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ABSTRACT

Accuracy assessment of remotely sensed derived thematic maps have lately become an integral part
of remote sensing image classification. There are a number of measures for the evaluation of accuracy

of thematic classifications both crisp and fuzzy that have been proposed in the remote sensing literature.

There may be lot of variation in the results of classification by the use of different accuracy
measures. However, the currently available commercial image processing packages incorporate only a

few of these measures.

An attempt has been made here to develop a software for assessing the accuracy of thematic maps.
The package has been written in MATLAB script. In order to perform the classification in crisp and
fuzzy modes, the algorithms for two classifiers namely, Maximum Likelihood and Fuzzy C-Mean have
been included. All commonly used accuracy measures for crisp and fuzzy classification outputs have

been considered.

The software has been named as RSICAA and contains five basic modules: Display, Training Data,

Classification, Testing Data and Accuracy Assessment Module.

The performance of classifications has been evaluated using IRS 1C LISS III data. Avthorou‘gh
comparison between various accuracy measures has been made. It has been observed that for the data
set considered, the MLC and FCM in supervised mode is significantly better than that of FCM in
unsupervised mode. Further, for accuracy assessment of crisp classifications, the Kappa and Tau

coefficients appear appropriate, whereas for fuzzy classifications, measures of closeness may be

considered better than others.

eywords: Thematic Maps, Image Classification, and Accuracy Measures.
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CHAPTER 1

INTRODUCTION

1.1 General

A thematic map represents the spatial distribution of some theme such as land use
land cover, soil, and geology. Remote sensing data in digital form have now been used
widely to produce thematic maps. These maps may be presented either as “Digital
Raster Data” derived from image processing, or as “Cartographic Presentation” of

digital data.

Classification or interpretation of remote sensing images may be performed either
visually or digitally to produce thematic maps. Visual image interpretation is based on
human vision and pattern recognition capacities. This technique is laborious and time
consuming. Therefore, it is uneconomical for large area mapping. Moreover, no proper
qualitative classification accuracy assessment may be done in visual analysis and thus
the evaluation is largely subjective in nature. For example, from only the appearance of
the classified image, the assessment of the quality is made and termed as ‘good” or

‘bad’ (Congalton, 1991).

With the advancements in computer technology and the increased used of digital
remote sensing data for a variety of applications, digital analysis has gained enormous
importance. The classification may be carried out on per-pixel basis and sub-pixel

basis.

A common question about maps prepared from digital satellite remote sensing may
be asked as: “how accurate is the classification?” No classification is considered
complete uniess assessment of accuracy has been performed (Jensen, 1986). This gives
rise to another question “how to measure the accuracy?” Fortunately, there has been
significant research on classification accuracy assessment techniques over the last two

decades.



1.2 Need for Thematic Maps Accuracy Assessment

Accuracy assessment of thematic maps is a critical step in any mapping process.
Therefore, it must be considered as an essential component in order to allow a degree
of confidence to be attached to these for their effective use. There are two primary

motivations behind the assessment of the accuracy of a thematic map:

1) To understand the errors in the map. Both producers and users of thematic maps are
interested in this kind of information. Producers can improve methods of making the
maps and presenting these along with the information on accuracy and errors to the
end user. Information about the errors in the map, in turn, can help map users to

interpret and use the map more effectively.

2) To provide an overall assessment that can be used as an indicator of the general

reliability of a map.

(1) It may assist in comparing two maps in order to determine which one is better

than the other (Gopal and Woodcock, 1994).

(i) It provides the means for the comparison of two thematic classifications of

different analysts, of different dates, and from different data sources.

Accuracy assessment is thus a crucial step in the processing of remote sensing data,
which is an important source of thematic map production. It determines the value of the
resulting data to a particular user, i.e., the information value. So it is a valuable tool in

judging the fitness of these data for a particular application.

1.3 Scope and Justification of the Problem

The difficulties associated with assessing the accuracy of thematic maps may be due
to their nature. In thematic maps, each location on the ground has to be assigned to a
class and this is the conventional way. In essence, the continuum of variation found in
the landscape has to be divided into a finite set of classes. Typically, the classes are

casily differentiable in their pure states, and become less readily separable near the

2.



dividing lines between the classes. For example, consider the difference between the
vegetation classes, conifer forest and hardwood forest. At their extremes there is no
question regarding the appropriate class (Gopal and Woodcock, 1994). However, all
degrees of mixing of coniferous and hardwood trees may be found. When coniferous
trees dominate, the appropriate label may still be coniferous forest, but what happens as
the mix approaches 50 percent of each? At that point the decision becomes arbitrary
and neither class is either entirely right or entirely wrong. One solution is to add
another class to the map that is mixed forest. This new class solves the problem in one
case (the 50-50 mix). Another approach is to use fuzzy set, which gives the proportion

of each class.

Nevertheless, whether a thematic map is produced with pure classes (in crisp form)
or it is produced with mixed classes (in fuzzy form), its quality need to be assessed
with appropriate measures to.make the map meaningful. A number of accuracy indices
have been proposed in the remote sensing literature. Some of these measures are
percent correct (overall accuracy), user’s and producer’s accuracy, and Kai)pa
coefficient etc. These measures now form an important part of any image processing
system. However, these are useful for the assessment of crisp classifications only.
There is lack of software that account for the evaluation of accuracy of fuzzy
classifications. Therefore, proper software needs to be developed for various accuracy
measures to evaluate fuzzy classifications and also for additional measures to assess

crisp classifications.

Keeping this in mind, a software for the assessment of classification accuracy using
both crisp and fuzzy measures has been planned to be developed in this thesis. Thus,

the objectives of the present work are:

() To develop a window based software package in MATLAB environment for

accuracy assessment of remotely sensed derived maps.

(i) To produce thematic classifications both in crisp and fuzzy forms using three
algorithms, namely Maximum Likelihood Classifier (MLC), Fuzzy C-Means (FCM)

unsupervised, and FCM supervised



(iti) To generate and display classified and fraction images for various classes depicting

the visual quality of the classification

(iv) To perform extensive classification accuracy assessment of thematic classifications

in both crisp and fuzzy form from IRS 1C, LISS I data.

(v) To compare various accuracy measures in terms of their suitability for crisp and

fuzzy classifications.

1.4  Organization of the Thesis
The work presented in this dissertation has been organized into six chapters.

Chapter 1 provides an introduction to the problem. Its justification and scope along

with the objectives have also been stated.

In Chapter 2, a brief literature review of the works carried out in the area of subject

selected has been highlighted.

Chapter 3 provides various aspects and characteristics of the package developed, its

hardware and software requirements along with the data input/output options.

Chapter 4 discusses the methodology used to perform the accuracy assessment of

thematic maps produced from remotely sensed data.
The results obtained have been reported and discussed in Chapter 5.

Finally, the conclusions derived from the present study, and future scope have been
highlighted in Chapter 6.



CHAPTER 2

LITERATURE REVIEW

2.1 General

Thematic map is a representation of the real world that contains both a spatial
component (coordinates) and an attribute component. Attribute accuracy refers to the
non-positional characteristics of a spatial data entity. In remote sensing, this accuracy
(also known as classification accuracy) refers to the correspondence between the class
label assigned to a pixel and the “true” class. The true class can be observed in the field

directly or indirectly, for example, from a reference map or aerial photograph etc.

In the following sections, some methods used for image classification along with

some commonly used thematic maps accuracy measures are briefly reviewed.

2.2  Digital Image Classification Techniques

Digital image classification is the process to convert a remote sensing image into a
map representing classes of interest such as urban, agriculture, forest etc. There are two
approaches of 1mage classification namely supervised and unsupervised classification.
Supervised classification involves three distinct stages; training, allocation and testing
(Foody, 1995a). In contrast to supervised classification, unsupervised classification

" require only a minimal amount of initial input from the analyst, once the data are
classiﬁed, the analyst attempts, to assign these spectral classes to the information

classes of interest (Robinove, 1981).

