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ARSTRACT

Dehydrogenation of cyclohexane to benzene under conditions of
catalyst deactivation was investigated in an integral reactor under quasi-
isothermal conditions and at atmospheric pressure. Ccmmercial platinum-on=-

alumina reforming catalyst (Sinclair-Baker RD-150) was used for investiga=
tion. The operating variables and their range studied are : mole-ratio

of hydrogen to cyclohexane (0.94 to 4.8), reaction temperature (310-435)
and liquid-hourly=-space-velocity (1.28 to L.77).  Reaction product consisted
of mainly benzene with some hydrocracked gases. Gas chromatographic
analysis of liquid product samples using Carbonax~4000 on Celite column

indicated benzene as the only reaction prcduct.

Experimental set-up consisted of a feeding section for cyclohexane
and hydrogen, vaporizer and preheater secticn, a reactor section and a
liquid product collection section. The flow rate of exit gases was recorded
with time. The pressure drop in the reactor increased with time due to
coke formation and carc was taken to keep the ilow rates Of the reactants
constant by compensating for the increase in pressure drop. The catalyst
bed was diluted with glass beads, to maintain it near isothermal using

suitable dilution criterion.

The kinetic model used in the analysis consists of the following

reactions:

k
. 1 .
Dehydrogenation : C6H12 30 L6H6 + 3H2
k,
Hydrocracking: Cé’H]2 ~—“..»  hydrocracked products
K,
Deactivation: C,H., - - » catalyst poisons (coke)



The material balance calculations were carried out considering
equilibrium at the exit of condenser and material balance checked well for
most of the samples in all the sets for both the cyclohexane and hydrogen
feeds. The conversion of cyclohexane into hydrocracked products was calcu-
lated from the material balance of cyclohexane using time average feed
rate. |t is assumed that the loss of cyclohexane due to the deactivation

reaction is negligible.

The kinetic data for undeactivated catalyst was obtained by extra-
polation of experimental conversion data under deactiving catalyst condition
to initial conditions and the same was analysed by assuming first order
irreversible kinetics and plug flow behavicur. These assumptions result
in the following conversion - space velocity relationship, for initial rate
data :
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Under experimental conditions the external heat- and mass-transfer
and internal heat-transfer resistances were found to be negligible but the
intrapellet mass-transfer resistance was found to be significant. The
values of effectiveness factor for the desired dehydrogenation reaction
varied between 0.12 and 0.77, and for the J:hydrocxonhinﬂ reaction it varied
between 0.60 to 0.93. With the help of equation 1 and experimental
conversion data the apparent rate constants ki and ké were determined. The

- 2
values of effectiveness factors were estimated from the plot of mversus @7,

where:
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It is to be noted that ¢2‘Q can be calculated from the experimental

data directly. Knowing the values of ki 3 ké % 71} 9 9

intrinsic rate constants k1 and k2 were calculated. The intrinsic rate

and M nd the

constants k] anc k2 were observed to depend only on temperature which
confirmed the validity of first order irreversible kinetics for dehydrogena-
tion and hydrocracking of cyclohexane. The values of activation energy and

pre-exponential factor were calculated from the regression analysis of

In k versus 1/T values for each rate constant, to give

. 27,300 en’

ky = exp (3%.57 RT ) (hr.) (g catalyst) 1)
E,

k, &= eXp (18.97 - 1_5;{_:‘_59 ) cm (5)

(hr.) (g catalyst)

The correlaticn coefficients for dehydrogenation and hydrocracking
rate constants are 0.992 and 0.902 respectively, and indicate good fit of
data on Arrhenius plots.

It is safe to assume that coke formation on catalyst results in a
loss of catalyst activity for only dehydrogenation reaction involving
platinum sites and not for hydrocracking reactions. Thus, the rates cf
dehydrogenation and-hydrocracking reactions with catalyst deactivation,
are given by :

T, = k Ty

: 1y @ CA (6)

Ty =k My Gy (7)

The rate of change of activity with time is considered to depend
th o th ; ;
on m power of activity and n~ power of concentration ratio of cyclohexane

to hydrogen as given below :
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In equation (&) and (7) undeactivated catalyst effectiveness factors
are used and any change in dehydrogenation activity due to the coke
formation is accounted by activity factcr a. MNon-linear equations 6 to 8
were solved simultaneously for n= 1 and assumed values of kd and m, to

calculate cyclohexane and benzene mole-fraction at reactor exit, for

di fferent times-on-stream using fourth - order Runge-Kutta method on

IBM 370/145, UNIVAC 110D or DEC 2050 computers. The optimal values of kd and
m were found for each set by minimizing the variance between calculated

and experimental values of benzene mole fraction at the reactor exit for
different times ~on-stream. The values of kd and m were optimized to within
45 and + 2 percent respectively. The valuas of m and kd are in the range

of 1.11 to 3.11, and C.41 to 4.53 (hr)-1 respectively. For the solution of
differential equations 40 bed increments and 5 minutes time interval was
chosen after careful error analysis. The 40 bed increments (bed increment
of the order of pellet diameter) gave a computation accuracy of better than
0.05 percent, and 5 minutes timé interval resulted in a computation accuracy
of better than 0.12 percent, in exit conversicn values at the end of five
hours time=on-stream. Activity and conversion profiles were calculated

for all the sets along the length of the bed for cifferent times-on-stream

using optimal values of m and kd’ and the intrinsic reaction rate constants

k] and k2

A total of 19 sets were analyzed for deactivation parameters.
The deactivation rate constant was found to vary only with temperature. The
values of activation energy and pre-exponential factor for catalyst

deactivation rate constant were found from the linear regression of In kd

versus 1/T values, to give =~

: J = 1
ky = exp (95.475 - léﬁ%ég— ) (hr) (9)



The value of correlation coefficient, 0.872, for the above equation

indicates a good fit of data.

A second order polynomial was used to correlate m with Thiele
parameter ¢1 (based on k1) and the constants obtained by regression analysis

are as_given below:
m = 0.9502 + 0.2623 @, - 0.G05806 ¢f (10)

For a given set of cperating conditions equations 2,3,4,5,9 and 10
were used to calculate the intrinsic dehydrogenation and hydrocracking rate
constants, deactivation rate constant, Thiele parameters, effectiveness
factors and m, and these values were then used tc calculate the conversion
and activity profiles along the catalyst bed for different times-on-stream
by simultaneous solution of equations & toc 8 for all the sets. The proposed
model gave a good fit with experimental data as is evident from the absolute
percentage error variance between.the experimental and predicted values of
conversion which is 5.5 for benzene and 4.7 for cycliohexane considering all

the experimental points.

The values of m in the range of 1 to 3 indicate pore-mouth poisoning

and confirms simultaneous deactivation.
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CHAPTER-1

INTRODUCT I ON

1.1 CATALYTIC REFORMING

Catalytic reforming of naphtha (gasoline boiling range) over a
bi functional catalyst is carried out to obtain high octane gasoline or
aromatics as end product. Hydrogen and lighter hydrocarbons (C] = Ch) are
also obtained as side products. High octane gasoline is needed for
efficient performance of high compression ratio engines without knocking.
Aromatics are essential and valuable feed stock for petrochemical industry.

Reforming of naphtha results in restructuring the available classes
of hydrecarbons (pareffins, naphthenes and aromatics), without changing the
number of carbon atoms in the molecule. Though some hydrocracking also
takes place resulting in lower hydrocarbons essentially paraffins.

The feed have three classes of hydrocarbons, whereas in each class
large number of chemical structures are possible, so, the feed is a complex
mixture of series. of hydrocarbons. As the desired end products_are
aromatics, the desired reactions which increase the octane number of the

reformate, are:

(1) Dehydrogenation of naphthenes

(2) Dehydrocyclization of parafinns

(3) Isomerization of paraffins

(4) Olefins saturation

(5) Dehydroisomerization of C5 ring naphthenes
Undesirable simultaneous reaction are :

(1) Hydrocracking of paraffins and naphthenes

(2) Dealkylation of side chains of naphthenes and aromatics.



Studies of reaction mechanism (7,16,33,46,63,64) have shown that
olefins are intermediates, but under reforming conditions only trace can
exist. Dehydrogenation reactions are rapid and highly endothermic, and
contribute maximum toward high aromatic concentration. High temperature,
low pressure, low space velocity and low hydrogen/hydrocarbon mole ratio
favours the reaction. Dehydrocyclization is also endothermic but slow in
nature. It is also favoured under the same operational conditions as the
aromatization of naphthenes. Isomerization reactions are fairly rapid with
insignificant heat effects atfiigh temperature, low pressure and low space
velocity. Condensation and polymerization are also reported and these

reactions result in heavier compounds and coke.

The most desirable conversion is of naphthenes and paraffins -into
aromatics for the gain in the octane number of the product. Isomerization
is of limited value as the equilibrium concentration of highly branched
paraffins fall rapidly at high temperatures. Hydrocracking of paraffins
eventhough increases octane number by reducing paraffin content in C;

reformate, but is not considered desirable due to the loss of valuable

product.

Considering the importance of dehydrogenation of naphthenes in
reforming, dehydrogenation of cyclohexane has been chosen as a model
reaction for the present study. The conversion of cyclohexane (to benzene!
over platinum-on-alumina catalyst is essentialiy complete at approximately
300°C and at atmospheric pressure. In cyclohexane dehydrogenation inter-
mediate species are not reported (3) and this indicates that six hydrogen
atoms from cyclohexane are removed simultaneously. The absence of the
intermediate dehydrogenation products in the case of cyclohexane is also
evident from the observation of the relevant thermodynamic data which
shows that only trace concentrations of the intermediate dehydrogenation

products are possible at equilibrium at 300°c (80).



1.2 DEACTIVATION OF CATALYSIS :

Most of the catalyst systems of both practical and theoretical
interests are based on catalysts whose activity is not constant with time-
on-stream ‘2,10) and loose their activity during progress of reaction.
This very complicated phenomena is made even more confusing by the wide
variety of deactivation phenomena and the lack of systematic investigation
in this field. .Catalyst deactivation can be defined as a phenomena which
lowers the overall rate of a catalytic reaction below the value whicﬁ can
be obtained with a fresh catalyst and uncontaminated reagents. In order
to place the subsequent theoretical treatment in proper perspective with
relation to the entire field of catalyst deactivation, an attempt is made
to categorize the various deactivation phenomena encountered in practice.
In general, deactivation encompasses three subclasses of behaviour called

poisoning, fouling and sintering (15).

POISONING: - Poisoning is chemisorption of reactants, products, or
impurities (singly or in combination) found in the reactor feed, which
occupy catalyst sites otherwise available for catalysis. Chemisorption
of poisoning agents may be reversible or irreversible. In the first
case, elimination of the poison precursor from the feed restores catalyst
vitality. |f the reversibly poisoning specie is a reactant, its
elimination is meaningless, if it is a product, a remedy might consist in
a low-conversion, high-recycle reactor net work with product removal in
the recycle loop. Poisoning, in so far as it is a chemisorptive event,

constitutes chemical deactivation.

FOULING: - Fouling is caused by species in the fluid phase being
physically deposited upon the surface, thereby covering - or blocking sites
otherwise available to catalysis. Fouling can also be alresult of surface
reactions yielding products that foul the surface, for example, coke produ-

ced during cracking of hydrocarbons. Catalyst can be 'regenerated’ by



burning the coke under controlled conditions.

SINTERING AND PHASE TRANSFORMATIONS :

As a consequence of local high temperature and in some instances
the existence of the oxidizing and reducing atmosphere, the catalyst per se
and/or its supports suffer a reduction in specific surface area or the
chemical nature of the catalytic agent is so altered as to render it

catalytically ineffective.

In general it can be suggested that poisoning and fouling rates may
depend upon reactant and/or product concentrations, while sintering and
phase transformations may be assumed to be independent of fluid phase

composition for a given oxidizing or reducing atmosphere.

The term catalyst activity is used in the literature both comparing
various cat;lysts for a given process and for comparing the various state:
of the same catalyst. The changes in the catalyst activity as a function
of time is of prime importance in the study of catalyst deactivation. The
most frequently used quantitative description of catalyst activity is
given by Szepe and Levenspiel (79). They have discussed the relative
merits and demerits of each definition and indicated that, from theoretical
point of view, the definition based on rate is most satisfactory, For
given operating and catalyst conditions, the measure of activity based on
reaction rate is independent of the conversion level and contacting patterr
and it also allows for spatial variations of activity. As the activity is
defined with reference to fresh catalyst with no impurity in the feed,
for catalysts with high initial rates of deactivation, reaction rates for
fresh catalysts can be obtained only by extrapolating the experimental dat:
points as reported by Blanding (9) for the catalystic cracking of gas

oil on natural clay.
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1.3 AIMS AND OBJECTIVES OF THE PRESENT STUDY

Considering the importance of dehydrogenation of naphthenes and
the deactivation of catalyst during reforming, it was decided to study the
cyclohexane uehydrogenation reaction at atmospheric pressure under suitable
conditions of space velocity, temperature and cyclohexane té hydrogen mole
ratio. The reaction conditions chosen in the present investigation were
close to those uséd in .commercial reforming process except for the use of
atmospheric pressure instead of high pressure so as to increase the catalyst

deactivation rate.

In most of the heterogeneous catalytic reactions, the presence of
external and internal heat and mass transfer limitations often disguise the
intrinsic kinetic constants. Thus, the external and internal, heat and
mass transport resistances are carefully estimated to ascertain their
effects on global reaction rates of dehydrogenation and hydrocracking
reactions with catalyst deactivation. The kinetics of the main and
deactivation reactions are developed and an attempt is made to develop
equations for global rates for dehydrogenation and hydrocracking reactions
and catalyst deactivation. The kinetic and deactivation rate constants are
evaluated for the proposed kinetic model using experimental data. Intrinsic
rate constants for dehydrogenation and hydrocracking reactions are estimated
from initial rate data and deactivation rate constants are estimated by
minimizing the variance between experimental conversion data and that pre-
dicted by solving the non-linear simul taneous equations using IBM 370/145,

DEC 2050 and UNIVAC 1100 computer systems.
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LITERATURE  REVIEW

2.1 CATALYTIC REFORMING :

Until about 1940 the octane number of straight run naphtha:was
improved by thermal reforming causing cracking of low octane number para-
ffins producing high octane number olefins. But the advent of catalytic
reforming in 1940 made thermal reforming obsolete. Initially molybdena or
chromia catalysts supported on activated alumina were used in fixed bed
reformer units but they were discarded soon due to rapid loss of activity
due to catalyst fouling. Around 1950, fluidized beds were used but dis-
carded after explosion during regeneration. Introduction of platinum-on~
alumina catalyst by Universal 0il Products for reforming in 1950 made
thermal reforming and molybdena or chromia based reforming processes

completely obsolete by about 1955.

A typical catalytic reforming process has three or more fixed beds
packed with platinum-on-alumina catalyst, with intermediate heaters. Since
dehydrogenation reactions are highly endothermic and cause a rapid
decrease in temperature in adiabatic reformers, it Is necessary to use
intermediate heaters between the catalyst beds to maintain reaction

temperature in a desired temperature range.

The range of process variables used in commercial reforming
process is given below:

Temperature 450 - 550°C
vol. of liquid feed

ki quid-houy by -spnos - #=05 (hr.) (vol. of Catalyst)
velocity

Pressure 475 - 575 psig

Hydrogen to oil-ratio = H

(mole basis)

Water content less than 10 ppm



High temperature, low pressure, low space velocity and low
hydrogen to hydrocarbon mole-ratio favours the yield of aromatics in
dehydrogenation reactions. Hydrocracking reactions are exothermic in
nature and are relatively slow. Hydrocracking yield increases at high

temperature, high pressure and low space velocity.

To understand the behaviour of reforming reactions, we must under-
stand the reaction kinetics and the influence of heat effects. A qualita-
tive summary of the rate behaviour of the important reaction classes
catalyzed by a modern bi-functional catalyst is given in Table 2.1, with
statements of the heat effects. This information largely determines what
is needed for the reactor design. Naphthene and paraffin dehydrogenation
reactions are so rapid that they are essentlially in equilibrium. Similarly,
the equilibrium of n-paraffins and isoparaffins is usually closely
approached. In contrast, the rates of cyclization and hydrocracking are
typically low and greatly influence the overall performance of the

reformer process.

Table 2.1 Rate Behaviour and Heat Effects of Important Reforming
Reactions (47)

Reaction type Relative Effect of Increase Heat effect

type in total pressure
Hydrocracking slowest increase rate quite exothermic
Dehydro- slow none to small endothermic
cyclization decrease in rate
Isomerization rapid decrease rate mildly exothermic

of paraffins

Naphthene iso- rapid decrease rate mildly exothermic
merization

Paraffin dehydro~ quite decrease conversion endothermic
genation rapid

Naphthene dehydro- very rapid decrease conversion very endothermic

genation




Hydrogen partial pressure is an important variable since it strongly

affects the conversion to aromatics and the rate of hydrocracking. Since
reforming reactions which produce hydrogen, especially aromatization,
predominate over those which consume hydrogen, the process is a net hydrogen

producer.

Many literature references are available on general reforming
processes, but only few investigations are reported on detailed kinetic
study specially under conditions of catalyst deactivation. Since present
investigation pertains basically to dehydrogenation of cyclohexane on
platinum-on=alumina catalyst under conditions of catalyst deactivation,
only relevant literature is reviewed briefly in the following sections.

E-Z NAPHTHENE DEHYDROGENATION WITH SPECIAL REFERENCE TO
CYZCLOHEXANE DEHYDROGENAT I ON

2:2:0 Kinetics and Mechanism:

Haensel and Donaldson (30) working with Universal 0il Products
carried out investigations for Platforming by using various pure hydro-
carbons. They had carried out investigations using n-heptane, n-pentane,
cumene and methyl cyclohexane. With methyl cyclohexane, its conversion to
toluene is essentially complete quantitatively and was found close to that

calculated by equilibrium data at the temperature of operation.

Hinemann et al (39) also carried out studies with pure hydrocarbons
for Houdriforming process. Dehydrogenation of napthenes to aromatics was
the main reaction of interest and this was investigated by using cyclo-
hexane and methylcyclohexane as reactants. In cyclohexane dehydrogenation
at 950°F, 300 psig pressure, 3 LHSV and hydrogen to cyclohexane mole ratio
of 4.91. Five percent benzene was formed on volume of feed basis, which
was close to equilibrium value under these conditions. With methylcyclohe-

xane also near equilibrium yields were found during dehydrogenation.
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In methylcyclopentane dehydroisomerisation reaction at 300 psig pressure,
hydrogen to methylcyclopentane ratio of 4, 950°F temperature and 2LHSV,
near equilibrium yield is reported. They have reported that with increase

in temperature and decrease in LHSV the yield of aromatics is increased.

Mills et al. (63) have analysed the data as obtained by
Heinemann et al (39) for the reaction mechanism. They have also compared
the effect of catalyst type and hydrocarbon structure and their results are
given in Table 2.2. In each of the experiments the total product was more
than 90 percent by weight of the charge. Reforming reactions which occur
readily for C6 hydrocarbons are shown in Fig. 2.1. for a dual function
catalyst. Methyl cyclopentane can be converted to benzene only on a dual
function catalyst, after dehydrogenation on dehydrogenation site to
methylcyclopentene, the adsorbed molecule must move to an isomerisation site,
form cyclohexene and then return to a2 site of the first type before
dehydrogenating to benzene. The large yield of benzene from cyclohexane
compared with those from cyclohexene shows that once cyclohexane is
adsorbed on a dehydrogenation site it goes all the way to benzene, whereas

cyclohexene can also isomerize on an acidic site to give methylcyclopentane.

