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ABSTRASCT

The ever increasing demand for energy has necessitat-

ed the exploration of hydrocarbons in stratigraphic traps.

The seismic technique can be effectively used to elucidate
subsurface stratigraphy and lithology. To interpret seismic
responses of geologic sections in terms of subsurface strati-
graphic and lithologic information it is neceéssary to
establish a correlation between lithology and suitable para-
meters abstracted from the seismic response. The present

work deals with

(a) simulating mathematical models for sedimentation
processes and calculating their response with the

above objective and

(b) applying the above concept and methodology develop-
ed on synthetic data tc rcal seismograms tc infer

lithostratigraphic information.

Depositional situations may be modeled by using
Markov chains. These invglve the concept of memory where
the nature of successor lithclogies are predetermined by
preceding 1ithologies according to certain probabilities.
Markov chains with one step memory are therefore applied to

model two different depcsitional conditions of a formation
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in a sedimentary basin in India’. 4ccordingly, two dreas X

and Y are considered for the purpcse of this study.

Area X corresponds to a dominantly sandy (sand =
5% percent) part of the basin together with coal (26 percent)
and shale (21 percent) cunstituents. Gecphysical well logs
of this area have been used tu calculate the probability of
upward transition from one lithology to another at a four
metre sampling interval for a particular formation. These
were used to generate 255 different synthetic stratigraphic
sequences which are collectively designated as Model &.
Area Y corresponds to a dominantly shaly ( shale = 60 percent)
part of the same basin, with sand (37 percent) and coal (3
percent) constituents. Another 253 gynthetic sequences
generated fur this area and designated as Mcdel F were syn-
thesized on the basis of the probabilities of transitions
from one lithology tu another as calculated from well log
data. The five hundred and eight sedimentation séquences
thus generated represent sedimentary sequences depcsited in
changing envirorments. Seismic response in time and frequency

demain for these mcdels have been calculated.

"Part of the work embodied in the thesis is based un

real field data, courtsey,0il and Natural Gas Commissiocn,
Dehradun, India. The locations and name of basin have
been suppregsed. The sedimentary basin is referred to as
Basin 4, two areas within the basin as Areas X and Y and
the hydrocarbun bearing furmation as Formaticn K.
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The models used in this study are composed of
hcmogenecus, isotropic and perfectly elastic layers. The
acoustic impedances of these layers were calculated from
the velocity and density logs available for the area. The
impulse response was calculated and then convolved with a
source wavelet tu yield conventional looking seismograms.
The autocorrelation function, and the power spectrum using

maximum entropy methuds were computed.

Seventeen variables were picked from the auto-
correl ation function (4CF) and are Al/AO, AZ/AO, AB/AO’
where A denotes the ACF at the subscripted lag, 4 ;, /4.,
whe re Amin denstes the minimum value of the ACF, T, T2, TS’
where T denctes time of the subscripted zero crossing in the
ACF and p A the time at which first minima occurs. Nine
varisbles were picked from the power spectrum and are,
average power weighted fraquency, frequency at which maximum
power occurs, frequency at 25th, BOth and 75th percentile
values of frequency weighted power, frequencies of 25th, 50th
and 75th percentile of power, and freguency at which logarithm

of power decreases tc zero.

The above mentioned seventeen variables were calcula-
ted for 211 the simulated responses of synthetic stratigraphic
sequences. Discriminant analysis which was employed showed
that a combination of all the variables can maximally
geperate, in the variable space, the two different Models E

and F. The discriminating seismic attributés characterize
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the two sedimentation sequences and may aid the inter-

pretation of field records in terms of subgurface strati-

graphy.

The success achieved in discriminating different
depositional situations in computer simulations hag led to
the test of the methcd with real seismic data. The forma-
tion on which the transition matrices were based for simulat-
ing Models E and F was marked on the seismic sections of
Areas X and Y and the 387 seismic traces when subjected
to the discriminant analysis allowed to distinguish between
lithostratigraphic units of Areas X and Y, thereby endorsing
the validity of this approach. GContributions of the seven-
teen variables towards effective discrimination shows that
only seven variables, vigz., fs, Ag/AO, fl’ Tamin’ s f3
and Al/AO; common tc both synthetic and field seismic data,
make positive contributicns. The variables designated as
seéismic discriminators of subsurface lithostratigraphy may
ultimately help discriminate an oil bearing stratigraphic

trap from its barren surroundings in a sedimentary basin.

The statistical mcthcd presented here has been
shown to be a potential tool for the determination of sub-
surface lithostratigraphy from seismic data. This consti-
tutes on important additional tool in the exploration for

hydrocarbons.



CHAPTER - I

INTRODUGTION

Over a third of the world's power comes from oil.
Its rate of consumption has far exceeded the rate of produc-
tion and discovery of new reserves. This imbalanee has
prompted the search for new reserves of oil locked in strati-
graphic, structural and combination traps. Whereas most
structural traps have already been discovered and are being
exploited, stratigraphic traps which have not yet received
their due share of attention hold promise of containing large

reserves of the yet undiscovered oil and gas.

Seismic methods have played an important role in
exploration of oil, especially in locating structural traps.
Recent advances in exploration geophysics have considerably
improved the seismic résolving power thereby enhancing the
chances of locating stratigraphic traps. This has led to the
Aevelopment of new interpretative modeling techniques which
can help in solving stratigraphic problems, in predicting
lithologies and their inter-relationship which at times yield
information regarding conditions favoursble for accumulation

of hydrocarbons.

1.1 SEISMIC STRATIGRAPHIC EXPLORATION

The interpretation of subsurface stratigraphy from
séismic data is possible by studying the nature of reflection

cycles and their termination with respect %o adjacent reflection
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events (Vail, Mitchum, Todd, Widmier, Thompson, Sangree, Bubb
and Hatlelid, 1977). These terminations help to locate boun-
daries between zones corresponding tc specific types of deposi-
tional units, each associated with eharacteristic reflection
patterns. The degree of convergence or divergence of reflection
is also diagnostic of envirommental conditions prevailing during
deposition of a sedimentary sequence. Such mechanisms as delta
formations, transgression and regression of sea level and tilt-~
ing of strata are agssociated with patterns on record sections
that make it possible for the interpreter to reconstruct the
geologic history of sedimentary areas (Dobrin, 1977). The study
of patterns can narrow the search areas in which the depositiovn-
al enviroment appears favourable for stratigraphic accumulation

of hydrocarbons.

Iyons and Dobrin (1972) have stated that more than
half the oil and gas that will be eventually found will be
designated as occuring in stratigraphic traps. They have cited
the case of a 'mature' exploration province in Okl ahoma, where
in 1942, 49 percent of the oil and gas pools were stratigrephic,
it rose to 62 percent in 1967 with the discovery of four times
as many pools. The great size of some of these stratigraphic
traps and their greater number will bring them shead of the
struetural traps in ultimate reserves. |

Definition of gstratigraphic features ideally requires
the seismic delineation of lithologic boundaries or the resolﬁ—
tion of thin beds which depends on seismic wavelengths. Scurce

wavelets of small wavelengths ¢an resolve thin beds compared



to longer wavelengths. If two reflection boundaries are Close
together in terms of seismic wavelengths they will not be
€agily recognized on seismic records. This sets a limit on
the resolution of thin beds and pinchouts. Widess (1973) has
shown that the thinnest bed that can be resolved by seismic |
method should have a thickness of 5/8th of a wavelength. How-
ever, high frequency energy is difficult to record because of
its rapid attenuation, which sets a limit on the depth of
penetration of seismic energy and therefore high frequency

reflections from deep beds may not be obtained.

Lyons and Dobrin (1972) have suggested the following
improvements for increasing seismic resolution ; wuse of high
frequency source pulse, detonation of shots in consolidated
material, high freguency recording, filtering programmes to
increase the signal %o noise ratio of high frequency refléction

and the use of vertical arrays of pressure phones in boreholes.

Pioneering work in interpretation of gtratigraphy
from seismic data has been carried out by several workers
using different approaches. Cook and Taner (1969) and Taner
and Koehler (1969) have used interval seismic velocity for
identifying lithology. This approach is used as a regular
eéxploration tool for determining the sand shale ratio al though
it suffers from the limitation that different interval veloci-
ties emerge from different choice of intervals. Hilterman
(1970); Harms and Tackenberg (1972), Gir (1974); Dedman,
Lindsey and Sehramm (1975); Khattri and Gir (1975, 1976);
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Nath (1975);, Neidell (1975); Brown and Pisher {1977); Clemewt
(1977), Galloway, Yancey, and Wipple (1977); Meckel and Nath
(1977), Neidell and Pogglagliolmi (1977); Schramm, Dedman and
Lindsey (1977); Sieck and Self (1977); Stuart and Caughey(1977):
Taner and Sheriff (1977); Vail, Mitchum, Todd, Widmier,
Thompson, Sangree, Bubb, Hatlelid (1977); Wiemer and Davis
(1977), Sangree and Widmier (1979) are some of the workers who
have given significant examples of the use of geismic data to
model hcorizontal and vertical facies changes characterising
stratigraphic variablity. The above workers have tackled
stratigraphic problems related to modeling using the determinis-
tic approach. The seismic responseé computed is due to a parti-
cular stratigraphic situation. To take into account a large
number of vertical variations in lithology Sinvhal (1976) and
Khattri, Sinvhal and dwasthi (1979) have introduced a statis-
tical approach in characterizing different stratigraphic

gituations.

Mathematical modeling of sedimentary sequences is
essentially a computational procedure. The model is given in
terms of interval properties such as velocity, density and bed
thiekness. The seismic response that would be gererated from
the assumed geologic situation gives the synthetic aeismogrgm-
The objective of this kind of modeling is to identify 1itho-
logic changes by interpreting synthetic data. These lithologie
changes offer possibilities to locate stratigraphic traps that

¢an hold hydroearbons.
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Certain complex layering patterns may be associated
with certain seismic characteristics that can be identified
by statistical techniques. Mathieu and Rice (1969); Avasthi
and Vema (1973); Waters and Rice 1975) and Sinvhal, Gaur,
Khattri, Moharir and Chander (1979) have identified typical
reflection patterns from varying lithologic sequences. Mathieu
and Rice (1969) and Waters and Rice (1975) have chosen a part
of the Pennsylvanian Morrow Fomation in wells along certain
seismic lines. Synthetic seismograms were made from the velo-
city logs obtained from the wells. Pattemrn récognition
techniques involving the use of factor analysis were applied
to records along lines between wells and the various kinds of
lithology at each shot point were identified and mappéd.
Mathieu and Rice (1969) applied discriminatory analysis to
differentiate between sandstone and shale within a specified
strmtigraphic interval, using the time domain variables. Al-
though techniques of this Type were successful in some cases,
the authors note that there were instances where this approach

did not predict 1ithology reliably.

Sinvhal (1976) and Khattri, Sinvhal and Awasthi (1979)
have used the impulse response of models of subsurface foma-
tions and statistically analyzed them for abstracting seismic
pararieters which could be characteristic of the stratigraphy
and lithology of the fomations. Two types of fomations have
been considered, consisting either of sand-shale sequences

of coal-shale sequences. Models of the fomations are generat-

ed using the Monte Carlo method. It is found that three



features in the power spectrum of the impulse response, namely,
the frequency fe at which the spectrum can be divided into a
zone of high energy from a zone of low energy, the lowest
frequency, fp, where there is a significant energy peak and
the frequency fﬁ at which there is maximum energy, can be used
statistically to distinguish between the formations consisting
of sand-shale sequences and the formations made up of coal-
shale sequences. Three additional parameters A2/A1, Az/Ao_and
Al/AO, where A denotes the autocorrelation funetion of the
impul se response at the subscripted lag are also statistically
significant discriminators between the sand-shale formations
and the coal-shale formations. The discrimination between the
two subgroups of each model consisting of more (or less) than
50 percent of one lithology is also feasible, although there

are fewer diseriminants available.

1.2 SCOPE AND APPROACH

The most remarkable aspect of the study of Sinvhal
(1976) and Khattri, Sinvhal and Awasthi (1979) was that a sand-
shale sequence could be distinguished from a coal-shale
sequénce depending on the content of sand, shale and coal.
This was the basic promoting feature behind the present
eéndeavour. However, stratigraphic sequences are not random
stacks of lithologies, but each unit bears some relation with
the lithounit deposited previously. Any mathematieal procedure
which tekes this into account will give a more realistic model.

Markov chains offer ample scope for this and have been used in
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the present study. Moreover, the seismic response of a
layered medium is more appropriately estimated by convolving
the impulse response with a gouree wavelet, which will give a
band limited spectrum. 4 formation with sand-shale¥coal
alterations in a sedimentary basin in India has been takenup
for the present study. The following approach has been
adopted

(a) Sedimentation models with sand-shale-eoal alterations
have been constructed using one step Markov Chains._
The probability of upward transition from one 1itho-
logy to another required in generating Markov chains
is calculated from borehole data, from a sedimentary

basin in India.

(b) The seismic impulse response of the above models is
calculated by using velocity and density information
from well log data. The response is convolved with
a source wavelet to give conventional type of

geismograms.

(e) The autocorrelation function of the synthetic seismo-

grams has been calculated.

(a) Power spectrum of the symthetic seismogrems is £omPu tem

€d using the Fourier transform and maximum entropy

me thods.

(e) Variables which will be used to characterige lithology
are searched and picked from (c) and (d). These are
subjeeted to the statistical linear discriminant

analysis.



3 Parts of seismic sections corresponding to a
hydrocarbon bearing formation in India‘ have
been subjected to the analysis as given in (c),

(d) ama{e),

On the basis of several Variables selected from
the autocorrelation functions and the power spectra of
s€ismograms it has been possible to digtinguish between
dominantly sandy and shaly lithologies both in the cage

of synthetic and real data.

*Part of the work embodied in this thesis is baged on
real field data, courtsey 0.N.G.C., Dehradun. The loca-
tions have been suppressed. The sedimentary basin is
referred to as Basin 4, two areas within the basin as
Areas X and Y and the hydrocarbon bearing formation as
Formation K.
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CHAPTER - II

S IMULATION OF MODELS

The nature, cause, effect and any other aspect of a
complex natural phenomenon may be studied by physical, con-
ceptual or mathematical models and magy often lead to new ideas
and discoveries. In mathematical models the essential aspect
of the phenomenon are represented by mathematical relationshipé
based on relatively few parameters. A good model would predict
esséntial features of the phenomenon sufficiently aceurate;y,
However, the construction of good models may be restricted by
an inadequate understanding of the natural phenomenon and its'
consequent mathematical formulation, or by the number of para-
meters to describe it, a restriction imposed by the cost of

simul ation.

In the present investigations geologic depositional
situations have been simulated on a digital computer by a
mathematical formulation. The depositional process and
enviromental condition to represent any geologic situation is
first assumed and a model for it is_visualizéd, The process
is modeled by choosing certain relevant parameters such as
velocities, densities and interface geometry which is used

as input data to the ecomputer to simulate the geologic model.
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2.1 MONTE CARLO MOIELS

Sinvhal (1976), Khattri, Sinvhal and Awasthi (1979)
and Sinvhal, Gaur, Khattri, Moharir and Chander (1979) have
modeléd cyclic repetitions of lithologies and have simulated
simple binary systems with alternating sand and shale or shale
and coal beds. They employed Monte Carlo technique to select
thickness of the successive layers, which took into account
the variability of the depositional accumulations. After fixing
the model thickness at about 200 m for reasons digecussed in

séction 2.5, individual layers with a thickness having a two way

vertical travel time of 6 ms or its multiples were considered
for the model. With these constraints the nuwber of layers
in each model varied between 10 and 25. Each of these
approximately 200 m thick models were overlain by a 200 m
thick homogeneous layer and underlain by a homogeneous half-
gpace so that the model could be studied in isolation. The
¥véluCivics and densities assumed for and assigned to the
constituent lithologies are similar to those often met in the
field conditions and are given in Table 2.1.

Table 2.1 - Velocities and Dengities used for Monte Carlo
models (After Sinvhal, 1976).

Constituents of the model Velacity Density
m/sec g /e.c.
Overburden 1400 2.40
Sandstone 2150 - 2.05
Shale 2000 1.95
Coal 1500 1.50

Lower Half space 2400 2.20
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The sand shale models depict sedimentary enviromments
ranging from oscillating marine to continental environments.
The coal shale model depicts envirommental transitions from

continental to marine conditions.

One hundred and ten sand-shale sequences and an equal
nunber of coal-shale sequences were simulated on a computer.

These simulations were grouped into four categories .

() Model A | sand shale ratio ranging between .2 and .5
(ii) Model B ! sand shale ratio ranging between .5 and .8
Li31) Model C : coal shale ratio ranging between .2 and .5
(iv) Model D . coal shale ratio ranging between .5 and .8.

The study and analysis based on the seismic response
of the above simulations helped in differentiating gross 1itho-
logies in the four models discussed above. It is pertinent %o '
note that only random distribution of lithologies and thickness-
©s gernerated by the Monte Carlo techniques were considered for
the study. The lithounits and their thicknesses in a sedimen-
tary series of beds deposited conformably often have more than
two component lithologies and the individual 1ithounits may be
inter-related by a certain probability of transition. Thus the
Monte Carlo Models discussed above are rather simplistic and do
not define natural depositional sequences met in nature suffi-
ciently accurately. Therefore, it was desirable to extend the
study by teking into account a more realistic representation.
Markov Chains make it possible to model lithostratigraphy in
terms of transition probabilities in which lithounits displgy
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partial interdependence on each other, and have been usged in

the present study.

