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A B S I R A C T

The ever increasing demand for energy has necessitat

ed the exploration of hydrocarbons in stratigraphic traps.

The seismic technique can be effectively used to elucidate

subsurface stratigraphy and lithology. tk interpret seismic

responses of geologic sections in terms of subsurface strati

graphic and lithologic information it is necessary to

establish a correlation between lithology and suitable para

meters abstracted from the seismic response. The present

work deals with

(a) simulating mathematical models for sedimentation

processes and calculating their response with the

above objective and

(b) applying the above concept and methodology develop

ed on synthetic data to r~al seismograms to infer

lithostratigraphic information.

Depositional situations may be modeled by using

Markov chains. These involve the concept of memory where

the nature of successor lithologies are predetermined by

preceding lithologies according to certain probabilities.

Markov chains with one step memory are therefore applied to

model two different depositional conditions of a formation
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in a sedimentary basin in India4". Accordingly, two Areas X

and Y are considered for the purpose of this study.

Area X corresponds to a dominantly sandy (sand =

53 percent) part of the basin together with coal (26 percent)

and shale (2l percent) constituents. Geophysical well logs

of this area have been used tu calculate the probability of

upward transition from one lithology to another at a four

metre sampling interval for a particular formation. These

were used to generate 255 different synthetic stratigraphic

sequences which are collectively designated as Model E.

Area Y corresponds to a dominantly shaly (shale = 60 percent)

part of the same basin, with sand (37 percent) and coal (3

percent) constituents. Another 253 synthetic sequences

generated for this area and designated as Model F were syn

thesized on the basis of the probabilities of transitions

from one lithology to another as calculated from well log

data- The five hundred and eight sedimentation sequences

thus generated represent sedimentary sequences deposited in

changing environments- Seismic response in time and frequency

domain for these models have been calculated.

Part of the work embodied in the thesis is based jn
real field data, courtsey, Oil and Natural Gas Commission,
Dehradun, India. The locations and name of basin have
been suppressed. The sedimentary basin is referred to as
Basin 2, two areas within the basin as Areas X and Y and
the hydrocarbon bearing formation as Formation K.
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The models used in this study are composed of

homogeneous, isotropic and perfectly elastic layers. The

acoustic impedances of these layers were calculated from

the velocity and density logs available for the area. The

impulse response was calculated and then convolved with a

source wavelet to yield conventional looking seismograms-

The autocorrelation function, and the power spectrum using

maximum entropy methods were computed.

Seventeen variables were picked from the auto

correlation function (AGF) and are A,/*q, a2/A0' A^/Aq,

where A denotes the ACF at the subscripted lag, \in/A0»

where A . denotes the minimum value of the ACF, T , T9, T,,
mm 1 « j

where T denotes time of the subscripted zero crossing in the

ACF and T . , the time at which first minima occurs. Nine
amm'

variables were picked from the power spectrum and are,

average power weighted frequency, frequency at which maximum

power occurs, frequency at 25th, 50th and 75th percentile
values of frequency weighted power, frequencies of 25 , 50

thand 75 percentile of power, and frequency at which logarithm

of power decreases to zero.

The above mentioned seventeen variables were calcula

ted for all the simulated responses of synthetic stratigraphic

sequences. Discriminant analysis which was employed showed

that a combination of all the variables can maximally

seperate, in the variable space, the two different Models E

and F. The discriminating seismic attributes characterize
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the two sedimentation sequences and may aid the inter

pretation of field records in terms of subsurface strati

graphy.

The success achieved in discriminating different

depositional situations in computer simulations has led to

the test of the method with real seismic data. The forma

tion on which the transition matrices were based for simulat

ing Models E and F was marked on the seismic sections of

Areas X and Y and the 387 seismic traces when subjected

to the discriminant analysis allowed to distinguish between

litho stratigraphic units of Areas X and Y, thereby endorsing

the validity of this approach. Contributions of the seven

teen variables towards effective discrimination shows that

only seven variables, viz., fQ, A2/AQ, f^ T^^, fM, f^

and A]_/Ao> common to both synthetic and field seismic data,

make positive contributions- The variables designated as

seismic discriminators of subsurface litho stratigraphy may

ultimately help discriminate an oil bearing stratigraphic

trap from its barren surroundings in a sedimentary basin.

The statistical method presented here has been

shown to be a potential tool for the determination of sub

surface litho stratigraphy from seismic data. This consti

tutes on important additional tool in the exploration for

hydrocarbons.
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CHAPTER - I

INTRODUCTION

Over a third of the world's power comes from oil.

Its rate of consumption has far exceeded the rate of produc

tion and discovery of new reserves. This imbalance has

prompted the search for new reserves of oil locked in strati

graphic, structural and combination traps. Whereas most

structural traps have already been discovered and are being

exploited, stratigraphic traps which have not yet received

their due share of attention hold promise of containing large

reserves of the yet undiscovered oil and gas.

Seismic methods have played an important role in

exploration of oil, especially in locating structural traps.

Recent advances in exploration geophysics have considerably

improved the seismic resolving power thereby enhancing the

chances of locating stratigraphic traps. This has led to the

development of new interpretative modeling techniques which

can help in solving stratigraphic problems, in predicting

lithologies and their inter-relationship which at times yield

information regarding conditions favourable for accumulation

of hydrocarbons.

1*1 SEISMIC STRATIGRAPHIC EXPLORATION

The interpretation of subsurface stratigraphy from

seismic data is possible by studying the nature of reflection

cycles and their termination with respect to adjacent reflection
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events (Vail, Mitchum, Todd, tfidmier, Thompson, Sangree, Bubb

and Hatlelid, 1977). These terminations help to locate boun

daries between zones corresponding to specific types of deposi

tional units, each associated with characteristic reflection

patterns. The degree of convergence or divergence of reflection

is also diagnostic of environmental conditions prevailing during

deposition of a sedimentary sequence. Such mechanisms as delta

formations, transgression and regression of. sea level and tilt

ing of strata are associated with patterns on record sections

that make it possible for the interpreter to reconstruct the

geologic history of sedimentary areas (Dobrin, 1977). The study

of patterns can narrow the search areas in which the deposition

al environment appears favourable for stratigraphic accumulation

of hydrocarbons- -

Lyons and Dobrin (1972) have stated that more than

half the oil and gas that will be eventually found will be

designated as occuring in stratigraphic traps. They have cited

the case of a 'mature' exploration province in Oklahoma, where

in 1942, 49 percent of the oil and gas pools were stratigraphic,

it rose to 62 percent in 1967 with the discovery of four times

as many pools. The great size of some of these stratigraphic

traps and their greater number will bring them ahead of the

structural traps in ultimate reserves.

Definition of stratigraphic features ideally requires

the seismic delineation of lithologic boundaries or the resolu

tion of thin beds which depends on seismic wavelengths. Source

wavelets of small wavelengths can resolve thin beds compared
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to longer wavelengths. If two reflection boundaries are close

together in terms of seismic wavelengths they will not be

easily recognized on seismic records. This sets a limit on

the resolution of thin beds and pinchouts. Widess (1973) has

shown that the thinnest bed that can be resolved by seismic

method should have a thickness of 5/8th of a wavelength. How

ever, high frequency energy is difficult to record because of

its rapid attenuation, which sets a limit on the depth of

penetration of seismic energy and therefore high frequency

reflections from deep beds may not be obtained.

Lyons and Dobrin (1972) have suggested the following

improvements for increasing seismic resolution '. use of high

frequency source pulse, detonation of shots in consolidated

material, high frequency recording, filtering programmes to

increase the signal to noise ratio of high frequency reflection

and the use of vertical arrays of pressure phones in boreholes.

Pioneering work in interpretation of stratigraphy

from seismic data has been carried out by several workers

using different approaches. Cook and Taner (1969) and Taner

and Koehler (1969) have used interval seismic velocity for

identifying lithology. This approach is used as a regular

exploration tool for determining the sand shale ratio although

it suffers from the limitation that different interval veloci

ties emerge from different choice of intervals. Hilterman

(1970); Harms and Tackenberg (1972>, Gir (1974); Ledman,
iindsey and Schramm (1975); Khattri and Gir (1975, 1976)*,
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Nath (1975); Neidell (1975); Brown and Fisher <197T>; Clemen
(1977); Galloway, Yancey, and Wipple (1977); Meckel and Nath

(1977); Neidell and Poggiagliolmi (1977); Schramm, Dedman and
Lindsey (1977),* Sieck and Self (1977); Stuart and Caughey(l977);
Taner and Sheriff (1977); Vail, Mitchum, Todd, v/idmier,

Thompson, Sangree, Bubb, Hatlelid (1977),' tfiemer and Davis

(1977); Sangree and Widmier (1979) are some of the workers who

have given significant examples of the use of seismic data to

model horizontal and vertical facies changes characterising

stratigraphic variablity. The above workers have tackled

stratigraphic problems related to modeling using the determinis

tic approach. The seismic response computed is due to a parti

cular stratigraphic situation. To take into account a large

number of vertical variations in lithology Sinvhal (1976) and

Khattri, Sinvhal and Awasthi (1979) have introduced a statis

tical approach in characterizing different stratigraphic

situations.

Mathematical modeling of sedimentary sequences is

essentially a computational procedure. The model is given in

terms of interval properties such as velocity, density and bed

thickness. The seismic response that would be generated from

the assumed geologic situation gives the synthetic sei sinogram.

The objective of this kind of modeling is to identify litho-

logic changes by interpreting synthetic data. These lithologie

changes offer possibilities to locate stratigraphic traps that
oan hold hydrocarbons.
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Certain complex layering patterns may be associated

with certain seismic characteristics that can be identified

by statistical techniques. Mathieu and Rice (1969); Avasthi

and Vema (1973); Waters and Rice 1975) and Sinvhal, Gaur,

Khattri, Moharir and Chander (1979) have identified typical

reflection patterns from varying lithologic sequences. Mathieu

and Rice (1969) and Waters and Rice (1975) have chosen a part

of the Pennsylvanian Morrow Formation in wells along certain

seismic lines. Synthetic seismograms were made from the velo

city logs obtained from the wells. Pattern recognition

techniques involving the use of factor analysis were applied

to records along lines between wells and the various kinds of

lithology at each shot point were identified and napped.

Mathieu and Rice (1969) applied discriminatory analysis to

differentiate between sandstone and shale within a specified

stratigraphic interval, using the tine donain variables. Al

though techniques of this type were successful in some cases,

the authors note that there were instances where this approach

did not predict lithology reliably.

Sinvhal (1976) and Khattri, Sinvhal and Awasthi (1979)

have used the impulse response of nodels of subsurface forma

tions and statistically analyzed then for abstracting seismic

parameters which could be characteristic of the stratigraphy

and lithology of the formations. Two types of formations have

been considered, consisting either of sand-shale sequences

of coal-shale sequences. Models of the formations are generat

ed using the Monte Carlo method. It is found that three
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features in the power spectrum of the impulse response, namely,

the frequency fe at which the spectrum can be divided into a

zone of high energy from a zone of low energy, the lowest

frequency, fp, where there is a significant energy peak and
the frequency fm at which there is maximum energy, can be used

statistically to distinguish between the formations consisting

of sand-shale sequences and the formations made up of coal-

shale sequences. Three additional parameters &2/Kt A2/AQ and
Al/A0' where A denotes the autocorrelation function of the

impulse response at the subscripted lag are also statistically

significant discriminators between the sand-shale formations

and the coal-shale formations. The discrimination between the

two subgroups of each model consisting of more (or less) than

50 percent of one lithology is also feasible, although there

are fewer discriminants available.

1.2 SCOPE AND APPROACH

The most remarkable aspect of the study of Sinvhal

(1976) and Khattri, Sinvhal and Awasthi (1979) was that a sand-

shale sequence could be distinguished from a coal-shale

sequence depending on the content of sand, shale and coal.

This was the basic promoting feature behind the present

endeavour. However, stratigraphic sequences are not random

stacks of lithologies, but each unit bears some relation with

the lithounit deposited previously. Any mathematical procedure

which takes this into account will give a more realistic model.

Markov chains offer ample scope for this and have been used in
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the present study. Moreover, the seismic response of a

layered medium is more appropriately estimated by convolving

the impulse response with a source wavelet, which will give a

band limited spectrum. A formation with sand-shale-coal

alterations in a sedimentary basin in India has been takenup

for the present study. The following approach has been

adopted ".

(a) Sedimentation models with sand-shale-coal alterartifins.

have been constructed using one step Markov Chains.

The probability of upward transition from one litho

logy to another required in generating Markov chains

is calculated from borehole data, from a sedimentary

basin in India.

(b) The seismic impulse response of the above models is

calculated by using velocity and density information

from well log data. The response is convolved with

a source wavelet to give conventional type of

seismograms.

( c) The autocorrelation function of the synthetic seismo
grams has been calculated.

(d) Power spectrum of the synthetic seismograms is comput
ed using the Fourier transform and maximum entropy
methods.

U) Variables which will be used to characterize lithology
are searched and picked from (c) and (d). These are

subjected to the statistical linear discriminant

analysis.
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(f) Parts of seismic sections corresponding to a
hydrocarbon bearing formation in India4" have

been subjected to the analysis as given in (c),
( d) and (e).

On the basis of several variables selected from

the autocorrelation functions and the power spectra of

seismograms it has been possible to distinguish between

dominantly sandy and shaly lithologies both in the case

of synthetic and real data.

l^J SLSJS'T* embodied in this thesis is based on
real field data, courtsey O.N.G.C, Dehradun. The loca
tions have been suppressed. The sedimentary basin is
referred to as Basin Z, two areas within the basin as
Folm'at anK. ^ hydrocarbon bearing formation as
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CHAPTBR - II

SIMULATION OF MODELS

The nature, cause, effect and any other aspect of a

complex natural phenomenon may be studied by physical, con

ceptual or mathematical models and may often lead to new ideas

and discoveries. In mathematical models the essential aspect

of the phenomenon are represented by mathematical relationships

based on relatively few parameters. A good model would predict

essential features of the phenomenon sufficiently accurately..

However, the construction of good models may be restricted by

an inadequate understanding of the natural phenomenon and its

consequent mathematical formulation, or by the number of para

meters to describe it, a restriction imposed by the cost of

simulation.

In the present investigations geologic depositional

situations have been simulated on a digital computer by a

mathematical formulation. The depositional process and

environmental condition to represent any geologic situation is

first assumed and a model for it is visualized,. The process

is modeled by choosing certain relevant parameters such as

velocities, densities and interface geometry which is used

as input data to the computer to simulate the geologic model.
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2,1 MONTE CARLO MODELS

Sinvhal (1976), Khattri, Sinvhal and Awasthi (1979)

and Sinvhal, Gaur, Khattri, Moharir and Chander (1979) have

modeled cyclic repetitions of lithologies and have simulated

simple binary systems with alternating sand and shale or shale

and coal beds. They employed Monte Carlo technique to select

thickness of the successive layers, which took into account

the variability of the depositional accumulations. After fixing

the model thickness at about 200 a for reasons discussed in

section 2.5, individual layers with a thickness having a two way

vertical travel time of 6 ms or its multiples were considered

for the model. With these constraints the number of layers

in each model varied between 10 and 25. Each of these

approximately 200 m thick models were overlain by a 200 m

thick homogeneous layer and underlain by a homogeneous half-

space so that the model could be studied in isolation. The

velocities and densities assumed for and assigned to the

constituent lithologies are similar to those often met in the

field conditions and are given in Table 2.1.

Table 2.1 - Velocities and Densities used for Monte Carlo
models (After Sinvhal, 1976).

Constituent s of the model Velocity
m/sec

Densi ty
g /c.c.

Overburden 1400 2.40

Sandstone 2150 2.05
Shale 2000 1.95
Coal 1500 1.50

Lower Half space 2400 2.20
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The sand shale models depict sedimentary environments

ranging from oscillating marine to continental environments.

The coal shale model depicts environmental transitions from

continental to marine conditions.

One hundred and ten sand-shale sequences and an equal

number of coal-shale sequences were simulated on a computer.

These simulations were grouped into four categories ".

