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ABSTRACT 

The precise control of robot manipulator to track the desired trajectory is a 

very tedious job and almost unachievable with the help of conventional controller. 

This task is achievable to a certain limit with the help of adaptive controllers but 

these also have their own limitations of assuming that the systems parameters being 

controlled change relatively slowly. Many algorithms have been proposed from time to 

time to minimize this deficiencies. 

Interfacing of neural network with the robot manipulator is one of the means 

of getting the rapid convergence of actual trajectory 	to the desired trajectory. 	In 

our work, we have tried to implement the neural network in the adaptive controller 

with the help of a neural network to control the robot arm. Results have been 

compared with the conventional P.D. controllers. A comparative study of neural 

network based controller without adaptive control and a neural network based 

controller with adaptive control is also given here. 



CONTENTS 

1. INTRODUCTION 

2. ROBOT MANIPULATOR DYNAMICS 

2.1 INTRODUCTION 

2.2 LAGRANGE-EULER FORMULATION 

2.2.1 KINETIC ENERGY OF ROBOT MANIPULATOR 

2.2.2 POTENTIAL ENERGY OF ROBOT MANIPULATOR 

2.2.3 MOTION EQUATION OF A MANIPULATOR 

2.3 TWO LINK MANIPULATOR EXAMPLE 

3. ADAPTIVE CONTROL ALGORITHM FOR ROBOT MANIPULATOR 

3.1 INTRODUCTION 

3.2 MODEL REFERENCED ADAPTIVE CONTROL 

3.3 A NEW ADAPTIVE CONTROL ALGORITHM 

4. NEURAL NETWORK BASED CONTROLLER 

4.1 INTRODUCTION 

4.2 ERROR BACK PROPAGATION TUNING ALGORITHM 

4.3 ROBOT ARM DYNAMICS 

4.4 NN BASED CONTROLLER 

4.5 PROCEDURE AND SOFTWARE USED 

4.6 PD CONTROLLER 

5. NEURAL NETWORK BASED ADAPTIVE CONTROLLER 

5.1 INTRODUCTION 

5.2 MANIPULATOR DYNAMICS AND CONTROL PROBLEM 

5.3 THREE LAYER NEURAL NETWORK WITH LEARNING SCHEME 

5.4 IDENTIFICATION AND CONTROL ARCHITECTURE 

5.5 PROCEDURE AND SOFTWARE USED 



6. RESULT ANALYSIS, CONCLUSIONS AND FUTURE SCOPE OF WORK 

6.1 INTRODUCTION 

6.2 PD CONTROLLER 

6.3 NN BASED CONTROLLER 

6.4 NN BASED ADAPTIVE CONTROLLER 

6.5 CONCLUSIONS 

6.6 FUTURE SCOPE OF WORK 

7. REFERENCES 

8. APPENDICES 

APPENDIX A 

APPENDIX B 

APPENDIX C 



-CHAPTER 1 

INTRODUCTION 

Adaptive Control of rigid robot manipulators has been the interest of many for 

several years. In joint space, one of the early applications of adaptive control to 

the manipulator problem has been done in early 80s. Some of the directions- that have 

emerged for the adaptive control algorithms are the self-tuning regulator(STR) and 

the model-referenced adaptive control(MRAC). Because of the principal characteristics 

of model dependence in these methods, satisfactory results of non-linear systems are 

not available even though it can be able to give a convincing and well developed 

algorithms for linear systems[1]. 

The capability of trained neural networks for approximating arbitrary input-

output mappings can find an important applications in devising simple procedures for 

the identification of unknown dynamical plants[2]. Hence it provides us the 

opportunity of identifying the dynamics -of highly complex systems which does not 

require any model identification. This makes the neural network based methods more 

useful in the design of adaptive controllers. Furthermore, the computational features 

of neural networks convert into speed advantages in the identification and control 

computation at each step of implementation, when compared to the corresponding 

calculations required in a STR algorithm. 

Considerable literature is available which gives the details of neural nets 

for system identification and identification-based control but only a few have given 

the use of NN in direct closed-loop controllers. The main problem which remain to be 

solved is the inability to guarantee satisfactory performance of the system[3). 

In this thesis work, we have tried to tackle this deficiencies by considering 

a- -three layer neural network, where linearity in the parameter holds. This may be 

considered as a step in extending adaptive control theory to Neural Network -  control 
theory. 



A NN controller structure derived using robot control techniques means that 

the NN weights are tuned on-line with no "Iearning phase" needed. The controller 

structure ensures good performance during the initial period--  if the NN weights are 

initialized at zero. 

The controller is composed of a neural net incorporated into a dynamic system, 

where the structure comes from the filtered error notions standard in robot control. 

The basis functions for the NN controller is determined from the physics (Lagrangian 

dynamics) of general robot arms. It has been shown in [3] that the back propagation 

tuning techniques generally yields unbounded weights if the net cannot exactly 

reconstruct a certain non-linear control function or if there are bounded unmodeled 

disturbances in the robot dynamics. 

In practice, the robot motion is basically defined by motion of its end 

effector, i.e., in robot control, the major concern is that the end effector motion 

tracks its desired motion, defined in the task space. The PID controllers which are 

easily implementable and which are fast enough compared to NN controllers lacks the 

guaranteed tracking performance. This necessitates the development of NN controllers 

for precise control in applications like welding etc. with sacrificing the CPU time. 

The algorithm which has been used in this thesis work is a very simple one and 

it fulfills the requirement of a robust controller. The initial filtered tracking 

error of 80 % to 90 % are also been easily tracked. 

This is the introduction of the algorithm of neural network based controller. 

The next step in our work is the development of neural network based adaptive 

controller. The algorithm for it is discussed in [2]. For the understanding of the 

adaptive controller and its concept, a brief review of it is given here. Our real 

motive is to find the superiority of this controller over all other controllers. 

REVIEW OF ADAPTIVE CONTROL: 

Traditionally, control systems- have been designed based on a good 

understanding of the system to be controlled. When knowledge of the system is limited 



the relative modern issues of robust control, adaptive control and learning control 

become important. 
One way to attempt to deal with poor knowledge of parameters in a control 

scheme is through techniques that are generally called adaptive control. Adaptive 

control is closely related to the problem of system identification; in fact, 

generally an adaptive control can be viewed as being composed of two parts: 

(1) An identification portion which identifies parameters of the plant itself, or 

parameters that appear in the controller for the plant. 

(2) A control law portion which implements a control law that is in some way a 

function of the parameters identified. 

The central problem in the synthesis of adaptive controllers is to prove 

rigorously that the resulting overall system is stable. 

One of the possibility of obtaining a satisfactory result of control design 

and sensitivity analysis is to automate the whole procedure which can be done by 

providing the regulator with algorithms for parameter estimation and control design. 

This leads/us to the so called Self Tuning Regulator (STR) and Adaptive Controller. 

This adaptive controller can handle the system with large parameter variations. 

SELF TUNING CONTROL 

One way of automating modelling and design is the following: Determine a 

suitable model structure. Estimate the parameters of the model recursively. Use the 

estimates to calculate the control law by a suitable design method. A block diagram 

of such a method is shown in fig. 1.1. The regulator obtained is called a Self Tuning 

Regulator because it has facility for tuning its own parameters. The regulator can be 

thought of as being composed of two loops. The inner loop consists of the process and 

an ordinary linear-feedback regulator. The parameter of the regulator are adjusted by 

the outer loop which is composed of a recursive parameter estimator and a design 

calculation. The design calculation box in fig. 1.1 represents an on-line solution to 



a design problem for a system with known parameters. 

