DEVELOPMENT OF FRICTION MATERIALS THROUGH POWDER METALLURGY

A THESIS

Submitted in partial fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

in

METALLURGICAL AND MATERIALS ENGINEERING

MBRA

4. 8. ROO

by 🛛

LENIN SINGARAVELU D

DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247 667 (INDIA) DECEMBER, 2007

© INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE, 2007 ALL RIGHTS RESERVED

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis, entitled **DEVELOPMENT OF FRICTION MATERIALS THROUGH POWDER METALLULRGY** in partial fulfilment of the requirements for the award of the Degree of Doctor of Philosophy and submitted in the Department of Metallurgical and Materials Engineering of the Indian Institute of Technology Roorkee, Roorkee is an authentic record of my own work carried out during a period from January, 2004 to Dec, 2007 under the supervision of Dr. P.S Mishra, Professor and Dr. Kamlesh Chandra, Associate Professor, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee.

The matter embodied in this thesis has not been submitted by me for the award of any other degree of this or any other Institute.

(LENIN SINGARAVELU D)

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

Ehond

(KAMLESH CHANDRA) Associate Professor

(P.S. MISHRA) Professor

Date: Dec. 17, 2007

The Ph.D. Viva-Voice Examination of Mr. Lenin Singaravelu D, Research Scholar, has been held on 05-5-2008.

Signature of Supervisors

Antiven

Signature of External Examiner

Abstract

Friction materials are mainly employed in brakes, clutches and gear assemblies of automobiles, locomotive trains, commercial/fighter aircrafts, earth moving equipments, agricultural equipments, cranes, heavy presses, and excavators etc. When the brakes are applied, the kinetic energy of the moving system converts into heat due to friction between friction material on brake pads/discs/linings and rotor, which dissipates through brake assembly to the surrounding.

Three categories of friction materials are normally available. First, resin bonded friction materials, second, sintered friction materials, and third, carbon-carbon friction materials. Out of these categories, sintered friction materials segment has selected to improve upon its quality to meet higher expectations of automobile and aircraft industries. It is aimed to produce them with better characteristics employing newly developed technology, namely, Hot Powder Forging with appreciably reduced cost.

Metal based friction materials contain different constituents such as lubricants, abrasives along with other alloying elements. The metallic constituents provide strength, high temperature stability, oxidation resistance, and high thermal conductivity, whereas abrasives improve co-efficient of friction, fade resistance and wear resistance. Lubricants in these are usually solid type which are meant for smoother application of brakes and anti-seizure. Their simultaneous presence gives rise to parallel enhancement of certain properties of brake material.

Sintered metallic friction materials can be operated under two conditions either dry or wet. Usually, copper based friction materials are used in wet conditions i.e. immersed in oil whereas iron based friction materials are operated in dry conditions only. The sintered copper based friction materials are suitable for temperatures up to 600°C whereas iron based sintered friction materials are suitable up to 1100°C.

In the present investigation, the new iron-based friction material pads with improved performance and with built-in steel backing plate are produced by a novel P/M technique i.e. 'Hot Powder Forging' (described in Indian patent filed on Nov. 7, 2006). It employs high rate of forming where the material undergoes severe plastic deformation under application of impact load; purpose of compacting and sintering both are thus

ii

fulfilled simultaneously in a single step. The powder mixture is encapsulated in steel capsule and is heated to temperature range of 1000-1100°C and then hot forged in a forging press followed by homogenization treatment. The steel capsule cover later on serves as backing plate since it joins securely with the forged slab. The process as described above largely overcomes the limitations of presently practiced conventional P/M route based on compacting and siintering.

Detailed characterization of friction pads produced this way exhibits improved physical, mechanical, frictional and metallurgical properties. Subscale dynamometer tests have been performed and compared with results of existing sintered materials for military aircraft applications such as AN-32, MIG 21 and MIG 27 aircrafts.

The technology developed has capability to control density and hardness parameters in very precise manner and therefore it is possible to develop friction layers for different ranges of application (light to very heavy duty) by merely controlling these two parameters. In Pin-on-disc wear test, wear is gradually increasing from very low value to higher values thereafter it shows a significant drop in the amount of wear. This is possible because there is simultaneous role of wear resistant constituents and lubricants. The noise level during the test is not significantly altered in all the cases. This is because of the fact that the noise level is related to met metal content of the brake elements which in our case varies from 82% to 90%.

In sub scale dynamometer tests, the most significant aspect of the samples relate to stable performance with large number of braking cycles. In this context, brake fading tendency in our pads is completely absent. It is also noteworthy to mention that for application like AN 32 aircraft, a high dose of abrasives in the chemistry formulation is not necessary. Mere addition of 0.8% Phosphorous takes care of abrasive resistance of the pads, and, accordingly, a very simple chemistry like FM08N has qualified for such an application. This aspect has emerged out from the present investigation only and has not been reported sofar. Further, it is noteworthy to mention, that MIG 27 stator application is very specialized high energy condition for which chemistry of sintered pads is very complex and costly. In comparison to this, chemistry developed in the present investigation is much simpler and offer wide variety of choices to suit this challenging application.

Based on the results described in these tests, it can be mentioned that higher density, greater than 5.4 gm/cc of brake pad friction element, is desirable for low energy application such as AN 32. But contents of the lubrication (such as Ba SO₄, Sb₂S₃, Sn, and graphite) should not exceed 13%. It may be therefore inferred that density for such a range of application is significant parameter and higher density is desirable for improved wear performance. For MIG 27 aircraft, stator application is very specialized high energy condition for which chemistry of sintered pads is very complex and costly. In comparison to this, chemistry developed in the present investigation is much simpler and offer wide variety of choices to suit this challenging application. Quality of lubricants such as Sb₂S₃ would be more suited in comparison BaSO₄ and BN. It is established form the present investigation that apart from chemistry, annealing treatment and density adjustments are equally important for different energy ranges of application

All the microstructures of forged samples at the interface indicate strong bonding between backing plate and friction element because of enhanced diffusion of carbon from friction element side to backing plate side and absence of any layered structure at the interface. It is clear from SEM with EDAX pictures that the constituents present in the sample are uniformly distributed. There appears to be no segregation of constituents in the structure. Accordingly, the performance of these samples in actual service conditions is expected to be more consistent in comparison to sintered samples.

Bend test is performed to confirm the joint quality of friction material and backing plate. The bending behavior of forged brake pad samples is significantly superior to sintered sample for equivalent applications. It may also be mentioned that the separation of backing plate with friction element is not observed after bending in case of our forged samples where as for sintered sample there is clear cut separation along the interface. This establishes that joining between backing plate and friction element is superior owing to hot forging technique in comparison to pressure sintering technique employed in MIG 21 sintered pads. Ultrasonic testing and metallographic examination further confirm that the forged brake pads developed in the present investigation possess sound, defect free interface between backing plate and friction layer unlike sintered pads.

Acknowledgements

I have great privilege and pride to express my sincere thanks and immense gratitude to **Dr. P.S Mishra**, Professor and **Dr.Kamlesh Chandra**, Associate Professor, Department of Metallurgical and Materials Engineering (MMED), Indian Institute of Technology Roorkee, Roorkee for their valuable and intellectual guidance, thought provoking discussions and untiring efforts throughout the tenure of this work. Their timely help, constructive criticism and painstaking efforts made the author possible to present the work contained in this thesis in its present form.

I am highly indebted to Dr. Satya prakash and Dr. V.K. Tiwari, Ex-Heads, MMED, Dr. S.K. Nath, Head, MMED for their co-operation in extending the necessary facilities and their supports during my course of work. I wish to record my deep sense of gratitude to Head, Institute Instrumentation Centre (IIC), Indian Institute of Technology Roorkee for extending necessary facilities during the course of experimental and analysis work.

I am highly thankful to Mr. S. Raghunathan, Ex-General Manager, F&F Division, Mr. Mohan Abraham, General Manager, Mr. V.N. Anil Kumar, Senior Manager, Powder Metallurgy Shop, Foundry and Forge Division, HAL Bangalore for their support in extending dynamometer test facility and constructive interaction.

I owe my sincere thanks to Mr. V. Saksena, President, Dr. A.K. Mathur, Asst. General Manager (R&D), M/S Allied Nippon Llimited, Shaibabad for comments of their own different variety of resin bonded and semi metallic brake pads.

I am highly obliged and wish to owe my sincere thanks to the technical and administrative staff, especially to Mr. R.K Sharma, Mr. H.K. Ahuja, Mr. S.M Giri, Mr. Rajinder Sharma, Mr. Vidya Prakash, Mr. Shamsher Singh, Mr. T. K. Sharma, Mr. Shakthi Gupta, Mr. B.D. Sharma, who helped me in all possible ways during the experimental work.

I would like to express my sincere thanks to Mr. S.D Sharma, IIC for carrying out SEM with EDAX analysis work. Sincere thanks are conveyed to Mr. Narendra Kumar, Computer Lab, MMED.

v

I wish to thank my friends and colleagues for their moral support and camaraderie help to keep things in perspective and thanks for their everlasting support.

I would like to express my respect and great admiration for my parents, who have always been the guiding and encouraging force for me. I would like to humbly dedicate my thesis to my parents.

(LENIN SINGARAVELU D)

Preface

The entire work carried out for this investigation has been presented into six chapters.

Chapter one begins with brief introduction of sintered materials their development and scope etc.

Chapter two is a literature review for different materials and technologies relevant to current work. It also deals with application aspects of these materials their selection criteria, patented literature and market survey reports etc.

Chapter three consists of the formulation of the problem, it begins with the scope of the thesis, limitations of existing technology, methods proposed in present investigation leading to improvement in existing technology. Aims, detailed objectives and methodology have been suitably described.

Chapter four deals with the experimental work which includes and explains the steps followed in carrying the present investigation based on 'Hot Powder Forging' technique and the characterization methods of friction materials so produced.