(i) Model A '. sand shale ratio ranging between .2 and .5

(ii) Model B '. sand shale ratio ranging between .5 and .8

(iii) Model C '. coal shale ratio ranging between .2 and .5

(iv) Model D '. coal shale ratio ranging between .5 and .8.

The study and analysis based on the seismic response

of the above simulations helped in differentiating gross litho

logies in the four models discussed above. It is pertinent to

note that only random distribution of lithologies and thickness

es generated by the Monte Carlo techniques were considered for

the study. The lithounits and their thicknesses in a sedimen

tary series of beds deposited conformably often have more than

two component lithologies and the individual lithounits may be

inter-related by a certain probability of transition. Thus the

Monte Carlo Models discussed above are rather simplistic and do

not define natural depositional sequences met in nature suffi

ciently accurately. Therefore, it was desirable to extend the

study by taking into account a more realistic representation.

Markov Chains make it possible to model lithostratigraphy in

terms of transition probabilities in which lithounits display
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partial interdependence on each other, and have been used in

the present study.

2.2 MARKOV CHAINS AND TRANSITION MATRICES

A stratigraphic sequence of conformable beds can be

considered as a series of partially interdependent finite

number of lithologies. Such a situation can be ideally modeled

using Markov Chains which involve the concept of conditional

probability. Markov Chains may be regarded as a sequence or
a chain of discrete states - in this case lithologies in

space (or time) in which the probability of transition from

one state to another in the next step in the sequence depends

upon the previous state. If the system at a certain point, xr
(or time tr)iepends upon the state at point x , (or time t ,)

r-1 r-1

according to certain probabilities, then it is known as a

first order Markov Chain.

Markov Chains can be conveniently used to model

complex processes which are subjected to influences that can

not be exactly evaluated. The changes of state can be

rigorously examined in terms of their relative probabilities

of occurrence. This is evident in cyclical sedimentary

sequences, where an underlying pattern of lithologic succession

can be discerned, but in which the actual sequence of rock

types can only be predicted in terms of their relative pro

babilities. Carr, Horowitz, Harbar, Ridge, Rooney, Straw, Webb
and Potter (1966); Krumbein (1967,68); Potter and Blakely(l967)
and Visteiius (1967) have used Markov Chains in modeling
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stratigraphic sequences-

Let a Markov Chain consist of three states s-,, s2 and
s^. Let p1j be the probability of transition from ith state
(1*4,2,3) to the jth state (j=l,2,3) in which the jtfa gtate

underlies the jth state. These probabilities are based on
frequency distribution of various transitions amongst different

states. Let these probabilities, p±.( be expressed in the form
of a transition probability matrix, P, given in the matrix 2.1.

In this matrix i and j correspond to rows and /columns respecti
vely, i.e., Pi_. ig the probability of vertical transition from

state a± to state s.., or plg is the probability of upward
transition from state l to state 2.

P a

*1

S„

*1

n
•li

21

31

3r

12 13

22 23
... (2.1)

32 '33

if b^ are the total number of transitions possible

from state i to any other state and a are the number of
* J

transitions from state i to state j, then P. .= a. ./b. , (i=l,2 3)
i j i j i

and (j=l,2,3). Several upward transition matrices may be con
verted into one average matrix by using the formulation

n

( 2 ljk iky '

n

S

k^L
Jik ... (2.2)
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+Vi 4-In

This gives the element in i row and j column of the new

matrix, where n matrices have been used in the averaging

process.

2 .3 TRANSITION MATRICES OF FORMATION K

Two adjoining areas X and I representing part of a

sedimentary basin in India have been considered for the present

study. Drilling operations in the sedimentary basin have

revealed the presence of thick sedimentary rocks of Tertiary-

Quarternary age. The Formation K, in the above basin is

usually 200 to 300 metres thick and has a lithological composi

tion of sandstones, shales and coals. This formation is wide

spread in this basin and is sandwiched between two thick

sections of shale and has been modeled and studied is the

present investigations.

In Area X, this Formation is represented by thick

sand (53 percent), shale (26 percent) and coal (21 percent)

sequences. In Area Y, the Formation is dominantly shaly (60

percent) with minor sandstones (37 percent) and a number of

coal streaks (3 percent). The Formation was deposited under

alternating regressive and transgressive marine environments

(O.N. G.C., unpublished xeports). The shale underlying the

Formation K are thought to be the source rocks for oil found

in the reservoir rocks of this Formation. In the present sturdy

the sequences of lithology in the Area X represents depositional

environments near the basin margins and Area Y represents

relatively deeper water environments.
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Data from sixteen boreholes in Area X and three from

AreaY have been used in this study. Care was taken to select

those boreholes which are situated near or on the seismic

lines to give better correlation. Since the AreaY exhibits

less lateral variations in lithology, fewer wells were consider

ed adequate to represent this area. The Formation K of these

stratigraphic sections have been used to obtain upward transi

tion probability matrices by using transitions from one rock

type to another at four metre sampling interval. One represen

tative case for each of the Areas X and Y is illustrated in

Figures 2.1 and 2.2, respectively.

To set up a transition probability matrix for transi

tions from one lithology to its successor, observations of the

upward changes are first recorded in the transition frequency

matrix of Figure 2.1. Each box in the matrix gives the total

number of upward transitions from the state denoted by the

row, to the succeeding state, denoted by the column. A total

of seventy transitions measured at fixed vertical intervals

have been observed for the Formation K in this well. The

transition frequency matrix has been Converted into a transi

tion probability matrix, shown in the same Figures 2.1 and 2.2.

The transition matrices calculated are sensitive to

the sampling interval chosen. If relative frequencies are

taken as a measure or probability then a large number of

transitions should be considered, i.e., the sampling interval

should be very small. The sampling interval of 4 metres
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TRANSITION FREQUENCY MATRIX
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FIG.2.1_ STRATIGRAPHIC SECTION IN A WELL IN AREA X, WITH ITS
UPWARD TRANSITION MATRICES. (SAMPLING INTERVAL IS 4 m.)
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TRANSITION FREQUENCY MATRIX
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FIG.2.2. STRATIGRAPHIC SECTION IN A WELL IN AREA Y, WITH
ITS UPWARD TRANSITION MATRICES. (SAMPLING INTERVAL
IS 4 m.)
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thickness chosen in the present study was guided by the facts

that (i) the results are to be used for seismic stratigraphic

studies and (ii) the resolution of present day seismic methods

is much less than the above thickness. It may be mentioned

that in the present analysis beds with thickness of less than

4 metres are sometimes either missed or read as 4 metres thick,

because of the restrictions imposed by a fixed sampling inter

val of 4 metres. Transition matrices thus calculated for 16

wells of Area X and 3 of Area Y are given in Tables 2.2 and

2.3.

Each fractional element in the matrix gives the

probability of upward transition from state s. to state s.

where i = 1,2,3 and 3=1,2,3 (Table 2.2). The first row in

each of the matrices indicates the transition probabilities

from sandstone to sandstone, shale or coal. For Well E-l

the fraction 28/34 indicates that a total of 34 transitions

have been observed from sandstone, 28 of which are to sand

stone itself. From the same row it can be observed that 5

transitions are to shale and 1 is to coal. The total probabi

lity of all transitions possible from sandstone therefore adds

upto 1. This is true for every row in all the matrices. The

zero element indicates that transition from that particular

state, denoted by the row number, to the succeeding state,

denoted by the column number, is not possible. Interesting

cases are Wells S-2, E-7 and E-14, which indicate a total

absence of coal in the Formation K.
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Table 2.2 - Upward Transition matrices for the 16 wells
considered for the study of Area X. s, ,
are the three lithological states sandstone, shale
and coal in this order.

s2 and s.

Well E

sl S2 s3

sl 28/34 5/34 1/34

s2 5/27 22/27 0

33 0 1/9 8/9

Well E - 3

Well E - 2

h 32 s

11/15 4/15 0

3/6 3/6 0

0 0 0

Well E - 4

sl 29/40 7/40 4/40

s2 6/19 12/19 1/19

s3 5/11 1/11 5/11

Hell E -5

s.

%

18/2 6 7/2 6 1/26

5/12 5/12 2/12

2/6 1/6 3/6

*1 %

h 17/24 5/24 2/24

s2 4/23 18/23 1/23

s3 2/4 1/4 1/4

Well E - 6

*1 % S3

Sl 24/31 2/31 5/31

H 1/2 1/2 0

s3 4/9 0 5/9
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Well E - 7 Well E - 8

31 % s3 *l % 33

sl 3/5 2/5 0
^ 42/51 5/51 4/51

s2 2/7 5/7 0 s2 5/13 8/13 0

33 0 0 0
33 3/8 1/8 4/8

Well E - 9 Wejj E - 10

al «2

31 37/45 3/45 5/45 h 9/17 7/17 1/17

s2 2/8 3/8 3/8 H 7/38 30/38 1/38

33 6/23 2/23 15/23 33 1/5 1/5 3/5

Well E - l] Wen E - 12

•l % 33 h % s3

31 19/29 8/29 2/29" 31

la

21/29 5/29 3/29

s2 5/26 20/26 1/26 s2 4/15 10/15 1/15

33 3/11 f 8/11
33 _3/6 1/6 2/6
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Well E - 13

«2 33

Well E - 14

*2h 33

3i "27/35 5/35 3/3 5~ sl 13/18 9/18
—

0

s2 5/8 1/8 2/8 % 5/7 2/7 0

33 3/9 2/9 4/9 33 0 0 0

Wen E - 1 s

•fe 33

Well E - 16

^ *1 % s3

31 "2 6/38 8/38 4/38^
*1 ^20/32 11/32 l/32~

"2
j

7/14 5/14 2/14 •2 10/36 23/36 3/36

S3 i 4/9 2/9 3/9 _ s3 1/10 3/10 6/10J
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Table 2.3 - Upward transition matrices for 3 wells of AreaY-
s1, s2 and s3 are the three lithological states
sandstone, ahale and coal, in this order .

Well J? - 1

sl 9/12

s2 2/23

s3
0

Well F - 2

h

sl "8/13

s2 4/29

^ .
0

Well 1 - 3

a2

3/12

20/23

1/1

a3

0

1/23

0

'1

31

*2 33

5/13 0

23/29 2/29

2/3 1/3

15/22 7/22 0

6/J2 15/22 1/22

0 1/1 0

J
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Table 2.4 - The average matrix characterizing area X

Sn *2 s,

31 0.75 0.17 0.08

*2 0.25 0.70 0.05

33 0.29 0.12 0.59

Table 2.5 - The average matrix characterizing area Y

s
3

0.68 0.32 0.00

0.16 0.78 0.06

0.00 0.73 0.27
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Sixteen wells of Area X and three of AreaY have

been used to give two average matrices each characterizing

a different environment, these are given in Tables 2.4 and

2.5, respectively. The matrix in Table 2.4 characterizes

depositional environments near the basin margins while the

matrix in Table 2.5 represents relatively deep water environ

ments. It has been already mentioned that AreaY contains

very small quantities of coal in the form of thin streaks.

These may be missed depending on the sampling interval.

Tables 2.3 and 2.5 clearly illustrate the paucity of coal in

AreaY as coal has 0.00 probability of succeeding sandstone,

0-06 of succeeding shale and only 0.27 of succeeding itself.

It is mostly followed by shale.

2 • 4 TESTING FOR THE MARKOV PROPERTY

While studying Markov models it is relevant to check

whether the process under study actually has the Markov property.

For this, a test to distinguish between the two alternative

hypotheses, that either the successive events are independent

of each other (the null hypothesis) or the events are not

independent, is performed. If not independent, they could form

a first-order Markov chain. The test statistic X ia given by
m / p . \ n. .

Now,
m

-2iogeA =2 x hj loge (Plj/P);

which is distributed as ^ with (m-l)2 degrees of freedom
(Anderson and Goodman, 1957),
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= probability in box i.j 0f the transition
probability matrix,

=marginal probabilities for the j*>> column
m m

( = £ n. . / y n )
i ^i,j **i j'

i transition frequency total in box i,j 0f the
original frequency matrix 0f observed
transitions,

= total number of states.

»is test is illustrated for the average matrix of
«ea Y. The average tally matrix of Area Yis glven by

1 32 s^ Totals

31 542 255 0 797

32 1294 1457 103 1854

S3 [ 0 8 3__ 11

Totals 836 1720 106 2662

The values of p ^e calculated by taking tfe» • •
for thP i^ , y king the marg^al totalJ column in the tally matrix and dividing it by the
overall total. For the three columns ,

Px - 836/2662 = 0.3l

P2 = 1720/2662 = o.65

P3 = 106/2662 = o.04
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-2 log, X: 2 C542 loge gtff *»» loge fc|§ , 0 *
*294 log, gaifi »14„ lQge £7| t 10J ljge ^

*0+1720 loge §j|| ♦ 3loge £§§ 3

=2 C542 loge 2.19 +255 log 0.49 ♦ 294 l=gc 0.52 +

+1457 loge 1.21 +103 loge 1.25 4-1720 log 1.12

+• 3 loge 5.75^

= 2 C424.87 - 181.90 - 192.25 * 277.73 f 22.98

+ 19-49 + 4.75]]

=2 x 375.67 = 751.34

The number of degrees of freedom, (m-l)2 is (3*4)2 = 4.
If the level of significance a =0.05 is considered, then the
table of values of the yg distribution (Fisher and Yates,
1963) gives the corresponding value of X2 ^ 9.49. The
calculated value of -2 loge Xis 751.34 which is nrnch greater
than the tabulated value 0f & Therefore the null hypothesis
that these transitions are from an independent events process
can be rejected and the alternative hypothesis that the transi
tions have the Markov property can be accepted.

2.5 MARKOV MODELS E AND F

Average matrices characterizing areas X and Yhave been
used to generate synthetic sequences comparable to the original
sequences of these .areas. The models generated from these
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average matrices for areas X and Y are designated as Markov

Models E and F, respectively. A computer programme to

generate such sequences from transition probability matrices

as given by Harbaugh and Carter (1970) has been used in the

present study. Cumulative transition matrices have been

computed by adding successively each element of the row to

the next element on the right so that the extreme right

element attains a value 1.0. The transition probability

matrix values of the average matrix for areas X and Y are

shown in cumulative form in Tables 2.6 and 2.7 respectively.

Using the transition probability matrix the programme generates

a sequence of stratigraphic states. The initial state is

generated at random, giving each of the states an equal pro

bability of being selected. Pseudo-random numbers are generat

ed in the range 0.0 to 1.0. Following Harbaugh and Carter

(1970), the first number is transformed so that it lies within

a range of integers extending from 1 to 3, which is the total

number of possible states considered for this study. The

resulting integer selected in this range provides the starting

state. From then on the programme generates subsequent states

by sampling the cumulative probability matrix. To select the

state at a certain instant the row of probability values

pertaining to the state chosen at the immediately preceeding

instant is sampled. This is accomplished by generating a

random number between 0.00 and 1.00 and progressively comparing

it with each element of the appropriate row of the matrix,

starting with the lowest value, in the left most column.
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Table 2.6 - Cumulative Transition Matrix for area X

*1 s2
33

To.75 0.92 1.00

0.25 0.95 1.00

0.29 0.41 1.00

Table 2.7 - Cumulative Transition Matrix for area Y

31

a.

*1 «2

0.68 1.00 1.00

0.16 0.94 1.00

0.00 0.73 1.00
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Comparison of the numbers continues until it is found to be

equal to or greater than the random number. The column

containing that number identifies the next state. The process

is illustrated in Figure 2.3.

The synthetic stratigraphic column shown in Figure 2.4

is based on the transition probability values of Table 2.6.

Since the transition matrix was based on a 4 metre interval

sampling of the well data, each state generated in the

synthetic sequence also corresponds to 4 metre thickness.

However, for reasons explained later (in Chapter III) these

thicknesses have been slightly modified to fit the equal travel

time criterion required for generating the synthetic seismogram.

The seismic velocity in sandstone is taken as 2362 metres/second

and a tw0 way travel time of 4 milliseconds required that the

sandstone thickness should be 4.72 metres, therefore each

sandstone layer has 0.72 metres added to it. An appropriate

addition or subtraction is made in all other lithounits accord

ing to the velocities given in Table 2.8, which are calculated

from geophysical well log data.