With regard to pixel allocation phenomenon, there are two ways of classification

namely, crisp and fuzzy classification

2.2.1 Cirisp classification

In this, each pixel is assumed to be homogenous and is, therefore, classified to a

particular class. In reality, not all pixels may be pure. Therefbre, this technique may

-5



lead to loss of information content of the pixel. Hence, the results obtained from crisp
classification may not be accurate. All conventional classification algorithms produce
crisp classification outputs. MLC, minimum distance to means, parallelepiped and
Mahalanobis distance classifiers are some of the algorithms that provide crisp

classification.

2.2.2 Fuzzy classification

It is a kind of sub pixel classification. Here each pixel is decomposed into those
classes which maj/ represented by assigning the membership grades to each of those
classes within the pixel. These membership values or grades indicate the class
proportions within the pixel. Some of the fuzzy classifiers are FCM, linear mixture

modeling, and fuzzy artificial neural networks.

The MLC has genérally been used as a technique of providing crisp classification
output. However, the output of an MLC may also be fuzzified to obtain the partial and
multiple class membership for each pixel (Wang, 1990b). Here, the measures of
strength of class membership rather than the code of the most likely class of
membership may be the output (Foody, 1996c). Thus, for instance, the a-posteriori
probabilities from a maximum likelihood classification may reflect to some extent the

class composition of a mixed pixel (Foody et al., 1992).

2.3 Accuracy Assessment

Typic?ally, a thematic map is derived from remote sensing data through a digital
image classification procedure. Once a classified image is obtained, its quality is
judged on the basis of the accuracy. In order to evaluate accuracy, the true value must
be known. This involves selecting a set of pixels from the classified image and

comparing their identity with that to the reference data.

The accuracy of a classification may be based on the Euclidian or statistical distance
derived from training data itself. However, the training stage in classification is very
subjective and therefore, the distance may not be considered independent and useful for

accuracy assessment, if determined from training data set.

-6-



According to the nature of classification (i.e. crisp or fuzzy), proper accuracy
measures may have to be used to derive qualitative information from thematic maps. In
the following sections, some of the commonly used accuracy measures have been

briefly reviewed.

2.3.1 Accuracy of thematic maps considering crisp classification

A thematic map produced. from remote sensing data using conventional image
classification techniques is a crisp one as each pixel is classified to one and only one
class. A typical strategy for accuracy assessment of a crisp thematic map is to use a
statistically sound sampling design to select a sample of pixels (also known as testing
samples) in the study region, and to determine if the class assigned .to that pixel
matches the true class represented by that pixel on ground (reference data) or not. The
sample data are often summarized in an error matrix, from which various accuracy

measures may be derived (Congalton et al., 1983).

An error matrix is a cross-tabulation of the thematic classes on the classified image
and on the reference data. It is represented by a cxc matrix (where ¢ is the number of
classes). The elements of this matrix indicate the number of samples in the testing data.
The columns of the matrix generally define the reference data, and the rows define the
classified image, but they can be interchanged. A typical error matrix is shown in
Table 2.1

Table 2.1 A Typical Error Matrix

Reference data Row Total
Class ITClass 2 | [ Class ¢
% Class 1 niy n; . n'lc N|
-g Class 2 N2} Ny N Noe N2
go
(3]
(o]
2
=
O | Classc ne) ng; Dce N
Col. Total M, My || M. [ N=YN;
i=I




In this matrix, the various terms have been defined aé:
N= total number of testing samples.

¢= number of classes. | '

n;;= number of samples correctly classified.

N;= row total for class i.

M;=column total for class i.

For an ideal classification, it is expected that all points lie on the diagonal of the
matrix. This indicates that the same class has been observed both on the ground as well
as on the map. An error of omission occurs when a class on the ground is incorrectly
recorded in the map. An error of commission occurs when the class recorded in the

map does not match on the ground.

Ideally, a single accuracy measure should express classification accuracy. However,
a plethora of measures have been proposed in the remote sensing literature. Some of

the commonly used accuracy measures for crisp classification are shown in (Table 2.2).
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In this table, most of the terms have been defined earlier, the rest may be defined as:

q
P = %Z n, The observed proportion of agreement

q
P = %ZN;Mi The expected chance agreement

i=1
q .
P = % Z n,X; X;are the unequal priori probabilities of class membership
i=1

Vij Agreement weight

Poj = EI\JIJ— Observed cell proportion

Pej; Expected cell proportion

Pogivy Observed agreement according to user’s approach
Pegivy Agreement expected by chance for i row

Pog+iy Observed agreement according to producer’s approach
Pegi) : Agreement expected by chance for i column

P; A priori probability of class membership
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2.3.2 Accuracy of thematic maps considering fuzzy classification

The accuracy measures used in crisp classification assume that each testing sample
is associated with one class in the classified image and one class in the reference datz
- (Congalton, 1991). Frequently, the samples comprising the testing data set may contair
mixed classes and thus, may not belong to only one class. As a consequence, the
classification accuracy measures derived on the basis of the error matrix may resull
into under or over estimation of accuracy. Therefore, these measures may not be
appropriate when either the classification output or the reference data or both are fuzzy.
Under such circumstances, it is better to use some other measures. Some of the

commonly used measures for fuzzy classification are listed in Table 2.3. The various

terms used in Table 2.3 may be defined as follows:
Ipi is the proportion of i" class in a pixel from the fuzzy ;eference data.
*p; is the proportion of i class in a pixel from the fuzzy classification.
Ipis thé probability distribution of fuzzy reference data.
*p is the probability distribution of fuzzy classification output.

Cov('p.”p) is the covariance between the two distributions.

O1p , O2p are the standard deviations of both the distributions.

-12-
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2.3.3 Comparison of classification accuracy measures

The overall accuracy (OA) is one of the most commbnly adopted measure (Arora
and Ghosh, 1998). OA is a measure of classification as a whole and not of individual
classes. However, it has a tendency of bias towards the class having a large number of
testing samples. This situation occurs when the testing samples are collected in a
stratified random sampling scheme, in which some classes occupy a larger proportion
of the area than others (Miguael-Ayanz et al., 1996). A way to resolve the problem of
differences in sample size is to normalize the elements of the error matrix and then
compute OA. The normalized value of OA has been called “normalized accuracy”.
Nevertheless, OA does not take into account the off-diagonal elements of the error
matrix which represent misclassification errors. These errors may be grouped into fwot_%
types, namely “error of omission” and “error of commission” (Story and Congalton,
1986). Complementary to these errors, a new set of accuracy measures has been
derived: pr_oduéer’s accuracy (PA) and user’s accuracy (UA). These measures
determine the accuracy of individual classes. PA is so aptly called, since the producer
of the classified imﬁge is interested in knowing how well the samples from the
reference data can be mapped using remotely sensed data. In contrast, UA indicates the
probability or reliability that a sample from the classified image represents an actual
class on the ground. Although these measures may appear simple, it is critical that they
‘both be considered when assessing the accuracy of a classified image on a per class

basis.

While OA is biased towards the class with a large number of testing samples,
Average Accuracy (AA) is biased towards the class having a small number of samples
(Fung and LeDrew, 1988). Combined Accuracy (CA) may be used to reduce the biases
of OA and AA. However, AA and CA do not take into account the agreement between
the data sets (i.e., classified image and reference data) that arises due to chance alone.
Thus, these measures tend to overestimate the classification accuracy (Ma and
Redmond, 1995). The Kappa coefficient of agreement (K) has the ability to account for
chance agreement (Foody, 1992). The proportion of agreement by chance is the result

of the misclassifications represented by the off-diagonal elements of the error matrix.

