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SYNOPSIS

The frequent occurrence of destructive earthquakes

in the past in various places such as, Santa Barbara,

USA (1906); Koyna, India (1967); San Fernando, USA (1971);

Chile (1985) and other places, causing loss of thousands of

lives and damage to dams and earth structures has demons

trated the need for earthquake resistant design of these

structures. Failure of a dam during an earthquake would be

very catastrophic and hence extreme care should be exercised

| in their design with respect to earthquake resistance. An
earth and rockfill dam is considered to be a desirable type

of dam in seismic regions due to its flexibility.

Nevertheless, its design needs numerous considerations due

to complex stress-strain characteristics of soil and rock

which is generally not applicable for,other types of dam.

This has amply been demonstrated by the total collapse of the

Sheffield Dam during the Santa Barbara earthquake of 1906

(Seed, Lee and Idriss, 1968), and the deformations and

settlement that occured in the near catastrophic failure of

the Lower San Fernando Dam in California (USA), during the

San Fernando earthquake of February 9, 1971 (Seed et al.,

1973). In recent years, high rockfill dams of height of the

• order of more than 250 m are being increasingly constructed

all over the world in regions of moderate to very strong

seismicity. With the increase in the height of the rockfill

(i)
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dam, proneness to failure and complexity in design also

increase. This is due to the increase in height with an

increase in the magnitude of confining pressure and due to

the strength-deformation characteristics of the fill

materials becoming nonlinear. In such cases, the stress-

strain behaviour of the materials constituting the dam is

essentially nonlinear (Dibaj and Penzien, 1969) and any

attempt to evaluate the safety of a rockfill dam, based on a

linear analysis, either in the static or dynamic condition,

will only be misleading about the actual behaviour. In

general, an embankment dam is a three-dimensional continuum

composed of anisotropic, nonhomogenous, nonlinear, inelastic

materials with rather complicated geometry, that is difficult

to model accurately. The analysis of the dam becomes more

complicated, when it is subjected to a severe earthquake with

a peak ground acceleration of the order of 0.25g (g is the

acceleration due to gravity) and above, since, its behaviour

depends on the dynamic response of the different materials

constituting the dam and the characteristics of the input

motion. The shear modulus and damping ratios of the fill

materials are strain dependent (Hardin and Drnevich, 1970a,

1970b; Seed and Idriss, 1970; Ishihara, 1971, 1982).

Therefore, for a rational dynamic response evaluation of an

earth and rockfill dam, the strain dependency of all the

materials constituting the dam should effectively be

implemented in a computer program using the finite element

method, based on eight-noded isoparametric elements with
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reduced integration technique (Ergatoudis, Irons and

f Zienkiewicz, 1968). This computer coding should be capable

of modelling the nonlinear stress-strain behaviour of each of

the materials as a function of strain. The nonlinear model

adopted should predict the behaviour of the dam as closely as

possible to the actual situation for an event of a strong

ground shaking. The nonlinear stress-strain characteristics
— ft

of each soil, as a function of strain, ranging between 10

to 1.0 percent or more could be achieved by carrying out

extensive tests in the field and in the laboratory. To

achieve this, the following procedures have been

suggested/recommended in the available literature:

1 Using empirical equations proposed by Hardin and

Drnevich (1970a, 1970b) for cohesive and cohesionless

fill materials.

2 Determining the low-amplitude shear modulus in the

field or in the laboratory and using modulus reduct

ion factors as proposed by Seed and Idriss (1970),

and Seed et al. (1984), to extrapolate high-amplitude

k shear modulii for clay, sand and cohesionless soils

and using the normalized shear modulus curve for

silty soils as proposed by Grant and Brown (1981).

3 Assuming the dynamic properties of gravels and

boulders, based on the properties of sand (Seed and

Idriss, 1970).

4 Classifying the different materials constituting the

dam into two categories only, namely, clay and sand,
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and arriving at the dynamic properties of these two

4 type of materials (Seed and Idriss, 1970).

5 Assuming arbitrary and constant values for dynamic

properties and neglecting the associated level of

strain therein (Chandrasekaran, Paul and Suppiah,

1984, 1985; Chandrasekaran and Prakash, 1989b).

In the dynamic analysis, evaluating the dynamic

properties of different soils, as mentioned above would never

represent the true situation. The very few cases of

\ nonlinear dynamic analyses performed in the recent years are

limited to hydraulic fill dams (Seed, Lee and Idriss, 1968;

Seed et al. , 1973; Marcuson 'and Krinitzsky, 1976) and

rockfill dams of medium height (Lai and Seed, 1985) only.

Further, in these studies, the level of strain considered

lies in the medium range and at the threshold values of large

strain levels only. A limited number of dynamic analyses

carried out in India (Chandrasekaran, Paul and Suppiah, 1984,

1985; Chandrasekaran and Prakash, 1989b), are based on

linear and strain independent material characteristics only.

When a high rockfill dam is subjected to a strong

earthquake, the induced level of strain would be in the range

of large to failure strain values. Thus, an appropriate

model, which could predict the actual behaviour of a high

rockfill dam, supplemented by field tests is essential.

In view of the numerous shortcomings as mentioned

above it was decided to carry out different types of tests in

%
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the field, such as wave propagation test, block vibration

test and cyclic plate load test, to establish the in-situ

shear modulus values as a function of strain varying from

low-strain level to medium strain level and then to large

strain values for four different types of soils, namely,

silt, clay, sand and gravel. Out of these four different

types of materials, the last three types of soils typically

represent the materials constituting a rockfill dam. These

different types of field test are frequently carried out in

India, to establish the strain dependent dynamic material

properties (Prakash and his co-workers, 1968a, 1968b, 1970,

1971, 1972, 1973, 1974, 1975, 1976a, 1976b, 1980; IS: 5249,

1977; Nandakumaran et al., 1977, 1979, 1980; Prakash, 1981).

Shear modulus values have also been determined in

the laboratory at high-amplitude strain levels only. The

influence of secondary time effects on shear modulus values

of three different types of soils has been established. Due

to secondary time effects, an appreciable increase in the

shear modulus values has been observed for clay and silty

soils. The increase in shear modulii, due to secondary time

effects is of the order of 4 to 28 percent, depending upon

the type of soil. The percentage increase in shear modulii

is higher for fine grained soils. The reported values are in

close agreement with the values reported by other researchers

(Affifi and Richart, 1973; Woods and Affifi, 1976; Anderson

and Stokoe, 1978).

The high-amplitude shear modulus values obtained
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in the field and in the laboratory corresponding to a parti-

y cular value of strain have been compared and a relationship

between these two values r.s a function of strain is

presented. Based on this relationship, a factor, named as

the disturbance factor (Suppiah, 1986) has been established.

Using this factor, high-amplitude field shear modulus has

been predicted for a particular site consisting of sand, for

which in-situ shear modulus value is not available. The

predicted value of shear modulus using the disturbance factor

has been compared with the values obtained using other

' methods of prediction, presently used -in the Geotechnical-

Earthquake Engineering profession, such as the arithmatic

method and the percentage method (Richart, Anderson and

Stokoe, 1977; Anderson and Stokoe, 1978). The merits and

demerits of the disturbance factor method have also been

presented.

Using the field and laboratory determined shear

modulii, shear modulus curves as a function of shear strain

for the four different types of soils have been presented.

Further, from these shear modulii, the Ramberg-Osgood model

(Ramberg and Osgood, 1943) constants have been evaluated

for all the four different types of soil based on the method

originally proposed by Jennings (1964). The Ramberg-Osgood

model parameters thus evaluated have been used to obtain

modulus reduction curves as a function of strain for all the

soils, through a computer program based on the Newton-Raphson

root finding technique (Hinton and Owen, 1986). Using the

k
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same constants of the Ramberg-Osgood model, damping ratio

curves have also been presented, independent of the

experimentally determined values of damping. The null value

of damping obtained at the normalized shear modulus ratio

(G/Gmax =1) in the Ramberg-Osgood model, has been replaced

by the experimentally determined value of damping, which had

been interpolated from the medium strain levels to low strain

values. The modulus reduction curves and the damping ratio

curves presented for clay and sandy soils have been compared

with the corresponding curves proposed by Seed and Idriss

n (1970), and with the modulus reduction curve of silty soil,

as proposed by Grant and Brown (1981). From the comparison,

it has been observed that the method proposed by Seed and

Idriss (1970), which is widely being used in today's

Geotechnical-Earthquake Engineering profession, yields low

values of modulus reduction factors and low values of damping

compared to the experimentally determined values reported in

this thesis. Nevertheless, a close agreement has been noticed

between the modulus reduction curve for silt as presented by

Grant and Brown (1981), and the normalized shear modulus

curve obtained for silty soil in the present study.

From the curve fitting of experimental data, it

has been observed that the Ramberg-Osgood model can be best

utilized for deriving the parameters for the curve that

simulates the field determined values of shear modulus as

closely as possible. Using the Ramberg-Osgood model

parameters, damping values can also be obtained as a function
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of strain without conducting experiments to evaluate damping.

To verify the applicability of the shear modulus reduction

curves and damping ratio curves obtained based on the

Ramberg-Osgood model parameters of the present study, a case-

history study has been performed. For the case-history

analysis, the extensively instrumented El Infiernillo rock

fill Dam (Mexico) of height 146 m has -been chosen and the

dynamic stress-strain characteristics have been simulated

based on the Ramberg-Osgood model as proposed in the present

thesis.

Prior to the dynamic analysis, the pre-earthquake

stresses in the El Infiernillo Dam have been evaluted using

the nonlinear model based on the hyperbolic law (Kondner,

1963; Kondner and Zelasko, 1963), as proposed by Duncan and

Chang, 1970; Duncan et al. (1980). This model has been

implemented in a computer coding based on the finite element

method, with the versatile, stable eight-noded isoparametric

elements and reduced integration (2x2) technique as proposed

by Ergatoudis, Irons and Zienkiewicz (1968). This computer

coding can account for layer-wise construction sequence

operation as well. The computed nonlinear static stresses

have been used as the initial condition for the dynamic

analysis (Kulhawy, Duncan and Seed, 1969; Lai and Seed,

1985).

For the dynamic analysis of the El Infiernillo

Dam, three different accelerograms, namely, GM1, GM2 and GM3

have been selected as the base input motion. Accelerogram,
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GM1 has been recorded during a recent earthquake in the

^ North-Eastern Region of India (Chandrasekaran and Das, 1989) ,

GM2 is an artificially generated record (Srivastava et al.,

1983) and GM3 is the Taft (Kern County) earthquake record of

1952 (Idriss et al., 1973). The total durations of the three

ground motions are 120, 38 and 30 seconds respectively. In

the literature, an accelerogram with a total duration of 120

seconds has not been used till today for the dynamic analysis

of an embankment dam (Prater and Studer, 1979). All the three

ground motions have been normalized to a peak ground

C acceleration value of 0.25g. This has been done since the

intensity of the base input motion of the March 14, 1979,

Mexico earthquake record was also of the order of 0.25g only.

For performing the dynamic analysis, a computer

coding based on the finite element method using the same type

of eight-noded elements with reduced integration technique

has been developed. The Ramberg-Osgood model, Hardin-

Drnevich model and the Seed-Idriss method of simulating the

stress-strain characteristics have been implemented in this

computer coding. This program performs the dynamic analysis

in the time domain based on the step-by-step integration

scheme, as proposed by Newmark (1959). The variable damping

technique, as proposed by Idriss et al. (1973), has also been

implemented in the same computer program.

From the case-history study of the El Infiernillo

Dam, based on the strain dependent modulus reduction curves

obtained from experiments and the Ramberg-Osgood model
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parameters as evaluated in the present thesis, the resulting

y values of crest accelerations, for the three ground motions,

GM1, GM2 and GM3 are respectively of "the order of 0.13g,

0.34g and 0.35g. Whereas, the recorded value of acceleration

at the crest of the El Infiernillo Dam, due to the March 14,

1979, Mexico earthquake (Resendiz, Romo and Moreno, 1980) is

of the order of 0.36g only. The peak ground acceleration

value of the March 14, 1979, Mexico earthquake was 0.25g

only. This demonstrates that the dynamic analysis as

performed in the present thesis based on the Ramberg-Osgood

model, predicts a behaviour that is very close to the actual

situation in the event of a strong ground shaking. The

material properties used in the present analysis are the same

as that adopted by Romo et al. (1980).

Similar to the acceleration values, the computed

displacement by the present analysis and the measured

displacement at the crest, during the March 14, 1979, Mexico

earthquake have been compared. For the Taft earthquake wave

form, the computed displacement value at the crest by the

analysis based on the Ramberg-Osgood model is 13.13 cm.

On the other hand, the measured value of crest

displacement during the March 14, 1979, Mexico earthquake was

approximately, 13 cm only (Resendiz, Romo and Moreno, 1980).

The close agreement between the computed value of

crest displacement (= 13.13 cm) from the analysis based on

the Ramberg-Osgood model and the measured displacement value

(approximately, 13 cm) at the crest of the El Infiernillo
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Dam, during the March 14, 1979, Mexico earthquake merits

comments and demonstrates that the Ramberg-Osgood model is

the most appropriate model to simulate nonlinear stress-

strain characteristics of different soils subjected to

seismic forces.

Using the Ramberg-Osgood model the displacement at

the crest is of the order of 5.20 and 20.37 cm respectively

for the other two ground motions (GM1 and GM2) adopted in the

analysis.

For the purpose of comparison, the nonlinear

dynamic analysis of the El Infiernillo Dam has been carried

out by the Hardin-Drnevich model and the very widely used

Seed-Idriss method as well. The computed values of the crest

acceleration for the El Infiernillo rockfill Dam using the

Hardin-Drnevich model and the Seed-Idriss method for the

three ground motions respectively are 0.14g, 0.17g and 0.20g,

and 0.79g, 0.41g and 0.51g. From the crest acceleration

values obtained for the three ground motions, it can be

noticed, that the Hardin-Drnevich model predicts extremely

low values. This is perhaps, because the Hardin-Drnevich

model converges to an excessively large value of damping of

the order of 63.7 percent at large and failure levels of

strain (Ishihara, 1982; Shamoto, 1984). On the other hand,

the Seed-Idriss method yields very high values of crest

acceleration for all the three ground motions. This could

possibly be due to the usage of low values of damping.

Identically, the Hardin-Drnevich model yields
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crest displacement of the order of 3.22, 14.17 and 7.39 cm

respectively corresponding to the three ground motions. The

Seed-Idriss method gives displacement values at the crest of

the order of 8.38, 13.22 and 11.12 cm respectively, for the

three ground motions. As can be seen from the computed and

the measured displacement values, the Hardin-Drnevich model

and the Seed-Idriss method do not predict the behaviour that

is close to the actual situation. Therefore, as mentioned

earlier the Ramberg-Osgood model is the most suitable method

for the evaluation of dynamic response analysis of earth and

/ earthfill structures.

In the dynamic analysis of the El Infiernillo Dam,

the peak values of dynamic shear strain obtained using the

Ramberg-Osgood model for the three ground motions are of the

order of 1.097, 3.247 and 2.435 percent respectively and the

values of total (= static + dynamic) shear strain are

respectively of the order of 2.425, 4.434 and 3.734 percent,

and occuring at 135.7 m from the base, under the postulated

ground motion of 0.25g as the peak ground acceleration value.

^ Using the Hardin-Drnevich model the maximum values of dynamic

shear strain for the three ground motions are 1.93 0, 2.021

and 1.707 percent and the values of total shear strain are

2.450, 2.865 and 2.551 percent respectively. Based on the

Seed-Idriss method the maximum values of dynamic shear strain

are of the order of 1.782, 2.419 and 2.170 percent and the

total values of shear strain are 2.459, 3.096 and 2.847

percent respectively, for the three ground motions and

1
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occuring at element 242.

From the dynamic analysis of El Infiernillo Dam,

it is seen that the artificial accelerogram is more severe

followed by the Taft earthquake waveform and the North-

Eastern earthquake record.

Under the postulated three ground motions with a

peak ground acceleration of 0.25g, it has been observed that

no portion of the El Infiernillo Dam reaches a five percent

shear strain value which is the threshold level of failure

(Marcuson and Krinitzsky, 1976) . Therefore, the intensity of

r" the artificial waveform has been modified to yield higher

peak ground acceleration value of the order of 0.40g.

Subsequently, dynamic analysis- has been carried out with the

re-generated ground motion as the base input motion. In the

revised dynamic analysis, it has been observed, that the El

Infiernillo Dam reaches a maximum value of dynamic shear

strain of 13.016 percent and the peak value of total shear

strain of the order of 13.860 percent and occuring at element

241. These values of shear strain lie in the threshold level

^ of failure criteria based on the 5 to 15 percent shear strain

phenomenon. This conclusion is gualitative in nature, since

for an accurate prediction of the failure criteria, the

laboratory determined cyclic shear stress values are

inevitable and these values were not available for

comparison.

To investigate the influence of the foundation on

the stability of the El Infiernillo Dam, the initial maximum
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section of this dam has been appended with a stiffer founda-

v- tion of depth equal to 6.0 m. This modified section of the

El Infiernillo Dam has subsequently been analysed to obtain

the dynamic response using the artificial (GM2) accelerogram

with a peak ground acceleration of 0.25g. The modified

section inclusive of the foundation, resulted in marginally

lower values of shear strain, in comparison to the shear

strain values obtained from the analysis based on the dam

without the foundation. Neglecting the minor differences in

the values of shear strain between the two cases (with and

, without the foundation) of analyses, it was concluded, that

the presence of a stiff foundation, practically has no

influence on the stability of the dam.

The previously mentioned nonlinear static and

nonlinear dynamic methods of analysis have been extended to

evaluate the dynamic response of two other rockfill dams of

height 108 m (Dam DB) and 336 m (Dam DC) inclusive of their

respective foundations. These two rockfill dams (DB and DC)

were proposed to be built in India, in two different regions

k with moderate and high seismicity respectively.

The base of the dam DB has been extended in the

upstream and in the downstream by one time the width of the

dam at the base (without the foundation). Thus the ratio of

the width of the dam DB at the base (without the foundation)

to that of the width at the bottom inclusive of the found

ation was 1:3 (Franklin, 1987). Identically, the same pro

portion was adopted in the case of the dam DC as well. The
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two dams DB and DC have been analysed using the Ramberg-

Osgood model with the previously mentioned three ground

motions as the earthquake load vectors. As before, for

comparison purposes, the dynamic analysis has been done using

the Hardin-Drnevich model and the Seed-Idriss method as well.

Out of these two dams (DB and DC), the dam DC was the tallest

(336 m) and was proposed to be constructed in a region with

severe seismicity. The existing literature on the dynamic

analysis of such a high rockfill dam is scanty, therefore,

this dam has been subjected to an extensive dynamic response

I evaluation by computing the time-histories of acceleration,

displacement and shear stress at a few important locations,

using only the synthetic accelerogram as the base input

motion, since, the artificial earthquake record was more

severe than the other two actual earthquake records. As

mentioned earlier, the dynamic analysis has been done using

the Ramberg-Osgood and the Hardin-Drnevich models and the

Seed-Idriss method.

From the dynamic analysis of the dam DB the values

^\„ of the crest acceleration obtained using the Ramberg-Osgood

model corresponding to the three ground motions are 0.39g,

0.42g and 0.40g respectively. Using the Hardin-Drnevich

model the acceleration values obtained at the crest are

0.28g, 0.31g and 0.27g and that for the Seed-Idriss method of

analysis these values are 0.46g, 0.50g and 0.56g respectively

for the three ground motions.

The maximum values of dynamic shear strain

y
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obtained using the Ramberg-Osgood model for the dam DB are

-J 0.175, 0.342 and 0.242 percent and the total values of shear

strain are 1.875, 2.042 and 1.942 percent, respectively and

taking place at element 84, for the three ground motions.

Using the Hardin-Drnevich model the maximum dynamic shear

strain values are 0.140, 0.308 and 0.201 percent and the

total values of shear strain are 1.840, 2.008 and 1.901

percent respectively, for the three ground motions and

occuring at the same location as in the case of the Ramberg-

Osgood model.

^ Using the Seed-Idriss method the maximum values of

dynamic shear strain are of the order of 0.200, 0.324 and

0.198 percent and the total values of shear strain are 1.854,

1.978 and 1.852 percent respectively, corresponding to the

three ground motions and occuring at element 94, unlike in

the other two models.

The displacement at the crest of the dam DB by the

Ramberg-Osgood model using the three ground motions are 7.10,

12.27 and 10.59 cm respectively. Using the Hardin-Drnevich

model and the Seed-Idriss method, the displacement at the

crest for the three ground motions are 4.11, 8.42 and 6.57 cm

and 9.83, 17.43 and 11.72 cm respectively.

In all the three ground motions, except in one

case (the Seed-Idriss method and the Ta-ft accelerogram) , it

was noticed that the maximum value of acceleration, maximum

value of shear strain and the maximum displacement value are

obtained corresponding to the artificial waveform as the base

t
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input motion with a peak ground acceleration of 0.2 5g.

Since the dam DB did not undergo any excessive

deformation at any part under the postulated three ground

motions with a peak ground acceleration of 0.25g and the

artificial accelerogram is more stronger than the other two

actually recorded accelerograms, as before a revised dynamic

analysis has been performed using the Ramberg-Osgood model

and the modified artificial waveform as the base input motion

with a peak ground acceleration of 0.40g. From the revised

dynamic analysis the peak values of dynamic shear strain and

the total shear strain are of the order of 3.680 and 5.380

percent respectively and taking place at element 84. Thus, it

has been observed that the dam DB is generally safe under the

postulated peak ground acceleration of 0.40g as well, based

on the 5 percent shear strain failure criteria (Marcuson and

Krinitzsky, 1976).

However, this conclusion is qualitative only,

since for an exact prediction of failure criterion, the

laboratory determined cyclic shear stress values were not

k. available.

Similarly, from the dynamic analysis of dam DC the

maximum values of crest acceleration using the Ramberg-Osgood

model for the three ground motions with peak ground accelera

tion as 0.25g are 0.17g, 0.33g and 0.32g respectively,

obtained at node 48 which is lying along the axis of the dam

and is just below the crest. For the Hardin-Drnevich model

these values are 0.12g, 0.16g and 0.17g respectively for the
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three ground motions occuring at the same location as in the

case of the Ramberg-Osgood model. Using the Seed-Idriss

method, the crest acceleration values are of the order of

0.32g, 0.37g and 0.36g respectively for the three ground

motions, obtained at node 23 lying along the crest

(downstream).

The maximum values of dynamic shear strain using

the Ramberg-Osgood model for the three ground motions with

peak ground acceleration as 0.25g are of the order of 0.542,

8.491 and 3.265 percent respectively and the values of total

shear strain are 4.013, 10.162 and 4.936 percent respectively

occuring at the same elevation. Using the Hardin-Drnevich

model the maximum values of dynamic shear strain for the

three ground motions are 1.829, 2.739 and 2.251 percent

respectively and the total values of shear strain are 3.918,

4.757 and 4.269 percent respectively.

Based on the Seed-Idriss method of analysis the

maximum values of dynamic shear strain are 2.712, 6.137 and

3.067 percent and the total values of shear strain are 4.383,

1 7.808 and 4.738 percent respectively for'the three base input

motions and occuring at element 199 which is at a height of

328.0 metres from the base.

The displacement at the crest of the dam DC, using

the Ramberg-Osgood model for the three ground motions with

peak ground acceleration as 0.25g are 6.91, 49.26 and 20.50

cm respectively. For the Hardin-Drnevich model using the

three ground motions the crest displacement is of the order
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of 5.99, 27.55 and 13.66 cm respectively. The displacement

using the Seed-Idriss method of analysis is of the order of

9.02, 20.85 and 15.69 cm for the three ground motions

respectively.

From the dynamic analysis of the dam DC irrespect

ive of the method of analysis adopted, it is seen that the

artificial accelerogram is more severe than the other two

actually recorded waveforms.

Since the dam DC did not reach the threshold level

of failure under the postulated peak ground acceleration

value of 0.25g for the three ground motions and as before the

artificial waveform was more severe than the other two acce

lerograms, to evaluate the stability of the dam DC a revised

dynamic analysis has been performed using the Ramberg-Osgood

model and the synthetic accelerogram as base input motion

modified to yield a peak ground acceleration value of 0.40g.

In this revised analysis the peak values of dynamic shear

strain and total shear strain obtained are of the order of

12.325 and 13.996 percent respectively and taking place at

^ the same elevation as before (element 199) . In this dynamic

analysis, it has been observed that under the postulated

artificial accelerogram with the peak ground acceleration

value of 0.4 0g, a major portion of the dam DC reaches the

threshold level of failure (value of shear strain is between

5 to 15 percent, Marcuson and Krinitzsky, 1976).

From the extensive dynamic analysis performed on

three different dam sections of varying geometry, three diff-
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erent ground motions of varying durations and three, different

methods of analysis, it is again demonstrated that the

Hardin-Drnevich model yields very low values of crest

acceleration and the Seed-Idriss method of analysis gives

excessively high values of acceleration as compared to the

proposed method of analysis based on the Ramberg-Osgood model

which predicts crest acceleration values and displacement

values which are in close agreement with the actually

recorded/measured values of acceleration/displacement during

the March 14, 1979, Mexico earthquake as demonstrated in the

case-history analysis of the El Infiernillo Dam.

Also, as far as the cost of the computer time is

concerned, the Ramberg-Osgood and Hardin-Drnevich models need

approximately 50 percent less time than the Seed-Idriss

method, which shows that the latter method is uneconomical as

well.

From the extensive dynamic analysis carried out,

it has been observed that the Hardin-Drnevich model which is

based on the hyperbolic law is not suitable for the dynamic

i response evaluation of embankment dams and as well the Seed-

Idriss method based on empirical equations for predicting the

strain dependent shear modulii and damping ratios does not

provide a rational solution.

The Ramberg-Osgood model represents the nonlinear

• material properties, such as the strain dependent shear

modulus and damping values in a functional form which is very

essential for a nonlinear dynamic analysis based on the step-
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by-step integration technique. However, the Seed-Idriss

method does not employ a functional expression to represent

these dynamic properties and therefore, may not be utilized

efficiently for a nonlinear dynamic analysis of an earth or

earthfill structure.

As noticed previously, the response of an earth

and rockfill dam is a function of the geometry of the

structure, nature of the foundation material, zoning of the

dam body, strain dependent dynamic properties of the various

constituting materials and the characteristics of the base

>-f input motion. Thus, to outline an approach that could predict

the response of a complicated structure, such as an earth and

rockfill dam as closely as possible to the actual situation,

in the event of a severe ground shaking is a tedious effort.

The investigation presented in this thesis

demonstrates that in the event of a strong ground motion, the

proposed method based on the versatile Ramberg-Osgood model

can predict the dynamic behaviour of an earth and rockfill

dam as closely as possible to the actual condition.

1 Therefore, in view of the findings of the present

thesis, for a rational dynamic response evaluation of an

earth structure, only the Ramberg-Osgood model should be

used.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Destructive earthquakes occurred in the recent

past in Santa Barbara, USA (1906); Koyna, India (1967); San

Fernando, USA (1971); Chile (1985) and other places causing

heavy loss of life in thousands and severe, irreparable

damage or total collapse to dams and earth structures have

demonstrated the need for earthquake resistant design of

these structures. As a result of these natural disasters,

much attention has been given to the research in the field of

Geotechnical-Earthquake Engineering, to minimize the damages

due to the future earthquakes.

With the recent advances in the method of analysis

to evaluate the response of soil-structure interaction

problems and with the development of high speed digital

computers, it has become possible to carry out detailed

investigations in Soil Dynamics related applications.

In support of the above methods of analysis,

experiments have been conducted to determine the shear

modulus and damping values of undisturbed soils in the field

and on remoulded or disturbed soils in the laboratory. In

the field, the cross-hole test device or the surface wave
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propagation method is frequently used to determine the in-

situ shear modulus. The level of shear strain, induced in

these type of tests is of the order of 10~6 percent. In the

laboratory, the shear modulus is often determined, using the

cyclic triaxial shear test apparatus (Woods, 1978), on

'undisturbed' samples, in which the associated level of

strain is in the range of 10 J to 10 * percent.

The field determined shear modulus and the

laboratory determined shear modulus values are combined

together and interpoloated/extrapolated to obtain the shear

modulus values as a function of shear strain ranging between

—6 —4
10 or 10 to 1.0 or 10 percent. In such a combination the

laboratory determined shear modulus value is adjusted to the

field value by multiplying an arbitrary factor known as

correction factor varying between 1 and 2.5 (Seed and Idriss,

1970), irrespective of the level of strain under

consideration. Adjusting the laboratory determined shear

modulus to the field value of shear modulus is based on the

meager data available on in-situ high amplitude shear

modulus.

In the dynamic response evaluation of a soil

deposit or an earth and rockfill structure subjected to

ground motion, the in-situ shear modulus values rancnna

_3
between r = 10 to r = 1.0 percent should be available to

obtain any meaningful results. This is possible, only by

conducting different type of field tests, such as wave

propagation test, free and forced block vibration tests and
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cyclic plate load test, covering a large range of shear

strain (r = 10~6 to 1.0 percent, IS: 5249, 1977: Nandakumaran

et al., 1977; Prakash, 1981). As shown in Fig. 1.1, today no

unique method of testing is available which can be used to

determine the shear modulus values ranging between the strain

level of 10" to 1.0 percent or more. Further, the shear

modulus data, as a function of strain for coarse grained

materials such as gravels is very scanty, and efforts are

being made to establish the relationship between shear

modulus versus shear strain for gravels and crushed rocks

(Ishihara, 1982).

Similar to the shear modulus values, the damping

value is also strain dependent (Hardin and Drnevich, 1970a;

Seed and Idriss, 1970). Once these two parameters, namely,

shear modulus and damping ratio are available as a function

of strain, it is possible to evaluate the dynamic response of

soil deposits and earth structures, subjected to any ground

motion or other vibratory forces.

1.2 STRESS-STRAIN CHARACTERISTICS

The stress-strain behaviour of soils subjected to

dynamic loading depends on the induced level of strain. Only

at very low values of strain (r * 5.0 x 10-5 percent), the

soil is linearly elastic as shown in Fig. 1.1. At medium

range of strain, r varying between 10-5 to 10~3 percent the

behaviour of soil is elasto-plastic. When the soil is

subjected to a strong ground motion the induced strain value
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is large, nearing failure condition, the behaviour of soil is

nonlinear and the method of analysis also drastically

changes. In such cases, the step-by-step time integration

scheme is the only method that can take into account the

nonlinearity of the soil (Ishihara, 1982, 1985, 1987).

1.2.1 Simulation of Stress-Strain Characteristics of Soils

To account for the stress-strain characteristics

^- of soils when subjected to earthquake or vibratory loading,

presently, the Hardin-Drnevich model (1970b), which is

based on the hyperbolic law (Kondner, 1963; Kondner and

Zelasko, 1963), is widely used. However, in recent years,

the Ramberg-Osgood model has been increasingly used to repre

sent the stress-strain behaviour of soils (Constantopoulos,

1973; Richart, 1975; Richart and Wylie, 1975; Desai, 1977:

Roesset, 1977; Ishihara, 1982, 1985, 1987; Shamoto, 1984).

The Hardin-Drnevich model (1970b), based on two parameters.

^ namely, (a) the low-amplitude shear modulus, Gmax and (b) the

shear strength, Tf corresponding to low-amplitude shear

modulus, predicts an extremely large value of damping, of the

order of 63.7 percent at large strain levels, which is not

experienced in actual situation (Ishihara, 1982, 1985).

The Ramberg-Osgood model based on four parameters, namely,

(a) low-amplitude shear modulus, (b) the shear strength

corresponding to low-amplitude shear modulus and (c) the two

^ constants, a and R gives zero value of damping at a point

where G/GJnax is unity. However, this deficiency can be
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overcome by adjusting the damping value at G/Gmax equal to

unity, to that of the experimental value, or an assumed value

of damping of very low order in magnitude at G/Gmax equal to

unity. Thus, the Ramberg-Osgood model permits a better degree

of freedom to fit the experimentally obtained values of shear

modulus and damping (Ishihara, 1982; Shamoto, 1984).

1.3 EARTH AND ROCKFILL DAMS

1.3.1 Static Analysis

Clough and Woodward (1967), were the first to

apply the finite element method to carry out a linear elastic

analysis of an earth dam. Clough and Woodward (1967) . in

their analysis, demonstrated the layer-wise sequential

construction operation. However, the linear elastic

analysis, as performed by Clough and Woodward (1967), does

not predict the true behaviour of the earth dam due to

nonlinear characteristics of soils. Duncan and Chang (1970),

developed a method to account for the nonlinear stress-strain

behaviour of soils, based on the hyperbolic model (Kondner,

1963; Kondner and Zelasko, 1963). Duncan et al. (1980).

added a revision to account for volume change characteristics

of soils in the hyperbolic model. Since, the introduction of

the hyperbolic model by Duncan and Chang (1970), and Duncan

et al. (1980), embankment dams are increasingly being

analysed with nonlinear stress-strain characteristics of

soils, and also, considering the incremental analysis

(Kondner, 1963; Duncan and Chang, 1970; Kramer, 1972:



Kulwahy, Duncan and Seed, 1975; Sharma, 1976; Lai and Seed,

1985). A nonlinear, sequential construction analysis is

essential to understand the pre-earthquake or the initial

stresses developed in the embankment, due to self-weight and

water loads (Seed et al., 1976; Lai and Seed, 1985).

1.3.2 Dynamic Analysis

Clough and Chopra (1966) , extended the finite

element method of analysis for the first time to analyse a

homogeneous earth dam subjected to dynamic loading. They

performed a linear dynamic analysis based on the mode

superposition method. After the investigation of Clough and

Chopra (1966), the finite element method is being

increasingly used for the dynamic analysis of earth and

rockfill dams (Idriss, 1968; Seed, Lee and Idriss, 1968;

Dibaj and Penzien, 1969; Duncan and Clough, 1971; Clough.

1972; Idriss et al., 1973; Lefebvre, Duncan and Wilson, 1973;

H Seed et al., 1973; Lysmer et al., 1974, 1975; Sharma, 1976;

Chandrasekaran, Paul and Suppiah, 1984, 1985; Chandrasekaran

and Prakash, 1989b).

Since, the complete failure of the Sheffield dam

(Seed, Lee and Idriss, 1968) and the near catastropic failure

that occurred in the Lower San Fernando (hydraulic fill) dam

during the San Fernando earthquake of February 9. 1971 (Seed

et al., 1973), much efforts are being made to analyse and

-f construct high earth and rockfill dams with improved

techniques/method (Dihang Dam (proposed): 276 m: Nurek dam:
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310 m; Oroville Dam: 240 m; Tehri Dam: 265 m) in severe

seismic regions for ground motions with peak ground

acceleration values of the order of 0.25g (g is the

acceleration due to gravity) or more. The successful

application of the improved techniques is dependent on the

efficient incorporation of representative dam-material

properties, such as the strain dependent shear modulus and

damping values in the analysis. Since, the behaviour of earth

and rockfill dams during earthquakes is governed by the

dynamic response characteristics of the materials

constituting the dam. When an earth structure is subjected

to a strong earthquake, the induced level of strain is large

and the dynamic characteristics of the dam-materials are not

linear. This factor is more pronounced in high rockfill

dams, in which the height is of the order of 200 m or more,

due to the presence of large amount of confining pressure.

In an earthquake resistant analysis of such a high rockfill

dam, the nonlinear stress-strain characteristics of all the

materials constituting the dam should be considered, using an

appropriate model, such as the Ramberg-Osgood model, based on

the step-by-step time integration scheme supplemented with

experimental results.

1.4 OBJECTIVES

Today, in most of the aseismic analyses related to

earth and rockfill dams and soil deposits the strain
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dependent shear modulus and damping properties are considered

only for sand and clay materials (Seed et al. . 1973. 1974,

1975), and recently to account for gravel materials as well

(Seed et al., 1984; Lai and Seed, 1985). Due to the meager

data available on gravel or boulder materials the stress-

strain behaviour of these materials are approximated to that

of sand. Nevertheless, experience shows (Prater and Struder,

1979), that the seismic analysis of a rockfill dam involves

more complexities than that of a homogeneous (earth) dam, due

to the presence of different type of materials and pronounced

nonlinearity of these materials. Therefore, a realistic

seismic analysis, considering the nonlinear behaviour of all

the materials constituting the dam by an appropriate

nonlinear model supplemented by field investigation on these

dam-materials is essential to assess the safety of a rockfill

dam during a strong ground shaking and to establish improved

analysis/design techniques and to demonstrate the suitability

of the chosen model through a case-history study. This is

the main objective of the present thesis.

1.5 ORGANIZATION OF THE THESIS

The presentation of the thesis is made in nine

chapters. The literature survey on the dynamic

characteristics of different materials, low-amplitude and

high-amplitude shear modulii, secondary time effects on shear

modulus, damping values and models to represent nonlinear

stress-strain characteristics of different soils are
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presented in Chapter 2. In the same chapter, static and

dynamic analysis of a few of the embankment dams, carried out

by different investigators based on the finite element method

is also reviewed.

Chapter 3 describes the different type of tests

carried out in the field and in the laboratory to determine

the dynamic properties of soils as a function of strain.

The results of experimentally determined shear

modulii along with the associated strain levels are presented

in Chapter 4.

Interpretation of the different test results.

Newton-Raphson iterative technique, evaluation of Ramberg-

Osgood model constants, modulus reduction curves and dampina

values for different types of soils as a function of strain

are described in Chapter 5.

Chapter 6 describes the formulation of the finite

element method with respect to the eight-noded isoparametric

element. The hyperbolic model as applicable to nonlinear

static case and the method of sequential construction are

presented in this chapter. Formulation of stiffness matrix.

mass matrix and damping matrix, and an implicit time

integration scheme are also described in Chapter 6.

In Chapter 7, the computer programs based on the

finite element method and applicable for nonlinear static

analysis and nonlinear dynamic analysis are discussed. The

verification of the developed computer codinas has been done

by solving two standard examples, namely, an embankment dam
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and a soil column.

The case history analysis results of the 146 m

high El Infiernillo Dam and dynamic response evaluation of

two other rockfill dams of height 108 m and 336 m including

their respective foundations subjected to three different

ground motions are presented in Chapter 8. The dynamic

analysis of each dam based on the Ramberg-Osgood model.

Hardin-Drnevich model and the widely used Seed-Idriss method

is described as well. In the same chapter, the comparison of

all the three methods of analysis is also made.

Chapter 9 gives the important conclusions drawn

and the significant contributions made in the present work.
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CHAPTER 2

PREVIOUS WORK

2.1 GENERAL '

A survey of past studies, with emphasis on the

determination of field and laboratory shear modulii and

damping ratios of different type of soils, the influence of

secondary time effects on shear modulii; the determination of

different parameters pertaining to nonlinear stress strain

characteristics of various soils, nonlinear static and

nonlinear dynamic analysis of a few embankment dams based on

the finite element method are reviewed in this chapter.

2.2 SHEAR MODULUS

Almost all type of soils exhibit nonlinearity. The

response of soils subjected to dynamic or earthquake loads

varies from linear elastic behaviour at low shear strain

values (T £ 10 percent) to highly nonlinear behaviour at

large strain values (Fig. 1.1). Therefore, the shear modulus

should be estimated with extreme care due to its significant

influence on any dynamic soil-structure interaction problems.

2.2.1 Factors Affecting Shear Modulus

As many as eleven parameters are found to affect

12
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the shear modulus values of soils (Hardin and Black, 1968;

Hardin and Drnevich, 1970a; Richart, Hall and Woods, 1970).

These different parameters are:

1 Strain amplitude, r

2 Mean effective principal stress, om

3 Void ratio, e, or relative density, Dr

for cohesionless soils

4 Number of cycles of loading, N

5 Secondary time effects for fine grained soils

6 Octahedral shear stress

7 Overconsolidation ratio, OCR

8 Degree of saturation, S

9 Effective strength parameters, c' and *'

10 Ambient stress history and vibration history, and

11 Temperature effects including freezing.

Out of these eleven factors, the shear modulus of

any soil is greatly affected by the first two parameters

listed above.

2.2.2 Shear Modulus from Empirical Equations

Hardin and Black (1968), conducted a parametric

study and proposed an expression to estimate the shear

modulus at low-amplitude strain levels from:

1230(2.973-e)2 (OCR)k (o')°-5
G = (2.D

maX (l+e)
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where

(G in pounds/square inch and

1 pound/square inch • 0.703 tonne/sq. m)

14

,-4G = low-amplitude shear modulus at I"£10 percent
max

e = void ratio

OCR = over consolidation ratio

a' = mean effective principal stress,
m

The value of k (Eq. 2.1), which is given in Table 2.1. is

related to the plasticity index, PI of the soil (Hardin and

Drnevich, 1970a) .

Table 2.1 Values of k

k PI

(1) (2)

0.00 0

0.18 20

0.30 40

0.41 60

0.48 80

0.50 >100

Eq. 2.1 was formulated from tests, carried out on

sands and low plasticity clays. This equation is applicable.
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over a. range of void ratio values between 0.4 and 1.2 and the

resulting value of shear modulus is in pounds per square

inch.

Hardin and Drnevich (1970a), proposed identical

expression (Eq. 2.2), to compute the values of maximum shear

modulus, at essentially zero strain for some soils, as given

by:

14760(2.973-e)2 (OCR)k (°m>°-5
(2.2)

max
(1+e)

in which

(G is in pounds/sq. foot and

1 pound/sq/ foot = 0.0048 tonne/sq. m.)

All notations remain as defined in Eq. (2.1),

except that the constant here is 14760. Hardin and Drnevich

(1970a), further, proposed empirical equations, to calculate

high-amplitude shear modulus. These equations are:

where

Ta a x

G =
max

i+r/r.

rr ~ Tmax'Gmax

1+Ko 1_Ko ,
( oi sin **+ c'cos *')2 ( ov

(2.3)

(2.4)

(2.4a)
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Kq = coefficient of earth pressure at rest

ov = vertical effective stress

c', *' = effective strength parameters.

Hardin (1978), proposed a modification in Eqs. 2.1 and 2.2,

to take into account a wide range of void ratio for different

soils and suggested the following expression:

-4 A (OCR)k (pa)1_n (°m>n
G = (2.5)

max

F(e)

in which

A = dimensionless coefficient

pa = atmospheric pressure

n = elastic parameter defining the power to which stress is

raised in the stress range where the soil is normally

consolidated.

The parameter, F(e) is given by:

F(e) = 0.3 + 0.7e2 (2.6)

Eq. (2.5) is applicable for all type of soils.

Seed and Idriss (1970), conducted a very extensive

survey on strain dependent dynamic soil properties. Based on

the type of soil, they classified the shear modulus values

and proposed empirical equations. These empirical eauations

are being widely used, in evaluating the dynamic response of

soil-structure interaction problems. Most of the data they
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collected were from laboratory tests, conducted at high

strain levels, ranging between 10~3 and 10"1 percent. From

this range of data, Seed and Idriss (1970), extrapolated the

low-amplitude shear modulus values. The work done by them is

briefly presented herein.

From the extensive data collected by Seed and

Idriss (1970), they proposed an expression for cohesionless

soils, relating the shear modulus and confining pressure as

given by:

G = 1000 K2(om)0-5 (2.7)

where

G = high-amplitude shear modulus, in :pounds/sguare feet

K2 = a parameter which accounts for the influence of void

ratio or relative density and strain amplitude.

The variation of K2 with shear strain at different relative

•^ density values is shown in Fig. 2.1. Seed and Idriss (1970),

further presented modulus reduction factors, to obtain shear

modulus values at high-amplitude strain level for sandy

soils, knowing the low-amplitude shear modulus value. This

relationship is shown in Fig. 2.2.

Seed and Idriss (1970), attempted to generalize

the shear modulus values of clay soils as a function of shear

strain. From the large volume of data collected, they

.« normalized the shear modulus of clay soils with respect to

the undrained shear strength, Su. This relationship is shown
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in Fig. 2.3.

Similar to the modulus reduction curve of sand

(Fig. 2.2), for clay soils also, Seed and Idriss (1970),

recommended a modulus reduction curve as shown in Fig. 2.4.

Seed and Idriss (1970), concluded from their literature

survey, that the shear modulus of peaty soils was similar to

that of clay soils, as shown in Fig. 2.3, except that the

ratio of G/Su is of the order of 150.

Seed et al. (1984), made a revision on their

earlier investigation (Seed and Idriss, 1970), by providing

shear modulus values for gravel materials as a function of

shear strain. Seed et al. (1984), in their latest study,

proposed modulus attenuation curve for gravels and made a

comparison with the modulus reduction curve of sand as shown

in Fig. 2.5.