2.2 MARKOV CHAINS AND TRANSITION MATRICES

A stratigraphic sequence of conformable beds can be
considered as a geries of partially interdependent finite
nunber of lithologies. Such a situation can be ideally modeled
using Markov Chains which involve the concept of conditional
probability. Markov Chains may be regarded as a sequence or
a chain of discrete states - in this cage lithologies in
space (or time) in which the probability of transition from
one state to another in the next step in the sequence depends
upon the previous state. If the system at a certain point,xr
(or time trbepends upon the state at point X.q (or time tr;l)
according to certain probabilities, then it is known as a

firast order Markov Chain.

Markov Chains can be conveniently used to model
complex processes which are subjected to influences that can-
not be exactly evaluated. The changes of state can be
rigorously exsmined in terms of their relative probabilities
of ocecurrence. This is evident in cyclical sedimentary
Séquences, where an underlying pattern of lithologie succession
can be discerned, but in which the actual sequence of rock
types can only be predicted in terms of their relative pro-
babilities. Carr, Horowitz, Harbar, Ridge, Rooney, Straw, Webb
and Potter (1966); Krumbein (1967,68); Potter and Bl akely(1967)

and Vistelius (1967) have used Markov Chains in modeling
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stratigraphic sequences:

Let a Markov Chain consist of three states 81, 9 and
85+ Let p;, be the probability of transition from 1% state
(i=1,2,3) to the j®® state (j=1,2,3) in which tne %0 gtate

th state. These probabilities are based on

underlies the j
frequency distribution of various transitions amongst different
states. Let these probabilities, pij’ be expressed in the form
of a transition probability matrix, P, given in the matrix 2.15
In this matrix i and j correspond to rows and foolumns respecti-
wily, L:@., pij is the probasbility of vertical transition from

st ate s; to state Sj’ or pq, is the probability of upward

transition from state 1 to state 2.

% op -
- i
5 ¥y P12 P13
P = s LI } (2.1)
.- i Foy P2 Fos
8 | ¥ F32 F33 |
if bi are the total number of transitions possible
from state i to any other state and a.ij are the number of
transitions from state i to state j, then Pij = aij/bi, (i=1,2,3)

and (j=1,2,3). Several upward transition matrices may be con-

verted into one average matrix by using the formulation

n n
(k=§ % 5k bik) ¢ kii bik vuws LER)
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th th

This gives the element in i row and jJ column of the new
matrix, where n matrices have been used in the averaging

process.

2.3 TRANSITION MATRICES OF FORMATION K

Iwo adjoining areas X and Y representing part of a
sedimentary basin in India have been considered for the present
study. Drilling operations in the sedimentary basin have
revealed the presence of thick sedimentary rocks of Tertiary-
Quarternary age. The Formation K, in the above basin is
usually 200 to 300 metres thick and has a lithological compoai-
tion of sandstones, shales and coals. This formation is wide-
spread in this basin and is sandwiched between two thick
gections of shale and has been modeled and studied in +the

present invegtigations.

In Area X, this Formation is represented by thick
sand (53 percent), shale (26 percent) and coal (21 percent)
sequences. In Area Y, the Formation is dominantly shaly (60
percent) with minor sandstones (37 percent) and a number of
coal streaks (3 percent). The Formation was deposited under
alternating regressive and transgressive marine enviromments
(0.N.G.C.yunpublished Teports). The shale underlying the
Formation K are thought to be the source rocks for oil found
in the reservoir rocks of this Formation. In the present study
the sequences of lithology in the Area X represents depositional
enviromments near the basin margins and Area Y represents

relatively deeper water enviromments.
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Data from sixteen boreholes in Area X and three from
Area Y have been used in this study. Care was taken to select
those boreholes Wwhich are situated near or on the seismic
lines to give better correlation. Since the Area Y exhibits
less lateral variations in lithology, fewer wells were consider—
ed adequate %o represent this area. The Formation K of these
stratigraphic sections have been used to obtain upward transi-
tion probability matrices by using transitions from one rock
type to another at four metre sampling interval. One represen-
tative case for each of the Areas X and Y is illustrated in

FPigures 2:1 and 2.2, regpectively.

To set up a transition probability matrix fof transi-
tions from one lithology to its successSor, observations of the
upward changes are first recorded in the transition frequency
matrix of Figure 2.1. Each box in the matrix gives the total
number of upward transitions from the state denoted by the
row, to the succeeding state, denoted by the column. 4 total
of seventy transitions measured at fixed vertical intervals
have been observed for the Formation K in this well. The
transition frequency matrix has been tonverted into a traumsi-

tion probability matrix, shown in the same Figures 2.1 and 2.2.

The transition matrices ealculated are sensitive to
the sampling interval chosen. If relative frequencies are
taken as a measure or probability then a large number of
transitions should be considered, i.e., the sampling interval

should be very small. The sampling interval of 4 metres
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thickness chosen in the present study was guided by the facts
that (i) the results are to be used for seismic stratigraphic
studies and (ii) the resolution of present day geismic methods
is much less than the above thickness. It mgy be mentioned
that in the present analysis beds with thickness of less than
4 metres are sometimes either missed or read as 4 metres thi ck,
because of the restrictions imposed by a fixed sampling inter-
val of 4 metres. Transition matrices thus calculated for 16
wells of Area X and 3 of Area Y are given in Tables 2.2 and

2.3,

Each fractional element in the matrix gives the
probability of upward transition from state 8y to state sj
where i =1,2,3 and j=1,2,3 (Table 2.2). The first row in
each of the matrices indicates the transition probabilities
from sandstone to sandstone, shale or coal. ForWell E-1
the fraction 28/34 indicates that a total of 34 transitions
have been observed from sandstone, 28 of which are to sand-
stone itself. PFrom the same row it can be observed that 5
transitions are to shale and 1 is to coal. The total probabi-
1ity of all transitions possible from sandstone therefore adds
upto 1. This is true for every row in all the matrices. The
zero element indicates that transition from that particular
gtate, denoted by the row number, to the succeeding state,
denoted by the column number, is not posgsible. Interesting
cases are Wells E-2, E-7 and E-14, which indicate a total

absence of coal in the Formation K.
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Table 2.2 - Upward Transition matrices for the 16 wells
considered for the study of Area X. Sy, Sy and 83

are the three lithological states sandstone, shale
and coal in this order.

Well B - 1 Well B = 3

™ o 3 ! 2 g
s, | 28/34 5/34  1/34] s, [11/15 4/15 o/
S5 BiEl  22/E7 0 85 3/6 3/6 0
83 | 0 1/9 8/9 1 9z g 0 0 0 :
Well E - 3 Well E -4

Sl 82 53 Sl 82 53

= Nl [ &

8, 29/40 1/40 4/40 N 17/24 5/24 2/24
g5 6/19 12/19  1/19 S5 4/23 18/23 1/23
83 5/11 1733 5/11_4 Sz 2/4 1/4 1/4
Well E - 5 Well E - 6

o} g =y i g 2
8, 18/26 7/26 1/26 5 24731 2/9 5191
85 5/12 5/12 2/12 & 1/2 1/2 0 |
95 2/6 1/6 3/6 95 4/9 0 SAY




Well B -7
= |
“
8 3/5
83 0
Well E -9
o
s, [ 37/45
sz 6/23
Well E - 11
s
s; [ 19/29
Sz 3/11

2/5

5/7

3/45

3/8

2123

8/29

20/26

-20~

5/45

3/8

15/23
—1

2/29
1/26

8/11

Well B - 12

—)

&
5/51
8/13

1/8

T/1%
30/38

1/5

5/29
10/15

1/6

4/51

4/8

Y

1/38

3/5

3/29

1/15

2/6



Well E - 13
gl
s; | 27/35
52 5/8
53 3/9
Well E - 15
o
Y ['26/38
S5 7/14

33 i_ 4/9

S
5/35
1/8

2/9

8/38
5/14

2/9

3/35 |

2/8

4/9

4/38"4

2/14

3/9

-2~

Well B - 14
G | o
| 13/18  %/18
5/7 2/7
0 0
Well E - 16
% &)
[20/32  11/32
10/36 23/36
_*1/10 3/10

93
1/32

3/36

6/10j
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Table 2.3 - Upward transition matrices for 3 wells of Area Y
Sy» Sy and Sz are the three lithologicel states

sandstone, shale and coal, in this order .

Weja B - )
o 2 iy
s; [ 9/12 3/12 gy
S5 2/23 20/23 /25
s 0 14 0
o OF b
Well B - 2
g " s
s; [ 8/13 5/13 g
s, | 4/29 23/29 2/29
Sz 0 273 173
Well F - 3
- .. Sz
s; [ 1522 ©  7s00 0 |
B2 | &/%2 15/22 1,/89
5 0 1/1 0 2
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Table 2.4 - The average matrix characterizing area X

! % 83
N [ 0.75 guif 0.08
S5 0.25 0.70 0.05
5z 0.29 0.12 0.59

Table 2.5 - The average matrix characterizing area Y

% So Sz
8 [h0.68 0.32 0.00
S 0:185 0.78 0.06

S3 i 0.00 0.73 el

!

S -
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3ixteen wells of Area X and three of 4rea Y have
been used to give two average matrices each characterizing
a different enviromment, these are given in Tables 2.4 and
2.5, respectively. The matrix in Table 2.4 characterizes
depositional enviromments near the basin margins while the
matrix in Table 2.5 represents relatively deep water environ-
ments. It has been already mentioned that Ares Y contains
very small quantities of coal in the form of thin streaks.
These may be missed depending on the sampling interval.
Tables 2.3 and 2.5 clearly illustrate the paucity of coal in
4drea Y as coal has 0.00 probability of succeeding sandstone,
0.06 of succeeding shale and only 0.27 of succeeding itself.
It is mostly followed by shale.

2.4 TESTING FOR THE MARKOV PROPERTY

While studying Markov models it is relevant to check
whether the process under study actually has the Markov praperty.
For this, a test to distinguish between the two alternative
hypotheses, that either the succesgsgive events are independent
of each other (the null hypothegis) or the events are not
independent, is performed. If not independent, they could form
a first-order Markov chain. The test statistic A\ is given by

SR (31) 13

Sad 1L '
Now,

" m i
-2 log, A =2 1 n; 5 logg (pij/pj),

1.9
which is distributed as X*with (m-1)° degrees of freedom
(Anderson and Goodman, 1957),
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where, pij = probability in box 1,3 ot the transition
. brobability matrix,

marginal probabilities for the jth column

m

m
(: Zn/ b} H..)y
e Al T R

3
I
il

|

transition frequency total in box i,j of the
original frequency matrix of observed
transitions,

Ny
1J

m = total number of states.

This test is illustrated for the average matrix ot

Adrea Y. The average tally matrix of Area Y is given by

sl 82 s3 Totals
s; [ 542 255 0 797
S5 294 14517 103 1854
S3 i 0 8 3_1 11
Totdl s 836 17206 106 2662

The values of p'j are calculated by taking the marginal total
for the jth column in the tally matrix ang dividing it by the
overall total. For the three columns ,

P, = 836/2662 = 6:3
Py =1720/2662 - g.65
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=2 1o, } =2 [LBe log, 537 + 255 log, ¢ ZE +0 +
+ 294 log, -%% + 1457 log, 8—%% + 103 log, 8—%%
+0 +1720 log, -8—:1% + 3 log, -8—%2— 3

i

2 [[542 10g, 2.19 +255 1og_ 0.49 + 294 log, 0.52+
+-1457 log, 1.21 + 103 log, 1.25 +1720 logg 1.12

+3 log, 5.757]

2 [ 424.87

181.90 -~ 192.25 &+ 277.73 «+ 22.98

i

$19:49 + 41757

]

=2 x 375.67 = 751.34

The number of degrees of freedom, (m-1)° is ()%
If the level of significance ¢ = 0.05 is considered, then the
table of values of the :xfz distribution (Fisher and Yates,
1963) gives the corresponding value of )cl as 9.49. The
calcul+ted value of =2 log, X is 751.34 which is much greater
than the tabulated value of 3(2. Therefore the null hypothesis
that these transitions are from an independent events process
can be rejected and the alternative hypothesis that the transi-

tions have the Markov propeérty can be accepted.

2.5 MARKOV MODELS E AND F

Average matrices characterizing areas X and Y have been
used to generate synthetic Sequences comparable to the original

Sequences of these areas. The models generated from these
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average matrices for areas X and Y are designated as Markov
Models E and F, respectively. A computer programme to

generate such sequences from transition probability matrices

as given by Harbaugh and Carter (1970) has been used in the
present study. Cumulative transition matrices have been
computed by adding successively each element of the row to

the next element on the right so that the extreme right

element attains a value 1.0. The transition probability
matrix values of the average matrix for areas X and ¥ are
shown in cumulative form in Tables 2.6 and 2.7 respectively.
Using the transition probability matrix the programme generates
a sequence of stratigraphic states. The initial state is
generated at random, giving each of the states an equal pro-
bability of being selected. Pseudo-random numbers are generat-
ed in the range 0.0 to 1.0. Following Harbaugh and Carter
(1970), the first number is transformed so that it 1lies within
a range of integers extending frum 1 to 3, which is the total
number of possible states considered for this study. The
resulting integer selected in this range provides the starting
state. From then on the programme generates subsequent states
by sampling the cumulative probability matrix. To select the
state at a certain instant the row of probability values
pertaining to the state chosen at the immediately preceeding
instant is sampled. This is accomplished by generating a
random number between 0.00 and 1.00 and progressively comparing
it with each element of the appropriate row of the matrix,

starting with the lowest wvalue, in the left most column.
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Table 2.6 - Cumulative Transition Matrix for area X

=}
81 ! 0:7%
S5 i 0.25
s3 |h0.29

85
0.92
0.95

0.41

Table 2.7 - Cumulative Transition Matrix for area Y

=
8 rO.68
S5 0.16
83 b0.00

-

1.00

0.94

0.73

3

1.00 §

1.00

l;OOJ
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Comparison of the numbers continues until it is found to be
equal to or greater than the random number. The column
containing that number identifies the next state. The process

is illustrated in Figure 2.3.

The synthetic stratigraphic column shown in Figure 2.4
is based on the transition probability values of Table 2.6.
Since the transition matrix was based on a 4 metre interval
sampling of the well data, each state generated in the
synthetic sequence also corresponds to 4 metre thickness.
However, for reasons explained later (in Chapter III) tbese
thicknesses have been Slightly modified to fit the equal travel
time criterion required for generating the synthetic seismogram.
The seismic velocity in sandstone is taken as 2362 metres/second
and a two way travel time of 4 milliseconds required that the
Sandstone thickness should be 4.72 metres, therefore each
sandstore layer has 0.72 metres added to it. 4n eppropriate
addition or subtraction is made in all other 1ithounits accord-
ing tc the velocities given in Table 2.8, which are calculated

from geophysical well log data.

The thickness of the model is governed by two factors,
the thickness of the K Formatisn which can at places be as
thick as 300 m, and the wavelength of the source pulse. Since
the velocities of the lithounits are approximately 2000 m/sec
and the duration of the source pulse is 44 msec, therefore

the wavelength of the pulse is around 88 m. If a pair of
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ON FIRST DRAW RANDOM NUMBER IS 0.29,WHICH IS LESS THAN
0.75, RESULYING IN THE SELECTION OF SANDSTONE TO SUCCEED
SANDSTONE.ON SECOND DRAW RANDOM NUMBER IS 0.86, WHICH IS
LESS THAN 0.92 BUT GREATER THAN 0.75, RESULTING IN THE
SELECTION OF SHALE TO SUCCEED SANDSTONE.
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Table 2.8 ~ Velocities and Densities used for Markov Models
E and ¥

Constituents of Velocity Density

the models m/sec g /o.c.

Markov Model E

for Area X Overburden 1400 2.00
Sandstone 2875 2.21
Shale 2629 2.46
Coal 1998 141
Lower Half Space 2400 2.50

Markov Model F

for Area Y Overburden 1400 2.00
Sandstone 2362 2.29
Shale 2X92 £v79
Coal 1929 1.46

Lower Half Space 2400 2.50
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reflecting surfaces are at this or greater distance apart

they can be €asily resolved on a reflection record, If gon

the other hand, the surfaces are seperated by less than g
wavelength, the resolution becomes difficult as the seperation
decreases (Widess, 1973). Therefore the model thickness is
kept at about 200 m and it is sandwiched between homogeneous
Strata to study its effect in isolation. Such gituations are

often met in sedimentary basins.

Wo hundred and fifty five synthetic stratigraphic
8squences characterizing area X, have been simulated by
using the cumulative transition matrix given in Table 2.6.
Three of these are shown in Figure 2.5. 4nother two hundred
and fifty three stratigraphic 8equences characterizing 4Area Y
are generated by using the matrix in Table 2.7 and three of

these are shown in Figure 2.6.
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CHAPTER - III

SYNTHETIC SEISMOGRAMS AND THEIR
ANALYSIS

Synthetic seismograms were first described by Peterson,
Fillvppone and Coker (1955). They used artificial reflection
records made from velocity logs. These logs were converted
in depth to a reflectivity function in time, which was con-
volved with a presumed scurce wWavelet. Synthetic seismograms

have since then assumed considerable importance in seismic

exploration.

