
POST-PEAK RESPONSE ANALYSIS

USING

THE FINITE ELEMENT METHOD

A THESIS

submitted in fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

EARTHQUAKE ENGINEERING

;'$ Aoc. No, ._^_ V\
By I o**Zr±:3&-„ t}

KHALID MOIN "^^^

DEPARTMENT OF EARTHQUAKE ENGINEERING

UNIVERSITY OF ROORKEE

ROORKEE-247 667 (INDIA)

JULY, 1996





UNIVERSITY OF ROORKEE

Roorkee

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis

entitled Post-Peak Response Analysis Using the Finite Element Method in

fulfilment of the requirement for the award of the Degree of Doctor of Philosophy

and submitted in the Department of Earthquake Engineering of the University is

an authentic record of my own work carried out during a period from July 1992 to

July 1996 under the supervision of Dr. Pankaj.

The matter presented in this thesis has not been submitted by me for the

award of another degree of this or any other University.

\CX\jJi\Ji. U<yw
Signature of the Candidate

This is to certify that the above statement made by the candidate is

correct to the best of my knowledge.

Date: Z6 JJIki WG
h.

Signature of Supervisor

The Ph.D. Viva-Voce examination of Khalid Moin, Research Scholar,

has been held on ..&)./..I'J3SL7...

Signature of Supervisor Signature of H.O.D. Signature of External Examiner



ABSTRACT

With increasing load, a structure undergoes increasing deformation. Beyond a critical

or peak load level, structure's inability to take any more loads causes failure. Failure can be

distributed or localized. In general, the failure of civil engineering structures is localized

and is caused by a series of densely populated cracks which coalesce in an extremely small

region. The numerical simulation of crack formation and propagation has been a subject of

considerable research. Although, post-peak states are usually not tolerated in the design of

structures, the knowledge of post-peak behaviour can be of great help in understanding

the strengths and weaknesses of structures. Further, the understanding of the failure

modes is important to avoid brittle failure. It is for this reason that the capabilities to

predict post-peak deformation behaviour is essential in addition to finding the ultimate

load carrying capacity.

The underlying aim of the thesis is to simulate post-peak behaviour of the structure

using strain softening plasticity and the finite element method. In this regard the objectives

of the thesis are outlined as follows.

• To review the literature related to computational plasticity with emphasis on strain

softening and localization.

• To evolve benchmark tests in elastoplasticity particularly under strain softening

conditions.

• To study the post-yield behaviour, conditions of localization and mesh sensitivity

issues using numerical samples with various yield criteria.

• To develop algorithms for dynamic strain softening problems and to conduct studies

on the possible use of strain softening under seismic forces.

• To study post-peak response of some realistic structures.

Some recent developments in computational elastoplasticity are discussed. Current

literature in the area of strain softening plasticity and its use in simulating post-peak

behaviour is reviewed. Issues related to the use of indirect displacement control and

evolution of localization conditions are also reviewed.

Emphasis is laid on the Hoffman yield criterion which is pressure sensitive and valid

for anisotropic elastoplasticity. The present study, however, is limited to the isotropic

form of the Hoffman criterion. A return mapping algorithm using the backward Euler
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scheme for this criterion is "discussed. The evolution of this criterion for strain softening
plasticity wherein both equivalent compressive and tensile strengths are assumed to reduce
as compared to when only the tensile strength is assumed to decline is considered.

The possibility of using strain softening elastoplasticity for the prediction of post-peak
seismic response is explored. Numerical implementation of strain softening has been
known to cause problems of convergence, load step sensitivity and discretization
sensitivity (or mesh sensitivity). Many of these difficulties have been surmounted for static
analysis. Numerical problems associated with the use of strain softening in the solution of
dynamic problems are highlighted and some methods of overcoming them discussed.
Consideration is generally limited to one dimensional problems arising out of elastoplastic
strain softening behaviour. The results indicate that dynamic response does not become
unbounded due to strain softening. Strain softening, however, introduces a large zero
frequency component as compared to strain hardening or perfect plasticity. The frequency
content at frequencies other than zero is not significantly altered. These preliminary
investigations indicate that strain softening in conjunction with an appropriate stress
updating algorithm can be employed in the seismic analysis ofstructures.

The analysis of industrial structures and substructures is often conducted using
elastoplastic constitutive laws, in conjunction with the finite element method. The finite
element codes may be used as a "black box" by personnel who may be inadequately
trained in the method. In order to train analysts and to check the validity offinite element
codes, the benchmarks can be of paramount importance. Further, exact solutions in
computational elastoplasticity cannot be used directly as these often pertain to solutions
that are valid only for particular cases. However, these solutions can be used as
benchmark tests to check the validity of finite element codes and accuracy of numerical
solution procedures.

In the present study tests for three different yield criteria viz. von Mises, Mohr
Coulomb and Hoffman are discussed. The perfectly plastic as well as strain
hardening/softening cases are examined. The benchmark tests are based on prescribed
displacement field format. Tests are evolved that can be used to verify the ability of finite
element packages in accurately predicting first yield and flow in the post-elastic regime.

The exact integration of constitutive equations for an isotropic plastic von Mises
material that incorporate linear hardening/softening for some specific cases are developed.
Illustrative tests are included.
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Exact solutions for Mohr Coulomb criterion that include linear strain hardening or
softening plasticity and the presence of singular regions are also developed. A number of

biaxial and triaxial illustrative tests are included.

The isotropic form of the Hoffman criterion is a cylindrical paraboloid in the principal

stress space. As such it is not straightforward to evolve closed form solutions for this

criterion. However, tests that can illustrate the stress changes in the principal stress space

and can serve as tools for understanding, are studied. Simple tests under perfect plasticity

and strain softening conditions are examined.

Post-peak response can be described as the response of a structure that is incapable of

sustaining any additional loads. The post-peak behaviour is associated with progressive

failure of the structure, which in turn can be modelled using softening plasticity. Strain

softening implies declining equivalent yield strength parameter in the yield criterion. This

does not, necessarily imply post-peak (declining) load-deflection response and the load

might actually increase.

The behaviour of elastoplastic von Mises, Mohr Coulomb and Hoffman materials

under simple load paths and considering perfect/strain softening plasticity are studied. In

addition to the movement of the stress point in the principal stress space emphasis is laid

on the load displacement behaviour. The study also examines the use of the accoustic

tensor as a localization indicator.

Uniaxial compression tests on single elements used in the study indicate that for

associated von Mises plasticity the localization conditions are not necessarily satisfied

immediately after first yield, even under strain softening conditions. Critical values of the

softening parameter are evaluated such that the localization condition is satisfied

immediately after first yield. It is seen that if the softening parameter is of greater

magnitude than the evaluated critical magnitude, then the localization direction is not

unique. Increasing the softening parameter beyond a certain magnitude may lead to

instability. It is seen that this limit is more stringent than the local uniqueness
requirements. Single element compressive tests indicate that a descending or constant load

displacement response is obtained only after the satisfaction of the localization condition.

Similar uniaxial tests indicate that it is far easier to satisfy the localization conditions

with the Mohr Coulomb criterion. The satisfaction of the localization condition is

accompanied by post-peak behaviour for simple uniaxial test. For these tests a flat or a
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descending load displacement response is observed depending on the assumption of
perfect or strain softening plasticity.

The study shows that post-peak behaviour using the Hoffman criterion is strongly
influenced by the ratio of uniaxial tensile and compressive strengths. In case of softening
plasticity the post-yield response is totally different when both equivalent tensile and
compressive strengths are assumed to reduce as compared to when only the tensile
strength is assumed to decline. Mesh sensitivity of the post-peak response is also studied
for von Mises and Hoffman criterion. Good (mesh insensitive) results are obtained when
nonlocal material laws are employed.

The algorithms and ideas developed are applied to some engineering problems. Post-
peak response of simple systems such as acantilever beam, plane strain tension specimen
and a notched beam is studied. The failure patterns of a slope under varying post-yield
conditions are examined. Strain softening plasticity is also applied to the seismic analysis
of Koyna dam.
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d F
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Ac Hardening parameter corresponding to state at point C

A Cross-sectional area
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r) O
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Cj Material parameter (i = 1,9)
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D Elasticity matrix

Dcr Tangent crack formulation matrix
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D'jjj Elastoplastic matrix presented in tensorial form

A Finite change

A(-), Total increment between configuration m and i
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E" Tangent stiffness operator
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Eln,EJ,E"t Mode I stiffness moduli for (n, t) system respectively and shear stiffness for
simultaneous cracking in the two orthogonal directions of principal
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e Exponential

s Strain at a point

£x ie -ei Normal component ofstrain vector in x,y,z direction

s' Elastic strain vector

e* Plastic strain vector
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e„ Yield strain

Principal strain

e corresponding to localization band 1and 2

de Strain increment vector
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de? Plastic strain vector
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dekl Strain increment presented in tensorial form

Aeer Local crack strain in the local (n,t) coordinate system aligned with the
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Ac, Incremental strain vector
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(77= 0 explicit forward Euler algorithm, n= 1backward Euler algorithm)

/ External load vector

F Yield function

F Internal force vector

/, / Equivalent nodal forces at nodes 1,2

fc Compressive yield strength

f Tensile yield strength

/ Uniaxial compressive yield strength ofvirgin material
/ Uniaxial tensile yield strength ofvirgin material
f(o) Stress dependent component ofyield function
f{ac) Stress dependent component ofyield function at point C

y

ew£n

Ec\ >£e2
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fi(Y(K)) Strength dependent component of yield function

Fc Value ofyield function at point C

FQ Yield function at previous state

F0 Step function load

Fcn Yield function at a new state corresponding to point C

Fm Yield function at previous state corresponding to point C

Fj(/),FD(/),FE(/) Inertia forces, damping forces, elastic forces

<f> Angle of friction

G Shear modulus

Gc Energy required to fully open (to or beyond w,) unit area of newly formed
crack

gk Position vector

Y Shear strain

h Length of a single element in a discretised bar

H Hardening modulus

I Identity matrix

/, First stress invariant

Im-\Jd Number of iteration that were required to achieve equilibrium in increment
m -1 and the desired number of iteration

J2 Second invariant of the deviatoric stress tensor

K Stiffness of a SDF system

K Stiffness matrix

KT Tangential stiffness

K* Effective stiffness matrix

k Hardening/Softening parameter

ka,kb,kc Hardening parameter corresponding to state at point A,B,C

I Length of the bar

dX Proportionality constant termed as plastic multiplier

m Mass of a SDF system

M Mass matrix

m,n Pair of unit vectors

m+1 Next converged state
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v Poison's ratio

„ Ratio ofuniaxial compressive and tensile strength (=/„ / /,)

p Order of polynomial

P Applied load vector of reference loads

p Projection vector

P Projection matrix

P New load level
y

Po Uniaxial yield strength ofthe virgin material

AP Applied load increment vector corresponding to first iteration
<5P Applied load increment vector corresponding to subsequent iterations
Q Plastic potential function

qt Any scalar (/'= 1,3)
R Factor (between 0 and 1) that takes elastic stress increment only upto yield

surface

r Vector representing difference between the current stresses and the
backward Euler stresses

r >ro New and previous values ofr

'R Vector of residual forces at the end of iteration /

s Unit vector in the direction of dgk

ds Length ofthe vector dgk (= \dgk |)

AS Finite length called the arc-length

a Stress at a point

a Stress vector

Stress state at pointA,B,C

Normal component ofstress vector in x,y,z direction
vA,vB,uc

(f Elastic stress

o-,,o-2,o-3

°n

Principal stresses (maximum, intermediate, minimum)

a ,a Principal stresses (maximum, minimum)

a Stress normal to the crack plane

(/.' Elastic predictor stress

Uniaxial compressive yield strengths
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on Uniaxial tensile yield strengths

°ii(.' *• J) Uniaxial shear yield strengths

da Stress increment vector

dcf Elastic stress increment vector

dav Stress increment presented with tensorial notation

Ac/ Elastic predictor stress vector

Adx,Acfy,Acft Normal component of Ac/ inx,y,z direction

(\ Superscript i represents direction of the plane on which stress acting and
superscripty the direction of stress

m() Superscript mon left indicates current configuration

( )cr Superscript cr represents cracked component

( y° Superscript co represents continuum component

(+) Superscript (+) to the right Indicates one side ofdiscontinuity
(-) Superscript (-) to the right indicates the other side ofdiscontinuity

[[•]] Shows the difference between the values on either side ofdiscontinuity
t Thickness of the localization band

t Incremental local traction

T Orthogonal transformation matrix

tk Unit vector tangential to surfaceS

At Time step length

T*y>Ty*>T* Shear components of stress vectors in x,y,z direction (as per tensorial
notations)

Arxy> A^,Ar„ Shear components of Ac/ in x,y,z direction (as per tensorial notations)

u Displacement of a node

U Total elongation of the bar

u Total displacement vector

AE Energy released on full rupture

v, Vector function

Vtx Volume of localization band I (= dx /, t = A\ i)

Vl2 Volume of localization band II (=d2l21 - A\ t)
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o) Natural frequency ofa SDF system (= 4Klm)

dWp Plastic work

x,x,x Displacement, velocity and acceleration of a SDF system

x, x,x Total nodal displacement, velocity and acceleration vector

x,, x2 Coordinate ofone dimensional element

Ax,. Displacement vector (superscript on xdenote iteration number)

Y Normalized yield strength

Ye Uniaxial yield strength ofthe virgin material

y/ Out ofbalance force or residual force

yf Out ofbalance or residual force vector
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Chapter 1

General

1.1 Post-peak Analysis

With increasing load, a structure undergoes increasing deformation. Beyond a critical

(or peak) load level, a structure's inability to take any more load causes failure. Failure is

generally caused by a series of densely populated cracks which coalesce to form an

extremely localized region of high strains or a crack. The numerical simulation of crack

formation and propagation has been a subject of considerable research. Although, post-

peak states are usually not tolerated in the design of structures, the knowledge of post-

peak behaviour can be of great help in understanding the strengths and weaknesses of

structures. A number of terms are used in the post-peak analysis of structures. Some of

these are discussed in the following sections.

1.2 Localization

Localization is the formation of bands of intense straining. The post-peak behaviour

of a structure is generally accompanied by these localization bands. Such bands have been

seen in a wide variety of solids such as in ductile single crystal, in structural metals, in

saturated clays, in quasi-brittle materials like rocks and concrete (Ortiz et al., 1987).

According to Bazant (1976) the region of localization must condense to what might be

considered as a surface. Schreyer and Chen (1986) pointed out that clearly defined surface

is rarely observed in experiments and localization may consist of a band whose lateral

dimensions will depend on material properties. It now appears that localization band width



would depend on the geometry of the structure, loading conditions and boundary
conditions in addition to material properties. Mathematically localization has been
described as a weak discontinuity that is responsible for discontinuous stress and strain

fields (Willam et al., 1984).

The finite element method has been extensively used to numerically simulate post-

peak analysis involving localization. The mathematical models used in conjunction with
finite element method followed two distinct approaches. These are the discrete crack and
the smeared crack approach. The basic essentials ofthese two approaches are discussed in
the following section.

1.3 Crack Simulation

The ultimate result of progressive cracking, which dominates the nonlinear response
of quasi-brittle materials such as concrete is a localizedfailure. This localized nature of
failure inspired some researchers to develop the so-called discrete crack models (e.g. Ngo
and Scordelis, 1967; Blaauwendraad and Grootenboer, 1981). In this approach the
geometrical discontinuities due to cracking are incorporated within the idealisation of the
structure and a crack is modelled as a geometrical discontinuity (Fig. 1.1).

Without mesh refinement With adaptive mesh refinement

Fig. 1.1 Finite element modelling with unknown crack path using discrete crack approach
(redrawn from Cervera, 1986)

The approach is physically attractive as it reflects the highly localized nature of
cracking. It represents the individual cracks as actual discontinuities in the finite element
mesh. This approach models a crack by converting a nodal point into two nodal points
with a crack in between. The constraints imposed by limitations of such a discrete crack



model fixes stringent limits on the formation of cracks at element boundaries.

Furthermore, when a crack forms the mesh has to be redefined. Even though automatic

procedures have been developed for such rearrangements, the discrete approach is not

simple for large scale analysis of arbitrary structures. It has, however, been used

successfully in some cases (Ram Kumar and Nayak, 1994). However, in many engineering

problems crack positions are known a priori or a mechanism of discrete cracks can be

imagined to occur in a fashion similar to yield line mechanism. For such cases the above

mentioned drawbacks do not exist and a discrete crack analysis can be carried out. In the

present study discrete crack approach is not used and would not, therefore, be considered

any further.

Another method for incorporating cracking in finite element analysis is the "smeared

crack" approach (Rashid, 1968; Suidan & Schonbrich, 1973; Bazant and Cedolin, 1979;

Bazant and Gambarova, 1980; Bazant and Cedolin, 1983; Bazant and Oh, 1983; Bicanic

et al., 1993). In this approach the cracking region is assumed to be finite. This approach,

thus, models a crack as a continuum and will be discussed later in this study.

1.4 Strain Softening

Strain Softening can be defined as the decline of stress with increasing strain

(Fig. 1.2). One common example occurs in the compressive loading of concrete cylinders.

As the length of the specimen gradually decreases and compressive strains accumulate, the

test specimen does not fail when maximum load is reached, but a subsequent decrease in

the load can be observed under increasing deformation (Sandler, 1984). Extensive tests

demonstrating strain softening in concrete were conducted by van Mier (1984) under a

variety of loading conditions. In the earlier years, strain softening was considered a true

material property and routinely incorporated into constitutive models. Softening is now

conceived as a kind of structural property of a cracked continuum (Ottosen, 1986;

Pramono, 1988; Bicanic and Pankaj, 1990). This can be explained by considering a

concrete specimen subjected to uniaxial tensile loading (Fig. 1.3). The specimen is

attached with three set of gauges as shown in Fig. 1.3. Up to a certain stress level the

stress-strain curve is nearly linear and a similar behaviour is observed in the three regions

A, B and C, then a deviation from linearity is observed (Hughes and Chapman, 1966;

Gopalaratnam and Shah, 1985). As the strain increases a peak stress level is reached and a

tensile macrocrack starts propagating in a very localized region. A clear strain softening

will be observed in the region where crack has developed (covered by gauge A, Fig. 1.3).



However, in the area covered by gauge B, unloading will be observed due to the

decreasing load-carrying capacity in the tensile crack zone. The overall deformation will

show an average of A and B (van Mier 1984).

h
•4—'

00

•si

O

^—i

00

Strain softening

Strain

Fig. 1.2 One dimensional strain softening idealisation
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Fig. 1.3 Tensile stress strain behaviour ofconcrete (redrawn from van Mier, 1984)

Thus strain softening is a kind of average stress-strain behaviour of regions that
unload and those that experience continued deformation. Clearly the slope of the softening

>



branch depends on the gauge length and region between which the stress-strain behaviour

is being considered. In other words the softening modulus is not a local property like, say,

the Young's modulus. A property such as Young's modulus is assumed to exist at every

point of the continuum with no characteristic dimension attached. While strain softening

modulus can only be defined with a characteristic dimension. It is thus termed as a

structural or a non-local material property.

From the finite element simulation point of view, the traditional form of assuming the

strain softening branch to be a material property led to results that depended on the

analysts choice of the mesh (Bazant and Cedolin, 1979; Rots et al., 1985).

1.5 Scope and Layout of the Thesis

Nonlinear and post-peak analyses are essential in order to predict structural failure.

From the design point of view understanding of the failure modes is important in order to

avoid brittle failure. The post-peak deformations are much greater than its linear response

limit. Post-peak behaviour is generally associated with progressive failure of structures.

The basic aim of the present study is to examine the use of strain softening plasticity in its

ability to predict post-peak response. The study uses the finite element method as a basic

tool. The remainder of the thesis has been divided into eight Chapters (Chapter 2-9) and a

brief layout is as follows:

• In Chapter 2 some recent developments in computational elastoplasticity are reviewed.

• In Chapter 3 various methodologies employed in the simulation of post-cracking

behaviour are discussed. Attention is confined to the smeared crack approach.

Rotating crack formulation of this approach used in conjunction with plasticity leads to

the isotropic plasticity softening model. This has received special attention in this

study. Treatment of localization as instability in softening plasticity, is discussed.

• Chapter 4 deals with the isotropic Hoffman yield criterion. The strain softening

formulation of the isotropic Hoffman model is discussed when only uniaxial tensile

strength declines and when both uniaxial compressive and tensile strengths are

assumed to decline simultaneously. The integration of rate equations using backward

Euler scheme is discussed and a computational algorithm to perform these integrations

developed. An exact solution for the evolution of contact stresses that are required in

semi implicit and explicit algorithms is derived.



Chapter 5 discusses the application of strain softening problems with regard to static

as well as dynamic cases. Two stress updating strategies are presented and the

importance of updating stresses at the end of each converged step rather than at the

end of each iteration is stressed upon. Possibility of using strain softening in dynamic

problem is explored. The Chapter examines some generalized Newmark procedures

and the stress updating algorithms in dynamic elastoplasticity, with special emphasis

on strain softening.

In Chapter 6 benchmark tests using von Mises, Mohr Coulomb, and isotropic Hoffman

criterion are developed. The perfectly plastic as well strain hardening/softening cases

are examined. The benchmark tests are based on prescribed displacement field format.

Exact solutions that incorporate linear hardening/softening for some specific cases are

developed for von Mises and Mohr Coulomb plasticity. A number of benchmark test

problems are included. A number of illustrative biaxial and triaxial tests are included.

Tests using Hoffman yield criterion, which can serve as tools for understanding are

evolved under perfectly plastic and strain softening conditions.

Chapter 7 considers the post-peak behaviour of a single element subjected to a mixture

of displacement and boundary tractions. Localization indicators at various stages of

loading are examined for von Mises, Mohr Coulomb and Hoffman criteria. Mesh

sensitivity of the post-peak response is also studied for von Mises and Hoffman

criteria.

In Chapter 8 the ideas developed above are applied to some engineering problems. The

post-peak responses of simple problems such as a cantilever, plane strain tension

specimen, a notched shear beam (Ingraffea beam) are studied. The failure patterns of a

slope under varying post-yield conditions are examined. Strain softening plasticity is

also applied to the seismic analysis ofKoyna dam.

Chapter 9 briefly discusses the observations that emerge from this thesis. Some

specific and some general suggestions for future researchare outlined.
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Chapter 2

Review of

Computational Plasticity

2.1 Introduction

Hill (1950); Prager (1959); and Hoffman and Sachs (1953) wrote excellent texts on
the theory of plasticity. The use of plasticity with the finite element method came with the
pioneering work of Yamada et al. (1968), Zienkiewicz et al. (1969), Nayak (1971) and
Nayak and Zienkiewicz (1972).

Elastoplastic finite element analysis was popularised by the lucid text of Owen and
Hinton (1980). Later Crisfield (1991) included the developments of the eighties in his very
"user-friendly" book. This Chapter discusses plasticity basics and reviews some of the
developments in the computational plasticity that have taken place in the recent years.

2.2 Basics of Plasticity

In this section the basic ideas behind the flow theory of plasticity are considered

(e.g. Zienkiewicz and Taylor, 1991).

It is generally accepted (theoretically as well as experimentally) that the yielding will
trigger if the stress o satisfies the following requirement:

F(a,K) = 0 (2.1)

where k is hardening/softening parameter. The instantaneous value of k will decide the

position of the yield surface which can be visualised as a surface in stress space (Fig. 2.1).



It was first suggested by von Mises that basic behaviour defining the plastic strain

increments is related to the yield surface. Let depdenote the increment of plastic strain

then this increment can be represented as

dsp=dX ^~
oo

-dX a

(2.2)

where a is known as the 'flow vector1 or 'gradient vector'. In Eqn. 2.2, dX is defined as the

proportionality constant, undetermined at this stage, also known as plastic multiplier. The

rule (Eqn. 2.2) is known as normality principle because the requirement, that the plastic

strain increment vector should be normal to the yield surface F is fulfilled by Eqn. 2.2.

This requirement of normalitycan be removed by specifying separately a 'plastic potential'

Q = Q(<r,x) (2-3)

which defines the plastic strain increment in a similar fashion as Eqn. 2.2. This plastic

strain increment is given by a flow rule

dsp=dX^- =dXb (2.4)
do

The particular case Q = F is known as associatedplasticity. When this relation (Q=F) is

not satisfied the plasticity in non-associated.

During an infinitesimal increment of stress, change of strains are assumed to be

divisible into elastic and plastic parts as

de=ds'+dep (2.5)

The elastic strain increments and stress increments are related by a symmetric matrix of

constants D as

da= Ddtf (2.6)

Using Eqns. 2.4 and 2.6, Eqn 2.5 canbe written as

de=D-lda+?p- dX (2.7)
da

10



The plastic increment of strain will occur only ifthe 'clastic' stress increment

dc/ = D de (2.8)

tends to put the stress outside the yield surface, i.e., this elastic increment is in theplastic
loading direction. If, on the other hand, this stress change is such that unloading occurs

then of course no plastic straining will be present. The test of the above relation is

therefore crucial in differentiating between loading and unloading operations.

°l\

-Yield
surface

Elastic
behaviour

del

F (0J, 02, k)

<h

Fig. 2.1 Yield surface and normality criterion in two dimensional stress space

When plastic loading is occurring the stresses are on the yield surface given by

Eqn. 2.1. DifferentiatingEqn. 2.1 one obtains

Jr, dF , dF ^ dF ,
dF = ^l—da, +^r—da,+ + -^— die

da, da, dK
(2.9)

For plastic flow the above derivative of/7 also vanishes, giving the 'consistency condition'

as

\^\ do-AdX =0

dF = nTdo-AdX

(2.10)

11



where A is the hardening parameter given by

A=-jT^dK (2.11)
dX dK

Using Eqns. 2.4-2.6 and Eqn. 2.10 the incremental stress-strain relation is obtained as

d<7JD-(m^L)ds=D,ds (Z12)
(, A+arDb J

where Dep is the tangential modulus matrix. This matrix is symmetric when plasticity is

associated. The stress increment can also be written as

da= D(de-dep) = D(de-dXb) = D(de-dXn) (2.13)

with plastic multiplier

iflSi^ (2.14)
A + arDa

While the above relations are "exact" for infinitesimal increments, for computational

analysis the stress increments have to be obtained by integrating Eqn. 2.12 or 2.14.

2.3 Hardening Hypotheses

Plastic strain history along with hardening rules defines the subsequent yield surfaces.

Two basic models exist (Crisfield, 1991): Isotropic hardening in which the yield surface

expands (or contracts) uniformly about the stress space origin and Kinematic hardening in
which the yield surface translates while preserving its original shape (Prager, 1955,1956;

Ziegler, 1959). Many more hardening rules can be obtained by combination or

generalisation of the above.

For isotropic hardening/softening the yield criterion can be written as

F(a,Y) = f(a)-f(Y(K)) (2.15)

where k is a parameter depending on plastic strain history and Kis a uniaxial or equivalent
yield stress. The parameter Kcan be defined in either ofthe two ways as follows:

dK =dWp ={dePYa work hardening hypothesis (2.16)

12



;-\\
J/2

dK =d£P=: -(dzPfdzP strain hardening hypothesis (2.17)

Here dWp is plastic work and dsp is equivalent or uniaxial plastic strain.