-14-



Therefore, K uses all the elements of the error matrix, and not just the diagonal
elements (as is the case with OA). Therefore, the Kappa coefficient of agreement may
be used for the assessment of the accuracy'of the classification as a whole and for
individual classes using conditional Kappa after making some compensation for chance
agreement. This may prove to be a desirable accuracy index. Hence, K has now
become a commonly used accuracy index. Weighted Kappa (Ky) can be thought as a
generalization of Kappa, as it does not treat all the misclassifications (disagreements)

equally and tends to give more weight to some errors that are more serious than others.

Tau coefficient is superficially similar to Kappa. However, the critical difference
between -the two coefficients is that Tau is based on a priori probabilities of group
membership, whereas Kappa uses the a posteriori probabilities. Tau is easier to
understand and interpret than Kappa. Unlike Kappa, Tau compensates for unequal
probabilities of groups or for difference in number of groups. In other words, T,
compensates for the influence of unequal probabilities of groups on random agreement,
and T. compensates for the influence of the number of groups (Ma and Redmond,
1995). A Conditional Tau may also be used to determine the accuracy of an individual

class. However, Conditional Tau corresponds close to producer’s accuracy.

Although, the percent correct and Kappa coefficient are the most widely used
measures of accuracy, these may be appropriate for crisp-classifications only, when
each pixel is associated with only one class in the classification and only one class in
the reference data. These measures may under or over estimate the accuracy of fuzzy
classification. Therefore, some other measures may be used such as Entropy, which
shows how the strength of class membership in the classification output is partitioned
between the classes for each pixel. Entropy is therefore attractive as an indicator of
~ classification quality in situations where ambiguity exists as it indicates the degree to
which the class membership probabilities are partitioned between the defined classes
(Foody, 1996b). Entropy is maximized in the situation when the probability of class
membership is partitioned evenly between all classes in the thematic map and
minimized when it is associated entirely with one class. Its value as an indicator of

classification accuracy is therefore based implicitly on the assumption that in an
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accurate classification each pixel will have a high probability of membership with only
one class. This is, however, only appropriate for situations in which the output of the
classification is fuzzy and the reference data are “crisp”. Therefore, entropy may not be
a good indicator of thematic quality if multiple and partial class membership is a
feature of both the classification output and the reference data. To accommodate
fuzziness in both the classification output and the reference data, other measures are
required such as simple measures of distances namely Euclidian distance (S), L;
distance (L;) etc, which measures the separation of two data sets and may be based on
the relative extent or proportion of each class in the pixel (Foody and Arora, 1996).
Another approach, which may be used to express the information closeness, is to
calculate the directed divergence or cross-entropy (d), where the distance between two
data sets may be asgessed. A small distance indicates that the classification is an
accurate representation of the thematic data (Wang, 1990b). This distance measure is
applicable when the probability distributions to be compared are compatible. However,
to make it applicable to any pair of probability distribution, the genefalized measure of
information closeness (D) may be used. Correlation coefficient (r) may also used to
indicate the accuracy on per-class basis estimated from a fuzzy classification output
and fuzzy reference data. The higher the correlation coefficient, higher is the

classification accuracy of a class.

In this chapter; the various accuracy measures have been briefly discussed. It has
been found that a plethora of accuracy measures has been proposed in the remote
sensing literature. These measures may be divided into two categories depending on
the nature of the classification (i.e., crisp or fuzzy). Under a given situation, a particular
measure may be used. So far as the crisp classification accuracy measures are
concerned, some of them have been incorporated in commercial image processing
systems. However, for others and the fuzzy measures, no proper software is available.
The next chapter demonstrates the various aspects of the software package developed

for this purpose.
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CHAPTER 3

DETAILS OF SOFTWARE DEVELOPED

3.1 General

The main objective of the Work presented in this thesis is to focus on various
accuracy measures to evaluate the accuracy of remotely sensed derived thematic maps.
Since there are a number of accuracy measures both for crisp and fuzzy, it was

~ imperative to develop a user-friendly software for classification accuracy assessment.
An attempt has been made in this direction to develop a comprehensive package,
though not up to the professional level. The following sections outline the structure and

the capability of the package.

3.2 Hardware and Software Requirement

The package has been developed in MATLAB environment. MATLAB is software,
developed by Math Works Inc. (U.S.A), basically for easy matrix computations.
Generally, a script file with extension “m” is written to execute a sequence of
MATLAB statements. The syntax of the script is based on C language. To facilitate
various operations, the MATLAB contains a number of toolboxes such as Image

~ Processing, Fuzzy Logic, Neural Network, Signal Processing etc. In the present work,
help from some of these toolboxes has been derived. Thus, various MATLAB routines
and functions have been used to develop this package. The baﬁic Graphical User

Interface (GUI) resource of the MATLAB has also been used in order to make the

package user-friendly.

The minimum requirements of this package are Windows ‘95’ Operating system or
its later versions, and 16 MB RAM.
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33 Salient Features of the Package

The package has been named as RSICAA (Remote Sensing Image Classification

Accuracy Assessment). It consists of five basic modules:
1) Display Module
2) Training Data Module
3) Classification Module

4) Testing Data Module

N
N

Accuracy Assessment Module

GUI based Main Menu is shown in Plate 3.1.

The various options available on menu bar attached to the Main Menu are shown in

Table 3.1

Table 3.1 Options on Menu Bar

Main Options Popup Menus
File .| Open
Exit
Display Display Input images

Display Crisp classified images
Display Fraction images

Training Data Generate Training data
Classification Maximum Likelihood Classifier

Fuzzy C-Mean Classifier
Testing Data Generate Testing data

Proportions for whole image
Proportions for only testing pixels
Accuracy Assessment | Crisp measures

Fuzzy measures
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Plate 3.1 Main Menu of Software RSICAA
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3.3.1 Display module

This module displays the input and output images stored as ASCII or text files. The
ASCII file consists of the information of a pixel in each row, the columns indicating
the X and Y coordinates and the Digital Numbers (DN) of the pixel in various bands
(b1, b2, b3, b4...). A sample of the image data file is shown in Table 3.2. This format
matches with the ASCII format corresponding to ERDAS Imagine software.

Table 3.2 Format of Image Data File
X (m) Y(m) bl b2 b3 b4
44541.00 2962276.00 119 85 89 193
44566.00 2962276.00 116 86 92 191
44591.00 2962276.00 113 82 95 189
44616.00 2962276.00 109 76 9% 186
44641.00 2962276.00 109 73 96 180

Each single.band image is displayed as B&W image in shades of gray. The multi-
spectral image is displayed as False Color Composite (FCC) where the user has the

option of choosing any three bands.

Similarly, the classified images generated from crisp and fuzzy classifications in
ASCII form can also be displayed. In Table 3.3, the first two columns indicate the X
and Y coordinates for each pixel in the classified image and the last column indicates

the class identity for each pixel.

- Table 3.3 Format of Crisp Classification Output File

X (m) Y (m) Class Identity
44541.00 2962276.00 )
44566.00 2962276.00 2
44591.00 2962276.00 1
44616.00 2962276.00 2
44641.00 2962276.00 5
44666.00 2962276.00 2
44691.00 2962276.00 2
44716.00 2962276.00 4
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In order to display crisp classification, the user has the option of choosing a

particular colour for each class from the color selection dialog box.

In fuzzy classification, a set of fraction images shall be generated for.each class
where the membership of the class may be represented in gray shades. The lighter the

shade, higher is the class membership for the corresponding class in that pixel.

