F-79 BAN

STUDIES OF REFORMING REACTIONS WITH CATALYST DEACTIVATION IN TUBULAR REACTORS

A THESIS Submitted for the award of the degree of

DOCTOR OF PHILOSOPHY

in CHEMICAL ENGINEERING

6189

By MUKESH CHANDRA BANSAL

DEPARTMENT OF CHEMICAL ENGINEERING UNIVERSITY OF ROORKEE ROORKEE-247672, INDIA

October, 1979

CERTIFICATE

Certified that the thesis entitled "STUDIES OF REFORMING REACTIONS WITH CATALYST DEACTIVATION IN TUBULAR REACTORS" which is being submitted by Sri MUKESH CHANDRA BANSAL, Lecturer in Chemical Engineering, in fulfilment of the requirements for the award of DOCTOR OF PHILOSOPHY in Chemical Engineering of the University of Roorkee, Roorkee, is a record of candidate's own work carried out by him under my supervision and guidance. The matter embodied in this thesis has not been submitted for the award of any other degree.

This is further certified that the candidate has worked for a period of nearly eight years, as a part time student, for preparing this thesis.

October 12, 1979

(S.K. Saraf)

Sc.D.(M.1.T.) Professor and Chairman Department of Chemical Engineering University of Roorkee ROORKEE - 247672 (India)

Certified that the attached Thesis/ Discretation has been advented for the const of Degree of Ductor of Discophy / Master of Engineering Chevronical Invite notification Mo. Ext. St. Invite Notification

Assistant Registrar (Exam.)

ABSTRACT

Dehydrogenation of cyclohexane to benzene under conditions of catalyst deactivation was investigated in an integral reactor under quasiisothermal conditions and at atmospheric pressure. Commercial platinum-onalumina reforming catalyst (Sinclair-Baker RD-150) was used for investigation. The operating variables and their range studied are : mole-ratio of hydrogen to cyclohexane (0.94 to 4.8), reaction temperature (310-435°C) and liquid-hourly-space-velocity (1.28 to 4.77). Reaction product consisted of mainly benzene with some hydrocracked gases. Gas chromatographic analysis of liquid product samples using Carbonax-4000 on Celite column indicated benzene as the only reaction product.

Experimental set-up consisted of a feeding section for cyclohexane and hydrogen, vaporizer and preheater section, a reactor section and a liquid product collection section. The flow rate of exit gases was recorded with time. The pressure drop in the reactor increased with time due to coke formation and care was taken to keep the flow rates of the reactants constant by compensating for the increase in pressure drop. The catalyst bed was diluted with glass beads, to maintain it near isothermal using suitable dilution criterion.

The kinetic model used in the analysis consists of the following reactions:

Dehydrogenation :	C6H12	$\xrightarrow{\kappa_1}$	$C_{6}H_{6} + 3H_{2}$
Hydrocracking:	^C 6 ^H 12	^k 2→	hydrocracked products
Deactivation:	C6H12	k _d →	catalyst poisons (coke)

The material balance calculations were carried out considering equilibrium at the exit of condenser and material balance checked well for most of the samples in all the sets for both the cyclohexane and hydrogen feeds. The conversion of cyclohexane into hydrocracked products was calculated from the material balance of cyclohexane using time average feed rate. It is assumed that the loss of cyclohexane due to the deactivation reaction is negligible.

The kinetic data for undeactivated catalyst was obtained by extrapolation of experimental conversion data under deactiving catalyst condition to initial conditions and the same was analysed by assuming first order irreversible kinetics and plug flow behaviour. These assumptions result in the following conversion - space velocity relationship, for initial rate data :

$$X_{A} + \begin{bmatrix} 1 + \frac{(1+\dot{y})(1+K)}{3-K} \\ 1 + K \end{bmatrix} \ln (1 - (1+K)X_{A}) = -\frac{k_{1}^{\prime} Co(1+K)}{3-K} \cdot \frac{W}{F}$$
(1)

Under experimental conditions the external heat- and mass-transfer and internal heat-transfer resistances were found to be negligible but the intrapellet mass-transfer resistance was found to be significant. The values of effectiveness factor for the desired dehydrogenation reaction varied between 0.12 and 0.77, and for the dehydrogracking reaction it varied between 0.60 to 0.93. With the help of equation 1 and experimental conversion data the apparent rate constants k_1^{\prime} and k_2^{\prime} were determined. The values of effectiveness factors were estimated from the plot of γ versus p_{γ}^{2} , where:

$$\gamma = \frac{1}{\emptyset} \left[\frac{1}{\tanh 3 \emptyset} - \frac{1}{3 \emptyset} \right]$$
(2)

$$f = \left(\frac{V'}{S_e}\right) / \frac{k \beta_p}{D_e}$$
(3)

ii

It is to be noted that $\emptyset^2 \eta$ can be calculated from the experimental data directly. Knowing the values of k'_1 , k'_2 , η_1 and η_2 , and the intrinsic rate constants k_1 and k_2 were calculated. The intrinsic rate constants k_1 and k_2 were observed to depend only on temperature which confirmed the validity of first order irreversible kinetics for dehydrogenation and hydrocracking of cyclohexane. The values of activation energy and pre-exponential factor were calculated from the regression analysis of ln k versus 1/T values for each rate constant, to give

$$k_{1} = \exp \left(31.57 - \frac{27,300}{RT}\right) \frac{cm^{3}}{(hr.)(g \text{ catalyst})}$$
(4)
$$k_{2} = \exp \left(18.97 - \frac{15,150}{RT}\right) \frac{cm^{3}}{(hr.)(g \text{ catalyst})}$$
(5)

The correlation coefficients for dehydrogenation and hydrocracking rate constants are 0.992 and 0.902 respectively, and indicate good fit of data on Arrhenius plots.

It is safe to assume that coke formation on catalyst results in a loss of catalyst activity for only dehydrogenation reaction involving platinum sites and not for hydrocracking reactions. Thus, the rates of dehydrogenation and hydrocracking reactions with catalyst deactivation, are given by :

$$\overline{r}_1 = k_1 \eta_1 a c_A$$
 (6)
 $\overline{r}_2 = k_2 \eta_2 c_A$ (7)

The rate of change of activity with time is considered to depend on mth power of activity and nth power of concentration ratio of cyclohexane to hydrogen as given below :

$$-r_{d} = -\frac{da}{dt} = k_{d} a^{m} (c_{A}/c_{H})^{n}$$
(8)

iv

In equation (6) and (7) undeactivated catalyst effectiveness factors are used and any change in dehydrogenation activity due to the coke formation is accounted by activity factor a. Non-linear equations 6 to 8 were solved simultaneously for n = 1 and assumed values of k_d and m, to calculate cyclohexane and benzene mole-fraction at reactor exit, for different times-on-stream using fourth - order Runge-Kutta method on IBM 370/145, UNIVAC 1100 or DEC 2050 computers. The optimal values of k_d and m were found for each set by minimizing the variance between calculated and experimental values of benzene mole fraction at the reactor exit for different times -on-stream. The values of k and m were optimized to within +5 and + 2 percent respectively. The values of m and k, are in the range of 1.11 to 3.11, and 0.41 to 4.53 (hr)⁻¹ respectively. For the solution of differential equations 40 bed increments and 5 minutes time interval was chosen after careful error analysis. The 40 bed increments (bed increment of the order of pellet diameter) gave a computation accuracy of better than 0.05 percent, and 5 minutes time interval resulted in a computation accuracy of better than 0.12 percent, in exit conversion values at the end of five hours time-on-stream. Activity and conversion profiles were calculated for all the sets along the length of the bed for different times-on-stream using optimal values of m and k_d, and the intrinsic reaction rate constants k1 and k2 .

A total of 19 sets were analyzed for deactivation parameters. The deactivation rate constant was found to vary only with temperature. The values of activation energy and pre-exponential factor for catalyst deactivation rate constant were found from the linear regression of ln k_d versus 1/T values, to give -

$$k_d = \exp(9.475 - \frac{12,260}{RT}) (hr)^{-1}$$
 (9)

The value of correlation coefficient, 0.872, for the above equation indicates a good fit of data.

A second order polynomial was used to correlate m with Thiele parameter \emptyset_1 (based on k_1) and the constants obtained by regression analysis are as given below:

$$m = 0.9502 + 0.2623 \not a_1 - 0.005806 \not a_1^2$$
(10)

For a given set of operating conditions equations 2,3,4,5,9 and 10 were used to calculate the intrinsic dehydrogenation and hydrocracking rate constants, deactivation rate constant, Thiele parameters, effectiveness factors and m, and these values were then used to calculate the conversion and activity profiles along the catalyst bed for different times-on-stream by simultaneous solution of equations 6 to 8 for all the sets. The proposed model gave a good fit with experimental data as is evident from the absolute percentage error variance between the experimental and predicted values of conversion which is 5.5 for benzene and 4.7 for cyclohexane considering all the experimental points.

The values of m in the range of 1 to 3 indicate pore-mouth poisoning and confirms simultaneous deactivation.

It gives me an immense pleasure to express my deep sense of gratitude towards my august guide and supervisor Dr. S.K. Saraf,Sc.D. (M.I.T.), Professor and Chairman of the Department of Chemical Engineering at the University of Roorkee, Roorkee, for his able guidance and profound efforts in bringing this thesis to the present format. I have no words to describe his steady devotion, unflinching patience and perseverance, and can only recall with gratitude the long hours he has spent in discussing the minutest details of this work at all the stages.

I would also like to express my gratitude towards Dr. N. Gopal Krishna, Ex-Professor and Chairman, Department of Chemical Engineering, and Dr. B.S. Varshney, Professor of Chemical Engineering, for their continuous encouragement during the progress of this work.

I gratefully acknowledge the enthusiastic cooperation and help rendered by Sri Surendra Kumar, Lecturer in Chemical Engineering, and Sri Ashok Kumar, Senior Research Fellow in Metallurgical Engineering. Thanks are due to Sri S.P. Singh, Lecturer in B.I.T.S., Pilani, for his help in experimentation during his stay in this department as Senior Research Fellow. I shall fail in my duty if I do not sincerely acknowledge the help rendered by Sri Ravindra Bhargava, Senior Research Fellow in Chemical Engineering and Dr. P.R. Sharma, Lecturer in Chemical Engineering, who had helped me enormously in the various aspects of this work.

I am grateful to the authorities of Structural Engineering Research Centre, Roorkee (IBM 1620), Institute of Petroleum Exploration, ONGC, Dehradun (IBM 370/145), Regional Computer Centre, Chandigarh (DEC 2050) and Bharat Heavy Electricals Ltd., Hardwar (Univac 1100) for permitting me to use the computer facilities at their centres. My sincere thanks are due to the technical staff of Fabrication-Section, Stores, Analytical instruments Lab., and Process development and Reaction engineering research lab, but especially to S/Sri C.M. Bhatnagar, Surendra Singh and Juginder Singh for their readily available help and keen sense of interest in fabrication, installation, operation and maintenance of experimental set up.

My special thanks are to S/Sri U.K. Mishra and M.C. Sharma for their sincere typing of the manuscript and to S/Sri M.C. Vaish and Y.P. Arora for their nice drawings.

Thanks are due to the authorities of University of Roorkee in general and of Chemical Engineering Department in particular, for providing the necessary facilities and financial assistance for this work.

It is also a great pleasure and privilege to offer my warmth of feelings and copious gratitudes to Mrs. S.K. Saraf for her encouragement during the progress of this work and tolerance She has shown during long and late discussion sessions.

I also wish to convey my heartfelt thanks to all those who have helped and encouraged me in a number of ways, and especially to Ajai who had always been available for help.

Finally, but of paramount importance, I cannot forget to recall with gratitude the affection, encouragement, and the blessings of my parents, sisters and brother Umesh, who always provided the greater strength to complete this ardous task.

In the end, expressions of encomium are definitely due to my wife Rekha for the singular cooperation and providence she has given, and for the sacrifices she has made for me.

vii

CONTENTS

i

	Page
ABSTRACT	i
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF FIGURES	xii
LIST OF TABLES	xiv
NOMENCLATURE	xvi
SS / GONNA.	>
Chapter 1 INTRODUCTION	1
1.1 Catalytic Reforming	1
1.2 Deactivation of Catalysts	3
1.3 Aims and Objectives of the Present Study	5
Chapter 2 LITERATURE REVIEW	6
2.1 Catalytic Reforming	6
2.2 Naphthene Dehydrogenation with Special Reference to Cyclohexane Dehydrogenation	8
2.2.1 Kinetics and Mechanism	8
2.2.2 Thermodynamics	17
2.2.3 Reforming Catalysts	19
2.3 Hydrocracking of Naphthenes	20
2.4 Deactivation Reaction Kinetics With Special Reference to Reforming Reactions	2.2
2.5 External and Internal Heat and Mass Transport Resistances	33
2.6 Criteria for Catalyst Bed Dilution Effects	35
2.7 Integral Catalytic Reactor Criteria	35
2.8 Conclusions from Literature Review for the Development of Kinetic and Deactivation Model	36

Chapter 3	EXPERIMENTAL SET-UP AND PROCEDURE	39
3.1	Experimental Set-Up	39
3.1.1	Feeding Arrangement for Cyclohexane and Hydrogen	39
3.1.2	Vaporizer and Preheater	45
3.1.3	Reactor Section	45
3.1.4	Condenser Section	47
3.2	Experimental Procedure	47
3.3	Analysis of Products	50
3.4	Regeneration of Deactivated Catalysts	51
3.5	Specifications of Materials Used	52
Chapter 4	EXPERIMENTAL OBSERVATIONS AND ANALYSIS OF INTEGRAL REACTOR DATA	53
4.1	Proliminary Experimentation	53
4.2	Experimental Data and the Range of Parameters Investigated	53
4.2.1	Experimental Data	53
4.2.2	Range of Parameters Studied	54
4.3	Cyclohexane Conversion Calculations	54
4.4	Extrapolation of Deactivation Data to get Initial Rate Data	57
4.5	Formulation and Estimation of Apparent Reaction Rate Constants for Undeactivated Catalyst	77
4.6	Estimation of External and internal Mass Transport Effects	78
4.6.1	Estimation of External Mass Transfer Coefficient	78
4.6.2	Estimation of Effective Diffusivity in Catalyst Pellet	79
4.6.3	Estimation of Cyclohexane Dehydrogenation Reaction Rate at the Inlet of the Reactor	79

ix

i

4.7	Application of Different Criterion to Consider the Limiting Inter- and Intra-Particle Heat and Mass Transfer Rates	80
4.7.1	Criteria for External Mass Transport Effects	80
4.7.2	Criteria for Internal Mass-Transport Effects	80
4.7.3	Criteria for External Heat Transport Effects	81
4.7.4	Criteria for Non-Isothermal Pellet	82
4.7.5	Criteria for Maximum Temperature Gradient in Catalyst Pellet	82
4.8	Significance of Heat and Mass Transport Limitations	83
4.9	Estimation of Effectiveness Factors and Intrinsic Rate Constants	83
Chapter 5	DEVELOPMENT OF KINETIC AND DEACTIVATION MODEL	86
5.1	Deactivation Model Development	87
5.2	Estimation of Deactivation Parameters	89
5.2.1	Estimation of Arrhenius Equation for Deactivation Rate Constants	92
5.2.2	Estimation of Constants for Ø and m Polynomial	95
5.3	Application of the Proposed Model for the Prediction of Concentration and Activity Profiles	95
Chapter 6	DISCUSSION OF RESULTS	10
6.1	Dehydrogenation and Hydrocracking Reaction Kinetics	10
6.2	Accuracy of Computation Procedure	106
6.3	Deactivation Rate Constants	110
6.4	Relationship Between m and \emptyset_1	111
6.5	Accuracy of the Proposed Model	112
Chapter 7	CONCLUSIONS AND RECOMMENDATIONS	117
7.1	Conclusions	117
7.2	Recommendations	119

x

	NOMENCLATURE FOR APPENDICES	121-123
APPENDIX A	EXPERIMENTAL RESULTS AND CALCULATED VALUES OF CONVERSION AND MATERIAL BALANCE	124-130
APPENDIX B	COMPARISON OF EXPERIMENTAL CONVERSION VALUES WITH THOSE PREDICTED BY MODEL	131-136
APPENDIX C	FORMULATION OF KINETIC MODEL TO ESTIMATE INTRINSIC RATE CONSTANTS FOR UNDEACTIVATED CATALYST	137-140
APPENDIX D	CALCULATED VALUES OF DEHYDROGENATION AND HYDROCRACKING RATE CONSTANTS FROM EXPERIMENTAL DATA	141
APPENDIX E	COMPUTED VALUES OF PARAMETERS TO ESTIMATE THE EXTERNAL AND INTERNAL HEAT AND MASS TRANSFER RESISTANCES	142
APPENDIX F	ACTIVITY AND CONVERSION VALUES FOR CATALYST BED AT DIFFERENT TIMES	143-158
APPENDIX G	SAMPLE CALCULATIONS FOR MATERIAL BALANCE OF CYCLOHEXANE AND HYDROGEN	159-162
5	REFERENCES	163 -17 2
	222222	

xi

LIST OF FIGURES

2.1	Reforming of C6 hydrocarbons with dual func-	
	tion catalyst. ;	-13
2.2	Equilibrium between cyclohexane, benzene and	
	hydrogen, as a function of temperature and	
	pressure.	-18
2.3.1	Resistance to pore diffusion determines where	
	the poison deposits, for parallel or sinul-	
	taneous deactivation.	-29
2.3.2	Resistance to pore diffusion determines where	
	the poison deposits, for series deactivation	-29
3.1	Feeding arrangement, vaporizer and preheater	-41
3:2	Reactor Section	-42
3.3	Condenser Section	-43
4.1.1	Experimental and predicted values of conver-	
to 4.1.1	9 sion at reactor exit with time58-	76
4.2	Avrhenius plot of .dehydrogenation and	
	hydrocracking rate constants with temper-	
	ature	-84
5.1	Arrhenius plot of deactivation rate	
	constant k _d with temperature.	-93
5.2	Variation of order of deactivation n with	
	Thiele modulus, ϕ_1 , dehydrogenation	
	reaction.	-94

- 5.4 Profiles of catalyst activity in the bed at different times ---97-101
- 6.1 Effect if ved increments on conversions at the exit of reactor --- 108
- 6.2 Effect of time intervals on conversions at the exit of reactor --- 109
- 6.3 Comparison of predicted and experimental values of conversions of benzene, at reactor exit --- 11.
- 6.4 Comparison of predicted and experimental values of unconverted cyclohexane, at reactor exit --- 115
- C 1 Variation of effectiveness factor η with $\phi^2 \eta$ parameter --- 139-A

LIST OF PHOTOGRAPHS

3.1 Over all view of experimental set up --- 40

LIST OF TABLES

2.1	Rate behaviour and heat effects of import-
	ant reforming reactions7
2.2	Effect of Catalyst type and hydrocarbon
	structure on product.
2.3	Thermodynamic data for typical reforming
<	reactions17
2.4	Deactivation Equations
2.5	Criteria for internal and external,
	heat and mass transport effects34
5.1	Experimental rate constants, effectiveness
).L	「「「「「「「「」」」」「「「「」」」」」「「」」」」
	factors, Thiele parameters and optimized
€.	deactivation parameters m and kd91
5,2	Theoretical rate constants, effectiveness
1	factors, Thiele parameters and order of
	deactivation, as obtained from the proposed
	model 91
6.1	Comparison of activation energies for
	dehydro-genation reactions104
6.2	Comparison of activation energies for
	hydro-cracking reactions104
A1-A19	Experimental results and calculated
	values of conversion and material balance
	124 - 130

B1-B19 Comparison of experimental conversion values with those predicted by model

.. 131 -136

- Dl Calculated values of dehydrogenation rate constants from experimental data ...141
- D2 Calculated values of hydrocracking rate constants from experimental data ...141

E

- Computed values of parameters to estimate the external and internal heat and mass transfer resistances ...142
- F1-F19 Activity and conversion values for catalyst bed at different times ...143-158

NOMENCLATURE

8.	dehydrogenation activity of catalyst at any time
	t, considering activity $a = 1$ at $t = 0$
A	cyclohexane, specie A concentration
В	benzene, intermediate or product concentration
C	hydrocracked gases, concentration
CA,CH	concentration of cyclohexane and hydrogen
0	respectively
0 _b	bulk concentration
0 ₀	concentration (p _t /R _g T)
σ _p	heat capacity
 0 _p	poison concentration
d	order of deactivation with respect to species
2	concentration
23	
dp	purticle or pellet diameter
dt	reactor diameter
D _{AB}	bulk diffusivity of components A and B, Cm ² /sec
De	offective diffusivity, <u>om</u> ³ of gas
	Sec. cm of catalyst
DK	Kundsen diffusivity, <u>cm³ of gas</u> Sec. cm of catalyst
Е	activation energy
F	Molar feed (or flow) rate, gmol/hr
G	mass velocity, g/hr. cm ²

IIVX

ΔH. heat of reaction

P+

ro

A	
$j_{\rm D}$	Colburn mass transfer factor
k	intrinsic reaction rate constant, $\frac{\text{cm}^3 \text{ of gas}}{\text{hr. gm of cat.}}$
^k d	deactivation rate constant, hr ⁻¹
ke	axial thermal conductivity
kma	mass transfer coefficient em ³ of gas hr.gm of catalyst
k'	apparent or effective rate constant under
NA	experimental conditions for undeactivated
56	catalyst $(k' = k \eta)$
K	ratio of hydrocracking to dehydrogenation
- 28	apparant rate constants
L .	reactor length
LHSV	liquid hourly space velocity = volumetrie

flow rate per hour/volume of catalyst

- order of deactivation with respect to activity m mole ratio of hydrogen to cyclohexane in MR the feud
- order of deactivation with respect to ratio n (C_A/C_H) in deactivation rate equation
- atmospheric pressure, mm of Hg , Poison P concentration

total pressure, mm of Hg global rate for dehydrogenation reaction at reactor inlet

XVIII

r	global rate of reaction, gmole hr. g of cat
rA	reaction rate
rd	deactivation reaction rate
rp	global reaction rate for the pellet
R	radius of the pellet or particle
Re	Reynold's number
Rg	gas constant
S	number of active sites
Se	external surface area of pellet, cm ²
Sg	total surface area of catalyst , m ² /g
T	temperature of the reactor, °K
Тъ	bulk gas temperature
TEMP	temperature of the reactor,
Ts	surface temperature
V	volume of catalyst pellet, cm ³
W	weight of catalyst in the reactor, g
x	fractional conversion
X _A	fraction of cyclohexane feed remained unconverted
X _B ,X _c	fraction of cyclohexane feed converted into
	benzene and hydrocracked gases

Subscript

1 and 2, dehydrogenation and hydrocracking reactions respectively

Greek letters

α	fraction of poisoned catalyst sites at any time t	
β _m	dimensionless maximum temperature rise	
γ	mole ratio of hydrogen to cyclohexane in the feed	
φ	Thiele parameter	
φ _p	Thiele parameter for poison precursor	
Ψr	Thield parameter for reactants	
ŋ	internal effectiveness factor	
P	density of fluid at operating conditions, g/cm3	
Pp	density of catalyst pellet	

CHAPTER-1

INTRODUCTION

1.1 CATALYTIC REFORMING

Catalytic reforming of naphtha (gasoline boiling range) over a bifunctional catalyst is carried out to obtain high octane gasoline or aromatics as end product. Hydrogen and lighter hydrocarbons ($C_1 - C_4$) are also obtained as side products. High octane gasoline is needed for efficient performance of high compression ratio engines without knocking. Aromatics are essential and valuable feed stock for petrochemical industry.

Reforming of naphtha results in restructuring the available classes of hydrocarbons (paraffins, naphthenes and aromatics), without changing the number of carbon atoms in the molecule. Though some hydrocracking also takes place resulting in lower hydrocarbons essentially paraffins.

The feed have three classes of hydrocarbons, whereas in each class large number of chemical structures are possible, so, the feed is a complex mixture of series of hydrocarbons. As the desired end products are aromatics, the desired reactions which increase the octane number of the reformate, are:

- (1) Dehydrogenation of naphthenes
- (2) Dehydrocyclization of parafinns
- (3) Isomerization of paraffins
- (4) Olefins saturation
- (5) Dehydroisomerization of C₅ ring naphthenes

Undesirable simultaneous reaction are:

- (1) Hydrocracking of paraffins and naphthenes
- (2) Dealkylation of side chains of naphthenes and aromatics.

Studies of reaction mechanism (7,16,33,46,63,64) have shown that olefins are intermediates, but under reforming conditions only trace can exist. Dehydrogenation reactions are rapid and highly endothermic, and contribute maximum toward high aromatic concentration. High temperature, low pressure, low space velocity and low hydrogen/hydrocarbon mole ratio favours the reaction. Dehydrocyclization is also endothermic but slow in nature. It is also favoured under the same operational conditions as the aromatization of naphthenes. Isomerization reactions are fairly rapid with insignificant heat effects at high temperature, low pressure and low space velocity. Condensation and polymerization are also reported and these reactions result in heavier compounds and coke.

The most desirable conversion is of naphthenes and paraffins into aromatics for the gain in the octane number of the product. Isomerization is of limited value as the equilibrium concentration of highly branched paraffins fall rapidly at high temperatures. Hydrocracking of paraffins eventhough increases octane number by reducing paraffin content in C_5^+ reformate, but is not considered desirable due to the loss of valuable product.

Considering the importance of dehydrogenation of naphthenes in reforming, dehydrogenation of cyclohexane has been chosen as a model reaction for the present study. The conversion of cyclohexane (to benzene) over platinum-on-alumina catalyst is essentially complete at approximately 300° C and at atmospheric pressure. In cyclohexane dehydrogenation intermediate species are not reported (3) and this indicates that six hydrogen atoms from cyclohexane are removed simultaneously. The absence of the intermediate dehydrogenation products in the case of cyclohexane is also evident from the observation of the relevant thermodynamic data which shows that only trace concentrations of the intermediate dehydrogenation products are possible at equilibrium at 300° C (80).

1.2 DEACTIVATION OF CATALYSIS :

Most of the catalyst systems of both practical and theoretical interests are based on catalysts whose activity is not constant with timeon-stream (2,10) and loose their activity during progress of reaction. This very complicated phenomena is made even more confusing by the wide variety of deactivation phenomena and the lack of systematic investigation in this field. Catalyst deactivation can be defined as a phenomena which lowers the overall rate of a catalytic reaction below the value which can be obtained with a fresh catalyst and uncontaminated reagents. In order to place the subsequent theoretical treatment in proper perspective with relation to the entire field of catalyst deactivation, an attempt is made to categorize the various deactivation phenomena encountered in practice. In general, deactivation encompasses three subclasses of behaviour called poisoning, fouling and sintering (15).

POISONING: - Poisoning is chemisorption of reactants, products, or impurities (singly or in combination) found in the reactor feed, which occupy catalyst sites otherwise available for catalysis. Chemisorption of poisoning agents may be reversible or irreversible. In the first case, elimination of the poison precursor from the feed restores catalyst vitality. If the reversibly poisoning specie is a reactant, its elimination is meaningless, if it is a product, a remedy might consist in a low-conversion, high-recycle reactor net work with product removal in the recycle loop. Poisoning, in so far as it is a chemisorptive event, constitutes chemical deactivation.

FOULING: - Fouling is caused by species in the fluid phase being physically deposited upon the surface, thereby covering or blocking sites otherwise available to catalysis. Fouling can also be a result of surface reactions yielding products that foul the surface, for example, coke produced during cracking of hydrocarbons. Catalyst can be 'regenerated' by

burning the coke under controlled conditions.

SINTERING AND PHASE TRANSFORMATIONS :

As a consequence of local high temperature and in some instances the existence of the oxidizing and reducing atmosphere, the catalyst per se and/or its supports suffer a reduction in specific surface area or the chemical nature of the catalytic agent is so altered as to render it catalytically ineffective.

4

In general it can be suggested that poisoning and fouling rates may depend upon reactant and/or product concentrations, while sintering and phase transformations may be assumed to be independent of fluid phase composition for a given oxidizing or reducing atmosphere.

The term catalyst activity is used in the literature both comparing various catalysts for a given process and for comparing the various states of the same catalyst. The changes in the catalyst activity as a function of time is of prime importance in the study of catalyst deactivation. The most frequently used quantitative description of catalyst activity is given by Szepe and Levenspiel (79). They have discussed the relative merits and demerits of each definition and indicated that, from theoretical point of view, the definition based on rate is most satisfactory, For given operating and catalyst conditions, the measure of activity based on reaction rate is independent of the conversion level and contacting pattern and it also allows for spatial variations of activity. As the activity is defined with reference to fresh catalyst with no impurity in the feed, for catalysts with high initial rates of deactivation, reaction rates for fresh catalysts can be obtained only by extrapolating the experimental data points as reported by Blanding (9) for the catalystic cracking of gas oil on natural clay.

1.3 AIMS AND OBJECTIVES OF THE PRESENT STUDY :

Considering the importance of dehydrogenation of naphthenes and the deactivation of catalyst during reforming, it was decided to study the cyclohexane dehydrogenation reaction at atmospheric pressure under suitable conditions of space velocity, temperature and cyclohexane to hydrogen mole ratio. The reaction conditions chosen in the present investigation were close to those used in commercial reforming process except for the use of atmospheric pressure instead of high pressure so as to increase the catalyst deactivation rate.

In most of the heterogeneous catalytic reactions, the presence of external and internal heat and mass transfer limitations often disguise the intrinsic kinetic constants. Thus, the external and internal, heat and mass transport resistances are carefully estimated to ascertain their effects on global reaction rates of dehydrogenation and hydrocracking reactions with catalyst deactivation. The kinetics of the main and deactivation reactions are developed and an attempt is made to develop equations for global rates for dehydrogenation and hydrocracking reactions and catalyst deactivation. The kinetic and deactivation rate constants are evaluated for the proposed kinetic model using experimental data. Intrinsic rate constants for dehydrogenation and hydrocracking reactions are estimated from initial rate data and deactivation rate constants are estimated by minimizing the variance between experimental conversion data and that predicted by solving the non-linear simultaneous equations using IBM 370/145, DEC 2050 and UNIVAC 1100 computer systems.

CHAPTER-2

LITERATURE REVIEW

2.1 CATALYTIC REFORMING :

Until about 1940 the octane number of straight run naphtha; was improved by thermal reforming causing cracking of low octane number paraffins producing high octane number olefins. But the advent of catalytic reforming in 1940 made thermal reforming obsolete. Initially molybdena or chromia catalysts supported on activated alumina were used in fixed bed reformer units but they were discarded soon due to rapid loss of activity due to catalyst fouling. Around 1950, fluidized beds were used but discarded after explosion during regeneration. Introduction of platinum-onalumina catalyst by Universal 0il Products for reforming in 1950 made thermal reforming and molybdena or chromia based reforming processes completely obsolete by about 1955.

A typical catalytic reforming process has three or more fixed beds packed with platinum-on-alumina catalyst, with intermediate heaters. Since dehydrogenation reactions are highly endothermic and cause a rapid decrease in temperature in adiabatic reformers, it is necessary to use intermediate heaters between the catalyst beds to maintain reaction temperature in a desired temperature range.

The range of process variables used in commercial reforming process is given below:

Temperature	450 - 550 [°] C
Liquid-hourly-space- velocity	2 - 5 vol. of liquid feed (hr.) (vol. of Catalyst)
Pressure	475 - 575 psig
Hydrogen to oil-ratio (mole basis)	3 - 10
Water content	less than 10 ppm

High temperature, low pressure, low space velocity and low hydrogen to hydrocarbon mole-ratio favours the yield of aromatics in dehydrogenation reactions. Hydrocracking reactions are exothermic in nature and are relatively slow. Hydrocracking yield increases at high temperature, high pressure and low space velocity.

To understand the behaviour of reforming reactions, we must understand the reaction kinetics and the influence of heat effects. A qualitative summary of the rate behaviour of the important reaction classes catalyzed by a modern bi-functional catalyst is given in Table 2.1, with statements of the heat effects. This information largely determines what is needed for the reactor design. Naphthene and paraffin dehydrogenation reactions are so rapid that they are essentially in equilibrium. Similarly, the equilibrium of n-paraffins and isoparaffins is usually closely approached. In contrast, the rates of cyclization and hydrocracking are typically low and greatly influence the overall performance of the reformer process.

Table 2.1

Rate Behaviour and Heat Effects of Important Reforming Reactions (47)

Reaction type	Relative type	Effect of increase in total pressure	Heat effect
Hydrocracking	slowest	increase rate	quite exothermic
Dehydro- cyclization	slow	none to small decrease in rate	endothermic
Isomerization of paraffins	rapid	decrease rate	mildly exothermic
Naphthene iso- merization	rapid	decrease rate	mildly exothermic
Paraffin dehydro- genation	quite rapid	decrease conversion	endothermic
Naphthene dehydro- genation	very rapid	decrease conversion	very endothermic

Hydrogen partial pressure is an important variable since it strongly affects the conversion to aromatics and the rate of hydrocracking. Since reforming reactions which produce hydrogen, especially aromatization, predominate over those which consume hydrogen, the process is a net hydrogen producer.

8

Many literature references are available on general reforming processes, but only few investigations are reported on detailed kinetic study specially under conditions of catalyst deactivation. Since present investigation pertains basically to dehydrogenation of cyclohexane on platinum-on-alumina catalyst under conditions of catalyst deactivation, only relevant literature is reviewed briefly in the following sections.

2.2 NAPHTHENE DEHYDROGENATION WITH SPECIAL REFERENCE TO CYCLOHEXANE DEHYDROGENATION

2.2.1 Kinetics and Mechanism:

Haensel and Donaldson (30) working with Universal Oil Products carried out investigations for Platforming by using various pure hydrocarbons. They had carried out investigations using n-heptane, n-pentane, cumene and methyl_cyclohexane. With methyl_cyclohexane, its conversion to toluene is essentially complete quantitatively and was found close to that calculated by equilibrium data at the temperature of operation.

Hinemann et al (39) also carried out studies with pure hydrocarbons for Houdriforming process. Dehydrogenation of napthenes to aromatics was the main reaction of interest and this was investigated by using cyclohexane and methylcyclohexane as reactants. In cyclohexane dehydrogenation at 950°F, 300 psig pressure, 3 LHSV and hydrogen to cyclohexane mole ratio of 4.91. Five percent benzene was formed on volume of feed basis, which was close to equilibrium value under these conditions. With methylcyclohexane also near equilibrium yields were found during dehydrogenation. In methylcyclopentane dehydroisomerisation reaction at 300 psig pressure, hydrogen to methylcyclopentane ratio of 4, 950^OF temperature and 2LHSV, near equilibrium yield is reported. They have reported that with increase in temperature and decrease in LHSV the yield of aromatics is increased.

Mills et al. (63) have analysed the data as obtained by Heinemann et al (39) for the reaction mechanism. They have also compared the effect of catalyst type and hydrocarbon structure and their results are given in Table 2.2. In each of the experiments the total product was more than 90 percent by weight of the charge. Reforming reactions which occur readily for C₆ hydrocarbons are shown in Fig. 2.1. for a dual function catalyst. Methyl cyclopentane can be converted to benzene only on a dual function catalyst, after dehydrogenation on dehydrogenation site to methylcyclopentene, the adsorbed molecule must move to an isomerisation site, form cyclohexene and then return to a site of the first type before dehydrogenating to benzene. The large yield of benzene from cyclohexane compared with those from cyclohexene shows that once cyclohexane is adsorbed on a dehydrogenation site it goes all the way to benzene, whereas cyclohexene can also isomerize on an acidic site to give methylcyclopentane.

Haensel and Berger (32) have reported the energy of activation for the dehydrogenation of cyclohexane and methylcyclopentane into benzene as 18,100 and 32,800 calories per mole, respectively from an unpublished data (7).

Smith (78) had carried out reforming studies using a commercial reformer naphtha feed on 0.6 percent platinum-on-alumina (1/16 in.extrudate) catalyst, the complex feed mixture and product stream was simplified by considering four model reactions :

Table-2.2 : Effect of Catalyst Type and Hydrocarbon Structure on Product:

(950°F, 300 psig, LHSV=3, H ₂ /Hydrocarbon mole ratio = 4)				
	~3	Vol. % of Liquid Product		
	NA	CATALYST		
Charge	Product	Isomerization	Dehydrogenation	Dual Function
Cyclohexane	Aromatics Olefin Naphthene Parafin C ₆ /C ₅ ring ratio ^a	2 0 98 0 > 50 to 1	52 1 2 5 5 25 to 1	92 2 1.5 4.5 1 to 4
Methyl- cyclopentane	Aromatics Olefin Naphthene Paraffin C ₆ /C ₅ ring ratio ^a	3 0 95 2 Traces of cyclo- hoxane	7 4 80 9 Traces of Cyclohexane	49 2 23 26 1 to 4
Cyclohexene	Aromatics Olefin Naphthene Paraffin C ₆ /C ₅ ring ratio ^a	8 86 5 7 Approx 1 to 10	92 3 0 5 50 to 1	83 2 11 4 Approx. 1 to 4
Methyl- cyclopentene	Aromatics Olefin Naphthene Paraffin C ₆ /C ₅ ring ratio ^a	7 74 19 0 1 to 14	16 2-3 48-70 34:11 ∢1 to 50	48 1 13 38 <1 to 25

a in naphthene and olefin product

Naphthenes \rightarrow aromatics + 3 H ₂	(2.1)
Paraffins an naphthenes + H ₂	(2.2)
Hydrocracking of paraffins	(2.3)
Hydrocracking of naphthenes	(2.4)

The C₁ through C₅ fractions produced by hydrocracking were observed experimentally to occur in approximately equal molar portions. Extensive experimental reforming runs using naphthas yielded the following equilibrium constants for naphthenes being converted to aromatics:

$$p_1 = \frac{P_A P_H^3}{P_N} = \exp(46.15 - \frac{46,045}{T}) \operatorname{atm}^3$$
 (2.5)

where $T = {}^{O}F$, P_A , P_N and P_H are the partial pressures in atm. of aromatics, naphthenes, and hydrogen, respectively. For the dehydrogenation reaction, Eq. 2.1, the empirical rate equation and constant are as given below:

Naphthenes to Aromatic -

$$(-\overline{r_1}) = \overline{k_{p_1}} \left(P_N - \frac{P_A P_H^3}{K_{p_1}} \right) \frac{\text{moles naphthene converted to aromatics}}{(hr) (1b.cat.)}$$

(2.6)

where

$$\overline{k}_{p_1} = \exp(23.31 - \frac{34,750}{T}) \frac{\text{moles}}{(\text{hr}) (1\text{b.cat.})(\text{atm})}$$
(2.7)

Barnett et al (6) studied the dehydrogenation of cyclohexane to benzene by carrying out experiments at 200 psig on platinum-on-alumina catalyst and concluded that (i) internal diffusion influence is exhibited by $1/8^{\prime\prime}$ x $1/8^{\prime\prime}$ pellets above 700° F, (ii) activation energy for the intrinsic catalytic reaction was found to be 41.6 kcal/gmole and with reaction controlled by internal diffusion on apparent activation energy offerhalf of this value was obtained, and (iii) the reaction follows essentially first order kinetics at low conversions. For a mole ratio of hydrogen-tocyclohexane as 4, using first order irreversible kinetics for cyclohexane dehydrogenation reaction only and assuming plug flow, they calculated apparent rate constant by

$$k = \frac{F}{W} (-1.6 \ln (1 - x) - 0.6 x)$$
 (2.8)

where F/W is space velocity and x is the fraction cyclohexane converted into benzene. If internal diffusion effects are considered absent then the above equation will give intrinsic reaction rate constant. The best fit to the data was obtained by them by using Knudsen diffusion coefficient with a tortuosity factor of one-eighth to describe the diffusion in the catalyst pores. Experiments carried out at low temperature with -30 to +40 mesh catalyst fines indicated that the effectiveness factor for the pelletted catalyst was unity for runs below 700°F.

In order to ascertain the findings of Heinemann et al about the path really followed by C₆ hydrocarbons on dual function catalyst, Fig.2.1, Haensel, Donaldson and Riedl (33) carried out investigations in bench scale Platforming units using platinum-on-alumina halogen catalyst for methylcyclopentane processing and a platinum-on-alumina catalyst for cyclohexane processing. They also observed that as the LHSV is increased from 10 to 120, the product distribution for feed containing methylcyclopentane and benzene, based on methylcyclopentane reacted, shifts markedly in the direction of methylcyclopentane at the expense of benzene and other products Their findings also confirmed that the sequence followed is as shown in Fig. 2.1 and that cyclohexene shall form if cyclohexane is converted into benzene. Using 50 mole percent cyclohexane and 50 mole percent benzene feed they again found that Fig. 2.1 truly shows the reaction sequence. They also investigated the effect of poisons in the feed and have found

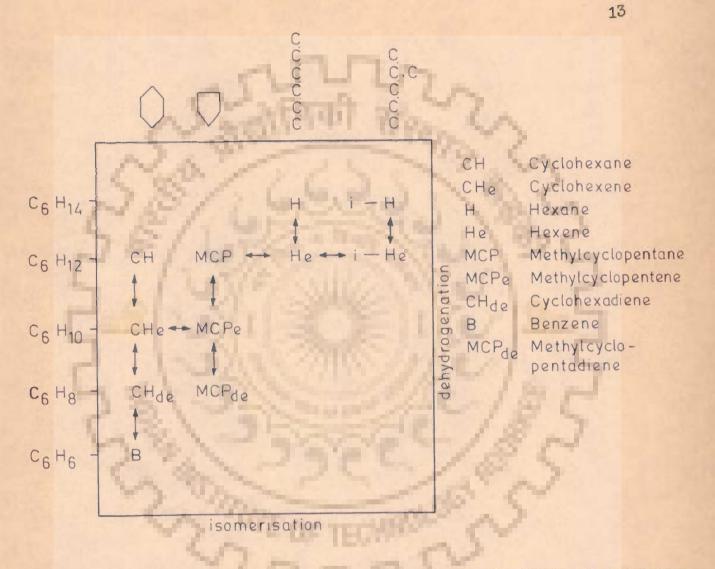


FIG. 2.1 REFORMING C6 HYDROCARBONS WITH DUAL FUNCTION CATALYST.

that sulfur acts as poison to platinum sites and nitrogen to acidic sites.

Khoobiar et al. (46) had studied the mechanism of cyclohexane dehydrogenation with platinum-on-alumina commercial reforming catalyst in a diluted bed with alumina particles at 435-480°C temperature, 250-500 psig pressure, 2-6 hydrogen to hydrocarbon mole ratio and 1-800 W/hr/w space velocity range. They had shown that the rate of heat and mass transfer are not controlling, and stated that reaction starts on the catalyst surface and is propagated elsewhere, possibly at the surface of added diluent. Their data were later analysed by Chambers and Boudart (16) and found that the calculations of Khoobiar for mass transfer were inaccurate and the reaction rates were severely affected by diffusional resistances.

Minachev et al. (64) studied the mechanism of conversion of cyclohexane to benzene with catalyst poisoning due to sulfur compounds in feed. They observed that an equilibrium is achieved between the sulfurous compound in gas phase and that on the surface, and cyclohexane conversion to benzene is adversely effected. However, when sulfur compounds are removed from cyclohexane feed, the original activity of the catalyst was regained after sometime and conversion to benzene was increased. They did not get cyclohexane as intermediate product, as reported by Haenesel et al. (33). They have also reported that cyclohexane converts into benzene to a greater extent with platinum catalyst and into methylcyclopentane with palladium catalyst.

Graham et al. (28) also carried out the experimental runs for the catalytic dehydrogenation of cyclohexane in a fixed bed flow reactor with very small catalyst concentrations in the bed. They used $1/8'' \times 1/8''$ (cylinder) catalyst of 90 m²/g surface area over a temperature range of 400° to 500° C and a pressure range of 21 to 420 atm. with hydrogen-to-cyclohexane ratio 3 to 6 at modified Reynold's numbers of 20 to 65. They

analysed the data on the assumption of complete external mass transfer control with reaction in equilibrium at the catalyst surface. They have reported an activation energy of 57 to 59 kcal/gmcclie. Surprisingly, they have also reported catalyst pellet (intrapellet) effectiveness factor from 0.025 to 0.068 and used these extremely low values to justify their assumptions.

Henningsen and Bundgaard-Nielson (40) carried out reforming studies on C₈ hydroearbons and have reported the reaction rate constants for hydrogen partial pressure of 30 atm, hydrogen to hydrocarbon ratio of app roximately 7 and at a temperature of 500[°]C for various reforming reactions based on the available literature, experience and experiments. The dehydrogenation reaction is first order in naphthene (alkyl cyclohexane) concentration and the rate constant is given by

 $k = \exp\left(20.4 - \frac{30,000}{RT}\right)$ (2.9)

Lester (51) has carried out aromatization of trimethyl pentane and trimethylcyclopentane over $K_2^{0-Cr_2^0}$. Al_2^0 and nonacidic β ton-alumina catalysts at 400 - 500°C in microreactor gaschromatographic apparatus. The catalyst loading was 0.5 cc contained in a 1-inch length block located at the injection port. The reactants were injected in the hydrogen carrier gas and products were analysed. The operation was at atmospheric pressure. They have reported that by using nonacidic Pt-on-alumina catalyst the dehydrogenation and hydrogenation activity of the catalyst remains essentially same while it looses its isomerisation activity. He has reported product distribution and claimed that cyclopentane is supposed to play an important role for aromatization on non-acidic platinum-onalumina catalyst.

Christoffel, Vierrah and Fetting (17) have studied the dehydrocyclisation of methylcyclopentane, the isomerisation and

dehydrogenation of cyclohexane and the hydrogenation of benzene in an integral reactor using a Ca- V -zeolite covered with 0.5 weight percent platinum as catalyst. They performed experiments in the temperature range 350 - 530°C, pressure range 10 - 40 atm and space velocities of 0.5 to 5.0 lit.feed/hr. kg cat, and have predicted the activation energy . for the reaction system,

Cyclohexane

Benzene and Hydrogen Methylcyclopentane

as 41.5 kcal/gmole based on cyclohexane conversion. For platinum-onzeolite catalyst the conversion of cyclohexane to methyl cyclopentane always exceeded that to benzene. The reason is that the behaviour of Ca-y-zeolite catalyst is nonacidic and alkyl cyclopentane is an important reaction product on such catalysts as already reported by Lester (51).

Haro et al. (35) have studied the role of paladium in dehydrogenation of cyclohexane over Pt - Pd/Al₂0₃ catalysts, by carrying reactions at 160 - 200°C under atmospheric pressure (580 torr). The conversion was kept less than 1 percent to avoid mass and heat transfer limitations. The mole ratio of hydrogen to cyclohexane was 1.8, and nitrogen was used as a diluent to keep cyclohexane nearly 8.5 percent on volume basis. Gas chromatographic analysis indicated only benzene and hydrogen as reaction product and no cyclohexene and cyclohexadiene was detected in the analysis. They have concluded that the total rate of conversion of cyclohexane decreases as palladium is added to platinum on co-impregnated catalysts.

Literature references for dehydrogenation studies under catalyst deactivation conditions using platinum reforming catalysts are discussed in detail in section 2.4.

2.2.2 Thermodynamics :

Thermodynamic data for typical reforming reactions at 500°C are given in Table 2.3.

Table 2.3 Thermodynamic data for typical reforming reactions (70	Table 2.3	Thermodynamic	data f	or typical	reforming	reactions	(76)
--	-----------	---------------	--------	------------	-----------	-----------	------

Reaction	K a p at 500 ⁰ C,Pi in a	$\triangle H_r$, kcal/mol. atm. of hydrocarbon
Cyclohexane 😝 benzene + 3H ₂	6 × 10 ⁵	52.8
Methylcyclopentane 🚓 cyclohexane	0.086	-3.8
n - Hexane 🚗 benzene + 4H ₂	0.78×10^5	63.6
n - Hexane 🛁 2-methylpentane	1.1	-1.4
n - Hexane = 1-hexene + H ₂	0.037	31.0

^a For the reaction (HC) $_1 \rightleftharpoons$ (HC) $_2 + n H_2$

the equilibrium constant is defined as: $k_{p} = \frac{P(HC)_{2}}{P(HC)_{2}}$

At equilibrium, cyclohexanes are essentially completely converted into aromatics at low hydrogen partial pressures, and cyclopentanes are favoured over cyclohexanes. At equilibrium only very small concentrations of olefins can exist with paraffins. The major reforming reactions are endothermic. The equilibrium between cyclohexane, benzene, and hydrogen as a function of temperature and pressure are illustrated in Fig. 2.2, which shows how operating temperature and pressure affect equilibrium conversion to aromatics. Under typical operating conditions, temperature ranges from 455° to 510°C and pressure ranges from 6.5 to 50 atm, only partial conversion to aromatics is achievable. Consequently, recent practice has been to operate at temperatures in the upper end of this

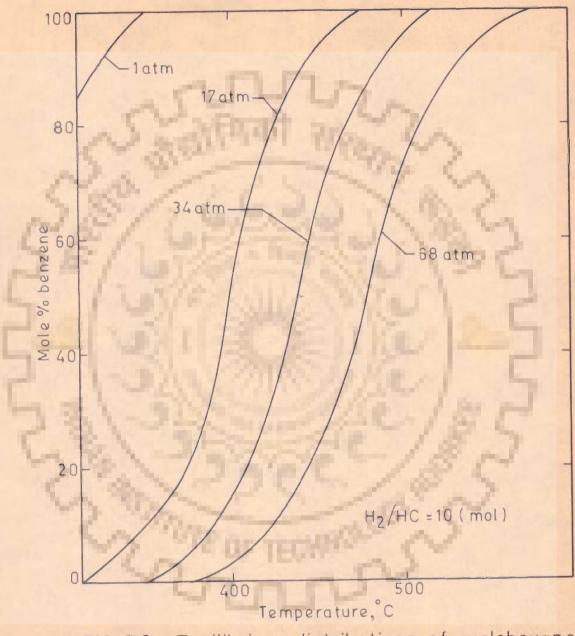


FIG. 2.2 Equilibrium distributions of cyclohexane, benzene and hydrogen.

range and to use pressures as low as 10 atm (19). At these conditions there is almost complete conversion of naphthenes into aromatics at equilibrium, but catalyst may deactivate rapidly.

2.2.3 Reforming Cataiysts :

A number of catalytic reforming processes are in use depending upon the licenses using platinum-on-alumina catalysts. Besides these reforming processes on mono-metallic catalysts, bimetallic (Pt-Re) or indeed polymetallic (noble metal containing trimetallic alloys) dispersed clusters are recently being developed. The metal provides the hydrogenation - dehydrogenation activity, and the promoted acidic alumina provides the isomerization activity. The hydrogenation - dehydrogenation activity of the supported metal and the isomerization activity of the alumina are much greater than the respective activities of the early - generation metal oxides (27).

With long use, the alumina base loses some surface area and activity. But more important is the formation of platinum crystallite aggregate which decreases the affective Pt surface area for hydrogenation - dehydrogenation function. The latter change is usually the fastest, resulting in a change in the dehydrogenating to acidic activity ratio. This leads to more cracking and a decline in gasoline yield, with an increase in gas yield. The more severe the operating conditions, the greater the tendency for the Pt crystallites to aggregate. Pt aggregation is also related to Pt concentration. Low pressure reforming can be carried out with catalysts containing relatively low Pt concentration (e.g. 0.3 to 0.4 percent) and yet the conditions can be regarded as severe (81).

The growth of Pt crystallites can be inhibited by adding rhenium to the catalyst, which forms a stable alloy with Pt on the catalyst surface. The advantage of using bimetallic or multimetallic catalysts is that, the length of period between regenerations can be extended greatly, the severity can be increased to produce a further improved antiknock quality product, or the pressure can be reduced into the low pressure reforming range (15 atm or less) to get the benefits of low pressure operation while retaining the 6-9 months between regeneration. Mahomayoy (55) has carried out experiments using bimetallic Pt-Re on alumina catalyst for n-heptane dehydrocyclisation and compared the results with that obtained with monometallic Pt-on-alumina catalyst under similar deactivating catalyst operating conditions in a gradientless reactor system. He has reported that deactivation rates are significantly less when the promoter Re is added to the catalyst composition. The hypotheses that the metallic promoter affects only the dehydrocyclization deactivation rate and not initial activity is substantiated by this work.