Wuenschel (1960) introduced a frequency domain approach
for calculating synthetic seismograms for normal incidence.
Treitel and Robinson (1966)& Claerbout (1968, 1976) have
calculated in the time domain the impulse response generated
by a source at the surface of a horizontally layered earth,

assuming plane waves 2t normal incidence.

3.1 SYNTHESIS OF A LAYERED MEDIUM FROM ITS ACOUSTIC
TRANSMISSION RESPONSE

The seismic response of synthetic stratigraphic columns
described in Chepter II can be calculated if the reflection
and transmission coefficients at each interface are known.

The normal incidence reflection and transmission coefficients

T, and tk at the interface between the kth )th

and (k+ 1 layer

(see Figure 3.1) are given by
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F1G.3.1_ LAYER AND INTERFACE GEOMETRY WITH
REFLECTION AND TRANSMISSION COEFFICIENTS.
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Where Pk and Pk+ | are the densities of the kth and
(s 1)™ layer respectively, and V, and Vi, 7 are the seismic

th

velocities of the k™ and (k+ 1)*® 1ayer.

Agsuming equally spaced interfaces in time the reflec-
tion and transmission coefficients are calculated for each
interface. Their impulse response can then be calculated

using the following method given by Claerbout (1968, 1976).

3.1.1 Impulse Response

Consider a horizontally layered medium in which each
layer is homogeneous, isotropic and perfectly elastic. The
hal f-space underlying the layered medium iS taken as homo-
geneous and the top is a free surface. Let the stratifioation
be excited by a downgoing impulsive source at time t = o,
which produces plane waves normal to the stratification. ILet
the reflection and transmission coefficients for the interface

th )th

between the k" and (k +1 layer be r, and t_ respectively.

T layer to (k +1)th layer

When the ray is travelling from k
the transmission and reflection coefficients are denoted by

t', and r', and when the ray is travelling from the (k +-1)th
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th

layer %o k layer by tk and Ty respectively. It is hence

implied that .

H=" = T e

k k

and ) ~--(3ol)

gl
rk_rk

In Figure 3.2 the rays are drawn with time displacement‘
along the horizontal axis to make them appear as at an incident
and reflected angle of 45°. TLines sloping downward or upward,
as indicated by arrows represent downgoing and upcoming waves
respectively. When the downgoing ray D' is incident on the
interface it is partially reflected as U' and the remaining
is transmitted in the next layer as D. The same is true for
the upcoming ray U, which is reflected and transmitted as D
and U' respectively. In Figure 3.2 the primed and the un-

th

primed layer refer to the k°® and (k+ 1)™ 1ayer respectively.

The waves U and D' can be extrapelated inte the future to get
the waves U' and D ag given below
! 1 1
U tkU +r kD

i

D

i

! !
rkU + 1t kD

These equations can therefore be put in the following

matrix form -

U'] Ty r'k f U
‘ = LR (3.2)

DJ T L | BT
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kth Layer

[

7
Tk )tk
Tk, Uk

kth Intertace

(ks )P Layer

FIG.3.2_ RAYS INCIDENT AND REFLECTED AT A
POINT ON THE kth |NTERFACE.
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Equations (3.1) and (3.2) can be combined to get the

following relation between the primed k™ and the umprimed
(k+-1)th layer
- / 3 1 =3 %
U 1 7 2t U
&
=R ver (3.3)
D J £ 1 J =5

Lotz =W" = T, wnere T, the two way travel kige
equals the sampling interval of the seismogram. Therefore,

k
multiplication by 2 is equivalent to delaying the function

by kT.

The downgoing ray in the upper part of the Kth layer
is denoted by D and it reaches the kU2 interface after a time

W (Figure 3.3), therefore :

=1
Dk = D'k W

and

U U, W.

k

i

k

Combining these two for the k ‘R layer the following matrix

equation is obtained :

e ¢
U W 0 U

1l

«ee (3.4)
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FIG.3.3_ PRIMED AND UNPRIMED NATURE OF RAYS
FOR THE kth LAYER.
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where suffix k stands for the kth layer. Combining equations
(3.3) and (3.4), relation between displacement at top of the
(k+1)®™ layer with the displacement at top of the k! 1ayer

can be obtained.

=5 e S
WE; (3.5)

k B k+1

The determinant of the coefficient matrix in equation (3.5) is

] Zrk
+, W t
% k -
= (1-r% ) /%, «1-r)/(1+ r) «.. (3.6)
% 18 T
tgd tgﬂ

Considering the case of three layers the relationship
linking the displacements at top of the first layer with that
at top of the half space works out to be

U- [ 2 2 r 1 & Zfz—-:: oy
ot olelbg ] i
- 2
i D_ rl s r2 1l _)I ! :D-—A
L g = 3
3 52!/ L auBne I
(TJ Z (l+ rlrz(l/z)‘; g - {r2+'rl(l/z)j U
2 t) b2 e
D} (Bs® By ) t (143,15 ) D
- J 1 g 2 1 o s | _,J 3
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The relation for{k+ 1)layered medium is given by

™ -1 - s B &
U ; Z Zr:L i 7 z Ty Z
B e |
, J b byt W ‘
53 I T TR
il
The product of the k matrices is given by
3 ZkF(l/Z) ZkG(l/Z)—‘
et
" 6(%) F(z)
2
where, F(2z) 111 ty =1 +Fz +F27+ .00+ Fo1
g8 Heg) w o= desGan v z2+ + G z
fon I AR g 2 TRl

For a(k+ 1)layer model the

is given by
1

B et

1

4
T det

k
= |\75
L=l + ri

F(z) F(1/z) - G(z) &(1/2)

k-1

Z

k-1

(3.62)

k+1

oo A BEE

o (3.8}

x4

determinant corresponding to (3.6)

n v sh b oty

Formula (3.10) says that there are two spectra F(z) F(1/z) and

& z)G(1/2) whose difference is positive as well as fre quency

independent.

The boundary condition at the surface is that the up-

coming wave is the reflection seismogram
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Where R, Ry, «++ , are the impulses representing the reflected
energy. The downgoing wave is the impulsive source RO o |

plus the reflection R(z) from the free surface,
D=1 +R(z)-

Therefore, the boundary conditions at the surface can be

represented by
U A R

- cad (ZelO8]

D 1+ R
1

Boundary conditions at the half-space underlying the
layers is that the upcoming wave is zero and the downgoing

wave is some unknown function T(z), i«e«s

U [o
= i R s -

D ) 7

k+1 i

Using equations (3.10a2) » - (3.10b) and (3.7), equation (3.62)

transforms to-

= -

fKF(l/z) ka(l/z)j 0

= @E" vow LI
Ll#-R _ & z) F(z) _ U
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On subtracting the first equation in (3.11) from the second, we

get ¢
- ‘ R I &stazey | Lolaay (v 6
Sy ol (3.12)
| W ' 3
i3 | 6(2)-2"F(1/2)| F(z)-2"&(1/2)| | T]
From this the transmitted wave is given by
. |
Nz) =¥/ [Fz) - 25 &1/2) ] e o(3.13)

Physically, T(z) must have finite energy and is a delayed

minimum phase function.
Defining a new quantity M(z) as M(z) = F(z)—sz(l/z),
equations (3.11) and (3.12) give the following relations -

N z) = WE/M(2)

it

R(z) = WE X 61/2) Nz2)

i

25 &(1/2)/ M(z)

1+ R(z) =F(z)/ M(z)
R(z) M(z) = 2¥ G(1/2)
R(1/2)M(1/z)= z & G(z)

Combining some of these yields
C1+R(z)+R(1/2)]] M(1/z)
= [®(2) M1/2)+ 2% &(z) M(2)T]/ M(z2)



For a two layer

Which on dividing by MO,

becomes,
=
RO Rl
3 By
- T |
R
w

R,

o

=)

i

1]

= (n det) Tz)/ wk

i, 8

T2 z) .§F<1/z)_z-kg(z)} 2
z_kG(z) {F(z)—zK G(l/z)} 7/ M(z)

LFz) F(1/2) - A z) &(1/2) ]/ M(z)

(n det)/ M(z)

Sy stem

where

B

=
T det/Mo

I
I_J
e,
‘2

v ou CO LAY

v ¢ LESEND
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If the gystem is a two layer system, the fourth and
subsequent equations in (3.15) do not over determine the
system, rather +they show how to calculate the rest of the
reflection seismogram (RB’ R4, ..+« ) once M has been deter—

mined from RO’ Rl and R2.

Equation (3.15) may be generalised to the case of
many layers by making use of the Levinson recursion algorithm
(Levinson, 1949). This yields a reflection seismogram for a
sequence of layered rocks. Figure 3.4 shows the same strati-
graphic sequence as in Figure 2.4, with the reflection co-
efficient series and the impulse response as calculated by the

method described above.

3.1.2. Source Wavelet and Convolution

It is desirable that the impulse response obtained in
gsection3.l.1 should be made to appear like a conventional seis-
mogram. This is achieved by convolving the impulse response
with a source wavelet of 44 ms duration. Convolution in time

domain for sampled functions is given by

1 N-1
c(k) = z g(t) h(k-t)
T=0
where ¢ is the convolved output, the synthetic seismogram,

N is the number of samples in impulse response g, T is the
lag and h is the source wavelet, or as used in this study the

Ricker wavelet(Figure 3.6).
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The source wavelet used in making the synthetic seis-
mograms is usually the Ricker Pulse given by Ricker (1953,1978).
Widess (1973) and Dobrin (1976) have shown how reflection
events are modified depending on the relation between the bed
thickness and the wavelength of pulse uged. Figure 3.5 shows
how a simple down travelling source pulse, with =2 waveform
comparable to that of a Ricker wavelet, is altered when it is
reflected from a sequence of boundaries closely spaced in
comparison with the wavelength of the pulse. Each interface
returns a pulse having the sgame waveform as the source pul se,
but the amplitude and phase (whether or not reversed by a lower
velocity below the boundary) are governed by the reflection
coefficient across it. The resultant of all the individual
reflections 18 recorded by the geophones placed at the surface.
The difference between the source pulse and the resultant
reflected signal is quite pronounced. However, it is not _
possible to isolate the contribution made by any of the indivi-
dual boundaries. It is hence implied that a typical seismic
reflection should be looked upon as an interference pattern
madeup of impulses from many interfaces Sspread vertically over
hundreds of feect rather than ag g gimple event originating from

a sgingle lithological interface.

The broad band spectrum of the impulse response would
be modified by the amplitude spectrum of the source wavelet

which shows g maximum at 60 Hz and g bandwidth of 90 Hgz

I IEEL P

CENTRAL LIBRARY DWIVERSTTY OF ROSREF
M—"f ! e
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/\ A Source Pulse

(Wavelength is 200 1.
\/ at 10,000 f1s )
Retlection Coefficient

B . .Y

0 X '

ol
‘

r'd
4 \

z

f\
i ﬁ 7\

Reflection Si gnql /\ /\

Sum of mdwiduql
reflections shown dbove

FIG.3.5_COMPCSITION OF REFLECTIONS FROM SERIES OF
FIVE INTERFACES WITH SEPARATIONS SMALL IN
COMPARISON TO WAVELENGTH. NOTE CHANGE IN
WAVEFORM CAUSED BY REFLECTION PROCESS.
WAVEFORMS INDICATED BY DASHED LINES REPRESENT
REFLECTIONS WITH PHASE REVERSAL (MODIFIED

AFTER DOBRIN .1976)
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(Figure 4.8f). In the present study a total of 508 (255 for
Model B and 253 for Model F) impulse responses have been
computed, 10 percent noise is superimposed on each, and these
are convolved with a 44 ms duration wavelet to produce
synthetic seismograms. The 10 perceht random noise is taken

to account for uncorrelated noise due to wind, microseisms

and system components, which are generally encountered in field
seigmograms. Random numbers in the range -0.5 to + 0.5 were
generated and the variance of these numbers was computed to
estimate the energy content in the noise. The ratio of signal
energy to the noise energy (M) was taken and each random

number generated was subsequently muwltiplied by 10 percent_of
/7: to obtain the desired signal to noise ratio and this was
added to the seismogram. DPFigure 3.6 shows the reflection co-
efficient series, the source pulse and the synthetic seismogram
constructed for one simulation of Model F. Some more synthetic
seismograms for Models E and F are shown in Figures 3,7 and

3.8.

3.2 BSTIMATION OF AUTOCORRELATION FUNGCTION

Any signal correlates perfectly with itself. However,
if a2 gignal is correlated with a replica of itself displaced
by a time-ghift 7 along the time axis then the amount of corre-
lation will be leéss. The dependence of correlation on this
shift is an important chearacteristic of the signal (Robinson,
1967). Specifically, the autocorrelation function,AT, of a

signal is defined as
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REFLECTION COEFFICIENT SYNTHETIC SEISMOGRAM
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4LBOmS

508 ms

FIG.3.6 _REFLECTION COEFFICIENT SERIES AND
ITS SYNTHETIC SEISMOGRAM FOR A
REPRESENTATIVE SIMULATION OF MODEL F.
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FIG.3.8 .SOME SYNTHETIC SEISMOGRAMS FOR MODEL F.
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The signal Xi+¢ repressnts a replica of the gignal Xi advanced
by the amount T. The autocorrelation function is symmetric,
i.e., if the replica is shifted to the right or to the left,
the result is the same, therefore, it is sufficient to consider

only one of these two portions.

The synthetic seismograms give the character of
reflections of those sections which have been traversed by the
input impulse, or the source wavelet. The appropriate function
to study the characteristics of these seismograms is therefore
the autocorrelation function (4ACF). For constant lag, -4 ms
in the present study , if the ACF gives a gharp peak the
reflector series is largely uncorrelated, but if the ACF gives
a broad based peak then a repetitive element is anticipated.
Its rate of decay provides an indication of the frequency band-
width. For narrow band signals the autocorrelation decays at a
slower rate as a function of shift than for broad band gsignals.
The autocorrelation function is the time domain equivalent of
the gignal power spectrum and is an important analytical tool

for random signals.

The autocorrelation function of each of the 508 synthe-
tic seismograms and 387 real seismograms has been computed and
some of the representative autocorrelation functions are shown

in Figures 4.4-4.7, 4.8(a) and 6.5-6.8.
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5.3 ESTIMATION OF POWER SPECTRUM

The study of any signal if carried out only in vhe
time domain will not give the frequency at which a certain
character occurs, which may be repeated in a certain pattern.
To study the frequency coatent, the signal is analysed in the
frequency domain. The use of fast Fourier transform technique
enables efficient computation of Fourier transforms (Bergland,
1969). This is a powerful tool and serves as a bridge between
time and frequency domains. It is possible to go back and
forth between waveform and spectrum with speed and economy. It
helps in finding the periodic components in complex looking
signals and their bandwidths. The power spectrum of the syn-
thetic seismogram obtained in Section 3.1 can be studied with

the help of this Hool.

Conventional methods of estimating power gpectra of
short time series have certain drawbacks. The periodogram
method shows a shift in spectral peaks for truncated sinusgoids
when the data length is less than 0.58 times the period of the
sinusoid (Toman, 1965) and a decrease of resolution when the
data length is comparable to the period of the sinusoid (Ulrych,
1972). This method also agsumesg a periodic‘extension i the

data. The power gpectrunm Sp(f) is defined as

N -2n ifn |
5 x_ h e

il =11 R |

Y2

.

Sp(f) =

ez [



68~

The 'data window' h(n) is used to improve the statistical

properties of the estimator.

The power spectrum may also be estimated by taking the
Fourier transform of the autocorrelation function. It has the
drawback that sometimes negative power is indicated if the data
length is inadequate.- Moreover, estimation of the autocorrela-
tion function unreasonably assumeés a zero extension of the time

series.

Let Xy Xp,  eeny Xy be the time geries under consi-
deration. For a discrete random process of zero mean, the auto-

correlation at lag T is defined ag -

A(T) = B [:xn xnw:l
E ['.:] denotes the ensemble average of the quantity within
the square brackets. Since the time series can be observed
for finite time,’ only an estimate C(T) can be obtained using
the standard technique. Blackman and Tukey (1958) proposed =
power spectral estimator SB_T(f) to overcome the above diffi-
culty in accurate estimation of the autocorrelation function.

The power spectrum is given by

+L ~2riftT
SB_T(f) = T %) n<z) 8
==y
where,
g N-7T
o) =5 = x, . A 1] < ¥



_59_

The autocorrelation estimate used here is a biased
estimate of 4(T), but it has the computational advantage of
a simple scale factor before the summation. 4s T approaches
N, the accuracy of the estimate C(%) decreases because the
summation will contain fewer terms. As a result, the'SB—T(f)
makes use of C(T) for values of T in the range (—L,L), where
L is a small fraction of N. The lag window h(7T) is introduced
to obtain the desired statistical properties of the egtimator,

e.g., stability (Blackman and Tukey, 1958).