A sample of fuzzy output classification file is shown in Table 3.4. Here, the first two
columns represent the X and Y coordinates for each pixel, the rest of the columns
represent the proportion or class membership for each pixel in each class (classl,

class2, class3, class4, classS) of interest.

Table 3.4 Format of Fuzzy Classification Output File

X (m) Y (m) classl class2 class3 class4 class5

44541 2962276 0.292 0.048 0.426 0.090 0.144
44566 2962276 0.315 0.056 0363 0.103 0.163
44591 2962276 0.366 0.067 0.244 0.126 0.199
44616 2962276 0.389 0.076 0.139 0.153 0.244
44641 2962276 0.316 0.101  0.108 0.198 0.277
44666 2962276 0.264 0.127 0.090 0.235 0.285
44691 2962276 0.172  0.173  0.051 0323  0.281
44716 2962276 0.080 0360 0.027 0365 0.167

Further, if the user desires to export the images to any other packages such as
ERDAS Imagine, the same can be done by saving it in JPG format, after the image has
been displayed on screen. Table 3.5 list the various MATLAB functions used in this

module.
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Table 3.5 MATLAB Functions for Display Module

Matlab Functions Activity

image( ) Create and display image object
imshow () Display image

imwrite( ) Write image file

uisetcolor( ) | Color selection dialog box

figure( ) Create figure window

axis( ) Control axis scaling and appearance
title () Adds text at the top of the figure
xlabel() Adds text along the X-axis

ylabel( ) Adds text along the Y-axis

3.3.2 Training data module

In this module, data required in training stage of a supervised classification may be
generated. To generate training data, the user can define select the training areas by
interactively displaying the input image on the screen. The selection may be polygon
based or per pixel basis. Subsequently, the selected training areas can also be plotted to
view their spatial location. All the training areas for a particular class are merged and
stored in an ASCII file. This file shall consist of the information of a training pixel in
each row arranged as per each class, while the columns indicate the X and Y
coordinates the DN‘value of each training pixel in different bands (b1, b2, b3...). The
last column contains the class identity number (1,2,3...). A sample of training data file
is shown in Table 3.6. The user may also enter the training data through an existing
file. This file may not contain the last column of ‘class identity, as the program will
prompt the user to enter the number of classes and the number of training pixels in

each class: On this basis the last column can be generated automatically.

This training data file either created in the package or the existing one shall then be

used in the classification module.
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Table 3.6 Format of Training Data File

X(m) Y (m) bl b2 b3 b4 Class Identity
45016 2962276 102 77 08 182 1
45841 2961976 103 70 67 152 1
46241 2961976 102 76 82 186 2
46291 2961976 100 75 80 195 2
46341 2961976 101 75 8 199 2
46216 2961951 103 76 81 188 2
46316 2961951 102 75 81 200 3
44816 2961926 103 71 67 156 3
45641 2961926 102 75 78 180 3
46191 2961926 103 76 81 186 3
46216 2961926 102 77 8 194 3
46266 2961926 102 76 81 200 3

3.3.3 Classification module

In this module, the classification of remote sensing image is carried out. Both crisp

and fuzzy classifications can be performed using the following classifiers:

(1) Maximum Likelihood Classifier (MLC)

(i) Fuzzy c-Means Algorithm (FCM): Both Supervised and Unsupervised.

The menu of MLC is shown in Plate 3.2. It consists of two main stages, training and
allocation stage. In the training stage, the user may select the training areas (if not done
in training module) or may input the e;{isting training data file created in the training
module. The training file may also be imported from other packages in the format

described in Section 3.3.2.
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The user may view the spatial location of these training areas at this stage also. An

example of the plot is shown in Plate 3.3.

Sometime it is necessary to examine the quality of training areas of a class by
examihing the histogram. A uni-modal histogram is an indication of the homogeneity
of training data for a class. The package has an option to display the histogram of the
training data selected for a class. Plate 3.4 shows a sample plot of the histogram for a

class.

In the allocation stage, the classification for testing pixels only and/or whole image
are performed using MLC. For this the probabilities that each piXel belongs to a

particular class are computed using Equation 3.1.

1 1 |
(x) = ——x—-u)' S x—u 3.1
pi (%) (2n)b/2|ZEI”2 exPl: 2(x B X (x P',)] B.1)

Where:
b is the dimension of a pixel vector (i.e., the number of bands).

w; is The mean vector of training data, and may be computed using Equation 3.2
*

Z X, |
=2 (3.2)
_ n

2., is the variance-covariance matrix and is computed using Equation 3.3

>0~ ), <)
= (3.3)

n-1

where xj is the pixel value of the jth pixel in different bands, n is the number of training

pixels in the i class.
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Plate 3.2 Menu for Maximum Likelihood Classification
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<) Plot of Training Areas

Plate 3.3 Sample Plot for Training Areas
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Plate 3.4 Sample Plot for Histogram of a class in a band
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In crisp classification, a pixel is assigned to that class whose probability is the
highest amongst all other classes, while in fuzzy classification, the membership value

of a pixel to class i, can be computed from Equation 3.4

£ =P (3.4)
Z pj(x)

where pji(x) is given by Equation 3.1 except that p,and >, are replaced by p;and

Y. which may be computed using Equations 3.5 and 3.6 respectively.

Zn:fi (%)%,
b = —— (3.5)
D f(x;)
j=l
‘n fi (Xj)(xj —H:)(XJ‘ _u:)'r
Yr=2 (3.6)

PRACH

Where fi(x;) is the membership values of class i in a pixei and x; 1s the pixel value vector

(1 <j<n)in ‘b’ bands.

Figure 3.1 depicts the flow chart for MLC classification Procedure.
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Training Stage.

v

Select an existing training file

Select Training pixels from image

L

Compute training data statistics

Yes

Histogram
generation

3

Plotting of
training areas

Generate ~ Plot the
histogram for - -coordinates
each class in Allocation of training

each band stage pixels

Whole image | 5| Testing data set only
Calculate the probabilities (Equation 3.1)
Fuzzy classification Crisp classification
Compute class membership for Assign the pixél to class with
each pixel highest probability

'

Generate crisp and fuzzy outputs

Figure 3.1 Flow Chart to Perform Maximum Likelihood Classification
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In the software package, the Fuzzy C-Means (FCM) classifier has been incorporated
both in supervised and unsupervised mode. The FCM algorithm is an iterative
clustering method that is used to partition a data set. An optimal fuzzy c-partition is the

one that minimizes the generalized least-squared errors function (Equation 3.7):

N ¢
Minimize: Jm(U,v) =Y. > ()" |y - vi[ A (3.7)

k=1 i=l
where: Y={yl,y2,y3,.. .,};N} <R"is the data set,
c is the number of clusters in Y:2<c<n,
m is a weighting exponent: 1<m<co,
U={1.1k;} is the fuzzy c-partition of Y,
\lyk - vinA‘ is an induced a-norm on R", and,

A is a positive-definite (nxn) weight matrix.

To perform FCM supervised classification, the fcm () function from MATLAB

toolbox has been used here.

In the fuzzy c-mean supervised approach, which is similar to MLC, the user has the
choice of selecting training areas from the image or to provide an existing training data
file created in training module. Here also, the function fcm () from MATLAB toolbox

has been used except that the mean of each training class is taken as the centers of the

clusters.

The fuzzy classification outputs is presented as final fuzzy partition matrix (or
membership function matrix), whereas for crisp classification outputs, the pixel is

assigned that class which has the maximum value in the fuzzy partition matrix. A flow
chart for FCM is shown in Figure 3.2 ’ '



3.3.4 Testing data module

To evaluate the performance of a classification, a set of testing data is needed. In
RSICAA package, the user provides to generate testing data, the name of the classified
image and the number of testing pixels to be .generated. The testing pixels are
generated randomly and stored in ASCII format as described in Section 3.3.1. This file

is subsequently used in the accuracy assessment module.

