=l

oo

+W h (0) [^ ♦ Jl E {(-l)nexp(-n2Tr2TN/(012))}]
S 3 1 1 n-1

+W E 6 (At,N-7-l) {h (7)-h (7-1)}/bt ...(4.26)
S 7-1 1 3 3

Let k(NAt) be defined as the flow from the spring due to a

unit impulse recharge taken place at t=0 through the recharge area

of the spring. Hence, from Eq.(4.26) the expression for k(NAt) is

00

T 2T . n ,22.k(NAt) =[-h { ^ ♦ — E ((-l)nexp(-n tt TNAt/(01 )))}
2 1 1 n = 1

00

+h (o){^ ♦ |^ E ((-l)nexp(- n27r2TNAt/(012)))}
3 1 1 n = 1

+ E 6 (At,N-7+l){h (7)-h (7-l)}/At]W /(LW )
7=1 1 3 3 S R

.. . (4.27)

Let K(t) be the unit step response function of a spring. The

unit step response function, K(t), can be evaluted by integrating

the unit impulse response function, k(t), which has been defined

in Eq.(4.27). The unit pulse response function coefficient,

6(At,N) is given by
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6(At,N)= [K(NAt) -K{ (N-1)At}]

NAt (N-1)At

—: [ / k(t)dt -/ k(t)dt]
At o o

At (n-l)At

NAt

/ k(t)dt ...(4.28!

NAt

For the present case, the integration / k(t) is to
(N-l)At

be numerically integrated since a functional relation of h (t)

with time is not defined. It was assumed that within two time

intervals, i.e., (N-2)At s t a NAt, k(NAt) approximates to a

second order polynomial. Accordingly (Bhargava, 1992.) , the

integration within the lower limit (N-1)At and the upper limit NAt

is given by

NAt

/ k(t)dt= [W k{ (N-2)At}+W k{ (N-1)At}+W k(NAt)]At
(N-1)At 1 2 3

. . . (4.29)

in which W =-1/12, W =2/3, and W = 5/12
12 3

Hence, 6(At,N)= -1/12 k{(N-2)At}+2/3 k{(N-l)At}+ 5/12 k (NAt)

. . . (4.30)

The unit pulse response coefficient 6(At,l) is derived as

follows. Applying Simpson's rule

2 At

/ k(t)dt= — (k(0)+4k(At)+k(2At) } ...(4.31)
o 3
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From Eq.(4.29)

2At

/ k(t)dt= {W k(0)+W k(At)+ W k(2At)}At
^t 12 3

1 At
Therefore, 6(At,l) = / k(t)dt

At o'

,. 2At 2At

=~^ {J k(t,dt - LJ k(t)dt)

—TT [At{-i k(0)+ -4 k(At)+-i k(2At)}

"At{- ~ k(0)+ -| k(At)+ |- k(2At)}]

=— k(At) - ~ k(2At) ... (4.32)

Assuming the recharge to be a train of pulse recharge, the

springflow, q(NAt), at time NAt could be computed from the known

time variant pulse recharge, R(T), 7 =1,2 N, using the
convolution

q(NAt)= E R(7) 6(At,N-7+l) ...(4.33'



4.3 RESULTS AND DISCUSSIONS

The developed model has five parameters. These are:

(i) specific yield of the recharge zone (0 ), (ii) storage
coefficient of the transmission zone (0), (iii) transmissivity of

the transmission zone (T), (iv) a linear dimension of the recharge
zone (LWr/Ws), and (v) length of the transmission zone (1).

If the purpose is to find the spring aquifer system
parameters, and the recharge to the springflow domain from the

observed springflow data, discrete kernel coefficients 6(At,N) are

required to be generated using a time step size At, which is equal

to the uniform sampling period at which observations are

available. The computation of 6(At,N) is simplified by using a

value of transmissivity per unit time step size and At=l. if

transmissivity of an aquifer is 10000 sq meter per month and

discrete kernel coefficients are required to be generated for

At=l/10 th of a month, the same could be achieved using T as 1000

sq meter per one tenth of a month, and At=l.

Discrete kernel coefficients for a coarser time step size can

be computed making use of discrete kernel coefficient computed

with a finer step using a convolution technique. For example,

discrete kernel coefficients for At=l month can be computed from

discrete kernel coefficients generated with time step size 1/10 th

of a month using the relation

10 N

6(1 month, N) = E -.(7)6(1/10 month, lON-7+1) ...(4.34)

where R(7)=1/10, for 7=1,2, 10 and R(y)=o, for T >io.