APPROACH TO ADAPTIVE CONTROL 

The self tuning regulator could also be made to control a process with varying 

parameters i.e. an adaptive regulator can be achieved. To do this, it is necessary to 

change the algorithm so that the parameter estimator can track varying process 

parameters. There are many schemes for adaptive control that are closely related to 

self-tuner. One of them is described here. The starting point is an ordinary 

feedback-control loop with a process and a regulator with adjustable parameters. The 

schemes represent different ways to alter the regulator parameters in response to 

change in process and disturbance dynamics. 

MODEL REFERENCE ADAPTIVE SYSTEMS(MRAS) 

This scheme was originally developed for servo problem. The specifications of 

the reference model tells how the process output ideally should response to the 

command signal. The block diagram is shown in fig.1.2. Notice that the reference 

model is part of the control system. The regulator can be thought of as consisting of 

two loops. The inner loop is an ordinary control loop composed of the process and the 

regulator. The parameters of the regulator are adjusted by the outer loop in such a 

way that the error e between the model output ym  and the process output y becomes 

small. The outer loop thus also looks like a regulator loop. The key problem is to 

determine the adjustment mechanism so that a stable system, which brings the error to 

zero is obtained. 

The following parameter adjustment mechanism called the MIT rule, was used in 

the original MRAS: 

do _ _ae grade 	 ......... 	(1.1) at - 
where e is the model error and the components of the vector o are the 

adjustable parameters. The number a is a parameter that determines the adaptation 

rate. Eq.(l.1) represents an adjustment mechanism which is composed of three parts: a 
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Fig. 1.1 Block diagram of a Self tuning regulator 

4 

Fig. 1.2 Block diagram of Model-reference adaptive system 



linear filter for computing the sensitivity derivatives from process inputs and 

outputs, a multiplier and an integrator. 

The MIT will perform well if the parameter « is small. The allowable size 

depends on the magnitude of the reference signal. Consequently, it is not possible to 

give fixed limits that guarantee stability. 

Hence, the advantages of the adaptive controller has been exploited and the 

disadvantages of it in the context of robot manipulator has been removed by the help 

of neural network. This provides us the guaranteed stability and the guaranteed 

tracking performance. In chapter 2, we discuss the robot arm dynamics which helps us 

in getting the mathematical model of it. In chapter 3, . the adaptive control algorithm 

has been discussed. Chapter 4 is used to give the algorithm for the neural network 

based controller and the simple PD controller. The neural network based adaptive 

controller has been discussed in chapter 5. Chapter 6 is devoted to give the complete 

result analysis and conclusion of the whole work being done. The appendices are used 

to give the quick reference of the general method of deriving the dynamic equations 

of the robot arm. It also gives the mathematical model of the robot arm having 

revolute joints. The physical parameters for the robot arm used in this work are also 

given in it. 



CHAPTER 2 
ROBOT ARM DYNAMICS 

2.1 INTRODUCTION: 

Robot arm dynamics deals with the mathematical formulations of the equations 

of robot arm 'motion. The dynamic equations of motion of a manipulator are a set of 

mathematical equations describing the dynamic behaviour of the- manipulator. In this 

chapter;- -a --brief -description of these equations are being _ given [4] . 

The actual dynamical model of a robot arm can be obtained from known physical 

laws of Newtonian mechanics and Lagrangian mechanics. This gives the dynamic 

equations of motion for the various articulated joints of the manipulator in terms- of 

geometric and inertial parameters of the links. Here, the actual robot arm motion 

equations are developed systematically with the help of Lagrange-Euler formulations. 

The derivation of dynamic model of a manipulator based on L-E formulation is 

simple. and systematic. It is a set of second order coupled non-linear differential 

equations. It provides the state equations 	for robot dynamics. They can be used to 
solve the forward-dynamics problems and can also be used for the inverse dynamics 
problem, that is, 	given the 	desired 	trajectory or the desired generalized coordinates 
and 	their first 	two 	time 	derivatives, 	the generalized 	force 	or torque 	can 	be 
computed. These Lagrange-Euler formulation is used in our work to get the dynamic 
equations of the robot arm manipulator with two links. 

2.2, LAGRANGE-EULER FORMULATION: 

The general motion equation of a manipulator is conveniently expressed through 

the desired application of the Lagrange-Euler formulation. The algorithm is expressed 

by matrix operations. The derivation of the dynamic equation of an n degrees of 

freedom manipulator is based on the understanding of: 

1) the 4x4 homogeneous coordinate transformation matrix '-IA which describes the 
spatial relationship between the ith and (i-1)th link coordinate frames. 



2) the Lagrange-Euler equation, 
daL aL 	 (2.1) taq • - aq. = `~ 	 ... 

i = 1,2........n 

where L = Lagrangian function = kinetic energy K - potential energy P 

K = total kinetic energy of the robot arm 

P = total potential energy of the robot arm 

q. = generalized coordinate of the robot arm 

= first time derivative of the generalized coordinate qi 

z. = generalized force or torque applied to the system at joint i to drive link 

Here, the generalized coordinates are being used as a convenient set of 

coordinates which completely describes the location (position and orientation) of a 

system with respect to a reference coordinate frame. We have taken the case of 

rotary joints, and therefore, q. =e,, the joint angle span of the joint. 

2.2.1 KINETIC ENERGY OF ROBOT MANIPULATOR: 

The total kinetic energy of a robot arm [7] is, 

n 	 n 	i 	i 

K = E Ki = 	E Tr [ 	 UipJiUirT alp ~l r 	 ....(2.2) 
i=1 	i=1 	p=1 r=1 

n 	i 	i 

K = I E 	E 	E [Tr(UipJiUirT) gi 9r 	 .....(2.3) 
i=1 p=1 r=1 

0 	j-1 
where U" = `~j-1 Qj Ai 	for j < = i 

Ii 
0 	for j > i 	(2.4) 



yt 

zo 

x2. 



0 -100 
1 000 

Qi 	= 0000 
0000 for revolute joints. 

....(2.5) 

.(2.6) 

(2.7) 

1cose 	-cosaisinei  sinaisinei  aicosei  
i-lA 	_ sinei  cosaicosoi  -sinaicosei  aisinei  

1 I 	0 	sin«i  cosai  di  
0 	0 0 1 

-I +1 	+I xx 	zz — 	y 
Ixy  Ixz mixi  

Ixx-IX +Izz 
J i  = I  

xy I yz m iyi 
lyz  IxX+I -IzZ IXZ  

miz.i 
mixi miyi mizi mi 

All All the non-zero elements in the matrix 0Ai  are a function of (01  e2  ......ei) 

and ai, 	ai, di  are known parameters and ei  is the joint variable of joint i. I is the 

inertia tensor of the robot arm. 

2.2.2 POTENTIAL ENERGY OF ROBOT MANIPULATOR: 

Let the total potential energy of a robot arm be P and let each of its link 

potential energy be Pi. Then, 

P = -mig° _ -mig(0Ailri) 	 ......(2.8) 

= 1,2.........n 

and the total potential energy of the robot arm can be obtained by summing all 

the potential energies in each link, 
n 	n 

Therefore, 	P = EPi  = E -mig(OA1'F) 	 ....(2.9) 
i=1 	i=1 



where g = (g gy gZ 0) is a gravity row vector expressed in the base 

coordinate system. For a level system, g is the acceleration due to gravity (g = 

9.8062 m/sec2). 