Haensel and Berger (32) have reported the energy of activation for
the dehydrogenation of cyclohexane and methylcyclopentane into benzene
as 18,100 and 32,800 calories per mole, respectively from an unpublished

data (7).

Smith (78) had carried out reforming studies using a commercial
reformer naphtha feed on 0.6 percent platinum-on-alumina (1/16 in.extrudate)
catalyst, the complex feed mixture and product stream was simplified by

considering four model reactions :



Table-2,.2 :

Effect of Catalyst Type and Hydrocarbon Structure on Product:

(950°F, 300 psig, LHSV=3 , H,/Hydrocarbon mole ratio = 4)

Charge

Cyclohexane

Methyl-~
cyclopentane

Cyclohexenc

Methyl-
cyclopentene

Product

Aromatics
Olelln
Naphthine
Paraftin

: . a
06/05 ring ratio

Aromatics
Olefin
Naphthene
Pohraoffin

r con B
06/05 ring ratio

Aromatics
Olefin:
Naphthene
Paraffin

ik o B -
C6/C5 ring ratio

Aromatics

Dlafin

Neaphthene
Paraffin
06/05 ring ratio

a

Vol. % of Liquid Product

C AT T°Y33 T

Isomerization

2

0

98

0
350 to 1

2
0

95

2
Traces of cyclo~

JXane

8
86
5

7
AP prox=f=ty 10

7

14
1.9

0

1 ta 14

a 1in naphthene and olefin product

Dehydrogenation

b

80

Trccos of
Cyclohexane

92
3
0
=
2 .30 % 1
16
i
48 =70
34711
£{1 to 50

Dual Function

92
2
1s5
4.5
1 % 4
49
"
23
26
Tite 4

83
2
11

4
Approx. 1 to 4

48
4
1]
28
41 %o 25
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Naphthenes = aromatics + 3 H, {2.9)

Paraffins == naphthenes + H, (2.2)
Hydrocracking of paraffins ' (2.3)
Hydrocracking of naphthenes (2.4)

The C, through C5 fractions produced by hydrocracking were observed
experimentally to occur in approximately equal molar portions. Extensive
experimental reforming runs using naphthas yielded the following equili-

brium constants for naphthenes being converted to aromatics:

K i 46,045 3
Py = B = exp (46.15 - g ame ) atm (2.5)
N
where T = °F, PA’ PN and PH are the partial pressures in atm. of

aromatics, naphthenes, and hydrogen, respectively. For the dehydrogenation

reaction, Eq. 2.1, the empirical rate equation and constant are as given

below:

Naphthenes to Aromatic -

3
- = __P.B moles naphthene converted to aromatics
( r1) = kpl (PN KA H) (hr) (1b.cat.)
Py
(2.6)
where
c= i 34,750 moles
kp] = exp ( 23.31 X ) (hr) (Tb.cat.) (atm)
(2.7 )

Barnett et al (6) studied the dehydrogenation of cyclohexane to
benzene by carrying out experiments at 200 psig on platinum-on-alumina
catalyst and concluded that (i) internal diffusion influence is exhibited
by 1/8' x 1/8" pellets above 700°F, (ii) activation energy for the
intrinsic catalytic reaction was found to be b1.6 kcal/gmole and with

reaction controlled by internal diffusion an apparent activation energy ohe-
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half of this value was obtained, and (iii) the reaction follows essentially
first order kinetics at low conversions. For a mole ratio of hydrogen-to-
cyclohexane as 4, using first order irreversible kinetics for cyclohexane
dehydrogenation reaction only and assuming plug flow, they calculated

apparent rate constant by

k = (- 1.6 1n (1 - x) - 0.6 x) (2.8)

i
W
where F/W is space velocity and xis the fraction cyclohexane converted
into benzene. |If internal diffusion effects are considered absent then the
above equation will give intrinsic reaction rate constant. The best fit tc
the data was obtained by them by using Knudsen diffusion coefficient with a
tortuosity factor of one-eighth to describe the diffusion in the catalyst
pores. Experiments carried out at low temperature with =30 to +40 mesh

catalyst fines indicated that the effectiveness factor for the pelletted

catalyst was unity for runs below 700°F.

In order to ascertain the findings of Heinemann et al about the
path really followed by C6 hydrocarbons on dual function catalyst, Fig.2.1,
Haensel, Donaldson and Riedl (33) carried out investigations in bench scale
Platforming units using platinum-on-alumina halogen catalyst for methyl-
cyclopentane processing and a platinum-on-alumina catalyst for cyclohexane
‘processing. They also observed that as the LHSV is increased from 10 to
120, the product distribution for feed containing methylcyclopentane and
benzene, based on methylcyclopentane reacted, shifts markedly in the
direction of methylcyclopentane at the expense of benzene and other products
Their findings also cenfirmed that the sequence followed is as shown in
Fig. 2.1 and that cyclohexene shall form if cyclohexane is converted into
benzene. Using 50 mole percent cyclohexane and 50 mole percent benzene

feed they again found that Fig. 2.1 truly shows the reaction sequence.

They also investigated the effect of poisons in the feed and have found
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B Benzene
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| 153
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!

dehydrogenation

isomerisation

FIG. 2.1 REFORMING Cg HYDROCARBONS WITH DUAL FUNCTION
CATALYST.
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that sulfur acts as poison to platinum sites and nitrogen to acidic

sites.

Khoobiar et al. (46) had studied the mechanism ot cyclohexane
dehydrogenation with platinum-on-alumina commercial reforming catalyst in
a diluted bed with alumina particles at 435-480°¢ temperature, 250-500 psig
pressure, 2-6 hydrogen to hydrocarbon mole ratio and 1-800 W/hr/w space
velocity range. They had shown that the rate of heat and mass transfer
are not controlling, and stated that reaction starts on the catalyst surface
and is propagated elsewhere, possibly at the surface of added diluent.
_ Their data were later analysed by Chambers and Boudart (16) and ‘found that
the calculations of Khoobiar for mass transfer were inaccurate and the

‘reaction rates were severely affected by diffusional resistances.

Minachev et al. (64) studied the mechanism of conversion of
cyclohexane to benzene with catalyst poisoning due to sulfur compounds in
feed. They observed that an equilibrium is achieved between the sulfurous
compound in gas phase and that on the surface, and cyclohexane conversion
to benzene is adversely effected. However, when sulfur compounds
are removed from cyclohexane feed, the original activity of the catalyst
was regained after sometime and conversion to benzene was increased. They
did not get cyclohexane as intermediate product, as reported by Haenesel
et al. (33). They have also reported that cyclohexane converts into

benzene to a greater extent with platinum catalyst and into methylcyclopen-

tane with palladium catalyst.

Graham et al. (28) also carried out the experimental runs for the
catalytic dehydrogenation of cyclohexane in a fixed bed flow reactor with
very small catalyst concentrations in the bed. They used 1/8" x 1/8"
(cylinder) catalyst of 90 mz/g surface area. over a temperature range of
400° to 500°C and a pressure range of 21 to 420 atm. with hydrogen-to-

cyclohexane ratio 3 to 6 at modified Reynold's numbers of 20 to 65. They
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analysed the data on the assumption of complete external mass transfer
control with reaction in equilibrium at the catalyst surface. They have
reported an activation energy of 57 to 59 kcal/omalie. Surprisingly, they
have also reported catalyst pellet (intrapellet) effectiveness factor from
0.025 to 0.068 and used these extremely low values to justify their

assumptions.

Henningsen and Bundgaard-Nielson (40) carried out reforming
studies on 08 hydroearbons and have reported the reaction rate constants
for hydrogen partial.pressure of 30 atm, hydrogen to hydrocarbon ratio of
approximately 7 ~and at a temperature of 500°C for various reforming
reactions based on the available literature, experience and experiments.
The dehydrogenation reaction is first order in naphthene (alkyl cyclohe-
xane) concentration and the rate constant is given by

30,000 )

k = exp ( 20.10 -T

(2.9)

Lester (51) has carried out aromatization of trimethyl pentane and
trimethylcyclopentane over KZO-Cr203. AIZO3 and nonacidic Bt~on-alumina
catalysts at 400 - 500°C in microreactor gaschromatographic apparatus. The
catalyst loading was 0.5 cc contained in a 1-inch length block located at

the injection port. The reactants were injected in.the hydrogen carrier
gas and products were analysed. The operaticn was at atmospheric pressure.
They have reported that by using nonacidic Pt-oh-alumina catalyst the
dehydrogenation and hydrogenation activity of the catalyst remains
essentially same while it looses its isomerisation activity. He has
reported product distribution and claimed that cyclopentane is supposed

to play an important role feor aromatization on non-acidic platinum-on-

alumina catalyst.

Christoffel, Vierrah and Fetting (17) have studied the

dehydrocyclisation of methylcyclopentane, the isomerisation and
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dehydrogenation of cyclohexane and the hydrogenation of benzene in an
integral reactor using a Ca-Y -zeolite covered with 0.5 weight percent
platinum as catalyst. They performed experiments in the temperature range
350 - 53000, pressure range 10 - 40 atm and space velocities of 0.5 to
5.0 lit.feed/hr. kg cat, and have predicted the activation energy

for the rreact ton ssystem,

Lt Benzene and Hydrogen
Cyclohexane &

e g ;;é

Methylcyclopentane

as 41.5 kcal/gmole based on cyclohexane conversion. For platinum-on-
zeolite ﬁatalyst the conversion of cyclohexane to methyl cyclopentane
always exceeded that to benzene. The reason is that the behaviour of
Ca- ¥ -zeolite catalyst is nonacidic and alkyl cyclopentane is an important

reaction product on such catalysts as already reported by Lester (51).

Haro et al. (35) have studied the role of paladium in dehydrogena-
tion of cyclohexane over Pt - Pd/AlZO3 catalysts, by carrying reactions at
160 = 200°C under atmospheric pressure (580 torr). The conversion was kept
less than 1 percent to avoid mass and heat transfer limitations. The
mole ratio of hydrogen to cyclohexane was 1.8, and nitrogen was used as
a diluent to keep cyclohexane nearly 8.5 percent ¢n volume basis. Gas
chromatographic analysis indicated only benzene and hydrogen as reaction
product and no cyclohexéneé and cyclohexadiene was detected in the analysis.
They have concluded that the total rate of conversion of cyclohexane

decreases as palladium is added to platinum on co-impregnated catalysts.

Literature references for dehydrogenation studies under catalyst
deactivation conditions using platinum reforming catalysts are discussed

in detail in section 2.4,
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2.2.2 Thermodynamics :

Thermodynamic data for typical reforming reactions at SOOOC are

given in Table 2.3.

Tabie 2.3 Thermodynamic data for typical reforming reactions (76)

Reaction K a N Hr’ kcal/mol.

p
at SOOOC,Pi in atm., of hydrocarbon

Cyclohexane = benzene + 3H2 6 x 10° 52.8
Methylcyclopentane == cyclohexane 0.086 ~-3.8
n - Hexane = benzene + QHZ 0.78 x 10 63.6
n - Hexane == 2-methylpentane el -1.4
n - Hexane = 1-hexene + H2 0.037 31.0

% For the reaction (HC)] e (HC)2 +nH,
e : . P PN
the equilibrium constant is defined as : (HC)2 H

oy F(Ho),
At equilibrium, cyclohexanes are essentially completely converted into
aromatics at low hydrogen partial pressures, and cyclopentanes are favoured
over cyclohexanes. At equilibrium only very small concentrations of
olefins can exist with paréffins. The major reforming reactions are
endothermic. The equilibrium between cyclohexane, benzene, and hydrogen
as a function of temperature and pressure are illustrated in Fig. 2.2,
which shows how operating temperature and pressure affect equilibrium
conversion to aromatics. Under typical operating conditions, temperature
ranges from 455° to 510°C and pressure ranges from 6.5 to 50 atm, only
partial conversion to aromatics is achievable. Consequently, recent

practice has been to operate at temperatures in the upper end of this
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range and to use pressures as low as 10 atm (19). At these conditions
there is almost complete conversion of naphthenes into aromatics at

equilibrium, but catalyst may deactivate rapidly.

2.2.3 Reforming Cataiysts :

A number of catalytic reforming processes are in use depending upon
the licenses using platinum-on-alumina catalysts. Besides these reforming
processes on mono-metallic catalysts, bimetallic (Pt-Re) or indeed polymeta-
1lic (noble metal containing trimetallic alloys) dispersed clusters are

recently being developed. The metal provides the hydrogenation - dehydro-
genation activity, and the promoted acidic alumina prevides the isomerization
activity. The hydrogenation - dehydrogenation activity of the supported
metal and the isomerization activity of the alumina are much greater than

the respective activities of the early - generation metal oxides (27).

With long use, the alumina base loses some surface area and activity.
But more important is the formation of piatinum crystallite aggregate
which decreases the affective Pt surface area for hydrogenation - dehydroge-
nation function. The latter change is usually the fastest, resulting in
a change in the dehydrogenatinn to acidic activity ratio. This leads to
more cracking and a decline in gasoline yield, with an increase in gas
yield. The more severe the operating conditions, the greater the tendency
for the Pt crystallites to aggregate. Pt aggregation is also related to
Pt concentration. Low pressure reforming can be carried out with catalysts
containing relatively low Pt concentration (e.g. 0.3 to 0.4 percent) and

yet the conditions can be regarded as severe (81).

The growth of Pt crystallites can be inhibited by adding rhenium
to the catalyst, which forms a stable alloy with Pt on the catalyst surface.

The advantage of using bimetallic or multimetallic catalysts is that,
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the length of period between regenerations can be extended greatly, the
severity can be increased to produce a further improved antiknock quality
product, or the pressure can be reduced into the low pressure reforming
range (15 atm or less) to get the benefits of low pressure operation while
retaining the 6-9 months between regeneration. Mghonewy (55) has carried
out experiments using bimetallic Pt-Re on alumina catalyst for n-heptane
dehydrocyclisation and compared the results with that obtained with
monometallic Pt-on-alumina catalyst under similar deactivating catalyst
operating conditions .in a gradientless reactor system. He has reported
that deactivation rates are significantly less when the promoter Re is added
to the catalyst composition. The hypotheses that the metallic promoter
affects only the dehydrocyclization deactivation rate and not initial

activity is substantiated by this work.
2.3 HYDROCRACKING OF NAPHTHENES

Hydrocracking reactions are slowest among all the reforming
reactions as indicated in Table 2.1, The major characteristics of the
hydrocracking, are that (1) all cracked species are saturated, (2) the
process involves bifunctional catalysis, and (3) catalyst deactivation is
much less rapid than in catalytic cracking. Saturated paraffins predomi-

‘nate among the cracked products because the olefins formed are hydrogenated

on the metal component.

Smith (78) has reported that during hydrocracking of naphthenes C,

through C_. fractions are produced approximately in equal molar proportions.

5

Thus in general it can be written as :

(2.10)
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For hydrocracking of naphthenes, the rate equation and constant are as

given below:

(-r)h;: kh Eﬂ moles naphthenes converted by hydrocracking
P (hr.) (1b of catalyst)

(2.11)

and

62,300 ) moles

3 (hr.) (b of cat) (2.12)

kh = €eXp (‘42.47 =

where T = OF, P.. and P are the partial pressure of naphthenes and total

N
pressure, respectively.

Henningsen and Bundgaard-Nielson (40) gave the following values of
rate constants for conversion of alkyl cyclohexane to paraffins and

isoparaffins, and their subsequent conversion to hydrocracked products :

Alkylcyclohexane -+ n=-paraffin : k=exp (24.2- h5é$00 )
(2.13)
Alkylcvclohexane -> i-paraffin : k=-exp (24.2 - ﬁ%%ggg )
(2.14)
n-Paraffins —» hydrocracked : k=exp (30.5 - ééﬁ%gg )
(2.15)
i-Paraffins —» hydrocracked : k=exp (30.5 - 52+000 )

(2.16)

Mahoney (55) carried out studies of hydrocracking reaction with
dehydrocyclisation of n-heptane reaction and has indicated that the hydro-
cracking reaction rate constant does not change with time in deactivating
catalyst systems. This indicates that change in catalyst activity will

not affect the hydrocracking rate. He has reported the value of hydro-

gmole
(hr.) (g.catalyst

cracking rate constant as 0.205 )? probably at 600°F.
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Lambrecht et al. (49) in their study on isomerisation of n-pentane
have used hydrocracking reactions in their kinetic model but could hot
determine hydrocracking rate parameters accurately. They felt that hydro-
cracking can hardly be considered as a single reaction and therefore,

simple reaction rate expression may hardly be adequate.
Studies of Mahoney and Lambrecht et al. are discussed in more
detail in next section.

2.4 DEACT IVATION REACTION KINETICS WITH SPECIAL REFERENCE TO
REFORMING REACTIONS

Wheelzr (88) was the first to account for the diffusional limita-
tions in deactivation reactions. He observed that if the rate of poison
deposition is low relative to its transport rate, then catalytic sites
are poisoned uniformly with time. But if poison deposition is rapid
relative to its transport rate, then poison will deposit preferentially on
the pore mouth initially and grow inward with time in the form of shell
progressive model (SPM) of gas solid reaction. He termed these limiting

types of poisoning as uniform and paf®& mouth poisoning.

For uniform poisoning, using the rate of principal reaction as

ry kw{(1-K)A (2.17)

where ( is the fraction of catalytic sites which are poisoned, A is the
concentration of component A and 1 is the effectiveness factor. Realising
that for low and high values of Thiele parameter § ,m=1 and=1/8
respectively, Wheeler obtained the ratio F of poison-affected rates to
unpoisoned rates for the two cases, as,

For m = 1 F:-Eili:j%lﬂ =

and, for m«l ; F=/ 1 =~ & ' (2.18)
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For pore mouth poisoning, the shell progressive model postulates
the creation of a region of total poisoning at the pore mouth and an un-
poisoned interior region (1 - x) . Using first order reaction in a spherical

pellet with the rate equation as -

2 dA
rp = De bw r YT (2.19)

Wheeler obtained the ratio F as

L = ' (2.20)

LE 3 (4~ ) -3
e 1T

The plots of F-versus - « indicate that for a given amount of imposed
poison, pore mouth deposition proves to be more detrimental than the uniform

poisoning.

Masamune and Smith (56) analysed the simultaneous, consecutive and
independent deactlivation schemes by solving the governing differential
equations and comparing them with pseudo-steady-state shell progressive
model. They presented the results of the deactivating catalysts
in terms of an effectiveness factor which is a function of both the Thiele
modulus and time-on-stream. They concluded that for consecutive and
independent deactivation, the pellet of lowest intraphase resistance yields
the highest activity-time profile, while for simultaneous deactivation, a-
pellet exhibiting an intermediate level of intraphase resistance gives

the highest activity, particularly at long process times.

Carberry and Goring (14) analysed the deactivation process in
terms of gas-solid noncatalytic reaction under conditions where the
shell progressiv. model is applicable. The application of this model to
coking, poisoning, and deactivation was encouraged because catalyst decay

in petroleum processing have been correlated in terms of Voorhies (84)
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equation, which states that the extent of poisoning, coking or

fouling,{£ » is related to time-on-stream, t by -

= k/t (2.21)

Szepe and Levenspiel (79) have reviewed the various available
deactivation-time-on-stream relationships such, as, exponential, hyperbolic
and power-law decay. Use of these relationships in determining rate
coefficients and orders from experimental data has been discussed by

Carberry (15).

