# STABILITY ANALYSIS AND OPTIMIZATION OF A MULTIBED QUENCH REACTOR FOR AMMONIA SYNTHESIS

F-88

SIN

Acc. N

A THESIS

Submitted in fulfilment of the requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING



SUDHINDRA NATH SINHA

By



DEPARTMENT OF CHEMICAL ENGINEERING UNIVERSITY OF ROORKEE ROORKEE-247 667 (INDIA)

JULY, 1988

## CANDIDATE'S DECLARATION

hereby certify that the work which is being presented Ι in thesis entitled "STABILITY ANALYSIS AND OPTIMIZATION OF the Α QUENCH REACTOR FOR AMMONIA SYNTHESIS" in fulfilment MULTIBED of requirement for the award of the Degree of Doctor the of Philosophy submitted in the Department of Chemical Engineering of the University is an authentic record of my own work carried out during a period from August, 1984 to July, 1988 under the supervision of Dr.S.K.Saraf.

The matter embodied in this thesis has not been submitted by me for the award of any other Degree.

Dated: July 7, 1988 (SUDMINDRA NATH SINHA) This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

> ( SHANT KUMAR SARAF ) Professor of Chemical Engineering University of Roorkee, Roorkee (U.P.) 247667-India

The candidate has passed the Viva-Voce examination held on at . The thesis is recommended for award of the Ph.D. Degree.

(S.K.SARAF)

External Examiner

יור בלי ה- וו

Guide

## ABSTRACT

The stability analysis and optimization of an axial flow three bed quench type ammonia synthesis reactor was carried out to optimize its performance. The reactor operation at optimal cold shot fractions for a given set of the operating and design parameter values will result in the maximization of the rate of production of ammonia and stable operation. This will result in low bed temperatures and reduced total pressure drop. The low bed temperatures will result in increase in catalyst life whereas reduced pressure drop will reduce the operating cost.

Modern large capacity reactors are used for production of ammonia used as a feedstock in the production of urea. Urea is essential to boost agricultural production in India. A realistic accurate mathematical model of a large capacity multibed and autothermic quench-type ammonia synthesis reactor was formulated solved by modified Milne-Predictor-Corrector numerical and integration technique using an appropriate convergence strategy. optimization of the cold shot distribution was achieved The by maximization of the rate of ammonia production as taking an /objective function. The Box complex direct search optimization technique was used for sixteen set of conditions over a wide range of values of six operating and design parameters. These parameters were feed gas flow rate, H /N ratio in feed, inerts 2 2 concentration in feed, catalyst activity factor, total volume of catalyst and operating pressure of the reactor.

(i)

In order to estimate the model parameters for an industrial reactor for simulation study, data from plant were extracted for the period of steady-state operation over several months. The data had a serious limitation that no measured value of cold shot fractions were available except for the first bed inlet where its value was always kept at zero. Validation of simulation model from the plant data was carried out by obtaining best values of model parameters and cold shot fractions. The estimated model parameters are: frequency factor and activation energy in the reverse reaction rate constant correlation for the catalyst used; correction for fugacity coefficient term; and heat exchange capacity of external heat exchanger. Their best values are found mol NH /s/m; 97622.4 kJ/kmol; 1.379; and to be 4.11482 \* 10 316000 W/K at feed flow rate of 0.74\*10 Nm /h., (where N indicates N.T.P. conditions), respectively. The simulated cold shot values as fractions of total feed gas for the average plant conditions (base case) are found to be 0.245 and 0.100 for the second and the third bed inlet, respectively. Cold shot to the first bed was taken to be zero as per plant practice.

The optimization computations for one set of conditions required generally 5 to 8 minutes of CPU time on DEC 20 computer system. The optimization results indicate that the conversion and the bed temperatures are quite sensitive to the values of the operating and design parameters. Cold shot fractions at optimal conditions are strongly dependent on these parameters. An indiscriminate use of cold shot fractions resulted in either quenching of the reactor or a non optimal performance resulting

(11)

in significant loss of production, higher bed temperatures and increased pressure drops. The use of optimal cold shot fractions increased the rate of production of ammonia by 20 to 110 t/d (where 1 t = 1000 kg and 1 d = 86.4 ks) compared to actual plant production of 1286.9 t/d, even if the operating and design parameters changed in adverse direction by about 10 to 30 percent from the base value. The rate of ammonia production shows an increase with an increase in flow rate, catalyst activity, operating pressure or total catalyst volume; or and a decrease in inerts concentration. It was found that the region near optimal is not sharp with constraints on upper values of cold shot fractions resulting in the extinction of the reactor. It is further observed that optimal cold shot fractions do show a trend, to an extent linear with repect to change in parameters, namely, feed gas flow rate, catalyst activity factor, total catalyst volume and the reactor operating pressure.

An increase in the rate of ammonia production of 10.3 percent (132 t/d) is observed if the operation is carried out at optimal cold shot fractions to first, second and third bed of 0.110,0.233 and 0.232, respectively, for the base case. It is observed that the effect of change in H /N ratio in the feed 2 gas from 3.0 is not significant on reactor performance and rate of ammonia production. It is observed that the reactor stability near its optimal operation is quite sensitive to increase in cold shot fractions and an increase beyond a critical value may result in its extinction or blow-out. The use of simulation model is, therefore, highly desirable to operate the reactor near

(iii)

optimal values of cold shot fractions for any set of parameter values in order to achieve maximum ammonia production rate. Simulation model can also be used for developing a suitable control strategy for cold shot distribution for ensuring optimal reactor operation.

## ACKNOWLEDGEMENT

I am thankful to Dr.S.K.Saraf, Professor, for his guidance and keen interest shown in my thesis work from time to time inspite of his preoccupation with other works.

I am thankful to Dr.B.S.Varshney, Professor and Head, Department of Chemical Engineering for providing necessary facilities.

I owe a lot to my father, Late Shri Thakur Lakshmi Shankar Sinha who was very keen to see my doctorate complete. I could not give him due attention during his ailment as I became busy in my doctorate work along with teaching work. It was to my bad luck that he could not see my work complete and went to heavenly abode within six months of my registering for doctorate work. Further, I owe a lot to my mother, Shrimati Prabha Sinha who very much needs my attention now. I owe a lot to the patience and co-operation of my wife, Shrimati Neeta Sinha and two sons Ashish and Mohit to whom I could not give proper attention during the course of my research work.

I am thankful to the co-operation extended by my colleagues Mr. Ravindra Bhargava, Dr. I.M.Mishra, Dr. Surendra Kumar and Dr. Bikas Mohanty in completion of my work.

Finally I am thankful to all my friends who have contributed in one way or other towards completion of my work.

S.N.SINHA

(v)

CONTENTS

(ví)

| CANDIDATE'S DECLARATION                     |       |
|---------------------------------------------|-------|
| ABSTRACT                                    | (i)   |
| ACKNOWLEDGEMENT                             | (v)   |
| CONTENTS                                    | (vi)  |
| LIST OF FIGURES                             | (ix)  |
| LIST OF TABLES                              | (xi)  |
| NOMENCLATURE                                | (xii) |
| CHAPTER-I<br>1. INTRODUCTION CHAPTER-II     | 4     |
| 2. LITERATURE REVIEW                        | 5     |
| 2.1. Literature review on ammonia synthesis | 5     |
| reactor modelling and simulation            |       |
| 2.2. Literature review on Kinetic,          | 15    |
| thermodynamic and Physical properties       |       |
| CHAPTER-III                                 | 2     |

## CHAPTER-III

÷

| 3.   | REACTOR MODELLING AND DESIGN RELATIONSHIPS | 19 |
|------|--------------------------------------------|----|
| 3.1. | Reactor modelling and design relations     | 19 |
| 3.2. | Effectiveness factor relation              | 35 |
| 3.3. | Equilibrium conversion relation            | 37 |
| 3.4. | Conversion corresponding to maximum rate   | 38 |
|      | 1                                          |    |

| CHAPT  | ER-IN       |                                           | (vii) |
|--------|-------------|-------------------------------------------|-------|
| 4      | •           | TECHNIQUE FOR OPTIMIZATION OF AMMONIA     | 42    |
|        | នរ          | INTHESIS REACTOR                          |       |
| 4      | .1.         | Description of the complex search method  | 44    |
| CHAPT  | <u>ER-Y</u> |                                           |       |
| Б      |             | COMPUTATION TECHNIQUE                     | 49    |
| 5      | .1.         | Computation technique for optimization    | 49    |
| 5      | .2.         | Convergence policy                        | 52    |
| 5      | .3.         | Numerical integration procedure           | 53    |
| 5      | .4.         | Computer program features                 | 57    |
|        | S.,         |                                           | 2     |
| CHAPTI | ER-VI       |                                           |       |
| 6.     |             | ESTIMATION OF SIMULATION MODEL PARAMETERS | 60    |
|        |             | FROM PLANT DATA                           |       |
| 6      | .1.         | Purpose of estimation of Parameters and   | 60    |

parameters description

| 6.2. | Parameters | estimation | technique | <br>61 |
|------|------------|------------|-----------|--------|
|      |            |            |           |        |

- 6.3. Selection of Physical properties, thermodynamic and kinetic correlations
- 6.4. Description of procedure for kinetic and 65 thermodynamic parameter estimation

- 6.5. Procedure for the estimation of external 67 heat exchanger capacity
- 6.6. Reliability and accuracy of the validated 68 simulation model

| CH/          | APTER-1 | II                                 |                                 | (viii)   |
|--------------|---------|------------------------------------|---------------------------------|----------|
|              | 7.      | RESULTS AND DIS                    | CUSSION                         | 70       |
|              | 7.1.    | Parameter estim                    | ation for reactor               | 70       |
|              | 7.2.    | simulation mode<br>Choice of varia | l<br>bles and their ranges for  | 87       |
|              |         | simulation stud                    | ies                             |          |
|              | 7.3.    | Simulation resu                    | lts for the base conditions     | 90       |
|              | 7.4.    | Effect of varia                    | tions in design and operating   | 120      |
|              |         | parameters on r                    | eactor performance              |          |
|              | 7.5.    | Considerations :                   | for optimal design and          | 132      |
|              | 100     | operation                          | 누른 친구가 다 가 없다.                  |          |
| CHAPTER-VIII |         |                                    | 2                               |          |
|              | 8.      | CONCLUSIONS AND                    | RECOMMENDATIONS                 | 134      |
| ,            | 8.1.    | Conclusions                        |                                 | 134      |
|              | 8.2.    | Recommendations                    |                                 | 137      |
|              | ÷.      | REFERENCES                         |                                 | 138      |
|              |         | APPENDIX-A                         | TABLES OF OPTIMIZATION RESULTS  | 144      |
|              | C.      | APPENDIX-B                         | COMPUTER PROGRAM FOR SIMULATION | 151      |
|              | 1       | 1.2.                               | AND OPTIMIZATION OF A MULTIBED  | <u>.</u> |
|              |         |                                    | QUENCH TYPE REACTOR FOR AMMONIA |          |
|              | ·       | 1 . Ma                             | SYNTHESIS                       |          |
|              |         | ~7 ~                               | e ob lEthon." CA                |          |
|              |         | ~ ~ 2                              | nnns                            |          |
|              |         |                                    |                                 |          |

ļ

LIST OF FIGURES

| DESCRIPTION                                                                                                                                                                                                 | FIGURE | PAGE |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| Simplified Flow Diagram of Three Bed<br>Quench Type Ammonia Synthesis<br>Reactor with Internal and External<br>Heat Exchange Capacity.                                                                      | 3.1    | 21   |
| Ammonia Concentration and Temperature<br>Profiles in Catalyst Beds (See Table 7.2.1<br>for base conditions).                                                                                                | 7.1    | 94   |
| Ammonia Concentration Versus Temperature<br>in Catalyst Beds (See Table 7.2.1 for<br>base conditions).                                                                                                      | 7.2    | 95   |
| Reactor Operating Points and Their<br>Stability (See Table 7.2.1 for base<br>conditions).                                                                                                                   | 7.3    | 96   |
| Effect of Feed Gas Flow Rate on Ammonia<br>Concentration-Temperature Profile in<br>Catalyst Beds for Optimal Cold Shot<br>Distribution (Base conditions, set No. 1,<br>are given in Table 7.2.1).           | 7.4    | 97   |
| Effect of Feed Gas Flow Rate on Reactor<br>Operating Points and Their Stability<br>(Base conditions, set No. 1, are given<br>in Table 7.2.1).                                                               | 7.5    | 98   |
| Effect of $H_{1/N_{2}}$ Ratio in Feed on<br>Ammonia Concentration-Temperature Profile<br>in Catalyst Beds for Optimal Cold Shot<br>Distribution (Base conditions, set No. 1,<br>are given in Table 7.2.1).  | 7.6    | 99   |
| Effect of $H_2/N_2$ Ratio in Feed on<br>Reactor Operating Points and Their Stability<br>(Base conditions, set No. 1, are given in<br>Table 7.2.1).                                                          | 7,7    | 100  |
| Effect of Inerts Concentration in Feed<br>on Ammonia Concentration-Temperature<br>Profile in Catalyst Beds for Optimal<br>Cold Shot Distribution (Base conditions,<br>set No. 1, are given in Table 7.2.1). | 7.8    | 101  |
| Effort of Incents Course in the second                                                                                                                                                                      |        |      |

Effect of Inerts Concentration in Feed on 7.9 Reactor Operating Points and Their

|                                                                                                                                                                                                         | 1    | (x) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| Stability (Base conditions, set No. 1, are given in Table 7.2.1).                                                                                                                                       |      | (X) |
| Effect of Catalyst Activity Factor<br>on Ammonia Concentration-Temperature<br>Profile in Catalyst Beds for Optimal<br>Cold Shot Distribution (Base conditions,<br>set No. 1, are given in Table 7.2.1). | 7.10 | 103 |
| Effect of Catalyst Activity Factor<br>on Reactor Operating Points and<br>Their Stability (Base conditions,<br>set No. 1, are given in Table 7.2.1).                                                     | 7.11 | 104 |
| Effect of Total Catalyst Volume on<br>Ammonia Concentration-Temperature Profile<br>in Catalyst Beds for Optimal Cold Shot<br>Distribution (Base conditions, set No. 1,<br>are given in Table 7.2.1).    | 7.12 | 105 |
| Effect of Total Catalyst Volume on<br>Reactor Operating Points and Their Stability<br>(Base conditions, set No. 1, are given in<br>Table 7.2.1).                                                        | 7.13 | 106 |
| Effect of Operating Pressure on<br>Ammonia Concentration-Temperature<br>Profile in Catalyst Beds for Optimal<br>Cold Shot Distribution (Base conditions,<br>set No. 1, are given in Table 7.2.1).       | 7.14 | 107 |
| Effect of Operating Pressure on<br>Reactor Operating Points and Their Stability<br>(Base conditions, set No. 1, are given in<br>Table 7.2.1).                                                           | 7.15 | 108 |

R

S

AND THE OF THE

| TABLE   | DESCRIPTION                                                                                                  | PAGE |
|---------|--------------------------------------------------------------------------------------------------------------|------|
| 3.2.1   | Constants for Equation (3.2.1).                                                                              | 36   |
| 6.2.1   | Selected Plant Data Extracted from<br>a Typical Ammonia Plant Log Sheets.                                    | 62   |
| 7.1.2.1 | Comparison of Frequency Factor and<br>Activation Energy Values in the<br>Reverse Reaction Rate Constant, k . | 72   |
| 7.1.2.2 | r<br>Comparison of Equilibrium Constant, K.                                                                  | 75   |
| 7.1.2.3 | Comparison of Fugacity Coefficient<br>Term, K <sub>v</sub> .                                                 | 76   |
| 7.1.2.4 | Comparison of Values of Heat of Reaction, ( $-\Delta H$ ) .                                                  | 78   |
| 7.1.2.5 | r NH <sub>3</sub><br>Comparison of Heat Capacities of<br>NH , H , N and CH .<br>3 2 2 4                      | 80   |
| 7.1.3.1 | Summary of Results for Parameter Estimation.                                                                 | 82   |
| 7.1.5.1 | Comparison of Simulation Results<br>with Plant Data at Average Value<br>of Estimated Parameters.             | 85   |
| 7.2.1   | Operating and Design Parameters<br>Average Value and Range Investigated.                                     | 89   |
| 7.3.1.1 | Summary of Computed Results.                                                                                 | 91   |
| 7.3.1.2 | Temperature and Ammonia<br>Concentration Values at Bed<br>Inlet and Outlet for Different<br>Conditions.      | 92   |
| 7.4.7   | Comparison of Parameter Sensitivity.                                                                         | 130  |

## NOMENCLATURE

| b, b, b,<br>0 1 2               | coefficients of effectiveness factor correlation       |
|---------------------------------|--------------------------------------------------------|
| b, b, b<br>$3 \ 4 \ 5$<br>and b | that are dependent on gas pressure                     |
| $C_1$ , $C_2$ and $C_3$         | various terms in the reaction rate equation that       |
|                                 | are independent of gas temperature                     |
| C                               | heat capacity of gas, kJ/kmol/K                        |
| p<br>C<br>pi                    | heat capacity of component j, kJ/kmol/K                |
| pj<br>f                         | catalyst activity factor, dimensionless                |
| F2                              | molal flow rate of hydrogen in feed to reactor,        |
| , J #                           | mol/s                                                  |
| F <sub>DH</sub>                 | fraction of total feed entering through preheating     |
|                                 | section, dimensionless                                 |
| F <sub>D</sub>                  | cold shot to bed 'i' as a fraction of total feed       |
| 1                               | to reactor, dimensionless                              |
|                                 | A - State and the second state of the second           |
| Fj                              | molal flow rate of component j in feed to reactor,     |
|                                 | mol/s                                                  |
| (-ΔH)                           | heat of reaction, kJ/kmol of hydrogen converted        |
| R2<br>k <sub>r</sub>            | reverse reaction velocity constant, mol/s/m            |
|                                 | of catalyst                                            |
| К                               | equilibrium constant of the reaction $3/2$ H + $1/2$ N |
| t                               | = NH, dimensionless                                    |
| $K_{C1}$ , $K_{C2}$ and         | coefficients at a given temperature and pressure,      |
| K<br>C3                         | dimensional                                            |
| Ky                              | fugacity coefficient term, dimensionless               |

(xii)

N gas flow rate at any point in the reactor, mol/s total molal flow rate in a bed, mol/s N ίT N molal flow rate of component j, mol/s j. Ν molal flow rate of component j leaving external 0 1 1 and internal preheating sections (hypothetical bed 0 exit), mol/s

atm = 101.325 kPa)

 $\mathbf{p}$ 

Ρ

gas pressure at any point in the reactor, atm

partial pressure of gas constituent, atm (where 1

Paral, Para2 parameters for correction of frequency factor and activation energy in the reverse reaction rate constant correlation, respectively; dimensionless parameter to account for inadequacy of K. correlation

> rate of reaction without mass transfer limitation in catalyst given as moles of hydrogen converted unit time per per unit catalyst volume, mol/s/cm

gas temperature in catalyst bed, K

gas temperature on tube side of external heat exchanger, K

gas temperature in internal preheating section, K gas temperature on shell side of external heat exchanger, K

gas temperature at the exit of internal preheating section, K

Para3

# (-r

Т Η Т S T

Т

SH T

SHE

| (UA)          | 3 heat exchange capacity of bed, $\dot{W}/K/cm$                   |
|---------------|-------------------------------------------------------------------|
| (UA)<br>H     | heat exchange capacity of external heat exchanger,<br>3<br>W/K/cm |
|               | 3                                                                 |
| v<br>i        | volume of the reactor in bed 'i', cm                              |
| <b>v</b><br>Н | volume of the external heat exchanger on tube<br>3<br>side, cm    |
| x<br>i2       | fractional conversion of hydrogen in bed 'i' based                |
| 10            | on total hydrogen in feed to reactor,                             |
|               | dimensionless                                                     |

mole fraction of gas constituents

## Greek Symbols

У

αյ

 $\mathbf{\hat{\mathbf{y}}}$ 

z

η

 $\omega_{\rm N}$ 

Ń

 $\omega_{_{
m HN}}$ 

φ

|     | coefficient proportional to stoichiometric                          |  |
|-----|---------------------------------------------------------------------|--|
|     | coefficient for component j ( $\alpha_1 = -1/3, \alpha_2 = -1$ ,    |  |
|     | $\alpha'_{3} = -2/3, \alpha'_{4} = \alpha'_{5} = 0$ , dimensionless |  |
|     | activity coefficient of gas constituents,                           |  |
|     | dimensionless                                                       |  |
| 1.3 | effectiveness factor to account for mass transfer                   |  |
| 3   | resistance in the catalyst pellet, dimensionless                    |  |
| 5.  | conversion of nitrogen, dimensionless                               |  |
|     | coefficient for pressure drop based on unit bed                     |  |

3 volume, atm/cm coefficient for pressure drop based on unit

coefficient for pressure drop based on unit tube 3 side volume of external heat exchanger, atm/cm fugacity of gas constituent, atm

(xiv)

## Subscript

| eq             | corresponds to equilibrium                        |
|----------------|---------------------------------------------------|
| F              | corresponds to feed                               |
| Н              | corresponds to external heat exchanger on tube    |
|                | side                                              |
| i              | designates the catalyst bed number                |
| j              | designates components (1-nitrogen, 2-hydrogen,    |
|                | 3-ammonia, 4-methane, and 5-argon)                |
| m              | corresponds to maximum reaction rate              |
| N              | corresponds to base conditions                    |
| S              | corresponds to internal preheating section shell  |
| 11 10          | side                                              |
| SH             | corresponds to external heat exchanger shell side |
| T -            | corresponds to totál                              |
| L. Contraction |                                                   |

## CHAPTER I

### 1. INTRODUCTION

Simulation, optimization and stability analysis of the modern large capacity multibed quench-type (cold-feed cooling) ammonia synthesis reactors is essential for their proper and accurate control and optimal performance.

Ammonia is an essential feedstock for the manufacture of urea which is required in large tonnage for boosting agricultural production. Agriculture contributes to about fifty percent of the national income (Pachaiyapan, 1984) and provides livelihoods for about seventy-five percent of Indian population. Nitrogenous fertiliser production is estimated at about six million tons in 1987-88 and is expected to rise further. In order to meet the anticipated requirements, many new plants are coming up mainly based on natural gas as a feedstock requiring huge investments of the order of six billion rupees (1983 price).

The ammonia technology and engineering for its manufacture rapidly advanced in the last decade and the plants of: 1350 has t/d (where 1 t = 1000 kg and 1 d = 86.4 ks) capacity and over are common now-a-days. The latest policy of the Indian Government is tostandardise the ammonia technology and build new plants on either of the two technologies, namely, Haldor-Topsoe and Kellogg of axial or radial flow designs. In view of the large ammonia production and high capital investment requirements, even a few percent improvement in production from existing plants is worth hundreds of million rupees every year.

Ammonia is produced by catalytic exothermic reversible reaction of hydrogen and nitrogen in the mol. ratio of approximately 3:1 at elevated pressures (100 to 1000 atm, where 1 atm = 101.325 kPa) and temperatures (675 to 925 K) using doubly promoted iron catalyst. The current trend is towards low pressure (150 to 200 atm) and low temperature (650 to 770 K) operation using highly active catalyst. It is essential to carry out the reaction in an autothermic reactor with axial or radial flow and quench cooling in between catalyst beds and /or internal heat exchange and external heat exchange. Quench type reactors are more common for ammonia systhesis because of high pressure oparation. In these reactors intermediate cooling of reaction mixture is achieved by the addition of cold-feed to the reaction mixture at the inlet of a catalyst bed. The description of reactors of various designs are given by Walas (1959), Vancini (1971), Zardi (1982) and others. Due to the opposing requirements of temperature for high reaction rate and high equilibrium conversions, the intermediate cooling between catalyst beds of an ammonia synthesis reactor is essential. Autothermal reactor operation involving feed-back of reaction heat to the incoming cold reactor feed are generally found to possess multiplicity of steady-state operating points. This behaviour of autothermal reactor was first explained by van Heerden (1953). The reactor steady-state point corresponding to highest conversion is the desirable operating point. Beside this, in general, there are two other operating points, the intermediate one is unstable and the one corresponding to the lowest conversion is a trivial operating

point. The stability limit is observed when both the unstable and stable points (of high conversion) coincide with each other due to relative shifting of heat generation and heat removal curves because of changes in plant operating parameters. Reactor blowout or extinction is a well known problem experienced in autothermal operation with certain changes in plant operating parameters (Froment and Bischoff, 1979a).

Since van Heerden, several other workers (Shah, 1967; Shipman and Hickman, 1968; Vek, 1977; Gaines, 1977; Rase, 1977; Ramkumar, 1978; Lutschutenkow et al., 1978; Reddy and Husain, 1978; Singh and Saraf, 1979; Sinha et al., 1981; Khayan and Pironti, 1982; Mansson and Andresen, 1986) have presented their work on simulation of ammonia synthesis reactor that have contributed significantly to a better understanding of the behaviour of ammonia synthesis reactor performance. However, the extensive literature survey as presented in Chapter-II shows that published work is available regarding optimization of an no existing industrial reactor for ammonia synthesis of multibed quench-type with internal and/or external heat exchanger taking cold shot distribution as decision variables. Also there is lack of information regarding steady-state stability analysis of such reactors operating at optimum conditions.

Therefore, the objectives of the present study can be summarized as follows:

1. Development of a realistic and accurate simulation model for a three-bed autothermic quench reactor for ammonia synthesis for carrying out simulated performance studies under different design

and operating conditions.

2. Development of reliable and efficient optimization strategies for the maximization of ammonia production rate using cold shot distribution as decision variables.

3. Validation of simulation model and the determination of the kinetic and external heat exchange rate parameters using plant data.

4. Determination of optimal cold shot distribution and corresponding temperature-conversion profile and ammonia production rate for different design and operating conditions.
5. Study of the steady-state reactor stability at optimal

operation for different design and operating conditions.

## CHAPTER\_II

#### 2. LITERATURE REVIEW

2.1 Literature review on ammonia synthesis reactor modelling and simulation.

Modelling and analysis of autothermic processes, in particular ammonia synthesis reactor, have attracted considerable attention of research workers after the first reported study of van Heerden (1953). Van Heerden formulated a simplified one dimensional mathematical model for his packed bed catalytic reactor having a large number of tubes placed axially in the bed. The cold feed passes through the tubes countercurrent to the flow of gases in the catalyst bed and gets heated to desired temperature before entering the catalyst bed where exothermic reversible ammonia synthesis reaction occurs.

Van Heerden solved the three coupled differential equations, namely, material and energy balance equations for the reacting gases in the catalyst bed, and energy balance equation for the feed preheating inside the tubes for his simplified mathematical model of the reactor by using a stepwise numerical integration procedure. The solutions so obtained were in quantitative agreement with the actual data obtained for a commercial reactor of the same type.

Van Heerden observed from his analysis that due to reversible and exothermic nature of ammonia formation reaction a plot of heat generation rate due to reaction as a function of catalyst bed inlet temperature has a sigmoid shape but at very high bed inlet temperatures the heat generation rate falls rapidly due to equilibrium limitations at high temperatures. He observed that the catalyst bed temperature first rises, passes through a maximum value and then decreases towards reactor exit. He also observed that a definite range of operating parameters exists for stable operation of an autothermic ammonia synthesis reactor at high conversion conditions in the vicinity of the quenching or blow-out point.

Van Heerden further observed from his theoretical analysis that as catalyst activity or the heat transfer capacity decreases the stability of the reactor decreases, whereas if the feed rate decreases the stability of reactor increases.

Annable (1952) derived a one-dimensional single-bed model of Haber-Bosch type ammonia synthesis reactor using a Temkin-Pyzhev (1940) rate equation. He found that the simulation model results were in close agreement with plant observations. But he did not investigate the effect of change in operating and design variables on the performance of the reactor and its stability using his simulation model.

Kjaer (1958) formulated his mathematical model for a single bed by considering the two-dimensional variation in temperature, axial and radial, and solved the resulting model equations consisting of three partial differential equations using doublestep numerical integration technique by hand computation. His results of production rate and average bed temperature were in very good agreement with the plant data. However, the model developed by Kjaer could not explain the radial temperature gradients reported by Slack et al. (1953). The results of Kjaer indicated that the radial temperature gradients may not be significant.

Baddour et al. (1965) studied the behaviour of а AVT ammonia synthesis reactor (Tennesse Valley Authority reactor) using a simplified one-dimensional model to account for axial variation of bed temperature and conversion. They used Temkin and Pyzhev reaction rate equation. The results of the simulation model were found to be within 15 to 20 percent of the plant data for the production rate and bed temperature profile. Their study indicated an improvement in ammonia production rate at higher space velocity of feed gas when reactor is operated at high first bed inlet temperature. However, an increase in space velocity is found to lower the reactor stability. Use of higher inerts content in the feed was found to be ammonia or detrimental, both, to reactor production rate and its stability, average bed temperature was not affected even though significantly. Any decrease in catalyst activity resulted in a decline in both, the reactor stability and its production rate and necessitated an increase in the first bed inlet temperature. The effect of increase in the heat transfer capacity was to increase the reactor stability with increased local overheating However, no significant effect on reactor of catalyst. rate and average bed temperature was observed. They production also observed that bed temperature profile at the optimum conditions was not sensitive to changes in operating conditions.

Shah (1967) developed a one-dimensional model to analyse behaviour of a two-bed ammonia synthesis reactor with cold the shot cooling. Shah made certain assumptions to simplify his model equations while accounting for the non-ideal behaviour of the gases in the reaction rate equation, heat of reaction and specific heat values. He found that these nonidealities have a significant effect on the reactor performance. Realising the inadequacy of the Temkin and Pyzhev rate equation, Shah used the equation in his modified Temkin and Pyzhev reaction rate simulation model. Shah also assumed a linear decrease in pressure with distance in the direction of flow of gas. His results of simulation agreed well with the plant data.

Shah solved his mathematical model consisting of coupled non-linear differential equations using a numerical integration technique known as the Milne Predictor-Corrector (Milne, 1953) and observed that the method of solution was stable and converged rapidly.

Shah observed from his simulation model studies that increase in cold shot fraction decreased the reactor stability; increase in inerts decreased the stability without significantly affecting the production rate; and increase in ammonia content of feed decreased both production rate and stability. He also observed that the increase in the first bed inlet temperature resulted in an increase in production rate till equilibrium inhibition was obtained. Shah further observed that the increase in pressure resulted in higher production rate but any change in H /N ratio did hot affect the production rate significantly. The 2 2

effect of change in space velocity and catalyst activity on production was found to be the same as that reported by Baddour et al. (1965).

Shipman and Hickman (1968) carried out simulation and optimization of a five-bed ammonia reactor with external heat exchanger and cold shot quenching. They carried out optimization using independent variables consisting of operating variables of cold shot distributions and design variables of cold shot location, catalyst bed length and heat exchanger length. Search for optimization was carried out for minimising the converter cost using a modified gradient search method.

Shipman and Hickman observed that increase in the number of catalyst beds beyond three is not of much consequence for minimizing reactor cost. Further, cold shot distributions have a significant effect and there exists an optimal distribution. However, near the optimum the small variations in cold shot do not affect the optimal solution significantly.

Gaines (1977) simulated and optimized a four-bed ammonia converter with cold shot cooling and preheating. He used a modified Temkin and Pyzhev reaction rate equation and used the findings of Nielsen (1968) and Dyson and Simon (1968) for making it more realistic. He also considered the effect of catalyst pellet mass transfer resistance by incorporating in the rate equation the effectiveness factor as given by Dyson and Simon (1968). He optimized the bed temperature profile to maximise conversion at the reactor exit and recommended a declining outlet temperature profile from the first to the fourth bed. He found

that the last bed outlet temperature is most critical for improving reactor conversion. He concluded that there is an optimal ratio of actual ammonia mol percent to equilibrium ammonia mol percent at the catalyst bed outlet for achieving maximum conversion. The effect of important parameters, such as space velocity, feed temperature, pressure, inerts and ammonia concentration, H /N ratio and catalyst activity were found to be 2 2 similar as reported by earlier workers. His results were in good agreement with plant data.

Vek (1977) considered two types of radial flow four-bed ammonia coverters for modelling and optimization. The first type consisted of two heat exchangers -one internal heat exchanger placed between the first and the second bed and another external heat exchanger at the end of the last bed. The second type consisted of an external heat exchanger only, but with gas recirculation in the first bed. He accounted for variation of overall heat transfer coefficient in reactor. He found his simulation results in agreement with the plant data. From his analysis he observed that first type had better operational stability and a higher ammonia production rate. Typical outputs were between 100 to 130 t/d/m of catalyst as compared to 35 to  $\frac{3}{50}$  t/d/m of catalyst volume obtained normally.

Rase (1977) also presented a case study of multibed ammonia synthesis reactor with cold shot cooling. His range of operating variables include pressure at three values of 150, 225, and 300 atm and inerts in feed at 12 percent. For safe operation of the catalyst the allowable bed temperature was limited to 803

K. Rase observed that operation at lower pressure of 150 atm was more desirable for saving energy costs, and increasing the life and activity of catalyst.

Sinha (1977, 1981) modelled and analysed the behaviour of one-dimensional three-bed ammonia synthesis reactor with cold shot cooling and internal and external heat exchange. The results suggested that ammonia production rate is quite sensitive to operating parameters, such as, first bed inlet temperature, cold shot temperature and its distributions, ammonia and inerts content in the feed, feed pressure and design parameters such as cold shot location. It was observed that ammonia production rate increases with a decrease in ammonia and inerts contents in the feed, increase in space velocity, and increase in the first bed inlet temperature with proper cold shot distributions and location. However, the indiscriminate use of cold shot at a low first bed inlet temperature was found to be disastrous for ammonia production.

Reddy and Husain (1978) modelled a single-bed ammonia synthesis reactor of Casale type with cold shot quenching at theinlet using a one-dimensional model. They considered the bed actual flow route of gases in the reactor and the axial variation of heat transfer capacity. Model parameters were validated using plant data. Reddy and Husain studied the effect of operating parameters on the performance of the reactor. They found that the increase in feed flow rate reduces the ammonia conversion H /N ratio has an optimum value markedly at higher flow rate; 2 around 2.5 for maximum conversion; and a decrease in inerts

and/or ammonia concentration increases ammonia conversion.

Ramkumar (1978) studied the behaviour of a one-dimensional three-bed ammonia synthesis reactor with cold shot cooling, internal and external heat exchange. He also accounted for the mass transfer resistance in the catalyst pellet by incorporating the effectiveness factor correlation of Dyson and Simon (1968) in the reaction rate equation. He observed that for increasing production rate, the space velocity and first bed inlet temperature should be higher, inerts content in the feed should be lower, and the cold shot distribution and location must be optimal.

Lutschutenkow et al. (1978) also presented the behaviour of a one-dimensional four-bed model of an ammonia synthesis reactor with external heat exchange. They observed maximum ammonia productivity near the autothermal limit. They also observed the, bed outlet temperature to be independent of the cold shot at the bed inlet, and the ammonia productivity to depend on the H /N 2 2 ratio in the feed and bed outlet temperature but not the reactor inlet temperature.

Singh and Saraf (1979) modelled and analysed the behaviour of one-dimensional ammonia synthesis reactors of two types. The first type was a three-bed reactor with external heat exchange and inter-bed heat exchanger for cooling without any cold shot. The second type was a single-bed reactor with external heat exchanger and cold shot cooling at the bed inlet. The effect of mass transfer resistances in the catalyst pellet was considered by incorporating effectiveness factor in the reaction rate

equation by partially solving the intrapellet diffusion equation at each axial location. They used different rate equations for two types of catalysts. Their simulation results were found to be in good agreement with plant data.

13

Khayan and Pironti (1982) studied the behaviour of an ammonia converter with heat exchanger using a two-dimensional model to account for axial as well as radial gradients of temperature and concentration. They solved the resulting nonlinear coupled partial differential equations using the Crank-Nicolson numerical technique. Their results matched the plant data within 2 percent. They observed that radial gradients are insignificant.

Mansson et al. (1986) carried out optimization study of an ammonia synthesis reactor to maximize exit ammonia mole percent. Performance of the reactor was found by optimizing the bed temperature profile for a given mass flow rate and inlet conditions. Performance was compared with conventional operation. They observed that considerable improvement in performance may be achieved.

The literature review presented above clearly indicates that these simulation and optimization studies have significantly contributed to the understanding of the effect of operational and design parameters on the performance of ammonia synthesis reactors. However no published information is available regarding optimization of an existing industrial multibed quench reactor with internal and/or external heat exchanger for ammonia synthesis taking cold shot distribution as a decision variable

....

for wide range of variation of all important design and operating parameters. Very little published information exists on the steady-state stability analysis of such optimally operating reactors.

It may also be noted that no attempt has been made to review the simulation and optimization literature not specifically related to ammonia synthesis reactor.



2.2. Literature Review on Kinetic, Thermodynamic and Physical Properties:

Shah (1967) reported the kinetic, thermodynamic and thermochemical properties correlations using the data reported by Annable, Hougen and others. Shah gave correlations for reverse reaction rate constant, k, taking the Arrhenius form of dependance on temperature and also used a multiplying factor to correct for pressure deviations from 300 atm. His equilibrium constant correlation is a six-constant equation, an exponential function of temperature terms only.  $K_{y}$ , fugacity coefficient term, is correlated as a five-constant polynomial in temperature and pressure. His heat of reaction correlation is a ten-constant polynomial and heat capacity of ammonia correlation is a sevenconstant equation, both equation involving pressure and temperature terms only. For nitrogen hydrogen and methane heat capacity correlations, Shah used four-constant polynomials in temperature with the coefficients of polynomial found for the mean pressure. For argon, the heat capacity was taken at a fixed value as it was independent of temperature and pressure. Shah observed that the more elaborate correlations used by him resulted in predictions by simulation model close to the plant performance.

Dyson and Simon (1968) gave k correlation by fitting the data of Nielsen in an Arrhenius form. However unlike shah's approach, there is no pressure correction term in their correlation. They used an equilibrium constant correlation proposed by Gillespie and Beattie, a five-constant equation

involving functions of temperature in an exponential form. Dyson et al. also used published correlations for the activity coefficients of H, N and NH as four- or five-constant 2 2 3equations involving complex functions of temperature and pressure in an exponential form. They concluded that their correlations are quite precise to give fugacity values comparable to those obtained by more elaborate calculation of fugacity from an equation of state using both Beattie-Bridgman and Redlich-Kwong equations.

Gaines (1977) reported an Arrhenius form of correlation for k based on the data of Nielsen, similar to that of Dyson and r Simon. The activity coefficients of H, N and NH were 2 2 3 correlated using equations involving three independent constants and showing temperature pressure and composition dependence. Gaines used a six-constant polynomial for heat of reaction involving pressure and temperature terms with correction for heat of mixing. He used an eight-constant BWR equation of state to compute directly the gas mixture heat capacities by first computing the constants for the mixture by appropriate relations.

Reddy and Husain (1978) have used the same correlations as reported by Shah (1967) for K, K,, heat of reaction and heat capacities of individual component.

Singh and Saraf (1979) took the usual Arrhenius form of correlation for k with appropriate values of the order of r reaction parameter, frequency factor and activation energy for two types of catalysts based on data reported by Guacci et al. Correlations for K and heat capacities used by them are similar

to those reported by Dyson and Simon (1968).

Mansson and Andresen (1986) used the usual Arrhenius form of correlation for the rate constants in his reaction rate equation using three empirically determined sets of interdependent values of activation energy and frequency factor. The equilibrium constant correlation was obtained from Gillespie and Beattie as cited by Mansson et al. The activity coefficient correlations for and NH is taken based on Beattie and Bridgman, Ν Н, and Beattie work, as cited by Mansson et al., as a complex function of temperature, pressure and mole fractions in a way similar to that of Gaines but incorporating additional terms dependent on mole fractions to make it more accurate.

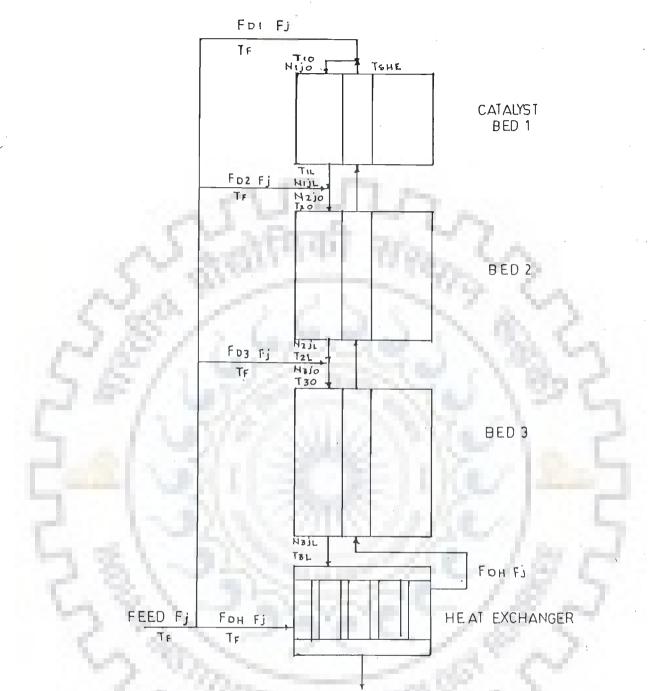
The heat of reaction correlation was that given by Nielsen, a seven-constant equation in temperature and pressure. Heat capacity correlations were those reported by Gillespie and Beattie as cited by Mansson et al. and heat of mixing was neglected in computing the mixture heat capacity as per the justification given by Nielsen and Strelzoff as cited by Mansson et al.

Hay and Honti (1976a) have presented correlations for thermodynamic properties. Of particular interest is that reported for the equilibrium constant, an exponential function of temperature giving a minimum percentage deviation from the theoretical values of Harrison and Kobe and comparing well with the experimental values reported by Haber, Larson and Dodge, Stephenson and McMahon as cited by Hay and Honti.

Perry's Chemical Engineers HandBook (1950) reports correlations for heat capacities of H , N and NH , as three-2 2 3constant polynomials in temperature. A correlation for heat of reaction is also given as a polynomial in temperature. Various other correlations for thermochemical properties are reported in the International Critical Tables (1928), Kirk and Othmer (1978) and by many other authors which vary in their degree of complexity, accuracy and range of application.

## CHAPTER\_III

## 3. REACTOR MODELLING AND DESIGN RELATIONSHIPS


## 3.1. Reactor modelling and design relations.

Mathematical modelling of the multibed reactor consists in writing mass, energy and momentum balance equations for each of the reactor sections along with equations defining the boundary conditions imposed by cold shot addition at the bed inlet. The rigorous model precisely defining the heterogeneous ammonia synthesis reaction may be written in the form of partial differential equations for momentum, mass and energy balances in three-dimensional space and time. However such a system of highly non-linear and coupled partial differential equations will be very difficult to solve. This will require excessive computation time and very large memory on the large new generation computers. Convergence problems enhance these difficulties further that are inherent in the solution of autothermal reactor with external and/or internal heat exchange between the reaction mixture and the feed gas. Therefore, a rigorous approach is impractical and recourse must be made to more approximate engineering approach for simulation purpose that simplifies the modelling of converter significantly without sacrificing the accuracy to predict reactor performance and stability of operation keeping in view the extent of uncertainty inherent in the basic data used in the simulation model.

For this study, only the steady-state behaviour is taken into consideration and the change in operating parameters is

assumed to be slow enough that reactor operation is regarded as a succession of pseudo-steady states. It is further assumed that there are no gross perturbations that deliberately push the steady operation to another steady state. The validity of the steady-state assumption is discussed by Shah (1967). Yet another argument for considering the operation to be at steady-state is given by Reddy and Husain (1978) by pointing out that since the gas mixture velocity is always high, its residence time is likely be very small, probably, of the order of a few seconds. to Therefore, for the design and performance predictions ofcommercial reactor, the additional information obtained by considering the unsteady state simulation model is not commensurate with the phenomenal increase in modelling effort and computer time required for its solution.

A simplified flow diagram of a typical three-bed quench type high capacity ammonia synthesis axial flow reactor with internal and external heat exchange capacities is shown in Fig. 3.1. The feed gas is divided into four parts; the largest fraction goes to bottom heat exchanger and the remaining gas is distributed into three cold shots for mixing with the gases entering different catalyst beds. The fraction of feed entering the bottom heat exchanger on its shell side gets preheated as a result of heat exchange from the reaction product leaving the third bed and flowing countercurrently on the tube side. This preheated fraction of feed is heated further by exchanging heat from the hot reaction mixture flowing countercurrently in the catalyst bed depending on the amount of heat transfer area available for the



PRODUCT

FIG. 3.1. SIMPLIFIED FLOW DIAGRAM OF THREE BED QUENCH TYPE AMMONIA SYNTHESIS REACTOR WITH INTERNAL AND EXTERNAL HEAT EXCHANGE CAPACITY

internal heat exchange. This heated fraction of feed enters the first catalyst bed inlet after mixing with cold shot fraction to the first bed.

#### Assumptions.

For obtaining mass, energy and momentum balance equations in manageable form, following simplifying assumptions are made:

1. Reactor operation is at steady state.

2. Radial velocity, temperature, pressure and concentration gradients are absent. There is complete mixing in the radial direction in the bed.

3. There is no back mixing in axial direction.

Pressure drop variation is linear in the direction of 4. flow. The effect of cold shot is accounted for by assuming that thecoefficient of pressure drop varies with 1.8 power of the superficial mass velocity, G, at the inlet of a catalyst bed (Froment and Bischoff, 1979b). This dependence is based on Leva equation for packed beds indicating that the pressure drop is proportional to (fG ) where f is the friction factor. Hicks has observed that this f is proportional to (G) Therefore, pressure drop is proportional to (G) .

5. Cold shot enters the reactor at the temperature of feed gas and at a pressure equal to the pressure in the reactor at the point of its entry.

6. Heat exchange capacity, that is the product of heat transfer coefficient and heat transfer area per unit catalyst bed volume remains constant throughout the reactor. Similarly, heat exchange capacity per unit tube side volume in the external heat exchanger is also constant.

 For gas-solid reaction, the interphase heat and mass transfer and the intraparticle heat transfer resistances are neglected.
 Intraparticle mass transfer resistance in catalyst pellet is significant and is accounted for by considering the effectiveness factor. A polynomial relationship for the effectiveness factor with gas temperature and composition using pressure as a

parameter is used to simplify the simulation model.

# Validity of assumptions.

Except during start up and shut down of the reactor, the operation of a continuous process remains at a steady-state. Unsteady-state analysis becomes essential only for predicting the reactor behaviour during the start up and shut down periods.

The radial gradients of velocity, temperature, pressure and concentration across the cross-section of the catalyst bed are insignificant as compared to the axial gradients. This is supported by the findings of Kjaer (1958) and Khayan et al. (1982). These investigators considered the two-dimensional reactor model and found that the radial gradients are negligible.

Axial diffusion of enthalpy is ignored in view of the findings of Eymery (1964) as reported by Reddy and Husain (1982).

The pressure drop across the length of the bed is very small as compared to the pressure of gas at any point in the bed. In industrial converters the total pressure drop is found to be well within five percent of the gas pressure. Therefore, the assumption of linear variation of pressure along the reactor bed

is justified. However, a correction has been made in pressure drop correlation from one bed to another to account for the substantial increase in the gas flow rate in a particular bed because of the cold shot additions. The effect of increase in flow rate is taken into account by assuming that the coefficient of pressure drop varies with 1.8 power of superficial mass velocity, G. For a catalyst bed of uniform cross sectional area, it is quite evident that at the inlet of a bed G is proportional to the total feed fraction entering the bed.

In an ammonia synthesis reactor, the overall heat transfer coefficient varies along the bed length because of the changes in flow rate and the variation in physical properties of the gas mixture along the bed length. However, this variation in heat transfer coefficient is small and for all practical purposes, it may be assumed to be constant throughout the bed length. In any case, if considered essential, this variation can be accounted for as the calculations in numerical integration proceed from point to point at which all conditions are known, computing the value of heat transfer coefficient at any point using appropriate correlations.

The mass, momentum and heat balance equations can be written, keeping in view the foregoing assumptions and their justifications, for the ammonia synthesis reaction

3/2 H + 1/2 N = NH (3.1.1) 2 2 3over a differential reactor section of catalyst volume dv (in i bed i).

### Mass balance.

The mass balance for hydrogen (subscript 2) is given by,

 $F dx = (-r \xi) dv$ (3.1.2) 2 i2 2 i where,

F = molal flow rate of hydrogen in feed to the reactor, 2 mol/s.

x = fractional conversion of hydrogen in bed 'i' based on i2 total hydrogen in feed to reactor, dimensionless;

(-r) = rate of reaction without mass transfer limitations
2
in catalyst given as moles of hydrogen converted per unit time
3
per unit of catalyst volume, mol/s/cm

 $\xi$  = catalyst effectiveness factor to account for mass transfer resistance in the pellet, dimensionless.

#### Energy balance.

The energy balance equation is obtained by equating the heat of reaction to the summation of the sensible heat gain of the reaction gas mixture and the amount of heat transferred to the synthesis gas (cold feed) in the internal preheating section. This will give,

 $(-\Delta H)$   $(-r \leq )dv$ R2 2 i = $(\sum_{j=1}^{5} N C) dT + (UA) (T - T) dv$  (3.1.3) where,

(-ΔH ) = heat of reaction, kJ/kmol of hydrogen converted R2 N = molal flow rate of component j, mol/s j C = heat capacity of component j, kJ/kmol/K pj T = gas temperature in the catalyst bed, K

(UA) = heat exchange capacity of bed per unit catalyst bed 3 volume, W/K/cm

T = gas temperature in the internal preheating section, K.

For (UA), area of heat transfer, A, is defined per unit volume of catalyst bed. For a given reactor of certain design and configuration, area of heat transfer per unit volume of catalyst bed is likely to be constant throughout the bed length so that (UA) remains constant throughout the bed length as U is assumed constant.

Subscript j designates components (1- nitrogen, 2-hydrogen, 3- ammonia, 4-methane, and 5-argon) and subscript i denotes the catalyst bed number.

The energy balance equation for the feed gas in internal preheating section is:

 $F_{DH} (\sum_{j=1}^{r} F_j C_{P_j}) dT_{Si} = -(UA)_i (T_i - T_{Si}) dv_i$  (3.1.4) Where F is the fraction of total feed entering through DH preheating section and negative sign on right hand side takes into account the fact that in internal preheating section the direction of flow of feed gases is opposite to the direction of increase of catalyst bed volume.

For all the three beds the above set of equations (3.1.2), (3.1.3) and (3.1.4) are applicable and subscript i will be replaced by subscripts 1, 2 and 3 as computations are carried out for bed 1, 2 and 3, respectively.

It may be noted that the energy balances assume that heat of mixing for reaction mixture is negligible. Only Gaines (1977) appears to have considered heat of mixing terms in the

energy balance, but it is believed that at the reactor operating conditions (temperature 600 to 900 K, pressure 170 to 200 atm, and ammonia mole percent 1.5 to 16.0) the heat of mixing due to the non-ideality of reaction gas mixture may really be insignificant. Further more, appropriate correlations are used to account for variations in specific heat values with temperature and for ammonia with pressure also.

It is worthwhile to mention here that the fractional conversion of hydrogen, x, is based on total moles of hydrogen 2 fed to reactor inclusive of all cold shots. Such a choice of X ensures that it increases monotonically as reaction mixture reacts while passing through the catalyst beds.

Additional mass and energy balance equations are needed to obtain the boundary conditions for the solution of reactor balance equations for each catalyst bed. The boundary conditions at each catalyst bed inlet are introduced due to the discontinuities resulting from the addition of cold shots at each bed inlet.

# Mass balance equations for catalyst bed 1.

At the inlet (Subscript 0).

 $N = F (F + \sum F) + \checkmark j F \times (3.1.5)$ ij0 j DH i=1 Di 2 210 Where,

i = 1, 2, 3; and j = 1, 2, 3, 4, 5

F = molal flow rate of component j in feed to reactor,
j
mol/s

F = cold shot to bed i as a fraction of total feed to
Di
reactor, dimensionless

At the exit (subseript 1).

 $N = F (F + \sum_{i=1}^{1} F) + \alpha F X \qquad (3.1.6)$ where,

i = 1, 2, 3 and j = 1, 2, 3, 4, 5

During cold shot addition at the inlet of any bed it may be noted that since reaction is not occurring, therefore, the value of x at the exit of the previous bed (i-1) is the same as at the  $\frac{2}{2}$  inlet of the next bed i

X = X2,i-1,1 2,i,1

Energy balance equations.

At the entry of bed i (after mixing of coldshot).

 $(\sum_{j=1}^{\infty} N C ) T$ =  $(\sum_{j=1}^{5} N C ) T$  + F  $(\sum_{j=1}^{5} F C ) T (3.1.7)$  $\int_{J}^{J} (i-1) j j (i-1) 1$  Di j=1 j pj F

where,

i = 1, 2, 3N = F F Ojl DH j

T = T

01 SHE

N is the molal flow rate of component j leaving external Ojl and internal preheating sections (hypothetical bed 0 exit), mol/s T = temperature of the preheated feed gases after passing SHE through the external and internal preheating sections, K

Subscript 0 and 1 designate inlet and exit of the bed, respectively

Coefficient  $\swarrow$  is proportional to stoichiometric coefficient for component j and have values  $\measuredangle = -1/3$ ,  $\measuredangle = -1$ ,  $\measuredangle = 2/3$  and 1 2 3 $\measuredangle = 0$ 4 5 Here again equations (3.1.5), (3.1.6), and (3.1.7) are applicable to each bed by putting proper values of i as 1, 2 and 3.

# External heat exchanger balances.

In the external heat exchanger (subscript H) no chemical reaction occurs and it is simply a countercurrent heat exchanger to preheat only F fraction of the total cold feed gases flowing DH through the external heat exchanger by all the product gases leaving the last reactor bed.

The energy balance for the feed gas gives, on shell side of heat exchanger

 $F (\Sigma F C) dT = -(UA) (T-T) dv$ DH j=1 j pj SH H SH H Where,

T = feed gas temperature on shell side of external heat SH exchanger, K

(UA) = heat exchange capacity of external heat exchanger H 3per unit tube side volume, W/K/cm

T = gas temperature on tube side, K

V = tube side volume of external heat exchanger, cm .
H
The negative sign on right hand side again accounts for the
fact that the direction of flow of feed gases is opposite to the
direction of increase of external heat exchanger volume.
Similarly for product gases, on tube side of heat exchanger:
5

 $(\sum_{j=1}^{\infty} N C) dT = -(UA) (T - T) dV$  (3.1.9) J = 1 J J D J H H H SH H

For (UA), the same argument also holds as in the case of H the heat exchange capacity in catalyst bed side. N is the flow 3j1 rate, moles of component j leaving third catalyst bed and entering the external heat exchanger on tube side.

The flow rate of moles of component j at any point in bed i, is obtained from the following equation, N 1j  $1 + \alpha_{j} F$ N (F X (3.1.10)13 1 21 2 The above equation is valid for any of the three catalyst beds, only bed number 1, 2 or 3 will be written in place of subscript i. The total molal flow rate in a bed, N is given by. 1 T (3.1.11)1=1 which is valid for any of the three beds, only i needs to be

replaced by appropriate bed number 1, 2 or 3.

Due to the pressure drop inside the heat exchanger and in the catalyst beds, the pressure of synthesis gas decreases from point to point in the direction of its flow. A suitable expression to estimate the pressure drop and, therefore, the pressure within the reactor is essential. Correlations are available in literature to find the pressure drop of flow of gases through the heat exchanger and the packed beds. For precise calculations these may be used. However, since the pressure drop through the convertor rarely exceeds 3 percent of the convertor pressure and also because changes in molal flow rates due to conversion in any bed is also small, no purpose will be served by using more complicated pressure drop correlations as the accuracy achieved may be insignificant as compared to the extra SO complexity added in the simulation model and resultant increase computer time. In view of this fact, the simulation model in assumes that pressure, p, in atm varies linearly along the flow

path in any bed i. To account for the changes in the flow rate at any bed inlet due to cold shot addition, the pressure drop, dP is corrected for increase in flow of gases at the inlet of bed i, using 1.8 power of molal flow rates.

 $-dP = \omega \{ \sum_{j=1}^{5} N \ / \sum_{j=1}^{5} F \} dv \qquad (3.1.12)$ i N  $\int_{j=1}^{5} 1j0 \ j=1 \ jN \qquad i$ Where is a coefficient, that is, pressure drop based on unit bed volume, atm/cm; and subscript N corresponds to a reference or normal value of feed gas flow rate for which  $\omega$  is preassigned, an estimated value obtained from the normally observed pressure drops in the reactor. The above equation can be applied to any bed by assigning i = 1, 2 or 3.

Similarily, pressure drop expression is written for tube side, that is, product gases side of external heat exchanger as below

 $\begin{array}{rcl} -dp &= & & \begin{cases} 5 & 5 & 1.8 \\ HN & & & \\ HN & & \\ & & \\ HN & & \\ & & \\ HN & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$ 

A reasonable value for the total pressure drop based on commercial plant data is assumed and the total pressure drop 13 distributed in a realistic manner for external and internal preheating sections, catalyst beds and product gas side in heat exchanger. For catalyst beds linear pressure drop is assumed in each bed to account for the effect of pressure change on reaction of reaction and activity coefficient as rate, heat indicated equation 3.1.12. A linear pressure variation earlier in is assumed for product gases on tube side of heat exchanger also. However, for preheating sections, an average pressure value,

average of inlet and outlet pressures is used because the pressure drop in this section is generally quite small. The foregoing equations require the relationships for reaction rate, heat of reaction and heat capacities as a function of temperature, pressure and composition of gas.

### Reaction rate.

The modified Temkin and Pyzhev rate expression as given by Shah (1967) is used in the simulation model. The rate equation used is as follows :

 $\begin{array}{c} 2 \ 1.5 \\ 2 \ 1.5 \\ 2 \\ 0.5 \\ (p \ N \\ 2 \end{array} \begin{array}{c} 2 \\ 0.5 \\ (p \ N \\ 2 \end{array} \begin{array}{c} 2 \\ (K/K_{y}) \\ (P \ N \\ 1 \\ 2 \end{array} \begin{array}{c} 1.5 \\ (N \ N \\ 1 \\ 2 \end{array} \begin{array}{c} 1.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 1.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 1 \\ 3 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 3 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \\ 1 \end{array} \begin{array}{c} 0.5 \\ (N \ N \end{array} \begin{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \\ (N \ N \end{array} \begin{array}{c} 0.5 \\ (N \ N \end{array} \begin{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \\ (N \ N \end{array} \begin{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \\ (N \ N \end{array} \begin{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \\ (N \ N \end{array} \end{array} \begin{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \\ (N \ N \end{array} \end{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \end{array}{c} 0.5 \end{array} \begin{array}{c} 0.5 \end{array}{c} 0.5 \end{array}{c}$ 

Where,

Catalyst activity factor, f, may depend on many factors: For a given catalyst, the values of f may change with catalyst life. The fresh catalyst may be assumed to have a limiting value of f as unity and the same may decrease with catalyst age slowly. The catalyst is normally discarded after few years when the f value decreases to about 0.6 to 0.8 depending on the plant practice. In the simulation model f value is given a preassigned value as input data and the same can be made to vary if considered necessary.

k = reverse reaction velocity constant, mol/s/m of r catalyst

K = equilibrium constant of the reaction 3/2 H +1/2N = NH 2 2 3  $K_{\gamma}$  = fugacity coefficient term

N = gaseous constituent flow rate at any point in the reactor bed, mol/s

Subscripts indicate the gas component (1, 2, 3 and T refers to N2, H2, NH3 and total components, respectively).

The correlation used for reverse reaction velocity constant is similar to that given by Shah (1967). The parameters specific the catalyst used are frequency factor or preexponential to factor and the activation energy. Adjustment was made in their given in Shah's correlation through the values use of multiplying factors Paral and Para2 for the modification to the values used by Shah. The best values of Paral and Para2 and, therefore, the frequency factor and activation energy suited for the catalyst used in the plant were found by validation of the simulation model using plant data as discussed subsequently in chapter-VI. The modified form of the equation used for k is as follows.

k = (300/p) exp[(33.5566) (Para1) - (24092.2) (Para2)/T] r (3.1.15)

0.63

The correlation used for equilibrium constant, K, is that reported by Hay and Honti (1976) that gives an average deviation of 0.00055 in logK and a maximum deviation of 0.0016 in logK over the temperature range of interest.

The equation is as follows:  $\log K = (2250.322/T) - 0.8534 - 0.656 * \ln T - 2.58987 * 10-4*T + 10 -7 2$ 1.48961 \* 10 \* T (3.1.16)

The fugacity coefficient term ,  $K_{\gamma}$ , is also similar to Shah (1967). However, it was found necessary to adjust the value of  $K_{\gamma}$ 

through the use of another multiplying factor, Para3, to the values given by Shah correlation. Values of K $_{\gamma}$  calculated from the correlation used by Shah were found to be lower than the values computed from correlations reported by many other workers. Further, only through this adjustment the model validation using plant data could be achieved more satisfactorily. This aspect is discussed in greater details in chapter VII. The equation used for K $_{\gamma}$  is as follows :

 $K_{\gamma} = (Para3) * (1.7343 - 8.143 * 10 * P + 5.714 * 10 * P * T$ -3 -6 2 (3.1.17)

The correlation used for heat of reaction is that given by Gillespie and Beattie as cited by Hay and Honti (1976).

Since the correlation reported by Shah (1967) for heat of reaction was found to be unsatisfactory. The equation used in simulation model is as follows :

 $-\Delta H = (2/3) * (0.54526 * P + (840.609 * P/T))$ R2 + (459.734 \* 10 \* P/T) + 5.34685 \* T -3 2 -6 3 + 0.2525 \* 10 \* T - 1.69167 \* 10 \* T

+ 9157.09) \* 4.1868

(3.1.18)

The correlations used for heat capacities, kJ/kmol/K, of N, 2H and NH are those reported by Perry (1950) and the heat 2 3 capacity correlation for CH is that given in International 4 Critical Tables (1928). Heat capacity of argon is taken at 20.798 as reported by Shah (1967). The equations used in the model are as follows :

C = (6.822 + 1.631 \* 10 \* t - 0.345 \* 10 \* t) \* 4.1868p1
(3.1.19)

-3 -5 2 = (6.919 + 0.218 \* 10 \* t + 0.279 \* 10 \* t )\* 4.1868 С p2 (3.1.20)= (8.497 + 8.001 \* 10 \* t - 1.764 \* 10 \* t)\* 4.1868 С pЗ (3.1.21)2 T)\* 4.1868 (3.1.22) C = (3.00 + 0.0228 \* T)4.8 \* 10 p4 = 20.798С (3.1.23)pб where,

t = T - 273

T = absolute temperature, K

Subscripts 1, 2, 3, 4 and 5 designate nitrogen, hydrogen, ammonia, methane and argon, respectively, as indicated earlier.

## 3.2. Effectiveness factor relation.

The effectiveness factor,  $\mathbf{\check{S}}$ , correlation as a function of temperature, pressure and gas composition given by Dyson and Simon (1968) is used in the simulation model to account for the mass transfer limitations in rate equation for ammonia synthesis heterogeneous catalytic reaction. The equation used is given below :

Where,

 $\eta$  = dimensionless conversion of nitrogen and given by,  $\eta = \frac{y}{y} + 2 + y$ 

or 
$$\eta = [(1 + ((2 * y_{1F})/(3 * y_{3F})) * x_2)/(1 + 2 * (y_{1F}/y_{3F}))]$$
  
(3.2.2)

Where y, y, y, y are mole fractions of nitrogen, hydrogen and 1 2 3 ammonia, respectively, at any point in the bed and subscript F indicates mole fractions in the inlet feed. Therefore at a point in the reactor  $\gamma$  is known for a known feed gas composition and actual hydrogen fractional conversion, X.

In equation (3.2.1) b, b, b, b, b, b, b and b are 0 1 2 3 4 5 6 constants with pressure as parameter as given in Table 3.2.1

## Table 3.2.1

# Constants for equation (3.2.1)

# Pressure, atm

|                                  | 150                      | 225                      | 300                       |
|----------------------------------|--------------------------|--------------------------|---------------------------|
| b<br>0                           | -17.539096               | -8.2125534               | -4.6757259                |
| Ъ<br>1                           | 0.07697849               | 0.03774149               | 0.02354872                |
| b                                | 6.900548                 | 6.190112                 | 4.687353                  |
| b3                               | -1.082790 *10            | -5.354571 *10            | -3.463308 * 10            |
| b<br>4                           | -26.42469                | -20.86963                | -11.28031<br>8 -8         |
| b <sub>5</sub><br>b <sub>6</sub> | 4.927648 *10<br>38.93727 | 2.379142 *10<br>27.88403 | 1.540881 * 10<br>10.46627 |

The correlation was developed for the case of H /N ratio of 2 23 and inerts concentration of 12.7 mol percent. However, in the present study the same correlation as given above is also used in view of only slight variations in the conditions used for simulation study. Dyson and Simon (1968) observed that the calculated values of effectiveness factors for the conditions other than those specified above had shown variations from those computed by using equation (3.2.1), but the overall effect on the design and performance of industrial ammonia synthesis reactors was negligible. Furthermore, if transport equations (Dyson and Simon, 1968; Singh and Saraf, 1979) inside the catalyst are used for finding effectiveness factor additional complexities will be added without increasing accuracy significantly.

# 3.3. Equilibrium conversion relation.

details of equilibrium conversion relation are given by The (1978) for H /N ratio of 3 and summarised below along Ramkumar 2 with relation for H /N ratio other than 3. 2 2 Equilibrium constant for reaction (3.1.1) is given by  $K = \phi / (\phi 1/2)$ \*  $(3/2) = p * \sqrt{(p 1/2 * p 3/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1/2 * 1$ 3/2)3 2 or K = K\* K (3.3.1)where  $\phi$  , p and  $\gamma$  represent fugacity, partial pressure and fugacity coefficient, respectively. is given as, K p 1/23/2 K P \* y/((P \* y ) (P \* ) ) 3eq p 1eq or K =(1/p) \* (y)\* y 3/2 1(y1/2 )) (3.3.2)3eq 2eq 1eq

Where P is the total gas pressure, and subscript eq refers to mole fractions at equilibrium.

