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ABSTRACT

In dynamic analysis, direct timeintegration schemes are often used. Once a direct
integration scheme is chosen, the accuracy of integraiiomdepends significantly on thetime
step _size.- As thé step size decreasés- the -accuracy of integration as well as computational
cost incre‘ases. The adaptive time stepping procedures aré aimed at seeking the largest
possible step sijze~. to reduce the computational cost while maintaining a prescribed
accuracy. For most direct integration schemes, a fixed time step size is usually used and is
baéed frequently on intuition and experience. In pfactice, the dynamic process for a given
. probiem can be, in some stages, very rapid aﬁd-, in other stages, quite slow. It is therefore,
unrealistic and unpractical to use a fixed step size in the whole process. To contr:ol the
time discret.izati'on error, methods of estimating the error andthen adjusting the time step
- éccordingly for single, step algorithm is introduced. To study the efficacy of the adaptive

algorithm, the problems of two categories have been tested. One is with analytic»ally _
defined forcing ﬁlﬁctions and second is for earthquake excitation (with accele_raiion time-
history as inpuf). ‘

Direct integration of equations -of motion may reqﬁire a time .stép. which is much
smaller than the' sampling interval at. which the accelerogram has b’éen—-prévided'. "This
necessitates the need for irfterpolati’ng the digifal. accelerogram, which is conventionally
done by linear intérpolation befweeri samples. However;, as the orfiginal digital

. accelerogram is essentially a band limited signal, linear interpolationv modifies the
frequency content of the data and inserts >spurious high frequency components at thé cosf
of reducing power in the low frequency range.

High frequency insertion in input acceleration history, excites high frequency
modes of the-_str-uctu're, thereby yielding a jittery -rQSponse. :So band limited interpolation is

employed in this study in conjunction with adaptive time stepping schemes.
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CHAPTER 1

INTRODUCTION

1. l GENERAL

The essent1a1 physrcal propertres of any structural system subjected to an extemat source

of excrtatron or dynamrc loadmg are its mass elastlc propemes (strﬁ‘ness or ﬂexxbrhty) :

| . and the energy loss mechamsm or dampmg The equrhbnum equation of multrdegree of

'ﬁ'eedom system in motron are.of the form

wj;(:)+-c'>'<(-f)‘{;<§x(t)z=f(_{)« o an

where M C: and K are the mass, damprng and stiffness matrlces f(t) is the extemal load

vector and X(t), X(t) and X(t) are the trme dependent drsplacement velocity and

o ' acceleratron vectors of the nodes in the drscretrzed element assemblage ©oL

Egs. (1.1) can attematively-»be written as:

‘. 'a(t§'+e'(t->+e-<t;?)f=f,m o

)‘ where F[(t) are the inertia forces FD(t) the dampmg forces, and FE( ) the elastlc forces 4

Mathematrcally Eqgs. (1. 1) represent a system of lrnear dlfferentral equatrons (for

constantM Cand K matrlces) of second order However rf any of the matnces M C orK

are. functrons of time (or X) the system becomes nonhnear The solutron procedures can be

: broadly drvrded mto. two categories, —drrect rntegratlon and mode’ superposition. While

'r_n'ode 'snperposit‘ion- can_generally' be emp‘ioyed only with linear problems; direct

o P



integration is suitable for both linear and nonlinear situations. In this study consideration is

" confined to direct integration methods.
1.2 DIRECT INTEGRATION METHODS

In direct‘integralti'on methods, Egs. (l.i) are integrated using a numerical step by step
‘ procédufé.'The term difect means that prior to numerical integration, no transformation.of.
the equations is carried out [Bathe and Wil son, 1978]. In essence, direct’ numerical
integration is based on two ideas. First, instead of trying to satisfy Eqs. j( 1. 1) at any time t,
‘it is aime& to satisfy Eqs. (1.1) only at discrete time intervals At apart. This means that a .
" kind of static eq;.xilibljium, ‘which includ_es the effect of inertia and damp_ing forces is sought

at discrete time points within the duration of analysis. ‘

| .The} second idea on Whicl_l a d-irect integration method is based, is that a variation
of displacemehts, velocities and accelerations within each tfme'intervai is assumed and on
this -assur’nption t'h.eiacc'uracy, stability and cost of the solution prdbé,dure'depends. Direct
integration methc;ds, assume that the ;displac;ement; velocity and acceleration vectors at
time 0, denoted by X;,;)'(o and X, respectively are known and the solution of Egs. (1.1)is
required from time O to time T. In the solution the time span under consideration T, is
subdivided in"t'o__p equal (or une(iual) time intérvals At and the integration scheme
employed establishes an approxifnate solution at times 0, At, 2At, 3At_ _ t,‘t+At, L

T.

1.3 SINGLE STEP AND MULTISTEP ALGORITHMS

The methods in which the recurrence algorithms are valid within a single time step and

relate the values of Xp41, Xpe1, Xnspetc to X,, X,, X, etc. are called Single Step

Methods {Barthwal, 1992].



|
In multistep methods X, . are related to X, X1, X,.2 etc. without introducing

explicitly the derivatives and assuming that each set is separated by an equal interval At.

Such algorithms are in general less convenient to use than the single step procedures as.

they do not permit an easy change of the time step size. Also these methods require a
greater degree of bookkeeping as displacements -of previous steps are required to be
stored.