2.3 HYDROCRACKING OF NAPHTHENES

Hydrocracking reactions are slowest among all the reforming reactions as indicated in Table 2.1. The major characteristics of the hydrocracking, are that (1) all cracked species are saturated, (2) the process involves bifunctional catalysis, and (3) catalyst deactivation is much less rapid than in catalytic cracking. Saturated paraffins predominate among the cracked products because the olefins formed are hydrogenated on the metal component.

Smith (78) has reported that during hydrocracking of naphthenes C_1 through C_5 fractions are produced approximately in equal molar proportions. Thus in general it can be written as :

 $C_n H_{2n} + \frac{n}{3} H_2 \rightarrow \frac{n}{15}C_1 + \frac{n}{15}C_2 + \frac{n}{15}C_3 + \frac{n}{15}C_4 + \frac{n}{15}C_5$

20

(2.10)

For hydrocracking of naphthenes, the rate equation and constant are as given below:

$$(-r)_{h} = k_{h} \frac{P_{N}}{P}$$
 moles naphthenes converted by hydrocracking (hr.) (lb of catalyst)

(2.11)

and

$$k_{h} = \exp \left(42.47 - \frac{62,300}{T}\right) \frac{\text{moles}}{(\text{hr.}) (1b \text{ of cat})} (2.12)$$

where $T = {}^{O}F$, P_{N} and P are the partial pressure of naphthenes and total pressure, respectively.

Henningsen and Bundgaard-Nielson (40) gave the following values of rate constants for conversion of alkyl cyclohexane to paraffins and isoparaffins, and their subsequent conversion to hydrocracked products :

Alkylcyclohexane
$$\rightarrow$$
 n-paraffin : k = exp (24.2- $\frac{45,000}{RT}$)
(2.13)
Alkylcyclohexane \rightarrow i-paraffin : k = exp (24.2 - $\frac{45,000}{RT}$)
(2.14)
n-Paraffins \rightarrow hydrocracked : k = exp (30.5 - $\frac{55,000}{RT}$)
(2.15)
i-Paraffins \rightarrow hydrocracked : k = exp (30.5 - $\frac{55,000}{RT}$)
(2.16)

Mahoney (55) carried out studies of hydrocracking reaction with dehydrocyclisation of n-heptane reaction and has indicated that the hydrocracking reaction rate constant does not change with time in deactivating catalyst systems. This indicates that change in catalyst activity will not affect the hydrocracking rate. He has reported the value of hydrocracking rate constant as $0.205 \quad \frac{gmole}{(hr.) (g.catalyst)}$, probably at $600^{\circ}F$. Lambrecht et al. (49) in their study on isomerisation of n-pentane have used hydrocracking reactions in their kinetic model but could not determine hydrocracking rate parameters accurately. They felt that hydrocracking can hardly be considered as a single reaction and therefore, simple reaction rate expression may hardly be adequate.

Studies of Mahoney and Lambrecht et al. are discussed in more detail in next section.

2.4 DEACTIVATION REACTION KINETICS WITH SPECIAL REFERENCE TO REFORMING REACTIONS

Wheeler (88) was the first to account for the diffusional limitations in deactivation reactions. He observed that if the rate of poison deposition is low relative to its transport rate, then catalytic sites are poisoned uniformly with time. But if poison deposition is rapid relative to its transport rate, then poison will deposit preferentially on the pore mouth initially and grow inward with time in the form of shell progressive model (SPM) of gas solid reaction. He termed these limiting types of poisoning as uniform and parte mouth poisoning.

For uniform poisoning, using the rate of principal reaction as $r_p = k \eta (1 - \kappa) A$ (2.17)

where α is the fraction of catalytic sites which are poisoned, A is the concentration of component A and η is the effectiveness factor. Realising that for low and high values of Thiele parameter \emptyset , $\eta = 1$ and $\eta = 1/\emptyset$ respectively, Wheeler obtained the ratio F of poison-affected rates to unpoisoned rates for the two cases, as,

For
$$\eta = 1$$
; $F = \frac{k(1 - d)A}{k A} = 1 - d$

and, for $\eta_{K\leq 1}$; $F = \sqrt{1 - \alpha}$

(2.18)

For pore mouth poisoning, the shell progressive model postulates the creation of a region of total poisoning at the pore mouth and an unpoisoned interior region (1 - x). Using first order reaction in a spherical pellet with the rate equation as -

$$r_{p} = \frac{D}{e} 4\pi r^{2} \frac{dA}{dr}$$
(2.19)

Wheeler obtained the ratio F as

F

$$= \frac{\frac{1}{1-\frac{1}{(1-\alpha)^{+}} \frac{3n \ \beta^{2} \ (1-(1-\alpha)^{1/3})}{(1-\alpha)^{1/3}}}$$
(2.20)

The plots of F-versus $- \ll$ indicate that for a given amount of imposed poison, pore mouth deposition proves to be more detrimental than the uniform poisoning.

Masamune and Smith (56) analysed the simultaneous, consecutive and independent deactivation schemes by solving the governing differential equations and comparing them with pseudo-steady-state shell progressive model. They presented the results of the deactivating catalysts in terms of an effectiveness factor which is a function of both the Thiele modulus and time-on-stream. They concluded that for consecutive and independent deactivation, the pellet of lowest intraphase resistance yields the highest activity-time profile, while for simultaneous deactivation, a pellet exhibiting an intermediate level of intraphase resistance gives the highest activity, particularly at long process times.

Carberry and Goring (14) analysed the deactivation process in terms of gas-solid noncatalytic reaction under conditions where the shell progressiv model is applicable. The application of this model to coking, poisoning, and deactivation was encouraged because catalyst decay in petroleum processing have been correlated in terms of Voorhies (84) equation, which states that the extent of poisoning, coking or fouling, d_{i} , is related to time-on-stream, t by -

$$d = k \sqrt{t}$$
(2.21)

Szepe and Levenspiel (79) have reviewed the various available deactivation-time-on-stream relationships such, as, exponential, hyperbolic and power-law decay. Use of these relationships in determining rate coefficients and orders from experimental data has been discussed by Carberry (15).

Levenspiel (52) assumed dth order catalytic reaction and mth order activity decline, and was pioneer to suggest for decoupling of deactivation reaction equation from the main reaction equation.

The catalyzed reaction rate used by him is :

$$-r_{p} = \frac{dA}{d\theta} = k A^{d}a$$
(2.22)
where $a = \frac{rate \ at \ any \ time, \ t}{rate \ at \ time, \ t = 0}$
(2.23)

Then a is activity of the catalyst, which is equal to unity at time, t = 0 and declines with time. The kinetic model of activity decline is presumed as :

$$r_{d} = \frac{da}{dt} = k_{d} (A, B, P)^{n} a^{m} \qquad (2.24)$$

where

- A reactant concentration
- B product concentration
- P poison concentration
- t time-on-stream
- θ contact time

He analysed several possible networks for main and deactivation reactions as given below :

1. Simultaneous deactivation :
$$A = r_{p} = k(A)^{n} a^{m}$$

 $r_{d} = k_{d}(A)^{n} a^{m}$

2. Consecutive deactivation : $A \rightarrow B \rightarrow P$

$$r_p = k A^d a$$
 $r_d = k_d B^n a^m$

3. Parallel deactivation : $A \rightarrow B$ $r_p = k A^d a$

$$P \rightarrow P$$
 $r_d = k_d P^n a^m$

Independent deactivation : $A \longrightarrow B$ $r_p = k A^d a$ S-sites \rightarrow (S-s) sites $r_d = k_d a^d$

5. Simultaneous-consecutive deactivation :

$$A \xrightarrow{1} B \xrightarrow{3} P \qquad r_p = (k_1 + k_2) A^d a$$

$$2 P \qquad r_d = k_d (A+B)^n a^m$$

However, case 5 is equivalent to independent deactivation since A + B is a constant for fixed feed compositions.

Lambrecht, Nussey and Froment (47) have carried out investigation on the fouling of a platinum-reforming catalyst used for the isomerization of n-pentane and considered the following reaction scheme :

n - pentane 🛁 i-pentane

- \rightarrow carbonaceous deposits (2.25)

Under isothermal conditions and assuming constant density and number of moles, and negligible loss of n-pentane to coke formation, they obtained continuity equations for n-pentane and hydrocracked products :

n-Pentane :
$$\frac{\partial Y_A}{\partial t} + \frac{\partial Y_A}{\partial z} = -\frac{\int_B^{\infty} \mathcal{D} dp}{F_t} r_A$$
 (2.26)

Hydrocracked products :
$$\frac{\partial Y_H}{\partial t} + \frac{\partial Y_H}{\partial z} = \frac{f_B \mathcal{N}}{F_t} \frac{dp}{F_t}$$
 (2.27)

and carbon deposition rate on the catalyst at any point in the bed :

$$\frac{\partial c}{\partial t} = \frac{\epsilon \Omega \, dp P_t}{F_t} r_c \qquad (2.28)$$

where $Z = \frac{Z'}{dp}$, $t = \frac{F_t R T}{\epsilon \Omega dp P_t} t'$

The total rate of n-pentane disappearance r_A was defined as :

$$\mathbf{r}_{A} = \frac{\mathbf{K}_{1} \left(\mathbf{y}_{A} - \mathbf{y}_{B}/\mathbf{K}\right)}{\mathbf{y}_{W} + \mathbf{K}_{B} \mathbf{y}_{B}} + \mathbf{K}_{H} \left(\frac{\mathbf{y}_{A}}{\mathbf{y}_{W}}\right)^{n_{1}} + \mathbf{K}_{c} \left(\frac{\mathbf{y}_{A}}{\mathbf{y}_{W}}\right)^{n_{2}}$$
(2.30)

In order to account for deactivation, they defined the following fouling functions :

$$K_{I} = K_{I}^{0} \emptyset_{1}$$
$$K_{H} = K_{H}^{0} \emptyset_{2}$$
$$K_{C} = K_{C}^{0} \emptyset_{3}$$

These simultaneous non linear equations were solved by assuming $\emptyset_1 = \emptyset_2 = \emptyset_3 = \emptyset$, and an exponential function -

$$\emptyset = \exp(-d c^n)$$

to relate Ø with C.

Differential and integral methods of analysis of data were separately applied for parameter estimation under fouling conditions, by minimization of an objective function with suitable weighting functions. The activation energies for isomerization and hydrocracking reactions are reported as 30,100 and 35,500 calories per gmole respectively and corresponding frequency factors are 19.1 + 8.4 and 19.3. They also

(2.29)

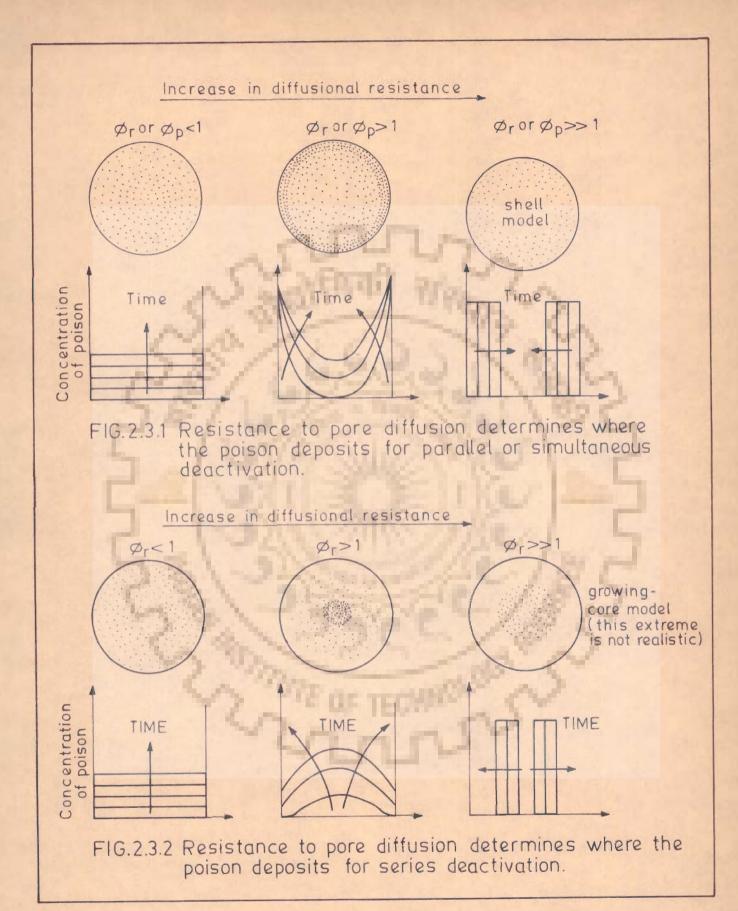
(2.31)

Nomenclature for Lambrecht, Nussey and Froment (47)

C	Coke content, (g coke / g.cat)
d _p	particle diameter (cm)
Ft	total feed rate (mol /hr)
K	Isomerization equilibrium constant
K ^I , K ^H	rate coefficient for main and hydrocracking reaction (mol/hr.g.cat)
K c	rate coefficient for coke formation (g coke/hr.g cat)
KB	adsorption parameter
n	exponent.in fouling function
η ₁ ,η ₂	exponents in hydrocracking and coke reaction rate expressions
Pt	total pressure (atm.)
R	gas constant (cal/mol ^o K)
r _A ,r _H ,r _I	reaction rate for total reaction, hydrocracking and main reaction, respectively (Imol/hr.g cat)
r _C	reaction rate for coke formation (g coke/ hr. g cat)
T	Temperature_(K)
t	dimensionless time variable
t'	time (hr)
Y _A ,Y _B ,Y _H ,	Y molfraction of n=pentane,isopentane, cracking products and hydrogen respectively
Z	dimensionless axial coordinate
Zı	axial coordinate (cm)
L	fouling parameter (g cat/g coke)1/2
ε	void fraction
f B	catalyst bulk density (g cat/cm ³)
Ø	fouling function
Ω.	cross section of the reactor (cm^2)
Subscrip	t
0	non fouling conditions

concluded that the hydrocracking parameters were not so well determined and were taken mainly to satisfy the material balance.

Khang and Levenspiel (45) have extended the phenomenological description of the reactions given by Eqs. (2.22) to Q.24, to situations where r and/or r are affected by intraphase mass diffusion for the simultaneous, consecutive, and parallel deactivations. For diffusion of the reactant and/or poison precursor, the respective Thiele moduli for reactant and poison, \emptyset_r and \emptyset_n , determines the distribution of poison within the porous catalyst and, therefore, the activity - selectivity behaviour. For simultaneous and parallel sources of reactions- decay the poison distribution as a function of time for small, moderate, and large values of Ø given by them is schematically shown in Fig. 2.3.1. Fig. 2.3.2 shows poison distribution for consecutive deactivation. Khang and Levenspiel solved the diffusion - reaction equations for each of these poisoning networks, for activity and concentration profiles, in the pellet with progress of reaction in time, and concluded that the order of deactivation m in the equation assumes the following range of values (for n = 1).


- Simultaneous deactivation; m varies from 1 to 3 as Ø increases.

- Consecutive deactivation; m is equal to unity so long as the bulkstream contains the intermediate.
- Parallel deactivation.

x.

where $\emptyset_{\mathbf{r}} < \langle 1 \text{ and } \emptyset_{\mathbf{p}} < \langle 1 \rangle$, $\mathbf{m} = 1$ $\left. \begin{array}{c} = \emptyset_{\mathbf{p}} = 1 \\ \Rightarrow \emptyset_{\mathbf{p}} > 1 \\ = \emptyset_{\mathbf{p}} > 1 \end{array}$, $\mathbf{m} \rightarrow 2$ $= \emptyset_{\mathbf{p}} > 1$, $\mathbf{m} \rightarrow 3$

and $\phi_n > \phi_r > 1$, m is not constant.

- Independent deactivation : if this is due to reactants and products, and if the cause is thermal, m = 1. While if it is independent of intraphase mass diffusion, it will be sensitive to intraphase temperature gradient and m = 2, if the interval \triangle T is negligible. They also advised that as the analysis is based on linearity of the principal reactions and since the deactivation exponent proves to be somewhat variable, one should ascertain the value of m from experiment only.

Wojciechowski (91) has summarized various deactivation relationships and has given an alternative description of deactivation, the time-onstream theory of catalyst decay. Various types of deactivation rate equations are tabulated in Table 2.4 with their limits of integration implied in the decay function as used by original authors. The general hyperbolic relationship of Wojciechowski reduces to linear deactivation for m = 0 and is approximated to exponential decay when m = 1, while hyperbolic deactivation behaviour is obtained for m = 2. In case k_d is assumed to be free from concentration effects, the equation is as for independent deactivation and is applicable to sintering or such deactivation phenomena where concentration effects are negligible.

Mahoney (55) carried out studies on dehydrocyclization of n-heptane on a commercial reforming catalyst in a basket reactor referred to as internally recycled gradientless reactor. The experimental deactivating data was extrapolated back to zero time to get initial values of rate constants. For other times the apparent or effective rate constants were calculated and plotted using Voorhie's (84) equation. The hydrocracking rate constants- Voorhie's plot indicated that the rate constants were constant with time and were equal to the initial rate constant. But, the dehydrocyclization rate constants' Voorhie's plot gave two straight lines, one having a larger slope at the start and the other with smaller slope at the end of the run. The effect of pore

Table-2.4 Deactivation Equations

nve and Bay(cc)	6.6.2.2	$\frac{d\Theta}{dt} = A$ $\frac{d\Theta}{dt} = A\Theta$	by original authors Limit $\theta = \theta_0$ at t=0 Limit $\theta = \theta_0$ at t=0
ekman(85),Ogunye nd Ray(65)	$\Theta = \Theta_0 e^{-At}$ -	$\frac{d\Theta}{dt} = A\Theta$	Limit $\theta = \theta_0$ at t=0
nye and Ray(66)			Ū
.ckson(62)	$\frac{1}{c} = \frac{1}{\Theta_0} + At -$	$\frac{\mathrm{d}\Theta}{\mathrm{d}t} = \mathrm{A}\Theta^2$	Limit $\theta = \theta_0$ at t=0
orhies(84)	$\Theta = A / V t$ ~	$\frac{\mathrm{d}\Theta}{\mathrm{d}t} = A \frac{\Theta^3}{2}$	Limit $\theta = \infty$ at t=0
.anding(9)	$\Theta = A t^{-B}$ -	$\frac{\mathrm{d}\Theta}{\mathrm{d}\mathbf{t}} = B(\mathbf{A}) \Theta^{\underline{Bn}}$	Limit 9=∞ at t=0
ts et al(83)	θ= t ^{-m} -	$\frac{d\Theta}{dt} = A \Theta^m$	Limit $\Theta = \infty$ at t=0
jciechowski(90)	$\Theta = (1+Gt)^{-M}$ $= \left(\frac{1}{1+(m-1)k_{d}t}\right)^{-m}$	$\frac{1}{d-1} - \frac{d\Theta}{dt} = k_d \Theta^m$	Limit 0= 1 at t=0
			t .
	jciechowski(90) C _s - current concent C _{s0} - Initial concent	ts et al(83) jciechowski(90) $\theta = t^{-m}$ $\theta = (1+Gt)^{-M}$ $= \left(\frac{1}{1+(m-1)k_{d}t}\right)^{-m}$ C_{s} - current concentration of any co C_{s0} - Initial concentration of any co	ts et al(83) $\theta = t^{-m} - \frac{d\theta}{dt} = A \theta^{m}$ jciechowski(90) $\theta = (1+Gt)^{-M}$ $= \left(\frac{1}{1+(m-1)k_{d}t}\right)^{\frac{1}{m-1}} - \frac{d\theta}{dt} = k_{d}\theta^{m}$ C_{s} - current concentration of any component A at time

......

diffusion on dehydrocyclization reaction was also considered and have reported higher effective rate constants with powder than with commercial 1/12 inch extrudates.

Wolf and Peterson (89) used single pellet diffusion reactor (SPDR) for reaction-deactivation studies to elucidate the mechanism of poisoning for methyl cyclohexame. (MCH) dehydrogenation reaction on 0.6 percent platinum-on-alumina catalyst at atmospheric pressure between temperature range of 350-400°C, and MCH and hydrogen partial pressure from 15-60 and 0-800 Torr, respectively. They observed that, there are two types of poisons, reversible (P) and irreversible (W). Reversible poisons are removed by hydrogen while irreversible poisons are not, and the poison pre-cursor appears to be the adsorbed reactant. Based on the above observations they proposed the following reaction mechanism :

MCH + S
$$\frac{k_1}{k_1}$$
 MCH.S $\frac{k_2}{k_2}$ TOL.S + $3H_2 = \frac{k_3}{k_3}$ TOL + S
 $k_4 | \downarrow k_4$
P.S + H_2
 $k_5 | \downarrow k_5$
P+ H_2
 $\downarrow k_6$
(2.32)

3

Surface reaction was found to be the rate controlling step and the rate of main reaction is given by -

$$r = k_{2} \left[\text{MCH.S} \right]$$
$$= k_{2}k_{1} \left[S \right]_{to} \left[1 - \frac{\left[P \right] + \left[W \right]}{\left[S \right]_{to}} \right] \left[\text{MCH} \right] \qquad (2.33)$$

The rate of formation of reversible poison, P, is given by-

$$\frac{d[P]}{dt} = k_5 k_1 k_4 [S]_{to} \left[1 - \frac{[P] + [W]}{[S_{to}]} \right] \frac{(MCH)}{(H_2)} - k_5 [P] [H_2] - k_6 [P]$$
(2.34)

where k_1 and k_4 are adsorption equilibrium constants for the corresponding reactions, and $[S]_{to}$ is initially measured activity which depends on operating conditions. The catalyst pellet was considered as an infinite flat slab of finite thickness. Diffusion of reactants was assumed to be one-dimensional and at quasi-steady state because the time scale for diffusion is smaller than the time constant of the poisoning reactions. The values of lumped rate constants were determined by solution of nonlinear simultaneous differential equations. Their results are useful to predict the mechanism of deactivation and main reactions, and show the importance of hydrogen in reforming reactions. The individual rate constants of different reaction steps and the activation energies are not reported.

2.5 EXTERNAL AND INTERNAL HEAT AND MASS TRANSPORT RESISTANCES

In studies of heterogeneous catalytic reaction system, one of the main objectives is to determine whether the intrinsic kinetics or the interaction between the kinetics and transport resistances controls the overall rate of reaction. The effect of temperature and concentration gradients is generally studied in two domains :

- (1) Intraparticle within individual catalyst particles, and
- (2) Interparticles or Intraphase between the external surface of the particles and fluid adjacent to them.

A number of reviews have appeared for inter, and intra pellet heat and mass transfer effects (29,59,60). The various criteria used for testing the effects are given in Table 2.5. In operating any of the reactor it should be ensured that the criteria as calculated from these equations are satisfied if the kinetic data obtained are to reflect the intrinsic kinetic behaviour of the reaction involved. For using these equations the diffusion coefficient, heat of reaction, and the physical properties of the catalyst are needed, together with an experimental value of apparent reaction rate constant and observed initial reaction rate of dehydrogenation reaction. Using these values, the applicability of the various criteria can be easily tested.

Table 2.5 Criteria for the absence of mass and heat transfer effects

- 6- / 1	13. (\ Bo -
Inter phase Transport	Intraphase Transport
$\frac{Mass Transfer}{\frac{r}{c_{A} \cdot k_{m}^{a}}} = \frac{k_{1}^{\prime}}{k_{m}^{a}} < 0.15$	Mass Transfer : $\left(\frac{V'}{Se}\right)^2 \frac{k'_1 p_p}{pe} < 1$
Mears (60)	Weisz and Prater (87)
Heat Transfer	For Isothermal Pellet:
$\frac{E}{R_{g}T_{b}^{2}}(T_{s}-T_{b}) < 0.15$	$\frac{\overline{r}. \beta_{p}.R^{2}. (\Delta H)}{T_{b}.ke} (\underline{E}) < 0.75$
Mears (59)	Anderson (1)
	Maximum temperature gradient in the pellet : -
$(T_b - T_s) = \frac{0.7 (\Delta H) \overline{r}}{C_p \cdot p \cdot k_m a}$	$\beta_{\rm m} = \frac{(\Delta H).D_{\rm e}.C_{\rm s}}{\frac{k_{\rm e}.T_{\rm s}}{k_{\rm e}}}$
Smith (77)	Carberry (14)

2.6 CRITERIA FOR CATALYST BED DILUTION EFFECTS

The main reason for errors in the analysis of integral reactor data is the lack of isothermality in the reactor bed which is particularly serious with highly exothermic and endothermic reactions. One remedy for this problem is to dilute the catalyst bed with inert solids. Rihani et al. (73) have successfully employed a diluted fixed bed in studying the kinetics of a highly exothermic catalytic reaction vapor-phase hydrogenation of nitrobenzene to aniline. By trial and error they determined the different degrees of dilution in different parts of the bed to ensure isothermal operation. Calderbank (11) employed catalyst dilution and had developed equations to be used for calculating the dilution required to maintain isothermal conditions. The dilution is a function of distance along the packed bed.

A closer examination of a diluted bed will show that several distributions of the diluent are possible, and that the exit reactant concentration can be influenced by the type of distribution. vanden Bleek et al. (82) have given the following general criterion for neglecting the effect of catalyst dilution :

$$B = \frac{b d_{p}}{(1-b) \delta L} \langle 4 \times 10^{-3} \rangle$$
(2.35)

where *G* is the experimental error percent, *b* is the inert fraction, dp is the particle size, and *L* is length of the bed.

2.7 INTEGRAL CATALYTIC REACTOR CRITERIA

Carberry (15) has indicated that if the tube-to-pellet diameter ratio is less than 6, radial temperature gradients will be less. Heat release per unit volume of bed can be reduced by diluting the catalyst bed with inert particles. The laboratory packed-bed catalytic reactor should

thus consist of a bed of large length to-tube diameter ratio (usually more than 8) and small tube-to-pellet diameter ratio with operation at high Reynold numbers.

A summary of criteria for the fixed bed catalytic laboratory reactors has been given by Doraiswamy and Tajbl (23). They have analysed results on the basis of criteria discussed by Mears (60). They have further reported that L/dp ratio should be more than 30 and dt/dp should be less than 6 for integral catalytic laboratory reactors.

2.8 CONCLUSIONS FROM LITERATURE REVIEW FOR THE DEVELOPMENT OF KINETIC AND DEACTIVATION MODEL

The published literature provides the following guidelines for the development of a kinetic and deactivation model for cyclohexane dehydrogenation on platnium-on-alumina catalyst.

Dehydrogenation of cyclohexane at atmospheric pressure and temperatures above 300^{°C} will not produce any intermediate product and the main product will only be aromatics. Further, it is safe to consider dehydrogenation of cyclohexane reaction as irreversible first order.

As not much information is available for hydrocracking reaction and in all the published work it has been assumed to be an irreversible first order reaction, it may be reasonable to assume the same for the development of kinetic model in the present study.

The hydrocracking rate constant is independent of time-on-stream and, therefore, deactivation of catalyst has no effect on hydrocracking rates. The values of effective or apparent rate constant for cyclohexane dehydrogenation will decrease with time-on-stream due to fall in activity of catalyst. All the changes in dehydrogenation rate with time-on-stream will be accounted for by the activity changes in the catalyst. Intraparticle mass transfer limitations for pelleted catalysts are important and must be considered in the development of model (55).

In view of the above the equations for the dehydrogenation and hydrocracking reactions can be written as -

Dehydrogenation :
$$r_1 = k_1 \gamma_{1} a C_A$$
 (2.36)
Hydrocracking : $r_2 = k_2 \gamma_2 C_A$ (2.37)

where a = 1 at t = 0. Intrinsic rate coefficients and effectiveness factors $k_1 \eta_1$ and $k_2 \eta_2$ can be taken as constant for the entire operation under isothermal condition. Activity 'a' and reactant concentration C_A will change with time-on-stream and position in the bed.

A close look at the analysis of Khang and Levenspiel (45), and Wolf and Peterson (89) indicates that basically the approach of both is same, and show the advantage of using separate equations for main and deactivating reactions.

The deactivation equations used by Khang and Levenspiel are :

$$-\frac{da}{dt} = k_{d} c_{AS} a^{m}$$
(2.38)
$$-\frac{d\alpha}{dt} = k_{d} \ll c_{A}$$
(2.39)
$$a = \frac{3}{R^{3} c_{AS} \gamma} \int_{-\infty}^{R} \measuredangle c_{A} \cdot r^{2} dr$$
(2.40)

and

where \measuredangle is activity at any point in the catalyst pellet and the rate of decrease of activity $\end{Bmatrix}$ is proportional to first power of concentration of the poisoning component. Activity a is defined as mean activity of the whole pellet and is obtained by equation (2.40), that is, by integrating the point activities throughout the pellet. Wolf and Peterson have used the following deactivation equation :

$$\frac{d[P]}{dt} = k_5 K_1 K_4 [S] \qquad \begin{bmatrix} 1 - \frac{[P] + [W]}{[S]} \\ to \end{bmatrix} (\frac{MCH}{(H_2)} - k_5 (P) (H_2) - k_6 (P) \\ (2.34) \end{bmatrix}$$

If the last two terms of Eqn. (2.34) are left and then comparison with Eqn. (2.38) gives :

$$k_{d} = k_{5} K_{1} K_{4} (s)_{to}$$
$$a = \left[1 - \frac{(p) + (W)}{(s)_{to}}\right]$$
$$m = 1$$

and

$$C_{AS} = \frac{(MCH)}{(H_2)}$$

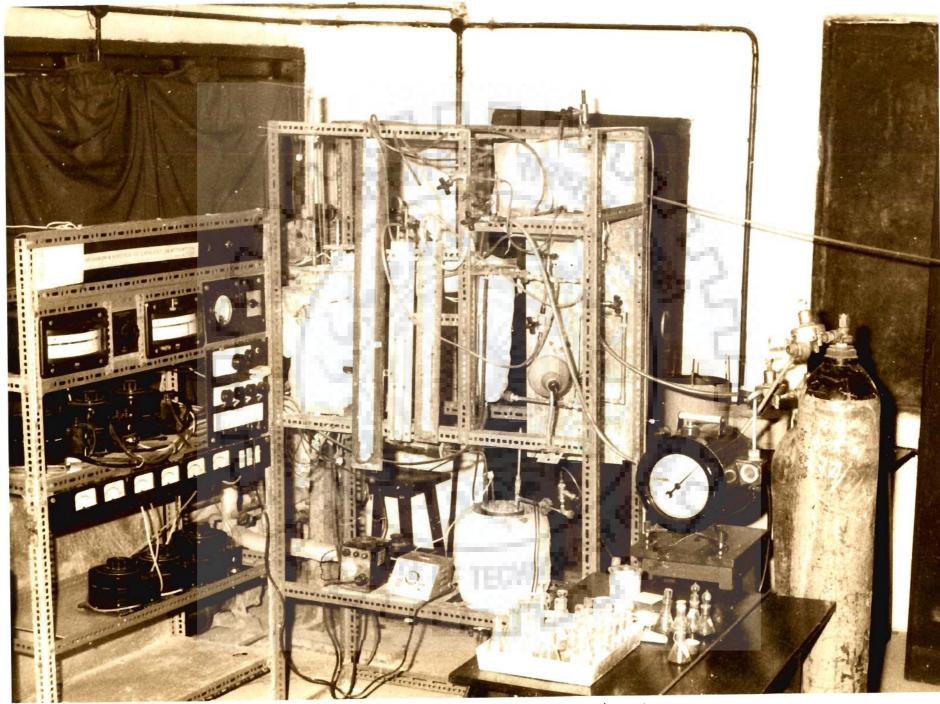
Thus, a general equation for deactivation rate during the dehydrogenation of component A can be written as -

$$-\frac{da}{dt} = k_d a^m \frac{(A)}{(H_2)}$$
(2.41)

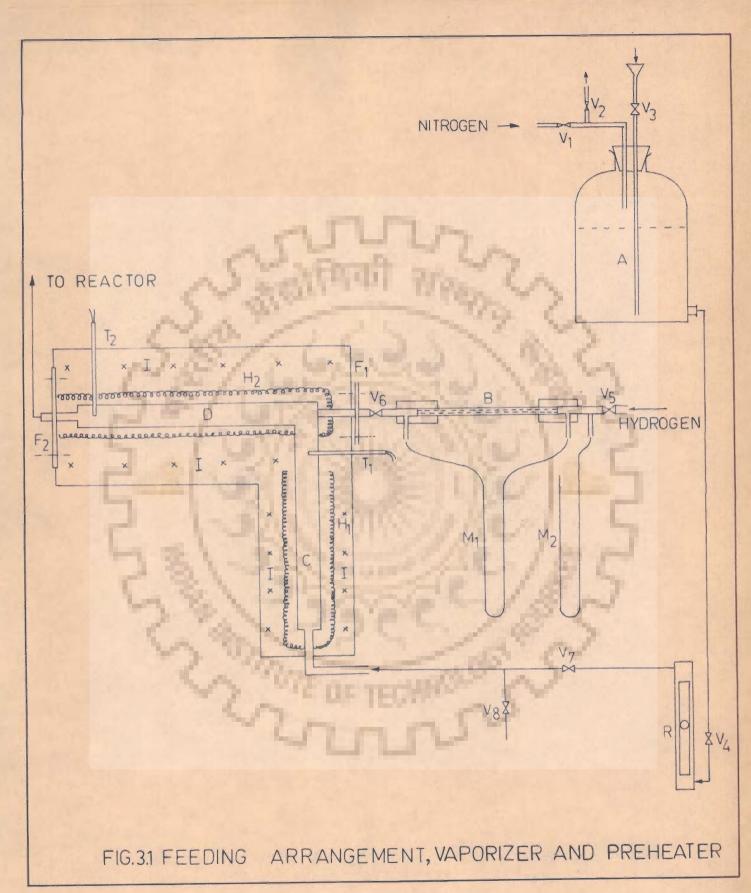
While the rates for dehydrogenation and hydrocracking reactions are given by Eqns. (2.36) and (2.37), respectively.

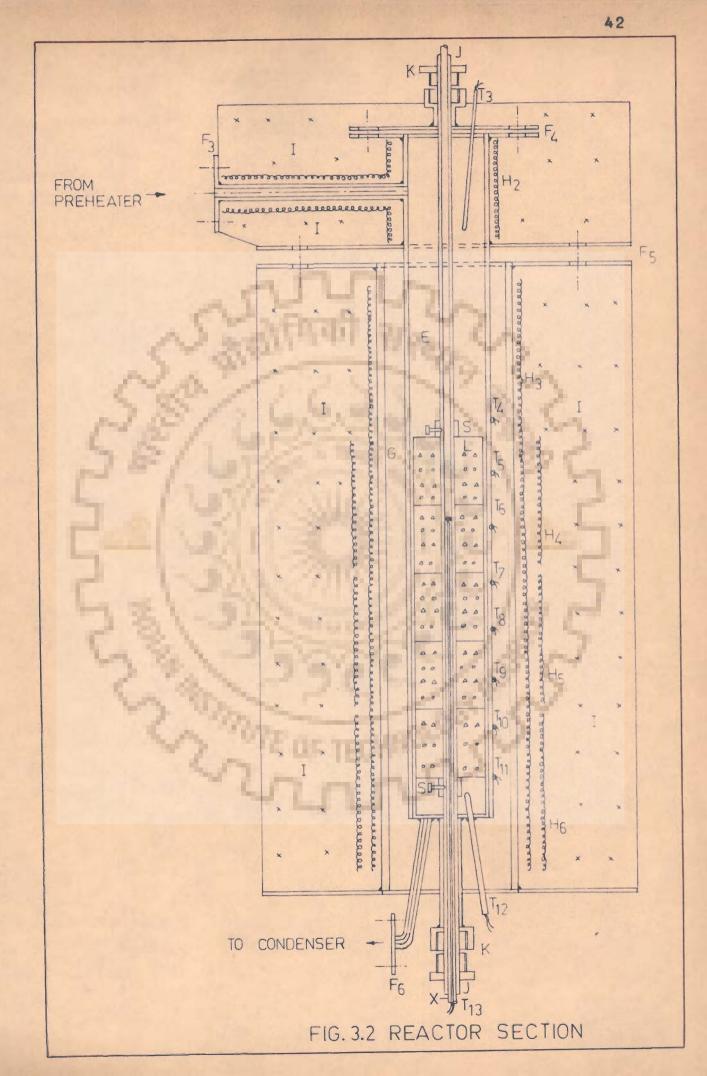
CHAPTER-3

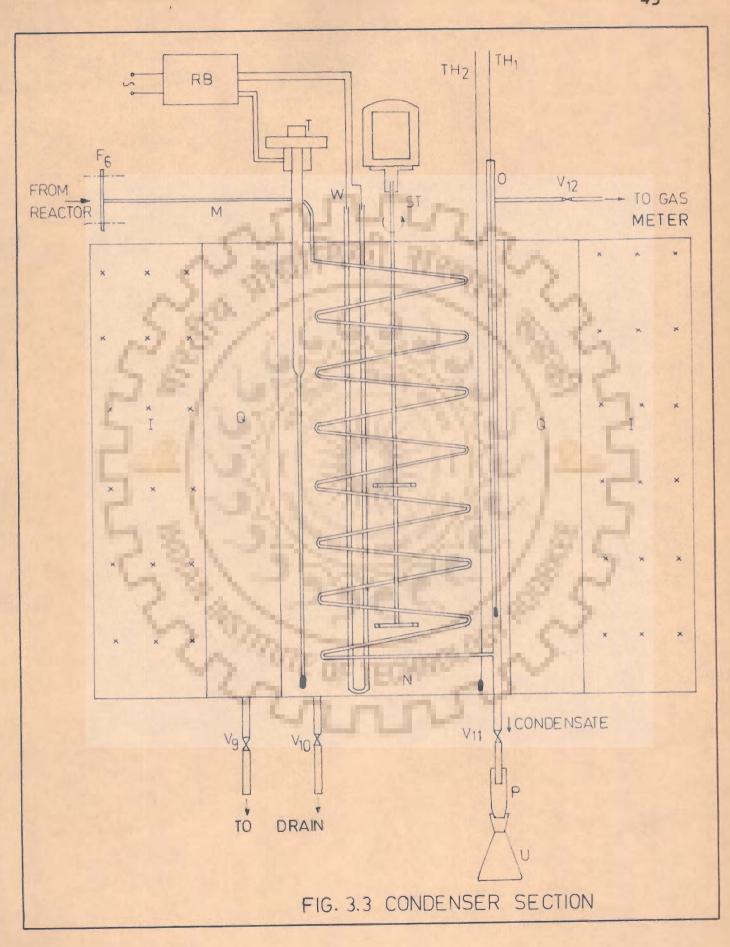
EXPERIMENTAL SET-UP AND PROCEDURE


3.1 THE EXPERIMENTAL SET-UP' CONSISTED OF THE FOLLOWING SECTIONS:

- (i) Feeding arrangement for cyclohexane and Hydrogen
- (ii) Vaporizer and preheater
- (iii) Reactor section
- (iv) Condenser section


An overall view of the experimental set up is shown in photograph 3.1. On the right is the operational panel showing all the above sections and on the left is the control panel showing the various ammeters, voltmeters, variable-transformers, temperature indicator-controllers and selector switches for thermocouples.


3.1.1 Feeding Arrangement for Cyclohexane and Hydrogen


Feeding arrangement for cyclohexane and hydrogen has been shown in detail in Fig. 3.1. The cyclohexane was continuously fed from a storage tank A through valve V_4 and rotameter R. The constant flow rate of cyclohexane was maintained by applying a constant nitrogen pressure over the liquid level. Any increase in system pressure during the reaction was compensated by changing the nitrogen pressure with the help of valves V_1 and V_2 . The flow rate of cyclohexane was measured by precalibrated rotameter R. Dry hydrogen was fed to the system from a hydrogen cylinder through a silica-gel bed. Pressure of the hydrogen gas was kept constant with the help of a regulator and valve V_5 and was precisely measured by manometer M_2 . During the operation the flow rate of hydrogen was maintained constant with the simultaneous operation of valves V_5 and V_6 . As the

Photograph 3.1 Overall view of experimental set up

KEY TO FIGURES 3.1 to 3.3

А	Feeding tank
В	Needle meter
С	Vaporizer
D	Preheater
E ,	Reactor tube
F ₁ to F ₆	Flanges
G	Heater tube in reactor Section
H ₁ to H ₆	Heaters
t 1	Insulation
J	Central supporting tube
К	Gland-nut assembly
La mil	Catalyst cups with supporting plates and mesh
M	Condenser Coil
M ₁ , M ₂	Manometers
N	Cold Water Bath
0	Condenser outlet tube
P	Standard Glass Joint
Q	Ice Bath
RB	Relay Box assembly
ST	Stirrer
т	Mercury contact thermometer
U	Conical flask
V ₁ to V ₁₂	Needle valves
W	Immersion heater in condenser section
x	Moving thermocouple tube

ambient temperature changes during the operation were negligible, the maintenance of constant pressure in the manometer M_2 and constant pressure drop across needle meter B, measured with the help of manometer M_1 assured a constant flow rate of hydrogen.

3.1.2 Vaporizer and Preheater

Measured cyclohexane stream was vaporized before mixing with the hydrogen gas.

The vaporizer section C was heated by a heater H_1 , the heat flux was adjusted with the help of a variable transformer. Vaporizer exit temperature was indicated by thermocouple T_1 .

The hydrogen and cyclohexane vapours were mixed and heated to the reaction temperature in a preheater D, with the help of heater H_{2^2} Temperature at the exit of preheater was measured by thermocouple T_2 .

3.1.3 REACTOR SECTION

Preheated mixture of cyclohexane and hydrogen was fed to the reactor. Flange F₃ connects the preheater section with the reactor section. The details of the reactor section have been schematically shown in Fig. 3.2.

The reaction section consisted of an annular space between two concentric tubes, J (1.D. 6.4 mm, OD 9.6 mm) and E (1.D. 32 mm, OD 38 mm). The catalyst was charged to reactor section in cups L (ID 29.5 mm, OD 31.5 mm, Height 45 mm). The bottom of the cup consisted of a BSS 100 mesh stainless steel screen supported by a perforated plate (Dia 29.5 mm, Thickness 1.5 mm). Eight thermocouples, T_4 through T_{11} were silver soldered at the periphery of tube N at different axial positions. One thermocouple T_{13} was soldered in a sliding tube X. The tube X was movable in the central tube J to indicate temperature at various axial positions. The reactor inlet and exit temperatures are recorded with the help of thermocouples T_3 and T_{12} respectively. The gases from the reactor enter the condenser section. The reactor section was connected to the condenser section through flange F_6 . In the reactor section, the flow of reaction mixture was from top to bottom.

The complete reactor tube E with exit flange F_6 was so designed that the assembly could be inserted in mild steel heater tube G(52 mm ID, 60 mm OD) and kept in position with the help of flange F_c .

The cups assembly consisted of cups L with a central hole in perforated bottom plate and stainless steel screen to slide around tube J. They were kept in position by stoppers S and the whole assembly was placed in tube E and kept in position by flange F_L .

For leak proof arrangement the ends of tube J were fixed with help of gland arrangement K_1 to the lower end of reactor tube E and with the help of gland arrangement K_2 to the flange F_4 at the top.

A scale was provided on top of the reactor section to indicate the axial position of the moving thermocouple T₁₃, placed in sliding tube X, in the reactor section.

The tube G was heated by four heaters H3 through H6.

The material of construction used in vaporizer, preheater and reactor section was stainless steel grade 316.

Ammeters were provided for measuring the currents in all the heaters individually.

The thermocouples were made from chromel-alumel wires. The joints were made by silver soldering. Reference junction was always at atmospheric temperature. Emf of the thermocouples were measured by indicating type of pyrometers calibrated for chromel-alumel thermocouples. Heaters were made of nichrome wire placed in porcelain beads to provide electric insulation from metallic wall. The heat flux of the individual heaters was varied by variable transformers.

Vaporizer, preheater and reactor were insulated with asbestos rope, then by a layer of asbestos, magnesia and plaster of paris powders mixed in proper proportions and finally by glass wool to ensure minimum heat loss.

3.1.4 CONDENSER SECTION

The gaseous products from the reactor exit were partially condensed in a condenser as shown in Fig. 3.3. The condenser consisted of a helical copper coil M (ID 35 mm, OD 6.3 mm, Length 5,500.00 mm, coil diameter 70 mm) immersed in a thermostat N. The thermostatic water bath N was cooled by ice-bath

The water was maintained at a uniform temperature with the help of a stirrer ST. The subatmospheric temperature of the water bath was maintained through an auxillary heater W controlled by mercury contact thermometer T and relay box RB arrangement.

The outlet of the coil M was connected to a tube 0 (1D 5.5 mm, OD 12.2 mm) where gases were separated from condensate. By keeping the valve V₁₁ open, the condensate was collected in a glass conical flask U attached to the lower end of tube 0 with the help of standard B-29 glass joint P. The flow rate of the uncondensed gases was measured with the help of a recording type of wet gas meter.

Temperatures of the bath N and Q of the gases at the point of separation from condensate were measured by thermometers TH_2 and TH_1 respectively.

3.2 EXPERIMENTAL PROCEDURE

A weighed amount of the catalyst was charged to the reactor.

The total amount of the catalyst was distributed in four or five cups in increasing quantity from top to bottom, so as to achieve near uniform conversion in each cup section of reactor. Glass beads, of nearly same diameter as that of catalyst pallet, were uniformly mixed with the catalyst in each of the cups in decreasing proportion from top to bottom. Care was taken in selecting the inert fractions in different cups so as to satisfy the bed criteria of equation 2.1. Further, the annular space available for catalyst in the cups is 7.5 mm and diameter of the catalyst pellet is 1.5 mm, therefore, the ratio d_t/d_p is less than 6. In all the cases the length of the bed is more than 30 times the pellet diameter, therefore, the integral reactor criteria given in section 2.5.1 is also satisfied.

The top and bottom cups were filled with only glass beads. The objective of placing bottom most cup (60 mm length) with glass beads was to minimize the end heat losses in the bottom of the reactor section E which was open to atmosphere as shown in Fig. 3.2, and of filling the top most cup (80 mm length) with glass beads was to preheat the reactants to the desired reaction temperature before they entered the reactions section.

The cups after filling with catalyst and glass beads were kept in position around tube J and the assembly was inserted into tube E. Flange F_4 and gland nuts K_1 and K_2 were then tightened carefully. The system was maintained under hydrogen pressure and was checked for any leakage.

A small flow of hydrogen was started and the heaters were switched on. The heat fluxes were adjusted by manipulating variable transformers so as to heat the reactor and preheater to the reaction temperature and the vaporizer to about 200°C. The system was then left for about four to five hours with suitable adjustments as necessary until the temperature of reactor stabilized at the desired value.

Meanwhile, the thermostatic bath was filled with water and ice in their respective chambers. The electrical current in the auxiliary heater was adjusted according to the requirements and the bath was left for stabilization.

The tank A was filled with liquid cyclohexane through valve V_3 keeping valve V_2 open to atmosphere.

After the steady state was achieved, the flow rate of hydrogen was increased to the desired value and allowed to attain the steady flow. Cumulative flow rate readings were recorded with time by the recording wet gas meter. The flow of liquid cyclohexane was then started from the tank A, regulated by valve V_4 and was measured by rotameter R.

As the cyclohexane flow rates were maintained between 0.5 and 3.0 ml/min, great accuracy in operation was needed to maintain steady flow rate. Further, the pressure drop in the system increased with the progress of reaction due to deactivation of catalyst and this required even greater care to maintain uniform flow of cyclohexane in experiments. This drop in pressure was compensated by proportionate increase in the nitrogen pressure over the liquid cyclohexane in tank A. The valves V_5 and V_6 were also adjusted simultaneously during the reaction to maintain the steady flow of hydrogen gas. Steady values of pressure drop across the needle meter B and the gage pressure M₂ ensured steady rate of hydrogen flow to the reactor.

The most important problem during the operation was that of maintaining the reactor under isothermal condition. The main heater H_2 was wound around complete length of the mild steel tube G to supply the constant heat flux to the complete reactor. Three auxiliary heaters H_4 , H_5 and H_6 were wound in three axial sections around tube G to meet the additional heat requirements in any reactor section. As most of the

reaction takes place in the inlet section of the reactor, the heat supplied by heater H_4 was more than that by H_5 or H_6 . With the deactivation of catalyst during the reaction, the zone of maximum heat requirement gradually progresses downward. Thus, it was also necessary to change the currents in auxiliary heaters with time-on-stream so as to keep uniform temperature throughout the catalyst bed in the reactor.

The reaction products leaving the reactor were cooled and condensed in the condenser. The temperature of the condenser was maintained close to 6°C to ensure nea; complete condensation without any crystallization of cyclohexane or benzene. Care was taken that this temperature did not fall below the freezing point of benzene or cyclohexane. The uncondensed gases from the condenser were passed through the recording type wet gas meter and the meter readings were recorded with time. The liquid samples were collected in conical flasks from the condenser bottom periodically at a time interval of 20 to 30 minutes. The time of each sample was separately recorded.

3.3 ANALYSIS OF PRODUCTS

The analysis of liquid products and reactants was carried out in Gas-chromatograph (AIMIL make MK III-A supplied by M/s Associated Instruments Manufacturers of India Ltd., New Delhi) using carbowax-4000 (10 percent on wt basis) on celite column (3 meters long - 6.25 mm diameter) with flame ionization detector (FID). Following average operating conditions were maintained:

OFE

-	Injection Temperature	85 ⁰ C
-	Column Temperature	75 [°] c
-	FID Temperature	120 ⁰ C
-	Column Gas Pressure	0.3 kg gage
-	Strip chart recorder speed	60 cm/hr.

CENTRAL LIBRARY UNIVERSITY OF RAGPER

The sensitivity of the recorder (Eliott Instruments, England) was maintained at a level so as to achieve good separation for cyclohexane and benzene. Liquid sample quantity varied from 2 to 5 micro litre.

Cyclohexanc and benzene peak areas were standardised by using spectroscopic grade chemicals under gas-chromatograph conditions, similar to those used for liquid product analysis. For same quantity, benzene peak area was observed to be higher as compared to cyclohexane.

For some of the runs chromatographic analysis of gases leaving the condenser was attempted, but the results were not satisfactory and error involved was relatively large. With the liquid sample analysis and assuming vapor - liquid equilibria at condenser exit, the material balances for hydrogen and cyclohexane were satisfied to well within <u>+</u> 8 percent.

3.4 REGENERATION OF DEACTIVATED CATALYSTS

The deactivated catalyst regeneration is carried out by passing measured amount of dried air through valve V_8 and measured amount of nitrogen through valve V_5 , to maintain the desired concentration of oxygen in the inlet gas. During the start up of regeneration the concentration of oxygen was kept around 2 percent and gradually the concentration was increased upto 15 percent keeping a close watch on temperatures in the catalyst bed so as to keep them well below the sintering limit during catalyst regeneration. Total time required for regeneration was around 6 to 8 hours.

In the experimental runs reported in this thesis, however, fresh catalyst was used for each run so as to ensure the identical intrinsic catalyst activity for each run.

3.5 SPECIFICATIONS OF MATERIALS USED :

3.5.1 Reforming Catalyst :

Name	RD - 150 Sinclair - Baker	
Composition	0.6 percent platinum on η - alumina	
Total Surface area	330 m ² /g	
Pore Volume	0.42 cm 3/g	
Average pore radius	32 Å	
Porosity	0.504	
Tortuosity factor	3.8	
Size of pellet	1.6 mm dia, 4.8 mm length	
Density of pellet	1.2 g/cm ³	
Effective thermal conductivity	1.04 Cal hr.cm.gm.	
Size of pellet Density of pellet	1.6 mm dia, 4.8 mm length 1.2 g/cm ³	

3.5.2 Cyclohexane : Specific gravity at 20⁰C Boiling range (95 percent)

> Freezing point Non-volatile matter

Manufacturer

0.776 - 0.780 80 - 82⁰C 5.0 - 6.5⁰C Less than 0.005 percent

BDH Division, Glaxo Laboratories (India) Ltd., Bombay - 18.

No impurity was detectable by gas chromatograph even at higher sensitivities in this cyclohexane.

3.5.3 Nitrogen and Hydrogen gases :

Purity more than 99 percent Manufacturer

Indian Oxygen Ltd., New Delhi.