Levenspiel (52) assumed dth order catalytic reaction and mth order
activity decline, and was pioneer to suggest for decoupling of deactivation
reaction equation from the main reaction equation.

The catalyzed reaction rate used by him is

_ - d
rp = SEmt k A”a (2.22)
rate at any time, t

rate at time, t= 0

where a=

(2.23)

Then a is activity of the catalyst, which is equal to unity at
time, t = 0 and declines with time. The kinetic mode! of activity decline

is presumed as

F, & %—i— =k, (A, 8, P)" " (2.24)
where
A - reactant concentration
= product concentration
= poison concentration
n,m - empirical order of deactivation with respect to species
concentrations and activity , respectively
i time-on-stream

2] - contact time
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He analysed several possible networks for main and deactivation reactions

as given below :

B r n .m
1. Simultaneous deactivation : Aff p= k(A) na "
*p Fy = kd(A) a
2 Consecutive deactivation : A== B — P
d n .m
rp —~ kA a rq = kd B a
3 Parallel deactivation A—B o=k Al s
n m
P= P rd-: de a
ER Independent deactivation : A —» B rp = k Ad a

S d
S-sites —: (S-s) sites ¥ 15 kd a

&, Simul taneous-consecutive deactivation :
1 3 d
A B = N rp.:::. (k»] + kZ)A a
b no_m
< : rd-:_.kd (A+B) " a

However, case 5 is equivalent to independent deactivation since

A + B is a constant for fixed feed compositions.

Lambrecht, Nussey and Froment (47) have carried out investigation
on the fouling of a platinum-reforming catalyst used for the isomerization
of n-pentane and considered the following reaction scheme :

n - pentane _=> i-pentane

—-=» hydrocracked products

——> carbonaceous deposits (2.25)

Under isothermal conditions and assuming constant density and
number of moles, and negligible loss of n-pentane to coke formation, they

obtained continuity equations for n-pentane and hydrocracked products :
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n-Pentane : ¢YA . YA  n o dp
el - F o (2.26)
Hydrocracked products : oYy Yy g N dp
5..{ + az o= F ‘rH (2-27)
t ¢

and carbon deposition rate on the catalyst at any pofnt in the bed :

i W= e N dp Pt
= = 3 e (2.28)
- il
L]
where 2 = -%— i % el Ft i '
; o f, it (2.29)

The total rate of n-pentane disappearance r, was defined as :
&)

. Ay n
K| (YA i y’B/K) f{yi\‘ it ;'YA ‘n2
—1 + K |, -

= + K ' §
A [ N KB Yg H Kywj C LYy

(2.30)

in order to account for deactivation, they defined the following

fouling functions :

" 0

Ky 1= "R
0

KH i KH ¢2
0

Re F= Ke ¢3

These simultaneous non linear equations were solved by assuming

b,=9,=90

= @ ,.and an exponential function -

3
B = exp (-<4C") (2.31)

to relate @ with C.

Differential and integral methods of analysis of data were
separately applied for parameter estimation under fouling conditions, by
minimization of an objective function with suitable weighting functions.
The activétion energies for isomerization and hydrocracking reactions
are reported as 30,100 and 35,500 calories per gmole respectively and

corresponding frequency factors are 19.1 + 8.4 and 19.3. They also
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Nomenclature for Lambrecht, Nussey and Froment (47)

-t 1

Y, » T

A’"B’H’

.5

Subscript
0

Coke content , (g coke / g.ecat)
particle diameter (cm)

total feed rate (mol /hr) z

Isomerization equilibrium constant

rate coefficiunt for main and hydrocracking
rcaction (mol/hr.g.cat)

rate! coafficicnt for coke formation
(g.cokc/hr.g cat)

adcorption parameter
exponent.in fouling function

gxponants in hy8rocracking and coke rcaction
rate expreosionns

total prescure (atm,)
gas constant (cal/mol %)

reaction rate for total reaction,hydrocracking
and main rcaction, re~pectively(Imol/hr.g cat)

reaction rate for coke formation (g coke/ hr.
g cat)

Temperaturs. (K)
dimensionless time variable
time (hr)

Y molfraction of n*-pentane,isopentafis,

" cracking products and hydrogen respectively

dimensionless axial coordinate
axial coordinate (cm)
fouling-paramster (& cat/g cok¢)1/2
void fraetion

catalyst bulk density (g cat/cmB)
fouling function

2
cross section of the reactor (cm )

non fouling conditions
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concluded that the hydrocracking parameters were not so well determined

and were taken mainly to satisfy the material balance.

Khang and Levenspiel (45) have extended the phenomenological
description of the icactions given by Eqs. (2.22) to @.2l), to situations
4 are affected by intraphase mass diffusion for the

simultaneous, consecutive, and parallel deactivations. For diffusion of

where rp and/or r

the reactant and/or poison precursor, the respective Thiele moduli for
reactant and poison, ¢r and ¢p , determines the distribution of poison
within the porous catalyst and, therefore, the activity - selectivity
behaviour. For simultaneous and parallel sources of reactions- decay
the poison distribution as a function of time for small, moderate, and
large values of @ given by them is schematically shown in Fig. 2.3.1.
Fig. 2.3.2 shows poison distribution for consecutive deactivation. Khang
and Levenspiel solved the diffusion - reaction equations for each of
these poisoning networks, for activity and concentration profiles, in the
pellet with progress of reaction in time, and concluded that the order of
deactivation m in the equation assumes the following range of values
(for if= 1 ).

- Simultaneous deactivation; m varies from i to 3 as @ increases.

- Consecutive deactivation; m is equal to unity so long as the
bulkstream contains the intermediate.

- Parallel deactivation.

where ¢r (& 1 and ¢p 24 Y P
= ﬂp = 1 g L 4

¢r<>,‘¢p > 1 , m — 2

| 2% o+ ) pAELEHED

and ¢p > @  * 1 , m is not constant.
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FIG.2.3.2 Resistance to pore diffusion determines where the
poison deposits for series deactivation.
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-~ lIndependent deactivation : {f this is due to reactants and
broducts, and if the cause is thermal, m = 1. While if it is independent
of intraphase mass diffusion, it will be sensitive to intraphase temperature
gradient and m = 2, if the interval o T is negligible. They also advised
that as the analysis is based on linearity of the principal reactions and
since the deactivation exponent proves to be somewhat variable, one should

ascertain the value of ' m from experiment only.

Wojciechowski (91) has summarized various deactivation relationships
and has given an alternative description of deactivation, the time-on-
stream theory of catalyst decay. Various types of deactivation rate
equations are tabulated in Table 2.4 with their limits of integration
implied in the decay function as used by original authors., The general
hyperbolic relationship of Wojciechowski reduces to linear deactivation
for m = 0 and is approximated to exponential decay when m = 1, while
hyperbolic deactivation behaviour is obtained for m = 2. In case kd is
assumed to be free from concentration effects, the equation is as for

independent deactivation and is applicable to sintering or such deactiva-

tion phenomena where concentration effects are negligible.

Mahoney (55) carried out studies on dehydrocyclization of
n-heptane on a commercial reforming catalyst in a basket reactor referred
to as internally recycled gradientless reactor: The experimental
deactivating data was extrapolated back to zero time to get initial values
of rate constants. For other times the apparent or effective rate
constants were calculated and plotted using Voorhie's (84) equation. The
hydrocracking rate constants- Voorhie's plot indicated that the rate
constants were censtant with time and were equal to the initial rate
constant. But, the dehydrocyclization rate constants' Voorhie's plot
gave two straight lines, one having a larger slope at the start and the

other with smaller slope at the end of the run. The effect of pore



Table=2.4 peactivation Equations
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Type of dgecary Refercnce Bguation Differcnitial Limits of Intergra-
form tion implied by de-

coy function as used
by original suthors

Linear Moxted 57;,E1ay and a6 :
Ridenl (24 ,Crowe§20), 8=0_-At ey & A Limit 8=6, at =0
Crowe and Leo(oy
Exponuntial Peosc onf=S% et (67) " e a8
WGakmang35g,Ogunye 8=6_ ¢ ~ 37 = Be Limit 8=6 at t=0
end Rey (65 g
Hyperbolic Ogunye ond Roy(g6)
Micrtschin and o5 rat -8 460 Limit 6=6_ at =0
Jeckson(62 ) o o &
1
Voorhies (84 ) o=A /V4 2 éi?e e 97 Limit G=co at t=0
1/ 22
Reeiprceal e g - ~B e B ot = " =
Power function  Dlondiesgd) &= A t it = B(4) © Limit 8=c0 nt t=0
- i —m de m P
Volts =t 21(873) = % a1 @ Limit 8= at t=0
Generol Wojeiechowski(gg) 9=(l+(}1:)-'}!I a
Hyperbolic - .
2 1 Y aaetde m i = I
.
Whero e=cé/c;0 Cs = curr.nt concentrotionm of any componcnt A at time +

CsO = Initial concentration of any compon:nt A

& ~ Fraction of sites available at any timg t

re
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diffusion on dehydrocyclization reaction was also considered and have

reported higher effective rate constants with powder than with commercial

1/12 inch extrudates.

Wolf and Peterson (89) used single pellet diffusion reactor
(SPDR) for reaction-deactivation studies to elucidate the mechanism of
poisoning for methyl cyclohexane. (MCH) dehydrogenation reaction on
0.6 percent platinum-on-alumina catalyst at atmospheric pressure between
temperature range of 350-&0000, and MCH and hydrogen partial pressure from
15-60 and 0-800 Torr, respectively. They observed that, thefe are two
types of poisons, reversible (P) and irreversible (W). Reversible
poisons are removed by hydrogen while irreversible poisons are not, and
the poison pre_cursor appears to be the adsorbed reactant. Based on the

above observations they proposed the following reaction mechanism :

x

k k

MCH+ S =Is MOH.S —2 > ToL.s 4 3Hy, = ToL 45
ki N ]
Kyl i ki
P8 +H2
ik
ksf| ks
P+H2
|
v 6 (2.32)
W

Surface reaction was found to be the rate controlling step and
the rate of main reaction is given by -

r k2 [ MCH.SJ

It

PR 1 T
LI N {' B ] [ MCH (2.33)
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The rate of formation of reversible poison, P, is given by~

dLp P) + Tw] T Ty - :
Ttl:k5k1kl' [s], |- = (MeH) - kg [P] [} -k, [P

1)

(2.34)
where k1 and k,+ are adsorption equilibrium constants for the corresponding
reactions, and {5 B is initially measured activity which depends on
operating conditions. The catalyst pellet was considered as an infinite
flat slab of finite thickness. Diffusion of reactants was assumed to be
one-dimensional and at quasi-steady state because the time scale for
diffusion is smaller than the time constant of the poisoning. reactions.
The values of lumped rate constants were determined by solution of non-
linear simultaneous differential equations. Their results are useful to
predict the mechanism of deactivation and main reactions, and show the
importance of hydrogen in reforming reactions. The individual rate
constants of different reaction steps and the activation energies are not

reported.

2:5 EXTERNAL AND INTERNAL HEAT AND MASS TRANSPORT RESISTANCES

In studies of heterogeneous catalytic reaction system, one of the
main objectives is to determine whether the intrinsic kinetics or the
interaction between the kinetiés and transport resistances controls the
overall rate of reaction. The effect of temperature and concentration
gradients is generally studied in two domains :

(1) Intraparticle - within individual catalyst particles, and

(2) Interparticles or Intraphase - between the external surface
of the particles and fluid adjacent to them.

A number of reviews have appeared for inter, and intra pellet heat
and mass transfer effects (29,59,60). The various criteria used for

testing the effects are given in Table 2.5. In operating any of the
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reactor it should be ensured that the criteria as calculated from these
equations are satisfied if the kinetic data obtained are to reflect the
intrinsic kinetic behaviour of the reaction involved. For using these
equations the diffusion coefficient, heat of reaction, and the physical
properties of the catalyst are needed, together with an experimental value
of apparent reaction rate constant and observed initial reaction rate of
dehydrogenation reaction. Using these values, the applicability of the

various.criteria can be easily tested.

Table 2.5 Criteria for the absence of mass and heat transfer effects
Inter phase Transport Intraphase Transport
Mass Transfer Mass Transfer :
T K ey T
2 £ 0.15 ( o ) _]__._2(1
€..k a k a pe
A'"m m
Mears (60) Weisz and Pvetter: (87)
Heat Transfer For Isothermal Pellet:
E TrbeRZ, €a 0
(1"~ 7.0 €M 15 ) ' E ,
s b ( ) € 0.75
R Tb2 TH.ke RT
g D g'b
Mears (59) Anderson (1)

Maximum temperature gradient
in the pellet : =

0.7 { & W' T (aAH).D . C
e R = - s
p) 'Bm'

& W
e’ s
Smith (77) Carberry ( W4 )
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2.6 CRITERIA FOR CATALYST BED DILUTION EFFECTS

The main reason for errors in the analysis of integral reactor
data is the lack of isothermality in the reactor bed which is particularly
serious with highly exothermic and endothermic reactions. One remedy for
this problem is to dilute the catalyst bed with inert solids. Rihani et al.
(73) have succéssfully employed a diluted fixed bed in studying the
kinetics of a highly exothermic catalytic reaction vapor-phase hydrogenation
of nitrobenzene to aniline. By trial and error they determined the different
degrees of dilution in different parts of the bed to ensure isothermal
operation. . Calderbank (11) employed catalyst dilution and had developed
equations to be used for calculating the dilution required to maintain
isothermal conditions. The dilution is a function of distance along the

packed bed.

A closer examination of a diluted bed will show that several
distributions of the diluent are possible, and that the exit reactant
concentration can be influenced by the type of distribution. -vanden Bleek
et al. (82) have given the following general criterion for neglecting the
effect of catalyst dilution :

b d

= TeEer L4 x 1073 (2.35)

where ¢ is the experimental error percent, b is the inert fraction, dp is

the particle size, and L is length of the bed.
2.7 INTEGRAL CATALYTIC REACTOR CRITERIA

Carberry (15) has indicated that if the tube-to-pellet diameter
ratio is less than 6, radial temperature gradients will be less. Heat
release . per unit volume of bed can be reduced by diluting the catalyst bed

with inert particles. The laboratory packed-bed catalytic reactor should
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thus consist of a bed of large length to-tube diameter ratio (usually
more than 8) and small tube-to-pellet diameter ratio with operation at

high Reynold numbers.

A summary of criteria for the fixed bed catalytic laboratory
reactors has been given by Doraiswamy and Tajbl (23). They have analysed
results on the basis of criteria discussed by Mears (60). They have
further reported that L/dp ratio should be more than 30 and dt/dp shouldbe
less than 6 for integral catalytic laboratory reactors.

2.8 CONCLUSIONS FROM LITERATURE REVIEW FOR THE DEVELOPMENT OF
KINETIC AND DEACTIVATION MODEL
The published literature provides the following guidelines for the

development of a kinetic and deactivation model for cyclohexane dehydroge-

nation on platnium-on-alumina catalyst.

Dehydrogenation of cyclohexane at atmospheric pressure and
temperatures above 300°C will not produce any intermediate product and the
main product will only be aromatics. Further, it is safe to consider

dehydrogenation of cyclohexane reaction as irreversible first order.

As not much information is available for hydrocracking reaction
and in all the publishsed work it has been assumed to be an irreversible
first order reaction, it may be reasonable to assume the same for the

development of kinetic model in the present study.

The hydrocracking rate constant is independent of time-on-stream

and, therefore, deactivation of catalyst has no effect on hydrocracking
rates. The values of effective or apparent rate constant for cyclohexane
dehydrogenation will decrease with time-on-stream due to fall in activity
of catalyst. All the changes in dehydrogenation rate with time-on-stream

will be accounted for by the activity changes in the catalyst.
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Intraparticle mass transfer limitations for pelleted catalysts are important

and must be considered in the development of model (55).

In view of the above the equations for the dehydrogenation and

hydrocracking reactions can be written as -

Dehydrogenation : r, = k; 7, aC, (2.36)

Hydrocracking P, ik, A, G (2.37)

where a = 1 at t = 0. Intrinsic rate coefficients and effectiveness
factors k]*}l and k2‘712 can be taken as constant for the entire operation
under isothermal condition. Activity 'a' and reactant concentration CA will
change with time-on-stream and position in the bed.

A close look at the analysis of Khang and Levenspiel (45), and
Wolf and Peterson (89) indicates that basically the approach of both is

same, and show the advantage of using separate equations for main and

deactivating reactions.

The deactivation equations used by Khang and Levenspiel are :

da m
- d_t = kd CAS a (238)
d=
L B ol N (2.39)
R
and 8= T.Em ¢ dr (2.40)
R3¢..™M ™
AS °
(]

where 4 is activity at any point in the catalyst pellet and the rate

of decrease of activity  is proportfonal to first power of concentration
of the poisoning component. Activity a is defined as mean activity of the
whole pellet and is obtained by equation (2.40), that is, by integrating

the point activities throughout the pellet.
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Wolf and Peterson have used the following deactivation equation :

d LP] e [PT + (W] '
3t = kg KK, Ls] 1- T <y_c_+i)~k5(P)(H2>—k6(P)
to [ 5 (HZ)

(2.34)

If the last two terms of Eqn. (2.34) are left and then comparison

with Eqn. (2.38) gives :

k k. K Kq L S)

o Pl !1 _P) 4+ (WJ
L (5,
m == 1
and
c (MCH)
S = =
(H2)

Thus, a general equation for deactivation rate during the dehydro-

genation of component A can be written as -

== RS (2.41)
Y

While the rates for dehydrogenation and hydrocracking reactions

are given by Egns. (2.36) and (2.37), respectively.



CHAPTER-3

EXPERIMENTAL SET-UP AND PROCEDURE

3.1 THE EXPERIMENTAL SET-UP " CONSISTED OF THE FOLLOWING SECTIONS:
(i) Feeding arrangement for cyclohexane and Hydrogen
(i1) Vaporizer and preheater
(iif) Reactor section
(iv) Condenser section

An overall view of the experimental set up is shown in photograph
3.1. On the right is the operational panel showing all the above sections
and on the left is the control panel showing the various ammeters, voltmeters,
variable-transformers, temperature indicator-controllers and selector

switches for thermocouples.

| Feeding Arrangement for Cyclohexane and Hydrogen

Feeding arrangement for cyclohexane and hydrogen has been shown
in detail in Fig. 3.1. The cyclohexane was continuously fed from a storage
tank A through valve Vh and rotameter R. The constant flow rate of
cyclohexane was maintained by applying a constant nitrogen pressure over
the liquid level. Any increase in system pressure during the reaction was
compensated by changing the nitrogen pressure with the help of valves V]
and V2. The flow rate of cyclohexane was measured by pre;alibrated
rotameter R. Dry hydrogen was fed to the system from a hydrogen cylinder
. through a silica-gel bed. Pressure of the hydrogen gas was kept constant
with the help of a regulater and valve V5 and was precisely measured by
manometer M,. During the operation the flow rate of hydrogen was maintained

Y.

constant with the simul taneous operation of valves V5 and V6' As the
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31 Overall view of experimental set up

Photograph
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ambient temperature changes during the operation were negligible, the
maintenance of constant pressure in the manometer M2 and constant pressure
drop across needle meter B, measured with the help of manometer M] assured

a constant flow rate of hydrogen.

3.1.2 Vaporizer and Preheater

Measured cyclohexane stream was vaporized before mixing with the

hydrogen gas.

