NUCLEATE POOL BOILING OF LIQUIDS AND THEIR MIXTURES AT SUBATMOSPHERIC PRESSURES

-82

A THESIS

submitted in fulfilment of the requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY in CHEMICAL ENGINEERING

By

Mrs. SHASHI KRISHNA PANDEY

DEPARTMENT OF CHEMICAL ENGINEERING UNIVERSITY OF ROORKEE ROORKEE-247667 (India) August, 1982

Candidate's Declaration

I hereby certify that the work which is being presented in the thesis entitled "Nucleate Dool Boiling of Liquids and their Mixtures at Subatmospheric Pressures" in fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY submitted in the Department of Chemical Engineering of the University is an authentic record of my own work carried out during a period from July 30, 1979 to August 16, 1982 under the supervision of Dr. B.S. Varshney and Dr. P.R. Sharma.

The matter embodied in this thesis has not been submitted by me for the award of any other degree.

(Mrs. SHASHI KRISHNA PANDEY)

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

(P. R. SHARMA) Lecturer, Chemical Engineering Department, University of Roorkee, Roorkee-247667 (India)

(B. S. VARSHNEY) Professor & Head, Chemical Engineering Department, University of Roorkee, Roorkee-247667 (India)

August 16, 1982

ABSTRACT

The present investigation pertains to the experimental research work related to the nucleate boiling heat transfer from a horizontal 410 ASIS stainless steel cylinder to the pool of saturated liquids, and to their binary liquid mixtures both at atmospheric and subatmospheric pressures. The pure liquids used for the investigation are distilled water, ethanol, methanol and isopropanol, and the binary liquid mixtures having varying concentrations of ethanol-water, methanol-water and isopropanol-water mixtures. The heat flux ranges from 9,618 W/m² to 31,354 W/m² and the system pressure from 25.33 kN/m² to 98.63 kN/m².

Since this investigation aims to obtain experimental data for the pool boiling of pure liquids and their binary mixtures, an experimental facility was carefully designed and raised. The experimental set-up includes provisions for the measurement of concentration of the binary liquid mixtures, electrical energy input to the heating surface, pressure over the liquid pool and temperatures of the heating surface and the boiling liquid.

The copper-constantan thermocouples measure the temperatures of the heating surface and the boiling liquid. The heating surface temperature is measured circumferentially at the top-, the side- , and the bottom- positions at a given plane. The specially home-made travelling thermocouple probes measure the liquid bulk temperature at the three locations corresponding to the surface thermocouple The surface temperature is corrected by positions. subtracting the temperature drop across the wall thickness. From the readings of the corrected surface and the corresponding liquid tomperatures, local values of At are calculated for the top-, the side-, and the bottom- positions of the heating surface. Using the 'mechanical quadrature' technique, the average values of AT are obtained to calculate average heat transfer coefficient, h over the circumference.

The concentration of the boiling binary liquid mixture, X is determined by drawing the liquid sample from the liquid sampling unit and then comparing its refractive index with the calibration curve. The refractrometer used was supplied by M/s Carl Zeiss Jena Co., West Germany. The liquid concentration is checked at several intervals of time during a given test run for a given mixture composition. The concentration in the vapour phase, Y in equilibrium with the liquid phase concentration, X is obtained from the literature.

The experimental data for the pool boiling of pure liquids at atmospheric as well as at subatmospheric pressures corroborate the validity of the well-established relationship between the heat transfer coefficient and the heat flux for high pressures, i.e., h $\alpha q^{0.7}$. However, the relationship between the boiling heat transfer coefficient and the pressure for the subatmospheric pressures differs from that at high pressures. In fact, the boiling heat transfer coefficient varies with the pressure raised to the power of 0.32 for the data conducted at subatmospheric pressures, i.e. h $\alpha P^{0.32}$.

The heat transfer data for the boiling of ethanol, methanol and isopropanol do not deviate amongst themselves, whereas they differ considerably from those of distilled water.

The experimental data for the pool boiling of pure liquids as used in this investigation and those of earlier investigators conducted on widely differing heating surfaces for the liquids possessing differing physico-thermal properties for subatmospheric pressures are correlated by the following equation within ± 15 per cent deviation :

$$\frac{\overline{h}^{\star}}{\overline{h}_{1}^{\star}} = \left(\begin{array}{c} \underline{P} \\ \overline{P}_{1} \end{array} \right)^{0.32}$$

where $\bar{h}^{\star} = (\bar{h}/q^{0.7})$, represents a ratio of average heat transfer coefficient to heat flux raised to the power of 0.7, and P is the system pressure. The subscript, 1 corresponds to 'reference' pressure for which the value of \bar{h}_1^{\star} is known for a given liquid and heating surface. However, in the present investigation the 'reference' pressure chosen is one atmosphere. With the knowledge of \bar{h}_1^{\star} and P_1 , the above correlation readily determines the value of \bar{h}^{\star} at any subatmospheric pressure for the same boiling liquid and the heating surface. Further, the above correlation is useful to check the consistency of boiling heat transfer data for a given liquid and heating surface at subatmospheric as well as atmospheric pressures.

Since this correlation is for the data conducted for different liquids on the heating surfaces possessing differing surface characteristics at subatmospheric pressures, an implication of this is that the effect of the surface-liquid combination is the same for all the pressures, $P \leq 1$ atmosphere. It is important to note that the data for the pool boiling of liquids at high pressures could not be correlated by a correlation of the aforesaid type. This is due to the fact that the effect of surface-liquid combination is not the same for all the pressures, $P \geq 1$ atmosphere.

The experimental data of binary liquid mixtures for subatmospheric pressures on a given heating surface are also correlated by the relationships : h $\alpha q^{0.7}$ and h $\alpha P^{0.32}$ which are applicable for the boiling of pure liquids. The data analysis of binary liquid mixtures shows that they are satisfied by the following correlation within <u>+</u> 15 per cent like for pure liquids:

iv

$$\frac{h^{\star}}{h_{1}^{\star}} = (\frac{P}{P_{1}})^{0.32}$$

where the terms have their same meaning as described for the correlation for the pure liquids.

The addition of more volatile component to the water shows that the boiling heat transfer coefficient of the binary liquid mixture decreases upto a certain concentration, beyond which it increases. The concentration at which the heat transfer coefficient is minimum corresponds to a maximum value of [Y-X]. It is 31.10 wt. per cent ethanol, 30.80 wt. per cent methanol, and 22.5 wt. per cent isopropanol for ethanolwater, methanol-water and isopropanol-water mixtures respectively. This behaviour is shown at all the subatmospheric pressures studied. It may be noted that the actual heat transfer coefficient for any concentration of the binary liquid mixtures studied is less than the weighted heat transfer coefficient calculated from the heat transfer coefficients of the mixture in their pure states and the concentration of the mixture. This is a consistent behaviour for all the pressures investigated.

The experimental data of all the binary liquid mixtures studied lead to correlations within \pm 15 per cent as follows :

V

(a) For the values of X ;
$$0 \le X \le 22.0$$

Nu^{*}
$$(\frac{P_1}{P})^{0.32} = 3.70 \times 10^{-2} (x')^{-0.60}$$

(b) For the values of X'; $30.0 \le x' \le 78.0$
 $\overline{w}^*(\frac{P_1}{P})^{0.32} = 2.51 \times 10^{-4} (x')^{0.90}$

In the above equations $\overline{N}\frac{t}{U}$ represents the average value of the normalised Nusselt number given by the quantity

 $\frac{h}{k}$ $\int \frac{\sigma}{(\rho_{\chi} - \rho_{v})g}$ where σ is the surface tension; k, the thermal conductivity of the boiling mixture; ρ_{χ} , the liquid density and ρ_{v} , the vapour density. P represents the system pressure; P₁, the 'reference' pressure and X', the wt. per cent of more volatile component in the liquid phase.

These correlations provide a procedure for calculating the boiling heat transfer coefficient of a binary liquid mixture for the aforesaid concentrations, X' at subatmospheric and atmospheric pressures on a given heating surface.

ACKNOWLEDGEMENTS

• The author expresses her deep sense of gratitude and indebtedness to Dr. B.S. Varshney, Professor and Head, Chemical Engineering Department and Dr. P.R. Sharma, Lecturer, Chemical Engineering Department, University of Roorkee, Roorkee, for their excellent guidance, lasting encouragement and wholehearted co-operation throughout the course of this work. Their efforts in going through the manuscript and suggestions for its improvement are gratefully acknowledged.

The author deeply appreciates the constant encouragement, help and technical discussions at various stages of the work with her husband, Shri K.S. Pandey, Research Scholar under Quality Improvement Programme in Department of Metallurgy, University of Roorkee, Roorkee.

Sincere thanks are due to Dr. S.C. Gupta, Reader in Chemical Engineering Department, University of Roorkee, Roorkee, for his help and co-operation.

Thanks are also due to Shri Chandrahas Tyagi, Lecturer in Mechanical Engineering Department, Institute of Paper Technology, Saharanpur, University of Roorkee, for his enthusiastic association and help during the initial stages of the work. Quality Improvement Programme, a Scheme run by Government of India to provide facilities for higher studies to Engineering Faculty ;

Thiru C. Aranganayagam, Education Minister, Tamil-Nadu and Chairman of Regional Engineering College, Tiruchirapalli,for sponsorship under Quality Improvement Programme ;

Prof. P.S. Manisundaram, Formerly Principal, Regional Engineering College, Tiruchirapalli, presently Vice-Chancellor, University of Tiruchirapalli, Tamil-Nadu, for sponsorship and help;

Dr. S.H. Ibrahim, Professor and Head, Chemical Engineering Department, and Dr. C.R. Kandaswamy, Professor, Mechanical Engineering Department, Regional Engineering College, Tiruchirapalli, for their co-operation ;

Author's colleauges, Dr. V.R. Arunachalam and Dr. P. Subramanian, Assistant Professors and Dr. S. Sundaram, Lecturer, Chemical Engineering Department, Regional Engineering College, Tiruchirapalli, for persistent encouragement in completing this task ; Miss Jyoti Lata Pandey, Research Scholar, Department of Metallurgy, University of Roorkee, Roorkee,for her assistance in checking the manuscript ; Dr. S.D. Bhattacharya, Reader and Shri T.N.S. Mathur, Lecturer, Chemical Engineering Department, University of Roorkee, Roorkee, for their help ;

Shri Sunredra Singh, S.L.T., for the electrical circuits and instrumentation ;

Shri Jugendra Singh, S.L.T., for his help in fabricating equipment ;

Shri Abdul Aziz, L.A., for his assistance in commissioning the experimental set-up ;

Shri Harbans Singh, L.A., for his help during the experimentation ;

Shri Atam Prakash and Shri Y.P. Arora for their skillful draftsmanship ;

Shri V.P. Kaushish for excellent typing ;

and finally to her parents and sons for inspiration and affection.

CONTENTS

	ABSTRACT	i
	ACKNOWLEDGEMENTS	vii
	CONTENTS	x
0	LIST OF FIGURES	xii
~2	LIST OF TABLES	xx
Na	NOMENCLATURE	xxi
CHAPTER 1	INTRODUCTION	l
CHAPTER 2	LITERATURE REVIEW	6
5 1 63	2.1 Introduction	6
C	2.2 Empirical correlations for binary liquid mixtures	7
5313	2.3 Theoretical models for bubble growth rates in binary liquid mixtures	42
CHAPTER 3	EXPERIMENTAL SET-UP	65
C. W.	3.1 Design considerations	65
200	3.2 Description of the experimental set-up	69
4	3.3 Instrumentation and calibration	83
CHAPTER 4	EXPERIMENTAL PROCEDURE	89
	4.1 Testing of experimental set-up	89
	4.2 Operating procedure	90
	4.3 Consistency of experimental data	93

Contents (contd.)		Page	
CHAPTER 5	RESUI	LTS AND DISCUSSION	97
	5.1	Limitations of data processing	100
	5.2	Nucleate pool boiling of pure liquids	103
	5.3	Variation of (h^{\star}/h_{l}^{\star}) with	129
Sal	5.4	P/P_1 for subatmospheric pressure Variation of ($\overline{h}^{\star}/\overline{h}_1^{\star}$) with P/P_1 for superatmospheric pressure	132
CEL	5.5	Nucleate pool boiling of binary liquid mixtures	136
- ho	5.6	Variation of h^{\star}/h_{1}^{\star} with P/P ₁ for subatmospheric pressure	175
	5.7	Generalised correlation	181
CHAPTER 6	CONC	LUSIONS AND RECOMMENDATIONS	187
APPENDIX A	ANAL	YSIS OF ERRORS	194
APPENDIX B	TABU	LATION OF EXPERIMENTAL DATA	201
APPENDIX C		UATION OF PHYSICO-THERMAL PERTIES	307
APPENDIX D	SAMI	PLE CALCULATIONS	329
	ਸਦਾਸ਼	RENCES	337

L

LIST OF FIGURES

Fig.	2.1	Vapour-liquid concentration difference and heat transfer	38
		coefficient of benzene-tolucne[60]	
Fig.	2.2	Experimental data of van Wijk et al [97] for nucleate boiling of mixture	47
Fig.	2.3	Vapour bubble growth rate as a function of concentration of mixture (X, ethanol concentration)	57
Fig.	3.1	[103] Schematic diagram of experimental	70
1		set-up	
Fig.	3.2	Photographic view of experimental set-up	71
Fig.	3.3	Details of test vessel	73
Fig.	3.4	Photographic view of test vessel and auxiliary equipment	74
Fig.	3.5	Heat transfer surface and thermocouples layout	76
Fig.	3.6	Stabilized power supply system	84
	3.7	Details of selector switch and thermocouple assembly	86
Fig.	3.8	Comparison of experimental refractive index with values in literature [119] for pure liquids at 15 [°] C	88
Fig.	4.1	Calibration curve for ethanol-water mixtures at 15°C	94

List of Fi,	gures (Contd.)	Page
Fig. 4.2	Calibration curve for methanol-water mixtures at 15 ⁰ C	95
Fig. 4.3	Calibration curve for isopropanol- water mixtures at 15 ⁰ C	96
Fig. 5.1	Variation of heat transfer coefficient with heat flux for distilled water at atmospheric and subatmospheric pressure	104
Fig. 5.2	Variation of heat transfer coefficient with heat flux for ethanol at atmospheric and subatmospheric pressure	105
Fig. 5.3	Variation of heat transfer coefficient with heat flux for methanol at atmospheri and subatmospheric pressure	106 c
Fig. 5.4	Variation of heat transfer coefficient with heat flux for isopropanol at atmospheric and subatmospheric pressure	107
Fig. 5.5	Heat transfer coefficient - heat flux relationship for isopropanol at 98.63 kN/m ²	112
Fig. 5.6	Heat transfer coefficient - heat flux relationship for methanol at 66.64 kN/m ²	113
Fig. 5.7	Variation of heat transfer coefficient with heat flux on a horizontal brass cylinder at 61.25 kN/m ²	116
Fig. 5.8	Variation of heat transfer coefficient with heat flux for pure liquids at 98.63 kN/m ²	117
Fig. 5.9	Variation of heat transfer coefficient with heat flux for pure liquids at 66.64 kN/m ²	118

Fig.	5.10	Variation of heat transfer coefficient with heat flux for pure liquids at 50.65 kN/m^2	119
Fig.	5.11	Variation of heat transfer coefficient with heat flux for pure liquids at 33.32 kN/m ²	120
Fig.	5.12	Variation of heat transfer coefficient with heat flux for pure liquids at 25.33 kN/m^2	121
Fig.	5.13	Variation of heat transfer coefficient with pressure for pure liquids	123
Fig.	5.14	Variation of heat transfer coefficient with pressure for distilled water on different heating surfaces	126
Fig.	5.15	Variation of $\bar{h}^{\star}/\bar{h}_{l}^{\star}$ with P/P _l for pure liquids at subatmospheric pressures	130
Fig.	5.16	Variation of h^{\star}/h_{l}^{\star} with P/P _l for pure liquids at high pressures	133
Fig.	5.17	Variation of heat transfer coefficient with heat flux for 11.86 wt. % ethanol in ethanol-water mixture at atmospheric and subatmospheric pressure	138
Fig.	5.18	Variation of heat transfer coefficient with heat flux for 31.10 wt. % ethanol in ethanol-water mixture at atmospheric and subatmospheric pressure	139
Fig.	5.19	Variation of heat transfer coefficient with heat flux for 71.88 wt. % ethanol in ethanol-water mixture at atmospheric and subatmospheric pressure	140

- Variation of heat transfer coefficient Fig. 5.20 with heat flux for 8.56 wt. % methanol in methanol-water mixture at atmospheric and subatmospheric pressure
- Variation of heat transfer coefficient 142 Fig. 5.21 with heat flux for 30.80 wt. % methanol in methanol-water mixture at atmospheric and subatmospheric pressure
- 143 Variation of heat transfer coefficient Fig. 5.22 with heat flux for 64.00 wt. % methanol in methanol-water mixture at atmospheric and subatmospheric pressure
- Variation of heat transfer coefficient 144 Fig. 5.23 with heat flux for 15.00 wt. % isopropanol in isopropanol-water mixture at atmospheric and subatmospheric pressure
- Variation of heat transfer coefficient 145 Fig. 5.24 with heat flux for 22.50 wt. % isopropanol in isopropanol-water mixture at atmospheric and subatmospheric pressure
 - 146 Variation of heat transfer coefficient Fig. 5.25 with heat flux for 77.00 wt. % isopropanol in isopropanol-water mixture at atmospheric and subatmospheric pressure
 - 149 Heat transfer coefficient - heat flux Fig. 5.26 relationship for 19.3 wt. % water in water-ethylene glycol mixture on different heating surfaces at 98.63 kN/m²

141

- Fig. 5.27 Variation of heat transfer coefficient 150 with heat flux for ethanol-water mixtures at 66.64 kN/m²
- Fig. 5.28 Variation of heat transfer coefficient 151 with heat flux for methanol-water mixtures at 33.32 kN/m²
- Fig. 5.29 Variation of heat transfer coefficient 152 with heat flux for isopropanol-water mixtures at 98.63 kN/m²
- Fig. 5.30 Variation of normalised heat transfer 155 coefficient with wt. % of ethanol for ethanol-water mixtures
- Fig. 5.31 Variation of normalised heat transfer 156 coefficient with wt. % of methanol for methanol-water mixtures
- Fig. 5.32 Variation of normalised heat transfer 157 coefficient with wt. % of isopropanol for isopropanol-water mixtures
- Fig. 5.33 Variation of normalised heat transfer 159 coefficient with wt. % of more volatile component for binary liquid mixtures at 33.32 kN/m²
- Fig. 5.34 Plot of (Y-X) VS X or X for ethanol- 161 water mixtures
- Fig. 5.35 Plot of (Y-X) vc X or X for methanol- 162 water mixtures
- Fig. 5.36 Plot of (Y-X) vs X or X for isopropanol- 163 water mixtures
- Fig. 5.37 Variation of heat transfer coefficient 165 with wt. % of water in binary liquid mixtures at 22.45 x 10³ W/m²[126]

xvi

TPO	OI FIG	ures (contra.)
Fig.	5.38	Variation of normalised
		coefficient with pressu

of Figura (Coutd

3.38 Variation of normalised heat transfer 166 coefficient with pressure for distilled water, ethanol and ethanol-water mixtures

- Fig. 5.39 Variation of normalised heat transfer 167 coefficient with pressure for ethanolwater mixtures
- Fig. 5.40 Variation of normalised heat transfer 169 coefficient with pressure for distilled water, methanol and methanol-water mixtures
- Fig. 5.41 Variation of normalised heat transfer 170 coefficient with pressure for methanolwater mixtures and distilled water
- Fig. 5.42 Variation of normalised heat transfer 171 coefficient with pressure for distilled water, isopropanol and isopropanolwater mixtures
- Fig. 5.43 Variation of normalised heat transfer 172 coefficient with pressure for isopropanol-water mixtures
- Fig. 5.44 Variation of h^{*}/h_{1}^{*} with P/P_{1} for ethanol 177 and ethanol-water mixtures
- Fig. 5.45 Variation of $\overline{h}^{\star}/\overline{h}_{1}^{\star}$ with P/P₁ for methanol 178 and methanol-water mixtures
- Fig. 5.46 Variation of $\overline{h}^{*}/\overline{h}_{l}^{*}$ with P/P_l for 179 isopropanol and isopropanol-water mixtures
- Fig. 5.47 Variation of $\overline{h^{*}}/\overline{h_{l}^{*}}$ with P/P_{l} for pure 180 liquids and alcohol -water mixtures

xviii

List of Fig	ures (Contd.)	Page
Fig. 5.48	Plot of $\overline{Nu}^{*}(P_{1}/P)^{0.32}$ vs X' for ethanol-water mixtures	182
Fig. 5.49	Plot of $\overline{N}u^{\pm}(P_1/P)^{0.32}$ vs X' for methanol-water mixtures	183
Fig. 5.50	Plot of $\overline{N}u^{\frac{1}{2}}(P_1/P)^{0.32}$ vs X' for isopropanol-water mixtures	184
Fig. 5.51	Plot of $\overline{N}u^{\bigstar}(P_1/P)^{0.32}$ vs X' for alcohol-water mixtures	185
Fig. C.1	Variation of liquid and vapour densities with saturation temperature for pure liquids	308
Fig. C.2	Variation of surface tension and viscosity with saturation temperature for pure liquids	309
Fig. C.3	Variation of thermal conductivity with saturation temperature for pure liquids	310
Fig. C.4	Variation of latent heat of vaporization and saturation pressure with saturation temperature for pure liquids	311
Fig. C.5	Variation of specific heat with saturation temperature for pure liquids	312
Fig. C.6	Variation of mole per cent of ethanol in vapour phase with saturation pressure for ethanol-water mixtures	317
Fig. C.7	Variation of saturation pressure with saturation temperature for ethanol- water mixtures	318
Fig. C.8	Variation of liquid and vapour densities of ethanol-water mixtures with saturation temperature	319

- Fig. C.9 Variation of surface tension and thermal 320 conductivity with saturation temperature for ethanol-water mixtures
- Fig. C.10 Variation of mole per cent of methanol 321 in vapour-phase with saturation pressure for methanol-water mixtures
- Fig. C.11 Variation of saturation pressure with 322 saturation temperature for methanolwater mixtures
- Fig. C.12 Variation of liquid and vapour densities 323 of methanol-water mixtures with saturation temperature
- Fig. C.13 Variation of surface tension and thermal 324 conducitivity with saturation temperature for methanol-water mixtures
- Fig. C.14 Variation of mole per cent of isopropanol 325 in vapour phase with saturation pressure for isopropanol-water mixtures
- Fig. C.15 Variation of saturation pressure with 326 saturation temperature for isopropanolwater mixtures
- Fig. C.16 Variation of liquid and vapour densities 327 of isopropanol-water mixtures with saturation temperature
- Fig. C.17 Variation of surface tension and thermal 328 conductivity with saturation temperature for isopropanol-water mixtures

Pago

LIST OF TABLES

		Page
Table 2.1	Values of constant A _o for binary mixtures in Equation (2.21)	20
Table 2.2	Average absolute deviations of correlations [36-38] with data of Clements and Colver [39]	24
Table 2.3	Values of constant E in Equation (2.31)	27
Table 5.1	Parameters for saturated nucleate pool boiling studies	97
Table 5.2	Parameters for earlier studies in nucleate pool boiling of pure liquids	114
Table 5.3	Values of constant,C _l in Equation (5.3) for pure liquids at subatmospher pressures	128 ric
Table 5.4	Values of constant, C _l in Equation (5.3) for pure liquids at high pressures	135
Table 5.5	Values of constant, Cm _l in Equation (5.7) for binary liquid mixtures at subatmospheric pressures	173
	ALUTA .	

NOMENCLATURE

A	heat transfer area	m ²
C	constant of proportionality as defined in Equation (5.2)	
Cl	constant of proportionality as defined in Equation (5.3)	
C _m	constant of proportionality as defined in Equation (5.5)	
Cml	constant of proportionality as defined in Equation (5.7)	
d	diameter of the heating surface	m
d _h	diameter of the circle passing through the centre of the thermocouple hole as defined in Equation (D.2)	m
d _i	inside diameter of the heating surface	m
do	outside diameter of the heating surface	m
D	Laplace constant	m
D _b	diameter of the bubble at departure	m
f	bubble emission frequency	s~1
g	acceleration due to gravity	m/s ²
h	heat transfer coefficient	w/m ² K
ħ	average heat transfer coefficient	W/m ² . K
h *	normalised heat transfer coefficient W^{0} . (h/q ^{0.7})	3/m ^{0.6} K
h*	normalised average heat transfer W^0 . coefficient at a pressure $(\hbar/q^{0.7})$.3/m0.6K
k	thermal conductivity of pure liquids	w/m K
km	thermal conductivity of binary liquid mixture	W/m K

~Sunser

	X	length of the heating surface	m
	Μ	average molecular weight of the binary liquid mixture	kg/kg mole
	P	pressure	N/m ²
	ΔP	pressure difference	N/m^2
	q	heat flux	W/m ²
	R _{min}	minimum radius of curvature of a nucleation site	m
	S	surface area of a spherical bubble	m ²
2	So	surface area of a spherical bubble at base	m ²
p.	T	temperature	K or ^o C
	Ŧ	average temperature	K or ^o C
	ΔT	temperature difference, $(T_w - T_{\chi})$	K or ^o C
3	T	average temperature difference	K or ^o C
	∆T ₩	wall superheat (T _w -T _s)	K or ^o C
¢	∆T _w	average wall superheat	K or ^o C
	δT _w	temperature drop across the wall as defined in Equation (D.1)	K or ^o C
	X	mole per cent of more volatile component of binary mixture in liquid-phase	
	X.	weight per cent of more volatile component of binary mixture in liquid-phase	
	Y	mole per cent of more volatile component of binary mixture in vapour-phase	
	у	mole fraction of more volatile component of binary mixture in vapour phase	

Greek Symbols

σ	surface tension	N/m
ρ	density	Kg/m ³
λ	latent heat of vaporization	J/Kg
μ	dynamic viscosity	N s/m ²
ν	kinematic viscosity	m ² /s
α	thermal diffusivity , $k/C\rho$	m ² /s
β	contact angle	rad.
θ	time	S
η	refractive index	1

Dimensionless Modulii

Ja Jakob number

Nu

Average Nusselt number

Subscripts

liquid vapour

wall

Cl	PL DI
F	ννλ
ħ	σ
k	$(\rho_{\chi} - \rho_{v})g$

CHAPTER-1

INTRODUCTION

Nucleate pool boiling heat transfer finds wide applications in process, power, refrigeration, and allied industries. This has prompted many research workers to undertake investigations related to different aspects of boiling heat transfer, namely ; the boiling curve, the bubble dynamics on the heating surface including the number of nucleation sites, bubble growth rates, the bubble departure diameter, the bubble emission frequency and many others. In fact these studies contribute immensely to our knowledge to understand the boiling heat transfer process scientifical However, much more research inputs are needed to exploit these areas of research for better understanding of the subject.

The knowledge of boiling heat transfer pertaining to the determination of the parametric effects of the heat flux, the system pressure, the physico-thermal properties of boiling liquids and the heating surface characteristics on the pool boiling heat transfer coefficient is of immediate applications for the design of the evaporators, the reboilers, the vapourisers, and many other alike heat transfer equipment of industrial importance. Consequently, a large number of experimental data have been conducted for the boiling of water on widely differing heating surfaces generally for high pressures. These data have resulted in obtaining a plethora of correlations for calculating the pool boiling heat transfer coefficient incorporating the effect of heat flux, pressure, properties of boiling liquid and surface-liquid combination factor. In fact, no generalised correlation for pool boiling heat transfer exists. Besides, different investigators have used different dimensionless groups in their respective correlations. In addition to this, the surface-liquid combination factor is another parameter which has unique value depending upon the system used. The research inputs of different investigators, one by one, have failed to generalise the values of surfaceliquid combination factor.

The above mentioned observations corroborate the fact that the boiling heat transfer at high pressure still needs further investigations to evolve a generalise correlation like other convective heat transfer processes

Further, a survey of the literature shows that the experimental data for the boiling of liquids other than water on widely differing heating surfaces at subatmospheric pressures are scarce. It may be noted that the correlations for the boiling of liquids at high pressures are inadequate to correlete the data conducted at low pressures. Hence, there is an absolute need to investigate the pool boiling heat

transfer data for organic liquids at low pressures, especially at subatmospheric pressures, then to establish the functional relationship relating heat transfer coefficient to heat flux, pressure and physicothermal properties of boiling liquids. There is also a need to scrutinise the value of the constant appearing in the correlation for heat transfer coefficient which incorporates the effect of heating surface characteristics and the boiling liquid enveloping the heating surface.

The nucleate pool boiling heat transfer data and the design correlation for the calculation of heat transfer coefficient for the binary liquid mixtures represent another need-based research area which is of This has paramount importance in process industries. its distinct applications in the design of reboilers, evaporators and vapourisers. This may be noted that, in absence of any experimental data, the design engineer has been calculating the weighted heat transfer coefficie for any concentration of the binary mixture from the knowledge of the heat transfer coefficients of the constituents of the liquid mixture in their pure state. The recent studies, though not enough, indicate that the weighted heat transfer coefficient is much different from the actual experimental values. A review of the literature suggests that there is almost a vacuum of the experimental data for the boiling of different binary liquid mixtures, especially for the subatmospheric pressures. Obviously, the literature is almost devoid

of the pertinent information relating the pool boiling heat transfer coefficient of the binary liquid mixture to the heat flux, the pressure, the physico-thermal properties, and the heating surface characteristics. This demands a relevant investigation leading to suitable design correlation to be employed for the design of evaporators, reboilers, vapourisers, and alike process equipment.

Considering the above mentioned observations, the present investigation was planned with the following objectives :

- 1. To raise an experimental set-up for carrying out the nucleate pool boiling heat transfer data at atmospheric and subatmospheric pressures for the liquids and their binary liquid mixtures.
 - 2. To obtain experimental data for the nucleate pool boiling of pure liquids at atmospheric and subatmospheric pressures for water and alcohols; ethanol, methanol and isopropanol.

3. To generate experimental data for the nucleate pool boiling heat transfer coefficient of aqueous binary alcohol mixtures both for atmospheric and subatmospheric pressures and thereby to determine the effect of concentration of binary liquid mixtures on

the boiling heat transfer coefficient.

- 4. To ascertain the effect of surface-liquid combination for the boiling of pure liquids and aforesaid binary liquid mixtures at atmospheric and subatmospheric pressures.
- 5. To recommend generalised correlation for the calculation of nucleate pool boiling heat transfer coefficient for the pure liquids and their binary mixtures.

CHAPTER-2

LITERATURE REVIEW

2.1 INTRODUCTION

Nucleate pool boiling of binary and polynary liquid mixtures is an important field of research from the view point of its ultimate application in improving the design of heat transfer equipment largely employed in chemical and allied industries. The aim in itself is difficult to achieve firstly, because of the difficulties inherited in understanding the complicated nature of the boiling process and then extending this information successfully to the practical problems. Literature is almost silent except a few exceptions [1-7], with regard to study the overall performance of such piece of equipment where nucleate boiling of binary and multicomponent liquid mixtures is encountered. However, large efforts have been made mainly in two directions : (i) experimental studies to generate data and proposing the empirical correlations to evaluate heat transfer coefficients and critical heat fluxes (ii) theoretical studies to understand the basic principles involved in bubble growth rates and bubble emission frequencies in nucleate pool boiling of pure and binary liquid mixtures.

This chapter reviews, in brief, the published literature on the above two aspects for the boiling of binary liquid mixtures excluding the studies regarding critical heat fluxes. Exhaustive literature review for nucleate pool boiling of pure liquids has been reported recently by Sharma [8] and it is not intended to repeat the survey again. However, in view of the above mentioned objectives, some of the empirical correlations and studies on bubble growth rates for pure liquids have been mentioned, wherever necessary.

2.2 EMPIRICAL CORRELATIONS FOR BINARY LIQUID MIXTURES

Probably the earliest work in the area of nucleate pool boiling of binary liquid mixtures is attributed to Cryder and Finalborgo [9]. In their efforts to generate the experimental data for pool boiling of pure liquids at subatmospheric pressures they have taken a binary mixture and two aqueous solutions. The binary mixture was 26 wt. % glycerol in water-glycorol and aqueous solutions were 10 wt.% sodium sulfate and 24 wt.% sodium chloride. The saturation temperature of water-glycerol ranged from 68.88° C to 113.3° C and heat flux from 8141 W/m² to 41,868 W/m².

Bonilla and Perry [10] are the pioneer investigators who took as many as six binary mixtures of waterethanol, water-acetone, water-butanol, ethanol-butanol

ethanol-acetone and butanol-acetone with a fairly wide range of composition. A horizontal chromium plate was used as a heating surface. In some of their mixtures, Bonilla and Perry [10] have found a maximum heat flux in nucleate boiling exceeding somewhat than that of either of the pure components. However, no systematic investigation about the influence of concentration was made and the increase of maximum heat flux mentioned by them was very moderate.

Cichelli and Bonilla [11] investigated mixtures of water-ethanol and propane- n-heptane boiling on a horizontal copper chrome-plated plate heated electrically. They took 33 wt. % and 80 wt. % propane-n-heptane mixtures and conducted experiments at high pressures ranging from 4 to 32 bars. The heat flux ranged from 2.9075 x 10^3 to 5.815 x 10^5 W/m². They proposed the following equations for calculating heat transfer coefficient :

h = 1.07
$$q^{0.7} \left(\frac{P}{17.93}\right)^{0.53}$$
 ...(2.1)
h = 19 $q^{0.7} P^{0.62}$...(2.2)

It is interesting to note that both the above equations contain no concentration terms.

Bonilla and Eisenberg [12] conducted experimental data on water-styrene and water-butadiene mixtures. These data are useful for rubber industires.

Bonnet and Gerster [1] took mixtures of C4-hydrocarbons and furfural and conducted experiments on these systems at atmospheric pressure.

Kirschbaum [13,14] in two separate investigations employed three binary mixtures; water-ethanol, benzenetoluene and water-glycerol. He has found that in 20 wt. % solution of glycerol in water the overall heat transfer coefficient was raised by a factor of two as compared with pure water at the same degree of wall superheat, $\Delta T = 20^{\circ}$ C. He obtained this maxima also for a 50 wt. % solution of glycerol. He attributes this behaviour to foaming. No sufficient data are, however, given to conclude that why the maximum heat flux was reached in this case.

Chernobylskii and Lukach [15] calculated the heat transfer coefficient during boiling of two binary mixtures viz. benzene-toluene and ethanol-water of varying compositions. They conducted their experiments at atmospheric pressure and in the heat flux range 18.61×10^3 to 15.12×10^4 W/m². The results for these binary mixtures were expressed in the conventional form i.e. $h = c q^n$. The values of c and n vary with concentration of the more volatile component in the mixture.

Chi-Fang-Lin et al [16] undertook an investigation for nucleate pool boiling of liquid binary mixtures of ethanol-water and benzene-toluene at subatmospheric

pressures. The value of the pressure ranged from 200 to 760 mm Hg. They worked at relatively low values of heat flux ranging from 4652 to 46520 W/m^2 . The concentration range was wide in their investigation. The concentration of ethanol in ethanol-water were 5, 25, 60 and 91.8 per cent by weight and that of benzene in benzene-toluene mixtures were 8, 12, 25, 50, 75, 88 and 100 wt. per cent. They calculated the experimental values of heat transfer coefficient and correlated their data by modifying Kruzhilin's equation [17] within \pm 10 per cent deviation as given below :

$$Nu_{\rm B} = 0.71 \ Pr^{0.45} \ K_{\rm q}^{0.57} \ K_{\rm u}^{0.33} \ \dots (2.3)$$

where $Ku = \frac{1}{Kt}$ and Kt is criterion for bubble break-off frequency and Kq = Re.Pr.Kt

A good deal of experimental work was conducted by Sternling and Tichacek [18] to determine the heat transfer coefficient in pool boiling for fourteen saturated binary mixtures at atmospheric conditions. The mixtures chosen for investigation were both ideal solutions or mixtures with strong positive and negative deviations from Raoult's law. All the mixtures had a wide boiling range of at least 90°C. They used the same thin stainless steel tubing of diameter 4.51 mm for all the experiments. Heating was done by alternating current. The compositions and heat fluxes used were of very wide range unlike other earlier investigators. For all the binary mixtures, heat transfer coefficient at a given heat flux decreased markedly with the addition of a more volatile component until a specific composition was attained. At this composition a turnaround was observed and heat transfer coefficients started increasing This turnaround behaviour has been attributed to the change in bubble dynamics with the addition of more volatile component in a pure liquid.

Huber and Hoehne [19] studied the pool boiling of benzene, diphenyl and benzene-diphenyl mixtures at pressures more than atmospheric (93.08 x 10^3 to 3368 x 10^3 N/m²) boiling on a 9.525 mm 0.D. horizontal tube. They correlated their experimental heat transfer coefficients with the correlations proposed for pure liquids by Rohsenow [20,21], Gilmour [22] and Levy [23]. They observed that the wall superheat in the boiling benzene-diphenyl mixture was found to be two or three times those of pure liquids at all pressures.

Palen and Small [2] were probably the first to propose a correlation for calculating heat transfer coefficient for binary mixtures. They proposed that the heat transfer coefficient for binary mixtures should be calculated for the equivalent pure liquid multiplied by a correction factor, f, given by;

 $f = \exp \left[-0.015(T_{sat}, \infty^{-T}_{sat}, y=x_{\infty})\right] \dots (2.4)$

where $T_{sat,y=x_{\infty}}$ is the dew point of a vapour of the same composition as the bulk liquid and $T_{sat,\infty}$ is the dew point of the vapour in equilibrium with the bulk liquid, i.e. the bulk liquid bubble point.

Tolubinskii and Ostrovskii [24] undertook an investigation to measure the vapour bubble growth rate in pool boiling of ethanol-water and ethanol-butanol mixtures at atmospheric pressure. They reported that the vapour bubble growth decreased with increase in the difference of concentrations of more volatile component in vapour and liquid phases. The experimental values of Nusselt number for the ethanol-water mixture were correlated by

$$Nu_{B} = 75 \ \text{Kq}^{0.7} \ \text{.Pr}^{-0.2} \ [1-(Y-X)]^{1.85} \qquad \dots (2.5)$$

Afgan [25] conducted experiments for boiling of ethanol, benzene and their mixtures on a cylindrical tube of diameter 5.12 mm heated by direct-current. The pressure varied from 6 atm to 15 atm. He correlated the pure component data with the equation :

$$Nu = 9.44 \times 10^{-4} Re^{0.7} Kp^{0.7} Pr^{0.35} \dots (2.6)$$

where Kp is the criterion for pressure term. The bubble departure diameter in the above equation is that of Fritz [26]. For mixtures, Afgan used weight fractions of 0.1, 0.2, 0.5, 0.8 and 0.9. For constant heat flux, he noted that plots of heat transfer coefficient against concentration showed maxima and minima. These roughly corresponded, respectively, with minima and maxima of the absolute values of the differences of equilibrium concentration in the two phases, i.e. (Y-X) where Y is the vapour concentration in equilibrium with X. It may be noted that (Y-X) is related simply to $\Delta T_b/G_d$ where G_d is the vaporised molar fraction of the liquid near the surface. On the basis of this observation Afgan suggested that the mixture data could be correlated by a single equation of the form of Equation (2.6) but with a multiplier which depends on (Y-X). This multiplier was found to be given by

9.44 x 10^{-4} [1-K(Y-X)] ...(2.7)

which reduces to 9.44×10^{-4} for pure substances and azeotropic mixtures. According to Afgan the value of K depends on the particular components of a mixture.

Ivanov [27] studied the boiling heat transfer of refrigerant mixtures of F-12 and F-22 for heat fluxes varying from 2,000 to 25,000 V/m² and temperature from 240 K to 293 K. The experimental data showed a minimum value of heat transfer coefficient between 15 to 35 per cent concentration of less volatile component, F-22. Ivanov has employed the method of corresponding state which was suggested by Borishanskii [28] for boiling of liquids in their pure state. He recommends the following equation for computing heat transfer coefficient :

$$\frac{h/q^{0.75}}{h^{\frac{1}{2}}/q^{0.75}} = f\left(\frac{P}{P^{\frac{1}{2}}}\right) \dots (2.8)$$

where $P^{\mathbf{x}} = 0.03 P_{c}^{P_{s}}$

Ps is the pseudocritical pressure of the mixture and can be calculated as below taking into account the relative volatility

$$P_{c}^{\dagger s} = (P_{c})_{F-12} + \Psi[(P_{c})_{F-22} - (P_{c})_{F-12}] \qquad \dots (2.9)$$

Y is the relative volatility and is given by

$$= \frac{Y_{F-22} [1-X_{F-22}]}{X_{F-22} [1-Y_{F-22}]} \dots (2.10)$$

and P is the critical pressure.

Klimenko and Kozitskii [29] took an investigation to calculate heat transfer coefficients during the boiling of light hydrocarbon mixtures. They correlated heat transfer coefficient in terms of critical properties of the hydrocarbon mixture and heat flux. Their equation is as follows :

h = 320
$$[P_{crit}^{0.3} T_{crit}^{-0.85} M_{crit}^{-0.15}][0.62+3.0 P_m/T_{crit}]F^m q^{0.7}$$

...(2.11)

where F is a function for multicomponent mixtures, subscript m refers to mean value.

Filatkin [30], in his paper, studied the heat transfer to water-ammonia solution in pool boiling on a horizontal tube 28 mm diameter and 450 mm long. He plotted the heat transfer coefficient as a function of the liquid-phase concentration and heat flux as parameter. He observed that the solution with an ammonia concentration of approximately 0.4 has the minimum heat transfer coefficient. One of the reasons attributed to this reduction in heat transfer coefficient is that as the concentration difference between the vapour and liquid phase (the quantity, Y-Z) increases the number of nucleation sites decrease and so the heat transfer coefficient. The larger the difference in concentration (Y-X) the larger the minimum radius of the cavity from which a vapour bubble may originate, grow and finally depart. This is attributed to the minima in heat transfer coefficient.

Based on the theory of similarity, Filatkin proposed the following correlation :

$$\frac{h}{k} \int \frac{\sigma}{\left(\hat{r}_{\ell} - \hat{r}_{v}\right)} = D\left(\frac{\alpha}{v}\right)^{0,45} \left[\frac{C_{\ell}\sigma^{0.5} T_{s} \hat{r}_{\ell}\left(\hat{r}_{\ell} - \hat{r}_{v}\right)^{0.5}}{J(\lambda \hat{r}_{v})^{2}}\right]^{0.33}$$
$$\left[\frac{J}{T_{s}} \frac{\hat{r}_{v} \lambda q}{k(\hat{r}_{\ell} - \hat{r}_{v})}\right]^{n} \dots (2.12)$$

Equation (2.12) is applicable for the following conditions :

(i)
$$\Pr = 1.3 \text{ to } 4.8$$

(ii) $\frac{C_{f}\sigma^{0.5} T_{s} P_{f}(P_{f} - P_{v})^{0.5}}{J(\lambda P_{v})^{2}} = 1.0 \times 10^{-4} \text{ to}$
206.0 x 10⁻⁴

(iii)
$$\frac{J P_{V} \lambda q}{T_{S} k(P_{\ell} - F_{V})} = 0.3 \text{ to } 40.4$$

The values of n and Dare calculated by the following equations :

$$n = 0.70 - 0.24 (Y-X) \qquad \dots (2.13)$$

$$D = 0.083 + 0.33 (Y-X) \qquad \dots (2.14)$$

Filatkin [30] concluded that the effect of Prandtl number on heat transfer coefficient is less noticeable. He also concluded that the pressure appears to increase the system heat transfer coefficient at low rate.

Tolubinskii and Ostrovskii [31] studied the mechanism of heat transfer in nucleate pool boiling of binary mixtures. They generated data for heat transfer coefficients, bubble departure diameters and bubble frequencies for boiling of methanol-water, ethanol-water, ethanol-n-butanol and ethanol-benzene on a stainless steel tube of diameter 4.5 mm heated by direct current. They indicated that the presence of mixtures affect the nucleation site density in comparison to pure liquids and showed that for a given heat flux, h, Dh and the product fD_b attains a minima when (Y-X) is at its maxima.

With the aid of dimensional analysis and ethanolwater experimental data over the entire range of concentration they recommended the following equation for product fD_b and Nusselt number :

$$(fD_{b})_{m} = [(fD_{b})_{water}(1-x'_{\infty}) + (fD_{b})_{ethanol} x'_{\infty}]$$

$$[1 - \frac{(Y'_{\infty} - x'_{\infty})^{2}}{Y'_{\infty}(1-x'_{\infty})}]^{1.15}$$

$$...(2.15)$$

$$Nu = \begin{cases} \frac{q}{\lambda F_{v}[(fD_{b})_{water}(1-x'_{\infty}) + (fD_{b})_{ethanol} x'_{\infty}] \\ \int \frac{C_{\ell} u_{\ell}}{V} \begin{cases} -0.2 \\ 1 - \frac{(Y'_{\infty} - x'_{\infty})^{2}}{V'_{\infty}(1-x'_{\infty})} \end{cases}$$

$$Nu = \begin{cases} \frac{q}{\lambda \, r_{v}[(fD_{b})_{water}(1-x'_{o})+(fD_{b})_{ethanol} x'_{o}]} \\ \left\{ \frac{C_{\ell} \, \mu_{\ell}}{k_{\ell}} \right\}^{-0.2} \left[1 - \frac{(Y'_{\infty} - x'_{o})^{2}}{Y'_{\infty}(1-x'_{o})} \right] \\ \dots (2.16) \end{cases}$$

where,

xo

is mass fraction in liquid phase far from bubble

y't is equilibrium mass fraction in vapour far from bubble

The above equations are, thus, not general for all mixtures and even for ethanol-water, their use require prior information for the determination of fD b factor for pure components.

Stephen and Körner [32] developed another empirical correlation for calculating heat transfer coefficients based on their extensive experimental work on seventeen different binary mixtures for pressures ranging from 1 to 10 bar. They undertook a thermodynamic analysis to find necessary free energy of formation for a bubble in a mixture growing in superheated liquid of infinite extent. Their expression for free energy of formation is :

$$\Delta G^{\dagger} = \frac{16\pi}{3} \sigma^{3} \frac{(\nabla_{V} - \nabla_{L})^{2}}{(\Delta T_{sat})^{2} [\frac{\bar{h}_{v} - \bar{h}_{L}}{T_{sat}} + \langle (y^{*} - x)(\frac{\partial^{2}\bar{G}}{\partial x^{2}})_{T,P} \frac{\Delta x}{\Delta T_{b}} \rangle]^{2}}$$

$$\dots (2.17)$$

where \bar{V}_{V} and \bar{V}_{L} are molar volumes, \bar{h}_{V} and \bar{h}_{L} are molar enthalpies of vapour and liquid respectively, Δx is change of concentration and ΔT_{b} is change in saturation temperature due to change of concentration.

Certain important conclusions arise from an inspection of the group $(y^{\ddagger} - x)(\frac{\partial^2 G}{\partial x^2})\frac{\Delta x}{\Delta T_b}$ of Equation (2.17). By applying Konovalov's rule (the vapour is richer than the liquid with which it is in equilibrium in that component by addition of which to the system the vapour pressure is raised) one can deduce that $y^{\ddagger} - x$ and $\frac{\Delta x}{\Delta T_b}$ are always of opposite sign and the basic rules of thermodynamic equilibrium (Stephen and Körner assumed the mixture to be in thermodynamic equilibrium) predict that $(\frac{\partial^2 \overline{G}}{\partial x^2})_{T,P}$ is always positive.

Thus the above term is always negative for all mixtures and the free energy change is increased in mixtures resulting in the increase of work for the formation of vapour bubbles and hence decreasing the heat transfer coefficient.

From this reasoning Stephan and Körner [32] argued that where the ideal heat transfer coefficient is obtained as a linear function of mole fraction, the actual coefficient will be less by an amount proportional to $(y^{*} - x)$. Thus these investigators developed their correlation in the following form :

$$\frac{\Delta T_{sat,w}}{\Delta T_{sat,w,ideal}} = 1 + \theta \qquad \dots (2.18)$$

where

 ΔT sat, w, ideal = $x_{\infty} \Delta T$ sat, w, A + (1- x_{∞}) ΔT sat, w, B ...(2.19)

 ΔT sat, w, A and B are the wall superheats for pure components boiling on the same surface and at the same heat flux as the mixture in question.

AT sat, w is actual wall superheat for the mixture in question

and Θ represents the deviation from the ideal situation due to mass transfer resistance and is related to the concentration difference by

$$\Theta = A \left(y^{\ddagger} - x \right) \qquad \dots (2.20)$$

where A is a function of pressure and is different for every binary mixture.

Stephan and Körner using published data from a variety of sources found the following expression to evaluate A :

$$A = A$$
 (0.88 + 0.12P)(2.21)

where P is in bar and A_o is a constant which depends only on the nature of the two components and is independent of concentration. Table 2.1 shows their calculated values as reported by Stephan and Körner [32]:

Table 2.1	: Values of constant, A	, for some Binary Hixtures
	in Equation (2,21)	

Binary Mixture	A
Acetone - Ethanol	0.75
Acetone - Butanol	1.18
Acetone - Water	1.40
Ethanol - Benzene	0.42
Ethanol - Cyclohexane	1.31
Ethanol - Water	1.21
Benzene - Toluene	1.44
Heptane - Methylcyclohexane	1.95
Isopropanol - Water	2.04
Nethylethyl Ketone - Toluene	1.32
Nethanol - Benzene	1.08
Methanol - Amylalcohol	0.80
n-propanol - water	3.29
Nethylethylketone - Water	1.21
Water - Glycol	1.47
Water - Pyridine	3.56
Water - Glycerine	1.50

Stephan and Körner tested their correlation for above mentioned 17 binary mixtures by taking A_0 values as listed above and pressures 1 to 10 bar. They concluded that their data can be represented with an average quadratic deviation of \pm 8.6 per cent. Using a generalised value of A_0 equal to 1.53 for the same mixtures, they found an average quadratic deviation of 15 per cent and hence recommended this value when no other is available.

Tolubinskii and Ostrovskii [33] undertook an investigation to understand the heat transfer mechanism to saturated boiling water-glycerine mixtures at atmospheric pressure. The glycerine concentration was taken upto 96 wt. per cent. It was observed that with increasing glycerine concentration upto 70 wt. per cent the bubble departure diameter, D_b increased slightly and bubble emission frequency, f reduced. For glycerine concentration greater than 70 wt. per cent, both the bubble departure diameter and frequency fell rapidly.

Contrary to low-boiling liquids, it was observed in this case that there is continuous reduction in the value of heat transfer coefficient with increase in glycerine concentration and no intermediate minima is observed even upto 96 wt. per cent glycerine.

Takeda et al [34] conducted experiments with pure water, methanol, ethanol, MEK and acetone and with mixtures of water and the later four organics on a

copper plate and a thin platinum wire (0.2 mm diameter). They produced a correlation based on dimensional analysis. In their correlation they have taken the variables for mixtures same as that for pure liquids. Hence their correlation for all the boiling data is :

$$\left(\frac{P_{v}\lambda}{C_{\ell}P_{\ell}\Delta T_{sat}}\right) \left(\frac{C_{\ell}\mu_{\ell}}{k_{\ell}}\right)^{0.67}$$

$$= 1.00 \times 10^{-2} \left(\frac{D_{b}q}{\mu_{\ell}\lambda}\right)^{0.35} \left(\frac{P^{2}}{g\sigma P_{\ell}}\right)^{0.25}$$

St . $Pr^{0.67} = 1.00 \times 10^{-2} Re^{-0.35}$. <u>II</u> 0.25 ...(2.22)

In the above equation D_b is given by Fritz [26]. Takeda et al have plotted St $Pr^{0.67} \prod -0.25$ vs Re for their own data and data of different investigators [10,11]. They have not indicated the magnitude of the scatter of their data on the plot. However, there seems to be some deviation and probably this is attributed to the omission of any parameters which take into account the effect of mixture properties.

Uright et al [35] conducted experiments for nucleate and film boiling heat transfer to the pure ethane and ethylene and their mixtures containing 0.25, 0.50 and 0.75 mole fraction of ethylene. The testsection was a direct-current heated, gold-plated tube of diameter 20.6 mm and length 89 mm. They conducted their experiments at atmospheric (9.807 x 10^4 N/m²) and subatmospheric (7.355 x 10^4 N/m²) pressures. The data were compared with the correlations of Borishanskii et al [36], Kutateladze [37] and McNelly [38] which were all devised for pure coolants. Borishanshkii et al correlation correlated the data with an average deviation of 48.7 per cent while both Kutateladze and McNelly correlation with an average deviation of 42 per cent. A least square fit of the data showed that the best correlation was obtained by modifying the equation of Rohsenow[20] in the following form :

$$\frac{q \ D_{b}}{\lambda \ \mu_{f}} = 683.3 \left[\frac{C_{f} \ \Delta T}{\lambda} \left(\frac{T_{r}}{F_{r}} \right)^{1.18} \right]^{1.243} \dots (2.23)$$

where D_b is bubble departure diameter given by Fritz [26].

Clements and Colver [39] extended their work [35] for saturated boiling of propane, n-butane and n-pentane, and of mixtures of propane with n-butane and n-pentane on the test section described above [35]. They also extended the range of pressure upto 3 x 10^6 N/m². From the experimental data they prepared plots of wall superheat vs concentration for each heat flux and observed that the position of the maxima is roughly coinciding with that of maximum $(Y_{\infty}^{\star} - X_{\infty})$, that means the value of heat transfer coefficient is minimum at maximum $(Y_{\infty}^{\star} - X_{\infty})$. The data for these liquids were also compared with the above mentioned correlations [36-38] and everage absolute deviation are shown below in Table 2.2.

Correlation	Pure	Mixtures	
	Components	Unmodified	Modified
	%	%	%
Borishanskii et al [36]	39.9	266.9	96.9
Kutateladze [37]	42.5	92.7	37.8
McNelly [38]	33.1	101.3	30.3

Table 2.2 : Average Absolute Deviations of Correlations [36-38] with Data of Clements and Colver[39]

From the above Table it is clear that McNelly correlation [38] gives the best results. However, for binary mixture these equations are not adequate which is evident by the results shown in the above Table. To correlate the data for binary mixtures with the help of these equations Clements and Colver [39] modified these equations by introducing the term relative volatility, α_{∞} , which takes into account the mass transfer resistance effects. α_{∞} is defined as :

$$\alpha_{\infty} = \frac{Y_{\infty}^{\ddagger} (1-x_{\infty})}{X_{\infty} (1-y_{\infty}^{\ddagger})} \qquad \dots (2.24)$$

A least square fit of the data showed that the best correlation was obtained by introducing into each of the basic equations, the term $\alpha_{\infty}^{-0.5}$. Thus modified correlations are as follows :

Modified Borishanskii et al correlation ;

$$\frac{q}{k} \frac{D_{b}}{\Delta I_{W}} = 8.7 \times 10^{-4} \alpha_{\infty}^{-0.5} \left[\frac{q}{\alpha} \frac{D_{b}}{\rho_{V} \lambda} \right]^{0.7} \left[\frac{P}{\sigma} \frac{D_{b}}{\sigma} \right]^{0.7} \dots (2.25)$$
Modified Kutateladze correlation ;

$$\frac{q}{k} \frac{D_{b}}{\Delta T_{W}} = 7.0 \times 10^{-4} \alpha_{\infty}^{-0.5} \left[\frac{q}{\alpha} \frac{D_{b}}{\rho_{V} \lambda} \right]^{0.7} \left[\frac{P}{\sigma} \frac{D_{b}}{\sigma} \right]^{0.7} \left[\frac{C_{\ell} \mu_{\ell}}{k_{\ell}} \right] \dots (2.26)$$
Modified McNelly correlation ;

$$\frac{q}{k} \frac{d}{\Delta T_{w}} = 0.255 \alpha_{\infty}^{-0.5} \left[\frac{q}{\lambda} \frac{d}{\mu_{L}}\right]^{0.69} \left[\frac{P}{\sigma}\right]^{0.31} \left[\frac{\rho_{\ell}}{\rho_{v}} -1\right]^{0.33}$$

In Equation (2.27), d is a characteristic dimension of the heating surface.

With these modified correlations, Clements and Colver [39] correlated their data and observed that modified forms of the Kutateladze and McNelly equations predict the data for mixtures as accurate as the original equations predict for pure liquids.

Calus and Rice [40] undertook a comprehensive investigation for pool boiling of binary liquid mixtures. They obtained pool boiling data for 7 concentrations of isopropanol in water and 9 concentrations of acetone in water, as well as for 3 pure components. The heat transfer surface was a nickel-aluminium-alloy wire of 0.315 mm diameter and 89 mm test-section length, heated by direct current. They used a different wire taken from the same spool with its diameter 0.315 mm and the test-section length 72.6 mm for acetone-water mixtures.

. (2.27)

Calus and Rice observed that the growth rate equations of Scriven [41] and van Stralen [42-45] for a bubble growing in an infinite volume of superheated liquid are the same and these equations can be transformed into the following more convenient form :

$$R = \left(\frac{12}{\pi}\right)^{0.5} \frac{\Delta T \alpha^{0.5} t^{0.5}}{\frac{\nabla v \lambda}{\sqrt{c_{\ell}}} \left[1 - \left(y^{\pm} - x\right) \left(\frac{\alpha}{D}\right)^{0.5} \left(\frac{c_{\ell}}{\lambda}\right) \left(\frac{dT_{sat}}{dx}\right)\right]}{\dots (2.28)}$$

Calus and Rice argued that the contents of the square bracket in the denominator of the above equation form a correction due to simultaneous heat and mass transfer. The mass diffusion is a considerably slower process than the heat diffusion and hence the dimensionless ratio $(\alpha/D)^{0.5}$ in Equation (2.28) is a measure of the additional resistance to heat transfer, the term $(y^{\star}-x)$ indicates the driving force for that diffusion.

In order to incorporate suitable correction factor to pure liquids for the determination of binary heat transfer coefficients, two factors were tried :

$$1-(y^{\pm}-x)(\frac{\alpha}{D})^{0.5} \frac{C_{\chi}}{(\frac{\lambda}{\lambda})(\frac{dT}{dx})} \dots (2.29)$$

and

$$1+(y^{*}-x)(\frac{\alpha}{D})^{0.5}$$
 ...(2.30)

It was found by these investigators that the correction factor given by Equation (2.30) corresponds very closely with the variation in the Nusselt number. Thus the final form of the correlation for binary liquid mixtures included the heat and mass transfer term $1+(y^{*}-x)(\frac{\alpha}{D})^{0.5}$ in the Borishanskii - Minchenko correlation [36] modified earlier by Rice and Calus [46]

$$\left[\frac{Nu}{K_{P}^{0.7}}\right] \left[\frac{T_{s}}{T_{sw}}\right]^{4} = E \left[\frac{Pe}{\frac{1+1(y^{*}-x)!}{(\frac{\alpha}{D})^{0.5}}}\right]^{0.7} \dots (2.31)$$

Calus and Rice determined the value of E in the above equation for their own data (binary as well as pure liquids) and those for Sternling and Tichacek [18] data for aqueous solutions of glycol and glycerol. Table 2.3 gives the values of E for these liquids :

Table 2.3 : Values for Constant E in Equation (2.31)

System	Heat transfer Surface	Constant E in Equation(2.31)
Isopropanol-Water	Nickel-aluminium alloy,'Vire 200' [40]	5.8 x 10 ⁻⁴
Acetone-Water	Nickel-aluminium alloy,'Wire 24' [40]	4.7 x 10 ⁻⁴
Water-Glycerol	Stainless steel hypodermic tubing [18]	12.2 x 10 ⁻⁴
Water-Glycol	Stainless steel hypodermic tubing [18]	11.4 x 10 ⁻⁴
Seven single component liquids	Nickel-aluminium alloy [46]	6.3×10^{-4}

An inspection of the above Table shows that unique values of E hold over these ranges, and that the values were roughly the same as for the pure components on very similar wires. This confirms that it is the surface which is an important part in the surface-liquid combination factor. The slight difference in the multipliers for the mixtures from the 6.3 x 10^{-4} which applied to the wire as used for the pure liquids was attributed to the different degrees of aging of the surfaces. With these values of E for Sternling and Tichacek data [18], Equation (2.31) correlated their 85 per cent of the experimental data points within + 20 per cent accuracy limits. This error is mainly for the less concentrated solutions and this discrepancy was attributed to larger error in the extrapolated values of mass diffusivity for these less concentrated solutions.

Isshiki and Nikai [47] conducted experiments on nucleate pool boiling of binary mixtures of water-ethanol, water-ethylene glycol and water-n-butanol. They have determined characteristic nucleate boiling curves and burnout heat fluxes for these mixtures. From these results they have confirmed that there exists a minimum heat transfer coefficient at a certain concentration, and that more than twice the value of the burnout heat flux for pure liquids can be obtained at a very low concentration of the more volatile component. In order to explain these results they developed a one-dimensional

model of heat and mass transfer on bubble growth in a binary liquid mixture. From this model, they concluded that the temperature of the vapour-liquid interface is higher than the saturation temperature of the bulk liquid mixture and that the temperature difference between superheated bulk and vapour-liquid interface (effective superheat) has a minimum value at a certain concentration.

Tolubinskiy et al [48] studied the effect of pressure on the boiling heat transfer rate in waterethanol mixtures, at pressures upto 15 bars and over the entire range of concentrations. The mixture under study was boiled in a vertical test element consisting of a stainless steel tube heated by direct current. The heat flux density, q at the heated section was varied from 0.5×10^4 to 0.8×10^6 W/m². Observations were carried out with the various values of heat flux density ard it was found by monitoring the mixture composition before and after the experiments that it remained constant during the experiments.