2.2.3 MOTION EQUATION OF A MANIPULATOR: 

The Lagrangian equation of a manipulator L = K - P is given by, 
n 	i 	i 	 n 

	

L= E. E 	E 	I
Tr(UijJiUik)gjqk] + E mg(OA) 	 ....(2.10) 

i=1 j=1 k=1 	 i=1 

Applying the Lagrange-Euler formulation to the lagrangian function of the 

robot arm eq.(2.10), eq.(2.1) yields the necessary generalized torques -ri for joint i 

actuator to drive the link of the manipulator. In simpler matrix notation form, it is 

expressed as, 

n 	n n 
Ti = E Dik9k + E 	E 	hikmgkgm + Ci 	 ....(2.11) 

k=1 	k=1 m=1 
i = 1,2......n 

or in matrix form as, 

~i = D(q(t))q(t) + h(q(t),4(t)) + C(q(t)) 	 .....(2.12) 
where, 

z(t) = nxl generalized torque vector applied at joints 

i = 1,2.......n 

q(t) = an nxl vector of joint variables of the robot arm 
q(t) = an nxl vector of joint velocity of the robot arm 
q(t) = an nxl vector of the joint acceleration of the robot arm 

D(q) = an nxn inertial acceleration-related symmetric matrix 

whose elements are, 
n 

Dik = 	E 	Tr(UjkJiUjiT) 	 .....(2.13) 
j =max(i,k) 



i,k = 1,2........n 

h(q,y) = an nx 1 non-linear Coriolis and centrifugal force 

vector whose elements are, 

h(q,4) _ (hl, h2,.....,hn)T  

	

n 	n 

	

where hi = E 	hikmgkqm 
k=1 m=1 

i = 1,2...........,n 
n 

and hikm = 	E 	Tr(UjkmJjUjiT) 
j =max(i,k,m) 

i,k,m = 1,2..........n 

C(q) = an nxl gravity loading force vector whose elements are, 

C(q) = (c1,c2,........,cn)T  
n 

where ci  = E (-m gU-. rj) 
j=1 

i = 1,2..........n 

.....(2.14) 

...:..(2.15) 

.....(2.16) 

The motion equations of the robot arm with rotary joints are given in Appendix 

A. 

2.3 A TWO LINK MANIPULATOR EXAMPLE: 

Using the Lagrange-Euler equations of motion, an example is worked out here 

for a two link manipulator with revolute joints which is further being used in the 

simulation work of the thesis. 

Assuming, 

joint variables = e, 02  

mass of the manipulator links = m1, m2  

link parameters = a 1  = a2  = 0; d1  = d2  = 0 

and a1  = a2  = 1, the length of the arms. 

the homogeneous coordinate transformation matrices i-4Ai  (i = 1,2) are 

obtained as, 



Cl -Si Old 
0A = S1 C1 0 iS1 

1 	0 0 1 0 
0 0 0 1 

C2 -S2 0 1C2 
1 A = S2 C2 0 1S2 

2 	0 0 1 0 
0 0 0 1 

C12 -S12 0 l(C12+C1) 

	

0 	°A 	S12 C12 0 	l(S12+S1) 

	

A2 — A 1 A2 — 0 0 1 	0 

	

0 0 0 	1 

where C; = cos(e;); Si = sin(e); 'C ;j = cos(o;+off); 

S 	sin(oi +off); 

From the definition of the Q; matrix, for the rotary joints, we have, 

0 -1 00 
Q~ = 1 

0 
000 
000 

0 000 

Then, 

1-s1 -C1 0 -IS1 

U  = a°A' = Q10Ai = C
1 -S1 0 is, 

r ao 	 0 0 0 0 
0 0 0 0 

Similarly, we calculate the value of U21 = Q10A2 and 

U22 = °A1Q2'A2. 

From eq.(2.7) assuming all the products of inertia are zero, the pseudo-

inertia matrix Ji will be, 

1/3m112 0 0 -1/2m11 
J1 = 	0 	00 0 

0 00 0 
-1/2m11 0 0 ml 

Then using eq.(2.13), we have, 

DII = Tr(U11J1U11T) + Tr(U21J2U2,T) 

= 1/3m112 + 4/3m212 + m2C212 

D12 = D21 = Tr(U22J2U211) 

1 /3m212 0 0 -1/2m211  
j
2 	

0 00 0 
 0 00 0 

[-1/2m21 0 0 m2 



= 1/3m212  + 1/2m212C2  

D22  = Tr(U22J2U22T) 

= 1/3m212S122  + 1/3m212C1j2  = 1/3m2I2. 

To derive the Coriolis and centrifugal terms, we use eq.(2.14). For i = 1, we 

have, 

h1 = h11112  + h1126162 + h1216162 + h122°22  

Using eq.(2.15), we can obtain the value of h; . Therefore, 

hl = -1/2m2S212o22  - m2S212o162 

Similarly, for i = 2, we have, 

h2 = h211 o 1 2  + h21212 + h221 ° 1 + h222 

= 1/2m2S212a12. 

Next, we use the eq.(2.16) to derive the gravity related terms, 

C1  = _[migUiilri + m2gU212r2} 

= 1/2m1glC1  + 1/2m2g1Ct2  + m1g1C1  

Similarly, 

C2 = -m2gU222r2 

= 1/2m2glC12  

Finally, the Lagrange-Euler equations of motion for the two link manipulator 

are obtained as, 

-r(t) = D(o)o(t) + h(e,o) + C(e) 



CHAPTER 3 
ADAPTIVE CONTROL OF ROBOT MANIPULATOR 

3.1 INTRODUCTION: 

The general control algorithms are sometimes felt inadequate because of the 

requirement of accurate modelling of the arm dynamics and neglection of changes of 

the Ioad in task cycle which are significant for feedback control strategies. Hence 

the consideration of adaptive control techniques becomes significant for tracking the 

desired time-based trajectory as closely as possible over a wide range of motion and 

payloads. 

Adaptive control methods are based on the assumptions that the parameters of 

the system being controlled do not change too rapidly in comparison to the system 

time constants [6]. Tn the robotic manipulators, the system parameters such as the 

moments of inertia, and the effect of gravity tend to change rapidly as the arm moves 
from 	one configuration 	to 	another. 	This 	is the 	reason, 	why 	the application 	of 

adaptive control methods enjoyed Iimited success in this 	field. 

The basic 	idea 	behind 	adaptive control is 	that 	the 	controller gains 	gradually 
-change as the . parameters of the system being controlled 	evolve. 	It is 	also 	possible 
to change the control 	signal 	abruptly 	on 	the basis of the state of the system 	being 
controlled. Control 	system 	of 	this 	type 	are referred 	to 	as 	Variable- structured 
systems. 

Among the most widely used methodologies are the self tuning regulator and the 

model reference adaptive control. It is being discussed in brief here. 

3.2 MODEL REFERENCED ADAPTIVE CONTROL: 

The concept of a model-referenced adaptive control [7] is based on selecting 

an appropriate reference model and adaptation algorithm which modifies the feedback 

gains to the actuators of the actual system. It is driven by the errors between the 

reference model outputs and the actual system outputs. A general control block 



diagram of MRAC is shown in fig.(3.1). 

A simple model-referenced adaptive control for the control of mechanical 

manipulators has been proposed in [6]. A linear second order differential equation is 

selected as the reference model for each degree of freedom of the robot arm. The 

manipulator is controlled by adjusting the positions and velocity feedback gains to 

follow the model so that its closed loop performance characteristics closely match 

the set of desired performance characteristics in the reference model. 

Defining the vector y(t) to represent the reference model response and the 

vector x(t) to represent the manipulator response, the joint i of the reference model 

can be described by, 

l 1 	a1y1(t) + b1y1(t) + y1(t) = r1(t) 	 .......(3.1) 

Assuming the manipulator is controlled by position and velocity feedback 

gains, and that the coupling terms are negligible, the manipulator dynamic equations 

for joint i can be written as, 

«1(t)x1(t) + (31(t)x1(t) + x1(t) = r1(t) 	 .......(3.2) 

where the system parameters «1(t) and (31(t) are assumed to vary slowly with 

time. 