The thickness of the model is governed by two factors,

the thickness of the K Formation which can at places be as

thick as 300 m, and the wavelength of the source pulse. Since

the velocities of the lithounits are approximately 2000 m/sec

and the duration of the source pulse is 44 msec, therefore

the wavelength of the pulse is around 88 m. If a pair of
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SANDSTONE.ON SECOND DRAW RANDOM NUMBER IS 0.86,WHICH IS

LESS THAN 0.92 BUT GREATER THAN 0.75. RESULTING IN THE

5ELECTION OF SHALE TO SUCCEED SANDSTONE.
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Table 2.8 - Velocities and Densities used for Markov Models
E and F

Constituents of
the models

Vel o ci ty De n si ty
m/sec g /c. c.

Markov Model E

for Area X Overburden 1400 2.00

Sandstone 2875 2.2l

Shale 2629 2.46

Coal 1998 1.41

lower Half Sp ace 2400 2.50

Markov Model F

for Area Y Overburden 1400 2.00

Sandstone 2 362 2.29

Shale 2192 2.39

Coal 1929 1.46

Lower Half Sp;ace 2400 2.50
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reflecting surfaces are at this or greater distance apart
they can be easily resolved on a reflection record. If on
the other hand, the surfaces are seperated by less than a
wavelength, the resolution becomes difficult as the seperation
decreases (Widess, i973). Therefore the model thickness is
Kept at about 200 mand it is sandwiched between homogeneous
strata to study its effect in isolation. Such situations are
often met in sedimentary basins.

OVo hundred and fifty five synthetic stratigraphic
sequences characterizing .rea X, have been simulated by
using the cumulative transition matrix given in Table 2.6.
Three of these are shown in Figure 2.5. Another tw0 hundred
and fifty three stratigraphic sequences characterizing AreaY
are generated by using the matrix in Table 2.7 and three of
these are shown in Figure 2.6.
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CHAPTER - III

SYNTHETIC SEISMOGRAMS AND THEIR .

ANALYSIS

Synthetic seismograms were first described by Peterson,

Filli',ppone and Coker (1955). They used artificial reflection

records made from velocity logs. These logs were converted

in depth to a reflectivity function in time, which was con

volved with a presumed source wavelet. Synthetic seismograms

have since then assumed considerable importance in seismic

exploration.

Wuenschel (i960) introduced a frequency domain approach

for calculating synthetic seismograms for normal incidence.

Treitel and Robinson (1966)* Claerbout (1968, 1976) have

calculated in the time domain the impulse response generated

by a source at the surface of a horizontally layered earth,

assuming plane waves at normal incidence.

3.1 SYNTHESIS OF A LAYERED MEDIUM FROM ITS ACOUSTIC
TRANSMISSION RESPONSE

The seismic response of synthetic stratigraphic columns

described in Chapter II can be calculated if the reflection

and transmission coefficients at each interface are known.

The normal incidence reflection and transmission coefficients

rk and tk at the interface between the kth and (k+l)th layer
(see Figure 3-1) are given by
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kth Layer

— (^Interface
1st Layer

r1 f H — IstInterface
2nd Layer

r2 i *2 ~ ~ 2nd Interface
3rd Layer

r3 >t3 3rd Interface

rk f tk kth ,nterfac<
(k.l)lh Layer

Vl,'k*1 (k*1)th Interface

HALF SPACE

FIG.3.1_ LAYER AND INTERFACE GEOMETRY WITH

REFLECTION AND TRANSMISSION COEFFICIENTS
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, - P^-Pk,lYk,l

2 P. V.
+ k k

p V 4- P Vk+1 Vk-KL* k k

Where Pk and Pk +1 are the densities of the kth and
(k+1) layer respectively, and Vk and V. _ are the seismic
velocities of the kth and (kil)th layer.

Assuming equally spaced interfaces in time the reflec

tion and transmission coefficients are calculated for each

interface. Their impulse response can then be calculated

using the following method given by Cloerbout (1968, 1976).

3.1.1 Impulse Response

Consider a horizontally layered medium in which each

layer is homogeneous, isotropic and perfectly elastic The

half-space underlying the layered medium is taken as homo

geneous and the top is a free surface. Let the strati fioati on

be excited by a downgoing impulsive source at time t = 0,

which produces plane waves normal to the stratification. Let

the reflection and transmission coefficients for the interface

between the kth and (k +l)th layer be rk and tk respectively.
When the ray is travelling from kth layer to (k +l)th layer
the transmission and reflection coefficients are denoted by

t'k and r'k and when the ray is travelling from the (k * l)th
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layer to k layer by tk and rk respectively. It is hence

implied that '.

\=1 * rk

and ...(3.1)

rk " "r'k

In Figure 3.2 the rays are drawn with time displacement

along the horizontal axis to make them appear as at an incident

and reflected angle of 45°. Lines sloping downward or upward,
as indicated by arrows represent downgoing and upcoming waves

respectively. When the downgoing ray D' is incident on the

interface it is partially reflected as U' and the remaining

is transmitted in the next layer as D. The same is true for

the upcoming ray U, which is reflected and transmitted as D

and U' respectively. In Figure 3.2 the primed and the un-

primed layer refer to the kth and (k+ l)th layer respectively.
The waves U and D« can be extrapolated into the future to get
the wares U' and D as given below '.

U» = tkU + r'kD'

D =rkU 4-t'kD<

These equations can therefore be put in the following

matrix form .'

U1 U

... (3.2)

rk *'k. D»
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kth Layer

,thk,n Interface

♦ 1)tn Layer

FIG.3.2.RAYS INCIDENT AND REFLECTED AT A

POINT ON THE kth INTERFACE.
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Equations (3-l) and (3.2) can be combined to get the

following relation between the primed kth and the unprimed
(k+ l)th layer

U U

1
- +i

k
... (3-3)

D D

Let z = W = elw , where T, the two way travel time

equals the sampling interval of the seismogram. Therefore,

multiplication by z _a equivalent to delaying the function

by kT.

The downgoing ray in the upper part of the kth layer

is denoted by D and it reaches the kth interface after a time
W (Figure 3-3), therefore :

Dk -D^V1

and

uk = u'kw.

Combining these tw0 for the kth layer the following matrix
equation is obtained '.

U W 0 U

... (3.4)
D 0 1/W D
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(k -1) Interface

klh Layer

ktn Interfaci

(k.1)th Layer

FIG.3 3_ PRIMED AND UNPRIMED NATURE OF RAYS

FOR THE kth LAYER.
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where suffix k stands for the kth layer. Combining equations
(3-3) and (3.4), relation between displacement at top of the

(k+l) layer with the displacement at top of the kth layer

can be obtained*.

U zr, U

DJ
«t

D

... (3.5)

k + l

The determinant of the coefficient matrix in equation (3.5) is

z
zr,

V V
=(l-r2k)/t2k =(l-rk)/(H- rk) ... (3-6)

tkw tkw

Considering the case of three layers the relationship

linking the displacements at top of the first layer with that

at top of the half space works out to be

U z r, zrv u

1

w
D

J L
D

U z2<<!♦ r^U/z) \l z2 !r2+ __(_/•) U

D

tlt2i
(r2 +z.ri) I (i+z rxr2) D
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The relation for(k+ 1 )layered medium is given by

U

1

z

-rl

zrl"

1

' z

- r2

—-

zrp

1_

z

-rk

zrk

1 _

r -i

U

D

X-i Xa » • • Xj "

The product of the k matrices is given by
.k

(3.6a)

k+I

1
—F

z"F(l/z; z^G(l/z)
... (3.7)

G(z) F(z)

where,F(z) * t± =1 +F^a +F2z + .. . *? _ z^"1 ...(3-8)

and G(z) _n t_ = rk+ G^z f G2z + ...4- G. .. k-1
...(3.9)

For a(k + 1 )1 ay er model the determinant corresponding to (3.6)

is given by

k 1
% det =s tc

r.
l

1=1 1 + r.

F(z) F(l/z) - G(z) G(l/z) ...(3.10)

Formula (3.10) says that there are two spectra F(z) F(l/z) and

G(z)G(l/z) whose difference is positive as well as frequency
independent.

The boundary condition at the surface is that the up

coming wave is the reflection seisinogram
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R(z) - 2, E. ♦ z R2 + •• •

i.e., U = R(z)

Inhere R,, R2, ... , are the impulses representing the reflected

energy. The downgoing wave is the impulsive source RQ = 1

plus the reflection R(z) from the free surface,

D = 1 + R(z)-

Therefore, the boundary conditions at the surface can be

represented by

U R

... (3.10a)

D 1+ R
1

Boundary conditions at the half-space underlying the

layers is that the upcoming wave is zero and the downgoing

wave is some unknown function T(z), i.e.,

U

D

k + 1

"0

T

... (3.10b)

Using equations (3.10a) , , (3.10b) and (3-7), equation (3.6a)

transforms to*

R *kF(l/z) *kG(l/z) 0

1+R
M

G(z) F(s)

... (3-11)
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On subtracting the first equation in (3.11) from the second, we
get :

R

W

kz^F(l/z) z*G(l/z)

G(z)-zkF(l/z); F(z)-zkG(l/z)

From this the transmitted wave is given by

T(z) -» / ll(z) - zk G(l/z)_l

0

.(3-12)

...(3.13)

Physically, T(z) must have finite energy and is a delayed

minimum phase function.

Defining a new quantity M(z) as M(z) = F( z)-zkG(l/z),
equations (3-11) and (3.12) give the following relations -

T(z) = tfk/M(z)

R(z) = vTk zk G(l/z) T(z)

- zk G(l/z)/ M(z)

1+ R(z) = F(z)/ M(z)

R(z) M(z) = zk G(l/z)

R(l/z)M(l/z)= z"k G(z)

Combining SOme of these yields

El+R(z)+R(l/z) J M(l/z)

= O(z) M(l/_)* z"k G(z) M(z)"_]/ M(z)
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=E^(z) |F(l/z)-z-kG(z)l ♦

z"kG(z) [F(z)-zk G(l/z)~i 2/ M(z>
*- i

= _•«_) F(l/z) - G(z) G(l/z)l/ M(z)

= (tx det)/ M(z)

= (n det) T(z)/ Wk

For a two layer system

Ro Rl a2

Rl R0 h

R2 ^L %

R3 s2 h

R
oo

M
0

M.
1

uM2^

which on dividing by M0, where M

becomes,

R0 Rx

Rl R0
R, "i

R
oo

R2

h

R0

1

Mn /M

?2

1' 0

7i det/M

0

... (3.14)

0

=1/ %^ t±

= 1/ % (H- r. )
i=l x

0

...(3.15)
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If the system is a two layer system, the fourth and

subsequent equations in (3.15) do not over determine the

system, rather they show how to calculate the rest of the

reflection seismogram (R,, R., ... ) once M has been deter

mined from Rq, R-, and R?.

Equation (3-15) may be generalised to the case of

many layers by making use of the Levinson recursion algorithm

(Levinson, 1949). This yields a reflection seismogram for a

sequence of layered rocks. Figure 3«4 shows the same strati

graphic sequence as in Figure 2.4, with the reflection co

efficient series and the impulse response as calculated by the

method described above.

3.1.2. Source Wavelet and Convolution

It is desirable that the impulse response obtained in

section3.1.1 should be made to appear like a conventional seis

mogram. This is achieved by convolving the impulse response

with a source wavelet of 44 ms duration. Convolution in time

domain for sampled functions is given by

, N-l
c(k) = * E g(T) h(k-t)

iN T=0

where c is the convolved output, the synthetic seismogram,

N is the number of samples in impulse response g, t is the

lag and h is the source wavelet,' or as used in this study the

Ricker wavelet(Figure 3.6).
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The source wavelet used in making the synthetic seis-
mcgrams is U3ually the Ricker pnlse given by Ricker (1953,1978).
Wdess (1973) and Dobrin (l976) have shewn how reflectien
events are modified depending on the relation between the bed
thickness and the wavelength of pulse used. Pigure 3.5 shows
how a simple down travelling source pulse, with a waveform
comparable to that of a Ricker wavelet, is altered when it is
reflected from a sequence of boundaries closely spaced in
comparison with the wavelength of the pulse. Each interface
returns a pulse having the same waveform as the source pulse,
hut the amplitude and phase (whether cr not reversed by a lower
velocity below the boundary) are governed by the reflection
coefficient across it. The resultant of all the individual
reflections is re00rdeQ by the geophone3 plaoefl ^ ^ ^^
The difference between the source pulse and the resultant
reflected signal is quite pronounced. However, it is net
possible to isolate the contribution made by any of the indivi
dual boundaries. It is hence implied that a typical seismic
reflectien should be looked upon as an interference pattern
madeup of impulses from many interfaces spread vertically over
hundreds of feet rather th«« aa , ,* rather than as a simple event originating from
a single lithological interface.

The broad band spectrum of the impulse response would
be modified by the amplitude spectrum of the source wavelet
which shows a maximum at 60 Ez and a bandwidth of 90 H2

IfjlTMl L1KAKT Uflft&TTT Of W8WP
inu_i
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Sum of individual
reflections shown above

FIG.3.5-COMPCSITION OF REFLECTIONS FROM SERIES OF
FIVE INTERFACES WITH SEPARATIONS SMALL IN

COMPARISON TO WAVaENGTH. NOTE CHANGE IN

WAVEFORM CAUSED BY REFLECTION PROCESS.

WAVEFORMS INDICATED BY DASHED LINES REPRESENT
REFLECTIONS WITH PHASE REVERSAL (MODIFIED
AFTER DOBRIN, 1976).

Source Pulse

(Wavelength is 200 tt.
at 10,000 ft./s)
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(Figure 4-8f). In the present study a total of 508 (255 for

Model E and 253 for Model J?) impulse responses have been

computed, 10 percent noise is superimposed on each, and these

are convolved with a 44 ms duration wavelet to produce

synthetic seismograms. The 10 percent random noise is taken

to account for uncorrelated noise due to wind, microseisms

and system components, which are generally encountered in field

seismograms- Random numbers in the range -0.5 to +-0.5 were

generated and the variance of these numbers was computed to

estimate the energy content in the noise. The ratio of signal

energy to the noise energy (^) was taken and each random

number generated was subsequently multiplied by 10 percent of

J\l to obtain the desired signal to noise ratio and this was

added to the seismogram. Figure 3.6 shows the reflection co

efficient series, the source pulse and the synthetic seismogr

constructed for one simulation of Model F. Some more synthetic

seismograms for Models E and F are shown in Figures 3.7 and

3.8.

3 • 2 ESTIMATION OF AUTOCORRELATION FUNCTION

Any signal correlates perfectly with itself. However,

if a signal is correlated with a replica of itself displaced

by a time-shift t along the time axis then the amount of corre

lation will be less. The dependence of correlation on this

shift is an important characteristic of the signal (Robinson,

1967). Specifically, the autocorrelation function,L, of a

signal is defined as

am
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FIG. 3.6 -REFLECTION COEFFICIENT SERIES AND

ITS SYNTHETIC SEISMOGRAM FOR A

REPRESENTATIVE SIMULATION OF MODEL F.
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1 TAT "I ±l± \ ^+T (t =0,1,2, ..., I,,l)

The signal X^^ _^ represents a replica of the signal X. advanced

by the amount t. The autocorrelation function is symmetric,

i.e., if the replica is shifted to the right or to the left,

the result is the same, therefore, it is sufficient to consider

only one of these two portions.

The synthetic seismograms give the character of

reflections of those sections which have been traversed by the

input impulse, or the source wavelet. The appropriate function

to study the characteristics of these seismograms is therefore

the autocorrelation function (ACF). For constant lag, 4 ms

in the present study , if the ACF gives a sharp peak the

reflector series is largely uncorrected, but if the ACF gives

a broad based peak then a repetitive element is anticipated.

Its rate of decay provides an indication of the frequency band

width. For narrow band signals the autocorrelation decays at a

slower rate as a function of shift than for broad band signals.

