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ABSTRACT
The inherent strength of a bunker makes it an effective blast resistant

structure.  Strategic  structures like bunkers are used for the protection of

‘personnel, equipment and for storage of explosives/ammunition.

Explosive blasts exert loads of high intensity and short duration on
structures- in the vicinity of the blast. Explosives even from small charges when -

placed close to a structure would result in very high peak pressures and could lead

to damage.

In this dissertation work, two dimensional analysis of bunkers subjected to
blast loads has been carried out. Non-linear transient dynamic analysis for blast
loads has been carried out by the general purpose finite element program which
includes the numerically integrated isoparametric elements. In the elasto-plastic
analysis, Tresca, Von Mises, Mohr-Coulomb and Drucker-Prager yield criteria have

been considered.

An above ground bunker, a bunker with soil cover and a semi-buried bunker

have been analysed for blast loads as recommended by 1S:4991-1968.

(iii)



CONTENTS

CANDIDATE’S DECLARATION

ACKNOWLEDGEMENT

ABSTRACT |
LIST OF FIGURES

CHAPTER 1 INTRODUCTION

1.1
1.2
1.3
14
1.5
1.6

General

The Concept of Blast Loads

Review 6f Certain Earlier Work
Elasto-Plastic Finite Element Analysis
Objectives of the Present Study

Organisation of Work

CHAPTER 2 BLAST LOADS

2.1
2.2
2.3

2.4
2.5

Introduction

Various Codes and Specifications
Classification of Blast Loads
2.3.1 Unconfined explosions
2.3.2 Confined explosions

Blast Hazards (o Bunkers

Blast Load Calculations and
Pressure-1ime Curves

2.5.1 Case A

2.5.2 Ciiwe b

2.5.3 Case C
(iv)

Page No.

(ii)
(iii)
(vii)

O 0 & O W b i bW W N

p—
(a]

10
12
13



CHAPTER 3

CHAPTER 4

NON LINEAR TRANSIENT DYNAMIC ANALYSIS

3.1
3.2
3.3

3.4

- Introduction

Dynamic Equilibrium Equation
Implicit Time Schemes

3.3.1 New mark’s algorithm
3.3.2 Predictor-corrector algorithm

Implicit-Explicit Algorithms

ELASTO-PLASTIC FINITE ELEMENT ANALYSIS

4.1
4.2

4.3

4.4

4.5

Introduction

Preliminary Theory for Two Dimensional
Elasto-Plastic Applications

Linear Elastic Constitutive Matrix for
Plane Stress, Plane Strain and
Axisymmetric Cases

4.3.1 Plane stress problems

4.3.2 Plane strain problems

4.3.3 Axisymmetric problems

Isoparametric Finite Element Representation
4.4.1 Jacobian matrix

4.4.2 Stiffness matrix of the element

Two Dimensional Elasto-Plastic Problems
4.5.1 Introduction

4.5.2 The mathematical theory of plasticity
4.5.3 General form of yield criteria

4.5.4 Work or strain hardening'

4.5.5 Elasto-plistic stress-strain relation

(V)

15
15
17
17
19
20
23
23
24

24

24
25
25
26
27
29
30
30
31
31
35
36



4.5.6 The yield criteria for numerical
computation

4.5.7 The yield criteria

4.5.8 The flow vector for numerical
compuation

4.5.9 Singular points on the yield
surface

CHAPTER 5 CASE STUDILS

5.1
5.2
53

54

5.5
5.6

Introduction

Features ol Computer Program
Types of Bunkers Considered for Analysis
The Problem Definition

5.4.1 An above ground bunker
5.4.2 A bunker with soil cover
5.4.3 Semi-buried bunkers

The Blast Loads on the Bunkers
Reéults and Discussions

5.6.1 The geometry of problem
5.6.2 Boundary conditions
5.6.3 Loading conditions

5.6.4 Material parameters

5.6.5 Discussions

CHAPTER 6 CONCLUSIONS

FIGURES
TABLES -
REFERENCES

(vi).

37

39
40

42

44
44

45
45
45
45
45
46
46
46
46
46
47
47
49
51
82
84



Figure
Number
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

2.13

4.1

LIST OF FIGURES

' Particulars

Free-Air Burst Environment

Positive Phase Shock Wave Parameters for
A Spherical TNT Explosion in Free Air at
Sea Level '

Air Burst Environment

Variation of Reflected Pressure as a
Function of Angle of Incidence

Variation of Scaled Reflected Impulse
As a Function of Angle of Incidence

Surface Burst Blast Environment

Positive Phase Shock Wave Parameters for
a Hemisherical TNT Explosion on the
Surface at Sea Level

Pressure-Time Curve for 100 kg Explosive
at 20 m Distance - Front Face Loading

Pressure-Time Curve for 100 kg Explosive
at 20 m Distance - Roof Loading

Pressure -Time Curve for 30 kg Explosive
at 10 m Distance - Front Face Loading

Pressure - Time Curve for 30 kg Explosive
at 10 m Distance -Roof Loading

Pressure - Time Curve for 10 kg Explosive
at 5 m Distance - Front Facc Loading

Pressure - Time Curve for 10 kg Explosive
at 5 m Distance - Roof Loading

Geometrical Representation of the Tresca

and Von Mises Yield Surfaces in Principal
Stress Space

(vii)

Page No.

51

52

53

54

55

56

57

58

58

59

59

60

60

61



4.2
4.3

4.4

4.5

5.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13

Two Dimensional Representations of the Tresca
and Von Mises Yield Criteria

Mohr Circle Representation of the
Mohr-Coulomb Yield Criterion

Geometrical and T Plane Representation of the
Mohr-Coulomb and Drucker-Prager Yield
Criteria

Mathematical Models for Representation of
Strain Hardening Behaviour

Above Ground Bunker
Above Ground Bunker with Soil Cover
Sem.i-Buried Bunker

Response of an Above Ground Bunker for

100 kg Explosive at 20 m Distance

Response of an Above Ground Bunker for
30 kg Explosive at 10 m Distance

Response of An Above Ground Bunker For 10 kg
Explosive at 5 m Distance

Response of an Above Ground Bunker with Soil
Cover for 100 kg Explosive at 20 m Distance

Response of an Above Ground Bunker with Soil -
Cover for 30 kg Explosive at 10 m Distance

Response of an Above Ground Bunker with Soil

Cover for 10 kg Explosive at 5 m Distance

Response of a Semi-Buried Bunker for 100 kg
Explosive at 20 m Distance

Response of a Semi-Buried Bunker for 30 kg
Explosive at 10 m Distance

Response of a Semi-Buried Bunker for 10 kg
Explosive at 5 m Distance

Deflected Profile of an Above Ground Bunker
at Various Time intervals

(viii)

61

62

62

63

64
65
66
67

68

69

70

71

72

73

74

75

76



5.14

5.15

5.16

5.17

5.18

Deflected Profile of an Above Ground Bunker -

with Soil Cover at Various Time intervals

Deflected Profile of a Semi-Buried Bunker
at Various Time intervals

Yielded Profile of an Above Ground
Bunker '

Yielded Profile of an Above Ground
Bunker with Soil Cover

Flow chart of computer program

(ix)

77

78

79

80

81



CHAPTER 1
INTRODUCTION

1.1 GENERAL

Strategic structures like bunkers are an integral part of the defensive

battle plan. They are used for the protection of personnel, equipment and for
storage of explosives/ammunition. With the ever increasing sophistication of
weapons, there is a specific need to have bunkers which can withstand heavy blast
loads. One of the main lessons of the Gulf war was that the underground bunkers
provide excellent protection even against air bombardments and artillery shelling.
The blast pressures are of high intensity and short duration, which damage
structurés in the vicinity, destroy equipment and personnel. Thus the knowledge of
bunker’s response to blast loads has become extremely important in military

applications.