Using the steepest descent method to minimize the system error which is the 

difference between the response of the actual system and the reference model, the 

system parameter adjustment mechanism is governed by, 

o(t) = k21e1(t)+k,ie1(t)+k0'e1(t) k21u1(t)+k1 iu1(t)+ko1u;(t)] 	 ...(3,3) 

p31(t) = k21e1(t)+k1 e1(t)+k0'ei(t) k21w1(t)+k11w1(t)+ko'wi(t)] 	 ...(3.4) 

where u1(t) and wi(t) and their derivatives are obtained from the solutions of 

the following differential equations. 

a~u1(t) + b;u;(t) + u1(t) = y(t) 	 .......(3.5) 

asẁ (t) + b;w;(t) + wi(t) = y1(t) 	 .... (3.6) 

where y1(t) and y1(t) are the first two time derivatives of response of the 

reference model. 

This closed loop adaptive system involves solving the reference model equation 
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Fig. 3.1 Block diagram for the model-referenced adaptive control 



for the given desired 	input; 	then the 	differential 	equations 	in eq.(3.5) 	and(3.6) 	are 

solved to 	yield 	u1(t) 	and 	w1(t) and 	their 	derivatives 	for eq.(3.3) 	and 	(3.4). 

Finally, solving 	the 	differential- equations 	in 	eq7(3.3)--and__(3.4) yields 	ai(t) 	and 

13,(t) 

3.3 A NEW ADAPTIVE CONTROL ALGORITHM: 

A new adaptive control algorithm for robot manipulator in task space is 

proposed in [4]. In this, the use of prediction error and tracking error to--drive the 

parameter- estimator is proposed, based on sliding mode and the Lyapunov-like 

methodology. Under the assumption that the Jacobian matrix is known, it has shown 

that the proposed adaptive control algorithm is -globally stable and convergent. 

In the absence of friction and other disturbances, the joint space dynamics of 

an n-link robot manipulator is written with the help of Lagrange-Euler equations, 

dkJ(q)gJ + E ci~k(q)giqj + gk(q) = Tk 	 (3.7) 
J 	 i,j 

k = 1,2.......n 

where d are coefficients of the inertia matrix D(q), gk(q) are the 

gravitational forces and torques. The coefficients csJk of the Coriolis and 

centrifugal terms are defined as, 

1 ad. ad. ad.. 
cclk = 2 aqj + aqi + 	 (3.8) 

and are known as Christoffel symbols. The e .(3.6) is written as, 

D(q)q + C(q,q)q + G(q) = -r , 	 ...(3.9) 

where the k, jth element of the matrix C(q,q) is defined as, 
n 

n 
= E c~Jk(q)q 	2 (a9i1 + aq~' + aq,) q

1 	 (3.10) 
i=1 

i=1 

and the component of G(q) is gk. 

Defining, 

e=Yd-Y 



0 
F , 

and 	`s = e - Ae 

where A is a diagonal matrix with positive elements, the adaptive controller 

is defined as, 

z = D(q)q + C(q,q)q + G(q) - K(q-b) 

= Y(q,,)a - K(q-b) 	 ......(3.11) 

hl + h2 
with b = w 

	

	 if sTPJw = 0 
STPJW 

where w is an arbitrary chosen vector w E R', P is any positive definite 

matrix with proper dimension, 

h i  = sTP(A + Yd  + Jq) 

h2  = I  aSTPS 	 a > 0. 

J = aq is the Jacobian matrix and f(q) is the end-effector position 

related to the joint space vector q. 

If we choose parameter update law as, 

= r-' YTK-TJTPs - (3I'-TYTe 

where r = rT > 0, (3 > 0 and K is chosen as 

K  _ D(q) 	if D(q) > 0 
kI 	otherwise. 

where k > 0, then the closed loop system is globally convergent and stable in 

the sense that tracking error e and its derivative will converge to zero when t 

approaches infinity. 



CHAPTER-4 
NEURAL NETWORK BASED CONTROLLER 

4.1 INTRODUCTION: 

Artificial neural systems, or neural networks, are physical cellular systems 

which acquire, store and utilize experiential knowledge. This knowledge is in the 

form of stable states or mappings embedded in networks that can be recalled in 

response to the presentation of signals. 

Various algorithms are available for the purpose of tuning of weights. These 

weights are being tuned in order to get the desired output for a given set of input 

values. Brief introduction of neural networks has been given in [1]. Since we are 

using the error back propagation tuning algorithm in this controller, it is being 

described in steps here. 

2.2 ERROR BACK PROPAGATION TUNING ALGORITHM: 	 ~ R 

The learning of this error back-propagation training algorithm begins with nth/ 

feedforward recall phase in which the single pattern vector 	is given at the input, 
and the layers' responses y and 	are computed. Then the error signal vector is 
computed and after that propagateddtowards the network input nodes. The K J eights 

are adjusted within the matrixwhich is the weight matrix between hidden ayer and 

the output layer. After that JxI weights are adjusted within the matrix V which are 

the weights between the input layers and the hidden layers. The final error value for 

the entire training cycle is calculated after each completed iteration. The learning 

procedure stops when the final error value below the upper bound Emax is obtained. 

The algorithm of error back-propagation training is as follows: 

Given are P training pairs 	 ci I 

{z1 , d1 , 	, d2, ......, zP, dP} 

where z; is (I x 1), d; is (K x 1) and i = 1,2,......,p. Note that the Ith 
component of each z; is of value -1 since input vectors have been augmented. Size J-1 



t 

of the hidden layer having output _y_ s selected. Note that Jth  component of y is of 

value -1, since hidden layer outputs have been augmented: y is (J x 1) and o is (K x 

1). 	2 

Step 1 i> 0, E 	chosen. 

Weights W and V are initialized at small random values: W is (K x J), V is (J 
x 1). 

qE-1,p€-1,EE-0. 

Step 2: Training step starts here. 

Input is presented and the layers' outputs computed. 

zi-z, 	d€dp  

yy = f(vv`z) 	 for j = 1,2.........J 
where v3  is a column vector, is the j'th row of V, and 

ok  = f(wk`Y), 	 for k = 1,2........,K 
where wk  a column vector, is the k'th row of W 
and 	f(x) — 	1 	 ' 

I+ exp -x ' 
Step 3: Error value is computed. 

E E- Z(dk  - ok)2  + E 	for k = 1,2......K 
Step 4: Error signal vectors ao  and ay  of both layers are computed. Vector ao  is (K x 
1) and ay  is (J x 1). The error signal terms of the output layer in this step are, 

1 aok = (dk  - Ok)(1  - Ok2) 	for 1,2,........,K 

The error signal terms of the hidden layer in this step are: 
K _ 2(1 - yt2) E aokwkl 	for j = 1,2.....,J 

k=1 
Step 5: Output layer weights are adjusted. 

Wkj (- Wkj + 'taokYkJ,. 	for k = 1,2.......K 

and j = 1,2......,J 
Step 6: Hidden layer weights are adjusted. 

vii  F vii  + ,4ayiz1 	 for j = 1,2.......J 

and i = 1,2.......I 



Step 7: If p > P then, 

p - p + 1, q f- q + 1 and go to step 2, otherwise go to step 8. 

Step 8: The training cycle is completed. 

For E > Emax,  terminate the training session. 

Output weights W, V, q, and E. 

If E > Emax,  then E - 0, p f- 1 and initiate the new training cycle by going to 

step 2. 

