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ABSTRACT 

In dynamic analysis, direct time -integration schemes are often used. Once a direct 

integration scheme is chosen, the accuracy of integration-depends significantly on the-time-

step size. As the step size decreases the -accuracy of integration ° as well as computational-

cost increases. The adaptive time stepping procedures are aimed at seeking the largest 

possible , step size to reduce the computational cost while maintaining a prescribed 

accuracy. For most direct integration schemes, a fixed time step size is usually used and is 

based frequently on intuition and experience. In practice, the dynamic process for a given 

problem can be, in some stages, very rapid and, in other stages, quite slow. It is therefore, 

unrealistic and unpractical to use a fixed step size in the whole process. To control the 

time discretization error, methods of estimating the error and then adjusting the time step 

accordingly for single. step algorithm is introduced. To study the efficacy of the adaptive 

algorithm, the problems of two categories have been tested. One is with analytically 

defined forcing functions and second is for earthquake excitation (with acceleration time-

history as input). 

Direct integration- of equations -of motion may require -a -time .step_ which is much 

smaller than the sampling interval- at_ which the accelerogram has b'een--provided-. -This 

necessitates the need for interpolating the- digital :accelerogram, which is conventionally 

done by linear interpolation between samples. However, as the original digital 

accelerogram is essentially a band limited signal, linear interpolation modifies the 

frequency content of the data and inserts spurious high frequency components at the cost 

of reducing power in the low frequency range. 

High 'frequency insertion in input acceleration history, excites high frequency 

modes of the structure, thereby yielding a jittery response. So -band limited interpolation is 

employed in this study in conjunction with.  adaptive time stepping schemes. 
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1.1 GENERAL 

The essential physical- properties of any structural system subjected to an external source 

of excitation or dynamic, loading are its mass, . elastic properties (stiffness or flexibility), 

and.. the energy -loss mechanism or -damping. The equilibrium equation of multidegree of 

- freedom system in motion-are.of the form: 

MX(t) + Cx(t) + Kk(t) = f (t) 	 (1.1) 

where Al, C-and K are the mass,. damping and stiffness matrices, fit) is the external load 

vector and X(t), X(t). and X(t) are the time dependent displacement, velocity and 

acceleration vectors of the. nodes in thediscretizedelement assemblage. 

Eqs. (1.1) can alternatively-be written as: 

F1 (t)+FD(t)--Ft(t)'= f(t) 	 (T.2) 

where F1(t) are the inertia forces, F,(t) the damping forces, and FE(t) the elastic forces 

Mathematically Eqs. (1.1) represent a system of linear differential-  equations- (for 

constant M C and K matrices) of second order. However if any of the matrices Al,.  C or K 

are.functions of time (or X) -the system becomes nonlinear: The solution procedures-can be 

broadly divided into two categories,. -direct integration and mode ' superposition: While 

mode superposition can, generally be employed only with linear .problem's;. -direct. 



integration is suitable for both linear and nonlinear situations. In this study consideration is 

confined to direct integration methods.- 

1.2 DIRECT INTEGRATION METHODS 

In direct integration methods, Eqs. (1.1) are integrated using a numerical step by -step 

procedure. The term direct means that prior to numerical integration, no transformation--of-

the equations is carried out [Bathe and Wilson, 1978]. In essence, direct - numerical 

integration is based on two ideas. First, instead of trying to satisfy Eqs. (1.1) at any time t, 

it is aimed to satisfy Eqs. (1.1) only at discrete time intervals At apart. This means that a. 

kind of static equilibrium, which includes the effect of inertia and damping forces. is sought 

at discrete time- points within the duration of analysis. 

The second idea on which a direct integration- method` is based, is that a variation 

of displacements, velocities and accelerations within each time interval is assumed- and on 

this assumption the accuracy, stability and cost of the solution procedure depends. Direct 

integration methods, assume that the_ _displacement, velocity and acceleration vectors at 

time 0, denoted by X0, Xo and Xo respectively are known and the solution of Eqs. (1.1) is 

required from - time 0 to time T. In the solution the time span under consideration T, is 

subdivided irito_n equal (or unequal) time intervals At and the integration scheme 

employed establishes an approximate solution at times 0, At, 2At, 3 At_ _ _ t, t+At, _ _ 

T. 

1.3 SINGLE STEP AND MULTISTEP ALGORITHMS 

The methods in which the recurrence algorithms are valid within a single time step and 

relate the values of Xn.~l , k +1,. Xn+l-etc. to;, X, Xn etc. are called Single Step 

Methods:[Barthwal, 1992]. 

f 



In multistep methods Xn+1  are related to X,,., X„_1, Xn _2  etc. without introducing 

explicitly the derivatives and assuming that each set is separated by an equal interval At. 

Such algorithms are in general less convenient to use than the single step procedures as 

they do not permit an easy change of the time step size. Also these methods require a 

greater degree of bookkeeping as displacements of previous steps are required to be 

stored. 

All algorithms that relate values at step n+1 to values at step n can be termed as 

single step algorithms. In this study adaptivity in time stepping analysis is applied to single 

step algorithms emanating from the generalization of the Newmark method [Zienkiewicz 

and Katona, 1985]. .. 