Maximum EZntropy Method (MEM) originally suggested by
Burg (1967) eliminates the necessity of some of thege arbitrary
assumptions about the data or its autocorrelation function out-
side the time window. It is partieularly useful for short
lengths of data sampled at equal intervals. Numerical results
published by Ulrych (1972);, Ulrych, Smylie, Jensen and Clarke
(1973), Chen and Stegen (1974) and Kumar and Mullick (1979)
show that the maximum entropy spectral estimator has a better

resolving capability.

Ulrych (1972) has shown the superiority of the MEM
over the conventional method by using a 1 Hz ginusoid super-
imposed with 10 percent white noise truncated with a 1l second
window (Figure 3.9). Figure 3.10 shows part of a seismogranm
for Area X and its power spectrum using square of the modulus

of the Fourier transform and MEM.
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FIG.3.9(a)- A 1 Hz SINUSCID WITH 10% WHITE NOISE
TRUNCATED WITH A 1 SECOND WINDOW,
(b). THE POWER SPECTRUM OF THE SIGNAL IN (a)
COMPUTED BY USING THE SQUARE OF THE
MODULUS OF THE FOURIER TRANSFORM AND
(c). THE MAXIMUM ENTROPY POWER SPECTRUM OF
THE SIGNAL IN (a).
(FROM ULRYCH,1972)
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(c)- THE MAXIMUM ENTROPY POWER SPECTRUM OF
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The time series available over (-T, T) can be viewed
as the multiplication of one complete sample realization of
the process by a rectangular function extending from -T to T.
In the frequency domain, this results in the convolution of
the true spectrum with a sinc type of function. The width of
the major lobe of this sinc function is 1/2 T. Thus any sharp
peaks in the spectrum will be broadened leading to loss of
resolution. As the record length T increases, the major lobe
width decreases and resolution improves. Thus, in conventional
spectral estimation methods, the resolution is of the order of
1/T where T is the length of the record. The maximum entropy

power spectrum can be estimated as given in 3ection 3.3.1.

3.3.1. Maximum Entropy Power Spectrum

Consider a random signal as input to a linear system
where the infinite sequence of output is given by (..., X;2’X?1’
X, X, Xp, ++.) of which the finite segment (x_, X, «+, X, ;)

consisting of n points has been observed.

The autocorrelation function (or the power spectrum):
of the above set of observations is to be estimated. The

ACF at zero lag is given by

¢o =iy B E X o P ELT, * XX, XX e FX X SF ey

& —%— f x%(t) at
T=o
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Since only n terms are available for estimating ﬁo,

it may be estimated by

B 5 A _ .
yfo =< j_xoxo P E ek Xn—lxn-l:l

Depending on the sample length n, estimate ;ZO of g, will have
variance, 602, associated with it. Similarly, the ACF at unit

lag is given by

ﬁl = e FXX F XX, boeae XpoXpq * 0o
which can be estimated as
E —q—l— -2
ﬁl T n-1 [:Xoxl b B Xn—ZXn—l—J
with & corresponding variance df .
Similarly,
i P EETE
g, = =5 [xox2 e tx o Xn—l]
s = ey Uayix, 0 0
=1 - n-(n-1) o “n-1-
where the corresponding variances are 62, iWa 6%_1.

In general,
e = Bpge L2y %, 7]

-~ ~~

Since the quantities 86, ﬁl’ ra, ﬁn—l are estimates
representing the actual values ﬁo’ ﬁl’ fad; ﬁn—l , the mean
of a large number of such estimates will converge to the true

value g, in the limit as the number of estimates tends to o .
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The variance agsociated with each estimate 8 is also a
function of the number of gampleés, n, of the time series

used in obtaining it, being larger for small n and vice
versa. Therefore, Bn—l has the maximum variance of all

the estimates. The above concepts are illustrated in

Figure 3.11 in which the true values of ﬁk and the standard
deviation ranges on the distribution of Zk are shown. A4
particular reslization Ek may be as shown by the heavy line,
which may be quite different from the actual value ék’ shown
by the dotted line. 1In general, since more samples have gone
into the estimation of small lag ACFs, their values may be
expected to be closer to actual values, the error increasing
for larger lags as illustrated by ===* —* =% ]line. There
will be a family of such graphs which will be derived from
different data sets obt=ined by taking sequences at different
times. They would, on an average, converge to the true graph

of ACF.

The ACF may be estimated more reliably by modeling
the random process as an autoregressive process, or as some
alternative process in which the observed samples can be usged
to retrodict and predict past and future samples, respectively

i.e.,

¢ s, X—Z,X—l,l IXO’}S-,XZ,---’Xn_l,I an, xn+]_’ ¢ e

retrodiction observed data predicted estimation
€stimation error
error '
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2 STANDARD DEVIATION RANGES ON THE
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An autoregressive process of order N is described by

the difference equation -
adY(t) + aly(t—l) toeee by y(t-N+) +

ay ¥(t-N) = x,

This implies that the current value of the output depends
upon N previous values of the output y(t) plus the current

value of the imput x The sequence x, may be tzken to be

't.
uncorrelated random noise with,

t

E Extj: 0
B [:XE:]: 5°

The difference equation may be rewritten as .
N

yi4t) # ¥ b, y(t-1i) = x

fod, t

where bi = ai/ao. This equation may be viewed as stating,

E éf}(t)} = - ly(t—l), covy =Dy ($-N) :y%

so that Xy is the error in prediction. Then 62 can be consi-
dered as the mean squared error of prediction, i.e., the

error energy of prediction.

An autoregressive model is to be fitted go that 62

is a minimum, i.e., the best fit in the least square sense
is desired. This corresponds to choosing coefficients bi’

I 18,004, X, In



-

c 5] ’ , N =
Bixtt =0 =B [La(t) « b y(t-i) 7 !
L i ,

L J

To obtain estimates of b, in the least squaré sense
or by minimizing the mean square error, 62 ig differentiated

with respect to bi and equated to zero.

662 3 [ f () N : )Z L; ,
B__LTE !lyt) + = b, y(tj .
i L 7 o ]
: N N 2
BEj2 [Ly(v) + 55 y(t4) ly(-301 ¢ =0
i= )
£ N . ‘ '(
Biy(t) y(2-3) + s y(t-1) y(¢-3) ¢ =0
: il |
N bk
;Z{J +j_Z:::]_ bi ¢i—j =0 ’ Jd = 1,2’ ’ N.
or,
£y = - Loydg + o8y + + D fy g
Ay == Logdy g + o8y, + + b, 8,1
or,
B 4 A
fsg # - by | [ o0 ] Ay
£ Py P2 by o
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The ACF matrix is of Toeplitz form, and it must be
bositive definite, it means that all its eigenvectors must be

2 0. This gives the coefficients b b2, »++, by needed for

17
prediction which can be uged to extend the original observa-
tions for better estimates of ACF. However, the errcrs in-

creasé whén longer sequences are predicted, as the predicted
values themselves are used for further prediction. The above

equation has been manipulated to give (Kanasewich, 1975);

| | , . i el ) ]
rﬁo Z:l e ﬁN 1 PNH_
A % AN;l " 0
. o i (3.16)
&
7 CN# 0
Lssz Ao ¥ | i |
where
= o = =
bl r}
b2 &

; (1o
_bNHJ t NﬁLﬂ

and PN+1 1s the output power gpectrum. For the matrix in

equation 3.16 to be positive definite for fixed ﬁo, ""%N;ly

Ay will have tc lie between a range, the mean of which ig taken
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to be the estimate of by (Burg, 1970). The fil ter

[1,72, ..., "N Jis known as the prediction error filter.

~ may be considered as a set of prediction filter welghts
which, when convolved with the input data, will generate =2
whité noise scries (Figure 3.12). In the frequency domain the
output power spectrum is the product of the input power
spectrum and the power response of the filter. The input
power spectrum may be obtained by correcting the output power
for the response of the filter. In the frequency domain

Output power spectrum

Input power spectrum =
Power response of filter

The input power spectrum is designated by Burg (1967, 1970)

as theé maximum entropy estimate of power, P(f).

By o/ £
P(f) = —— L5 N _ y ool %:27)
0 L1+ $ Fos e'2“lant]
' =l

where fN is the Nyquist Frequency and specifies the bandwidth

for a sampling interval of At.

The response characteristics of the autoregressive

process

y(n) ¥y ylm=1) + ... +My y(n-N) = -

in z dvmain are given by

O
X(z 2 N
+y o 1

P2 A aB™% <o
» 2

which is an all pole SysS tem.
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WHITENING

FILTER
N TERM INPUT TIME OUTPUT TIME SERIES,
SERIES WITH SPECTRUM s P . WITH WHITE SPECTRUM ,
' P(t)

PNai

F1G.3.12 . CONVOLUTION WITH A PREDICTION ERROR FILTER.
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The maximum entropy power spectrum P(f) can thus be estimated

by using formula (3.17).

The prccedure is illustrated for the case of a two
term and 2 three term filter. To estimate the value of the
autocorrelation function at the subseripted lag,Burg(1967,1970)
first estimated the filter cuefficients directly from the data.
The ﬁn and the maximum entropy power spectrum P(f) are then

computed from the filter.

Figure 3.13 shows the estimation of a two term predic-
tion error filter (1, ) from an N point long sample of data.
It depends on the choice of © that minimizes the average
power output P2 of both forward and backward prediction
filters. The filter is not run off the ends of the data
samplé and no assumptions about the time geries before and
after the data sample are required. The value of  which
minimizes P, is shown in Figure 3.13. (1, M ) is a two term
minimum phase filter. ﬁl and P, can be estimated by the

matrix equation (3.16), i.e.,

£o A 4 ¥
4 4 i Lo
which gives ¢1 = = r'ﬁo
and P, =45 (1 -r'2)
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FIG.3.13_ESTIMATION OF A TWO POINT
FILTER.

(AFTER BURG,1870)
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¢O is estimsted as the average square value of the
data. To obtain higher order prediction error filters,
Burg (1967, 1970) has suggested the use of the Levinson
algorithm (Levinson, 1949) which is a method of solving
simul tanecus equations reéursively, based on the Toeplitsz
propérty and it always yields a minimum phase filter. In
the Levinson recursion, a filter of order (n+ 1) is built

from one of order n. For example, for a three term filter

[ 3 0
r2 = - |+ l% r
r% O L.l
and thus
- e 4 S NZ—Z ?[X +rAel )z oW x.]2
3 2(N-2) i= * i+ - i 2 AR B §

— - 2
t L rT Qa0 g) % gerg 5 o7T]°

Minimizing P with respect to s gives (see Figure 3.14)

. NZ-Z (Xi+2 +‘—Xi+l) (xi +f‘xi+1)
3 ia

(Xi+2+ . )2 -

i a +(xi+rx.

1+l)

Again, | s | <1. The £, and P; are then estimated by the

third order matrix equation,
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o e e oty -
R o R i o T
Xi X2 X3 X, XN-2 XN-1 XN
— el =43 e
Poe - ey
Filsd) [ Mo 1 I I
B i | $ &
y N

-2 2 2
T A(Xie2*Xia P24 Xp 13) + (X * Xju B+ X, 273)
2(N-2);=1

WHERE M= (141y)

FIND THE VALUE OF F3 WHICH MINIMIZES P3|

THE ESTIMATE OF THE THREE POINT FILTER [1,r C1ers),ry]
WILL BE MINIMUM PHASE AND THUS BE A POSSIBLE
FILTER,

FIG.3.14_ESTIMATION OF A THREE POINT
FILTER.
(AFTER BURG,1970)
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£o B1 %, (1 0 {Pz ° }
AL Ao ALy trsirgl=]y0 tems{o
bo #H Ao| _t'o R S [ F2

t3
= {0
0

which yields

Fo == T3 AD-f_(l+F3)ﬁl

andl. P o= Pl arf
3 2z 3

Continuing on, three point filter can be used tc form
the four point filter through use of the single parameter,f‘4.
Then, applying the filter to the data sample and varying F‘4
to minimize the output power, the correct four point predic—_
tion error filter is estimated. This procedure can be conti-
med on with the assurance that nc impcssible filter will be

obtained. For an M point filter the expression is

Py :PM-l (1 “'_szl )

The maximum entropy power spectrum P(f) can then be
estimated from the filter by using equation (3.17). The
final prediction errcr (FPE) ag given by Akaike (1969a, b,

1970) is
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Py is calculated by equation (3.17) for successively
higher values of m until a2 minimum is obtained for m = M.
This yields an estimate of the mean square error in predic-
tion. As discussed by Ulrych and Bishop (1975), a cutoff of
M = N/2 is imposed. The filter that minimizes the FPE is

chosen.
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CHAPTER - IV

SEISMIC ATTRIBUTES RELATED TO LITHOLOGY

Seismic data interpretation is based on the corrcla-
tion of events in a seismogram and has till now been used
mostly to delineate subsurface structures. Despite the pheno-
ménal success of the correlaticn of seismic events in a seismic
section in the delineation of subsurface structural features,
it has noct yet proved to be a reliable toocl by itself in areas
of complicated geology where stratigraphic traps are explored.
With the above limitations of the conventional method of inter-
pretation of seismic data, it is not difficult to gee the
reason why few o0il discoveries in stratigraphic traps have been
made as compared to those in structural traps, despite the fact
that the stratigraphic traps may even outstep structural traps

in ultimate reserves (Lyons, 1968).

A number of new approaches to map stratigraphy using
seismic data have been proposed recently. One of the most
significant parameters that has come ints use for identifying
lithology is the seismic intervsal veloecity. It is the average
velocity of the medium between flat parallel interfaces and is
estimated from root mean square (RMS3) velocity values for
reflection events at the top and bottom of the interval (Smith,
1969, Taner and Koehler, 1969, Taner, Cook and Neidell, 1970)-
The uncertainty involved in this method becomes extremely large

as the interval becomes very thin or when there ig significant
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departure from horizontal bedding, (Schneider, 1971). Savit
and Matekar (1971) have proposed the use of seismic energy

attenuation as a guide to subsurface 1lithology.

Although amplitude of a seismic reflection is a
function of many factors cther than the reflecti5n coefficiemtsg
of the reflecting interface, yet it hag been used in geigmic
interpretation (Pan 2rnd DeBremae cker, 1970; O'Doherty and
Anstey, 1971; Sheriff, 1975; Khattri, Gaur, Mithal and
Tandon, 1978; Khattri, Mithal and Gaur, 1979). ZLateral ampli-
tude variations convey information about changes in the
acoustic impedance which may have stratigraphic significance.
Lindseth (1979) hasg mapped stratigraphic traps by the uge of
acoustic impedance log, termed as Seislogs, made from reflec-

tion amplitudes.

Since seigmic analysig and di spl ay techniques have
become more quantitative, Sheriff (1976) has enumerated
(Table 4.1) the various seismic observations which lead to
seismic interpretatiosn. By combining observations in g
synergetic manner, the reliability of inferences about the
lithclogy, stratigraphy, fluig content, etc., can be improved

(Marr, 3971).
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Table 4.1 - Seismic observations used in geological inter-
pretation (after Sheriff, 1976).

Adrrival time Depth

Differences with locaticon Dip

Differences with offset Velocity

Di fferences in amplitude Reflectivity

angular relations Geologic history

Patterns Depositional situations

Combinationg Gross lithclogy
Stratigraphy

Fluid content

Synthetic selsmograms have been uged to interpret
stratigraphic sequences. Harmg and Tackenburg (1972) have
suggested the use of lateral changes in the amplitudes, pola-
rity and continuity of reflection in the search for strati-

graphic traps.

Khattri and Gir (1975, 1976) have studied the synthe-
tic seismograms fer wave form and spectral characteristicsg for
four basic sedimentation models + (1) interbedded sand-ghale
mo del Tepresenting the seidments of generally fluviatile »
origin, (2) interbedded cval-shale model representing deltaic
deposits,(3) sedimentary models representing transgression
and regression of shore lines, and (4) a basal gand mode].
Their results have shown that for the first two models

2 change in the sand-shale or Coal-shale ratio results in
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oharacteristically different seismograms. The nature of the
seismogram is also»strongly dependent on the arrangement of
sandfshale or coal-shale layers, kéeping the sand-shale or
coal~shale ratics constant. The transgression, regression
and basal models also produce characteristically different

séismic responses and frequency spectra.

Improvements in s€ismic data processing techniques
make it possible ts sbgerve geologically significant informa-
tion on seismic records. 4dnalysis of a s€ismic trace permits
the transformation t- pclar coordinates and the measurement
of reflection amplitude » - lnstantaneous phase ang frequency-
These attributes have been coded by ecslour on seismic sect-
ions (Taner and Sheriff, 1977) and this display helps in
€stablishing interrelationships among measurements, and in
1ocating‘and understanding faul ts, unconformities, pinchouts,
stratigraphic séqueénces and ‘boundaries and hydrocarbsn accumu-

lations.

The aforementisned efforts to correlate SOme proper-
ties of the seismic trace to the subsurface 1itholugical
variations can be made qualitatively, as has alsgs been shown
by Vail, Mitohum, Todd, W#idmier, Thompson, Sangree, Bubb, and |
Hatlelid (1977). The qualitative approach is not very diagnos-
tic while inferring lithology when either the seismic data
quality is not very good or the difference in lithologies are

subtle. Even g qualitative approach taking into account s
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single or a few measurements from the seismogram may not prove
useful . Under such circumstances a multivariate approach may

provide the answer.