The equilibrium mole fraction of H , N and NH may be 2 2 3 represented as,

| У        | Ξ | (y - y * x /3)/(1 - 2 * y * x /3)                      | (3, 3, 3) |
|----------|---|--------------------------------------------------------|-----------|
| Ted      |   | 1F $2F$ $2eq$ $2F$ $2eq$                               | ( ,       |
| У        | Ξ | (y - y x)/(1 - 2y x)                                   | (3.3.4)   |
| Zeq      |   | 2F 2F 2eq 2F 2eq                                       | -         |
| y<br>3eq | Ξ | $(y_{3F} + 2 y_{2F} x_{2eq}/3)/(1-2 y_{2F} x_{2eq}/3)$ | (3.3.5)   |

After substituting values of K and y , y , y from p leq 2eq 3eq equations (3.3.2) to (3.3.5) in equation (3.3.1), we get after manipulation

$$K * P/K_{\gamma} = \{(y + 2 * y * x /3) \\ 3F & 2F & 2eq \\ * (1 - (2/3) * y * x )\}/\{(y \\ 2F & 2eq & 1F \\ - y * x /3)^{1/2} * (y \\ 2F & 2eq & 2F \\ -y * x )^{3/2} \}$$
(3.3.6)  
$$2F & 2eq$$

Where K and K, are given by equations (3.1.16) and (3.1.17), respectively, and are functions of pressure and temperature of gas at any position in reactor bed. So for known temperature and pressure at any point and known feed composition, the equilibrium conversion in terms of fraction of hydrogen in feed, x , can be 2.eq calculated using equation (3.3.6). This requires trial and error procedure or a single variable search method can be used for achieving quick solution within a desired tolerance. Generally, H /N ratio is kept at 3. So for this case equation (3.3.6) the be simplified further to result in a quadratic can equation as given below :

(1+K ) \* x [2 \* K + 3 \* (1-y)/2У ] 2eq c1 c1 3F 2F2eq c19 \* y /4 1 = 0(3.3.7)3F \* K \* P / (4 \* K<sub>2</sub>) where K C1

 $= 1.29904 * K * P/K_{v}$ 

Therefore, with values of K, K, found at any axial position in the bed and with feed gas composition known, the above quadratic equation can be solved without any trial and error to determine the  $x_{2eq}$  values, which lies between 0 and 1. 3.4. Conversion corresponding to maximum rate.

From equation (3.1.14) the reaction rate equation can be written as

| $-r = C * k * [(K/K_{2}) * C - C]$                   | (3.4.1) |
|------------------------------------------------------|---------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | (3.4.2) |
| C = P + y + y / y<br>2 1 2 3                         | (3.4.3) |
| and $C = y / (P^{0.5} * y^{1.5})$<br>3 3 2           | (3.4.4) |

C, C and C are independent of gas temperature, dimensional. 1 2 3 The maximum of reaction rate as a function of temperature at otherwise constant conditions can be obtained by:

$$\left[\frac{\partial(-r)}{\partial T}\right] = 0$$

It may be noted that the reaction rate shows a maxima with respect to temperature of gas in the bed only for an exothermic reversible reaction corresponding to any gas composition, that is, for any specified value of x . For a known value of catalyst activity factor, f all C, independent of С and C are 3 temperature, and only k , K and K , depend on temperature. Since k , K and  $K_{\gamma}$  have complex temperature dependence, the normal procedure is to choose a temperature and find the value of 2 which the above equation is satisfied. The value of at 30 obtained is designated where subscript m refers as x to maximum rate conditions.

It is important to note that at any specified temperature, pressure and composition in the bed, the effectiveness factor is uniquely determined and actual reaction rate is reduced by that factor. Thus, for conditions corresponding to maximum reaction rate, the effectiveness factor can again be uniquely determined and the actual rate will again be reduced by that factor and the same will still remain the maximum possible rate for those conditions. Therefore, on differentiating equation (3.4.1) at

constant С, С and C and equating it to zero, we get after 2 simplification:  $C / C = (K/K_{\gamma}) + 2 * k * K * [( \partial K/\partial T) - (K/K_{\gamma}) ( \partial K_{\gamma}/\partial T )]/$ 3 2 (K., ( 3k / 3T)) (3.4.5)= K or C /C (3.4.6)c2is equal to right hand side of equation (3.4.5) and is where K only a function of temperature at a given pressure and can be calculated for known temperature and pressure at any position in reactor bed.  $(\partial K/\partial T)$ ,  $(\partial K_{v}/\partial T)$  and  $(\partial k/\partial T)$  are all known the from equations (3.1.15) to (3.1.17) by partially differentiating with respect to temperature and substituting the values temperature and pressure. But the defining equations (3.4.3) and (3.4.4) show that, /(P \* y \* y ) = K(3.4.7)1m 2mC2 subscript m refers to mole fractions at maximum rate where condition. Using the procedure as presented in section 3.3, we get 2 K /3) \*у \* x \* (1 - 2 \* y \* x /3) /{(P \* C2 3F 2F2m2F 2m\* x /3)) \* (y x (3.4.8)1F 2F 2m2F2F2m

40

Therefore, x can be uniquely determined at any position of 2m reactor bed from the above equation for the known temperature, pressure and feed gas compositipon. Equation (3.4.8) can also be solved either by trial and error technique or univariate search technique for finding the value of x . For the case when H /N 2m ratio is 3 equation (3.4.8) can be further simplified to result in a quadratic equation in x as given below,

#### CHAPTER\_1V

# TECHNIQUE FOR OPTIMIZATION OF AMMONIA SYNTHESIS REACTOR

In the design and operation of ammonia synthesis reactor a number of decision variables exist that are free to be adjusted for achieving optimization. In an existing plant with fixed design parameters and for a given feed flow rate, composition, temperature and pressure, cold shots to various beds can be allocated in such a manner as to give maximum ammonia production rates. At the design stage, catalyst distibution in different beds can also be adjusted in addition to the cold shot distribution to maximize ammonia production rates.

In this study the production rate of ammonia is taken as the objective function to be optimized subject to the implicit constraints given by design relations presented earlier and several explicit constraints for example, sum of cold shot fraction should be between 0 and 1, conversion should be lower than its equilibrium value, etc. In an existing reactor, the objective function, that is, ammonia production rate, is a function of many independent operating variables; for example, feed gas flow rate, feed pressure, bed inlet temperatures, H /N 2 2 mole ratio in feed, ammonia and inerts mole fractions in feed, and cold shot distributions to various catalyst bed inlets. The objective function is also a function of many design parameters; for example, total volume of catalyst, catalyst distribution in different beds, heat exchange capacity in the catalyst bed and

external heat exchanger.

The objective function for this study is highly nonlinear and coupled, implicit, constrained, multivariable and discontinuous in nature. It also involves internal loop optimization with severe convergence problem of a multimodal function that is also highly nonlinear, constrained, implicit and coupled in nature.

With the help of high speed digital computers with large memory, sophisticated optimization techniques could be used to solve such problems. Therefore, now it is realistic to attempt to establish an optimization procedure for obtaining the optimum results.

general the gradient or indirect search methods In (Beveridge and Schechter, 1970; Gangiah, 1980) have faster convergence in comparison to direct search methods. The gradient methods are based on evaluation of derivatives whereas the direct search methods are based on evaluation of objective functions without calculating the derivatives. However in practice, as in the present study, it is either extremely difficult or impossible to provide analytical functions for calculating derivatives gradient methods. The function may not needed in be differentiable or the derivatives may be difficult to compute numerically, as in this case where it may lead to magnification of errors and large computation time.

Among direct search methods the complex search method as given by Adelman and stevens (1972), based on the method of Box (1965), Nelder and Mead (1965) and a similar constrained polyhedron search method presented by Gangiah (1980) is selected for use as an optimization technique.

Other methods of direct search are also available based on "evolutionary operation" and "Monte Carlo techniques" (Luus and Jaakola, 1973; Campbell and Gaddy, 1976; Heuckroth et al., 1976). However, as observed by Gangiah (1978, 1980), they are found less efficient in several cases.

4.1. Description of the complex search method (Adelman and Stevens, 1972; Gangiah, 1980; Nelder and Mead, 1965).

This method consists of finding an original feasible "Complex (constrained simplex)" of solutions, eliminating the "worst" of these by reflection through the centroid of the remaining points, and repeating until an optimum has been reached. Worst point is defined as the point at which the objective function is found to have a minimum value. So thedirection of search is from the worst through the centroid and step length is obtained by reflection through the centroid on the opposite of worst point. The acceleration in step size is provided by reflection coefficient,  $\swarrow$  , say 1.3 (Adelman and Stevens, 1972; Box, 1965), for mapping the entire feasible region by enlargement of complex so that the convergence at global optima in the constrained feasible region is obtained.

The problem statement in general, can be written as maximize Y(X) = f(x, x, ----, x)1 2 n Subject to the implicit constraints

g (x) < 0, i = 1, 2, -----, r i h (x) > 0, j = 1, 2, -----, s j e (x) = 0, k = 1, 2, -----, m k here m < n</pre>

and the bounds or explicit constraints

x < x < x min\_i max i = 1, 2,-----, (n-m)

Let x , j = 1, 2, -----, (n-m+1) is the jth vertex ij point and i is the coordinate or number of decision variable.

The centroid of all x excluding the worst point x ij

$$\overline{x} = \{1/(2(n - m))\} \qquad \sum_{\substack{j = 1 \\ j \neq w}}^{(2(n - m)+1)} (4.1)$$

here i = 1, 2, ----, (n-m)

#### Algorithm

1. Select the  $\{2 (n-m) + 1\}$  vertices.

2. Test for explicit constraints at a vertex, if constraints are violated the decision variables are set to the bounds.

3. Solve implicit equality constraints numerically. Test for implicit inequality constraints. If any inequality constraint is violated, the corresponding variable is set to the constraint value. If all implicit inequalities are satisfied go to next step or else proceed to step 5 by assigning the vertex as worst-valued.

4. Evaluate the objective function. If only the worst vertex has been replaced, go to step 8 or else proceed to next step.

5. Repeat steps 2 to 4 for all vertices if it is a newly formed complex or else go to step 6.

6. Compute the centroid of the complex as given in equation (4.1) by finding the worst valued vertex.

7. Find the new vertex to replace the worst valued vertex. This is done by formula

x (new) =  $\overline{x} + q$  [ $\overline{x} - x$  (worst) ] (4.2) ij i r i ij where  $\overline{x}$  is the ith coordinate of centroid, x (new) is the ith i coordinate of the new jth point to form a new complex and x (worst) is the ith coordinate of the worst jth point in the ij complex.

8. Repeat steps 2 to 4. If this new trial point replacing the worst is again worst, the point is moved half-way towards the centroid of the remaining points. If this trial also results in the worst valued point, the point is further moved half-way towards the remaining distance from centroid. If this also fails to improve due to special nature of an objective function, the reflection is seen to get new trial vertex.

The procedure terminates when the complex collapses within a certain preassigned tolerance of objective function values or up to a certain number of iterations, whichever is reached first. Otherwise, go to step 6.

In the present case, it is observed that for certain cold

shot distributions (several vertices) that are not true optima, the ammonia production rates are nearly the same, and therefore, it is impractical to assign any tolerance other than zero. The search was then terminated by preassigning the number of iterations so that the true constrained optima could be obtained.

The Box complex search has the following advantages over the other optimization techniques (Adelman and Stevens, 1972; Gangiah, 1980).

1. The method is stable, versatile, and the solution is very fast due to fast convergence.

2. Programming is easy.

3. It yields other valuable information about the system apart from the optimum solution. The response of the system is well mapped over a wide range of values of the independent variables. The sensitivity of the optimum, that is response to small changes in independent variables is obtained as the method converges to the optimum and evaluates the response to small perturbations in the variables. This additional information is of great value in both design, operation and optimum control of chemical plants.

4. It is superior to other sequential direct search methods (pattern search, parallel tangents, etc.) and can find the true optimum rather than local optima nearest to the starting point because of the fact that the points in the initial complex are scattered throughout the feasible region, with a good chance that at least one will lie in the vicinity of the true constrained optima. 5. The use of reflection factor greater than 1.0 causes an initial enlargement of the complex due to acceleration in step length, thus assuring a good initial scan of the entire feasible region.



### CHAPTER Y

### 5. COMPUTATION TECHNIQUE

# 5.1 Computation technique for optimization.

The material and energy balance equations written for a differential section of a bed of ammonia synthesis reactor are presented in chapter -III. For such a system of highly non-linear and coupled equations, numerical integration is essential because analytical integration is not possible. A suitable numerical integration technique based on modified Milne-Predictor-Corrector method is used by choosing small step size. Computation accuracy will depend upon the magnitude of step size chosen. Tolerance limits at each step for conversion and temperature are checked against the preassigned limits, chosen in this study as 5x10 fractional conversion of hydrogen and 5x10 for K for temperature. The tolerance limits can be externally changed, iť required, as input data. The stepwise procedure is given below:

Step 1. Read data set for reactor conditions and parameters Step 2. Test the range of search based on the lower and upper limits on T , the temperature of the feed gas at the exit SHE of the internal preheating section. If the program works, go to the next step or alter the bounds until the program works and set the region of search for T .

Step 3. In the region of search assume T with an SHE interval, say 20 K, in T values. The computation starts from SHE the lower limit of the search region and proceeds with 20 K (say)

SHE

increments until the upper limit of T is reached. Go to the SHE next step if cold shot is added; otherwise, go to step 5.

Step 4. Determine the temperature of resultant stream by the regula falsi interpolation technique since the heat capacity of the mixture is not known. Molal flow rate is calculated by material balance.

Step 5. Carry out the numerical integration, step by step in the forward direction, up to the end of the first bed to establish the exit conditions.

If a cold shot is added to second bed, go to next step or else go to step 7.

Step 6. Determine the temperature and molal flow rate of resultant stream as given in step 4.

Step 7. Carry out the numerical integration, step by step in forward direction, up to the end of the second bed to establish the exit conditions.

If a cold shot is added, go to next step; otherwise, go to step 9.

Step 8. Determine the molar flow rate and temperature of the resultant stream.

Step 9. Carry out numerical integration, step by step in forward direction, up to the end of the third bed to establish exit conditions.

Step 10. Carry out numerical integration for external heat exchanger up to its exit.

Step 11. At the end of last step 10, value of T , the  $$\rm SHI$$  computed temperature of feed entering the external heat exchanger





on shell side, is obtaned. T is compared with T, the actual SHT feed temperature and if difference, DELT = [(T -T)]lies SHT outside the tolerance limit of ±2K (fed externally as an input data and may be varied, if desired) then convergence is not achieved. is chosen for carrying out a pattern The next Т SHE search. If DELT value for the next T value is of the same sign SHE that for the preceding T value, repeat step 4 onward for 83 SHE the case of cold shot addition at the first bed inlet or steps 5 onward without cold shot addition.

Step 12. In case convergence is not achieved but the DELT calculated is of the opposite sign to that of the DELT obtained for the preceding T value, then the value of T that results SHE SHE SHE in converged DELT is searched in the interval of the present T and preceding T values according to the convergence criteria SHE of the regula falsi interpolation technique.

Step 13. In case convergence is achieved and T is less SHE than the upper bound of the region of search for T , then steps SHE onwards are repeated with an increment of 20 K (say) in T

Step 14. The highest converged value of T is taken as SHE the stable and desirable operating point and corresponding ammonia conversion and production rate are taken as the value of objective function for the given data set and the chosen values of decision variables (cold shot and/or catalyst distribution) for which the calculations were carried out.

Step 15. Steps 2 onwards are repeated for optimization over the decision variables (cold shot and/or catalyst distribution) using the Box complex optimization technique discussed earlier

!

in chapter IV.

Step 16. Repeat steps 1 to 15 for the new input data set until the computations for all the input data sets are completed.

### 5.2. Convergence policy.

During the course of computation as given in section 5.1convergence is desired in the value of DELT within a prespecified tolerance for getting the value of T that is a solution to the SHE system of equation of ammonia synthesis reactor. In majority of cases it is found that some where in the region of search for the DELT value will change sign, if any solution, other than T SHE trivial solution corresponding to negligible conversion and T SHE close to T value, exists at all. When such a region value is isolated or detected then the convergence in DELT is achieved by applying regula falsi technique in the selected region. Another approach is to use golden section search or fibonacci search by taking absolute value of DELT i.e. I DELT I as an objective function. However, in this study the Regula falsi technique has been applied with great success to achieve very fast convergence in almost all cases. In the Regula falsi technique the next trial is made in the interval of sign changes of DELT by using for T SHE the following relationship:

For (n + 2)th iteration,

T

```
SHE, (n + 2)

(T -T) + ABS(DELT(N+1))

SHE, n + 2

SHE, n + 1

(T -T) + ABS(DELT(N+1))

(T -T) + ABS(DELT(n))

(T -T) + ABS(DELT(n))
```

Where n can take any integer value 1, 2, 3 -----.

For this new point T DELT is calculeted based on SHE, (n+2)the steps discussed in section 5.1 and if convergence is not achieved, for further search the point that has the same sign as DELT among T and T is discarded and the next SHE.n SHE, (n+1)interpolation is made according to equation 5.1.

# 5.3. Numerical integration procedure.

Modified Milne-Predictor-Corrector method (Milne, 1953; Shah, 1967) is used for numerical integration of nonlinear and coupled differential equations. This method is found to be stable with a fast speed of convergence at each step of numerical integration. The error in computation is less as compared to fourth- order Runge-Kutta method (Lambert, 1974).

This method requires generating first four points by following predictor and corrector steps (Ivo Babuska, 1966):

### First point:

This point is the inlet to first bed where on the assumption of temperature T , all the information becomes available. Using SHE relations presented in chapter-III the differential equations in the design relations take the following functional form:

$$\frac{dx}{dv} = f_{1}(X, T, P)$$

$$\frac{dT}{dV} = f_{2}(X, T, P)$$

$$\frac{dTs}{dv} = f_{3}(T, Ts)$$

### Second point:

With the first point known, the derivatives at the first point are calculated. The derivatives are used to predict the first guess of the second point, the predictor step. The derivatives are then calculated at this first guess of the second point and using the corrector step the second point estimate is refined till the last guess and its preceding guess value match within a preassigned tolerance limit. This method is stable and in a few iterations convergence is achieved. In symbolic form:

Predictor step.

$$y_2 = y_1 + y_1'$$
  $\Delta h, y_1' = \frac{dy_1}{dh}$ 

Corrector step.

$$y_2 = y_1 + (y_2' + y_1') \frac{\Delta h}{2}, y_2' = \frac{dy}{dh}$$

where y is a dependent variable such as x, T and T; h is an independent variable such as v;  $\Delta h$  is small but finite increment in h; superscript prime refers to first derivative and subscript 1, 2, 3 etc. refer to variable values at first point, second point, third point etc.

### Third Point:

'Predictor and Corrector steps for the third point are given below. The third point estimates are refined using the corrector step till convergence is achieved.

Predictor step.

$$y_{3} = y_{2} + (3y_{2}' - y_{1}')\frac{\Delta h}{2}$$

Corrector step.

$$\frac{y}{3} = \frac{y}{2} + \frac{(5y')}{3} + \frac{8y'}{2} - \frac{y'}{1} + \frac{\Delta h}{12}, \quad y' = \frac{dy}{dh}$$

#### Fourth point:

The fourth-point predictor and corrector steps are given below. The fourth-point estimates are refined till convergence is obtained.

Predictor step

$$y_4 = y_3 + \frac{\Delta h}{12} (23 y_3' - 16y_1' + 5y_1')$$

Corrector step

$$y_{4} = y_{3}^{\prime} + \frac{\Delta h}{24} (9y_{4}^{\prime} + 19y_{3}^{\prime} - 5y_{2}^{\prime} + y_{1}^{\prime})$$

After the first four points have been generated, the Milne-Predictor- Corrector step is applied to generate remaining points. As Milne-Predictor-Corrector technique is more stable and very fast in convergence, only single application of corrector step may, in general, give accurate values for the new point within the tolerance limit.

Fifth point:

Predictor step.

$$y'_{5} = y'_{1} + \frac{4\Delta h}{3} (2y'_{2} - y'_{3} + 2y'_{4})$$

Corrector step.

$$y_{5} = y_{3} + \frac{\Delta h}{3} (y_{3}' + 4y_{4}' + y_{5}')$$

For the sixth point onwards a modifier step in between

predictor and corrector steps is also used that further accelerates convergence by making use of the magnitude of error at previous point between values from predictor and corrector. This error is added in the value obtained from predictor step to guess in advance values that are used for finding the derivative in the corrector step.

Modifier step at ith point:

$$\Delta_{(i-1)} = y - y (i-1) (i-1) (i-1) (converged (predictor corrector step value) step value)$$

10.00

Sixth point onward for ith point:

Predictor step.

$$y_{i} = y_{i-4} + \frac{4\Delta h}{3} + \frac{4\Delta h}{(2y'_{i-3})} - y'_{(i-2)} + 2y'_{(i-1)}$$

Corrector step.

Using a y (modified), that is,  $y + \Delta$ , the y' for i (i-1) i corrector step is found.

$$y_i = y_{(i-2)} + \frac{\Delta h}{3} (y'_{(i-2)} + 4y'_{(i-1)} + y'_i)$$
  
(corrector

(correcto step)

where i = 6, 7, ---

# 5.4. Computer program features.

A computer program to simulate and optimize ammmonia synthesis reactor performance has been written in FORTRAN - 77 and executed on DEC 2025 system of Roorkee University Regional Computer Centre. It consists of a main program and 24 subroutines having over 2500 statements. The program is efficient and requires minimum possible computation time and memory requirements. It takes about 25 seconds CPU time to compile, about 4 seconds of CPU time for loading and linking the program, and about 6 to 8 seconds of CPU time to run a single data set of operating and design conditions after carrying out the search over the entire feasible operating region of T . Complete solution of the system of equations is obtained for both high conversion and thermally unstable and stable operating points, if such points exist, while ignoring the trivial low conversion and low temperature point. It could be located in 10 to 15 iterations. Further, it took about 5 to 8 minutes of CPU time for optimization of cold shot distribution to maximize ammonia production depending on the initial points of complex search (fed a part of the input data), the degree of difficulty as experienced by the system equations in arriving at the optimum and the precision to which the maximization of objective function (ammonia production rate) is desired.

The main program is arranged in three sections, namely, READ DATA, policy of convergence and optimization section, and PRINT RESULTS. Numerous comment statements have been used in the main program and the subroutines to make them more understandable. The

computer program listing is given in Appendix-B. The program has /following additional features:

1. The optimization could be done with an option of feeding a single data set and the self-generation of the remaining vertices of complex or feeding all the data sets of the vertices. It can further start the optimization search with known values of data sets and their corresponding objective function values without recalculating the objective function again. This would be advantageous when one wants to further test an optimum result based on the earlier searches by using the best possible Box complex for which objective function values are already available. This can help in establishing the optimum beyond any shadow of doubt.

2. The program has an option to carry out optimization or just to carry out a single search for a single data set or multiple data sets.

3. The program has an option to consider the particle effectiveness factor either as unity corresponding to the absence of mass transfer limitation or to compute the effectiveness factor at each point using the Dyson and Simon (1968) relationship.

4. The program has an option to print detailed results at each point in the bed or at some interval or to print only the summary of results at the inlet and outlet of each bed.

5. The program has an option to make searches at new vertices either by taking the actual values generated or at values rounded to a certain preassigned decimal point or only to search at certain preassigned levels of the variables by shifting the actual value of the variable to its nearest preassigned level. This feature is important in order to search the cold shot distributions only at values that can be readily adjusted in plant.



59 ·

#### CHAPTER-VI

# 6. ESTIMATION OF SIMULATION MODEL PARAMETERS FROM PLANT DATA

6.1 Purpose of estimation of Parameters and parameters description.

For mathematical any model that is developed on theoretical consideration of mass and energy balances it is always necessary to adjust and tune certain parameters that are dependent on the specific process conditions so as to make the simulation model predictions closer to plant performance. In the case of ammonia synthesis reactor simulation, the parameters that are specific to the catalyst used are the preexponential or frequency factor and the activation energy in the reverse reaction rate constant. Adjustment was made through the use of Para1 and Para2, respectively, as the multiplying factors to the base values for the frequency factor and activation energy values reported by Shah (1967), see equation 3.1.15. It was also found necessary to adjust the value of the fugacity coefficient, K., through the use of Para3, multiplying factor to the correlation for Ky reported by Shah (1967), see equation 3.1.17.

The heat exchange capacity of the external heat exchanger, which depends on the heat exchanger design, was also estimated after making corrections for changes in the flow rates by the parameter estimation technique.

#### 6.2. Parameter estimation technique.

The objective function for estimation of optimal value of theparameter is taken as the minimization of the sum of that is found to be multimodal, squares, constrained, multivariable and nonlinear in nature. Therefore the complex search technique (discussed in chapter-V) is used along with external adjustment of the direction and step size in between searches to reach the minimum of sum of squares. Actual plant data for an axial flow multibed quench type ammonia synthesis reactor of a modern Indian plant has been chosen to simulate its performance using the simulation package developed during this investigation. In the plant only temperatures at the end of each bed, ammonia concentration at the end of last bed, first bed inlet temperature and the tube side external heat exchanger exit temperature are monitored. Inlet feed composition, temperature, pressure and pressure drop across the reactor are also measured. Table 6.2.1 gives selected data for different conditions as obtained from the plant log sheets for several months. The data was selected for a period during which plant operation was found to be steady.

It was found that the cold shot distribution, the most important variable for reactor operation, is not measured at the plant. It was necessary to consider cold shot distribution also as a variable while estimating model parameters. For more accurate prediction of the model parameters, it is desirable to know the bed temperatures at the inlet and also at several intermediate points in the catalyst bed as well as the ammonia concentration at least at the end and the beginning of each

# Table 6.2.1

# Selected Plant Data Extracted from a Typical Ammonia Plant Log Sheetsi

| Data Set | Feed<br>Pressure<br>(atm) | Feed<br>Flow<br>Rate<br>Na <sup>3</sup> /h | Feed<br>Temp.<br>K | $H_2/N_2$ | Compos<br>NH <sub>3</sub><br>mol X | CH4  |      | Total<br>Press<br>Drop,<br>atm | 1st<br>Inlet |     | Temper:<br>2nd<br>Bed<br>Exit | ature<br>3rd<br>Bed<br>Exit | Exit NH <sub>3</sub><br>mol %<br>3rd Bed |
|----------|---------------------------|--------------------------------------------|--------------------|-----------|------------------------------------|------|------|--------------------------------|--------------|-----|-------------------------------|-----------------------------|------------------------------------------|
| i.       | 170.0                     | 0.740*10*                                  | 414.0              | 3.00      | 1.61                               | 8.80 | 4.04 | 2.7                            | 652          | 783 | 752                           | 749                         | 13.42                                    |
| 2.       | 192.0                     | 0.800\$104                                 | 415.0              | 3.11      | 1.89                               | 9.30 | 3.97 | 2.6                            | 654          | 778 | 759                           | 759                         | 13,40                                    |
| 3.       | 173.0                     | 0.740*10*                                  | 414.0              | 2.82      | 1.70                               | 7,00 | 4.25 | 2.8                            | 655          | 784 | 765                           | 756                         | 13,12                                    |
| 4.       | 185.0                     | 0.785\$10*                                 | 413.0              | 3.04      | 1.84                               | 8.52 | 3.84 | 2.7                            | 653          | 781 | 761                           | 757                         | 13.60                                    |
| 5.       | 184.0                     | 0.775#10*                                  | 417.0              | 2.96      | 1.71                               | 8.59 | 4.65 | 2.8                            | 651          | 775 | 763                           | 757                         | 13.47                                    |
| 6.       | 186.0                     | 0.760#10*                                  | 414.0              | 3.28      | 1.70                               | 6.88 | 4.27 | 2.8                            | 656          | 792 | 765                           | 758                         | 13.14                                    |
| 7.       | 183.0                     | 0.770\$10*                                 | 417.0              | 3.08      | 1.70                               | 7.74 | 4.06 | 2.7                            | 655          | 782 | 768                           | 761                         | 13.45                                    |
| 8.       | 183.0                     | 0.780\$10*                                 | 417.0              | 3.03      | 1.72                               | 8,25 | 3.80 | 2.8                            | 652          | 778 | 763                           | 758                         | 13.20                                    |

Catalyst: Volume = 67.6 m³, Distribution Bedl: Bed2: Bed3 = 1:1.4:2.0

Note: Units of feed flow rate are given as Nm³/hr. The prefix N before m³ merely indicates m³ at the N.T.P. conditions.



bed. In view of the limitations of data as discussed above, the model parameter values estimated from the plant data have some inherent accuracy limitations.

objective function for minimization is chosen as The the sum the squares of the difference in the computed of and observed values of bed exit temperature for each of the three beds and the ammonia mole percent at the exit of last bed. Since the difference in the values of ammonia mole percent at the exit of last bed is an order of magnitude smaller than the difference in the values for each of the bed exit temperature, a suitable weighting function was used. This is used as a multiplier to the square of the difference in the computed and observed values of ammonia mole percent in order to make the objective function more sensitive to small mismatch in the ammonia concentration. The value of weighting function chosen for the present study is 200.

6.3. Selection of physical properties, thermodynamic and kinetic correlations.

Several correlations (Perry, 1950; Shah, 1967; Dyson and Simon, 1968; Hay and Honti, 1976; Gaines, 1977; Reddy and Husain, Singh and Saraf, 1979; Mansson and Andresen, 1986) are 1978; reported in literature that vary in their degree of complexity, accuracy and range of application for the physical, thermodynamic and kinetic properties required for ammonia synthesis reactor simulation. The physical and thermodynamic properties required are the specific heat, heat of reaction, equilibrium constant and activity coefficient for the pressure,

temperature and composition of the reaction mixture at the different axial positions in the reactor. Computation of specific heats of the reaction mixture requires the specific heat correlation for individual constituents of the reaction mixture, namely, nitrogen, hydrogen, ammonia, methane and argon. Specific, heat of the mixture is evaluated by summing up individual molal contributions by neglecting the heat of mixing. This assumption is quite realistic because all constituents, except ammonia, behave close to ideally at the temperature and pressure condition existing in the bed. The effect of non-ideality of ammonia is not likely to be important because of high temperature and relatively low concentration, two to fifteen mole percent in the reaction mixture.

The kinetic parameters needed in simulation model are the reverse reaction rate constant for the ammonia synthesis reaction catalyst and the order of reaction parameter,  $\measuredangle$ . It may be noted here that in the present study the order of reaction parameter is assumed to have a constant value of 0.5. The validity of this assumption has been discussed by many workers (Shah, 1967; Dyson and Simon, 1968; Gaines, 1977; Reddy and Husain, 1978). However, Singh and Saraf (1979) have preferred to use values of 0.55 and 0.69 for the two catalysts considered in their study. The usual Arrhenius form of expression is used for the temperature dependence of the reverse reaction rate constant with the proviso to determine the most appropriate value of the frequency factor and activation energy using plant data as pointed out in section 3.1.

The correlations selected for this study are presented in chapter-V, see equations 3.1.15 to 3.1.22. These correlations are simple, widely used and predicts reasonably accurate values ofthe thermochemical properties at the reactor conditions. More accurate and elaborate correlations could have been used but that may not be of much use in view of the small improvements in computed results and large increase in computation time. The conclusions of Mansson and Andresen (1986) with reference to the effect of non-ideal behaviour of reaction mixture support the above observation. It may also be noted that the plant data may never be quite accurate and elaborate due to the inherent limitations in the measurement of parameters by the instruments that are used. So searching for a very accurate correlation may not be worthwhile. However, more accurate correlations can always be substituted in the simulation model, if considered necessary.

The main aim of present investigation is not to find the best correlation for the properties but only to use reasonably accurate correlations for developing a reliable and efficient simulation model, validated from the plant data, and to use this simulation model for establishing the optimal operating and design conditions for maximizing ammonia production rate.

6.4. Description of procedure for kinetic and thermodynamic parameter estimation.

The most optimal values of kinetic and thermodynamic parameters namely, Para1, Para2 and Para3 are determined from the plant data using the simulation program developed for an axial

flow multibed quench type ammonia synthesis reactor. This is done by first delinking the external heat exchanger from the reactor as the heat exchanger performance will not effect the computations of temperature and concentration profile in the bed since the first bed inlet temperature is known from the plant data. The computation will then only depend on kinetics of the catalyst and the conditions in the bed. For model validation computations the simulation program had to be modified to some to take care of the special computation algorithm extent requirements for the model validation. For the model validation, computations start with the known value of the first bed inlet temperature for the plant and computes the bed exit temperature up to the third bed with first set of guessed values of the five variables, namely, Paral, Para2, Para3 and cold shots fractions at the inlet of second and third beds. It is to be noted that no cold shot fraction is added at the inlet to first bed as per the present plant practice and the plant supplier's recommendations.

From the actual (plant) and computed bed exit temperatures for all three beds and the exit ammonia concentration from the last bed, the objective function, that is, the sum of squares of the errors is then computed as discussed in the section 6.2. The objective function so generated is found to be highly nonlinear, constrained and multimodal. Therefore, a direct search technique, the Box complex search, is used to find the most optimal values of the five variables. The parameter estimation by this optimization procedure also required external intervention for changing the direction and step size of the search for the above referred five parameters in order to jump one region of local minima to another region of local minima. In this way the true minima of objective function was established. Without external intervention, the search terminated sometimes at a local minima. Similar computations were carried out for three sets of plant operating conditions.

# 6.5. Procedure for the estimation of external heat exchanger heat exchange capacity:

For a given plant operating condition data set, after establishing the optimal values of Para1, Para2 and Para3 and second and third bed inlet cold shot fractions the heat exchange capacity (UA) of the external heat exchanger was found by computing the heat exchanger tube and shell side temperature profile. It was carried out by making a guessed value of heat exchange capacity, preferably taken on higher side than that calculated approximately by estimating the total ammounts of heat transfer and average temperature difference for heat exchange. The heat exchange capacity is based on per unit heat exchanger tube side volume. From the computed temperature profile, it was then possible to locate a position at which the temperature on the shell side matched closely with the actual feed temperature. From this, the guess for the (UA) value was improved to obtain an accurate value of heat exchange capacity (UA) within 2 to 3 iterations. In this way, the heat exchange capacity values were found for the three data sets of plant operating conditions. It was observed that heat exchange capacity at high flow rate was

significantly higher showing its dependence on the flow rate. Therefore a U.8 power dependence of heat transfer coefficient on flow rate was assumed based on the well known Dittus-Boelter heat transfer coefficient correlation (McAdams, 1954) for heating and cooling inside tubes. It may be noted that Kramer and Westerterp (1963b) have also reported that the overall heat transfer coefficient U is approximately proportional to (flow rate) . On this basis the best average value of heat exchange capacity was obtained for the base condition flow rate of 0.74 \* 10 Nm /h from the three heat exchange capacity values. It may be noted that the units of feed flow rate are given as Nm /h in this study. The letter N before m merely indicates m of the feed gas at the N.T.P. conditions. Eventhough such use of N in S.I. units is not permissible, but for ease of comparison of gas flow rates with varying temperature and pressure, the use of N to refer N.T.P. conditions is frequently found in engineering practice.

#### 6.6. Reliability and accuracy of the validated simulation model:

After determining the best values of parameters Paral, Para2, Para3, (UA) and the cold shot fractions at the inlet of H second and third bed by the optimization and averaging procedure as discussed above, it was considered desirable to find the sum of squares for the selected data sets using the best parameter values. This was carried out to see how best the model validation had been achieved and to establish the reliability and accuracy of simulation model for using it for reactor performance analysis and optimization. Two strategies for

testing the accuracy were tried. The first was to consider the first bed inlet temperature as obtained from the plant data as the starting point and test the model validation. This resulted in some mismatch in calculated and actual feed temperatures. The second strategy was to make iterations to obtain calculated and actual feed temperatures within a certain tolerance. The latter strategy resulted in some mismatch in the calculated and actual temperatures at the first bed inlet. It may be noted here that the observed values of feed temperatures in the plant are likely to be much more accurate than the observed values of first bed inlet temperature. This may be attributed to some variations in the actual axial location of the temperature sensing probe at the inlet of a catalyst bed. Exact location of the temperature sensing probe will significantly influence the recorded value of the first bed inlet temperature. A difference of 5 to 10 K between measured and computed first bed inlet temperatures due to above mentioned reason may not be unusual. It may, however, be noted that slight variations in the physical location of the feed temperature-sensing probe will not affect the temperature measurement at all.

in

#### CHAPTER-VII

#### 7. RESULTS AND DISCUSSION

# 7.1. Parameter estimation for reactor simulation model.

Adopting the procedure for parameter estimation as discussed in section 6.1, the simulation package is made quite accurate for a modern ammonia synthesis reactor selected for the present optimization study. An accurate model is essential for applying the results of the simulation and optimization in the plant with confidence and also for developing a reliable and accurate online control.

# 7.1.1. Plant performance data for an axial flow multibed quenchtype ammonia synthesis reactor.

The plant data is shown in detail in Table 6.2.1 and discussed in section 6.2. In all, eight data sets were extracted from the log sheets of the plant for the period during which the plant conditions were steady that also coincided with the time at which feed and product gas samples were drawn for composition analysis. The time of data ensured compatibility of composition analysis and the operating parameters. The bed temperatures shown are the average of two temperature observations from probes located opposite each other at any axial position. The two temperatures were found to be within 3K, indicating negligible radial dispersion. The base set of operating conditions was selected on the basis of average values of parameters existing in the plant and is reported as data set 1 in Table 6.2.1.

Table 6.2.1 that It is observed from some operating parameters that include operating pressure (173.0 atm in data set feed gas flow rate (0.80 \* 10)3) and Nm /h in data set 2) from the base value by about 10 percent. It deviate WAS. therefore, considered desirable to use data sets no. 1, 2 and 3 for independent parameter estimation, that is, to find three sets optimum values of model parameters as discussed in section of 6.1. Based on these three set of values, the best estimates of parameter values were made as discussed in sections 7.1.3 and 7.1.4.

7.1.2. Selection of kinetic, thermodynamic and physical property correlations.

The reasons for the selection of the various correlations that are used in mathematical model are discussed in section 6.3. Reverse reaction rate constant correlation, k.

The kinetic parameter, k (for an arbitrary condition of 200 r atm and 773 K) and the corresponding values of frequency factor and activation energy are presented for the various correlations that are reported by Shah (1967), Gaines (1977), Singh and Saraf (1979) and Dyson and Simon (1968) in Table 7.1.2.1 for comparison. The correlation used in the present investigation is a modification of Shah's correlation as given by Equation 3.1.15. The corresponding values of parameters obtained by parameter estimation technique and used in the present work are also given in Table 7.1.2.1.

All the parameter values have been converted to the same

# Table 7.1.2.1

# Comparison of Frequency Factor and Activation Energy

# Values in the Reverse Reaction Rate Constant, $\Bbbk_{m{ au}}.$

| Correlation/ Reference                  | Frequency                | Activation                                                                                                       | k , mol NH /s/m<br>r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remark |
|-----------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                         | Factor                   | Energy                                                                                                           | at 200 atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | mol/s/m                  | k <b>J</b> ∠km⇔l                                                                                                 | and 773 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                                         | 16                       | and the second | the state of the s |        |
| Shah (1967)                             | 0.94829*10<br>16         | 100869.2                                                                                                         | 276.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| Present work                            | 4.11482*1Ø<br>16         | 97622.4                                                                                                          | 3268.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *      |
| Gaines (1977)                           | Ø.12968*10<br>16         | 94700.8                                                                                                          | 254.Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| Singh and Saraf (1979)                  | Ø.01434*10<br>16         | 82297.0                                                                                                          | 1297.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * *    |
| - 1 h                                   | 0.04491*10               | 90379.6                                                                                                          | 334,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * *  |
| Dyson and Simon (1968)                  | Ø.04916*10 <sup>16</sup> | 85896.0                                                                                                          | 1462,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |

Note: \* Modification of Shah's correlation obtained by data validation.

\*\*\* Montecatini Edison catalyst

\*\*\* Haldor-Topsoe catalyst

units and per mol ammonia formed for ease in comparison. Units for reverse reaction rate constant, frequency factor and activation energy are mol NH /s/m, mol NH /s/m, and kJ/kmol, respectively. It can be observed from the table that k values at 200 atm and 773 K range between 254.0 (correlation of Gaines, 1977) to 3268.3 (present work). The value of reaction rate constant obviously depends on the inherent activity of the catalyst and it appears that the catalyst used in the reactor for the plant under consideration is quite active. The current trend in ammonia synthesis is to use relatively low-pressure (150-200 atm) and high-activity catalyst.

It may be pointed out that when Shah's (1967) correlations were used for data validation with the plant values of first bed inlet temperatures the conversion was found to be significantly lower as compared to the plant values due to low reaction rates predicted by the rate equation of Shah. It may be observed from Table 7.1.2.1 that the frequency factor and the activation energy values obtained by validation of model from the plant data and used in the present work are also comparable to values reported by Shah, Gaines, Singh and Saraf, and Dyson and Simon. Data in the Table 7.1.2.1 show that the activation energy values range from 82297.0 to 100869.2 kJ/kmol. The value of the activation energy obtained from model validation in the present study is 97622.4 kJ/kmol which appears to be very reasonable.

# K, Equilibrium Constant Correlation.

For the reaction 3/2 H + 1/2 N = NH the values of K are 2 2 3 computed at two arbitrary temperatures of 723 and 773 K for the

correlations reported by Hay and Honti (1976), Shah (1967), Gaines (1977), and Dyson and Simon (1968). Gaines used the same correlation used by Dyson and Simon.

As observed from the Table 7.1.2.2. the K values at 723 and 773 K range between 0.00662 to 0.00769 and 0.00376 to 0.00437, respectively. In the present investigation, the correlation of Hay and Honti has been used and an average deviation from reported experimental data is reported as 0.00055 in log K with a maximum deviation of 0.0016 in log K over the temperature range of interest. It may be observed that the K values obtained from the correlation of Shah are always on the high side while that of Dyson and Simon are slightly on the low side. The K values decrease with increase in temperature which is consistent thermodynamically for an exothermic reversible reaction.

# Fugacity Coefficient Term, K.y.

The values of K, are computed from the correlations of Shah (1967), Dyson and Simon (1968), and Gaines (1977) and obtained from the data reported by Dodge (1944) and Denbigh (1981) for a comparison with those used in the present work, a modification of Shah's correlation (equation 3.1.17).

It may be noted that all correlations depend on gas temperature and pressure except that of Gaines which is also dependent on gas composition. The K, values have been calculated at conditions of 100 atm and 723 K, 300 atm and 723 K, and 300 atm and 773 K for comparison since the data reported by Dodge and Denbigh are available at these conditions. The Dyson and Simon values are very close to those reported by Denbigh and Dodge

# Table 7.1.2.2

# Comparison of Equilibrium Constant, K.

(Reaction Equation:  $3/2 H_2 + 1/2 N_2 = NH_3$ )

| Correlation/ Reference | K Values at<br>723K | Gas Condition<br>773 K | Remarks |
|------------------------|---------------------|------------------------|---------|
| Hay and Honti (1976a)  | 0.00678             | 0.00384                | K.      |
| Shah (1967)            | 0.00769             | 0.00437                | 22      |
| Gaines (1977)          | 0.00662             | 0.00376                | \$8     |
| Dyson and Simon (1968) | 0.00662             | 0.00376                | **      |

Note: # Used in present investigation.

\$\$ Gillespie and Beattie Correlation as cited by Dyson

and Simon (1968).

# Table 7.1.2.3

# Comparison of Eugacity Coefficient Term, K .

100

(for reaction 3/2 H<sub>2</sub> + 1/2 N<sub>2</sub> = NH<sub>3</sub>)

1000

| Correlation/ Reference | K Value | s at Gas | Gondition | Remarks |
|------------------------|---------|----------|-----------|---------|
| 1                      | 100 atm | 300 atm  | 300 atm   |         |
| 5.900                  | 723 K   | 723 K    | 773 K     |         |
| Denbigh, K.G. (1981)   | 0.910   | 0.747    | 6.27      | *       |
| Dodge, B.F. (1744)     | 0.929   | 0.757    | 0.773     | *       |
| Shah (1967)            | 0.808   | 0.728    | 0.753     | 500     |
| Present Work           | 1.1.1.4 | 1.004    | 1.038     | **      |
| Dyson and Simon (1968) | 0.909   | 0.746    | 0.767     |         |
| Gaines (1977)          | 1.526   | 3.551    | 3.329     | ***     |

Note: \* Experimental data.

\*\* Modification of Shah values by a multiplying factor obtained by model validation with the use of plant data. \*\*\* For gas composition (mol %):

 $H_2 = 53.0$ ,  $N_2 = 17.7$ ,  $NH_3 = 14.8$ ,  $CH_4 = 9.9$ , Ar = 4.0

while Shah's values are on the low side and those of Gaines are quite high for all conditions.

It may be noted that the values of K<sub>Q</sub> used in the present investigation appear to be reasonable, slightly higher than those of Denbigh and Dodge but considerably lower than those of Gaines.

# Heat of Reaction, $(- \triangle H)$

The values of heat of reaction were obtained from reported data and computed from the correlations given by Gillespie and Beattie as cited by Hay and Honti (1976), Perry (1950), Shah (1967), Gaines (1977), Nielsen (1968), Kirk and Othmer (1978) and (1929) for comparison. Table 7.1.2.4 shows the values at different conditions.

r NHz

It may be observed that the heat of reaction increases with increase in the pressure and/or temperature. The Perry and Nielsen correlations are independent of pressure while those of Gillespie and Beattie, Shah and Gaines are also dependent on pressure for accounting the nonideality introduced due to pressure. It may be observed that the values obtained from the correlation of Shah are nearly fifty percent higher and those obtained from the correlation of Gaines are nearly ten percent lower than those obtained from other sources, namely, Gillespie and Beattie, Perry, Nielsen, Kirk and Othmer and the International Critical Tables.

# Table 7.1.2.4

# Comparison of Values of Heat of Reaction, (- AHr) NH3.

(for reaction  $3/2 H_2 + 1/2 N_2 = NH_3$ )

Correlation/ Reference (-AHr) NH3 at Gas Condition,

kJ/kmol NH3 formed

100 atm 300 atm 300 atm 200 atm 1 atm 723 K 723 K 773 K 833 K 291 K

Gillespie and 53624.5 56073:8 56304.1 55592.3 44861.6 Beattie # Perry (1950) 53494.7 53494.7 54206.5 55048.1 46054.8 Shah (1967) 76199.8 76873.8 79867.4 83602.0 61797.2 Gaines (1977) ## 47658.3 48462.2 48985.6 49291.2 41270.1 Nielsen (1968) 53348.2 53348.2 53972.0 54625.2 45837.1 Kirk Othmer (1978) ### 46276.7 ICT (1930a) ### 45853.8

Note: # As cited by Hay and Honti (1976b) and also used in present investigation.

## Correlation from Kazarnovskii data as cited by Gaines (1977).

**\*\*\*** Reported data.

Heat Capacities of Ammonia, Hydrogen, Nitrogen, Methane and Argon.

The values of heat capacities were computed from the correlations given by Shah (1967), Perry (1950) and the International Critical Tables (1930a, 1930b, 1930c, and 1930d) for comparison at four conditions of 100 atm and 723 K; 300 atm and 723 K; 300 atm and 773 K; and 200 atm and 833 K. It is observed from Table 7.1.2.5 that with increase in gas temperature at constant pressure the heat capacity increases except for ammonia heat capacity computed from Shah's correlation. This is thermodynamically consistent. The values of heat capacity of ammonia calculated from Shah's correlation are higher while those obtained from correlations in the International Critical Tables are lower. Therefore, in the present investigations, the correlations given in Perry's Handbook are considered more suitable and are used in the present work. Similarly, the correlations given in Perry's Handbook are considered more satisfactory for hydrogen and nitrogen and are used in the present work. For methane, the correlation given in the International Critical Tables is used. For argon the constant value reported by Shah is used.

# 7.1.3. Estimation of Kinetic and Thermodynamic Parameters.

The procedure for estimation of kinetic and thermodynamic parameters have been discussed in detail in section 6.4. After selecting the appropriate correlations based on the reasons analyzed in section 7.1.2, the parameter estimation was carried out for the three data sets (set nos. 1, 2 and 3 in Table 6.2.1).

# Table 7.1.2.5

# Comparison of Heat Capacities of NH3, H2, N2 and CH4.

| Correlation/ Reference                                  | 6as                                                 | Cp, kJ/k                         | mol/K                                    |                                  | 57                                | Remarks |
|---------------------------------------------------------|-----------------------------------------------------|----------------------------------|------------------------------------------|----------------------------------|-----------------------------------|---------|
|                                                         | Constituent                                         | 100 atm<br>723 K                 | 300 atm<br>723 K                         | 300 at <b>a</b><br>773 K         | 200 at <b>u</b><br>833 K          | 25      |
| Shah (1967)                                             | NH3<br>H2<br>N2<br>CH4                              | 60.58<br>27.48<br>30.90<br>58.70 | 61.8 <b>4</b><br>29.48<br>30.90<br>58.70 | 58.15<br>29.60<br>31.19<br>61.21 | 55.35<br>29.77<br>31.53<br>64.18  |         |
| Perty (1950)                                            | NH <sub>3</sub><br>H <sub>2</sub><br>H <sub>2</sub> | <b>47.15</b><br>27.60<br>31.36   | 49.15<br>29.60<br>31.36                  | 50.49<br>29.73<br>31.61          | 52.00<br>29.85<br>31.95           |         |
| ICT (1929)<br>ICT (19306)<br>ICT (1930c)<br>ICT (1930d) | NH3<br>H2<br>N2<br>CH4                              | 39.86<br>28.93<br>88.34<br>71.09 | 39.86<br>28.93<br>88.34<br>71.09         | 40,28<br>29,10<br>95,04<br>74,36 | 40.78<br>29.31<br>102.91<br>78.13 |         |

Note: # Used in present investigation.

The results of the computations for minimization of sum of squares of errors are summarised in Table 7.1.3.1. It is observed that for the first data set (base condition) the match in actual bed temperature and computed ones has been brought down to within about 2K. The match in ammonia concentration is also very good and the difference is only 0.264 mol %. These resulted in a sum of squares of error value of 9.1. The optimal parameter values are computed to be 1.076634, 0.967812 and 1.450 for Paral, Para2 and Para3, respectively. Using the computed values of Para1 and Para2, the frequency factor and activation energy values are found to be 12.40973 \* 10 mol/s/m and 97622.4 kJ/kmol, respectively. In the case of increased flow rate of 0.80 \* 10 Nm /h the optimal Paral, Para2 and Para3 values are found to be 1.01867, 0.967812 and 1.357, respectively, to result in a sum of squares of errors of 17.9 with the absolute maximum difference in bed outlet temperature and ammonia concentration of 3.7 K and 0.053 mol percent.

Using the computed values of Paral and Para2, the frequency factor and the activation energy values are found to be 1.77430 \* 10 and 97622.4, respectively. Similarly from the table it is observed that at decreased pressure of 173 atm, the optimal Paral, Fara2 and Para3 values are obtained to be 1.03757, 0.967812 and 1.330, respectively. The match in temperature and ammonia concentration is again very good with absolute maximum difference in temperature and concentration is found to be 3.2 K and 0.021 mol percent, respectively, and the sum of squares of errors of only 18.7. Using the computed values of Parai and

# <u>Table 7.1.3.1</u>

# Summary of Results for Parameter Estimation.

| S.<br>NO. | Operating<br>Pressure<br>(atm) | Feed Gas<br>Flow Rate<br>(Nm <sup>3</sup> /h.) | Feed<br>Temp,<br>(K) | Bed Ou<br>1st | itlet Te<br>2nd |        | External Heat<br>Exchanger Exit<br>Temp. (K) | Ammonia<br>Conc. at<br>Outlet of<br>3rd Bed<br>mol X | Sum of<br>Squares<br>of<br>Error |        | Parai   | Para2    | Par a3 | Remarks   |
|-----------|--------------------------------|------------------------------------------------|----------------------|---------------|-----------------|--------|----------------------------------------------|------------------------------------------------------|----------------------------------|--------|---------|----------|--------|-----------|
| i.        | 190                            | 0,74 \$ 104                                    | 414                  | 783           | 752             | 749    | 588                                          | 13.42                                                |                                  | ୍      |         |          |        | \$        |
|           |                                | 0                                              | - 1                  | 780.7         | 753.6           | 750.0  |                                              | 13.684                                               | 9.1                              | 294165 | 1.07664 | 0.967812 | 1.450  | **        |
|           | 1.1                            | 23                                             | 8.                   | - 2.3         | 1.6             | 1.0    | 2.20                                         | 0.264                                                | N                                |        | 10      | ς        |        | ***       |
| 2.        | 192                            | 0.80 \$ 100                                    | 415                  | 778           | 759             | 759    | 588                                          | 13.40                                                |                                  | - 1    |         | É.       |        | •<br>•    |
|           | - E                            |                                                | 417.4                | 781.7         | 760.8           | 757.9  | 592.4                                        | 13.453                                               | 17.9                             | 354600 | 1.01867 | 0.967812 | 1.357  | **        |
|           |                                |                                                | 2.4                  | 3.7           | 1.8             | - 1.1. | 4.4                                          | 0.053                                                |                                  | 1      |         | 54       |        | ***       |
| 3.        | 173                            | 0.74 \$ 104                                    | 414                  | 784           | 765             | 756    | 587                                          | 13.12                                                |                                  | -      |         | -        |        | <b>\$</b> |
|           | 5                              |                                                | 412.1                | 786.3         | 768.2           | 757.8  | 590.4                                        | 13.141                                               | 18.7                             | 320645 | 1.03757 | 0.967812 | 1.330  | **        |
|           |                                | 18                                             | - 1.9                | 2.3           | 3.2             | 1.8    | 3.4                                          | 0.021                                                |                                  | 14     | 9.1     |          |        | ***       |

Note: # Plant data.

\$\$ Computed results.

111 Difference of computed value and corresponding plant data. Units of feed flow rate are given as Nn<sup>3</sup>/h, cubic meter per hour at N.T.P. condition.

82

Para2, the frequency factor and activation energy are found to be 16 3.34553 \* 10 and 97622.4. It may be observed that the three sets of optimal values of Para1, Para2 and Para3 obtained by validation of the model by comparing with the plant data for the same catalyst, differ to some extent from each other. The difference in values may be attributed to not so accurate plant data. Therefore, an average of the three values is used in the simulation model. The average values for the three parameters are:

Para 1 = 1.04429, Frequency factor = 4.11482 \* 10 Fara 2 = 0.967812, Activation energy = 97622.4 Para 3 = 1.379

The average values are reported in Table 7.1.2.1 and are discussed in section 7.1.2. It may be noted here that the corresponding validated optimal values of cold shots obtained during parameter estimation for the three data sets are (0.245, 0.100), (0.254, 0.090) and (0.176, 0.160) at the inlet of the second and third beds, respectively. The cold shot at the inlet of the first bed is taken to be zero as per the present practice in the plant.

7.1.4. Estimation of Heat Exchange Capacity of the External Heat Exchanger, (UA) .

The procedure for estimation of (UA), W/K as given in Hsection 6.5 was used to obtain the best values for the three data sets as shown in Table 7.1.3.1. The three values corresponding to the data sets 1, 2 and 3 are 294165, 354600 and 320645 W/K. As discussed in section 6.5, It is reasonable to account for the

effect of flow rate on (UA) by assuming a 0.8 power dependence on flow rate of overall heat transfer coefficient, U (McAdams, 1954; Kramer and Westerterp, 1963b). For comparison the (UA) value obtained for data set 2 at a flow rate of 0.80 \* 10 Nm /h when converted to the base value flow rate of 0.74 \* 10 Nm /h becomes 333165. Again the three values are different although the difference in maximum and minimum values at base value of flow rate of 0.74 \* 10 Nm /h is about 13%. This may be attributed to a large extent to the temperature measurement errors in the plant Therefore, an average value is used and (UA) is computed data. in simulation model by: 6 0.8

(UA) = 316000 ((feed gas flow rate, Nm /h)/(0.74 \* 10 )) H

7.1.5. Comparison of Reactor Simulation Model Predictions with Actual Plant Performance.

As discussed in section 6.6 the reliability of the model is tested at the average value of Para1, Para2, Para3, (UA) and the H celd shot values obtained by model validation. The results of computations for sum of squares of errors for all eight data sets (given in Table 6.2.1) are shown in Table 7.1.5.1.

It is observed that by using strategy 1, the sum of squares of errors values range from 20 to 180 and by using iterative strategy 2, the sum of squares of errors values range from 38.9 to 253.0. The value of sum of squares of errors and the computed value of temperature and concentration all along show a very good match. The match in ammonia concentration is also quite good. It,

#### Table 7.1.5.1

Comparison of Simulation Results With Plant Data At Average Value Of Estimated Parameters. Paral = 1.04429, Para2 = 0.967812, Para3 = 1.379

| Set        | Operating<br>Pressure, | 6as                         | Cold Shot | Fraction | Темр.,          | Bed              |                |                |                   | External<br>Keat |                  |                       |                 | (UA) <sub>H</sub><br>W/K | Remar                    |
|------------|------------------------|-----------------------------|-----------|----------|-----------------|------------------|----------------|----------------|-------------------|------------------|------------------|-----------------------|-----------------|--------------------------|--------------------------|
| <b>МО.</b> | No. (atm)              |                             |           | 3rd Bed  | Inlet<br>Temp., | Ist              | 2nd            | 3r d           | Exchanger<br>Exit | r Prodn.,<br>t∕d | Mol X            | Squares<br>Of         | (comp-<br>uted) |                          |                          |
|            |                        | (10⁴<br>₩ਛ <sup>3</sup> ∕Ⴙ) | 28        | 5        | (K)             | (K)              | ä              | 5              | 2                 | Темр.,<br>(К)    |                  |                       | Error           | 01007                    |                          |
| 1,         | 190                    | 0.740                       | 0.245     | 0.100    | 414             | 652<br>652.0     | 783            | 752            |                   | 588<br>586.6     | 1313             | 13.42<br>13.68        |                 | 316000                   | ) <b>\$</b><br><b>\$</b> |
|            | `                      | 6.                          | C.6.      | 2.1      |                 |                  | 788,5          | 761.9          | 756.2             | 596.5            | 1287.2           | 287.2 13.50 253.0 *** |                 |                          |                          |
| 2.         | 172                    | 0.800                       | 0.254     | 0.070    | 415             | 654              | 778            | 759            |                   | 588              | 1393.8           |                       |                 | 336370                   | ·                        |
|            |                        |                             | 1         |          |                 |                  | 781.3          |                |                   | 596.3<br>596.5   | 1394.0<br>1393.6 | 13.83<br>13.83        | 180.0<br>182.0  |                          | 11<br>813                |
| 3.         | 173                    | 0.740                       | 0.176     | 0.160    | 414             | 655<br>655.0     | 784            | 765            |                   | 587              | 1751 4           | 13.12                 | -               | 316000                   |                          |
|            |                        |                             | 130       |          |                 |                  | 784.5          | 765.7          | 754.2             | 592.8            | 1251.4           | 13.23<br>13.19        | 20.1<br>38.9    | 41<br>411                |                          |
| 4,         | 185                    | 0,785                       | 0.223     | 0.120    | 413             |                  | 781            | 761            |                   | 588              | 1370.4           | 13.60                 |                 | 331280                   | -                        |
|            | 5                      |                             |           | 10       |                 |                  |                | 759.3<br>759.9 |                   |                  | 1364.1<br>1359.9 | 13.74<br>13.70        |                 |                          | \$ \$<br>\$ \$ \$        |
| 5.         | 184                    | 0.775                       | V.215     | 0.129    | 41.7            | 651              | 775            |                | 757               | 587              |                  | 13.47                 |                 | 327890                   | 1                        |
| ÷          | 54                     |                             |           |          | 401.8           |                  |                |                |                   | 588.4<br>596.4   | 1339.3<br>1324.1 | 13152<br>13.38        |                 |                          | 11<br>111                |
| 6.         | 186                    | 0.760                       | 0,215     | 0.071    |                 | 656              |                | 765            |                   | 589              |                  | 13.14                 |                 | 322800                   | \$                       |
|            | - 53                   | 22                          | 1         |          |                 | 656.0<br>654.6   |                | 767.3<br>766.8 |                   |                  | 1280.1<br>1284.3 | 13.17<br>13.22        |                 |                          | 11<br>111                |
| <br>7.     | 183                    | 0.770                       | 0.206     | 0.110    |                 | 655              | 782            | 768            | 761               |                  |                  | 13.45                 |                 | 326190                   | <b>;</b>                 |
|            |                        |                             | 522       | 22b      |                 | 655.0<br>654.3   |                | 765.1<br>764.9 |                   |                  | 1301.0<br>1303.2 | 13.22<br>13.24        |                 |                          | \$\$<br>\$\$             |
| 3,         | 183                    | Ú.780                       | 0.215     | 0.110    | 417             | 652 <sup>.</sup> | 778            | 763            | 758               | 588              |                  | 13.20                 |                 | <br>329580               | *                        |
| •          |                        |                             |           | 4 L      | 411.0           | 652.0<br>654.1   | 781.5<br>783.3 | 761.8<br>762.6 |                   |                  | 1337.3<br>1330.7 | 13.43                 | 53.4<br>100.0   |                          | 11<br>  111              |

NOTE: # Plant data.

\$\$ Strategy 1. First bed inlet temperature is taken as plant data (actual), a noniterative procedure.

\$\*\* Strategy 2. First bed inlet temperature is searched to match calculated and actual feed temperatures, an iterative
procedure.

therefore, establishes that the values of model parameters found from plant data are indeed good for further analysis and optimization of the plant performance.



ļ

7.2. Choice of Variables and Their Ranges for Simulation Studies.

Operation of an ammonia reactor is generally associated with changes in the values of operating variables. Important operating variables for a multibed reactor are: cold shot distribution, feed gas flow rate, concentration of inerts (methane and argon ) in the feed gas, hydrogen to nitrogen ratio in the feed gas, catalyst activity, operating pressure, and feed gas temperature. At the design stage, a designer can also vary total catalyst volume and catalyst distribution.

Performance of a multibed ammonia synthesis reactor 13 greatly affected by cold shot distribution. Low cold shot rates well as high cold shot rates have a pronounced effect on as the reduction of ammonia production. Injudicious increases in the cold shot rates result in the quenching of the reactor. In order to study the effect of changes in the operating and/or design variables on the ammonia production rate, it was considered vital to have the optimal cold shot distributions for each of the condition. Otherwise, non-optimal cold shot distribution will totally mask the true effect of the changes in other variables. Accordingly, cold shot distributions are not treated as operating variables, but instead the cold shot distribution is optimized for each set of operating and or design conditions.

Surprisingly, the data obtained from a modern commercial multibed axial flow ammonia reactor did not have any measured values for cold shot flow rates/distribution because of lack of facilities for such meeasurements. In the present study, the cold

shot distribution for the base case was obtained by validating the plant data. This aspect has been discussed in detail in the preceding section (section 7.1). The base value for each of the operating variable was chosen as the most probable value at which the plant is operating. The changes in operating variables were, in general, restricted to ten percent on either side of the base value (as observed from the plant data for few months), except for catalyst activity factor. The base value of catalyst activity factor was chosen as unity and the effect of deterioration in catalyst activity was investigated at the catalyst activity factor of 0.9, 0.8 and 0.7. Changes in the feed gas temperature as well as catalyst distribution in different beds were not investigated because of their irrelevance in the present context. The catalyst volume was changed only to compare the effect of such changes from those obtained from the corresponding changes in the feed gas flow rate. The base values of operating and/or design variables and their ranges of variations are given in Table 7.2.1. The values of some of the operating and/or design variables kept unchanged of their base values are also given in Table 7.2.1. The base values for these variables were also obtained either from the actual plant data or obtained from the validation of the model by use of plant data (section 7.1).

| Operating | and Design Parameters                                                           | Average                 | <u>Value and Ran</u> | ge_Investigated                                |
|-----------|---------------------------------------------------------------------------------|-------------------------|----------------------|------------------------------------------------|
| S.No.     | Description<br>of the Variable                                                  | Unit '                  |                      | Values for<br>on Study                         |
|           |                                                                                 | L.                      | Base<br>Condition    | Range of<br>Variations                         |
|           | Parameter Varied                                                                | की                      | Witter               | 1 m                                            |
| 1.        | Feed Gas Pressure                                                               | atm<br>3                | 190                  | 170 to 210                                     |
| 2.        | Flow Rate                                                                       | 0                       | 0.740 * 10           | $0.667 \times 10^{6}$ to                       |
| 10        | 811.3                                                                           |                         | 2.50                 | 0.820 * 10 <sup>6</sup>                        |
| 3.        | H /N Ratio                                                                      |                         | 3.0                  | 2.5 to 3.2                                     |
| 4.        | Inerts in Feed:<br>CH <sub>4</sub><br>Ar                                        | mol %<br>mol %<br>mol % | 8.80                 | 10.68 to 13.95<br>6.88 to 9.30<br>3.80 to 4.65 |
| 5.        | Catalyst Activity<br>Factor                                                     |                         | 1.0                  | 0.7 to 1.0                                     |
| 6.        | Catalyst Total Volume                                                           | 3<br>m                  | 67.6                 | 61.0 to 75.0                                   |
| 5         | Parameters Kept Unchan                                                          | ged                     |                      | 180                                            |
| 1.        | Catalyst Distribution                                                           |                         | 1.0:1.4:2.0          | 4.8 2                                          |
| 2.        | External Heat Exchange<br>Capacity                                              | W/K                     | 316000               | 4.5                                            |
| 3.        | Internal Preheating<br>Section Heat<br>Exchange Capacity<br>(Catalyst Bed Side) | W/K                     | 0.0                  | 5                                              |

# Table 7.2.1

Operating and Design Parameters Average Value and Range Investigated.

5. NH in Feed Gas mol % 1.61

Feed Gas Temperature

4.

Note: Here prefix N before m stands for N.T.P. conditions.

Κ

# 7.3. Simulation Results for Base Conditions.

The simulation program was run on Roorkee University Computer Centre main frame Computer System, Regional DEC 20. Optimization of cold shot fractions for a single set of conditions took nearly 5 to 8 minutes of CPU time. The results ofoptimization are summarised in Tables 7.3.1.1 and 7.3.1.2. The detailed computed profiles of bed temperature (K) and ammonia concentration (mol percent) are presented in Appendix A, Tables A.1 through A.7, for the sixteen sets of conditions investigated. The detailed results are tabulated at shorter intervals towards the end of each bed to clearly understand the contribution of each additional increment of catalyst volume. It may be noted for numerical integration each bed was divided into 100 that equal increments. Figures 7.1 through 7.15 show the effect of changes in operating and design parameters on the optimal performance and the stability of the reactor. Except for set no. all other sets represent the performance of reactor at the 0, optimal cold shot distributions. Set No. O designates the base condition with simulated value of cold shot fractions (since actual cold shot fractions at the first and second bed inlets are not known due to lack of measuring facilities in the plant) obtained by validation of the model by comparison with plant data. Set No. 1 also represents the base conditions except that the cold shot fractions added at the inlet of each of the three beds are at the optimal values obtained from the optimization studies.