1.4 ADAPTIVE TIME STEPPING ANALYSIS 

Once a. direct integration scheme is chosen, the accuracy of the. integration depends 

significantly on the time step. size. The appropriate time step is determined by the stability-

and accuracy requirements. For integration schemes , that are unconditionally stable 

accuracy requirement determines-the-step size. 	. 

For most direct integration schemes, a fixed time step size is usually used-1n-the 

considered part of the time domain. In practice, the dynamic process for a- given -problem 

can be, in some stages, very rapid and,. :in- other stages, quite slow depending on the 

response of the system, to a given excitation. The time step is generally chosen based on 

the free vibration characteristics of the system as it can not obviously be selected--a-priori 

on the basis of response to a given forcing function. It is therefore unrealistic and 

impractical,  to= use a fixed =time- step for the- whole process. If there is no automatic time 

stepping facility one has to suspend the analysis and run at certain time stations, assess the 

error and then change the step size before the solution .  process-is resumed-. 
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To control the time discretization error adaptive time stepping procedures are 

introduced that estimates the error and theh adjust the step size accordingly. Adaptive 

time stepping procedures are aimed at seeking the largest possible step size while 

maintaining a prescribed accuracy_ 

1.5 BAND LIMITED INTERPOLATION 

Seismic analysis of structure is often done using direct integration methods in the time. 

domain, wherein the seismic input is provided in the form of an acceleration time history. 

This input accelerogram is a digital record of accelerations provided at a constant 

sampling interval (say 0.02 sec) to the analyst. 

Direct integration of equations of motion may require a time step which is. much. 

smaller than the sampling interval at which the accelerogram has been provided-. This 

necessitates the need for interpolating the digital accelerogram, which is conventionally 

done by ' linear interpolation between samples. However, as the original digital 

accelerogram is essentially a band limited signal, linear interpolation modifies the 

frequency content of the data and inserts spurious high frequency components at the cost 

of reducing power in the low frequency-range [Basu et el., 19921. 

. 	High frequency insertion in input acceleration history, excites high frequency 

modes of the structure, thereby- yielding a jittery response. So band. limited interpolation 

technique is -used in this study.byvirtue of which the band limited property of the signal is 

maintained. 

4 



CHAPTER 2. 

GENERALIZED NEWMARK SINGLE STEP DIRECT 
I NT E G R A T I O N PR O CE D UR E S 

2.1 GENERALIZED NEWMARK (GNpj)' PROCEDURES [Zienkiewicz and- Katona, 

1985] 

Single step algorithms 'for the solution of problems of dynamic problems have the inherent 

advantage over multistep algorithms that it is a simple matter to alter the time step as the 

requirement of the solution indicates. 

In=GNpj, -p stands for the order of the polynomial of approximation of the function 

X(t), Eqs. (1.1) and j stands for the order of the differential Eqs. (1.1). 'Since this study is 

confined to dynamic analysis, the value ofj equals 2.  

This procedure applies Taylor series approach to derive a general form of single 

step. algorithms that can be considered to be a generalization of Newmark method. It -

results in a scheme which is not self starting. The derivation considers the satisfaction of 

the .-governing Eqs. (1..1) only at the end points of the interval it and they can be written 

as [Zienkiewicz, 1977] 

= 	 MXn+I + CX n  1 + KXn+1 = . fn+t 	 (2. ). 

with appropriate approximations- for the values of -Xn+l ,. X.1  and X„+1 . If the Taylor 

,.series .expansion is considered these can be written as 



• Atp P  DtP P  P 
Xn=F-.......+ 

! 
Xn QP 	Xn+l – Xn. 

P 	P'! 
At p 

-Xn+1+pp' -, Xn+l 
:P 	 V 

etP-1 	 tP-1 P p 
• Xn+l„ = Xri + Ot-Xn+... 	(+—) 	Xn+l – Xn 

.=-Xn+I+Q ,l 
~t~l Xn+1 

p (p-1)! 	
V 	

V V :~. 
-  .•..•... ................  ...........  

-  
...  ...........  ..... ..  ...  _  

.f,  -~ 

..  .  {  .....  _ •..•  ..•.•.••  '.  .. •.....•...........  ......  ... ....  
-  -  . 

P-1: 	P-1 , 	P 	(p , 	p 
"Xn+i'= Xn'+At Xn+fpAt Xn+1–Xn 

P-1 	P 
Xn+]+AAt Xn+l • 	 ; 

(2.2) 

where Xn = dP X̀n
)

. etc. 	 '.. 	 r 
&P 

In Eq. (2.2). fora polynomial of degree p, a Taylor series remainder. term. has.. 

effectively been allowed in .each of the expansion for the functions and its derivatives with-

parameter ̀ ,i, j=1,2,.•... -p which can be chosen to give good approximation properties to 

the algorithm.  

Insertion* of first -three Eqs._ of (2 2)- into Eq. (2.-1) gives a single equation from 

which X~i+i can be found-. When -this is determined; Xn+1 to Xn+i can be evaluated- using 

Eqs. (2:2): The expression: is  

Xn+l = FM AtP-2 QP-2 + C At' Pp-1 + K Atp. - (p-2)! 	(p=1)1 	P! 
(2.3) 

- 	_ M Xn+l - C Xn+l – K Xn+1 J 
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It can easily be shown that the commonly used Newmark method can be derived 

from the generalized procedurediscussed -above. 