The autocorrelation function is the time domain equivalent of

the signal power spectrum and is an important analytical tool

for random signals.

The autocorrelation function of each of the 508 synthe

tic seismograms and 387 real seismograms has been computed and

some of the representative autocorrelation functions are shown

in Figures 4-4-4.7, 4.8(a) and 6.5-6.8.
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3-3 ESTIMATION OF POWER SPECTRUM

The study of any signal if carried out only in the

time domain will not give the frequency at which a certain

character occurs, which may be repeated in a certain pattern.

To study the frequency content, the signal is analysed in the

frequency domain. The use of fast Fourier transform technique

enables efficient computation of Fourier transforms (Bergland,

1969). This is a powerful tool and serves as a bridge between

time and frequency domains- It is possible to go back and

forth between waveform and spectrum with speed and economy. It

helps in finding the periodic components in complex looking

signals and their bandwidths. The power spectrum of the syn

thetic seismogram obtained in Section 3-1 can be studied with

the help of this tool.

Conventional methods of estimating power spectra of

short time series have certain drawbacks. The periodogram

method shows a shift in spectral peaks for truncated sinusoids

when the data length is less than 0.58 times the period of the

sinusoid (Toman, 1965) and a decrease of resolution when the

data length is comparable to the period of the sinusoid (Ulrych,
1972). This method also assumes a periodic extension of the

data. The power spectrum S (f) is defined as I
JT

, v 1 N -2rc ifn
S (f) = * S x h e
P n=l n
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The 'data window' h( n) is used to improve the statistical

properties of the estimator.

The power spectrum may also be estimated by taking the

Fourier transform of the autocorrelation function. It has the

drawback that sometimes negative power is indicated if the data

length is inadequate. Moreover, estimation of the autocorrela

tion function unreasonably assumes a zero extension of the time

series.

let x^, x2, ..., Xjt be the time series under consi

deration. For a discrete random process of zero mean, the auto

correlation at lag i is defined as '.

E L •J denotes the ensemble average of the quantity within

the square brackets. Since the time series can be observed

for finite time,' only an estimate C(t) can be obtained using

the standard technique. Blackman and Tukey (1958) proposed a

power spectral estimator SB_T(f) to overcome the above diffi

culty in accurate estimation of the autocorrelation function.

The power spectrum is given by

+ 1 -2ixifT

3B-T(f) = s C(T) h(T) e

where,

N—t

0(T) "4 nS=1 xnxn '̂ M<N
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The autocorrelation estimate used here is a biased

estimate of A(t), but it has the computational advantage of

a simple scale factor before the summation. As x approaches

N, the accuracy of the estimate C(t) decreases because the

summation will contain fewer terms. As a result, the Sg_rp(f)

akes use of C(t) for values of i in the range (-L,l), where

I is a small fraction of N. The lag window „(t) is introduced

to obtain the desired statistical properties of the estimator,

e.g., stability (Blackman and Tukey, 1958).

Maximum Entropy Method (MEM) originally suggested by

Burg (1967) eliminates the necessity of some of these arbitrary

assumptions about the data or its autocorrelation function out

side the time window. It is particularly useful for short

lengths of data sampled at equal intervals- Numerical results

published by Ulrych (1972;; Ulrych, Smylie, Jensen and Clarke

(1973)," Chen and Stegen (1974) and Kumar and Mullick (1979)

show that the maximum entropy spectral estimator has a better

resolving capability.

Ulrych (1972) has shown the superiority of the MEM

over the conventional method by using a 1 Hz sinusoid super

imposed with 10 percent white noise truncated with a 1 second

window (Figure 3-9). Figure 3-10 shows part of a seismogram
for Area X and its power spectrum using square of the modulus

of the Fourier transform and MEM.

m
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The time series available over (-T, T) can be viewed

as the multiplication of one complete sample realization of

the process by a rectangular function extending from -T to T.

In the frequency domain, this results in the convolution of

the true spectrum with a sine type of function. The ^idth of

the major lobe of this sine function is 1/2 T. Thus any sharp

peaks in the spectrum will be broadened leading to loss of

resolution. As the record length T increases, the major lobe

width decreases and resolution improves. Thus, in conventional

spectral estimation methods, the resolution is of the order of

l/T where T is the length of the record. The maximum entropy

power spectrum can be estimated as given in Section 3.3.1-

3•3-1• Maximum Entropy Power Spectrum

Gonsider a random signal as input to a linear system

where the infinite sequence of output is given by (.-., x_?,x

xo, X., X„, ...) of which the finite segment (x , x,,. ••»xn_-j)

consisting of n points has been observed.

The autocorrelation function (or the power spectrum)

of the above set of observations is to be estimated- The

ACF at zero lag is given by

0/=... -fx0x0+x1x, +xx +x-,x, +-...+ x -,x ,*...
o -d -I -1-1 oo 11 n-1 n-1

- -i- / x2(t) dt
T->oo
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Since only n terms are available for estimating 6 ,
0 ro

it may be estimated by

h -S- ^>o X^ +• X, X, + . . . + X -, X•n-1^

Depending on the sample length n, estimate 2 of 6 will have
2variance, tfQ , associated with it. Similarly, the ACF at unit

lag is given by

jz( = . . . + xx + x xQ + . . . + x 0x ,
1 0 112 n-2 n-1

T* • • •

which can be estimated as

^1 =n^l E>0*1 +xlx2 +'•• +xn-2xn-il]
with a corresponding variance 6? .

Similarly,

h = ^2 CxQx2 ♦ ... +xn_3 xn_±J

^n-1 = _=fe_") E*0 xn-l^

where the corresponding variances are tf2 ... cT2 .
2' ' n-1

In general,

Since the quantities JQt j^, ..., ^^ are estimates
representing the actual values ^, ^, ..., ^ ; the mean .
of a large number of such estimates will converge to the true

value ^k in the limit as the number of estimates tends to oo -
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The variance associated with each estimate ^ is also a

function of the number of samples, n, of the time series

used in obtaining it, being larger for small n and vice

versa. Therefore, ^n_1 has the maximum variance of all

the estimates. The above concepts are illustrated in

Figure 3-11 in which the true values of ^ and the standard
deviation ranges on the distribution of Z are shown. A

particular realization j^ may be as shown by the heavy line,
which may be quite different from the actual value d. , shown

by the dotted line. In general, since more samples have gone

into the estimation of small lag ACFs, their values may be

expected to be closer to actual values, the error increasing

for larger lags, as illustrated by —+ —•* line. There

will be a family of such graphs which will be derived from

different data sets obtained by taking sequences at different

times. They would, on an average, converge to the true graph
of ACF.

The ACF may be estimated more reliably by modeling

the random process as an autoregressive process, or as some

alternative process in which the observed samples can be used

to retrodict and predict past and future samples, respectively
i.e.,

• .., x_2,x_l»j |X0>XrX2 V3. *n' xn+l> '•'
IStfS«i?Ji0n observed data predicted estimation
esTimation error
error
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•*•

FI0.3.1LTHE VARIANCE ASSOCIATED WITH

ESTIMATES $k, THE AUTOCORRELATION
FUNCTION.© SHOWS THE TRUE VALUES

$k FOR THE PROCESS. THE BAR SHOWS

2 STANDARD DEVIATION RANGES ON THE

DISTRIBUTION OF $k ,
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An autoregressive process of order N is described by

the difference equation *.

aQy(t) + a1y(t-l) 4> ... ♦ aN_1 y(t-N+l) *

This implies th^t the current value of the output depends

upon N previous values of the output y(t) plus the current

value of the input x, . The sequence x, may be taken to be

uncorrelated rajidom noise with,

E Ot_]=0

E Cx2^*2

The difference equation may be rewritten as '.

N

y(t) «- £ b y(t-i) = x,,
i=l x x

where b^ = a^/a . This equation may be viewed as stating,

E|y(t)j =-biy(t-l), ..., -b#(t-N) =yP
so that x^ is the error in prediction. Then o"2 can be consi
dered as the mean squared error of prediction, i.e., the

error energy of prediction.

An autoregressive model is to be fitted so that cf2

is a minimum, i.e., the best fit in the least square sense

is desired. This corresponds to choosing coefficients b.,

i =1,2,..., N, in



E
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rji , f N c -,
xj j = 0^ = E j Hy(t) + Z b. y(t-i) J

1 * J L i=l x J

To obtain estimates of b. in the least square sense

2or by minimizing the mean square error, <S is differentiated

with respect to b. and equated to zero.

) *- 1 -\

or,

fg: -ir £E y(t> ♦ z bi y(t-d)j
j j / L- i=l \

N

E 2 rCy(t) + Z b. y(t-i.)_ly(t-j)] > =0
' i=l J

N

E y(t) y(t-j) *• Z b. y(t-i) y(t-j)!
'- i=l x }

N

= 0

i. + _z bA /i_1 = o ; j = 1,2, ... , N.
i=l

#i. = - E "b-L^Q ♦ b2/x ♦ ....♦ bn^H_1 U

^N = " CVn-1 + Vn-2 ♦ •*' +tn^0J''

or,

^0 ^1

^1 ^0

i N-1

^N-l

^N-2

/
0

bl
.

"^"
b2 h
•

•

1 -_
•

•

•

bN

•

^N
_
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The ACF matrix is of Toeplitz form, and it must be

positive definite,* it means that all its eigenvectors must be

>0. This gives the coefficients b^ b2, ..., bN needed for
prediction which can be used to extend the original observa
tions for better estimates of ACF. However, the errors in
crease when longer sequences are predicted, as the predicted
values themselves are used for further prediction. The above
equation has been manipulated to give (Kanasewich, 1975);

Vo h
h i.0

where

Jl

DN+-lJ

N-1

* 0

r
2

i N+l
-

!_
N+l

0

(3.16)

r
0 J

and PN+l is the output power spectrum. F0r the matrix in
equation 3.16 to be positive definite for fixed rfA1 ... 4„ •
/N will have to lie between a range, the mean of which is taken
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to be the estimate of /N (Burg, 1970). The filter

L.1, r 2, ...,TH ]ia known as the prediction error filter.

r may be considered as a set of prediction filter weights

which, when convolved with the input data, will generate a

white noise series (Figure 3-12). In the frequency domain the

output power spectrum is the product of the input power

spectrum and the power response of the filter. The input

power spectrum may be obtained by correcting the output power

for the response of the filter. In the frequency domain

Output power spectrum
Input power spectrum = —

Power response of filter

The input power spectrum is designated by Burg (1967, 1970)
as the maximum entropy estimate of power, P(f).

P / f
V( f) iW NPU> _ _ ...(3-17)

2 1+ Z rnfl e-2nifnAtJ
n=l

where f^ is the Nyquist Frequency and specifies the bandwidth

for a sampling interval of At.

The response characteristics of the autoregressive
process

y(n) +ri y(n-l) + ... +rNy(n-N) = x
n

in z domain are given by '.

which is an all pole system.
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WHITENING
FILTER

OUTPUT TIME SERIES,
WITH WHITE SPECTRUM,

PN4-t

F10.3.12 -CONVOLUTION WITH A PREDICTION ERROR FILTER.
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The maximum entropy power spectrum P(f) can thus be estimated

by using formula (3-l7).

The procedure is illustrated for the case of a two

term and a three term filter. To estimate the value of the

autocorrelation function at the subscripted lag,Burg( 1967,1970)

first estimated the filter coefficients directly from the data.

The /^ and the maximum entropy power spectrum P(f) are then

computed from the filter.

Figure 3.13 shows the estimation of a two term predic

tion error filter (l, r ) from an N point long sample of data.

It depends on the choice of r that minimizes the average

power output P2 of both forward and backward prediction

filters. The filter is not run off the ends of the data

sample and no assumptions about the time series before and

after the data sample are required. The value of r which

minimizes P2 is shown in Figure 3.13- (l, r ) is a two term

minimum phase filter, t^ and P2 can be estimated by the
matrix equation (3.16), i.e.,

^0

i o

l

r

which gives ^, » - r /
0

and P2 =/5Q (1 -rd)

o
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P2 IS A MINIMUM WHEN

r *- ili- *2*x* Xj4 4XN-2 XN-1* Xw-1 Xm)

FIG.3.13-ESTIMATION OF A TWO POINT
FILTER.

(AFTER BURG,1970)
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^0 is estimated as the average square value of the

data. To obtain higher order prediction error filters,

Burg (1967, 1970) has suggested the use of the levinson

•algorithm (Levinson, 1949) which is a method of solving

simultaneous equations recursively, based on the Toeplitz

property and it .always yields a minimum phase filter. In

the Levinson recursion, a filter of order (n+l) is built

from one of order n. For example, for a three term filter

1 " "l
— —•

0

r2 - 1 * r3 r

<~3_
.

0
-

i
_ -

and thus

P3 -
2(

i N~2 r^"iii !Exi^ "r(l+r3) xi^i^3 XiD

Lx^r (i>r3) x±
+l + r3 : itf32(

Minimizing P? with respect to r3 gives (see Figure 3-14)

r3 =.2 Nz"2 (xi^ !_^____ (xi +rx^>
1=1 (xi<2+ Fxi+1>2 ^xi+rxi^i>2

Again, [f-j | <1. The ^2 and P^ are then estimated by the
third order matrix equation,
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r r3 r2 ,1-- •V 1 r3 •» 1 i

-n
*1 x2 X3 XA
• • » .. > XN-2*N-1 XN

—•- • •—

L---r2."ri] r2 r3

p, =
1 N-2f3=2irrT)i^pi«2+Xi*lf>+X»r3)2+(Xi*Xi.,f2*Xu2r3)2|

where r2 - r (n r3)

FIND THE VALUE OP T3 WHICH MINIMIZES P3
THE ESTIMATE OF THE THREE POINT FILTER A.r (WftMil
WILL BE MINIMUM PHASE ANn Tun* tar a »n»ia>c J
FILTER.

IMUM PHASE AND THUS BE A POSSIBLE

FIG.3.14- ESTIMATION OF A THREE POINT

FILTER.

(AFTER BURG,1970)
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i o

r

f;y°j L

*2 - * r3 ^0 "r <H-«V *_

0 *>:fZ

y* j

r p

and P3 - P2(i -r| ). -

Continuing on, three point filter can be used to form

the four point filter through use of the single parameter, r ..
Then, applying the filter to the data sample and varying r
to minimize the output power, the correct four point predic

tion error filter is estimated. This procedure can be conti

nued on with the assurance that no impossible filter will be

obtained. For an Mpoint filter the expression is
_2

PM = PM-1 (1 " FM)

The maximum entropy power spectrum P( f) can then be
estimated from the filter by using equation (3.17). The
final prediction error (FPE) as given by Akaike (1969a, b,
1970) is
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rFPEl - ItiLtl P2

PM is calculated by equation (3-17) for successively

higher values of m until a minimum is obtained for m = M.

This yields an estimate of the mean square error in predic
tion. As discussed by Ulrych and Bishop (1975), a cutoff of

M= N/2 is imposed. The filter that minimizes the FPE is
ch o se n.
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CHAPTER - IV

SEISMIC ATTRIBUTES RELATED TO LITHOLOGY

Seismic data interpretation is based on the correla

tion of events in a seismogram and has till now been used

mostly to delineate subsurface structures. Despite the pheno

menal success of the correlation of seismic events in a seismic

section in the delineation of subsurface structural features,

it has not yet proved to be a reliable tool by itself in areas

of complicated geology where stratigraphic traps are explored-
v/ith the above limitations of the conventional method of inter

pretation of seismic data, it is not difficult to see the

reason why few oil discoveries in stratigraphic traps have been

made as compared to those in structural traps, despite the fact

that the stratigraphic traps may even outstep structural traps
in ultimate reserves (Lyons, 1968).

A number of new approaches to map stratigraphy using
seismic data have been proposed recently. One of the most

significant parameters that has come into use for identifying

lithology is the seismic interval velocity. It is the average
velocity of the medium between flat parallel interfaces and is

estimated from root mean square (RMS) velocity values for

reflection events at the top and bottom of the interval (Smith,
1969,' Taner and Koehler, 1969,' Taner, Cook and Neidell, 1970).
The uncertainty involved in this method becomes extremely large
as the interval becomes very thin or when there is significant
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departure from horizontal bedding, (Schneider, 1971). Savit
andMatekar (l97i) have proposed the use of seismic energy
attenuation as a guide to subsurface lithology.