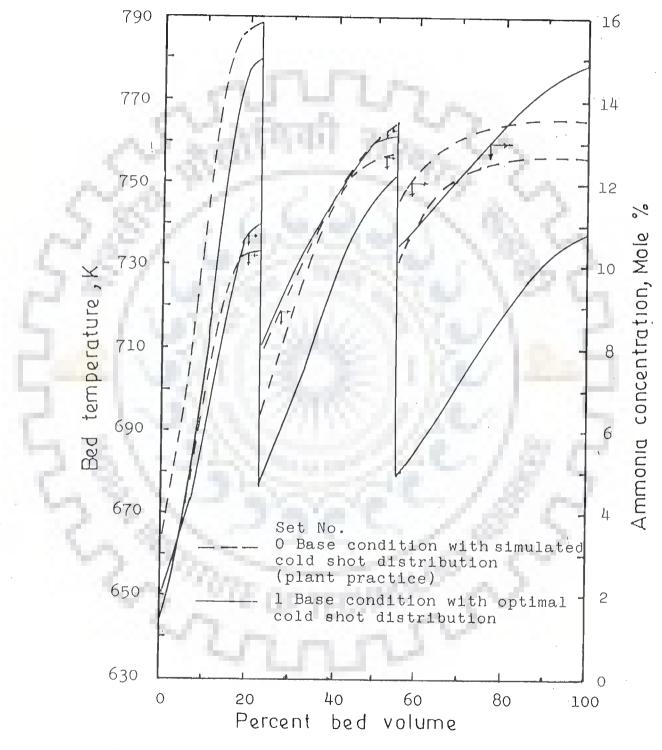
# TABLE.NO. 7.3.1.1 SUMMARY OF COMPUTED RESULTS

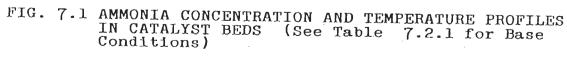
| et No. | Parameter             | Value Of  | Cold : | shot D: | istribu | ution  | Mo1 %     | Production | Total    |
|--------|-----------------------|-----------|--------|---------|---------|--------|-----------|------------|----------|
|        | Varied                | Parameter | 1st    | 2nd     | 3rd     | Total  | NH3 At    | Rate OF    | Pressure |
|        |                       |           | Bed    | Bed     | Bed     |        | Outlet Of | NH3,       | Drop,    |
| •      |                       |           |        |         |         |        | 3rd Red   | t/d        | atm      |
| 1      | 2.                    | 3         | 4      | 5       | 6       | 7      | 8 ·       | 9          | 10       |
| 0*     | -                     | ~         | 0.000  | 0.245   | 0.100   | 0.345  | 13.502    | 1287.2     | 2.77     |
| 1      |                       | 1.04      | 0.110  | 0.233   | 0.232   | 0.575  | 14.880    | 1419.2     | 2.26     |
| 2 (A)  | Flow rate, $Nm^3/h$   | 0.667*16  | 0.123  | 0.253   | 0.234   | 0.610  | 15.188    | 1306.4     | 1.83     |
| 2 (B)  | Flow rate             | 0.820*10  | 0.098  | 0.230   | 0.219   | 0.547  | 14.631    | 1547.3     | 2.78     |
| 3 (A)  | H/N ratio             | 2.5       | 0.109  | 0.237   | 0.236   | 0,582  | 14.914    | 1421.7     | 2.25     |
| 3 (B)  | -do-                  | 2.8       | 0.108  | 0.240   | 0.234   | 0,582  | 14.918    | 1422.4     | 2.25     |
| 3 (C)  | -do-                  | 3.2       | 0.108  | 0.237   | 0.226   | 0.571  | 14.845    | 1416.3     | 2.27     |
| 4(A)   | Inerts Cond           | c.10.68   | 0.145  | 0.250   | 0.234   | 0.629  | 15.387    | 1467.0     | 2.19     |
| 4(B)   | -do-                  | 13.95     | 0.089  | 0.249   | 0.220   | 0.558  | 14.647    | 1397.1     | 2.29     |
| 5(A)   | Catalyst<br>Activityf | 0.7       | 0.030  | 0.193   | 0.192   | 0.415  | 13.764    | 1312.5     | 2.56     |
| 5(B)   | -do-                  | 0.8       | 0.080  | 0.232   | 0.203   | 0.515  | 14.322    | 1366.2     | 2.38     |
| 5 (C)  | -do-                  | 0.9       | 0.096  | 0.237   | 0.220   | 0.553. | . 14.631  | 1395.6     | 2.30     |
| 6 (A)  | Catalyst              | 61.0      | 0.096  | 0.239   | 0.214   | 0.549  | 14,646    | 1397.1     | 2.17     |
| 6 (B)  | Volume, m<br>-do-     | 75.0      | 0.120  | 0.253   | 0.235   | 0,608  | 15.184    | 1447.8     | 2.37     |
| 7 (A)  | Operating             |           | 0.089  | 0.235   | 0.199   | 0,523  | 14,167    | 1351.3     | 2.34     |
| 7 (B)  | ¥ ,                   | 210.0     | 0.146  | 0.253   | 0.231   | 0.630  | 15,691    | 1495.4     | 2.21     |
|        |                       |           |        |         |         |        |           |            |          |

Note: See Table 7.2.1 for base conditions

#### TABLE 10.7.3.1.2

TEMPERATURE AND AMMONIA CONCENTRATION VALUES AT BED INLET AND OUTLET


FOR DIFFERENT CONDITIONS


| Set No.        | Intérnal         |             | Temper       | Temperature And Conversion In The Bed |                    |                   |  |  |  |  |  |  |  |
|----------------|------------------|-------------|--------------|---------------------------------------|--------------------|-------------------|--|--|--|--|--|--|--|
|                | Preheating 1st B |             | ed           | 2nd B                                 | ed                 | 3rd Bed           |  |  |  |  |  |  |  |
|                | Section          | Inlet       | Outleť       | Inlet                                 | Outlet Inl         | et Outlet         |  |  |  |  |  |  |  |
|                | Outlet           | Tend. Moltz | Temp. Mol. 3 | Temp. Mol &                           | Temp. Nol' % Temp. | Mol : Temp. Mol : |  |  |  |  |  |  |  |
|                | Temp., K         | (K) NH3     | (K) MH3      | (K) NH3                               | (K) NH3 (K)        | NH3 (K) 77H3      |  |  |  |  |  |  |  |
| 1              | 2                | 3 4         | 5 v          | 7 8                                   | 9 10 11            | 12 13 14          |  |  |  |  |  |  |  |
| 0              | 658.3            | 658.3 1.61  | 788.5 10.32  | 692.9 7.81                            | 761.9 12.74 729.6  | 11.52 756.2 13.50 |  |  |  |  |  |  |  |
| 1              | 695.1            | 640.1 1.61  | 779.8 10.98  | 675.4 7.96                            | 751.9 13.47 678.3  | 10.48 737.8 14.88 |  |  |  |  |  |  |  |
| 2- <b>(</b> A) | 702.3            | 636.4 1.60  | 779.0 11.18  | 665.4 7.83                            | 746.8 13.68 573.7  | 10.60 735.4 15.19 |  |  |  |  |  |  |  |
| 2(B)           | 687.8            | 641.4 1.61  | 777.5 10.72  | 676.8 7.87                            | 750.9 13.18 681.7  | 10.43 738.6 14.63 |  |  |  |  |  |  |  |
| 3 (A)          | 695.4            | 640.0 .1.61 | 779.5 10.99  | 672.8 7.90                            | 750.5 13.50 676.0  | 10.45 736.2 14.91 |  |  |  |  |  |  |  |
| 3 (B)          | 695.7            | 640.5 1.61  | 780.3 10.99  | 672.3 7.87                            | 750.3 13.49 676.5  | 10.47 736.6 14.92 |  |  |  |  |  |  |  |
| 3 (C)          | 694.7            | 640.9 1.61  | 780.1 10.95  | 674.6 7.91                            | 751.1 13.40 679.5  | 10.50 738.3 14.85 |  |  |  |  |  |  |  |

| 1             | 2     | 3     | 4    | ī     | 6     | 7         | 8    | 9     | 10    | 11    | 12    | 13    | 14    |
|---------------|-------|-------|------|-------|-------|-----------|------|-------|-------|-------|-------|-------|-------|
| 4 (A)         | 709.6 | 629.9 | 1.61 | 773.3 | 11.37 | 665.7     | 7.98 | 749.0 | 13.85 | 675.1 | 10.73 | 739.1 | 15.39 |
| 4 <b>(</b> B) | 689.5 | 645.6 | 1.61 | 780.9 | 10.72 | 670.7     | 7.64 | 747.1 | 13.13 | 678.4 | 10,38 | 736.0 | 14.65 |
| 5 (A)         | 668.3 | 656.5 | 1.61 | 779.9 | 9.83  | 6.9-6 . 1 | 7.75 | 762.8 | 12.37 | 700.2 | 10,13 | 749.7 | 13.76 |
| 5(B)          | 683.5 | 647.2 | 1.61 | 776.3 | 10.37 | 578.6     | 7.67 | 749.9 | 12.76 | 686.0 | 10.31 | 740,5 | 14.32 |
| 5 (C)         | 690.4 | 643.9 | 1.61 | 789.4 | 10.75 | 675.6     | 7.81 | 750.3 | 13.16 | 680.9 | 10.40 | 738.2 | 14.63 |
| 6 (A)         | 690.5 | 644.3 | 1.61 | 783.7 | 10.75 | 675.8     | 7.80 | 750.4 | 13.14 | 682.9 | 10,46 | 739.5 | 14.65 |
| 6 (B)         | 700.1 | 635.1 | 1.61 | 778.8 | 11.20 | 665.0     | 7.83 | 746.4 | 13.68 | 673.1 | 10.60 | 734.9 | 15.18 |
| 7 (A)         | 6 5   | 639.7 | 1.61 | 769.3 | 10.29 | 671.1     | 7.60 | 741.4 | 12.63 | 680.3 | 10.25 | 733.3 | 14.17 |
| <b>7 (</b> B) | 709.6 | 629.8 | 1.61 | 773.9 | 11.61 | 665.7     | 8.11 | 748.9 | 14.09 | 676.3 | 10.95 | 740.1 | 15.69 |

S

λ,





94 -

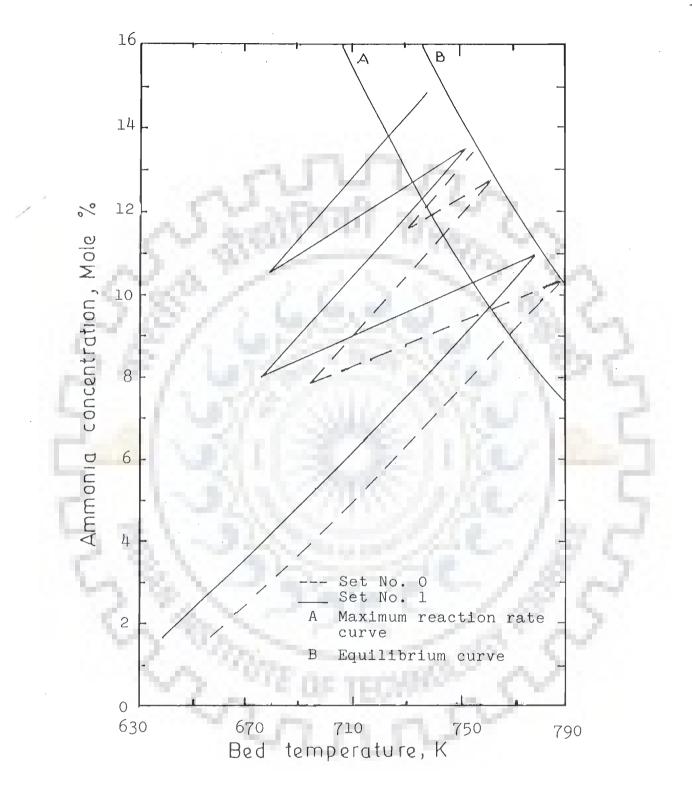



FIG. 7.2 AMMONIA CONCENTRATION VERSUS TEMPERATURE IN CATALYST BEDS (See Table 7.2.1 for Base Conditions)

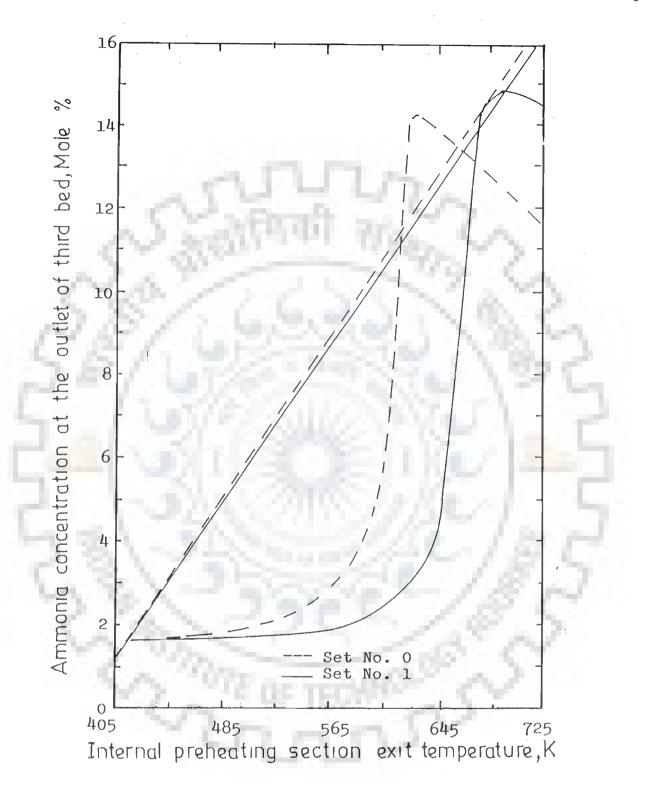



FIG. 7.3 REACTOR OPERATING POINTS AND THEIR STABILITY (See Table 7.2.1 for Base Conditions)

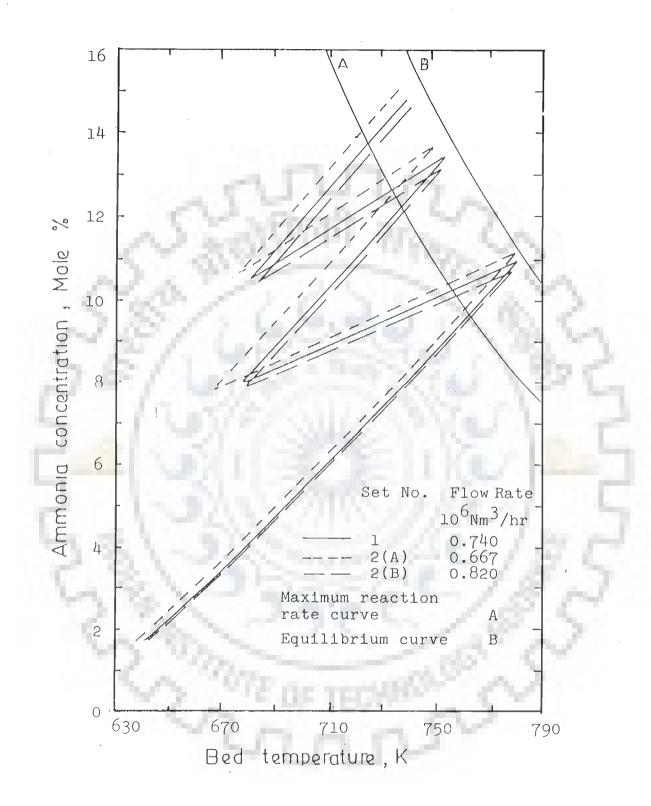



FIG. 7.4 EFFECT OF FEED FLOW RATE ON AMMONIA CONCENTRATION-TEMPERATURE PROFILE IN CATALYST BEDS FOR OPTIMAL COLD SHOT DISTRIBUTION (Base conditions, set No.1, are given in Table 7.2.1)

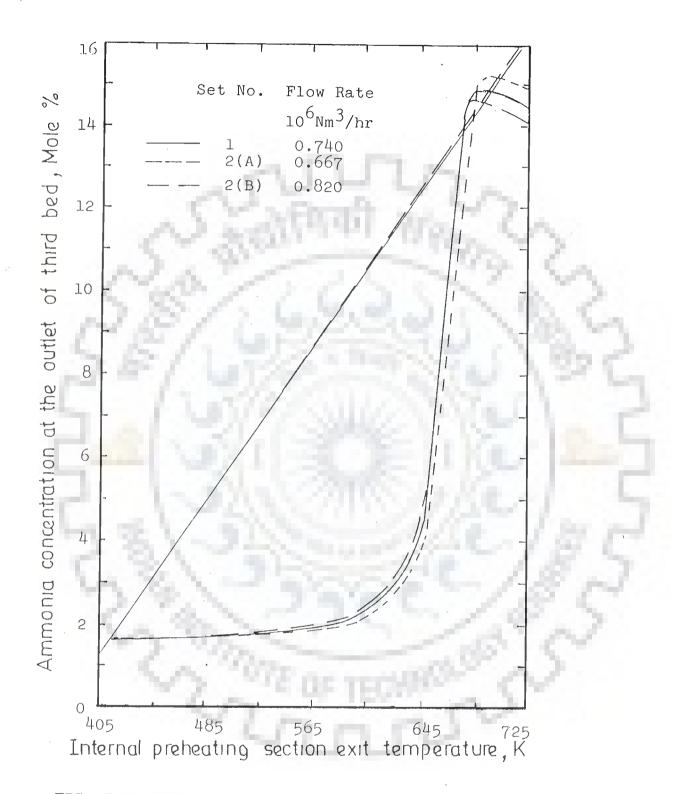



FIG. 7.5 EFFECT OF FEED FLOW RATE ON REACTOR OPERATING POINTS AND THEIR STABILITY (Base conditions, set No.1, are given in Table 7.2.1)

i

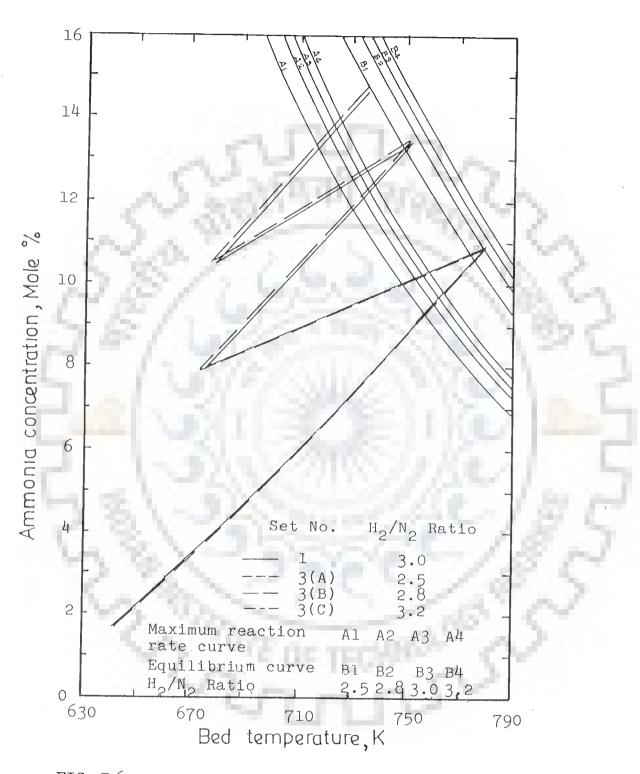



FIG. 7.6 EFFECT OF H<sub>2</sub>/N<sub>2</sub> MOLE RATIO ON AMMONIA CONCENTRATION-TEMPERATURE PROFILE IN CATALYST BEDS FOR OPTIMAL COLD SHOT DISTRIBUTION (Base conditions, set No.1, are given in Table 7.2.1)

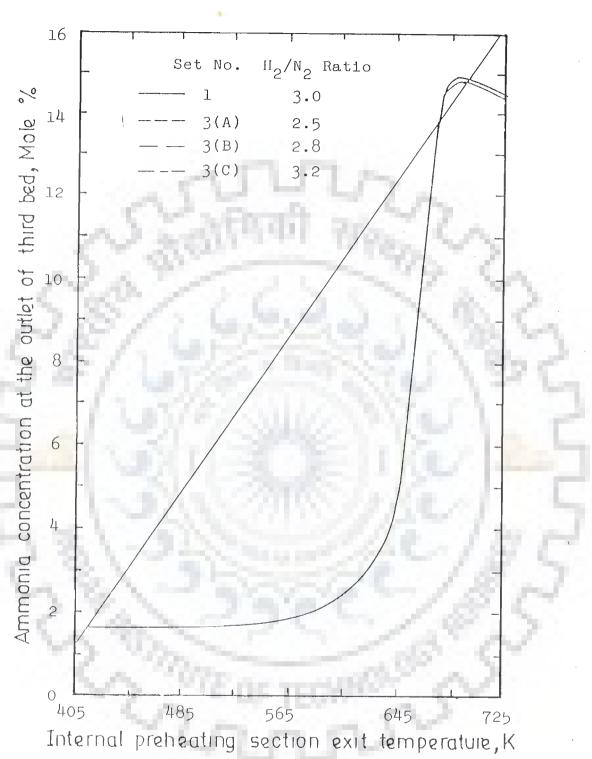
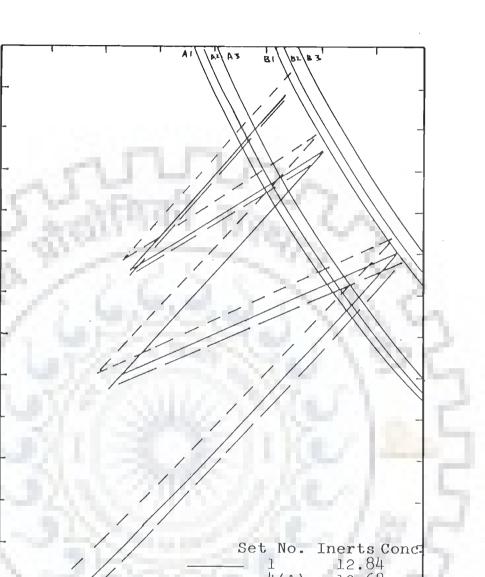
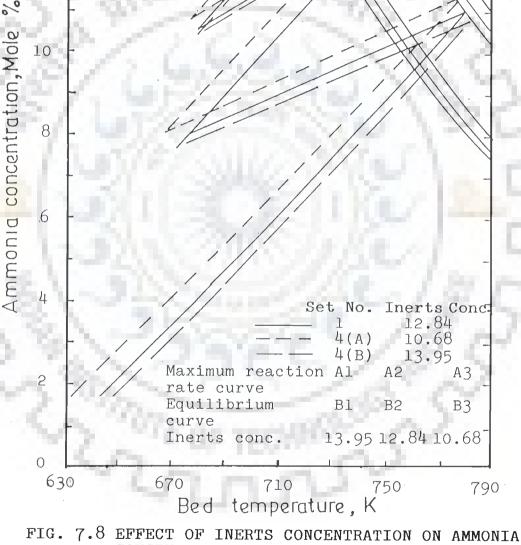




FIG. 7.7 EFFECT OF H<sub>2</sub>/N<sub>2</sub> RATIO ON REACTOR OPERATING POINTS AND THEIR STABILITY (Base conditions, set No.1, are given in Table 7.2.1)

100




16

14

12

10



CONCENTRATION-TEMPERATURE PROFILE IN CATALYST BEDS FOR OPTIMAL COLD DISTRIBUTION (Base conditions, set No.1, are given in Table 7.2.1)

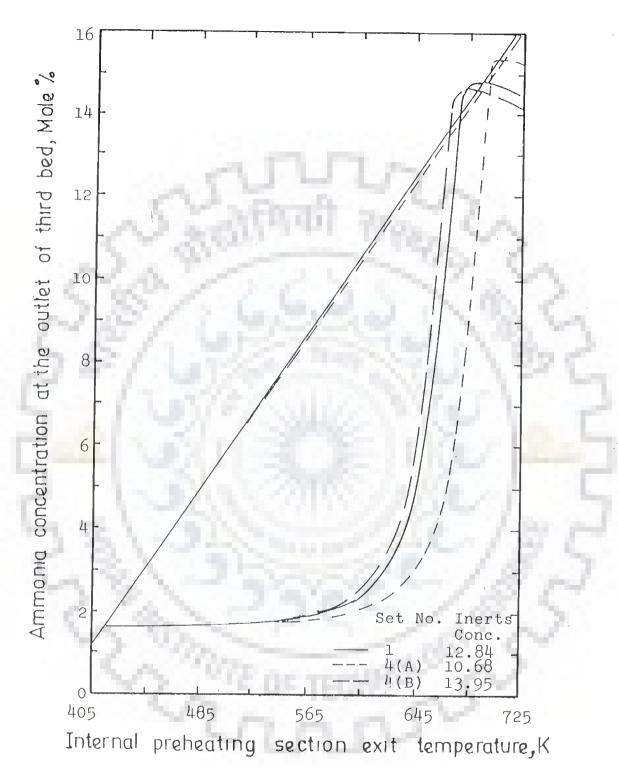
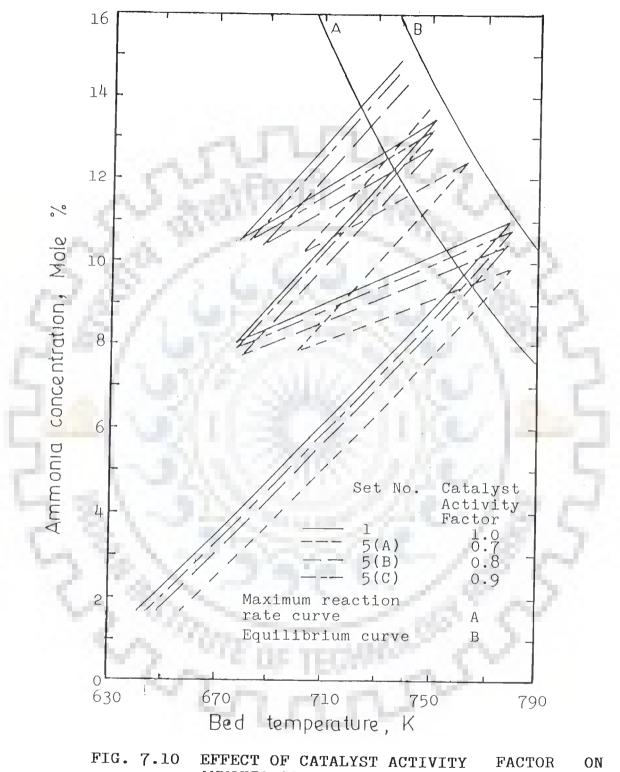




FIG. 7.9 EFFECT OF INERTS CONCENTRATION ON REACTOR OPERATING POINTS AND THEIR STABILITY (Base conditions, set No.1, are given in Table 7.2.1)



.G. 7.10 EFFECT OF CATALYST ACTIVITY FACTOR ON AMMONIA CONCENTRATION-TEMPERATURE PROFILE IN CATALYST BEDS FOR OPTIMAL COLD SHOT DISTRIBUTION (Base conditions, set No.1, are given in Table 7.2.1)

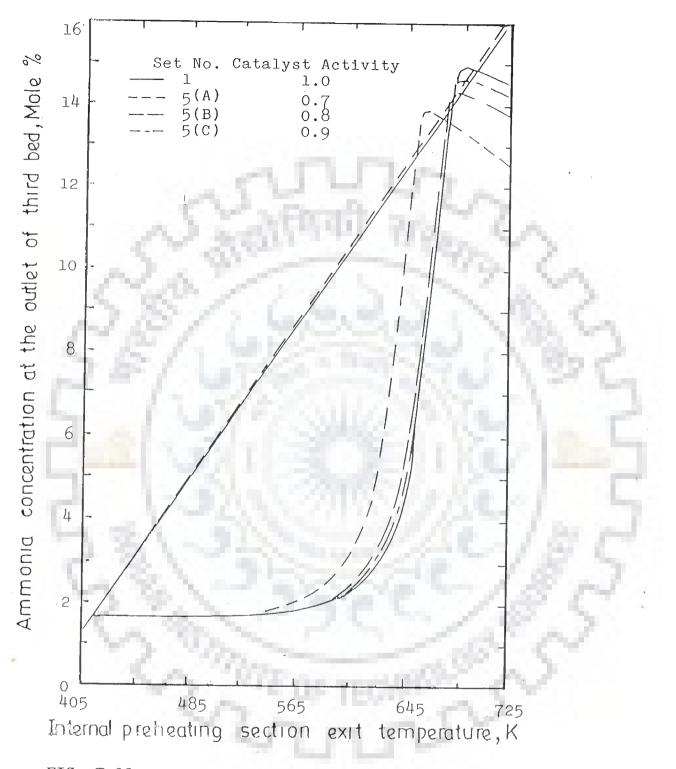



FIG. 7.11 EFFECT OF CATALYST ACTIVITY FACTOR ON REACTOR OPERATING POINTS AND THEIR STABILITY (Base conditions, set No.1, are given in Table 7.2.1)

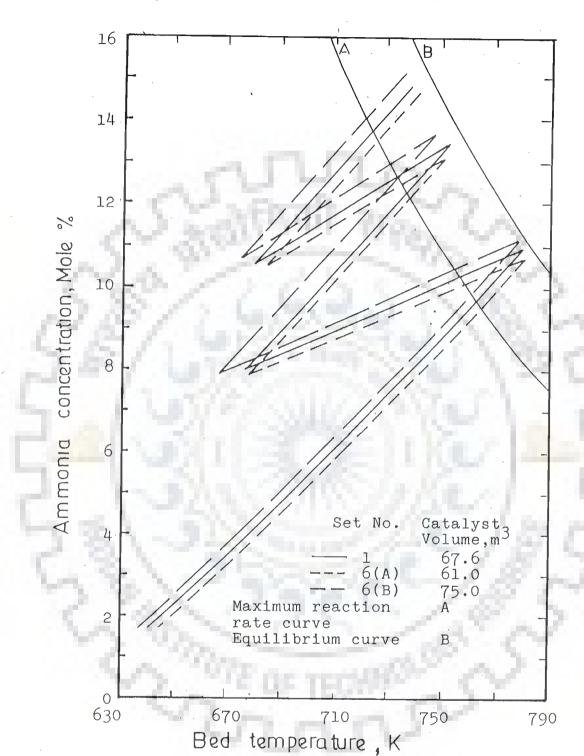



FIG. 7.12 EFFECT OF CATALYST VOLUME ON AMMONIA CONCENTRATION-TEMPERATURE PROFILE IN CATALYST BEDS FOR OPTIMAL COLD SHOT DISTRIBUTION (Base conditions, set No.1, are given in Table 7.2.1)

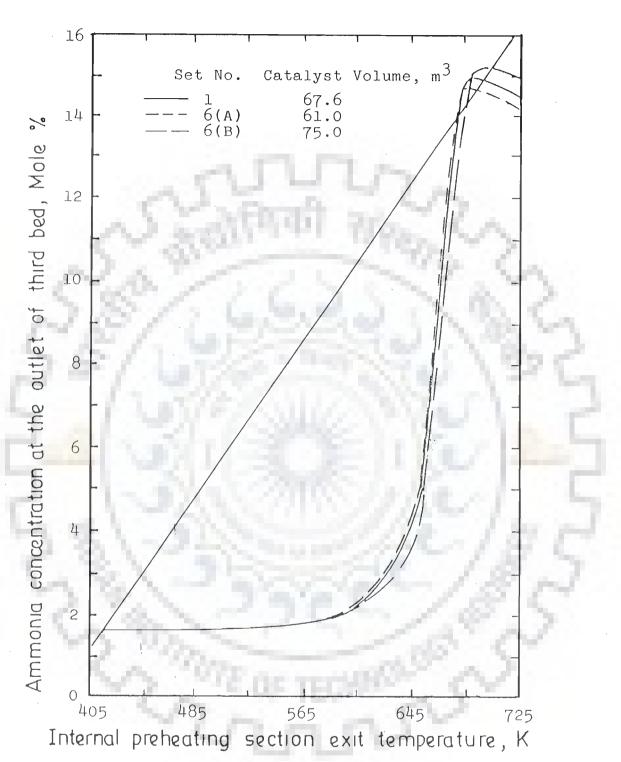



FIG. 7.13 EFFECT OF CATALYST VOLUME ON REACTOR OPERATING POINTS AND THEIR STABILITY (Base conditions, set No.1, are given in Table 7.2.1)

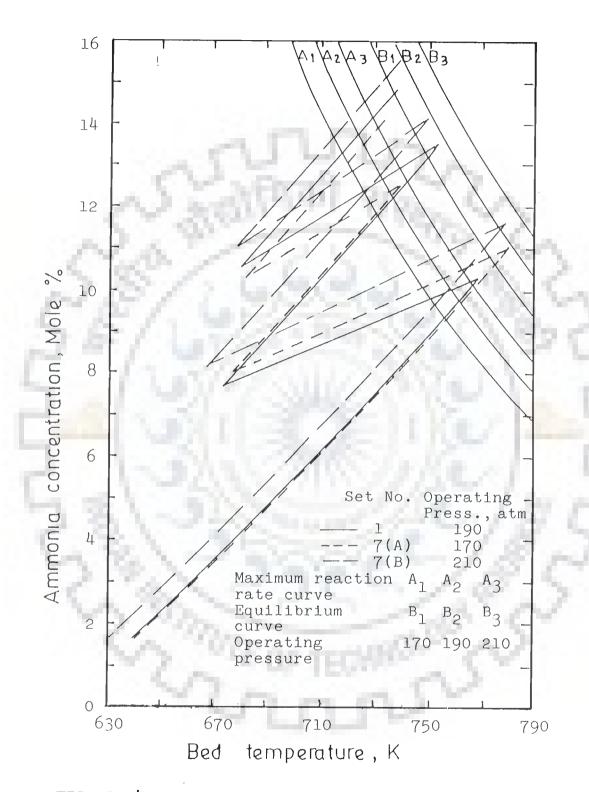



FIG. 7.14 EFFECT OF OPERATING PRESSURE ON AMMONIA CONCENTRATION-TEMPERATURE PROFILE IN CATALYST BEDS FOR OPTIMAL COLD SHOT DISTRIBUTION (Base conditions, set No.1, are given in Table 7.2.1)

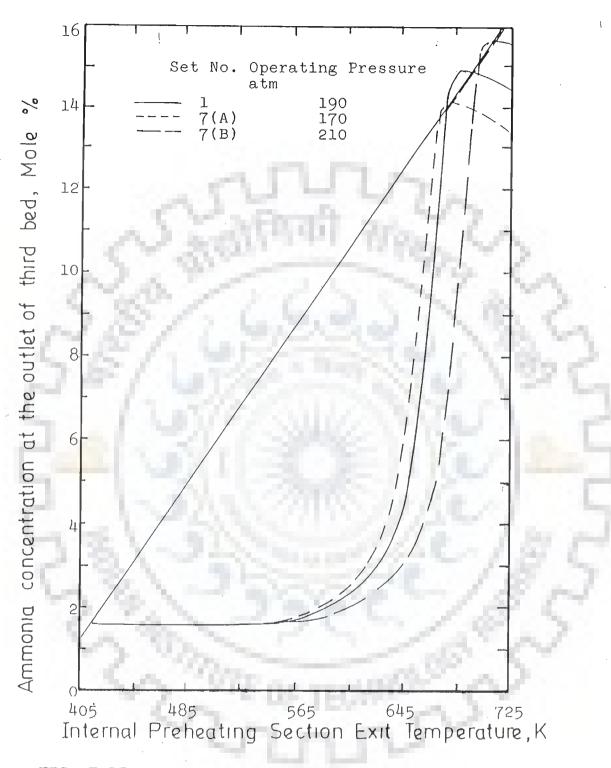



FIG. 7.15 EFFECT OF OPERATING PRESSURE ON REACTOR OPERATING POINTS AND THEIR STABILITY (Base conditions, set No.1, are given in Table 7.2.1)

For set No. O and 1 Table A.1 and Figures 7.1 give the detailed temperature and ammonia concentration profiles for each of the three beds in the reactor. Figure 7.2 shows the changes in the ammonia concentration as a function of the temperature 1neach of the three beds in the reactor along with the changes in ammonia concentration at the equilibrium conditions and also at the maximum reaction rate conditions different atbed temperatures. Further from Fig. 7.2 the variations in the actual temperature and ammonia concentration conditions in the bed can clearly seen vis-a-vis equilibrium and maximum rate be conditions. Figure 7.2 also helps in identifying the directional changes required for the cold shot distributions for maximizing the ammonia production. Figure 7.3 shows the three steady-state operating points (points of intersection) of the reactor for set No. 0 and 1 on typical heat removal and generation curves used commonly to explain the stability behaviour of the reactor operation. More detailed discussions are given in subsequent subsections.

## 7.3.1. Strategy of Optimization by Cold Shot Distribution.

As already discussed in chapter IV, in an operating plant with fixed design parameters and pre-specified feed conditions, the variables that are free to be adjusted for maxmizing rate of production of ammonia are the cold shot fraction at the inlet to various beds. In particular, for the type of reactor investigated, these are the three cold shot fractions at the inlet of first, second and third bed, respectively. Therefore, in the present study the cold shot fractions were taken as independent variables for the optimization in order to maximize the rate of production of ammonia.

During the course of optimization computations experience was gained to evolve a two-step procedure to locate optimal cold shot fractions quickly. In the first step, computations were made for, say, 12 iterations. The cold shot values so obtained corresponding to the maximum rate of ammonia production for 12 iterations were readjusted to make the total cold shots about 10 to 20 percent higher. The adjustment of cold shot was done based on the approach of actual ammonia concentration at the outlet of a particular bed to its corresponding equilibrium value (shown in Table A.1 under column 6 and 10 for set No.O and 1 respectively). case the ratio of actual to equilibrium ammonia concentration In at the outlet of a particular bed is found to be between 0.95 to 1.00, the cold shot to that bed inlet was correspondingly increased. This was done considering the presence of equilibrium inhibition due to low cold shot value. On the other hand if the actual to equilibrium concentration ratio is below 0.95, the cold shot fraction is correspondingly decreased. The value of the ratio of actual to equilibrium ammonia concentration at the outlet of a bed around 0.95 for optimal is also supported by the observations of Gaines (1977).

With the new adjusted value of cold shot fractions as starting point it was possible to locate optima within 12 to 17 iterations. This strategy proved to be very efficient and the CPU ' time required for locating the true optima was cosiderably reduced. The number of iterations obviously depended on the closeness of starting point to the optima. The optimal cold shot fractions at the inlet of the first, second and the third bed are found to be 0.110, 0.233 and 0.232, respectively, for the base conditions as given in Table A.1 set No.1.

## 7.3.2. Temperature Profile

For the base conditions, set No. 0 and 1, Figure 7.1 shows the profiles for the bed temperature (in K) and ammonia concentration (in mol percent) of the three bed quench-type ammonia synthesis reactor considered for this investigation.

The cold shot fractions to the first, second and the third beds for set 0 are 0.000, 0.245, 0.100, respectively. As can be seen from Fig. 7.1, the bed temperature has initially a high and linear rate of increase. However, later the rate of increase in bed temperature decreases successively from the first bed to the third bed. The observed initial rates of increase in bed temperature (in K per unit total percent bed volume) for the first, second and the third bed are 7.7, 3.0 and 1.6 for set No. 0 and 7.1, 2.9 and 1.5 for set 1, respectively. The initial linear rise in temperature is due to the fact that rate of reaction is not being inhibited by equilibrium, as equilibrium concentration is much higher compared to actual concentration, as is evident from Table A.1 under column 6 and 10. It is well known that the addition of cold shot at the point where reaction is equilibrium inhibited results in increasing the conversion as observed in case of set 0 and set 1 from Figure 7.1 and Table A.1. Addition of cold shot at the first, second and the

third bed results in an increase in ammonia conversion. The optimal cold shot distribution for set 1 resulted in somewhat lower rate of temperature rise as a result of lower bed inlet temperatures. The decrease in the rate of temperature rise from the first to the third bed was due to the fact that ammonia concentrations of the gas become higher as one moves from the first to the third bed inlet.

In case of set No. 0, base condition with non-optimal cold shot, it is observed from Figure 7.1 that toward the end of first and second bed the temperature profile flattened out earlier than what was observed with set No. 1. This is because inadequate cold shot additions at the inlet of each bed result in a higher bed temperature for set 0 as compared to set 1. The higher bed temperature in set 0 resulted in an early equilibrium inhibition. This effect is much more pronounced in third bed for set 0 where nearly fifty percent of third bed volume is ineffective due to equilibrium inhibition compared to a total absence of equilibrium inhibition conditions in set No. 1.

Based on the above discussion, it is evident that non-optimal cold shot distribution results in higher bed temperature and quicker equilibrium inhibition whereas optimal cold shot lowers the bed temperature and removes equilibrium inhibition. The lower bed temperatures are also good for catalyst life. The maximum temperature was found to be 788.5 K in case of set 0 compared to set 1 value of 779.8 K.

#### 7.3.3. Conversion profile.

The conversion profile for set Nos. 0 and 1 are shown in

Figure 7.1 and the detailed results are given in Table A.1. Columns 4 and 8 of this Table give actual ammonia concentrations while columns 5 and 9 give concentration at maximum rate for set Nos. 0 and 1, respectively. Whereas columns 6 and 10 give concentrations at equilibrium for set Nos. 0 and 1, respectively. Figure 7.2 shows the concentration as a function of the bed temperature as the reaction progresses along the bed. Figure 7.2 also shows maximum reaction rate and equilibrium curves.

observed for bed temperature profiles, it is also clear As from Figure 7.1 that rate of increase in ammonia concentration is initially high and linear. However for set 1, unlike temperature profile, the ammonia concentration increase is more than that for 0 which resulted in higher conversions in each bed. set The concentration of ammonia, in mol percent, for set 1 increases from 1.61 to 10.98, 7.96 to 13.47 and 10.48 to 14.88 in the first, second and the third bed respectively. Whereas the corresponding increase in ammonia concentration for set 0 are 1.61 to 10.32, 7.81 to 12.74 and 11.52 to 13.50, respectively. The use of non-optimal cold shot distributions for set 0 results in higher bed temperatures which in turn lowers the equilibrium concentration causing equilibrium inhibition at the end of the first and the second bed and from the middle of the third bed in the reactor. This further emphasises the need for optimal cold shot distribution to achieve not only maximum ammonia conversion but also lower bed temperatures. The increase in exit ammonia concentration and corresponding rate of ammonia production at optimal cold shot distribution is quite substantial, about 10.3

percent (132.3 t/d) of the simulated base value.

Further, it may be observed from Figure 7.2 and Table A.1 that the ratio of the actual conversion to the equilibrium conversion at the outlet of first, second and third bed are 0.983, 0.957 and 0.947 respectively for set 1 and corresponding values for set 0 are 0.995, 0.985 and 1.00 respectively. It may be noted that when actual conversion becomes extremely close to equilibrium conversion value (ratios of actual to equilibrium conversion values of 0.999 to 1), the tolerance limit chosen for conversion (5 \* 10 ) for Milne-Predictor-Corrector method is Н large to give precise conversion value for next step. tooTherefore, if actual H conversion at any bed point is 5 \* 10 (approximately 0.002 ammonia mol %) or less than the equilibrium conversion, then it is safe to assume that equilibrium conversion value has been achieved. This situation can be observed for last three bed points in the third bed for set 0 in Table A-1.

The set 0 values obviously indicate the need for readjustment of cold shot to establish the optimal, as obtained in set 1, by adopting the strategy given in section 7.3.1. because only 0.083 increase in ammonia mol percent is observed in the last 50 percent of catalyst volume in the third bed.

7.3.4. Performance Analysis at Optimal Operation and General Considerations.

Based on computations for optimization, it was quite significant to observe that the optimal condition is not sharp but instead the region around it is flat. Many more combination

114

of cold shot fractions were possible at which the rate of ammonia production (or the corresponding exit ammonia concentration) was within 0.3 percent of the optimal value. Some such sets of cold shot fractions at the inlet of the first, second and the third beds are (0.092, 0.275, 0.205), (0.110, 0.233, 0.224), (0.085, 0.275, 0.205), (0.085, 0.275, 0.212), (0.110, 0.225, 0.232), and (0.110, 0.233, 0.216) and the corresponding rates of ammonia production are 1417.4, 1417.8, 1415.9, 1415.9, 1415.4 and 1415.0 t/d, rspectively.

However, the increase in any of the cold shot fractions above optimal resulted in quenching of the reaction. In the base case (set 1) it! was observed that an increase in magnitude above optimal in any of the cold shot fractions at the inlet of first, second or third bed by 0.002, 0.003 or 0.003 respectively resulted in quenching of the reactor. The computation results for optimal cold shot distribution further showed that the reaction rate values at the exit of a bed and at the inlet of next bed differ significantly. For the base case, the reaction rate values at the outlet of first, inlet of second, outlet of second and inlet of third bed were 22.6, 13.8, 15.3 and 10.5 mol NH /s m respectively. However, Kramer and Westerterp (1963a) report that at the optimal cold shot addition the reaction rate values at outlet of a bed should be equal to the rate value at the inlet of / the next bed. This could not be substantiated from the present investigations. As discussed in section 7.3.3, the ratio of actual to equilibrium conversion at the outlet of the three beds vary between 0.947 to 0.983 with an average value of 0.962. This

is found to substantiate the observations of Gaines (1977) that at optimal condition this ratio should be near about 0.935.

From the computation results of optimization it may be summarised that at the optimal condition the reactor performance improved substantially resulting in considerable increase in rate of ammonia production, decrease in bed temperature and consequent increase in catalyst life. It is also observed from Table A.1 that the total pressure drop across the reactor also decreased substantially. From a value of 2.77 atm for base case (set 0) to 2.26 atm in case of optimal condition, set 1. This is about 18.4 percent reduction and it will result in considerable saving in electrical energy required by the gas recirculation/ booster system.

## 7.3.5. Reactor Stability.

Figure 7.3 shows the three possible steady-state operating points of the reactor along with S (sigmoid) shaped heat generation curve and a near straight line heat removal curve. The intersections of heat removal line with heat generation curve give the three possible operating points for the reactor. The Sshaped curve for heat generation was obtained by plotting ammonia exit concentrations, % NH , (in mol percent) and corresponding grid values of internal preheating section exit temperature, Т The ammonia concentration, % NH, and T values were SHE SHE generated during the grid search. For grid search, the range for was chosen from 600 to 725 K with an interval of 25 Т Κ. The SHE grid search is used for converging on actual feed temperature value for a given set of conditions with one set of trial value

 $\mathbf{of}$ shot fractions. The procedure is discussed in section cold may be noted that for any chosen vlaue of 5.1. It Т a SHE corresponding exit ammonia concentration, % NH , is obtained by continuing computation up to step 10 (section 5.1). The computed value of % NH is proportional to the heat generation term. The % NH ) is S-shaped similar to that plot of grid points (T SHE - 3 reported by several other workers (Gaines, 1977; Kramer and Westerterp, 1963b; Reddy and Husain, 1978; Shah, 1967; van Heerden, 1953). The points for heat generation curve (T , % SHE NH ) for set 0 are (600.0, 4.81), (625.0, 14.20), (650.0, 13.75), 3 (675.0, 13.02), (700.0, 12.31) and (725.0, 11.61), and the corresponding points for set 1 are (600.0, 2.19), (625.0, 2.96), (650.0, 5.07), (675.0, 13.88), (700.0, 14.83), and (725.0, 14.46) respectively. It may be noted that for any assumed value of T , at the end of computation step 10 (section 5.1), the SHR computed temperature of feed entering the external heat exchanger shell side, T , is obtained. The value of T shall be on equal to (within the limit of convergence) the actual feed temperature, T, only if T corresponds to one of the possible SHE operating points of the reactor. For establishing all the possible reactor operating points computations had to be continued up to step 13 (section 5.1). As shown in Figure 7.3, three possible operating points for base case (set 0) the are (414.0, 1.61), (618.9, 11.47) and (658.3, 13.50) whereas the corresponding points for set 1 are (414.0, 1.61), (674.9, 13.84) and (695.1, 14.88). The heat removal curve is obtained by joining the three possible operating points by a straight line (since

they were found to lie on a straight line) for each set of conditions. The three operating points will also lie on the Sshaped curve as well as heat removal curve. As discussed in section 2.1 and also reported by van Heerden (1953), Shah (1967), Gaines (1977) and others (Kramer and Westerterp, 1963b; Reddy and Husain, 1978), the highest operating point is the desirable and stable operating point for each set of conditions. In case of set and set 1 these are (658.3, 13.50) and (695.1, 14.88), 0 respectively. The two S-shaped curves and heat removal curves are different obviously because of the different reaction paths followed for the two sets 0 and 1 having two different sets of cold shot fractions.

It is observed from Figure 7.3 that the optimal allocation of cold shot results in higher operating point being located nearer to the blowout point on the optimal S-shaped curve as compared to the corresponding locations for non-optimal set 0. is very much to be expected as the maxima of the S-shaped This curve is always nearer the blowout point. It may be further noted that even a small increase in the optimal cold shot fraction at the inlet of any bed (say, two percent) for set 1 will result in quenching. Whereas even large changes in the cold shot fraction at the inlet of any bed (say, fifty percent) for set 0 may still not result in quenching. This further clarifies the relatively poorer stability at optimal cold shot fractions. In the present investigations for optimal cold shot fractions the maxima of the S-shaped curve could not be achieved because it required a further fine tuning of cold shot fractions to such small

fractional values that are not feasible to be implemented in the actual plant operation. Therefore, in the present investigations during the search, the cold shot fraction values were rounded off to the third decimal place. This also provides for better reactor stability by moving somewhat away from the blow out point.

It may be, therefore, summarized that operation near optimal will always be at some sacrifice of reactor stability as observed from Figure 7.3 for the two cases of set 0 and set 1. However, this sacrifice pays richly in the form of quite substantial increase in the rate of ammonia production, decrease in bed temperatures with consequent increase in catalyst life and decrease in electrical energy requirements for the gas booster/recirculation system due to decrease in reactor pressure drop.

7.4. Effect of Variations in Design and Operating Parameters on Reactor Performance.

The values chosen for the operation and design parameters for a three bed quench type reactor for ammonia synthesis are given in Table 7.2.1. For studying the effect of variations in operating and design parameters, it was the six considered desirable to vary only one parameter at a time in the range specified in Table 7.2.1, while keeping all the other parameters corresponding to the base condition values. As discussed earlier, may be noted here that cold shot fraction to each bed inlet it in not taken as a pre-specified parameter but is considered as an independent variable for the optimization for any chosen set of conditions. The two additional values of the varying parameter for H / N ratio and activity factor), namely, (except at the and the maximum of the range, were used for obtaining minimum simulation results. For H / N ratio and activity factor one more value within the range (other than the base value) was chosen in addition to minimum and maximum values of the range. These two (or three) computed results along with those obtained for the base conditions form a set for each parameter variation. Each of

1

the six parameters, that were permitted to vary, were treated as an independently varying parameter in order to study the effect of the same. The results of this sensitivity analysis can be very useful in the evolution of optimal conditions for design and operation of the multibed quench-type reactors for ammonia synthesis. The detailed computed results are given in Appendix-A, Tables A.1 to A.7. The summary of the computed results of simulation are given in Tables 7.3.1.1 and 7.3.1.2.

The general trends for changes in bed temperature and conversion in the reactor were similar to those obtained for the base conditions. Thus, further discussion on the same is not considered essential. The effect of the variations in the design and operating parameters can be discussed properly with the help of tabulated results as given in Tables 7.3.1.1, 7.3.1.2, and Appendix-Tables A.1 to A.7, and Figures 7.4 through 7.15.

### 7.4.1. Feed Gas Flow Rate.

It is observed from Figure 7.4, Tables 7.3.1.1, 7.3.1.2 and A.2 that the decrease in feed gas flow rate by about 10 percent  $\stackrel{6}{10}$  from the base condition value of 0.74 \* 10 (in cubic meter per hour at N.T.P. conditions) to 0.667 \* 10 results in an increase in conversion and decrease in bed temperature. The exit ammonia concentration (mol percent) increases to 15.168 (2.07 percent increase from base value). The behaviour is to be expected due to increase in residence time with decrease in flow rate. But the rate of ammonia production decreased by about 8 percent because increase in conversion was not commensurate with the decrease in flow rate. The total pressure drop is found to be 1.83 atm, a

reduction of about 20 percent from set 1. As observed from Figure 7.5, there was no noticeable change in reactor stability and it remained nearly the same (slightly better). The effect of in flow rate to  $0.82 \times 10$  Nm /h (11 percent increase increase from base value) results in decrease in the conversion and, in increase in bed temperature except in the third bed general, where bed temperature is slightly higher. The rate of ammonia production increases by 9.0 percent due to the combined effect of increase in flow rate and decrease in conversion (1.67 percent decrease from base value). The pressure drop increases by 23 percent to 2.78 atm due to higher flow rate. It is also observed from Figure 7.5 that the stability is nearly the same (slightly From Figure 7.4 and Table A.2, it may be observed that poorer). the ratios of actual to equilibrium ammonia concentration at the first, second and third bed outlets are 0.994, 0.932 and 0.947, respectively with an average value of 0.958. Similar effect of change in feed gas flow rate on reactor performance is reported by Shah (1967), Gaines (1977), Reddy and Husain (1978) and others. About 35 iterations including some quenched ones (no operating point except the trivial low conversion) were required to locate the optimal cold shot distribution in each case. The total cold shot fraction values ranged between 0.313 to 0.614. It is further observed from Table A.2 that the optimal allocation of cold shot fractions to each of the first, second and the third bed showed a declining trend with increase in flow rate. The values of cold shot fractions to each of the bed inlet and the total cold shot fraction for feed gas flow rates of 0.667 \* 10 ,

0.740 \* 10 and 0.820 \* 10 Nm /h are (0.123, 0.253, 0.234, 0.610), (0.110, 0.233, 0.232, 0.575) and (0.098, 0.230, 0.219, 0.547) respectively. Therefore, the reactor operation at the cold shot values corresponding to optimum conditions of set 1 will result in non-optimal performance in case of decrease in flow rate whereas it will quench the reactor in case of significant increase in flow rate. This emphasises the need for establishing the new optimal cold shot distribution with the help of simulation model if change in feed gas flow rate becomes essential.

3

# 7.4.2. H /N Ratio in Feed Gas.

It is observed from Figure 7.6, Table 7.3.1.1, 7.3.1.2 and that the decrease in H /N ratio from the base value of 3.0 A.3 results in a slight improvement in the third bed outlet ammonia concentration as well as the rate of ammonia production. For H /N ratio of 2.5, 2.8, 3.0 (base value) and 3.2 the rate of 2 ammonia production in t/d are 1421.7 (+0.2 percent increase), 1422.4 (+0.23), 1419.2 (0.00) and 1416.2 (-0.20), respectively. The reactor stability as observed from Figure 7.7 also remains essentially the same as the plots nearly overlap each other. The best condition is at a value of H /N ratio of 2.8. Similar observations are also reported by other authors including Shah (1967), Gaines (1977) and Reddy and Husain (1978). However, Reddy Husain found the best value at H /N ratio of and 2.5 for a single bed reactor with high internal heat exchange capacity that may be due to non-optimal cold shot conditions at the bed inlet.

The optimal cold shot fractions for four H /N ratios are also nearly the same. The first, second, third bed and the total cold shot fractions for the H /N ratio of 2.5, 2.8, 3.0 and 3.2 are: (0.109, 0.237,0.236, 0.582; (0.108, 0.240, 0.234, 0.582); (0.110, 0.233, 0.232, 0.575) and (0.108, 0.237, 0.226, 0.571), respectively. Only slight decrease in total cold shots requirement is observed as the H /N is increased from 2.8 to There is no definite trend in the individual cold shot 3.2. fraction values because of the reasons already discussed earlier that the region near optimal is flat and there could be other combination of individual cold shot fractions that will be nearly optimal, Therefore it may be summarized that optimal performance is not quite sensitive to changes in H /N ratio in the vicinity 3.0 and plant operation at a value of 3.0 would be desirable  $\mathbf{of}$ from operational point of view. This will then not require continuous adjustments of make up feed gas H /N ratio.

2

# 7.4.3. Inerts Concentration in Feed Gas.

It is observed from Figure 7.8 and Tables 7.3.1.1, 7.3.1.2 A.4 that the effect of increase in concentration and of mol percent inerts (consisting of methane and argon) from 10.68 to 13.95 with the base value of 12.84 was to decrease the conversion and increase the first bed temperature. However, the second and the third bed temperatures are lower compared to base case. The rate of production were found to be 1467.0, 1419.2 and 1397.1 t/d, respectively, for the three values of the inerts concentration, that is, 10.68, 12.84, and 13.95 mole percent. The increase in inerts lowers the partial pressures of hydrogen and

nitrogen and decreases the rate of reaction unless equilibrium inhibition is observed due to high temperature. In such a case, the inerts acting as heat carriers will shift the equilibrium favorably. Similar observations about the effect of change in inerts content on the reactor performance is also reported by Shah (1967), Gaines (1977), Reddy and Husain (1978) and Mansson and Andresen (1986).

The first, second, and the third bed and total cold shot fractions for the inerts concentration of 10.68, 12.84 and 13.95 mol percent are (0.145, 0.250, 0.234, 0.629), (0.110, 0.233, 0.232, 0.575) and (0.089, 0.249, 0.220, 0.558) respectively. Except in the case of second bed cold shot fractions other cold shot fractions do show a trend and the values decrease with increase in inerts. It is observed from Figure 7.9 that the reactor stability somewhat deteriorates with decrease in inerts concentration. However, the increase in pressure drop with the increase in inerts concentration is only marginal.

## 7.4.4. Catalyst Activity Factor.

It is observed from Figure 7.10 and Tables 7.3.1.1, 7.3.1.2 and A.5 that at the catalyst activity factor values of 0.7, 0.8, 0.9, and 1.0 the rate of ammonia production in t/d was found to be 1312.5, 1366.2, 1395.6 and 1419.2, respectively. The corresponding optimal values of the first, second, third and total cold shot fractions are (0.030, 0.193, 0.192, 0.415); (0.080, 0.232, 0.203, 0.515); (0.096, 0.237, 0.220, 0.553) and (0.110, 0.233, 0.232, 0.575) for the activity factors of 0.7, 0.8, 0.9 and 1.0, respectively. The above also indicates a trend in the variation of the individual and total cold shot fractions. As the activity factor declines the cold shot fraction values also decline, but the decline in total cold shot fractions is not proportional to the decline in activity. This emphasises the fact that with a decline in the catalyst activity a new set of optimal cold shot fraction has to be found and used for getting the maximum advantage (production); otherwise, the reaction will quench or operation may be non-optimal. It is further observed that the total pressure drop increases at optimal cold shot fractions with the decrease in catalyst activity. This increase ranges from 2.0 to 14.0 percent of the base value of 2.26 atm.

The highest bed temperatures are found to be nearly the same with operation at changed activity factors. The stability of the reactor is found to deteriorate with decline in catalyst activity as observed from Figure 7.11.

It may, therefore, be summarised that the reactor may be operated with some loss of production even with used catalyst having lower activity factor. However, the cold shot distributions have to be readjusted to an appropriate lower value found by optimization. It was observed from computations for catalyst activity factor of 0.6 and lower that except for trivial operating point of low conversion no other operating point exists for activity factor of 0.6 and less. It is worthwhile to observe that the readjustment of cold shot distribution at lower optimal values helps in maintaining ammonia production rate close to fresh catalyst conditions even when the decline in catalyst

activity factor may be quite significant (for 30 percent decline in catalyst activity factor, the decline in ammonia production rate is only 7.5 percent of the base condition). It may be further observed that after a certain decline in activity factor, say, below 0.7, the catalyst may have to be replaced as economical operation will not be possible. Similar observations about the effect of decline in catalyst activity factor have also been reported by Gaines (1977) and van Heerden (1953).

### 7.4.5. Total Volume of Catalyst.

It was observed from Figure 7.12 and Tables 7.3.1.1, 7.3.1.2 and A.6 that at the total catalyst volumes of 61.0, 67.6 and 75.0 the exit ammonia concentration in mol percent were 14.646, m, 14.880 and 15.184, respectively. This increase in ammonia mole percent is obvious because increase in catalyst volume at constant feed gas flow rate at base value increases the residence time and is analogous to the effect of decrease in feed gas flow at constant catalyst volume. The effect of the decrease in rate feed gas flow rate for a constant total catalyst volume at base value is already discussed in section 7.4.1. The optimal values of the first, second, third bed and the total cold shot fractions are (0.096, 0.239, 0.214, 0.549); (0.110, 0.233, 0.232, 0.575) and (0.120, 0.253, 0.235, 0.608) for the total catalyst volumes of 61.0, 67.6 and 75.0 m, respectively. Except for the second bed, the cold shot fractions show an increasing trend with the increase in catalyst volume at constant flow rate. The highest bed temperatures are virtually unchanged. Similar observations have been reported by Mansson and Andresen (1986) about the

effect of change in catalyst volume on reactor performance. Figure 7.13 indicates that the stability of the reactor increases slightly with the increase in total catalyst volume.

# 7.4.6. Feed Gas Pressure (Operating Pressure).

It may be observed from Figure 7.14 and Tables 7.3.1.1, 7.3.1.2 and A.7 that at feed gas pressures (operating pressures) of 170.0, 190.0 and 210.0 atm the respective rates of production of ammonia are 1351.3, 1419.2 and 1495.4 tpd. The highest bed temperature at 170.0 atm is found to be about 20 K lower than that observed at the base value of pressure (190atm), set 1.

The optimal values of the first, second, third and the total cold shot fractions at operating pressures of 170.0, 190.0 and 210.0 atm are (0.089, 0.235, 0.199, 0.523); (0.110, 0.233, 0.232, 0.575) and (0.146, 0.253, 0.231, 0.630), respectively. The first bed and the total cold shot fraction values show an increasing trend with an increase in the operating pressure. It may be emphasised here that the increase in pressure greatly favours ammonia formation, but readjustment of cold shot fraction to a new set of optimal values is essential to keep the reaction away from quenching and also to maximize ammonia production rate. Stability of the reactor is found to improve significantly with increase in operating pressure. Similar observations are reported by Shah (1967), Gaines (1977), and Mansson and Andresen (1986) about the effect of change in operating pressure on reactor performance.

#### 7.4.7. Sensitivity Analysis.

It was observed from the discussions in previous sections that the reactor performance, in particular, conversion to ammonia, is quite sensitive to changes in the parameters of feed gas flow rate, inerts content of feed gas, catalyst activity factor, total volume of the catalyst and operating pressure. The increase in the flow rate or inerts concentration, decrease in the catalyst activity factor, catalyst volume or operating pressure result in significant decrease in exit conversion. The excessive increase in flow rate or inerts will result in quenching effect and the rate of reaction will become so small that the reactor will quench. Similarly a decrease in catalyst activity, catalyst volume or operating pressure will result in quenching of the reactor. The effect of changes in H /N ratio studied in the present investigation is found to be quite small and insignificant in nature. A slightly better performance is obtained at the H /N ratio of 2.8. However this will require continuous readjustment of make up feed gas H /N ratio. This may, therefore, be undesirable from the point of view of plant operation.

For a complex multidimensional problem, sensitivity analysis is a powerful tool to identify the dominant variables. Table 7.4.7 summarizes the effects of various design and operation parameters on ammonia production rate following the procedure discussed by Rudd and Watson (1968).

## Table 7.4.7.

Comparison of Parameter Sensitivity.

| Parameter         | <u>Unit</u> | Base<br><u>Yalue</u> | Range of Variation | Sensit<br>Absolute | ivity* |
|-------------------|-------------|----------------------|--------------------|--------------------|--------|
| Flow Rate         | Nm /<br>h   | 0.740 *              | 0.667 * 10 to      | 0.170              | 1.00   |
|                   |             | 106                  | 0.820 * 106        | 1                  | ·      |
| H /N Ratio<br>2 2 |             | 3.0                  | 2.5 to 3.2         | 0.006              | 0.04   |
| Inerts            | mol         | 12.84                | 10.68 to 13.95     | 0.048              | 0.28   |

Concentration %

| Catalyst<br>Activity  | 83     | 1.0      | 0.7 to 1.0   | 0.060 | 0.35 |
|-----------------------|--------|----------|--------------|-------|------|
| Catalyst<br>Volume    | 3<br>m | 67.6     | 61.0 to 75.0 | 0.036 | 0.21 |
| Operating<br>Pressure | atm    | 190      | 170 to 210   | 0.102 | 0.60 |
| * Absolute            | Sensi  | tivite - | 1.6          |       | 1.00 |

| 110301006 | Sensitivity = | (fractional change in maximum ammonia |
|-----------|---------------|---------------------------------------|
| -         |               | production rate at optimal cold shot  |
| 5         |               | distribution)/(change in parameter as |
|           | N             | a fraction of expected range of       |
| 10.3      |               | variation)                            |

Relative Sensitivity = (Absolute sensitivity of parameter)/ (Maximum of absolute sensitivities) It may be observed from the relative sensitivity values given in the last column of the Table 7.4.7 that the maximum ammonia production rate at optimal cold shot distribution is highly sensitive to flow rate and operating pressure with relative sensitivity values as 1.00 and 0.60, respectively. Whereas ammonia production rate is moderately sensitive to catalyst activity factor, inerts concentration and catalyst volume with relative sensitivity values as 0.35, 0.28 and 0.21, respectively. However, ammonia production rate is almost insensitive to H/N ratio in the feed and shows a relative sensitivity value of 0.04 only.

# 7.4.8. General Considerations.

It was observed from the computation results of optimization investigations that the value of individual cold shot fractions was very sensitive to the variations in operating parameters value and there existed, for each bed, an absolute maximum value beyond which the reactor quenched irrespective of the decrease in the cold shot to other beds. This limit for the first bed cold shot fraction is found to vary between 0.03 to 0.16 depending on the parameter varied and its value. For the second and the third bed cold shot fractions this limit was in the range from 0.19 to 0.35.

It was further observed that in general it is best to operate ammonia synthesis reactor near its blowout point to maximize conversion to ammoniaso as to obtian low bed temperatures and reduced pressure drop. However, this means sacrificing in terms of reactor stability. Some compromise,

131

therefore, may be desirable to operate the reactor at cold shot fraction values somewhat lower than the optimal in order to achieve good stability for small unintended perturbations 1n parameter values. It must be noted here that this compromise is at the cost of reduced rate of ammonia production. Therefore, the cold shot values can not be set much below the optimal to take care of even higher magnitude of disturbances in the parameters taking place in the plant. Rather, it will be more desirable to find the new set of optimal cold shot values for the new parameter values which may now exist as a consequence of higher disturbances, and operate the plant at some what lower cold shot values than the new set of optimal values. As discussed earlier, the region near optimal values of the cold shot fraction is rather flat, therefore a slight lowering of the values of the cold shot fraction from optimal, in order to achieve better reactor stability will result in only a slight decrease in the rate of the ammonia production.

# 7.5. Conditions for Optimal Design and Operation.

Based on the results of optimization and the discussions presented in the foregoing sections it is observed that the operation of reactor should be maintained at near optimal cold shot distribution corresponding to a given set of values of the parameters. The concentration of inerts should be maintained as low as possible for high ammonia production rate. H /N ratio 2 2 should be kept at 3.0 as reduction to 2.8 gives only a marginal advantage in production rate compared to inconvenience in operation. The feed gas pressure (operating pressure) should be kept as high as permissible by reactor design (mechanical strength) considerations. The catalyst should be discarded after a period of time (about a few years depending upon the catalyst used and its condition) when the activity factor declines by about 20 to 30 percent. The reactor operation at the above conditions will certainly result in significant improvements in ammonia productivity.



#### CHAPTER-VIII

#### 8. CONCLUSIONS AND RECOMMENDATIONS

## 8.1. Conclusions.

8.1.1. A realistic, accurate and stable simulation model for a modern multibed quench reactor for ammonia synthesis was developed. The simulation model was tested over a wide range of variations in the design and the operating variables and the model seems to give reliable information on reactor performance. The model is capable of simulating the external and internal heat exchange as well as the addition of cold shot at the inlet of each bed.

8.1.2. A reliable and efficient optimization algorithm was developed for the maximization of ammonia production rate using cold shot distribution as an optimization variable.