Tolubinskii et al observed that boiling of waterethanol mixtures at elevated pressures involves the same mechanism as boiling at atmospheric pressure i.e. reduction in the heat transfer rate in the range of maximum excess concentration $(y^{\star}-x)$ of the low-boiling temperature component as a result of simultaneous reduction in the rate of growth of vapour bubbles and in the number of effective nucleation sites as compared

with pure components. Consequently, the boiling of binary mixtures at elevated pressures involves the same regularities as at atmospheric pressure. This made it possible to use an empirical expression for the boiling heat transfer coefficient for mixtures at atmospheric pressure for the case at hand, by supplementing it by a term which provides allowance for the pressure :

$$h_{mix} = \left\{ \left[A_{h,b}(1-x') + A_{\ell,b}x' \right] - \frac{A_{h,b}}{A_{\ell,b}} \right\} \Delta x^{0.7} P^{n} q^{0.7}$$
(2.32)

For the water-ethanol mixtures under study $A_{h,b} = 3.05P^{0.2}$, $A_{lb}=1.5P^{0.4}$, n=0.4. The above correlation correlated the bulk of the data within ± 20 per cent.

In an attempt to modify the earlier correlations proposed by Stephan and Körner [32] and Calus and Rice [40], Calus and Leonidopoulos [49] have carried out an extensive investigation for pool boiling data for pure n-propanol, pure water and their eleven mixtures at atmospheric pressure. Like previous studies of Calus and Rice [40,46] the test-section in this study [49] was also a nickel-aluminium alloy wire, which was stabilized by an annealing process and by prolonged boiling. The diameter and length of the wire were 0.3 mm and 72.6 mm respectively.

The main purpose of the work of Calus and Leonidopoulos [49] was to modify the constent A in Equation (2.20) given by Stephan and Körner [32]. Stephan and Körner have stated that the value of A can be regarded as constant for the entire range of concentrations in the case of mixtures having a vapourliquid equilibrium relationship approaching ideal behaviour. But it is observed and also indicated by Stephan and Körner themselves that to treat A as a constant is a major approximation for the binary mixtures behaving as highly non-ideal. The binary mixtures of n-propylalcohol and water chosen by Calus et al is an example having a highly non-ideal vapour-liquid equilibrium relationship. In view of this, it was thought necessary to modify the existing correlation of Stephan and Körner [32].

Calus and Leonidopoulos [49], based on the analytical work of Scriven [41], van Stralen [42-45] and Stephan and Körner [32] successfully replaced constant A in Equation (2.20) in terms of the vapourliquid equilibrium relationship, the transport properties and the thermodynamic properties of the binary mixture. Thus their final correlation emerges in the following form :

$$\Delta T = (\Delta T_1 x_1 + \Delta T_2 x_2) [1 + (x - y^{\ddagger}) (\frac{\alpha}{D})^{0.5} (\frac{\sigma}{\lambda}) (\frac{dT}{dx})] \dots (2.33)$$

where ΔT , ΔT_1 and ΔT_2 are the $(T_{wall} - T_{sat})$ differences for the mixture of concentration x, for the pure component 1 and for the pure component 2, respectively, required for obtaining the same heat flux. All the quantities in Equation (2.33) are based on the weight fraction concentrations. The use of above equation requires knowledge of the variation of the factor $[(x-y^{\bigstar})(\frac{\alpha}{D})^{0.5}(\frac{C}{\lambda})(\frac{dT}{dx})]$ with concentration. The gradient of the boiling point curve, $\frac{dT}{dx}$, was obtained by fitting a polynomial to the curve T=f(x) and subsequently differentiating it with respect to x.

The specific feature of the Equation (2.33) is that it has no experimental constants and can be used to predict either nucleate boiling heat transfer coefficients or boiling curves for binary liquid mixtures provided the boiling curves for the puure components, obtained on the same heat transfer surface are available. Although the variable factor $[(x-y^{\pm})(\frac{\alpha}{D})^{0.5}(\frac{C}{\lambda})(\frac{dT}{dx})]$ is strictly applicable to the process of a bubble growing in an infinite superheated liquid, the Equation (2.33) was successful in correlating 84 experimental data points for nucleate pool boiling of n-propylalcohol-water mixtures on a heat transfer surface within + 16.6 per cent, indicating that analytical work of Scriven [41] for vapour bubble growing in a superheated infinite liquid is adequately helpful for vapour bubble growing on a heat transfer surface.

In another study Tolubinskii et al [50] studied boiling heat transfer rate from benzene-ethanol mixtures as a function of pressure. The experimental study was

carried out over the pressure range of 1-18 bars, heat flux densities of 10^4 to 3.5×10^5 W/m² and concentrations of 0-100 per cent. The mixtures boiled on a vertical stainless steel element, 4.5/0.3 mm in diameter and 50 mm long, directly heated by direct current. For this system, two minima of heat transfer coefficient in the region of extremal values of $(y^{\star}-x)$ and an intermediate maximum at the azeotropic composition of the binary mixture were observed.

Ohnishi and Tajima [51] undertook an investigation to study the pool boiling heat transfer to lithium bromide-water solutions at subatmospheric pressures. The work is being reported in this literature review because it pertains to subatmospheric pressures. The boiling was carried out on a 20 mm diameter and 150 mm long horizontal copper cylinder finished with 0.5 grade emery paper. The pressure varied from 30 mm Hg to 300 mm Hg, the concentration 0 to 55 wt. per cent lithium bromide, and the heat flux 0 to 3.489 x 10^4 W/m². Ohnishi and Tajima have shown variation in boiling curves with pressure and concentration and made following conclusions:

- (i) The heat transfer coefficient for lithium bromide solution is fairly small than that of pure water at all the pressures investigated.
- (ii) The boiling phenomena is least affected by changing the pressure in the concentration range of 30-55 per cent, whereas the boiling

phenomena of lithium bromide-water solution are largely affected by the change in concentration at a given pressure.

(iii) The boiling phenomena of lithium bromide-water solution are scarcely affected by the conditions of the heating surface.

Ohnishi and Tajima were able to correlate their experimental data by the Nishikawa-Yamagata [52] equation within the limits of error \pm 20 per cent.

Chushchin et al [53] investigated experimentally the effect of some organic alcohols namely; propyl, butyl, amyl, octyl, polyvinyl and glycerine when added to water, on heat transfer during boiling. The experiments were carried out on a set-up consisting of an air-tight vessle with 5 litres capacity. They studied the dependence of the heat transfer coefficient on the concentration of each additive, number of carbon atoms and hydroxyl groups in an alcohol molecule. They found that the dependence of heat transfer coefficient on concentration for all additives has an extremal character. Optimum concentrations and corresponding maximum value of the heat transfer coefficient were determined for each additive.

Styushin and Astaf'ev [54] have studied the effect of diffusion processes on boiling of solutions. They have demonstrated some of the special characteristics of the dependence of the heat transfer coefficient on the concentration of solutions and the process parameters.

Kravchenko et al [55] have suggested the equations for calculating boiling heat transfer coefficients for light hydrocarbons and ethylene-ethane mixtures.

Yusufova and Chernyakhovskiy [56] have presented the experimental investigation for heat transfer in pool boiling of six binary mixtures over wide range of pressure and concentration. The mixtures investigated were, benzene-toluene, benzene-isooctane, acetone-water, benzene-xylene, methylethylketone-water and acetonemethylethylketone. They have examined the data in view of current knowledge of boiling heat transfer.

Styushin and Astaf'ev [57] have made the analysis regarding the dependence of heat transfer coefficient on the concentration of the low boiling component in binary mixtures. They have studied three binary mixtures, water-ammonium hydroxide, ethanol-benzene and water-npropanol. They have also analysed the position of maximum on heat transfer coefficient-composition curve in accordance to the equilibrium data of these mixtures.

Thome and Bold [58] have studied the nucleate pool boiling in cryogenic binary mixtures. They obtained the pool boiling curves for liquid nitrogen, argon and their mixtures at 1 atm and 1.3 atm pressures. They observed a minimum heat flux in the mixtures and compared their results with the existing correlations of Happle and Stephan [59] and Calus and Leonidopoulos [49] but neither is found satisfactory.

Happel [60] has recently studied heat transfer during boiling of binary mixtures in the regimes of both nucleate and film boiling. In this survey the work pertaining to nucleat boiling will only be discussed. Happel has conducted measurements of boiling heat transfer with mixtures of benzene-toluene, ethanolbenzene and water-isobutanol in a pressure range of 0.5-2 bar as well as with refrigerants in a pressure range of 0.5-30 bar. The test surface was a pure nickel horizontal tube having an outside diameter of 14 mm. The integrated roughness of the tube was 0.43 µm. Provision was made to heat the tube both by the electricity and passing a hot stabilized fluid through the tube.

Happel has discussed, in brief, the mechanism of nucleate pool boiling in binary liquid mixtures. He reaffirmed that in boiling of mixtures, there is mass transfer of the volatile fraction through the mixture to the growing bubble in addition to heat transfer. As a result of this diffusion resistance, the heat transfer coefficient for the mixture is reduced. He concluded that larger the concentration difference (Y-X), Stronger is the reduction in heat transfer coefficient. The reduction of heat transfer as compared with that for pure substances can be represented in terms of a simple power law of (Y-X) as follows :

$$\frac{h_{eff}}{h_{id}} = 1 - K_{st} [Y - X]^n \qquad \dots (2.34)$$

where, h_{eff} is the effective heat transfer coefficient and $h_{id} = h_{10}(1-X) + h_{20} X$...(2.35)

thus h_{id} (id for ideal) should be obtinable from the values of the pure components h₁₀ and h₂₀.

 K_{st} depends only on the substance and on the pressure. For a given pressure the values of K_{st} and n can be determined by experiments at only two different mixture compositions.

The behaviour, viz., that the location of the lowest heat transfer coefficient coincides with that of the largest concentration difference is shown clearly in Figure 2.1 for the system benzene-toluene and for a heat flux of $q = 10^5 \text{ W/m}^2$.

For the benzene-toluene system at atmospheric pressure the experimental values of $K_{st}=1.5$ and n = 1.4.

An inspection of Figure 2.1 shows that at higher pressures there is a steeper drop in the value of h_{eff}. According to Grigoryev[61], nucleus density generally increases with pressure because the work that must be done to form a viable bubble increases with pressure, calling for larger heat transfer. However, in a mixture, as the concentration difference increases, the heavier, less volatile fraction exhibits a stronger

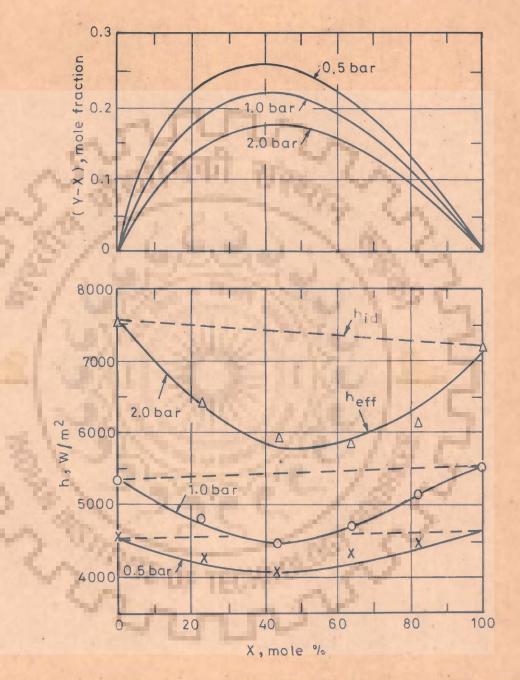


Fig.2.1-Vapour-liquid concentration difference and heat transfer coefficient of benzene-toluene [60]

tendency to accumulate at the wall. This means that the energy necessary for the formation of a viable nucleus increases and the nucleus density again decreases. This effect apparently predominates at higher pressures, which explains the relatively strong reduction of heat transfer at high pressures as compared to that at lower pressures, with the concentration difference (Y-X) being equal.

Von Hoffman [62] has dealt with pool boiling of nitrogen, methane, ethane and mixtures of nitrogenmethane and methane-ethane at different pressures. The heat transfer surface was a horizontal plane copper disk. He has analyzed the results for pure liquids as well as their binaries.

Stephan and Preusser [63] studied heat transfer in nucleate boiling of 16 binary and 25 ternary compositions consisting of acetone, methanol and water. In their experiments, they used a horizontal Nickel tube of 14 mm O.D., 550 mm length and a mean roughness of about 0.25 µm. Experiments on pool boiling of mixtures mostly conducted on miscible binary mixtures close to atmospheric pressure, clearly indicate a reduction in heat transfer as compared with that for pure substances. This effect is explained by the more ready evaporation of the volatile fraction in binary mixtures which creates a concentration difference between the liquid and the vapour bubble, thus building up a diffusion resistance in addition to the thermal resistance. Thermodynamic equilibrium has been assumed at the interface between vapour bubbles and liquid and, therefore, Gibbs potential in binary mixtures proves also to be larger than that of a hypothetical reference mixture. This reference mixture has been defined by authors [63] to have the same thermodynamic properties as the real binary mixture but vanishing difference in composition between liquid and vapour phase.

In binary mixtures, the reduction in heat transfer coefficients depends on the difference in the mole fractions between both phases. It increases with the difference in mole fractions and vanishes at azeotropic points. Empirical correlations on pool boiling heat transfer in binary mixtures, therefore, usually contain $(x-y^{\star})$ as one of the most relevant parameters [25,49].

Stephan and Preusser [63] have plotted the heat transfer coefficients of binary mixture acetone-methanol against the composition for a heat flux of 10^5 W/m^2 . From this plot, they concluded that the heat transfer coefficients are smaller than those for the reference mixture and also smaller than the heat transfer coefficients of the pure components. The later conclusion confirms the observations of Bonilla and Perry [10].

Stephan and Preusser [64,65] in these investigations attempted to calculate the boiling heat transfer coefficient of ternary mixtures from the data of pure components and binary mixtures. They have conducted the experiments with two ternary mixtures of organic components and of binary mixtures at atmospheric pressure boiling on a horizontal nickel tube. They have recommended that for rough estimation, the heat transfer in the boiling of ternary mixtures can be calculated from the data of corresponding binary mixtures with the expanded formulation of the correlation of Stephan and Körner [32] for binary Further, an equation is derived for heat mixtures. transfer in the boiling of mixtures, in which the nonlinear variation of the material properties has been taken into account.

Stephan and Abdelsalam [66] attempted to present guidelines for predicting heat transfer coefficients in natural convection boiling. In order to establish correlations with wide application, the methods of regression analysis were applied to nearly 5000 existing experimental data points for natural convection boiling heat transfer. As demonstrated by the analysis, these data can best be represented by subdividing the substances into four groups depending upon their physico-thermal properties. The four groups were water, hydrocarbons, cryogenic fluids and refrigerants. Each set of group employed a different set of dimensionless numbers to correlate the data for the calculation of approximate value of heat transfer coefficient.

2.3 THEORETICAL MODELS FOR BUBBLE GROWTH RATES IN BINARY LIQUID MIXTURES

There exists a large number of theoretical papers on the growth of vapour bubbles in pure boiling liquids [67-95], but relatively lesser number of publications [41-45, 96-114] have appeared in the literature on the vapour bubble growth rates in binary liquid mixtures. This Section reviews, in brief, the bubble growth rates in nucleate pool boiling of binary liquid mixtures only.

Scriven [41] is the first investigator who has comprehensively developed a theoretical model on the dynamics of vapour bubble growth rates both for pure and binary liquid mixtures. Starting with the fundamental equations of continuity, motion, energy flow and mass flow, he derived a relationship from which the bubble radius of a spherical symmetry in a quiescent superheated liquid of infinite extent can be calculated as a function of time. To facilitate the solution of the equations he made number of simplifying assumptions :

- (i) Newtonian liquid
- (ii) liquid of constant density
- (iii) viscous, inertia and surface energy terms are neglected

- (iv) energy is transferred to the bubble by ordinary conduction alone
- (v) mass is transferred by ordinary diffusion with constant mass diffusivity value
- (vi) two component system having constant physico-thermal properties in both the liquid and vapour phase

(vii) heat of mixing of two components is negligible

- (viii)specific heat capacities of both the components are equal
- (ix) vapour-liquid equilibrium relationship is lincar and equilibrium is assumed at the interface.

The governing differential equations are sufficiently complex and the bubble growth rates cannot be represented by an analytical solution of the equations in closed form. Scriven [41] reported his final results in the following form :

$$\mathbf{R} = 2\beta \, \left[\alpha \, \Theta \right] \, \dots \, \left(2.36 \right)$$

where, R is bubble radius, β is growth constant;

a, thermal diffusivity and O, time co-ordinate.

The above equation is applicable to situations with large superheats. The value of β is defined approximately by the following expression : _______0.5

$$\beta \equiv \left[\left(\frac{3}{\pi}\right) \left\{ \frac{\Delta^{T}_{sat}}{\frac{P_{v}}{F_{\chi}} \left[\frac{\lambda}{C_{\chi}} - \left(y'^{P} \int -C_{\infty}\right) \int \alpha/D/(\frac{\partial C}{\partial T_{sat}})_{P} \right] \right\} ; \beta > 0, w < <1$$
where y' is mass fraction in vapour phase, C_{∞} is mass

concentration at large value of radial co-ordinate, D is mass diffusivity and $w = \frac{P_v}{P_v}$.

An expression for radius R is given by :

$$R \approx \left(\frac{12}{\pi}\right)^{0.5} \frac{\Delta T_{sat}(P_{\ell} C_{\ell} k_{\ell} \theta)^{0.5}}{\int_{V} \left\{ \lambda + \frac{\left[\left(y'P_{\ell} - C_{\infty}\right) R_{g} T_{sat}^{2}\left(1 - \alpha_{\infty}\right)\right]}{C_{\infty} \lambda_{1} [M_{2}C_{\infty} + \left(P_{\ell} - C_{\infty}\right)M_{1}]\left[1 + \alpha_{\infty} \cdot \frac{\lambda_{2}(P_{\ell} - C_{\infty})}{\lambda_{1} C_{\infty}} \int_{D}^{P_{\ell}C_{\ell}k_{\ell}} \right]}{\dots (2.38)}$$

where R_g is gas constant, α_{∞} is relative volatility, λ_1 and λ_2 are latent heat of vaporisation of solute and solvent, M_1 and M_2 are molecular weights of solute and solvent.

The latent heat is taken to be a linear function of concentration.

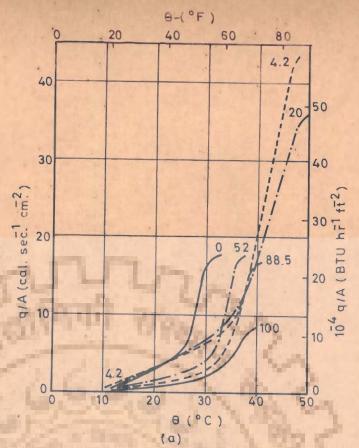
Scriven [41] concludes that lower the concentration of volatile material or the mass diffusivity, the greater is the superheat required to attain a given bubble growth constant.

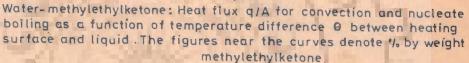
Using numerical techniques, Scriven suggested value of β for two mixtures, ethylene glycol-water and glycerolwater at atmospheric pressure.

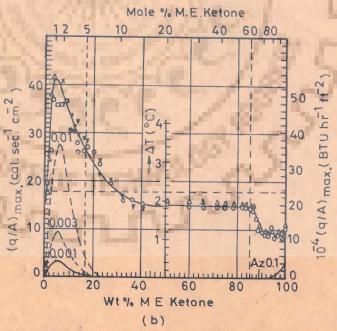
van Stralen and his associates [96-98] started working in the area of pool boiling of binary mixtures around 1956. Probably the basic aim of their study was to obtain the suitable parameters so that the peak heat

flux could be increased considerably by adding an appropriate quantity of some suitable component to the pure liquid. In one of their earliest work [96], they studied boiling of water-methylethylketone mixtures (0, 4.2, 20, 52, 88.5 and 100 wt. per cent of MEK) on 99.99 per cent pure platinum wire of diameter 0.2 mm and on a nichrome wire of 0.8 mm heated by direct current. These investigators observed that with increasing concentration of MEK a gradual shift of the curves to lower heat transfer occurred, except for the 4.2 and 20 wt. per cent mixtures, where a noticeably high maximum heat flux of 2.5 and 2.0 times that of water was found. This higher heat flux was obtained at the same temperature of the heating surface as for water, or alternatively, the same heat flux was obtained at a lower surface temperature. The same behaviour was observed with all the heating wires used by them. This peculiar behaviour was attributed to characteristic properties of the liquid mixtures themselves and not of different metals and alloys of which wires were made.

In continuation to above work [96] van Wijk and co-workers [97] studied maximum heat flux in nucleate boiling for mixtures of water with acetone, methylethylketone, alcohols ranging in molar mass from ethanol to n-octanol, and ethylene glycol respectively. They also used mixtures of dioxane with methanol and of 2-chloroetheno with di-iso-propylether. They examined boiling curves and critical heat fluxes. In all these cases the bulk liquid were at saturation temperatures. Figure 2.2


depicts the boiling curve for water-MEK mixture which is typical for mixtures. The pattern of the curve shows the considerably reduced heat transfer rates in a 4.2 wt. per cent aqueous solution of MEK as compared with that in pure water. It is also seen that the critical heat flux shows a pronounced maximum at this concentration. In all mixtures (for other liquids) a maximum value of critical heat flux for nucleate boiling occurs at a certain concentration.


The occurrence of the maxima is explained qualitatively by van Wijk et al and the explanation is as follows : the liquid layer at the bubble boundary becomes richer than at the bulk in the heavier component due to the preferential stripping of the lighter component. Hence the bubble point at the bubble boundary is higher than in the bulk and the wire superheat relative to saturation at the boundary is less than that relative to the saturation in the bulk. If the bulk of the liquid is of composition x_{co} and a molar fraction G_d of the liquid near the surface is vaporized, a material balance gives :


$$(1-G_d)x + G_d y = x_0$$
 ...(2.39)

and for equilibrium flash vaporization one has

$$y = Kx \qquad \dots (2.40)$$

Water methylethylketone: Maximum heat flux q/A as a function of composition. Measurements carried out with the same wire are represented by the same figures Az azeotrope. The dotted vertical lines indicate the boundaries of the region of demixing at azeotropic boiling point. The other curves represent ΔT as a function of composition for a constant vaporized molar fraction Gd. ΔT is the difference between dew temperature of the vapour bubbles and boiling temperature of the original liquid. The numbers near these curves are the values of Gd.

Fig.2.2-Experimental data of van Wijk et al [97] for nucleate boiling of mixture

From Equations (2.39) and (2.40)

$$x = \frac{x_{\infty}}{1 + (K-1) G_{d}} \qquad \dots (2.41)$$

and

$$y = \frac{K x_{00}}{1 + (K-1) G_{d}}$$
 ...(2.42)

where x and y are the mole fractions in the liquid layer adjacent to the bubble and within it, respectively. K is the equilibrium constant for the more volatile component.

The concentration in the liquid layer adjacent to the bubble has been assumed constant. The customary assumptions of equilibrium at the interface and uniform concentration within the bubble have also been made.

The temperature in the bubble and its boundary is the dew point of a vapour of concentration y, equal to the bubble point of a liquid of concentration x. Since $x < x_{\infty}$ the bubble point of the liquid adjacent to the bubble is greater than that of the original bulk, liquid by an amount ΔT_b . This difference depends on G_d and is the "reduction of available superheat" which causes the reduction in heat transfer efficiency. This is at a maximum, in a solution of MEK in water when x_{∞} is 0.042.

In the same year van Stralen [98] studied the effect of reduced pressures on boiling of pure liquids and equeous mixture containing 4.1 wt. per cent methylethylketone. He observed that the rate of heat transfer decreased with decreasing pressure as a consequence

of increasing average size of vapour bubbles both in pure as well binary water-MEK mixtures. He also noted that the value of maximum heat flux for 4.1 wt. per cent MEK exceed considerably in comparison to the corresponding value in water at all the pressure investigated by them. In the same investigation they have also shown systematically the effect of composition on maximum value of heat flux at different pressures. The systems taken were water-MEK, water-acetone, water-ethanol, water-1propanol and water-1--butanol at several reduced pressures. In all mixtures a maximum value of the maximum heat flux occurred at a certain low concentration of organic compound which was approximately independent of pressure. The absolute values of the maxima decreased with decreasing pressure. Not only the absolute values of the maxima in nucleate boiling heat flux increased gradually with pressure, but even the ratio of these maxima to maximum value in water at the same pressure decreased with decreasing pressure.

In next series of his papers van Stralen [42-44] undertook an extensive theoretical investigations on the growth rate of vapour bubbles on a superheated heating surface. He investigated both pure liquids and binary liquid mixtures. In this series the author has modified the previous theories proposed by van Wijk et al [97], Scriven [41] and Bruijn [99] concerning the growth rate of free spherical vapour bubbles in uniformly superheated binary mixtures.

The heat flow to the bubble required for vaporization during rapid initial bubble growth has been derived from the excess enthalpy of the equivalent conduction layer at the heating surface built up in the delay period. Heat passes from this layer into the bubble by ordinary conduction only. This thermal boundary layer is pushed away periodically from the wall due to the generation of succeeding bubbles on nucleation sites.

The radius of the bubble is governed by an equation of the form :

$$R = C_1 \mathcal{V}_0 \Theta^{0.5}$$
 ... (2.43)

where \mathcal{Y}_0 is superheating of the heating surface. The growth rate Equation (2.43) is applicable both for pure liquids and binary liquid mixtures. The constant C_1 , bubble growth constant, is different for these two cases.

For a free bubble growing in an infinite volume of superheated pure liquid C₁ is given by :

$$c_{1} = \left(\frac{12}{\pi}\right)^{0.5} \left[\frac{\alpha_{1}^{0.5}}{\frac{P_{v} \lambda}{(\frac{P_{v} \lambda}{P_{l} c_{l}})}} \right] ...(2.44)$$
...(2.44)

For binary mixtures the growth constant C_1 , for a constant liquid superheating, depends on the concentration of the more volatile component according to the expression:

$$C_{1} = \left(\frac{12}{\pi}\right)^{0.5} \frac{\alpha_{\ell}^{0.5}}{\frac{F_{v}}{P_{\ell}} \frac{f_{\lambda}}{f_{c\ell}} + \left(\frac{\alpha_{\ell}}{D_{\ell}}\right)^{0.5} \frac{\Delta T_{b}}{G_{d}}}$$
(2.45)

where D_{χ} is mass diffusivity, ΔT_b is change of saturation temperature due to change of concentration.

Equation (2.45) shows that for a maximum value of $\Delta T_b/G_d$ the value of C_1 is minimum or the growth rate is minimum. This occurs, usually, at a small concentration of more volatile component. The maximum reduction in the bubble growth rate and consequently, the maximum reduction of bubble departure size results in maximum reduction of heat transfer coefficient at a given heat flux. A relationship between $\Delta T_b/G_d$ and mass fraction of more volatile component in original liquid in a binary mixture has been derived from equilibrium data in the following form :

$$\frac{\Delta T_{b}}{G_{d}} = -x_{o} \left\{ K(x_{o}) - 1 \right\} \left(\frac{dT}{dx} \right)_{x=x_{o}} \dots (2.46)$$

where K = y/x is equilibrium constant of more volatile component in binary mixture.

The experimentally determined growth of bubbles adhering to a platinum wire in water, water-MEK and water-l-butanol mixtures was found to agree well with the theoretical prediction given by Equation (2.45).

In an analytical study Grigoryev [100] investigated how R_{min}, the minimum radius of curvature of a nucleation site on a heating surface, is affected in a binary liquid mixture. He did a detailed thermodynamic analysis of the problem. The value of R is given by the following expression

$$R_{\min} = \frac{2\sigma}{\left(\frac{dP}{dT}\right)_{sat} \left(T_w - T_s\right)} \qquad \dots (2.47)$$

For pure coolants $\left(\frac{dP}{dT}\right)_{sat}$ is calculated conveniently by Clausius-Clapeyron equation. For mixtures, $\left(\frac{dP}{dT}\right)_{sat}$ changes not only with temperature but also with composition unlike pure liquids. Using thermodynamic analysis, Grigoryev evaluated the quantity $\left(\frac{dP}{dT}\right)_{sat}$ for binary liquid mixtures. Some of his steps are reproduced below.

The vapour pressure as a function of temperature and liquid composition for a binary system is expressed as follows :

$$[(\mathbf{v}_{\mathbf{v}} - \mathbf{v}_{\mathbf{k}}) - (\mathbf{Y} - \mathbf{X})(\frac{\partial \mathbf{V}}{\partial \mathbf{x}})_{\mathrm{T},\mathrm{P}}] d\mathbf{P} = [\frac{\partial^2 \mathbf{G}}{\partial \mathbf{x}^2}](\mathbf{Y} - \mathbf{X}) d\mathbf{x} + [(\mathbf{S}_{\mathbf{v}} - \mathbf{S}_{\mathbf{k}}) - (\mathbf{Y} - \mathbf{X})(\frac{\partial \mathbf{S}}{\partial \mathbf{x}})_{\mathrm{T},\mathrm{P}}]d\mathbf{T} \dots (2.48)$$

Imposing the following conditions on Equation (2.48) much away from the critical point

$$(v_v - v_l) > > (y - x) \left(\frac{\partial V}{\partial x}\right)_{T, P}$$

and

$$(s_v - s_l) >> (y - x) \left(\frac{\partial S}{\partial x}\right)_{T, P}$$

the above equation reduces to :

$$(\mathbb{V}_{v} - \mathbb{V}_{k})dP = \left[\frac{\partial^{2}G}{\partial x^{2}}\right](\mathbb{Y} - \mathbb{X})dx + (\mathbb{S}_{v} - \mathbb{S}_{k}) dT \qquad \dots (2.49)$$

$$\left(\frac{\mathrm{dP}}{\mathrm{dT}}\right)_{\mathrm{sat}} = \left[\frac{\mathrm{d}^2 \mathrm{G}}{\mathrm{dx}^2}\right] \left[\frac{\mathrm{Y}-\mathrm{X}}{\mathrm{V}_{\mathrm{v}}-\mathrm{V}_{\mathrm{f}}}\right] \left[\frac{\mathrm{dX}}{\mathrm{dT}}\right] + \frac{\mathrm{S}_{\mathrm{v}}-\mathrm{S}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{v}}-\mathrm{V}_{\mathrm{f}}} \qquad \dots (2.50)$$

From Equations (2.47) and (2.50) one obtains ;

$$R_{\min} = \frac{2\sigma}{\left[\left(\frac{S_v - S_f}{V_v - V_f}\right) + \left(\frac{\partial^2 G}{\partial x^2}\right)\left(\frac{Y - X}{V_v - V_f}\right)\left(\frac{dX}{dT}\right)\right]\left[T_w - T_s\right]} \dots (2.51)$$

Equation (2.51) reduces to be applicable for a pure liquid by setting the quantity $[(\frac{\partial^2 G}{\partial x^2})(\frac{Y-X}{V_V-V_{\ell}})(\frac{dX}{dT})]$ as zero. Thus this quantity represents that R_{\min} in case of binary systems depends upon the concentration of boiling mixture. Grigoryev analyzed this quantity in detail. He concluded, for the conditions far away from the critical point that (i) the term $(Y-X/V_V-V_{\ell})$ is always positive for nonazeotropic binary mixture whereas for azeotropic mixtures it is positive upto the point of azeotrope and negative beyond it, (ii) the sign of quantity $(\frac{\partial^2 G}{\partial x^2})(\frac{dX}{dT})$ is understood by Steronkin [101] analysis.

$$\left(\frac{\partial^{2}G}{\partial x^{2}}\right)\left(\frac{dx}{dT}\right) = \frac{Q_{12}}{T} \left\{ \frac{\lambda_{\text{LB}} - \lambda_{\text{HB}}}{Q_{12}} + \frac{(\Delta V)_{\text{HB}} - (\Delta V)_{\text{LB}}}{V_{12}} \right\} \dots (2.52)$$

 Q_{12} is differential latent heat of vaporization. For the state of system far from critical point $(\lambda_{LB}-\lambda_{HB})/Q_{12} >> [(\Delta V)_{HB} - (\Delta V)_{LB}]/V_{12}$ and Equation (2.52) reduce to :

...(2.53)

54

$$\left(\frac{\partial^2 G}{\partial x^2}\right) \left(\frac{dx}{dT}\right) = \frac{\lambda_{\text{LB}} - \lambda_{\text{HB}}}{T}$$

Thus the sign of the above term depends upon the difference of values of latent heat of vaporization of more volatile component (λ_{HB}) and less volatile component (λ_{LB}) in the mixture. He concluded that the sign of this term does not change over the whole concentration range.

From the above discussion if follows that the quantity $[(\frac{\partial^2 G}{\partial X^2})(\frac{Y-X}{V_V-V_{\ell}})(\frac{dX}{dT})]$ may have either a positive sign or a negative sign. The effect of sign before this quantity on R_{\min} is discussed as follows for non-azeotropic mixtures only.

- a. If the sign is positive, then an increase in the value of (Y-X) will activate a greater number of nuclei by making smaller ones active. This, in turn, will increase the rate of vapour bubble formation and as a consequence of it heat transfer coefficient will be enhanced.
- b. If the sign is negative, then an increase in the value of (Y-X) will activate only the limited number of sites and heat transfer rates will decrease.

Yatabe and Westwater [102] studied photographically the bubble growth rates and bubble emission frequencies for ethanol-water and ethanol-isopropanol mixtures. Motion pictures were taken at terminal speeds of 5,300 frames/sec with a magnification of four diameters on 100 ft rolls of 16 mm film. Boiling took place at atmospheric pressure at three different artificial nucleation sites of about 0.01 inch size located on a vertical copper surface superheated by 3.8°C. Bubble frequencies were as high as 179/sec.

Scriven's [41] analysis was used to correlate the experimental data. The growth constant β in Equation (2.36) for the two mixtures; isopropanol-ethanol and ethanol-water, at a superheat of 3.8°C were computed. For each bubble the growth data were fitted to the following equation :

$$R = a \Theta^n \qquad \dots (2.54)$$

The best fit values of arbitrary coefficient 'a' and exponent n were determined graphically. The significant fact is that for all bubbles, measured, n is below 0.5 value predicted by Scriven's theory. The average value of n are 0.27 for ethanol-isopropanol mixtures and 0.32 for ethanol-water mixtures. Thus they concluded that bubble diameters varied approximately with the 0.3 power of time rather than the 0.5 power predicted by the Scriven model [41]. The experimental growth coefficients for ethanol isopropanol varied with composition as expected, but the data were 15 per cent above the predicted values. The experimental growth coefficients for ethanol-water were higher than predicted values from 0 to 100 per cent, depending on the composition, the geometry of the nucleation site, and whether early or late portions of

the growth curve were examined. A predicted minimum in the coefficient at 7 wt. per cent ethanol for ethanolwater system was not detected. This minima, in fact, occurs at 31 wt. per cent ethanol in ethanol-water mixture as observed in the present investigation.

Tolubinskii et al [103] have conducted photographic study on the mechanism of boiling of binary mixtures. They used water-glycerine and ethanol-water mixtures for their studies. The former system is without the azeotropic point and the latter is with the azeotropic point. They have shown the effect of concentration of more volatile component on the rate of vapour bubble growth. This is reproduced in Figure 2.3. Following conclusions can be drawn from this figure :

- 1. There exists a pronounced relationship between the average growth rate of vapour bubbles, w, bubble departure diameter, D_h and the quantity (Y-X).
 - For non-azeotropic system the rate of vapour bubble growth, w, is found to decrease with the increase in concentration of more volatile component upto a certain concentration. Beyond this concentration it begins to increase. The concentration at which the rate of bubble growth is minimum corresponds to a maximum value of (Y-X). The quantity (Y-X) is playing an important role in the growth rate of binary mixtures. The bubble departure diameter, D_b also exhibits the similar behaviour i.e. the reduced bubble growth rates result in smaller bubble departure diameter

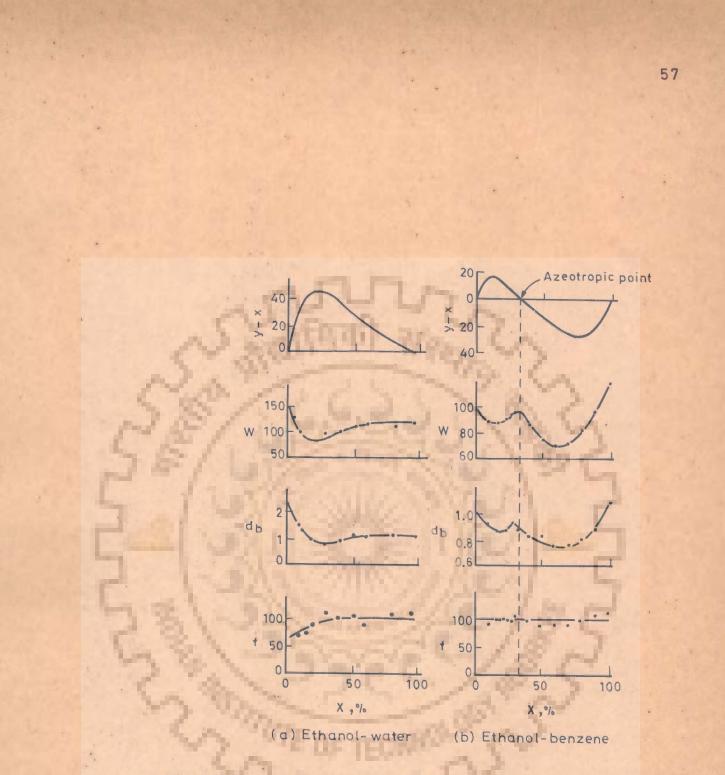


Fig.2.3-Vapour bubble growth rate as a function of concentration of mixture (X, ethanol concentration) [103] This conclusion has also been drawn by van Stralen [42-44]. A similar conclusion can also be drawn from the work of Hatton and Hall [104] who have investigated the bubble growth rates and departure sizes by considering both static and dynamic forces acting on the bubble.

With the azeotropic point there are two minima corresponding to two external points on the curve (Y-X) = f(x) and an intermediate maximum at the azeotropic point.

3.

Rehm [105] has investigated the bubble growth parameters in saturated and subcooled nucleate boiling of water and aqueous solutions of sucrose and n-propanol with the aid of high speed photography. He qualitatively analyzed the forces which influence bubble growth and separation. He concluded that highly viscous sucrose solutions produced small, short lived bubbles while lowsurface tension n-propanol solutions produced bubbles much larger than those obtained in pure water.

In next series of papers van Stralen [106, 107] has reviewed the existing theories [41, 68 and 69] concerning spherically symmetric growth of free bubbles in uniformly superheated liquids. He also conducted experimental investigations [107] with high speed motion picture camera for growth rate of bubbles, generated at a moderate heat flux density. The boiling was taking place on an electrically heated platinum wire immersed in water,

water-MEK and water-n-butanol solutions. In his theoretical analysis he showed that Equation (2.45) can be obtained from the Seriven [41] model for pure coolants by an analogy of heat and mass transfer. In doing this he replaced T by x, α_L by D_L , $\Delta T_{sat, \omega}$ by \mathbf{x}_{ω} - x, λ/C_{χ} by y-x and β by $(\alpha_{\chi}/D_{\chi})^{0.5}$ β . He concluded that the experimental values of the growth constants for ascending released bubbles for above mentioned aqueous solutions are generally in quantitative agreement with theoretical predictions.

van Ouwerkerk [108] studied hemispherical bubble growth in a binary mixture. He showed that a vapour bubble at a liquid-solid interface in the binary mixture grows without changing its shape and its dimensions increase proportionately with the square root of the growth time. This growth process controlled both the transport of heat and matter, is described by a selfsimilar solution. Analysis shows the reduction in growth rate, relative to a pure liquid, to be the same as a first approximation as the reduction for a free spherical bubble. The dry area in the microlayer under the bubble can be much smaller in a binary mixture than in a pure liquid and this influences the peak heat flux which can be attained in nucleate boiling.

van Stralen et al [109] have studied the combined effect of relaxation and evaporation microlayers during bubble growth rates in pure and binary liquid mixtures. They used Pohlhausen's equation to determine the initial

thickness of the evaporating microlayer beneath a hemispherical vapour bubble on a superheated horizontal wall. Microlayer thickness is proportional to the square root of the distance to the nucleation site during early bubble growth, while a linear relationship exists during advanced growth.

A heat and mass diffusion-type solution is derived for advanced bubble growth, which accounts for the interaction of the mutually dependent contributions due to relaxation microlayer (around the bubble-dome) and the evaporation microlayer. The entire bubble behaviour during adherence is determined by a combination of this asymptotic solution and the Rayleigh solution, which governs early growth.

The proposed final bubble growth equation, which is valid both in pure liquids and in binary mixtures during the entire adherence time is assumed to be of the following form :

$$R(t) = \frac{R_{1}(t) R_{2}(t)}{R_{1}(t) + R_{2}(t)} \dots (2.55)$$

where $R = R^{*}/2^{1/3}$, equivalent spherical bubble radius and R^{*} is radius of hemispherical bubble. R_1 is equivalent bubble radius according to modified Rayleigh solution and R_2 is equivalent bubble radius according to total diffusion (combined evaporation and relaxation microlayer). $R_1(t)$ and $R_2(t)$ are given by Equations (62) and (63) of Reference [109].

At low concentrations of the more volatile component in binary systems, the dominating influence of mass diffusion is demonstrated by the following effects : (i) asymptotic bubble growth is slowed down substantially, (ii) the formation of dry areas beneath bubbles is prevented, even at subatmospheric pressure,(iii) the lower part of the bubble is contracted, (iv) the evaporation microlayer contribution to bubble growth is negligible at atmospheric and at elevated pressures.

Tolubinskii [110] has recommended to compute the average growth rate of vapour bubbles by employing the theory of similitude equations. The equation allows to calculate the heat transfer in the boiling of a variety liquids.

van Stralen et al [111]have investigated experimentall the growth rate of vapour bubbles during nucleate boiling of aqueous binary systems at subatmospheric pressures. They have investigated water-ethanol mixture (upto 31 wt. per cent ethanol at pressures between 4.08 to 6.65 kPa with corresponding Jakob number ranging from 1989 to 1075), water-1-butanol (upto 2.4 wt. per cent 1-butanol at pressures between 3.60 - 4.08 kPa with corresponding Jakob number ranging from 2760 to 1989) and water-2-butanon (upto 15 wt. per cent 2-butanone at pressures between 7.31-9.07 kPa with corresponding Jakob number ranging from 1519-683).

Recently Shock [112] has analyzed two different theories responsible for heat transfer in nucleate boiling in binary mixtures. According to the first theory the bubble growth rate in binary mixtures is different than pure liquids because of the additional mass transfer resistance i.e. interdiffusion of the species. And according to the second theory, the different mechanism in binary and pure liquids is due to differences in the superheat required to initiate bubble growth rate due to changes in the parameters governing the saturation pressure-temperature relationship With the help of theoretical analysis and his experimental data [113] on convective boiling of ethanol-water mixtures in heated channels Shock [112] has found that the latter theory can not be defended successfully. However, he has shown that in aqueous systems there may be an increase in the superheat required for the onset of nucleate boiling due to the effects of the change in wetting characteristics for organic solvents at low concentrations. Based on the experimental data of other investigators, Shock has shown that the diffusion resistance which is found once boiling has commenced still plays a significant role in the reduction in heat transfer in aqueous systems and it is presumed to be the controlling factor in non-aqueous systems.

Zijl et al [114] have investigated the combined inertia and diffusion controlled growth and implosion of a spherical vapour bubble in an initially uniformly superheated and supersaturated infinitely extended liquid. The equations and solutions are presented with sufficient generality to provide a basic understanding of growth and implosion of vapour bubbles under most complicated physical conditions.

Zijl et al [115] have given global numerical solutions of growth and departure of a vapour bubble at a horizontal superheated wall in a pure liquid and a Integral forms of the heat transport binary mixture. equations have been solved by use of series expansions, obtained by the theory of fractional derivatives. The global orthogonal collocation method has been applied for the potential flow around the bubble. In this way a set of only eight or ten ordinary differential equations have to be integrated by computer. The results following from prescribed initial temperature distributions, are in quantitative agreement with experimental data, obtained in water and aqueous binary mixtures boiling at subatmospheric pressures.

Pinnes and Mueller [116] analyzed the homogeneous vapour nucleation and superheat limits to multicomponent liquid mixtures. They distinguished the multicomponent liquid mixtures with that of single component case in two ways. Both these results from the unequal volatilitie of the species, one is that the vapour phase may contain several components, the other is that nucleation formation

alters the composition of the nearby liquid. They incorporated these two features into the classical theory of homogeneous nucleation to yield a general theory applicable to multicomponent liquids. The theory was applied to binary hydrocarbon mixtures by using an equation of state extrapolated into the metastable region. Superheat limits thus calculated were compared with published experimental results.

CHAPTER-3

EXPERIMENTAL SET-UP

3.1 DESIGN CONSIDERATIONS

Basic objective of the present investigation was to obtain experimental data of heat transfer from a horizontally placed cylindrical surface submerged into the pool of boiling liquids and their binary mixtures with distilled water at atmospheric and subatmospheric pressures. Several factors were considered for the design, the fabrication and the commissioning of the experimental set-up. They are as follows :

- Heat transfer surface
 - Surface and liquid thermocouples
 - Power supply
 - Condenser unit
 - Vacuum unit
- Composition of the boiling liquid mixtures.

The above design considerations are discussed hereunder :

3.1.1 Heat Transfer Surface

In a closed circuit experimental facility, where the vapours are continuously generated from the pool of boiling liquid at the heating surface, condensed in condensers and fed back to the pool of liquid as shown in Figure 3.1, the location of heat transfer surface in the vessel is an important design consideration. This is because of the fact that the heat transfer surface is not to be disturbed by the flow of incoming mass of the condensate. Besides this, the boiling phenomenon should not be affected adversely due to the penetration of the condenstate through the pool which condenses on the inside surface of the top cover of the test vessel. To meet this effectively, the heat transfer surface was placed in such a position so that it had sufficient liquid height above and beneath it.

3.1.2 Surface and Liquid Thermocouples

For a heating surface diameter as used in the present investigation there exists a variation in surface temperature around its circumference. Therefore, one of the important design requirements is to determine the location of surface thermocouples. A scrutiny of the bubble dynamics on such a large diameter heating surface demands a minimum number of three thermocouples placed at the top-, at the side- and at the bottompositions of the heating surface. Therefore, three thermocouples were placed at 90° apart from each other. The placement of thermocouples at three circumferential positions is helpful in calculating local values of These three values are heat transfer coefficients. also sufficient to apply mechanical quadrature [117]

method to determine average value of surface temperature and heat transfer coefficient.

Another consideration was the location of liquid thermocouple probes. The liquid thermocouples were placed by the side of the respective surface thermocouple positions. Their readings were used to calculate the degree of wall superheat at three locations and consequently the local heat transfer coefficients. At this stage it was also required to decide as to how much they should be away from the heating surface. In fact, to monitor the bulk temperature of the pool, the probe should be placed outside the zone of the superheated liquid layer enveloping the heat transfer surface. This was ensured by varying the position of the liquid thermocouple probe away from the heating surface to a position beyond which no change in liquid temperature was observed. As a matter of fact the thickness of the superheated liquid layer changes with the parameters [118] namely; heat flux, pressure and physico-thermal properties of the boiling liquid. Therefore, the movable liquid thermocouple probes were installed.

3.1.3 Power Supply

An accurate heat transfer study demands a stabilized and modulated supply of heat flux so that the minor power fluctuations should not disturb the energy input and thereby the steady state boiling heat

transfer data. Adequate measures were included in the experimental facility to achieve this.

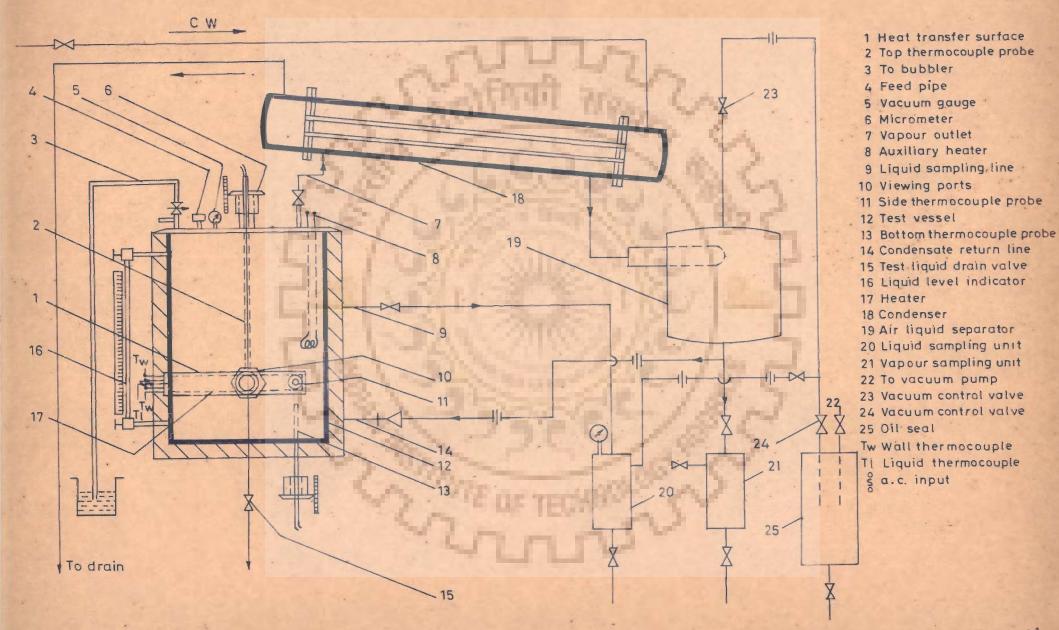
3.1.4 Condenser Unit

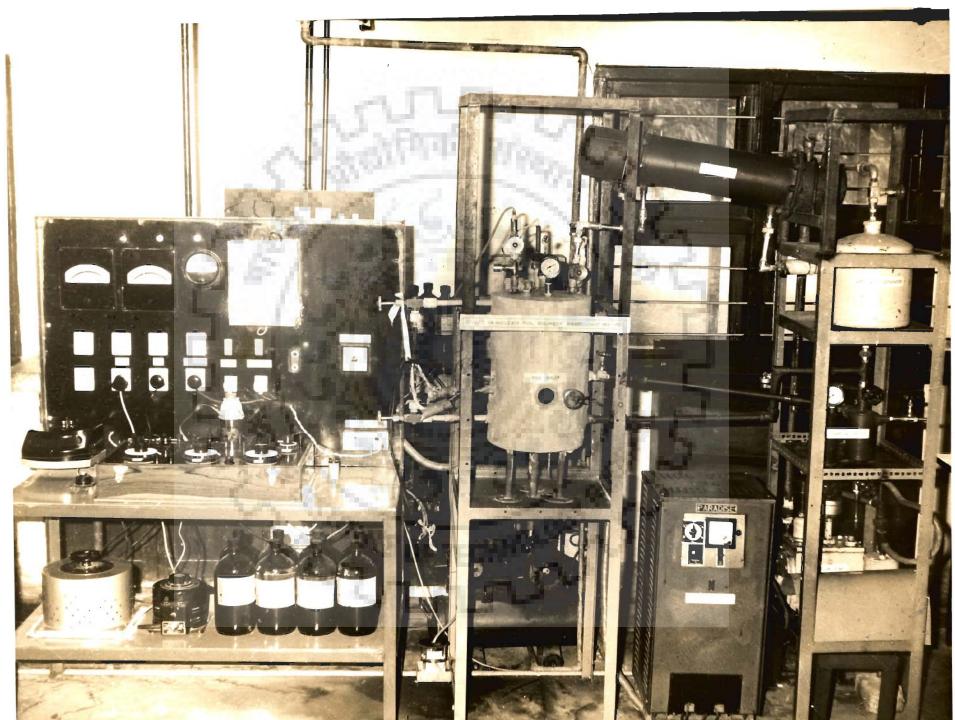
As mentioned earlier, it is necessary for a closed circuit experimental facility to return the vapours back to the vessel from the condenser. To meet this requirement and to maintain the steady state conditions, the rate of condensation must be equal to the rate of evaporation. This was ensured by installing a large size condenser unit. It is important to mention that in the absence of adequate condensation of the vapours, the following difficulties are likely to arise :

- (i) Decrease in the liquid level above the heating surface
- (11) Variation in the composition of the binary mixtures, and
- (iii) Fluctuations in the system pressure.

.Thus, in order to overcome the above difficulties, an effective condensation unit was designed and employed.

3.1.5 Vacuum Unit


One of the aims in the present investigation was to obtain experimental data for nucleate pool boiling of organic liquid mixtures at subatmospheric pressures as low as 12 kN/m². Therefore, a suitable vacuum unit system was designed which could handle the moisture and the organic vapours successfully.


3.1.6 Composition of the Boiling Liquid Mixtures

While conducting experimental data for binary mixtures it was necessary to maintain the composition of the pool at a given value throughout the experimentation. Therefore, a care was exercised to recycle all the condensing vapours back to the vessel to avoid any variation in composition of the boiling liquid mixtures. Provision was made to draw and analyse the liquid and vapour samples at a given time interval to check the composition. These samples were collected in ground glass bottles placed in an ice box to avoid any flashing.

3.2 DESCRIPTION OF THE EXPERIMENTAL SET-UP

Keeping in view the above considerations an experimental facility to obtain data for nucleate pool boiling of binary liquid mixtures at atmospheric and subatmospheric pressures was designed, fabricated and commissioned. The schematic diagram and photograph of the experimental facility are shown in Figures 3.1 and 3.2 respectively.

3.2.1 Test Vessel

Figures 3.3 and 3.4 show the details of the test vessel and mountings on it. The test vessel was stainless steel cylinder of 270 mm diameter and 470 mm height with a flat top and dished bottom. The top cover had a vacuum gauge (5) to measure the vacuum in the vessel a movable thermocouple probe (2) to monitor liquid temperature above the heating surface and an auxiliary heater (8). Also, it had provisions for charging the vessel, (4) with test liquid and a valve (3) to pass on the dissolved air to the bubbler (19) and a vapour pipe line (7) for carrying vapours to the condenser. The heat transfer surface (1) was inserted in the test vessel from its side and installed horizontally at a submergence depth of about 280 mm from the top. This submergence depth was in accordance with the design considerations as discussed in Section 3.1. The details of socket (3), checknut (2) and gasket (4) for securing the heating surface in the horizontal position are shown in Figure 3.5. Liquid level indicator (16) helped to know the height of the liquid in the vessel as shown in Figure 3.3.

To facilitate the visual observations for bubble initiation, growth and departure on the heat transfer surface, two diametrically opposite view ports (10) were located at the front- and rear-side of the test vessel. The front-side was provided with a thermocouple probe (11) to record the liquid temperature at the side-position

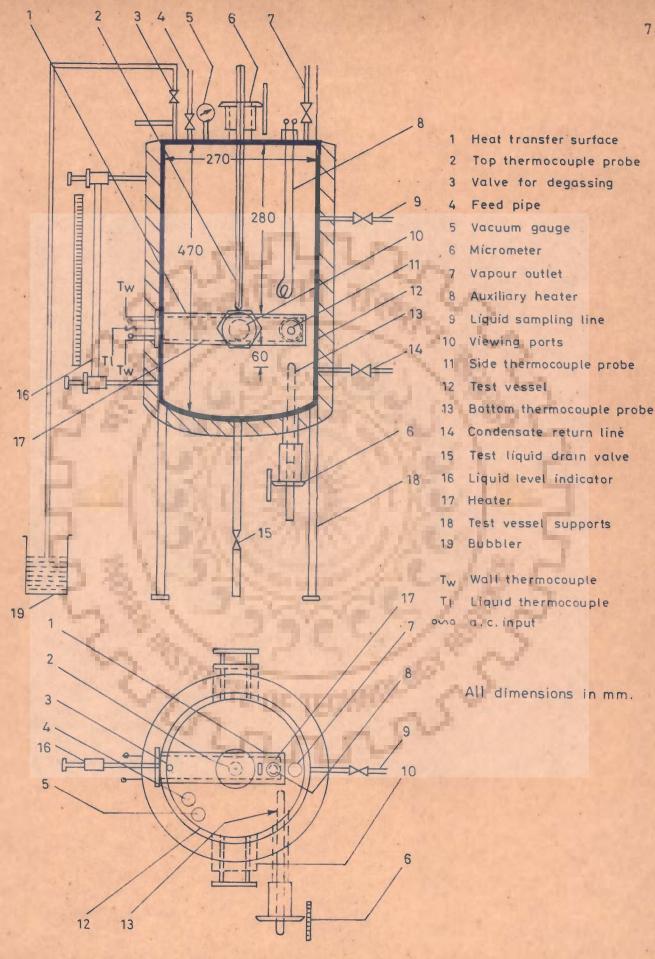


Fig. 3.3 - Details of test vessel

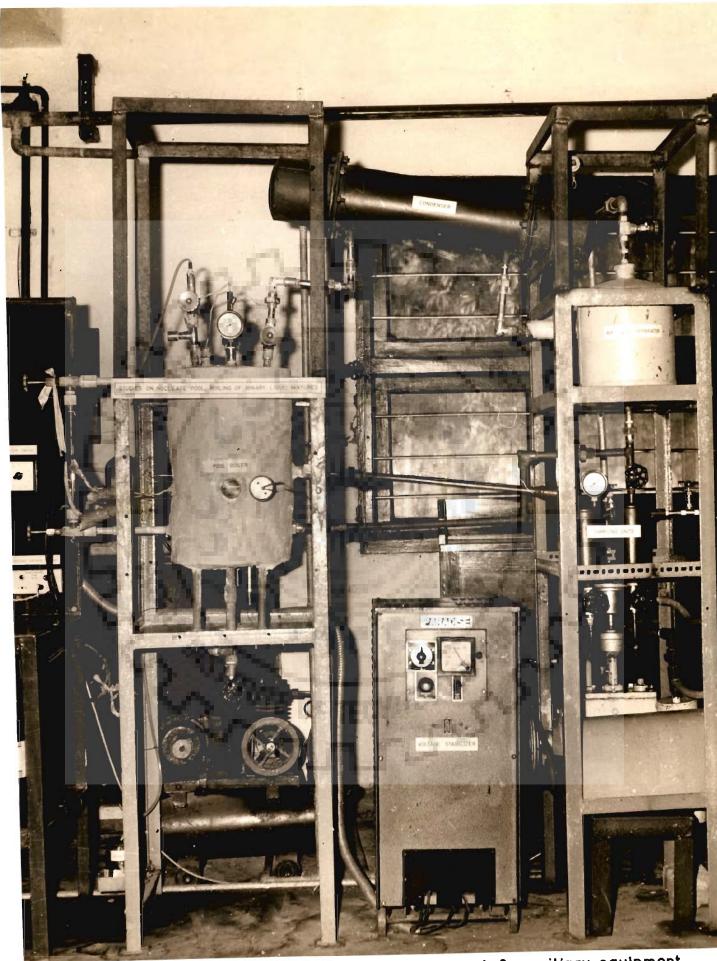


Fig.3.4-Photographic view of test vessel & auxiliary equipment.

of the heating surface. The dished bottom had the provision for discharging the liquid through a valve (15) and a thermocouple probe (13) to record the liquid temperature below the heat transfer surface. To fully satisfy the design consideration as detailed in Section 3.1 i.e., the incoming mass of liquid from the separator (19) should not disturb the vicinity of the heating surface, the condensate return line (14) had its entry sufficiently below the heating surface as shown in Figure 3.1. This distance was found to be 60 mm from the bottom of the heat transfer surface. Further, this distance was sufficient since the condensate from the separator to the vessel was cooler in comparison to the boiling liquid inside the vessel and hence remains at the bottom for sometime before it reattains the same thermodynamic state as that of the pool of liquid. Pipe line (9) connects the liquid sampling unit (20) with the test vessel.

To minimize the heat losses to surroundings, the vessel body was thoroughly insulated by means of asbestos followed by glass-wool and then 85 per cent magnesia powder.