All algorithms that relate values at step n+1 to values at step n can be termed as

single step algorithms. In this St—ud‘y adaptivity in time stepping analysis is applied to single

step algorithms emanating from the generalization of the Newmark method [Zienkiewicz

~* and Katona, 1985]. . g
| 1;4 AD'A:PZTIVE:TIME STEPPING ANALYSIS

Once a direct integration éche‘me is chosen, the acduracy of the -integration- depends
significantly on the ‘timelstvep_ size; The appropriate time stép"‘is'determined by ‘the stability:
and accuracy requirements. For integration schemes . that are unconditionally stable
accuracy requirément dﬂeterininesthe—step size. |

For most direct integration schemes, a fixed time step size is usually used-in-the

considered part of the time domain. In practice, the dynamic process for a given problem

can be, in some stages_,_v'ery rapid and, in other stages, quite slow dépehding; on the
response of the system to a given excitation. The time stgap is generally chosen based on
- the free »vibﬂration qharaéteriétics of the system as it can not obviously be selected-a-priori
on' t'he‘ba'sis‘ of tesponse to a given forcing function. It is therefore unrealistic and
: impractiéai‘ to'use a fixed time ste-p‘ for the whole process. If there is no automatic fiime
stepping facility one has to suspend the .ahalysis and run at certain time stations, assess the

error and then change the step size before the solution process-is resumed:



- -To control the time discretization error adaptive time stepping procedures are
. introduced that estimates the error and theh adjust the step size accordingly. Adaptive
time stepping procedures are aimed at seeking the largest possible step size while

maintaining a prescribed accuracy.
1.5 BAND LIMITED INTERPOLATION

Seismic aﬁalysis of structure is often done using direct integration methqu in the time-
domain, wherein the seismic input is provided in the form of an aCce!eratidn time history.
This. input acbelerogrém is a digital record of accelerations provided at a constant
sampling int,ertval (say 0.02 sec) to the analyst.

. Direct integration of equations of motibh -méy require a time step which is much
smaller ‘th'a‘n. the sampling interval at which the accelerogram has been provided. This
nccessita&es th’eA need for interpolating the digital accelerogram, which is conventionally
done by linear interpolation between samples. However, as the original digital
accelefbgrém - 18 essentially'- a bénd limited signal, linear intérpolation modifies the
frequency co_ritent of the data and inserts spurious high frequency compbnents at the cost
of reducing power in the low frequency range [Basu et al., 1992];

, High'frequency i_nsertibn in input acceleration history, excites high frequency
modes’of the structure, thereby yielding a jittery response. So band limited in‘te'rpolatrion
technique is-used in thié'study by-virtue of which the band limited property of the signal is

maintained.



CHAPTER 2

' GENERALIZED NEWMARK SINGLE STEP DIRECT
 INTEGRATION PROCEDURES

2.1 GENERALIZED NEWMARK (GNpj) PROCEDURES [Zienkiewicz and Katona,
1085] | | | | gl - |
.Single step al'%g‘erithms'.for the soluti:‘en of problerns of dynamic problems have the inherent
advantage over. multxstep algonthms thatitis a srmple matter to: alter the time step as the’
" requirement of the solutron mdlcates | ‘ '
In Gij, P stands for the order of the polynomial of" approxrmatlon of the functlon
X(t) Eqs (1.1 and j stands for the order of the drﬁ'erentxal Egs. (1.1). Smce this study is
confined to dynamic analys1s the value of j equals 2. IR o “-‘)‘-_ .y,
This procedure apphes Taylor series approach to derive a general ferm of single
‘step algorithms that can be considered to bea generahzatron of Newmark method It
- results in a scheme whrch 1s not self startmg The denvatlon consrders the satrsfactron of )
-the govermng Eqs ( l 1) only at the end pomts of the mterval At and they can be wntten
as [Zlenkxewmz 1977] |

Mj..(n+t +‘C'Xn+l +Kxnﬂ =fn+1 ‘. N . ' . (2'}“) :

with appropriate approxrmatlons for the values of X,m, Xpspand X, . If the Taylor

. series expansron is consxdered these can be wrrtten as



- vp_....-—

: B ' \
Xn+] =X+ At X+ +T Xn ﬂp p (Xnﬂ—Xn] '
. AP R -
=Xn+1+ﬂp—;)—— Xntl A
Sy % b ety 8 (k)
X = + t +...._... nt P07 n+1— Xn
2 :": tp'l ;{ . >
Xn+l+ﬂp-1 ( -1)! n+}
p'l p', . jp s ,-p" P Y oo o
Xt = Xt At x,-._+,apAt(x,,+1—x,.~)
s p);(l Atg( L o o . N
4 o= - a4l . - e e L N
oy n+l ﬂl ..n-tl, S o ‘ T ;L ‘ (2-2)

- where Xn-
o dtp

.i =
,,,,,

In Eq (2 2) for a polynomlal of degree p, a Taylor senes remamder term has

eﬁ‘ectlvely been allowed in each of the expansron for the ﬁmctrons and 1ts denvatlves w1th

' parameter ,BJ, J= =1 2 g. P whxch can be chosen to gwe good approxxmatzon propertles to
) /_"i T - t‘ - I . - . [N L '
the algorithm.” S T L T
/ - SR - ' i DT o

Insertlon of ﬁrst three Eqs of (2 2) xnto Eq (2 1) glves a smgle equatlon from o

,‘

whlch Xn+1 can be found Whenthls is determmed Xn+1 to Xn+1 can be evaluated usmg

- Eqs (2 2) The expressron 1s

xn+1—- -MA:P"- s P2 +CAtP" ‘B‘*‘ +KAP ﬂ =2
L O AR (R T
o R T T (2.3).