Mathieu and Rice (1969) and Avasthi and Verma (1973)
attempted a diseriminant analysis with a linear combination of
more than one obgerved parameter of seismic trace for the
determination of variation in stratigraphic conditicns. Mathieu
and Rice (1969) using this technique have discriminated sandy
from shaly sections on the basis of the following parameters
extrarted from synthetic seismograms - amplitude of a peak,
time interval between peaks and ehanges in wave shape. After
working out a linear combination of the measured parameters
from synthetie seismograms to distinguish sand from no sand
group, the field seismic traces were then elassified into one
of the above two groups. Their technique was found to be
suecessful in some cases, while in others it failed completely.
Similar approach has been adopted by Avasthi and Verma (1973)
to infer subsurface stratigraphy from seismic data in Gujarat
(India). They chozse to study the following parame ters -
number of cycles of reflection, predominant frequency of
the refleetion, time required to reaeh peak of the envelope of
the group reflections (rise time of reflections) and time requir-
ed to reach average level of trace from peak of envelope of the
group of reflections (decay time of envelope). Using the above
meéentioned approach they have delineated pervious and impervious

zones and have determined the thickness of pervious zones.
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duxiliary seismic derived quantities such as ampli-
tude, polarity, frequency, ete., require several different
graphical displays for deeper insight into the seismic data
(Sheriff, 1977). 4s such, it is desirable tgo displsy at least
part of the data embodied in the present study. Since this
involves considerable amount of data with 508 synthetic and
387 field s€ismograms, it is possible to show here only a

very limited number of these traces.,

Some examples from the 255 traces of synthetic seismo-
grams analysed for Model E are given in Figures 3.7 and 4.1.
The duration uf the computed seismogram varies between 496 ms
and 508 ms two way vertical travel time depending on the velo-
city, thickness of the 1ithounits comprising the stratigraphic
model and the total thickness of the model which is approxi-
mately 200 m (see section 2.5). The seismograms are shown tu
occur only after 280 ms, as the source pulge travels through
& uniform overburden and consequently does not give rise to
any reflection from within. The interface between the over-
burden and the top of the model ig g strong reflector as
evidenced by the data given in Table 2.8, and this gives a
high reflection amplitude at 300 ms in all the s€ismograms.
4 coal interface gives high reflection amplitudes and if two
coal interfaces cccur within 44 ms of esch other strong
interference ig evidenced. Since Model E has on an average
21 percent coal therefore two séismograms are characterized

= p=r mE DOABNECE
=i 119RADY i i ’

i el lac i
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FI1G.4.1 _SOME EXAMPLES FROM THE 255 TRACES OF SEISMOGRAMS ANALYSED
FOR MODEL E .
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by high reflection interference patterns. However, Model F
which has a relatively small amount of coal, 3 percent, shows
seismograms which are relatively smoother, with high refleg—
tion amplitudes at coal interfaces and at the interface be-
tween the overburden and the model. The séismograms of Model F
are of lomogeéer duratién extending upto 552 ms, as the wveloci-
ties are lower than that of Model E. Some examples from the
253 traces of reflection seismograms analysed for Model F are
given in Figures 3.6, 3.8 and 4.2. These subtle differences
between seismograms of the two models are evident, yet these
qualitative changes make no contribution towards any knowledge
of classifying any selismogram belonging to either of these
models. It therefore becomes imperative that a quantitative
study is paramount - either of the seismograms or quantities‘
derived from it. With this aim, the information in a seismo-
gram ig transferred to the autocorrelation function, power
spéctrum, cumulative bower spectrum, dcumulative frequenoy_
weighted power spectrum and logarithm of power spectrum, and
quantities, hereafter referred to as variableés or parameters,
are derived from these with a view to quantify each seismogram
and thereby to classify each to its relevant model, and assign
new seismograms belonging to either of the models to its

broper class.

4.1 SEISMIC ATTRIBUTES FROM THE AUTOCORRELATION FUNGTION

Sinvhal (1976) and Khattri, Sinvhal ang Awasthi(1979)

have uged the autocorrelation funection of the impulse response
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of models depicting subsurface lithologies, and have abstract-
ed seismic parameters from them to characterize lithostrati-
graphy. The parameters applied to decipher 1ithology were
Al/AO, AZ/AO, AZ/Al, where 4 denotes the autocorrelation

function at the subscripted lag.

These can statistically distinguish between the for-
mations consisting of either sand-shale s€quences or coeal-
shale sequences, as shown in Table 4.2. The autocorrelation
function is shown in Figure 4.3a, AO is not shown as it goes
out of scale but the values of Al and A2 are marked in

Figure 4.3a.

Sinvhal, Gaur, Khattri, Moharir and Chander (1979)
have argued that since AQ/Al can be cbtained from the other
two variables by the simple relation (AQ/AO)/(Al/AO) and it
bears a deterministic relation to them, therefore, it should
not be used for the discriminatory analysis and it is suffi-
cient tc use AQ/AO and Al/AO from amongst the three auto-
correlation function variables for any further analysis. For
this reason only, these two variables have been retained for
the present study and some new ones have been searched out
and are listed below. These were used toc distinguish different

lithostratigraphic situations.
(1) A /Ay

(2) AQ/AO

]



£y 208

el 4.3 = Parameters from the autocorrelation function to
distinguish various pairs of Models based on
Kolmogorov-Smirnov statistic (Modified after
Sinvhal, 1976 )

Model B o D

A =t 2 s oy T,
Al AO AO Al AO

. = e o SR
& A 4 4 4

c | PR
1-‘;0

Talle 4.5 - Parameters from the ROwer spectrum to distineuigh
various pairs of groups based on the Kolmogorov-
Smirnov statistic (Modified after Sinvhal, 1976)

Groups B C D
B fp fp Iy Ty fp %
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83 AB/AO :

(4) Amin/AO 5

L 5) 2 » timeé of the first zero crossing,

(6) T » time of the second zero crossing,
2

(7 i » time of the third zero crossing

and
(8) Tamin » time of the first minimum.

These eight variables were picked from the
autocorrelation functions of each of the 508 synthetic and 387
réal seismograms studied. Some autocorrelation functions with
the above mentioned 8 variables marked on 1%, are shown for

synthetic cases in Figures 4.4, 4.5 ang 4.8a,

Figures 4.6 and 4.7 show Some examples cof the 255 gnd
253 traces of the autocorrelation functions (ACF) analysed for
Model E and F réspectively. Thege figures show the highly
peaked character of the ACF at zero lag, the amplitudes become
negative for all the functions in g very short time of about
12 to 16 ms. The 4QFs of Model B, iu general, show a highly
oscillatory though dissipating character, indicating some
oscillations which are also evident in the stratigraphic
sections. These oscillations could be due to the dispersed
vertical distribution uf coal within the model giving rise to
cyclic sedimentation séquences. In most cases the AQFs of
Model F are relatively flat after the first sharp peak, in

keeping with the low coal content of this model.
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The oscillatory character of a seismogram is best
studied by taking its power spéctirum and its derivatives,

and these have been analysed for the pregent study.

4.2 SEISMIC ATTRIBUTES FROM THE POWER SPECTRUM

Sinvhal (1976) and Khattri, Sinvhal and Awasthi(1979)
have used the power spectrum of the impulse response of models
depicting subsurface lithologies, and have abstracted the
following seismic parameters : fe’ frequency in the power
spectrum which divides the band of high and low energy, fp,
frequency of the first significant peak in the power gpectrum
and fﬁ, frequency at which the maximum power occurs in power

spectrum.

From Figure 4.3(b) it is clear that f, could alsu
be marked at position shown by f'e; there is no rigorous
criterion tu ascertain the frequency fe; and automatically

D
follows fe' This introduces a certain arbitrariness in pick-

f_ would shift ts g Position marked f'p, be cause fp invariably

ing of these two barameters which are assigned for differentiat-
ing lithologies. Despite this drawback fe and fp could still
differentiate the four groups of lithologies as is evidept

from Table 4.3 which shows the results of the Kolmogorov-
Smirnov test (Miller and Kehn, 1962). The frequency £ does
not suffer from any such drawback, and has been retained for

the present study while the frequencieg f, and fp have been

dropped for the above reasons.



g

The spectral analysis studies by Sinvhal (1976);
Ehottzl, Sinvhal and dwesthi (1979) and Sinvhal, Gaur, Khattri,
Moharir, and Chander (1979) are for the impulse response of a
stratified medium, which gives a broad band spectrum. In
real cases this spectrum is modified to a band limited spectrunm
by that of the source wavelet as well as the attenuating earth.
4 Ricker wavelet with maximunm amplitude unity and s peaking
frequency of 60 Hz is used for this study (Figure 4.8f) which
is higher than that usually met in field, with the view that
this will give higher seismic resclution (Lyons and Dobrin,

IDTE ).

Nine variables have been identified from the power
spectrum and have been used in distinguishing different kinds
of lithologies. The nire variables picked from the maximum
e€ntropy power spectrum and its derivatives, illustrated in
Figures 4.8b, ¢, d and e for ome simWation of Model E, are
ligted below .

(1) s frequency at which maximum energy occurs
(Figure 4.8b),

(2) 15 the average power weighted frequency of the
bower gpectrum,

(3) f5, the frequency at which 25JGh percentile value
of frequency weighted power occurs,

(4) f3, the frequency at which SOth bercentile value
of frequency weighted power occurs,
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LEr the frequency at which 75 R percentile value
of frequency weighted power occurs(Figure 4.8c);

(6) f5, the frequency at which 25th percentile of
power gccurs;

(7) f6’ the frequency at which BOth percentile of
bower occurs;,

%

(8) £a, the frequency at which 75 B percentile of
power occurs (Figure 4.8d) and

(9) f8, the lowest frequency at which the logarithm of

power decreases to zero (Figure 4.8e).

The frequencies f2, f3 and f4 are akin to the notion
of pre-emphasis used in communication theory (Panter, 1965).
Someé power spectra and their derivative spectra, with the above
mentioned nine variables marked on some€ are shown for the

synthe tic cases in Figures 4-9- 4.28.

Figures 4.9 and 4.10 show bower spectra of some
synthetic seismograms of Modelg E and F respectively, the
frequency fM is marked on then. Figures 4.11 - 4.16 display
someé examples from the 255 and 25% traces of power spectra
analysed for Models E and F. The spectra show considerable
variation - some have one or more sharp peaks while the others
have gseveral peaks occuring at different frequencies. Huwever,
their relationship with the stratigraphic sequences is not

explict.
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It has till now not been possible to infer lithology
directly from the power spectra, though Sinvhal (1976);
Khattri, Sinvhal and dwasthi (1979) and Sinvhal, Gaur,Khattri,
Moharir and Chander (1979) have been able to distinguish
between a dominantly sandy and a coaly model (Table 4.3) by
using the attributes of power spectra. It is therefore,
plausible that the derivatives of the poweér gpectrum, viz.,
the cumulative frequency weighted power spectrum, the cumula-
tive power spectrum and the logarithm of power spectrum, and
the variables selected from them may be used with the same

aspirations.

Each power spectrum can be characterized by an
average frequency fi which is dependent on both the frequency
and the power content of the power gpectrum. It is calculated
by ueging the cxpression ('gl Pifi)/ (-g Pi), where P is the
Power and £ is the frequency at the ith point for the n point

power spectrum.

Some cumulative frequency weighted power spectra are
shown in Figures 4.17 and 4.18 for Models E and F respectively.
The variables f2, f3 and f4 which signify the frequencies of
25th, 50th and 750 percentile values of frequency weighted
power in that order are also shown in these figures. Because
of the definition of these variables f2 will be the lowest
and f4 the highest frequency amongst these three, with f3

soméwhere in between. Sometimes f, and f3, S f3 and f4, and
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in some rare cases all the three frequencies may coincide -

the latter will indicate one very sharp peak in the spe ctrum,
and congequently one big step in the cumulative frequency
weighted power spéctrum, which forces all the three frequencieg

to merge (with respect to the resolution in analysig).

Figures 4.19 and 4.20 éhow som€ examples from the
255 and 253 traces of frequency weighted power spectra analysed
for Models E and F Tespectively. 411 these traces are flat for
about the firgt 15 Hz and thén have a gently upward sloping
character. This begins to flatten out at about 65 Hz for Model
B and at a somewhat higher frequency of about 70 Hz for Model
F. The frequency f, may give a measure of this condition and
may hold the clue to distinguish lithologies depicted by
Models E and F. The freque ncy f2 replaces the frequency fe

and aveids the arbitrarinecs involved in picking the latter.

Display of the same data in a different form may some-
times reveal fesatures which were otherwise not obvious. The
cumulative power spectrs basically have the same information
as the power spectra and the frequencies f5, f6 and f7 which
represent the 25th, 50th and 75th peércentile of power, in that
order, may be able to diagnose lithology. Thesge frequencies
are marked for 3 cumul ative power spectrum traces in Figures
4.21 and 4.22 for Models E and F respectively. Figures 4.23
and 4.24 show scme more examples from the 255 angd 253 traces

of cumulative power Spectra analysed for Models E and F
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réspectively. The form of these traces is similar to thosge
displayed in Figures 4.19 and 4.20, except that the curve s

begin to ascend at much lower frequencies.

The logarithm of bower is yet another versicn of the

enigmatic power spectrum and the frequenoy, T at which the

89
logarithm of power decreases to zero at the lowest frequency,'
1s picked, with the oft repeated aim uf dlscrlmlnatlng litho-
logy. Figures 4.25 and 4.26 show gome log power spectra with
the frequency fé marked on them, for Models E and F respecti-
vely. The points marked by % in Figure 4.25 could have well
qualified for this distinction if the definition of fé did

not include the terms 'decreases' and the lowest frequency.
Figures 4.27 and 4.28 show gome examples from the traces of
logarithm of Power spectra analysed for Models E ang F

réspe€ctively.

Seventeen variables have_been computed with the aim
that they will aig in the interpretation and discrimination
of seismogramsg répresenting two sets of lithologies, one which
is dominantly sandy and has a 53 bercent sand, 26 percent shale
and 21 percent coal constitution, i.e. Model E, and another
which is dominantly shaly and has a 60 percent shale, 37 per-
cént sand and 3 percent coal constitution, i:e:; Model F.
Discriminant analysis, given in the following Chapter has been

carried out with thig objective.
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CHAPTER - V

DISCRIMINANT ANALYSIS

Linear discriminant function analysis is a multi-
variate statistical technique of differentiating groups of
samples drawn from different populations. This method was
originally developed by Fisher (1936) and has been widely
used in biometrics and paleébiometries. In geology it has
been used to establish setting of sandstomes (Middleton, 1962)
and volcanics (Chéyes, 1964) to elassify depositional environ-
ments of carbonates (Krumbein and Graybill, 1965) and to
distinguish between beach, shelf and fluvial depositional
enviromments (Awasthi, 1979). 1In Geophysies, it has been
used to distinguish dominantly sandy zones from shaly zones
(Mathieu and Rice, 1969), pervious zones from impervious
zones (Avasthi and Verma, 1973) and between dominantly sand,
shale and coal sections (Sinvhal, Gaur, Khattri, Moharir and

Chander, 1979).

4 population, E, described by m variagbles may be
pictured as a cluster of sample points in m dimensional space.
& gecond population, F, described by the same m variables,
consists of a second cluster of points. Discriminant analysis‘
is the computation of a m-dimensional plane that most effecti-
vely separates the two clusters. An unknown sample is classi-
fied as belonging to one group or the other, depending on
which side of the plane it falls. The degree of digtinctness
of the two groups is measured by the distance between the two
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population means.

Five hundred and eight stratigraphic séquences depict-
ing two different kinds of lithologies with sand, shale and
coal s€quences have been generated as discussed in Chapter IIf
These are classified as . Model E - which represents 53 per-
cent sand, 26 percent shale and 21 percent coaly, and Model F
which represents 60 percent shale, 37 percent sand and 3 percent
coal. The seismic response of these in time and ffequency
domain are calculated as discussed in Chapter III, and 17
features have been abstracted from these as discussed in

Chapter IV. On the basis of these 17 variables an attempt
has been made to distinguish between these two models.

5.1 MATHEMATICAL DEVELOPMENT

For a general case consider m variables that are
common to both models, as it is an essential requirement of
this formulation. ILet there be P and g seismograms of Models
E and F, respectively. The first set of assumptions in this
approach are that the selismograms in each model are randomly
chosen, and it is known for certain that these belong to their
réspective models. The variables used to discriminate between
the two Models E and F should be independent and normally

distributed. These variables may be denoted by the following

notations .
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e & Bay meey 8 as the measured variables of the first

U L oA seismogram of Model B,

e e e vee, © as the measured variables of the

B 22{ 23! . sécond séismogram of Model E,

] th

e. e e as the measured variables of the i

LR t seismogram of Model E,

epl’ ep2, ep3, o epm as the measured variables of the pth
seismogram of Model E.

The first subscript denotes the seismogram index and
the second subscript is the variable index. €k denotes the

B verigire of the £ ™ sotumoaren SenHetal B, Similarly for

k
Model F, fik denotes the kth variable of the seismogram for
Model F. Eéch seismic realization can be represented as a
linear combination, E; (1 =3,2,vie 82), of he 1 voriailts

as follows .