In Table 4.1, a comparison has been made of 6(At,N) computed

with different time step size. It could be seen that beyond second

time step, the coefficients are almost equal. Thus, the first two

coefficients, 6(At,l) and 6 (At,2}, should be compuetd using a

finer time step size, At/10.

A sample computation of h (t), the head in the recharge zone,

due to a unit impulse recharge per unit area at t=0, is presented

in Fig.4.3 for an assumed set of aquifer parameters and geometry.

The head decreases rapidly in the beginning starting from

h (0)=15m and decreases monotonically in the latter time merging

finally with h . The inflow to the aquifer corresponding to the

unit impulse recharge at t=0, is presented in Fig.4.4.

The discrete kernel coefficients, 6(At,N), which are the

springflow due to a unit pulse recharge in the entire recharge

zone during the first time step, are presented in Fig.4.5. The

area under the graph should be 1. The area under the graph

computed numerically upto the time step 50, is found to be 0.96.

Unlike the variation of unit response function coefficients with

time depicted in the Bear's model, the response function

coefficient starts from zero, reaches a maximum and then decreases

with time due to the storage effect of the transmission zone.

For an assumed set of recharge and abstraction, and spring aquifer

parameters, the springflow has been computed and is presented in

Fig.4.6 in a semilog plot for different values of storage

coefficient. It is seen that during the periods of no recharge and

no abstraction, the graphs are straight lines. Higher the values
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Table 4.1 6(At,N) computed using a time step size At=l month and

6(At,N) computed from 6(At/10, N) and 6(At/20,N) ;

0 =0.2, 0=0.001, T=30000 sq meter per month,

LW /W =400 meter, 1=3000 meter, H =10 meter
r s 2

Time step 5(At,N) 6(At,N) 6(At,N)
At=l month computed computed

from 6(At/l0,N) from 6(At/20,N)

1 0.065125 0.111610 0.111340

2 0.113610 0.103280 0.103280

3 0.091199 0.091284 0.091286

4 0.080601 0.080682 0.080684

5 0.071229 0.071312 0.071314

6 0.062947 0.063030 0.063032

7 0.055628 0.055710 0.055711

8 0.049160 0.049240 0.049241

9 0.043444 0.043521 0.043522

10 0.038392 0.038467 0.038468

11 0.033928 0.033999 0.034000

12 0.029983 0.030051 0.030052
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of 0, flatter the slope during recession. As 6 increases, the

appearance of peak springflow is delayed. Also, higher the 0,

lower the peak springflow. The lean flow of spring is higher for

transmission zone with higher storativity. As the storativity of

the transmission zone decreases the model tends to the Bear's

model and slope of the graph during recession in semilog plot

tends to - W T/(2.30 1LW ).
s 1 R

THE INVERSE PROBLEM

APPLICATION TO THE KIRKGOZ SPRING, TURKEY

In the inverse problem, the five model parameters and the

recharge are unknowns which are to be found from the observed

springflow data. The component of springflow due to the

perturbation prior to the time origin is Q exp(-aNAt), where Q is
o o

the springflow at time origin, a is a decay constant, and N is a

positive integer, At is sampling period which is uniform. This

component of flow is subtracted from the observed springflow and

the remaining component of observed springflow has been used to

compute the unknowns. The deacy constant a, as such, is also

considered as one of the unknowns.

The Newton Raphson iterative method is tried upon for the

parameter estimation of the model and to compute the recharge for

the Kirkgoz spring, Turkey. However, the method has been found to

be unsuitable for this model probably because of the large

variation in the quantitative values amongst the parameters. A

random search method has been used for the estimation of the

parameters. There are some well known random search methods and

the method based on random jumping technique (Rao,1984) is used.
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In the method, the problem is to find the minimum of f(v) in

the n-dimensional hypercube defined by

v s v s v

li i ui
. .. (4.35)

where v and v are the lower and the upper bounds on the
li ui

variable v . Sets of n random numbers (r
i 1

r , ,r ), that are

uniformly distributed between 0 and 1, a>-e generated. Each set of

these numbers, is used to find a point, v, inside the hypercube

defined by Eq.(4.35) as

V

v = v

V

v +r (v -v )
11 1 ul 11

v +r (v -v )
12 2 u2 12

v +r (v -v )
In n un In

(4.36)

and the value of the function is evaluated at this point v.

The objective function is evaluated at each of these large

numbers of generated points. The least value of f (v) is accepted

as the desired minimum objective function.