CHAPTER-4

EXPERIMENTAL OBSERVATIONS AND ANALYSIS OF INTEGRAL REACTOR DATA

4.1 PRELIMINARY EXPERIMENTATION

Some preliminary runs were carried out without catalyst at high temperature and low mole ratios of hydrogen-to-cyclohexane to check if the stainless-steel used for the fabrication of experimental set up is having any effect on the conversion of cyclohexane to benzene. No trace of benzene was found in reactor effluents as confirmed by the chromatographic analysis of liquid condensate from the condenser.

Material balance for cyclohexane was also checked for these runs and the difference in the amount of cyclohexane recovered and fed was always within \pm 5 percent. It was, therefore, concluded that the system was leak proof, stainless steel did not result in conversion of cyclohexane at the conditions of the experiments and the flow rate measurements were accurate. Further, at steady state operation, readings of all the thermocouples in the reactor section (T₄ to T₁₁) and the central thermocouple (T₁₃) indicated same temperature confirming the accuracy and sensitivity of the thermocouples.

4.2 EXPERIMENTAL DATA AND THE RANGE OF PARAMETERS INVESTIGATED

4.2.1 Experimental Data :

The experimental data are tabulated in Appendix - A, Tables A-1 to A-19. Each table gives experimental results for a given set of experimental conditions, namely, volumetric feed rate of liquid cyclohexane and hydrogen, ambient temperature and pressure, average temperature in the reactor and condenser, and weight of the catalyst used in the reactor. Weight of the glass beads added to the catalyst is not reported. The conversion-time data is reported as mass of liquid sample collected from condenser and its composition as obtained from gaschromatographic analysis, and average flow rate of uncondensed gases from condenser for different time intervals from the start of the runw

During experiments it was observed that the variation in rotameter R readings was within \pm 0.1 ml/min, the pressure variation in manometers M₁ and M₂ were within \pm 1 cm of carbon-tetrachloride and mercury respectively and temperature variation in catalyst bed was within \pm 5°C.

4.2.2 Range of Parameters Studied :

From the experimental data, range for the three main variables, as obtained, is as follows :

0.94 - 4.8
1.28 - 4.77
17.64 - 65.91
310 - 435

4.3 CYCLOHEXANE CONVERSION CALCULATIONS

The vapor phase concentration of cyclohexane and benzene was calculated by assuming that the equilibrium had been achieved in the condenser bath N between condensate and the uncondensed vapors leaving the condenser M at the temperature indicated by thermometer TH_1 . The temperature difference between that of bath N and of the gases leaving the condenser as measured by thermometers TH_2 and TH_1 respectively, was always less than $0.5^{\circ}C$. The condensate compositions were accurately known from chromatographic analysis and were found to be reliable and accurate to within ± 2 percent. The chromatographic analysis indicated

the presence of benzene and cyclohexane in liquid products. Hydrocracking gives indiscriminate rupture of C-C linkage and may result in some pentane formation The maximum hydrocracking was 13.5 percent of the cyclohexane fed and minimum hydrogen-to-cyclohexane mole ratio was 0.935. Assuming that the entire cyclohexane was hydrocracked to pentane and methane and no increase in the number of hydrogen moles due to benzene formation, then maximum possible mole fraction and partial pressure of pentane in reactor effluent would have been 0.075 and 56 mm Hg respectively. The vapour pressure of pentane at the minimum condenser temperature of 6°C is 220 mm Hg. Since the vapour pressure of pentane is very much higher than its maximum possible partial pressure, pentane is therefore, not expected in the condensate, as confirmed by the chromatographic analysis of liquid product. The following equations (43) are used for the calculation of mole fractions of benzene and cyclohexane in gaseous products.

$$\ln \gamma_{B}^{\prime} = -\ln (x_{B}^{+}A_{12}x_{CH}^{}) + x_{CH} \left[\frac{A_{12}}{x_{B}^{+}A_{12}x_{CH}^{}} - \frac{A_{21}}{A_{21}x_{B}^{+}x_{CH}^{}} - \frac{A_{21}}{A_{21}x_{B}^{+}x_{CH}^{}} \right]$$

$$\ln \gamma_{CH}^{\prime} = \ln (x_{CH}^{+}A_{21}x_{B}^{}) - x_{B} \left[\frac{A_{12}}{x_{B}^{+}A_{12}x_{CH}^{}} - \frac{A_{21}}{A_{21}x_{B}^{+}x_{CH}^{}} - \frac{A_{21}}{A_{21}x_{B}^{+}x_{CH$$

$$\log_{10} p_{CH} = 6.84498 - \frac{1203.526}{T + 222.863}$$

$$Y_B = Y_B \times_B P_B / P$$

$$y_{CH} = \gamma _{CH} x_{CH} p_{CH} / P$$

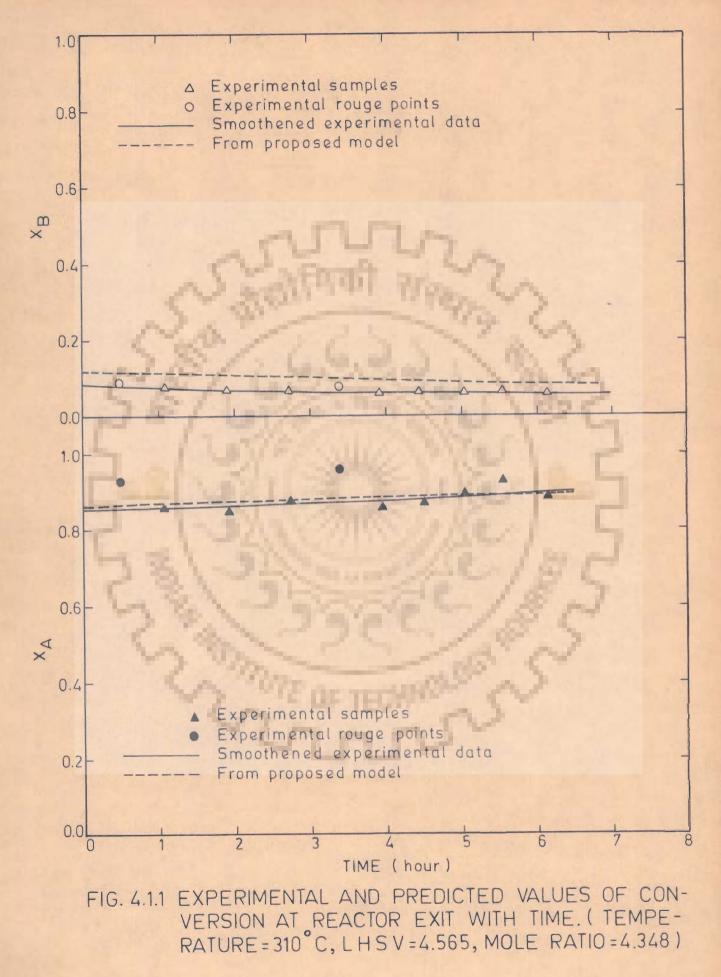
where, $A_{21} = 0.65926$ $A_{12} = 1.00918$ p - Vapor pressure, mm Hg P - Total pressure, mm Hg 55

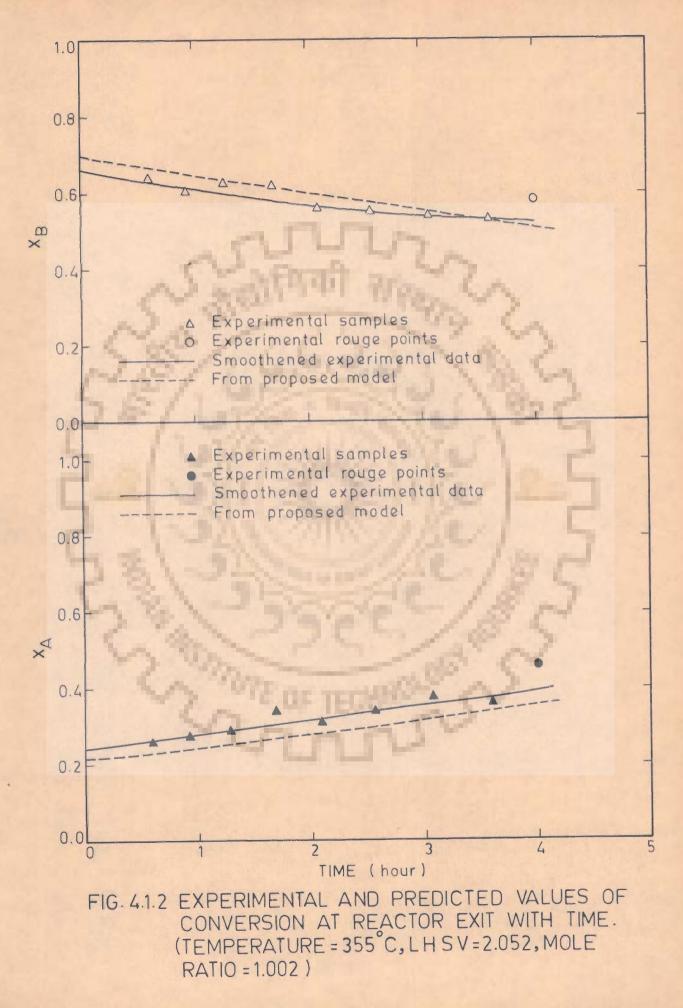
- T Temperature, ^OC
- x Liquid phase composition
- y Gas phase composition
- y Activity coefficients

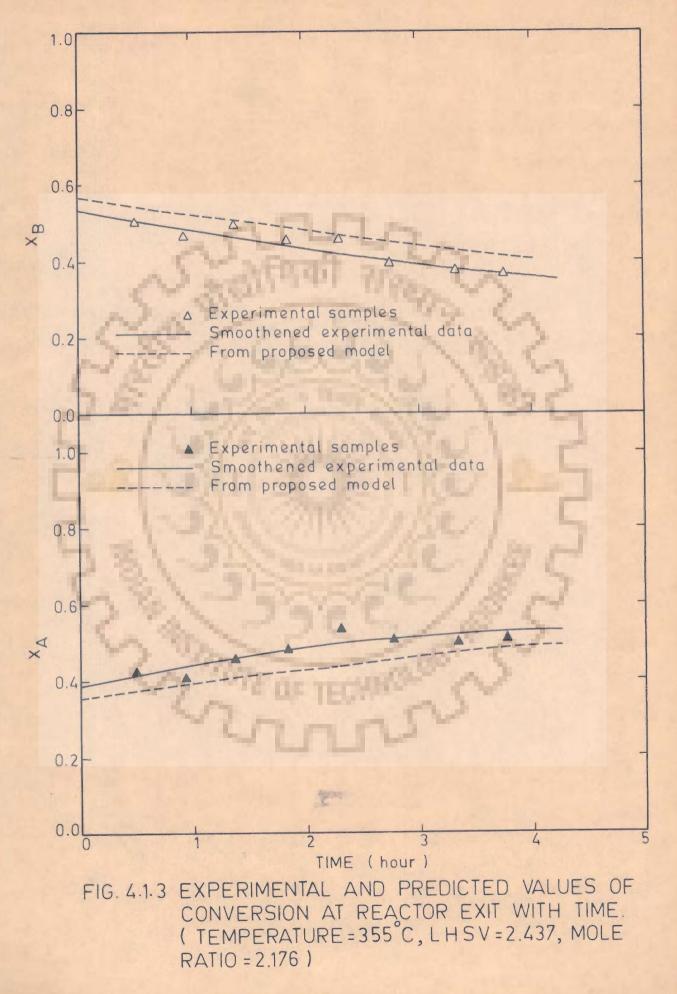
Suitable values, as given above, were taken for Wilson-parameters A₁₂ and A₂₁, and for Antoine constants for benzene - cyclohexane mixture. Use of above equations for the calculation of benzene and cyclohexane mole fractions is well justified in view of reasonably good check on material balance for hydrogen as indicated by P E R H values in Tables A-1 to A-19, Appendix - A.

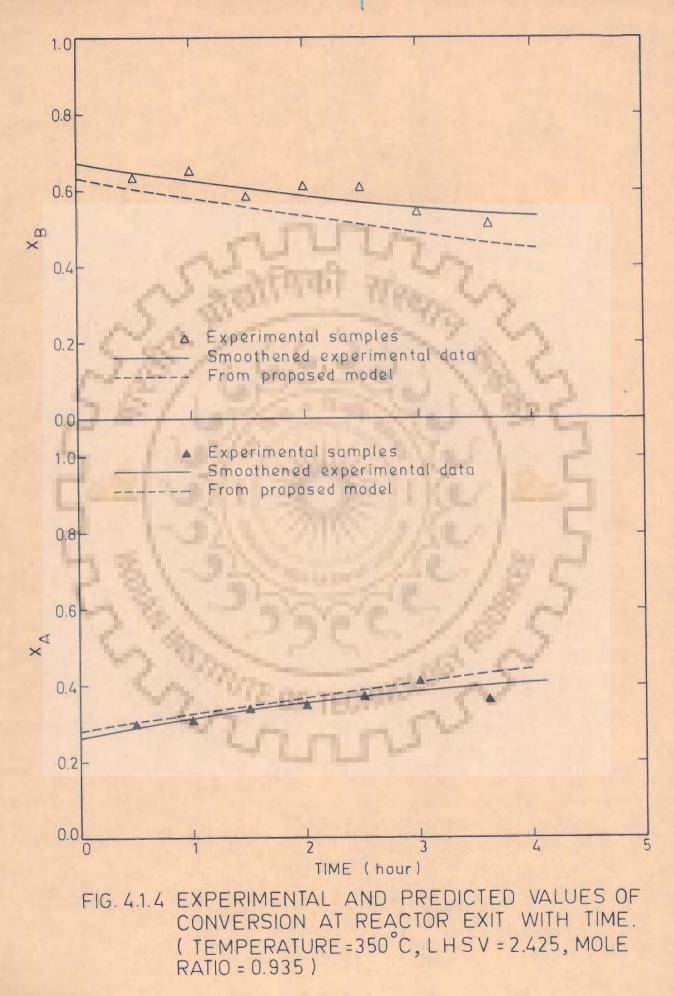
Since accurate chromatographic analysis of gaseous products was not possible, direct information about the quantity or nature of hydrocracked gaseous products was not available. No direct measurement was possible for estimating the fraction of cyclohexane converted to poison (coke), but it is safe to assume that the loss of cyclohexane into carbonaceous products was negligible. The fraction of cyclohexane hydrocracked has been obtained from the material balance for cyclohexane. However, for nearly ten percent data points the sum of moles of cyclohexane and benzene in product was found to be more than or equal to the moles of cyclohexane fed, thus resulting in a negative or zero value for the moles of cyclohexane hydrocracked. Obviously this cannot be true and such data points were discarded as they indicate the cumulative effect of errors in the flow rates measurement and chromatographic analysis of liquid product. These points are marked by an asterisk in Appendix A and are circled in Fig. 4.1.1 to 4.1.19 as rogue points.

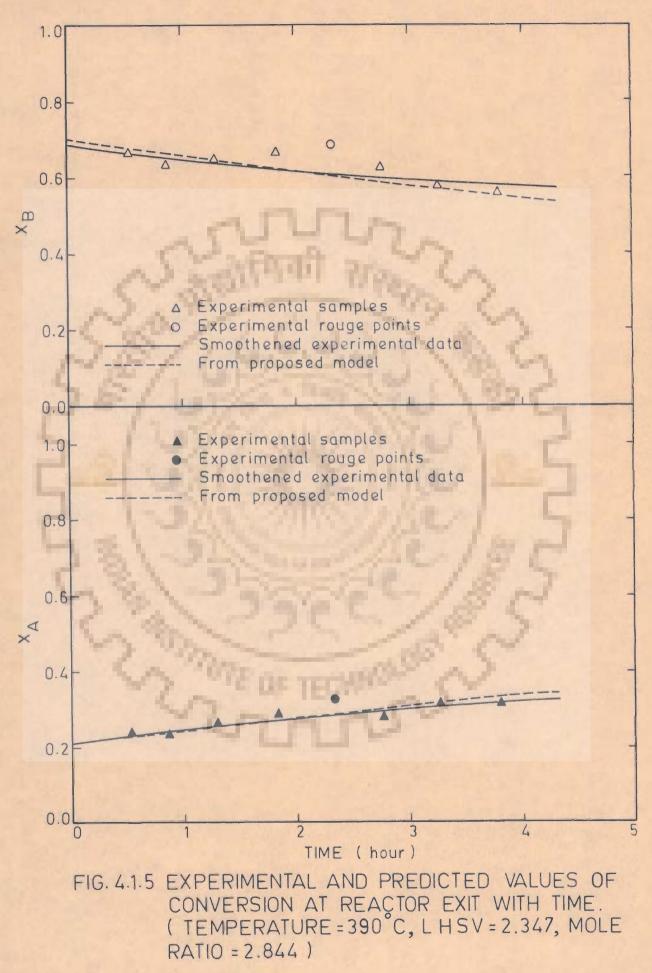
Tables A-1 to A-19 in Appendix A give the measured values of liquid product quantity and its analysis, and gaseous product average flow rate along with calculated values of moles of cyclohexane fed, moles of benzene

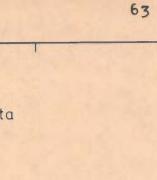

56

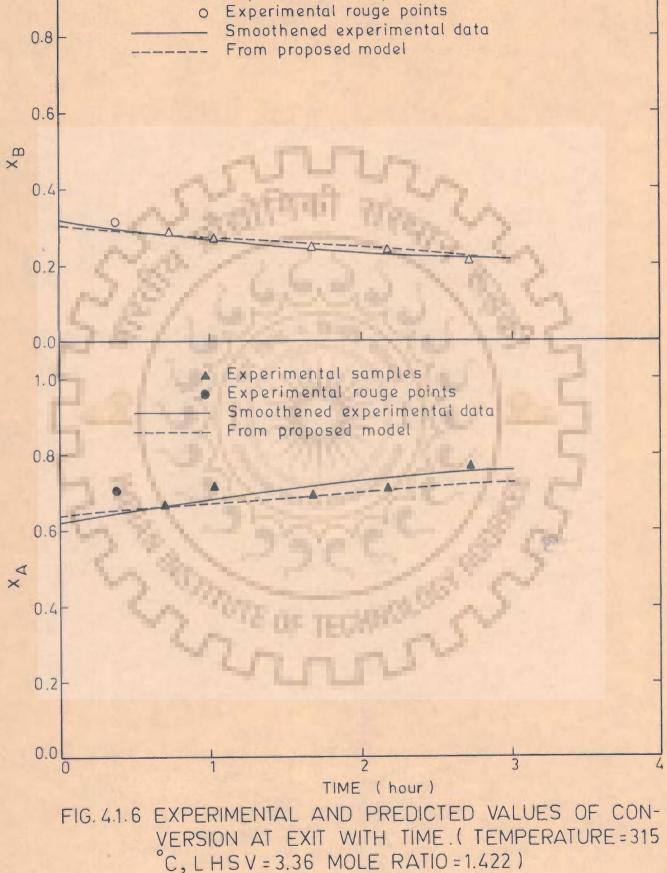

and cyclohexane in product, percent cyclohexane unconverted and that converted to benzene, and percent error in hydrogen balance during a given time-on-stream period.

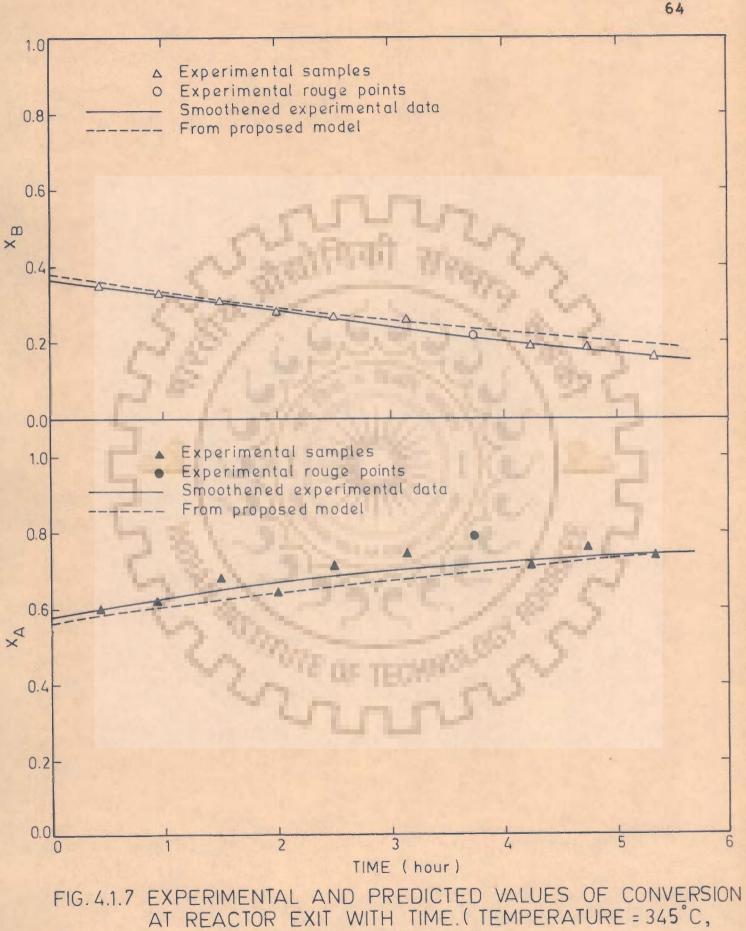

The moles of exit gases and hydrogen fed were corrected by assuming them to be saturated with water vapor while flowing through the wet gas-meter. An independent material balance was carried out for hydrogen to check for the accuracy of measurements and the details of these calculations are shown in Appendix - G. The error in hydrogen balance was found to be within-2 to +6 percent for ninety percent of data points, indicating good measurement accuracy. The calculated values of the extent of cyclohexane hydrocracked are also within reasonable limit of 10 percent of cyclohexane fed for more than eighty percent condensate samples.

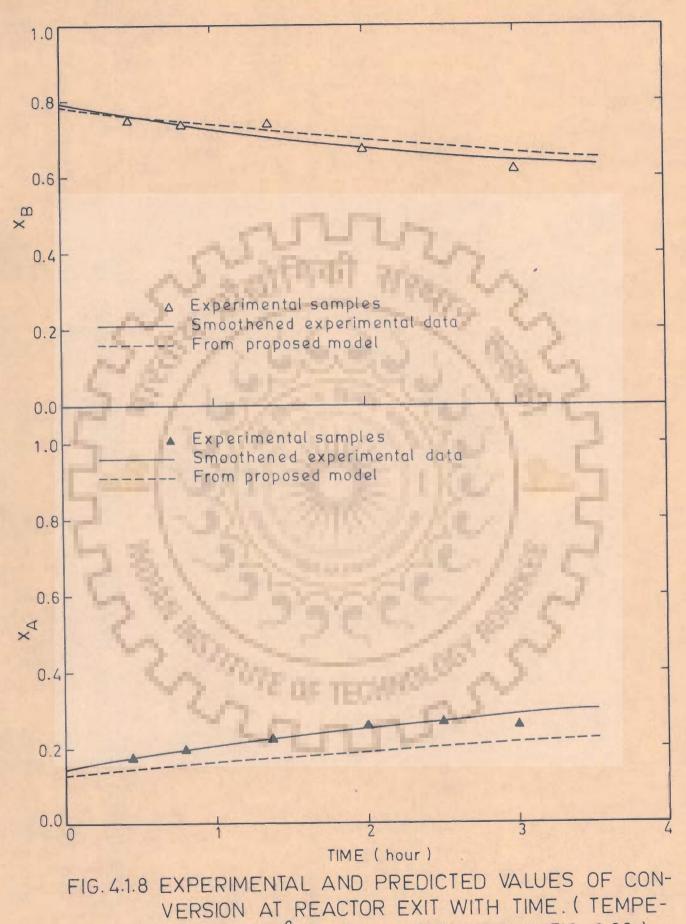

4.4 EXTRAPOLATION OF DEACTIVATION DATA TO GET INITIAL RATE DATA


The experimental data given in Appendix - A has been plotted on Fig. 4.1.1 to 4.1.19 and smooth curves were drawn from the experimental points for benzene and cyclohexane by visual observation. The figures show the values of X_B and X_A at the mid point of the start and end of collection time for each condensate sample. Fitting of data by polynomials of high order was not considered useful in view of limited number of data points and the inherent accuracy of experimental measurements. The extrapolation of smoothened curve gives conversion at time t = 0 for undeactivated catalyst. Blanding (9) and Mahoney (55) have also used a similar procedure to get the initial rate data for undeactivated catalyst. Table B-1 to B-19 in Appendix - B give percent conversion of cyclohexane to benzene, and percent cyclohexane unconverted as obtained from smoothened experimental data of Fig. 4.1 to 4.19, and these values are referred subsequently as experimental data for model development and further

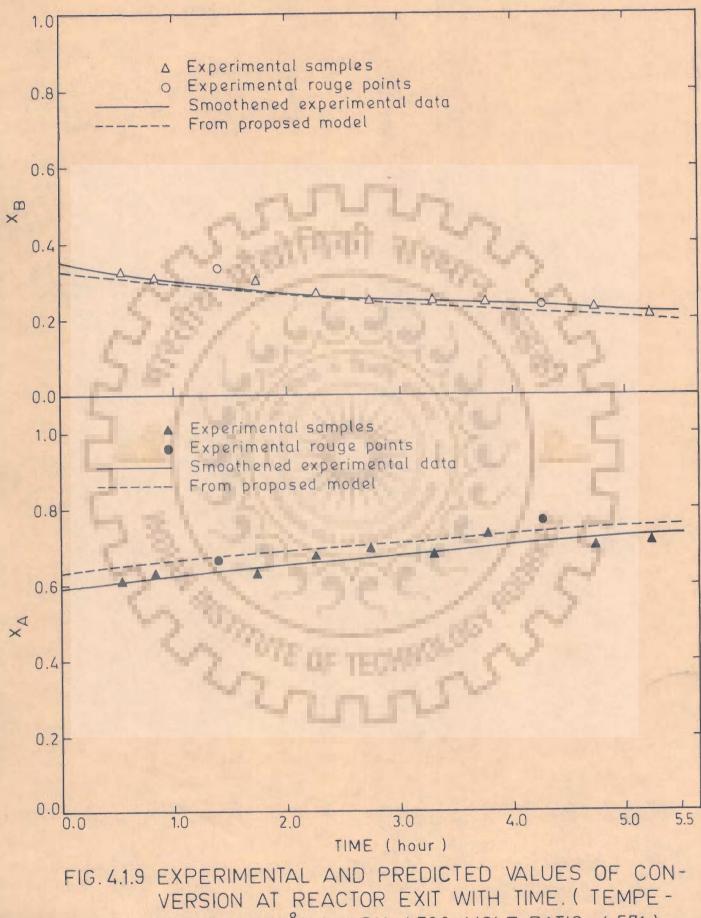


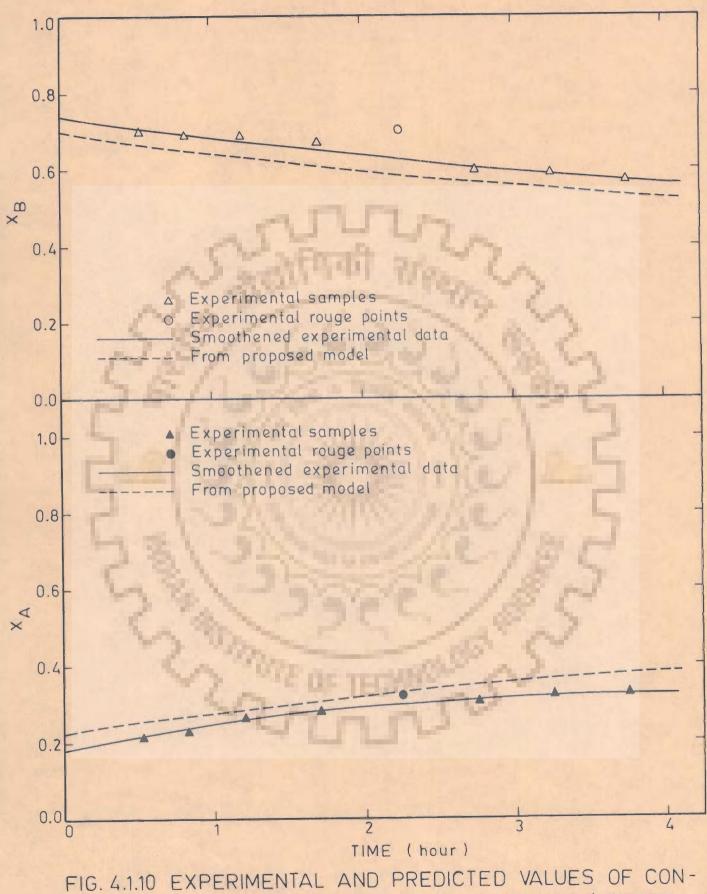


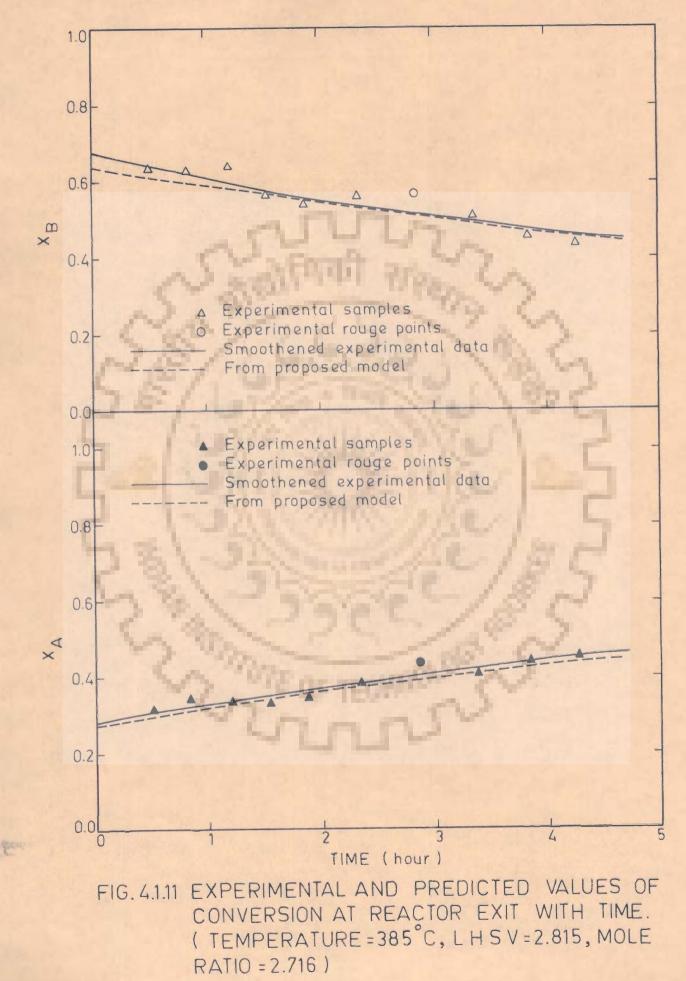


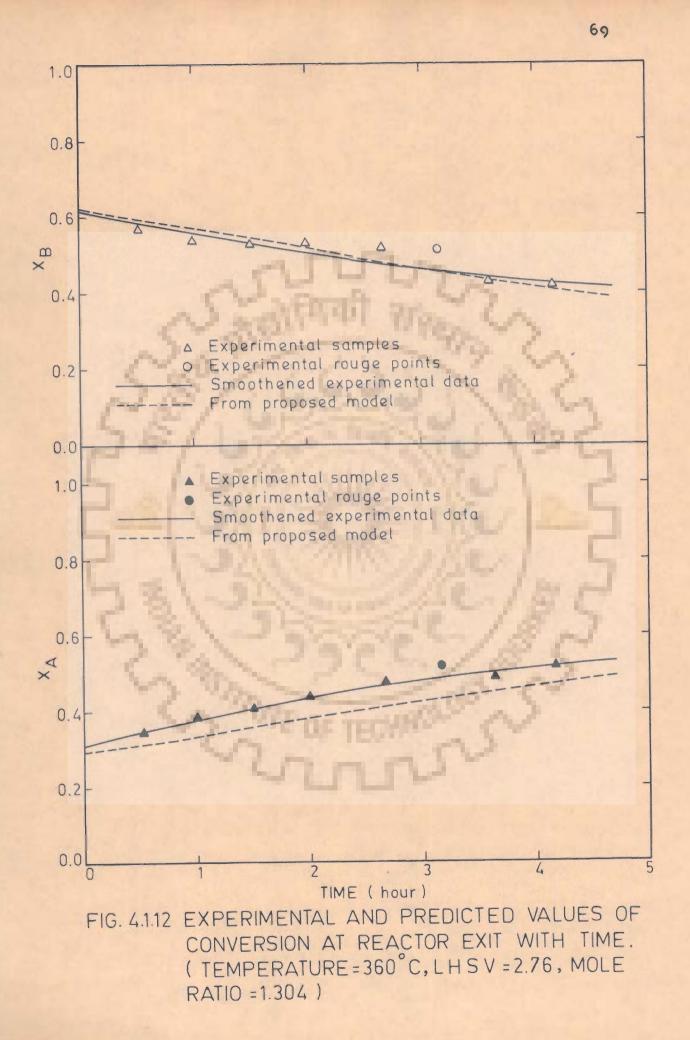

Experimental samples

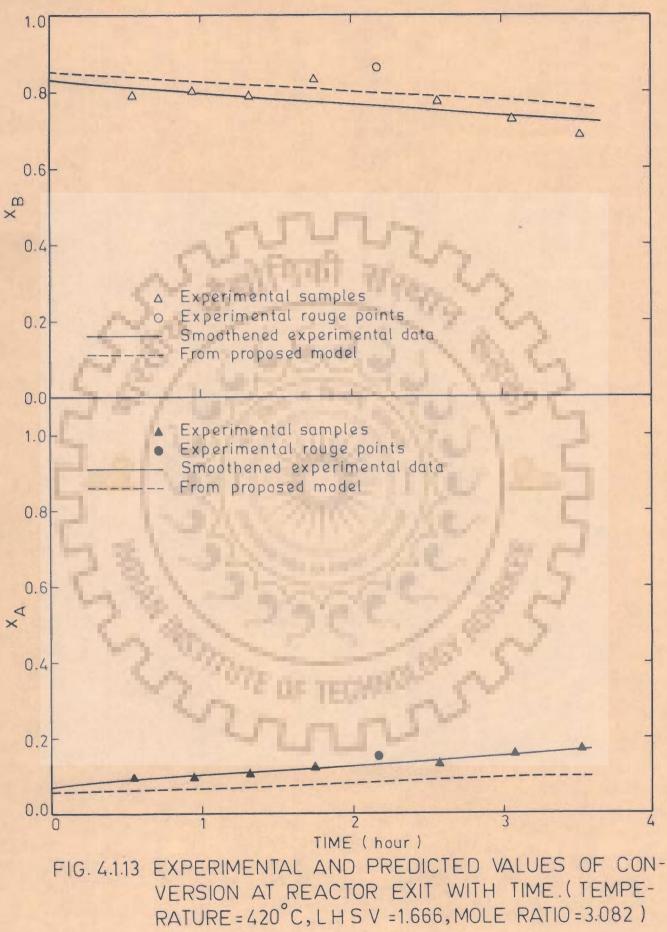
Δ


1.0


LHSV = 4.256, MOLE RATIO = 1.865)


RATURE = 410°C, LHSV = 2.367, MOLE RATIO = 2.66)




RATURE = 370°C, L H S V = 4.798, MOLE RATIO = 4.571)

G. 4.1.10 EXPERIMENTAL AND PREDICTED VALUES OF CON-VERSION AT REACTOR EXIT WITH TIME. (TEMPE-RATURE = 435°C, LHSV = 3.737, MOLE RATIO = 3.924)

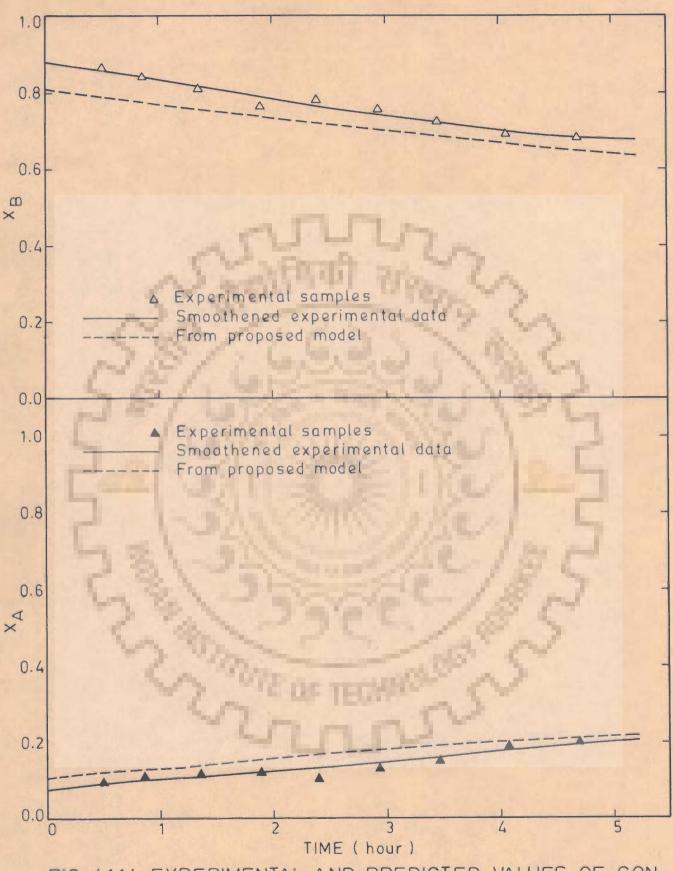
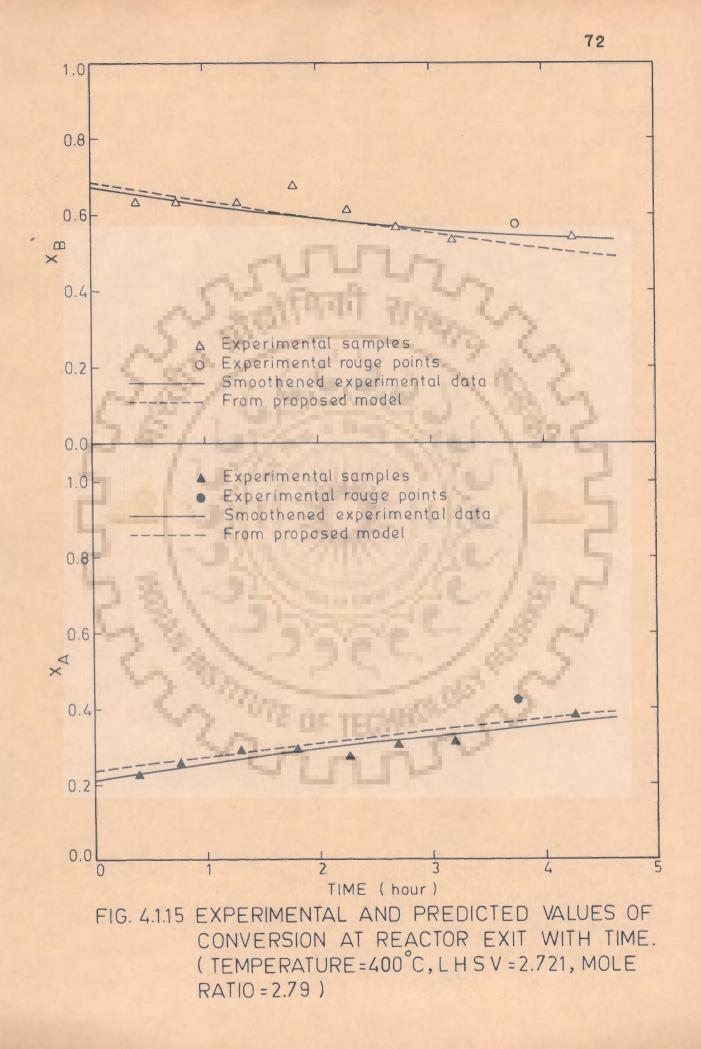
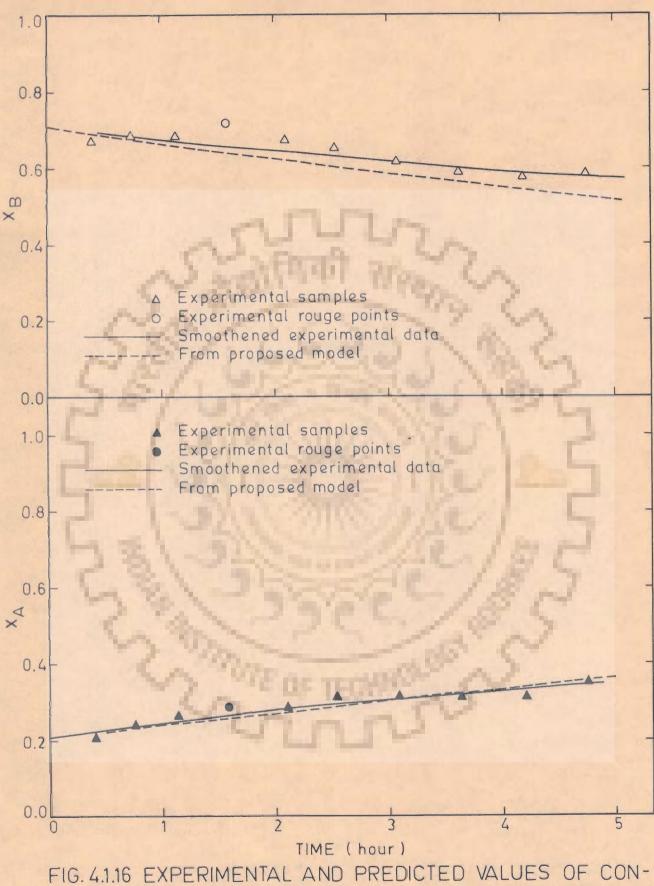




FIG. 4.1.14 EXPERIMENTAL AND PREDICTED VALUES OF CON-VERSION AT REACTOR EXIT WITH TIME. (TEMPE-RATURE=425°C, LHSV=2.473, MOLE RATIO=2.868)

71

IG. 4.1.16 EXPERIMENTAL AND PREDICTED VALUES OF CON-VERSION AT REACTOR EXIT WITH TIME. (TEMPE-RATURE= 400°C, LHSV=2.473, MOLE RATIO=2.831)

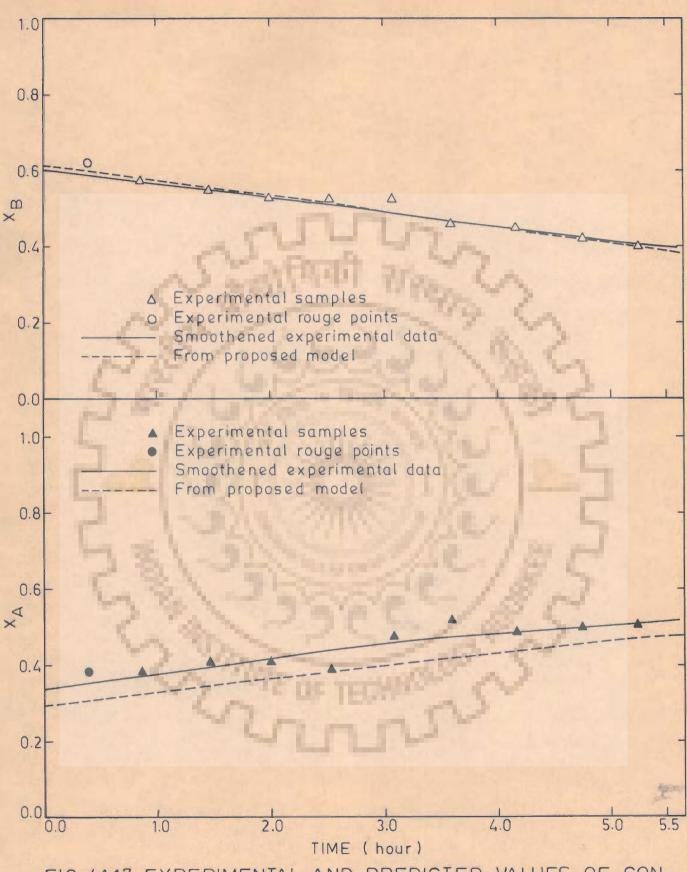
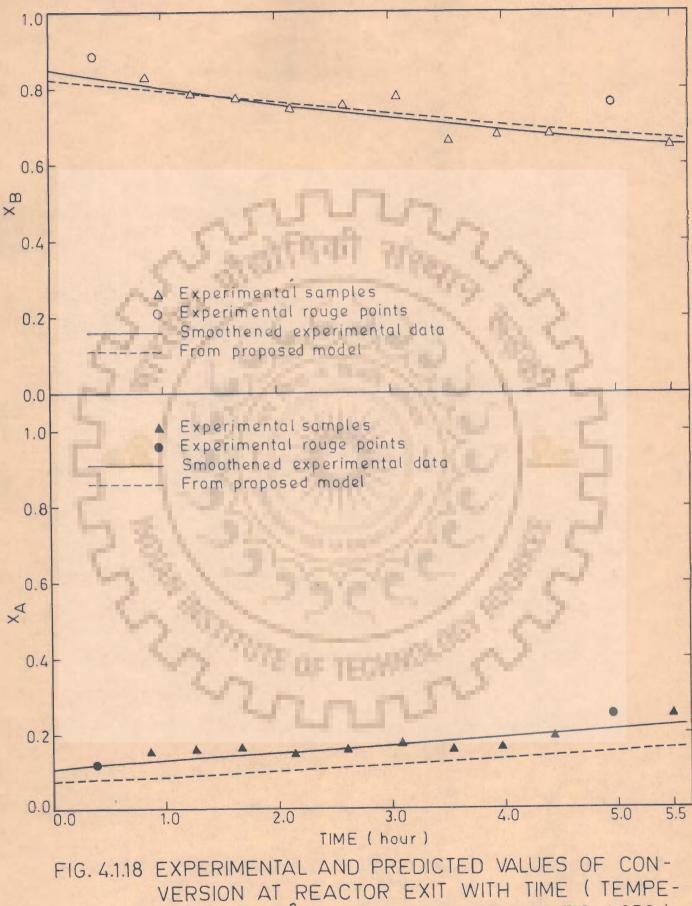



FIG. 4.1.17 EXPERIMENTAL AND PREDICTED VALUES OF CON-VERSION AT REACTOR EXIT WITH TIME. (TEMPE-RATURE=340°C, LHSV=1.904, MOLE RATIO=1.229)

RATURE = 385°C, LHSV = 1.529, MOLE RATIO = 1.659)

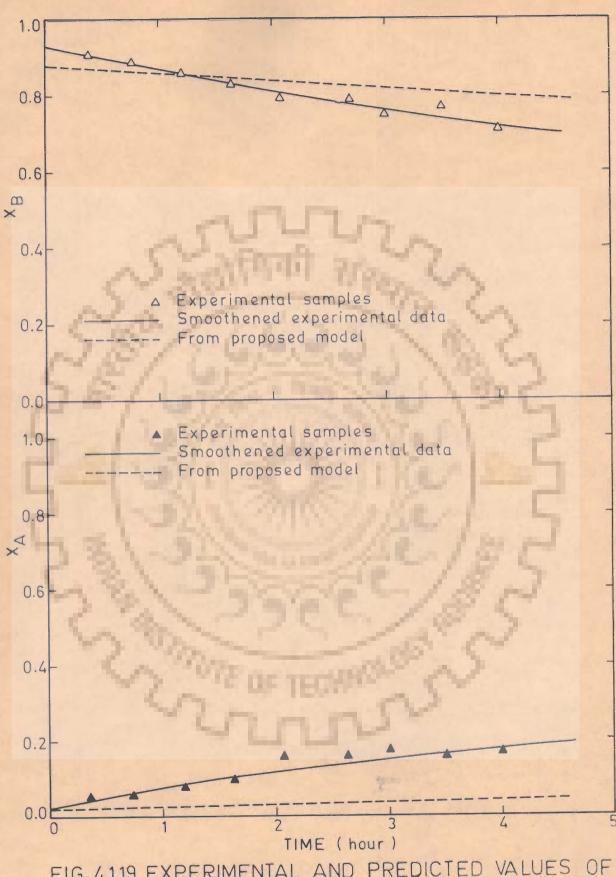


FIG. 4.1.19 EXPERIMENTAL AND PREDICTED VALUES OF CONVERSION AT REACTOR WITH TIME. (TEMPE-RATURE=405°C LHSV=1.275 MOLE RATIO=1.743) calculations. Table B-1 to B-19 also give percent conversion of cyclohexane to hydrocracked products and these values are obtained simply by subtracting from 100 the values of percent conversion to benzene and percent cyclohexane unconverted.

4.5 FORMULATION AND ESTIMATION OF APPARENT REACTION RATE CONSTANTS FOR UNDEACTIVATED CATALYST

The kinetic model used in the analysis of data for undeactivated catalyst is :

Dehydrogenation :
$$C_6H_{12} \xrightarrow{k_1} C_6H_6 + 3H_2$$

Hydrocracking $C_6H_{12} + 2H_2 \xrightarrow{k_2} 2C_3H_8$
or $C_4H_{10} + C_2H_6$
or $C_5H_{12} + CH_4$
(4.1)

The data was analysed assuming first-order irreversible kinetics for both the above reactions and plug flow behaviour in the reactor. These assumptions result in the following conversion - space velocity relationship for initial rate data :

$$X_{B} + \left[\frac{1 + \frac{(1 + \gamma)(1 + K)}{3 - K}}{1 + K}\right] \ln \left[1 - (1 + K)X_{B}\right] = -k_{1} \cdot CO \cdot \frac{1 + K}{3 - K} \cdot \frac{W}{F}$$
(4.2)

The details of the assumptions and derivation are given in Appendix - C.

From the operating conditions F,W,P,T, and $\frac{1}{2}$ are known (reported in Appendix-A) and from the smoothened experimental data X_A , X_B and X_C (reported in Appendix-B) are known for undeactivated catalyst (at t = 0), and thus the apparent reaction rate constants k_1^i and k_2^i are calculated by using equation 4.2, since $K = \frac{k_2^i}{k_1^i} = \frac{(1 - X_A - X_B)}{X_B}$. The apparent rate constants are tabulated in Appendix-D. Sample calculations are given in Appendix-G.

4.6 ESTIMATION OF EXTERNAL AND INTERNAL MASS TRANSPORT EFFECTS

Kinetic: analysis of heterogeneously catalysed fluid reactions is never complete unless the role of inter-and intra-particle heat and mass transfer rates is properly investigated. The average pore radius of the catalyst used in this investigation is quite small (32 A^{O}) and the reaction is highly endothermic (Δ H = 50.8 kcal/gmol). This necessitates a careful estimation of various mass and heat transfer rate parameters in order to find the intrinsic kinetic parameters.

4.6.1 Estimation of External Mass-Transfer Coefficient

The estimation of external mass transfer coefficient requires the values of catalyst pellet diameter, and density of gas mixture, bulkdiffusivity, viscosity and mass-velocity at operating conditions. From the above data Reynold's number is first calculated and then external mass transfer coefficient is estimated by evaluating j_p factor.

The bulk diffusivity of cyclohexane in hydrogen is calculated using Chapman-Enskog equation (77). Hydrogen is taken as the other component, even though some benzene is also present, because hydrogen is the predominant component for most of the experimental runs. The gas viscosities for cyclohexane and hydrogen were obtained from standard charts (68) for different temperatures. As the viscosities of hydrogen and cyclohexane are not too different, therefore, an arithmatic average value is taken for the reaction mixture. The density of the gas mixture at reactor inlet conditions is used in the calculations. It is assumed that the change in density is small since the changes in pressure, temperature and average molecular-weight of reaction mixture are not very significant. From the known values of catalyst pellet diameter and mass velocity, Reynold's number is calculated using the physical properties of reaction mixture as indicated above. The Colburn mass-transfer factor j_D is then estimated from standard charts (77). The value of j_D is used to calculate the mass transfer coefficient k_m by using the defining relationship for j_D as shown below

$$j_{D} = (k_{m}a) \left(\frac{f}{G}\right) \left(\frac{f}{f}D_{AB}\right)^{2/3} = f\left(\frac{dp}{\mu}G\right)$$

The values of Reynold's number, Colburn mass-transfer factor j_D and external mass-transfer coefficient k_m are tabulated in Appendix-E for all the sets.