*. [fn+1 -MX 4 -CXpy—K Xn+1]

(Xn) ‘ ) L 'v.}': ,b. '4 ‘f." ’:i{'.‘ Y

; l
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It can easily be shown that the commonly used Newmark method can be derived
from the generalized procedure discussed-above.

The above algorithm applies to both implicit and explicit schemes. In terms of

generalized Newmark method an explicit scheme is simply defined by f;, = 0 for any order

of p [Zei-nkiew%icz and Katona, 1985]. Conversely, an implicit scheme is defined by £, # 0,

1rrespect1ve of other integration parameters To take full advantage of the computational
efficiency of an explicit scheme, it is best to assume that the mass matrix M is diagonal.
(IUmped) and the damping matrix is also diagonal. With these assumptions the system.-of
Eos. (1.1) written above are completely uncoupled because the stiffness matrix has a zero
” multrplrer | ‘_ _ L : |
On the other hand, when ﬂp # 0 (implicit) strffness matnx is populated (albelt
banded) whrch requnres trrangularlzatlon at the onset or. when the time step size is
changed It is thus problem dependent and 1t can not be sard whether or not the
_aecuracy/stabtl_rty characteristics of an implicit scheme will provrd_e a more efficient
procedure than an explicit scheme whose accuracy/stabllity'icharaeteristics. are generally

inferior.

22 GENERALIZED NEWMARK (GN) ALGORITHM IN PREDICTOR

. CORRECTOR FORM FOR p=2, j=2

‘In many real physical situations nonlinearities may appear which do vnot allow the Egs.
(1.1) to be written in a snmple form as Eqgs. (1.1). The last term m the Eqs (1.1) whrch
corresponds to the internal (stiffness) forces may not obey simple lmear elastlclty laws and
-plastxc or wscoplastlc behaviour may intervene causmg nonlinear dependence of thls form

on both the velocity (X) and displacement (X). All such problems may be encompassed by
a set of Egs. (1.1) given below



MX + QXX +PXX)=f N X
in which O and P are suitable vector valued functions of X and X.

Clearly the linear case is now a specific one of the more general form in which

0xX)=CX .

- @3y
P(X,X)=KX »
. Tb_e general nonlinear functiori may be defined in a veriety of’ways depending on
the mechanics of the problem TheAimpfo.rtant thing at the rnoment is simply that for each
problem such function can be defined either dlrectly or in problems such as plastlcxty in an
incremental form. The above discussed algonthm is presented in the predxctor-corrector ;

1

form for j=2.-In this way thls can be used for both linear as well as nonlmear problems

Begin predictor phase

Set iteration counter i=0

. . 2
L X=X, +AtX, +(1-4) % X

n
n+| Xn+(1 ﬂl) AtX
lxnﬂ = Xiﬂ-l

Xn+1 = Xpa



_ 2 N
B, A

Ko = Yo |
. Form“eﬂ’ecti\'/e stiffngss matﬁx K as
——= +C ﬂ 2 +K
B At
. '-Evaluéte residual forces using
Wi =S~ M Xiﬁl -C XLH "k Xia+1'— :
.. Perform faciorisation, forward reduction and back subétitution as rgquired to solve
| K AX' = 'V’i'
. Begin the corrector éhase

AH _ i i
Xo+1 = Xpar +AX

s )
Rt =[X’#“X“”] /A7

sl S .
Xio1 = X + 6 AL XYY
. If AX' and/or y,; do not satisfy the convergence CQndi{ions'then set i=i+1 and go to

" step (3), otherwise continue.



7. -Now set
Xn—i—-l = X;tg] N
Xn+l = in++11
for use in the next time step. Al;o set n=n+1 and bggiﬁ the next time step.

After convergence conditions are satisfied (step 6) a check for the appropriateness
of the time step can also ‘be mtroduced This involves error estimates and a method of

evaluatmg a new time step This is con51dered in-the following chapter

10



CHAPTER3 =
ERROR ESTIMATION AND STEP SIZE CONTROL
3.1 INTRODUCTION

In a single step method the error per step (often called the local error), is used to predict
the step size [Zeng et al,, 1992}. To estimate the local error, the tradmonal way is to
compare the results when two different step sizes are used or to compare the results given
by two integration. methods ot‘ different order However to use such methods to estimate
the local error can be very time consuming. -

Zienkiewicz and Xie [1991] presented a simple local error -e,stimate, and adaptive
time ‘stepping procedure for integration schemes of Newmark type, in which the local
error estimate is derived by using a Taylor seri_es. Zeng- et al. [1992] developed an a
posteriori local error estim'ator based on the concept of a 'post-processing' technique.

In th1s study the error estimator developed by Zeng et al.. [1992] is used for the
Newmark Smgle Step algorzthm discussed in the last chapter.