For some cyclic loading problems, Bauschinger effect may become significant. For
linear hardening considerations these effects can be illustrated for one dimensional case as
shown in Fig. 2.2 (Crisfield, 1991). For such problems the yielding in tension lowers the

compressive yield strength so that

v-a = ±Y (2.18)

where a is defined as the 'kinematic shift' of the center of the yield surface. The actual

hardening ofthe uniaxial stress a takes place due to this shifting because Ye (uniaxial yield
strength) is assumed to be a fixed value. This phenomenon of kinematic hardening is not
incorporated in this study.

Fig. 2.2 One dimensional illustration of kinematic hardening

2.4 Backward Euler Integration

The process of evaluation of incremental stresses from incremental strains is not
straightforward. This requires the integration of Eqn. 2.12, which involves material
constitutive relations that are nonlinear.

Ortiz and Popov (1985) presented a generalised algorithm for the integration of the

rate equations (Crisfield, 1991):
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ac = aA+ D(Ae-As") =aB- D(Ae")

Aep = AX[(\- 7])nA + ?]nc]

Ak =[(\-t])ka + t]kc]

Fc-Moc)-f2(Y(Kc)) = 0

(2.19)

(2.20)

(2.21)

(2.22)

where, as shown in Fig. 2.3a, Ais the starting point and point Cis the destination on the
yield surface. Ydenotes uniaxial yield strength. Various algorithms are obtained by
changing the factor ?/ which can take values between 0and 1. For ;/= 0 'explicit' forward
Euler algorithm is obtained. This algorithm does not ensure satisfaction of the yield
condition defined by Eqn. 2.22. However, 77=1 leads to a 'backward-Euler' algorithm.
The full 'backward-Euler' scheme involves a flow vector ac that is normal to the yield
surface at the final position C (Fig. 2.3b), for which the stresses, ac satisfy Eqn. 2.22.
This algorithm has found widespread usage in recent years.

(a) (b)

Fig. 2.3 Backward Euler returns from astress state (a) on the yield surface (b) inside the
yield surface

For backward-Euler algorithm (n= 1), Eqns. 2.19 and 2.20 yield
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ac = oB - AX Dac (2.23)

clearly ac cannot be obtained from the information at A or B (Fig. 2.3a). An iterative
procedure at the Gauss point level is, therefore, required. A starting estimate for ac can

be the flow vector at B. Generally, this starting estimate will not satisfy the yield function

and further iterations will be required. In order to derive such an iterative loop, a vector r

can be assumed which represents the difference between the current stresses and the

backward-Euler stresses i.e.

r=a-(aB-AXDac) (2.24)

In order to satisfy the condition F = 0 i.e. reduce r to zero (with some tolerance),

iterations are needed.

With the trial elastic stresses, aB being kept fixed, a truncated Taylor expansion can

be applied to Eqn. 2.24 so as to produce new residual rn where

dar„ =r0 +do+d(AX)Da +AXVjf-do (2.25)

where dcr is the change in a and d(AX) = dX is change in AX, setting rn to zero gives

da=-fl+AAD-|̂ l (ro+JADa) =-Q-,r0-^Q-'Da (2.26)
with

I+AAD
d̂o

Also, a truncated Taylor series on the yield function (Eqn. 2.22) gives

dF
F =F + j dFdo+

dY

Now dropping the superscript C, we can write

dY = Fco+aTc do-Ac dX = 0 (2.27)

F0-*TQ-lr.
arQ 'Da + A

<fl= ° * *.: (2.28)

Use of Eqn 2.26 now yields the iterative stress change do.
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2.5 Consistent Tangent Modular Matrix

The Newton Raphson method emerges as a slow procedure if the modular matrix Dep
(Eqn. 2.12) is used in conjunction with the backward-Euler integration scheme. The
matrix D'p is 'strictly' applicable only for infinitesimal increments. Simo and Taylor (1985)
derived a tangent modular matrix that is 'consistent' with the backward-Euler integration
algorithm. Hence the quadratic rate of convergence of Newton Raphson iterations is
ensured.

After dropping the superscript Cthe backward-Euler return algorithm, Eqn. 2.23, at
the post-return configuration (Fig. 2.3) can be written as (Crisfield, 1991)

o=oB-AX Da (2.29)

The suffix B in Eqn. 2.29 shows that oB are the elastic 'trial' stresses (Fig. 2.3b).

Differentiation of Eqn. 2.29 results in

dado=D de-AXD^-do-dXDa (2.30)
do

On rearranging the terms of Eqn. 2.30, results in

dcr= I+AAD-^- D(ds-dXa)

= Q-'D{de-dXa)

= R(de-dXz)

where the Q matrix has already been defined inthe previous section and

R = Q-'D (2.32)

To remain on the yield surface, dF should be zero and hence using Eqns. 2.10 and 2.29

dF = aTdo-AdX

= aTR(de-dXa)-AdX = 0
(2.33)

The above equation yields
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arRcfe (234)
A+arRa V ;

which on substitution in Eqn. 2.31 results

do=Dc'de =
(RaKRafV (235)
A+arRai

where De' is called the consistent tangent matrix. A comparison of Dcl and D*'
(Eqn. 2.12) shows that the former employs R where the latter uses D. Obviously D is
obtained from R with AX = 0. In this situation da I do is not required.

2.6 The Arc Length Method

The post-peak response of structures cannot be traced beyond peak or critical loads,
under load control. As a result some form of indirect displacement control technique is

essential. Among these, the arc length method (Wampner, 1971; Riks, 1979; Ramm, 1980;
Crisfield, 1981,1982; de Borst, 1986; Crisfield, 1991; Foster, 1992; Lam and Morley,
1992; Pankaj and Shrikhande, 1993) emerged out as a powerful solution technique. The
method has been used to solve problems of snap through, snap back and collapse

(Crisfield, 1991). This formulation of arc length method isdiscussed below.

Notations adopted in the formulation are similar to that used by Ramm (1980) and
shown in Fig. 2.4. A superscript on the left indicates current configuration e.g.
"u, T, mF and my/ are the total displacement vector, load vector, internal forces and out

of balance forces at load step (or iteration number) m respectively. The process considers

the proportional variation of load defined as

mP = 7?P (2.36)

where mp is scalar load factor and P is a vector of reference loads. In order to obtain the

next converged configuration m+\ from the current converged configuration, the
iteratjons are needed. The notations used between the iterative cycle /' and i' +1 =j are
shown in Fig. 2.7.

The total increment between configuration m and ; are denoted by A(-), , e.g.

Au,, A/?, , while the increments from /' toy aredenoted by £(•),. Thus

7?=7?+A/?, = '7?+<!>/?,.
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and

T3
ci

O

-J

yu= mu + Auy = u+ SUj

Displacement

Fig. 2.4 Pictorial description of arc length method

In standard elastoplasticity, the governing equation is given by

'KJu,=£/?; P + 'R (2.37)

where 'K is the stiffness matrix during the iteration /' and 'R is the vector of residual

forces at the end of iteration /.

For this procedure, Crisfield (1981) imposed a constraint, which forces the length of

the displacement increment to remain equal to the arc length at each iteration, in the form

AurAu; = AS2 (2.38)

where AS" is a finite length called the arc length. Using Eqn. 2.37, the change in

displacement from iterativecycle ;' toy is given by

dnl= '"K-1 C'R+ £/?, P)

= Ju; +8BS Au,
(2.39)

where
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Suj = 'K_1 'R

Au, = 'K-* P

Hence at each iteration, only Svij need be formed since Au, can be saved from the first
iteration. The iterative displacement vector <5uy is only fully defined once SPj is known

which can be determined using Eqns. 2.38 and 2.39 as

^Sfi+biSflj+b^O (2.40)

where

bx - Auf Au,
b2 =2Auf (SUj.+Au,)
b3 =(5uj +Au,)r (Suj +Aut)-AS2

(2.41)

Eqn. 2.40 can now be solved for 8Pr The two roots of this quadratic equation will be
designated as SPjX and SPj2. To prevent "doubling back" on the original load-deflection
path, the angle between the incremental displacement vector Au,, before the current
iteration, and A u., after the present iteration should be positive (Crisfield, 1981). There

are two alternative values for Au; (called say Au,, and Auy2) corresponding to the two
solutions 8pjX and 5pj2. Hence the two angles 6X and G2 are given by

6X - Auj, Au,
02 = AU;2Au,

(2.42)

The appropriate root SPjX and SPj2, is that which gives a positive angle. If both angles

are positive then the appropriate root is that closest to the linear solution (Crisfield, 1981).

.{h
yb2SP^-f] (2-43)

The first load increment is usually started using a unit increment. The length of the

increment, AS is fixed as

AufAu, =AS2 (2.44)

If the required response is in the area of severe nonlinearity, the length may be varied, else
it may be kept constant. The adjustment in the arc length may be carried out using

(Crisfield, 1981)
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ASm =AS^(j^ (2.45)
where Im_x and Id indicate number of iterations that were required to achieve equilibrium

in increment m-\ and the desired number of iterations in the present increment

respectively. For all increments other than first, the initial loading parameter Spx can be

obtained as

AS,

**~Ti (246)

If the determinant of the tangent stiffness matrix changes sign, the load increment sign has

to be reversed, otherwise not.
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Chapter 3

Simulating
Post-Cracking

Behaviour - A Review

3.1 Introduction

Simulation of cracking involves capturing of the degradation of a continuum to a

discontinuum. It has often been argued whether a unique solution to these problems exists.

Astructure is subjected to deformations that are much greater than its linear response limit
before it collapses. In fact, prior to structural collapse, microcracking in some zones leads
to reduced stiffness (stiffness degradation) and stress carrying capacity (strain softening).
For complex materials like reinforced concrete, failure may be caused due, to several
possible mechanisms, such as mortar cracking, reinforcement yield, bond slip, concrete
crushing and interface sliding. Clearly to incorporate such a variety in numerical
computations, is a difficult task. However, the understanding of the failure mode is
important to avoid brittle failure. It is for this reason that the capability to predict the post-
peak deformation behaviour is essential in addition to finding the ultimate load carrying
capacity.

3.2 Failure Classification

Willam et al. (1994) classified failure modes according to the degree of discontinuity

as follows:

(a) Distributed failure (spatially continuous): In this mode, the kinematic
compatibility conditions of the intact continuum are not disturbed (Fig. 3.1a). The
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tangential material operator matrix may become singular. However, no special finite

element provisions are required to mathematically model such a failure.

(b) Localized failure (weak discontinuities): Such a failure causes discontinuities

of strains and stress fields (Fig. 3.1b). It is now accepted that special provisions are

required to be adhered to, in the finite element mesh, to be able to capture such a failure

(Bicanic and Pankaj, 1990; Ortiz and Quigley, 1991; Steinmann and Willam, 1994).

(c) Discrete failure (strong discontinuities): Such a failure introduces not only

discontinuous strains but also jumps in the displacement field (Fig. 3.1c). Strictly speaking

such a failure can only be captured through discrete crack approaches discussed in

Chapter 1. In fact fracture modes I, II and III of fracture mechanics imply such a failure.

Clearly finite element analysis would require extensive re-zoning and re-alignment of the

mesh.

u =u u =u u *u~

s+=k~ e+ *e~ £-+ *e~

No discontinuity Weak discontinuity Strong discontinuity

(a) (b) (c)

Fig. 3.1 Degradation of kinematic compatibility during progressive failure

In this study, attention will be confined to localized failure which can be modelled
through the so called smeared crack approach. Clearly, thin bands of intense straining can
be obtained if the finite element mesh is made extremely fine. Thus, it might be possible to

simulate strong discontinuities by making an extremely fine finite element mesh.
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3.3 Smeared Crack Approach

In the smeared crack approach, cracking is assumed to be caused by a set of densely
populated or smeared cracks (Fig. 3.2). Computationally the smeared crack approach
involves modification of the constitutive relations expressed in terms of stresses and

strains in the region of interest. This approach has been used in many forms by several
investigators (Bazant and Oh, 1983; Jiang, 1983; Nilson and Oldenburg, 1983;
Glamberg, 1984; Rots et al., 1985; Petrangeli and Ozbolt, 1996). The finite element
implementation of the smeared crack approach has followed two distinct methodologies
viz. the fixed crack method (Rashid, 1968; Suidan and Schonbrich, 1973; Lin and

Scordelis, 1975; Bazant and Oh, 1983; Liebengood et al., 1986) and the rotating crack
method (Cope et al., 1980; Gupta and Akbar, 1984; Crisfield and Wills, 1987; Milford and
Schonbrich, 1985). In the fixed crack method, it is assumed that the initially isotropic
material becomes anisotropic at the onset of cracking with the principal axes of the
material oriented along the direction of the crack. In the earlier work, only orthogonal
cracks at the same point were permitted but subsequently attempts were made to allow
multiple cracks at the same point (de Borst and Nauta, 1985). Since there was no control
over the maximum tensile strength, the fixed crack method tended to overestimate the

strength of the structures (Crisfield and Wills, 1987). In the rotating or swinging crack
method the initially isotropic material remains isotropic and there is no permanent memory
as in case of the fixed crack method. Thus any change in material properties at a point

happens in all directions.

^

i i
Without mesh refinement With adaptive mesh refinement

Fig. 3.2 Finite element modelling with unknown crack path using the smeared crack
approach (redrawn from Cervera, 1986)
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Each of the above methods have been employed using elasticity or plasticity based

theories (Willam et al., 1987). Some attempts to mix these theories have also been made
(de Borst and Nauta, 1985; de Borst, 1986). The basic features of the smeared crack
approach are outlined in the following subsections.

3.3.1 Elasticity Based Approach

In this approach, the Rankine criterion ofmaximum principal stress governs the initial
formation of cracks. Thus, converting the initially isotropic materials to an anisotropic
form. The total strain increment Ae of the cracked solid can be decomposed into the crack

component Aecr and the continuum component Ag° as (Guzina et al. 1995).

Af=Afpr+AfC0 (3.1)

The incremental strains in the above equation are in the global Cartesian coordinates. For

a two-dimensional setting, Ae" canbe written invector form as

A/T =[AC,A<;,A^]T (3.2)
The local crack strain vector Aecr in the local (n, t) coordinate system which is aligned

with the crack orientation, can be written as

At-=[AeZ,Aett,ArZ]T (3.3)

and the transformation between local andglobal crack strains is expressed as

A^r=TTAecr (3.4)

where T denotes the orthogonal transformation matrix. Similarly, incremental local

tractions in the (n, t) system

Ar=[AC,AC,AC]T (3.5)

can be related to the global stress increment Ao as

Atcr=TTAcr (3.6)

For simplicity, it is assumed that the continuum between the cracks remains linear
elastic and isotropic, i.e.

Ao= DA/rco (3-7)
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where for plane stress

D

\-v2
vE

\-v2
0

vE

\-v7

E

1-v2
0

0

G

(3.8)

A softening relationship is adopted for the crack interface which relates surface tractions

to the equivalent cracked strain through

Atcr = DerAec (3.9)

The smeared crack formulation is constituted by the properties of the tangent crack

formulation Dcr. The tangent crack operator Dcr is a 3x 3 matrix for any two-dimensional

case. In general it is assumed that there is no interaction between orthogonal cracks,

except through the common shear modulus term (Willam et al, 1989). Normally, it is also

assumed (Rots and Blaauwendraad, 1989) that the coupling among the direct and shear
components in the crack tractions/strain expression may be neglected. Due to these

assumptions, the crack tangent operator reduces to

Dcr =

E1
n

0 0

0 E) 0

0 0 En

(3.10)

where E\ and E] are the mode I stiffness moduli for (n, t) system respectively and £" ,
shear stiffness for simultaneous cracking in the two orthogonal directions of principal

orthotropy.

The global stress increment, comprising an elastic-predictor and a crack-corrector

component, can be expressed using Eqn. 3.1 as

Aa=D(Af-TAecr) (3.11)

This constitutive incremental stress-strain relationship, with the help of Eqn. 3.6 and

Eqn. 3.9, results in

Act =(D - DT(Dcr +TTDT) 'TTD)As (3.12)
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In the above equation, the tangent stiffness has the same form as for incremental

elastoplasticity. This equation is similar to the one developed by Rots and

Blaauwendraad (1989) which denotes tangent stiffness operator by Eee. If the global

coordinates align in the crack direction, then, the orthogonal transformation matrix

T = I (identity matrix), and for plane stress case Eec reduces to

Ee

with

'-'In

0

•'it

0

0

0 = Ee

K(E +E)) vE\E]
vE\E\ E\(E +E\)

0 0

E
E" =

E(E +E\+E)) +ElnE)(\-v2)

0

0

GE*

EK(El+G)

(3.13)

In the rotating crack approach, the moduli related to mode I-type cracking essentially

coincide with those of the fixed crack approach. For the rotating crack approach, the shear

term in Eqn. 3.13 (fixed crack approach) is different and can be expressed as

Cec — CT11 ^22
a(£]] —£*22/

(3.14)

where axx, a22 and £xx,e22 denote principal stresses and strains respectively. In order to

preserve the coaxiality between the stresses and strains when their principal axes rotate,

this shear term is essential (Willam et al., 1989).

3.3.2 Plasticity Based Approach

If it is assumed that the material has experienced tensile cracking in a plane defined by

normal n then in the crack plane, the subsequent yield condition would involve only

normal and shear stresses. If Rankine criterion normal to the crack plane (without shear

effect) is assumed, then the yield function can be writtenas

F=a -7 = 0 (3.15)

where a„ is the stress normal to the crack plane and Y, the uniaxial or equivalent yield
stress. In computational elastoplasticity, the relation between incremental stresses and

strains is expressed as
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with the elastoplastic matrix

Acr= WAe

D„ =D_(DaXDa)T
A + aTDa

(3.16)

(3.17)

In the fixed Cartesian frame the flow vector a can be expressed as (Pankaj, 1990)

aT=(cos26> sin26> 2sin6>cos#) (3.18)

where 9 denotes the angle form the global x-axis to the crack normal and the softening

parameter A can be expressed as

A_ EE^
Lj •*-'T

(3.19)

where E and ET are the Young's modulus and slope ofthe softening branch ofthe stress
strain curve of the cracking material as shown in Fig. 3.3

SI

U

o

Z

Normal strain e„

Fig. 3.3 Normal stress vs. normal strain

The elstoplastic tangent modulus matrix, after neglecting the Poisson's effect can be
expressed for plane stress case as

Dep = E
10 0 ^
0 1 0 -(E-ET)
0 0 0.5

cos4 9 cos2 #sin2 9 sin <9cos3 9
cos2 0sin2 9 sin46> cos6>sin3<9
sin #cos3 6 cos#sin3 6 sin2 #cos2 9

(3.20)

If the normal to the crack plane is aligned with global x-axis, then D^ reduces to
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J)ep =
Et 0 0

0 E 0
0 0 0.5£

(3.21)

Plasticity based rotating crack approach is simply an isotropic softening model which

can be depicted with the help of an yield criterion, for maximum tensile stress criterion

(Rankine) without directionality, as

F = CT,-r = 0 (3.22)

with ct, , the maximum principal stress.

Plasticity also gives a choice to use yield criterion other than the Rankine criterion to

model cracking. With other yield criterion, the fixed and the rotating plasticity based

approaches can be linked to anisotropic strain softening plasticity and isotropic strain

softening plasticity respectively.

3.3.3 A Comparison of Various Approaches

The elasticity based fixed crack models have been widely used to model cracking

within the smeared crack concept. These models can, however, significantly overestimate

strength of the structures (Crisfield and Wills, 1987; Crisfield, 1988), since no control is

imposed over the maximum tensile strength. In order to overcome such problems, models

that permit multiple non-orthogonal cracks have been proposed (de Borst and

Nauta, 1985). These allow formation of new cracks if the maximum principal stress

indicates a crack where the change of the angle from the previous crack(s) is greater than

a specified threshold angle. The choice of threshold angle is rather arbitrary. If the

threshold angle is small, then a greater number of cracks can open. A constant monitoring

is required for the crack state i.e. whether crack is openor closed. The state change of one

crack promotes the state changes of others i.e. opening of one crack may cause closing of

another (Rots, 1988). During such state changes, a decision as to which state change

should be handled first needs to be made (Rots, 1988). This state change process also

requires excessive bookkeeping.

The use of elasticity based rotating crack approach can overcome many of the above

discussed problems (Cope et al., 1980; Gupta and Akbar, 1984; Crisfield and Wills, 1987;

Crisfield, 1988). This approach however, overestimates strength for shear/compression
failures. This probably is due to the basic nature of the failure criterion which is based on
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the maximum principal stress/strain. Attempts to correct this overestimation of strengths
have been made by assuming compression softening. This has been done both with
elasticity based fixed crack approach (de Borst and Nauta, 1985; de Borst, 1986) and
elasticity based rotating crack approach (Crisfield, 1988) augmented with a failure
criterion.

The elasticity based approaches have the advantage that crack deformations are
reversible on load reversal. Such an advantage, however, has a limited significance
because ofinability (physical) ofthe cracked material to fully gain its lost strength.

All the disadvantages of plasticity based fixed crack approach are similar to that of
elasticity based approach with a major difference that the plastic deformations are
irreversible. The plasticity based rotating crack approach utilising Rankine criterion would
again require to be augmented with a failure criterion and some softening in tension-
compression and compression-compression region to accurately predict limit loads.
Therefore, a need for a single constitutive model that could be used to predict nonlinear
behaviour ofquasi-brittle materials, including cracking in both tension and compression,
has emerged. Several such models have already been proposed (Pramono, 1988; Pramono
and Willam, 1989; Pankaj, 1990; Bicanic et al., 1994), some in conjunction with the
elasticity based approaches (de Borst and Nauta, 1985; de Borst, 1986).

3.4 Localizationand Material Instability

It has been discussed earlier that localisation zones (zones ofimmense straining) and
failures are common feature of many engineering materials like brittle rock masses,
concrete and soil. In order to understand and explain such behaviour, modelling of the
process ofgrowth and interaction ofmicrocracks that join together to form amacroscopic
surface or region of rupture, is needed. However, in the present section an alternative
hypothesis is considered in which localization can be understood as an instability in the
macroscopic constitutive description of inelastic deformation of materials (Rice, 1973;
Rudnicki and Rice, 1975). Instability is understood in the sense that the constitutive
relations may allow the homogeneous deformations ofan initially uniform material to lead
to a bifurcation point, at which non-uniform deformations can be incipient in a planer band
under conditions of continuing equilibrium and continuing homogeneous deformations
outside the zone of localization.
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Rudnicki and Rice (1975) initiated the method for finding the quantitative
determination of critical conditions governing the onset of localisation followed by many
researchers (Needleman and Tvergaard, 1983; Ortiz etal., 1987; Willam and Sobh, 1987;
Leroy and Ortiz, 1989). It is now understood that these conditions are valid as long as
structural homogeneity is preserved.

3.4.1 Condition of Localization

Making use ofearlier related work (Rudnicki and Rice, 1975; Ortiz et al., 1987) and
using indical notation for convenience, the condition of localisation can be derived as
follows.

Ifgk is aposition vector defined, then for avector function v, =v(. (gk) one can write

Ifthe length of the vector dgk is ds ( ds = \dgk\) and sk =dgk Ids i.e. a unit vector in the
direction of dgk, then use ofEqn. 3.23, will give

^L =p-sk (324)
ds dgk

If v,. is considered to be constant on surface S, Eqn. 3.24 reduces to

f*u|H=o (325>ds dgk

where tk is the unit vector tangential to the surface S. This equation indicates that the
vector dvx Idgk is orthogonal to arbitrary tangential vector tk giving dvx Idgk =qxnk
where nk is the unit vector normal to surface S and qx is a scalar. Similarly
0v21 dgk =q2nk and dv, Idgk =q,nk. In general, it can be expressed as

dvjdg.^qp, (326)

Ifsk ofEqn. 3.24 is replaced by nk then ds =dn and

*=Hr"' ='«"*"* <327)
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Now consider a homogeneously deformed material subjected to quasi-static
increments of deformation £. Let « and Vm be the displacement field in the solid and

displacement gradients respectively used to find if bifurcation can occur causing

discontinuous deformation across a plane of orientation n. At the onset of localisation u

remains continuous but the displacement gradient exhibits a jump across the plane of

discontinuity, i.e.

[[u,J] =u;-u-*0 (3.28)

where the superscript (+) indicates one side of discontinuity and superscript (-) indicates
the other. To show the difference between the values on either side of discontinuity,

double brackets [[•]] are employed.

As u,, = dui ldgj one can write using Eqn. 3.26 and Eqn. 3.27

«-flgH (3.29)

and

^]=[[u,,]] =̂n; (3.30)

At this stage consider a unit vector m along q i.e.

m, = — where q = \q\ (3.31)
1 q

The pair of the unit vector n, m completely define the nature of the discontinuity. For
example when m is orthogonal to n, the material deforms in pure shear and when m is
parallel to n, the band undergoes extension normal to the plane of discontinuity and may
be interpreted as tensile or splitting failure. Between the above two extremes lies a mixed
failure mode for which m and n are neither orthogonal nor parallel.

The strain jump can be obtained using Eqn. 3.30 as

[[*,.,]] =A([[uJ] +[[u,,]])
2

"4fa»y+VO (332)
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To investigate the condition of localisation for elastoplastic material behaviour, the
incremental stress strain relationships are rewritten in the following form

rfo^DJA. (3.33)

where D'' is the tangent stiffness tensor for a material, for rate independent solids

(elstoplastic solids) the localisation bifurcation analysis is carried out using the same
branch of D'' (in classical plasticity D^ has loading and unloading branches) and so jump

in Eqn. 3.33 leads to

fffM=D&tt«frnH (334)

Equilibrium across the discontinuity planes requires that the traction t be continuous i.e.

[K]] =[M^]] =«,[[^]] =0 (3.35)

which along with Eqn. 3.34 leads to

»,D£[[<feJ] =0 (3.36)

and which in turn using Eqn. 3.32 leads to the localisation condition

^(nM=(»,D£W;K=0 (3.37)

This condition has to be satisfied by m and n for the localisation mode to be possible.

The onset of localisation occurs at the first point in the deformation history for which a

non-trivial solution of Eqn. 3.37 exists. For a nontrivial solution of Eqn. 3.37 to exist, it is

necessary

detL4(n)) = 0 (3.38)

So ifa unit vector n satisfying Eqn. 3.38 can be found, it implies onset of localisation and
gives its direction. From Eqn. 3.37 the vector m can then be found to fully define the
localisation mode.

The unit vector n satisfying Eqn. 3.38 is known as 'acoustic tensor' (Willam and
Sobh, 1987; Pramono, 1988). Once the condition ofEqn. 3.38 is established and the unit
vector n satisfying this equation is evaluated, the onset oflocalisation and its direction can

be predicted.
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3.5 Need for Nonlocal Laws

Solutions that are not unique and depend on finite element mesh discretization are

obtained if softening modulus is assumed to be a material property. This can be illustrated
(Pankaj, 1990; Zienkiewicz and Taylor, 1991) with the aid of a simple bar of length /

divided into elements of length h as shown in Fig. 3.4a.

The bar is subjected to a uniformly increasing extension u. In the virgin state, the

material is assumed as elastic with a modulus E and uniaxial yield stress Ya. After

exceeding Yo, the material is assumed to soften with a modulus ET.