Here, it is observed that although network is non-linear in the feedforward 

mode, the error back-propagation is computed using the linearized activation 

function. The linearization is achieved by extracting the slope f'(net) at each 

neuron's operating point and using it for back-transmitted error signal scaling. 

The f'(net) is given by the sigmoidal function, 

f'(net) = 	1  + exp -net 

4.3 ROBOT ARM DYNAMICS: 

The dynamic equations of motion of an n-link robot manipulator is expressed in 

Lagrange form as 

M(q)q + - Vm(q,ã 9 + G(q) + F(9) = ..........(4.1) 

where 	q(t) 	is 	the joint variable vector, 	M(q) is the inertia matrix, Vm(q,q) 

is the Coriolis and centrifugal matrix, G(q) 	is the gravity vector and F(y) is the 

friction. The z(t) is the control input torque. 

Taking the desired arm trajectory as qd(t), the tracking error is given by, 

e = q(t) - q(t) 	 ........(4.2) 

and the filtered tracking error is given by, 

r =e +ne 	 ........(4.3) 

where A = AT > 0 

Now, the arm dynamics in terms of filtered tracking error may be written as, 

Mr = -  Vmr - t + f 	 ......... (4.4) 

where the non-linear robot function f(x) is, 



i  
f(x) = M(q)(9a - Ae) + Vm(q,~l)(4d - Ae) + G(q) + F(4) 	....(4.5) 

The control input torque is defined as, 
...... (4.6) 

where f(x) is an estimate of f(x) and K„ = KT > 0. Hence the closed loop 

system becomes, 

Mc = -(Kv + Vm)r + f 	 ....... (4.7) 

where the functional estimation error is,given by, 

f(x) = f(x) - f(x) 	 ......(4.8) 

TAe control to incorporates a proportional-plus-derivative (PD) term as 

Kr = K„(6 + Ae). 

4.4 NEURAL NETWORK BASED CONTROLLER: 

The three layer neural net structure which have been considered here is shown 

in fig.(4.I). Given x e Rn' where R" denote the real n-vectors, the net output is 

given by, 	 q. 
N2 	N1 	f 

	

Yi = E [Wino [ E V1kXk + off] + ewe] 	 ...... (4.9) 
j=1 	k=1 	 ~Y 

where ar(.) is the activation function, ~, k is the first to second layer 

interconnection weights and wU is the second to third layer interconnection weights. 

The ovm, eWm, m = 1,2,... are the threshold offsets and NZ is the number of hidden 

layer neurons.  r~ 

Equation 4.1~. can be expressed in matrix format by defining x = 

[x0,x1,.......,XN1]T, Y = [Y0,Y1.........YN31T and weight matrices WT = [w,j], VT 

[vJk]. Including x0 - in x, 	includes 	the threshold vector [e,1 ,©i2........OvN2]T as the 

first column of VT so that VT contains both the weights and the thresholds of the 

first to second layer connections. Then, 

y = W a.(VTX) 	 ...... (4.10) 

Typical selection of the activation function o-(.) with 

zeRis, 
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Fig. 4.1 Three layer neural net structure 



a(z) = 	+ exp -z 	
. .....(4.11) 

which is a sigmoidal function. 

As a first to bridging the gap between adaptive control and the NN control, 

the case of fixed V is taken, This makes the NN linear in the parameters. Defining, 

-0(x) = 0-(V T x) 	 ........ (4.12) 

the net output is given by, 

y = W rO(x) 	 ...... (4.13) 

Assuming the existence of constant ideal weights W, TI 	robot function 

eq.(4.5) is written as, 

f(x) = WT(x) + £(x) 	 ........ (4.14) 

where q5(x) is the basis function as defined earlier and c(x) is a known value 

of bounded error. 

Defining the NN functional estimate by, 

f(x) = WTØ(x) 
	 .........(4.15) 

A 
with W the current. value of the NN weights provided by the tuning algorithm, 

the weight deviation or weight estimation error is given by, 
~v  A 

W = W - W 	 .......... (4.16) 

Here, the control input is selected as, 
h 

W WT̀ O(x) + Kr 	 .......... (4.17) 

From above, the closed loop filtered error dynamics become, 
N 

M'r = -(KV + V,)r + WT(x) 	 ........... (4.18) 

Solving eq.(4.18) gives the value of the filtered tracking error r. Using 

eq.(4.3), wyget the value of tracking error e. 

Te filtered tracking error is minimized using the neural net structure which 

further results in the minimization of the tracking error e. After executing the 

process, we get the value of the actual trajectory q(t) by eq.(4.2) as, 

q(t) = q(f(t) - e 	 .......(4.19) 
A 

The value of W is obtained by using the back propagation tuning algorithm. 

Since the control input for eq.(4.1) is given by eq.(4.17), the weight tuning is 



provided by, 

A = ForT 	 ........ (4.20) 

and the dynamics of W is given [1] as, 

W = -ForT 	 ........(4.21) 

where F = FT  > 0 is a constant matrix. The tracking error r(t) goes to zero 

with time and the weight estimation W is bounded. 

4.5 PROCEDURE AND SOFTWARE USED: 

The software for the neural network based controller is written in "C" 

language in a DOS environment. The flow-chart of the complete algorithm is given in 

fig.4.2. The details of the procedure according to the flow-chart is given below: 

Five input nodes are taken in this neural net controller as per the 

requirements. It is for the displacement, velocity and acceleration of the robot 

links. The other two inputs are the tracking error and its first time derivative. 

These five variables are used in eq.(4.5) and hence are taken. Three hidden layer 

nodes and two output nodes for the two links of the robot arm are also taken. 

The weights between the input layer and the hidden layer are randomly chosen 

and kept constant. Keeping it constant without tuning is according to the algorithm 

given which is already discussed earlier. Then the inertial matrix, Coriolis and 

centrifugal matrix, and gravitational matrix is calculated. Here, the zero friction 

is assumed. The external disturbance is also taken as zero. After these calculations, 

the error between the actual position and the desired psition is calculated. Using 

this error value, the filtered tracking error is calculated. If this tracking error 

is not less than the maximum permitted error then the tuning process has been done 

The value of weight estimation error is calculated by using eq.(4.21) and it is used 

in eq.(4.18) to minimize the value of filtered tracking error. The value of error is 

then calculated using eq.(4.19). 

This is how the desired trajectory is tracked. The physical parameters of the 

robot arm which is used here is given in Appendix C and the results are discussed in 
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Fig. 4.3 Flow-chart of PD controller 



chapter 6. 

4.6 PD CONTROLLER: 

For the comparison purpose, a PD controller has also been developed using the 

robot arm dynamics described in section 4.3. The flow-chart of this algorithm is 

given in fig.4.3 and its results are discussed in chapter 6. 



CHAPTER-5 
NEURAL NETWORK BASED ADAPTIVE CONTROLLER 

5.1 INTRODUCTION: 

An efficient implementation of a neural network based strategy for the on-line 

adaptive control of the robot manipulator centers on the rapidity of the convergence 

of the training scheme used for learning the system dynamics-. For facilitating this 

requirement, a new multilayer neural network structure proposed by [2] is used here 

which includes dynamical nodes in the hidden layer. 

The procedure employed, uses three-layer neural network structure with a 

hidden layer of dynamical nodes together with a simple distributed updating rule. 

Since a very different updating rule is being used, the manipulator dynamics and 

control problem is discussed in brief here again according to -this _new .algorithm. It 

is given in section 5.2. The three layer neural network structure and its learning 
scheme is discussed in section 5.3 and section 5.4 discusses the implementation—of 

this neural network in the manipulator dynamics. 