The step size is chosen in such a manner that the local error of each step is roughly

equal to a prescribed tolerance.
3.2 A-POSTERIORI'LOCAL ERROR ESTIMATION - |

~Consider the. original Newmark method (unconditionally stable), which can be derived
from -the generalized procedure discussed in" ‘Chapter : 2°  with p=

B2 =0.5 and f; =0.5. This becomes the constant-average—acceleratlon ‘method- known to :

- yield an extremely small period elongation and no amplltude decay. This assumes the

variation of ‘the : S Uy

11
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acceleration in each time step to.be constant and equal to the average of the acg_:elet:ation_

at the two-ends of the time step as shown in Fig. 3.1.

. j_'.(-— T‘
. | /’X '
Xp&b‘ - - P ’
s 1
4
!."' ‘,:,' (X + X!+Al)
. 4
o 1”7
X, -
' . ra
/
. —
. 7
. 7’
. Xt-m :
3
— — >
-4t t t+ At ) ‘ t

—)and-a-

Fig. 3.1 Accelerations assumed'\i;\ the Newrark time integration (—

-,post-;farocéssed-contTnuous--a'éceleration (c-=--+=-)for B, =0.5 .

:The>av’erage> of ﬁn‘andj'(nﬂ is used as the acceleration in the time interval (n,
n+1). This approximation yields a~l diséontir‘luous.disti‘ibufion for the acceleration in the
time domain, which is similar to the discontinuous stress' distribution obtained in a finite
element analysis when displacements are apprdximated by C° continuous linear functions
[Zeng et al,, 1992]. In the finite element analysis, a smoothed st-ress field given by a proper
post-processing technique can be much more accurate than the discontinuous one. Error
estimation for spatial discretization, obtained by comparing the discontinuous stress. field

- given by thei finite element analyéi's and the post-processed stress field , has'been found to
be effi c:ent and. practical [Zienkiewicz and Zhu, 1987). Zeng et al. [1992] extended this

1dea to time integration and derived an a-pos‘lcrrori local error est:mate N

12+



The assumptions used in the Newmark scheme for dynamic analysis can be-derived

from the procedure discussed in section 2.1 are

S e : At?
xnﬂ—x +X, At+[(1 ﬁz)X +ﬂzXn+r“—2— .
o ‘ | S (3.1)

K =X, +[(1—ﬂ1)5'cn +fi¥nn ] At

If a con_tihuous. linear vectbr-valued function of time, )'7{‘, cf. the dashed line in

Fig.3.1 is used for the approximation for the .acceleration a more accurate result can be:

~ obtained. Errors in the displacements, velocities and accelerations are denoted by vector-

vzilugd functions of time, e, é, and €, respectively. Considering a time interval [n, n+1]

-and assume that 7 e[n, n+1]. The linear approximation of the acceleration is given by

o X
At

X =——»_—X“-_(r-t)+)'in | T (32).

The error of acceleration at time 7 is then estimated through

'é( T) = (jfn.ﬂ +X ) X.

NIH

% _3 . (3.3)
='—"ﬂKt—" (T'f_)+5 (Xnﬂ _Xn)_‘

Suppose that the solutions at time station n are exact Then, the error of velocity

solutnon at tlme 7 can be estimated by

13



&(7) = fe(f)df |

' (3.4)
Xo-X /0 v T s v\ g
w2 () 4o (n - %) (7-1)
H,ence.the error of the dis;;lécemént at time station n+1 can be estimated"by'
A 1 e
st+a)= | &) dr = 1—2-At2 (X - X,) (3.5)
A A

Now e(t +‘At) is a vector, Taking a certain .-norm, a-pbsterioi'i local error estimate is

obtained as

el 58 [ - ) 6.6
‘It reads in L, norm as
T [ R R 09
" and in the strain energy norm as
" el = JZQZN ;154;2 [(X1 - 5'<.-1)'T» K (X, %X};)]% N X))

- To be ablé to obtain a general a-posteriori local error estimate for the whole family
of Newmark schemes, the following procedure is adopted. .
From Eq. (3.1) 1'5 ggp(_{be deduced that the whole family of Newmark schemes uses

the acceleration expressed by

14



X()=01-8) Xua+5 Xon1 . (B9

which is a constant for a given £,. Thus, the linear approximation Eq. (3.2) is a higher
~order approxintation than-Eq. (3.9). Hence, error can be estimated in the-acceleration

given by the Newmark schemes by

8(2) » (X(7)- %)
o (3.10)
%
=- “HA s (7-1)+ By (Xpn - X,)
Repeating the integration that has been done for Eq. (3.5), the local error estimate for the
p (

displacement solution at station n+1 as
) 1 S -
e(t+At)z(,——6-+,62)At2 (%,.,-%,) - - - @311)

which can be used for the whole family of Newmark schemes except for the case when

b= ?15- The reason is that B, = —;- -implies a linear acceleration method. Cleér’ly'to estimate

the - errors this case a h:gher order approxnmatlon needs to bc employed Work in this
dxrectton usmg the Taylors series expansion has been done by Ztenklewxcz and Xie

[1991].
3.3 ADAPTIVE TIME-STEPPING |

An adaptlve time steppmg algonthm should, ndeally, find a dtscretlzatlon at the least cost ‘
such that the local error is uniformly dlstnbuted ‘and the global error is w1thm a gtven"

tolera_nce. For time-dependent problems, however the global error estimation is generally

15



difficult to obtain. Adaogive algoﬁthms for dynamio' analysis are thereafter usually

designed based on the control of the local error. The aim becomes hére to adjust/sefect the

equalto a prescrlbed error tolerance £. [Zienkiewicz and Xie, 1991; Zeng et al., 1992].
The following condition has been given in adaptive literature for step size control

[Zienkiewicz and Xie, 1991; Zeng et al., 1992].
ne < e < re (3.12)

where, 0 < n <1 and ¥, = 1 are two parameters and &£ is the Prescribed error
tolerance.