In order to evaluate the accuracy of fuzzy classifications, it is necessary to have the
knowledge of actual proportions of classes within each pixel of the image or for a set
of testing pixels. The proportions can be determined from field or reference data or
from reference data such as existing maps, GPS surveys, aerial photographs and remote
sensing data at finer resolution than that used for classification. The proportion module

in this package is based on the last case (i.e., deriving proportions from the fine

resolution image taken as reference data).

The proportions may be computed for each pixel of the image or for a set of testing
pixels generated in the training module. The philosophy behind this is that each pixel in
a coarse resolution image shall contain a constant number of pixels in the
corresponding fine resolution image provided both the images are registered with each
other. For example, a pixel having 20 m resolution (coarse resolution image) shall
contain four pixels, each of 10 m resolution (fine resolution image). Assumiﬁg that
each pixel in the fine resolution image contains one and only one class, the class
proportiohs of a pixel in coarse image can be found out. The class identity of each pixel
in the fine resolution image can be determined by performing a good quality crisp
classification of this image. The job of proportion estimation option in this module is to

perform this. The flow chart is shown in Figure 3.3.

3.3.5 Accuracy assessment module

The quality of outputs, whether crisp or fuzzy, produced by different classifiers is
examined in this module. A number of measures as reported in Tables 2.2 and 2.3 (see

Section 2.3) have been incorporated in this module. There are separate menus each for

crisp and fuzzy classification accuracy assessment.
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The menu for crisp classification accuracy assessment is shown in Plate 3.5. It
consists of two major options, error matrix and accuracy measures. In the error matrix
option, the user has the choice of generating an error matrix from the testing data files,
selecting an existing error matrix file or by directly entering the elements of the matrix

from the keyboard.

To generate error matrix from the package, the user has to specify two files, one for
classified image and the other for reference data. These two files must have same
format (ref. Table 3.3). The first file may be generated from training module (Section
3.3.2), whereas the second file may be obtained from testing module (Section 3.3.4).

The format of existing error matrix file is shown in Table 2.1 (Section 2.3.1).
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After the error matrix has been obtained, the user may select the desired accuracy
measures. All crisp measures have been divided into three categories which a user may

select.
(1) Percent correct
(i1)) Kappa
(1) Tau

In percent correct category, five accuracy measures namely overall accuracy, user’s
accuracy, producer’s accuracy, average accuracy and combined accuracy have been

incorporated.

There are four accuracy measures namely Kappa coefficient, Weighted Kappa,
Conditional Kappa (user’s and producer’s way) under the category Kappa. To obtain

Weighted Kappa, a weight matrix has also to be provided by the user at the prompt.

In the Tau category, the Tau with equal and unequal probabilities and the
conditional Tau (from user’s and producer’s perspective) can be computed. The

unequal probabilities have to be supplied by the user at the prompt.

Finally, the user may also select the “All Accuracy Measures” option to compute the

values of all the measures at one go.

After the desired measures have been selected, the user may click “Compute” to
calculate their values. The output file, thus generated, will contain the error matrix
-along with the values of selected accuracy measures. A sample of output file is given in

Appendix A.

For fuzzy classification accuracy assessment, the menu is shown in Plate 3.6. There
are three options; entropy measures, measures of closeness and correlation coefficients.
The first one is to be used if fuzziness is present only in classified output whereas the

other two are used when fuzziness is present both classified outputs and reference data.



The user will be prompted to give the names of respective testing data files for

classified and / or reference data.

Under the entropy measures category, entropy and cross entropy based on the
mathematical formulations given in Table 2.3 (see Section 2.3.2) has been considered.
Measures of distance and information closeness have been incorporated in the category

“Measures of Closeness”.

Finally, the correlation coefficient can also be obtained by clicking at the
“correlation coefficient” option. The user may also select “All Accuracy Measures”

option to compute the values of all the fuzzy measures at one go.

After selecting the desired measures, the user may click “Compute” to perform the
computations. The values of the measures can be stored in an output file, which can be
seen by clicking at the “Show The Results” button. A sample of fuzzy accuracy

measures output file is given in Appendix B.
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Plate 3.6 Menu for Fuzzy Classification Accuracy Assessment
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CHAPTER 4

DATA AND METHODOLOGY

4.1 General

\

In order to test the efficacy of the software developed, IRS 1C Linear Imaging Self
Scanning Sensor (LISS IlI) and Panchromatic (PAN) data have been used. The LISS
III image has been classified using the two classifiers and their accuracy evaluated
using different accuracy measures. In this chapter, the details of the data and

methodology adopted have been provided.

4.2  Study Area and Data

The study area lies between 88° 27" E and 88° 28" E longitudes and 26° 45'N and
26° 46" N latitudes of Jalpaiguri district in West Bengal (Figure 4.1). The extent of the
area considered is estimated to be 620 km? The area is primarily covered with
agriculture, forest, grasslands, built up and sandy areas. In view of this, five land cover
classes have been considered here to produce a thematic map 1in the form of land cover

classification from remote sensing data.

4.2.1 Remote sensing data

Two remote sensing images have been used. The first one is LISS III image in four
spectral bands (101 x 99 pixels). The FCC (Red: band 4, Blue: band 2, Green: band 1)
of this image (date: 22.3.2000) is shown in Plate 4.1. This is the primary image that has

been classified using the two classifiers in fuzzy and crisp modes.

The second image is the PAN image (505 x 495 pixels) from the same satellite
taken at about the same time (date: 3.4.2000) and is shown in Plate 4.2. This image has

been used as reference data for accuracy assessment and to derive proportions of

various classes for the pixels in the LISS III image.
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4.2.2 Topographical map

A topographical map at 1:25,000 scale (Survey of India Toposheet No. 78 B/5/6,

1976) of the area has also been used as reference data besides the PAN image.

4.3 Methodology

The main objective of this thesis work is to evaluate the accuracy of remotely
sensed derived thematic maps in crisp and fuzzy form using various accuracy
measures. Several steps are involved to achieve the objective. The broad methodology

has been shown in the form of the flow chart in Figure 4.2

4.3.1 Registration of images

LISS III image has been registered to PAN image to sub-pixel accuracy. The size of
each pixel in PAN image has been recomputed to (Sx5m) whereas of LISS III image to
(25x25m). Thus, each pixel in LISS III image contains 25 pixels of PAN image. The
coordinates of the pixels for these two images havé been plotted in Plate 4.3. This plot
reveals that there is a need to shift the pixels for LISS III image to match with the
corresponding pixels in PAN image. A routine in MATLAB has been written to
perform the shifting and re-sampling process that makes each pixel in LISS III image
to match with the corresponding 25 pixels of PAN image. The new plots for the

coordinates after registration are shown in Plate 4.4.