The summation of square of the difference between the

computed and observed springflow for all the time steps during

which there is no recharge and no abstraction, is the objective

function, f (v) , which is to be minimised by the random jumping

technique. Model parameters and recharge estimated for the minimum

objective function are the desired values of the model parameters

and recharge for the spring. The following steps are followed to

find the model parameters and recharge.
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1. Specific yield of the recharge zone (0 ), storage coefficient

(0) and transmissivity of the transmission zone (T), linear

dimension of the recharge zone (LW /W ), length of the
K S

transmission zone (1), and decay constant a are the variables

which constitute the vector v. An initial random vector has been
chosen by

(0) (0) (0) (0)n
v =vx +[vu -v ]Rn ...(4.37)

where v^nd v^are the lower and the upper bounds of v,
respectively, and R^ is a uniformly distributed random number
lying between 0 and 1; the subscript o denotes the initial value.

2. With these initial values of v<0\ the unit pulse response
coefficients, 6(At,N) are generated. The first six coefficients

have been generated with a finer time step of l/20th of a month.

The remaining coefficients have been generated with At=l month.

Recharge is estimated in succession starting with first time step
using the relation

R(N) = [{Qs(NAt) -Qoexp(-aNAt)} -^R (y) 6(At, n-Y+l) ]/6 (At, 1)

where CMNAt) is the observed springflow at time NAt. The time

steps wherein there is no recharge and no abstraction are known a

priori from the straight line portion of the graph of logarithm of

springflow with time. Recharge is set to zero for these time steps
and also for those timesteps wherein recharge or abstraction has

been computed as negligible with the help of Newton-Raphson method
by Bear's model.
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3. Springflow is computed for those time steps wherein the

recharge or abstraction has been set to zero. The summation of

square of the difference between the computed and observed

springflow for all these time 3teps, wherein there are no recharge

and no abstraction, is calculated as the objective function f(v),

which is to be minimised. At all other time steps where recharge

has not been assumed to be zero, but computed, the observed

springflow and the computed springflow would tally.

4. The process is repeated for another feasible v. If the f(v)

is less than the previously obtained value of f(v) , the present

vector is retained by naming it as v . The process is repeated for
s

a number of times to obtain v for the minimum f (v) . The search is

refined by reducing the range of v by

(r +1) (r) , (r) (r)
v, = v - 0.45[v - v '] ...(4.38)
i S u 1

(r+1) (r) (r) (r),
v = v + 0.45[v - v ] (4 39)
u S u 1 ''' V " '

where r= the number of cycles. The process is repeated for several

cycles till the f(v) between two successive cycle is small. It has

been observed that the procedure converges within a few cycles.

The observed springflow values for the Kirkgoz spring, Turkey

for the period from October, 1973 to May, 1981 (92 months) have

been used for the estimation of model parameters and the monthly

recharge. The October, 1973 springflow value has been considered
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as Q . The following initial gv^js of the upper and the lower
o

bounds of model parameters has been made : 6 =0.2, 6 =0.03; 6
111 11 u

=0.001, 0 =0.0001; T =40000 Sq m/month, T =10000 Sq m/month; 1
1 u 1 u

=4000m, 1 =1000m; (LW /W ) =2000m, (LW /W ) =1000m; a =0.250
1 R S u RSI u

month , a = 0.167 month

With this initial guess, fifteen random search is made after

which the upper bound and tho lower bound are improved. This cycle

is repeated ten times. The estimated model parameters for the

Kirkgoz spring which minimised the objective function are:

Specific yield of the recharge zone (0 ) = 0.06445

Storage coefficient of the transmission zone (0) = 0.0009548

Transmissivity of the transmission zone (T) = 37960 Sq m/month

linear dimension of the recharge area (LW /W ) = 2369 meter
R S

Length of the transmission zone (1) = 1496 meter

Decay constant (a) = 0.185 month

The successive rapid decrease of f(v) after end of each cycle

is presented in Table 4.2. From the Table, it could be seen that

the objective function attains the minimum at the end of third

cycle. The number of successful search are more in the first cycle

and after the third cycle, there is no further reduction in the

value of objective function. The recharge computed using the

parameters obtained through optimisation by random jump technique,

is presented in Table 4.3. For small values of 6 , the parameter

t in the Bear's model, is equal to 1LW 6 /(W T) . Substituting the
0 R 1 S

values of 1, LW /W , T and 0 , which have been obtained through
R S 1

optimisation , t is found to be 6.01. Using the Bear's model, the
o
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recharge is computed for t = 6.01 and is also presented in Table
o

4.3. It is found that the sets of recharge computed by the two

models, compare well since the value of 6 is very small.
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Table 4.2 Successive reduction of the objective function in

different cycle of the random jump technique

Cycle Number of times the Objective function after each

objective function successful search

2

is reduced (cubic meter per month)

lO.OxlO33

14

1.77x10

14

1.44x10

4 .65xl013

1. 38xl013

8.86X1012

8.32X1012
12

7.13x10

12
3.21x10

12

2.81x10

12
2.81x10

10 0 2.81x10
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TABLE 4.3 Computed monthly recharge for Kirkgoz spring, Turkey.

