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ABSTRACT 
The inherent strength of a bunker makes it an effective blast resistant 

structure. 	Strategic structures like bunkers are used for the protection of 

personnel, equipment and for storage of explosives/ammunition. 

Explosive blasts exert loads of high intensity and short duration on 

structures in the vicinity of the blast. Explosives even from small charges when • 

placed close to a structure would result in very high peak pressures and could lead 

to damage. 

In this dissertation work, two dimensional analysis of bunkers subjected to 

blast loads has been carried out. Non-linear transient dynamic analysis for blast 

loads has been carried out by the general purpose finite element program which 

includes the numerically integrated isoparametric elements. 	In the elasto-plastic 

analysis, Tresca, Von Mises, Mohr-Coulomb and Drucker-Prager yield criteria have 

been considered. 

An above ground bunker, a bunker with soil cover and a semi-buried bunker 

have been analysed for blast loads as recommended by 1S:4991-1968. 
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CHAPTER 1 
INTRODUCTION 

1.1 GENERAL 

Strategic structures like bunkers are an integral part of the defensive 

battle plan. They are used for the protection of personnel, equipment and for 

storage of explosives/ammunition. With the ever increasing sophistication of 

weapons, there is a specific need to have bunkers which can withstand heavy blast 

loads. One of the main lessons of the Gulf war was that the underground bunkers 

provide excellent protection even against air bombardments and artillery shelling. 

The blast pressures are of high intensity and short duration, which damage 

structures in the vicinity, destroy equipment and personnel. Thus the knowledge of 

bunker's response to blast loads has become extremely important in military 

applications. 

1.2 THE CONCEPT OF BLAST LOADS 

Explosives when detonated on or above ground, results in a very rapid release 

- of large amounts of energy within a short time, thus generating a pressure wave in 

the surrounding medium known as a shock wave. The shock wave has a sudden increase 

in pressure at the front known as shock front. The shock front expands outwards 

from the surface of the explosive into the surrounding air. As the wave expands, it 

decays in strength, lengthens in duration and decreases in velocity. As the wave 

expands in air, the front impinges on the 'structure located within its path and then 

the entire structure is engulfed by the shock pressure. 

When the shock front strikes an object such as building, (2) there is a 

diffraction effect producing forces which result from the higher pressures due to 

reflection of the wave on the front face of the object and also from the time lag 
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before the overpressure acts on the rear face. At the same time, the air behind the 

shock front is moving outward at high velocity and this wind produces drag forces on 

any objects encountered. Thus the total loading consists of three parts: 

(a) The incident overpressure 

(b) The reflected pressure 

(c) The drag pressure due to blast wind. 

1.3 REVIEW OF CERTAIN EARLIER WORK 

Although there seems to be a lot work going on in the field of blast loads, 

very little information is available on the subject as the subject matter has been 

categorised as classified.However, certain Research papers and Thesis work which are 

available for reference have been mentioned here.A Research paper on Analysis of 

blast loaded buried RC Arch response, has been published (10,11). In this, two 

shallow buried reinforced concrete arches that were blast loaded (using explosive 

generated pressures applied to the soil surface) in separate test programs have been 

analysed. The geometry and structural detailing of the two specimens are different, 

as are the soil properties, depths of burial and the surface blast pressures. 

A Ph.D. Thesis on Dynamic response of structures subjected to missile impact 

has been carried out(4). A material model for reinforced concrete suitable for 

transient dynamic analysis has been presented. 

A ME Thesis on computer aided design of RCC box type structures for blast 

loading has been carried out(7). In this, a CAD software has been developed for the 

design of RCC Box type structures subjected to blast loading. It calculates blast 

loads on slabs and has a facility for structural drawing. 

A ME Thesis on blast resistance and shatter proof properties of composite 

elements has been carried out (9). In this, tests on composite elements for 
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ascertaining their blast resistance and shatter proof properties have been described 

and results have been presented. 

A Ph.D. Thesis on Inelastic dynamic analysis of concrete frames under non-

nuclear blast loadings has been carried out (12). The study has been carried out 

with specific reference to frame structures. 

1.4 ELASTO-PLASTIC FINITE ELEMENT ANALYSIS 

The finite element method is now firmly accepted as one of the most powerful 

general techniques for the numerical solution of a variety of problems encountered 

in engineering. The technique is widely employed as a design tool for linear and 

nonlinear analysis. 	The Elasto-plastic behaviour is characterised by an initial 

elastic material response onto which a plastic deformation is superimposed after a 

certain level of stress has been reached. 	Plastic deformation is essentially 

irreversible on unloading and is incompressible in nature. 	The onset of plastic 

deformation (or yielding) is governed by a yield criterion and the post yield 

deformation generally occurs at a greatly reduced material stiffness. 

1.5 OBJECTIVES OF THE PRESENT STUDY 

The Thesis deals with the two dimensional analysis of bunkers, which are an 

important class of strategic structures,for the blast loads as specified by the 

Indian standard code of practice. A non-linear Transient Dynamic analysis of the 

bunkers has been carried out in the elasto-plastic range using Finite Element 

Method.For this purpose an available computer program based on the Implicit-Explicit 

time integration scheme for two dimensional plane stress/plane strain and 

axisymmetrical non-linear dynamic transient problems (8) has been used. 

The objectives of the present study have been: 
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(a) To study the behaviour of an above ground bunker, a bunker with soil 

cover And a semi buried bunker, when subjected to blast loads as recommended 

by IS code of practice. 

(b) To carry out a parametric study of the blast load effects under three 

different load intensities and charge-bunker distances. 

(c) To ascertain the requirement of elasto-plastic analysis for bunkers 

subjected to blast loads. 

1.6 ORGANISATION OF WORK 

This dissertation work has been divided into six chapters. 

Chapter 2 deals with the fundamentals of blast loads. In this, various codes 

and specification available on the subject, the categories of blast loads to include 

confined and unconfined explosions and blast load calculations have been described. 

Chapter 3 deals with the non-linear transient dynamic analysis. 	In this 

dynamic equilibrium equation, Explicit and Implicit schemes, a combined Implicit and 

Explicit algorithm have been described. 

Chapter 4 deals with the elasto-plastic finite element analysis. 	It 

describes the fundamentals of elasto-plastic analysis, Isoparametric finite element 

representation and the four yield criteria considered in elasto-plastic analysis 

namely Tresca, Von Mises, Mohr-Coulomb and Drucker-Prager criteria. 

Chapter 5 primarily deals with the case studies. In this, the effects of IS 

Code recommended blast loads on an above ground bunker, a bunker with soil cover and 

a semi-buried bunker have been studied. The results and discussions have also been 

included in this Chapter. 

Chapter 6 summarizes the conclusions drawn from the present study. 
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CHAPTER 2 
BLAST LOADS 

A. INTRODUCTION 

The blast responses of the structures have been drawing attention of 

Engineers and Scientists all over the world in both military and civilian fields. 

Keeping in mind the sophisticated weapons being used world over, the requirement of 

strategic structures capable of resisting heavy blast loads need not be 

overemphasized. As brought out in the Gulf war, the only protection for the Iraqi 

soldiers and civilian population from the bombings were underground bunkers. 

Explosive blasts exert loads of high intensity and short duration on structures in 

the vicinity of blast, leading to its damage and causing damage to equipment and 

personnel. 	Thus, the knowledge of structural response under blast loadings is 

becoming increasingly important in military applications. Explosive manufacturing 

and storing facilities also require blast resistant structures. 

2.2 VARIOUS CODES AND SPECIFICATIONS 

The various Codes and specifications which describe the blast loads are 

(a) IS Code:4991-1968 Indian Standard criteria for Blast resistant Design of 

Structures for explosions above ground. 

(b) US Army Special Publication Vol.I to VI, structures to resist the effects 

of Accidental Explosions. 