4.6.2 Estimation of Effective Diffusivity in Catalyst Pellet

The values of diffusivity, pellet-porosity and tortuosity-factor are required to estimate effective diffusivity of cyclohexane in the catalyst pellet. Since the mean pore radius is 32 A, the Knudsen diffusion will prevail and the Knudsen diffusivity for cyclohexane is obtained by standard method (77). The effective diffusivity D_e of cyclohexane in pellet is obtained by (77) :

$$D_e = D_K \frac{c}{\gamma}$$

where D_{K} is Knudsen diffusivity, \in is porosity and Υ is tortuosity factor of the pellet. For the catalyst used in this investigation, the porosity is found to be 0.504 and the reported value of tortuosity-factor (75) is 3.58.

The values of effective diffusivity of cyclohexane are given in Appendix-E for all sets.

4.6.3 Estimation of Cyclohexane Dehydrogenation Reaction Rate at the Inlet of Reactor

The rate of dehydrogenation of cyclohexane at the reactor inlet is given by : $\overline{r} = k_1' C_{AO} = k_1' \frac{P}{RT} \cdot \frac{1}{1+\gamma}$ As the values of k_1 , P, T and γ are already known, the values of reaction rate \overline{r} were calculated and are tabulated in Appendix-E.

4.7 APPLICATION OF DIFFERENT CRITERION TO CONSIDER THE LIMITING INTER-AND INTRA-PARTICLE HEAT AND MASS TRANSFER RATES

After estimating the external mass-transfer coefficient, effective diffusivity and inlet reaction rates, different criterion were then applied to determine the limiting heat or mass transfer rate.

4.7.1 Criteria for External Mass Transport Effects

The criteria to determine whether the external mass transport effects are important or not, is given by (60) :

$$\frac{\overline{r}}{c_{A} \cdot k_{m}a} = \frac{k_{1}}{k_{m}a} \lt 0.15$$

Since the values of k_1' and k_m are known, the calculated values of the ratio are given in Appendix-E and in all the cases it is found that the value of the ratio is less than 0.15. This indicates quite clearly that the resistance due to external mass transfer is insignificant and can, therefore, be neglected. As the values of k_2' are always lower than k_1' the criteria will always be satisfied for hydrocracking reaction also.

4.7.2 Criteria for Internal Mass-Transport Effects :

The criteria for internal mass transport effects is given by (87) :

$$F_{1} = \begin{bmatrix} \frac{V'}{S_{e}} \end{bmatrix}^{2} \cdot \frac{k_{1} \beta_{p}}{D_{e}} \langle 1$$

where S_e is the external surface area of the catalyst pellet, V' is the volume of catalyst pellet and f_p is pellet density of catalyst. The values of these parameters are given in section 3.5. From the known values of catalyst properties, effective diffusity and k'_1 , the values of

factor F₁ are computed and these are tabulated in Appendix-E. It is evident that in all the cases the values of the factor F₁ are more than one, except for very low reaction temperature, that is, for set No.1 and 6. This indicates that the resistance due to internal mass transport is significant and it must be taken into consideration while calculating the intrinsic rate constants from the experimental data.

4.7.3 Criteria for External Heat Transport Effects

The criteria for estimating the significance of the external heat transport effect is given by (59) :

$$F_2 = \frac{E}{R_g T_b^2} (T_s - T_b) < 0.15$$

where

$$T_{b} - T_{s} = \frac{0.7 (\Delta H) (C_{b} - C_{s})}{C_{p} \cdot f}$$
$$= \frac{0.7 (\Delta H) \overline{r}}{C_{p} \cdot f \cdot k_{m}a}$$

and for dehydrogenation of cyclohexane ΔH is 50.8 kcal/gmol, specific heat of reaction mixture is 3.25 cal/g.^OC and $\frac{E}{R}$ is approximated (40) as 15,200 ^OK.

Since the values of k_m and \bar{r} are known, the values of $(T_b - T_s)$ and the factor F_2 can be calculated for all the sets. These values are tabulated in Appendix-E and it is seen that in all the cases the values of F_2 is less than 0.15 indicating that the external heat transfer resistance is negligible for all the experimental runs. Further, the value of $(T_b - T_s)$ indicate the difference in bulk and surface temperature and the maximum value is only 1.76° C which is well within the limits of experimental errors in temperature measurement.

4.7.4 Criteria for Non-Isothermal Pellet

The criteria for estimating the Non-isothermality of catalyst pellet is given by (1) :

$$F_{3} = \frac{\overline{r} \cdot \beta_{p} \cdot R^{2} \cdot (\Delta H)}{T_{b} \cdot k_{e}} \cdot (\frac{\Delta H}{R_{g} \cdot T_{b}}) < 0.75$$

The effective thermal conductivity for the catalyst pellet used in this investigation is approximated as 1.04 cal/hr. cm. K (77). For the known values of constants E/R_g , \triangle H and f_p , and the calculated values of \overline{r} and T_b the factor F_3 is calculated and the same is tabulated in Appendix-E. All the values are less than 0.75. It is, therefore, clear that the catalyst pellets can be considered as isothermal.

4.7.5 Criteria for Maximum Temperature Gradient in Catalyst Pellet

The maximum temperature gradient in catalyst pellet is given by (14) :

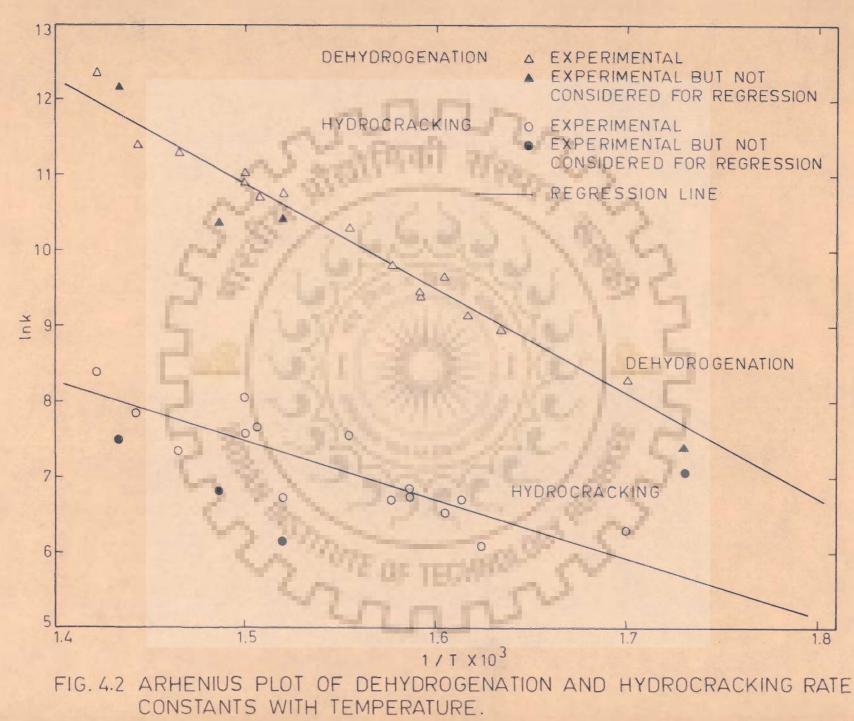
$$3_{m} = \frac{(\Delta H). D_{e.C_{s}}}{k_{e.T_{s}}}$$

As the external mass and heat transfer resistances are negligible, we can take the values of surface concentrations and temperatures as those of bulk concentrations and temperatures respectively. Thus, we have

$$\beta_{\rm m} = \frac{(\Delta H) \cdot D_{\rm e} \cdot C_{\rm b}}{k_{\rm e} \cdot T_{\rm b}}$$

The values of factor β_m are calculated for all the sets and is tabulated in Appendix-E. The maximum temperature gradient is found to be 2°C and this further confirms that the catalyst pellet is essentially isothermal.

4.8 SIGNIFICANCE OF HEAT AND MASS TRANSPORT LIMITATIONS


From the above analysis it can be concluded that -

- the external mass-and heat-transfer limitations are negligible,
- (2) the difference between bulk and surface temperature is insignificant and the catalyst pellet is essentially isothermal, and
- (3) the internal mass transport limitation is significant and it must be considered while estimating the intrinsic rate constants.

4.9 ESTIMATION OF EFFECTIVENESS FACTORS AND INTRINSIC RATE CONSTANTS

The computed values of apparent rate constants k_1 and k_2 , physical properties of catalysts and effective diffusivity of reactant are used to calculate the effectiveness factors γ_1 and γ_2 , and intrinsic rate constants k_1 and k_2 following the procedure given in Appendix-C. Tables D-1 and D-2, Appendix D, show the apparent and intrinsic rate constants and effectiveness factors at different temperatures for dehydrogenation and hydrocracking reactions, respectively. The values of k_1' , k_2' , k_1 and k_2 obtained from experimental measurements at very low or very high cyclohexane conversion to benzene which are not considered very accurate due to the reasons explained in Appendix-C are marked by asterisk in Table D-1 and D-2 and these values of k_1 and k_2 are not used in the estimation of activation energies. These values belong to sets No.1, 14, 18 and 19.

Activation energy for dehydrogenation and hydrocracking rate constants are determined by assuming Arrhenius temperature dependance. Fig. 4.2 shows the plot of ln k_1 and ln k_2 as a function of 1/T and the straight lines are drawn by regression analysis of all data points except

those encircled which were not considered very accurate for reasons explained earlier. The temperature dependance of rate constants obtained from the regression analysis is

Dehydrogenation :
$$k_1 = \exp(31.57 - \frac{13,800}{T})$$
 (4.7)

Hydrocracking:
$$k_2 = \exp(18.97 - \frac{7.654}{T})$$
 (4.8)

CHAPTER-5

DEVELOPMENT OF KINETIC AND DEACTIVATION MODEL

In the kinetic analysis presented in previous Chapter, the intrinsic rate constants are calculated for dehydrogenation and hydrocracking reactions for undeactivating catalyst (at t= 0) assuming the catalyst activity to be unity throughout the bed. This is a safe assumption at the start of the run, but due to deposition of poisons on the catalyst, the catalyst activity will fall with time and will also change along the bed. The fall in activity will be maximum at the inlet of the reactor and minimum at the reactor exit since the reactant concentration, which also causes deactivation is maximum at the reactor inlet. Thus the complete kinetic model is :

	$c_{6}H_{12} \xrightarrow{k_1} c_{6}H_{6} + 2H_2$
Hydrocracking :	$C_6H_{12} + 2H_2 \xrightarrow{k_2} 2C_3H_8$
18/-	or $C_4H_{10} + C_2H_6$
2 min	or $C_5H_{12} + CH_4$

A Contract to second states

Deactivation:	C6 ^H 12	$\xrightarrow{k_d}$	Catalyst poison	(coke)
~ (SU		2.	(5.1)

It is assumed that the loss of cyclohexane due to deactivation reaction is negligible, but the changes in catalyst activity due to the deposition of the poisons is quite significant.

In chapter 4 it has been concluded that only internal mass transfer limitations needs to be considered while analysing the experimental rate data. The values of intrinsic rate constants k_1 and k_2 for dehydrogenation and hydrocracking reactions respectively and their temperature dependence has already been reported in chapter 4.

5.1 DEACTIVATION MODEL DEVELOPMENT :

It has been assumed that the coke formation on catalyst will result in loss of catalyst activity for only dehydrogenation reaction involving platinum sites and not for hydrocracking reaction which takes place on acidic (alumina) sites. This is a valid assumption since cracking reactions are not very specific as far as the nature of catalyst surface is concerned. This assumption has been recently used by Mahoney (55) to successfully analyse his data for dehydrocyclization of n - heptane on platinum - on - alumina reforming catalyst. Thus, the rates for dehydrogenation and hydrocracking reactions with catalyst deactivation can be represented as follows :

$$r_1 = k_1 \eta_1 a c_A$$
 (5.2)
 $r_2 = k_2 \eta_2 c_A$ (5.3)

Where a is the activity of the catalyst which has been assumed to be unity for undeactivated catalyst at t = 0, and in general, is a function of time-on-stream and position in the bed. It may be noted that the effectiveness factors used in the equations (5.2) and (5.3) correspond to those for undeactivated catalyst.

The variation of activity with position is primarily due to the fact that the rate of catalyst deactivation depends on reactant (cyclohexane) concentration and cyclohexane concentration decreases as it gets converted in the reactor into benzene and hydrocracked products. Continuity equations, simillar to those used by Lambrecht, Nussey and Froment (49) can be written for benzene, hydrocracking products and catalyst activity, and these can be solved simultaneously using proper form of rate equations for dehydrogenation equation (5.2), hydrocracking equation (5.3), and activity change. However, simultaneous solution of these non-linear partial differential equations is quite time consuming even on a fast computer as observed by Lambrecht et al. The works of Khang and Levenspiel (45) and Wolf and Peterson (89) for similar reaction systems indicate that the change in reactant concentration with catalyst bed position is much faster and predominant as compared to the change in concentration with time at any bed position. Thus a simplified procedure is adopted to solve the continuity equations. This assumes a quasisteady state behaviour with respect to catalyst activity for dehydrogenation reaction while solving the differential equation describing material balance for benzene and cyclohexane in the reactor, that is,

$$dX_{B} = k_{1} \eta_{1} C_{A} a d (W/F)$$
(5.4)
$$dX_{A} = -(k_{1} \eta_{1} C_{A} a d (W/F)$$
(5.5)

and

The change in activity with time at different positions in reactor bed are then computed with the help of deactivation rate equation given below :

$$-\mathbf{r}_{d} = -\frac{da}{dt} = \mathbf{k}_{d} a^{m} \left(\frac{\mathbf{C}_{A}}{\mathbf{C}_{H}}\right)$$
 (5.6)

For an appropriate time interval, at any position in the bed, the values of reactant concentration C_A and C_H can be considered as constant and decrease in catalyst activity at that position computed. After obtaining the new activity profile of satalyst in the reactor bed, the material balance equations (5.4) and (5.5) are solved using these activity values. The new concentration profiles are then used in equation (5.6) to compute decay in catalyst activity for the next time interval at any given position of the catalyst bed in the reactor. Alternate solution of material balance equations and catalyst deactivation rate equation continues

till the end of the run. For these computations, a time interval of 5 minutes was choosen to obtain the desired accuracy with minimum computation time. The details of computation on accuracy are discussed in the next chapter entitled Discussion anof Results.

5.2 ESTIMATION OF DEACTIVATION PARAMETERS :

Assumed values of m and k_d were used to calculate the cyclohexane and benzene mole fractions at reactor exit at different times by solving the material balance equations and catalyst deactivation rate equation alternately, as described earlier. For different operating conditions, the solution was carried out on IBM 370/145 of the Oil and Natural Gas Commission, Dehradun, and DEC 2050 system of Regional Computer Centre, Chandigarh using fourth order Runge Kutta method for numerical integration of equations (5.4) to (5.6). It may be noted from equations (5.4) and (5.5) that

$$\frac{dX_{A}}{dX_{B}} = 1 + \frac{k_{2} \gamma_{2}}{k_{1} \gamma_{1}a} = 1 + \frac{K}{a}$$
(5.7)

For (i + 1) th bed increment, the above equation can easily be integrated by assuming average catalyst activity for that bed increment to give -

$$(x_{A})_{i} - (x_{A})_{i+1} = \begin{bmatrix} 1 + \frac{k}{(a_{avg})_{i+1}} \end{bmatrix} [(x_{B})_{i+1} - (x_{B})_{i}]$$
(5.8)
ere $\frac{1}{(a_{avg})_{i+1}} = \frac{1}{2} \begin{bmatrix} \frac{1}{a_{i}} + \frac{1}{a_{i+1}} \end{bmatrix}$

where

Fraction of cyclohexane converted to hydrocracked products is calculated by cyclohexane material balance, that is,

$$x_{c} = 1 - x_{A} - x_{B}$$

This is an initial value type numerical integration with 40 equal increments in the catalyst bed from reactor inlet to exit, and for this case

the initial values are given by :

at the inlet of the reactor : $X_A = 1$, $X_B = 0$, $X_C = 0$ and at t = 0, a = 1 for all positions in the bed. The accuracy of computation is discussed in the next chapter entitled Discussion of Results.

The optimal values of k_d and m were obtained for each set by minimizing the variance of percentage error between calculated and the experimental values of fraction of cyclohexane converted into benzene, at the reactor exit conditions, at different times-on-stream for each set where the percentage error is defined as :

(5.9)

These experimental values were obtained from smoothened experimental data and are tabulated in Appendix-B as already discussed. The reason for selecting the minimization of variance for benzene percentage error was that for most of the samples the concentration of benzene was quite high and the accuracy for chromatographic analysis for benzene is more than cyclohexane as explained in section 3.3 on analysis of liquid product. The values of k_d and m were optimized to within ± 5 and ± 2 percent of their optimum value, respectively. The optimal values of k_d and m thus obtained are tabulated in Table 5.1. The calculated values of fraction of cyclohexane remained unconverted and that converted into benzene, and corresponding variance of percentage error are also tabulated in Appendix-B.

Complete analysis was also carried out for the equation :

$$r_{d} = -\frac{da}{dt} = k_{d} a^{m} C_{A}$$
 (5.10)

taking into consideration, the concentration of cyclohexane only instead of the ratio of cyclohexane to hydrogen C_A/C_H , used in equation (5.6).

Table 5.1: Experimental rate constants, effectiveness factors, Thiele parameters, and optimized deactivation parameters m and k_d

SET NO. TR	kj	η	k ₂	n ₂	Ø ₁	ø ₂	kd	m
1 310	1700	0.767	1190	0.820	0.755	0.630	0.408	1.405
2 355	12000	0.423		0.855	1.970	0.547	0.550	1.756
3 355	12700	0.413	864	0.865	2.021	0.526	0.779	1.548
4 350	15200	0.381	646	0.882	2.221	0.458	0.433	1.280
5 390	43300	0.241	2170	0.738	3.728	0.829	0.797	1.941
6 315	3970	0.621	542	0.906	1.146	0.419		1.383
7 345		0.467	825	0.842	1.738	0.518	0.555	1.129
8 410	81900	:0.187	1500	0.800	5.020	0.679	2.639	3.113
9 370		. 0.290	1900	0.757	3.074	0.781	1.075	2.321
10 435		0.116	4440	0.608	8.267	1.186	2.330	2.720
11 385		0.240	839	0.868	3.795	0.516	1.324	1.766
12 360		0.370	800	0.872	2.311	0.506	0.909	2.553
13 420		0.180	2600	0.712	5.207	0.895	1.65.8	2.049 -
14 425		Co122	1810	0.795	7.787	0.689	2.372	1.742
15 400		0.208	3100	0.678	4.307	0.984	0.989	1.975
16 400		0.210	1900	0.761	4.240	0.771	0.836	2.305
17 340		0.507	416	0.925	1.570	0.368	0.433	1.257
18 385	33900	0.270	469	0.920	3.278	0.386	1.191	1.623
19 405	47500	0.330	932	0.0867,	3.822	0.518	. 4. 527	12927
Table 5	.2: Calcu	tated r	ate co	nstants	s. effe	ctivena	sa fact	OTS.
	parameter							
	parameter			vauton	parame	0618 -	as obta	THEN

	-	are he	TOMETET	S' CIIU	"aga cor	auton	barame	0618 -	as one	Tuen
	from	n the	propose	d model	L	Ball in the surgery				
SET.	NO.	TR	k1	nı	ø,	k ₂	n2	Ø2	ka	m
	1	r 10	2709	0.696	,935	346	0.979	0.334	0.318	1.190
	2	355	14770	0.388	2.181	886	0.862	0.534	0.681	1.495
	3	355	14770	0.388	2.181	886	0.862	0.534	0.681	1.495
	4	350	12380	0.417	1.998	803	0.873	0.509	0.629	1.451
	5	390	47100	0.235	3.897	1686	0.776	0.737	1.145	1.884
	6	315	3313	0,659	1.034	387	0.932	0.353	0.348	1.215
	7	345	10350	0.448	1.827	727	0.883	0.484	0.580	1.410
	8	410	86630	0.177	5.285	2364	0.720	0.873	1.506	2.174
	9	370	24660	0.313	2.819	1177	0.828	0.616	0.857	1.644
	10	435	176800	0.127	7.550	3511	0.649	1.064	2.074	2.600

1544

975

2780

3007

1840

1840

1544

657

2176

0.789

0.851

0.692

0.677

0.762

0.762

0.892

0.789

0.735

0.706

0:561

0.947

0.985

0.770

0.770

0.460

0.838

1.819

1.542

2.337

2.422

1.952

1.952

1=371

1.819

2.097

1.067

0.736

1.716

1.829

1.228

1.228

0.535

1.067

1.408

3.601

2:380

6.114

6.566

4.212

4.212

1.668 3.601

4.906

S

11

12

13

14

15

16

17

18

19

385

360

420

425

400

400

340

385

405

40210

17570

115900

133700

55040

55040

40210

8627

74640

0.252

0.361

0.155

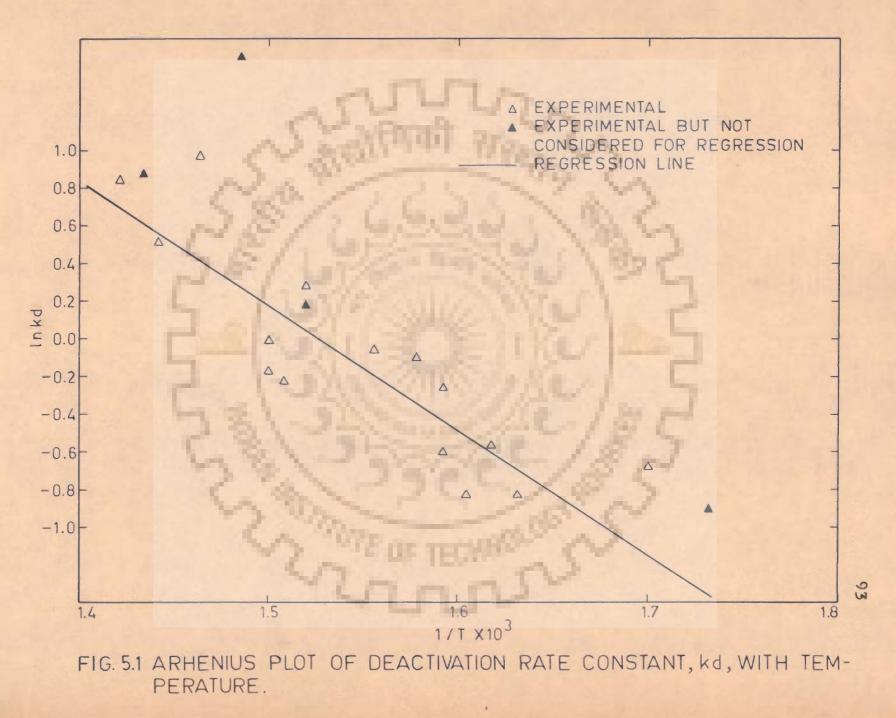
0.145

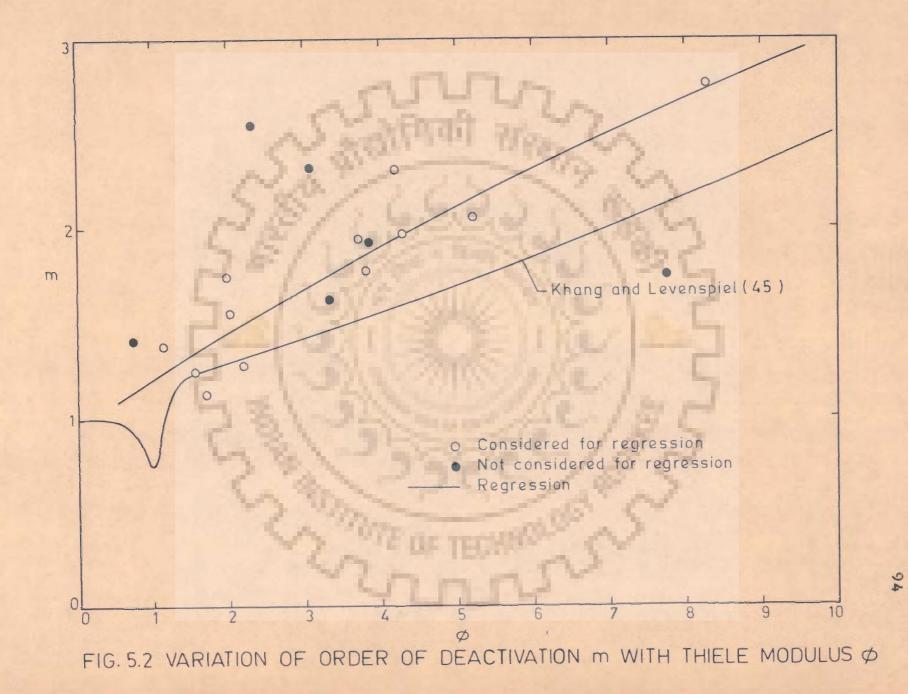
0.219

0.219

0.480

0.252


. 0.190


The variance in general were more with equation (5.10) than those obtained with equation (5.6) for most of sets. But more important reason for rejecting the use of equation (5.10) was the fact that it assumes that the deactivation phenomena is independent of hydrogen concentration. This assumption is not true because beneficial effect of high hydrogen concentration in reducing the catalyst deactivation rate in reforming process is well established. Accordingly, the concentration ratio C_A/C_H is also used by Lambrecht et al. (49), and Wolf and Peterson (89). Therefore, only equation (5.6) is used in the final deactivation model.

5.2.1 Estimation of Arrhenius Equation for Deactivation Rate Constants

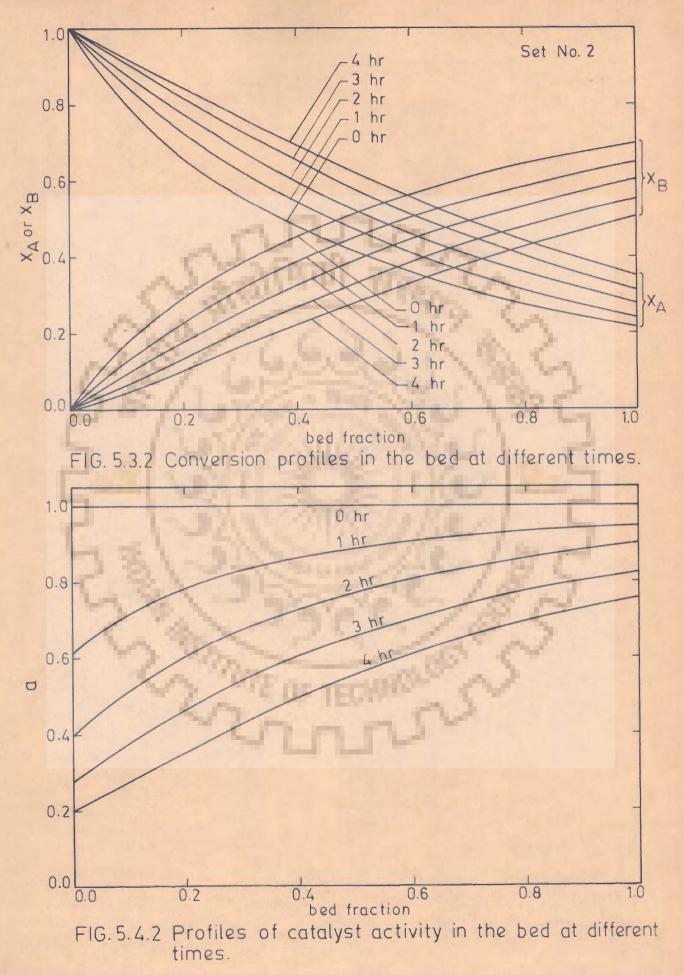
The optimized values of k_d were used to make an Arrhenius plot as shown in Fig. 5.1 between ln k_d and 1/T. The four points belonging to sets number 1, 14, 18 and 19, which were neglected for regression in section 4.9 for dehydrogenation and hydrocracking rate constants for reasons explained earlier, were again not considered for regression analysis of deactivation rate constant data. The points 1 and 19 are again found to deviate from the straight line significantly, Fig. 5.1, which supports the reasoning given earlier for neglecting them for evaluating the Arrhenius constants for dehydrogenation and hydrocracking rate constants. The deviation of k_d values corresponding to sets 14 and 18 was not too much because the experimental conversion values for various time-on-stream remained within the limits imposed by the accuracy criteria, as explained in Appendix-C, except for initial one hour. The straight line is drawn in Fig. 5.1 using the constants determined by regression analysis, and the relationship is given by :

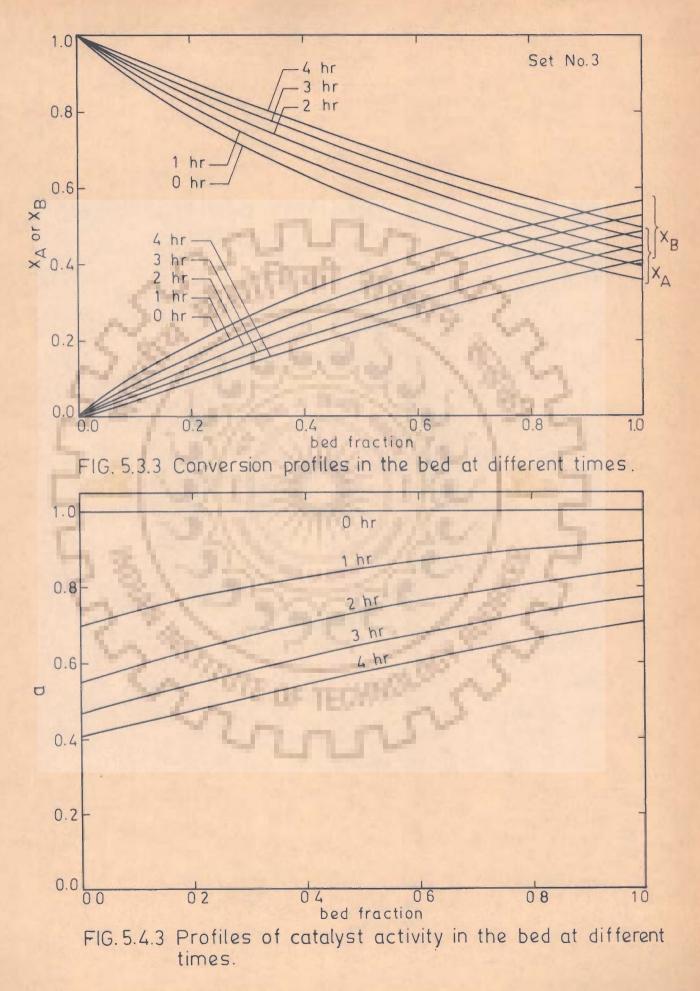
$$k_d = \exp(9.4751 - \frac{6,192}{T})$$
 (5.11)

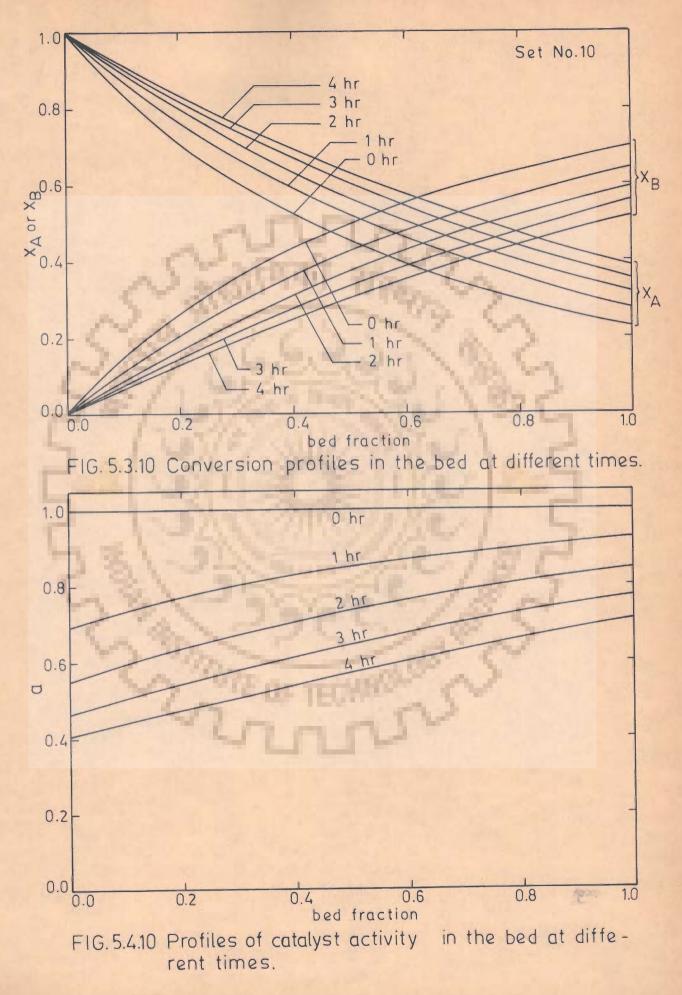
5.2.2 Estimation of Constants for Ø and m Polynomial :

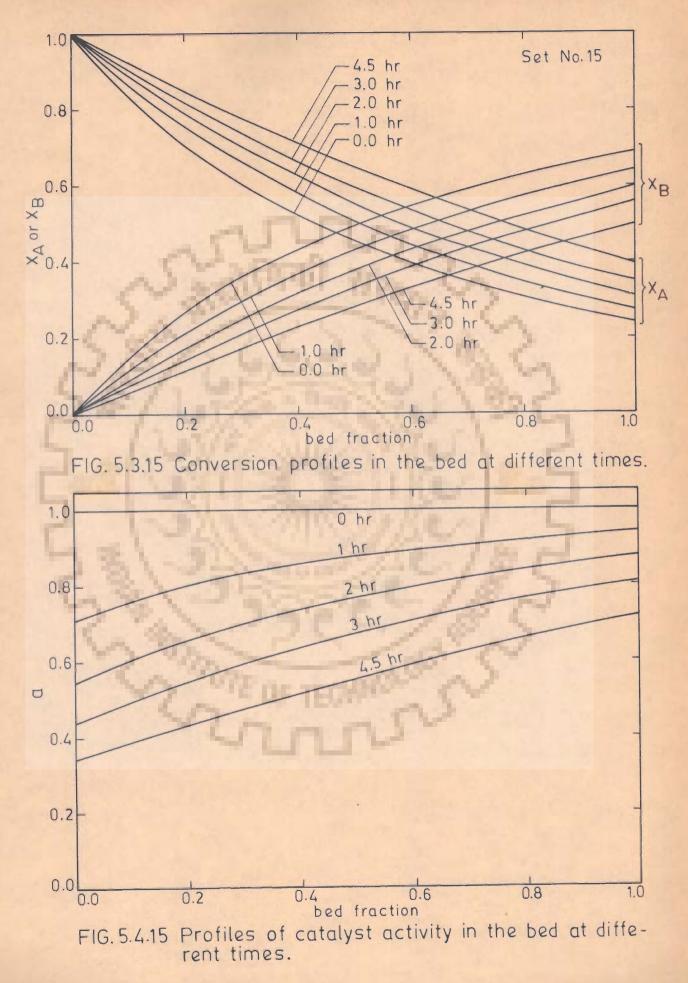
Khang and Levenspiel (45) have reported that the constant m used in deactivation rate equation (5.6) is related to Thiele parameter \emptyset of the main reaction for a deactivating catalyst system. Accordingly, a second order polynomial was used to correlate the optimized values of m as given in table 5.1 with the experimental values of Thiele parameter for dehydrogenation reaction \emptyset_1 as given in Table D-1 in Appendix-D.

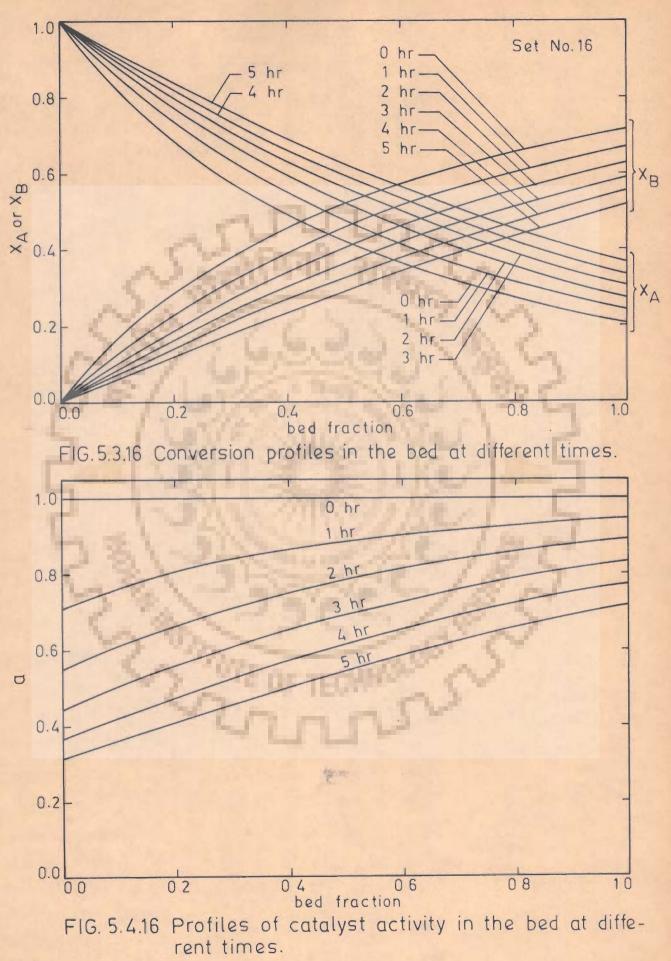
The values of m and \emptyset_1 are plotted in Fig. 5.2. From the figure it is clear that the values are too off for sets 8, 9, 12 and 14. The four points belonging to sets number 1, 14, 18 and 19 are again not considered for regression in view of their doubtful accuracy along with the three additional points belonging to sets number 8, 9 and 12. The values of constants in polynomial were thus determined by regression analysis for the remaining 12 points. The relationship of m with \emptyset_1 is given by :


$$m = 0.9502 + 0.2623 \, \emptyset_1 = 0.005806 \, \emptyset_1^2$$
 (5.12)


and is shown as a curve on Fig. 5.2. The relative percentage error variances for X_A and X_B for sets 8, 9 and 12 corresponding to optimal m values and m values obtained by equation (5.12) are also given in Table B-8, 9 and 12 in Appendix-B. Comparison of these variances indicate relatively lesser sensitivity for m values, that is, shallow minima for these sets. Therefore, leaving out of these widely deviating points, set 8, 9 and 12 for m - \emptyset_1 regression analysis can be justified. For comparison, the m - \emptyset_1 relationship of Khang and Levenspiel (45) is also shown in Fig. 5.2.


5.3 APPLICATION OF THE PROPOSED MODEL FOR THE PREDICTION OF CONCENTRATION AND ACTIVITY PROFILES :


The material balance equations for plug flow reactor for


dehydrogenation and hydrocracking reactions, equation (5.4) and (5.5), along with deactivation rate equation (5.6) are used to predict the concentration and activity profites in the catalyst bed for different values of times-on-stream, for a particular set of operating conditions and catalyst. The kinetic and deactivation model consists of equation (4.7), (4.8), (5.10) and (5.11) to calculate the intrinsic dehydrogenation and hydrocracking rate constants, deactivation rate constants and m respectively. The value of Thiele parameter needed to calculate m and effectiveness factor is defined by equation (C-3) and effectiveness - factor 1 - Ø relationship is given by equation (C - 4), Appendix C. The model consisting of these six equations is used to calculate the concentration and activity profiles along the catalyst bed for different times-on-stream by following the numerical integration procedure discussed earlier, section 5.2. The values of fraction of cyclohexane converted into benzene and the fraction remained unconverted at the reactor exit are calculated by the proposed model and these computed values are used to calculate the variance of the percentage error between the experimental and computed values. Appendix-B also gives the computed values of X_{Δ} and X_{B} by the proposed model along with smoothened experimental values and those obtained by using optimal values of m and k_d. The relative and absolute variances of percentage error for X_A and X_B are also given at the bottom of the table for each set. The absolute error is defined as the difference between the experimental and calculated value as obtained from the proposed model, and the relative percentage error has already been 2" defined by equation (5.9). The errors have been calculated for every thirty minutes interval from the start of the run, at the exit of the reactor, though for the solution of simultaneous equations assuming pseudo-steady - state behaviour the time interval is five minutes.

The advantage of comparing the two values, from the smoothened and calculated curves, at every five minutes interval was not significant. Fig. 4.1.1 to 4.1.19 also show the computed values of X_A and X_B by the model for comparison with experimental values.

The values of X_A and X_B at different positions in the bed and for different times-on-stream, as predicted by the proposed model are plotted in Figs. 5.3 for five representative sets. The predicted values of catalyst activity by the model for different axial positions of the catalyst bed in the reactor, and for different times-on-stream are also plotted on Fig. 5.4 for five representative sets to indicate the trends of changes in these values. Appendix F gives the values of catalyst activity a, and fractions X_A and X_B at different bed fractions and times - on - stream for all the nineteen sets.

CHAPTER-6

DISCUSSION OF RESULTS

The techniques and the assumptions involved in the analysis of the integral reactor data and the development of kinetic and deactivation model are discussed in their justifications. The results, in the form of various correlations, obtained are also presented in these chapters and these results will now be discussed in the following sections of this chapter.

6.1 DEHYDROGENATION AND HYDROCRACKING REACTION KINETICS :

Intrinsic rate constants for dehydrogenation and hydrocracking reactions were calculated assuming first order irreversible kinetics as per the procedure explained earlier. These intrinsic rate constants are plotted in Fig. 4.2 to calculate activation energies assuming Arrhenius temperature dependance. From this figure it is clear that these intrinsic rate constants depend only on temperature and not on other operating conditions, such as, liquid hourly space velocity and hydrogen-to-cyclohexane mole ratio. This confirms the validity of first order irreversible kinetics for dehydrogenation and hydrocracking reactions at atmospheric pressure operation in the temperature range of 580 to 710 K. The first order irreversible kinetics was also observed by earlier investigations for these reactions under similar operating conditions (6,23,32,89,40).

The temperature dependance of intrinsic rate constant for dehydrogenation reaction, as obtained by regression analysis, is given by equation (4.7) -

 $k_1 = \exp(31.57 - \frac{327,300}{RT}) \frac{cc}{hr.gm cat}$

and the correlation coefficient for the regression line was obtained

Table 6.1 Comparison of A	ctivation Energies	for Dehydrogenation Re	actions:
Worker	Reactant	Catalyst	Activation Energy (cal/gnole)
Haensel and Berger [32]	Cyclohexane	Pt - on - alumina	18,100
	Methyl cyclo <u>-</u> pentane	Pt - on - alunina	32,800
Snith [78]	Naphthenes	0.6% Pt-on-alumina	38,225
Panchenkov et al [94]	Cyclohexane	Pt - on - alunina	18,000
Barnett [6]	Cyclohexane	Pt - on - alumina	11,600 [.]
Graham et al [28]	Cyclohexane	Pt - on - alunina	58,000
Henningsen et al [40]	C8 naphthenes	Pt - on - alumina	30,000
Christoffel et al [17]	Cyclohexane	Pt - on - Zeolite	41,500
Fron the present Work	Cyclohexane	0.6% Pt-on-alumina	27,300
	and the second		

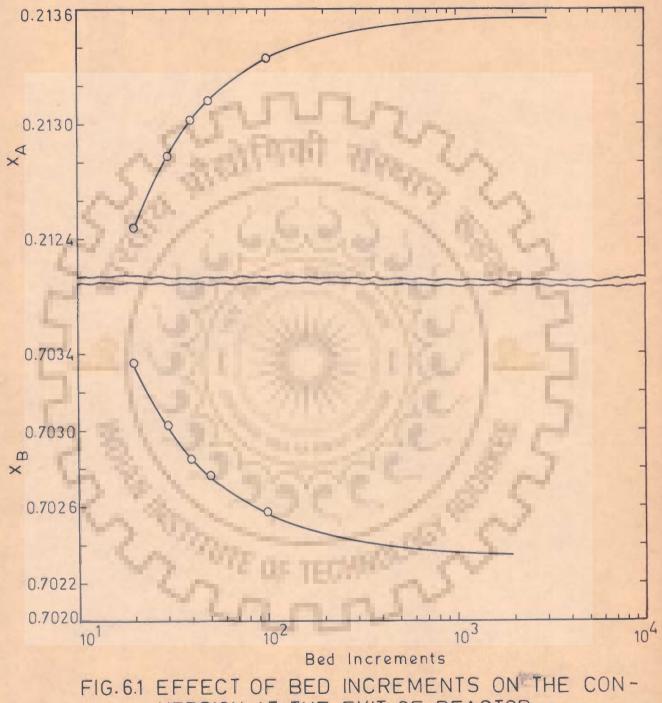
Table 6.2 Comparison of Activation Energies for Hydrocracking Reactions:

Henningsen et al [40]	C ₈ naphthenes	Pt - on - alunina	45,00 <mark>0</mark>
Snith [78]	Naphthenes	0.6% Pt-on-alumina	68,53 <mark>0</mark>
From the present work	Cyclohexane	0.6% Pt-on-alunina	15,15 <mark>0</mark>

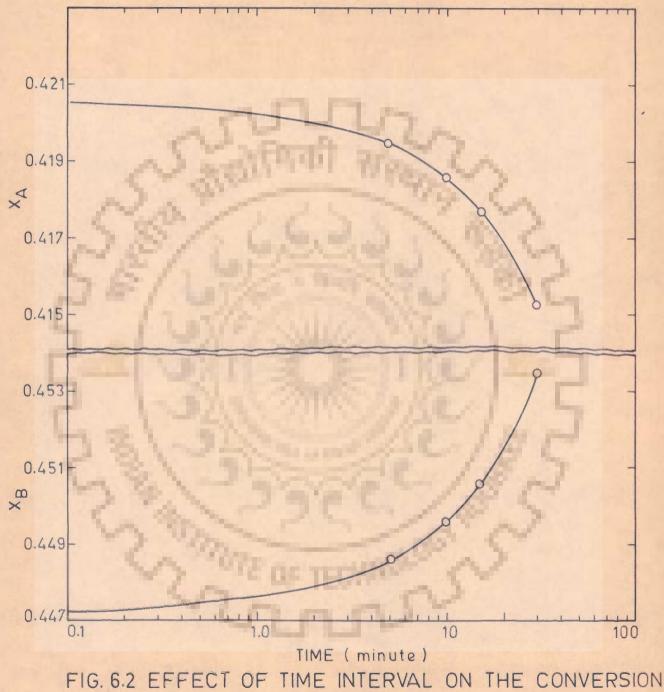
as -0.991, which indicates a very good fit of data for the dehydrogenation rate constants. The values of activation energy for dehydrogenation, as reported by various investigators, are compared in Table 6.1. The very high value of 58,000 cal/gmole for the activation energy of dehydrogenation of cyclohexane as reported by Graham et al. (28) cannot be considered by very reliable due to very low catalyst concentrations, assumption of complete external mass transfer control with reaction in equilibrium at catalyst surface, and at the same time reporting very low values of intrapellet effectiveness factors. Barnett (6) reported a value of 41,600 cal/ gmole, twice the value of apparent (experimental) activation energy obtained by him for 1/8 inch peldet assuming Knudsen diffusion with a tortuosity factor of 1/8. His assumption that the dehydrogenation reaction was completely intrapeldet diffusion controlled may not be fully valid and therefore, the intrinsic activation energy value may be less than twice the apparent (experimental) activation energy value. The value 41,500 cal/ gmole reported by Christoffel at al. was reported for platinum -on-zeolite catalyst where benzene and methylcyclopentate were the products of reaction. Other reported values of activation energy for the dehydrogenation of cyclohexane/naphthenes range from 18,000 to 38,225 cal/gmole and the value of 27,300 cal/gmole obtained in the present investigation, therefore, appears reasonable. Eventhough, various investigators have studied the effect of dehydrogenation reaction at different pressures, but the effect of pressure on activation energy is expected to be insignificant (28).

The temperature dependance of intrinsic rate constant for hydrocracking reaction, as obtained by regression analysis, is given by equation (4.8) -

 $k_2 = \exp(18.97 - \frac{15,150}{RT}) \frac{cc}{hr.gm cat}$


and the correlation coefficient for the regression line was obtained as -0.902, which indicates a good fit of data for the hydrocracking rate constants. The values of activation energy, as reported by other investigators, is given in Table 6.2. Lambrecht et al. (49) had indicated the unreliability of hydrocracking reaction rates, as obtained from material balance analysis, and have not reported the values of hydrocracking rate - constants. Same appears to be true in the present work also, as the conversion to hydrocracked products was calculated to match the material balance of cyclohexane feed, and any error in measurements will ultimately effect the fraction of cyclohexane converted to hydrocracked products. The intrinsic hydrocracking rate constants were calculated from the fractional conversions to hydrocracked products as obtained by extrapolation of data for undeactivated catalyst, and this can also result in some error. Since the fractional conversions to hydrocracked products are small, even small error in measurements or extrapolations will greatly effect the values of hydrocraciacking rate constants. Because of this difficulty very few workers have estimated the values of hydrocracking rate constants and the activation energy. A comparison of the only available three values, Table 6.2, for the activation energy for hydrocracking reactions show a wide variation in values. An activation energy of 15,150 cal/gmole for hydrocracking reactions obtained in the present investigation appears to be rather low. More careful experimental measurements and direct analysis of the hydrocracked products may provide more accurate hydrocracking rate constant and activation energy values.

6.2 ACCURACY OF COMPUTATION PROCEDURE


The solution of equations 5.4 and 5.5 was first carried out for 20, 30, 40, 50 and 100 bed increments for set number 16 at initial (undeactivated catalyst) conditions. This set has quite high

conversions out of all the sets considered reliable for analysis and will, therefore, show maximum computation error. Fig. 6.1 shows the values of X_A and X_B at the reactor exit as a function of the number of bed increments used for numerical integration. It shows the values for X_B as 0.70285 and 0.70236 and for X_A as 0.21302 and 0.21354 for 40 and 1000 bed increments. The values corresponding to 1000 bed increments are obtained by extrapolation of curves. Thus, a difference of about 0.05 percent for X_B and X_A is found when number of bed increments are increased from 40 to 1000 for numerical integration. The accuracy of analytical measurements is no better than ± 2 percent and, therefore, 40 bed increments were considered sufficient to reduce the computation time. Further, Smith (77) has indicated that the proper bed increments in the bed.

After deciding, the bed increments as 40, an analysis was next carried out to check the effect of time interval in the solution of equations 5.4 to 5.6 on the X_A and X_B values at the exit of reactor. For this analysis time intervals of 5, 10, 15 and 30 minutes were taken and the exit X_{A} and X_{B} values are plotted as a function of time intervals in Fig. 6.2. As expected, this shows that the smaller is the time interval, the better will be the accuracy of X_A and X_B values but the computer time will increase proportionately. The values at the exit of reactor after 5 hours time-on-stream for the same set are 0.4486 and 0.4476 for X_B , and 0.4194 and 0.4206 for X_A using 5.0 and 0.1 minute time interval respectively. The value for 0.1 minute time interval was four found from Fig. 6.2 by extrapolation. Thus a better accuracy of about 0.10 percent for X_B and 0.12 percent for X_A values after 5 hours time-onstream is obtained when the time interval for computation is reduced to 0.1 minute from 5 minutes for numerical integration but will require 50 times more computation time. Again, considering the accuracy of analytical

VERSION AT THE EXIT OF REACTOR.

AT THE EXIT OF REACTOR.

and other measurements, 5 minutes time interval for numerical integration is considered appropriate.

The computed values of X_A , X_B and activity for different bed positions and times-on-stream are given in Tables F-1 to F-19 in Appendix F. These tabulated values clearly justify the assumption of quasi-steady state because changes with axial positions are much faster and predominant compared to the changes with time at any bed position. Thus, a time interval of 5 minutes with 40 bed increments were choosen and the results of computation are considered sufficiently accurate for the analysis in the present investigation.