Chapter five consists of results and discussions; where the physical, wear, frictional and metallurgical characteristics of the friction materials are described. The bend test and ultrasonic testing is performed to establish joint quality between backing plate and friction element.

Chapter six deals with conclusion and suggestions for future work.

Contents

	Page No.
Candidate's declaration	i
Abstract	ii
Acknowledgments	v
Preface	vii
List of figures	xi
List of tables	xvi
Chapter 1 INTRODUCTION	1
Chapter 2 LITERATURE REVIEW	5
2.1 Friction materials	5
2.2 Classification of Friction Materials	6
2.2.1 Organic Friction Materials	6
2.2.2 Metallic Friction Materials	14
2.2.2.1 Role of Composition and new production	16
technologies	
2.2.3 Carbon based Friction Materials	25
2.3 Requirements and Characteristics of Friction materials	26
2.4 Selection and Applications of Friction materials	28
2.5 Factors affecting properties of Friction Materials	29
2.6 Steel backing/carrier plate	29
2.6.1 Shapes and Sizes	30
2.7 Counterpart (drum/disc) material	31
2.8 Manufacturing Technologies for Friction materials	34
2.8.1 Manufacturing technique for organic type friction	34
materials	
2.8.2 Manufacturing technique for sintered friction materials	35
2.8.3 Manufacturing technique for carbon/carbon friction	40
material	

2.9 Characterization of Friction Materials	40
2.9.1 Physical properties	40
2.9.2 Frictional properties	41
2.9.2.1 Calculations for Sub-scale dynamometer test	42
parameters	
2.9.3 Metallurgical properties	46
2.9.4 Thermal properties	46
2.10 Review of Patented literature on Friction Materials	47
Chapter 3 FORMULATION OF PROBLEM	50
3.1 Scope of the present thesis	50
3.2 Limitations of existing technology	51
3.3 Alternative Technology	52
3.4 Objectives of the invention	54
Chapter 4 EXPERIMENTAL WORK	56
4.1 Hot powder forging	56
4.1.1 Raw materials	58
4.1.2 Blending/Mixing powder mixture	60
4.1.3 Encapsulation of powder mixture in steel capsule	60
4.1.4 Heating and hot forging	62
4.1.5 Homogenization	63
4.1.6 Re-pressing in Hydraulic press	63
4.1.7 Annealing	63
4.1.8 Skin removal & Specimen preparation for testing	63
4.2 Characterization of Friction materials/pads	64
4.2.1 Density and Hardness measurement	64
4.2.2 Pin-on-dist wear test	64
4.2.2.1. Temperature rise measurement	65
4.2.3 Subscale dynamometer test	65
4.2.4 Metallographic analysis	66
4.2.5 SEM with EDAX analysis	67
4.2.6 Bend test	67

Chapter 5 RESULTS AND DISCUSSIONS	69
5.1 Density and Hardness	70
5.2 Wear studies on Pin-on-disc Machine	71
5.3 Sub scale inertia dynamometer tests	78
5.3.1 Testing under low energy range (for AN 32 rotor aircraft)	80
5.3.2 Testing under high energy range (for MIG 27 stator)	83
5.3.3 Role of density and annealing	86
5.3.3.1 Density corresponding to AN 32 Rotor	86
application	
5.3.3.2 Density corresponding to MIG 27 stator	93
application	
5.3.3.3 Density corresponding to MIG 27 rotor	99
application	
5.3.4 Summary of Dynamometer test results	101
5.4 Metallographic examination	105
5.5 EDAX analysis of selected samples	109
5.6 Bend test	122
5.7 Ultrasonic test	124
Chapter 6 CONCLUSIONS AND SUGGESTIONS	130
6.1 Conclusions	130
6.2 Suggestions for future work	132
Papers published/presented	133
Patent filed	134
References	135
Patents referred	146
Annexure (A1-A62)	147

68

•

Ą

а. С

х

LIST OF FIGURES

Fig No.	Title	Page No.
2.1	Microstructures of two counter disks (a) grey cast iron (b) Al-MMC	34
2.2	P/M Process for the manufacture of copper base brake pad	38
2.3	P/M Process for the manufacture of iron base brake pad	39
2.4	Microstructure of sintered iron base friction material	46
4.1	Process flow chart	57
4.2	Steel Capsule	61
5.1	Specific wear at (a) 5kg load, (b) 8 kg load of various samples.	74
5.2	Noise level (a) at 5kg load and (b) at 8 kg load of various samples	75
5.3	COF at (a) 5kg load and (b) 8 kg load of various samples	76
5.4	Temperature at (a) 5kg load and (b) 8 kg load of various sample	77
5.5	Variations in (a) Run down time, (b) Coefficient of friction, and (c)	81
	Brake torque for test parameters corresponding to AN32 aircraft	
	rotor application.	
5.6	Variations in wear data (a) in grams, and (b) in thickness for 50	83
	numbers of cycles for test parameters corresponding to AN32	
	aircraft rotor application.	
5.7	Variations in (a) Run down time, (b) Coefficient of friction, and (c)	84
	Brake torque test parameters corresponding to MIG 27 aircraft stator	
	application.	
5.8	Variations in wear data (a) in grams, and (b) in thickness for 50	85
	numbers of cycles for test parameters corresponding to MIG 27	
	aircraft stator application.	
5.9	Variations in (a) Run down time, (b) Coefficient of friction, and (c)	87
	Brake torque test parameters corresponding to AN 32 aircraft rotor	
	application and chemistry of FM14A at different density levels as	
	referred in Table 5.6	

.

xi

- 5.10 Variation of wear data (a) in gram, and (b) in thickness for 50 88 numbers of cycles for test parameters corresponding to AN32 aircraft rotor application and chemistry of FM14A at different density levels as referred in Table 5.6
- 5.11 Variations in (a) Run down time, (b) Coefficient of friction, and (c) 90
 Brake torque test parameters corresponding to AN 32 aircraft rotor
 application and chemistry of FM15A at different density levels as
 referred in Table 5.6
- 5.12 Variation in wear data (a) in gram, and (b) in thickness for 50 91 numbers of cycles for test parameters corresponding to AN32 aircraft rotor application and chemistry of FM15A at different density levels as referred in Table in 5.3.4.
- 5.13 Variations in (a) Run down time, (b) Coefficient of friction, and (c) 92 Brake torque test parameters corresponding to AN 32 aircraft rotor application and chemistry of FM16A at different density levels as referred in Table 5.6
- 5.14 Variation in wear data (a) in gram, and (b) in thickness for 50 93 numbers of cycles for test parameters corresponding to AN32 aircraft rotor application and chemistry of FM16A at different density levels as referred in Table in 5.6
- 5.15 Variations in (a) Run down time, (b) Coefficient of friction, and (c) 94
 Brake torque test parameters corresponding to MIG 27 aircraft stator
 application and chemistry of FM14A at different density levels as
 referred in Table 5.6
- 5.16 Variation in wear data (a) in gram, and (b) in thickness for 50 95 numbers of cycles for test parameters corresponding to MIG 27 aircraft stator application and chemistry of FM14A at different density levels as referred in Table in 5.6

xii

- 5.17 Variations in (a) Run down time, (b) Coefficient of friction, and (c) 96
 Brake torque test parameters corresponding to MIG 27 aircraft stator
 application and chemistry of FM15A at different density levels as
 referred in Table 5.6
- 5.18 Variation in wear data (a) in gram, and (b) in thickness for 50 97 numbers of cycles for test parameters corresponding to MIG 27 aircraft stator application and chemistry of FM15A at different density levels as referred in Table in 5.6
- 5.19 Variations in (a) Run down time, (b) Coefficient of friction, and (c) 98
 Brake torque test parameters corresponding to MIG 27 aircraft stator
 application and chemistry of FM16A at different density levels as
 referred in Table 5.6
- 5.20 Variation in wear data (a) in gram, and (b) in thickness for 50 99 numbers of cycles for test parameters corresponding to MIG 27 aircraft stator application and chemistry of FM16A at different density levels as referred in Table in 5.6

À

12.5

- 5.21 Variations in (a) Run down time, (b) Coefficient of friction, and (c) 100
 Brake torque test parameters corresponding to MIG 27 aircraft rotor
 application and chemistry of FM14A at different density levels as
 referred in Table 5.6
- 5.22 Variation in wear data (a) in gram, and (b) in thickness for 50 101 numbers of cycles for test parameters corresponding to MIG 27 aircraft rotor application and chemistry of FM14A at different density levels as referred in Table in 5.6
- 5.23 Microstructure of Backing plates of Sintered and Hot powder forged 105 Friction pads.
- 5.24 Microstructure of Friction Materials Sintered and Hot powder 106 forged Friction pads.
- 5.25 Microstructure of Friction Material with backing plate of Sintered 108 and Hot powder forged Friction pads.

xiii

- 5.26 (a) X-Ray mapping at 100X showing particle distribution of MIG 21 110 Sintered Friction Material
- 5.26 (b) X-Ray mapping at 100X showing different constituents of MIG 21 110Sintered Friction Material
- 5.27 (a) X-Ray mapping at 100X showing particle distribution of MIG 21 111 Sintered Brake pad (interface layer)
- 5.27(b) X-Ray mapping at 100 X showing different constituents of Mig 21 111 Sintered Brake pad (interface layer)
- 5.28 (a) X-Ray Mapping at 100X showing particles distribution of Fractured 112
 Mig 21 Sintered brake pad material
- 5.28 (b) X-Ray Mapping at 100X showing different constituents of Fractured 113
 Mig 21 Sintered brake pad material
- 5.29 (a) X-ray mapping of MIG 21 sintered brake pad at interface layer 115 (backing plate and friction material) at 100X
- 5.29 (b) Ni layer at the interface between friction material and backing plate 115 in Mig 21 Sintered Brake pad, 200X
- 5.30 (a) X-Ray mapping at 100X showing particle distribution of FM09N 117 Friction Material
- 5.30 (b) X-Ray mapping at 100X showing different constituents of FM09N 117 Friction Material
- 5.31 X- Ray mapping at 100X showing particle distribution of FM13N 118 Friction Material
- 5.32 (a) X-Ray Mapping of Fractured FM09N Hot Powder Forged friction 119 material at 100X
- 5.32 (b) X-Ray Mapping of Fractured FM09N Hot Powder Forged Friction 120 Material at 100X
- 5.33 X-Ray mapping of different constituents of FM14AA1 Friction 121 Material at 100X
- 5.34Three Point Bent test1235.35Ultrasonic echo pattern of MIG 21 Sintered brake pad1255.36Ultrasonic echo pattern of MIG 21 Sintered brake pad125

5.37	Ultrasonic echo pattern of MIG 21 Sintered brake pad	126
5.38	Ultrasonic echo pattern of MIG 21 Sintered brake pad	126
5.39	Ultrasonic echo pattern FM14AA1 Hot powder forged brake pad	127
5.40	Ultrasonic echo pattern FM14AA1 Hot powder forged brake pad	127
5.41	Ultrasonic echo pattern FM14AA1 Hot powder forged brake pad	128

. .