8.1.3. The simulation model was validated using plant data of a large capacity three-bed quench reactor. The kinetic and heat exchange rate parameters of the reactor were established. These are:

- (ii) Activation energy for the reverse reaction rate constant= 97622.4 kJ/kmol
- (iii) Correction for fugacity coefficient term in the rate equation

= 1.379

8.1.4. The cold shot distribution as practiced at the time of plant data collection was found to be nonoptimal resulting in an ammonia production rate of 1286.9 t/d. Merely by using an optimal cold shot distribution without any other change gave an ammonia production rate of 1419.2 t/d - an increase of 10.28 percent over the prevalent ammonia production rate of the plant.

8.1.5. For an existing ammonia plant, the adjustment of cold shot distribution to an optimal value appears to be the most practical and powerful choice for the maximization of ammonia production rate. The simulation model developed in the course of this investigation can play a vital role for achieving the above objective.

The effect 8.1.6. of variation of six design or operating parameters, namely, feed gas pressure, feed gas flow rate, H /N ratio in feed gas, inerts concentration in feed gas, catalyst activity factor and catalyst volume, was studied. The simulated results showing the effect of these parameters on optimal cold shot distribution and ammonia production rate are summarized in Table 7.3.1.1. Variations in H /N ratio appears to have insignificant effect on reactor performance and, therefore, use of H /N ratio of 3 is recommended. 2 2

8.1.7. The simulated results in Table 7.3.1.1. clearly indicate that the undesirable effect of adverse variation in parameter values can be greatly minimized by the adjustment of cold shot distribution to a new optimal value for any change in parameter values. It is significant to note that loss in ammonia production rate is restricted to about 7.52, 1.56 and 4.78 percent for a decrease in catalyst activity, catalyst volume and operating pressure by 30, 9.76 and 10.52 percent of the base values, respectively.

8.1.8. Conditions of steady-state stability were established for the first time for a three-bed quench-type ammonia synthesis reactor at optimal cold shot distribution corresponding to maximum ammonia production rate for wide variation in parameter values. In all the cases, it was found that the highest ammonia production rate could be achieved at conditions close to blowout point.

8.1.9. For optimal operation close to blowout point even pressure drop and catalyst bed temperatures were found to be lower with consequent decrease in energy requirement for gas booster/ recirculation system and increase in catalyst life.

8.1.10. Stability consideration dictate that the reactor be operated slightly away from the blowout point in order to ensure good stability even when some unintended small perturbations in parameter values occur. Reduction in ammonia production rate for such an operation is likely to be insignificant (probably less than 0.5 percent) because the optimal conditions are not very sharp and region around them appears to be flat in nature.

### 8.2. Recommendations.

8.2.1. It is recommended that the results of this study must be implemented on the plant for which the simulation model was developed.

8.2.2. Similar studies must be carried out for other industrial reactors including radial flow reactors for ammonia synthesis. 8.2.3. All ammonia synthesis reactors should have facilities for precise measurement and control of cold shot fraction at the inlet of each bed in addition to the facilities for the precise temperature and possibly ammonia concentration measurements at the inlet and the outlet of each bed.

## REFERENCES

Adeiman, A., and W. F. Stevens, "Process Optimization by the Complex Method," AIChE J, 18, 20(1972).

Annable, D., "Application of the Temkin Kinetic Equation to Ammonia Synthesis in Large Scale Reactors," Chem. Eng. Sci., 1, 145(1952).

Babuska, I., Numerical Processes in Differential Equations, Wiley, New York, 69(1966).

Baddour, R. F., P. L. T. Brian, B. A. Logeais, and J. P. Eymery, "Steady-State Simulation of an Ammonia Synthesis Converter," Chem. Eng. Sci., 20, 281(1965).

Beveridge, G. S. G., and R. S. Schechter, Optimization Theory and Practice, McGraw-Hill, New York (1970).

Box, M. J., "A New Method of Constrained Optimization and a Comparison with Other Methods," Computer J., 8, 42(1965).

Campbell, J. R., and J. L. Gaddy, "Methodology for Simultaneous Optimization with Reliability: Nuclear PWR Example," AIChE J, 22, 1050(1976).

Catalyst HandBook, Wolfe Scientific Books, London, 156(1970).

Denbigh, K. G., The Principles of Chemical Equilibrium, 4th ed., Cambridge University Press, London, 152(1981). Dodge, B. F., Chemical Engineering Thermodynamics, McGraw-Hill, New York, 495(1944).

Dyson, D. C., and J. M. Simon, "A Kinetic Expression with Diffusion Correction for Ammonia Synthesis on Industrial Catalyst," Ind. Eng. Chem. Fund., 7, 605(1968).

Eymery, J. P., Sc. D. Thesis, M. I. T. Cambridge, Ma, (1964)

Froment, G. F., and K. B. Bischoff, Chemical Reactor Analysis and Design, Wiley, New York, 506(1979a).

-----, 477(1979b).

Gaines, L. D., "Optimal Temperatures for Ammonia Synthesis Converters," Ind. Eng. Chem. Process Des. Dev., 16, 381(1977).

Gangiah, K., "A Constrained Polyhedron Search Method for Process Optimization," Indian Chemical Engineer, 22, 50(1980).

Gangiah, K., "Direct Search Methods for Constrained Optimization," Proceedings of the Computer Society of India, Division IV: Business Applications, CSI-78, 275(1978).

Heuckroth, M. W., J. L. Gaddy, and L. D. Gaines, "An Examination of the Adaptive Random Search Technique," AIChE J, 22(4), 744 (1976).

Hay, I., and G. D. Honti, "Ammonia" in The Nitrogen Industry, Ed.G. D. Honti, Part I, Akademiai Kiado, Budapest, 106(1976a).

-----, 110(1976b).

Hougen, O. A., and K. M. Watson, Chemical Process Principles, Part III, Wiley, New York, 886(1962).

International Critical Tables, 5, 178(1929).

-----, 7, 244(1930a).

--, 7, 231(1930b).

-----, 7, 239(1930c).

-, 7, 244(1930d).

Khayan, M. T., and F. F. Pironti, Ind. Eng. Chem. Process Des. Dev., **21**, 470(1982).

Kirk-Othmer's Encyclopedia of Chemical Technology, Eds. H. F. Mark, D. F. Othmer, C. G. Overberger, and G. T. Seaborg, 3rd ed., Wiley, New York, 2, 471(1978).

Kjaer, J., Measurements and Calculation of Temperature and Conversion in Fixed-Bed Catalytic Reactors, Jul. Gjolierups Forlag, Copenhagen, Chapters 6 and 11, (1958).

Kramer, H., and K. R. Westerterp, Elements of Chemical Reactor Design and Operation, Academic Press, New York, 202(1963a).

-----, l28(1963b).

Lambert, J. P., Computational Methods in Ordinary Differential Equations, Wiley, New York, (1974).

Lutschutenkow, S., G. Reinig, G. Brack, and D. Balzer, "Simulating Steady-State Behavior of a Bed Reactor for Ammonia Synthesis," Intern. Chem. Eng., 18, 567(1978).

Luus, R., and T. H. I. Jaakola, "Optimization by Direct Search and Systematic Reduction of the Size of Search Region," AIChE J, 19, 760(1973).

Mansson, B., and B. Andresen, "Optimal Temperature Profile for an Ammonia Reactor," Ind. Eng. Chem. Process Des. Dev., 25, 59 (1986).

McAdams, W. H., Heat Transmission, McGraw-Hill, New York, 219(1954).

Milne, W. E., Numerical Solutions of Differential Equations, Wiley, New York, 49(1953).

Nelder, J. A., and R. Mead, "A Simplex Method for Function Minimization," Computer J., 7, 308(1965).

Nielsen, A., An Investigation on Promoted Iron Catalyst for the Synthesis of NH , 3rd ed., Jul. Gjolierups Forlag, Copenhagen, (1968).

Pachaiyapan, V., Chemical Economy and Engineering Review, 16, 15 (1984).

Perry's Chemical Engineer's HandBook, 3rd ed., McGraw-Hill, New York, 347(1950).

Ramkumar, "Stability Analysis of Ammonia Synthesis Reactor," M. E. Dissertation, Department of Chemical Engineering, University of Roorkee, Roorkee, India, (1978).

Rase, H. F., Chemical Reactor Design for Process Plants, Wiley, New York, 2, 61(1977).

Reddy, K. V., and Asgar Husain, Proceedings of 1976 Summer Computer Conference, New Port Beach, CA, 286(1978).

Reddy, K. V., and Asghar Husain, "Modelling and Simulation of an Ammonia Synthesis Loop," Ind. Eng. Chem. Process Des. Dev., 21, 359(1982).

Rudd, D. F., and C. C. Watson, Strategy of Process Engineering, Wiley, New York, 252(1968).

Saraf, S. K., Winter School Lecture Notes, IIT Kanpur, India

Shah, M. J., "Control Simulation in Ammonia Production," Ind. Eng. Chem., **59**, 72(1967).

Shipman, L. M., and J. B. Hickman, "Optimum Design of Ammonia Quench Converters," Chem. Eng. Prog., 64(5), 59(1968).

Singh, C. P. P., and D. N. Saraf, "Simulation of Ammonia Synthesis Reactors," Ind. Eng. Chem. Process Des. Dev., 18, 364 (1979).

Sinha, S. N., "Analysis and Simulation of ammonia synthesis reactor," M. E. Dissertation, Department of Chemical Engineering, University of Roorkee, Roorkee, India, (1977). Sinha, S. N., S. K. Saraf, Surendra Kumar, and I. M. Mishra, "Analysis and Simulation of Ammonia Synthesis Reactor - Adiabatic Operation with Cold Shot Cooling," Proceedings of 34th Annual Conference of Indian Institute of Chemical Engineers, 3, 59(1981).

Slack, A. V., H. Y. Allgood, and H. E. Maune, "Operating Problems in Ammonia Synthesis," Chem. Eng. Prog., **49**, 393(1953).

Temkin, M. I., and V. Pyzhev, Acta. Physicochem., 12, 327(1940).

Vancini, C. A., Synthesis of Ammonia, The McMillan Press, London, (1971).

Van Heerden, C., "Autothermic Process Properties and Reactors Design", Ind. Eng. Chem., 45, 1242(1953).

Vek, V., "Optimization of Large Reactors with Extremely Active Catalysts," Ind. Eng. Chem. Process Des. Dev., 412(1977).

Walas, S. M., Reaction Kinetics for Chemical Engineers, McGraw-Hill, New York, 282(1959).

Zardi, U., "Review these Developments in Ammonia and Methanol Reactors," Hydrocarbon Processing, August, 129(1982).

Zayarni, N. S., Intern. Chem. Eng., 2, 378(1963).

TABLE NO.A . |.

## COMPUTED PROFILES OF AMMONIA MOLE PERCENT AND TEMPERATURE IN THE BED

FOR DIFFERENT COLD SHOT DISTRIBUTIONS

/

| Set                                                                                                                                                                                                                                                                                                                | No. O.                                                                                | Base                                                                                                                       | conditi                                                                                                                                                                                         | on                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Set No                                                                                                                        | .1. Bas                                                                                                                                                  | e condi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bed                                                                                                                                                                                                                                                                                                                | % Of<br>Total<br>Cata-<br>lyst<br>Volum                                               | Bed<br>Temp.<br>(K)                                                                                                        |                                                                                                                                                                                                 | 13 Mole                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bed<br>Temp.<br>(K)                                                                                                           | NI                                                                                                                                                       | 13 Mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion with<br>a shots<br>At<br>Equil-<br>ibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                                                                                                                                                                                                                                  | 2                                                                                     | 3                                                                                                                          | 4                                                                                                                                                                                               | 5                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                             | 8                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 111111<br>1211<br>1211<br>1211<br>1211<br>1211<br>1211<br>1                                                                                                                                                                                                                                                        | 0.3581456890<br>1123456890<br>112345702<br>12345702<br>120120<br>22120<br>2222<br>222 | 788.1<br>788.4<br>788.5                                                                                                    | 1 613<br>2 5542<br>4 6641<br>7 333<br>8 6603<br>9 6908<br>10 2066<br>10 2066<br>10 311<br>10 321                                                                                                | $\begin{array}{c} 23.765\\ 21.096\\ 18.510\\ 15.942\\ 13.434\\ 11.147\\ 10.162\\ 9.336\\ 8.6955\\ 7.930\\ 7.739\\ 7.632\\ 7.568\\ 7.539\\ 7.525\\ 7.515\end{array}$                                                               | 28.519<br>25.750<br>20.201<br>17.399<br>14.755<br>13.592<br>12.606<br>11.8261<br>10.887<br>10.8855<br>10.516<br>10.439<br>10.4382<br>10.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 640.1<br>652.4<br>6796.3<br>724.9<br>735.1<br>7454.9<br>763.2<br>777.4<br>763.6<br>777.1<br>778.5<br>779.3<br>779.3           | 7 107<br>7 814<br>8 523<br>9 1952<br>10 246<br>10 574<br>10 785<br>10 891<br>10 945<br>10 983                                                            | 8,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.121<br>29.683<br>27.197<br>24.576<br>21.810<br>18.943<br>17.514<br>16.141<br>14.864<br>13.7842<br>12.170<br>11.717<br>11.439<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11.298<br>11. |
| $\begin{array}{c} 1\\ 1\\ 2\\ 1\\ 3\\ 4\\ 5\\ 6\\ 6\\ 6\\ 7\\ 7\\ 6\\ 6\\ 6\\ 7\\ 7\\ 8\\ 9\\ 9\\ 9\\ 8\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | 2259255801<br>222925801<br>33344444444555554<br>55555555555555555555                  | 692.9<br>702.9<br>712.9<br>723.7<br>747.0<br>750.4<br>755.5<br>755.0<br>755.7<br>755.0<br>755.0<br>760.1<br>761.9<br>761.9 | $\begin{array}{c} 7 & 806\\ 8 & 474\\ 9 & 937\\ 10 & 675\\ 11 & 348\\ 11 & 640\\ 11 & 895\\ 122 & 1285\\ 122 & 1285\\ 122 & 4222\\ 122 & 610\\ 122 & 669\\ 122 & 726\\ 12 & 744 \end{array}$    | $\begin{array}{c} 17 & 887 \\ 16 & 454 \\ 15 & 033 \\ 13 & 684 \\ 12 & 468 \\ 11 & 454 \\ 11 & 038 \\ 10 & 691 \\ 10 & 408 \\ 10 & 183 \\ 10 & 009 \\ 9 & 872 \\ 9 & 872 \\ 9 & 775 \\ 9 & 699 \\ 9 & 659 \\ 9 & 634 \end{array}$ | $\begin{array}{c} 22.324\\ 20.764\\ 19.194\\ 17.677\\ 16.283\\ 15.111\\ 14.627\\ 14.220\\ 13.880\\ 13.613\\ 13.613\\ 13.407\\ 13.245\\ 13.126\\ 13.040\\ 12.986\\ 12.986\\ 12.960\\ 12.933 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 675.4<br>6892.2<br>701.5<br>7215.9<br>734.6<br>7382.9<br>747.3<br>749.2<br>751.9<br>751.9<br>751.9<br>751.9<br>751.9<br>751.9 | 7 963<br>8 519<br>9 125<br>9 781<br>10 477<br>11 189<br>11 538<br>11 873<br>12 474<br>12 727<br>12 474<br>12 727<br>12 474<br>12 727<br>12 559<br>13 466 | $\begin{array}{c} 20, 739\\ 19, 398\\ 18, 631\\ 15, 267\\ 13, 984\\ 13, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 852\\ 12, 8$ | $\begin{array}{c} 25 & 371 \\ 23 & 952 \\ 22 & 476 \\ 20 & 960 \\ 19 & 458 \\ 18 & 022 \\ 17 & 351 \\ 16 & 169 \\ 15 & 671 \\ 15 & 671 \\ 15 & 674 \\ 14 & 605 \\ 14 & 379 \\ 14 & 231 \\ 14 & 143 \\ 14 & 066 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11<br>12<br>34<br>55<br>66<br>67<br>76<br>88<br>99<br>98<br>10<br>10                                                                                                                                                                                                                                               | 5162735814692536677791446925380<br>999999999999999999999999999999999999               | 729.6<br>739.4<br>759.4<br>755.5<br>7555.8<br>7555.8<br>7556.1<br>7556.2<br>7566.2<br>7566.2<br>7566.2<br>7566.2<br>7566.2 | 12.744<br>11.522<br>12.226<br>12.764<br>13.115<br>13.314<br>13.416<br>13.445<br>13.445<br>13.445<br>13.445<br>13.445<br>13.449<br>13.499<br>13.502*<br>13.502*<br>13.502*<br>13.502*<br>13.502* | 12.917 $11.837$ $11.074$ $10.603$ $10.341$ $10.208$ $10.173$ $10.147$ $10.127$ $10.111$ $10.096$ $10.096$ $10.096$ $10.086$ $10.086$ $10.086$ $10.086$                                                                            | $16 \cdot 809 \\ 15 \cdot 559 \\ 14 \cdot 666 \\ 13 \cdot 804 \\ 13 \cdot 646 \\ 13 \cdot 570 \\ 13 \cdot 570 \\ 13 \cdot 532 \\ 13 \cdot 532 \\ 13 \cdot 5210 \\ 13 \cdot 5510 \\ 13 \cdot 5510 \\ 13 \cdot 599 \\ 13 \cdot 499 \\ 14 \cdot 499 \\ 14 \cdot 499 \\ 14 \cdot 4$ | 678.3                                                                                                                         | 10.476/                                                                                                                                                  | 20.214<br>19.110<br>18.0001<br>5834<br>165.88490<br>133.5234<br>144.39621<br>144.39621<br>133.5234<br>122.6641<br>122.6641<br>122.6641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.818<br>23.649<br>22.450<br>21.257<br>20.086<br>18.985<br>18.469<br>17.9924<br>17.5546<br>16.814<br>16.514<br>16.514<br>16.038<br>15.891<br>15.801<br>15.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tota                                                                                                                                                                                                                                                                                                               |                                                                                       | sure D                                                                                                                     | bution;                                                                                                                                                                                         | n.                                                                                                                                                                                                                                | 2.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               | 2.26                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Firs                                                                                                                                                                                                                                                                                                               | t Bed<br>nd Bed<br>d Bed                                                              |                                                                                                                            | . nu î 1 011 <del>î</del>                                                                                                                                                                       |                                                                                                                                                                                                                                   | 0.000<br>0.245<br>0.100<br>0.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | 0.110<br>0.233<br>0.232<br>0.575                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * The                                                                                                                                                                                                                                                                                                              | ese va                                                                                | lues s                                                                                                                     | hould be                                                                                                                                                                                        | e read                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

These values should be read as 13.499, that is equal to equilibrium value.

. . . .

144

a state of the second

## 145

APPENDIX\_A

## TABLE NO.A.2

COMPUTED PROFILES OF AMMONIA MOLE PERCENT AND TEMPERATURE IN THE BED FOR DIFFERENT FEED FLOW RAJES

|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,Flow rate                                           | = 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                              | Set N                                                                                                                                                         | 0.2(B),                                                                                                                                                                                                                             | Flow ra                                                                                                                                                                           | ate=0.820                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bed<br>Pt.<br>No.                                                                          | Cata- (K<br>lvst<br>Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | emp. Actual                                          | H3 Mole<br>At<br>Max<br>Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                | Bed                                                                                                                                                           |                                                                                                                                                                                                                                     | H3 Mole                                                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 4                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                             | 8                                                                                                                                                                                                                                   | 9                                                                                                                                                                                 | 10                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11<br>21<br>341<br>556<br>661<br>761<br>89<br>998<br>101                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 28 & 075\\ 225 & 458\\ 222 & 811\\ 20 & 056\\ 17 & 177\\ 14 & 2805\\ 11 & 6222\\ 10 & 526\\ 9 & 6559\\ 9 & 050\\ 8 & 437\\ 8 & 319\\ 8 & 265\\ 8 & 240\\ 8 & 225\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.875<br>30.245<br>27.539<br>24.648<br>21.561<br>18.351<br>16.780<br>15.3122<br>14.022<br>12.992<br>12.255<br>11.512<br>11.366<br>11.303<br>11.272<br>11.251                                                                                                                                                  | 641.4<br>652.52<br>664.28<br>690.9<br>715.10<br>733.7<br>751.11<br>765.9<br>771.24<br>751.11<br>765.9<br>7774.2<br>7774.2<br>7776.5                           | $\begin{array}{c}1&607\\2&298\\3&028\\3&747\\5&785\\6&355\\6&957\\7&582\\8&214\\8&830\\9&396\\9&880\\10&261\\10&489\\10&619\\10&721\end{array}$                                                                                     | $\begin{array}{c} 27.055\\ 24.877\\ 22.710\\ 20.500\\ 18.221\\ 15.908\\ 14.760\\ 13.635\\ 12.553\\ 11.549\\ 10.650\\ 9.892\\ 9.286\\ 8.840\\ 8.586\\ 8.442\\ 8.334 \end{array}$   | 31.850<br>29.629<br>27.429<br>25.121<br>20.665<br>18.890<br>17.618<br>16.391<br>15.228<br>14.170<br>13.267<br>12.501<br>11.690<br>11.517<br>11.381                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1<br>11<br>21<br>31<br>41<br>556<br>666<br>776<br>866<br>915<br>981<br>998<br>101          | 25.99       677         29.1       680         35.5       699         38.6       719         40.2       719         43.4       722         48.2       736         49.8       740         51.4       742         49.8       740         52.6       744         53.6       745         54.5       746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      | $\begin{array}{c} 22.501\\ 21.182\\ 19.813\\ 18.398\\ 16.964\\ 15.559\\ 14.236\\ 13.635\\ 12.555\\ 12.154\\ 11.790\\ 11.496\\ 11.303\\ 11.183\\ 11.074 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $27 \cdot 211$<br>$25 \cdot 836$<br>$24 \cdot 393$<br>$22 \cdot 881$<br>$21 \cdot 325$<br>$19 \cdot 783$<br>$19 \cdot 027$<br>$18 \cdot 304$<br>$17 \cdot 624$<br>$16 \cdot 923$<br>$16 \cdot 425$<br>$15 \cdot 931$<br>$15 \cdot 508$<br>$15 \cdot 161$<br>$14 \cdot 938$<br>$14 \cdot 794$<br>$14 \cdot 672$ | $\begin{array}{c} 676 & 8\\ 684 & 3\\ 692 & 2\\ 709 & 6\\ 723 & 1\\ 727 & 5\\ 735 & 5\\ 735 & 5\\ 739 & 1\\ 745 & 1\\ 747 & 9\\ 750 & 0\\ 750 & 9\end{array}$ | $\begin{array}{c} 7 & 871 \\ 8 & 382 \\ 9 & 355 \\ 9 & 529 \\ 10 & 158 \\ 10 & 807 \\ 11 & 130 \\ 11 & 447 \\ 11 & 751 \\ 12 & 038 \\ 12 & 302 \\ 12 & 539 \\ 12 & 745 \\ 12 & 920 \\ 13 & 039 \\ 13 & 117 \\ 13 & 184 \end{array}$ | 20.482<br>19.254<br>17.998<br>16.734<br>15.486<br>14.297<br>13.202<br>12.713<br>12.266<br>11.874<br>11.533<br>11.246<br>11.874<br>11.533<br>11.2401<br>11.041<br>10.841<br>10.737 | 25.101<br>23.797<br>22.450<br>21.071<br>19.6363<br>17.125<br>16.568<br>16.568<br>15.604<br>15.606<br>14.583<br>14.589<br>14.269<br>14.269<br>14.165                              | and the second of the second s |
| $ \begin{array}{c} 1\\ 11\\ 21\\ 31\\ 56\\ 666\\ 71\\ 86\\ 95\\ 98\\ 101\\ 1 \end{array} $ | 54.5<br>59.1<br>680<br>63.6<br>687<br>682<br>702<br>77.3<br>710<br>79.5<br>712<br>713<br>81.41<br>722<br>722<br>733<br>81.41<br>723<br>88.6<br>722<br>7332<br>734<br>98.6<br>734<br>98.6<br>735<br>735<br>734<br>98.6<br>735<br>735<br>735<br>735<br>734<br>98.6<br>735<br>735<br>735<br>735<br>734<br>98.6<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>734<br>98.6<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735<br>735 | 3 7 10.604                                           | 1 6 437<br>1 6 437<br>1 4 882<br>1 4 423<br>1 4 000<br>1 3 624<br>1 4 624<br>1 3 624<br>1 4 624<br>1 6 62 | 25.663<br>24.465<br>23.232<br>21.985<br>20.751<br>19.572<br>19.027<br>18.510<br>18.033<br>17.607<br>17.230<br>16.620<br>16.385<br>16.226<br>16.129<br>16.038                                                                                                                                                   | 681.7<br>688.2<br>694.9<br>701.8<br>715.7<br>719.0<br>722.1<br>725.0<br>727.8<br>730.2<br>732.4<br>732.4<br>736.0<br>737.2<br>737.9<br>738.6                  | $\begin{array}{c} 10 & 428 \\ 10 & 888 \\ 11 & 373 \\ 11 & 878 \\ 12 & 393 \\ 12 & 900 \\ 13 & 145 \\ 13 & 380 \\ 13 & 601 \\ 13 & 806 \\ 13 & 806 \\ 13 & 993 \\ 14 & 160 \\ 14 & 307 \\ 14 & 521 \\ 14 & 580 \end{array}$         | 17.554<br>16.528<br>15.542<br>14.622<br>14.622<br>14.622<br>14.622<br>13.804<br>13.440<br>12.820<br>12.563<br>12.563<br>12.154<br>12.027                                          | 24,205<br>23,098<br>21,973<br>20,850<br>19,759<br>18,735<br>18,257<br>18,257<br>17,811<br>17,398<br>17,027<br>16,688<br>16,397<br>16,141<br>15,925<br>15,778<br>15,677<br>15,592 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - Total<br>- Cold<br>- First                                                               | Pressure<br>Shot Dist<br>Bed<br>d Hed<br>Bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.83<br>0.123<br>0.253<br>0.234<br>0.610                                                                                                                                                                                                                                                                       |                                                                                                                                                               | 2.78<br>0.098<br>0.230<br>0.219<br>0.547                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## TABLE NO.A.3

CONFUTED PROFILES OF ANMONIA MOLE PERCENT AND TEMPERATURE IN THE BED

FOR DIFFERENT H2/N2 RATIOS

| Set 00.3(A),H2/N2 ratio =2.5                                                                         | Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t 110.3(B),H                                                                                                                                                                                                    | 2/N2 ratio=2.8                                                                                                                                                                                                                                                                                                                                                    | Set No.3(C), H                                                                                                                                                                                                                                                                                                                                               | H2/N2 ratio=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2                                               |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Hed 2 Of Bed. NH3 Mole<br>Pt. Total Terr. Actual At.<br>No. Catar (K) Max.<br>1. St Rate             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) Actual                                                                                                                                                                                                        | 3 Mole %<br>At At<br>Max. Equil-<br>Rate ibrium                                                                                                                                                                                                                                                                                                                   | Bed<br>Temp. Actual<br>(K)                                                                                                                                                                                                                                                                                                                                   | H3 Mole %<br>At At<br>Max. Equi<br>Rate ibri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-<br>Lum                                        |
| 1 st Rate<br>Volume<br>1 2 3 4 5                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 8                                                                                                                                                                                                             | 9 10                                                                                                                                                                                                                                                                                                                                                              | 11 12                                                                                                                                                                                                                                                                                                                                                        | 13 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                 | $\begin{array}{c} 27.180 \\ 65.74.850 \\ 66.91 \\ 22.399 \\ 68.96 \\ 69.17.111 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11 \\ 71.11$ | 3       4       2       405         6       9       3       258         1       9       4       224         9       0       5       343         8       5       7       355         9       6       8       089 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 640 & 9 & 1 & 613\\ 653 & 3 & 2 & 384\\ 666 & 5 & 3 & 214\\ 681 & 4 & 150\\ 697 & 6 & 5 & 226\\ 716 & 3 & 6 & 468\\ 726 & 3 & 7 & 147\\ 736 & 5 & 7 & 851\\ 746 & 6 & 6 & 552\\ 756 & 0 & 9 & 212\\ 764 & 1 & 9 & 7851\\ 770 & 10 & 233\\ 774 & 7 & 10 & 553\\ 777 & 5 & 10 & 753\\ 778 & 6 & 10 & 908\\ 780 & 1 & 10 & 945\\ \end{array}$ | $\begin{array}{c} 372 \\ 20 \\ 372 \\ 22 \\ 15 \\ 718 \\ 22 \\ 22 \\ 12 \\ 545 \\ 19 \\ 22 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 357<br>795<br>279<br>228<br>285<br>331<br>434     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                 | 22.363 60<br>20.992 669<br>19.582 669<br>18.171 70<br>16.810 71<br>16.168 721<br>15.576 735<br>14.556 735<br>14.142 736<br>13.519 742<br>13.519 742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 21.485\\ 224.485\\ 224.485\\ 224.485\\ 223.38\\ 187.363\\ 221.889\\ 223.388\\ 147.5989\\ 223.388\\ 147.5989\\ 224.881\\ 148.5986\\ 168.117\\ 175.986\\ 169.49\\ 112.281\\ 155.52\\ 112.281\\ 145.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 115.55\\ 212.281\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.52\\ 155.5$ | 535769724158222700                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                 | 20,921 690<br>19.800 697<br>18.705 70<br>17.664 712<br>17.183 715<br>16.728 718<br>16.314 722<br>15.908 727<br>15.319 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                            | $\begin{array}{c} 9 & 878 \\ 24 & 361 \\ 8 & 818 \\ 23 & 233 \\ 7 & 736 \\ 22 & 075 \\ 5 & 668 \\ 20 & 915 \\ 5 & 624 \\ 19 & 771 \\ 4 & 643 \\ 18 & 689 \\ 4 & 193 \\ 18 & 179 \\ 3 & 769 \\ 17 & 707 \\ 3 & 024 \\ 16 & 865 \\ 2 & 713 \\ 16 & 5107 \\ 2 & 206 \\ 15 & 929 \\ 2 & 014 \\ 15 & 552 \\ 1 & 719 \\ 15 & 365 \\ 1 & 719 \\ 15 & 365 \\ \end{array}$ | 679.6 10.505<br>686.3 10.984<br>693.4 11.491<br>700.6 12.022<br>708.0 12.565<br>715.2 13.100<br>718.7 13.356<br>721.9 13.601<br>725.0 13.830<br>727.7 14.041<br>732.4 14.396<br>734.3 14.540<br>735.9 14.662<br>735.9 14.662<br>737.7 14.798<br>738.3 14.845                                                                                                 | 198 462 224 18<br>331 22 6<br>17 10 21 6<br>17 134 20 4<br>15 139 19<br>14 681 18<br>18 7<br>14 8871 17<br>14 8871 17<br>13 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90<br>750<br>777<br>68<br>97<br>777<br>89<br>9777 |
| Total Pressure Drop, atm<br>Cold Shot Distribution:<br>First Bed<br>Second Red<br>Joird Bed<br>Total | 2.25<br>0.109<br>0.237<br>0.236<br>0.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.25<br>0.108<br>0.240<br>0.234<br>0.582                                                                                                                                                                        | 23                                                                                                                                                                                                                                                                                                                                                                | 2.27<br>0.108<br>0.237<br>0.226<br>0.571                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |

\* Values should correspond to equilibrium values.

## TABLE NO.A.4

CURPUTED PROFILES OF AMMONIA MOLE PERCENT AND TEMPERATURE IN THE BED FOR DIFFERENT INERIS CONCENTRATIONS

| Set No.4(A), Iner                                                                     | ts concentrati                                       | lon=10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Set No.4(E                                                                                                                                                                                                                                                       | 3), Inerts (                                                                                                                                                                                                                                                                                                                                                                                                        | Conc. =13.95                                                                                                                                                           |
|---------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bed % Of Bed<br>Pt. Total Temp.<br>No. Cata- (K)<br>lyst<br>Valumo                    | NH3 Mole<br>Actual At.<br>Max.<br>Rate               | %<br>At<br>Equil-<br>ibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bed<br>Temp. Actu<br>(K)                                                                                                                                                                                                                                         | NH3 Mole<br>Jal At.<br>Max.<br>Rate                                                                                                                                                                                                                                                                                                                                                                                 | %<br>At<br>Equil-<br>ibrium                                                                                                                                            |
| Volume<br>1 2 3                                                                       | 4 5                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7. 8                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 35.775<br>33.483<br>31.104<br>28.565<br>225.822<br>222.8599<br>19.742<br>18.179<br>15.291<br>15.291<br>14.105<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>12.520<br>1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                             | 122 1.882                                                                                                                                                                                                                                                                                                                                                                                                           | 30.306<br>27.720<br>25.097<br>22.356<br>19.507<br>16.662<br>15.315<br>14.096<br>13.051<br>12.234<br>11.651<br>11.274<br>11.043<br>10.915<br>10.853<br>10.823<br>10.802 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 28 & 409 \\ 27 & 015 \\ 253 & 9990 \\ 220 & 778 \\ 199 & 9212 \\ 188 & 4782 \\ 177 & 145 \\ 166 & 094 \\ 155 & 683 \\ 155 & 412 \\ 155 & 085 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $716 \cdot 7 \cdot 10$<br>$725 \cdot 7 \cdot 11$<br>$725 \cdot 7 \cdot 11$<br>$729 \cdot 8 \cdot 11$<br>$733 \cdot 7 \cdot 12$<br>$737 \cdot 3 \cdot 12$<br>$740 \cdot 4 \cdot 12$<br>$743 \cdot 1 \cdot 12$<br>$744 \cdot 9 \cdot 12$<br>$746 \cdot 1 \cdot 13$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                | 25.600<br>24.328<br>22.9994<br>21.627<br>20.235<br>18.863<br>18.204<br>17.568<br>16.909<br>15.464<br>15.078<br>14.754<br>14.536<br>14.394<br>14.275                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 26 585<br>24 030<br>22 710<br>21 398<br>20 139<br>19 550<br>18 992<br>18 4010<br>17 234<br>16 597<br>16 573<br>16 573<br>16 392<br>16 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 691 7 11<br>698 7 11<br>705 8 12<br>712 8 12<br>716 2 13<br>719 4 13                                                                                                                                                                                             | 331       17.632         844       16.594         368       15.656         887       14.226         887       14.226         887       14.226         887       14.226         887       14.226         137       13.456         1377       13.456         1374       12.828         1375       12.828         1377       12.829         132.125       12.165         132.161       12.165         536       11.952 | 24.213<br>23.107<br>21.984<br>20.857<br>19.756<br>18.723<br>18.238<br>17.787<br>17.373<br>16.997<br>16.657<br>16.363<br>16.105<br>15.893<br>15.748<br>15.648<br>15.564 |
| Total Pressure D<br>Cold Shot Distri<br>First Bed<br>Second Bed<br>Third Bed<br>Total |                                                      | $\begin{array}{c} 2.19 \\ 0.145 \\ 0.250 \\ 0.234 \\ 0.629 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                | 2 9<br>0 8 9<br>2 4 9<br>2 2 0<br>5 5 8                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |

147

×.

#### TABLE NU.A.5

CONTINUE PROFILES OF AUBORIA HOLE PEPCENT AND TEMPERATURE IN THE BED

## FOR DIFFERENT CATALYST ACTIVITIES

| t | 10.5(A),Cat                                                                                                                                                                                                                                                                                       | alyst A                                                                               | ctivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · = 0.7                                                                                                        | Set No                                                                                                             | .5 (B),Cat                                                                                  | alyst A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctivity=0#                                                                                                                                                                                 | 3Set No                                                                                                                         | .5(C), C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | atalyst                                                                                                                                                                                                   | Activity=0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | UE Bed.<br>Notal Tero.<br>Cala- (E)<br>ligt                                                                                                                                                                                                                                                       |                                                                                       | 13 Mole<br>At:<br>Max.<br>Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | At<br>Equil-<br>ibrium                                                                                         | Bed<br>Temp.<br>(K)                                                                                                | Actual                                                                                      | 3 Mole<br>At<br>Nax.<br>Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k<br>At<br>Equil-<br>ibrium                                                                                                                                                                | Bed<br>Temp.<br>(K)                                                                                                             | NF<br>Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 Mole<br>At<br>Max.<br>Rate                                                                                                                                                                             | %<br>At<br>Eguil-<br>ibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Yoliumo 3                                                                                                                                                                                                                                                                                         | 1,                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                              | 7                                                                                                                  | 8                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                        | 11                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $\begin{array}{c} 0 & 0 & 656 & 5\\ 2 & 3 & 667 & 2\\ 4 & 5 & 678 & 2\\ 6 & 8 & 702 & 4\\ 11 & 4 & 716 & 1\\ 12 & 5 & 723 & 3\\ 13 & 6 & 738 & 2\\ 15 & 7 & 745 & 7\\ 15 & 2 & 765 & 1\\ 18 & 2 & 766 & 4\\ 29 & 5 & 771 & 6\\ 22 & 0 & 777 & 6\\ 22 & 7 & 779 & 6\\ 22 & 7 & 779 & 6\end{array}$ | 3.713<br>4.528<br>5.424<br>5.903<br>6.401<br>6.911<br>7.427                           | 11.188<br>10.454<br>9.801<br>9.240<br>8.780<br>8.482<br>9.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.855                                                                                                         | 658.1<br>669.6<br>695.0<br>709.87<br>725.9<br>7342.80<br>751.64<br>751.64<br>774.55<br>7765.3<br>7776.33<br>7778.3 | 3.781<br>4.648<br>5.621<br>6.150<br>6.704<br>7.277<br>7.859                                 | 2219761<br>827051<br>827051<br>19766884<br>19766884<br>11556658<br>69365<br>1159988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>109988<br>1099888<br>1099888<br>1099888<br>1099888<br>1099888<br>1099888<br>1099888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28,588<br>26,459<br>24,283<br>22,016<br>19,693<br>18,522                                                                                                                                   | 778.4<br>779.5<br>780.4                                                                                                         | $\begin{array}{c} 2 & 351 \\ 3 & 137 \\ 4 & 011 \\ 5 & 0037 \\ 6 & 1377 \\ 6 & 7573 \\ 8 & 0600 \\ 8 & 701 \\ 9 & 795 \\ 10 & 1865 \\ 10 & 6699 \\ 10 & 6699 \\ 10 & 761 \\ 10 & 617 \\ 10 & 699 \\ 10 & 761 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 26.567\\ 24.270\\ 119.692\\ 119.282\\ 14.887\\ 13.710\\ 11.5543\\ 10.5602\\ 11.5543\\ 10.5602\\ 9.195\\ 8.4269\\ 8.4269\\ 8.469\\ 8.187\\ 8.117\end{array}$                             | 29.642<br>26.689<br>24.237<br>21.6733<br>17.738<br>17.748<br>115.431<br>15.4226<br>11.486<br>11.866<br>11.8877<br>11.503<br>11.503<br>11.503<br>11.199<br>11.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 38.6 740.7<br>40.2 744.5<br>41.8 747.0<br>43.4 751.0                                                                                                                                                                                                                                              | 9 917<br>9 538<br>10 749<br>11 021<br>11 273<br>11 4699<br>11 870<br>12 015<br>12 131 | $\begin{array}{c} 13.646 \\ 12.612 \\ 11.701 \\ 11.308 \\ 10.955 \\ 10.545 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18, 896<br>176, 454<br>15, 401<br>14, 944<br>14, 528<br>13, 8476<br>13, 5864<br>13, 191<br>13, 0464<br>12, 895 | 729.0<br>732.8<br>736.4<br>739.8<br>742.8<br>745.5<br>747.5<br>748.7                                               | 8.1403<br>8.6481<br>99.175097<br>100.2221<br>100.2221<br>111.7063<br>122.23892<br>122.23892 | 9340<br>9380<br>9380<br>550<br>500<br>9380<br>500<br>9380<br>500<br>9380<br>500<br>9380<br>500<br>9380<br>500<br>9380<br>500<br>9380<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>114<br>500<br>9380<br>70<br>1114<br>500<br>9380<br>70<br>1114<br>500<br>9380<br>70<br>1114<br>500<br>9380<br>70<br>1114<br>500<br>940<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1111<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>110<br>1110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>11000000 | $\begin{array}{c} 23 & 610 \\ 6381 \\ 21 & 1268 \\ 19 & 8641 \\ 19 & 6045 \\ 17 & 4729 \\ 16 & 9489 \\ 15 & 5139 \\ 15 & 5139 \\ 15 & 139 \\ 15 & 139 \\ 14 & 578 \\ 14 & 429 \end{array}$ | 721.4<br>725.8<br>730.0<br>734.0<br>737.7<br>741.1<br>744.0<br>744.5<br>748.2                                                   | 8.314<br>8.857<br>9.445<br>10.065<br>10.709<br>11.351<br>11.665<br>11.225<br>122.690<br>122.690<br>12.670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.964<br>15.716<br>14.511<br>13.946<br>13.402<br>12.901<br>12.441<br>12.033<br>11.669<br>11.360<br>11.300                                                                                                | 24 036<br>279 8951<br>19951<br>19951<br>1177 866<br>155 866<br>155 866<br>155 96<br>155 96<br>156 96<br>15 |
|   | 56.4 741.1                                                                                                                                                                                                                                                                                        | 110<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                  | 13,256<br>13,256<br>122,128<br>112,128<br>112,128<br>112,128<br>114,246<br>114,2465<br>100,975<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8763<br>100,8775<br>100,8763<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,8775<br>100,87 | 18.967<br>17.963<br>17.963<br>16.243<br>15.5891<br>15.586<br>15.072<br>14.666                                  | 698.7<br>705.0<br>712.0<br>712.5<br>721.6<br>727.3<br>729.9<br>734.4<br>736.3<br>737.9<br>739.1<br>739.8           | 12.188<br>12.666<br>12.896<br>13.116                                                        | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.356<br>19.290<br>18.389<br>17.485<br>17.485<br>16.751<br>16.458<br>15.458<br>15.458<br>15.458                                                                                           | 687.29<br>887.29<br>893.88<br>693.88<br>697.707.44.69<br>771.7.77<br>724.69<br>773.77<br>773.77<br>733.5.64<br>773.73<br>737.37 | $\begin{array}{c} 10, 854\\ 85433\\ 111, 8345\\ 122, 8345\\ 123, 8599\\ 133, 5570\\ 133, 5570\\ 133, 5570\\ 133, 5570\\ 134, 1282\\ 144, 422\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ 144, 5176\\ $ | $\begin{array}{c} 19.783\\ 18.753\\ 17.753\\ 17.753\\ 17.753\\ 15.705\\ 14.3946\\ 13.5755\\ 13.575\\ 13.575\\ 13.575\\ 13.2933\\ 12.9665\\ 12.233\\ 12.9665\\ 12.201\\ 12.01\\ 12.01\\ 11.932\end{array}$ | 16,517<br>16,249<br>16,021<br>15,863<br>15,761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | al Pressure L<br>B Shot Distri                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.56                                                                                                           | 5                                                                                                                  | 2.38                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                          |                                                                                                                                 | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| r | st Fer<br>Sud Beil<br>Stoles                                                                                                                                                                                                                                                                      |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.030<br>0.193<br>0.192<br>0.415                                                                               |                                                                                                                    | 0.080<br>0.232<br>0.203<br>0.515                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                 | 0.096<br>0.23<br>0.220<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

- ir⇒ iqi Stal

# TABLE NO.A.6

CONPUTED PROFILES OF AMMONIA MOLE PERCENT AND TEMPERATURE IN THE BED FOR DIFFERENT CATALYST VOLUMES

ļ

| Set                                                         | No.6(                                                                                                                           | A),Cat                                                                                                       | alyst v                                                                                                                                                                                          | olume =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.0                                                                                                                                                                                                    | Set No                                                                                                                                                                                                            | 0.6(B),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cataly                                                                                                                                                                                                                | st volume=                                                                                                                                                                                                                                                                                                     | =75 <b>.</b> 0 |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Bed<br>Pt.<br>No.                                           | Total<br>Cata-<br>lyst                                                                                                          | (K)                                                                                                          | Actual                                                                                                                                                                                           | At<br>Max.<br>Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %<br>At<br>Equil-<br>ibrium                                                                                                                                                                             | Bed<br>Temp.<br>(K)                                                                                                                                                                                               | NF<br>Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H3 Mole<br>At<br>Max.<br>Rate                                                                                                                                                                                         | %<br>At<br>Equil-<br>ibrium                                                                                                                                                                                                                                                                                    |                |
| 1                                                           | Volume<br>2                                                                                                                     | 3                                                                                                            | 4                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                       | 7                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                             | · ·            |
| 111111161616161581<br>1015666778899981<br>101581            | 0245814<br>9145689<br>1125689<br>1125689<br>11257<br>1189<br>120<br>120<br>222<br>222<br>222<br>222<br>222<br>222<br>222<br>222 | 644.3<br>6658.69<br>682.69<br>715.1<br>724.8<br>743.6<br>750.7<br>775.8<br>7767.7<br>778.8<br>779.7<br>780.7 | $\begin{array}{c} 1 & 613\\ 2 & 326\\ 3 & 126\\ 4 & 026\\ 5 & 025\\ 6 & 166\\ 6 & 788\\ 7 & 436\\ 8 & 093\\ 7 & 349\\ 8 & 733\\ 9 & 812\\ 10 & 193\\ 10 & 464\\ 10 & 690\\ 10 & 749 \end{array}$ | 13.602<br>12.484<br>11.444<br>10.521<br>9.745<br>9.135<br>8.695<br>8.398<br>8.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.274<br>28.930<br>26.567<br>24.114<br>21.542<br>18.902<br>17.583<br>16.305<br>15.105<br>14.017<br>13.094<br>12.361<br>11.827<br>11.825<br>11.268<br>11.268<br>11.090                                  | $636 \cdot 1$<br>$663 \cdot 1$<br>$678 \cdot 9$<br>$777 \cdot 597 \cdot 10$<br>$740 \cdot 757 \cdot 597 \cdot 10$<br>$7775 \cdot 991 \cdot 775 \cdot 977 \cdot 778 \cdot 36$<br>$7778 \cdot 68$<br>$778 \cdot 68$ | $\begin{array}{c} 1 & 613\\ 2422\\ 3 & 304\\ 4 & 316\\ 5 & 506\\ 6 & 908\\ 7 & 680\\ 8 & 473\\ 9 & 903\\ 10 & 422\\ 10 & 774\\ 10 & 988\\ 11 & 105\\ 11 & 158\\ 11 & 183\\ 11 & 199 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 28 & 130 \\ 25 & 537 \\ 22 & 907 \\ 20 & 159 \\ 17 & 293 \\ 14 & 401 \\ 13 & 013 \\ 11 & 732 \\ 10 & 613 \\ 10 & 619 \\ 8 & 700 \\ 8 & 467 \\ 8 & 339 \\ 8 & 284 \\ 8 & 255 \\ 8 & 240 \end{array}$ | 32 934<br>30 324<br>27 635<br>24 759<br>21 685<br>18 487<br>16 912<br>15 435<br>14 15<br>12 324<br>11 832<br>11 392<br>11 324<br>11 293<br>11 272                                                                                                                                                              |                |
| 11111<br>1211<br>1211<br>1211<br>1211<br>1211<br>1211<br>12 | <b>791</b><br><b>35628406284665</b><br><b>225923380114568942665</b><br><b>3334444444455555</b>                                  | 675.8<br>683.1<br>690.9<br>699.3<br>708.0<br>717.0<br>721.5<br>725.9<br>730.1<br>734.1<br>737.8<br>741.1     | $\begin{array}{c} 7 & 802\\ 8 & 303\\ 9 & 431\\ 10 & 052\\ 10 & 695\\ 11 & 018\\ 11 & 336\\ 11 & 644\\ 11 & 937\\ 12 & 209\\ 12 & 456\\ 12 & 861\\ 12 & 988\\ 13 & 071\\ 13 & 145 \end{array}$   | $\begin{array}{c} 20.672\\ 19.452\\ 18.210\\ 16.953\\ 15.705\\ 14.500\\ 13.935\\ 13.396\\ 12.895\\ 12.895\\ 12.436\\ 12.022\\ 11.6664\\ 11.355\\ 11.095\\ 10.924\\ 10.810\\ 10.712 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $25 \cdot 299$<br>$242 \cdot 678$<br>$21 \cdot 312$<br>$19 \cdot 940$<br>$18 \cdot 5993$<br>$17 \cdot 351$<br>$16 \cdot 7584$<br>$155 \cdot 359$<br>$14 \cdot 6994$<br>$14 \cdot 359$<br>$14 \cdot 242$ | 665.05<br>6678055<br>6689887665<br>70185665<br>7718856<br>77382<br>733653<br>7339532<br>74445<br>7445<br>74644                                                                                                    | 7 835<br>8343<br>902<br>90515<br>10887<br>10887<br>110887<br>110887<br>110887<br>110887<br>110887<br>110887<br>110887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>10887<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11180<br>11 | $\begin{array}{c} 22.552\\ 21.238\\ 19.874\\ 18.463\\ 17.033\\ 15.632\\ 14.308\\ 13.700\\ 13.162\\ 12.664\\ 12.207\\ 11.837\\ 11.538\\ 11.340\\ 11.214\\ 11.105 \end{array}$                                          | $27 \cdot 266$<br>$25 \cdot 896$<br>$24 \cdot 458$<br>$22 \cdot 951$<br>$21 \cdot 405$<br>$19 \cdot 862$<br>$19 \cdot 110$<br>$18 \cdot 380$<br>$17 \cdot 700$<br>$17 \cdot 062$<br>$16 \cdot 494$<br>$15 \cdot 987$<br>$15 \cdot 564$<br>$15 \cdot 211$<br>$14 \cdot 977$<br>$14 \cdot 832$<br>$14 \cdot 705$ |                |
| 11111116<br>12345566776161581<br>12345566778899990<br>10    | 54.51<br>553.27<br>553.82<br>7779.81<br>4.68<br>593.58<br>886<br>880.55<br>5779<br>99578.0<br>100.0                             | 682.94<br>6896.33<br>710.43<br>717.56<br>7223.65<br>7229.65<br>7335.51<br>7338.55<br>7388.55<br>739.55       | 10.46310.93411.42411.93712.45712.96713.44313.666113.864214.20314.34314.46214.54414.59914.646                                                                                                     | $19.464 \\ 18.466 \\ 17.369 \\ 16.334 \\ 15.351 \\ 14.422 \\ 13.635 \\ 12.645 \\ 12.646 \\ 12.264 \\ 12.264 \\ 11.864 \\ 11.864 \\ 11.795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 11.8795 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12.564 \\ 12$ | 24.017<br>22.900<br>21.766<br>20.641<br>19.548<br>18.063<br>17.624<br>17.226<br>16.8539<br>16.224<br>16.8539<br>16.224<br>15.818<br>15.691<br>15.514                                                    |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 21 & 108 \\ 19 & 983 \\ 18 & 830 \\ 17 & 683 \\ 16 & 551 \\ 15 & 4988 \\ 14 & 529 \\ 13 & 711 \\ 13 & 369 \\ 13 & 369 \\ 12 & 8206 \\ 12 & 8206 \\ 12 & 462 \\ 12 & 372 \\ 12 & 292 \end{array}$    | 25.756<br>24.569<br>23.347<br>22.104<br>19.149<br>19.146<br>18.1456<br>17.316<br>16.688<br>16.488<br>16.283<br>16.184                                                                                                                                                                                          |                |
| Colo<br>Fir:<br>Seco                                        | st Bed<br>ond Bec<br>rd Bed                                                                                                     | Distr                                                                                                        |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.17 0.096 0.239 0.214 0.549                                                                                                                                                                            |                                                                                                                                                                                                                   | 2.37<br>0.120<br>0.253<br>0.235<br>0.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                |

#### TABLE NO.A.7

# CONPUTED PROFILES OF AMMONIA MOLE PERCENT AND TEMPERATURE IN THE BED

. .

FOR DIFFERENT OPERATING PRESSURES

Set Ho. 7 (A), Operating pressure = 170.0 Set No. 7 (B), Pressure = 210.0 ² ∧t NH3 Mole NH3 Mole Bed & Of Bed Bed 2 Pt. Total Temp. Actual At No. Cata- (K) Max Temp, Actual At. (K) Max. Λt Equil-ibrium Equil-Max. lyst Volume 2 Rate ibrium Rate 5 6 7 1 3 8 g 10 4

| 1                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                         | 4                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                 | 6                                                                                                                                                                           | 1                                                                                                                                                            | 8                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                      |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 111111<br>121116<br>1616<br>1619<br>10<br>10<br>10 | 0 03<br>4 69<br>11 12<br>13<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 639.7<br>650.21<br>673.01<br>6786.1<br>7086.7<br>7237.657.1<br>749.50<br>7657.6<br>7657.6<br>769.3                                                                        | $\begin{array}{c} 1 & 613\\ 2 & 268\\ 2 & 960\\ 3 & 720\\ 4 & 5531\\ 6 & 6058\\ 7 & 566\\ 6 & 1869\\ 7 & 3492\\ 9 & 3765\\ 10 & 176\\ 10 & 176\\ 10 & 295\end{array}$                             | $\begin{array}{c} 25 & 810 \\ 23 & 771 \\ 21 & 754 \\ 19 & 699 \\ 17 & 601 \\ 15 & 480 \\ 14 & 423 \\ 13 & 388 \\ 13 & 388 \\ 11 & 449 \\ 10 & 593 \\ 9 & 846 \\ 9 & 235 \\ 8 & 760 \\ 8 & 477 \\ 8 & 309 \\ 8 & 181 \end{array}$ | 30.574<br>28.491<br>26.399<br>24.237<br>21.985<br>19.656<br>18.475<br>17.305<br>16.158<br>15.072<br>14.066<br>13.180<br>12.446<br>11.869<br>11.522<br>11.319<br>11.162      | 629.8<br>640.6<br>652.1<br>6679.1<br>695.8<br>7125.8<br>746.5<br>7565.0<br>7771.5<br>7775.3<br>7778.9                                                        | -5.806                                                                                                                                                                                                                      | 30 934<br>28 693<br>26 412<br>24 004<br>21 455<br>18 747<br>17 357<br>15 965<br>13 272<br>12 064<br>11 027<br>10 203<br>9 608<br>9 286<br>9 110<br>8 985                                                                    | 35.722<br>33.517<br>31.238<br>797<br>26.1296<br>2797<br>23.797<br>26.296<br>17.262<br>17.262<br>17.265<br>12.576<br>12.576<br>12.576<br>12.365<br>12.576<br>12.3665<br>12.213                                                           |  |
| 11111161616161581<br>12345566778899991<br>101581   | 79135628406284665<br>2259258011356884665<br>380113568894665<br>5555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $671 \cdot 1$<br>$677 \cdot 8$<br>$692 \cdot 4$<br>$708 \cdot 567$<br>$712 \cdot 64$<br>$722 \cdot 8$<br>$734 \cdot 4$<br>$737 \cdot 1$<br>$739 \cdot 0$<br>$741 \cdot 4$ | $\begin{array}{c} 7 & 598 \\ 8 & 548 \\ 9 & 635 \\ 10 & 218 \\ 10 & 513 \\ 10 & 596 \\ 11 & 0972 \\ 11 & 637 \\ 11 & 883 \\ 12 & 107 \\ 12 & 307 \\ 12 & 448 \\ 12 & 542 \\ 12 & 628 \end{array}$ | $\begin{array}{c} 20.013\\ 18.908\\ 17.782\\ 16.637\\ 15.502\\ 14.401\\ 13.875\\ 13.369\\ 12.890\\ 12.890\\ 12.446\\ 12.033\\ 11.664\\ 11.340\\ 11.058\\ 10.861\\ 10.732\\ 10.619 \end{array}$                                    | $\begin{array}{c} 24.569\\ 23.392\\ 22.180\\ 20.936\\ 19.681\\ 18.451\\ 17.282\\ 16.226\\ 15.726\\ 15.726\\ 15.323\\ 14.611\\ 14.385\\ 14.231\\ 14.093\\ \end{array}$       | $652 \cdot 7$<br>$6720 \cdot 7$<br>$6898 \cdot 3$<br>$7072 \cdot 9$<br>$7122 \cdot 9$<br>$7227 \cdot 3$<br>$7360 \cdot 4$<br>$7467 \cdot 6$<br>$748 \cdot 9$ | $\begin{array}{c} 8 & 109 \\ 8 & 600 \\ 9 & 139 \\ 9 & 731 \\ 10 & 375 \\ 11 & 067 \\ 11 & 426 \\ 11 & 789 \\ 12 & 1526 \\ 12 & 1526 \\ 12 & 8464 \\ 13 & 451 \\ 13 & 703 \\ 13 & 878 \\ 13 & 9922 \\ 14 & 093 \end{array}$ | $\begin{array}{c} 23 & 823 \\ 22 & 533 \\ 21 & 176 \\ 19 & 771 \\ 18 & 333 \\ 16 & 895 \\ 16 & 186 \\ 15 & 502 \\ 14 & 849 \\ 14 & 236 \\ 13 & 164 \\ 12 & 718 \\ 12 & 345 \\ 12 & 091 \\ 11 & 927 \\ 11 & 785 \end{array}$ | $\begin{array}{c} 28 & 609 \\ 27 & 279 \\ 25 & 863 \\ 24 & 380 \\ 22 & 843 \\ 21 & 288 \\ 20 & 512 \\ 19 & 759 \\ 19 & 027 \\ 18 & 339 \\ 17 & 700 \\ 17 & 125 \\ 16 & 614 \\ 16 & 180 \\ 15 & 891 \\ 15 & 699 \\ 15 & 536 \end{array}$ |  |
| 11111111111111111111111111111111111111             | 54.51<br>59.66<br>59.66<br>59.66<br>59.66<br>59.66<br>59.55<br>59.66<br>59.55<br>59.60<br>59.57<br>59.60<br>59.57<br>59.60<br>59.57<br>59.60<br>59.57<br>59.60<br>59.57<br>59.60<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57<br>59.57 | 680.3<br>693.1<br>699.7<br>706.4<br>712.8<br>715.6<br>721.8<br>721.8<br>7223.8<br>7227.9<br>7229.6<br>731.1<br>732.7<br>733.3                                             | $\begin{array}{c} 10 & 250 \\ 10 & 698 \\ 11 & 652 \\ 12 & 140 \\ 12 & 640 \\ 13 & 0555 \\ 13 & 0555 \\ 13 & 4396 \\ 13 & 7554 \\ 13 & 8994 \\ 13 & 9971 \\ 14 & 167 \\ \end{array}$              | $\begin{array}{c} 18.469\\ 17.485\\ 16.511\\ 15.553\\ 14.650\\ 13.815\\ 13.434\\ 13.083\\ 12.767\\ 12.478\\ 12.201\\ 11.811\\ 11.648\\ 11.538\\ 11.465\\ 11.402 \end{array}$                                                      | $\begin{array}{c} 22.919\\ 21.854\\ 20.788\\ 19.735\\ 18.724\\ 17.788\\ 17.357\\ 16.958\\ 16.260\\ 15.970\\ 15.711\\ 15.491\\ 15.301\\ 15.172\\ 15.088\\ 15.016\end{array}$ | 676.3<br>683.4<br>698.0<br>705.9<br>713.7<br>721.2<br>721.2<br>7227.8<br>733.2<br>735.4<br>737.3<br>738.6<br>739.1<br>740.1                                  | $\begin{array}{c} 10 & 946 \\ 11 & 434 \\ 11 & 958 \\ 12 & 514 \\ 13 & 093 \\ 13 & 677 \\ 13 & 963 \\ 14 & 239 \\ 14 & 506 \\ 14 & 506 \\ 14 & 564 \\ 15 & 330 \\ 15 & 572 \\ 15 & 635 \\ 15 & 691 \end{array}$             | $\begin{array}{c} 21 & 904\\ 20 & 733\\ 19 & 542\\ 18 & 339\\ 17 & 1.66\\ 16 & 050\\ 15 & 525\\ 15 & 0384\\ 14 & 587\\ 13 & 516\\ 13 & 516\\ 13 & 256\\ 13 & 035\\ 12 & 884\\ 12 & 793\\ 12 & 708 \end{array}$              | $26 \cdot 621$<br>$25 \cdot 398$<br>$24 \cdot 140$<br>$27 \cdot 856$<br>$21 \cdot 579$<br>$19 \cdot 735$<br>$18 \cdot 2875$<br>$17 \cdot 5224$<br>$16 \cdot 8903$<br>$16 \cdot 692$                                                     |  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           | )rop, at<br>Ebution                                                                                                                                                                               |                                                                                                                                                                                                                                   | 2.34                                                                                                                                                                        |                                                                                                                                                              | 2.21                                                                                                                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |  |

Cold Shot Distribution: First Bed Second Bed Third Red Total

- $\begin{array}{c} 0.089 \\ 0.235 \\ 0.199 \\ 0.523 \end{array}$
- ${ \begin{smallmatrix} 0 & . 146 \\ 0 & 253 \\ 0 & 231 \\ 0 & 630 \\ \end{smallmatrix} }$