El = Xl & 4 +-X2 €1p *+ oen +-Xm &
E, = Xl €5 +-X2 €op + aue +-Xm €on
EE = A €1 +X2 e o + +Xm o
iae )
m
E; = z xk €k I -

k=1
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or,

D b
Z - R = I

m
N TR TN
iy T i=l k=1 ¥ Tik

B

Similarly for Model F the linear eombinationm of m variables

4 giVen by

Fq = Xl fql +X2 fq2 & 5oi +Xm fqm

i.e.,
mo : '

Fi = 2} Xk fik oers (5.2)
k=

a q n
: B, = no4 0y xk £y )
= i=1 =1

The A coefficients in equations (5.1) and (5.2) must
be determined such that discrimination between the two Models
E and F can be optimized. Fisher's (1936) criterion for this
is to find a particular function which maximizes the ratio of
the difference between the means of the two models to their
gtandard deviation. This will make all the observations of |
one model come close together and increase the separation be-

tween the two models. Figure 5.1 shows the variables 1 and 2
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VARIABLE 2

VARIABLE 1

FIG.5.1 _PLOTS SHOWING OVERLAP BETWEEN MODELS
E AND F ALONG VARIABLES 1 AND 2. MODELS CAN
BE SEPARATED WHEN TWO VARIABLES ARE
CONSIDERED SIMULTANEOUSLY .
(MODIFIED AFTER DAVIS, 1973)
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when considered separately overlap and fail to distinguish the
two models E and F, but when considered simultaneously the two
clusters of points belonging to these models are separated by
a distance A. Agsuming equality of the two variance—covariance‘
matrices the particular linear funetion whieh has to be maximiz-
€d with respect to the As can be taken as

82/ < (E-F)%[ & (5.-5)2 4 £ (F,-F)27 ...(5.3)

it g

where S° is the pooled sum of gquares of deviations from mean
of new variables E; and F, of Models E and F, respectively. The

respective means B and F are defimed ag follows:

B-( 3 8)/p s (5.4)
i=1

e q

el ZoWY g oset (BT
2=

A& signifies the difference between the means of the new
variables Ei and Fi for the two models formed by linear combi-

nation of the original variables,

8 =E-F

1l

D q
i=l i=]

Substituting the value of E; and F;, from equation (5.1) and

(5.2) in (5.6) A& becomes
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UM TR I - PO
A:Z i S p.o=-( 2 z e q
i<l k=] ¥ ik i<l k=1 ¥ ik
B 3 (24 )/p - ( )/q]
= .} i L e, p - i £, q
k=1 ¥ i=y ik i1 1k
R e
ok E - F
i ey
mk
= P d
s e B
where
4 =E - T,
Therefore,
A =X1 d +x2 d, +X3 dg + ... +xm d_ o xR

Let the variances of variables Ei and Fi corresponding

to the Models E and F be given by S2E and 82F respectively,
then,

b =\ 2
s°g = Lo (& -B°]/ ()
=
or. :
p &
I3 - B)® = 6°y(p-1)
I =
and similarly
: B .
'21 (F; - L st(q—l)
D=

Thus, the pooled sum of squares 82 is given by
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82 is partitioned into two sum of squares which can

be put in product form as given below

From equations (5.1) and (5.4)

>
b — b e il b n
£ (B ~B" a7 E Ay Biiote- B iy SRR
jeqg & 1ad ‘ gl B 4K gRs il lk‘l
D
2
t E2 g %)
— R ) | hN 8. = 1 ]
gl Ly & TR
? |2 F an (eEx ‘)T
=R 3 z i g, = e, .—h.
5 [k:l P S Tl R e J
E R Ao, N feelitaal
= X % : 5 e., ~E S, =]
o fha | i - o J
S Y (5.9)
= X B S e L5, 5.9
k=L ja KO8T E
where
1E p %) A
e = Bl (eik = B) (o5 - By)
Similarly,
e 2 2 B cas (B2l03
JECHAER L WS VY
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where

faan -

q -

fup e
Substituting (5.9) and (5.10) in (5.8)
o m m
el S xkx. (SE
k=1 j=1 J
m

14}
w. L B A X 8. ins Lot
kgt T % W

Where Skj is defined by

Skj = D.bkj + SFKj

The particular linear funection which best discriminat-
€s the two models will be one for which the ratio A2/S2 is
maximum. Hence, the function A2/S2 is maximized with respect
to the A, 8. Therefore 82/5% ig differentiated with respect to

st and st to zero.

H%‘T«: (82/5%) = [ 2a.5%(ap/d\) - 2S.A2-(dS/ka)] / st

= (28/8%). [s.(28/ah)- 8(as/a\, ) ]
= 0 for maximization.

1E A/S3 is zero it means that either A, the distance
between the two X odels, would be zero and this defeats the very
aim of maximizing, or else 83, which denotes variability, is
infinity, which goes against the philosophy of minimizing the‘
variance. This trivial solution is therefore rejected. There-

fore, the acceptable solution is:
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Eo".(dA/ka) - 8.(as/ )] =0
whicn gives s/H .(dA/dkk) = (dS/ka)

After maximization the values of st are fixed,
which makes S ang A individually constants, and therefore S/4
may be taken as a constant which does not affect the other
‘terms in the above equation. Therefore, the solutions are

proportional to this term}

(dS/ka) = (d/-\/d?\k) oo (BE1E)
Using equation (5.11) the left hand side of (5.12) becomes

(dS/Xm) =2(?\1 Sll +X2 Sl: + .00 #3138 )

m “1lm
(as/dh,) = 2(?\1321 *hy Spp + e +Ap So0)

Similarly, using equation (5.7), the right hand side

cf (5.12) becomes

o 3 S R T
Hence, equation (5.12) becomes
x1821 +-X2822 Foeew # A Som = &

Xlsml ”‘Zsmz +oaes +Xm 8 = &
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When k = j, the variance Skk of the kth variable is obtained,
and when k # j, the covariance Skj between the variables k and
J 1s obtained. In matrix notation equation: (5.12) can be

writtén ag

B T sl r y
511 812 813 -+ 3y, A 4
551 Sa5 523 e 8o x2 d
. . - - ren LR
Sml SmZ Sm3 g Smm Xm dm 1
A

kS can be obtained from the above get of equations

by the Gauss-Jordan elimination me thod.

5.2 DISCRIMINANT FUNGCTION

Following Davis and Sampson (1966) a linear di scrimi-
nant function R may be defined ag
m

R = 1% )\k Wk wre (B4
k=l

Where R is known as the discriminant score, and Wk are the

values e, or fi of k variables (in this case seismic responsges )
of Models E or F. By substituting values of Wks, p and g
discriminant scores for Models E and F are obtained, respecti-
vely. Let the mean discriminant score for the two models be

denoted by RE and RF,i.e.

’

p
Rp = (iil R;)/p cun (BuGS
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and

Ry, :(_§ R,)/q s o6 [BayiEs

i=l
Where Ris are taken for the respective groups, then

B = v3s Uelal

Where A 1is the maximized distance obtained between the two
models, which is equal to Mahalanobis'Dz, a measure of distance
between the model means(Davis 1973). To separate the two

models a discriminant index RO ig defined as

RO enables to clas.ify a new séismogram to either of
the models B and P, provided there ig a priori knowledge that
1t belongs to either of the two modelss To test the mal
hypothesis of equality of multivariate means of the Models E
and F, an 'F! tegt where
pPeq (p +g-m-1) £

: . v 0l 5319)
(p+q)(p+q-2) m

Fm,p+q--m—l -

with m and (p+g-m-1) degrees of freedom ig applied. Therefore,

Wwhen the calculated value is larger than the tabulated value

of F, then the multivariate means of the two models are drawn
from different populations, i.e., the result of the digcrimi-
nant analysis is meaningful. If this is not the case, then the
multivariate means for the two models are drawn from the same

population which renders discriminant analysis meaningless, as
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the multivariate means of the variables belong to the game
parent population irrespective of the model from which the

variables are drawn.

The relative contribution of variable J o the

distance between the two model means is measured by a quantity
Ej’
Xj dJ.
M e, e .0 (5.20)
D
wheére dj is the differenee between the jth means of the two
groups, and is a measure of the direet contribution of the

variable j which does not consider interaction between variables.

The equality of the variance - covariance matrices of
the two populations is tested by the following statistic (Seal,

1964): - : ;
| i J(y=9)/2 1

NS RN = > B
g jANy -3 mk SmA)E) T (k)2
AR L -
where,
K = number of populations,
N = total sample size,
N5 = sample sgize of the Jth population,
m = number of variables,
Aj = determinant of the jth covariance matrix,

A =Dpooledcovariance matrix.
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The above gtatistic is distributed approximately ag
chi-souared with (k-1) m (m+ 1)/2 degrees of freedom. Large
values reject the null hypothesis which is the equality of

covariance matrices of k populations.

5.3 DISCRIMINANT ANALYSIS OF SYNTHETIC DATA

Before embarking on discriminant analysis the assump-
tion of the equality of the variance-covariance matrices is
tested by using equation(5.21), The variance-covariance matrices
and the pooled variance-covariance matrix for the seventeen
variables of Models E and F are given in Tables 5.1, 5.2 and
5:3 respectively. The variables in equation(5.21)will have

the following values for the present cagse .

E =R
N =504
Nl 22 QR
ﬂg == 0
S g

(0.274)+ 1078
A2 = (0-569)'10—10
4 = (0.263)10"8

>
’._J
1l

for which

1 BN 3 2x17x17 + 3x17-1
= ‘2[31‘(251—1 ORI < AN 6X18%1 N

an (0274 =V S0 . (0.569 x 10710)126 7
(0.263 x 1078)251




Table 5.1 - The variance-covariance matrix for 17 variables of Model E

Variable AR i T, T fs e fq fy fy
B n  On3R0 0.031 0.080 -0.129 -0.112 -0.187 -0.185 -0.051 -0.161
e 0. 051 0e 251 0.396 0-518 -0.449 -0.606 -0.426 Q-197 =0.7127
T, 0.080 0.396 2«144 2. 537 -1.016 -1.962 -0.889 2396 <2.347%
Ts 0.129 0.513 PoAST 6.630 ~1:265 -2.507 -1.473 4.637 =3.143
fg -0.112 -0.449 -1.016 -1.265 3.280 p I 4o | 0.843 -2.709 1.934
fe -0,187 -0.608 <1.962 _2.507 A 1 4 3.588 1.611 ~1.543 4.085
£, -0.185 -0.486 -G89 1.473 0.843 180 . ¥ ~-0.030 1.302
f8 -0.051 197 2+ 3526 4.637 -2.709 -1.543 -0.030 79.830 1.264
Ty -0.161 -0.727 =2.347 -3.143 1.934 4.085 1.302 1.264 20.915
£, +0.141 -0.511 +1.843 ~2.535 1.070 2.676 1.378 -2.13%2 3.615
fs =0:390 0431 <3.871 -1.624 0.718 1.679 2. 557 ~-0.154 2.375
£, -0.023  -0.239 -0.293 -0.696 0u0%1 0.776 1.677 0.209 0.101

Amin/AO 0.004 0.019 0.043 0.056 -0.091 -0.065 -0.009 0.026 -0.084

Al/AO 0.005 0.013 0.045 0.067 -0.045 -0.070 -0.063 0.081 -0.093

AZ/AO 0.011 ) 0.070 0.099 -0.104 -0.119 -0.086 0.047 -0.132

AB/AO 0.009 0.022 0.047 0.060 -0.108 -0.081 =0, 089 0u020 ~0:05%0
I -0.283 -0.698 -2.206 -3.331 2.529 3.700 3.12% -2.937 5130

_9gt-



Table 5.1 (contd.)

Variable f, f5 s Apin/A L/ ko Ay/A, A3/, 1
Tomin ~—0-141  -0.190 -0.023 0.004 0.005 0.011 0.009 ~0.283
N -0.511  -0.431 -0.239  0.019 0.013  0.032 0.022  -0.698
25 -1.843 =1.081 -g.293 0.043 0.045 0.070 0.047 -2.206
T -2.535 -1.624 -0.696 0.056 0.067 0.099 0.060 -3.331
fg 1.070 0.718 0.011 -0.091 -0.045 -0.104 -0.108 2.529
£, 2.676 1.679 0.776  -0.065 -0.070  -0.119 -0.081 3.700
fq 1378 2.357 16T <0800 -0.063  -0.086 -0.022 5.129
£ -2x132 —0.154 0.209  .0.026 0.081 0.047 0.020 ~2937 .
3 3.615 2.375 0.101 -0.084 =0.093  -0.132 -0.113 5.130 §
£, 3115 1.519 0.773  -0.046 ~0.063  -0.100 -0.058 3.159
f3 1.519 2.888 1.449 -0.011 -0.061 -0.091 -0.027 3.028
f4 0:TT3 1. 449 3.529 @ G2Y -0.051 -0.046 0.030 2.381
Anin/Ag  -0-046  -0.011 0.027 0.005 0.001 0.004 0.005 -0.068
Al/AO -0.063 -0.061 -0.051 0.001 0.003 0.003 0.001 -0.145
A5/45 -0.100 -0.091 -0.046 0.004 0.003 0.008 0.005 -0.154
Az/hy  -0.058  -0.027 0.030  .0.005 -0.001 0.005 0.007 -0.095
f 3.159 3.028 2.381 -©.068 -0.145 -0.154 -0.095 7.811




Table 5.2 - The variance-covariance matrix for 17 variables of Model F

Yariabie Tanin Tl T, T3 f5 f6 f7 f8 fM
Tomin ©O:0L6 0.011 0.030 0.209 -0.012 -0.064 -0.075 0.064 -0.070
T, 0.011 0.219 0.300 0.698 -0.504 -0.678 -0.290 0.188 -0.T717
T, 0.030 0.300 il 2.191 ~0.837 -1.928 -0.83%4 0.976 -2.559
T3 0.209 0.698 2.1891 22,167 <2197 ~%,908 -2.011 A.T38 =T.1569
f5 “0.012 =0.504 -0.837 -2.197 5TVl 2.264 0.883 -5.973 1a 712
f6 -0.064 -0.678 -1.928 -3.906 2.264 BJ115 1.905 -1.729 5.602
f7 -0.075 =0.290 -0.834 -2.011 0.883 1.905 3.203 -3.287 1.045
fq 0.064 0.188 0.976 4.T14 -5.973 ~1.729 -3.287 80.280 P
£y -0.070 -0.717 -2.559 -7.169 i 2 1 5.602 1.045 3.062 16.764
f2 -0.052 -0.596 -1.669 o [ Y 1.973 3.988 1783 -3.102 & 512
f3 -0.063 -0.276 -0.953  -2.396 0. 450 1.7%2 2.110 -0.399 2138
f4 0.011 -0.113 -0.349 -0.514 0.649 1.029 1.698 -4.802 -0.315

mln/AO 0.001 0.022 0.035 0.085 -0.117  -0.090 -0.005 0.150 -0.099

Al/AO 0.001 0.009 0.040 0.100 -0.058 -0.093 -0.076 0.326 -0.072
AZ/AO 0.002 0.033 0.067 0.147 -0.125 -0.155 -0.078 0.098 -0.166
AB/AO 0.002 .0.023 0.039 0105 =0:120 =0.085 -0.010 0.153 -0.110

£ -0.058  -0.562 -2.137 -5.300 3.479 4.938 3.884 -2.904 3.705

-ggt_




Table 5.2 (eontd.)