(c) A manual for the prediction of Blast and Fragment loadings on Structures 

by Baker W E. 
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2.3 CLASSIFICATION OF BLAST LOADS 

The Blast loads on structures can be divided into two main groups based on 

the confinement of the explosive charge as: 

(a) Unconfined explosions 

(b) Confined explosions 

The above two can further be subdivided based on the blast loading produced 

on the structure and the relative charge location. The subdivided categories are 

free air burst, air burst, surface burst, fully vented explosion, partially confined 

explosion and fully confined explosion (13 and 14). 

2.3.1 Unconfined Explosions 

Free air burst 

When a detonation occurs adjacent to and above a protective structure 

such that no amplification of the initial shock wave occurs between the 

explosive source and the protective structure, then the blast loads acting on 

the structure are free air blast pressures. Free air burst environment is as 

shown Fig.2.1. 

As the incident wave moves radially away from the centre of explosion, 

it impacts 'on the structure. Upon impact, the initial wave of pressure and 

impulse is reinforced and reflected. When the shock wave impinges on a 

surface oriented so that a line which describes the path of travel of the 

wave is normal to the surface, then the point of initial contact is said to 

sustain the maximum pressure and impulse. The positive phase pressures, 

impulses, time durations and other parameters of this shock environment for a 

spherical TNT explosion are as given in Fig.2.2. 
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Air burst 

The air burst environment is produced by detonations which occur above 

the ground surface and at a distance away from the protective structure so 

that the initial shock wave, propagating away from the explosion impinges on 

the ground surface prior to arrival at the structure. As the shock wave 

continues to propagate outward along the ground surface, a front known as 

Mach front is formed by the interaction of the initial wave (incident wave) 

and the reflected wave. This is as shown in Fig. 2.3. 

The height of Mach front increases as the wave propagates away from 

the centre of detonation. This increase in height is referred to as the path 

of triple point and is formed by the intersection of the initial, reflected 

and Mach waves. 

In determining the magnitude of air blast loads acting on the surface 

of an above ground protective structure, the Peak incident blast pressures in 

the Mach wave acting on the ground surface immediately before the structure 

are calculated first. 	The peak incident pressure is determined for this 

point, using the scaled height of charge above ground 1-1c/W1/3  and the angle 

of incidence a, where He  is the charge height and W is the charge weight. 

This is obtained from Fig.2.4. 

A similar procedure is used to determine the impulse of the blast wave 

acting on the ground surface immediately before the structure. 	This is 

obtained from Fig.2.5. All other blast parameters can be obtained from 

Fig.2.2. 

Surface burst 

A charge located very near or on the ground surface is considered to 

be responsible for a surface burst. The initial wave of the explosion is 
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reflected and reinforced by the ground surface to produce a reflected wave. 

The reflected wave merges with the incident wave at the point of detonation 

to form a single wave, similar in nature to the Mach wave of the air burst 

but essentially hemispherical in shape as in Fig.2.6. 	The positive phase 

parameters of the surface burst- environment for hemispherical TNT explosions 

are represented as in Fig.2.7. A comparison of these parameters with those 

of free air explosions indicate that, at a given distance from a detonation 

of the same weight of explosive, all the parameters of surface burst 

environment are 1.8 times larger than those for the free air environment (1). 

2.3.2 Confined Explosions 

Effects of confinement 

When an explosion occurs within a structure, the Peak pressures 

associated with the initial shock front will be extremely high and in turn, 

will be amplified by their reflections within the structure. 	In addition, 

the accumulation of gases from the explosion will exert additional pressures 

and increase the load duration within the structure. The combined effects of 

both pressures may eventually destroy the structure unless venting for the 

gas and the shock pressures is provided. 	The structures provided with 

venting will permit the blast wave from an internal explosion to spill over 

onto the exterior ground surface. These pressures are referred to as leakage 

or exterior pressures. 	The pressures reflected and reinforced within the 

structure are referred to as interior shock front pressures, while those 

pressures produced by the accumulation of the gaseous products of the 

explosion are identified as gas pressures. 
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Fully vented explosions 

A fully vented explosion will be produced within or immediately 

adjacent to a barrier or cubicle type structure with one or more surfaces 

open to the atmosphere. The initial wave which is amplified by non-frangible 

portions of the structure and the products of detonation are totally vented 

to the atmosphere forming a shock wave which propagates away from the 

structure. 

Partially confined explosions 

A partially confined explosion will be produced within a barrier or 

cubicle type structure with limited size openings and/or frangible surfaces. 

The initial wave which is amplified by the frangible and non-frangible 

portions of the structure and the products of detonation are vented to the 

atmosphere after a finite period of time. 

Fully confined explosions 

Full confinement of an explosion is associated with either total or 

near total containment of the explosion by a barrier structure. The internal 

blast loads will consist of unvented shock loads and very long duration gas 

pressures which are a function of the degree of confinement. The magnitude 

of leakage pressures will usually be small. 

2A BLAST HAZARDS TO BUNKERS 

Bunkers are exposed to primarily surface bursts which may be due to air 

attacks, artillery or mortar shelling. Therefore in the present study, an attempt 

has been made to study the effects of blast of various intensities at different 

distances on bunkers. As the blast "effect is more critical on above ground and 

semi-buried bunkers, the same have been considered. 
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IS:4991-1968 recommends blast loads for design of various type of structures 

which are as in Table 2.1. 

However, in the case of Artillery/Mortar fire, the charge weight is much 

lower than 100 kg but the blast distance may be lesser. Therefore, blast effects of 

lesser charge weight taking place at a closer distance than those recommended by the 

IS Code have also been considered. 

2.5 BLAST LOAD CALCULATIONS AND PRESSURE-TIME CURVES 

Three different weights of explosive at varying distance from ground zero to 

the point under consideration, are used for blast pressure calculations. 

2.5.1 Case A 

In this, 100 kg of explosive is at a distance of 20 m as per table 7 

of page 33, IS:4991-1968. 

Actual 	distance  Scaled distance, x = 	 where 
(W)1/3 

W is the weight of explosive in tonnes. 

x = 20  — 43.089. 
(0.1)I/3  

From table 1, page 10 of IS:4991-1968, for x = 43.089 

pso/pa  = Peak side on overpressure = 0.7237 

M = Mach number = 1.2691 

td  = Duration of equivalent triangular pulse 

= 20.7082 milli secs. 

Actual td  = 20.7082 x W113  = 9.6119 ms 

Considering pa, the ambient air pressure to be 1 kg/cm2, 

q0/pa  = Dynamic pressure ratio' = 0.17 

Pro/Pa =  Peak reflected overpressure ratio = 1.8575 

10 



Pso = 0.7237 kg/cm2  

qd  = 0.17 kg/cm2  

Pro = 1.8575 kg/cm2  

Front face loading 

U = Shock front velocity = M.a 

where, 

a = Velocity of sound in air at MSL = 344 m/s 

M = Mach number 

U = M.a = 1.2691 x 344 = 436.57 m/s 

t, = clearance time is the time in which the reflected over pressure 

drops from the peak value p,/)  to overpressure (No  + Cd q). 

3S = -- or td whichever is less, where 

S = H or B/2 whichever is less 

For the bunker under consideration, 

L = 2.6 m, H = 3.0 m and B = Infinity being a plane strain problem. 

S = H = 3.0 m. 

3 x  3 
= 1 436571 x 103  = 206.152 ms > td 

As t, > td, t, is limited to 9.6119 ms. 

From Table 2, page 13 of IS:4991-1968, 

cd  = Drag co-efficient = 1 for front face. 

Ps + ;go = 0.8937 kg/cm2  

The pressure time curve for front wall loading is as Fig. 2.8. 
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Roof loading 

The value of drag co-efficient corresponding to (10  = 0.17 kg/cm2  from 

Table 2, page 13 IS:4991-1968 is - 0.4. 
L 	2.6  = transit time 	-IT = 4365.7 — 5.956 ms 

(Aso + 	= (0.7237 + (-0.4x 0.17)) = 0.6557 kg/cm2  

The pressure time curve for roof loading is as shown in Fig.2.9. 