The stress-strain relationship can thus be written as (Fig. 3.4b)

a=E£ for £<YJE = £y (3.39)

In the post-yield region

o=Yo-ET(£-£y) for £>£y (3.40)

Unloading behaviour of the material from any plastic point can be represented as shown in
Fig. 3.4b. The yielding of the system can take place in different possible ways. One
possible solution is, of course, that in which all elements yield identically. The applied
stress versus the elongation strain £ = u/l curve is shown in Fig. 3.4c. For hll-\
assumption, the material behaviour curve obtained, is identical to the idealised stress strain

curve of the material (Fig. 3.4c). However, the possibility exists that after reaching the
maximum stress 70, only one element (probably with infinitesimally lower maximum yield

stress) continues to behave plastically while all others unload elastically. The total

elongation is now given by

t,.(,-A)£+*P£2+£) (3.41)

which results in an overall strain as

*-*-crft#-T4-Wf7Ar-+1Ll (3.42)
/ [IE IET) '\IET IE
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(a) i
1 •• • '

J-

(b)

h/l= l

(c)

Fig. 3.4 Mesh size dependence in extension ofhomogeneous bar with a strain softening
material (a) bar discretisation (Y„ perturbed in a single element), (b) idealised
stress-strain behaviour of the material and (c) stress a vs. average strain e-uII
assuming yielding in a single element of length h

As /i-»0, then e-^oIE. Clearly, a large number of solutions are possible for any
element subdivision and in the present trivial example, a unique finite element solution is
impossible (with localization to a singular element always occurring). Hence, in order to
obtain similar results for different finite element discretisations, the softening modulus is
made element size dependent (Pietruszczak and Mroz, 1981). Physical arguments for such
an approach are available in the literature (Bicanic et al., 1985; Bazant and Lin, 1988;
Bazant and P-Cabot, 1988; Mazars and Bazant (eds.), 1989).
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3.5.1 Using the Concept of Fracture Energy

Hillerborg et al. (1976) proposed a two prameter fictitious crack model. Tensile
strength and fracture energy are the two parameters which have been considered in the
development of the model. If a specimen subjected to tension, enters into a post-yield
region, then this model assumes elastic unloading in the entire length of the bar and an
additional elongation in an infinitely thin cracked zone. In this infinitely thin cracked zone,

constitutive relationship is defined in terms of normal stress and crack elongation. Stress

transfer capability which the newly formed crack has, depends on the width of the crack in
the stressed direction (Fig. 3.5) Once the crack width w attains a particular value wx, the

stress transfer capability reduces to zero. In order to overcome the stress in the crack'
opening process, energy is absorbed. This energy required for widening the crack from
zero to wx, (or beyond wx) may be expressed as the energy required to fully open (to or

beyond wx) unit area of a newly formed crack

a

a = f(w)

-I

\ adw (3.43)

Fig. 3.5 Hillerborg's fictitious crack model

Within a smeared crack model, the above concept of fracture energy is utilised less

rigorously and the accumulated fracture is distributed over a finite crack band width
(Bicanic et al., 1986). This width in finite element analysis is related to mesh discretisation.
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Material models which exhibit strain softening have an inherent dependence on the

discretisation of the finite element mesh (Crisfield, 1982; Bazant and Oh, 1983;

Rots, 1988). A length scale must therefore be included within the formulation to
counteract this dependence. The fracture energy must be released over the effective crack

width in order to curb such mesh sensitivity and thus produce mesh objective results. This

implies that while the fracture energy is taken as a material property, the softening moduli
depend on finite element mesh discretisation.

3.6 Strain Softening in Dynamic Problems

Strain softening was considered an unacceptable feature for a constitutive equation.

Sandler (1984) considered a strain softening infinite bar under dynamic end loading and
with a material which had a negative stress to strain ratio. He showed that in such a case,

the response is immediately unbounded. Bazant and Belytschko (1985) argued that the
tangent modulus becomes positive in rate independent plasticity on strain reversal.

It is now well accepted that softening canbe incorporated in dynamic analysis without

it leading to unbounded solution. While in this study, attention will be confined to strain
rate independent material behaviour, strain softening has also been used with the strain

rate dependent models with success (Sluys, 1992; Zoran. 1993).
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Chapter 4

Hoffman
Yield Criterion

4.1 Introduction

Plasticity has seen the formulation of several constitutive models to represent material

behaviour (Owen and Hinton, 1980; Fuschi et al., 1994; Viladkar et al., 1995). In the

recent years, the finite element analysis of quasi-brittle composites has seen the

reemergence of the Hoffman yield criterion (Schellekens and de Borst, 1990; Bicanic et

al., 1994; Xikui et al., 1994). It is reported that the criterion is capable of describing the

complex phenomenon that governs the failure of anisotropic composites. In this study
attention is confined to isotropic form of the Hoffman criterion. In this form the criterion

contains within it, the well known von Mises criterion. The attempt is to model failure by

using strain softening in the post-yield phase. This chapter describes the criterion and its

numerical implementation with strain softening.

4.2 Hoffman Yield Criterion

Hoffman (1967) modified the Hill (1947) criterion by including terms that are linear in

the stress. Hoffman originally formulated his failure criterion for anisotropic materials, in

the form:

Cx(o22-a33)2 +C2(a3i-axx)2 +C,(axx -a22f +C4ct„ +C5ct22 +C6ct33 +
C7a223+Csa2,x+C9a2X2=\ (4.1)
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where the constants C, are nine independent material parameters. Six uniaxial tension and
compression tests and three shear deformation tests are required for unique determination
of these nine parameters.

The Eqn. 4.1 was reformulated in matrix-vector form by Schellekens and
de Borst (1990) as

F =±oTI>ao-oTpa-Y2=0

where for a three dimensional case

o=(ax ay ct, xv r^ ra)T

P theprojection matrix is represented as

Pa =

a31 + ctx,l) -2aX2 -2a31 0 0 0

-2aX2 2( ocn + ctx,.) -2an 0 0 0

-2a31 -2a„ 2(a31+a23) 0 0 0

0 0 0 6«44 0 0

0 0 0 0 6a55 0

0 0 0 0 0 6a66 J

and pa the projection vector isdenoted as

Pa=(«ii «22 «33 ° ° °f

The material parameters atj are expressed as

1 +^L
CT„CTn CT22CT22 CT33CT33

a.44 3^3

Y2

Y2
«23=y

J-+^J-

a.i=^2
0u-fn

a22 =r2 ^22-^22
_ CT22 CT22 _

a33 =r2 ^3-^33
. ^3^33 .

a« =55 _ o —
3^iLCTuCT,, ct33ct33 ct22ct22J

-L-+^r
022°22 0»^S1 ailCTH

a,66 3a?2

where

(4.2)

(4.3)

(4.4)

(4.5)

7 is the normalised yield strength, ct* are the uniaxial compressive yield strengths, ou are
the uniaxial tensile yield strengths and atj (i * j) are the uniaxial shear yield strengths.
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For isotropic materials the nine yield strengths (of anisotropic material) are

dependent on each other and reduce to only two independent ones (Bicanic et al., 1994).

Now denoting ct* and cti7 as

The two parameters a0 now reduce to

If fc ft
a«=y' /./

Yi(

u

(i 13)

(4.6)

As a result of the isotropy constraint, the relation between uniaxial shear strength and the

uniaxial compressive and tensile strength (fc and /,) is expressed through the relationship

*-&•
which leads to

a..=-£-
• fj,

(/>4)

Finally the normalised yield strength, Y is fixed as

Y=(fcf,)V2

Making use ofEqn. 4.6 and 4.7, the material parameters are simplified to

P =

an = 1/2 Q*j)

av =/c -/, (''£3)

a« = 1 (/>4)

corresponding projection matrix and ]

2 -1 -1 0 0 0"

-1 2 -1 0 0 0

-1 -1 2 0 0 0

0 0 0 6 0 0 ; Pa

0 0 0 0 6 0

0 0 0 0 0 6
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fc -f
fc -ft

0
0
0

(4.7)

(4.8)

(4.9)

(4.10)



For the isotropic case Eqn. 4.2, in terms of a,;,fc,f, , can be alternatively written as

F=W+oJ +ct2. -(axay +ayal+azax) +3(r2xy +£ +£)} +
(L - j;x°-x+o-y+fff)-/e/,=o (4.11)

It is more convenient to write the above equation in terms of the first stress invariant 7,
and the second deviatoric stress invariant J2 as

F = 3J2+(/c-/,)/,-/c/,=0 (4.12)

Fig. 4.1 illustrates the Hoffman yield surface in the principal stress space. It can be seen
that in the three dimensional principal stress space, the isotropic form of the Hoffman yield
criterion is a cylindrical paraboloid. The criterion is pressure sensitive which is an
important feature of quasi-brittle materials. The criterion does not have any singular
regions as is the case with the Mohr Coulomb criterion, thus easing numerical
implementation. Moreover, the criterion comprises of parabolic meridians which do not
permit unrealistic increase in the size of the /r-sections with increase in compressive
hydrostatic stresses, as is the case for Mohr Coulomb and Drucker Prager criteria.

Fig. 4.1 Hoffman yield surface in principal stress space
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4.3 Strain Softening Formulation

In this study, the softening response is assumed to have been initiated immediately
after yielding. This is to maintain the mathematical transparency of the numerical
computations so that the softening behaviour can be better understood. Clearly it is not
difficult to incorporate hardening prior to softening if required. Strain softening evolution
of the yield surface is assumed to occur in two ways (a) when /, is assumed to decline
(Eqn. 4.12) with increased plastic loading (Bicanic et al., 1994) and (b) when both fc and
/, are assumed to decline simultaneously. In the former case the yield function can be
written in terms of tensile yield strength Y= ft as

/r =K +aJ +^-(crxo-y +o>a, +a1tTx)+3(^ +zJf +zi)} +
(Je~Y)((Tx +oy +o,)-feY=0

or

F = 3J2+(fc-Y)Ix-fcY = 0 (4.13)

A typical evolution of the yield surface in the principal stress space with decline in Y
(only /,) is shown in Fig. 4.2. It can be seen that while the yield surface contracts in the
tension-tension quadrant it expands towards the compressive end of the hydrostatic axis.
This apparently implies a decrease of cohesion and an increase of frictional characteristics
of the material. For the latter case where softening is considered to occur in both

compression and tension, in order to simplify the problem, it is assumed that the ratio of
the uniaxial compressive yield strength /„ and uniaxial tensile yield strength /, is constant
i.e. fclft-n (constant). For this case the yield criterion can once again be written in

terms of a single declining Yas

F={a2x+a2y +a]-(axay +ayat+alax) +3(z2xy +£ +£)}+
(n-l)Y(ox+oy+o,)-nY2=0

or

F =3J2+(n-\)IxY-nY2=0 (4.14)

The evolution of the yield surface for this case is shown in Fig. 4.3. It is seen that the

surface uniformly contracts in this case.
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Fig. 4.2 Evolution of the Hoffman yield surface when only /, reduces

Fig. 4.3 Evolution ofthe Hoffman yield surface when both fe and /, reduce
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An exponentialform of strain softening is assumed for both cases wherein /, or both

fc and /, reduce as per the following equation

-(WO2Y= YoeKy/ J (4.15)

where Y and Y0 are the uniaxial yield stress in tension at the current and the virgin state of
the material respectively. ep indicates the equivalent plastic strain while ec is a constant

that is responsible for the slope of the softening branch. Clearly the value of sc will be

mesh dependent and will depend on finite element discretisation.

It is, of course, easy to employ a linearform of softening given by

Y=Y0+Hep (4.16)

where H is the uniaxial hardening modulus which is positive for hardening and negative for

softening.

If the magnitude of the compressive yield stress (fc) and tensile yield stress (/,) are

identical, the pressure dependent component will reduce to zero (since fe-ft =0) and

Eqn. 4.12 reduces to

F = 3J2-Y2

which is a squared form of the standard von Mises yield criterion. Thus von Mises

criterion can be deduced from the isotropic Hoffman criterion.

4.4 Evaluation of Hardening Parameters

Hardening (or softening) parameters dsp and A need to be evaluated for finding the

current equivalent yield stress and for use in the formation of the elastoplastic modulus

matrix.

Forstrain hardening hypothesis, the effective plastic strain dspy can be written as

Use of Eqn. 4.13 (only /, assumed to reduce) leads to
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d£p =dX^2[6J2+(fc-Y)2] (4.18)

If, on the other hand, Eqn. 4.14 (both fc and /, assumed to reduce) is used, the effective

plastic strain turns out to be

d£p =dX^2[6J2+{(n-\)Y}2] (4.19)

The parameter Afor strain hardening format can be written as (Pankaj, 1990)

-HfjgHl)
This for Eqn. 4.13 leads to

A=-H(Ix+fc)yl2[6J2+(fc-Y)2] (4.21)

and for Eqn. 4.14 leads to

A=-H[2nY -(n-1)7, )^2[6J2+[(n-\)Y]2] (4.22)

It is not difficult to evaluate these quantities for the work hardening format (de Groot and

Kusters, 1980) wherein

d£py =-dX^r (4.23)

and

KfJ (4.24)

Using these equations on Eqn. 4.13 leads to

d£py=dX(Ix+fc) (425)

and

A= H(/1+/e)2 (426)

Similarly using them onEqn. 4.14 leads to

d£p=dX[2nY -(«-!)/,] (427)
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and

A = H[2nY-(n-\)Ix]2 (4.28)

4.5 Evaluation of Contact Stresses

The evaluation of contact stress state plays an important role in the elastoplastic
analysis as semi-implicit and explicit algorithms used in the integration of elastoplastic
equations utilise the contact (or penetration) stress state as shown in Fig. 4.4
(Crisfield, 1991). The contact stress state defines the stress state at the onset of plastic
loading.

<7*RA^e °+Ao

F = Q

Fig. 4.4 Definition of the contact stress state

Iterative schemes are available for finding this transition from elastic to elastoplastic

behaviour (Marques, 1984). It was subsequently shown that for some commonly used
yield criteria, the contact stress state can be evaluated in closed form (Pankaj and
Bicanic, 1989).

Here, the closed form evaluation of contact stresses for the Hoffman criterion is
considered. Consider the Hoffman yield criterion which canbe rewritten as

F(&) =Wx +ctJ +oz-(axay+aya, +o,ox) +3(t*JV +t*„ +*i)} +
(fc-f)(<r* + cry + ot)-fcft=0 (4.29)
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Suppose for any point inside the Hoffman yield surface, the yield function is represented

by

H°,fc,ft)<0 (4.30)

If the elastic increment step (elastic predictor) is in such a way that stress state jumps

outside the yield surface then for this new state the yield function is expressed as

F(o,fc,f)>0 (4.31)

If R is a factor between 0 and 1, such that it takes the elastic stress increment only upto

the yield surface i.e.

F(o+RAo-,fc,f,) = 0 (4.32)

then the factor R corresponding to this state will give the exact stress state at the yield

surface. If the state of stress in elastic domain is defined as

ct= i cr ct ct rL x y 2 xy yz TJ7 (4.33)

and the incremental elastic predictor stress vector corresponding to an increment Act* is

given by

Act- ={Act*x Act; Act: A«L *<. ^J

The contact stress state in expanded form can now be written as

o+RAo'^<

ox+RAo'x
oy+RAoJy
ct, +RAoel

,^+RA^

Substituting in Eqn. 4.32 and using Eqn. 4.29, one obtains

a,7?2+a2/? +a3 = 0

where

(4.34)

(4.35)

(4.36)

ax =(Act2,)' +(Aoy)' +(Ao]y - Ao°xAd>y - Act^ - Act^Act; +
3[(ArM'+(AzM'+(A£)']
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a2 =2(ctjcAct'x +ct/ct; +ct,Act; )- (ct,Act; +ct/ct*x +oyAo0, +o,Acfy +
oIAo'x +oxAo's) +6(TxyAfxy +r„A^ +TzxAfJ +(fc-ft)(Aoex+AoJ,y+Ao'!)

a3 =c^x +c^y +c^-oxoy-oyoz-oIox+3(T2xy +Ty, +ti) +(fc-ft)(ox+oy+oz)-fcft

The correct value ofi? will clearly lie in the interval [0,1] and exact contact stress state can

be obtained by solving the simple quadratic Eqn. 4.36 (Fig. 4.5).

4.6 Integration of Rate Equations

Integrating the rate equations using backward-Euler (fully implicit schemes) for
Hoffman plasticity have been discussed in the work ofPearce (1993), Schellekens and de
Borst (1989,1990) and Bicanic et al. (1994). In the present section some ofthese ideas are
reconsidered.

The total strain increment can be decomposed into elastic and plastic parts for a

particular stepy as

Aej =Ae]+Asp (4.37)

The first term on right hand side is calculated from the linear elastic stress-strain
relationship as

A^ =D 'Act, (4.38)

where D is the constitutive matrix and Act, is the stress increment. For associated flow

rule, one can write

Asp =AXJ4^- (4-39); ; dOj

Using Eqns. 4.37-4.39 one can write

dF
Ae4 = D']Aot + AX,'> J JdOj

Differentiating Eqn. 4.2 w.r.t. Oj, the flow vector a=dF/dOj can be evaluated as

a=|^=P0a,+pa (4.41)
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Fig. 4.5

a + RA&

g + Act

a + Aa'

a + tfAa'

(a)

R = 0.172497

a Aae

240.0 2400.0

80.0 800.0

80.0 800.0

Evaluation of the exact contact stress state (a) in principal stress space (b) *-
plane representation H k '
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Putting the expression for the flow vector in Eqn. 4.40, one obtains

A£j =D 'Act, +AX,(Vao, +p.) (4.42)

which on rearrangement results in

D "Act, -AEj +AXj(Paoj +pj =0 (4.43)

If the previously converged step is denoted by the subscript /, then

D 'ct, - fif = 0 (4.44)

Using Eqn. 4.44 in Eqn. 4.43 gives

D-lAoj-AsJ+AXJ(¥aoJ.+pa) +Trioi-sei=0 (4.45)

noting that

ct,=(ct,+Act,) (4.46)

Eqn. 4.45 can be simplified and rearranged to give

(D-1 +AA,.Pa)(CT, +Act,) - « +As, - AA,Po) =0

or

(D-1 +AA,PJct,. =< +Ae,. - AXpa (4.47)

So the stress state can be expressed as

ct, - (D"1 +A^.PJ-1« +As, - AXjPa) (4.48)

or

CTy=(I +AA,DPor1D«+Af,-AA,pa) (4.49)

From Eqn. 4.49, it is clear that the final state of stress is a function of plastic strain
rate multiplier AA,. To achieve a converged state of stress ct,, which satisfies the

consistency condition, a backward-Euler return scheme (Bicanic et al., 1994) can be

employed, where a truncated Taylor series expansion about position k is expressed as
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Fk+X =Fk +• °
dAX,

(AX?-AX)) (4.50)
ta\

Linearisation ofF(AX}) now requires that F*+1 =0, leaving for the successive iterates

AX)+l =AX)
F(AXj)

dF
dAX,

(4.51)

AT,

dF
To evaluate -rrr , a methodology, which is, slightly different from that used by

dAX

Bicanic et al. (1994) is adopted. Reconsider the Eqn. 4.14

F(J2,Ix,Y) = 3J2+(n-\)IxY-nY2 =0

dF
Making use of the chain rule can be expressed as

dF dF dJ, do dF dL do dF dY
- + - - + •

dAX dJ2 do dAX dlx do dAX dY dAX

with

A = <*x + °y + 0--
J2=(\/3)(ax +al+a])-(U3)(axay+ayaz+azax)+zxy +T2y2 +zi

The different terms in Eqn. 4.53 are evaluated as

dF
3.0

=(^-y,^-y>CTz-y.2V2V2r«J
= (n-\)Y

dJ2

dJ2
do

dF

dlx

do

dF_
dY

= (1 1 1 0 0 0)r

= (n-l)Ix-2nY

The evaluation of terms dYI dAX and daI dAX is considered as follows:
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dY
Evaluation of -rrr

dAX

dF
Since the computation of is influenced by the hardening hypothesis, hence this

d A/l

quantity has to be evaluated separately for work hardening format as well as for strain
hardening format, considering either the linear strain hardening/softening or the

exponential strain softening.

For linear hardening/softening case:

If the linear hardening is considered then the new stress level Ywill be a function of

hardeningmodulus H as

Y= Y0+Rep (4.56)
y

where Yo is the initial yield stress level and sy is the effective plastic strain.

Differentiating Eqn. 4.56 with respect to AX yields

dY dY dsp dspJ^L .^_!^_-.H—-\ (4.57)
dAX dsp dAX dAX

y

Use of Eqn. 4.27 for work hardening format gives

dY

dAX
= H[2nY-(n-\)Ix] (4.58)

Similarly for strain hardening format, use ofEqn. 4.19 leads to

jfi-=H V2[6/2+[(/7-l)r]2] (4.59)

For exponential softening case:

If theyield stress is assumed to decrease exponentially as discussed earlier as

Y= Y. e vyl ' (4.60)

then differentiating and using Eqn. 4.27 for work hardening yields
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dY dY del

dAX d£p 3AX
y

= 27
° £l

iil«)2 [2nY -(»-!)/,]

For strain hardening format, use of Eqn. 4.19 leads to

dY . c„ spv /r_ „a1 .-ft/*)'

Evaluation of
<?CT

=-2V2 F„ -f V[6J2+[(«-l)F]2] e"

dAX

(4.61)

(4.62)

The term dot dAX, can be found using Eqn. 4.48. Once again attention is confined

to the case when both fc and /, are assumed to decline while their ratio n remains
constant. Noting that pa = pa(Y) one can write

do

dAX
f- =-(D-,+AA/Pa)

=-(D-+AA,Pa)-

=-(D-'+AA,Pa)-

(

AX
1 dAX

\

+ Pa

I , 1 1 B \-l

+« +As, - AA,pJ(-l)(PJ(D-' +AX,Pay

dpa dY(D-l+AX,Va)-lVa(it +ASj-AX,pa)+pa+AX,
dY dAX

(D-1 +AX, Pa)-'P0(D-' +AX, pJct, +pa +AX,^- -^
dY dAX,

j j

(4.63)

The case ofan isotropic material where Pa and (D +AA,Pa) ' commute, leads to

C^CT

dAXĵ
- =-(I +AA,.DPa)-,D Pa(a;)+Pa +AA,%-^

dY dAX

Since the ratio of fc and /, remains constantone can write

\ dPa
dY

(n-\ n-\ n-\ 0 0 0);

j j

(4.64)

(4.65)

Thus all terms of Eqn. 4.53 are now known. It may be noted that the case when only /, is

assumed to decline as per Eqn. 4.13, then some of the terms derived would be different.
However, no difficulty is encountered in deriving them. This is evaluated by iterative
process and the iterative process continues until the condition F = 0 is satisfied. A
computational algorithm that makes use of the above backward-Euler procedure is
discussed in the following subsection for the plane strain case.
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4.7 Computational Algorithm

The integration of rate equations discussed are presented in this subsection for plane
strain conditions in an algorithmic form. The algorithm becomes operative only
if F(o,,Y) >0 at elastic predictor stress state o,.

Step 1 Set

Step 2

Step 3

AX, =0

(elastic predictor stress)

where the third row/column correspond to shear

( 2 -\ 0 -n
-1 2 0-1

0 0 6 0

v-l -10 2

P_ =

dY v '

dF

dJ2

dlx
do

Ix=(ax + ay + az)j

J2=[(\/3)(o2x +o2y +o])-(\/3)(oxoy+oyoz +ozox)]j

For the previously converged stress state i

Set

(X), = (Y)t

Begin iterations and evaluate

dJ2
do,

= 3.0

=[110 If

ct,-/,/3]

2r
v

ct -1/3

dF

dlx

dF

dY

= (n-\)Y

= (n-\)Ix-2nY
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dY
Step 4 Evaluate -=t-j for one of the following

(a) For linear hardening/softening

(/) workhardeningformat

dY

dAX
= H[2«r- («-!)/,]

(if) strain hardeningformat

dY

dAX
=H^2[6J2+[(n-\)Y]2]

(b) For exponential softening

(/') workhardeningformat

eyr-v:'
£

2dAX

(ii) strain hardeningformat

Step 5 Evaluate

dY

dAX

= 2Y_-*ri [2nY-(n-l)Ix]

-2V2 7.-4- e

2

(^c) 4[6J2+[(n-\)Y}2]

<?CT.

dAX̂
=-(I +AA,DPJ-1D *, <?P* <?7

where I is the identity matrix.

Step 6 Evaluate

dF dF dJ2 do dF dL do dF dY
dAX, dJ2 do, dAX, dlx do, dAX, dY dAXJ

Step 7 Evaluate

„ F(AXt)

dAX,
ta\

and check ifAX)+l <0.
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Step 8 Evaluate

ct,. =(l+AX,DFayl[ol+DAErAX,J)pa]

where ct, is the previously converged stress state and As- is the strain

increment.

Step 9 For the new stress state compute

h=(ex+oy +o,),

^2=[(yV(ol +o2y +o2z)-(l/3)(oxoy +oyoz +ozox)],

Step 10 Evaluate Aspy for one ofthe following cases

(a) Work hardening format

Aspy=dX[2nY-(n-\)Il]

(b) Strain hardening format

Aspy =AX, p[6J2+[(n-l)Yf]
Step 11 Increment effective plastic strain

sp <- £>y + A*£

Step 12 Evaluate the new uniaxial yield stress level

(a) For linear hardening/softening

Y= Y.+H£py

(b) For exponential softening

Y=Yo e~{ty'c'

Step 13 Check if \F(o,,Y)\<> tolerance. If the answer is negative go to Step 3for
the next iteration.
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Chapter 5

One Dimensional

Strain Softening
Problems

5.1 General

It is now well established that the strain softening and localization involves additional

numerical difficulties as compared to non-strain softening or non-localization problems

(suchas perfectly plastic or strain hardening problems). In many softening and localization

problems the tangential stiffness method or the Newton-Raphson update fails to converge

due to non-positive definite stiffness matrix. As a result algorithms such as the initial

stiffness method have to be used in order to ensure convergence. This can considerably

reduce the speed of solution. It is possible to devise algorithms that can switch from

tangential stiffness to initial stiffness at the onset of localization, which in turn may be

detected using an Eigen value analysis (de Borst, 1986; Bicanic and Pankaj, 1990a).

The strategy adopted in the past for incremental/iterative stress updating (Owen and

Hinton, 1980) led to accumulation of spurious plastic strains (Ramm and Matzenmiller,

1988; Bicanic and Pankaj, 1990b; Pankaj, 1990; Crisfield, 1991). This was earlier termed

as path dependent behaviour (Mondker and Powell, 1975,1978; Marques, 1984) and later,

perhaps more appropriately, load step sensitivity (Bicanic and Pankaj, 1990b;

Pankaj, 1990) or problem of spurious plastic strain (Ramm and Matzenmiller, 1988;

Crisfield, 1991). While the use of a wrong strategy can lead to spurious plastic strains in

all plasticity problems the effect is more pronounced for softening problems.
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Use ofstrain softening for one dimensional wave propagation problems has been dealt
with in some detail by investigators (Bazant, 1976; Bazant and Belytschko, 1985;
Belytschko et al., 1987), but its applications to structural dynamic problems are limited
(Sandler, 1984; Moin and Pankaj, 1994; Pankaj, Moin and Barthwal, 1994; Pankaj and
Moin, 1996). The present Chapter deals with using strain softening with one dimensional

dynamic problems.