The above algorithm applies to both implicit and explicit schemes. In terms of 

generalized Newmark method an explicit scheme is simply defined by 83p = 0 for any. .order 

of p [Zeinkiewicz and.Katona, 1985]. Conversely, an implicit scheme  is defined by fl p # 0-, 

irrespective of other integration parameters. To take full advantage of the computational-

efficiency of an- explicit scheme, it is best to assume that the -mass matrix M is diagonal-

(lumped) and the damping matrix is also diagonal. With these assumptions -the- system-of 

Eqs. Eqs. (1.1) written above are completely uncoupled because the stiffness matrix has a zero 

multiplier. 
On the other hand, when ip ~ 0 (implicit) stiffness matrix is populated- (albeit 

banded) which requires triangularization at the onset or, when the time step -size is 

changed. It is thus problem dependent and it can not be said whether or .not the 

accuracy/stability characteristics of an implicit scheme will provide a more efficient 

procedure than an explicit scheme. whose accuracy/stability characteristics. .are _generally 

inferior. 

2.2 GENERALIZED NEWMARK (GN) ALGORITHM IN PREDICTOR 

CORRECTOR FORM FOR p=2, j=2 	 - 

In many real physical situations nonlinearities may appear which do not allow the Eqs. 

(1.1) to.bewritten in a simple form as Eqs. (1.1). The last term in the Eqs. (1.1) which 

corresponds to the internal (stiffness) forces may not obey simple linear elasticity laws and 

plastic or viscoplastic behaviour may intervene causing nonlinear dependence of this form 

on both the velocity (X) and displacement (X). All such problems may be encompassed by 

a set of Eqs. (1..1) given below 
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M X + Q :(X, X) + P (X, X) = f 	 (2.4) 

in which Q and P are suitable vector valued functions of X and k. 

Clearly the linear case is now a specific one of the more general form in which 

P(X,X)=KX 

The general nonlinear function may be defined in a variety of ways depending on 

the mechanics of the problem. The important thing at the moment is simply that for each 

problem such function can be def ned either directly or in problems such as plasticity in an 

incremental form. The -above discussed algorithm is presented in the predictor-corrector 

form for j=2. In this way this can be used for both Iinear as well as nonlinear problems. 

Begin predictor phase 

Set iteration counter. i=0 

2 
1. Xn+1 = Xn  + At xn  +(l —J3i) A2_ Xn- 

Xn+1  = Xn +(I—ps ) At 

Xn+l = Xin+1 

Xn+1 = Xn+1 



i kn+ = IX n+ _.:n+i i ./Jt2  

2. Formeffective stiffness matrix K*  as 

K =M 2 +C A --2  + K .8  2, 	/3 At 

3. Evaluate residual forces using 

4. - Perform factorisation, forward reduction and back substitution as required to solve 

KAX'=yi1  

5. Begin the corrector phase 

i+1 X 1  X11+AX' 

5' =[x'1_+1] 
fit2 

At:Xn+l  

6. If AX' and/or 	do not satisfy the convergence conditions then set i=i+l and go to 

step (3), otherwise continue. 

9 



7. Now set 

Y+I Xn+1 = Xn+l 

Xn+1 - Xn 1 

for use in the next time step. Also set n=n+1 and begin the next time step. 

After. convergence conditions are satisfied (step 6) a check for the appropriateness 

of the time step can also be introduced. This involves error estimates 'and a method of 

evaluating a new time step. This .is_considered in-the following chapter. 

r ~ 
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CHAPTER_3 

ERROR ESTIMATIONA" STEP SIZE CONTROL 

3.1 INTRODUCTION 

• In a single step method the error per step (often called the local error), is used to predict 

• the step size [Zeng et at., 1992]. To estimate the local error, the traditional way is to 

compare the results when two different step sizes- are used, or to compare the results given 

by two integration methodsof different order. However to use such methods to -estimate 

• the local error can be. very -time consuming. 	 - 

Zienkiewicz and Xie [1991] presented a simple local -error -eftimate. and adaptive 

time stepping procedure for integration schemes of Newmark type, in which the local 

error estimate is derived by using a Taylor series. Zeng- et aI. [1992]. -developed an a 

posteriori local error estimator based on the concept of a'post-processing technique. 

In this: study the error estimator developed by Zeng et, al.. [1992] is used for the 

Newmark Single Step algorithm discussed in the last chapter. 

The step size is chosen in such a manner that the local error of each step is roughly 

equal to a,prescribed -tolerance. 

3.2 A-POSTERIORI LOCAL ERROR ESTIMATION 

Consider the original Newmark method (unconditionally stable), which can be derived 

from 	the 	generalized 	procedure discussed 	in " 'Chapter 2 	with •p~2, 

fi2 = 0.5 and 61 = 0.5. This becomes the constant-average-acceleration method"known- to 

yield an extremely small period elongation and no amplitude decay. This assumes the 

variation of 'the 

11 



t=et 	t 	t +et. 	 t 

acceleration in,each time step to_-be constant and equal to the average of the acceleration_ 

at the two. ends of the time step as shown in Fig. 3.1. 