3.2.2 Heat Transfer Surface

Figure 3.5 shows details of the heat transfer surface. It consists of a 410 ASIS grade stainlesssteel hollow cylinder having 70 mm 0.D., 4 mm wall

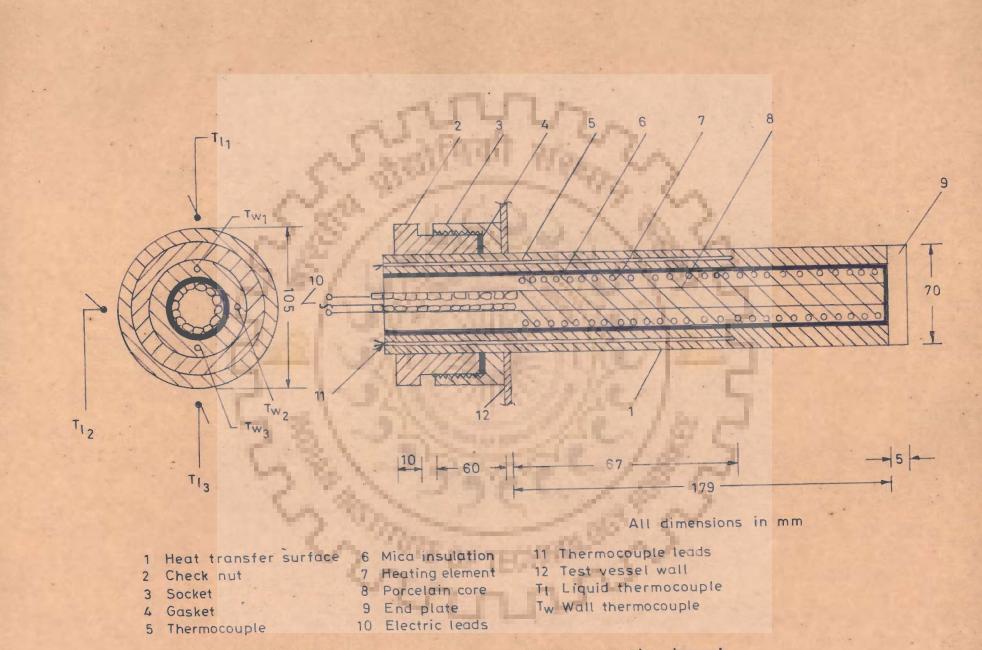


Fig.3.5-Heat transfer surface and thermocouples layout

thickness and 179 mm effective heating length and heat transfer area $3.93 \times 10^{-2} \text{ m}^2$. Its outer surface was uniformly machined and smoothened by set of emery papers (1/0, 2/0, 3/0 and 4/0) and finally cleaned by acetone. It was then fitted to the test vessel with the help of a stainless steel socket (3) welded on the body of the vessel (12). A checknut (2) along with a lead gasket (4) helped in making the whole assembly leak-proof.

The heat transfer surface was heated by an electric heater (7) placed in it. A cartridge heater was fabricated for a maximum value of heat flux upto 35,000 W/m². The heating element was Kanthal A-1 grade of 16 gauge wire of a maximum current carrying capacity of 13 amperes. This heating element was electrically insulated with fish spine type of porcelain beads. It was wound carefully on a 16 mm porcelain rod. This was then thoroughly wrapped with glass tape and a thin mica sheet (6) to provide complete safety against any electric leakage. The entire assembly was then carefully inserted in the hollow portion of the heat transfer surface, suitable electric connections (10) were provided at the open end of the heating surface. The heat losses from this end were reduced to minimum by covering this end thoroughly with glass-wool.

The three thermocouples at the top- at the sideand at the bottom- positions of the heating surface, 90°

apart from each other were placed in the holes (11) in the woll thickness of the heating surface. Utmost precuation was observed in drilling these holes of diameters slightly greater than 24 gauge - the diameter of the thermocouple wires. The axial length of these holes was 127 mm. Calibrated fibre-glass insulated copper-constantan thermocouple wires of 24 gauge were inserted in these holes to monitor the surface temperatures.

3.2.3 Liquid Thermocouple Probes

As required in Section 3.1 for the calculation of local values of heat transfer coefficient at three locations in the pool, movable liquid thermocouple probes (2,11,13) were provided corresponding to the respective positions of surface thermocouples as shown in Figure 3.3. These probes could traverse in the pool of boiling liquid so as to record the temperature of the liquid lying in the close vicinity of the heating surface right upto the bulk of boiling liquid. The bulk liquid temperature was measured at the distance sufficiently away from the superheated liquid layer. These thermocouple assemblies are depicted in Figures 3.3 and 3.4.

3.2.4 Degassing Facility

The air dissolved in the liquid, if any, was to be removed prior to conducting the experiments. The presence of non-condensable gases affects the temperature needed to initiate bubble growth from the irregularities on the heating surface and thereby heat transfer data.

In order to get rid of the above difficulty a degassing facility was used. Prior to each experiment the liquid was heated to its boiling point by means of auxiliary heater (8). This heating caused the dissolved gases to bubble out of the liquid. These gases were then forced out of the system by closing all other valves (4,7,9 and 14), except the valve (3) in the pipe line connected to bubbler (19) as shown in Figure 3.3. The bubbler consisted of a beaker filled with the same liquid as in the test vessel. It was connected to the test vessel with a polythene tube.

The remaining dissolved gases, if any, were removed out of the system in the air-liquid separator as described in Section 3.2.6.

3.2.5 External Condenser

The vapours from the pool of boiling liquid passed through a pipe line (7) to a water cooled condenser (18) as shown in Figures 3.1 and 3.4. The condenser was designed and fabricated so as to cause adequate condensation for the vapours of all the liquids investigated for a heat load of 2.5 kW and placed in inclined position. However, the heat load for which data were conducted did not exceed 1.3 kW.

The condenser was a single pass shell and tube heat exchanger of shell diameter 112 mm and tube diameter 12.7 mm. The total number of tubes were 12 having length of 400 mm each. The material of construction for both shell and tubes was stainless steel. The condensing vapours routed through the shell side while the cooling water through the tube side. The baffles were provided in the shell side. The condenser was kept pitched towards the air-liquid separator (19) as shown in Figure 3.1. This facilitated the flow of the condensate to the separator without any hold up of it in the condenser (18)

3.2.6 Air-Liquid Separator

The purpose of incorporating air-liquid separator (19) in the experimental set-up was to provide an additional facility to remove non-condensable gases which could not be removed during the degassing operation. Besides, some air is likely to infiltrate into the system. To remove these non-condensables from the system, air-liquid separator (19) was placed between condenser and vacuum unit as depicted in Figures 3.1 and 3.2. The air-liquid mixture after condenser enters into the separator tangentially. The separated non-condensables passed to the vacuum pump through the pipe (23) at the top of the separator and thus thrown out to the atmosphere, while the condensate returned

back to the pool of liquid through a pipe (14) provided at the bottom of the separator.

3.2.7 Vacuum Pump Assembly

A 'HV' series Hindustan Rotary two-stage oil immersed type vacuum pump was used with a suction capacity of 1.25 x 10⁻³ m³/s. The pump was driven by a 0.37 kW motor having 1450 rpm. One of the essential features of the pump was an Air Ballast which enabled the pump to attain high vacuum even when a lot of moisture and organic vapours were sucked in by the pump. Drops of water particles which were released under high compression ratio, of the order of 1:700, collected underneath the main valves were completely eliminated by the introduction of fresh atmospheric air through the Air-Ballast vent. Thus the pump satisfied the demand of handling moisture and organic vapours. To minimize the entry of moisture and organic vapours in the pump, silica gel was used in the suction inlet. An oil seal (25) was also provided for this purpose as shown in Figures 3.1 and 3.4. High vacuum of the order of 730 mm Hg was obtained from this pump. To check the back flow of oil into the experimental apparatus, valves (23, 24) were installed at suitable positions. Vacuum was regulated by means of a fine needle valve (23).

3.2.8 Sampling Units

As mentioned in Section 3.1 that for the prediction of heat transfer coefficients in binary liquid mixtures, it is essential to maintain the composition of the pool constant throughout the experimentation. Therefore, two sampling units were included in this experimental facility for drawing out the samples of boiling liquid and the vapours in equilibrium with the liquid for analysis to check the constancy of composition. These sampling units (20,21) were small vessels made of stainless steel. Liquid sampling unit (20) was directly connected to the pool of the boiling liquid with a liquid sampling line (9) and vapour sampling unit (21) to the condensate line (14) from the separator as depicted in Figures 3.1 and 3.4. A separate vacuum line was provided for both these units with necessary valves as shown in Figures 3.1 and 3.2. This enabled the units to operate either under subatmospheric or atmospheric pressure conditions, without disturbing rest of the system. A separate vacuum gauge was provided for these units. Samples were withdrawn from the dished bottom of the vessels (20,21) and collected in ground glass bottles placed in an ice-box to avoid any evaporation of the liquids.

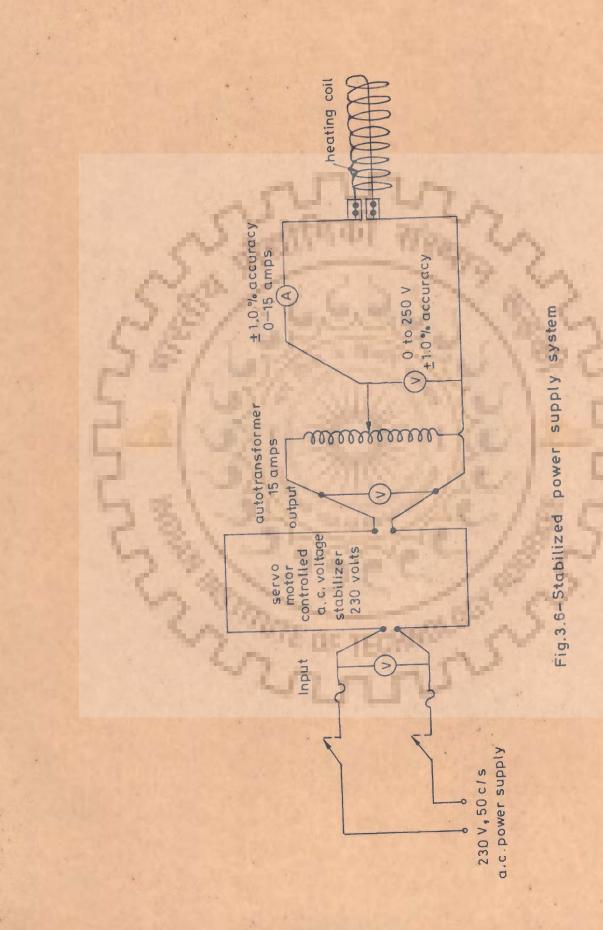
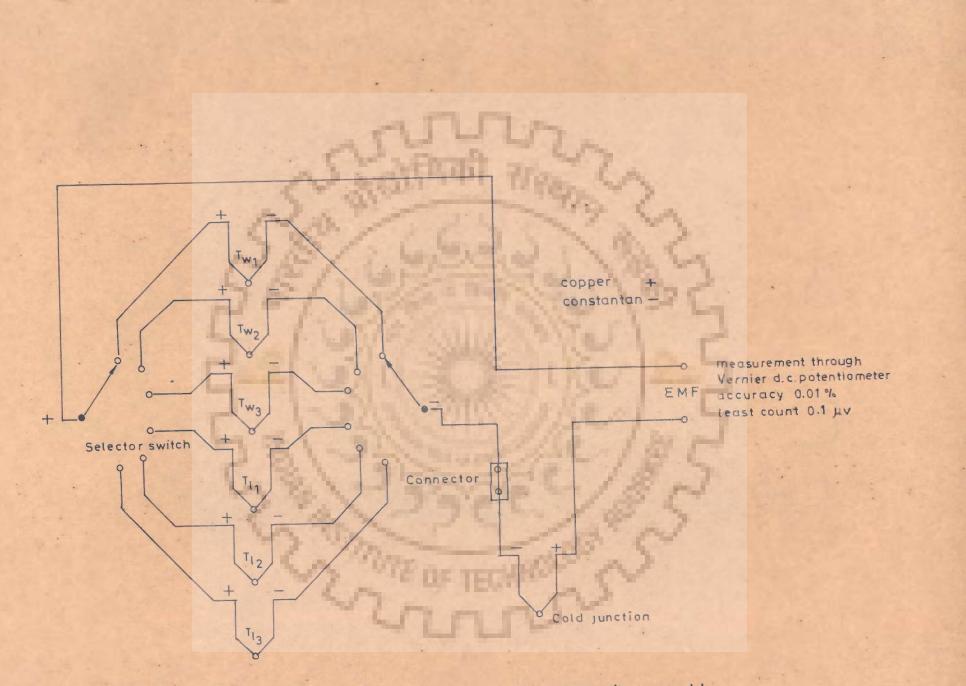

3.2.9 Power Supply System

Figure 3.6 shows the complete details of the electric circuit for the supply of stabilized and modulated low-voltage power to the heat transfer surface. Single-phase 230 volt, 50 c/s a.c. power was supplied to an automatic servomotor controlled voltage stabiliser supplied by M/s Paradise Co. The stabilised voltage was then supplied to the primary of an autotransformer of 15 amperes rating. This autotransformer modulated the electric power input to the heater for desired value of heat flux. Low resistance, thick copper conductors were used for power supply between the autotransformer and the heater.

3.3 INSTRUMENTATION AND CALIBRATION

3.3.1 Heat Flux Measurement

The power supplied to the heat transfer surface was measured by means of calibrated precision grade voltmeter and ammeter having accuracy within ± 1 per cent. The voltmeter and ammeter were calibrated against the Substandard Voltmeter and Ammeter. The range of voltmeter was 0 - 250 volts and that of ammeter was 0 - 15 amperes. The readings of the voltmeter and the ammeter were noted in order to calculate the power input to the heating element. The power divided by the effective area of heat transfer surface represented




the heat flux. Different values of heat flux were obtained by the autotransformer as already mentioned above.

3.3.2 e.m.f. Measurement of Thermocouples

The electro-motive force of thermocouples was measured with the help of a Vernier potentiometer supplied by M/s Elfo Scientific Instruments and a sensitive spot reflecting galvanometer supplied by N/s Osaw and Co. The range of the potentiometer was O to 1.901 volts with a least count of O.1 microvolt and accuracy 0.01 per cent. The power supply to the potentiometer was given by a constant d.c. voltage source of 2.25 volts by connecting this source at the correct terminals of the potentiometer. A standard cell having fixed voltage of 1.0186 volts was connected to the potentiometer for its standardisation. To provide required reference temperature of 0°C a meltingice bath was used as a cold junction. A multi-point selector switch supplied by M/s Toshniwal and Co. was used to connect the thermocouples to the potentiometer as shown in Figure 3.7.

The surface and liquid thermocouples were calibrated before their insertion in the experimental facility. The thermocouples were calibrated by means of immersing their hot junction in different pure liquids of known boiling points at atmospheric pressure.

The e.m.f. of thermocouples were recorded by the arrangement described above. A mercury in-glass thermometer of accuracy 0.05° C was also placed in the boiling liquids to compare the readings of thermocouples. The e.m.f. recorded by thermocouples compared with the respective boiling points of four pure liquids showed a maximum deviation of \pm 0.1 per cent. The readings of thermocouples and thermometer were also within a maximum deviation of \pm 0.1 per cent.

3.3.3 Concentration Measurement

The concentration of binary liquid mixtures was measured by using a calibrated precision grade refractrometer supplied by M/s Carl Zeiss Jena Co. The accuracy of the instrument was measured by comparing the refractive index values of four pure liquids as mentioned above at 15°C with those available in literature [119] as shown in Figure 3.8. The accuracy obtained in the refractive index measurement was within ± 0.02 per cent.

3.3.4 Vacuum Measurement

Vacuum was measured by placing two calibrated precision grade vacuum gauges. One of them was mounted on the top of the test vessel and other on liquid sampling unit as shown in Figures 3.1 and 3.4.

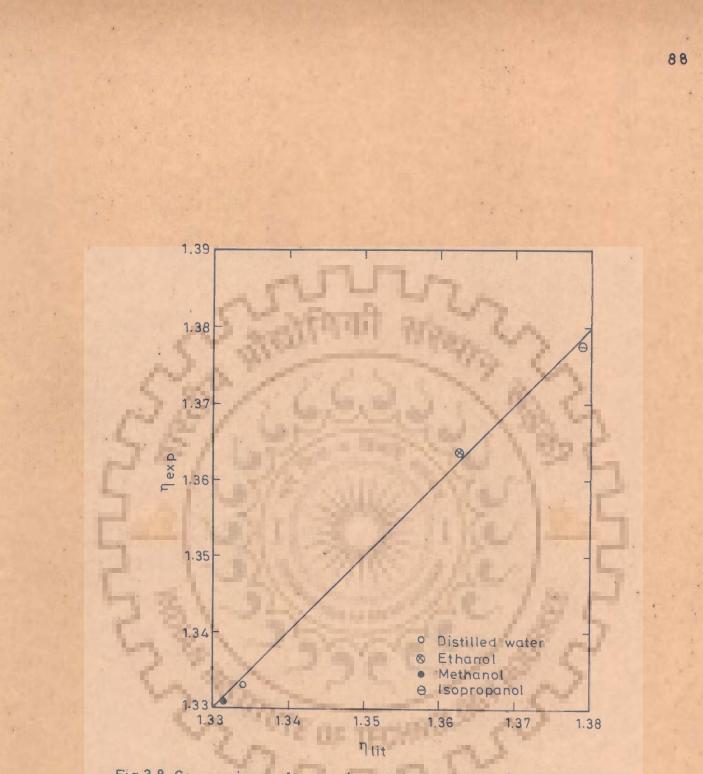


Fig.3.8-Comparison of experimental refractive index with values in literature [119] for pure liquids at 15°C

CHAPTER-4

EXPERIMENTAL PROCEDURE

4.1 TESTING OF EXPERIMENTAL SET-UP

To obtain the reliable experimental data the facility was subjected to the following tests :

The objective of the present investigation was to obtain nucleate pool boiling data at subatmospheric pressure. Therefore, experimental facility was tested for vacuum integrity. This was done in two steps : Firstly, the facility was charged with compressed air at a pressure of 680 kN/m^2 and left for 48 hours. No change in pressure gauge reading was observed. Then it was evacuated till the vacuum gauge registered a reading of 95 kN/m² and this was also left for 48 hours. No change in the vacuum gauge reading was observed. Both these tests ensured the vacuum integrity of the experimental facility.

In addition to the above test the condenser (18) was ensured against liquid interchange between the testliquid side and the coolant side.

Tests were also conducted to check against any electric leakage. All electrical connections were earthed for the safe operation of the facility.

4.2 OPERATING PROCEDURE

The following procedure was used for obtaining the experimental data :

4.2.1 Stabilization of the Heat Transfer Surface

Before conducting the series of experimental runs it was necessary to age and stabilize the heat transfer surface. This was done as follows : the surface was submerged in the pool of liquid for a period of 48 hours followed by a boiling of 12 hours. Steady state was allowed to reach and the surface temperatures were recorded. The surface was again kept submerged in the pool of liquid for 72 hours followed by another 12 hours of boiling at similar experimental conditions. Surface temperatures were then recorded and compared with previous values. The discrepancy in these data were observed. The procedure was repeated till the data were reproducible after several days of aging and several hours of boiling. This reproducibility of the data ensured the stabilization of the heat transfer surface.

This procedure was repeated for each new liquid chosen for experimentation.

4.2.2 Cleaning and Charging

Prior to charging the system with new liquid, the system was thoroughly cleaned for the traces of the previous liquid. This was accomplished by flushing all the components of the experimental facility with compressed air. The heat transfer surface was then rinsed with distilled water, acetone and finally with the liquid under investigation. The test vessel was then filled with the liquid upto a given level.

4.2.3 Removal of Dissolved Air from the Test Liquid As discussed in Section 3.2.4 degassing of the test-liquid was necessary to obtain reliable experimental data. This was done by heating the liquid to its boiling point. With continued boiling, the dissolved air started coming out of the liquid. This was indicated by the bubbling taking place in the beaker (19) filled with test liquid. During boiling all the valves (4,7,9, 14), except valve (3), were closed as depicted in Figure 3.1. When bubbling ceased, valve (3) was closed and valve (7) was opened.

4.2.4 Experimentation

After removing the last traces of dissolved air the facility was set for the experimental parameters namely; heat flux and pressure for a given liquid. These parameters were varied systematically. The vacuum in the facility was created by switching on the vacuum pump and manipulating the control valves (23, 24) as shown in Figure 3.1. When the desired vacuum was maintained, the control valves were closed and vacuum pump switched off. The required heat flux was then modulated by means of an autotransformer. After adjusting these parameters the experiment was allowed to run for 1 to 2 hours till the thermal equilibrium was attained. Under these conditions, there was no change in surface and liquid temperatures with time. For all the data a steady state of one hour was observed. At equilibrium, the readings of surface and liquid thermocouples, ammeter, voltmeter and vacuum gauge were recorded and also the barometric pressure.

While conducting experiments with binary liquid mixtures the samples of liquid and vapour in equilibrium with it were taken periodically from respective sampling units (20, 21) as shown in Figure 3.1. Their refractive indices were measured with the help of a refractrometer to know the liquid and vapour compositions. Since the refractive index is sensitive to temperature, the samples on collecting from the experimental facility were kept in ground glass bottles immersed in a constant temperature bath at 0°C. The samples were then analysed in the Instrumentation Laboratory where the room temperature is maintained at 15° C.

To obtain the calibration curves, known compositions of alcohol-water mixtures were prepared and their refractive indices were measured. These values are plotted against composition for ethanol-water, methanol-water and isopropanol-water mixtures in Figures 4.1 through 4.3 respectively. These plots served as reference curves for evaluating compositions of liquid and vapour samples drawn during experimentation.

The next run was conducted by changing the heat flux value for the same pressure and liquid. Similar experimental runs were conducted for all the heat flux values as given in Table 5.1. For all the runs, this procedure was also followed for other pressures for the pure liquids; distilled water, ethanol, methanol and isopropanol and their aqueous binary mixtures. The details of experimental parameters are given in Table 5.1.

4.3 CONSISTENCY OF EXPERIMENTAL DATA

Several experimental runs are repeated to check the consistency of experimental data and it was found that the data were reproducible within the allowable experimental errors of 1.5 per cent. This shows that the data points were not erratic. However, these data have not been included in the thesis.

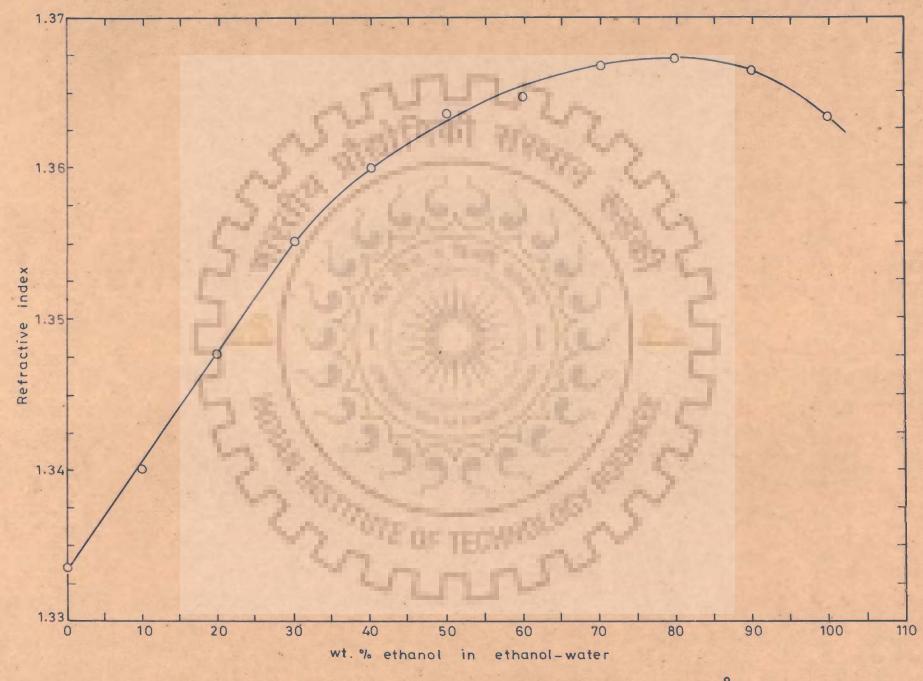
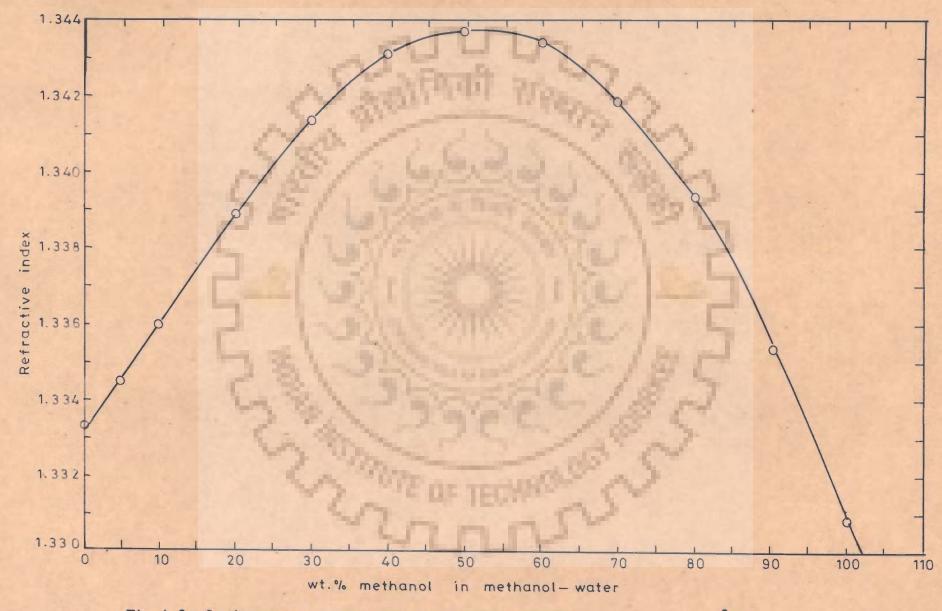
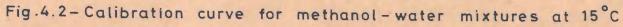




Fig.4.1-Calibration curve for ethanol-water mixtures at 15°C

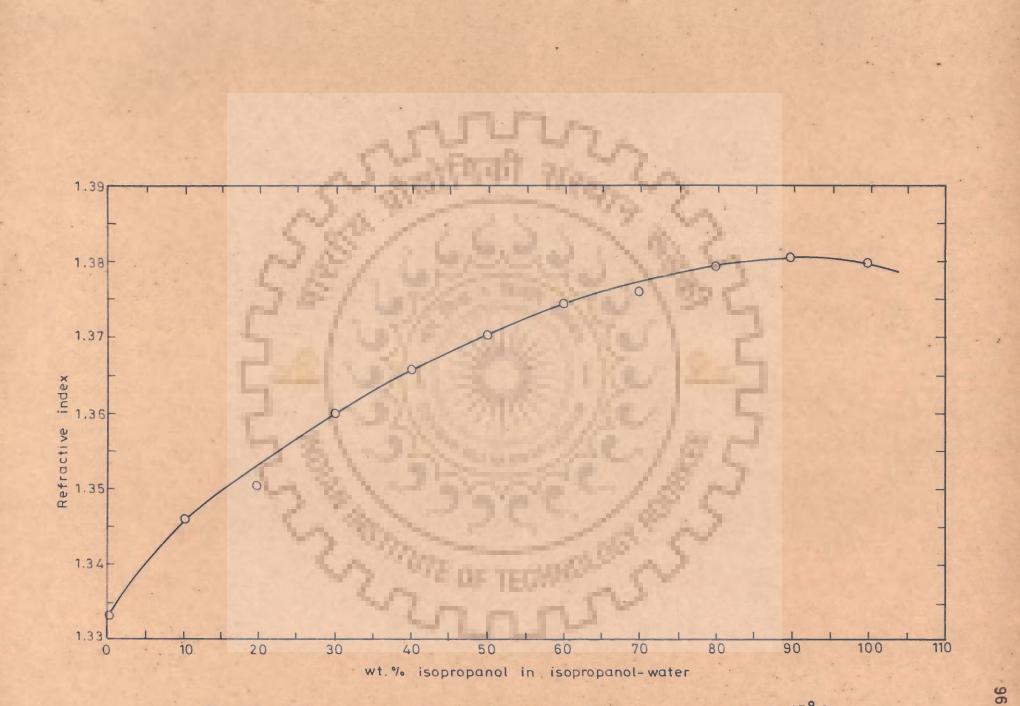


Fig.4.3-Calibration curve for isopropanol-water mixtures at 15°C

CHAPTER-5

RESULTS AND DISCUSSION

Present investigation pertains to boiling heat transfer from a horizontally placed cylindrical surface, submerged in a pool of saturated liquids and their mixtures. These studies were carried out at low heat flux under the atmospheric and the subatmospheric pressures.

Table 5.1 enlists liquids and their binary mixtures alongwith the range of experimental parameters. The heating surface used for the present study was a 410 ASIS grade stainless steel cylinder.

In all 468 data points for the saturated pool boiling studies were obtained and subsequently analyzed. They are recorded in Tables B-1 to B-21 of Appendix-B.

Table	5.1	Paramete	ers for	Saturated	Nucleate
1000	1	Pool Boj	lling St	tudies	

System No.	Boiling liquid	Heat flux, W/m ²	Pressure, kN/m ²
l	Distilled water	9618, 12621, 16489, 20356 and 24911	98.63, 66.64, 50.65, 33.32 and 25.33
2	Ethanol	9975, 12865, 16947, 20611, 25191 and 26740	98.63, 61.31, 47.98, 33.32 and 25.33

System No.	Boiling liquid	Heat flux, w/m2	Pressure, kN/m ²
3	Ethanol-Water Mixture		
(i)	ll.86 wt.per cent ethanol	9975,13028, 16532,20865 and 25471	98.63, 61.31, 42.45, 36.0 and 28.0
(ii)	22.12 wt.per cent Ethanol	10064, 13232, 16419, 20865, 26219 and 30229	98.63, 66.64, 53.52, 33.32 and 21.33
(iii)31.10 wt.per cent Ethanol	9975, 13028, 16718, 20865, 25191 and 30534	98.63, 66.64, 50.65, 33.32 and 22.66
(iv)	39.00 wt. per cent Ethanol	10153, 13028, 16947, 20611, 25751 and 30534	98.63, 66.64, 47.98, 35.99 and 25.33
(v)	52.30 wt. per cent Ethanol	10153, 13130, 17674, 21120, 25611 and 30229	98.63, 66.64, 46.65, 33.32 and 22.66
(vi)	71.88 wt. per cent Ethanol	13232, 16489, 19824, 26219 and 30534	98.63, 69.31, 47.98, 33.32 and 18.66
4	Methanol	9618, 12621, 16260, 20356 and 24911	98.63, 66.64, 50.65, 34.65 and 25.33
5	Methanol-Water Mixtures	S. 1. 4.	5
(i)	8.56 wt. per cent Methanol	9618, 12824, 16489, 20356 and 25050	98.63, 66.64, 50.65, 33.32 and 25.33
(11)) 16.50 wt. per cent Methanol	9618, 12926, 16489, 20356 and 24911	98.63, 66.64, 50.65, 33.32 and 25.33
(11	i)30.80 wt. per cent Methanol	9618, 12824, 16489, 20611 and 25239	98.63, 66.64, 50.65, 33.32 and 29.32
(iv) 43.24 wt. per cent Methanol	9440, 12417, 16031, 19847 and 25191	98.63, 66.64, 50.65, 33.32 and 25.33
(v)	64.00 wt. per cent Methanol	9618, 9975, 12824, 16489, 20611, 24631 and 30534	98.63, 66.64, 49.32, 33.32 and 26.66

System No.	Boiling liquid	Heat Flux, W/m ²	Pressure, kN/m ²
6	Isopropanol	9657, 9975, 12784, 16305, 20865 and 25191	98.63, 69.31, 47.98, 34.66 and 12.66
7	Isopropanol-Water Mixtures	20.	
(i)	15.00 wt. per cent Isopropanol	9975, 12947, 16718, 20865 and 25191	98.63, 7 <mark>3.98,</mark> 49.32, 33.32 and 25.33
(ii)	22.50 wt. per cent Isopropanol	9975, 13771, 17041, 20611, 25471 and 29924	98.63, 66.64, 53.32, and 34.66
(iii)	31.25 wt. per cent Isopropanol	16718, 20611, 24631, 29425 and 31354	98.63, 61.31, 50.65, 34.66 and 25.33
(iv)	37.00 wt. per cent Isopropanol	16947, 20865, 25191 and 30840	98.63, 63.98, 50.65, 33.32 and 25.33
(v)	59.00 wt. per cent Isopropanol	9975, 10959, 13232, 16718, 20865 and 25191	98.63, 65.31, 50.65, 34.66 and 25.33
(vi)	77.00 wt. per cent Isopropanol	9975, 13603, 16489, 20611, 22494 and 25191	98.63, 66.64, 50.65, 33.32 and 25.33

It may be noted that the actual values of heat flux are given in Appendix-B for each of the pressures investigated.

OF TECH

All the test runs of Appendix-B contain temperatures at the top-, the side-, and the bottompositions of the heating surface and their corresponding liquid temperatures, heat flux, and system pressure. Besides, the conduction correction for wall temperature, the temperature difference between wall and liquid and the local and the average heat transfer coefficients are also included. The average value of temperature difference, ΔT over the circumference at a given plane was calculated by the method of mechanical quadrature [117]. To obtain the average value of temperature difference, the wall temperature was corrected by considering the wall temperature drop as discussed in Appendix-D, and the average heat transfer coefficient was calculated from the following equation :

$$\bar{h} = \frac{q}{\bar{\Lambda}T} \dots (5.1)$$

5.1 LIMITATIONS OF DATA PROCESSING

1.

The constraints involved while processing the data were as follows :

The direct measurement of temperature along the circumference of the heating surface at a given plane was not feasible because of the fact that it involved the installation of thermocouples on the outer surface of the heating surface, which, in turn, led to fabricational difficulties and possibilities of interference with boiling phenomenon. Therefore, the temperature measurement at a given plane was carried out by placing the

thermocouples in between the inner and the outer surfaces of the heat transfer surface at the top-, the side-, and the bottom-positions as detailed in Figure 3.5. To determine the temperatures corresponding to these positions at the outer surface, Fourier's conduction equation was used to calculate the temperature drop assuming that the heat flow in axial direction was negligibly small. This was a valid assumption as the thickness of the cylinder-wall was much smaller than its length. The temperature drop across the wall was subtracted from the measured values of the surface temperatures to obtain the corrected wall temperatures, T_w.

The average values of temperature difference, $\overline{\Delta T}$, were calculated from the ΔT values at the three positions as mentioned above. The value of ΔT at a particular location was the corrected wall temperature minus the corresponding liquid temperature. This average temperature difference was, further, used to calculate the value of average heat transfer coefficients.

2.

3. The physico-thermal properties of binary liquid mixtures were calculated at their saturation temperatures corresponding to the pressures. The properties of these mixtures were not available

in the literature over the experimental range used in the present investigation. Therefore, the methods, discussed in Appendix-C, were devised and first tested for the available values to calculate the physico-thermal properties of binary liquid mixtures which showed a \pm 5 per cent deviation, hence they have been used to predict the properties with confidence.

The heat flux was limited to 30,000 W/m² due to the current carrying capacity of the resistance wire, Kanthal-Al grade of 16 gauge which was used as heating element in the form of a coil.

Experimental data of other investigators are not available in the literature for binary mixtures for the similar conditions of heat flux and pressure as employed in the present study. Therefore, the generalised correlations are based on the data of present investigation only.

5.

6. Methanol and isopropanol were of Analar grade as supplied by Chemical Division of Glaxo Laboratories Limited, Bombay (India). Their boiling points were measured under atmospheric pressure. A deviation of $+2^{\circ}$ C was noticed in their saturation temperatures as against the reported values by the Suppliers. However, for

processing the data, the temperatures recorded by the thermocouple were accepted. This was also followed in case of ethanol.

5.2 NUCLEATE POOL BOILING OF PURE LIQUIDS

Nucleate pool boiling heat transfer is largely affected by the parameters, namely; heat flux, system pressure, physico-thermal properties of boiling liquids, and heating surface characteristics. The parametric effects of these variables are discussed in the subsequent Sections.

5.2.1 Effect of Heat Flux on Heat Transfer Coefficient

Figures 5.1 to 5.4 represent the log-log plots, demonstrating the effect of heat flux on the average value of the heat transfer coefficient for distilled water, ethanol, methanol and isopropanol, respectively with pressure as parameter. From these figures the following salient features emerge out :

> 1. Heat transfer coefficient increases linearly with heat flux, showing a slope of 0.7, for all the boiling liquids. This unique characteristic is exhibited both for the atmospheric and the subatmospheric pressures. This can be explained as follows :

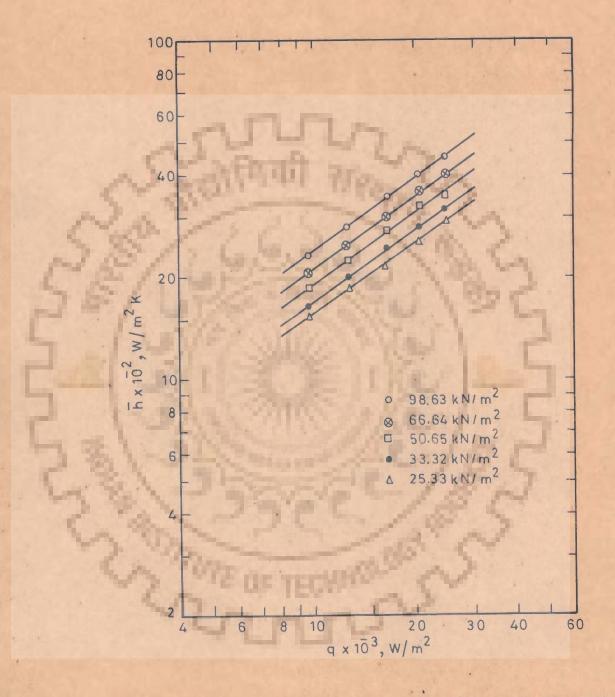


Fig.5.1 – Variation of heat transfer coefficient with heat flux for distilled water at atmospheric and subatmospheric pressure

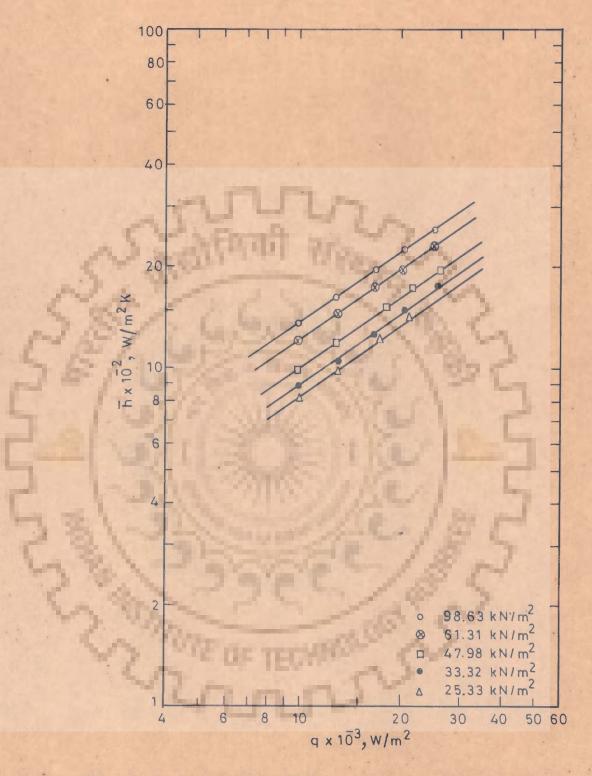


Fig.5.2-Variation of heat transfer coefficient with heat flux for ethanol at atmospheric and subatmospheric pressure

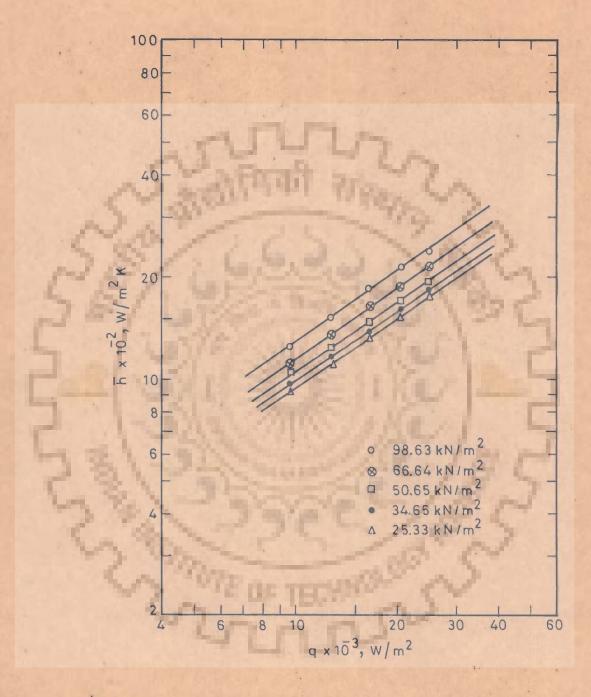


Fig.5.3-Variation of heat transfer coefficient with heat flux for methanol at atmospheric and subatmospheric pressure

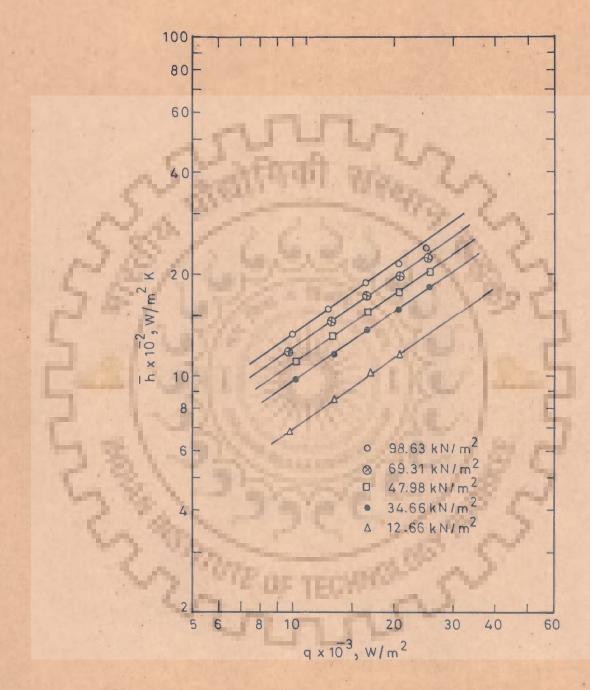


Fig.5.4-Variation of heat transfer coefficient with heat flux for isopropanol at atmospheric and subatmospheric pressure

With an increase in the value of heat flux for a liquid at a constant pressure, there is an increase in the number of active nucleation sites, n on the heating surface and thereby the bubble emission frequency, f. The strong dependency of the number of nucleation sites on heat flux is a wellestablished fact as shown by several investigators [120-122].

The increase in the bubble emission frequency with heat flux has been demonstrated by Sharma and Varshney [123] who have recommended following expressions for calculating bubble emission frequency, from a heat transfer surface submerged in a pool of liquid, for different values of Jakob number :

(a) For Ja ≤ 100

$$= \frac{1}{\frac{\left[133.3/P\right]^{2}\left[\sigma/(\rho_{f}-\rho_{v})g\right]}{\pi \alpha_{f} Ja^{2}}} + \frac{0.867}{\alpha_{f}} \left[\frac{k_{f} \Delta T_{w}}{q}\right]^{2}}$$
...(A)

(b) For Ja > 100

$$f = \frac{1}{\frac{[133.3/P]^{2}[\sigma/(\rho_{\ell} - \rho_{v})g]}{25 \alpha_{\ell} Ja^{3/2}} + \frac{0.867}{\alpha_{\ell}} \left[\frac{k_{\ell} \Delta T_{w}}{q}\right]^{2}}$$
(B)

In fact, first term in the denominator of Equations (A and B) represents the growth period and the second term, the waiting period. Both the Equations (A and B) clearly indicate that the bubble emission frequency depends upon the heat flux and physico-thermal properties of the bulk liquid. Thus, for a given pressure an increase in the value of heat flux reduces the magnitude of the waiting period. As a consequence of this the bubble emission frequency increases. It may be noted that Körner and Photiadis [124] have also established that the frequency of bubble generation increased strongly with heat flux. Similar results are reported by Saini [93].

Further, Wiebe and Judd [118] relates the heat transfer coefficient to number of nucleation active sites, n and bubble emission frequency, f as follows :

$h \alpha (nf)^a$

Hence the above explains the increase in heat transfer coefficient when the heat flux is raised.

Another noticeable phenomenon observed from 2. these plots is that the increase in pressure results in shifting the lines to the left indicating that the heat transfer coefficient increases for a given value of heat flux. The enhancement in heat transfer coefficient with respect to increasing the values of pressure is due to the reduction in surface tension of the liquid. As the surface tension is reduced the nucleation sites having smaller radii, not being active at lower pressures, become active causing more induced turbulence in the boiling liquid. In fact, the work required to form a vapour bubble on a heating surface is given by the following equations :

Work = $\sigma S \left[1 - \frac{S_0}{S} (1 - \cos \beta) \right]$

This equation indicates that the work required for the formation of a vapour bubble decreases as the value of surface tension decreases. Therefore, with the increase in pressure for a given heat flux, more number of the bubbles will be formed, thereby causing more induced turbulence. As a consequence of it, the heat transfer coefficient increases. Mathematically, these plots can be expressed by the following empirical relationship :

$$\bar{h} = c q^{0.7}$$
 ...(5.2)

where the constant, C, represents a constant of proportionality. In fact, one can not establish its nature, unless the dependence of h on pressure, nature of liquid, and heating surface characteristic is also known.

5.2.2 Effect of Surface Characteristics on Heat Transfer Coefficient

Figures 5.5 and 5.6 are the typical log-log plots of heat transfer coefficient against heat flux for isopropanol and methanol, respectively. These plots were made to understand the effect of heating surface characteristics on heat transfer coefficient.

Figure 5.5 contains the data of present investigation and those of Sternling and Tichacek [18] for the boiling of isopropanol at 98.63 kN/m². The data for the boiling of methanol at 66.64 kN/m² of present investigation and of Cryder and Finalborgo [9] are shown in Figure 5.6. The heating surfaces used in these investigations were different as given in Table 5.2.

An examination of these figures reveals that all the data points show same functional relationship between heat transfer coefficient and heat flux, i.e.

Fig.5.5-Heat transfer coefficient-heat flux relationship for isopropanol at 98.63 kN/m²

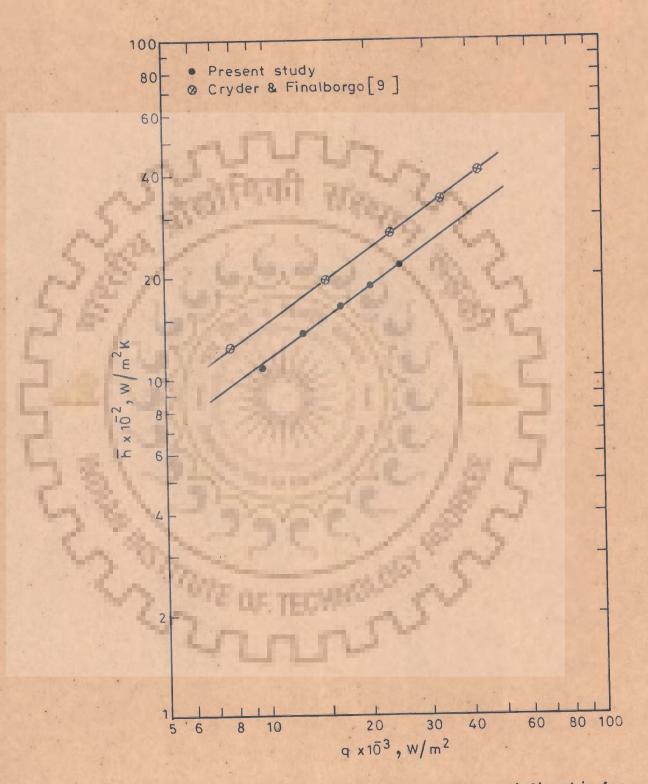


Fig. 5.6-Heat transfer coefficient—heat flux relationship for methanol at 66.64 kN/m²

 $\bar{h} = constant (q)^{0.7}$. However, the value of the 'constant' differs widely from one investigation to another. This is attributed to the differing heating surfaces used in these investigations. Finally, it is concluded that the boiling heat transfer data are influenced strongly by the heating surfaces.

Table 5.2 : Parameters for Earlier Studies in Nucleate Pool Boiling of Pure Liquids

S.No.	Boiling liquid	Heat Flux W/m ²	Pressure kN/m ²	Nature of heat- ing surface	Investigator
1.	Distilled water	6209-46220	1.33-101.30	Copper cylinder	Raben et al [125]
2.	Distilled- water Methanol n-Butanol Carbon - Tetrachlor	7808-43543 cide	3.82-101.13	Brass pipe	Cryder and Finalborgo[9]
3.	Isopropano Methanol	91 4420-343890	101.30	Stainless steel tube	Sternling and Tichacek [18]
4.	Distilled- water Ethanol	140000 - 867500	101.3-5260	Coppe r plate	Cichelli and Bonilla [11]
5.	Distilled- water Ethanol	62340 - 1099030	101.3-7306	Stainless steel cylinder	Borishanskii et al [36]

5.2.3 Effect of Boiling Liquids on Heat Transfer Coefficient

Figure 5.7 is a log-log plot of heat transfer coefficient versus heat flux on a given horizontal brass pipe at 61.25 kN/m^2 , conducted by Cryder and Finalborgo [9]. The distinct lines obtained for distilled water, methanol and carbon tetrachloride having a slope of 0.7 indicate that the effect of boiling liquid on constant C of Equation (5.2) is appreciable.

Figures 5.8 through 5.12 show the data of present investigation - the heat transfer coefficient as a function of heat flux for distilled water and all the alcohols investigated at atmospheric and subatmospheric pressures. An examination of these Figures reveals one of the distinguishable results of the present work. From these Figures it is clearly seen that all the data points for ethanol, methanol and isopropanol are represented by a single line for a given pressure. This behaviour has been observed both at the atmospheric and the subatmospheri pressures indicating that the proportionality constant, C, in Equation (5.2) remains constant for all the alcohols under study. This remarkable behaviour may be due to the similar physico-thermal properties of these alcohols. This is clearly seen in Figures C.l through C.5 of Appendix-C. Due to this, the data for the alcohols investigated have the similar heat transfer behaviour at a given pressure.

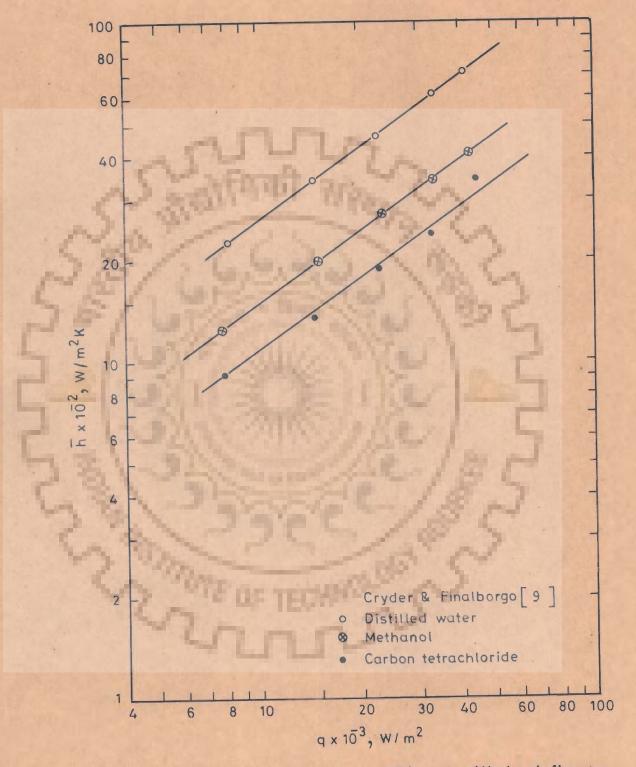


Fig.5.7 – Variation of heat transfer coefficient with heat flux on a horizontal brass cylinder at 61.25 kN/m²

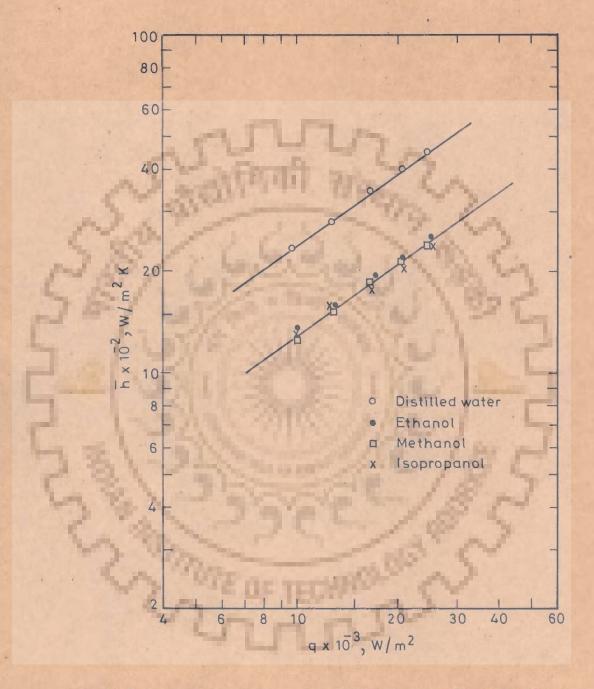


Fig. 5.8 - Variation of heat transfer coefficient with heat flux for pure liquids at 98.63 kN/m²

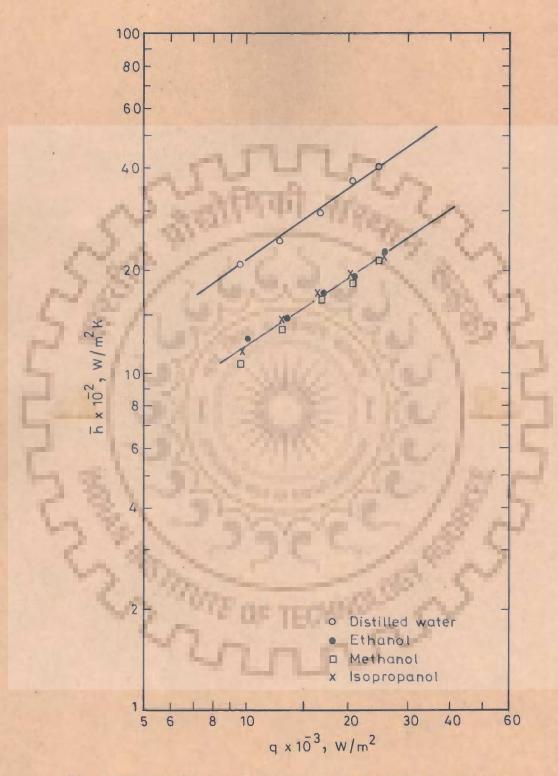


Fig.5.9-Variation of heat transfer coefficient with heat flux for pure liquids at 66.64 kN/m²

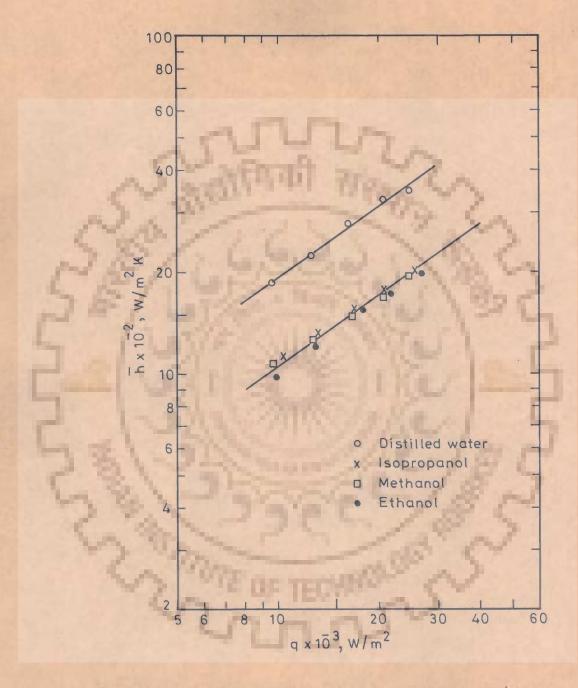


Fig.5.10-Variation of heat transfer coefficient with heat flux for pure liquids at 50.65 kN/m²

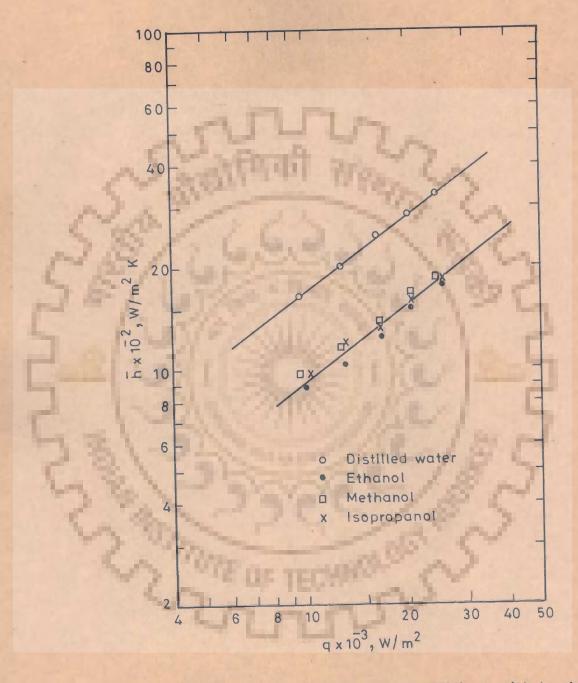
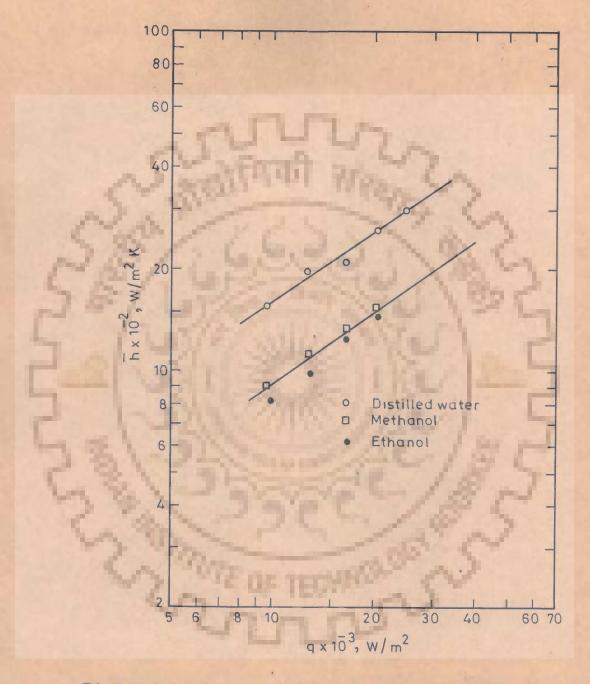
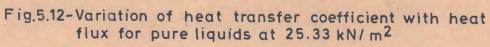




Fig.5.11-Variation of heat transfer coefficient with heat flux for pure liquids at 33.32 kN/m²

Further, it is noted that the data points of distilled water differ considerably with those of alcohols. This is not a surprising behaviour, since the properties of water are much different than those of alcohols.

5.2.4 Effect of Pressure on Heat Transfer Coefficient

Figure 5.13 illustrates the variation in \overline{h}^{\star} with pressure for distilled water, ethanol, methanol and isopropanol. It may be noted that \overline{h}^{\star} is defined as follows :

$$\bar{h}^{\star} = \bar{h}/q^{0.7}$$

The use of h^* instead of \bar{h} eliminates one of the operating variables, i.e. heat flux. The value of \bar{h}^* remains constant with change in heat flux provided there is no change in pressure, heating surface characteristics, and the boiling liquid. The data of all the alcohols investigated merge together and are well-represented by a straight line having a slope of 0.32 for the reasons given in Section 5.2.3. There is a distinct line for distilled water on this plot having the same slope indicating that the heat transfer properties of the water are different than those of alcohols. The variation of heat transfer coefficient with pressure can be empiricially represented as follows :

 $h^{\pm} = c_1 P^{0.32}$

...(5.3)

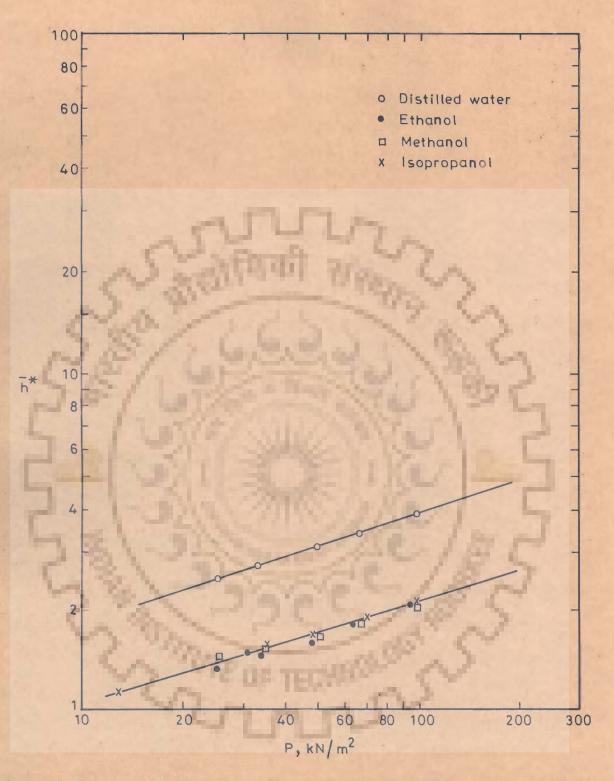


Fig.5.13-Variation of heat transfer coefficient with pressure for pure liquids

where the constant, C_1 is a constant of proportionality. The experimental data correlated by Equation (5.3) were conducted on a given heating surface for distilled water, ethanol, methanol and isopropanol. The data points of ethanol, methanol and isopropanol are represented by a single line, whereas those of water by another line. This finding suggests that the constant, C_1 depends upon the nature of the boiling liquid for a given heating surface.

It may be mentioned here that the value of exponent over pressure as obtained in the present investigation and those proposed by other investigators [16, 121] differs amongst themselves. Chi-Fang-Lin [16] has reported two different values of the exponent, i.e., 0.2 for water and benzene and 0.7 for toluene over the pressure range from 200 mm to 760 mm Hg indicating that the value of exponent can not be treated as a generalized one. Mikheyev [121] has reported this value as 0.15 for the boiling of water in the pressure range from 0.22 to 100 atm. It is important to mention that Mikheyev's correlation is based on the large number of data points at superatmospheric pressure and on limited number of data for subatmospheric pressure. This, in other words, does not represent the behaviour at subatmospheric pressures exclusively. To add to it, Borishanskii et al [36] have established, based on large number of carefully obtained data, that the experimental data for pressures

124

greater than atmospheric pressure are represented by

 $h^{\star} \alpha P^{n}$

where the exponent n is some function of pressure.