5.2 Problem of Spurious Plastic Strain

Over the past decade and a half there has been considerable deliberation over the
strategy for updating stresses and strains in an incremental/iterative solution procedures.
Two methodologies have emerged. In the first (Strategy A), stresses are updated at the
end of each iteration based on the strain increment computed for that iteration. In the

second (Strategy B), stress increment is computed for all strain increments accumulated
upto that iteration and the stresses are updated only after the iteration process has
converged. The former strategy was termed as apath dependent and the latter as path
independent by Mondker and Powell (1975,1978). The same terminology was used by
Marques (1984). Initially Mondker and Powell (1975,1978) felt that the former strategy
was more consistent for Newton-Raphson iteration whereas the latter with the constant

stiffness approach. Later it was shown that the former strategy led to illogical results in
some cases (Bicanic and Pankaj, 1990b). The strategy caused accumulation of spurious
plastic strain and spurious unloading (Ramm and Matzenmiller, 1988; Crisfield 1991) and
load step sensitivity (Pankaj, 1990). The strategy worked as long as a single integration
point was permitted to go in the post-elastic range in an incremental load step. To this end
some investigators suggested that load step should be such that not more than one
integration point enter the post-peak range within a single load step (Bazant and
Chang, 1987).

Strategies Aand B were named as the subincremental residual strategy and the total
residual strategy respectively by Bicanic and Pankaj (1990b); and as procedure using
iterative strains and procedure using incremental strains respectively by Crisfield (1991).
Although some modifications to Strategy A have been suggested (Nyssen, 1981).
Strategy B is now generally recommended (Crisfield, 1991; Zienkiewicz and
Taylor, 1991).
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5.2.1 Incremental Strain Procedure

The detailed steps of Strategy B that uses incremental strains are as follows:

Step 1: Assemble the applied load increment vector AP. This is done once for every

load increment (step) applied.

Step 2: Assemble the stiffness matrix K or Kr (tangential stiffness matrix) if required.

Step 3: Solve for incremental displacements. If this is the first iteration of a load step

one solves for displacements Ax, using

KT Ax, = AP

where the subscript on x denotes the iteration number. In subsequent iterations in place of

AP, 6P, is used, which is the residual force at the end of an iteration. From this 5xf, the

iterative displacement in iteration / is found using

Kr 5x, = 5P,

These iterative displacement increments are added for calculation of the new stress state as

Ax,. = Ax,._, +Sx,

Step 4: From incremental displacements Ax, compute incremental strains Ae, in

different elements.

Step 5: Compute for each element (or integration point in general) stress change due

to strain change assuming linear elastic behaviour as

Act* =E As,

where the superscript e denotes that linearelastic assumption has been made.

Step 6: The next step depends upon the state of stress at the end of the previously

converged load step. With reference to Fig. 5.1 this implies whether the stress was at point

A, B or C at the end of the last converged increment. Point A indicates that the plastic

strain was zero and material was elastic. Point B indicates that the material was

elastoplastic with positive plastic strain and new yield stress. Point C indicates that elastic

unloading took place, the plastic strain was non zero and the material has a new yield
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level. Points A and C indicate that the stress increase in this increment will be fully or

partly elastic. For linear strain hardening and for all these cases the current yield level for
each element can be evaluated as

Y = Ye + Hs"

where H is the linear strain hardening parameter; sp the plastic strain (at the previously
converged state) and Y0 the uniaxial yield strength of the material.

Check if the point at last converged state was in the elastic range (points A or Q or
was elastoplastic (point B) by comparing stresses at the end of the previous converged
state ct with the yield stress value Y.

Ifo=Ygoto step 7, else go to step 10.

<* Y

00

Strain s

Fig. 5.1 Different possible stress states

Step 7: The element had previously yielded i.e. was at point B. Check // ct+ Act* >Y
If the answer is NO go to step 8 else tostep 9.

Step 8: The element is now unloading. Gotostep 15.

Step 9: The element continues to undergo plastic deformation. Set R=l and go to
step 13 where the stress will be reduced to its appropriate value at point D (Fig. 5.2).

Step 10: The material was at point AorC(Fig. 5.1). Check */ ct+ Act; >Y
Ifthe answer is NO go to step 11 else go to step 12.

Step 11: The element is still elastic. Go to step 15.
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a+ Act

00
iO

g
oo

Strain e

Fig. 5.2 Further yielding of an yielded element

Step 12: The element was earlier elastic but has now yielded. The portion of stress

greater than the yield value must be reduced to the elastoplastic line. Find factor R

(Fig. 5.3) which divides the elastic (assumed) stress increment into two

parts—(a) (l-R)Ao* that will bring stresses to current yield level for which elastic stress

strain law is applicable and (b) RAct" which is an elastic predictor that is required to be

corrected to point F. The factor R is given by

j>_EG_<r+A°1-Y
R-EH~ Act?

a+ Act

S/5
VI
u

00

(i-R)^;

Strain £

Fig. 5.3 Yielding of an elastic element
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Step 13: This step called the plastic corrector phase and is for elements that are

undergoing elastoplastic deformation. The current increment of the stress can be found as

ACT,=(l-R)Ao?+£(l--gffr)RA*(

where the first term accounts for the elastic portion of the stress increment. The new stress

from this iteration / is given by

ct,. = ct+Act,

Step 14: The plastic strain increment Asp is found using

RAf.
Asf =

l+«

and the total plastic strain is

£P=£P+A£P

Go to step 16.

Step 15: The element is undergoing elastic unloading. The stress is given by

ot = ct+ Aof

Step 16: Calculate the equivalent nodal forces from the element stresses according to

f =-f =l] l2
-otAx for x2>x,

o{Ax for x, > x2

where Ax is the cross-sectional area and x, and x2 are the coordinates of the one

dimensional elements.

Step 17: Assemble the equivalent nodal forces and applied load contributions for each

element to give the total nodal values. If the iteration process hasconverged the difference

between these would be zero (or small). One method of checking is based on the norm of

these differences while another method is to check the norm of incremental displacements.

If convergence has occurred go to step 1 i.e. the next load step. If it has not then residual
forces exist i.e. force compatibility at nodes is not satisfied. In this case the residual force
vector SP is assembled and a new iteration started from step 2.
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5.2.2 Iterative Strain Procedure

The earlier used Strategy A which has been described by Owen and Hinton (1980),

the iterative displacement increments 6xf calculated in step 3 are not accumulated to form

incremental displacements for a load step. These iterative displacements and their

corresponding iterative strains 5e, are used in all subsequent computations. Thus the

previous converged state is forgotten and the state (stresses, strains, displacements etc.)

determination based on an iteration to iteration basis. So the yield stress level keeps

changing in each iteration and so does the plastic strain.

5.2.3 Illustrative Problem

A simple problem is presented in this subsection to compare the procedures discussed

and show how spuriousunloading can take place if StrategyB is not employed.

A two bar discretization as shown in Fig. 5.4 is considered. To illustrate the key

features of the two procedures for softening plasticity, a displacement of such a magnitude

is prescribed at the free end of the bar so that the elastic predictor stresses in both the

elements exceed the uniaxial yield stress Y0.

Physically it appears to be logical that a prescribed displacement of the kind applied

would cause element 2 to undergo softening (on account of its smaller area), while

element 1 will elastically unload. The step by step numerical results obtained from the two

procedures discussed earlier are tabulated in Tables 5.1 and 5.2. It can be seen from

Table 5.1 (incremental strain procedure or Strategy B) that, although element 1 appears to

have yielded during the iterative process it ultimately returns to the elastic branch

(Fig. 5.5a). On the other hand element 1 elastically unloads only after accumulating

permanent plastic strains if the iterative strain procedure (Strategy A) (Table 5.2 and

Fig. 5.5b) is employed. Clearly this procedure would have yielded the same result as the

previous procedure if the prescribed displacements were to be applied in small steps such

that only one element were permitted to yield in a single load step. Thus this procedure

leads to a problem of load step sensitivity and causes spurious plastic strains and

unloading.

From this simple strain softening problem it appears that the simulation of the

localized behaviour would also be aided by the incremental strain procedure.

71



(a) 1

(b)

Element 1
Element 2

'i-1.0

^i=1.2

£1=1.0
y =4.0

-x—u—x

'2=1.0

^2=1.2
£ 2= 1.0

2*=10.0

Fig. 5.4 (a) Two bar discretization with prescribed end displacement
(b) Constitutive behaviour ofthe two bars
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Fig. 5.5 Stress-strain state during the iterative process (a) Strategy B (b) Strategy A
(Permanent plastic strain accumulated)
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Table 5.1: Results of the Two Bar Problem Using Total Residual Strategy

Displacement

5x,(or Ax,)

I

Total

Displacement

Ax,,

n

Strain

Increment

Ae;-

III

Elastic Stress

Increment

Aa,e

rv

Yield Stress

Y

V

Stress

Predictor

CT+Aa,e

VI

Corrected

Stress

VII

Plastic Strain

VIII

Residual

Loads

oP,

IX

Element I

ElementH

4.54545

10.00000

4.54545

10.00000

4.54545

5.45455

4.54545

5.45455

4.0

4.0

4.54545

5.45455

3.94545

3.85455

0.60000

1.60000

-0.88000

0

Element J

Element/!

-0.40000

0

4.14545

10.00000

4.14545

5.85455

4.14545

5.85455

4.0

4.0

4.14545

5.85455

3.98545

3.81455

0.16000

2.04000

-0.96799

0

Element 1

Element!!

-0.44000

0

3.70545

10.00000

3.70545

6.24546

3.70545

6.24546

4.0

4.0

3.70545

6.24546

3.70545

3.77055

0

2.52400

-0.67599

0

Element I

Element!!

-0.30727

0

3.39818

10.00000

3.39818

6.60182

3.39818

6.60182

4.0

4.0

3.39818

6.60182

3.39818

3.73982

0

2.86200

-0.33799

0

Element I

Elementll

-0.15364

0

3.24454

10.00000

3.24454

6.75545

3.24454

6.75545

4.0

4.0

3.24454

6.75545

3.24454

3.72445

0

3.03100

-0.16900

0

Element I

Elementll

-0.07682

0

3.16772

10.00000

3.16772

6.83227

3.16772

6.83227

4.0

4.0

3.16772

6.83227

3.16772

3.71677

0

3.11550

-0.08449

0

i Element!:^
Elementll

-0.03840

0

3.12932

10.00000

3.12932

6.87068

3.12932

6.87068

4.0

4.0

3.12932

6.87068

3.12932

3.71293

0

3.15770

-0.04225

0

Element!

Elementll

-0.01920

0

3.11011

10.00000

3.11011

6.88988

3.11011

6.88988

4.0

4.0

3.11011

6.88988

3.11011

3.71101

0

3.17887

-0.02112

0

^ Element 1 i:

Element!!

-0.00002

0

3.09091

10.00000

3.09090

6.90907

3.09091

6.90907

4.0

4.0

3.09091

6.90907

3.09091

3.70909

0

3.19998

0

0



Table 5.2: Results oftheTwo Bar Problem Using Subiccremental Residual Strategy

Displacement

5x,

I

Strain

Increment

5s,.

n

Elastic Stress

Increment

5a,'

m

Toatl Stress

(Elastic Pre.)

ai+5a°

rv

Yield Stress

V

Corrected

Stress

°i

VI

Plastic Strain

vn

Residual

Loads

5P,

vm

Element!

Element 11

4.54545

10.00000

4.54545

5.45455

4.54545

5.45455

4.54545

5.45455

4.00000

4.00000

3.94545

3.85455

0.60000

1.60000

-0.88000

0.00000
Element I

Element II
-0.40000

0.00000

-0.40000

0.40000

-0.40000

0.40000

3.54545

4.25455

3.94545

3.85455

3.54545

3.81455

0.60000

2.04000

-0.44000

0.00000
Element I

Elementll
-0.20000

0.00000

-0.20000

0.20000

-O.20000

0.20000

3.34545

4.01455

3.94545

3.81455

3.34545

3.79455

0.60000

2.26000

-0.21999

0.00000
Element I

Element 11

-0.09999

0.00000

-0.09999

0.09999

-0.09999

0.09999

3.24545

3.89454

3.94545

3.79455

3.24545

3.78455

0.60000

2.23700

-0.10999

0.00000
Element I

Elementll
-0.04999

0.00000

-0.04999

0.04999

-0.04999

0.04999

3.19545

3.83454

3.94545

3.78455

3.19545

3.77955

0.60000

2.42500

-0.05499

0.00000
Element I

Element!!
-0.02499

0.00000

-0.02499

0.02499

-0.02499

0.02499

3.17045

3.82954

3.94545

3.77955

3.17045

3.77705

0.60000

2.45250

-0.02750

0.00000
Element!: M

Element 11
-0.01250

0.00000

-0.01250

0.01250

-0.01250

0.01250

3.15795

3.78955

3.94545

3.77705

3.15795

3.77580

0.60000

2.46625

-0.01375

0.00000
\ [Element ;/••;••;

Element 11

-0.00620

0.00000

-0.00625

0.00625

-0.00625

0.00625

3.15170

3.78830

3.94545

3.77580

3.15170

3.77517

0.60000

2.47312

-0.00687

0.00000
Element I

Element11

-0.53 xlO-4
0.00000

-0.53 xlO"4
0.53 xlO"4

-0.53 xlO-4
0.53 xlO-4

3.14548

3.77460

3.94545

3.77455

3.14548

3.77455

0.60000

2.47997

0.00000

0.00000



5.3 Elastoplastic One Dimensional Dynamic Problems

If in the static equilibrium equation 'acceleration dependent' inertia forces and 'velocity
dependent' damping forces are included then the resulting equations of the equilibrium
governing the linear dynamic response ofa system of finite elements is given by

1VE +Cx+Kx=f (5.1)

where M, C and K are the mass, damping and stiffness matrices; f is the external load
vector; and x,x,x are the nodal displacements, velocity and acceleration vectors of the
finite element assemblage. It should be noted (Bathe, 1982) that the Eqn. 5.1 has been
derived from the considerations of equilibrium at time t; i.e. Eqn. 5.1 may be written as

F,(/) +FD(/) +FE(/) = f(/) (5.2)

where F, (/) are the inertia forces, Fx(t) = Mx, FD(t) are the damping forces, FD(/) = Cx
and FE(/) are the elastic forces, FE(z) = Kx, all ofthese being time dependent. Therefore in
dynamic analysis, in principle, static equilibrium at time /, which includes the effect of
acceleration dependent inertial forces and velocity dependent damping forces are
considered. In this study consideration will be confined to nonlinearity arising out of
elastoplastic material behaviour (nonlinear K). The mass and damping matrices will be

assumed to be constant.

For nonlinear systems the most commonly used technique for solution of dynamic
equations ofmotion is direct integration in the time domain. In direct integration method
Eqn. 5.1 or Eqn. 5.2 is integrated without any previous transformation, using a numerical
step by step procedure. These schemes are based on two ideas (Bathe and Wilson, 1976)
as

• Eqn. 5.1 or Eqn. 5.2 is satisfied for only discrete stations (Newmark, 1959;
Belytschko, 1978) or in other sense for each time interval (Zienkiewicz et al., 1980;
Zienkiewicz et al., 1984).

• A variation of displacement, velocity and acceleration is assumed within each time
interval. It is the form of this assumption (on the variation of displacements, velocities
and accelerations within the time step) that determines the accuracy, stability and

efficiency of each scheme.
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Here consideration is limited to GN procedures (Katona and Zienkiewicz, 1985) and

its efficacy with respect to simple elastoplastic problems with special attention on strain

softening and localization. Ideas developed for the solution of static problems discussed

earlier can be included for the solution of nonlinear equations of motion.

5.3.1 Generalized Newmark (GN) Procedure

This procedure applies Taylor series approach to derive a general form of single step

algorithms that can be considered to be a generalization of Newmark method (Zienkiewicz

and Wood, 1986). It results in a scheme which is not self starting. In the derivation one

considers the satisfaction of the governing Eqn. 5.1 only at the end points of the interval

At and writes (Katona and Zienkiewicz, 1985)

Mx^+Cx^+Kx^-f,, (5.3)

with appropriate approximations for the values of xrt+1 ,xn+1 and xn+1. If one considers the

Taylor series expansion the derivatives can be written as

At " . At" / '
X„+l = *n+At\H + +—7 *»+P,—-(Xn+l-Xn)

p\ p\

n Ai"P-X/i+l + Pp TXn+l
p\

At"'1 p n At"'' / p .
xn+i=xn + A^n+- "•+——^x»+Bp-\ — —^:(x»+*-*»)

(/>-!)!

= K+l +0
At"-1 p

j.-i (p-\)\

P-\ p-\ P P P

x „+i = x „+A/xn+/?,Ar(xn+i-x„)

P-\ p

= x „+i+^,A/x„+i
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where

p dpxn
x"=—rf-

dtp

In Eqn. 5.4 for a polynomial of degree p, a Taylor series remainder term has effectively

been allowed in each of the expansions for the functions and its derivatives with parameter
Bj, y'=l,2,3,...,/? which can be chosen to give good approximation properties to the

algorithm.

Insertion of the first three equations of Eqn. 5.4 into Eqn. 5.3 gives a single equation
p />-•

from which xn+i can be found. When this is determined xn+1 to x „+i can be evaluated

using

p

Xn+l

f „ « x-l

_lpi^ +cAtp->-P>^- +KAtp^-
(p-2)\ (p-\)\ p\V

x(iM+1-Mx-n+1-Cxn+1-Ifin+1) (5.5)

It can be easily shown that the commonly used Newmark method (Katona and

Zienkiewicz, 1985) can be derived from the above generalized procedure. The above

algorithm applies to both implicit and explicit schemes. In terms of generalized Newmark

method an explicit scheme is simply defined by Bp = 0 for any order of/? (Katona and
Zienkiewicz, 1985). Conversely an implicit scheme is defined by Bp * 0, irrespective of the

remaining integration parameters.

5.3.2 Algorithm for GN22 and GN32

A detailed implementation algorithm (Pankaj, Moin and Barthwal, 1994) for GN22

and GN32 is now discussed. The algorithm is in predictor corrector form which is

particularly advantageous in nonlinear analysis. The changes required for nonlinear

analysis are discussed in the following subsection.

(1) Begin predictor corrector phase

Set iteration counter i = 0

ifp=2 (hen

x„+. =xn+A/xn(l-/?2)(A^K

78



C^+O-fl)**.

Xn+\ ~ Xn+\

X = X

(X'„+1 £-l)[^A/2 0

e/se

x„+i = x, +At±A^hHi-AWL
At'

i'n+x=in+Atxn+(\-B2)\—-\xn

Xn+I _ Xn+1

Xn+1 — Xn+1

Xn+1 — Xrt+1

Xn+1 —(Xn+1 Xn+i)\ B3At2
endif

(2) Form effective stiffness matrix K*

ifp-2 then

K* =rvif^^Vcf-^-Y
{B2At2J U'A.

else

K'=M
6BX

At2B,
endif

+ C|
3p\_

AtB,
+ K

(3) Evaluate residual forces

V(=fB+1-Mx'B+1-Ci'„+1-K<+)

(4) Solve for incremental displacements Ax'

K'Ax' = vj/,.

(5) Begin the corrector phase

C-^+Ax'
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ifp=2 then
(

../+) ,M _ _ v _
An+1 VAn+l An+1/ /? A ,

VP2A'

xy+l -i +BAtxM*n+l An+1 ^fl"tAn+l

else

*m =(xm ~ J—6_

C\=fAn+1W'x^

2

e/ft///

(6) //(Ax'and/or \j/ > specified tolerance) then

/=/+1

go to (3)

go to (7)

e/ft///"

(7) ifp=2 then

else

x„+l - A„+,

x„+l
= x,+1An+1

x„+l
= x,+1An+1

x„+l
= x,+1An+1

x„+. = x,+1An+1

endif

(8) Set tt=n+\ and begin next step

In the above algorithm the primary variable solved for is displacement rather than
acceleration as would be the case if one were to use Eqn. 5.5. This is advantageous for

elastoplastic problems where the tangent stiffness matrix is displacement (or strain)
dependent. However, the disadvantage is that explicit scheme cannot be employed as this
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would require B2=0 or /J3=0 for GN22 and GN32 respectively and would generate

indeterminate values in steps 2 and 5 of the algorithm.

5.3.3 Modification for Nonlinear Analysis

As the nonlinear problems discussed are confined to those arising out of elastoplastic

material behaviour, the nonlinearity is confined to a nonlinear stiffness matrix which in turn

depends on displacements. So mere replacement of K by elastoplastic stiffness matrix Kep

modifies the above algorithms for such an analysis (Owen and Hinton, 1980). When the

initial stiffness approach is used one can continue to use K as far as the formation of the

effective stiffness matrix K* is concerned, while taking into account the effect of

elastoplastic stiffness in the evaluation of residual force vector. If the stiffness matrix is
reformulated in every iteration (N-R iteration) convergence may be achieved faster i.e. in

fewer iterations. However additional computational effort is required in the formation of

stiffness matrix and its triangularisation in every iteration. Further N-R procedure suffers

from a drawback that K may become singular for elasto-perfectly plastic or elasto-strain

softening materials.

5.3.4 Convergence Criteria

The convergence criteria were based on the norm of incremental displacements and

the norm of residual forces. Thus the solution is said to have converged if

(OCW-OO'*.)
((OX)

and

((O'NC'-OtfJV.)
(«y<)

< toler 1 (5.6)

< toler 2 (5.7)

toler 1 and toler 2 are the specified tolerances and were kept at 0.001. Superscripts denote

iteration number.
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5.4 Strain Softening SDF System — An Exact Solution

An exact solution for a strain softening dynamic problem is worked out (Moin and

Pankaj, 1994). This solution will be used as a benchmark in subsequent subsections.

A bar element with a concentrated mass at one end as shown in Fig. 5.6a assumed to

be undergoing axial vibration is considered to constitute an undamped single degree

freedom system. A step function load as shown in Fig. 5.6b is assumed to act on the mass

of the system. The idealized elasto-strain softening plastic load displacement curve is

shown in Fig. 5.6c.

-a
c3

_o

c
o

u
C

a
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F
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Time

(b)

m
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53
o

Fig. 5.6 (a) Undamped SDF system

(b) Step function load and

(c) Idealized load displacement behaviour of the bar
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For the sake of simplicity stillness A^ is considered to be synonymous with modulus E
and tangential stiffness KT with tangential modulus ET. For bar element acting as spring in

the axial direction, the above simplification would imply that the element has unit length

and unit area.

The dynamic response of the system shown in Fig. 5.6a under the given loading,

changes from clastic to post-peak elastoplastic softening and then back to elastic. The
behaviour is thus divided into three sub-domains as shown in Fig. 5.7. The solution in

these three sub domains is as follows:

25• i i i i | i i i i | i i i i | i i i i | i i i i | i i i ' | ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' '

^ . . I . . . • I • . • . I• • . • I • . • • I • • • • I • • • i I i i i i I i i i i I i i • • I ' • ' ' I ' ' ' ' |
6 8

Time (sec)
10 12 14

Fig. 5.7 Displacement response of a strain softening undamped SDF system under step

function load

Linear Part When the step function load acts on the system at rest, the system behaves

as an elastic system and the equation of motion is

mx + Kx = F. (5.8)
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which can be solved for initial conditions, xl=0 = 0 and x(=0 = 0. The solution is

x(t) =̂ [l-coscot] (5.9)

where a) = JK/m is the natural frequency of the SDF system. The maximum
displacement response is 2F./K. This will cause a force of 2F0 in the spring. Clearly if
the yield limit is more than 2F0the system would remain elastic. However when this is not

so, the spring would become nonlinear at some time t=tv At this instant oftime

x(t. )=5.(1-coso)tx) (5.10a)

x(tx) =̂ o)(s\na)tx) (5.10b)

x(tx) =̂ co2(coscotx) (5.10c)

Nonlinear Part: The equation of motion in the strain softening region can be expressed

as

mx +Py=F. (5.11)

where Py is the new load level with \Py\< Pyo (Fig. 5.6c), Pyo is the yield strength of the
virgin material. For linear softening plasticity, the magnitude ofPy would go on declining
with increase in displacement as shown in Fig. 5.6c and is given by

P =P
y y°

( P \x--fj£r (5.12)

where E and ET are slopes ofelastic and softening branches respectively. It may be noted
thatET is taken to be positive.

Putting P from Eqn. 5.12 into Eqn. 5.11 the equation

mx+\pJx-!f)Er\=F. (5.13)

is obtained whose solution is

*(/') =£,e''^ +B2e-''^" -^ (5.14)
C,
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with C, =ET, C2 =F„ -Pj 1+-£•) and r' =f- /,. The constants #, and B2 are found
from initial conditions (Eqn. 5.10) as

B, [#<'" coscotx) C2
•B,

B2 =Q.5m .^-—Wf+^r-g sin<y/

by differentiating Eqn. 5.14 and equating it to zero, the time at which maximum

displacement is reached can be found as

/; =o.5 *i3-
1 Vq 5,

(5.15)

at this instant of time the velocity becomes zero and then the displacement changes sign.

Clearly the system becomes elastic again (elastic unloading).

Similarly for an elasto-perfectly plastic system ET - 0 the solution in the nonlinear

phase is

F-P

m

,-2 f
y t 1 -+-^r(\ +cot'sin cotx-coscotx)

2 E
(5.16)

and the time at which the system reverts to the elastic unloading phase is obtained as

, F. sin co t.
U CO Py.-F.

Elastic Unloading: The equation of motion upon elastic unloading is

mx+ Ex' = F.

where x' is the elastic displacement given by

x -x- *(',)-§

using Eqn. 5.12 the solution is obtained as

F'
x(t") = B^cosco t" +~
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where

t" = t'-t[,

F^fJexCO-P^-P^) and
V y y E )

C F'B, =Bxe'{ ™" +B2e,[ ™* - ^- —£.
C| A.,

it can be seen that future response of the SDF system (/'.e. at t" > 0) will be governed by
the above equation and the system will not enter the nonlinear regime again.

In a similar manner, once again, for elasto-perfectly plastic system in this phase

• v° h F i, i . \
x= - ;!r- +—(1 + 6?/, smcot. -coscot.)

m 2 E

In this case too the system will not reenter the nonlinear regime.

cospt" +y- (5.21)

This simple problem illustrates that strain softening does not necessarily lead to

unbounded displacement response in dynamics. Moreover, the system vibrates with

frequency co, which it would have done even if it were purely elastic.

5.5 Spurious Plastic Strain in Dynamics

It was seen earlier that for static problems a proper stress updating strategy is needed

to take care of large load/displacement steps else spurious plastic strain accumulates.

Similar stress updating procedures are used in the solution of dynamic problems as well.

Here the conventionally used iterative strain procedure for dynamic analysis (Owen and

Hinton, 1980) is compared with the incremental strain procedure for a dynamic problem.

It is seen that presence of acceleration dependent inertia forces and velocity dependent

damping forces do not impose any additional complexity when the incremental strain

procedure is employed.

The system shown in Fig. 5.6a with mass m, Young's modulus E, cross-sectional

area A and length / all equal to unity was considered. A softening modulus ET was
assumed 10% of the Young's modulus. The yield strength of the bar Pyo = 15.0 was

assumed. A step function loading as shown in Fig. 5.6b was assumed to act on the mass of
the system with Fo =10.0. If the system were to remain elastic then the maximum
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displacement would be 2FJK (Eqn. 5.9). This will cause an axial force of2F0 in the bar.
Clearly, therefore, the system cannot remain elastic for the chosen parameters.