2.5.2 Case B 

Weight of explosive = 30 kgs 

Distance 	 = 10 m 

x — 10  
(0.03)1/3  

— 32.183 

From Table 1, page 10 of IS: 4991 - 1968, for x = 32.183, 

Po/pa  = 1.255 

Considering pa  = 1 kg/cm2, 	= 1.255 kg/cm2  

M = 1.4363 

td  = 16.0595 ms 

Actual time,td  = 4.9900 ms 

q0/Pa  = 0.4782, qc, = 0.4782 kg/cm2  

pro/pa  = 3.6543, po  = 3.6543 kg/cm2  

Front face loading 

U = M.a 	where 

a = 344 m/s 

U = 1.4363 x 344 = 494.1011 ms 
3S tc 	-/T  or td  whichever is less 
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where, 

S = 3.0 m 

tc 	494 1011 	 x 103 = 18.22 ms .  

As tc  > td, 	tc  = td  = 4.99 ms 

For front face loading, Cd  = 1 

pso  + cdqo  = 1.7332 kg/cm2  

The pressure time curve for front face is as shown in Fig.2.10. 

Roof Loading 

From Table 2 IS:4991-1968, drag coefficient corresponding to 

qo  = 0.4782 kg/cm2  is - 0.4 
	 • 

Transit time, tt = -TT- = 494.2 
	x 103  = 5.26 ms 

As tt  > td, the load on roof may be considered as a moving triangular 

pulse having the peak value of overpressure (No  + cdqo) and time td  as shown 
in Fig.2.11. 

2.5.3 Case C 

Weight of explosive = 10 kg. 

Distance 	 = 5 m 

x = 	5 	— 23.208 
(0.01)"3  

From Table 1 IS:4991-1968, for x = 23.208 

pso/pa  = 2.6376 

Considering pa  = 1 kg/cm2, pso = 2.6376 kg/cm2  

13 



M = 1.8054 

td  = 10.7210 ms 

Actual td = (W)"3  x 10.7210 = 2.3098 ms 

go  = 1.8253 kg/cm2  

Front wall loading 

cd  = 1 

U = M.a = 621.06 m/s 
3S 	3 x 3  to 	— 621.06 — 14.49 ms 

As ; > td, 	tc  = td  = 2.3098 ms 

Pso + cdqo  = 4.4629 kg/cm2  

The pressure time curve is as shown in Fig.2.12. 

Roof Loading 

From Table 2 IS:4991-1968, drag co-efficient corresponding to 

go  = 1.8253 kg/cm2  is - 0.3. 

Transit time, ; = 4:1-d 6221.606 x 103  = 4.186 ms 

As ; > td, the load on roof may be considered as a moving triangular 

pulse having the peak value of overpressure (po  + cdgo) and time td  is shown 

in Fig.2.13. 
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CHAPTER 3 
NONLINEAR TRANSIENT DYNAMIC ANALYSE 

3.1 INTRODUCTION 

Structures are subjected to time varying loads such as blast, impulse, impact 

or earthquake loading. Finite element based methods are available for dealing with 

such problems. 	In nonlinear transient dynamic stress analysis, it is a general 

practice to use a time stepping procedure. Such direct integration schemes may be 

broadly classified as either explicit or implicit methods. 

In Explicit schemes, which are very popular, unknowns are directly solved 

for. The equilibrium is satisfied at each time step. However, the method is 

conditionally stable and very small time steps are often needed. 

Implicit schemes are unconditionally stable and longer time steps can be 

used. A set of linear simultaneous equations is to be solved for determining the 

unknowns. As matrix factorisation is required, more computational effort is needed 

in this method. 

There are three main algorithms used in nonlinear transient dynamic stress 

analysis. They are: 

(a) An implicit solution algorithm 

(b) An explicit solution algorithm 

(c) A combined implicit-explicit algorithm 

For plane stress, plane strain and axisymmetric problems, 4, 8 and 9-noded 

isoparametric elements are used. 

3.2 DYNAMIC EQUILIBRIUM EQUATION 

We know that, in case of static loads(15), 

[k]e{8} = {F} + {F}5  + {F}b 
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where 

[Ide  = Stiffness matrix = 	[B]T  [D] [B] dv 

{F}, = Surface loads 	=[N]T {t} ds
J  

{Mb  = Body forces 	= 	[N]T  {b} dv 

Due to dynamic loads, two additional forces (per unit volume) are generated 

in the body. They are: 

(a) Inertia force - ps 

(b) Damping force - 

where s represents velocity and represents acceleration. 

p = mass/unit volume 

p = Damping coefficient for linear and viscous damping 

The body forces in case of dynamic loads will be, 

{F}b  = f [N]T { 	- µS + I)} 

We also know the fundamental expressions, 

{f} = [N] {s} 

(a.) = [D] (c) 

(c) = [B] (o) 

By the principle of virtual work, Internal workdone is equal to External workdone. 

Internal workdone will be, 

t{sc}T{c}dv = (dadiBiT[D][B] dv (a) 
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External workdone will be, 

= {da}r  J  {-NTP[N]{ri) - [N]Tii[N]{4 + [N]T{b}} dv 

Equating internal workdone and external workdone and rearranging, 

[B]T[D][B] dv(o) + 	[N]Tp[N] dv{pg} + 	[N]Tp[N] dv{(;) 

= {F} + f[N]T(t) ds + f[N]T(b) dv 

[K]{8} + [M]{3} + [C] 	= {F} + {F}, + {F}b 

[M]{a} + [C] (.&) + [K](6) 	(F) 
	

(3.1) 

where, 

[K] = Stiffness matrix = f [B]T  [D] [B] dv 

[M] = Consistent mass matrix = 	p [N] dv 

[C] = Damping matrix = [N]T  ti [N] dv 

The above equation is known as the Dynamic equilibrium equation. 
For simplicity, mass and damping matrices are assumed to be not varying with time. 

3.3 IMPLICIT TIME SCHEMES 

3.3.1 Newmark's Algorithm 

The predictor-corrector form of Newmark's scheme is suitable for the 

integration of the semi-discrete system of equations which govern nonlinear 

transient dynamic problems. In this algorithm, the equilibrium of equations 

will be at time (tn  + M). 	an+l , Pni-19  fn+1  are the acceleration vector, 

internal force and applied force vector respectively. KT and CT are the 
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tangent stiffness and damping matrices respectively. d„, vn  and an  are the 

•. 
approximations to d(t„), d(tn) d(tn) and 13 and 7 are parameters which control 

the accuracy and stability of the method. The values d 	and and v n+1  are 

predictor values and dn+i  and vn+1  are corrector values. The algorithm is 

described in the following steps: 

(a) Set iteration counter i = 0. 

(b) Begin predictor phase by setting 

= d n+1  = do  + At vn 	At2  (1-2(3) an/2 

irn+1 = vn  + At (1-a') an  
(i) 

= [dr,+1  - d n+1]/ (At2(3) = 0 

(c) Evaluate residual forces using the equation 

J(i) 	Ma 	(i) 	p (dn.1.(  : 	v), 	(i)) fn+1 	n+1 	 n+1 

(d) If required, form the effective stiffness matrix using the 

expression 

K*  = M/(62(3) + 7CT/(At(3) + KT (dn+(i i)) 

Otherwise use a previously calculated k*. 