Month Recharge computed

using the parameters

found by Random jump

technique

(x 10 cu m)

1 30.86

2 27.30

3 56 .01

4 150.40

5 44.59

6 43.25

7 42.24

8 22 .60

9 05.28

10 -05.55

11 12.44

12 12.23

13 39.82

14 26 .40

15 48 .97

16 52 .73

17 54.35

18 59.19

19 62.08

20 30.86

21 -22.30

22 21.52

23 00.00

Recharge computed

by the Bear's model,

T = 1LW 0 /(W T)
0 R 1 S

= 6 .01 month

(x 10 cu m)

27.45

24.80

53 .44

146.82

44 .74

42.03

41.27

22.05

04.93

-06.01

11.65

11. 77

38.91

26 .27

48 .24

52.34

54 .02

58.82

61.77

31.20

-21.45

20.71

-00.78



continued...Table 4.3

Month Recharge computed
using the parameters
found by Random jump
technique

(x 10 cu m)

24 00. 00

25 49.38

26 62 .65

27 105.20

28 124.50

29 25.47

30 00.00

31 67.31

32 22.24

33 -20.38

34 00.00

35 13.60

36 00.00

37 21.89

38 53.27

39 70.30

40 53.60

41 45.68

42 09.88

43 50.09

44 22 .05

45 -32 .62

46 -00.00

143

Recharge computed

by the Bear's model,
t = 1LW 0 /(W T)
0 R 1 S

=6.01 month

(x 10 cu m)

00.39

48.76

62.19

104.19

123.80

27.01

00.10

66.34

22.81

-19.64

00.90

12.22

-03.09

24.25

52.62

69.84

53.70

45.65

10.50

49.29

22.46

-31.70

-04.37



continued...Table 4.3

Month Recharge computed

using the parameters

found by Random jump

technique

(x 10 cu m)

47 35.58

48 -15.83

49 27.54

50 30.07

51 139.30

52 208.70

53 53 . 09

54 47.10

55 44.64

56 -12.55

57 02.64

58 -20.40

59 10.77

60 18.10

61 27.74

62 44.22

63 123.50

64 278 .70

65 12.30

66 -50.13

67 23.56

68 91.81
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Recharge computed

by the Bear's model,

t = 1LW 0 /(W T)
0 R 1 S

= 6 .01 month

(x 10 cu m)

38.15

-14.96

26.73

29.92

137.21

206.92

55.38

47.16

44.60

-11.50

02 .32

-20.09

10.26

17.84

27.45

43.82

121.94

275.45

16 .44

-48.83

22 .42

90.46



continued...Table 4.3

Month Recharge computed

using the parameters

found by Random jump

technique

(x 10 cu m)

69 00.00

70 06.65

71 16 .20

72 -29.85

73 109.60

74 61 .51

75 109.10

76 29. 10

77 43.67

78 43 .74

79 40.02

80 32.37

81 00.00

82 15.47

83 15.96

84 -17.17

85 37. 90

86 60. 10

87 160.90

88 86 .62

89 123 .80

90 00.00

91 00.00
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Recharge computed

by the Bear's model,

t = 1LW 0 /(W T)
ii fl i s

=6.01 month

(x 10 cu m)

-07.36

13.69

16 .02

-29.00

106 .99

62 .05

108.06

30.32

43.36

43.72

39.89

32.42

01.27

14.50

15.87

-16.61

36.94

59.49

158.83

87. 52

122.89

04.88

00.29



The observed and the simulated springflow through

optimisation for the periods of no recharge and no abstraction,

is presented in Table 4.4 which shows that the simulated values

tally very well with the observed springflow. The simulated

springflow during the recharge period will automatically tally

with the observed springflow.



Table 4.4 Observed and simulated springflow for the periods of no

recharge and no abstraction

Month Observed

springflow

(10 cu m)

23 25.11

24. 21.33

30 42.83

34 28 .31

36 21.42

46 19. 56

69 44 .20

81 37.51

90 57,02

91 48.34

Simulated springflow
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10 cu m)

25.36

21.55

43.04

28.21

22.00

20.21

45.69

37.52

56.79

48.28



4.4 CONCLUSIONS

From the study presented in this chapter, the following

conclusions have been drawn:

(i) The logarithm plot of springflow with time during recession

follows a straight line.