4.3.2 Reference data: classified IRS IC PAN image

PAN himage has been classified using Maximum Likelihood Classifier of this
software. The training data for each class have been extracted from the image after
cross checking with the topographical map. These training data are used to perform the
classification for whole image. The output thematic map (Plate 4.5) is based on crisp
classification and consists of five classes namely agriculture, forest, grassland, sandy,
and built up areas. The classified image has been compared with the PAN image and
the topographical map visually to ensure that the quality of this classification is good

so that it can be used as reference data (ground truth).
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4.3.3 Proportion estimation

Since each pixel in LISS HII image matches with the corresponding 25 pixels in the
thematic map produced from PAN image, the LISS III image has been degraded to5m
resolution so that each pixel in this image gets compatible with its corresponding pixel.
The proportions module incorporated in the developed software (Section 3.3.4) has
been used to perform this degradation. A sample of final proportions obtained for each

pixel in LISS III image is shown in Table 4.1

Table 4.1 A sample of Proportions Obtained for each Pixel in LISS III Image

X (m) Y(m) classl class2 class3 class4 classS
44541 2962276 0.000 0.880 0.120  0.000  0.000
44566 2962276 0.000 0.480 0.520 0.000  0.000
44591 2962276 0.320 0.480 0.200 0.000 0.000
44616 2962276 0.240 0.760 0.000 0.000 0.000
44641 2962276 0.040 0.880 0.080 0.000 0.000
44666 2962276 0.760 0.240 0.000 0.000  0.000
44691 2962276 0.120 0.000 0.000 0.200 0.680
44716 2962276 0.440 0.000 0.000 0.000 0.560
44741 2962276 0.280 0.120 0.000 0.000 0.600

4.3.4 Classification of IRS 1C LISS III image

The LISS III image has been classified using supervised MLC and FCM
(unsupervised and supervised). Both crisp and fuzzy classifications have been
performed. The image has been classified into five land cover classes as have been
considered for the classification of PAN image. Table 4.2 shows the number of training

pixels used for supervised classifications.

Table 4.2 Number of Training Pixels used for Supervised Classifications

Agriculture | Built up areas | Sandy areas Forest Grassland

997 286 279 1596 805

The quality of the training data has been checked by examining the histogram
generated for each class in each band. A typical histogram for the class grassland in

band 4 is shown in Plate 4.6. All the histograms are not uni-modal in shape, this
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demonstrating the existance of mixed pixels in the image. Therefore, it is anticipated

that fuzzy classification would be more appropriate than crisp ones.

Thus a total of six image classifications were performed using various

combinations.

4.3.5 Accuracy assessmen’t

The final stage in classification is to evaluate the accuracy of remotely sensed
derived thematic maps. The crisp and fuzzy classifications produced from LISS III
image have been evaluated using appropriate accuracy measures as described earlier.
For effective evaluation, the sample size and locations of testing pixels in each
classification have been kept same. A total of 650 testing pixels have been selected

randomly for this purpose.
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Plate 4.5 Classified PAN image used as Reference Data
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Histogiam of training class

Plate 4.6 A Typical Histogram for Class Grassland in Band 4
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CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 General \

The LISS III image has been classified using three classifiers namely MLC, FCM
supervised, and FCM unsupervised. The outputs of classifications are in crisp and
fuzzy modes, and the reference data is also in crisp and fuzzy modes. Hence, the
classifications for LISS III image have been assessed using appropriate accuracy

measures. In this chapter, a brief discussion on the results obtained has been reported.

5.2 Evaluation of Classifiers in term of their Accuracy

5.2.1 Accuracy evaluation of crisp classifications

The error matrices generated for each crisp classification produced from three

classifiers are shown in Tables 5.1 to 5.3.

For each of these error matrices, various crisp accuracy measures for whole

classification have been computed from the software and are reported in Table 5.4
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Classified
Data

Classified
Data

Table 5.1 Exror Matrix Generated from MLC Classification

i

Ground Data (Refrence)

JIAgriculturelBuilt up | Sandy areas|{Forest Igrassland | Row

areas total
|Agriculture | 14 | 5 | 0 | 0 | 7 | 26
|Built up | 37 | 39 | 5 ] 1 l 17 ] 99
|Sandy areas | 1 | 7 ) 17 ] 0 | 4 | 29
| Forest | 14 | 2 | 0 | 143 | 49 1208
Igrass land | 70 ! 13 | 0 | 57 | 148 1288
|column total} 136 | 66 | 22 | 201 | 225 1650

Table 5.2 Error Matrix Generated from FCM Supervised Classification
Ground Data (Refrence)

|Agriculture|Built up |Sandy areas|Forest lgrassland | Row

. areas total
|Agriculture | 76 | 18 | 0 ! 6 I 70 1170
|Built up | 6 | 28 | 4 | 1 | 7 | 46
| Sandy areas | 1 | 4 | 18 | 0 | 2 | 25
| Forest | 26 ] 13 | 0 } 131 I 53 1223
jgrass land | 27 ] 3 } 4] 1 63 i 93 1186
fcolumn total]| 136 | 66 | 22 | 201 | 225 1650

Table 5.3 Error Matrix Generated from FCM Unsupervised Classification
Ground Data (Refrence)

|Agriculture|Built up | sandy areas|Forest lgrassland | Row

areas total
|]Agriculture | 71 | 26 | 3 | 4 | 70 1174
|Built up | 14 } 8 | 0 | 46 } 14 } 82
|Sandy areas | 2 ] 5 | 19 | 0 | 2 | 28
|Forest | 16 | 11 | 0] } 90 | 49 1166
fgrass land | 33 | 16 { Q | 61 | 90 | 200

|column total| 136 | 66 ] 22 201

| 225 | 650



Table 5.4 Crisp Accuracy Measures for Whole Classification

FCM FCM
MLC Supervised | Unsupervised

Overall Accuracy 0.555 0.532 0.428
Average User’s 0.544 0.573 0.435
Accuracy Producer’s 0.567 0.573 0.471
Combined User’s 0.550 0.552 0.431
Accuracy Producer’s 0.561 0.553 0.450
Kappa coefficient 0.384 0.361 0.231
Tau coefficient (equal probabilities) 0.444 0.415 0.285
Tau coefficient (unequal probabilities) 0.391 0.360 0.217

It can be seen that although the accuracies as reported by each classifier are on a
lower side, MLC and FCM (supervised) produced significantly higher accuracies than
those produced by FCM (unsupervised). The difference in accuracies of MLC and
FCM (supervised) are very marginal. This demonstrates the superiority of the

supervised classifiers over unsupervised one for the data set considered.

The individual accuracies of each class for each classifier have also been determined

and are shown in Table 5.5

 Table5.5 Crlspacéurac _Measuféé forrilndividual Class

"FCM FCM
MLC Supervised Unsupervised
User’s | Producer’s | User’s | Producer’s | User’s | Producer’s
Agriculture _ 0.538 0.103 0.447 0.559 0.408 0.522
Built up 0.394 0.591 0.609 0.424 0.098 0.121

Sandy- 0.586 0.773 0.720 0.818 0.679 0.864
Forest 0.688 0711 | 0.587 0.652 0.542 0.448 .
Grassy 0.514 0.658 0.500 0.413 0.450 0.400

The user’s accuracy determines the accuracy of individual classes. For example, a
user’s accuracy of 53.8% for the agriculture in classified image using MLC classifier
represents the actual agriculture on the reference data. In contrast, the producer’s
accuracy of 10.3% for the agriculture in the reference data is represented correctly as

agriculture in the classified image. Similar conclusions can be drawn for other classes
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also. Since the sandy areas give the highest values, therefore, it may be inferred that in

the classified image, sandy areas are good representation of actual areas on the ground.

On further examining Table 5.5, another important conclusion can be drawn. The
least user’s and producer’s accuracies has been reported by the FCM (unsupervised) for
the built up class. It clearly shows the poor classification of this class by FCM
(unsupervised). This indicates that built up class is highly mixed or in confusion with
other classes and its performance may become better than other classes in fuizy
classification. However, the values of individual class accuracies in general do not
show any trend as to which classifier has performed better than the other in assessing

the accuracy of an individual class:

Plate 5.1 shows the outputs of the crisp classifications generated by the software.
These have been compared with the reference data as obtained from PAN image in
crisp fofm. On examining these displays, the user is able to make visual evaluation of
the classification. It is clear that the visual quality of the MLC crisp classification is
more close to the reference data than the other classifiers. This confirms with the

quantitative evaluation done earlier.

-52-



Reference

Legend
MLC
Grassland
Forest
Sandy areas
Built up areas
FCM
(Supervised) -~ Agriculture-
FCM
(Unsupervised)

Plate 5.1 Crisp Classification Qutputs

-53.