· ·

LIST OF TABLES

Table No.	Title	Page No.
2.1	Abrasives	9
2.2	Friction Producers/Modifiers 10	
2.3	Reinforcements, Fillers and others ingredients	11
2.4	Binder Materials	13
2.5	Iron base Powder friction brake designations and typical	23
	compositions	
2.6	Physical properties of gray cast iron and Al-MMC	34
2.7	Physical characteristics of sintered friction facings	40
2.8	Properties of some sintered friction materials	41
4.1	Nomenclature of friction materials	59
5.1	Pin-On-Disc Wear Test results at 5kg Load(100N/cm ²), 9m/s	72
	Sliding Speed	
5.2	Pin-On-Disc Wear Test results at 8kg Load (160N/cm ²), 9m/s	73
	Sliding speed	
5.3	Specifications of Inertia wheels	78
5.4	Test input parameters	78
5.5	Test output parameters	79
5.6	Role of Density	86
5.7	Summery of sub scale dynamometer results	102
5.8	Bend test results	122

•

.

.

٠

Chapter 1 INTRODUCTION

Friction materials are mainly employed in brakes, clutches and gear assemblies of automobiles, locomotive trains, commercial/fighter aircrafts, earth moving equipments, agricultural equipments, cranes, heavy presses, and excavators etc. For application of brakes, kinetic energy of the moving vehicle converts into heat due to friction between friction material on brake pads/discs/linings and rotor. The kinetic energy, which is now converted into heat energy during braking, has to dissipate through brake assembly to the surrounding. This arrangement leads to deceleration of vehicle on one hand and ensures stability of brake assembly on the other hand for its repeated application.

Safety (quick response of brakes with out fading), comfort (smooth engagement of brakes without noise and vibrations) and economy (low production cost and longer life) are the prime motto for the development of different friction materials and their selection to suit brake application. For this friction material should simultaneously possess consistently stable coefficient of friction without degradation on rise in pressure, temperature or humidity; good heat dissipation; low wear loss; and should not have an offensive odor, noise, vibration and harshness etc. during braking; should not be made of too costly ingredients and the processing should also be not too costly. Further, the brake lining should not lead to seizure, score or excessive wear with the mating part.

Requirements as mentioned above are widely varying in character. In order to meet them simultaneously it is essential that multiple constituents of composite nature are there. Based on nature of brake applications, following category of friction materials are normally available..

- a. Resin bonded friction materials..- These may be containing asbestos or non asbestos. The former one is now being discontinued owing to health hazards. Such type of brake materials are not suitable for severe operating conditions where resins might decompose at higher temperature.
- **b.** Sintered friction materials..- These materials are metal based with iron, copper or aluminium as their main ingredient. These are produced by powder metallurgy

1

route consisting of compacting and sintering powder systems. Sintered materials are suited for heavy duty brake applications like trucks, racing cars, military and commercial aircrafts and high speed trains etc.

c. Carbon-Carbon friction materials..- These materials are also produced by compacting and sintering route but containing predominantly graphite based powder. The friction and mating part both are graphite based and are essentially lubricating type of materials with very low coefficient of friction. However, due to high temperature stability of ceramic graphite, these are excellent friction materials for heavy duty applications.

The metal based sintered materials processed by conventional Powder Metallurgical (P/M) route and as described in b. above, are cold compacted and pressure sintered with steel based backing plate. These are much less costlier than Carbon-Carbon (C/C) friction materials as described in c. above. The demand for this metal based friction material is constantly growing with the growth of automobile and aircraft industries.

The present thesis is an attempt to improve upon the quality of this segment of friction material to meet higher expectations in automobile and aircraft industries. It is aimed to produce them with better characteristics employing newly developed technology, namely, Hot Powder Forging with appreciably reduced cost.

Business Communications Company Inc. (BCC) has critically surveyed the major... market, economy, and production technologies. Its report (AVM028C) on the friction product and materials market indicates, a compound annual growth rate (CAGR) of 4.5% during 2007 -2012 alone in aircraft/aerospace industries.

Metal based friction materials contain different constituents such as lubricants, abrasives. The metallic constituents provide strength, high temperature stability, oxidation resistance, and high thermal conductivity, whereas abrasives improve coefficient of friction, fade resistance, wear resistance. Lubricants in these are usually solid type which is meant for smoother application of brakes & anti-seizure. Their simultaneous presence gives rise to parallel enhancement of certain properties of brake material for example; abrasives and lubricants together improved wear resistance of friction element. These sintered metallic friction materials can be operated under two conditions either dry or wet. Usually, copper based friction materials are used in wet conditions i.e. immersed in oil whereas iron based friction materials are operated in dry conditions only. The sintered copper based friction materials are suitable for temperatures up to 600°C whereas iron based sintered friction materials are suitable up to 1100°C.

Metal based sintered brake pads are made of three parts namely back plate to provide tough support to brittle brake element, interface layer to facilitate joining of back plate with brake element, and friction element to stand frictional conditions of brake assembly. The last two are processed by powder route whereas back plate is a steel plate which may be heat treated to improve toughness. Economy and performance of such pads are strongly related to the chemistry and processing of brake elements. Steel back plates are also electro plated with nickel or copper to facilitate joining during pressure sintering. In spite of best efforts to join friction element, the quality of joint still remains uncertain and failures leading to separation and loss of friction element during braking application has been observed. This is a major limitation of existing technology namely compacting and sintering. This technology is being followed world over and up till now there is no substitute available. Modifications such as double sintering, hot pressing are still going on but there is neither substantial improvement in the quality nor reduction in the cost of the product owing to limited density level, higher quality of raw material requirements, and heavy investment in processing. ÷.

In the present investigation, the new iron-based friction material pads with³ improved performance and with built-in steel backing plate are produced by a novel P/M technique i.e. 'Hot Powder Forging' (described in Indian patent filed on Nov. 7, 2006). It employs high rate of forming where the material undergoes severe plastic deformation under application of impact load; purpose of compacting and sintering both are thus fulfilled simultaneously in a single step. The powder mixture is encapsulated in steel capsule and is heated to temperature range of 1000-1100°C and then hot forged in a forging press followed by homogenization treatment. The steel capsule cover later on serves as backing plate since it joins securely with the forged slab. The process as described above largely overcomes the limitations of presently practiced conventional P/M route.

Total of sixteen formulations were developed based on iron as a main constituent for heavy duty friction materials. Iron varied from 68.50 to 82.25%, copper varied from 5 to 11% and graphite varied from 5 to 8%. Other constituents were Phosphorous, Aluminium, Asbestos, Boron carbide, Silica, Calcium sulphate, Tin, Zinc, Silicon carbide, Ceramic wool, Antimony sulphide, Tungsten carbide, Barium sulphate and Boron nitride in varying percentages.

The samples are either normalized or annealed in the temperature of 680°C to 1050°C. Based on above chemistry and their processing parameters, Table 4.1 provides complete details of nomenclature of friction material developed in the present investigation. This table also gives an idea of density of the final product ranging from 4.96 to 6.69 gm/cc and hardness from 60 to 342 BHN. Based on the chemistry and processing parameters symbols are also assigned to each type of friction materials developed in the present investigation.

The density levels were altered by exercising number of repressing. Our technique of manufacturing permits us to control density parameter and therefore, it has been possible to produce friction materials which are not available in the literature elsewhere.

Detailed characterization of friction pads produced this way exhibit improved physical, mechanical, frictional and metallurgical properties. Subscale dynamometer tests have been performed and compared with results of existing sintered materials for military aircraft applications such as AN-32, MIG 27 aircrafts. Investigations were carried out in detail in selective cases only where there is a scope for further exploitations towards application of friction elements developed in the present investigation for heavy duty military aircrafts for which entire work of the thesis is concentrated.

Chapter 2 LITERATURE REVIEW

2.1 FRICTION MATERIALS

Friction materials are used in clutches and brakes of an automobile/equipment to accelerate or decelerate it. The brake system differs from clutch system that the vehicle stops under particular distance in shorter duration with higher frictional heat generation. Whereas clutch system opposite to that of brake system. The friction force between the surface of the friction material and counterpart of the vehicle converts the kinetic energy into heat [4].

The rotating counterparts in the friction assembly are usually made of cast iron because of its excellent friction and wear properties. Recently, new brake discs orcounterparts based on non-ferrous alloy system of Aluminium Metal Matrix Composites (Al-MMCs) or carbon based brake discs are also employed. But cast iron is still practiced as counterpart in variety of modern automobiles. The design of brake rotors are made into many groups like solid, vented, fin holes and many others types for faster heat dissipation, faster cooling rate, excellent friction and wear properties etc [13,61].