1.2 THE CONCEPT OF BLAST LOADS

Explosives when detonated on or above ground, results in a very rapid release
- of large amounts of energy within a short time, thus generating a pressure wave in
the surrounding medium known as a shock wave. The shock wave has a sudden increase
in pressure at the front known as shock front. The shock front expands outwards
from the surface of the explosive into the surrounding air. As the wave expands, it
decays in strength, lengthens in duration and decreases in velocity. As the wave
expands in air, the front impinges on the structure located within its path and then
the entire structure is engulfed by the shock pressure. |

When the” shock front strikes an object such as building, (2) there is a
diffraction effect producing forces which result from the higher pressures due to

reflection of the wave on the front face of the object and also from the time lag

1



before the overpressure acts on the rear face. At the same time, the air behind the
shock front is moving outward at high velocity and this wind produces drag forces on
any objects encountered. Thus the total loading consists of three parts:

(a) The incident overpressure

(b) The reflected pressure

(c) The drag pressure due to blast wind.

1.3 REVIEW OF CERTAIN EARLIER WORK

Although there seems to be a lot work going on in the field of blast loads,
very little information is available on the subject as the subjeét matter has been
categorised as classified. However, certain Research papers and Thesis work which are
available for reference have been mentioned here.A Research paper on Analysis of
blast loaded buried RC Arch r.esponse, has been published (10,11). In this, two
shallow buried reinforced concrete arches that were blast loaded (using explosive
generated pressures abplied tov the soil surface) in separate test programs have been
analysed. The geometry and structural detailing of the two specimens are different,
as are the soil properties, depths of burial and the surface blast pressures.

A Ph.D. Thesis on Dynamic response of structures subjected to missile impact
has been carried out(4). A material model for reinforced concrete suitable for
transient dynamic ‘analysis has been presented.

A ME Thesis on computer aided design of RCC box type structures for blast
loading has been carried out(7). In this, a CAD software has been developed for the
design of RCC Box type structures subjected' to blast loading. It calculates blast
loads on slabs and has a facility for structural drawing.

A ME Thesis on blast resistance and shatter proof properties of composite

elements has been carried out (9). In this, tests on composite elements for



ascertaining their blast resistance and shatter proof properties have been described
and results have been presented.

A Ph.D. Thesis on Inelastic dynamic analysis of concrete frames under non-
nuclear blast loadings has been carried out (12). The study has been carried out

with specific reference to frame structures.

1.4 ELASTO-PLASTIC FINITE ELEMENT ANALYSIS

The finite element method is now firmly accepted as one of the most powerful
general techniques for the numerical solution of a variety of problems encountered
in engineering. The technique is widely employed as a design tool for linear and
nonlinear analysis.  The Elasto-plastic behaviour is characterised by an initial
elastic material response onto which a plastic deformation is superimposed after a
certain level of stress has been reached.  Plastic deformation is essentially
irreversible on unloading and is incompressible in nature. The onset of plastic
deformation (or yielding) is governed by a yield criterion and the post yield

deformation generally occurs at a greatly reduced material stiffness.

1.5 OBJECTIVES OF THE PRESENT STUDY

The Thesis deals with the two dimensional analysis of bunkers, which are an
important claés bf strategic  structures,for the blast loads as specified by the
Indian standard code of practice. A non-linear Transient Dynamic analysis of the
bunkers has been carried out in the elasto-plastic range using Finite Element
Method.For this purpose an available computer program based on the Implicit-Explicit
time integration scheme for two dimensional plane stress/plane  strain and
akisymmetrical non-linear dynamic transient problems (8) has been used.

The objectives of the present study have been:



(a) To study the behaviour of an above ground bunker, a bunker with soil
cover and a semi buried bunker, when subjected to blast loads as recommended
by IS code of practice.

(b) To carry out a parametric study of the blast load effects under three
different load intensities and charge-bunker distances.

(c) To ascertain the requirement of elasto-plastic analysis for bunkers

subjected to blast loads.

1.6 ORGANISATION OF WORK

This dissertation work has been divided into six chapters.

Chapter 2 deals with the fundamentals of blast loads. In this, various codes
and specification available on the subject, the categories of blast loads tb include
confined and unconfined explosions and blast load calculations have been described.

Chapter 3 deals with the non-linear transient dynamic analysis.  In this
dynamic equilibrium equation, Explicit and Implicit schemes, a combined Implicit and
Explicit algorithm have been described.

Chapter 4 deals with the elasto-plastic finite element analysis. ‘It
describes the fundamentals of elasto-plastic analysis, Isoparametric finite element
representation and the four yield criteria considered in elasto-plastic analysis
namely Tresca, Von Mises, Mohr-Coulomb and Drucker-Prager criteria.

Chapter 5 primarily deals with the case studies. In this, the effects of IS
Code recommended blast loads on an above ground bunker, a bunker with soil cover and
a semi-buried bunker have been studied. The results and discussions have also been
included in this Chapter.

Chapter 6 summarizes the conclusions drawn from the present study.



CHAPTER 2
BLAST LOADS
1 INTRODUCTION

The blast responses of the structures have been drawing attention of
Engiﬁeers and Scientists all over the world in both military and civilian fields.
Keeping in mind the sophisticated weapons being used world over, the requirement of
strategic ~ structures capable of resisting heavy blast loads need not be
overemphasized. ~As brought out in the Guif war, the only protection for the Iraqi
soldiers and civilian population from the bombings were underground bunkers.
Explosive blasts exert loads of high intensity and short duration on structures in
the vicinity of blast, leading to its damage and causing damage to equipment and
personnel.  Thus, the knowledge of _structural response under blast loadihgs is
becoming increasingly important in military applications. Explosive manufacturing

and storing facilities also require blast resistant structures.

2.2 YARIOUS CODES AND SPECIFICATIONS
“ The various Codes and specifications which describe the blast loads are
(@) IS C0d¢:4991-1968 Indian Standard criteria for Blast resistant Design of
Structﬁres for explosions above ground.
(b) US Army Special Publication Vol.I to VI, structures to resist the effects
of Accidental Explosions. |
(¢) A manual for the prediction of Blast and Fragment loadings on Structures

by Baker W E.



2.3 CLASSIFICATION OF BLAST LOADS

The Blast loads on structures can be divided into two main groups based on
the confinement of the explosive charge as:

(@  Unconfined explosions

(b) Conﬁned' explosions

The above two can further be subdivided based on the blast loading produced
on the structure and the relative charge location. The subdivided categories are

free air burst, air burst, surface burst, fully vented explosion, partially confined

explosion and fully confined explosion (13 and 14).

2.3.1 Unconfined Explosions
Free air burst

When a detonation occurs adjacent to and above a protective structure
such that no amplification of the initial shock wave occurs between the
explosive source and the protective structure, then the blast loads acting on
the structure are free air blast pressures. Freé air burst environment is as
shown Fig.2.1'.

As the incident wave moves radially away from the centre of explosion,
it impacts ‘on the structure.’ Upon impact, the initial wave of pregsﬁre and
impulse is reinforced and reflected. When the shock wave impinges on a
surface oriented so that a line which describes the path of travel of the
wave is normal to the surface, then the point of initial contact is said to
sustain the maxirﬁum pressure and impulse. The poSitive phase pressures,

-impulses, time durations and other parameters of this shock environment for a

spherical TNT explosion are as given in Fig.2.2.



Air burst

The air burst environment is produced by detonations which occur above
the ground surface and at a distance away from the protective structure so
that the initial shock wave, propagating away from the explosion impinges on
the ground surface prior to arrival at the structure. As the shock wave
continues to propagate outward along the ground surface, a front known as
Mach front is formed by the interaction of the initial wave (incident wave)
and the reflected wave. This is as shown in Fig. 2.3.

The height of Mach front increases as the wave propagates away from
the centre of detonation. This increase in height is referred to as the path
of triple point and is formed by the intersection of the initial, reflected
and Mach waves.