5.2 MANIPULATOR DYNAMICS AND THE CONTROL PROBLEM: 

In this section, the introduction of the model for the multijointed 

manipulator which is used for illustrating the control design, is given. 

The equation of motion for a general n-degrees of freedom rigid manipulator as 

derived from Lagrange formulation is expressed [5] in the form, 
n  n n 

ui = E Hii(Y)Yi + E 	E Cij1(Y)Yi91 + G(y) 	 ...(5.1) 
j=1 	 j=1 1=1 

i = 1,2.......,n 

or in matrix form is expressed as, 

u = H(y) Y + C(y,Y) + G(Y) 	 .....(5.2) 

where y = [Y1, Y2 • ...... 9 Y~]T a Rn is the generalized coordinate vector, n is 
the number of joints, 	u 	= [u1 ,u2.....,u„]T a Rn is 	the vector of external forces, 
H(y) E Rnxn is the positive definite and symmetric inertia matrix, c(y,))) E Rn is the 



coriolis and centripetal forces vector and G(y) E Rn is the gravity forces vector. 

A discrete method of solving the non-linear dynamics for the purpose of 

controller design has been given in [2]. This discretized model is given by, 

Y1(k+ 1) = 0i(Ye(k),)b(k),ue(k)) + 0;(Y~(k),Ya(k),u,(k))ui(k) 	 .....(5.3) 

where, 	Ya(k) = [Y(k)Y(k-1)..........y(k-m,)]T 

Yb(k) = [Y(k)Y(k-l)..........y(k-m2)]T 

ua(k) = [u(k-1)u(k-2)........u(k-m3)]T 

y(k) = [Y(k)Y(k-1)..........y(k-m4)]T 

Yd(k) = [Y(k)Y(k-1)..........y(k-ms)]T 

and 	u(k) = [u(k-1)u(k-2)........u(k-m6)]T 	 .....(5.4) 

o(.) and (.) are the continuous non-linear functions of the arguments u, y 

and y• m1, m2, m3, m4, ms and m6 are appropriate positive integers and is selected 

according to the requirement of the number of delayed signals given to the 

controller. The more the number of delayed signals, the more will be the adaptation 

of the controller according to the varying parameters. 

The task is to evaluate the controls u;(k), i = 1,2,..:..n to be applied to 

individual joints such that it can follow the desired trajectory motion yd;(k) of 

each joint. 	The objective 	is to employ the neural-network based approach for the 

identification 	of the unknown function /(.) and 	(.) at each time step 	in order to 

facilitate the computation of required controls. 

5.3 THREE LAYER NEURAL NETWORK WITH LEARNING SCHEME: 

Here, the consideration of a three layer network [2] 	is taken with a hidden 

layer comprising of dynamical nodes for approximating the mapping between the input 

vector z(k) = [zl (k),z2(k),......zp(k)]T and the corresponding scalar output y(k). 

The dynamics of the network architecture shown in fig. 5.1 are described by, 

x = -x + Wg(x) + Bz(k) 	 .......(5.4) 

and 	y(k) = hTx* 	 .......(5.5) 

where x e R9 and g(.) is a vector valued function with sigmoidal elements. W E 
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R9"q, B e R9"I and h E R9 specify the interconnection weights. In eq.(5.5), x 

denotes the stable equilibrium of eq.(5.4) 	for the input pattern presentation z(k) at 

instant k. Under the 	attainment of 	steady state conditions, (5.4) 	and (5.5) 	is 

replaced by, 

x* = Wg(x*) + Bz(k) ....... (5.6) 

Y(k) = hTx* .......(5.7) 

or equivalently, 
q 	 p 

xis = 	E 	wijgj(xj*) + 	E b;,zl(k) ...(5.8) 
j=1 	 1=1 
q 

y(k) = 	E 	hix;* ...(5.9) 
i=1 

where x;*, w, b11, z1,and hi are elements of x* e R9, W e 

Rq"q, g e Rq, B E R 	z E R and h e Rq respectively. 

The training scheme for minimizing the output error 

E(k) = [Yd(k) = Y(k)] 	_ [Ydk) 
12 

- hTx*
1 

...(5.10) 

where yd(k) is the desired output, is obtained in the form, 

h;(k+ 1) = hi(k) + µi [Yd(k) - y(k)] x1* 
i = 1,2,....., 	q 

w1 (k+l) = w11(k) + 12h1(k) [Ya(k) - y(k)]gj(xj*) 
...(5.11) 

i,j = 1,2........q 
b1~(k+1) = b1 (k) + 	13h~(k)[Ya(k) - Y(k)]zz(k) 

i 	= 	1,2......q, 	j = 	1,2.....,p 

where µl , 112 and µ3 are appropriately selected updating parameters. 

5.4 IDENTIFICATION AND CONTROL ARCHITECTURE: 

The objective in this section is to - employ the dynamical network given by 

(5.4) and (5.5) together with the training scheme given by (5.11) for the 

identification of the functions oi(.) and tpi(.) in the manipulator dynamics specified 

by (5.3) in order to compute the required control u1(k) for the ith joint. 

If the 	function 	oi(.) and 	/ii(.) are 	exactly known, then 	for 	tracking 	the 



1 

desired output yd;(k+ 1), the required control u1(k) is computed as, 

u1(k) = Yd (k) - -0i(k) 	 ....(5.12) 

However, since there is no prior information of the value of o;(k) and y,;(k), 

a neural network based identification of these parameters are performed by using the 

model, 

)(k+1) _;(.) + ;(.)u;(k) 	 .....(5.13) 

and the architecture shown in fig.(5.2). 

NNo, and NNE,, are two distinct neural networks of the type described in (5.4) 

and (5.5) with adjustable parameters (interconnection weights) used to obtain the 

approximation of o1 and iii by the function ~; and yi; respectively. Employing the 

learning algorithm specified by (5.11) in order to minimize the error 

E1(k+1) = [
Y

i(k+1) - y";(k+1)]2 ...(5.14) 

 NNE, and NNP, are trained closely to approximate o;(.) and 
W;(.) by o;(.) and ii;(.) respectively. The control signal u1(k) is then obtained 
from, 

u1(k) _ y 1 (k+1)  - _~(•) 	
...(5.15) 

for tracking the desired signal ydi(k+1). 
The blocks that are marked T.D. 	in fig.(5.2) are tapped delays which give 

appropriately delayed versions of the signals u;(k), y(k) and i(k) in order to 
provide inputs to the the two neural networks. 

5.5 PROCEDURE AND SOFTWARE USED: 

The software' for this controller is designed in "C" language in a DOS 

environment. The complete flow-chart of the implemented algorithm is shown in 

fig.5.3. The complete procedure and the explanation of the flow-chart is given as 
follows: 

The value of m l , m2, m3, m4, ms and m6 are chosen as 2, 2, 0, 2, 2 and 1 
respectively. Hence, according to eq.(5.3), seven input nodes are taken for the input 
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Fig. 5.4 Flow-chart for NN based adaptive control 
in an on-line system 



layer z(k). Two hidden layer nodes xl  and x2  are the members of the hidden layer 

vector x(k) and there is one scalar node y(k). 

Four identical neural net structure are made for the approximation of NNO, and 

NN11,. i.e. NNpo  and NN,,0  for link I and NNO1  and NN 1  for link 2. Initially all the 

weights are randomly chosen between all the layers in the network structure. Then the 

output of these structures are calculated. The actual output is computed by using 

eq.(5.13). Difference between the desired value and the actual value of the NN 

becomes the error value E. This is used for the tuning of the network structure. 

These network structures are tuned till the error E become less than- the -maximum 

permitted error Ema.. 