(ii) If the storativity of the transmission zone decreases, the

model tends to the Bear's model and slope of the graph during

recession in semilog plot tends to - W T/(2.30 1LW ).
s 1 R

(iii)The storativity the transmission zone controls the time of

occurence of peak flow as well as the magnitude of the peak

flow of the spring. It also controls springflow during

recession.

(iv) The random search technique can predict the aquifer

parameters and geometry of the spring flow domain as well as

the time distribution of recharge to the spring flow domain.
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CHAPTER-5

A TWO DIMENSIONAL GROUNDWATER FLOW MODEL FOR SPRING

5.0 INTRODUCTION

The Bear's springflow model and the model with long

transmission zone, assume the flow to be one-dimensional. However,

in reality, the flow pertaining to a spring is three-dimensional.

Using the Dupuit-Forchheimer assumptions, some three-dimensional

flow process could be dealt as two-dimensional. A springflow

domain can be visualised to have a recharge area which may not be

well defined and a discharge area which acts as the spring.

Hantush (1967) has given solution for the rise of piezometric

surface due to uniform recharge at a constant rate from a

rectangular basin. The shape of the recharge area for a spring can

be considered as rectangular. Similarly, a rectangular shape can

be assumed for the spring's opening. Using the Hantush's basic

solution for the rise of piezometric surface due to recharge from

a rectangular area, a two-dimensional springflow model has been

developed in this chapter.

5.1 STATEMENT OF THE PROBLEM

A schematic configuration of a spring flow domain is shown in

Fig.5.1(a). The corresponding idealised flow domain adopted for

the development of the model, is shown in Fig.5.1(b). The recharge

area of the spring is assumed to be a rectangle of size LxW and

the spring opening conforms to a rectangle of size axb.The aquifer

which transmits water to the spring is homogeneous, isotropic, and
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has semi-infinite areal extent. It is aimed to find the temporal

variation of the springflow due to time variant recharge through

the entire recharge zone.

5.2 DEVELOPMENT OF THE MODEL

The basic saturated flow equation describing the flow in the

spring aquifer system is the Boussinesq's equation:

2 2 oo CD

0^_Ti^-T~= / / rU,tf,t) 6 U-x,tf-y)d* cW
9t , 2 , 2 D

dx dy -°° -°°

.(5.1)

where s is the rise in piezometric surface , t is time, x and y

are the horizontal cartesian coordinates, 6 is the storage

coefficient,T is the transmissivity, r(£,i?,t) is the recharge or

discharge rate per unit area (positive for recharge and negative

for discharge) and 6 (£-x,i?-y) is a Dirac delta function singular

at the point of coordinates x, and y. The level of the initially

rest piezometric surface coinciding with top of the aquifer is

taken as the datum.

The required solution to the differential Eq.(5.1) for the

spring needs to satisfy an initial condition s(x,y,0)=0. The

boundary conditions to be satisfied are:
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|£ | -0 ...(5.2)
dx 'x=0

s (x, ± oo, t) =0 ... (5.3)

s(oo ,y,t)=0 ...(5.4)

A spring gets activated when the piezometric surface tends to

rise above its threshold. Once a spring gets activated, the rise

in piezometric surface at the location of the spring remains

invariant till the springflow becomes zero. Therefore, the other

boundary condition to be satisfied is:

s (x ,y ,t)=z , t > t ...(5.5)
iii i

where x ,y are the coordinate of the spring, t is time of

activation of the spring, z is height of the threshold of the

spring above the initially rest piezometric surface.

The method of image is applied to convert the finite flow

domain into an infinite one. The boundary condition stated in

Eq.(5.2) is thereby satisfied. The system of image and real

springs is shown in Fig.5.2. Hantush's basic solution being used

in the present analysis, the boundary conditions stated in

Eq.(5.3) and Eq.(5.4) and the initial condition are automatically

satisfied.
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Let the time span be discretised into uniform time steps of

size At. Let during a time step, 7, the pulse recharge per unit

area be R (7) , and the pulse spring discharge per unit area of
u

spring opening be q(7). However, q(7) and R (7) may vary from one
u

time step to next.

The rise in piezometric surface, s(x ,y ,nAt), at the spring
11

at time t=nAt, due to the time variant pulse recharge, R (7), 7
u

=l,2,...,n, through the recharge zone in the equivalent flow

domain until the spring gets activated is given by

s(x ,y ,nAt)= En R (y)6(2L,W ;x ,y ;At;n-7+l) ...(5.6)
1 1 7=1 u R 1 1

in which 6 (A, B;X, Y; At ,-m) is a discrete kernel coefficient for rise

in piezometric surface; A and B are length and width of the

excitation zone; X, Y are the coordinate of the point of

observation, the coordinate being measured from a local origin

chosen at the centre of the zone of pert'iibation ; At is the time

step size; 2L and W are length and width of the recharge area in
R

the equivalent flow domain. The discrete kernel coefficients for

rise in piezometric surface are the rise in piezometric surface at

an observation point due to a unit pulse perturbation per unit

area given to the system during the first unit time period. In the

present problem, the zone of perturbation is either the area

through which recharge takes place or the spring's opening.