(e) Factorise, forward reduction and backsubstitute as required to 

solve 

K*  Ad(i)  = ,b(i) 

(f) Enter corrector phase and set 
( 1+1) 

dn+1 	= d (i)  + Ad(i)  
n+1 

( i+1) 	[ 	( 1+1) an+1 	dn+1 	- d n+1  ot2(3) 

( i+1) ( i+1) 
Vn+ i 	Vn+ i + At.T.an+ i 

(g) If Ad(i)  and/or ip(i)  do not satisfy the convergence conditions 

then set i = i+1 and go to Step 3, otherwise continue. 
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(1+1) 
(h) Set 	dn+1 ;"7" dn+1 

(i+1) 
Vn+ i = vn+l 

(i+1) 
an+ 1 = an+ 1 

for use in the next time step. Also set n = n+1, form p and begin 

next time step. 

3.3.2 Predictor-Corrector Algorithm 

This is an explicit algorithm associated with the Newmark scheme. In 

explicit predictor-corrector algorithm, it is assumed that the mass matrix M 

is diagonal and the expression 
/my 

Man+i  + p (dn+1, v n+1) = fn+i  

is used. The algorithm is described in the following steps: 

(a) Begin predictor phase by setting,  
( 	 - 

dn+i
0) 
 = dn+1 = do  + At vn  + At2 (1-2g)an/2 

( 0) 
vn+1 	= vn+1  = vn  + 0t (1-i) an  

a ( 0) ' 
n+1 	= u 

(b) Evaluate the residual forces using the equation 
0(0) 	

— fn+ - 	(f (:), vi,+"1)) 

(c) If required, form the effective stiffness matrix 

K* 	= M/(At2g) 

As the Mass matrix does not change, k*  will be formed once only. 

(d) Perform factorisation, forward reduction and backsubstitution as required 

to solve 

K* Ad" 
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(e) Enter the corrector phase and set 

	

dn+1 	dn+1  + t,  ( 	 (0) 	e) 

1) 

	

an+1 	(dn+Mi)- an+ 1 	/(tt2g) 

( 
v ( I)  

	

n+1 	= Vn+i 	Ot'an+ 1  

(t) Set 
(1) 

	

dn+1 	= dn +1 

	

vn+1 	= Vn+1 • 
(1) 

	

an+1 	= an+1 

for use in the next time step. Also set n = n+1, form P and begin next time 

step. 

3.4 IMPLICIT-EXPLICIT ALGORITHMS. 

The computational advantages of explicit schemes are counterbalanced by the 

small time steps necessary. In such situations, implicit schemes permit the use of 

larger time steps, the size of which is governed only by accuracy considerations. 

Unfortunately, implicit schemes require matrix factorisations and hence need larger 

computer core storage and operations per time step. To overcome the above, combined 

implicit-explicit schemes offer a unified approach to problems of structural 

dynamics leading to significant computational advantages. 

A combination of the previous two algorithms gives two groups of elements 

namely the implicit and the explicit, in the finite element mesh. In the combined 

algorithm, iteration within each time step is necessary in order to satisfy the 

equation, 

Man+1 	P1 ('n+19 Vn+1) 	1-1 	
A 

 11+0 V  n+1) 	fn+1 
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in which M = MI  + ME  and f -11+1 = fn+: 	fn+ Ei • 

ME  is assumed to be diagonal. The implicit-explicit algorithm is described in the 

following steps: 

(a) Set iteration counter i = 0 

(b) Begin predictor phase by setting 
A  ( 
un+I

1) 

 = d  n+I = do  + Atvn  + At2(1-2(3) an/2 
( 	-- vn+1 = V  n+1 = Vn + At (1-7) an  

( i) 	( I) an+1 = (dn." - dn+1 	/(At2(3) = 0 

(c) Evaluate residual forces using the equation 

ip(i) 
= 	 ( i) v., i)E(a fn+1 	 n +. , 	+. ) 	P 	n+It - n+1) 

(d) If required, form the effective stiffness matrix using the expression 
I 	( 

K*  = M/ oef3) + yCTI /(At(3) + KT (dn+1
i) 

 ) 
Otherwise use a previously calculated K*. 
(e) Perform factorisation, forward reduction and backsubstitution as required 

to solve, 

K*Ad(i)  

(f) Enter corrector phase by setting 

cl (in+i 1." 	d 	Ad n+i) 	d)  

(i+i)i+t) - an+1 	[(Li  - dn+1 	/(At213) 

( 1+1) 	 (1+1) 
v11+1 	= vn+1 + At / an+1 

(g) If Ad(')  and/or tp(i)  do not satisfy the convergence conditions, then set 

i = i+1 and go to step 3, otherwise continue. 

0(0 
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0+11 
(h) Set 
	

dn+1 = dn+1 

(i+1) 

Vn+1 = Vn+1 

(1+1) 

an+1 = an+1 

for use in the next time step. Also set n = n+1, form p and begin next time 

step. 
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CHAPTER 4 
ELASTO - PLASTIC FINITE ELEMENT ANALYSIS 

4.1 INTRODUCTION 

The finite element method is now firmly accepted as one of the most powerful 

general techniques for the numerical solution of a variety of problems encountered 

in engineering. For linear analysis, at least, the technique is widely employed as 

a design tool. Similar acceptance for non-linear situations is dependent on two 

major factors. 	Firstly, in view of the increased numerical operations associated 

with non-linear problems, considerable computing power is required. 	With the 

arrival of high speed digital computers, reductions in unit computing cost will 

continue. Secondly, before the finite element method can be used in design, the 

accuracy of any proposed solution technique must be proven. The development of 

improved element characteristics, more efficient non-linear solution algorithms and 

the experience gained in their application to engineering problems have all ensured 

that non-linear finite element analysis can now be performed with some confidence. 

Non-linearities arise in engineering situations from several sources. 	For 

example, a nonlinear material response can result from elasto-plastic material 

behaviour or from hyper-elastic effects of some form. 	Additionally nonlinear 

characteristics can be associated with temporal effects such as visco-elastic 

behaviour or dynamic transient phenomena. Each of these non-linearities may occur 

in a variety of structural types such as two or three dimensional solids, frames, 

plates or shells(8). 
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4.2 PRELIMINARY THEORY FOR TWO DIMENSIONAL 

ELASTO-PLASTIC APPLICATIONS 

Although there is a wide choice of element types for an elasto-plastic stress 

analysis, we consider three different element types of isoparametric formulation. 

They are: 

(a) The 4-node isoparametric quadrilateral element with linear displacement 

variation. 

(b) The 8-node serendipity quadrilateral element with curved sides and a 

quadratic variation of the displacement field within the element. 

(c) The 9-node lagrangian quadrilateral element which additionally has a 

central node. 

The use of these higher order elements leads to particularly efficient 

elasto-plastic solution packages. For the plasticity applications, the classical 

incremental theory is employed with the full elasto plastic material response being 

reproduced. Consideration is limited to small deformation situations where the 

strains can be assumed to be infinitesimal and Lagrangian and Eulerian geometric 

descriptions coincide. 

The computation times of elasto-plastic problems are relatively high with 

solution costs being typically ten times those of the corresponding linear elastic 

analysis. 	Considering the high cost of computation, it is imperative that the 

algorithms developed are very efficient and numerical techniques: which reduce the 

computational requirements are employed. 