When the condition (3.12) is satisfied, the solution is accepted and the time
integration proceeds to the next time step-without change of the step size. The right hand
side of the inequality (3.12), i.e. y,5, ‘i‘s an 'upber ‘-erro‘r Timit', ~lf-rhe-.esti,mlated error ls
l_arger than fthis.u-pper limit, the solution is not eccepted; and the s;ep size is reduced. The
et hand side of the mequahty 3. 12) ie. Ne, 1s athreshold, rather than a lower error
hmrt When the estxmated error is less than thss threshold the solution is accepted-
however the step size should be enlarged before steppmg to the next time step. It is, from
the efﬁcxency point of view, necessary nottoseta lower error hmnt but instead, to set thls
threshold. | |

When a step size should be updated, the prediction of the new step size has to be

made such that the prescribed accuracy can be achieved with the least cost. It is known

that, for Newmark integration,.the.rate of convergenge ¢ of the global error can be ,O(Atz).
.01 The global error can be CAAL L.

| Correspondmgly, the rate of. convergence of. the local.error should achieve O(At )
N-__‘\
T .

Suppose that the current step srze is At then

e} mCrad - - (3.13)

16



~ where C; is a constant depending .on the exact solution. With the new step-size At", the

aim is to obtain the local error equal to the given tolerance, i‘.e.*‘
7 o 3 N i ~ . - -
lel =~C,(ar) =+ e (3.18)

where C, is an anothér constant. Comparing equaiion\(3.13) with équa_tion (31'.14) and

assuming that C, = C,, the new step size can be obtained as

S ' 1 Y - “

RN OR , : .

At' = (—) At © (3.15)

lel) - '

"In practice, an implicit algorithm .can not be efficient if the step size varies t00

 frequently, as the effective stiffness matrix has to be factorized: when a new- step size is
used. Therefore the st’e;rsize-shoulld not-be enlarged-until ,. ) '

4|]e"‘< ne ' - (B.16)

has been registered consecutively for K, time steps,

3.4 FLOWCHART FOR ADAPTIVE. GENERAL!ZED NEWMARK (GNpj)
PROCEDURE

“The flowchart whtch is based on the algonthm discussed in last chapter is: shown in Fig.3.2.
It will be observed that a box for’ estlmatmg error and adjustmg the 'ume step has been

included. The procedure followed for this part is as follows
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READ INITIAL CONDITIONS, CONSTANTS ( , GEOMETRICAL,
DATA, MATER/AL, PROPERTIES ETC..

N

Y

' o 1 CALCULATE THE PREDICTOR VALUES Xn+1, Xn+$ 1
' i(nn ETC., AND Xn+1 Xn+1 ®n+1 ETC.

RN

_FORM THE EFFECTIVE STIFFNESS MATRIX K* IF REQUIRED -

o

' EVALUATE RESIDUAL FORCES yi

FACTORIZE, FORWARD REDUCTION AND
- BACK SUBSTITUTION K* Ax = i '

| CALCULATE THE CORRECTED VALUE BY ADDING THE
CORRECTOR TERMS IN Xn+1, xn+_1, Xn+1, ETC., AND "
Xn+1 Xn+1 an ETC.

Load increment loop
iteration loop

CHECK CONVERGENCE,
CONVERGED 7

NO

EVALUATE THE ERROR e AND CHANGE THE
STEP SIZE, At, ACCORDINGLY

/ WRITE RESULTS AT n+ /

"SET THE INITIAL VALUES FOR THE NEXT LOAD INCREMENT
e, Xn+1 = Xn Xn+1 = an Xn+1 = )(n ETC. S

Fig. 3 @:2FLOW CHART OF ADAPTIVE GENERALISED NEWMARK (GNpj) PROCEDURE
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(a) Evaluate the error
=(-3+8) & -}
(b).'Chaz'xge fhe step gize At if required ﬁsin‘g
Atpew =(i] At , where &= prescribed error tolerance

- and set At = At,.,, .
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CHAPTER 4

' BAND LIMITED INTERPOLATION FOR ADAPTIVE TIME -
'STEPPING ANALYSIS
4.1 INTRODUCTION
In direct integration analysis of structure the appropriate time step (or sampling rate) is |
determined by the stability and accuracy requirements.

Iﬁtegration.schemes_ that are unconditionally stable require a small time step At
from the ppint of vie_w bf accuracy. It has been suggested that rt;,sults are reasonably -
accufatc@h,en the time. s;tep is limited as At/T <0.01 [Bathe and Wi!son, 1978; Owen and .
Hinton, 1980], where T is the fundamental period of the structure. ..

FOr; ‘thc Newmark method ( with £, = 0.5 and B, = 0.5) it has been shown that the
- period elongptibn for an undamped sihg‘le degree. of freedom system s less than 3% for
At/T < 0:01 and the method does not decay tesponse amplitudes.

F‘o; conditionally stable schemes, stai)ility considerations may require a time step
At SIHM, wﬁere Tmm is the smallest natural period of the structure '[Owen and Hinton,
1980].