The response of the system was computed using the exact and numerical procedures
discussed earlier. The numerical solution was obtained by using the GN22 algorithm in its

unconditionally stable form. In subsequent sections it will be seen that this algorithm is
superior to some of the GN32 procedures. The GN22 algorithm used employed the
incremental strain procedure as well as the iterative strain procedure for updating strains
and stresses. The displacement response comparison is shown in Figs. 5.8-5.10. It can be
seen that for the smallest time step (At = 0.01sec) the numerical procedures match well

with the exact solution. As the step becomes larger (Figs. 5.9-5.10) the exact solution and
the numerical solutions are seen to be different form each other. In each case the results
from the incremental strain procedure being closer to the exact solution. The accumulation
ofplastic strain with time is shown in Fig. 5.11. Once again it is seen that greater spurious
plastic strain results when the iterative strain procedure is adopted.

It isclear that a single degree freedom system considered would yield the same results
with both incremental and iterative strain procedures for static problems. In fact in the
case of static problems the difference in the results from the two procedures emerges due
to inter element stress adjustments. At the first sight it is surprising to see a difference of
such magnitude for a single degree offreedom system in case ofdynamic problems. This,
apparently, is due to the inter dependence of displacement, velocity and acceleration
vectors. Thus the need to use incremental strain procedure for dynamic analysis can not be

overemphasized.

5.6 A Comparison of Some Generalized Newmark Algorithms

Once again the problem of step function loading (Fig. 5.6b) acting on the system
shown in Fig. 5.6a was considered. The following parameters were assumed:

K=4100 N/mm, m= \00Kg, Pyo = 32S0N and Fo=2000N

Both GN22 and GN32 algorithms are used in conjunction with the initial stiffness
method and the Incremental strain procedure. For GN32 procedure the value of the
parameters Bq is so chosen that the algorithms are single step equivalents of well known
Houbolt and Wilson 9 methods. Relationship of generalized Newmark method with these
methods has been established by Katona and Zienkiewicz (1985). The Houbolt method is
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Fig. 5.8 Comparison of exact elasto-strain softening displacement response of an
undamped SDF system with numerically computed response using GN22
algorithm (At = 0.01 sec)
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Fig. 5.9 Comparison of exact elasto-strain softening displacement response of an

undamped SDF system with numerically computed response using GN22
algorithm (At = 0.3 sec)
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Fig. 5.10 Comparison of exact elasto-strain softening displacement response of an
undamped SDF system with numerically computed response using GN22
algorithm (At = 0.6 sec)
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essentially a multistep method. GN32 becomes equivalent to the Houbolt method when
fi} = ex =2, /?2 = <92 =11 / 3, /?3 =0, =6 and to Wilson 9 method when BX = 0X =0W,
32 =62 =0l, B, =0} =9\ (Katona and Zienkiewicz, 1985). The Wilson 9 method is
unconditionally stable when 9W> 1.366 (Bathe, 1982). The unconditionally stable form of
GN22 with /?, =B2 = 0.5 was used.

The single step equivalents of GN32 have not been sufficiently tested. The reason,
perhaps, is that GN32 is difficult to use when the initial conditions are other than zero.
This is due to the fact that the method requires initial value of the third derivative of

displacement for which no expression is available.

The first series of analysis was conducted assuming elastic-perfectly plastic
constitutive behaviour with an yield force /^=3280N. For such a system an exact

(closed form) displacement response was found and plotted along with GN22 and GN32
(Wilson 9 and Houbolt cases). For each case a time step Ar=0.05 sec was employed. The
displacement response is shown in Fig. 5.12. It can be seen that GN22 is closest to the
exact solution, while Houbolt equivalent of the GN32 is the farthest.

A second series of analyses were conducted in which the same single degree of
freedom system with strain softening post-elastic behaviour (£r=410 N/mm) was
considered. Again the results of GN22, GN32 Wilson 9 and GN32 Houbolt cases were
compared with the exact (closed form) displacement response (Fig. 5.13). Once again it
was observed that the GN22 is closest to the exact response while Houbolt equivalent of

GN32 is the farthest. A analysis for a larger period of time (Fig. 5.14) illustrates
considerable amplitude decay for the Houbolt equivalent of GN32, a little less for the
Wilson 9 equivalent and none for the unconditionally stable form ofGN22. These simple
examples indicate the superiority of the unconditionally stable form of the GN22
algorithms.

5.7 Dynamic Response Due to Different Post-Peak Constitutive Behaviour

The problem considered in section 5.6 was analysed with different post-elastic
constitutive behaviour as shown in Fig. 5.15. An ET ofthe same magnitude 410 N/mm
was employed for both strain hardening and strain softening cases (Fig. 5.15b-5.15c) with
different signs. The displacement response is shown in Fig. 5.16.
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Fig. 5.12 Response of a SDF elastic-perfectly plastic system to step function loading
using different algorithms
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Fig. 5.13 Response of a SDF elastic-strain softening system to step function loading
using different algorithms
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It can be seen that irreversible plastic displacement increases as the spring
characteristics are changed from elastic to strain hardening to perfectly plastic to strain
softening. It would appear that the period of oscillation would increase in the same
sequence (Zienkiewicz and Wood, 1986). A Fourier analysis of the frequency content,
however, reveals that there is no change in the predominant frequency of the vibration as
the spring characteristics change (Fig. 5.17). In each case there is a zero frequency
component (ZFC) which is due to the mass not vibrating about the zero displacement
position. This component is highest for the strain softening case and zero for elastic case.
This analysis shows that strain softening can be used for dynamic analysis as well (Moin
and Pankaj, 1994). Moreover, the system continues to vibrate and does not cause an

unbounded response.

In order to study the behaviour of different time stepping algorithms under different
post-elastic constitutive behaviour the analysis was conducted for an extended period of
time. The results are shown in Figs. 5.18-5.20. Amplitude decay is observed for all cases

ofWilson 9 and Houbolt equivalents.

5.8 Seismic Response of Nonlinear SDF System

The base of a single degree of freedom (SDF) system of Fig. 5.6a with
K=4100 N/mm and m=\00Kg was subjected to an actual earthquake acceleration

history. The corrected accelerogram of the Uttarkashi earthquake of October 20, 1991
obtained at 30.738N and 78.792E (Earthquake Engineering Studies, 1993) was used for
the purpose. Aconstant viscous damping of5% ofthe critical was considered and the bar
was assumed to be (a) Elastic, (b) Perfectly plastic and (c) Strain softening. For the strain
softening case ET= 410 N/mm was assumed. The response was computed using GN22
algorithm with Af=0.02 sec. In the first instance the yield force value Pyo =2.05x 105 N
was assumed. The displacement response is shown in Fig. 5.21. It can be seen that for
nonlinear cases the mass does not vibrate about the zero displacement position. The

Fourier analysis (Fig. 5.22) of the response indicates that in general, the predominant
frequency content does not change with the change in post-elastic constitutive behaviour
although some low frequency components appear to have been added to the response.
Due to the mass finding new mean position to vibrate about, a zero frequency component
is included in the response (Fig. 5.22). These changes of the mean position take place with
the building up ofthe plastic displacements, which happens in a short time (Fig. 5.23) and
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Fig. 5.18 Extended displacement-time response of a SDF system with different post-
yield characteristics to step function loading using GN22 algorithm
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Fig. 5.20 Displacement-time response of a SDF system with different post-yield
characteristics to step function loading using GN32 (Houbolt) algorithm

remains constant thereafter. The maximum plastic displacement for this example was
found to be 22.43 mm and 25.03 mm for perfectly plastic and softening cases respectively.

The second analysis was conducted after reducing the yield force ?yo to 1.23x 1057V.
The displacement response is shown in Fig. 5.24 and the Fourier magnitude plot of the
response is illustrated in Fig. 5.25. Once again it can be seen that for elastoplastic cases a
zero frequency component is incorporated in the response. The ZFC in this case (Fig.
5.25) is smaller as compared to the earlier case with higher yield level (Fig. 5.22) although
the plastic displacement levels (Fig. 5.26) are much higher (48.56 mm and 54.94 mm for
perfectly plastic case and elastic strain softening case respectively). The reason for the
lower ZFC is, that in this case the plastic displacement increments take place during both
compression and tension of the bar thus reducing the ZFC.

It is seen from the above discussion that elastoplasticity does not alter the
predominant frequency response of the system. It, however, introduces azero frequency
and some low frequency components in the response. It is also seen that strain softening
plasticity can be used with dynamic problems.
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Fig. 5.23 Increase of plastic displacement with time (P =2.05x 105N)
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Fig. 5.24 Displacement time response of a SDF system with different characteristics to
Uttarkashi earthquake excitation (Pyo =1.23 x105N)
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Chapter 6

Benchmark

Problems

6.1 General

The analysis of industrial structures and substructures is often conducted using
elastoplastic constitutive laws, in conjunction with the finite element method. The finite
element codes may be used as "black box" by personnel who may be inadequately trained

in the method. In order to train analysts and to check the validity of finite element codes,

the benchmarks can be of paramount importance. Further, exact solutions in

computational elastoplasticity cannot be used directly as these often pertain to solutions
that are valid only for particular cases. However, these solutions can be used as

benchmark tests to check the validity of finite element codes and accuracy of numerical

solution procedures. A number of benchmarks have been devised for this purpose in
computational elastoplasticity (Krieg and Krieg, 1977; A. Kamoulakos et al., 1985;
Crisfield etal, 1987; Hinton and Ezzat, 1987; Jackman and White, 1987; Hinton

et al., 1989; Hablot and Zarka, 1989; Pankaj and Moin, 1991; Sloan and Brooker, 1992;

Pankaj and Moin, 1996).

In the present Chapter benchmark tests for three different yield criteria viz. von

Mises; Mohr Coulomb and Hoffman are discussed. The perfectly plastic as well as strain

hardening/softening hypotheses are considered. The tests are based on prescribed

displacement field format.
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6.2 Benchmark Testing

The benchmark tests discussed in this Chapter are based on single elements in a
prescribed displacement field. Thus a displacement field is prescribed to the nodes of the
element and then the corresponding strains and stresses are evaluated. While evaluation of
strains from displacement involves only a strain-displacement transformation matrix, the
computation of stresses from strains involves nonlinear material constitutive relationship.
Here consideration is limited to isotropic elastoplastic benchmark tests for plane strain or
three dimensional situations. The tests can be used to verify finite element packages with
regard to their ability to (Hinton et al., 1989):

Accurately predict first yield at various segments of the Mohr Coulomb, von Mises
or Hoffman yield surfaces,
Correctly predict flow on von Mises, Mohr Coulomb and Hoffman yield surface
with or without hardening/softening.

6.3 Development ofBenchmark Tests for von Mises Criterion

6.3.1 Perfect Plasticity

The exact integration ofconstitutive equations for an isotropic elasto-perfectly plastic
von Mises material were developed by Krieg and Krieg (1977) by considering a constant
strain rate vector ofarbitrary direction for associated flow rule.

The basic steps for the evaluation ofstress increment for a given strain increment can
be outlined as follows

1 Find the radius R of thevon Mises surface in deviatoric stress space as

where Y. is the equivalent uniaxial yield stress.
2. Find contact deviatoric stress Sc at the contact starting stress (stress state on the

yield surface) state a.
3 From the prescribed strain increment Ae find the deviatoric strain increment Ae.
4. The elastic predictor deviatoric stress increment ASe is given by

AS, = 2GAe

where G is the shear modulus

•

•
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5. The updated deviatoric stresses S, can be found as

S, =o(Sc +BAS,)

where

/?=[l-C2+(l-C)2cos^/?/(2C|AS,|)
(-\as\/r)

C = e

2C
a-

(l+C2) +(l-C2)cos^c
SCAS

cos y/c -
R\ASt\

AS. |=(AS2, +AS2, +AS2, +2AXL, +2A<Z +2Ai2J'/2

and AS , AS , AS., are deviatoric elastic predictor stress increments in the x, y and z

directions. Similarly Ar etc. are the elastic predictor shear stress increments.

This closed form solution is general enough to take into account any arbitrary strain

increment. The solution has been extensively used as a benchmark test in von Mises

plasticity (e.g. Hinton et al., 1989). This solution is however unable to tackle more general
and practical cases like strain hardening/softening plasticity.

6.3.2 Hardening/Softening Plasticity

In general the stress increment during continued plastic loading needs to be computed
by integrating the equations

do = D'pde (6.1)

where the elastoplastic matrix

D^=D_(Pa)(Da)r (62)
A + arDa

Here a is the flow vector given by a = dFIda, D the elasticity matrix; and da, ds are

infinitesimal stress and strain increments respectively. The parameter A is the
hardening/softening parameter which for theyield function F(a, k) = 0 isgiven by

A
dF( 3k^\ dF
Ok dep J da

(6.3)
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where k is a parameter depending on plastic strain history and ep denotes plastic strain.

The stress increment is obtained by integrating Eqn. 6.1. This integration is

straightforward if the elastoplastic matrix D'' remains constant during the straining

history. In general the D'^ matrix as given by Eqn. 6.2 keeps changing as the flow

vector a and hardening parameter A are not constant during plastic loading. If a straining

history is such that the flow vector a remains constant, then this will lead to a simple

benchmark test. Clearly for linear hardening/softening the parameter A is constant and

thus by merely ensuring a constant a the test will be able to include linear

hardening/softening. It is easy to see that constancy of a for von Mises criterion can be

ensured if the plastic strain direction is radial to yield surface in the n- plane. Such tests

are considered in the following subsections.

6.4 Benchmark Tests for von Mises Criterion

6.4.1 Benchmark Test 1: Perfectly Plastic Element Under Uniaxial Tension

Consider a four noded square single element as shown in Fig. 6.1. Nodes 1 and 3 are

restrained against all translations. Nodes 2 and 4 are permitted only prescribed translations

in the x-direction. The prescribed displacement is induced in the x-direction at nodes 2

and 4. The principal stress directions will remain parallel to x, y and z axes throughout the

straining history and therefore there will be no shear stress induced during straining.
Moreover for a plane strain case the relationship oy - az will always be maintained. It is

also easy to see that during such loading the elastoplastic matrix D^ remains unchanged.

As a first example, the case of perfect plasticity A = 0 was considered. The advantage of

this test is that it is possible to verify the results using the methodology of Krieg and

Krieg (1977) discussed in subsection 6.3.1.

^
r=2.o

0

£=1.0

v=0.2

Fig. 6.1 Uniaxial tension test on a single element
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The manner in which the stress states traverse the yield surface is shown in Fig. 6.2

and the numerical values obtained to be used as benchmark are presented in Table 6.1.

Since the element is a square with unit sides, the prescribed displacements are the same as
strain ex. The following observations can be made from Table 6.1 and Fig. 6.2.

• The first displacement increment (Ax = 2.4) is given in such a way that it takes the

stress state elastically to the von Mises yield surface at which the stress state is given by

<T„

o-*=o"i =
P-y)

(l-2v)

az = o2 = <t3
(l-2v) "

with Yc being the uniaxial yield strength of the virgin von Mises material. As perfect
plasticity is considered in this test yield strength will continue to remain Yc

• On further stretching in x-direction the stress state traverses along the von Mises

cylindrical yield surface. Stress state after each strain increment is marked by points 1-6

in Fig. 6.2.

Table 6.1: Uniaxial Tension with Perfect Plasticity

Increment Strain State

Vector

2.40000
0.00000
0.00000

3.01000
0.00000
0.00000

3.51000
0.00000

10.00000

4.01000

0.00000
0.00000

5.01000
0.00000
0.00000

6.01000
0.00000
0.00000

Flow Vector

6f/dax
dfjdoy
Jflfkr,
fo.oooool
0.00000 \

[o.oooooj
1.00000]

-0.50000 r
L-0.50000j

1.00000
-0.50000
-0.50000

1.00000
-0.50000
-0.50000

1.00000
-0.50000
-0.50000

1.00000
-0.50000
-0.50000

Stress Vector

2.66667
0.66667
0.66667

3.00556
1.00556
1.00556

3.28333
1.28333
1.28333

3.56111
1.56111
1.56111

4.11667
2.11667
2.11667

4.67222
2.67222
2.67222
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Effective
Plastic Strain

(=dX)

0.00000

0.40667

0.74000

1.07333

1.74000

2.40667

Equivalent
Stress Level

2.00000

2.00000

2.00000

2.00000

2.00000

2.00000

I



(a)

(b)

CT3

Fig. 6.2 Variation ofthe stress state on the Mises yield surface for uniaxial tension and
perfect plasticity (a) in principal stress space (b) it- plane representation

108



From Fig. 6.2 it is clear that the tensile displacement of element (Fig. 6.1) keeps the
stress points on tension side ( all the traversed points on the von Mises yield surface lie on
the positive sides of the crx,a2,ai axes). It can be seen that the uniaxial stretching causes

the mean stress to continuously increase (point 1 of Fig. 6.2(a) is nearest to the origin

while point 6 is farthest to the origin).

The n- plane representation of the stress changes is shown in Fig. 6.2(b). The figure

illustrates that in the principal stress space all stress states lie on a single straight line. This
line is the intersection of a plane projecting radially outwards from the axis of the von
Mises cylinder (the hydrostatic axis). As a result, in the n- plane all stress points

coincide.

Although this test has been illustrated using a four noded element, itwould be equally
valid on any square element with larger number of nodes. Obviously in that case
appropriate boundary conditions will need to be prescribed to all nodes on the edges.
Since in this test perfect plasticity is assumed a verification with the solution proposed by

Krieg and Krieg (1977) can be made as follows.

For verification the strain increment from step 1 to step 6 was considered. Using the

steps outlined in subsection 6.3.1 various quantities can be evaluated as follows:

1. R= 1.63299

2. Starting contact stress state

a

2.66667
0.66667
0.00000
0.66667

and starting deviatoric contact stress state

1.33333
-0.66667

0.00000
-0.66667

3. The strain increment from steps 1 to 6 is
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Ae =

13.610001
0.00000
0.00000
0.00000

and the deviatoric strain increment is

f 2.406671
-1.20333

0.00000
-1.20333

Ae = <

4. The elastic predictor deviatoric stress increment using elastic properties of Fig. 6.1 is

AS, =«

f 2.005551
-1.00277

0.00000
-1.00277

|AS,| = 2.45629

/?= 2.32714

C =
cos y/c =

3.22220
1.00000

s,=<

1.33333
-0.66667

0.00000
-0.66667

The update stress is therefore

a = <

4.67222
2.67222

0.00000

2.67222

It can be seen that this matches the stress state in step 6 of Table 6.1.

6.4.2 Benchmark Test 2: Strain Softening Element Under Uniaxial Tension

A test, similar to that discussed in the previous subsection, was conducted assuming

the material of the element to be linearly strain softening. The procedure of Krieg and
Krieg would not be applicable in this case. Awork hardening hypothesis was assumed and
the softening parameter A= -0.25 was used. The manner in which the stress state
traverses the yield surface is shown in Fig. 6.3 and the numerical values are presented in
Table 6.2. In this case the circles represented by the von Mises surface in the n- plane
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(a)

(b)

Fig. 6.3 Variation of the stress state on the Mises yield surface for uniaxial tension and
strain softening (a) in principal stress space (b) it- plane representation
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shrinks with increased loading. The Mises cylinder of Fig. 6.3 represents the first yield
surface. The shrinking is illustrated by the decrease in the equivalent stress level of
Table 6.2. As the flow vector remains constant along with the parameter A, no difficulty is

encountered in integrating the rate equations of plasticity.

Table 6.2: Uniaxial Tension with Strain Softening

Increment Strain State

Vector

"y

2.40000
0.00000
0.00000

3.01000
0.00000
0.00000

4.01000
0.00000

0.00000

5.01000
0.00000
0.00000

5.51000
0.00000
0.00000

6.01000
0.00000
0.00000

Flow Vector

df/dax
ofjday

fo.oooool
0.00000 \

[o.oooooj
l.oooool

-0.50000 \
-0.50000J

1.00000)
-0.50000 \
-0.50000J

'. l.oooool
-0.50000 \

I-0.50000J
l.oooool

-0.50000 \
i-0.50000j

l.oooool
-0.50000 \
-0.50000J

Stress Vector

[2.666671
0.66667 \

[0.66667J
2.92083
1.04782
1.04782

3.33750
1.67282

, 1.67282

3.75417
2.29792
2.29792

3.96250
2.61042
2.61042

4.17083
2.92292
2.92292

Effective
Plastic Strain

(=dX)

0.00000

0.50833

1.34167

2.17500

2.59167

3.00833

Equivalent
Stress Level

2.00000

1.87292

1.66458

1.45625

1.35208

1.24792

6.4.3 Benchmark Test 3: Perfectly Plastic Element in Pure Shear

A four noded element was subjected to pure shear by prescribing displacements as
shown in Fig. 6.4. This problem is again aplane strain type and the condition that the flow
vector remains constant during loading process is maintained.

The traversed state of stress is shown in Fig. 6.5 and the numerical values obtained
are presented in Table 6.3. It is observed from Fig. 6.5 and Table 6.3 that:
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-4+d JL.

+d.+d

-d.-d

V

-7 +i-d

£= 1.0

v = 0.2

r =2.0

Fig 6.4 A plane strain element under pure shear

Tabic 6.3: Pure Shear with Perfect Plasticity

Increment Displacement
Vector

Strt

I

-

km S

'ecto

£y
T*y

lE: .

tote

r

1"low Vectc

df /dux

r Stress

Vector

<?x

< y .
lxy

Effective
Plastic

Strain

(=dX)

Equivalent
Stress

Level

1 /0.69282]
L0.69282J

0.00000'
0.00000

-2.77128
0.00000

•

o.oooool
0.000001
0.00000 f
0.00000J

<

' 0.00000"
0.00000

-1.15470
0.00000,

•
0.00000 2.00000

2 (l.20000)
11.20000J

r 0.00000'
J 0.00000
1-4.80000
[ 0.00000_

• <

' 0.00000"
0.00000

-1.73205
k 0.00000

• <

' o.oooool
0.000001

-1.15470 [
0.00000J

1.17128 2.00000

3 (l.70000)
11.70000.1 •

' o.oooool
0.000001

-6.80000 f
0.00000J

<

' 0.00000"
0.00000

-1.73205
k 0.00000,

• •

' o.oooool
0.000001

-1.15470 f
0.00000J

2.32598 2.00000

4 (2.20000]
L2.2OOOOJ

4

' 0.00000"
0.00000

-8.80000
0.00000

» 1

' 0.00000"
0.00000

-1.73205
0.00000v

• <

' 0.00000
0.00000

-1.15470
0.00000

•
3.48068 2.00000

5 (2.70000)
L2.7OOOOJ

•

o.oooool
o.oooool

-10.80000f
0.00000J

-

' 0.00000'
0.00000

-1.73205
0.00000

• i

' o.oooool
0.000001

-1.15470 [
_0.00000J

4.63538 2.00000

6 (3.20000)
L3.2OOOOJ

<

o.oooool
o.oooool

-12.80000 f
0.00000J

<

0.00000"
0.00000

-1.73205
0.00000

•
<

' 0.00000"
0.00000

-1.15470
0.00000

> 5.79008 2.00000

113



(b)

Fig. 6.5 Variation of the stress state on the Mises yield surface for pure shear and
perfect plasticity (a) in principal stress space (b) it- plane representation
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• The first step (d =0.69282) takes the stress state elastically to the von Mises yield
surface. The state of pure shear stress at the first yield is represented by

r„=Yjj3
xy °

The other components of the stress are obviously zero.

• Further increment in displacement causes the stress state to remain at the same
position on the yield surface, since a constant state of stress (r^, =-1.15470) is

maintained throughout the post-yield straining process in which d is increased. This is
because any additional shear strain after initial yield contributes only to the plastic strain
increment. As elastic strain increment remains zero the stress state remains unchanged. For

the purpose ofplotting this state ofpure shear was resolved into maximum and minimum
principal stress components cr, and o2 as

°i= **v

°1 = ~Txy

• In the it- plane representation it can be seen that the stress points lie on the line of

pure shear.

6.4.4 Benchmark Test 4: Strain Softening Element in Pure Shear

The test of subsection 6.4.3 was repeated with a strain softening element. Linear
strain softening with softening parameter A=-0.25 was assumed. The manner in which
the stress state traverses the yield surface is shown in Fig. 6.6 respectively and the

numerical values are presented in Table 6.4.

All stress points lie on a line projecting radially outwards from the origin as can be
seen from Fig. 6.6. The figure also illustrates the changes in the radius ofMises cylinder.

6.5 Development Of Benchmark Tests For Mohr Coulomb Criterion

In this section exact solutions for Mohr Coulomb elastoplasticity that include linear

strain hardening or softening plasticity, are developed (Pankaj and Moin, 1991,1996).
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Table 6.4: Pure Shear with Strain Softening

Increment Displacement
Vector

Strain State

Vector
r -\

^x

£y

T*y

Flow Vector

'&lfox'
cfjday
Of/^xy
.%/fal.

Stress

Vector

'°x
°yi y .

r*y

Effectiv
e Plastic

Strain

(=dX)

Equivalent
Stress

Level

1 (0.69282)
10.69282J

<

0.00000"
0.00000

-2.77128
0.00000

•

0.00000"
0.00000
0.00000
0.00000

<

' o.oooool
0.000001

-1.15470 f
O.OOOOOJ

0.00000 2.00000

2 (l.20000)
LI.2OOOOJ

<

0.00000'
0.00000

-4.80000
0.00000

> •

' 0.00000"
0.00000

-1.73205
0.00000

>

[ 0.00000'
J 0.00000
1-0.94337
[ 0.00000^

•
1.46410 1.63397

3 (l.70000)
I1.7OOOOJ

4

' 0.00000'
0.00000

-6.80000
0.00000

•
•

' 0.00000'
0.00000

-1.73205
k 0.00000

• <

r 0.00000"
0.00000

-0.73504
> 0.00000

>
2.90748 1.27313

4 (2.20000)
I2.2OOOOJ

<

0.00000'
0.00000

-8.80000
0.00000

• <

' 0.00000
0.00000

-1.73205
t 0.00000

> *

0.00000
0.00000

-0.52671
0.00000

• 4.35085 0.09123

5 (2.70000)
L2.70000J

•

0.00000
0.00000

-10.80000
0.00000

' 4

r 0.00000
0.00000

-1.73205
0.00000

• •

0.00000'
0.00000

-0.31837
0.00000^

•
5.79423 0.55144

6 (3.60000)
L3.6OOOOJ

<

o.oooool
0.000001

-13.80000 [
o.oooooj

•

' o.oooool
0.000001

-1.73205 |
o.oooooj

•

0.00000"
0.00000

-0.00587
0.00000

•
7.95929 0.01077

The Mohr Coulomb yield surface in the principal stress space is a pyramid with six
planes (Fig. 6.7). The difficulty with such an yield surface is the presence of singular
regions due to the edges (where two planes meet) and apex (where all six planes meet).
Here consideration is limited to the cases where either only one plane is involved or when

any edge is involved, in the integration ofthe stress strain law. Solutions for each of these
cases are derived in turn in the following subsections.

6.5.1 One Active Plane

The Mohr Coulomb yield criterion in terms of principal stresses can be written as

(Owen and Hinton, 1980).

F =-(ct, -ai) +-{o-x +o-i)sm<p-ccos</>=0
1^ **
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(b)

s.