Keeping the above in view and the dependence of the present experimental data and those of Cryder and Finalborgo [9] and Raben et al [125] on pressure it can be concluded that heat transfer coefficient varies with pressure raised to the power of 0.32 for the data conducted at the subatmospheric pressures.

In order to show the effect of heating surface characteristics on constant, C_1 of Equation (5.3), data were collected for a given liquid but conducted on different heating surfaces as enlisted in Table 5.2. Figure 5.14 contains this aspect of study. In this figure, h* is plotted against pressure for distilled water on log-log plot for the data of Raben et al [125] on a copper cylinder, Cryder and Finalborgo [9] on a brass pipe and present investigation on a stainless steel cylinder. Three different lines having a slope of 0.32 are obtained for different heating surfaces as employed by these investigators, i.e. the constant C, is different for different heating surfaces. This clearly demonstrates that the heating surface characteristics also affect the proportionality constant, C_1 , in Equation (5.3) for a given boiling liquid.

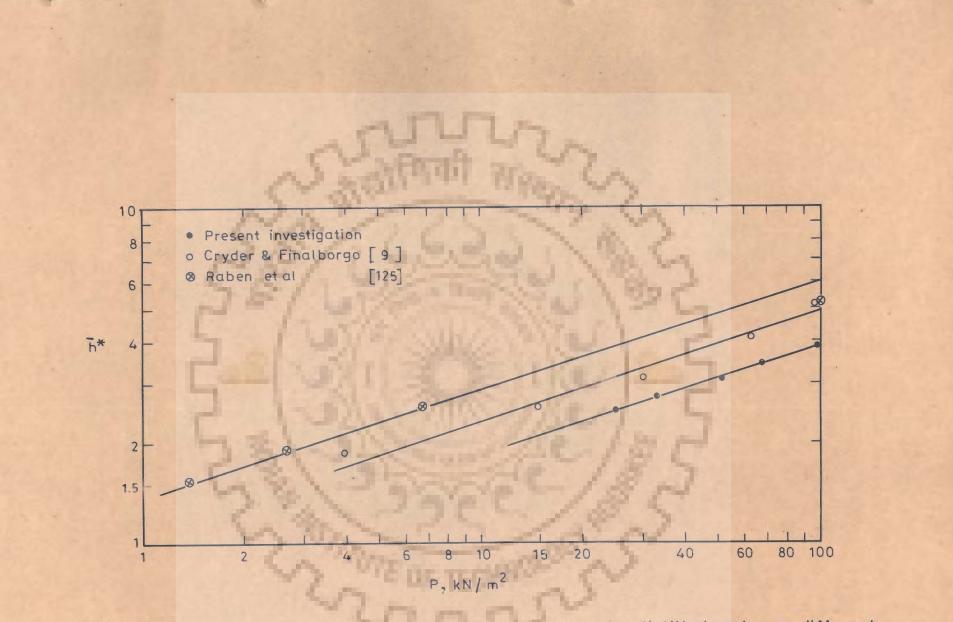


Fig.5.14-Variation of heat transfer coefficient with pressure for distilled water on different heating surfaces

Hence, the results of Figures 5.13 and 5.14 suggest that the constant, C_1 is a function of the nature of boiling liquid and the heating surface characteristic. In fact, this is analogous to 'surface-liquid combination factor', C_{sf} in the literature [20,21].

The experimental values of constant, C1 in Equation (5.3) for different investigations were calculated. To show the scatter in the values of constant, C, statistical parameters, namely; Mean (\bar{X}) , Standard Deviation (σ) and Coefficient of Variation (C.O.V.) were calculated for each of the liquid as given in Table 5.3. The last column of this Table contains all these values. An inspection of these values shows that the maximum Coefficient of Variation in the values of C1 for the data of present investigation is 4.55 per cent while those for the data of Cryder and Finalborgo is 7.57 per cent and of Raben et al is 9.66 per cent. Keeping in view the errors involved in conducting boiling heat transfer data these variations are negligibly small ; hence constant, C, is practically independent of pressure. In other words it depends upon the nature of boiling liquid and the heating surface characteristics only.

Boiling Liquid	Pressure kN/m ²	Constant Cl	Heating Surface	Investigator	Statistical Parameters for C _l
Distilled Water	98.63 66.64 50.65 33.32	0.880 0.882 0.870 0.886	410 ASIS Grade Stainless Steel Cylinder	Present Investigatio	$\bar{X} = 0.8802$ $\sigma = 0.0061$ COV = 0.69 %
Ethanol	25.33 98.63 61.31 47.98	0.883 0.490 0.502 0.460	-do-	-do-	$\bar{\mathbf{X}} = 0.4824$ $\sigma = 0.0155$ COV = 3.21%
Methanol	33.32 25.33 98.63	0.480 0.480 0.470	-do-	-do-	$\bar{\mathbf{X}} = 0.487$ $\sigma = 0.0222$
5	66.64 50.65 34.65 25.33	0.472 0.473 0.500 0.520	表力		G ≡ 0.0222 COV = 4.55 %
Isopropano	1 98.63 69.31 47.98 34.66	0.470 0.490 0.491 0.490	-do-	-do-	$\bar{\mathbf{X}} = 0.4886$ $\sigma = 0.0115$ COV = 2.36 %
Distilled Water	12.66 3.82 14.44 29.90	0.502 1.200 1.110 1.060	Brass Pipe	Cryder and Finalborgo [9]	$\bar{X} = 1.135$ $\sigma = 0.0626$ COV = 5.51 %
Methanol	61.25 97.33 8.40	1.104 1.200 0.663	-do-	-do-	x = 0.6242
	25.22 40.74 66.27 101.14	0.604 0.608 0.611 0.635			$\sigma = 0.0248$ COV = 3.97 %

Boiling Liquid	Pressure kN/m ²	Constant C _l	Heating Surface	Investigator	Statistical Parameters for C _l
n-Butanol	17.93 35.45 52.98 98.94	0.397 0.364 0.368 0.361	Brass pipe	Cryder and Finalborgo [9]	$\bar{\mathbf{X}} = 0.3725$ $\sigma = 0.0166$ COV = 4.25 %
Carbon Tetrachlo- ride	21.25 30.30 41.98 61.12	0.370 0.420 0.435 0.438	-do-	-do-	$\bar{X} = 0.4157$ $\sigma = 0.0315$ COV = 7.57 %
Distilled Water	1.33 2.66 6.65 101.30	1.223 1.448 1.358 1.173	Copper Cylinder	Raben et al [125]	$\bar{X} = 1.300$ $\sigma = 0.1255$ COV = 9.66 %

$$\overline{X} = Mean$$

σ

= Standard Deviation

COV = Coefficient of Variation

5.3 VARIATION OF $(\bar{h}^{\pm}/\bar{h}_{1}^{\pm})$ with (P/P_{1}) FOR SUBATMOSPHERIC PRESSURE

From Table 5.3, it is clearly seen that the constant, C_1 of Equation (5.3) disappears if one represents ($\overline{h}^{*}/\overline{h}_{1}^{*}$) Mas a function of (P/P₁) for given liquid and heating surface. With this in view, a plot between ($\overline{h}^{*}/\overline{h}_{1}^{*}$) and (P/P₁) is drawn in Figure 5.15. This plot correlates excellently the data of present investigation for the four pure liquids,

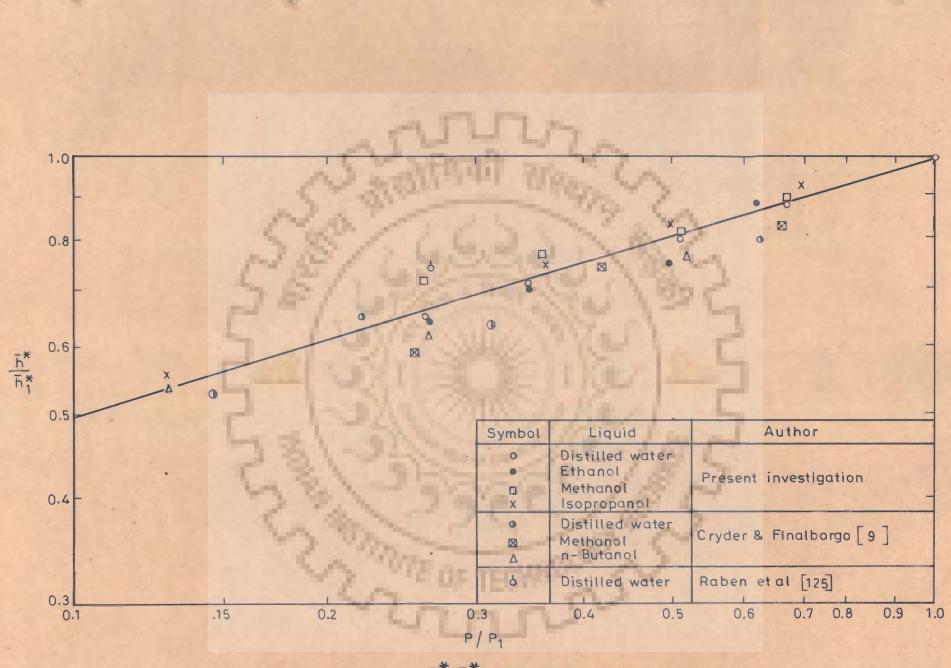


Fig.5.15-Variation of h/h1 with P/P1 for pure liquids at subatmospheric pressures

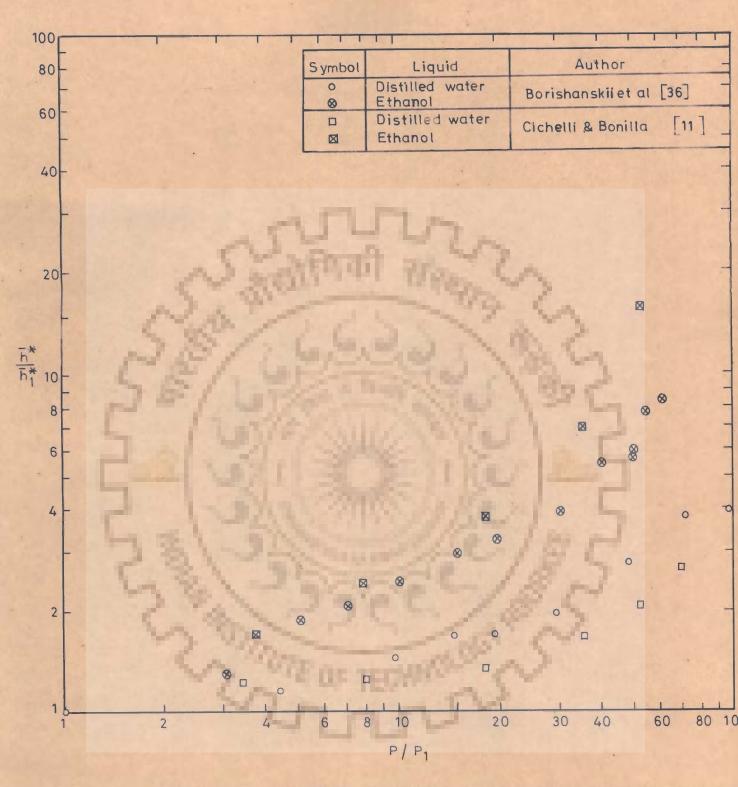
obtained on 410 ASIS stainless stell cylinder, and also the data of other investigators, namely; Cryder and Finalborgo [9] for distilled water, methanol and n-butanol conducted on a brass pipe, and Raben et al [125] for distilled water obtained on a copper cylinder. All these data are for subatmospheric pressures. Further, the plot shows that the data of all the investigators are correlated within ± 15 per cent deviation by the following empirical relationship :

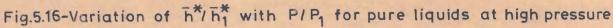
$$\frac{h^{\star}}{h_{1}^{\star}} = \left(\frac{P}{P_{1}}\right)^{0.32} \dots (5.4)$$

where subscript 'l' denotes a reference pressure for which the value of boiling heat transfer coefficient is known for a given heating surface and the liquid.

It is important to restate that Equation (5.4) has succeeded in correlating all the experimental data of present and earlier investigators at atmospheric and subatmospheric pressures implying that constant, C_1 of Equation (5.3) cancels out. In other words, the constant, C_1 does not depend upon the pressure for the data conducted for atmospheric and subatmospheric pressures.

Thus, the above correlation offers the following advantages :


a. It is useful to predict the values of heat transfer coefficient for pressures(P≤98.63 kN/m other than reference pressure, for a given heating surface and boiling liquid from the knowledge of heat transfer coefficient for the same heating surface and liquid at the reference pressure.


 b. The correlation can be used to check the consistency of the experimental data of the boiling binary liquid mixtures conducted on a given heating surface for atmospheric and subatmospheric pressures.

A similar attempt was made for the data taken for pressures greater than atmospheric pressure as given in the following Section.

5.4 VARIATION OF $(\vec{h}^{\star}/\vec{h}_{1}^{\star})$ WITH (P/P_{1}) FOR SUPERATMOSPHERIC PRESSURE

Figure 5.16 shows the plot of (\bar{h}^*/\bar{h}_1^*) against (P/P_1) for the data of Borishanskii et al [36], and Cichelli and Bonilla [11] for the superatmospheric pressures. Unlike the nature of the plot in Figure 5.15, Figure 5.16 illustrates a wide scatter amongst the data points of the liquids, conducted on differing heating surfaces. The scatter in the data points is random, implying that there is a non-linear relationship between (\bar{h}^*/\bar{h}_1^*) and (P/P_1) . It is important to recall the findings of Borishanskii et al [36] as mentioned in Section 5.2.4, that the heat transfer coefficient

changes with pressure as follows :

h a Pⁿ

for pressure exceeding 1 atmosphere. However, the exponent, n does not possess a constant value unlike for the data taken for subatmospheric pressures. Further, the exponent, n is some function of pressure itself. Hence, the data for superatmospheric pressures are not correlated by Equation (5.4).

From the above it is concluded that the constant, C_1 of Equation (5.3) does not disappear if the ratios of $\tilde{h}^*/\tilde{h}_1^*$ are plotted against P/P_1 , implying that the value of C_1 for superatmospheric boiling data is a function of pressure also unlike the data for subatmospheric pressures.

The experimental values of constant, C₁ in Equation (5.3) for the superatmospheric boiling data for the investigators [36,11] were calculated and are given in Table 5.4.

The statistical parameters were calculated and are given in Table 5.4 itself. The large value of coefficient of variation as large as 67.09 per cent sufficiently proves that the values of constant, C₁ cannot be accepted as independent of pressure for a given boiling liquid and heating surface. In other words, it is a function of system pressure also, in addition to nature of boiling liquid and heating surface characteristics.

Pure Liquids at High Pressures					
Boiling Liquid	Pressu re kN/m ²	Constant ^C l	Heating Surface	Investigator	Statistical Parameters for Constant ^C l
Distilled Water	101.3 344.7 799.8 1827.1 3550.8 5267.6 6998.2	0.728 0.604 0.466 0.387 0.392 0.426 0.497	Copper Plate	Cichelli and Bonilla [11]	x̄ = 0.500 σ = 0.125 COV = 25.02 %
Ethanol	101.3 379.2 792.0 1827.0 3564.0 5274.0	0.343 0.412 0.428 0.518 0.767 1.526	-do-	-do-	$\overline{X} = 0.6656$ $\sigma = 0.4466$ COV = 67.09 %
Distilled Water	101.0 451.1 980.7 1480.8 1941.8 2942.1 4903.5 7306.1 9806.9 14710.4 19613.8	0.752 0.545 0.527 0.536 0.491 0.505 0.597 0.721 0.684 0.898 1.428	Stain- less steel Cylinder	Borishanskii et al [36]	$\bar{X} = 0.6985$ $\sigma = 0.273$ COV = 39.09 %

Table 5.4 : Values of Constant, C₁ in Equation (5.3) for Pure Liquids at High Pressures

Boiling Liquid	Pressure kN/m ²	Constant Cl	Heating Surface	Investigator	Statistical Parameters for Constant ^C l
Ethanol	98.1 301.1 500.2 696.3 990.5 1471.0 1941.8 2942.1 3942.4 4903.5 4942.7 5344.8 5943.0	0.511 0.468 0.576 0.567 0.596 0.633 0.638 0.669 0.853 0.853 0.856 1.102 1.155	Stainless Steel Cylinder	Borishanskii et al [36]	$\bar{X} = 0.7274$ $\sigma = 0.2173$ V = 29.88 %

X = Mean

 $\sigma =$ Standard Deviation

COV = Coefficient of Variation

5.5 NUCLEATE POOL BOILING OF BINARY LIQUID MIXTURES

The literature survey of Chapter 2 has amply shown that the pool boiling for binary liquid mixtures is more complex than that for pure liquids. In fact, it is affected by the composition of the vapours in equilibrium with that of the boiling liquid, besides the heat flux, the system pressure, the heating surface characteristics, and the physico-thermal properties of the boiling liquid mixture. The effects of these parameters on the boiling heat transfer of binary liquid mixtures are given in subsequent Sections.

The range of the heat flux, the pressure and the compositions of the binary liquid mixtures, for which the data were conducted, are given in Table 5.1, while the experimental data in Appendix-B. It may be pointed out that ethanol-water and isopropanol-water systems form azeotropic mixtures. However, the present investigation did not cover the azeotropic compositions for conducting the experimental data.

The physico-thermal properties of the binary liquid mixtures are compiled in Appendix-C.

5.5.1 Effect of Heat Flux on Heat Transfer Coefficient

Figures 5.17 through 5.25 represent the typical log-log plots showing the effect of heat flux on heat transfer coefficient for different compositions of ethanol-water, methanol-water, and isopropanol-water mixtures with system pressures as parameter. From these plots the following characteristic points emerge out :

> a. The heat transfer coefficient changes linearly with the heat flux with a slope of 0.7 similar to that for pure liquids for all the pressures studied. This behaviour is well-represented by the following mathematical expression :

$$\bar{n} = C_m q^{0.7}$$
 ...(5.5)

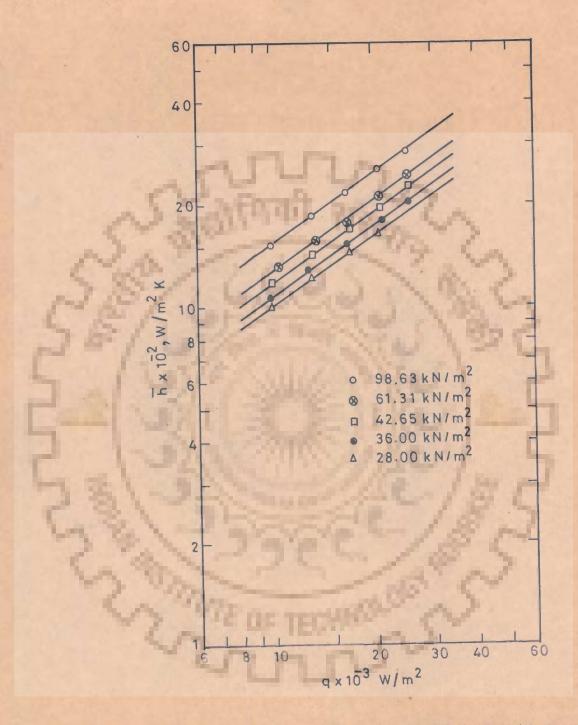


Fig 5.17-Variation of heat transfer coefficient with heat flux for 11.86 wt.% ethanol in ethanol-water mixture at atmospheric and subatmospheric pressure

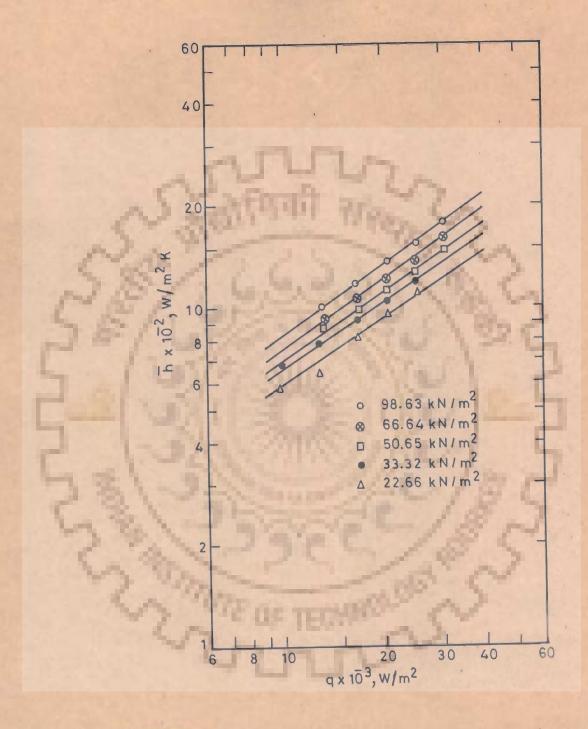


Fig.5.18-Variation of heat transfer coefficient with heat flux for 31.10 wt % ethanol in ethanol-water mixture at atmospheric and subatmospheric pressure

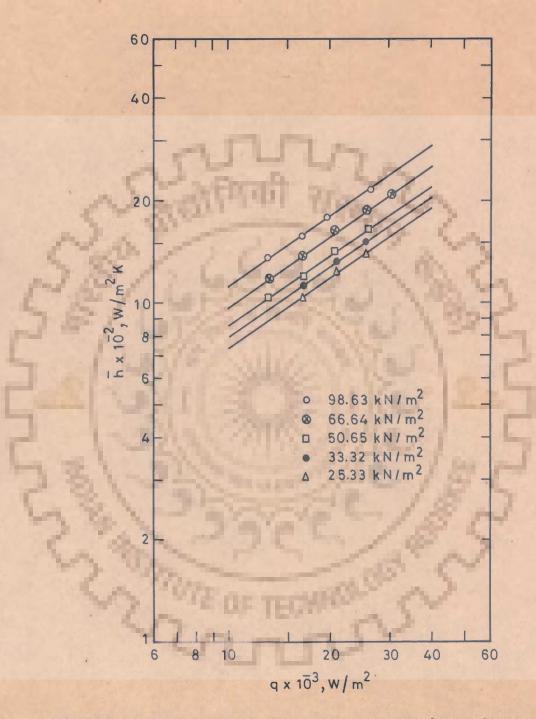


Fig.5.19-Variation of heat transfer coefficient with heat flux for 71.88 wt.% ethanol in ethanol-water mixture at atmospheric and subatmospheric pressure

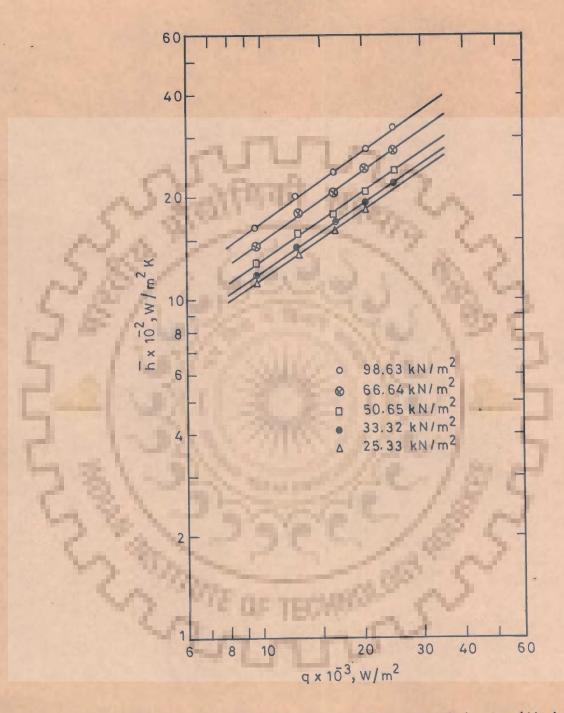


Fig.5.20-Variation of heat transfer coefficient with heat flux for 8.56 wt.% methanol in methanol-water mixture at atmospheric and subatmospheric pressure

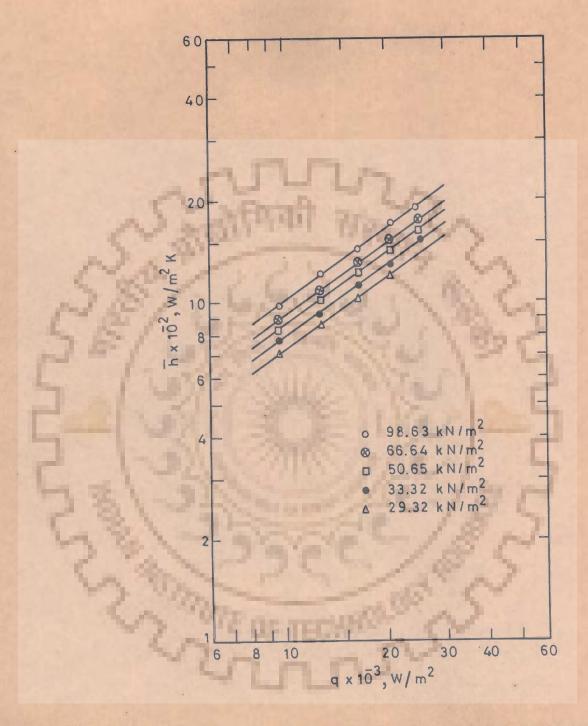


Fig.5.21-Variation of heat transfer coefficient with heat flux for 30.80 wt.% methanol in methanol-water mixture at atmospheric and subatmospheric pressure

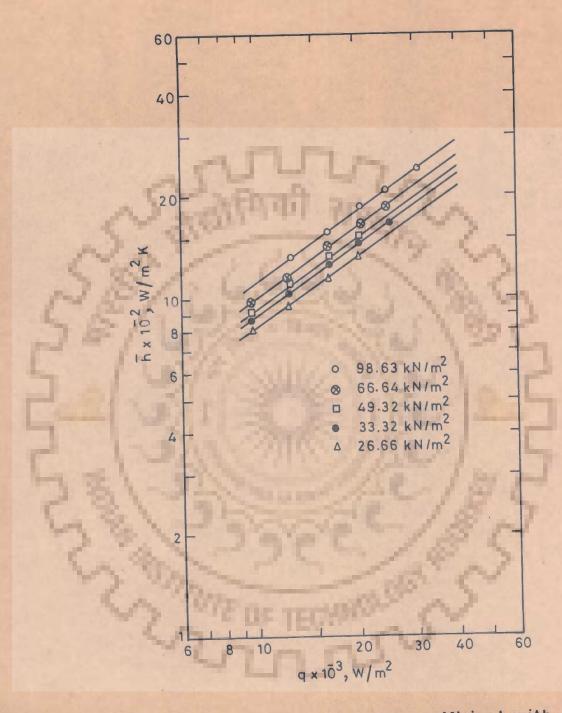


Fig.5.22-Variation of heat transfer coefficient with heat flux for 64.00 wt.% methanol in methanol-water mixture at atmospheric and subatmospheric pressure

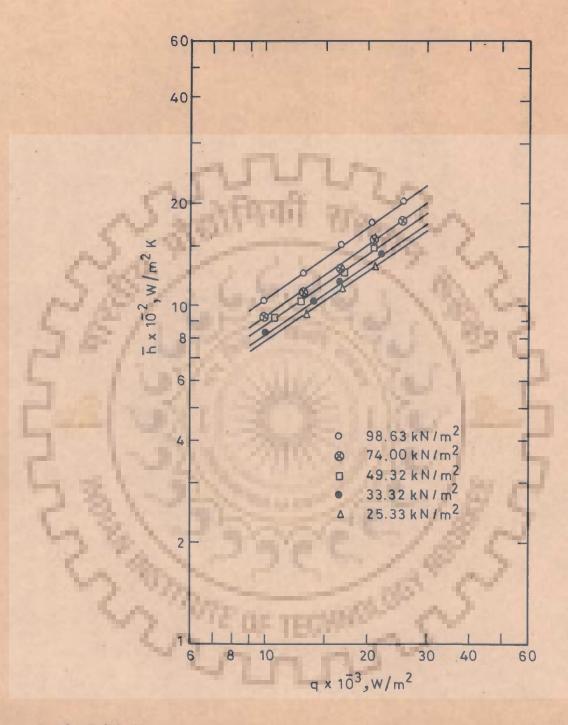


Fig.5.23-Variation of heat transfer coefficient with heat flux for 15.00 wt.% isopropanol in isopropanol-watermixture at atmospheric and subatmospheric pressure

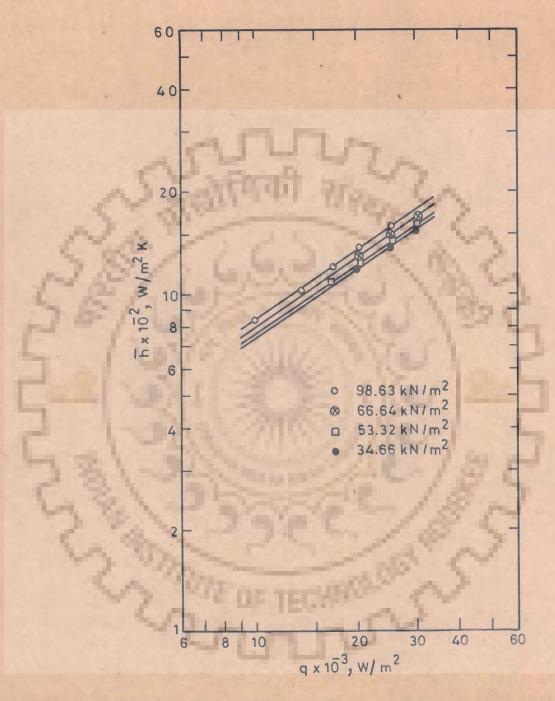


Fig.5.24-Variation of heat transfer coefficient with heat flux for 22.50 wt% isopropanol in isopropanol-water mixture at atmospheric and subatmospheric pressure

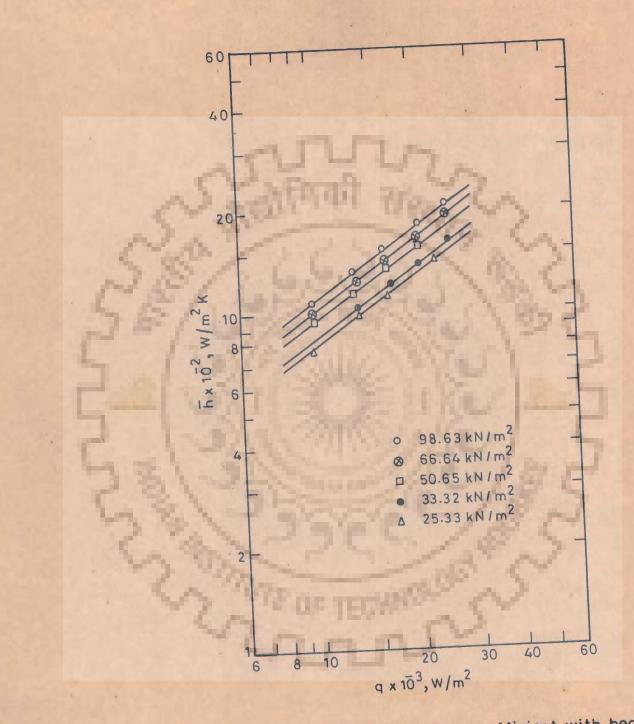


Fig.5.25-Variation of heat transfer coefficient with heat flux for 77.00 wt.% isopropanol in isopropanol-water mixture at atmospheric and subatmospheric pressure The increase in the value of heat transfer coefficient with the heat flux is an expected behaviour for the reasons given in Section 5.2.1.

The term, C_m , in Equation (5.5) is, in fact, the constant of proportionality like constant, C, in Equation (5.2).

Higher values of the system pressure shift the straight lines to higher values of heat transfer coefficient. However, qualitatively, all the lines are alike and represent a family of straight lines.

The above behaviour of the data points, obviously, is for the reasons given in Section 5.2.1 and can also be exaplined by the consideration of the following expression for minimum radius of curvature, R_{min}, of nucleation site for the bubble formation :

 $R_{\min} = \frac{1}{\left(\frac{dP}{dT}\right)_{s} \left(T_{w} - T_{s}\right)}$

As per this expression, a reduction in surface tension, which takes place as the pressure is raised, lowers the value of R_{min} and thereby larger number of nucleation sites on the heating surface becomes active, giving rise to increased induced turbulence. This, in turn, enhances the value of heat transfer coefficient.

5.5.2 Effect of Surface Characteristics on Heat Transfer Coefficient

To demonstrate this, a typical log-log plot is shown in Figure 5.26. This plot represents the data of Sternling and Tichacek [18] and of Alam [126] conducted for the boiling of 19.3 wt. per cent water-ethylene glycol mixture at atmospheric pressure on two differing heating surfaces. In fact, Sternling and Tichacek [18] employed stainless steel, whereas Alam [126] used silver plated brass tube.

The above plot, h vs q, clearly shows that these two data differ widely amongst themselves. In fact, they fall on two distinct straight lines represented by the following relationship :

 $\bar{h} = const. q^{0.7}$

where the constant for the data of Sternling and Tichacek [18] is smaller than for the data of Alam [126]. This is attributed to the differing heating surface characteristics. Consequently, it is concluded that the constant of above equation depends on the heating surface characteristics.

5.5.3 Effect of Composition of Liquid Mixture on Heat Transfer Coefficient

Figures 5.27 through 5.29 represent the typical variation of heat transfer coefficient as a function of heat flux to show the effect of concentration of

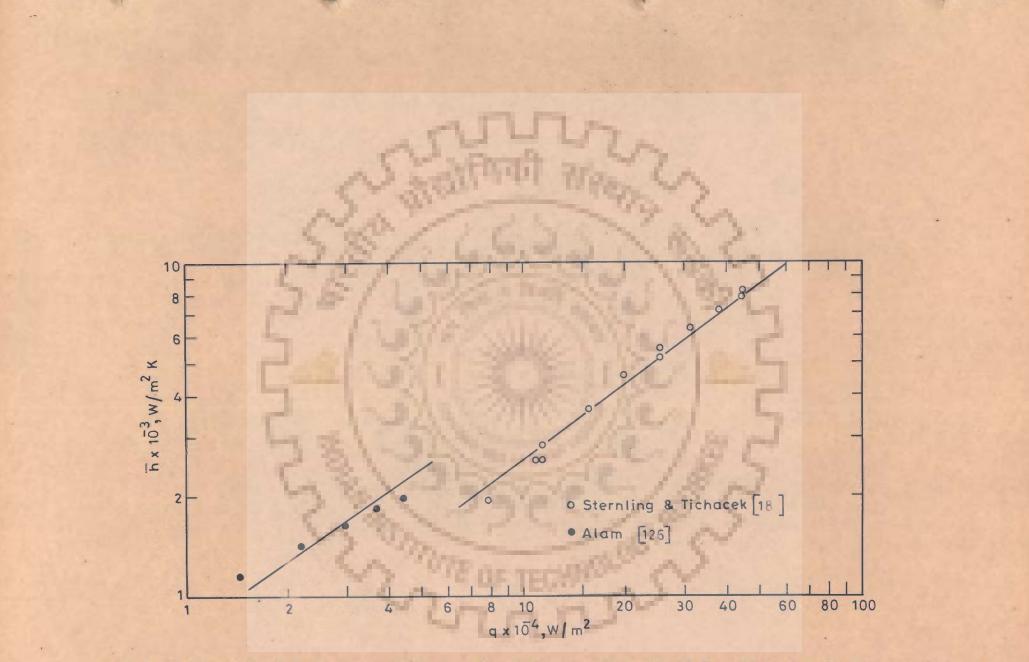
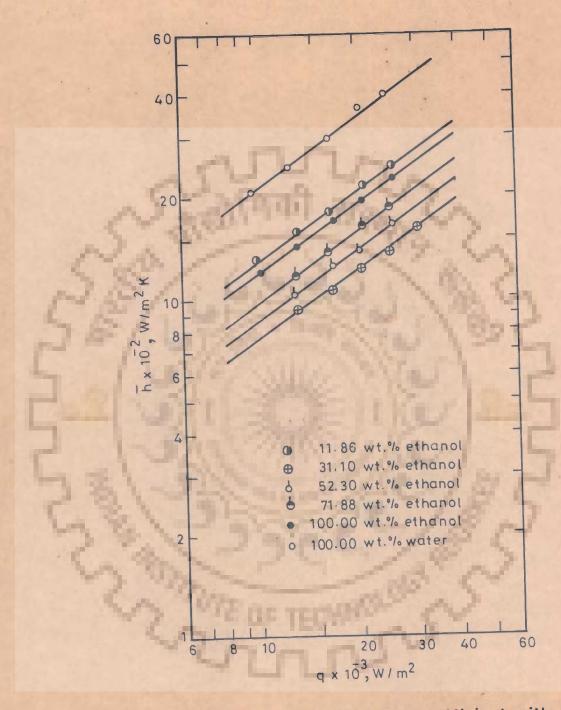
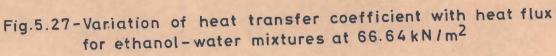
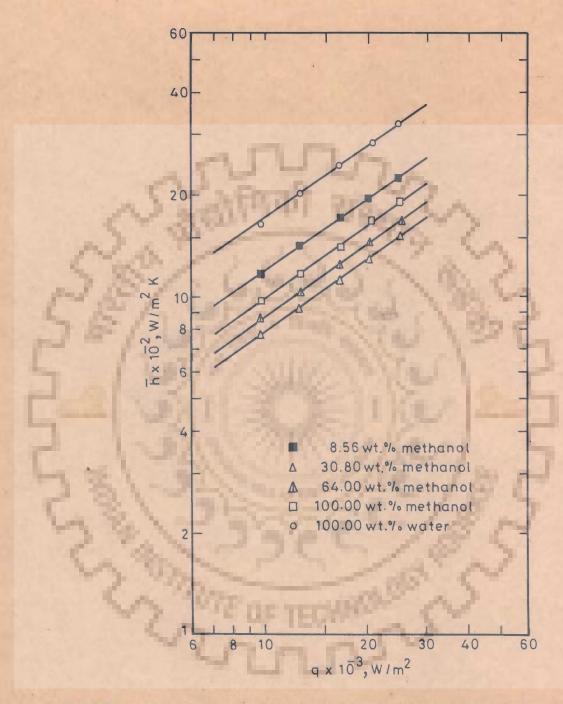
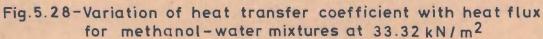






Fig.5.26-Heat transfer coefficient-heat flux relationship for 19.3 wt.% water in water-ethylene glycol mixture on different heating surfaces at 98.63kN/m²

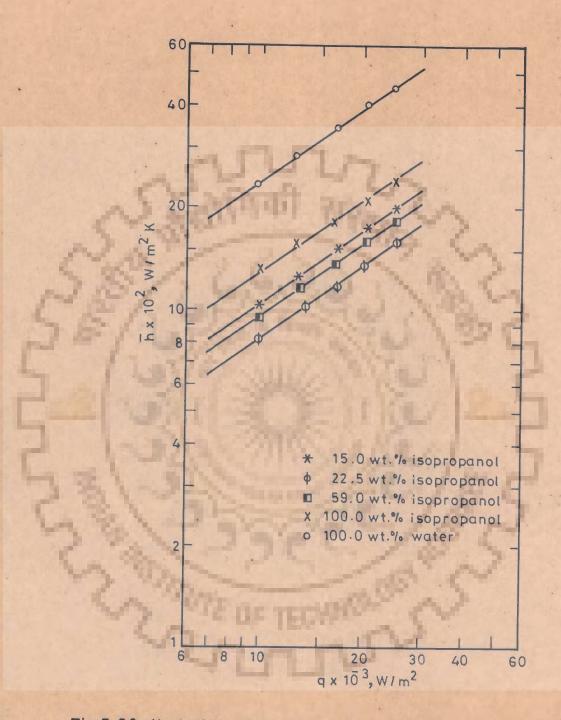


Fig.5.29-Variation of heat transfer coefficient with heat flux for isopropanol-water mixtures at 98.63 kN/m²

ethanol, methanol, and isopropanol in their aqueous mixtures, respectively. These figures reveal the following characteristic features :

> a. Heat transfer coefficient changes linearly with heat flux having the same functional relationship as represented by Equation (5.5). Further, from Figure 5.27, it is observed that an addition of ethanol to pure distilled water lowers the boiling heat transfer coefficient. This trend takes place till the concentration of ethanol reaches 31.10 wt. per cent. Further addition of ethanol results in a 'turnaround' and heat transfer coefficient continues to increase.

Figures 5.28 and 5.29 also reveal the same results as those of Figure 5.27 and show their respective 'turnaround' at the definite concentrations of the mixtures.

The concentration representing the 'turnaround' in heat transfer coefficient is 31.10 wt. per cent ethanol in ethanolwater, 30.80 wt. per cent methanol in methanol-water, and 22.50 wt. per cent isopropanol in isopropanol-water mixtures. b. The reduction in heat transfer coefficient
 is appreciable for all the liquid mixtures
 at their respective 'turnaround concentration

To have better appreciation of the effect of concentration on heat transfer coefficient, \overline{h}^{\pm} is plotted against wt. per cent ethanol, wt. per cent methanol, and wt. per cent isopropanol in Figures 5.30, 5.31 and 5.32, respectively with system pressure as parameter. On examining these figures, the following characteristic points can be noted :

- a. Referring to Figure 5.30, it is observed that the parameter, h^* decreases with the addition of ethanol till a definite concentration of ethanol, beyond which it begins to increase. The concentration at which this 'turnaround' occurs is 31.10 wt. per cent ethanol.
 - Higher values of system pressure shift the curves to higher values of heat transfer coefficient. However, this does not change the concentration of ethanol i.e. 31.10 wt. per cent ethanol, for which the heat transfer coefficient is minimum representing the 'turnaround' point.
- c. The actual heat transfer coefficient for any concentration of the ethanol-water mixture investigated is less than the

154

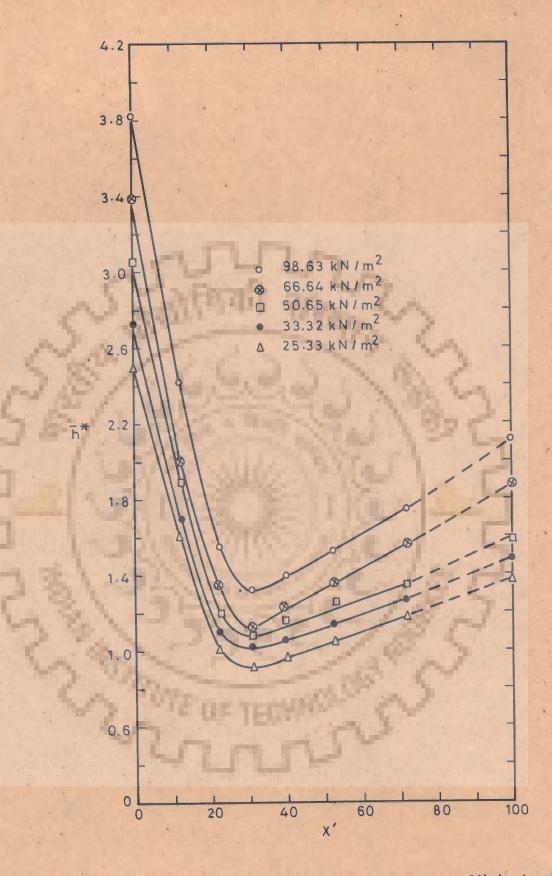


Fig.5.30-Variation of normalised heat transfer coefficient with wt.% of ethanol for ethanol-water mixtures

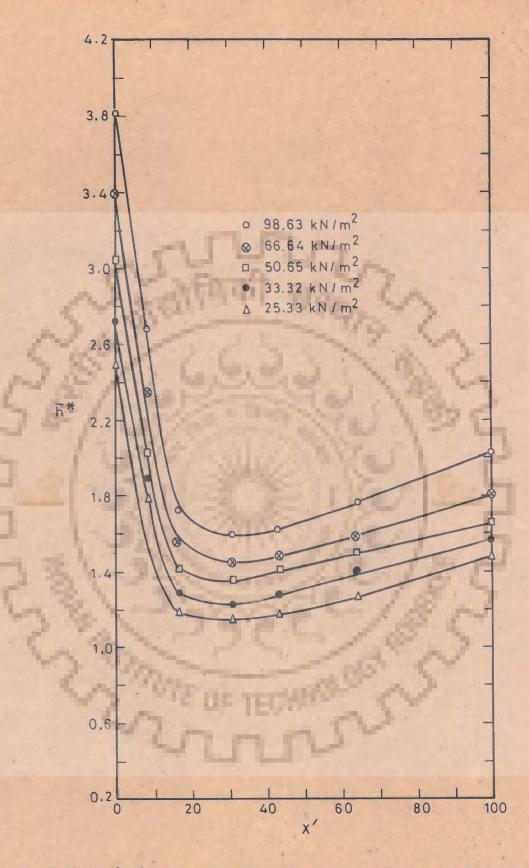


Fig.5.31-Variation of normalised heat transfer coefficient with wt.% of methanol for methanol- water mixtures

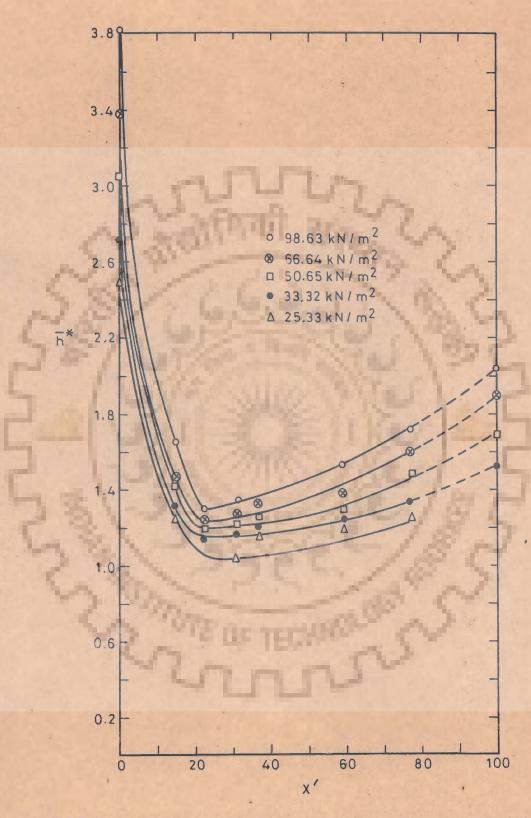


Fig.5.32-Variation of normalised heat transfer coefficient with wt.% of isopropanol for isopropanol-water mixtures

weighted heat transfer coefficient. The weighted heat transfer coefficient is calculated by the following equation :

$$h_{wtd.} = h_1 X_1'' + h_2 (1-X_1'')$$

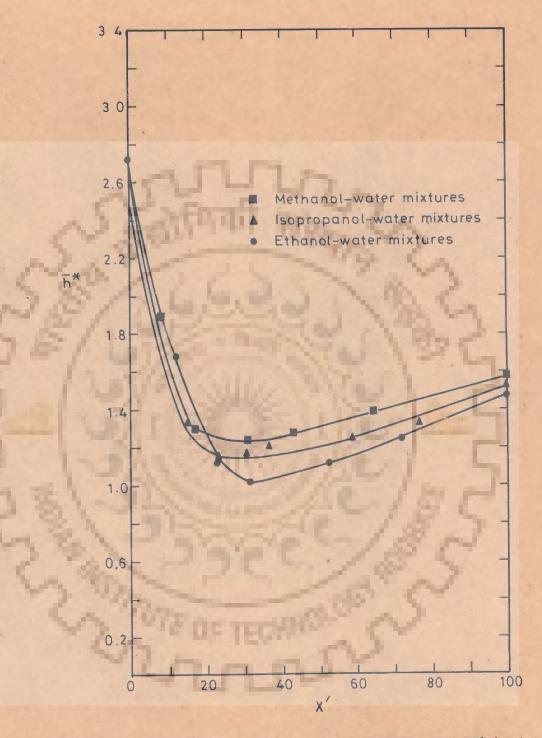
d.

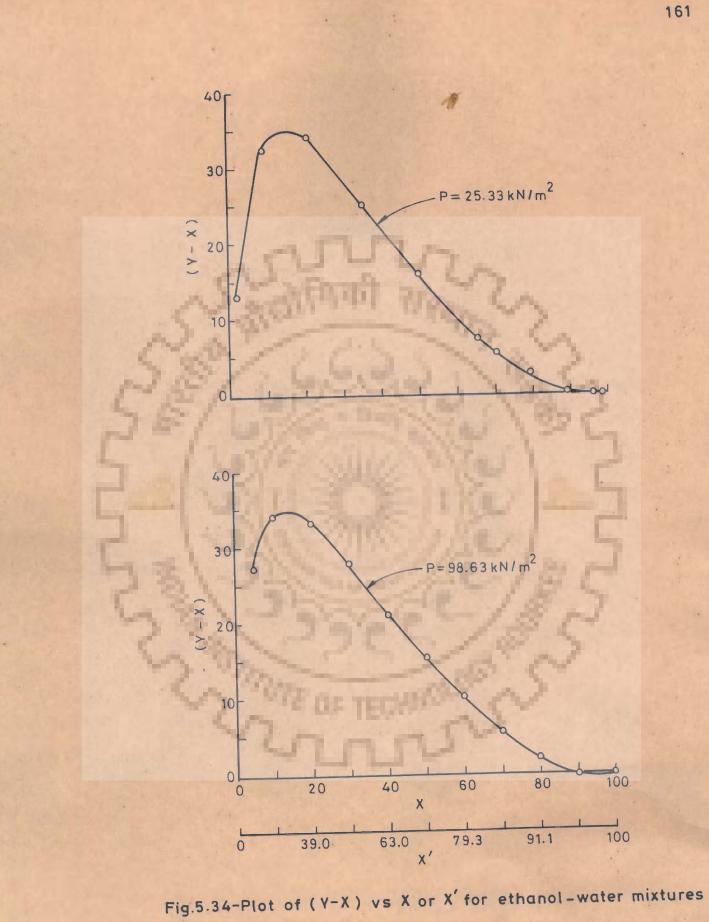
where h_1 and h_2 are the respective heat transfer coefficients of components 1 and 2 in their pure state and $X_1^{"}$ is the wt. fractic of component 1 in the binary liquid mixture. The dotted line on this figure is the region in which the azeotropic composition lies. Therefore, the interpolation has not been done.

Figures 5.31 and 5.32 have similar characteristic features as those possessed by Figure 5.30. The concentration at which the turnaround occurs is 30.80 wt. per cent methanol and 22.50 wt. per cent isopropanol respectively. Methanol-water mixture does not form azeotrope whereas isopropanol-water does and hence the dotted lines have been drawn for the region for which the data were not conducted.

Figure 5.33 shows a comparative behaviour of all the three binary liquid mixtures investigated for a system pressure of 33.32 kN/m^2 . The data do not deviate appreciably. This plot is a typical one.

The typical behaviour of Figures 5.30 through 5.32 can be explained as follows :




Fig.5.33-Variation of normalised heat transfer coefficient with wt.⁹ of more volatile component for binary liquid mixtures at 33.32 kN/m²

Tolubinskii et al [103] have carried out the photographic study to calculate the growth rate of vapour bubbles in a superheated liquid mixture layer over a heated surface. They conclude that the liquid concentration at which the rate of bubble growth is minimum corresponds to a maximum value of (Y-X). In other words, the liquid concentration at which (Y-X) attains a maximum value represents the 'turnaround' point, signifying the minimum value of heat transfer coefficient.

With the above in view, the plots between (Y-X) and X for ethanol-water, methanol-water, and isopropanolwater are drawn in Figures 5.34, 5.35 and 5.36, respectively for different pressures. These Figures reveal that the value of (Y-X) is maximum for ethanol concentration in the liquid phase of 31.10 wt. per cent, for methanol concentration of 30.80 wt. per cent, and for isopropanol concentration of 22.50 wt. per cent.

It may be noted that for these concentrations the value of heat transfer coefficient, as found in the present investigation is minimum for their respective liquid mixtures.

The above results are in conformity with the findings of Happel [60] who has reported the experimental data for the pool boiling of benzene-toluene mixtures conducted for the pressures; 0.5, 1.0, and 2.0 bar and heat flux of 10^5 W/m^2 .

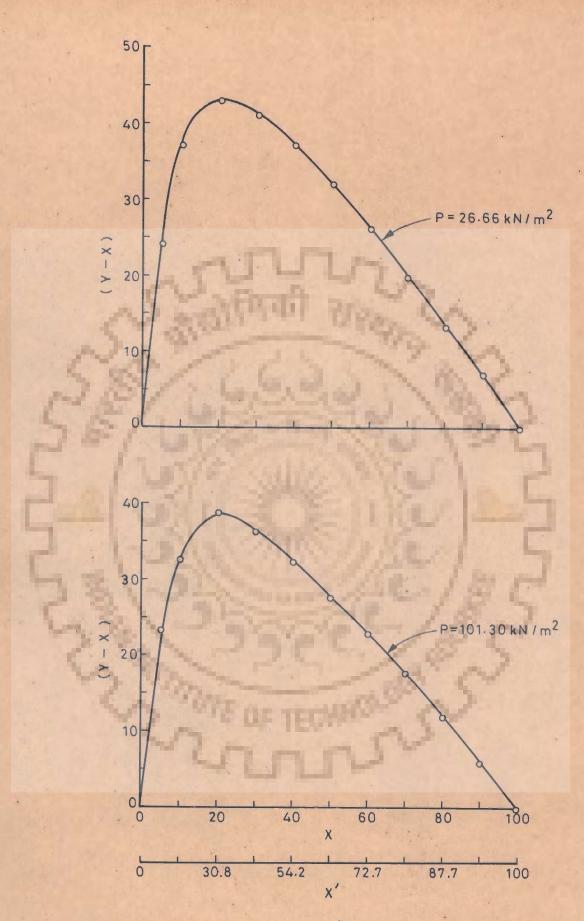


Fig.5.35-Plot of (Y-X) vs X or X' for methanol-water mixtures

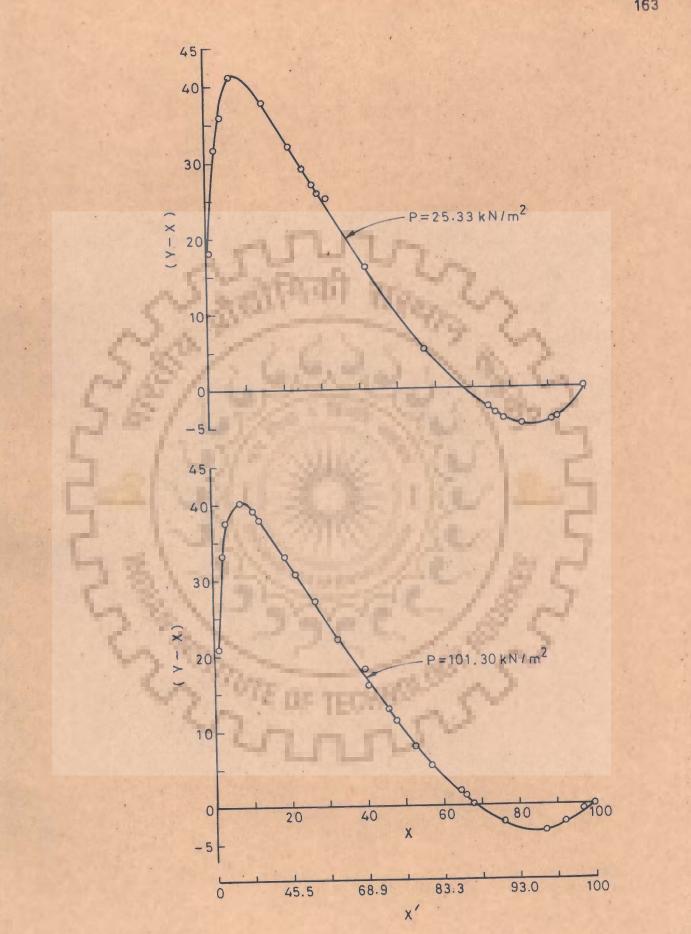


Fig.5.36-Plot of (Y-X) vs X or X for isopropanol-water mixtures

Figure 5.37 further illustrates the heat transfer coefficient versus concentration relationship for saturated pool boiling of water-acetic acid, wateracetone, water-glycerine and water-ethylene glycol mixtures at 22,450 W/m². These studies were carried out by Alam [126] at atmospheric pressure and the author has reported the concentrations corresponding to minimum heat transfer coefficients as 17 wt. per cent water in water-acetic acid, 7 wt. per cent water in water-ethylene glycol, and 65 wt. per cent water in acetone-water mixtures.

The characteristic features of the curves obtained for various liquid mixtures in Figure 5.37 are similar to those of Figures 5.30 through 5.33. Each system of binary liquid mixture possesses a 'turnaround' point as found in the present investigation.

5.5.4 Effect of Pressure on Heat Transfer Coefficient

Figures 5.38 through 5.43 represent the variation of heat transfer coefficient with pressure for all the concentrations of aqueous binary mixtures used in the present investigation. The effect of heat flux has been eliminated by taking \overline{h}^{\pm} on Y-axis and pressure on X-axis, as done for the pure liquids in Section 5.2.4. The data of distilled water, ethanol and ethanol-water mixtures are shown in Figures 5.38 and 5.39, whereas those of distilled water, methanol and

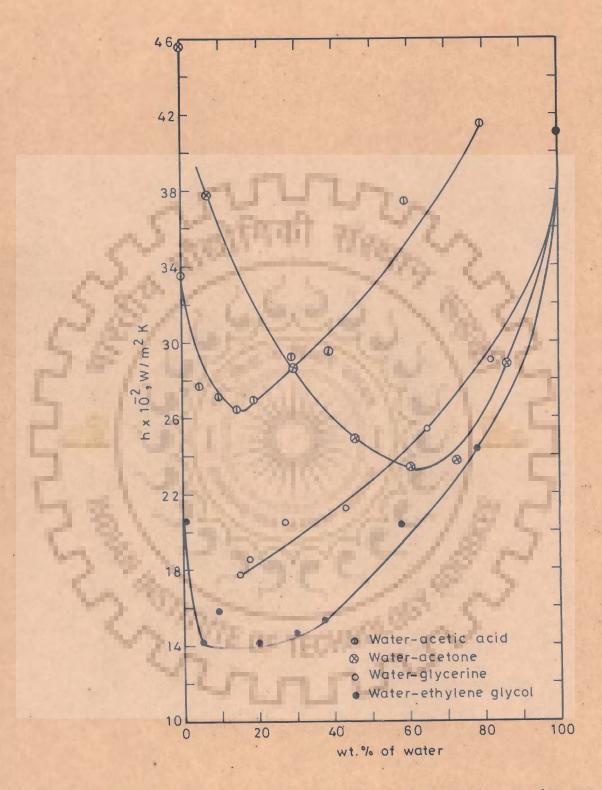


Fig.5.37—Variation of heat transfer coefficient with wt.% of water in binary liquid mixtures at 22.45 x 10³W/m²[126]

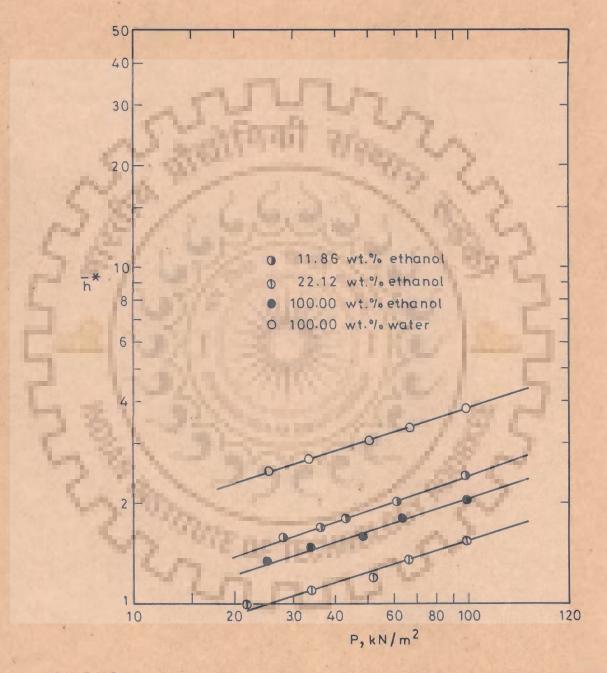
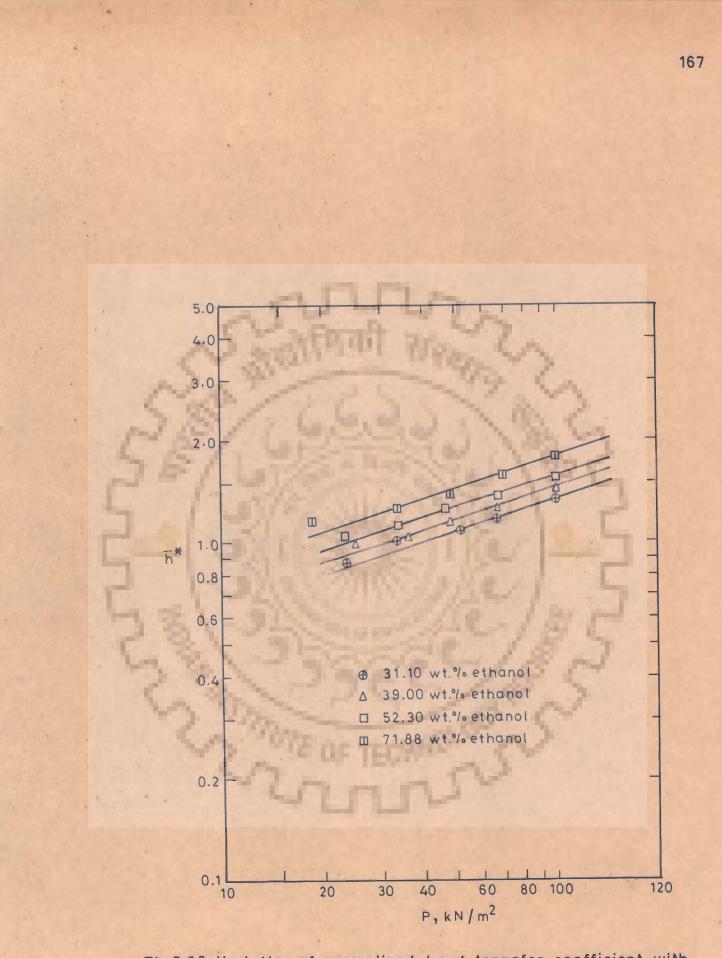
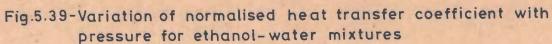




Fig.5.38-Variation of normalised heat transfer coefficient with pressure for water, ethanol & ethanol-water mixtures

methanol-water mixtures in Figures 5.40 and 5.41, and of distilled water, isopropanol and isopropanol-water mixtures in Figures 5.42 and 5.43. The parallel lines obtained for various compositions of ethanol-water, methanol-water and isopropanol-water are mathematically expressed by the following expression :

$$\bar{h}^{*} = Cm_{\gamma} P^{0.32}$$
 ...(5.7)

where Cm_1 is constant of proportionality. The experimental data correlated by Equation (5.7) were conducted on a given heating surface made of stainless steel. The parallel lines obtained for the boiling of pure liquids as well as their binaries with a slope of 0.32 indicate that the constant Cm_1 depends upon the physico-thermal properties of the boiling liquids for a given heating surface. It may be mentioned here that the value of exponent over pressure in Equation (5.7) for binary mixtures remains the same as for their constituents in pure liquid states.