In determining the magnitude of air blast loads acting on the surface
of an above grdund protective structure, the Peak incident blast pressures in
the Mach wave acting on the ground surface immediately before the structure
are .calculated first. The peak incident pressure is determined for this

_ point, using the scaled height of charge above ground Hc/W”3

and the angle
of incidence «, where H, is the charge height and W is the charge weight.
This is‘ obtained from‘Fig.2.4. |
A similar procedure is used to determine the impulse of the blast wave
aCting on the ground surface immediately before the- structure.  This is
obtained from Fig.2.5. All other blast parameters can be obtained from
Fig.2.2.
Surface burst

A charge located very near or on the ground surface is considered to

be responsible for a surface burst. The initial wave of the explosion is

7



reflected and reinforced by the ground surface to produce a reflected wave.
The reflected wave merges with the incident wave at the point of detonation
to form a single wave, similar in nature to the Mach wave of the air burst
but essentially .hemispherical in shape as in Fig.2.6. The positive phase
parameters of tI;e surface burst- environment for hemispherical TNT explosions
are represented as in Fig.2.7. A comparison of these parameters with those
of free air explosions indicate that, at a given distance from a detonation
of the same weight of explosive, “all the parameters of surface burst

environment are 1.8 times larger than those for the free air environment (1).

2.3.2 Confined Explosions
Effects of confinement

When an explosion occurs within a structure, the Peak pfessu_res
associated with the initial shock front will be extremely high and in turn,
will be amplified by their reflections within the structure. .In addition,
the accumulation of gases from the explosion will exert additional pressures
and increase the load duration within the structure. The combined effects of
both pressures may eventually destroy the structure unless venting for the
gas and the shock pressures is provided. The structures provided with
venting will permit the blast wave from an internal explosion to spill over
onto the exterior ground surface. These pressures are referred to as leakage
or exterior pressures. The pressures reflected and reinforced within the
structure are referred to as interior shock front pressures, while those
pressures produced by the accumulation of the gaseous products of the

explosion are identified as gas pressures.



Fully vented explosions

A fully vented explosion will be produced within or immediately
adjacent to a barrier or cubicle type structure with one or more surfaces
open to the atmosphere. The initial wave which is amplified by non-frangible
portions of the structure and the products.of detonation are totally vented

to the atmosphere forming a shock wave which propagates away from the

structure.

Partially confined explosions

A partially confined explosion will be produced within a barrier or
cubicle type structure with limited size openings and/or frangible surfaces.
The initial wave which is amplified by the frangible and non-frangible
portions of the structure and the products of detonation are vented to the
atmosphere after a finite period of time.

Fully confined explosions

Full confinement of an explosion is associated with either total or
near total containment of the explosion by a barrier structure. The internal
blast loads will consist of unvented shock loads and very long duration gas
pressures which are a function of the degree of confinement. The magnitude

of leakage pressures will usually be small.

2.4 BLAST HAZARDS TO BUNKERS

Bunkers are exposed to primarily surface bursts which may be due to air

attacks, artillery or mortar shelling. Therefore in the present study, an attempt

has been made to study the effects of blast of various intensities at different

distances on bunkers. As the blast “effect is more critical on above ground and

semi-buried bunkers, the same have been considered.

9



1S:4991-1968 recommends blast loads for design of various type of strﬁctures
which are as in Table 2.1.

However, in the case of Artillery/Mortar fire, the charge weight is much
lbwer than 100 kg but the blast distance may be lesser. Therefore, blast effects of
lesser charge weight taking place at a closer distance than those recommended by the

IS Code have also been considered.

2.5 BLAST LOAD CALCULATIONS AND PRESSURE-TIME CURVES
Three different weights of explosive at varying distance from ground zero to
the point under consideration, are used for blast pressure calculations.
2.5.1 Case A
In this, 100 kg of. explosive is at a distance of 20 m as per table 7 |
of page 33, 15:4991-1968.

Actual distance

Scaled distance, x = where
; (W)m
W is the weight of explosive in tonnes.
x = —20_ = 43.09.
©.1)

From table 1, page 10 of 15:4991-1968, for x = 43.089
po/p, = Peak side on overpressure = 0.7237
M = Mach number = 1.2691
t; = Duration of equivalent triangular pulse
= 20.7082 milli secs.
Actual t, = 20.7082 x W' = 9.6119 ms
Considering p,, the ambient air pressure to be 1 kg/cmz,
~q0/pa = Dynamic pressure ratio" = 0.17

P, Olpa= Peak reflected overpressure ratio = 1.8575

10



po = 0.7237 kg/em?
qQp = 0.17 kg/cm®
P, = 1.8575 kg/cm®

‘Front face loading

U = Shock front velocity = M.a
where,

a = Velocity of sound in air at MSL = 344 m/s
= Mach number

= M.a = 1.2691 x 344 = 436.57 m/s

c =

e
i

. = clearance time is the time in which the reflected over pressure

drops from the peak value p,, to overpressure (p, + Cd q).

t. = %S— or td whichever is less, where

S = H or B/2 whichever is less
For the bunker under consideration,
L =2.6m, H=3.0mand B = Infinity being a plane strain problem.
=H = 3..0 m.

{, = [213’3%(‘5?”7] x 10° = 206.152 ms > td

As t, > tg, t. is limited to 9.6119 ms.

From Table 2, page 13 of 15:4991-1968,
cq = Drag co-efficient = 1 for front face.
pe + €40 = 0.8937 kg/cm’

- The pressure time curve for front wall loading is as Fig. 2.8.

11



Roof loading
The value of drag co-efficient corresponding to q, = 0.17 kg/cm2 from

Table 2, page 13 1S:4991-1968 is - 0.4.

t, = transit time = —I[j— = 332656—7 = 5.956 ms

(o + €Q) = (0.7237 + (-0.4x 0.17)) = 0.6557 kg/cm’

The pressure time curve for roof loading is as shown in Fig.2.9.

2.5.2 Case B

Weight of explosive = 30 kgs
Distance = 10 m
x 2 10 _ = 32183
(0.03)

From Table 1, page 10 of IS: 4991 - 1968, for x = 32.183,
P/, = 1.255
Considering p, = 1 kg/cmz, Py = 1.255 kg/cm2
M = 1.4363
ty = 16.0595 ms
Actual time,t, = 4.9900 ms
q/P, = 0.4782, q, = 0.4782 kg/em’
Po/p, = 3.6543, po = 3.6543 kg/em’

Front face loading
U= Ma where
a = 344 m/s
U= 1.4363 x 344 = 494.1011 ms

t, = % or ty whichever is less

12



where,

S=30m

{, = [z&l‘ﬁﬁ] x 10° = 18.22 ms

Ast. > ty, t. =t, =4.99 ms
For front face loading, Ci=1
Py + 9y = 1.7332 kg/em®

The pressure time curve for front face is as shown in Fig.2.10."

Roof Loading

From Table 2 1S:4991-1968, drag coefficient corresponding to
Q = 0.4782 kg/em® is - 0.4 :
Transit time, t, = L _ 26 x 10° = 5.26 ms
T U T 49471011 '
As t, > t,, the load on roof may be considered as a moving triangular

pulse having the peak value of overpressure (py, + C4qp) and time t; as shown

" in Fig.2.11.

2.5.3 Case C

Weight of explosive = 10 kg.

5 m

Distance

X = -—2 = 23208

0.0n'"

From Table 1 1S:4991-1968, for x = 23.208

Py/P. = 2.6376
Considering p, = 1 kg/em®, py, = 2.6376 kg/em’

13



M = 1.8054
ty; = 10.7210 ms

Actual tg = (W)® x 10.7210 = 2.3098 ms
q, = 1.8253 ke/em’

Front wall loading

Cd =1
U = M.a = 621.06 m/s
3S 3x3

[c =-U-=m=14.49ms

Ast, > t, t.=1t; = 2.3098 ms
Po + € = 4.4629 kg/cm’

The pressure time curve is as shown in Fig.2.12.

Roof Loading
From Table 2 1S:4991-1968, drag co-efficient corresponding to
G = 1.8253 kg/em? s - 0.3.