4.3 LINEAR ELASTIC CONSTITUTIVE MATRIX FOR PLANE STRESS 
PLANE STRAIN AND AXISYMMETRIC CASES 

4.3.1 Plane Stress Problems 

Consider a typical plane stress problem. A thin plate is subjected to 
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loads applied in XY plane (the plane of the structure). The thickness of the 

plate is assumed to be small compared with the plan dimensions in the XY 

plane. Stresses are assumed to be constant throughout the thickness of the 

plate and a, Tz, and zy are ignored. 	The linear elastic constitutive 

matrix is given as 

1 v 0 

1 

0 0 (1-v) 
D — 	 (1 	iv2)  

4.3.2 Plane Strain Problems 

For plane strain problems, the thickness dimension normal to a certain 

plane (say the XY plane) is large compared with the typical dimensions in the 

XY plane and the body is subjected to loads in the XY plane only. For plane 

strain problems, it may be assumed that the displacements in the Z direction 

are negligible and that the inplane displacements u and v are independent of 

z. The linear elastic constitutive matrix is given as 

(1-v) v 0 

v (1-v) 0 

(1-2v) 0 0  2 

D — 	  (1+v) (1-2v) 

4.3.3 Axisymmetric Problems 

For a three dimensional solid which is symmetrical about its centre 

line axis (which coincides with the z axis) and which is subjected to loads 

and boundary conditions that are symmetrical about this axis, then the 
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behaviour is independent of the circumferential coordinate e. 	The linear 

elastic constitutive matrix is given as 

D — 

(1-v) 

v 

0 

0 

v 

(1-v) 

I) 

0 

0 

v 

(1-0 

0 

0 

0 

(1-2v) 

(1 +v) (1-2v) 

2 

4.4 ISOPARAMETRIC FINITE ELEMENT REPRESENTATION 

Isoparametric elements which are extensively used in two and three 

dimensional problems, have the same interpolation function for the unkiown 

functional and geometry. The shape functions are defined in natural coordinates. 

For a two dimensional problem, we define the variation of unknown functional 

u and v as 
n 

U = Nu;  
i=1 

(4.1) 
n 

V = ENivi  
i=1 

where, n represents number of nodes in the element 

N, represents shape functions in and n directions. 

Further, for isoparametric elements, x and y are defined as 

n 

X = Nix;  
i=1 

(4.2) 
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n 

Y = NiYi 
i=1 

where x, y represent coordinates of any point within the element and xi, yi  

represent coordinates of nodal points. 

4.4.1 Jacobi= Matrix 

For two dimensional problems, we have, 

du/dx 

dv/ay 

du 	dv 
xy 

From equation (4.1), we have, 

au = 	* ax   ax 
1=1 

av 
ay 

n r  aN;  * 
ay V I  

i= 1 

au +  av 
ay ax 

n 	 n 
aN. 	aN;  

E ay ui 	E ax 
i=. 

n 
aN. 

{c} = 
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The strain displacement matrix [B] will be, 

aN,  
0 

dN I  

aN2 0  

aN2  

ax ax 

[B] = 0 ay 

aN I  aN1  aN2  aN2  
ay ax ay ax 

For isoparametric elements, the shape functions are in terms of and 

r while the elements of [B] matrix contain global derivatives of shape 

function. Hence a transformation will be necessary. 

aNI 	aNi 8x 	aNI  . ay 
ax at ay am 

(4.3) 
aNi 	aNi ax 	aN i  * 
-571) ax :§7.1 

In matrix form, 

ay 

ay 
an 

laN i  
ax 

aN i  
ay 

laN 

aN 

  

 

ax 

ax 
an 
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The Jacobin matrix [J] will be evaluated as 

ax 	ay 

ax 	ay 
8T) 

IJ1 = 

r  aNi 	aNi  
L -K xi L ag Yi 

[J] = 
r  aNi 	c aNi 
La x' L Yi 

aN, 
ag ax 

aNI  
= [J] 

aN 
(4.4) 

an ay 

Also, 

aNi  aNi  
ax ag 

aNi  
[J] 

aNi  
(4.5) 

ay 

4.4.2 Stiffness Matrix of the Element 

[K]e  

[K]e  

= 

= 

[B]T  [D] [113] dx.dy.t 

f 	[13]T  [D] [B] 	I JI ag and (4.6) 
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For isoparametric elements, the stiffness matrix is evaluated using 

numerical integration. 	In the equation (4.6), all the matrices can be 

expressed in terms of g and Ti . However, we cannot in general evaluate the 

integral exactly because of the complexity of the expressions as the 

determinant I J I involves polynomials in 	and n which appear in the 
denominator. 	Hence the integration for computing the stiffness matrix is 

usually done by resorting to numerical procedures. 	Although there are 

various methods of numerical integration, Gauss Quadrature is widely adopted 

in finite element method. In Gauss Quadrature, both the position of sampling 

points and weights have been optimised. By this, we achieve a far greater 

level of accuracy than the accuracy achieved by other methods. In Gauss 

Quadrature, the integration is exact for the polynomial of order (2n-1) if n 

sampling points are used (3). 

n 

[KJ, = f [Br' ID] [B] dv = E Elm" (‘ 
i=. 

4.5 TWO DIMENSIONAL ELASTO-PLASTIC PROBLEMS 

4.5.1 Introduction 

Most of the problems encountered in engineering can be approximated to 

satisfy one of three conditions of plane stress, plane strain and 

axisymmetric problems. 	The basic laws governing elasto-plastic material 

behaviour in two dimensional solids conforming to plane stress, plane strain 

or axisymmetric condition and the concepts of plastic potential and the 

normality condition need to be understood. The situation is complicated by 

the fact that different classes of materials exhibit different elasto-plastic 
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characteristics. The Tresca and Von Mises laws closely approximate metal 

plasticity behaviour while Mohr-Coulomb and Drucker-Prager criteria apply to 

concrete, rocks and soils. 

4.5.2 The Mathematical Theory of Plasticity 

The object of the mathematical theory of plasticity is to provide a 

theoretical description of the relationship between stress and strain for a 

material which exhibits an elasto-plastic response. The plastic behaviour is 

characterised by an irreversible straining which is not time dependent and 

which can only be sustained once a certain level of stress has been reached. 

In order to formulate a theory which models elasto-plastic material 

deformation three 'requirements have to be met. They are: 

(a) An explicit relationship between stress and strain must be 

formulated to describe material behaviour under elastic conditions. 

(b) A yield criterion indicating the stress level at which plastic 

flow commences, must be postulated. 

(c) A relationship between stress 'and strain must be developed for 

post yield behaviour when the deformation is made up of both elastic 

and plastic components. 

4.5.3 General form of the yield criteria 

The yield criterion determines the stress level at which plastic 

deformation begins and can be written in the general form 

f (crii) = K (k) 

where f is some function and K a material parameter to be determined 

experimentally and may be a function of hardening parameter k. Any yield 

criterion should be independent of the orientation of the coordinate system 
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employed and therefore it should he a function of the three stress invariants 

only. Experimental observations indicate that plastic deformation of metals 

is essentially independent of hydrostatic pressure and hence the yield 

function can only be of the form 

f (J12 , J13) = K (k) 

where J; and .1'3 are the second and third invariants of the deviatoric 

stresses. 

The Tresca yield criteria 

This states that yielding begins when the maximum shear stress reaches a 

certain value. 	If the principal stresses are al, a2,  O'3  where 0-, 	cr2 > (r3, 

then yielding begins when • 

cr i  - cr3  = Y (k) 

where Y is a material parameter to he experimentally determined and which may 

be a function of the hardening parameter k. 	By considering all other 

possible maximum shearing stress values, it can be shown that this yield 

criterion may be represented in the cloy') stress space by the surface of an 

infinitely long regular cylinder as shown in Fig.4.1. The axis of cylinder 

coincides with the space diagonal, defined by points cri  =, cr2  = O'3  and since 

each normal section of the cylinder is identical, it 'is convenient to 

represent the yield surface geometrically by projecting it onto n plane, (71  + 

0r2  + Cr3 = 0 as shown in Fig.4.2(a). When the yield function f depends on J; 

and J; alone, it can be written in the form f (o-i  - o  C 2  - O'3)  and a two 

dimensional plot of the surface f = K is then possible as shown in 

Fig.4.2(b). 
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The Von Mises yield criterion 

Von Mises suggested that yielding occurs when J2 reaches a critical value. 
(J,2)1/2 = K (k) 

where K is the material parameter to be determined. The second deviatoric 

stress invariant, J21  can be explicitly written as, 

2 	2 
2  l -I-  a.; + 0.1 crx 	 ] [  

2 
T 

2 
+ T

2 , 
T xy 	yz 	xz 

Yield criterion may be further written as 

= 3 of-7 = JR' 

where a. 	= 3 
Icr • ij • a.