Grant and Brown (1981) , carried out field and

laboratory tests to determine shear modulii of silty soils at

six different sites. In the field, they employed geophysical

methods to determine the low-amplitude shear modulii and in

the laboratory, they used the resonant column test and cyclic

triaxial test equipments. Grant and Brown (1981), have

proposed, normalized shear modulus curves as a function of

shear strain for silty soils. These curves are shown in

Figs. 2.6 and 2.7, in which they have compared their proposed

curves with the curves given by Seed and Idriss (1970) , for

clay and rock.
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2.3.6 Field and Laboratory Determination of Shear Modulii

Several investigators have studied the variation

of shear modulus between the field and laboratory tested

values. The work done by few researchers, who have conduct

ed tests both in the field and in the laboratory to determine

shear modulus is summarized below:

Cunny and Fry (1973), conducted in-situ and

laboratory tests at fourteen sites, consisting of different

type of soils. They made a comparative study between the

shear modulii obtained in the field and in the laboratory.

Cunny and Fry (1973) , reported a variation of as much as ± 50

percent, in the shear modulus values, determined in the field

and in the laboratory for a particular site. They further

suggested to carry out additional tests, whenever the

observed variation between the two shear modulus values was

very large. One of the reasons, they cited for the

"» difference between field and laboratory shear modulii was the

confining pressure.

In India, Prakash and his co-workers (1968a.

1968b, 1970, 1971, 1972, 1973, 1974, 1975, 1976a, 1976b,

1981); Nandakumaran et al. (1977, 1979. 1980), have carried

out extensive in-situ tests to establish the shear modulus

of different soils as a function of shear strain ranging

between 10-6 to 1.0 percent, at major project sites.

T including nuclear power plant sites and different dam sites.

Prakash (1981), has summarized the different type of tests
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carried out in India and presented the absolute values of

shear modulii for at least seven sites. These investigators

have employed the following type of tests for evaluating the

dynamic properties of different soils:

1 hammer (or wave propagation) test

2 block vibration test

3 cyclic plate load test

4 passive pressure test.

Two sets of plots between the shear modulus and

shear strain, presented by Nandakumaran et al. (1977). and

Prakash (1981), are shown in Figs. 2.8 and 2.9 respectively.

These investigators have recommended that the shear modulus

versus shear strain relationship should be established based

on a variety of tests and not from a single test.

Arango, Moriwaki and Brown (1978), performed a

comparative study by conducting numerous tests in the field

and in the laboratory to determine shear modulus values.

They employed down-hole and cross-hole methods of testing in

the field and cyclic and static triaxial compression tests

and resonant column test in the laboratory. They observed

the difference between the field shear wave velocity.

obtained at T = 10-4 percent and the laboratory shear wave

velocity, obtained at r = 10"1 percent, to be of the order

of 100 to 25 percent respectively. Arango, Moriwaki and

Brown (1978), cautioned against the method of obtaining

modulus reduction curves by combining field test data and



2 000/

^1600

| 1200

u 800
E
a

o

400

10"

A

10"

• • J
10"

*

• Free vibration test
o Forced vibration test
* Dynamic plate bearing test
a Oscillatory shear test
A Wave propagation test

i 11 i i

=110 ,-210
-1

10

Shear strain

Fig. 2.8 Dynamic Shear Modulus Curve
(Nandakumaran et al., 1977)

CO



V

2400

*

o Forced vibration test
*• Free vibration test
» Cyclic plate load test

Shear modulus test

W3
Strain amplitude

(n) Site number



30

laboratory test data, since this resulted in significant

errors.

2.4 DAMPING OF SOILS

As reported earlier, similar to shear modulii of

soils, the damping parameter also has a major influence in

the behaviour of soil-structure interaction problems

subjected to dynamic loads.

2.4.1 Parameters Affecting Damping of Soils

Hardin and Drnevich (1970a), reported that the

same factors affecting shear modulii of soils are found to

influence the damping ratio of soils as well. These para

meters are listed in Sec. 2.2.1.

2.4.2 Damping from Empirical Equations

Hardin and Drnevich (1970a), from their extensive

research on shear modulus and damping of soils, proposed the

following empirical equation to compute the damping ratio, D

of soils:

r/rr
D = D (2.8)

max

l + r/rr

in which

Dmax = maximum damping ratio corresponding to large strain

value.
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Hardin and Drnevich (1970a) , from their study

found that the shear strain amplitude, mean effective

principal stress, void ratio and number of cycles of loading

are the major factors influencing the damping values of

sands. From their study, Hardin and Drnevich (1970a),

proposed the following equation for computing the maximum

damping ratio of sands:

'max D - 1.5 log10N (2.9)

where

D = damping ratio at low strain levels

N = number of cycles of loading.

Seed and Idriss (1970), from their detailed

investigation, presented approximate curves to compute

damping ratio of sands, as a function of shear strain. These

curves which are shown in Fig. 2.10, have upper and lower

^-- bound values of damping ratios for sandy soils.

From the very limited data collected by Seed and

Idriss (1970). approximate curves for damping values have

been recommended which are similar to that of sand. These

curves are shown in Fig. 2.11.

Practically no data on damping values of gravel

material was available. However, Seed and Idriss (1970),

suggested the same value of damping as that of sands for

i gravel materials.
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2.5 SECONDARY TIME EFFECTS ON SHEAR MODULUS

One of the factors affecting shear modulii of

soils, namely, secondary time effects or long-term time

effects, such as the duration of confining pressure, has been

increasingly studied in recent years by a limited number of

researchers, Marcuson and Wahls (1972), Afifi and Richart

(1973), Anderson and Woods (1976), Stokoe and Abdel (1975),

and Anderson and Stokoe (1978).

2.5.1 Secondary Time Effects on Clay Minerals

Marcuson and Wahls (1972), were the only

investigators who studied the secondary time effects, on

shear modulus of two clay minerals, namely, kaolinite and

bentonite. These two minerals were chosen, since kaolinite

exhibits a very small amount of secondary consolidation and

bentonite exhibits a large amount of secondary consolidation.

In their study, first, the samples were subjected

to different magnitudes of consolidation pressure, till the

end of primary consolidation. The samples were then tested

in resonant column apparatus. Marcuson and Wahls (1972),

modified the empirical equation proposed by Hardin and

Drnevich (1970a) , to take into account the secondary time

effects on low-amplitude shear modulus. This modified

equation is given by:

1709 F(t) (2.973-e)2 (OCR)k (om)0-5
G = (2.10)

(1+e)
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where

F(t) = 1.0 + 0.046 log10T (2.11)

T accounts for the increase in shear modulus with time.

Afifi and Richart (1973), and Anderson and Woods

(1976), performed extensive tests on a variety of soils using

resonant column testing equipments. They concluded

separately, that for fine grained soils, the increase in low-

amplitude shear modulus, due to secondary time effects was of

the order of 11 percent or more. These investigators also

concluded that:

1 the time dependent increase in shear modulus is

relatively unimportant for soils having the mean

grain diameter, D50 greater than 0.04 mm and

2 for fine grained soils, the shear modulus values

should be estimated only at the end of primary

consolidation.

^ Anderson and Woods (1976) , also suggested an

empirical relationship between shear wave velocity, Vs, and

undrained strength, Su, for fine grained soils, with a mean

grain diameter less than or equal to 0.04 mm. This relation

ship is given by the following expression:

*vs

vsl000

= exp(1.7 - 0.25S + 0.37e) (2.12)
u

in which

AVS = change in shear wave velocity per log cycle of time
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vslOOO " shear wave velocity determined at the end of primary

consolidation.

Eq. 2.12 is applicable, for void ratio and mean grain

diameter less than 2.0 and 0.04 mm respectively.

2.5.2 Influence of Duration of Confining Pressure

Stokoe and Abdel (1975), and Anderson and Stokoe

(1978), conducted extensive field and laboratory tests, to

study the long-term time effects, such as the duration of

confining pressure on the shear wave velocities and on shear

modulii of soils. They tested 'undisturbed' samples at a

constant confining pressure for a long duration of time.

Stokoe and Abdel (1975), plotted the relation

between shear wave velocity, Vs, and log of time for each of

the tested soils. One of the plots obtained by them is shown

in Fig. 2.12. The reason for the first straight line, they

cited, was due to changes in void ratio during primary

consolidation and that for the second line was due to the

result of time effects. Stokoe and Abdel (1975), suggested

the following expression to compute the increase in shear

wave velocity due to secondary time effects:

where

I =

s

Avs
(2.13!

log10(t2/t1)
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Is = a shear wave velocity coeffcient which increases with

time

ti and t2 are the durations of times after primary consolida

tion

A.VS = change in shear wave velocity from tj^ to t2-

CD
>

>

a
3t

a

i/)

Time (log scale)

Fig. 2.12 Variation of Shear wa™ v«i
Constant Conrin^"^^10"^ »ith «- at
(Stokoe and Abdel, 1975)
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Stokoe and Abdel (1975), concluded that the empirical
equation (Eq. 2.2) proposed by Hardin and Drnevich (1970b).
could not take into account the secondary increase in the

shear modulii of soils.

Anderson and Stokoe (1978). carried out simiDar

tests and they proposed empirical equations in terms of shear
modulus, which can take into account the long-term influence

of time.

^^ Anderson, Espana and McLamore (1978), performed

laboratory tests to determine the shear modulus values on

Undisturbed' samples from four sites. For the same sites,
they estimated the shear modulus values based on the Hardin-
Drnevich empirical equation (Eq. 2.2) and the Seed-Idriss
method of normalized curves. They observed that these two
methods under estimated the actual values of shear modulii
and the variation was between 25 and 100 percent.

2.6 PREDICTION OF IN-SITU SHEAR MODULUS

Richart, Anderson and Stokoe (1977), and Anderson

and Stokoe (1978), attempted to predict the in-situ low-
amplitude shear modulus and then the in-situ high-amplitude
shear modulus values. The in-situ low-amplitude shear

modulus is given by the following expression:

Gmf " Gmlp + FA * *G (2'14)

^

* in which

Gmf = predicted in-situ low-amplitude shear modulus
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Gmlp = low-amplitude laboratory determined shear modulus

obtained at the end of primary consolidation

F^ = age factor for the site

1(5 = a shear modulus coefficient which increases with time.

The age factor of a particular site is estimated from:

FA • log10(tc/tp) (2.15)

where

tc = time since the start of most recent significant change

in stress history at the site

tp = time to complete the primary consolidation at the site

as a result of change in stress.

Once the low-amplitude laboratory shear modulus was known,

the high-amplitude field shear modulus had been predicted by

two methods, namely, the arithmatic method and the percentage

method. In the arithmatic method, the high-amplitude field

shear modulus, Gf is given by:
T

Gf = GX + Ar (2.16)

in which

Gf = predicted high-amplitude shear modulus

G-l = laboratory determined high-amplitude shear modulus

Ar = Gmf " <5mlp (2.17)

• In the percentage method, the value of Gf is

predicted as given in the expression:
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Gf Gmf
= (2.18)

Gl Gmip

The assumption made in Eq. 2.18 is that, the disturbance

exhibited on the soil sample in the field and in the

laboratory are proportional to each other. The percentage

method is widely being used for the prediction of high-

amplitude shear modulus in today's Geotechnical-Earthquake

Engineering profession.

Anderson and Stokoe (1978), demonstrated the use

of the above two methods, for a particular site consisting of

dense sand. Fig. 2.13 shows the general trend of the

predicted values by both the methods. Anderson and Stokoe

(1978), concluded that the arithmatic method and the

percentage method yielded upper and lower bound values for

the field shear modulus respectively.

Suppiah (1986), proposed a method known as the 0-

factor method or the disturbance factor method to predict

high-amplitude shear modulus values. He conducted field and

laboratory tests at two sites to determine shear modulus

values of silty soils. To obtain the field curve, wave

propagation test, block vibration test, free-vibration test

and cyclic plate load test, covering a large range of shear

strain (10-^ to 1 percent) levels were carried out.

Similarly, to obtain the laboratory curve, oscillatory shear

test and simple shear test equipments were used, covering

a strain range of 3.5xl0~3 to 1 percent.
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T
According to Suppiah (1986), the value of P at any

one value of strain is given by the expression:

field shear modulus at any strain level, i
p = __

laboratory shear modulus at the same strain level, i

He, compared the disturbance factor method, which was obtained

by conducting field and laboratory tests on silty soils with

that of the arithmatic method and the percentage method of

prediction, proposed by Anderson and Stokoe (1978), as shown

in Fig. 2.14. He further concluded that upto 5.0xl0-2 per

cent strain, the {3 method predicted intermediate values

of field shear modulus between the arithmatic and the

percentage methods. He further proposed an expression for 6

as a function of strain for silty soils and given by:

P = 1.704 - 0.086 log10T (2.20)

*

a

in which

P the disturbance factor corresponding to silty soil.

He further suggested, that at shear strain values smaller

than 5xl0~3 percent, any method of prediction could be

adopted.

2.7 NONLINEAR STRESS-STRAIN MODELS

To model the nonlinear stress-strain characterist

ics of soils, subjected to dynamic or earthquake forces,- two

models are presently being used. These models are:
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1 Hardin-Drnevich model proposed by Hardin and

Drnevich (1970b)

2 Ramberg-Osgood model proposed by Ramberg and

Osgood (1943).

These two models are briefly reviewed in the following para

graphs . .

2.7.1 Hardin-Drnevich Model

Hardin and Drnevich (1970b), represented the

stress-strain relation of the skeleton curve (Fig. 2.15),

using the hyperbolic equation, as initially proposed by

Kondner (1963), Kondner and Zelasko (1963), and as given by

Ishihara (1982):

Gi r
t = (2.21)

1 + (Gi/Tm) r

where

t = shear strength of soil

Gi • initial tangent shear modulus, essentially

at r=0 and Gi=Gmax

Tn, = maximum shear stress (at failure) .

The different parameters are shown in Fig. 2.15 and rr is

defined as the reference strain and given by:

rr = Tm/Gmax (2.22)
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Hardin and Drnevich (1970b), in an atttempt to refine the

hyperbolic relation, used a normalized ratio of strain. r/rr.

With this normalized value of strain, the stress-strain data

collapsed into narrow bands, one for cohesive and the other

for cohesionless soils as shown in Fig. 2.16.

Hardin and Drnevich (1970b). further refined ,

the data in Fig. 2.16 and proposed an expression, relating

the hyperbolic strain and a few empirical constants. This

~y refined relationship is given by:

rh = r/rr [i + a exP(-b r/rr)] (2.23)

where

rh = hyperbolic strain

a and b are constants, and have to be established depending

upon the type of soil.

After establishing the hyperbolic strain. Hardin

and Drnevich (1970b), developed one single curve relating the

hyperbolic strain to the modulus ratio, G/Gmax. and damping

ratio, D/Dmax. This relationship is shown in Fig. 2.17.

The different parameters specifying the structure

of the Hardin-Drnevich model, as formulated (Ishihara, 1982),

are the initial shear modulus, G± and the shear strength. Tf.

However, it is difficult to specify both the strain dependent

shear modulus and damping ratio by the use of only two

parameters, since the reference strain, rr is once determined

from the strain dependent characteristics of the shear4
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modulus, the damping ratio, D/Dmax is automatically

computed, and the experimentally determined damping values

cannot be fitted in the following expression (Ishihara, 1982,

1985):

D =

n 1-B

B . 1
1 - In ( )

1-B B

2

n

(2.24)

in which

B = G/Gmax or G/Gi

G^ = initial shear modulus.

To avoid this difficulty, Hardin and Drnevich (1970b)

proposed the use of the following empirical relationship:

D = D
max (1 - B) (2.25)

where

Dmax = damping value at large strain levels at which G is

very small in comparison to G^ or Gmax.

Eq. 2.25, gives a better fit to the experimental data, due to

the additional parameter, Dmax. Nevertheless, this equation

is not compatible with the Masing rule and one has to revert

to Bq. 2.24, instead of Eq. 2.25 (Ishihara, 1982).

2.7.2 Ramberg-Osgood Model

This model was developed by Ramberg and Osgood

(1943), originally to describe the stress-strain characteris-
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tics of aircraft metals. However, this model had been

applied to simulate the stress-strain characteristics of any

strain softening material or structural system. The Ramberg-

Osgood model is expressed in a functional form as:

,R

+ a

G..

(2.26)

where

a • dimensionless parameter describing the curvature between

the elastic and plastic curves

R = dimensionless parameter describing the amount of break

between the elastic and plastic curves.

2.7.3 Hysteresis Loop Criteria

Ramberg and Osgood (1943), described the hystere

sis loop, combining Eq. 2.26 and the Masing Criteria (Masing,

1926). The following expression was obtained to describe

Ramberg-Osgood hysteresis loop for a material which exhibits

the Masing criteria (Masing, 1926):

Ti -To

Ti - To = + a

Gaa x

Tl -To

2G.

where

r0 and T0 denote the point of last load reversal

(2.27)



-*

*

49

I"! denotes the shearing strain, corresponding to the shearing

stress, T^.

2.7.4 Ramberg-Osgood Hysteretic Damping Value

In the Ramberg-Osgood model, the damping value is

given by:

2

D = -

n TG.

2a

T(R+1)

2.7.5 Application of Ramberg-Osgood Model

R -,

(2.28)

Jennings (1964), first demonstrated the applicabi

lity of the Ramberg-Osgood model to structural dynamic

problems. In his extensive research, after analysing a

single degree of freedom system subjected to sinusoidal

excitation Jennings (1964), proposed a general yielding

relation.

Constantopoulos, Roesset and Christian (1973),

studied the nonlinear dynamic response of a soil deposit.

For modelling the nonlinear stress-strain characteristics of

the soil deposit, they adopted two methods, namely, a linear

visco-elastic model and the Ramberg-Osgood model. From their

investigation, they concluded that the Ramberg-Osgood model

yielded, displacements and accelerations which were very

close to the actual values.
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Streeter, Wylie and Richart (1974), and Richart

and Wylie (1975) , demonstrated the use of the Ramberg-Osgood

model to simulate the nonlinear stress-strain characteristics

of soils, subjected to earthquake or vibratory loadings.

Richart and Wylie (1975), evaluated the dynamic response of a

soil deposit, with three different types of model, namely.

(1) Ramberg-Osgood model, (2) elastic-slip model and

(3) strain compatible visco-elastic model. They concluded,

that the Ramberg-Osgood model gave better results in

comparison to the other two models.

Papadakis and Wylie (1975), evaluated the dynamic

response of an earth dam using the Ramberg-Osgood method to

model the nonlinear stress-strain behaviour of the soils

involved. -,

Faccioli and Ramirez (1976), studied the seismic

amplification response of horizontally stratified soil

deposits using the Ramberg-Osgood stress-strain relationship.

They modelled the deposit as a discrete shear beam system.

Idriss, Dobry and Singh (1978). adopted the

Ramberg-Osgood model to account for degradation in soft

clayey soils due to cyclic loading. They concluded that the

Ramberg-Osgood model yielded satisfactory results, which were

close to the actual values.

2.7.6 Modifications to Ramberg-Osgood Model

Richart (1975), made a revision of Eq. 2.26 and

proposed the following expression:
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R-l -.

r = 1 + a (2.29)

Cl Ti

in which

Ci = a factor relating the maximum shear strength and yield

shear strength.

Richart (1975), suggested a value for C^, as in the following

expression:

C1 = Ty/ T
m

(2.30)

Pyke (1979), proposed a new hypothesis on the

hysteretic modelling phenomena. He replaced the constant,

C]_, in Eq. 2.29, by the following expression:

To

Ci = ± 1 - (2.31)

Ty

in which

To = shear stress at the last reversal of loading.

The first term in Eq. 2.31, is negative for unloading and

positive for reloading. Hara (1980), recommended the use of

the reference strain, rr, in place of r, and Ty, in place

of t in Eq. 2.29. This modification is identical to substi

tuting a value of unity for C^ in Eq. 2.29.
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2.7.7 Comparison Between Hardin-Drnevich and Ramberg-Osgood
Models

Very few investigators, for instance, Anderson

(1974), Richart and Wylie (1975), Isenhower (1979), Ishihara

(1982, 1985, 1987), and Shamoto (1984) have made attempts to

model the .nonlinear stress strain characteristics of

different soils by the Hardin-Drnevich model and the Ramberg-

Osgood model. The important findings of these investigators

are reported in the following paragraphs.

Anderson (1974), studied the stress-strain rela

tionship of different type of soils, by employing both the

models, and reported that the Ramberg-Osgood method could be

adopted to predict the high-amplitude behaviour. He found

that both the models were inconsistent in predicting the

stress-strain characteristics at large strain values.

However, Anderson (1974) , reported that the Ramberg-Osgood

model gave a better fit to shear strains below r =0.1 per

cent.

Richart and Wylie (1975) , attempted to obtain the

Ramberg-Osgood model parameters, for the already available

hyperbolic curves of Hardin-Drnevich. The different values

for the constants in the Ramberg-Osgood model, obtained by

Richart and Wylie (1975), are shown in Fig. 2.18.

Desai (1977) , reported the advantages of the

Ramberg-Osgood model over the Hardin-Drnevich model and reco-

mended the adoption of the former model, for modelling of

Geologic media.
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According to Roesset (1977), the Ramberg-Osgood

model provided the most reasonable fit to experimental data.

Isenhower (1979), also attempted to model the

stress-strain characteristics of San Francisco bay mud by

both the models and found that the Ramberg-Osgood model

performed better than the Hardin-Drnevich model.

Ishihara (1982), investigated the suitability of

the Hardin-Drnevich and Ramberg-Osgood models, to simulate

the nonlinear stress-strain characteristics of soils

subjected to dynamic loadings, through extensive test

procedures in the field and in the laboratory to determine

shear modulus and damping values of various soils.

Ishihara (1982), pointed out the advantages and

disadvantages of both the models. The following are some of

his significant conclusions:

1 The Hardin-Drnevich model can be used only for the

response analysis, inducing medium level of shear

^ strains in the soil upto about 1.0 percent, and the

Ramberg-Osgood model can be adopted for large and

failure strain levels (r > 1.0 percent).

2 When the shear strain becomes large (r > 1.0 percent)

the Hardin-Drnevich model tends to converge to a

damping value of 63.7 (= 2/nxl00) percent, which is

excessively large when compared to the experimentally

obtained value.

3 The Hardin-Drnevich model is formulated, based on two

parameters, namely, the initial shear modulus (G^)
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and the shear strength at failure (Tf). Whereas, the

Ramberg-Osgood model is based on four parameters,

namely, G^ or Gmax, Tf, a and R. Out of these four

parameters, the two constants, a and R permit the

adjustment of the shape and position of the curve.

Thus, the Ramberg-Osgood-model gives a better fit to

the experimentally observed strain dependent soil

properties.

Ishihara (1982), further, summarized the values of

reference strain, rr, failure strain, Tf, and the two

constants, a and R as applicable to the Ramberg-Osgood model.

These values are presented in Fig. 2.19 and in Table 2.2.

Shamoto (1984), conducted cyclic triaxial tests to

determine the strain dependent shear modulii and damping

values on "undisturbed' silts and clays. He fitted his

experimental values of shear modulus and damping by the

Hardin-Drnevich and the Ramberg-Osgood models. He observed

that both the models fitted as closely as possible to his

experimental values of shear modulus in the strain range of

10-4 to 10~2 percent. Shamoto (1984), however, observed that

the damping values predicted using the Hardin-Drnevich model

were very much larger than the actual values at large strain

levels, whereas, the Ramberg-Osgood model yielded a better

fit to his damping values as well.
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type

Shear strain
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Clay Yr Y.

Sand A &,

Gravel A A

Soil

type

Cloy

Sand

6 ravel

Parameter, ft
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r— H

r—

Yr- Reference strain

Yj- Failure strain

Fig. 2.19 Approximate Values of Reference Strain and
Failure Strain (Ishihara, 1982)

Table 2.2 Approximate Values of Damping Ratio at Large
Strains (Ishihara, 1982)

Soil

Type

(1)

Damping Ratio at

Large Strain, D»ax

(2)

1
Parameter

R

(3)

Clay

Sand

Gravel

0.15 « 0.30

0.25 m 0.40

0.20 a 0.35

1.65 b 2.80

2.30 « 4.40

1.90 a 3.40

56
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2.8 ANALYSIS OF EMBANKMENT DAMS USING FINITE ELEMENT METHOD

The finite element method is being used since

1960, for the static and dynamic analysis of embankment dams.

A few of the important work carried out by different

researchers is reviewed in this section.

2.8.1 Static Analysis

Clough and Woodward (1967), were the first to

apply the finite element method for the analysis of a

homogeneous embankment dam of height 30 m, to study the

distribution of displacements and stresses obtained by the

'gravity turn-on* method and the incremental construction

method. The dam section has been analysed using constant

strain triangular elements and linear elastic material

properties. From the linear elastic analysis Clough and

Woodward (1967), observed that the horizontal displacements

are identical in both the cases. However, the vertical

displacements were maximum at the crest in the "gravity turn-

on' method. Whereas, in the construction sequence method,

the maximum vertical displacement was noticed in the mid-

height region of the embankment. They also, concluded that

the stresses obtained in both the cases were nearly identical

in the linear analysis.

Kulhawy and Duncan (1972), adopted the finite

element method using the triangular elements and plane strain

condition to evaluate the stresses and movements of the
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Oroville Dam of 235 m height, with an inclined core, during

construction. The stress-strain characteristics of the

different materials were simulated by the nonlinear

hyperbolic model (Kondner, 1963; Kondner and Zelasko, 1963;

Duncan and Chang, 1970).

Nobari and Duncan (1972), used the finite element

method to study the behaviour of the Oroville Dam due to

filling of the reservoir. The same finite element mesh used

by Kulhawy and Duncan (1972), has been used in this case as

well. The stresses obtained at the end-of-construction

condition of the Oroville Dam have been adopted as the

initial stresses by Nobari and Duncan (1972).

Resendiz and Romo (1972) , Alberro (1972) , and

Skermer (1973) , have utilized the finite element method of

analysis and sequential construction technique, for the

analysis of numerous embankment dams to study the distri

bution of different type of stresses.

Resendiz and Romo (1972), have used the Kondner' s

hyperbolic model to simulate the stress-strain

characteristics of different soils, to analyse 14 dam

sections of different heights and slopes.

Alberro (1972) , and Skermer (1973), have analysed

separately, the El Infiernillo Dam, assuming the plane strain

condition and the concept of construction sequence. In both

the analyses the number of lifts used was seven only.

Llyn Brianne rockfill Dam (United Kingdom) has

been analysed using the finite element method to study the

A
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constructional deformations by Penman and Charles (1973) .

The height of the dam was 142 m including a foundation of

depth 52 m. The dam has been idealized into 10 layers and

the foundation into 3 horizontal layers. The stress-strain

relationship used was of linear characteristics.

Skermer (1975), performed an analysis .of the Mica

Dam based on the finite element method. This dam is of 240 m

height and is one of the highest rockfill dams in the world.

The dam has been discretized into a total number of 359

elements consisting of constant strain trangles, linear

strain rectangles and trapezoidal elements. The analysis has

been carried out using construction sequence operation in 16

lifts.

In India, Sharma (1976), carried out the nonlinear

static analysis of the proposed 260 m high Tehri rockfill Dam

with two different types of cores. One type was the central

core and the other was an inclined core. The analysis has

been performed assuming plane strain condition and without

interaction of the foundation. The stress-strain character

istics of the different materials consitituting the dam

section under static condition have been simulated using the

hyperbolic law (Kondner and Zelasko, 1963: Duncan and Chang,

1970). The construction sequence operation has been

considered into account by discretizing the dam into 10

horizontal layers, using isoparametric, numerically

integrated curved joint elements. The residual force

approach has been used for convergence purpose. The dam
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section has been analysed for:

1 end-of-construction condition and

2 reservoir-full loading case.

The stresses computed in the end-of-construction case have

been used as the initial condition for the reservoir-full

loading case. The filling of the reservoir was simulated in

5 steps and the upstream shell and transition materials have

been assumed to be submerged below the phreatic line. The

water pressure was assumed to act along the upstream face of

the core.

Sharma (1976), concluded that no separation was

noticed in the dam section with vertical core under end-of-

contruction condition, along the shell-filter-core interfaces

in the upstream and the downstream. However, in the inclined

core case, seperation has been observed along the core-filter

interface in zones with high deviatoric stresses.

Larger horizontal and vertical displacements have

been noticed in the vertical core case and the inclined core

case respectively. Also, along the core-filter interface in

the upstream, separation has occurred, due to water loading.

However, no such phenomenon has been observed in the

downstream. The water loading has increased the horizontal

and the vertical stresses in the core.

2.8.2 Dynamic Analysis

Clough and Chopra (1966), were the pioneers to



61

-<
apply the finite element method to the solution of two dimen

sional linear elasto-dynamic problems. Since then, the

finite element method has been used by many investigators

(Chopra, 1967; Idriss and Seed, 1967; Idriss, 1968) to study

the different aspects of the behaviour of earth structures

subjected to vibratory and earthquake loadings (Dibaj and

Penzien, 1969).

Seed, Lee and Idriss (1968), performed the dynamic

analysis of the Sheffield hydraulic fill Dam which collapsed

during the June 29, 1925, Santa Barbara (California)

earthquake, to study the adequacy of the existing analytical

methods. The Sheffield Dam was constructed in 1917, in the

city of Santa Barbara. A representative section through the

dam at its maximum height is shown in Fig. 2.20. The height

of the Sheffield Dam was 8.3 metres and composed of silty

sand and sandy silt.

The dynamic analysis was carried out by using

strain independent Young's modulus values for the embankment

and the foundation materials. Finite element method with

constant strain triangles and the base input motion was a

hypothetical record with a peak ground acceleration of

0.15g (g is the acceleration due to gravity) and a total

duration of 15 seconds. Based on the dynamic analysis

results and cyclic simple shear tests performed in the

laboratory, Seed, Lee and Idriss (1968). demonstrated the

progressive failure of the dam due to liquefaction

phenomenon.



*-

Clay blanket-

Concrete facing.

6.67m

Reservoir level 3Z
Sandy silt to silty sand

8.3m

rr
2m

ii)IM/^l tyfgyfflt/wus

Sandy silt to silty sand
//^V/AV/A>WAMW,Wy//AWW*\—

Fig. 2.20 Sheffield Dam Cross Section
(Seed, Lee and Idriss, 1968)

Ik.

Piezometric Surface

itNW/wwwwwww



63

<
Penzien, Scheffey and Parmelee (1964), were the

first to perform a nonlinear dynamic analysis of soil masses

using a discrete mathematical model. These investigators

developed a one dimensional model with lumped masses to study

the response of semi-infinite soil layers having hysteretic

bilinear stress-strain characteristics. By dividing the soil

layers into a number of sub-layers and replacing every sub

layer by a Kelvin model attached in series to a dashpot

representing the creep characteristics of the layer, the

semi-infinite solid was reduced to a one-dimensional model

with several degrees of freedom. The assumption made was

that the spring of the Kelvin model had bilinear hysteretic

force-displacement characteristics and that the dashpot

represented the internal velocity dependent damping within

each sub-layer (Dibaj and Penzien, 1969).

Idriss and Seed (1968), have used the above

mentioned Kelvin model to evaluate the response of soil

deposits during earthquakes and have proposed a procedure for

substituting equivalent linear parameters for the bilinear

stress-strain characteristics (Dibaj and Penzien, 1969).

Dibaj and Penzien (1969), have extended the

Drucker-Prager yield criterion to include work-hardening

effects for materials obeying this criterion. These two

researchers have employed the finite element method with

triangular elements, Wilson-e (Bathe and Wilson, 1987) method

of step-by-step time integration scheme to develop an

incremental procedure for nonlinear earthquake analysis of

-Ar
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earth structures. Two earth structures, one with central

core and another without the core have been extensively,

analysed for nonlinear dynamic responses by computing the

time-history of acceleration and displacement at a few

important locations. The analysed dam sections along with

the finite element discretization is shown in Fig. 2.21.

The discretized finite element mesh consisted of

80 triangular elements and 54 nodal points. In all the

y analyses, the nonlinear solution has been compared with the

linear solution and the pre-earthquake stresses have been

computed by a linear analysis. In the numerous dynamic

analyses conducted, either the El-Centro earthquake of May

18, 1940 or an artificial accelerogram corresponding to an

earthquake of magnitude of 8.3 has been used as the base

input motion.

From the very extensive analytical studies carried

out, Dibaj and Penzien (1969) , arrived at the following

significant conclusions:

1 The magnitude, distribution and direction of

stresses are not adequate for predicting a failure

but the magnitude and distribution of strains based

on experiments and displacements are the significant

factors for predicting failure.

2 No significant difference in acceleration response

was noticed between linear and nonlinear solutions.

However, the maximum displacement obtained in the

nonlinear solution was larger than that obtained in

*
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the linear solution and in a few cases, it was twice

that of the linear case.

3 The dynamic response of earth structures is signifi

cantly affected by the nonlinear properties of the

materials distributed within the structure. The

presence of a,core in an earth dam alters the dynamic

response appreciably.

4 The vertical component of the ground motion has an

important effect in the overall response of an earth

structure when subjected to a nonlinear earthquake

analysis. Dibaj and Penzien (1969), finally

concluded that the geometry, nonlinear material

characteristics, base input motion and other similar

factors decide the dynamic response of an earth

structure.

Seed et al. (1973), performed the dynamic analysis

of the 48 m high Lower San Fernando Dam and the 27 m high

Upper San Fernando Dam. These two dams were of hydraulic

fill type and the Lower San Fernando Dam failed during the

earthquake of February 9, 1971.

Seed et al. (1973), carried out extensive field

survey and collected soil samples immediately after the

occurrence of the February 9, 1971 earthquake. Numerous

laboratory tests, such as cyclic triaxial tests have been

conducted to evaluate the strength characteristics of the

different dam materials. Using these strength characteris-
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tics, the pre-earthquake stresses have been determined using

the hyperbolic model (Kulhawy, Duncan and Seed, 1969: Duncan

and Chang, 1970). For the dynamic analysis the strain

dependent shear modulus and damping characteristics as

proposed by Seed and Idriss (1970) , have been adopted. The

dynamic analysis has been performed using linear triangular

elements and a computer coding called QUAD-4 (Idriss et

al., 1973) with the Wilson-0 step-by-step time integration

y scheme (Bathe, 1982; Bathe and Wilson, 1987). The base input

motion used was the modified Pacoima record with a peak

ground acceleration of 0.60g.

Based on the experimental and analytical studies

on the Lower and Upper San Fernando Dams, Seed et al. (1973).

concluded that:

1 The Lower San Fernando Dam failed due to liquefaction

phenomenon.

2 The analysis based on QUAD-4 computer coding

predicted the behaviour that was very close to the

actual condition due to the February 9, 1971

earthquake.

Due to the near catastrophic failure of the Lower

San Fernando Dam, during the February 9, 1971 earthquake, the

Water Resources Department of California, USA, ordered the

investigation of the stability of all the existing dams

against future earthquakes. In one such investigation.

Marcuson and Krinitzsky (1976) , carried -out the dynamic
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analysis of the 120 m high Fort Peck hydraulic fill Dam.

This dam was one of the medium height dams. The initial

stresses have been determined based on a nonlinear two-

dimensional 'gravity turn-on' finite element static analysis

using the Duncan-Chang method. The dynamic analysis procedure

was identical to the procedures used in the analysis of the

Lower and Upper San Fernando hydraulic fill Dams. The base

input motion used was the Helena, Montan?, earthquake record

of 1935, normalized to a peak ground acceleration of 0.20g,

After conducting extensive in-situ and laboratory

tests, Marcuson and Krinitzsky (1976), concluded that the

Fort Peck hydraulic fill Dam was safe in the event of an

earthquake of magnitude 5.5. From the static and dynamic

analysis of the Fort Peck Dam, the investigators concluded

that:

1 There was no danger of liquefaction or excessive

deformation during or after the occurrence of the

earthquake, against the postulated event.

2 Evaluation of stability against 5 percent strain

during the postulated earthquake of 0.20g, indicated

that the major portions of the dam section have

had factors of safety greater than 1.0. Local areas

in the foundation at the upstream side of the core

trench were found to have factor of safety less than

1.0 indicating the soils in these areas could deform

more than 5 percent. Similar local area was observed

at the downstream toe as well.
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Similar type of dynamic analyses have been done by

Carrera et al. (1979), on the Guri Dam of height 120 m

located in the Guyana Region of Venezuela. The time-history

of the Parkfield, California, event scaled to 0.20g and with

out any change in the time scale has been used as the base

input motion. The peak horizontal acceleration of 0.20g was

expected to result from a magnitude 5.0 earthquake, with

epicentre within one or two kilometres of the dam site.

Severn et al. (1979), carried out in-situ vibratory tests on

Llyn Brianne rockfill Dam and conformed that Nose's method

(Nose, Takahashi and Kunii, 1976) , of computing the shear

wave velocity yielded values very close to the actual

values of shear wave velocities.

Romo et al. (1980), have performed dynamic

analysis on two rockfill dams, namely, El Infiernillo and La

Villita Dams. The former is 146 m high and the latter is

60 m high and situated in the Mexico City.

As mentioned earlier, the initial stresses have

been computed using the method proposed by Kulhawy, Duncan

and Seed (1969), and Duncan and Chang (1970). The dynamic

analyses procedures used were the same as that adopted in the

analysis of the Lower and the Upper San Fernando hydraulic

fill Dams.

The El Infiernillo and the La villita Dams had

been subjected to the March 14, 1979, Mexico earthquake.

During the time of the earthquake the two dams had been very

extensively instrumented and the actual values of accelera-
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tion and displacement have been recorded/measured.

The March 14, 1979 earthquake originated near the

coast of the State of Guerrero, Mexico, with epicenter about

40 km from the resort town of Zihvatanejo. The characterist

ics of the earthquake were:

1 Epicenter • 17.823°, N; 101.259° W

2 Focal depth = 59 km

3 Magnitude • 7.6 (Richter scale).

The distances from the epicenter to the El Infiernillo and La

Villita Dams were 87 and 108 km respectively (Alenso, Prince

and Havskov, 1980).

Due to the March 14, 1979 earthquake, cracks have

been noticed at the crests of El Infiernillo and La Villita

Dams. The horizontal displacements and the vertical settle

ments at the crest of El Infiernillo and La Villita Dams were

13 and 5 cms and 4.5 and 8 cms respectively.

The crest accelerations observed at the El

Infiernillo and La Villita Dams were of the order of 0.36g

and 0.38g respectively. Interestingly, a dam of lower height

(La Villita Dam, height = 60 m) , experienced larger

acceleration value than a taller dam did (El Infiernillo Dam,

height is 146 m). This shows that the dynamic response of a

rockfill dam is a function of different parameters, such as

the geometry and dynamic properties of different materials.

Resendiz, Romo and Moreno (1980), concluded that a

finite threshold value of acceleration existed for each dam.

The threshold values of acceleration for the El Infiernillo
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and the La Villita Dams were:

0.21g < ar £ 0.36g for El Infiernillo Dam

0.31g < ar 5 0.38g for La Villita Dam

in which

ar is the threshold value of acceleration.

From the dynamic analysis carried out on the El

Infiernillo and the La Villita Dams, the observed behaviour

of these two dams during the March 14, 1979, Mexico

earthquake and the comparative study between the observations

made after the occurrence of the earthquake and analysis

results, Resendiz, Romo and Moreno (1980), arrived at the

following conclusions:

1 The seisjnic behaviour of El Infiernillo and La

Villita Dams demonstrated that strong earthquakes

acting on modern embankment dams are capable of

producing permanent deformations, which are not

negligible as compared to that occurred during

construction, first filling of the reservoir, or

decades of normal operation after first filling. And

no high embankment dam should be considered

intrinsically safe against earthquakes. Thus, every

important dam in seismic zones should explicitly be

designed against earthquake damage.

2 For every dam a threshold for input rock acceleration

and for maximum response acceleration seems to exist

below which no significant damage or permanent
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deformation occurrs.

3 The behaviour of the El Infiernillo and the La

Villita Dams during the earthquake of March 14, 1979,

generally conforms to the trend expected from the

best of the current knowledge. The main deformation

pattern and type of .damage, including cracking were

those associated with shear distortion (spreading) of

the embankment under dynamic shaking.

^- 4 The existing two-dimensional, nonlinear finite

element models are capable of reproducing the spectra

of the observed dynamic response, provided the para

meters of the relationship between strain dependent

shear modulus as a function of confining pressure and

strain dependent damping values are properly

selected.

5 Stiffening of the embankment materials seems to be

induced by strong earthquakes in El Infiernillo and

La Villita Dams.

*

Lai and Seed (1985). carried out the dynamic

analysis of Long Valley Dam, which was subjected to the

Mammoth Lake Earthquake Series of May 25-27, 1980, using 2-

and 3- dimensional finite element models (FLUSH and TLUSH

computer packages respectively) . taking into account

strain dependent dynamic material properties .

The Long Valley Dam is supported on bedrock and

has a maximum height of 40 m with a crest length of 200 m.
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The dam is a homogeneous section with the main compacted fill

consisting of sand and gravel with sufficient fines to

produce a permeability somewhat less than 7xl0-6 cm/sec, and

with outer shell consisting of dumped-sluiced small rock and

coarse fines.

The Long Valley Dam is situated in a high

seismicity region. Due to May 25-27, 1980, earthquake no

significant damage was noticed in the dam, but water was

observed to flow out of the soil just downstream of the toe

of the dam and continued to flow for several minutes after

the earthquake shaking ceased. In this region the materials

were dumped and loosely compacted. Interestingly, a moderate

earthquake (magnitude =6.2) with peak acceleration of 0.20g

in bedrock, reduced the volume and developed excess pore

pressures sufficient to cause liquefaction and expulsion of

water.

From the 2- and 3- dimensional dynamic analyses.

Lai and Seed (1985), concluded that the analysis results were

in close conformity to the observed values of acceleration

due to the May 25-27, 1980, Mammoth Valley earthquake, with

the computed values being larger than the observed values.

In India, a number of two dimensional dynamic

analyses of earth and rockfill dams have been conducted using

the finite element method based on eight-noded isoparametric

elements by Chandrasekaran, Paul and Suppiah (1984. 1985):

Chandrasekaran and Prakash (1989a, 1989b). The pre-

earthquake stresses have been computed using a two-
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dimensional linear 'gravity turn-on' analysis. In all the

dynamic analyses, only linear (strain in-dependent)

properties of modulii, constant values of modal damping and

mode-superposition method have been used. Interestingly,

based on the linear analysis alone, Chandrasekaran and

Prakash (1989a) , concluded that rockfill dams can withstand

earthquake forces.

> 2.9 CLOSURE

From the brief review of literature presented it

is observed that the shear modulus and damping ratio of

different soils are strain dependent. Empirical eguations

for determination of low-amplitude shear modulus are

available mostly for clay and sandy soils only. These

empirical equations do not yield precise values of dynamic

properties. Modulus attenuation curves and damping ratio

curves, as a function of strain are available for clay and

sand materials only. These curves are meagerly available for

gravel and silty soils.

For the prediction of in-situ high-amplitude shear

modulus, presently arithmatic method and percentage method

are available. These two methods are strain independent and

yield upper and lower bound values of shear modulii

respectively.

The shear modulus of fine grained soils in

addition to the mean confining pressure and the void ratio.

is significantly influenced by the secondary time effects.
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Also, from the brief review of literature it is

noticed that the finite element method is being widely used

in Geotechnical Engineering profession. The pre-earthquake

stresses in an embankment dam are computed using the

nonlinear analysis procedure as proposed by Duncan and his

co-workers, either in the seguential or "gravity turn-on"

method. The nonlinear dynamic analysis of embankment dams

are done using the popular computer codings, such as QUAD-4.

LUSH, FLUSH or TLUSH which are based on the Seed-Idriss

method of modulus reduction curves and damping ratio curves

only. These computer programs use either linear triangular

or four-noded rectangular elements only and not the versatile

and stable eight-noded isoparametric elements with reduced

integration.

In India, most of the static and dynamic analysis

of different embankment dams carried out till today are based

on the linear analysis with strain in dependent modulii and

constant values of modal damping only.

In view of the aforesaid limitations, there is a

need to investigate the following:

1 The influence of long-term or secondary time effects

on shear modulii of different type of soils, by

conducting different types of field and laboratory

tests.

2 To predict the high-amplitude in-situ shear modulus

value for sites wherein the shear modulus values are

not available.
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3 To establish modulus attenuation curves for silt and

gravel materials, in addition to clay and sandy
soils, and to compare these attenuation curves with

the curves very widely used in today's Geotechnical

Earthquake Engineering profession.

4 To determine the appropriate parameters of the

Ramberg-Osgood model depending upon the type of soil.
5 To implement the Ramberg-Osgood model and Hardin-

V Drnevich model in a computer coding based on the
finite element method with eight-noded isoparametric

elements, that is capable of analysing dynamic soil-

structure interaction problems in the time domain

using the step-by-step integration scheme.

6 To apply the computer coding developed in Step 5, for
the case-history study of a well instrumented

rockfill dam and for the dynamic analysis of two

other rockfill dams of medium and large height

v including the interaction of foundation and to

compare the dynamic responses with that of the

Hardin-Drnevich model and the very widely used Seed-

Idriss method of analysis.