The vaporizer section C was heated by a heater H], the heat flux was
adjusted with the help of a variable transformer. Vapcrizer exit temperature

was indicated by thermocouple T1

The hydrogen and cyclohexane vapours were mixed and heated to the
reaction temperature in a preheater D, with the help of heater sz
Temperature at the exit of preheater was measured by thermoéouple T2.
3.1.3 REACTOR SECTION

Preheated mixture of cyclohexane and hydrogen was fed to the
reactor. Flange F3 connects the preheater section with the reactor section.

The details of the reactor section have been schematically shown in Fig. 3.2.

The reaction section consisted of an annular space between two
concentric tubes, d (1.D. 6.4 mm, OD 9.6 mm) and E (1.D. 32 mm, OD 38 mm).
The catalyst was charged to reactor section in cups L (ID 29.5 mm, OD 31.5 mm,
Height 45 mm). The bottom of the cup consisted of a BSS 100 mesh stainless
steel screen supported by a perforated plate (Dia 29.5 mm, Thickness 1.5 mm) .
Eight thermocouples, Th through T11 were silver soldered at the periphery of

tube N at different axial positions. One thermocouple T., was soldered in a

13
sliding tube X. The tube X was movable in the central tube J to indicate

temperature at various axial positions. The reactor inlet and exit
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temperatures are recorded with the help of thermocouples T3 and T12
respectively. The gases from the reactor enter the condenser section.
The reactor section was connected to the condenser section through flange

F6' In the reactor section, the flow of reaction mixture was from top to

bottom.

The complete reactor tube E with exit flange F6 was so designed
that the assembly could be inserted in mild steel heater tube G(52 mm 1D,

60 mm OD) and kept in position with the help of flange FS.

The cups assembly consisted of cups L with a central hole in
perforated bottom plate and stainless steel screen to slide around tube J.
They were kept in position by stoppers S and the whole assembly was placed

in tube E and kept in position by flange Fh'

For leak proof arrangement the ends of tube J -were fixed with

help of gland arrangement K. to the lower end of reactor tube E and with

1
the help of gland arrangement K2 to the flange Fh at the top.

A scale was provided on top of the reactor section to Indicate
the axial position of the moving thermocouple T13, placed In sliding tube X,

in the reactor section.

The tube G was heated by four heaters H3 through H6'

The material of construction used in vaporizer, preheater and
redctor section was stainless steel grade 316.

Ammeters were provided for measuring the currents in all the
heaters individually.

The thermocouples were made from chromel-alumel wires. The
joints were made by silver soldering. Reference junction was always at
atmospheric temperature. Emf of the thermocouples were measured by

indicating type of pyrometers calibrated for chromel-alumel thermocouples.
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Heaters were made of nichrome wire placed in porcelain beads to
provide electric insulation from metallic wall. The heat flux of the

individual heaters was varied by variable transformers.

Vaporizer, preheater and reactor were insulated with asbestos rope,
then by a layer of asbestos, magnesia and plaster of paris powders mixed

in proper proportions and finally by glass wool to ensure minimum heat loss.

3.1.4  CONDENSER SECTION

The gaseous preducts from the reactor exit were partially condensed
in a condenser as shown in Fig. 3.3. The condenser consisted of a helical
copper coil- M (10 35 mm, OD 6.3 mm, Length 5,500.00 mm, coil diameter 70 mm)

immersed in a thermostat N. The thermostatic water bath N was cooled by ice-bath

The water was maintained at @ uniform temperature with the help of
a stirrer ST. The subatmospheric temperature of the water bath was
maintained through an auxillary heater W controlled by mercury contact

thermometer T and relay box RB arrangement.

The outlet of the coil M was connected to a tube 0 (1D"5.5 mm,
0D 12.2 mm) where gases were separeted from condensate. By keeping the
valve V11 open, the condensate was collected in a glass conical flask U
attached to the lower end of tube 0 with the help of standard B-29 glass
joint P. The flow rate of the uncondensed gases was measured with the

help of a recording type of wet gas meter.
Temperatures of the bath N and Q of the gases at the point of

separation from condensate were measured by thermometers TH2 and TH1

respectively.

3.2 EXPERIMENTAL PROCEDURE

A weighed amount of the catalyst was charged to the reactor.
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The total amount of the catalyst was distributed in four or five cups in
increasing quantity from top to bottom, so as to achieve near uniform
conversion in each cup section of reactor. Glass beads, of nearly same
diameter as that of catalyst pallet, were uniformly mixed with the catalyst
in each of the cups in decreasing proportion from top to bottom. Care was
taken in selecting the inert fractions in different cups so as to satisfy
the bed criteria of equation 2.1. Further, the annular space available
for catalyst in the cups is 7.5 mm and diameter of the catalyst pellet is
1.5 mm, therefore, the ratio dt/dp is less than 6., In all the cases the
length of the bed is more than 30 times the pellet diameter, therefore,

the integral reactor criteria given in section 2.5.1 is also satisfied.

The top and bottom cups were fiiled with only glass beads. The
objective of placing bottom most cup (60 mm length) with glass beads was
to minimize the end heat losses in the bottom of the reactor section E
which was open to atmesphere as shown in Fig. 3.2, and of filling the top
most cup (80 mm length) with glass beads was to preheat the reactants to

the desired reaction temperature before they entered the reactions section.

The cups after filling with catalyst and glass beads were kept in
position around tube J and the assembly was inserted into tube E.
Flange Fh and gland nuts Kl and K2 were then tightened carefully. The
system was maintained under hydrogen pressure and was checked for any

leakage.

A small flow of hydrogen was started and the heaters were switched
on. The heat fluxes were adjusted by manipulating variable transformers
so as to heat the reactor and preheater to the reaction temperature and
the vaporizer to about 200°C. The system was then left for about four
to five hours with suitable adjustments as necessary until the temperature

of reactor stabilized at the desired value.
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Meanwhile, the thermostatic bath was filled with water and
ice in their respective chambers. The electrical current in the auxiliary
heater was adjusted according to the requirements and the bath was left

for stabilization.

The tank A was filled with liquid Cyclohekane through valve V3

keeping valve V2 open to atmosphere.

After the steady state was achieved, the flow rate of hydrogen was
increased to the desired value and allowed to attain the steady flow.
Cumulative flow rate readings were recorded with time by the recording
wet gas meter. The flow of liquid cyclohexane was then started from the

tank A, regulated by valve V“ and was measured by rotameter R.

As the cyclohexane flow rates were maintained between 0.5 and
3.0 ml/min, great accuracy in operation was needed to maintain steady flow
rate. Further, the pressure drop in the system increased with the progress
of reaction due to deactivation of catalyst and this required even greater
care to maintain uniform flow of cyclohexane in experiments. This drop
in pressure was compensated by proportionate increase in the nitrogen
pressure over the liquid cyclohexane in tank A. The valves V5 and V6
were also adjusted simultaneously during the reaction to maintain the
steady flow of hydrogen gas. Steady values of pressure drop across the
needle meter B and thegage- pressure M2 ensured steady rate of hydrogen

flow to the reactor.

The most important problem during the operation was that of
maintaining the reactor under isothermal condition. The main heater H2
was wound around complete length of the mild steel tube G to supply the
constant heat flux to the complete reactor. Three auxiliary heaters H#,
H_ and H6 were wound in three axial sections around tube G to meet the

5

additional heat requirements in any reactor section. As most of the
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reaction takes place in the inlet section of the reactor, the heat supplied

by heater Hh was more than that by H_ or H6' With the deactivation of

5
catalyst during the reaction, the zone of maximum heat requirement
gracually progrecscs downward. Thus, it was also necesSary to change the

currents in auxiliary heaters with time-on-stream so as to keep uniform

temperature throughout the catalyst bed in the reactor.

The reaction products leaving the reactor were cooled and condensed
in the condenser.  The temperature of the condenser was maintained close
to 6°C to ensure neas complete condensation without any crystallization
of cyclohexane or benzene. Care was taken that this temperature did not
fall below the freezing point of benzene or cyclohexane. The uncondensed
gases from the condenser were passed through the recording type wet gas
meter and the meter readings were recorded with time. The liquid samples
were collected in conical flasks from the condenser bottom periodically

at a time interval of 20 to 30 minuteg;J_l e time of each sample was
AL
féﬁfﬁwﬂ\

separately recorded.

33 ANALYSIS OF PRODUCTS

The analysis of liquid products and reactants was carried out in
Gas-chromatograph (AIM!L make MK I11-A supplied by M/s Associated
Instruments Manufacturers of India Ltd., New Delhi) using carbowax-4000
(10 percent on wt basis) on celite column (3 meters long = 6.25 mm
diameter) with flame ionization detector (FID). Following average

operating conditions were maintained:

- Injection Temperature 85°¢

- Column Temperature 750C

- FID Temperature 120

- Column Gas Pressure 0.3 592 gage

- Strip chart recorder speed 60 cm;:r.
/28 /8%

EERTRAL LIBARY UMIVERSTTY oF pacsver
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The sensitivity of the recorder (Eliott Instruments, England) was
maintained at a level so as to achieve good separation for cyclohexane and

benzene. Liquid sample quantity varied from 2 to 5 micro litre.

Cyclohexanc and benzene peak areas were standardised by using
spectroscopic grade chemicals under gas-chromatograph conditions, similar
to those used for liquid product analysis. For same quantity, benzene peak

arca was observed to be higher as compared to cyclohexane.

For some of the runs chromatographic analysis of gases leaving the
condenser was attemptzd, but the results were not satisfactory and error
Involved was relatively large. With the liquid sample analysis and
assuming vapor-—iiquid equilibria at condenser exit, the material balances

for hydrogen and cyclohexane were satisfied to well within + 8 percent.

3.4 REGENERATION OF DEACTIVATED CATALYSTS

The deactivated catalyst regeneration is carried out by passing
measured amount of dried air through valve V8 and measured amount of
nitrogen through valve VS’ to maintain the desired concentration of oxygen
in the inlet gas. During the start up of regeneration the concentration of
oxygen was kept around 2 percent and gradually the concentration was
increased upto 15 percent keeping a close watch on temperatures in the
catalyst bed so as to keep them well below the sintering limit during
catalyst regenerafion. Total time required for regeneration was around

6 to 8 hours.

In the experimental runs reported in this thesis, however, fresh
catalyst was used for each run so as to ensure the identical intrinsic

catalyst activity for each run.
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- 3.5 SPECIFICATIONS OF MATERIALS USED :

3.5.1 Reforming Catalyst :

Name RD - 150 Sinclair - Baker
Composition 0.6 percent platinum on
M - alumina
Total Surface area 330 mz/g
Pore Volume 0.42 cm3/g
Average pore radius 32 E
Porosity 0.504
Tortuosity factor .8
Size of pellat 1.6 mm dia, 4.8 mm length
Density of pellet 1.2 g/cm3
Effective thermal conductivity 1.04 2]

7 hr.cm.gm.

3.5.2 Cyclohexane :

Specific gravity at 20°C 0.776 - 0.780

Boiling range (95 percent) 80 - 82%

Freezing point 5.0 - 6.5°C

Non-volatile matter Less than 0.005 percent

Manufacturer BDH Division, Glaxo
Laboratories (India) Ltd.,
Bombay - 18.

No impurity was detectable by gas chromatograph even at higher

sensitivities in this cyclohexane.

3.5.3 Nitrogen and Hydrogen gases :

Purity more than 99 percent

Manufacturer Indian Oxygen Ltd.,
New Delhi.



CHAPTER-4

EXPERIMENTAL OBSERVATIONS AND ANALYSIS OF INTEGRAL REACTOR DATA

4.1 PRELIMINARY EXPERIMENTATION

Some preliminary runs were carried out without catalyst at high
temperature and low mole ratios of hydrogen-to-cyclohexane to check if the
stainless-steel used for the fabrication of experimental set up is having
any effect on the conversion of cyclohexane to benzene. MNo-trace of benzene
was found in reactor effluents as confirmed by the chromatographic anzlysis

of Tiquid condensate from the condenser.

Material balance for cyclohexane was also checked for these runs
and the difference in the amount of cyclohexane recovered and fed was always
within * 5 percent. It was, therefore, concluded that the system was leak
proof, stainless steel did not result in conversion of cyclohexane at the
conditions of the experiments and the flow rate measurements were accurate.
Further, at steady state operation, readings of all the thermocouples in
the reactor section <Th to T]]) and the central thermocouple (T]3) indicated

‘'same temperature confirming the accuracy and sensitivity of the thermocouples.

L,2 EXPERIMENTAL DATA AND THE RANGE OF PARAMETERS INVEST | GATED
k.2.1  Experimental Data :

The experimental data are tabulated in Appendix - A, Tables A-1
to A-19. Each table gives experimental results for a given set of
experimental conditions, namely, volumetric feed rate of liquid cyclohexane
and hydrogen, ambient temperature and pressure, average temperature in the
reactor and condenser, aﬁd weight of the catalyst used in the reactor.

Weight of the glass beads added to the catalyst is not reported.
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The conversion-time data is reported as mass of liquid sample
collected from condenser and its composition as obtained from gas-
chromatographic analysis, and average flow rate of uncondensed gases from

condenser for different time intervals from the start of the runw

During experiments it was observed that the variation in rotameter R
readings was within + 0.1 ml/min, the pressure variation in manometers M,
and MZ were within + 1 cm of carbon-tetrachloride and mercury respectively

and temperature variation in catalyst bed was within + e

4.2.2 Range of Parameters Studied :

From the experimental data, range for the three main variables,

as obtained, is as follows :

Mole Ratio 0.9% - 4.8

Space Velocity —

~ 1.28 - 4.77

~ W/F, (g cat )hr) /(gmole) 17.64 - 65.91

Average Reactor

Temperature, °C 310 - 435
L.3 CYCLOHEXARE CONVERSION CALCULATIONS

The vapor phase concentration of cyclohexane and benzene was
calculated by assuming that the equilibrium had been achieved in the
condenser bath N between condensate and the uncondensed vapors leaving
the condenser M at the temperature indicated by thermometer TH]. The
temperature difference between that of bath N and of the gases leaving
the condenser as measured by thermometers TH2 and TH] respectively, was
always less than 0.5°C. The condensate compositions were accurately
known from chromatographic analysis and were found to be reliable and

accurate to within + 2 percent. The chromatographic analysis indicated
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the presence of benzene and cyclohexane in liquid products. Hydrocracking
gives indiscriminate rupture of C-C linkage and may result in some pentane
formation The maximum hydroéracking was 13.5 percent of the cyclohexane
fed and minimum hydrogen-to-cyclohexane mole ratio was 0.935. Assuming
that the entire cyclohexane was hydrocracked to pentane and methane and no
increase in the number of hydrogen moles due to benzene formation, then
maximum possible mole fraction and partial pressure of pentane in reactor
e ffluent would have been 0.075 and 56 mm Hg respectively. The vapour
pressure of pentane at the minimum condenser temperature of 6°C is

220 mm Hg. Since the vapour pressure of pentane is very much-higher than
its maximum possible partial pressure, pentane is therefore, not expected
in the condensate, as confirmed by the chromatographic analysis of liquid
product. The following equations (43) are used for the calculation of

mole fractions of benzene and cyclohexane in gaseous products.

-y 3 -
- 12 21
L.n ‘VB = =In (XB+A1ZXCH)+XCH s a1
LB 127°CH A21xB+xVH
o = A A
In Yy = tn (XCH+A21xB) Xg : +A2 — Xle
B 12°CH 2" CH
- 1211423 L
logig Pp =  6-90565 - T 5557
1203.526

logyg Pey = 6.84498 - F55o=ecs

YB :WBXBPB/P

Yeh = Y XcH Pen /P

21 0.65926 : AIZ S 1.00918

p - Vapor pressure, mm Hg

where, A

[

P =~ Total pressure, mm Hg
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T - Temperature, %

X = Liquid phase composition
Yy - Gas phase composition

Y - Activity coefficients

Suitable values, as given above, were taken for Wilson-parameters AIZ and
AZI’ and for Antoine constants for benzene - cyclohexane mixture. Use of
above equations,for the calculation of benzene. and cyclohexane mole
fractions is well justified in view of reasonably good check on material
balance for hydrogen as indicated by P E R H values in Tables A-1 to A-19 ’

Appendix - A.

Since accurate chromatographic analysis of gaseous products was not
possible, direct information about the quantity or nature of hydrocracked
gaseous products was not available., No direct measurement was possible for
estimating the fraction of cyclohexane converted to poison (coke), but
it is safe to assume that the loss of cyclohexane into carbonaceous products
was negligible., The fraction of cyclohexane hydrocracked has been obtained
from the material balance for cyclohexane. However, for nearly ten percent
data points the sum of moles of cyclohexane and benzene in product was
found to be more than or equal to the moles of cyclohexane fed, thus
resulting ir a negative or zero value for the moles of cyclohexane
hydrocracked. Obviously this cannot be true and such data points were
discarded as they indicate the cumulative effect of errors in the flow rates
measurement and chromatographic analysis of liquid product. These points
are marked by an asterisk in Appendix A and are circled in Fig. 4.1.1 to

k.1.19 as rogue points.

Tables A~1 to A-19 in Appendix A give the measured values of liquid
product quantity and its analysis, and gaseous product average flow rate

along with calculated values of moles of cyclohexane fed, moles of benzene
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and cyclohexane in product, percent cyclohexane unconverted and that
converted to benzene, and percent error in hydrogen balance during a given

time-on-stream period.

The moles of c¢xit gases and hydrogen fed were corrected by
assuming them to be saturated with water vapor while flowing through the
wet gas-meter. An independent material balance was carried out for hydrogen
to check for the accuracy of measurements and the details of these calcula-
tions are shown in Appendix - G. The error in hydrogen balance was found
to be within-2 to +6-percent for ninety percent of data points, indicating
good measurement accuracy. The calculated values of the extent of
cyclohexane hydrocracked are also within reasonable limit of 10 percent of

cyclohexane fed for more than eighty percent condensate samples,
L. 4 EXTRAPOLATION OF DEACTIVATION DATA TO GET INITIAL RATE DATA

The experimental data given in Appendix = A has been plotted
on Fig. 4.1.1 to 4.1.19 and smooth curves were drawn from the experimental
points for benzene and cyclohexane by visual observation. The figures
show the values of XB and X, @t the mid point-of the start and end of
collection time for each condensate sample. Fitting of data by polynomials
of high order was not considered useful in view of limited number of data
points and the inherent accuracy of experimental measurements. The extra-
polation of smoothened curve gives conversion at time t =0 for
undeactivated catelyst. Blanding (9) and Mahoney (55) have also used a
similar procedure to get the initial rate data for undeactivated catalyst.
Table B-1 to B-19 in Appendix - B give percent conversion of cyclohexane
to benzene, and percent cyclohexane unconverted as obtained from smoothened

experimental data of Fig. 4,1 to 4.19, and these values are referred

subsequently as experimental data for model development and further
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calculations. Table B-1 to B-19 also give percent conversion of cyclohexane
to hydrocracked products and these values are obtained simply by subtracting
from 100 the values of percent conversion to benzene and percent cyclohexane
unconvertad,

b.5 FORMULATION AND ESTIMATION OF APPARENT REACTION RATE CONSTANTS
FOR UNDEACTIVATED CATALYST

The kinetic model used in the analysis of data for undeactivated

catalyst is :

k
Dehydrogenation : C6H12 ~—l*> C6H6 + 3H2

k
Hydrocracking _  CoHy, + 2H, —25 2 Hg

or CAH10 + CZH6

(4.1)

or CSH_12 + (‘,H[|

The data was analysed assuming first-order irreversible kinetics
for both the above reactions and plug flow behaviour in the reactor.
These assumptions result in the following conversion - space veloci ty

relationship for initial rate data :

+

(1 +Y) (1+K)~]

3-K e - e LK
Xy + 3 10 |_1 (1+K)XB] = - k00 —Ty _\%
(4.2)

The détails of the assumptions and derivation are given in Appendix - C.