For nonlinear pr;)blems it becomes necessary to iterate within a time step to ojbtainj
.a converged solution. It has bee_n felt that-it is better to reduce the 'time step rather than i
pushing iteration of nbn}inear quantities within a time increment [Zienkiewicz et al., 1’934]. B
In other words thé —time step to be used is determined by the problem and the numerical

scheme being employed.

20



|
Also, to control the time discretization 'error adaptive time stepping procedures are
mtroduced that estimates the error and then- ad_]ust the step size accordingly. This also
: necessrtates the mterpolatron of the seismic mput | | N
_ The pomt that emerges from the above dlSCUSSlon is -that the accelerogram
~ provided for the analysrs (generally the group decrdmg upon the sersmrc loadmg hrstory 1s' |
drﬁ‘erent from the group domg struetural analysrs) may not be at the requrred samplmg’ |

~ rate. Therefore the sersmlc record is. requrred to be mterpolated
" 4.2 BAND LIMITED SIGNAL o

Sersmrc analysrs usmg drrect mtegratron schemes employ a ground acceleratron h1story{

that is either recorded or rs synthetrcally generated In elther case these are the drgrtalj.

values at equally spaced discrete time intervals: Smce the majorrty of the accelerograms.": o

LI “.i

‘_ are analog in-nature the htstory obtamed from these requrres drgmzatron

The: mstrument and " the drgrtrzatron process mtroduces noise that has to be S

" removed by band: pass ﬂltenng [Kumar 1993] The UPPef cut-off fl'eqUency of thrs band g

'generally 25Hz: to 27Hz. Moreover most corrected recorded acceleratlons are avarlable -

poet
o

- . ata samplmg ‘interval At“O 02 sec. As per the Nyqutst theorem in drgttal s1gnal processmg ‘

' ‘the highest: frequency that a srgnal sampled at At, is capable of representmg is (1/2At) '
. Thus a sampling mterval of 0.02 sec rmplres a Nyqurst frequency of 25Hz. In other words '
the htghest frequency content of the accelerogram also gets dtcrded by the samplmg oo

| 1nterval and therefore any drgrtal srgnal is band lrmrted srgnal
|43 BANDLIMITED INTERPOLATION - ‘oow o i

The sampling rate at which the input accelerogram is available is required to be

interpolated for adaptive direct-integration. It has been considered reasonable to assume
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“that ground acceleration varies l;iaﬁearly in the time ipterva-}, while recognising

simultaneously that this may result in loss of accuracy {Zienkiewicz ct.al., 1984] as ’lincu;

" interpolation introduces a high frequency content which is absent in the ‘(‘)ri'gina"ll rc_cord’,

provided. | | : | |

In this study the band limited interpolation tecﬁﬁfqué [Basu et al.,_‘19'92] is used -

for adaptive time stepping analysis by virtue of which band limited property of the signal
is maintained. o |

Band limited interpolation is dohe by zero packing the data to an extent required

for analysis. This zero packed accelerogram is low-passed to recover the bare band signal

of interest and eliminate the unwanted image of components generated by sémpling rate

_ expander. Thus this technique maintains the band limited property in the inferpolated

data.
4.4 INTERPOLATION USED IN THIS STUDY

In this study the Uttarkashi Earthquake (Oct 20,'I1991; N-75 E; Transverée)- corrected
accelerogram available at a sampling interval of 0.02 sec was used for some seismic
studies (to be discussed in Chapter 5). The first 15 sec record of this accelerogram is
shown in Fig. 4.1. Clearly the digital points at 0.02 sec intervals have been joined using
straight lines and a linear interpolation between sampling interval would ;l,lso yield an
accelerogram as shown in abo-ve'l*‘ig. 4.1,

In order to preserve the frequency content which has a maximum frequency of
25Hz. (Nyquist freque_hﬁy’ corx;espénding to sampling interval of 0.02 sec) the
| accelerogram was interpolated _using Band Lixrni‘ted Interpolation at sampiing intervals of

0.01, 0.005, 0.0025 sec. (Fig. 4.2 to 4.4).
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- One can.obserVe from visual cdmpér-ison of these accelerograms that they look
alrﬁost similar. However a zoomed picture shows clear differences. For the purpose of
' illustratibn th'é duration between 4 to 5 sec was selected and is shown in Fig. 4.5 to 48.1t
- will be Qi)servec_i that for smaller sampling intervals the sharp éomers are replaced by

smoother éurves. These accelerograms at different -sampling intervals will subsequently

be employed for adaptive direct integration analysis of structures.
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CHAPTER‘-S-»‘ IR S o, .
" PROBLEMS, RESULTS AND DISCUSSION

5.1 INTRODUCTION

¢

To study the efficacy of the adaptive time stepping procedures with unconditionally stable

: Newmark algonthm both base excatatron and drrect mass excitation problems were

studied. For problems wrth an analytical functron ds excitation it is possible to use any

arbmfary time step. However for most. problems (such as earthquake excitation)-it is-not

: hpqssible to vary the:tinre step 'aﬂiitrarilj. In such cases several files with varying sampling

. intervals-can be used as discussed in the following-section. = ...