The optimal values of deactivation parameters m and k_d were determined by minimuzation of variance in the X_B values as discussed in section 5.2. Pattern search technique was used for this optimization. Since no a propriori information was available about the expected values of m and k_d , the reduction in computation time was achieved first by using $\frac{1}{2}$ 30 minutes time interval with 20 bed increments and then using these m and k_d was values for final optimization using 5 minutes time interval with 40 bed increments.

It is important to note that the total time requirement for the computation of kinetic and deactivation parameters for one set is nearly two minutes on IBM 370/145 system as compared to $5\frac{1}{2}$ to 6 hours required by Lambrecht et al. (49) on IBM 360/30 for determining one set of parameter values. It may also be pointed out that one complete calculation cycle for computing X_A , X_B and activity profiles along the bed at any given time-on-stream requires only 1.1 seconds approximately on IBM 370/1426 system.

6.3 DEACTIVATION RATE CONSTANTS

The temperature dependance of deactivation rate constant is given by equation (5.11) -

$$c_{\rm d} = \exp\left(9.475 - \frac{12,260}{\rm RT}\right) (hr)^{-1}$$

and the correlation coefficient for the regression line was obtained as -0.872, which indicates a reasonably good fit of data for the deactivation rate constants obtained from the proposed deactivation equation (5.6). It is not possible to compare the activation energy for deactivation reaction with the work of earlier investigators because no such information is available from the available published literature. However, Lambrecht et al. (49) have reported the Arrhenius relationship for the fouling reaction by the equation :

$$k_{d} = \exp(19.3 - \frac{35,500}{RT}) \frac{g \ coke}{hr.g \ car}$$

by analysing the coke profile for n- pentane isomerization reaction after the end of the run. But their Arrhenius plot for k_d shows considerable scatter and C_5 hydrocarbon reactions are expected to require higher activation energy as compared to C_6 hydrocarbons.

In this work, it is important to note that the deactivation parameters have been determined by using reactor exit X_A and X_B profiles as a function of time-on-stream using a suitable optimization procedure. Since no other assumption has been introduced and also in view of good correlation coefficient for deactivation rate constant, the equation (5.11) can be considered reliable for k_d .

6.4 RELATIONSHIP BETWEEN m AND Ø

The m - \emptyset_1 relationship is given by equation (5.12). m = 0.9502 + 0.2623 \emptyset_1 - 0.005806 \emptyset_1^2

for the Thiele parameter (based on dehydrogenation rate coefficient) range of 0.75 to 8.2. This relationship is very nearly linear in view of very low value of coefficient of \emptyset_1^2 . In Fig. 5.2 m and \emptyset_1 relationship is

plotted along with that obtained by Khang and Levenspiel (45) for comparison. The nature of two curves is similar for \emptyset_1 values larger than 1.0 but the m values determined in this study are higher, as compared to those obtained by Khang and Levenspiel. This difference may be due to the strong simplification made in the kinetic scheme for deactivation by considering it as a single reaction in this investigation. Khang and Levenspiel have reported a minima in $m - \emptyset_1$ curve, at \emptyset_1 value of near to unity. But no such minima is observed in this work for \emptyset_1 value as low as 0.77. Further considerable scatter in values is observed in Fig. 5.2. The values of m in the range of 1 and 3 for the experimental Thiele parameter range of 0.75 to 8.2 indicate that deactivation reaction is simultaneous to the main dehydrogenation reaction and support this assumption used in the model development. In this study the value of m has not gone below unity and this indicates that even at the \emptyset_1 value of 0.77 the pore mouth poisoning may be important.

6.5 ACCURACY OF THE PROPOSED MODEL

the throp of and

The conversion values at the exit of reactor as calculated by the proposed model along with experimental points are shown in Fig. 4.1.1 to 4.1.19. Tables B-1 to B-19, in Appendix B also give the relative- and absolute-percentage error variances. The variance of absolute percentage error in X_A and X_B are less than 4.51 and 5.85 respectively for all the sets except set 19 where it is 9.42 for X_A . The variance of relative percentage error is 41.45 for X_A for set 19 and is 31.16 for X_B for set 1. This confirms that the data of sets number 1 and 19 are unreliable for model development due to very low and high conversions respectively. The same is true for set numbers 14 and 18 but to a lesser extent. This justifies the exclusion of data points corresponding to set numbers 1, 14, 18 and 19 in the determination of kinetic and deactivation parameters. The tabulated and plotted values of X_A and X_B indicate that

the proposed model agrees very well with experimental values.

Figs. 5.3 and 5.4 shows the X_A , X_B and activity profiles along the reactor bed for different time-on-stream for five representative sets. The experimental conditions for these five sets are :

SET NO.	TEMP. C	LHSV	MOLE RATIO
2	355	2.052	1.002
3	355	2.437	2.176
10	435	3.737	3.924
15	400	2.721	2.790
16	400	2.473	2.831

The figures corresponding to set numbers 15 and 16 indicate that due to lower LHSV in set number 16, higher conversions to benzene are obtained while there is not much difference in the final activities of the bed (at 4.5 hours times-on-stream it is 0.34 at the inlet and 0.713 at the exit of the reactor for set number 15 and the corresponding values for set number 16 are 0.32 and 0.715 respectively). The figures corresponding to sets 2 and 3 show the combined effect of higher LHSV and moleratio in set number 3 with respect to those for set number 2 and these figures indicate that the fall in activity is more, except for bottom 80 percent of the bed, in set number 2 as compared to set number 3 (at 4.0 hours time-on-stream it is 0.2 at the inlet and 0.75 at the exit of reactor for set number 2 and the corresponding values for set number 3 are 0.39 and 0.73 respectively).

The effect of higher mole ratio, LHSV and temperature is combined in set number 10. For this set, even though the value of X_B at the reactor exit at the end of 4 hours is similar to that for set number 15 (0.518 and 0.513 respectively) the drop in catalyst activity is more

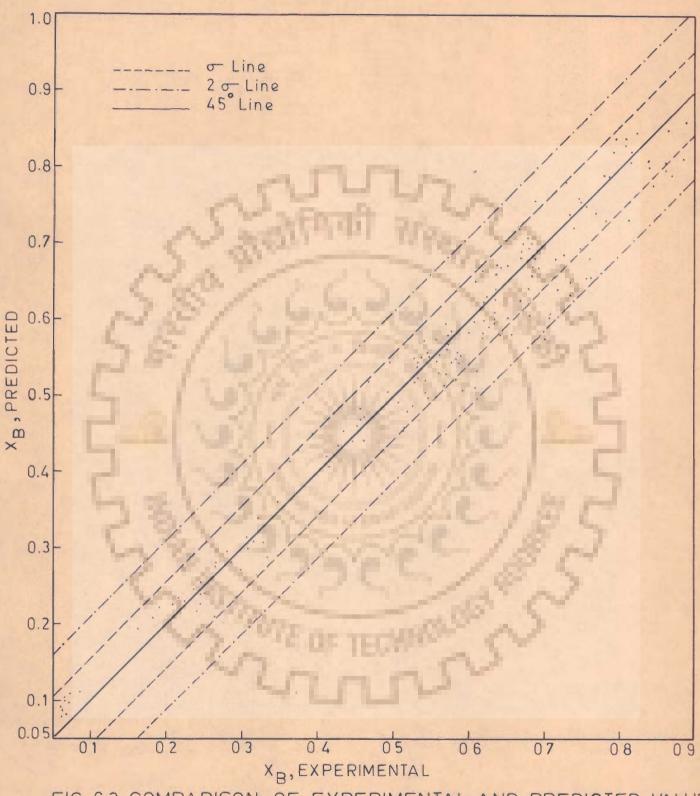
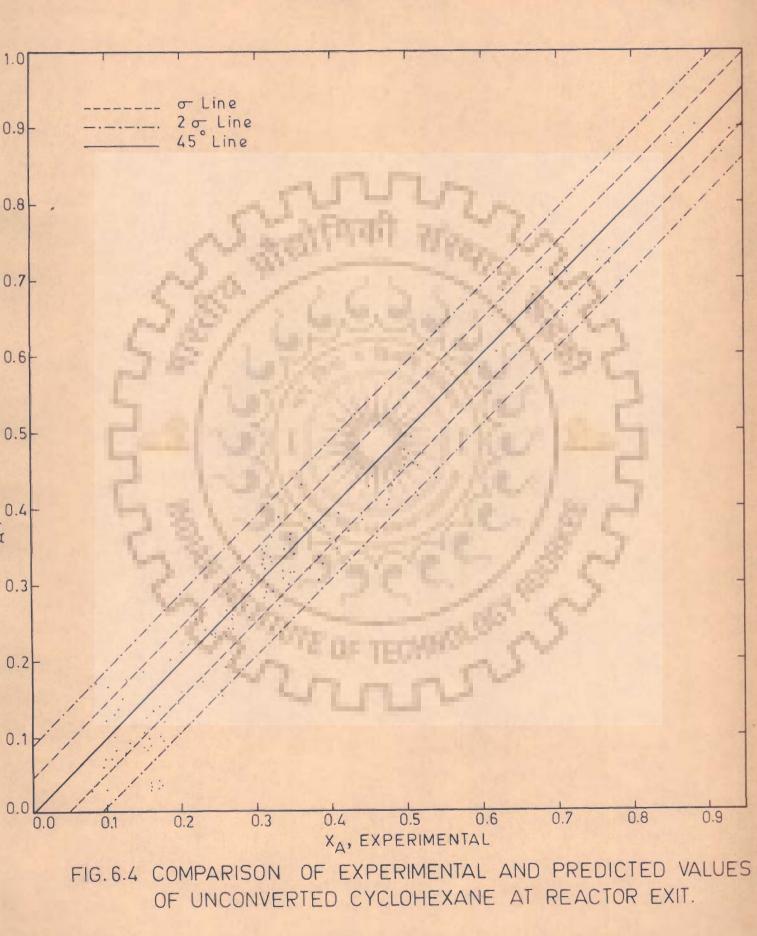



FIG. 6.3 COMPARISON OF EXPERIMENTAL AND PREDICTED VALUES OF CONVERSIONS OF BENZENE AT REACTOR EXIT.

rapid for bottom 50 percent of bed (at 4.0 hours time-on-stream it is 0.406 at the inlet and 0.706 at the exit of reactor for set 10 and the corresponding values for set 15 are 0.368 and 0.743). Thus, it can be observed that the effect of temperature and mole ratio on catalyst deactivation is more pronounced to that of LHSV.

The experimental values and the corresponding values from the model for all the 168 data points are plotted for X_B in Fig. 6.3 and X_A in Fig. 6.4 to show their scatter around 45° line. The absolute percentage error variance between the experimental and predicted values of X_B and X_A is 5.498 and 4.723 respectively but no trend is discernible. The variance values are of the same order as the experimental inaccuracies and, therefore, the kinetic and deactivation model is quite accurate and reliable.

CHAPTER-7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

The following conclusions can be derived from the present investigation :

- For obtaining kinetic and deactivation parameters, smoothening and extrapolation of experimental conversion data under deactivating conditions to zero time for determining conversion values for undeactivated catalyst provide a reliable and accurate procedure
- 2. The following kinetic and deactivation scheme adequately describes the reforming reactions under deactivating conditions with special reference to cyclohexane dehydrogenation on platinum-on-alumina reforming catalyst :

Dehydrogenation: $C_6H_{12} \xrightarrow{k_1} C_6H_6 + 3H_2$; $r_1 = k_1\eta_1 = C_A$ Hydrocracking : $C_6H_{12} \xrightarrow{k_2}$ hydrocracked products; $-r_2 = k_2\eta_2 C_A$

Deactivation : $C_{6}H_{12} \xrightarrow{d} catalyst poison (coke) ; -r_{d} = -\frac{da}{dt}$

3. Estimates of interphase and intrapellet heat and mass transfer resistances under experimental conditions indicate that only intrapellet mass transfer resistance is significant and effectiveness factor values were in the range of 0.12 to 0.77 for the main dehydrogenation reaction, and in the range of 0.60 to 0.93 for the hydrocracking reactions.

 $= k_{d} a^{m} (C_{\Lambda}/C_{H})$

The values of kinetic and deactivation parameters for Sinclair Baker RD 150 containing 0.6 percent Pt-on-alumina catalyst, are :

 $k_{1} = \exp \left(31.57 - \frac{27,300}{RT}\right) \qquad \frac{cm^{3}}{(hr) (g \text{ catalyst})}$ $k_{2} = \exp \left(18.97 - \frac{15,150}{RT}\right) \qquad \frac{cm^{3}}{(hr) (g \text{ catalyst})}$ $k_{d} = \exp \left(9.475 - \frac{12,260}{RT}\right) \qquad (hr)^{-1}$ $m = 0.9502 + 0.2623 \ \emptyset_{1} - 0.005806 \ \emptyset_{1}^{2}$

where Thiele parameter \emptyset_1 is based on k_1 .

- 5. Estimation of hydrocracking rate constants from conversion values, as obtained from the materal balance of cyclohexane feed, is not very reliable. Direct measurement of hydrocracked products is desirable for better estimates of these constants.
- 6. The values of m in the range of 1.0 to 3.0 obtained in this investigation indicate pore mouth poisoning and confirms simultaneous deactivation.
- 7. Quasi steady-state procedure for simultaneous solution of kinetic and deactivation rate equations given in 2 above is quite accurate and reliable. The computer time requirement for this procedure to obtain parameter values for a set of experimental data is extremely small as compared to that required for unsteady state procedure involving partial differential equation. In this work, use of 40 increments for total bed (bed increment of the order of one pellet diameter) gave a computation accuracy of better than 0.05 percent in exit conversion values and use of 5 minutes time interval resulted in a computation accuracy of better than

0.12 percent in exit conversion values at the end of five hours time - on - stream.

8. The proposed kinetic and deactivation model predicts experimental data with sufficient accuracy and absolute percentage error variance between the experimental and predicted values of conversion is 5.5 for X_B and 4.7 for X_Δ .

7.2 RECOMMENDATIONS :

Based on the present investigation , the following recommendations are made for further studies :

- Maintenance of isothermal conditions in the reactor is very important and better heating system, such as, salt bath, may be desirable.
- More accurate flow measurements for liquid feed at very low rates is essential.
- 3. Experimental studies if carried out at pressures close to those used industrially may provide more valuable information regarding kinetic and deactivation parameters. But use of high pressure will reduce the catalyst deactivation rate and, therefore, each experimental run will require much longer time-on-stream to study deactivation phenomena.
- 4. It is desirable to analyse reactor effluents not only liquid products but also for hydrocracked gases for more accurate determination of hydrocracking rate constants. Direct analysis of reactor effluents, without condensing them, by using on-line gaschromatograph is more useful.

- 5. Studies with other feed stocks, such as, pentane, hexane, heptane, octane, methyl cyclopentane, methyl cyclohexane and industrial naphthas of various boiling ranges, may be desirable to simulate in industrial catalytic reformers.
- 6. Other catalysts used industrially may also be used to estimate the effect of catalyst type on kinetic and deactivation parameters.

NOMENCLATURE FOR APPENDICES

- A0,A1,A2 -constants for second order polynomial between m and φ_1
- AMF oyclohexane fed on average flow rate basis, moles
- AMG- cyclohexane in uncondensed exit gases, nolesAML- cyclohexane condensed in liquid phases, noles
 - cyclohexane renained unconverted, noles
 - benzene formed, noles

AMU

BMF

BMG

BML

CHC

- benzene in uncondensed gases, moles
- benzene condensed in liquid phase, moles
- CF1 concentration P/RgT
 - cyclohexane converted into hydrocracked gases, noles
- CHCG hydrocracked gases mole[°], from gas analysis ED - effective diffusivity, $\frac{cm^2}{hr}$
- EGM exit uncondensed gases, moles
- ETA effective diffusivity

FA,FB,FCR - fraction of cyclohexane, benzene and hydrocracked gases in products with respect to average cyclohexane feed.

FR - feed rate of cyclohexane, ml/minute
GAMA - mole ratio of hydrogen to cyclohexane in feed.
GCAT - weight of catalyst fed in the reactor,gns.

HFE	- hydrogen feed, moles
HFO	- hydrogen formed, moles
М	- No of bed ingroments
P	- atmospheric pressure, mm of mercury
PCH, PH	- percentage of cyclohexane and benzene in
	products with respect to average cyclohexane
	feed
PERH	- percentage error from hydrogen material balance
PHE	- Thiele modulus
PMG	- product moles in gas phase
QCF / QHF	- cyclohexane and hydrogen feed rate
1.0	respectively in noles per minute
R	- gas constant
RHOP	- pellet density , gm/cm ³
Т	- time for which the sample has been
143	collected, min
ЛТ	- ambient temperature , ^o C
TE	- exit temperature of gases from condenser, ⁶ C
TIME	- duration for which sample has been collected
	with time-on-stream in minutes. For example
	90 - 125 means the liquid sample has been
	collected between 90 and 125 minutes time-
	on-stream and corresponding T is 35 minutes.
TPM	- Total accountable noles of benzene and
	cyclohexane

TR -	reactor temperature , ^o C.
VAL,VBL -	volumetric fraction of benzene and cyclohexane
	in liquid condensate sample, respectively
VCF,VHP -	· volumetric feed rate of liquid cyclohexane,
	and hydrogen gas at anbient conditions
	respectively, cm ³ per minute.
VEG -	volumetric flow rate of exit gases from
58	condenser at ambient conditions.
VPA,VPB -	vapour pressure of cyclohexane and benzene
26	at condenser temperature, nm of mercury
VPW -	vapour pressure of water at ambient temperature
VSE -	characteristic length of pellet, cm.
W -	same as GCAT
WLS -	nass of liquid sample collected at exit of
23	condenser in time T.
x _A ,x _B -	nole fraction of cyclohexane and benzene in
~	liquid sample, respectively.
YA,YB -	activity coefficients of cyclohexane and
	benzene at condenser exit conditions.
YAG,YBG -	nole fractions of cyclohexane and benzene
	in gas phase, respectively.

Experimental Results and Calculated Values of Conversion and Material Balance

	MEASURED	VALUES				TOTTAN			<u>i</u>		
Set	Time	Liquid Product	Ga P r e	ase ous oduct		LCULAT:	ED T	VALUES Product	~		
No.	min.		VBL	VEG Lit	CMF gmol	BMF	AMU	CHC	PCH	PB	PERH
	1	g	10	min	Emor.	gmol	gnol	gmol	%	%	%
	ТА	BLE A-1	7 M	SET	NO 1				1000		
	VCF-1.0	GCAT-10°2	263	TR-3	310 VH	F-1028	P-73	9 TC-6.	0 TA-	-22.0	
*1	18-42	13.7919 6	.69]	1.163	0.2219	0.0191	0 2012	0.0010			
2	42-90	2401980 6	010 1	10153	0.4437	0.0328	0.3790		92.00	8.60	1.15
3	90-145	20.0328 5	061 1	.135	0.5084	0.0337	0.4322	-0.0319 -0.0425	85.42	7.38	1.08
4	145-188	22.8940 5	•49 1	1.48	0.3975	0.0266	0.3495	0.0214	85.01	6.64	
*5	188-218	17.8360 5	.60 1	156	0.2773	0.0205	0.2647	-0.0079	87.93	6.70	1.10
6 7	218-255 255-290	18.6008 5	.12 1	144.	0.3420	0.0205	0.2895	0.0320	84.64	7.39 6.01	1.36
8	290-318	18.2884 5	.10 1	. 145	0.3235	0.0199	0.2818	0.0218	87.08	6.15	1.22
9	318-350	15.1527 4 18.2603 5		140	0.2588	0.0158	0.2314	0.0116	89.40	6.10	0.79
10	350-390	21.2580 4	.87 1	0100	0.2958	0.0195	0.2750	0.0013	92.98	6.58	1.38
		diversion di	007	9147	000000	0.0220	0.3269	0.0209	88.41	5.94	1.36
	TAE	SLE A-2	- 8	SET	NO 2		2.1	/	21	1	
	VCF-1.5	GCAT-34.13		TR-3		-362₀5	P-736	TC-6.8	3 ТА-	25.0	
1	25-45	15.8403 6	7.6 1	.137	0.2773	0.1764	0.0722	0.0287	26.05		
2	45465	15.6193 6	504 ?	.096 1	0,2773	0.1682	0.0757	0.0207	26.05	63.62	5.19
34	65-90	20.2772 64	406 1	0141 1	0.3467	0.2161	0.1006	0.0300	27.30.29.03	60.67	3.33
4 5	90-115 115-140	21.3536 61	1.3 1	.130 (0.3467	0.2148	0.1145	0.0174	33.02	61.07	9.96
6		19.4595 60		048 (0.3467	0.1930	0.1080	0.0457	31.15	55.66	8.18 5.71
7		24.3444 57	100 1	0052 (0.2308	0.1426	0.0426	34.28	55.49	7.24
. 8		25°1006 54 24°0714 55	+ 6 7 I	0034 (A REAL PROPERTY AND A REAL	0.2260	0.1551	0.0349	37.29	54.34	5.96
*9		22.3552 54	+ 5 1	170		0.2208	0.1457	0.0495	35.04	53.08	1.96
			102 1	0110 (02113	0.1717	0.1194	-0.0138	46.01	58.98	6.15

APPENDIX-A

	TABLE A-3		SET NO 3	1.1				
	VCF-1.5	GCAT-28.7307	TR-355 VH	F-810.5	P-735	• TC-10	•0 TA-30•	
1 2 3 4 5 6 7 8	20-43 43-67 67-95 95-125 125-150 150-180 180-215 215-240	16.6413 49.4 16.405 48.7 21.3585 47.2 22.5050 43.9 20.2540 41.2 25.6595 38.5 21.08.6 37.9 17.4033 36.9	1.447 0.3328 1.446 0.3883 1.433 0.4160 1.455 0.3467 1.360 0.4853 1.340 0.4160	0.1558 0.1918 0.1892 0.1581 0.1901 0.1553	0.1354 0.1367 0.1780 0.1991 0.1849 0.2474 0.2070 0.1748	0.0250 0.0403 0.0185 0.0277 0.0037 0.0478 0.0537 0.0460	42.45 49.69 41.07 46.81 45.84 49.40 47.87 45.47 53.33 45.61 50.98 39.17 49.77 37.33 50.42 36.32	1.62 -0.43 1.84 4.17 2.16 2.39
	TA	BLE A-4	SET NO 4		S	12	Leg.	
	VCF-1.25	GCAT-24.0616	TR-350. VH	F-277	P-730	TC-6.	0 TA-20.	
1 2 3 4 5 6 7	14-45 45-75 75-105 105-135 135-165 165-195 195-240	21.7128 64.5 21.8025 64.3 21.2140 59.1 21.7413 59.8 22.3740 58.0 22.2307 53.0 30.1037 54.2	0.912 0.3467 0.846 0.3467 0.886 0.3467 0.902 0.3467 0.800 0.3467	0.2023	0.1062 0.1176 0.1197 0.1276 0.1395	0.0264 0.0145 0.0268 0.015° 0.0089 0.0181 0.0665	29.46 63.18 30.64 65.20 33.91 58.37 34.55 61.14 36.82 60.64 40.24 54.55 36.06 51.15	1.070 1.01 5.77 10.77 −2.50
	ТА	BLE A-5	SET NO 5	100		19		-0015
	VCF-1.5	GCAT-29.8309	TR-390 VH	F-1066	P-735	TC-7.	7 TA-31.	
1 2 3 4 *5 6 7 8	21-45 $45-60$ $60-95$ $95-125$ $125-155$ $155-180$ $180-212$ $212-240$	15.9580 70.7 9.2820 70.5 23.7718 68.2 21.3565 67.0 22.8940 64.6 16.7211 66.1 21.0500 61.3 18.1092 60.3	1.900 0.2080 1.902 0.4853 1.938 0.4160 1.950 0.4160 1.870 0.3467 1.860 0.4437	0.2225 0.1312 0.3169 0.2779 0.2831 0.2170 0.2568 0.2178	0.0487 0.1297 0.1196 0.1344 - 0.0971 0.1398	0.0286 0.0281 0.0387 0.0185 0.0015 0.0326 0.0471 0.0471	24.54 66.85 23.42 63.08 26.73 65.30 28.76 66.81 32.32 68.06 28.01 62.57 31.52 57.89 31.78 56.11	1.01 -1.19 3.71 0.66

	TA	BLE A-6	SET NO 6			
	VCF-1.5	GCAT-20.8413	TR-315 VHF-	-502 P-735	TC-6.5 T/	A-20°
* 1 2 3 4 5 6	15-30 30-55 55-87 87-115 115-145 145-180	14.9676 26.5 23.0850 25.3 31.0567 22.9 25.8510 22.2 28.0855 21.1 34.2750 17.8	0.870 0.3467 0.839 0.4437 0.815 0.3582 0.810 0.4160	0.0656 0.1469 . 0.0992 0.2302 0.1176 0.3189 0.0953 0.2688 0.0984 0.2958 0.1010 0.3741	0.0173 66.39 0.0072 71.88 0.0241 69.29 0.0218 71.13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ΤA	BLE A-7	SET NO 7	C.C.	N 16	
	VCF-1.0	GCAT-10.9685	TR-345 VHF	-442 P-730	TC-6.5 T/	A-20.
1 2 3 4 5 6 *7 8 9 10	14-40 40-70 70-110 110-130 130-170 170-205 205-240 240-270 270-300 300-340	11.4578 25.9 24.7366 23.0 22.3579 21.5 22.6466 18.0 17.2885 17.5 18.1480 16.1	0.725 0.2773 0.714 0.3698 0.691 0.1849 0.685 0.3698 0.675 0.3235 0.651 0.3235 0.629 0.2773 0.620 0.2773	0.0527 0.1978	0.0159 61.9 0.0061 67.8 0.0146 64.1 0.0086 71.1 0.0000 74.5 -0.0005 75.5 0.0.68 71.3 0.0174 75.5	6 34.72 2.28 8 32.27 2.62 1 30.52 3.12 9 27.91 2.42 9 26.51 3.42 1 25.47 2.98 6 21.59 4.15 4 18.99 3.64 3 18.19 3.03 0 16.07 4.34
		1 14		007 D 705	Strand a	
	VCF-1.5	GCAT-29.5788	TR-410 VHF	-997 P-735	TC-8.3 T.	A-31.
1 2 3 4 5 6	17-37 37-60 60-105 105-135 135-165 165-195	15.5250 76.9 31.8117 74.7 20.7513 69.7 21.8371 70.3	1.940 0.3189 1.955 0.6240 1.860 0.4160 1.932 0.4160	0.2065 0.0479 0.2337 0.0633 0.4597 0.1413 0.2811 0.1076 0.2967 0.1105 0.2567 0.1081	0.0219 19.8 0.0230 22.6 0.0273 25.8 0.0088 26.5	7 74.47 -1.03 5 73.37 0.62 5 73.67 2.95 7 67.57 -1.20 7 71.33 1.33 8 61.72 1.21

	TA	BLE A-9	SET NO 9				1. A.
	VCF-2.7	GCAT-26.2677	TR-370 VHF	-3096	P-730 TC-	7.5 TA-3 <mark>0.5</mark>	
1	24-40	19.0316 29.0	4.017 0.3993	0.1303	0.2461 0.022	9 61.63 32.63	0.41
2	40-60	23.6922 28.0	3.987 0.4992	0.1541	0.3133 0.031	8 62.76 30.87	0.67
*3	60-90	39.3024 28.4	4.035 0.7488	0.2501	0.5002 -0.001	5 .66.80 33.41	0.46
4	90-120	35.0823 27.1	3.957 0.7488	0.2220	0.4709 0.055	9 62.89 29.65	0.57
5	120-150	34.0496 24.2	4.004 0.7488	0.1977	0.4840 0.067	1 64.63 26.41	0.41
6	150-180	36.9970 21.6	3.851 0.7488	0.1843	0.5210 0.043	5 69.58 24.62	0.70
7	180-215	42.0568 22.2	3.856 0.8736	0.2172	0.5932 0.063	2 67.91 24.86	0.68
8	215-240	32.6665 20.7	3.850 0.6240	C.1530	0.4563 0.014	7 73.14 24.53	0.74
*9	240-270	41.4179 19.5	3.831 0.7488	0.1795	0.5763 -0.007	0 76.97 23.98	0.54
10	270-300	36.2496 20.0	3.843 0.7488	0.1694	0.5252 0.054	2 70.14 22.63	1.78
11	300-330	36.3431 18.5	3.780 0.7488	0.1568	0.5335 0.058	5 71.25 20.94	1.00
		A DESCRIPTION OF A DESC					

TABLE A-10

SET NO 10

VCF-2.06 GCAT-25.7319 TR-435 VHF-1980 P-725 TC-6.3 TA-25.0 22-40 15 0981 74.4 3.234 0.3428 0.2388 0.0746 0.0294 21.76 69.66 1 2.93 16.8588 72.7 3.206 0.3809 0.2601 0.0881 0.0727 23.14 68.30 2 40-60 1.61 22.3695 69.5 3.200 0.4761 0.3248 0.1269 0.0244 26.65 68.22 -0.32 3 60-85 85-120 33.1567 69.0 3.255 0.6665 0.4716 0.1880 0.0069 28.21 70.76 1.70 4 0.3995 0.1828 -0.0110 29.8457 65.7 3.237 0.5713 32.00 69.93 0.75 *5 120-150 25.3237 62.8 3.058 0.5713 0.3390 0.1753 0.0570 30.68 59.33 -0.26 6 150-180 180-210 25.4674 61.2 3.062 0.5713 0.3329 0.1834 0.0550 32.10 58.28 7 1.24 8 210-240 25.2778 60.0 3.039 0.5713 0.3249 0.1875 0.0589 32.83 56.88 1.21

TABLE A-11

SET NO 11

	VCF-1.5	GCAT-24.8715	TR-385 VH		P-732	TC-6.0) TA-30.0	
4 5	40-60 60-85 85-100 100-125	15.6634 61.1 19.4531 62.2 10.7096 59.3 17.3809 56.8	1.764 0.2080	0.1756 0.2224 0.1188 0.1857	0°0956 0°1159 0°0696 0°1199	0.0061 0.0084 0.0196 0.0411	31.88 63.40 34.48 63.33 33.43 64.14 33.44 57.10 34.58 53.57 38.77 55.94	0.29 1.67 0.62 -0.88

***7** 155-185 24.7826 52.2 1.752 0.4160 0.2359 0.1810 -0.0009 43.51 56.70 0.50 6 185-220 25-8856 50.5 1.696 0.4853 0.2460 0.1985 0.0408 40.91 50.68 0.10 9 220-240 14.5872 43.3 1.662 0.2773 0.1272 0.1223 0.0278 44.91 45.88. 0.16 10 240-270 21.6436 44.1 1.624 0.4160 0.1802 0.1885 0.0473 45.30 43.31 0.37

> SET NO 12 TABLE A-12

VCF-1,25 CCAT-21.1381 TR-355 VHF-380 P-742 TC-6.0 TA-20.0

20-45 16,9690 57,9 0,972 0,2889 0,1641 0,1004 0,0244 34,75 56,82 10,96 1 45-75 20°9118 24°0 0°902 0°3462 0°1862 0°1358 0°0525 38.30 53.85 1.59 2 3 75-105 21.0610 52.5 0.915 0.3467 0.1834 0.1382 0.0251 39.88 52.90 5.76 4 105-145 22.6216 50.5 0.902 0.3467 0.1877 0.1527 00.0063 44.06 54.14 -1.14 5 145-175 23.1117 47.4 0.901 0.3467 0.1800 0.1652 0.0015 47.64 51.93 4.47 * 6 175-205 24.0367 45.0 0.392 0.3467 0.1771 0.1784 -0.0088 51.46 51.09 4.15 205-230 17,8901 41,7 0,803 0,2889 0,1231 0,1413 0,0245 48,91 42,62 -1,52 8 230-270 29.4048 39.7 0.819 0.4622 0.1928 0.2398 0.0296 51.89 41.71 5.09

> SET NO 13 TABLE A-13

P-731 TC-8.5 TA-30.5 VCF-1.25 GCAT-35.0256 TR-420 VHF-963

21-45 11.6225 88.3 1.856 0.2773 0.2202 0.0266 0.0305 9.61 79.40 3.46 1 45-70 12.5840 88.7 1.830 0.2889 0.2334 0.0284 0.0271 9.82 80.79 -0.43 2 9.8646 87.5 1.848 0.2311 0.1829 0.0249 0.0233 10.77 79.7 2.86 70-90 3 90-120 16.3233 86.3 1.870 U.3467 U.2896 0.0433 U.0138 12.49 83.55 0.68 4 5 120-140 11.7224 84.7 1.885 0.2311 0.1989 0.0347 -0.0025 15.02 86.06 -0.37 15.2068 84.7 1.809 0.3467 0.2693 0.0457 0.0317 13.18 77.69 0.40 6 140-170 7 170-200 14.7861 81.0 1.763 0.3467 0.2524 0.0549 0.0394 15.84 72.81 0.57 8 200-225 11.8757 78.5 1.745 0.2889 0.1985 0.0501 0.0403 17.33 68.73 2.77

TABLE A-14

SET NO 14

VCF-1.5 GCAT-28.3169 TR-420 VHF-1064 P-738 TC-8.0 TA-30.0

20-40 13.5803 89.4 2.190 0.2773 0.2408 0.0270 0.0095 9.73 86.82 3.10 1 16.8394 87.8 2.130 0.3467 0.2920 0.0381 0.0166 10.99 84.23 40-65 2 0.43

3	65-100	22.6310	86.8	2.136	0.4853	0.3946	0.0563	0.0344	11.61	81.30	3.99
4	100-130	18.4993	85.8	2.046	V.4160	0.3199	0.0496	0.0465	11.91	76.89	0.61
5	130-160	18.3807	88.1	2.028	0.4160	0.3248	0.0414	Ú.0498			
6	160-190	18.4002	85.2	2.027	0.4160	0.3158	0.0512	0.0490	12.32	75.92	-0.08
7	190-225	21.0764	82.0	2.017	0.4853	0.3518	0.0714	U.0621	14.72	72.50	2.52
8	225-265	24.1884	7704	2.008	0.5547	0.3833	0.1020	0.0694	18.38	69.11	5.14
9	265-300	21.9102	75.5	1.930	U.4853	0.3313	0.0969	0.0571	19.97	68.26	-0.91

TABLE A-15

SET NO 15

VCF-1.5 GCAT-25.7305 TR-400. VHF-1050 P-730 TC-6.0 TA-30.5

16-30 9.0847 71.2 1.837 0.1941 0.1237 0.0442 1 0.0262 22.76 63.70 1.32 2 30-60 20.5517 68.1 1.852 0.4160 0.2643 0.1082 0.0435 25.01 63.53 -0.41 60-95 25.1568 65.3 1.880 0.4853 0.3080 0.1418 3 0.0355 29.23 63.47 0.85 95-120 19.5460 67.7 1.968 0.3467 0.2442 0.1014 4 0.0011 29.25 70.46 1.29 20.5894 65.8 1.854 0.4160 0.2566 0.1159 0.0435 120-150 5 27.85 61.67 1.35 16.9670 61.4 1.809 0.3467 0.1980 0.1070 0.0417 150-175 6 30.86 57.13 1.23 22.7755 59.1 1.767 0.4853 C.2586 0.1530 00.0737 175-210 7 31.53 53.28 1.56 210-240 24.6317 53.8 1.816 0.4160 0.2+32 0.1757 -0.0029 8 42.23 58.46 0.35 9 240-270 22,1022 5400 1.788 0.4160 0.2256 0.1602 0.0302 38.51 54.24 2.38

TAB'E A-16

SET NO 16

VCF-1.5 GCAT-28.2129 TR-400。 VHF-1050 P-738 TC-8.0 TA-30.0 13.5121 74.5 1.960 0.3051 0.2044 0.0630 1 13-35 0.0377 20.65 67.01 4040 35-55 13.4309 71.7 1.932 0.2773 0.1899 0.0666 0.0208 2 24.00 68.47 0.29 55-80 17.2964 69.6 1.958 0.3467 0.2359 0.0909 0.0199 3 26.21 68.05 2.32 80-110 22.5163 68.7 1.975 0.4160 0.2983 0.1192 -0.0015 4 28.66 71.70 0.65 17.7242 67.8 1.931 J.3467 U.2347 U.0977 0.0143 110-135 5 28.18 67.70 0.95 25.2985 64.3 1.880 0.4853 0.3154 0.1519 0.0180 31.29 65.00 -0.82 6 135-170 170-200 7 20.7020 62.8 1.885 0.4160 0.2569 0.1317 0.0274 31.65 61.75 3.05 200-235 23.1244 62.0 1.330 0.4853 0.2851 0.1510 0.0492 8 31.11 58.74 1.31 9 235-270 22.9349 61.5 1.801 0.4853 0.2801 0.1512 00.0540 31.16 57.71 -0.19 20.9630 58.6 1.830 0.4160 0.2418 0.1461 0.0281 35.11 51.22 1.93 10 270-300

TABLE A-17

SET NO 17

TR-340

VCF-1.25 GCAT-30.6438

VHF-364 P-730

TC-6.5 TA-20.

H 29

* 1	16-32	12.0137	57.6	0.990	0.1849	0.1144	0.0708	-0.0003	38.27 61.91	5.13
• 2	32-70	27.5460	55.5	0.943	0.4391	0.2532		0.0160	38.70 57.67	
3	70-105	25.3139	52.8	0.913	0.4044	0.2213	0.1649	0.0182	40.77 54.72	2.68
4	105-135	21.2233				0.1832		0.0227		
5	135-170	24.0360				and the second se	and the second se			3.36
	170-200	23.0279				0.2133		0.0358	38.41 52.74	1.57
	200-230					0.1821		0.0007	47.7 52.53	5.41
		22.6600				0.1570	0.1780	0.0117	51.36 45.29	3.39
	230-270	28.8412				0.2060	0.2228	0.0334	48.20 44.58	1.26
	270-300	21.3937	4005	00766	0.3467	0.1433	Ú.1726	0:0308	49.80 41.35	
10	300-330	20.8560	3902	0.803	0.3467	0.1369		0.0361	50.12 39.49	
								000001	20016 27047	11024

TABLE A-18

SET NO 18

VCF-1.25 GTAT-38.1509 TR-380 VHF-487 P-740 TC-7.5 TA-21.0 1 16-40 16.1641 87.0 1.363 0.2773 0.2452 0.0332 -0.0011 11.98 88.43 4006 40-65 16.7735 82.8 1.307 0.2889 2 0.2415 0.0449 0.0025 15.54 83.60 1076 3 65-85 12.7075 81.4 1.276 0.2311 0.1817 0.0371 0.0123 16.05 78.61 4073 4 85-115 19.4425 79.0 1.242 0.3467 U.2700 0:0607 U.0160 17.51 77.90 -0.62 115-140 14.9594 81.0 1.230 0.2889 0.2160 0.0431 0.0298 14.91 74.79 2.75 140-170 €. 18.2487 81.2 1.250 0.3467 0.2619 0.0542 0.0306 15.65 75.54 5-24 170-200 20.1048 80.4 1.290 0.3467 7 0.2314 0.0510 0.0043 17.60 81.16 2078 3 200-225 13.1572 79.5 1.222 0.2889 0.1921 0.0445 0.0523 15.40 66.49 8.44 9 225-250 13.3880 78.3 1.232 0.2889 0.1943 0.04.69 0.0477 16.23 67.26 12.44 10 250-286 17.5921 75.4 1.120 0.3467 0.2355 0.0677 0.0435 19.54 67.93 -1.26 24.5280 72.4 1.245 0.4044 *11 280-315 0.3074 0.1020 -0.0050 25.23 76.01 3013 12 315-345 18.3121 69.2 1.180 0.3467 J.2252 J.0870 0.0344 25.10 64.98 7.45

TABLE A-19 SET NO 19

VCF-1.0 GCAT-36.6219 TR-405 VHF-412 P-732 TC-3.5 TA-20.0

1	15-30	7.5115	9403	1.164	0.1387	0.1289	0.0073	0.0025	5 20	00.01		
2	30-60	14.8804					0.0204	0.0104			5.92	
3	60-85	11.7427					0.0185	0.0104	2001	88.68	-0.49	
4	85-110	11.6729					0.0229				10.40	
5	110-140	15.1247				0.2244		0.0182			-1.90	
	140-165	12.1510						0.0088	15.91			
	165-195	15.5717				0.1828		0.0166	13.72	79.08	-5046	
	195-225					0.2264		0.0030	17.28	81.63	3.26	
	-	15.2610				0.2258		0.0078	15.77	81.43	1.38	
9	225-255	13.6046	7901	0.984	0.2773	0.1967	0.0466	0.0340	16.79	70.94	1.00	
										10074	1077	

APPENDIX-B

		TABLE	8-1	SE	T NO 1			
67 3	Time	Smc	othened	Data	With	Optimized	From	Model
Sl. No.	194805-00			X _C =1-	m	and k _d	in all the	
TIOS	min.	X _B	X _A	X _A -X _B	XB		v	v
1	0	0.082				X _A	X B	X _A
2	30	0.080	0.855	0.062	0.0832		0.1189	0.8606
3	6(0.076	0.859	0.065	0.0799	0.8578	0.1154	0.8641
4	90	0.070	0.860	0.070	0.0739	0.8635	0.1088	0.8674
5	120	0.069	0.862	0.069	0.0711	0.8662	Ü. 1056	0.8737
67	150 180	0.066	0.865	0.069	0.0685	0.8687	0.1025	0.8767
8	210	0.061	0.870	0.067	0.0659	0.8711	0.0995	0.8797
9	240	0.060	0.879	0.061	0.0635	0.8735	0.0966	0.8825
10	270	0.059	0.881	0.060	0.0591	0.8776	0.0938	0.8853 0.8880
11	300	0.058	6.885	0.057	0.0570	0.8794	0.0884	0.8906
12 13	330 360	0.057	0.891	0.052	0.0550	0.8814	0.0859	0.8931
14	390	0.056	0.900	0.044	0.0531	0.8832	0.0834	0.8955
		GE ERRO	R VARIA	0.044 NCE :	0.0513	0.8850	0.0810	0.8979
		OL LINICO	RELATI		2.182	0.404		
			ABSOLU		0.134		31.16	0.536
100						0.538	2.024	0.773
	18 N	TABLE B	-2	SET	NŨ 2			
1	0	0.660	0.237	0.103	0.6604	0.2365	0.6945	0.2130
2 3	30	0.626	0.260	0.114	0.6395	0.2509	0.6707	0.2296
2 4	6C 9C	0.610	0.280	0.110	0.6192	0.2651	0.2464	0.6467
5	120	0.570	0.300	0.112	0.5:93	0.2791	0.6227	0.2634
6	150	0.552	0°339	0.109	0.5798	0.2928	0.5985	0.2806
7	180	0.539	0.356	0.105	0.5421		0°5743 0°5501	0.2980
8	210	0.530	0.369	0.101	0.5238		0.5259	0.3332
9	240	0.522	0.380	0.098	0°2058		0.5019	0.3509
PEF	RCENTAG	E ERROI	R VARIAN		2			
			ABSOLUT:		1.069		2.96	6.77
				1	0.00)	2.01	1.778	3.855
	Т	ABLE B.	- 3	SET	NO 3			1.1
1		0。535	0.389	0.076	0.5352	0.3887	0.5651	0.3597
2		0.510		0.075	0.5104		0.5441	0.3775
3 4		0.486		0.074	0.4863		0.5234	0.3952
5		0.435		C.074 0.078	0.4629		0.5031	0.4127
6		0.413		0.075	(°4403 0°4185		J. 4831 J. 4636	0.4298 0.4467
7	18(0.393		0.092	0.3975		Jo 40 30	0.4467
8		0 e 377	0.525	0.098	0.3773		0.4259	0.4794
9		0.360	0.531	0.109	0:3579		0.4078	0.4952
PER	CENTAG	EERROR	VARIAN		0.45	2 0 60	c	
			RELETIV ABSOLU:		0.47 0.195		6.493	5.951 5.851
							A DE LA DELETA	

Comparison of Smoothened Experimental Conversion Values with those Predicted by the Proposed Model

		TABLE B	-4	SEI	NO 4			
1 2 3 4 5	0 30 60 90 120	0.670 0.648 0.625 0.606 0.585	0°264 0°290 0°312 0°335 0°352	0.066 0.062 0.063 0.059 0.063	0.6702 0.6528 0.635 0.6168 0.5984	0.2638 0.2777 0.2919 0.3064 0.3212	0.6320 0.6048 0.5776 0.5504 0.5232	0.2822 0.3028 0.3236 0.3445 0.3654
6 7 8 9 PE	150 180 210 240 RCENTA	0.570 0.555 0.543 0.534 GE ERRO			0.5797 0.5607 0.5414 0.5220	0.3363 0.3516 0.3672 0.3830	0.4962 0.4695 0.4430 0.4170	0.3863 0.4072 0.4279 0.4485
		1.2	RELATI ABSOLU		0.927	4.251 2.575	8.046	3.815
	$\sim \epsilon$	TABLE B	-5	SET	NO 5	. a. ~	2	
1 2 3 4 5 6 7 8 9 PEI	0 30 60 90 120 150 150 180 210 240 RCENTAC	0 • 685. 0 • 668 0 • 650 0 • 635 0 • 620 0 • 608 0 • 597. 0 • 589 0 • 580 GE ERROI	0.211 U.230 U.249 U.261 U.275 U.289 U.289 U.300 D.312 U.321 R VARIA RELATI		U.6855 0-6700 0.6550 0.6403 0.6260 0.6120 0.5983 0.5850 0.5719 0.467	0.2106 0.2219 0.2329 0.2438 0.2546 0.2652 0.2756 0.2858 0.2959 4.176	C.7033 0.6817 0.6607 0.6402 C.6203 0.6008 C.5818 0.5634 0.5634 0.5454	0.2134 0.2302 0.2467 0.2629 0.2789 0.2946 0.3100 0.3251 0.3399 1.732
	2)		ABSOLU		0.284	2.021	1.081	0.328
5	1.1	TABLE B.	-6	SET	NO 6	1.8	100	
2.	6. NS	A 184				1. A.	and the second	
1 2 3 4 5 6 7 PEF	180	0.223	C620 0.650 0.680 0.738 0.730 0.747 0.760 R VARIA	0.030 0.025	0.3266 0.3030 0.2806 0.2595 0.2397 0.2213 0.2041	0.6085 0.6298 0.6501 0.6692 0.6871 0.7038 0.7194	0.3069 0.2905 0.2746 0.2592 0.2444 0.2300 0.2163	0.6425 0.6576 0.6724 0.6866 0.7004 0.7137 0.7265
2 3 4 5 6 7	30 60 90 120 150 180	0.291 0.268 0.248 0.231 0.231	0.650 0.680 0.708 0.730 0.747 0.760 R VARIA RELATI	0.059 0.052 0.044 0.039 0.030 0.025 NCE :	0.3030 0.2806 0.2595 0.2397 0.2213 0.2041 2.477	0.6298 0.6501 0.6692 0.6871 0.7038 0.7194 2.973	0.2905 0.2746 0.2592 0.2444 0.2300 0.2163 2.115	0.6576 0.6724 0.6866 0.7004 0.7137 0.7265 2.116
2 3 4 5 6 7	30 60 90 120 150 180 CENTAC	0.291 0.268 0.248 0.231 0.231 0.223 0.215	0.650 0.680 0.708 0.730 0.747 0.760 R VARIA RELATI ABSOLU	0.059 0.052 0.044 0.039 0.030 0.025 NCE : VE -	0.3030 0.2806 0.2595 0.2397 0.2213 0.2041	0.6298 0.6501 0.6692 0.6871 0.7038 0.7194	0.2905 0.2746 0.2592 0.2444 0.2300 0.2163	0.6576 0.6724 0.6866 0.7004 0.7137 0.7265

		and the second second						
11	300	0.170			0.1724	+ 0.7541	0 1000	0 701-
12	330	0.157	0.745	0.098	0.1579	0.7675	0°1992 0°1863	
F	PERCENT	AGE ERR	OR VARI.	ANCE :		001015	061003	0.7461
					0 051	0 050	C	
					0.951	0.959	6.492	
)LUTE -	0.252	1.014	1.290	1.750
		TABLE	B=8	SE	TNOS			
1	Ċ.	0.793	0.145	0.062	0.7933	0.1447	7077	3 3 3 4 4
2	.30	0.760	30179	0.061	0.7594		0.7827	
3	60	0.726	U.205	0.069	0.7307		0.7613	
4	90	0.700	0.230	0.070	007004		0.7409	0.1590
5	120	0.678	0.250	0.072	0.6825		0.7212	0.1729
6	150	0.659	J.269	0.072	0.6616	0.2333	0.7022	0.1866
7	180	0.645	0.289	0.066	0.6425	0.2507	U-6837	0.2001
8	210	0.633	0.301	0.066		0.2668	0.6658	0.2134
PI	ERCENT	AGE ERRC	R VARIA	NCE .	0.6248	0.2817	0.6483	0.2265
1						1.00	Ser L	
				CIVE -	0.404	3.705	1.665	14.10
	1.1		A BSO	LUTE -	0.268	1.597	1.122	4.34
100		TABLE E	00	SE	TNOO			
				SE	TNC 9			
1	O	0.350	0.591	0.050			1000	
2	30	0.327	0.609	0.059	0.3462	0.5955	0.3255	0.5334
3	60	0.302		0.364	0.3264	0.6140	J. 3093	0.6488
4	90	0.288	00622	0.076	0.3089	0.6304	U.2942	0.6633
5	120	6.270	0.640	0.072	0.2932	0 - 6451	0.2799	0.6770
6	150	0.259	0.651	0.079	0.2791	0.6583	0.2665	0.6898
7	180	0.259	0.665	0.076	0.2665	0.6702	0.2540	. 0.7018
8	210		0.679	0.070	C.2549	0.6810	0.2422	0.7131
9	240	0.245	0.590	0.065	0.2444	0.6909	0.2311	0.7238
10	270	0.239	0.705	0.056	0.2348	0.7000	0.2207	0.7338 .
11		0 231	0.715	0.054	0.2259	0.7083	0.2109	0.7431
12	330	0.220	00725	0.055	0.2178	0.7160	0.2017	0.7520
		0.218	Jo730	0.052	0.2102	0.7231	0.1930	0.7603
FE	RULMIA	GE ERROI		-		S 6 7		
	1.1	100	RELAT		1.273	0.537	3.804	3.258
		1	ABSOI	UTE -	0.327	0.585	0.961	3.808
		TABLE B.	-14					
		TADLE B.	-10	SET	NO 10	1. C.		
3	0	0 740	D 3 - 0					
1 2	30	0.740	0.183	0.077	0.7405	0.1825	0.7005	0.2283
3		0.711		0.071	0.7107	0.2058	0.6699	0.2536
	60	0.685		00,067	0.6842	0.2270	0.6424	0.2767
4	90	0.662		0.065	0.6500	0.2467	0.6173	0.2979
5 6	120	0.640		0.069	0.6377		0.5943	0.3176
. 7	150	0.618	0.302	0.080	0.6177	0.2822	0.5730	0.3360
8	180	0.596		0.090	0.5979	0.2983	0.5533	0.3531
	210	0.579		0.099	0.5799		0.5350	0.3690
9	240	0.562	0.327	Ú.111	0.5632		0.5179	0.3839
PER	RCENTAG	SE ERROR						
			RELATI	VE -	0.138	3.821	4.189	9.077
			ABSOLU	TE -	0.084	1.619	2.652	1.225
					10000000			