Transit time, t, = "Ilj‘ = [622'1—60'6] x 10’ = 4.186 ms

As t, > t4, the load on roof may be considered as a moving triangular
pulse having the peak value of overpressure (py + €4qp) and time t; is shown

in Fig.2.13.
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CHAPTER 3
NONLINEAR TRANSIENT DYNAMIC ANALYSIS

3.1 INTRODUCTION

Structures are subjected to time varying loads such as blast, impulse, impact
or earthquake loading. Finite eler;lent based methods are available for dealing with
such problems. In nonlinear transient dynamic stress analysis, it is a general
practice to use a time steppiﬁg procedure. Such direct integration schemes may be
broadly classified as either explicit or implicit methods.

In Explicit schemes, which are very popular, unknowns are directly solved
for. The equilibrium is satisfied at each time step. However, the method is
conditionally stable and very small time steps are often needed.

Implicit schemes are unconditionally stable and longer time steps can be
used. A set of linear simultaneous ‘equations is to be solved for determining the
unknowns. As matrix factorisation is required, more computational effort is needed
in this method.

There are three maih algorithms used in nonlinear transient dynamic stress
analysis. They are:

(@ An implici_t solution algorithm

(b) An explicit solution algorithm

(©) A combined implicit-explicit algorithm

For plane stress, plane strain and axisymmetric problems, 4, 8 and 9-noded

isoparametric elements are used.

3.2 DYNAMIC EQUILIBRIUM EQUATION

We know that, in case of static loads(15),.

[Kle{s} = {F} + {F}, + {F}
15



where

[kl, = Stiffness matrix = j (BI" [D] (B] dv

{F}, = Surface loads

il

[ INI" {t} ds

i
i

Body forces

{F} _"; IN]™ {b} dv

Due to dynamic loads, two additional forces (per unit volume) are generated
in the body. They are:
(a) Inertia force - pd

(b) Damping force - 3

where & represents velocity and & represents acceleration.
'p = mass/unit volume
p = Damping coefficient for linear and viscous damping

The body forces in case of dynamic loads will be,
(Flo = [ INI" {95 - b + b}

We also know the fundamental expressions,

{f} = IN] {8}
{o} = [D] {e}
{e} = [B] {8}

By the principle of virtual work, Internal workdone is equal to External workdone.

Internal workdone will be,

[ (oefehav = teayT] BITOIBI ¢ (o)
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External workdone will be,

= ()" [ {INPNI(B) - INWINISY + INI(B})

Equating internal workdone and external workdone and rearranging,
T T (g .
Iv[B] [DI[B] dv{s} + I [N]'p[N] dv{s} + f [NIu[N] dv{s}

= {F} + [ INI"(g} ds + [ (N'{b) dv

(Ki{s} + IMI{s} + [C] {8} = {F} + {F}, + {F},
MI{3} + [C] {8} + [KI{s} = {F} (3.1)

where,

(K] = Stiffness matrix = L[B]T [D] [B] dv

[M]

Consistent mass matrix = J [N]" p [N] dv
v

[C] = Damping matrix = J [N]"u [N] dv

The above equation is known as the Dynamic equilibrium equation.
For simplicity, mass and damping matrices are assumed to be not varying with time,

3.3 IMPLICIT TIME SCHEMES
3.3.1 Newmark’s Algorithm
The predictor-corrector form of Newmark’s scheme is suitable for the
integration of the semi-discrete system of equations which govern nonlinear
transient dynamic problems. In this algorithm, the equilibrium of equations
will be at time (t, + At). a,,,, P, f,4, are the acceleration vector,

.internal force and applied force vector respectively. K; and C; are the
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tangent stiffness and damping matrices respectively. d;, v, and a, are the

approximations to d(t,), é(t,,) H(tn) and B and y are parameters which control
the accuracy and stability of the method. The values Enﬂ and :/',,H are

predictor values and d,,, and v, ,, are corrector values. The algorithm is

described in the following steps:
(a) Set iteration counter i = O,

(b) Begin predictor phase by setting
M~
dyy = dop =d, + Atv, + a% (1-28) a,/2

() ~
Varr = Viau = Vot At (1) 3y

) M~

Aot = [dyyy - )/ (A6B) =0
(c) Evaluate residual forces using the equation
0)
!

(i i (i)
Jm = fn+| - Man-i-?) -P (dn+l ’ Vn+ )

(d) If required, form the effective stiffness matrix using the

expression
* (i
K' = M) + 5C/(MB) + Ky (d,,))
Otherwise use a previously calculated k.

(e) Factorise, forward reduction and backsubstitute as required to

solve
K ad® = ¢@
(f) Enter corrector phase and set
dopt = d "+ ad”
By = [dnii“) - Em] / (at’B)
Vort = Vanr + g,

(g) If Ad® and/or ¢® do not satisfy the convergence conditions

then set i = i+1 and go to Step 3, otherwise continue.

18



(i+1)

() Set  d,,; = dyy,

(i+1)

Va+t1 = Vpsg
(i+1)

Ayt = A4
for use in the next time step. Also set n = n+1, form p and begin

next time step.

3.3.2 Predictor-Corrector Algorithm
This is an explicit algorithm associated with the Newmark scheme. In

explicit predictor-corrector algorithm, it is assumed that the mass matrix M

is diagonal and the expression

~

Ma,,; + p (an+l» Vi) = B
| is used. The algorithfn is described in the following steps:
(a) Begin predictor phase by setting

dyy = dyyy = d, + atv, + aft (1-28)a/2

(0 ~

Vatl = Vnep = Vy AL (1-7) 4,
(9 - _
A+t =0

(b) Evaluate the residual forces using the equation

0 (0 (0
&0() ) )

= fh41 - Ppsys Vogr)

(c) If required, form the effective stiffness matrix
K = M/@fp)
As the Mass matrix does not change, k™ will be formed once only.
(d) Perform factorisation, forward reduction and backsubstitution as required
to solve

K' 0d® = 4O
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(e) Enter the corrector phase and set

(n (0) (©)
dyy = dyyy +ad

(n (n -~
an+1 - [dl‘H'l- d“+| ] /(AtZB)

v =y 4 oaga..
(f) Set n+1 n+l Tdp g
n
dn+l = dn+l
(N
Vn+1 = Varr.
¢))
an+l = an+!

for use in the next time step. Also set n = n+1, form P and begin next time

step.

3.4 IMPLICIT-EXPLICIT ALGORITHMS.

The computational advantages of explicit schemes are counterbalanced by the
small time steps necessary. In such situations, implicit schemes permit the use of
larger time steps, thé size of which is governed only by accuracy considerations.
Unfortunately, implicit schemes require matrix factorisations and hence need larger
computer core storage and operations per time step. To overcome the above, combined
implicit-explicit schemes offer a unified approach to problems | of structural
dynamics leading to significant computational advantages.

A combination of the previous two algorithms gives two groups of elements
namely the implicit and the explicit, in the finite element mesh. In the combined
algorithm, iteration ~within each time step is necessary in order to satisfy the

equation,

Man'ﬂ + p‘ (dnH’ Vn+1) + pE (d s Vn+1) = fn+l
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in which M = M' + M and £,,, = f,,; + f,,E
ME is assumed to be diagonal. The implicit-explicit algorithm is described in the
following steps:
(a) Set iteration counter i = 0
(b) Begin predictor phase by setting
dpyy = A4, = d, + otv, + a(1-26) a2
Vi

(h _

7 1 = v, + At (1-) a,

n () 2
e = d;- d ., | /(atB) =0
(c) Evaluate residual forces using the equation
'pm = fn+1 - Mani:)'pl(dni:)’ VIH(-:)) - pE(an+l' Vn-H)

(d) If required, form the effective stiffness matrix using the expression
K' = M/ (a8) + +Cl(ate) + Ky (d,.1)
Otherwise use a previously calculated K.
(e} Perform factorisation, forward reduction and backsubstitution as required

to solve,
K'ad® = y®
() Enter corrector phase by setting
G+ d
_dn+l - dn+; + ad )

(i+h (i+l) =~
an+l - [d“+1+ = dl1+] :| /(AtZB)

(i+h (i+1)
Va+1 = vn+l + Aty A4

@ If ad®” and/or ¢ do not satisfy the convergence conditions, then set

i = i+1 and go to step 3, otherwise continue.