The experimental values of constant, Cm_1 , are given in Table 5.5. The statistical parameters of the values of constant, Cm_1 were calculated. They are listed in Table 5.5. The maximum value of Coefficient of Variation is 8.87 per cent which is well within the experimental error. Hence, it is concluded that the constant, Cm_1 is independent of pressure for a given boiling liquid mixture and heating surface.

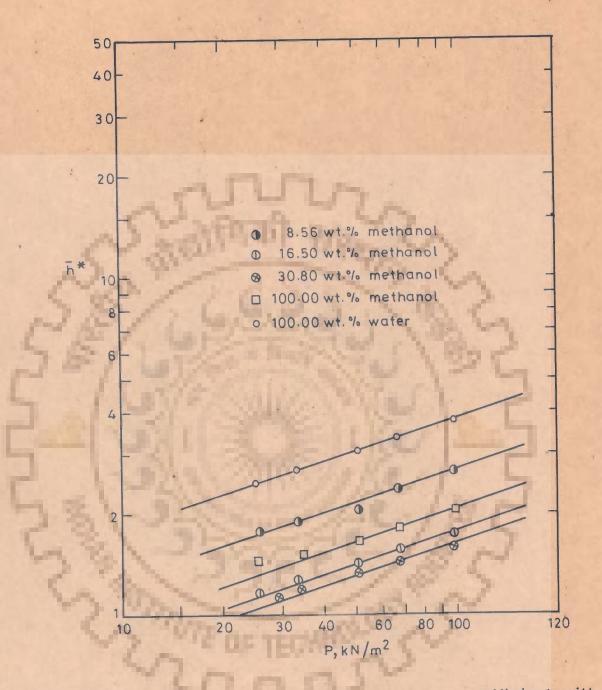


Fig.5.40-Variation of normalised heat transfer coefficient with pressure for distilled water, methanol and methanolwater mixtures.

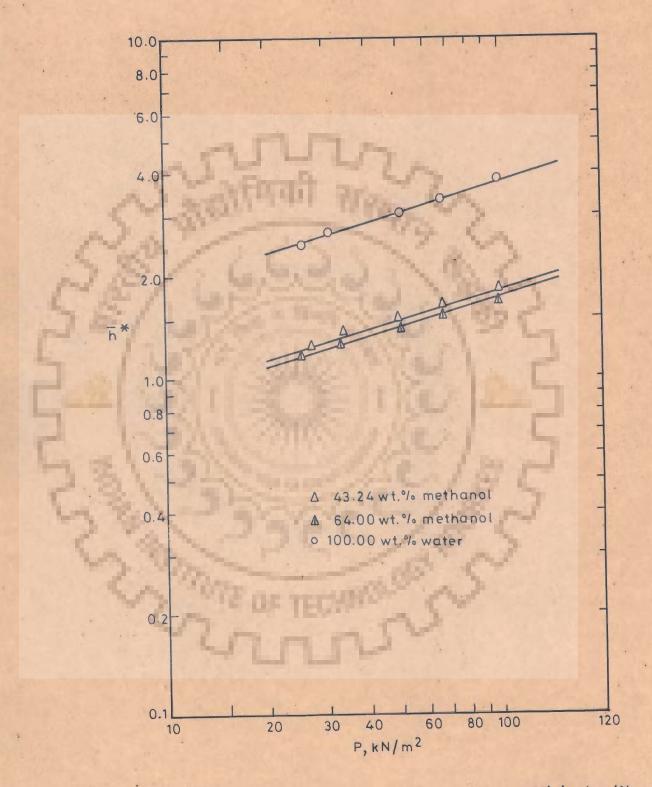


Fig.5.41-Variation of normalised heat transfer coefficient with pressure for methanol-water mixtures & distilled water

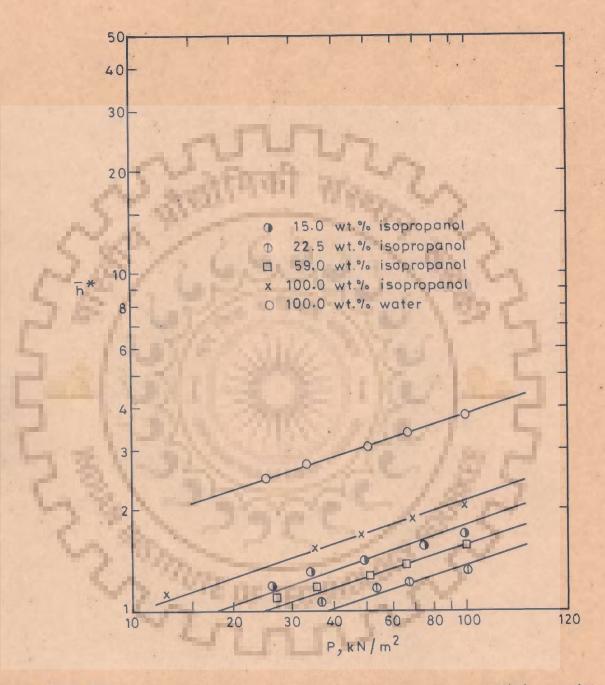


Fig.5.42-Variation of normalised heat transfer coefficient with pressure for distilled water, isopropanol and isopropanol-water mixtures

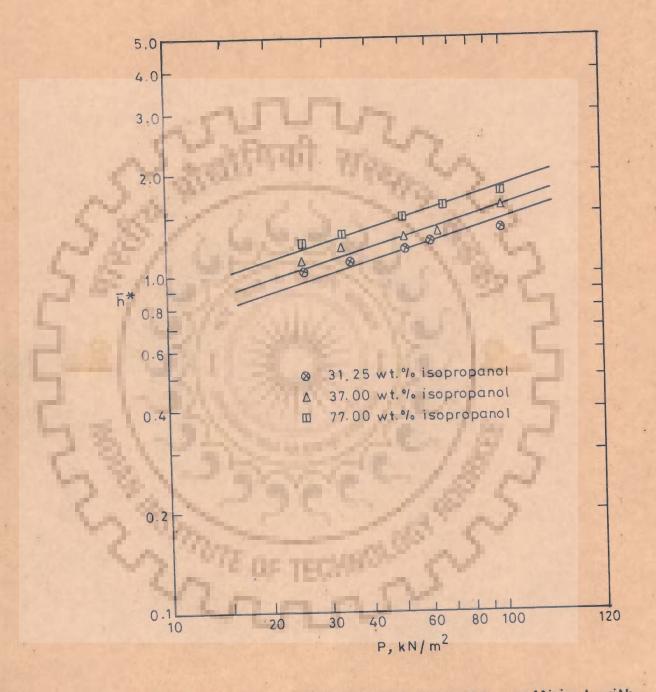


Fig.5.43-Variation of normalised heat transfer coefficient with pressure for isopropanol-water mixtures

				Mixtures at Sub	and the second
		Pressures			2
Boiling Liquid	Pressure	Constant	Heating Surface	Investigator	Statistical
	kN/m ²	Cml			Parameter for Constan ^{Cm} 1
Ethanol- Water	~5	꼬보	to		
Mixtures	A) 40	法法国中国	War	6m	
11.86 wt.%	98.63	0.556	410 ASIS	Present	$\bar{X} = 0.5504$
ethanol	61.31	0.540	Grade	Investigation	$\sigma = 0.9904$
	42.65	0.566	Stainless Steel	a lite Ca	COV = 2.01%
1 2	36.00	0.540	Cylinder	1.122	
1.4	28.00	0.550	States and	1025	
31.10 wt.%	98.63	0.302	-do-	-do-	$\bar{X} = 0.3156$
Ethanol	66.64	0.304		PI-T	$\sigma = 0.0151$
	50.65	0.308			COV = 4.79%
	33.32	0.332		- F	
	22.66	0.332		E. 1 4	
52.30 wt.%	98.63	0.350	-do-	-do-	
Ethanol	66.64	0.353	uu	-40-	$\bar{X} = 0.3656$
24	46.65	0.369		1384	$\sigma = 0.0151$
× .	33.32	0.368	my 1	6 3	COV = 4.15%
	22.66	0.388	- 3	2.00	
71.88 wt.%	98.63		-1000	12.	
Ethanol		0.399	-do-	-do-	X = 0.411
		0.401	13		$\sigma = 0.0292$
		0.385		C	OV = 7.11%
		0.409			
	10.00	0.401			

Table 5.5 : Values of Constant, Cm₁ in Equation (5.7) for Binary Liquid Mixtures at Subatmospheric

Boiling Liquid	Pressure	Constant	Heating Surface	Investigator	Statistical Parameters
DIGUIU	kN/m ²	Cml	NULLUOU		for Constant
Mothanol- Water Mixtures					
8.56 wt.% Methanol	98.63 66.64 50.65 33.32	0.616 0.612 0.580 0.617	410 ASIS Grade Stainless Steel Cylinder		$\vec{X} = 0.6126$ $\sigma = 0.0208$ OV = 3.4%
16.50 wt.岁 Methanol	25.33 98.63 66.64 50.65 33.32	0.638 0.400 0.408 0.403 0.420	-do-	-do-	$\overline{X} = 0.4102$ $\sigma = 0.0094$ $\sigma = 2.28\%$
30.80 wt.% Methanol	25.33 98.63 66.64 50.65	0.420 0.370 0.380 0.388	-do-	-do-	$\bar{X} = 0.3868$ $\sigma = 0.013$ OV = 3.36 %
64.00 wt.% Methanol	33.32 29.32 98.63 66.64 49.32	0.405 0.391 0.410 0.415 0.430	-do-	-do-	$\bar{x} = 0.4328$ $\sigma = 0.0214$ $\sigma = 4.93\%$
Isopropanol- Water	33.32 26.66	0.459	SHARE S	55	00 - 4.55 %
Mixtures 15.00 wt.% Isopropanol	98.63 74.00 49.32 33.32 25.33	0.381 0.380 0.408 0.430 0.445		C	$\bar{\mathbf{x}} = 0.4088$ $\sigma = 0.029$ $\sigma = 7.09 \%$

Boiling Liquid	Pressure	Constant	Heating Surface	Investigator	Statistical Parameters
	kN/m ²	Cml			for Constar Cml
22.50 wt.%	98.63	0.300	410 ASIS	Present	$\bar{X} = 0.331$
Isopropanol	66.64	0.321	Grade Investigation Stainless	$\sigma = 0.0293$	
	53.32	0.333	Steel	C	ov = 8.87 %
	34.66	0.370	Cylinder		
37.00 wt.%	98.63	0.370	-do-	-do-	$\overline{\mathbf{X}} = 0.376$
Isopropanol	64.00	0.350	the second	1	$\sigma = 0.0237$
0	50.65	0.360	111000	C	OV = 6.30 %
12	33.32	0.392	and the second	the second	
535	25.33	0.408	1.5.	6. 2	
77.00 wt.%	98.63	0.400	-do-	-do-	$\overline{X} = 0.4248$
Isopropanol	66.64	0.420		1 50 5	$\sigma = 0.018$

Ī	=	Mean
σ	=	Standard Deviation
COV	=	Coefficient of Variation

0.424

0.430

0.450

50.65 33.32

25.33

VARIATION OF H*/h WITH P/P, FOR 5.6 SUBATMOS PHERIC PRESSURE

Keeping in view that the constant, Cm1 depends on the nature of binary liquid mixture and the heating surface characteristics, an attempt was made to plot h^{\star}/h_{1}^{\star} against P/P₁ as done for pure liquids in Section 5.3.

COV = 4.24 %

Figure 5.44 is a log-log plot for distilled water, ethanol and ethanol-water mixtures of varying concentrations. Similar lograthmic plots are down for water, methanol and methanol-water mixtures and water, isopropanol and isopropanol-water mixtures in Figures 5.45 and 5.46 respectively. All the data points are represented by a straight line. Further, Figure 5.47 represents all the data points of Figures 5.44 through 5.46. An examination of Figure 5.47 shows that all the data points are well-correlated by a single straight line within \pm 15 per cent deviation by the following equation :

$$\bar{h}^{\pm}/\bar{h}_{1}^{\pm} = (P/P_{1})^{0.32}$$
 ...(5.8)

The significance of subscript 'l' has already been explained in Section 5.3. The reference pressure chosen was atmospheric pressure.

It may be noted that the correlation, Equation (5.8) offers a procedure for predicting the boiling heat transfer coefficients at atmospheric and subatmospheric pressures and for checking the consistency of boiling heat transfer data for binary liquid mixtures similar to correlation represented by Equation (5.4) in Section 5.3.

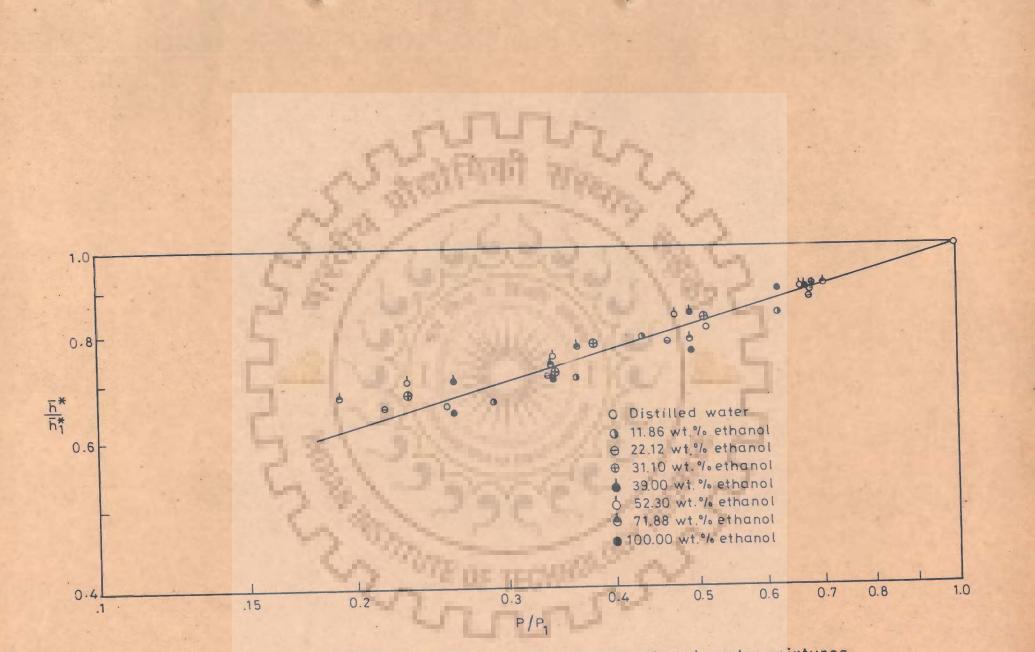


Fig. 5.44-Variation of h^{*}/h_{1}^{*} with P/P₁ for ethanol and ethanol-water mixtures

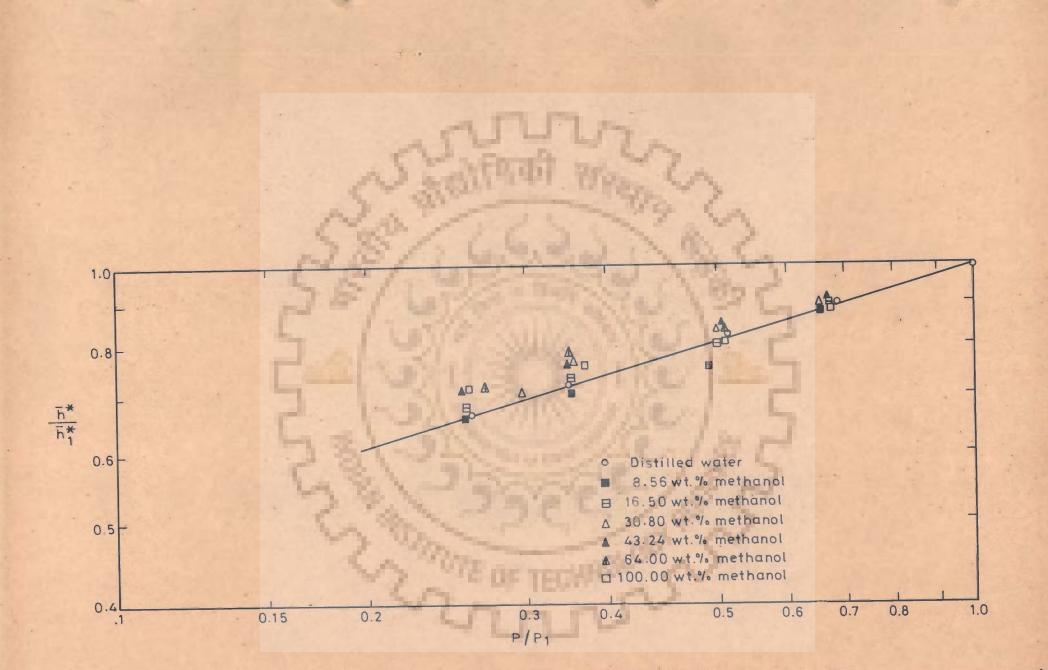


Fig.5.45-Variation of \bar{h}^*/\bar{h}_1^* with P/P₁ for methanol and methanol-water mixtures

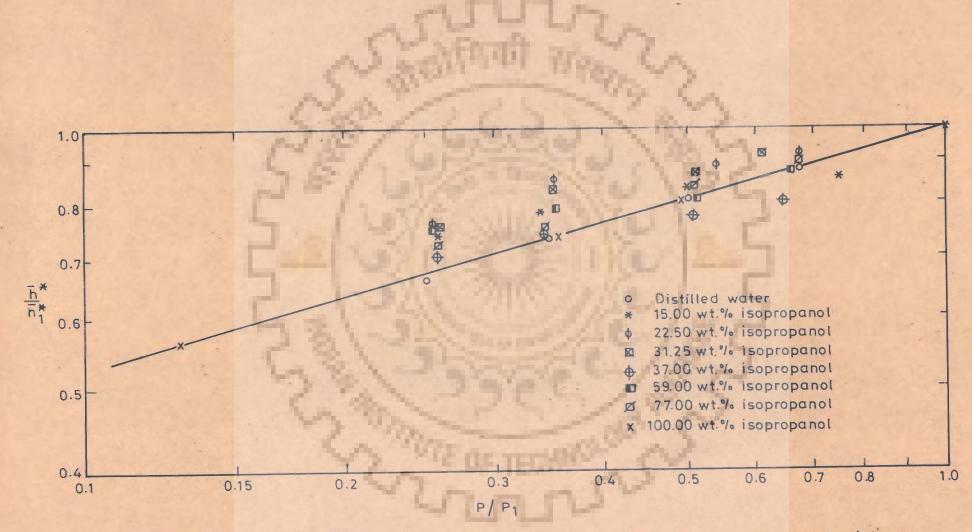
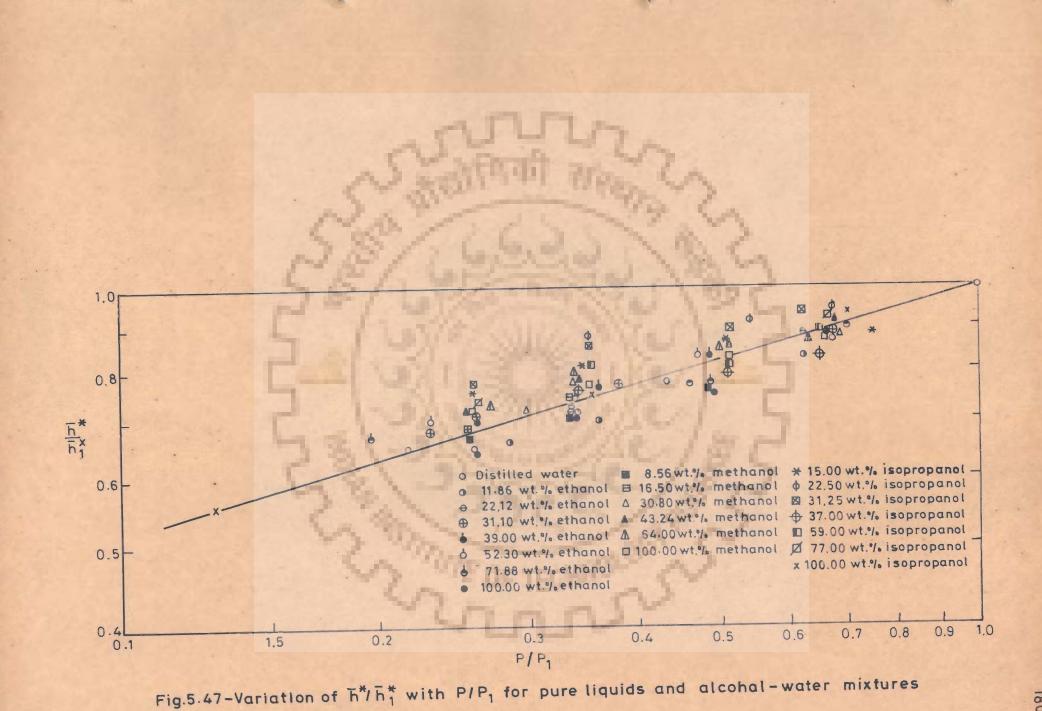



Fig.5.46-Variation of \bar{h}^*/\bar{h}_1^* with P/P₁ for isopropanol and isopropanol-water mixtures

5.7 GENERALISED CORRELATION

Figures 5.30 through 5.32 show that the heat transfer coefficient is influenced considerably by the concentration of binary liquid mixtures, in addition to the system pressure and the physico-thermal properties of the boiling liquids.

A scrutiny of the correlation given by Equation (5.8) shows that the correlation can be used to predict the values of heat transfer coefficient at any subatmospheric pressure for a given liquid concentration and heating surface only when one knows the value of heat transfer coefficient at the 'reference' pressure for the same liquid concentration and the heating surface. In fact, in a way it is the shortcoming of the correlation Equation (5.8), unlike the generally available correlation proposed for boiling heat transfer.

Keeping the above two factors into consideration, a generalised correlation was attempted as follows :

Plots were drawn to represent the data of ethanolwater, methanol-water, and isopropanol-water mixtures in Figures 5.48, 5.49 and 5.50 respectively. Y-axis represents $\overline{N}_{u}^{\star}(P_{1}/P)^{0.32}$, whereas x-axis contains X'. Fortunately, such an attempt succeeded in correlating all the experimental data of the present investigation within \pm 15 per cent. Figure 5.51 correlates almost all the data points of Figures 5.48 through 5.50 within + 15 per cent. From this Figure it is seen that the

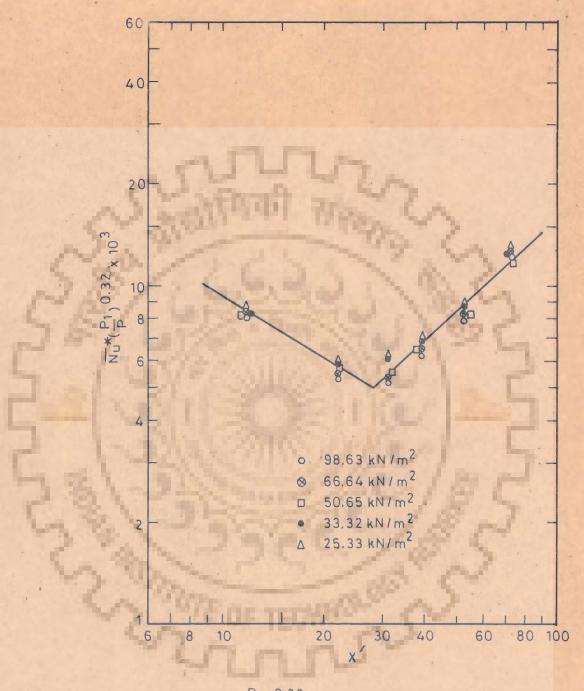


Fig.5.48-Plot of $\overline{N_u}^* (\frac{P_1}{P})^{0.32}$ vs X' for ethanol-water mixtures

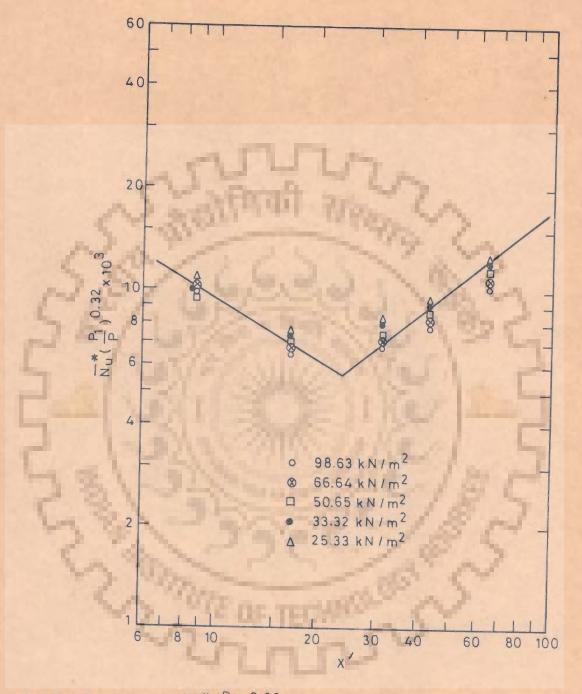


Fig.5.49-Plot of $\overline{N}_{u}^{*}(\frac{P_{1}}{P})^{0.32}$ vs X' for methanol-water mixtures

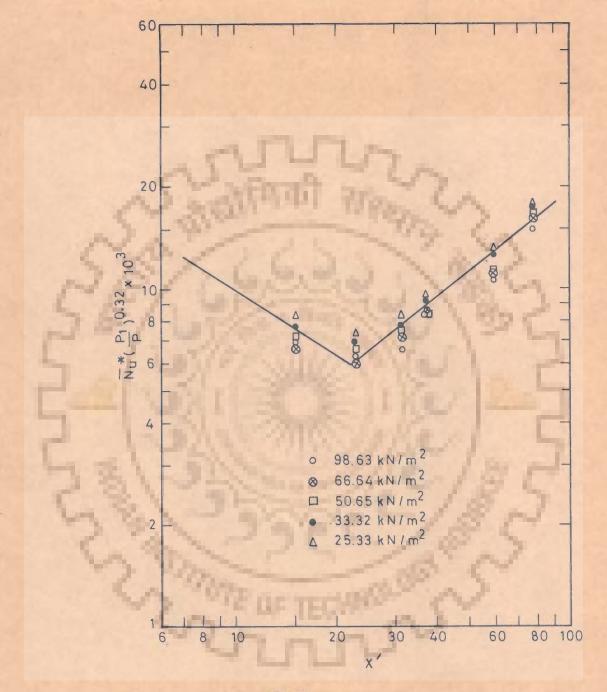


Fig.5.50-Plot of $\overline{Nu}^* \left(\frac{P_1}{P}\right)^{0.32}$ vs X' for isopropanol-water mixtures

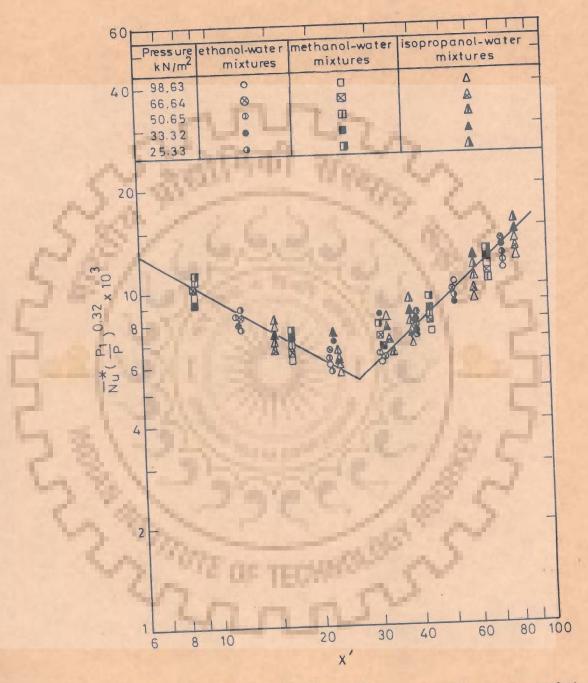


Fig.5.51-Plot of $\overline{Nu}(\frac{P_1}{P})^{0.32}$ vs X' for alcohol-water mixtures

data points are correlated by the following two equations :

(a) For the values of X';
$$0 < X' \leq 22.0$$

 $\overline{Nt}(\frac{P_1}{P})^{0.32} = 3.70 \times 10^{-2} (X')^{-0.60}$...(5.9)
(b) For the values of X'; $30 \leq X' \leq 78.0$
 $\overline{Nt}(\frac{P_1}{P})^{0.32} = 2.51 \times 10^{-4} (X')^{0.90}$...(5.10)

In Equations (5.9 and 5.10) the term $N_{\rm H}^{\star}$ represents $\bar{h}^{\star}/k \int \frac{\sigma}{(\rho_{\rm f} - \rho_{\rm v})g}$, P₁ stands for one atmospheric pressure and P for subatmospheric pressures. The remaining terms have their usual meaning as given in Nomenclature. It may be noted that the physical properties of the boiling liquids are to be calculated at their saturation temperatures corresponding to the pressures at which the boiling takes place.

The above correlations, given by Equations (5.9 and 5.10), are capable to predict the values of boiling heat transfer coefficient for atmospheric as well as subatmospheric pressures for any binary liquid concentration: of the systems investigated for a given heating surface.

CHAPTER-6

CONCLUSIONS AND RECOMMENDATIONS

The main conclusions drawn from the present study are as follows :

2.

New experimental data have been generated for both atmospheric and subatmospheric pressures for the nucleate pool boiling of distilled water, ethanol, methanol and isopropanol and their aqueous binary liquid mixtures for the heat flux ranging from 9618 W/m^2 to 31354 W/m^2 and pressure from 25.33 kN/m² to 98.63 kN/m².

The experimental data for the pool boiling of saturated liquids; distilled water, ethanol, methanol and isopropanol and their binary mixtures, corroborates the well-established law for the variation of heat transfer coefficient with heat flux, i.e. h $\alpha q^{0.7}$ for the heat flux ranging from 9618 W/m² to 31354 W/m².

Further, data points establish that the heat transfer coefficient is directly proportiona to the pressure raised to the power of 0.32 for the pressure range from 25.33 kN/m² to 98.63 kN/m The experimental data of pool boiling of saturated ethanol, methanol and isopropanol, conducted on a given heating surface, when plotted as heat transfer coefficient vs heat flux are represented by a single straight line for both atmospheric and subatmospheric pressures. However, the experimental data for the saturated distilled water differ significantly from those of ethanol, methanol and isopropanol.

3.

The experimental data points of this investigation and those of earlier investigations [9,125] for pure liquids, conducted on differing heating surfaces, for both atmospheric and subatmospheric pressures are well-correlated by the following equation within ± 15 per cent.

$(\bar{h}^{\star}/\bar{h}^{\star}_{l}) = (P/P_{l})^{0.32}$

The subscript 'l' denotes a reference pressure for which the value of boiling heat transfer coefficient is known for a given heating surface and the liquid. In other words, the above correlation is capable to predict the value of boiling heat transfer coefficient at pressures other than the reference pressure for a given heating surface and the liquid from the knowledge of heat transfer coefficient for the same heating surface and the liquid at the reference pressure.

For the present investigation the reference pressure has been chosen as atmospheric pressure, though it may be any pressure lying between atmospheric and subatmospheric pressures.

However, the above correlation fails to correlate the experimental data for pressures exceeding atmospheric pressure.

An implication of this finding is that the constant, C_1 in Equation (5.3), which is analogous to surface-liquid combination factor, $C_{\rm sf}$, in the literature [20,21] does not depend upon the pressure for the data conducted at subatmospheric pressures, whereas it depends upon the pressure for the data obtained at superatmospheric pressures This is clearly shown from the statistical parameters, namely; Mean, Standard Deviation and Coefficient of Variation, for the constant C_1 for both subatmospheric and superatmospheric pressures.

For subatmospheric pressures the maximum Coefficient of Variation in the values of C₁ for the data of present investigation is 4.55 per cent, that for the data of Cryder and Finalborgo [9] is 7.57 per cent and for Raben et al [125] is 9.66 %. In fact, these variations are negligible, and are acceptable keeping in view the errors involved in conducting the heat transfer data especially for boiling heat transfer.

For superatmospheric pressures the Coefficient of Variation is as large of 67.09 per cent indicating that the values of C_1 are not independent of pressure.

5.

The experimental data for the pool boiling of binary liquid mixtures showed a peculiar behaviour: the addition of any of the alcohols investigated into the distilled water keeps on lowering the boiling heat transfer coefficient till such a concentration of the alcohol added for which the coefficient attains a minimum value. Beyond this concentration the heat transfer coefficient begins to increase. The concentration for which the transfer coefficient is minimum has been termed as 'turnaround - concentration', being 31.10 wt. per cent ethanol, 30.80 wt. per cent methanol, and 22.50 wt. per cent isopropanol for ethanolwater, methanol-water, and isopropanol-water mixtures, respectively ; irrespective of the system pressure.

The concentration for which the heat transfer coefficient is minimum corresponds to a value of X for which (Y-X) is maximum.

It is also noted that the value of the actual heat transfer coefficient, for all the alcohol liquid mixtures investigated, is less than the weighted heat transfer coefficient. This phenomena is observed at all the pressures studied. This observation, thus, provides a caution that taking 'weighted heat transfer coefficient value' in the design of boiling heat transfer equipment like vapourisers, evaporators or reboilers is a gross mistake which may lead to failure of the equipment. Like the data of pure liquids, all the experimental data of the saturated pool boiling of binary liquid mixtures, obtained for both the atmospheric and the subatmospheric pressures, satisfy the following correlation within + 15 per cent :

 $\frac{\overline{h}^{\star}}{\overline{h}_{1}^{\star}} = \left(\frac{P}{P_{1}} \right)^{0.32}$

6.

where subscript 'l' denotes the reference pressure as discussed under conclusion 4. It may be noted that the above correlation, like for pure liquids, is capable to predict the value of boiling heat transfer at pressures other than the reference pressure for a given heating surface and binary liquid composition from the knowledge of heat transfer coefficient for the same heating surface and the liquid composition at the reference pressure.

This may also be noted that the constant, Cm₁, in Equation (5.7) has a value which is independent of pressure for a given boiling liquid mixture and heating surface as is evident from its values enlisted in Table 5.5 where the maximum value of Coefficient of Variation is

For the binary liquid mixtures, the following generalised correlations are recommended based on the data obtained in the present investigation within \pm 15 per cent :

7.

- (a) For the values of X'; $0 < X' \leq 22.0$ $\overline{Nu} \times (\frac{P_1}{P})^{0.32} = 3.70 \times 10^{-2} (X')^{-0.60}$
- (b) For the values of X'; $30 \le X' \le 78.0$ $\overline{\text{Nu}}^{*} \left(\frac{P_{1}}{P}\right)^{0.32} = 2.51 \times 10^{-4} (X')^{0.90}$

These correlations can predict the values of boiling heat transfer coefficient of binary liquid mixtures investigated for 1 atmosphere and subatmospheric pressures for a given heating surface.

The present investigation can be extended to cover the following :

1. The experimental data should be conducted for the concentration of ethanol-water and isopropanolwater mixtures representing their azeotropic composition and also in the neighbourhood of these concentrations. 2. Keeping in view the fact that the experimental data of ethanol, methanol and isopropanol are represented by a straight line on \overline{h} vs q and \overline{h}^{\pm} vs P plots, it is necessary to investigate other alcohols also for their thermal behaviour for the pool boiling heat transfer.

There is a need to determine the extent of pressure greater than 1 atmosphere for which correlation, given by Equation (5.4) is valid.

3.

There is a need to obtain experimental data for the pool boiling of binary liquid mixtures on differing heating surfaces, since the literature does not possess enough of them.

<u>APPENDIX-A</u>

ANALYSIS OF ERRORS

Errors in evaluation of the average heat transfer coefficient are caused due to the inaccuracies in measuring the current, voltage, dimensions of the heating surface and the e.m.f. of thermocouples. To determine the accuracy of the experimental data, error analysis was carried out for several experimental runs. This Appendix presents a typical sample calculation of error analysis for Run No. 14 of Appendix-B.

The experimental error for the average heat transfer coefficient can be defined mathematically [141] as follows :

$$\mathbf{e}_{\overline{\mathbf{h}}} = \left[\sum_{i=1}^{n} \left(\frac{\partial \overline{\mathbf{h}}}{\partial z_{i}} \cdot \mathbf{e}_{z_{i}} \right)^{2} \right]^{0.5} \dots (A.1)$$

where e represents the error and z_i any of the n parameters affecting average heat transfer coefficient. In the present investigation, the average value of heat transfer coefficient has been defined as

$$\overline{h} = \frac{Q}{A(\overline{T}_{W} - \overline{T}_{k})} \qquad \dots (A.2)$$

where

Q Power input, W

A Area

- T_w Average wall temperature
- \bar{T}_{i} Average liquid temperature

Further,
$$Q = VI$$
 ...(A.3)

$$A = \pi d_0 \not l \qquad \dots (A.4)$$

From Equations (A.1) and (A.2) the error in average heat transfer coefficient becomes :

$$e_{\overline{h}} = \left[\left(\frac{e_{Q}}{\Lambda(\overline{T}_{W} - \overline{T}_{\chi})} \right)^{2} + \left(- \frac{Q e_{\Lambda}}{\Lambda^{2}(\overline{T}_{W} - \overline{T}_{\chi})} \right)^{2} + \left(- \frac{Q e_{\Lambda}}{\Lambda^{2}(\overline{T}_{W} - \overline{T}_{\chi})} \right)^{2} + \left(- \frac{Q e_{\Lambda}}{\Lambda^{2}(\overline{T}_{W} - \overline{T}_{\chi})^{2}} \right)^{2} + \left(- \frac{Q e_{\Lambda}}{\Lambda(\overline{T}_{W} - \overline{T}_{\chi})^{2}} \right)^{2} \right]^{0.5}$$

The above Equation requires evaluation of e_Q , e_A , $e_{\overline{T}_W}$ and $e_{\overline{T}_{//}}$ which will be discussed in the following Sections :

A.1 ERROR IN POWER INPUT, eo

Since Q = V I

Therefore, $e_Q = [(V.e_I)^2 + (I.e_V)^2]^{0.5} \dots (A.6)$

where e_I and e_V are the errors in the measurement of current and voltage supplied to the heater.

Run No. 14 corresponds to 80V and 10A

$$e_V = 1.0$$
 Volt and $e_I = 0.05$ Ampere

Substituting the above values in Equations (A.3 and A.6)

$$Q = 10 \times 80 = 800 W$$

$$e_Q = [(80 \times 0.05)^2 + (10 \times 1.0)^2]^{0.5}$$

$$= (16 + 100)^{0.5} = 10.77 W$$

A.2 ERROR IN HEAT TRANSFER AREA, eA

Since $\Lambda = \pi d_0 l$,

Hence,
$$e_{\Lambda} = [(\pi d_{0} e_{\ell})^{2} + (\pi \ell e_{d_{0}})^{2}]^{0.5}$$

where ed and ed are the errors associated in the measurement of diameter and length respectively.

Since

$$d_0 = 0.07 \text{ m}, e_{d_0} = 0.0001 \text{ m}$$

 $\ell = 0.179 \text{ m}, e_{\ell} = 0.0005 \text{ m}$

Therefore, A = $\pi \ge 0.07 \ge 0.179 = 3.93 \ge 10^{-2} \text{ m}^2$ $e_A = [(\pi \ge 0.07 \ge 0.0005)^2 + (\pi \ge 0.179 \ge 0.0001)^2]^0$ $e_A = 1.235 \ge 10^{-4} \text{ m}^2$

A.3 ERROR IN AVERAGE WALL TEMPERATURE, eT.

Average wall temperature of the heat transfer surface has been obtained by using the following Equation:

$$\bar{T}_{w} = \left(\frac{T_{w_{1}} + T_{w_{2}} + T_{w_{3}}}{3}\right) \qquad \dots (A.7)$$

where subscripts 1,2 and 3 refer to the wall temperature of the top-, the side- and the bottom-position of the heating surface.

The value of local temperatures, as obtained corresponding to the measured thermoouple e.m.f., were corrected by subtracting the temperature drop in the wall thickness of the heating surface, δT_{w} .

Thus, corrected wall temperature is given by

$$T_{w} = T_{w_{m}} - \delta T_{w} \qquad \dots (A.8)$$

where T is the measured wall temperature. The value of δT_w was calculated as follows :

$$\delta T_{W} = \frac{q \, d_{o}}{2 \, k_{W}} \ln \frac{d_{o}}{d_{h}} \qquad \dots (A.9)$$

The error associated with temperature drop is calculated as follows :

$$e_{\delta T_{W}} = \left[\left(e_{q} \frac{d_{o}}{2k_{W}} \ln \frac{d_{o}}{d_{h}} \right)^{2} + \left\{ \left(\frac{q}{2k_{W}} \ln \frac{d_{o}}{d_{h}} + \frac{q}{2k_{W}} \right) e_{d_{o}} \right\}^{2} + \left\{ - \frac{q}{2k_{W}} \ln \left(\frac{d_{o}}{d_{h}} \right) e_{k_{W}} \right\}^{2} + \left\{ - \frac{q}{2k_{W}} \ln \left(\frac{d_{o}}{d_{h}} \right) e_{k_{W}} \right\}^{2} + \left\{ - \frac{q}{2k_{W}} \ln \left(\frac{d_{o}}{d_{h}} \right) e_{k_{W}} \right\}^{2} \right\}^{0.5} + \left\{ - \frac{q}{2k_{W}} \ln \left(\frac{d_{o}}{d_{h}} + \frac{q}{2k_{W}} \right) e_{d_{o}} \right\}^{2} \dots (A.10)$$

where eq, ed and ek are the errors associated with heat flux, thermocouple circle diameter and the thermal conductivity respectively.

Since,
$$q = \frac{Q}{A} = \frac{Q}{\pi d_0} I = \frac{800}{3.93 \times 10^{-2}} = 20356.20 \text{ W/m}^2$$

$$e_{q} = \left[\left(\frac{e_{Q}}{\pi d_{o} \chi} \right)^{2} + \left(-\frac{q}{\pi \chi} \frac{q}{d_{o}^{2}} e_{d_{o}} \right)^{2} + \left(-\frac{q}{\pi d_{o} \chi^{2}} \right)^{2} \right]^{0.5}$$

$$+ \left[\left(\frac{10.77}{3.93 \times 10^{-2}} \right)^{2} + \left(-\frac{800 \times 0.0001}{3.93 \times 10^{-2} \times 0.07} \right)^{2} \right]^{0.5}$$

$$+ \left(-\frac{800 \times 0.0005}{3.93 \times 10^{-2} \times 0.179} \right)^{2} \right]^{0.5} = 281.389 \text{ W/m}^{2}$$

Thermal conductivity, $k_w = 25.76 \text{ W/m K}$, $e_{k_w} = 0$. Since, $d_h = \frac{d_i + d_0}{2} = \frac{0.062 + 0.07}{2} = 0.066 \text{ m}$ Therefore, $e_{d_h} = [(\frac{1}{2} e_{d_0})^2 + (\frac{1}{2} e_{d_i})^2]^{0.5}$ Since $e_{d_i} = e_{d_0}$ $\therefore e_{d_h} = [2(\frac{1}{2} e_{d_0})^2]^{0.5}$ $= [2(\frac{1}{2} \times 0.0001)^2]^{0.5}$ $\therefore e_{d_h} = 7.071 \times 10^{-5} \text{ m}$

On substituting the values of e_q , e_{d_h} and e_{k_w} in Equation (A.10), the value of $e_{\delta T_w}$ is calculated as follows :

$$e_{\delta T_{W}} = \left[\left\{ \frac{281.389 \times 0.07}{2 \times 25.76} \ln \left(\frac{0.07}{0.066} \right) \right\}^{2} + \left\{ \left(\frac{20356.20}{2 \times 25.76} \ln \left(\frac{0.07}{0.066} \right) + \frac{20356.20}{2 \times 25.76} \right) 0.0001 \right\}^{2} + \left\{ - \frac{20356.20 \times 0.07}{2 \times (25.76)^{2}} \ln \frac{0.07}{0.066} \times 0 \right\}^{2} + \left\{ - \frac{20356.20 \times 0.07}{2 \times (25.76)^{2}} \ln \frac{0.07}{0.066} \times 0 \right\}^{2} + \left\{ - \frac{20356.20 \times 0.07}{2 \times 25.76 \times 0.066} \times 7.071 \times 10^{-5} \right\}^{2} \right]^{0.5}$$

 $e_{\delta T_{W}} = 0.0558^{\circ}C$

From Equation (A.8), e_T is calculated as :

$$\mathbf{e}_{\mathbf{T}_{\mathbf{W}}} = \left[\left(\mathbf{e}_{\mathbf{T}_{\mathbf{W}_{\mathbf{M}}}} \right)^2 + \left(- \mathbf{e}_{\delta \mathbf{T}_{\mathbf{W}}} \right)^2 \right]^{0.5}$$

Since
$$e_{T_{w_{m}}} = 0.01^{\circ}C$$

Therefore, $e_{T_{w}} = [(0.01)^{2} + (-0.0558)^{2}]^{0.5}$
=0.0567 °C

By using Equation (A.7), the value of $e_{\overline{T}_{W}}$ is calculated as given below: $e_{\overline{T}_{W}} = \left[3 \times \left(\frac{e_{\overline{T}_{W}}}{3}\right)^{2} \right]^{0.5}$ $= \left[3 \times \left(\frac{0.0567}{3}\right)^{2} \right]^{0.5}$ $= 0.0327 \ ^{\circ}C$

A.4 ERROR IN AVERAGE LIQUID TEMPERATURE

+ T + T

Average liquid temperature has been defined as follows :

$$\bar{T}_{\chi} = \frac{1}{1} \frac{1}{3} \frac$$

Since
$$e_{T_{w_m}} = e_{T_{w_m}} = 0.01 \, {}^{\circ}C$$

Thus, substituting the value of $e_{T_{\parallel}}$ in Equation (A.11):

$$e_{\overline{T}_{l}} = [3(\frac{0.01}{3})^2]^{0.5} = 0.0058$$
 °C

A.5 ERROR IN AVERAGE HEAT TRANSFER COEFFICIENT, en

Equation (A.5) is used to compute $e_{\overline{h}}$. On substituting the values of Q, A, \overline{T}_{w} , \overline{T}_{ℓ} , e_{Q} , e_{A} , $e_{\overline{T}_{w}}$ and $e_{\overline{T}_{\ell}}$ in Equation (A.5), the value of $e_{\overline{h}}$ is calculated as follows:

$$P_{h} = \left[\left\{ \frac{10.77}{3.93 \times 10^{-2} (90.306 - 84.117)} \right\}^{2} + \left\{ \frac{800 \times 1.235 \times 10^{-4}}{3.93 \times 10^{-2} (90.306 - 84.117)} \right\}^{2} + \left\{ \frac{-800 \times 0.0327}{3.93 \times 10^{-2} (90.306 - 84.117)^{2}} \right\}^{2} + \left\{ \frac{800 \times 0.0058}{3.93 \times 10^{-2} (90.306 - 84.117)^{2}} \right\}^{2} \right]^{0.5} = 48.77 \text{ W/m}^{2} \text{ K}$$

Since the average experimental value of the heat transfer coefficient is $3289 \text{ W/m}^2\text{K}$, the actual value of the average heat transfer coefficient as obtained by this error analysis is $3289 \pm 48.77 \text{ W/m}^2\text{K}$. Thus the expected error in the reported data of heat transfer coefficient is within \pm 15 per cent.

APPENDIX-B

TABULATION OF EXPERIMENTAL DATA

		Page
Table B-1	Experimental Data of Heat Transfer to Saturated Pool Boiling of Distilled Wate	203 er
Table B-2	Experimental Data of Heat Transfer to Saturated Pool Boiling of Ethanol	208
Table B-3	Experimental Data of Heat Transfer to Saturated Pool Boiling of 11.86 wt. % Ethanol in Ethanol-Water Mixture	213
Table B-4	Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.12 wt. % Ethanol in Ethanol-Water Mixture	218
Table B-5	Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.1 wt. % Ethanol in Ethanol-Water Mixture	223
Table B-6	Experimental Data of Heat Transfer to Saturated Pool Boiling of 39.0 wt. % Ethanol in Ethanol-Water Mixture	228
Table B-7	Experimental Data of Heat Transfer to Saturated Pool Boiling of 52.3 wt. % Ethanol in Ethanol-Water Mixture	233
Table B-8	Experimental Data of Heat Transfer to Saturated Pool Boiling of 71.88 wt. % Ethanol in Ethanol-Water Mixture	238
Table B-9	Experimental Data of Heat Transfer to Saturated Pool Boiling of Methanol	243
Table B-10	Experimental Data of Heat Transfer to Saturated Pool Boiling of 8.56 wt. % Methanol in Methanol-Water Mixture	248

Page

- Table B-11 Experimental Data of Heat Transfer to 253 Saturated Pool Boiling of 16.5 wt. % Methanol in Methanol-Water Mixture
- Table B-12 Experimental Data of Heat Transfer to 258 Saturated Pool Boiling of 30.8 wt. % Methanol in Methanol - Water Mixture.
- Table B-13Experimental Data of Heat Transfer to263Saturated Pool Boiling of 43.24wt. %Methanol in Methanol Water Mixture
- Table B-14Experimental Data of Heat Transfer to268Saturated Pool Boiling of 64.0 wt. %Methanol in Methanol-Water Mixture
- Table B-15Experimental Data of Heat Transfer to273Saturated Pool Boiling of Isopropanol
- Table B-16Experimental Data of Heat Transfer to278Saturated Pool Boiling of 15.0 wt. %Isopropanol in Isopropanol Water Mixture
- Table B-17Experimental Data of Heat Transfer to283Saturated Pool Boiling of 22.5 wt. %Isopropanol in Isopropanol Water Mixture
- Table B-18Experimental Data of Heat Transfer to287Saturated Pool Boiling of 31.25 wt. %Isopropanol in Isopropanol Water Mixture
 - Table B-19Experimental Data of Heat Transfer to292Saturated Pool Boiling of 37.0 wt. %Isopropanol in Isopropanol Water Mixture
 - Table B-20Experimental Data of Heat Transfer to297Saturated Pool Boiling of 59.0 wt. %Isopropanol in Isopropanol Water Mixture
 - Table B-21 Experimental Data of Heat Transfer to 302 Saturated Pool Boiling of 77.0 wt. % Isopropanol in Isopropanol - Water Mixture

Table B-1 :	Experimental Data of Heat Transfer to Saturated Pool
	Boiling of Distilled Water at 98.63 kN/m ² (T _s =99.0°C)
	A grant man and

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
l	9618.32	0.769	105.00 103.95 106.30	104.231 103.182 105.531	100.25 99.90 100.40	3.981 3.282 5.131 AVG = 4.131	2416 2931 1875 AVG = 2329
2	12620.90	1.009	106.05 105.50 107.25	105.041 104.491 106.241	100.90 100.45 100.92	4.141 4.041 5.321 AVG = 4.501	3048 3123 2372 ∧VG = 2804
3	16488.55	1.320	106.90 106.20 107.95	105.580 104. 9 80 106.630	101.20 100.60 101.00	4.380 4.280 5.630 AVG = 4.763	3765 3852 2929 AVG = 3462
4	20356.23	1.627	107.65 107.20 108.65	106.023 105.573 107.023	101.45 100.85 101.15	4.573 4.723 5.873 AVG = 5.056	4451 4310 3466 AVG = 4026
5	24631.04	1.969	108.90 108.35 109.25	106.931 106.381 107.281	101.85 101.00 101.35	5.081 5.381 5.931 A.VG = 5.464	4848 4577 4153 AVG = 4508

				State Street	L. A.		
Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
6	9618.32	0.769	95.35 94.85 96.00	94.581 94.081 95.231	90.40 89.50 90.15	4.181 4.581 5.081 AVG = 4.614	2301 2100 1893 AVG = 2085
7	12620.90	1.009	96.30 96.05 97.15	95.291 95.041 96.141	90.65 89.65 90.60	4.641 5.391 5.541 AVG = 5.191	2720 2341 2278 AVG = 2431
8	16488.55	1.320	97.75 97.15 98.30	96.430 95.830 96.980	91.25 90.40 91.10	5.180 5.430 5.880 AVG = 5.497	3183 3037 2804 AVG = 3000
9	20356.20	1.627	98.30 97.75 99.00	96.673 96.123 97.373	91.40 90.65 91.30	$5.273 \\ 5.473 \\ 6.073 \\ AVG = 5.606$	3861 3719 3352 AVG = 3631
10	24631.00	1.969	99.15 99.10 99.80	97.181 97.131 97.831	91.75 90.90 91.10	5.431 6.231 6.731 AVG = 6.131	4535 3953 3659 AVG = 4018

Table B-1: Experimental Data of Heat Transfer to Saturated Pool Boiling of Distilled Water at 66.64 kN/m²(T_s=88.5^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
11	9618.32	0.769	87.55 87.50 88.40	86.781 86.731 87.631	82.45 81.60 81.60	4.3315.1316.031AVG = 5.164	2221 1875 1595 AVG = 1863
12	12620.90	1.009	88.90 88.45 90.00	87.891 87.450 88.991	82.90 82.00 82.45	4.991 5.450 6.541 AVG = 5.660	2529 2316 1930 AVG = 2230
13	16259.50	1.299	90.20 90.20 91.00	88.901 88.901 89.701	83.55 83.00 83.35	5.351 5.901 6.351 AVG = 5.870	3039 2755 2560 AVG = 2770
14	20356.20	1.627	91.55 91.95 92.30	89.923 90.323 90.673	84.25 84.00 84.10	5.6736.3236.573AVG = 6.190	3588 3219 3097 AVG = 3289
15	24631.00	1.969	92.85 93.30 93.70	90.881 91.331 91.731	94.45 84.00 84.00	6.431 7.331 7.731 AVG = 7.164	3830 3360 3186 AVG = 3438

Table B-1: Experimental Data of Heat Transfer to Saturated Pool Boiling of Distilled Water at 50.65 kN/m²(T_s=81.5^oC)

Table B-1: Experimental Data of Heat Transfer to Saturated Pool Boiling of Distilled Water at 33.32 kN/m²(T_s=71.33⁰C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
16	9618.32	0.769	78.60 78.15 79.20	77.83 77.381 78.431	72.40 71.70 71.90	5.431 5.681 6.531 AVG = 5.88	1771 1693 1473 L AVG = 1636
17	12620.90	1.009	79.35 79.55 80.50	78.341 78.541 79.491	72.65 72.35 72.50	5.691 6.191 6.991 AVG = 6.293	2218 2039 1805 L AVG = 2006
18	16259.50	1.300	80.45 80.70 81.70	79.150 79.400 80.400	73.15 72.90 73.10	6.000 6.500 7.300 AVG = 6.593	2710 2501 2227 & AVG = 2466
19	20356.20	1.627	82.00 82.50 83.10	80.373 80.873 81.473	73.95 73.40 73.90	6.423 7.473 7.573 ▲VG = 7.156	3169 2724 2688 5 AVG = 2845
20	24631.04	1.969	83.80 83.80 85.00	81.831 81.831 83.030	74.65 74.40 74.65	7.181 7.431 8.381 AVG = 7.664	3430 3315 2939 AVG = 3214

Table B-1 :	Experimental Data of Heat Transfer to Saturated Pool
	Boiling of Distilled Water at 25.33 kN/m ² (T _s =65.3°C)
	Charling and The

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C		Heat Transfer Coefficient W/m ² K
21	9618.32	0.769	75.12 74.60 75.80	74.351 73.831 75.031	68.45 68.00 68.15	5.901 5.831 6.881 AVG = 6.204	1630 1650 1398 AVG = 1550
22	12620.90	1.009	75.37 75.20 77.25	74.361 74.191 76.241	68.50 68.15 68.45	5.861 6.041 7.791 AVG = 6.564	2153 2089 1620 AVG = 1923
23	16259.50	1.299	77.60 77.50 78.55	76.301 76.201 77.250	68.97 68.59 68.97	7.331 7.611 8.281 AVG = 7.741	2218 2136 1963 AVG = 2100
24	20356.20	1.627	79.35 79.35 80.25	77.723 77.723 78.623	70.35 70.00 70.05	7.373 7.723 8.573 AVG = 7.890	2761 2636 2374 AVG = 2580
25	24910.94	1.991	80.45 80.45 81.70	78.459 78.459 79.709	70.65 70.25 70.55	7.809 8.209 9.159 AVG = 8.392	3190 3035 2720 AVG = 2968

.