From the operating conditions F,W,P,T, and % are known
(reported in Appendix-A) and from the smoothened experimental data
XA’ XB and Xc (reported in Appendix~B) are known for undeactivated
catalyst (at t = 0), and thus the apparent reaction rate constants ki
and k! are calculated by using equation 4.2, since K = ké/ki:(l-XA-XB)/XB.

2
The apparent rate constants are tabulated in Appendix-D.
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Sample calculations are given in Appendix-G.

4.6 ESTIMATION OF EXTERNAL AND INTERNAL MASS TRANSPORT EFFECTS

Kinetic: anaiysis of heterogeneously catalysed fluid reactions
is never complete unless the role of inter-and intra~particle heat and
mass transfer rates is properly investigated. The average pore radius of
the catalyst used in this investigation is quite small (32 A°) and the
reaction is highly endothermic (& H = 50.8 kcal/gmol). This necessitates
a careful estimation of various mass and heat transfer rate parameters in

order to find the intrinsic kinetic parameters.

4.6.1 Estimation of External Mass-Transfer Coefficient

The estimation of external mass transfer coefficient requires the
values of catalyst pellet diameter, and density of gas mixture, bulk-
diffusivity, viscosity and mass-velocity at operating conditions. From
the above data Reynold's number is first calculated and then external mass

transfer coefficient is estimated by evaluating jD factor.

The bulk diffusivity of cyclohexane in hydrogen is caltculated using
Chapman-Enskog equation (77). Hydrogen is taken as the other component,
even though some benzene is also present, because hydrogen is the predomi -
nant component for most of the experimental runs. The gas viscosities for
cyclohexane and hydrogen were obtained from standard charts (68) for
di fferent temperatures. As the viscosities of hydrogen and cyclohexane
are not too different, therefore, an arithmatic average value is taken
for the reaction mixture. The density of the gas mixture at reactor inlet
conditions is used in the calculations. |t is assumed that the change in
density is small since the changes in pressure, temperature and average
molecular-weight of reaction mixture are not very significant. From the

known values of catalyst pellet diameter and mass velocity, Reynold's
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number is calculated using the physical properties of reaction mixture

as indicated above. The Colburn mass-transfer factor jD is then estimated
from standard charts (77). The value of jD is used tu calculate the mass
transfer coefficient kma by using the defining relationship for jD as shown
below

M \2/3
Jp = U (49 )

\\F Dag fo o )
The values of Reynold's number, Colburn mass-transfer factor jD
and external mass-transfer coefficient kma are tabulated in Appendix-E for

all the sets.

4.6.2 Estimation of Effective Diffusivity in Catalyst Pellet

The values of diffusivity, pellet-porosity and tortuosity=-factor
are required to estimate effective diffusivity of cyclohexane in the
catalyst pellet. Since the mean pore radius is 32 X , the Knudsen
diffusion will prevail and the Knudsen diffusivity for cyclohexane is

obtained by standard method (77). The effective diffusivity D, of

cyclohexane in pellet is obtained by (77)

2
De = DK "\F
where DK is Knudsen diffusivity, & is porosity and T is tortuosity

- factor of the pellet. For the catalyst used In this investigation, the
porosity is found to be 0.504 and the reported value of "tortuosity-factor

(75) is 3.58.

The values of effective diffusivity of cyclohexane are given in

Appendix-E for all sets.

4.6.3 Estimation of Cyclohexane Dehydrogenation Reaction Rate at the
Inlet of Reactor

The rate of dehydrogenation of cyclohexane at the reactor inlet is

1

given by : ; P
1 R 14y

TP T R

[}
1 A0
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1
As the values of k; » P, T and Y are already known, the values
of reaction rate r were calculated and are tabulated in Appendix-E.

4,7 APPLICATION OF DIFFERENT CRITERION TO CONSIDER THE LIMITING
INTER-AND INTRA-PARTICLE HEAT AND MASS TRANSFER RATES

After estimating the external mass-transfer coefficient, effective
diffusivity and inlet reaction rates, different criterion were then

applied to determine the limiting heat or mass transfer rate.
4.7.1 Criteria for External Mass Transport Effects

The criteria to determine whether the external mass transport

effects are important or not, is given by (60) :

— §
r k]
CA.k 2 k a i et
m m
t
Since the values of k] and kma are known, the calculated values
of the ratio are given in Appendix-E and in all the cases it is found that
the value of the ratio is less than 0.15. This indicates quite clearly that
the resistance due to external mass transfer is insignificant and can,
i
therefore, be neglected. As the values of k2

the criteria will always be satisfied for hydrocracking reaction also.

i
are always lower than k1

k.7.2 Criteria for Internal Mass-Transport Effects :

The criteria for internal mass transport effects is given by (87) :

472 Y1 Lo
Fy w8 s = & ]

where Se is the external surface area of the catalyst pellet, V' is the
volume of catalyst pellet and fp is pellet density of catalyst. The
values of these parameters are given in section 3.5. From the known values

)
of catalyst properties, effective diffusity and k1 , the values of
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factor FI are computed and these are tabulated in Appendix-E. It is evident
that in all the cases the values of the factor F1 are more than one,

except for very low reaction temperature, that is, for set No.1 and 6.

This indicates that the resistance due to internal mass transport is
significant and it must be taken into consideration while calculating the

intrinsic rate constants from the experimental data.

4.7.3 Criteria for External Heat Transport Effects

The criteria for estimating the significance of the external heat
transport effect is given by (59) :

E

2
Rg Tb

(Ts -T.) < 9.%

b

where
L (aH) (€ -c)
Cp.'f

0.7 (AH) F
G R f. k a
P m

and for dehydrogenation of cyclohexane &H is 50.8 kcal/gmol, specific

heat of reaction mixture is 3.25 caldg.°C and % is approximated (40)

as 15,200 °K. f

Since the values of k a and r are known, the values of (Tb-Ts)
and the factor F, can be calculated for all the sets. These value§ are
tabulated in Appendix-E and it is seen that in all the cases the values
of F2 is less than 0.15 indicating that the external heat transfer
resistance is negligible for all the experimental runs. Further, the
value of (Tb-Ts) indicate the difference in bulk and surface temperature

and the maximum value Is only 1.76°C which is well within the limits of

experimental errors in temperature measurement.
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k.7.4 Criteria for Non-lsothermal Pellet

The criteria for estimating the Non-isothermality of catalyst

pellet is given by (1) :

- ?.fQ.RZ,(AH).( E

To.k Ryl
e g

) £ 0.75

[

b b

The effective thermal conductivity for the catalyst pellet used
in this investigation is approximated as 1.04 cal/hr. cm. K (77). For the
known .values of constants E/Rg, OHand £ b’ and the calculated values
of T and Tb the factor F3 is calculated and the same is tabulated in

Appendix-E. All the values are less than 0.75. It is. therefore, clear

that the catalyst pellets can be considered as isothermal.

4.7.5 Criteria for Maximum Temperature Gradient in Catalyst Pellet

The maximum temperature gradient in catalyst pellet is

given by (14) :

{ AH). De.cS
m K
e s

i

As the external mass and heat transfer resistances are negligible,
we can take the values of surface concentrations and temperatures as those
of bulk concentrations and temperatures respectively. Thus, we have

{ AH). oe, c

b
/3m o ke.T

b

The values of factor ﬁ5m are calculated for all the sets and is
tabulated in Appendix-E. The maximum temperature gradient is found to
be 2°C and this further confirms that the catalyst pellet is essentially

isothermal.
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4,8 SIGNIFICANCE OF HEAT AND MASS TRANSPORT LIMITATIONS

From the above analysis it can be concluded that -

(1) the external mass-and heat-transfer limitations are
negligible,
(2) the difference between bulk and surface temperature is

insignificant and the catalyst pellet is essentially
isothermal, and

(3) the internal mass transport limitation is significant

and it must be considered while estimating the intrinsic
rate constants.

k.9 ESTIMATION OF EFFECTIVENESS FACTORS AND INTRINSIC RATE CONSTANTS

The computed values of apparent rate constants k; and k; 5
physical properties of catalysts and effective diffusivity of reactant
are used to calculate the effectiveness fact:ors"q1 and ‘qz, and intrinsic
rate constants k] and k2 following the procedure given in Appendix-C.
Tables D-1 and D-2, Appendix D, show the apparent and intrinsic rate
constants and effectiveness factors at different temperatures for
dehydrogenation and hydrocracking reactions, respectively. The values -
of k; y k; " k1 and k2 obtained from experimental measurements at very
low or very high cyclohexane conversion to benzene which are not considered
very accurate due te the reasons explained in Appendix-C are-marked by
asterisk in Table D-1-and D-2 and these values of kl and k2 are not used
in the estimation of activation energies. These values belong to sets

No.1, 14, 18 and 19.

Activation energy for dehydrogenation and hydrocracking rate
constants are determined by assuming Arrhenius temperature dependance.
Fig. 4.2 shows the plot of In k1 and In k2 as a function of 1/T and the

straight lines are drawn by regression analysis of all data points except
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those encircled which were not considered very accurate for reasons
explained earlier. The temperature dependance of rate constants obtained

from the regression analysis is

Dehydrogenation : k, = exp(31.57 - l§%§gg ) (4.7)

Hydrocracking & k&, = exp(18.97 - Z%ééﬁ ) (4.8)



CHAPTER-GS

DEVELOPMENT OF KINETIC AND DEACTIVATION MODEL

In the kinetic analysis presented in previous Chapter, the
intrinsic rate constants are calculated for dehydrogenation and hydro-
cracking reections for undeactivating catalyst (at t= 0) assuming the
catalyst activity to be unity throughout the bed. This is a safe
assumption at the start of the run, but due to depositien of poisons on
the catalyst, the catalyst activity will fall with time and will also
change along the bed. The fall in activity will be maximum at the inlet
of the reactor and minimum at the reactor exit since the reactant concentra-
tion, which alsc causes deactivation is maximum at the reactor inlet. Thus

the complete kinetic model is :

Dehydrogenation : C6H12 kl ) C6H6 + 2H2

Hydrocracking : C6H + 2H, —— 2C3H8
or ChHIO + c2H6

or C5H12 i1 CHA

. : k :
Deactivation: CeHy sy d , Catalyst poison (coke)
(5.1)

It is assumed that the loss of cyclohexane due to deactivation
reaction is negligible, but the changes in catalyst activity due to the

deposition of the poisons is quite significant.

In chapter 4 it has been concluded that only internal mass
transfer limitations needs to be considered while analysing the experimental

rate data. The values of intrinsic rate constants k1 and k2 for
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dehydrogenation and hydrocracking reactions respecttvely and their

temperature dependance has already been reported in chapter &4,

5.1 DEACTIVATION MODEL DEVELOPMENT :

It has been assumed that the coke formation on catalyst will result
in loss of catalyst activity for only dehydrogenation reaction involving
platinum sites and not ‘for hydrocracking reaction which takes place on
acidic (alumina) sites. This is a valid assumption since cracking
reactions are not very specific as far as the nature of catalyst surface
is concerned. This assumption has been recently used by Mahoney (55)
to successfully analyse his data for dehydrocyclization of n - heptane on
platinum = on - alumina reforming catalyst. Thus, the ratés for
dehydrogenation and hydrocracking reactions with catalyst deactivation can

be represented as follows :

Ty = R [T a8 (5

l‘z = kz"iz CA . (5'3)

Where a is the activity of the catalyst which has been assumed
to be unity for undeactivated catalyst at t=0, and in general, is a
function of time-on-stream and position in the bed. It may be noted that
the effectiveness factors used in the equations (5.2) and (5.3) correspond

to those for undeactivated catalyst.

The variation of activity with position is primarily due to the
fact that the rate of catalyst deactivation depends on recactant (cyclo-
hexane) concentration and cyclohexane concentration decreases as it gets
converted in the reactor into benzene and hydrocracked products.
Continuity equations, simiilar to those used by Lambrecht, Nussey and
Froment (49) can be written for benzene, hydrocracking products and

catalyst activity, and these can be solved simul taneously using proper
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form of rate equations for dehydrogenation equation (5.2), hydrocracking
equation (5.3), and activity change. However, simultaneous solution of
these non-1inear partial differential equations is quite time consuming

even on a fast computer as observed by Lambrecht et al. The works of

Khang and Levenspiel (45) and Wolf and Peterson (89) for similar reaction
systems indicate that the change in reactant concentration with catalyst

bed position is much faster and predominant as compared to the change in
concentration with time at any bed position. Thus a simplified procedure

is adopted to solve the .continuity equations. This assumes a quasi-

steady 'state behaviour with respect to catalyst activity for dehydrogenation
reaction while solving the differential equation describing material balance

for benzene and cyclohexane in the reactor, that is,

dXg =k, W, C,ad (WF) (5.4)

and dXA = -(k1 My @ CA + k2 M, CA) d(W/F) (5.5)

The change in activity with time at different positions in reactor bed are

then computed with the help of deactivation rate equation given below :

- da __ m G
A 5 '—d?- Rd a ( ) (56)

For an appropriate time interval, at any position in the bed, the
values of reactant concentration CA and CH can be considered as constant
and decrease in catalyst activity at that position computed. After
obtaining the new activity profile of eatalyst in the reactor bed, the
material balance equations (5.4) and (5.5) are sclved using these activity
values. The new concentration profiles are then used in equation (5.6)
to compute decay in catalyst activity for the next time interval at any
given position of the catalyst bed in the reactor. Alternate solution of

material balance equations and catalyst deactivation rate equation continues
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till the end of the run. For these computations, a time interval of
5 minutes was choosen to obtain the desired accuracy with minimum computation
time. The detalls of computation on accuracy are discussed in the next

chapter entitled Discussion amf Results.

i ESTIMATION OF DEACTIVATION PARAMETERS :

Assumed values of m and kd were used to calculate the cyclohexane
and benzene mole fractions at reactor exit at different times by solving
the material balance ecquations and catalyst deactivation rate equation
alternately, as described earlier. For different operating conditions,
the solution was carried out on IBM 370/145 of the 0il and Natural Gas
Commission, Dehradun, and DEC 2050 system of Regional Computer Centre,
Chandigarh using fourth order Runge Kutta method for numerical integration
of equations (5.4) to (5.6)., It may be noted from equations (5.4) and (5.5)

that

dXA k, ™
- — = | 4+ ———= = 1 4
dX k 7,2

K (5.7)
B 1 :

For (i + 1) th bed increment, the above equation can easily be integrated

by assuming average catalyst activity for that bed increment to give -

o k e ’
W M ] (x) . »(x).J (5.8)
(Xy) (Xp) 41 I T_aavg’iﬂ i 1_( Q141 B/
where ! St [l- + 1 T
(aavg)iﬂ ; O e 3i+1 ]

Fraction of cyclohexane converted to hydrocracked products is calcuiated

by cyclohexane material balance, that is,

XC = = XA - XB

This is an initial value type numerical integration with 40 equal

increments in the catalyst bed from rcactor inlet to exit, and for thjs case
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the initial values are given by :
at the inlet of the reactor : XAw-v 1, XB= 0 . Xe= 0
and at t= 0 , a=1 for all positions in the bed. The accuracy of

computation is discussed in the next chapter entitled Discussion of Results.

The optimal values of kd and m were obtained for each set by
minimizing the variance of percentage error between calculated and the
experimental values of fraction of cyclohexane converted into benzene ,at
the reactor exit conditions ,at different times-on-stream for each set where
the percentage error is defined as

(experimental value)-(calculated value)
(experimental value)

Percentage error = x-100

(5.9)

These experimental values were obtained from smoothened experimental data

and are tabulated in Appendix-B as already discussed. The reason for
selecting the minimization of variance for benzene nercentage error was

that for most of the samples the concentration of benzene was gquite high

and the accuracy for chromatographic analysis for benzene is more than
cyclohexane as explained in section 3.3 on analysis of liquid product. The
values of kd and m were optimized to within + 5 and + 2 percent of their
optimum value, respectively. The optimal values of kd and m thus obtained
are tabulated in Table 5.1. The calculated values of fraction of cyclohexane

remained unconverted and that converted into benzene, and corresponding

variance of percentage error are alsc tabulated in Appendix-B.
Complete analysis was also carried out for the equation
(5.10)

taking into consideration, the concentration of cyclohexane only instead

of the ratio of cyclohexane to hydrogen Co/Cys used in equation (5.6).



r~ ~~

Table 5 1t Experlmental rate constants, effectlveneqs

factors rThiele parameters,and optimized deactivation
parameter= m and kd

- o mm e et e M eme e as S - e —_—

SET NO. IR Iy B B oMy s s kq m
I 310 1700 0,767 1190 04820 0s755 0630 0.408 1408
2 4558 12000 06423 924 04855 1.970 00547 0550 1le758
- L 12700 04413 BEYT 300865 2,021 0,526 0779 1548
4 350 152005 Cs38] 646 06,882 20221 0o458 06433 10280
5 390 43900 8 0,241 2470 00738 3%28 00829 00797 1.941
6 315 39 T Oy bl f 542 00906 “1cl46 0,419 00508 10353
7 345 9300 00467 625 D2302. 1.T&3 o518 0+555 "1s129
8 410 SlABPR 85187 1500 0,800 85020 G%679 20639 3.113
9 870 ¢9500 . Q@90 1900 O9¢nb7 3%074 "Q.781 1.075 2.321

10 " 498 IR 000. 0.11p 4440 0o608 = 86267 . 1186 20330 26720
11385 45400 05240 B33 0.868 7968 0586 1a324 1,766
12, M360 16650 0.37¢ 800 0872 2,311 0c506=" 00909 20,553
13 424 §6 100 0§80, 2600, 0T IRA 5,207 04895 1o658 20049 -
by 42> F97000, Cad22 n1810 W (Fe/95s 7.7687; GFEHO «372 10742
15 @ 59400 0,208 3100 0,678 44307 00984 06989 1.975
36 | 400 _475JJ 0021p 1900 0.761 40240 0,771 00836 2,305
17 340 160 0507 416 0.925" 18570 00368 %433 14257
18 385 33900 Je270 B9, 700920 " 8,278 Pa386 1oL9l 10623
88 a@h 47500 06,330 S3E= D860 54822 PoBl8I _4.B27 14927

~

Table 5,2: Calcutated rate constants, effectiveness factors,
Thiele parameters, and deactivation parameters - as obtained

from the propoged model

- e i sl e e A R

SET NO. TR ky Ny g, kK, my P K m
N 10 2709 C.696 5235 346 06979 0.334 " 00318 10190
2 w355 L& Th) Oe3Ea 2.1€1 886 D:.0882.. 0.5 0,681 1,495
3 "R358 LT O "0 3 38302 . 182 886 Co862 06534 00681 1:495
4 350 12386 0-417 1,998 803 06873 0,509 06629 10451
5 3954 47100 08235 3,897 1686 00776 06737 1lol45 10884
& 315 3313 04659 71,034 387 009321 o353 (06348 1,215
7 345 10350 0O.448 1.827 727. Co883 0484 (o560 10410
8 410 86630 Cal77 5¢285 2364 06720 006873 10506 2,174
g . 370 24660 =0e313 20819 1177 00828 00616 (e857 1lob44
10 435 176800 0,12 . 5808 35]1 0.649 1.064 2,074 2+600
1k 385 40210 00252 3.601 1544 0,789 0o7Ub6b 1,067 1,819
12 360 17570 06361 2:380 975 0851 0561 Qe736. 1le542
13 420 115900 0,155 6.114 2780 06692 00947 1.716 26337
14 425 133700 00,145 6.566 3307 0.677 00985 10829 20422
15 400 55040 06219 40212 1840 0.762 0,770 1.228 1.952
16 400 55040 ©0s219 4,212 1840 0,762 0,770 1,228 1,952
17 340 8627 GCa480 1,658 657 0892 0:460 0.535 1=371

G

385 40210 B.252 B.601 1544 0.789 0,706 1067 1819

19 405 74640 00190 4¢906 2176 o735 (0838 10408 20097

— e




92

The variance In general were more with equation (5.10) than those obtained
with equation (5.6) for most of sets. But more important reason for
rejecting the use of equation (5.10) was the fact that it assumes that the
deactivation phenomena is independent of hydrogen concentration. This
assumption is not true because beneficial effect of high hydrogen concentra-
tion in reducing the catalyst deactivation rate in reforming process is

well established.‘ Accordingly, the concentration ratio CA/CH is also

used by Lambrecht et al. (49), and Wolf and Peterson (89). Therefore,

only equation (5.6) is used in the final deactivation model.