Although amplitude of a seismic reflection is a
function of many factors other than the reflection coefficients
of the reflecting interface, yet it has been used in seismic
interpretation (Pan and BeBremaecker, l97o; O'Doherty and
Anatey, i97i; Sheriff, 1975; Khattri, Gaur, Mithal and
Tandon, 1978; Khattri, Mithal and Gaur, 1979). Lateral ampli
tude variations convey information about changes in the
acoustic impedance which may have stratigraphic significance,
lindseth (1979) has mapped stratigraphic traps by the use of
acoustic impedance log termed no <*_4 „i

J6' xermea as dialogs, made from reflec
tion amplitudes.

Since seismic analysis and display techniques have
become more quantitative, Sheriff (i976) has enumerated
(Table 4-1) the various seismic observations which lead to
seismic interpretation. By combining observations in a
synergetic manner, the reliability of inferences about the
lithology, stratigraphy, fluid content p+o v .f«ur, XJ.UJ.U content, etc., can be improved
(Marr, 1971).
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Table 4.1 - Sei smic observations used in geological inter
pretation (after Sheriff, 1976).

Arrival time

Differences with location

Differences with offset

Differences in amplitude

Angular relations

Patterns

Combinations

Depth

Dip

Velocity

Reflectivity

Geologic history

Depositional situations

Gross lithology

Stratigraphy

Fluid content

Synthetic seismograms have been used to interpret
stratigraphic sequences. Harms and Tackenburg (l972) have
suggested the use of lateral changes in the amplitudes, pola
rity and continuity of reflection in the search for strati
graphic traps.

Khattri and Gir (l975, 1976) have studied the synthe
tic seismograms for wave form and spectral characteristics for
four basic sedimentation models : (l) interbedded sand-shale
model representing the seidments of generally fluviatile
origin, (2) interbedded coal-shale model representing deltaic
deposits, (3) sedimentary models representing transgression
and regression of shore lines, and (4) a basal sand model.
Their results have shown that for the first two models
a change in the sand-shale or coal-shale ratio results in
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characteristically different seismograms. The nature of the
seismogram is also strongly dependent on the arrangement of
sand-shale or coal-shale layers, keeping the sand-shale or
coal-shale ratios constant. The transgression, regression
and basal models also produce characteristically different
seismic responses and frequency spectra.

Improvements in seismic data processing techniques
make it possible to observe geologically significant informa
tion on seismic records- Analysis of a seismic trace permits
the transformation to polar coordinates and the measurement
of reflection amplitude ,. instantaneous phase and frequency.
These attributes have been coded by colour on seismic sect
ions (Taner and Sheriff, l977) and this display helps in
establishing interrelationships among measurements, and in
locating and understanding faults, unconformities, pinchouts,
stratigraphic sequences and -boundaries and hydrocarbon accumu-
lations.

The aforementioned efforts to correlate some proper
ties of the seismic trace to the subsurface lithological
variations ca* be made qualitatively, as has also been shown
by Vail, Mitohum, Todd, Wdmler, Thompson, Sangree, Bubb, and
Hatlelid (1977). The qualitative approach is not very diagnos
tic while inferring lithology when either the seismic data
quality is not very g00d or the difference in lithologies are
subtle. Even a qualitative approach taki^ into account a '
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single or a few measurements from the seismogram may not prove

useful. Under such circumstances a multivariate approach may

provide the answer.

Mathieu and Rice (1969) and Avasthi and Verma (1973)

attempted a discriminant analysis with a linear combination of

more than one observed parameter of seismic trace for the

determination of variation in stratigraphic conditions. Mathieu

and Rice (1969) using this technique have discriminated sandy

from shaly sections on the basis of the following parameters

extracted from synthetic aei sinograms *. amplitude of a peak,

time interval between peaks and changes in wave shape. After

working out a linear combination of the measured parameters

from synthetic seismograms to distinguish sand from no sand

group, the field seismio traces were then classified into one

of the above two groups. Their technique was found to be

successful in some cases, while in others it failed completely.

Similar approach has been adopted by Avasthi and Verma (1973)

to infer subsurface stratigraphy from seismic data in Gujarat

(India). They chc;se to study the following parameters '.

number of cycles of reflection, predominant frequency of

the reflection, time required to reach peak of the envelope of

the group reflections (rise time of reflections) and time requir

ed to reach average level of trace from peak of envelope of the

group of reflections (decay time of envelope). Using the above

mentioned approach they have delineated pervious and impervious

zones and have determined the thickness of pervious zones.
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Auxiliary seismic derived quantities such as ampli
tude, polarity, frequency, etc., require several different
graphical displays for deeper insight into the seismic data

(Sheriff, 1977). As such, it is desirable to display at least
part of the data embodied in the present study. Since this
involves considerable amount of data with 508 synthetic and
387 field seismograms, it is possible to show here only a
very limited number of these traces.

Some examples from the 255 traces of synthetic seismo
grams analysed for Model E are given in Figures 3.7 and 4.1.

The duration of the computed seismogram varies between 496 ms
and 508 ms two way vertical travel time depending on the velo
city, thickness of the lithounits comprising the stratigraphic
model and the total thickness of the model which is approxi
mately 200 m(see section 2.5). The seismograms are shown to
occur only after 280 ms, as the source pulse travels through
a uniform overburden and consequently does not give rise to
any reflection from within. The interface between the over
burden and the top of the model is a strong reflector as
evidenced by the data given in Table 2.8, and this gives a
high reflection amplitude at 300 ms in all the seismograms.
Acoal interface gives high reflection amplitudes and if two
coal interfaces occur within 44 ms of each other strong
interference is evidenced. Since Model Ehas on an average
21 percent coal therefore two seismograms are characterized
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by high reflection interference patterns. However, Model F
which has a relatively small amount of coal, 3 percent, shows
seismograms which are relatively smoother, with high reflec
tion amplitudes at coal interfaces and at the interface be

tween the overburden and the model. The seismograms of Model F
are of longer duration extending upto 552 ms, as the veloci

ties are lower than that of Model E. Some examples from the
253 traces of reflection seismograms analysed for Model F are
given in Figures 3.6, 3.8 and 4.2. These subtle differences

between seismograms of the two models are evident, yet these
qualitative changes make no contribution towards any knowledge
of classifying any seismogram belonging to either of these

models. It therefore becomes imperative that a quantitative
study is paramount - either of the seismograms or quantities
derived from it. With this aim, the information in a seismo
gram is transferred to the autocorrelation function, power
spectrum, cumulative power spectrum, cumulative frequency
weighted power spectrum and logarithm of power spectrum; and
quantities, hereafter referred to as variables or parameters,
are derived from these with a view to quantify each seismogram
and thereby to classify each to its relevant model, and assign
new seismograms belonging to either of the models to its
proper class.

4-1 SEISMIC ATTRIBUTES FROM THE AUTOCORRELATION FUNCTION

Sinvhal (1976) and Khattri, Sinvhal and Awasthi(l979)
have used the autocorrelation function of the impulse response
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of models depicting subsurface lithologies, and have abstract

ed seismic parameters from them to characterize lithostrati-

graphy. The parameters applied to decipher lithology were
A1/AQ, A2/AQ, Ag/A^ where A denotes the autocorrelation
function at the subscripted lag.

These can statistically distinguish between the for

mations consisting of either sand-shale sequences or coal-

shale sequences, as shown in Table 4.2. The autocorrelation

function is shown in Figure 4-3a, AQ is not shown as it goes
out of scale but the values of A± and A2 are marked in
Figure 4-3a.

Sinvhal, Gaur, Khattri, Moharir and Chander (1979)
have argued that since A^ can be obtained from the other
two variables by the simple relation (VV^VV and U
bears a deterministic relation to them, therefore, it should
not be used for the discriminatory analysis and it is suffi

cient to use A2/AQ and A1/AQ from amongst the three auto
correlation function variables for any further analysis. For

this reason only, these two variables have been retained for
the present study and some new ones have been searched out

and are listed below. These were used to distinguish different
lithostratigraphic situations.

(1) A1/AQ ;

(2) Va0 ;
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Table 4-2 - parameters from the_i^u^c_^rmati,on function tr
distinguish various pair-* of Modal* h*»** ^
Kolmogorov-Smirnov statistic (Modified after
Sinvhal. 19_76J " *

Model B
D

A

B

^2
Al

*2
Ao Ao .

"2

Al '
_ *1

A0

A2
Al *0

Ai
Ao

A2
*1

_ Al
Ao

tl
Ao

Table 4-3 - Parameters fr
various pairs r.* grouos baa

aectru

2d on

m to

the

distinguish

Smirnov statistir (Modified after Sinvhal, 1976)
• „,

Groups B
C

D

A fE ~ " f, fp % h fP %

B

fE fp XM £E fP fM
C

- - _
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(3) VAo

(4) Amir/A0
(5) Tl
(6) T2

(7) T3

(8) T .
ami a
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1

, time of the first zero crossing-,

, time of the second zero crossing-,

, time of the third zero crossing
and

, time of the first minimum.

These eight variables were picked from the
autocorrelation functions of each of the 508 synthetic and 387
real seismograms studied. Some autocorrelation functions with
the above mentioned 8 variables marked on it, are shown for
synthetic cases in Figures 4-4, 4.5 and 4.8a.

Figures 4.6 and 4.7 show some examples of the 255 and
253 traces of the autocorrelation functions (ACF) analysed for
Model Sana p respectively. These figures show the highly
peaked character of the ACr at zero lag, the amplitudes become
negative for all the functions in a very short time of about
12 to 16 ms. The aOTs 0f Model B, in general, show a highly
oscillatory though dissipating character, indicating some
oscillations which are also evident in the stratigraphic
sections. These oscillations could be due to the dispersed
vertical distribution of coal within the model giving rise to
cyclic sedimentation sequences. In most cases the ACFs of
Model Fare relatively flat after the first sharp peak, in
keeping with the low coal content of this model.
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The oscillatory character of a seismogram is best
studied by taking its power spectrum and its derivatives,
and these have been analysed for the present study.

4•2 SEISMIC ATTRIBUTES FROM TFTR PfW£R SPECTRUM

Sinvhal (1976) and Khattri, Sinvhal and Awasthi(l979)
have used the power spectrum of the impulse response of models
depicting subsurface lithologies, and have abstracted the

following seismic parameters : fQ, frequency in the power
spectrum which divides the band of high and low energy,* f ,
frequency of the first significant peak in the power spectrum
and fm, frequency at which the maximum power occurs in power
spectrum.

From Figure 4.3(b) it is clear that fe could also
be marked at position shown by f'e; there is no rigorous
criterion to ascertain the frequency tj and automatically
fp would shift to aposition marked f»p, because fp invariably
follows fe. This introduces a certain arbitrariness in pick
ing of these two parameters which are assigned for differentiat
ing lithologies. Despite this drawback fQ and fp could still
differentiate the four groups of lithologies as is evident
from Table 4-3 which shows the results of the Kolmogorov-
Smirnov test (Miller and Kahn, 1962). The frequency ^ does
not suffer from any such drawback, and has been retained for
the present study while the frequencies tQ and fp have been
dropped for the above reasons.
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The spectral analysis studies by Sinvhal (1976)*
Khattri, Sinvhal and Awasthi (1979) and Sinvhal, Gaur, Khattri,
Moharir, and Chander (l979) are for the impulse response of a
stratified medium, which gives a broad band spectrum. In

real cases this spectrum is modified to a band limited spectrum
by that of the source wavelet as well as the attenuating earth.
ARicker wavelet with maximum amplitude unity and a peaking
frequency of 60 Hz is used for this study (Figure 4-8f) which
is higher than that usually met in field, with the view that
this will give higher seismic resolution (Lyons and Dobrin,
1972).

Nine variables have been identified from the power
spectrum and have been used in distinguishing different kinds
of lithologies. The nine variables picked from the maximum
entropy power spectrum and its derivatives, illustrated in
Figures 4-8b3 c, d and e for one simulation of Model E, are
listed below .*

Q' fM' frequency at which maximum energy occurs
(Figure 4.8b),

t1, the average power weighted frequency of the
power spectrum,

t2t the frequency at which 25th percentile value
of frequency weighted power occurs,

(4) f3, the frequency at which 50th percentile value
of frequency weighted power occurs,
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f4, the frequency at which 75th percentile value
of frequency weighted power occurs(Figure 4.8c);

(6) f5> the frequency at which 25th percentile of
power occurs*,

(?) f6' the frequency at which 50th percentile of
power occurs*,

(8) f?, the frequency at which 75th percentile of
power occurs (Figure 4«8d) and

fQ, the lowest frequency at which the logarithm of
power decreases to zero (Figure 4-8e).

The frequencies fg, f^ and f# are akin to the notion
of pre-emphasis used in communication theory (Panter, 1965).
Some power spectra and their derivative spectra, with the above
mentioned nine variables marked on some are shown for the
syntht tic cases in Figure? 4-9- 4.28.

Figures 4-9 and 4.10 show power spectra of some

synthetic seismograms of Models E and F respectively, the
frequency fM is marked on them. Figures 4-11 - 4-16 display
some examples from the 255 and 253 traces of power spectra

analysed for Models E and F. The spectra show considerable
variation - some have one or more sharp peaks while the others

have several peaks occuri^g at different frequencies- H.wever,
their relationship with the stratigraphic sequences is not
explict.
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SPECTRA ANALYSED FOR MODEL E .
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SPECTRA ANALYSED FOR MODEL E .
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SPECTRA ANALYSED FOR MODEL F .
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It has till now not been possible to infer lithology

directly from the power spectra, though Sinvhal (1976);

Khattri, Sinvhal and Awasthi (1979) and Sinvhal, Gaur,Khattri,

Moharir and Chander (1979) have been able to distinguish

between a dominantly sandy and a coaly model (Table 4.3) by

using the attributes of power spectra. It is therefore,

plausible that the derivatives of the power spectrum, viz.,

the cumulative frequency weighted power spectrum, the cumula

tive power spectrum and the logarithm of power spectrum,* and

the variables selected from them may be used with the same

aspirations.

Each power spectrum can be characterized by an

average frequency f± which is dependent on both the frequency

and the power content of the power spectrum. It is calculated

by using the expression ( £ P«ft)/ ( E P.), where P is the
B i=l i=l
Power and f is the frequency at the ith point for the n point
power spectrum.

Some cumulative frequency weighted power spectra are

shown in Figures 4-17 and 4-18 for Models E and F respectively.

The variables fg, f^ and f^ which signify the frequencies of
octh cnth , -7,-th
^P , 5U and /5 percentile values of frequency weighted

power in that order are also shown in these figures. Because

of the definition of these variables fg will be the lowest
and f4 the highest frequency amongst these three, with f,

somewhere in between. Sometimes f2 and fj, or f^ and £,, and
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FIG.4.17_SOME CUMULATIVE FREQUENCY WEIGHTED
POWER SPECTRA FOR MODEL E.
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in some rare cases all the three frequencies may coincide -
the latter will indicate one very sharp peak in the spectrum,
and consequently one big step ia the cumulative frequency
weighted power spectrum, which forces all the three frequencies
to merge (with respect to the resolution in analysis).

Figures 4-19 and 4-20 show some examples from the
255 and 253 traces of frequency weighted power spectra analysed
for Models Eand F respectively. ^ these traces are flat for
about the first 15 Hz and then have a gently upward sloping
character. This begins to flatten out at about 65 H2 for Model
1 and at a somewhat higher frequency of about 70 Hz for Model
F. The frequency t+ may gi ,e a measure of this condition and
may hold the clue to distinguish lithologies depicted by
Models Eand F. The frequency *, replaces the frequency £q
SnCl aV°idR the «Wtrart>6a involved in picking the latter.