CHAPTER 3

FIELD AND LABORATORY TESTS

3.1 GENERAL

The influence of secondary time effects on shear

modulii of different soils can be evaluated only by

conducting tests in the laboratory. The Ramberg-Osgood model

parameters, namely, a and R as mentioned in Chapter 2, can be

computed by establishing shear modulus as a function of

strain. Therefore, different type of field tests, which are

very frequently carried out in India, at the School of

Research and Training in Earthquake Engineering (Prakash and

his co-workers 1968a, 1968b, 1970. 1971, 1972. 1973. 1974.

1975, 1976a, 1976b, 1980; Nandakumaran et al. 1977, 1979.

1980; IS: 5249, 1977; Prakash, 1981). of the University of

Roorkee, Roorkee (India), have been used to obtain the shear

modulus value as a function of strain, varying from small

strain value to large strain value. Field tests have been

conducted at four different sites consisting of different

types of soils.

In addition to different field tests, laboratory

tests have also been carried out in the range of medium

strain level to large strain levels, on "undisturbed" soils

borrowed from the first three sites. The various type of

field tests and laboratory tests, which were performed are

77
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described in this chapter.

3.2 FIELD TESTS

The different types of field tests, conducted in

the four different sites to establish the relationship

between shear modulus and shear strain are (Barkan, 1962:

IS: 5249, 1977; Nandakumaran et al., 1977; Prakash, 1981):

1 wave propagation test

2 block vibration test

3 free vibration test

4 cyclic plate load test.

These tests are briefly described in the following sub

sections .

3.2.1 Wave Propagation Test

For the determination of low-amplitude field shear

modulus values (shear strain ranging between 10"6 to 10~5

percent), hammer test was conducted. In the hammer test,

arbitrary radial lines were ranged out from the origin (the

point at which impact was given), for a distance of 30-40 m.

At every 2 metre interval marking was done along these

arbitrary radial lines. At the origin, a geophone was

embedded at a depth of 0.15 m from the surface. Waves were

generated at the origin by the impact of a 5 kg hammer

falling from a height of 2 m on a 0.15 m thick steel plate

resting on the ground surface at the origin. Similarly, a

second geophone was fixed at a known distance along one of
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the radial lines. The time taken by the waves to travel a

known distance was determined. The test was repeated for

other different known distances between the pick-ups along

each of the radial line.

The various values of the travel times for the

compression waves and the corresponding distances along the

pre-selected lines were plotted. From the plot, the average

value of the compression wave velocity was calculated.

Knowing .the value of compression wave velocity and Poisson's

ratio, the shear modulus corresponding to low-amplitude

strain level was determined.

3.2.2 Block Vibration Test

For the determination of in-situ shear modulus at

medium strain ranges, block vibration test was conducted in

the vertical and horizontal directions. In this test a

standard plane concrete block of size 3.0 m x 1.5 m x 0.70 m

(length, width and height respectively) was cast at the site.

at a depth of 1.0 m from the ground surface as shown in

Fig. 3.1 (IS: 5249, 1977).

The block was excited to resonance with the help

of a mechanical oscillator mounted on the top surface of the

block and driven by a speed controlled direct current motor.

The vibrations were sensed using acceleration pick-ups, the

signal of which was amplified through a universal amplifier

v and recorded directly on an ink writing oscillograph.
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Fig 3.1 Block Vibration Test Set-up
(IS: 5249, 1977)
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3.2.2.1 Forced vertical vibration test

For the vertical vibration mode, two acceleration

pick-ups were fixed on the top of the block, such that the

pick-ups could sense vertical vibration only. The mechanical

oscillator, which works on the principle of eccentric masses,

mounted on two shafts rotating in opposite directions on the

block was used to generate sinusoidal vibrations, in the

vertical direction only. The amplitudes of motion of the

block at different frequencies were recorded using

acceleration pick-ups. The block was excited with varying

magnitudes of sinusoidal forces.

3.2.2.2 Forced horizontal vibration test

The forced horizontal vibration test was conducted

by mounting the oscillator in such a direction, that

sinusoidal vibrations were produced in the horizontal

^k. direction only. The response was recorded as described in

Sec. 3.2.2.1.

3.2.3 Free Vibration Test

Free vibration test was performed by striking the

block with a hammer in the vertical direction and by pulling

the block and releasing it in the longitudinal direction.

Knowing the natural frequency in both the directions, the

W shear modulus values were calculated.
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3.2.4 Cyclic Plate Load Test

For the determination of in-situ shear modulus

values at large strain levels, cyclic plate load test was

performed. The various equipments and accessories used were

same as those required to carry out a static plate load test

as described in IS: 1888, (1971). To perform the plate load

test, a pit was dug to a depth of 1.0 m from the ground

surface. A square steel plate of size 0.60 m x 0.60 m, was

placed at the centre of the pit, after levelling the top

surface of the pit. The lateral dimensions of the pit were

kept as more than 5 times the largest size of the steel

plate.

Kentledge was used as loading for the plate load

test. A hydraulic jack with an attached pressure gauge was

kept in between the kentledge and the test plate. The

settlement of the plate was measured with the help of four

dial gauges resting at the four corners of the test plate and

fixed to an independent datum bar. Once the whole assembly

was ready, the initial readings of the dial gauges were noted

and the first increment of the static load was applied to the

plate. The initial loading was applied for a shorter

duration, until the rate of settlement became negligible.

The final readings of the dial gauges were then recorded.

The entire load was removed and the plate was allowed to

rebound. When the rebound had ceased, the dial gauge

readings were again observed. The load was then gradually

-*
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increased until its magnitude was equal to the next step of

loading. The magnitude of load was maintained constant and

the final dial gauge readings were recorded. The total load

applied was released and the final dial gauge readings were

noted, when the rebound rate was negligible.

The loading, unloading and the reloading cycles

were continued until the loading reached the estimated

ultimate load. The dial gauge readings were observed at each

step. The magnitude of each load increment was equal to 1/3

to 1/6 th of the ultimate load. The elastic rebound of the

plate corresponding to each intensity of loading was

obtained.

3.3 LABORATORY TESTS

To investigate the influence of secondary time

effects on shear modulus and to obtain a relationship between

field shear modulii and laboratory shear modulii at the same

strain level, laboratory tests were carried out on

*undisturbed' samples collected from the first three sites

where field tests were performed. The different physical

properties were determined on the "undisturbed' soils brought

from the four sites.

Laboratory shear modulus values were determined on

samples borrowed from the first three sites, A, B and C only,

since, the facilities to evaluate shear modulus on gravel

materials (Site D) in the laboratory were inadequate. To

study the influence of secondary time effects on shear

±
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modulus few specimen samples were consolidated under a

consolidation pressure of magnitude that was egual to the in-

situ over-burden pressure. Depending on the type of soil

the consolidation pressure was applied for a period of 24

hours or till the completion of primary consolidation. At

the end of this duration, the specimens were tested to obtain

the shear modulus, values in the range of medium to large

strain levels using different type of tests. In this respect

the following tests were carried out in the laboratory.

1 Oscillatory shear box test

2 Simple shear test.

These tests are briefly described in the following sub

sections .

3.3.1 Oscillatory Shear Test

For the determination of laboratory shear modulus

in the medium strain ranges, tests were conducted using the

oscillatory shear test apparatus. This equipment was

developed at the School of Research and Training in

Earthquake Engineering, University of Roorkee, Roorkee, India

(Joshi, 1970; Nandakumaran et al., 1977).

In this test, a specimen of size 6 cm x 6 cm x

2 cm which had previously been subjected to primary

consolidation was enclosed in a rubber membrane. The shear

box consists of a top plate resting on a pair of ball

trains, two fixed vertical sides and two tilting side plates

capable of rotating in either directions from their mean
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vertical position and hinged to the fixed vertical

sides as shown in Fig. 3.2.

Normal stress was applied on the sample by weights

placed on the hanger of a yoke resting on the top plate.

Oscillatory shear stress was applied by hanging weights on

the flexible cords. The applied shear loads and shear

deformations were measured using strain gauge mounted load

and displacement transducers connected to universal

amplifiers and ink-writing oscillographs. Different values

of normal stress and shear stress were used and the

corresponding shear strain was measured. The computed shear

strain was in the range of 10~2 to 10_1 percent. The

oscillatory shear tests were carried out on the "undisturbed'

soils borrowed from the first three sites only.

3.2.3 Simple Shear Test

As in the oscillatory shear box test, specimen of

the same size was prepared. At the end of primary

consolidation or after a duration of 24 hours depending on

the type of soil, simple shear test was conducted at differ

ent values of normal stress and shear stress. The value of

shear strain in this case varied between 10 to 1.0 percent,

3.4 DAMPING RATIO

The damping values of the different soils were

determined from the forced- and free- vibration tests carried

out in the field. In the free-vibration test, the logarith-
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Fig. 3.2 Oscillatory Shear Box Apparatus
/Nandakumaran et al., !*/')(Nandakuma
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mic decrement and in the forced-vibration tests the half-

power method were used to compute the damping values of

different soils.

3.5 CLOSURE

For determination of in-situ shear modulus as a

function of strain, ranging between low strain value to large

strain value, different types of field tests have been

performed at four sites consisting of varying types of soils.

In the laboratory, tests have been carried out to determine

high-amplitude shear modulii on "undisturbed' samples. These

"undisturbed' samples have been borrowed from the same

locations at which field tests have been conducted.



CHAPTER 4

PRESENTATION OF TEST RESULTS

4.1 GENERAL

The results of the different field tests conducted

at the four sites and the laboratory tests carried out on

'undisturbed' samples borrowed from the first three sites to

evaluate the shear modulus, as described in Chapter 3 are

presented in this chapter. For each type of test performed,

either in the field or in the laboratory, the shear modulus

value and the associated shear strain value have been

computed. Damping values are calculated from forced- and

free-vibration tests carried out in the field. The computed

values of shear modulus, damping ratio and the associated

shear strain values are presented as a function of strain.

At a given strain level, for which the field shear modulus

and the laboratory shear modulus values are available, the

ratio between these two shear modulii is expressed as a

function of strain. The percentage difference between the

shear modulus values determined at the completion of primary

consolidation and before the begining of primary

consolidation are also presented in this chapter.

4.1 RESULTS OF FIELD TESTS

^ The results of the different field tests

88
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conducted are described in this section. For performing the

block vibration test, a block of size 3.50 m x 1.75 m x

0.70 m and for carrying out the cyclic plate load test, a

steel plate of size 0.60 m x 0.60 m have been used. The

specimen calculations involved in computing the shear
modulus, damping and the corresponding shear strain values

are presented for site A only. For the other sites these

values are presented in tabular form.

4.2.1 Wave Propagation Test

Generally, from the wave propagation test records

obtained, the time of travel of the compression waves is

easily calculated (Nandakumaran et al., 1977). In this

study, from the records obtained during the wave propagation

tests at site A as shown in Fig. 4.1, the time taken by the

compression wave to travel a known distance, is calculated.
* By plotting the relation between the time and distance, the

value of the compression wave velocity, Vp as given by the

slope of the time-distance curve is obtained. Once the

compression wave velocity is known, the shear modulus is

computed from the expression:

*
in which

J - r/g

r • unit weight

(l-2u)

G = j V2 C4.D
max p (1_g)
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g «= acceleration due to gravity

Vp = compression wave velocity

p = Poisson's ratio.
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For site A, the travel time versus distance

relationship is shown in Fig. 4.2, from which the compression

wave velocity, Vp is obtained as 363.6 m/sec. Substituting

the other known quantities,

u = 0.40 (assumed for silt)

r = 1.83 t/m3

g = 9.81 m/sec2

in Eq. 4.1, the value of shear modulus is obtained as:

1.83 fl - 2(0.4)}
G = x 363.6 2

max

9.81 (1 - 0.4)

= 8222.3 t/m2

The associated value of shear strain is assumed to be 1.0 x

10~5 percent (Woods, 1978). Similarly, for the other sites,

namely, B, C and D the computed shear modulus values are

given in Table 4.1.

4.2.2 Block Vibration Test

4.2.2.1 Forced vertical vibration test

In the forced vertical vibration, the soil-

foundation system is subjected to a single-degree of freedom

system. One of the test records obtained during the vertical
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Fig. 4.1 Wave Propagation Test Record (Site A)
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Fig. 4.2 Travel Time Versus Distance Relationship (Site A)
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Shear Modulus and Shear Strain Values for all the

Sites

Type

of

test

(1)

Size of

block/

plate

(2)

G

(t/m*)

(3)

r

(%)

(4)

Remarks

(5)

WPT - 8222.3 1.00x10-° Site A

BVT 3.50 m

1.75 m

0.70 m

7852.5

7841.9

7702.3

7443.6

7296.4

4056.7

2.10x10-'

4.56x10-8

9.51x10-°

1.15x10-*

3.11x10-«

1.34x10-3

Fine silty soil
* = 30°

C = 2.5 t/m2

forced vertical

vibration test

free vibration

test

BVT 3.50 m

1.75 m

0.70 m

, 6228.3

6124.9

6004.6

5201.4

3198.5

1981.6

5.50x10-*

7.51x10-"

9.50x10-*

1.50x10-3

5.61x10-3

2.00x10-3

forced horizontal

vibration test

free vibration

test

CPLT 0.60 m

0.60 m

2344.1

2009.8

1145.3

855.0

1.05x10-2

2.30x10-2

1.51x10-2

5.00X10"1

(continued)
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Table 4.1 Shear Modulus and Shear Strain Values for all the
Sites

Type Size of G r Remarks

of block/ (t/m2 ) (%)

test plate

(1) (2) (3) (4) (5)

WPT - 7982.1 1.00x10-8 Site B

BVT 3.50 m 7694.2 1.51x10-8 Clay soil
1.75 m 7552.8 3.91x10-8 0 = 0°

0.70 m 7329.4 6.25x10-8 C = 5.0 t/m2

7392.6 9.15x10-8 forced vertical

7098.6 1.61x10-* vibration test

6094.2 1.51x10-3 free vibration

test

BVT 3.50 m 6121.4 3.05x10-* forced horizontal

1.75 m 5651.8 4.12x10"* vibration test

0.70 m 5011.4

4476.6

3452.6

6.25x10"*

l.OlxlO-3

2.23x10-3

3028.2 2.00X10-3 free vibration

test

CPLT 0.60 m 2213.6 9.21x10-3

0.60 m 1575.2

1126.4

1003.2

2.72x10-2

6.96x10-2

1.15x10"»

(continued)
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Table 4.1 Shear Modulus and Shear Strain Values for all the
Sites

Type

of

test

(1)

Size of

block/

plate

(2)

G

(t/m2)

(3)

r

(%)

(4)

1
Remarks

(5)

WPT - 15385.3 1.00x10-8 Site C

BVT 3.50 m

1.75 m

0.70 m

15174.2

15009.2

14628.3

14574.4

14944.6

14951.2

1.20x10-8

2.01x10-8

4.02x10-8

6.55x10-8

1.21x10-*

2.49x10-*

Sand

* = 38.5°

C = 0.0

forced vertical

vibration test

free vibration

test

. 1

BVT 3.50 m

1.75 m

0.70 m

14006.4

13648.6

13798.5

13046.4

12109.3

12576.1

1.91x10-*

3.01x10-*

4.01x10"*

7.81X10-3

l.llxlO-3

1.76X10-3

1
forced horizontal 1
vibration test

free vibration

test

CPLT 0.60 m

0.60 m

8622.4

7236.3

3611.5

2451.6

4.01x10-3

8.96x10-3

5.15x10-3

1.79x10-2

(continued)
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Table 4.1 Shear Modulus and Shear Strain Values for all the
Sites

Type Size of G r

1
Remarks

of block/ (t/m2) (%) j
test plate

(1) (2) (3) (4) (5)

WPT - 18921.6 1.00x10-8 Site D

BVT 3.50 m 18796.1 1.45x10-8 Gravel

1.75 m 18621.4 2.43xl0-5 0 = 42.5°

0.70 m 18799.2 4.56x10-8

17848.6 7.31x10-8 forced vertical

17602.9 1.10x10-* vibration test

17955.7 4.01x10-* free vibration

test

BVT 3.50 m 17622.5 1.79x10"* forced horizontal

1.75 m 17095.1 2.81x10-* vibration test

0.70 m 16051.5

14795.3

13821.5

5.95x10"*

9.01x10-3

2.15x10-3

15952.6 1.19xl0-3 free vibration

test

CPLT 0.60 m

0.60 m

7021.4 3.21x10-3

1
Note:

G

r

WPT

BVT

CPLT

shear modulus

shear strain

wave propagation test

block vibration test

cyclic plate load test
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vibration test for site A is shown in Fig. 4.3. The test

record gives the forcing freguency and the recorded value of

acceleration, arc during the vibration test. Since the speed

of the paper is known, the forcing frequency is calculated by

counting the number of cycles, N, recorded in a specified

length of the test record. The amplitude of vibration. A is

given by:

^

arc
A =

(2nf) 2

where

arc • recorded acceleration (Fig. 4.3)

f = forcing frequency in Hz.

~t"
h
N-cycles

arc = Recorded acceleration

Speed of paper =125 mm/sec

Fig. 4.3 Vertical Vibration Test Record (Site A)

(4.2)



* 97

Eq. 4.2 is solved using a computer coding, called BLOCK

(Suppiah and Palaniappan, 1982) , since voluminous data

handling is needed even for a single value of eccentricity

(= angle between the eccentric masses of the oscillator).

For the program BLOCK, the recorded acceleration, a and

forcing frequency, f are given as input data. The program

gives frequency versus amplitude relationship in a graphical

form as output as shown in Fig. 4.4. From this output

knowing the value of natural frequency in the vertical

direction, fz, the coefficient of elastic uniform

compression, Cu is computed using the expression (Barkan,

1962; IS: 5249, 1977; Nandakumaran et al. . 1977: Prakash.

1981) :

c =

4n2 fzmb

u

Ab

(4.3)

,_. in which

Cu = is the compressive stress causing unit elastic uniform

compression for a given area

mb = mass of the block, motor, oscillator and other

accessories

Ab = contact area of the block

fz = natural frequency in the vertical direction.

Once the value of Cu is known from Ea. 4.3 the

value of Young's modulus. E, and the shear modulus. G

respectively are evaluated from the following expressions
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(Barkan, 1962; Nandakumaran et al., 1977; Prakash, 1981):

Cu (1 - m2) Ab
E = (4,.^.)

1.13

and

E

G = (4.5)

2(1 + u)

in which

E = Young's modulus

G = shear modulus.

The associated value of shear strain is given by:

r = Am/Bw (4.6)

where

Aj,, = maximum amplitude corresponding to the vertical natural

frequency, fz as shown in Fig. 4.4

Bw = width of the test block used.

At site A, a block of size 3.50 m x 1.75 m x 0.70 m has been

used for the determination of in-situ shear modulus. For an

eccentricity of 30 degrees (angle of setting between the

eccentric masses, IS: 5249, 1977), the specimen calculations

are as follow:

Contact area of the block, AK = 3.5 x 1.75 m2
b

- 6.125 m2
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Mass of the block, motor (3.5x1.75x0.7)2.24 + 0.15
and other accessories, m =

b
9.81

= 0.9943 t.sec2/m

From Fig. 4.4, the vertical natural frequency, fz = 27.45 Hz

Substituting, these values (Ab, mb, f ), in Eg. 4.3, th

value of Cu is obtained as:

C =

u

(2n x 27.45)2 x 0.9943

6.125

.3
= 4828.98 t/m'

Assuming, p = 0.40 for the silty soil at site A,

the value of Young's modulus, E (Eq. 4.4) = 21986.4 t/m2

and

the value of shear modulus, G (Eq. 4.5) • 7852.5 t/m2

The associated value of shear strain, T = 0.0315/1500

= 2.1xl0~5 percent

Table 4.2 gives the values of coefficient of elastic uniform

compression, Cu, shear modulus, G and the corresponding

values of shear strain, r at different eccentricities for

site A.

Similarly, the values of shear modulus and

associated shear strain values are calucated for other sites

and these values are presented in Table 4.1.
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Table 4.2 Shear Modulus from Vertical Vibration Tests

(Site A)

SI. 0 fz Cu G rxio-5

No. (deg) (Hz) (t/m3) (t/m2) (%)

(1) (2) (3) (4) (5) (6)

1

1 60 27.43 4822.50 7841.90 4.56

2 90 24.91 4736.65 7702.30 9.51

3 120 24.49 4577.56 7443.60 11.50

4 150 24.25 4487.03 7296.40 31.10

Note:

O = eccentricity (= angle of setting between

eccentric masses)

fz = natural frequency in the vertical direction

Cu = coefficient of elastic uniform compression

G = shear modulus

T = shear strain.
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4.2.2.2 Forced horizontal vibration test

In the forced horizontal vibration test, the soil-

foundation system is subjected to a two-degree-of freedom

system. Thus, in this system, two resonant freauencies are

present; the first one corresponding to rocking mode, wx, and

the other pertaining to sliding mode, w^. The combined

equation is expressed as (Barkan, 1962) :

2 2

x + *0
w4 - w* + =0 (4.7)

wr wr

wx + *0 wx x w„

in which

w = resonant frequency

wx = /(CT Ab/mb) (4.8)

w, = /(C# I/Mmo) (4.9)

CT = ratio of the shear stress to elastic uniform

shear displacement for a given area

C^ = ratio of compressive stress and elastic non-uniform

compressive deformation for a given area

I = mass moment of inertia of the base of the contact area

about the axis of rotation

Mm = mass moment of inertia of the block and motor-oscilla

tor assembly about an axis passing through the centre

of gravity of the block and motor-oscillator assembly

and perpendicular to the plane of vibration

Mmo = mass moment of inertia of the block and motor-oscilla

tor assembly about an axis passing through the centroid
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of the base contact area and perpendicular to the plane

of vibration (IS: 5249, 1977)

wr = Mm/Mmo- (4.10)

As before the computer program, BLOCK (Suppiah and

Palaniappan, 1982) has been employed for the reduction of

data obtained in the forced horizontal vibration test. By

entering the necessary input data as in Sub-Sec. 4.2.2.1,

the output shown in Fig. 4.5 is obtained.

For a foundation-block with a length to width

ratio of 2, the values of C# and Cu are given by (Barkan.

1962):

C0 = 3.46 CT , (4.11)

Cu = 2.00 CT (4.12)

Substituting, Eqs. 4.8, 4.9 and 4.11 in Eq. 4.7. the result

ing equation is given by:

AX + A2 A! x A2
w4 - w2 + = 0 (4.13)

wr wr

where

Al • CT Ab/mb (4.14)

A2 = 3.46 CT I/Mmo (4.15)

I = moment of inertia.

For site A, substituting the values of Ab. mb. I. Mmo and wr

in Eqs. 4.13 to 4.15 and solving for CT, one gets
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CT = 0.1837 w2 (4.16)

since,

w = 2nfx (4.17)

Therefore, Eq. 4.16 can be written as:

CT = 7.25 fx (4.18)

in which

fx = natural or resonant frequency in the horizontal

direction.

From Fig. 4.5, for an eccentricity of 30°. fx = 16.25 Hz.

Substituting the value of fx in Eq. 4.18,

CT = 1915.1 t/m3

Using Poisson's ratio, u = 0.4, the values of Cu and G from

Eqs. 4.12 and 4.5, respectively are computed as:

Cu = 3830.2 t/m3

and

G = 6228.3 t/m2

The associated value of shear strain, r = 5.50 x 10-4 percent

(from Eq. 4.6).

The computed values of CT, Cu, G and r corresponding to dif

ferent eccentricities are shown in Table 4.3 for site A.

For all the sites, the shear modulus values and

the corresponding shear strain values are given in Table 4.1.



~T

106

Table 4.3 Shear Modulus from Forced Horizontal Vibration

Test (Site A)

SI.

No.

(1)

0

(deg)

(2)

fx

(Hz)

(3)

Ci

(t/m3)

(4)

Cu —2Ct

(t/m3)

(5)

G

(t/m2)

(6)

rxio-*

(%)

(7)

1

2

3

4

60

90

120

150

16.12

15.96

14.85

11.65

1883.30

1846.31

1599.34

983.49

3766.60

3692.63

3198.68

1966.97

6124.9

6004.6

5201.4

3198.5

7.51

9.50

15.00

56.10

Note:

0 = eccentricity

fx • natural freguency in the horizontal direction

CT • coefficient of elastic uniform shear

Cu = coefficient of elastic uniform compression

G = shear modulus

r = shear strain.
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4.2.2.3 Free vibration test in the vertical direction

From the free-vibration test record corresponding

to the vertical direction, shown in Fig. 4.6, knowing the

speed of the paper, and counting the number of cycles, N the

vertical natural frequency for site A is obtained as

19.73 Hz. Substituting, this value in Egs. 4.3 and 4.5.

the following values of Cu and G are obtained:

Cu - 2496.47 t/m3

G = 4056.71 t/m2

and the corresponding shear strain, r is 1.34 x 10~3 percent

(Eq. 4.6).

As before, for all the sites, the shear modulus

and shear strain values are given in Table 4.1.

Fig. 4.6 Free-Vibration Test Record: Vertical Direction (Site A)
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4.2.2.4 Free vibration test in horizontal direction

A record similar to that shown in Fig. 4.6 was

obtained in the horizontal direction, corresponding to the

free-vibration test conducted at site A. Following the same

procedure of Sec. 4.2.2.3, the shear modulus value and the

corresponding shear strain are computed as:

G = 1981. 6 t/m2

T = 2 x 10-3 percent.

For all the sites the shear modulus and the shear strain

values are given in Table 4.1.

4.2.3 Cyclic Plate Load Test

Load versus settlement curve obtained during the

cyclic plate load test at site A, is shown in Fig. 4.7.

Using this plot, another curve is plotted between the

A elastic-settlement, Se, and the intensity of loading, p

as shown in Fig. 4.8. The slope of the curve in this

figure (Fig. 4.8), gives the value of coefficient of elastic

uniform compression, Cu. Thus,

Cu = p/Se (4.19)

As before, the values of Young's modulus and the shear

modulus values are evaluated from Egs . 4.4 and 4.5

W respectively.
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From Fig. 4.8,

Cu = 8947.4 t/m3

and using Eq. 4.5, shear modulus is obtained as:

G = 855.0 t/m2

And the associated value of shear strain is given by

(Prakash, 1981):

elastic settlement

r =

width of the plate

in the present case,

3.0

T =

600

- 0.5 percent.

Table 4.4 shows the shear modulus values determined at

different locations for site A.

The shear modulus and the corresponding shear

strain values obtained during the cyclic plate load tests are

given in Table 4.1 for all the sites.

4.2.4 Damping Values from Field Tests

The damping ratio, D is evaluated from the forced-

and free- vibration tests conducted in the field as described

in the following sub-sections.



Table 4.4 Shear Modulus Values from

Cyclic Plate Load Test

81. Co G rxio-2

No. (t/m3) (t/m2 ) (%)

(1) (2) (3) (4)

1 24526.23 2344.10 1.05

2 21028.46 2009.80 2.30

3 11983.23 1145.30 15.10

4 8945.84 855.00 50.00

Ill

Note:

Cu = coefficient elastic uniform
compression

G = shear modulus

r = shear strain.

4.2.4.1 Damping values from forced-vibration test

The response curve drawn between amplitude and

frequency is shown in Fig. 4.4. The damping ratio, D is

computed using the half-power method as proposed by Clough

and Penzien (1975), and is given by the following expression

(IS: 5249, 1977):

fo - f-

D

*2 + fl

x 100 percent (4.20)
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in which

fl and f2 are the two frequencies corresponding to an
amplitude of Am//2

Am = the maximum amplitude.

For site A, from Fig. 4.4, the following values are •

available

Am = 0.308 mm

fx = 25.75 Hz

f2 = 33.00 Hz.

Substituting, these values in Eq. 4.20. the value of damping,
D is computed as 12.34 percent, corresponding to the strain
value of 2.1 x 10-5 (percent).

4.2.4.2 Damping from forced horizontal vibration test

in this case, the damping value is calculated as

described in the Sub-section 4.2.4.1. From Fig. 4.5. the

following values are obtained:

Am = 0.815 mm

tx - 14.50 Hz

f2 = 22.00 Hz.

As before, substituting these values in Eg. 4.20. the value
of damping is obtained as 20.54 percent. And the correspond
ing value of strain is evaluated as 5.5 x 10"4 percent. The
computed values of damping for different sites are shown in

Table 4.5.
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4.2.6 Damping from Free-Vibration Tests

From the free-vibration test record as shown in

Fig. 4.6, the damping value is given by (Clough and Penzien,

1975) :

D = /[52/(4n2 + 62)] (4.21)

in which

6 = logarithmic decrement which is the ratio of the natural

logarithm of the amplitude of any two successive cycles.

For site A, from Fig. 4.6, the value of 5 is 1.25 and the

value of damping, D is 19.5 percent using Eg. 4.21. The

damping values obtained for all the sites are presented in

Table 4.5.

4.3 RESULTS OF LABORATORY TESTS

The results of the different laboratory tests per

formed on 'undisturbed' samples, from the first three sites,

namely, A, B and C to determine shear modulii are presented

in this section. To study the secondary time effects on

shear modulus, two types of tests were conducted. In the

first type, shear modulus values were determined at the end

of primary consolidation. For this purpose, each specimen

had been subjected to a consolidation pressure that was equal

to the in-situ effective over-burden pressure. This pressure

was maintained for a duration of 24 hours or till the

completion of primary consolidation. In the second type of



Table 4.5 Damping Values for Different Soils
(Sites A, B, C and D)
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SI. Shear Strain - r Damping Value - D Type of Soil

No. (%) (%) •

(1) (2) (3) (4)

1

1 2.1 x 10-5 12.50 Silt

2 5.4 x 10-4 20.50 Silt

3 5.5 x 10-3 30.00 Silt

4 3.5 x 10-5 15.00 Clay

5 6.0 x 10-4 25.00 Clay

6 4.5 x 10-3 30.00 Clay

7 3.0 x lO"5 10.00 Sand

8 5.1 x 10-* 14.80 Sand

9 4.0 x lO"3 22.10 Sand

10 1.0 x 10-° 8.00 Gravel

11 1.0 x 10- * 12.20 Gravel

12 5.4 x lO"3 15.00 Gravel

1
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tests, shear modulus was determined, as soon as the specimen

has been prepared from the 'undisturbed' samples without

allowing for primary consolidation.

As site D, consisted of gravel materials.

laboratory shear modulus values could not be determined due

to inadequate laboratory facilities.

4.3.1 Oscillatory Shear Test

From the records of shear load as shown in

Fig. 4.9, the shear stress, t, is calculated, knowing the

cross-sectional area of the soil specimen. For each value of

shear load, the corresponding shear strain, r is computed

using the expression:

As

r =
(4.22)

in which

As = shear deformation of the specimen measured using strain

gauge

h = height of the soil sample.

The shear modulus is calculated using the expression:

G = T/r (4.23)

where

t = shear stress

r • shear strain.
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Table 4.6 shows the different values of shear modulus

obtained, before the beginning of primary consolidation and

after the completion of primary consolidation and the

corresponding shear strain values for the samples borrowed

from site A. For sites B and C the shear modulii and the

associated shear strain values calculated in the laboratory

are also presented in Table 4.6.

4.3.2 Simple Shear Test

The procedure for computation of shear modulus is

same as that discussed in Sec. 4.3.1. The shear modulus

values obtained for the samples from site A are aiven in

Table 4.7. In the same table, the shear modulus and the
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Table 4.6 Shear Modulus Values from Oscillatory Shear Test
(Sites A, B and C)

SI. Gb Ga Percent Difference rxio-2 Site

No. (t/m*) (t/m2) between Ga and Gb (%)

(1) (2) (3) (4) (5) (6)

1 1483.6 1824.9 23.0 1.00 A

2 1300.8 1603.9 23.3 2.10 A

3 1107.6 1363.4 23.1 3.50 A

4 1020.3 1251.9 22.0 5.20 A

5 1174.7 1500.1 27.7 1.21 B

6 921.2 1179.1 28.0 , 2.70 B

7 820.9 1044.2 27.2 4.39 B

8 691.9 881.5 27.4 6.94 B

9 4856.6 5055.7 4.1 0.89 C

10 3958.3 4112.7 3.9 1.51 C

11 3165.2 3285.5 3.8 3.20 C

12 2675.2 2771.5 3.6 5.20 C

Note.?.

Gb = shear modulus determined before the start of primary

consolidation

Ga = shear modulus determined after the end of nrimary

consolidation.
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Table 4.7 Shear Modulus Values from Simple Shear Test
(Sites A, B and C)
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81. Gb Ga Percent Difference

1
rxio-2

1

1 i
1 Site 1

I

No. (t/m2) (t/m2) between Ga and Gb (%)

i

I !
1 i

(1) (2) (3) (4) (5) (6)

1 937.8 1157.2 23.4 7.50 A

2 891.6 1095.8 22.9 9.05 A

3 784.5 950.8 21.2 15.00 A

4 602.1 734.6 22.0 50.00 A

5 630.6 808.9 28.3 11.60 B

6 654.3 831.6 27.1 8.51 B

7 462.2 586.1 26.8 20.10 B

8 354.3 450.3 27.1 35.10 B

9 2288.6 2368.7 3.5 9.21 C

10 1752.4 1817.2 3.7 24.10 C

11 1483.9 1543.3 4.0 34.80 c

12 1426.3 1477.7 3.6 45.10 c

Note:

Gb = shear modulus determined before the start of primary

consolidation

Ga = shear modulus determined after the end of primary

consolidation.
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corresponding shear strain values for the sites B and C are

presented as well.

4. 5 CLOSURE

The results of the different field tests conducted

at four sites and the laboratory tests carried out on samples

from the first three sites as described in Chapter 3. have

been presented in this chapter. For each type of test,

carried out, either in the field or in the laboratory, the

shear modulus and the corresponding shear strain values have

been computed. Damping values have been calculated from the

forced- and free- vibration tests only. The computed values

of shear modulus, damping and the associated shear strain

have been presented. The percentage difference between the

shear modulus values determined before the beginning of

primary consolidation and after the completion of primary

^k consolidation have also been presented.

*



CHAPTER 5

DISCUSSION AND INTERPRETATION OF TEST RESULTS

5.1 GENERAL

The different values of shear modulus and damping

reported in the previous chapter are interpreted and

discussed here. The variations between (1) field shear

modulus and laboratory shear modulus and (2) shear modulus

determined at the end of primary consolidation and shear

modulus determined before the begining of primary

consolidation are discussed.

The ratio between field and laboratory shear

modulus corresponding to a particular strain level has been

estmated for silt, clay and sand materials. Using this

ratio, called the disturbance factor, the in-situ high-

amplitude shear modulus has been predicted for a particular

site. The disturbance factor method proposed in this study

is compared with the other existing methods of prediction for

shear modulus. For gravel material (site D) , shear modulus

could not be determined in the laboratory due to inadeguate

testing facilities.

Least sguares curve fitting is done to determine

the Ramberg-Osgood model parameters, using field shear

modulus and the correspondino shear strain values. The

Ramberg-Osgood model parameters are subseguently been used to

120
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obtain the damping values and the normalized shear modulii

factors as a function of shear strain. These normalized

values have been compared with the existing modulus reduction

curves proposed by different researchers (Seed and Idriss,

1970; Grant and Brown, 1981).

5.2. SHEAR MODULUS

5.2.1 Relation between Field and Laboratory Shear Modulii

The field determined shear modulus value and the

laboratory determined shear modulus value at a particular

strain level are not identical as can be seen in Fig. 5.1.

In this figure the field and laboratory shear modulii are

plotted as a function of shear strain. The ratio betweem

these two values of shear modulii are given by (Suppiah.

1986) :

and

Gf (at r«i)
B - (5.1)

b

Glb(at r=i)

Gf (at r-i)
8 = (5.2)

a

Gla(at r=i)

in which

Bb = disturbance factor corresnondina to the shear modulus

ratio determined before the start of the Drimarv

consolidation

Ba = disturbance factor corresDondina to the shear modulus

ratio determined after the end of the primary
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consolidation

Gf = field shear modulus corresponding to a strain level.

r = i

G-, b = laboratory shear modulus determined before the begin

ning of the primary consolidation, corresponding to the

same strain level, I" = i, or r » i th value of strain

G-i = laboratory shear modulus determined at the end of the

primary consolidation, corresponding to the same strain

level, I" « i, or I" » i.

For site A.

Gf = 2344.1 t/m2, at T= 1.05xl0-2 percent

Glb = 1483.6 t/m2, at r= l.OOxlO-2 percent

Gla = 1824.8 t/m2, at r= l.OOxlO-2 percent

Substituting these values in Egs. 5.1 and 5.2, the following

values of disturbance factors are obtained.

3b = 1.580 at r= l.OxlO-2 percent

and

B3 = 1.225 at I" • l.OxlO-2 percent

The Bb and Ba values computed at other values of

shear strain for the first three sites are shown in

Table 5.1. As mentioned in Chapter 4 the laboratory

facilities were inadeguate to conduct different tests on

gravel materials (site D), therefore 6b and Pa factors could

not be included in Table 5.1.

From Table 5.1, it is seen that the difference

between 8b values and Ba values for sand (site C) is
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Table 5.1 Values of Disturbance Factors By, and B.

Site Gi b

(t/m*)

Gl a

(t/m*)

r. Gf

(t/m*)

n Percent

Increase

Bb Bn

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 1483.6 1824.8 1.00x10"* 2344.1 1.05x10"* 23.0 1.580

1

1.28 '
1300.8 1603.9 2.10x10"* 2009.8 2.30x10-* 23.3 1.545 1.25 I
784.5 950.8 1.50x10"' 1145.3 1.51x10"' 21.2 1.460 1.20 '
602.1 734.6 5.00x10-« 855.0 5.00x10-' 22.0 1.420 1.16 1

i

B 921.2 1179.1 2.70x10-* 1575.2 2.72x10-* 28.0 1.720 1.33 ''
671.9 881.5 6.94x10-* 1126.4 6.96x10' * 27.4 1.628 1.27

630.6 808.9 1.16x10-* 1003.2 1.15x10-' 28. 3 1.591 1.24

C 4856.6 5055.7 8.98x10"* 1236.3 8.96x10-3 4.1 1.410 1.43

2675.2 2771.5 5.20x10"* 3611.5 5.15x10-* 3.6 1.350 1.30

1961.3 2043.7 1.80X10-1 2451.6 1.79x10-' 4.2 1.250 1.20

Note:

Gjk • shear modulus determined in the laboratory before the
beginning of the primary consolidation

Gla = shear modulus determined in the laboratory at the end
of the primary consolidation

T\ - shear strain computed in the laboratory

Gf = shear modulus determined in the field

ff = shear strain computed in the field

Percent Increase =

in Shear Modulus

&b - Gf/Glb

P« " Gf/Gla

Column (3) - Column (2)

Column (2)

x 100
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negligible. This shows that the secondary time effects on

the shear modulus values of sand is insignificant.

The disturbance factors, Bb and Ba for the first

three sites A, B and C are plotted in Figs. 5.2 and 5.3

respectively. From these two figures it is observed, that

the Bb values cover a large band whereas, Ba values lie in a
Cl

narrow range. The variation between the two disturbance

factors is due to an appreciable increase in the shear

modulus values of fine grained soils due to primary

consolidation.

The disturbance factors. Bb and Ba shown in

Figs. 5.2 and 5.3, for the first three sites, are obtained by

conducting field tests and laboratory tests within a small

range of high-amplitude shear strain (r varying between

8.96x10 to 0.5 percent). The disturbance factors are extra

polated to other strain values using a least sguares curve

fitting method and the following eguations are obtained:

Bb = K± + K2 log1Qr (5.3)

Pa = Kl + K2 lo^10r (5.4)

in which

Kl' K2' Kl and K2 are constants as shown in Table 5.2.
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Table 5.2 Values of Constants in Eos. 5.3 and 5.4

Site Soil Type Kl K2
i

Kl K2

CD (2) (3) (4) (5) (6)

A Silt 1.3867 -0.0967 1.1445 -0.0695

B Clay 1.3918 -0.2085 1.0993 -0.1519

C Sand 1.2640 -0.0904 1.2130 -0.0957

5.2.2 Verification of the Disturbance Factor Method

To study the suitability of the disturbance

factor method, the problem solved by Anderson and Stokoe

(1978), shown in Fig. 5.4 is considered here. Anderson and

Stokoe (1978), predicted the high-amplitude in-situ shear

modulus at a shear strain value of 0.1 percent, for a site

consisting of dense sand for a depth of 6.0 m, using two

different methods known as the

1 arithmatic method and

2 percentage method.

Out of these two methods, the latter method is

being widely used to obtain in-situ high-amplitude shear

modulus in the Geotechnical-Earthguake Engineering profession

(Anderson and Stokoe, 1978). For predicting the in-situ

high-amplitude shear modulus at the centre of the clay layer.
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Anderson and Stokoe (1978), used the following data:

2Low-amplitude in-situ shear modulus Gmf = 18520 t/m

(estimated empirically based on the

age factor of the site)

Low-amplitude laboratory shear modulus Gmlp = 12500 t/m

(determined at the end of primary

consolidation)

High-amplitude laboratory shear modulus Gx • 3800 t/m

(determined at the end of primary

consolidation at r=0.1 percent).

It is needed to establish the in-situ shear modulus as a

function of strain at the centre of the clay layer

(Fig. 5.4). This problem is solved by the different methods

proposed by Anderson and Stokoe (1978), and the disturbance

factor method (Suppiah, 1986) , as proposed in this study.

The results obtained by these three methods have been

compared. The method proposed by Anderson and Stokoe (1978).

A. is described briefly in the following sub-section.

5.2.2.1 Methods proposed by Anderson and Stokoe

The problem considered in the present study has

previously been solved by Anderson and Stokoe (1978), by two

different procedures namely, (a) arithmatic method and

(b) percentage method. The solution by these two methods are

given subseguently:
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(a) Arithmatic method

In this method, the high-amplitude field shear

modulus, Gf is given by:

Gf = G-l + Ar (5.5)

where

G-. = high-amplitude laboratory shear modulus determined at

the end of primary consolidation

A_ = the arithmatic difference and given by:

Ar " Gmf " Gmlp (5-6)

Gmf = low-amplitude field shear modulus

Gmlp = low-ainP1itude laboratory shear modulus determined at

the end of primary consolidation or after 1000

minutes.

(b) Percentage method

According to this method the in-situ high-

amplitude shear modulus is expressed as:

Gf = G1 x Pr (5.7)

in which, Pr is given by:

Pr " Gmf/Gmlp (5.8)

The assumption made in deriving Eg. 5.7. is that the

disturbance caused in the field and in the laboratory are

proportional to each other.

Substituting, the known values in Eg. 5.5 to 5.8, the in-situ
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shear modulus at a shear strain value of 0.1 percent is

obtained as:

Gf = 11800 t/m (by the arithmatic method)

and

Gf = 6232 t/m (by the percentage method)

5.2.2.2 Method proposed in the present study

Suppiah (1986), proposed a method known as the

disturbance factor method, for the prediction of high-

amplitude field shear modulus using the following expression:

Gf = G± x $ (5.9)

in which

B = Bb or B_ given by Eg. 5.3 or Eg. 5.4 respectively, based

on the laboratory determined shear modulus, either before

the beginning of the primary consolidation or after the

completion of primary consolidation.

Eg. 5.9 is similar to Eg. 5.7, however, the value of 6 in

Eg. 5.9 is a function of strain as given by Eg. 5.3 or

Eg. 5.4. Further, the disturbance factor increases, from

high-amplitude strain level to low-amplitude strain values,

unlike a constant (in-dependent of the strain) as in the two

methods proposed by Anderson and Stokoe (1978).

In the absence of field shear modulus values only,

the disturbance factor method should be adopted for obtaining

the in-situ high-amplitude shear modulii of fine grained
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soils. The important steps involved in the disturbance

method are:

1 obtain 'undisturbed' samples from the site for which

shear modulus value is to be evaluated

2 subject the soil sample to a consolidation pressure

equal to the in-situ effective over-burden pressure

till the end of the primary consolidation or for a

minimum period of 24 hours

3 determine the shear modulus in the laboratory using

simple shear test or oscillatory shear test at high-

amplitude strain levels

4 knowing the value of shear modulus determined in the

laboratory obtain the in-situ high-amplitude shear

modulus using the disturbance factor, Ba as a

function of strain. ™

Substituting the available values in Eg. 5.9, the

field shear modulus at 0.1 percent shear strain is computed

as:

Gf(at r-0.1 %) = 3800 x Ba C5.10J

where

Bg = 1.264 - 0.0904 log1Qr (using Bg for sand)

= 1.3544

Substituting the value of BQ in Eg. 5.10, the value of Gf

for sand is computed as:

2G f(at r=0.1 %) = 5146.7 t/m
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A comparison of the predicted shear modulus value at 0.1

percent shear strain, by the three methods shows that the

disturbance factor method gives the lowest value of shear

modulus at r = 0.1 percent, compared to the other two methods

described by Anderson and Stokoe (197 8).