		TABLE	8-11	. SE	T NO 11			
	1 0	0.67						
	2 30	0.64			0.6752			0.2846
	3 60	0.610		and the second se	0.6460		0.6140	
4	4 90	0.580	0 0.349		0.6176		000000	
5		0.550	0 0.368	0.082	0.5900			
6		0.530	0 0.388	0.082	0.537			
7		0.510	0 00405	0.085	0.5121			and the second se
8		0.485			0.4879			
10		0.470		0.088	0.4648			
		0.451	Jo458	0.091	0 = 4427	0.4907		0.4480
		MUL LKK	OR VARI	ANCE :	0 500			001100
	1.00	1	RELAT	UTE -	0 799	2.647		1.027
	10	10 C		10112 -	0.430	1.632	1.029	0.542
		TABLE	8-12	SET	NO 12	N. 184	1	
	1.1.1				110 22	1.1	a series	
1	Ú	0.615		0.070	0.6168	0.3130	C.6232	0 2052
2 3	30	C . 589		0.063	0.5846	0.3397	0.5959	0.2953
4	60 90	0.560		0.063	0.5564	0.3633	0.5688	0.3385
5	120	C.532 0.508	· · · · ·	0.0002	0.5311	0.3846	0.5421	0.3600
6	150	0.483	0.431	0.061	0.5082	0.4041	J.5159	0.3812
7	180	0.462	00480	0.057	0.4873	0.4219	0.4901	0.4021
8	210	0.448	0.497	0.055	C.4682 D.4505	0.4383	0.4649	0.4227
9	240	0.430	0.510	0.060	0.4342	0.4535	0.4403	0.4428
10	270	0.418	11-522	0 050	0.419	0.4805	0.4163 0.3932	0.4625
F.	PERCENTA	GE ERRC	VARIA	VCE :		004005	003932	0.4816
	1.2		RELATI	VE -	0.429	4.049	1.522	6.249
	C		ABSOLU	TE -	0.208	3.118	0.688	4.942
	100	TABLE B	3-13	SET	NO 13	11.53	and a	
				JLI				
1		1.4	1. And		140 15	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.00	
2	0	0.831	0.072	0.097		0-0715	0.0540	0.0511
2	30	0°831 0°811	02072 0 ₀ 091	0°097 0°098	0.8314	0°0715 0°0797	0.8540	0.0544
3	30 60	0.831 0.811 0.800	00091 00105	0.098	0.8314 0.8155	0.0797	0.8402	0.0508
3	30 60 90	U.831 O.811 J.800 O.782	0.091 0.105 0.115	C.098 C.095 C.103	0.8314 0.8155 0.8001 0.7851		0.8402 0.8271	0° <mark>0508</mark> 0° <mark>0572</mark>
3	30 60 90 120	0.831 0.811 J.800 D.782 0.769	0.091 0.105 0.115 0.127	C.098 C.095 C.103 C.104	0.8314 0.8155 0.8001 0.7851 C.7703	0.0797 0.0879 0.0962 0.1046	0.8402	0°0208 0°022 0°0232
3	30 60 90 120 150	0.831 0.811 J.800 D.782 0.769 0.754	0.091 0.105 0.115 0.127 0.139	C.098 O.095 O.103 O.104 O.104 O.107	0.8314 0.8155 0.8001 0.7851 C.7703 0.7558	0.0797 0.0879 0.0962 0.1046 0.1131	0.8402 0.8271 0.8146	0° <mark>0508</mark> 0° <mark>0572</mark>
3 4 5 6	30 60 90 120	0.831 0.811 0.800 0.782 0.769 0.754 0.740	0.091 0.105 0.115 0.127 0.139 0.153	C.098 C.095 C.103 U.104 C.107 C.107 C.107	0.8314 0.8155 0.8001 0.7851 C.7703 0.7558 0.7415	0.0797 0.0879 0.0962 0.1046 0.1131 0.1218	0.8402 0.8271 0.8146 0.8025 0.7907 0.7907	0.0508 0.0572 0.0735 0.0799
3 4 5 6 7 8	30 60 90 120 150 180 210	0.831 0.811 0.800 0.782 0.769 0.754 0.740 0.728	0.091 0.105 0.115 0.127 0.139 0.153 0.170	6.098 0.095 0.103 0.104 0.104 0.107 0.107	0.8314 0.8155 0.8001 0.7851 C.7703 0.7558	0.0797 0.0879 0.0962 0.1046 0.1131	0.8402 0.8271 0.8146 0.8025 0.7907	0.0608 0.0572 0.0735 0.0799 0.0863
3 4 5 6 7 8	30 60 90 120 150 180 210	0.831 0.811 0.800 0.782 0.769 0.754 0.740 0.728	0.091 0.105 0.115 0.127 0.139 0.153 0.153 0.170 R VARIAN	C.098 O.095 O.103 O.104 O.107 O.107 O.107 CE :	0.8314 0.8155 0.8001 0.7851 C.7703 0.7558 0.7415 0.7273	0.0797 0.0879 0.0962 0.1046 0.1131 0.1218 0.1305	0.8402 0.8271 0.8146 0.8025 0.7907 0.7792 0.7679	0.0608 0.0572 0.0735 0.0799 0.0863 0.0928 0.0928
3 4 5 6 7 8	30 60 90 120 150 180 210	0.831 0.811 0.800 0.782 0.769 0.754 0.740 0.728	0.091 0.105 0.115 0.127 0.139 0.153 0.153 0.170 R VARIAN RELATI	0.098 0.095 0.103 0.104 0.104 0.107 0.107 0.102 CE:	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273	0.0797 0.0962 0.0962 0.1046 0.1131 0.1218 0.1305	0.8402 0.8271 0.8146 0.8025 0.7907 0.7792 0.7679 2.674	0.0608 0.0735 0.0735 0.0799 0.0863 0.0928 0.0993
3 4 5 6 7 8	30 60 90 120 150 180 210 ERCENTAG	0.831 0.811 0.800 0.782 0.769 0.754 0.754 0.740 0.728 E ERRO	0.091 0.105 0.115 0.127 0.139 0.153 0.153 0.170 R VARIAN RELATI ABSOLUT	0.098 0.095 0.103 0.104 0.104 0.107 0.107 0.102 CE: VE -	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273 0.170 1 0.135	0.0797 0.0879 0.0962 0.1046 0.1131 0.1218 0.1305	0.8402 0.8271 0.8146 0.8025 0.7907 0.7792 0.7679 2.674	0.0608 0.0572 0.0735 0.0799 0.0863 0.0928 0.0928
3 4 5 6 7 8	30 60 90 120 150 180 210 ERCENTAG	0.831 0.811 0.800 0.782 0.769 0.754 0.740 0.728	0.091 0.105 0.115 0.127 0.139 0.153 0.153 0.170 R VARIAN RELATI ABSOLUT	0.098 0.095 0.103 0.104 0.104 0.107 0.107 0.102 CE: VE -	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273	0.0797 0.0962 0.0962 0.1046 0.1131 0.1218 0.1305	0.8402 0.8271 0.8146 0.8025 0.7907 0.7792 0.7679 2.674	0.0608 0.0735 0.0735 0.0799 0.0863 0.0928 0.0993
3 4 5 6 7 8 PI	30 60 90 120 150 180 210 ERCENTAG	0.831 0.811 0.800 0.782 0.769 0.754 0.754 0.740 0.728 E ERRO	0.091 0.105 0.115 0.127 0.139 0.153 0.153 0.170 R VARIAN RELATI ABSOLUT	0.098 0.095 0.103 0.104 0.107 0.107 0.107 0.102 CE: TE - SET	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273 0.170 0.135 NO 14	0.0797 0.0879 0.0962 0.1046 0.1131 0.1218 0.1305 0.47 2.38	0.8402 0.8271 0.8146 0.8025 0.7907 0.7792 0.7679 2.674 2.043	0.0608 0.0735 0.0799 0.0863 0.0928 0.0993 22.24 4.61
3 4 5 6 7 8 PI	30 60 90 120 150 180 210 ERCENTAG	0.831 0.811 0.800 0.782 0.769 0.754 0.740 0.728 5E ERRO	0.091 0.105 0.115 0.127 0.139 0.153 0.153 0.170 R VARIAN RELATI ABSOLUT	0.098 0.095 0.103 0.104 0.107 0.107 0.107 0.102 CE: TE - SET 0.045	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273 0.170 0.135 NO 14	0.0797 0.0879 0.0962 0.1046 0.1131 0.1218 0.1305 0.47 2.38	0.8402 0.8271 0.8146 0.8025 0.7907 0.7792 0.7679 2.674 2.043	0.0608 0.0572 0.0735 0.0799 0.0863 0.0928 0.0993 22.24 4.61
3 4 5 6 7 8 Pt	30 60 90 120 150 180 210 ERCENTAG T 0 30 60	0.831 0.811 0.800 0.782 0.769 0.754 0.754 0.740 0.728 E ERRO	0.091 0.105 0.115 0.127 0.139 0.153 0.153 0.170 R VARIAN RELATI ABSOLUT -14 (.075 0.089	0.098 0.095 0.103 0.104 0.107 0.107 0.107 CE: TE - SET 0.045 0.045	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273 0.170 0.135 NO 14 0.8805 0.8607	0.0797 0.0962 0.0962 0.1046 0.1131 0.1218 0.1305 0.47 2.38	0.8402 0.8146 0.8025 0.7907 0.7792 0.7679 2.674 2.043	0.0608 0.0572 0.0735 0.0799 0.0863 0.0928 0.0993 22.24 4.61
3 4 5 6 7 8 P[1 2 3 4	30 60 90 120 150 180 216 ERCENTAG T 0 30 60 90	0.831 0.811 J.800 0.782 0.769 0.754 0.740 0.728 E ERRO C.880 0.880 0.880 0.860 0.835 0.806	0.091 0.105 0.127 0.139 0.153 0.170 R VARIAN RELATI ABSOLU -14 (.075 0.089 0.101	0.098 0.095 0.103 0.104 0.104 0.107 0.107 0.102 CE: VE - SET 0.045 0.045 0.051 0.064	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273 0.170 1 0.135 NO 14 0.8805 0.8607 0.8405	0.0797 0.0962 0.0962 0.1046 0.1131 0.1218 0.1305 0.1305 0.47 2.38	0.8402 0.8146 0.8025 0.7907 0.7792 0.7679 2.674 2.043 0.8109 0.7899 0.7899 0.7702	0.0608 0.0735 0.0735 0.0799 0.0863 0.0928 0.0993 22.24 4.61 0.1036 0.1170 0.1298
3 4 5 6 7 8 Pt 1 2 3 4 5	30 60 90 120 150 180 216 ERCENTAG ERCENTAG 0 30 60 90 120	0.831 0.811 J.800 0.782 0.769 0.754 0.740 0.728 E ERRO C.880 0.880 0.880 0.860 0.835 0.806 0.82	0.091 5.105 5.115 0.127 0.139 0.153 0.170 R VARIAN RELATI ABSOLUT -14 (.075 0.089 0.101 0.110 0.120	6.098 0.095 0.103 0.104 0.104 0.107 0.107 0.102 CE: VE - VE - SET 0.045 0.045 0.051 0.064 0.084 0.098	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273 0.170 1 0.135 NO 14 0.8805 0.8607 0.8405 0.8196	0.0797 0.0962 0.0962 0.1046 0.1131 0.1218 0.1305 0.1305 0.47 2.38 0.0748 0.0887 0.1035 0.1190	0.8402 0.8146 0.8025 0.7907 0.7792 0.7679 2.674 2.043 0.8109 0.7899 0.7899 0.7702 0.7516	0.0608 0.0735 0.0735 0.0799 0.0863 0.0928 0.0993 22.24 4.61 0.1036 0.1170 0.1298 0.1424
3 4 5 6 7 8 Pt 1 2 3 4 5 6	30 60 90 120 150 180 210 ERCENTAG ERCENTAG 0 30 60 90 120 150	0.831 0.811 0.800 0.782 0.769 0.754 0.740 0.728 5E ERRO 0.880 0.880 0.880 0.880 0.835 0.806 0.806 0.782 0.761	0.091 0.105 0.115 0.127 0.139 0.153 0.170 R VARIAN RELATI ABSOLUT -14 (.075 0.089 0.101 0.110 0.120 0.131	6.098 0.095 0.103 0.104 0.104 0.107 0.107 0.102 CE: ZE - SET 0.045 0.051 0.064 0.084 0.098 0.098	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273 0.170 1 0.135 NO 14 0.8805 0.8607 0.8405 0.8196 5.8196	0.0797 0.0962 0.1046 0.1131 0.1218 0.1305 0.1305 0.47 2.38 0.0748 0.0887 0.1035 0.1035 0.1190 0.1360	0.8402 0.8146 0.8025 0.7907 0.7792 0.7679 2.674 2.043 0.8109 0.7899 0.7899 0.7516 0.7338	0.0608 0.0735 0.0735 0.0799 0.0863 0.0928 0.0993 22.24 4.61 0.1036 0.1170 0.1298 0.1424 0.1548
3 4 5 6 7 8 Pt 1 2 3 4 5	30 60 90 120 150 180 210 ERCENTAG ERCENTAG 0 30 60 90 120 150	0.831 0.811 0.800 0.782 0.769 0.754 0.740 0.728 5E ERRO 0.880 0.880 0.880 0.880 0.835 0.806 0.806 0.782 0.761	0.091 0.105 0.115 0.127 0.139 0.153 0.170 R VARIAN RELATI ABSOLUT -14 (.075 0.089 0.101 0.110 0.120 0.131	6.098 0.095 0.103 0.104 0.104 0.107 0.107 0.107 0.102 CE: XE - SET 0.045 0.045 0.051 0.064 0.084 0.098 0.108	0.8314 0.8155 0.8001 0.7851 0.7703 0.7558 0.7415 0.7273 0.170 1 0.135 NO 14 0.8805 0.8607 0.8405 0.8196 0.7979 0.7755	0.0797 0.0962 0.1046 0.1131 0.1218 0.1305 0.47 2.38 0.0748 0.0887 0.1035 0.1035 0.1190 0.1360 0.1536	0.8402 0.8146 0.8025 0.7907 0.7792 0.7679 2.674 2.043 0.8109 0.7899 0.7702 0.7516 0.7338 0.7166	0.0608 0.0735 0.0735 0.0799 0.0863 0.0928 0.0993 22.24 4.61 0.1036 0.1170 0.1298 0.1424

8 9 10 11	240 270 300	0.700	0:157 0:175 0:188 0:200 DR VARIA RELAT	0°125 0°124 0°120 ANCE :-	0.7287 0.7046 0.6800 0.6551 0.993	0.2114	0.6685 C.6535 0.6389	0.2020 0.2133 0.2243
			ABSOI		0.722	2.488	3.85 3.05	15.72 3.95
	•	TABLE E	3-15	SE	T NC 15			
1		0.675	0.210	Ú∘115	0.6756	0.2093	0.6865	0.2335
2		0°651 0°631	0.235	0.114	0.6560	0.2231	0.6620	0.2531
4		0.610	Uo254 0o274	0.115	0.6372	0.2366	0.6384	0.2721
5	120	0.590	0.291	0.119	0.6015	0°2497 0°2626	0.6156 0.5936	0.2906
6	150	0.577	60200	0.114	0.5845	0.2751	0.5725	0.3087 0.3262
7 8	180 210	0.562	6.324	0.114	0.5681		3.5520	0.3432
9		0°551 0°545	0°340 0°357	0.109	0.5521	0.2994	0.5324	0.3596
10	270		Jo371	0°098 0°091	0.5367	0.3111	0.5134	0.3755
1	PERCENT		R VARIA		002211	033223	0.4952	0,3909
1.00		1.1.65	RELAT	IVE -	0.903	6.004	2.110	4.145
			A.BSO1	LUTE -	0.513	3.202	1.161	2.09
		TABLE B	-16	SET	NO 16			
1								
1 2	0 30	0°710 0°692	0.205	0.085	0.7029	0.2130	0.7121	0.2050
3	60	0.675	0.227	0°081 0°080	0.6872	0.2252	J.6896	0.2223
. 4	90	0.660	- 0262	0.078	0.6772	0.2368	0.6466 0.6466	0.2393
5	120	0.645	0.280	3.075	6.6440	0.2891	0.6261	0.2560
67	150	0.630	0.295	0.075	0.6307	0.2698	6.6061	0.2884
8	180 210	0.615 0.601	0.306	Ú • 079	0.6178	0.2802	0.5868	0.3041
9	240	0.590	0°318 0°330	0.081 0.080	0.6053	0.2902	0.5680	0.3194
10	270	0.581	0.340	0.079	0.5816	0.3000	0°5498 0°5322	0.3344
11	300	0.571	0.350	6.079	0.5703	0.3188	0.5151	0.3630
. Ρ	ERCENT	AGE ERROF	VARIAN		Sec.	1.		
			RELATI ABSOLU		0.309		3.106 1.832	1.292 0.602
		TAB'E B	•17	SET	NO 17			
1	O	0.601	0.200					
2	30	0.582	0°339 0°358	0.060	0.6011	0.3389	0.6163	0.2964
2 3	60	0.563	0.376	0.061	0°5831 0°2649	0.3543 0.3699	0.5952	0.3127
4	90		0.395	0.056	0.5465	0.3856	0.5529	J.3292 0.3458
5 6	120 150	0.528		0.056	0.5279	0.4016	0.5317	0.3625
с 7	180	U∘510 C∘489		0.054	0.5093	0.4176	C.5105	0.3792
8	210			0°C56 0°C63	0 e 4905 0 e 4717	0°4338 0°4500	0.4894	0.3760
9	240	G ° 420		0.070	0.4529		0.4684 0.4475	0.4127 0.4294
10	270	0.430		0.079	0.4342		0.4269	0.4459

11 12		0°201 J°212 CR VARIA RELATI ABSOLU	VE -	0.4155 0.3970 0.398 0.173	0.4988 0.5149 1.638 2.231	0.4066 0.3865 1.005 0.503	0.4623 0.4785 6.921 5.276
	TABLE	B⊷18	SET	NO 18			
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.110 0.120 0.129 0.140 0.151 0.160 0.170 0.181 0.190 0.199 0.210 0.210 0.220	0.040 0.053 0.070 0.080 0.089 0.099 0.109 0.111 0.120 0.120 0.126 0.127 0.128	0.8502 0.8329 0.8152 0.7970 0.7782 0.7589 0.7391 0.7189 0.6982 0.6771 0.6558 0.6342	0.1098 0.1231 0.1371 0.1516 0.1667 0.1827 0.1987 0.2156 0.2329 0.2509 0.2682 0.2875	0.8274 0.8120 0.7938 0.7818 0.7668 0.7520 0.7520 0.7373 0.7225 0.7079 0.6932 0.6786 0.6640	0.0731 0.0803 0.0876 0.0950 0.1026 0.1103 0.1182 0.1263 0.1345 0.1429 0.1515 0.1502
r	PERCENTAGE ERR	DR VARIAN RELATI		1.084	10.99	1.179	18.50
	101	ABSOLUT		0.791	5.427	0.859	5.437
	TABLE 8	3-19	SET	NO 19		-	
1 2 3 4 5 6 7 8 9 10	0 0.930 30 0.900 60 0.870 90 0.840 120 0.811 150 0.785 180 0.761 210 0.739 240 0.718 270 0.700	0°175 0°190	0.048 0.050 0.055 0.060 0.073 0.089 0.089 0.099 0.099 0.107 0.110	0.9302 0.9060 0.8822 0.8571 0.8307 0.8028 0.7734 0.77424 0.7424 0.7102 0.6769	0.0218 0.0312 0.0422 0.0549 0.0697 0.0867 0.1058 0.1270 0.1501 0.1747	0.8800 0.8678 0.3563 0.8452 0.8346 0.8242 0.8141 0.8041 0.7944 0.7848	0.0209 0.0233 0.0258 0.0283 0.0309 0.0336 0.0363 0.0391 0.0420 0.0450
F	PERCENTAGE ERRC	OR VARIAN RELATI ABSOLU	VE -	1.098 0.849	19.016 3.432	4 .14 6 3. 099	41.45 9.42

APPENDIX - C

Formulation of Kinetic Model to Estimate Intrinsic Rate Constants for Undeactivated Catalyst:

Dehydrogenation : $C_{6}H_{12} \xrightarrow{k_{1}} C_{6}H_{6} + 3H_{2}$ A B H Hydrocracking : $C_{6}H_{12} + 2H_{2} \xrightarrow{k_{2}} 2 C_{3}H_{8}$ or $C_{4}H_{10} + C_{2}H_{6}$ or $C_{5}H_{12} + CH_{4}$ Suppose at the inlet of reactor section: $A = 1, \frac{C_{H}}{C_{A}} - \gamma$ Cyclohexana : X_{A} benzene : X_{B} hydrogen : $\gamma + 5 x_{B} + 2X_{A} - 2$

hydro cracked gases: $2 - 2 X_B - 2 X_A$

Total Moles : $\gamma + 4 X_B + X_A$

$$CO = \frac{P}{Rg T}$$

$$C_A = CO \frac{X_A}{\gamma + 4X_B + X_A}$$

For plug flow behaviour and irrerersible first order kinetics:

$$F dX_B = k_1 \eta_1 a C_A dw = k_1 CO \frac{X_A}{\gamma + 4X_B + X_A} dw$$

$$-F dX_{A} = (k_{1}\eta_{1}a + k_{2}\eta_{2}) C_{A} dw = (k_{1}' + k_{2}') CO \frac{X_{A}}{\gamma + 4X_{B} + X_{A}} dw$$

$$\dots (C-2)$$

as at t = 0, for undeactivated catalyst, a = 1 and

$$k_1 = k_1 \eta_1$$
, and $k_2 = k_2 \eta_2$.

Dividing (C-2) by (C-1), and at isothermal and steady state conditions:

$$\frac{dX_{A}}{dX_{B}} = \frac{k_{1} + k_{2}}{k_{1}}$$

on integration:

or
$$\int_{1}^{A} dX_{A} = \frac{k_{1} + k_{2}}{k_{1}} \int_{0}^{A} dX_{B}$$

or
$$\frac{1-X_{A}}{X_{B}} = \frac{k_{1}+k_{2}}{k_{1}}$$

or $\frac{1-X_{A}-X_{B}}{X_{B}} = \frac{k_{2}}{k_{1}} = K$ (C-3)

or
$$X_{A} = 1 - (1 + K) X_{B}$$

Substituting from (C-4) in (C-1), we have:

$$\frac{F dX_{B}}{k_{1}C_{0}} = \frac{1 - (1+K)X_{B}}{1+\gamma+(3-K)X_{B}} dw$$

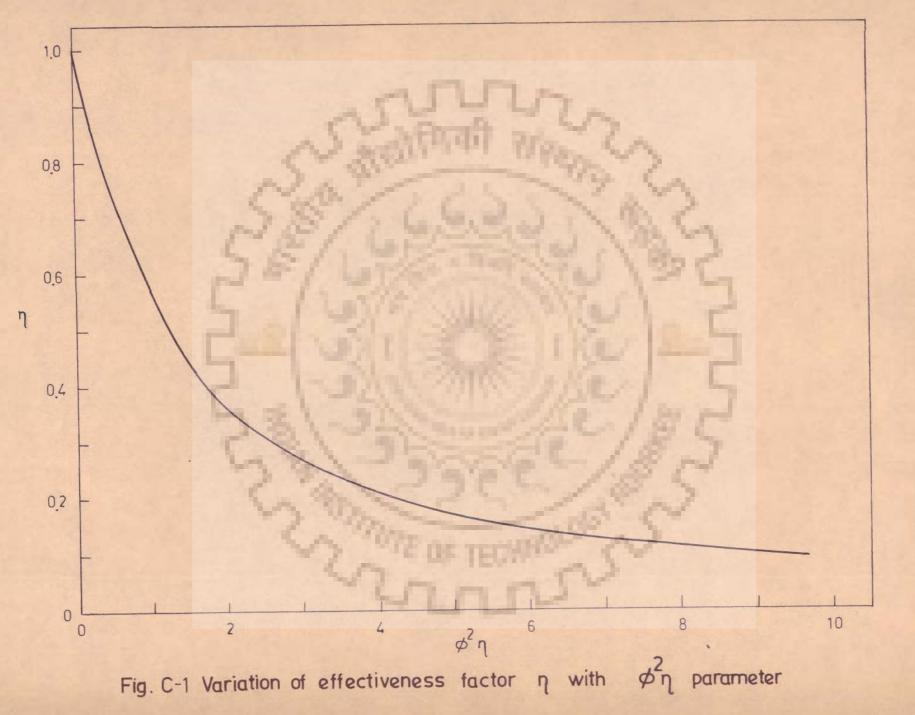
or
$$\begin{bmatrix} -1 + \frac{(1+\gamma)(1+K)}{3-K} + 1 \\ 1-X_B(1+K) \end{bmatrix} dX_B = k_1'CO \frac{1+K}{3-K} \frac{dW}{F}$$

on integrating :

$$K_{B} + \left[\frac{1 + (1 + \gamma)(1 + K)}{3 - K}\right] \ln[1 - (1 + K)X_{B}] = -k_{1}^{\prime}CO(\frac{1 + K}{3 - K})(\frac{W}{F})$$
...(C-5)

From the operating conditions F,W,P,T and γ are known and from the extrapolated smoothened experimental data, conversion X_A and X_B are also known for undeactivated cetalyst, that is at t = 0. Thus, K is first calculated from Eq. (C-3), k' is then calculated from Eqn.(C-5) and k' is calculated by noting that k' = K k'.

In order to estimate the intrincic rate constants k_1 and k_2 , it is necessary to find the effectiveness factors η_1 and η_2 for dehydrogenation and hydrocracking reactions from the experimental rate measurements. For this, the procedure of Weisz and Prater [87] is used. Following is the brief description of this procedure.


The Thiele parameter ϕ is defined as:

$$\phi = \left(\frac{V'}{Se}\right) \int \frac{k P_p}{D_e} \dots (C-6)$$

and for first order irreversible reaction in a spherical pellet, the relationship between effectiveness factor η and Thiele parameter \emptyset is given by

$$\eta = \frac{1}{\emptyset} \left[\frac{1}{\tanh 3\emptyset} - \frac{1}{3\emptyset} \right] \qquad \dots (C-7)$$

It is, therefore, clear that

$$\varphi^2 \eta = \left(\frac{V}{S_e}\right)^2 - \frac{k' \rho_p}{D_e} \qquad \dots (C-8)$$

where $k' = k\eta$... (C-9)

The calculated values of apparant rate constants k'_1 and k'_2 depend on the constant K, which is estimated from X_A and X_B using Eqn.(C-3). For very low values of X_B , say X'_B less than 0.1, the denominator of Eqn.(C-3) being very small the values of K may not be very accurate due to inherent inaccuracy in the estimation of X_B due to errors in flow rate measurement and chromatographic analysis. Similarly, for very high values of X_B the difference $[(1-X_B)-X_A]$ may not be very accurate due to inherent inaccuracy in the estimation of low values of X_A , say X_A less than 0.1. This indicates that chances of error are significant for both cases, that is, for large and also for very low conversion of cyclohexane into benzene.

APPENDIX-D

Table-D-1: Calculated Values of Dehydrogenation Rate Constant from Experimental Data

· · · · · · · · · · · · · · · · · · ·						
Set	TR	ki	$\varphi_1^2 \eta_1$	η	Øl	k1
* 1	310	1360	0.437	0.767	0.755	1700
2	355	5060	1.642	0.423	1.970 .	12000
3	355 350	5260	1.687	0.413	2.021	12700
4	390	5790 10560	1.88C 3.349	0.381 0.241	2.221 3.728	15200 43800
67	315	2470	0.815	0.621	1.146	3970
8	345 410	4345 15300	1.410 4.712	0.467	1.738 5.020	9300 81900
9	370	8550	2.740	0.290	3.074	29500
10 11	435 385	25960 10900	7°928 3°457	0.116	8°267 3°795	224000 45400
12	360	6160	1.976	0.370	2.311	16650
13	420	15860	4.880	0.180 0.122	5°207 7°787	88100
*14 15	425	24040 12350	7°397 3°859	0.208	4.307	59400
16	400	12090	3.775	0.210	4.240	57550
17 *18	340 385	3850 9155	1.250 2.902	0.507	1.570 3.278	7600
*19	405	15670	4.820	0.330	3.822	47500

-Table-D-2: Calculated Values of Hydrocracking Rate Constants . from Experimental Data

				and the second	the second s	and the second
Set No.	TR	k2	Ø2n2	n ₂	Ø2	k ₂
	730	973	0.325	0.820	0.630	1190
* 1	310	790	0.256	00020	0.547	924
2	355			0.865	0.526	864
3	355	747	0.239	0.882	0 - 458	646
4	350	570	0.185			
5	390	1600	0.507	0.738	0.629	2170
6	315	491	0.159	0.906	0.419	542
7	345	695	0.226	0.842	0.518	825
8	410	1200	2.369	0.800	0.679	1500
8	370	1440) 0462	0.757	0.781	1900
10	435	2700	J.856	0.608	1.186	4440
11		728	0.231	0.868	0.516	839
12	385	697	0.223	0.872	0.506	800
13	360	1850	0.570	0.712	0.895	2600
*14	420	1230	0.378	0.795	0.689	1810
	425	2100	0.657	0.678	0.984	3100
15	400	1450	0.452	0.761	0.771	1900
16	400		0.125	0.925	0.368	416
17	340	385			0,386	469
*1 8	283	431	0.137	0.920		932
*19	405	808	0.233	0.867	0,518	952

N

_							1.1	- Street			and the second
Set No.	Re	j _D	k _n ax10 ⁵	De	ki kmax10 ³	Fı	T _s -T _b	F2	ĩ	F3	β _n
1	10.9	0.69	12.32	4.14	1.080	0.45	0.13	0.006	0.0051	0.015	0.79
						2.02	0.55	0.022	0.0563	0.151	2.01
				and the second se		2.79	0.79	0.031	0.0484	0.124	1.250
							0.49	0.021	0.0525	0.154	2.09
			the second se			3.98	0.91	0.032	0.0547	0.133	0.99
						0.82	0.24	0.016	0.0197	0.056	1.72
							0.44	0.022	0.0310	0.080	1.42
								0.044	0.0794	0.173	0.97
								0.033	0.0273	0.070	0.79
					14.88	8.96	1.76	0.055	0.0903	0.191	0 = 74
					6.790	3.17	0.96	0.036	0.0529	0.133	1.03
					5.030	2.24	0.63	0.025	0.0544	0.144	1.75
				4.514	9.97	5.65	1.20	0.038	0.0682	0.148	0.87
		0.61			11.13	7.38	1.35	0.043	0.0944	0.203	1.92
		0.51		40446	8.680	4.50	1.05	0.036	0.0600	0.139	0.97
		0.51		40446	9.29	4.82	1.13	0.039	0.0692	0.159	1.03
		0.53		4.208	3.020	1.34	0.38	0.015	0.0339	0.093	1.82
				4.381	7.430	3.99	.0.93	0.034	0.0818	0.200	1.46
19	4.47	0.85		4.446	10.18	5.77	1.27	0.041	0.1050	0.228	1.31
	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	No. 1 10.9 2 9.87 3 10.47 4 10.62 5 14.62 6 14.84 7 8.32 8 14.2 9 27.79 10 19.10 11 15.67 12 12.69 13 9.64 14 13.51 15 14.22 16 14.13 17 12.34 18 16.29	No. 1 10.9 0.69 2 9.87 0.70 3 10.47 0.69 4 10.62 0.69 5 14.62 0.50 6 14.84 0.50 7 8.32 0.71 8 14.2 0.51 9 27.79 0.32 10 19.10 0.41 11 15.67 0.45 12 12.69 0.53 13 9.64 0.72 14 13.51 0.61 15 14.22 0.51 16 14.13 0.51 17 12.34 0.53 18 16.29 0.42	1 10.9 0.69 12.32 2 9.87 0.70 15.55 3 10.47 0.69 13.95 4 10.62 0.69 13.55 5 14.62 0.50 13.56 6 14.84 0.50 12.65 7 8.32 0.71 12.85 8 14.2 0.51 17.46 9 27.79 0.32 12.91 10 19.10 0.41 17.46 11 15.67 0.45 13.55 12 12.69 0.53 12.95 13 9.64 0.72 16.45 14 13.51 0.61 19.25 15 14.22 0.51 15.05 16 14.13 0.51 15.05 17 12.34 0.53 $12.*5$ 18 16.29 0.42 12.57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO. m 1 10.9 0.69 12.32 4.14 1.0080 2 9.87 0.70 15.55 4.28 4.33 3 10.47 0.69 13.95 4.331 5.81 4 10.62 0.69 13.55 4.28 3.87 5 14.62 0.50 13.55 4.28 3.87 5 14.62 0.50 12.65 4.208 1.89 7 8.32 0.71 12.85 4.28 3.54 8 14.2 0.51 17.46 4.514 9.82 9 27.79 0.32 12.91 4.331 6.35 10 19.10 0.41 17.46 4.547 14.88 11 15.67 0.45 13.55 4.381 6.790 12 12.69 0.53 12.95 4.331 5.030 13 9.64 0.72 16.45 4.514 9.97 14 13.51 0.61 19.25 4.514 11.13 15 14.22 0.51 15.05 4.446 8.680 16 14.13 0.51 15.05 4.446 9.29 17 12.34 0.53 $12.*5$ 4.208 3.020 18 16.29 0.42 12.57 4.381 7.430	1 10.9 0.69 12.32 4.14 1.080 0.45 2 9.87 0.70 15.55 4.28 4.33 2.02 3 10.47 0.69 13.95 4.331 5.81 2.79 4 10.62 0.69 13.55 4.28 3.87 1.81 5 14.62 0.50 13.55 4.28 3.87 1.81 5 14.62 0.50 13.55 4.28 3.87 1.81 5 14.62 0.50 12.65 4.208 1.89 0.82 7 $8.3.$ 0.71 12.85 4.28 3.54 1.57 8 14.2 0.51 17.46 4.514 9.82 5.90 9 27.79 0.32 12.91 4.331 6.35 2.82 10 19.10 0.41 17.46 4.547 14.88 8.966 11 15.67 0.45 13.55 4.381 6.790 3.17 12 12.69 0.53 12.95 4.331 5.030 2.24 13 9.64 0.72 16.45 4.514 9.97 5.65 14 13.51 0.61 19.25 4.514 11.13 7.38 15 14.22 0.51 15.05 4.446 8.680 4.50 16 14.13 0.51 15.05 4.446 9.29 4.82 17 12.34 0.53 12.45 4.208 3.020 1.34 18<	NO. m 110.90.6912.324.141.0800.460.1329.870.7015.554.284.332.020.55310.470.6913.954.3315.812.790.79410.620.6913.554.283.871.810.49514.620.5013.564.3817.433.980.91614.840.5012.654.2081.890.820.2478.320.7112.854.283.541.570.44814.20.5117.464.5149.825.901.19927.790.3212.914.3316.352.820.741019.100.4117.464.54714.888.961.761115.670.4513.554.3816.7903.170.961212.690.5312.954.3315.0302.240.63139.640.7216.454.5149.975.651.201413.510.6119.254.51411.137.381.351514.220.5115.054.4469.294.821.131712.340.5312.*54.2083.0201.340.381816.290.4212.574.3817.4303.990.93	No. \mathbf{A}_{m} 110.90.6912.324.141.0800.460.130.00629.870.7015.554.284.332.020.550.022310.470.6913.954.3315.812.790.790.031410.620.6913.554.283.871.810.490.021514.620.5013.564.283.871.810.490.021514.620.5012.654.2081.890.820.240.01678.320.7112.854.283.541.570.440.022814.20.5117.464.5149.825.901.190.044927.790.3212.914.3316.352.820.740.0331019.100.4117.464.54714.888.961.760.0551115.670.4513.554.3816.7903.170.960.0361212.690.5312.954.3315.0302.240.630.025139.640.7216.454.5149.975.651.200.0381413.510.6119.254.61411.137.381.350.0431514.220.5115.054.4468.6804.501.050.0361614.130.5115.054.4469.294.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

r.P_n.R².(AH)

Tb.ke

E Rg T_b

Computed Values of Parameters to Estimate the External and Internal, Heat and Mass Transfer Resistances

$$F_{1} = \left(\frac{V'}{Sc}\right)^{2} \frac{k_{1}' \rho_{p}}{De} , \quad F_{2} = \frac{E}{Rg T_{b}^{2}} \left(T_{g} - T_{b}\right) , \quad F_{3}$$
$$\beta_{m} = \frac{(\Delta H) \cdot D \cdot C_{b}}{ke \cdot T_{b}}$$

ke. Tb

142

11

E

P Ы Ы मि N U H ×

<u>APPENDIX - F</u>

Activity and Conversion Values for Catalyst Bed at Different Times-on-Stream

	CATALYST FRACTION										
	0.000	0.100	0.200	0.300	0.400	0.500	0.600	Úe 800	1.000		
		TABLE F	-1	SE	T NO 1						
W	0.000	1.0?3	2.045	3 0 0 6 8	4.091	5.113	6.136	8.181	10.23		
v	- 300	0.005		IME ON	STREAM=		0.013	0 001	0.047		
X X A A B	1.000	0.985 0:013	0.970	0.955	0°941 0°051	0.927	0.913	0.886 0.097	0.861 0.119		
a.D	1.000	1.000	1.000	1.000 IME ON	1.000 STREAM=	1.000	1.000	1.000	1.000		
XA	1.000	0.985	0.970	0.956	0.942	0.929	0.915	0.889	0.864		
XA XB a	0.000	0.013	0.966	0.037	0.049	0.061	0.072	0.094	0.115		
		100 1	Т	IME ON	STREAM=	1.0 HR.	5 N. H	100			
XA XB aB	1.000	U.986 0.J12	0°971 0°024	0.957	0.944 0.047	0.931	0.917	0.892 0.091	0.867		
aB	0.930	0.932	0.933	0.935 IME ON	0.936 STREAM=	0.937	0.939	0.941	0.943		
X _A X _B	1.000	0.986	00972	0.959	0.945	0.932	0.920	0.895	Ó.871		
a ^B	0.000	0.012	0.023	0.035	0.046	0.057	U.067 U.909	0.088	0.109		
	and a	and the second second	Т	IME ON	STREAM=	2.00 HR.					
XA XB	1.000	0.986	0.973	0.960	0.953	0.934	0.922	0.897	0.106		
aD	0.866	0.869	6.871 T	0.874 IME ON	0.876 STREAM=	0.879 2.5 HR.	0.581	0.886	0.889		
X,	1.000	Ú.987	0.974	0.961	0.948	0.936	0.924	0.900	0.877		
XA XA aB	0.000	0.011	0°022 0°842	0.032	0.043	0.053	0.063 0.854	0°083 0°859	0.102		
			T	IME ON	STREAM	3.0 HR.		N.			
XA XB a	1.000	0.987 0.011	0°974 0°021	0.962	0,950	0.938 0.051	J.926 C.061	0.902 0.081	0.880 0.099		
aB	0.807	0.811	0.814	0.818	0.821 STREAM=	0.824	U.827	0.833	0.839		
X,	1.000	0.987	0.975	0.963	0.951	0.937	0.928	0。905	0.382		
XA aB	0.000	0.010	0.020 0.788	0.030	0.040	0.500	0.059	0.078	0.097		
			Т	IME ON	STREAM=	4.0 HR					
XA XB a	1.000	0,998	0.976	0°964 J°029	0.952	0.941	0°929 0°058	0.910 0.076	0.885		
aB	0.753	0.757	0.762	0.766 IME ON	C.770 STREAM=	0.773	0.777	0.785	0.791		
X.	1.000	0.938	0.976	0.965	0.954	0.942	0.931	0.909	0.888		
XA XB a	0.030 0.728	0.0)1	0.019 0.737	0.028 0.741	0°038 0°745	0.047	0.056	0.074	0.091 0.768		
			Т	IME ON	STREAM=	5.0 HR			0.891		
XA XB a	1.000	0.988	0°018	0°966 0°027	0°955 0°036	0.944 0.045	0°933 0°054	0°911 0°071	0.088		
aD	0.703	0.708	0.713	0.717	0.722	0.726	0.730	0.739	0.746		

	TIME ON	STREAM=5.5 HR			
.939	0.978 0.967	0.956 0.945	0.934	0.913	0.893
0009	0.018 0.027	0.035 0.044	0.052	0.069	0.086
.685	0.690 0.694	0.659 0.704	0.708	0.717	0.724
	TIME ON	STREAM=6.0 HR			
.989	0.978 0.968	0.957 0.946	0.936	0.916	0.895
.009	0.017 0.025	0.034 0.043	0.051	0.067	0.083
. 662	0.667 0.672	0.677 0.682	0.687	0.696	0.703
	TIME ON	STREAM=6.5 HR			
.989	0.979 0.968	0.958 0.948	0.938	0.918	0.898
8000	0.017 0.025	0.033 0.041	0.049	0.065	0.081
0.0641	0.646 0.651	0.656 0.661	0.666	0.675	0.683

TABLE F=2

XA XB a

XA XB a

XA

1.000

0.000

0.680

1.000

0.000

0.657

1.000

0.000

0

0

0

C

Ü

0

0

0

SET NO 2

		INDER !	4						
		0 1 3 0	1.001	10 34	13.65	17.07	20.48	27.31	34.13
W	0.000	3.413	6.826	10.24	12002	T 1001	2.0040	~ 1002	
	1.00	6.65	1.2.1				A. 199	C. Series	
-				FIME ON	STREAM=			0.75	
XA	1.000	0.801	00664	0.562	0.480	0.415	0.360	0.275	0.213
An	0.000	0.175	0.296	0.387	0.458	3.516	0.565	0.640	0.694
XA XB aB	1.000	1.000		1.000	1,000	1.000	1.000	1.000	1.000
	7.0.0.0			TIME ON	STREAM=	0.5 HR.			
X	1.000	0.830	0.699	6.596	0.513	0.444	J.386	0.296	0.230
XA XB aB		0.146	0.259	0.349	0.422	0.482	0.533	0.612	0.671
^B	0.000			0.915	0.932	0.944	0.954	0.967	0.975
a	0.767	0.849	J. 890		STREAM=		00721		
				TIME ON			1.7.2	0.317	0.246
XA	1.000	0.853	0.730	0.628	0.544	0.473	J.413		0.647
XD	0.000	U.122	0.227	0.314	0.387	0.449	0.501	0.584	
XA XB a	0.602	0.718	0.787	0.832	0.864	0.887	0.906	0。932	0.947
				TIME ON	STREAM=				
X _A X _B	1.000	0.872	0.757	0.658	0.573	0,501	0.438	0.338	0.263
XD	0.000	0.103	0.198	0.282	0.254	0.417	0.470	0.557	0.623
		0.637	00692	0.752	0.796	0.830	0.856	0.895	0.919
a	0.482	0.031		TIME ON	STREAM=				
X		6 0 30			0.601	0.527	0.464	0.360	0.281
XA XB	1.000	0.888	0.731				0.440	0.530	0.598
^B	0.000	0.087	jo 173	0.252	0.323	0.385		0.857	0.889
2	0.393	0.515	0.606	0.676	0.730	0.772	0.806	00001	0:003
			Sec. Street	TIME ON		2.5 HR.			0.000
X _A X _B	1.000	0.900	0.802	0.710	0.627	0.553	0.488	0.381	0.298
XD	0.000	0.074	Uo151		0.294	0.356	0.411	0.503	0.574
a	0.325	0.437	0.530		0.665	0.715	0.756	0.817	0.857
~	00565	50751		TIME ON	STREAM=	3.0 HR.			
Χ.	1.000	0.911	0.820		0.651	0.578	0.512	0.402	0.315
X _A X _B	0.000	0.063	0.132		0.267	0.327	0.382	0.476	0.550
B		0.373	0.463		0.604	0.659	0.705	0.777	0.824
ື	0.273	00010	00400	TIME ON	STREAM=				
77	1000	110000				0.601	0.535	0.423	0.333
XA	1.000	0.919	0.835	0.752	0.674		0.355	0.450	0.526
X _A K _B	0.000	J 054	0.116	0.179	6.242	0.301		0.736	0.791
ລ້	0.232	0.320	0.404		Ú . 547	0.605	Ů∘655	00130	. 06191
				TIME ON	STREAM=		-	1 1 1 3	0.351
A	1.000	0.926	0.848			0.623	0.557	ن 443 ن	
X _A X _B	0.000	0.147	0.102	0.160	0.219	0.275	0.329	0.424	0.502
ຄ້	0.199	0.276	U.353		0.493	0.553	U.607	0.595	0.756
	002.77	000.0		Cherry Maria					

TABLE F-3

W	0.000	2.873	5.746	8.619	11.49	14.36	17.24	22.98	28.73
TF			Т	IME ON	STREAM=	O HR.	· · ·		
X _A X _B	1.000	0.881		0.702	0.632	0.572	0.518	0.430	0.360
AB	0.000	0.105		0.263	0.325	0.378	0.425	0.503	0.565
a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
-				IME ON		0.5 HR.			
X _A X _B	1.000	0.893	0.801	0.722	0.654	0.593	0.0540	0.450	0.377
Xn	0.000	0.093		0.242	0.302	0.354	0.401	0.480	0.544
a	0.868	0.893	0.910	U. 924	0.934	0.943	U.950	0.960	0.967
				IME ON		1.00 HR.	00790	00,000	00001
X _A X _B	1.000	0.903	0.817	0.741	0.674	0.614	0.561	0.470	0.395
Xn	0.000	0.083		0.222	0.280	0.332	0.379	0.458	0.523
a	0.760	0.799	0.829	0.853	0.872	0.087	0.900	0.920	0.934
	00100	30,37			STREAM=		00000	00720	000004
X.	1.000	0.911	0.831	0.758	0.693	0.934	0.581	0.489	0.413
XA	0.000	0.075	00143	0.204	0.260	0.311	0.357	0.437	0.503
aB	0.670	0.718	U. 756	0.787	0.812	0.833	0.851	0.830	0.900
	00010			IME ON		2.0 HR.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50000	00,00
X _A X _B	1.000	v.919	0.843	0.774	0.710	0.652	U.599	0.507	0.430
XB	0.000	0.067		0.188	0.742	0.092	0.337	0.416	0.483
a	0.594	0.647	0.689	0.725	00156	0.702	0.804	0.841	0.866
	00274	00041		IME ON			00004	00041	0.000
X.	1.000	0.925	0.854	0.788	0.726	0.670	0.617	0.525	0.447
XA	0.000	0.060		0.174	0.225	0.273	U.317	0.396	0.464
aB	0.531	0.534	0.630	0.669	0.703	0.733	0.759	0.802	0.832
-	00201	00004		IME ON			(01))	00002	00000
X.	1.000	0.931	0.864	0.801	0.741	0.686	0.634	0.542	0.463
XB	0.000	0.035	0.109	0.160	Ú.209	0.256	0.299	0.377	0.444
aB	0.477	0.530	0.576	0.617	0.654	0.686	0.715	0.764	0.799
~	UUTII.	00000		IME ON	STREAM=		COLT	03704	00133
X.	1.000	0.935		0.812	0.755	0.701	0.650	0.559	0.479
AXA	0.000	0.050		0.0148	0.195	0.239	0.281	Ü.358	0.426
	0.430	0.432	0.099	00140	0.608	0.642	0.673	0.726	0.765
8	00450	0.402			STREAM=		0.015	00120	00100
Х.	1.000	0.940	0.881	0.723	0.768	0.715	0.666	0.575	0.495
XA	0.000	0.046	J.091		0.181		0.265		
a B	0.390	Ú • 439	0.091	0.526		0.600	0.633	0.690	0.732
		00+00	00400	00040	00000	00000	00000	00020	00172
		TABLE F	-4	SE	ET NO 4	- 1 N			
					- 110 1	100			
W	0.000	2.406	4.812	7.218	9.625	12.03	14044	19.25	24.06
	00000	20700	40012	102+0	19025	12005	2-10-7-1		-1000
			т	THE ON	STREAM=	0 HR.			
X.	1.000	U . 837	0.718	0.625	0.550	0.487	0.433	0.348	0.282
4	0.000	0.144		0.330	0.396		0.499	0.574	0.632
	0.000	1.000	10000	1.000	1.000	1.000	1.000	1.000	1.000
a	10000	10000			STREAM=				
X.	1.000	V.862	0.751	0.659	0.583	00518	0.463	0.372	0.303
Ax	1.000	0.118	0.214	0.293	0.360	0.416	0.465	0.544	0.605
B	0.762	0.837	0.877	0.902	0.920	0.933	0.943	0.957	0.966
et.	00102	10000			STREAM=			00331	00700
X.	1.000	0.882	0.779	0.691	0.614	0.549	0.491	0.397	0.324
YA	0.000	0.097	00184	0.260	0.325	0.382	0.432	0.513	0.577
B	0.000 0.594	0.698	00184	0.808	0.841	0.865	0.885	0.913	0.931
C,	00-71	00000	00104	00000					