Y

52 TIME STEP-SIZE CONTROL PROCEDURE ADOPTED

b

In’ adaptive Titerature [Zienkiewicz and Xie, 1991; Zeng et al, '1992] .the fol]owmg

I

condmon have been given for the control of step-size, as discussed in section 3.3 -~
ne< e sye ' ERY

‘rvhere, 0 _s‘ ’7’11 sland y, 21 are two parameters, '_The R.HS. of the eboyre inequality
is an 'uﬁper error iimit"‘ anh the L H'S is the threehold rather than a ‘lower error limit",

In th1s study, the adaptxve scheme for step-snze control has been modlﬁed by
making the RH.S. of the mequahty . 2) as threshold rather than, a 'upper error limit', If
the estimated error is, larger then this threshold, the solution is ac_cepted,,, however the step-

size is reduced for the next time step. Clearly a more aﬁpropriate procedure would be to
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_ : | ‘
réturn to the previous step and recalculate with a smaller time step. This involves: -

extensive bookkeeping and was, therefore, not used Similarly the L.H.S. of the inequality
\1s apphed as threshold When the estunated error is less than thrs threshold the solution is

| accepted however the step-srze lS bemg enlarged before steppmg to the next time step |
o I this study mstead of arbltranly acceptmg the new tlme step as. calculated from.: .

the equation - . : '_ - i e

2

I
N

o
T [P
LB

~~

W

(\8)

e’

. ;ars dlscussed in- sectron 3 3 a. number of excttatxon hrstones wrth varyxng tnme step srzes
were created a-prtori The procedure was then made to adopt the step- snze (enlarged =
reduced) wluch ‘was closest to-the step size computed by equatron 5 2 This modlﬁcatlon ;
was necessrtated by the complexxty posed by mterpolatlon for the cases when the forcmg
ﬁmctlon is not well deﬁned For the problems where forcmg ﬁmctton is not analytlcally

: __deﬁned the tlme step slze can be chosen arb:tranly as requrred .

' In order to select the appropnate pre-mterpolated value the exc:tatlon records at' ot
: dlﬁ'erent tune steps were stored in dlt’ferent ﬁles The algonthm kept a record of 'the ;" nr
| elapsed trme t When the computatton suggested a step size At from the: i* mterpolatlon :

ﬁle the value A—tt- mdlcated the record to. ,be used Appropnate procedure to avoxd

truncatron errors in thls cntxcal dms:on was adopted ,
. RARaE.

, It should be mentloned at thls stage that all earlter studles W1th adaptlve trme i
, _steppmg algonthms [Ztenknewrcz and Xle 1991 Zeng et al ‘1992'1 have enther (a) used
s1mple analytlc functlons as. excltatlon where it was stralght forward to select any arbxtrary

step or (b) have mmated adaptwe procedures only after the non-analytlc has ceased

- }s
W EE 4 v N . l 3 i e d [ S S
‘v“ " L S S T A A AR T e A L



{

_ For elastic problems the additional computation that becomes essential in adaptive
schemes 1s the computation and tnangulanzat:on of the effective suffness matnx K

whenever time step is changed. Clearly it is possible to compute K, a-pnon for all the

time steps i bemg employed and use the appropnate matrix when required. The later

procedure was, however, not used.

53 ‘STEP'FUNCTI_O_N LOAD WITH SUDDEN LOAD REVERSAL
A single degree of freedom (SDOF) system as shown in Flg 5.1 thh m—lOO kg, k=4100
N/m and dampmg f =20% was excited by a step function load (fo—2000 N) whlch was

suddenly reversed at S sec as shown in F:g 5.2. For the system used the natural penod
T-—O 98 sec

SN NS NN NN

VA A A AT &7 S G AV S 7 oV AV S G A Y & v

FIG. 5.1 : SINGLE DEGREE OF FREEDOM SYSTEM ANALYSIELD
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fo

v

&3 t{sac)

fo

‘FlG.5j2 : SUDDENLY REVERSING FORCE

Clearly a step size At=T/5 should be approprmte The analysus was conducted
using a conventrona] (non -adaptive) scheme with At=0.2 sec and At—O 025 sec. The
an_alysrs was also conducted using an adaptlve sch_eme wherein At;=0.2, 0.1. 0.05, 0.025
sec were used as discussed. The integration was started with a time step of 0.1 sec.

The d:splacement response obtamed usmg the convent:onal ‘and adaptlve
methodologles is shown in Flg 5.3. It can be seen that the adaptlve scheme is a much
better match to the conventional scheme with an extremely small time-step. ,T-hls_»ls‘mor.ee
so in the initial part of the response as s;hown-inﬂ}?igr 5.4. This is-achieved ihspite of using a
.large step in a majority of duration of the analysis as shown in th 5 5. .

The variation of a absolute error using the three schemes as a ﬁmctlon ‘of tlme is
shown in Fig. 5.6 fo 5.8, For At=0.2 sec A with conventional analysis the erfror is
con:.siderab!y higher (Fié. 56) for most of the duration -as compqred to the cor_wehtional
analysis with At=0.025 sec (Fig. 5.7). For the adaptive scheme the error remains small for

most of the duration except at the time of load reversal. Apparently this is the reason why
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0.72 - - Conventional (step size=0.2)
- a4sa-a  Conventional (step size=0.025)
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Fig5 .4 Sudden Load R'c.v_crsn’l, comparison of solutions by Adaptive
- and Convcnﬁoplnl‘ﬁﬁ‘!c stepping analysis (zoomed,, upto 5 sec).
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the adaptive scheme results deviate slightly from those obtained using At=0:025 sec after

reversal.