Let the spring get activated during Nth time step and the

rising piezometric surface touches the spring's threshold at
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t=(N-l)At. Hence

N-1

E R (7) 6(2L,W ;x ,y ;At; N-7 ) = z ...(5.7)
7-1 u R 1 1 1

The time of activation of the spring can be predicted from

Eq. (5.7) using an iteration procedure. As the spring gets

activated at n=N, therefore, q<7)=0 for 7 = 1,2,...,N-1.

The expression for rise in piezometric surface at t=nAt at

the spring after its activation is given by

s (x ,y ,nAt)
1 1

=En [ R (7) 6(2L,W ;x ,y ;At;n-7+l) ]
7-1 u R 1 1

- E [q(7){6(a,b;0,0;At;n-7+l)+6(a,b;2x ,0;At;n~7+l)}]

...(5.8)

The dimension a and b of the spring are in x and y direction,

respectively.

Since after activation of the spring, s(x ,y ,nAt)= z , hence
11 1 «

EU [R (7) d(2L,W ;x ,y ;At;n-Y+l) ]
7-1 U R 1 1

En(q (7) {6(a,b;0,0;At;n-7+l)+6(a,b;2x ,0;At;n-7+l)}]=z

(5.9)
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Splitting the second temporal summation into two parts, one

part containing the summation up to (n-l)th terms, and the other

part the n th term, Eq.(5.9) is simplified to

EU [R (7) 6(2L,W ;x ,y ;At ;n-7+l) ]
7=1 u R 1 1

E [q(7) {0 (a,b;0,0;At;n-7+l)+6 (a,b ;2x ,0;At;n-7+l) }]

- q(n){5 (a,b;0,0;At;l)+ 6(a,b ;2x ,0;At;l)}= z
1 1

Solving for q(n)

q(n) = [ En{R (7>5(2L,W ;x ,y ;At;n-7+l)}
7=1 u R 1 1 '

'^n X{q(7)(5(a,b;0,0;At;n-7+l)

+6(a,b;2x ,0;At;n->+l))}-z ]/

[6(a,b;0,0;At;1)+6(a,b;2x ,0;At;l)]
1

...(5.10)

(5.11)

Since the spring gets activated during N th time step, q(7)=0 for

7=1,2,..,N-1. q (n),n 2 N, can be solved in succession starting

from time step N. For time step N Eq. (5.11) reduces to

KC



q(N) =t EN{R (7)6(2L,W ;x ,y ;At;N -T+l)}-Z ]/
7 = 1 u Rll 1.

[6(a,b;0,0;At;l)+6(a,b;2x ,0;At;l)] ...(5.12)

The discrete kernel coefficients for rise of piezometric

surface can be obtained from Hantush's solution for the rise of

piezometric surface due to uniform recharge at a constant rate

from a rectangular basin (Fig.5.3). Making use of Hantush's

solution, a(A,B;X,Y;At;m) is found to be

6(A,B;X,Y;At;m)=-^- [F{ (A/2+X) T) ,(B/2+Y) tj }+F{ (A/2+X) T7 ,(B/2-Y) T7 }
40 11 li

+F{ (A/2-X)TJ ,(B/2+Y)7] }+F{ (A/2-X)tj ,(B/2-Y) 7J. }]

•^~ [F{ (A/2+X)tj ,(B/2+Y)t/ }+F{ (A/2+X) 77 ,(B/2-Y)TJ }
40 2 2 2 2

+F{(A/2-X)tj ,(B/2+Y)tj }+F{ (A/2 -X) J] ,(B/2-Y) 77 }.]
2 2. z z

where

m = time step ,

77 = (4TmAt 16)
1

]2
Tj ={4T(m-l) At/0 }

F(<i>,* ) = J1ert(3> t~ ).erf(* r ' ) dr
0

where 4>= (A/2+X) 77. , and *= (B/2+Y) 77. , i-1,2
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FIG 5-3-RECHARGE AREA AND GROUNDWATER MOUND
(AFTER HANTUSH VIDE BOUWER, 1978 ).
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5.3 RESULTS AND DISCUSSIONS