Fig. 3.1 Accelerations assumed in the Newmark time integration--( 	)-and-a - 

post-processed-confinuous--icceleration (-----}--)-for Q2 = 0.5 

The average of X„ and.7Ct,+1  is used as the acceleration in' the' time interval (n, 

n+l). This approximation yields a discontinuous distribution for the acceleration in -the 

time domain, which,  is similar to the discontinuous stress' distribution obtained in a finite 

element analysis when displacements are approximated by C°  continuous linear functions 

[Zeng et al,, 1992]. In the finite element analysis, a smoothed stress field given by a proper 

post-processing technique can be much more accurate than the discontinuous one. Error 

estimation for spatial discretization, obtained by comparing the discontinuous stress- field-

given- by the finite  element analysis and the post-processed stress field,. has' been found to 

be efficient and: practical '[Zienkiewicz and Zhu, 1.987]. Zeng et al. [1992] extended this 

idea to-time integration and derived an n posleriori local error estimate. 	 - 

S 
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The assumptions used in the Newmark. scheme for dynamic _analysis can be-dexived 

from the procedure discussed in section -2.1 are 

Xn+1 — Xn, + Xn At +{(i —  jig) Xn +,32xn+1 J et2 

	

„ 	2 

Xn+1 = n+[(I — QI)Xn+QiXn+1] At 

If a continuous linear vector-valued function of time, r, c£ the dashed line in 

Fig.3.1 is used for the approximation for the _acceleration a more accurate result can be 

obtained. Errors in the displacements, velocities and accelerations are denoted by vector-

valued functions of time, e, e, and e, respectively. Considering a time interval -[n, n+l.] 

and assume that r E [ n, n + 1}. The linear approximation of the acceleration is given by 

X~ — Xn+1— Xn (- t) + Xn 	 (3.2) 
et 

The error of acceleration at time r is, then estimated through 

(3.3) 

— ' Xn+) — Xn I T- t~ + l l Xn+l — Xn! 
et  2 

Suppose that the solutions at time station n are exact. Then, the, error of velocity 

solution at time r can be estimated by 
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t  (3.4) 

X+Xn (t)2 + 1 (Xn+1—x) (r-t) let 	 2 

Hence the error of the displacement at time station n+1 can-be estimated by 

• t+nt 
e(t + At) = j e( r) dr 1 At2 (&+1—Xn) 	 (3.5) 

t 	 12. 

Now e(t + At) is a vector. Taking a certain -norm, a posteriori local error estimate is 

obtained as 

dell  
12

At' ll(:R,+, — Xn)f f 	 (3.6) 

- It reads in L2 norm as 

-.1 

IIeIkL = eT e 	~t2 1Xn+1 — Xn~~ (Xn+l — Xn) Z 
	

(3.7) 
~2 C 

and in the strain energy norm as 

IteL = eT K _e 1 At2
C ( 

Xn+l — 3~n )T K (kn+1_J]2 	 (3 i) 
12.  

To be able to obtain a general a posteriori local error estimate for the whole family 

of Newmark schemes, the following procedure is adopted, 

From Eq. (3.1) it can be deduced that the whole family of Newmark schemes uses 

the acceleration expressed by 

14 



X( T} = (1— p2) Xn Q2 Xn+l 	 (3.9)- 

which is a constant for a .given l2 . Thus, the linear approximation'Eq..(3.2) is a higher-

order approximation ttran--Eq. -(19).. Hence, error can be estimated -in -  the--acceleration 

given by the Newmark schemes by 

(3 ,10) 
— Xn+'  _ Xn  

r 	Ot 	( -t)+Q2 (Xn+1 — Xn) 

Repeating the integration that has been done for Eq. (3.5), the local error estimate for the 

displacement solution at station n+l as 

e(t+G&t} w 	b+ 	Ate  (Xn+l  —?Cn) 	 (3:11) 

which can be used for the whole family of Newmark schemes except for the case when 

= 1. The reason is that 	= implies a linear acceleration method. Clearly to estimate 
6 	 6 

the errors this case a higher order approximation needs to be employed. Work in this 

direction using the Taylor's series expansion has been -done by Zierikiewicz and Xie-

[1991]. 

3.3 ADAPTIVE TIME-STEPPING 

An adaptive time stepping algorithm should, ideally, find a discretization at the least cost, 

such that the local error is uniformly distributed and the global error is within a given 

tolerance. For time-dependent problems, however the global error estimation is generally 

15 



difficult to obtain. Adaptive algorithms for dynamic analysis are thereafter usually 

• designed based on the control of the local error. The aim becomes here to adjust/select the 

step size in an efficient and economic way so that for,each step, the local error is roughly 

equal to a prescribed error tolerance e. [Zienkiewicz and Xie, 1991; Zeng et al., 1992]. 

The following condition has been given in adaptive literature for step size control 

[Zienkiewicz and Xie, 1991; Zeng et al., 1992]. 

Tie s He S Y2-- 
	

(3.12) 

where, 0 5 yl S 1 and y2 Z 1 are two parameters and e is the. Prescribed error 

tolerance. 