5.2.1 Estimation of Arrhenius Equation for Deactivation Rate Constants

The optimized values of kd were used to make an Arrhenius plot as
shown in Fig. 5.1 between In kd and 1/T. The four points belonging to sets
number 1, 14, 18 and 19, which were neglected for regression in section 4.9
for dehydrogenation and hydrocracking rate constants for reasons explained
earlier, were again not considered for regression analysis of deactivation
rate constant data. The points 1 and 19 are again found to deviate
from the straight line significantly, Fig. 5.1, which supports the
reasoning given earlier for neglecting them for evaluating the Arrhenius
constants for dehydrogenation and hydrocracking rate constants. The
deviation of kd values corresponding to sets 14 and 18 was not too much
because the experimental conversion values for various time-on-stream
remained within the limits imposed by the accuracy criteria, as explained
in Appendix-C, except for initial one hour. The straight line is drawn
in Fig. 5.1 using the constants determined by regression analysis, and

the relationship is given by :

ky= exp (9.4751 - 5,192 )

T (5.11)
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5.2.2 Estimation of Constants for @ and m Polynomial

Khang and Levenspiel (45) have reported that the constant m used
in deactivation rate equation (5.6) is related to Thiele parameter §
of the main reaction for a deactivating catalyst system. Accordingly, a
second order polynomial was used to correlate the optimized values of m
as given in table 5.1 with the experimental values of Thiele parameter

for dehydrogenation reaction ¢1 as given in Table D-1 in Appendix-D.

The values of m and ¢1 are plotted in Fig. 5.2. From the figure
it is clear that the values are too off for sets 8, 9, 12 and 14. The
four points belonging to sets number 1, 14, 18 and 19 are again.not
considered for regression in view of their doubtful accuracy along with
the three additional points belonging to sets number 8, 9 and 12. The
values of constants in polynomial were thus determined by regression
analysis for the remaining 12 points. The relationship of m with ¢1 is

given by :
m = 0.9502 + 0.2623 @, - 0.005806 ¢f (5.12)

and is shown as a curve on Fig. 5.2. The relative percentage error
variances for XA and XB for sets 8, 9 and 12 corresponding to optimal m
values and m values obtained by equation (5.12) are also given in

Table B-8, 9 and 12 in Appendix-B. Comparison of these variances indicate
relatively lesser sensitivity for m values, that is, shallow minima for
these sets. Therefore, leaving out of these widely deviating points, set 8,
9 and 12 for m - ¢1 regression analysis can be justified. For comparison,
the m ~ @, relationship of Khang and Levcnspiel (45) is also shown in

Fig. 5.2.

b3 APPLICATION OF THE PROPOSED MODEL FOR THEPREDICTION OF
CONCENTRATION AND ACTIVITY PROFILES :

The material balance equationsfor plug flow reactor for
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dehydrogenation and hydrocracking reactions, equation (5.4) and (5.5),
along with deactivation rate equation (5.6) are used to predict fhe concen-
tration and activity profites in the catalyst bed for different values of
times-on-stream, for a2 particular set of operating conditions and catalyst.
The kinetic and deactivation model consists of equation (4.7), (4.8),
(5.10) and (5.11) to calculate the intrinsic dehydrogenation and hydro-
crackihg rate constants, deactivation rate constants. and m respectively.
The value of Thiele parameter needed to calculate m and effectiveness
factor is defined by equation (C-3) and effectiveness - factor "1~ @
relationship is given by equation (C - 4), Appendix C. The mode! consisting
of these six equations is used to calculate the concentration and activity
profiles along the catalyst bed for different times~gn=stream by following
the numerical integration procedure discussed earlier, section 5.2. The
values of fraction of cyclohexane converted into benzene and the fraction
remained unconverted at the reactor exit are calculated by the proposed
model and these computed values ~ro used to calcuite the variance of

the percentage errcr between the experiments: and computed values.
Appendix=-B also gives the computed values of )(’,‘1 and XD by the proposed
mode along with smoothened experimental values and those obtained by

using optimal values of m and k The relative and absolute variances

d:

of percentage error for X and.XB are alsc given at the bottom of the

A
table for cach set. The absolute error is defined as the difference
between the experimentai and calculated value as obtained from the
proposed model, and the relative percentages error has already been ¢
defined by equation (5.9). The errors have been calculated for every
thirty minutes interval from the start of the run, at the exit of the

‘reactor, though for the solution of simultancous equations assuming

pseudo-steady - ‘state behaviour the time interval is five minutes.
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The advantage of comparing the two values, from th: smoothened and
calculated curves, 2t every five minutes int>rval was not significant.
Fig. 4.1.1 to 4.1,19 also show the computed values of X and Xg by the

model for comparison with experimental values.

The values of XA and XB at different positions in the bed and
for different times-on-stream, as predicted by the proposed model are
plotted in Figs. 5.3 for five representative sets. The predicted values
of catalyst activity by the model for different axial positions of the
catalyst bed in the reactor, and for different times-on-stream are also
plotted on Fig. 5.4 for five representative sets to indicate the trends
of changes in these values. Appendix F gives the values of catalyst

activity a, and fractions Xp and XB at different bhed fractions and

times - on - stream for all the nineteen sets.

EENTRAN 11m0s
RAL LIBRARY UNIVERSITY OF Rosp
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CHAPTER-G®6

DISCUSSION OF RESULTS

The techniques and the assumptions involved in the analysis of ‘the
integral reactor data and the development of kinetic and deactivation model
are discussed in their justifications. The results, in the form of various
correlations, obtained are also presented in these chapters and these

results will now be discussed in the following sections of this chapter.

6.1 DEHYDROGENATION AND HYDROCRACKING REACTION KINETICS :

Intrinsic rate constants for dehydrogenation and hydrocracking
reactions were calculated assuming first order irreversible kinetics as
per the procedure explained earlier. These intrinsic rate constants are
plotted in Fig. 4.2 to calculate activation energlies assuming Arrhenius
temperature dependance. From this figure it is clear that these intrimsic
rate constants depend only on temperature and not on other operating
conditions, such as, liquid hourly space velocity and hydrogen-to=-cyclohexane = |
mole ratio. This confirms the validity of first order irreversible
kinetics for dehydrogenation and hydrocracking reactions at atmospheric
pressure operation in the temperature range of 580 to 710 K. The first
order ireeversible kinetics was also observed by earlier investigations for

these reactions under similar operating conditions (6,23,32,89,40).

The temperature dependance of intrinsic rate constant for
dehydrogenation reaction, as obtained by regression analysis, is given by
equation (4.7) -

327,300 ) el
RT hr.gm cat

k]-x: exp (31.57 -

and the correlation coefficient for the regression line was obtained



Table 6.1 Comparison of Activation Energies for Dehydrogenation Recctions:

Worker i Reactant Catalyst — Activation Energy(cal/gnole)
Hoavsel and Berger [32] Cyclohexane Pt - on - 2lunina 18,100
Methyl cyclo= . Pt = on.~- alunina % BOG
rentane
Smith [78] Naphthenes 0.6% Pt-on-alunina 38,225
Panchenkov et 2l [94] Cyclohexene Pt - on - olumina 18,000
Barnett [6] Cyclohexane Pt - on - alumina 41,600
Grahen et al [28] Cyclohexene Pt - on - alunina 58 ,000
Henningsen et al [40] Cg8 naphthenes Pt - on - alunina 30,000
Christoffel et 2l [17] Cyclohexane Pt - on - Zeolite 41,500
Fron the pr=sent Work Cyclohexane 0.6% Pt-on-alunina Jap=— 00

. e e e ——— <o S i A S o 8 o St 5 A e At et i i v S N e i A e gy AR LSeE L i s A8 oo e

Table 6.2 Conparison of Activation Energies for Hydrocracking Reactions:
2

e ——— e i ety e et 1AM, e o on A A e, D i A e i Sl et et

Henningsen et al [40] Cg naphthenes Pt - on - 2luaina 45,000
Smith [78] Naphthenes 0.6% Pt-on-alunina 68,530
Fron the preseant work Cyelohexane 0+6% Pt-on-alunina 155150

e et S P A e AT S R S

1441
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as -0.991, which indicates a very good fit of dats for the dehydrogenation
rate constants. The values of activation energy for dehydrogenation, as
reported by various investigators, are compared in Table 6.1. The very
high value of 58,000 cal/gmole for the activation energy of dehydrogenation
of cyclohexane as reported by Graham et al. (28) cannot be consi&ered

very reliable due to very low catalyst concentrations, assumption of
complete external mass_transfer control with reaction in equilibrium at
catalyst surface, and at the same time repcrting very low values of intra-
pellet effectiveness factors. OBarnett (6) reported a value of 41,600 cal/
gmole, twice the value of apparent (experimental) activation energy
obtained by him for 1/8 inch peldet assuming Knudsen diffusion with a
tortuosity factor of 1/8. His assumpticn that the dehydrogenation reaction
was completely intrapeldet diffusion controlled may not be fully valid and
therefore, the intrinsic activation energy value may be less than twice

the apparent {experimental) activation energy value. The value 41,500 cal/
gnole rcported by Christoffel <t ol. was reported for platinum -on-zeolite
catalyst where benzene and methylcyclopentar.2 were the products of reaction.
Other reported values of activation energy for the dehydrogenation of
cyclohexane/naphthenes range from 18,000 to 38,225 cal/gmole and the value
of 27,300 cal/gmole obtained in the present investigation, therefore,
appears reasonable. Eventhough, various investigators have studied the
effect of dehydrogenation reattion at different pressures, but the effect

of pressure on activation energy is expected to be insignificant (28).
The temperature dependance of intrinsic rate constant for
hydrocracking reaction, as obtained by regression analysis, is given by

equation (4.8) -

15,150 ) cC
RT hr.gm cat

k, == exp (18.97 -
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and the correlation coefficient for the regression line was obtained

as -0.902, which indicates a good fit of data for the hydrocracking rate
constants. The values of activation energy, as reported by other
investigators, is given in Table 6.2. Lambrecht et al. (49) had indicated
the unreliability of hydrocracking reaction rates, as obtained from

material balance analysis, and have not reported the values of hydrocracking
rate - constaats. Same appears to be true in the present work alsc, as

the conversion tc hydrocracked products was calculated to match the material
balance of cyclohexane feed, and mmy error in measurements will ultimately
effect the fraction of cycdohexane converted to hydrocracked products. The
intrinsic hydrocracking rate constants were calculated from the fractional
conversions to hydrocracked products as obtained by extrapolation of data
for undeactivated catalyst, and this can alsc result in some error. Since
the fractionaf conversions to hydrocracked products are small, even small
error in measurements or extrapolations will greatly effect the values of
hydrocraciacking rate constants. Decause of this difficulty very few
workers have estimated the values of hydrocracking rate constants and the
activation energy. A comparison of the only available three values, Table 6.2,
for the activation energy for hydrocracking reactions show a wide variation
in values. An activation energy of 15,150 cal/gmole for hydrocracking
reactions obtained in’"the present investigation appears to bé rather low.
More careful experimental measurements and direct analysis of the hydro-
cracked products may provide more accurate hydrocracking rate constant

and activation energy values.
6.2 ACCURACY OF COMPUTATION PROCEDURE

The solution of equaticns 5.4 and 5.5 was first carried out for
20, 30, 40, 50 and 100 bed increments for set number 16 at initial

(undeactivated catalyst) conditions. This set has quite high
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conversions out of all the sets considered reliabie for analysis and
will, therefore, show maximum computation error. Fig. 6.1 shows the values
of XA and XD at the reactor exit as a function of the number of bed
increments used for numerical integration. It shows the values for X

8
p @s 0.21302 and N.21354 for 40 and 1000

as 0.70285 and 0.70236 and for X
bed increments. The values corresponding to 1000 bed increments are
obtained by extrapolation of curves. Thus, a difference of abcut 0.05 per-
cent for XB and XA is found when number of bed increments are increased
from 40 to 1000 for numerical integration. The accuracy of analytical
measurements is no better than + 2 percent and, therefore, 40.bed incre-
ments were considered sufficient to reduce the computation time. Further,

Smith (77) has indicated that the proper bed increment can be taken as

one pellet diameter which also gives nearly 40 increments in the bed.

After deciding, the bed increments as 40, an analysis was next
carried out to check the effect of time interval in the solution of
equations 5.4 to 5.6 on the Xa and Xp values at the exit of reactor.

For this analysis time intervals of 5, 10, 15 and 30 minutes were taken
and the exit XA and XB values are plotted as a function of time intervals
in Fig. 6.2. As expected, this shows that the smaller is the time

interval, the better will be the accuracy of X,k and XB values but the

A
computer time will increase proportionately. .The values at the exit of
reactor after 5 hours time-cn-strecam for the-same set are 0.4486 and

0.4476 for XB’ and 0.4194 and 0.4206 for XA using 5.0 and 0.1 minute

time interval respectively. The value for (.1 minute time interval was 7.
found from Fig. 6.2 by extrapolation. Thus a better accuracy of about

0.10 percent for X'3 and 0.12 percent for XA values after 5 hours time-on-=
stream is obtained when the time interval for computation is reduced tc 0.1

minute from 5 minutes for numerical integration but will require 50 times

more computation time. Again, considering the accuracy of analytical
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and other measurements, 5 minutcs time interval for numerical integration

Is considered appropriate.

The computed values of XA’ XB and activity for different bed
positions and times-on-stream are given in Tables F-1 to F-19 in Appendix F.
These tabulated values clearly justify the assumption of quasi-steady state
because changes with axial positions are much faster and predominant
compared to the changes with time at any bed position. Thus, a time
interval of 5 minutes with 40 bed increments were choosen and the results
of computation are considered sufficiently accurate for the analysis in the

present investigation.

The optimal values of deactivation parameters m and kd were determinéd
by minimuzation of variance in the XB values as discussed in section 5.2.
Pattern search technique was used for this optimization. Since no a
priori informaticn was available about the expected values of m and
kd, the reduction in computation time was achieved first by using i
30 minutes time interval with 20 bed increments and then using these m and kd v

values for final optimization using 5 minutes time interval with 40 bed

increments.

It is Important tc note that the total time requirement for the
computation of kinetic and deactivation parameters for one set is nearly
two minutes on IBM 370/1%% system as compared to 5% to 6 hours required by
Lambrecht et al. (49) on IBM 360/30 for determining one set of parameter
values. It may also be pointed out that one complete calculation cycle
for computing XA’ XB and activity profiles along the bed at any given time-

on-stream requires only 1ai seconds approximately on I0M 370/113} system.

6.3 DEACTIVATION RATE CONSTANTS

The temperature dependance of deactivation rate constant is given

by equation (5.11) -



1

12,260 -1
kg = exp (9.475 - -——;ﬁ—) (hr)

and the ccrrelation coefficient for the regroession line was obtained as
-0.872, which indicates a reasonably good fit of data for the deactivation
rate constants obtained from the propcsed deactivation equation (5.6). It

is not possible to compare the activation energy for deactivation reaction
with the work of earlier investigators because no such information is
available frcm the available published literature. However, Lambrecht et al.
(49) have reported the Arrhenius relationship for the fouling reaction by

the equation :

o STy g coke
Ry i (19.3 RT ) hr.g cat

by analysinc the coke profile for n- pentane isomerization reaction after

the end of the run. But their Arrhenius plot for k, shows considerable

d
scatter and C5 hydrocarbon reactions are expected to require higher

activation energy as compared to C6 hydrocarbons.

In this work, it is important to note that the deactivation
parameters have been determined by using reactor exit XA and XB profiles
as a function cf time=on-stream using @ suitable optimization procedure.
Since no other assumption has been introduced and alsoc in view of good
correlation coefficient for deactivation rate constant, the equation (5.11)

can be ccnsidered reliable for kd.

6.4 RELATIONSHIP BETWEEN m AND ¢1
The m - @, relationship is given by equation (5.12),
m= 0.9502 + 0.2623 #, ~ 0.005806 @
for the Thiele parameter (based on dehydrogenation rate coefficient) range

of 0.75 to 8.2. This relationship is very nearly linear in view of very

low value of coefficient of Q% . In Fig. 5.2 m and ¢1 relationship is
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plotted along with that obtained by Khang and Levenspiel (45) for
comparison. The nature of twe curves is similar for ¢1 values larger
than 1.0 but the m values determined in this study are higher, as compared
to those obtained by Khang and Levenspiel. This difference may be due to
the strong simplification made in the kinetic scheme for deactivation by
considering it as a single reaction in this investigation. Kheng and
Levenspiel have reported a minima in m - ¢1 curve, at ¢1 value of near to
unity. But no such minima is observed in this work for ¢1 value as low as
0.77. Further considerable scatter in values is observed in Fig. 5.2.

The values of m in the range of 1 and 3 for the experimental Thiele para-
meter range of 0.75 to 8.2 indicate that deactivation reaction is.simultaneous
to the main dehydrogenation reaction and support this assumption used in
the model development. In this study the value of m has not gone below
unity and this indicates that even at the ¢1 value of 0.77 the pore mouth

poisoning may be important.

6.5 ACCURACY OF THE PROPOSED MODEL

The conversion values at the exit of reactor as calculated by the
proposed model along with experimental points are shown in Fig. 4.1.1 to
4,1.19. Tables B-1 to B-19, in Appendix B also give the relative- and
absolute~percentage error variances. The variance of absolute percentage
error in X, and X, are less than 4.51 and 5.88 respectively for all the
sets except set 19 where it is 9.42 for XA‘ The variance of relative
percentage error is 41.45 for Xa for set 19 and is 31.16 for Xa for
set 1. This confirms that the data of sets number 1 and 19 are
unreliable for model development due tovvery low and high conversions
respectively. The same is true for set numbers 14 and 18 but to a lesser
extent. This justifies the exclusion of data points corresponding to set

numbers 1, 14, 18 and 19 in the determination of kinetic and deactivation

parameters. The tabulated and plotted values of XA and XG indicate that
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the pronosed model agrees very well with experimental values.