5.2.2 Accuracy evaluation of fuzzy classifications

The fuzzy classifications produced from different classifiers have been evaluated
using various fuzzy accuracy measures obtained from the software and are given in

Table 5.6

Table 5.6 Fuzzy Accuracy Measures for Whole Image

FCM FCM

MLC ) Supervised Unsupervised
Entropy 0.526 0.565 0.397
Cross-entropy 0.262 0.287 . 0.419
Distance measure 0.057 0.060 0.092
Information closeness 0.145 0.160 0.193

It can be inferred from the entropy values that the MLC and FCM (supervised)
classifiers produced classifications with higher fuzziness as compared to FCM
(unsupervised). Higher entropy measure indicates that the membership values of a
pixel are well distributed among the classes. This is the situation with MLC and FCM
(supervised). This proves the capability of these two classifiers to produce fuzzy

classification. In other words, FCM (unsupervised) classification has not been able to

portray the fuzziness in the image.

However, entropy value gives no indication of whether the proportions obtained are
close to the fuzzy reference data. The cross-entropy, distance measures and information
closeness may be used to express the quality of the fuzzy classification. A small value
from these measures indicates that the classification is an accurate representation of the
thematic data. Looking at the values of these measures for MLC and FCM -
(supervised), it can be stated that these classifiers have significantly lower values than
the FCM (unsupervised). This again demonstrates the superiority of these classifiers

over the FCM (unsupervised) even for fuzzy classifications.

To evaluate the performance of each class by a particular classifier, the values of

cross-entropy (d), distance measure (S), and correlation coefficient ( r ) have been also

computed and reported in Table 5.7
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Table 5.7 Fuzzy accuracy Measuress for individual class

FCM FCM
. MLC Supervised Unsupervised
d S r d r d S r

Agriculture | 0.101 [ 0.067 | 0.590 | 0.048
Builtup | 0.021 { 0.045 [ 0.507 | 0. 0.101 | 0.099 | -0.030
Sandy -0.008 |0.007 1:0:854 1.0:007 [:0:007:/:0.860.10:004:[:0.008 |. 0.845"
Forest 0.056 | 0.077 [ 0.708 | 0. . . 0.131 | 0.402
Grassy 0.076 | 0.089 | 0.402 | 0. . . 0.127 | 0.262
Average | 0.05210.057 [ 0.612] 0.0 . . 0.092 | 0.390

0.495 | 0.064 | 0.094 | 0.473

From Table 5.7, it can be observed that the class sandy
the most accurate class by all the measures for the three classifiers. The negative
correlation does not provide any information on built up area but the other two
measures suggest that the class is highly mixed and more fuzzier than the other classes.
This is an outcome that supports the earlier conclusion derived while discussing crisp
classifications. Though no specific trend can be seen for different classes by all the

measures, in general, MLC has produced more actual proportions than others.

In order to evaluate the classifications visually, the fuzzy classification outputs have
been used to generate fraction images to portray the spatial distribution of the five land
cover classes. In the fraction images, the bright areas denote higher proportion of a
class. To evaluate these images with the reference data, a fraction image for each elass
representing actual class compositions obtained from PAN reference image has also
been generated (Plate 5.2). From this, it can be observed that for all the cases, MLC has

provided the best relationship of the proportions with the reference data.
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5.3 A Comparison between various Accuracy Measures

5.3.1 Crisp accuracy measures

In order to assess the performance of a given measure, the accuracy measures for
one particular classifier namely FCM (supervised) has been reported and discussed in
this section. Thus, for this classifier, the various accuracy measures for the whole
image are shown in Table 5.8. It may be emphasized that the comparison shall be

meaningful if studied with the corresponding error matrix in Table 5.2.

Table 5.8: Crisp Measures for Whole Classification

Overall accuracy 0.532308

Average Accuracy User’s 0.572640

Producer’s 0.573264

Combined Accuracy User’s 0.552474

Producer’s 0.552786

Kappa Coefficient 0.360768

Weighted Kappa 0.173747

.| Tau Coefficient based on equal probability (T;) 0.415385
Tau Coefficient based on unequal probability (T,) | 0.359811 )

The overall accuracy is an index of classification as a whole. However, it does not
take into account the off-diagonal elements of the error matrix. Therefore, it will not

give idea about the commission and omission errors

It can be seen that average accuracy is greater than overall accuracy because it has
the tendency of bias towards the class having high percent of correctly classified
samples (i.e., sandy areas), while overall accuracy is biased towards the class with less
percent of correctly classified samples (i.e., grassland). The combined accuracy is
balancing the overall accuracy and average accuracy. However, the values of overall,
average and combined accuracy are more than the Kappa coefficient. Thus, these
measures tend to overestimate the classification accuracy. Hence, Kappa may prove to
be a desirable accuracy measure, because it has the ability to account for chance
agreement as it uses all the elements of the error matrix. Kappa however gives equal
weights to each class. Many a times, some classes may be more confused with each

other than other classes. Therefore, some weights may be attached and a weight matrix
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generated to determine weighted Kappa. The weight matrix should be taken carefully,
keeping in mind confusion between the various classes. The weights used in this study

are shown 1n Table 5.9

Table 5.9 Weights Used to Obtain Weighted Kappa

Agriculture | Built up | Sandy | Forest | Grassy
Agriculture 0 7 2 4 9
Built up areas 7 0 7 2 2
Sandy areas 2 7 0 1 1
Forest 4 2 1 0 10
Grassland 9 2 1 10 0

From the error matrix (Table 5.2), it may be observed that the most confusion exist
between forest and grassland areas, therefore, the most weight has been given to these
pair of classes. The least confusion exist between the forest and sandy areas and, hence,
these classes have been given the least weight. After assigning these weights, the
weighted Kappa obtained shall probably be the most realistic estimate of the accuracy.

Though the weights are completely subjective.

Initial comparison between Kappa and Tau coefficients, reveals that Kappa
coefﬁcieht constantly overestimates the chance agreement and underestimates the
classification accuracy relative to Tau. Hence, Tau coefficient provides an intuitive and
accurate measure of classification accuracy. Also, Tau may be viewed as the ratio
between the number of pixels that were correctly grouped by random assignment.
Thus, for the classification based on equal probability, the T, value indicates that
41.5% or more pixels have been classified correctly than would be expected by random
assignmenf. Similarly, the T, value indicates that the classification, based on an
unequal probability, makes 36% fewer errors than it would be expected by random
assignment. In this respect, Tau values may be easier to understand and interpret than
Kappa. Unlike Kappa, Tau also compensates for unequal probabilities of groups. The

unequal probabilities used to calculate T, in this study are shown in Table 5.10

Table 5.10 Unequal Probabilities for each Class for Tau Coefficient
Agriculture | Builtupareas | Sandyareas | Forest | Grassland
0.23 0.09 -0.04 0.29 0.35
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Looking at the individual class accuracies obtained by various measures
(Table 5.11), it may be concluded that conditional Kappa and conditional Tau may be
used for the assessment of accuracy of individual classes after making some
compensation for chance agreement. Hence, the values of conditional Kappa are less

than user’s and producer’s accuracies.