. • )1/2 

and a-  is termed the effective stress, generalised stress or equivalent 

stress. 	The octahedral shear stress 	is the shear stress on the planes 

of a regular octahedron, the apices of which coincide with the principal axes 

of stress. The value of Toe, is related to .112  by 

Too = 5273; 

Thus yielding can be interpreted to begin when toct  reaches a critical 

value. Von Mises criterion is described as in Fig.4.2. For a state of pure 

shear, where the Von Mises criterion gives a yield stress 2/T3 times that 

given by the Tresca criterion. For most metals, Von Mises law fits the 

experimental data more closely than Tresca's law but the Tresca criterion is 

simpler to use in theoretical applications. 
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The Mohr-Coulomb yield criterion 

This is a generalisation of the coulomb friction failure law defined 

by 

= c - crn  tangs 

where T is the shearing stress, u.„ is the normal stress with tensile stress  

being positive, c is the cohesion and 0 is the angle of internal friction. 

Figure 4.3 represents the Coulomb's law as a straight line tangent to the 

largest principal stress circle. 

From Fig.4.3 and for cri  cr2  cr3, the Coulomb law can be written as 

(cr1  - 0'3) = 2c cos0 - (cri + 0'3) sing!) 

In the principal stress space, this gives a conical yield surface 

whose normal section at any point is an irregular hexagon as shown in 

Fig.4.4. The conical nature of the yield surface is a consequence of the 

fact that a hydrostatic stress does influence yielding. 	This criterion is 

applicable to concrete, rocks and soil problems. 

The Drucker-Prager yield criterion 

An approximation to the Mohr-Coulomb law was presented by Drucker and 

Prager as a modification of the Von Mises yield criterion. The influence of 

a hydrostatic stress component on yielding was introduced by inclusion of an 

additional term in the Von Mises expression to give 

aJ1 	(Jf2)1/2 = 

The yield surface has the form of a circular cone. 	This yield 

criterion is described as in Fig.4.4. 
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4.5.4 Work or Strain Hardening 

After initial yielding, the stress level at which further plastic 

deformation occurs may be dependent on the current degree of plastic 

straining. Such a phenomenon is termed work hardening or strain hardening. 

Thus the yield surface will vary at each stage of the plastic deformation, 

with the subsequent yield surfaces being dependent on the plastic strains. A 

perfectly plastic material is shown in Fig.4.5(a), where the yield stress 

level does not depend in any way on the degree of plastification. If the 

subsequent yield surfaces are a uniform expansion of the origin yield curve, 

without translation, as shown in Fig.4.5(b), the strain hardening model is 

said to be isotropic. If the subsequent yield surfaces preserve their shape 

and orientation but translate in the stress space as a rigid body, as shown 

in Fig. 4.5(c), Kinematic hardening is said to take place. 

For some materials, notably soils, the yield surface may not strain 

harden but strain soften instead, so that the yield stress level at a point 

decreases with increasing plastic deformation. 	Therefore, for an isotropic 

model, the original yield curve contracts progressively without translation. 

Consequently yielding implies local failure and the yield surface becomes a 

failure criterion. 

The progressive development of the yield surface can be defined by 

relating the yield stress K to the plastic deformation by means of the 

hardening parameter k. k can be related to a measure of the total plastic 

deformation termed the effective, generalised or equivalent plastic strain 
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which is defined incrementally as 

1

, 

dcp  = 	(  31 f 	ii) 	I.J. 
P 
 (de )

P 

}I  /2 

For situations where the assumption that yielding is independent of 

any hydrostatic stress is valid, (dcdp  = 0 and hence (dcli)p  = (dedp. 

1/2 
de = [i] {(de 	(de ; J.) 

Then the hardening parameter, k, is assumed to be defined as 

k 	= c where el) is the result of integration dell over the strain 

path. This behaviour is termed strain hardening. 

4.5.5 Elasto-plastic Stress-Strain Relation 

After initial yielding, the material behaviour will be partly elastic 

and partly plastic. During any increment of stress, the changes of strain 

are assumed to be divisible into elastic and plastic components, so that 

dcii  = (dcij)e  + (dcdp  

Decomposing the stress terms into their deviatoric and hydrostatic components 

da 
+ (1-2v) 

(de  de = 	 E 	-ij Licrkk 

where E and v are respectively the elastic modulus and poisson's ratio of the 

material. 

In order to derive the relationship between the plastic strain 

component and the stress increment, a further assumption on the material 

behaviour must be made. It is assumed that the plastic strain increment is 
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proportional to the stress gradient of a quantity termed the plastic 

potential Q, so that 

(deii)p  = dA usTii  

where dA is a proportionality constant termed the plastic multiplier. The 

above equation is termed the flow rule since it governs the plastic flow 

after yielding. The potential Q must be a function of J2f and .113. However 

the relation f E Q is valid since it has been postulated that both are 

functions of J; and JI3  and such an assumption gives rise to an associated 

theory of plasticity. 

(acd 	of p  = dA 	and is termed the normality condition since —Aaf is ucrii  

a vector directed normal to the yield surface at the stress point under 
• 

consideration. Experimental observations indicate that the normality 

condition is an acceptable assumption for metals but the question of 

normality in rocks and soils is debatable. 	The complete incremental 

relationship between the stress and strain for elasto-plastic deformation is 

found to be 

a°. 	(1-2v) 	 af  (dc..) = 	+  E 6. do' + dA U P 	 E 	kk 	aCrii 

4.5.6 The Yield Criteria For Numerical Computation 

For numerical computations, it is convenient to rewrite the yield 

function in terms of alternate stress invariants. The main advantage of this 

formulation is that it permits the computer coding of the yield function and 

the flow rule in a general form and necessitates only the specification of 

three constants for any individual criterion. 
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-4J13  
sin3e = 3E J; 

-2- 	3/2 
02) 

(4.11) 

the cubic equation 

S - J2  S - J3  = 0 	 (4.7) 

which is similar to the trigonometric identity 
3 	1 4 sin3  o - 4  sine + 	sin 3o = 0 	 (4.8) 

Substituting S = r(sine) in equation (4.7), we have 

3 	J2 	JI  

	

sin e - — 	3 sine - — = 0 

	

r2 	r3 
(4.9) 

Comparing (4.8) and (4.9) gives 
2 	, 1/2 r 	= 	(.12 ) 
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(4.10) 

By noting the cyclic nature of sin(3e + 2mt), there are only three 

possible values of sine which define the three principal stresses. 	The 

deviatoric principal stresses are given by t = r(sine) on substitution of the 

three values of sine in turn. The total principal stresses are 

  

sin (0 + ?37-`) 

sin o 

in (0 + -3-) 

  

on 

(72 

Cr3  

(4.12) 

    

     

-TE 
with al > 2 > 0.3  and -- e < 	 . The four yield criteria can be 

rewritten in terms of J1 , J12  and 0. 
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4.5.7 The Yield Criteria 

The Tresca yield criterion 

We know that, 

- 6.3  = Y(k) 

Substituting for o-1  and 0-3  from (4.12), 

2 	, 1/2 
rs (J2) [sin 

[e  

27t 
T - sin [e + 4n 

-3] = Y(k) 

on simplification 
2 (J2,)1/2 cow = Y(k) = 3In 	= (Ty(k) 

The Von Mises yield criterion 

There is no change in this case since this yield function depends on 

J2I  only. 

(Y2)1/2  = K(k) 

.13(r )
ti2' 
	cry(k)  

The Mohr-Coulomb Yield Criterion 

We know that, 

(cr i  - r3) = 2c coso - (a) +0-3) sing!. 