Figs. 5.3 and 5.4 shows the XA’ X, and activity profiles along the reactor
bed for different time-on-stream for five representative sets. The

experimental conditions for these five sets are :

SET NO. TEMP. C LHSV MOLE RATIO
2 355 2.052 1.002
3 355 2.437 2.176
10 435 3037 3.924
15 430 vov A 2.790
16 400 2.473 2.83

The figures corresponding to set numbers 15 and 16 indicate that
due to lower LHSV in set number 16, higher conversions tc benzene are
obtained while there is not much difference in the final activities of
the bed (at 4.5 hours times-on-stream it is 0.34 at the inlet and C.713
at the exit of the reactor for set number 15 and the corresponding values
for set number 16 are 0.32 and 0.715 respectively). The figures corres-
ponding to sets 2 and 3 show the combined effect of higher LHSV and mole-
ratio in set number 3.with respect to those for set number 2 and these
figures indicate ‘that the fall in activity is more, except for bottom
80 percent of the bed, in set number 2 as compared to set number 3 (at
.0 hours time~on-stream it is 0.2 at the inlet and 0.75 at the exit
of reactor for set number 2 and the corresponding values for set number 3

are 0.35 and 0.73 respectively).

The effect of higher mole ratio, LHSV and temperature is combined
in set number 10. For this set, even though the value of )(B at the
reactor exit at the end of 4 hours is similar to that for set number 15

(0.518 and 2.513 respectively) the drop in catalyst activity is more
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rapid for bottom 5C percent of bed (at 4.0 hours time-on-stream it is

0.406 at the inlet and 0.706 at the exit of reactor for set 10 and the
corresponding values for set 15 are 0.368 and 0.743). Thus, it can be
chserved that the effect of temperature and mole ratic on catalyst deactiva*

tion is more pronounced to that of LHSV. .

The experimental values and the corresponding values from the model
for all the 168 data points are plotted for X5 in Fig. 6.3 and Xa in
Fig. 6.4 to show their scatter around hSO line. The absolute percentage
error variance between the experimental and predicted velues of XB and XA
is 5.498 and 4.723 respectively but nc trend is discernible. -The
variance values are of the same order as the experimental inaccuracies
and, therefore, the kinetic and deactivation model is quite accurate

and reliable.
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CHARPEER=~T

CONCLUSIONS AND RECOMMENDAT JONS

CONCLUS 1 OMS

The following conclusions can be derived from the present investiga-

For obtaining kinetic and deactivation parameters, smoothening and
extrapolation of experimental conversion cdata under deactivating
conditions to zero time for determining conversion values for

undeactivated catalyst provide a reliabie and accurate procedure

The following kinetic anc deactivation scheme adequately describes
the reforming reactions under deactivating conditions with special
reference tc cyclohexane dehydrogenation on platinum-on-alumina

reforming catalyst :

k
. 1
Dehydrogenation: C6H12 —_—— 06H6+ 3H2; F1:: k1111 a CA
ko
Hydrocracking : - C6H12 ~ hydrocracked
- ol =
produuts; g = k21]2 CA
kd
Deactivaticn : C6H12——”~f¥ catalyst i

noison (coke) ; vl =- 5
3 m
T kg o (CA/CH)
Estimates of interphase and intrapellet heat and mass transfer
resistances under experimental conditions indicate that only
intrapellet mass transfer resistance is significant and effectiveness
factor values were in the range of 0.12 to 0.77 for the main dehydro-

genation reaction, and in the rahge of 0.60 tc 0.93 for the hydro-

cracking reactions.
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The values of kinetic and deactivation parameters for

Sinclair Baker RD 150 containing 0.6 percent Pt-on-alumina

catalyst, arc

3
= . 27,300 : cm
KT e (31.57 RT ) (hr) (g catalyst)
K, = exp (18,9705 222183 ) en’
Bt it - RT (hr) (g catalyst)
12,260 -1
ky == exp (9.475 - =) (hr)

m = 0.9502 + 0.2623 §, - C.005806 9

where Thiele paramcter ¢1 is based on k1

Estimaticn of hydrocracking rate constants from conversion values,
as obtained from the materal balance of cyclohexane feed, is not
very reliable. Direct measurement of hydrocracked products is

desirable for better estimates of these constants.

The values of m in the range of 1.0 to 3.( obtained in this investl-
gation indicate pore mouth poisoning and confirms simul taneous

deactivation.

Quasi steady-state procedure for simultaneous solution of kinetic
and deactivation rate equations given in 2 above is quite accurate
and reliable. The computer time requirement for this procedure

to obtain parameter values for a set of experimental data is
extremely small as compared to that requircd for unsteady state
procedure involving partial di fferential equation. In this work,
use of 40 increments for total bed (bed increment of the order of
one pellet diameter) gave a computaticn accuracy of better than
1.05 percent in exit conversion values and use of 5minutes time

interval resulted in a computation accuracy of better than
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0.12 percent in exit conversion values at the end of five

hours time - on - stream.

8. The proposed kinetic and deactivation mcdel predicts experimental
data with sufficient accuracy and absolute percentage error variance
between the experimental and predicted values of conversion is 5.5

for X. and- 4.7 for X

8 A

7.2 RECOMMENDAT I ONS

Based on the present investigation , the following recommendations

are made for further studies

1. Maintenance of isothermal conditions in the reactor is very
important and better heating system, such as, salt bath, may be
desirable.

2 More accurate flow measurements for liquid feed at very low rates
is essential.

3 Ixperimental studies if carricd out at pressures close to those used
industrially may provide more valuablie information regarding kinetic
and deactivation parameters. DBut use of high pressure will reduce
the catalyst deactivation rate and, therefore, each experimental
run will require much longer time-on-stream to study deactivation
phenomena.

b, It is desirable to analyse reactor effluents not only liquid
products but also for hydrocracked gases for more accurate
determination of hydrocracking rate constants. Direct analysis of
reactor effluents, without condensing them, by using on-line gas-

chromatograph is more useful.
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Studies with other feed stocks, such as, pentane, hexane, heptane,
octane, methyl cyclopentane, methyl cyclohexane and industrial
naphthas of various boiling ranges, may be desirable to simulate

in industrial catalytic reformers.

Other catalysts used industrially may alsoc be used to estimate

the effect 'of catalyst type on kinetic and deactivation parameters.



NOMENCLATURE FOR APPENDICES

AQ,AL,A2

AMF

AMG
AML
AMU
BMF
BMG
BML
CFl
CHC

CHCG
ED
BEGIH

ETA
FA,TFB,FCR

FR
GAIMA

GCAT

—constants for second order polynonial

between n and Py

oyclohexane fed on average flow rate

bagis, noles

cyclohexane in uncondensed exit gases,noles
cyclohexane condensed in liquid phases,noles
cyclohexane ronainced uncenvert.d,noles
benzene formed, noles

benzene in uncondensed gases, moles

benzene condensed in liquid phase, moles
concentration ‘P/R%T
cyclohexane converted into hydrocracked
gases, nolss

hydrocracked gases molec, from gos anclysis

effective diffusivity, H;E
exit uncondenscd goses, mnoles

effective diffusivity

fractibn of cyclohexane, benzene and hydro-
cracked gases in products with respect to
average cyclohexane feed,

feed rate of cyclohexane, nl/minute

nole ratio of hydrogen to cvclohexane in feed.

weight of catalyst fed in the reactor,gns.
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HFE = hydrogen feed, moles

HFO ~ hydrogen formed, nmoles

M = No of bed incroncnts

i - atmospherie¢ prescurs, on of nercury
PCH,PH - perccntage of cyclohexane and benzene in

products with respcct to average cyclohexanec

Teed
PERH =~ percentage error from hydrogen material balance
PHE = Thiele modulus
PMG - product moles in gos phuse
QCTFs GHF ~ cyclohexanc and hydrogen fesd rate

respectively in noles per ninute

R - gAg.constont
RHOP ~ pellet density , gm/cm3
‘i - tine for which thée sanple has been

cellected, nin

TA - anbient tenmperature , %
TE - exit tenperature of gases from condenser, OC
TIME = duration for which sample has bern coll:cted

with tine-on-strecn in ninutes, For exanmple

90 - 125 neans the liquid sanple has be.n

collectad botwoen 90 and 125 ninutes tine-

on-strecnn and corr =ponding T is 35 nminutcs.
TPM - Total accountable noles of benzene and

¢y clohexane
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VAL,VBL

VCF,VHP

VEG

VPA,VPB

VPW
VSE
W

WLS

J T

YA,YB

YAG,YBG

129

reactor tcnmperature A

volunctric fraction of benzene and cyclohexane
in liquid condenscte sanple, respectively
volunetric feed rate of liquid cyclohexane,
and hydrogen gos at anbient conditions
respectively, cm3 P¥n minutel}

volumetric flow rate of cxit gosed fron
condenser at anbient conditions,

vapour pressure of cyclohexane and benzene

at condenser tenperature, nn of mercury

vapour preSsurc of water at ambicent temperature
cha¥acteristie lcngth of  pellet, dh.

sane as GCAT

nass of liquid sanple collected at exit of
condenser in tine T.

nole fraction of cyclohexane and ‘benzéhe in
ligquid- sanple, respectively,

cctivity coefficients of cyclohexane and

benzene at condenser exit conditions,

ncle fraetions of cyclohexane and benzene

in gas phase, respectively.
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MEASURED

Experimental Results and Calculated Values of Conversion and Mztexial Balance

VALURS ~ CAICULATED VATLUES
Liquid Geseod Feed Product
Set Pime Product Product
No. WLS VBL VEG.| CMF - | BMF 1 AMU CHO PCE PB  PERH
. L
iae e SO -
min g_____ % Loin T8 "; gmol g@g}pmf gmol % -__% %
TABLE Ael SET NO 1 -
VCF=1.0 GCAT-10,2263 _ TR-310 VHF-1028 P=739  TC-6,01 Ta<22.¢c
%1 18242 13,7919 6069-10163 0,2219 0,0191 02041 ~0s0013 92500 8,50 1.15
2 42=90 2407980 6:18 15153 044437 0.0528 0.3790 ~@a0319L ol 35 5. 08
3 . 90~145 2000328%5.61 1p135 005084 0.0337 Go4322 ~000425 85001 6464 =0e37
% 145-188 22.8940 5049 1.148 003975 0,0266 0.3495 000214 '87093 J6.70 1.10
¥5 188-218 17,8360 5:60 1.156" 052773 0.0205. 0.2647 =0s0079 ©5.46 7.39 1.34
6 2184255 18,6008 5012 1:144 043420 060205 0.2895 000320 - 84064 6001 1022
7 255-290 1862884 5010 1,145 0,3235 0001997002618 " 0:0238 B7.08 powil5 1.21
8 290-318 15015274095 1.14C 052588 0.0158 0.2314 020116 89¢40 6,10 0079
9 3184350 18,2603 5.13 16150 0.2958 0,0195 0.2750 050013 192,968 6,58 1.38
10 350=390 2102580 4.87 13145 053698 0,0220 0.32&9 020209 88041 5294 1.36
TABLE A=2 . SET NO 2
VCF=1o5 GCAT-3463307 IR=825 ™ ViR 36206 TR 36" 1alolmh s,
1 25445 1548403 6826 1.13%.0.8275 04,1764 000722 0.0287 26005 63,62 5.19
2 45465 1506193 6584 ¥ 096 1062773-.0.1682 0.0757 060334 27030 60067 3.33
3 65490 2002772 6456 lol4l 0,3467 0.2161T°0.1006 000306 29.03 62,35 9,95
4 90-115 21,3536 61,3 WelfB, 0.3487 1 Quizd 48v-0ea Bl 0. 04 %a83.02 61,97 8.18
5 115-14U 1954595 g0.1 16048 0,3467 061530 041080 080457 31015 55,66 5,71
§ 140-170 2403444 5706 100529004160 0.2306 0.1426 000426 34028 55,49 7,24
7 170-200 2501006 54.9 1e934 0,4160, 0s2260" 0.1551 0:0349 '37.29 54,34 5,94
8 200-230 24,0714 55,9 1.U04 004160 002208 Gul4sT 0.0495 35,04 53,08 1.96
#9  230~250 22,3552 5405 15170 0,2773 0.1717 0.119%4 ~000138 46,01 58.98 6.15
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TABLE A-3
VCF=1.5 GCAT~28.,7307
20=43 16,6413 4904

43—-67 16,405 48.%
6795 2103585 47.2
125-150 20.2%40 4gda2
150-180 25:6-9% 3885
180-215 2140836 3. MC
215—241 174033 3609
TABLE A-4
VCF=1,25 GCAT=24,0616
14=45 167128 64,5
45«75 2168025 64,3
75105 2102140 5931
105-135 21,7413 59.8
135=165 22,3740 5840
155"‘195 22023(}7 5JO
195=240 301T37 5402
TABLE A-5

VCF=1.5 GCAT-29.8309
21445 15,9580 W07
45260 9.2820 7055
G0=95 23,7718 gB.2
90%125% 21,3565 5740
125158 22,8940 g4.6
E95~3180 16,721Y 6.1
180=212 21,0500 6103
212-240 18,1092 50,3

SET NG 3

VHF=8104.5

TR=3255
1.483 00,3189  0.,1585
12447 0.3328 0,1558
10446 00,3883 0.,1913
10433 00,4160 00,1892
1'.45% 0,3467 00,1581
16360 00,4853 QJ1901
10340 0,4160 051553
1635500,2467 (ol259

SET 'NO 4

TR=350s VHF=277
00893 00,3582 (0,2263
30912 003467 OaZZéO
26846 0.3467 Q.2023
Q6886 03467 00,2119
0902 ©.3467 0G.2102
00800 G,3467 (041891
0,806 C.5200 002660

SET NO 5

TR-390 VHF-1066
1.94% 0,3328 00,2225
1,900 66,2080 00,1312
1,902 0o4853 (0,3169
1983850 . 460 L0271
1.950"0,4160 0.2831
1,870 04,3487 0.2 L
10860 0,4437 0,2568
10828 0,3883 00,2178

T35

C-1354
Col367
01780
0elS591
0.1849
Go2474
Go2G70
0c1748

P3390

01055
Uo1062
Goll76
Qlo WL
Lel276
Ce1395
0.1875

—1.2:5

00,0817
0-0487
0.1297
0.1196
01344
0.0971
0 E398
0.1234

¢ TE=10+0 TA~3ig.
000250 42045 49,69
00403 41,07 46081
00185 _ 45084 49,40
000277 47087 45047
00037 53,33 45,61
0.0478 50698 39,17
00897 59877 37.33
0c0460, 50642 36,32

TC""éeO TA"‘ZOO
00025402946 63,18
0:0145 30.64 65,20
00268 33091 58,37
U085 34.58 61l.14
0.0089 36082 60.64
00181 40024 54.55
0.0665 36006 51015

TC=T7o7 TA~31,
0502886 24.54 66,85
0.T281 23442 63:08
0.0387 26573 65,30
0.0185 28,76 66,81
~0.0015 32,32 68,086
00326 28.01 62,57
00471 31,52 57,89
000471 31.78 56611

178
1.62
=043
1.84
4017
2¢16
2039
551l

1.70
1.70
10l
Big g
LO= 77
22650
1045

092
1:01
=119
3071
0.66
i i
2082
1.87
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TABLE A=6

VCF=1e5 GCAT-20,08413
153D 14,5676 26.5
558—=87Y 31,0567 ZfRs

87=115 25.851012202
115=145% 28,0855 21:1
145=180 34,2750 1768

TABLE "A—-7

VCF=1,0 GCAT-10.9885
14«40 15,0920 32.0C
40= 170 Tl 4 208 9.6

70=11C 2406226 2646
110=130 114578 P54

130=170 24,7366 23.0

179=205 2283579 2Al.5

205=240 22,6466 18:0

240U=270 l 7028850 1Hc5

270-300 8.1480 160l

2u0=340 2350326 148

TABLESA—E

VF=1:5 GCAT=29.5788
17"37 ’302]}. 7907
37"6U J.:GSZJ(J 76q9

EU=1.15 318117 74:7

105=135 20:7513 697

135-165 21,8371 70.Z

165~195 19,0854 6750

SET NO 6

TR-315 VHF~502
0,906 0.2080 000656
0.870 00,3467 0,0992
0.839 00,4437 0.,1176
0815 0,3582 0,0953
0,810 054160 0.,098%
06790 00,4853 00,1010

SET NO 7

TR-345  VHF=442
Qo 1428 B,2503 00,0835
0,725 02773 0,0895
06714 00,3698 00,0190
0,691 90,1849 0.,0516
C.685 L,3698 0,0980
G675 063235 10,0824
Ueb651 0,3235 20698
O0o26: 02773 0.0527
0.620 60,2773 00,0504
00610 00,3698 G.0594

SET NO 8

TR=410 VHF=997
1eMPeR 2773 @ Uel065
1,540 K3 31B2 F2237
1955 00,6240 Go4597
1860 004160 00,2811
1932 00,4160 0.2967
1816 00,4160 062567

Rea 755 TE~6
Gol&d69 ~0.0045
0e2302 00173
003189 ' 0.,0072
00,2688 00241
0o2958,0 00218
0s3741 00,0102

8] Tase
Celé436 0:0132
00,1719 G.0159
CGo2507 (0:0061
Uo1187 C.0146
0oa2632  0.0086
Uo2411 03,0000

Wa 2542 <=0 .8005

Uel978 0.0.68
20,2095 G.C1l74
Ge2718 (0.0386

=135 168
e 0479 00229
B 06334 @21 9
Ool&l3 » 00230
0.,1076 ‘_w;».f:’ub\273
UellO5 (000868
0.1081 ©.0512

05 TA“ZOO

70064 31053
66039 28.61
71,88 2651
69¢25 24,56
71.11 23,65
77:09 20,81

0D TA=20.