When the condition (3.12). is satisfied, the solution is accepted. and the time-

integration proceeds to the next time -step without change of the step size. Thp .right }land. 

side of the inequality (3..12), i.e. y2-e, is an 'upper error -limit'. If-the--estimated error is 

larger than this-upper limit, the solution is not accepted; and the step size is reduced. The 

left hand side of the inequality (3.12), i.e. ye, is -a-threshold; rather than a lower ,error 

limit. When the estimated error is less than this threshold,. the solution , is 'accepted; 

however, the step size should be enlarged before stepping to the next time step. It is, from 

the efficiency point of view, necessary not to set a lower error limit, but instead, to set this 

threshold. 

When a step size should be updated, the: prediction of the new step size has to be 

made.such that the prescribed accuracy can be achieved with the least cost. It =is known 
that, for Newmark integration,_the_rate_of convergence of the global error can be O(et2). 

Correspondingly, the- rate_of_conver-genc_~___e of_t_l_e local err-ror should achieve O(dt3) . 

Suppose that the current step size is At, then 

IIeIF 	Cî- At3 	 (3,13) 
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where C, is a constant depending on the exact solution. With the new -step-size ATV'; the 

aim is to obtain the local error equal to the given tolerance, i.e.=  

hell' 	C2  -(et')3  = e 	 (3.14) 

where C2  is an another constant. Comparing equation (3,13) with equation (3.14) and 

assuming that C1 = C2, the new step size can be obtained as 

At' = EI 
	

At 	 (3.15) 

	

' 	 - 	 4 

In practice, an implicit algorithm can not be efficient if the step .size 'varies too 

frequently, as the effective stiffness matrix has to be factorized-  when a new- step size -is-

used. Therefore the step=size-should not-be enlarged--until 

	

hell < ye 	 (3.16) 

has been registered consecutively for K0  time, steps, 

3.4 FLOWCHART. FOR ADAPTIVE. -GENERALIZED NEWMARK (GNpj.) 

PROCEDURE 

The flowchart which is based on the, algorithm discussed in last. chapter is shown in Fig.3.2. 

It will be observed that a box for_"estimating error and 'adjusting the time -step has been 

included. The procedure followed for this part is as follows 	 - 
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START 

READ INITIAL CONDITIONS, CONSTANTS (i , GEOMETRICAL 
DATA, MATER'JAL, PROPERTIES ETC. 

CALCUL-ATE. TH-E PREDICTOR VAL:U.ES, Xn+1, .X-n k - 
N 	ti  

Xn+1 ETC., AND Xn+1, Xn+1 -Rn+1 ETC. 

FORM THE EFFECTIVE STIFFNESS MATRIX' K• IF REQUIRED 

EVALUATE RESIDUAL FORCES yii 

o FACTORIZE, FORWARD -REDUCTION AND 
o a 	 BACK SUBSTITUTION K• 0x. _ wi 
~.  o 0 

E. V V 	 V 
 d 	o 

CALCULATE THE CORRECTED VALUE BY ADDING THE 

V 	CORRECTOR TERMS IN Xn+1,, ,Xn+1, Xn+1, ETC-.,, AND st  
I A.  

Xn+1 Xn+1 Xn+1 ETC. 

CHECK CONVERGENCE, 
CONVERGED? 

NO 	 VYES 	
V5. 	 . 	

.2: 	

S V 

EVALUATE THE ERROR a AND CHANGE THE 
STEP SIZE, At, ACCORDINGLY 

WRITE RESULTS AT -n+l 

SET. THE INITIAL VALUES FOR THE NEXT LOAD INCREMENT 
I.e. Xn+1- w Xn Xn+1 = Xn, Xn+1 = Xn ETC. 

STOP 

Fig. 3 .:2FLOW CHART OF ADAPTIVE GEN ERA LISED.NEWMARK (GNpj) PROCEDURE 
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(a) Evaluate the error 

 eta - 	
ilXn+~ — XnII 2 

(b) 'Change the step size At if required using 

e 3 
~tnew - IieII At , where e = prescribed error tolerance 

and set At = Atnew.  
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CHAPTER 4 

BAND LIMITED INTERPOLATION FOR ADAPTIVE TIME 
STEPPING ANAL YSI.S 

4.1 INTRODUCTION 

In direct . integration analysis of structure the appropriate time step (or sampling rate) is 

determined by the stability and accuracy requirements. 

Integration .schemes that are unconditionally stable require a small time step At 

from the point of view of accuracy. It, has been suggested that results are reasonably 

accurate when the time step is limited as At / T 5 0.01 [Bathe and Wilson, 1978; Owen and 

Hinton, 1980],. where T is the fundamental. period of the structure. 

For the Newmark method ( with i2  = 0.5 and Q1. = 0.5) it, has been shown that the 

period elongation for an undamped single degree of freedom system is less than 3% for 

At/ T S 0.01 and the method does not. decay_ -response. amplitudes. 

For conditionally stable schemes, stability considerations may .require a time step 

At S  Tri  , where Tnlin  is the smallest natural period of the structure [Owen and Hinton, 
TI 

1980]. 