Fig. 6.6 Variation of the stress state on the Mises yield surface for pure shear and strain
softening (a) in principal stress space (b) it— plane representation
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(a)

01

Plane 5 Plane 6

°2 * °3 ^ eg >- cr > cr3

Plane 4 Plane 1

(b)

Fig. 6.7

Plane 3

o- > cr > cr
3 1 " 2

Plane 2

o: > cr > cr
1 3 2

Mohr Coulomb yield surface (a) in principal stress space (b) it- plane
representation

18



where ax and ct3 are the principal stresses with ox t o2 Zct3; and c and <f> arc cohesion and
friction angle respectively. The complete yield surface represents a set of six planes
(Fig. 6.7) in the principal stress space and the use of Eqn. 6.4 implies using the sextant
where ax > o2 > ct3 [Fig. 6.7(b)] (Pankaj and Bicanic, 1989).

Equation 6.4 is linear equation in terms of principal stresses ct,; thereby if the
Cartesian axes are aligned with the principal stress directions the flow vector a would
comprise of six constants, ofwhich those corresponding to intermediate principal stress
and shear stress would be zero at any given stress state. If it can be ensured that this flow
vector and parameter A do not change during plastic loading the elastoplastic matrix
would become a constant making integration of Eqn. 6.1 straightforward. This can be
ensured in the principal stress space ifa test is devised in which (a) parameters Aremain
unchanged; (b) the finite principal strain increment is aligned in the direction ofprincipal
stress and; (c) the strain increment is such that the same plane remains active during the
loading step.

For the above conditions one can work out D'p with respect to the three principal

directions using

and

a = £1
<Jcr\

\do\J

(s + \*\
0

5-1

(\- v v
v 1- V

y V V
D = B

(6.5)

(6.6)

where s =sin<f> and B=E/((l+ v)(\-2v)). The exact elastoplastic modulus matrix for
this case can be evaluated and is given by

where

*p —D

(dxx dX2 O
d2X d22 d2i

Kd3X d32 d33 7

dxx =B(1- v)-k(\-4v+4v2-4vs +2s +s2)
dx2 =Bv-k(2vs-4v2s +2vs2)
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and

dXi =Bv-k(-\ +4v-4v2+s2)
dtx = dl2
<k2 = B(1- v)--4A:i^2

4,-= Bv--k(--2 vs + 4 Js + 2 vs2)

4. =d„
dJ2 = d2i
d,3 =B(l- v)-)t(l-4v+4^ +4w-25 +52)

yt = B2/[4{A +(B/2)(l-2v+52)}]

(6.8)

(6.9)

Now the exact integration of Eqn. 6.1 is straightforward as the finite stress increment,

for a single active plane, can be obtained simply by premultiplying the above evaluated

D'' matrix by the finite strain increment. It can be verified that the elastoplastic modulus

matrix is singular, though unique, for perfect plasticity (A=0) and nonsingular for A > 0.

6.5.2 Two active planes

When more than one "yield planes" become active simultaneously, in associated

plasticity, Koiter (1953) showed that

" dF,.
(6.10)

where m is the number of active yield functions (m=2 in this case).Thus with the aid of

Eqn. 6.10, the Eqn. 6.1 can be rewritten as

f m \
da =D(de-de") =D de-J^dX^

v ;=•

(6.11)

where a; =dFj/da. It can be shown that the incremental plastic multiplier dX. (/'=/ to
m) now need to be evaluated by solving the simultaneous equations (Pankaj and Bicanic,

1989)

A,+afDa"!/ "I

vA„+afDa,, ; A,+afDa,
(6.12)

where
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A, =
* dK

^A^\dlL (6.13)
Kd*') da

Once again, for Mohr Coulomb plasticity, when two planes are active (m-2) then if (a) A„
are kept constant; (b) the principal strain increments are aligned in the direction of
principal stress; and (c) it is ensured that the same edge remain active during the finite
strain increment; then it is easy to compute the elastoplastic modulus matrix which
becomes a constant. Here it is important to point out that for strain hardening format the
parameters Atf become nonlinear functions of plastic multiplier dXr In contrast, with
work hardening format, A„ (=A) for all ij are the same (Pankaj and Moin, 1991) and it is
easy to derive D'p for multiple active yield planes.

In order to illustrate the above consider that in addition to the planes defined by

Eqn. 6.47, the active plane is

F2=-(CT1-CT2) +-(CT,+CT2)sin^-ccos^ =0 (6.14)

then the elements of matrix D" (Eqn. 6.7) with the aid of Eqns. 6.11-6.12 for the
principal stress/strain directions are

4, =B(l-v)-—{Cx-C2)(\-4v+4v2-4vs+2s +s2)

42 =Bv-—{Cx-C2)[2vs(l-2v+s) +{-\ +4v-4v2+s2)]
d» = a\2
d2i=dx2

42 =B(l-v)-C,BV.y2 +C2B2vs(-l +2v+.y)—L_(l-4v-2s +4^ +4Vs +s2)

d2J =Bv+C2B2v2s2-CxB2v*(-l +2v+s)-^(\-4v-2s+4v2 +4vs +s2)
rfji =dn
dyi - d2i
d =d <6-15)u33 U22

where

A+f(l-2v+52)
Cl ={A +f(l-2v+s2)}2-{A +5(l-2v+2s-4vs+s2+2vs2)}
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A+%{\-2v+2s-4vs +s2 +2vs2)
C = li '- (6 16)

2 {A +f(l-2v+s2)}2-{A+J(l-2i/+2s-4vs +s2+2vtf2)}2

Similarly, for any two active surfaces the constant elastoplastic modulus matrix can be

computed.

It is seen that this matrix is rank deficient for perfect as well as for

hardening/softening plasticity. However the matrix is unique and would yield a unique

stress increment for a given strain increment.

6.6 Benchmark Tests for Mohr Coulomb Criterion

Five simple tests that follow a prescribed displacement field approach and are

conducted on a single element are now described.

The loading considered here is in the form of prescribed displacements in x, y and z-

directions. For each of the tests considered numerical values at the end of each increment

are given in a tabular form. Stress changes are also illustrated using a three dimensional

plot in the principal stress space. The same changes are also shown using a it- plane

representation in many cases. As the mean stress changes, the it- plane on which the

stress point lies also changes. The n- planes corresponding to stresses for each step have

been plotted. Thus when the stress point moves towards the apex the corresponding

it- plane polygon becomes smaller and as it moves away the polygon becomes larger.

The basic data assumed is E = 1.0, v=0.2, ^=30° and ccos ^ = 2.25.

6.6.1 Benchmark Tests 1: Biaxial Displacement with Perfect Plasticity

Prescribed displacements are applied to a single element as shown in Fig. 6.8. The

manner in which the stress state traverses the yield surface is shown in Fig. 6.9 and the

numerical values obtained on integrating the required equations are illustrated in

Table 6.5. The following observations can be made from Fig. 6.9 and Table 6.5
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}
stepO step 1 step 2 step 3 step 4

step 5 step 6 step 7 step 8

Fig. 6.8 Application of biaxial prescribed displacements to the element for
perfect/hardening plasticity

1. The principal stress axes will remain in x, yand z-directions (Fig. 6.8) throughout
the straining history and therefore, there will be no shear stress along these
directions.

Step 1takes the stress point elastically to the yield surface. At this point acorner
in the Mohr Coulomb yield surface is encountered with

5.

ct, = ct, =
2ccos^(l- v)
1- 2 v-t- sin <p

CT, = CT, = CT2 = CT3 = CT,

1- V
(6.17)

Step 2 (further stretching in the x-direction) keeps the stress point on the same
edge of the surface, the mean stress is increased and the stress point moves along
the edge towards the apex of the Mohr Coulomb pyramid. In this step two yield
planes become active and remain active during the stretching.

On stretching in the y-direction (Step 3) stress point moves away from the edge
and only one plane of the yield surface is active with ct >ct >ct i.e.

* y x

CT, > CT2 > CT3.

On further stretching in the y-direction (Step 4) stress point moves to the edge
where ax =ay >ct„ i.e. ax =a2>a3. During this step care is taken to stretch it
to an extent that during the stretching process only one plane remains active till the
stress point moves to the edge.
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6. In Step 5 the element is stretched simultaneously in x and y-directions. The stress
point moves along the edge where ax = ay.

8.

Compression in the x-direction (Step 6) brings the stress point back inside the yield

surface.

Further compression in the x-direction first brings the stress point to the yield
plane with ct > ct, > ax (Step 7) and still further compression (Step 8) keeps the

stress point on that plane.

Fig. 6.9 Variation of the stress state on the Mohr Coulomb yield surface for biaxial
displacement and perfect plasticity
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Table 6.5: Biaxial Displacement with Perfect Plasticity 3
Step Aex Aey O", ay Oi CCOSfj)

l 2.945 0.000 3.273 0.818 0.818 2.250

2 2.945 0.000 3.499 1.498 1.498 2.250

3 0.000 1.000 3.597 2.576 1.792 2.250

4 0.000 1.041 3.699 3.699 2.098 2.250

5 0.300 0.300 3.773 3.773 2.318 2.250

6 -3.000 0.000 0.439 2.939 1.485 2.250

7 -2.237 0.000 -2.046 2.318 0.863 2.250

8 -2.000 0.000 -4.252 1.582 0.275 2.250

In a similar manner several steps can be added to check the performance of any
computer code in various regions of the surface.

6.6.2 Benchmark Tests 2: Biaxial Displacement with Hardening Plasticity

As has been discussed if a constant hardening modulus is assumed, it is

straightforward to integrate the stress strain relations even for hardening plasticity. In this
example (Pankaj and Moin, 1991) the manner in which prescribed displacements have

been applied is the same as that done in the previous example. Work hardening format has
been followed and H = del ds* = 0.13333 (A~ = 0.1) has been assumed. The results are

illustrated in Table 6.6. Clearly due to hardening the values of the prescribed
displacements will be different if a stress path similar to the one in the previous example is
to be traversed. Moreover, the yield surface will expand during Steps, 2,3,4,5 and 8.

6.6.3 Benchmark Tests 3: Biaxial Displacement with Softening Plasticity

To illustrate typical prescribed displacement format test with isotropic strain softening
plasticity, a plane strain biaxial type test is considered. Displacements are prescribed as
shown in Fig. 6.10. A work hardening hypothesis with Ay =-0.1 was employed. The

results are illustrated in Table 6.7 and the manner in which the stress state traverses the

yield surface is shown in Fig. 6.11.
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Table 6.6: Biaxial Displacement with Hardening Plasticity 3

Step Aex Aey °x °> O", ccos^

1 2.945 0.000 3.273 0.818 0.818 2.250

2 2.945 0.000 3.958 1.519 1.519 2.589

3 0.000 1.473 4.141 3.114 1.948 2.618

4 0.000 1.070 4.273 4.273 2.261 2.640

5 0.300 0.300 4.422 4.422 2.469 2.699

6 -4.000 0.000 -2.255 3.311 1.357 2.699

7 -3.032 0.000 -3.391 2.469 0.515 2.699

8 -3.000 0.000 -6.704 1.405 -0.360 2.729

Y

1—•x
StepO Stepl Step 2 Step 3 Step 4

Fig. 6.10 Application of biaxial prescribed displacements to the element for strain
softening

Table 6.7: Biaxial Displacement with Strain Softening

Step Aex Aey 0* ay Oi ccos^

1

2

3

4

2.700000

3.465825

1.000000

0.500000

1.350000

0.000000

0.000000

0.000000

3.375000

3.100908

2.955060

2.882135

2.250000

2.462729

2.683372

2.793695

1.125000

2.462729

2.683372

2.793695

2.250000

1.710000

1.545440

1.463178

6.6.4 Benchmark Test 4: Triaxial Displacement with Perfect Plasticity

Prescribed displacements are applied to a single element as shown in Fig. 6.12. The
manner in which the stress state traverses the yield surface is shown in Fig. 6.13. The
numerical values obtained from the closed form solution discussed, are illustrated in
Table 6.8. The following observations can be made from Fig. 6.13 and Table 6.8.
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Fig. 6.11

(a)

(b)

Movement of stress point in and on the Mohr Coulomb yield surface for biaxial
displacement and strain softening (a) in principal stress space (b) it-plane
representation ' f
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1. The principal axes will remain in x, y and z-directions (Fig. 6.12) throughout the

straining history and therefore, there will be no shear stresses along these
directions Thus one can employ ct, s ax, a2 &o~y and ct3 s err

£ '/

£=A

STEP1 STEP 2 STEP 3

^m ^\

STEP 4 STEP 5 STEP 6 STEP 7

Fig. 6.12 Application of triaxial prescribed displacement to the element with perfect
plasticity

Step 1 (stretching in x and y-directions) takes the stress point elastically to the

yield surface. At the end of this step Plane 1 [Fig 6.7(b)] is reached elastically with

2c cos 0(1- v/2)
°x ~ °\ - l-2v+sin^(l+ v)

CCOS0(1+ V)
ay - ct2 •

l-2v+sin0(l+ v)

3cvcos^
°z ~ ai - l-2v+sin^(l+ v)

(6.18)

Step 2 (further stretching in y-direction only) keeps the stress point on Plane 1
and, therefore, only one plane remains active. Care is taken to limit this stretching

to an extent that stress point just reaches the edge of Plane 1 and Plane 6 (refer
Fig. 6.7). At this stage ct, = ct2 > ct3.
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(a)

Continued
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(b)

Fig. 6.13 Movement of stress point in and on the Mohr Coulomb yield surface for
triaxial displacement and perfect plasticity (a) in principal stress space (b)
it- plane representation
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7.

8.

Further stretching in the y-direction (Step 3) the stress point immediately moves
away from the edge and traverses on Plane 6 (ct2 > ct, > ct3). Thus once again

during this stretching only one plane remains active.

In Step 4 stretching in the y-direction is continued till the edge of Plane 6 and
Plane 5 is encountered where ct2 > ct, = ct3 .

The element is now compressed in the y-direction (Step 5). This compression

brings the stress points in the elastic regime. The compression is limited to an

extent that the yield surface is just encountered at the edge of the intersection of

planes 2 and 3 (ct,=ct3>ct2). Clearly during this increment there will be no

addition to the plastic strains.

In Step 6 the element is further compressed in the y-direction. The stress point

on the edge of planes 2 and 3 as both planes become active in this step.remains

Tensile strains are applied simultaneously in x and z-directions in Step 7. During
this prescribed straining, Planes 2 and 3 continue to remain active as before.

Table 6.8: Triaxial Displacement with Perfect Plasticity

Step Aex As, Ae, °x °y °: CCOStf)

1 2.70000 1.35000 0.00000 3.37500 2.25000 1.12500 2.250

2 0.00000 1.14750 0.00000 3.48750 3.48750 1.46250 2.250

3 0.00000 4.00000 0.00000 3.87966 3.97770 2.93309 2.250

4 0.00000 3.51091 0.00000 4.22386 4.40795 4.22386 2.250

5 0.00000 -2.65090 0.00000 3.48750 1.46251 3.48750 2.250

6 0.00000 -1.00000 0.00000 3.12165 0.36494 3.12165 2.250

7 0.20000 0.00000 0.20000 3.17043 0.51129 3.17043 2.250

6.6.5 Benchmark Test 5: Triaxial Displacement with Hardening Plasticity

In the present example a constant A(> = 0.1 was assumed i.e. H= del del = 0.13333.

The prescribed displacement field was applied as shown in Fig. 6.14 and the results are

illustrated in Fig. 6.15 and Table 6.9. It can be seen from Fig. 6.15 that the yield surface
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expands with plastic loading, however, no difficulty is encountered in computing the exact
stress increment. As in the last example rc-planes corresponding to stresses in each step
have been plotted and shown in Fig. 6.15(b). Observations similar to those made in the last
example can be made in this example as well. In this example, however, the equivalent
yield strength, represented by ccos^, goes on increasing with plastic loading. This can be
seen from the last column of Table 6.9.

m '/

• vv

4=2

/

STEP1

/>-
/

/'̂ JMMMM. !

STEP 4 STEP 5

Fig. 6.14 Application of triaxial prescribed displacement to the element with hardening
plasticity

STEP 2

STEP 6

Table 6.9: Triaxial Displacement with Hardening Plasticity

^

STEP 3

J (•// /

/

STEP 7

3

Step Aex A*, Ae, °x °y O, CCOStj)

1

2

3

4

5

6

7

2.70000

0.00000

0.00000

0.00000

0.00000

0.00000

0.20000

1.35000

1.17299

1.00000

0.21818

-4.46080

-1.00000

0.00000

0.00000

0.00000

0.00000

2.18185

0.00000

0.00000

0.20000

3.37500

3.52054

3.64462

4.30825

3.06914

2.72260

2.82161

2.25000

3.52054

3.78630

4.61803

-0.33841

-1.43894

-1.30033

1.12500

1.46722

1.82185

4.30826

3.06914

2.72261

2.82162

2.250

2.274

2.384

2.386

2.386

2.402

2.441
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(a)

Continued
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a,

(b)

Fig. 6.15 Variation of the of the stress state in and on the Mohr Coulomb yield surface
for triaxial displacement and hardening plasticity (a) in principal stress space
(b) it— plane representation
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6.7 Illustrative Tests for Hoffman Criterion

As discussed earlier the isotropic form of the Hoffman criterion is a cylindrical paraboloid

in the principal stress space as shown in Fig. 6.16. As such it is not straightforward to

Fig. 6.16 Hoffman yield surface in principal stress space

evolve closed form solutions for this criterion. However, tests that can illustrate the stress

changes in the principal stress space and can serve as tools for understanding are

considered. The algorithm discussed earlier was used for stress computations. Once again

tests are based on single elements on which prescribed displacements are applied.

6.7.1 Test 1: Uniaxial Tension with Perfect Plasticity

A four noded square plane strain single element with unit sides was subjected to a

uniaxial strain as shown in Fig. 6.17. Once again for the plane strain case the relationship
oy = ct, is always maintained.
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E =200000.0

v =0.25

f= 10000.0

fx = 1000.0 or 9000.0

Fig. 6.17 Uniaxial tension on a single element

The manner in which the stress state traverses the yield surface is shown in Fig. 6.18 and

the numerical values are presented in Table 6.10. The first yield is encountered at

Table 6.10: Uniaxial Tension with Perfect Plasticity, (/ = 10000 and fto = 1000)

Strain State

Vector

0.00272
0.00000
0.00000

0.00880
0.00000
0.00000

0.02380
0.00000
0.00000

0.05380
0.00000
0.00000

0.08380
0.00000
0.00000

3.11380
0.00000
0.00000

Flow Vector Stress Vector

dfjday

0.00000
0.00000
0.00000

11549.00
7725.00
7725.00

14806.00
6096.80
6096.80

19006.00
3997.00
3997.00

21514.00
2743.10
2743.10

26999.00
00000.01

[00000.01
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653.99384

,217.99795
217.99795

1.16016xlOJ

-1.14835x10*
-1.14835xl02

1.99365x10'
-9.09514xl02
-9.09514xl02

2.77866x10'
-2.22431x10'
-2.22431x10' I

3.09670x10']
-3.16519x10'
-3.16519x10'

3.37037x10'
-5.62962x10'
-5.62962x10'

Effective
Plastic Strain

(=dX)

0.00000

0.00314

0.01171

0.03156

0.05334

2.52150

Equivalent
Stress Level

l.OxlO7

l.OxlO7

l.OxlO7

l.OxlO7

1.0x10'

1.0x10'



(a)

(b)

Fig. 6.18 Movement of stress point on the Hoffman yield surface for uniaxial tension and
perfect plasticity with fco = 10000 and fl0 = 1000 (a) in principal stress space
(b) it— plane representation
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CT, =

(1- v)[-(l+ v)(fc-f,)+J(l+ v)2(/e -/, )2+4feft (\-2v)2

^ =^=(tztJ^
2(1 - 2 vy

\-v'
(6.19)

After yielding the flow vector keeps changing for each step as shown in Table 6.10, while
a constant stress level (- fcft) is maintained. Once again the principal stress axes remain

parallel to x, y and z direction throughout the straining history and no shear stresses are

induced.

It is interesting to observe that the stress state tends to move towards the compressive
side of the hydrostatic stress axis with increased tension as can be seen from Fig. 6.18.
The reason is that while there is a monotonic increase in the tensile stress ax the ay and

ct, stresses become compressive in a manner causing a decrease in the mean stress
(Table 6.10). This apparently is due to excessive dilatation caused by the criterion.

If / is kept at 10000 while ft is increased to 9000 then the uniaxial straining test
yields results as shown in Table 6.11 and Fig. 6.19. It can be seen that in this case the
stress points move towards the apex ofthe Hoffman surface with increased uniaxial strain.
This is a trend which is similar to that observed for the von Mises criterion.

Tabic 6.11: Uniaxial Tension with Perfect Plasticity, (fco = 10000 and fto = 9000)

Increment Strain State

Vector

0.05199
0.00000
0.00000

0.05809
0.00000
0.00000

0.07309
0.00000
0.00000

0.10309
0.00000
0.00000

0.13309
0.00000
0.00000

0.26309
0.00000
0.00000

Flow Vector

dfldox
Sf/day

.%ld°z.

0.17383x10'
-0.71914x10"
-0.71914x10"

0.16742x10'
-0.68712x10"
-0.68712x10"

0.15394x10'
-0.61972x10"
-0.61972x10"

0.13940x10'
-0.54698x10"
-0.54698x10"

0.47984x10'
-0.18992x10"
-0.18992x10"

Stress Vector

[1.24782x10"'
4.15941xl03
4.15941xl03

[1.30946x10" 1
4.90322xl03
4.90322xl03

[1.45957x10"]
6.72451xl03
6.72451xl03

[1.75316x10"
1.03344x10"
1.03344x10"

2.03603x10"
1.38904x10"
1.38904x10"

2.91310x10"

2.62318x10"
2.62318x10"
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Effective
Plastic Strain

(=dX)

0.00000

0.00461

0.01599

0.03891

0.06206

0.16607

Equivalent
Stress Level

9.0x10'

9.0x10

9.0x 10

9.0x 10

9.0x10

9.0x10



(a)

(b)

Fig. 6.19 Movement of stress point on the Hoffman yield surface for uniaxial tension and
perfect plasticity with fco = 10000 and fl0 = 9000 (a) in principal stress space
(b) it— plane representation
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6.7.2 Test 2: Uniaxial Compression with Perfect Plasticity

A single element was subjected to a uniaxial compression as shown in Fig. 6.20.

9\ rr

E =200000.0 f= 10000.0

v =0.25 ^ =1000.0

Fig. 6.20 Uniaxial compression on a single element

The manner in which the stresses traverse the yield surface is shown in Fig. 6.21 and

numerical values are given in Table 6.12. The first yield is encountered at

ct, =

(1- v)[-(l+ v)(/c-/r)-V(l+ v)2{fc -ft )2+4/c/( (1-2v)2
= 2(1 - 2v)2

(6.20)

Table 6.12: Uniaxial Compression with Perfect Plasticity, {fco = 10000and ft0 = 1000)

Increment Strain State

Vector

Ex

-0.14335
0.00000
0.00000

-0.168351
0.00000
0.00000

-0.19335
0.00000
0.00000

-0.24335
0.00000
0.00000

-0.29335
0.00000
0.00000

-0.39335
0.00000
0.00000

Flow Vector

df/dax
dfjd<yy

[o.oooool
. 0.00000 >

[o.oooooj
[-4.12293x10"'

3.41146x10"
3.41146x10"

-4.52447xl04
3.61223xl04
3.61223xl04

-5.24667xl04i
3.97334x104
3.97334 xlO4

-5.89125xl04
4.29563xl04
4.29563xl04

-7.01936xl04
4.85968xl04
4.85968xl04

Stress Vector

cr,

-3.44039x10" ]
-1.14679x10"
-1.14679xl04 I

-3.97337x10"
-1.46190x10"
-1.46190xl04

^.49564x10*
-1.78341xl04
-1.78341X101

-5.51015xl04
-2.43681xl04
-2.43681xl04

-6.49719xl04
-3.10156xl04
-3.10156xl04

-8.40982xl04
-4.45013xl04
-4.45013xl04
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Effective
Plastic Strain

(=dX)

0.00000

0.00783

0.01636

0.03503

0.05528

0.09904

Equivalent
Stress Level

10'

10'

10'

10'

10'

10'



(a)

(b)

Fig. 6.21 Movement of stress point on the Hoffman yield surface for uniaxial
compression and perfect plasticity with fco = 10000 and fl0 = 1000 (a) in
principal stress space (b) it— plane representation
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In this case it can be seen that all the stress components are compressive. The compressive

stress continue to increase with increased uniaxial compressive strain.

6.7.3 Test 3: Pure Shear with Perfect Plasticity

A single element was subjected to pure shear strain by prescribing displacements as

shown in Fig. 6.22. The variation of the stress state as shear strain is increased is shown in

Fig. 6.23 and Table 6.13. The first yield is encounteredat

-d,+d

+d.+d

-d,-d

+d,-d

E - 200000.0 v - 0.25

/ =10000.0 /".- 1000.0
'c J t

Fig 6.22 A plane strain element under pure shear

Table 6.13: Pure Shear with Perfect Plasticity, (fco = 10000 and fto = 1000)
-J

Increment Displacement
Vector

{%}

[0.00570]
L0.00570J

>0.00307]
Lo.00307-1

[0.130751
L0.13075J

fo.23075)
L0.23075J

[0.33075]
L0.33075J

[0.53075 j
L0.53075.J

Strain State

Vector

*y

IVJ

0.00000
0.00000

-0 92300
000000

000000
0 00000
-132300
0.00000

Flow Vector

[dfjdux
dfjday
&I&xy

\efl8o.

0.90000x10*
0.90000xl04 I

-0.38129xl04 j
0.90000*10'

0.90000x10*
0.90000x10*

-0.78441x10'
0.90000x10*

0.90000x10*
0.90000x10* I

-0.10111x10" I
0.90000x10*1

0.90000x10*1
0.90000x10*1

-0.11766x10* I
0.90000x10*1

0.90000x10*1
0.90000x10*

-0.14229x10s
0.90000x10*1
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Stress Vector

' <*x

-4.11683xl0J

-4.11683x10'
-6.35490x10';
-4.11683x10'

-1.86203x10*
1.86203x10* I

-1.30735x10* j
-1.86203x10*

-3.11812x10*
-3.11812x10*
-1.68512x10*
-3.11812x10*

-4.23635x10*
-4.23635x10*
-1.96113x10*
-4.23635x10*

-6.21180x10*1
-6.21180x10* I
-2.37148x10* I
-6.21180x10*1

Effective
Plastic

Strain

(=dX)

0.00000

0.02906

0.21858

0.42705

0.64173

1.07960

Equivalent
Stress

Level

1.00000 xlO7

1.00000 xlO7

1.00000 xlO7

1.00000 xlO7

1.00000 xlO7

1.00000 xlO7



(a)

(b)

Fig. 6.23 Movement of stress point on the Hoffman yield surface for pure shear and
perfect plasticity with fco = 10000 and fl0 = 1000 (a) in principal stress space
(b) it- plane representation
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r^ =
fjt

which happens at displacement (refer Fig. 6.22) d =0.022822. Fig 6.23b shows that the
stress state varies along the line of pure shear. The compressive normal stress increase
monotonically as can be observed from Fig. 6.23 and Table 6.13.