٨

| a later |   | RS | 12.35      |       | APPEN   | DIX-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B      |        | 175   |       |       | Pi      | AGE:    | 1                     | 15        | 1      |
|---------|---|----|------------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|-------|-------|---------|---------|-----------------------|-----------|--------|
| 00100   |   |    | START      |       |         | and the second s |        | MAIN   | PROG  | RAM   | FOR   | SUMU    | LATION  | OF                    | AMMONI    | A SYNT |
| 00200   | С |    | MULTIB     | ED G  | UENCH   | TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E HI   | GH C   | APACI | TY R  | EACT  | OR      |         |                       |           |        |
| 00300   | c |    | INPUT :    | STAT  | EMENT   | PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GRAM   | Ą      |       |       |       |         |         |                       |           |        |
| 00400   |   |    | DIMENS     | ION   | PF(50   | ).TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (50)   | ,F11   | (50), | F22(  | 50),  | F33(    | 50),F4  | 4(5)                  | ),        |        |
| 00500   |   |    | 1F55(50    | ),FD  | 22(50   | ),FD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33(5   | 50),F  | D44(5 | 0),Z  | 11(5  | 0),Z    | 22(50)  | ,23                   | 3(50),    |        |
| 00600   |   |    | 2AZ(210    | ,4),  | AP(21   | 0,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,AXC   | (210,  | 4),AT | (210  | ,4),  | AXRMI   | NL(210  | ,4)                   | APATDL    | (100), |
| 00700   |   |    | 2AZPL(2    | 10,4  | ),APL   | (210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,4),   | ATL (  | 210,4 | ),AN  | XL(2  | 10,4    | ),ATHL  | (21)                  | 0,4),     | - 26   |
| 00800   |   |    | 2AXENL(    | 210,  | 4),AX   | EL (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,4   | 1), AC | XL(21 | 0,4)  | ,ACT  | L(21    | 0,4),A  | CTH                   | 1(210,4)  | ),     |
| 00900   |   |    | 3ATH(21    | 0,4)  | ,ACX (  | 210,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4), P  | CT(2   | 10,4) | ,ACT  | H(21  | 0,4)    | ATH12   | (80)                  | ))        |        |
| 01000   |   |    | 4, ATEMC   | 100)  | ,ADEL   | (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) , A1 | EP(1   | 00),A | TEMP  | (100  | ), ADI  | ET(100  | ),F                   | AIPL(17   | ,20)   |
| 01100   |   |    | 5, ANX (2) | 10,4  | ),AZP   | (210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,4),   | M12(   | 20),X | LH(8  | ),YL  | H(8)    | ADELT   | (80)                  | D), APATI | 0(100) |
| 01200   |   |    | 6, VFT(5)  | 0),F  | C1(50   | ),FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(50   | ),FC   | 3(50) | ,FC4  | (50)  | ,FC5    | (50),F  | C5N                   | (50),     |        |
| 01300   |   |    | TVCAT(5    | 0),D  | BED2(   | 50),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DBED   | 3(50   | ),HLL | (50)  | , UAR | (50)    | ,UAH(5  | 0),1                  | F1(50)    |        |
| 01400   |   |    | 8PFN(20)   | ), TF | N(20)   | , VFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N (20  | )),FC  | 1N(20 | ),FC  | 211(2 | 0),F(   | C3N(20  | ),F(                  | C4N(20)   | ,      |
| 01500   |   | 1  | BAXM       | AX(8  | ),ATM.  | AX (8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ),AI   | тымах  | (8),A | LPS8  | (8),  | SINT    | . (210, | 4),)                  | LPX(20    | ,20),  |
| 01600   |   | E  | 8QR1/      | AV(2  | 10,4)   | , WRX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N(21   | 0,4)   | ,WRXN | S(21  | 0,4)  | , RIN'  | TL(210  | ,4)                   | OBLPF     | 20),   |
| 01700   |   | 3  | 9FD22N()   | 20),  | DBED3   | N(20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ),HL   | LN(2   | 0),UA | RN(2  | 0),0  | AHNC    | 20),RA  | TIOI                  | (50),     |        |
| 01800   |   |    | AFF1N(2    | 0),R  | ATIO    | 50),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGXL   | P(2,   | 50),L | PAQX  | (50)  |         |         |                       |           |        |
| 01900   |   | -  | CFD33N(    | 20),  | FD44N   | (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,VCA   | TN(2   | 0),DB | ED2N  | (20)  | ,EFZ    | 18(210  | ,4)                   | 2         | 13.5   |
| 02000   |   |    | 1, QR      | 1B(2  | 10,4)   | , EFZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IA(8   | 1),AL  | ZP(21 | 0,4)  | ,     |         | 10      |                       |           | -21    |
| 02100   |   | -  | DAXEN (2)  | 10,4  | ), AXR  | MN (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,4   | ),XE   | N(80, | 20),  | XRMN  | (80,2   | 20),AX  | E(2:                  | 0,42,     |        |
| 02200   |   | 1  | EAXRM(2    | 10,4  | ), PDR  | 0P(8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ),     |        |       |       |       |         | 1       |                       |           |        |
| 02300   |   | 1  | FOBJLPN    | (50)  | , OBJF  | (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , AQX  | (50,   | 20),A | QX1 ( | 20,2  | 0), NI  | LEV (20 | )                     |           | 1      |
| 02400   |   |    | 1, TA      | (15,  | 4,5),   | AMMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (12)   | ,OBL   | PN(12 | ),NB  | PTS ( | 4,5)    | NLPD (  | 15,4                  | 1,5),     | 586    |
| 02500   |   | e. | 1ATP)      | 62(2  | 0,50)   | , CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F2(5   | 50),A  | NH3L( | 50),  | NOBJ  | LP(20   | 0),     | 1                     |           | 1.26   |
| 02600   |   | 14 | 10BJI      | F82 ( | 50),0   | BJF8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (50)   | ,OBJ   | F92(5 | 0),0  | BJF9  | (50),   | ÷.,     | 4                     |           | Bill   |
| 02700   |   |    |            |       | ,20),   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       | 1     |         |         |                       |           | 100    |
| 02800   |   |    |            |       | ,50),,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       |       |         | 54      |                       |           |        |
| 02900   |   |    |            |       | 1,50)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       |       |         |         |                       |           |        |
| 03000   |   |    |            |       | 30,50   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       |       |         |         | and the second second | ,50),     | 12 .   |
| 03100   |   |    |            |       | 1,50)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       | ,50)  | , AZ 5I | PL(8,5  | 0),                   |           |        |
| 03200   |   |    |            |       | ,50),1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       |       |         |         |                       |           |        |
| 03300   |   |    |            |       | 0), UB. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       |       |         |         |                       |           |        |
| 03400   |   |    |            |       | 0,20)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       |       |         |         |                       |           |        |
| 03500   | ~ |    |            |       | 12),L   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       | APDR  | LP(50   | ))      |                       |           |        |
| 03600   | C |    |            |       | 310,4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |       |       |       |         |         |                       | 1000      |        |
| 03700   |   |    | COMMON     | CBI   | /FI,F   | 2,F3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 14,  | 15,6   | 00,IT | YPE,  | PARA  | 1,PAP   | AZ, PA  | RA3                   |           |        |

| Sal Mar | PAGE: 2                                                                              |
|---------|--------------------------------------------------------------------------------------|
|         | RS APPENDIX-B                                                                        |
| 03800   | 1,PARA4,IOP26,IOP29,FF                                                               |
| 03900   | 1/CB2/AZ, AP, AX, AT, ATH, AXMAX                                                     |
| 04000   | 1, ATMAX, ATHMAX, ALPS8, W11L2, QR1AV, AXE2, AXRM2                                   |
| 04100   | 1, WRXN, WRXNS, RINTL, SINTL, EFZI8, GR1B, EFZIA, PDROP, IOL1/CB3/                   |
| 04200   | 1AFD1, AFD2, AFD3, AFD4, Z1, Z2, Z3, HL, XW, UV, C4, RUA, HUA, C5, C61, C62, M15, K7 |
| 04300   | 2,FI11,FI12,FI13,FI21,FI22,FI23,FI31,FI32,FI33,FI41,FI42,FI43,M01,                   |
| 04400   | 3FI51,FI52,FI53,PH1,PH2,PB11,S2,S11,S12,FTF1,S112,S122,AR1,AR2,                      |
| 04500   | 4AR3, AR4, AR5, G11, G21, G31, G41, G51, G12, G22, G32, G42, G52,                    |
| 04600   | 4IEL2P, UARLP, K5, KL51, IOPT3, AFD0,                                                |
| 04700   | 5Q13,Q23,Q33,Q43,Q53,HA11,HA21,HA31,HA41,HA51,HA61,HA71,HA12,M16,                    |
| 04800   | 6HA22, HA32, HA42, HA52, HA62, HA72, HA13, HA23, HA33, HA43, HA53, HA63, K8,         |
| 04900   | 7HA73, HA14, HA24, HA34, HA44, HA54, HA64, HA74, NZ1, NZ2, NZ3, NZ4, MZ1, MZ2,       |
| 05000   | 8MZ3, MZ4, HAA21, HAA22, HAA23, HAA24, AHA21, AHA22, AHA23, AHA24, BHA21,            |
| 05100   | 9BHA22, BHA23, BHA24, HAB21, HAB22, HAB23, HAB24, AHA31, AHA32, AHA33, AHA34         |
| 05200   | A/CB4/ANX, ZTI, PAM, AZP/CB20/ACX, ACT, ACTH                                         |
| 05300   | B/CB7/ICSIZE, IOPT1, EFFAH, EFFAL                                                    |
| 05400   | 1/CB9/FFL, RHNL, XINCL, XINCL2, TOL81, PHYL, PNIL, PAML, DELE, DELM                  |
| 05500   | 1, IOL8, M88, IOP11, IOL81                                                           |
| 05600   | 1/CB6/AXE, AXRN, AXEN, AXRMN, M12/CB71/NVARI, FAIPL, ND7PL, IOL8P                    |
| 05700   | 1/CB74/AQXLP,G1,G2,G3,G4,G5,G6,G7,G8,G9,G10,G11,G12,G13,G14,                         |
| 05800   | 1G15,G16,G17,G18,G19,G20,G21,G22,G23,G24,G25,G26,G27,                                |
| 05900   | 1G28,G29,G30,G31,G32,G33,G34,G35,G36,G37,FDLIM                                       |
| 06000   | OPEN(UNIT=3,DEVICE='DSK',FILE='DAA8,OUT')                                            |
| 06100   | OPEN(UNIT=1,DEVICE='DSK',FILE='DAA2.DAT')                                            |
| 06200   | OPEN(UNIT=2,DEVICE='DSK',FILE='DA17,DAT')                                            |
| 06300   | OPEN(UNIT=4, DEVICE='DSK', FILE='ADAA8, OUT')                                        |
| 06400   | OPEN(UNIT=8, DEVICE='DSK', FILE='D17.DAT')                                           |
| 06500   | OPEN(UNIT=11, DFVICE='DSK', FILE='LP3.DAT')                                          |
| 06600   | OPEN(UNIT=12, DEVICE='DSK', FILE='LPMANS, OUT')                                      |
| 06700   | READ (1,*)UARLP, IEL2P, IOL8P, ITYP11, NOBLP1, ITYPE, ITYPE8, WIFN,                  |
| 06800   | 1W11,W11LI,W11LP,W11HL,PARA1,PARA2                                                   |
| 06900   | 1, PARA3, PARA4, IOP26, IOP29, IOP201,                                               |
| 07000   | 1CSP11, CSP12, CSP1F, CSP22, IOPL8,                                                  |
| 07100   | 1XINCL, XINCL2, TOL81, IOL8, IOL81, IOLP8, M88,                                      |
| 07200   | 1IOL1, IOL2, CSP33, C3, C2, C4, C51, C611, C621, EFFAH, EFFAL,                       |
| 07300   | 1VW, IHH1, IHH2, IHH3, IHH4, C71, C72, C73, C74, KJ81,                               |
| 07400   | 2M5, M81, M82, IJ1, IJ2, IJ3, IJ4, J5,                                               |

|       | RS   | APPENDIX-B PAGE: 3                                                           |
|-------|------|------------------------------------------------------------------------------|
| 07500 | ND   | 2K5L,M15,M16,M161,M162,K7,K8,FLPF,IOP11,                                     |
| 07600 | 31   | IOP12, ICSIZE, IOPT1, IOPT2, NDPTS, ND2PL, ND3PL, ND4PL, NDLPS,              |
| 07700 |      | 3NLPCSD, FACT, ICPT3, NVARI                                                  |
| 07800 |      | 3, AC2, AIP5, TOL8, IOFT4, FDLIM,                                            |
| 07900 |      | 4IOPT5, IOPT8, XV, TV, THV, NXAXIS, NYAXIS, SPY1, SPX1, SPX2, HGT, ANGL, NUM |
| 08000 | 5    | (PFN(I), TFN(I), VFTN(I), RATION(I), FC3N(I), FC4N(I), FC5N(I), FD22N(I)     |
| 08100 |      | FD33N(I), FD44N(I), FD55N(I), VCATN(I), DBED2N(I), DBED3N(I), HLLN(I)        |
| 08200 |      | 7, UARN(I), UAHN(I), FF1N(I), OBJLPN(I), NOBJLP(I)                           |
| 08300 |      | 7,N1DLPT(I),LPOBJN(I),OBLPN(I),I=1,M5),                                      |
| 08400 |      | 8(XLH(I), I=1, NXAXIS), (YLH(I), I=1, NYAXIS), (NLEV(J), J=1, 17)            |
| 08500 |      | 8, ((FAIPL(I,J), J=1, NVARI), I=1, 12), ((AQXLP(I,J), I=1,2), J=1, NVARI)    |
| 08600 | ł    | READ(2,*)((AGX1(I,J),I=1,NLEV(J)),J=1,17)                                    |
| 08700 |      | KL511=K5L-1;KL51=KL511;K5=K5L                                                |
| 08800 | 1    | READ(11,*)((NBPTS(K1,J),(TA(I,K1,J),NLPD(I,K1,J),I=1,NBPTS(K1,J)             |
| 08900 |      | 1,K1=1,K5),AMMD(J),APDRPL(J),J=1,M5)                                         |
| 09000 | 5-   | PRINT 8902                                                                   |
| 09100 |      | IF(ITYPE.NE.2)GO TO 8903                                                     |
| 09200 |      | TYPE 8902                                                                    |
| 09300 | 8902 | FORMAT(2X, '(CNEPTS(K1,J), (TA(I,K1,J),NLPD(I,K1,J),I=1,NBPTS(K1,J)          |
| 09400 |      | 1,K1=1,K5),AMMD(J),APDRPL(J),J=1,M5)')                                       |
| 09500 | 8903 | PRINT *, ((NBPTS(K1,J), (TA(I,K1,J),NLPD(I,K1,J),I=1,NBPTS(K1,J))            |
| 09600 |      | 1,K1=1,K5),AMMD(J),APDRPL(J),J=1,M5)                                         |
| 09700 | 1    | IF(ITYPE.NE.2)GD TC 8900                                                     |
| 09800 |      | TYPE *, ((NBPTS(K1,J), (TA(I,K1,J), NLPD(I,K1,J), I=1, NBPTS(K1,J))          |
| 09900 | 1    | 1,K1=1,K5),AMMD(J),APDRPL(J),J=1,M5)                                         |
| 10000 | 8900 | CONTINUE                                                                     |
| 10100 | 1    | PRINT 791                                                                    |
| 10200 | 1    | IF(ITYPE.NE.2)GU TC 650                                                      |
| 10300 |      | TYPE 791                                                                     |
| 10400 | 791  | FORMAT(2X, 'DATA REQUIRED: '//2X, 'UARLP, IEL2P, IOL8P, ITYP11,              |
| 10500 |      | 1NOBLP1, ITYPE, ITYPE8,                                                      |
| 10600 |      | 1WTFN, W11, W11LI, W11LP, W11HL                                              |
| 10700 |      | 1, PARA1, PARA2, PARA3, PARA4, IOP26, IOP29, IOP201,                         |
| 10800 |      | 1CSP11,CSP12,CSP1F,CSP22,IOPL8,                                              |
| 10900 |      | 1XINCL, XINCL2, TOL81, IOL8, IOL81, IOL88, M88,                              |
| 11000 |      | 110L1, 10L2, CSP33, C3, C2, C4, C51, C611, C621, EFFAH, EFFAL,               |
| 11100 |      | 1VW, IHH1, IHH2, IHH3, IHH4, C71, C72, C73, C74, KJ81,                       |

|                | RS APPENDIX-B PAGE: 4                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------------|
| 11200          | 2M5, M81, M82, IJ1, IJ2, IJ3, IJ4, J5,                                                                            |
| 11300          | 2K5L,M15,M16,M161,M162,K7,K8,FLPF,IOP11,                                                                          |
| 11400          | 3IOP12, ICSIZE, IOP11, IOP12, NDPTS, ND2PL, ND3PL, ND4PL, NDLPS,                                                  |
| 11500          | 3NLPCSD, FACT, ICPT3, NVARI                                                                                       |
| 11600          | 3,AC2,AIP5,TOL8,IOPT4,FDLIM,                                                                                      |
| 11700          | 4IOPT5, IOPT8, XV, TV, THV, NXAXIS, NYAXIS, SPY1,                                                                 |
| 11800          | 1SPX1, SPX2, HGT, ANGL, NUMBP                                                                                     |
| 11900          | 5, (PFN(I), TFN(I), VFTN(I), RATION(I), FC3N(I), FC4N(I), FC5N(I), FD22N(I)                                       |
| 12000          | 6, FD33N(I), FD44N(I), FD55N(I), VCATN(I), DBED2N(I), DBED3N(I), HLLN(I)                                          |
| 12100          | 7, UARN(I), UAHN(I), FF1N(I), OBJLPN(I), NOBJLP(I)                                                                |
| 12200          | 1,N1DLPT(I),LPCBJN(I),OBLPN(I),I=1,M5),                                                                           |
| 12300          | 8(XLH(I), I=1, NXAXIS), (YLH(I), I=1, NYAXIS), (NLEV(J), J=1, 17)                                                 |
| 12400          | 8,((FAIPL(T,J),J=1,NVARI),I=1,12),((AQXLP(I,J),I=1,2),J=1,NVARI)                                                  |
| 12500          | 8, ((AOX1(I,J), I=1, NLEV(J)), J=1, 17)                                                                           |
| 12600          | 8, PARA1, PARA2, PARA3, PARA4, IOP26, IOP29, IOP201                                                               |
| 12700          | 8, IHH1, IHH2, IHH3, IHH4, W11, W11L, W11H, J5, M81, M15, M16, M161,                                              |
| 12800          | 8K7, K8, C71, C72, C73, C74, FF,                                                                                  |
| 12900          | 2UV,C2,IOPT2,ICSIZE,IOPT3,IOPT8,IOPT1,IOPT4,NUMBP'//                                                              |
| 13000          | 22X, 'DATA SUPPLIED: '/)                                                                                          |
| 13100          |                                                                                                                   |
| 13200          | 1WTFN,W11,W11LI,                                                                                                  |
| 13300          | 1W11LP, W11HL, PARA1, PARA2, PARA3, PARA4, ICP26, ICP29, ICP201                                                   |
| 13400          | 1,CSP11,CSP12,CSP1F,CSP22,IOPL8,                                                                                  |
| 13500<br>13600 | 1XINCL, XINCL2, TOL81, IOL8, IOL81, IOLP8, M88,<br>1IOL1, IOL2, CSP33, C3, C2, C4, C51, C611, C621, EFFAH, EFFAL, |
| 13700          | 1VW, IHH1, IHH2, IHH3, IHH4, C71, C72, C73, C74, KJ81,                                                            |
| 13800          | 2M5, M81, M82, IJ1, IJ2, IJ3, IJ4, J5,                                                                            |
| 13900          | 2K5L, M15, M16, M161, M162, K7, K8, FLPF, IOP11,                                                                  |
| 14000          | 3IOP12, ICSIZE, IOPT1, IOPT2, NDPTS, ND2PL, ND3PL, ND4PL, NDLPS,                                                  |
| 14100          | 3NLPCSD, FACT, ICPT3, NVARI                                                                                       |
| 14200          | 3,AC2,AIP5,TOL8,IOPT4,FDLIM,                                                                                      |
| 14300          | 4IOPT5, IOPT8, XV, TV, THV, NXAXIS, NYAXIS, SPY1, SPX1, SPX2, HGT, ANGL, NUM                                      |
| 14400          | 5, (PFN(I), TFN(I), VFTN(I), RATION(I), FC3N(I), FC4N(I), FC5N(I), FD22N(I)                                       |
| 14500          | 6,FD33N(I),FD44N(I),FD55N(I),VCATN(I),DBED2N(I),DBED3N(I),HLLN(I)                                                 |
| 14600          | 7, UARN(I), UAHN(I), FF1N(I), OBJLPN(I), NOEJLP(I)                                                                |
| 14700          | 7, N1DLPT(I), LPOBJN(I), OBLPN(I), I=1, M5),                                                                      |
| 14800          | 8(XLH(I),I=1,NXAXIS),(YLH(I),I=1,NYAXIS),(NLEV(J),J=1,17)                                                         |

| RS APPENDIX-B PAGE: 5                                                                                        |             |
|--------------------------------------------------------------------------------------------------------------|-------------|
| 14900 8,((FAIPL(I,J),J=1,NVARI),I=1,12),((AQXLP(I,J),I=1,2),J=1,                                             | NVARI       |
| 15000 8, ((AQX1(I,J), I=1, NLEV(J)), J=1, 17)                                                                |             |
| 15100 IF(ITYPE.NE.2)GO TO 656                                                                                | Call Street |
| 15200 TYPE *, UARLP, IEL2P, ICL8P, ITYP11, NOBLP1, ITYPE, ITYPE8, WTFN, W11                                  |             |
| 15300 1W11LI,W11LP,W11HL,PARA1,PARA2,PARA3,PARA4,IOP26,IOP29,IOP                                             |             |
| 15400 1,CSP11,CSP12,CSP1F,CSP22,IOPL8,                                                                       |             |
| 15500 1XINCL, XINCL2, TOL81, IOL8, IOL81, IOLP8, M88,                                                        | 1           |
| 15600 110L1, IUL2, CSP33, C3, C2, C4, C51, C611, C621, EFFAH, EFFAL,                                         |             |
| 15700 1VW, IHH1, IHH2, IHH3, IHH4, C71, C72, C73, C74, KJ81,                                                 |             |
| 15800 2M5, M81, M82, IJ1, IJ2, IJ3, IJ4, J5,                                                                 |             |
| 15900 2K5L, M15, M16, M161, M162, K7, K8, FLPF, IOP11,                                                       |             |
| 16000 3IUP12, ICSIZE, IOPT1, ICPT2, NDPTS, ND2PL, ND3PL, ND4PL, NDLPS,                                       |             |
| 16100 3NLPCSD, FACT, ICPT3, NVARI                                                                            |             |
| 16200 3,AC2,AIP5,TOL8,IOPT4,FDLIM,                                                                           |             |
| 16300 4IOPTS, IOPT8, XV, TV, THV, NXAXIS, NYAXIS, SPY1, SPX1, SPX2, HGT, AN                                  |             |
| 16400 5, (PFN(I), TFN(I), VFTN(I), RATION(I), FC3N(I), FC4N(I), FC5N(I), FD                                  |             |
| 16500 6, FD33N(I), FD44N(I), FD55N(I), VCATN(I), DBED2N(I), DBED3N(I), HLL                                   | N(I)        |
| 16600 7, UARN(I), UAHN(I), FF1N(I), OBJLPN(I), NOBJLP(I)                                                     |             |
| 16700 7,N1DLPT(I),LPOBJN(I),OBLPN(I),I=1,M5),                                                                |             |
| 16800 8(XLH(I), I=1, NXAXIS), (YLH(I), I=1, NYAXIS), (NLEV(J), J=1, 17)                                      |             |
| 16900 8,((FAIPL(I,J),J=1,NVARI),I=1,12),((AQXLP(I,J),I=1,2),J=1,<br>17000 8,((AQX1(I,J),I=1,NLEV(J)),J=1,17) | NVAR1)      |
| 17000 8,((AQX1(I,J),I=1,NLEV(J)),J=1,17)<br>17100 656 CONTINUE                                               | NS GE       |
| 17200 C SEE READ STATEMENT FOR DATA BEFORE OUTPUT STATEMENTS PROGRAM                                         | AFTER       |
| 17300 C STATEMENT NO.701 IN THE MAIN PROGRAM                                                                 | AT ILK      |
| 17400 C PART 2 OF THE MAIN PROGRAM FOR SIMULATION OF AMMONIA SYNTHES                                         | SIS READ    |
| 17500 C : INTERNAL PREHEATER OUTLET STREAM TEMPERATURES PREDICTION U                                         |             |
| 17600 C AND ERROR TECHNIQUE BY MATCHING CALCULATED FEED TEMPERATURES                                         | S WITH I    |
| 17700 C FEED TEMPERATURE                                                                                     |             |
| 17800 GO TO 404                                                                                              |             |
| 17900 405 MJK1=1;LPS=1;XVI=1.0/XV;TVI=1.0/TV;THVI=1.0/THV                                                    |             |
| 18000 ISIGPL=1;ISIPL1=1;ISIPL2=1;ND7PL=1                                                                     |             |
| 18100 ILPS2=1;MLPK1=0;M1LP=1;M8LP=1;NOBLP=0;NV1LP=0;NV2LP=0                                                  |             |
| 18200 ISM=1 ; MM1=1 ; IM=1 ; IOPT5=1;M=1;LQO=1;NVLPI=0;KL51=K5=1                                             | 1 1 1       |
| 18300 G2=VFTN(1);G4=RATION(1);G6=FC3N(1);G8=FC4N(1);G10=FC5N(1)                                              |             |
| 18400 G12=FD22N(1);G14=FD33N(1);G16=FD44N(1);G18=PFN(1);G20=TFN                                              | 1           |
| 18500 G22=VCATN(1);G24=DBED2N(1);G26=DBED3N(1);G28=HLLN(1);G30=U                                             | ARN(1)      |

|             | RS      | APPENDIX-B PAGE: 6                                                                         |
|-------------|---------|--------------------------------------------------------------------------------------------|
| 18600       |         | G32=UAHN(1);G34=FD55N(1);G35=PARA1;G36=PARA2;G37=PARA3                                     |
| 18700       |         | SSE=0.0;SSE1=0.0;SSE2=0.0;SSE3=0.0;SSE4=0.0;SSE5=0.0                                       |
| 18800       |         | SSE6=0.0; SSE7=0.0; SSE8=0.0; NDPTS=NLPCSD; ABCD2=-100.0                                   |
| 18900       |         | IF(IOL2.EQ.1)NDPTS=N1DLPT(MJK1)                                                            |
| 19000       |         | DO 872 J=1,4                                                                               |
| 19100       |         | DD 872 I=1,310                                                                             |
| 19200       |         | AZ(I,J)=0.0;AP(I,J)=0.0;AX(I,J)=0.0;ANX(I,J)=0.0                                           |
| 19300       |         | AT(I,J)=0.0;ATH(I,J)=0.0;AZP(I,J)=0.0                                                      |
| 19400       | 872     | CONTINUE                                                                                   |
| 19500       |         | IF(IOL2.NE.1)GO TO 205                                                                     |
| 19600       |         | IOPT2=1;ITYP11=1                                                                           |
| 19700       |         | GO TO 7224                                                                                 |
| 19800       | 205 0   | ONTINUE                                                                                    |
| 19900       | 1       | IF(ICL2.EQ.1)GO TO 7224                                                                    |
| 20000       |         | IF(NOBJLP(MJK1)-1)7210,7224,7227                                                           |
| 20100       | 7227    | ITYPE8=2; IOPT2=2                                                                          |
| 20200       |         | IF(M1LP.EQ.1)GO TO 7224                                                                    |
| 20300       |         | IF(NOBJLP(MJK1).EQ.11)GO TO 7212                                                           |
| 20400       |         | M1LP=M1LP=1                                                                                |
| 20500       | part of | GO TO 7211                                                                                 |
| 20600       | 7210    | CONTINUE                                                                                   |
| 20700       |         | GO TO 7224                                                                                 |
| 20800       | 7211    | NDPT1S=N1DLPT(MJK1)                                                                        |
| 20900       |         | IF(M1LP.GE.ND3PL)GC TO 8712                                                                |
| 21000       | 0       | CALL PNEXT(NV1LP,NCBJLP(MJK1),M1LP,AGX8,ISIPL1)                                            |
| 21100       | 24      | IF(NV1LP.GT.NVARI)GO TO 8755                                                               |
| 21200       | 1       | M3LP=2                                                                                     |
| 21300       |         | CALL PCONV(M1LP,M3LP,AQX8)                                                                 |
| 21400       |         | IF(M1LP.LE.NDPT1S)GO TO 147                                                                |
| 21500       |         | CALL ACOMP(LPIK, AQX8, M1LP, NVARI)                                                        |
| 21600       |         | IF(LPIK,EQ.0)GO TO 147                                                                     |
| 21700       |         | OBJF82(M1LP)=OBJF82(LPIK);OBJF5(M1LP)=OBJF5(LPIK)                                          |
| 21800       | 6       | OBJF8(M1LP)=OBJF8(LPIK);LPIK=0                                                             |
| 21900 22000 |         | CALL FUNOBJ(OBJF8,M1LP,LPOBJN(MJK1),PATD,SSE,SSE1,SSE2,SSE3,<br>1SSE4,SSE5,SSE6,SSE7,SSE8) |
| 22000       |         | CALL OPTIMA(OBJF8,M1LP,AQX8,AQX1,IOPT8,NVARI,AC2,NLEV,                                     |
| 22200       | 0100    | 1NOPTM1, TOL8, NMAX11, NDPT1S, XLPX1,                                                      |
| 22200       |         | THOE THIT' TOPO MURVIT' UPE TTO VUE VIE                                                    |

|       | RS                                                                                                                                                                                                                                                                                                             | APPENDIX-B                                                                                                                                                                                                                                                                                                            | FROL . /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22300 |                                                                                                                                                                                                                                                                                                                | 10BLPF1, NLN81, ALPC11, YLPN1, IOL8P)                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22400 |                                                                                                                                                                                                                                                                                                                | IF(NOPTM1,EQ,0)GO TO 8621                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22500 |                                                                                                                                                                                                                                                                                                                | GO TO 8714                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22600 | 8712                                                                                                                                                                                                                                                                                                           | NMAX11=M                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22700 | 8711                                                                                                                                                                                                                                                                                                           | CONTINUE                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22800 |                                                                                                                                                                                                                                                                                                                | NOPTM1=NMAX11;M1LP=1;ISIPL1=1;ND7PL=1                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22900 | 8714                                                                                                                                                                                                                                                                                                           | CONTINUE                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23000 |                                                                                                                                                                                                                                                                                                                | IF(NOBLP.NE.11)GO IO 701                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23100 | с                                                                                                                                                                                                                                                                                                              | DO 8712 L=1,NVARI                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23200 | С                                                                                                                                                                                                                                                                                                              | AQX9(M8LP,L)=AQX8(NOPTM1,L)                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23300 | C8712                                                                                                                                                                                                                                                                                                          | CONTINUE                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23400 |                                                                                                                                                                                                                                                                                                                | OBJF9(M8LP)=OBJF5(NOPTM1);NV1LP=0                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23500 |                                                                                                                                                                                                                                                                                                                | IF(0BJF33.E0.0.0)GC TO 694                                                                                                                                                                                                                                                                                            | C.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23600 | 1000                                                                                                                                                                                                                                                                                                           | OBJF92(M8LP)=OEJF5(NOPTM1)*OBJF33                                                                                                                                                                                                                                                                                     | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23700 |                                                                                                                                                                                                                                                                                                                | GO TO 7226                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23800 | 694                                                                                                                                                                                                                                                                                                            | OBJF92(M8LP)=OBJF5(NOPTM1)                                                                                                                                                                                                                                                                                            | 1963 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23900 |                                                                                                                                                                                                                                                                                                                | GO TO 7226                                                                                                                                                                                                                                                                                                            | 1 529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24000 | 8621                                                                                                                                                                                                                                                                                                           | NPT1S2=NDPT1S*NDLPS                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24100 | the second                                                                                                                                                                                                                                                                                                     | IF(M1LP.GE.ND3PL)GO TO 8711                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24200 |                                                                                                                                                                                                                                                                                                                | M3LP=2                                                                                                                                                                                                                                                                                                                | - PERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24300 | - Carles                                                                                                                                                                                                                                                                                                       | CALL PCONV(M1LP,M3LP,AQX8)                                                                                                                                                                                                                                                                                            | all a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24400 |                                                                                                                                                                                                                                                                                                                | CALL ACOMP(LPIK, AQX8, M1LP, NVARI)                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24500 | 1                                                                                                                                                                                                                                                                                                              | IF(LPIK.EQ.0)GO TO 147                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24600 |                                                                                                                                                                                                                                                                                                                | OBJF82(M1LP)=OBJF82(LPIK);OBJF5(M1LP)=OBJ                                                                                                                                                                                                                                                                             | F5(LPIK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24700 | 10                                                                                                                                                                                                                                                                                                             | OBJF8(M1LP)=OBJF8(LPIK);LPIK=0                                                                                                                                                                                                                                                                                        | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24800 | Let.                                                                                                                                                                                                                                                                                                           | GO TO 8755                                                                                                                                                                                                                                                                                                            | St m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24900 | 7212                                                                                                                                                                                                                                                                                                           | CONTINUE                                                                                                                                                                                                                                                                                                              | 8 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25000 |                                                                                                                                                                                                                                                                                                                | NOBLP=NOBJLP(HJK1);M1LP=M1LP=1;NOBJLP(MJK                                                                                                                                                                                                                                                                             | 1)=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25100 |                                                                                                                                                                                                                                                                                                                | GO TO 7211                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25200 | 7226                                                                                                                                                                                                                                                                                                           | NDP1S=3                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25300 |                                                                                                                                                                                                                                                                                                                | IF(IOL8P.EC.1)NDP1S=2                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25400 |                                                                                                                                                                                                                                                                                                                | IF(M8LP.GE.ND4PL)GO TO 701                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25500 |                                                                                                                                                                                                                                                                                                                | CALL PNEXT(NV2LP, NCBLP, M8LP, AQX9, ISIPL2)                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25600 |                                                                                                                                                                                                                                                                                                                | DO 8422 L=1,NVARI                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25700 |                                                                                                                                                                                                                                                                                                                | AQX8(1,L)=AQX9(M8LP,L)                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25800 | 8422                                                                                                                                                                                                                                                                                                           | CONTINUE                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25900 |                                                                                                                                                                                                                                                                                                                | IF(NV2LP.GT.NVARI)GO TO 8255                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 22400<br>22500<br>22700<br>22700<br>22700<br>22800<br>23000<br>23100<br>23100<br>23200<br>23400<br>23500<br>23500<br>23700<br>23800<br>23700<br>23800<br>23900<br>24000<br>24100<br>24100<br>24100<br>24200<br>24400<br>24400<br>24400<br>24500<br>24400<br>24500<br>24500<br>25500<br>25500<br>25500<br>25500 | 22300<br>22400<br>22500<br>22600 8712<br>22700 8711<br>22800<br>22900 8714<br>23000<br>23100 C<br>23200 C<br>23300 C8712<br>23400 C<br>23500<br>23500 694<br>23900 8621<br>24000 8621<br>24100 8621<br>24100 8621<br>24100 24300<br>24400 7212<br>24300 24300<br>24400 7212<br>25000 7226<br>25300 7226<br>25300 7226 | 22300       10BLPF1,NLN81,ALPC11,YLPN1,I0L8P)         22400       IF(N0PTM1,E0,0)GC TO 8621         22500       GO TO 8714         22500       8712       MMAX11=#         22700       8711       CONTINUE         22800       N0PTM1=NMAX11;M1LP=1;ISIPL1=1;ND7PL=1         22800       N0PTM1=NMAX11;M1LP=1;ISIPL1=1;ND7PL=1         22800       N0PTM1=NMAX11;M1LP=1;ISIPL1=1;ND7PL=1         22800       NOPTM1=NMAX11;M1LP=1;ISIPL1=1;ND7PL=1         22800       NOPTM1=NMAX11;M1LP=1;ISIPL1=1;ND7PL=1         22800       NOPTM1=NMAX11;M1LP=1;ISIPL1=1;ND7PL=1         23000       IF(N0BLP,NE.11)GO TO 701         23100       C       D0 8712 L=1,NVARI         23200       A0X9(MBLP,L)=A0X8(NOPTM1,L)         23300       C8712       CONTINUE         23400       DBJF9(MBLP)=0BJF5(NOPTM1);NV1LP=0         23500       IF(OBJF33,E0.0.0.0)GC TO 694         23600       GO TO 7226         23800       GO TO 7226         24000       R621       NPT1S2=NDPT1S*NDLPS         24100       IF(M1LP,GE.ND3PL)GE TO 8711         24200       GALL PCONV(N1LF,M3LP,A0X8)         24400       CALL PCONV(N1LF,M3LP,A0X8)         24400       CALL PCONV(N1LF,M3LP,A0X8)      < |

| RS          | APPENDIX-B PAGE: 8                                                                                   |
|-------------|------------------------------------------------------------------------------------------------------|
| 26000       | M3LP=2                                                                                               |
| 26100       | CALL PCONV(M8LP,M3LP,AQX9)                                                                           |
| 26200       | CALL ACOMP(LPIK, AQX9, M8LP, NVARI)                                                                  |
| 26300       | IF(LPIK.EQ.0)GC TO 147                                                                               |
| 26400       | OBJF92(M8LP)=OBJF92(LPIK)                                                                            |
| 26500       | OBJF9(M8LP)=OBJF9(LPIK);LPIK=0                                                                       |
| 26600 C     | CALL FUNOBJ(OBJF9, M8LP, LPOBJN(MJK1), PAID, SSE, SSE1, SSE2, SSE3,                                  |
| 26700 C     | 1SSE4, SSE5, SSE6, SSE7, SSE8)                                                                       |
| 26800 8255  | CALL OPTIMA(OBJF9, M8LP, AQX9, AQX1, IOPT8, NVARI, AC2, NLEV,                                        |
| 26900       | 1NOPTM2, TOL8, NMAX12, NDP1S, XLPX2,                                                                 |
| 27000       | 10BLPF2,NLN82,ALPC12,YLPN2,I0L8P)                                                                    |
| 27100       | IF(NOPTM2.NE.0)GO IO 701                                                                             |
| 27200       | NPT1S2=NDP1S*NDLPS                                                                                   |
| 27300       | IF(M8LP.GE.ND4PL)GC TO 701                                                                           |
| 27400       | DO 8423 L=1,NVARI                                                                                    |
| 27500       | AQX8(1,L)=AQX9(M8LP,L)                                                                               |
| 27600 8423  | CONTINUE                                                                                             |
| 27700       | M3LP=2                                                                                               |
| 27800       | CALL PCONV(M8LF,M3LP,AQX9)                                                                           |
| 27900       | CALL ACUMP(LPIK, AQX9, M8LP, NVARI)                                                                  |
| 28000       | IF(LPIK.EQ.0)GC TO 147                                                                               |
| 28100       | OBJF92(M8LP)=OBJF92(LPIK)                                                                            |
| 28200       | OBJF9(M8LP)=OBJF9(LPIK);LPIK=0                                                                       |
| 28300       | GO TO 8255                                                                                           |
| 28400 7224  | CONTINUE                                                                                             |
| 28500       | IF(OBJEPN(M).EC.0.0)GO TO 575                                                                        |
| 28600       | PATD=OBJLPN(M); APAID(MJK1)=PATD; PATD1=PATD; IM8=1                                                  |
| 28700       | MLPK1 = MLPK1 + 1; CBJF(M) = PATD                                                                    |
| 28800       | FC12=100.0-(FC3N(MJK1)+FC4N(MJK1)+FC5N(MJK1))                                                        |
| 28900       | LFC1N=100*FC12*RATION(MJK1)/(1+RATION(MJK1))+0.5<br>FC1N(MJK1)=LFC1N*0.01;FC2N(MJK1)=FC12-FC1N(MJK1) |
| 29000 29100 | GO TO 719                                                                                            |
| 29200 575   | CONTINUE                                                                                             |
| 29200 575   | IF(ITYPE8.NE.1)GO IO 890                                                                             |
| 29400       | IF(ICSIZE.EQ.2)GO IO 170                                                                             |
| 29500       | PRINT 173                                                                                            |
| 29600       | IF(ITYPE.NE.2)GO TO 196                                                                              |
|             |                                                                                                      |

| RS        | APPENDIX-B PAGE: 9                                                 |
|-----------|--------------------------------------------------------------------|
| 29700     | TYPE 173                                                           |
| 29800 173 | FORMAT(2X, 'ACTUAL VALUE OF EFFECTIVENESS FACTOR CALCULATED AND I  |
| 29900     | 1LUDED IN REACTION RATE CALCULATION '/)                            |
| 30000     | GO TO 196                                                          |
| 30100 170 | PRINT 182                                                          |
| 30200     | IF(ITYPE.NE.2)GO TO 196                                            |
| 30300     | TYPE 182                                                           |
| 30400 182 | FORMAT(2X, 'FOR THIS DATA SET CALCULATION IS BASED ON EFFECTIVENE  |
| 30500     | 1 FACTOR OF UNITY //)                                              |
| 30600 196 | IF(IOPT3.NE.1)GO TO 197                                            |
| 30700     | PRINT 80                                                           |
| 30800     | IF(ITYPE.NE.2)GO TC 83                                             |
| 30900     | TYPE 80                                                            |
| 31000 80  | FORMAT(2X, 'RUNGE-KUTTA FOURTH ORDER NUMERICAL INTEGRATION TECHNI  |
| 31100     | 1 IS BEING USED //)                                                |
| 31200     | GO TO 83                                                           |
| 31300 197 | PRINT 84                                                           |
| 31400     | IF(ITYPE.NE.2)GO TO 83                                             |
| 31500     | TYPE 84                                                            |
| 31600 84  | FORMAT(2X, 'MILNE PREDICTOR-CORRECTOR NUMERICAL INTEGRATION TECHN  |
| 31700     | 1UE IS BEING USED 1/)                                              |
| 31800 83  | IF(IOPT2.EQ.1)GO TC 890                                            |
| 31900     | IF(IOPT8-2)893,894,767                                             |
| 32000 893 | PRINT 768                                                          |
| 32100     | IF(ITYPE.NE.2)GO TO 890                                            |
| 32200     | TYPE 768                                                           |
| 32300 768 | FORMAT(2X, FOR OPTIMISATION SEARCH IS AT ACTUAL VALUES OF VARIAB   |
| 32400     | 1S THAT ARE SLIGHTLY ROUNDED OFF //)                               |
| 32500     | GO TO 890                                                          |
| 32600 894 | PRINT 773                                                          |
| 32700     | IF(ITYPE.NE.2)GO TC 890                                            |
| 32800     | TYPE 773                                                           |
| 32900 773 | FORMAT(2X, 'FOR OPTIMISATION SEARCH IS AT ROUNDED OFF VALUE OF THE |
| 33000     | 1VARIABLES'/)                                                      |
| 33100     | GO TO 890                                                          |
| 33200 767 | PRINT 776                                                          |
| 33300     | IF(ITYPE.NE.2)GO TO 890                                            |

|       | DC             | PAGE: 10                                                          |
|-------|----------------|-------------------------------------------------------------------|
|       | RS             | APPENDIX-B                                                        |
| 33400 | 276            | TYPE 776                                                          |
| 33500 | 776            | FORMAT(2X, 'FOR OPTIMISATION SEARCH IS AT CERTAIN SPECIFIED VALUE |
| 33600 |                | 10F THE VARIABLES //)                                             |
| 33700 | 890            | CONTINUE                                                          |
| 33800 |                | IF(IOL2.EQ.1)GO TO 143                                            |
| 33900 |                | IF(M1LP.NE.1)GO TO 147                                            |
| 34000 |                | IF(M8LP.NE.1)GC TO 147                                            |
| 34100 |                | IF(M.EQ.1) GO TO 143                                              |
| 34200 |                | F(IOPT2.EQ.2) GO TO 147                                           |
| 34300 |                | F(M.GT.NDFTS) GC TO 147                                           |
| 34400 | 143 F          | =FF1N(MJK1);PARA1=G35;PARA2=G36;PARA3=G37;FF=VFTN(MJK1)/FLPF      |
| 34500 |                | FC12=100.0=(FC3N(MJK1)+FC4N(MJK1)+FC5N(MJK1))                     |
| 34600 | 1              | LFC1N=100*FC12*RATION(MJK1)/(1+RATION(MJK1))+0,5                  |
| 34700 | 5              | FC1N(MJK1) = LFC1N*0.01; FC2N(MJK1) = FC12 = FC1N(MJK1)           |
| 34800 | and the second | ALL FLOWR(F11(MJK1), F22(MJK1), F33(MJK1), F44(MJK1), F55(MJK1),  |
| 34900 | 17             | FTN(MJK1),FC1N(MJK1),FC2N(MJK1),FC3N(MJK1),FC4N(MJK1),IOPT5)      |
| 35000 | 1              | PHY=FC1N(MJK1); PNI=FC2N(MJK1); PAM=FC3N(MJK1)                    |
| 35100 |                | PME=FC4N(MJK1); PAR=FC5N(MJK1); RHN=RATION(MJK1)                  |
| 35200 | V              | CAT1=VCATN(MJK1)*1.0E6                                            |
| 35300 | Z              | 11 (MJK1) = VCAT1/(1+DEED2N(MJK1)+DBED3N(MJK1))                   |
| 35400 | Z              | 22(MJK1)=Z11(MJK1)*DBED2N(MJK1)                                   |
| 35500 | Z              | 33(MJK1)=VCAT1-(Z11(MJK1)+Z22(MJK1))                              |
| 35600 | 5              | H1=Z11(MJK1)/IHH1;H2=Z22(MJK1)/IHH2;H3=Z33(MJK1)/IHH3             |
| 35700 |                | H4=HLLN(MJK1)*1.0E6/IHH4                                          |
| 35800 | 1              | GO TO 146                                                         |
| 35900 | 147            | VFT(M)=G1;RATIO(M)=G3;FC3(M)=G5;FC4(M)=G7;FC5(M)=G9               |
| 36000 | 1              | FD22(M)=G11;FD33(M)=G13;FD44(M)=G15;PF(M)=G17                     |
| 36100 | 1              | TF(M)=G19;VCAT(M)=G21;DBED2(M)=G23;DBED3(M)=G25;HLL(M)=G27        |
| 36200 |                | UAR(M)=G29;UAH(M)=G31;FD55(M)=G33;PARA1=G35;PARA2=G36             |
| 36300 |                | PARA3=G37;FF1(M)=FF1N(MJK1)                                       |
| 36400 |                | FC12=100.0=(FC3(M)+FC4(M)+FC5(M))                                 |
| 36500 |                | LFC1=100*FC12*RATIG(M)/(1+RATIO(M))                               |
| 36600 |                | FC1(M)=LFC1*0.01;FC2(M)=FC12-FC1(M)                               |
| 36700 | С              | ALL FLOWR(F11(M),F22(M),F33(M),F44(M),F55(M),VFT(M),FC1(M),       |
| 36800 | 1F             | C2(M),FC3(M),FC4(M),IOPT5)                                        |
| 36900 |                | PHY=FC1(M);PNI=FC2(M);PAM=FC3(M);PME=FC4(M)                       |
| 37000 |                | PAR=FC5(M);RHN=RATIO(M)                                           |
|       |                |                                                                   |

|       | RS      | APPENDIX-B PAGE: 11                                                |
|-------|---------|--------------------------------------------------------------------|
| 37100 | )       | VCAT1=VCAT(M)*1.0E6                                                |
| 37200 | 1       | Z11(M) = VCAT1/(1+DBED2(M)+DBED3(M))                               |
| 37300 |         | Z22(M) = Z11(M) * DBED2(M)                                         |
| 37400 | i.      | Z33(M) = VCAT1 = (Z11(M) + Z22(M))                                 |
| 37500 |         | H1=Z11(M)/IHH1;H2=Z22(M)/IHH2;H3=Z33(M)/IHH3                       |
| 37600 |         | H4=HLL(M)*1.0E6/IHH4                                               |
| 37700 | 146     | IF(IOPT3.EQ.1) GO TO 215                                           |
| 37800 |         | HA11=0.5*H1 ; HA21=0.083333*H1 ; HA31=0.5*HA21 ; HA41=4.0*H1       |
| 37900 | 5       | HA51=2.6666667*H1 ; HA61=2.0*H1 ; HA71=0.3333333*H1 ; HA12=0.5*H2  |
| 38000 |         | HA13=0.5*H3 ; HA14=0.5*H4 ; HA22=0.08333333*H2                     |
| 38100 |         | HA23=0.0833333*H3 ; HA24=0.0833333*H4 ; HA32=0.5*HA22              |
| 38200 |         | HA33=0.5*HA23;HA34=0.5*HA24 ;HA42=4.0*H2 ;HA43=4.0*H3              |
| 38300 |         | HA44=4.0*H4;HA52=2.666667*H2;HA53=2.6666667*H3;HA54=2.6666667*H4   |
| 38400 |         | HA62=2,0*H2;HA63=2.0*H3;HA64=2.0*H4;HA72=0.333333*H2               |
| 38500 |         | HA73=0.333333*H3;HA74=0.333333*H4;HAA21=5.0*HA21                   |
| 38600 | 1       | HAA22=5.0*HA22;HAA23=5.0*HA23;HAA24=5.0*HA24                       |
| 38700 |         | AHA21=23.0*HA21; AHA22=23.0*HA22; AHA23=23.0*HA23                  |
| 38800 |         | BHA24=16.0*HA24;HAB21=8.0*HA21;HAB22=8.0*HA22;HAB23=8.0*HA23       |
| 38900 |         | AHA24=23.0*HA24; BHA21=16.0*HA21; BHA22=16.0*HA22; BHA23=16.0*HA23 |
| 39000 |         | HAB24=8.0*HA24;AHA31=9.0*HA31;AHA32=9.0*HA32;AHA33=9.0*HA33        |
| 39100 | -       | AHA34=9.0*HA34; BHA31=19.0*HA31; BHA32=19.0*HA32                   |
| 39200 |         | BHA33=19.0*HA33; BHA34=19.0*HA34; CHA31=5.0*HA31                   |
| 39300 | 1       | CHA32=5.0*HA32;CHA33=5.0*HA33;CHA34=5.0*HA34                       |
| 39400 | 215     | CONTINUE                                                           |
| 39500 | C       | IF(I0L2.EQ.1)GC TO 2780                                            |
| 39600 | 1       | IF(M1LP.NE.1)GO TO 584                                             |
| 39700 |         | IF(M8LP.NE.1)GC TO 584                                             |
| 39800 |         | IF(M.EQ.1)GO TO 2780                                               |
| 39900 |         | IF(IOPT2.EG.2)GO TO 584                                            |
| 40000 |         | IF(M.LE.NDPTS)GO TC 2780                                           |
| 40100 | 584     | CONTINUE                                                           |
| 40200 |         | UV=TF(M);T=TF(M);Z1=Z11(M);Z2=Z22(M);XW=PF(M);F5=F55(M)            |
| 40300 |         | Z3=Z33(M);HL=HLL(M)*1.0E6;F1=F11(M);F2=F22(M);F3=F33(M);F4=F44(M)  |
| 40400 |         | RUA=UAR(M)*1.0E-6;HUA=UAH(M)*1.0E-6                                |
| 40500 |         | AFD2=FD22(M);AFD3=FD33(M);AFD4=FD44(M);AFD0=FD55(M)                |
| 40600 | 0.7.0.0 | GO TO 2483                                                         |
| 40700 | 2780    | UV=TFN(MJK1);T=TFN(MJK1);Z1=Z11(MJK1)                              |

| Section and | RS APPENDIX-B PAGE: 12                                           |
|-------------|------------------------------------------------------------------|
| 40800       | Z2=Z22(MJK1);XW=PFN(MJK1)                                        |
| 40900       | Z3=Z33(MJK1);HL=HLLN(MJK1)*1.0E6                                 |
| 41000       | F1=F11(MJK1);F2=F22(MJK1);F3=F33(MJK1)                           |
| 41100       | F4=F44(MJK1);F5=F55(MJK1);RUA=UARN(MJK1)*1.0E=6                  |
| 41200       | HUA=UAHN(MJK1)*1.0E=6;AFD2=FD22N(MJK1);AFD3=FD33N(MJK1)          |
| 41300       | AFD4=FD44N(MJK1); AFD0=FD55N(MJK1)                               |
| 41400 24    |                                                                  |
| 41500       | FTT1=100./FT                                                     |
| 41600       | FFQ1=FF**1.8;ZTI=100./(Z1+Z2+Z3+HL)                              |
| 41700       | C5=C51*FFQ1;C61=C611*FFQ1;C62=C621*FFQ1                          |
| 41800       | ZC1=Z1*0.000001                                                  |
| 41900       | ZC3=Z3*0.000001;Zc2=Z2*0.000001;HCL=HL*0.000001                  |
| 42000       | RUAI=RUA*1.0E+06;HUAI=HUA*1.0E+06;CTV0=ZC1+ZC2+ZC3+HCL           |
| 42100       | AFD1=1.0-AFD2-AFD3-AFD4;AFD01=AFD1-AFD0;CTVLP=CTV0/(ZC1+ZC2+ZC3) |
| 42200       | W1=W11;C21=C2;XWC5=C5*XW*AFD1**1.8                               |
| 42300       | PH1=XW-0.75*XWC5; pB11=XW-XWC5; S2=AFD1+AFD4; S11=S2+AFD2        |
| 42400       | S12=S11+AFD3;PH2=XW=0,25*XWC5                                    |
| 42500       | FTF1=2.0*F1/(3.0*FT*S2);S112=S11/S2;S122=S12/S2                  |
| 42600       | FI11=F1*S2;FI21=F2*S2;FI31=F3*S2;FI41=F4*S2;FI51=F5*S2           |
| 42700       | FI12=F1*S11 ;FI22=F2*S11;FI32=F3*S11;FI42=F4*S11;FI52=F5*S11     |
| 42800       | FI13=F1*S12;FI23=F2*S12;FI33=F3*S12;FI43=F4*S12;FI53=F5*S12      |
| 42900       | ZH1=IHH1;ZH2=IHH2;ZH3=IHH3;ZH4=IHH4;NZ1=IHH1=3                   |
| 43000       | IC71=C71;IC72=C72;IC73=C73;IC74=C74                              |
| 43100       | MZ1=IHH1/IC71;NZ2=IHH2=3;NZ3=IHH3=3                              |
| 43200       | NZ4=IHH4-3;MZ2=IHH2/IC72;MZ3=IHH3/IC73;MZ4=IHH4/IC74;AR1=F1*AFD1 |
| 43300       | AR2=F2*AFD1;AR3=F3*AFD1;AR4=F4*AFD1;AR5=F5*AFD1;Q11=F111=AR1     |
| 43400       | Q21=FI21-AR2;Q31=FI31-AR3 ; Q41=FI41-AR4 ; Q51=FI51-AR5          |
| 43500       | Q12=F1*AFD2 ; Q22=F2*AFD2 ; Q32=F3*AFD2 ; Q42=F4*AFD2            |
| 43600       | Q52=F5*AFD2 ; Q13=F1*AFD3 ; Q23=F2*AFD3 ; Q33=F3*AFD3            |
| 43700       | Q43=F4*AFD3;Q53=F5*AFD3                                          |
| 43800       | RFTI=0.01*FTT1 ; AY3=F3*RFTI                                     |
| 43900       | FFL=F;RHNL=RHN;PHYL=PHY;PNIL=PNI;PAML=PAM                        |
| 44000       | UV20=UV+CSP11;LP8=1                                              |
| 44100       | IF(W11L.LT.UV20)W11L=UV20                                        |
| 44200       | W11L20=W11L+CSP11;W11L2=UV+W11L1;M106=0;M107=0                   |
| 44300 C     | MODIFICATION TO MAIN PROGRAM                                     |
| 44400       | ICONV=0 ; MMN=0;F1CON=F1*0,9792;M7=0;IM17=1;IM8=1;IM80=2;IM83=2  |

|       | RS             | APPENDIX-B PAGE: 13                                             |
|-------|----------------|-----------------------------------------------------------------|
| 44500 |                | GO TO 407                                                       |
| 44600 | 287            | CSP1=CSP11;CSP2=CSF22;CSP3=CSP33*2                              |
| 44700 |                | IF(I0L2.EQ.1)GO TO 1192                                         |
| 44800 |                | IF(J5.EQ.0)GO TO 1192                                           |
| 44900 |                | IF(M81.EQ.1)GO TO 1192                                          |
| 45000 |                | ISIG=1;W11H=W11HL;W1=W11H                                       |
| 45100 | 353            | TH12=W1;ATH12(J)=W1                                             |
| 45200 |                | IF(J.EQ.1)GO TO 371                                             |
| 45300 |                | CALL COMPA(ADELT, ATH12, J, MMN)                                |
| 45400 |                | IF(MMN,NE.0)GO TO 368                                           |
| 45500 | 371            | K5=K5L;KL51=K5=1                                                |
| 45600 |                | CALL FEEDT(TF1,W1,F,H1,H2,H3,H4,VW,C71,C72,C73,C74,BHA31,BHA32, |
| 45700 | 18             | HA33, BHA34, CHA31, CHA32, CHA33, CHA34, J1, K11)               |
| 45800 | 6              | M7=H7+1                                                         |
| 45900 | 100            | IF(LQQ.EQ.2)GO TO 362                                           |
| 46000 | 17             | IF(AT(MQ1,K11)-W11L2)362,362,386                                |
| 46100 | 386            | DELT1=TF1-T; ADELT(J)=DELT1                                     |
| 46200 |                | TPRD=XW=AP(M12(K5),K5)                                          |
| 46300 |                | M106=M106+1;STLP(M106,M)=ATH(1,1)                               |
| 46400 |                | SALP(M106,M)=ANX(M12(KL51),KL51)                                |
| 46500 | and the second | IF(ITYPE8.NE.1)GO TO 291                                        |
| 46600 |                | PRINT 423, M7, W1, DELT1, (K1, ANX(1, K1)                       |
| 46700 | 100            | 1, AXEN(1, K1), AXRMN(1, K1), AX(1, K1), AT(1, K1), ATH(1, K1)  |
| 46800 |                | 1,EFZI8(1,K1)                                                   |
| 46900 | 1              | 1, QR1B(1, K1), ALPS8(K1), AXMAX(K1), ATMAX(K1), ATHMAX(K1)     |
| 47000 | 20             | 1, ANX(M12(K1), K1), AXEN(M12(K1), K1), AXRMN(M12(K1), K1)      |
| 47100 | 1              | 1,AX(H12(K1),K1),AT(M12(K1),K1)                                 |
| 47200 | 1              | 1,ATH(M12(K1),K1),EFZI8(M12(K1),K1)                             |
| 47300 |                | 1, OR1B(M12(K1), K1), EFZIA(K1), PDROP(K1)                      |
| 47400 |                | 1, AP(M12(K1), K1), K1=1, KL51)                                 |
| 47500 |                | IF(HL.EQ.0.0)GC TO 8425                                         |
| 47600 |                | PRINT 707, AT(1, K5), ATH(1, K5), AT(M12(K5), K5),              |
| 47700 |                | 1ATH(M12(K5),K5),PDROP(K5),AP(M12(K5),K5),TPRD                  |
| 47800 | 8425           | CONTINUE                                                        |
| 47900 |                | IF(ITYPE.NE.2)GO TO 291                                         |
| 48000 |                | TYPE 423, M7, W1, DELT1, (K1, ANX(1, K1)                        |
| 48100 |                | 1, AXEN(1, K1), AXRMN(1, K1), AX(1, K1), AT(1, K1), ATH(1, K1)  |

|       | RS       | APPENDIX-B PAGE: 14                                            |
|-------|----------|----------------------------------------------------------------|
| 48200 |          | 1,EFZI8(1,K1)                                                  |
| 48300 |          | 1, GR1B(1,K1), ALPS8(K1), AXMAX(K1), ATMAX(K1), ATHMAX(K1)     |
| 48400 |          | 1, ANX(M12(K1), K1), AXEN(M12(K1), K1), AXRMN(M12(K1), K1)     |
| 48500 |          | 1, AX(M12(K1), K1), AT(M12(K1), K1)                            |
| 48600 |          | 1,ATH(M12(K1),K1),EFZI8(M12(K1),K1)                            |
| 48700 |          | 1, QR1B(M12(K1), K1), EFZIA(K1), PDROP(K1)                     |
| 48800 |          | 1, AP(M12(K1), K1), K1=1, KL51)                                |
| 48900 |          | IF(HL.EQ.0.0)GC TO 291                                         |
| 49000 |          | TYPE 707, AT(1, K5), ATH(1, K5), AT(M12(K5), K5),              |
| 49100 |          | 1ATH(M12(K5),K5), PDROP(K5), AP(M12(K5),K5), TPRD              |
| 49200 | 291      | IF(ABS(DELT1).GT.C4)GD TO 281                                  |
| 49300 |          | IF(ITYPE8.NE.1)GC TO 281                                       |
| 49400 |          | IF(IOP11.EQ.1)GD TO 281                                        |
| 49500 | 1        | PRINT 406, ((AZP(M1,K1), AP(M1,K1), ANX(M1,K1), AT(M1,K1),     |
| 49600 |          | 1ATH(M1,K1),ACX(M1,K1),ACT(M1,K1),ACTH(M1,K1),M1=M15,M12(K11)  |
| 49700 | 54       | 1,M16),K1=K7,K5,K8)                                            |
| 49800 | 1.00     | IF(ITYPE.NE.2)GO TO 281                                        |
| 49900 |          | TYPE 406, ((AZP(M1,K1), AP(M1,K1), ANX(M1,K1), AT(M1,K1),      |
| 50000 |          | 1ATH(M1,K1),ACX(M1,K1),ACT(M1,K1),ACTH(M1,K1),M1=M15,M12(K11)  |
| 50100 |          | 1,M16),K1=K7,K5,K8)                                            |
| 50200 | 281      | CONTINUE                                                       |
| 50300 |          | IF(IOPL8.EQ.2)GO IC 516                                        |
| 50400 | 1        | IF(W1.EQ.W11H)GO TO 398                                        |
| 50500 | Series 1 | IF(W1.EQ.W11L)GO TO 398                                        |
| 50600 | 516      | IF(J.EQ.1)GU TO 395                                            |
| 50700 | 1 da     | IF(M7.GT.M8)GO TO 398                                          |
| 50800 | 317      | IF(ABS(W2-W1).GT.CSP11)GO TO 395                               |
| 50900 | 398      | W11H8=ATH12(J);M7=0                                            |
| 51000 |          | IF(ISIG.NE.1)GO TO 377                                         |
| 51100 |          | ISIG=-1;W11H=W11H8;W11L=W11LP;W1=W11L;CSP3=CSP33*2;LP8=1;J=J+1 |
| 51200 |          | GO TO 353                                                      |
| 51300 | 395      | IF(LP8,E0,2)GO TO 290                                          |
| 51400 |          | CSP3=CSP33*0.5;W1=W1+CSP3*ISIG                                 |
| 51500 | all a    | GO TO 296                                                      |
| 51600 | 290      | CSP3=CSP3*0.5                                                  |
| 51700 |          | W1=W1+CSP3*ISIG                                                |
| 51800 | 296      | J=J+1                                                          |

|                | RS             | APPENDIX-B PAGE: 15                                                                                           |
|----------------|----------------|---------------------------------------------------------------------------------------------------------------|
| 51900          |                | IF(W1.LT.W11L)W1=W11L                                                                                         |
| 52000          |                | GO TO 353                                                                                                     |
| 52100          |                | CSP3=CSP3*0.5;W2=W1;W1=W1=CSP3*ISIG;LQC=1;LP8=2                                                               |
| 52200          |                | GO TO 353                                                                                                     |
| 52300          |                | DELT1=ADELT(MMN); ADELT(J)=DELT1                                                                              |
| 52400          |                | GO TO 317                                                                                                     |
| 52500          |                | W11L=W11H8;IW11H=W11H*0.2;W11H=IW11H*5                                                                        |
| 52600          |                | IW11L=W11L*0,2+0.50;W11L=IW11L*5                                                                              |
| 52700          |                | IF(ITYPE8.NE.1)GO TO 120                                                                                      |
| 52800          |                | PRINT 278, W11H, W11L                                                                                         |
| 52900          |                | IF(ITYPE.NE.2)GO TO 120                                                                                       |
| 53000          |                | TYPE 278, W11H, W11L                                                                                          |
| 53100          | 278            | FORMAT(/2X, 'FOR THIS DATA SET THE FEASIBLE REGION OF SEARCH FOR                                              |
| 53200          | 6              | 1D TEMPERATURE(K):', F7.1,2X, 'TO', 2X, F7.1/)                                                                |
| 53300          | 120            | DW11HL=W11H-W11L;W1=W11L;M7=0;CSP3=CSP33                                                                      |
| 53400          | 1              | ICSP1=DW11HL*CSp1F;CSP1=ICSP1                                                                                 |
| 53500          |                | IF(CSP1.GT.CSP11)CSP1=CSP11                                                                                   |
| 53600          |                | IF(CSP1.LT.CSP12)CSP1=CSP12                                                                                   |
| 53700          |                | M8=DW11HL/CSP1+M82;W1=W11L;J=J+1                                                                              |
| 53800          |                | IF(M8.LT.M81)M8=M81                                                                                           |
| 53900          | Long Street or | CSP2=CSP1*0,5+1.0                                                                                             |
| 54000          |                | IF(CSP2.GT.CSP22)CSP2=CSP22                                                                                   |
| 54100          |                | W11L20=W11L                                                                                                   |
| 54200          |                | GO TO 305                                                                                                     |
| 54300          |                | CONTINUE                                                                                                      |
| 54400          | 305            | TH12=W1;ATH12(J)=W1                                                                                           |
| 54500          | 1.00           | IF(M81.EQ.1)GO TO 53                                                                                          |
| 54600          |                | IF(J5.EQ.0)M8=M81                                                                                             |
| 54700          | TI             | IF(M7.GE.M8)GO TO 1503                                                                                        |
| 54800          |                | F(J.EQ.1) GO TO 53                                                                                            |
| 54900<br>55000 |                | ALL COMPA(ADELT,ATH12,J,MMN)                                                                                  |
| 55100          |                | F(MMN.NE.0)GO TO 272<br>5=K5L;KL51=K5-1                                                                       |
| 55200          |                |                                                                                                               |
| 55300          |                | CALL FEEDT(TF1,W1,F,H1,H2,H3,H4,VW,C71,C72,C73,C74,BHA31,BHA32,<br>HA33,BHA34,CHA31,CHA32,CHA33,CHA34,J1,K11) |
| 55400          |                | IF(M81.EQ.1)GO TO 62                                                                                          |
| 55500          |                | M7=M7+1                                                                                                       |
| 34040          |                |                                                                                                               |

|       | RS     | APPENDIX-B PAGE: 16                                                          |
|-------|--------|------------------------------------------------------------------------------|
| 55600 |        | IF(LQQ.EQ.2)GD TO 67                                                         |
| 55700 |        | IF(AT(MQ1,K11)-W11L2)71,71,62                                                |
| 55800 | 62     | DELT1=TF1-T;ADELT(J)=DELT1                                                   |
| 55900 |        | W26=W1;DELT26=DELT1                                                          |
| 56000 |        | M106=M106+1;STLP(M106,M)=ATH(1,1)                                            |
| 56100 |        | SALP(M106,M)=ANX(M12(KL51),KL51)                                             |
| 56200 |        | GO TO 421                                                                    |
| 56300 | 67     | CONTINUE                                                                     |
| 56400 |        | IF(J5.EQ.0)GO TO 299                                                         |
| 56500 | 2753   | W1=W1+CSP1;LQQ=1                                                             |
| 56600 | 1      | GO TO 1192                                                                   |
| 56700 | 272 DI | ELT1=ADELT(MMN)                                                              |
| 56800 | 260    | CONTINUE                                                                     |
| 56900 | 1      | IF(M81.EQ.1)GO TO 401                                                        |
| 57000 |        | IF(J5.EQ.0)GO TO 321                                                         |
| 57100 | I      | F(ABS(DELT1)-C4)1170,1170,191                                                |
| 57200 | 191    | CONTINUE                                                                     |
| 57300 | 152    | IM=IM+1;W2=W1+CsP1;J=J+1                                                     |
| 57400 |        | IF(ICONV.EQ.0)GO TO 1152                                                     |
| 57500 | 341    | IF(W2.LT.W11H)GO TO 1152                                                     |
| 57600 |        | W2=W11H; IM8=2                                                               |
| 57700 | 1152   | CONTINUE                                                                     |
| 57800 | 308    | TH12=W2;ATH12(J)=W2                                                          |
| 57900 |        | IF(M7.GE.M8)GO TO 1503                                                       |
| 58000 | I      | F(J,EQ.2)GO TO 1155                                                          |
| 58100 | C      | ALL COMPA(ADELT, ATH12, J, MMN)                                              |
| 58200 | I)     | F(MMN.NE.0)GO TO 1272                                                        |
| 58300 | 1155 K | 5=K5L;KL51=K5-1                                                              |
| 58400 |        | CALL FEEDT(TF2, W2, F, H1, H2, H3, H4, VW, C71, C72, C73, C74, BHA31, BHA32, |
| 58500 | 181    | HA33, BHA34, CHA31, CHA32, CHA33, CHA34, J1, K11)                            |
| 58600 |        | M7=M7+1                                                                      |
| 58700 |        | IF(LQQ.EQ.2)GO TO 68                                                         |
| 58800 |        | IF(AT(MQ1,K11)=W11L2)72,72,64                                                |
| 58900 | 64     | DELT2=TF2-T;ADELT(J)=DELT2                                                   |
| 59000 |        | IF(W2.GE.W11H)IM8=2                                                          |
| 59100 |        | W26=W2;DELT26=DELT2                                                          |
| 59200 |        | M106=M106+1;STLP(M106,M)=ATH(1,1)                                            |

|       | RS   | APPENDIX-B PAGE: 17                                             |
|-------|------|-----------------------------------------------------------------|
| 59300 | ND   | SALP(M106,M)=ANX(M12(KL51),KL51)                                |
| 59400 |      | GO TO 424                                                       |
| 59500 | 68   | W2=W2+CSP1;L90=1                                                |
| 59600 |      | IF(IM8.EQ.2)GO TO 503                                           |
| 59700 |      | IF(W2.LT.W11H)G0 TO 308                                         |
| 59800 |      | IM8=2;W2=W11H                                                   |
| 59900 |      | GU TO 1152                                                      |
| 60000 | 1272 | DELT2=ADELT(MMN)                                                |
| 60100 |      | IF(W2.GE.W11H)IM8=2                                             |
| 60200 | 1260 | IF(ABS(DELT2)-C4)1170,1170,153                                  |
| 60300 | 153  | DW12=(W1-W2)*1.5                                                |
| 60400 |      | IF(DELT1)1,503,5                                                |
| 60500 | 1    | IF(DELT2)2,2,7                                                  |
| 60600 | 5    | IF(DELT2)7,7,2                                                  |
| 60700 | 2    | IM=1;W1=W2;DELT1=DELT2;W2=W1+CSP1;J=J+1                         |
| 60800 |      | IF(IM8.EQ.2)GO TO 503                                           |
| 60900 |      | IF(W2.GT.W11H)W2=W11H                                           |
| 61000 | Pro- | GO TO 308                                                       |
| 61100 | 7    | J=J+1                                                           |
| 61200 |      | IF(M7.GE.M8)GO TO 1503                                          |
| 61300 | 116  | W3=W2+(W1=W2)*ABS(DELT2)/(ABS(DELT2)+ABS(DELT1))                |
| 61400 |      | IW3=W3                                                          |
| 61500 | 1    | TH12=W3;ATH12(J)=W3                                             |
| 61600 |      | CALL COMPA(ADELT, ATH12, J, MMN)                                |
| 61700 | T    | IF(MMN.NE.0) GO TO 1188                                         |
| 61800 | 1    | K5=K5L;KL51=K5-1                                                |
| 61900 |      | CALL FEEDT(TF3,W3,F,H1,H2,H3,H4,VW,C71,C72,C73,C74,BHA31,BHA32, |
| 62000 |      | 1BHA33, BHA34, CHA31, CHA32, CHA33, CHA34, J1, K11)             |
| 62100 |      | M7=M7+1                                                         |
| 62200 |      | IF(LQO.EQ.2)GO TO 69                                            |
| 62300 |      | IF(AT(MQ1, K11)-W11L2)73,73,66                                  |
| 62400 | 66   | DELT3=TF3-T;ADELT(J)=DELT3                                      |
| 62500 |      | GO TO 427                                                       |
| 62600 | 69   | W2=W3;LQQ=1                                                     |
| 62700 | 1400 | GO TO 116                                                       |
| 62800 |      | DELT3=ADELT(MMN)                                                |
| 62900 | 1220 | IF(ABS(DELT3)=C4)1170,1170,188                                  |