For nonlinear problems it becomes necessary to iterate within .a:time step to obtain' 

a converged :solution. It has been felt that-it is better to reduce the time step rather than 

pushing iteration of nonlinear quantities within a timeincrement [Zienkiewicz et al., 1984]. 

In other words the time step to be used is determined by the problem and the numerical 

scheme being employed. 
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Also, to control the time discretization error adaptive time stepping procedures are 

introduced that estimates the error and then-adjust the step size accordingly. This also 

• necessitates'•the~interpolation of'the seismic input. 

The point that emerges. from the above- discussion- is -that the- -acceierogram 

provided for the analysis (generally the group deciding upon the seismic- loading history is 

different from the group doing structural analysis) may not be at the required sampling 

rate. Therefore the seismic record is required to be interpolated: 

4.2 BAND LIMITED SIGNAL 

Seismic, analysis using direct -integration schemes' employ a-- ground acceleration history 

that is either ,recorded or is synthetically generated: in either case these are the digital 

values at equally spaced discrete' time intervals: ' Since' the majority of the accelerograms 	- _ 

are analog in nature the history obtained from .these requires digitization. 

The 'instrument' and 'the digitization process 'introduces noise that' has  to b.e 

removed by band-pass filtering [Kumar, :Z 993], The upper cut-off frequency of this band is 

generally 25Hz to 27Hz. ,Moreover, most corrected recorded accelerations are available 

at a sampling' interval ,fit=O.02 sec. As per the Nyquist theorem in digital- signal processing 

the ,highest: frequency that a signal sampled at At, is capable of representing is (1/20t). 

Thus a sampling interval of 0,02 sec implies a Nyquist- frequency Dof 25Hz. In other words 

the highest frequency content of the accelerogram also- gets dicided by the sampling 

interval and, therefore. any, digital signal is band limited signal. 

4.3 BAND .LIMITED INTERPOLATION 

The sampling rate at which the input accelerogram is available is required to be 

interpolated for adaptive direct - integration. It has been considered reasonable to assume 

21 



that ground acceleration varies linearly -in the time interval, while recognising 

simultaneously that this-may result in loss of accuracy -[Zienkiewicz ct-al., 19.84]_ as -linear. 

interpolation introduces a high frequency content which is absent in the original record 

provided. 

In this study the band limited interpolation technique [Basu -et al., 1992] is used 

for adaptive time stepping analysis by virtue of which band limited property of the signal 

is maintained. 	- 

Band limited interpolation is done by zero _packing the data to an extent required 

for analysis. This zero packed accelerogram is low-passed to recover the bare band signal 

of interest and eliminate the unwanted image of components generated by sampling rate 

expander. Thus this technique maintains the band limited property in the interpolated 

data. 

4.4 INTERPOLATION USED IN THIS STUDY 

In this study the Uttarkashi Earthquake (Oct 20,-  1991; N- 75 E; Transverse)- corrected 

accelerogram available at a sampling interval of 0.02 sec was used for some seismic 

studies (to be discussed in Chapter 5). The first 15 sec- record of this accelerogram is 

shown in Fig. 4.1. Clearly the digital -points at 0.02 sec intervals have been joined using. 

straight lines and -a linear interpolation between sampling interval would also yield an 

accelerogram as shown in above 'Fig. 4.1. 

In order to preserve the frequency content which has a maximum frequency of 

25Hz. (Nyquist frequency corresponding to sampling interval of 0.02 sec) the 

accelerogram was interpolated .using Band Limited Interpolation at sampling intervals of 

0.01-, 0.005, .0.0025 sec. (Fig. 4.2 to 4.4). 	_ 
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One can observe from visual comparison of these accelerogranis that they look 

almost .similar. However a zoomed picture shows clear differences. For the purpose of 

illustration the duration between 4 to 5 sec was selected and is shown in Fig. 4.5 to 4.8. It 

will be observed that for smaller sampling intervals the sharp corners are replaced by 

smoother curves. These accelerograms at different sampling intervals will subsequently 

be employed for adaptive direct integration analysis of structures. 
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CHAPTER-5 

PROBLEMS, RESULTS AND DISCUSSION 

5.1 INTRODUCTION 

To study the efficacy. of the adaptive time stepping procedures with unconditionally stable 

Newmark algorithm both base excitation and direct mass excitation problems were 

studied. For problems with an analytical function as excitation it is possible to use any 

arbitrary time step; However for most- problems (such as earthquake -excitation)-it ,  is-not 

possible. to vary the time step -arbitrarily; In..such cases several_ files- with varying sampling 

intervals- can be used. as discussed in the following section: 

5.2 TTh!E STEP-SIZE CONTROL PROCEDURE ADOPTED 

In' adaptive .literature [Zienkiewicz . and Xie, 1-991; Zeng 'et al., 1992]. 	the following 

condition- have been -given for the control of step-size, as discussed in section 3.3 

yle  s IieD 	 (5.1) 

where, 0 S yl , 5 1 and y2  z 1 are two parameters. The R.H.S. of the above inequality 

is an 'upper error limit'-  and the L.H.S. is the threshold rather than a'lower error limit'. 