After the tuning process is completed, all the weights are stored in orderto-

use it in another software which moves the robot on-line. The flow-chart of this 

software is given in fig.(5.4). 

The physical parameters of the robot arm which are taken for the analysis are 

given in Appendix C and the results are discussed in chapter 6. 



CHAPTER -6 
RESULT ANALYSIS, CONCLUSIONS AND 

FUTURE SCOPE OF WORK 

6.1 INTRODUCTION: 

In this chapter, the results of the PD controller, -neural network based 

controller and the neural network based adaptive controller are discussed. A 

comparative study of all these controllers are also given. 

A sine wave and a cosine wave are taken as the desired trajectory for link 1 

and link •2 respectively. In all the graph that has been given, the---desired. trajectory 

is shown by the solid line and the actual trajectory obtained by the controller is 

shown by the dotted (or dashed) line. The physical parameters of the robot arm that 

has been taken for the analysis is given in Appendix C. These parameters are kept the 

same for all the controllers to facilitate the comparison purpose. 

MATHEMATICAL COMPUTATIONS: 

The dynamic equations of motion of the robot manipulator in matrix form is 

written as, 

__ am bm alt + efql+
z2em dm q2[g.rl in 	q2 lm 

The coefficients of the inertial matrix, Coriolis and centrifugal matrix 

and the gravitational matrix as referred to Appendix C are as follows: 

a,,, = 4.999805 

b,n  = 1.666569 

Cm  = 1.566569 

d, = 0.666667 

e11  = -3.350923 

= -1.675462 

gm  = 0.2094327 

1 ] m  = 0.0 



ir, = 34.29875 

jm  = 9.798791 

Hence, the complete dynaimu CLIUMIun-'Is given as, 

	

Fri _ 14.999805 1.666569 qi 	[63.350923 -1.6754621 9 1 	134.29875 

	

It2 — 1.666569 0.666667 q2  + 	 .2094327 	0.0 	q2  + 	 .798791 

6.2 PD CONTROLLER: 

The PD controller is designed by using the algorithm discussed in chapter 4. 

The physical parameters taken for the consideration are as given in Appendix C. The 

desired trajectory is taken as, 

q1 (t) = sin(t) 

q2 (t) = cos(t) 

The desired trajectory and the tracked actual trajectory is shown in fig.6.1, 

Even though 	it seems that 	the 	actual trajectory 	overlaps the 	desired trajectory, 	it 

isn't 	so. 	The 	actual 	trajectory deviates from the 	desired one by an error 	in 	the 

range of 0.01 	for link 1 	and 0.02 for link 2. The graph showing the error in these 

trajectories 	are 	shown in 	fig.6.2(a&b). Since the 	PD 	controller 	is only 	able 	to 

decrease the error upto a 	certain 	limit, almost constant error 	is obtained throughout 

the robot motion. 

6.3 NEURAL NETWORK BASED CONTROLLER: 

The algorithm to design this controller is also given in chapter 4. The 

physical parameters of the robot arm used here is the same as has been used in the PD 

controller. The desired trajectory of the links are also kept the same. 

The tracked actual trajectory and the desired trajectory in this case is shown 

in fig.6.3. By viewing the graph, it is analyzed that this controller is tracking the 

desired trajectory more closely than the PD controller. The error in this case is in 

the range of 0.005 for link 1 and 0.007 for link 2 which is lower than that of the 

previous controller. This shows that this controller is better than the PD controller 

for the more precise work. The graph showing the deviation of the actual trajectory 
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from the desired one is shown in fig.6.4(a&b) for both the links. 

Fig.6.5 shows the comparative study of PD controller and the NN based•

controller. It shows the error in the- case of both the controllers for -tracking the 

desired trajectory. It is clearly shown that the NN based controller is having_ less 

error than the PD controller. 

6.4 NEURAL NETWORK BASED ADAPTIVE CONTROLLER: 

The algorithm for the design of this controller is given in chapter 5. The 

physical parameters of the robot arm is again kept the same as that for the two 

previous controllers. In it, initially the value of y(k-2), y(k-1), yd(k-2) and yd(k-

1) are kept at zero. All the calculations are done according to the algorithm given. 

The desired trajectory and the tracked actual trajectory is shown in fig.6.6. This 

figure shows the representative joint trajectories used for training and also the 

output of the neural network after training is completed (shown by dotted lines). 

In this graph, it is noted that the actual trajectories overlaps the desired 

trajectories. Here, the deviation of the tracked actual trajectories is in the range 

from -0.00001 to 0.00001.(means the error is almost zero in this case). This 

deviation of the actual trajectory from the desired one is shown in fig.6.7(a&b).. 

A comparative study of all the three controllers is shown in fig.6.8. In it, 

it is noticed that the error in the case of PD controller is greater than - that of the 

NN based controller and the error of both these controllers are very much higher than 

the NN based adaptive controller. This shows the superiority of the NN based adaptive 

controller over all other controllers. 

Fig. 9 shows the case when the payload is increased after robot has tracked 

for 4 secs. 

Because of the limitations of the computer being used, the error in the case 

of on-line NN based adaptive control is little more than the off-line one. This is 

shown in fig. 10 and fig. 11. Fig. 10 is for- link 1 and fig. 11 is for link 2. This 

error is due to the truncation of the values when it takes it from the data file. 



6.5 CONCLUSIONS: 

It is confirmed that the neural network based controller for the robot 

manipulator is very precise and fast in comparison to all other controllers. It is 

also been noted that the inclusion of the neural network in highly complex dynamics 

helps us in obtaining a more precise work than the other controllers without it, It 

gives us the guaranteed tracking performance. 

It is also been noted that as the number of iterations in minimizing the 

filtered tracking is increased, more and more accuracy is obtained. 

6.6 FUTURE SCOPE OF WORK: 

The neural network based adaptive controller which is developed in this work 

is only a software which is not been interfaced with the physical robot arm. Taking 

the idea from this controller, it is possible to develop a software which can be 

interfaced with the robot arm and can control it on-line. A practical work over it 

can be done. 

With the help of this practical work, we can confirm the real supremacy of NN 

based adaptive controller over other conventional controllers It can be done by doing 

a comparative study using both the controllers in turn to control the robot 

manipulator. 
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APPENDIX - A 

The acceleration related symmetric matrix D(e) is given by, 

D11 D12 013 D14 D15 016 
D12 D22 023  D24  025  D26 
013 D(o) = D23 D33 D34 035 036 
D14 D24 034  D44 D45 D46 
D15 D25 035  045 D55 D56 
D16 D26 036 046 056 D66 

1311  = Tr(U11J1U11T) + Tr(U21J2U21T) + Tr(U31J3U31T) + Tr(U41J4U41T) + Tr(U51J5U51T) + 

Tr(U61J6U611) 

D12  = D21  = Tr(U2212U21T) + Tr(U32J3U31T) + Tr(U42J4U41T) + Tr(US2J5U51T)  + 

Tr(U62J6U61T ) 

D13 = D31  = Tr(U33J3U311) + Tr(U43J4U41T) + Tr(U53J5U51T) + Tr(U63J6U61T) 

D14  = D41  = Tr(U44J4U41T) + Tr(U54J5U51T) + Tr(U64J6U61T) 

1315  = D51  = Tr(U55J5U51T) + Tr(Ub5J6U611) 

D16 = D61  = Tr(U66J6U61T) 

D22  = Tr(U22J2U22T) + Tr(U32J3U32T) + Tr(U42J4U42T) + Tr(U52J5U52T)  + Tr(U62J6U62T) 

D23 = D32  = Tr(U33J3U32T) + Tr(U43J4U42) + Tr(U53J5U52T) + Tr(U63J6U62T) 