59,76 34,72
61s98 32,27
67:81 30:52
640,19 27,91
Thodlll 26451
74651 25,07
7556 21659
71e34 18599
2553 18s19
73:.50 16,07

03 TA—alo

1727 M4
1585 F3a 37
22665 TBs6T
25,87 67457
26657 71433
25:98 61la72

3061
3.01
1e67
1.28
2:26
4.56

2028
2B
3wl 2
2042
3042
2.98
4015
“3obk
3003
4o34

=103
Q.62
20595
~1.20
1s383
1:21
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TABLE A-9

YCF=2.7 GCAT~26.:2677
24—40 19,0316 2940
4060 2326922 2840
&60-90 39:.3024 28.4

90=120 35,0823 2761

120~153 34,0496 24,2

150-180 36,9970 216

180-215 42,0558 2242

215=240 3286665 207

240-27C 4100 7 Famil "G o3

270-300 3602496 2040

300230 3663431 1865

TABLE [A-10

VCF=2:.06 GCAT-25,7319
22=43 15 0981 74c4
40~60 W5.8588 7 M7
ok Sl 2 2260 3698069 55

85—12U 3301567 69,0

126=150 298457 657

150~180 258730 288

18uU=210 2504674 £122

210—~240 25,2778 £060
TABLE A-11

YiF=1l g5 GCAT-24:8715
21-40 14,3716 6361
49— 6u 566624 £1lsl
60~85 194531 42:2
85-100 10,7096 59,3

100-125 173809 8668

2259319 5409

I2S=l5g

SEFL N 9

TR=37T0 VHE—3096

4.U17 03593 0,1303
3,987 0,4992 0.1541
4,035 U.7488 002501
3. 9T QPTBE 00,2220
4,004 00,7488 00,1977
3,851 047488 00,1843
3856 0,8¥36 00,2172
3,850 046240 w1530
30831 0,7458 041795
30843 0.7488 001694
3.780.057488 Q.1568

SET NOC 10

TR-435  VHF-1980
30234 0,3428 0.2388
3,206 0o3809 002601
30200 04761 00,3248
30255, 0%66(5 “Ga4716
30237 V5713 00,3995
¥, 058" o BT . 3390
30062 0e5713 Ue3329
32039.0.5713 0.,3249

SET=NO 11

TR=385  VHF=-1016
1.821=(§2635 | Uel670
12832 U2 Tl {johisiBo
10345 03467 002224
1764 0,2080 0.118€
1720 043467 0.1857
Lo747 0o4160 002327

He730

Uo2461
01431 3 3
05002
Uo4709
04840
G.5210
05932
OobbE3
0e5763
e, 51 B2
Jo5335

P-725

CoQ74E
030581
Uol269
00,1880
01828
G 53
Uol834
01875

P> 2

00,0840
C:0956
Goell59
60696
Va2 125
C.1613

fe="4

0.0229
0.0318
-0.0015
Uo0559
G0671
0.0435
00,0632
0.0147
-0-0070
Uo0542
00585

TE+6

0.0294
0727
00244
CoU069
~0.Ul1l0
{.,0570
00550
0.058E9

TC=5%

Ce0125
0.0061
0.0084
0.0196
0oC411
00220

o5 TA-3005
6165 3da63
62«76 3087
. 6680 33,41
62:89 29065
64:63 26041
69.58 24462
6791 24,86
730l4 24053
76.97 23,98
T0oll 22.63
71le25 2094

03 TA"ZSOO

21.76 694,66
23.14 68,530
26065 68522
28021 7075
32,00 69,93
30,68 590,33
320,10 58,28
S2ol3 SHeBE

0 TA-30.0

31.88 63.40
34048 63033
33.43 64614
33644 57510
34058 53.57
B8 TH 9594

Oct&l
067
Q46
0e57
Octl
070
0.68
De74
0.54
1.78
1:00

2093
lc61
—-0s32
170
Q<75
=00 26
lo24
le2l

=078
D29
1L afT
0e62
"‘Oo88
2:63

LCT



) et

Wl

o -d > P

(oo I N6 \UR U 1 I S OV I o I ]

Ny

155=185 24,7826
188= 25:8856 /
22022470 14,5872 #4503
260=270 2106436 4%¢l

T W
(A
(o]

L gl .Y}
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TABLE A~-12
YOF=1 25 GCAT-21,™881

20-45 16,9680 57a

3=75 2091185
T5=105 21,08l 52%5
105=146 22:60P16 5005
145=-175 2361147 47:4
175-205 24,0367 45,0
205=230" IV, 8901 4lsf
230270 294048 297

VCF=1.25 GCAT=3500256

n
J

2145 11.6285

45=T70 12,5840 8857

TO=00g 9.86456 875
90-120 153233 "B6.omd
120~14C 117224 8%&47
lLfU"*l7U 150206:2 84‘0»‘-

TABLE A-14
VCF-1.5 GCAT-28+3169

49"‘@? 16,8394 87,8

VHF=380

< ]
O 0
) =1
~J e

£
°

o O

o S
LW =N W

(0 o T
¢ o
W LN D

o 6 o

O WD

n
m
_{

—

o <

[ = =]
2EHD O OB
=~ =~ o o o

=

oy O @ =~ P W
L (0 sOpJT e onee, O
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VHF=1064

2190 06,2773
26130 Go3467

01810 -0.0009
01985 (0.040¢
D6l223  0.,0278
Gol1885 U-0473

L i TCEE R0

Js1604 U.0244
Gol328 U.0272
001382 00,0251
0+1527 Q00063
Uel652 0.0015
vs1784 —G,0088
U0:.1413 06,0245
the 2398 F 08" 5

Py 3] TC=8:5

Uo0266 G.U305
Je0284 (0271
Js0249 0.,0233
Uo04z3 ©:0138
Uo0347 —000025
uo:)‘+57 Joujl?
Ce0549 $.0394
vaGDh01l. "0U.04C3

P-736  TC-5.0

D038l U6 &

43051 56,70
40091 50068

44,91 45,88 .

45030 43:31

TA=20.0

34,75 56,82
38630 52,85
39,88 52,90
44006 54,14
470 64y , 93
51.46 51,09
48091 42,62
STTeC Ll T

TA—'BGG 5

9961879 s 40
9.82 80,79
1om 7 T o7
12d49 83,55
ISsv2 86:06
136 18: 118D
1584 72,81
iHe33 68e 72

TA=30.0

9073 86482
10099 84,23

050
010
016
0a37

10.96
VoS3
5.76

~lelg
44T
4.15
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65-100 22,6310 8608 20136 00,4853 03946 000563 0.0344 11.61 8lo30 3.99
100-130 1804993 8548 2046 Uo4160 063199 000496 000465 11.91 760689 0061
130~160 18,3807 88cl 2,028 To4l60 063248 Co0414 (.0498 9¢95 78007 =2515
160~190 18:4002 8502 24027 0.4160 , 63158 00512 0(o0490 12632 75692 =008
190225 210764 B82¢0 20017 CawHS3| UE3508 L@ 00621 14:72 7250 252
225=265 24,1884 T7T7e4 2,008 ORSSET™ 0.3833 Tlo20 goxl694 18.38 69011 5eld
265-300 2109102 705 1R30ws, 4855 mO0wP 383 0.0969™ 00571 19.97 68.26 =091

TABLE A-13 S s NO=-1 5
VCF=1.5 GCAT-2547385 TR—-4Q80, - VHF—-1050 P—=Teg 0 TC-6450 1A~ 0aE
i6=3u FeUB&T Flad Mebd7 Vol9lk ,USN237 00442 Cu0282 2286 6370 1032
30-60 20,517 68k 1g852 Vet B60." Ua28%43 Wol0B2) CN4BT 12600 63053 =(sk]
6uU=<95 251568 45%3 15880 Ug4853" U.3080 Celf18 To0355."294a22 63.47 085
95=120 19:.2460 BTo71:968 L3467 U.24642 (ol01l40 0001l w25oR5mT0:46 1029
128=150 20.5894 €508 16854 Us4160 Uol2568 001159 (0435 27:85 Blo67 135
1502175 1609670 8lo% 10809 003467 Gol980 001070 Lel4lT7 3008657413 123
175210 227755 5901 1076704853 . Co@586.0,1530 "00%073F 31.5B 53.28 1.56
210=-240 486317 53-8 1816 U4160 Wol432 Ual757 —060029 42623 B88.46 635
24U~270 22RL027°%SHUL 15I0E Uo% 160w el 288 -0,1602" LOMEE0] “S0c5 L 8k, 24 2.38
TAB! E pe=15 JF 1Y NG 16
VCA=1eb 'GCAT=IE . w29 IR-H00 8, WHE=-1050 Re 738 TC~8.0 TA=3000

13-35 1365021 74u55 18060 UaB05T. Be2U4h CT0650 Oo@3 70 20068 67001 Lok
35-55 13o429F N loNele938. To2778 T0.1839 §80666  d0208° 26780 68.47 025
55~80 1702964 £%06% 15956 0.3467 062359 $.0909 400199 26021 68.05 2032

80~110 22,516% 6807 VS5 04160 1 0:2983 Cc1132" —0u0015. 28066 7170 0Go65

110-135 17,7242 "§Tol. 198000, 5467 02347 QuoT77 0 0%014F ™B.18 67.70 0.95
135170 2502965 c4m9 1680 ll&B53 USTTS4 Uel8lIe 01800 31029 65,00 “0.82
170~2uy  20e702C 62.8 885 Ue4lb0r10:25694 081817 050228 31,65 61,75 3.065
20U=235 23,1244 6200 19830m0e4853 002851 Lol510m Goi492 3101l 58074  1e31
235-270 2209349 €15 1.80J UR4883 0.,2801 (o15%2 QEWT540 31.16 57071 ~0s19
270=300 26,9630 5806 10830 U,4%60" 042418/ Calsbl 000281 35,11 51,22 1.93

TABLE A-17 SET RO 47

VEF=1425 SCAT-30.6438 TR-B20  VHF-364 P=730 TC=6.5 TA=20e

62T
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Couparison of Smoothened Experlmnntal Clfonversion Values
with those Predicted by the Preposed Model

131

TABLt =1 SET NG &
; ‘
Time Smoothened Dats With Optimizec From Model
§l; ‘ T m and kd ﬁ
J.Q-O. i X C l X ‘
lmln- | A Eurrsl (p=d Xy in o
1 00828 0oB885 00062 (o832 08547 (¢o1189 Ue8606
2 30 0-080 D0857 (00063 00G799 H0.8578 (.1154 008641
! 6( 0076 Uo859 o065 s0768 S0IBBO7 (0.1120 08674
4 gic U0 "3 860 0070 0.0#39 00,8685 (0.,1088 0.8706
5 120G 0,069 5_)3662 Uo069 e0711 08662 Us 1056 0.8737
6 150 Qo U66 - UoBE5 0,069 0.0685 008687 "p.1025 08767
7 " 180 00063 C‘c87o C’oOC? 000359 Oo?.t?ll 300995 008797
8 210 0.C61 0s875 00,0064 000635 068735 L9e0966 00,8825
9 240 0.060 #0p879 0061 00012  0.0.8756& ;00938 (.85853
10 279 U059  0o881 0,060 B0 0 18 Okt ey geee o1 Lo 8880
1 300 0.0U58 ©.885 0057 06570 0:8794 33,0884 08906
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Formulation of Kinetic Model to Estimate Intrinsic
Rate Constants for Undeactivated Catalyst:

k
. . A
Dehydrogenation $ CéH12-~, C6d6 + 3H2
A B H
k2
Hydrocracking 4 QGle + 2B SayE2 03H,8
C -
or 4HlQ + C2d6
or 05H12 -+ CH4
CH
Suppose at the inlet of reactor sectiomn: 4 = 1,5~y
A
Cyclohexana . XA
benzene 1 XB
hydrogen Yy + 5 Xp + 2%, =2
hydro cracked gases: 2 - 2 XB - ZXA
Total Moles 2o Y+ 4 Xpren Xy
B
°o = TR
4, = C0 XA
A =
Y+4XB+XA

For plug flow behaviour and irrerersible first order
kinetics:

X,
- S dw

F dX, = k
Y+4XB+AA

g = Kqmny 2 C, dw = k,CO

A &

o (B
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1
A
-F X, = v = (k. 4k —
XA (klnla+k2n2) CA dw = (kl+k2 )CO Y+4XB+XA dw
ees(C=2)

as at t = 0, for undeactivated catalyst v 8 =1 and

'
kl = kl Ny s and k

1]
2 a2 lof

Dirviding (C-~2) by (C-1), and at isothérmal

and steady state conditions:

b
2 | k. N
or - ) dXA = —— 2 d XB
3 Iy 0
1 1
P ! ko +k
or _—T(‘—‘A"— = e ]1;' g
B 1
1-X,-X Kk
A B 2 )
or b " w3 e
B ' -
or X, = 1=(14K) Xy ’ .. (C=4)

Substituting from (€-4) in (C-1), we have:

F dXg B l-» (l+K)XB '
= == Ay

C, 1+Y+(3-K)XB

]

Ky

r ) dnal’ sa |
e = 3K Af. = Lap «—---%—
L 1-Xg (14K)
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on intcgrating :

C1p _(3ey) (1K)
3K

- i 1nE —=k.co (2K (¥
Ky + g In[l (1+K)XB]_ kICO(B-K)(F)

oo (€-5)

From the operating conditions F,¥W,P,T and y arc known
and from the ecxtrapolatcd smoothened expcehimentel data,
conversion XA and XB are also known for undenctiveted
cetalyst, thet is at t = 0. Thus, X is first calcu;ated
from Eq. (C-3), ki is then calculated from Eqn. (C-5)

1
and k, is coleulsted by noting thot k) = X k]'_ =

2
In order to cstimcte the intrin~ic rate constants
kl and k2, it 15 neces~ary to find the effactilreneces
fagtors N and M, for dehydrogenction and hydrocracking
reactions from the experimental rote megasurcments. For
this, the proccdurc of Weisz and Prater [87] is used,

Following is the brief description of this proccdure.
The Thicle porometer @ is defincd as:

e e ———

v o =
¢ =(§5) / D_G_E._ ...(C 6)

and for first order irreversiblc recction in a spherical
pellet, the relationship betwecn effectiveness factor n

and Thiele parameter ¢ is given by

R 5 !

e |
n= G |Tean3p " ?@"‘J s XeAE)

It ie, therefore, clear thet



| | | | | o S8 |

l 4 6 8

#
: . 2
Fig. C-1 Variation of effectiveness factor n with @én parameter

10

Y62l
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4% -« (‘Sf.')2 e 1 o (=B

-
!
where k = ky es2(0=9)

d2n cen be colculated from the physical properties

of the catalyst, effcctive diffusivity of reactant

and the apparcent rate constont k'. The valuc of effec-
tiveness factor was cstimated from the plot of 7
versus ¢2n which was obtained from Eq.(C=7) and is
shown in Fig. C-1. The volue of ¢ can then be calcu-—
lated. Using the valucs of n and k', the intrinsic

rote constant k can be obtained by noting that kzk'/n.

The calculated valucs of apparant rote constants
ki and ké depend on the constont K, which is cstimated
from X, and X, using Eqn.(C-3). For very low valucs of
Xg o 80y Ig less than 0.1, the denominator of Eqn.(C-3)
being very small the values of K may not be very accu-
rate due to inhcerent inaccuracy in the cetimation of
XB due to errors in flow rote measurement and chroma-—
tographic analysis, Similorly, for very high values of
X the difference [(l—XB)—XA] may not be very accurate
due to inherent insccuraccy in the estimation of low
values of XA’ sa.y XA less thon 0.1. This indicates
that chonces of error are significant for both
cases, thoat is, for large and also for very low conver-

sion of cyclohexane into bunzene.
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APREND I-K =5

Pable-D~1l: Calculated Values of Dehydrogenation Rate Con-
stant from Experimental Data

- 1 2 . 1

fg* IR i gim Ny 2y .-
= 310 1380 00437 00767 00755 1700
2 595 5060 1e 682 00423 La®70 - -1 2080
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6 55 2470 0.815 Oeb21 18146 3970
7 345 4345 3410 Qo487 1.738 9300
3 410 15300 71 B 00187 50020 81900
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15 400 12350 3,859 0208 46307 59400
15 400 12090 e 775 04216 4e240 57550
17 %40 3850 14250 05507 14570 7600
%18 385 9155 2.902 06270C 3,278 33900
* 10 405 15670 40820 Ue 330 30822 47500

i)

-Tablo~D=2: Calculated Valucs of Hydrocracking Rate Constonts
from. Experimcntal Data

~ 1 ° 2 :
Hoo % L e P5ns N 2 E,
%1 316 973 @al25 0-820 0.630 1190
2 355 79C 04256 T ot 0.547 924
3 355 747 0239 0.865 05526 864
4 350 570C 0,185 Vo882 0458 646
5 250 1500 s B 0,738 0.629 2170
6 315 - 491 0.059 06906 0.4169 542
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13 420 185¢ 0570 el it 0,895 260U
#14 425 1230 0,378 0o795 0689 1810
15 400 2100 Oab57 0.678 0,984 3100
16 400 1450 0,452 O 761 0,771 1900
3 340 385 125 [y R 003668 4}@
*9 808 D233 0c867 Gu«518 932



Conputed Values of Paraneters to Estimate the Extbrnal
and Mass Trensfer Resistoances

and Intesrnel, Heat
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Activity and Conversion Values for Catalyst

Bed at Different Timeg-on~Stream

CATALYST TFRACTION
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G-1 Matericl Bclance Calculations

DATA

Common
of set

GCAT
VHF

VCF
TR

TE
T4

-
VPW

VPA

VPB

CFl

LHSV

QHF

QCF

GAMA

Scmple colculotions for sample No.l sct 2

for all=thc eamphes
2
= B4 .1 309 &0 TIME =
= 362.5 nl/min. T =
= | nl/nin, VEG =
=400 o VBL =
= 6.8 o WES. " &
= 25.0. e
= M6 ng of He. 3
~ - f i
= Exp | |7.96681 - %26225% ,j*2.
E N _ 1203.526 |
R, 0PSB, Pl eatliafna-
I 1| 1eate33 [ 2.
_ 22900, 5180, 23 L B - 5i
- Wi P - VPW)
VCF & 60m:85
i Tt = 2.052
_ e = 0.01390
= 91
VCF _%0,778 gl "
= St = §.01357F
- -GHF = Y00

For Sample

Nesl only

25~45 minutces
20 minutes
113%. e i
0.676

. 840% Enm
1 = 123.6
303l = 40,25
303] = 38,44
6086 % 104



Above

this

AMF
VAL

BML

AML

YAG
AMG
YBG
BMG
BMF
AMU
HFE
HFO
TPM
EGM

160

ctlculations are connmon to 211 the famples: of
sct,
= P 2T = G 20075
= 1.=VBL = O g 22
= . = = 2 l
VBLx0.879+VALx0,778 ° 78 4£53
= VAL % 0.778 _ WLS
~ VBL*0.879+VAT0.778 * 84.16= 005606
= BML = 0,7178
BML + . AML
—l k= XB = MOTR 2eliel Y
1,00918 - =.0.65926
—XB+1.OO918*XA 0.65926*KB+1§A
= EXP [—ln (XB+1.OO918 * XA)+XA*CF] = gl . 0&58
==FEXp [-ln (Xk+0.65926*XB) -XB*CF] == ) BN
= VPA%Y; X, /P = 0.01856
= YAGxVEGxT«CF1 e LAl
= VPB*XB *YB/P = QRPPB33
= YBGxVEGxT/CFL = 0.033854
= BMG + BML = Ol 6445
= AMG + AML = QD244
= QHF«T = 0.277928
=" %, %BMF ='0,52954
= BMF + AMU = 0.248689
= T«VEG/CF1 = GIR7LTA
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PMG = AMG +BMG + HFO = 0.57937
PERT = (EGM~-(BMG+AMG+HFO+AMF+HFE )%100. / (AMF+HFE )=2. 60
PERH = (EGM-HFE-PMG)x100./HFE = 5.195
CHC = AMF - BMF - AMU = 0.02864
FA = BMF/AMF-= 0.6362
FB = CMU/AMF = 0.2605
FCR = 1-FA=FB = 0.1033
CHCG = BGM=PMG-HFE = 0.01444

¢.2 Sample Calculations for Apparant Rate Constants:

4

From G.1 7, for set No.2 =~
Mgle ratyo, vy "&.002

55— =CFL = 2.6086 x 10" cn’/gnole
0

W =GCAT= 34.1307 g
F =QCF%x60 = 0.8332

Frop-Figs 4.%.2, from smosthoneds curve -

XB = ", GI6U
XC ol = XA - XB = D.10%



X
) o . C —_ 00103 O l 6
Hence ’ o= XB 6--.—6-6-5 L . 5 ‘

Substituting the values iniequation (

1, (141.002)(140.156)
T 30,156

0.6604

1+0.156

] A k' 1+0.156 _ 1
T 1 * 3-0.156™ 2.6086x10%

and thus ki 50 60

k SO0 # O.156"s TN

1
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1.2)

In[1-(1+0.156)0.66]
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