Table S.11 Crisp Accuracy Measures for individual class

Accuracy per class Conditional Kappa Conditional Tau
- User Producer User Producer User Producer
Agriculture | 0447059 [ 0.558824 [ 0.300755 [ 0.402574 [ 0.252782 | 0.427044
Built up areas | 0-608696 | 0.424242 [ 0.564473 [ 0.380393 [ 0.579243 | 0.367299
Sandy areas | 0-720000 | 0.818182 [ 0.710191 | 0.810909 | 0.708333 | 0.810606
Forest 0.587444 | 0.651741 [ 0.402758 { 0.469864 | 0.374915 [ 0.509495
Grass land 0.500000 | 0.413333 | 0.235294 [ 0.178161 | 0.295775 | 0.097436

5.3.2 Fuzzy accuracy measures

Fuzzy accuracy measures for the classification produced by FCM supervised have

been reported in Table 5.12

_Table 5.12 Accuracy Measures for-Fuzzy Classification by FCM Supervised

Average for The values for each class

Whole Image | Agriculture | Builtup | Sandy | Forest | Grass

areas areas | . . land

Entropy ~ 0.5647 0.1322 0.1183 | 0.0603 | 0.1151{ 0.1389

Cross-entropy 0.2865 0.0483 0.0272 0.0070 | 0.1087 | 0.0953

Distance 0.0600 . 0.0633 0.0334 0.0077 0.0999 ( 0.0954
ion

Informatio 0.1596 0.0369 0.0335 | 0.0134 | 0.0386 | 0.0371
closeness
C lation

orreld 0.4948 0.6257 | 0.8604 | 0.5825| 0.3664
coefficients

The high value of entropy indicates high fuzziness. In other words, a large number

of pixels are mixed.

Other measures, such as, cross-entropy and generalized measure of information
closeness may also be used. It may be observed that these two measures give a higher

value for whole image than distance measure. This indicates that simple measure of
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distance may overestimate the classification accuracy as a whole. Also, it may be
inferred that the cfross-entropy, distance measure, and information closeness are have

similar trend in expressing the accuracy of fuzzy classifications.

From the entropy for each class, it can be observed that sandy area has the smallest
value than other classes, this indicates that the pixels containing sandy areas are having
a higher probability of membership with this class. Therefore, this class is highly
related to the actual reference data. In contrast, the grassland class has the highest
value, which indicates the existance of precious proportions from other classes within
the pixels in this class. From Table 5.12, it may also be observed that sandy areas have

the least distance. Therefore, this class is a well representation of the actual class.

The correlation coefficients are used to indicate the accuracy of the classification on
per-class basis. Higher the correlation coefficients, higher are the classification
accuracy. It may be seen the sandy area has the highest correlation coefficient and thus

is more close to the actual proportions as given in reference data.
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CHAPTER 6

6.1

CONCLUSIONS AND FUTURE SCOPE

Conclusions

The objective of this work is to focus the attention on the assessment of accuracy of

classification of thematic maps derived from remote sensing images. Necessary

software to perform the classifications in crisp and fuzzy form and their accuracy

measures has been written in MATLAB environment. The program has been tested on

a sample data set from remote sensing images obtained from IRS satellite. On the basis

of the results obtained, following conclusions may be drawn:

RSICAA is an interactive user-friendly Window based software that provides
various options to the user to perform a classification and use an appropriate

accuracy measure.

Data format adopted in RSICAA is simple. Further, it allows portability

between other commercial software packages such as the well known ERDAS _

Imagine. _ L

As per the nature of classification output (i.e., crisp or fuzzy), proper accuracy
measures may be used to derive qualitative information from thematic

classifications.

For the data set considered, MLC and FCM supervised classifier have

generally produced higher accuracies than FCM unsupervised classifier.

Depending upon whether the aim is to determine the accuracy of the whole
classification or the accuracy of one class, a user may select a particular

accuracy measure.

Though the Kappa coefficient has been used extensively, the current study

shows that it may underestimate the classification accuracy. Therefore, Tau
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6.2

coefficient is attractive as it provides an intuitive and accurate measure of
classification accuracy. Also, this coefficient is easier to understand and
interpret than Kappa. Unlike Kappa, Tau also compensates for unequal

probabilities of classes or for difference in number of classes.

For fuzzy classification, the entropy value gives no indication of whether the
proportions obtained are close to the reference data or not. Therefore, distance
measures seem more appropriate. However, simple distance measure may
overestimate the classification accuracies. Therefore, cross-entropy and

measure of information closeness may be more appropriate.

Future scope

Though all care has been taken to develop a versatile software, no package is

ultimate. The modifications are always necessary and therefore newer versions shall

keep coming. There are some points that crept in while working on this software.

1.

Other classifiers such as Linear Mixture Modeling (LMM) and Artificial
Neural Network (ANN), which yield fuzzy classified images, can be

incorporated in this package.

The effect of different factors affecting the classification accuracy such as
training and testing data characteristics and number of wavebands may be

studied with the help of this package.
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Appendix A

This appendix shows a sample of the output file for crisp classification accuracy

measures generated by RSICAA. A typical error matrix has been used in the

computation of various accuracy measures.

Error Matrix : (Source: Arora and Ghosh, 1998)

Ground Data (Reference)

[Forest |Built up [Range land [Water | row total

Classified  [Forest | 310 | 20 | © 0 ]330
Image Builtup | 60 | 120 | 0 | 0 | 180
Rangeland | 2 | | 60 | 0 | 66
Water | 30 |20 | 0 | 10 | 60
icolumn total] 402 | 168 | 60 | 10 | 636

Number of correctly classified: 500

Overall Accuracy = 0.786164

User's Accuracy :
0.939394
0.666667
0.909091
0.166667

Producer's Accuracy :

0.771144

0.731707

1.000000

1.000000
Average Accuracy(User's) = 0.670455
Combined Accuracy(User's)= 0.728309

Kappa Coefficient = 0.636198

Average Accuracy(Producer's)=0.875713

Combined Accuracy(Producer's)=0.830938



Weights used to calculate Weighted Kappa :
0 2

1
2 0 1
1 1 0 1
10 7 1

Weighted Kappa = (.364344

Conditional Kappa for User's approach :
0.835276
0.550847
0.899621
. ..0.153355

Conditional Kappa for Producer's approach :
0.524339
0.625802
1.000000
1.000000

Tau Coefficient based on equal probability = 0.714885

The unequal probability for each class for Tau Coefficient :
class 1 :0.250000 class 2 :0.250000 class 3 :0.250000

Tau Coefficient based on unequal probability = 0.714885

Priori probabilities of class membership for Classified Data :
class 1 :0.250000 class 2 :0.250000 class 3 :0.250000
Conditional Fau for User's approach :

0.919192

0.555556

0.878788

-0.111111

Priori probabilities of class membership for Refrence Data :
class 1 :0.250000 class 2 :0.250000 class 3 :0.250000
Conditional Tau for Producer's approach :

0.694859

0.642276

1.0600000

1.000000
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Appendix B

This appendix shows a sample of the output file for fuzzy classification accuracy
measures generated by RSICAA. This file has been generated using the data set is used

in this dissertation.

The average Entropy value for Whole Image is:
0.5264

The Entropy values for each class are:
Agriculture: 0.1006
Builtup :0.1040
Sandy : 0.0404
Forest :0.1336
grassy :0.1478

The average Cross-entropy (d) value for Whole image is:
0.2622

The Cross-entropy (d) values for each class are:
Agriculture: 0.1010

Builtup :0.0206

Sandy : 0.0084

Forest . 0.0560

grassy :0.0761

~ The average Distance (S) value for Whole image is:
0.0569

The Distance (S) values for each class are:
Agriculture: 0.0666
Builtup :0.0447
Sandy  :0.0070
Forest - 0.0773
grassy : 0.0890

The average Measure Of information closeness (D) value for Whole image is:
0.1454

The Measure Of information closeness (D) values for each class are:
Agriculture: 0.0283
Builtup :0.0336
Sandy :0.0084
Forest :0.0373
grassy : 0.0379
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the correlation coefficients (r) values for each class are:
Agriculture: 0.5898 :
Builtup :0.5071

Sandy : 0.8540
Forest : 0.7075
grassy : 0.4015
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