D24 = D42  = Tr(U44J4U42T) + Tr(U54J5U52T) + Tr(U64J6U62T) 

D25 = D52  = Tr(USSJ5U52T) + Tr(U65J6U62T) 

D26 = D62  = Tr(U66J6U62T) 

D33 = Tr(U33J3U33 ) + Tr(U43J4U43T) + Tr(U53J5U53T) + Tr(U63J6U631) 

D34 = D43  = Tr(U44J4U43T)  + Tr(US4J5U53T) + Tr(U64J6U63T) 

D35 = D53  = Tr(U55J5U531)  + Tr(U65J6U63T) 

D36 = D63  = Tr(U66J6U63 ) 

D44 = Tr(U44J4U441) + Tr(U54J5U541) + Tr(U64J6U64 ) 
D45 = D54  = Tr(U55J5U541) + Tr(U65J6U64T) 



D46 = D64 - Tr(U66J6U64T) 

DS5 = Tr(USSJ5U551) + Tr(U65J6U65T) 

DS6 = D65 = Tr(U66J6U661') 

D66 = Tr(U66J6U66) 

The Coriolis and centrifugal terms: 

The velocity related coefficients in the Coriolis and centrifugal terms in 

eq.(2.14) and (2.15) are expressed by a 6x6 symmetric matrix denoted by Hi and 

defined in the following way: 

hi11 hi12 hi13 hi14 hits hi16 
hi12 hi22 h123 h124 hi25 hi26 
hi13 hi23 hi33 hi34 hi35 hi36 
h h h h h h 	i=  
s14 d4 i34 i44 i4S i46 

h 15 h h h • ~ I S dS i33 i4S ►SS h i36 

hi16 hi26 hi36 hi46 hi56 hi66 

Let the velocity of the six joint variables be expressed by a six-dimensional 

column vector denoted by e: 

e(t) = 	 1(t),e2(t),o3(t),e4(t),e5(t),e6(t)]
T 

Then, eq. (2.14) can be expressed in the following compact matrix-vector 

product form: 

hi = 6THI vb 

where the subscript i refers to the joint (i = 1,2,...,6) at which the 

velocity induced torques or forces are felt. 

The Gravity terms: 

From eq(2.16) we have, 

C(©) = (C1,c2,C3,C4,C5,C6)T 

where, 



cl  = -(migUiilrl + m2gU212r2  + m3gU313r3  + m4gU414r4 + m5gU515r5 + m6gU616r6) 

c2 = -(m2gU222r2 + m3gU323r3 + m-4gU424r4 + m5gU525r5 + m6gU626r6) 

C3  — -(m3gU333r3 + m4gU434r4  + m5gU535r5 + m6gU636r6) 

C4 = -(m4gU444r4 + m5gU545r5 + m6gU646r6) 

c5 = -(m5gUss-rs + m6gU656r6) 

C6 = -m6gU666r6 

The coefficients c;  represents the gravity loading terms due to the links and 

is defined by eq.(2.13). The coefficient DIk  is related to the acceleration of the 

joint variables and is defined by eq.(2.16). The coefficients hikm  is related to the 

velocity of the joint variables and is defined by eq.(2.15). 



APPENDIX - B 

The Lagrangian L is defined as the difference between the kinetic 

energy K and the potential energy P of the system, 

L = K - P 

The figure of the robot manipulator used for the derivation is given in 

fig.(1). The kinetic energy of mass ml is written as, 
1 	2. 2 	 ...(2) K1 = .2 mld l of 	 •• 

The potential energy is related to the vertical height of the mass 

expressed by the y coordinates and may be written directly as, 

P1 = -mlgdlcos(el) 	 .....(3) 

In the case of the second mass m2, the expression for the cartesian 

position coordinates are written first, and then differentiating them in order to 

obtain the velocity. Thus, 

x2 = d1sin(e1) + d2sin(e, + 02) 	 ......(4) 

Y2 = -d lcos(o l) - d2cos(e l + 02) 	 .....(5) 

The cartesian component of the velocity are then, 

x2 = dicos(el)o1 + d2cos(e1 + e2)(© + 02) 	 .....(6) 

Y2 = d1sin(e1)b, + d2sin(O1 + 02)(61 + 02) 	 ....(7) 

and the kinetic energy is, 

K2 = '~ m2d 12612 + '~ m2d2 I 

t

O I2 + 20102 + e22
1 

+ m2d l d2cos (o2) (612 + 6162) 	 ... (8) 

and the potential energy is, 

P2 = -m2gd1cos(e1) - m2gd2cos(el + 02) 	 ...(9) 

Therefore, 

L = (ml + m2)d12o12 + 2 m2d22[1512 + 26,62 + 622] + m2d1d2cos(e2)(o12 + 0162) 

+ (ml + m2)gd1cos(el) + m2gd2cos(e1 + 02) 	 ...(10) 

Differentiating the Lagrangian L with respect to angular velocity a and taking 

the time derivative, we get, 



1 

d eL 	m + m2)d12 + mAd22 + 2m2d,d2cos(e2)]el 

+[m2d2 + m2dld2cos(e2)]o2 - 2m2d1d2sin(o2)o1o2 

- m2dtd2sin(e2)a22 	 ...(11) 

and differentiating the Lagrangian with respect to the angular displacement e, 

we get, 
eL 	-(m1 + m d sin a 	an d sin o+ o 	 ...(12) 
aex 	( 	~g 	(i) - ~g z (~ 	z) 

Combining eq.(11) and eq.(12) we get the value of torque at link 11 as, 

T2 = 
I(m

l + m2)d12 + m2d22 + 2m2didicos(e2)]el + [m2d22 + m2dld2cos(e2)]o2 

- 2m2d,d3sin(e2)b1e2 - m2dld2sin(e2)o22 + (m1 + m2)gd1sin(el) 

+ m2d2gsin(e1 + e2) 	 .....(13) 

To obtain the equation for the torque at joint 2, differentiate the Lagrangian 

L with respect to e2 and e2 and the apply the Lagrange-Euler equation. Doing this we 

get, 

T2 = IM 2d2 2 + m2dld2cos(e2)]oi + m2d22o'2 - 2m2d1d2sin(e2)31e2 - 

m2d1d2sin(e2)612 + m2gd2sin(e1 + e2) 	 ......(14) 

The coefficients of e'i are known as inertial terms because an inertial term at 

joint i causes a torque at joint i equal to Di;o;. The coefficients of aj2 is known 

as the centripetal force acting at joint i due to velocity at joint j and the 

combination of the terms of o~bk are known as Coriolis force acting at joint i due to 

the velocities at joint j and joint k and the remaining terms are the gravitational 

terms. 
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ERRATA 

Page no. Line no Corrected Statement 

28 16 „V jk" is "v~k" 

28 20 "Equation 4.1" is "Equation 4.9" 

33 26 equa-.:on no. "5.4" is equation no. 	'r' 

27 equation no. "5.5" is equation no. 

35 2, 	3, 22 equation no. "5.4" is equation n/ 

35 3,22 equation no. "5.5" is equation 

36 10 "function Oi and iii" 	is 	"functi, 

42 15 "Initially, when the robot are 

position the coefficients of 
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APPENDIX - C 

1. Mass of link 1 = 2.0 kg. 

2. Mass of link 2 = 1.0 kg. 

3. Length of link 1 1.0 m. 

4. Length of link 2 = 1.0 m. 

5. Initial position of link 1 = 6.00  

6. Initial position of link 2 = 37.0°  

Constant matrix 

F. 	ro 0 
 5 

and 

- fl 0 LO 1 
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