Substituting the values of a., and 0-3  from (4.12), 

1 	 1/2 	() 	1 sine sink = ccos0 -3 -- J sin 	(J1  ) 	COS 2 fg 
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The Drucker-Prager yield criterion 

There is no change for this criterion 
a ji  + 	)1/2 

4.5.8 The flow vector for numerical computation 

The flow vector a can be written as 

aF aF 	+  a/Fla  °V  
a

T 	
acr 	43r1  acr 	au2). 	air 4.  2 • 

The above can be written in the form 

a = c1  a1  + c2a2  + c3a3  

where 

aF 
1 = N-. 

aF 	tan3e aF 
C2  = a(J2)1/2 (r2)1/2 30 

1 	aF 
2COS30 • (J/2)3/2 ae 

Only the constants C1, C2, C3  are then necessary to define the yield 

surface. Thus a simplicity of Programming is achieved as only these three 

constants have to be varied between one yield surface and another. 

In two dimensional problems, 

a = I T 	aF aF aF aF 

For the case of axisymmetric problems, x, y and z are replaced by r, z and e. 

acry ' aTxy  acr, 

al; = {1, 1, 0, 1} 
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— —2-  
1 	

x 	y 	z 
[ ,2 	.2 	,2 

(T )
+ T2 

 where J2  
xy 

  z 

 

  

  

Y TxY 41} 
2 	

.1 
 a3  -  -2 0'2 Txy ,  

 

    

(Tz (
,2 	

1 0' 	12] 

For the elasto-plastic matrix Dep, we require dD. 
The elasto-plastic constitutive matrix Dep, 

T 
d 

Dep  =-7  D 	
DCID

and dD  = Da 
A+dr, a 

For plane strain and axisymmetric cases, 

11---=7,  a l  + 

a2 +M1  

G a3  

F—ry  a4  + 

Et, (al  +a2+a4) 
MI — (l+v) (1-20 

where al , a2, a3  and a4  are the components of a. 

d1 

d2  
dD  

d3  

d4  
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For plane stress cases, 

14-7, al + M2 

dp  =-- 
E  

a2 
_,_ AA .v.21 	 Ev (al  +a2) 

and M2 — 	 

G a3  

a4 + M2 

4.5.9 Singular Points on the Yield Surface 

For many yield surfaces, the flow vector a is not uniquely defined for 

certain stress combinations. At the corners of the Tresca and Mohr-Coulomb 

criteria located by e 

indeterminate. 

For the Tresca law, 

= + 30, the direction of plastic straining is 

13 (J')112  = Y (k) = (3) K(k) and 

C1 = 0, C2 = fg, C3 = 0 for e = ± 30°  

For the Mohr-Coulomb criterion, 

1 T 	+ 0/ )1/2 1 [17 - sink 
3 Jisin 	2 	--2— - c coso = 0 	for e = + 30°  

T sinA 	/ T N1/2•  1 	4 	sink - C COSO = 0 	for e 	- 30°  
Ji 	2) 	 ,rs 
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1 	,, 	1  E5,  _ sings I e3  = 0 CI  = 3  sinO, 2 = -- 	nig 	, for e = + 30°  

1 . 	1 	17 + 	_..195  C1  =,-. 3  sin4), C2 = —2—  TS 
C3  = 0 	for e = - 30° 
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CHAPTER 5 
CASE STUDIES 

5.1 INTRODUCTION 

Bunkers are primarily exposed to surface bursts. However, the possibility of 

bunkers being subjected to air burst loads cannot be ruled out. The effect of blast 

is more critical in case of above ground and semi-buried bunkers than in case of 

underground bunkers. Keeping in mind these aspects, for the dissertation work, 

,three separate cases have been considered. Each of these have been analysed for 

various intensities of blast loads and for different distances. IS Code recommended 

blast loads have been made use of in the analysis. 

5.2 FEATURES OF COMPUTER PROGRAM 

The computer program used is based on the Implicit-Explicit time integration 

scheme for two dimensional plane stress, plane strain and axisymmetric nonlinear 

dynamic transient problems(8). 

Four, Eight and Nine noded isoparametric elements are used to model geometric 

nonlinear behaviour. 	The program has several options like small or large 

deformation elastic and small deformation elasto-plastic analysis. The analysis may 

be carried out using an explicit, implicit or a combined explicit-implicit 

algorithm. Further, four types of elasto-plastic material models can be considered. 

They are Tresca, Von Mises, Mohr-Coulomb and Drucker-Prager. 

The input data, in addition to the features mentioned earlier, includes nodal 

coordinates, element connectivity data, material parameters etc.. 	The input data 

also includes the node numbers at which displacement history and stress history are 

desired. It also includes point load, Gravity load, Pressure load and Temperature 

load indicators. 
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A post-processor subroutine specifically for blast loads recommeded by IS 

Code has been incorporated. The post-processor aids in plotting displacement versus 

time graphs for the chosen nodes in both elastic and elasto-plastic analysis.The 

flow chart of the computer program is as shown in Fig.5.18. 

5.3 TYPES OF BUNKERS CONSIDERED FOR ANALYSIS 

The three types.  of bunkers considered for analysis are: 

(a) An above ground bunker 

(b) A bunker with soil cover 

(c) A semi-buried bunker 

5.4 THE PROBLEM DEFINITION 

5.4.1 An Above Ground Bunker 

In this, a bunker of 3.0m x 2.6m is considered for analysis. The 

bunker has been discretized into 78 elements and 286 nodes. The thickness of 

walls, roof and floor slabs have all been assumed to be 30 cms. This is as 

shown in Fig.5.1. 

5.4.2 A Bunker with Soil Cover 

A bunker of same dimensions is considered for analysis. The bunker 

has a 60 cm soil cover all round except below the floor. The bunker has been 

discretized into 162 elements and 566 nodes. Of the 162 elements, 102 

elements are of the bunker and the balance 60 are of soil. This is as shown 

in Fig.5.2. 

5.4.3 A Semi-Buried Bunker 

A bunker of same dimensions as considered in the previous two cases, 

has been analysed. The bunker is buried 1.7m deep into the soil. The bunker 
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has been discretized into 274 elements and 916 nodes, of which 78 are the 

elements of the bunker and the remaining 196 elements are of the surrounding 

soil. This is as shown in Fig.5.3. 

5.5 THE BLAST LOADS ON THE BUNKERS 

A detailed description blast loads has been done in Chapter 2. The bunkers 

have been analysed for IS Code recommended blast loads. Blast loads of 100 kgs at 

20 m, 30 kgs at 10 m and 10 kgs at 5 m have been considered for analysis. 

5.6 RESULTS AND DISCUSSIONS 

The results and discussions of the analysis have been described under five 

important headings. They are: 

(a) The Geometry of Problem 

(b) Boundary Conditions 

(c) Loading Conditions 

(d) Material Parameters 

(e) Discussions 

5.6.1 The Geometry of Problem 

It has been described under problem definition in 5.4. 

5.6.2 Boundary Conditions 

In all the three types of bunkers, the base has been assumed to be fixed. 

However, from practical considerations, it can be mentioned that absolute fixity is 

difficult to achieve. 

5.6.3 Loading Conditions 

The blast loads calculated as in 2.5.1, 2.5.2 and 2.5.3 have been applied on 

all the three types of bunkers, both on front face and roof. 
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5.6.4 Material Parameters 

The same values of material parameters have been used in all the three types 

of bunkers to facilitate comparative study. The material parameters of concrete and 

soil are as in Table 5.1. 

5.6.5 Discussions 

In the analysis of bunkers, the self weight of the bunkers has not been 

considered as there was no provision for self weight to be added in the input file 

of the computer program. Because of the self weight, the bunkers will have been 

stressed to a certain level, before blast loads are applied. Asa result, the levels 

of stress indicated by the analysis are likely to be lower than the actual stresses. 

A comparison of the blast pressures generated by the three explosive weights 

at specified distances, indicate that blast pressure corresponding to 10 kg at 5 m 

produces the maximum blast pressure. 