			-	THE ON	CTOFAM-	1 6 10			
X	- 000	0.00		IME ON	STREAM=		0.519	0.422	0.344
Ax	1.000	0.899	0.804	0.719	0.644	0.578 0.349	0.399	0.483	0.550
XA XB a	0.000	0.081 0.583	0.158 0.662	0.719	0.763	0.549	0.826	0.367	0.893
~~	0.472	00000	00062	00119	00105	50150	00020	08001	0.0000
			т	IME ON	STREAM=	2.0 HR.			
X,	1.000	0.912	0.825	0.744	0.671	0.635	0.546	0.446	0.365
X XA B	0.000	00067	0.136		0.263	0.318	0.368	0.454	0.523
a	0.382	0.488	0.571	0.637	0.689		3.766	0.820	0.855
	00000				STREAM=				
X _A X _B	1.000	0.922		0.767	0.696	0.631	0.572	0.470	0.386
Xn	0.000	0.057	0.117		0.235	0.289	0.339	0.425	0.496
a	0.314	C.410	00492	0.561	0.619	0.667	U. 708	0.772	0.815
		1.1.1	Т	IME ON	STREAM=	:3.0 HR.	6		
X X B	1.000	ve931	0.859	0.787	0.719	0.655	6.596	0.493	0.407
Xn	0.000	0.048	0.101	0.156	0.210	0.262	0.0310	0.397	0.469
້	0.262	0.347	0.424		0.553	0.605	0.651	0.724	0.774
			Т	IME ON	STREAM=	3.5 HR			
XA XB	1.000	Ü . 937	J0871	0.805	0.740	0.678	U.620	0.516	0.428
XB	0.000	J.041	0.088	0.137	0.187	0.237	J. 284	0.369	0.443
ື້	C.221	0.295	0.366	0.432	0.492	0.547	0.595	0.675	Q.732
77				IME ON	STREAM=				
$\mathbf{x}_{\mathbf{A}}^{\mathbf{X}}$ $\mathbf{a}^{\mathbf{B}}$	1.000	0.943	0.882	0.820	0.759	0.699	J.642	0.538	0.448
AB	0.000	0.035		0.121	0.167	0.213	0.259	0.343	0.417
a	0.189	0.252	0.316	0.378	0.437	0.492	0.542	0.628	0.690
100		TABLE F	=5	St	ET NO 5		Part of the		
1	0.000					14 01	17 00	22.86	20 83
W	0.000	2.983	559 66		11.93	14.91	17.90	23.86	29.83
W	0.000		50966	8.949	11.93	1	17.90	23.86	29.83
	1.5	2.983	50966 T	8.949 IME ON	11.93 STREAM=	=0 HR。	8		
	1.000	2.983	5 0 966 T 00691	8.949 IME ON 0.586	11.93 STREAM= 0.501	=0 HR。 G。430	U.372	0.280	0.213
X XA B	1.000 0.000	2°983 0°824 0°157	5 8 966 T 0.691 0.276	8.949 IME ON 0.586 0.370	11.93 STREAM= 0.501 0.447	=0 HR。 0。430 0。509	v.372 V.562	0°280 0°644	0.213
XA XB a	1.000	2.983	50966 T 00691 00276 1000	8.949 IME ON 0.586 0.370 1.000	11.93 STREAM= 0.501 0.447 1.000	=0 HR。 0.430 0.509 1.000	∪.372 (.562 1.000	0.280	0.213
XA XB a	1.000 0.000 1.000	2.983 0.824 0.157 1.000	50966 T 00691 00276 10000 T	8.949 IME ON 0.586 0.370 1.000 IME ON	11.93 STREAM= 0.501 0.447 1.000 STREAM=	=0 HR。 0.430 0.509 1.000 =0.5 HR。	0.372 0.562 1.000	0°280 0°644	0.213
XA XB a	1.000 0.000 1.000 1.000	2.983 0.824 0.157 1.000 0.844	50966 T 00691 00276 10000 T 00718	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529	=0 HR。 C∘430 C∘509 1∘000 =0∘5 HR。 U∘458	U.372 U.562 1.000 U.397	0.280 0.644 1.000 0.301	0.213 0.703 1.000 0.230
XA XB a XA XB	1.000 0.000 1.000 1.000 0.000	2.983 U.824 U.157 1.000 U.844 U.137	50966 T 00691 00276 10000 T 00718 00218	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415	=0 HR。 0。430 0。509 1.0000 =0.5 HR。 0.458 0.479	U.372 U.562 1.000 U.397	0.280 0.644 1.000 0.301	0.213 0.703 1.000 0.230
XA XB a XA XB a	1.000 0.000 1.000 1.000	2.983 0.824 0.157 1.000 0.844	50966 T 00691 00276 10000 T 00718 00218 00904	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935	=0 HR。 0.430 0.509 1.000 =0.5 HR。 0.458 0.479 0.946	U.372 U.562 1.000 U.397 U.533 U.954	0.280 0.644 1.000 0.301 0.618	0.213 0.703 1.000 0.230 0.882
XA XB a XA XB a	1.000 0.000 1.000 1.000 0.000 0.843	2.983 0.824 0.157 1.000 0.844 0.137 J.879	50966 T 00691 00276 10000 T 0.718 00218 00904 T	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR.	U.372 U.562 1.000 U.397 U.533 U.954	0.280 0.644 1.000 0.301 0.618	0.213 0.703 1.000 0.230 0.882
XA XB a XA XB a	1.000 0.000 1.000 1.000 0.000 0.843 1.000	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859	50966 T 00691 00276 10000 T 00718 00218 00904 T 00741 00741	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.458 0.479 0.946 =1.0 HR. 0.433	U.372 U.562 1.000 U.397 U.533 U.954 U.954 U.421 U.506	0.280 0.644 1.000 0.301 0.618 0.966	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661
XA XB a XA XB	1.000 0.000 1.000 1.000 0.000 0.843	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122	50966 T 00691 00276 10000 T 00718 00218 00904 T 00741 00225 00819	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 C.387 J.873	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.431 0.431 0.893	U.372 U.562 1.000 U.397 U.533 U.954 0.421 U.506 0.908	0.280 0.644 1.000 0.301 0.618 0.966 0.321	0.213 0.703 1.000 0.230 0.882 0.974 0.247
XA XB a XA a XA xB a	1.000 0.000 1.000 1.000 0.000 0.843 1.000 0.000	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859	50966 T 00691 00276 10000 T 00718 00904 T 00741 00225 00819 T	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 0.873 STREAM=	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.431 0.893 =1.5 HR.	U.372 U.562 1.000 U.397 U.533 U.954 U.954 U.506 U.506 U.908	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948
XA XB a XA a XA xB a	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872	50966 T 00691 00276 10000 T 00718 00904 T 00741 00225 00819 T	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 J.873 STREAM= 0.580	=0 HR。 0.430 0.509 1.000 =0.5 HR。 0.458 0.479 0.946 =1.0 HR。 0.433 0.433 0.431 0.893 =1.5 HR。 0.507	U.372 U.562 1.000 U.397 U.533 U.954 0.421 U.506 0.908 U.444	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263
XA XB a XA a XA xB a	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000 0.030	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872 J.108	50966 T 00691 00276 10000 T 00718 00218 00904 T 00741 00225 00819 T 00760 00204	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 J.873 STREAM= 0.580 0.361	=0 HR。 0°430 0°509 1°000 =0°5 HR° 0°458 0°458 0°479 0°946 ≡1°0 HR° 0°433 0°431 0°433 0°431 0°893 =1°5 HR° 0°507 0°425	U.372 ().562 ().000 ().397 ().533 ().954 ().954 ().421 ().506 ().908 ().444 ().480	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932 0.371 0.571	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263 0.263 0.640
XA XB a XA XB a XA XB	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872	50966 T 00691 00276 10000 T 00718 00218 00904 T 00741 00225 00819 T 00760 00204 00744	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288 0.783	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 J.873 STREAM= 0.580 0.361 0.815	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.431 0.433 0.431 0.893 =1.5 HR. 0.507 0.425 0.842	U.372 ().562 ().000 ().397 ().533 ().954 ().954 ().421 ().506 ().908 ().444 ().480 ().864	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263
XA XB a XA a XA a XA a XA a XA a XA a	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000 0.030 0.030 0.634	2.983 0.824 0.157 1.000 0.844 0.137 0.879 0.859 0.859 0.122 0.779 0.872 0.779 0.872 0.779	50966 T 00691 00276 10000 T 00718 00218 00904 T 00741 00225 00819 T 00760 00204 00760 00204 00760	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288 0.783 IME ON	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 C.387 J.873 STREAM= C.550 U.361 0.815 STREAM=	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.431 0.893 =1.5 HR. 0.507 0.425 0.425 0.842 =2.0 HR.	U.372 U.562 1.000 U.397 U.533 U.954 0.421 U.506 0.908 U.444 0.480 U.864	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932 0.371 0.571 0.898	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263 0.640 0.920
XA XB a XA a XA a XA a XA a XA a XA a	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000 0.036 0.036 0.634 1.000	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872 J.108 U.696 U.883	50966 T 0.691 0.276 1.000 T 0.718 0.218 0.904 T 0.741 0.225 0.819 T 0.760 0.204 0.744 T 0.744 T 0.760 0.204	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288 0.783 IME ON 0.684	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 J.873 STREAM= 0.556 0.387 J.873 STREAM= 0.580 0.361 0.815 STREAM=	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.433 0.431 0.893 =1.5 HR. 0.507 0.425 0.842 =2.0 HR. 0.529	U.372 U.562 1.000 U.397 U.533 U.954 0.421 U.506 0.908 U.444 0.480 U.864 U.864 J.0465	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932 0.371 0.571 0.898 0.360	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263 0.640 0.920 0.279
XA XB a XA a XA a XA a XA a XA a XA a XA	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000 0.030 0.030 0.634 1.000 0.000	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872 J.108 U.696 C.883 O.098	50966 T 0.691 0.276 1.000 T 0.718 0.218 0.904 T 0.741 0.225 0.819 T 0.760 0.204 0.744 0.744 T 0.760 0.204 0.744	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288 0.783 IME ON 0.684 0.284 0.285	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 J.873 STREAM= 0.580 0.361 0.815 STREAM= 0.602 0.338	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.433 0.431 0.893 =1.5 HR. 0.507 0.425 0.842 =2.0 HR. 0.529 0.401	U.372 U.562 1.000 U.397 U.533 U.954 0.421 U.506 0.908 U.444 U.506 U.444 U.480 U.864 U.864 J.6465 J.6465 J.6455	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932 0.371 0.571 0.898 0.360 0.549	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263 0.640 0.920 0.279 0.620
XA XB a XA a XA a XA a XA a XA a XA a	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000 0.036 0.036 0.634 1.000	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872 J.108 U.696 U.883	5.966 T 0.691 0.276 1.000 T 0.718 0.218 0.904 T 0.741 0.225 0.819 T 0.760 0.204 0.744 T 0.744 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.205 0.204 0.206 0.206 0.205 0	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288 0.783 IME ON 0.684 0.285 0.724	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 0.873 STREAM= 0.5580 0.361 0.815 STREAM= 0.602 0.338 0.761	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.431 0.893 =1.5 HR. 0.507 0.425 0.842 =2.0 HR. 0.529 0.401 0.793	U.372 ().562 ().000 ().397 ().533 ().954 ().954 ().954 ().421 ().506 ().908 ().421 ().506 ().908 ().444 ().480 ().864 ().864 ().456 ().456 ().820	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932 0.371 0.571 0.898 0.360	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263 0.640 0.920 0.279
XA XB a XA a XA a XA a XA a XA a XA a XA	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000 0.036 0.036 0.634 1.000 0.006 0.562	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872 J.108 U.696 O.883 O.098 U.626	50966 T 00691 00276 10000 T 00718 00218 00904 T 00741 00225 00819 T 00760 00204 00744 00760 00204 00764 00760 00204 00764 007764 00764 00764 007764 007764 007764 007764 007764 007764 007764 007764 007764 007764 007764 007764 007764 00000 0000000000	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.724 IME ON	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 J.873 STREAM= 0.5580 0.361 0.815 STREAM= 0.602 0.338 0.761 STREAM=	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.431 0.893 =1.5 HR. 0.425 0.893 =2.0 HR. 0.529 0.401 0.793 =2.5 HR.	U.372 U.562 1.000 U.397 U.533 U.954 0.421 U.506 0.908 U.444 U.506 U.444 U.480 U.864 U.864 J.465 J.456 U.820	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932 0.371 0.571 0.898 0.360 0.549 0.863	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263 0.640 0.920 0.279 0.620 0.892
XA XB a XA a XA a XA a XA a XA a XA a XA	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000 0.030 0.030 0.030 0.030 0.036 1.000 0.0562 1.000	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872 J.108 U.696 C.883 O.098 U.626 C.892	5.966 T 0.691 0.276 1.000 T 0.718 0.218 0.904 T 0.741 0.225 0.819 0.760 0.204 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288 0.783 IME ON 0.664 0.288 0.783 IME ON 0.684 0.267 0.724 IME ON 0.762	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 J.873 STREAM= 0.580 0.361 0.815 STREAM= 0.621 STREAM= 0.621	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.431 0.946 =1.0 HR. 0.433 0.431 0.893 =1.5 HR. 0.425 0.842 =2.0 HR. 0.529 0.401 0.793 =2.5 HR. 0.549	U.372 ().562 ().000 ().397 ().533 ().954 ().954 ().954 ().954 ().954 ().954 ().954 ().954 ().954 ().954 ().954 ().954 ().956 ().908 ().444 ().864 ().864 ().864 ().865 ().820 ().820 ().825	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932 0.371 0.571 0.898 0.360 0.549 0.863	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263 0.640 0.920 0.279 0.620 0.279 0.620 0.892
XA XB a XA a XA a XA a XA a XA a XA a XA	1.000 0.000 1.000 0.000 0.843 1.000 0.000 0.725 1.000 0.036 0.036 0.634 1.000 0.006 0.562	2.983 U.824 U.157 1.000 U.844 U.137 U.879 U.859 C.122 U.779 C.872 J.108 U.696 O.883 O.098 U.626	50966 T 00691 00276 10000 T 00718 00218 00904 T 00741 00225 00819 T 00760 00204 00744 00760 00204 00764 00760 00204 00764 007764 00764 00764 007764 007764 007764 007764 007764 007764 007764 007764 007764 007764 007764 007764 007764 00000 0000000000	8.949 IME ON 0.586 0.370 1.000 IME ON 0.615 0.340 0.922 IME ON 0.641 0.312 0.849 IME ON 0.664 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.288 0.783 IME ON 0.684 0.724 IME ON	11.93 STREAM= 0.501 0.447 1.000 STREAM= 0.529 0.415 0.935 STREAM= 0.556 0.387 0.873 STREAM= 0.5580 0.361 0.815 STREAM= 0.621 0.621 0.317	=0 HR. 0.430 0.509 1.000 =0.5 HR. 0.458 0.479 0.946 =1.0 HR. 0.433 0.431 0.893 =1.5 HR. 0.507 0.425 0.842 =2.0 HR. 0.529 0.401 0.793 =2.5 HR. 0.549 0.379	U.372 U.562 1.000 U.397 U.533 U.954 0.421 U.506 0.908 U.444 U.506 U.444 U.480 U.864 U.864 J.465 J.456 U.820	0.280 0.644 1.000 0.301 0.618 0.966 0.321 0.594 0.932 0.371 0.571 0.898 0.360 0.549 0.863	0.213 0.703 1.000 0.230 0.882 0.974 0.247 0.661 0.948 0.263 0.640 0.920 0.279 0.620 0.892

. .

.

			Т	IME .ON	STREAM=	3.0 HR.				
Χ.	1.000	0.899	J.805		0.640	0.558	J.504	0.396	0.310	147
AV									0.510	
X _A X _B	0.000	0.081	00158			0.338	0.413	0.507	0.582	
8	0.456	5517	00571		0.664	0.702	0.737	0.794	0.835	
				IME ON	STREAM=	3.5 HR			an manual	
XA XB a	1.000	U.906	0.816	0.733	0.656	0.586	0.522	0.413	0.325	
XA	0.000	0.0074		0.215		0.339	0.393	0.487	0.563	1.1
B	0.415	0.473	0.527	0.576	0.621	0.661	0.698	0.761	0.806	•
a	00:417	03415					0.0000	00101	0.000	
v	1. 1. 1.			IME ON	STREAM=		200 200 200			
X _A X _B	1.000	0.911	6.826	0.746	0.671	0.602	3.539	0.429	0.340	
XB	0.000	J.069	00136	0.201	0.263	0.321	2.374	0.468	0.545	
a	0.381	C. 436	0.488	0.536	0.581	0.623	0.661	0.729	0.778	
~	00001		00.00	00000	00002	00000				
		TADLE E	-1	C (T NO C					
		TABLE F	- C	St	ET NO 6	1.00				
							Sec. A.	Million and		
W	0.000	2:084	40168	6.252	8.335	10.42	12.50	16.67	20.84	
			100.00							
		10 C 10	Т	IME. ON	STREAM=	0 HR.		- Co.		
X	1.000	0.950	0.904			0.788	J. 755	0.695	0.642	
X _A X _B										
^B	0.000	0.043	00082		0.151	0.181	0.210	0.261	0.307	
2	1.000	1.000	1.000		1.000	1.000	1.000	1c000	1.000	
			Т	IME ON	STREAM=	0.5 HR.				
X _A X _B	1.000	0.954			0.836		0.769	0.710	0.658	
XA	0.000	0.039				0.168	0.196	0.246	0.290	
-B						0.932	0.937	0.945	0.951	
a	0.890	v.901		0.919	0.926		00951	00345	00771	
					STREAM=					
XA XB	1.000	C.958		0.881	0.846	0.813	0.782	0.724	0.672	
Xn	0.000	0.035	0.068	0.099	U.128	0.156	0.182	0.230	0.275	
aB	0.793	6.813	00830		0.856	0.836	3.876	0.891	0.902	
cu	00.22	00025			STREAM=					
X		0.001					: 704	0 720	0 607	
X _A X _B	1.000	0.961	00925		0.855	0.824	6.794	0.738	0.687	
^B	0.000	0.031	0.061		0.115	0.144	0.169	0.216	0.259	
a	0.709	0.734	0.756	0.774	0.790	0.805	00817	0.839	0.855	
	1000	123. 1.	Т	IME ON	STREAM=	2.0 HR.		i in the second		
X _A X _B	1.000	0.964	00930			0.835	0.806	0.751	0.700	
XA-	0.000	0.628	0.056	0.083		0.133	0.157	0.202	0.244	
B							0.762	0.789	0.809	
EL	0.636	0.664			0.729		00102	0.109	0.009	
v	1000	100 C			STREAM		1. A.			
XA XB				00904	0.874	0.845				
XB	0.000	00026	0.051	J.075	0.099	0.123	0.145	0.189	0.230	•
a	0.571			0.651	0.672	0.691	0.709	0.740	0.764	
					STREAM=		and the second second			
X _A X _B	1.000	0.970			0.882		0.827	0.775	0.726	
Av										
^B	0.000	0:023			0.092		0.135			
a	0.514	0.544	0.571	0.596	0.619	0.640	0.659	0.694	0.720	
		TABLE F	7	S	ET NO 7					
W	0.000	1,097	20194	3.290	40287	5.404	6.581	8.775	10.97	
W	00000	20071	2017.							
				THE ON	CTDEAM	0 UD				
v					STREAM=		1. 101	1. 640	0.515	
A	1.000	0.935			0.778			0.625		
AR	0.000	0.057			û.195				0.382	
XA XB a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
					STREAM=					
Χ.	1.000	U.942			0.796			0.647	0.586	
AXA	10000		00000	0.120	0.177		0.246			
XA XB	0.000	6.050			0 012	0.210	0.0240	0.937		
a	0.865	0.880	0.893	00903	0.912	00920	03920	000001	00745	

TIME ON STREAM=1.0 HR.

-			11	ME ON	STREAM	1,00 HR.				148
X _A X _B	1.000	J.948	0.899	0.854	0.811	0.772	0.734	0.666	0.606	
XB	0.000	0.044		0.124	0.160	0.195	0.227	0.285	0.337	
a	0.753	0.778		0.817	0.832	0.845	0.857	0.876	0.890	
50				ME ON		1.5 HR.				
X _A X _B	1.000	0.953		0.866	0.826	0.787	0.751	0.685	0.625	
XD	0.000	0.039		0.112	0.146	0.178	0.209	0.265	0.316	
a	0.661	0.690		0.738	0.758	0.776	J.791	0.818	0.838	
~	00001	00000	00110	00120	00100	00110	00171	00010	00000	
			TI	ME ON	STOFAM	2.00 HR.				
X.	1.000	0.957	00916		0.838	0.802	0.767	0.702	0.644	
X _A X _B	0.000	0.035			0.133	0.163	.0.192	0.247	0.297	
				0.101				0.762	0.787	
a	0.583	V.615.	0.643		0.691	0.712	0.730	03102	0.101	
Y		0.000				2.5 HR.	c 700	0 710	0 (()	
X _A X _B	1.000	0.961		0.886	0.850	0.815	0.782	0.719	0.661	
^B	0.000	0.031		0.092	0.121	0.149	0.177	0.229	0.278	
a	0.518	0.550		0.606	0.630	0.653	0.673	0.710	0.738	
v					STREAM		- 18 A.	in the second		
X _A X _B	1.000	0.964		0.894	0.860	Ú.827	0.795	0.734	0.678	
AB	0.000	U.028	0.056	0.083	0.110	0.137	.0.163	0.213	0.260	
ຂ້	0.462	U. 494	0.523	0.550	0.575	0.539	0.621	0.660	0.691	
	1000		TI	ME ON	STREA.1=	3.5 HR				
X _A X _B	1.000	00967	0934	0.901	0.869	0.838	0.807	0.748.	0.693	
Xn	0.000	0.025		0.076	0.101	0.126	0.150	0.198	0.244	
а. В.	0.414	0.445		0.500	0.525	0.549	0.572	0.613	0.646	
a	00.21	00115		ME ON						
Χ.	1.000	0.969		0.908	0.877	0.847	0.818	0.762	0.708	
X _A X _B	0.000	0.023		0.069	0.092	J.116	0.139	0.184	0.228	
	0.373	0.402		0.455	0.480	0.504	0.527	0.569	0.603	
a	()0515	00402			STREAM=		40221	00505	00000	
x	- 000	0.73				0.056	0.828	0.774	0.721	
X _A X _B	1.000	0.971		0.914	0.885		0.128	0.171	0.213	
	0.000	C.021		0.063	0.085	0.106	0.486	C.528	0.563	
æ	0.338	0.364		0.416	0.440	0.433	00400	00020	00000	
X					STREAM		1 000	0 705	0 724	
X _A X _B	1.000	0.973		0.919		0.865	0.838	0.785	0.734	
	0.000	0.019	A COLORED COLORED INC.	0.058		0.098	0.118	0.159	0.199	
a	0.307	0.332		0.380	0.406	0.426	0.448	0.490	0.525	
v					STREAM					
X _A X _B				0.923	0.898	0.872	0.846		0.746	
AB	0.000	0.017	0035			0.091	0.110	0.148	0.186	
8	0.279	J.303	0.325	0.348	0.370	0.392	0.414	0.455	0.490	
				100		1.1.1				
		TABLE F	***8	SI	ET NO 8	200				
						17 23			20 50	
W	0.000	2.958	5.916	8.874	11.83	14.79	17.75	23.66	29.58	
					STREAM=					
XA	1.000	U.768	Ce508	0.489	0.398	0.327	J.270	0.187	0.130	
X _A X _B	0.000	0.209	0.353	0.460	0.541	0.606	J.657	0.732	0.783	
a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
						=0.5 HR.				
X _A X _B	1.000	U. 798		0.527			U.297	0.267	0.145	
XA	0.000	Ú.178	00013				0.624	0.706	0.761	
8 B	0.803	0.858		0.917	0.934	0.947	0.957	0.971	0.979	
	000000	000000	TI			1.0 HR.	A PARAMETERS	CARDEN LAN. CARDIN		
х.	1.000	0.821		0.560	0.454		U.323	0.226	0.159	
X _A X _B	0.000	0.021		0.384			0.595	0.681	0.741	
		(.747		0.948			0.913	0.941	0.957	
8	0.672	0141	C00()T	00040	03011	00075	00120			

			TIME ON	STREAM=	1.5 HR.				149
Χ.	1.000	0.838		0.492	0.413	0.346	00244	0.173	
X _A X _B	0.000	0.137	0.255 0.354		0.508	0.567	0.657	0.721	
B	0.579	0.660	0.722 0.772	J.812	0.844	0.870	0.909	0.934	
8	00212	00000	TIME ON						
X	- 000	050	J. 723 C. 612		0.437	0.369	0.262	0.187	
XA XB	1.000	0.852			0.481	0.541	0.635	0.702	
^B	0.000	0.123	0.232 0.328		0.795	0.827.	J. 877	0.909	
8	0.509	0.589	0.655 0.750	0.756	_0175	00021.	00011	00707	
				CTOCAM	5 E UD				
77			TIME ON			: 200	0.280	0.200	
X _A X _B	1.000	6.863	0.741 0.633	0.540	0.459	0.390		0.684	
AB	0.000	00111	0.214 0.305		6.436	0.516	0.613	0.884	
a	0.455	6.531	0.598 0.655		0.748	0.786	ú.845	0.004	
77			TIME ON	STREA.M=				0.010	
X _A X _B	1.000	U.873	0.756 0.652		0.479	00409	0.296	0.213	
AB	0.000	0.102	0.198 0.285	0.363	0.433	0.494	0.592	0.666	
ລ້	0.412	J. 483	0.548 0.606	0.659	0.705	U0746	J. 813	0.859	
		1.1.1	TIME ON	STREAM	3.5 HR	$\mathbf{x} = \mathbf{x}$	10 C		
X _A X _B	1.000	0.880	U.770 0.669		0.498	0.427	0.313	0.226	
XA	0.000	0.694	0.184 0.267		0.412	0.472	0.572	0.648	
aB	0.376	0.443	0.505 0.563		0.664	0.708	0.781	0.832	
0.	0.010	00,10	00000 00000			A CONTRACTOR			
		TABLE F	90 5	ET NO 9	1		10.0	•	
		TADELT	-, 0						
1.7	0 000	0 (07	5 251 7 980	10.51	13.13	15.76	21.01	26.27	
W	0.000	2.627	5.254 7.880	10371	12012	10010			
				CTOTAM	0 HR.		-		
77			TIME ON				0.690	0.633	
AA	1.000	0.952	J. 907 U. 865	0.826	0.789	0.754		0.325	
X _A X _B	0.000	0.043	0.082 0.120		0.187	0.215	0.275		
a	1.000	1.000	1:000 1:000	1,000	1.000	1.000	1.000	1.000	
	1.1			I STREAM≈	0.5 HR.				
X _A X _B	1.000	0.955	0.913 0.874	0.836	0.801	De767	0.705	0.649	
Xn	0.000	0.039	0.076 0.111	0.144	0.175	0.205	0.260	0.309	
D 2	0.914	0.920	0.925 0.925	0.934	0.937	0.940.	0.947	0.951	
2	00211		TIME ON	STREAM=	1.0 HR.	1 585	Carlos P.		
Χ.	1.000	0.958	0.919 0.881		0.811	0.779	0.718	0.663	
XA	0.000	0.036	0.071 0.103	0.135	0.164	0.193	0.246	0.294	
ЪВ		0.849	J.858 0.866		0.880	0.886	0.897	0.906	
8	0.840	03049	TIME ON	STREAM					
X	- 055	1 0(1	00924 0.888		0.821	J.789	0.731	0.677	
Av	1.000	.0.961			0.154	J.182	0.233	0.280	
XA XB a	0.000	0.033			0.827	0.835	0.850	0.862	
· 21	0.775	U.787	Je 798 0.808	N STREAM=					
77				4 0.862	0.830	0.800	0.743	0.690	
XA XB a	1.000	0.963			0.145	0.171	0.220	0.266	
XB	0.000	0.031	0.061 0.090			0.788	0.806	0.821	
a	0.718	0.732	0.744 0.756	5 0.767	0.778		0.000	00021	
				N STREAM	205 HR.	0.000	0.754	0.702	
X	1.000	0.965	00932 00900		0.338	0.809			
XA XB a	0.000	0.029	J.057 U.08		0.137	0.162	0.209	0.253	
aD	0.668	6.682	0.696 0.709	9 0.721	0.733	6.744	0.765	0.781	
			TIME OF	N STREAM	=3.0 1R			0 700	
X _A X _B	1.000	00967	0.936 0.90!	5 0.875	0.846	0.818	0.764	0.713	
XA	0.000	0.027	0.054 0.07	9 0.104	0.129	U.153	0.199	0.242	
B	0.623	6.638	00652 00661		0.692	0.704	0.726	0.745	
a	00020	00000	TIME O	N STREAM					
X	1:000	0.969	0.939 0.90			0.825	0.773	0.724	
Av	Tettet		. J. 050 0.07			0.145	U.189	0.231	
XA XB a	0.000	0.025			0.654	0.666	0.690	0.710	1
3	0.582	0.598	0.613 0.62	0.040	00000				

									150
			Т	IME ON	STREAM=	4.0 HR			
X _A X _B	1.000	0.971	00942	0.915	0.886	0.859	0.833	Ú. 782	0.734
×в	0.000	0.024	0.047	0.071 0.592	0.093	0.116 0.618	C.138 U.631	0.180 0.656	0.221
a	00040	00202		IME ON	STREAM		00001	00000	00011
XA	1.000	0.972	00945	0.918	0.890	0.865	0.839	0.790	0.743
X _A X _B	0.000	0.023	0.045	0.067	0.088	0.109	0.131	0.172	0.211
a	0.514	0.529	00544	0.558	0.572	0.585	0.599	0.624	0.645
	- the		Т	IME ON	STREAM=	5.0 HR			
X ^B	1.000	0.973	0.947	0.921	0.895	0.070	3.846	0.799	0.752
	0.000	0.021	00042	0.063	0.084	0.104	0.124 U.569	0°164 0°595	0.202
a	0.484	0.499	0.515	U.528 IME ON	0.542 STREAM=		0.009		0.010
X,	1.000	0.974	J.949	0.924	0.899	U.875	0.851	0.805	0.760
X _A X _B	0.000	0.020	00040	0.060	0.080	0.100	0.118	0.156	0.193
a	0.457	0.472	00486	0.500	0.514	0.527	Ú.541	0.567	0.588
		TABLE F	-10	SE	T NO 10	,	C 86.	- A.	
	1.1	IADEL I	-10	01	.1 NO 10		N 192	Sec.	
W	0.000	2.573	5.146	7.720	10.29	12.87	15.44	20.59	25.73
		1.62	7	IME ON	STREA.M=	O HR.		10 C	
Χ.	1.000	0.837	0.710	1.00V	0.522	0.451	0.392	0.298	0.228
X _A X _B	0.000	0.148	0.2*3	U.357	0:434	2.498	0.552	0.637	0.700
a	1.000	1.000	10000	1.000	1.000	1.000	1.000	1.000	1.000
v				IME ON		=0.5 HR.	4.20	0 000	0 252
X _A X _B	1.000	0.860	0.743	0.645	0.561	0.489	U.428 U.512	0.328	0.253
	0.000	0.124	0.229	0.892	0,908	0.407	5.932	0.949	0.960
8	0.012	00040		IME ON		=1.0 HR.			
X _A X _B	1.000	0.876	0.758	0.674	0.592	0.521	0.458	0.356	0.277
XB	0.000	0.108	0.204	0.287	0.360	0.423	0.479	0.571	0.642
8	0.694	6.737	50773	U.803 TIME ON	C.829	0.851 1.5 HR.	U.869	0。900	0.920
Χ.	1.000	C.884	0.787	100697	0.618	0.547	0.485	0.330	0.298
X _A X _B	0.000	0.097		C.263	0.333	0.325	0.451	0.544	0.617
8	0.611	0.656	U0696	0.731	0.761		0.812	0.852	0.880
77				TIME ON		2.0 HR.	0.508	0.402	0.318
Av	1.000	C.896 C.088		C.716 0.243	0.629	0.570	0.426	0.519	0.594
XA XB a	0.550	0.594	00101	0.670	6.703	0,733	0.761	0.808	0.842
				FIME ON		=2.5 HR.			
XA XB a	1.000	0.903	0.814		0.658		0.528	0.422	0.336
XB	0.000	0.681		0.227	0.291	0.350	0°403 0°714	0.497	0.573
	0.502	Ü.544	Je583	TIME ON		=3.0 HR	00117	00100	0 0 0 0 0 0
X _A X _B	1.000	0.909	0.824	0.746	0.613	0.606	0.545	0°440	0.353
XB	0.000	60075		0.213	0.274		0.384	0.576	0.553
· a ¯	0.464	0.503	Jo541	0.577	0.610	0°6 ¥2 =3°5 HR	0.673	0.728	0.770
х.	1.000	0.914	0.833	CIME ON	U.687	C.622	0.562	0.457	0.369
X _A X _B	0.000	0.070	0.138	0.200	0.260	J.315	0.367	0.458	0°232
aB	0.432	0.469	0.505	0.540	0.573	0.605	0.635	0.692	0.737
v		. 0.7.0		TIME ON		=4.0 HR 0.636	0.577	0.472	0.384
$\mathbf{x}_{\mathrm{B}}^{\mathrm{A}}$	1.000	U.918 J.U66	0.840	0.190	0.699 0.247	0.000	0.351	0.472	0.518
aB	0.406).440	0.474	0.507	0.540	0.571	3.602	0.660	0.706
	Parters Autor								

TABLE F=11 SET NO 11

	0.000	2.487	4.974	7.461	9.950	12.44	14.92	19.90	24.87
			т	IME ON	STREAM=	O HR.			
X	1.000	J.856	0.742	U.649	0.570	0.504	0.447	J.355	0.285
X _A X _B	0.000	0.128	00230	0.314	0.383	0.442	0.493	0.575	0.638
a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
X.		1 070		IME ON	STREAM			0 270	0 205
x ^A _B	1.000	J.873	0.766	0.676	0°599 0°353	0.532	J.474 J.464	0.379	0.305
	0.000	0.112	0°500 0°896	0.285	0,926	0.936	0.944	0.958	0.966
8	()0043	00014		IME ON	STREAM=		00744	00720	00,00
XA	1.000	0.886	U. 787	0.770	0.624	0.558	0.499	0.402	0.325
XA XB	0.000	0.098		0.260	0.326	0.384	3.436	0.522	0.590
a	0.732	0.771	0.806	0.834	0.857	0.875	0.891	0.915	0:931
v				IME ON	STREAM		500	0.101	0.011
X _A X _B	1.000	0.897	0.804	0.721	0.647	0.582	0.523	0.424	0.344
	0.000	0.087		U.238 0.763	0.302	0.359	0.410	0.490	0.896
a	0.633	0.000	J. 728		STREAM		00000	00015	00000
X,	1.000	0.905	0.819	0.740	0.668	0.603	0.545	0.445	0.363
X _A X _B	0.000	0.078	0.151	0.218	0.280	0.336	0.386	0.474	0.545
8	0.560	6.0614	0.660	0.699	0.734	0.763	0.789	0.832	0.861
		1.1		IME ON		2.5 HR.			- Starows
XA XB	1.000	0.913	Ue 832	0.765	0.686	0.623	0.565	0.464	0.381
	0.000	6.071	0.138	0.201	0.260	0.314	0.364	0.451	0.524
a	0.500	0.554	0.601	U.643 IME ON	0.680 STREAM=	C.713	00742	00191	0.827
x.	1.000	0.919		Ú. 771	0.704	0.641	0.584	0.483	0.399
X _A X _B	0.000	6.064	Jo127	0.186	0.242	0.295	0.343	6.430	0.503
B	0.452	0.503	0.549	0.592	0.631	0.665	Ú.697	0.752	0.792
		TE 1.		IME ON	STREAM				
XA	1.000	10925		0.784	0.719	0.658	0.602	0.501	0.416
XB	0.000	0.059		0.173	0.226	0.277	0.324	0.410	0.483 0.758
8	0.411	0.459	0.505	0.547 IME ON	U.586 STREAM=	0.622	0.656	0.714	0.190
XA	1.000	0.930	· J.861	0.795	0.733	0.673	0.618	0.518	0.432
XBA			0.108			0.260	0.307	0.391	0.464
D D	0.376	0.422		0.506	U.545	0.582	0.616	0.678	0.725
		100			STREAM=		1.1		
X _A X _B	1.000	0.934	60868	0.805		0.687	0.633	0.534	0.448
^X B	0.000	0.050		U.150	0.198		J.290 0.580	0.373 0.643	0.446
8	0.346	0.389	0°430	0.410	0.508	00040	00000	03045	0.000
		TABLE F	-12	St	ET NO 12	,			
		INDEL	16			100			
W	0.000	2.114	4.228	6.341	8.455	10.57	12.68	16.91	21.14
					OTOF MA	0 40			
v					STREAM=	0 HR. 0.504	0.450	0.362	0.295
XA XB a	1.000	6.843	20134	0.642	0°567 0°383		0.486	00564	0.623
^B	0.000	0.134 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1.000	10000	TODAL	IME ON		0.5 HR.			
X	1.000	0.870	U.763	0.675	0.599	0.535	6.479	0.388	0.317
XA XB a	0.000	0.112	00205	j.282	0:348	0.404	0.453	0.533	0.596
a	0.790	.0.845		0.901	J.918	U.930	00940	0.955	0.964
				IME ON		1.0 HR.		0.413	0.338
XA XB	1.000	0.884		0.704	0.629 0.315	0.656 0.371	0.508	0.503	0.569
^B	0.000	0.716	0.178	0.251		0.861	0.421	0.907	0.925
8	0.638	00/10	00170	00009	0.0000	00001			

								152	2
17				TIME ON	STREAM	=1.5 HR.	2		
X _A X _B	1.000	0.902	2 0.811	0.730	0.657	0.592	j.535	0.437	0 260
ъВ	05000	0.080		0.224	0.286	0.341	0.390		0.360
a	0.525			0.723	0.763	0.794	0.820	0.474	0.542
77				TIME ON		=2.0 HR.	00020	0.860	0.887
XA	1.000	U.913	0.830	Ú. 753	0.682	0.618	0.561	0.462	0.381
XAB	0.000	0.068		0.199	0.258	0.312	0.361	0.446	0.516
a	U.439	U.523		0.646	U.691	0.730	0.762	0.813	0:847
				TIME ON		=2.5 HR.		0.013	02041
X _A X _B	1.000	0.922	U.846	0.773	0.705	-200 HR0		0 400	0 100
Xn	0.000	0.059			U.234		0.585	0.485	0.402
a	0.373	0.451			0.625		0.334	0.419	0.490
		00,01		IME ON		2°668 ≠3°0 HR	0.705	0.765	0.806
X,	1.000	0.930		0.791				0	
X _A X _B	0.000	0.051			0.725	0.664	0.607	0.507	0.423
	0.310	0.391		0.159	0.212	0.262	J. 309	0.393	0.465
a	00010	00091	-	0.513	0.465	0.610	0.651	0.718	0.765
Х.	1.000	0.936		IME ON	STREAM			10 A.	
X _A X _B	0.000			0.806	0.744	0.685	U.629	0.528	0.443
	0.278	0.045		0.143	0.192	0.239	0.285	0.368	0.440
a	00210	U.342	and the part of the second sec	J. 458	0.509	0.536	0.599	0.671	0.724
X	1.000	1. 01.2			STREAM			100.00	
X _A X _B	0.000	0.941	0.880	0.820	0.760		3.649	0.549	0.462
^m B	0.244	0.040		0.128	0.174	0.219	0.263	0.344	0.416
a	00244	J.301	0.356	0.409	0.459	0.506	0.550	0.626	0.683
Y	-1 000				STREAM				
X _A X _B	1'000	J.945	0.889	0.832	0.775	J. 720	0.667	J. 569	0.482
	0.000	0.635	00074	0.116	0.158	0.200	20242	0.321	0.393
8	0.216	0.266	0.316	0.366	0.414	0.460	0.504	0.583	0.643
							00201		
~	1000		- 1 A				00201		00010
	1	TABLE I	F•13	SE	F NG 13				
	Ľ,	100	100		F NG 13	14	5		
W	0.000	TABLE 1 3.503	100	SE 10.51	F NG 13	14	21.01	lar pr	35:03
	0.000	100	7.005	10.51	۲ NG 13 14.01	17.51		lar pr	7
W X.	5	3.503	7.005 T	10.51 IME ON	F NG 13 14.01 STREAM=	17.51 0 HR.	21.01	28.02	35:03
W X.	1.000	3.503 Q.686	7°005 T U°494	10.51 IME ON 0.364	F NG 13 14.01 STREAM= 0.272	17.51 ℃ HR. 0.206	21.01 J.157	28.02 0.092	35°03 0°054
W XA XB	1.600 0.000	3.503 Q.686 0.283	7°005 T 0°494 0°457	10.51 IME ON 0.364 0.575	「 NG 13 14.01 STREAM= 0.272 C.657	17.51 0 HR. 0.206 0.717	21.01	28.02	35:03
W	1.000	3 • 503 Q • 686	7.005 T 0.494 0.457 1.000	10.51 IME ON 0.364 0.575 1.000	「 NG 13 14.01 STREAM C.272 C.657 1.000	17.51 0 HR. 0.206 0.717 1.000	21.01 J.157	28.02 0.092	35°03 0°054
W XA XB a	1.600 0.000 1.000	3.503 Q.686 0.283 1.000	7.005 T 0.494 0.457 1.000 T	10.51 IME ON 0.364 0.575 1.000 IME ON	「 NG 13 14.01 STREAM™ 0.272 C.657 1.000 STREAM™	17.51 0 HR. 0.206 0.717 1.000 0.5 HR.	21.01 J.157 J.762 1.000	28.02 0.092 0.820 1.000	35 .03 0.054 0.854
W XA XB a	1.000 0.000 1.000	3.503 0.686 0.283 1.000	7.005 T 0.494 0.457 1.000 T 0.531	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397	「 NG 13 14.01 STREAM= 0.272 0.657 1.000 STREAM= 0.300	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. J.228	21.01 J.157 J.762	28.02 0.092 0.820	35 .03 0.054 0.854
W XA XB a XA XA B	1.000 0.000 1.000 1.000 0.000	3.503 0.686 0.283 1.000 J.721 J.248	7.005 T 0.494 0.457 1.000 T 0.531 0.417	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537	「 NG 13 14.01 STREAM= 0.272 0.657 1.000 STREAM= 0.300 0.625	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 2.228 0.639	21.01 J.157 J.762 1.000	28.02 0.092 0.820 1.000	35.03 0.054 0.854 1.000
W XA XB a XA XA B	1.000 0.000 1.000	3.503 0.686 0.283 1.000	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940	「 NG 13 14.01 STREAM≈ 0.272 0.657 1.000 STREAM∞ 0.300 0.625 0.955	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 0.5 HR. 0.228 0.639 0.967	21.01 J.157 J.762 1.000 J.174 J.738 J.975	28.02 0.092 0.820 1.000 0.102	35:03 0.054 0.854 1.000 0.061
W XA XB a XA XB a	1.000 0.000 1.000 1.000 0.000 0.814	3.503 Q.686 0.283 1.000 J.721 J.248 0.880	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON	<pre>「 NG 13 14.01 STREAM= 0.272 C.657 1.000 STREAM= U.300 C.625 C.956 STREAM=</pre>	17.51 0.206 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.967 1.0 HR.	21.01 J.157 J.762 1.000 J.174 J.738 J.975	28.02 0.092 0.820 1.000 0.102 0.802	35.03 0.054 0.854 1.000 0.061 0.840
W XA XB a XA XB a	1.000 0.000 1.000 1.000 0.000 0.814 1.000	3.503 Q.686 0.283 1.000 J.721 J.248 0.380 0.743	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON IME ON 0.427	「 NG 13 14.01 STREAM C.657 1.000 STREAM U.300 0.625 C.956 STREAM STREAM U.325	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.967 1.0 HR. 0.249	21.01 J.157 J.762 1.000 J.174 J.738 J.975	28.02 0.092 0.820 1.000 0.102 0.802	35.03 0.054 0.854 1.000 0.061 0.840
W XA XB a XA B a XA XA B	1.000 0.000 1.000 0.000 0.814 1.000 0.000	3.503 Q.686 0.283 1.000 J.721 J.248 0.380 0.743 0.222	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504	<pre>「 NG 13 14.01 STREAM™ 0.272 0.657 1.000 STREAM™ 0.300 0.625 0.955 STREAM™ 0.325 0.595</pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. J.228 0.639 0.967 1.0 HR. 0.249 0.663	21.01 J.157 J.762 1.000 J.174 J.738 J.975	28.02 0.092 0.820 1.000 0.102 0.802 0.986	35:03 0.054 0.854 1.000 0.061 0.840 0.991
W XA XB a XA B a XA XA B	1.000 0.000 1.000 1.000 0.000 0.814 1.000	3.503 Q.686 0.283 1.000 J.721 J.248 0.380 0.743	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.383 0.842	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.504 0.883	<pre>「 NG 13 14.01 STREAM= 0.272 0.657 1.000 STREAM= 0.300 0.625 0.955 STREAM= 0.325 0.595 0.912</pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 2.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934	21.01 0.157 0.762 1.000 0.174 0.738 0.975 0.190	28.02 0.092 0.820 1.000 0.102 0.802 0.986 0.113	35:03 0.054 0.854 1.000 0.061 0.840 0.991 0.067
W XA XB a XA XB a XA XB a	1.000 0.000 1.000 1.000 0.000 0.814 1.000 0.000 0.000 0.000	3.503 0.686 0.283 1.000 J.721 J.248 0.380 0.743 0.222 0.782	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.383 0.842 T	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.883 IME ON 0.883 IME ON	<pre> NO 13 14.01 STREAM= 0.272 0.657 1.000 STREAM= 0.300 0.625 0.956 STREAM= 0.325 0.595 0.912 STREAM= </pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 2.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR.	21.01 	28.02 0.092 0.820 1.000 0.102 0.802 0.986 0.113 0.786	35.03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827
W XA XB a XA B a XA B a XA XA B a XA XA XA XA XA XA XA XA XA XA XA XA XA	1.000 0.000 1.000 1.000 0.000 0.814 1.000 0.000 0.000 0.000 0.000 0.000	3.503 0.686 0.283 1.000 J.721 0.248 0.880 0.743 0.222 0.782 U.769	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.842 T C.591	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.883 IME ON 0.454	<pre>「 NG 13 14.01 STREAM= C.657 1.000 STREAM= C.325 C.956 STREAM= C.325 C.955 C.955 C.912 STREAM= C.349</pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269	21.01 J.157 J.762 1.000 J.174 J.738 J.975 0.190 C.716 J.949 0.207	28.02 0.092 0.820 1.000 0.102 0.802 0.986 0.113 0.786	35.03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827
W XA XB a XA B a XA B a XA XA B a XA XA B	1.000 0.000 1.000 1.000 0.000 0.814 1.000 0.000 0.690 1.000 0.000	3.503 0.686 0.283 1.000 J.721 0.248 0.380 0.743 0.222 0.782 0.769 0.198	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.383 0.842 T T 0.5591 0.354	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.883 IME ON 0.454 0.454 0.475	<pre>「 NG 13 14.01 STREAM C.272 C.657 1.000 STREAM U.300 O.625 C.956 STREAM U.325 U.555 O.912 STREAM STREAM C.349 O.568</pre>	17.51 0.206 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269 0.639	21.01 	28.02 0.092 0.820 1.000 0.102 0.986 0.113 0.786 0.970	35:03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981
W XA XB a XA B a XA B a XA XA B a XA XA B	1.000 0.000 1.000 1.000 0.000 0.814 1.000 0.000 0.000 0.000 0.000 0.000	3.503 0.686 0.283 1.000 J.721 0.248 0.880 0.743 0.222 0.782 U.769	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.383 0.842 T T 0.5591 0.354 0.775	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.883 IME ON 0.454 0.475 0.828	<pre>「 NG 13 14.01 STREAM C.272 C.657 1.000 STREAM U.300 O.625 C.955 STREAM U.325 U.555 C.912 STREAM STREAM U.349 U.568 O.869</pre>	17.51 0.17.51 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.967 1.0 HR. 0.249 0.649 0.934 1.5 HR. 0.269 0.639 0.899	21.01 J.157 J.762 1.000 J.174 J.738 J.975 0.190 C.716 J.949 0.207	28.02 0.092 0.820 1.000 0.102 0.802 0.986 0.113 0.786 0.970 0.123	35:03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.981 0.074
W XA XB a XA a XA a XA a XA a XA a XA a	1.000 0.000 1.000 0.000 0.814 1.000 0.000 0.690 1.000 0.000 0.690	3.503 0.686 0.283 1.000 J.721 0.248 0.380 0.743 0.222 0.782 0.769 0.198 0.702	7.005 T 0.494 0.457 1.000 T 0.531 0.417 0.563 0.383 0.383 0.842 T 0.5591 0.354 0.775	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.553 0.504 0.5555 0.5555 0.5	<pre>「 NG 13 14.01 STREAM= 0.272 C.657 1.000 STREAM= 0.300 0.625 C.955 C.955 C.955 C.955 C.955 C.912 STREAM= 0.349 0.568 0.869 STREAM= 0.368</pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. J.228 0.639 0.249 0.663 0.249 0.663 0.934 1.5 HR. 0.269 0.639 0.899 2.0 HR.	21.01 J.157 J.762 1.000 J.174 J.738 J.975 O.190 C.716 J.949 O.207 J.694 J.922	28.02 0.092 0.820 1.000 0.102 0.802 0.986 0.113 0.786 0.970 0.123 0.770	35.03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.074 0.815
W XA XB a XA a XA a XA a XA a XA a XA a	1.000 0.003 1.000 1.000 0.000 0.814 1.000 0.000 0.690 1.000 0.601 1.000	3.503 0.686 0.283 1.000 J.721 0.248 0.380 0.743 0.222 0.782 0.769 0.198 0.198 0.702 0.786	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.842 T 0.5591 0.354 0.354 0.775 T 0.0614	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.883 IME ON 0.454 0.475 0.828 IME ON 0.478	<pre> NO 13 14.01 STREAM= C.272 C.657 1.0000 STREAM= U.300 C.625 U.955 STREAM= U.325 U.595 U.595 U.595 U.595 U.595 U.595 U.595 U.595 U.595 U.325 STREAM= U.3349 U.368 U.349 U.368 U.368</pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 2.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269 0.639 0.899 2.0 HR. 0.288	21.01 J.157 J.762 1.000 J.174 J.738 J.975 C.190 C.716 J.949 C.207 J.694	28.02 0.092 0.820 1.000 0.102 0.802 0.986 0.113 0.786 0.970 0.123 0.770	35.03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.074 0.815
W XA XB XA A XA A XA A XA XA XA XA XA XA XA XA	1.000 0.003 1.000 1.000 0.000 0.814 1.000 0.000 0.690 1.000 0.601 1.000 0.000	3.503 0.686 0.283 1.000 J.721 J.248 0.380 0.743 0.222 0.782 0.769 0.198 0.702 0.786 J.180	7.005 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.383 0.383 0.384 0.354 0.775 T 0.5591 0.354 0.775 T 0.0614 0.329	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.475 0.883 IME ON 0.475 0.828 IME ON 0.478 0.448	<pre> NO 13 14.01 STREAM= C.0272 C.657 1.0000 STREAM= U.300 C.625 C.955 C.955 C.955 O.912 STREAM= U.349 U.5568 O.869 STREAM=: U.371 U.542 </pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269 0.639 0.899 2.0 HR. 0.288 0.616	21.01 	28.02 0.092 0.820 1.000 0.102 0.986 0.113 0.786 0.970 0.123 0.770 0.954	35.03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.981 0.074 0.815 0.971
W XA XB XA A XA A XA A XA A XA XA XA XA XA XA X	1.000 0.003 1.000 1.000 0.000 0.814 1.000 0.000 0.690 1.000 0.601 1.000	3.503 0.686 0.283 1.000 J.721 0.248 0.380 0.743 0.222 0.782 0.769 0.198 0.198 0.702 0.786	7.005 1.000 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.842 T 0.5591 0.354 0.354 0.775 T 0.614 0.329 c.715	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.427 0.504 0.475 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.478 0.448 0.448 0.478 0.448	<pre> NO 13 14.01 STREAM= 0.272 0.657 1.000 STREAM= 0.300 0.625 0.956 STREAM= 0.325 0.595 0.912 STREAM= 0.349 0.568 0.869 STREAM=: 0.371 0.542 0.827 </pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269 0.639 0.899 2.0 HR. 0.288 0.616 0.865	21.01 	28.02 0.092 0.820 1.000 0.102 0.986 0.113 0.786 0.970 0.123 0.770 0.954	35:03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.067 0.827 0.981 0.074 0.815 0.971 0.080
W XA XB XA B XA B XA B XA B XA B XA B XA	1.000 0.000 1.000 1.000 0.600 0.814 1.000 0.690 1.000 0.690 1.000 0.601 1.000 0.000 0.535	3.503 0.686 0.283 1.000 J.721 0.248 0.380 0.743 0.222 0.782 0.769 0.198 0.702 0.786 0.180 0.636	7.005 T 0.494 0.457 1.000 T 0.531 0.417 0.917 T 0.563 0.383 0.842 T 0.5591 0.354 0.775 T 0.614 0.329 0.715	10.51 IME ON 0.364 0.575 1.000 IME ON 0.537 0.940 IME ON 0.427 0.504 0.427 0.504 0.427 0.504 0.425 0.445 0.427 0.427 0.448	<pre>「 NG 13 14.01 STREAM= 0.272 0.657 1.000 STREAM= 0.300 0.625 0.956 STREAM= 0.325 0.595 0.912 STREAM= 0.349 0.568 0.869 STREAM= 0.371 0.542 0.371 0.542 0.827 STREAM= 2.0371</pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. J.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269 0.639 0.899 2.0 HR. 0.288 0.616 0.865 2.5 HR.	21.01 	28.02 0.092 0.820 1.000 0.102 0.986 0.113 0.786 0.970 0.123 0.770 0.954 0.133 0.754	35:03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.074 0.815 0.971 0.080 0.802
W XA B XA B XA B XA B XA B XA B XA B XA	1.000 0.003 1.000 1.000 0.000 0.814 1.000 0.000 0.690 1.000 0.601 1.000 0.000 0.535	3.503 0.686 0.283 1.000 J.721 0.248 0.380 0.743 0.222 0.782 0.769 0.198 0.702 0.786 0.180 0.636 U.800	7.005 1.000 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.842 T 0.591 0.354 0.354 0.775 T 0.614 0.329 0.715 T 0.634	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.427 0.504 0.427 0.504 0.454 0.454 0.475 0.828 IME ON 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.500	<pre> NO 13 14.01 STREAM C.272 C.657 1.000 STREAM 0.300 0.625 C.956 STREAM 0.325 0.595 0.912 STREAM 0.349 0.568 0.869 STREAM 0.371 0.542 0.827 STREAM C.3392 </pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269 0.639 0.899 2.0 HR. 0.288 0.616 0.865 2.5 HR. 0.306	21.01 	28.02 0.092 0.820 1.000 0.102 0.986 0.113 0.786 0.970 0.123 0.770 0.954 0.133 0.754	35:03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.074 0.815 0.971 0.080 0.802
W XA XB XA A XA A XA A XA A XA A XA XA XA XA XA	1.000 0.003 1.000 1.000 0.000 0.814 1.000 0.000 0.690 1.000 0.601 1.000 0.000 0.535 1.000 0.000	3.503 0.686 0.283 1.000 J.721 0.248 0.880 0.743 0.222 0.782 0.769 0.198 0.198 0.702 0.786 0.180 0.636 U.800 U.800 U.166	7.005 T 0.494 0.457 1.000 T 0.531 0.417 0.917 T 0.563 0.383 0.842 T 0.5591 0.354 0.775 T 0.6591 0.354 0.775 T 0.614 0.329 0.715 T 0.634 0.307	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.427 0.504 0.454 0.454 0.475 0.828 IME ON 0.454 0.475 0.828 IME ON 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.427 0.500 0.424	<pre> NG 13 14.01 STREAM C.272 C.657 1.000 STREAM 0.300 0.625 C.955 C.955 C.955 C.955 C.955 C.955 C.955 C.955 C.912 STREAM= O.349 O.568 O.869 STREAM= O.371 O.542 U.827 STREAM= O.392 J.519 </pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. J.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269 0.639 0.899 2.0 HR. 0.288 0.639 0.899 2.0 HR. 0.288 0.639 0.899 2.0 HR. 0.288 0.639 0.899 2.0 HR. 0.288 0.639 0.899 2.0 HR. 0.288 0.639 0.899 2.0 HR. 0.288 0.639 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.000 0.899 0.000 0.899 0.000 0.899 0.000 0.899 0.000 0.899 0.000 0.899 0.000 0.000 0.899 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	21.01 	28.02 0.092 0.820 1.000 0.102 0.802 0.986 0.113 0.786 0.970 0.123 0.970 0.123 0.770 0.954 0.133 0.754 0.937	35:03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.067 0.981 0.074 0.815 0.971 0.080 0.802 0.960
W XA A XA A XA A XA A XA A XA A XA A XA	1.000 0.003 1.000 1.000 0.000 0.814 1.000 0.000 0.690 1.000 0.601 1.000 0.000 0.535	3.503 0.686 0.283 1.000 J.721 0.248 0.380 0.743 0.222 0.782 0.769 0.198 0.702 0.786 0.180 0.636 U.800	7.005 1.000 T 0.494 0.457 1.000 T 0.531 0.417 C.917 T 0.563 0.383 0.842 T 0.591 0.354 0.354 0.775 T 0.614 0.329 0.715 T 0.634	10.51 IME ON 0.364 0.575 1.000 IME ON 0.397 0.537 0.940 IME ON 0.427 0.504 0.427 0.504 0.427 0.504 0.454 0.454 0.475 0.828 IME ON 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.500	<pre> NO 13 14.01 STREAM C.272 C.657 1.000 STREAM 0.300 0.625 C.956 STREAM 0.325 0.595 0.912 STREAM 0.349 0.568 0.869 STREAM 0.371 0.542 0.827 STREAM C.3392 </pre>	17.51 0 HR. 0.206 0.717 1.000 0.5 HR. 0.228 0.639 0.967 1.0 HR. 0.249 0.663 0.934 1.5 HR. 0.269 0.639 0.899 2.0 HR. 0.288 0.616 0.865 2.5 HR. 0.306	21.01 	28.02 0.092 0.820 1.000 0.102 0.802 0.986 0.113 0.786 0.970 0.123 0.970 0.123 0.770 0.954 0.937	35:03 0.054 0.854 1.000 0.061 0.840 0.991 0.067 0.827 0.981 0.067 0.981 0.074 0.981 0.074 0.815 0.971 0.080 0.802 0.960 0.086