Variable £, £ £, Ans /Ao hy/hy  hy/A, hz/ho 3
T min —0-052 -0.063  0.011  0.001 0.001  0.002 0.002  -0.058
5 -0.596  -0.276 -0.113  0.022 0.009  0.033 0.023  -0.562
T, -1.669  -0.953 -0.349  0.035 0.040  0.067 0.039  -2.137
Py -3.312  -2.396 -0.514  0.085 0.100  0.147 0.105  -5.300
£ 1.973 0.450 0.649  -0.117 -0.058 -0.125 -0.120 3.479
£, s.988 3,712 1.829 _-0.080 -0.093  -0.155  -0.095 4.938
£ 1.783  2.110  1.698 -0.005 -0.076  -0.078  -0.010 3.884
fq -3.102  -0.399 -4.802  0.150 0.326  0.098 0.153  -2.904
i 4.512 2:0119 ~0:315 -0:6499 -0.072  -0.166 -0.110 3.705
f, 4.091  1.553  1.189 -0.074 -0.087 -0.136  -0.079 4.629
fs 1.553  2.648  1.181 -0.001 -0.070  -0.065  -0.005 3.517
£, 1.185  2=381%  3.981  D.0%4 -0.085  -0.044 0.015 4.225

Aniy/dy -0.074 -0.001  0.014  0.006 0.001  0.005 0-006  -0.091
A)/4y -0.087 -0.070 -0.085  0.001 0.005  0.003 0.001  -0.268
Ay/Ay -0.136  -0.065 -0.044  0.005 0.003  0.008 0.005  -0.154
Az/45 -0.079  -0.005  0.015  0.006 0.001  0.005 0.006  -0.097
£ 4.629  3.517  4.225 -0.091 -0.268  -0.154  -0.097  14.456
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Table 5.3 - Pooled variance-covariance matrix for gsynthetic data
Variable T it % Ts 3 g 5 it 6 fg f8 Ty
Tomin ©-068 0.021 0.055 0.169 -D.082 ~0.12% =0.1%0 0.007 -0.115
y 0.021  0.235  0.348  0.606 -0.477  -0.642  -0.358 0.193 -0.722
%o 0.055  0.348  1.684  2.264 -0.926  -1.945  -0.861 1.649  -2.453
T3 0.169 0.606 2.264  14.429 -1.733 -3.209 <1743 ANETE 5.6
f5 T0:062  -0.477 -0.926 -1.733 3.526  1.989 0.863  —-4.347  1.823
e -0.125  -0.642 -1.945 -3.209 1.989  4.355 .75 30696 4usik
s -0.230 -0.358 0,861 ~1.743 0.863 1.759 3. 062 X B 1.178
Tq 10.007  0.193  1.649  4.676 ~4.347 -1.636  -1.665  80.062  2.167
Ty -0.115  -0.722  -2.453 -5.164 1.823  4.846 1.173 2,167 18.0%
5 -0.096  -0.553 -1.756 -2.925 1:525  3.985 1.581 ~2.619 4.066
£ -0:126 -0 054" ~1.087 ~-2.pia 0.583 1.696 2.233 -0.277 2.247
f4 -0.006 -0.176 -0.321 -0.605 0351 0.903 1.687 -2, 50T -0.108
4nin/hy  0:003  0.020  0.039  0.070 -0.104 -0.078  -0.007 0.088 -0.092
4, /4, 0.003 0.011 0.042 0.083 -0.051 -0.082  -0.070 0.203 -0.082
Az/AO 0.006 0.032 0.068 0,125 ~0.115 -0.137 -0.082 0.072 -0.149 -
hz/hg 0.005 0.022 . 0.043 0.082 -0.114 -0.088 -0.016 0.087 -0.112
- -0.177 -0.630 -2.186 e 3. 000 4.318 3.501 2.920 4.411
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Table 5.3 (contd.)

Variable £, fs A Ao n/j‘o Al/AO 13.2/’14.0 AB/’AO f
T:min -0.096 -0.126 -0.006 0.003 0.003 0.006 0.005 ~0.177
Tl -0.553 -0.354 ~0.176 0.020 0.011 0.032 0.022 -0.630
T2 -1.756 -1.012 -0.321 0.039 0.042 0.068 0.043 -2.186
T3 -2.925 -2.012 -0.605 0.070 0.083 0.123 0.082 -4.327
f5 1543 0.583 0.331 -0.104 ~-0.051 =115 ~0.114 3.000
f6 3.335 1.696 0.903 -0.078 -0.082 -0.137 -0.088 4.318
f7 1.581 Bt 50 . 1«687 ~0.007 -0.070 -0.082 -0.016 3.501
f8 -2.619 -0.277 -2.307 0.088 0.203 0.072 0.087 2.920
fM 4.066 2.287 -0.108 -0.092 -0.082 -0.149 ~0.112 4.411
f2 3.605 L5336 0.982 -0.060 -0.075 ~0.118 ~-0.068 3.892
T4 1.536 2.768 1.315 -0.006 -0.066  -0.078 -0.015 3.269
f4 0.982 1.315 3.453 0.021 -0.069 -0.045 0.023 3.304

mln/AO ~0.060 -0.006 0.021 0.006 0.001 0.005 0.006 -0.079
Ll/ﬁo -0.075 ~-0.066 -0.069 0.001 0.004 0.003 0.001 -0.207

AZ/AO -0.118 -0.078 -0.045 0.005 0.003 0.008 0.005 -0.154

AB/AO -0.068 =0, 015 0.023 0.006 0.001 0. 005 0.006 -0.095
£ 3.892 3.269 3.304 -0.079 -0.207 -0.154 -0.095 11+145

-I.’-’I-
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Therefore, = 19537

The degrees of freedom (k-1) m (m+1)/2 is 153. The |
tabulated value of'X?are given only till 120 degrees of free-
dom in Dixon and Massey (1969), but for large values of degrees

of freedom the approximate formula given is

——

v B 2
Ko =2 =55~ ws, /5:3—)

where zd is the normal deviate and N is the number of degrees
of freedom. For the 99" percentile this gives a tabulated
value ofin for 153 degrees of freedom as 196.616, which is
much larger than the calculated value, and therefore, the null
hypothesis of the equality of the two variance-covariance

matrices is accepted.

That each of the variables isg normally distributed is
tested by plotting the frequency distribution on a probability
paper. Most of the variables show normal or near normal distri-
bution and the discriminant function is not seriously affected '
by limited departures from normality (Davis, 1973). The distri-
bution of some of the variables in real case is shown in

“Figures 6.30 - 6.33.

The discriminant score, R, is calculated for each of
the seismogram and is projected on the discriminant function‘
line (Figure 5.2).To avoid overlapping of points while plott-
ing the data, seéismograms with the same value of di scriminant

function are .plotted at different heights. Ry and Ry are the
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FIG. 5. 2_DISCRIMINANT ANALYSIS TO DISTINGUISH MODEL E FROM F. 17 VARIABLES ARE
TAKEN INTO CONSIDERATION.
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multivariate means of séventeen variables of Models E and F,
respectively and RO is the discriminant index. Difference
be tween RE and RF is Mahalanobis'distance, D2. Discriminant
scores (equation 5.14) when plotted for seismograms of the
two models show some overlap (Figure 5.2). Despite this
overlap 70 percent of the total 508 seismograms are correctly

classified.

F-test given in equation(5.19 )has been applied to
test the equality of multivariate meansof the Models E and F.
The test shows that the two means are significantly different
at 95 percent confidence level. The eslculated values of RE
and Rp and the percentage eontribution of each of the 17

variables are given in Table 5.4.

While most of the variables make positive contribu-
tions a few display a negative role. Positive contributions
indicate that the variables are meaningful discriminators and
the amount of contribution is a measure of the potency of the

variable.

Variable Al/AO aontributes 38.4 percent, 30.5 percent
is contributed by f8’ the frequency at which logarithm of
power decreases to zero; 24.5 percent is contributed by T2 -
the time of second zero crossing in the ACF and 18.7 percent
is contributed by fM' These variables because of their high

percentage of contribution can be considered asg powerful
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Table 5.4 - Discrimination of Model E from Model F when all
17 variables are considered

Calculated value of F = 7.5483 with 17 and 490 degrees of
freedom.

Tabulated value of F = 1.76 with 17 and oo degrees of freedom

at ¢ = 0.05
Rl = 1526409
R2 =312.2215
S1.No. Variable Value of constant Percentage contri-
buted towards dis-
crimination
s Tamin 0.2474 1.1
Rk Tl 0.4089 6.5
3. T2 03534 24,5
4. T3 -0.0841 -3.9
5s 5min/AO -4.7422 ~4.0
6. Al/Ao 8.4131 38.4
70 A2/“O Oo7229 201
. Az /4, 1.4399 2.0
9, fl ~-0.0307 6.9
10 £, 0.0422 -39
12 . f4 0.0736 -3.8
16. f8 0.0490 30.5

170 fM —000921 18.7
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discriminators of lithologies. Other discriminators are f1 -
the average frequency which contributes 6.9 bercenty, the

time Tl - which is the time of the first zero crossing in the
ACF and contributes 6.5 percent; f3 - the frequency of 5Oth
percentile value of frequency weighted power contributes 3.4
peércent; AZ/AO and AB/AO make 2.1 percent and 2.0 percent

contributions, respectively and T - the time of first

amin
minima in the ACF contributes 1.1 percent. These ten variables

can be termed as seigmic discriminators.

To check the efficacy of this analysis 10 seismograms
from each of the Models E and F, which were not part of the
aforementioned discriminant analysis, were put to test. The
discriminant scores for these 20 s€ismograms were used to
assign a model - either E or F to them. Fifteen of these 20
seismograms could be classified to their correct model, one
had the same value ag RO and four were misclassified. This
indicates a 75 percent success in assigning synthetic reflection
seismograms to their Proper models. Thisg approach, therefore,
appears to be successful and as such 2 dominantly sandy litho-

logy can be distinguished from a dominantly shaly lithology.
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CHAPTER - VI

APPLICATION OF DISCRIMINANT ANALY SIS TO
FIELD SEISMIC DATA

The successful discriminant ana2lysis carried out for
synthetic data indicates its potentiality for analysing litho-
stratigraphy using seismograms. In synthetic seismograms the
nature of the source pulse and the simulated 1itholcgical
seéquence are the two factors which play a role in ghaping the
séismogram, the same source pulse was used in generating =all
the synthetic seismograms. Consequently variables derived
from synthetic seismograms are related to the subsurface litho-
stratigraphy. For field seismograms, however, the source
pulse may not uniformly be the same for s suite of¢geismograms.
The observed seismograms may be further modified by the field
recording and data processing techniques. The observed seismo-
grams are the total response of the source pulse, the sub-
surface lithostratigraphy and the recording and processing
system. In addition to the above factors degradaticn due to the
presence of source generated noige (e.g.,ground roll) as well
as ambient noise also occurs. Thus the problem of inferring
lithostratigraphy in real cases is relatively more difficult
than in the synthetic models. Inspite of the more complicated
situations met in nature diseriminant analysis has been carried
out on real data to find out how successful this concept would

be. With this as an aim field seismograms from two different
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Areag X and Y characterizing a dominantly sandy and a shaly
subsurface lithology, respeetively, from a sedimentary Basin

2 in India have been subjected to discriminant analysis.

6.1 SEISMIC SECTIONS FOR AREAS X AND ¥

Part of the seismic sections of two Areas X and } &
belonging to the Formaticn XK of the sedimentary Bagin 4 have
been subjected to the analysis discussed in Chapters III, IV
and V. Four seismic profiles of Area X and three of Area Y
were considered for the purpose of this study. It amounts to
a total of 70 km of seismic line or 239 traces for Areca X and
55 km or 148 traces for Area Y. The details of recording and

processing procedures are given in Tables 6.1 - 6.7.

The Formation K was marked on the seismic secticns by
tying the seismic data with that of the nearby wells by using
5 velccity functions for Ares X and 3 for Area Y. The PForma-
tion K in Area X could be jdentified with an accuracy of one
reflection cycle, whereas for Area Y the wells were situated
at a considerable distance frum the seismic lines and there-

fore the Formation X could be marked with lesser accuracy.

4 band of reflections arising from within the Formo-
tion K and consisting of a number of cycles is observed on
seismio sections. This indicates that the formation consists
of a series of thin lithological beds. The strong trough and

peak phase aligrment of the reflections at places either merge
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Table 6.1 - The field recording parameters for Area X
Configuration Split Spread CDp
Type of recording Digital
3P/VP interval 100 m
Geophone interval 100 m
Near Offset 100 m
Far Offset 200 m
Number Traces 24
Gecphones/Trace 12
Recording filter 1D-(e)-= 185

Sampling rate 2 ms
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Table 6.2 - The order in which the seismic sectisng for

drea X were processed

13 Record length
Sampling interval

2. Additional Process

. Decon before stack
4 Statics
5 NMO

8. Fllter
L.C. By
20 - 25 A = &5
5-10 0. = 5%
3= % 35 - 40

9. Bqualization

105 Trace Mixing

4 geconds
4 ms

True Amplitude Recovery

Operator length = 160 ma

#indow length = 2000 ms

Prediction Time = 2nd zerg
crgssing

Party suppliea
3SN No. at position shown V

1200 percent

Application time Overlap

in Secynds Time
1.0 200 ms
1.5 200 ms
4.0

Two window

No.of traces = 3

Note - 6 is residual statics, not applied.
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Table 6.3 - Field Parameters used for 3 seismic lines of 4res X

1. Shot depth 29 m

2 Shot pattern Single hole

3, Charge sigze 8.34 kg

4. Gain Preamplifier = 36 db
Initial gain = 12 db
Expansion range = & dh
Release rate = 32 ms
Final gain = 84 db

54 Fil ters L.Cs " = 1002} H3
HiCs = 125 H=
Notch = IN

6 Instrument Parameters
(i) Sampling interval 2 ms
(ii) Trip delay
(a) 12th and 13th trace 150 ms
(b) and 24th trace 700 ms
(c) In between the rate of increment
for other channels ig 50 ms
T Geovphone Pattern
(1) 12 Geophores all in series (1,2,3,3,2,1)
(ii)  Group spacing - 6.5 m
(1ii) Digiphone - 10 Hz were usged.

8. Field numbers - 12 fold split spread C.D.P. with 100 m
group interval and 100 m in-line ocff-set.
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Table 6.4 - Field Parameters uged for the Fourgh Seismic
Line of Area X .

e Shot depth
From SP 32 to SP 118 average depth 23 m
SP 120 to SP 278 average depth 29 m
SP 280 to 3P 556 average depth 26 m

2. Shot Pattermn . 3ingle hole
3. Shot size . 11.12 kg
ds Gain .

Pre-amplifier gain -~ 36 db

Initial gain - 24 db
Expansion range = 6 db
Release rate - 32 m sec.
Final gain - 84 db

5. Filters .
L-C. 10(2) BEa
H.Qs 125 Hz
Noteh - IN

(6 Instrument Parameters ¢

(i) Sampling interval - 2 ms

(ii) Trip delay

2th and lBth trace - 200 ms

(a) 1
(b) 1% -ana 24 £hace - 750 ms

(e) In between the rate of increment
for other channels is 50 ms
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Geophone pattern -
(i) 10 geophones all in series (1,2,2,2,2,1)
upte B8P 154
(ii) 12 geophones all in series (1,2,3,3,2,1)
upts BF 556
(iii) Group spacing - 6.5 m

(iv) Digiphones 10 Hz were used.

Fold Numbers

12 fold split spread CIP . with 85 m group

interval and 340 m in-line off-set.
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Table 6.5 - The Field recording parameters for Area Y

Digital recording recorded by SIG - 159

Year recorded
SP/VP interval
Instrument type
Geophone Interval
Near Offset
Recording filter
Far Offset
Sample rate
Number Traces
Record Length
Configuration

Geophones/Trace

1978-79

100 m

SN 328

100 m

500 m

10 (2) 125 Hgz
2800 m

2 ms

24

5.0 seconds
End on 12 fold CDP
12
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Table 6.6 The order in which the seismiec sections for

Area Y were procegsed

1. Record length

2 Sampling Interval

Ba Statics

4. NMO

% Residual statics window

Es Stacking

r Filter
L.C. H. O
50 Hg Notch
10 Hgz 45 Hgz
5 Hg 35 Hg

8. Trace Mixing

5.0 seconds
4 ms

Party supplied

SSN No. at places shown 'V!

1.47 to 1.77 sec
1200 percent

Application
Time

5.0 see
2.5 sec

5+0 sep

No. of traces

Overlap
Time

200 ms
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Table 6.7 Field parameters used for Area Y

Shot depth

Shot pattern

1
2
e Charge size
4

Gain .

Preamplifier gain

Initial gain

Expansion range

Release rate

Final gain

N Filterg
Te G
Bk

Notch -

10(2) Hgz

125 Hy
IN

B, Instrument parameters -

&5
(147

21-24 m
Single
13.9 kg

~ not supplied
30 db

v 6 db
- 64 ms

- not supplied

Sampling interval

"I
(a)
(b)
(e)
(d)
(e)
(£}
(g)

p delay
Channel
Channel
Channel
Channel
Channel
Channel

Channel

1l and 2 -
3 and 4 -
5 and 6 -~
7 and 8 -
9 and 10 -
1l-smd 12 =
13 and 14

hole

2 ms

1400
1300
1200
1100
1000

900

800

ms

ms

ms

ms

ms

ms

ms
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(h) Channel 15 and 16 - 700 us

(1) Channel 17 and 18 - 600 ms
(j) Channel 19 and 20 -~ 500 ms
(k) Channel 21 and 22 - 400 ms
(1) Channel 23 - 300 ms
(m) Channel 24 - 200 ms

1 Geophone pattern .
(i) 12 geophones all in series (2,2,2,2,2,2)
(ii) Group spacing - 9 m

(1ii) Bagse length =~ 45 m

i Fold numbers . 32-fald
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with each other or diverge and form separate phase aligmments.

These characteristics of the reflection band may be assooiated.
with lateral facies changes, pinch outs, wedging out or thinn-

ing and thickening of the lithological beds of small thickness.
The exact nature of such features can only be checked by

closely spaced well data.

The number of cycles present in a band are generally
related to the number of beds in the formation and their thick-
néss. It ig noticed that the reflection from within the
Pormation K, have more cycles in the zones of depression in
"Area Y. It may be due to an increase in the thickness of these
beds in the structurally low zones. The quality of data ranges
from fair to good. The twc way travel time within the Formation
K ranges from 200 ms to 400 ms. This part of the data is
retrived from magnetic tapes, and a few of these traces are
shown for the relevant time window in Figures 6.1 - 6.4. A
comparison of the seismograms from the two areés shows that
though it is not easy to pickout any specific differences
between them, yet in general, seismograms from Area Y show
waveforms broader than those of Area X. Furthermore, the
relevant time window chosen for Area Y is at a much longer
two way travel time because Formation K is at a greater depth

in Area Y.