The present investigation is an improved version

over the values reported by Suppiah (1986) . The previously

reported values of shear modulus (Suppiah. 1986) were of

intermediate range upto a strain value of between r = 5x10

to r = 0.1 percent, in comparison to the arithmatic and the

percentage methods. The deviation in the two reported values

(Suppiah, 1986 and the present investigation) is due to the

fact that in the present investigation, the disturbance

factor corresponds to that of sand. Whereas, in the previous

investigation (Suppiah, 1986) , the disturbance factor used

corresponds to that of the silty soil.

Anderson and Stokoe (1978), observed that the

shear modulus values predicted by the arithmatic method

possibly resulted an upper bound value and the percentage

method yielded a lower bound value. It was further, suggested

that more investigations were needed in the prediction of in-

situ shear modulus values by conducting field tests at high-

amplitude strain levels.

The different methods of prediction described in

Sec. 5.2.2 may not be applicable to any soil strata

consisting of loose sands. Since, while sampling, the

stiffness of the loose sandy soil will increase and the

prediction of in-situ shear modulus by the foregoing methods
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can be misleading.

5.2.3 Advantages and Disadvantages of the Disturbance Factor
Method

1 The low-amplitude field shear modulus, which is an

essential parameter in the methods proposed by

Anderson and Stokoe (1978), is not needed.

2 The disturbance factor method proposed herein is a

function of strain and not a constant as assumed

either in the arithmatic method or the percentage

method.

One of the major disadvantages of the method is that

the disturbance factors have been obtained from a

limited number of laboratory tests lying in a narrow

range of high-amplitude strain levels. Extrapolation

of this method to other strain values should be

supplemented by carrying out more laboratory and

field tests in the medium and low-strain levels.

5.3 DAMPING VALUE

The different values of damping obtained using

forced- and free- vibration tests (Table 4.5) for site A are

shown as a function of strain in Fig. 5.5. This damping

reduction curve may yield large values of damping in

comparison to the reported values in the available literature

due to limitations in the experiments used, for instance, the

block vibration test.
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Fig. 5.5 Damping Ratio Based on Experiments
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5.4 SECONDARY TIME EFFECTS ON SHEAR MODULUS

From the various laboratory determined shear

modulus values presented in Tables 4.7 and 4.8, it is

observed that the shear modulii of different soils

determined, at the end of primary consolidation are larger

than those determined before the begining of primary

consolidation. The variation between these two values of

shear modulus is of the order of 3 to 28 percent depending

upon the type of soil and agrees reasonably well with the

other reported studies (Anderson and Woods, 1976; Afifi and

Richart, 1973; Anderson and Stokoe, 1978). The variation in

shear modulus is appreciable and increases from coarse

grained soil to fine grained soil. The reason for this

secondary increase in shear modulus is believed to result

largely from a strengthing of physical-chemical bonds in the

case of cohesive soils and an increase in particle contact

for cohesionless soils (Anderson and Stokoe, 1978) .

5.5 RAMBERG-OSGOOD MODEL

To model the nonlinear stress-strain characterist

ics of soils subjected to dynamic or earthguake loads, the

Ramberg-Osgood model is being increasingly used (Streeter,

Wylie and Richart, 1974; Papadakis and Wylie, 1975; Richart

and Wylie, 1975; Christian and Desai, 1977; Roesset, 1977:

Ishenower, 1979; Pyke, 1979; Ishihara, 1982, 1986, 1987;

Shamoto, 1984). The Ramberg-Osgood model is briefly

explained in the following sub-section.
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5.5.1 Ramberg-Osgood Curve Theory

The Ramberg-Osgood curve fitting technigue is

based on the behaviour of many strain softening materials.

The stress-strain curve of such a material is shown on a log-

log plot in Fig. 5.6. In this figure line 1 describes the

elastic behaviour and line 2 corresponds to the elasto-

plastic curve. Combining the elastic and plastic behaviour a

mathematical formulation was developed by Ramberg and Osgood

(1943), and given by (Richart, 1975):

|R-1

1 + a (5.11)

Ty Ty

in which

tv = yield shear stress

ry = shear strain corresponding to Ty

R = an exponent which accounts for the curvature

a = a parameter to adjust the shape and position of the

curve along the strain axis.

Substituting the following values (Richart, 1975),

in Eq. 5.11,

Ty = cl Tm (5.12)

and

ry = cj. rr (5.13)

the resulting expression is
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Fig. 5.6 Ramberg-Osgood Curve Theory
(Ishenower, 1979)
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where

T I T

1 + a !
. 1

Ci Tn Cl Tm

J

Tm = maximum shear stress
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(5.14)

Ci = a factor relating the maximum shear stress and yield

shear stress

= Ty/Tm

= 0.8

rr = reference strain

" Tn/Gmax

(5.15)

(5.16)

Substituting Eq. 5.16 in Eq. 5.14, the following expression

is obtained:

TG«

1 + a

T»

i-i I

I C, T. I
J

(5.17)

Eq. 5.17 describes the shearing strain as the sum of a linear

function of shearing stress and a nonlinear function of

shearing stress. This equation was primarily developed to

describe the stress-strain behaviour of air-craft metals and

the Ramberg-Osgood model has been extended to define the non

linear stress-strain characteristics of soils by Richart and

his co-workers (Richart, 1975; Richart and Wylie, 1975).
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5.5.2 Least-Squares Curve Fitting Technique

The dimensionless parameters of the Ramberg-Osgood

model, a and R are evaluated, using a first order least-

squares curve fitting algorithm. In this method, a least-

squares curve fit is performed using the logarithm of the

elastic strain as the abscissa and the logarithm of deviation

from the linearity as the ordinate. The procedure adopted in

the present study is same as that proposed by Jennings

(1964). The parameters, a and R in Eq. 5.17, are the value

of the slope and the anti-logarithm of the intercept

respectively, from the least-squares fit (Isenhower, 1979).

In the present study a computer program has been

written to find the parameters, a and R using the least-

squares technique as proposed by Jennings (1964). Input data

to the program are the different values of shear modulus and

the corresponding shearing strain determined in the field as

shown in Table 4.1. The computed values of cc and R for

different soils are given in Table 5.3.

5.5.3 Normalized Values of Shear Modulus

The brief review of literature on shear modulus

indicates that the shear modulus versus shear strain curves

available for sand and clay (Hardin and Drnevich. 1970a; Seed

and Idriss, 1970), and for silt (Grant and Brown, 1981) are

in the form of modulus attenuation curves, in which the shear

modulus values are normalized with respect to the low-amplit

ude shear modulus corresponding to a strain value of r = 10-6
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or r = 10~4 percent as shown in Figs. 2.2. 2.4 and 2.7 or in

the form of digitized values (User Manuals of LUSH and FLUSH

computer packages). Expressing the normalized values of shear

Table 5.3 Values of a and R for Different Type of Soils

SI. No. Soil Type a R

(1) (2) (3) (4)

1 Silt 133 2.33

2 Clay 249 2.50

3 Sand 288 3.10

4 Gravel 105 2.10

modulus as a function of shear strain has the following

advantages:

1 Once the low-amplitude shear modulus, Gmax is known,

any value of shear modulus (one other than, Gmax) can

be interpolated using the modulus reduction factors.

2 Different field tests need not be conducted to obtain

the absolute values of shear modulus as a function of

strain except for the low-amplitude shear modulus.

3 In a nonlinear dynamic soil-structure interaction

analysis case the shear modulus should be available

at each time step, in a functional form which is an

essential reguirement.
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These advantages are taken into account, by

expressing the shear modulus ratio, G/GmSLX. as given in the

following eguation:

Gm a x

1+cc

g r I*-1

C> G, fr

(5.18)

where

G/Gmax = modulus reduction factor.

In Eq. 5.18, the modulus reduction factor. G/Gmax is the

unknown quantity and the shear strain is the known quantity

for which G/Gmax is needed. The reference strain, rr is

given as: -a

Tr = Tm/Gmax (5.19)

where

G = low-amplitude shear modulii corresponding to shear
'max

strain values ranging between 10-6 to 10 - percent

Tm = maximum shear strength and given by (Hara et al. ,

1974) :

1+K0
T = (5.20)
m

2 ov sin 0 + C cos </>

in which

Kq • coefficient of earth pressure at rest

ov = effective over-burden pressure



* - angle of internal friction

C = cohesion.
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efficient of earth pressure at rest. K0 is given by:
The co

k0 = M/u-m (5-21)

where

p = Poisson's ratio.

in the absence of explicit solution technique

* (Jennings, 1964), to solve Eq. 5.18, the Newton-Raphson
iterative method (Hinton and Owen, 1986). has been

implemented in acomputer coding. Based on the type of soil,
the Ramberg-Osgood model constants, a and R. given in
Table 5.3 are used as input to the computer program. The
normalized shear modulus ratios obtained for the different

types of soils are presented in Fig. 5.7.

5.5.4 Comparison with Other Available Data

+ The modulus reduction curves obtained in the

present study are compared with the widely used modulus
attenuation curves, as proposed by Seed and Idriss (1970), in
Fig. 5.7. From this figure, it is observed that the
normalized values of shear modulus proposed by Seed and
Idriss (1970), for the sand and clay soils give lower values

of modulus reduction factors than that obtained using the

Ramberg-Osgood model from the present study. However, the

* modulus reduction curve obtained in the present study and
that the curve proposed by Grant and Brown (1981), show a
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close comparison.

5.5.5 Damping Values

The damping values as a function of strain can be

expressed in analytical form using the Ramberg-Osgood model
as (Ishihara, 1982):

2 R-l
D = _ x x (1 - G/G )

max

n R+i

(5.22)

where

D = the value of damping to be computed

R = the same constant shown in Table 5.3.

The G/Gmax values needed in solving Eg. 5.22, are

obtained by solving Eg, 5.18. Eq. 5.22, is solved for
different values of damping, D at different levels of shear
strain, for all the four type of soils. The damping values
obtained by solving Eg. 5.22 are shown in Fig. 5.8. For the
purpose of comparison, the damping ratio curves proposed by
Seed and Idriss (1970), are also plotted in the same figure.
The damping values presented in Fig. 5.8 using the Rambera-
Osgood model are larger than the values proposed by Seed and
Idriss (1970).
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5.6 CLOSURE

The absolute values of field and laboratory shear

modulus have been plotted as a function of strain. The ratio

between field determined shear modulus and laboratory

determined shear modulus values at large strain levels have

been presented in the form of disturbance factors as a

function of shear strain, corresponding to before the start

of the primary consolidation and at the end of primary

consolidation for three different type of soils. The

difference between the shear modulus values determined

before the beginning of primary consolidation and after the

completion of primary consolidation, for three different

types of soils has also been computed. The damping values

obtained are larger duetto limitations in the experiments

adopted.

Using the field shear modulus values obtained at

the four sites, the Ramberg-Osgood model constants have been

evaluated, using the least-sguares curve fitting technique.

Using these constants, the modulus reduction factor curves

and damping values as a function of strain for four different

type of soils have been presented. The different modulus

attenuation curves and damping value curves obtained in this

study have been compared with the curves, that are very

widely being employed in the dynamic analysis of soil-

structure interaction problems and embankment dams subjected

to seismic forces.



CHAPTER 6

FINITE ELEMENT FORMULATION

6.1 GENERAL

The finite element method of analysis is a power-

ful technique for the solution of various problems in

continuum mechanics. This method has beer applied

extensively, for the evaluation of the seismic response of

soil deposits and earth structures (Clough and Chopra, 1966:

Idriss and Seed, 1967; Dibaj and Penzien, 1969; Idriss et

al., 1973; Seed et al., 1973; Lysmer et al.. 1974. 1975:

Seed, Duncan and Idriss, 1975; Marcuson and Krinitzsky, 1976;

Kagawa et al., 1981; Chandrasekaran, Paul and Suppiah, 1984.

1985; Chandrasekaran and Prakash, 1989b; Pandey et al.,

1990) .

The finite element method has been applied to the

A linear-elastic analysis of earth and rockfill dams by Brown

and Goodman (1963), and Clough and Woodward (1967). The

method has been used to analyse embankment dams with

accounting for nonlinear stress-strain behaviour of soils

(Kulhawy, Duncan and Seed, 1969; Duncan and Chang, 1970:

Duncan et al., 1980), using the hyperbolic model developed by

Kondner (1963), Kondner and Zelasko (1965). In this chapter,

the formulation of the finite element method as applicable to

148
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the analysis of embankment dams subjected to static and

dynamic loading cases with material nonlinearity under plane

strain condition is presented.

In the static nonlinear elastic case, the hyper

bolic model as presented by Duncan et al. (1980). and in the

dynamic analysis, the Ramberg-Osgood (1943), model as

presented by Richart (1975), have been considered in this

study.

6.2 FINITE ELEMENT METHOD

The finite element method may be described as a

numerical discretization procedure, in which a continuum is

idealized as an assemblage of discrete elements. The finite

element method has been described in detail by a number of

authors (Desai and Abel, "l972; Bathe, 1982; Bathe and Wilson.

1987; Hinton and Owen, 1977, 1979, 1986; Zienkiewicz, 1978:

Craig, 1981; Naylor and Pande, 1983: Desai. 1984).

Three different approaches are available to solve

any problem when the finite element method is employed. They

are the stiffness or displacement, force and the hybrid or

mixed methods. Out of these three methods the displacement

method of formulation is commonly used, due to its

versatality, and this method has been adopted in the present

work. In this approach, the displacement is the primary

unknown. The strains and stresses constitute the secondary

unknowns. The important steps involved in a static analysis

and in a dynamic analysis respectively, using the finite

element method are presented subseguently.
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(a) Static analysis

The different steps involved in a static analysis

are:

1 Discretization of the elastic continuum or body

2 Selection of displacement or interpolation function

3 Formulation and assembly of stiffness matrix with the

introduction of boundary conditions

4 Solving for displacement

5 Computation of stresses and strains.

(b) Dynamic analysis

The different steps involved in a dynamic analysis

are:

1 Discretization of the elastic continuum or body

2 Selection of displacement or interpolation function

3 Formulation and assembly of stiffness matrix with the

introduction of boundary conditions

4 Formulation and assembly of mass matrix

5 Formulation and assembly of damping matrix

6 Selection of the base input motion

7 Selection of the time interval for the step-by-step

integration scheme

8 Computation of acceleration, velocity and displacement

9 Evaluation of stresses and strains

6.2.1 Eight-Noded Isoparametric Element

The problems considered in this study, are three

rockfill dams of plane strain case in which the number of



151

jb degrees of freedom for each node is two. The eight-noded

isoparametric elements with reduced integration scheme are

used in the present study, since they are numerically stable

and versatile (Ergatoudis, Irons and Zienkiewicz . 1968:

Hinton and Owen, 1977, 1979).

The important steps involved in the formulation of

finite element method with respect to eight-noded

isoparametric elements are discussed below:

6.2.2 Selection of Displacement or Interpolation Function

The accuracy of the solution of any problem, using

the finite element method depends upon the selected

displacement function. An interpolation function is that

which inter-relates either the displacement or the

coordinates within an element to that at the nodal points.

Thus, at any point within an element, e the displ

acement components are defined in terms of the nodal displa

cements by the expression:

*
{Ul = [N]{ge! (6.1)

in which

(Ul = the nodal displacement vector

[N] = the shape function defined by a suitable polynomial

expressing the displacement at any point , as a

function of its coordinates

Igol = vector of nodal displacements for an element, e.
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Eq. 6.1 can be written as

Ui

Vi

Ui

Vi

Us

V8 J

where

U and V are horizontal and vertical displacements at a point

within the element respectively

[N^] = the shape function sub-matrix, for the node, i

U^ and V^ are the horizontal and vertical displacements at

node, i.

The sub-matrix, [N^], for the i th node is given by:

{U! = [Ni ] , . . [Ni ] [N«3]

J

[Ni] =
Ni 0

0 Ni
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(6.2)

(6.3)

where

N^ = shape function for node i.

The interpolation function employs a local coor

dinate system (% ,>| ), which permits the use of elements with

curvilinear shape. The dimensionless local coordinates lie

between the interval of -1 to +1, which makes it convenient

to carry out numerical integration. The parabolic shape
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functions corresponding to the eight nodes are shown in

Fig. 6.1. For a 2-dimensional case with eight-noded

isoparametric element the displacement function becomes:

Ui

Vi

.

H Ni 0 . . Ni 0 . . Na 0 Ui

[vj 0 Ni . . 0 Ni . . 0 Na
<

Vi

Ua

. Va

(6.4)

Using the isoparametric concept, the geometry and the displ

acement field are expressed by the same shape functions.

Therefore, the x and y coordinates at any point within an

eight-noded element are given as:

= [N] <

xl

yi

xi

yi

x8

ys

where

Xi and y^ are the x and y coordinates of the i th node

respectively.

(6.5)

>
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* Sampling point

N.(?,77) = -0.25(1-?) (1-7?) (l+?+77)

2
N (?,7?) = 0.50(1-? )(1-7?)

Ng(?,7)) .

N (?,7?) =
4

N (?,7?) -

N (?,7?) •

0.25(1+0 (1-7?) (?-7?-l)

0.50(1+?) (1-7) )

0.25(1+?) (1+7)) (?+77-l)

0.50(1-? )(1+0)

N (?,7?) = 0.25(l-?)(l+7?)(-?+7?-l)

N (?,7?) = O. 50(1-?) (1-7) )
B

Fig. 6.1 An Eight-Noded Element with Shape Functions
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6.2.3 Strain-Displacement Relationship

The components of strain at any point within an

element for a two-dimensional case are related to the displa

cements as given by:

Ul =<

' ex

Ey i =

k Tx y

c>U

3~x"

dV

dy

av 3u

a7

= [L]

where

{el = strain vector

tx = strain in x-direction

ey = strain in y-direction

rxy = shear strain

[L] = the differential operator and given by:

[L] =

dx

0

0

dy

ay

(6.6)

(6.7)

(6.8
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Substituting Eq. 6.1 in Eq. 6.8, the strain-displacement

relationship is obtained as:

{e} = CL][N]{qe}

or

{el = [B]{qel

where

[B] = [L][N] is the strain-displacement matrix and

is given by:

[B] [B, ], .. [Bi ] , .. [Ba]

(6.9)

(6.10)

in which

[B^] is the sub-matrix for the i th node and is eaual to:

[Bi] =

3Ni

5x

3 Ni

ay

dNi

o~y~

d Ni

(6.11)

6.2.4 Stress-Strain Relationship

The stresses are determined from the strains using

the expression:

{ol = [D] {el. + <o0! (6.12)
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where

{o| • stress vector

{oqI = initial stress vector

[D] = elasticity matrix for the material.

The elasticity matrix, [D] for a two-dimensional plane strain

case (ez = 0) is given as (Hinton and Owen, 1977):

[D] =

E(l-u)

(1+p)(l-2u) 1-U

where

E = Young's modulus

u = Poisson's ratio.

Substituting the value of {el, from Eq. 6.9 in Eq. 6.12. one

obtains

1-u

{of = [D] [B] {qel + {o0!

1

(6.13)

l-2u

2(l-u)

(6.14)

6.2.5 Equilibrium Equations

The equilibrium equation based on the principle of

virtual work for an element is given as:
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3 ne

d q«

[B]T [D] [B] {qe IdV- [N]T {bldV -

S

[N]t {TldS (6.15)

where

{b| = body force vector

[T] = surface traction vector

V = elemental volume.

Without the forces due to surface traction. Eg. 6.15 can be

written as:

[B]T [D] [B]dV {ge I = {Re I

in which

{qel = displacement vector of an element, e

{Re I = [N]T [b]dV

is the equivalent nodal forces

{ke [BP [D] [B]dV

(6.16)

(6.17a)

(6.17b)

is the element stiffness matrix of an element, e

and the integration is carried out over the elemental

volume, V.
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Eg. 6.16 can be written as:

[ke] {ge! - {Re! (6.18)

6.2.6 Jacobian Matrix

The Jacobian Matrix, J(§A), for a two-dimensional

case is given by:

dx dy

oi 31

J -

oY

(6.19a)

and for an eight-noded element, Eq. 6.19a is given as:

J =

8

I

i=l

3Ni «>Ni

-xi -^rr-yi

3Ni
-XI

BNi

s—y

(6.19b)

6.2.7 Element Stiffness Matrix

The stiffness matrix of an element, e. given in

Eg. 6.17b can be written as

[k. ] =

where

t = thickness

[B]T [D] [B]t[J]d5 dn (6.19c)



dxdy = JJ|d| d\

Ijl = determinant of the Jacobian matrix

For a two-dimensional plane strain situation in which the

thickness, t is unity, then Eg. 6.19c can be written as:

160

[ke] =± [B]T [D] [B] [J]d? d*L (6.19d)

Eg. 6.19d is evaluated using the numerical intecration

techniques which are described subsequently.

6.2.8 Numerical Integration

The Gauss-Legendre formula for performing

numerical integration which is needed to solve Eg. 6.19d is

given by:

+1 +1

0(5,Tl)d d (6.19e)

-1 -1

Integrating Eg. 6.19e, the following expression is obtained:

1=1 I Wi Wj <D(§i, ilj)
i=l j=l

in which

O = the numerical value of the function

wi' wj = weighting factors

5i,*lj = sampling points.

(6.19f)
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For a 2-point numerical integration scheme, the value of

weighting factors are equal to ± 0.57777775. Substituting

the different values in Eq. 6.19d, the element stiffness

matrix is evaluated.

6.2.9 Global Stiffness Matrix

The global stiffness matrix. [K] of the whole

assembly is obtained from the individual element matrix using

the direct stiffness method. The assembled global stiffness

matrix is of size, 2NNx2NN, in which NN is the total number

of nodes. Since this matrix is symmetric and banded in

nature, it can be stored in the computer, as an array of size

2NNxMB, in which MB is the semi-band width of the global

stiffness matrix. This storage scheme is used in the present

study. The global stiffness matrix is expressed as:

[K]{ql = {Rl (6.20)

where

[K] = the assembled stiffness matrix

{ql • the unknown displacement vector

{Rl = the global load vector.

6.3 FINITE ELEMENT FORMULATION OF NONLINEAR STATIC PROBLEM

The formulation of the finite element method with

respect to nonlinear elasticity and sequential construction

analysis of embankment dams is briefly explained in this

section.
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As mentioned in Chapter 2, the stress-strain

characteristics of soils are nonlinear. It is essential

therefore, that nonlinearity should be taken into

consideration in the analysis of earth and earthfill

structures. Two methods, namely, (1) successive approxima

tion method and (2) successive increment method are presently

available to model the nonlinear stress-strain behaviour of

soils, under static loading conditions. These two methods

are briefly summarized below:

6.3.1 Successive Approximation or Secant Modulus Method

In this method, the same loading is applied

repeatedly throughout the analysis, adjusting the modulus

values assigned to each element, every time until the

computed values of stress and strain are consistent with the

assumed nonlinear model. This method has severe limitations.

which have been highlighted by Dunlop and Duncan (1970) . The

advantage of this method is that, strain softening or

reduction in shear resistance beyond the peak value can be

approximated. One of the limitations is that, non-zero

initial stresses, which are a characteristic of all

geotechnical problems, cannot be approximated (Kuberan,

1978).

6.3.2 Successive Increment or Tangent Modulus Method

In this method, the stiffness of each element is

selected in accordance with the existing state of stress in

that element (Clough and Woodward, 1967). The construction
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sequence can be simulated using this method and the nonlinear

behaviour is approximated by a series of linear increments.

Successive increment or tangent modulus method is

used in the present study to simulate the static nonlinear

material behaviour. The nonlinear stress-strain curve is

represented by a hyperbolic eguation. The hyperbolic model

is presented in the next section.

6.3.3 Hyperbolic Model

Kondner and his co-workers (Kondner, 1963: Kondner

and Zelasko, 1963a, 1963b; Kondner and Horner, 1965), have

proposed a simplified model to represent the nonlinear

stress-strain behaviour of different soils. In this method

the nonlinear stress-strain law is expressed by a hyperbola

in the following form (Duncan et al., 1980):

(a -a ) = (6.21

1 3
1 e

+

Bi (°l-°3>ult

where

(0^-03) = deviator stress

e = axial strain

Ei • initial tangent modulus

(°l-°3'ult = asymptotic deviator stress.

The hyperbolic expression (Eg. 6.21). is shown in

Fig. 6.2. When Eq. 6.21 is transformed, a linear relation

ship is obtained between 6/(0^-03) and e as shown in Fig. 6.3
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Fig 6 2 Hyperbolic Representation of Stress-Strain Curve
(Duncan et al., 1980)

Transformed

IOJ-O3) EL (Oj-CT3)ul{

Fig. 6.3 Transformed Hyperbolic Representation
(Duncan et al., 1980)
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The stress-strain characteristics of most of the

soils, depend on the confining pressure. The influence of

confining pressure on the stress-strain characteristics of

soils may be incorporated in the stress-strain relationship

by relating the values of the initial tangent modulus, Bi and

the soil strength, (02-03)ult with confining pressure. The

variation of initial tangent modulus with confining pressure

is empirically expressed as (Janbu, 1963):

nh
Bi = Kpa(o3/pa) (6.22)

where

Ei = initial tangent modulus

03 = minor principal stress

pa = atmospheric pressure expressed in the same units as

Ei and 03

K = a modulus number

nn = an exponent determining the rate of variation of Ei

with 03.

The variation of (oi-c>3)ult with 03 is accounted

by relating (0^-03)uit to tne compressive strength or stress

difference at failure, (o1-o3)f and then using the Mohr-

Coulomb strength criterion. The relation between (02-03)f

with 03 is obtained as:

2 (C cos 0 + 03 sin 0)
(01-03^ =— (6.23)

1 - sin 0
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in which

C = cohesion and

0 = angle of internal friction are the Mohr-Coulomb strength

parameters.

The asymptotic deviator stress. (oi-o3)ult. shown

in Fig. 6.2, and the deviator stress at failure, (0^-03^ are

related by the following expression:

(o^-c^f = Rf(o1-o3)ult (6.24)

where

Rf = a correlation factor called the failure ratio,

with a value less than unity.

The tangent modulus, Ei corresponding to any point

on the stress-strain curve (Fig. 6.2), is expressed in the

form:

E =

i

d(oi~03)

de

(6.25)

Differentiating, Eg. 6.21, as indicated in Eg. 6.25 and subs

tituting the other parameters given in Egs. 6.22 and 6.23.

the following expression is obtained:

Ei - 1 -

Rf (1-sin 0) (01 -03 )

2(Ccos 0+03 sin 0)

m

Kpa (03 /Po ) (6.26)
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Eg. 6.26 can be employed, either in an effective or a total

stress analysis using the finite element method.

The value of bulk modulus, B is defined as (Duncan

et al., 1980):

Ao^ + A02 + &02
B " — (6.27)

3ev

in which

A°l< Ao2 and A°3 are tn« changes in the values of the

three principal stresses

ev • the corresponding change in volumetric strain.

In a triaxial test, keeping the confining pressure constant

and increasing the deviator stress, (02-03), then Eq. 6.27

can be written as:

°1_°3
B " (6.28)

3ev

Duncan et al. (1980), observed that the bulk modulus is

directly proportional to the confining pressure. The

variation between bulk modulus and confining pressure is

given empirically, in the form:

mh

B " KbPa<°3/Pa> (6.29)

where

KD = bulk modulus number

mn = bulk modulus exponent
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In all, the hyperbolic method involves eight different para

meters to simulate the nonlinear stress-strain behaviour of

soils under static condition and these parameters are listed

in Table 6.1 (Duncan et al. , 1980). In the present study,

the different parameters given in Table 6.1, have been

adopted to account for the material nonlinearity of different

soils. Duncan et al. (1980), have discussed the advantages

and the disadvantages of the hyperbolic model in detail.

6.3.4 Sequential or Incremental Construction Method

Brown and Goodman (1963) . have shown that for an

accurate analysis of embankments, the simulation of the

placement of successive layers of embankment material is

necessary. Clough and Woodward (1967), compared the useful

ness of the incremental finite element analysis in which the

placement of successive layers is simulated with the 'gravity

turn-on' method, in which the gravity body forces are applied

to the entire structure at one time only. Their studies

-*. indicate that the incremental method of analysis predicts the

actual behaviour of an embankment under static case.

In the incremental analysis the load is divided

into a number of small increments and the soil behaviour is

assumed to be linear within each increment.

The stress-strain relationship for an isotropic

material, under plane strain condition is given by (Duncan et

al., 1980):
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Table 6.1 Different Parameters of the Hyperbolic Model
(Duncan et al., 1980)

Parameter

(1)

nh

<*, A*

Rf

Kb

mh

Name

(2)

Modulus number

Modulus exponent

Cohesion intercept

Friction angle parameters

Failure ratio

Bulk modulus number

Bulk modulus exponent

Function

(3)

Relate Ei to a:

Relate (ffi-.<ri)f to a:

Relates (cri-a3)uit
to (Ol -CT3 )f

Value of B/p« at CT3=p«

Change in B/p« for

ten-fold increase
in en



*

where

Acx

ho.

ATxy

Ae
x

Ae,

nTxy

E

B

A Ox

AOy V "

ATxy ,

3B

9B-E

(3B+E) (3B-E) 0

(3B-E) (3B+E) 0

0 0 E

normal stress increment

normal stress increment

shear stress increment

normal strain increment

normal strain increment

shear strain increment

Young's modulus

bulk modulus.

A6x

( Aey

ATx y J
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(6.30)

Before the starting of the sequential construct

ion, the initial or in-situ stress, fo0}, in the initial

ground surface is computed as shown in Fig. 6.4. The first

layer of soil mass is placed over the initial ground surface

as shown in Fig. 6.5, and the resulting increment in stress,

{A Oil, is computed. The total stresses at the completion of

the first layer are given by:

lo1\ = {o0l + { AOil (6.31)

At the end of placing of the i th layer as shown in Fig. 6.6.

the stresses are computed using a recursive formula as (Desai

and Abel, 1972):
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I
Initial ground surface

In - situ stresses (0^)
t

Initial state

Fig. 6.4 in-situ Stresses at Initial State
(Desai and Abel, 1972)

/TTTTTn£
First lift

J {CT, )*{<To)+ {A*l 1v

Lift^ i

Fig. 6.5 Stresses at the End of First Lift
(Desai and Abel, 1972)

/rfnm_Q_L.

./jth lift

4 W-WPfri***

Lift.j

n = Total number of
layers

Fig. 6.6 Stresses at the End of i th Layer
(Desai and Abel, 1972)
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{Oil = {o0l + I IAoj
j=l
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(6.32)

Similarly, the displacements are computed by:

where

i

{Uil = I (Aujl (6-33)
3=1

{Uil = total displacement vector at the end of placing of
* the i th layer

{Oil = stress vector at the end of placing of the i th layer
{Aul = increment in displacement.

in the present work, the incremental method of

analysis has been used to obtain the pre-earthguake stresses

in embankment dams analysed.

6.4 FORMULATION WITH RESPECT TO DYNAMIC ANALYSIS

4

The formulation of the finite element method,

related to seismic or earthquake loading is described in this

section. The equilibrium equation for evaluating the earth

quake response is (Dibaj and Penzien, 1969):

[M]lri + [C]{rl + [KjfrJ = {R(t)l (6.34)

in which

[M] = global mass matrtix

[C] = global damping matrix . %

[K] = global stiffness matrix
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{rl = nodal acceleration vector

{rl = nodal velocity vector

{rl = nodal displacement vector

{R(t)I = earthquake load vector.

Expanding the vector, {rl , into component form,

{r|T = [Ux Vi, .. Ui Vi, .. Unn Vnn] (6.35)

in which

Ui and Vi are the x and y components of the displacement of

nodal point, i and NN represents the total number

of nodal points.

For a lumped-mass system, the earthguake force excitation

vector, {Rl is given by: *

{Rl = -[M]{ygj (6.36)
where

lYgl • ground acceleration vector.

6.4.1 Stiffness Matrix

The assembly and storage scheme used in this case

is identical to that described in Sees. 6.2.7 to 6.2.9.

6.4.2 Mass Matrix

In the formulation of the mass matrix, the

diagonal mass system is adopted, since the problem considered

in the present study is of wave propagation category (Desai
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and Abel, 1972). The element mass matrix, [me] is given by

(Cook, 1981):

[me ] =

V

f [N]T [N] dV (6.37)

where

»

f = mass density

[N] = shape function, Ni with unit value at the node i and

zero elsewhere.

Eq. 6.37 represents the consistent mass matrix. Test cases

to date show that the accuracy of the diagonal mass matrix is

excellent, often surpassing that of the consistent mass

matrix (Cook, 1981). The diagonal mass matrix which is more

sophisticated than a lumped mass matrix is derived from the

consistent mass matrix as mentioned below (Cook, 1981) :

a Compute only the diagonal coefficients of the

consistent mass matrix,

b Compute m, the total mass of the element,

c Compute a number, sj by adding the diagonal coeff

icients, mii associated with translation (but not

rotation).

d Scale the diagonal coefficients, mii bY multiplying

them by the ratio m/si,thus preserving the

translational mass of the element.

The assembly of the mass matrix is analogous to that of the

stiffness matrix as described in Sec. 6.2.7. The global mass

matrix remains diagonal and is given by:
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L

[M] = I [me] (6.38)
e=l

where

[M] = the assembled mass matrix which is diagonal and the

summation is done upto to the total number of

elements L.

The consistent mass matrix system leads to more computer time

and memory.

6.4.3 Damping Matrix

Dissipation of energy with time or distance is

called damping. The damping term shown in Eq. 6.34 is the

viscous damping, which is directly proportional to the velo

city. In general, a simplified form of damping is used in

seismic studies, which is known as the Rayleigh damping and

is given by (Dibaj and Penzien, 1969: Idriss et al., 1973):

[C] = ai[M) + PjJK) (6.39)

where

c<i and Pi are constants.

In Eq. 6.39, the damping matrix contains a

component proportional to the mass matrix and a component

proportional to the stiffness matrix. Assigning the damping

value in the above form has the advantage, that the numerical

values of a^ and P^ , only need to be stored (Dibaj and
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Penzien, 1969). Eq. 6.39 is applicable for constant dampincr

cases only (Idriss et al., 1973).

However, as shown in Chapters 2 and 5, the damping

induced in soils is a function of strain and is not a

constant. Thus, Eq. 6.39 should be modified to account for

variable damping. This is described in the next sub-section.

6.4.4 Variable Damping Method

In this method, the damping matrix is formulated

A. for each individual element and these matrices are added

together for the entire assemblage of elements (Idriss et

al., 1973). For any element, e the damping matrix is stated

as:

[Ce] = ae[me] + $e[ke1 (6.40)

in which

[Ce] = damping matrix for element e

[me] = mass matrix for element e

i [ke] = stiffness matrix for element e

ae and Pe are functions of the mass and stiffness character

istics of element, e respectively.

The parameters ae and Pe are given by:

in which

ae = De x wj (6.41)

Pe = De I wl (6.42)
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D~ = the damping ratio for element, e and is selected on the

basis of the strain developed in the element under

consideration (Chapter 5)

Wi = the fundamental frequency in rad/sec of the system and

given by (Idriss et al., 1973):

U'lTfK] {*'}
w2 = ;— (6.43)

f#'»T[M] {0'l

in which

{0'| = mode shape of the system corresponding to the

fundamental mode and obtained using the method

of inverse iteration

[K] = the modified stiffness matrix.

If Cij represents the (ij~) th term of the damping sub-matrix

[C], then the (IJ) th term of the damping matrix of the whole

system is stated as (Idriss et al., 1973):

L

Cu = I ci:j (6.44)
e

wherein

Cjj # 0, only if I = J or I is adjacent to J and

L is the total number of elements.

The final damping matrix [C] is symmetric and banded in

nature and the assembly is same as that of stiffness and mass

matrices. In the present work the variable damping solution,

% as proposed by Idriss et al. (1973), is adopted.
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6.4.5 Step-by-Step Integration Scheme

The dynamic response of the system subjected to

earthquake loading is evaluated by solving Eq. 6.34. To

solve this equation, a direct time integration scheme, known

as the step-by-step method, as proposed by Newmark (1959),

(Bathe, 1982: Bathe and Wilson, 1987: Craig, 1981 ) has been

used in the present work.

In the Newmark's method of step-by-step time

integration scheme the following assumptions are made (Bathe,

1982; Bathe and Wilson, 1987).

• • • • • #

rt+ At = rt + [(l-5)rt + 5 rt+ Atl At (6.45)

and

rt+ At = rt+rt t+[(fc-ot3)rt + a3rt+ At] At* (6.46)

where

rt+ At = *-he displacement at time t+ At

r^+ At = the velocity at time t+ At

0:3 and 6 = parameters used to achieve integration accuracy

and stability

At = the time step required in the integration scheme.

Newmark (1959), proposed an unconditionally stable

scheme, which is called the constant-average-acceleration

method as shown in Fig. 6.7, and the values of 0:3 and 6 are

0.25 and 0.5 respectively.

The eguation of motion (Eg. 6.34), at time. t+ At,

can be expressed as:
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K'ri+W)
t+-At

t+At

Fig. 6.7 Newmark's Constant Average Acceleration Method

M rt+ At + C rt+ At + K rt+ At = Rt+ At

Solving for r^+ at from Eq. 6.46,

(6.47)

rt* At = rt + At- rt - rt At - Jirt a t2+a3rt At2! (6.48)
0(3 At2

Substituting Eq. 6.48 in Eq. 6.45 and solving for rt+ Af

rt+ A t " rt + A t rt - 5 Atrt +

5 A t

rt ♦ At- rt - rt At - Hrt A 12+a3 rt At2
ot3 A t 2

rt+ At = rt + At rt (1-5) +



rt + At- rt - rt At + rt At2 (0:3-%)
0(3 A t

rt+ At " rt + At rt d"6) +

03 At

1 1
rt ♦ At- rt - rt At + rt*At2{l- I

2ot3

r = r (1- - ) + Atr (1-5) +

t+ A t t t

a3

180

5 .. 1 5

r AtMl - 1 + {r - r I (6.49)
t t+ At t

2a3 a3 A tot3 A t

Substituting Eqs. 6.48 and 6.49 in 6.47 the following

expression is obtained:

[M]

[C]

in which

as kt2

1
rt+ At- rt - rt At + rt At2{l-

2CC3

5 . . 6 5

rt {1 - 1 + A trt {1 - 5 + - —

0(3 0(3 20(3 2

•{rt ♦ a t - rt I + K rt i a t = Rt i a t (6. 50)

03 At
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[C] = is the damping matrix as given by Eq. 6.44.

The important steps involved in solving Eg. 6.47

are (Bathe, 1982; Bathe and Wilson, 1987):

(a) 1 Formation of stiffness matrix. K, mass matrix. M

and damping matrix, C as discussed in Sees. 6.4.1 to

6.4.4.

2 Initialization of displacement, r, velocity, r, and

acceleration, r

3 Calculation of integration constants and selection

of time step, At

4 Formation of effective matrix, K

where

K=K+a0M+a1C (6.51)

1 5

a = ; a =

0 1
a3 At 2 a3 A t

5 Triangularization of K

(b) For each time step, At,

1 Computation of effective load at time, t+ At, is

given by:

Rt+At " Rt+At + M(a0rt + a2rt + a3rt> +

• • •

C(airt + a4rt + a$rt) (6.52)

where

1 1 5

n = • a = - i a = - 1

2
a3 A t

3
2a3

4

a3



At

as = - 2

0(3

2 Solving for displacement at time, t + At.

3 Calculation of acceleration and velocity at time,

t + At, using the following expressions:

182

rt+At • a0*rt+At " rt* "a2rt " a3rt

• • • • • •

rt+At " rt + a6rt + *7rt+At

where

ag = At (1-5) and 87 = 5 At.

(6.53)

(6.54)

Using the above mentioned procedure, Eg. 6.47 has been solved

in the present study.

6.4.6 Dynamic Nonlinear Stress-Strain Behaviour of Soils

The nonlinear stress-strain characteristics of

different soils subjected to dynamic loads can be appro

priately represented by the Ramberg-Osgood model

(Constantopoulos, Roesset and Christian, 1973; Papadakis.

Streeter and Wylie, 1974; Streeter, Wylie and Richart, 1974

Richart and Wylie, 1975: Desai, 1977: Roesset, 1977

Ishenower, 1979; Pyke, 1979; Ishihara, 1982, 1985, 1987

Shamoto, 1984). The normalized curves between shear modulus

and shear strain and the damping ratios as a function of

strain obtained in Chapter 5, have been represented by the
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Ramberg-Osgood model (Eqs. 5.18 and 5.22), to account for the

nonlinear behaviour of soils under dynamic loading conditions

in the present study. The different values of the Ramberg-

Osgood model constants, namely, a and R, presented in

Chapter 5, for the different types of soils have been used in

modelling the stress-strain characteristics of different

soils.

6.5 CLOSURE

The formulation of the finite element method with

respect to eight-noded isoparametric element and reduced

integration scheme has been described briefly in this

chapter. The assembly of element stiffness matrix, mass

matrix and the damping matrix have also been discussed. The

Newmark method of implicit, step-by-step time integration

scheme is briefly presented. Material nonlinearity as

applicable to static case with incremental construction

sequence analysis of embankment dams and in the dynamic case

the nonlinear stress-strain characteristics of the different

types of soils have been represented using the Ramberg-Osgood

model.
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CHAPTER 7

DEVELOPMENT OF COMPUTER PROGRAMS

7.1 GENERAL

The different steps involved in the formulation of

the finite element method as applicable to nonlinear static

and nonlinear dynamic cases, which have been described in the

previous chapter need to be implemented efficiently, in

computer programs for solving practical problems.

This chapter describes the development of two

computer codings, namely. (1) FEABANS (Finite Element

Analysis of EmBANkment DamS), which can take into account the

nonlinear elastic stress-strain behaviour of soils under

static case, with the simulation of seguential construction

operation and (2) FEADYNS (Finite Element Analysis of

DYNamic Soil-structure Interaction Problems) , which is

capable of analysing earth and earthfill structures subjected

to earthguake or vibratory loading, considering the nonlinear

stress-strain characteristics of different materials

constituting the earth structure as a function of strain.

The computer program FEABANS has originally been

developed by Duncan, Wong and Ozawa (1980), using constant

strain triangular elements and four-noded guadrilateral

elements. This computer coding is based on the hyperbolic

184
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model, considering the volume change characteristics and as

incorporated by Duncan et al. (1980). In the dynamic case,

the nonlinear, strain dependent material property curves

of different soils developed in Chapter 5. based on the

(1) Ramberg-Osgood model as described by Jennings (1964),

Richart (1975), and Ishihara (1982), (2) Hardin-Drnevich

model as described by Hardin and Drnevich (1970b), and

Ishihara (1982), and (3) Seed-Idriss method as described by

Lysmer et al. (1974), have been implemented in the computer

coding, FEADYNS. This coding has initially been written by

Idriss et al. (1973), based on constant strain triangular

elements and four-noded quadrilateral elements. These two

computer programs have been developed using the standard

FORTRAN IV language, in the DEC 2050 Computer System, at the

Roorkee University Regional Computer Centre, Roorkee

(India). The development of these two computer programs and

the associated subroutines therein, as applicable to the

present study have been described in detail in this chapter.

Also, the analysis results of a 55 feet high

embankment dam evaluated through FEABANS have been compared

with the results reported by Duncan, Wong and Ozawa (1980),

using constant strain triangles and four-noded guadrilateral

elements.

In the dynamic case the analysis results of a soil

column of depth, 100 feet as presented by Idriss et al.

(1973), have been compared with that of the results using the

FEADYNS coding.
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7.2 COMPUTER PROGRAM FOR STATIC ANALYSIS

The computer program FEABANS is capable of

simulating the actual construction seguence operations of

embankment dams under static case (Chapter 6). based on the

hyperbolic law. The computer coding written by Duncan,

Wong and Ozawa (1980), has been modified to accommodate

eight-noded isoparametric elements with Gauss-Legendre

reduced integration scheme and graphic display facilities

using a CALCOMP PLOTTER. A CALCOMP PLOTTER is a peripheral,

in which the hard-copy of the graphic display can be

obtained. The essential sequences of operation involved in

the FEABANS computer coding are shown in Fig. 7.1

7.2.1 Program Operation

The computer program developed to carry out

nonlinear static analysis consists of a main segment called

FEABANS and 15 subroutines and is coded in standard

FORTRAN IV language. The main program (FEABANS) reads and

prints all the control data and monitors all operations by

calling the different subroutines in the specified order as

shown in Fig. 7.1. The function of each subroutine is

briefly described subsequently.

1 Subroutine INPUT reads and prints the element connecti

vity data and the coordinates of all the corner nodes.

The boundary conditions of all the nodes and the

different material properties are also read here.