|       | RS   | APPENDIX=B                               | PAGE: 18                |
|-------|------|------------------------------------------|-------------------------|
| 63000 | 188  | IF(DELT3)11,1170,35                      |                         |
| 63100 | 11   | IF(DELT2)17,17,26                        |                         |
| 63200 | 35   | IF(DELT2)26,26,17                        |                         |
| 63300 | 17   | W2=W3;DELT2=DELT3                        |                         |
| 63400 |      | GO TO 7                                  |                         |
| 63500 | 26   | W1=W3; DELT1=DELT3                       |                         |
| 63600 |      | GO TO 7                                  |                         |
| 63700 | 1170 | IF(MMN.NE.0)GO TO 953                    |                         |
| 63800 |      | M107=M107+1;STLP2(M107,M)=ATH(1,1)       |                         |
| 63900 |      | SALP2(M107, M)=ANX(M12(KL51),KL51)       |                         |
| 64000 |      | MM2=M106;M106=M106+1                     | 7                       |
| 64100 |      | STLP(M106,M)=STLP(MM2,M);SALP(M106,M):   | =SALP(MM2,M)            |
| 64200 |      | STLP(MM2, N)=ATH(1,1); SALP(MM2, M)=ANX( | 12(KL51),KL51)          |
| 64300 |      | GO TO 401                                | 223                     |
| 64400 | 321  | ICONV=ICONV+1;M7=0                       | 10. 5                   |
| 64500 | 15   | PATD=AX(M12(K11),K5)*F1CON;APATD(MJK1)   | )=PATD                  |
| 64600 |      | OBJF2(M)=PATD                            | 1805                    |
| 64700 |      | IF(ITYPE8,NE.1)GO TO 125                 |                         |
| 64800 |      | PRINT 1718, PATD                         |                         |
| 64900 |      | IF(ITYPE.NE.2)GO TO 125                  |                         |
| 65000 |      | TYPE 1718, PATD                          | C Line 199              |
| 65100 |      | FORMAT(2X, PRODUCTION RATE OF AMMONIA(   | (IONS PER DAY)=",F7,1/) |
| 65200 | 125  | CONTINUE                                 |                         |
| 65300 |      | IF(IDL2.EQ.1)GO TO 1871                  | 1 30 3-1                |
| 65400 |      | IF(M81.EQ.1)GO TO 209                    | 124                     |
| 65500 | 1871 | CONTINUE                                 | 12 2                    |
| 65600 |      | APATDL(ICONV)=PATD                       | 15 4                    |
| 65700 |      | IF(ICONV.LE.1)GO TC 2717                 | S. al                   |
| 65800 |      | IF (APATDL(ICONV).LI.APATDL(ICONV-1))GC  | TO 2735                 |
| 65900 | 2717 | DO 2726 K1=K7,K5,K8                      |                         |
| 66000 |      | DO 2726 M1=H15, M12(K11), M16            |                         |
| 66100 |      | AZPL(M1,K1)=AZP(M1,K1)                   |                         |
| 66200 |      | APL(M1,K1) = AP(M1,K1)                   |                         |
| 66300 |      | ANXL(M1,K1)=ANX(M1,K1)                   |                         |
| 66400 |      | ATL(M1,K1) = AT(M1,K1)                   |                         |
| 66500 |      | ATHL(M1,K1)=ATH(M1,K1)                   |                         |
| 66600 |      | AXENL(M1,K1) = AXEN(M1,K1)               |                         |

|       | RS   | APPENDIX-B PAGE: 19                                                     |
|-------|------|-------------------------------------------------------------------------|
| 66700 |      | AXRMNL(M1,K1)=AXRMN(M1,K1)                                              |
| 66800 |      | AXEL(M1,K1) = AXE(M1,K1); ACXL(M1,K1) = ACX(M1,K1)                      |
| 66900 |      |                                                                         |
|       | 2726 | ACTL(M1,K1)=ACT(M1,K1); ACTHL(M1,K1)=ACTH(M1,K1)<br>CONTINUE            |
| 67100 |      | PATD1=APATDL(ICONV)                                                     |
|       | 2735 | W1=W11L20; IM80=1                                                       |
| 67300 |      | IF(ICONV.GE.J5)GO TO 503                                                |
| 67400 |      | IF(IM8.EG.2)GD TO 503                                                   |
| 67500 |      | GO TO 953                                                               |
| 67600 | 953  | IM=1;W1=W26;DELT1=DELT26;W2=W1+CSP1;J=J+1                               |
| 67700 |      | IF(W2.GT.W11H)W2=W11H                                                   |
| 67800 |      | GO TO 308                                                               |
| 67900 | 1503 | PRINT 1505,M8                                                           |
| 68000 | 1505 | FORMAT(2X, 'NO CONVERGENCE ACHIEVED IN', 15, 2X, 'ITERATIONS, THEREFORE |
| 68100 |      | ISWITCHING TO NEXT DATA SET. 1/)                                        |
| 68200 | 503  | IF(ICONV.EQ.0)GO TC 299                                                 |
| 68300 |      | PATD=PATD1; IM8=1                                                       |
| 68400 |      | APATD(MJK1)=PATD                                                        |
| 68500 |      | DO 2744 K1=K7, K5, K8                                                   |
| 68600 |      | DO 2744 M1=M15,M12(K11),M16                                             |
| 68700 |      | AZP(M1,K1)=AZPL(M1,K1);AP(M1,K1)=APL(M1,K1)                             |
| 68800 |      | ANX(M1,K1)=ANXL(M1,K1);AT(M1,K1)=ATL(M1,K1)                             |
| 68900 | 1    | ATH(M1,K1)=ATHL(M1,K1);AXEN(M1,K1)=AXENL(M1,K1)                         |
| 69000 |      | AXRMN(M1,K1)=AXRMNL(M1,K1);AXE(M1,K1)=AXEL(M1,K1)                       |
| 69100 | 1    | ACX(M1,K1)=ACXL(M1,K1);ACT(M1,K1)=ACTL(M1,K1)                           |
| 69200 |      | ACTH(M1,K1)=ACTHL(M1,K1);ALZP(M1,K1)=CTVLP*AZP(M1,K1)                   |
| 69300 | 2744 | CONTINUE                                                                |
| 69400 |      | MSLP3=0;MSLP4=0;MSLP5=0;I=0;J=0;M101=M12(K11)-1                         |
| 69500 |      | DO 673 K1=K7, KL51, K8                                                  |
| 69600 |      | J=J+1;MSLP5=MSLP5+1                                                     |
| 69700 |      | AZ8PL(J,M) = EFZIA(K1); AZ9PL(J,M) = PDROP(K1)                          |
| 69800 |      | DO 673 M1=M15, M12(K11), M101                                           |
| 69900 |      | I=I+1;MSLP3=MSLP3+1;MSLP4=MSLP4+1                                       |
| 70000 |      | AZ2PL(I,M) = AT(M1,K1); AZ3PL(I,M) = ATH(M1,K1)                         |
| 70100 |      | AZ4PL(I,M)=ANX(M1,K1);AZ5PL(I,M)=AXEN(M1,K1)                            |
| 70200 |      | AZ6PL(I,M) = AXRMN(M1,K1); AZ7PL(I,M) = QR1E(M1,K1)                     |
| 70300 | 673  | CONTINUE                                                                |

| (and a  | RS  | APPENDIX=B                                     | PAGE:     | 20     |
|---------|-----|------------------------------------------------|-----------|--------|
| 70400   |     | DO 674 M1=M15,M12(K11),M101                    |           |        |
| 70500   |     | I=I+1;MSLP3=MSLP3+1                            |           |        |
| 70600   |     | AZ2PL(I,M) = AT(M1,K5)                         |           |        |
| 70700   |     | AZ3PL(I,M) = ATH(M1,K5)                        |           |        |
| 70800   | 674 | CONTINUE                                       |           |        |
| 70900   |     | MSLP6=MSLP5+2; AZ9PL((J+1),M)=PDROP(K5)        |           |        |
| 71000   |     | AZ9PL((J+2),M)=TPRD                            |           |        |
| 71100   |     | I=0;MSLP=0                                     |           |        |
| 71200   |     | IF(IOP201.NE.1)GO TO 677                       |           |        |
| 71300   |     | DO 675 K1=K7, KL51, K8                         |           |        |
| 71400   |     | DO 675 M1=5, M101, M16                         |           |        |
| 71500   |     | I=I+1;MSLP=MSLP+1                              | ~         |        |
| 71600   |     | AZ11PL(I,M)=AT(M1,K1);AZ12PL(I,M)=ANX(M1,      | K1)       |        |
| 71700 6 | 575 | CONTINUE                                       | 1. March  |        |
| 71800   |     | M167=2*M16;I=0;MSLF1=0                         | Bo t      |        |
| 71900   | 54  | DO 676 K1=K7,K5,K8                             | 100       | 2      |
| 72000   | 1.  | DO-676 M1=7, M101, M167                        | 1.80      |        |
| 72100   | 14  | I=I+1;MSLP1=MSLP1+1                            |           | ton.   |
| 72200   | 1   | AZ14PL(I,M)=ATH(M1,K1)                         |           |        |
| 72300 6 | 576 | CONTINUE                                       | 10        |        |
| 72400   |     | I=0;MSLP2=0                                    |           |        |
| 72500   |     | DO 677 M1=7, M101, M167                        |           |        |
| 72600   | -   | I=I+1;MSLP2=MSLP2+1                            |           |        |
| 72700   |     | AZ15PL(I,M) = AT(M1,K5)                        | 1 100     |        |
| 72800 6 | 77  | CONTINUE                                       | 1.50      | Sec. 1 |
| 72900   | La  | J1=M7J11=1                                     | 28 1      | - 1    |
| 73000   |     | IF(IOP201.EQ.1)GO TO 7048                      | 8.4       |        |
| 73100   |     | WRITE(12,7049),(I,TPRD,PFN(I),TFN(I),VFTN      |           |        |
| 73200   |     | 1,FC3N(I),FC4N(I),FC5N(I),FD44N(I),FD22N(      | I), FD33N | (I)    |
| 73300   |     | 2, VCAIN(I), OBJF2(I),                         |           |        |
| 73400   |     | 2DBED2N(I), DBED3N(I), HLLN(I), UARN(I), UAHN  | (I)       |        |
| 73500   |     | 2, FF1N(I), I=MJK1, MJK1)                      |           |        |
| 73600 C |     | PRINT 7049, (I, TPRD, PFN(I), TFN(I), VFTN(I), |           |        |
| 73700 C |     | 1,FC3N(I),FC4N(I),FC5N(I),FD44N(I),FD22N(.     | (),FD33N  | (I)    |
| 73800 C |     | 2,VCATN(I),OBJF2(I),                           |           |        |
| 73900 C |     | 2DBED2N(I), DBED3N(I), HLLN(I), UARN(I), UAHN  | (1)       |        |
| 74000 C |     | 2, FF1N(I), I=MJK1, MJK1)                      |           |        |

| RS         | APPENDIX-B PAGE: 21                                                    |
|------------|------------------------------------------------------------------------|
| 74100      | WRITE(3,7058),M106,M107,((STLP2(J,I),SALP2(J,I),J=1,M107),             |
| 74200      | 8(STLP(J,I), SALP(J,I), J=1, M106), I=M, M)                            |
| 74300 C    | PRINT 7058, M106, M107, ((STLP2(J,I), SALP2(J,I), J=1, M107),          |
| 74400 C    | 8(STLP(J,I),SALP(J,I),J=1,M106),I=M,M)                                 |
| 74500 7058 | FORMAT(213,(6(F6.1,F7.3)/))                                            |
| 74600      | WRITE(12,7050),((M1,ALZP(M1,K1),AT(M1,K1),ANX(M1,K1),                  |
| 74700      | 2AXRMN(M1,K1),AXEN(M1,K1),M1=1,M12(K11)),K1=1,KL51)                    |
| 74800 7050 | FORMAT(2(14,2F6.1,3F7.3)/)                                             |
| 74900 C    | PRINT 7050, ((M1, AZF(M1, K1), AT(M1, K1), ANX(M1, K1),                |
| 75000 C    | 2AXRMN(M1,K1),AXEN(M1,K1),M1=1,M12(K11)),K1=1,KL51)                    |
| 75100      | IF(IOP201.NE.1)GO IO 7037                                              |
| 75200 7048 | CONTINUE                                                               |
| 75300      | IF(IOPT2.NE.1)GO TO 7037                                               |
| 75400      | WRITE(3,7049),(I,TFRD,PFN(I),TFN(I),VFIN(I),RATION(I)                  |
| 75500      | 1,FC3N(I),FC4N(I),FC5N(I),FD44N(I),FD22N(I),FD33N(I)                   |
| 75600      | 2, VCAIN(I), OBJF2(I),                                                 |
| 75700      | 2DBED2N(I), DBED3N(I), HLLN(I), UARN(I), UAHN(I)                       |
| 75800      | 2, FF1N(I), I=M, M)                                                    |
| 75900 C    | PRINT 7014, ((STLP(J,I), SALP(J,I), J=1, M106),                        |
| 76000 C    | 1(STLP2(J,I),SALP2(J,I),J=1,M107),I=M,M)                               |
| 76100 7014 | FORMAT(1X, 10(F6.1, F7.3))                                             |
| 76200 7051 | FORMAT(6(F6.1,F7.3)/)                                                  |
| 76300      | WRITE(3,7051),((STLP(J,I),SALP(J,I),J=1,M106),                         |
| 76500      | 1(STLP2(J,I), SALP2(J,I), J=1, M107), I=M, M)                          |
| 76600      | IF(ITYPE.NE.2)GO TC 7030<br>TYPE 7014,((STLP(J,I),SALP(J,I),J=1,M106), |
| 76700      | 1(STLP2(J,I),SALP2(J,I),J=1,M107),I=M,M)                               |
| 76800 7030 | CONTINUE                                                               |
| 76900 C    | PRINT 7016, ((AZ11PL(J,I), J=1, MSLP), (AZ14PL(J,I), J=1, MSLP1)       |
| 77000 C    | 1, (AZ15PL(J,I), J=1, MSLP2), I=M, M)                                  |
| 77100 7016 | FORMAT(1X,21(F6.1))                                                    |
| 77200 7052 | FORMAT(2X, 12(F6.1))                                                   |
| 77300      | WRITE(3,7052),((AZ11PL(J,I),J=1,MSLP),(AZ14PL(J,I),J=1,MSLP1)          |
| 77400      | 1, (AZ15PL(J,I), J=1, MSLP2), I=M, M)                                  |
| 77500      | IF(ITYPE.NE.2)GO TO 7031                                               |
| 77600      | TYPE 7016, ((AZ11PL(J,I), J=1, MSLP), (AZ14PL(J,I), J=1, MSLP1)        |
| 77700      | 1, (AZ15PL(J,I), J=1, MSLP2), I=M, M)                                  |
|            |                                                                        |

```
PAGE: 22
```

| RS         | APPENDIX-B                                                           |
|------------|----------------------------------------------------------------------|
| 77800 7031 | CONTINUE                                                             |
| 77900 C    | PRINT 7018, ((AZ12PL(J,I), J=1, MSLP), I=M, M)                       |
| 78000 7018 | FORMAT(2X, 18(F7.3))                                                 |
| 78100 7053 | FORMAT(2X, 11(F7.3))                                                 |
| 78200      | WRITE(3,7053),((AZ12PL(J,I),J=1,MSLP),I=M,M)                         |
| 78300      | IF(ITYPE.NE.2)GO TO 7032                                             |
| 78400      | TYPE 7018, ((AZ12PL(J,I), J=1, MSLP), I=M, M)                        |
| 78500 7032 | CONTINUE                                                             |
| 78600 C    | PRINT 7020, ((AZ2PL(J,I), AZ3PL(J,I), J=1, MSLP3), I=M, M)           |
| 78700 7020 | FORMAT(2X,21(F6.1))                                                  |
| 78800 7054 | FORMAT(2X, 12(F6.1))                                                 |
| 78900      | WRITE(3,7054),((AZ2PL(J,I),AZ3PL(J,I),J=1,MSLP3),I=M,M)              |
| 79000      | IF(ITYPE.NE.2)GO TO 7033                                             |
| 79100      | TYPE 7020, ((AZ2PL(J,I), AZ3PL(J,I), J=1, MSLP3), I=M, M)            |
| 79200 7033 | CONTINUE                                                             |
| 79300 C    | PRINT 7022, ((AZ4PL(J,I), AZ5PL(J,I), AZ6PL(J,I), AZ7PL(J,I),        |
| 79400 C    | 1J=1, NSLP4), I=M, M)                                                |
| 79500 7022 | FORMAT(2X,4(3F7.3,E11.3))                                            |
| 79600 7055 | FORMAT(2X, 2(3F7.3, E11.3))                                          |
| 79700      | WRITE(3,7055),((AZ4PL(J,I),AZ5PL(J,I),AZ6PL(J,I),AZ7PL(J,I),         |
| 79800      | 1J=1, MSLP4), I=M, M)                                                |
| 79900      | IF(ITYPE.NE.2)GO TO 7034                                             |
| 80000      | TYPE 7022, ((AZ4PL(J,I), AZ5PL(J,I), AZ6PL(J,I), AZ7PL(J,I),         |
| 80100      | 1J=1, MSLP4), I=M, M)                                                |
| 80200 7034 | CONTINUE                                                             |
| 80300 C    | PRINT 7024, ((AZ8PL(J,I), J=1, MSLP5), I=M, M)                       |
| 80400 7024 | FORMAT(1X, 18(F7.3))                                                 |
| 80500 7056 | FORMAT(2X, 11(F7.3))                                                 |
| 80600      | WRITE(3,7056),((AZ8PL(J,I),J=1,MSLP5),I=M,M)                         |
| 80700      | IF(ITYPE.NE.2)GO TO 7035                                             |
| 80800      | TYPE 7024, ((AZ8PL(J,I), J=1, MSLP5), I=M, M)                        |
| 80900 7035 | CONTINUE                                                             |
| 81000 C    | PRINT 7026, ((AZ9PL(J,I), J=1, MSLP6), I=M, M)                       |
| 81100      | WRITE(3,7057),((AZ9PL(J,I),J=1,MSLP6),I=M,M)                         |
| 81200      | IF(ITYPE.NE.2)GO TC 7037<br>TYPE 7026,((AZ9PL(J,I),J=1,MSLP6),I=M,M) |
| 81300      |                                                                      |
| 81400 7037 | CONTINUE                                                             |

| 115 TO 1 TO 1 | PAGE: 23                                                           |
|---------------|--------------------------------------------------------------------|
| RS            | APPENDIX-B                                                         |
| 81500 7026    | FORMAT(1X, 18(F7.2))                                               |
| 81600         | IF(IOL2.NE.1)GO TO 8256                                            |
| 81700 7057    | FORMAT(2X, 11(F7.2))                                               |
| 81800         | J1=MJK1;J11=MJK1                                                   |
| 81900 8256    | CONTINUE                                                           |
| 82000         | ANH3L(J1)=ANX(M12(K11),K5);I1=0                                    |
| 82100         | APDRLP(J1)=AP(M12(K11),K5)                                         |
| 82200         | DO 8744 K1=K7,K5,KJ81                                              |
| 82300         | DO 8744 I=1, NBPTS(K1, J11)                                        |
| 82400         | I1=I1+I                                                            |
| 82500         | IF(NBPTS(K1, J11).EC.1)GO TO 8745                                  |
| 82600         | MN81=M15+NLPD(I,K1,J11)                                            |
| 82700         | GD TO 8746                                                         |
| 82800 8745    | CONTINUE                                                           |
| 82900         | MN81=N12(K11)                                                      |
| 83000 8746    | ATPL2(I1, J1)=AT(MN81, K1)                                         |
| 83100         | ERRT=TA(I,K1,J11)-ATPL2(I1,J1);SET=ERRT*ERRT;SSE1=SSE1+SET         |
| 83200         | ERRT1=ATPL2(I1, J1)-ATPL2(I1, 1);SET1=ERRT1*ERRT1;SSE2=SSE2+SET1   |
| 83300 8744    | CONTINUE                                                           |
| 83400         | ERAM=AMMD(J11)-ANH3L(J1);ERAM1=ANH3L(J1)-ANH3L(1)                  |
| 83500         | APDL=APDRPL(J11)-APDRLP(J1);SEPD=APDL*APDL                         |
| 83600         | APDL1=APDRLP(J1)-AFDRLP(1);SEPD1=APDL1*APDL1                       |
| 83700         | SSE3=SSE3+SEPD; SSE4=SSE4+SEPD1                                    |
| 83800         | SEA=ERAM*ERAM*WTFN;SSE5=SSE5+SEA;SSE1=SSE1+SEA                     |
| 83900         | SEA1=ERAM1*ERAM1;SSE6=SSE6+SEA1;SSE7=SSE7+SSE1+SSE3+SSE5           |
| 84000         | SSE8=SSE8+SSE2+SSE4+SSE6                                           |
| 84100         | SSE=SSE+SSE1+SSE5                                                  |
| 84200 C       | PRINT 7039, SSE, SSE1, SSE2, SSE3, SSE4, SSE5, SSE6, SSE7, SSE8    |
| 84300 C       | WRITE(3,7061), SSE, SSE1, SSE2, SSE3, SSE4, SSE5, SSE6, SSE7, SSE8 |
| 84400 7039    | FORMAT(9E11.3)                                                     |
| 84500 7061    | FORMAT(7E11.3)                                                     |
| 84600         | IF(ITYPE,NE.2)GO TO 7041                                           |
| 84700         | TYPE 7039, SSE, SSE1, SSE2, SSE3, SSE4, SSE5, SSE6, SSE7, SSE8     |
| 84800 7041    | CONTINUE                                                           |
| 84900         | IF(IOL2.EQ.1)GO TO 209                                             |
| 85000         | N2LEP=LPOBJN(MJK1)                                                 |
| 85100         | IF(ITYP11.NE.1)N2LEP=1                                             |

|         |      | Luce: ex                                                       |
|---------|------|----------------------------------------------------------------|
|         | RS   | APPENDIX-B                                                     |
| 85200   |      | IF(M.NE.1)GO TO 7081                                           |
| 85300   |      | SES=SSE; SES1=SSE1; SES2=SSE2; SES3=SSE3; SES4=SSE4; SES5=SSE5 |
| 85400   |      | SES6=SSE6;SES7=SSE7;SES8=SSE8                                  |
| 85500 7 | 081  | CONTINUE                                                       |
| 85600   |      | CALL FUNOBJ(OBJF, M, N2LEP, PATD, OBLPN(ILPS2)                 |
| 85700   |      | 1,SSE,SSE1,SSE2,SSE3,                                          |
| 85800   |      | 1SSE4, SSE5, SSE6, SSE7, SSE8, SES, SES1, SES2, SES3, SES4     |
| 85900   |      | 1, SES5, SES6, SES7, SES8, OBJF32)                             |
| 86000   |      | CALL FUNOBJ(OBJF3, M, LPOBJN(MJK1), PATD, OBLPN(ILPS2)         |
| 86100   |      | 1,SSE,SSE1,SSE2,SSE3,                                          |
| 86200   |      | 1SSE4, SSE5, SSE6, SSE7, SSE8, SES, SES1, SES2, SES3, SES4     |
| 86300   |      | 1, SES5, SES6, SES7, SES8, OBJF31)                             |
| 86400   |      | CALL FUNOBJ(OBJF4, M, NOBLP1, PATD, OBLPN(ILPS2)               |
| 86500   | 1    | 1,SSE,SSE1,SSE2,SSE3,                                          |
| 86600   |      | 1SSE4, SSE5, SSE6, SSE7, SSE8, SES, SES1, SES2, SES3, SES4     |
| 86700   | 1    | 1, SES5, SES6, SES7, SES8, OBJF33)                             |
| 86800   |      | GO TO 209                                                      |
| 86900   | 299  | APATD(MJK1)=0.0;PATD1=0.0;PATD=0.0;IM8=1;MLPK1=MLPK1+1         |
| 87000   |      | M107=M107+1;SALP2(M107,M)=0.0;STLP2(M107,M)=0.0                |
| 87100   |      | M107=M107+1;SALP2(M107,M)=0.0;STLP2(M107,M)=0.0                |
| 87200   | 1    | IF(LPOBJN(MJK1).NE.1)GO TO 4441                                |
| 87300   |      | OBJF(M)=0.0                                                    |
| 87400   |      | GO TO 4442                                                     |
| 87500   | 4441 | OBJF(M)=ABCD2                                                  |
| 87600   | 4442 | CONTINUE                                                       |
| 87700   | 20   | IF(IOL2.EQ.1)GO TO 764                                         |
| 87800   |      | IF(05.EQ.0)GO TO 764                                           |
| 87900   | 1.5  | GO TO 1703                                                     |
| 88000   | 719  | CONTINUE                                                       |
| 88100   |      | IF(DBJF(M).EQ.ABCD2)GO TO 761                                  |
| 88200   | 761  | CONTINUE                                                       |
| 88300   |      | IF(OBJLPN(M).NE.0.0)IOPT2=3                                    |
| 88400   |      | IF(IOPT2.EQ.3) GO TO 92                                        |
| 88500   |      | IF(M.GT.1) GO TO 785                                           |
| 88600   |      | IF(M1LP.GT.1)GO TO 4440                                        |
| 88700   |      | IF(M8LP.GT.1)GO TO 4440                                        |
| 88800   | 92   | VFT(M)=VFTN(MJK1)                                              |
|         |      |                                                                |

PAGE:

| PA | GE : | 25 |  |
|----|------|----|--|
|----|------|----|--|

|       | RS APPENDIX-B                                                   |
|-------|-----------------------------------------------------------------|
| 88900 | RATID(M)=RATION(MJK1)                                           |
| 89000 | FC1(M) = FC1N(MJK1); FC2(M) = FC2N(MJK1)                        |
| 89100 | FC3(M) = FC3N(MJK1)                                             |
| 89200 | FC4(M) = FC4N(MJK1)                                             |
| 89300 | FC5(M)=FC5N(MJK1)                                               |
| 89400 | FD22(M)=FD22N(MJK1);FD33(M)=FD33N(MJK1)                         |
| 89500 | FD44(M) = FD44N(MJK1); PF(M) = PFN(MJK1)                        |
| 89600 | TF(M)=TFN(MJK1);VCAT(M)=VCATN(MJK1)                             |
| 89700 | DBED2(M)=DBED2N(MJK1);DBED3(M)=DBED3N(MJK1)                     |
| 89800 | HLL(M)=HLLN(MJK1);UAR(M)=UARN(MJK1);UAH(M)=UAHN(MJK1)           |
| 89900 | FF1(M)=FF1N(MJK1);FD55(M)=FD55N(MJK1)                           |
| 90000 | G1=VFT(M);G3=RATIO(M);G5=FC3(M);G7=FC4(M);G9=FC5(M);G11=FD22(M) |
| 90100 | G13=FD33(M);G15=FD44(M);G17=PF(M);G19=TF(M);G21=VCAT(M)         |
| 90200 | G23=DBED2(M);G25=DBED3(M);G27=HLL(M);G29=UAR(M);G31=UAH(M)      |
|       |                                                                 |

Ley .

| PAGE: 2 | 2 | 6 |
|---------|---|---|
|---------|---|---|

| RS          | APPENDIX-B                                                    |
|-------------|---------------------------------------------------------------|
| 00100       | G33=FD55(M)                                                   |
| 00200 4440  | CONTINUE                                                      |
| 00300       | I26=M                                                         |
| 00400       | M3LP=1                                                        |
| 00500       | CALL PCONV(126, M3LF, AQX)                                    |
| 00600 785   | CONTINUE                                                      |
| 00700       | IF(M.LT.ND2PL)GO TO 98                                        |
| 00800       | NOPTM=M                                                       |
| 00900       | GO TO 1709                                                    |
| 01000 98 I  | F(IOPT2.EQ.3) GO TO 602                                       |
| 01100       | NCOLD=12                                                      |
| 01200       | IF(IOL2.EQ.1)NCOLD=1                                          |
| 01300       | CALL PNEXT(NVLPI, NCOLD, M, AQX, ISIGPL)                      |
| 01400       | IF(NVLPI.GT.NVARI)GO TO 755                                   |
| 01500       | SSE=0.0;SSE1=0.0;SSE2=0.0;SSE3=0.0;SSE4=0.0;SSE5=0.0          |
| 01600       | SSE6=0.0;SSE7=0.0;SSE8=0.0                                    |
| 01700       | IF(IOPT8-2)1844,1808,1817                                     |
| 01800 1709  | CONTINUE                                                      |
| 01900       | ISIGPL=1;ND7PL=1                                              |
| 02000       | IF(IOL2.EQ.1)GC TO 7704                                       |
| 02100       | DO 8701 I=1,M                                                 |
| 02200       | OBJF2(I)=OBJF(I)*OEJF32                                       |
| 02300 8701  | CONTINUE                                                      |
| 02400 C     | IF(NOBJLP(MJK1)_LT.2)GO TO 8761                               |
| 02500 C     | DO 8761 L=1,NVARI                                             |
| 02600 C     | AQX8(M1LP,L)=AGX(NOPTM,L)<br>CONTINUE                         |
| 02700 C8761 | PRINT 866, OBJF31, OEJF33, (I, PF(I), TF(I), VFT(I), RATIO(I) |
| 02800       | 1,FC3(I),FC4(I),FC5(I),FD44(I),FD22(I),FD33(I)                |
| 02900       | 2, VCAT(I), OBJF2(I), OBJF3(I), OBJF4(I),                     |
| 03000       | 2DBED2(I), DBED3(I), HLL(I), UAR(I), UAH(I)                   |
| 03200       | 2, FD55(I), AQX(I, 18), AQX(I, 19), AQX(I, 20), I=1, M)       |
| 03200       | WRITE(3,7049),(I,TPRD,PF(I),TF(I),VFT(I),RATIO(I)             |
| 03400       | 1,FC3(I),FC4(I),FC5(I),FD44(I),FD22(I),FD33(I)                |
| 03500       | 2, VCAT(I), OBJF2(I),                                         |
| 03600       | 2DBED2(I), DBED3(I), HLL(I), UAR(I), UAH(I)                   |
| 03700       | 2,FF1(I),I=1,M)                                               |
|             |                                                               |

PAGE: 27 APPENDIX-B RS FORMAT(I3, F5.2, 2F6.1, F9.1, F4.1, F5.2, F6.2, F5.2, 3F6.3, F5.1 03800 7049 1,F7.1/2F5.2,F6.2,F6.1,F7.1,F5.2) 03900 IF(IOP201.NE.1)GO IO 7027 04000 PRINT 7014, ((STLP(J,I), SALP(J,I), J=1, M106), 04100 1(STLP2(J,I), SALP2(J,I), J=1, M107), I=1, M) 04200 WRITE(3,7051),((STLP(J,I),SALP(J,I),J=1,M106), 04300 1(STLP2(J,I), SALP2(J,I), J=1, M107), I=1, M) 04400 IF(ITYPE.NE.2)GO TO 7015 04500 TYPE 7014, ((STLP(J,I), SALP(J,I), J=1, M106), 04600 1(STLP2(J,I), SALP2(J,I), J=1, M107), T=1, M) 04700 CONTINUE 04800 7015 PRINT 7016, ((AZ11PL(J,I), J=1, MSLP), (AZ14PL(J,I), J=1, MSLP1) 04900 1, (AZ15PL(J,I), J=1, MSLP2), I=1, M) 05000 WRITE(3,7052),((AZ11PL(J,I),J=1,MSLP),(AZ14PL(J,I),J=1,MSLP1) 05100 1, (AZ15PL(J,I), J=1, MSLP2), I=1, M) 05200 IF(ITYPE.NE.2)GO TC 7017 05300 TYPE 7016, ((AZ11PL(J,I), J=1, MSLP), (AZ14PL(J,I), J=1, MSLP1) 05400 1, (AZ15PL(J,I), J=1, MSLP2), I=1, M) 05500 CONTINUE 05600 7017 PRINT 7018, ((AZ12PL(J,I), J=1, MSLP), I=1, M) 05700 WRITE(3,7053),((AZ12PL(J,I),J=1,MSLP),I=1,M) 05800 05900 IF(ITYPE.NE.2)GO TO 7019 TYPE 7018, ((AZ12PL(J,I), J=1, MSLP), T=1, M) 06000 06100 7019 CONTINUE PRINT 7020, ((AZ2PL(J,I), AZ3PL(J,I), J=1, MSLP3), I=1, M) 06200 WRITE(3,7054),((AZ2PL(J,I),AZ3PL(J,I),J=1,MSLP3),I=1,M) 06300 IF(ITYPE.NE.2)GO TC 7021 06400 TYPE 7020, ((AZ2PL(J,I), AZ3PL(J,I), J=1, MSLP3), I=1, M) 06500 06600 7021 CONTINUE PRINT 7022, ((AZ4PL(J,I), AZ5PL(J,I), AZ6PL(J,I), AZ7PL(J,I), 06700 1J=1, MSLP4), I=1, M) 06800 WRITE(3,7055), ((AZ4PL(J,I), AZ5PL(J,I), AZ6PL(J,I), AZ7PL(J,I), 06900 1J=1, MSLP4), I=1, M) 07000 IF(ITYPE.NE.2)GO TO 7023 07100 TYPE 7022, ((AZ4PL(J,I), AZ5PL(J,I), AZ6PL(J,I), AZ7PL(J,I), 07200 07300 1J=1, MSLP4), I=1, M)07400 7023 CONTINUE

|            | PAGE: 28                                                         |
|------------|------------------------------------------------------------------|
| RS         | APPENDIX-B                                                       |
| 07500      | PRINT 7024, ((AZ8PL(J,I), J=1, MSLP5), I=1, M)                   |
| 07.600     | WRITE(3,7056),((AZ8PL(J,I),J=1,MSLP5),I=1,M)                     |
| 07700      | IF(ITYPE.NE.2)GO TO 7025                                         |
| 07800      | TYPE 7024, ((AZ8pL(J,I), J=1, MSLP5), I=1, M)                    |
| 07900 7025 | CONTINUE                                                         |
| 08000      | PRINT 7026, ((AZ9PL(J,I), J=1, MSLP6), I=1, M)                   |
| 08100      | WRITE(3,7057),((AZ9PL(J,I),J=1,MSLP6),I=1,M)                     |
| 08200      | IF(ITYPE,NE.2)GO TO 7027                                         |
| 08300      | TYPE 7026, ((AZ9pL(J,I), J=1, MSLP6), I=1, M)                    |
| 08400 7027 | CONTINUE                                                         |
| 08500      | IF(ITYPE.NE.2)GO TO 884                                          |
| 08600      | TYPE 866, OBJF31, OBJF33, (I, PF(I), TF(I), VFT(I), RATIO(I)     |
| 08700      | 1,FC3(I),FC4(I),FC5(I),FD44(I),FD22(I),FD33(I)                   |
| 08800      | 2, VCAT(I), OBJF2(I), OBJF3(I), OBJF4(I),                        |
| 08900      | 2DBED2(I), DBED3(I), HLL(I), UAR(I), UAH(I)                      |
| 09000      | 2, FD55(I), AQX(I,18), AQX(I,19), AQX(I,20), I=1, M)             |
| 09100 866  | FORMAT(/2X, 'OPTIMISATION RESULTS: '/2X                          |
| 09200      | 1, 'S.', 29X, 'DATA SET', 29X, 'MAXIMUM AMMONIA"/                |
| 09300      | 12X, 'ND. ',65X, 'PRODUCTION RATE'/70X, '(TONS PER DAY)'/        |
| 09400      | 12X,F12.4,2X,F12.4/                                              |
| 09500      | 1(1X, I3, 2X, 2F6.1, F9.1, F4.1, F5.2, F6.2, F5.2, 3F6.3, F5.1   |
| 09600      | 1,6X,F7.1,11X,F12.4,2X,F12.4/6X,2F5.2,F6.2,F6.1,F7.1,F6.3,F11.8, |
| 09700      | 1F11.8,F8.4)/)                                                   |
| 09800 884  | ISM=1;M=NOPTM                                                    |
| 09900      | PRINT 1712, OBJF2(M), PF(M), TF(M), FF1(M), VFT(M), FC1(M)       |
| 10000      | 1,FC2(M),FC3(M),FC4(M),FC5(M),FD55(M),FD44(M),FD22(M),FD33(M)    |
| 10100      | 2, VCAT(M), DBED2(M), DBED3(M), HLL(M), UAR(M), UAH(M)           |
| 10200      | IF(ITYPE.NE.2)GO TC 704                                          |
| 10300      | TYPE 1712, DBJF2(M), PF(M), TF(M), FF1(M), VFT(M), FC1(M)        |
| 10400      | 1,FC2(M),FC3(M),FC4(M),FC5(M),FD55(M),FD44(M),FD22(M),FD33(M)    |
| 10500      | 2, VCAT(M), DBED2(M), DBED3(M), HLL(M), UAR(M), UAH(M)           |
| 10600 1712 | FORMAT(/2X, 'OPTIMUM PRODUCTION RATE OF AMMONIA(TONS PER DAY)='  |
| 10700      | 1,F10.2/2X, 'OPTIMUM PARAMETERS: '/2X, 'PRESSURE(ATM)='          |
| 10800      | 2,F8.2,8X,',FEED TEMPERATURE(K)=',F8.2                           |
| 10900      | 3, ', CATALYST ACTIVITY FACTOR=', F5.2/2X,                       |
| 11000      | 4'FEED FLOW RATE(NORMAL CUBIC METER/HOUR)=', F10.2/2X,           |
| 11100      | 5'FEED COMPOSITION (MOLE %): HYDROGEN=',                         |
|            |                                                                  |

|         | RS APPENDIX=B PAGE: 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | RS APPENDIX=B<br>6F8.2,',NITROGEN=',F8.2,',AMMONIA=',F8.2,',METHANE=',F8.2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11200   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11300   | 7', ARGON=', F8.2/2X, 'COLD SHOT DISTRIBUTION:',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11400   | 7'HEAT EXCHANGER EXIT(SHELL SIDE)=',F8,3,',FIRST BED='                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11500   | 8,F8.3,',SECOND BED=',F8.3,',THIRD BED=',F8.3/2X,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11600   | 9'CATALYST VOLUME(CUBIC METER)=',F8.2,2X,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11700   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11800   | B,F5.2,':',F5.2/2X,'EXTERNAL PREHEATER VOLUME(CUBIC METER)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11900   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12100   | E',F8.2,',EXTERNAL=',F8.2/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12200   | GO TO 704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12300   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12400   | PRINT 7705, (AQX(NOFTM, J), J=18, 20), OBJF2(NOPTM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12500   | PRINT 7706, (I, (AQX(I,J), J=18,20), $OBJF2(I)$ , I=1,M)<br>PRINT 7707 (I, EGN(I), TEN(I), FEAN(I), VEAN(I), ECAN(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12600   | PRINT 7707, (I, PFN(I), TFN(I), FF1N(I), VF1N(I), FC1N(I),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12700   | 1FC2N(I), FC3N(I), FC4N(I), FC5N(I), VCATN(I), HLLN(I),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12800   | 1UARN(I), UAHN(I), FD55N(I), FD44N(I), FD22N(I), FD33N(I), DBED2N(I),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12900   | 1DBED3N(I), I=1, N5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13000   | IF(ITYPE.NE.2)GO TO 5204<br>TYPE 7707 (I DEN(I) TEN(I) FEIN(I) VEEN(I) FOIN(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13100   | TYPE 7707, (I, $PFN(I)$ , $TFN(I)$ , $FF1N(I)$ , $VFTN(I)$ , $FC1N(I)$ ,<br>1FC2N(I), $FC3N(I)$ , $FC4N(I)$ , $FC5N(I)$ , $VC4TN(I)$ , $HLIN(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13200   | $\frac{1FC2N(I),FC3N(I),FC4N(I),FC5N(I),VCATN(I),HLLN(I),}{14APN(I),HLLN(I),FC5N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N(I),FC3N($ |
| 13300   | 1UARN(I), UAHN(I), FD55N(I), FD44N(I), FD22N(I), FD33N(I), DBED2N(I),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13400   | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13500   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13600   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13700   | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13800   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13900   | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14200   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14200   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14300   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14400   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14600   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14700   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14800   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7.40.40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 200   | PAGE: 30                                                                |
|-------|-------------------------------------------------------------------------|
|       | RS APPENDIX-B                                                           |
| 14900 | 1', CH4=', F8.2,', A=', F8.2/2X, 'CATALYST VOL(M3)=', F7.2, 2X,         |
| 15000 | 1', EXT, PREHEATER VOL(M3)=', F7.2, 2X, ', HEAT EXCHANGE CAPACITIES, CA |
| 15100 | 1 K M3:INTERNAL=', F8.1,', EXTERNAL=', F8.1/2X,                         |
| 15200 | 1'COLD SHOT DISTRIBUTION:',                                             |
| 15300 | 7'HEAT EXCHANGER EXIT(SHELL SIDE)=',F8.3,',FIRST BED='                  |
| 15400 | 1,F8.3,',SECOND BED=',F8.3,',THIRD BED=',F8.3/2X,                       |
| 15500 | 1'CATALYST DISTRIBUTION: BED1: BED2: BED3:1.00:', F5.2, ':', F5.2))     |
| 15600 | GO TO 5204                                                              |
| 15700 | 704 CONTINUE                                                            |
| 15800 | IF(NOBJLP(MJK1),GE.12)GO TO 701                                         |
| 15900 | C IF(M.GT.1)GU TC 8761                                                  |
| 16000 | IF(M1LP.GT.1)GC TO 8761                                                 |
| 16100 | IF(M8LP.GT.1)GO TO 8761                                                 |
| 16200 | DO 8761 L=1, NVARI                                                      |
| 16300 | AQX8(1,L) = AQX(1,L); AQX9(1,L) = AQX(1,L)                              |
| 16400 | 8761 CONTINUE                                                           |
| 16500 | OBJF8(M1LP)=OBJF3(NOPTM)                                                |
| 16600 | OBJF5(M1LP)=OBJF4(NOPTM)                                                |
| 16700 | IF(OBJF31.EQ.0.0)GC TO 697                                              |
| 16800 | OBJF82(M1LP)=OBJF3(NOPTM)*OBJF31                                        |
| 16900 | GO TO 698                                                               |
| 17000 | 697 OBJF82(M1LP)=OBJF3(NOPTM)                                           |
| 17100 | 698 CONTINUE                                                            |
| 17200 | M1LP=M1LP+1; M=1; NOFTM=0; NVLPI=0                                      |
| 17300 | IF(NOBJLP(MJK1).GE.2)GO TO 205                                          |
| 17400 | 701 IF(MJK1.GE.M5)GD TO 204                                             |
| 17500 | MM1=MM1+1;IM=IM+1;MJK1=MJK1+1;M1LP=1;NV1LP=0;NOPTM1=0                   |
| 17600 | ISIPL2=1;ND7PL=1;M8LP=1                                                 |
| 17700 | IF(IOL2.EQ.1)GO TO 205                                                  |
| 17800 | IF(NOBJLP(MJK1).GE.2)GO TO 205                                          |
| 17900 | IF(IOP201.NE.1)GO TO 601                                                |
| 18000 | READ(8,*)PARA1,PARA2,PARA3,PARA4,IOP26,ICP29,                           |
| 18100 | 1IHH1, IHH2, IHH3, IHH4, W11, W11L, W11H, J5, M81, M15, M16, M161,      |
| 18200 | 1K7,K8,C71,C72,C73,C74,                                                 |
| 18300 | 2UV, C2, IOPT2, ICSIZE, IOPT3, IOPT8, IOPT1, IOPT4, NUMBP               |
| 18400 | PRINT 758                                                               |
| 18500 | IF(ITYPE.NE.2)GO TO 794                                                 |

|       | RS   | APPENDIX-B PAGE: 31                                                |
|-------|------|--------------------------------------------------------------------|
| 18600 | nu   | TYPE 758                                                           |
| 18700 | 758  | FORMAT(2X, 'ADDITIONAL DATA FOR SUBSEQUENT SET: '/)                |
| 18800 |      | PRINT *, PARA1, PARA2, PARA3, PARA4, 10P26, 10P29,                 |
| 18900 |      | 1IHH1, IHH2, IHH3, IHH4, W11, W11L, W11H, J5, M81, M15, M16, M161, |
| 19000 |      | 1K7,K8,C71,C72,C73,C74,FF,                                         |
| 19100 | 2    | UV,C2,IOPT2,ICSIZE,IOPT3,IOPT8,IOPT1,IOPT4,NUMBP                   |
| 19200 |      | IF(ITYPE.NE.2)GO TC 601                                            |
| 19300 |      | TYPE *, PARA1, PARA2, PARA3, PARA4, IOP26, IOP29,                  |
| 19400 |      | 1IHH1, IHH2, IHH3, IHH4, W11, W11L, W11H, J5, M81, M15, M16, M161, |
| 19500 |      | 1K7,K8,C71,C72,C73,C74,FF,                                         |
| 19600 | 2    | UV,C2,IOPT2,ICSIZE,IGPT3,IOPT8,IOPT1,IOPT4,NUMBP                   |
| 19700 | 601  | IF(IOPT2.E0.1)GO TC 205                                            |
| 19800 |      | IF(M.GT.1)IOPT2=3                                                  |
| 19900 |      | GU TU 205                                                          |
| 20000 | 602  | IF(M.EO.NDPTS)GO TC 755                                            |
| 20100 |      | M=M+1                                                              |
| 20200 | 3    | IF (OBJLPN(M).EG.0.0)GO TO 701                                     |
| 20300 |      | PATD=OBJLPN(M); MJK1=MJK1+1; APATD(MJK1)=PATD; PATD1=PATD          |
| 20400 |      | IM8=1;MLPK1=MLPK1+1;OBJF(M)=PATD                                   |
| 20500 |      | GO TO 719                                                          |
| 20600 | -    | M3LP=1;I26=0                                                       |
| 20700 | 1835 | I26=I26+1                                                          |
| 20800 |      | CALL PCONV(I26,M3LF,AQX)                                           |
| 20900 |      | IF(126.LT.M)GD TO 1835                                             |
| 21000 | 2600 | CONTINUE                                                           |
| 21100 | 10   | GO TO 755                                                          |
| 21200 | 209  | GO TO 800                                                          |
| 21300 |      | IF(MJK1-M5)206,728,204                                             |
| 21400 |      | IF(IOPT2-2)204,1907,719                                            |
| 21500 | 204  | IF(10L2.NE.1)GO TO 5204                                            |
| 21600 |      | IF(MLPK1.EQ.M5)GO TO 5214                                          |
| 21700 |      | OBJF2(M)=SSE/(M5-MLPK1);MJK1=1                                     |
| 21800 |      | IF(0BJF2(1).EQ.0.0)GO TO 692                                       |
| 21900 |      | OBJF(M) = -OBJF2(M)/OBJF2(1)                                       |
| 22000 |      | GO TO 693                                                          |

| The Mark | Sec.  | PAGE: 32                                                        |
|----------|-------|-----------------------------------------------------------------|
|          | RS    | APPENDIX-B                                                      |
| 00100    | 692   | OBJF(M)==OBJF2(M)                                               |
| 00200    | 693   | CONTINUE                                                        |
| 00300    |       | ML1KP=M5=MLPK1                                                  |
| 00400    |       | SSE=SSE/ML1KP;SSE1=SSE1/ML1KP;SSE2=SSE2/ML1KP;SSE3=SSE3/ML1KP   |
| 00500    |       | SSE4=SSE4/ML1KP;SSE5=SSE5/ML1KP;SSE6=SSE6/ML1KP;SSE7=SSE7/ML1KP |
| 00600    |       | SSE8=SSE8/ML1KP                                                 |
| 00700    |       | IF(M.NE.1)GO TO 92                                              |
| 00800    |       | SES=SSE; SES1=SSE1; SES2=SSE2; SES3=SSE3; SES4=SSE4; SES5=SSE5  |
| 00900    |       | SES6=SSE6;SES7=SSE7;SES8=SSE8                                   |
| 01000    |       | GO TO 92                                                        |
| 01100    | 5214  | MJK1=1;0BJF2(M)=100*0BJF2(1);0BJF(M)=-100.0                     |
| 01200    |       | GO TO 92                                                        |
| 01300    | 1907  | GO TO 719                                                       |
| 01400    | 710   | CONTINUE                                                        |
| 01500    |       | IF(IOL2.EQ.1)GO TO 701                                          |
| 01600    | 1     | M=1                                                             |
| 01700    | 2     | GO TO 701                                                       |
| 01800    | 206   | IF(IOPT2-2)710,1907,719                                         |
| 01900    | 800   | IF(IOPT4.EG.2)GO TO 1703                                        |
| 02000    | N     | 11K1=1                                                          |
| 02100    | 1     | IF(IOPT2.NE.1) GO TO 605                                        |
| 02200    | (     | GO TO 614.                                                      |
| 02300    | 605   | CONTINUE                                                        |
| 02400    | 614   | IF(IOPT2.NE.1)GO TO 620                                         |
| 02500    | (     | GO TO 1703                                                      |
| 02600.   | 620   | CONTINUE                                                        |
| 02700    | 1703  | IF(ISM.EQ.1)GO TO 764                                           |
| 02800    | 1     | IF(I0L2.EQ.1)GC TO 764                                          |
| 02900    | 755 ( | CONTINUE                                                        |
| 03000    | 854   | CONTINUE                                                        |
| 03100    |       | N2LEP=LPOBJN(MJK1)                                              |
| 03200    |       | IF(ITYP11.NE.1)N2LEP=1                                          |
| 03300    |       | CALL FUNOBJ(OBJF, M, N2LEP, PATD, OBLPN(ILPS2)                  |
| 03400    |       | 1,SSE,SSE1,SSE2,SSE3,                                           |
| 03500    |       | 1SSE4, SSE5, SSE6, SSE7, SSE8, SES, SES1, SES2, SES3, SES4      |
| 03600    |       | 1,SES5,SES6,SES7,SES8,OBJF32)                                   |
| 03700    |       | CALL FUNOBJ(OBJF3, M, LPOBJN(MJK1), PATD, OBLPN(ILPS2)          |

|       |       | PAGE: 33                                                   |
|-------|-------|------------------------------------------------------------|
|       | RS    | APPENDIX-B                                                 |
| 03800 |       | 1,SSE,SSE1,SSE2,SSE3,                                      |
| 03900 |       | 1SSE4, SSE5, SSE6, SSE7, SSE8, SES, SES1, SES2, SES3, SES4 |
| 04000 |       | 1, SES5, SES6, SES7, SES8, OBJF31)                         |
| 04100 |       | CALL FUNOBJ(OBJF4, M, NOBLP1, PATD, OBLPN(ILPS2)           |
| 04200 |       | 1,SSE,SSE1,SSE2,SSE3,                                      |
| 04300 |       | 1SSE4, SSE5, SSE6, SSE7, SSE8, SES, SES1, SES2, SES3, SES4 |
| 04400 |       | 1, SES5, SES6, SES7, SES8, DEJF33)                         |
| 04500 | 857   | CALL OPTIMA(OBJF, M, AGX, AGX1, IOPT8, NVARI, AC2, NLEV,   |
| 04600 |       | 1NOPTM, TOL8, NMAX1, NDPTS, XLPX,                          |
| 04700 |       | 10BLPF, NLN8, ALPC1, YLPN, IOL8P)                          |
| 04800 |       | SSE=0.0;SSE1=0.0;SSE2=0.0;SSE3=0.0;SSE4=0.0;SSE5=0.0       |
| 04900 |       | SSE6=0.0;SSE7=0.0;SSE8=0.0                                 |
| 05000 |       | IF (NOPTM.NE.O) GO TO 1709                                 |
| 05100 |       | NDPTS2=NDPTS*NDLPS                                         |
| 05200 |       | IF(M.GE.ND2PL)GO TC 881                                    |
| 05300 | 1     | ISM=ISM+1 ; IM=1                                           |
| 05400 | 12-13 | IF(IOPT8-2)1844,1808,1817                                  |
| 05500 | 881   | NOPTM=NMAX1;M=M-1                                          |
| 05600 |       | GO TO 1709                                                 |
| 05700 | 1808  | CALL INTEGR(AQX, NVARI, M)                                 |
| 05800 |       | GO TO 862                                                  |
| 05900 | 1817  | CALL MLEVEL (AQX, NVARI, AQX1, M, NLEV)                    |
| 06000 | 1     | GO TO 862                                                  |
| 06100 | 1844  | CONTINUE                                                   |
| 06200 | 862   | CONTINUE                                                   |
| 06300 |       | I26=M                                                      |
| 06400 |       | M3LP=2                                                     |
| 06500 |       | CALL PCONV(126, M3LF, AQX)                                 |
| 06600 |       | IF(M.LE.NDPTS)GO TO 7224                                   |
| 06700 |       | CALL ACOMP(LPIK, AQX, M, NVARI)                            |
| 06800 |       | IF(LPIK.EQ.0)GO TO 7224                                    |
| 06900 |       | OBJF3(M)=OBJF3(LPIK);OBJF4(M)=OBJF4(LPIK)                  |
| 07000 |       | OBJF(M)=OBJF(LPIK);PATD=OBJF(LPIK)*OBLPN(ILPS2);LPIK=0     |
| 07100 |       | IF(ISM.EQ.1)GO TO 764                                      |
| 07200 |       | GO TO 857                                                  |
| 07300 | С     | OUTPUT STATEMENTS PROGRAM                                  |
| 07400 | 404   | PRINT 403, IJ1, IJ2, IJ3, IJ4                              |

|       | PAGE: 34                                                                    |
|-------|-----------------------------------------------------------------------------|
|       | RS APPENDIX=B                                                               |
| 07500 | IF(ITYPE.NE.2)GO TO 405                                                     |
| 07600 | TYPE 403, IJ1, IJ2, IJ3, IJ4                                                |
| 07700 | 403 FORMAT(/1X, 57X, 6HSTART // 44X, 6HDATE: , I3, 2H, I3, 2H, I5, 9H; R    |
| 07800 | 1UN NO. , IS // 2X, 62HNAME OF THE STUDENT(PART TIME) SUDHINDRA             |
| 07900 | 2NATH SINHA, LECTURER // 2X,81HDEPARTMENT OF CHEMICAL ENGINEERI             |
| 08000 | 3NG, UNIVERSITY OF ROORKEE, ROORKEE(U.P.), PIN 247667 //2X, PHD THE         |
| 08100 | 4SIS PROBLEM : STABILITY ANALYSIS AND OPTIMIZATION OF A MULTIBED            |
| 08200 | SQUENCH REACTOR FOR AMMONIA SYNTHESIS 1/                                    |
| 08300 | 5 /2X, 'PHD. THESIS SUPERVISOR: DR. SHANT KUMAR SARAF, SC. D. (M. I         |
| 08400 | 6.T., U.S.A.), PROFESSOR, DEPTT. OF CHEM.ENGG., UNIVERSITY OF ROORKEE'      |
| 08500 | 7//)                                                                        |
| 08600 | GO TO 405                                                                   |
| 08700 | 407 CONTINUE                                                                |
| 08800 | IF(ITYPE8.NE.1)GO TO 287                                                    |
| 08900 | IF(M,EO,1) GO TO 632                                                        |
| 09000 | IF(IOPT2=2)632,638,647                                                      |
| 09100 | 647 IF(M.GT.NDPTS) GC TO 638                                                |
| 09200 | 632 PRINT 408, XW, UV, VFIN(MJK1), FC1N(MJK1), FC2N(MJK1), FC3N(MJK1),      |
| 09300 | 1FC4N(MJK1), FC5N(MJK1), AFD4, AFD2, AFD3, AFD01, ZC1, ZC2, ZC3, HCL, RUAI  |
| 09400 | IF(ITYPE.NE.2)GO TC 806                                                     |
| 09500 | TYPE 408,XW,UV,VFTN(MJK1),FC1N(MJK1),FC2N(MJK1),FC3N(MJK1),                 |
| 09600 | 1FC4N(MJK1), FC5N(MJK1), AFD4, AFD2, AFD3, AFD01, ZC1, ZC2, ZC3, HCL, RUAI  |
| 09700 | GO TO 806                                                                   |
| 09800 | 638 PRINT408, XW, UV, VFT(M), FC1(M), FC2(M), FC3(M), FC4(M)                |
| 09900 | 1,FC5(M),AFD4,AFD2,AFD3,AFD01,ZC1,ZC2,ZC3,                                  |
| 10000 | 2HCL, RUAT                                                                  |
| 10100 | IF(ITYPE.NE.2)GO TO 806                                                     |
| 10200 | TYPE 408, XW, UV, VFT(M), FC1(M), FC2(M), FC3(M), FC4(M)                    |
| 10300 | 1,FC5(M),AFD4,AFD2,AFD3,AFD01,ZC1,ZC2,ZC3,                                  |
| 10400 | 2HCL, RUAI                                                                  |
| 10500 | 408 FORMAT( 2X, 'FEED : FRESSURE(ATM)=', F7.1, '; TEMP.(K)=', F7.1          |
| 10600 | 1//2X, VOLUMETRIC FLOW RATE OF TOTAL FEED (NORMAL CUBIC METER/HOUR)=        |
| 10700 | 2',F10.1//2X, 'FEED COMPOSITION (MOLE ): '/2X, 'HYDROGEN',                  |
| 10800 | 35X, F8.2/2X, 'NITROGEN', 5X, F8.2/2X, 'AMMONIA', 6X, F8.2/2X, 'METHANE',   |
| 10900 | 46X,F8.2/2X, 'ARGON', 8X,F8.2//2X, 'COLD SHOT DISTRIBUTION:FIRST BED="      |
| 11000 | 5, F6.3, ', SECOND BED=', F6.3, ', THIRD BED=', F6.3, '= EXTERNAL PREHEATER |
| 11100 | 6FEED=', F6.3// 2X,                                                         |
|       |                                                                             |

|       | RS APPENDIX-B PAGE: 35                                                     |
|-------|----------------------------------------------------------------------------|
| 11200 | 7'CATALYST SPLIT IN CUBIC METER: FIRST BED=',                              |
| 11200 | 8F7.1,12H, SECOND BED=, F7.1,11H, THIRD BED=, F7.1 / 2X,40HHEAT EXCH       |
| 11300 | 9ANGER TUBE SIDE VOLUME(CU.MR.)=,F7.1/2X,52HRATE OF HEAT TRANSFER/(        |
|       |                                                                            |
| 11500 | ATEMP.DIFFERENCE)FOR REACTOR= , F7.1 )                                     |
| 11600 | 806 PRINT807, HUAI ,F                                                      |
| 11700 | IF(ITYPE.NE.2)GO TO 287                                                    |
| 11800 | TYPE 807, HUAI ,F                                                          |
| 11900 | 807 FORMAT(2X, 42HHEAT TRANSFER CAPACITY FOR HEAT EXCHANGER=,              |
| 12000 | 1F8.1,42H CAL./(SEC)(K)(CU.MR.OF TUBE SIDE VOLUME) /2X,                    |
| 12100 | 225HCATALYST ACTIVITY FACTOR= ,F5.2/)                                      |
| 12200 | GO TO 287                                                                  |
| 12300 |                                                                            |
| 12400 | IF(N81,EQ.1)GO TO 875                                                      |
| 12500 |                                                                            |
| 12600 | IF(IOP12.EO.1)GO TC 566                                                    |
| 12700 | JJ1=J1=1;JJ2=J1=2                                                          |
| 12800 | PRINT 560, ((I, GR1AV(I, K1), WRXN(I, K1), WRXNS(I, K1), RINTL(I, K1),     |
| 12900 | 1SINTL(I,K1), I=1, JJ2, M162), JJ1, QR1AV(JJ1,K1), WRXN(JJ1,K1),           |
| 13000 | 1WRXNS(JJ1,K1),RINTL(JJ1,K1),SINTL(JJ1,K1),K1=1,3)                         |
| 13100 | IF(ITYPE,NE,2)GO TC 566                                                    |
| 13200 | TYPE 560, ((I, QR1AV(I, K1), WRXN(I, K1), WRXNS(I, K1), RINTL(I, K1),      |
| 13300 | 1SINTL(I,K1), I=1, JJ2, M162), JJ1, QR1AV(JJ1,K1), WRXN(JJ1,K1),           |
| 13400 | 1WRXNS(JJ1,K1),RINTL(JJ1,K1),SINTL(JJ1,K1),K1=1,3)                         |
| 13500 | 560 FORMAT(3X,'I',3X,'RATEAV',5X,'DRT',2X,'SUM DRT',1X, INTEGRAL',         |
| 13600 | 11X, 'SUM INTGL'/(I5,5E9.2,14,5E9.2))                                      |
| 13700 | 566 IF(IOP11.EG.1)GO TO 321                                                |
| 13800 | IF(ITYPE8.NE.1)GO TO 321                                                   |
| 13900 | IF(IOPT3.EQ.1) GO TO 452                                                   |
| 14000 | 875 PRINT 406, ((AZP(M1,K1), AP(M1,K1), ANX(M1,K1), AT(M1,K1), ATH(M1,K1), |
| 14100 | 1ACX(M1,K1),ACT(M1,K1),ACTH(N1,K1),M1=M15                                  |
| 14200 | 2,M12(K11),M16),K1=K7,K5,K8)                                               |
| 14300 | IF(ITYPE.NE.2)GO TO 416                                                    |
| 14400 | TYPE 406, ((AZP(N1, K1), AP(M1, K1), ANX(M1, K1), AT(M1, K1), ATH(M1, K1), |
| 14500 | 1ACX(M1,K1),ACT(M1,K1),ACTH(M1,K1),M1=M15                                  |
| 14600 | 2,M12(K11),M16),K1=K7,K5,K8)                                               |
| 14700 | 406 FORMAT( 1X,24X,44HREACTOR CONVERSION AND TEMPERATURE PROFILES //       |
| 14800 | 1 11X, 'REACTOR ', 5X, 8HPRESSURE, 4X, ' AMMONIA ', 5X,                    |

|       | PAGE: 36                                                                             |
|-------|--------------------------------------------------------------------------------------|
|       | RS APPENDIX=B<br>29HBED TEMP.,2X,9HPREHEATER,3X,42HDIFF.IN VALUE OBTAINED AND LAST I |
| 14900 |                                                                                      |
| 15000 |                                                                                      |
| 15100 | 4E )', 5X,10H(DEGREE K), 2X, 8HTEMP, (K), 3X,10HCONVERSION, 5X, 9HBED TEM            |
| 15200 | 5P., 5X, 15HPREHEATER TEMP. //(4X, F10.2, 10X, F8.2, 3X, F10.3, 5X,                  |
| 15300 | 6F8.1, 3X, F8.1, 4X, F10.6, 4X, F10.6, 8X, F10.6 / ))                                |
| 15400 |                                                                                      |
| 15500 | PRINT 1701, ((AZP(M1,K1), AXE(M1,K1), AXEN(M1,K1), AXRM(M1,K1), AXRMN                |
| 15600 | 1(M1,K1),M1=M15,M12(K11),M16),K1=K7,KL51,K8)                                         |
| 15700 | IF(IOLP8.EG.2)GO TO 587                                                              |
| 15800 |                                                                                      |
| 15900 |                                                                                      |
| 16000 |                                                                                      |
| 16100 |                                                                                      |
| 16200 |                                                                                      |
| 16300 | TYPE 1701, ((AZP(M1,K1), AXE(M1,K1), AXEN(M1,K1), AXRM(M1,K1), AXRMN                 |
| 16400 | 1(M1,K1),M1=M15,M12(K11),M16),K1=K7,KL51,K8)                                         |
| 16500 | IF(IOLP8.EQ.2)GO TO 321                                                              |
| 16600 |                                                                                      |
| 16700 |                                                                                      |
| 16800 | GO TO 321                                                                            |
| 16900 |                                                                                      |
| 17000 | 1 M1=M15,M12(K11),M161),(A2P(M1,K1),AP(M1,K1),ANX(M1,K1),AT(M1,K1),                  |
| 17100 | 2 ATH(M1,K1),M1=M12(K11),M12(K11)),K1=K7,K5,K8)                                      |
| 17200 | IF(ITYPE.NE.2)GO TO 461                                                              |
| 17300 | TYPE 458, ((AZP(M1,K1), AP(M1,K1), ANX(M1,K1), AT(M1,K1), ATH(M1,K1),                |
| 17400 | 1 N1=M15, M12(K11), M161), (AZP(M1, K1), AP(M1, K1), ANX(M1, K1), AT(M1, K1),        |
| 17500 | 2 ATH(M1,K1),M1=M12(K11),M12(K11)),K1=K7,K5,K8)                                      |
| 17600 | 458 FORMAT(1X, 24X, 'REACTOR CONVERSION AND TEMPERATURE PROFILES:*                   |
| 17700 | 1//3X, 'REACTOR CATALYST', 5X, 'PRESSURE', 4X, ' AMMONIA', 5X,                       |
| 17800 | 2'BED TEMP.', 2X, 'PREHEATER'/3X, 'BED VOLUME (PERCENT)', 3X                         |
| 17900 | 3, '(ATM)', 5X, ' (MOLE')', 5X, '(DEGREE K)', 2X, 'TEMP.(K)'//                       |
| 18000 | 4(4X,F10.2,10X,F8.2,3X,F10.3,5X,F8.1,3X,F8.1/))                                      |
| 18100 |                                                                                      |
| 18200 |                                                                                      |
| 18300 | 1AXRMN(M1,K1),M1=M15,M12(K11),M161),K1=K7,KL51,K8)                                   |
| 18400 | IF(IOLP8.EQ.2)GO TO 596                                                              |
| 18500 | C PRINT 593, (((AXE2(MLPK, M1, K1), AXRM2(MLPK, M1, K1), MLPK=1, 4),                 |

|       | RS     | APPENDIX-B PAGE: 37                                                    |
|-------|--------|------------------------------------------------------------------------|
| 18600 |        | 1M1=M15,M12(K11),M16),K1=K7,KL51,K8)                                   |
| 18700 |        | IF(ITYPE.NE.2)GO TO 321                                                |
| 18800 | 390    | TYPE 1701 , ((AZP(M1,K1), AXE(M1,K1), AXEN(M1,K1), AXRM(M1,K1),        |
| 18900 |        | 1AXRMN(M1,K1),M1=M15,M12(K11),M161),K1=K7,KL51,K8)                     |
| 19000 |        | IF(IOLP8.EQ.2)G0 TO 321                                                |
| 19000 | C      | TYPE 593, (((AXE2(MLPK, M1, K1), AXRM2(MLPK, M1, K1), MLPK=1, 4),      |
| 19100 |        | 1M1=M15,M12(K11),M16),K1=K7,KL51,K8)                                   |
| 19200 |        |                                                                        |
| 19300 | TIOT   | 13X, '(PERCENT)', 16X, 'CONVERSION', 21X, 'AT MAXIMUM RATE'/ 23X,      |
| 19400 |        | 2'HYDROGEN', 3X, 'MOLE & AMMONIA', 9X, 'HYDROGEN', 4X, MOLE & AMMO     |
| 19500 |        | 3NIA'//(2X,F10.2, 9X,F10.3, 5X,F10.3, 6X,F10.3, 5X,F10.3/))            |
| 19500 |        | GO TO 321                                                              |
| 19800 | 138    | CONTINUE                                                               |
| 19900 | 130    | IF(IOP12.EQ.1)GO TO 565                                                |
| 20000 |        | JJ1=d1=1;JJ2=J1=2                                                      |
| 20100 | 1      | PRINT 560, ((I, GR1AV(I, K1), WRXN(I, K1), WRXNS(I, K1), RINTL(I, K1), |
| 20200 |        | 1SINTL(I,K1), I=1, JJ2, M162), JJ1, QR1AV(JJ1,K1), WRXN(JJ1,K1),       |
| 20300 |        | 1WRXNS(JJ1,K1),RINIL(JJ1,K1),SINTL(JJ1,K1),K1=1,3)                     |
| 20400 |        | IF(ITYPE.NE.2)GO TO 565                                                |
| 20500 |        | TYPE 560, ((I, QR1AV(I, K1), WRXN(I, K1), WRXNS(I, K1), RINTL(I, K1),  |
| 20600 |        | 1SINTL(I,K1), I=1, JJ2, M162), JJ1, QR1AV(JJ1,K1), WRXN(JJ1,K1),       |
| 20700 | Sec. 1 | 1WRXNS(JJ1,K1), RINIL(JJ1,K1), SINIL(JJ1,K1),K1=1,3)                   |
| 20800 | 565    | IF(IOP11.EQ.1)GO TO 209                                                |
| 20900 |        | IF(ITYPE8.NE.1)GO TO 209                                               |
| 21000 |        | IF(IOPT3.EQ.1)GO TO 139                                                |
| 21100 |        | PRINT 406, ((AZP(M1,K1), AP(M1,K1), ANX(M1,K1),                        |
| 21200 |        | 1AT(M1,K1),ATH(M1,K1),ACX(M1,K1),ACT(M1,K1),ACTH(M1,K1), M1=M15,       |
| 21300 |        | 2N12(K11),M16),K1=K7,K5,K8)                                            |
| 21400 |        | IF(ITYPE.NE.2)GO TO 209                                                |
| 21500 |        | TYPE 406, ((AZP(M1,K1), AP(M1,K1), ANX(M1,K1),                         |
| 21600 |        | 1AT(M1,K1),ATH(M1,K1),ACX(M1,K1),ACT(M1,K1),ACTH(M1,K1), M1=M15,       |
| 21700 |        | 2M12(K11),M16),K1=K7,K5,K8)                                            |
| 21800 |        | GO TO 209                                                              |
| 21900 | 139    | PRINT 458, ((AZP(M1,K1), AP(M1,K1), ANX(M1,K1), AT(M1,K1), ATH(M1,K1), |
| 22000 |        | 1 M1=M15,M12(K11),M161),(AZP(M1,K1),AP(M1,K1),ANX(M1,K1),AT(M1,K1),    |
| 22100 |        | 2 ATH(M1,K1),M1=M12(K11),M12(K11)),K1=K7,K5,K8)                        |
| 22200 |        | IF(ITYPE.NE.2)GO TO 209                                                |
|       |        |                                                                        |