								15	3
x					STREAM			1	
X _A X _B	1.000	0.812	J=652	0.519		0.323	0.253	0.154	0.092
^B	0.000	0.153	00288			0.574	0.636	0.724	0.779
8	0.441	U.535	0.617	0.687	0.747	0.748	0.839	0.900	U.935
		TABLE F	-14	S	ET NO 14	4			
W	0.000	2.831	5.663	8.495	11.33	14.16	16.99	22.65	28.32
					and the second second				
T			T	IME ON	STREAM:	=O HR。			
A	1.000	0.746	00575	0.453	0.360	0.289	0.234	0.155	0.104
X _A X _B	0.000	U.230	0.384	0.495	0.579	0.643	0.693	0.5765	0.811
a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
				IME ON		=0.5 HR.			
X _A X _B	1.000	00780		60494	0.398	0.322	0.262	U.174	0.117
XB	0.000	0.194		0.450	0.537	0.605	0.659	0.738	0.790
a	0.790	0.850		0.915	0.933	0.947	0.958	0.973	0.981
	-			IME ON		=1.0 HR.		00515	06701
X _A X _B	1.000	U.806	J0651	0.528	0.430	0.351	0.287	U.192	0.130
Xn	0.000	0.169	-	0.413	0.501	0.572	0.629	U. 714	0.770
a	0.659	0.738		0.837	0.870	0.895	0.915	00114	0.961
	00000	00100		IME ON		1.5 HR.	00010	00744	00901
X _A X _B	1.000	0.824		C.557	0.458	0.377	0.310	0.210	0.142
XA	0.000	0.150		0.382	0.470	0.542	0.601	0.591	
8 B	0.570	0.653		0.769	0.811				0.752
GL.	00010	00000				0.845	0.872	U.913	0.939
Χ.	1.000	0.838		IME ON 0.583		2.0 HR.	> 000		
X _A X _B	0.000).135				0.401	0.332	6.227	0.155
	0.505	Jo 585		0.356	0.441	0.515	1.575	0.669	0.734
a	00000	00000		0.708	0.756	0.797	0.830	0.883	0.916
v		0.050		IME ON	STREAM				-
A	1.000	Ú.850		0.704	0.506	0.422	0.352	0.243	0.167
X _A X _B	0.000	V.123	0.235		0.417	0.490	0.552	0.649	0.717
a	0.455	0.530		0.655	0.707	0.751	0.790	0.852	0.892
v	a sein	0.050		IME ON					
XA XB	1.000				0.526	0.442	0.371	0.259	0.179
AB	0.000			0.312	0.395	0.467	0.530	0.629	0.700
8	C.415	J • 485	0.550				0.752	0.821	0.868
v	1 000				STREAM=		0.00		
X _A X _B	1.000	0.867	0.747	0.639	J.544	0.461	0.389	0.274	0.190
^B	0.000	0.106	10205	0.295		0.447	0.509	0.610	0.684
8	0.383	0.448	0.410		0.621	0.670	0.715	Ü.791	0.844
v	1 0.5	07/	759		STREAM=		0		and server
A	1.000	0.874	0.758	0.654	0.560	0.478	0.405	0.288	0.202
XA XB a	0.000	0.099	0.1.2	0.279	0.358	0.428	0.490	0.592	0.668
a	0.356	0.417	0. 75	0.531	0.584	0.634	0.681	0.761	0.819
v		1 000			STREAM=				Service Service
A	1.000	6.880	0.768	0.667	0.575	0.433	3.421	0.302	0.213
XA XB a	0.000	0.093		0.265	0.341	0.411	0.472	0.575	0.653
8	0.333	0.389	0.445	0.499	0.551	0.601	0.648	0.732	0.795
77	a had	0.0-			STREAM=				
X _A X _B	1.000	J.885	00777	0.678	0.588	0.507	0.435	0.266	0.224
AB	0.000	0.088		0.252	0.327	0.395	0.456	0.559	0.639
a	0.313	0.366	0.418	0.470	0.521	0.570	0.618	0.705	0.771

		TABLE F=	15	SI	ET NO 15			15	4
W	0.000			7.719			15.44	20.58	25.73
							12044	20000	22012
X.					STREAM	O HR.	•		
X _A X _B	1.000			0.604	0.521	C.452	0.394	0.302	0.233
	0.000			0.354	0.429	0.491	0.543	0.625	0.686
8	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000
X _A X _B	1.000	0.854		ME ON		0.5 HR.	100		2 2 2
XR	0.000		-	0.321	0.553 0.395	0.482	0.422	0.326	0.253
ື	0.831			0.912	0.926	0°458 0°938	0.511	0.597 0.961	0.662
				AE ON		1.0 HR.	00741	CORCI	0.969
X _A X _B	1.000	Ú.870		0.663	0.581	0.510	0.448	0.348	0.272
^A B	0.000		0.209 :		0.365	0.428	0.482	0.570	0.638
8	0.7.18	0.761	0.801 ().832	0.857	0.878	U.895	0.921	0.938
Y		A. 77 4		1E ON	STREAM=	1.5 HR.	* 3		
X _A X _B	1.000			.686	0.606	0.535	Uo473	0.370	0.291
	0.000		0.189 0		0.338	0.40	J.455	0.545	0.616
a	0.616	. 0.675		0.761	0.754	0.821	0.844	0.881	0.905
X,	1.000	C.892		1E ON		2.0 HR.		1.000	0.040
XB	0.000		0.172		0.628	0.558	0.496	0.391	0.309
a	0.544			0.698	0.735	0.5758	0.429 0.796	0.521	0.594
				1E ON	STREAM=		00190	00041	00012
X _A X _B	1.000	0.901		0.725	0.648	0.579	0.517	0.411	0.326
XB	0.000		00157 0	.228	0.293	0.352	0.406	0.498	0.572
8	0.486	0.545		00642	0.682	0.718	0.750	0.802	0.840
X.		(E ON	STREAM=				
X _A X _B	1.000			0740	0.666	0.598	0.536	0.430	0.343
a	0.000		00145 0		0.274	0.332	0.385	0.477	0.552
	03440	03495		-592 E ON	0.634 STREAM=	0.672	0.706	0.765	0.807
X _A X _B	1.000	0.914	0.832 0			y.616	0.555	0.448	0.360
XB	0.000		00134 0		0.257		0.365	0.456	0.532
a	0.401		0.502 0		0.590	0.629	0.665	6.728	0.775
T		1.1	TIM	E ON	STREAM=	4.0 HR			
X _A X _B	1.000		0.841 0			0.632	0.571	0.464.	0.375
	0.000		00124 0		0.241		0.346	0.437	0.513
a	0.368	0.417 :	0.463 0		0.550	6.590	0.627	0.693	0.743
X.	1.000	0.923	J0849 (STREAM= U.710		0 507	0 / 01	0.001
X _A X _B	0.000		00049 C 00116 0		0.227	0.647	0.587 0.329	0.481 0.418	0.391 0.495
aB	0.340		U6400 U		0.514	0.553	0.591	0.659	0.713
					50.521	00000	00071	00022	00110
		TABLE F-	16	SE	T NO 16				
W	0.000	2.831	5,663 8	.495	11.33	14.16	16.93	22.65	28.32
		*	TIM	E ON	STREAM=	0 40			
X	1.000	0.819	0.683 0		0.491	0 HR. 0.421	v.362	0.271	0.205
X _A X _B	0.000		Je 283 0			0.519	0.571	0.653	0.712
8	1.000		1.000 1		1.000	1.000	1.000	1.000	1.000
			TIM	IE ON	STREAM=				
X _A X _B	1.0.00			.60B	0.522	0.450	0.389	0。293	Ü.222
	0.000						0.541	0.627	0.690
8	0.833	6.873 (0.899 0	0916	0.932	009+3	6.952	0.965	0.974

			TINE OF				
Χ.			TIME ON				
X _A X _B	1.000	0.857	0.737 0.636		0.414	0.314	0.239
ⁿ B	0.000	0.123	00228 00317		0.513	0.601	0.668
8	0.712	0.769	0.811 0.843	0.868 0.888	0.905	0.930	0.946
-			TIME ON	STREAM=1.5 HR.	0		100 200 200
X _A X _B	1.000	0.871	0.757 0.659		0.437	0.334	0.256
Xn	0.000	0.110	0.207 0.292		0.485	0.577	0.647
	0.621	0.684	0.734 0.775				
a	00021	00004			0.859	0.894	0.918
X.	- 0.00		TIME ON				
A	1.000	0.881	0.775 0.681		0.459	0.354	0.272
XB	0.000	00099	0.189 0.270	0.342 0.405	0.461	0.554	0.0626
8	0.549	U.614	0.668 0.714		U.813	0.859	0.889
10			TIME ON				
X _A X _B	1.000	6.891	0.790 0.699		0.480	Ú.372	0.288
Xn	0.000	0.089	0.173 0.250				
					0.438	0.532	0.606
a	0.492	0.555	0.610 0.659		U = 770	0.823	0.860
v			TIME ON		100	1000	
X _A X _B	1.000	6.898	U.803 C.716	0.636 0.564	J.500	0.390	0.307
AB	0.000	0.082	Uo160 Uo233	0.300 0.361	0.417	0.511	0.587
8	0.445	J. 505	0.560 0.609	0.654 0.673	0.729	0.788	0.830
			TIME ON				
X	1.000	0.905	0.815 0.730		0.518	0.408	0.319
XB	0.000	0.075					
					0.396	0.491	0.568
a	0.405	0.463	0.516 0.565		0.689	0.754	0.801
v			TIME ON				
X _A X _B	10000	C .910	00824 00744	0.668 0.599	0.535	0.424	0.0334
AB	0.000	0.009	0.138 0.203	0.265 0.324	0.377	0.472	0.550
a	0,372	U . 420	0.477 0.526		0.652	0.721	0.772
-			TIME ON		00004		
X.	1.000	0.715	0.833 0.755		0.551	0.440	0.349
XB							
	0.000	0.064	Uo128 Co191		0.359	0.453	0.532
8	0.344	U.395	Jo443 Jo490		0.617	0.689	0.743
v	- Aurel	Children Par	TIME ON		1 28 3	Prof. In	
X _A X _B	1.000	J.919	0.841 0.766	0.695 0.628	0.566	0.455	0.363
AB	0.000	1.060	00120 00179	U.237 U.292	j=343	0.436	0.515
a	0.320	0.367	0.413 0.458		0.584	0.658	0.715
-			colla colla				
		TABLE F	-17 S	ET NO 17	1.0.0		
		INDEL I	· · · · · · · · · · · · · · · · · · ·		and the second		
W	0.000	3.064	6.129 9.193	12.26 15.32	18.39	24.52	30.64
	00000	20004	6.129 9.193	12020 12022	100099	64026	20.04
-				CTOCIN C UD			
v			TIME ON			2 0 C 1	0 004
XA	1.000	0.848	0.734 0.643		0.451	0.364	0.236
AB	0.000	0.133	0.233 0.313	0.379 0.434	0.481	0.557	0.616
a	1.000	1.000	1.000 1.000	1.000 1.000	1.000	1.000	1.000
			TIME ON	STREAM=0.5 HR.	>		
X	1.000	0.865	0.757 0.667		0.473	6.383	0.313
XA	0.000	Ú.115	0.209 0.286		0.455	0.534	0.595
	0.830				0.954	0.966	0.973
8	0.830	U.877	0.905 0.924			00,00	00715
X.				STREAM=1.0 HR.		0 400	0.329
Av	1,000	0.880	0.778 0.691		0.495	0.402	
^ B	1,000	0.100	0.187 0.261		6.430	0.511	0.574
a	0.695	0.769	0.817 0.853	0.874 0.8)3	6.908	0.930	0.944
			TIME ON		2		
XA	1.000	0.893	0.797 0.713		0.516	0.421	0.346
	0.000	0.087	0.167 0.238		0.405	0.487	0.553
	> F 0 7	0.001	and the second		0.861	0.894	0.914
a	00001	00014	0.735 0.779	08012 08040	00001		

								15	6
-				TIME ON	STREAM	-2.0 HR.			
XA	1.000	6.904	0.814	0.733	0.661				
XB	0.000	0.076				0.596	0.538	0.441	0.362
	00000			0.216	0.277	0.332	0.381	0a464	0.532
8	0.499	0.591		0.712	Ú. 754	L. 737	0.814	0.856	0.884
77				TIME UN	STREAM	=2.5 HR.			
X _A X _B	1.000	0.913	0.630	0.752	0.681	0.617	3.559	110	0 070
Xn	0.000	0.067						0.460	0.379
	00000		01133	0.197	0.255	0.309	U = 358	0.442	0.511
a	0.428	0.518	0.591	0.649	0.696	0.735	J.768	0.819	0.852
77			1	FIME ON	STREAM	=3°0 HR			
X _A X _B	1.000	0.921	0.843	0.769	0.700	0.637	0.579	0.478	0 200
Xn	0.000	0.059							0.396
	00000			6.178	.0.234	0.237	0.335	0.419	0.490
8	0.370	0.456	(1.529	0.590	0.641	0.685	0.722	0.781	0.820
77			1	IME ON	STREAM	=3.5 HR			
X _A X _B	1.000	U.928	0.855	0.785	0.718	0.656	0.598	0.497	0.413
Xn	0.000	J. 652							
				0.162	0.215	0.266	U.313	0.397	0.468
8	0.322	0.402	00473	0.535	0.589	0.636	0.676	0.743	0.788
77		1. N	7	IME ON	STREAM=	:4.C HR			
X _A X _B	1.000	J.934	0.866	0.799	0.735	0.674	0.617	0.515	0.429
Xn	0.000	Jo46	0.095	0.146	0.197				
						0.246	3.292	0.376	0.447
a	0.281	0.355		0.485	0.540	0.589	0.632	0.704	0.755
v		100 million (1997)	T	IME ON	STREAM=	:4.5 HR		the second	
AA	1.000	0.939	0.876	0.812	U. 750	0.690	0.634	0.533	0.446
XA	0.000	0.040	0.085	0.133					
	20000				0.180	C.227	0.272	0.355	0.427
8	0.247	0.314	0.378	10.438	0.494	0.544	0.589	0.666	0.721
75			. T	IME ON	STREAM=	5.0 HR			
X _A X _B	1.000	U.943	02884	0.824	0.764	0.706	0.651	U. 550	0.462
Xn	5.000	0.036	0.077	0.120					
					0.165	0.209	J.253	0.334	0.407
a	0.219	0.279	0.339	0.396	0.451	0.501	0.548	0.629	0.688
	-		Т	IME ON	STREAM=	5.5 HR			
X	1.000	00947	0.891	0.834	0.777	.721	0.667	0.567	0.478
XB	0.000	0.032	0.069	0.109					
					0.151	0.193	U.235	0.314	0.387
a	0.195	0.249	0.304	0.358	Ú0411	0.461	0.508	0.592	0.655
							11 100		
	1.00	TABLE F	- 18	SE	T NO 18		1.150	States and the	
			10	Ų L					
W	0.000	3.815	7.620	11 45	16 26	10 07	22 00	20 50	20.25
	00000	20012	10030	11042	15.26	19.07	22.89	30.52	38.15
			Sec. 1						
v		1.1	Т	IME ON	STREAM=	0 .HR.	1000		
A_A	10000	0.693	0.0510	0.387	0.253	0.233	0.183	U.115	0.073
X _A X _B	0.000	0.274	0.437	0.547	0.626				
						0.635	0.729	U. 790	0.827
a	1.000	1.000	0.000	1.000.	1.000	1.000	1.000	1.000	1.000
V			T	IME ON	STREAM=	0.5 HR.			
X _A X _B	1.000	J.728	0.547	0.419	0.325	5.255	0.200	Ú. 125	0.080
XD	0.000	0.237		0.510	0.594	0.657	0.705	0.771	0.812
	0.791	0.876	0.917						
8	00171	00010		0.941	0.956	0.967	0.975	0.985	0.990
v.					STREAM=	1.0 HR.			
XA XB	1.000	0.757	0.581	0.450	0.351	0.276	0.218	0.138	0.087
AR	0.000	0.207	0.361	0.476	0.563	0.629	0.680	0.752	0.797
a	0.645	0.769	0.838	0.881	0.911	0.932			
		00105					0.947	0.968	0.979
Y					STREAM=				
A	1.000	v.782	0.610	0.487	0.377	0.297	0.236	Co149	0.095
X _A X _B	0.000	0.182	0.329	00444	0.533	0.602	0.657	J. 734	0.782
8	0.539	0.677	0.764	0.823	0.865	0.896	0.919	0.950	0.967
-							30717	00000	0.501
X		C			STREAM=				
A	1.300	C.802	00 É 37	0.505	0.401	U.318	0.253	0.161	0.102
X _A X _B	0.000	0.161	0.300	0.414	0.504	0.576	0.634	0.715	0.767
a	C.459	J. 598	0.696	0.767	0.819	. 859	0.889	0.930	0.954
~	C. State		0.010		00013		00007	00000	00774

v				TIME ON	STREAM	2.5 HR.			
X _A X _B	1.000	0.819	0.661	0.530	0.424	0.339	J.271	0.173	0.110
AB	0.000	0.144	0.275	0.386	0.477	0.551	0.611	0.697	
ຄ້	0.398	V.531	0.633	0.712					0.752
		00001			0.774	0.821	0.858	0.910	0.940
Y				TIME ON	STREAM				
X _A X _B	1.000	6.833	0.682	0.553	0.446	0.339	0.288	0e185	0.118
^B	0.000	U.129	0.252	0.360	0.451	0.537	U.588	0.679	0.737
a	0.349	0.473	0.577	0.661	0.727	0.783	0.827	0,889	
				TIME ON			60021	0:009	0.925
X _A X _B	1 000	1 0 / E			STREAM=				
Av	1.000	6.845		0.574	0.467	0.378	0.305	0.197	0.126
↑B	0.000	0.116	0.232	0.336	0.427	U.503	0.566	0.660	0.722
8	0.310	V.425	0.526	0.613	0.686	0.746	U.795	Ú.867	0.910
					STREAM=		00175	00001	00210
X.	1.000	0°855		0.594				1000000000	22 1000
x _B					0.487	0.397	0.321	0.209	0.135
^A B	0.000	0.106		0.314	Ú.403	0.480	0.545	0.642	0.708
8	0.278	0.383		0.568	0.644	0.709	0.763	0.844	0.894
	1			IME ON	STREAM	4.5 HR			
X _A X _B	10000	C.865	0.733	0.612	0.506	0.415	0.338	0.221	0 142
XA	0.000	0.097							0.143
				0.294	0.381	ũ • 438	0.524	0.625	0.693
8	0.251	00347	0.440	0.526	0.604	0.672	0.731	0.821	0.877
		10 M 1	1	IME ON	STREAM=	5.0 HR			
XA	1.000	0.872	0.746	0.629	0.524	0.432	0.354	0.233	0.151
XB	0.000	00089		0.275	0.361	0.437			
	0.229	0.316					0.503	0.607	0.679
a	00467	0.0010	0.0402	0.488	0.566	0.637	0.699	0.797	0.859
Χ.		and the second second		IME ON	STREAM=	5.5 HR	200.00		
X _A X _B	1.000	J. 878	0.758	00644	0.540	50449	0.369	0.246	0.160
^ B	0.000	J. U82	0.170	0.258	0.341	0.417	3.484	0.589	0.664
a	0.210	U.289	0.371	0°453	C.531	0.603	3.667	0.772	0.840
			00012	00100	00001	00000	00007	00112	0.040
		TABLE F	-10	C	T 10 10				
		LABLE F	eli	SE	T NC 19				
194									
**							5 A 2		
W	0.000		7.0324	10.99	14.65	18.31	21.97	29.30	36.62
W	0.000		7.0324	10.99	14.65	18.31	21.97	29.30	36.62
W	0.000				1.1.1		21.97	29.30	36.62
-	3	3.662	T	IME ON	STREAM=	0 HR.	G.	C	
-	1.000	3.662 0.581	0 ₀ 374	IME ON 0.251	STREAM= 0°172	0 HR. 0.119	D.084	C•041	0.021
W XA XB	1.000 0.000	3.662 0.581 0.377	T 0.374 0.563	IME ON 0.251 0.673	STREAM= 0°172 0°744	0 HR。 0。119 0。791	G.	C•041	
-	1.000	3.662 0.581	T 0.374 0.563	IME ON 0.251 0.673	STREAM= 0°172	0 HR. 0.119	D.084	C.041 J.861	0.021
XA XB a	1.000 0.000	3.662 0.581 0.377	T 0.374 0.563 0.000	IME ON 0.251 0.673 1.000	STREAM= 0°175 0°244 1°000	0 HR. 0.119 0.791 1.000	D.084 0.824	C.041 J.861	0.021 0.880
XA XB a	1.000 0.000 1.000	3.662 0.581 0.377 1.000	0.374 0.563 0.000 T	IME ON 0.251 0.673 1.000 IME ON	STREAM= 0°175 0°144 1°000 STREAM=	0 HR. 0.119 0.791 1.000 0.5 HR.	D.084 0.824 1.000	C.041 J.861 1.000	0.021 0.880 1.000
XA XB a	1.000 0.000 1.000 1.000	3.662 0.581 0.377 1.000 0.626	T 0.374 0.563 0.000 T 0.412	IME ON 0.251 0.673 1.000 IME ON 0.280	STREAM= 0°175 0°144 1°000 STREAM= 0°193	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134	D.084 0.824 1.000 0.094	C.041 J.861 1.000 O.047	0.021 0.850 1.000 0.023
XA XB XA XA	1.000 0.000 1.000 1.000 0.000	3.662 0.581 0.377 1.000 0.626 0.330	T 0.374 0.563 0.000 T 0.412 0.519	IME ON 0.251 0.673 1.000 IME ON 0.280 0.638	STREAM= 0°175 0°744 1°000 STREAM= 0°193 0°716	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768	0.084 0.824 1.000 0.094 0.804	C.041 J.861 1.000 O.047 O.847	0.021 0.850 1.000 0.023 0.868
XA XB a	1.000 0.000 1.000 1.000	3.662 0.581 0.377 1.000 0.626	0.374 0.563 0.000 T 0.412 0.519 0.931	IME ON 0.251 0.673 1.000 IME ON 0.280 0.638 0.956	STREAM= 0°175 0°744 1°000 STREAM= 0°193 0°193 0°716 0°970	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768 0.980	D.084 0.824 1.000 0.094	C.041 J.861 1.000 O.047	0.021 0.850 1.000 0.023
XA XB XA XB a	1.000 0.000 1.000 1.000 0.000 0.775	3.662 0.581 0.377 1.000 0.626 0.330 0.885	0.374 0.563 0.000 T 0.412 0.519 0.931	IME ON 0.251 0.673 1.000 IME ON 0.280 0.638 0.956 IME ON	STREAM= 0°175 0°744 1°000 STREAM= 0°193 0°716	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768 0.980	0.084 0.824 1.000 0.094 0.804	C.041 J.861 1.000 O.047 O.847	0.021 0.850 1.000 0.023 0.868
XA XB XA XB a	1.000 0.000 1.000 1.000 0.000	3.662 0.581 0.377 1.000 0.626 0.330	0.374 0.563 0.000 T 0.412 0.519 0.931	IME ON 0.251 0.673 1.000 IME ON 0.280 0.638 0.956	STREAM= 0°175 0°744 1°000 STREAM= 0°193 0°193 0°716 0°970	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768 0.980	9.084 0.824 1.000 0.094 0.804 0.986	C.041 J.861 1.000 O.047 O.847 J.993	0.021 0.880 1.000 0.023 0.868 0.996
XA XB XA XB a	1.000 0.000 1.000 1.000 0.000 0.775 1.000	3.662 0.581 0.377 1.000 0.626 0.330 0.885	T 0.374 0.563 0.000 T 0.412 0.519 0.931 T 0.447	IME ON 0.251 0.673 1.000 IME ON 0.280 0.638 0.956 IME ON 0.307	STREAM= 0.172 0.744 1.000 STREAM= 0.193 0.716 0.970 STREAM= 0.213	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768 0.980 1.0 HR. 0.149	9.084 0.824 1.000 0.094 0.804 0.986 9.104	C.041 J.861 J.000 O.047 O.847 U.993 J.052	0.021 0.830 1.000 0.023 0.868 0.996 0.026
XA XB XA XB XA XA XA B	1.000 0.000 1.000 1.000 0.000 0.775 1.000 0.000	3.662 0.581 0.377 1.000 0.626 0.330 0.885 0.662 0.662 0.291	T 0.374 0.563 0.000 T 0.412 0.519 0.931 T 0.447 0.480	IME ON 0.251 0.673 1.000 IME ON 0.280 0.638 0.956 IME ON 0.307 0.605	STREAM= 0.172 0.744 1.000 STREAM= 0.193 0.716 0.970 STREAM= 0.213 0.689	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768 0.980 1.0 HR. 0.149 0.746	D.084 0.824 1.000 0.094 0.986 0.986 0.104 0.786	C.041 J.861 J.000 O.047 O.847 U.993 J.052 O.833	0.021 0.880 1.000 0.023 0.868 0.996 0.026 0.856
XA XB XA XB a XA B a	1.000 0.000 1.000 1.000 0.000 0.775 1.000	3.662 0.581 0.377 1.000 0.626 0.330 0.885	0.374 0.563 0.000 T 0.412 0.519 0.931 T 0.447 0.480 0.864	IME ON 0.251 0.673 1.000 IME ON 0.280 0.638 0.956 IME ON 0.307 0.605 0.910	STREAM= 0.172 0.744 1.0000 STREAM= 0.193 0.716 0.970 STREAM= 0.213 0.689 0.940	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768 0.980 1.0 HR. 0.149 0.746 0.938	9.084 0.824 1.000 0.094 0.804 0.986 9.104	C.041 J.861 J.000 O.047 O.847 U.993 J.052	0.021 0.880 1.000 0.023 0.868 0.996 0.026
XA XB XA XB a XA B a	1.000 0.000 1.000 1.000 0.000 0.775 1.000 0.000 0.000 0.000	3.662 0.581 0.377 1.000 0.626 0.330 0.885 0.662 0.662 0.291 0.784	0.374 0.563 0.000 0.412 0.519 0.519 0.931 T 0.447 0.480 0.864	IME ON 0.251 0.673 1.000 IME ON 0.280 0.956 IME ON 0.307 0.605 0.910 IME ON	STREAM= 0°175 0°744 1°000 STREAM= 0°193 0°716 0°970 STREAM= 0°213 0°689 0°940 STREAM=	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768 0.980 1.0 HR. 0.149 0.746 0.938 1.5 JR.	D.084 0.824 1.000 0.094 0.804 0.986 0.104 0.786 0.971	C.041 J.861 J.000 O.047 O.847 U.993 J.052 O.833 O.986	0.021 0.880 1.000 0.023 0.868 0.996 0.026 0.856 0.992
XA XB XA XB a XA B a	1.000 0.000 1.000 1.000 0.000 0.775 1.000 0.000 0.628 1.000	3.662 0.581 0.377 1.000 0.626 0.330 0.885 0.662 0.662 0.784 0.692	T 0.374 0.563 0.000 T 0.412 0.519 0.931 T 0.447 0.480 0.864 T 0.479	IME ON 0.251 0.673 1.000 IME ON 0.280 J.638 0.956 IME ON 0.307 0.605 0.910 IME ON C.333	STREAM= 0°175 0°244 1°000 STREAM= 0°193 0°193 0°193 0°570 STREAM= 0°570 STREAM= 0°689 0°540 STREAM= 0°5252	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.758 0.980 1.0 HR. 0.149 0.746 0.938 1.5 JR. 0.163	D.084 0.824 1.000 0.094 0.804 0.986 0.104 0.786 0.971 0.115	C.041 J.861 J.000 O.047 O.847 J.993 J.052 O.833 O.986 C.057	0.021 0.880 1.000 0.023 0.868 0.996 0.026 0.856 0.992 0.028
XA XB XA XB a XA B a	1.000 0.000 1.000 1.000 0.000 0.775 1.000 0.000 0.000 0.000	3.662 0.581 0.377 1.000 0.626 0.330 0.885 0.662 0.662 0.291 0.784	0.374 0.563 0.000 0.412 0.519 0.519 0.931 T 0.447 0.480 0.864	IME ON 0.251 0.673 1.000 IME ON 0.280 0.956 IME ON 0.307 0.605 0.910 IME ON	STREAM= 0°175 0°744 1°000 STREAM= 0°193 0°716 0°970 STREAM= 0°213 0°689 0°940 STREAM=	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.768 0.980 1.0 HR. 0.149 0.746 0.938 1.5 JR.	D.084 0.824 1.000 0.094 0.804 0.986 0.104 0.786 0.971	C.041 J.861 J.000 O.047 O.847 U.993 J.052 O.833 O.986	0.021 0.880 1.000 0.023 0.868 0.996 0.026 0.856 0.992
XA XB XA XB XA XA XA B	1.000 0.000 1.000 1.000 0.000 0.775 1.000 0.000 0.628 1.000	3.662 0.581 0.377 1.000 0.626 0.330 0.885 0.662 0.662 0.784 0.692	T 0.374 0.563 0.000 T 0.412 0.519 0.931 T 0.447 0.480 0.864 T 0.479	IME ON 0.251 0.673 1.000 IME ON 0.280 J.638 0.956 IME ON 0.307 0.605 0.910 IME ON C.333	STREAM= 0°175 0°244 1°000 STREAM= 0°193 0°193 0°193 0°570 STREAM= 0°570 STREAM= 0°689 0°540 STREAM= 0°5252	0 HR. 0.119 0.791 1.000 0.5 HR. 0.134 0.758 0.980 1.0 HR. 0.149 0.746 0.938 1.5 JR. 0.163	D.084 0.824 1.000 0.094 0.804 0.986 0.104 0.786 0.971 0.115	C.041 J.861 J.000 O.047 O.847 J.993 J.052 O.833 O.986 C.057	0.021 0.880 1.000 0.023 0.868 0.996 0.026 0.856 0.992 0.028

			TIME ON	STREAM=2.0 HR.	
XA	1.000	0.717	0.507 0.357	0.252 0.177 0.125	0.062 0.031
Xn	0.000	0.234	0.414 0.545	0.638 0.7)4 0.750	
	0.451	0.623	0.738 0.817	0.872 0.910 0.936	0.968 0.983
~			TIME ON	STREAM=2.5 HR.	00,00 00,00
X.	1 000	0 720			0.017 0.001
A	1.000	0.738	0.533 0.380	0.273 0.192 0.136	
^B(0.000	0.212	0.385 0.517	0.614 0.683 0.733	0.794 0.824
a	0.395	U.559	00681 00772	0.837 0.884 0.917	0.958 0.977
			TIME ON	STREAM=3.0 1R.	
XA	1.000	0.756	J. 555 U.402	U.289 U.206 0.146	0.073 0.036
XB	0.000	0.193	0.360 0.491	0.590 0.663 0.716	0.781 0.814
a	0.351	6.505	00630 0.727	0.302 0.857 0.897	
			TIME ON	STREAM=3.5 HR	
X	1.000	0.771	00576 00423	0.306 0.220 0.157	0.079 0.039
man P1		C.177 .			
XB	0.000		0.337 0.467		
a	0.315	0.458	0.582 0.685	0.765 0.839 0.876	0.936 0.965
v	The second	1.000	TIME ON	STREAM=4.0 HR	and the second sec
XA	1.000	0.784	0.595 0.442	0.323 0.234 0.167	0.084 0.042
AB	0.000	0.163	0.316 0.444	0.546 0.624 0.683	0.756 0.794
a	0.287	0.418	0.539 0.645	0.732 0.801 0.855	0.924 0.958
		10 M 1	TIME ON	STREAM=4.5 HR	The set
AX	1.000	0.795	0.612 0.460	0.340 0.247 0.178	0.090 0.045
XB	0000	J.152	0.297 0.423	0.526 0.606 0.666	0.744 0.785
a	0.262	J. 383			J. 911 0.951
G	00202	20202	0.500 0.607	0.698 0.770 J.832	00211 00201

len a

<u>APPENDIX - G</u>

G-1 Material Balance Calculations

Sample calculations for sample No.1 set 2

1 1 1 1

DATA

Common of set	n for all the sampl 5 2	es For S ample No.1 only
GCAT	= 34.1307 gm	TIME = 25-45 minutes
VHF	= 362.5 ml/min	• T = 20 minutes
VCF TR	= 1.5 ml/min = 350 o _C	• VEG = 1137. ml/min. VBL = 0.676
TE TA	= 6.8 °C = 25.0. °C	WLS = 15.8403 gm
P		
VPW	= Exp [[7.96681 -	$\frac{1668.21}{\text{TA} + 228} + 2.303 = 23.6$
VPA	$= Exp \left[6.84498 - \right]$	$\frac{1203.526}{\text{TE}+222.863} \times 2.303 = 40.25$
VPB	= Exp [6.90565 -	$\frac{1211.033}{\text{TE}+220.79} \times 2.303 = 38.44$
CFl	$= \frac{22400. *760}{273} \cdot *$	$\frac{273 + TA}{(P - VPW)} = 2.6086 * 10^4$
LHSV	$= \frac{\text{VCF} * 60 * .85}{\text{GCAT}} =$	2.052
QHF	$= \frac{VHF}{CFI} =$	0.01390
QCF	$=\frac{\text{VCF} *0.778}{84.16} =$	0.01387
GAMA	$= \frac{QHF}{QCF} =$	1.002

PMG = AMG + BMG + HFO = 0.57937

PERT = (EGM-(BMG+AMG+HFO+AMF+HFE))*100./(AMF+HFE)=2.60

$$PERH = (EGM-HFE-PMG)*100./HFE = 5.195$$

$$CHC = AMF - BMF - AMU = 0.02864$$

$$FA = BMF/AMF = 0.6362$$

- FB = CMU/AMF = 0.2605
- FCR = 1 FA FB = 0.1033

CHCG = EGM-PMG-HFE = 0.01444

G.2 Sample Calculations for Apparant Rate Constants: From G.1, for set No.2 - Mole ratio, $\gamma = 1.002$

$$\frac{1}{C_{o}} = CF1 = 2.6086 \times 10^{4} \text{ cm}^{3}/\text{gmole}$$

$$W = GCAT = 34.1307 \text{ g}$$

$$F = QCF * 60 = 0.8332$$

From Fig. 4.1.2, from smooth-ned curve

$$X_{A} = 0.237$$

$$X_{\rm B} = 0.660$$

 $X_{C} = 1 - X_{A} - X_{B} = 0.103$

Hence,
$$K = \frac{X_C}{X_B} = \frac{0.103}{0.660} = 0.156$$

Substituting the values in equation (4.2)

$$0.660_{+} \left[\underbrace{\frac{1+1.002(1+0.156)}{3-0.156}}_{1+0.156} \ln[1-(1+0.156)0.66] \right]$$

$$= -k_{1} * \frac{1+0.156}{3-0.156} \cdot \frac{1}{2.6086*104} \cdot \frac{34.1307}{0.8332}$$

122

and thus $k_1' = 5060$

REFERENCES

- Anderson, J.B., A Criteria for isothermal behaviour of a catalyst pellet, Chem.Engg.Sci. <u>18</u>, 147 (1963).
- 2. Anderson, R.B., Experimental methods in catalytic Research, Academic Press, New York, 1974.
- 3. Balandin, A., Z. Physik.Chum. 82, 289 (1929)
- 4. Balder, J.R. and Peterson, E.E., Poisoning studies in a single pellet reactor, Chen.Engg. Scie. <u>23</u>, 1287 (1968).
- 5. Barnard , J.A. and Mitchell, D.S., Studies in catalytic reactions, J.Catal., <u>12</u>, 376 (1968).
- 6. Barnett, L.G., Weaver, R.E.C., and Gilkeson, M.M., Effect of mass transfer on solid-catalyzed reactions, the dehydrogenation of cyclohexane to benzene, MCHE J, 7(2), 211 (1961).
- 7. Berger, C.V., Donaldson, G.R., and Pasik, L.F., Universal Oil Products Co., Unpublished data.
- 8. Burkman, S., Morrel, J.C., and Egloff, G., Catalysis Inorganic and Organic, Reinhold Pub. Co., N.Y. 1970.
- 9. Blanding, F.H., Reaction rates in catalytic cracking of petroleun, IEC, 45, 1186 (1953).
- 10. Bond, G.C., Catalysis by notals, Academic Press, N.Y., 1962.

163

- 11. Calderbank, P.H., Cildwell, A.D., and Ross, G.L., Chin Ind Getie Chin, <u>101</u>(2), 215 (1969).
- 12. Carberry, J.J., Designing Laboratory Catalytic Reactors, INC, <u>56</u>(11), 39 (1964).
- 13. Carberry, J.J., Yield in Chemical reactor engineering IEC, <u>58</u> (1)), 40 (1966).
- 14. Carberry, J.J., and Goring, R.L., Time dependent pore mouth poisoning, J.Catal., 5, 529 (1966).
- 15. Carberry, J.J., Chemical and Catalytic Reaction Engineering, McGraw Hill, 1976.
- 16. Chambers, R.F., and Boudart, M., Lack of dependence of conversion on flow rate in catalytic studies, J.Catal., 6, 141 (1966).
- 17. Christofel, E., Vierrah, H., and Fetting, F., Reforming reactions of n-hexane on a bifunctional zeolite catalyst, Proceedings of the Fifth European Second International Symposium on Chemical Reaction Engineering, Ansterdan, 1972, Elsevier 1972.
- 18. Ciapetta, F.G., Dobres, R.M., and Baker, R.W., Catalytic reforming of pure hydrocarbons and petroleum naphthas, catalysis Vol.VI, Ed. P.Enett, Reinhold, N.Y. 1958.
- 19. Ciapetta, F.G., and Wallace, D.N., Catalytic naphtha reforming, Catal. Rev., 5, 67 (1971).
- 20. Crowe, C.M., Optimization of reactors with catalyst decay, I-single tubular reactor with uniform temperature, Canad. J.Chem.Engs.,<u>18</u>,576 (1970)

- 21. Growe, C.M., and Lee, S.I., Optimization of reactors with catalyst decay, III-Tubular reactor with several beds of uniform temperature, ibid, 49, 385 (1971).
- 22. Donaldson, G.R., Pasik, L.F., and Haensel, V., Dehydrocyclization in platforning, IEC, <u>47</u>, 731 (1955).
- 23. Doraiswamy, L.K. and Tajbl, D.G., Laboratory catalytic reactors, Catal. R.v. Vol 10, Marcel Dekker, 1975.
- 24. Eley. D.D. and Rideal, E.K., Proc. Roy Soc. (London), A178, 429 (1941).
- 25. Froment, G.F., and Bischoff, K.B., Non-steady state behaviour of fixed bed catalytic reactors due to catalyst fouling, Chem.Eng. Sci, <u>16</u>, 189 (1961).
- 26. Froment, G.F., and Bischoff, K.B., Kinetic data and product distributions from fixed bed catalytic reactors subject to catalyst fouling, ibid, <u>17</u>, 105 (1962).
- 27 Gates, B.C., Katzer, J.R., and Schuit, G.C.A., Chemistry of catalytic processes, McGraw-Hill, 1979.
- 28. Graham, R.R., Vidaurri, JR.F.C., and Gully, A.J., Catalytic dehydrogenation of cyclohexane, a transport controlled model, AICHE J, <u>14</u>(3), 473 (1968).
- 29. Guha, B.K., and Narsimhan, G., Control regimes in experimentation of heterogeneous kinetics, Ch.E.Sci,. <u>27</u>, 703 (1972).

- 30. Haensel, V. and Donaldson, G.R., Platforming of pure hydrocarbons, IEC, <u>43</u>(9), 2102 (1951).
- 31. Haensel, V., in : Chem. of Pet. Hydrocarbons, ed. Brooks et. al., Reinhold Publishing Corpn., N.Y., 1955.
- 32. Haensel, V., and Berger, C.V., Catalytic Reforming in 'Advances in Petroleum Chemistry and Refining' Vol. 1, Interscience Publishers, NY., 1958.
- 33. Haensel, V., Donaldson, G.R. and Riedl, F.J., Mechanism of cyclohexane conversion over platinumalumina catalysts, Proceedings of Third International congress on Catalysis, Amsterdam, 1964, Elsevier 1964.
- 34. Hahn, J.L., and Peterson, E.E., Poisoning studies in a single pellet catalytic reactor, Canadian J of Ch.E., <u>48</u>, 147 (1970).
- 35. Haro, J., Gomez, R. and Forreira, J.M., The role of palladium in dehydrogenation of cyclohexane ovor Pt-Pd/Al₂O₃ binetallic catalysts, J Cat., <u>45</u>, 326 (1976).
- 36. Hegedus, L.L. and Peterson, E.E., An improved singlepellet reactor to study the interaction kinetics with mass transfer effects in Heterogeneous catalysis, IEC (FUND), <u>11</u>, 579 (1972).
- 37. Hegedus, L.L. and Peterson, E.E., Study of the mechanism and kinetics of poisoning phenomena in a diffusion-influenced single catalyst pellet, Ch.E.Sci., <u>28</u>, 69 (1973).

- 38. Hegedus, L.L. and Peterson, E.E., The single pellet diffusion reactor : Theory and applications, Cat. Rev., Vol. 9, Marcel Dekker, 1974.
- 39. Heinemann, H., Mills, G.A., Hattman, J.B., and Kirsch, F.W., Houdriforming reactions - catalytic mechanism, IEC, 45(1), 130 (1953).
- 40. Henningsen, J. and Bundgaard-Nielson, M, Catalytic Reforming, BCE, <u>15(11)</u>, 1433 (1970).
- 41. Herrington, G.F.and Rideal, E.K., Proc. Roy, Soc., (London), 184A, 434 (1935).
- 42. Himmelblau, D.M., Process Analysis by Statistical Methods, John Wiley, 1970.
- 43. Hirata, M., Ohe, S., and Nagahama, K., Computer aided data book of Vapor Liquid equilibria, Elsevier, 1975.
- 44. Hoston, L.H. and Froment, G.F., Isomerization of n-pentane, INC (PDD), <u>10</u>, 280 (1971).
- 45. Khang, S.J. and Levenspiel, O., The suitability of an nth order rate form to represent deactivating catalyst pellets, IEC, Fund., <u>12</u>, 185 (1973).
- 46. Khoobiar, S., Peck, R.E. and Reitzer, B.J., Mechanism of naphthene dehydrogenation, Proceedings of Third International Congress on catalysis, Amsterdam 1964, Elsevier 1964.
- 47. Krane H.G., Groh, A.B., Schulman, B.L., and Sinfelt, J.H., Reactions in catalytic reforming of naphthas, Proceedings of 5th world petroleum Congress, New York, 1959.

- 48. Krishnaswany, S., and Kitrell, J.R., Deactivation disguised Kinetics, IEC, PDD, <u>17(2)</u>, 200 (1978).
- 49. Lanbrecht, G.G., Nussey, C. and Froment, G.F., Proceedings of the fifth European second International Symposium on Chemical Reaction Engineering, Amsterdam, 1972, Elsevier, 1972.
- 50. Landau, J. and Peterson, E.E., Theoretical development and Experimental verification of a novel, well-mixed vessel, AICh.E.J., 20, 166 (1974).
- 51. Lester, G.R., Different mechanisms of Aromatization of Trimethyl-pentanes over chromia-alumina and platinum-alumina catalysts, Journal of catalysis, 13, 187 (1969).
- 52. Levenspiel, O., Experimental search for a simple rate equation to describe deactivating porous catalyst particles, J Catal, 25, 265 (1972).
- 53. Maatman, R., Mahaffy, P., Hockstra, P. and Addink, C., The preparation of pt-alumina catalysts and its role in cyclohexane dehydrogenation, J. Cat., 23, 105 (1971).
- 54. Maatman, R., Ribbens, W. and Vonk, B., The role of Pd.alumina catalyst in the dehydrogenation of cyclohexane, J. Cat. <u>31(3)</u>, 384 (1973).
- 55. Mahoney, J.A., The use of gradientless reactor in petroleum reaction Engineering studies, J.Catal, <u>32</u>, 247 (1974).

- 56. Masamune, S. and Smith, J.M., Performance of foiled catalyst pellets, AICh.E. J., 12, 384 (1966).
- 57. Maxted, E.B., The poisoning of metallic catalysts, Adv. in Cat., 2, 129 (1951).
- 58. Mears, D.E., Tests of Transport limitations in Experimentaal catalytic reacters , IEC, PDD, <u>10</u>, 54 (1971).
- 59. Mears, D.E., Diagonstic criteria for heat transport limitations in fixed bed reactors, J. Catal, 20, 127 (1971).
- 60. Mears, D.E., On the relative-importance of intraparticle and interphase transport-effects in gas-solid catalysts, ibid, <u>30</u>, 283 (1973).
- 61. Mezaki, R. and Hoppel, J., Identification of rate models for solid catalyzed gaseous reaction, Catalysis Reviews, Vol. 3, Marcel Dekker, 1969.
- 62. Miertschin, G.N. and Jackson, R., optimal switching policies for fixed bed catalytic reactors in series, Ganad. J. Chem. Engg., <u>49</u>(4), 514 (1971).
- 63. Mills, G.A., Hinemann, H., Milliken, T.H. and Obald, A.G., Houdriforming reactions catalytic Mechanism, IEC, 45, 134 (1963).
- 64. Minachev, Kh.M. and Isagulyants, G.V., Investigation of catalyst paisoning and hydrocarbons converson mechanism in reforming process, proceedings of third International Congress on catalysis, Amsterdam, 1964, Elsevier.

- 65. Ogunye, A.F. and Ray, W.H., Optimization of tubulers reactors with catalyst decay, IEC (PDD), 9(4), 619 (1970).
- 66. Ogunye, A.F. and Ray, W.H., optimization of cyclic tubular reactors with catalyst decay, IEC (PDD), 10(3), 410 (1971).
- 67. Pease, R.H. and stewart, L., Rate of diffusion in catalysis, J.Am., Chem., Soc., <u>47</u>, 1235(1925)
- 68. Perry, J.H., Chemical Engineers Hand Book, Fourth Edition, McGraw Hill Kogakusha, 1963.
- 68. Peterson, E.E., Chemical Reaction Analysis, Prentice Hall, 1965.
- 70. Peterson, E.E., A general criterion for diffusion influenced chemical reactions in porous solids , Ch.E. Sci, <u>20</u>, 587 (1965).
- 71. Peterson, T.I. and Lapidus, L., Nonlinear Estimation analysis of the kinetics of catalytic Ethanol dehydrogenation, ibid, <u>21</u>, 655 (1966).
- 72. Rase, H.F., Chemical Reactor Design for Process Plants, John Wiley and Sons, New York, 1977.
- 73. Rihani, D.N., Naraynan, T.K. and Doroiswamy, L.K., Hydrogenation of nitrobenzene to aniline, IEC, PDD, 4, 403, (1965).
- 74. Satterfield, C.N. and Sherwood, T.K., The role of diffusion in Catalysis, Addison, Wesley, 1953.
- 75. Satterrield, C.N., Mass Transfer in Hetrogeneous Catalysis, M.I.T. Press, Cambridge, Massachusettes, 1969.

170

- 76. Sinfelt, J.H., Bifunctional catalysts, Adv., Chem. Engg., 5, 37 (1964).
- 77. Smith, J.M., Chemical Engg. Kinetics, Second Edition, McGraw Hill, 1970.
- 78. Smith, R.B., Kinetic analysis of naphtha reforming with platinum catalyst, CEP 55(6), 76 (1959).
- 79. Szepe, S. and Levenspiel, O., Catalyst deactivation, Proceedings of fourth European Symposium on Chemical reaction Engineering, Brussels, 1968, Pergamon Press, NY (1971).
- 80. Taylor, H.S., J. Am Chom. Soc., 60, 627 (1938).
- 81. Thomas, C.L., Catalytic process and proven catalysts, Academic Press, 1970.
- 82. Vanden Block, C.M., Vanden Wiele, K., Vanden Berg, P.J., The effect of dilution on the degree of conversion in fixed bed catalytic reactors, Chem. Enge. Sci. 24, 681 (1969).
- 83. Volts, S.E., Nace, D.M. and Weckman, V.W., Application of a kinetic model for catalytic cracking IEC(PDD), 10(4), 539 (1971).
- 84. Voorhies, A., Carbon formation in catalytic cracking IEC, <u>37</u>, 318 (1945).
- 85. Weekman, V.W., A model of catalytic cracking conversion in fixed, moving and fluid bed reactors, IEC (PDD), 7, 90 (1968).
- 86. Weekman, V.W., Laboratory reactors and their limitations, AI.Ch.E J. 20, 833 (1974).

- 87. Weisz, P.B., and Prater, C.D., Interpretation of Measurements in experimental catalysis, Advances in catalysis, <u>6</u>, 143 (1954).
- 88. Wheeler, A., Role of Diffusion in Catalysis, in P.H. Emett (ed.), 'Catalysis' Vol. 2, Reinhold NY, 1955.
- 89. Wolf, E.E. and Peterson, E.E., Kinetics of deactivation of a reforming catalyst during Methyl cyclohexane dehydrogenation in a diffusion reactor, J Catal, <u>46</u>, 190 (1977).

90. Wojciechowski, B.W., A theoretical treatment of catalyst decay, Canad. J.Chem. Engg. <u>46</u>, 48 (1968).

- 91. Wojciechowski, B.W., The kinetic foundations and the practical application of the time-onstream theory of catalyst decay, Catalysis Reviews, Vol. 9, Marcel Dekker, 1974.
- 92. Zelinski, N. Ber, <u>44</u>, 3121 (1911)
- 93. Zelinski, N., Ber, <u>45</u>, 3678 (1911).
- 94. Panchenkov, G.M. and Lebedev, V.P., Chemical Kinetics and Catalysis, Mir Publishers, Moscow, 1976.