2 Subroutine PREBAN calls subroutine NODEXY to obtain the
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[feabans!

INPUT ]*»^^^[*»^^^*i>^^^**j^^|»»j^^^j
3

PLAYER^
j LAYER+1

I INISTR

V
ELAS

X
{presur }**{sm]

STSTRS

Fig. 7.1 Flow Chart for FEABANS

IT = Iteration Number
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coordinates of the mid nodes using the method of linear

interpolation. With the topology data, PREBAN gives a

graphical output based on the CALCOMP PLOTTER library

routines, such as, PLOT, NUMBER and AXIS. The graphical

display permits corrections in the input data.

3 Based on the method of linear interpolation, subroutine

NODEXY evaluates the coordinates of the mid nodes using

the coordinates of the corner nodes of each element.

4 Subroutine GAUSSP sets the sampling point positions and

weighting factors needed for numerical integration.

This subroutine is called by subroutine INPUT.

5 Subroutine SFR which is called by subroutine GAUSSP,

calculates the values of the shape functions and their

derivatives at the Gauss points with respect to % and

"t local coordinate system as shown in Chapter 6.

6 Subroutine DESCAT calculates the cartesian derivatives

of shape functions using the Jacobian matrix and its

inverse at the Gaussian points. This subroutine is

called by subroutine INPUT.

7 Subroutine INISTR computes the initial stresses at the

Gauss sampling points of the elements.

8 Subroutine ELAS calculates the modulus values needed in

the analysis.

9 Subroutine PRESUR computes the eguivalent nodal loads

due to boundary pressure or water load.

10 Subroutine STIFM calculates the element stiffness

matrix.

11 Subroutine ASEMBL assembles the global stiffness matrix
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from element stiffness matrix.

12 Subroutine SOLVE evaluates the solution of simultaneous

equations involving the stiffness matrix, displacement

vector and load vector arrays using the Gauss elimina

tion technique, considering the banded property of the

assembled matrix. The solution is obtained for the

unknown nodal displacements.

13 Subroutine STRAIN computes the different components of

strain at the Gaussian points using the nodal

displacements computed by the subroutine SOLVE.

14 Subroutine STRESS calculates the stresses at the

Gaussian points using the strains which are computed by

subroutine STRAIN.

15 Subroutine STSTRS stores the different stresses at the

completion of the nonlinear static analysis. These

static stresses are the initial conditions for the

dynamic analysis.

7.2.2 Verification of FEABANS

To evaluate the applicability of FEABANS, the

results obtained using this computer coding have been

compared with the results reported by Duncan, Wong and Ozawa

(1980). For the purpose of verification, an embankment dam

of height 55 feet has been selected. This embankment dam has

previously been analysed by Duncan, Wong and Ozawa (1980),

using constant strain triangles and four-noded guadrilateral

elements. The finite element idealization consisting of a
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total of 28 (25 four-noded quadrilaterals plus 3 triangular

constant strain) elements and 39 nodes as used by Duncan.

Wong and Ozawa (1980) , is shown in Fig. 7.2. The values of

different stress vectors, such as horizontal stress (o„„),

vertical stress (°yy)' shear stress (Txy), major principal

stress (o-^) and minor principal stress (03) computed at the

centre of each element and reported by Duncan, Wong and Ozawa

(1980), are shown in Table 7.1.

The finite element mesh as produced by FEABANS

using eight-noded isoparametric elements and the numbering of

the Gauss points are shown in Fig. 7.3. The finite element

mesh shown in Fig. 7.3, consists of 28 eight-noded elements

and 105 nodes. The corresponding values of different stress

vectors obtained using FEABANS are given in Table 7.2.

It can be noticed from Tables 7.1 and 7.2 that the

values of different stress vectors obtained by Duncan. Wong

and Ozawa (1980), and in the present study using eight-noded

isoparametric elements through FEABANS are in close

agreement.

7.3 COMPUTER PROGRAM FOR DYNAMIC ANALYSIS

The computer program FEADYNS, is capable of

analysing soil-structure interaction problems and earth

structures subjected to seismic forces in the time domain.

The nonlinear stress-strain behaviour of different soils is

represented by the Ramberg-Osgood model, Hardin-Drnevich

model and the Seed-Idriss method (Chapter 5). Fig. 7.4 gives

the flow chart of the computer coding FEADYNS.
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Table 7.2 Values of Different btr

'using FEABANS.'

Vect ors

El .

No.

( 1

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

(2)

0. 409

0. 532

0. 604

0. 753

0. 966

1. 170

1. 320

1. 390

0. 170

0. 207

0. 386

0. 616

0. 750

0.917

1 . 050

1 . 110

0. 098

0. 360

0. 337

0. 305

0. 334

0. 063

0. 261

0. 295

0. 256

0. 186

0. 366

0. 460

Oy i

(3)

0. 704

0. 891

0. 834

1. 150

1 . 620

2. 100

2. 400

2. 470

0. 212

0. 377

0. 417

0. 763

1. 230

1 . 700

2. 020

2. 080

0 . 396

0. 759

1 . 260

1. 570

1.610

O. 261

0. 685

1 . 020

1 . 020

0. 348

0. 746

0. 740

Note:

Stresses, are in tons/ft2

1 ton/ft2 = 10.76 tonne/m2

= 105.50 kN/m2

(4)

-0.014

0. 039

0. 186

0. 260

0. 293

0. 250

0. 154

0.048

-0.003

0. 036

.025

139

184

144

0. 088

0. 028

0. 08 7

0 . 119

0.115

0. 058

0. 012

0. 052

0. 102

0. 064

0.010

0.111

0. 027

-0.010

-0.

0.

0.

0.

( 5)

0. 705

0. 895

0.938

1 . 280

1 . 730

2. 160

2. 420

2. 470

0. 212

0. 384

0. 431

0. 84 7

1 . 290

1. 730

2 .020

2. 080

0. 420

0. 792

1 . 270

1. 570

1- 610

0. 273

0. 708

1. 020

1 . 020

0. 405

0. 748

0. 740

(6) (71

0 . 408 — 2 . 77

0 528 6 . 12

0 500 29 . 20

0 62 5 26 . 20

0 855 20 90

1 110 14 20

1 300 7 97

1 390 o 51

0 170 -4 15

0 200 11 50

0 3 72 -28 70

0 53 2 31 20

0 688 18 80

0. 891 10 10

1. 04 0 5 14

1. 110 1 63

0. 0 74 15 00

0. 32 7 15 40

0. 323 7 01

0. 302 . 2. 60

0. 55Z 0. 53

0. 050 13. 80

0. 237 12. 90

0. 289 5. 06

0. 2 55 0. 75

0. 130 26. 90

0. 364 4. 10

0. 4 60 — 2. 14

ji /as

(8)

1 . 728

1 . 695

1. 876

2. 048

2. 023

1. 946

1. 862T

1. 777

1. 247

1. 920

1. 159

1 . 592

1. 875

1 . 942

942

8 74

676

4 22

9 32

199

835

4 60

987

3. 529

4. 000

3. 115

2. 055

1 . 609

Txy/Uy;

(9)

-0.020

0. 044

0. 223

0. 226

0. 131

0. 119

0. 064

0. 019

-0.014

0. 096

-0.060

0. 182

0. 150

0. 085

0. 044

0. 014

0 . 220

0 . 1 5 7

0.091

0. 037

0. 007

0. 199

0. 149

0.063

0. 009

0.319

0. 036

-0.134

194
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^ 7.3.1 Organization of FEADYNS

The nonlinear dynamic analysis computer program

developed in the present study consists of a main segment
called FEADYNS and 21 subroutines. As in the static case,

the main program reads and prints the control data and
monitors all operations by calling the different subroutines
in the specified order. The functions of the first five
subroutines, namely, INPT, PREDYN, NODEXY. GAUSSP and SFR are

4 identically same as that of the first five subroutines in the
nonlinear static analysis computer program FEABANS. The
functions of the remaining subroutines are briefly explained

subseguently.

1 Subroutine EQDATA reads and stores the digitized values

of acceleration of the selected ground motion.

2 Subroutine EQINT modifies and regenerates the design
accelerogram based on the peak ground acceleration value

of the initial input motion.

4 3 subroutine BANDW computes the band width of each
individual element and stores the largest value.

4 Subroutine STSTRS reads the pre-earthquake or static
initial stresses obtained from the nonlinear static

analysis carried out using FEABANS.

5 Subroutine QUD4D consists of the Newmark method of time
integration scheme and sets up the equation of motion
after calling subroutine FRMSTF. Subroutines RAMB. SOLVE

* and damp which evaluate the shear modulus and damping
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ratio as a function of strain based on the Ramberg-

>
Osgood model are also called here. The time-histories

of acceleration, displacement and shear stresses are

also evaluated in subroutine QUD4D.

6 Subroutine RAMB incorporates the Ramberg-Osgood model as

described in Chapters 5 and 6 to obtain shear modulus

values as a function of strain. This subroutine calls

two other subroutines, namely, SOLVE and DAMP to obtain

the damping values as a function of strain.

^ 7 Subroutine SOLVE evaluates the G/Gmax values as a

function of strain, based on the Newton-Raphson root

finding technique.

8 Subroutine DAMP evaluates the damping values as a

function of strain using the Ramberg-Osgood model.

9 Subroutine HDM computes the shear modulus ratio and the

damping values using Eqs. 2.23 and 2.24 respectively,

which are based on the Hardin-Drnevich model.

10 Subroutine SIM stores the modulus reduction factors and

X the damping ratios as a function of strain corresponding

to a few selected strain levels as recommended in the

Seed-Idriss method.

11 Subroutine FRMSTF forms the element stiffness matrix,

mass matrix and the damping matrix. Subsequently, these

matrices are assembled into the global matrices.

Subroutine QUAD is also, being called by subroutine

FRMSTF.

12 Subroutine QUAD forms the stress-strain relationship.

13 Subroutine GLST computes the cartesian shape function
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derivatives using the Jacobian matrix and its inverse.

This subroutine is called by subroutine QUAD.

14 Subroutine SYMBOL evaluates the simultaneous equations

involved in the system by calling the subroutine BANSOL.

15 Subroutine BANSOL takes into account the banded property

of the different global matrices.

16 Subroutine BANEIG computes the natural frequency and the

time period of the system by solving the standard eigen

value problem.

7.3.2 Verification of FEADYNS

As described in Sec. 7.2.2. to evaluate the

suitability of FEADYNS, the dynamic response of a soil column

of depth, 100 feet has been performed using numerically

integrated eight-noded isoparametric elements. This soil

column has previously been studied by Idriss et al. (1973),

and the finite element mesh adopted by them using four-noded

quadrilateral elements is shown in Fig. 7.5. As can be seen

from this figure, the finite element digitization consists a

total of 20 four-noded quadrilateral elements and 42 nodes,

in which node 41 is the first node on the rigid base. The

damping and shear modulus values used for the dynamic

analysis by Idriss et al. (1973), are shown in Fig. 7.6. The

Taft accelerogram, recorded at Kern County in 1952. and

normalized to a peak ground acceleration of 0.15g has been

applied as the base input motion at node 41.
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The different values of stress vectors computed at

the centre of each element and the values of horizontal (x)

acceleration computed at all the nodal points (except on the

rigid base), by Idriss et al. (1973), are given in Tables 7.3

and 7.4.

The finite element idealization generated by

FEADYNS is also shown in Fig. 7.5. The total number of

elements are 20 as adopted by Idriss et al. (1973) . and the

total number of nodes are 103, in which the first node on the

rigid base is 101. As before, the different stress vectors

obtained using eight-noded isoparametric elements and the

resulting acceleration values at the corresponding corner

nodes (except at the nodes lying on the rigid base) are as

well shown in Tables 7.3 and 7.4. The distribution of shear

stress and acceleration values plotted along the depth of the

soil column are as well presented in Fig. 7.7.

It can be seen from Table 7.3, that the magnitude

of shear stress in the two cases (using 4-noded quadrilateral

elements and 8-noded isoparametric elements) yield nearly

identical values, except at the base (elements 18 to 20) in

which, slightly lower values of shear stress are noticed in

the present case (Fig. 7.7) in comparison with the shear

stress values reported by Idriss et al. (1973).

From Table 7.4 the occurrence of deamplification

to a small extent is seen in the distribution of acceleration

along the depth of the soil column, below 60 feet from the

ground level, when 4-noded quadrilateral elements are used.

The lowest value of acceleration of the order of 0.1310g is
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Table 7.4 Distribution of Acceleration in the Soil Column

(Maximum input base acceleration • 0.15g)

4 - Noded Element 8 - Noded Element

Node Coordinate (ft) Accele Corre Accele

No. rat ion spon

ding

Node

ration

X Y (g) (g)

(1) (2) (3) (4) (5) (6)

1 0.0 0.0 0.2600 1 .0.2639

2 10.0 0.0 0.2600 3 0.2639

3 0.0 -5.0 0.2580 6 0.2612

4 10.0 -5.0 0.2580 8 0.2612

5 0.0 -10.0 0.2539 11 0.2563

6 10.0 -10.0 0.2539 13 0.2563

7 0.0 -15.0 0.2482 16 0.2504

8 10.0 -15.0 0.2482 18 0.2504

9 0.0 -20.0 0.2410 21 0.2424

10 10.0 -20.0 0.2410 23 0.2424

11 0.0 -25.0 0.2320 26 0.2326

12 10.0 -25.0 0.2320 28 0.2326

13 0.0 -30.0 0.2211 31 0.2211

14 10.0 -30.0 0.2211 33 0.2211

15 0.0 -35.0 0.2153 36 0.2136

16 10.0 -35.0 0.2153 38 0.2136

17 0.0 -40.0 0.2087 41 0.2074

18 10.0 -40.0 0.2087 43 0.2074

19 0.0 -45.0 0.1998 46 0.1995

20 10.0 -45.0 0.1998 48 0.1995

21 0.0 -50.0 0.1893 51 0.1897

22 10.0 -50.0 0.1893 53 0.1898

23 0.0 -55.0 0.1766 56 0.1779

24 10.0 -55.0 0.1766 58 0.1779

25 0.0 -60.0 0.1619 61 0.1639

26 10.0 -60.0 0.1619 63 0.1639

27 0.0 -65.0 0.1472 66 0.1492

28 10.0 -65.0 0.1472 68 0.1492

29 0.0 -70. 0 0.1359 71 0.1335

30 10.0 -70. 0 0.1359 73 0.1335

31 0.0 -75.0 0.1310 76 0.1187

32 10.0 -75. 0 0.1310 78 0.1187

33 0.0 -80. 0 0.1345 81 0.1210

34 10. 0 -80. 0 0.1345 83 0.1210

35 0.0 -85. 0 0.1369 86 0.1254

36 10. 0 -85.O 0.1369 88 0.1254

37 0.0 -90. 0 0.1408 91 0.1324

38 10.0 -90.0 0.1408 93 0.1324

' Q Q 0 -95. 0 Q. 1412 96 0.1412

40 10.0 -95. 0 0.1412 oc? 0.1412

Note:
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observed at a depth of 75 feet from the ground level (nodes

31 and 32).

However, when 8-noded isoparametric elements are

used the deamplification phenomenon to a larger extent is

noticed at the same depth from the ground level. The lowest

value of acceleration of the order of 0.1187g is observed at

nodes 76 and 78. Except at these locations, a close agreement

in the distribution of acceleration is seen between the two

cases (using 4- and 8- noded elements) of analysis.

7.4 CLOSURE

The capabilities of the two computer programs

namely, FEABANS and FEADYNS, performing nonlinear static

incremental analysis with the construction sequence operation

and nonlinear dynamic analysis based on three different

methods of analysis in the time domain respectively, have

been presented in this chapter. The flow charts for these

two computer programs have also been presented separately.

The two codings are based on eight-noded isoparametric

elements with the reduced integration scheme. The function

of every subroutine in both the computer codings has been

individually and briefly described. The verification of the

two computer codings has also been carried out by solving two

standard examples, namely, an embankment dam and a soil

column, and the obtained results have been compared with the

earlier reported values in both the analysis cases.



CHAPTER 8

ANALYSIS

8 .1 GENERAL

The computer program FEABANS which is capable of

performing nonlinear static analysis with the construction

sequence operation has been used for the evaluation of the

pre-earthquake or initial stresses of three rockfill dams,

namely, El Infiernillo Dam (146 m high), and of two other

dams including their respective foundations of total height

108 m and 336 m respectively. These computed static stresses

have been used as the initial conditions for the nonlinear

dynamic analysis using FEADYNS computer coding, described in

the previous chapter.

The dynamic analysis results of the El Infiernillo

Dam as performed in the present study, have been compared

with the actually recorded/measured response values at the

crest, during the March 14, 1979, Mexico earthquake. For the

dynamic analysis three different ground motions, namely, GM1,

which was recorded during the recent earthquake in the North-

Eastern Region of India, GM2 which was an artificially

generated accelerogram and GM3 which was the Taft

accelerogram recorded during the 1952, Kern County earthquake

were used. In all the accelerograms the peak ground accele-
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ration has been taken as 0.25g (g is the gravity constant)

since, the value of the peak ground acceleration of the March

14, 1979, Mexico earthquake was also 0.25g. The total

durations of the three ground motions were 12 0, 38 and 30

seconds respectively.

The extensive dynamic analysis of the 336 m high

dam with acceleration, displacement and shear stress time-

histories at a few important locations subjected to the

artificial earthquake record have been presented. The

nonlinear stress-strain characteristics of the different

materials constituting the three dams have been simulated

using the Ramberg-Osgood model described in Chapter 5. For

the purpose of comparison the dynamic analyses of the three

dams have been carried out using the Hardin-Drnevich model

and the Seed-Idriss method as well. The results obtained for

the three rockfill dams by all the three methods of analyses

using three ground motions have been compared.

8.2 DESCRIPTION OF THE THREE ROCKFILL DAMS

8.2.1 El Infiernillo Dam (Dam DA)

The El Infiernillo Dam is located on the Balsas

River (Mexico) and impounds 12000 million cubic metres of

water. The rockfill dam with a central impervious core of

compacted clay has a maximum height of 146 m above the

foundation rock. The dam is a slender embankment with an

average slope of 1.8:1 in the upstream and the downstream,

and a symmetrical thin core with 0.089:1 slope. The width of
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the core corresponds to only 22 percent of the hydraulic head

as shown in Fig. 8.1 (Moreno, 1980).

8.3 NONLINEAR STATIC ANALYSIS

The El Infiernillo rockfill Dam has been analysed

to evaluate the pre-earthquake or initial stresses using the

FEABANS coding. As described in Chapter 5, the hyperbolic

model (Kondner, 1963; Kondner and Zelasko, 1963) which can

simulate the nonlinear stress-strain behaviour of soils

considering the volume change characteristics and accounting

for sequential construction (Duncan and Chang, 1970; Duncan

et al., 1980), has been adopted for the analysis. These

initial stresses have subsequently been used as the initial

condition for the dynamic analysis of the El Infiernillo Dam.

8.3.1 Discretization

The idealized maximum cross-section of the El

Infiernillo Dam as adopted by Romo et al. (1980), is shown

in Fig. 8.2. The rockfill dam has been discretized into 17

layers, resulting in a total of 263 eight-noded isoparametric

elements and 864 nodes. The effective number of degrees of

freedom was 1646 in the plane strain (ez=0> case of

analysis. The finite element discretization has been done

using the PREBAN subroutine described in the previous chapter

to perform construction sequence analysis. The different

material properties used in the static analysis are shown in

Table 8.1 and the material type identifications are described

in Fig. 8.2. The finite element discretization is shown in
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Note: Elevation in meters

© Cut-off walls ( secant piles)(D Imperious core
© Filters
(3) Transition zones
0 Compacted rockfil
(£) Dumped rockfill
© Riprap
(D Sound rock

© Grout blanket
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Flg- 8.1 Maximum Section of n •>-„.*•
(Moreno, 1980? *»**«rn±llo Dam
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Fig. 8.2 Idealized Maximum Section of El Infiernillo Dam
(Romo et al., 1980)
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Fig. 8.3.

Table 8.1 Material Properties
(Romo et ai., 1980)

211

Used in the Static Analysis

Mat .

No.

Material

Identi

fication

Unit Weight It/m3 ) C

(t/m' ) (deg)
Dry Saturated

(1) (2) (3) (4) (5) (6)

1 Clay core 1. 58 2. 00 3 0

o Filter 1.87 2,19 0 ~*\ S

-z, Compacted

rockfill

1.S5 2.16 0 4 5

4 Dumped

rockfill

1.76 2.10 0 45

The shell and filter materials below the full reservoir level

have been assumed to be submerged and the clay core below the

phreatic line to be saturated. The materials above the maxi

mum water level have been considered as moist and the

different materials in the downstream to be dry. The water

pressure has been considered to act vertically along the top

surface of the bed-rock and normal to the upstream face of

the core, as shown in Fig. 8.3. The computed pre-earthquake

stresses have been stored in the subroutine STSTRS

(Chapter 7) for subsequent dynamic analysis.
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Fig. 8.3 Finite Element Idealization of El Infiernillo Dam

_»



213

8.4 DYNAMIC ANALYSIS

Dynamic analysis has been performed on the El

Infiernillo Dam using the same finite element mesh shown in

Fig. 8.3 with a change in numbering of nodes. The nonlinear

static stresses stored through the subroutine STSTRS of

FEABANS have been used as the initial condition in the

dynamic analysis.

8.4.1 Material Properties for Dynamic Analysis

For the dynamic analysis the different material

properties used are shown in Table 8.2. These properties
have been used in addition to the properties shown in

Table 8.1 and are same as that adopted by Romo et al. (1980).

These properties have been used for estimating the low-

amplitude shear modulus values as suggested by Seed and

Idriss (1970). The damping values have also been adopted

from the same reference (Seed and Idriss, 1970).

8.4.2 Earthquake Records for Dynamic Analysis

In the absence of the March 14, 1979, Mexico

earthuake record, three ground motions namely, GMl, GM2 and

GM3 have been selected as base input motions for the dynamic

analysis of the El Infiernillo Dam. Out of these three

accelerograms, GMl corresponds to the record of the recent

earthquake that took place in the North-East Region of India

(Chandrasekaran and Das, 1989). GM2 is an artificially

generated accelerogram (Srivastava et al., 1983) and GM3 is
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the Taft earthquake record, which was obtained during the

1952, Kern County earthquake (Idriss et al., 1973). Some of

the important parameters of the three ground motions are

given in Table 8.3. From this table it can be observed that

the selected accelerograms vary between a shortest duration

of 30 seconds to a longest duration of the order of 120

seconds. Existing literature on the dynamic analysis of

rockfill dams subjected to such a long duration earthquake

record is scanty (Prater and Studer, 1979) . The three ground

motions and the respective spectra are given in Figs. 8.4 to

8.9.

Table S.2 Material Properties Used in the Dynamic Analysis

[Romo et al., 1980)

Mat. Material U Z>u K'2 G/Su

No. Identif-

ication (t/m2 J (at r-in-ft )

(1) (2) (3) (4) (5) I6 !

1 Clay core 0. 49 5.5-9.0 - 2150-2640

•*? Filter 0. 33 - 150 -

3 Compacted

rockf ill

0. 33 - 150 -

4 Dumped

rockf ill

0. 33 - 100 -

Note

Su

K2

G/S,

Po isson"s rat io

undrained strength

a constant

normalized value of shear modulus.
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Table 8.3 Characteristics of the Three Ground Motions

SI. GMl PGA TD Descript ion

No. (g) (sees)

(1) (2) (3) (4) (5)

1 GMl 0. 25 120 Recorded in the

North-East Region

of India

o GM2 0. 25 38 Synthet ic

accelerogram

3 GM3 0. 25 30 Recorded at Taft,

Kern County(1952)

Note:

GMl --- Ground Motion Ident if icat i.

PGA - Peak Ground Acceleration

TD = Total Duration.

215

8.4.3 Dynamic Analysis Based on Ramberg-Osgood Model

Once the low-amplitude (r=10 or 10 percent)

shear modulii and the corresponding damping values are

established as mentioned in Sec. 8.4.1, the shear modulus

values and damping values at other values of shear strain

(r>10 percent) are evaluated using the Ramberg-Osgood model

as given by Eqs. 5.18 and 5.22 respectively (Chapter 5,

Sec. 5.4.3). The respective values of <C and R, for different

types of soils shown in Table 5.3, have been used in solving

Eq. 5.18. The constant, C^ in Eq. 5.18 has been assigned

unity.
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Knowing all the material properties and low-

amplitude shear modulus and damping ratio as a function of
strain, the dynamic analysis of El Infiernillo Dam has been

performed by the three methods of analysis using the computer

coding FEADYNS, for all the three ground motions as the

earthquake load vectors.

8.4.4 Dynamic Analysis Based on Hardin-Drnevich Model

As mentioned in the previous section, the dynamic

analysis of the El Infiernillo Dam has been carried out using
^ the Hardin-Drnevich model. The shear modulus values and

damping values respectively, at strain levels other than the

unit value of shear modulus ratio, have been interpolated

using the following expressions:

Gmax 1 + r/rr

(for shear modulus)

4 1 B 1 2

D = - x - l •- - ln{-} — —

n A A B n

(for damping)

in which

r = reference strain

A = 1-G/Gmax

B = G/Gmax.

(8.1)

(8.2)
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The reference strain is that value of shear strain correspon

ding to the shear modulus when reduced to half of its initial

shear modulus. The definition of reference strain is shown

in Fig. 8.10 and as before the dynamic analysis is done using

FEADYNS.

| 1.0

•\

o

-*-

a

*" 0.5
VI

Z3
TD

O

E

2 0.0
CO

i

Shear straii
V

Fig. 8.10 Concept of Reference Strain
(Ishihara, 1982)
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8.4.5 Dynamic Analysis Based on Seed-Idriss Method

The modulus reduction curves and damping curves

proposed by Seed and Idriss (1970), are at present being
widely used in today's Geotechnical-Earthquake Engineering
profession, for the evaluation of response of soil profiles
(Idriss et al., 1973), earth and earthfill dams (Seed et al.,
1973; Marcuson and Krinitzsky, 1976; Lai and Seed, 1985). A

few of the computer codings, namely, QUAD-4 (Idriss et al.,

1973), LUSH (Lysmer, et al., 1974), FLUSH (Lysmer et al.,
1975), and TLUSH (Kagawa et al., 1981) based on the Seed-
Idriss method are widely being employed in different parts of
the world for the dynamic analysis of different earth

structures including foundations of nuclear power plants.

Any dynamic analysis of an earth structure performed by any
other method should essentially be compared with an analysis
based on any one of the above mentioned computer programs, as

exercised by Marcuson and Krinitzsky (1976), in the case of

Fort Peck Dam.

The Seed-Idriss method uses a limited number of

digitized values of modulus reduction factors, unlike the
Ramberg-Osgood or Hardin-Drnevich models, in which the

modulus and damping values are expressed in a functional

form. The digitized values of reduction factors and damping

values as proposed by Seed-Idriss (1970), are given in

Table 8.4. These values have been used in FEADYNS for the

analysis of the El Infiernillo Dam.
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Table 8.4 Strain-Compatible Dynamic Soil Properties
(after Seed and Idriss, 1970)

22S

Effective

Shear Strain

r*ff (%)

log(r«ff) Shear

Reduct

Factor

Modulus

ion

Fract ic

Crit ice

Damping

n of

1

(%)

Clay Sand Clay Sand

(1) 12) (3) (4) (5) (6)

<1.00 x 10"* -4. 0 1.000 1 . 000 2. 50 0. 50

3.16 x 10"* -3. 5 0. 913 0. 984 2. 50 0. 80

1.00 x 10~3 -3. 0 0. 761 0. 934 2. 50 1.70

3.16 x lO"3 -2.5 0. 565 0. 826 3.50 3.20

1.00 x 10"2 -2. 0 0. 400 0. 656 4. 75 5.60

3.16 x 10-2 -1. 5 0. 261 0.443' 6. 50 10. 00

1.00 x lO"1 -1. 0 0. 152 0. 246 9. 25 15. 50

0.316 -0. 5 0. 076 0.115 13. 80 21. 00

1.00 0. 0 0. 037 0. 049 20.00 24. 60

3. 16 0. 5 0.013 0. 049 26. 00 24.60

11.00 x 10 1 . 0 0. 004 0. 049 29. 00 24. 60

Note:

reff = Effective value of shear strain.
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8.5 RESPONSE EVALUATION OF EL INFIERNILLO DAM

From the dynamic analysis of the El Infiernillo

Dam, based on the Ramberg-Osgood model, Hardin-Drnevich model

and Seed-Idriss method and subjected to the three ground

motions, the computed maximum acceleration values at a few

pre-determined nodal points as shown in Fig. 8.11 are given

in Tables 8.5 to 8.7 with the respective locations.

The nodes at which the acceleration values are

displayed in Tables 8.5 to 8.7 correspond to specified

elevations, for instance, the crest, approximately 3/4 th the

height, half the height, 1/4 th the height from the base and

the base of the dam (top surface of the foundation). At each

elevation three nodes have been selected, the first node

lying on the upstream slope surface or the upstream toe, the

second node along the axis of the dam and the third node

along the downstream slope surface or the downstream toe in

sequence.

Similarly, the peak values of shear strain shown

in Tables 8.8 to 8.10 correspond to specific zones in which a

variation in stiffness exists. The few selected elements lie

in the upstream, the impervious core and in the downstream.

In order to assess the stability of the El Infier

nillo Dam, the stresses must be compared with the correspon

ding strengths. However, in the absence of laboratory

cyclic triaxial test results, a 5 percent shear strain

criterion has been adopted as the failure phenomenon. If a

shear strain of 5 percent is used and if the dam is stable
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Fig. 8.11 El Infiernillo Dam; Node Numbers at which
Acceleration Values are Tabulated
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Table 8.5 Maximum Acceleration Values at a few Nodes

Ramberg-Osgood Model; PGA = 0.25g

Node

No .

U)

Coordinate (m) Max imum Acceleration (g) Locat ion

(7)

X

(2)

Y

(3)

Applied Ground Mot ion

GMl

(4)

GM2

(5)

GM3

(6)

1

15

29

283. 0

290.0

297. 0

146.0

146.0

146. 0

0.15

0.15

0. 16

0. 29

0. 2 6

0. 30

0. 29

0. 29

0. 30

U/s Crest

Crest, along axis

D/s Crest

37 291. 5 142.8 0. 13 0. 34 0. 35 Axis, below crest

(Maximum value)

206

213

220

224. 0

288. 9

352. 8

109.8

109.8

109.8

0.07

0.07

0.08

0. 16

0. 18

0. 15

0. 13

0. 15

0. 13

0.75H from base

0.75H from base

0.75H from base

382

389

39b

171.7

287. 9

402. 4

75.8

75.8

75.8

0. 12

0.07

0. 13

0. 18

0. 17

0. 18

0. 18

0. 14

0. 18

0.50H from base

0.50H from base

0.50H from base

566

574

581

82. 7

286. 9

461. 8

38.0

38.0

38.0

0.23

0.05

0. 19

0.24

0. 16

0.22

0. 24

0. 15

0. 21

0.25H from base

0.25H from base

0.25H from base

803

812

823

6. 3

285. 6

613. 8

4. 0

4.0

4. 0

0.25

0. 11

0.25

0. 25

0. 15

0. 25

0.25

0. 15

0. 25

U/s toe

bottom of axis

D/s toe

Note:

H = Height of the dam from the base
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Table 8.6 Maximum Acceleration Values at a few Nodes

Hardin-Drnevich Model; PGA = 0.25g

Node

No.

(1)

Coordinate (m) Maximum Acceleration (g) Locat ion

X

(2)

Y

(3)

Applied Ground Motion

GMl

(4)

GM2

(5)

GM3

(6) (7)

1

15

29

283. 0

290.0

297. 0

146. 0

146.0

146. 0

0.11

0. 10

0. 12

0. 14

0. 13

0. 14

0. 14

0. 13

0. 15

U/s Crest

Crest, along axis

D/s Crest

37 291. 5 142. 8 0. 14 0.17 0.20 Axis, below crest

[Maximum value)

206

213

220

224. 0

288. 9

352. 8

109. 8

109. 8

109. 8

0.08

0.07

0.08

0. 12

0. 12

0. 12

0. 12

0. 12

0. 12

0.75H from base

0.75H from base

0.75H from base

382

389

396

171. 7

287. 9

402. 4

75. 8

75. 8

75. 8

0. 17

0.08

0. 17

0. 14

0. 13

0. 15

0. 15

0. 11

0. 15

0.50H from base

0.50H from base

0.50H from base

566

574

~. C. 1
I

82. 7

286. 9

38. 0

38. 0

38. 0

0. 27

0. 09

0. 24

0. 21

0. 13

0. 19

0. 25

0. 25

0. 25

0. 20

0. 12

0. 19

0. 25

0. 14

0. 25

0.25H from base

0.25H from base

0.25H from base

803

812

823

6. 3

285. 6

613. 8

4. 0

4. 0

4. 0

0. 25

0. 18

0. 25

U/s toe

bottom of axis

D/s toe

Note.:..

H = Height of the dam from the base



Table 8.7 Maximum Acceleration Values at a few Nodes

Seed-Idriss Method; PGA = 0.25g

Node

No

(1 )

Coordinate (m) Max imum Acce1 era tion (g) Location

(7)

X

(2)

Y

(3)

App1iec Ground Mot ion

GMl

(4)

GM2

(5)

SM3

(6)

1

lb

29

283. 0

290. 0

297. 0

146. 0

146. 0

146. 0

0. 76

0. 78

0. 79

0. 40

0.41

0.43

0. 52

0. 51

0.55 '"

U/s Crest
Crest, along axis

D/s Crest

37 291. 5 142. 8 0. 73 0. 49 0. 58 Axis, below crest

206

213

220

224.0

288. 9

352. 8

109. 8

109.8

109. 8

0. 27

0. 30

0. 26

0. 24

0.24

0. 24

0. 19

0. 24

0. 20

0.75H from base

0.75H from base

0.75H from base

382

389

396

171.7

287.9

402.4

75. 8

75. 8

75. 8

0. 31

0. 23

0. 31

0. 26

0.22

0.26

0. 27

0. 22

0. 27

0.50H from base

0.50H from base

0.50H from base

566

574

581

82. 7

286. 9

461 . 8

38. 0

38. 0

38.0

0.30

0. 18

0. 30

0. 33

0. 20

0. 30

0. 32

0. 19

0. 30

0.25H from base

0.25H from base

0.25H from b?ase

803

812

823

6. 3

28 5. 6

613.8

4.0

4.0

4. 0

0. 25

0. 20

0. 25

0. 25

0. 16

0.2 5

0. 25

0.15

0.2 5

U/s toe

bottom ot axis

D/s toe

Note:

H = Height of the dam from the base
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against this criterion, it can be assumed safe against the

stipulated ground motion (Marcuson and Krinitzsky, 1976).

Therefore, the static shear strain values and the

corresponding dynamic shear strain values computed at a few

pre-determined elements (centre of each element) as shown in

Fig. 8.12 are given in Tables 8.8 to 8.10 for the Ramberg-

Osgood model, Hardin-Drnevich model and the Seed-Idriss

method respectively. The static shear strain values have

been evaluated knowing the Young's modulus, Poisson's ratio,

shear modulus and the shear stress values at the centre of

each element evaluated using FEABANS. In the same tables the

values of total shear strain (static + dynamic) for the three

methods of analysis are also presented.- The computed crest

displacement (node 15) by the three methods of analysis and

for the three ground motions are shown in Table 8.11.

8.6 ANALYSIS AND DISCUSSION OF RESULTS

8.6.1 Acceleration Values

8.6.1.1 Acceleration values using Ramberg-Osgood model

From the maximum acceleration values shown at some

important locations in Column 4 of Table 8.5, by the Ramberg-

Osgood model and subjected to the three input motions, it is

seen that the crest acceleration (nodes: 1, 15 and 29) values

corresponding to GMl are less than the base input motion

(= 0.25g), which shows the occurence of deamplification

phenomenon of the order of 40 percent. Immediately below the

crest and along the axis (node 37) more deamplification is

seen of the order of approximately 50 percent. At 3/4 th the
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Table 8.8 Shear Strain Values at a few Elements; Ramberg-Osgood Model
El Infiernillo Dam; PGA = 0.25g

1

El.

No.

(1)

Coordinate (m) Shear Strain (%)

X

(2)

Y

(3)

Static

(4)

Dynamic Total

GMl

(5)

GM2

(6)

GM3

(7)

GMl

(8)

T ~

GM2

(9)

GM3

(10)

6

7

10

12

13

219.5

250.2

292.8

322.1

354.0

4.0

4.0

4.0

4.0

4.0

0.070

0.942

0.159

2.376

1.277

0.039

0.035
0.355

0.037

0.041

0.067

0.108

0.988

0.111

0.072

0.046

0.056

0.615

0.055

0.050

0.109

0.977

0.514

2.413

1.318

0.137

1.050

1.147

2.487

1.349

0.116

0.998

0.774

2.431

1.327

79

84

87

90

93

94.4

257.8

292.4

341.1

444.6

38.0

38.0

38.0

38.0

38.0

0.120

1.346

0.147

0.801

1.264

0.041

0.036

0.117

0.033

0.035

0.050

0.099

0.323

0.062

0.066

0.040

0.065

0.181

0.042

0.046

0.161

1.382

0.264

0.834

1.299

0.170

1.445

0.470

0.863

1.330

0.160

1.411

0.328

0.843

1.310

138

142

145

148

151

182.8

266.6

291.7

325.4

391.4

75.7

75.7

75.7

75.7

75.7

0.579

2.144

0.248

0.517

0.873

0.054

0.038

0.341

0.025

0.067

0.169

0.093

0.953

0.061

0.212

0.096

0.072

0.732

0.039

0.120

0.633

2.182

0.589

0.542

0.940

0.748

2.237

1.201

0.578

1.085

0.675

2.216

0.980

0.556

0.993

194

198

201

204

207

230.1

276.2
291.1

310.8

346.8

109.7

109.7

109.7

109.7

109.7

0.215

0.097

0.306

0.319

0.485

0.068

0.037

0.804

0.034

0.074

0.187

0.063

2.006

0.071

0.202

0.137

0.070

1.680

0.061

0.153

0.283

0.134

1.110

0.353

0.559

0.402

0.160

2.312

0.390

0.687

0.352

0.167

1.986

0. 380

0.638

241

242

243

244

286.4

288.5

290.7

292.9

135.7

135.7

135.7

135.7

0.844

0.677

1.328

0.520

0.926

1.091

1.097

0.918

3.247

3.140

3.106

3.156

2.223

2.435

2.406

2.180

1.770

1.768

2.425

1.438

4.091

3.817

4.434

3.676

3.067

3.112

3.734

2.700

250

254

257

260

26 3

277.5

285.8

290.6

296.2

302.2

142.2

142.2

142.2

142.2

142.2

0.687

0.033

0.176

0.203

0.028

0.192

0.195

0.433

0.098

0.236

0.460

0.668

1.429

0.235

0.572

0.326

0.475

1.070

0.153

0.383

0.879

0.228

0.609

0.301

0.264

1.147

0.701

1.605

0.438

0.600

1.013

0.508

1.246

0.356

0.411

Note:

Total strain static + dynamic strain.
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Table 8.9 Shear Strain Values at a few Elements; Hardin-Drnevich Model

El Infiernillo Dam; PGA = 0.25g

234

El. Coordinate (m' Shear Strain {%)

No.

X Y Static Dynamic Total

GMl GM2 GM3 GMl GM2 GM3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

6 219. 5 4.0 0.070 0.036 0. 063 0.041 0. 106 0. 133 0. Ill

7 250. 2 4.0 0.942 0.035 0. 104 0. 048 0. 977 1.046 0.990

10 292.8 4.0 0. 159 0. 241 0. 670 0. 355 0.400 0.829 0.514

12 322. 1 4. 0 2. 376 0. 036 0. 110 0.049 2.412 2.486 2.425

13 354.0 4.0 1.277 0.038 0.067 0. 044 1. 315 1. 344 1.321

79 94. 4 38.0 0. 120 0.029 0.043 0.030 0. 149 0. 163 0. 150

84 257.8 38.0 1.346 0.025 0.063 0.044 1.371 1.409 1.390

87 292.4 38. 0 0. 147 0.062 0. 197 0. 107 0. 209 0.344 0.254

90 341. 1 38.O 0.801 0.029 0.057 0. 036 0. 830 0. 858 0.837

93 444. 6 38.0 1. 264 0. 029 0.062 0.036 1.293 1. 326 1.300

138 182.8 75.7 0. 579 0. 043 O. 124 0. 066 0.622 0. 703 0.645

142 266. 6 75. 7 2. 144 0. 027 0.053 0.046 2. 171 2. 197 2. 190

145 291 . 7 75. 7 0.248 0. 196 0. 560 0.392 0. 444 0. 808 0.640

148 325. 4 75. 7 0. 517 0.019 0.040 0. 026 0. 536 0. 557 0. 543

151 391.4 75. 7 0. 873 0.053 0. 155 0. 080 0. 926 1.028 0.953

194 230. 1 109. 7 0.215 0.045 0. 110 0.091 0.260 0. 325 0. 306

198 276. 2 109. 7 0.097 0.024 0.039 0.041 0. 121 0. 136 0. 138

201 291. 1 109.7 0. 306 0. 434 1.113 0.874 0. 740 1.419 1. 180

204 310.8 109. 7 0. 319 0.022 0. 043 0.040 0.341 0.362 0.359

207 346.8 109. 7 0.485 0.048 O. 118 0. 100 0.533 0.603 0. 585

241 286.4 135. 7 0. 844 0.665 2.021 1. 707 1. 509 2.865 2. 551

242 288. 5 135. 7 0.677 0.669 1.861 1.430 *' 1. 346 2.538 2. 107

243 290. 7 135. 7 1 . 328 0.673 1. 105 0. 681 2.001 2.433 2.009

244 292.9 135. 7 0. 520 1.930 1.989 1. 463 2.450 2. 509 1. 983

250 277. 5 142. 2 0.687 0. 131 0. 288 0. 228 0.818 0.975 0.915

254 285. 3 142.2 0.033 0. 127 0.405 0.288 0. 160 0.438 0.321

257 290.6 142. 2 0. 176 0.256 0. 846 0. 596 0. 432 1.022 0. 772

260 296. 2 142. 2 0.203 0.070 0. 159 0. 123 0. 273 0. 362 0.326

263

... .

302. 2

.

142.2 0.028 0. 161 0. 368 0.281 0. 189 0. 396 0.309

Note:

'otal strain = static + dynamic strain.
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Table 8.10 Shear Strain Values at a few Elements; Seed-Idriss Method
El Infiernillo Dam; PGA = 0.25g

235

1—

1
1

i El. Coordinate (m) Shear Strain (%)
| Mo.

X Y Static Dynamic Total

GMl GM2 GM3 GMl GM2 GM3

(1) (2) (3) (4 ) (5) (6) (7) (8) (9) (10)

6 219. 5 4.0 0.070 0.023 0.022 0.015 0.093 0.092 0.085

9
250.2 4.0 0. 942 0.O36 0.055 0.041 0.978 0.997 0.983

10 292.8 4.0 0. 159 0.461 0.993 0. 753 0.620 1. 152 0.912
; 12 322. 1 4.0 2. 376 0.034 0.056 0.041 2.410 2.432 2.417

13

79

354.0 4.0 1. 277 0.028 0.023 0.016 1. 305 1. 300 1.293

94. 4 38.0 0. 120 0.017 0.021 0.014 0. 137 0. 141 0. 134
84 257.8 38.0 1. 346 0.037 0.054 0. 044 1. 383 i.&op

0.445

1.390
87 292. 4 38.0 0. 147 0. 155 0.298 0. 165 0. 302 0.312
90 341. 1 38.0 0.801 0.020 0.022 0.016 0.821 0, 823 0.817
93 446 . 6 38.0 1. 264 0.022 0.030 0.020 1. 286 1. 294 1.284

j .138 i82.8 75. 7 0. 579 0. 042 0. 069 0. 053 0. 621 0. 648 0.632
j 142 266.6 75. 7 2. 144 0.047 0.065 0,052 2. 191 2.209 2. 196
145 291. 7 75.7 0. 248 0.430 0.500 0. 427 0.678 0. 748 0.675
148 325. C 75. 7 0.517 0. 025 0.027 0.023 0. 542 0.544 0. 540
151 391.4 75. 7 0. 873 0.050 0.086 0. 065 0. 923 0.959 0.938

194 230. 1 109. 7 0. 215 0. 062 0. 089 0. 075 0.277 0.304 0.290
j 198 276.2 109. 7 0.097 0.051 0.056 0. 054 0. 148 0. 153 0. 151
| 201 291. 1 109. 7 0. 306 0.926 1 . 546 1. 138 1. 232 1.852 1.444
! 204 310.8 109. 7 0,319 0.028 0. 030 0. 027 0.347 0. 349 0. 346
i 207
i

346. 8 109.7 0. 485 0. 068 0.094 0.082 0. 553 0. 579 0. 567

' 241 286. 4 135. 7 0. 844 1.343 1.852 1. 699 2. 187 2.696 2.543
242 288. 5 135. 7 0.677 1. 782 2.419 2. 170 2.459 3.096 2.847
243 290. 7 135. 7 1. 328 1.028 1. 557 1 . 378 2. 356 2.885 2. 706
244 292- 9 135. 7

!
0. 520 1. 679 1 . 679 1.658 2. 199 2. 199 2. 178

250 277. 5 142. 2 0.687 0. 141 0.096 0.097 0.828 0. 783 0. 784
254 285.8 142.2 0- 033 0. 251 0.350 0.296 0.284 0.383 0. 329
257 290. 6 142. 2 0. 176 1.257 1. 728 1 . 548 1. 433 1.904 1. 724
260 296.2 142.2 0.203 0.054 0.043 0.039 0. 257 0.246 0.242
263 302. 2 142.2 0.028 0. 173 0. 115 0. 106 0. 201 0. 143 0. 134

i L L , 1

Wo.te_:

Total strain static + dynamic strain.