These friction materials are mainly employed in various brakes, clutches and gear assemblies of different kinds of automobiles, high speed trains and railways, commercial/fighter aircrafts, earth moving equipments, agricultural equipments, cranes and hoists, high way trucks, presses, excavators, machine tools, forging and pressing equipments, heavy lifting devices etc [4,33,39,46,111].

The choice of friction materials will depend upon vehicle load, speed, pressure, energy to be dissipated, counter face material etc. Wear resistance is one of the major factors influencing the choice of materials for friction pads [35, 37]. The reduction of material losses due to wear and friction require a new class of materials and processes, and also a new generation of thoroughly trained, knowledgeable tribologists in the coming decades [91,120].

2.2 CLASSIFICATION OF FRICTION MATERIALS

The friction materials that are used for brake applications are broadly classified into following three sub-groups [4]. In all three sub-groups the energy quantum, stopping distance/time, environmental issues like NVH (Noise Vibration Harshness) play a major role. For an automobile, like motor cycles, passenger cars, trucks and buses there should be less NVH where as for the aircrafts/railways this is a secondary parameter [123,125].

- 1. Organic Friction Materials:
 - Asbestos or organic friction materials
 - Non-Asbestos Organic (NAO) friction materials
 - ▶ Low metallic
 - > Non metallic
 - Semi-metallic friction materials
- 2. Metallic Friction Materials:
 - Iron based
 - Copper based
 - Aluminium based
- 3. Carbon-Carbon (C/C) Friction Materials:

2.2.1. Organic Friction Materials:

They were used in earlier days, in brakes and clutch systems. These consist of wood and leather [132]. Asbestos fibers were used as reinforcing materials in brake pads as early as 1908's and employed till 1985's [13]. Asbestos based organic materials were widely used due to their better frictional stability up to 500°C. Above this temperature it produces silicates which is harder stabilizes friction, more abrasive, excellent durability, better thermal resilience. Asbestos fibers can lodge in lungs and induce adverse respiratory conditions found later by medical research and was therefore banned in 1986 by the Environmental Protection Agency (EPA). This led to conversion of non-asbestos brakes by the friction material suppliers and vehicle manufacturers. However, asbestos based brake products are still used in the aftermarket despite the fact many people think asbestos was replaced by non-asbestos years ago; since asbestos Organic (NAO) type friction materials are establishing in view of restrictions by EPA. NAO based materials

consist of resin binders with low metallic and non-metallic constituents, different variety of fibers, various fillers and friction additives. These constituents as composite in nature are shown in Table 2.1, 2.2, 2.3 and 2.4. Semi-metallics are another kind of organic based material where 50% metallic constituents with a variety of fibrous materials present in the system are later development. This type of friction material is mainly involved in racing cars and bikes due to their higher coefficient of friction requirements. NAO type friction materials comprise composites of binders, reinforcements, friction additives, fillers etc[129, 142].

NAO material consists different fibers like chopped glass fiber, mineral wool, para-aramid (Kevlar), cellulosic and other organic forms etc. The binder resins shown in Table 2.4 used for organic friction material are usually thermosetting polymers, mainly based on phenolic type. The liquid and powder forms of resins are normally used [4,13,96].

Bijwe et al [11] describes low metallic NAO based friction materials of varying with SiC, SiO₂, ZrO₂, Al₂O₃ as abrasives and studied the influence of operating parameters by using decision making approach. The author reported that abrasives cause significant effect on their wear performance.

NAO type friction material with different ingredients including solid lubricants . (graphite and Sb₂S₃) was evaluated for their frictional characteristics [92]. Higher content of solid lubricants had shown positive effect on the fade characteristics. This is due to graphite oxidation of and Sb₂S₃ decomposes into oxides at elevated temperatures and loosing its effectiveness as solid lubricant. Thermal decomposition of the solid lubricants strongly affects the friction characteristics at elevated temperature [16,17]. Therefore, role of solid lubricants should be carefully analyzed. The three different solid lubricants namely, Cu₂S, PbS and Sb₂S₃ of Non-Asbestos Organic friction materials are analsysed to evaluate their effects. Sb₂S₃ based formulations had the highest coefficient of friction and low wear as compared with other two lubricants [92,130]. The effect of Sb₂S₃ as lubricant and ZrSiO₄ as abrasive on frictional characteristics was investigated by using a brake dynamometer under two different modes. Higher contents of Sb₂S₃ in the friction material improved the stability of friction coefficient at elevated temperatures. In general, solid lubricants are added to the friction material to build up a stable friction film (3rd

. 7

body layer) on the rotating counterpart and abrasives such as $ZrSiO_4$ are added to remove thermally decomposed layer of the friction film [53,54]. Therefore, it is established that Sb_2S_3 mainly improves friction stability and better fading resistance in combination with abrasives [112].

NAO low metallic type friction material with four different abrasive additions was examined to evaluate wear data using a regression model based on orthogonal test design. The contribution of these abrasives towards wear rate had shown better influence on the various factors such as load, sliding speed and braking pressure [9]. The influence of different metal fibers on its frictional characteristics of NAO friction materials was also evaluated [54]. Modified resins were also used for making friction materials [RR1]. They improve frictional stability even at high temperature. Sometimes, resin modification may result in high wear rate and decrease in porosity [13]. Five different modified resins with constant proportions of other ingredients are examined for mechanical and frictional performance. Considerable efforts were made [11] to correlate frictional characteristics of resin based brakes including combinations of different resins. However, it is concluded that no resin combination is available where frictional properties can be scientifically optimized.

Semimet linings are separate from the other NAO linings because they have a restricted composition range, with unique friction and wear properties. Semimet linings comprise 50-60 wt % total metallic content, steel wool, graphite with a heat-resistant phenolic-type binder. The coefficient of friction of these materials is around 0.40 to 0.55. These materials are typically semi-metallics. When these pads are cold, they may be near impossible to deal with on the street because they do not reach the optimal operating temperature during normal driving. But, when they are warm, the braking performance of the vehicle is greatly increased. Also, these high COF friction materials have superior resistance to fade. According to Ho et al [55], the effects of carbonization in the temperature range 400-800°C were studied to improve the high-temperature performance of a copper/phenolic resin based semi-metallic friction materials on its mechanical and tribologial behavior. Low carbonization rate results in higher mechanical properties and fewer cracks. Increased carbonization temperature results in improved tribological properties. In general, carbonized samples exhibits better mechanical and tribological

properties, better high-temperature heat/oxidation resistance etc. than non-carbonized samples. This is possibly due to formation of lubricant in the form of graphite during carbonization [55].

Abrasives:

Abrasives improve the friction performance to a desired level, and they are added in various sizes and concentrations to friction composites to create and as well as to increase better friction/surface film which is formed when the brakes are applied. This will also induce low wear and frictional stability and thus improving braking efficiency over variety of applications. Further, abrasives help in maintaining the cleanliness of mating surfaces. However, some of the inclusions present in the abrasives may affect the friction stability, damage the counterface (by roughening or polishing) and result in wear of both the disc and pad surfaces.

S. No.	Material	Description / Comment
1.	Aluminium oxide	Very hard and most in abrasive form either in hydrated form or anhydrous form is used.
2.	Iron oxides	Hematite (Fe_2O_3) and magnetite (Fe_3O_4) act as a mild abrasives
3.	Quartz	Crushed mineral particles (SiO ₂)
4.	Silica	May be natural or synthetically-produced (SiO ₂)
5.	Zirconium silicate/oxide	(ZrSiO ₄) or (ZrO ₂)
6.	SiC	Very hard abrasive for severe conditions are used.

Table 2.1Abrasives [RR1]

Friction Producers / Modifiers

These are responsible for control of coefficient of friction or the type of wear. They may form interfacial films and may also act as lubricant. Solid lubricants are used to stabilize the coefficient of friction, primarily at elevated temperatures.

S. No.	Material	Description / Comment
1.	Antimony trisulfide	Solid lubricant added to enhance frictional stability; lubricates>450oC, Sb2S3 is potentially toxic
2.	Brass	Typically 62%Cu – 38% Zn; sometimes used as chips or machine shop cutting swarf, said to improve wet friction and recovery, common additive.
3.	Carbon (graphite)	Cheap and widely-used solid lubrucant; many forms are available; synthetic or natural crystalline type used; burns in air at >700°C, friction level is affected by moisture and structure.
4.	Ceramic 'microspheres'	Special product consisting of alumina-silica with minor iron or titanium oxides, low-density filler; reduce rotor wear and control friction
5.	Coke	Cheap solid lubricant, improves friction performance
6.	Copper	Uses as a powder to control heat transport; improves thermal conductivity; can causes excessive cast iron wear
7.	Friction dust	Processed cashew resin, may have a rubber base; to reduce spontaneous combustion or help particle dispersion.
8.	Friction powder	Sponge Fe, e.g for semi-metallic brake pads a number of different particle grades (sizes) are available depending on requirements for surface area, light-medium-heavy duty vehicle applications.
9.	Lead oxide	PbO as friction modifiers; toxic in nature
10.	Metals – fluxing compounds	Pb, Sb, Bi, Mo as fluxing compounds serve as oxygen getters to stabilize friction induced films and promoting thick films.
11.	Metals oxides – various	Magnetite (Fe ₃ O ₄) improves cold friction; ZnO lubricates but can cause drum polishing; Cr_2O_3 raises friction
12.	Metals sulfides – various	Cu ₂ S, Sb ₂ S ₃ , PbS are modifies and stabilize the friction coefficient; Sb ₂ S ₃ has highest COF; PbS - soft solid lubricant additive which reduce noise, pad & rotor wear; $MoS_2 - a$ typical layer-lattice-type lubricant and adheres more readily to metal surfaces than graphite; ZnS is a low cost solid lubricant for high loads and temperatures
13.	Mineral fillers	Mullite, kyanite, sillimanite are friable and controlling frictional behavior; higher amounts tends
ļ		to wear the counter-face.

...