| June 19 | PAGE: 38                                                               |
|---------|------------------------------------------------------------------------|
|         | RS APPENDIX-B                                                          |
| 22300   | TYPE 458, ((AZP(M1,K1), AP(M1,K1), ANX(M1,K1), AT(M1,K1), ATH(M1,K1),  |
| 22400   | 1 M1=M15,M12(K11),M161),(AZP(M1,K1),AP(M1,K1),ANX(M1,K1),AT(M1,K1),    |
| 22500   | 2 ATH(M1,K1),M1=M12(K11),M12(K11)),K1=K7,K5,K8)                        |
| 22600   | GO TO 209                                                              |
| 22700   |                                                                        |
| 22800   | IF(ITYPE8.NE.1)GO TO 260                                               |
| 22900   | PRINT 423, M7, W1, DELT1, (K1, ANX(1, K1)                              |
| 23000   | 1, AXEN(1, K1), AXRMN(1, K1), AX(1, K1), AT(1, K1), ATH(1, K1)         |
| 23100   | 1,EFZI8(1,K1)                                                          |
| 23200   | 1, QR1B(1, K1), ALPS8(K1), AXMAX(K1), ATMAX(K1), ATHMAX(K1)            |
| 23300   | 1, ANX(M12(K1), K1), AXEN(M12(K1), K1), AXRMN(M12(K1), K1)             |
| 23400   | 1, AX(H12(K1), K1), AT(M12(K1), K1)                                    |
| 23500   | 1,ATH(M12(K1),K1),EFZI8(M12(K1),K1)                                    |
| 23600   | 1, OR1B(M12(K1), K1), EFZIA(K1), PDROP(K1)                             |
| 23700   | 1, AP(M12(K1), K1), K1=1, KL51)                                        |
| 23800   | IF(HL.EQ.0.0)GO TO 8427                                                |
| 23900   | PRINT 707, AT(1, K5), ATH(1, K5), AT(M12(K5), K5),                     |
| 24000   | 1ATH(M12(K5),K5),PDROP(K5),AP(M12(K5),K5),TPRD                         |
| 24100   |                                                                        |
| 24200   | IF(ITYPE.NE.2)GO TO 260                                                |
| 24300   | TYPE 423, M7, W1, DELT1, (K1, ANX(1, K1)                               |
| 24400   | 1, AXEN(1, K1), AXRMN(1, K1), AX(1, K1), AT(1, K1), ATH(1, K1)         |
| 24500   | 1,EFZI8(1,K1)                                                          |
| 24600   | 1, OR1B(1,K1), ALPSB(K1), AXMAX(K1), ATMAX(K1), ATHMAX(K1)             |
| 24700   | 1, ANX(M12(K1), K1), AXEN(M12(K1), K1), AXRMN(M12(K1), K1)             |
| 24800   | 1,AX(M12(K1),K1),AT(M12(K1),K1)                                        |
| 24900   | 1,ATH(M12(K1),K1),EFZI8(M12(K1),K1)                                    |
| 25000   | 1, OR1B(M12(K1), K1), EFZIA(K1), PDROP(K1)                             |
| 25100   | 1, AP(M12(K1), K1), K1=1, KL51)                                        |
| 25200   | IF(HL_EQ.0.0)GD TO 260                                                 |
| 25300   | TYPE 707, AT(1, K5), ATH(1, K5), AT(M12(K5), K5),                      |
| 25400   | 1ATH(M12(K5),K5),PDROP(K5),AP(M12(K5),K5),TPRD                         |
| 25500   | 423 FORMAT(1X,14HITERATION NO.=,12,52H,ASSUMED INTERNAL PREHEATER OUTL |
| 25600   | 1ET STREAM TEMP.(K)= ,F6.1,1X,',CAL.AND GIVEN FEED TEMP.DIFF.(K)='     |
| 25700   | 2, F7.1/16X, 'NH3 MOLE ', 7X, 'H2 FR.', 1X, 'BED',                     |
| 25800   | 25X, 'SHELL', 3X, 'EFF.', 8X, 'RATE', 8X, 'MAXIMA IN BED' /            |
| 25900   | 211X, 'ACTUAL EGU. MAX.RATE', 1X, 'CONV.'                              |
|         |                                                                        |

|     |       | DE    | APPENDIX-B PAGE: 39                                                                              |
|-----|-------|-------|--------------------------------------------------------------------------------------------------|
|     | 06000 | RS    | 2,2X, 'TEMP,K',2X, 'TEMP,K',2X, 'FACTOR'                                                         |
|     | 26000 |       | 2,12X, 'EMP, K', 2X, 'IEMP, K', 2X, 'FACTOR'<br>2,12X, 'VOL.', 2X, 'H2 FR.CONV.', 2X, 'BED T(K)' |
|     |       |       | 2,2X, 'SHELL T(K)'/(                                                                             |
|     | 26200 | 1     | 22X, 'BED NO.=', 13 /2X, 'INLET', 3X, F6, 3                                                      |
|     | 26300 |       | 2,1X,F6.3,1X,F6.3,1X,F6.3,1X,F7.1,1X,F7.1                                                        |
|     | 26400 |       | 2,1X,F7.3,1X,E10.3,1X,F6.2,3X,F8.3,5X,F7.1,2X,F7.1/2X, EXIT                                      |
|     | 26500 |       | 2,4X,F6.3,1X,F6.3,1X,F6.3,1X,F6.3                                                                |
|     | 26600 |       | 2,1X,F7.1,1X,F7.1,1X,F7.3,1X,E10.3                                                               |
|     | 26800 |       | 2/2X, 'AVERAGE EFFECTIVENESS FACTOR=', F8.3                                                      |
|     | 26900 |       | 2,2X, 'AVERAGE EFFECTIVEREDO TREACHER /10.3                                                      |
|     | 27000 |       | 2', EXIT PRESSURE(ATN)=', F8.2))                                                                 |
|     | 27100 | 707   | FORMAT(2X, 'HEAT EXCHANGER:'/2X,                                                                 |
|     | 27200 | 101   | 2'INLET', 31X, F7.1, 1X, F7.1/2X, 'EXIT', 32X, F7.1, 1X, F7.1/                                   |
| 1   | 27300 | 1     | 22X, 'TUBE SIDE PRESSURE DROP(ATM)=', F8.2, 2X, ', EXIT PRESSURE(ATM)=                           |
|     | 27400 |       | 2,F8+2,',TOTAL PRESSURE DROP(ATM)=',F8-2)                                                        |
|     | 27500 | G     | 0 TO 260                                                                                         |
|     |       | 424   | TPRD=XW-AP(M12(K5),K5)                                                                           |
|     | 27700 |       | IF(ITYPE8.NE.1)GD TO 1260                                                                        |
|     | 27800 |       | PRINT 423, M7, W2, DELT2, (K1, ANX(1, K1)                                                        |
|     | 27900 |       | 1, AXEN(1, K1), AXRMN(1, K1), AX(1, K1), AT(1, K1), ATH(1, K1)                                   |
|     | 28000 |       | 1,EFZI8(1,K1)                                                                                    |
|     | 28100 | and a | 1, OR1B(1,K1), ALPS8(K1), AXMAX(K1), ATMAX(K1), ATHMAX(K1)                                       |
|     | 28200 | 100   | 1, ANX(M12(K1), K1), AXEN(M12(K1), K1), AXRMN(M12(K1), K1)                                       |
|     | 28300 |       | 1,AX(M12(K1),K1),AT(M12(K1),K1)                                                                  |
| -   | 28400 | Sec.  | 1,ATH(M12(K1),K1),EFZI8(M12(K1),K1)                                                              |
|     | 28500 | 1.    | 1, QR1B(M12(K1), K1), EFZIA(K1), PDROP(K1)                                                       |
|     | 28600 |       | 1, AP(M12(K1), K1), K1=1, KL51)                                                                  |
|     | 28700 |       | IF(HL.EQ.0.0)GC TO 8429                                                                          |
| -   | 28800 |       | PRINT 707,AT(1,K5),ATH(1,K5),AT(M12(K5),K5),                                                     |
| :   | 28900 |       | 1ATH(M12(K5), K5), PDROP(K5), AP(M12(K5), K5), TPRD                                              |
| :   | 29000 | 8429  | CONTINUE                                                                                         |
| 1   | 29100 |       | IF(ITYPE.NE.2)GO TO 1260                                                                         |
|     | 29200 |       | TYPE 423, M7, W2, DELT2, (K1, ANX(1, K1)                                                         |
|     | 29300 |       | 1, AXEN(1, K1), AXRMN(1, K1), AX(1, K1), AT(1, K1), ATH(1, K1)                                   |
|     | 29400 |       | 1,EFZI8(1,K1)                                                                                    |
| ••• | 29500 |       | 1, QR1B(1, K1), ALPS8(K1), AXMAX(K1), ATMAX(K1), ATHMAX(K1)                                      |
|     | 29600 |       | 1, ANX(M12(K1), K1), AXEN(M12(K1), K1), AXRMN(M12(K1), K1)                                       |
|     |       |       |                                                                                                  |

|       | RS       | APPENDIX-B PAGE: 40                                            |
|-------|----------|----------------------------------------------------------------|
| 29700 | KO       | 1,AX(M12(K1),K1),AT(M12(K1),K1)                                |
|       |          | 1,ATH(M12(K1),K1),EFZI8(M12(K1),K1)                            |
| 29800 |          | 1, OR1B(M12(K1), K1), EFZIA(K1), PDROP(K1)                     |
| 29900 |          | 1, AP(M12(K1), K1), K1=1, KL51)                                |
| 30000 |          | IF(HL.EQ.0.0)GC TO 1260                                        |
| 30100 |          | TYPE 707,AT(1,K5),ATH(1,K5),AT(M12(K5),K5),                    |
| 30200 |          | 1ATH(M12(K5),K5),PDROP(K5),AP(M12(K5),K5),TPRD                 |
| 30300 |          |                                                                |
| 30400 |          | 0 TO 1260                                                      |
| 30500 | 427      | TPRD=XW=AP(N12(K5),K5)                                         |
| 30600 |          | IF(ITYPE8.NE.1)GO TO 1520                                      |
| 30700 |          | PRINT 423, M7, W3, DELT3, (K1, ANX(1, K1)                      |
| 30800 |          | 1, AXEN(1, K1), AXRMN(1, K1), AX(1, K1), AT(1, K1), ATH(1, K1) |
| 30900 | 1        | 1,EFZI8(1,K1)                                                  |
| 31000 | 1. S.    | 1, QR1B(1, K1), ALPS8(K1), AXMAX(K1), ATMAX(K1), ATHMAX(K1)    |
| 31100 | See.     | 1, ANX(M12(K1), K1), AXEN(M12(K1), K1), AXRMN(M12(K1), K1)     |
| 31200 | 1.6      | 1, AX(M12(K1), K1), AT(M12(K1), K1)                            |
| 31300 |          | 1,ATH(M12(K1),K1),EFZI8(M12(K1),K1)                            |
| 31400 |          | 1, OR1B(M12(K1), K1), EFZIA(K1), PDROP(K1)                     |
| 31500 |          | 1, AP(M12(K1), K1), K1=1, KL51)                                |
| 31600 | -        | IF(HL.EQ.0.0)GC TO 8430                                        |
| 31700 | Long and | PRINT 707, AT(1, K5), ATH(1, K5), AT(M12(K5), K5),             |
| 31800 |          | 1ATH(M12(K5),K5),PDROP(K5),AP(M12(K5),K5),TPRD                 |
| 31900 | 8430     | CONTINUE                                                       |
| 32000 |          | IF(ITYPE.NE.2)GO TO 1520                                       |
| 32100 | 1        | TYPE 423, M7, W3, DELT3, (K1, ANX(1, K1)                       |
| 32200 | 200      | 1, AXEN(1, K1), AXRMN(1, K1), AX(1, K1), AT(1, K1), ATH(1, K1) |
| 32300 | 1        | 1,EFZI8(1,K1)                                                  |
| 32400 | 1        | 1, OR1B(1, K1), ALPS8(K1), AXMAX(K1), ATMAX(K1), ATHMAX(K1)    |
| 32500 |          | 1, ANX(M12(K1), K1), AXEN(M12(K1), K1), AXRMN(M12(K1), K1)     |
| 32600 |          | 1, AX(H12(K1), K1), AT(M12(K1), K1)                            |
| 32700 |          | 1, ATH(M12(K1), K1), EFZI8(M12(K1), K1)                        |
| 32800 |          | 1, QR1B(M12(K1), K1), EF2IA(K1), PDROP(K1)                     |
| 32900 |          | 1, AP(H12(K1), K1), K1=1, KL51)                                |
| 33000 |          | IF(HL.EQ.0.0)GO TO 1520                                        |
| 33100 |          | TYPE 707, AT(1, K5), ATH(1, K5), AT(M12(K5), K5),              |
| 33200 |          | 1ATH(M12(K5),K5), PDR0P(K5), AP(M12(K5),K5), TPRD              |
| 33300 | G        | O TO 1520                                                      |

|                | RS APPENDIX=B PAGE: 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33400          | 71 PRINT 74, M7, K11, J1, AT(MQ1, K11), AX(MQ1, K11), ATH(MQ1, K11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33500          | IF(ITYPE.NE.2)GO TO 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33600          | TYPE 74, M7, K11, J1, AT(MQ1, K11), AX(MQ1, K11), ATH(MQ1, K11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33700          | 74 FORMAT(1X,14HITERATION NO.= ,13,21H,CATALYST BED NUMBER= ,13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33800          | 115H, BED POINT NO.= ,15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33900          | 2', BED TEMP.AT THIS POINT IS BELOW MINIMUM DESIRED(K)=" ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 34000          | 3F8.1//2X, 'AT THIS PT.FR. CONVERSION OF HYDROGEN= ', F8.3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 34100          | 4'SHELL SIDE TEMP. (K)=' ,F8.1/2X, 'THEREFORE SWITCHING TO NEXT ITERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 34200          | 5TION BY ASSUMING ANOTHER TEMPERATURE (/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 34300          | GO TO 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 34400          | 72 PRINT 74, H7, K11, J1, AT(MQ1, K11), AX(MQ1, K11), ATH(MQ1, K11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34500          | IF(ITYPE.NE.2)GO TO 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 34600          | TYPE 74, M7, K11, J1, AT(MQ1, K11), AX(MQ1, K11), ATH(MQ1, K11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 34700          | GO TO 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 34800          | 73 PRINT 74, M7, K11, J1, AT(MQ1, K11), AX(MQ1, K11), ATH(MQ1, K11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34900          | IF(ITYPE.NE.2)GO TO 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 35000          | TYPE 74, M7, K11, J1, AT(MQ1, K11), AX(MQ1, K11), ATH(MQ1, K11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35100          | GO TO 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35200          | 231 FORMAT( 1X,56X,7HTHE END )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35300          | 5204 PRINT 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35400<br>35500 | TYPE 231<br>STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 35500          | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35700          | SUBROUTINE FEEDI(TF,W1,F,H1,H2,H3,H4,VW,C71,C72,C73,C74,BHA31,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35700          | 1BHA32, BHA33, BHA34, CHA31, CHA32, CHA33, CHA34, J, K1 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 35900          | The second |
| 36000          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 36100          | DIMENSION AZ(210,4), AP(210,4), AX(210,4), AT(210,4), ATH(210,4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36200          | 1ACX(210,4),ACT(210,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 36300          | 1, ACTH(210, 4), EFZI8(210, 4), EFZIA(8), OR1B(210, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 36400          | 1, QR1AV(210,4), WRXN(210,4), WRXNS(210,4), RINTL(210,4), SINTL(210,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 36500          | 2, ANX(210,4), AZP(210,4), AXMAX(8), ATMAX(8), ATHMAX(8), ALPS8(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36600          | 3, AXE(210, 4), AXRM(210, 4), AXEN(210, 4), AXRMN(210, 4), M12(20), PDROP(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 36700          | C 2,AXE2(4,310,4),AXRM2(4,310,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 36800          | COMMON/CB1/F1,F2,F3,F4,F5,LQQ,ITYPE,PARA1,PARA2,PARA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 36900          | 1, PARA4, IOP26, IOP29, FLPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37000          | 1/CB2/AZ, AP, AX, AT, ATH, AXMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|       | nc | APPENDIX-B PAGE: 42                                                                  |
|-------|----|--------------------------------------------------------------------------------------|
| 37100 | RS | 1, ATMAX, ATHMAX, ALPS8, W11L, QR1AV, AXE2, AXRM2                                    |
| 37200 |    | 1, WRXN, WRXNS, RINTL, SINTL, EFZI8, QR1B, EFZIA, PDROP, IOL1/CB3/                   |
| 37200 |    | 1AFD1, AFD2, AFD3, AFD4, Z1, Z2, Z3, HL, XW, UV, C4, RUA, HUA, C5, C61, C62, M15, K7 |
| 37300 |    | 2,FI11,FI12,FI13,FI21,FI22,FI23,FI31,FI32,FI33,FI41,FI42,FI43,M1,                    |
| 37400 |    | 3FI51,FI52,FI53,PH1,PH2,PB11,S2,S11,S12,FTF1,S112,S122,AR1,AR2,                      |
| 37600 |    | 4AR3, AR4, AR5, Q11, Q21, Q31, Q41, Q51, Q12, Q22, Q32, Q42, Q52,                    |
| 37700 |    | 5IEL2P, UARLP, K5, KL51, IOPT3, AFD0,                                                |
| 37800 |    | 5013,023,033,043,053,HA11,HA21,HA31,HA41,HA51,HA61,HA71,HA12,M16,                    |
| 37900 |    | 6HA22, HA32, HA42, HA52, HA62, HA72, HA13, HA23, HA33, HA43, HA53, HA63, K8,         |
| 38000 |    | 7HA73, HA14, HA24, HA34, HA44, HA54, HA64, HA74, NZ1, NZ2, NZ3, NZ4, MZ1, MZ2,       |
| 38100 |    | 8MZ3, MZ4, HAA21, HAA22, HAA23, HAA24, AHA21, AHA22, AHA23, AHA24, BHA21,            |
| 38200 |    | 9BHA22, BHA23, BHA24, HAE21, HAB22, HAB23, HAB24, AHA31, AHA32, AHA33, AHA34         |
| 38300 |    | A/CB4/ANX, ZTI, PAM, AZP/CB5/LK, AN3T1, ZCTV/CB20/ACX, ACT, ACTH                     |
| 38400 |    | B/CB6/AXE, AXRM, AXEN, AXRMN, M12/CB7/ICSTZE, IOPT1, EFFAH, EFFAL                    |
| 38500 |    | 1/CB9/FFL, RHNL, XINCL, XINCL2, TOL81, PHYL, PNIL, PAML, DELE                        |
| 38600 | 1  | 1, DELM, IOL8, M88, IOP11, IOL81                                                     |
| 38700 | 1  | MI=1                                                                                 |
| 38800 |    | K1=1                                                                                 |
| 38900 |    | K3=1                                                                                 |
| 39000 |    | LK=1                                                                                 |
| 39100 | с  | CALCULATION OF FIRST REACTOR BED CONVERSION AND TEMPRATURE PROFILES                  |
| 39200 |    | ZCTV=0.                                                                              |
| 39300 | 1  | UA1=RUA                                                                              |
| 39400 |    | AX(M1,K1)=0.0                                                                        |
| 39500 | 10 | ATH(M1,K1)=W1                                                                        |
| 39600 | 1  | TB1=ATH(M1,K1)                                                                       |
| 39700 | С  | CALCULATION FOR MIXTURE TEMPERATURE ENTERING FIRST BED                               |
| 39800 |    | XB12=0.0                                                                             |
| 39900 |    | IF(AFD4)21,22,21                                                                     |
| 40000 | 23 | 2 TB=ATH(M1,K1)                                                                      |
| 40100 |    | GO TO 23                                                                             |
| 40200 | 21 | 1 CALL MTENP(TB, W1, F1, AR1, AR2, AR3, AR4, AR5, G11, G21, G31, G41, G51,           |
| 40300 | 0. | 1XB12,PB11,UV,C4,IOP26)                                                              |
| 40400 | 2. | 3 AP(M1,K1)=PB11                                                                     |
| 40500 |    | C6=C61*(AFD1+AFD4)**1.8                                                              |
| 40600 |    | CALCULATION FOR REACTOR PROFILES BY MILNE PREDICTOR CORRECTOR METHO                  |
| 40700 | С  | NUMERICAL INTEGRATION                                                                |

|       | RS APPENDIX=B PAGE: 43                                                       |
|-------|------------------------------------------------------------------------------|
| 40800 | IF(IOPT3.NE.1) GO TO 110                                                     |
| 40900 |                                                                              |
| 41000 | 1HA31, HA41, HA51, HA61, HA71, FI11, FI21, FI31, FI41, FI51, Z1, HL, H1, C6, |
| 41100 |                                                                              |
| 41200 |                                                                              |
| 41300 |                                                                              |
| 41400 |                                                                              |
| 41500 | 12 IF(K5.LE.1)GO TO 800                                                      |
| 41600 | 440 IF(Z2.NE.0.0)GD TO 431                                                   |
| 41700 | . K5=K5-1;KL51=KL51=1                                                        |
| 41800 | GO TO 14                                                                     |
| 41900 | 431 IF(IEL2P.NE.1)GO TO 452                                                  |
| 42000 | LK=2;UA1=RUA*UARLP                                                           |
| 42100 | 452 TH12=AT(M1,K1)                                                           |
| 42200 | PB1=AP(M1,K1)                                                                |
| 42300 | XB12=AX(M1,K1)                                                               |
| 42400 | IF(AFD2)24,25,24                                                             |
| 42500 | 25 TB=AT(M1,K1)                                                              |
| 42600 | GO TO 26                                                                     |
| 42700 | 24 CALL MTEMP(TB, TH12, F1, FI11, FI21, FI31, FI41, FI51, Q12, Q22, Q32,     |
| 42800 | 1042,052,XB12,PB1,UV,C4,IOP26)                                               |
| 42900 | 26 C6=((S112=FTF1*XE12)*(AFD1+AFD4))**1.8*C61                                |
| 43000 | ZCTV=Z1;TB1=ATH(M1,K1)                                                       |
| 43100 | IF(IOPT3.NE.1) GO TO 119                                                     |
| 43200 | 119 CALL RNUMI(M1, K1, K3, TB, AFD1, NZ2, MZ2, HA12, HA22, HAA22, AHA22,     |
| 43300 | 1BHA22, HA32, HA42, HA52, HA62, HA72, FI12, FI22, FI32, FI42, FI52, Z2,      |
| 43400 | 2HL, H2, C6, VW, C72, UA1, F, PH1, HAB22, AHA32, BHA32, CHA32, J, TB1 )      |
| 43500 |                                                                              |
| 43600 | IF (AT (M1, K1)-W11L)11, 11, 14                                              |
| 43700 |                                                                              |
| 43800 | 14 IF(K5~2)800,461,462                                                       |
| 43900 |                                                                              |
| 44000 |                                                                              |
| 44100 | IF(Z3.NE.0.0)GO TO 404                                                       |
| 44200 | K5=K5-1;KL51=KL51-1                                                          |
| 44300 | GO TO 15                                                                     |
| 44400 | 404 XB12=AX(M1,K1)                                                           |

| 1270  |             |                        | PAGE: 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|-------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | RS          | APPENDIX=B             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44500 | PB1=AP(     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44600 | TH12=AT     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44700 | IF(AFD3     | )27,28,27              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44800 | 28 TB=AT(M  | 1,K1)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44900 | GO TO 2     | 9                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45000 | 27 CALL MT  | EMP(TB, TH12, F1, FI1  | 2,FI22,FI32,FI42,FI52,Q13,Q23,Q33,Q43,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45100 | 1Q53,XB1    | 2, PB1, UV, C4, ICP26) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45200 | 29 C6=((S1  | 22-FTF1*XB12)*(AFD     | 1+AFD4))**1.8*C61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 45300 | ZCTV=Z2     | +Z1;TB1=ATH(M1,K1)     | TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45400 | IF(IOPT     | 3.NE.1)GO TO 128       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45500 | 128 CALL RN | UMI(M1,K1,K3,TB,AF     | D1,NZ3,MZ3,HA13,HA23,HAA23,AHA23,BHA23,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 45600 | 1HA33,HA    | 43, HA53, HA63, HA73,  | FI13, FI23, FI33, FI43, FI53, Z3, HL, H3, C6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 45700 | 2VW, C73,   | UA1, F, PH1, HAB23, AH | A33, BHA33, CHA33, J, TB1 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 45800 | 125 IF(LO   | Q.EQ.2)GD TO 800       | A CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45900 | IFCAT       | (M1,K1)=W11L)11,11     | ,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 46000 | C CALCULA   | TION OF HEAT EXHAN     | GER PROFILES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 46100 | 15 IF(K5-2  | 3800,470,471           | 1000 Store 5 1 100 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 46200 | 470 IF(Z2   | .NE.0.0)GO TO 800      | and the second s |
| 46300 | IF(Z3       | .NE.0.0)GD TO 800      | NAME I A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 46400 | GO TO       | 468                    | March 1 Contraction of the local sectors of the loc |
| 46500 | 467 IF(23   | .EQ.0.0)GO TO 468      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46600 | IF(Z2       | .EQ.0.0)GO TO 468      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46700 | GO TO       | 800                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46800 | 471 IF(K5   | LE.3)GO TO 467         | alla la m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 46900 | 468 IF (HL  | NE.0.0)GD TO 425       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47000 | K5=K5       | -1                     | Fight 1 Stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 47100 | GO TC       | 800                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47200 | 425 UA11=   | ниа                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47300 | F110=       | F1*AFD1;FI20=F2*AF     | D1;FI30=F3*AFD1:FI40=F4*AFD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 47400 | F150=       | F5*AFD1;0101=-F1*/     | AFD0;Q201=-F2*AFD0;Q301=-F3*AFD0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 47500 | Q401=       | -F4*AFD0;0501=-F5*     | AFD0;PB12=PH2;AFD11=AFD1-AFD0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 47600 | XB12=       | 0.0; TH12=ATH(M1,K1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47700 | IFCAF       | D0)200,201,200         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47800 | 201 TB1=A   | TH(M1,K1)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47900 | GO TO       | 202                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48000 | 200 CALL    | MTEMP(TB1,TH12,F1      | ,FI10,FI20,FI30,FI40,FI50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 48100 | 10101       | ,0201,0301,0401,05     | 501,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|       | PAGE: 45                                                                          |
|-------|-----------------------------------------------------------------------------------|
|       | RS APPENDIX=B                                                                     |
| 48200 | 1XB12,PB12,UV,C4,IOF26)                                                           |
| 48300 |                                                                                   |
| 48400 | TB=AT(M1,K1)                                                                      |
| 48500 | C6=C62                                                                            |
| 48600 | LK=2                                                                              |
| 48700 | ZCTV=Z1+Z2+Z3                                                                     |
| 48800 | IF(IOPT3.NE.1) GO TO 137                                                          |
| 48900 | 137 CALL RNUMI(M1,K1,K3, TB, AFD11, NZ4, MZ4, HA14, HA24, HAA24, AHA24, BHA24,    |
| 49000 | 1HA34, HA44, HA54, HA64, HA74, FI13, FI23, FI33, FI43, FI53, HL, HL, H4, C6,      |
| 49100 | 2VW, C74, UA11, F, PH2, HAE24, AHA34, BHA34, CHA34, J, TB1 )                      |
| 49200 | 11 TF=ATH(M1,K1)                                                                  |
| 49300 | C PRINT *, IOPT3, LOO, UA1, UA11                                                  |
| 49400 | 800 RETURN                                                                        |
| 49500 | END                                                                               |
| 49600 | SUBROUTINE RNUMI (M1,K1,K3,TB,FD1,NL,M2,HA1,HA2,HAA2,AHA2,BHA2,                   |
| 49700 | 1HA3, HA4, HA5, HA6, HA7, FI1, FI2, FI3, FI4, FI5, Z1, HL, H, C6, VW, C7, UA1, F, |
| 49800 | 2PH, HAB2, AHA3, BHA3, CHA3, J, TB1 )                                             |
| 49900 | C SUBROUTINE NO.2 FOR NUMERICAL INTEGRATION OF AMMONIA SYNTHESIS READ             |
| 50000 | C DIFFERENTIAL EQUATIONS BY MILNE PREDICTOR AND CORRECTOR METHOD                  |
| 50100 | DIMENSION WX(310), WT(310), WTH(310), P(310), T(310), TH(310),                    |
| 50200 | 1AZ(210,4), AP(210,4), AX(210,4), AT(210,4), ATH(210,4), ACX(210,4),              |
| 50300 | 2ACT(210,4), ACTH(210,4), XN(310), TN(310), THN(310), Z(310), X(310),             |
| 50400 | 3CX(310), CT(310), CTH(310), AXMAX(8), ATMAX(8), ATHMAX(8)                        |
| 50500 | 4, ANX(210, 4), AZP(210, 4), ALPS8(8), SINTL(210, 4), RINTL(210, 4)               |
| 50600 | 4, QR1AV(210, 4), WRXN(210, 4), PDROP(8), AELP2(4, 2),                            |
| 50700 | 4WRXNS(210,4), EFZI8(210,4), OR1B(210,4), EFZIA(8), EFFZI(310)                    |
| 50800 | 5, XE(310), XRM(310), AXE(210, 4), AXRM(210, 4), AXEN(210, 4)                     |
| 50900 | 6,AXRMN(210,4),M12(20),GR1(310),GHR3(310),GAK(310),GAKF(310),                     |
| 51000 | 7QAKR(310), QAN1(310), QAN2(310), QAN3(310), QAN4(310), QAN5(310)                 |
| 51100 | C 4AXE2(4,310,4),AXRM2(4,310,4)                                                   |
| 51200 | COMMON/CB1/F1,F2,F3,F4,F5,L00,ITYPE,PARA1,PARA2,PARA3                             |
| 51300 | 1, PARA4, IOP26, IOP29, FLPF                                                      |
| 51400 | 1/CB2/AZ, AP, AX, AT, ATH, AXMAX                                                  |
| 51500 | 1, ATMAX, ATHMAX, ALPS8, W11L, QR1AV, AXE2, AXRM2                                 |
| 51600 | 1, WRXN, WRXNS, RINTL, SINTL, EFZI8, QR1B, EFZIA, PDROP, IOL1                     |
| 51700 | 1/CB4/ANX,ZTI,PAM,AZP/CB5/LK,AN3T,ZCTV                                            |
| 51800 | 2/CB20/ACX, ACT, ACTH                                                             |
|       |                                                                                   |

|       | RS APPENDIX-B PAGE: 46                                                 |
|-------|------------------------------------------------------------------------|
| 51900 | 2/CB9/FFL,RHNL,XINCL,XINCL2,TOL81,PHYL,PNIL,PAML,DELE,DELM             |
| 52000 | 3, IOL8, M88, IOP11, IOL81/CB7/ICSIZE, IOPT1, EFFAH, EFFAL             |
| 52100 | 3/CB8/AKR, AK, AKF, ABLP8, ITYP, ZIF/CB6/AXE, AXRM, AXEN, AXRMN, M12   |
| 52200 | 4/CB35/QR1, QHR3, QAK, QAKF, QAKR, QAN1, QAN2, QAN3, QAN4, GAN5, EFFZI |
| 52300 | AB11=0.6666667*FI1 ; FIT=FI1+FI2+FI3+FI4+FI5                           |
| 52400 | AZ1=Z1;WRXS=0.0;SINT=0.0;SEFZI=0.0                                     |
| 52500 | I=1;LP17=1;ITYP=ITYPE                                                  |
| 52600 | Z(I)=0.0                                                               |
| 52700 | P(I) = AP(M1, K1)                                                      |
| 52800 | X(I)=AX(M1,K1);ABLP8=FI2-F1*0.3333333*AX(M1,K1)                        |
| 52900 | T(I)=TB                                                                |
| 53000 | TH(I)=TB1                                                              |
| 53100 | IF(K3=1)302,301,302                                                    |
| 53200 | 302 K1=K1+1                                                            |
| 53300 | 301 M1=1                                                               |
| 53400 | J=1                                                                    |
| 53500 | AZ(M1,K1)=Z(I)                                                         |
| 53600 | AZP(M1,K1)=(Z(I)+ZCTV)*ZTI                                             |
| 53700 | AP(M1,K1)=P(I)                                                         |
| 53800 | AX(M1,K1)=X(T)                                                         |
| 53900 | AT(M1,K1)=T(I)                                                         |
| 54000 | ACX(M1,K1)=0.0                                                         |
| 54100 | ACT(M1,K1)=0.0                                                         |
| 54200 | ACTH(M1,K1)=0.0                                                        |
| 54300 | ANX(M1,K1)=PAM                                                         |
| 54400 | IF(T(J)-W11L)304,304,303                                               |
| 54500 | 303 ATH(M1,K1)=TH(I)                                                   |
| 54600 | CALL DEV(I,WX,WT,WTH,P,T,TH,X,FD1,                                     |
| 54700 | 1FI1,FI2,FI3,FI4,FI5,F,AZ1,HL,UA1,PH)                                  |
| 54800 | IF(LQQ.EC.2)GO TO 800                                                  |
| 54900 | IF(LK_EQ.2)GO TO 206                                                   |
| 55000 | IF(IOPT1.NE.1)GO TO 206                                                |
| 55100 | CALL CONV(X, XE, XRM, P, T, J, AELP2)                                  |
| 55200 | AXE(M1,K1)=XE(J)                                                       |
| 55300 | AXRM(M1,K1)=XRM(J)<br>CALL AMMC(AN3E,AN3MR,AB11,FI3,FIT,XE,XRM,J)      |
| 55400 | AXEN(M1,K1)=AN3E                                                       |
| 55500 | AVENTATION ANDE                                                        |

|                |      |                                               | PAGE: 47       |
|----------------|------|-----------------------------------------------|----------------|
|                | RS   | APPENDIX-B                                    | PAGE: 47       |
| 55600          |      | AXRMN(M1,K1)=AN3MR                            |                |
| 55700          | с    | DO 704 LO2P=1,4                               |                |
| 55800          | С    | AXE2(LO2P, M1, K1) = AELP2(LO2P, 1)           |                |
| 55900          | с    | AXRM2(LQ2P, M1, K1) = AELP2(LQ2P, 2)          |                |
| 56000          | 704  | CONTINUE                                      |                |
| 56100          | 206  | ANX(M1,K1)=AN3T                               |                |
| 56200          |      | HC6=C6*H                                      |                |
| 56300          |      | Z(I+1)=H                                      |                |
| 56400          |      | P(I+1)=P(I)-HC6                               |                |
| 56500          |      | X(I+1)=X(I)+H*HX(I)                           |                |
| 56600          |      | T(I+1)=T(I)+H*WT(I)                           | 4              |
| 56700          |      | TH(I+1)=TH(I)+H*WTH(I)                        | × 3            |
| 56800          |      | J=I+1                                         | S.A.           |
| 56900          |      | IF(T(J)-W11L)304,304,305                      | 8. 2           |
| 57000          | 305  | CALL DEV(J, WX, WT, WTH, P, T, TH, X, FD1,    | marker .       |
| 57100          | 1.1  | 1FI1, FI2, FI3, FI4, FI5, F, AZ1, HL, UA1, PH |                |
| 57200          |      | IF(X(J).LT.0.0)L00=2                          | 1926           |
| 57300          |      | IF(L00.E0.2)GO TO 800                         |                |
| 57400          |      | TN(I+1)=T(I)+HA1*(WT(J)+WT(I))                |                |
| 57500          |      | XN(I+1)=X(I)+HA1*(WX(J)+WX(I))                |                |
| 57600          | Ser. | THN(I+1)=TH(I)+HA1*(WTH(J)+WTH(I))            |                |
| 57700          |      | CX(I+1) = (XN(I+1) - X(I+1))                  | 11. La         |
| 57800          |      | CT(I+1) = (TN(I+1) - T(I+1))                  | Sec. all       |
| 57900          |      | CTH(I+1)=(THN(I+1)=TH(I+1))                   | 180            |
| 58000          | 100  | X(I+1)=XN(I+1)                                | 18.7           |
| 58100          | 14   | T(I+1)=TN(I+1)                                | STY            |
| 58200          |      | TH(I+1)=THN(I+1)                              | 68 . Y         |
| 58300          | 4    | IF(ABS (CX(I+1))=VW*0.01)1,1,4                | 24             |
| 58400          |      | $IF(ABS(CT(I+1)) = V_W)5, 5, 4$               | A )            |
| 58500<br>58600 |      | IF(ABS(CTH(I+1))+VW)3,3,4<br>M1=M1+1          |                |
| 58700          |      | IF(LK.EQ.2)GO TO 8                            |                |
| 58800          |      | IF(LP17.EQ.2)GO TO 422                        |                |
| 58900          |      | IF(X(J).GT.X(J=1))GO TO 431                   |                |
| 59000          |      | AXMAX(K1)=X(J-1); ATMAX(K1)=T(J-1); ATHMA)    | ((K1)=TH(.1=1) |
| 59100          |      | ALPS8(K1)=(Z(J=1)+ZCTV)*ZTI;LP17=2            |                |
| 59200          |      | GO TO 431                                     |                |
|                |      |                                               |                |

|                    | RS  | APPENDIX-B PAGE: 48                                     |
|--------------------|-----|---------------------------------------------------------|
| 59300              | 422 | IF(AXMAX(K1).GE.X(J))GO TO 431                          |
| 59400              |     | AXMAX(K1)=X(J);ATMAX(K1)=T(J);ATHMAX(K1)=TH(J)          |
| 59500              |     | ALPS8(K1)=(Z(J)+ZCIV)*ZII                               |
| 59600              | 431 | IF(IOPT1.NE.1)GO TO 8                                   |
| 59700              |     | IF(IOP11.EG.1)GO TO 8                                   |
| 59800              | •   | CALL CONV(X, XE, XRM, P, T, J, AELP2)                   |
| 59900              |     | AXE(M1,K1)=XE(J)                                        |
| 60000              |     | AXRM(M1,K1)=XRM(J)                                      |
| 60100              |     | CALL AMMC(AN3E, AN3MR, AB11, FI3, FIT, XE, XRM, J)      |
| 60200              |     | AXEN(M1,K1)=AN3E                                        |
| 60300              |     | AXRMN(M1,K1)=AN3MR                                      |
| 60400              | С   | DO 710 LO2P=1,4                                         |
| 60500              | С   | AXE2(LQ2P,M1,K1)=AELP2(LQ2P,1)                          |
| 60600              | С   | $AXRM2(LO2P, M1, K_1) = AELP2(LO2P, 2)$                 |
| 60700              | 710 | CONTINUE                                                |
| 60800              | 8   | CONTINUE                                                |
| 60900              |     | AX(M1,K1) = X(1+1)                                      |
| 61000              | 1   | AT(M1, K1) = T(I+1)                                     |
| 61100              |     | ATH(M1,K1)=TH(I+1)                                      |
| 61200              |     | ACT(M1, K1) = CT(I+1)                                   |
| 61300              | 1   | ACX(M1,K1)=CX(I+1)                                      |
| 61400              |     | ACTH(M1,K1)=CTH(I+1).                                   |
| 61500              | *   | AZ(M1,K1)=Z(I+1)*0.000001                               |
| 61600              |     | AZP(M1, K1) = (Z(I+1) + ZCTV) * ZTI                     |
| 61700              | 100 | ANX(M1,K1)=AN3T                                         |
| 61800              | 10  | AP(M1,K1)=P(I+1)<br>X(I+2)=X(I+1)+HA1*(3.0*WX(J)=WX(I)) |
| 61900<br>62000     |     | T(I+2)=T(I+1)+HA1*(3.0*WT(J)-WT(I))                     |
| 62100              |     | TH(I+2)=TH(I+1)+HA1*(3.0*WTH(J)-WTH(I))                 |
| 62200              |     | Z(I+2)=Z(I+1)+H                                         |
| 62300              |     | P(I+2)=P(I+1)-HC6                                       |
| 62400              |     | WXI1=HAB2*WX(I+1)                                       |
| 62500              |     | WXI2=HA2*WX(I)                                          |
| 62600              |     | WTI1=HAB2*WT(I+1)                                       |
| 62700              |     | WTI2=HA2*WT(I)                                          |
| 62800              |     | WTHI1=HAB2*WTH(I+1)                                     |
| 62900              |     | WTHI2=HA2*WTH(I)                                        |
| and a state of the |     |                                                         |

|       | RS APPENDIX-B                              | PAGE: 49          |
|-------|--------------------------------------------|-------------------|
| 63000 |                                            |                   |
| 63100 | IF(T(J)-W11L)304,304,306                   |                   |
| 63200 |                                            |                   |
| 63300 |                                            | )                 |
| 63400 |                                            |                   |
| 63500 | IF(LQQ.EG.2)GO TO 800                      |                   |
| 63600 | XN(I+2)=X(I+1)+HAA2*WX(J)+WXI1=WXI2        |                   |
| 63700 | TN(I+2)=T(I+1)+HAA2*WT(J)+WTI1-WTI2        |                   |
| 63800 | THN(I+2)=TH(I+1)+HAA2*WTH(J)+WTHI1-WT      | HI2               |
| 63900 | CX(I+2)=(XN(I+2)=X(I+2))                   | 5-                |
| 64000 | CT(I+2)=(TN(I+2)-T(I+2))                   |                   |
| 64100 | X(I+2) = XN(I+2)                           | ~~~               |
| 64200 | CTH(I+2)=(THN(I+2)=TH(I+2))                | 19 Ca             |
| 64300 | T(I+2) = TN(I+2)                           | 2 2 3             |
| 64400 | TH(I+2)=THN(I+2)                           | N Shallow         |
| 64500 | IF(ABS(CX(I+2))=VW*0.01)11,11,12           | 1.12.3            |
| 64600 | 11 IF(ABS(CT(I+2))-VW)14,14,12             | 1225              |
| 64700 | 14 IF(ABS(CTH(I+2))~VN)15,15,12            |                   |
| 64800 | 15 M1=M1+1                                 |                   |
| 64900 | IF(LK.EQ.2)GO TO 17                        | Part Intering     |
| 65000 | IF(LP17.EQ.2)GO TO 425                     | ne farmer         |
| 65100 | IF(X(J).GT.X(J-1))GO TO 434                |                   |
| 65200 | AXMAX(K1)=X(J-1); ATMAX(K1)=T(J-1); A      | THMAX(K1)=TH(J=1) |
| 65300 | ALPS8(K1)=(Z(J=1)+ZCTV)*ZTI;LP17=2         | C-101 Pt          |
| 65400 | GO TO 434                                  | 718 3             |
| 65500 | 425 IF(AXMAX(K1).GE.X(J))GO TO 434         | 1 1 1 14          |
| 65600 | AXMAX(K1)=X(J); ATMAX(K1)=T(J); ATHMA.     | X(K1)=TH(J)       |
| 65700 | ALPS8(K1)=(Z(J)+ZCIV)*ZII                  | B. M              |
| 65800 | 434 IF(IOPT1.NE.1)GO TO 17                 | 19                |
| 65900 | IF(IOP11.EC.1)GO TC 17                     | CV.               |
| 66000 | CALL CONV(X, XE, XRM, P, T, J, AELP2)      | 2                 |
| 66100 | AXE(M1,K1) = XE(J)                         |                   |
| 66200 | AXRM(M1,K1)=XRM(J)                         |                   |
| 66300 | CALL AMMC(AN3E, AN3MR, AB11, FI3, FIT, XE, | XRM,J)            |
| 66400 | AXEN(M1,K1)=AN3E                           |                   |
| 66500 | AXRMN(M1,K1) = AN3MR                       |                   |
| 66600 | C DO 713 LG2P=1,4                          |                   |

|                | RS  | APPENDIX-B                                 | PAGE:   | 50                    |
|----------------|-----|--------------------------------------------|---------|-----------------------|
| 66700          | с   | AXE2(LQ2P,M1,K1)=AELP2(LQ2P,1)             |         |                       |
| 66800          | с   | AXRM2(LQ2P,M1,K1)=AELP2(LQ2P,2)            |         |                       |
| 66900          | 713 | CONTINUE                                   |         |                       |
| 67000          | 17  | AX(M1,K1)=X(J)                             |         |                       |
| 67100          |     | AT(M1,K1)=T(J)                             |         |                       |
| 67200          |     | ATH(M1,K1)=TH(J)                           |         |                       |
| 67300          |     | ACT(M1,K1)=CT(J)                           |         |                       |
| 67400          |     | ACTH(M1,K1)=CTH(J)                         |         |                       |
| 67500          |     | ACX(M1,K1)=CX(J)                           |         |                       |
| 67600          |     | AZ(M1,K1)=Z(J)*0.000001                    |         |                       |
| 67700          |     | AZP(M1,K1) = (Z(J) + ZCTV) * ZTI           | 1.200   |                       |
| 67800          |     | ANX(M1,K1)=AN3T                            | 5       |                       |
| 67900          |     | AP(M1,K1)=P(J)                             | 0       |                       |
| 68000          |     | X(I+3)=X(I+2)+AHA2*WX(I+2)=BHA2*WX(I+1)+HA | A2*WX(I | )                     |
| 68100          | 100 | T(I+3)=T(I+2)+AHA2*WT(I+2)=BHA2*WT(I+1)+HA |         | and the second second |
| 68200          | 1   | TH(I+3)=TH(I+2)+AHA2*WTH(I+2)-BHA2*WTH(I+1 | )+HAA2* | WTH(I)                |
| 68300          |     | Z(I+3)=Z(I+2)+H                            |         | 2.45                  |
| 68400          |     | P(I+3)=P(I+2)-HC6                          | -1-     |                       |
| 68500          |     | WXN1=BHA3*WX(I+2)                          |         | 1                     |
| 68600          |     | WXN2=CHA3*WX(I+1)                          | 100     |                       |
| 68700          | -   | WXN3=HA3*WX(I)                             | 1. 10   |                       |
| 68800          |     | WTN1=BHA3*WT(I+2)                          |         | 1                     |
| 68900          |     | WTN2=CHA3*WT(I+1)                          |         |                       |
| 69000          |     | WTHN1=BHA3*WTH(I+2)                        |         |                       |
| 69100          | 10  | WTN3=HA3*WT(I)                             | 1.15    | 1                     |
| 69200          | 1   | WTHN2=CHA3*WTH(I+1)                        | 18      | 1-5                   |
| 69300          | 22  | WTHN3=HA3*WTH(I)<br>J=I+3                  |         | 3                     |
| 69400<br>69500 | 66  | IF(T(J)-W11L)304,304,307                   | 0       | 1                     |
| 69600          | 307 | CALL DEV(J,WX,WT,WTH,P,T,TH,X,FD1,         | 2. 30   |                       |
| 69700          |     | 1FI1,FI2,FI3,FI4,FI5,F,AZ1,HL,UA1,PH)      | 1       |                       |
| 69800          |     | IF(X(J).11.0.0)LCQ=2                       |         |                       |
| 69900          |     | IF(LQQ.EQ.2)GD TO 800                      |         |                       |
| 70000          |     | XN(I+3)=X(I+2)+AHA3*WX(I+3)+WXN1=WXN2+WXN3 | 3       |                       |
| 70100          |     | TN(I+3)=T(I+2)+AHA3*WT(I+3)+WTN1-WTN2+WTN3 |         |                       |
| 70200          |     | THN(I+3)=TH(I+2)+AHA3*WTH(I+3)+WTHN1-WTHN2 |         |                       |
| 70300          |     | CX(I+3)=(XN(I+3)-X(I+3))                   |         |                       |
|                |     |                                            |         |                       |

|       |     | PAGE: 51                                               | 2 |
|-------|-----|--------------------------------------------------------|---|
|       | RS  | APPENDIX-B                                             |   |
| 70400 |     | CT(I+3)=(TN(I+3)-T(I+3))                               |   |
| 70500 |     | CTH(I+3) = (THN(I+3) - TH(I+3))                        |   |
| 70600 |     | X(I+3) = XN(I+3)                                       |   |
| 70700 |     | T(I+3) = TN(I+3)                                       |   |
| 70800 |     | TH(I+3)=THN(I+3)                                       |   |
| 70900 |     | $IF(ABS(CX(I+3)) = V_W * 0.01) 21, 21, 22$             |   |
| 71000 | 21  | IF(ABS(CT(I+3))-VW)23,23,22                            |   |
| 71100 | 23  | IF(ABS(CTH(I+3))=VW)24,24,22                           |   |
| 71200 | 24  | M1=M1+1                                                |   |
| 71300 |     | IF(LK.EQ.2)GO TO 26                                    |   |
| 71400 |     | IF(LP17.EQ.2)GO TO 416                                 |   |
| 71500 |     | IF(X(J),GT.X(J-1))GO TO 440                            |   |
| 71600 |     | AXMAX(K1)=X(J-1); ATMAX(K1)=T(J-1); ATHMAX(K1)=TH(J-1) | ) |
| 71700 |     | ALPS8(K1)=(Z(J=1)+ZCTV)*ZTI;LP17=2                     |   |
| 71800 |     | GO TO 440                                              |   |
| 71900 | 416 | IF (AXMAX(K1).GE.X(J))GO TO 440                        |   |
| 72000 |     | AXMAX(K1)=X(J);ATMAX(K1)=T(J);ATHMAX(K1)=TH(J)         |   |
| 72100 |     | ALPS8(K1)=(Z(J)+ZCIV)*ZTI                              |   |
| 72200 | 440 | IF(IOPT1.NE.1)GO TO 26                                 |   |
| 72300 |     | IF(10P11.E0.1)G0 TC 26                                 |   |
| 72400 | 1   | CALL CONV(X, XE, XRM, P, T, J, AELP2)                  |   |
| 72500 |     | AXE(M1,K1)=XE(J)                                       |   |
| 72600 | 1   | AXRM(M1,K1)=XRM(J)                                     |   |
| 72700 |     | CALL AMMC(AN3E, AN3MR, AB11, FI3, FIT, XE, XRM, J)     |   |
| 72800 | 1   | AXEN(M1,K1)=AN3E                                       |   |
| 72900 | 1   | AXRMN(M1,K1)=AN3MR                                     |   |
| 73000 | С   | DO 719 LO2F=1,4                                        |   |
| 73100 | С   | AXE2(LQ2P,M1,K1)=AELP2(LQ2P,1)                         |   |
| 73200 | С   | $AXRM2(LQ2P, M1, K_1) = AELP2(LQ2P, 2)$                |   |
| 73300 | 719 | CONTINUE                                               |   |
| 73400 | 26  | CONTINUE                                               |   |
| 73500 |     | AX(M1,K1)=X(J)                                         |   |
| 73600 |     | AT(M1,K1)=T(J)                                         |   |
| 73700 |     | ATH(M1,K1)=TH(J)                                       |   |
| 73800 |     | ACT(M1,K1)=CT(J)                                       |   |
| 73900 |     | ACTH(M1,K1)= CTH(J)                                    |   |
| 74000 |     | ACX(M1,K1)=CX(J)                                       |   |

|       | RS  | APPENDIX-B PAGE: 52                                                           |
|-------|-----|-------------------------------------------------------------------------------|
| 74100 |     | AZ(M1,K1)=Z(J)*0.000001                                                       |
| 74200 |     | AZP(M1,K1)=(Z(J)+ZCTV)*ZTI                                                    |
| 74300 |     | ANX(M1,K1)=AN3T                                                               |
| 74400 |     | AP(M1,K1)=P(J)                                                                |
| 74500 |     | L11=1                                                                         |
| 74600 |     | K=1                                                                           |
| 74700 | 101 | X(K+4) = X(K) + HA4 * W X(K+2) + HA5 * (W X(K+3) = 2.0 * W X(K+2) + W X(K+1)) |
| 74800 |     | T(K+4)=T(K)+HA4*WT(K+2)+HA5*(WT(K+3)=2.0*WT(K+2)+WT(K+1))                     |
| 74900 |     | TH(K+4)=TH(K)+HA4*WTH(K+2)+HA5*(WTH(K+3)-2.0*WTH(K+2)+WTH(K+1))               |
| 75000 |     | Z(K+4)=Z(K+3)+H                                                               |
| 75100 |     | P(K+4)=P(K+3)=HC6                                                             |
| 75200 |     | IF(L11-1) 25,89,25                                                            |
| 75300 | 25  | X(K+4) = X(K+4) + CX(K+3)                                                     |
| 75400 |     | T(K+4) = T(K+4) + CT(K+3)                                                     |
| 75500 |     | TH(K+4)=TH(K+4)+CTH(K+3)                                                      |
| 75600 | 89  | L11=2                                                                         |
| 75700 | 1   | WXK1=HA6*WX(K+3)                                                              |
| 75800 |     | WTK1=HA6*WT(K+3)                                                              |
| 75900 |     | WTHK1=HA6*WTH(K+3)                                                            |
| 76000 |     | WXK2=WXK1/3.0                                                                 |
| 76100 |     | WXK3=HA7*WX(K+2)                                                              |
| 76200 |     | WTK2=WTK1/3.0                                                                 |
| 76300 | 1   | WTK3=HA7*WT(K+2)                                                              |
| 76400 |     | WTHK2=WTHK1/3.0                                                               |
| 76500 | 1   | WTHK3=HA7*WTH(K+2)                                                            |
| 76600 | 29  | J=K+4                                                                         |
| 76700 |     | IF(T(J)-W11L)304,304,308                                                      |
| 76800 |     | CALL DEV(J,WX,WT,WTH,P,T,TH,X,FD1,                                            |
| 76900 |     | 1FI1,FI2,FI3,FI4,FI5,F,AZ1,HL,UA1,PH)                                         |
| 77000 |     | IF(X(J).LT.0.0)L00=2                                                          |
| 77100 |     | IF(LQQ.EQ.2)GO TO 800                                                         |
| 77200 |     | XN(K+4) = X(K+2) + WXK1 + HA7 + WX(K+4) = WXK2 + WXK3                         |
| 77300 |     | TN(K+4) = T(K+2) + WTK1 + HA7 * WT(K+4) = WTK2 + WTK3                         |
| 77400 |     | THN(K+4)=TH(K+2)+WTHK1+HA7*WTH(K+4)=WTHK2+WTHK3                               |
| 77500 |     | CX(K+4) = (XN(K+4) - X(K+4))                                                  |
| 77600 |     | CT(K+4) = (TN(K+4) - T(K+4))                                                  |
| 77700 |     | X(K+4) = XN(K+4)                                                              |

| No States |                                                | PAGE: 53       |
|-----------|------------------------------------------------|----------------|
| RS        | APPENDIX-B                                     |                |
| 77800     | CTH(K+4) = (THN(K+4) - TH(K+4))                |                |
| 77900     | T(K+4) = TN(K+4)                               |                |
| 78000     | TH(K+4)=THN(K+4)                               |                |
| 78100     | IF(ABS(CX(K+4))=VW*0.01)31,31,29               |                |
| 78200 31  | IF(ABS (CT(K+4))=VW)32,32,29                   |                |
| 78300 32  | 2 IF(ABS(CTH(K+4))=VW)33,33,29                 |                |
| 78400 33  | IF(LK.EQ.2)GO TO 38                            |                |
| 78500     | IF(LP17.EQ.2)GC TO 407                         |                |
| 78600     | IF(X(K+4).GT.X(K+3))GO TO 542                  |                |
| 78700     | AXMAX(K1)=X(K+3); ATMAX(K1)=T(K+3); ATHP       | AX(K1)=TH(K+3) |
| 78800     | ALPS8(K1)=(Z(K+3)+ZCTV)*ZTI;LP17=2             | 6 4            |
| 78900     | GO TO 542                                      | ~ >            |
| 79000 407 | IF(AXMAX(K1).GE.X(J))GO TO 542                 | 2 Sa           |
| 79100     | AXMAX(K1)=X(J);ATMAX(K1)=T(J);ATHMAX(K         | (1)=TH(J)      |
| 79200     | ALPS9(K1)=(Z(J)+ZCIV)*ZII                      | State La       |
| 79300 542 | IF(IOPT1.NE.1)GO TO 38                         | 1. 2. 3        |
| 79400     | IF(IOP11.EG.1)GO TO 38                         | 1325           |
| 79500     | CALL CONV(X, XE, XRM, P, T, J, AELP2)          |                |
| 79600     | AXE((M1+1),K1)=XE(J)                           |                |
| 79700     | AXRM((M1+1),K1)=XRM(J)                         |                |
| 79800     | CALL AMMC(AN3E, AN3MR, AB11, FI3, FIT, XE, XRM | (,J)           |
| 79900     | AXEN((M1+1),K1)=AN3E                           | and the second |
| 80000     | AXRMN((M1+1),K1)=AN3MR                         |                |
| 80100 C   | DO 722 LO2P=1,4                                |                |
| 80200 C   | AXE2(LQ2P, (M1+1), K1) = AELP2(LQ2P, 1)        | 18 3           |
| 80300 C   | AXRM2(L02P,(M1+1),K1)=AELP2(L02P,2)            | 1 11 84        |
| 80400 722 | CONTINUE                                       | 100 m          |
| 80500 38  | 8 M3=K+4                                       | 3. 10          |
| 80600     | M4=M2*(M1-3)                                   |                |
| 80700     | IF(M3-M4)34,34,35                              | CV.            |
| 80800 35  | 5 M1=M1+1                                      |                |
| 80900     | AZ(M1,K1)=Z(M3) *0.000001                      |                |
| 81000     | AP(M1, K1) = P(M3)                             |                |
| 81100     | AX(M1, K1) = X(M3)                             |                |
| 81200     | AT(M1, K1) = T(M3)                             |                |
| 81300     | ATH(M1, K1) = TH(M3)                           |                |
| 81400     | ACX(M1,K1)=CX(M3)                              |                |

|       | RS            | APPENDIX-B PAGE: 54                                                           |
|-------|---------------|-------------------------------------------------------------------------------|
| 81500 |               | ACT(M1,K1)=CT(M3)                                                             |
| 81600 |               | ACTH(M1,K1)=CTH(M3)                                                           |
| 81700 |               | AZP(M1,K1) = (Z(J) + ZCTV) * ZTI                                              |
| 81800 |               | ANX(M1,K1)=AN3T                                                               |
| 81900 |               | IF(K-NL)191,192,192                                                           |
| 82000 |               | K=K+1                                                                         |
| 82100 |               | GO TO 101                                                                     |
| 82200 |               | K3=K3+1                                                                       |
| 82300 |               | IF(LK.EQ.2)GO TO 309                                                          |
| 82400 |               | IF(LP17.EQ.2)GC TO 309                                                        |
| 82500 |               | ALPS8(K1)=(Z(K+4)+ZCTV)*ZTI;AXMAX(K1)=X(K+4)                                  |
| 82600 |               | ATMAX(K1)=T(K+4);ATHMAX(K1)=TH(K+4);LP17=1                                    |
| 82700 | С             | PRINT *, IOPT1, LOO, ((AZP(I, J), AT(I, J), ATH(I, J), I=1, M1), J=1, K1)     |
| 82800 |               | GU TO 309                                                                     |
| 82900 | 304           | M1=M1+1                                                                       |
| 83000 | 187           | AT(M1,K1)=T(J)                                                                |
| 83100 | in the second | AX(M1,K1)=X(J)                                                                |
| 83200 | a start of    | ATH(M1,K1)=TH(J)                                                              |
| 83300 |               | IF(IOL1.NE.2)GC TO 309                                                        |
| 83400 |               | PRINT 935, F1, F2, F3, F4, F5, (N, X(N), T(N), TH(N), P(N), DAN1(N), OAN2(N), |
| 83500 |               | 1QAN3(N), QAN4(N), QAN5(N), QR1(N), QHR3(N), CAK(N), QAKF(N), QAKR(N),        |
| 83600 | - A           | 2WX(N),WT(N),WTH(N),N=1,J                                                     |
| 83700 | - Carl        | IF(ITYPE.NE.2)GO TO 309                                                       |
|       |               | the second second second second second                                        |