Assuming aquifer parameters and its geometry, springflow has

been generated for a set of time variant recharge. The elevation

z has been assumed to be zero. The variation of log Q(t) versus
1 10

time, is presented in Fig.5.4. As seen from the Figure, the graph

during recession does not follow a straight line; the slope of the

graph changes with time. For Liie assumed set of recharge, the

recession starts from seventh month. The slope at time Btep 7 is

-0.0408. The slope decreases with time and reaches a minimum at

time step 8 and then increases. The variation of slope with time

is shown in Table 5.1. The slope changes because the spring flow

domain is not a closed system. In the example presented, a total

of one meter recharge per unit area takes place in a span of six

month. The actual recharge area is 1 km x 1 km, which means that

106 cubic meter of water has been recharged. It is found that at

the end of 120th time step, only 6.36% of recharge appears as

springflow. The remaining recharge has flown out as regional

groundwater flow.

Using the random jump technique and springflow of the Kirkgoz

spring, Turkey, aquifer parameters for the spring are estimated

and are given below. The following initial guess of the upper and

the lower bounds of the model parameters has been made:

2L =3000meter, 2L = 1000 meter; W = 3000 meter, W = 1000 meter;
u 1 Ru Rl

a =15 meter, a = 2 meter; b =15 meter, b = 2 meter; x = 5000
u l u- i lu

meter, x = 4000 meter; T = 40000 sq m/month, T = 20000 sq
11 u i

m/month; and, 6 = 0.001, 6 = 0.0001. The decay constant has been
u 1

assumed to be equal to 1/6 month"1 and y=0. The springflow for

the month of December, 1973, i.e., 27.53 cu meter per month has
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continued ...Table 5.1

Time step Recharge Computed springflow Slope
(meter per (cubic meter per ( a )

2

sq meter) month) (month"1)

30 594.21 -0.0176

31 570.56 -0.0171

32 548.54 -0.0166

33 527.99 -0.0161

34 508.79 -0.0156

35 490.81 -0.0152

36 473.94 -0.0148

37 458.09 -0.0144

38 443.16 -0.0140

39 429.10 -0.0137

40 415.81 -0.0133

41 403.26 -0.0130

42 391.37 -0.0127

43 380.10 -0.0124

44 369.41 -0.0121

45 359.25 -0.0118

46 349.58 -0.0116

47 340.jo -0.0113

48 331.61 -0.0111
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been used to compute the springflow due to perturbation prior to

the time origin. The estimated model parameters for the spring for

which the objective function is the minimum are :

Length of the recharge zone (L)= 1155.50 meter

Width of the recharge zone (W )= 4046.00 meter
R

Length of the spring's opening (a)= 30.68 meter

Width of the spring's opening (b)= 30.68 meter

Distance of the spring from the no-flow boundary (x )= 4186 meter
2

Transmissivity of the aquifer in the flow domain(T)=20590 m /month

Storage coefficient of the aquifer in the flow domain (6) =0.0013

The successive rapid decrease of the objective function in

the search technique after end of each cycle are presented in

Table 5.2.

Using these parameters, the recharge has been computed by the

model and is presented in Table 5.3. As expected, the recharge

which is estimated in this model, would be more than the recharge

estimated by the model presented in Chapter-4. This is due to the

reason that the previous model has a closed flow domain and in the

present model, the flow domain is open and all recharge does not

appear as springflow; part of the recharge flows out as regional

groundwater flow.

The observed and the simulated springflow for the periods of

no recharge and no abstraction, is similar in magnitude and is

presented in Table 5.4.
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Table 5.2 Successive reduction of the objective function in
different cycle

Cycle Number of times the Objective function
objective function (cubic meter per month)2
is reduced

164/1

lO.OxlO33

4 .79048xl010
2 .00133xl010
1 .10646xl010
5 .95567xl09
3 .21393xl09
1 39925X109
8 44934X108
7 38658X108

7 11159X108
6 44212xl08
4 10417xl08
3 08260X108
3 06065X108
3 02576X108
2 75378xlOS
2. 17338xl0S

10443xlOS

1.92741x10

1.87884xlOS
1.86065X108
1.71854xlOS
1.68859X108
1.65229xlOS
1.59233X108
1.55749xl08
1.49561X108



continued ...Table 5.2

1.49294x10s
1 .4R742X108
1.4G143xJOH
1.45085x10"
1.37593x10*
1.34069xl0B
1.29092xl08
1.24265X108
1.24261xlOS

10 1.20508X108
1.17643xlOB
1.17435X108
1.16395X108
1.16392X108
1.14708X108
1.14480X108
1.12569X108
1.10442X108
1.09304xl08