Display of the same data in a different form may some
times reveal feature which were otherwise not obvious. The
cumulative power spectra basically have the same information
as the power spectra and the frequencies _5> fg and t which
represent the 25*\ *,* and 75th percentile of power, in that
order, may be able to diagnose lithology. These frequencies
are marked for 3 cumulative power spectrum traces in Figures
4.21 and 4-22 for Models Eand F respectively. Figures 4.23
and 4.24 show some more examples from the 255 and 253 traces
of cumulative power spectra analysed for Models E and F
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FIG.4.19_SOME EXAMPLES FROM THE 255 TRACES OF FREQUENCY

WEIGHTED POWER SPECTRA ANALYSED FOR MODEL E.
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FIG.4.20-SOME EXAMPLES FROM THE 253 TRACES OF FREQUENCY
WEIGHTED POWER SPECTRA ANALYSED FOR MODEL F.
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MODEL E .
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FIG.4.23-SOME EXAMPLES FROM THE 255 TRACES OF CUMULATIVE
POWER SPECTRA ANALYSED FOR MODEL E.



12

Q
Ui
N

z
cc
o
z

20 40 60

FREQUENCY (Hz) _

-116-

80

FIS.4.24.S0ME EXAMPLES FROM THE 253 TRACES OF CUMULATIVE
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respectively. ,_ f0In ot these tra£eg la simnar ^ ^
displayed 1. Wgures 4a9 aM 4.20; except that the cMves
begin to ascend at much lower frequencies.

Ihe logarithm of power is yet another version of the
enigmatic power spectrum and the frequency, %, at which the
logarithm of power decreases to zero at the lowest frequency
1. Picked, with the oft repeated aiffi „f discriminating litho
logy. Pigures 4.25 and 4.26 show some log power spectra ^
the frequency %mariced on them, for Models Eand J respecti
vely. The p0int3 markea by^ ln p.gure 4>25 oouiQ ^^ we^
qualified for this distinction if the definition of f. did
not include the terms .decreases' and the lowest frequency,
figures 4.27 and 4.28 show some exauple3 from the traoes rf
logarithm of power spectra analysed for Models Eand I
respectively.

Seventeen variables have been computed with the aim
that they will aid in the interpretation and discrimination
of seismograms representing two sets of lithologies, one which
is dominantly sandy and has a 53 percent sand, 26 percent shale
and 21 percent coal constitution, i.e., Model B> and ^^
which is dominantly shaly and has a 60 percent shale 37 per
cent sand and 3percent coal constitution, i.e., Model J.
discriminant analysis, given in the following Chapter has ^
carried out with this objective.
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CHAPTER - V

DISCRIMINANT ANALYSIS

linear discriminant function analysis is a multi

variate statistical technique of differentiating groups of

samples drawn from different populations. This method was

originally developed by Fisher (1936) and has been widely

used in biometrics and paleobiometries. In geology it has

been used to establish setting of sandstones (Middleton, 1962)

and volcanics (Chayes, 1964) to .lassify depositional environ
ments of carbonates (Krumbein and Graybill, 1965) and to

distinguish between beach, shelf and fluvial depositional

environments (Awasthi, 1979). In Geophysics, it has been

used to distinguish dominantly sandy zones from shaly zones
(Mathieu and Rice, 1969), pervious zones from impervious
zones (Avasthi and Verma, 1973) and between dominantly sand,
shale and coal sections (Sinvhal, Gaur, Khattri, Moharir and
Chander, 1979).

Apopulation, E, described by mvariables may be
pictured as a cluster of sample points in mdimensional space.
A second population, F, described by the same mvariables,
consists of a second cluster of points. Discriminant analysis
is the computation of a m-dimensional plane that most effecti
vely separates the two clusters. An unknown sample is classi
fied as belonging to one group or the other, depending on
which side of the plane it falls. The degree of distinctness
of the two groups is measured by the distance between the two



-123-

population means.

Five hundred and eight stratigraphic sequences depict

ing two different kinds of lithologies with sand, shale and

coal sequences have been generated as discussed in Chapter II.

These are classified as '. Model E - which represents 53 per

cent sand, 26 percent shale and 21 percent coal-, and Model F

which represents 60 percent shale, 37 percent sand and 3 percent

coal. The seismic response of these in time and frequency

domain are calculated as discussed in Chapter III, and 17

features have been abstracted from these as discussed in

Chapter IV. On the basis of these 17 variables an attempt
has been made to distinguish between these two models.

5• 1 MATHEMATICAL DEVELOPMENT

For a general case consider m variables that are

common to both models, as it is an essential requirement of

this formulation. Let there be p and q seismograms of Models

E and F, respectively. The first set of assumptions in this

approach are that the seismograms in each model are randomly

chosen, and it is known for certain that these belong to their

respective models. The variables use.d to discriminate between

the two Models E and F should be independent and normally
distributed. These variables may be denoted by the following
notations '.
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ell' e12' ei3' ••'» eim as "bhe measured variables of the first
seismogram of Model E,

e21' e22> e23' •*•• e2m as the measured variables of the
second seismogram of Model E,

eil' ei2' ei3' •**» eim as the raeasured variables of the ith
seismogram of Model E,

pi' ep2' ep3' •*•' epm as the measured variables of the pth

seismogram of Model E.

The first subscript denotes the seismogram index and

the second subscript is the variable index, e., denotes the

k variable of the i seismogram for Model E. Similarly for
Model F, fik denotes the kth variable of the seismogram for
Model F. Each seismic realization can be represented as a

linear combination, E. (i =1,2,..., p), 0f the m variables

as follows ."

E-,

E,

E
P

i.e.,

E,

Xl en ^o eio 4- . .. +• \ e.,J- ±1 2 12 m lm

XI e21 +X2 e22 * *•• +Xm e2m

Xl eni * X? er,o + ••. +X eJ- pi d. pd m pm

m

2 Xk eikk=l K lic .. (5-1)
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or,

P p m

,S, Ei = S ( S Xk eik>i=l i=l k=l K lic

Similarly for Model F the linear eombination of m variables

is given by

vx = xx fn ,x2f12 .... +xmflm

E2 = Xl f21 ^2 f22 ♦*" +Xm **

Pn = X f ^-X f +- ... +X fq 1 ql 2 q2 m qm

i.e.,

m

Fi = kZ=1 Xk fik ••• (5.2)

q q m

•E *i = Z ( E Xk fik }i=l i=l k=l K 1K

The X coefficients in equations (5>l) and (5.2) must

be determined such that discrimination between the two Models

E and F can be optimized. Fisher's (1936) criterion for this

is to find a particular function which maximizes the ratio of

the difference between the means of the two models to their

standard deviation. This will make all the observations of

one model come close together and increase the separation be

tween the two models. Figure 5-1 shows the variables 1 and 2
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VARIABLE 1

FIG.5.1.PLOTS SHOWING OVERLAP BETWEEN MODELS
EAND FALONG WRIABLES 1AND 2. MODELS CAN
BE SEPARATED WHEN TWO VARIABLES ARE

CONSIDERED SIMULTANEOUSLY.

(MODIFIED AFTER DAVIS, 1973)
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when considered separately overlap and fail to distinguish the

two models E and F, but when considered simultaneously the two

clusters of points belonging to these models are separated by

a distance A. Assuming equality of the two variance-covariance

matrices the particular linear funetion whi«h has to be maximiz

ed with respect to the Xs can be taken as

A2/S2 .( E-F)2/C S (E.-I)2 * Z(F.-F)21 ...(5.3)
i=l x i^l 2

,2 .y

where S is the pooled sum of squares of deviations from mean

of new variables E. and F. of Models E and F, respectively. The
respective means I and F are defined as follows!

1=(.S!1Ei>/P ...(5.4)

F=(^V/^ ... (5.5)
A signifies the difference between the means of the new

variables E± and F. for the two models formed by linear combi
nation of the original variables,

A = E - F

=( A V/P- <? *_)/ q ... (5.6)
l =1 i =1

Substituting the value of E. and W± from equation (5.1) and
(5.2) in (5-6) A becomes
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= (.E, Z Xk eik}/P - ( Z EX. f..)/qi=l k=l K lic i=i k=l k lk

m

k

m

2 x. ri - f tk=1 k L k \J

m p q

m

E Xk dlrk=l * k

where

dk " \ - \

Therefore,

A =X
1 dj_ +X2 d2 +X3 d3 4- ... +Xffl d^ ... (5.7)

Let the variances of variables E± and W± corresponding
to the Models E and F be given by s2E and s2? respectively,
then,

s2E =[r (E - E)2^/ (p-i)
1=1

or,
P

1=1

and similarly

q.
z

i=l

Thus, the pooled sum of squares 32 is given by

^ (E. - E)2 _ s2E(p-l)

Z_n (Fx - f)2 _ s2F(q-l)
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.23 = (p-l). s B + (q-1) s F

= _Z (E - E)2 f zq (F - F)2 ... (5.8)
i=l i=l x

3 is partitioned into two sum of squares which can
be put in product form as given below •

From equations (5.1) and (5-4)

i=l

where

i=l 1 k=l k cik

P

Z

i=l

m

S Xk (eikk=l K lK

r m m

=1 k=l k ik ]

- E, :> ]

Z

i=l :*,. jWl <«u-%X«ij-ty
m m

Z Z X. X .
k=l j=l * 3 iZ^(e.k-Ek)(e.rE.)

m m

= Z Z X. X, SE, .
k=l j=l k J k0 ... (5.9)

SE*3 "^ (ei.c-\) (ei3-^)
Similarly,

5 „ _ o mmZ (F - F)2 = Z Z X. X. SF^.
1=1 k=l j=l k J *3

. .. (5-10)



-130-

where

"« 'A^ik-V Cfij -ty
Substituting (5-9) and (5-10) in (5-8)

P mm

k=l j=l K J k^ k0

m m

= Z Z X X Ski ... (5.ii)

Where Sj. is defined by

S, . = SE, . +• SF, .
kj kD kj

The particular linear function which best discriminat

es the two models will be one for which the ratio A2/s2 ±3
maximum. Hence, the function A2/s2 _a maximized with respect
to the fcjS, Therefore A2/s2 ia differentiated with respect to
X^s and set to zero.

aV (A2/32) = C2A.S2(dA/dX) - 2S.A2.(dS/dX. )3 / s4
k K

=(2A/33). Cs.(2A/dXk)- A(d3/dXk)^
= 0 for maximization.

If A/3 is zero it means that either A, the distance

between the two a odels, would be zero and this defeats the very

aim of maximizing, or else 35, which denotes variability, is
infinity, which goes against the philosophy of minimizing the

variance. This trivial solution is therefore rejected. There

fore, the acceptable solution is:
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Lo.(dA/dXk) - A.(dS/dXk)^ =0

wnicn givaa 3/* .(dA/dXk) = (d3/dXk)

After maximization the values of Xks are fixed,
which makes S and Aindividually constants, and therefore 3/A
may be taken as a constant which does not affect the other

terms in the above equation. Therefore, the solutions are
proportional to this term.

(ds/Ak) =(dAMk) ... (5-12)

Dsing equation (5.11) the left hand side of (5-12) becomes

(ds/dV =2(^ Sll ♦ K8tu ♦... +xmslm)
(dS/dX2) =2(Xx3a +X2322 *..-. +Xms2m)

«

(dS/dX^ =2(X13ml ,X2Sffl2 .... ,XmSmm)

Similarly, using equation (5-7), the right hand side
cf (5.12) becomes

(dA/dXk) - dk

for k - 1,2,..., m

Hence, equation (5-12) becomes

X1S11 *V_2 ♦••• +Xm 3im =^
X1S21 +X2S22 +•'• +Xm S2m =^

t

XlSml +X2Sm2 * — **m smm = d^
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When k = j, the variance Skk of the kth variable is obtained,
and when k fi j, the covariance S^ between the variables k and
j is obtained. In matrix notation equation; (5.12) can be
written as

Sll S12 Si3 ••• 3im

S2l S22 S23 '" 32m

ml Sm2 3m3 '" 3mm

V "% "
h h

•

•

•

•

• •

.

Km M

... (5.13)

Xks can be obtained from the above set of equations
by the Gauss-Jordan elimination method.

5•2 DISCRIMINANT FUNCTION

Following Davis and Sampson (1966) a linear discrimi
nant function R may be defined as

m

R 2 X,. \
k=l . •• (5.14)

Where Risk::nown as the discriminant score, and t. are the

values eik or f±k of k variables (in this case seismic responses)
of Models E or F. By substituting values of fks, p and q
discriminant scores for Models E and F are obtained, respecti
vely. Let the mean discriminant score for the two models be
denoted by R£ and By,i.e. ,

H'lfhto ...(5.15)
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and

q

** • C* Ri)A ... (5.16)

Where R,.s are taken for the respective groups, then

A = RE~ h *•• (5-17)

Where A _a the maximized distance obtained between the two

models, which is equal to Mahalanobis' D2, a measure of distance
between the model means(Davis 1973). To separate the two

models a discriminant index R is defined as

Ro=(RE*V/2 ...(5.18)

RQ enables to clasoify a new seismogram to either of

the models E and F, provided there is a priori knowledge that
it belongs to either of the two models. To test the null

hypothesis of equality of multivariate means of the Models E
and F, an fF' test where

F P'q (p+q-m-1) «
m,p+q-m-l B , w ~ ~7 ' • 3T ...(5-19)

(p-Hi)(p+q-2) m

with mand (p+q-m-l) degrees of freedom is applied. Therefore,

when the calculated value is larger than the tabulated value

of F, then the multivariate means of the two models are drawn

from different populations, i.e., the result of the discrimi

nant analysis is meaningful. If this is not the case, then the
multivariate means for the two models are drawn from the same

population which renders discriminant analysis meaningless, as
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the multivariate means of the variables belong to the same

parent population irrespective of the model from which the

variables are drawn.

The relative contribution of variable 3 to the

distance between the two model means is measured by a quantity
E.,

E.
X, d.

. 100 ... (5-20)

where d.. is the differenoe between the jth means of the two

groups, and is a measure of the direct contribution of the

variable j which does not consider interaction between variables.

The equality of the variance - covariance matrices of

the two populations is tested by the following statistic (Seal,

1964):
k .(Nj-3)/2

X1- -2 Cl-( Z 1 I ).?,"* ft* J 1*
71 A.

3=1 J

where,

k

N

"j
m

A

3=1 N, - j N-k 6(m+l)(k-l)
J

A(N-k)/2

... (5.21)

: number of populations,

i total sample size,

sample size of the j th population,
number of variables,

thdeterminant of the j covariance matrix,

pooledcovariance matrix.
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Ine aoove statistic is distributed approximately as
ohi-sauared with (k-l) _ (m+ l)/2 degreeg of freedoffi< ^^

values reject the null hypothesis which is the equality of
covariance matrices of k populations.

5*3 DISCRIMINANT ANALYSTg 0F SYNTHETIC mn>A

Before embarking on discriminant analysis the assump
tion of the equality of the variance-covariance matrices is
tested by using equation( 5.21). The variance-covariance matrices
and the pooled variance-covariance matrix for the seventeen
variables of Models E and F are given in Tables 5.1, 5.2 and
5.3 respectively. The variables in equation(5.21)will have
the following values for the present case :

k = 2

N ~ 504

\ = 251

«2 = 253

. m = 17

\ = (0.274)' 10"~8

A2 - (0.569)-10~10

A = (0.263)-10"8.

for which

= -2£l-(^±— +JLS-. . -I ) 2x17x17 + 3xi 7-1 -,
251-1 233-1 504-2 >' bxl8xl 1

•In r(0-274 10~8)125 . fn.^o g ^-10^126
(0.263 x 10~8)251
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Therefore, = 125.37

The degrees of freedom (k-l) m (m+ l)/2 is 153. The

tabulated value of y2are given only till 120 degrees of free
dom in Dixon and Massey (1969), but for large values of degrees

of freedom the approximate formula given is

A- v. 0 / o 3

where z^ is the normal deviate and } is the number of degrees

of freedom. For the 99th percentile this gives a tabulated
value of X* for 153 degrees of freedom as 196.616, which is

much larger than the calculated value, and therefore, the null

hypothesis of the equality of the two variance-covariance

matrices is accepted.