Sale and Sales

|       | RS  | APPENDIX-B PAGE: 55                                                          |
|-------|-----|------------------------------------------------------------------------------|
| 00100 |     | TYPE 935, F1, F2, F3, F4, F5, (N, X(N), T(N), TH(N), P(N), GAN1(N), GAN2(N), |
| 00200 |     | 1QAN3(N), QAN4(N), QAN5(N), QR1(N), QHR3(N), QAK(N), QAKF(N), QAKR(N),       |
| 00300 |     | 2WX(N), WT(N), WTH(N), N=1, J)                                               |
| 00400 | 935 | FORMAT(2X, 5F10.1/(2X, 15, F10.3, 8F10.1/2X, 8E10.3/))                       |
| 00500 |     | M12(K1)=M1;JJ1=J=1;LP17=1                                                    |
| 00600 |     | PDROP(K1)=P(1)=P(J)                                                          |
| 00700 |     | IF(IOP11.NE.1)GO TO 701                                                      |
| 00800 |     | CALL CONV(X, XE, XRM, P, T, J, AELP2)                                        |
| 00900 |     | AXE(M1,K1)=XE(J)                                                             |
| 01000 | 1   | AXRM(M1,K1)=XRM(J)                                                           |
| 01100 | (   | CALL AMMCCANJE, ANJMR, AB11, FI3, FIT, XE, XRM, J)                           |
| 01200 | 1   | AXEN(M1,K1)=AN3E                                                             |
| 01300 | 1   | AXRMN(M1,K1)=AN3MR                                                           |
| 01400 | С   | DO 728 LO2P=1,4                                                              |
| 01500 | C   | AXE2(LQ2P,M1,K1)=AELP2(LQ2P,1)                                               |
| 01600 | с   | AXRM2(LQ2P,M1,K1)=AELP2(LQ2P,2)                                              |
| 01700 | 728 | CONTINUE                                                                     |
| 01800 | 701 | IF(LK.E0.2)GO TO 800                                                         |
| 01900 |     | DO 830 I=1,JJ1                                                               |
| 02000 |     | EFZI8(I,K1)=EFFZI(I)                                                         |
| 02100 | La  | QR1B(I,K1)=QR1(I);SEFZI=EFFZI(I)+SEFZI                                       |
| 02200 |     | WRXN(I,K1)=(QR1(I+1)=QR1(I))*2.016/(T(I+1)=T(I))                             |
| 02300 | 1   | WRXNS(I,K1)=WRXN(I,K1)+WRXS;WRXS=WRXNS(I,K1)                                 |
| 02400 |     | QR1AV(I,K1)=(QR1(I+1)+QR1(I))*1,008                                          |
| 02500 | 0   | IF(QR1AV(I,K1).NE.0.0)GO TO 557                                              |
| 02600 | 1   | RINTL(I,K1)=1.0E8                                                            |
| 02700 |     | GO TO 566                                                                    |
| 02800 |     | RINTL(I,K1) = WRXN(I,K1) * (X(I+1) - X(I)) / (GRIAV(I,K1) * GRIAV(I,K1))     |
| 02900 |     | SINTL(I,K1)=RINTL(I,K1)+SINT;SINT=SINTL(I,K1)                                |
| 03000 | 830 | CONTINUE                                                                     |
| 03100 |     | EFZI8(J,K1)=EFFZI(J);EFZIA(K1)=(SEFZI+EFFZI(J))/J                            |
| 03200 |     | RETURN                                                                       |
| 03300 |     | END                                                                          |
| 03400 |     | SUBROUTINE DEV(I,WX,WT,WTH,P,T,TH,X,FD1,                                     |
| 03500 |     | FI1,FI2,FI3,FI4,FI5,F,AZ1,HL,UA1,PH)                                         |
| 03600 |     | SUBROUTINE NO.3 FOR CALCULATION OF DERIVATIVE VALUES FROM AMMONIA            |
| 03700 | C S | SYNTHESIS REACTOR                                                            |

| 1     | RS APPENDIX=B PAGE: 56                                                         |
|-------|--------------------------------------------------------------------------------|
| 03800 | C EQUATIONS FOR NUMERICAL INTEGRATION                                          |
| 03900 | DIMENSION WX(310), WT(310), WTH(310), P(310), T(310), TH(310), X(310)          |
| 04000 |                                                                                |
| 04100 |                                                                                |
| 04200 |                                                                                |
| 04300 |                                                                                |
| 04400 | 1/CB5/LK, AN3T, ZCTV                                                           |
| 04500 | 2/CB7/ICSIZE, IOPT1, EFFAH, EFFAL/CB8/AKR, AK, AKF, ABLP8, ITYP, EFFAC         |
| 04600 | 3/CB35/QR1, QHR3, GAK, QAKF, QAKR, GAN1, GAN2, GAN3, GAN4, GAN5, EFFZI         |
| 04700 | PP=P(I);ITYP=ITYPE                                                             |
| 04800 | TT=T(I)                                                                        |
| 04900 | THH=TH(I)                                                                      |
| 05000 | AB=F1*X(I)                                                                     |
| 05100 | AN1=FI1-AB                                                                     |
| 05200 | AB1=0.33333*AB                                                                 |
| 05300 | AN2=FI2-AB1                                                                    |
| 05400 | AN3=FI3+0.66667*AB                                                             |
| 05500 | C EFFECTIVENESS FACTOR EFFECT                                                  |
| 05600 | IF(LK.EQ.2)GD TO 314                                                           |
| 05700 | IF(ICSIZE.EQ.2)GO TO 305                                                       |
| 05800 | ETA=AN3/(AN3+2.0*AN2)                                                          |
| 05900 | CALL ZIFA(EFFAC, PP, TI, ETA, BLP1, BLP2, BLP3, BLP4, BLP5, BLP6)              |
| 06000 | EFFZI(I)=EFFAC                                                                 |
| 06100 | IF(EFFAC.GE.EFFAH)GO TO 107                                                    |
| 06200 | IF(EFFAC.LE.EFFAL)EFFAC=EFFAL                                                  |
| 06300 | GO TO 314                                                                      |
| 06400 | 107 EFFAC=EFFAH                                                                |
| 06500 | GO TO 314                                                                      |
| 06600 | 305 EFFAC=1.0                                                                  |
| 06700 | 314 CONTINUE                                                                   |
| 06800 | AN4=FI4                                                                        |
| 06900 | AN5=FI5                                                                        |
| 07000 | ANT=AN1+AN2+AN3+AN4+AN5                                                        |
| 07100 | ANTI=1/ANT;Y1=AN1*ANTI;Y2=AN2*ANTI;Y3=AN3*ANTI;Y13=Y1/Y3                       |
| 07200 | Y13S=Y13*Y13;ALPHA=PARA3*0,5;Y13P=Y1*Y13S*PP;Y13PA=Y13P**ALPHA<br>AN3T=100.*Y3 |
| 07300 | IF(LK.EQ.2) GO TO 202                                                          |
| 01400 | TE CHU® DA® SY ON TO SAS                                                       |

|       | RS  | APPENDIX-B PAGE: 57                                              |
|-------|-----|------------------------------------------------------------------|
| 07500 | )   | TT11=TT-273.0                                                    |
| 07600 | 201 | IF(I0P29-2)404,407,408                                           |
| 07700 | 407 | HR3=-10906.0-(5.293-(3.429E-3-2.01E-6*TT11)*TT11)*TT11           |
| 07800 |     | GO TO 422                                                        |
| 07900 | 408 | HR3=-(0.54526+(840.609+459.734E6/(TT*TT))/TT)*PP-                |
| 08000 |     | 1(5.34685+(.2525E=3=1.69167E=6*TT)*TT)*TT=9157.09                |
| 08100 |     | GO TO 422                                                        |
| 08200 | 404 | HR3=-15564.51+(7.0646-(14.8399E-03-(3.3563E-07-1.1625E-10*TT)*   |
| 08300 |     | 1TT)*TT)*TT=PP*(3.01975=(4.4552E=03=1.928E=06*TT)*TT)            |
| 08400 |     | AK=EXP (0.50327*(9184.0/TT-7.2949*ALOG (TT)+(3.4966E-03+         |
| 08500 |     | 1(1.6781E=07=3.875E=11*TT)*TT)*TT+23.05))                        |
| 08600 |     | GO TO 416                                                        |
| 08700 | 422 | AK17=(2250.322/TT=C.8534=0.656*ALOG(TT)=(2.58987E-4-             |
| 08800 |     | 11.48961E-7*TT)*TT)                                              |
| 08900 |     | AK=10**AK17                                                      |
| 09000 | 416 | CONTINUE                                                         |
| 09100 |     | AKF=(1.7343-8.143E=04*PP+                                        |
| 09200 |     | 1(5.714E=07*PP=2.6714E=03+2.0E=06*TT)*TT)*PARA4                  |
| 09300 |     | AKKF=AK/AKF;AKSQ=AKKF*AKKF                                       |
| 09400 |     | PANT=PP*Y1                                                       |
| 09500 |     | IF(PP)11,11,15                                                   |
| 09600 | 15  | IF(PANT)11,11,12                                                 |
| 09700 | 11  | PRINT 14, PANT, PP                                               |
| 09800 |     | IF(ITYPE.NE.2)GO TO 35                                           |
| 09900 | E.  | TYPE 14, PANT, PP                                                |
| 10000 |     | FORMAT(1X, 5HPANT= , E15, 6, 10H, PRESSURE= , F10.4 /)           |
| 10100 | 35  | LOQ=2                                                            |
| 10200 |     | GO TO 800                                                        |
| 10300 | 12  | SPANT=SQRT(PANT)                                                 |
| 10400 |     | AKR=((300.0/PP)**0.63)*EXP (-24092.2*(PARA2/TT)+(33.5566/PARA1)) |
| 10500 |     | R11=29.4204*(AKSG*PP*Y2=1/Y13P)*Y13PA*F*AKR*1.0E=06              |
| 10600 |     | R1=R11*EFFAC                                                     |
| 10700 |     | B7==0.6666667*HR3*R1                                             |
| 10900 | 202 | GO TO 203<br>R1=0.0                                              |
| 11000 | 202 | B7=0.0                                                           |
| 11100 | 203 |                                                                  |
| 11100 | 203 | WX(I)=R1/F1;UALP1=UA1*FLPF**0.8                                  |

|       |     | PAGE: 58                                                                      |
|-------|-----|-------------------------------------------------------------------------------|
|       | RS  | APPENDIX-B                                                                    |
| 11200 |     | B4==UALP1*(TT=THH)                                                            |
| 11300 |     | B1=B7+B4                                                                      |
| 11400 |     | CALL HEATC (CP1, CP2, CP3, CP4, CP5, PP, TT, IOP26 )                          |
| 11500 |     | B2=AN1*CP1+AN2*CP2+AN3*CP3+AN4*CP4+AN5*CP5                                    |
| 11600 |     | WT(I)=B1/B2                                                                   |
| 11700 |     | CALL HEATC (CP1, CP2, CP3, CP4, CP5, PH, THH, ICP26)                          |
| 11800 |     | B3=FD1*(F1*CP1+F2*CP2+F3*CP3+F4*CP4+F5*CP5 )                                  |
| 11900 |     | WTH(I)=B4/B3                                                                  |
| 12000 |     | QR1(I)=R1; GHR3(I)=HR3; GAK(I)=AK; GAKF(I)=AKF; GAKR(I)=AKR                   |
| 12100 |     | QAN1(I)=AN1; QAN2(I)=AN2; QAN3(I)=AN3; QAN4(I)=AN4; QAN5(I)=AN5               |
| 12200 | 800 | RETURN                                                                        |
| 12300 |     | END                                                                           |
| 12400 | С   | SUBROUTINE NO.4 FOR CALCULATION OF MIXTURE STREAM TEMPERATURE BY TR           |
| 12500 | С   | AND ERROR TECHNIQUE                                                           |
| 12600 |     | SUBROUTINE MTEMP(TB21, TB12, F1, R11, R22, R33, R44, R55, 01, 02, 03, 04, 05, |
| 12700 |     | 1XB12,PB1,UV,C4,ICP26)                                                        |
| 12800 |     | I=1;C41=0.5                                                                   |
| 12900 |     | RT=R11+R22+R33+R44+R55=0.6666667*F1*XB12                                      |
| 13000 |     | QT=Q1+Q2+Q3+Q4+Q5                                                             |
| 13100 |     | W1=(RT*TB12+0T*UV)/(RT+QT)                                                    |
| 13200 | 192 | TB21=W1                                                                       |
| 13300 |     | CALL TEMP(AT1,F1,R11,R22,R33,R44,R55,Q1,C2,Q3,Q4,Q5,XB12,PB1,                 |
| 13400 | 1   | 1TB12, TB21, UV, IOP26)                                                       |
| 13500 |     | DELT1=AT1-W1                                                                  |
| 13600 | 1   | IF(ABS(DELT1)-C41) 151,151,191                                                |
| 13700 | 191 | IF(I-1)153,152,153                                                            |
| 13800 | 152 | W2=AT1                                                                        |
| 13900 | 134 | TB21=₩2                                                                       |
| 14000 |     | CALL TEMP(AT2, F1, R11, R22, R33, R44, R55, Q1, C2, Q3, Q4, Q5, XB12, PB1,    |
| 14100 |     | 1TB12, TB21, UV, IOP26)                                                       |
| 14200 |     | DELT2=AT2-W2                                                                  |
| 14300 |     | IF(ABS(DELT2)-C41)154,154,153                                                 |
| 14400 | 153 | DW12=(W1-W2)                                                                  |
| 14500 |     | I=I+1                                                                         |
| 14600 |     | IF(DELT1)1,151,5                                                              |
| 14700 | 1   | IF(DELT2)2,154,7                                                              |
| 14800 | 5   | IF(DELT2)7,154,2                                                              |
|       |     |                                                                               |

|                | RS APPENDIX=B PAGE: 59                                                     |
|----------------|----------------------------------------------------------------------------|
| 14900          | 2 IF(ABS(DELT1)-ABS(DELT2))161,161,162                                     |
| 15000          | 161 W2=W1+DW12                                                             |
| 15100          | GO TO 134                                                                  |
| 15200          | 162 W1=W2=DW12                                                             |
| 15300          | GO TO 192                                                                  |
| 15400          | 7 W3=W2+(W1=W2)*ABS(DELT2)/(ABS(DELT2)+ABS(DELT1))                         |
| 15500          | IW3=W3*100.0+0.5;W3=IW3*0.01                                               |
| 15600          | TB21=W3                                                                    |
| 15700          | CALL TEMP(AT3, F1, R11, R22, R33, R44, R55, Q1, G2, Q3, Q4, Q5, XB12, PB1, |
| 15800          | 1TB12, TB21, UV, IOP26)                                                    |
| 15900          | DELT3=AT3-W3                                                               |
| 16000          | IF(ABS(DELT3)-C41)170,170,188                                              |
| 16100          | 170 TB21=AT3                                                               |
| 16200          | GO TO 155                                                                  |
| 16300          | 188 IF(DELT3)11,170,35                                                     |
| 16400          | 11 IF(DELT2)17,154,26                                                      |
| 16500          | 35 IF(DELT2)26,154,17                                                      |
| 16600          | 17 W2=W3                                                                   |
| 16700          | DELT2=DELT3                                                                |
| 16800          | GO TO 7                                                                    |
| 16900          | 26 W1=W3                                                                   |
| 17000          | DELT1=DELT3                                                                |
| 17100          | GO TO 7                                                                    |
| 17200          |                                                                            |
| 17300          | GO TO 155                                                                  |
| 17400          |                                                                            |
| 17500          | 155 RETURN                                                                 |
| 17600          | END<br>SUBDOWTING TEMP(T E4 014 020 020 044 055 01 02 02 04 05 V012        |
| 17700          |                                                                            |
| 17800          |                                                                            |
| 17900          |                                                                            |
| 18000          | C BALANCE<br>XBF1=F1*XB12                                                  |
| 18100<br>18200 | R1=R11-XBF1                                                                |
| 18200          | R1=R11=XBF1<br>R2=R22=0.33333*XEF1                                         |
| 18400          | R3=R33+0.66667*XEF1                                                        |
| 18500          | R4=R44                                                                     |
| 10000          | L'ENTER                                                                    |

|       | PAGE: 60                                                              |
|-------|-----------------------------------------------------------------------|
|       | RS APPENDIX-B                                                         |
| 18600 | R5=R55                                                                |
| 18700 | CALL HEATC(CP1, CF2, CF3, CP4, CP5, PB1, TB12, IOP26)                 |
| 18800 | C1=TB12*(R1*CP1+R2*CP2+R3*CP3+R4*CP4+R5*CP5 )                         |
| 18900 | CALL HEATC(CP1, CP2, CP3, CP4, CP5, PB1, UV, IOP26 )                  |
| 19000 | C2=UV*(Q1*CP1+Q2*CP2+Q3*CP3+Q4*CP4+Q5*CP5)                            |
| 19100 | CALL HEATC(CP1, CP2, CP3, CP4, CP5, PB1, TB21, IOP26 )                |
| 19200 | C3 = (R1+Q1)*CP1+(R2+Q2)*CP2+(R3+Q3)*CP3+(R4+Q4)*CP4+(R5+Q5)*CP5      |
| 19300 | T=(C1+C2)/C3                                                          |
| 19400 | RETURN                                                                |
| 19500 | END                                                                   |
| 19600 | SUBROUTINE HEATC(CP1, CP2, CP3, CP4, CP5, P, T, IOP)                  |
| 19700 | C SUBROUTINE NO. 6 FOR CALCULATION OF HEAT CAPACITY AT GIVEN TEMPERAT |
| 19800 | C AND PRESSURE                                                        |
| 19900 | T11=T-273.0                                                           |
| 20000 | IF(10P-2)2,3,8                                                        |
| 20100 | 3 CP3=8.497+(8.001E-3-1.764E-6*T11)*T11                               |
| 20200 | GU TU 17                                                              |
| 20300 | 2 CP3=102.7524=(21.63767E=02=(13.12707E=05=1.5981E=09*T)*T)*T=        |
| 20400 | 1P*(6.7571E=02=(1.6847E=04=1.009514E=07*T)*T)                         |
| 20500 | 17 CP1=6.952=(4.576E=04=(9.563E=07=2.079E=10*T)* T)*T                 |
| 20600 | CP2=6.903-(3.753E-04-(1.93E-06-6.861E=10*T)*T)*T                      |
| 20700 | CP4=4.750+(1.2E=02+(3.03E=06=2.63E=09*T)*T)*T                         |
| 20800 | GO TO 11                                                              |
| 20900 |                                                                       |
| 21000 |                                                                       |
| 21100 | CP2=6.822+(1.631E=3=0.345E=6*T11)*T11                                 |
| 21200 |                                                                       |
| 21300 | CP1=6.919+(0.218E-3+0.279E=6*T11)*T11                                 |
| 21400 |                                                                       |
| 21500 | CP4=3.00+(0.0228=4.8E=6*T)*T                                          |
| 21600 | 11 CP5=4,9675                                                         |
| 21700 | RETURN                                                                |
| 21800 | END                                                                   |
| 21900 |                                                                       |
| 22000 |                                                                       |
| 22100 |                                                                       |
| 22200 | C SUBROUTINE NO.7 FOR CALCULATION OF EFFECTIVE                        |
|       |                                                                       |

|         | RS | APPENDIX-B                                         | PAGE: | 61 |
|---------|----|----------------------------------------------------|-------|----|
| 22300 ( | 0  | NESS FACTOR OF LARGER SIZE CATALYST                |       |    |
| 22400 0 | 2  | PARTICLES OF 6MM AND 10 MM                         |       |    |
| 22500   |    | SUBROUTINE ZIFA(ZIF, F, T, ETA, B1, B2, B3, B4, B5 | ,B6)  |    |



|       |     | PAGE: 62                                                     |
|-------|-----|--------------------------------------------------------------|
|       | RS  | APPENDIX-B                                                   |
| 00100 |     | IF(P-150,0)20,26,35                                          |
| 00200 | 35  | IF(P=225.0)20,26,47                                          |
| 00300 |     | IF(P=300.0)71,26,71                                          |
| 00400 | 26  | CB0=1 ; CB1=1 ; CB2=1 ; CB3=1 ; CB4=1 ; CB5=1 ; CB6=1        |
| 00500 |     | IF(P=225)44,56,80                                            |
| 00600 | 44  | B0=-17.539096*CB0 ; E1=0.07697849*CB1                        |
| 00700 |     | B2=6.900548*CB2 ; B3==1.08279E=4*CB3                         |
| 00800 |     | B4=-26.42469*CB4 ; B5=4.927648E=8*CB5                        |
| 00900 |     | B6=38.93727*CB6                                              |
| 01000 |     | GO TO 200                                                    |
| 01100 | 56  | B0=-8.2125534*CB0 ; B1=0.03774149*CB1                        |
| 01200 |     | B2=6.190112*CB2 ; B3=-0.5354571E-4*CB3                       |
| 01300 |     | B4=-20.86963*CB4; B5=2.379142E=8*CB5                         |
| 01400 |     | B6=27.88403*CB6                                              |
| 01500 |     | GO TO 200                                                    |
| 01600 | 80  | B0=-4.6757259*CB0 ; B1=0.02354872*CB1                        |
| 01700 |     | B2=4.687353*CB2 ; B3=-0.3463308E-4*CB3                       |
| 01800 |     | B4=-11.28031*CB4 ; B5=1.540881E-8*CB5                        |
| 01900 |     | B6=10,46627*CB6                                              |
| 02000 |     | GO TO 200                                                    |
| 02100 | 20  | CB0=2.06351463-0.007090097*P ; CB1=2.019427635-0.006796184*P |
| 02200 |     | CB2=1.205907125=0.001372714*P ;CB3=2.010967778=0.006739785*P |
| 02300 | 10  | CB4=1.420444667-0.002802964*P ; CB5=2.03437015-0.0068958*P   |
| 02400 |     | CB6=1.567746018=0.003784973*P                                |
| 02500 | 1   | GO TO 44                                                     |
| 02600 | 71  | CB0=4.025692759-0.010085642*P;CB1=3.410792604-0.008035975*P  |
| 02700 |     | CB2=2.282394563=0.004274648*P;CB3=3.184342831=0.007281142*P  |
| 02800 |     | CB4=4.400374635-0.011334582*P;CB5=3.176056425-0.007253521*P  |
| 02900 |     | CB6=7.656721067-0.02218907*P                                 |
| 03000 |     | GO TO 80                                                     |
| 03100 | 200 | ZIF=B0+(B1+(B3+B5*T)*T)*T+(B2+(B4+B6*ETA)*ETA)*ETA           |
| 03200 |     | RETURN                                                       |
| 03300 |     | END                                                          |
| 03400 | с   | SUBROUTINE NO. 8 FOR CALCULATION OF                          |
| 03500 | с   | CONVERSION AT EQUILIBRIUM AND MAXIMUM                        |
| 03600 | с   | REACTION RATE AT CONVERGED VALUES IN THE                     |
| 03700 | с   | CATALYST BED                                                 |
|       |     |                                                              |

| RS         | APPENDIX-B PAGE: 63                                                 |
|------------|---------------------------------------------------------------------|
| 03800      | SUBROUTINE CONV(XACT, XE, XRM, P, T, I, AELP2)                      |
| 03900      | DIMENSION XACT(310), XE(310), XRM(310), XY(310), P(310),            |
| 04000      | 1T(310), ADELP(4), AELP2(4,2), RATE(800)                            |
| 04100      | COMMON/CB8/AKR, AK, AKF, ABLP8, ITYPE, ZIF                          |
| 04200      | 1/CB9/FF,RATIO,XINCL,XINCL2,TOL8,FC1,FC2,FC3,DELE,DELM              |
| 04300      | 1, IOL8, M88, IOP11, ICL81                                          |
| 04400      | 1/CB26/CONSL7, CONSL8, SCONL8, TWTH, PP, TT, DAKR, DAK, DAKF, RAKKF |
| 04500      | REAL KC1, KC2, KC3                                                  |
| 04600      | J=1;PP=P(I) ; TI=T(I)                                               |
| 04700      | RAKKF=AK/AKF ; SRAF=RAKKF*RAKKF                                     |
| 04800      | CONP=1.29904*PP ; MC=1 ; KC1=CONP*RAKKF                             |
| 04900      | CONSL7=29.4204*AKR*FF/PP**0.5;CONSL8=PP*RAKKF                       |
| 05000      | SCONL8=CONSL8*CONSL8;TWTH=2/3                                       |
| 05100      | Y3F=1.5*(100=FC3)/FC1;Y1F=225*FC3/(FC1*FC1)                         |
| 05200 278  | IF(MC.E0.1) GO TO 287                                               |
| 05300      | KC1=KC3                                                             |
| 05400 287  | AKC1=KC1+1                                                          |
| 05500      | BKC1=2*KC1+Y3F                                                      |
| 05600      | CKC1=KC1-Y1F                                                        |
| 05700      | AKCK=4*AKC1*CKC1                                                    |
| 05800      | BKSQ=BKC1*BKC1                                                      |
| 05900      | IF(AKCK.GT.BKSQ) GO TO 305                                          |
| 06000      | ROOT=(BKSQ=AKCK)**0.5                                               |
| 06100      | AKC2=2*AKC1;ROOT2=ROOT/AKC2                                         |
| 06200      | BKC2=BKC1/AKC2;BKROOT=BKC2+ROOT2                                    |
| 06300 C    | IF(BKROOT.LT.1.0)GO TO 35                                           |
| 06400      | IF(BKC2.LE,ROOT2)GO TO 35                                           |
| 06500      | LXY=(BKC2-ROUT2)*10000+0.5;XY(I)=LXY*0.0001                         |
| 06600      | IF(IOL81.NE.1)GO TO 1109                                            |
| 06700      | PRINT 1101,XY(I)                                                    |
| 06800      | TYPE 1101,XY(I)                                                     |
| 06900 1109 | CONTINUE                                                            |
| 07000 1101 | FORMAT(F7.3)                                                        |
| 07100      | GO TO 26                                                            |
| 07200 35   | LXY=(BKC2+ROOT2)*10000+0.5;XY(I)=LXY*0.0001                         |
| 07300      | IF(IOL81.NE.1)GO TO 1118                                            |
| 07400      | PRINT 1101,XY(I)                                                    |

|       |      | PAGE: 64                                                               |
|-------|------|------------------------------------------------------------------------|
|       | RS   | APPENDIX-B                                                             |
| 07500 |      | TYPE 1101,XY(I)                                                        |
| 07600 | 1118 | CONTINUE                                                               |
| 07700 |      | IF(XY(I).GT.1.0)GO TO 305                                              |
| 07800 | 26   | IF(MC.EQ.2)GO TO 350                                                   |
| 07900 |      | XE(I) = XY(I)                                                          |
| 08000 |      | GO TO 332                                                              |
| 08100 | 350  | XRM(I)=XY(I)                                                           |
| 08200 |      | IF(RATIO.NE.3.0)GO TO 443                                              |
| 08300 | С    | IF(ZIF.NE.1.0)GO TO 443                                                |
| 08400 |      | GO TO 377                                                              |
| 08500 | 443  | CONTINUE                                                               |
| 08600 |      | GO TO 458                                                              |
| 08700 | 305  | PRINT 308, PP, TT                                                      |
| 08800 |      | IF(ITYPE.NE.2)GO TO 107                                                |
| 08900 |      | TYPE 308, PP, TT                                                       |
| 09000 | 308  | FORMAT(2X, 'PRESSURE(ATM)=', F10, 3, 8X, ', TEMPERATURE(K)=', F10, 3/) |
| 09100 | 107  | IF(MC.EQ.2) GO TO 800                                                  |
| 09200 |      | PRINT 809                                                              |
| 09300 |      | IF(ITYPE.NE.2)GO TO 116                                                |
| 09400 |      | TYPE 809                                                               |
| 09500 | 809  | FORMAT(2X, 'CONVERSION AT EQUILIBRIUM IS COMING COMPLEX/NEGATIVE OR    |
| 09600 | 1    | IZERO.'/)                                                              |
| 09700 | 116  | XE(I)=0.0                                                              |
| 09800 |      | GU TO 332                                                              |
| 09900 | 800  | PRINT 818                                                              |
| 10000 | 1    | IF(ITYPE.NE.2)GO TO 125                                                |
| 10100 |      | TYPE 818                                                               |
| 10200 | 818  | FORMAT(2X, 'CONVERSION AT MAXIMUM RATE IS COMING COMPLEX/NEGATIVE O    |
| 10300 | :    | IR ZERO. '/)                                                           |
| 10400 | 125  | XRM(I)=0.0                                                             |
| 10500 |      | GO TO 377                                                              |
| 10600 | 332  | CONTINUE                                                               |
| 10700 |      | IF(RATIO.EQ.3.0)GO TO 431                                              |
| 10800 | 458  | ABC=1;XLPE=XY(I)                                                       |
| 10900 |      | IF(MC.EQ.2)GD TO 1100                                                  |
| 11000 | С    | XLPE=XACT(I);ABC=-1                                                    |
| 11100 | 1100 | XEL=(1-ABC*XINCL2)*XLPE                                                |
|       |      |                                                                        |

|       | RS   | APPENDIX-B PAGE: 65                                  |
|-------|------|------------------------------------------------------|
| 11200 | с    | XINCL2=(XE(I)=XRM(I))*0.2                            |
| 11300 |      | CALL LMINP(XEL, MC, ADELP, RATE, LMP)                |
| 11400 |      | IF(MC.EQ.2)GO TO 440                                 |
| 11500 |      | XE(I)=XEL                                            |
| 11600 |      | DO 530 LP=1,4                                        |
| 11700 | 530  | AELP2(LP,1)=ADELP(LP)                                |
| 11800 |      | GO TO 431                                            |
| 11900 | 440  | XRM(I)=XEL                                           |
| 12000 |      | DO 533 LP=1,4                                        |
| 12100 | 533  | AELP2(LP,2)=ADELP(LP)                                |
| 12200 |      | GO TO 377                                            |
| 12300 | 431  | MC=2                                                 |
| 12400 |      | TINV=1/TT                                            |
| 12500 |      | DAKR=24092.2*AKR*TINV*TINV                           |
| 12600 |      | DAK=AK*0.50327*(3.4966E-3-TINV*(9184.0*TINV+7.2949)+ |
| 12700 |      | 1TT*(3.3562E=7=TT*11.625E=11))                       |
| 12800 | 1    | DAKF=5,714E=7*PP+4.0E=6*TI=2.6714E=3                 |
| 12900 |      | KC2=2.0*AKR*RAKKF*(DAK=RAKKF*DAKF)/(AKF*DAKR)+SRAF   |
| 13000 |      | KC3=CONP*KC2**0.5                                    |
| 13100 |      | GO TO 278                                            |
| 13200 | 377  | CONTINUE                                             |
| 13300 |      | IF(IOL81.NE.1)GO TC 1105                             |
| 13400 |      | PRINT 1106, ((AELP2(LP,LP1), LP=1,4), LP1=1,2),      |
| 13500 |      | 2(RATE(LP), LP=1, LMP)                               |
| 13600 | 10   | TYPE 1106, ((AELP2(LP,LP1), LP=1,4), LP1=1,2),       |
| 13700 |      | 2(RATE(LP), LP=1, LMP)                               |
|       | 1106 | FORMAT(8F7.3,6E11.3/)                                |
| 13900 | 1105 | CONTINUE                                             |
| 14000 |      | RETURN                                               |
| 14100 |      | END<br>OUTINE NO.9                                   |
| 14300 |      |                                                      |
| 14300 |      | SUBROUTINE NO. 10<br>SUBROUTINE COMPA(DELT,T,J,J1)   |
| 14500 |      | DIMENSION DELT(800), T(800)                          |
| 14600 |      | I=1;J1=0                                             |
| 14700 |      | IF(ABS(T(J)=T(I))_EQ.0.0)GO TO 35                    |
| 14800 |      | I=I+1                                                |
|       |      |                                                      |

| TO B. | ATC. | and the second | - |
|-------|------|----------------|---|
| PA    | Gr   | 6              | C |

| R         | S APPENDIX-B                                                                                                    | PAGE: 66                                                                                                        |
|-----------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 14900     | IF(I.EQ.J) GD TO 44                                                                                             |                                                                                                                 |
| 15000     | GO TO 26                                                                                                        |                                                                                                                 |
| 15100     | 35 T(J)=T(I)                                                                                                    |                                                                                                                 |
| 15200     | DELT(J)=DELT(I)                                                                                                 |                                                                                                                 |
| 15300     | Ji=I                                                                                                            |                                                                                                                 |
| 15400     | GO TO 53                                                                                                        |                                                                                                                 |
| 15500     | 44 DELT(J)=8.0                                                                                                  |                                                                                                                 |
| 15600     | 53 RETURN                                                                                                       |                                                                                                                 |
| 15700     | END                                                                                                             |                                                                                                                 |
| 15800     | SUBROUTINE OPTIMA (OBJF                                                                                         | ,M,X,X1,TOP,NV,                                                                                                 |
| 15900     | 1AC2, NLEV, NOPTM, TOLS, NM.                                                                                    | AX1,NDPTS,X8,                                                                                                   |
| 16000     | 20BJ, NN8, AC1, YN, ILF)                                                                                        | The second se |
| 16100 C   | SUBROUTINE NO.11 FOR C                                                                                          | OMPLEX SEARCH TECHNIQUE                                                                                         |
| 16200     | DIMENSION OBJF(50),X(5                                                                                          | 0,20),X1(20,20),                                                                                                |
| 16300     | 10BJ(20),X8(20,20),NLEV                                                                                         | (20),X8N(20)                                                                                                    |
| 16400     | CALL MAXMIL (OBJF, M, O                                                                                         | BMAX1,                                                                                                          |
| 16500     | 10BMAX2,0BMIN,NMAX1,                                                                                            | NMAX2, NMIN, NDPTS, ILP)                                                                                        |
| 16600     | IF(M.GT.NDPTS) GC TO 2                                                                                          | 51                                                                                                              |
| 16700 32  | IN=0; IK=0; NN8=1; AC1=AC                                                                                       | 2;LP=0;NDPT1=NDPTS=1                                                                                            |
| 16800 260 | DO 17 L=1,NDPTS                                                                                                 |                                                                                                                 |
| 16900     | IF(L.EQ.NMIN)GO TO 1                                                                                            |                                                                                                                 |
| 17000     | LP=LP+1                                                                                                         | THUS SAME                                                                                                       |
| 17100     | OBJ(LP)=OBJF(L)                                                                                                 |                                                                                                                 |
| 17200     | DO 17 K=1,NV                                                                                                    |                                                                                                                 |
| 17300     | X8(LP,K)=X(L,K)                                                                                                 |                                                                                                                 |
| 17400 17  | CONTINUE                                                                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                         |
| 17500     | OBJ(NDPTS)=OBJF(NMIN                                                                                            |                                                                                                                 |
| 17600     | DO 116 K=1,NV                                                                                                   | - A' ~                                                                                                          |
| 17700 116 | Contraction of the second s |                                                                                                                 |
| 17800 125 | Contraction of the second s | F TECHNOL                                                                                                       |
| 17900 2   | 278 CALL NPOINT(IN, OBMIN, O                                                                                    |                                                                                                                 |
| 18000     |                                                                                                                 | OBMAX2, NMAX1, NMIN, NDPTS)                                                                                     |
| 18100     | IF(NN8.NE.1)GO TO 44                                                                                            | 0                                                                                                               |
| 18200     | YN=OBJ(NDPTS)                                                                                                   |                                                                                                                 |
| 18300 440 |                                                                                                                 |                                                                                                                 |
| 18400     | IF(NOPTM.NE.0)GO TO                                                                                             | 71                                                                                                              |
| 18500     | M=M+1                                                                                                           |                                                                                                                 |

| RS APPENDIX-B                                        | PAGE: 67 |
|------------------------------------------------------|----------|
| 18600 DO 74 K=1,NV                                   |          |
| 18700 74 X(M,K)=X8(NDPTS,K)                          |          |
| 18800 GD TO 80                                       |          |
| 18900 251 CONTINUE                                   |          |
| 19000 206 OBJ(NDPTS)=OBJF(M)                         |          |
| 19100 DO 233 K=1,NV                                  |          |
| 19200 233 X8(NDPTS,K)=X(M,K)                         |          |
| 19300 IF(OBJ(NDPTS).LE.YN)GO TO 125                  |          |
| 19400 NN8=1;AC1=AC2;LP=0;NDPT1=NDPTS-1               |          |
| 19500 CALL MINCOBJ, NDPTS, OBMIN, NMIN)              |          |
| 19600 DO 143 K=1,NV                                  | 2. 10    |
| 19700 143 X8N(K)=X8(NMIN,K)                          | ~~       |
| 19800 DO 134 L=1,NDPTS                               | × 6 a    |
| 19900 IF(L.EQ.NMIN)GO TO 134                         | 2.23     |
| 20000 LP=LP+1                                        | ALC.     |
| 20100 IF(L.EQ.LP)GO TO 134                           | 122 2    |
| 20200 OBJ(LP)=OBJ(L)                                 | 1005     |
| 20300 DO 134 K=1,NV                                  |          |
| 20400 X8(LP,K)=X8(L,K)                               | 1 1      |
| 20500 134 CONTINUE                                   | 10.10    |
| 20600 OBJ(NDPTS)=OBMIN                               | L'anne   |
| 20700 DO 890 K=1,NV                                  |          |
| 20800 890 X8(NDPTS,K)=X8N(K)                         |          |
| 20900 GO TO 125                                      |          |
| 21000 80 OBJF(M)=0.0                                 | 18 3     |
| 21100 71 RETURN                                      | 1 11 14  |
| 21200 END                                            | 5 2      |
| 21300 SUBROUTINE NPOINT(IN,YN,Y,X,N,N1,AC            | CN       |
| 21400 1, NOPTM, TOL8, YMAX1, YMAX2, NMAX1, NMIN, NDI | PTS)     |
| 21500 DIMENSION Y(20), X(20,20)                      | CY .     |
| 21600 C SUBROUTINE NO.12 FOR NEXT OPTIMISATION PO    | DINT     |
| 21700 I=0;NOPTM=0;NDPT1=NDPTS-1;XMEAN=0.0            |          |
| 21800 227 CONTINUE<br>21900 IF(N1-2)38,47,56         |          |
| 21900 IF(N1-2)38,47,56<br>22000 38 CONTINUE          |          |
| 22100 65 I=I+1;XMEAN=0.0                             |          |
| 22200 DO 332 L=1,NDPT1                               |          |
| Names and Partitions of                              |          |

|       | RS   | APPENDIX-B PAGE:                           |
|-------|------|--------------------------------------------|
| 22300 | 332  | XMEAN=X(L,I)+XMEAN                         |
| 22400 |      | XMEAN=XMEAN/NDPT1                          |
| 22500 |      | X(NDPTS, I)=XMEAN+(XMEAN-X(NDPTS, I))*AC   |
| 22600 |      | IF(I.LT.N) GO TO 65                        |
| 22700 |      | N1=N1+1 .                                  |
| 22800 |      | IN=3                                       |
| 22900 |      | GO TO 80                                   |
| 23000 | 47   | AC=-0_5*AC                                 |
| 23100 |      | GO TO 38                                   |
| 23200 | 56   | AC=0.5*AC                                  |
| 23300 |      | GO TO 38                                   |
| 23400 | 80   | CONTINUE                                   |
| 23500 |      | IF((YMAX1-YMAX2).GT.TOL8)GD TD 233         |
| 23600 |      | NOPTM=NMAX1                                |
| 23700 | 233  | CONTINUE                                   |
| 23800 | 1    | RETURN                                     |
| 23900 |      | END                                        |
| 24000 |      | SUBROUTINE INTEGR(X,N,M)                   |
| 24100 | Sec. | DIMENSION X(50,20), IX(20)                 |
| 24200 | C    | SUBROUTINE NO.13 FOR MAKING REAL VARIABLES |
| 24300 | C    | TO ITS NEAREST RCUNDED OFF VALUE           |
| 24400 |      | DO 8 K=1,17                                |
| 24500 |      | IX(K)=X(M,K)*100+0.5;X(M,K)=IX(K)*0.01     |
| 24600 | 8    | CONTINUE                                   |
| 24700 | 1.5  | RETURN                                     |
| 24800 | 1    | END                                        |
| 24900 |      | SUBROUTINE MLEVEL(X, N, X1, M, N1)         |
| 25000 |      | DIMENSION X(50,20),X1(20,20),N1(20)        |
| 25100 |      | SUBROUTINE NO,14 FOR MAKING VARIABLES TO   |
| 25200 |      | THEIR NEAREST SPECIFIED LEVEL              |
| 25300 |      | FEED DATA THROUGH DATA FILE DA17.DAT       |
| 25400 | C    | IN DESCENDING ORDER, SAY 20,15,10,50 DN.   |
| 25500 |      | J=1;K=1;LP1=1                              |
| 25600 |      | IF(X(M,J)-X1(K,J))26,29,29                 |
| 25700 | 26   | IF(K.GE.N1(J))GO TO 11                     |
| 25800 |      | K=K+1;LP1=2                                |
| 25900 |      | GO TO 80                                   |

| -     |     | PAGE: 69                              |  |
|-------|-----|---------------------------------------|--|
|       | RS  | APPENDIX-B                            |  |
| 26000 | 29  | IF(LP1.EQ.1)GO TO 11                  |  |
| 26100 |     | LP1=1                                 |  |
| 26200 |     | IF(ABS(X(M,J)-X1((K-1),J)),GE.        |  |
| 26300 |     | 1ABS(X(M,J)=X1(K,J)))GO TO 11         |  |
| 26400 |     | X(M,J) = X1((K=1),J)                  |  |
| 26500 |     | GO TC 74                              |  |
| 26600 | 11  | X(M,J) = X1(K,J)                      |  |
| 26700 | 74  | IF(J.GE.N)GO TO 53                    |  |
| 26800 |     | J=J+1;K=1;LP1=1                       |  |
| 26900 |     | GO TO 80                              |  |
| 27000 | 53  | RETURN                                |  |
| 27100 |     | END                                   |  |
| 27200 | С   | SUBROUTINE NO. 15                     |  |
| 27300 |     | SUBROUTINE ACOMP(IK,X,M,N)            |  |
| 27400 |     | DIMENSION X(50,20)                    |  |
| 27500 | 100 | J=1                                   |  |
| 27600 | 35  | I=1                                   |  |
| 27700 | 17  | IF(X(M,I).EQ.X(J,I)) GO TO 8          |  |
| 27800 | -   | J=J+1                                 |  |
| 27900 |     | IF(J,GE.M) GO TO 71                   |  |
| 28000 |     | GU TO 35                              |  |
| 28100 | - 8 | I=I+1                                 |  |
| 28200 | 1   | IF(I,GT.N) GO TO 80                   |  |
| 28300 |     | GO TO 17                              |  |
| 28400 | 71  | IK=0                                  |  |
| 28500 |     | GO TO 89                              |  |
| 28600 | 80  | IK=J                                  |  |
| 28700 | 89  | RETURN                                |  |
| 28800 |     | END                                   |  |
| 28900 | С   | SUBROUTINE NO. 16                     |  |
| 29000 |     | SUBROUTINE MINMAX(X,N,XMAX,XMIN,NDIM) |  |
| 29100 |     | DIMENSION X(NDIM)                     |  |
| 29200 |     | J=1 ; A=X(1)                          |  |
| 29300 |     | DO 26 J=2,N                           |  |
| 29400 |     | IF(A.GE.X(J)) GO TO 26                |  |
| 29500 |     | A=X(J)                                |  |
| 29600 | 26  | CONTINUE                              |  |
|       |     |                                       |  |

|                | DC    | PAGE: 70                                                             |
|----------------|-------|----------------------------------------------------------------------|
| 00700          | RS    | APPENDIX-B<br>XMAX=A                                                 |
| 29700<br>29800 |       | I=1                                                                  |
| 29900          |       | A1=X(1)                                                              |
| 30000          |       | DO 80 J=2,N                                                          |
| 30100          |       | IF(A1.LE.X(J))GO TO 80                                               |
| 30200          |       | A1=X(J)                                                              |
| 30300          | 80    | CONTINUE                                                             |
| 30400          |       | XMIN=A1                                                              |
| 30500          |       | RETURN                                                               |
| 30600          |       | END                                                                  |
| 30700          | С     | SUBROUTINE NO. 17                                                    |
| 30800          |       | SUBROUTINE AMMC(AN3E, AN3MR, AB1, FI3, FIT, XE, XRM, I)              |
| 30900          |       | DIMENSION XE(310), XRM(310)                                          |
| 31000          |       | COMMON/CB9/FF, RATIO, XINCL, XINCL2, TOL8, FC1, FC2, FC3, DELE, DELM |
| 31100          | 1     | 1, IODS, M98, IOP11                                                  |
| 31200          | 6     | J=1 ; X=XE(I)                                                        |
| 31300          | 17    | AB2=2*FC1*X/3                                                        |
| 31400          |       | AN3T1=100*(FC3+AB2)/(100-AB2)                                        |
| 31500          |       | IF(J.GE.2)GO TO 26                                                   |
| 31600          |       | AN3E=AN3T1                                                           |
| 31700          | lag - | X=XRM(I)                                                             |
| 31800          | 1     | J=2                                                                  |
| 31900          |       | GO TO 17                                                             |
| 32000          | 26    | AN3MR=AN3T1                                                          |
| 32100          | 5     | RETURN                                                               |
| 32200          | C     | SUBROUTINE NO.18                                                     |
| 32300          | L     | SUBROUTINE FLOWR(F1,F2,F3,F4,F5,VFT,FC1,FC2,FC3,FC4,I)               |
| 32500          |       | C1=1.1355E=4                                                         |
| 32600          |       | C2=1.1135E-4                                                         |
| 32700          |       | C3=1.1349E-4                                                         |
| 32800          |       | C4=1.1351E=4                                                         |
| 32900          |       | C5=1.136E-4                                                          |
| 33000          |       | IF(I.EQ.2)GO TO 26                                                   |
| 33100          | 17    | CONTINUE                                                             |
| 33200          |       | FC5=100.0-(FC1+FC2+FC3+FC4)                                          |
| 33300          |       | FCLP=FC1/C1+FC2/C2+FC3/C3+FC4/C4+FC5/C5                              |
|                |       |                                                                      |

|                | F   | RS APPENDIX-B PAGE: 71                                     |
|----------------|-----|------------------------------------------------------------|
| 33400          |     | FTC=100*VFT/FCLP                                           |
| 33500          |     | IF1=FTC*FC1+0.5                                            |
| 33600          |     | F1=IF1                                                     |
| 33700          |     | IF2=FTC*FC2+0.5                                            |
| 33800          |     | F2=IF2                                                     |
| 33900          |     | IF3=FTC*FC3+0.5                                            |
| 34000          |     | F3=IF3                                                     |
| 34100          |     | IF4=FTC*FC4+0.5                                            |
| 34200          |     | F4=IF4                                                     |
| 34300          |     | IF5=FTC*FC5+0.5                                            |
| 34400          |     | F5=IF5                                                     |
| 34500          |     | GO TO BO                                                   |
| 34600          |     | 26 IVFT=0.01*((F1/C1)+(F2/C2)+(F3/C3)+(F4/C4)+(F5/C5))+0.5 |
| 34700          |     | VFT=IVFT                                                   |
| 34800          |     | FTC=0.01*(F1+F2+F3+F4+F5)                                  |
| 34900          |     | 35 IFC1=100*F1/FTC+0.5                                     |
| 35000          |     | FC1=TFC1/100                                               |
| 35100          |     | IFC2=100*F2/FTC+0.5                                        |
| 35200          |     | FC2=IFC2/100                                               |
| 35300          |     | IFC3=100*F3/FTC+0.5 ; FC3=IFC3/100                         |
| 35400          |     | IFC4=100*F4/FTC+0.5 ; FC4=IFC4/100                         |
| 35500          | 0.0 | FC5=100.0-(FC1+FC2+FC3+FC4)                                |
| 35600          | 80  | RETURN                                                     |
| 35700<br>35800 | ~   | END SUBDOUTTING NO. 10                                     |
| 35900          | C   | SUBROUTINE NO. 19                                          |
| 36000          | 0   | SUBROUTINE NO. 20                                          |
| 36100          | C   | SUBROUTINE FUNCEJ(X,M,N1,P,P1,S,S1,S2,S3,S4,S5,S6,S7,S8    |
| 36200          |     | 1, 520, 521, 522, 523, 524, 525, 526, 527, 528, 6)         |
| 36300          |     | DIMENSION X(50)                                            |
| 36400          |     | IF(N1-2)2,3,7                                              |
| 36500          | 7   | IF(N1-4)8,11,12                                            |
| 36600          |     | IF(N1-6)17,80,21                                           |
| 36700          | 21  | IF(N1-8)26,29,30                                           |
| 36800          | 30  | IF(N1-10)35,38,38                                          |
| 36900          | 2   | G=P1                                                       |
| 37000          |     | IF(P1.EQ.0.0)GC TO 44                                      |

|       | RS | APPENDIX-B PAGE: 72    |
|-------|----|------------------------|
| 37100 |    | X(M) = P/P1            |
| 37200 |    | GO TO 20               |
| 37300 | 44 | X(M)=P                 |
| 37400 |    | GO TO 20               |
| 37500 | 3  | G=S21                  |
| 37600 |    | IF(S21.EQ.0.0)GO TO 45 |
| 37700 |    | X(M)=-S1/S21           |
| 37800 |    | GO TO 20               |
| 37900 | 45 | X(M)=-S1               |
| 38000 |    | GO TO 20               |
| 38100 | 8  | G=S22                  |
| 38200 |    | IF(S22,E0.0.0)GO TO 46 |
| 38300 |    | X(M) = -S2/S22         |
| 38400 | 6  | GO TO 20               |
| 38500 | 46 | X(M)=-S2               |
| 38600 | 1  | GO TO 20               |
| 38700 | 11 | G=523                  |
| 38800 |    | IF(S23.E0.0.0)GD TC 47 |
| 38900 |    | X(M)==\$3/\$23         |
| 39000 |    | GU TO 20               |
| 39100 | 47 | X(M)=S3                |
| 39200 |    | GO TO 20               |
| 39300 | 17 | G=S24                  |
| 39400 |    | IF(S24.EQ.0.0)GO TO 48 |
| 39500 | 1  | X(M)=-S4/S24           |
| 39600 |    | GO TO 20               |
| 39700 | 48 | X(M) = -S4             |
| 39800 |    | GO TO 20               |
| 39900 | 80 | G=\$25                 |
| 40000 |    | IF(S25.E0.0.0)GO TO 50 |
| 40100 |    | X(M) = -55/525         |
| 40200 | 50 | GO TO 20               |
| 40300 | 50 | X(M)==S5               |
| 40400 | 26 | GO TO 20<br>G=S26      |
| 40500 | 20 | IF(S26.EQ.0.0)GD TO 51 |
| 40800 |    | X(M) = -S6/S26         |
| 40700 |    | A(m)00/020             |

| RS       | APPENDIX-B PAGE: 73                |
|----------|------------------------------------|
| 40800    | GO TO 20                           |
| 40900 51 | X(M)=-S6                           |
| 41000    | GO TO 20                           |
| 41100 29 | G=S27                              |
| 41200    | IF(S27,EQ.0.0)GO TO 53             |
| 41300    | X(M) = -57/527                     |
| 41400    | GO TO 20                           |
| 41500 53 | X(M) = -S7                         |
| 41600    | GO TO 20                           |
| 41700 35 | G=S28                              |
| 41800    | IF(528.EQ.0.0)GO TO 52             |
| 41900    | X(M)==\$8/528                      |
| 42000    | GO TO 20                           |
| 42100 52 | X(M)=-S8                           |
| 42200    | GO TO 20                           |
| 42300 38 | G=S20                              |
| 42400    | IF(S20.EQ.0.0)GO TO 56             |
| 42500    | X(M) = -5/520                      |
| 42600    | GO TO 20                           |
| 42700 56 | X(M)=-S                            |
| 42800 20 | RETURN                             |
| 42900    | END                                |
| 43000 C  | SUBROUTINE NO. 21                  |
| 43100    | SUBROUTINE MIN(X,N,XMIN,NMIN)      |
| 43200    | DIMENSION X(20)                    |
| 43300    | I=1;NMIN=1                         |
| 43400    | A1=X(1)                            |
| 43500    | DO 80 J=2,N                        |
| 43600    | IF(A1.LE.X(J))GO TO 80             |
| 43700    | A1=X(J)                            |
| 43800    | NMIN=J                             |
| 43900 80 | CONTINUE                           |
| 44000    | XMIN=A1                            |
| 44100    | RETURN                             |
| 44200    | END                                |
| 44300 C  | SUBROUTINE NO. 22                  |
| 44400    | SUBROUTINE MAXMIL(X,N,XMAX1,XMAX2, |

|       | RS    | APPENDIX-B                              | PAGE: 74                  |
|-------|-------|-----------------------------------------|---------------------------|
| 44500 |       | 1XMIN, NMAX1, NMAX2, NMIN, NDPTS, ILF   | •)                        |
| 44600 |       | DIMENSION X(50)                         |                           |
| 44700 |       | NMAX=1;LP=1;NMAX1=1;NDLP=NDPTS+2        |                           |
| 44800 | 53    | I=1                                     |                           |
| 44900 |       | IF(LP,EQ.1)GO TO 56                     |                           |
| 45000 |       | IF(NMAX.EQ.1)I=I+1                      |                           |
| 45100 | 56    | A=X(I);II1=I+1                          |                           |
| 45200 |       | DO 26 J=II1,N                           |                           |
| 45300 |       | IF(J.EQ.NMAX1)GO TO 26                  |                           |
| 45400 |       | IF(A.GE.X(J)) GD TO 26                  | LA.                       |
| 45500 |       | A=X(J);NMAX=J                           | - 1 -                     |
| 45600 | 26    | CONTINUE                                | No. VS                    |
| 45700 |       | IF(LP.NE.1)GO TO 35                     | 19 (A                     |
| 45800 |       | XMAX1=A; NMAX1=NMAX; LP=2               | 1 2 3                     |
| 45900 |       | GO TO 53                                | A Car                     |
| 46000 | 35    | XMAX2=A; NMAX2=NMAX                     | J 1 2 3                   |
| 46100 | 1     | I=1;NMIN=1                              | 1. 1. 1. 1. 1.            |
| 46200 |       | IF(ILP.EC.1)GU TO 101                   |                           |
| 46300 |       | IF(N.LE.NDLP)I=I+1                      |                           |
| 46400 | 101   | CONTINUE                                | 10-10-4                   |
| 46500 | -     | A1=X(I);II1=I+1;NMIN=I                  | 1 TUES Journey            |
| 46600 |       | DO 80 J=II1,N                           | alla il                   |
| 46700 |       | IF(A1.LE.X(J))GU TO 80                  |                           |
| 46800 |       | A1=X(J);NMIN=J                          |                           |
| 46900 | 80    | CONTINUE                                | -18 Y                     |
| 47000 | 1     | XMIN=A1                                 | 1 11 14                   |
| 47100 |       | RETURN                                  | 100 -                     |
| 47200 |       | END                                     | 1 AM                      |
| 47300 | c sui | BROUTINE NO.23                          | 1 - 2 m                   |
| 47400 |       | SUBROUTINE LMINP(TE21,MC,DELP2,R        |                           |
| 47500 |       | DIMENSION ADELT(800), ATH12(800),       |                           |
| 47600 |       | COMMON/CB9/FF, RATIC, XINCL, XINCL2     | ,C4,FC1,FC2,FC3,DELE,DELM |
| 47700 |       | 1,IOL8,M88,IOP11,IOL81                  |                           |
| 47800 |       | 1/CB8/AKR, AK, AKF, ABLP8, ITYPE, ZIF   |                           |
| 47900 |       | 1, SCONL8, TWTH, F, T, DAKR, DAK, DAKF, | RAKKF                     |
| 48000 |       | LMP=1;I=0;ATLP=1.0;C41=0.0008           |                           |
| 48100 |       | W1=TB21                                 |                           |

|                | RS   | APPENDIX-B                                | PAGE: 75       |
|----------------|------|-------------------------------------------|----------------|
| 48200          | 192  | I=I+1                                     |                |
| 48300          |      | IF(W1.GT.ATLP)W1=2.0*ATLP-W1              |                |
| 48400          |      | IF(W1.LT.0.0)W1==W1                       |                |
| 48500          |      | • ATH12(I)=W1                             |                |
| 48600          |      | IF(I.EG.1)GO TO 224                       |                |
| 48700          |      | CALL COMPA(ADELT, ATH12, I, LP)           |                |
| 48800          |      | IF(LP.NE.0)GO TO 227                      |                |
| 48900          | 224  | CALL DELTAP(DELT1, W1, MC, R11(LMP), LMP) |                |
| 49000          |      | GO TO 233                                 |                |
| 49100          | 227  | DELT1=ADELT(LP)                           |                |
| 49200          | 233  | ADELT(T)=DELT1                            |                |
| 49300          | С    | IF(IOL81.NE.1)GD TC 323                   | ~              |
| 49400          |      | IF(I.GE.M88)GO TO 151                     | 60             |
| 49500          | 323  | IF(ABS(DELT1)=C41) 151,151,191            | a ma           |
| 49600          | 191  | IF(I=1)153,152,153                        | C.C.           |
| 49700          | 152  | W2=W1*XINCL                               | 100 000        |
| 49800          | 134  | TB21=W2                                   | 1005           |
| 49900          |      | I=I+1                                     |                |
| 50000          |      | IF(W2.GT.ATLP)W2=2*ATLP=W2                | 1 -            |
| 50100          |      | IF (W2.LT.0.0) W2=-W2                     | 1 Charles      |
| 50200          |      | ATH12(I)=W2                               | all states and |
| 50300          |      | CALL COMPA(ADELT, ATH12, I, LP)           |                |
| 50400          |      | IF(LP.NE.O)GO TO 236                      |                |
| 50500          | 200  | CALL DELTAP(DELT2, W2, MC, R11(LMP), LMP) |                |
| 50600          | 1    | GO TO 242                                 | 1.8 4          |
| 50700          |      | DELT2=ADELT(LP)                           | 19 24          |
| 50800          |      | ADELT(I)=DELT2                            | ST             |
| 50900          | С    | IF(IOL81.NE.1)GO TC 314                   | 15             |
| 51000          | 24.4 | IF(I.GE.M88)GO TO 154                     |                |
| 51100          |      | IF(ABS(DELT2)=C41)154,154,153             | V              |
| 51200          |      | DW12=(W1-W2)*2.0                          |                |
| 51300          |      | IF(DELT1)1,151,5                          |                |
| 51400          |      | IF(DELT2)2,154,7                          |                |
| 51500          |      | IF(DELT2)7,154,2                          |                |
| 51600<br>51700 |      | IF(ABS(DELT1)-ABS(DELT2))161,161,162      |                |
| 51800          | 101  | W2=W1+DW12<br>GO TO 134                   |                |
| 91000          |      | 55 15 134                                 |                |
|                |      |                                           |                |

| an the | RS    | APPENDIX-B PAGE: 76                                                                                            |
|--------|-------|----------------------------------------------------------------------------------------------------------------|
| 51900  | 162   | W1=W2=DW12                                                                                                     |
| 52000  |       | GO TO 192                                                                                                      |
| 52100  | 7     | W3=W2+(W1-W2)*ABS(DELT2)/(ABS(DELT2)+ABS(DELT1))                                                               |
| 52200  |       | TB21=W3                                                                                                        |
| 52300  |       | I=I+1;ATH12(I)=W3                                                                                              |
| 52400  |       | CALL COMPA(ADELT,ATH12,I,LP)                                                                                   |
| 52500  |       | IF(LP.NE.0)GO TO 245                                                                                           |
| 52600  |       | CALL DELTAP(DELT3,W3,MC,R11(LMP),LMP)                                                                          |
| 52700  |       | GO TO 251                                                                                                      |
| 52800  | 245   | DELIJ=ADELI(LP)                                                                                                |
| 52900  | 251   | ADELT(I)=DELT3                                                                                                 |
| 53000  | С     | IF(I0L8.NE.1)GO TO 206                                                                                         |
| 53100  |       | IF(1.GE.M88)GO TO 305                                                                                          |
| 53200  | 206   | IF(ABS(DELT3)-C41)170,170,188                                                                                  |
| 53300  | 170   | TB21=W3                                                                                                        |
| 53400  |       | GO TO 155                                                                                                      |
| 53500  | 188   | IF(DELT3)11,170,35                                                                                             |
| 53600  | 11    | IF(DELT2)17,154,26                                                                                             |
| 53700  | 35    | IF(DELT2)26,154,17                                                                                             |
| 53800  | 17    | W2=W3                                                                                                          |
| 53900  | 1     | DELT2=DELT3                                                                                                    |
| 54000  |       | GO TO 7                                                                                                        |
| 54100  | 26    | W1=W3                                                                                                          |
| 54200  |       | DELT1=DELT3                                                                                                    |
| 54300  | 10    | GO TO 7                                                                                                        |
| 54400  | 305   | TB21=W3                                                                                                        |
| 54500  |       | GO TO 155                                                                                                      |
| 54600  | 154   | the second s |
| 54700  |       | GO TO 155                                                                                                      |
| 54800  | 151   |                                                                                                                |
| 54900  | 155   | CONTINUE                                                                                                       |
| 55000  |       | DELP2(1)=ATH12(1);DELP2(2)=ADELT(1);DELP2(3)=ATH12(1=1)                                                        |
| 55100  |       | DELP2(4)=ADELT(I-1)                                                                                            |
| 55200  |       | RETURN                                                                                                         |
| 55300  | c cur | END                                                                                                            |
| 55400  | C SUE | SUDDOUTINE DELESSORELINE YEL MO DA LUD)                                                                        |
| 55500  |       | SUBROUTINE DELTAP(DELTA, XEL, MC, R1, LMP)                                                                     |

|                    | RS    | APPENDIX-B PAGE: 77                                                       |
|--------------------|-------|---------------------------------------------------------------------------|
| 55600              |       | COMMON/CB9/FF, RATIC, XINCL, XINCL2, TOL8, FC1, FC2, FC3, DELE, DELM      |
| 55700              |       | 1, IOL8, M88, IOP11, ICL81                                                |
| 55800              |       | 1/CB8/AKR, AK, AKF, AELP8, ITYPE, ZIF/CB26/CONSL7, CONSL8                 |
| 55900              |       | 1, SCONL8, TWTH, P, T, DAKR, DAK, DAKF, RAKKF                             |
| 56000              |       | FC1XE=FC1*XEL;FLPC=100-TWTH*FC1XE;FLPCI=1/FLPC                            |
| 56100              |       | FC1LP=FC1*FLPCI*FLFCI;Y1=FLPCI*(FC1=FC1XE)                                |
| 56200              |       | Y2=FLPCI*(FC2-FC1XE/3);Y3L=FC3+TWTH*FC1XE                                 |
| 56300              |       | Y3=Y3L*FLPCI;Y15P=Y1**1.5;Y1BY3=Y15P/Y3                                   |
| 56400              |       | IF(MC.EQ.2)GO TO 17                                                       |
| 56500              |       | DELTA=1-1/(CONSL8*Y1BY3*(Y2**0.5))                                        |
| 56600              |       | DELE=DELTA                                                                |
| 56700              |       | GQ TO 260                                                                 |
| 56800 1            |       | CONTINUE                                                                  |
| 56900 C            | 1000  | GO TO 44                                                                  |
|                    | 60    | ETA=¥3/(Y3+2*Y2)                                                          |
| 57100              | 1     | CALL ZIFA(ZIF, P, T, ETA, B1, B2, B3, B4, B5, B6)                         |
| 57200              | 27.   | DZIT=B1+(2*B3+3*B5*T)*T                                                   |
| 57300 4            | 4     | SCONLP=SCONL8*Y1BY3*Y2;R1=CONSL7*(SCONLP=1/Y1BY3)*ZIF                     |
| 57400              |       | LMP=LMP+1                                                                 |
| 57500              |       | IF(MC.NE.2)GO TO 26                                                       |
| 57600              | -     | DRT=R1*DAKR/AKR+2*CONSL7*SCONLP*(DAK-RAKKF*DAKF)/AK                       |
| 57700 C            |       | GO TO 47                                                                  |
| 57800              |       | DELTA=1+R1*DZIT/(ZIF*DRT);DELM=DELTA                                      |
| 57900<br>58000 4   | -     | GO TO 26                                                                  |
|                    |       | DELTA=DRT; DELM=DELTA                                                     |
| 58100 2<br>58200 C | 0     | CONTINUE<br>TYDE 14 YET DETER                                             |
| 58300 C            | 1     | TYPE 11, XEL, DELTA                                                       |
| 58400 C.           | 11    | PRINT 11,XEL,DELTA<br>FORMAT(2F8.3)                                       |
| 58500              | * *   | RETURN                                                                    |
| 58600              |       | END                                                                       |
| 58700 C            | SUBRO | JUTINE NO.25                                                              |
| 58800              |       | SUBROUTINE PCONV(126,N,AQX)                                               |
| 58900              |       | DIMENSION AQX(50,20), LPAQX(50), AQXLP(2,50), A(20), A1(20)               |
| 59000              |       | COMMON/CB74/AQXLP, A2, A22, A3, A23, A4, A24, A5, A25, A6, A26, A7, A27,  |
| 59100              |       | 1A8, A28, A9, A29, A10, A30, A11, A31, A12, A32, A13, A33, A14, A34, A15, |
| 59200              |       | 1A35,A16,A36,A17,A37,A18,A38,A19,A20,A21,FDLIM                            |
|                    |       |                                                                           |

| 100            | RS                      | APPENDIX-B              | PAGE: 78                                                                     |
|----------------|-------------------------|-------------------------|------------------------------------------------------------------------------|
| 59300          | A(1)=A2                 |                         | A5;A(5)=A6;A(6)=A7;A(7)=A8                                                   |
| 59400          | A(8)=A9                 | ;A(9)=A10;A(10)=A11;A(  | 11)=A12:A(12)=A13:A(13)=A14                                                  |
| 59500          | A(14)=A                 | 15;A(15)=A16;A(16)=A17  | ;A(17)=A18;A(18)=A19;A(19)=A20                                               |
| 59600          | A(20)=A                 | 21;A1(1)=A22;A1(2)=A23  | ;A1(3)=A24;A1(4)=A25;A1(5)=A26                                               |
| 59700          | A1(6)=A                 | 27;A1(7)=A28;A1(8)=A20  | A1(3) = A247A1(4) = A257A1(5) = A26<br>A1(9) = A307A1(10) = A317A1(11) = A32 |
| 59800          | A1(12)=                 | A33;A1(13)=A34;A1(14)=  | A35: A1(15)=A30; A1(10)=A31; A1(11)=A32                                      |
| 59900          | A1(16)=                 | A37;A1(17)=A38          | A357AI(15)=A36                                                               |
| 60000          |                         | 1(18)=1.0;A1(19)=1.0;A: | 1(20)-1 0                                                                    |
| 60100          | IF(N.NE                 | 1)GO TO 200             |                                                                              |
| 60200          | DO 53 I:                |                         | 11 -                                                                         |
| 60300          | IF (A1(I                | .EG.0.0)GO TO 152       | ~~ 7 .                                                                       |
| 60400          |                         | I)=A(I)/A1(I)           | appen V                                                                      |
| 60500          | GO TO 53                | Sec.                    | a the Ca                                                                     |
| 60600 15       | 2 AGX(126,              | I)=A(I)                 | 1.22                                                                         |
| 60700 53       | CONTINUE                | 1 2 La . W. W.          | 3 1 10. 5                                                                    |
| 60800          | GO TO 80                |                         | 2 N 10 M                                                                     |
| 60900 200      | ACTIT THOT              |                         | 1005                                                                         |
| 61000 862      |                         |                         |                                                                              |
| 61100          | LPAQX(L)                | =AQX(M,L)*1000+0.5;AQX  | (M,L) = LPAOX(L) *0.001                                                      |
| 61200          | IFCAQXCM                | L).LT.AGXLP(1,L))GO TO  | 0 521                                                                        |
| 61300          | AQX(M,L)                | =AGXLP(1,L)             | I NE MARK                                                                    |
| 61400          | GO TO 51                |                         |                                                                              |
| 61500 521      | chanch                  | L).GT.AGXLP(2,L))GD TO  | 515                                                                          |
| 61600          | AQX(M,L):               | AGXLP(2,L)              |                                                                              |
| 61700 515      |                         |                         |                                                                              |
| 61800          | LPAQX(18)               | =AQX(M,18)*10000+0.5;A  | QX(M,18)=LPAQX(18)*0,0001                                                    |
| 61900          | HEAGA(19,               | =AQX(M,19)*1000000+0.5  | : AQX(M. 19)=1.PAQX(10)+0 000001                                             |
| 62000<br>62100 | HEAGA(20.               | =AQX(M,20)*10000+0.5;A  | QX(M,20)=LPAQX(20)*0.0001                                                    |
| 62200          | DO 04 TEI               | ,20                     | - 00° - 5                                                                    |
| 62300          | IF(A1(I).               | E0.0.0)GO TO 155        | Nor CV                                                                       |
| 62400          |                         | I26,I)*A1(I)            | ~~~                                                                          |
| 62500 155      | GO TO 62                | SUDI                    | 1.                                                                           |
| 62600 62       | A(I)=AQX(               | 126,1)                  |                                                                              |
| 62700          | CONTINUE<br>FD24-ACCALA | (7)                     |                                                                              |
| 62800          |                         | (7)+A(8)+A(17)          |                                                                              |
| 62900          |                         | FDLIM)GO TO 92          |                                                                              |
|                | FD24I=100.0             | FDLIM/FD24              |                                                                              |

|       | RS     | APPENDIX-B PAGE: 79                                         |
|-------|--------|-------------------------------------------------------------|
| 63000 | )      | IFD11=A(17)*FD24I;A(17)=IFD11*0.01                          |
| 63100 | 1      | IF(A1(17).EQ.0.0)GD TO 161                                  |
| 63200 | 1      | AQX(126,17)=A(17)/A1(17)                                    |
| 63300 |        | GO TO 164                                                   |
| 63400 | 161    | AQX(I26,17)=A(17)                                           |
| 63500 | 164    | CONTINUE                                                    |
| 63600 |        | IFD22=A(6)*FD24I                                            |
| 63700 |        | A(6)=IFD22*0.01                                             |
| 63800 |        | IFD33=A(7)*FD24I                                            |
| 63900 |        | A(7)=IFD33*.01                                              |
| 64000 |        | A(8)=FDLIM=A(6)-A(7)-A(17)                                  |
| 64100 |        | DO 170 I=6.8                                                |
| 64200 |        | at a the second second                                      |
| 64300 |        | IF(A1(I).EQ.0.0)GO TO 165                                   |
| 64400 | -      | AQX(M,I)=A(I)/A1(I)                                         |
| 64500 | 1      | GO TO 170                                                   |
| 64600 | 165    | AQX(M,I)=A(I)                                               |
| 64700 | 170    | CONTINUE                                                    |
| 64800 | 92     | CONTINUE                                                    |
| 64900 | pend.  | A2=A(1);A3=A(2);A4=A(3);A5=A(4);A6=A(5);A7=A(6);A8=A(7)     |
| 65000 | 1 and  | A9=A(8);A10=A(9);A11=A(10);A12=A(11)                        |
| 65100 |        | A13=A(12);A14=A(13);A15=A(14)                               |
| 65200 |        | A16=A(15);A17=A(16);A18=A(17);A19=A(18);A20=A(19);A21=A(20) |
| 65300 | 80     | RETORN                                                      |
| 65400 | 1      | END                                                         |
| 65500 | C SUBI | ROUTINE NO.26                                               |
| 65600 |        | SUBROUTINE PNEXT(N1,N3,N4,X,ISIG)                           |
| 65700 |        | DIMENSION F(17,20),X(50,20)                                 |
| 65800 |        | COMMON/CB71/N2,F,M1,ILP                                     |
| 65900 |        | IF(ISIG,NE.1)M1=2                                           |
| 66000 |        |                                                             |
| 66100 | 2      | N1=N1+1                                                     |
| 66200 |        | IF(N1.GT.N2)GO TO 8                                         |
| 66300 |        | IF(F(N3,N1).EQ.0.0)GO TO 2                                  |
| 66400 |        | N4=N4+1                                                     |
| 66500 |        | DO 3 L=1,N2                                                 |
| 66600 |        | IF(L.NE.N1)GO TO 7                                          |

|       | RS    | APPENDIX-B                   |
|-------|-------|------------------------------|
| 66700 |       | X(N4,L)=X(1,L)+F(N3,N1)*ISIG |
| 66800 |       | IF(ILP.NE.1)ISIG==ISIG       |
| 66900 |       | GO TO 3                      |
| 67000 | 7     | X(N4,L)=X(1,L)               |
| 67100 | 3     | CONTINUE                     |
| 67200 |       | IF(ILP.EG.1)GO TO 8          |
| 67300 |       | IF(M1.NE.2)N1=N1-1           |
| 67400 |       | M1=1                         |
| 67500 | 8     | RETURN STATISTA              |
| 67600 |       | END                          |
| 67700 | C THE | END OM                       |

OF