21



(i+1)
(h) Set dpyy = dpyy
(i+1)

Vn+1 Vn+l

(i+1)
Q1 < an+1

for use in the next time step. Also set n

step.

22
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CHAPTER 4
ELASTO - PLASTIC FINITE ELEMENT ANALYSIS

4.1 INTRODUCTION

The finite element method is now firmly accepted as one of the most powerful
general techniques for the numerical solution of a variety of problems encountered
in engineering. For linear analysis, at least, the technique is widely employed as
a design tool. Similar acceptance for non-linear situations is dependent on two
major factors. Firstly, in view of the increased numerical operations associated
with non-linear problems, considerable computing power is required. With the
“arrival of high speed digital computers, reductions in unit computing cost will
continue.  Secondly, before the finite element method can be used in design, thé
accuracy of any proposed solution technique must be proven. The development of
improved element characteristics, more efficient non-linear solution algorithms and
the experience gained in their application to engineering problems have all ensured
that non-linear finite element analysis can now be performed with some confidence.

Non-linearities arise in engineering situations from several sources.  For
example, a nonlinear material response can result from elasto-plastic material
behaviour or from hyper-clastic effects of some form.  Additionally nonlinear
characteristics can be associated with temporal effects such as visco-elastic
behaviour or dynamic transient phenomena. Each of these non-linearities may occur
in a variety of structural types such és two or three dimensional solids, frames,

plates or shells(8).
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4.2 PRELIMINARY THEORY FOR TWO DIMENSIONAL
ELASTO-PLASTIC APPLICATIONS
Although there is a wide choice of element types for an elasto-plastic stress
analysis, we consider three different element types of isoparametric formulation.

They are:

(a) The '4-node isoparametric quadrilateral element with linear displacement

variation.

(b) The 8-node serendipity quadrilateral element with curved sides and a

quadratic variation of the displacement field within the element.

(c) The 9-node lagrangian quadrilateral element which additionally has a

central node.

The use of these higher order elements leads to particularly efficient
elasto-plastic ~ solution packages. For the plasticity applications, the classical
incremental theory is employed with the full elasto plastic material response being
reproduced. Consideration is limited to small deformation situations where the
strains can be assumed to be infinitesimal and Lagrangian and Eulerian geometric
descriptions coincide.

The computation times dof elasto-plastic problems are relatively high with
solution costs being typically ten times those of the corresponding linear elastic
analysis.  Considering the high cost of computation, it is imperative that the
algorithms developed are very efficient and numerical techniques: {vhich reduce the

computational requirements are employed.

4.3 LINEAR ELASTIC CONSTITUTIVE MATRIX FOR PLANE STRESS
PLANE STRAIN AND AXISYMMETRIC CASES

4.3.1 Plane Stress Problems

Consider a typical plane stress problem. A thin plate is subjected to
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loads applied in XY plane (the plane of the structure). The thickness of the
plate is assumed to be small compared with the plan dimensions in the XY
plane. Stresses are assumed to be constant throughout the thickness of the
plate and ¢,, T,, and T,

, are ignored.  The linear elastic constitutive

matrix is given as

1 v 0
1 0

p-_E_
(I-V)O 0 (1-v)

4.3.2 Plane Strain Problems

For plane strain problems, the thickness dimension normal to a certain
plane (say the XY plane) is large compared with the typical dimensions in the
XY plane and the body is subjécted to loads in the XY plane only. For plane
strain problems, it méy be assumed that the displacements in the Z direction
are negligible and that the inplane displacements u and v are independent of

z. The linear elastic constitutive matrix is given as

-(l—v) v 0 |

_ E v (I-v) O
D =ty =)
1-2v)
0 0 =

L .

4.3.3 Axisynunetric Problems
For a three dimensional solid which is symmetrical about its centre
line axis (which coincides with the z axis) and which is subjected to loads

and boundary conditions that are symmetrical about this axis, then the
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behaviour is independent of the circumferential coordinate . The linear
elastic constitutive matrix is given as

(1v) v 0 0 ]
v (I-v) v 0

D = E
A+ A2 | 0 v (1) 0

(1-2v)
0 0 0 Syt

B Td

4.4 ISOPARAMETRIC FINITE ELEMENT REPRESENTATION :

Isoparametric elements which are extensively used in two and three
dimensional problems, have the same interpolation function for the unknown
functional and geometry. The shape functions are definéd in natural coordinates.

For a two dimensional problem, we define the variation of unknown functional

u and v as
n
u = {:Niui
i=1
“.1)
n
v = )Ny,
i=1
where, n represents number of nodes in the element
N, represents shape functions in £ and n directions.
Further, for isoparametric elements, x and y are defined as
n
X = ZN,xi
i=1
(4.2)
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n
y = )Ny
i=1
where X, y represent coordinates of any point within the element

represent coordinates of nodal points.

4.4.1 Jacobian Matrix

For two dimensional problems, we have,

(6. ) [dwax )
{€}=4€y>=<dV/ay >
du n dv

L?’xy L—dy dxj

From equation (4.1), we have,

X ZBX Ui
i=1
n
Q_Y. = z.a_lj!*v
ay ay :
i=1
n
ooy 5N,
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The strain displacement matrix [B] will be,

8N, 8N,
W O Tx— 0 ---------------------------
dN, 8N,
[B] = 0 & 0 By e e

8N, 8N, oN, aN,
R S T

For isoparametric elements, the shape functions are in terms of &€ and
n while the elements of [B] matrix contain global derivatives of shape

function. Hence a transformation will be necessary.

Ny N ax N gy
T 3x 9& T By &€

4.3)
ON; _ Ni,ox | Ni, gy

oy  3x Bn ay  an

W -

In matrix form,

(3 ] (N
BE % % e
{ > = 4 >
8N X 9l sN
_! an  an !
an ay
.’ L | .
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The Jacobin matrix [J] will be evaluated as

-ax ayq
% o€
71 =
U] ax  dy
EDL
L
N N T
Ny aN;
Z_EE—xi 255%
yl =

oN.| aN||

FI3 X

< > = [J] < >

aN, oN,

o 3y

| L (7

Also,

oN;] aN|)

BX | B3E
: = [J] .

oN, aN,

8y an

) )

4.4.2 Stiffness Matrix of the Element

K], = (B]" [D] [B] dx.dy.t

Kl, = [ (BI" [D] [BI JI &€ ant
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For isoparametric elements, the stiffness matrix is evaluated using
numerical integration. In the equation (4.6), all the matrices can be
expressed in terms of £ and 7. However, we cannot in general evaluate the
integral exactly ! because of the complexity of the expressions as the
determinant |J| involves polynomials in £ and n which abpear in the
denominator.  Hence the integration for computing the stiffness matrix is
usually done by resbrting to numerical procedures.  Although -there are
various methods of numerical integration, Gauss Quadrature is widely adopted
in finite element method. In Gauss Quadrature, both the position of sampling
points and weights have been optimised. By this, we achieve a far greater
level of accuracy than the accuracy achieved by other methods. In Gauss
Quadrature, the integration is exact for the polynomial of order (2n-1) if n

sampling points are used (3).

m n
Kl = [ (BI" D] (Bldv = T TWW, ¢ n
i=1 j=1
4.5 TWO DIMENSIONAL ELASTO-PLASTIC PROBLEMS
4.5.1 Introduction
Most of the problems encountered in engineering can be approximated to
satisfy one of three conditions of plane stress, plane stréin and
axisymmetric problems. The basic laws governing elasto-plastic material
behaviour in two dimensional solids conforming to plane stress, plane strain
or axisymmetric condition and the concepts of plastic potential and the
normality cbndition need to be understood. The situation is complicated by

the fact that different classes of materials exhibit different elasto-plastic
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characteristics. The Tresca and Von Mises laws closely approximate metal

- plasticity behaviour while Mohr-Coulomb and Drucker-Prager criteria apply to

concrete, rocks and soils.