That each of the variables is normally distributed is

tested by plotting the frequency distribution on a probability

paper. Most of the variables show normal or near normal distri

bution and the discriminant function is not seriously affected

by limited departures from normality (Davis, 1973). The distri

bution of some of the variables in real case is shown in
''Figures 6.30 - 6.33.

The discriminant score, R, is calculated for each of

the seismogram and is projected on the discriminant function
line (Figure 5.2).T0 avoid overlapping of points while plott
ing the data, seismograms with the same value of discriminant
function are.plotted at different heights. R£ and R? are the
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multivariate means of seventeen variables of Models E and F,

respectively and RQ is the discriminant index. Difference

between R-g and R« is Mahalanobis' distance, D . Discriminant

scores (equation 5.14) when plotted for seismograms of the

two models show some overlap (Figure 5.2). Despite this

overlap 70 percent of the total 508 seismograms are correctly

classified.

F-test given in equation(5«19 )has been applied to

test the equality of multivariate means of the Models E and F.

The test shows that the two means are significantly different

at 95 percent confidence level. The calculated values of RE

and Rp and the percentage contribution of each of the 17

variables are given in Table 5.4.

While most of the variables make positive contribu

tions a few display a negative role. Positive contributions

indicate that the variables are meaningful discriminators and

the amount of contribution is a measure of the potency of the

variable.

Variable A^/Aq contributes 38-4 percent, 30.5 percent
is contributed by fQ, the frequency at which logarithm of

power decreases to zero; 24-5 percent is contributed by T2 -
the time of second zero crossing in the AOF and 18-7 percent

is contributed by f^. These variables because of their high

percentage of contribution can be considered as powerful
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Table 5.4 - discrimination of Model E from Model F when all
17 variables are considered

Calculated value of F = 7.5483 with 17 and 490 degrees of
freedom.

Tabulated value of F = 1.76 with 17 and co degrees of freedom
at a =0.05

S.± = 13.2649

R0 = 12.7432

R2 = 12.2215

Sl.No. Variable

1. T .
amin

2. T-,
1

3. T2
4- T3
5. Amin/A0
6. VAo
7.

V*0
8. VA0
9. fl

10. f2
11. f3

H
*6

12.

13.

14.

15. f7
16.

f8
17. f..

M

Value of constant Percentage contri
buted towards dis

crimination

0.2474 1-1

0.4089 6.5

0.3334 24.5

-0.0841 -3.9

-4-7422 -4.0

8.4131 38.4
0.7229 2.1

1-4399 2.0

-0.0307 6.9
0.0422 -3-9

-0.0433 3.4

0.0736 -3.8

0.0254 -1.3

0.1392 -12.8

0.0687 -4.4

0.0490 30.5

-0.0921 18.7
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discriminators of lithologies. Other discriminators are f± .
the average frequency which contributes 6.9 percent, the
time 3_ - which is the Uffle of the flrat zero crogs.ng .n the

ACF and contributes 6.5 percent; f. - the frequency of 50th
percentile value of frequency weighted power contributes 3-4
percent; *2/AQ and Ay^ make 2.1 percent and 2.0 percent
contributions, respectively and T^ - the time of first
minima in the ACF contributes 1.1 percent. These ten variables
can be termed as seismic discriminators.

To check the efficacy of this analysis 10 seismograms
from each of the Models E and F, which *ere not part of the
aforementioned discriminant analysis, were put to test. The
discriminant scores for these 20 seismograms were used to
assign a model - either E or F to them. Fifteen of these 20
seismograms could be classified to their correct model, one
had the same value as RQ and four were misclassified. This
indicates a 75 percent success in assigning synthetic reflection
seismograms to their proper models. This approach, therefore,
appears to be successful and as such a dominantly sandy litho
logy can be distinguished from a dominantly shaly lithology.
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CHAPTER - VI

APPLICATION OF DISCRIMINANT ANALYSIS TO

FIELD SEISMIC DATA

The successful discriminant analysis carried out for

synthetic data indicates its potentiality for analysing litho-

stratigraphy using seismograms. In synthetic seismograms the

nature of the source pulse and the simulated lithological

sequence are the two factors which play a role in shaping the

seismogram, the same source pulse was used in generating all

the synthetic seismograms. Consequently variables derived

from synthetic seismograms are related to the subsurface litho-

stratigraphy. For field seismograms, however, the source

pulse may not uniformly be the same for a suite of-seismograms.

The observed seismograms may be further modified by the field

recording and data processing techniques- The observed seismo

grams are the total response of the source pulse, the sub

surface lithostratigraphy and the recording and processing

system. In addition to the above factors degradation due to the

presence of source generated noise (e.g., ground roll) as well

as ambient noise also occurs. Thus the problem of inferring
lithostratigraphy in real cases is relatively more difficult

than in the synthetic models. Inspite of the more complicated
situations met in nature discriminant analysis has been carried

out on real data to find out how successful this concept would
be. With this as an aim field seismograms from two different
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Areas X and Y characterizing a dominantly sandy and a shaly

subsurface lithology, respectively, from a sedimentary Basin

Z in India have been subjected to discriminant analysis.

6-1 SEI3MIG SECTIONS FOR AREAS X AND Y

Part of the seismic sections of two Areas X and Y,

belonging to the Formation K of the sedimentary Basin 2 have

been subjected to the analysis discussed in Chapters III, IV

and V. Four seismic profiles of *rea X and three of Area Y

were considered for the purpose of this study. It amounts to

a total of 70 km of seismic line or 239 traces for Area X and

55 km or 148 traces for AreaY. The details of recording and

processing procedures are given in Tables 6.1 - 6.7.

The Formation Kwas marked on the seismic sections by

tying the seismic data with that of the nearby wells by using

5 velocity functions for Area X and 3 for Area Y. The Forma

tion Kin Area X could be identified with an accuracy of one

reflection cycle, whereas for Area Y the wells were situated

at a considerable distance from the seismic lines and there

fore the Formation Kcould be marked with lesser accuracy.

A band of reflections arising from within the Forma

tion K and consisting of a number of cycles ia observed on

aeiemio sectiona. This indicates that the formation consists
of a series of thin lithological beds. The strong trough and
peak phase alignment of the reflections at places either merge
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Table 6.1 - The field recording parameters for Area X

Configuration Split Spread

Type of recording Digital

3P/VP interval 100 m

Geophone interval 100 m

Near Offset ioo m

Far Offset i£00 m

Number Traces 24

Geophones/Trace 12

Recording filter io (2) - 125

Sampling rate 2 ms

CDP
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Table 6.2 - The order in which the seismic sections for
Area X were processed

1. Record length 4 seconds

Sampling interval 4 ms

2- Additional Process True Amplitude Recovery
3. Decon before stack Operator length _ 160 ms

Window length _ 2000 ms

Prediction Time = 2nd zero
crossing

4. Statics Party supplied
5. NMO SSN No. at posd.tion shown V

7. Stacking 1200 percent
8. Eilter

L.C. H.C. Application
in Seconds

time Overlap
Time

20 - 25 40 - 45 1.0 200 ms

5-10 50 - 55 1-5 200 ms

3 - 5 35 - 40 4.0

9. Equalization Two window

10. Trace Mixing No.of traces == 3

i_2te : 6 is residual statics, not applied.
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Table 6-3 - Field Parameters used for 3 seismic lines of Area X

29 m

Single hole

8.34 kg;

Preamplifier = 36 db

Initial gain - 12 db

Expansion range - 6 db

Release j*ate = 32 ms

Final gain • 84 db

L.C» =* 10(2) Hz

H4C* = 125 Hz

Notch = IN

1. Shot depth

2. Shot pattern

3; Charge size

4- Gain

5; Filters

6* Instrument Parameters

(i) Sampling interval 2 ms

(ii) Trip delay

(a) 12th and 13th trace 150 ms

(b) and 24th trace 700 ms

(c) In between the rate of increment
for other channels is 50 ms

7. Geophone Pattern

(i) 12 Geophones all in series (1,2,3,3,2,1)
(ii) Group spacing - 6.5 m

(iii) Digiphone - 10 Hz were used.

8. Field numbers - 12 fold split spread CD.P. ^ith 100 m
group interval and 100 a in-line off-set.
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Table 6.4 - Field Parameters uaed for the Fourth Seismic
Line of Area X

1. Shot depth *.

From SP 32 to SP 118 average depth 23 m

SP 120 to SP 278 average depth 29 m

SP 280 to SP 556 average depth 26 m

2. Shot Pattern '. Single hole

3. Shot size '. 11.12 kg

4. Gain '..

Pre-amplifier gain - 36 db

Initial gain - 24 db

Expansion range - 6 db

Release rate - 32 m sec-

Final gain - 84 db

5. Filters '.

L.C 10(2) Hz

H.C 125 Hz

Notch - IN

6. Instrument Parameters *

(i) Sampling interval - 2 ms

(ii) Trip delay

(a) 12th and 13th trace - 200 ms

(b) 1st-and 24th trace - 750 ms

(c) In between the rate of increment

for other channels is 50 ms
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7. Geophone pattern '.

(i) 10 geophones all in series (1,2,2,2,2,1)

upto SP 134

(ii) 12 geophones all in series (1,2,3,3,2,1)

upto SP 556

(iii) Group spacing - 6.5 m

(iv) Digiphones 10 Hz were used.

8. Fold Numbers '.

12 fold split spread CDP with 85 m group

interval and 340 m in-line off-set.
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Table 6.5 - The Field recording parameters for Area Y

Digital recording recorded by SIG - 159

Year recorded 1978-79

SP/VP interval 100 m

Instrument type SN 328

Geophone Interval 100 m

Near Offset 500 m

Recording filter 10 (2) 125 Hz

Far Offset 2800 m

Sample rate 2 ms

Number Traces 2 4

Record Length 5.0 seconds

Configuration End on 12 fold CDP

Geophones/Trace 12
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Table 6.6 Th^^order_in which the .^ismic section f..
Area Y were prncR.d.gfirj

1. Record length 5.0 seconds

2. Sampling Interval 4 ms

3. Statics Party supplied
4. NMO 3SN No. at places shown '

5. Residual stati cs window 1-47 to 1.77 sec
6. Stacking 1200 percent

7. Filter

L.C. H.G. Application
Time

Overlap
Time

50 H 3 Notch 5«0 sec

10 Hz 45 Hz 2.5 sec 200 ms

5 Hz 35 Hz 5.0 sec

8. Trace Mixing No. of traces
= 3
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Table 6.7 Field parameters used for Area Y

1. Shot depth

2. Shot pattern

3. Charge size

4 • Gain '.

Preamplifier gain - not supplied

Initial gain - 30 db

Expansion range # 6 db

Release rate - 64 ms

Final gain - not supplied

5- Filters -*

L-C. 10(2) Hz

H.C. 125 Hz

Notch - IN

6. Instrument parameters I

(i) Sampling interval 2 ms

(ii) Trip delay

(a) Channel 1 and 2 - 1400 ms

(b) Channel 3 and 4 - 1300 ms

(c) Channel 5 and 6 - 1200 ms

(d) Channel 7 and 8 - 1100 ms

(e) Channel 9 and 10 - 1000 ms

(f) Channel 11 and 12 - 900 ms

(g) Channel 13 and 14 - 800 ms

21-24 m

Single hole

13-9 kg
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(h) Channel 15 and 16 - 700 ms

(i) Channel 17 and 18 - 600 ms

(j) Channel 19 and 20 - 500 ms

(k) Channel 21 and 22 - 400 ms

(1) Channel 23 - 300 ms

(m) Channel 24 - 200 ms

7. Geophone pattern '.

(i) 12 geophones all in series (2,2,2,2,2,2)
(ii) Group spacing -9m

(iii) Base length - 45 m

8. Fold numbers '. 12 fold
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with each other or diverge and form separate phase alignments.

These characteristics of the reflection band may be associated

with lateral facies changes, pinch outs, wedging out or thinn

ing and thickening of the lithological beds of small thickness.

The exact nature of such features can only be checked by

closely spaced well data.

The number of cycles present in a band are generally

related to the number of beds in the formation and their thick

ness. It is noticed that the reflection from within the

?ormation K, have more cycles in the zones of depression in

AreaY. It may be due to an increase in the thickness of these

beds in the structurally low zones. The quality of data ranges

from fair to good. The two way travel time within the Formation

K ranges from 200 ms to 400 ms. This part of the data is

retrived from magnetic tapes, and a few of these traces are

shown for the relevant time window in Figures 6.1 - 6.4. A

comparison of the seismograms from the two areas shows that

though it is not easy to pickout any specific differences

between them, yet in general, seismograms from Area Y show

waveforms broader than those of Area X. Furthermore, the

relevant time window chosen for Area Y is at a much longer

two way travel time because Formation K is at a greater depth

in Area Y.

The autocorrelation functions of the seismic traces

are calculated by the method given in Section 3.2 and some of
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FIG.6.1-EXAMPLES OF RELEVANT WINDOW OF SEISMOGRAMS

FOR AREA X.
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FIG.6.2 -EXAMPLES OF RELEVANT WINDOW OF SEISMOGRAMS

FOR AREA Y.
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these are shown in Figures 6.5 - 6.8. The same eight variables

that were picked from the ACFs of the synthetic seismograms
are also picked from the ACF3 of the seismograms of the field

data and are shown in Figures 6.5 and 6,6. Figures 6.7 and

6.8 show several ACFs for a comparative study. The autocorrela
tion functions are broader than what was observed for the

synthetic case (Figures 4-6 and 4.7). The ACF traces for

Area Xare more oscillatory than for Area Ywhich displays a
flatter character. This phenomenon was also observed in the

synthetic case where the AQFfl of Model E (characterizing Area
X) show similar oscillatory nature and the ACFs of Model F
(characterizing AreaY) are relatively smooth at larger time
lags.

The maximum entropy power spectra for the seismic

traces were computed for the present study. Three of these

spectra for the Area Xand Ywith the frequency fM marked
on them are shown in Figures 6.9 and 6.10. Figures 6-11-6.14
and 6.15 - 6.17 show some more examples from the 239 and 148
traces of power spectra analysed for Areas Xand Yrespectively.
The frequency bandwidth of these spectra is subject to the
field, recording and processing parameters, and are band
limited between 5 and 55 Hz as indicated by the filters in

Tables 6.2 and 6.6. The spectra of field seismograms therefore
have a frequency band narrower than that for synthetic seismo
grams (Figures 4-9 - 4.16) but they retain the character of
showing one or more peaks.
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FIG.6.6.SOME AUTOCORRELATION FUNCTIONS OF SEISMOGRAMS

FOR AREA Y

(ACF r AUTOCORRELATION FUNCTION ).
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FIG. 6.9 -POWER SPECTRA OF SOME SEISMOGRAMS

FOR AREA X.
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FIG.6.10-POWER SPECTRA OF SOME SEISMOGRAMS

FOR AREA Y.
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FIG.6.11..SOME EXAMPLES FROM THE 239 TRACES OF POWER

SPECTRA ANALYSED FOR AREA X.



ffi

S
a
ui
N

3
z

20 40

FREQUENCY (Hz) „

-171-

FREQUENCY (Hz)

FIG.6.12.50ME EXAMPLES FROM THE 239 TRACES OF POWER

SPECTRA ANALYSED FOR AREA X.
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FIG.6.13.SOME EXAMPLES FROM THE 239 TRACES OF POWER
SPECTRA ANALYSED FOR AREA X.
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FIG.6.14-S0ME EXAMPLES FROM THE 239 TRACES OF POWER

SPECTRA ANALYSED FOR AREA X .
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SPECTRA ANALYSED FOR AREA Y.
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FIG.6.16.SOME EXAMPLES FROM THE 148 TRACES OF POWER

SPECTRA ANALYSED FOR AREA Y .
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FIG.6.17„50M£ EXAMPLES FROM THE K8 TRACES OF POWER

SPECTRA ANALYSED FOR AREA Y .
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Bach power spectrum for the field seismograms as in

the case of synthetic data is characterized by an average
frequency, f_, which takes into account both the frequency
and the power content of the spectrum. -As the cumulative

frequency weighted spectra and the cumulative power spectra

are derived from the power spectra they will have the same

♦ frequency bandwidth. The frequencies f0, f-, f * and f f
d j' 4- 5' 6

and f? therefore lie in a narrow frequency zone as compared
to the synthetic case. Some cumulative frequency weighted
power spectra for Areas X and Y, with the frequencies f f

and f4 marked on them are shown in Figures 6.18 and 6.19,
respectively. Figures 6.20 and 6.21 show some more examples
of the frequency weighted power spectra. Figures 6.22 and
6.23 show a few cumulative power spectra for Areas X and Y
respectively, with frequencies fR; fg and f? marked 0n them.
Figures 6.24 and 6.25 show some further examples of these

^ traces. It is difficult to distinguish visually between the
cumulative spectra of the two Areas X and Y. As shall be seen

later this is also evident from the variables derived from the
cumulative spectra which show either very small or negative
contribution towards discrimination (Table 6.8) of seismograms
from the two different areas.