Table. 2.2 Friction Producers/Modifiers [RR1, 13,53,54,106]

Reinforcements/Fillers

Reinforcements provide mechanical strength. Fibers of metal, carbon, glass and rarely mineral and ceramic fibers are used. Fillers are principally used to make the material less expensive and/or improve processing. Some fillers may also affect friction characteristics of the material [164].

S. No.	Material	Description / Comment
1.	Anti-oxidants	Graphite – common anti-oxidant in metallo-ceramic composite brake; maintains proper oxide film thickness on aircraft brakes; higher oxide leads to unstable friction and can wear off.
2.	Aramid	Good stiffness to weight ratio; excellent thermal resilience; good wear resistance
3.	Asbestos	Most common filler in early brake materials
4.	Barium sulfate ('barytes')	(BaSO4) basically inert; increases density and wear resistance, stable at high temperature.
5.	Calcium carbonate	$CaCO_3$ is a lower cost alternative to braytes, but not quite as stable at high temperatures
6.	Calcium hydroxide	$Ca (OH)_2$ a cheap filler
7.	Cashew nut shell oil	Improves resilience in the binder system and reduces brake noise
8.	Cotton	Reinforcing fiber for the matrix
9.	Fibers – mixed oxide	Reinforcement fibers; produced from a base slag mineral wool; contains mixture of silica (40- 50wt%), alumina (5-15wt%), calcia (34-42wt%), magnesia (3-10wt%), and other inorganics (0- 7wt%); controls fade and increase braking effectives.
10.	Glass	Sufficient thermal resilience; brittle
11.	Iron	Cheap filler, better high temperature characteristics, In semi-metallic type higher contents are used.
12.	Lime	Ca(OH)2 is used to avoid corrosion in Fe-additives, helps in processing, raises fade temperatures
13.	Magnesium oxide	MgO promotes curing of binder,
14.	Metal fibers	Cu fiber, Steel fiber, Al Fiber
15.	Polyacrylonitrile	PAN fiber is used as reinforcement

Table 2.3. Reinforcements, Fillers and others ingredients [[RR1,13,53,54,62,97,101].

16.	Potassium titanate	Inert filler material; very hard and good wear resistance; thermally resilient
17.	Rock wool	Fibrous material
18.	Rubber – diene, nitrile	As stabilizers to promote cross-linking and increase wear resistance; rubber modifies the compressibility (modulus/stiffness)
19.	Rubber scrap	Ground up tires ('tire peels'), decreases cost, must not contain road dirt
20.	Sea coal	General low-cost particulate filler, may contain harmful ash; not good for high temperatures
21.	Steel wool	Used as reinforcement
22.	Styrene-butadiene rubber	(SBR) used as toughening agent for the binder
23.	Vermiculite	Expanded type used

.

Binders

Binders are matrix for organic type friction material that holds the other components together and forms thermally stable matrix and preserves the brakes pads including its structural integrity under mechanical and thermal stresses which are developed during braking. Table 2.4 below shows common binders for friction material application [26,59,162].

S. No.	Material	Description / Comment		
1.	Phenolic resin	Common binder; too little quantity leads to material weakness; if too much is used, there is a friction drop-off at higher temperatures; cheap and easy to produce; brittle, highly toxic.		
2.	COPNA resin	High bonding strength with graphite; better wear resistance; decomposes at relatively low temperatures (450-500°C)		
3.	Cyanate ester resin	High heat resistance; chemically inert; vibration dampener, brittle		
4.	Thermoplastic polyimide resin	Abrasion resistant; does not exhibit thermal fade; lower thermal conductivity		
5.	Modified resins	A variety of modifications includes phenolic, cresol, epoxy, cashew nut shell liquid (CNSL), PVB, rubber, alkylbenzene, linseed oil and boron are used to alter bonding characteristics and temperature resistance.		

Ta	ble 2	2.4 H	Binder	Materials	[RR1,	13,100]	
----	-------	-------	--------	-----------	-------	---------	--

Optimization of friction material formulation were carried based on Taguchi design, multiple regression analysis coupled with genetic algorithms, chemometrics, and golden section principle in combination with relational grade analysis to develop friction material of better triboligical performance aimed with higher wear resistance and moderate or high COF [9,22,67,128, 153,155, 156]

Automotive brake squeal can be described as an irritating sound with a main frequency between 1 to 20 kHz, generated by the components. This noise generation needs to be suppressed for the better or efficient brake design and manufacture. The articles [27,71,98,99] clearly states the important factors for noise level generation were vibration and waves, brake rotors designs, contact pressure and temperature. Also, experimental studies on brake squeal of different brake friction materials, eliminations of

brake squeal problem, friction laws, contact geometry asperities, modeling of brake squeal are carried. Squealing in brake is mostly due to the contact between brake pad and disc (counterpart). The sizes of contact plateaus at the different brake pressures and higher temperatures evolved during friction affects the generation of brake squeals [6,44,58,88,107].

Binding agents present in the conventional organic friction materials exhibit poor frictional stability under varying temperature conditions. Higher temperatures generation during braking cause binders to disintegrate. Thermal degradation of binders results in inferior frictional characteristics, giving rise to fade and often resulting in increased wear. Furthermore, organic materials, particularly resins, tend to have a short shelf life, and are not always easy to reproduce [145, 146]. To overcome these deleterious effects of poor thermal resistance in a organic friction material, sintered metallo-ceramic friction materials which withstand considerably higher thermal stresses have been developed and are described below. These brake materials are known for better frictional and wear performance under heavy duty applications. High mechanical strength, better thermal conductivity and thermal capacity, high heat resistance are some of the main attributes of metallo-cermic brakes and are therefore much superior in performance than organic brake materials.

2.2.2 Metallic Friction Materials

These types of brake materials were introduced in the late of 1930's and comprise of on either copper or iron as matrix. Since these involve ceramics constituents also they are often called metallo-ceramic or cermet friction materials. The manufacturing technology for this type of friction material is conventional powder metallurgy based on compacting and sintering technology [20]. Sintered friction materials contain of metallic and nonmetallic constituents, in varying the proportions of the friction producing nonmetallic ingredients. Variety of shapes can be produced, for various kinds of brake applications.

The components in these materials are divided in to three sub groups: one metallic base (matrix) with alloying elements to provide load carrying capacity and thermal shock resistance, second, friction additives to raise coefficient of friction, and, third, antiscuffing additions or solid lubricants which prevent seizure and sticking with rubbing parts, ensure even friction and increases wear resistance [78, 89, 141]. Metal matrix with different metallic constituents like Tin, Copper, Ferro alloys, etc. (in the range about 50-80 wt.%), ceramics and non-metallics like Al₂O₃, SiO₂, ZrO₂, SiC, B₄C, WC, Bentonite, Asbestos, Spoudumence, feldspar, Kayaniteand etc. (in the range about 20-28 wt.%) and solid lubricants like graphite, MoS₂, Sb₂S₃, CaSO₄, BaSO₄, BN etc. (in the range about 5-25 wt.%) are blended/mixed either wet or dry mixed and then the powder mixture is cold compacted followed by pressure sintering with steel backing plates. There are two principal types of applications or operating conditions for metallic friction materials: "wet" and "dry". Under wet conditions, the friction components, such as clutches in power shift, automatic transmissions and brakes are immersed in oil. Dry operating conditions involve direct contact of friction components with rotor such as in aircraft brakes [4,21,35,77].

Sintered metallic friction materials have been used as brake disks, especially for heavy-duty applications, because of their good braking performance and low wear rate^{*} under high temperatures [34,36]. These have been developed for very high power input^{*} densities. For example, solid-state-sintered bronze and mullite linings are used in race car and high-speed railroad brakes. Sintered iron with graphite is used in some heavy-duty brakes in civilian/military aircrafts; both stator and rotor disk brakes, and as well as on a few production passenger cars drum brakes [7,20,154]. Multiple-disk brakes havealternating rotors and stators forced against adjacent members by hydraulic pressure:-Metallic friction materials are also used in other heavy-duty applications, such as clutch facings on tractors, trucks, earth-moving equipment, and heavy presses [20,23].

The most widely used metal matrices for heavy-duty friction materials are copper and bronze where service temperatures are less than 600°C. Iron matrices are used where service temperatures are likely to exceed 1100°C [4,52]. Cu based materials are better at low to medium brake load conditions whereas Fe base are suitable for severe conditions. Fe-based alloys are known for decreased and better frictional stability, while the Cubased alloys display a "fade" phenomenon under higher load and speed conditions [126, 127,159]. Normally, the density of Fe base friction materials is in the range of 5-6.1gm/cc, its hardness 80-105 HRF, and a friction coefficient in combinaton with cast iron is 0.34–0.40, whereas Cu based friction materials has density of 7.0–7.5 gm/cc, its hardness 30-40 HB, and a friction coefficient of 0.28-0.30 in combination with chromium-plated steel [25,75, 77,109].

Iron, as the friction material matrix is chosen due of its stability under higher temperatures (1100°C) and can be applied under heavy dry operating conditions because of its high melting point and other improved properties which include strength, hardness, ductility, heat resistance and stability etc.[105], Further, during braking, surface/oxides films on its surface are responsible for better frictional properties. Due to of these reasons, iron base materials have been chosen in the present investigation and have been reviewed in detail.

2.2.2.1 Role of composition and new production technologies

Iron powder grade selection for the application of friction material should be carefully chosen. Sponge iron produced by reduction of iron oxides is known for its frictional stability and widely used as matrix as compared to atomized power. Good friction properties are obtained while using certain quantity of larger particles. Powder of size <120 μ has coefficient of friction in the range 0.30-0.60 [24].

Investigations on sintered iron base friction materials on two different iron powder grades namely, sponge iron powder obtained by magnetic reduction and fiber like structure iron powder are studied. Although these two different iron powders have different morphology, chemical and physical properties, the test results exhibit no significant effect on their suitability and are applied equally within the acceptable range of required values for metal matrix [102].