4.5.2 The Mathematical Theory of Plasticity

The object of the mathematical theory of plasticity is to provide a
theoretical description of the relationship between stress and strain for a
material which exhibits an elasto-plastic response. The plastic behaviour is
characterised by an irreversible straining which is not time dependent and
which can only be sustained once a certain level of stress has been reached.
In order to formulate a theory which models elasto-plastic material
deformation three requirements have to be met. They are:

.(a) An explicit relationship between stress and strain must be

formulated to describe material behaviour under elastic conditions.

(b) A yield criterion indicating the stress level at which plastic

flow commences, must be postulated.

(c) A relatibnship between stress ‘and strain must be developed for

post yield behaviour when the deformation is made up of both elastic

and plastic components.

4.5.3 General form of the yield criteria

The yield criterion determines the stress level at which plastic
deformation begins and can be written in the general form

f( ij) = K (k)
where f is some function and K a material parameter to be determined
experimentaliy aﬁd may be a function of hardening parametei k. Any yield

criterion should be independent of the orientation of the coordinate system
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employed and therefore it should be a function of the three stress invariants
only. Experimental observations indicate that plastic deformation of metals

is esscntially independent of hydrostatic pressure and hence the vyield
g

function can only be of the form

f (2.7 = K® |
where J; and J; are the second and third invariants of the deviatoric

stresses.

The Tresca yield criteria
This states that yielding begins when the maximum shear stress reaches a
certain value. If the principal stresses are o, o,, ¢; where ¢; = o, = oy,

then yielding begins when

op-03 =Y (k)
where Y is a material parzimeter to be experimentally determined and which may
be a function of the hardening parameter k. By considering all other
possible maximum shearing stress values, it can be shown that this yield
criterion may bé represented in the o005 stress spaée by the surface of an
infinitely long regular cylinder as shown in Fig.4.1. The axis of cylinder
coincides wifh the space diagonal, defined by points ¢, = ¢, = o, and since
each ndrma] section of the cylinder is identical, 1t 1s convenient to
represent the yield surface geometrically by projecting it onto n plane, o, +
¢, + o3 = 0 as shown in Fig.4.2(a). When the yield function f depends on J;,
and J; alone, it can be written in the form f (¢, - o3, o, - o) and a two

dimensional plot of the surface f = K is then possible as shown in.

Fig.4.2(b).
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The Von Mises yield criterion

Von Mises suggested that yielding occurs when J, reaches a critical value.
I = K (K

where K is the material parameter to be determined. The second deviatoric

stress invariant, J, can be explicitly written as,

: 1 2 2 2
I, = o) I:tr}t + oy +4°‘i] + riy + Tiz + 'c,z(z

Yield criterion may be further written as

e —

o = 30" = 3K

172
W

- 3 ,
where ¢ = |5 {o; @

~

and o is termed the effective stress, generalised stress or equivalent
stress.  The octahedral shear stress t,,, is the shear stress on the planes
of a regular octahedron, the apices of which coincide with the principal axes

oct

of stress. The value of T, is related to J, by

(23,/3)

Toet —

Thus yielding can be interpreted to begin when t,, reaches a critical
value. Von Mises criterion is described és in Fig.4.2. For a state of pure
shear, where the Von Mises criterion gives a yield stress 2/{3 times that
given by the Tresca criterion. For most metals, Von Mises law fits .the
experimental data more closely than Tresca’s law but the Tresca criterion is

simpler to use in theoretical applications.
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The Mohr-Coulomb yield criterion

This is a generalisation of the coulomb friction failure law defined
by

T = - o, tang
where T is the shearing stress, o, is the normal stress with tensile stress
being positive, c¢ is the cohesion and ¢ is the angle of internal friction.‘
Figure 4.3 represents the Coulomb’s law as a straight line tangent to the
largest principal stress circle.
From Fig.4.3 and for ¢; = o, = o5, the Coulomb law can be written as

(o) - 03) = 2c cosp - (o, + o) sing

In the principal stress space, this gives a conical yield surface
whose normal section at any point is an irregular hexagon as shown in
Fig.4.4. The .conical nature of the yield surface is a consequence of the
fact that a hydrostatic stress does influence vyielding. This criterion is

applicable to concrete, rocks and soil problems.

The Drucker-Prager yield criterion

An approximation to the Mohr-Coulomb law was presented by Drucker and
Prager as a modification of the Von Mises yield criterion. The influence of
a hydrostatic stress component on yielding was introduced by inclusion of an
additional term in thé Von Mises expression to give

al, + (0" =k’

The yie'ld surface has the form of a circular cone. This yield

criterion is described as in Fig.4.4.
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4.5.4 Work or Strain Hardening

After initial yielding, the stress level at which further plastic
deformation occurs may be dependent on the current degree of plastic
straining. Such a phenomenon is termed work h;':lrdening or strain hardening.
Thus the yield surface will vary at each stage of the plastic deformation,
with the subsequent yield surfaces being dependent on the plastic strains. A
perfectly plastic material is ’shown in Fig.4.5(@), where the yield stress
level does not depend in any way on the degree of plastification. If the
subsequent yield surfaces are a uniform expansion of the origin yield curve,
wi}thout translation, as shown in Fig.4.5(b), the strain hardening model is
said to be isotropic. If the subsequent yield surfaces preserve their shape
and orientation but translate in the stress space as a rigid body, as shown
in Fig. 4.5(c), Kinematic hardening is said to take place.

For some materials, notably soils, the yield surface may not strain
harden but strain soften instead, so that the yield stress level at a point
decreases with increasing plastic deformation. Therefore, for an isotropic
model, the original yield curve contracts progressively without translation.
Consequently yielding implies local failure and the yield surface becomes a
failure criterion.

The . progressive development of the yield surface can be defined by
relating the yield stress K to the plastic deformation by means of the
hardening parameter k. Kk can be related to a measure of the total plaétic

deformation termed the effective, generalised or equivalent plastic strain
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which is defined incrementally as

For situations where the assumption that yielding is independent of

any hydrostatic stress is valid, (dey), = 0 and hence (d.c:'i Pp = (dey),.

= | (), [de;,.]p}"i

Then the hardening parameter, k, is assumed to be defined as

k = g, where s_:p is the result of integration dgl, over the strain

path. This behaviour is termed strain hardening.

4.5.5 Elasto-plastic Stress-Strain Relation

After initial yielding, the material behaviour will be partly elastic
and partly plastic. During any increment of stress, the changes of strain
are assumed to be divisiblé into elastic and plastic components, so that

'deij = (deyp), + (deyp,

Decomposing the stress terms into their deviatoric and hydrostatic components

*

doi; (122
ey, = 2“" + ¢ EV) 8y doy,

where E and v are respectively the elastic modulus and poisson’s ratio of the
material.

In order to derive the relationship between the plastic strain
component and the stress increment, a further assumption on the material

behaviour must be made. It is assumed that the plastic strain increment is
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proportional to the stress gradient of a quantity termed the plastic

potential Q, so that

(deij)p = dA %

ij

where da is a proportionality constant termed the plastic multiplier. The
above equation is termed the flow rule since it governs the plastic flow
after yielding. The potential Q must be a function of J; and J3. However
the relafion f = Q is valid since it has been postulated that both are
functions of J; and J; and such an assumption gives rise to an associated

theory of plasticity.