'
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height of the dam (nodes 206, 213 and 220) from the base

> approximately 75 percent deamplification occurs. At half the

height of the dam (nodes 382, 389 and 396), nearly 50 percent

deamplification takes place. At 1/4 th the height of the dam

from the base on the upstream (node 566, 0.23g), only 8

percent deamplification occurs. At the same height along the

axis (node 574, 0.05g), more than 99 percent deamplification

takes place. And at the same height on the downstream (node

581, 0.19g), only 24 percent deamplification is noticed. At

the two extreme slope surfaces, namely on the upstream and

downstream, along the base (nodes 803 and 823, 0.25g), no

deamplification takes place, showing that the free-field

motion remains unchanged. At the base along the axis (node

812, O.llg), 56 percent amplification is observed.

However, the acceleration values observed at a few

locations, using the Ramberg-Osgood model with the earthquake

record obtained in the North-Eastern Region of India, show

deamplification to a greater extent.

As seen in Column 5 of Table 8.5, the crest

accleration values at nodes 1, 15 and 29 are 0.29g, 0.26g and

0.30g respectively which is more than the base input motion.

Larger acceleration values are noticed at the two extreme

nodes along the crest (nodes 1 and 29), than that at the top

of the axis (node 15, 0.26g). Immediately below the crest,

along the axis (node 37) , the maximum value of acceleration

of the order of 0.34g is noticed. At 3/4 th height from the

base, the values of acceleration observed at the three

locations (nodes 206, 213 and 220) are 0.16g, 0.18g and 0.15g
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respectively. At these locations deamplification varying

"> between 28 and 40 percent respectively is seen. Along the

axis higher value of acceleration (node 213, 0.18g) is

noticed. At half the height of the dam (nodes 382, 389 and

396), the computed values of acceleration are 0.18g, 0.17g

and 0.18g respectively. At these locations the magnitude of

deamplification is of the order of 28 to 32 percent. The

value of acceleration computed along the axis is lower than

the values computed at the upstream and 'the downstream slope

surfaces. At 1/4 th the height from the base of the dam, the

computed values of acceleration at the three locations (nodes

566, 574 and 581) are 0.24g, 0.16g and 0.22g and the

corresponding magnitude of deamplification are 4, 36 and 12

percent respectively. The computed value of acceleration

along the axis (node 574) is lower than the corresponding

values at the two extreme slope surfaces. At the base (nodes

803, 812 and 823), the computed values of acceleration are

0.25g, 0.15g and 0.25g. At the two extreme faces (nodes 803

and 823) the acceleration values are equal to that of the

base motion which demonstrates again -that the free-field

motion remains unaltered. However, along the axis at the

base (node 812), the value is only 0.15g which shows

deamplification of the order of 40 percent.

As seen in Column 6 of Table 8.5, the acceleration

values (corresponding to the Taft accelerogram) observed at

different nodes are same as the values shown in Column 5 of

Table 8.5, except a slight variation at a few locations.

The maximum value of acceleration, 0.35g is observed just
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below the crest, along the axis. The actual value of

acceleration recorded during the March 14, 1979, Mexico

earthquake, at the crest was 0.36g (Resendiz, Romo and

Moreno, 1980) only. At other locations the same trend is

valid as mentioned before.

The acceleration values shown in Table 8.5 have

been obtained at the end of the fourth iteration, since

convergence criteria have been noticed between the third and

fourth iterations while using the Ramberg-Osgood model.

In Figs. 8.13 to 8.15, based on the Ramberg-Osgood

model corresponding to the three ground motions at a few

locations where only amplification is noticed, the values of

absolute acceleration are plotted. The presentation of the

magnitude of acceleration in this form has been reported by

Lai and Seed (1985).

8.6.1.2 Acceleration values using Hardin-Drnevich model

From the acceleration values computed at the few

nodes shown in Table 8.6, corresponding to the three accele

rograms, the same behaviour as described in Sec. 8.6.1.1 is

noticed, except at 1/4 th the height from the base

corresponding to GMl. In this case, the maximum value of

acceleration of the order of 0.27g is obtained due to the

input motion, GMl. At other locations, except at the base a

larger degree of deamplification is observed (nodes 803

and 823).
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As in Sec. 8.6.1.1, a maximum number of four

-*. iterations was sufficient for convergence in the Hardin-

Drnevich model as well.

As before, in Figs. 8.16 to 8.18, based on the

Hardin-Drnevich model corresponding to the three ground

motions at a few locations where only amplification has taken

place, the values of absolute acceleration are plotted.

8.6.1.3 Acceleration values using Seed-Idriss method

As seen from the acceleration values shown in

-** Column 4 of Table 8.7, corresponding to GMl, deamplification

is noticed upto half the height of the dam from the base

along the axis (nodes 389, 574 and 812). At all other

locations, only amplification is observed, and the maximum

value of acceleration of the order of 0.79g occurs at node 29

which is lying along the crest.

From Column 5 of Table 8.7, the acceleration

values corresponding to GM2 (the synthetic accelerogram) , as

before no deamplification is observed near the crest and

^ immediately below the crest. The maximum value of

acceleration, 0.49g is observed at node 37. At 3/4 th height

from the base deamplification is observed of the order of 4

percent only. From the base to the 3/4 th height along the

axis deamplification is noticed at nodes 213, 389, 574 and

812. However, at the two extreme slope surfaces, from the

base to half the height of the dam no deamplification is

noticed.
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Identically, the same response, similar to that

explained in the previous paragraph is observed from Column 6

of Table 8.7, using the Taft ground motion (GM3). As before,

the maximum value of acceleration as 0.58g is obtained along

the axis immediately below the crest.

In general, when the analysis is performed using

the Seed-Idriss method no deamplification is noticed at the

crest, for all the three ground motions. Except at the two

extreme nodes (803 and 823) in the upstream and the

downstream, the computed values of acceleration are larger

than the corresponding values obtained by the Ramberg-Osgood

and Hardin-Drnevich models.

Unlike in the Ramberg-Osgood and Hardin-Drnevich

models, the number of iterations required was six, which is

uneconomical in terms of computer time.

Based on the Seed-Idriss method, corresponding to

the three ground motions the acceleration values at a few

locations at which only amplification has occurred are shown

in Figs. 8.19 to 8.21.

8.6.2 Shear Strain Values

The static shear strain values obtained from the

nonlinear (static) analysis and the dynamic shear strain

values computed at the centre of a few selected elements

using the three ground motions (normalized to a peak ground

acceleration value of 0.25g) are shown in Tables 8.8 to 8.10

by the three methods of analysis. The total (= static +

dynamic) shear strain values are also been presented in these
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tables.

8.6.2.1 Analysis by Ramberg-Osgood model

The dynamic shear strain values using the Ramberg-

Osgood model for the three ground motions are shown in

Table 8.8. It can be seen that the maximum values of dynamic

shear strain are of the order of 1.097, 3.247 and 2.435

percent corresponding to the three ground motions and

occurring at elements 243, 241 and 242 respectively.

Interestingly, all the three elements lie in the impervious

core and at the same elevation (135.7 m from the base or

10.3 m from the crest in Fig. 8.12). The full reservoir

level is at 138.4 m from the base.

The total shear strain values are of the order of

2.425, 4.434 and 3.734 percent occurring at the same location

(element 243) for the three ground motions (Table 8.8).

8.6.2.2 Analysis by Hardin-Drnevich model

Using the Hardin-Drnevich model, it can be seen

from Table 8.9 that the maximum values of dynamic shear

strain for the three ground motions as the earthquake load

vectors are of the order of 1.930, 2.021 and 1.707 percent,

and taking place at elements 244, 241 and 241 respectively,

which are at the same elevation (135.7 m from the base). And

the values of total shear strain for the three ground motions

are of the order of 2.450, 2.865 and 2.551 percent respect

ively occurring at the same location as noticed in the peak
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values of dynamic shear strain.

8.6.2.3 Analysis by Seed-Idriss method

In the Seed-Idriss method, of analysis, the

computed values of dynamic shear strain corresponding to the

three ground motions are 1.782, 2.419 and 2.170 (Table 8.10)

respectively and occurring at the same elevation (=135.7 m

from the base). The values of total shear strain are of the

order of 2.459, 3.096 and 2.847 percent respectively for the

three ground motions, and taking place at the same elevation

as before. Interestingly, these maximum values of dynamic

shear strain and the total shear strain are seen only at

element 242, unlike in the Ramberg-Osgood and Hardin-Drnevich

models.

8.6.3 Displacement

The displacement obtained at the crest (node 15)

by the three methods of analysis for the three ground motions

are given in Table 8.11. When the North-Eastern earthquake

record is used, the crest displacement obtained corresponding

to Ramberg-Osgood and Hardin-Drnevich models and the Seed-

Idriss method are 5.20, 3.22 and 8.38 cm respectively. For

the artificial earthquake record these values are of the

order of 20.37, 14.27 and 13.22 cm and that for the Taft

earthquake record are 13.13, 7.39 and 11.12 cm respectively.

The deformed shape of the El Infiernillo Dam, subjected to

the three ground motions, for the three methods of analysis

are shown in Figs. 8.22 to 8.30.
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Table 8.11 Displacement at the Crest
El Infiernillo Dam; PGA = 0.25g

Crest Displacement (cm)

Applied Ground Motion

GMl

(2)

5.20

3.22

8.38

GM2

(3)

20.37

14.27

13.22

GM3

(4)

13.13

7.39

11.12

Method of Analysis

(5)

Ramberg-Osgood Model

Hardin-Drnevich Model

Seed-Idriss Method

8.6.4 Discussion

8.6.4.1 Acceleration values

From the acceleration values computed at different

nodes for the three input ground motions, the Ramberg-Osgood

and Hardin-Drnevich models show deamplification at a number

of nodes. The responses due to the synthetic ground motion

and the Taft ground motion as earthquake load vectors are

more or less identical when the Ramberg-Osgood and the

Hardin-Drnevich models are adopted.

Whereas, when the Seed-Idriss method is used for

the analysis, the largest value of acceleration at the crest

(node 29, 0.79g) is observed for GMl (recorded in the North-

Eastern Region of India) only. Corresponding to GM2 and GM3
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accelerograms, identically the same behaviour is observed,

except at the crest, when the analysis is done using the

Seed-Idriss method. However, in all the cases of analysis,

the free-field motion remains unchanged.

Generally, from the extensive dynamic analysis

carried out, it can be seen that the lowest and the highest

values of acceleration are respectively obtained, when the

Hardin-Drnevich model and the Seed-Idriss method are used and

the reverse is true in the phenomenon of deamplification. At

present, it is difficult to attribute any reason for the

occurence of deamplification, in the case of Ramberg-Osgood

and the Hardin-Drnevich models. Possibly, this may be

because the Seed-Idriss method does not represent the strain

dependent dynamic properties in a functional form at every

step of time integration, as in the case of Ramberg-Osgood

and the Hardin-Drnevich models. Essentially, the strain

dependent dynamic soil properties should be available in a

functional form at every time step of increment in a step-by-

step nonlinear analysis technique (Ishihara, 1982).

8.6.4.2 Comparison of computed and recorded acceleration
values

The computed values of acceleration at the crest

and immediately below the crest by the Ramberg-Osgood and

Hardin-Drnevich models and the Seed-Idriss method

corresponding to the three base input motions are shown in

Tables 8.5 to 8.7. From which it is seen, that the maximum

values of acceleration occur either, along the crest (top of
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the dam) or immediately below the crest (along the axis)

except in one case (Hardin-Drnevich model, GMl; node 566,

0.27g).

During the March 14, 1979, Mexico earthquake the

recorded value of acceleration at the crest was 0.36g

(Resendiz, Romo and Moreno, 1980). In the present study a

value of 0.35g, corresponding to the Taft earthguake record

is obtained using the Ramberg-Osgood model. Therefore, the

close agreement between the computed and the recorded values

of acceleration demonstrates that the analysis based on the

Ramberg-Osgood model and as used in the present

investigation, predicts the behaviour that is fairly close to

the actual situation.
*

On the other hand, the Hardin-Drnevich model

yields appreciably very low values of crest acceleration in

comparison to the actually recorded value. This could

possibly be because the Hardin-Drnevich model uses a very

high value of damping, of the order of 63.7 percent, which is

not experienced in practical situation.

On the other hand, the Seed-Idriss method predicts

excessively large values of acceleration compared to the

actually recorded value during the March 14, 1979, Mexico

earthquake. This could perhaps be due to the use of the

strain dependent properties, at a pre-determined values of

strain and low values of damping (Chapter 5) . Thus, out of

all the three methods of analysis, the 'Ramberg-Osgood model

is the best model to simulate the nonlinear stress-strain

characteristics of different soils subject to dynamic or
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earthquake loading cases.

8.6.4.3 Shear strain values

In the dynamic analysis of the El Infiernillo Dam

for the three ground motions and the three methods of

analysis, the maximum value dynamic of shear strain of the

order of 3.247 percent is observed at element 241 which is

at the top of the core at a height of 135.7 m from the base,

corresponding to the Ramberg-Osgood model and the synthetic

ground motion. At the same location a maximum value of

dynamic shear strain of the order of 2.021 percent is noticed

using the Hardin-Drnevich model and the synthetic ground

motion. And by the Seed-Idriss method, using the same ground

motion the maximum value of dynamic shear strain of the order

of 2.419L, percent is obtained at element 242. The maximum

values of total shear strain of the order of 4.434, 2.865 and

3.096 percent are obtained for the Ramberg-Osgood model,

Hardin-Drnevich model and the Seed-Idriss method of analysis,

and occurring at the impervious material. This shows that

deformation is likely to take place in the less stiff

material. In this case, the impervious core is the least

stiff material than the shell material. Such a behaviour has

been noticed by Carrera et al. (1979) , in the analysis of

Guri embankment Dam. Among the three methods of analysis,

the Ramberg-Osgood model predicts the highest value of shear

strain. The Hardin-Drnevich model yields the lowest value of

shear strain and the Seed-Idriss method predicts intermediate

values. Significantly, all the three methods of analysis
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predict the maximum values of shear strain at the same

elevation which is in the impervious material.

In general, no portion of the dam reaches the

threshold value of failure, assuming a 5 percent shear strain

as the failure criterion, subjected to the three ground

motions with the peak ground acceleration value of 0.25g.

8.6.4.4 Comparison of computed and measured crest displace
ment

The computed values of crest displacements in the

present study given in Table 8.11 have been compared with

the actually measured displacement during the March 14, 1979,

Mexico earthquake.

As in the case of comparison of the computed

acceleration due to Taft ground motion and the recorded

value of acceleration due to the March 14, 1979, Mexico

earthquake the corresponding values of the computed

displacement for the Taft accelerogram based on the Ramberg-

Osgood model and the March 14, 1979, Mexico earthquake are

of the order of 13.13 cm (Column 4, Table 8.11) and

approximately 13 cm (Resendiz, Romo and Moreno, 1980)

respectively. This very close agreement is noteworthy and

demonstrates that the analysis based on the Ramberg-Osgood

model and as proposed in the present study can predict a

behaviour which is close to the actual situation of a

rockfill dam subject to a strong ground shaking.

At the same location (crest, node 15), the Hardin-

Drnevich model and the Seed-Idriss method yield a crest
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displacement of the order of 7.39 cm and 11.12 cm

respectively. The latter two methods of analysis do not

predict any such displacement value which is close to the

actual situation.

8.7 EVALUATION OF STABILITY OF El INFIERNILLO DAM

Since, no portion of the El Infiernillo Dam

experienced the threshold level of failure (on the basis of 5

percent shear strain), under the postulated earthquake with a

peak ground acceleration value of 0.25g, to evaluate the

stability of this dam, the intensity of the synthetic

earthquake record was modified to yield a peak ground

acceleration value of 0.40g. This modified accelerogram was

used as the base input motion for the revised dynamic

analysis of the El Infiernillo Dam, based on the Ramberg-

Osgood model. The Ramberg-Osgood model and the artificial

ground motion have been selected since, the response to this

ground motion using the Ramberg-Osgood model is severe. And

among all the three methods of analysis, the Ramberg-Osgood

model predicted the highest value of shear strain.

In the revised dynamic analysis the maximum values

of shear strain obtained at specific locations are given in

Table 8.12 corresponding to the peak ground acceleration of

0.40g of the re-generated artificial accelerogram using

FEADYNS. It can be seen from Table 8.12, that the maximum

value of total shear strain of the order of 6.04 8 percent is

obtained at element 250.
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Table 8.12 Shear Strain Values at a few Elements

R-O Model; PGA = 0.4Og; GM2

El. Coordinate (m) Shear Strain (,%)

No.

X Y Stat ic Dynamic Total

(1) (2) (3) (4) (5) (6)

6 219. 5 4.0 0.070 0.151 0.221

7 250.2 4.0 0.942 0.225 1. 167

10 292.8 4. 0 0. 159 1.654 1.813

12 322. 1 4.0 2.376 0.238 2.614

13 354.0 4.0 1.277 0. 156 1.433

79 94.4 38. 0 0. 120 0. 119 0. 239

84 257.8 38. 0 1.346 0. 197 1. 543

87 292.4 38.0 0. 147 0. 751 0.898

90 341. 1 38.0 0. 801 0. 145 0.946

93 444.6 38.0 1.264 0. 155 1.419

1 •=•, c 'l S'- •-'•• & -? t-, -) 0. 579 0. 356 0.935

142 266.6 75.7 •> 1 / / n . I *• '; J- M I — -

145 291.7 75. 7 0. 248 2.012 2. 260

- 148 325.4 75. 7 0. 517 0. 142 0.659

151 391.4 75. 7 0.873 0.437 1.310

194 230. 1 109. 7 0.215 0. 375 0. 590

198 276.2 109. 7 0.097 0. 128 0.225

201 291. 1 109. 7 0. 306 3. 858 4. 164

204 310.8 109.7 0.319 0. 160 0.479

207 346.8 109:7 0. 485 0. 394 0.879

250 277. 5 142. 2 0.687 6.048 6. 735

254 285. 8 142. 2 0.033 5. 848 5.881

257 290.6 142. 2 0. 176 5. 812 5. 988

260 296.2 142. 2 0.203 5. 955 6. 158

263 302.2 142. 2 0.028 6. 012 6. 040

Note:

Total strain static + dynamic strain.
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Thus, the El Infiernillo Dam is likely to undergo

excessive deformation at a few elements based on an analysis

with the modified synthetic waveform as the input motion.

However, this conclusion is qualitative in nature, since it

can only be verified with the laboratory tested cyclic shear

stress values. The verification between the computed and the

laboratory tested cyclic shear stress values could not be

done due to non-availability of laboratory test results.

8.8 EFFECT OF FOUNDATION

To investigate the influence of the presence of

foundation on stability, the finite element idealization of

the El Infiernillo Dam shown in Fig. 8.3 has been extended

only below the base of the dam in the direction of depth. An

arbitary depth of foundation of approximately 6 meters has

been added since, the exact details of the foundation were

not available. The revised finite element mesh with the

foundation is shown in Fig. 8.31. The enhanced finite

element mesh consists of a total of 283 eight-noded

isoparametric elements and 926 nodes. The foundation layer

alone constitutes 20 eight-noded elements. The effective

number of degress of freedom is 1762 and the free-field

motion has been applied at the base of the foundation (node

884) instead at the base of the dam (node 824). In this

case, the bottom of the foundation is the new rigid base and

the coordinates of the nodes in the foundation alone lie in

the fourth quadrant. The first element and the last element
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Table 8.13
sgood ModelComparison of Shear Strain Values- Ramberg-0

(Inclusive of Foundation); PGA = 0.25g; GM2

El.

No.

(1)

6

7

10

12

13

79

84

87

90

93

138

142

145

148

151

194

198

201

204

207

241

242

243

244

Note:

Shear Strain (%)

Without Foundation

Static

(2)

0.070

0.942

0. 159

2.376

1.277

0. 120

1.346

O. 147

0.801

1.264

0.579

2. 144

0. 248

0. 517

0.873

0.215

0.097

0. 306

0. 319

0.485

0. 844

0.677

1 .32£

0. 520

Dynamic

(3)

0.067

0. 108

0.988

0. Ill

0.072

0. 050

0.099

0. 323

0.062

0.066

0. 169

0.093

0.953

0.061

0.212

0. 187

0.063

2.006

0.071

0. 202

3.247

3. 140

3. 106

3. 156

Total

(4)

0.137

1.050

1. 147

2.487

1.349

0.170

1.445

0.470

0.863

1.330

0.748

2.237

1.201

0.578

1.085

0.402

0. 160

2.312

0.390

0.687

4.091

3.817

4. 434

3. 676

El.

No.

(5)

26

27

30

32

33

99

104

107

110

113

158

162

165

168

161

214

218

221

224

227

261

262

263

264

Total strain = static + dynamic strain.

Shear Strain (%

With Foundation

Static

(6)

0.085

1. 100

0. 516

2.330

1.275

0.050

1.340

0.311

0.575

1.079

0.602

2. 143

0.373

0.373

0. 901

0.235

0.069

0. 426

0.211

0. 329

1.646

1.005

0. 891

1 .222

L'ynamic

(7)

0. 046

0. 056

0.615

0.055

0. 050

0.040

0.065

0. 181

0. 042

0.046

0.096

0.072

0. 732

0.039

0. 120

0. 137

0.070

1. 680

0. 061

0. 153

2.250

2. 612

2. 630

2. 190

Total

(8)

0. 131

1. 156

1. 131

2.385

1.325

0.090

1.405

0.492

0.617

1. 125

0. 698

2.215

1. 105

0. 412

1 .021

0.372

0. 139

2. 106

0. 272

0. 482

3.896

3. 617

3. 521

3.412
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shown in Fig. 8.3 now become the 21 st element and 283 rd

•^ element in Fig. 8.31. This procedure is adopted to simplify

the comparison of analysis results between the two cases

(Figs. 8.3 and 8.31).

As before, the nonlinear static and dynamic

analysis have been performed on the El Infiernillo Dam

including its foundation (Fig. 8.31). In the revised dynamic

analysis only the artificial accelerogram (GM2) normalized to

0.25g and the Ramberg-Osgood model were used. The material in

the foundation have been assumed to be strain independent and

stiffer than any other material present in the whole

structure.

8.8.1 Shear Strain Values

Based on the revised dynamic analysis of the El

Infiernillo Dam to evaluate the stability inclusive its

foundation, the computed shear strain values at the same

locations as in the case, without the foundation (Table

8.8) are shown in Table 8.13. As seen from this table,

marginally lower values of shear strain are obtained for the

analysis including the foundation. m In the analysis,

excluding the foundation, the maximum value of total shear

strain corresponding to the artificial earthquake record is

4.434 percent (element 243). At the same location (element

263) the value of total shear strain is 3.521 percent for the

case with the foundation. Neglecting the minor difference in

the values of shear strain obtained in the two cases of

dynamic analysis, namely, the first case without the
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Table 8.13
Comparison of Shear Strain Values- Ramberg-Osgood Model
(Inclusive of Foundation); PGA = 0.25g; GM2

El.

No.

(1)

6

7

10

12

13

79

84

87

90

93

138

142

145

148

151

194

198

201

204

207

241

242

243

244

Shear Strain (%)

Without Foundation

Static

(2)

0.070

0.942

0. 159

2.376

1.277

0. 120

1.346

O. 147

0.801

1.264

0.579

2. 144

0.248

0. 517

0.873

0.215

0.097

0.306

0. 319

0.485

0. 844

0.677

1. 328

0. 520

Dynami

(3)

0.067

0. 108

0.988

0. Ill

0.072

0.050

0.099

0. 323

0.062

0.066

0. 169

0.093

0.953

0. 061

0.212

0. 187

0. 063

2.006

0.071

0. 202

3.247

3. 140

3. 106

3. 156

Total

(4)

0.137

1.050

1. 147

2.487

1.349

0.170

1.445

0.470

0.863

1.330

0.748

2.237

1.201

0.578

1.085

0.402

0. 160

2.312

0.390

0.687

4 .091

3.817

4. 434

3. 676

El.

No.

(5)

26

27

30

32

33

99

104

107

110

113

158

162

165

168

161

214

218

221

224

227

261

262

263

264

Note:

Total strain static dynamic strain.

Shear Strain

With Foundation

Static

(6)

0.085

1. 100

0. 516

2.330

1.275

0.050

1.340

0.311

0.575

1.079

0.602

2. 143

0.373

0.373

0.901

0.235

0.069

0. 426

0.211

0.329

1.646

1.005

0. 891

1. 222

Dynamic

(7)

0.046

0. 056

0.615

0.055

0.050

0. 040

0. 065

0. 181

0.042

0.046

0. 096

0.072

0. 732

0.039

0. 120

0. 137

0. 070

1 .680

0. 061

0. 153

2. 250

2. 612

2. 630

2. 190

Total

(8)

0.131

1. 156

1. 131

2.385

1.325

0.090

1.405

0. 492

0.617

1. 125

0.698

2.215

1. 105

0. 412

1 .021

0.372

0. 139

2. 106

0.272

0. 482

3. 896

3. 617

3. 521

3. 412
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foundation and the second case including a stiff foundation,

•4r it can be concluded that a stiff foundation has practically

no influence on the stability of the El Infiernillo Dam.

8.9 COMMENTS ON THE ANALYSIS OF El INFIERNILLO DAM

Based on the detailed dynamic analysis of the well

instrumented El Infiernillo Dam, without the foundation and

with the foundation the following conclusions are drawn:

1 Among the three methods of analysis using the three

ground motions, the Ramberg-Osgood model yields the

"T crest acceleration value of the order of 0.34g and

0.35g corresponding to the artificial and the Taft

accelerograms respectively. These computed crest

acceleration values are very close to the recorded

value of crest acceleration during the March 14,

1979, Mexico earthquake which was of the order of

0.36g. Thus, the Ramberg-Osgood model based on the

experimental work of the present investigation

predicts a behaviour which is close to the actual

W situation. The response of the Ramberg-Osgood model

to the North-Eastern earthquake record shows

deamplification to an appreciable amount compared to

the other two ground motions.

2 The Hardin-Drnevich model gives the lowest values of

acceleration and the highest degree of deampli

fication at different locations of the dam, for all

the three ground motions. This is possibly because,

at large strain levels, this model converges towards
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a damping ratio of 63.7 percent, which is not

J± experienced in practical conditions.

3 The Seed-Idriss method gives the highest values of

acceleration at different locations of the dam and

the lowest degree of deamplification for all the

three ground motions. The largest crest acceleration

of the order of 0.79g which is more than three times

the base input motion was obtained with the North-

Eastern Region (India) earthquake record as the base

input motion.

4 As far as the computational cost is concerned, the

Ramberg-Osgood and the Hardin-Drnevich models are

more economical than the Seed-Idriss method, since

the latter method needs as much as 50 percent more

computer time in comparison to the former two models.

5 No portion of the El Infiernillo Dam reaches the

threshold level of failure, based on the 5 percent

shear strain criterion under the postulated base

input motion with the peak ground acceleration value

of 0.25g. This conclusion is qualitative in nature

since, for the exact stability evaluation of the dam,

the laboratory determined cyclic shear stress test

results are essential.

6 From the computed values of shear strain, the

Ramberg-Osgood model, Hardin-Drnevich model and the

Seed-Idriss method give the maximum value of dynamic

shear strain of the order of 3.247, 2.021 and

2.419 percent and the peak value of total shear
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strain as 4.434, 2.865 and 3.096 percent

respectively, corresponding to the artificial ground

motion only. These maximum shear strain values occur

at the top of the impervious core, at an elevation

equal to 135.7 m from the base and 2.7 m below the

full reservoir level. All the three methods of

analysis predict the maximum value of shear strain at

the same elevation. Among the three methods of

analysis, the Ramberg-Osgood model predicts the

highest value of shear strain.

7 The analysis of the dam including a stiff foundation

does not alter the response of the dam.

8 In all the three methods of analysis, the Ramberg-

Osgood model simulates the nonlinear stress-strain

characteristics of the materials constituting the dam

as closely as possible to the actual situation as

seen from the comparison of recorded/measured

acceleration/displacement and the computed values.
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8.10 ANALYSIS OF ROCKFILL DAM DB

The dynamic response evaluation of the El

Infiernillo Dam by the three methods of analysis as described

in the previous section (Sec. 8.9) demonstrates that the

Ramberg-Osgood model parameters evaluated on the basis of

experimental values as done in the present thesis, predicts

the dynamic response which is close to the actual behaviour

recorded/measured during the March 14, 1979, Mexico

earthquake.

Therefore, the Ramberg-Osgood model has been used

for the dynamic response evaluation of the rockfill dam, DB

which is of medium height and proposed to be built in India,

in a region of moderate seismicity. Nevertheless, for

comparison of the dynamic response, the analysis has been

done using the Hardin-Drnevich model and the Seed-Idriss

method as well. The height of the dam, DB is 88 metres,

above the top surface of the foundation. The maximum

section of the dam with a central core and other details are

shown in Fig. 8.32. However, in the analysis of this medium

height dam the foundation has also been included for a

complete response evaluation.

8.10.1 Nonlinear Static Analysis of Dam DB

The nonlinear static analysis of the dam, DB has

been carried out following the same procedure and the same

computer coding described in Sec. 8.3. The different materi

al properties used in the nonlinear static analysis of the



(T) Impervious
© Filters
0 Compacted rockfill
© Riprap
Note- Elevation in meters

«

EL 336.0
EL 338.0

fig. 8.32 Maximum Section of Dam DB

ji.,

ro



+

277

dam DB are given in Table 8.14 and the material type

identifications are shown in Fig. 8.32. Identically, the

same assumptions have been made as in Sec. 8.3, except that

in the present case, the water pressure is considered to act

vertically downwards along the top surface of the foundation

and normal to the upstream face of the core as shown in Fig.

8.33. The computed nonlinear stresses are the pre-earthquake

stresses used as the initial condition for the dynamic

analysis.

Table 8.14 Material Properties Used in the Static Analysis

Mat. Material Unit Weight (t/m3) C 0

No Identi—

-3

fication Dry Saturated (t/m*) (deg)

(1) (2) (3) (4) (5) (6)

1 Clay core 1.58 2.00 3 0

2 Filter 1.87 2.19 0 35

3 Compacted
rockfill

1.85 2.16 0 45

4 Foundation

and Hard-

rock

1.76 2.10 0 45

Note:

C = Cohesion

<t> • Angle of internal friction,
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8.10.2 Finite Element Idealization

The finite element discretization of the dam, DB

is shown in Fig. 8.33. A stiff foundation of depth 20 m has

been included at the base of the dam. The depth of the

foundation below the key is 10 m. The width of the

foundation in the upstream and in the downstream have been

extended by one time the width of the dam at the base

(without the foundation, Franklin, 1986; 1987). This leads

to an approximate total width of three times the width of

the dam at the base, corresponding the base width which is

without the foundation (Fig. 8.33).

The discretized dam consists of 7 horizontal

layers and 67 eight-noded isoparametric elements including

that of the key. The foundation consists of two horizontal

layers and 76 eight-noded isoparametric elements excluding

that in the key. The total number of elements and nodes in

the whole structure are 143 and 528 respectively of which 447

nodes are effective ones. The first node on the rigid base

is 448, at which the base input motion is applied for the

dynamic response analysis.

8.10.3 Dynamic Analysis of Dam DB

In the dynamic analysis, the same finite element

mesh, shown in Fig. 8.33 has been adopted. To reduce the

band-width, the nodes have been numbered along the shorter

direction (in the direction of height) of the dam. In addi

tion to the static material properties given in Table 8.14,
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the value of Poisson's ratio of different materials consider

ed in the analysis of the El Infiernillo Dam have been

assumed.

Due to the uncertainties involved in using the

empirical expressions as given by Eqs. 2.1, 2.2, 2.5 and 2.7

to compute the low-amplitude shear modulus (Stokoe and

Abdel-razzak, 1975; Arango et al. , 1978), the low-amplitude

shear wave velocities of different materials constituting the

dam, DB have been computed using the method proposed by Nose,

Takahashi and Kunii (1976) , as given by the equation:

Z2
Vs = Z^ • (8.3)

where

Vs = shear wave velocity corresponding to low-amplitude

(T<10 percent) shear strain

Z-l and Z2 are empirical constants.

On the basis of extensive prototype field tests performed on

a number of medium height earth and rockfill dams in Japan,

Nose, Takahashi and Kunii (1976), recommended Eq. 8.3 for

estimating the low-amplitude shear modulus value. The

validity of Eq. 8.3, has subsequently been demonstrated by

Sawada and Takahashi (1975), and Baba and Watanabe (1979),

and its excellent agreement with the analytical results by

Severn et al. (1979), in the dynamic response evaluation of

the Llyn Brianne rockfill Dam of United Kingdom.

Chandrasekaran, Paul and Suppiah (1985), and Chandrasekaran
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and Prakash (1989b), have also adopted the Nose's method for

evaluating the low-amplitude shear modulus, in the linear

dynamic analyses of Dihang Dam (276 m, Arunachal Pradesh,

India) and the Thein Dam (Punjab, India) respectively. The

parameters used in computing the shear wave velocities of

different materials are given in Table 8.15.

Table 8.15 Shear Wave Velocity for Different Materials
(Baba and Watanabe, 1979)

Zone Shear Wave Velocity, V8 (m/sec)

Height Core Filter Shell Found Hard

He (m) ation Rock

(1) (2) (3) (4) (5) (6)

0-5 m 210 245 245 - -

0.34 0.20 0.20

5-30 m 140HC 220HC 250HC - -

0.34 0.20 0.30

30 m to 140HC 220Hc 200Hc - -

base of

the dam

Founda — — — 875 _

tion

Hard — — — — 900

Rock

Note:

Hr = Height from the crest of the dam.
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Upto a depth of 5 m from the crest of the dam,

constant values of shear wave velocities have been assumed

(Nose, Takahashi and Kunii, 1976) as shown in Table 8.15. In

the foundation and in the hard rock constant values of shear

wave velocities of the order of 875 and 900 m/sec (Marcuson

and Krinitzsky, 1976) respectively have been adopted.

Assuming the axis of the dam as the reference line, shear

wave velocities have been evaluated at the centre of each

element through a separate computer program.

Once the shear wave velocity is known the corres

ponding shear modulus is expressed by:

G = fl V2 (8.4)
^max y vs v '

in which

G = low-amplitude shear modulus

p - mass density (= r/g)

r = unit weight

g = acceleration due to gravity.

Similar to the shear modulus-values, the damping

ratios of different materials constituting the dam,

corresponding to the low-amplitude shear strain levels

(T,<10-4 percent) have been adopted from the damping curves

recommended by Seed and Idriss (1970), which are shown in

Figs. 2.10 and 2.11 (Chapter 2) for sand and clay materials.

8.10.4 Results and Discussion on Dam DB

Following the same procedure given in Sec. 8.4,
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the dynamic analysis of dam DB has been performed using the

three methods of analysis and the three ground motions as

earthquake load vector. From the dynamic analysis, the

acceleration values at a few important nodal points as shown

in Fig. 8.34, the shear strain values at a few element

centres as given in Fig. 8.35, and the displacement at the

crest, for the different methods of analysis have been

presented in Tables 8.16 to 8.23 respectively.

As before, the nodes at which acceleration values

are displayed in Tables 8.16 to 8.18, lie at specified

elevations. These specified elevations are the crest,

approximately 3/4 th the height, half the height, 1/4 th the

height from the base and the base of the dam (top surface of

the foundation). At each elevation three nodes have been

chosen, the first node lying on the upstream slope surface or

the toe at the upstream, the second node along the axis and

the third node on the downstream slope surface or the toe at

the downstream in sequence.

Identically, the maximum shear strain values shown

+r in Tables 8.19 to 8.21 correspond to specific zones at which

a sudden change in stiffness takes place. The few selected

elements lie in the upstream filter, the impervious core and

the downstream filter of the dam only. - These elements are

from the base of the core upto 5 layers and each layer

consists of 4 elements only. The maximum shear strain values

have been observed at these elements only, since across these

elements a change in stiffness exists. The maximum shear

*4f strain values obtained using the Ramberg-Osgood model and the
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fable 8. lb Maximum Acceleration Values at a tew Nodes

Ramberg-Osgood Model; Dam DB; PGA = 0.25g

286

Node

No.

(1)

Coordinate (ml Maximum Acceleration (gj Location

(7)

X

(2)

Y

(31

Applied Ground Motion

GMl

T4J

GM2

(5l

GM3

(6!

109

217

325

735.0

740. 0

745.0

108.0

1O8.0

1O8.0

0. 36

0. 38

0. 38

0.40

0. 40

0. 40

0. 39

0. 39

0. 39

U/s Crest

Crest of axis

D/s Crest

218 740. G 101.0 0.39 0.42 0.40 Axis, below crest

113

221

329

666. 7

740. 0

800. O

80. 7

80. 7

80. 7

0.28

0.2'*

0.26

0.29

0.34

0.31

0. 30

0. 32

0. 31

U/s 0.75H from base

Axis 0.75H from base

D/s 0.75H from base

93

225

348

587. 5

740.0

856.0

55.0

55.0

55.0

0.26

0. 12

0.26

0. 22

0. 20

0. 22

0.20

0. 15

0.19

U/s 0.50H from base

Axis 0.50H from base

D/s 0.50H from base

96

228

351

525.6

740.0

905. 5

30.2

30.2

30.2

0.26

0. 19

0.26

0. 27

0. 19

0.27

0. 25

0. 16

0. 25

U/s 0.25H from base

Axis 0.25H from base

D/s 0.25H from base

1

234

444

0.0

740. G

1426.0

20.0

20.0

20.0

0. 25

0. 25

0. 25

0. 25

0. 26

0. 25

0. 25

0. 25

0.2 5

U/s top of foundation

Along the axis

D/s top of foundation

Note:

H = Height of the dam from the base.
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Table 8.17 Maximum Acceleration Values at a few Nodes

Hardin-Drnevich Mode); Dam DP; PGA ?5g

Node

No.

(1)

dinate fm) Max i mum Acceleration (p) Locat ion

(7)

X

(2)

Y

(3)

AppIiec Ground Motion

GMl

(4)

GM2

(5)

GM3

(6)

109

217

325

735.0

740.0

745.0

108. 0

108.0

108.0

0. 25

0.25

0. 25

0. 29

0. 29

0.29

0. 28

0.28

0.28

U/s Crest

Crest of axis

D/s Crest

218 740.0 101.0 0. 2S 0. 31 0.30 Axis, below crest

113

221

329

666. 7

740. 0

800.0

80. 7

80. 7

80. 7

0. 12

0. 13

0. 12

0. 16

0. 18

0. 16

0. 16

0. 17

0. 15

U/s 0.75H from base

Axis 0.75H from base

D/s 0.75H from base

93

225

348

587. 5

740.0

856.0

55.0

55. 0

55.0

0.22

0.11

0. 21

0. 18

0. 15

0. 18

0. 17

0. 14

0. 16

U/s Q.50H from base

Axis 0.50H from base

D/s 0.50H from base

96

228

351

525.6

740.0

905. 5

30.2

30. 2

30.2

0. 26.

0.2G

0. 26

0. 27

0. 18

0. 27

0.25

0. 16

0.24

U/s 0.25H from base

Axis 0.25H from base

D/s G.25H from base

1

234

444

0.0

740.0

1426.0

20.0

20.0

20.0

0. 25

0. 25

0.25

0.25

0.26

0.25

0.25

0.25

0.25

U/s top of foundation

Along the axis

D/s top of foundation

Note:

H = Height of the dam from the base.
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Seed-Idriss Method; Dam DB; PGA - 0.25g

288

Node

No.

(1)

Coordinate ! m '• Max imum Acceleration 1. g ! I. onat ion

(7)

X

(2)

Y

(3)

Applied Ground Mot ion

GMl

(4)

GM2

(5)

GM3

(6)

109

217

325

735. 0

740.0

745. 0

108.0

108.0

108.0

0. 46

0. 45

0.46

0. 50

0. 50

0. 50

0. 56

0. 55

0. 56

U/s Crest

Crest of axis

D/s Crest

218 740.0 101. 0 0. 45 0. 49 0. 53 Axis, below crest

113

221

329

666. 7

740. 0

800. 0

80. 7

80. 7

80. 7

0. 23

0. 27

0. 21

0. 25

0. 34

0 . 29

0.28

0. 27

0. 27

U/s 0.75H from base

Axis 0.75H from base

D/s 0.75H from bsse i
1

1

1
!

93

225

348

587. 5

740. 0

356.0

55.0

5 5.0

55.0

0. 37

0. 16

0. 37

0. 28

0. 20

0. 30

0. 30

0 . 1 7

0.29

U/s 0.50H from base

Axis 0.50H from base

D/s 0.5QH from base

96

228

351

525.6

740.0

905. 5

30.2

30. 2

30.2

0. 26

0. 22.

0. 28

0. 30

0. 21

0. 28

0. 29

0. 20

0. 28

U/s 0.25H from base

Axis 0.25H from base

D/s 0.25H from base

1

234

444

0.0

740.0

1426.0

20.0

20.0

20.0

0. 25

0.25

0.25

0. 25

0. 26

0. 25

0. 25

0.25

0. 25

u/s top of foundatior
Along the axis

D/s top of foundation

Note:

H = Height of the dam from the base.
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Table 8.19 Shear Strain Values at a few Elements;
Dam DB; PGA = 0.25g

tamber3-Osgood v.:del

El.

No.

Coordinate (m) Shear Strain (%)

(1)

X

(2)

Y

(3)

Static Dynamic Total

(4)

GMl

(5)

GM2

(6)

GM3

(7)

GMl

(8)

GM2

(9)

GM3

(10)

84

85

86

87

714.6

727.8

752.2

765.4

25.0

25.0

25.0

25.0

1.700

1.607

0.765

0.141

0.175

0.095

0.094

0.170

0.342

0.175

0.172

0.321

0.242

0.130

0.128

0.227

1.875

1.702

0.859

0.311

2.042

1.782

0.937

0.462

1.942

1.737

0.893

0.368

94

95

96

97

717.1

729.1

751.0

762.9

30.3

30.3

30.3

30.3

1.654

0.423

0.674

0.492

0.140

0.100

0.099

0.136

0.264

0.186

0.180

0.251

0.218

0.148

0.145

0.208

1.794

0.523

0.773

0.628

1.918

0.609

0.854

0.743

1.872

0.571

0.819

0.700

104

105

106

107

720.9

730.5

749.1

759.1

46.8

46.8

46.8

46.8

1.381

0.084

0.382

0.495

0.155

0.102

0.100

0.149

0.269

0.174

0.169

0.262

0.225

0.145

0.142

0.221

1.536

0.186

0.482

0.644

1.650

0.258

0.551

0.757

1.606

0.229

0.524

0.716

114

115

116

117

724.3

732.6

747.4

755.8

61.0

61.0

61.0

61.0

1.254

0.301

0.241

0.314

0.122

0.082

-0.082

0.124

0.193

0.125

0.124

0.197

0.169

0.111

0.110

0.174

1.376

0.383

0.323

0.438

1.447

0.426

0.365

0.511

1.423

0.412

0.351

0.488

122

123

124

125

727.8

734.4

745.6

752.2

73.8

73.8

73.8

73.8

1.061

0.141

0.144

0.165

0.078

0.053

0.054

0.083

0.119

0.077

0.076 *

0.122

0.109

0.072

0.072

0.115

1.139

0.194

0.198

0.248

1.180

0.218

0.220

0.287

.—

1.170

0.213

0.216

0.280

Note:

Total strain = static + dynamic strain.
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Table 8.20 Shear Strain Values ar. a few Elements; Hardin-Drnevich Model
Oam DB: PGK * 0.25g

290

El.

No.