The degree of oxidation of iron powder may influence the physiomechanical properties of iron base friction materials. The sintering of oxidized compacts i.e. the combination of sintering operation with reduction improves mechanical properties. Increase in degree of oxidation leads to a slight decrease in compacted density. Sintered density will increase with increased oxidation level due to greater sintering shrinkage. Higher degree of oxidation of iron powder leads to higher hardness, lesser wear but independent of COF. The higher the degree of oxidation of the iron powders, the more the carbon is burnt up. Reduction of oxide films with the formation of active iron atoms improves the contact surface between grains and increases shrinkage during sintering, and this causes increase in density. These higher porosity levels and reduction in carbon

content will change the mechanical and frictional properties. It may also be possible to avoid the operation of pre reduction of iron powders during the making of sintered friction mixtures. However, the use of reduced powders simplifies the technological process, reduces the amount of dust in the shop atmosphere, decreases the labor consumption by 10-15%, and ensures the production of high-grade parts from sintered friction mixture [52].

Sintered iron-phosphorous base friction material was developed for moderately loaded friction units operating without lubrication. The intermediate working layers consists of mixture of copper and iron oxides, heterophase structure is responsible for better frictional characteristics, better oxide films, and prevention of frictional thermal fatigue [133,134,135].

Optimum phosphorus content in the range 0.8-1wt.% is added in the form of ferrophosphorous for an iron base materials provides highest friction properties due to the presence of uniformly distributed phosphide eutectic network with a vein thickness of $0.95-1.33\mu$ at the grain boundaries of the alloyed ferrite [35,134, 135].

The structure of sintered iron-graphite can be affected by the addition of alloying components. Copper was the first element tested and recommended for the improvement of sintered iron-graphite materials. Copper additions to the sintered iron base friction materials are widely used since they activate the sintering process by forming a liquid the phase and thus increases the strength. But attention must be paid towards the growth effects by the higher addition of copper. Higher content of copper results in increased thermal conductivity, higher thermal wear and COF gradually decreased. Compressive strength increased initially reaching a maximum value and thereafter gets reduced with further addition of copper [119,160].

Friction additives are the components raising the coefficient of friction are expected to possess the following characteristics: a high melting point and a high heat of dissociation; absence of polymorphic transformations in the range from ambient to the sintering temperature; absence of reaction with the metallic matrix; adequate mechanical strength and hardness; wetting of, or strong adhesion to, the matrix. Among friction additions employed are oxides of metals (silicon, aluminum, molybdenum), certain carbides, complex oxides, and minerals [79].

Addition of silica to the iron based friction material enhanced higher COF and less temperature rise, and upto 4% provides thermal stability and further increment may result in decrease of thermal wear resistance, mechanical properties such as compressive strength and hardness. The reduction of silica may be attributed to carbon monoxide according the following equation,

 $SiO_2 + 2CO = Si$ (dissolved in Fe) + $2CO_2$

Silicon dissolves in iron and carbon dioxide reacts immediately with free carbon, thus regenerating the monoxide:

$CO_2 + C = 2CO$

This mechanism explains the possibility of silica reduction at a relatively low temperature, about 1000°C. The rate of reduction is slow. Even direct reduction by carbon is possible, but the system requires 1590°C. However, the presence of iron diminishes the activity of silicon and supports the reduction. Therefore, following reaction may occur at a lower temperature.

$Fe + SiO_2 + 2C = FeSi + 2CO$

Alumina has similar effect as silica that thermal stability increases rapidly with small additions and no negative influence with larger amounts. Temperature rises moderately. Compressive strength decreased with higher contents of alumina, but hardness variations are insignificant. In comparison to silica, alumina remains stable during sintering. Direct reduction by carbon is possible only beyond 2000°C and hence the rate of indirect reduction by carbon monoxide is far slower than that of silica [116].

Solid lubricants (graphite, MoS_2 , BN, phosphides of certain metals) should posses high lubricating power, be inert with respect the metallic matrix and resist decomposition at the sintering temperatures [77]. Addition of graphite gives a high frictional stability. Usually, 6 -26% of graphite quantity is used in iron base materials. Selection of optimal grade and proper particle size was another challenging criterion. Carbon diffusion into the iron component, chemical effect which leads carbon drops by about 2% and antifriction effect during service are observed by the addition of graphite. Sometimes, higher content of graphite results in higher COF [24,]. Decrease in wear may also obtained when graphite addition exceeds certain amount and increased when the addition is still increased from the required amount (about 26%) due to excessive loss of strength. Further, the presence of graphite to the iron base friction materials provides better seizure resistance [118]. However, higher graphite content (about 15-20%) are suitable for low temperature performance conditions and for higher energy conditions it may results in poor heat transfer, hence its content is limited to 6-8%. This will lead to poor frictional characteristics and can be further compensated by the addition of barium sulphate. BaSO₄ which undergoes following chemical reaction of complete reduction by carbon during sintering [118].

$BaSO_4 + 4C = BaS + 4 CO$

Higher amount of barium sulphate addition improves resistance to high temperature wear. However, being an non-metallic content, it is limited to 12% as higher content will deteriorate mechanical properties such as compressive and shear strength of the friction material rapidly [70,118].

Lead as a soft constituent, better antiscuffing behavior is also frequently and employed in friction materials. Small addition of lead modifies the structure of the matrix and further, it tends to spheroidize the grains of the main alloy component. Lead is replaced by bismuth due to its insolubility in copper and excellent lubricating properties, low specific gravity, low melting point than lead and it non-toxic in nature [52,65,68].

Calcium pyrophosphate and as well as calcium sulphate are lubricants under 'white solid lubricants' group proves better lubricating property in iron base composite materials under tribological conditions. It provides better sinterability of iron composites as well as better compactibility which leads to higher density. The particles of calcium pyrophosphate filled the pores of sintered compacts and evenly spreaded on the metallic matrix. Presence of this lubricant changed the friction conditions and the mechanism of wear and ensured a significant decrease of the motion resistance and wear during friction; 10% volume fraction has better tribological properties [62,92,137].

Another metallic friction material is cast iron. Although this venerable material is use on some old railroad tread brakes, no new automotive applications are known to use cast iron as the brake lining. However, it is the predomimotive drum and disk brakes. Therefore, it remains a friction element, although not a brake lining.

Few materials based on other metals than copper and iron are known such as other matrices based on Ni or W or Mo may also have to be used for certain applications [127].

19

Aluminum-base material with a composition of (wt.%) 0-20 copper, 0.2-20 hard components (oxides, carbides, and/or nitrides of silicon, aluminum, and/or zirconium and also of solid solutions) and strengthening components (Mg, Si, Sn, Mn, Zn, Ni, Cr, Mo) have been proposed. The aluminum matrix significantly reduces the weight of the alloy. However, aluminum-base materials have not obtained wide use since the method of their production is very complex, sinterability of aluminium base materials was poorer and they are expensive. These materials are used primarily in rubbing pairs for aerospace technology [19,31,32].

Investigations on Aluminium bronze type friction material consists of mainly copper-tin matrix with higher contents of aluminium (10-15%). The wear resistance of these materials is maximum when their matrix has a single-phase structure (with the maximum aluminum concentration in α solid solution) or a two-phase structure ($\alpha + \gamma_2$) of minimum eutectoid content. The optimum combination of frictional characteristics and wear resistance under unlubricated friction conditions is exhibited by materials containing 11-14 wt.% A1. The structure of the matrix of these materials consist of a heterogeneous mixture of a ductile (α solid solution of aluminum in copper) and a brittle (the intermetallic compound Cu₂A1) component, the concentration of the latter being sufficiently low to produce no marked decrease in strength [80,81,85].

Ceramic-base (silicon carbide and nitride) [51] friction powder materials which possess a unique combination of properties including low specific gravity and high strength, wear resistance, and chemical inertness. Their main disadvantages, brittleness and poor machinability, are among the basic reasons preventing broad use of ceramic base materials as friction materials [19,20,43].

In order to achieve high performance materials with low cost many researchers put more their own efforts to improve upon the existing technology and creating new materials and as well as production methods.

For improving the quality of preparation of powder mixtures and for better compacting of a powder charge it is proposed to have ultrasonic vibrations act on it at 150° C for 1-3 sec before pressing. Surface treatments nitriding, boriding and borochromizidng for the purpose of increasing its mechanical properties, wear resistance, and frictional stability may also carried [14,139]. This surface treatment not only

improves wear resistance of friction layer, also increases wear resistance of mating surface by number of times [18,20]. Methods for the production of friction elements through electric current, plasma spraying, arc deposition, rolling of powders, special method on degassing of friction products, special protective coating of ceramics by chemical vapor deposition, special heat treatment processes, zinc coated iron powder production are directed towards the improvement of existing and creating of new technology [19,20]. Friction material produced by forging involves, a powder mixture of friction composition is pressed onto a steel framework and then subjected to hot deformation by forging at a rate of 0.1-2.0m/sec [19]. This technique is similar to powder forging of connecting rods where the compacted/sintered preform is forged under hot conditions.

Different types of friction materials are reviewed. On the basis of principle of dispersion hardening, dispersed phase should be particles of Cu combined with Sn, Zn; Pb, Al, and Al-Fe, Ni-Sn, Al-Ni, Al-Si are suggested. Additions of glass lubricant with Fe⁻ or Cu matrix are also mentioned for better frictional characteristics [19,36]. A wide class⁻ of friction materials based on iron containing metallic elements (Mn, Si, Cr, Mo, Ni, Mg, Cu, Sn, Pb, Zn etc.), non-metallic elements (iron borides, Ca, Li, Na, K, P, B, S, etc.) friction additions (Al₂O₃, SiC, SiO₂, B₄C, ZrSiO₄ etc.) and solid lubricants (graphite and⁻⁺ graphite granules, BaSO₄, MoS₂, WS₂, BN, Pb etc.) in appropriate amounts for variety of ⁺⁻ brake/friction applications such as aircrafts, rail wagons, freight cars, tractors, heavily⁺⁻ loaded machines, wet applications, shock friction conditions, shock absorbers etc. are briefly reviewed by mentioning different processing steps such as sintering technique, carbothermal synthesis, continuous rolling, material from grinding, cheaper raw materials from industrial waste etc. for producing them [86,87].