Table B-2 :	Experimental Data of Heat Transfer to Saturated Pool
	Boiling of Ethanol at 98.63 kN/m ² ($T_s = 78.0^{\circ}C$)
	Charlengt av 27

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp.	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
26	9974.56	0.798	85.98 87.80 85.98	85.182 87.000 85.182	78.45 78.25 78.45	6.732 8.750 6.732 AVG = 7.405	1482 1140 1482 AVG = 1347
27	12865.14	1.029	87.55 89.25 86.70	86.521 88.221 85.671	78.85 78.70 78.85	7.671 9.521 6.821 AVG = 8.004	1677 1351 1886 AVG = 1607
28	16946.56	1.355	89.60 91.15 88.00	88.245 89.795 86.645	79.53 79.35 79.55	8.715 10.445 7.095 AVG = 8.752	1944 1622 2388 AVG = 1936
29	20610.70	1.648	91.75 93.30 89.62	90.102 91.652 87.972	80.60 80.50 80.55	9.502 11.152 7.422 AVG = 9.359	2169 1848 2777 AVG = 2202
30	25190.84	2.014	93.25 96.15 91.85	91.236 94.136 89.836	81.70 81.70 81.85	9.536 12.436 7.986 AVG = 9.986	264 2 20 26 31 54 AVG = 25 23

Table B-2 :	Experimental Data of Heat Transfer to Saturated Pool
	Boiling of Ethanol at $61.31 \text{ kN/m}^2(T_e=65.3^{\circ}\text{C})$
	Charlength and Solar a
	A TO REAL TO A STATE OF THE AND A STATE OF THE ADDRESS OF THE ADDR

Run No.	Heat Flux W/m ²	Conduction correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
31	10117.05	0.809	75.50 77.35 75.90	74.691 76.541 75.091	67 • 20 66 • 90 67 • 20	7.491 9.641 7.891 AVG = 8.341	1351 1049 1282 AVG = 1213
32	13027.99	1.042	76.68 77.65 76.80	75.638 76.608 75.758	67.05 66.70 67.00	8.588 9.908 8.758 AVG = 9.085	1517 1315 1438 AVG = 1488
33	16946.56	1.355	78.15 79.55 77.25	76.795 78.195 75.895	67.20 67.00 67.05	9.595 11.195 8.845 AVG = 9.878	1766 1514 1916 AVG = 1716
34	20814.25	1.664	80.00 81.65 78.50	78.336 79.986 76.836	67.52 67.35 67.50	10.816 12.636 9.336 AVG =10.929	1924 1647 2229 AVG = 1905
35	25470.74	2.036	82.25 84. 35 80.80	80.214 82.314 78.764	69.35 69.20 69.35	10.864 13.114 9.414 AVG =11.131	2344 1942 2706 AVG = 2288

Table B-2:	Experimental Data of Heat Transfer to Saturated Pool
	Boiling of Ethanol at 47.98 kN/m ² (T _s =60.25°C)
	aliant in the

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
36	9974.55	0.797	70.50 74.30 73.13	69.703 73.503 72.333	61.88 61.55 61.70	7.823 11.953 10.633 AVG =10.136	1275 834 938 AVG = 984
37	12946.56	1.035	72.40 74.40 73.50	71.365 73.365 72.465	61.80 61.55 61.55	9.565 11.815 10.915 AVG =10.765	1354 1096 1186 AVG = 1203
38	17984.73	1.438	74.45 76.25 74.45	73.012 74.812 73.012	62.03 61.80 61.80	10.982 13.012 11.212 AVG =11.735	1638 1382 1604 AVG = 1533
39	21671.76	1.733	76.85 78.70 75.68	75.117 76.967 73.947	62.73 62.60 62.73	12.387 14.367 11.217 AVG =12.657	1750 1508 1932 AVG = 1712
40	26740.46	2.138	79.55 81.25 77.48	77.412 79.112 75.342	63.95 63.50 63.50	13.462 15.612 11.842 AVG =13.640	1986 1713 2258 AVG = 1960

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
41	9974.55	0.797	64.53 68.70 66.85	63.733 67.903 66.053	54.80 54.58 54.80	8.933 13.323 11.253 AVG =11.170	1117 749 886 AVG = 893
42	130 27.99	1.042	66.10 70.48 68.85	65.058 69.438 67.808	54.83 54.45 54.70	10.228 14.988 13.108 AVG =12.775	1274 869 994 AVG = 1020
43	16717.56	1.336	68.32 70.95 69.65	66.984 69.614 68.314	54.95 54.80 54.90	12.034 14.814 13.414 AVG =13.420	1389 1128 1246 AVG = 1246
44	20404.60	1.631	68.90 71.70 70.10	67.269 70.069 68.469	55.15 55.15 54.95	12.119 14.919 13.519 AVG =13.519	1684 1368 1509 AVG = 1509
45	25190.84	2.014	70.23 73.30 71.75	68.216 71.286 69.736	55.65 55.45 55.60	12.566 15.836 14.136 AVG =14.180	2005 1591 1782 AVG = 1777

Table B-2: Experimental Data of Heat Transfer to Saturated Pool Boiling of Ethanol at 33.32 kN/m²(T_s=52.2^oC)

Table B-2: Experimental Data of Heat Transfer to Saturated Pool Boiling of Ethanol at 25.33 kN/m²(T_s=46.13^oC)

Run No.	Heat Flux W/m ²	Conduction Correction °C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
46	9974.55	0.797	53.53 58.23 58.23	52.733 57.433 57.433	43.70 43.60 43.83	9.03 <mark>3</mark> 13.833 13.603 AVG =12.156	1104 721 733 AVG = 821
47	12946.56	1.035	53.75 60.40 61.10	54.715 59.365 60.065	45.15 44.85 45.10	9.565 14.515 14.965 AVG =13.015	1353 892 865 AVG = 995
48	16717.60	1.340	58.68 63.25 63.15	57.340 61.910 61.810	46.90 46.90 46.80	10.440 15.010 15.010 AVG =13.490	1601 1114 1114 AVG = 1239
49	20610.70	1.648	60.73 64.05 64.30	59.082 62.402 62.562	47.50 47.15 47.15	11.582 15.252 15.502 AVG =14.112	1780 1351 1330 AVG = 1461

Table B-3: Experimental Data of Heat Transfer to Saturated Pool Boiling of 11.86 wt.% Ethanol in Ethanol - Water Mixture at 98.63 kN/m²(T_s=89.75^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C		Heat Transfer Coefficient W/m ² K
50	9974.55	0.797	95.58 97.65 98.65	94.783 96.853 97.853	90.20 89.65 90.05	4.583 7.203 7.803 AVG = 6.530	2176 1385 1278 AVG = 1528
51	13027.99	1.042	97.15 99.20 100.58	96.108 98.158 99.538	91.15 90.80 91.20	4.958 7.358 8.338 AVG = 6.885	2628 1771 1562 AVG = 1892
52	16531.80	1.322	99.80 101.20 103.60	98.478 99.878 102.280	92.85 92.20 92.85	5.628 7.678 9.430 AVG = 7.580	2937 2153 1753 AVG = 2181
53	20865.14	1.670	102.00 102.85 104.80	100. 33 101.18 103.13	93.25 92.90 93.55	7.0808.2809.580AVG = 8.313	2947 2520 2178 AVG = 2510
54	25190.84	2.014	103.60 104.65 106.50	101.586 102.636 104.486	94.15 93.80 94.10	7.4 <mark>36</mark> 8.836 1C.386 AVG = 8.886	3388 2851 2425 ∆VG = 2835

Table B-3: Experimental Data of Heat Transfer to Saturated Pool Boiling of 11.86 wt.% Ethanol in Ethanol - Water Mixture at 61.31 kN/m²(T_s=77.5°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
55	10297.71	0.823	86.00 90.43 88.50	85.177 89.607 87.677	79.56 79.35 79.80	5.617 10.260 7.877 AVG = 7.918	1833 1004 1307 AVG = 1301
56	13435.10	1.074	86.70 91.20 89.80	85.626 90.126 88.726	79.80 79.52 79.90	5.826 10.606 8.826 AVG = 8.420	2306 1267 1522 AVG = 1596
57	16946.60	1.355	87.35 92.85 92.50	85.995 91.495 91.145	80.00 79.75 80.10	5.995 11.745 11.045 AVG = 9.595	2827 1443 1534 AVG = 1766
58	20865.14	1.670	88.90 94.52 94.52	87.230 92.850 92.850	81.18 80.83 81.15	6.050 12.020 11.700 AVG = 9.923	34 49 1376 1783 AVG = 2103
59	25076.34	2.000	90.75 96.65 97.10	88.750 94.650 95.100	82.70 82.35 82.55	6.050 12.300 12.550 AVG =10.300	4145 2039 1998 AVG = 2435

Table B-3: Experimental Data of Heat Transfer to Saturated Pool Boiling of 11.86 wt.% Ethanol in Ethanol - Water Mixture at 42.65 kN/m²(T_s=69.1°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat . ^O C	Heat Transfer Coefficient W/m ² K
60	9974•55	0.797	79.15 83.02 81.70	78.353 82.223 80.903	72.40 71.78 72.27	5.953 10.443 8.633 AVG = 8.343	1675 955 1155 AVG = 1196
61	13027.99	1.042	79.55 83.45 83.45	78.508 82.408 82.408	72.40 71.80 72.35	6.108 10.608 10.058 AVG = 8.925	2133 1228 1295 AVG = 1460
62	16946.56	1.355	80.80 84.35 85.60	79.445 82.995 84.245	72.70 72.20 72.40	6.745 10.795 11.845 AVG = 9.795	2512 1570 1431 AVG = 1730
63	20865.14	1.670	82.70 85.65 87.15	81.030 83.980 85.480	73.25 72.60 73.25	7.780 11.380 12.230 $\therefore VG = 10.463$	2682 1833 1706 AVG = 1994
64	25190.84	2.014	84.45 87.55 88.95	82.440 85.550 86.950	73.90 73.75 73.95	8.540 11.800 13.000 AVG =11.113	2950 2135 1938 AVG = 2267

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat	Heat Transfer Coefficient W/m ² K
65	9974-55	0.797	72.50 74.87 75.20	71.703 74.073 74.403	64.65 63.50 64.65	$7.053 \\ 10.573 \\ 9.753 \\ AVG = 9.12$	1414 943 1023 6 AVG = 1093
66	12946.56	1.035	73.75 76.00 76.60	72.715 74.965 75.565	64.75 64.22 64.90	7.965 10.745 10.665 AVG = 9.79	1625 1205 1214 2 AVG = 1322
67	16946.56	1.355	74.90 78.25 79.70	73.545 76.895 78.345	65.33 65.15 65.50	8.215 11.745 12.845 AVG =10.93	2063 1443 1319 5 AVG = 1550
68	21119.60	1.690	77.25 80.50 82.10	75.560 78.810 80.410	66.50 66.20 66.40	9.060 12.610 14.010 AVG =11.893	2331 1675 1507 3 AVG = 1775
69	25470.74	2.036	79.05 83.25 84.90	77.014 81.214 82.864	68.00 67.40 68.00	9.014 13.814 14.864 AVG =12.56	2826 1844 1714 4 AVG = 2027

Table B-3: Experimental Data of Heat Transfer to Saturated Pool Boiling of 11.86 wt.% Ethanol in Ethanol - Water Mixture at 36.0 kN/m²(T_s=65.4°C)

Table B-3: Experimental Data of Heat Transfer to Saturated Pool Boiling of 11.86 wt.% Ethanol in Ethanol - Water Mixture at 28.0 kN/m²(T_s=60.8°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
70	9974.55	0.797	68.90 71.35 72.30	68.103 70.553 71.503	60.95 59.35 60.75	7.153 11.203 10.753 AVG = 9.703	1394 890 928 3 AVG = 1028
71	130 27.99	1.042	70.10 72.95 74.50	69.058 71.908 73.458	60.98 60.75 60.90	8.078 11.158 12.558 ∆VG =10.598	1613 1168 1037 B AVG = 1229
72	16832.06	1.346	72.85 75.20 75.70	71.504 73.854 74.354	62.00 61.45 61.45	9.504 12.404 12.904 AVG =11.604	1771 1357 1304 4 1.VG = 1451
73	20865.14	1.670	76.35 76.35 77.93	74.680 74.680 76.260	62.50 62.25 62.50	12.180 12.430 13.760 AVG =12.800	$ \begin{array}{r} 1713 \\ 1679 \\ 1516 \\ AVG = 1630 \end{array} $

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Tomp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
74	10063.61	0.804	94.35 96.30 98.40	93.546 95.496 97.596	85.50 85.15 85.25	8.046 10.346 12.346 AVG =10.246	1251 973 815 AVG = 982
75	13231.55	1.058	95.90 97.65 99.90	94.842 96.592 98.842	85.70 85.50 85.70	9.142 11.092 13.142 AVG =11.125	1447 1193 1007 AVG =1189
76	16418.60	1.313	96.85 98.70 100.75	95.537 97.387 99.437	86.00 85.80 85.85	9.537 11.587 13.587 AVG =11.570	1722 1417 1208 AVG =1419
77	20865.14	1.670	98.20 100.25 102.85	96.530 98.580 101.180	86.25 86.00 86.25	10.280 12.580 14.930 AVG =12.600	2030 1659 1398 AVG =1656
78	26503.82	2.120	100.15 102.30 105.55	98.030 100.180 103.430	86.55 86.45 86.50	11.480 13.730 16.930 AVG =14.050	2309 1930 1566 AVG =1886

Table B-4: Experimental Data of Heat Transfer to Saturated Poul Boiling of 22.12 wt.% Ethanol in Ethanol - Water Mixture at 98.63 kN/m²(T_s=85.3°C)

Run No.	Heet Fluz W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C		Heat Transfer Coefficient W/m ² K
79	9974.55	0.797	87.00 89.50 88.00	86.203 88.703 87.203	76.20 75.85 76.23	10.003 12.853 10.973 AVG =11.276	997 776 909 AVG = 885
80	13027.99	1.042	88.90 92.10 89.18	87.860 91.060 88.138	76.25 76.00 76.30	11.610 15.058 11.838 AVG =12.835	1122 865 1101 5 AVG = 1015
81	16946.60	1.355	90.55 93.15 91.40	89.195 91.795 90.045	76.45 76.45 76.50	12.745 15.345 13.545 AVG =13.878	1330 1104 1251 3 AVG = 1221
82	20610.70	1.648	90.95 95.25 92.45	89.595 93.602 90.802	76.60 76.55 76.60	12.995 17.052 14.202 AVG =14.750	1586 1209 1451 AVG = 1397
83	26218.83	2.096	93.00 97.10 93.05	90.904 95.004 90.954	76.75 76.60 76.70	14.154 18.404 14.254 AVG =15.604	1852 1425 18 39 AVG = 1680

Table B-4: Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.12 wt.% Ethanol in Ethanol - Water Mixture at 66.64 kN/m²(T_s=75.7°C)

Table B-4: Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.12 wt.% Ethanol in Ethanol - Water Mixture at 53.32 kN/m²(T_s=70.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Well Tomp.	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat °C	Heat Transfer Coefficient W/m ² K
84	13333.33	1.066	83.80 87.35 85.70	82.734 86.284 84.634	70.60 70.50 70.68	12.054 15.784 13.954 AVG =13.931	1106 845 956 AVG = 957
85	16717.56	1.336	86.58 89.43 87.25	85.244 88.094 85.914	70.80 70.73 70.90	14.444 17.194 15.014 AVG =15.551	1157 972 1113 AVG = 1075
86	20865.14	1.670	88.55 90.43 90.55	86.880 88.760 88.880	71.15 70.90 71.15	15.730 17.860 17.730 AVG =17.107	1326 1168 1177 AVG = 1220
87	25190.84	2.014	89.30 91.30 91.70	87.286 89.286 89.686	71.30 71.30 71.35	15.986 17.986 18.336 AVG =17.436	1576 1401 1374 AVG = 1445
88	30229.00	2.417	90.33 93.00 94.95	87.913 90.583 92.533	71.55 71.30 71.50	16.363 19.283 21.033 AVG =18.893	1847 1568 1437 AVG = 1600

Table B-4: Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.12 wt.% Ethanol in Ethanol - Water Mixture at 33.32 kN/m²(T_s=60.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
89	13333.33	1.066	73.67 77.05 77.70	72.604 75.984 76.634	60.30 60.15 60.30	12.304 15.834 16.334 AVG =14.824	1084 842 816 AVG = 899
90	16832.06	1.346	76.35 79.13 79.50	75.004 77.7 8 4 78.154	60. 30 60.30 60.35	14.704 17.484 17.804 AVG =16.664	1145 963 945 AVG = 1010
91	20865.14	1.670	77.25 81.25 82.20	75.580 79.580 80.530	60.45 60.30 60.50	15.130 19.280 20.030 AVG =18.147	1379 1082 1042 AVG = 1150
92	25470.74	2.036	79.03 82.63 84.10	76.994 80.594 82.064	60.70 60.50 60.75	16.294 20.094 21.314 AVG =19.234	1563 1268 1195 AVG = 1324
93	30229.00	2.417	80.80 84.70 86.75	78.383 82.283 84.333	60.95 60.80 61.00	17.433 21.483 23.333 AVG = 20.750	1734 1407 1296 AVG = 1457

Table B-4: Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.12 wt.% Ethanol in Ethanol - Water Mixture at 21.33 kN/m²(T_s=50.6°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C		eat Transfer Defficient W/m ² K
94	9974.55	0.797	63.15 65.60 66.60	62.353 64.803 65.803	49.80 49.50 49.65	12.553 15.303 16.153 AVG =14.670	795 652 61 8 AVG = 680
95	13027.99	1.042	65.10 68.30 69.78	64.058 67.258 68.738	50.15 50.00 50.15	13.908 17.258 18.588 AVG =16.585	937 755 701 AVG = 786
96	16946.56	1.355	67.05 70.58 72.38	65.695 69.225 71.025	50.55 50.40 50.50	15.145 18.825 20.525 AVG =18.165	1119 900 826 AVG = 933
97	20865.14	1.670	69.25 72.72 75.10	67.580 71.050 73.430	50.80 50.55 50.70	16.780 20.500 22.730 AVG = 20.000	1243 1018 918 AVG = 1043
98	25190.84	2.014	71.05 75.90 75.90	69.036 73.886 73.886	51.00 50.85 51.00	18.036 23.036 22.886 AVG = 21.320	1397 1.094 1101 AVG = 1182

Table B-5 : Experimental Data of Heat Transfer to Saturated Pool Boilding of 31.1 wt.% Ethanol in Ethanol - Water Mixture at 98.63 kN/m²(T_{g} =83.7°C)

Run No•	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. °C	Corrected Wall Temp. ^O C	Liquid Temp. O _C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
99	13027.99	1.042	97.10 100.95 98.60	96.058 99.908 99.758	85.25 85.15 85.15	10.808 14.758 13.450 AVG =13.000	1205 883 969 AVG = 1002
100	16717.56	1.337	98.70 103.50 99.95	97.363 102.163 98.613	85.40 85.25 85.40	11.963 16.913 13.213 AVG =14.030	1397 988 1265 AVG = 1192
101	20865.14	1.668	100.10 104.60 102.85	98.432 102.932 101.182	85.80 85.65 85.70	12.632 17.282 15.482 AVG =15.132	1652 1207 1348 AVG = 1379
102	25190.84	2.014	101.75 105.80 105.00	99.736 103.786 102.986	86.10 85.90 86.20	13.636 17.886 16.786 AVG =16.103	1847 1408 1501 AVG = 1564
103	30534.35	2.441	103.65 108.00 106.25	101.210 105.560 103.809	86.65 86.45 86.65	14.559 19.109 17.159 AVG =16.942	2097 1598 1779 2 AVG = 1802

Table B-5: Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.1 wt.% Ethanol in Ethanol - Water Mixture at 66.64 kN/m²(T_s=74.1^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
104	13027.99	1.042	86.70 90.90 89.50	85.658 89.858 88.458	74.10 73.95 74.10	11.558 15.908 14.358 AVG =13.941	$ 1127 \\ 819 \\ 907 \\ AVG = 935 $
105	16946.56	1.355	88.60 93.80 92.85	87.245 92.445 91.495	74.40 74.30 74.40	12.845 18.145 17.095 AVG =16.028	1319 934 991 AVG = 1057
106	20865.14	1.668	90.73 96.00 94.90	89.062 94.332 93.232	75.00 74.85 75.15	14.062 19.482 18.082 AVG =17.209	1484 1071 1154 AVG = 1212
107	25190.84	2.014	92.60 98.20 97.10	90.586 96.186 95.086	75.40 75.40 75.45	15.186 20.786 19.636 AVG =18.536	1659 1212 1283 AVG = 1359
108	30534.35	2.441	93.80 99.30 99.30	91.359 96.860 96.860	76.00 75.90 76.05	15.360 20.959 20.809 AVG =19.043	1988 1457 1467 AVG = 1603

Table B-5: Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.1 wt.% Ethanol in Ethanol - Water Mixture at 50.65 kN/m²(T_s=67.7°C)

Run No.	Heat Flux W/m ²	Conduction Correction C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
109	13027.99	1.042	80.85 86.00 83.45	79.808 84.958 82.408	67.70 67.58 67.85	12.108 17.378 14.558 AVG =14.681	1076 750 895 AVG = 887
110	16946.56	1.355	83.50 89.25 87.50	82.145 87.895 86.145	68.20 68.20 68.40	13.945 19.695 17.745 AVG =17.130	1215 860 955 AVG = 989
111	20865.14	1.668	86.58 91.08 90.00	84.912 89.412 88.332	68.65 68.65 68.88	16.262 20.762 19.452 AVG =18.825	1283 1005 1073 AVG = 1108
112	25190.84	2.014	88.10 93.50 92.30	86.086 91.486 90.286	69.00 69.10 69.10	17.086 22.386 21.186 AVG = 20.219	1474 1125 1189 AVG = 1246
113	30534.35	2.441	89.85 94.45 94.25	87.409 92.009 91.809	69.85 69.68 69.85	17.559 22.329 21.959 AVG =20.616	1739 1367 1390 AVG = 1481

Table B-5: Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.1 wt.% Ethanol in Ethanol - Water Mixture at 33.32 kN/m²(T_s=58.3^oC)

Run No.	He at Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C		leat Transfer Coefficient W/m ² K
114	9974.55	0.797	71.25 74.83 74.83	70.453 74.033 74.033	58.55 58.35 58.63	11.903 15.683 15.402 AVG =14.335	838 636 648 AVG = 696
115	12865.14	1.028	74.45 78.05 76.75	73.422 77.022 75.722	59.00 59.00 59.10	14.422 18.022 16.622 AVG =16.355	892 714 774 AVG = 787
116	16946.56	1.355	76.80 81.60 80.50	75.455 80.245 79.145	59.48 59.48 59.58	15.965 20.765 19.565 AVG =18.765	1061 816 866 AVG = 903
117	20610.69	1.648	78.90 82.03 83.20	77.252 80.382 81.552	59.83 59.70 59.70	17.422 20.682 21.852 AVG =19.985	1183 997 943 AVG = 1031
118	25190.84	2.014	81.70 83.75 84.45	79.686 81.740 82.440	59.92 59.80 59.92	19.766 21.940 22.516 AVG =21.410	1274 1148 1119 AVG = 1177

Table B-5: Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.1 wt.% Ethanol in Ethanol - Water Mixture at 22.66 kN/m²(T_s=51.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Vall Superheat ^O C	Heat Transfer Coefficient W/m ² K
119	9974.55	0.798	65.55 70.45 70.22	64.752 69.652 69.422	50.50 50.50 50.58	14.252 19.152 18.842 AVG =17.420	700 521 529 AVG = 573
120	13027 . 99	1.042	67.70 73.40 75.10	66.658 72.360 74.060	50.75 50.70 50.98	15.908 21.700 23.078 AVG =20.230	819 600 564 AVG = 644
121	16946.60	1.355	70.20 74.45 75.15	68.845 73.095 73.795	50.93 50.83 50.98	17.915 22.265 22.815 AVG = 21.000	946 761 743 AVG = 807
122	20865.14	1.668	72.75 75.00 75.15	71.082 73.332 73.482	51.05 50.93 51.20	20.03222.40222.282AVG = 21.572	1042 931 936 AVG = 967
123	25190.84	2.014	74.55 76.10 76.10	72.536 74.086 74.086	51.35 51.35 51.40	21.180 22.736 22.686 AVG =22.203	1189 1108 1110 & AVG = 1135

Table B-6: Experimental Data of Heat Transfer to Saturated Pool Boiling of 39.0 wt.% Ethanol in Ethanol - Water Mixture at 98.63 kN/m²(T_s=32.1^oC)

Run No•	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^o C	Heat Transfer Coefficient W/m ² K
124	10152.67	0.812	92.93 97.10 97.80	92.118 96.288 96.988	83.55 83.35 83.45	8.570 12.940 13.538 AVG =11.683	1185 785 750 & AVG = 869
1 25	13027.99	1.042	93.70 98.90 98.90	92.658 97.858 97.858	83.68 83.50 83.60	8.978 14.358 14.258 AVG =12.530	1451 907 914 0 AVG = 1040
126	16717.56	1.337	94.80 99.95 100.80	93.463 98.613 99.463	84.30 84.10 84.45	9.363 14.513 15.013 AVG =12.963	1785 1152 1114 3 AVG = 1290
127	20865.14	1.668	96.15 101.75 101.75	94.482 100.082 100.082	84.80 84.70 84.75	9.682 14.382 15.332 AVG =13.46	2155 1451 1361 5 AVG = 1550
128	24961.83	1.996	97.90 103.00 104.20	95.904 101.004 102.204	85.10 84.90 85.15	10.804 16.104 17.054 AVG =14.654	2310 1550 1464 4 AVG = 1703

Table B-6: Experimental Data of Heat Transfer to Saturated Pool Boiling of 39.0 wt.% Ethanol in Ethanol - Water Mixture at 66.64 kN/m²(T_s=72.6°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. OC	Corrected Wall Temp. ^O C	Liquid Temp. °C		at Transfer efficient W/m ² K
129	13231.55	1.058	85.20 88.80 88.60	84.142 87.742 87.542	72.95 72.83 72.95	11.192 14.912 14.592 AVG =13.565	1182 887 907 AVG = 975
130	16946.56	1.355	87.85 90.73 90.20	86.495 89.375 88.845	73.45 73.30 73.50	13.045 16.075 15.345 AVG =14.822	1299 1054 1104 AVG = 1143
131	20610.70	1.648	88.65 92.73 91.20	87.002 91.082 89.552	73.65 73.60 73.70	13.352 17.482 15.952 AVG =15.600	1543 1179 1292 AVG = 1321
132	25190.83	2.014	90.65 95.90 93.70	88.636 93.886 91.686	74.30 74.20 74.40	14.336 19.686 17.286 AVG =17.103	1757 1279 1457 AVG = 1473
133	30534.35	2.441	93.10 97.35 97.35	90.659 94.909 94.909	74.95 74.85 75.10	15.709 20.059 19.809 AVG =18.525	1944 1522 1541 AVG = 1648

Table B-6: Experimental Data of Heat Transfer to Saturated Pool Boiling of 39.0 wt.% Ethanol in Ethanol - Water Mixture at 48.0 kN/m²(T_s=65.8°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C		Heat Transfer Coefficient W/m ² K
134	10152.67	0.812	78.98 82.60 81.90	78.168 81.788 81.088	66.83 66.83 66.95	11.338 15.158 14.138 AVG =13.545	895 670 718 AVG = 750
135	13027.99	1.042	80 • 25 84 • 35 83 • 60	79.208 83.308 82.558	67.00 66.83 67.00	12.208 16.478 15.558 AVG =14.750	1067 791 837 AVG = 883
136	16717.56	1.337	81.55 86.45 84.80	80.213 85.113 83.463	67.30 67.15 67.55	12.913 17.963 15.913 AVG =15.600	1295 931 1051 AVG = 1072
137	20865.14	1.668	83.15 88.60 87.15	81.482 86.932 85.482	67.85 67.75 68.00	13.632 19.182 17.482 AVG =16.765	1531 1088 1194 AVG = 1245
138	25750.64	2.059	86.20 91.08 88.10	84.141 89.021 86.041	68.20 68.20 68.35	15.941 20.821 17.691 AVG =18.151	1615 1237 1456 AVG = 1419

Table B-6: Experimental Data of Heat Transfer to Saturated Pool Boiling of 39.0 wt.% Ethanol in Ethanol - Water Mixture at 36.0 kN/m²(T_s=58.4^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^o c	Corrected Wall Temp. ^O C	Liquid Temp. ^O C		eat Transfer pefficient W/m ² K
139	12946.56	1.035	74.60 77.25 77.85	73.565 76.215 76.815	59.50 59.25 59.40	14.065 16.965 17.415 AVG =16.150	920 763 743 AVG = 802
140	16946.56	1.355	76.00 78.60 79.40	74.645 77.245 78.045	59.62 59.62 59.80	15.025 17.625 18.245 AVG =16.965	1128 961 929 AVG = 999
141	20865.14	1.668	77.95 80.80 81.70	76.282 79.132 80.032	60.10 60.10 60.15	16.182 19.032 19.882 AVG =18.360	1290 1096 1049 AVG = 1136
142	25190.84	2.014	79.45 82.60 82.60	77.436 80.586 80.586	60.40 60.28 60.40	17.036 20.306 20.186 AVG =19.180	1478 1240 1248 AVG = 1313
143	30534.35	2.441	81.85 84.35 85.90	79.409 81.909 83.460	61.00 60.85 61.10	18.409 21.059 22.360 AVG =20.610	1659 1450 1366 AVG = 1482

Table B-6: Experimental Data of Heat Transfer to Saturated Pool Boiling of 39.0 wt.% Ethanol in Ethanol - Water Mixture at 25.33 kN/m²(T_s=53.2°C)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Well Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C		at Transfer efficient W/m ² K
144	12946.60	1.035	67.15 71.70 70.95	66.115 70.915 69.915	51.60 51.40 51.65	14.520 19.270 18.265 AVG =17.350	892 672 709 AVG = 746
145	16717.56	1.337	68.40 73.70 73.70	67.063 72.363 72.363	51.95 51.90 52.00	15.113 20.463 20.363 AVG =18.650	1106 817 821 AVG = 896
146	20865.14	1.668	70.15 75.87 76.40	68.482 74.202 74.732	52.40 52.40 52.50	16.082 21.802 22.232 AVG = 20.040	1297 957 939 AVG = 1041
147	25190.84	2.014	73.15 77.00 77.20	71.136 74.986 75.186	52.85 52.65 52.85	18.286 22.336 22.336 AVG =20.986	1377 1128 1128 AVG = 1200

Table B-7: Experimental Data of Heat Transfer to Saturated Pool Boiling of 52.3 wt.% Ethanol in Ethanol - Water Mixture at 98.63 kN/m²(T_s=80.7°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^o C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
148	10152.67	0.812	91.25 94.90 95.55	90.438 94.088 94.738	82.35 82.05 82.35	8.088 12.038 12.388 AVG =10.838	1255 843 819 & AVG = 937
149	12865.14	1.030	92.30 96.10 97.25	91.270 95.070 96.220	82.75 82.35 82.70	8.520 12.720 13.520 AVG =11.590	1510 1011 952 AVG = 1110
150	17674.30	1.413	93.25 97.40 98.20	91.837 95.987 96.787	82.90 82.60 82.60	8.937 13.387 14.187 AVG =12.170	1978 1320 1245 AVG = 1452
151	21119.59	1.690	95.00 98.65 99.90	93.310 96.960 98.210	83.50 83.35 83.55	9.810 13.610 14.660 AVG =12.690	$2153 \\ 1552 \\ 1441 \\ AVG = 1664$
152	25610.70	2.048	97.50 100.30 101.05	95.452 98.252 99.002	83.90 83.80 83.90	11.552 14.452 15.102 AVG =13.702	$2217 \\ 1772 \\ 1696 \\ 2 AVG = 1869 $

Table B-7 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 52.3 wt.% Ethanol in Ethanol - Water Mixture at 66.64 kN/m²(T_s=71.1^oC)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
153	12946.56	1.035	83.90 87.80 85.50	82.865 86.765 84.465	72.00 71.90 72.20	10.865 14.865 12.265 AVG =12.669	1192 871 1056 5 AVG = 1022
154	16946.60	1.355	85.95 88.45 86.80	84.595 87.095 85.445	72.20 72.05 72.25	12.395 15.045 13.195 AVG =13.545	1367 1126 1284 5 AVG = 1251
155	20610.70	1.648	87.25 91.30 88.70	85.602 89.652 87.052	72.70 72.28 72.83	12.902 17.372 14.222 AVG =14.83	1597 1186 1449 2 AVG = 1390
156	25470.73	2.036	88.10 92.20 90.05	86.064 90.164 88.014	72.83 72.70 72.83	13.234 17.464 15.184 AVG =15.294	1925 1458 1677 4 AVG = 1665
157	30229.00	2.417	89.35 93.10 93.10	86.933 90.683 90.683	73.10 72.95 73.18	13.833 17.733 17.503 AVG =16.35	2185 1705 17?7 6 AVG = 1848

Table B-7: Experimental Data of Heat Transfer to Saturated Pool Boiling of 52.3 wt.% Ethanol in Ethanol - Water Mixture at 46.65 kN/m²(T_s=63.6^oC)

Run No•	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
158	13129.77	1.050	76.90 81.60 80.50	75.850 80.550 79.450	64.90 64.70 64.90	10.950 15.850 14,550 AVG =13.78	1199 828 902 3 AVG = 953
159	16946.56	1.355	77.95 82.92 82.63	76.595 81.565 81.275	65.13 65.13 65.23	11.465 16.435 16.045 AVG =14.650	1477 1031 1056 2 AVG = 1157
160	20865.14	1.668	79.70 84.00 84.85	78.032 82.332 83.182	65.90 65.80 66.10	12.132 16.532 17.082 AVG =15.250	1720 1262 1221 D AVG = 1368
16 1	25190.83	2.014	81.50 86.25 87.00	79.486 84.236 84.986	66.50 66.10 66.25	12.986 18.136 18.736 ∆VG =16.620	1939 1389 1344 D AVG = 1516
162	30534.35	2.441	83.25 88.88 89.00	80.809 86.439 86.559	66.98 66.83 67.10	13.829 19.609 19.459 AVG =17.63;	2208 1557 1569 2 AVG = 1732

Table B-7 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 52.3 wt.% Ethanol in Ethanol - Water Mixture at 33.32 kN/m²(T_s=55.2°C)

Run No.	He at Fl ux W/m^2	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
163	13435.11	1.074	68.20 73.05 73.05	67.126 71.976 71.976	55.68 55.68 55.78	11.446 16.296 16.196 AVG =14.650	1174 824 829 AVG = 917
164	16946.56	1.355	70.20 75.55 76.00	68.845 74.195 74.645	56.00 55.78 55.88	12.845 18.415 18.765 AVG =16.675	1319 920 903 AVG = 1016
165	20865.14	1.668	71.68 77.40 78.60	70.012 75.7 3 2 76.932	56.40 56.25 56.50	13.612 19.482 20.432 AVG =17.842	1533 1071 1021 AVG = 1169
166	25190.83	2.014	74.43 78.57 79.55	72.416 76.556 77.536	56.85 56.50 56.80	15.566 20.056 20.736 AVG =18.786	1618 1256 1215 AVG = 1341
167	30534.35	2.441	75.90 80.30 81.60	73.460 77.860 79.160	57.15 57.03 57.28	16.310 20.830 22.130 AVG =19.757	1872 1466 1380 AVG = 1546

Table B-7: Experimental Data of Heat Transfer to Saturated Pool Boiling of 52.3 wt.% Ethanol in Ethanol - Water Mixture at 22.66 kN/m²(T_s=48.1°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Well Temp. ^O C	Corrected Well Temp. ^O C	Liquid Temp. °C	Wall Supe <mark>rhcat</mark> ^O C	Heat Transfer Coefficient W/m ² K
168	13027.98	1.042	64.15 68.10 68.10	63.108 67.058 67.058	50.47 50.23 50.58	12.640 16.828 16.478 AVG =15.315	1031 774 761 AVG = 851
169	16946.56	1.355	67.40 72.50 70.55	66.045 71.145 69.195	51.05 50.93 51.22	14.995 20.215 17.975 AVG =17.730	1130 838 943 AVG = 956
170	20865.13	1.668	68.43 75.43 73.68	66.762 73.762 72.012	51.35 51.18 51.35	15.412 22.582 20.662 AVG =19.552	1354 924 1010 AVG = 1067
171	25190.83	2.014	70.00 76.60 75.10	67.986 74.586 73.086	52.00 51.90 52.13	15.986 22.686 20.956 AVG =19.880	1576 1110 1202 AVG = 1267

Table B-8: Experimental Data of Heat Transfer to Saturated Pool Boiling of 71.88 wt.% Ethanol in Ethanol - Water Mixture at 98.63 kN/m²(T_s=78.9°)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
172	13027.99	1.042	88.55 92.20 90.70	87.508 91.160 89.658	79.70 79.58 79.80	7.808 11.578 9.858 AVG = 9.750	1669 1125 1322 AVG = 1336
173	16488.55	1.320	90.55 93.05 91.75	89.230 91.730 90.430	79.90 79.65 79.95	9.330 12.080 10.480 AVG =10.630	1767 1365 1573 AVG = 1551
174	19824.42	1.585	91.30 94.80 92.93	89.715 93.215 91.345	80.30 80.05 80.40	9.415 13.165 10.945 AVG =11.175	2106 1506 1811 AVG = 1774
175	26218.83	2.096	92.65 97.10 95.30	90.554 95.004 93.204	80.60 80.50 80.60	9.954 14.504 12.604 AVG =12.354	2634 1808 2080 AVG = 2122

Table B-8:Experimental Data of Heat Transfer to Saturated Pool Boiling of 71.88 wt.%Ethanol in Ethanol - Water Mixture at 69.31 kN/m²(Ts=70.4°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp, ^O C	Corrected Well Temp. ^O C	Liquid Temp. °C	Well Superheat ^O C	Heat Transfer Coefficient W/m ² K
176	13231.56	1.058	82.40 85.30 83.30	81.342 84.242 82.242	71.40 71.20 71.47	9.942 13.042 10.772 AVG =11.252	1331 1015 1228 AVG = 1176
177	16488.55	1.320	83.45 86.10 84.25	82.130 84.780 82.930	71.47 71.35 71.47	10.660 13.430 11.460 AVG =11.850	1547 1228 1439 AVG = 1391
178	20865.13	l.668	84.90 87.25 86.30	83.232 85.582 84.632	72.00 72.00 72.15	11.232 13.582 12.482 AVG =12.432	1858 1536 1672 AVG = 1678
179	25190.83	2.014	86.40 88.45 87.85	84.386 86.436 85.836	72.25 72.15 72.30	12.136 14.286 13.536 AVG =13.320	2076 1763 1861 AVG = 1891
180	30534.35	2.441	87.60 90.55 90.25	85.160 88.110 87.810	72.70 72.60 72.70	12.460 15.510 15.110 AVG =14.360	2451 1969 2021 AVG = 2126

Table B-8:Experimental Data of Heat Transfer to Saturated Pool Boiling of 71.88 wt.%Ethanol in Ethanol - Water Mixture at 48.0 kN/m²(T_s=62.7°C)

Run No.	Heat Flux W/m ²	Conduction Correction C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C		Heat Trensfer coefficient W/m ² K
181	13027.99	1.042	76.50 79.03 76.90	75.458 77.988 75.858	63.72 63.50 63. 83	11.738 14.488 12.028 AVG =12.752	1110 899 1083 AVG = 1022
182	16717.55	1.337	78.05 80.50 78.68	76.713 79.163 77.343	63.83 63.58 63.83	12.883 15.583 13.513 AVG =13.993	1298 1073 1237 AVG = 1195
183	20865.14	1.668	79.45 81.85 80.60	77.782 80.182 78.932	64.10 63.90 64.18	13.682 16.282 14.752 AVG =14.905	1525 1281 1414 AVG = 1400
184	26218.83	2.096	81.20 83.30 83.30	79.104 81.204 81.204	64.50 64.30 64.65	14.604 16.904 16.554 AVG =16.021	1795 1551 1584 AVG = 1637

Table B-8: Experimental Data of Heat Transfer to Saturated Pool Boiling of 71.88 wt.% Ethanol in Ethanol - Water Mixture at 33.32 kN/m²(T_s=54.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^o C	Heat Transfer Coefficient W/m ² K
185	16717.55	l.337	68.50 72.60 70.50	67.163 71.263 69.163	54.53 54.53 54.65	12.633 16.733 14.513 AVG =14.626	1323 999 1152 5 AVG = 1143
186	20865.14	1.670	70.65 74.00 71.80	68.980 72.330 70.130	54.70 54.58 54.70	14.300 17.750 15.430 AVG =15.830	1459 1176 1352 AVG = 1318
187	25190.83	2.014	72.25 75.40 73.58	70.236 73.386 71.566	54.95 54.95 55.10	15.286 18.436 16.466 AVG =16.730	1648 1366 1530 AVG = 1506

CONTE OF TECHNICS

Table B-8: Experimental Data of Heat Transfer to Saturated Pool Boiling of 71.88 wt.% Ethanol in Ethanol - Water Mixture at 18.66 kN/m²(T_s=41.7°C)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Heat Transfer Coefficient W/m ² K	Wall Superheat ^O C	Liquid Temp. ^O C	Corrected Wall Temp. °C	Recorded Well Temp. ^O C	Conduction Correction ^O C	Heat Flux W/m ²	Run No.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1259 999 939 AVG = 1049	16.548	45.98	62.528	63.85	1.322	16531.80	188
4.900	1491 1196 1149 AVG = 1262	17.452 18.162	47.15	64.602	66.27	1.668	20865.13	189
69.90 67.886 47.85 20.036 AVG =17.936	1687 1337 1257 AVG = 1405	18.836 20.036	47.60	66.436	68.45	2.014	25190.83	190

Table B-9: Experimental Data of Heat Transfer to Saturated Pool Boiling of Methanol at 98.63 $kN/m^2(T_s=64.0^{\circ}C)$

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. O _C	Wall Superheat ^O C	Heat Transfer Coefficient V/m ² K
191	9618.32	0.769	76.00 75.10 73.35	75.231 74.331 72.581	66.50 66.10 66.45	8.731 8.231 6.131 AVG = 7.698	1102 1169 1569 AVG = 1249
192	12620.90	1.009	77.60 75.25 74.10	76.600 74.250 73.100	66.85 66.25 66.85	10.750 8.000 6.250 AVG = 8.333	1174 1578 2019 AVG = 1515
193	16259.50	1.300	79.35 76.45 74.65	78.050 75.150 73.350	66.95 66.25 66.85	11.100 8.900 6.500 AVG = 8.833	1465 1827 2501 AVG = 1841
194	20356.20	1.627	81.90 77.55 75.85	80.273 75.923 74.223	67.40 66.80 67.30	12.873 9.123 6.923 AVG = 9.640	1581 2231 2940 AVG = 2112
195	24910.90	1.990	83.50 79.00 77.25	81.510 77.010 75.260	67.70 66.85 67.45	13.810 10.160 7.810 AVG =10.593	1804 2452 3190 AVG = 2352

Table B-9 : Experimental Data of Heat Transfer to Saturated Pool Boiling of Methanol at 66.64 kN/m²(T_s=55.2°C)

				the second s			
Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
196	9618.32	0.769	66.80 64.50 64.62	66.031 63.731 63.851	55.83 55.10 55.75	10.201 8.631 8.101 AVG = 8.978	943 1114 1187 AVG = 1071
197	12824.43	1.025	67.20 65.10 65.70	66.175 64.075 64.675	55.90 55.15 55.75	10.275 8.925 8.925 AVG = 9.375	1248 1437 1437 AVG = 1368
198	16488.55	1.320	68.90 65.80 65.80	67.580 64.480 64.480	55.95 55.20 55.65	11.630 9.280 8.830 AVG = 9.913	1418 1777 1867 AVG = 1663
199	20356.23	1.627	69.60 68.10 67.55	67.973 66.473 65.923	56.05 55.65 55.85	11.923 10.823 10.073 AVG =10.940	1707 1881 2021 AVG = 1861
200	24910.94	1.990	71.60 68.55 67.65	69.610 66.560 65.660	56.10 55.65 55.85	13.510 10.910 9.810 AVG =11.410	1844 2283 2539 AVG = 2183

Table B-9 : Experimental Data of Heat Transfer to Saturated Pool Boiling of Methanol at 50.65 kN/m²(T_s=49.1^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^o C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
201	9618.32	2 0.769	59.45 58.80 58.70	58.681 58.031 57.931	49.40 49.05 49.25	9.281 8.981 8.681 AVG = 8.981	1036 1071 1108 AVG = 1071
202	12620.86	5 1.009	61.25 60.15 60.25	60.250 59.150 59.250	49.45 49.05 49.30	10.800 10.100 9.950 AVG =10.280	1169 1250 1268 AVG = 1228
203	16259.50	1.300	62.50 61.15 60.85	61.200 59.850 59.550	49.40 49.05 49.25	11.800 10.800 10.300 AVG =10.970	1378 1506 1579 AVG = 1482
204	20356.20	1.6 27	64.75 62.70 61.85	63.123 61.073 60.223	49.50 49.25 49.35	13.623 11.823 10.873 AVG =12.106	1494 1722 1872 AVG = 1682
205	24631.00) 1.970	67.90 64.85 63.60	65.930 62.880 61.630	50.65 50.70 50.70	15.280 12.180 10.930 AVG =12.800	1612 2022 2254 AVG = 1924

Table B-9: Experimental Data of Heat Transfer to Saturated Pool Boiling of Methanol at 34.65 kN/m²(T_s=40.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
206	9618.32	0.769	50.75 51.40 52.70	49.981 50.631 51.931	40.95 40.70 40.95	9.031 9.931 10.981 AVG = 9.981	1065 969 876 AVG = 964
207	12824.43	1.025	53.55 54.25 54.35	52.525 53.225 53.325	42.20 41.95 42.10	10.325 11.275 11.225 AVG =10.942	1242 1137 1142 AVG = 1172
208	16259.54	1.300	54.85 55.30 54.98	53.550 54.000 53.680	41.95 41.95 42.20	11.600 12.050 11.480 AVG =11.710	1402 1349 1416 AVG = 1389
209	20356.20	1.627	55.90 56.65 55.90	54.273 55.023 54.273	42.25 42.20 42.30	12.023 12.823 11.973 AVG =12.273	1693 1587 1700 AVG = 1659
210	24631.00	1.970	56.95 57.90 57.70	54.980 55.930 55.730	42.30 42.28 42.30	12.680 13.650 13.450 AVG =13.260	1943 1804 1831 AVG = 1858

Table B-9: Experimental Data of Heat Transfer to Saturated Pool Boiling of Methanol at 25.33 kN/m²(T_s=32.8^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. OC	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
211	9618.32	0.769	45.75 47.15 47.95	44.981 46.381 47.181	35.65 35.55 35.55	9.331 10.831 11.631 AVG =10.600	1031 888 827 AVG = 907
212	12824.43	1.025	47.15 48.20 48.80	46.125 47.175 47.775	35.70 35.40 35.60	10.425 11.775 12.175 AVG =11.460	1230 1089 1053 AVG = 1119
213	16259.50	1.300	49.50 50.35 50.35	48.200 49.050 49.050	36.40 36.35 36.35	11.800 12.700 12.700 AVG =12.400	1378 1280 1280 AVG = 1311
214	20101.80	1.610	50.95 51.45 51.85	49.340 49.840 50.240	36.60 36.50 36.50	12.740 13.340 13.740 AVG =13.273	1578 1507 1463 AVG = 1515

Table B-10: Experimental Data of Heat Transfer to Saturated Pool Boiling of 8.56 wt. % Methanol in Methanol - Water Mixture at 98.63 kN/m²(T_s=92.3°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
215	9618.32	0.769	98.10 97.25 99.70	97.331 96.481 98.931	92.15 91.30 91.55	5.181 5.181 7.381 AVG = 5.914	1856 1856 1303 AVG = 1626
216	12620.90	1.009	99.25 99.25 101.00	98.241 98.241 99.991	92.65 92.25 92.80	5.591 5.991 7.191 AVG = 6.260	2257 2107 1755 AVG = 2016
217	16488.55	1.320	100.90 100.15 101.85	99.580 98.830 100.530	92.90 92.30 92.60	6.680 6.530 7.930 AVG = 7.047	2468 2525 2079 AVG = 2340
218	20356.20	1.627	101.45 101.30 102.70	99.823 99.673 101.073	93.15 92.70 92.85	6.673 6.973 8.223 AVG = 7.290	3051 2919 2476 AVG = 2792
219	24631.00	1.969	102.80 102.40 103.90	100.831 100.431 101.931	93.50 93.30 93.50	7.331 7.131 8.431 AVG = 7.631	3360 3454 2921 AVG = 3228

Table B-10: Experimental Data of Heat Transfer to Saturated Pool Boiling of 8.56 wt. % Methanol in Methanol - Water Mixture at 66.64 kN/m²(T_s=81.2°C)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
220	9618.32	0.769	90.20 90.90 92.70	89.431 90.131 91.931	84.10 83.35 84.00	5.3 <mark>31</mark> 6.781 7.931 AVG = 6.683	1804 1418 1213 AVG = 1440
221	12824.40	1.025	90.65 91.95 93.95	89.625 90.925 92.925	84.25 83.90 84.10	5.375 7.025 8.825 AVG = 7.075	2386 1826 1453 5 AVG = 1813
222	16488.55	1.320	92.40 93.20 95.25	91.08 91.88 93.93	84.90 83.80 84.45	6.180 8.080 9.480 AVG = 7.913	2668 2041 1739 3 AVG = 2084
223	20356.23	1.627	93.35 93.90 96.10	91.723 92.273 94.473	85.15 84.00 84.45	6.573 8.273 10.023 AVG = 8,290	$\begin{array}{r} 3097 \\ 2461 \\ 2031 \\ AVG = 2456 \end{array}$
224	24910.94	1.990	94.75 95.90 97.20	92.760 93.910 95.210	85.40 84.25 84.70	7.360 9.660 10.510 AVG = 9.17	3385 2579 2370 7 AVG = 2715

Table B-10: Experimental Data of Heat Transfer to Saturated Pool Boiling of 8.56 wt. % Methanol in Methanol - Water Mixture at 50.65 kN/m²(T_s=74.7^oC)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
225	9618.32	0.769	82.35 82.15 84.50	81.581 81.381 83.731	75.00 74.40 74.70	6.581 6.981 9.031 AVG = 7.531	1462 1378 1065 AVG = 1277
226	12824.43	1.025	83.65 83.35 86.10	82.625 82.325 85.075	75.33 74.90 75.20	7.295 7.425 9.875 AVG = 8.198	1758 1727 1299 3 AVG = 1564
227 •	16488.55	1.320	85.20 84.90 87.40	83.880 83.580 86.080	75.55 75.00 75.35	8.330 8.580 10.730 AVG = 9.213	1979 1921 1537 AVG = 1790
228	20356.23	1.627	86.50 86.25 87.85	84.973 84.623 86.223	75.80 75.20 75.35	9.173 9.423 10.873 AVG = 9.823	2219 2160 1872 AVG = 2072
229	25050.00	2.000	88.35 87.90 89.80	86.350 85.900 87.800	76.50 75.90 76.25	9.850 10.000 11.550 AVG =10.470	2543 2505 2169 AVG = 2393

Table B-10: Experimental Data of Heat Transfer to Saturated Pool Boiling of 8.56 wt. % Methanol in Methanol - Water Mixture at 33.32 kN/m²(T_s=65.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^o C	Heat Transfer Coefficient W/m ² K
230	9618.32	0.769	74.40 74.00 76.90	73.631 73.231 76.131	66.40 65.80 66.15	7.231 7.431 9.981 AVG = 8.214	1330 1294 964 4 AVG = 1171
231	12620.87	1.009	75.25 75.00 78.25	74.250 74.000 77.250	66.55 66.20 66.35	7.700 7.800 10.900 AVG = 8.800	1639 1618 1158 AVG = 1434
232	16488.55	1.320	76.78 76.70 79.55	75.460 75.380 78.230	66.90 66.62 66.75	8.560 8.760 11.480 AVG = 9.600	1926 1882 1436 AVG = 1718
233	20356.23	1.627	78.55 78.55 80.40	76.923 76.923 78.773	67.10 66.80 66.95	9.823 10.123 11.823 AVG =10.589	2072 2011 1722 AVG = 1922
234	24631.00	1.970	80.00 79.85 81.70	78.030 77.880 79.730	67.45 67.20 67.45	10.580 10.680 12.280 AVG =11.180	2328 2306 2006 AVG = 2203

Table B-10: Experimental Data of Heat Transfer to Saturated Pool Boiling of 8.56 wt. % Methanol in Methanol - Water Mixture at 25.33 kN/m²(T_s=59.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
235	9618.32	0.769	69.48 69.10 72.20	68.711 68.331 71.431	61.20 60.40 60.90	7.511 7.931 10.531 AVG = 8.65	1281 1213 913 8 AVG = 1111
236	12926.20	1.033	70.80 71.20 73.45	69.767 70.167 72.417	61.55 61.22 61.40	8.217 8.947 11.017 AVG = 9.39	1573 1445 1173 4 AVG = 1376
237	16488.55	1.320	72.40 72.70 75.03	71.080 71.380 73.710	61.85 61.65 61.85	9.230 9.730 11.860 AVG =10.27	1786 1695 1390 3 AVG = 1605
238	20356.23	1.627	74.25 74.25 76.65	72.623 72.623 75.023	62.20 62.10 62.40	10.423 10.533 12.623 AVG =11.20	1953 1933 1613 0 AVG = 1818

Table B-11: Experimental Data of Heat Transfer to Saturated Pool Boiling of 16.5 wt.% Methanol in Methanol - Water Mixture at 98.63 kN/m²(T_s=87.7°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat OC	Heat Transfer Coefficient W/m ² K
239	9618.32	0.769	97.85 96.00 98.20	97.081 95.231 97.431	87.85 86.70 87.80	9.231 8.531 9.631 AVG = 9.13	1042 1127 999 1 AVG = 1053
240	12926.20	1.033	99.05 97.75 99.30	98.017 96.717 98.267	88.30 87.40 88.00	9.717 9.317 10.267 AVG = 9.76	1330 1387 1259 7 AVG = 1323
241	16488.55	1.320	100.25 99.35 101.05	98.930 98.030 99.730	88.40 88.25 88.40	10.530 9.780 11.330 AVG =10.55	1566 1686 1455 0 AVG = 1563
242	20356.20	1.627	101.40 100.58 102.25	99.773 98.953 100.623	88.55 88.35 88.45	11.223 10.603 12.173 AVG =11.33	1814 1920 1672 0 AVG = 1797
243	24910.24	1.990	102.95 101.80 103.70	100.960 99.810 101.710	89.00 88.45 88.70	11.960 11.360 13.010 AVG =12.11	2083 2193 1915 0 AVG = 2057

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. OC	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
244	9618.32	0.769	88.20 86.90 88.50	87.431 86.131 87.731	77.20 76.80 76.95	10.231 9.331 10.781 AVG =10.11	940 1031 892 4 AVG = 951
245	12824.43	1.025	89.80 88.55 90.50	88.775 87.525 89.475	77.55 77.13 77.55	11.225 10.395 11.925 AVG =11.18	1142 1234 1075 0 AVG = 1147
246	16488.55	1.320	91.10 89.25 92.50	89.780 87.930 91.180	78.00 77.50 77.75	11.780 10.430 13.430 AVG =11.88	1400 1581 1228 0 AVG = 1388
247	20356.20	1.627	92.15 91.35 92.95	90.523 89.723 91.323	78.15 77.80 78.00	12.373 11.923 13.323 AVG =12.54	1645 1707 1528 0 AVG = 1623
248	24910.90	1.990	93.30 92.10 94.20	91.310 90.110 92.210	78.45 78.28 78.45	12.860 11.830 13.760 AVG =12.82	1937 2106 1810 0 AVG = 1943

Table B-11: Experimental Data of Heat Transfer to Saturated Pool Boiling of 16.5 wt.% Methanol in Methanol - Water Mixture at 66.64 kN/m²(T_s=76.0°C)

Table B-ll : Experimental Data of Heat Transfer to Saturated Pool Boiling of 16.5 wt. % Methanol in Methanol - Water Mixture at 50.65 kN/m²(T_s=70.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^o C	Heat Transfer Coefficient W/m ² K
249	9618.32	0.769	82.90 81.70 83.30	82.131 80.931 82.531	70.78 70.60 70.68	11.351 10.331 11.851 AVG =11.18	847 931 812 30 AVG = 860
250	12824.43	1.025	84.15 83.75 84.45	83.125 82.725 83.425	71.10 70.90 71.03	12.025 11.825 12.395 AVG =12.08	1066 1085 1035 32 AVG = 1061
251	16488.55	1.320	85.65 84.85 86.55	84.330 83.530 85.230	71.35 71.25 71.35	12.980 12.280 13.890 AVG =13.09	1270 1343 1187 50 AVG = 1264
252	20356.23	1.627	86.70 86.70 87.40	85.073 85.073 85.773	71.65 71.50 71.55	13.423 13.573 14.223 AVG =13.74	1517 1500 1431 40 AVG = 1482
253	2491 0. 90	1.990	88.30 88.00 89.20	86.310 86.010 87.210	72.00 71.75 71.90	14.310 14.260 15.310 AVG =14.63	174 1 1747 1627 30 AVG = 1703

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C		Heat Transfer Coefficient W/m ² K
254	9618.32	0.769	73.35 72.80 73.65	72.581 72.031 72.881	60.60 60.05 60.35	11.981 11.981 12.531 AVG =12.164	803 803 768 AVG = 791
255	12620.90	1.009	74.70 74.70 75.15	73.700 7 3. 700 74.150	60.75 60.65 60.75	12.950 13.050 13.400 AVG =13.130	975 967 942 AVG = 961
256	16488.55	1.320	76.15 76.80 76.95	75.330 75.480 75.630	61.55 61.25 61.50	13.780 14.230 14.380 AVG =14.130	1197 1159 1147 AVG = 1167
257	20356.23	1.627	78.10 78.60 79.35	76.473 76.973 77.723	61.80 61.67 61.80	14.673 15.303 15.923 AVG =15.300	1387 1330 1278 AVG = 1331
			2mg	E OF TECHNE	200		

Table B-11: Experimental Data of Heat Transfer to Saturated Pool Boiling of 16.5 wt.% Methanol in Methanol - Water Mixture at 33.32 kN/m²(T_s=60.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
258	12620.90	1.009	69.55 70.28 71.85	68.550 69.280 70.850	55.05 54.92 54.92	13.500 14.360 15.930 AVG =14.60	935 879 792 00 AVG = 864
259	16488.55	1.320	71.05 71.90 73.10	69.730 70.580 71.780	55.45 55.25 55.40	14.280 15.330 16.380 AVG =15.33	1155 1076 1007 0 AVG = 1076
260	20356.23	1.627	72.65 73.50 74.50	71.023 71.873 72.873	55.53 55.28 55.53	15.493 16.593 17.343 AVG =16.48	1314 1227 1174 30 AVG = 1235

Table B-11: Experimental Data of Heat Transfer to Saturated Pool Boiling of 16.5 wt.% Methanol in Methanol - Water Mixture at 25.33 kN/m²(T_s=54.0°C)

Table B-12: Experimental Data of Heat Transfer to Saturated Pool Boiling of 30.8 wt. % Methanol in Methanol - Water Mixture at 98.63 kN/m²(T_s =81.6^oC)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
261	9618.32	0.769	92.50 91.75 93.95	91.731 90.981 93.181	82.35 82.00 82.15	9.381 8.981 11.031 AVG = 9.798	1025 1071 872 AVG = 982
262	12824.43	1.025	93.80 92.40 95.90	92.775 91.375 94.875	82.70 82.30 82.50	10.075 9.075 12.375 AVG =10.510	1273 1413 1036 AVG = 1220
263	16488.55	1.320	95.35 94.75 97.10	94.030 93.430 95.780	82.95 82.60 82.80	11.080 10.830 12.980 AVG =11.630	1488 1522 1270 AVG = 1418
264	20610.70	1.648	96.50 96.05 98.05	94.852 94.402 96.402	83.23 82.90 83.23	11.622 11.502 13.172 AVG = 12.100	1773 1792 1565 AVG = 1703
265	24910.94	1.992	98.25 97.90 99.70	96.258 95.908 97.708	83.65 83.35 83.45	12.608 12.558 14.258 AVG =13.141	1976 1984 1747 AVG = 1896

Table B-12 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 30.8 wt. % Methanol in Methanol - Water Mixture at 66.64 kN/m²(T_s=70.4°C)

Run No.	Heat Flux W/m ²	Conduction Correction	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^o C	Heat Transfer Coefficient W/m ² K
266	9618.32	0.769	82.25 81.85 83.45	81.481 81.081 82.681	70.95 70.65 70.80	10.531 10.431 11.881 AVG =10.95	913 922 810 0 AVG = 878
267	12824.43	1.025	83.80 83.50 84.50	82.775 82.475 83.475	71.28 70.85 71.05	11.495 11.625 12.425 AVG =11.85	1116 1103 1032 0 AVG = 1082
268	16488.55	1.320	85.45 84.20 86.00	84.130 82.880 84.680	71.50 70.90 71.25	12.630 11.980 13.430 AVG =12.68	1305 1376 1228 0 AVG = 1300
269	20356.23	1.627	86.70 86.10 87.30	85.073 84.473 85.673	71.80 71.45 71.45	13.273 13.023 14.223 AVG =13.51	$ 1534 \\ 1563 \\ 1431 \\ 0 AVG = 1507 $
270	25190.84	2.014	88.23 87.60 88.70	86.216 85.586 86.686	71.95 71.75 71.85	14.266 13.836 14.836 AVG =14.31	1766 1821 1698 3 AVG = 1760

Table B-12: Experimental Data of Heat Transfer to Saturated Pool Boiling of 30.8 wt. % Methanol in Methanol - Water Mixture at 50.65 kN/m²(T_s=64.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
271	9618.32	0.769	76.75 76.75 77.85	75.981 75.981 77.081	64.90 64.70 64.70	11.081 11.281 12.381 AVG =11.581	868 853 777 AVG = 831
272	12824.43	1.025	78.55 78.25 78.75	77.525 77.225 77.725	65.15 64.90 64.95	12.375 12.325 12.775 AVG =12.492	1036 1041 1004 2 AVG = 1027
273	16488.55	1.320	80.15 79.60 80.50	78.830 78.280 79.180	65.40 65.25 65.30	13.430 13.030 13.880 AVG =13.450	1228 1265 1188 AVG = 1226
274	20356.23	1.627	81.50 80.60 82.10	79.873 78.973 80.473	65.65 65.15 65.35	14.223 13.823 15.123 AVG =14.390	1431 1473 1346 AVG = 1415
275	24910.94	1.992	82.90 82.15 83.45	80.908 80.158 81.458	65.80 65.35 65.45	15.108 14.808 16.008 AVG =15.308	1649 1682 1556 3 AVG = 1627

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. OC	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
276	9618.32	0.769	67.95 66.85 68.20	67.181 66.081 67.431	54.45 54.25 54.35	12.731 11.831 13.081 AVG =12.55	756 813 735 0 AVG = 766
277	12620.90	1.009	69.55 69.00 70.45	68.55 68.00 69.45	54.80 54.65 54.80	13.750 13.350 14.650 AVG =13.92	918 945 862 0 AVG = 907
278	16488.55	1.320	71.03 70.55 72.33	69.710 69.230 71.010	55.00 54.92 55.15	14.710 14.310 15.860 AVG =14.96	1121 1152 1040 0 AVG = 1102
279	20356.23	1.627	72.55 72.20 73.10	70.923 70.573 71.473	55.40 55.20 55.40	15.523 15.373 16.073 AVG =15.66	1311 1324 1266 0 AVG = 1300
280	25239.19	2.020	74.10 73.70 75.00	72.080 71.680 72.980	55.80 55.45 55.75	16.280 16.230 17.230 AVG =16.58	1550 1555 1465 0 AVG = 1522

Table B-12: Experimental Data of Heat Transfer to Saturated Pool Boiling of 30.8 wt. % Methanol in Methanol - Water Mixture at 33.32 kN/m²(T_s=54.3°C)

Table B-12: Experimental Data of Heat Transfer to Saturated Pool Boiling of 30.8 wt. % Methanol in Methanol - Water Mixture at 29.32 kN/m²(T_s=51.4^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. OC	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
281	9796.44	0.783	64.55 64.20 65.45	63.767 63.417 64.667	50.30 50.10 50.25	13.470 13.317 14.417 AVG =13.73	$727 \\ 736 \\ 680 \\ 35 AVG = 713$
282	12824.43	1.025	66.30 65.35 66.75	65.275 64.325 65.725	50.55 50.25 50.25	14.725 14.075 15.475 AVG =14.70	871 911 829 60 AVG = 869
283	16488.55	1.320	68.30 67.45 68.80	66.980 66.130 67.480	50.85 50.85 50.90	16.130 15.280 16.580 AVG =16.00	1022 1079 994 00 AVG = 1031
284	20356.23	1.627	69.45 69.40 69.90	67.823 67.773 68.273	51.10 50.93 51.17	16.723 16.843 17.103 AVG =16.8	1217 1209 1190 90 AVG = 1205
			69.90	68.273	51.17		

Table B-13: Experimental Data of Heat Transfer to Saturated Pool Boiling of 43.24 wt. % Methanol in Methanol - Water Mixture at 98.63 kN/m²(T_s=78.1°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. OC	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
285	9618.32	0.769	89.65 89.00 90.75	88.881 88.231 89.981	79.55 79.35 79.55	9.331 8.881 10.431 AVG = 9.54	1031 1083 922 8 AVG = 1007
286	12417.30	0.993	90.75 90.15 92.70	89.757 89.157 91.707	80.00 79.70 79.80	9.757 9.457 11.907 AVG =10.37	1273 1313 1043 4 AVG = 1197
287	16030.53	1.282	92.50 91.30 94.05	91.218 90.018 92.768	80.50 80.15 80.25	10.718 9.868 12.518 AVG =11.03	1496 1624 1281 5 AVG = 1453
288	19847.33	1.587	93.80 93.05 95.60	92.213 91.463 94.013	80.80 80.65 80.75	11.413 10.813 13.263 AVG =11.83	1739 1836 1496 O. AVG = 1678
289	25190.84	2.014	95.25 94.70 97.10	93.236 92.686 95.086	81.05 80.90 81.05	12.186 11.786 14.036 AVG =12.67	2067 2137 1795 0 AVG = 1988

Experimental Data of Heat Transfer to Saturated Pool Boiling of 43.24 wt. %
Methanol in Methanol - Water Mixture at 66.64 kN/m ² (T _s =67.2°C)

.