The horizontal and vertical displacements of the critical nodes of an above 

ground bunker for blast loads corresponding to 100 kg at 20 m ,30 kg at 10 m and 10 

kg at 5 m are as shown in Fig.5.4 to Fig.5.6. 

The horizontal and vertical displacements of the critical nodes of an above 

ground bunker with soil cover for blast loads corresponding to 100 kg at 20 m,30 kg 

at 10 m and 10 kg at 5 m are as shown in Fig.5.7 to Fig.5.9. 

The horizontal and vertical displacements of the critical nodes of a semi-

buried bunker for blast loads corresponding to 100 kg at 20 m, 30 kg at 10 m and 10 

kg at 5 m are as shown in Fig.5.10 to Fig.5.12. 

The deflected profile of the three bunkers under 10 kg at 5 m are as shown in 

Fig.5.13 to Fig.5.15. 

The yielded profile of the above ground bunker and the above ground bunker 

with soil cover are as shown in Fig.5.16 and Fig.5.17. 
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The above ground bunker with soil cover has exhibited lower frequency and 

higher time period of vibration as compared to the above ground bunker.60 cm of 

overlaying soil, although has negligible stiffness compared to concrete, increases 

the overall mass of the system considerably. 	This has resulted in higher time 

periods in case of above ground bunker with soil cover. 

In case of above ground bunker with soil cover, the area exposed to blast 

pressure on both front face and roof, are greater. As a result, it exhibits larger 

displacements than that of an above ground bunker. 

From the deflected profile of semi-buried bunker in Fig.5.15, it is clear 

that the semi-buried bunker has undergone rigid body translation and rotation 

without yielding. 

Consider the above ground bunker and the above ground bunker with soil cover 

for checking of horizontal elastic displacements at the respective critical nodes. 

Assuming hinges at end nodes of the face for simplicity. 

Reaction at the critical node for above ground bunker 

= WL2/6 = 1 * 32/6 = 1.5 kg 

Reaction at the critical node for above ground bunker with soil cover 

= WL2/6 = 1*(3.6)2/6 = 2.16 kg 

Ratio = 2 .16/1 	= 1.44 

The ratio as obtained from the graphs plotted = 42/28 = 1.54 

The ratios are comparable with an accepted error of less than 10% indicating 

that the results from analysis agree well with the theoretical assessment of the 

ratios. 

From Fig.5.16 and Fig.5.17, it clear that widespread yielding has occured in 

above ground bunker and above ground bunker with soil cover. 
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CHAPTER 6 
CONCLUSIONS 

From the two dimensional analysis of bunkers subjected to blast loads, 

following conclusions have been drawn: 

1. IS:4991-1968 has recommended blast load pressures corresponding to 100 kg 

explosive at 20 m distance, as the design blast load pressure for important 

civilian buildings. For military applications, explosive weights of 30 kg and 

10 kg corresponding approximately to Artillery shells and Mortar shells, at 

distances of 10 m and 5 m provide a far more realistic design blast load 

pressures than the recommendations of IS Code. 

2. Semi-buried bunkers have undergone rigid body rotation and translation 

without yielding. The above ground bunker and the above ground bunker with 

soil cover have both yielded under 10 kg explosive at 5 m distance. 

3. In case of above ground bunker and above ground bunker with soil cover, 

widespread yielding has been observed indicating that merely an elastic 

analysis may not suffice. Therefore, elasto-plastic analysis is recommended 

for structures subjected to blast loads. 

4. In above ground bunker with soil cover, the displacement at the critical 

nodes have been counter-intutive. We expect the above ground bunker with soil 

cover to exhibit lesser displacements compared to the above ground bunker. 

But,it actually has a larger area exposed to the blast pressure because of 

which, the above ground bunker with soil cover exhibits larger displacements. 

5. In semi-buried bunkers, high residual displacements in elasto-plastic 

analysis are due to the yielding of soil mass only. Here, the concrete has 

not yielded and has remained in the elastic zone. 
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6. As there is no yielding of concrete in semi-buried bunkers, it is recommended 

that thinner sections may also be used in semi-buried bunker constructions. 

7. Semi-buried bunkers offer far better protection against blast loads than 

above ground bunkers.Therefore, Semi-buried bunkers are recommended for use 

as strategic structures. 

,..,4c9/ 0/ 
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Fi . 2.2 Positive phase shock wave parameters for a 
spherical TNT explosion in free air at sea level 
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FIG. 5.16 Yielded profile of an above ground 
bunker. 
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FIG. 5.17 Yielded profile of an above ground 
bunker with soil cover. 
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Table 2.1 Blast Parameters from Ground Burst of 1 Tonne Explosive 

Distance 
m 
x 

Peak Side 
on over- 
pressure 
ratio 
PsO/Pa 

Mach 
No. 
M 

Positive 
phase 
duration 
to, milli-
secs 

Duration of 
equivalent 
triangular 
pulse td, 
milli-secs 

Dynamic 
pressure 
ratio 
go/Pa 

Peak 
Reflected 
overpre-
ssure ratio 
Pio/Pa 

1 2 3 4 5 6 7 

15 8.00 2.80 9.50 5.39 10.667 41.60 18 5.00 2.30 11.00 7.18 5.208 20.50 21 3.30 1.96 16.38 9.33 2.643 12.94 24 2.40 1.75 18.65 11.22 1.532 8.48 27 1.80 1.60 20.92 13.30 0.920 5.81 30 1.40 1.48 22.93 15.39 0.583 4.20 33 1.20 1.42 24.95 16.31 0.439 3.45 36 1.00 1.36 26.71 17.94 0.312 2.75 39 0.86 1.32 28.22 19.20 0.235 2.28 42 0.76 1.28 29.74 20.22 0.186 1.97 
45 0.66 1.25 31.25 21.60 0.142 1.66 
48 0.59 1.23 32.26 22.70 0.115 1.46 
51 0.53 1.20 33.52 23.70 0.093 1.28 54 0.48 1.19 34.52 24.70 0.077 1.14 
57 0.43 1.17 35.53 26.40 0.062 1.01 
60 0.40 1.16 36.29 26.60 0.054 0.93 
63 0.37 1.15 37.30 27.80 0.046 0.85 
66 0.34 1.14 38.05 28.76 0.039 0.77 
69 0.32 1.13 38.81 29.25 0.035 0.72 
72 0.30 1.12 39.56 29.87 0.031 0.67 
75 0.28 1.11 40.32 30.71 0.027 0.62 
78 0.26 1.104 40.82 31.85 0.023 0.58 
81 0.25 1.100 41.58 31.92 0.022 0.55 
84 0.24 1.095 42.34 32.00 0.020 0.53 
87 0.23 1.095 42.84 32.26 0.018 0.50 
90 0.22 1.086 43.60 33.39 0.016 0.47 
93 0.20 1.082 44.33 34.70 0.014 0.43 
96 0.19 1.077 45.46 35.37 0.013 0.41 
99 0.18 1.072 45.61 36.22 0.012 0.40 

Note 1 - The value of pa  the ambient air pressure may be taken as 1 kg/cm2  at mean 
sea level. 
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TABLE 5.1 : MATERIAL PARAMETERS 

S1 
NO. PARTICULARS CONCRETE SOIL 

1 Young's Modulus, E 
in N/m2  

2.15 x 1010  2.00 x 107  

2 Poisson's Ratio, v 0.20 0.35 

3 Thickness for Plane 0.00 0.00 
Stress Problem, t 

4 Mass Density per Unit 2500 1800 
Volume, p in kg/m3  

5 Temperature Co-efficient, 
at  

0.00 0.00 

6.  Reference Yield Value, F0  
in N/m2  

2.00 x 107  0.25 x 105  

7.  Hardening Parameter, 11` 
in N/m2  

2.15 x 109  2.00 x 106  

8.  Friction Angle, 0 
in Degrees 

0.00 28°  
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