In this study, the adaptive scheme for step-size control has been modified; by 

making the R.H.S. of the inequality (5.2) as threshold rather than a 'upper error limit'. If 

the estimated error is. larger then this threshold, the. solution is accepted;, however the step-

size is--reduced for the next time step. Clearly _a- more appropriate procedure would be to 
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return to the, previous :step.  and recalculate with-  a: smaller time step. This involves 

extensive bookkeeping and was, therefore, not used. Similarly the L.}LS. of the inequality 

is applied as threshold. Whenthe estimated error is less. than this. threshold,, the solution is 

accepted; however the step-size is being dnlargedi before stepping to the next time. step; 

In this study instead .of arbitrarily accepting the new time step as calculated from, 

	

the equation 	. 	, 	 . 	. 	. 	•: 

	

At = 	At 	 (5.2) 

as discussed in section 3 3, a number of excitation histories with varying time step sizes 

were created a-priori The procedure was then made to adopt the step size (enlarged I 

reduced) which was closest. to-the step. size computed by equation 5.2. This modification-

was necessitated by the complexity posed. by interpolation for the cases when the forcing 

function is not well defined For the problems where forcing function is not analytically 

defined, the time step- size can be chosen arbitrarily as required.  

In order to select the appropriate pre-interpolated value the excitation records at 

different time steps were stored in different files. The algorithm kept- a record of the 

elapsed time t When the computation suggested a step size At1  from the,  i th-  interpolation 

file, the value -!--- indicated the record to. be, used Appropriate procedure to avoid 

truncation errors in this critical division was adopted.  
... 	. 	 .';,_ 	.,.. 	,.. 	,• 	,. 

It should be mentioned at this stage that all earlier studies with adaptive time 

stepping. algorithms [Zienkiewicz and Xie, 1991, Zeng et al., 1992] have either (a) used 

simple aaIyticfiinctiöns as.excitätiÔñwherit was straight forward to selectany arbitrary 

step or (b) have initiated adaptive procedure only after the non-analytic has ceased 
4 	 r 	 I 

4. , 	.., 	., 	........I' 	 ) 
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For elastic problems the additional computation that becomes essential in adaptive 

schemes is- the computation and triangularization of the effective stiffness ,  matrix K' 
whenever time step is changed. Clearly it is possible to compute Kr a-priori for all the 

time steps i being employed and use the appropriate matrix when required. The later 

procedure was, however, rot used. 

5.3 STEPFUNCTION LOAD WITII SUDDEN LOAD REVERSAL 

A single degree of freedom (SDOF) system as shown in Fig. 5.1 with m=100 kg, k=4 100 
N/m and damping 	20% was excited by a step function load (fo=2000 N) which was 

suddenly reversed at 5 sec as shown in Fig. 5.2: For the system used the natural period 

T=0:98 sec. 

K. . 

M 	 > f(t) 

FIG. 5.i:  SINGLE DEGREE -U1? FREEDOM SYSTEM ANM.Y.ti1+.I)- 

34 



f(t) 

fo 

fo. 

I FIG 5.2  : SUDDENLY REVERSING FORCE 

Clearly a step size tt=T-/5 should be appropriate. The analysis was conducted 

using a conventional (non-adaptive) scheme-  with Bt=0.2 sec and At=0.025 sec. The 

analysis was also conducted using an adaptive scheme wherein t=0.2, 0.1. 0.05, 0.025 

sec were used as discussed. The integration was started with a time step of 0.1 sec. 

The displacement response obtained using the conventional and adaptive 

methodologies is shown in Fig. 5.3. It can be seen that the adaptive scheme is a much 

better match to the conventional, scheme with an extremely small - time-step..This--is_more. 

so in the initial part of the response as shown-in-Fig. 5.4. This is-achieved inspite of using _a 

large step in a majority of duration of the analysis as shown in-Fig. 5.5. 

The variation of a absolute error using the three schemes as a function of time is 

shown in Fig. 5.6 to 5.8. For At=0.2 sec with conventional analysis the error is 

considerably higher (Fig, 5.6) for most of the duration -as compared to the conventional 

analysis with Ot=0.025 sec (Fig. 5.7). For the adaptive scheme the error remains small for 

most of the duration except at the time of load reversal. Apparently this is the reason why 
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• Conventional (step size=O.Q25) 
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o to o UD a to ' ovb o l : r . ò IC) 
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Time (sec) 

Figs .4 Sudden Load Reversal, comparison of solutions by Adaptive 
And Conventional,•  time stepping analysis (zoomed,.urto 5 sec). 
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Fig5..5 Sudden Load Reversal, Time Vs Time Step Size 
variation otsolution by Adaptive time stepping analysis. 
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Figs ,6 Sudden Load Reversal, Time Vs Error variation of solution 
by Conventional time stepping analysis (step size-0.2 see). 
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Fig. 7Sudden Load Reversal, Time Vs Errorvnrintion of solution 
by Conventional time stepping analysis (step sire=0.025 see). 
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Fig5. 8 Sudden Load Reversal, Time Vs Error variation 
of solution by Adaptive time stepping Analysis. 
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the adaptive scheme results deviate slightly from those obtained using At=0:025 sec after 

reversal. 