Run No.	Heat Flux W/m ²	Conduction Correction O _C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C		leat Transfer Coefficient W/m ² K
290	9618.32	0.769	79.45 78.35 80.13	78.681 77.581 79.361	68.40 67.95 68.10	10.281 9.681 11.261 AVG =10.391	936 999 854 AVG = 926
291	12824.43	1.025	80.75 79.55 81.63	79.725 78.525 80.605	68.50 68.25 68.30	11.225 10.275 12.305 AVG =11.270	1142 1248 1042 AVG = 1138
292	16259.54	1.300	82.05 81.25 82.95	80.750 79.950 81.650	68.65 68.45 68.58	12.100 11.500 13.070 AVG =12.220	1344 1414 1244 AVG = 1331
293	20101.80	1.610	83.25 82.30 84.90	81.640 80.690 83.290	68.80 68.70 68.80	12.840 11.990 14.490 AVG =13.110	1566 1677 1387 AVG = 1533
294	25190.84	2.014	85.20 83.55 86.35	83.186 81.536 84.336	69.00 68.88 69.00	14.186 12.656 15.336 AVG =14.060	1776 1990 1643 AVG = 1792

Table B-13: Experimental Data of Heat Transfer to Saturated Pool Boiling of 43.24 wt. % Methanol in Methanol - Water Mixture at 50.65 kN/m²(T_s=60.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp.	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
295	9440.20	0.7555	72.20 71.75 73.10	71.445 70.995 72.345	60.75 60.55 60.85	10.695 10.445 11.495 AVG =10.880	883 904 821 AVG = 868
296	12620.90	1.009	73.60 73.15 75.00	72.591 72.141 73.991	61.05 60.83 61.10	11.541 11.311 12.891 AVG =11.914	1094 1116 979 AVG = 1059
297	16946.56	1.355	75.60 74.80 76.80	74.245 73.445 75.445	61.45 60.90 61.20	12.795 12.545 12.245 AVG =13.200	1324 1351 1384 AVG = 1284
298	20356.23	1.627	76.95 76.30 77.85	75.323 74.673 76.223	61.70 61.55 61.68	13.623 13.123 14.543 AVG =13.763	1494 1551 1400 AVG = 1479
			No.	OF TECHNIC	250		

Table B-13: Experimental Data of Heat Transfer to Saturated Pool Boiling of 43.24 wt. % Methanol in Methanol - Water Mixture at 33.32 kN/m²(T_s=51.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. OC		eat Transfer oefficient W/m ² K
299	9618.32	0.769	64.10 63.75 64.95	63 .331 62.981 64.181	51.25 50.93 51.15	12.081 12.051 13.031 AVG =12.390	796 798 738 AVG = 776
300	12824.43	1.025	65.65 65.10 66.65	64.625 64.075 65.625	51.45 51.30 51.40	13.175 12.775 14.225 AVG =13.392	973 1004 902 AVG = 958
301	16488.55	1.320	67.20 67.00 68.10	65.880 65.680 66.780	51.75 51.50 51.80	14.130 14.180 14.980 AVG =14.430	1167 1163 1101 AVG = 1143
302	19847.33	1.587	68.60 68.30 69.60	67.013 66.713 68.013	52.10 51.88 52.10	14.913 14.833 15.913 AVG =15.220	1331 1338 1247 AVG = 1304
303	25190.84	2.014	70.40 69.55 71.30	68.386 67.536 69.286	52.30 52.13 52.20	16.0 <mark>86</mark> 15.406 17.086 AVG =16.193	1566 1635 1474 3 AVG = 1556

Table B-13: Experimental Data of Heat Transfer to Saturated Pool Boiling of 43.24 wt. % Methanol in Methanol - Water Mixture at 25.33 kN/m²(T_s=45.5°C)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
304	9796.44	0.783	60.20 59.75 60.95	59.417 58.967 60.167	46.10 45.85 46.00	13.317 13.117 14.167 AVG =13.534	736 747 692 AVG = 724
305	12620.87	1.009	61.70 60.95 62.20	60.691 59.941 61.191	46.35 46.15 46.20	14.341 13.791 14.991 AVG =14.374	880 915 842 AVG = 878
306	16946.56	1.355	63.60 62.70 63.80	62.245 61.345 62.445	46.60 46.30 46.50	15.645 15.045 15.945 AVG =15.545	1083 1126 1063 AVG = 1090
307	20356.23	1.627	64.85 64.85 65.60	63.223 63.223 63.973	47.00 46.73 47.03	16.223 16.493 16.943 AVG =16.553	1255 1234 1201 AVG = 1230

Zann

Table B-14: Experimental Data of Heat Transfer to Saturated Pool Boiling of 64.0 wt. % Methanol in Methanol - Water Mixture at 98.63 kN/m²(T_s=73.3°C)

Run No.	Heat Flux W/m ²	Conduction Correction	Recorded Wall Temp. ^O C	Corrected Wall Temp.	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
308	12824.40	1.025	83.45 85.15 84.35	82.425 84.125 83.325	73.80 73.50 73.65	8.625 10.625 9.675 AVG = 9.642	1487 1270 1326 AVG = 1330
309	16488.55	1.320	84.50 86.45 86.10	83.180 85.130 84.780	74.05 73.75 73.85	9.130 11.380 10.930 AVG =10.480	1806 1449 1509 AVG = 1573
310	20610.70	1.648	85.85 87.60 87.25	84.202 85.952 85.602	74.30 74.13 74.20	9.902 11.822 11.402 AVG =11.042	2081 1743 1808 AVG = 1867
311	24631.00	1.970	87.25 89.10 88.10	85.280 87.130 86.130	74.45 74.25 74.40	10.830 12.880 11.730 AVG =11.813	2274 1912 2100 AVG = 2085
312	30534.35	2.441	88.55 90.50 90.05	86.109 88.060 87.609	74.63 74.50 74.50	11.480 13.560 13.110 AVG =12.720	2660 2252 2329 AVG = 2401

Table B-14: Experimental Data of Heat Transfer to Saturated Pool Boiling of 64.0 wt. % Methanol in Methanol - Water Mixture at 66.64 kN/m²(T_s=62.4°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^o C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
313	9618.32	0.769	72.50 74.10 74.10	71.731 73.331 73.331	63.10 62.85 63.05	8.631 10.481 10.281 AVG = 9.798	1114 918 935 AVG = 982
314	12417.30	0.993	74.20 75.65 74.85	73.207 74.657 73.857	63.30 63.15 63.25	9.907 11.507 10.607 AVG =10.674	1253 1079 1171 AVG = 1163
315	16488.55	1.320	75.25 77.55 76.20	73.930 76.230 74.880	63.50 63.35 63.50	10.430 12.880 11.380 AVG =11.560	1581 1280 1449 AVG = 1426
316	20610.70	1.648	76.60 78.90 77.45	74.952 77.252 75.802	63.65 63.50 63.70	11.302 13.752 12.102 AVG =12.38	1824 1499 1703 5 AVG = 1664
317	24910.94	1.992	78.55 79.55 78.95	76.558 77.558 76.958	63.85 63.70 63.75	12.708 13.858 13.208 AVG =13.260	1960 1798 1886 0 AVG = 1879

Table B-14: Experimental Data of Heat Transfer to Saturated Pool Boiling of 64.0 wt.% Methanol in Methanol - Water Mixture at 49.32 kN/m²(T_s=56.1^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
318	9618.32	0.769	65.75 66.95 66.35	64.981 66.181 65.581	55.25 54.95 55.10	9.731 11.231 10.481 AVG =10.481	988 856 917 AVG = 918
319	12824.43	1.025	67.00 68.60 67.70	65.975 67.575 66.675	55.40 55.28 55.40	10.575 12.295 11.275 AVG =11.382	1213 1043 1137 AVG = 1127
320	16488.55	1.320	68.65 69.50 69.50	67.330 68.180 68.180	55.67 55.55 55.60	11.660 12.630 12.580 AVG =12.290	1414 1306 1311 AVG = 1342
321	20356.23	1.627	70.40 71.05 70.60	68.773 69.423 68.973	55.90 55.75 55.85	12.873 13.673 13.123 AVG =13.223	1581 1489 1551 AVG = 1539

man

Table : B-14 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 64.0 wt. % Methanol in Methanol - Water Mixture at 33.32 kN/m²(T_s=46.3°C)

	and the second second	and the second second			and the second s		
Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
322	9618.32	0.769	57.15 58.50 57.80	56.381 57.731 57.031	46.10 45.90 45.98	10.281 11.831 11.051 AVG =11.054	936 813 870 AVG = 870
323	12620.90	1.009	58.45 59.60 59.60	57.441 58.591 58.591	46.25 46.15 46.25	11.191 12.441 12.341 AVG =11.991	1128 1014 1023 AVG = 1053
324	16717.55	1.337	60.15 61.30 61.10	58.813 59.963 59.763	46.52 46.40 46.45	12.293 13.563 13.313 AVG =13.056	1360 1233 1256 AVG = 1280
325	20356.23	1.627	61.90 62.55 62.25	60.273 60.923 60.623	46.70 46.53 46.70	13.573 14.393 13.923 AVG =13.963	1500 1414 1462 AVG = 1458
326	25190.84	2.014	63.50 64.20 64.05	61.486 62.186 62.036	46.95 46.80 46.85	14.536 15.386 15.186 AVG =15.036	1733 1637 1659 AVG = 1675

Table B-14: Experimental Data of Heat Transfer to Saturated Pool Boiling of 64.0 wt. % Methanol in Methanol - Water Mixture at 26.66 kN/m²(T_s=42.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^o C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
327	9974.55	0.7 <mark>97</mark>	54.35 55.10 56.60	53.553 54.303 55.803	42.30 42.15 42.20	11.253 12.153 13.603 AVG =12.340	886 821 733 AVG = 808
328	12620.90	1.009	55.90 56.75 57.73	54.891 55.741 56.721	42.55 42.43 42.65	12.341 13.311 14.071 AVG =13.241	1023 948 897 AVG = 953
329	16488.55	1.320	57.60 58.55 59.50	56.280 57.230 58.180	42.80 42.65 42.85	13.480 14.580 15.330 AVG =14.463	1223 1131 1076 AVG = 1140
330	20356.23	1.627	58.65 60.15 61.22	57.023 58.523 59.593	43.15 43.00 43.25	13.873 15.523 16.343 AVG =15.250	1467 1311 1246 AVG = 1335
			-5	Sin	in		

Table B-15 :	Experimental Data of Heat Transfer to Saturated Pool
	Boiling of Isopropanol at 98.63 kN/m ² (T _s =81.6°C)

•

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
331	9974.55	0.797	88.90 89.80 87.55	88.103 89.003 86.753	80.65 79.80 80.55	7.453 9.203 6.203 AVG = 7.620	1338 1084 1608 AVG = 1309
332	12783.72	1.022	90.55 91.50 90.25	89.528 90.478 89.228	81.80 81.15 81.90	7.728 9.328 7.328 AVG = 8.130	1654 1370 1745 AVG = 1572
333	16305.34	1.304	92.50 92.95 91.75	91.196 91.646 90.446	82.13 81.60 82.13	9.066 10.046 8.316 AVG = 9.143	1798 1622 1960 AVG = 1783
334	20865.14	1.668	94.20 94.80 92.70	92.532 93.132 91.032	82.48 82.10 82.35	$10.052 \\ 11.032 \\ 8.682 \\ AVG = 9.922$	2076 1891 2403 AVG = 2103
335	25190.84	2.014	95.78 96.10 93.90	93.766 94.086 91.886	82.95 82.13 82.80	10.820 11.956 9.086 AVG =10.622	2328 2107 2772 AVG = 2372

Table B-15: Experimental Data of Heat Transfer to Saturated Pool Boiling of Isopropanol at 69.31 $kN/m^2(T_s=73.0^{\circ}C)$

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
336	9656.50	0.772	81.13 82.00 80.00	80.358 81.228 79.228	72.18 71.55 72.18	8.178 9.678 7.048 AVG = 8.301	1181 998 1370 AVG = 1163
337	13027.99	1.042	81.90 83.38 81.03	80.858 82.338 79.988	72 .28 71.70 72.28	8.578 10.638 7.708 AVG = 8.975	1519 1225 1690 ∆VG = 1452
338	16488.55	1.318	82.70 84.25 81.60	81.382 82.932 80.282	72.28 71.58 72.18	9.102 11.352 8.102 AVG = 9.519	1812 1452 2035 AVG = 1732
339	20610.70	1.648	84.35 86.10 83.15	82.702 84.452 81.502	72.60 72.50 72.50	10.102 11.952 9.002 AVG =10.352	2040 1724 2290 AVG = 1991
340	25190.84	2.014	86.25 87.00 85.35	84.236 84.986 83.336	72.95 72.50 72.95	11.286 12.486 10.386 AVG =11.384	2232 2018 2425 AVG = 2210

	Experimental Data of Heat Transfer to Saturated Pool
	Boiling of Isopropanol at 48.0 $kN/m^2(T_s=64.5^{\circ}C)$
AND THE PROPERTY AND AND AND	Constraint and Marine

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superhe <mark>at</mark> ^O C	Heat Transfer Coefficient W/m ² K
341	10297.71	0.823	72.28 73.40 72.03	71.457 72.577 71.207	62.70 62.03 62.50	8.757 10.547 8.707 AVG = 9.337	1176 976 1183 AVG = 1103
342	13027.99	1.042	74.00 75.00 72.95	72.958 73.958 71.908	63.15 62.50 63.15	9.808 11.458 8.758 AVG =10.008	1328 1137 1487 AVG = 1303
343	16832.10	1.346	75.80 76.90 74.53	74.454 75.554 73.184	63.50 63.25 63.65	10.954 12.304 9.534 AVG =10.930	1537 1368 1765 AVG = 1540
344	20610.70	1.648	77.28 78.25 75.78	75.632 76.602 74.132	63.90 63.50 63.90	11.732 13.102 10.232 AVG =11.690	1757 1573 2014 AVG = 1763
345	25190.84	2.014	78.75 79.35 77.15	76.736 77.336 75.136	63.98 63.60 63.88	12.746 13.736 11.256 AVG =12.576	1974 1833 2237 AVG = 2001

Table B-15: Experimental Data of Heat Transfer to Saturated Pool Boiling of Isopropanol at 34.66 $kN/m^2(T_s=57.3^{\circ}C)$

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
346	10117.05	0.809	68.10 69.15 67.63	67.291 68.341 66.821	57.35 56.70 57.23	9.941 11.641 9.591 AVG =10.391	1018 869 1055 AVG = 974
347	1 3 027.99	1.042	70.10 71.00 68.98	69.058 69.958 67.938	58.08 57.40 58.08	10.978 12.558 9.858 AVG =11.131	1187 1037 1322 AVG = 1170
348	16488.55	1.318	71.30 72.60 70.45	69.982 71.282 69.132	58.20 57.55 58.15	11.782 13.732 10.982 AVG =12.165	1399 1201 1501 AVG = 1355
349	20610.70	1.648	72.83 74.00 71.50	71.182 72.352 69.852	58.35 57.75 58.15	12.832 14.602 11.702 AVG =13.045	1606 1412 1761 AVG = 1580
350	25190.84	2.014	74.45 76.03 73.15	72.4 3 6 74.016 71.136	58.90 58.50 58.75	13.5 <mark>36</mark> 15.516 12.386 AVG =13.813	1861 1624 2034 AVG = 1824

Table B-15: Experimental Data of Heat Transfer to Saturated Pool Boiling of Isopropanol at 12.66 kN/m²(T_s=38.1°C)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
351	9656.50	0.772	52.80 55.15 54.10	52.028 54.378 53.328	39.10 38.95 39.03	12.928 15.428 14.298 AVG =14.218	747 626 675 AVG = 679
352	13027.99	1.042	54.35 56.35 55.63	53.308 55.308 54.588	39.40 39.03 39.40	13.908 16.278 15.188 AVG =15.125	937 800 858 AVG = 861
353	16717.56	1.337	55.80 57.85 57.10	54.463 56.513 55.763	39.60 39.28 39.52	14.863 17.233 16.243 AVG =16.113	1125 970 1029 AVG = 1038
354	20610.70	1.648	57.00 60.35 58.95	55.352 58.702 57.302	40.00 39.45 40.00	15.352 19.252 17.302 AVG =17.302	1343 1071 1191 AVG = 1191

Table B-16 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 15.0 wt. % Isopropanol in Isopropanol - Water Mixture at 98.63 kN/m²(T_s=84.6°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
355	9974.55	0.798	93.90 96.90 97.80	93.102 96.102 97.002	86.00 85.20 85.90	7.102 10.902 11.102 AVG = 9.702	1404 915 898 AVG = 1028
356	12946.56	1.035	95.35 98.10 98.80	94.315 97.065 97.765	86.13 85.35 86.13	8.185 11.715 11.635 AVG =10.510	1582 1105 1113 AVG = 1232
357	16717.56	1.337	96.88 99.80 99.90	95.543 98.463 98.563	86.80 86.00 86.58	8.743 12.463 11.983 AVG =11.063	1912 1341 1395 AVG = 1511
3 58	20865.14	1.668	98.10 101.25 101.50	96.432 99.582 99.832	87.13 86.15 87.03	9.302 13.432 12.802 AVG =11.845	2243 1553 1630 AVG = 1762
359	25190.84	<mark>4 2</mark> .014	99.45 102.58 102.58	97.436 100.566 100.566	87.45 86.50 87.20	9.986 14.066 13.366 AVG =12.473	2523 1791 1885 AVG = 2020

Table B-16: Experimental Data of Heat Transfer to Saturated Pool Boiling of 15.0 wt. % Isopropanol in Isopropanol - Water Mixture at 74.0 kN/m²(T_s=79.2°C)

.

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
360	9974.55	0.798	88.75 91.75 91.85	87.952 90.952 91.052	79.45 78.90 79.55	8.502 12.052 11.502 AVG =10.685	1173 828 867 AVG = 934
361	13027.99	1.042	90.45 93.53 93.53	89.408 92.488 92.488	79.35 78.90 79.45	10.058 13.588 13.038 AVG =12.228	1295 959 999 AVG = 1065
362	16488.55	1.318	91.75 94.70 94.80	90.432 93.382 93.482	79.80 79.15 79.75	10.632 14.232 13.732 AVG =12.865	1551 1159 1201 AVG = 1282
363	20865.14	1.668	93.05 95.95 96.20	91.382 94.282 94.532	80.15 79.75 80.15	11.232 14.532 14.382 AVG =13.382	1858 1436 1451 AVG = 1559
364	25190.84	4 2.014	94.25 97.10 97.50	92.236 95.086 95.486	80.25 80.00 80.15	11.986 15.086 15.336 AVG =14.136	2102 1670 1643 5 AVG = 1782

Table B-16 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 15.0 wt. % Isopropanol in Isopropanol - Water Mixture at 49.32 kN/m²(T_s=74.1°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
365	10297.71	0.823	81.70 84.70 83.70	80.877 83.877 82.877	71.70 71.15 71.50	9.177 12.727 11.377 AVG =11.097	1122 809 905 AVG = 928
366	12783.72	1.022	83.55 87.80 85.80	82.528 86.778 84.778	72.70 72.38 72.60	9.828 14.400 12.178 AVG =12.135	1301 888 1050 AVG = 1053
367	16832.10	1.346	84.90 89.45 87.25	83.554 88.104 85.904	72.90 72.45 72.90	10.654 15.654 13.004 AVG =13.104	1580 1075 1291 AVG = 1285
368	20610.70	1.648	86.25 91.00 88.50	84.602 89.352 86.852	73.15 72.85 73.20	11.452 16.502 13.652 AVG =13.869	1800 1249 1510 AVG = 1486

Table B-16 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 15.0 wt. % Isopropanol in Isopropanol - Water Mixture at 33.32 kN/m²(T_s=64.4°C)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Heat Transfer Superheat Coefficient ^O C W/m ² K
369	9974.55	0.797	78.08 80.15 81.03	77.283 79.353 80.233	67.52 66.72 67.30	9.763 1022 12.633 790 12.933 771 AVG =11.776 AVG = 847
370	13603.05	1.088	79.60 81.05 83.55	78.512 79.962 82.462	67.70 66.72 67.75	10.812 13.242 1027 14.912 AVG =12.989 AVG = 1047
371	16717.56	1.337	81.70 8 3 .23 84.90	80.363 81.893 83.563	67.95 67.00 68.10	12.413 14.893 15.463 AVG =14.256 15.463 1081 AVG = 1172
372	21801.53	1.743	83.70 85.15 86.75	81.957 83.407 85.007	68.30 67.55 68.30	13.657159615.857137516.7071305 $AVG = 15.407$ AVG = 1415

Table B-16 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 15.0 wt. % Isopropanol in Isopropanol - Water Mixture at 25.33 kN/m²(T_s=59.8°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
373	13027.99	1.042	72.72 77.00 77.00	71.678 75.958 75.958	61.25 60.50 60.65	10.428 15.458 15.308 AVG =13.731	1249 843 851 AVG = 949
374	16717.56	1.337	74.8 2 78.45 79.40	73.483 77.113 78.063	61.75 61.00 61.50	11.733 16.113 16.563 AVG =14.803	1425 1038 1009 AVG = 1129
375	20610.70	1.648	76.25 79.80 80.82	74.602 78.152 79.172	61.93 61.25 61.65	12.672 16.902 17.522 AVG =15.699	1626 1219 1176 AVG = 1313

Inn

Table B-17: Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.5 wt. % Isopropanol in Isopropanol - Water Mixture at 98.63 kN/m²(T_s=83.1°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
376	9974.55	0.798	93.05 98.20 98.25	92.252 97.402 97.452	84.15 83.13 83.45	8.102 14.272 14.002 AVG =12.125	1231 699 712 AVG = 823
377	13771.00	1.100	94.80 100.05 100.70	93.700 98.950 99.600	84.15 83.45 84.33	9.550 15.500 15.270 AVG =13.440	1442 888 902 AVG = 1025
378	17040.71	1.362	96.10 101.55 101.55	94.738 100.188 100.188	84.25 83.60 84.35	10.488 16.588 15.838 AVG =14.305	1624 1027 1076 AV3 = 1191
379	20610.70	1.648	97.53 103.10 103.50	95.882 101.452 101.852	84.50 84.35 84.50	11.382 17.102 17.352 AVG =15.279	1811 1205 1188 AVG = 1349
380	25470.74	2.036	99.00 104.13 104.90	96.964 102.094 102.864	84.70 84.35 84.58	12.264 17.744 18.284 AVG =16.097	2077 1435 1393 AVG = 1582

Table B-17: Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.5 wt. % Isopropanol in Isopropanol - Water Mixture at 66.64 kN/m²(T_s=74.9°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. O _C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
381	20254.45	1.620	89.43 96.47 93.05	87.81 94.85 91.43	75.67 75.03 75.78	-12.140 19.820 15.650 AVG =15.870	1668 1022 1294 AVG = 1276
382	2 <mark>5190.84</mark>	2.014	91.32 98.60 94.80	89.306 96.586 92.786	76.05 75.75 75.90	13.256 20.836 16.886 AVG =16.993	1900 1209 1492 AVG = 1482
383	30534.35	2.441	93.95 100.70 97.10	91.509 98.259 94.659	76.80 76.50 76.90	14.709 21.759 17.759 AVG =18.076	2076 1403 1719 AVG = 1689

20 3TOTE OF

TECHNOLOW T

Table B-17: Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.5 wt. % Isopropanol in Isopropanol - Water Mixture at 53.32 kN/m²(T_s=71.8^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
384	16717.60	1.337	84.05 89.85 86.90	82.713 88.513 85.563	70.18 69.65 70.30	12.533 18.863 15.263 AVG =15.553	1334 886 1095 3 AVG = 1075
385	20278.62	1.621	85.55 91.60 88.45	83.929 89.979 86.829	70.40 70.10 70.58	13.529 19.879 16.249 AVG =16.55	1499 1020 1248 2 AVG = 1225
386	25190.84	2.014	86.90 93.00 90.65	84.886 90.986 88.636	70.80 70.50 71.05	14.086 20.486 17.586 AVG =17.38	1230 1230 1432 6 AVG = 1449
387	29923.66	5 2.392	88.55 94.35 94.35	86.158 91.958 91.958	71.35 70.85 71.45	14.808 21.108 20.508 AVG =18.80	2021 1418 . 1459 8 AVG = 1591

Table B-17: Experimental Data of Heat Transfer to Saturated Pool Boiling of 22.5 wt. % Isopropanol in Isopropanol - Water Mixture at 34.66 kN/m²(T_s=62.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^o C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
388	20356.23	1.627	77.90 82.70 82.30	76.273 81.073 80.673	62.43 62.03 62.43	13.843 19.043 18.243 AVG = 17.043	1471 1069 1116 AVG = 1194
389	25190.84	2.014	79.55 84.25 84.25	77.536 82.236 82.236	62.70 62.35 62.85	14.836 19.886 19.386 AVG = 18.036	1698 1267 1299 AVG = 1397
390	29923.70	2.392	82.70 86.00 85.70	80.308 83.608 83.308	63.30 62.85 63.40	17.008 20.758 19.908 AVG = 19.226	$ 1759 \\ 1441 \\ 1503 \\ 5 AVG = 1556 $

ALVIN .

ECHAROLOGY CL CL CL

Table B-18 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.25 wt. % Isopropanol in Isopropanol - Water Mixture at 98.63 kN/m²(T_s=82.2°C)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
391	16717.56	1.337	94.60 98.00 97.40	93.263 96.663 96.063	82.13 81.60 82.25	11.133 15.063 13.813 AVG =13.336	1502 1110 1210 AVG = 1254
392	20865.14	1.668	96.55 99.70 98.75	94.882 98.032 97.082	82.25 81.35 82.10	12.632 16.682 14.982 AVG =14.765	1652 1251 1393 AVG = 1413
393	2 <mark>4631.</mark> 00	1.969	98.00 101.45 100.30	96.031 99.481 98.331	82.58 81.85 82.58	13.451 17.631 15.751 AVG =15.611	1831 1397 1564 AVG = 1578
394	30534.35	2.441	100.90 103.80 102.20	98.459 101.359 99.759	83.55 83.40 83.80	14.909 17.959 15.959 AVG =16.276	2048 1700 1913 AVG = 1876

Table B-18: Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.25 wt. % Isopropanol in Isopropanol - Water Mixture at 61.31 kN/m²(T_s=70.0^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
395	20610.70	1.648	86.00 90.55 88.05	84.352 88.902 86.402	71.05 70.90 71.70	-13.302 18.002 14.702 AVG =15.33	1549 1145 1402 5 AVG = 1344
396	25190.84	2.014	87.35 92.40 89.38	85.336 90.386 87.366	71.15 70.88 71.67	14.186 19.506 15.696 AVG =16.46	1776 1291 1605 53 AVG = 1530
397	29424.94	2.353	89.35 94.40 90.50	86.997 92.047 88.147	71.90 71.55 72.00	15.097 20.497 16.147 AVG =17.24	1941 1436 1822 47 AVG = 1706

1015 0

ECARCELON T

Table B-18 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.25 wt. % Isopropanol in Isopropanol - Water Mixture at 50.65 kN/m²(T_s=66.8°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
398	16717.56	1.337	81.00 84.80 84.80	79.663 83.463 83.465	67.00 66.35 66.95	12.663 17.113 16.513 AVG =15.430	1320 977 1012 AVG = 1083
399	20865.14	1.668	82.45 86.10 86.50	80.782 84.432 84.832	67.05 66.50 67.20	13.732 17.932 17.632 AVG =16.432	1519 1164 1183 2 AVG = 1270
400	25702.30	2.055	83.90 87.13 88.05	81.845 85.075 85.995	67.40 66.75 67.50	14.445 18.325 18.495 AVG =17.088	1779 1403 1390 3 AVG = 1504
401	30534.35	2.441	85.55 88.45 90.10	83.109 86.009 87.659	67.90 67.10 67.70	15.209 18.909 19.959 AVG =18.02	2008 1615 1530 6 AVG = 1694

Table B-18 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.25 wt. % Isopropanol in Isopropanol - Water Mixture at 34.66 kN/m²(T_s=58.6°C)

					and the second se	and the second	
Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
402	20865.14	1.668	78.45 81.80 81.80	76.782 80.132 80.132	61.80 61.80 62.60	14.982 18.332 17.532 AVG =16.94	1393 1138 1190 49 AVG = 1231
403	24183.21	1.933	79.80 83.90 82.80	77.867 81.967 80.867	62.45 62.33 62.93	15.417 19.637 17.937 AVG =17.6	1569 1232 1348 54 AVG = 1369
404	31353.70	2.507	80.65 86.20 86.20	78.143 83.693 83.693	62.80 62.60 63.00	15.343 21.093 20.693 AVG =19.04	2044 1486 1515 43 AVG = 1647

Table B-18: Experimental Data of Heat Transfer to Saturated Pool Boiling of 31.25 wt. % Isopropanol in Isopropanol - Water Mixture at 25.33 kN/m²(T_s=53.7^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
405	20865.14	1.668	70.00 75.00 75.35	68.332 73.332 73.682	53.10 52.60 53.00	15.232 20.732 20.682 AVG =18.883	1370 1006 1009 2 AVG = 1105
406	25190.84	2.014	71.50 76.75 77.35	69.486 74.736 75.336	53.45 53.15 53.55	16.036 21.586 21.786 AVG =19.80	1571 1167 1156 0 AVG = 1272
407	30534.35	2.441	73.10 79.40 79.55	70.659 76.959 77.109	54.00 53.80 54.00	16.659 23.159 23.109 AVG =20.98	1833 1318 1321 0 AVG = 1455

Table B-19: Experimental Data of Heat Transfer to Saturated Pool Boiling of 37.0 wt. % Isopropanol in Isopropanol - Water Mixture at 98.63 kN/m²(T_s=81.5^oC)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
408	16946.56	1.355	94.15 94.45 95.00	92.795 93.095 93.645	81.70 81.45 81.80	11.095 11.645 11.845 AVG =11.530	1527 1455 1431 AVG = 1470
409	20865.14	1.668	95.15 95.45 95.70	93.482 93.782 94.032	81.80 81.05 81.85	11.682 12.752 12.182 AVG =12.200	1786 1639 1713 AVG = 1710
410	25190.84	2.014	97.00 97.00 98.15	94.986 94.986 96.136	82.15 81.85 82.25	12.836 13.136 13.886 AVG =13.290	1963 1918 1814 AVG = 1896
411	30839.70	2.466	98.95 99.45 99.10	96.484 96.984 96.6 3 4	82.55 82.25 82.70	13.934 14.734 13.934 AVG =14.200	2213 2093 2213 AVG = 2172

Table B-19: Experimental Data of Heat Transfer to Saturated Pool Boiling of 37.0 wt. % Isopropanol in Isopropanol - Water Mixture at 64.0 kN/m²(T_s=69.7°C)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
412	16946.56	1.355	84.70 88.10 88.00	83.345 86.745 86.645	71.88 71.20 71.55	11.465 15.545 15.095 AVG =14.035	1478 1090 1123 AVG = 1208
413	20865.14	1.668	86.75 90.65 89.20	85.082 88.982 87.532	72.05 71.92 72.25	13.032 17.062 15.282 AVG =15.125	1601 1223 1365 AVG = 1380
414	25702.30	2.055	88.50 92.60 90.50	86.445 90.545 88.445	72.60 72.40 72.60	13.845 18.145 15.845 AVG =15.945	1856 1417 1622 AVG = 1612
415	30534.35	2.441	90.55 93.95 91.75	88.109 91.509 89.310	72.95 72.60 73.05	15.160 18.909 16.260 AVG =16.780	2014 1615 1878 AVG = 1820

Table B-19: Experimental Data of Heat Transfer to Saturated Pool Boiling of 37.0 wt. % Isopropanol in Isopropanol - Water Mixture at 50.65 kN/m²(T_s=65.5°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. OC	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
416	17134.90	1.370	78.95 83.25 80.70	77.58 81.88 79.33	65.20 64.40 64.75	12.380 17.480 14.580 AVG =14.813	1384 980 1175 AVG = 1157
417	21541.98	1.722	80.95 84.80 81.70	79.228 83.078 79.978	65.38 64.43 64.90	13.850 18.650 15.078 AVG =15.860	1555 1155 1429 AVG = 1358
418	24961.83	1.996	82.35 86.10 83.90	80.354 84.104 81.904	65.60 64.90 65.80	14.754 19.204 16.104 AVG =16.700	1692 1300 1550 AVG = 1495
419	30534.35	2.441	84.25 88.05 85.15	81.809 85.609 82.709	66.00 65.70 66.10	15.809 19.909 16.609 AVG =17.442	1931 1534 1838 AVG = 1751

Table B-19: Experimental Data of Heat Transfer to Saturated Pool Boiling of 37.0 wt. % Isopropanol in Isopropanol - Water Mixture at 33.32 kN/m²(T_s=55.7°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
420	16946.56	1.355	72.15 76.75 73.80	70.795 75.395 72.445	57.68 57.25 57.55	13.115 18.145 14.895 AVG =15.385	1292 934 1138 AVG = 1102
421	21541.98	1.722	74.30 78.00 76.32	72.578 76.278 74.598	58.05 57.40 58.05	14.528 18.878 16.548 AVG =16.651	1483 1141 1302 AVG = 1294
422	25984.73	2.077	76.25 79.55 78.15	74.173 77.473 76.073	58.65 58.33 58.60	15.523 19.143 17.473 AVG =17.380	1674 1357 1487 AVG = 1495
423	30229.00	2.417	77.95 81.40 79.50	75.533 78.983 77.083	58.90 58.45 58.90	16.633 20.533 18.183 AVG =18.450	1817 1472 1662 AVG = 1638

Table B-19: Experimental Data of Heat Transfer to Saturated Pool Boiling of 37.0 wt. % Isopropanol in Isopropanol - Water Mixture at 25.33 kN/m²(T_s=51.1^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
424	17134.90	1.370	68.00 71.60 70.20	66.630 70.230 68.830	51.95 51.50 51.80	14.680 18.730 17.030 AVG =16.813	1167 914 1006 AVG = 1019
425	21282.44	4 1.702	70.15 73.90 70.80	68.448 72.198 69.098	52.83 52.60 52.95	15.618 19.598 16.148 AVG =17.121	1363 1086 1318 AVG = 1243
426	25190.84	4 2.014	71.75 75.55 72.60	69.736 73.536 70.586	53.05 52.85 53.15	16.686 20.686 17.436 AVG =18.270	1510 1218 1445 AVG = 1379

Table B-20 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 59.0 wt. % Isopropanol in Isopropanol - Water Mixture at 98.63 kN/m²(T_s=81.0^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
427	9974.55	0.797	90.20 90.60 93.15	89.403 89.803 92.353	80.50 79.90 80.20	8.903 9.903 12.153 AVG =10.32	1120 1007 821 20 AVG = 967
428	13231.55	1.058	91.00 93.70 93.80	89.942 92.642 92.742	80.50 80.35 80.50	9.442 12.292 12.242 AVG =11.32	1401 1076 1081 25 AVG = 1168
429	16717.56	1.337	92.60 95.05 95.40	91.263 93.713 94.063	80.80 80.50 80.90	10.463 13.213 13.163 AVG =12.27	1598 1265 1270 79 AVG = 1361
430	20865.14	1.668	93.55 95.70 97.00	91.882 94.032 95.332	81.00 80.80 81.05	10.882 13.232 14.282 AVG =12.79	1917 1577 1461 99 AVG = 1630
431	25190.84	2.014	94.90 97.20 97.75	92.886 95.186 95.736	81.15 80.95 81.15	11.736 14.236 14.586 AVG =13.55	2146 1770 1727 19 AVG = 1863

Table B-20 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 59.0 wt. % Isouropanol in Isoproponol - Water Mixture at 65.31 kN/m²(T_s=69.6^oC)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
432	10959 .3 0	0.876	81.75 86.30 81.85	80.874 85.424 80.974	70.90 70.32 70.90	9.974 15.104 10.074 AVG =11.717	1099 726 1088 AVG = 935
433	13603.05	1.088	82.75 88.45 83.45	81.662 87.362 82.362	70.90 70.55 71.00	10.762 16.812 11.362 AVG =12.979	1264 809 1197 AVG = 1048
434	16946.56	1.355	83.90 89.45 84.50	82.545 88.095 83.145	71.10 70.70 71.25	11.445 17.395 11.895 AVG =13.578	1481 974 1425 AVG = 1248
435	20865.14	1.668	84.90 90.55 85.50	83.232 88.882 83.832	71.15 70.95 71.25	12.082 17.932 12.582 AVG =14.199	1727 1164 1658 AVG = 1469

Table B-20: Experimental Data of Heat Transfer to Saturated Pool Boiling of 59.0 wt. % Isopropanol in Isopropanol - Water Mixture at 50.65 kN/m²(T_s=64.9^oC)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
436	13027.99	1.042	76.40 82.80 77.20	75.358 81.758 76.158	64.53 64.05 64.75	10.828 17.708 11.408 AVG =13.315	1203 736 1142 AVG = 978
437	16946.56	1.355	77.48 84.00 79.80	76.125 82.645 78.445	64.65 64.30 64.75	11.475 18.345 13.695 AVG =14.505	1477 924 1237 AVG = 1168
438	20865.14	1.668	79.45 86.10 80.50	77.782 84.432 .78.832	64.95 64.45 65.00	12.832 19.982 13.832 AVG =15.548	1626 1044 1508 AVG = 1342

Table B-20 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 59.0 wt. % Isopropanol in Isopropanol - Water Mixture at 34.66 kN/m²(T_s=55.7°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
439	9974.55	0.798	67.05 73.08 72.50	66.252 72.282 71.702	57.60 57.05 57.60	8.652 15.232 14.102 AVG =12.662	1153 655 707 AVG = 788
440	13027.99	1.042	68.00 74.87 74.15	66.958 73.828 73.108	57.85 57.27 57.60	9.108 16.558 15.508 AVG =13.725	1430 787 840 AVG = 949
441	16946.56	1.355	69.45 77.00 76.05	68.095 75.645 74.695	58.10 57.85 58.20	9.995 17.795 16.495 AVG =14.762	1696 952 1027 AVG = 1148
442	20865.14	1.668	71.90 78.50 77.40	70.232 76.832 75.732	58.20 58.05 58.25	12.032 18.782 17.482 AVG =16.099	1734 1111 1194 AVG = 1296

Table B-20: Experimental Data of Heat Transfer to Saturated Pool Boiling of 59.0 wt. % Isopropanol in Isopropanol - Water Mixture at 25.33 kN/m²(T_s=50.3°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
443	10297.71	0.823	59.95 66.00 67.05	59.127 65.177 66.227	50.30 50.10 50.40	8.827 15.077 15.827 AVG =13.244	1167 683 651 AVG = 778
444	13603.05	1.088	61.70 67.80 68.40	60.612 66.712 67.312	50.45 50.25 50.60	10.162 16.462 16.712 AVG =14.445	1339 826 814 AVG = 942
445	16946.56	1.355	63.95 68.90 70.00	62.595 67.545 68.645	50.80 50.50 50.83	11.795 17.045 17.815 AVG =15.552	1437 994 951 AVG = 1090
446	20865.14	1.668	65.80 70.90 70.90	64.132 69.232 69.232	51.10 50.95 51.17	13.032 18.282 18.062 AVG =16.459	1601 1141 1155 AVG = 1268

Table B-21: Experimental Data of Heat Transfer to Saturated Pool Boiling of 77.0 wt. % Isopropanol in Isopropanol - Water Mixture at 98.63 kN/m²(T_s=80.7^oC)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
447	9974.55	0.797	89.40 90.75 90.05	88.603 89.953 89.253	80.20 79.55 80.30	8.403 10.403 8.953 AVG = 9.253	1187 959 1114 AVG = 1078
448	13027.99	1.042	90.55 92.65 91.15	89.508 91.608 90.108	80.50 80.15 80.60	9.008 11.458 9.508 AVG = 9.991	1446 1137 1370 AVG = 1304
449	16305.34	1.304	91.40 93.95 92.60	90.096 92.646 91.296	80.75 80.30 80.82	9.346 12.346 10.476 AVG =10.723	1745 1321 1556 AVG = 1521
450	20865.14	1.668	92.90 95.00 93.80	91.232 93.332 92.132	80.82 80.30 80.82	10.412 13.032 11.312 AVG =11.585	2004 1601 1845 AVG = 1801
451	25190.84	2.014	93.95 96.40 94.90	91.936 94.386 92.886	81.03 80.55 81.15	10.906 13.836 11.736 AVG =12.159	2310 1821 2146 AVG = 2072

Table B-21: Experimental Data of Heat Transfer to Saturated Pool Boiling of 77.0 wt. % Isopropanol in Isopropanol - Water Mixture at 66.64 kN/m²(T_s=69.3°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
452	9974.55	0.797	79.05 79.55 82.13	78.253 78.753 81.333	69.65 69.30 69.65	8.603 9.453 11.683 AVG = 9.913	1159 1055 854 AVG = 1006
45 3	13603.05	1.088	80.50 81.65 83.10	79.412 80.562 82.012	69.90 69.55 69.70	9.512 11.012 12.312 AVG =10.945	1430 1235 1105 AVG = 1243
454	16488.55	1.318	81.60 82.95 84.10	80.282 81.632 82.782	70.20 69.88 70.10	10.082 11.752 12.682 AVG =11.505	1635 1403 1300 AVG = 1433
455	20610.70	1.648	82.80 84.00 86.00	81.152 82.352 84.352	70.55 70.20 70.55	10.602 12.152 13.802 AVG =12.185	1944 1696 1493 AVG = 1691
456	25190.84	2.014	84.05 85.60 87.35	82.036 83.586 85.336	70.70 70.40 70.60	11.336 13.186 14.736 AVG =13.086	2222 1910 1709 AVG = 1925

Table B-21 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 77.0 wt. %Isopropanol in Isopropanol - Water Mixture at 50.65 kN/m²(Ts=64.0°C)

Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. °C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
457	9974.55	0.797	74.10 75.75 74.90	73.303 74.953 74.103	63.55 63.55 63.70	9.753 11.403 10.403 AVG =10.520	1023 875 959 AVG = 948
458	13231.55	1.058	75.60 77.35 76.50	74.542 76.292 75.442	63.75 63.60 63.95	10.792 12.692 11.492 AVG =11.659	1226 1043 1151 AVG = 1135
459	16717.56	1.337	76.95 78.25 77.25	75.613 76.913 75.913	63.95 63.70 64.05	11.663 13.213 11.863 AVG =12.246	1433 1265 1409 AVG = 1365
460	20865.14	1.668	78.55 79.80 79.50	76.882 78.132 77.832	64.20 64.00 64.20	12.682 14.132 13.632 AVG =13.480	1645 1476 1531 AVG = 1548

Table B-21 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 77.0 wt. % Isopropanol in Isopropanol - Water Mixture at 33.32 kN/m²(T_s=54.2°C)

46216946.561.355 70.80 75.00 70.20 69.445 73.645 68.845 56.80 56.70 12.645 17.445 12.145 $AVG = 14.078$ 1340 971 12.145 $AVG = 14.078$ 46320865.141.668 71.50 76.25 73.15 69.832 71.482 57.10 56.58 57.10 12.732 18.002 14.382 14.382 14.382 1639 14.382 1451 $AVG = 15.038$ 46425190.842.014 73.10 78.10 71.086 76.086 57.50 56.90 13.586 19.186 1854 1313	Run No.	Heat Flux W/m ²	Conduction Correction ^O C	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat °C	Heat Transfer Coefficient W/m ² K
46216948.961.9991.999100073.64556.2017.44597175.0073.64556.7012.145139570.2068.84556.7012.145139546320865.141.66871.5069.83257.1012.732163946320865.141.66871.5069.83257.1012.732163914.38273.1571.48257.1014.382145146425190.842.01473.1071.08657.5013.586185478.1076.08656.9019.1861313	461	13603.05	1.088	73.55	72.462	56.20	16.262 11.862	837
469 20865.14 1.008 11.008	462	16946.56	1.355	75.00	73.645	56.20	17.445	971
464 25190.84 2.014 78.10 76.086 56.90 19.186 1313	463	20865.14	1.668	76.25	74.582	56.58	18.002 14.382	1159 1451
	464	25190.84	2.014				19.186 14.216	1313 1772

Table B-21 : Experimental Data of Heat Transfer to Saturated Pool Boiling of 77.0 wt. % Isopropanol in Isopropanol - Water Mixture at 25.33 kN/m²(T_s=49.6°C)

Run No.	Heat Flux W/m ²	Conduction Correction OC	Recorded Wall Temp. ^O C	Corrected Wall Temp. ^O C	Liquid Temp. ^O C	Wall Superheat ^O C	Heat Transfer Coefficient W/m ² K
465	9974.55	0.797	60.85 63.70 65.60	60.053 62.903 64.803	49.70 49.50 49.75	10.353 13.403 15.053 AVG =12.940	963 744 663 AVG = 771
466	13603.05	1.088	62.20 65.10 67.00	61.112 64.012 65.912	50.05 49.75 50.05	11.062 14.262 15.862 AVG =13.729	1230 954 858
467	16488.55	1.318	64.00 66.00 68.60	62.682 64.682 67.282	50.25 50.00 50.35	12.432 14.682 16.932 AVG =14.682	1326 1123 974 AVG = 1123
468	22493.60	1,798	65.85 68.10 69.75	64.052 66.302 67.952	50.60 50.23 50.60	13.452 16.072 17.352 AVG =15.625	1672 1400 1296 AVG = 1440

<u>APPENDIX-C</u>

EVALUATION OF PHYSICO-THERMAL PROPERTIES

C.1 PURE LIQUIDS

Physico-thermal properties of pure liquids investigated; distilled water, ethanol, methanol and isopropanol are readily available in literature [121, 127-133] in different system of units. However, they are not available in the International System of units over the entire range of temperature employed in the present investigation. Therefore, the physico-thermal properties of these pure liquids were converted to S.I. units and plotted in Figures C.l though C.5 as a function of saturation temperature.

C.2 BINARY LIQUID MIXTURES

Physico-thermal properties of the aqueous binary liquid mixtures of ethanol-water, methanol-water and isopropanol-water are available in the literature [119, 129-132, 134] only over a limited range of temperature and concentration. Therefore, methods were devised to predict the physico-thermal properties of these mixtures. These methods are discussed below for evaluating physico-thermal properties used in this investigation.

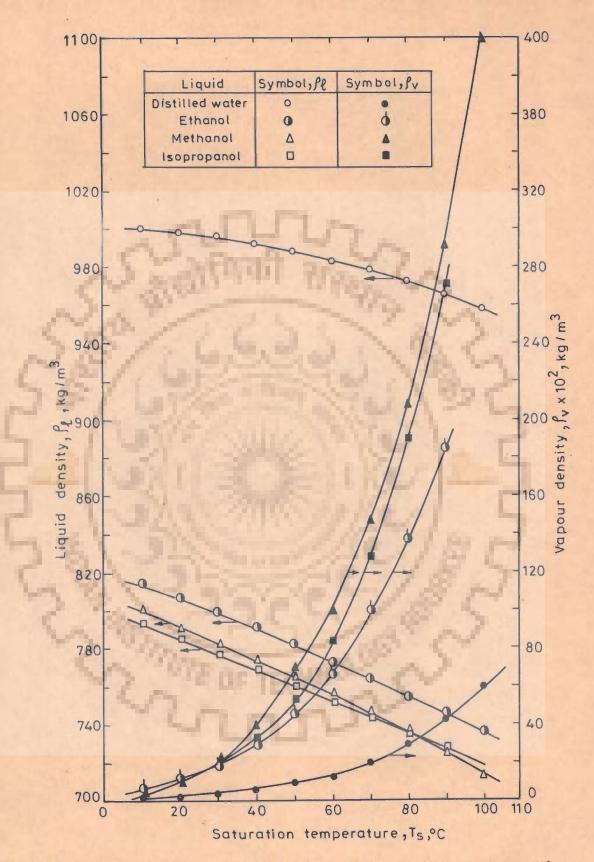


Fig.C.1 - Variation of liquid and vapour densities with saturation temperature for pure liquids

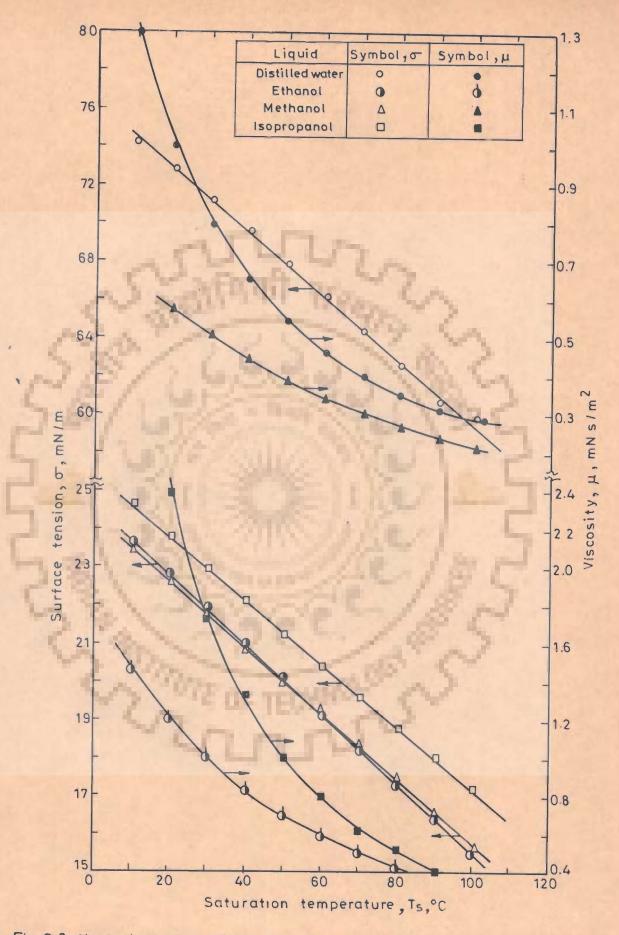


Fig.C.2-Variation of surface tension and viscosity with saturation temperature for pure liquids

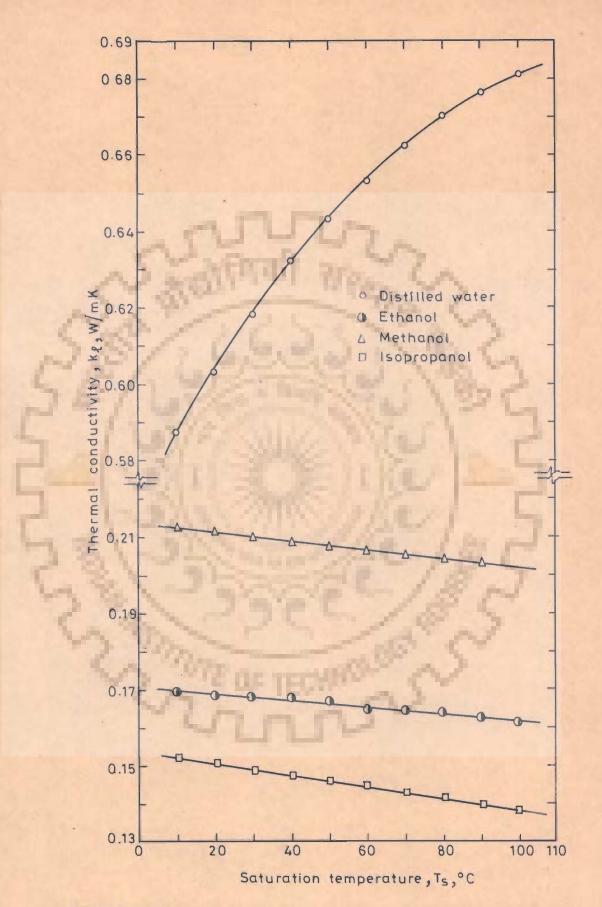
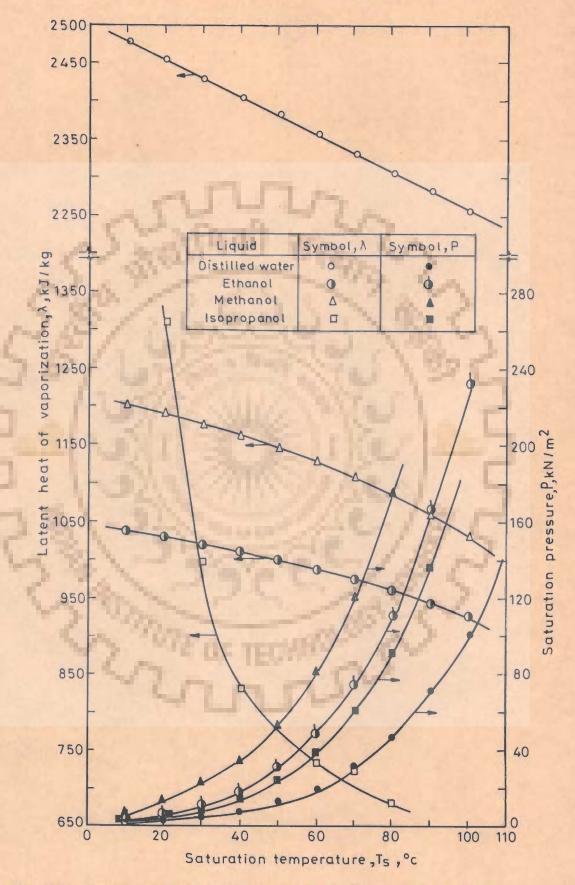
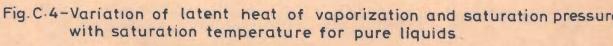
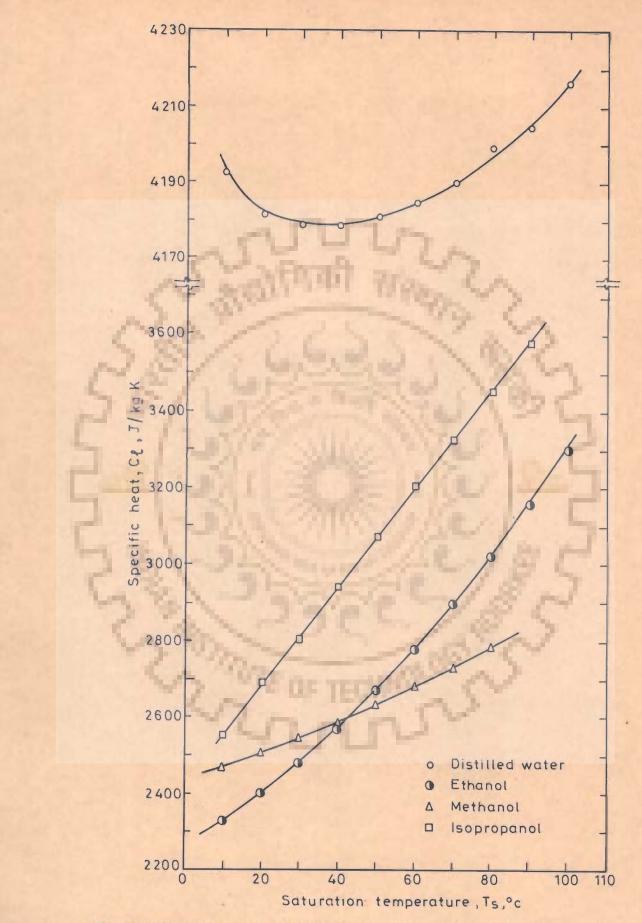
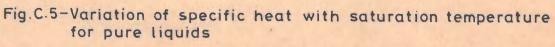






Fig.C.3-Variation of thermal conductivity with saturation temperature for pure liquids

C.2.1 Liquid and Vapour Densities

The liquid density was calculated at the respective saturation temperature of a given mixture with the assumption that for these mixtures the partial molar volume of each component in mixture is equal to its pure-component volume at the same temperature and pressure. The liquid densities are plotted in Figures C.8, C.12 and C.16 for these mixtures.

Vapour density was calculated by employing three different equations of state; namely, the Virial Equation, the Redlich-Kwong Equation and the ideal gas law. For the binary systems under investigation, the mixing rules proposed by Prausnitz [135] were used. A comparative study of these three equations revealed that ideal gas law predicted the vapour density for these mixtures within \pm 2.0 per cent deviation as predicted by the other two equations. Therefore, keeping in view, the simplicity of the ideal gas law, this was used to predict the vapour density of mixtures.

The vapour density as a function of saturation temperature for ethanol-water, methanol-water and isopropanol-water mixtures are shown in Figures C.8, C.12 and C.16 respectively.

C.2.2 Thermal Conductivity

For the prediction of thermal conductivity of binary liquid mixtures under investigation, the equation of Filippov and Novoselova [136] was used. The equation is as follows :

$$k_{\rm m} = k_{\rm l} w_{\rm l} + k_{\rm 2} w_{\rm 2} - 0.72 (k_{\rm 2} - k_{\rm l})(w_{\rm l} w_{\rm 2}) \dots (C.l)$$

where the weight fraction w₂ refers to the component having the larger value of k. The values of thermal conductivity calculated by Equation (C.1) compared well with the values those available in literature [134]. The calculated values are plotted in Figures C.9, C.13 and C.17 for ethanol-water, methanol-water and isopropanolwater mixtures respectively.

C.2.3 Surface Tension

Surface tensions of the aqueous binary liquid mixtures have been calculated using the method of Tamura et al [137]. As recommended by these investigators this method may be used to estimate surface tensions over wide concentration ranges. In the method of Tamura et al [137], the significant densities and concentrations are taken to be those characteristic of the surface layer. Tamura's method is complex and the set of relevant equations can be written as follows :

$$\Psi_{W} = \frac{\mathbf{x}_{W} \mathbf{v}_{W}}{\mathbf{x}_{W} \mathbf{v}_{W} + \mathbf{x}_{O} \mathbf{v}_{O}} \dots (C.2)$$

and
$$\Psi_0 = \frac{x_0 v_0}{x_w v_w + x_0 v_0}$$
 ...(C.3)

where Ψ_{W}, Ψ_{O} = superficial bulk volume fractions of water and organic material

v = molal volume of pure water and pure organic component

...(C.7)

where q = constant depending upon type and size of organic constituent, viz. for ethanol

$$q = 2 \text{ etc.}$$

$$N = 0.441 \frac{q}{T} \begin{bmatrix} \sigma_0 & v_0 & 0.667 \\ 0 & q & -\sigma_w & v_w \\ q & -\sigma_w & v_w \end{bmatrix} \dots (C.5)$$

where $\sigma_w \sigma_0$ = surface tension of pure water and pure organic component

= absolute temperature

$$\log \frac{(\Psi_{W}^{\sigma})^{q}}{\Psi_{o}^{\sigma}} = \beta + W \qquad \dots (C.6)$$

and $\Psi_{W}^{\sigma} + \Psi_{O}^{\sigma} = 1$

3

 $\beta = \log$

Thus Ψ_{W}^{σ} and Ψ_{O}^{σ} (superficial volume fraction of water and alcohol in the surface layer, respectively) are calculated by solving Equations (C.6 and C.7) simultaneously with values of β and W from Equations (C.2 through C.5). These values are then inserted in

the final equation, to obtain surface tension of the mixture :

$$\sigma_{\rm m} = \left[\Psi_{\rm w}^{\sigma} \sigma_{\rm w}^{1/4} + \Psi_{\rm o}^{\sigma} \sigma_{\rm o}^{1/4} \right]^4 \qquad \dots (C.8)$$

The values of surface tensions for ethanol-water, methanol-water and isopropanol-water mixtures were calculated by above procedure and plotted in Figures C.9, C.13 and C.17 respectively.