6.8 Hoffman Criterion with Strain Softening

The evolution of the isotropic Hoffman yield surface under strain softening has
generally been considered assuming a gradual decrease of the uniaxial tensile strength /(
while the uniaxial compressive stress fc is assumed to remain constant (Bicanic et
al., 1994). As discussed in Chapter 4, this study also examines the case when both fc and
ft reduce by the same factor. The evolution of the surfaces for these cases was illustrated

in Figs. 4.2 and 4.3. An exponential form of strain softening is assumed for both cases
wherein /, or both fc and /, reduce as per the following equation

where /, and /„ are the uniaxial yield stress in tension at the current and virgin state of

the material respectively. The parameters fc and fco can also be substituted in place of /,
and /„ when both fc and /, are assumed to reduce. sp indicates the equivalent plastic

strain while ec is a constant that is responsible for the slope of the softening branch.

6.8.1 Test 4: Uniaxial Tension with Strain Softening

As discussed above two cases emerge for softening viz. (a) when a decline of both fc
and /, is considered and (b) when only /, is assumed to reduce. Illustrative tests for these

cases are discussed.

(a) Both fc and /, Decline

A uniaxial tensile strain as shown in Fig. 6.17 is applied. Tensile strength /„ = 1000

and /CT = 10000 and ec - 0.05 are assumed. The results are illustrated in Fig. 6.24 and

Table 6.14. In Fig. 6.24 the yield surface is plotted only for the virgin state of the material.

It can be seen that while initially the stresses move towards the compressive direction of

the hydrostatic axis, they change direction with increased strain. However when
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f - 9000 is assumed the mean stress continues to move towards the tensile direction of
J to

the hydrostatic axis. The results for this case are illustrated in Fig. 6.25 and Table 6.15.

In each case the yield surface plotted corresponds to the virgin material. In the former
case the stress point moves towards the compressive direction of the hydrostatic axes
before curving back towards the tensile direction (Fig. 6.24). Thus, as the yield surface
becomes narrower as it shrinks, a reversal in the stress path takes place. In the latter case,

the stress point continues to move towards the tensile end (Fig. 6.25).

Tabic 6.14: Uniaxial Tension with Strain Softening, fc and/, Both Reduce (fco = 10000 and
A = 1000)

8

10

11

Strain State

Vector

<>£.

[0.002721
0.00000 >
O.OOOOOJ

[0.00880]
0.00000}

[o.oooooj

0.01380
0.00000
0.00000

0.02380
0.00000
0.00000

[0.03380]
0.00000}
o.oooooj

0.04380
0.00000
0.00000

0.05380
0.00000
0.00000

0.06380
0.00000
0.00000

0.07380
0.00000
0.00000

0.08380

0.00000

0.00000

[0.09380]
0.00000 }

[o.oooooj

Flow Vector

dflfox
cf jdoy

[o.oooool
0.00000 >
[o.oooooj

.11510x10'
!.76871x10"
.76871x10"

.12634x10'

.69789xl04

.69789x10"

.14180x10'

.55863xl04

.55863x10"

0.14900x10'
0.41143x10"
0.41143x10"

0.14717x10'
0.25737x10"
0.25737x10"

f0.13587xl05'
0.10328x10"
0.10328x10"

0.11511x10'
-0.34248x103
-0.3424 8xl03

0.86803x10*
-0.13107x10"
-0.13107x10"

0.56428x10"!
-0.17178x10"
-0.17178x10"

0.30664x10*
-0.16512x10"
-0.16512x10"

Stress Vector

653.993841
217.99795 >
217.99795J

1.15811x10'
-1.16214xl02
-1.16214x10*

1.48855x10']
-3.96403x10*
-3.96403x102

1.93720x10'
-9.27472xl02
-9.27472xl02

2.16969x10']
-1.42557x10'
-1.42557x10'

2.18221x10']
-1.86557x10'
-1.86557x10'

1.97297x10'
-2.21177x10'
-2.21177x10'

1.54365x10'
-2.40747x10'
-2.40747x10'

9.57420xl02
•2.37290x10'
•2.37290x10'

4.04637x10'

2.04889x10'
2.04889x10'

7.03256x10'
-1.50220x10'
-1.50220x10'
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Effective
Plastic Strain

(=dX)

0.00000

0.00311

0.00585

0.01188

0.01859

0.02606

0.03447

0.04401

0.05471

0.06617

0.07721

Equivalent
Stress Level

1.0x10'

9.92280x10°

9.72942x10"

8.90600x10°

7.58441x10

5.75985x10°

3.79921x10°

2.04278x10°

7.95385xl0J

2.50471 x 10

4.00190 xlO*



(a)

(b)

Fig. 6.24 Variation of the stress state on the Hoffman yield surface for uniaxial tension
and strain softening (fc and /, both reduce) with fco = 10000 and fw = 1000
(a) in principal stress space (b) it- plane representation
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(a)

(b)

Fig. 6.25 Variation of the stress state on the Hoffman yield surface for uniaxial tension
and strain softening (fc and /, both reduce) with fco = 10000 and fl0 = 9000
(a) in principal stress space (b) it-plane representation

147



Table 6.15: Uniaxial Tension with Strain Softening, fc and/, Both Reduce (fc(
fto = 9000)

Increment Strain State

Vector

0.05199
0.00000
0.00000

0.05309
0.00000
0.00000

0.05809
0.00000
0.00000

0.06309
0.00000
0.00000

0.07309
0.00000
0.00000

0.07809
0.00000
0.00000

Flow Vector

[dfldox
Kdfjdo-y
107*-..
[o.ooooo]
o.ooooo >

[o.oooooj
0.17583x10'

-0.72961x10"
-0.72961x10"

0.17090x10'
-0.71957x10"
-0.71957x10"

[ 0.160215x10'
-0.70999 xlO4
-O.70999xl04

[ 0.97774x10"'
-0.69748x104
-0.69748x104

[ 0.73730x104'
-0.68841x10"
-0.68841x10"

Stress Vector

1.24782x10*
4.15941xl03
4.1594 lxlO3

[1.25876x10"'
429435xl03
4.29435xl03

f 1.30206x10" 1
4.92532 xlO3
4.92532xl03

[1.33051x10"
5.59799xl03
5.59799x103

1.28062x10"

7.22214xl03
7.22214xl03

1.08571x10*
8.31667xl03
8.31667xl03

Effective
Plastic Strain

(=dX)

0.00000

0.00084

0.00502

0.01000

0.02614

0.043714

10000 and

Equivalent
Stress Level

9.0x10

8.99488x10

8.81750x10

8.29387x10'

5.19177x10'

1.92545 xlO7

(b) Only / Declines

Uniaxial tension test with /„ = 1000 and only / declining does not cause a stress

reversal (Fig. 6.26 and Table 6.16) as was the case when both fc and /, were assumed to

decline . This is apparently because of the expansion of the yield surface towards the
compressive direction ofthe hydrostatic axis. However, when /„ =9000 is assumed the
direction of stress traversal is reversed (Fig. 6.27 and Table 6.17).
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Table 6.16: Uniaxial Tension with Strain Softening, / Reduces, (/co = 10000 and fto = 1000)

r Increment Strain State

Vector

£x

0.00272

0.00000
0.00000

0.00880
0.00000
0.00000

0.01380
0.00000
0.00000

0.04380
0.00000
0.00000

0.07380
0.00000
0.00000

[0.21380]
0.00000 }

[o.oooooj

Flow Vector

8fjdax
dfjday
dflda,)

[o.ooooo]
0.00000 \

[o.oooooj
0.11549x10'
0.77252x10"
0.77252x10"

0.12776x10'

0.71119x10"
0.71119x10"

0.17849x10'
0.45752x10"
0.45752x10"

0.20940x10'
0.30300x10"
0.30300x10"

0.26357x10'
0.32122xl03
0.32122xl03

Stress Vector

6.53994x10'
2.17997xl02
2.17997xl02

1.15017x10'
-1.16590xl02
-1.16590xl02

1.49088x10'

-3.97165xl02
-3.97165xl02

2.51027x10'

-1.91454xl03
-1.91454xl03

2.87315xl0J

-3.09684x10'
-3.09684x10'

3.27515x10']
-5.40363x10'
-5.40363xl03

Effective
Plastic Strain

(=dX)

0.00000

0.00311

0.00585

0.02495

0.04641

0.15514

Equivalent
Stress Level

1.0x10'

9.95349 x 10

9.84314x10°

7.41895x10

3.83857x10

6.59145x10'

Table 6.17: Uniaxial Tension with Strain Softening, /, Reduces, (/co = 10000and ft0 = 9000)

r Increment Strain State

Vector

0.05199
0.00000
0.00000

0.05509
0.00000
0.00000

0.05709
0.00000
0.00000

0.05909
0.00000
0.00000

0.06009
0.00000
0.00000

0.06109
0.00000
0.00000

Flow Vector

I
df/dax
dfjday

_dfldat

[o.ooooo]
0.00000 >

[o.oooooj
0.17421x10'

-0.72105x10"
-0.72105x10"

0.17145x10'
-0.70727x10"
-O.70727xl04

0.16669x10'
-0.68343xl04
-0.68343x104

0.16287x10'
-0.66436x104
-0.66436x104

[ 0.15697x10s
-0.63483x104
-0.63483xl04

Stress Vector

[1.24782x10"
4.15941xl03
4.15941xl03

1.27572x10"
4.54673xl03
4.54673xl03

1.28817x10"
4.80898xl03
4.80898xl03

1.29211x10"
5.08686x103
5.08686x103

1.28802x10"
5.23658xl03
5.23658xl03

1.27473x10"

5.39899 xlO3
5.39899xl03
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Effective
Plastic Strain

(=dX)

0.00000

0.00253

0.00446

0.00683

0.00831

0.01025

Equivalent
Stress Level

9.00000x10

8.97650x10

8.927213x10'

8.83111x10'

8.75028x10

8.62607x10'



(a)

(b)

Fig. 6.26 Variation of the stress state on the Hoffman yield surface for uniaxial tension
and strain softening (only /, reduces) with fco = 10000 and fl0 = 100Q (a) in
principal stress space (b) it- plane representation
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(a)

(b)

Fig. 6.27 Variation of the stress state on the Hoffman yield surface for uniaxial tension
and strain softening (only / reduces) with fco =10000 and fl0 = 9000 (a) in
principal stress space (b) it- plane representation
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Chapter 7

Post-Peak

Behaviour

7.1 Introduction

In the last Chapter a number of illustrative tests were developed by prescribing a

displacement field on single element. In the present Chapter, a number of tests, once again

involving single elements, are considered wherein mixed field conditions are prescribed. In

general a mixture of displacement and boundary tractions are prescribed. The aim is to

study the behaviour of elastoplastic von Mises, Mohr Coulomb and Hoffman materials in

the post elastic regime. Predominant objective is to analyse response when perfectly

plastic and strain softening characteristics are assumed. In additionto the movement of the

stress point in the principal stress space emphasis is laid on the load displacement

behaviour. Clearly only post-peak behaviour at the local or element level can lead to an

overall post-peak structural response of general structures. In addition to the above study

the Chapter also considers the analysis of the so called "acoustic tensor" which has been

used as a localization indicator (Rudnicki and Rice, 1975; Ortiz, 1987; Ortiz et al., 1987;

Willam and Sobh, 1987; Leroy and Ortiz, 1989).

7.2 Post-peak Response

Post-peak response can be described as the response of a structure that is incapable of

sustaining any additional loads. The post-peak behaviour is associated with progressive

failure of the structure, which in turn can be modelled using softening plasticity. Failure is

often (not always) associated with localization which indicates discontinuous strain and
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stress fields. The condition for localization can be expressed using the acoustic tensor as

discussed in the earlier Chapter. In the absence of normality localization can take place

even under hardening condition and is thus not necessarily associated with a post-peak

material response (Leroy and Ortiz, 1989). Traditionally failure was also associated with

the loss of positive tangent stiffness properties. This in elastoplasticity is associated with

the hardening modulus A becoming zero in case of perfectly plastic behaviour or negative

in case of strain softening behaviour. Perfect plasticity and strain softening lead to a

constant and declining equivalent yield strength parameter respectively. This does not

however imply post-peak (declining) load-deflection response at the structural level in

which case the load might actually increase. This apparent increase of load is often due to

the triaxial load path adopted by the material. In this Chapter attention is confined to the

study of the load path, load deflection behaviour and localization indicators. In each case,

either a perfectly plastic or strain softening properties are assumed.

7.3 von Mises Criterion

7.3.1 Perfect Plasticity

Consider a plane strain element shown in Fig. 7.1. A single element being treated like

a structure is subjected to uniaxial compression through prescription of displacements in

the x-direction. The element is assumed to be free in the transverse direction. Thus while

displacements are prescribed in one direction, zero stresses are prescribed in the other.

Perfect plasticity is assumed. A load deflection curve relating the applied displacement in

the x-direction to the corresponding response loads in the same direction is shown in

Fig. 7.2. It can be seen from Fig. 7.2 that the first yield is encountered at point A after
which the element continues to carry increased loads till point B. After point B the load

deflection curve becomes horizontal. Thus perfect plasticity in this case does not imply a

flat load deflection curve immediately after first yield as in case of idealized one

dimensional problems. A peak is attained at point B after which the stress state remains

unchanged. The variation of stress state in the principal stress space is shown inFig. 7.3.

An acoustic tensor analysis was conducted for the above problem and the normalized
determinant of the acoustic tensor are shown in Fig. 7.4. In this figure 6 indicates the

angle of the normal of the localization band from the horizontal axis. The minimum
determinant at point A is obtained at ±42°. The localization condition is however satisfied
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only at point B(Fig. 7.2) and at this state the normal to the locali/alion band is inclined at
±45° from the horizontal axis.

25

E - 1.0 v=0.20

Y = 2.0

Fig. 7.1 Plane strain element under uniaxial compression

1•'' i' •'' i • • 'i i' i'•i'''' 11111 [ 111111111111111111111111111111111111111 j111111111

B
A

nnii1111111111111111111111111111111 1111111 11 • •. 11 i • • i••t•i•,•.11,.•i•.••i i.. • i, i. •
0 2 4 6 81012 14 IB

Displacement

Fig. 7.2 Load deflection curve using von Mises yield criterion for uniaxial compression
and perfect plasticity
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(a)

(b)

Fig. 7.3 Movement of the stress point on the von Mises yield surface for uniaxial
compression and perfect plasticity (a) in principal stress space (b) it- plane
representation
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-700 -500-300-100 100300500700900

Angle 6

Fig. 7.4 Localization indicator using von Mises yield criterion for uniaxial compression
and perfect plasticity

7.3.2 Softening Plasticity

For the example considered in the last subsection an increasing load carrying capacity
was observed after first yield under perfect plasticity. Perfect plasticity implies that in the

expression for D'p which is

„ _ (Da)(Da)r
A + arDa

the value of the hardening parameter A = 0. Clearly if softening plasticity or a negative

value for A is assigned in the problem of the last subsection and the magnitude of A is
increased, then at a critical value A^. it should be possible to satisfy the localization

condition immediately on first yield. Method for doing this has been discussed by
Willam et at. 1994. For the uniaxial compression problem (Fig. 7.1) the critical value of

the hardening parameter A at which the localization condition is satisfied immediately on
the first yield is found to be A^ = - 0.107. The load deflection curve under this condition

is shown in Fig. 7.5 where the localization condition is satisfied immediately at point A.
The normalized determinant of the acoustic tensor are illustrated in Fig 7.6. In this figure
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Displacement

Fig. 7.5 Load deflection curve using von Mises yield criterion for uniaxial compression
and strain softening (A = Acr = -0.107)

""I ""l""l""l ""I" "l""l""l""l" "l""l ""l""l " " I"" I ini|ini|Mri

~^90D -7O0 -5CL0 -300 -1O0 100 300 5O0 700 900
Angle 6

Fig. 7.6 Localization indicator using von Mises yield criterion for uniaxial compression
and strain softening (A = Acr = -0.107)
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zero determinant is observed at an angle of ±42° when calculated at point A of the load
deflection curve. With continued compression the determinant of the acoustic tensor

becomes negative for a range of angles. At point B of load deflection curve (Fig. 7.5) the
minimum determinant is at ±45° (Fig. 7.6).

If the hardening parameter A is selected such that 0> A > Acr then the load deflection

curve of the problem under consideration should show a rising load deflection curve after
first yield which may subsequently have a peak followed by a decline of load response.
This is indeed observed to happen when, for example, A = - 0.05 (Fig. 7.7). The results of

the acoustic tensor analysis are shown in Fig. 7.8. As expected the minimum normalized
determinant ispositive at first yield and reduces with continued compression.

Similarly when A<Acr then a decline of the load deflection curve is observed

immediately after first yield (Fig. 7.9). This is accompanied by a negative determinant of
the acoustic tensor at point A itself (Fig. 7.10).

7.3.3 Softening and Instability

In all cases with A < 0 continued compression leads to a stage when the determinant

of the acoustic tensor is zero or negative within intervals of angles (Fig. 7.8 and 7.10).

The size of these intervals can be increased by reducing the value of A. In fact localization
can be made to occur at ±90° by appropriately working out A = Acr90. For the problem

under consideration Acr90 =-0.98214. The acoustic tensor analysis in this case yields a

zero determinant for 0- ±90° (Fig. 7.11). In this case the determinant is negative for all
angles remaining from -90° to +90°. A slight increase in A= - 0.60 reduces the range of

possible localization angles (Fig. 7.11).

A finite element analysis of the problem with A = Acr90 does not lead to convergence.

The apparent reason is localization at 0=±9O" from the horizontal. These are the
directions in which the single element structure is unrestrained and therefore undergoes
increasing displacements in this (vertical) direction. Thus it can be safely stated that for
this problem A<Acr90 leads to instability, a requirement which may often be more

stringent than the local uniqueness requirement (Willam et al., 1987) viz. A+arDa >0. It
may be noted that for A= Acr90, A+arDa = 0.26786.

160



T3

O

'" I I I I I I I I I I I I I I I I I I I I l| I I I I I I I I I I I I I I I I I I I I I I I l| I I I I I I I I I |ll I I I lll|| I I I I I I I I I I I I II I III I I I I I I
A "

B-

in ri 11111111111111111111111111111111111111111111111111111111 n 111111111 • I n 1111 n 11. n 11,,,, i, n i
H10 O6L2L8a4a03JB<24fl&4

Displacement

Fig. 7.7 Load deflection curve using von Mises yield criterion for uniaxial compression
and strain softening (0 > A > Acr)
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Localization indicator using von Mises yield criterion for uniaxial compression
and strain softening (0 > A > Acr)
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Fig. 7.8
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Fig. 7.9 Localization indicator using von Mises yield criterion for uniaxial compression
and strain softening (A < A^)
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Fig. 7.10 Load deflection curve using von Mises yield criterion for uniaxial compression
and strain softening (A < Acr)
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Fig. 7.11 Localization indicator using von Mises yield criterion for uniaxial compression
and strain softening (Acr90 = -0.98214)

7.4 Mohr Coulomb Criterion

The problem of Fig. 7.1 with the element assumed to be of Mohr Coulomb material

with ccos^= 2.25 and ^=30° was considered. The elastic constants E = 1.0 and v= 0.20

were assumed. Once again associated plasticity is assumed.

7.4.1 Perfect Plasticity

Uniaxial compression for this problem with A = 0 or perfect plasticity leads to a flat

load deflection response immediately after first yield (Fig. 7.12). In this case the stress
state remains unchanged with continued compression after first yield (Fig. 7.13). The

acoustic tensor analysis at all post yield stages indicates that the normal to the localization
plane from the horizontal is inclined at an angle of ±60° (Fig. 7.14). This is in fact the
result that is obtained using elementary soil mechanics expression viz.
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2y
a-J+(f+

where « and 3 are directions of localization band and maximum principal stress from the

horizontal.

nV..• i•••. i, •••••••i••111 i.... i ••• 111 •iill i•11111 .il •••l•i••!• '•'!•" •11 •" •' •" yn
°n 2 4 6 8101Z14WiB

Displacement

Fig. 7.12 Load deflection curve using Mohr Coulomb yield criterion for uniaxial
compression and perfect plasticity
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(a)

(b)

Fig. 7.13 Movement of the stress point on the Mohr Coulomb yield surface for uniaxial
compression and perfect plasticity (a) in principal stress space (b) it- plane
representation
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Fig. 7.14 Localization indicator using Mohr Coulomb yield criterion for uniaxial
compression and perfect plasticity

7.4.2 Softening Plasticity

A reduction in the hardening parameter A leads to an immediate decline in the load

deflection curve (Fig. 7.15). Typically for softening plasticity the yield surface will

contract and the variation of the stress state will be as shown in Fig. 7.16.

For Mohr coulomb plasticity too a critical value of A = Acr90 can be found such that

the normal to localization band is inclined at an angle of ±90° from the horizontal. For this

problem A^ = -0.066 was worked out. The corresponding results of the acoustic tensor

analysis are shown in Fig. 7.17. A uniaxial compression with A = A^ once again leads to

instabilitywhich in finite element analysis results in a non convergent solution state.
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Fig. 7.15 Load deflection curve using Mohr Coulomb yield criterion for uniaxial
compression and strain softening
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(a)

Continued
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o3

(b)

Fig. 7.16 Movement ofthe stress point on the Mohr Coulomb yield surface for uniaxial
compression and strain softening (a) in principal stress space (b) it- plane
representation
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Fig. 7.17 Localization indicator using Mohr coulomb yield criterion for uniaxial
compression and strain softening for different hardening parameters

7.5 Hoffman Criterion

The uniaxial compression problem of Fig. 7.1 is reconsidered in conjunction with the

Hoffman criterion. The elastic constants E = 2 x 105 and v= 0.25 were assumed.

7.5.1 Perfect Plasticity

In the first instance the element is assumed to be perfectly plastic with

fm = 10000,/o = 1000. The resulting load deflection curve is shown in Fig. 7.18 and the

variation of stress on the yield surface is shown in Fig. 7.19. Similar to what was observed

with the von Mises criterion the load deflection curve ascends before becoming flat.

During this rise from point A to B (Fig. 7.18) the stress state curves from point A to

point B as shown in Fig. 7.19. At point B the stresses become constant and remain

unchanged thereafter. The results of the acoustic tensor analysis conducted at points A

and B are illustrated in Fig. 7.20. The localization udition is satisfied only when the load

deflection curve becomes flat. The minimum determinant is observed at 6~ ±58°. Clearly
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this value depends on the /„//, ratio. When fc = /, this criterion changes to von Mises

criterion in which case 9 has already been found to be ±45°.
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Fig. 7.18 Load deflection curve using Hoffman yield criterion for uniaxial compression
and perfect plasticity
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(a)

(b)

Fig. 7.19 Movement of the stress point on the Hoffman yield surface for uniaxial
compression and perfect plasticity (a) in principal stress space (b) it - plane
representation
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Fig. 7.20 Localization indicator using Hoffman yield criterion for uniaxial compression

and perfect plasticity

7.5.2 Softening Plasticity

In this case the problem under consideration was tackled considering a decline in
(a) /, only and (b) both fc and /. In both cases an exponential softening as discussed in
the last Chapter with ec = 0.15 was used.

For the former case in which softening is confined to / only uniaxial compression led
to a load deflection curve as shown in Fig. 7.21. The figure illustrates the absence of a
peak and therefore apost-peak load deflection response. The normalized determinant of
the acoustic tensor analysis are illustrated in Fig. 7.22 corresponding to points Aand Bof
the load deflection curve. The localization condition is not satisfied as the minimum
determinant remains positive. Thus with only a decline in /„ uniaxial compression of the
kind considered does not produce localization and post-peak response. The reason for this
is apparently hardening of the yield surface in the compression regime as discussed in the
last Chapter.

The latter case wherein softening was assumed to be both with regard to fc and /,, a
peak and apost-peak (declining) response is observed as shown in Fig. 7.23. The acoustic
tensor analysis at points A(first yield), B(near the peak) and C(on the descending branch
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Fig. 7.21 Load deflection curve using Hoffman yield criterion for uniaxial compression
and perfect plasticity, fco = 10000 and fio = 1000 (only / reduces)
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Fig. 7.22 Localization indicator using Hoffman yield criterion for uniaxial compression
and perfect plasticity, fco = 10000 and ft0 = 1000 (only /, reduces)
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of the load deflection curve) is shown in Fig. 7.24. It can be seen that point B corresponds

to a near satisfaction of the localization condition. The minimum determinant at this stage

is found to be at #«±58°. At point C the localization condition is satisfied for a finite

range of localization angles.

If /„//„ ratio is decreased by assuming fco = 10000 and flo = 9000 a more gradual

post-peak behaviour is observed (Fig. 7.25). The acoustic tensor analysis corresponding to

this case is shown in Fig. 7.26. In this case the localization angle reduces to 9& ±45°.

7.6 Mesh Sensitivity Issues

The mesh sensitivity issues can be broadly classified into two streams (Bicanic and

Pankaj, 1990; Pankaj, 1990; Pankaj and Bicanic, 1991).

(a) Element size sensitivity or mesh objectivity.

(b) Discretisation sensitivity i.e. mesh ability/inability to capture localization.

The former aspect related to strain softening whereas the latter is relevant for non-

softening localizationproblems as well.

With regard to the former issue, it is known that the choice of element size affects the

finite element solution of strain softening problems, if no provision for non-local material

model is made (Pankaj, 1990). Thus two meshes that "appear similar" in terms of element

shapes and layout, but are different in terms of element sizes would yield different
responses if softening modulus is treated as a material property. So in order to obtain
mesh objective responses, some provisions for incorporating nonlocal moduli, (e.g. by
using the conceptof constant fracture energy) has to be made.

Localization has been defined as a strain discontinuity (Willam et al., 1994), which in

the limit will represent a displacement discontinuity as well. In the finite element context, it
has been argued (Bicanic and Pankaj, 1990; Willam et al. 1994) that meshes need to be

fine in order to obtain a near displacement discontinuous solution and that the element

boundaries need to be aligned with the localization band directions. In this study,

consideration is limited to element size sensitivity issue. A simple compression panel

problem is considered (Pietruszczak and Mroz, 1980,1981; Pankaj, 1990) for the study,
where, apparently, the localization directions can be determined a priori with the aid of
acoustic tensor studies discussed earlier.
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Fig. 7.23 Load deflection curve using Hoffman yield criterion for uniaxial compression
and perfect plasticity, fco = 10000 and fto = 1000 (fc and /, both reduce)
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Fig. 7.24 Localization indicator using Hoffman yield criterion for uniaxial compression
and perfect plasticity, / = 10000 and flo = 1000 (fc and / both reduce)
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Assuming that the loss of strength in the damaged material decreases exponentially to

zero as shown in Fig. 7.27 (Eqn. 4.15), the energy released from the band of Fig. 7.28a on

full rupture will be

depy

Fig. 7.27 Exponential decay ofstrength in the damaged material

AE =Vt]Ydepy=Vj] ffa''*) dep
0 0

=̂Y.ecXVtx=^fY.ecXdxht
=̂ lscXAxt

If this is same as the band ofFig. 7.28b, ther

AE =^y^2d2i2t

Equating Eqns. 7.1 and 7.2, one obtains
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"•\ _ ecl (7.3)

Thus, the parameter ee is inversely proportional to the area of the localization band. An
appropriate choice of ec can be made ifit is noted that the fracture energy per unit area Gc
can be written as

G =

Vn rf, /, r

AE

//

d2l2,

(7.4)

Fig. 7.28 Panel with two different localization band widths

7.7 Compression Panel under Softening von Mises Plasticity

A plane strain compression panel analysed by Pietruszczak and Mroz (1980,1981)
and Pankaj (1990), shown in Fig. 7.29, was considered. The loading platens were assumed
to be lubricated and frictionless. Thus, if the material of the panel is without defects, then
the entire panel would deform uniformly. Clearly in such acase, afamily ofpossible failure
mechanism exists and the problem is of a bifurcation type. However, the bifurcation
problem can be reduced to a limit load problem with, perhaps, a unique localization
response ifa defect is introduced (de Borst, 1986).