The frequency, fQf picked from the logarithm of power
spectrum is marked on Figures 6.26 and 6.27, and several of
these traces are displayed in Figures 6.28 and 6.29. Acompari
son of Figures 6.26 and 6.27 shows that the frequency fQ is
very different for the two areas, a fact which was not at all
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Table 6.8 incrimination of Se1 «mngrama nf ArPfl g g
AreaY when all 17 variables ar. t^^tered

Calculated value of F = 76.3l08,with 17 and 369 degrees of
freedom.

Tabulated value of F =1.76, with 17 and co degrees of freedom
at a = 0.05

Mahal anobis D = 14.809

&x = 39-53
R0 = 32.12
Ry = 24.71

Sl.No. Variable Constant Percentage Contributed
* towards discrimination

1. T .
amin -1.08 1.3

2.
Ti 0.27 0.0

3. T2 0.42 -0.1

4. h 0.14 0.7

5. W-S> -3.27 0.0

6. V*c -1.24 0.1

7, VAo -20.63 • 5-9
8. V*o 5.71 -2.1

9. fi 0.65 4.2

10.
f2 -0.37 -0.5

11.
f3 0.28 0.7

12.
f4 -0.45 -1.2

13. f5 -0.57 -1.9
14. f6 -0.71 -1.5
15. f7 -0.72 -1.7

16.
f8 1.85 95.3

17. fM 0.26 0.8
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FIG.6.18-SOME CUMULATIVE FREQUENCY WEIGHTED
POWER SPECTRA FOR AREA X .
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FIG.6.19-SOME CUMUUTIVE FREQUENCY WEIGHTED

POWER SPECTRA FOR AREA Y.
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FIG.6.2LSOME EXAMPLES FROM THE U8 TRACES OF CUMULATIVE

FREQUENCY WEIGHTED POWER SPECTRA ANALYSED FOR

AREA Y .
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FIG.6.23 _ SOME CUMULATIVE POWER SPECTRA FOR

AREA Y
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FIG. 6.27-SOME LOG POWER SPECTRA FOR AREA Y
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FIG.6.28-SOME EXAMPLES FROM THE 239 TRACES OF LOGARITHM

OF POWER SPECTRA ANALYSED FOR AREA X .
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FIG.6.29.SOME EXAMPLES FROM THE K8 TRACES OF LOGARITHM
OF POWER SPECTRA ANALYSED FOR AREA Y



-191-

obvious from the power spectra (Figures 6.9 - 6.17), making
a very large positive contribution towards discrimination, as
is noted from Table 6.8.

6.2 DISCRIMINANT ANALYSIS OF FIELD SEISMOGRAMS

The seventeen variables discussed earlier and shown

in Table 6.8, eight of which were from the autocorrelation

function and nine from the power spectrum of the seismograms
for Areas X and Y were subsequently subjected to discriminant

analysis. As a first step towards this analysis, the cumula
tive distribution of these variables were plotted on the
probability paper. These curves shown in Figures 6.30 - 6.33
indicate in general a normal or near normal distribution.

However, limited departures from normality do not seriously
affect the discriminant function (Davis, 1973).

Ihe discriminant score is calculated from each of the
seismograms and is projected on the discriminant function

line (Figure 6.34). - perusal of this figure indicates that
except for one all the seismograms of Area Y and more than

90 percent of Area X are properly classified. Test for the
equality of the variance-covariance matrices (Equation 5.2l)
gives the calculated values of %2 as 710.0 as against the
tabulated value of 196.6 at 153 degrees of freedom. The null
hypothesis of the equality of the two matrices is therefore
rejected. However, according to Davis (1973) <• In practice,
an assumption of equality may be unwarranted'.'
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FIG.6.3CLPROBABILITY DISTRIBUTION OF VARIABLES f2>f5>f6*f7>

f8 AND fM OF AREA Y .
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FIG.6.32.PROBABILITY DISTRIBUTION OF VARIABLES T, ,T2 J3 AND Tamirl
OF AREA Y.
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The contribution made by each variable towards discri
mination is given in Table 6.8. Frequency variable, f ,
(the frequency at which logarithm of power decreases to zero)
gives a very high contribution of 95-3 percent, thereby emerg
ing as a very powerful discriminator. This is in agreement
with the discriminant analysis of synthetic data, where the
same variable makes a contribution of 30.5 percent. Therefore,
the variable fQ can be used to distinguish •between the seismo
grams from Areas X and Y. However, spectrum of field seismo

grams is modified by the subsurface lithostratigraphy besides
the field recording and processing parameters, such as shot
depth and size and recording and processing filters. An
increase in the shot depth is expected to give a spectrum
richer in higher frequencies, resulting in a corresponding
shift of f8. Parts of one seismic profile of Area Xwere
shot at different depths of 23, 26 and 29 metres, yet no
substantial shift in fQ related to these shot points are
observed, thereby infringing, in this case the premise that
an increase in shot depth gives rise to higher frequencies.
However, fQ is still subjected to shot size, gain of the
recording instrument and the subsequent processing of data.
Much of this factor may be taken care r>* fe, +>, +"•j ^ od.Kt;n care of by the -trace equali-

sation procedures followed ln data processing atage. Therefore
inspite of f8 heing somewhat depenaerrt on shot 3l2e> ^^ ^
the recording instruct etc>it may he used as a useful
discriminator of lithologies as found in the present analysis.
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Parameter A2/A0, the ratio of the autocorrelation
function at lag of two units to 2ero lag, emerges as the
next hest discriminator, with 5.9 percent contribution- in
the synthetic case also this parser gives . significant
contribution of 2.1 percent. The average frequency, h,
contributes 4.15 percent towards discrimination, whereas in '
the synthetic case it contributed 6.9 percent, and this also
can be used as a discriminator, ^e other variables which
** P0SitlTC -^""tions in both field and synthetic cases
*" Tamin> the time of first minima in the autocorrelation
function; VV the ratio of the autocorrelation function at
unit lag to that at zero lag; ty the frequency of 50th
percentile value of frequency weighted power," and % the
frequency at which maximum, power occurs in the power spectrum.
The values of the constants Iks and the percentage contribu
tion of each variable are given in Table 6.8. This analysis,
therefore, besides discriminating between seismograms f
Area 1 from th.se 0f Area I, aiso indicates that out of
seventeen variables only seven, yia.,f A/J . ,
L./A r > .. 2 ° x amin'x/ 0, f3 and fM make meaningful contributions towards discri
mination, m decreasing order of significance.

After discriminating and evolving a classification
criterion a new set of 20 seismograms were collected as test
cases from the known Areas Xand Y. As shown in Table 6.8,
If the discriminant score for a particular seismogram is
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greater or less than the discriminant index, H = 32.12
then it can be classified either to the Area Xor Y, respecti
vely. The discriminant scores, %, (Equation 5.14) were
therefore calculated and 90 percent of these twenty seismo
grams were found to be correctly classified. These test cases
therefore demonstrate the validity of this approach and it is
therefore concluded that the technique can be used very
effectively to solve the problems of discrimination and classi
fication of lithostratigraphy from seismic data.
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CHAPTj-H - VII

DISCUSSIONS AND CONCLUSIONS

A knowledge of subsurface lithostratigraphy of

basins without drilling is the oil explorers' dream. The

interpretation of subsurface lithostratigraphy directly

from seismic data is the solution of this dream, though

it is a challenging problem. The present study based on the

seismic responses of five hundred and eight synthetic stra

tigraphic sequences generated using upward transition

probability matrices has demonstrated that it is possible

to discriminate and identify lithounits using statistical

techniques. If several variables can be quantitatively

derived from the seismograms and a multivariate strategy-

be adopted, it becomes possible to decipher lithostratigraphy.

Statistical discriminant analysis has been carried

out to distinguish between dominantly sandy, Model E, (sand =

53 percent, shale = 26 percent and coal = 21 percent) and

shaly, Model E, (sand = 37 percent, shale = 60 percent,

coal = 3 percent) on the basis of seventeen variables- These

variables are A,/A Ag/A and ^3^0 where A denotes the

autocorrelation function (AGE) at the subscripted lag)

A . /A„, where A . denotes the minimum value of the ACE,'
mm' 0' mm

T-, Tp, T, where T denotes time of the subscripted zero

crossing" T . , time at which first minima occurs,' fM,
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frequency at which maximum power occurs,' f-. , the average

power weighted frequency", f2, f^ and f. - frequencies of

2 5 ,50 and 75 percentile values of frequency weighted

power,' f4, f5 and fg - frequencies of 25th, 50th and 75th
percentile of power and fQ, the frequency at which logarithm

of power decreases to zero. Ten of these, viz. ,A,/A0, fo, T2

%» f]_> ^» f3' A2/A0' A3/A0 and Tamin have been found to
contribute positively towards discrimination of gross litho

logies corresponding to the Models E and E.

The discriminant analysis has also been applied to

field seismic data from two Areas X and Y of a sedimentary

basin in India to test the efficacy and demonstrate the

applicability of the methodology developed in the present

investigations- This analysis, when used as a search

technique, indicates that from amongst the eight positive

variables '. fQ, A2/A0, f^ T^, %, ty ^/AQ and ly\
identified only seven are common between the synthetic and

field seismograms. These are fQ, A2/AQ, f^ T^.^ _M, f^
and A^/Aq, and have been termed as 'seismic discriminators'.

To generate synthetic seismograms, the same source

wavelet and noise character was used in all the cases. Thus

the computed responses from the various simulated lithe-

stratigraphies would be mainly characterizing the latter.

The deviations on account of noise were observed to be small

on account of the large signal to noise ratio.
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The variables which give positive contributions

towards discrimination are considered to be meaningful

discriminators, as these contributions make the Mahalanobis'

distance larger. Large distances correspond to strong discri

mination. Variables which give negative contribution are

detrimental in this analysis. Other workers e.g. Davis(l973)

who have used this technique are silent about this negative

aspect. However, Sinvhal, Gaur, Khattri, Moharir and Ghander,

(1979), made an attempt to analyse the effect of eliminating

such variables and repeated the entire analysis to find that

some of the variables which previously gave positive contri

butions now made negative contributions. This shows that

the sign of contribution of a particular variable also depends

upon the set of variables considered in the discriminant

analysis. It does not seem that an analytic method to select

2
the subset which will contribute to the distance, D in the

positive aense is available, in fact, there may be no such

subset of variables.

The modeling of lithostratigraphic situations embodi

ed in the present study and the methodology developed for

discrimination are subject to certain limitations. All the

lithostratigraphic sequences have been generated with an

approximate thickness of 200 m so that a fairly large number

of lithologic transitions may be encountered. Therefore each

lithounit considered is approximately 4 m thick. This model

would restrict the thickness of various component lithounits
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to multiples of approximately 4- m. In nature the thickness

can assume any value, therefore the model would represent

actual thicknesses within a maximum error of ± 2 m. Sinoe the

resolving capability of seismic methods is well below this

order of thickness, therefore this approximation does not

represent any serious limitation of the present work.

The choice of only three distinct lithological

states - sandstone, shale and coal with no provision for

the transition zones also may not seriously affect the

results. Eor transition zones which, for example, consist

of silts or carbonaceous shales may not show a significant

variation in impedance contrast and may be grouped into one

of the three states mentioned above.

The assumption of a homogeneous overburden in the

models does not give rise to any reflections from within, and

an accompanying modifiCoition of the waveform passing through

it does not occur. This may constitute a significant devia

tion from real situations where the layered overburden does

play a significant role in imparting its characteristics

on the reflections arising from layers below it. The effeot

may have serious consequences particularly if the overburden

is highly varying from area to area. Although the responses

are calculated for normal incidence with no provision for

attenuation or dispersion it is not considered a serious

drawback of the model as in reflection prospecting the angles
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of incidence are either close or reduced to normal.

attenuation is not severe in the frequency band of interest.

The average matrices constructed for the two Areas

X and Y are infested with the usual problems of averaging

a data set from diverse areas, but this average matrix still

characterizes broad depositional environments.

The discriminant analysis based on the above model

ing procedure for simulated data has been found to be

successful showing that the limitations discussed above are

not significant. Furthermore, the same procedure has proved

successful when applied to field seismic data confirming the

suitability of the model and the corresponding method for

actual analysis. Thus as discussed the limitations were

not serious in the field data analysed. The methodology

presented here may therefore be considered as a major step

towards the successful determination of subsurface litho

stratigraphy.

For discriminant analysis certain assumptions of

normality, equality of variance-covariance matrices and the

independence of variables have to be met. However, in

practice, it is not always possible to satisfy all assump

tions rigorously in any analysis - some invariably fail.

However, limited departures from such requirements do not

seriously affect the analysis- Eor example, departures from

equality of the variance-covariance matrices have to be
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accepted in practice (Davis, 1973), and similarly limited

departures from normality may also have to be tolerated.

As discussed previously, the analysis concerning field data

does suffer from both of the above mentioned limitations.

Eor making the discriminant analysis more effective,

one has to account for as many known variables entering the

data (seismogram) as possible. One such variant is the

source pulse. The source pulse may be dependent on shot

size, pattern of shots, shot depth etc. This factor may be

particularly strong on land records. The marine data would

be relatively free from this effect if adequate care is taken

to use similar sources and recording parameters throughout

the area of survey. In land survey, Vibroseis system seems

to be a good method for achieving uniformity of source wave

form. Similarly uniformity in field and data processing

procedures would be desirable.

The discriminant analysis would be more effective

if the seismograms are as 'wide frequency band' as possible

retaining information in the higher frequencies. The band

width of field data usually gets narrowed down by the

processing filters. The range of frequencies required for

the use of discriminant parameters based on power spectra

should be extended and this can be achieved by deconvolution

procedures. Besides, the Vibroseis systems permit the input

signal to be known and controlled. A considerable resolution
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can be achieved in the reflection seismograms using this

technique and applying appropriate pulse compression methods-

A limitation that in some cases may exist on the effective

use of the frequency variables, is due to the frequency

dependent attenuation exhibited by materials. This effect

may be severe for deep reflectors, in which case the high

frequencies would suffer more and the characteristic features

in the spectrum may be attenuated to such an extent that the

discriminatory character is lost- If adequate compensation

for such losses can be applied, advantage of this discrimina

tory parameter may be taken in the case of reflections from

deeper horizons as well.

The usefulness of the present analysis in explora

tion programs for hydrocarbons may be outlined as follows I

(i) An extensive analysis of the known basins would

help establish populations of the various seismic

parameters, those used here and perhaps newer ones,

corresponding to various geological environments of

depositions. These could serve as standard reference

for classifying virgin or partially explored areas

on the basis of their seismic responses.

(ii) The method can lead to basic information on the

variation of lithostratigraphy in various parts of

the basin under exploration. By studying re flection



-207-

bands at various depths along the profiles to

infer lithostratigraphy at various depths and

its lateral variation a depositional model for

the basin can be formulated. Needless to say

that such an information, coupled with the

conventional structural picture and the seismic

indicators for fluid content, would add another

dimension to the exploration concept. It would

lead to more cost effective exploration programs.

(iii) A similar analysis may be attempted to establish

discriminant functions based on seismograms to

predict fluid content. The success in this regard

would indeed be a major advance in exploration

methods- However, such an investigation remains

for the future.
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