5.4 EXCITATION DUE TO EQUALLY SPACED TRIANGULAR SPIKES 

The mass of the SDOF system of Fig. 5.1 with parameters used for the previous problem •  
was excited by a time varying force in the form of equally spaced triangular spikes 

(fo=2000 N) as shown if Fig. 5.9. The duration t1  = 0.4 sec and t2  = 4.4 sec was 

employed. 

f(t)  

fo 

FIG..5-:}9 : FORCE IN THE FORM' OF SPIKES. 
The adaptive scheme was employed with sampling intervals of At i =0.2, 0.1, 0.05, 

0.025 sec. The comparison using the conventional schemes with two different time steps 

with adaptive scheme is shown if Fig. 5.,10. Once again it can be seen that the 'adaptive 

scheme performs well. A zoomed view for the initial 4 sec period clearly illustrate this as 

shown in Fig, 5.11. The variation of time step as a function of time used by the adaptive 

scheme is shown in Fig. 5,12. 	 - t  
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Fig.SaoSpikes Problem, comparison of solutions by 
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The variation of computed error as a filnction of time for conventional  and 

adaptive schemes is shown Fig. 5.13 to 5,15. The conclusions drawn from these figures 

are the same as drawn from the earlier problem. 	- 
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Time (sec) 

Fig.,~,1:5Sp kes Problem, Time Vs 'Error vs rintion of 
solution by Adaptive time stepping anriysis. 

5.5 ELASTOPLASTIC SYSTEM WITH STEP FUNCTION LOAD 

In order to study the possibility of using the adaptive scheme with nonlinear -problems the 

SDOF system shown in Fig. S. I was--assumed to be elasto-perfectly plastic with -an- yield 

load of 2460 N. Once again the displacement response using the conventional and 
~  i 	 -  

adaptive schemes was compared as shown in Fig. 5-.16. 	„ . 

Once again the problem illustrates that the adaptive scheme performs well. No 

difficulty was encountered in using the adaptive scheme in a nonlinear situation. 
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5.6 SDOF SYSTEM WITH EARTHQUAKE.EXCITATION 

The SDOF system shown in Fig. 5.I was excited by the Uttarkashi earthquake_ 

interpolated as discussed in Chapter 4. 

The conventional schemes with it=0.02 sec, At= 0.0025 sec and the adaptive  

scheme did-not -show' any difference inresults. The reason clearly was that the time step of 

0.02 sec was sufficiently small for the natural period of the system (T=0.9.8 sec). 

In order to perform a more stringent test the natural frequency of the SDOF 

system was increased to 40 Hz by enhancing its .stiffness. The damping was reduced to 5 

°/b. A comparison of the displacement response is shown in Fig.. 5.17. A- zoomed vier of 
the same response is shown in Fig. 5.18. 

Adep t tva T lmo Stopp In g 
-- °' Conv®n t ion a I (s tap - s tz-e=0.0025) 

10.5 

9.0 

7.5 
6.0 

I 4.5 
`-' 	3.0 
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0.0  Q -1.5 

nj -3.0 

H -4.6 

-7.5 

-9.0 

-10.5 

-12.0 

.J I ME ( SEC) 
Fig.S1 'SDOF system with earthquake excitation, comparison of solutions-. 

by Adaptive and Conventionni time stepping analysis 
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• , ; The comparison of displacement response :using, the adaptive, and the conventional 
schemes in a typical duration is shown in Fig 5.21 and and 5.22 for floors one and five 
respectively. 
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The variation of the time step with time for the period of 3.5' sec is shown in Fig 

5.19 which shows that the scheme advocates time step changes for earthquake problems. 
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5.7 MULTISTOREY BUILDING WITH EARTHQUAKE EXCITATION 

A five storey - building idealized as a knotted cantilever as shown in Fig. 5.20 

(K=364141.32 N/m, m=3000 kg). was exposed to a base excitation , due to the Uttarkashi 
Earthquake. 
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The, variation of time step in the initial stages of excitation is illustrated in Fig.5.23 

Once again it can be seen that the adaptive scheme performs well with appropriate- time 

step changes. 
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Fig,5,23Multistorey, building with earthquake excitation, Time Vs, Time Step Size 
variation of solution by Adaptive time stepping analysis. 
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EPITOME  

The Single Step direct integration procedures have an advantage of being adaptable to 

time step changes. A simple algorithm can easily be incorporated in direct integration 

packagesfor evaluation of errors and effecting: time step changes. Thus the time step can 

be enlarged when the variation of response with time is small. The previous studies with

these procedures, were with simple loading functions -like suddenly applied Ioads wherein 

the damped 'dynamic system would adopt a static response pattern after passage of some 

time. Some studies with seismic response where interpolation with arbitrary time steps is 

difficult used _ a •constant time step during the excitation period and resorted to adaptive 

schemes ' only after the excitation had ceased. In this study -a novel approach wherein 

specific interpolation excitation values at various time step .sizes are provided a-priori and 

used as necessary was proposed. The advantage of the scheme is that it can easily be used 

for non-  analytic functions such as those -due to earthquakes. This scheme also has the 

-advantage in seismic analysis that it easily- offers itself to excitation histories that are band 

-limited-and preserves the frequency content of the original digital signal. 
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