The autocorrelation functions of the seismic traces

areé calculated by the method given in Section 3.2 and some of
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these are shown in Figures 6.5 - 6.8. The same eight variables
that were picked from the ACFg of the synthetic seismograms

are also picked from the ACFsg of the seismograms of the field
data and are shown in Figures 6.5 and 6.6. Figures 6.7 and
6.8 show several ACFs for a comparative study. The autocurrel a-
tion functions are broader than what was observed for the
synthetic case (Figures 4.6 and 4.,7)s The ACF traces for

Area X are more oscillatory than for Area Y which displays a
flatter character. This phenomenon wag also observed in the
synthetic case where the ACFg of Mode] E (characterizing Adrea
X) show similar oscillatcry nature and the 4CFg of Mode]l F
(characterizing Area Y) are relatively smooth at larger time

lags.

The maximum entropy power spectra for the geismic
traces were computed for the present study. Three of these
spéctra for the Area X and Y with the fregquency fy marked
on them are shown in Figures 6.9 and 6.10. Figures 6.11-6.14
and 6.15 - 6.17 show some more eéxamples from the 239 and 148
traces of power spectra analysed for Areas X and Y respectively.
The frequency bandwidth of these gpectra is subject toc the
field, recording and processing parameters, and are band
limited between 5 and 55 Hg as indiecated by the filters in
Tables 6.2 and 6.6. The spectra of field seismograms therefore
have a frequency band narrower than that for synthetic seismo-
grams (Figures 4.9 - 4.16) but they retain the character of

showing one or more peaks.
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F1G.6.5 - SOME AUTOCORRELATION FUNCTIONS OF SEISMOGRAMS

FOR AREA X
(ACF = AUTOCORRELATION FUNCTION).
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FIG.6.6 ..SdME AUTOCORRELATION FUNCTIONS OF SEISMOGRAMS

FOR AREA Y
(ACF = AUTOCORRELATION FUNCTION ).
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Bach power spectrum for the field seismograms as in
the case of gynthetic data is characterized by an aversge
frequency, fl, which takes intoy account both the frequency
and the power content of the gpectrum. -Ag the cumulative
frequency weighted spectra and the cunul ative power spectra
are derived from the power spéctra they will have the same
frequency bandwidth. The frequencies fo, f£3, f,; and £, £,
and f therefore lie in a narrow frequency zone as compared
to the synthetic case. Some cumulative frequency weighted
bower gpectra for dreas X and Y, with the frequencies f2, f3
and f4 marked on them are shown in Figures 6.lé and 6.19,
reéspectively. Figures 6.20 and 6.21 show some more examples
of the frequency weighted power spectra. Figures 6.22 and
6.23 show a few cumulative bower gpectra for Areags X and Y
réspectively, with frequencies f5, f6 and f7 marked on them.
Figures 6.24 and 6.25 show some further examples of these
traces. It is difficult to distinguish visually between the
cumulative gpectra of the two Areas X and Y. A4As shall be seen
later, this is also evident from the variables derived from the
cumulative spectra which show either very small or negative
contribution towards discrimination (Table 6.8) of seismograms

from the two different areas.

The frequency, fg, picked from the logarithm of power
spectrum is marked on Figures 6.26 ana 6.27, and several of
these traces are displayed in Figures 6.28 and 6.29. 4 compari-
son of Figures 6.26 and 6.27 shows that the frequency fg is

very different for the two areas, a fact which was not at all



Table 6.8

area Y when all 17
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Discrimination of Seigmograms of Area X from

variables are considered

Calculated value of F = 76.3108,with 17 and 369 degrees of
~ freedom.
Tabulated value of F = 1.76, with 17 and oo degrees of freedom
a8t a = 005
Mahalanobis' I* = 14.809
Ry = 39.53
Ry = 32.12
Ry =24.71
31l.No. Variable Constant Percentage Contributed
towards discrimination
1. B ~1.08 153
B i 0.27 0.0
T2 0.42 -0.1
4. T 0.14 0.7
5. Amin/AO -3.27 0.0
6. Ay /h, -1.24 ol
» Ay/ig ~-20.63 5.9
8. As/h, 5.71 i}
9 £, 0.65 4.2
10. £, -0.37 ~-0.5
4l f3 0.28 0.7
1< f4 =045 ~-1.2
E5s f5 -0.57 -1.9
14, fe -0.71 -1.5
15. fq -0.72 C=1.7
16. fg 1.85 95.3
0.26 0.8
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obvious from the power spectra (Figures 6.9 - 6.17), making
a very large positive contribution towards discrimination, as

is noted from Table 6.8.

6.2 DISCRIMINANT ANALYSIS OF FIELD SEISMOGRAMS

The seventeen variables discussed earlier and shown
in Table 6.8, eight of which were from the autocorrelation
function and nine from the power spectrum of the seismograms
for dreas X and Y were subsequently subjected to discriminant
analysis. 4s a first step towards this analysis, the cumula-
tive distribution of these variables were plotted on the
probability paper. These curves shown in Figures 6.30 - 6.33
indicate in general a normal or near normal distributiong
However, limiteq departures from normality do not sericusly

affect the discriminant function (Davisg, 1973).

The discriminant score is calculated from each of the
seismograms and is projected on the discriminant function
line (Figure 6.34). 4 perusal of this figure indicates that
except for one all the seismograms of Area Y and more than
90 percent of Area X are properly elassified. Test for the
equality of the variance-covariance matrices (Equation 5.21)
glves the calculated values of X% as 710.0 as against the
tabulated value of 196.6 at 153 degrees of freedom. The null
hypothesis of the equality of the two matrices is therefore
rejected. However, according to Davis (1973) " In practice,

an assumption of equality may be unwarranted?
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The contribution made by each variable towards discri-
mination is given in Table 6.8. Frequency variable, f8’
( the frequency at which logarithm of power decreases to Zero)‘
gives a very high contribution of 95.3 peércent, thereby emerg-
ing as a very powerful discriminator. This is in agreement
with the discriminant analysis of synthetic data, where the
same€ variable makes a contribution of 30.5 percent. Therefore,
the variable f8 can be used to distinguish. between the séismo~
grams from Areas X and Y. However, spectrum of field seismo-
grams is modified by the subsurface lithostratigraphy besides
the field recording and proceéssing parameters, such as shot
depth and size and recording and brocessing filters. 4n
increase in the shot depth is expected to give a gpectrum
richer in higher frequencies, resulting in a corresponding
shift ot f8' Parts of one seismic brofile of Adrea X were
shot at different depths of 23, 26 and 29 metres, yet no
substantial ghift in fé related tc these ghot points are
observed, thereby infringing, in this case the premise that
an increase in shot depth gives rise to higher frequencies.
However, f8 is still subjected tc shot size, gain of the
Tecording instrument and the subsequent brocessing of data.
Much of this factor may be taken care of by the trace equali-
zation procedures followed in data processing stage. Therefore
inspite of f8 being somewhat dependent on shot size, gain of
the recording instrument etc.,it may be uged ag a ugeful

diseriminator of lithologies ag found in the present analysis.
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Parameter AZ/AO, the ratio of the autocorrelation
function at lag of two units to zero lag, emerges as the
next best discriminator, with 5.9 percent contribution;, in
the synthetic cage also this parameter gives a gignificant
contribution of 2.1 percent. The average frequency, f
contributes 4.15 percent towards discrimination, whereas in
the synthetic cage it contributed 6.9 bercent, and this alsc
can be used as g di seriminator. The other variables which
make positive contributions in both field and gynthetic cases
are Tamin’ the time of first minima in the autocorrelation
function, Al/AO, the ratic of the autocorrelation functisn at
unit lag tc that at zero lag, f3, the frequency of SOth,
percentile value of frequency weighted power, and fys the
frequency at which maximum power cccurs in the power spectrum.
The values of the constants st and the percentage contribu-
tion of each varisble are given in Table 6.8. This analysis,
therefore, begidesg discriminating between seismograms ¢f
Area X from thuge of drea Y, algg indicates that out of
séventeen variableg only seven, viz.,fé, A2/AO, 15 Tamin’
Al/AO, fz and fyy make meaningful contributions towards diseri-

mination, in decreasing order of significance.

dfter discriminating and evolving a clagssification
criterion a new get of 20 S€ismograms were collected as test
cases from the known dreas X and Y. As shown in Table 6.8,

if the discriminant score for a particular s€ismogram is



=L 05

greater or less than the discriminant index, R, = 32.12,

then it can be classified either to the Area X or ¥, respeati-
vely. The discriminant scores, R, (Equation 5.14) were
therefore calculated and 90 percent of thege twenty seismo-
grams were found t5 be correctly classified. These test cases
therefore demonstrate the validity of this apprcoach and it is
therefore concluded that the technique can be used very _
effectively to solve the problems of discrimination and classi-

fication of lithostratigraphy from seigmic data.
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CHAPT=R - VII

DI3CUSSIONS AND CONCLUSIONS

A knowledge of subsurface lithostratigraphy of
basins without drilling is the oil explorers' dream. The
interpretation of subsurface lithostratigraphy directly
from seismic data is the solution of this dream, though
it is a challenging problem. The present study based on the
seismic responses of five hundred and eight synthetic stra-
tigraphic sequences gererated using upward transition
probability matrices has demonstrated that it is possible
to digcriminate and identify lithounits using statistical
techniques} If several variables can be quantitatively
derived from the seismograms and a multivariate strategy

be adopted, it becomes possible to decipher lithostratigraphy.

Statistical discriminant analysis has been carried
out to distinguish between dominantly sandy, Model E, (sand =
53 percent, shale = 26 percent and coal = 21 percent) and
shaly, Model F, (sand = 37 percent, shale = 60 percent,
coal = 3 percent) on the basis of seventeen variables. These
variables are Al/AO, A2/AO and AB/AO where A denotes the
autocorrelation function (ACF) at the subscripted lag,

Amin Aqy wWhere Amin denotes the minimum velue of the ACF,
Tl, To, T3 where T denotes time of the gsubscripted zero

crossing, Tamin’ time at which first minima occurs, fy,
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frequency at which maximum power occurs;_fl,‘the average
powar weighted frequency) f2, f3 and f4 - frequencieg of

th ond 75th percentile values of frequency weighted

25 50
power, f4, f5 and f, - frequencies of 25th, 5OJGh and 75th
percentile of power and f,, the frequency at which logarithm
of power decreases to zero. Ten of thege, viz.,Al/AO, o, To
Ly £y, Tl, f3, AZ/AO, AB/AO and Tamin have been found to
contribute positively towards discrimination of gross 1itho-

logies corresponding to the Models E and F.

The discriminant analysis has also been applied to
field seismic data from two dreas X and Y of a sedimentary
basin in India to test the efficacy and demonstrate the
applicability of the methodology developed in the present
investigations. This analysis, when used as a search
technique, indicates that from amongst the eight positive
variables . fa, AZ/AO’ £ . Tamin’ T f3, Al/AO and T3;
identified only seven are common between the synthetic and
field seismograms. These are s AZ/AO, 1, Tamin’ s 3
and Al/AO, and have been termed as 'seismic discriminators'.

¥

To generate synthetic seismograms, the same source
waveleét and noise character was used in all the cases. Thus
the computed responses from the various simulated 1itho-
stratigraphies would be mainly characterizing the latter.
The deviations on account of noise were observed to be small

on account of the large signal to noise ratio.
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The variables which give positive contributions
towards discrimination are congidered to be meaningful
discriminators, as these contributions make the Mghalanobis'
distance larger. Large distances correspond to strong discri-
mination. Variables which give negative contribution are
detrimental in this analysis. Other workers e.g. Davis(1973)
who have used this technique are silent about this negative
aspect. However, Sinvhal, Gaur, Khattri, Moharir and Chander,
(1979), made an attempt to analyse the effect of eliminagting
such variables and repeated the entire analysis to find that
gomeé of the variables which previously gave positive contri-
butions now made negative contributionsg. This shows that
the gsign of contribution of a particular variable also depends
upon the set of variables considered in the discriminant
analysis. It does not scem that an analytic method to select
the subset which will contribute to the distance, D° in the
positive genge is available, in fact, there mgy be no such

subset of wvariables.

The modeling of lithostratigraphic situations embodi-
ed in the present study and the methodology developed for
discrimination are subject o certain limitations. 411 theé
lithostratigraphic sequences have been generated with an
approximate thickness of 200 m so that a fairly large number
of lithologic transitions may be encountered. Therefore each
lithounit considered is approximately 4 m thick. This model

would restrict the thickness of various component 1ithounits
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to multiples of approximately 4 m. In nature the thickness
can assume any value, therefore the model would represént
actual thicknesses within a maximum error of # 2 m. 3ince the
resolving capability of seismic methods is well below this
order of thickness, therefore this approximation does not

represent any serious limitation of the present work.

The choice of only three distinct lithological
states — sandstone, shale and coal with no provision for
the transition zones also may not seriously affect the
results. For transition zones which, for example, consist
of silts or carbonaceous shales may not show a significant
variation in impedance contrast and may be grouped into one

of the three states mentioned above.

The assumption of a homogeneous overburden in the
models does not give rise to any reflections from within, and
an accompanying modification of the waveform passing through
it does not occur. This may constitute a significant devia-
tion from real situations where the laycered overburden does
play a significant role in imparting its characteristics
on the reflections arising from layers below it. The effeet
may have serious conséquences particularly if the overburden
is highly varying from area to area. Although thé responses
are calculated for normal incidence with no provision for
attenuation or dispersion it is not considered a serious

drawback of the model as in reflection prospecting thé angles
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of incidence are either close or reduced to normel.

attenuation is not severe in the frequency band of interest.

The average matrices constructed for the two areas
X and Y are infested with the ususal problems of gveraging
a data set from diverse areas, but this average matrix still

characterizes broad depositional environments.

The discriminant analysis based on the «bove model-
ing procedure for simulated data has been found to be
succegsful showing that the limitations discussed above are
not significant. Furthermore, the same procedure has proved
succegsful when applied to field seismic data confirming the
suitability of the model and the corresponding method for
actual analysis. Thus as discussed the limitations were
not serious in the field data analysed. The methodology
presented here may therefore be considered as a major step
towards the successful determination of subsurface 1itho-

stratigraphy.

For discriminant analysis certain assumptions of
normality, equality of variance-covariance matrices and the
independence of variables have to be met. However, in
practice, it is not always possible to satisfy all assump-
tions rigorously in any analysis - some invariably fail.
However, limited departures from such requirements do not
seriously affect the analysis. For example, departures from

equality of the variance-covariance matrices have to be
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accepted in practice (Davis, 1973), and similarly limited
departures from normality may also have to be tolerated.
Ag discussed previously, the analysis concerning field data

does suffer from both of the above mentioned limitations.

For making the discriminant analysis more effective,
one has to account for as many known variables entering the
data (seismogram) as possible. One such variant ig the
gource pulse. The source pulse may be dependent on shot
size, pattern of shots, shot depth etc. This factor may be
particularly strong on land records. The marine data would
be relatively free from this effect if adequate care is taken
to use similar sources and recording parameters throughout
the arca of survey. In land survey, Vibroseis system seems -
to be a good method for achieving uniformity of source wave-
form. Similarly uniformity in field and data processing

procedures would be desirable.

The discriminant analysis would be more effective
if the seismograms are as 'wide freguency band' as possible
retaining information in the highgf frequencies. The band-
width of field data usually gets narrowed down by the
processing filters. The range of frequencies required for
the use of discriminant parameters based on power spectra
should be extended and this can be achieved by deconvolution
procedures. Besides, the Vibroseis systems permit the input

signal to be known and controlled. 4 considerable resolution
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can be achieved in the reflection seismograms using this
technique and applying appropriate pulse compression methods.
4 limitation that in some cascs may exist on the effective
use of the frequency variables, is due to the frequency
dependent attenuation exhibited by materials. This effect
may be severe for deep reflectors, in which case the high
frequencies would suffer more and the characteristic features
in the gpectrum may be attenuated to such an extent that the
discriminatory character is lost. If adequate compensation
for such losses can be applied, advantage of this discrimina-
tory parameter may be taken in the case of reflections from

deeper horizons as well.

The usefulness of the present analysis in explora-

tion programs for hydrocarbons may be outlined as follows -

(1) An extensive analysis of the known basins would
help establish populations of the various seismic
parameters, those used here and perhaps newer ones,
corresponding to various geological enviromments of
depositions. These could serve as standard reference
for classifying virgin or partially explored areas

on the basis of their séismic responses.

£4d) The method can lead tou basic information on the
variation of lithostratigraphy in various parts of

the basin under exploration. By studying reflection
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bands at various depths along the profiles tc
infer lithostratigraphy =zt various depths and
its lateral variation a depositional model for
the basin can be formulated. Needless to say
that such an information, coupled with the
conventional structural picture and the seigmic
indicators for fluid content, would add another
dimension to the exploration concept. It would

lead tu more cost effective exploration programs.

(iii) A similar analysis may be attempted to establish
discriminant functions based on seismograms to
predict fluid content. The success in this regard
would indeed be ‘g major advance in €xplordtion
methods. However, such an investigation remains

for the future.
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