C.2.4 Vapour-liquid Equilibria

The vapour-liquid equilibria data at atmospheric and subatmospheric pressures for the system ethanol-water were obtained from Hirata et al [138], those of methanolwater system from Othmer and Benenati [139] and of isopropanol-water system from Davalloo [140]. Figures C.6, C.10 and C.14 show the plots of equilibrium vapourcomposition of the respective alcohol in the vapour phase, y, as a function of saturation pressure, P.

Variation of saturation pressures with saturation temperatures for ethanol-water, methanol-water and isopropanol-water binary mixtures are shown in Figures C.7, C.11 and C.15, respectively.

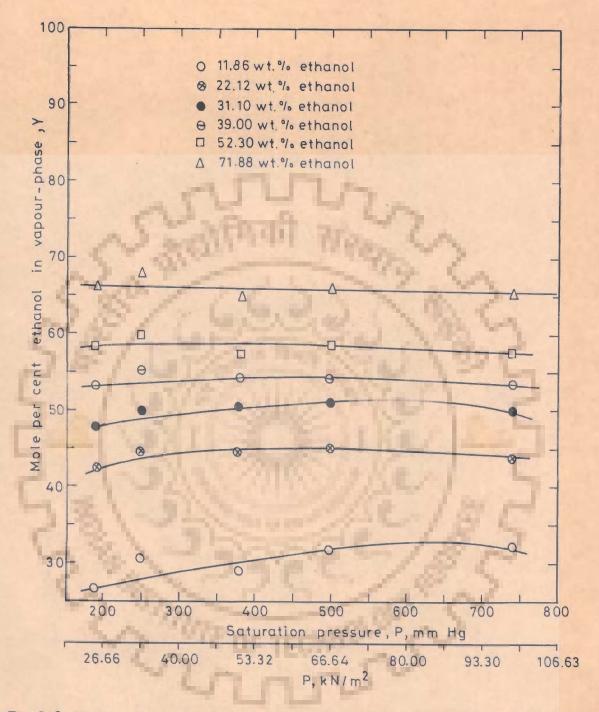


Fig.C.6-Variation of mole percent of ethanol in vapour-phase with saturation pressure for ethanol-water mixtures

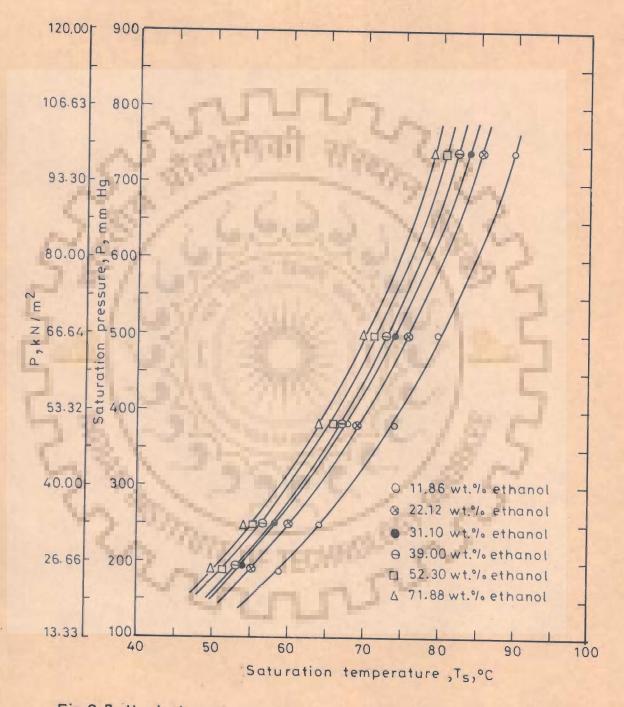
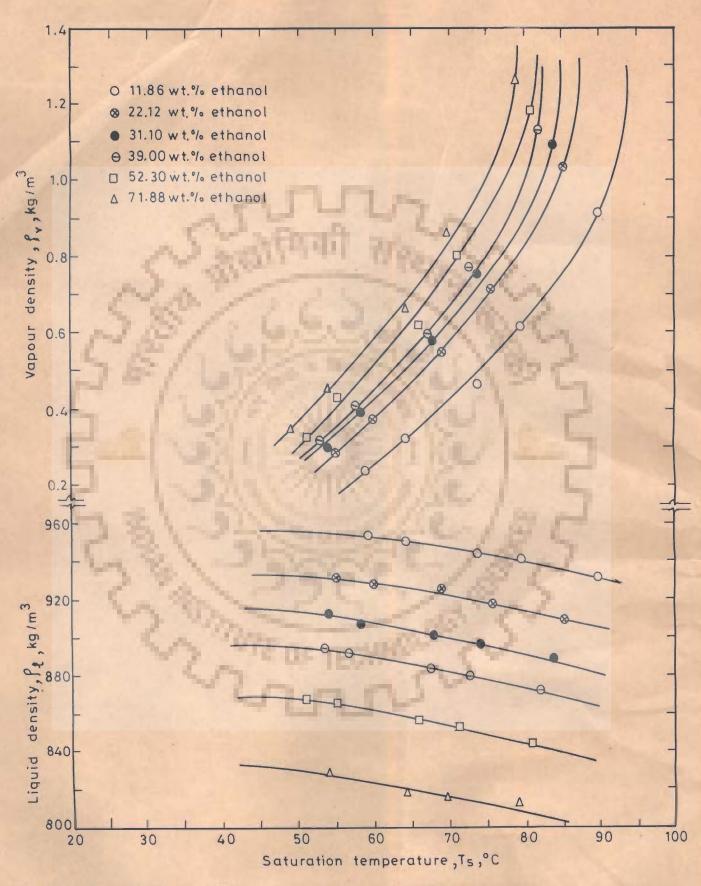
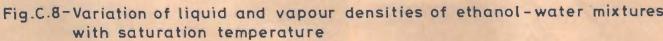
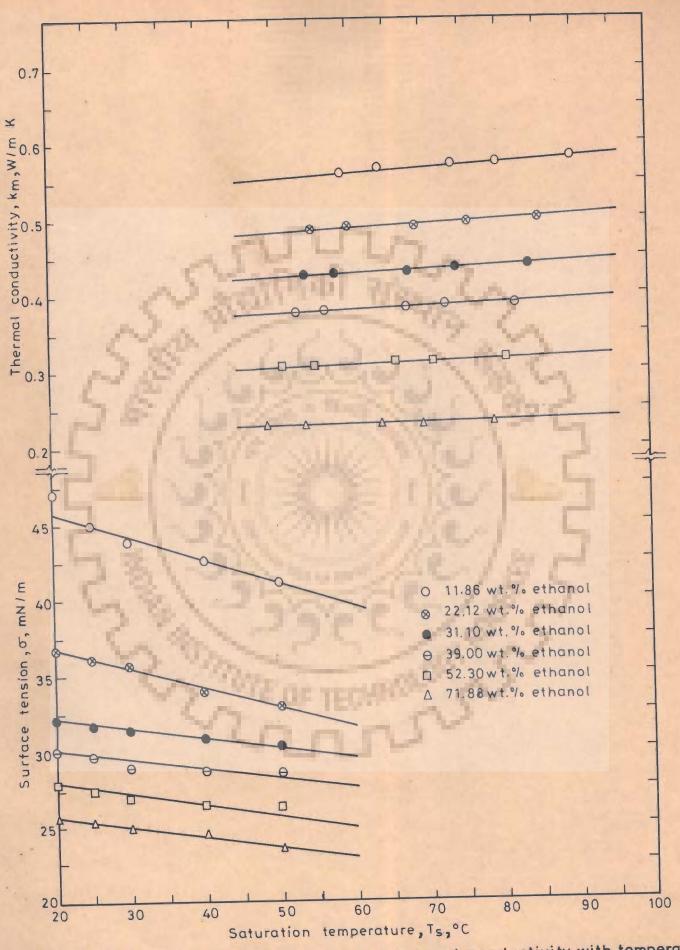
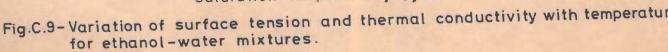






Fig.C.7-Variation of saturation pressure with saturation temperature for ethanol-water mixtures.

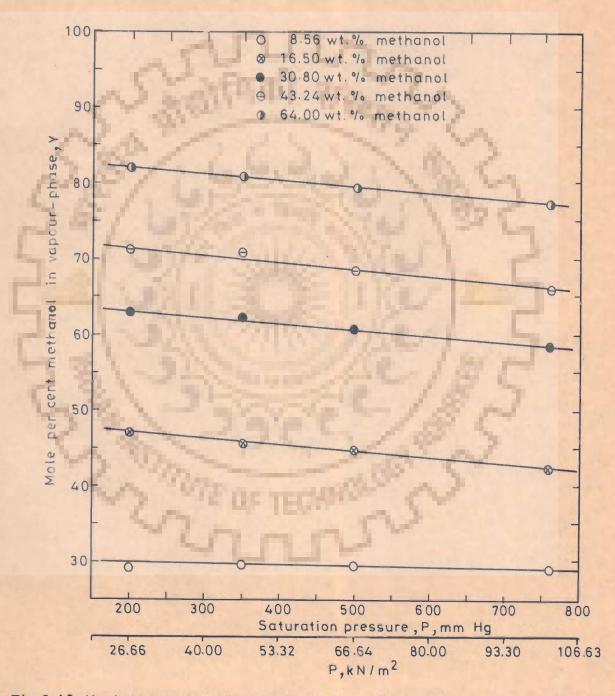


Fig.C.10-Variation of mole per cent of methanol in vapour phase with saturation pressure for methanol-water mixtures

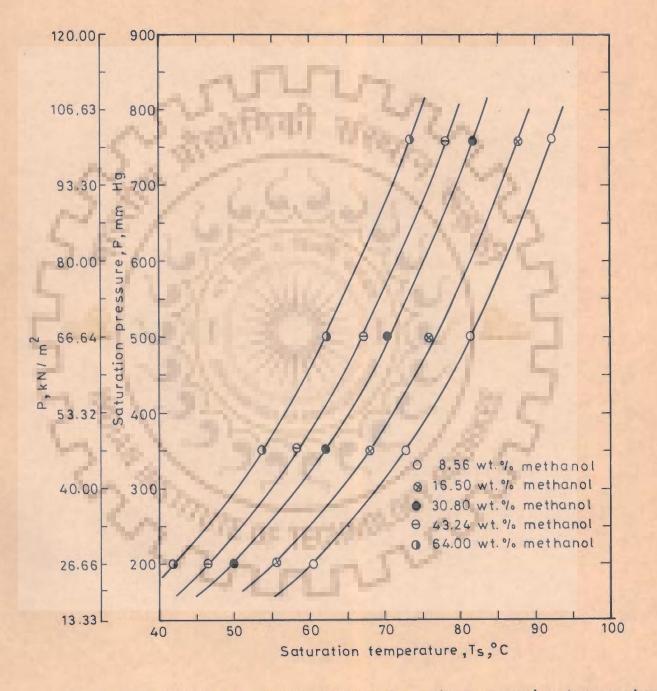


Fig.C.11-Variation of saturation pressure with saturation temperature for methanol-water mixtures

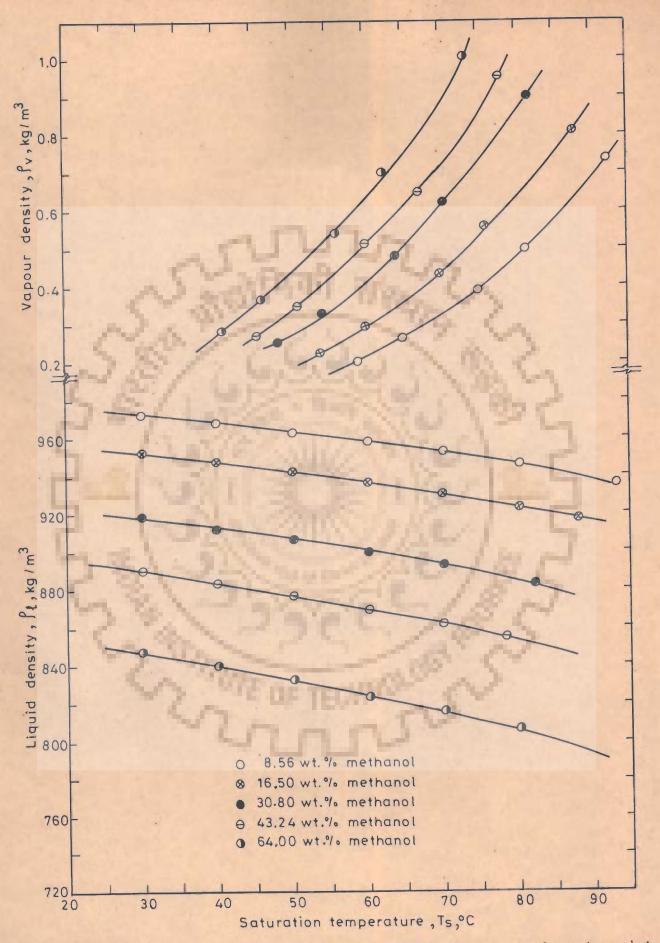


Fig.C.12-Variation of liquid and vapour densities of methanol-water mixtures with saturation temperature

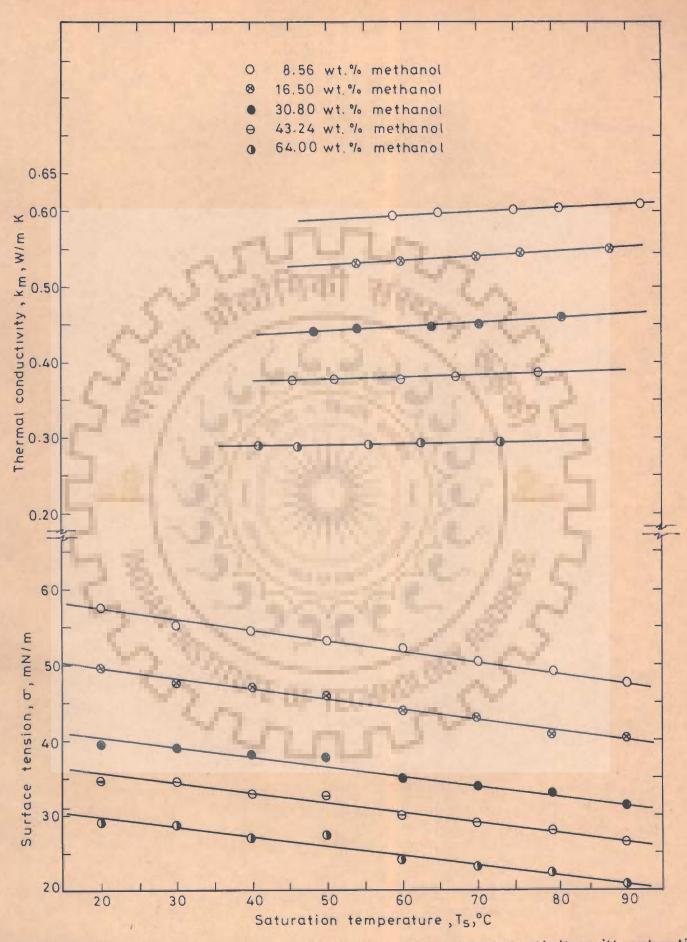
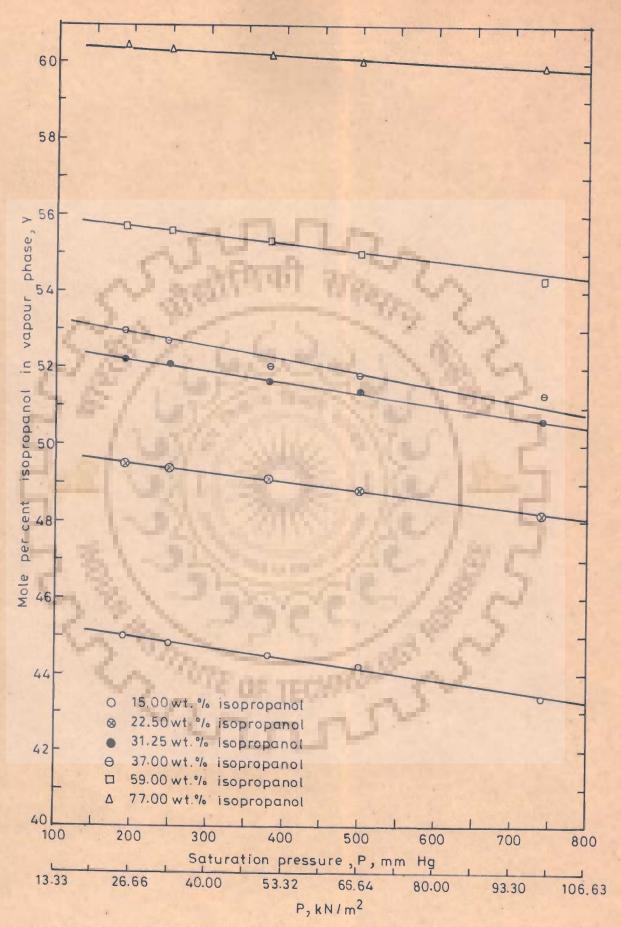
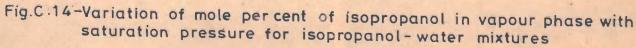




Fig.C.13-Variation of surface tension and thermal conductivity with saturation temperature for methanol-water mixtures

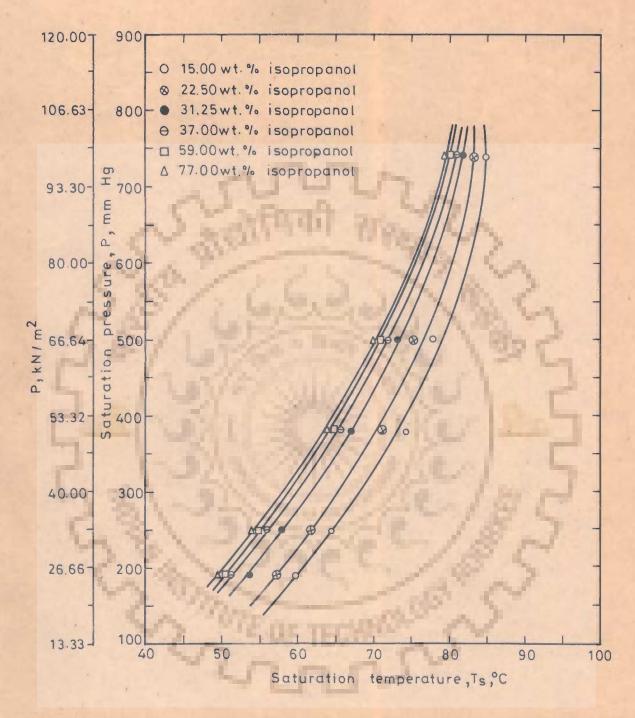


Fig.C.15-Variation of saturation pressure with saturation temperature for isopropanol water mixtures

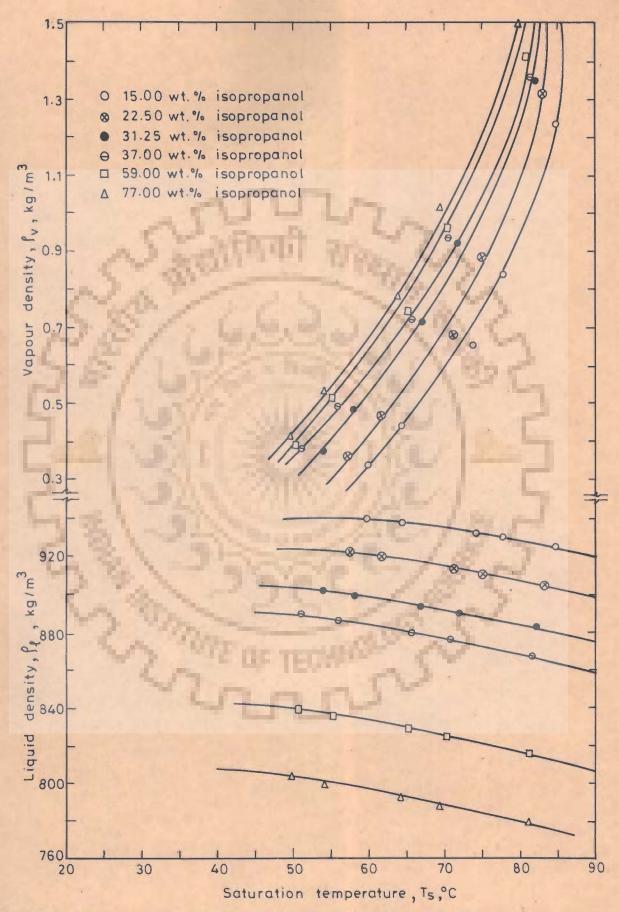


Fig.C 16-Variation of liquid and vapour densities of isopropanol-water mixtures with saturation temperature

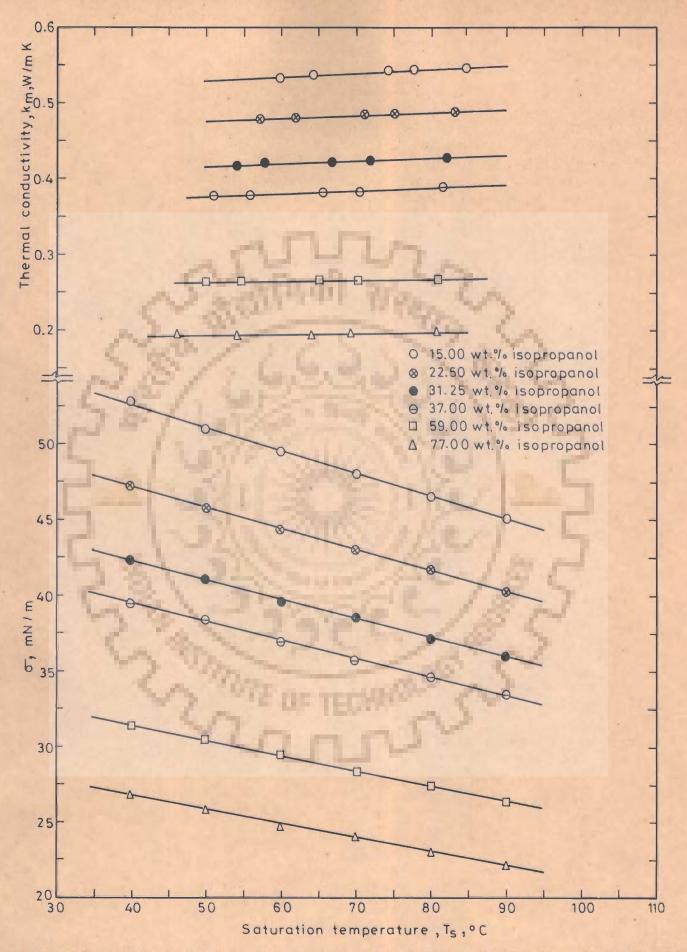


Fig.C.17-Variation of surface tension and thermal conductivity with saturation temperature for isopropanol-water mixtures

APPENDIX-D

SAMPLE CALCULATIONS

D.1 PURE LIQUIDS

Run No. 36 for ethanol has been selected to demonstrate the calculational procedure. The following experimental data were obtained for the above run :

System Pressure,	P =	48.0 kN/m ²
Saturation Temporature ,	T _s =	59.6°C
Voltage ,	V =	56 Volts
Current ,	I =	7.0 Amperes

The e.m.f. of the surface and liquid thermocouples and the corresponding temperatures under steady state conditions are reported below :

	Heating Surface					
22	Top	Side	Bottom	Top	Side	Bottom
e.m.f,millivolt	2.908	3.075	3.023	2.529	2.515	2.521
Temperature, ^o C	70.50	74.30	73.13	61.88	61.55	61.70

Dimensions of the heating surface are given below : 0.D. of the heating surface , $d_0 = 70 \text{ mm}$ I.D. of the heating surface , $d_1 = 62 \text{ mm}$ Length of the heating surface, $\ell = 179 \text{ mm}$ D.1.1 Heat Transfer Area

$$A = \pi d_0 /$$

= $\pi \times 0.07 \times 0.179$
= 3.93 x 10⁻² m²

D.1.2 Heat Flux

$$q = \frac{VI}{A}$$

= $\frac{56 \times 7}{3.93 \times 10^{-2}} = 9974.55 \text{ W/m}^2$

D.1.3 Correction of Surface Temperatures

In the present investigation, heating surface is a thin walled cylinder. The temperature drop across the wall is calculated by the following equation of conductive heat transfer :

$$\delta T_{W} = \frac{q d_{o}}{2 k_{W}} \ln \frac{d_{o}}{d_{h}} \qquad \dots (D.1)$$

where, $d_{h} =$ Inside diameter of the heating surface + $\frac{1}{2} (d_{0} - d_{1})$...(D.2)

and k_{w} = Thermal conductivity of the wall

$$\delta T_{W} = \frac{q \times 70 \times 10^{-3}}{2 \times 22.15 \times 1.163} \ln \frac{70 \times 10^{-3}}{66 \times 10^{-3}}$$

= 7.995 x 10⁻⁵ x q

 $\delta T_{\rm W} = 7.995 \times 10^{-5} \times 9974.55 = 0.797^{\circ} C$

Therefore, corrected surface temperatures are as follows:

T _{wl} =	70.50 - 0.797	=	69.703°C
$T_{rr2} =$	74.30 - 0.797	=	73.503°C
$T_{w3} =$	74.30 - 0.797 73.13 - 0.797	=	72.333°C

Subscripts 1, 2 and 3 represent the top-, side- and bottom- positions of the thermocouples respectively.

D.1.4 Average Temperature Difference, $\overline{\Delta T}$

 $\Delta T_{1} = T_{w1} - T_{\ell 1} = 69.703 - 61.88 = 7.823^{\circ}c$ $\Delta T_{2} = T_{w2} - T_{\ell 2} = 73.503 - 61.55 = 11.953^{\circ}c$ $\Delta T_{3} = T_{w3} - T_{\ell 3} = 72.333 - 61.70 = 10.633^{\circ}c$

Average temperature difference, $\overline{\Delta T} = \frac{\Delta T_1 + \Delta T_2 + \Delta T_3}{3}$

 $= \frac{7.823 + 11.953 + 10.633}{3}$ $= 10.136^{\circ}C$

D.1.5 Heat Transfer Coefficient

The point values of the experimental heat transfer coefficient at the top-, side- and bottom- positions of the heating surface are calculated in the following manner :

$$h_{1} = \frac{q}{\Delta T_{1}} = \frac{9974.55}{7.823} = 1275.03 \frac{W}{m^{2}K}$$

$$h_{2} = \frac{q}{\Delta T_{2}} = \frac{9974.55}{11.955} = 834.48 \frac{W}{m^{2}K}$$

$$h_{3} = \frac{q}{\Delta T_{3}} = \frac{9974.55}{10.633} = 938.08 \frac{W}{m^{2}K}$$

The average value of the experimental heat transfer coefficient is calculated as follows :

$$\bar{h} = \frac{q}{(\bar{\Delta}T)} = \frac{9974.55}{10.136} = 984.072 \frac{W}{m^2 K}$$

D.1.6 Calculation of $\bar{h}^{\pm}/\bar{h}_{1}^{\pm}$ and P/P_{1}

 h^{\pm} is calculated by averaging the values of h^{\pm} at 48.0 kN/m² for all heat fluxes. The procedure is as follows :

For Run No. 36 , $h^{\star} = \frac{984.072}{(9974.55)^{0.7}} = 1.562 \frac{w^{0.3}}{m^{0.6} K}$ For Run No. 37 , $h^{\star} = \frac{1202.65}{(12946.56)^{0.7}} = 1.591 \frac{w^{0.3}}{m^{0.6} K}$ For Run No. 38 , $h^{\star} = \frac{1532.60}{(17984.73)^{0.7}} = 1.611 \frac{w^{0.3}}{m^{0.6} K}$ For Run No. 39 , $h^{\star} = \frac{1712.24}{(21671.76)^{0.7}} = 1.579 \frac{w^{0.3}}{m^{0.6} K}$ For Run No. 40 , $h^{\star} = \frac{1960.44}{(26740.46)^{0.7}} = 1.561 \frac{w^{0.3}}{m^{0.6} K}$

Thus, h^* at 48.0 kN/m² = $\frac{1}{5}$ [1.562+1.591+1.611+1.579+1.561] = 1.581 $\frac{W^{0.3}}{m^{0.6}K}$

Similarly, $\overline{h_1}^{\star}$ is evaluated by averaging the values of h^{\star} at 98.63 kN/m² from Run Nos.26 to 30. The value of $\overline{h_1^{\star}}$, so obtained, is 2.119 $\frac{W^{0.3}}{m^{0.6}K}$

Therefore,
$$\frac{h^*}{h_1^*} = \frac{1.581}{2.119} = 0.746$$

and $\frac{P}{P_1} = \frac{48.0}{98.63} = 0.487$

D.2 BINARY LIQUID MIXTURES

Run No. 250 for 16.5 wt. per cent methanol in methanol-water mixture has been selected to illustrate the procedure followed in processing the experimental data for mixtures.

The following data were taken for the above run :

Mixture Composition : Methanol-water mixture containing 16.5 wt. per cent methanol (10 mole per cent methanol)

System pressure, $P = 50.65 \text{ kN/m}^2$

Barometric pressure= 98.63 kN/m²

Saturation Temperature, $T_s = 70.0$ °C Voltage, V = 63 Volts Current, I = 8.0 Amperes Heat flux, q = 8 x 63/0.0393 = 12824.43 W/m²

The e.m.f. of the surface and liquid thermocouples and the corresponding temperatures under steady state conditions are reported below :

	Heating Surface			Liquid		
	Тор	Side	Bottom	Top	Side	Bottom
e.m.f.,millivolt	3.516	3.498	3.530	2.934	2.926	2.930
Temperature, ^o C	84.15	83.75	84.45	71.10	70.90	71.03

D.2.1 Average Heat Transfer Coefficient, h

 \bar{h} has been calculated in the similar manner as described in Sections D.1.1 to D.1.5. The value of \bar{h} is 1061.45 W/m²K.

D.2.2 Calculation of $\overline{h}^{\star}/\overline{h}_{1}^{\star}$ and P/P_{1}

 \overline{h}^{\star} is calculated by averaging the values of h^{\star} at 50.65 kN/m² for all heat fluxes studied in Run Nos.249 to 253. The procedure of calculation has already been illustrated in Section D.1.6.

Thus,
$$\mathbf{h}^{\star} = \frac{1}{5} \left[\frac{860.32}{(9618.32)^{0.7}} + \frac{1061.45}{(12824.43)^{0.7}} + \frac{1263.5}{(16488.55)^{0.7}} + \frac{1481.53}{(20356.23)^{0.7}} + \frac{1702.73}{(24910.9)^{0.7}} \right]$$

= 1.415 $\frac{W^{0.3}}{m^{0.6}K}$

Similarly, $\overline{h_1^{\star}}$ has been calculated from Run Nos. 239 to 243 and the value of $\overline{h_1^{\star}}$ is 1.733 $\frac{W^{0.3}}{m^{0.6}K}$

Therefore,
$$\frac{h^{\star}}{h_{1}^{\star}} = \frac{1.415}{1.733} = 0.8165$$

and $\frac{P}{P_{1}} = \frac{50.65}{98.63} = 0.5135$

(i)
$$\rho_{\ell} = \frac{100}{\frac{16.5}{746} + \frac{83.5}{978}} = 930 \text{ Kg/m}^3$$

(ii)
$$M = 0.456 \times 32 + 0.544 \times 18 = 24.4 \text{ Kg/Kg-mole}$$

(iii)
$$\rho_v = \frac{100 \times 0.5 \times 24.4}{82.06 \times 343} = 0.433 \text{ Kg/m}^3$$

. .

(v)

(a)
$$\frac{\Psi_W}{\Psi_0} = \frac{0.9 \times 18.40}{0.1 \times 42.89} = 3.861$$

(b) $\beta = \log 3.861 = 0.587$
(c) $W = \frac{0.441 \times 1}{343} [18.4(42.89)^{2/3}-64.4(18.40)^{2/3}]$
 $= -0.289$
(d) $\psi = 0.587 - 0.289 = 0.298$

(e)
$$\Psi_{W}^{\sigma} = 0.665 \text{ and } \Psi_{O}^{\sigma} = 0.335$$

(f)
$$\sigma_{\rm m} = [0.665(64.4)^{1/4} + 0.335(18.40)^{1/4}]^4$$

= 44.2 dynes/cm

D.2.4 Evaluation of NuB

Laplace Constant,
$$D = \sqrt{\frac{\sigma}{g(\rho_{f} - \rho_{v})}}$$

 $D = \sqrt{\frac{44.2 \times 10^{-3}}{9.81(930 - 0.433)}} = 2.2 \times 10^{-3} \text{ m}$
 $\overline{N_{u_{B}}} = \frac{\overline{h}}{k_{m}} \sqrt{\frac{\sigma}{g(\rho_{f} - \rho_{v})}} = \frac{1061.45 \times 2.2 \times 10^{-3}}{0.5413}$
 $\overline{Nu_{B}} = 4.314$

D.2.5 Evaluation of $\overline{Mu}_{B} \left(\frac{P_{1}}{P}\right)^{0.32}$

$$\overline{\mathrm{Nu}}_{\mathrm{B}}^{\star} = \frac{\overline{\mathrm{Nu}}_{\mathrm{B}}}{q^{0.7}} = \frac{4.314}{(12824.43)^{0.7}} = 5.745 \times 10^{-3} \frac{\mathrm{m}^{1.4}}{\mathrm{w}^{0.7}}$$
$$\left(\frac{\mathrm{P}_{1}}{\mathrm{P}}\right)^{0.32} = \left(\frac{98.63}{50.65}\right)^{0.32} = 1.238$$
Therefore,
$$\overline{\mathrm{Nu}}_{\mathrm{B}}^{\star} \left(\frac{\mathrm{P}_{1}}{\mathrm{P}}\right)^{0.32} = 5.745 \times 10^{-3} \times 1.238$$
$$= 7.11 \times 10^{-3} \frac{\mathrm{m}^{1.4}}{\mathrm{w}^{0.7}}$$

REFERENCES

- 1. Bonnet, W.E. and Gerster, J.A., "Boiling Coefficients of heat transfer - C₄ hydrocarbon/ furfural mixtures inside vertical tubes", Chem. Eng. Prog., Vol. 47, no.3, pp 151-158 (1951).
- 2. Palen, J.W. and Small, W.M., "A new way to design kettle and internal reboilers", Hydrocarbon Processing, vol. 43, no. 11, pp 199-208 (1964).
- Hughmark, G.A., "Designing thermosiphon reboilers", Chem. Eng. Prog. Symp. Ser., Vol.61, no. 59, pp 217-219 (1965).
 - . Shellene, K.R., Sternling, C.V., Snyder, N.H. and Church, D.M., 'Experimental study of a vertical thermosyphon reboiler", Chem. Eng. Prog. Symp. Ser., Vol. 64, no. 82, pp 102-113 (1968).
- 5. Hughmark, G.A., "Designing thermosiphon reboilers", Chem. Eng. Prog. Symp. Ser., Vol. 66, no. 102, pp 209-213 (1970).
 - Palen, J.W., Yarden, A. and Taborek, J., "Characteristics of boiling outside large-scale horizontal multitube bundles", AIChE Symp. Ser., Vol. 68, no. 118, pp 50-61 (1972).

6.

- 7. Wall, K.W. and Park, Jr, E.L., "Nucleate boiling of n-pentane, n-hexane and several mixtures of the two from various tubes arrays", Int. J. Heat Mass Transfer, Vol 21, no. 1, pp 73-75 (1978).
- 8. Sharma, P.R., "Heat transfer studies in pool boiling of liquids", Ph.D. Thesis, University of Roorkee, Roorkee (April-1977).
- 9. Cryder, D.S. and Finalborgo, A.C., "Heat transmission from metal surfaces to boiling liquids: Effect of temperature of the liquid on film coefficient", Trans. AIChE, Vol. 33, pp. 346-362 (1937).

- Bonilla, C.F. and Perry, C.W., "Heat transmission to boiling binary liquid mixtures", Trans. AIChE, Vol. 37, pp 685-705 (1941).
- 11. Cichelli, M.T. and Bonilla, C.F., "Heat transfer to liquid boiling under pressure", Trans. AIChE, Vol. 41, pp 755-787 (1945).
- 12. Bonilla, C.F. and Eisenberg, A.A., "Heat transfer to butadiene and styrene mixtures", Ind. Eng. Chem., Vol. 40, pp 1113-1122 (1948).
- 13. Kirschbaum, E., Angew. Chem., Vol. 20B, pp 333-335 (1948).
- 14. Kirschbaun, E., Chem. Ing. Techn., Vol. 24, pp 393-400 (1952).
- 15. Chernobylskii, I.I. and Lukach, Yu. E., "Calculation of the heat transfer coefficient during boiling of binary mixtures", Khim. Prom., pp 362-363 (1957).
- 16. Chi Fang Lin, Yu Che Yand and Fan Kuo Kung, "The boiling heat transfer coefficient of binary liquid mixtures", Hua Kung Hsuch Pao, no. 2, pp 137-146 (1959).
- 17. Averin, Ye. K. and Kruzhilin, G.N., "Generalization of experimental data for boiling heat transfer of liquids under conditions of natural convection", Izv. Akad. Nauk. SSSR, Otdel. Tekh. Nauk., no. 10 (1955).
- 18. Sternling, C.V. and Tichacek, L.J., "Heat transfer coefficient for boiling mixtures - Experimental data for binary mixtures of large relative volatility", Chem.Eng. Sci., Vol. 16, pp 297-337 (1961).
- 19. Huber, D.A. and Hoehne, J.C., "Pool boiling of benzene, diphenyl and benzene-diphenyl mixtures under pressure", J. Heat Transfer, Vol. 85, no. 3, pp 215-220 (1963).
- 20. Rohsenow, W.M., " A method of correlating heat transfer data for surface boiling of liquids", Trans. ASME, Vol. 74, pp 969-975 (1952).

- 21. Rohsenow, W.M., "Boiling heat transfer", Modern Developments in Heat Transfer, Edited by W. Ibele, Academic Press, N.Y. (1963).
- 22. Gilmour, C.H., "Nucleate boiling A correlation", Chem. Eng. Prog., Vol. 54, no. 10, pp 77-79 (1958).
- 23. Levy, S., "Generalised correlation of boiling heat transfer", Trans. ASME, Ser. C. J. Heat Transfer, Vol. 81, pp 37-42 (1959).
- 24. Tolubinskiy, V.I. and Ostrovskiy, Yu. N., "Mechanism of vapour formation and rate of heat transfer during boiling of binary solutions", Akad. Nauk, Ukr. SSSR Reshul Mezhvendom, pp 7-16 (1966).
- 25. Afgan, N.H., "Boiling heat transfer and burnout heat flux of ethylalcohol-benzene mixtures", 3rd International Heat Transfer Conference, Chicago Ill., Paper 98, Vol. III, pp 175-185 (12th August, 1966).
- 26. Fritz, W. and Ende, W., Physik Z., Vol. 36, pp 379 (1935).
- 27. Ivanov, O.P., "Heat transfer studies in boiling of F-12 and F-22 mixtures", Kholod. Tekhnika, Vol. 43, no. 4, pp 27-29 (1966).
- 28. Borishanskii, V.M., "Use of thermodynamic similarity in generalizing experimental data on heat transfer", Proceedings of the International Heat Transfer Conference, pp 975 (1962).
- 29. Klimenko, A.P. and Kozitskii, V.I., "Calculation of heat transfer coefficient during the boiling of light hydrocarbon mixtures", Khim. Prom. Ukr., Vol. 4, pp 32-34 (1967).
- 30. Filatkin, V.N., "Boiling heat transfer to waterammonia mixtures", Problems of Heat Transfer and Hydraulics of Two-Phase Media, a Symposium edited in Russian by S.S. Kutateladze and translated by O.M. Blunn, Pergamon Press, London, pp 131-136 (1969).

- 31. Tolubinskiy, V.I. and Ostrovskiy, Yu. N., "Mechanism of heat transfer in boiling of binary mixtures", Heat Transfer - Soviet Research, Vol. 1, no. 6, pp 6-11 (1969).
- 32. Stephan, K. and Körner, M., "Calculation of heat transfer in evaporating binary liquid mixtures", Chemie - Ingenieur - Teehnik, Vol. 41, no. 7, pp 409-417 (1969).
- 33. Tolubinskii, V.I., Ostrovskii, Yu. N. and Kriveshko, A.A., "Heat transfer to boiling water-glycerine mixtures", Heat Transfer - Soviet Research, Vol.2, no. 1, pp 22-24, Jan. (1970).
- 34. Takeda, H., Hayakawa, T. and Fujita, S., "Boiling heat transfer coefficients of binary liquid mixtures", Kagaku Kogaku, Vol. 34, no. 7, pp 751-757 (1970).
- 35. Wright, R.D., Clements, L.D., and Colver, C.P., "Nucleate and film boiling of ethane-ethylene Mixtures", A.I.Ch.E. J., Vol. 17, no. 3, pp 626 (1971).
- 36. Borishanskii, V.M., Bobrovich, G.I., and Minchenko, F.P., "Heat transfer from a tube to water and to othanol in nucleate pool boiling", Symposium on Problems of Heat Transfer and Hydraulics of Two-Phase Media (edited by S.S. Kutateladze), Pergamon Press, London, pp 85-107 (1969).
- 37. Kutateladze, S.S.,"Fundamentals of heat transfer" (edited by R.D. Cess), Academic Press, New York (1963).
- 38. McNelly, M.J., "A correlation of rates of heat transfer to nucleate boiling liquids", Journal of the Imperial College Chem. Eng. Soc., Vol. 7, pp 18-34 (1953).
- 39. Clements, L.D. and Colver, C.P., "Nucleate boiling of light hydrocarbons and their mixtures", Proceedings of the Heat Transfer and Fluid Mechanics Institute (edited by Landis, R.B. and Hordemann, G.J.), Stanford University Press, pp 417-430 (1972).

- 40. Calus, W.F. and Rice, P., "Pool boiling binary liquid mixtures", Chem. Eng. Sci., Vol. 27, pp 1687-1697 (1972).
- 41. Scriven, L.E., "On the dynamics of phase growth", Chem. Eng. Sci., Vol. 10, nos. 1/2, pp 1-13 (1959).
- 42. van Stralen, S.J.D., "The mechanism of nucleate boiling in pure liquids and in binary mixtures part I", Int. J. Heat Mass Transfer, Vol. 9, pp 995-1020 (1966).
- 43. van Stralen, S.J.D., "The mechanism of nucleate boiling in pure liquids and in binary mixtures -Part II", Int. J. Heat Mass Transfer, Vol. 9, pp 1021-1046 (1966).
- 44. van Stralen, S.J.D., "The mechanism of nucleate boiling in pure liquids and in binary mixtures -Part III", Int. J. Heat Mass Transfer, Vol. 10, pp 1469-1484 (1967).
- 45. van Stralen, S.J.D., "The mechanism of nucleate boiling in pure liquids and in binary mixtures -Part IV (surface boiling)", Int. J. Heat Mass Transfer, Vol. 10, pp 1485-1498 (1967).
 - 46. Rice, P. and Calus, W.F., " Pool boiling single component liquids", Chem.Eng. Sci., Vol. 27, pp 1677-1686 (1972).
 - 47. Isshiki, N. and Nikai, I., "Boiling of binary mixtures", Heat Transfer - Japanese Research, Vol. 1, no. 4, pp. 56-66,Oct.-Dec. (1972).
 - 48. Tolubinskiy, V.I., Kriveshko, A.A., Ostrovskiy, Yu.N., and Pisarev, V. Ye., "Effect of pressure on the boiling heat transfer rate in water-alcohol mixtures", Heat Transfer-Soviet Research, Vol. 5, no.3, pp 66-68, May-June (1973).
 - 49. Calus, W.F. and Leonidopoulos, D.J., "Pool boiling - binary liquid mixtures", Int. J. Heat Mass Transfer, Vol. 17, pp 249-256 (1974).
 - 50. Tolubinskiy, V.I., Ostrovskiy, Yu.N., Pisarev, V.Ye., Kriveshko, A.A. and Konstanchuk, D.M., "Boiling heat transfer rate from a benzene-ethanol mixture as a function of pressure ", Heat Transfer -Soviet Research, Vol. 7, no. 1, pp 118-121, Jan.-Feb. (1975).

342

- 51. Ohnishi, M. and Tajima, O., " Pool boiling heat transfer to lithium bromide water solution", Heat Transfer - Jap. Research, Vol. 4(4), pp 67-77, Oct.-Dec.(1975).
- 52. Nishikawa, K. and Yamagata, K., "On the correlation of nucleate boiling heat transfer", Int. J. Heat Mass Transfer, Vol. 1, pp 219-235 (1960).
- 53. Chashchin, I.P., Shipina, L.F., Shavb, N.S. and Sobol, A.D., "Investigation of the effect of some organic additives on heat transfer during boiling", Teploenergetika, no. 8, pp 73-74 (Aug. 1975).
- 54. Styushin, N.G. and Astaf'ev, V.I., "Heat transfer with the boiling of solutions", Theor. Found. Chem. Eng., Vol. 9, no.4, pp 514-519 (July-Aug 1975).
- 55. Kravchenko, V.A., Ostrovskiy, Yu. N. and Tolubinskaya, L.F., "Boiling heat transfer to light hydrocarbons and ethylene-ethane mixtures", Heat Transfer - Soviet Research, Vol. 8, no. 4, pp 43-46 (July-Aug 1976).
 - 56. Yusufova, V.D. and Chernyakhovskiy, A.I.," Heat transfer with boiling mixtures", Heat Transfer -Soviet Research, Vol. 8, no. 4, pp 57-62 (July-Aug 1976).
 - 57. Styushin, N.G. and Astaf'ev, V.I., "Analysis of the concentration dependence of the heat transfer coefficient in the large volume boiling of binary mixtures", Teor. Osn. Khim. Tekhnol, Vol. 12, no.6, pp 856-862 (1978).
 - 58. Thome, J.R. and Bold, W.B., "Nucleate pool boiling in cryogenic binary mixtures", Proc. Int. Cryog. Eng. Conf., Vol. 7, pp 523-530 (1978).
 - 59. Happle, O. and Stephan, K., "Heat transfer from nucleate to film boiling in binary mixtures", Fifth.Int. Heat Transfer Conf. Tokyo, Paper B7.8, AIChE, N.Y. (1974).

- 60. Happle, O., "Heat transfer during boiling of binary mixtures in the nucleate and film boiling ranges", Heat Transfer in Boiling (edited by E. Hahne and U. Grigull), Hemisphere Publishing Corporation, Washington, pp 207-216 (1977).
- 61. Grigoryev, L.N., "Study on heat transfer during the boiling of two-component mixtures", Conf. Heat and Mass Exch. Mink (1961).
- 62. von Hoffman, T., "Heat transfer in nucleate boiling of liquefied gases and their binary mixtures", Warme Stoffuebertrag Thermo Fluid Dyn., Vol. 11, no. 3, pp 189-193 (1978).
- 63. Stephan, K. and Preusser, P., "Heat transfer in natural convection boiling of polynary mixtures", Sixth Int. Heat Transfer Conf. Ontario, Paper PB-13, pp 187-192 (Aug 7-11, 1978).
- 64. Stephan, K. and Preusser, P., "Heat transfer and critical heat flux in pool boiling of binary and ternary mixtures", Ger. Chem. Eng., Vol. 2, no. 3, pp 161-169 (June 1979).
- 65. Stephan, K. and Preusser, P., "Heat transfer and maximum heat flux density in the vessel boiling of binary and ternary liquid mixtures", Chem. Ing. Tech., Vol. 51, no. 1, pp 37 (1979).
- 66. Stephan, K. and Abdelsalam, M., "Heat transfer correlations for natural convection boiling", Int. J. Heat Mass Transfer, Vol. 23, no. 1, pp 73-87 (1980).
- 67. Plesset, M.S. and Zwick, S.A., "A nonsteady heat diffusion problem with spherical symmetry", J. Applied Physics, Vol. 23, no. 1, pp 95-98 (January-1952).
- 68. Forster, H.K. and Zuber, N., "Growth of a vapour bubble in a superheated liquid", J. Applied Physics, Vol. 25, no. 4, pp 474-478 (April-1954).
- 69. Plesset, M.S. and Zwick, S.A., "The growth of vapour bubbles in superheated liquids", J. Applied Physics, Vol. 25, no. 4, pp 493-500 (April-1954).

- 70. Zwick, S.A. and Plesset, M.S., "On the dynamics of small vapour bubbles in liquids", J. Mathematics and Physics, Vol. 33, no. 4, pp 308-330 (January-1955).
- 71. Griffith, P., "Bubble growth rates in boiling", Trans. ASME, pp 721-727 (April-1958).
- 72. Forster, K.E., "Growth of vapour-filled cavity near a heating surface and some related questions", The Physics of Fluids, Vol. 4, no. 4, pp 448-455 (April-1961).
- 73. Zuber, N., " Dynamics of vapour bubbles in nonuniform temperature field", Int. J. Heat Mass Transfer, Vol. 2, pp 83-98 (1961).
- 74. Skinner, L.A. and Bankoff, S.G., "Dynamics of vapour bubbles in spherically symmetric temperature fields of general variation", The Physics of Fluids, Vol. 7, no. 1, pp 1-6 (January-1964).
- 75. Nishikowa, K., Kusuda, H. and Yamasaki, K., "Growth and collapse of bubbles in nucleate boiling", Bulletin of JSME, Vol. 8, no. 30, pp 205-210 (1965).
- 76. Han, Chi-Yeh and Griffith, P., "The mechanism of heat transfer in nucleate pool boiling - Part I, bubble initiation, growth and departure", Int. J. Heat Mass Transfer, Vol. 8, pp 887 (1965).
- 77. Hamberger, L.G., " On growth and rise of individual vapour bubbles", Int. J. Heat Mass Transfer, Vol. 8, pp 1369-86 (1965).
- 78. Cole, R. and Shulman, H.L., "Bubble growth rate at high Jakob numbers", Int. J. Heat Mass Transfer, Vol. 9, pp 1377-1390 (1966).
- 79. Kotake, S., "On mechanism of nucleate boiling", Int. J. Heat Mass Transfer, Vol. 9, pp 711 (1966).
- 80. van Stralen, S.J.D., "Comments on the paper Bubble growth rates at high Jakob numbers", Vol. 10, pp 1908-1912 (1967).

- 82. Sernas, V. and Hooper, F.C., "The initial bubble growth on a heated wall during nucleate boiling", Int. J. Heat Mass Transfer, Vol. 12, pp 1627-40 (1969).
- 83. Akiyama, M., "Dynamics of an isolated bubble in saturated boiling (Part I - bubble growth)", Bulletin JSME, Vol. 12, pp 273-282 (1969).
- 84. Cooper, M.G., "The microlayer and bubble growth in nucleate pool boiling", Int. J. Heat Mass Transfer, Vol. 12, pp 915-933 (1969).
- 85. Akiyama, M., Tachibana, F. and Ogawa, N., " Effect of pressure on bubble growth in pool boiling", Bulletin JSME, Vol. 12, pp 1121-1128 (1969).
- 86. Cooper, M.G. and Vijuk, R.M., "Bubble growth in nucleate pool boiling", Proceedings of Fourth International Heat Transfer Conference, Paris-Versailles, Vol. V, B-2.1 (1970).
- 87. Mikic, B.B., Rohsenow, W.M. and Griffith, P., "On bubble growth rates", Int. J. Heat Mass Transfer, Vol. 13, pp 657-666 (1970).
- 88. Dzakowic, G.S. and Frost, W., "Vapour bubble growth in saturated pool boiling by microlayer evaporation of liquid at heated surface", Proceedings of Fourth International Heat Transfer Conference, Paris-Versailles, Vol. V, B-2.2 (1970).
- 89. van Ouwerkerk, H.J., "The rapid growth of a vapour bubble at a liquid interface", Int. J. Heat Mass Transfer, Vol. 14, pp 1415-1432 (1971).
- 90. Saini, J.S., Gupta, C.P., and Lal, S., "Bubble growth in nucleate pool boiling", Proceedings of First National Heat and Mass Transfer Conference, IIT Madras, pp IX-31-38 (1971).

346

- Stewart, J.K. and Cole, R., "Bubble growth rates during nucleate boiling at high Jakob numbers", Int. J. Heat Mass Transfer, Vol. 15, pp 655-663 91. (1972).
- van Stralen, S.J.D., Cole, R., Sluyter, W.M. and Sohal, M.S., "Bubble growth rates in nucleate 92. boiling of water at subatmospheric pressures", Int. J. Heat Mass Transfer, Vol. 18, pp 655-669 (1975).
- Saini, J.S., " Studies of bubble growth and 93. departure in nucleate pool boiling", Ph.D. Thesis, Department of Mechanical and Industrial Engineering, University of Roorkee, Roorkee (May 1975).
- Nishikawa, K., Fujita, Y., Nawata, Y. and Nishijama, T., "Studies on nucleate pool boiling 94. at low pressures", Heat Transfer - Jap. Research, Vol. 5, no. 2, pp 66-89 (April-June 1976).
- Kutateladze, S.S., " Boiling and bubbling heat 95. transfer under free convection of liquid", Int. J. Heat Mass Transfer, Vol. 22, no. 2, pp 281-299 (1979).
 - Vos, A.S. and van Stralen, S.J.D., "Heat transfer to boiling water-methylethylketone mixtures", 96. Chem. Eng. Sci., Vol. 5, pp 50-56 (1956).
 - van Wijk, W.R., Vos, A.S. and van Stralen, S.J.D., "Heat transfer to boiling binary liquid mixtures" 97. Chem. Eng. Sci., Vol. 5, pp 68-80 (1956).
 - van Stralen, S.J.D., "Heat transfer to boiling 98. binary liquid mixtures at atmospheric and subatmospheric pressures", Chem. Eng. Sci., Vol.5, pp 290-296 (1956).
 - Bruijn, P.J., " On the asymptotic growth rate of 99. vapour bubbles in superheated binary liquid mixtures", Physica, 's Grav., Vol. 26, pp 326-334 ·(1960).
- Grigoryev, L.N., " Heat transfer in boiling of 100. two component mixtures", Teplo-i-Massoperenos (Symposium, Heat and Mass Transfer), Vol. 2, pp 120-127 (1962).

- 101. Steronkin, A.B., "On conclusions and limitations of the Vrevskii principle, work on theory of solutions", Izdalap'sko AN SSSR (1953).
- 102. Yatabe, J.M. and Westwater, J.W., "Bubble growth rates for ethanol-water and ethanolisopropanol mixtures", Chem.Eng. Prog. Symp. Ser., Vol. 62, no. 64, pp 17-23 (1966).
- 103. Tolubinskiy, V.I. and Ostrovskiy, J.N., "On the mechanism of boiling heat transfer (vapour bubble grow rates in the process of boiling of liquids, solutions and binary mixtures)", Int. J. Heat Mass Transfer, Vol. 9, pp 1463-1470 (1966).
- 104. Hatton, A.P. and Hall, I.S., "Photographic study of boiling on prepared surfaces", 3rd International Heat Transfer Conference Chicago, Ill. Paper 115, Vol. IV, pp 24-37 (7-12th August 1966).
- 105. Rehm, T.H., "Bubble growth parameters in saturated and subcooled nucleate boiling", Chem. Eng. Prog. Symp. Ser., Vol. 62, no. 82, pp 88-94 (1968).
- 106. van Stralen, S.J.D., "The growth rate of vapour bubbles in superheated pure liquids and binary mixtures - Part I", Int. J. Heat Mass Transfer, Vol. 11, pp 1467-1490 (1968).
- 107. van Stralen, S.J.D., "The growth rate of vapour bubbles in superheated pure liquids and binary mixtures - Part II", Int. J. Heat Mass Transfer, Vol. 11, pp 1491-1512 (1968).
- 108. van Ouwerkerk, H.J., "Hemispherical bubble growth in binary mixture", Chem. Eng. Sci., Vol. 27, no. 11, pp 1957-1967 (Nov. 1972).
- 109. van Stralen, S.J.D., Sohal, M.S., Cole, R., and Sluyter, W.M., "Bubble growth rates in pure and binary systems : combined effect of relaxation and evaporation microlayers", Int. J. Heat Mass Transfer, Vol. 18, pp 453-467 (1975).
- 110. Tolubinskiy, V.I., "Computation of average growth rate of vapour bubbles", Heat Transfer-Soviet Research, Vol. 7, no. 3, pp 77-83 (1975).

- 112. Shock, R.A.W., "Nucleate boiling in binary mixtures", Int. J. Heat Mass Transfer, Vol. 20, no.6, pp 701-709 (1977).
- 113. Shock, R.A.W., "The evaporation of binary mixtures in forced convection", AERE Report No. R7593 (1973).
- 114. Zijl, W., Moalem, D., van Stralen, S.J.D., "Inertia and diffusion controlled bubble growth and implosion in intially uniform pure and binary systems", Letters in Heat Mass Transfer, Vol. 4, no. 5, pp 331-339 (1977).
- 115. Zijl, W., Ramakers, F.J.M., van Stralen, S.J.D., "Global numerical solutions of growth and departure of a vapour bubble at a horizontal superheated wall in a pure liquid and a binary mixture", Int. J. Heat Mass Transfer, Vol. 22, pp 401-420 (1979).
- 116. Pinnes, E.L. and Mueller, W.K., "Homogeneous vapour nucleation and superheat limits of liquid mixtures", Trans. ASME, Journal of Heat Transfer, Vol. 101, pp 617 (Nov. 1979).
- 117. Scarborough, J.B., "Numerical Mathematical Analysis", Sixth Edition, Oxford and IBH Publishing Company, Calcutta (1966).
- 118. Wiebe, J.R. and Judd, R.L., "Superheat layer thickness measurements in saturated and subcooled nucleate boiling", Trans. ASME, Ser. C., J. Heat Transfer, pp 455-461 (November 1971).
- 119. "International Critical Tables ", Vol. 7, McGraw Hill Book Company Inc. N.Y. (1928).
- 120. Nishikawa, K. and Urakawa, K., " An experiment of nucleate boiling under reduced pressure", Memoirs of the Faculty of Engineering, Kyushu University, Vol. 19, no. 3, pp 63-71 (1960).
- 121. Mikheyev, M., "Fundamentals of Heat Transfer", Mir Publishers, Moscow (1968).

- 122. Gaertner, R.F. and Westwater, J.W., "Population of active sites in nucleate boiling heat transfer", Chem. Eng. Prog. Symp. Ser., Vol. 56, no. 30, pp 39-48 (1960).
- 123. Sharma, P.R. and Varshney, B.S., "Determination of the frequency of bubble emission from a submerged heating surface to a pool of saturated liquid under subatmospheric pressure", Indian Journal of Technology, Vol. 17, pp 407-409 (November 1979).
- 124. Körner, W. and Photiadis, G., "Pool boiling heat transfer and bubble growth on surfaces with artificial cavities for bubble generation", Heat Transfer in Boiling, Edited by E. Hahne and U. Grigull, Hemisphere Publishing Corporation, London, pp 77-84 (1977).
- 125. Raben, I.A., Beaubouef, R.T. and Commerford, G.E., "A study of heat transfer in nucleate pool boiling of water at low pressure" Chem. Eng. Prog. Symp. Ser., Vol. 61, no. 57, pp 249-257(1965).
- 126. Alam, S.S. and Varshney, B.S., "Pool boiling of liquid mixtures", Proceedings of II National Heat and Mass Transfer Conference, Indian Institute of Technology, Kanpur, Paper No. B-6, pp 13-15 (December 1973).
- 127. Vargaftik, N.B., "Handbook on Physical Properties of Gases and liquids", Gasudarstvenae Isdalelstvo Physico-Matematicheskoe Literaturee, Moskava(1963).
- 128. Perry, J.H., "Chemical Engineers' Hand Book", Fifth Edition, McGraw-Hill Book Company Inc. (1973).
- 129. "International Critical Tables", Vol. 3, McGraw-Hill Book Company Inc., N.Y. (1928).
- 130. "International Critical Tables", Vol. 4, McGraw-Hill Book Company Inc., N.Y. (1928).
- 131. "International Critical Tables", Vol. 5, McGraw-Hill Book Company Inc., N.Y. (1928).
- 132. Hatch, L.F., "Isopropyl Alcohol", McGraw-Hill Book Company Inc., N.Y. (1961).
- 133. "CRC Handbook of Chemistry and Physics", 60th Edition, CRC Press Inc. Boca Raton, Florida (1980-81).

- 134. Chandrasekaran, K.D. and Venkateswarlu, D, " SI Units in Chemical Engineering and Technology", Chemical Engineering Education Development Centre, IIT, Madras (1979).
- Prausnitz, J.M., "Molecular Thermodynamics of Fluid-Phase Equilibria", Chapter 5, Prentice-Hall, Englewood Cliffs, N.J. (1969). 135.
- Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., 136. " The properties of Gases and Liquids", Third Edition, McGraw Hill Book Co., N.Y. (1977).
- Tamura, M., Kurata, M., and Odani, H., " Practical 137. method for estimating surface tensions of solutions", Bull. Chem. Soc. Japan, Vol. 28, no.1, pp 83-88 (1955).
- Hirata, M., Ohe, S. and Nagahama K.," Computer Aided Data Book of Vapour-Liquid Equilibria", 138. Kodansha Limited Elsevier Scientific Publishing Co. N.Y. (1975).
- Othmer, D.F. and Benenati , R.F., " Composition 139. of vapours from boiling binary solutions", I and EC, Vol. 37, No.3, pp 299-303 (1945).
- Davalloo, P., "Vapour-liquid equilibrium data 140. on isopropanol-water binary system", Iranian J. Sci. and Tech., Vol. 1, No.3, pp 279-295 (December 1971).
- 141. Topping, J., " Errors of observation and their treatment", Chapman and Hall Ltd. London (1978). AN AN