(1)

i

Coordinate (m)1 Shear Strain (%)

X

(2)

Y

(3)

Static

(4)

Dynamic Total

GMl

(5)

GM2

(6)

GM3

(7)

1

GMl

18)

GM2

(9)

GM3

(10)

84

85

86

87

714.6

727.8

752.2

765.4

25.0

25.0

25.0

25.0

1.700

1.607

0.765

0.141

0.140

0.071

0.071

0.132

0.308

0.160

0.158

0.293

0.201

0.108

0.106

0.190

1.840
1.678

0.836

0.273

2.008

1.767

0.923

0.434

1.901

1.715

0.871

0.331

94

95

96

97

717.1

729.1

751.0

762.9

30.3

30.3

30.3

30.3

1.654

0.423

0.674

0.492

0.092

0.071

0.070

0.089

0.210

0.157

0.154

0.205

0.150

0.112

0.110

0.146

1.746

0.494

0.744

0.581

1.864

0.580

0.828

0.697

1.804

0.535

0.784

0.638

104

105

106

107

720.9

730.5

749.1

759.1

46.8

46.8

46.8

46.8

1.381

0.084

0.382

0.495

0.087

0.061

0.060

0.085

0.177

0.118

0.116

0.175

0.138

0.094

0.093

0.136

1.468

0.145

0.442

0.580

1.558

0.202

0.498

0.670

1.519

0.178

0.475

0.631

114

115

116

117

724.3

732.6

747.4

755.8

61.0

61.0

61.0

61.0

1.254

0.301

0.241

0.314

0.061

0.044

0.044

0.062

0.113

0.076

0.076

0.115

0.096

0.066

0.066

0.098

1.315

0.345

0.285

0.376

1 . 367

0.377

0.317

0.429

|

1.350

0.36T

0.307

0.412

122

123

124

125

727.8

734.4

745.6

752.2

73. 8

73.8

! 73.8

j 73.8

1.061

0.141

1 0.144

1 0.165
I

0.038

0.027

0.027

0.040

0.066

0.044

0.044

0.068

0.060

0.041

0.041

0.062

1.099

0.168

0.171

0.205

1 .127

, 0.185
0.188

| 0.233

! 1.121
j 0.182

0.185

j 0.22-?
nl

Note:

Total strain = static + dynamic strain.
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Table 8.21 Shear Strain Values at a few Elements; Seed-Idriss Method
Dam DB; PGA = 0.2 5g

El .

No.

(1)

Coordinate (m)

' •

Shear Strain (%)

X

(2)

Y

(3)

Static

(4)

Dynamic Total

GMl

(5)

GM2

(6)

GM3

(7)

GMl

(8)

GM2

(9)

GM3

(10)

84

85

86

87

714.6

727.8

752.2

765.4

25.0

25.0

25.0

25.0

1.700

1.607

0.765

0.141

0.149

0.068

0.067

0.138

0.227

0.110

0.103

0.211

0.147

0.069

0.068

0.138

1.849

1.675

0.832

0.279

1.927

1.717

0.868

0.352

1.847

1.676

0.833

0.279

94

95

96

97

717.1

729.1

751.0

762.9

30.3

30.3

30.3

30.3

1.654

0.423

0.674

0.492

0.200

0.081

0.082

0.187

0.324

0.150

0.136

0.297

0.198

0.088

0.085

0.190

1.854

0.504

0.756

0.679

1.978

0.573

0.810

G.789

1.852

0.511

0.759

0.682

104

105

106

107

720.9

730.5

749.1

759.1

46.8

46.8

46.8

46.8

1.381

0.084

0.382

0.495

0.155

0.071

0.069

0.136

0.273

0.133

0.120

0.273

0.170

0.081

0.077

0.166

1.536

0.155

0.451

0.631

1.654

0.217

0.502

0.768

1.551

0.165

0.459

0. 661

114

115

116

117

724.3

732.6

747.4

755.8

61.0

61.0

61.0

61.0

1.254

0.301

0.241

0.314

0.092

0.048

0.046

0.092

0.161

0.081

0.075

0.179

0.109

0.057

0.053

0.116

1.346

0.349

0.287

0.406

1. 415

0.382

0.316

0.493

1.363

0.358

0.294

0.430

122

123

124

125

727.8

734.4

745.6

752.2

73.8

73.8

73.8

73.8

1.061

0.141

0.144

0.165

0.052

0.026

0.025

0.058

0.083

0.041

0.038

0.097

0.067

0.035

0.033

0.071

1.113

0.167

0.169

0.223

1.144

0.182

0.182

0.262

1.128

0.176

0.177

0.236

Note:

Total strain = static + dynamic strain.
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•nerated artificial ground motion with a peak groundregei

acce]

before, the displacement of the crest is shown in Table 8.23

corresponding to the three ground motions and the three

methods of analysis.

8.10.4.1 Acceleration values

From the acceleration values shown in Table 8.16

by the Ramberg-Osgood model, it can be noticed that at the

crest, the acceleration is of the order of 0.38g, 0.40g and

-* 0.39g corresponding to GMl, GM2 and GM3 respectively, which

is greater than the peak ground acceleration (= 0.25g). Thus

no deamplification is observed at the crest in all the three

ground motions. However, the largest value of acceleration

is seen at node 218 which is immediately below the crest and

not at the crest. The maximum values of acceleration by the

Ramberg-Osgood model, corresponding to the three ground

motions are 0.39g, 0.42g and 0.40g respectively, out of which

the artificial ground motion produces the highest value (node

4- 218, 0.42g).

In all the three ground motions, between 0.25H and

0.50H (H = height of the dam from the base), the two extreme

slope surfaces experience identically the same value of

acceleration. However, along the axis, lower values of

acceleration are noticed, which indicates that the body of

the dam at the centre between 0.25H to 0.50H experiences

lower acceleration values than the two slope surfaces. The

£ upstream experiences more acceleration values than the

aeration value of 0.40g are given in Table 8.22. As
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Table 8.22 Shear Strain Values at a few Elements
R-O Model; Dam DB; PGA = 0.40g; GM2

El.

No.

(1)

Coordinate (m) Shear Strain (%)

X

(2)

Y

(3.)

Static

(4)

Dynamic

(5)

Total

(6)

84

85

86

87

714.6

727.8

752.2

765.4

25.0

25.0

25.0

25.0

1.700

1.607

0.765

0.141

3.680

3.330

3.330

1.532

5.380

4.937

4.095

1.673

94

95

96

97

717.1

729.1

751.0

762.9

30.3

30.3

30.3

30.3

1.654

0.423

0.674

0.492

3.500

3.340

3.330

3.489

5.154

3.763

4.004

3.981

104

105

1C6"
107

720.9

730.5

749.1

759.1

46.8

46.8

46.8

46.8

1.381

0.084

0.382

0.495

3.462

3.280

3.271

3.450

4.843

3.364

3.653

3.945

114

115

116

117

724.3

732.6

747.4

755.8

61.0

61.0

61.0

61.0

1.254

0.301

0.241

0.314

3.350

2.910

3.210

3.360

4.604

3.211

3.451

3.674

122

123

124

125

727.8

734.4

745.6

7 52.2

73.8

73.8

73.8

73.8

1.061

0.141

0.144

0.165

3.220

3.030

3.130

3.230

4.281

3.171

3.274

3.395

Note;

Total strain = static + dynamic strain.
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downstream at this elevation.

At an elevation 0.75H from the base, the two

extreme slope surfaces experience lower values of

acceleration than that along the axis. As before, the

locations in the upstream show higher values of acceleration

than of the corresponding locations in the downstream.

At the two extreme toes on the top of foundation

(nodes 1 and 444) and along the axis more or less the same

value of acceleration (= 0.25g), that is equal to the base

input motion is noticed. As discussed in the analysis of El

Infiernillo Dam, the free-field motion remains unaltered in

this case as well. The acceleration values at nodes 1, 234

and 444 are lower than at the elevation of 0.75H (nodes 113,

221 and 329) , which shows that the foundation of the dam

experiences less acceleration values than the body of the dam

at this elevation.

As done in Sec. 8.6.1, a few of the locations at

which only amplification of acceleration has occurred are

displayed in Figs. 8.36 to 8.38 based oft the Ramberg-Osgood

model for the three ground motions.

Similar to the Ramberg-Osgood model, the Hardin-

Drnevich model also shows the same trend as can be seen in

Table 8.17, except for a larger degree of deamplification

from 0.50H to the crest. Unlike in the Ramberg-Osgood model,

the maximum value of acceleration of the order of 0.31g is

noticed at node 218 which is located immediately below the

crest (Column 5, Table 8.17), corresponding to the artificial

ground motion. As before, the locations in the upstream show
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larger acceleration values than the downstream locations due

to the presence of water on the upstream.

Using the Hardin-Drnevich model, a few of the

locations where no deamplification of acceleration is noticed

are shown in Figs. 8.39 to 8.41 for the three ground motions

respectively.

The Seed-Idriss method also, identically follows

the same trend of distribution of acceleration as the other

two models with the least degree of deamplification. The

maximum values of acceleration, as seen in Table 8.18, are

obtained at the crest for all the three input motions. The

highest value of acceleration of the order of 0.56g is seen

at the crest (nodes 109 and 325) corresponding to the Taft

earthquake record. The Seed-Idriss method yields larger

values of acceleration at all nodal points except at the

base.

In the Seed-Idriss method of analysis, the

acceleration response at 0.50H and 0.75H corresponding to the

artificial accelerogram shows that the downstream (nodes 348

and 329, Column 5, Table 8.18) experiences larger values than

the corresponding values at the upstream (nodes 93 and 113).

Figs. 8.42 to 8.44 show the locations at which

only amplification of acceleration is noticed for the three

ground motions based on the Seed-Idriss method of analysis.
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8.10.4.2 Shear strain values

From the maximum values of dynamic and total

shear strain shown in Tables 8.19 to. 8.21 for the three

methods of analysis it can be seen that the Ramberg-Osgood

model yields the highest values of dynamic shear strain of

the order of 0.342 percent at element 84 for the artificial

accelerogram as the input motion. The dynamic shear strain

values for the same ground motion by the Hardin-Drnevich

model and the Seed-Idriss method are 0.308 and 0.324 percent

respectively and occurring at elements 84 and 94.

In all the cases, the synthetic accelerogram

yields the highest values of dynamic shear strain, followed

by the Taft and the North-Eastern Region (India) earthquake

records in sequence, when these three ground motions have

been used as the earthquake load vectors. As far as the

method of analysis is concerned, as before, the Ramberg-

Osgood model gives the highest values of shear strain and the

Hardin-Drnevich model gives the lowest values and the Seed-

Idriss method yields intermediate values corresponding to the

North-Eastern (GMl), synthetic (GM2) and the Taft (GM3)

earthquake records respectively. For the Taft accelerogram,

the Hardin-Drnevich model gives higher values of shear strain

than the values obtained by the Seed-Idriss method at

elements 84 to 87.

At all elevations, for all the three ground

motions and the three methods of analysis, the value of
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dynamic shear strain is larger in the upstream filter and

decreases in the core and again increases in the downstream

filter zone. This behaviour is because the filter zones in

the upstream and the downstream consists of relatively less

stiff materials in comparison to the adjacent shell and core

materials.

The total values of shear strain for the Ramberg-

Osgood model are of the order of 1.875, 2.042 and 1.942

percent occurring at element number 84, and for the Hardin-

Drnevich model, these values are of the order of 1.840, 2.008

and 1.901 percent occurring at the same location and for the

Seed-Idriss method, the total values of shear strain are

1.854, 1.978 and 1.852 percent occurring at element 94.

In general, the lowest values of total shear

strain (less than 2.1 percent) obtained in the analysis

of the dam DB could perhaps, be due to the nonavailability

of the actual material properties. Keeping the 5 percent

shear strain limit as the failure phenomenon, no portion of

the dam DB attains the threshold level of failure. The

analysis results show that the dam DB is safe against the

postulated three ground motions with the peak ground

acceleration value of 0.25g.

Since the dam DB did not show any portion

undergoing excessive deformation under the postulated earth

quake motions with peak ground acceleration value of 0.25g,

the shear strain values have been computed from an analysis

based on the artificial accelerogram modified to yield a peak
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ground acceleration value of 0.40g as the base motion. In

the revised dynamic analysis only the Ramberg-Osgood model

has been used. The static, dynamic and the total values of

shear strain obtained in this analysis are shown in

Table 8.22. The maximum value of dynamic shear strain and

total shear strain are of the order of 3.680 and 5.380

percent and occurring at element 84.

It is seen from Table 8.22 that the highest value

of total shear strain is 5.38C (occurring at element 84)

percent indicating that the dam DB Is safe against the

postulated earthquake as well with the intensity of 0.40g as

the peak ground acceleration. As before, this conclusion is

qualitative only due to the non-availability of laboratory

tested cyclic shear stress values.

8.io.4.3 Displacement

From the displacement values of the crest

(node 109) corresponding to the top of the axis shown in

Table 8.23, it can be seen that all the three methods of

analysis give the maximum values of displacement when the

synthetic accelerogram was adopted as the base input motion.

These values are of the order of 12.27, 8.43 and 17.43 cm

corresponding to the Ramberg-Osgood model, Hardin-Drnevich

model and the Seed-Idriss method respectively. The lowest

values of displacement are noticed corresponding to the



Table 8.23 Displacement at the Crest
Dam DB; PGA = 0.25g
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SI.

No.

(1)

Crest Displacement (cm) Method of Analysis

(5)

Applied Ground Motion

GMl

(2)

GM2

(3)

GM3

(4)

1

2

3

7.10

4.11

9.83

12.27

8.42

17.43

10.59

6.57

11.72

Ramberg-Osgood Model

Hardin-Drnevich Model

Seed-Idriss Method

North-Eastern Region (India) earthquake record and the Taft

accelerogram yields displacement values which are

intermediate in nature.

The deformed shape of the dam DB subjected to the

three ground motions, using the Ramberg-Osgood model are

shown in Figs. 8.45 to 8.47. For the Hardin-Drnevich model

and the three ground motions the deformed plots are shown in

Figs. 8.48 to 8.50 and using the Seed-Idriss method the

deformed shape for the three ground motions are displayed in

Figs. 8.51 to 8.53.



V

Fig. 8.45 Dam DB; Displacement Values at a few
Locations; R-O Model; GMl

v

All dimensions in cms

CO

o
to



A * V

Fig. 8.46 Dam DB; Displacement Values at a few
Locations; R-O Model; GM2

*

All dimensions in cms

CO

o



•r t

Fig. 8.47 Dam DB; Displacement Values at a few
Locations; R-O Model; GM3

4

All dimensions in cms

CO



•k* V

Fig. 8.48 Dam DB; Displacement Values at a few
Locations; H-D Model; GMl

i

All dimensions in cms

co
—»

ro



^ V

Fig. 8.49 Dam DB; Displacement Values at a few
Locations; H-D Model; GM2

I

All dimensi ons in cms

co

CO



+ i

6.3-H-H k^6.3

Fig. 8.50 Dam DB; Displacement Values at
Locations; H-D Model; GM3

All dimensions in cms

a few

CO



* ^

Fig. 8.51 Dam DB; Displacement Values at a few
Locations; S-I Method; GMl

A

All dimensions in cms

co
—»

en



.j

All dimensions in cms

Fig. 8.52 Dam DB; Displacement Values at a few
Locations; S-I Method; GM2

co

5?



10.6.

11.5
^-t^-10-6

"" H-K11.5

Fig. 8.53 Dam DB; Displacement Values at a few
Locations; S-I Method; GM3

i'

All dimensions in cms

CO

-J



318

8.10.5 Comments on the Analysis of Dam DB

From the dynamic analysis of the 108 m high dam,

including its foundation which is of medium height category,

based on the Ramberg-Osgood and Hardin-Drnevich models and

the Seed-Idriss method and the three different ground

motions, the following conclusions are drawn:

1 The maximum value of crest acceleration is 0.42g

using the Ramberg-Osgood model which is 1.68 times

the peak ground acceleration. This takes place

immediately below the crest corresponding to the

artificial ground motion. The Hardin-Drnevich model

yields a maximum value of 0.31g which is 1.24 times

as the peak ground acceleration and occurs at

immediately below the crest (node 218) corresponding

to the artificial earthquake record as the base input

motion. In the Seed-Idriss method of analysis, the

maximum value of crest acceleration is of the order

of 0.56g, which is 2.24 times the peak ground

acceleration corresponding to the Taft ground motion.

In this case also, the Hardin-Drnevich model shows

deamplification to a greater extent followed by the

Ramberg-Osgood model. The Seed-Idriss method shows

the least degree of deamplification and higher

magnitude of acceleration.

2 From the acceleration response obtained by the

Ramberg-Osgood and Hardin-Drnevich models, the

artificial waveform is more severe than the other two



-*

319

actually recorded ground motions. In the case of the

Seed-Idriss method of analysis, the Taft earthquake

record is more stronger than the other two ground

motions.

3 The upstream of the dam is more critical under the

reservoir full condition than the downstream.

4 The foundation experiences more acceleration values

than the centre portion of the dam along the axis.

5 The Ramberg-Osgood model yields the highest values of

shear strain.

6 The Seed-Idriss method yields excessively large

values of acceleration compared to the other two

models.

7 The maximum values of the computed shear strain occur

in the relatively low stiff regions such as the

filter zones in the upstream and the downstream of

the dam.

8 The very low values of shear strain obtained in all

the analyses with peak ground acceleration values as

0.25g and 0.4 0g, could possibly be due to the non

availability of the actual dynamic properties of the

different materials constituting the dam DB.

9 The stability of the dam DB, under the postulated

base input motions with peak ground accelerations

corresponding to 0.25g and 0.40g as obtained in the

present study should be evaluated based on the

laboratory tested cyclic shear stress values only.
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8.11 ANALYSIS OF ROCKFILL DAM DC

The dynamic response evaluation of the El

Infiernillo Dam by the Ramberg-Osgood model as used in the

present thesis, this model has further been applied for the

nonlinear dynamic analysis of a 336 m high rockfill dam

(Dam DC), including its foundation. This tall dam was

proposed to be constructed in India, in a region with severe

seismicity. When the construction of this dam is completed,

it would be one among the first ten tallest (height more than

250 metres) rockfill dams of the world.

Therefore, in view of the significant importance

of this tall dam and existing literature on the dynamic

analysis on such a tall dam being very meager, an extensive

dynamic response analysis has been performed on dam DC, by

evaluating the time-histories of acceleration and displace

ment at a few important nodal points and time-histories of

shear stress at a few element centres using the Ramberg-

Osgood model and the artificial accelerogram as the base

input motion. The synthetic ground motion has been chosen

because of its severity compared to the other two actually

recorded ground motions. For the purpose of comparison, the

time-histories of the different vectors have been obtained

using the Hardin-Drnevich model and the Seed-Idriss method as

well corresponding to the same input motion only. However,

the maximum values of absolute acceleration at some important

nodal points, the maximum shear strain values at a few

element centres, the crest displacement and the deformed
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shape of the dam for three base input motions using the three

methods of analysis have been presented in this case as well.

The static and dynamic analysis procedures adopted are same

as that described in Sec. 8.10.

8.11.1 Description of Dam DC

The maximum section and other details of the

dam DC, without the foundation are shown in Fig. 8.54. The

height of the dam DC is 270 m and that of the foundation is

22 m. The full reservoir level is 6 m below the crest of the

•y dam. The dam has a composite section consisting of three

different groups of materials, namely, core, transition and

shell. The impervious core is inclined to the vertical in

the ratio of 1:0.506, in the upstream face, and surrounded by

crushed and compacted cohesionless soil, filter and shell

materials.

8.11.2 Nonlinear Static Analysis

As mentioned in Sec. 8.10.1, the initial static

•^ stresses have been evaluated using the hyperbolic model as

proposed by Duncan et al. (1980). In the analysis twice the

depth of the foundation has been included as the depth of the

base rock (Duncan et al., 1980; Franklin, 1987). Thus the

total depth of the foundation including the hard rock is 66

metres and the total height of the dam is 336 metres.

8.11.3 Discretization

> The foundation in the upstream and the downstream
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have been extended by one time the base width of the dam that

is on the top surface of the foundation. This leads to a

total width of approximately 3 km, which is three times the

width of the dam at the base of the dam corresponding to the

dam without the foundation.

The dam (superstructure) has been discretized into

14 horizontal layers and each layer consisting of 11 eight-

noded isoparametric elements using the PREBAN subroutine

described in Chapter 7. Similarly, the foundation including

the hard rock has been divided into 2 horizontal layers and

each layer into 31 eight-noded elements. Thus the dam and

its foundation have been idealized into 154 and 62 eight-

noded elements respectively. The finite element mesh adopted

for the analysis is shown in Fig. 8.55 and consists of a

total number of 216 eight-noded elements and 743 nodes out of

which 679 nodes are the effective ones.

8.11.4 Material Properties

The different material properties and the non

linear parameters adopted for the nonlinear static analysis

of the dam DC are given in Tables 8.24 and 8.25 respectively.

In the upstream, submerged unit weights for shell and filter

materials below the phreatic line and in the downstream for

these materials, either, dry or moist unit weights have been

considered. In the impervious core, saturated unit weight

below the phreatic line and dry or moist unit weights above

this line have been adopted. The water pressure is considered

to act in the same manner as described in Sec. 8.10.1 and is
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Table 8.24 Phys
ical properties for Nonlinear Static Analysis

__ 1-

Mat .

No.

U)

Description

(2)

r

(t/m3)

(3)

Ko

(4)

(deg)

(5)

C

(t/m2)

(6)

1 U/s Shell

(submerged)

1.250 0. 33 42 0

2 U/s Filter

(submerged)

1 . 100 0. 36 42 0

3 Core

(saturated)

1. 989 0. 44 30.5 5

4 D/s Filter

(moist)

1.850 0. 36 42 0

5 D/s Shell

(moist)

2. 068 0.33 42 0

6 Core

(dry)

1. 619 0. 38 30. 5 5

7 Foundation

(submerged)
1. 160 0. 38 42 0

8 Hard rock

(saturated)

2.250 0.33 44 0

Note:

r = unit weight

K0 = coefficient of earth pressure at rest

# = angle of internal friction

C = cohesion.
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Table 8.25 Nonlinear Parameters Used for the Duncan-Chang
Model
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Mat.

No.

Description K nh Rf A * Kb mh

(1) (2) (3) (4) (5) (6) (7) (8)

1 U/s Shell

(submerged)

3780 0.19 0.76 7 1300 0.16

2 U/s Filter
(submerged)

3350 0.19 0.76 7 470 0.52

3 Core

(saturated)
345 0.76 0.88 0 280 0.19

4 D/s Filter

(moist)

3350 0.19 0.76 7 470 0.52

5 D/s Shell

(moist)

3780 0.19 0.76 7 1300 0.16

6 Core

(dry)
345 0.76 0.8* 0 280 0.19

7 Foundation

(submerged)
3780 0.19 0.76 7 1300 0.16

8 Hard rock

(saturated)

4000 0.18 0.64 6 1400 0.22

Note:

K • modulus number

nn = modulus exponent

Rf = failure ratio

A ^ = decrease in friction angle

Kb = bulk modulus number

mn • bulk modulus exponent.
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shown in Fig. 8.55. The different material type

identifications used are shown in Fig. 8.56.

8.11.5 Results of Nonlinear Static Analysis

The different static stresses, such as the

horizontal stress (wxx), vertical stress (s-yy), shear stress

(t ), major principal stress (C^) and minor principal stress

(rr2) obtained from the nonlinear analysis based on the

Duncan-Chang model, are displayed in the form of stress

contours in Figs. 8.57 to 8.61.

The stress ratio contours between the minor

principal stress (6~3) and the major principal stress (s\) are

also shown in Fig. 8.62. The different stress values are

computed at the Gauss sampling points. The horizontal

stress, vertical stress and the shear stress vectors have

been stored in the computer memory for subseguent dynamic

analysis.

8.11.6 Dynamic Analysis of Dam DC

The dynamic analysis of the dam DC has been

carried out adopting the same procedure described in

Sec. 8.10.3. The finite element mesh shown in Fig. 8.55, has

been adopted for the dynamic analysis as well. The dynamic

material properties, namely, the low-amplitude shear modulus

and damping values have also been evaluated using the same

procedure described in Sec. 8.10.3. These dynamic material

properties have been used in addition to the physical
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properties shown in Table 8.24. As before, the dynamic

analysis has been carried out using the three methods of

analysis and the three ground motions as earthguake load

vectors. The different ground motions have been applied at

the rigid base (node 680) as the earthquake load vectors.

8.11.7 Results of Dynamic Analysis

From the dynamic analysis of the dam DC, performed

using the Ramberg-Osgood model, Hardin-Drnevich model and the

Seed-Idriss method, the peak acceleration values at a few

Jr selected node points as shown in Fig. 8.63 and the maximum

values of shear strain at a few element centres as shown in

Fig. 8.64 are evaluated. As mentioned in Sec. 8.10.4, the

nodes shown in Fig. 8.63 lie in the crest, 0.75H, 0.50H,

0.25H and immediately above the base (in the foundation).

Approximately, at the same locations the shear strain values

have also been displayed at a few element centres. The

chosen elements at each elevation correspond to critical

stiffness zones, namely, across the upstream transition, the
»

impervious core and the downstream transition.

The peak acceleration values corresponding to the

nodes shown in Fig. 8.63 and the maximum shear strain values

at the elements shown in Fig. 8.64, for the three methods of

analysis and for the three ground motions under the

postulated earthguakes with peak ground acceleration value of

0.25g are given in Tables 8.26 to 8.28 and Tables 8.29 to

8.31 respectively. The shear strain values obtained
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Table 3.26 Maximum Acceleration Values at a few Nodes

Ramberg-Osgood Model; Dam DC; PGA = 0.250

33S

Node

No.

(1)

Coordinate tm) Maximum Acceleration (g) Location

(7)

X

(2)

y

(3)

Applied Ground Motion

GMl

(4)

GM2

(5)

GM3

(6)

1

13

23

1619.3

1627.2

1634.3

336.0

336.0

336.0

0.15

0.15

0.16

0.25

0.25

0.25

0.25

0.25

0.25

U/s Crest

Crest of axis

D/s Crest

48 1627.2 330.0 0.17 0.33 0.32 Axis, below crest

211

223

233

1431.2

1626.4

1803.0

254.0

254.0

254.0

0.13

0.07

0.10

0.17

0.15

0.16

0.14

0.10

0.13

U/s 0.75H from base

Axis G.75H from base

D/s 0.75H from base

316

328

338

1266.1

1625.6

1951.2

182.0

182.0

182.0

0.22

0.09

0.15

0.21

0.13

0.17

0.21

0.09

0.18

U/s 0.50H from base

Axis 0.50H from base

D/s 0.50H from base

456

468

478

1027.5

1624.4

2165.2

78.0

78.0

78.0

0.32

0.23

0.31

0.28

0.20

0.25

0.30

0.19

0.26

U/s 0.25H from base

Axis 0.25H from base

D/s 0.25H from base

491

511

523

533

553

0.0

1000.0

1624.4

2190.0

3190.0

66.0

66.0

66.0

66.0

66.0

0.25

0.30

0.25

0.29

0.25

0.25

0.32

0.25

0.31

0.25

0.25

0.31

0.22

0.31
0.25

U/s top of foundation
U/s slope surface

Axis, bottom of dam

D/s slope surface

D/s top of foundation

586

606

618

628

648

0.0

1000.0

1624.4

2190.0

3190.0

44.0

44.0

44.0

44.0

44.0

0.25

0.31

0.26

0.30

0.25

0.25

0.33

0.26

0.32

0.25

0.25

0.32

0.23

0.31

0.25

U/s top of foundation
U/s extreme left

Axis, bottom of dam

D/s slope surface
D/s top of foundation

Note:

H = Height of the dam from the base.
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Table 8.27 Maximum Acceleration Values at a few Nodes
Hardin-Drnevich Model; Dam DC; PGA = 0.25g

3 3*

Node

No.

(1)

Coordin ate (m) Maximum

!

Acceleration (g) Location

(7)

X

(2)

Y

(3)

Appliec Ground Motion

GMl

(4)

GM2

(5)

GM3

(6)

1

13

23

1619.3

1627.2

1634.3

336.0

336.0

336.0

0.11

0.11

0.11

0.16

0.16

0.16

0.17

0.17

0.17

U/s Crest

Crest of axis

D/s Crest

48 1627.2 330.0 0.12 0.16 0.17 Axis, below crest

211

223

233

1431.2

1626.4

1803.0

254.0

254.0

254.0

0.10

0.06

0.08

0.12

0.12

0.12

0.12

0.08

0.11

U/s 0.75H from base

Axis 0.75H from base

D/s 0.75H from base

316

328

338

1266.1.

1625.6

1951.2

182.0

182.0

182.0

0.18

0.07

0.12

0.16

0.10

0.14

0.17

0.09

0.14

U/s 0.50H from base

Axis 0.50H from base

D/s 0.50H from base

456

468

478

1027.5

1624.4

2165.2

78.0

78.0

78.0

0.31

0.23

0.29

0.28

0.20

0.25

0.29

0.18

0.26

U/s 0.25H from base

Axis 0.25H from base

D/s 0.25H from base

491

511

523

533

553

0.0

1000.0

1624.4

2190.0

3190.0

66.0

66.0

66.0

66.0

66.0

0.25

0.30

0.25

0.30

0.25

0.25

0.32

0.24

0.31

0.25

0.25

0.31

0.21

0.30

0.25

U/s top of foundation
U/s slope surface
Axis, bottom of dam

D/s slope surface

D/s top of foundation

586

606

618

628

648

0.0

1000.0

1624.4

2190.0

3190.0

44.0

44.0

44.0

44.0

44.0

0.25

0.31

0.26

0.30

0.25

0.25

0.33

0.25

0.32

0.25

0.25

0.32

0.22

0.30

0.25

U/s top of foundation
U/s extreme left

Axis, bottom of dam

D/s slope surface
D/s top of foundation

Note:

H = Height of the dam from the base.
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Table 8.28 Maximum Acceleration Values at a few Nodes
Seed-Idriss Method; Dam DC; PGA = 0.25g

140

•

Node

No.

(1)

Coordinate (m) Maximum Acceleration (g) Location

(7)

X

(2)

Y

(3)

Applied Ground Motion

1
GMl

(4)

GM2

(5)

GM3

(6)

1

13

23

1619.3

1627.2

1634.3

336.0

336.0

336.0

0.22

0.22

0.32

0.29

0.30

0.37

0.27

0.28

0.36

U/s Crest

Crest of axis

D/s Crest

48 1627.2 330.0 0.31 0.36 0.35 Axis, below crest

211

223

233

1431.2

1626.4

1803.0

254.0

254.0

254.0

0.21

0.20

0.18

0.21

0.25

0.21

0.20

0.24

0.21

U/s 0.75H from base

Axis 0.75H from base

D/s 0.75H from base

316

328

338

1266.1

1625.6

1951.2

182.0

182.0

182.0

0.31

0.15

0.24

0.25

0.18

0.21

0.27

0.16

0.24

U/s 0.50H from base

Axis 0.50H from base

D/s 0.50H from base

456

468

478

1027.5

1624.4

2165.2

78.0 '"
78.0

78.0

0.34

0.22

0.30

0.31

0.24

0.28

0.32

0.21

0.28

U/s 0.25H from base

Axis 0.25H from base

D/s 0.25H from base

491

511

523

533

553

0.0

1000.0

1624.4

2190.0

3190.0

66.0

66.0

66.0

66.0

66.0

0.25

0.31

0.23

0.30

0.25

0.25

0.37

0.27

0.34

0.25

0.25

0.34

0.24

0.34

0.25

U/s top of foundation
U/s slope surface
Axis, bottom of dam

D/s slope surface

D/s top of foundation

586

606

618

628

648

0.0

1000.0

1624.4

2190.0

3190.0

44.0

44.0

44.0

44.0

44.0

0.25

0.32

0.25

0.31

0.25

0.25

0.35

0.27

0.34

0.25

0.25

0.35

0.24

0.33

0.25

U/s top of foundation
U/s extreme left

Axis, bottom of dam

D/s slope surface
D/s top of foundation

Note:

H - Height of the dam from the base.
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Table 8.29 Shear Strain Values at a tew Elements; Ramberg-Osgood Model
Dam DC; PGA • 0.25cj

341

El.

No.

(1)

Coordinate (m) Shear Strain (%)

X

(2)

Y

(3)

Static

(4)

Dynamic Total

GMl

(5)

GM2

(6)

GM3

(7)

GMl

(8)

GM2

(9)

GM3

(10)

66

67

68

69

1464.2

1523.7

1591.0

1664.7

72.0

72.0

72.0

72.0

2.018

1.873

1.493

0.907

0.530

0.430

0.410

0.400

3.830

3.020

2.110

3.210

0.680

0.510

0.530

0.500

2.548

2.303

1.903

1.307

5.848

4.893

3.603

4.117

2.698

2.383

2.023

1.407

77

78

79

80

1474.7

1530.5

1593.5

1662.5

89.0

89.0

89.0

89.0

3.397

1.185

1.108

0.795

0.380

0.330

0.350

0.320

2.220

2.030

1.920

1.940

0.600

0.530

0.540

0.508

3.777

1.515

1.458

1.115

5.617

3.215

3.028

2.735

3.997

1.715

1.648

1.303

110

111

112

113

1521.5

1560.2

1604.0

1652.0

166.0

166.0

166.0

166.0

3.638

0.160

0.590

0.441

0.340

0.262

0.290

0.240

1.710

1.531

1.695

1.410

0.700

0.581

0.641

0.543

3.978

0.422

0.880

0.681

5.348

1.691

2.285

1.851

4.338

0.741

1.231

0.984

154

155

156

157

1583.0

1599.2

1617.7

1638.5

267.0

267.0

267.0

267.0

0.457

0.079

0.218

0.155

0.462

0.432

a. 462

0.384

2.333

1.940

2.031

1.520

1.211

1.091

1.163

0.932

0.919

0.511

0.680

0.539

2.790

2.019

2.249

1.675

1.668

1.170

1.381

1.087

198

199

200

201

1619.7

1622.7

1626.2

1630.2

328.0

328.0

328.0

328.0

0.645

1.671

3.471

0.307

0.361

0.352

0.542

0.331

3.349

8.491

5.983

2.912

0.900

3.265

<L.183

0.891

1.006

2.023

4.013

0.638

3.994

10.162

9.454

3.219

1.545

4.936

4.654

1.198

i

Note:

Total strain = static + dynamic strain.
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Table 8.30 Shear Strain Values at a few Elements; Hardin Drnevich Model
Dam DC; PGA » 0.2 5c

El. Coordina te (n ) Shear Strain (%)

i

No.

X Y Static Dynamic Total

GMl GM2 GM3 GMl GM2 GM3

(1) (2) (3) 4) (5) (6) (7) (8) (9) (10)

66 1464.2 72 0 2 018 1.829 2.739 2.251 3.847 4.757 4.269

67 1523-.7 72 0 1 873 0.430 1.220 0.450 2.303 3.093 2.323

68 1591.0 72 0 1 493 0.300 1.160 0.450 1.793 2.653 1.943

69 1664.7 72 0 0 907 0.330 1.150 0.450 1.237 2.057 1.357

77 1474.7 89 0 3 397 0.350 1.340 0.530 3.747 4.737 3.927

78 1530.5 89 0 1 185 0.290 1.190 0.450 1.475 2.375 1.635

79 1593.5 89 0 1 108 0.300 1.130 0.423 1.408 2.238 1.531

80 1662.5 89 0 0 795 0.300 1.100 0.430 1.095 1.895 1.225

110 1521.5 166 0 3 638 0.280 1.080 0.520 3.918 4.718 4.158

111 1560.2 166 0 0 160 0.222 0.931 0.441 0.382 1.091 0.601

112 1604.0 166 0 0 590 0.240 0.950 0.481 0.830 1.540 1.071

113 1652.0 166 0 0 441 0.210 0.760 0.433 0.651 1.201 0.874

154 1583.0 267 0 0 457 0.292 1.113 0.731 0.749 1.570 1.188

155 1599.2 267 0 0 .079 0.262 0.930 0.631 0.341 1.009 0.710

156 1617.7 267 0 0 .218 0.272 0.951 0.643 0.490 1.169 0.861

157 1638.5 267 0 0 .155 0.-234 0.761 0.532 0.389 0.916 0.687

198 1619.7 328 0 0 .645 0.233 0.591 0.601 0.878 1.236 1.246

199 1622.7 328 0 1 .671 0.292 0.747 0.743 1.963 2.418 2.414

200 1626.2 328 .0 3 .471 0.282 0.653 0.653 3.753 4.124 4.124

201 1630.2 328 .0

0

.307 0.223 0.522 0\520 0.530 0.829 0.827

Note:

Total strain = static + dynamic strain.
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Table 8.31 Shear Strain Values at a few Elements; Seed-Idriss Metnod
Dam DC; PGA • 0.25g

343

El.

No.

Coordinate (m) Shear Strair (%)

1
!
1

1

X

(2)

I

Y

(3)

Static

(4)

1

i
I
i

Dynamic Total

i

1

i
: (1)
i

i
GMl

| (5)

1

GM2

1

(6)

GM3

(7)

GMl

(8)

GM2

j (9)
1

.j

l

GM3

(10)
i

i

66

67

68

69

1

j 1464.2
j 1523.7
1591.0

! 1664.7

72.0

72.0

72.0

72.0

)

2.018

1.873

1.493

0.907

0.760

0.480

0.48 0

0.33 0

1.820

1.400

1. 500

1 .400

1.060

0.670

0.770

0.700

2.778

2.353

1.973

1.237

3.838

3.27 3

2.993

: 2.307

3 .07 8

2.54 3

2.26 3

1 .607

77

78

79

80

1
| 1474.7
! 1530.5
1593 .5

| 166 2.5

89.0

89.0

8 9 .0

89.0

3.397

1.185

1.108

0 .795

• 0 .5 3 0

C .48'

460
: i "•: i

1 .310

1 .230

1.21 '

i .06C

; 0.680
0.6 40

0.610

3.927

1.665

1 .568

1 17 5

4 .707

. 2 415

2 318

4 .077

1.825

t 7 1 8

1 < >; ^

110

111

112

113

1521.5

1560.2

| 1604.0
1652 0

166 0

166 .0

166 t<

166 i

3.638

o.:; 60

0 .590

<"• 4 41

56

522

5 1

45

. .180

0 9 51

.! 0r

(1 "<r-

0 .980

7 51

a n 1

59 3

4 198

0.^8^

1 i00

0 >•; v< 1

4 '

i 1 ;

,\ * 1 ;•

'' " -' ,;.

- «• !

154

155

; 156

157

_|

i 158 3.0

! 1599.2

j 1617.7
! 16 38.5

267,

267
267 .0

26'-; •

0 . 4 57

0 079

0.218

' 0 155

652

1 000

1 252

'"••4 4

2. 521

2-360

2 2 x 3
T 1 ". I

1 111

1 081

1 071

1 '6 2

:. 109

1 07 9

4 7 0

0 >.; 9 9

>-H " X

:• .439
Si

'•• 6 8

! k 1

198

; 199
4200

201

H
j 1619.7
i 1622.7

1626.2

j 1630.2

! 328 <
328 .

. 328.0

32!

n .6 4 5

1 .671

3 471

0 .307

1.383

2 712

2 .6 0 2

1 ''.: 3

~> .Oil

6 l.<7

5 5.:. 3

> 8 2 2

.< ,,,-?

• 1.123

0 251

2 026

4.383

f. 07 •

V r *f-

'1

r! -) * 4

:

/I ;-. vj4

11 - '-, •

Note:

Total str~i: static + dynamic strai:
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corresponding to the artificial accelerogram with a peak

^ ground acceleration value of 0.40g using the Ramberg-Osgood

model are presented in Table 8.32. The locations at which

the peak acceleration values and the shear strain values are

displayed in Tables 8.26 to 8.31 have been chosen at specific

locations as mentioned in Sees. 8.9 and 8.10. The crest

displacement for the three ground motions are given in

Table 8.33.

Further, at a few important nodal points along the

axis of the dam DC, as shown in Fig. 8.65, the time-histories

of acceleration and displacement in the horizontal and

vertical directions and the time-history of shear stress at a

few element centres, as shown in Fig. 8.66 are plotted in

Figs. 8.67 to 8.168 Obtained by the three methods of

analysis. In the time-history plots, only the artificial

accelerogram has been used as the input motion, due to its

severity over the other two actual earthquake records.

The time-histories of continuously varying shear

stresses have been converted into an equivalent number of

uniform cyclic stress application. This was done by taking

the equivalent uniform cyclic stress equal to 65 percent of

the maximum peak shear stress (Carrera et al., 1979).

8.11.8 Discussion

From the dynamic analysis of the 336 m high rock

fill dam, based on the three methods of analysis and the

three ground motions as the earthquake load vectors, the
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Table 8.32 Shear Strain Values at a few Elements
R-0 Model; Dam DC; PGA = 0.40g; GM2

El.

No.

(1)

Coordinate (m) Shear Strain (%)

X

(2)

Y

(3)

Static

(4)

Dynamic

(5)

Total

(6)

66

67

68

69

1464.2

1523.7

1591.0

1664.7

72.0

72.0

72.0

72.0

2.018

1.873

1.493

0.907

6.216

4.410

4.024

4.224

8.234

6.283

5.517

5.131

77

78

79

80

1474.7

1530.5

1593.5

1662.5

89.0

89.0

89.0

89.0

3.397

1.185

1.108

0.795

4.750

4.367

4.076

4.054

8.147

5.552

5.184

4.849

110

111

112

113

1521.5

1560.2

1604.0

1652.0

166.0

166.0

166.0

166.0

3.638

0.160

0.590

0.441

4.079

3.380

3.642

2.981

7.717

3.540

4.232

3.422

154

155

156

157

1583.0

1599.2

1617.7

1638.5

267.0

267.0

267.0

267.0

0.457

0.079

0.218

0.155

3.694

3.000

3.150

2.404

4.151

3.079

3.368

2.559

198

199

200

201

1619.7

1622.7

1626.2

1630.2

328.0

328.0

328.0

328.0

0.645

1.671

3.471

0.307

4.324

12.325

11.915

4.106

4.969

13.996

15.386

4.413

Note:

Total strain = static + dynamic strain.
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acceleration values at specified nodes, the maximum values

of shear strain at a few element centres and the displacement

at the crest have been given in Tables 8.26 to 8.33

respectively.

8.11.8.1 Acceleration

From the peak acceleration values obtained by the

Ramberg-Osgood model corresponding to GUI, the crest
acceleration at three locations (nodes 1, 13 and 23) is of

the order of 0.15g, 0.15g and 0.16g (Column 4, Table 8.26)

* respectively. These acceleration values are less than the
base input motion (= 0.25g) and deamplification of the order

of 40, 40 and 36 percent is noticed. However, along the axis
at a location immediately below the crest (node 48), the

maximum value of acceleration is 0.17g.

At an elevation, 0.75H (H is the total height of

the dam from the base) , the acceleration values at the

upstream slope surface, along the axis and at the downstream

slope surface are 0.13g, 0.07g and 0.10g which shows the

deamplification phenomenon to a greater extent.

At half the height, the acceleration values at the

three locations (nodes 316, 328 and 338) are of the order of

0.22g, 0.09g and 0.15g where deamplification is more along

the axis in comparison to the two extreme slope surfaces.

The acceleration value is larger in the upstream slope

surface than in the downstream slope surface. At 0.25H from

the base, the acceleration values are 0.32g, 0.23g and 0.31g

+ (nodes 456, 468 and 478), in which deamplifcation is observed
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only at the axis to a very low extent. The acceleration

value obtained at node 456 (=0.32g) is the highest value for

the ground motion GM1. At the top of foundation (66 m from

the base) and in the body of the foundation (44 m from base)

no deamplification is seen. The computed acceleration values

below the dam and in the body of the foundation at two

elevations (66 m and 44 m) are of the order of 0.30g, 0.25g

and 0.29g (nodes 511, 523 and 533; 66 m from the base) and

0.31g, 0.26g and 0.30g (nodes 606, 618 and 628; 44 m from the

base) respectively. This shows that the foundation

experiences larger acceleration values than the body of the

dam. The acceleration value at the two extreme toes of the

foundation, at different heights from the base (nodes 491,

553, 586 and 648) is 0.25g.

Similar trend in the distribution of acceleration

values have been reported in the dynamic analysis of Fort

Peck Dam by Marcuson and Krinitzsky (1976). Similar obser

vation, in the distribution of accleration is noticed due to

the artificial accelerogram (Column 5, Table 8.26) and the

Taft earthquake record (Column 6, Table 8.26). In these two

cases, the peak acceleration values corresponding to the two

input motions (GM2 and GM3) are of the order of 0.33g and

0.32g respectively occurring immediately below the crest

along the axis (node 48) , and not at the crest. The

acceleration value at the crest is 0.25g which shows non-

occurence of deamplification phenomenon.

For both the ground motions .between a height of

0.75H and 0.50H deamplification is noticed at all the
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locations and to a larger degree along the axis at 0.25H from

the base as well. Identically, at the other locations, the

same type of distribution, similar to that of GM1 is observed

as shown in Table 8.26.

At all the elevations from the crest to the base,

the upstream of the dam experiences higher values of

acceleration than the corresponding locations in the down

stream. This indicates that the presence of a full reservoir

makes a rockfill dam more disaster prone in the event of a

strong ground shaking.