Intermetallics based power metallurgical metal matrix composites with reinforced aluminides (Ni₃Al, Fe₃Al) produced by Mechanical Alloying (MA) system are also used for triboligical applications [60,150]. Fe₃Al-based friction materials exhibit good oxidation resistance especially at high temperatures, higher bending and compressive strength. Wear resistance of Fe₃Al-based friction material are greatly higher than sintered Fe-based friction material. But COF decreases little bit; this is due to they are hard and brittle materials, whose capacity of adhering and sticking to the counterpart is

poor during the friction process. However, stability of friction coefficient is better and maintained [62,93]. Dry sliding wear studies on Fe₃Al intermetallic have improved wear resistance, under abrasive and erosion conditions. These intermetallic compounds alloys having higher wear resistance than sintered iron matrix. However, particularly for braking applications the study was not yet carried [150].

An investigation of sintered copper-tin based brake material rubbing against carbon/carbon-silicon carbide composite disc on its frictional characteristics is differential approach. COF is increased with increase in graphite. The wear of linings is high with addition of graphite and SiC. The addition of SiC decreases COF due to some physical and chemical changes on the friction surface [165]. However, frictional characteristics are not compared with commercial one for braking applications where sintered metallic friction material normally rubbed against grey cast iron or steel disc.

Different production technologies such as, for better mechanical, microstrutural properties of required size of friction disks upto 550-600 mm with powder layer thickness of 0.5-0.7mm are produced by 'free pouring' method on copper base material, hot compaction of iron base material at 1060±15°C with a pressure of 2.3MPa for 2.5 hour, deposition on a steel body and powder lining sintered under pressure by passing an electric current, use of rolling method describing short-term sintering, possibility of coating which gives high wear resistance, good adhesion properties and a prolonged operating life etc., method of gas thermal deposition, friction coatings applied by electricarc deposition of powder wires, composite electrolytic coatings by means of a laser treatment, different variety of self-propagating high-temperature synthesis are some of the new production technologies other than sintering process are developed with the aim to reduce the production cost of sintered materials [87, 143].

The growth rate of iron base powder friction materials is gradual with mean annual increment of 6%. In 1998, the world production was 320 thousand tons with an estimated growth for 2005 year as 428.7 thousand tons [86].

The present thesis is an attempt to improve upon the quality of this segment of friction material to meet increased demand in automobile and aircraft industries. It is aimed to produce them with better characteristics employing newly developed technology, namely, Hot Powder Forging with appreciably reduced cost.

Therefore, the present investigation broadly pertains to iron base metallo-ceramic class of friction materials. The newly developed technology differs considerably from sintered tecyhnology. However, chemistry/formulations of materials are similar to it. The following table summarises chemistry commonly employed in sintering technology [19,20,77,85,94].

S. No.	Composition / Designation	Description / Comment				
1.	2-5 Cu; 1-3 Sn; 1-5 Pb; 0.5-1.2 crystalline graphite; 0.5-0.8 pencil graphite; 3-8 high speed powder steel; 0.5-1.6 "Mazhef" compound	Recommended for friction plates of tractor starters, mopeds and motorcycles. Superior strength.				
2.	4-6 Sn; 8-9 C; 1.5-3 MoS ₂ ; 2-4 SiO ₂	Used with steel in friction shock				
3.	0.5-3 Cu; 3-5 graphite; 10-20 ferrophosphorus; 0.08-0.15 Sn; 0.05-0.1 Mn; 0.15-0.3 Ni; 2.5-5 Cr	Characterized by superior were resistance, friction coefficient equal to 0.4				
4:	4Cu;5Pb;2Sn;5Co	Magnetic material				
4:	1-4 C; 9-20 Cr; 0.05-3.5 Mn; 0.1-10 one or several elements from the group Mo, V, Nb, Ta; 0.1-10 Co, Ni, or their mixture	Powdered copper or copper-tin alloy is applied to porous framework formed after sintering. The powder melts upon heating to 1130°C and impregnates the sintered framework				
6.	1-4 C; 4-7 Cr; 0.5-2 P; 2-5 Mo or 0.5-3 B	Carbides of Cr, Nb, Ta, Ti, W, V, Zr, and Hf, with a hardness 1000-1130 I-IV are dispersed in the matrix of alloy and do not decompose during sintering. The material has high wear resistance.				
7.	3 Cu; 1 C; 2 MoS ₂ ; 3 PbO; 1 Al ₂ O ₃	Used to make automobile brake shoes				
8.	0.04-0.1 C; 0.1-0.6 Si; Mn; 0.04 P; <0.02 S; <0.6 Ni; 1.5- 13.5Cr; <0.5 Cu; 0.005-0.05 N	Recommended for motorcycle brake disks				
9.	1-5 Cu; 3-6 NiSO ₄ ; 4-8 graphite; 1-3 devitrified glass; 3-10 CaSiO ₂ ;0.2-1 SiC; 0.4-2 Si; 0.5-5 asbestos; rem.Fe Composition the same but 1-5% Cr instead of devitrified glass	Possesses increased friction, wear, and strength properties				
10.	2.5-3 SiC; 2-2.5 graphite; 2.5-	May be used for operation under conditions of				

Table 2.5 Iron base Powder friction brake designations and typical compositions

23

	3.5 pozzolan; rem~ Fe	dry friction and friction with lubrication
11.	1.5-3 Cu; 1-2 Sn; 4-8 Ba ₂ SO ₄ ;	Addition of BN leads to an approximately
1	1-8 graphite; 1-5 devitrified	four fold reduction in wear in an oil medium
	glass; 10-20 Pb; 0.5-4 BN; rem.	
	Fe	
12.	Cu + 8.5-16 flaky substance or	Used for brake shoes
	mixture of flaky substance with	
	graphite	
13.	4-15 Cr; 1-3 C; 0.1-5 Mo; 0.3-	Composition of the dispersed phase, in %: 10-
	1.5 Si; 0.2-1 P; 2-20 dispersed	20 Cr; 1.5-3 C; 0.5-5 Mo; 0.3-1.5 Si; 1-10 of
	phase	one or more elements of the group Mb, Ta, Ti, V
14.	1-25 Cr; 1.3-6 C; 0.5-5 Si; 0.05-	Possesses high wear and corrosion
	2 Pb or B; 0.2-20 of one or	resistance; damps acoustic and mechanical
	more elements of the group Mo,	vibrations well
	W, Nb, Ti, V, Zr	·
15.	8-25 Si ₃ N; 0-3-1.5 P; 0.2-1.5 C;	A phase of ternarly alloy Fe-P-C with
	0.1-3 C; 0.i Sn or Zn; 1-10 Cu;	hardness 300-850HV uniformly dispersed
	0.3-1 P	in the matrix, $f = 0.34$
16.	0-23 Cu; 0-4 Sn;1-5 graphite; 2-	Has constant wear rate at temp. above
	5 MoS ₂ ; 1-8 Bi; 0-9 Pb; 04.5	300°C
	A1 ₂ 0 ₃ ; 0-14 ZrSiO ₄ ; 3-14	
	graphite; 2-12 coke; 3 Sn or Zn;	
	Bi, Pb, 3-10 frictional	· · · ·
17.	components 10-70 C; 0-2.5 S; <10 A1 ₂ 0 ₃ ;	Designed for production of railroad car brake
17.	component of group including	shoes. Presence of Cu, Mn, ferrochrome
	Cu, Mn, ferrochrome,	prevents seizing
	chromium carbide	provents seizing
18.	0.8-1.5 C; 0.5-2.5 Cr; 2-5 Mo;	Complex carbides formed in Fe-Cr-W-C
	1.5-5 Ni; 0.1-2 W; 0.2-5 Cu	system dispersed in the matrix
19.	15 Cu; 9 graphite; 6 BaSO ₄ ; 3	Trade mark as FMK-11; COF is 0.21-0.22 in
	SiO ₂ ; 3 asbestos.	dry friction; applied in braking units of
		tractors and load lifting mechanisms.
20.	7-9 Al; 1-3 SiO ₂ ; 1-3 asbestos;	Trade mark as JAF-1; COF is 0.28 in dry
	0.7-1.0 P; Mn, Si, Ni, Cr and	friction; brake blocks working without
	others upto 2, rem Fe.	lubrication under medium load conditions
21.	64- Fe; Cu-10; 3 Asbestos; 8 C;	Termed as MKV-50A friction material
	5 Iron sulfate; 5 SiC; 5 B ₄ C	developed in USSR.
22.	9-11 Cu; 7-8 graphite; 2-4 BN;	Termed as FMK- series' for antonov aircrafts
	4-6.5 BaSO ₄ ; 5-7 SiC; Bal. Fe.	
	(mass %)	
23	3 Cu; 1.2 Sn; 3.6 C; 15.0 SiO ₂ ;	Two different iron grade powders of sponge
	Bal. Fe (mass%)	iron powder and fiber-like structure is used.
24.	63 Fe; 4 chilled iron grit; 3 iron	Aircraft brakes
1	silicide; 2.5 PbO; 4.5 Sb; 6 SiC	