13

5.4 EXCITATION DUE TO EQUALI:..Y SPACED TRIANGULAR SPIKES

The mass of the SDOF sysfem of Fig. 5.1 with parameters used for the previous problem
was excited by a time varying force in the form of equally spaced triangular spikes

(f0¥2000 N) as shown if Fig. 5.9. Tﬁe duration'ti =0.4 sec and t, =4.4 sec was

f(t) -

fo

employed.
AN
: N
. ' 7
t ts s t1 t2 S t(seo)

~ FIG:549 : FORCE IN THE FORM O—F SPIKES.
The adaptive scheme was employed with sampling intervals of At;=0.2, 0.1. 0.05,

0;025 sec. The éomparison using the c,on;ventional schemes with two diﬁ'eren:t timé st‘eps
with adaptive scheme is shown if Fig. 5.10. Once again it can be seen that €he :adabtive
scheme performs well. A zoomed view for the initial 4 sec beriod clearly illusitraté this as
shown in Fig, 5.11, The variation of time step as a function of time used by the adaptive. .

scheme is shown in Fig. 5.12.
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The variation of computed
adaptive schemes is shown Fig. 5.1
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'5.5 ELASTOPLASTIC SYSTEM WITH STEP FUNCTION LOAD

P

“n

In order to study the possrblhty of using the adaptnve scheme wnh nonhnear problems the . °
SDOF system shown in Fxg 5. t was-assumed to be elasto-perfeeﬂy plast:e wrth an yleld

load of 2460 N. Once agam the displacement response using ' the conventlonal and

ct kl
[N . ¢
s “

adaptive schemes was compared as shown in Fig. 5. 16 ol

" Once agam the problem xl!ustrates that the adaptlve scheme performs well No' o

d1fﬁeulty was encountered in usmg the adaptlve schemein a nonlinear situation.

IR I
L 1 . N *
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DISPLACEMENT (mm)

5.6 SDOF SYSTEM WITH EARTHQUAKE EXCITATION

The SDOF system shown in Fig. 5.1 was excited by the Uttarkashi earthquake.
interpolated as discussed in Chapter 4.

The conventxonal schemes wnh At=0.02 sec, At=0.0025 sec and the adaptive

scheme did not show any difference in results. The reason clearly was that the time step of

" 0.02 sec was sufficiently small for the natural period of the system (T=0.98 sec).

In order to perform a more stringent test the natural frequency of the SDOF
system was increased to 40 Hz by enhancing its stiffness. The damping was reduced to S

%. A\ comparison of the displacement response is shown in Flg 5.17. A zoomed view of

the same response is shown in Fig. §.18.
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R The companson of dtsplacement response using the: adaptlve» and ‘the conventtonal

schemesun a typxcal duratlon is shown in F1g 5 21 and S. 22 forrﬂoors ‘one and five~

respectxvely o L ' B B S
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The variation of the tﬁne step with time for the period of 3.5 sec is shown in Fig

5.19 which shows that the scheme advocates time step changes for earthquake problems
Q. 025

9.023:~
. 1
e.a'zee .
—3.0183
g ©.8181

La)

v 0.015

s2alzes

& 0.013

_Time Ste

a"_r‘_l};'e_' f_vér ™ le'ﬁv vélﬁ T 'L}Zl fr‘r—; fr*LQ
© ® - = Time Vpger N ... 0. 1
Fig.5.19 SDOF syslem with earthquake excitation, Time Vs Tlme Step Size
variation of solution hy Adaptive time stepping analysis.
5.7 MULTISTOREY-'BUILDING WITH EARTHQUAKE -EXCﬁATION
A five storey ‘building idealized as a knotted cantilever as shown in Fig. 5.20
(K=364141.32 N/m, m=3000 kg) was exposed to a base excitation due to the Uttarkashi

Earthquake.

- Y,
.,‘?f“ _j
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"9.018

" Time Step Size (sec)

The variation of time step in the initial stages of excitation is illustrated in Fig.5.23

Once again it can be seen that the adaptive scheme performs well with apprbpriate. time

- step changes. -
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| Fig.523Multistorey building with earthquake excitation, Time Vs Time Step Size

variation of solution by Adaptive time stepping analysis.
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" The Smgle Step dn’ect mtegratxon procedures have an advantage of bemg adaptable to

. trme step changes A sxmple algortthm can easﬁy be mcorporated m dxrect mtegrat:on

'packages for evaluatlon of errors and effectmg ttme step changes Thus the time step can_

| 'be enlarged when the variation ot‘ response w1th trme is. small The prewous studies. wrth

" these procedures were thh srmple lcadmg functrons like 'suddenly apphed loads wherem

 the damped dynarmc system would adopt a static response pattem after passage of some
~ time, Some studtes wnth seismic response where mterpolatlon wrth arbltrary time steps is
driﬁcult used a constant time step dunng the excitation period and resorted to adaptwe
schemes only aﬁer the excitation had ceased. In this study a novel approach wherein |
specxﬁc mterpolatron excrtatxon values at various time step. sxzes are provxded a-priori and_

used as necessary was proposed The advantage of the scheme is that it can easﬂy be used

. for non analyt1c functrons such as those due to earthquakes Thxs scheme also has the

"advantage in selsnnc analysns that it easrly offers itself to excitation htstones that are band

‘»lmuted and preserves the frequency content of the original dlgnal sxgnal
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