Using the Ramberg-Osgood model and the three base

input motions as earthquake load vectors, in Figs. 8.169

to 8.171, at a few locations where only amplification of

acceleration has taken place are plotted.

The distribution of acceleration based on the

Hardin-Drnevich model is similar to the distribution observed

in the Ramberg-Osgood model, except for an appreciable

amount of deamplification between the crest and 0.50H for all

the three ground motions. From 0.25H to the base of the

foundation the distribution pattern of acceleration is more

or less the same as the distribution noticed in the Ramberg-

Osgood model. In all the locations along the axis, lower

values of acceleration are seen than the two extreme slope

surfaces. The body of the dam along the axis experiences

lesser value of acceleration than the base. As before, the

nodes in the upstream experience more acceleration values

than the corresponding nodes in the downstream as

noticed in Table 8.27.
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Based on the Hardin-Drnevich model, in Figs. 8.172

to 8.174, at a few locations where only amplification is

noticed, the values of acceleration are displayed for the

three ground motions respectively.

From the dynamic analysis based on the Seed-Idriss

method the least degree of deamplification is noticed at the

crest when compared to the previous two models. The maximum

acceleration values of the order of 0.32g, 0.37g and 0.36g

respectively for the three ground motions are obtained at

node 23 (Table 8.28).

Deamplification to a lesser degree is noticed at

an elevation of 0.75H from the base (nodes 211, 223 and 233)

for all the three ground motions. At the same elevation

(0.75H from the base), the computed values of acceleration

along the axis (node 223) are larger than the values obtained

in the downstream (node 233) . Such a behaviour was noticed

in the other two models and in the previous dynamic analyses

of the El Infiernillo Dam and dam DB.

At elevations between 0.50H and 0.25H from the

base, the acceleration values along the axis are lower than

the acceleration values in the downstream. Between 0.25H and

the base of the foundation, the distribution of acceleration

is similar to the distribution described in the Ramberg-

Osgood and Hardin-Drnevich models, except for a variation in

the magnitude of acceleration. In all the cases, as before,

higher values of acceleration are obtained in the upstream

than the downstream of the dam.
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Based on the Seed-Idriss method, Figs. 8.175 to

8.177 display the locations at which only amplification of

acceleration has been noticed for the three input motions.

In general, the Ramberg-Osgood and the Hardin-

Drnevich models show lower and higher degree of

deamplification phenomena respectively. The Seed-Idriss

method shows the least degree of deamplification. In all the

three methods of analysis and for the three ground motions,

between an elevation 0.25H and the bottom of the foundation

of dam DC, the distribution of acceleration is more or less

the same. In all the cases, higher values of acceleration

are noticed in the foundation than the body of the dam.

These analysis results conform with that of the dynamic

analysis of the Fort Peck Dam (Marcuson and Krinitzsky,

1976) . The presence of ^water makes a rockfill dam more

vulnerable to earthquakes. Out of all the three ground

motions, the synthetic waveform is more severe than the

other two accelerograms corresponding to the two actual

earthquake records.

8.11.8.2 Shear strain

From Table 8.29 at any elevation, it can be seen

that the shear strain values obtained by the Ramberg-Osgood

model using GMl are less than 1.0 percent. The maximum value

of dynamic shear strain is of the order of 0.542 percent and

the value of total shear strain is 4.013 percent occurring at

element 200, which lies at the top of the impervious core

(Fig. 8.64, second layer from the crest). At other locations,
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the elements lying in the upstream transition zone yield

larger values of shear strain than the downstream transition

zone. This behaviour could possibly be due to transfer of

load from upstream shell zone to the core and low stiffness

zones of the filter. The value of shear strain in the core

is lower than the adjacent filter zones in the upstream and

the downstream except at element 200.

Corresponding to the artificial accelerogram and

the Taft earthquake record the peak values of dynamic shear

strain are of the order of 8.491 and 3.265 and the total

values of shear strain are 10.162 and 4.936 percent respect

ively, occurring at element 199 in the core (second layer

from the crest), at an elevation of 328 metres from the base.

At all other elevations, the value of shear strain in the

upstream filter zone is larger than that in the downstream

filter zone, demonstrating the transfer of load from the high

stiff shell zone to the relatively low stiff filter material.

Further, as described in the analysis of El

Infiernillo Dam based on a 5 percent 'shear strain as the

failure criteria, the dam DC reaches the threshold level of

failure at the top portion of the core (elements 199 and

200) , when the artificial accelerogram is used as the base

input motion.

The distribution of shear strain values obtained

at the few element centres using the Hardin-Drnevich model

(Table 8.30), are similar to the distribution observed using

the Ramberg-Osgood model (Table 8.29), except that the peak

values of dynamic shear strain of the order of 1.829 percent
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and 2.739 percent and the total values of shear strain as

3.847 and 4.757 percent are obtained corresponding to GMl and

the artificial accelerogram (GM2) respectively and taking

place at element 66 (72 m from the base) . However, in the

analysis using the Taft earthquake record, the peak value of

dynamic shear strain of the order of 2.251 percent and the

total value of shear strain as 4.269 percent are noticed at

element 66. As before, the transition in the upstream

experiences higher values of shear strain than that in the

downstream,

^r From the shear strain values shown in Table 8.31

by the Seed-Idriss method, the peak value of dynamic shear

strain is noticed at element 199, which is of the order of

2.712 percent and the total value of shear strain as 6.073

percent when GMl has been used as the base input motion. For

this input motion, in all the three methods of analysis, the

Seed-Idriss method yields the largest value of shear strain

in comparison to the other two models. This behaviour has

not been observed in the analysis of the El Infiernillo Dam

and dam DB. Similarly, another peak value of dynamic shear

strain is noticed at element 156 which is lying in the

downstream. At all other elevations the largest value of

shear strain is noticed in the upstream filter zone only.

For the analysis based on the synthetic

accelerogram the largest value of dynamic shear strain by the

Seed-Idriss method is of the order of 6.137 percent (element

199) and the total value of shear strain as 8.984 percent

occurring at element 200, which are less than the values
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predicted by the Ramberg-Osgood model for the same input

motion and at the same elevation. At all other elevations,

the shear strain values in the upstream filter zone are

larger than that of the corresponding downstream filter zone

for which the reason has been previously cited.

A similar pattern of distribution of dynamic shear

strain is noticed when the Taft earthquake record is used as

the base input motion. The peak value of dynamic shear

strain is of the order of 3.067 percent and the total value

of shear strain as 4.738 percent occurring in element 199,

which is less than the value obtained by the Ramberg-Osgood

model at the same location. At other elevations, a similar

type of distribution of dynamic shear strain as described in

the previous paragraph is observed. In the dynamic analysis

of the dam DC, the values of shear strain in the upstream

filter are larger than that in the downstream filter zone.

The peak value of shear strain is obtained by the Ramberg-

Osgood model for the synthetic ground motion as the

earthquake load vector followed by the Seed-Idriss method for

the same input motion at the top portion of the impervious

core. The top part of the core lies in a region, consisting

of shell, filter and core materials with varying stiffnesses.

For all the three ground motions, the Ramberg-

Osgood model and the Seed-Idriss method predict the peak

value of shear strain at the same elevation except in

one case (GMl, Column 5 of Table 8.31,- element 199). The

Hardin-Drnevich model predicts the lowest values of shear

strain in comparison to the other two methods of analysis.
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The 336 m high dam reaches the threshold level of

failure corresponding to the artificial waveform, based on

the 5 percent failure criterion as predicted by the Ramberg-

Osgood model and the Seed-Idriss method. The region of

failure is the top portion of the core which is the zone

consisting of low to high stiffness materials. Out of the

three ground motions, the artificial earthquake record is

more severe than the other two records pertaining to actual

earthquakes.

As done previously in the case of El Infiernillo

Dam and dam DB, to evaluate the stability of dam DC, the

dynamic and total shear strain values have been computed

using the Ramberg-Osgood model and the modified artificial

accelerogram with the peak ground acceleration of 0.40g as

the base input motion. These shear strain values are shown

jn Table 8.32. From this table it is seen that the peak

value of dynamic shear strain as 12.325 percent and the value

of total shear strain as 15.386 percent: As can be noticed

in this table, under the postulated artificial ground motion

with a peak ground acceleration value of 0.40g, approximately

50 percent of the elements lie in the threshold level of

failure (value of shear strain is between 5 and 15 percent) .

However, this conclusion is qualitative in nature, since

laboratory determined cyclic shear stress values were not

available for an exact prediction of the failure phenomenon.
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8.11.8.3 Displacement

The computed displacements at the crest (node 13,

top of axis), for the Ramberg-Osgood and Hardin-Drnevich

models and the Seed-Idriss method of analyses are of the

order of 6.91, 5.99 and 9.02 cm respectively, corresponding

to the base input motion, GMl (Table 8.33). For the

artificial waveform (GM2), the crest displacements for the

three methods of analysis are 49.26, 27.55 and 20.85 cm

respectively. And for the Taft earthquake record these

values are 20.50, 13.66 and 15.69 cm respectively. As

before, for the synthetic ground motion, the largest values

of crest displacements are obtained irrespective of the

method of analysis adopted. In all the cases, the Ramberg-

Osgood model predicts the highest value of displacement of

the order of 49.26 cm.

The deformed shape of the dam DC, using the

Ramberg-Osgood model corresponding to the three ground

motions are shown in Figs. 8.178 to 8.180. Using the Hardin-

Drnevich model the deformed plots are shown in Figs. 8.181

to 8.183 and based on the Seed-Idriss method these plots are

displayed in Figs. 8.184 to 8.186. These deformed shapes are

obtained by connecting the displaced nodes at specific

locations only.

8.11.8.4 Time-history of acceleration

From the time-history of acceleration values

plotted at five locations along the axis, from the crest to
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Table 8.33 Displacement at the Crest (Node 13)
Dam DC; PGA = 0.25g
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SI.

No.

(1)

Crest Displacement (cm) Method of Analysis

(5)

Applied Ground Motion

GMl

(2)

GM2

(3)

GM3

(4)

1

2

3

6.91

5.99

9.02

49.26

27.55

20.85

20.50

13.66

15.69

Ramberg-Osgood Model

Hardin-Drnevich Model

Seed-Idriss Method
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the base (nodes 13, 48, 223, 328 and 468) in the horizontal

direction by the Ramberg-Osgood and Hardin-Drnevich models
ir

and the Seed-Idriss method shown in Figs. 8.67 to 8.81,

corresponding to the synthetic accelerogram, it can be seen

that lower acceleration values at the crest (node 13) are

obtained than the acceleration values obtained at node 48.

Out of these three methods of analysis, the acceleration

values predicted by the Ramberg-Osgood model are larger than

the values predicted by the Hardin-Drnevich model. However,

the Seed-Idriss method gives the highest value of

-f acceleration among the three methods of analysis.

At node 223 (approximately 0.75H from the base),

Ramberg-Osgood and Hardin-Drnevich models yield time-history

of acceleration with an appreciable degree of deamplifica-

tion. Whereas, the Seed-Idriss method does not show such a

phenomenon at node 223.

At node 328 (approximately 0.50H from the base),

the time-history of acceleration plotted by all the three

methods of analysis shows deamplification phenomenon. At

node 468 (which is in the body of the foundation, along the

axis) , a very low degree of deamplification is noticed in the

three methods of analysis.

Identically, the acceleration time-histories

plotted corresponding to the vertical direction for the same

five nodes, using the three methods of analysis (Figs. 8.82

to 8.96), corresponding to the synthetic accelerogram show

the same distribution pattern with deamplification

-*• phenomenon. The vertical acceleration values are very low in
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magnitude.

From the displacement time-histories plotted at

the same locations, corresponding to the horizontal direction

where acceleration time-histories have been computed, and

shown in Figs. 8.97 to 8.111, in all the three methods of

analysis, the Ramberg-Osgood model yields the highest values

of displacement time-histories followed by the Seed-Idriss

method. The Hardin-Drnevich model yields the lowest values

of displacement time-histories. In all the three methods of

analysis, the horizontal displacement is larger at the crest

and decreases towards the base of the foundation.

The displacement time-histories plotted in Figs.

8.112 to 8.126 for the vertical direction show the same trend

as the horizontal direction ones with very low values of

-a

displacement.

8.11.8.5 Time-history of shear stress

The time-histories of shear stress obtained at a

few element centres, namely, at elements 63, 66 to 70, 132 to

135 and 198 to 201 are shown in the form of time-history

plots in Figs. 8.127 to 8.168, corresponding to the

artificial accelerogram for the three methods of analysis

used.

It can be seen from Figs. 8.127 to 8.132

corresponding to elements 63 and 66 and in Figs. 8.145 to

8.147 corresponding to element 132 that the time-histories of

shear stress are compressive in nature during the entire
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duration of the accelerogram. In elements 67 to 70 (Figs.

8.133 to 8.144), the shear stress time-histories are tensile

in nature showing that the base of the dam is prone to

undergo excessive deformation in the event of a strong ground

shaking possessing the characteristics of the synthetic

earthquake. In the absence of cyclic triaxial shear stresses

as determined from a laboratory testing schedule, the

described failure criterion is qualitative only.

In elements 133, 199 and 200, the time-histories

of shear stress are continuously changing (Figs. 8.148 to

8.150 and Figs. 8.160 to 8.165), between compressive and

tensile stresses and the resulting equivalent uniform number

of cycles are 4 to 6 only for the Ramberg-Osgood model and

the Seed-Idriss method. However, in the Hardin-Drnevich

model the number of equivalent uniform cycles are of the

order of 1 to 2. The continuously varying cyclic shear

stresses have been converted into equivalent uniform stress

cycles by drawing straight lines in the positive and the

negative directions, corresponding to 0.65 times the peak

shear stress (T^) value (Carrera et al., 1979).

In elements 134 and 135 (Figs. 8.151 to 8.156),

the shear stress history is only tensile in nature for the

Ramberg-Osgood and Hardin-Drnevich models and in the Seed-

Idriss method, they are mostly tensile and compressive

between the time interval of 14 to 22 seconds duration. In

element 134, the magnitude of compressive stresses are larger

than that of the compressive stresses occurring in

•^ element 135.
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In element 198 (Figs. 8.157 to 8.159), the time-

history of shear stress is compressive in nature based on the

Ramberg-Osgood and Hardin-Drnevich models and they are

crossing the zero line of stress during a time interval of 6

to 15 seconds in the Seed-Idriss method of analysis.

In element 201, the Ramberg-Osgood model shows

compressive stresses only to a very low extent between the

duration of 20 and 24 seconds, as can be seen in Fig. 8.166.

The Hardin-Drnevich model predicts only tensile stresses

during the entire duration of the ground motion (Fig. 8.167)

and the Seed-Idriss method yields tensile stresses of low

magnitude and compressive stresses of large magnitude than

the other two models (Fig. 8.168) predict at the same

location. Thus, in the event of a strong ground motion which

is similar to the artificial earthquake and with a peak

ground acceleration of 0.25g, large tensile cracks are

likely to occur at element 201, as per the predictions of

the two models. Such predictions should be supplemented with

the laboratory tested cyclic shear stress values, and in the

absence of these laboratory data, predictions made are

qualitative only. In Fig. 8.168, it can be seen that the

Seed-Idriss method shows the presence of equivalent uniform

stress cycles of the order of 1 to 2 and the other two models

do not show the availability of any such equivalent uniform

stress cycle.
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8.11.9 Comments on the Analysis of Dam DC

Based on the detailed dynamic analysis of the

336 m high rockfill dam DC, including its foundation, using

the three methods of analysis and the three different ground

motions as base input motion the following conclusions are

arrived at:

1 The crest acceleration is of the order of 0.17g,

0.33g and 0.32g by the Ramberg-Osgood model; 0.12g,

0.16g and 0.17g by the Hardin-Drnevich model and

0.32g, 0.37g and 0.36g by the Seed-Idriss method for

the three ground motions, GMl, GM2 and GM3

respectively. The Hardin-Drnevich model gives the

lowest values of acceleration and the Seed-Idriss

method gives the highest values of acceleration.

2 In "the acceleration response evaluation, from the

base of the foundation to 0.50H of the dam DC, all

the three methods of analysis yield nearly the same

values of acceleration and identical distribution

pattern for all the three ground motions. Between

0.50H and the crest of the dam the distribution of

acceleration is different for the three ground

motions and the three methods of analysis.

3 The upstream of the dam is more critical under the

reservoir full condition when subjected to a strong

ground shaking.

4 The foundation experiences higher values of

acceleration than the body of the dam. Along the
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axis of the dam, except at the crest and immediately

below the crest, the computed acceleration values are

of very low in magnitude. Similar observations have

been made in the past by other researchers as well.

5 In all the three methods of analysis, the maximum

value of shear strain is noticed at the same location

which is at the top of the impervious core with an

exception in the Hardin-Drnevich model for GMl and

GM2 ground motions. For all the three ground

motions, the transition zone in the upstream

experiences higher shear strain values than the

downstream transition zone, demonstrating that the

dam is more earthquake prone under reservoir full

condition.

6 The dam DC reaches the threshold level of failure in

the Ramberg-Osgood model and the Seed-Idriss method

of analysis, corresponding to the postulated

artificial accelerogram with the peak ground

acceleration value of 0.25g. The Hardin-Drnevich

model does not predict any similar failure criterion.

7 Among the three methods of analysis, the Ramberg-

Osgood model yields intermediate values of

acceleration and the largest values of shear strain.

A reverse trend can be noticed when the Seed-Idriss

method is adopted. The Hardin-Drnevich model yields

the lowest values of acceleration at the crest and in

the body of the dam and the lowest shear strain

values, possibly due to the convergence towards a
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larger value of damping, which is not experienced in

practice.

8 The dam DC reaches the threshold level of failure for

the artificial accelerogram as the base input motion

with a peak ground acceleration value of 0.40g when

the Ramberg-Osgood model has been adopted.

9 The highest value of the crest displacement of

dam DC is obtained using the Ramberg-Osgood model

corresponding to the artificial accelerogram. The

Hardin-Drnevich model and the Seed-Idriss method

respectively yield crest displacement values in the

descending order corresponding to the same

accelerogram. For the Taft earthquake record, the

Ramberg-Osgood model predicts the highest value of

displacement at the crest followed by the Seed-Idriss

method and the Hardin-Drnevich model in sequence.

10 The acceleration time-histories obtained show deamp-

lification in all the three methods of analysis and

for all the three ground motions under the postulated

peak ground acceleration value of 0.25g. Acceleration

time-histories obtained in the vertical direction are

of very low-magnitude.

11 The magnitude of the displacement time-histories of

both the directions increase from the base towards

the crest.

12 The number of equivalent uniform stress cycles

observed are 4 to 6 in the Ramberg-Osgood model and
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in the Seed-Idriss method.

13 The continuously changing tensile and compressive

shear stress time-histories demonstrate the likely

occurence of tensile cracks in the event of a strong

ground shaking as that of the synthetic ground motion

with a peak ground acceleration of 0.25g.

14 The accuracy of the different computed parameters,

such as the peak acceleration, crest displacement and

maximum shear strain can be verified only in the

event of a strong ground motion supplemented with

1P detailed instrumentation, for recording the accele

ration and other parameters.

15 In the absence of laboratory determined cyclic shear

stress data, the failure phenomenon based on the

computed 5 to 15 percent shear strain criteria is

qualitative only.

16 The artificial waveform is much severe than the other

two actually recorded ground motions.

17 Below 0.25H from the base, the distribution of

acceleration is more or less same in the three

methods of analysis and for the three strong ground

motions used.

8.12 CLOSURE

The case-history study of the 146 m high El

Infiernillo Dam and nonlinear static and nonlinear dynamic

analysis of two other rockfill dams of height 108 m and 336 m

including their respective foundations which were proposed to
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be built in earthquake prone areas in India, with moderate

and severe seismicity respectively have been described in

detail in this chapter. Under the static case, the pre-

earthquake stresses of the three rockfill dams corresponding

to the reservoir full condition have been evaluated using the

nonlinear static model based on the hyperbolic law. The pre-

earthquake stresses computed at the Gaussian sampling points

have been used as the initial conditions for the nonlinear

dynamic analyses. For the 336 m high dam, the different

nonlinear static stresses have been presented in the form of

stress contours. The minor and the major principal stress

ratio is also plotted in the form of contours.

The nonlinear dynamic analyses of the three

rockfill dams have been performed using the Ramberg-Osgood

model, for curve fitting the strain dependent shear modulus

values obtained after carrying out numerous field tests at

different sites in India. For comparing the predictions made

by the Ramberg-Osgood model, the dynamic analysis has also

been carried out using the Hardin-Drnevich model and the very

widely used Seed-Idriss method. In the dynamic analysis of

each dam, three accelerograms with a total duration of 120,

38 and 30 seconds respectively have been used as the

earthquake load vectors. These three ground motions cover a

wide range of duration. Out of the three ground motions, the

first and the last accelerograms were actually recorded ones

and the second accelerogram was an artificially generated

motion. For all the three strong ground motions, the peak
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ground acceleration was of the order of 0.25g. This was done

because of the peak ground acceleration value of the March

14, 1979, Mexico earthquake was also of 0.25g only.

The dynamic response of the El Infiernillo Dam as

evaluated in the present thesis has been compared with the

actually recorded/measured response due to the March 14,

1979, Mexico earthquake. It has been observed that the

Ramberg-Osgood model as proposed in .the present thesis

predicts a behaviour which is in close agreement in

comparison to the recorded/measured value of acceleration/

displacement. The effect of a stiff foundation has also been

studied in the case of the El Infiernillo Dam.

In the dynamic analysis of two rockfill dams,

namely, DB and DC, the low-amplitude shear modulus has been

computed based on the Nose's equation and the damping values

for the first iteration has been adopted from the damping

ratio curves proposed by Seed and Idriss.

For dam DC, time-histories of acceleration and

displacement in the horizontal and vertical directions at a

few selected nodes and time-histories of shear stress at a

few element centres have been presented in the form of time-

history plots using the Ramberg-Osgood model, Hardin-Drnevich

model and the Seed-Idriss method.

The failure criteria in all the three dams has

been estimated on the basis of 5 percent shear strain

phenomenon. In this procedure, the El Infiernillo Dam

reaches the threshold level of failure corresponding to the

artificially generated accelerogram with a peak ground
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acceleration of 0.40g. Dam DB does not reach the failure

level corresponding to the peak ground acceleration values of

0.25g and 0.40g and in Dam DC only the top part of the core

attains the threshold failure level under the postulated

artificial ground motion with peak ground acceleration of

0.25g. However, a major portion of the dam DC experiences

the threshold level of failure corresponding to the peak

ground acceleration value of 0.40g. The reported failure

criteria for all the three dams is of qualitative type due to

the non-availability of laboratory tested cyclic shear stress

data.

From the numerous results presented and the

discussions made thereupon the following conclusions are

drawn:

1 The pre-earthquake stresses are mostly compressive in

nature.

2 The Ramberg-Osgood model as used in the present study

predicts acceleration value and displacement value

-^ which are close to the actually recorded/measured

values of acceleration/displacement in the case-

history analysis of the El Infiernillo Dam. The

Hardin-Drnevich model and the very widely used Seed-

Idriss method do not yield either acceleration or

displacement values which are close to the actual

values.

3 In all the three dams analysed, the Hardin-Drnevich

^ model predicts the lowest values of acceleration
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possibly due to the utilization of damping of the

order of 63.7 percent. The Ramberg-Osgood model and

the Seed-Idriss method yield intermediate and the

largest values of acceleration respectively.

4 The computed values of crest displacement do not

follow the same trend as the distribution of

acceleration.

5 The Hardin-Drnevich model shows deamplification

phenomenon to a very great extent from the base of

the dam (and not at the foundation) towards the

crest. The Ramberg-Osgood model and the Seed-Idriss

method also, show deamplification phenomenon in a

descending order. The reason for the deamplification

phenomenon is not known and needs to be investigated.

6 The Ramberg-Osgood model predicts the highest values

of shear strain followed by the Seed-Idriss method

and the Hardin-Drnevich model yields the lowest

values.

7 The location of the maximum shear strain values

obtained in the three methods of analysis for the

three ground motions are same, which is at the top of

the impervious core, with the exception of the

Hardin-Drnevich model (corresponding to dam DC and

ground motion GMl) . The top portion of the

impervious core is a zone with values of lowest

stiffness, perhaps due to the transfer of load, from

the adjacent transition zones, shell materials from

-^ the crest and the water pressure on the upstream face
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of the core.

8 For convergence purposes, the Ramberg-Osgood and

Hardin-Drnevich models need approximately 50 to 60

percent of the computer time required by the very

widely used Seed-Idriss method. The reduction in

computer time could possibly be due to the fact, that

the former two models employ a functional expression

for the strain dependent shear modulus and damping

values at every time step, whereas, the Seed-Idriss

method uses a limited number of digitized values as

the modulus reduction factor and damping ratio.

9 The observed peak acceleration values are larger on

the upstream face of the three dams than the corres

ponding elevations in the downstream, which

demonstrates that the presence of a full reservoir

makes a rockfill dam more disaster prone in the event

of a strong ground shaking.

10 At any elevation above the top surface of the

foundation in a horizontal plane intersecting the

axis of the dam, the acceleration values along the

axis are the lowest in comparison to the computed

acceleration values along the upstream and the

downstream slope surfaces. The reason for such low

values of acceleration along the axis is not known

and needs to be investigated.

11 The foundation experiences more acceleration values

than the centre part of the dam.

12 Inclusion of a stiff foundation does not alter the



4

424

response of a dam significantly.

13 The upstream filter zone experiences larger values of

shear strain than the corresponding filter zone in

the downstream. This again shows that the impounded

water on the upstream makes a dam less stable against

a strong ground shaking.

14 Under the postulated peak ground acceleration of

0.40g using the artificial waveform and the Ramberg-

Osgood model, the El Infiernillo Dam shows a small

zone undergoing excessive deformation. Dam DB did

not show any such behaviour and dam DC shows an

appreciable region in the dam experiencing the

threshold level of failure strain.

15 In the absence of laboratory tested cyclic shear

stress values, the established failure criterion

based on a 5 percent shear strain value should be

considered as quantitative only, subjected to a peak

ground acceleration of any intensity.

16 The dynamic response of a rockfill dam depends upon a

few of the important parameters such as geometry,

dynamic material properties and the characteristics

of the input motion and the method of analysis

adopted.

17 Out of the three ground motions used for the dynamic

analysis of the three rockfill dams, the artificially

generated waveform is more severe than the other two

actually recorded ground motions.
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18 The number of equivalent uniform stress cycles

observed are 4 to 6 in the Ramberg-Osgood model and

in the Seed-Idriss method of analysis. The Hardin-

Drnevich model does not predict the presence of

equivalent uniform stress cycles.

19 The time-history of shear stress plot which is

tensile in nature, is an indication of the likelihood

of occurence of tension cracks at that location, in

the event of a strong ground shaking.

20 Out of the three methods of analysis the Ramberg-

Osgood model is the best suited for the dynamic

analysis of rockfill dams and for the simulation of

nonlinear stress-strain characteristics of different

soils. Also, the Ramberg-Osgood model is more

economical than the very widely used Seed-Idriss

method of analysis.



CHAPTER 9

^ CONCLUSIONS AND RECOMMENDATIONS

9.1 GENERAL

Rockfill dams of height 250 m or more are

increasingly being constructed in overseas countries and in

India. In such tall rockfill Jams due to increase in height,

the confining pressure also increases appreciably and at this

state the induced shear strain value reaches the failure

limit, and the behaviour of the dam-materials is nonlinear.

\ The dynamic response of the dam is based upon the strain

dependent dynamic characterstics of the different materials

constituting the dam. For a detailed dynamic response

evaluation of a rockfill dam subjected to a strong ground

shaking, the nonlinear stress-strain characterstics of the

different materials constituting the dam should be considered

in the analysis, based on elaborate experimental studies.

The nonlinear stress-strain characterstics of the different

soils should be simulated through an appropriate model. The

selected model should be ^ble to predict the dynamic

nonlinear material behaviour, at large and failure levels of

strain, and not at low or medium strain levels only. The

nonlinear dynamic analysis of such high rockfill dams using

the Ramberg-Osgood model to simulate the stress-strain

characterstics, based on in-situ test to determine the

426
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dynamic properties of various dam materials is rarely

available in Geotechnical-Earthquake Engineering discipline.

The dynamic analyses available till today have been performed

mostly on hydraulic fill dams and rockfill dams of medium

height of the order of 50 m to 150 m, and soil-structure

interaction problems using the Hardin-Drnevich model, based

upon the hyperbolic law or the Seed-Idriss method to account

for strain dependent dynamic properties of sand and clay

materials only. The existing literature on the dynamic

analysis of very high dams of the order of 200 m or more is

scanty. In these very limited cases of analysis, the ground

motions used as the earthquake load vectors are a maximum of

60 to 70 sees, duration only. Any dynamic analysis that has

been done for an earthquake accelerogram of duration 120 sees

is not immediately available in the literature.

The Hardin-Drnevich model, based on two

parameters, namely, shear modulus at low-amplitude strain

level and shear strength of soils, predicts unreasonably very

high value of damping at large and failure strain levels.

The prediction of very large amount of damping, absolutely

misleads the dynamic response of an earth structure or soil-

structure interaction problem during the occurrence of a

severe earthquake or a blast. The Seed-Idriss method which

is based on tests carried out by different investigators

yields low values of shear modulus and damping ratios in

comparison with the actual tests.

In view of the afore mentioned limitations
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different type of in-situ and laboratory tests have been

carried out to determine the shear modulus of various soils,

representing a rockfill dam. From the field tests, damping

values have been determined at strain values ranging from low

to medium values as a function of strain. Laboratory tests

for determining the shear modulus have been conducted only,

at large strain values. Using the field determined shear

modulii of different soils, ranging between strain values of

low to medium and then to large and failure levels, the

modulus reduction curves have been obtained based on the

Ramberg-Osgood model. Using the same model, the damping

A values have also been computed as a -function of strain.

Knowing the two important strain*dependent dynamic properties

of different soils representing a rockfill dam, the case

history study of the 146 m high El Infiernillo Dam has been

carried out using the Ramberg-Osgood model. In the case

history analysis, due to the very close agreement between the

computed and the recored/measured values of crest accelera

tion and displacement, by the Ramberg-Osgood model, two other

rockfill dams of height 108m and 336 m, including their

y respective foundations have been analysed using the same

model. Out of these two dams the former (108 m height) was

proposed to be built in a region with moderate sesimicity and

the latter in a region with severe seismicity. Once the 336

m high dam is completed its construction, this dam would be

one among the first ten tallest dams of the world. For the

purpose of comparison, the dynamic analysis of all the three

dams has been carried out using the Hardin-Drnevich model and
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the very widely used Seed-Idriss method as well.

In the dynamic analysis, three different ground

motions of total durations 120, 38 and 30 sees, have been

used as the earthquake load vectors for each dam. Out of

these three ground motions, the first ground motion was

recored recently in the North-Eastern Region of India, the

second ground motion was an artificially generated and the

last accelerogram adopted was recorded during the 1952, Kern

County (Taft) earthquake. All the three ground motions have

been normalized to a peak ground acceleration of 0.25g,

because the intensity of the March 14, 1979, Mexico earth-

X quake was also of 0.25g only.

For the dynamic response evaluation, the pre-

earthquake stresses have been used as the initial conditions.

These initial stresses have been computed using a computer

program based on the finite element method with eight-noded

isoparametric elements and reduced integration technique,

developed in the present study, incorporating the nonlinear

hyperbolic model accounting for volume change characterstics

and considering the method of sequential construction. The

>~ dynamic analysis has been performed using a computer coding

developed on the basis of the finite element method in the

present work, incorporating the Ramberg-Osgood model, Hardin-

Drnevich model and the very widely used Seed-Idriss method

for modulus reduction and damping ratio curves. The dynamic

analysis computer coding employs a step-by-step time

integration scheme in the time domain with the capabilities

of pre-processing.

I
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A failure criteria evaluated on the basis 5

percent shear strain phenomenon is qualitative in nature due

j to nonavailability of laboratory determined cyclic shear

stress values.

9.2 CONCLUSIONS

The significant conclusions drawn from the

extensive studies carried out are presented in the following

paragraphs.

9.2.1 Shear Modulus

9.2.1.1 Secondary time effects on shear modulus

1 Shear modulii determined in the laboratory for all

the soils at the end of primary consolidation is

larger than the shear modulus values determined

without accounting for primary consolidation to take

place.

2 The percentage increase in shear modulus due to

secondary time effect is of the order of 3 to 28

percent or more depending on the type of soil and

^~ increases from coarse grained soil to fine grained

soil.

3 The secondary time effect on shear modulus is

negligible for soils having the mean grain diameter

is more than 0.038 mm.

\
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9.2.1.2 Relation between field and laboratory determined
shear moduli!

1 The ratio between field shear modulus and laboratory

shear modulus at a common strain level called the

disturbance factor is greater than 1.0 for the tested

soils.

2 The field shear modulus curve cannot be arbitriarly

obtained from the laboratory determined shear

modulus.

3 The disturbance factor computed is a function of

strain and increases as the value of strain

y decreases.

4 The value of the disturbance factor is larger when

the shear modulus is determined without considering

the primary consolidation.

5 The value of the disturbance factor is not a constant

for all type of soils.

9.2.1.3 Prediction of in-situ high-amplitude shear modulus

1 The predicted value of in-situ high-amplitude shear

>- modulus using the disturbance factor method, for a

site consisting of dense sand is lower than the

predicted values obtained by the arithmatic method

and the percentage method.

2 To obtain the in-situ shear modulus value using the

disturbance factor method, only the laboratory shear

modulus and the associated value of shear strain are

the two parameters needed.
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9.2.2 Nonlinear Dynamic Stress-Strain Relationship

9.2.2.1 Ramberg-Osgood model

1 The Ramberg-Osgood model which is based on four

parameters, namely, shear modulus at low-amplitude

strain value and the shear strength corresponding to

the low-amplitude shear modulus and the two

constants, *C and R gives a better fit to

experimentally obtained values of shear modulus.

2 The Ramberg-Osgood model simulates the shear modulus

and damping ratio as closely as possible to the

actual value at large and failure strain levels.

3 The two constants of the Ramberg-Osgood model, < and

R differs from soil to soil and assuming the dynamic

properties of gravel and sand to be identical would

mislead.

4 The Ramberg-Osgood model predicts a damping value of

zero at which the modulus reduction curve (G/Gmax) is

unity. This can be overcome by assigning the

experimentally determined damping value at G/G^.^

equal to unity or a very low value of damping of the

order of 0.05.

5 The modulus reduction factors reported herein are

generally larger than the values proposed by Seed and

Idriss for sand and clay type of soils. For silty

soils the obtained modulus attenuation curves are in

good agreement with that of the curves proposed by

Grant and Brown.
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6 The Ramberg-Osgood model uses a functional expression

for the shear modulii and damping ratios which is an

essential requirement for a dynamic analysis based on

a step-by-step time integration technique.

9.2.2.2 Hardin-Drnevich model

1 The Hardin-Drnevich model is based on two parameters,

namely, the low-amplitude shear modulus and the shear

strength of a soil at failure level.

2 At large strain levels the Hardin-Drnevich model

tends to give intolerably large damping values of the

-j order of 63.7 percent, which is not experienced in

actual situation.

3 The Hardin-Drnevich model uses a functional

expression for the shear modulii and damping ratios

which is an essential requirement for a dynamic

analysis based on a step-by-step time integration

technique.

9.2.2.3 Seed-Idriss method

y The Seed-Idriss method uses a maximum of 11 digitized

values of shear modulus and damping ratios as a

function of strain over a range of 10~ to 10

percent. The Seed-Idriss method does not employ a

functional expression for representing the dynamic

soil properties.

f
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9.2.3 Computer Programs

Two specific purpose computer codings, one for

static sequential analysis, with material nonlinearity and

the other for dynamic analysis in the time domain,

incorporating two nonlinear models and one method using the

finite element method based on the versatile eight-noded

isoparametric element concept with reduced integration scheme

have been developed. The following conclusion is drawn.

Two computer programs based on the finite element

method with graphics pre-processing facilities have

been developed and these programs have been applied

to carry out the nonlinear static and nonlinear

dynamic analysis of three rockfill dams. For two

dams, the interaction of foundation has also been

considered. The static nonlinear analysis computer

program incorporates the hyperbolic model with volume

change characteristics and construction sequence

operations. The nonlinear dynamic analysis computer

program incorporates the Ramberg-Osgood model,

Hardin-Drnevich model and the Seed-Idriss method of

modulus reduction curves and damping ratios.

9.2.4 Nonlinear Static Analysis

The following conclusions are arrived at, based on

the nonlinear static analysis of the three rockfill dams

corresponding to the reservoir full condition.

1 The phenomenon of arching, between the upstream
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shell, filter and the core materials has been

observed in the analysis of the three dams.

2 The horizontal displacement increases towards down

stream of the dam.

3 The horizontal stresses are larger than the hydro

static pressure, showing the dams are safe against

hydraulic fracture.

4 All the principal stresses are compressive in nature.

9.2.5 Nonlinear Dynamic Analysis

The nonlinear dynamic analysis of the three

rockfill dams has been carried out under the full reservoir

condition. In each case, the pre-earthquake stresses have

been used as the initial condition. From the nonlinear

dynamic analysis performed the following conclusions are

arrived at.

1 In the case history analysis of the El Infiernillo

Dam, the predicted values of crest acceleration and

the crest displacement by the Ramberg-Osgood model

are very close to that of the recorded and measured

values of acceleration and displacement respectively,

due to the March 14, 1979, Mexico earthquake. The

differences in the computed values of acceleration

and displacement are 2.8 percent less and 1.0 percent

more respectively than the actually measured values.

The Hardin-Drnevich model and the Seed-Idriss method

of analysis do not predict any value that is nearest

to the recorded/measured value. The Hardin-Drne>vich
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model and the Seed-Idriss method give the lowest and

the highest values of acceleration and displacement

-| respectively, which shows that the Ramberg-Osgood

model is the best suited for the dynamic analysis

involving nonlinear stress-strain characteristics of

soils.

2 The Hardin-Drnevich model is unsuitable for dynamic

analysis due to the convergence towards a very high

value of damping at large strain levels.

3 The Seed-Idriss method gives very high values of

acceleration and uneconomical.

^ 4 The Ramberg-Osgood and Hardin-Drnevich models require

less computer time due -to lesser number of iterations

than the Seed-Idriss method needs.

5 The degree of deamplification is the largest in the

Hardin-Drnevich model followed by the Ramberg-Osgood

model and the Seed-Idriss method in sequence.

6 The base of the dam, base of the founation, upstream

slope surface, and the crest experience more

acceleration values than the body of the dam and the

r downstream slope surface.

7 The transition zone in the upstream shows higher

values of shear strain than that the downstream

transition zone.

8 The reservoir full condition is less stable in the

event of a strong ground motion.

9 The El Infiernillo Dam attains the threshold level of

failure, based on the 5 percent shear strain criteria

^•••••••BpgH
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due to a peak ground acceleration of 0.40g. Dam DB

does not show any such failure under the postulated

peak ground acceleration values of 0.25g and 0.40g.

Dam DC is likely to deform to a large extent, when

subjected to an earthquake with a peak ground

acceleration of 0.40g with the characteristics

similar to that of the artificial earthquake.

10 Due to nonavailability of laboratory tested cyclic

shear stress data the established failure criteria

based on the 5 percent shear strain phenomenon for

the three dams is qualitative only.

11 At the top of the impervious core larger values of

shear strain are noticed than any other location.

12 All the three methods of analysis identically predict

the same location, namely, the top of the impervious

core as the weakest zone of deformation.

13 The number of equivalent uniform stress cycles is 3

to 4 in the Ramberg-Osgood and Hardin-Drnevich models

and 4 to 5 in the Seed-Idriss method of analysis, in

the case of dam DC.

14 The vertical acceleration component is negligible in

comparison to the value of the horizontal accelera

tion.

15 The time-history of shear stress which is tensile in

the whole duration of the input motion predicts the

likelihood of occurrence of tension cracks when

subjected to a strong ground motion.
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16 The failure criteria of a rockfill dam should be

established on the basis of some important

parameters, such as the shear strain, displacement

and acceleration and not on the basis of the absolute

value of the acceleration alone.

17 The synthetic waveform is more stronger than the

other two actually recorded accelerograms.

9.3 SUGGESTIONS FOR FURTHER WORK

9.3.1 Dynamic Properties of Soils

1 At large confining pressure the shear modulus and

damping ratio are influenced to a greater extent by

the number of cycles of load application and this

should be investigated.

2 The degradation of shear modulus may be studied.

3 More field and laboratory tests should be carried out

at medium strain levels to establish the disturbance

factor as a function of strain, other than the large

strain levels.

4 Shear modulus and damping ratio of boulder or rock

materials should be established as a function of

strain at high-amplitude values in the field and in

the laboratory.

5 For all type of soils the Ramberg-Osgood model

parameters should be evaluated.

9.3.2 Nonlinear Static Stress-Strain Models

The minor principal stress dependent nonlinear
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elastic stress-strain model, based on the hyperbolic law,

which has been used in the present thesis to compute the pre-

earthquake stresses, possesses inherent limitations as listed

below.

1 The hyperbolic model is suitable for the analysis of

stresses and movements prior to failure, and cannot

be applied to earth masses during and after failure.

This model is not applicable when plastic deformation

is present.

2 The hyperbolic relationship does not account for

volume changes due to the variation in shear stress

or shear dilatency.

3 The hyperbolic model can predict deformations in

dilatant soils, such as dense sands under low-

confining pressure only.

4 The different parameters involved in the hyperbolic

model are difficult to determine in the laboratory

and these parameters are not fundamental soil

properties, but only values of empirical

coefficients, which represent the behaviour of the

soil under a limited range of conditions.

5 The model is sensitive to variation of the soil

characteristics and gives a schematic representation

of real behaviour.

6 A small relative error in the intensity of stresses

can lead to large variations of the principal stress

ratio.
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Thus investigations for an improved stress-strain

model is essential.

9.3.3 Nonlinear Dynamic Stress-Strain Model

1 Loading, unloading and re-loading sequences should be

included in the analysis using the Ramberg-Osgood

model combined with the Masing Criteria.

2 One particular problem associated with the rockfill

dam is the tendency for crushing and breakage at

points of inter-granular contact, which leads to

decrease in volume. In saturated materials stress is

transferred to the pore water and the effective

stress and the strength are reduced. In view of this,

investigation should be conducted for a mathematical

model taking explicitly into account the pore

pressure as well as the plasticity of the material in

the stress-strain relationship.

9.4 SIGNIFICANT CONTRIBUTIONS

In the present work, the dynamic response

evaluation of three rockfill dams including the widely

instrumented El Infiernillo Dam subjected to three different

ground motions of widely varying total durations, based on

the Ramberg-Osgood, Hardin-Drnevich models and the Seed-

Idriss method have been studied in great detail. The

significant contributions made in the accomplishment of this

thesis are:
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1 Two types of disturbance factors as a function of

strain, one corresponding to the end of primary

consolidation and the other corresponding to the

before the start of primary consolidation have been

proposed. Using the disturbance factors correspon

ding to the end of primary consolidation case, in-

situ high-amplitude shear modulus of a particular

site consisting of dense sand has been predicted

without performing field tests to determine the value

of shear modulus at that site.

2 Ramberg-Osgood model parameters have been evaluated

for four different type of soils, based on extensive

in-situ tests carried cut in India. This is one of

the pioneering investigation in India.

3 Two different computer programs, one for nonlinear

static analysis and the other for nonlinear dynamic

analysis have been developed based on the versatile

eight-noded isoparametric elements and reduced

integration technique.

4 The nonlinear static and nonlinear dynamic analysis

of the three rockfill dams based on the strain

dependent shear modulii and damping, and using three

different methods of analysis and subjected to three

different ground motions is one'of the first study

carried out in India.
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9.5 MISCELLANEOUS

9.5.1 Shear Wave Velocity in Rockfill Dams

The shear wave velocity of different materials

used in the analysis of two dams is based upon the method

proposed by Nose and his co-workers,-after carrying out

extensive prototype vibratory tests on three existing

rockfill dams in Japan, of medium height of the order of 100

to 150 m only. The validity of the Nose's method should be

verified by conducting detailed in-situ vibratory tests on

high rockfill dams of height more than 200 m or so.

9.5.2 Shape of Valley

In most of the analysis performed, the shape of

the foundation considered is rectangular only. When the

valley is narrow, in which due to construction of a high

rockfill dam, transfer of load would take place to either

sides of the valley. In such cases, the influence of

different valley shapes needs to be investigated.

9.5.3 Three-Dimensional Analysis

The very widely used two-dimensional (plane

strain) analysis of earth and rockfill dams is applicable for

dams with large crest length to height ratio. A two-

dimensional analysis does not consider the cross-valley

movements. For a detailed study of the stresses during a

strong ground shaking of a rockfill dam, three dimensional

analysis needs to be carried out.
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