(8ey), = da gf— and is termed the normality condition since A is
. "'ij aa‘ij

a vector directed normal to the yield surface at the stress point under
consideration. Experime.ntal observations indicate that the normality
condition is an acceptable assumption for metals but the question of
normality in rocks and soils is debatable.  The complete incremental

relationship between the stress and strain for elasto-plastic deformation is

found to be

_ 80y L (12v) of

4.5.6 The Yield Criteria For Numerical Computation

For numerical computations, it is convenient to rewrite the yield
function in terms of alternate stress invariants. The main advantage of this
formulation is that it permits the computer coding of the yield function and
the flow rule in a general form and necessitates only the specification of

three constants for any individual criterion.
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the cubic equation

13 4 ’ [ |
S -1,S -J;=0 4.7
which is similar to the trigonometric identity
sin'e - 3 sino + 7 sin 30 = 0 .8)
Substituting S = r(sing) in equation (4.7), we have
I, I
Sin’e - —i sing - —3— = () 4.9)
r r

Comparing (4.8) and (4.9) gives

2 IR
r ==1(, (4.10)
B
. -4]5 35 Jla
sindg = —~ = - L= 4.11)
I 2 (12)3/2

By noting the cyclic nature of sin(36 + 2nn), there are only three
possible‘ values of sine which define the three principal stresses.  The
deviatoric principal stresses are given by t = r(sine) on substitution of the

three values of sine in turn. The total principal stresses are

( w

\ : 2n .
r"1 sin (6 + ) 1)
20" J |
o = (fl {sin 0 b+ 31- 1} 4.12)
3
' 1
%3 sin (6 + 23'1) A
\ J

with 0, > @, > oy and Z = 0 = 7 . The four yield criteria can be

rewritten in terms of J;, J, and o.
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4.5.7 The Yield Criteria
The Tresca yield criterion
We know that,

oy - o3 = Y(k)

Substituting for ¢, and ¢, from (4.12),

= Y(k)

2 e 2 | 2n . 4n
E‘ J3) sin [9 + -3-] - ?m [e + 5

on simplification

2 ()" cose = Yk = 3K®K) = o,k

The Yon Mises yield criterion

There is no change in this case since this yield function depends on
J, only.
D" = K

bay - o, (k)

The Mohr-Coulomb Yield Criterion
We know that,
(¢ - 03) = 2¢ cos¢ - (¢y+03) sing

Substituting the values of o, and o, from (4.12),

1 . /512 |cose - _1_ sin@ sing| = ccos¢g
—3~ J;sing + J3) 3
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The Drucker-Prager yield criterion
There is no change for this criterion

al, + 0" =«
4.5.8 The flow vector for numerical computation

The flow vector a can be written as

+\1/2
T = aF _ 8F 9, aF a(J,) , oF ae
~ 8¢ 8], o an - 8o 36 ° ac
1 8(J,)-

The above can be written in the form

a = Clal + C2a2 + C3a3

where
_ aF
C, = 3y,
8F  tan3e aF
= ’ ’ a
2 3(12)1’2 (Jz)uz 6

3~ 7cos3e - a )3/2 :T:)
27

Only the constants C,, C,, C, are then necessary to define the yield
surface. Thus a simplicity of Programming is achieved as only these three
constants have to be varied between one yield surface and another.

In two dimensional problems,

o . |oF oF oF oF
do,’ 8oy’ 81, O0

For the case of axisymmetric problems, x, y and z are replaced by r, z and 6.
al = {1, 1,0, 1}
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4 '

o0

T
a3 = ' g Jz ’ J2
’ Xy? L |

oy, + ol ¢.0, + 20,1

! 1 L2 ,2 ,2
where J, = [crx + o, +o~z} +

Xy
7 .2 ’
J3 - 02 [GZ 'Jz]

For the elasto-plastic matrix D,,, we require dp,
The elasto-plastic constitutive matrix Dep,

T
dDdD

D =D-’_“—T—
A+dp a

ep and d;, = Da

For plane strain and axisymmetric cases,

P y
E
T T M

d,
E
d2 ma2+M1
dD =4 } =4 »
d,
G a,
d
\ % E
T 4 t M,
\ J

Ev (a,+a,+a,)
(I+v) (I-2v)

where a,, a,, a; and a, are the components of a.

Ml -
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For plane stress cases,

r A
E
o t M

E

“1—32+M2 Ev (a,+

dy = A +v ,andmz_—__vL‘_ia_z)
1-v

G a,
E
tm a + M2

4.5.9 Singular Points on the Yield Surface

For many vyield surfaces, the flow vector a is not uniquely defined for
certain stress combinations. At the corners of the Tresca and Mohr-Coulomb
criteria located by 6 = £ | 30, the direction of plastic straining is
indeterminate.

For the Tresca law,

,|3 I =Y k) = {(3) KK and
C,=0,C, =143, C, =0foro =+ 30

o

For the Mohr-Coulomb criterion,

) ' sing | _ _ o
% Jising + (O™ —%— i3 - Bl cosp = 0 for e = + 30
.
r .
. o 1 sing | _ _ : — _10°
% Ising + (I3)'"” - F + s c cosp = 0 for 6 30
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=%sin¢,C2=—%-[E-slfl3£],C3=0 fore = + 30°
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CHAPTER 5
CASE STUDIES

5.1 INTRODUCTION

Bunkers are primarily exposed to surface bursts. However, the possibility of
bunkers being sﬁbjected to air burst loads cannot be ruled out. The effect of blast
is more critical in case of above ground and semi-buried bunkers than in case of
underground bunkers. Keeping in mind these aspects, for the dissertation work,
three separate cases have been considered. Each of these have been analysed for

various intensities of blast loads and for different distances. IS Code recommended

blast loads have been made use of in the analysis.

5.2 FEATURES OF COMPUTER PROGRAM

The computer program used is based on the Implicit-Explicit time integration
scheme for two dimensional plane stress, plane strain and axisymmetric nonlinear
dynamic transient problems(8).

Four, Eight and Nine noded isoparametric elements are used to model geometric
nonlinear behaviour. The program has several options like small or large
deformation elastic and small deformation elasto-plastic analysis. The analysis may
be carried out using an explicit, implicit or a combined explicit-implicit
algorithm.  Further, four types of elasto-plastic material models can be considered.
'They are Tresca, Von Mises, Mohr-Coulomb and Drucker-Prager.

The input data, in addition to the features mentioned earlier, includes nodal
coordinates, element connectivity data, material parameters etc.. The input data
also includes the node numbers at which displacement history and stress history are

desired. It also includes point load, Gravity load, Pressure load and Temperature

load indicators.
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A post-processor subroutine specifically for blast loads recommeded by IS
- Code has been incorporated. The post-processor aids in plotting displacement versus
time graphs for the chosen nodes in both elastic and elasto-plastic analysis.The

flow chart of the computer program is as shown in Fig.5.18.

5.3 TYPES OF BUNKERS CONSIDERED FOR ANALYSIS
The three types of bunkers considered for analysis are:
(a) An above ground bunker
(b) A bunker with soil cover
(c) A semi-buried bunker

5.4 THE PROBLEM DEFINITION
5.4.1 An Above Ground Bunker
In this, a bunker of 3.0m x 2.6m is considered for analysis. - The
bunker has been discretized into 78 elements and 286 nodes. The thickness of
walls, roof and floor slabs have all been assumed to be 30 cms. This is as

shown in Fig.5.1.

5.4.2 A Bunker with Seil Cover

A bunker of same dimensions is considered for analysis. The bunker
has a 60 cm soil cover all round except below the floor. The bunker has been
discretized into 162 elements and 566 nodes. Of the 162 elements, 102
elements are of the bunker and the balance 60 are of soil. This is as shown

in Fig.5.2.

5.4.3 A Semi-Buried Bunker
A bunker of same dimensions as considered in the previous two cases,

has been analysed. The bunker is buried 1.7m deep into the soil. The bunker
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has been discretized into 274 elements and 916 nodes, of which 78 are the

clements of the bunker and the remaining 196 elements are of the surrounding

soil. This is as shown in Fig.5.3.

5.5 THE BLAST LOADS ON THE BUNKERS

A detailed description blast loads has been done in Chapter 2. The bunkers .
have been analysed for IS Code recommended blast loads. Blast loads of 100 kgs at
20 m, 30 kgs at 10 m and 10 kgs at 5'm have been considered for analysis.

5.6 RESULTS AND DISCUSSIONS

The results and discussions of the analysis have been described under five

important headings. They are:

(@) The Geometry of Problem

(b) Boundary Conditions

(¢)- Loading Conditions

| (d) Material Parameters

(e) Discussions
5.6.1 The Geometry of Prdblem

It has been described under problem definition in 5.4.
5.6.2 Boundary Conditions |

In all the three types of bunkers, the base has been assumed to be fixed.
However, from practical considerations, it can be mentioned that absolute fixity is
difficult to achieve,
3.6.3 Loading Conditions

The blast loads calculated as in 2.5.1, 2.5.2 and 2.5.3 have been applied on

all the three types of bunkers, both on front face and roof.
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5.6.4 Material Parameters

The same values of material parameters have been used in all the three types
of bunkers to facilitate comparative study. The material parameters of concrete and
soil are as in Table 5.1.