Uniaxial compression tests on a single element with freedom to expand in the
transverse direction, with von Mises plasticity, discussed earlier in this Chapter showed
that localization occurs at an angle of 45° from the direction of loading. Strictly, the
results ofthe acoustic tensor analysis are not valid once homogeneity is lost. However, in
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this case the possibility of the initial localization direction being maintained was

considered.

smooth rigid
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o o(lower)

0.25

250.0

Fig. 7.29 Plane strain elastoplastic compression panel with von Mises plasticity

With this knowledge inthe background, and also keeping in mind that the localization
bands tend to follow element boundaries, finite element meshes as shown in Fig. 7.30 were

designed. Three noded triangular elements with one point integration rule were used. Each
ofthese meshes represents a quarter ofthe panel shown in Fig. 7.29. It can be seen that in
each case, a band of elements spans along the diagonal from the lower left corner to the

upper right corner.

7.7.1 Panel with a Weaker Band and no £ Modification
c

In the first series of numerical experiments, the von Mises material inside the band

was assumed to have a lower yield level (by 28%) as compared to the material outside the
band. In this case, the parameter ec was not modified i.e. it was kept identical for all the

four meshes of Fig. 7.30. In each case it was observed that the diagonal band becomes the
localization band. The principal strain plots at the end of loading in each case are shown in
Fig. 7.31. The material outside the band elastically unloads. Clearly the strain magnitudes
in the localization band increase as the band becomes thinner.
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Fig. 7.30 Different mesh discretisations for compression panel with von Mises plasticity
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Fig. 7.31 Principal strains plots at the end ofloading (compression panel with von Mises
plasticity, Problem 7.7.1)
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A comparison of the load deflection behaviour is shown in Fig. 7.32. It can be seen
that the response is highly mesh sensitive. Thus, while the localization remains confined,
mesh sensitivity due to treating softening as a materialproperty is established again.

60000 -i—i—i—i—I—i—r- -i—r—i—i—i—iiii—I—r—l—i—i—I—) l i i ]—i—i—1—1—l—l—i—i—i—|—r—i—i—i—j—i—i—i—i—f-

40000

O

20000

g 1 I 'I 1 I I I I I I I I
0 20

Mesh d

I i i I I I I I I I I I I I I 1 I I I I I I • I I I I . I I I I I I i 1 I I I I I I I I I

40 60 80 100 120

Displacement

Fig. 7.32 Comparison of the load deflection behaviour (compression panel with von
Mises plasticity, Problem 7.7.1)

7.7.2 Panel with Weaker Band and £ Modification
c

Once again, the compression panel problem discussed in the last subsection along
with the meshes of Fig. 7.29 was analysed. In this case, softening was not treated as a
material property and was modified as per the law discussed in Section 7.6. Once again
the localization remains limited to the diagonal band and the corresponding principal strain
plots are shown in Fig. 7.33. It can be seen that the strains inside the band become higher
as the band becomes finer.

183



•

•

+ +

•
+ +

•

+ +
•

•

Fig. 7.33 Principal strains plots at the end of loading (compression panel with von Mises
plasticity, Problem 7.7.2)
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The load deflection graph for this case is shown in Fig. 7.34. It can be seen that the

match for various meshes is reasonably good. Thus, it appears that mesh sensitivity that

arises due to element size changes, can be taken care of by appropriately modifying the

softening rules as the meshes change.

60000 I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i ir« i i i | i i

40000 -

-a
rt

O

20000 -

Mesh d

I i i i i I • i i i l • i i i I i • i i I • • • • I

60

Displacement

3

t

f

e

- q

• d

120

Fig. 7.34 Comparison of the load deflection behaviour (compression panel with von
Mises plasticity, Problem 7.7.2)

7.7.3 Panel with Defective Element and £ Modification
c

Once again, the panel of Fig. 7.29 along with themeshes of Fig. 7.30 was analysed. In
this case, only the lower left corner element was assumed to beweaker (or defective). This
was done by making its yield level 28 % lower. On compression, this lower left corner
element yielded first in each case. This was followed by a localization band initiation which
started from this lower left corner and stretched diagonally along the band to the upper

right corner. The principal strain plots are shown in Fig. 7.35 and the load displacement
curves are shown in Fig. 7.36. Once again the match is reasonable. Clearly, the peak level
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increases as the band becomes finer due to the defective element becoming smaller and

smaller.
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Fig. 7.36 Comparison of the load deflection behaviour (compression panel with von
Mises plasticity, Problem 7.7.3)

7.8 Shear Panel with von Mises plasticity

Asquare panel as shown in Fig. 7.37 was subjected to a pure shear. Clearly, in this
case, the principal stress direction will be aligned along the diagonals of the panel i.e.
at 45° to the x/ y axis. The expected direction of localization, if it remains unchanged,
would therefore be either in the x or in the y-direction. Four meshes as shown in Fig. 7.38
consisting of eight noded quadrilateral elements with two point Gauss quadrature were
used. In order to help the shear panel in finding the localization band, the central
horizontal band was made weaker (28 % lower yield strength) in each case. Shearing of
the panel as discussed led to a localization that remained confined to this weak band. The
deformed shapes in each case are shown in Fig. 7.39 and the principal strain plots are
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shown in Fig. 7.40. The load deflection curve for the four meshes (Fig. 7.41) is seen to
coincide exactly if £c modification depending on element size as discussed are made. In
fact, this problem is a kind of a one dimensional problem, as only a single stress
component viz. shear is involved. So modification in softening parameter depending on
element size leads to a complete removal of mesh sensitivity in this case.
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+d,+d

E= 2.0x10

Y = 350.0
o

-d,-d

+d,-d

v = 0.25

v = 250.0
o(lowcr)

->X

Fig. 7.37 Prescribed displacements to produce a state ofpure shear

7.9 Compression Panel with Hoffman Plasticity

It was seen earlier in this Chapter that an element under compression with freedom to
expand in a transverse direction does not satisfy the condition of localization ifonly / is
assumed to decline. Therefore, for this study, the model wherein both fc and /, decline

was adopted. From the study of the localization direction, it was seen earlier that the
normal to the localization band would be inclined at 0«58° from the direction of
compression loading (when fm =10000 and ft0 =1000). With this in view, a panel as
shown in Fig. 7.42 was analysed. Once again it was assumed that the initial localization
direction would be maintained, though this is not really true once homogeneity is lost. The
size of the panel was selected such that the diagonal is at an angle of 58° from the
horizontal. Once again, a quarter panel as shown in Fig. 7.42 was analysed. Two meshes
as shown in Fig. 7.43 with visible diagonal band spanning from the lower left corner to the
upper right corner were designed. In each case, defect was introduced by lowering both fc
and /, parameters by 30 % inthe lower left corner.
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Fig. 7.38 Different mesh discretisations for shear panel with von Mises plasticity,
Problem 7.8
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Fig. 7.39 Deformed shapes at the end of loading for shear panel with von Mises
plasticity, Problem 7.8
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Fig. 7.40 Principal strains plots at the end of loading for shear panel with von Mises
Plasticity, Problem 7.8

191



30000 f1' i»i|iiii|iiii|ii.» |itii[iiii|ii(ijiii,p-r-r-T-| iiIiiiiiiiii

24O00 •

18000

•v
ed
o

12000 -

6000

Displacement

Fig. 7.41 Comparison of the load deflection behaviour for shear panel with von Mises
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Fig. 7.42 Plane strain elastoplastic compression panel with Hoffman plasticity
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Upon compression, the localization in the mesh ofFig. 7.43a remained confined to the
diagonal band. The corresponding principal strain plot is shown in Fig. 7.44a. With regard
to the mesh of Fig. 7.43b, the author observed that while the localization tends to move in
the diagonal direction, the yielding spreads to the entire panel before a post-peak response
can be attained. The post-peak principal strain is shown in Fig. 7.44b. As the yielding
spreads in the entire panel, more or less uniform principal strains are observed at all
integration points. Moreover, considerable numerical difficulties in convergence of the
solution were encountered in the post-peak regime for these problems. The load deflection
graph for the two meshes with and without the modification of ec are shown in Fig. 7.45.
Numerical experiments were also conducted wherein fco =10000 and /o=9000 were

employed. This makes the Hoffman criterion fairly close to the von Mises yield condition.
No difficulty was encountered in this case and localization at 45° in a square panel was
obtained. Other numerical experiments involved using fm = 10000 and /,o = 5000.

Appropriate compression panel to permit the localization was designed for this case. Once
again, a tendency ofspreading rather than localizing was observed.

It appears, that localization in plasticity using the finite element method strongly
depends upon the yield criterion being employed.
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(a) (b)

Fig. 7.43 Meshes discretisations for compression panel with Hoffman plasticity, Problem
7.9 (a) thicker band (b) finer band
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Fig. 7.44 Principal strains plots at the end of loading for compression panel with
Hoffman plasticity, Problem 7.9 (a) thicker band (b) finer band
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Chapter 8

Applications

8.1 General

The ideas and algorithms developed earlier are applied to some engineering problems.
The post-peak load deflection behaviour and the localization patterns of different
structures are considered.

8.2 Cantilever Beam Problem

Aplane strain cantilever beam was subjected to prescribed end displacements (applied
in increments) as shown in Fig. 8.1. The structure is discretised using eight noded
quadrilateral elements (Fig. 8.2) with 2x2 Gauss quadrature. The numerical solution was
simulated using the initial stiffness approach. An elastic strain softening idealisation for the
material behaviour with exponential softening (as discussed earlier) is considered.

Strain softening von Mises and Hoffman yield criteria were employed. With von
Mises plasticity, a uniaxial equivalent yield strength Yo =3170 is considered while with
Hoffman plasticity a uniaxial compressive yield strength fco =10000 and uniaxial tensile
yield strength /to =1000 is considered. The reason for this choice is that it yields
7D(von Mises) *4/Zfi and the results may be some what comparable.
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Prescribed Displacement

E = 200000 v =0.25

Fig. 8.1 Geometry ofthe cantilever beam

Fig. 8.2 Finite element discretisation of the cantilever beam

For Hoffman, only the case in which both /, and /, decline is considered. Parameter
ee =0.\ has been assumed. The load deflection curves for the two cases are shown in
Fig. 8.3. The Hoffman criterion leads to alower peak load. The deflected shapes for a
displacement of 54.6 are shown in Fig. 8.4. While the two shapes look similar, the
principal strain plots (Fig. 8.5) and the Gauss point state plots (Fig 8.6) are quite different.
In the principal strain plot the double line indicates tension while single line indicates
compression at the Gauss points. Circles in the Gauss point state plot indicate that the
point has experienced at least some yielding while crosses indicate that the point is still
elastic. Figures 8.5 and 8.6 illustrate the state at maximum displacement of Fig. 8.3. For
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Fig. 8.3 Load deflection behaviour of the cantilever beam using (a) von Mises criterion
and (b) Hoffman criterion
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(a)

(b)

Fig. 8.4 Deformed shape (a) Hoffman criterion and (b) von Mises criterion
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(a)

Fig. 8.5 Principal strain plot (a) Hoffman criterion and (b) von Mises criterion

(a)

(b)

Fig. 8.6 Gauss point state plot (a) Hoffman criterion and (b) von Mises criterion
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the Hoffman criterion there is considerable yielding on upper surface before a post-peak
response is observed. On the other hand the localization zone is much narrower for the
von Mises criterion. Moreover, the post-peak states for the Hoffman criterion are
predominantly due to tensile stresses whereas for the von Mises criterion the post-peak
state is expectedly due to both tension on the top and compression on the bottom. Thus
for the von Mises criterion, yielding starts and propagates from the top and bottom
regions simultaneously. It is felt that the Hoffman criterion has atendency to produce a
diffuse localization as compared to von Mises criterion.

8.3 Plane Strain Tension Specimen

The tension specimen used is shown in Fig. 8.7a and is similar to the one analysed by
Moran et al. (1987) and Ortiz (1987). The material properties considered are the same as
that of the previous example. Adisplacement is prescribed at the top end of the specimen
which is also free to move in the transverse direction. The bottom end is kept fixed. The
finite element discretisation is shown in Fig. 8.7b. The analysis is performed using
triangular elements with one point integration rule. Adefect in the form of lower yield
strength, is introduced in the center of the specimen (shaded elements of Fig. 8.7b) in
order to trigger localization. As the analysis proceeds, the material starts yielding which is
initiated from the weak elements.

The progress of yielding for the two criteria is shown in Figs. 8.8 and 8.9. Adefect in
the centre of the specimen should cause two cross bands of localization, however, Fig. 8.8
illustrates that one direction is preferred as compared to the other. This is apparently due
to the slight mesh bias in the mesh discretisation of Fig. 8.7b. Once again, the yielding is
highly localized when the von Mises criterion is used and quite diffused with the Hoffman
criterion.

The principal strain plots and deformed shapes for the two criteria are shown in
Figs. 8.10 and 8.11. In both cases, necking at the centre is observed. In this problem, the
Hoffman criterion exhibits much high peak load level as compared to the von Mises
criterion (Fig. 8.12). This is apparently because of the diffused localization exhibited by
the criterion. Considerable difficulties were encountered in numerical integration after the
peak load level was achieved. As aresult the analysis had to be terminated soon after the
post-peak level was obtained.
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Fig. 8.7 (a) Geometry of the plane strain tension specimen (b) Finite element
discretisation

8.4 Notched Shear Beam

A notched shear beam was tested by Arrea and Ingraffea (1982) and was analysed
using the Mohr Coulomb criterion (Pankaj, 1990). The support and the loading conditions
are non-symmetric with respect to the notch as shown in Fig. 8.13. Three noded triangular
elements with one point Gauss integration rule were used in the study and the finite
element discretization is shown in Fig. 8.14. Displacements are prescribed at points Aand
B, which is different from the original test in which loads were prescribed.

The load displacement response using the two criteria is shown in Fig. 8.15. The post-
peak state could be traced more easily for the von Mises criterion as compared to
Hoffman criterion. Once again, the Hoffman criterion yields a higher peak load.
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Fig. 8.9 Gauss point state plot at different stages of loading using Hoffman criterion
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(a) (b)

Fig. 8.11 Response using Hoffman criterion at the end of the analysis (a) principal strain
plot (b) deformed shape
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Fig. 8.12 Load deflection behaviour for necking problem using (a) von Mises criterion
and (b) Hoffman criterion
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Figures 8.16 and 8.17 show the principal strain plot, gauss point state plot and the
deformed shape at the end of loading shown in the load displacement diagram (Fig. 8.15).

The Hoffman criterion leads to a large area of the beam going into the post-yield range.

The region of yielding for the von Mises criterion is more localized. However, both the
criteria indicate a vertical localization surface starting from the notch. This is perhaps

because of the imposed boundary conditions which do not permit any other localization
pattern. In fact, similar results were obtained using the Mohr Coulomb criterion by Pankaj
(1990). An interesting feature observed from the deformation plot is that the von Mises
criterion tends to close the notch whereas the notch opens up when the Hoffman criterion

is employed.

22-4

8-2

20-3 30-0 12-8 3 8-1 39-7 20-3

Fig. 8.13 Geometry of the notched shear beam

Fig. 8.14 Finite element discretisation ofthe notched shear beam
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Fig. 8.15 Load deflection behaviour for notched beam problem using (a) Hoffman
criterion and (b) von Mises criterion
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Fig. 8.16 Response using Hoffman criterion at the end ofthe analysis (a) principal strain
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8.5 Slope Failure Problem

Larsson et al. (1993) analysed a slope with a footing resting on its crest using the
von Mises criterion. Similar problem has also been analysed by Bicanic et al. (1991). The
footing was assumed to be rigid as compared to the slope. The geometry of the problem is
shown in Fig. 8.18. Displacements are prescribed in the downward direction at the centre
of the footing. The material properties used by Larsson et al. (1993) were adopted viz.
£ =2xl06, v=0.45 and the initial equivalent yield stress for von Mises To=0.2.
Exponential softening with ee =0.01 was employed. For the Hoffman criterion with both
/, and / permitted to decline, aseries of analyses with aconstant fco =0.2 and varying
f =0 195 0.15 and 0.05 were conducted (Moin and Pankaj, 1996).

J to '

Prescribed Displacement

Fig. 8.18 Slope with a rigid footing

In the analysis, apronounced mesh bias was introduced in the finite element mesh as
shown in Fig. 8.19. The slip circle bias was determined using elementary soil mechanics
principles.

The post-peak response in the form of principal strain plots, using fco =flo =0.20
(von Mises); /„ =0.2 and /„ =0.195; fco =0.2 and /„ =0.15; fm =0.2 and fto =0.05
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is shown in Figs. 8.20-8.23. It can be seen that failure patterns predicted by the von Mises
criterion follows the slip circle and the principal strains are localized. As the difference
between fco and fto increases, a more diffused localization region is observed. In fact,

from Fig. 8.23, it appears that a localization mode starting from the right end of the
footing also develops. Thus a strong influence of yield criterion is observed from the

failure mode. The Gauss point state plots and the deformation plots for the four cases are
shown in Figs. 8.24-8.27. Conclusions similar to those discussed earlier can be derived

from the Gauss point state plots. The deformation plot shows that the rigid footing gets
more inclined as the fco and fto values come closer. Thus for the von Mises criterion, the

downward displacement of the footing on the left edge is much more than the right edge.
This difference is less when the Hoffman criterion is used especially when fco and fto are
farthest from each other (Fig. 8.27b). This is Obviously because of the strain softening
behaviour of the elements below the right edge of the footing for the case illustrated in
Fig. 8.27. The load displacement plots for the four cases are shown in Fig. 8.28-8.31. It is
interesting to see that as fco and ft0 move apart, the peak load predictions also rise.

Fig. 8.19 Finite element discretisation of slope with rigid footing
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Fig. 8.20 Principal strain plot (von Mises)

Fig. 8.21 Principal strain plot (Hoffman) fco =0.20, fto =0.195
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Fig. 8.22 Principal strain plot (Hoffman) fco = 0.20, fto = 0.15

Fig. 8.23 Principal strain plot (Hoffman) fco = 0.20, / = 0.05
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(a)

(b)

Fig. 8.24 Stability analysis using von Mises plasticity (a) Gauss point state plot and
(b) deformed shape
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(a)

(b)

Fig. 8.25 Stability analysis using Hoffman plasticity (fco =0.20, flo =0.195) (a) Gauss
point state plot and (b) deformed shape
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(a)

(b)

Fig. 8.26 Stability analysis using Hoffman plasticity (/„ =0.20,/„= 0.15) (a) Gauss
point state plot and (b) deformed shape
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(a)

(b)

Fig. 8.27 Stability analysis using Hoffman plasticity (fco =0.20,/to =0.05) (a) Gauss
point state plot and (b) deformed shape

220



I 11 I , I I 11 I I I . I 11 I I I I • . 11 I • I I I ' •' ' I ' ' ' ' I ' • ' ' I ' '' ' I ' ' ' ' I ' ' ' '

400 -

300

T3
a
o

-J 200

100

L2

Displacement
oo

,,-'•••• t.... 1.... 1.... 1..•ill•.• I • • • ill. • • I. •.' I • III'
0.4 0L8 zo Z4

Fig. 8.28 Load deflection curve for stability problem using von Mises plasticity
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Fig 8 29 Load deflection curve for stability problem using Hoffman plasticity
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Fig. 8.30 Load deflection curve for stability problem using Hoffman plasticity
/co = 0.20,/o=0.15

' ' ' ' I ' ' ' ' I • ' ' ' I " ' ' I ' ' " I ' ' ' ' I " ' ' I ' ' ' ' I ' ' • ' I ' ' ' • I • ' ' ' I " ' ' I ' ' • ' I " "

800 -

V? •'• •••'••• •' • • • • i • • • •!•... i.... i i.... i — i — • —
•*» 0.4 08 L2 m 5(1 tt12 18

Displacement

20 24 28

Fig. 8.31 Load deflection curve for stability problem using Hoffman plasticity
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8.6 Post-Peak Seismic Response of Koyna Dam

Strain softening has been utilised in static analysis for prediction ofstrain localization
or cracking. In order to explore the possibility of using strain softening for prediction of
cracking in acontinuum under dynamic loads, the non overflow section ofthe Koyna dam
(Fig. 8.32), which experienced an earthquake on Dec. 11, 1967 was analysed (Pankaj and
Moin, 1996). The structure was idealized using 136 eight noded isoparametric elements as
shown in Fig. 8.33. The dam section was assumed to be homogeneous with

103.0m
I—14.8m H

Fig. 8.32 Geometry ofthe non-overflow section ofthe Koyna dam

E=31.005xlO6KNIm2, unit weight p= 2.442 KN sec2 lmA and Poisson's ratio v=0.2
(Chopra and Chakrabarty, 1971). Damping was assumed to be 5% of critical. Isotropic
strain softening plasticity using Mohr Coulomb yield function was employed to represent
post-yield material behaviour. The cohesion c=107\KN/m2 and friction ^=62.73°
were adopted from Owen and Hinton (1980). Alinear post-yield softening modulus of
10% of £ was also assumed. The dam was subjected to the horizontal component of
Koyna earthquake (Krishna et al., 1969). The accelerograph of the longitudinal
component of the Koyna earthquake is shown in Fig. 8.34. The principal strain plot at an
instant when maximum principal strain (anywhere in the dam) is observed, is shown in
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Fig. 8.35. Tensile strains are shown using double lines and compressive strains using single
lines. Large strains canbe seen to be confined to a localized region. Figure 8.36 shows the
regions that have undergone some amount of permanent plastic strain at the end of the
excitation. Localization is seen to be confined to small regions on upstream and
downstream faces. These simulations match well with the actual cracks that were observed

after the earthquake (Chopra and Chakrabarty, 1971). It is interesting to observe that
similar localization pattern was illustrated for the Koyna dam by Batta and Pekau (1996),
in which they used the discrete crack approach and the boundary element method. Hence

it can be concluded that strain softening in the context of elastoplasticity appears to have
the potential for predicting strain localization or cracking in seismic problems.
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Fig. 8.36 Yielded Gauss points of the Koyna dam
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Chapter 9

Conclusions and

Recommendations

for Further Research

9.1 Concluding Remarks

The thesis was aimed at studying post-peak behaviour using strain softening

elastoplasticity in conjunction with the finite element method. The objective has been to
make a contribution in some areas which are less clearly understood and highlight some

problems where the emphasis has been lacking. The significant conclusions are

summarised as follows:

• The pressure sensitive Hoffman yield criterion, which appears to be an appropriate and
simple choice for quasi-brittle materials was examined. Two forms of post yield
softening were considered. First in which the softening is confined to the uniaxial
tensile strength / and the second in which both / and uniaxial compressive strength
fc decline. It is seen that the former implies a decrease in cohesion and an increase in
the frictional characteristics of the material. Integrations of the rate equations using

Hoffman plasticity were discussed and a computational algorithm for this purpose was

developed. Simple expression that can be used for the evaluation of exact contact
stress state (stress state at the onset of yielding) has been derived. The determination
of this state is essential when using semi implicit and explicit algorithms.

• Computational issues in strain softening plasticity in static and dynamic problems were
discussed using one dimensional models. It is seen that the use of incremental strain
procedure wherein the stress and strain states are updated only upon convergence,
should be employed to avoid the development of spurious plastic strain. The strategy
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prevents the accumulation of spurious plastic strains that may otherwise accumulate,
even for single degree freedom dynamic problems.

Acomputational algorithm using the generalised Newmark procedure was discussed.
Simple tests using elastoplastic single degree freedom system indicate the superiority
of the unconditionally stable Newmark algorithms. Comparisons were made with an
exact solution developed for this purpose.

It is seen that strain softening can be successfully used in dynamics without it leading
to unbounded response. In general, strain softening introduces a zero frequency
component in the response and does not alter other predominant frequency component
significantly.

Exact solution, for some specific cases, for von Mises and Mohr Coulomb plasticity
were derived using prescribed displacement field format. These solutions include linear
hardening/softening. The Mohr Coulomb criterion has similar (non smooth) regions.
The possibility ofstress state being in such regions was incorporated in the solutions.
A number of benchmark tests were developed for the two criteria. It is felt that these

tests can help in checking the validity of the computer codes.

A number of illustrative tests for Hoffman criterion were evolved. It is seen that the
Hoffman criterion exhibits considerable dilatancy when uniaxial compressive and
tensile strengths are far apart. In fact, the direction ofstress movement in the principal
stress space is strongly influenced by the difference/ratio of the two uniaxial strengths.

Uniaxial compression tests on single element under mixed (displacement and stress)
boundary conditions were conducted. For von Mises plasticity it is seen that the
localisation condition may not always be satisfied immediately after yield even under
strain softening conditions. Correspondingly, the load deflection response may indicate
increased load carrying capacity, softening parameters can however, be evolved such
that the localisation condition is satisfied immediately after yield which results in a
post-peak behaviour. Increasing the magnitude of the softening parameter beyond a
certain level may lead to instability. This limit may be more stringent than the local
uniqueness requirements.

For Mohr Coulomb elastoplasticity, satisfaction of localisation condition leads to a
post-peak response for simple single element uniaxial tests.
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• For Hoffman criterion, the post-peak response is aided when both fc and / are

assumed to decline. For the uniaxial compression test conducted, a mere softening of
/ does not lead to a post peak response. The localisation conditions are also not
satisfied. This is obviously because reduction in / only leads to the contraction of

yield surface in some regions and expansion in other regions.

• Element size sensitivity study shows that mesh inobjective results may be obtained, if

some form of non-local material laws are employed. Moreover, it appears that yield

criterion has an important role to play in deciding if strain localisation would occur.

• Study of some engineering problems indicates that thevon Mises criterion leads to fine
localization zones as compared to the Hoffman criterion. The directions of the

localisation bands are strongly influenced by the structural boundary conditions. For

the notched shear beam analysed, it is seen that the boundary conditions lead to similar

localization regions for both von Mises and Hoffman yield criteria. On the other hand

the localisation patterns of a slope which has less stringent boundary conditions are

influenced by the yield criterion being employed.

9.1 Suggestions for Further Research

Prediction of post-peak behaviour and strain localization are complex phenomena. Its

numerical modelling involves various problems such as mesh sensitivity, load step

sensitivity, stability, convergence and simulation of localization bands. For complex
materials like reinforced concrete, failure may be caused due to several mechanisms such

as mortar cracking, reinforcement yield, bond slip, concrete crushing and interface sliding.
Further, for pressure sensitive quasi-brittle materials like concrete, additional problems like

pressure dependent nonlinear hardening/softening moduli, choice of damage parameters
and stiffness degradation further complicates the mathematical modelling. Hence it can be

suggested that a wide range of problems in the field of post-peak nonlinear analysis are
lying for further research. The suggestions which are considered to be more relevant are as

follows:

• Similar studies using other failure criteria specially those that have emerged from

experimental tests should be conducted.
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• The effect of non-associated flow rule and 'non-isotropic' hardening models on post-

peak problems should be studied. It should be noted that a large number of civil

engineering materials are not isotropic.

• Mesh sensitivity issues, especially those related to mesh design need to be explored.

Recent advances in adaptive meshing may be employed for this purpose.

• Strain softening plasticity can be used for dynamic problems. Its efficacy, however,

needs to be further explored.
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