164/2



Table 5.3

Month

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Computed monthly recharge for Kirkgoz spring,Turkey

Recharge computed
using parameters
found by random

jump technique
(cubic meter)

.4655E+08

.1403E+ 09

.8339E+08

.8155E+08

.7815E+ 08

.5986E+08

.3915E+08

.2104E+08

.2726E+08

.0000E+00

.6158E+08

.4084E+08

.6138E+08

.6989E+08

•7641E+08

.8455E+08

.9100E+08

.6794E+08

.1746E+ 08

.3779E+ 08

.1G22E+08

.0000E+00

.5508E+08

.6800E+08

Month

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

4 4

45

46

47

48

165

Recharge computed
using parameters
found by random
jump technique
(cubic meter)

.1144E+09

.1479E+ 09

.8083E+08

.4729E+08

.8944E+08

.5584E+08

.1296E+08

,1542E+08

.1823E+08

•0000E+00

.2358E+08

•4887E+08

.7283E+08

•6956E+08

•6674E+08

.3684E+08

.6294E+08

•4242E+08

,7968E+ 07

2372E+05

3109E+08

0000E+00

1514E+08

2640E+08
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Table 5.4. Observed and simulated springflow for the periods of
no recharge and no abstraction

Month Observed springflow

after deducting effect

of prior perturbation

( cu meter/month)

10 .1992E+08

22 .2093E+08

34' .2134E+08

46 .1666E+08

58 .2634E+08

70 .2599E+08

82 .2389E+08

89 .4833E+08

167

Simulated springflow

(cu meter/month)

.1559E+08

.1900E+08

.2085E+08

.1820E+08

.2334E+08

.2886E+08

.2579E+08

.4119E+08



5.4. CONCLUSIONS

(i) The graph log Q(t) versus t during recession does not

follow a straight line.

(ii) Parameters of the model can be estimated by the random

jump technique.

(iii) The model based on Hantush's basic solution assumes the

flow domain to be infinite. The Bear's model, with or

without storage effect of the transmission zone, assumes

that the flow domain of the spring is a closed one.

Because of this difference in the characteristics of the

flow domain, the recharge computed by the model which is

based on Hantush's solution is more than those which is

computed by either of the Bear's model. In the Bear's

model, all recharge appears as springflow, whereas in

the model based on Hantush's solution, only part of the

recharge appears at the spring.
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CHAPTER-6

GENERAL CONCLUSIONS

Two springflow models have been developed. The first model

assumes the flow domain of the spring aquifer system to be a

closed one. This implies that all the recharge to the spring flow

domain would appear as springflow. Starting from the basic

solution given by Carslaw and Jaeger (1959) to Boussinesq's

equation for one-dimensional unsteady flow in a finite aquifer

bound by two streams, and applying Duhamel's principle, the

springflow for time variant recharge has been obtained. It is

found that the variation of logarithm of springflow versus time

strictly follows a straight line during the period of recession.

This model in which the storativity of the transmission zone has

been considered, behaves like the Bear's springflow model for very

low storativity of the transmission zone. The storativity of the

transmission zone reduces the magnitude of pe'ak springflow and it

causes delay in the appearance of peak springflow.

The second model is based on the Hantush's solution for two-

dimensional groundwater flow due to recharge from a rectangular

basin. In this model, the spring aquifer system is an open system.

Therefore, all the recharge does not appear as springflow. The

variation of logarithm of springflow with time during recession,

does not follow a straight line. Only towards the latter part of

recession, the variation is approximately linear.

In this thesis, both the direct and the inverse problems have

been solved.
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Bear's springflow model is a one parameter model, the

parameter being the depeletion time. The recharge and the

depletion time have been found for three springs by Newton-Raphson

technique. It is found that for any initial guess of depletion

time and recharge, unique solution is obtained after finite

iterations.

Using the random jump technique, and the springflow model for

a closed flow domain, the transmissivity, storativity, specific

yield of the recharge zone, length of transmission zone, a linear

dimension representing recharge area and spring width, and the

recharge have been successfully computed from observed springflow

data. The recharge computed by the random jump technique compare

well with those obtained by Newton-Raphson technique.

Also, using the random jump technique and the springflow

model for an open flow domain, recharge area, spring opening,

distance of the spring from the recharge area, transmissivity and

storativity of the transmission zone and the recharge have been

estimated from observed springflow data.

Since the domain is an open one, the recharge computed by the

model which is based on Hantush's solution, is found higher than

those computed using the model for a closed system.

The Bear's one parameter springflow model which contains all

the parameters except the storativity of transmission zone can

still be regarded as an appropriate model to deal direct and

inverse problems relating to springflow.
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