5.6.5 Discussions

In the analysis of bunkers, the self weight of the bunkers has not been
considered as there was no provision for self weight to be added in the input file
of the computer program. Because of the self weight, the bunkers will have been
stressed to a certain level, before blast ldads are applied. As a-result, the levels
of stress indicated by the analysis are likely to be lower than the actual stresses.

A comparison of the blast pressures generated by the three explosive weights
at specified distances, indicate that blast pressure corresponding to 10 kg at 5 m
produces the maximum blast pressure.

The horizontal and vertical displacements of the critical nodes of an above
ground bunker for blast loads correéponding to 100 kg at 20 m},BO kg at 10 m and 10
kg at 5 m are as shown m Fig.5.4 to Fig.5.6.

The horig@ytal and vertical displacements of the critical nodes of an above
ground bunker with soil cover for blast loads corresponding to 100 kg at 20 m,30 kg
at 10 m and 10 kg at 5 m are as shown in Fig.5.7 to Fig.5.9. '

The horizontal and vertical displacements of the critical nodes of a semi-
buried bunker for blast loads corresponding to 100 kg at 20 m, 30 kg at 10 m and 10
kg at 5 m are as shbwn in Fig.5.10 to Fig.5.12. |

The deflected profile of the three bunkers under 10 kg at 5m aré as shown in
Fig.5.13 to Fig.5.15.

The yielded profile of the above ground bunker and the abové ground bunker

with soil cover are as shown in Fig.5.16 and Fig.5.17.
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The above ground bunker with soil cover has exhibited lower frequency and
higher time period of vibration as compared to the above ground bunker.60 cm of
overlaying soil, although has negligible stiffness compared to concrete, increases
the overall mass of the system considerably. This has resulted in higher time
periods in case of above ground bunker with soil cover.

In case of above ground bunker with soil cover, the area exposed to blast
pressure on both front face and roof, are gréater. As a result, it exhibits larger
displacements than that of an above ground bunker.

From the deflected profile of semi-buried bunker in Fig.5.15, it is clear
that the semi-buried bunker has undergone rigid body translation and rotation
without yielding.

Consider the above ground bunker and the above ground bunker with soil cover
for checking of horizontal elastic displacements at the respective critical nodes.
Assuming hinges at end nodes of the face for simplicity.

| Reaction at the critical node for above ground bunker
= WL/6 = 1*3%6 = 1.5 ke

Reaction at the critical node for above ground bunker with soil cover

= WL6 = 1%3.6)/6 = 2.16 kg

Ratio =2.16/1.5 = 1.44

The ratio as obtained from the graphs plotted = 42/28 = 1.54

The ratios are comparable with an accepted error of less than 10% indicating
that the results from analysis agree well with the theoretical assessment of the
ratios.

From Fig.5.16 and Fig.5.17, it clear that widespread yielding has occured in

above ground bunker and above ground bunker with soil cover.
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CHAPTER 6
CONCLUSIONS

From the two dimensional analysis of bunkers subjected to blast loads,

following conclusions have been drawn:

1.

15:4991-1968 has recommended blasf load pressures corresponding to 100 kg
explosive at 20 m distance, as the design blast load pressure for important
civilian buildings. For military applications, explosive weights of 30 kg and
10 kg corresponding approximately to Artillery shells and Mortar shells, at
distances of 10 m and 5 m provide a far more realistic design blast load
pressures than the recommendations of IS Code.

Semi-buried bunkers have undergone rigid body rotation and translation
without yielding. The above ground bunker and the above ground bunker with -
soil cover have both yielded under 10 kg explosive at 5 m distance.

In case of above ground bunker and above ground bunker with soil cover,
widespread yielding has been observed indicating that merely an elastic
analysis may not suffice. Therefore, elasto-plastic analysis is recommended
for structures subjected to blast loads.

In above ground bunker with soil cover, the displacement at the critical
nodes have been counter-intutive. We expect the above ground bunker with soil
cover to exhibit lesser displacements compared to the above ground bunker.
But,it actually has a larger area exposed to the blast pressure because of
which, the above ground bunker with soil cover exhibits larger displacements.
In semi-buried bunkers, high residual displacements in elasto-plastic
analysis are due to the yielding of soil mass only. Here, the concrete has

not yielded and has remained in the elastic zone.

49



As there is no yielding of concrete in semi-buried bunkers, it is recommended
that thinner sections may also be used in semi-buried bunker constructions.

Semi-buried bunkers offer far better protection against Blast loads than
above ground bunkers.Therefore, Semi-buried bunkers are recommended for use

as strategic structures.

RA3/0/
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Fig. 2.2 Positive phase shock wave parameters for a
' spherical TNT explosion in free air at sea level
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Table 2.1 Blast Parameters from Ground Burst of 1 Tonne Explosive

Distance  Peak Side Mach  Positive  Duration of Dynamic Peak

m on over- No. phase equivalent pressure  Reflected

X pressure M duration  triangular ratio overpre-
ratio tp, milli-  pulse tg, 4/P, ssure ratio
Pso/Pa secs milli-secs P/p,

1 2 3 4 5 6 7
15 8.00 2.80 9.50 5.39 10.667  41.60
18 5.00 2.30 11.00 7.18 5.208  20.50
21 3.30 1.96 16.38 9.33 2.643 12.94
24 2.40 1.75 18.65 11.22 1.532 8.48
27 1.80 1.60 - 20.92 13.30 0.920 5.81
30 1.40 1.48 22.93 15.39 0.583 4.20
33 1.20 1.42 24.95 16.31 0.439 3.45

- 36 1.00 1.36 26.71 17.94 0.312 2.75
39 0.86 1.32 - 28.22 19.20 0.235 . 2.28
42 0.76 1.28 29.74 20.22 0.186 1.97
45 0.66 1.25 31.25 21.60 - 0.142 1.66
48 0.59 1.23 32.26 22.70 0.115 1.46
51 0.53 - 1.20 33.52 2370 0.093 1.28
54 0.48 1.19 34.52 24,70 0.077 1.14
57 0.43 1.17 35.53 26.40 0.062 1.01
60 0.40 1.16 36.29 26.60 0.054 0.93
63 0.37 1.15 37.30 27.80 0.046 0.85
66 0.34 1.14 38.05 28.76 0.039 0.77
69 0.32 1.13 38.81 29.25 0.035 0.72
72 0.30 1.12 39.56 29.87 ) 0.031 0.67
75 0.28 1.1 40.32 30.71 0.027 0.62
78 0.26 1.104 40.82 31.85 0.023 0.58
81 0.25 1.100 41.58 31.92 0.022 0.55
84 0.24 1.095 42.34 32.00 0.020 0.53
87 0.23 1.095 42.84 32.26 0.018 0.50
90 0.22 1.086 43.60 33.39 0.016 0.47
93 0.20 1.082  44.33 34.70 0.014 0.43
96 0.19 1.077 45.46 35.37 0.013 0.41
99 0.18 1.072 45.61 36.22 0.012 0.40

Note 1 - The value of p, the ambient air pressure may be taken as 1 kg/cm2 at mean
sea level.

82



TABLE 5.1 : MATERIAL PARAMETERS

Sl
NO. PARTICULARS CONCRETE SOIL
1 | Young’s Modulus, E 2.15 x 10" | 2.00 x 10’
in N/m?
2 | Poisson’s Ratio, v 0.20 0.35
3 | Thickness for Plane 0.00 0.00'
Stress Problem, t
4 | Mass Density per Unit 2500 1800
Volume, p in kg/m3
5 | Temperature Co-efficient, 0.00 0.00
&
6.| Reference Yield Value, F,| 2.00 x 10" | 0.25 x 10°
in N/m® |
7.| Hardening Parameter, H | 2.15 x 10° 2.00 x 10°
in N/m?
8.| Friction Angle, ¢ 0.00 28°

in Degrees

33
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