2.2.3 Carbon-based Friction Materials

This was firstly developed during the year 1960's and early 1970's and they were mainly developed for advanced military and commercial aircraft of multiple rotor and stator brake disks because of their greater mass reduction, lower wear, high temperature stability and a higher reliability under extreme braking conditions. Some are now used on racing cars and other automobiles where weight is significant, performance is challenging, and cost is secondary [4]. These are extensively used in braking devices of railways, tanks and other mechanical engineering products. Friction between rotating and stationary disks causes these composites to heat upto 1500°C (surface temperature can be as high as 3000°C), so good thermal shock resistance is required. In addition to requirements of friction materials mentioned in section 2.3, any braking material must be a good structural material, an efficient heat sink, and have excellent abrasion resistance. Carbon-carbon friction materials are made from carbon fiber (also called graphite fiber). that is bonded with amorphous carbon [RR1, 4, 104]. The friction and wear of C/C materials is exerted by the value of elastic modulus of reinforcing fibers. Therefore, properties of reinforcing fibers and its type on the friction coefficient and wear are carefully noted [115]. However, both COF and wear are practically independent of the material porosity over a relatively broad range of its values (upto 20-25%), while at a porosity over 27%, wear increases. There are basically three methods that are being used for forming the carbon matrix. They are either thermal degradation of a thermosetting resin or a thermoplastic pitch, and the chemical vapor infiltration (CVI) by depositing carbon into a fibrous preform and third is repeated cycles of CVI to densify [63]. Once desired density level is reached, the process of carbonization and graphitization are followed for the composites. Usually the density for aircraft C/C brakes is in the range of 1.7-1.9gm/cm³ [4,12] C/C composites can offer much higher strength at the same density. The advantages of using C/C for disk brakes are excellent thermal conductivity, adequate and consistent friction coefficients independent of surface temperature(when dry), high thermal capacities, good strength, impact resistance, fatigue resistant, about 60% weight savings compared with metallic brake systems [RR1]. Further, C/C composites are mainly employed in aircraft brakes for three basic reasons. First, the heat capacity of carbon is 2.5 times greater than steel, the kinetic energy from aircraft can be converted

into heat and stored in the C/C brake heat sink, and this heat is dissipated slowly to prevent melting of nearby metal structures. Secondly, C/C can provide sufficient friction to bring the aircraft to a smooth, controlled stop under different K.E. conditions including normal and rejected takeoff (RTO). Third C/C composites have high mechanical strength, it is comparable to steel, at high temperatures, and carbon is nearly twice as strong[41,42,66].

Consider the demands made of a braking material in a Boeing 767 aircraft of about 170,000kg. Take-off velocity of about 320km/hr and the resultant kinetic energy at this take-off is 670MJ. Under these extreme braking conditions, this energy must be dissipated in about 30 seconds, by the eight brakes on the aircraft. An aborted take-off is, indeed, the worst case scenario, but then the braking material must be able to meet such requirements. Let us also consider the weight savings while replacing the conventional brakes by the of C/C brakes. In a large aircraft, a multiple stator and rotor arrangement (a sintered high-friction material sliding against a high-temperature steel) weighs about 1100kg whereas C/C brakes (both the stator and rotor are made of carbon/carbon composite) weigh about 700kg, resulting in a weight savings of 400kg.

The major disadvantages are oxidation behavior under higher temperatures, weight loss from oxidation is significant for non protected C/C. oxidation time may start at 450°C. However, in the modern aircrafts it may start beyond 800°C say from 850°C-1200°C. Hence C/C friction materials are protected under those temperatures. Further, it involves costlier raw materials and as well as costly and complex materials processing. However, C/C friction materials are beyond the scope of our investigation [69]

However, organic and carbon-carbon friction materials discussed/included here are just for literature survey/review purposes and therefore they are beyond the scope of the present investigation. The present thesis is purely confined to iron base metalloceramic friction materials only and literatures pertaining to iron base are therefore only appropriate.

2.3 REQUIREMENTS AND CHARACTERISTICS OF FRICTION MATERIALS

The basic requirements of friction materials which are used in brakes of different vehicles are similar i.e. they should posses high coefficient of friction (COF), stable COF under wide ranges of speed, pressure and temperature, low wear rate, good thermal conductivity to dissipate heat, good strength to withstand high pressure and temperature rise during braking, negligible wear of the opposing member, fabricabilty and low cost [7,20,47,77]. Therefore, these essential requirements of friction materials are briefly discussed below.

- 1. Coefficient of friction is essential for efficient braking and hence the vehicle is stopped in time. Higher value is desirable.
- 2. The coefficient of friction may vary with rise in temperature, speed and applied pressure of the moving surface and kept constant under different climatic conditions encountered in service. Stability of the coefficient of friction over the temperature range is known as fade resistance and hence brake fade should as minimum as possible.
- 3. Good thermal conductivity results in higher resistance to heat flow and hence it solves problems due to higher temperature generation at the braking surface; conduction of the heat towards the interior tends to minimize warpage of pressure plates, or other parts of the assembly. This may results in faster heat dissipation.
- 4. Good strength levels; where the friction materials are subjected to complex state of stresses in which compressive, shear, tensile, fatigue, centrifugal forces or any other stresses encountered during service. Hence, the friction materials should have good mechanical strength to withstand these stresses.
- 5. Good wear resistance: This decides the life of the component. Particularly in this property that powder metallurgy products have excelled over other materials. Variation in composition has a considerable effect on the property.
- 6. Further, friction materials should also possess other properties like resistance to score, gall & ablation, proper energy capacity, proper engagement characteristics, good thermal properties, high heat capacity, adequate durability, fabricability or formability, negligible wear of the opposing member and safe to use.
- 7. Free from environmental issues and
- 8. Minimum cost.

2.4 SELECTION AND APPLICATIONS OF FRICTION MATERIALS

Selecting the perfect brake lining for a heavy-duty brake application is very important to ensure that the vehicle and the load type can be stopped. The perfect brake lining will need to have an appropriate coefficient of friction that will remain constant for the life of the vehicle under all operating conditions of speed, braking pressure, vehicle load, temperature, and humidity. The perfect lining would not score or wear the drum, would not be subject to vibration and noise, would wear slowly, and would not have an offensive odor while applying. The selection of lining is a balance of all these factors and will depend on the service that the brake will be subjected to during its useful life [SAE, brake bible, 40].

Lining fade is the inability of friction material to maintain its normal effectiveness when it is forced to work at elevated temperatures. This is called "heat fade" and is the result of reduced coefficient of friction as the brake temperatures increase. Fade resistance is another feature of high performance pads. Brake fade can be caused by the out-gassing of the pad that creates a boundary layer of gases between the pad and rotor. Recovery is the rate at which the lining returns to its original friction level after having been exposed to a fade condition.

Recovery is typed as Normal recovery, slow recovery, or over recovery. Most desired is normal recovery in that it will return to its pre-fade friction level with very little temperature reduction. Other, less-expensive friction may require almost returning to ambient temperatures before braking again.

Speed Sensitivity is the measure of a lining's ability to maintain its coefficient of friction at different rubbing speeds. The friction level of most friction materials is reduced with increasing speed.

Brake Noise is a vibration in the brake system whose frequency is in the normal hearing range. Low noise levels leads to better engagement characteristics.

Brake Wear is a cost of operation consideration. The best lining will have minimum wear at low to normal operating temperatures and only a modest increase in wear rate at elevated operating temperatures. All of these mentioned terms are to be considered for selection and type of application in an automobiles or aircrafts [SAE]

2.5 FACTORS AFFECTING PROPERTIES OF FRICTION MATERIALS

The following factors which affect the friction and wear of brake friction materials directly or indirectly. [SAE]

- Brake design; disk, drum stator and rotor brake disks are designed in such a way that the fins, or vent holes provided in disk of the rotating part which may help in faster cooling, faster heat dissipation or unless it may not be, and further if they make more or less contact area with the rotating counterpart. Hence a careful design is required
- 2. Disk/ Drum and Lining materials composition: Lining materials constituents should not contain very hard or very high wear resistance material and it may lead to wear out or score the drum/disk material since it may not be frequently changed rather than brake pad/lining material.
- 3. Higher operating temperatures may directly affect friction of brake friction materials and may lead to fade (decrease in coefficient of friction with rise in temperature) so the friction material lose its stability.
- 4. Rubbing speed, if low or high it naturally affects wear of brake materials.
- 5. Higher contact pressure leads to lesser stopping time, friction materials wears fast at lower contact pressure makes lesser friction and results in lesser stopping distance. Hence application of pressure on the brake elements inversely affects its properties.
- 6. Exposure to environmental contaminants such as road dust, local rust debris, moisture, etc. may also affect the friction and wear of friction materials. Now a days, asbestos is banned since it penetrates into human lungs and causes cancer.
- 7. Prior usage history and resulting surface conditions may indirectly affect friction and wear properties [SAE].

2.6 Steel backing/carrier plate

Friction materials are usually of a high metal to non-metal ratio; it is not possible to produce friction facings of sufficient strength, to be entirely self supporting. They are too weak when used as load carrying members; therefore require the support of a steel backing plates. Backing plates can play a distinct role in creating a positive pedal feel and stopping ability. The backing plate creates a foundation for the friction material that must be stiff and stable. If a backing plate is flexing, the friction material is not in full contact with the rotor. This can cause longer stops, a softer brake pedal, and it increases the potential for unwanted noise. High-performance backing plates might use thicker and better quality steel. The composition and physical properties of the steel are of considerable importance. In compacting and sintering manufacturing process, steel backing plates of the same shape and contour as that of the friction material element are nickel plated by sulphamate process and are diffusion bonded under pressure and temperature, during sintering operation itself. The selection of suitable steel for use as a back plate material depends on the stresses, brake torque limit and maximum temperature rise encountered during high energy braking. Usually, Plain, Low Carbon Steels are used for low-medium energy brake applications. Stabilized high strength low alloy steels of high hardenability with good thermal fatigue properties are used for high energy brake applications. However, HSLA or Ultra HSLA steels are widely used as backing plates for these metallic friction materials due of their higher strength, higher hardenability, and thermal shock resistance etc. Further, addition of 1% Si for increased hardenability by means of special processes and special heat treatment process may also employed [20, 24].

2.6.1 Shapes and Sizes

The friction materials are manufacturing in the form of discs, sectorial, radial, linings, and steel frame on either single or double sided layer of sintered friction materials.

Choosing a right composition or new formulations is the most important factor in designing of modern friction materials. Determined by the endeavor to meet the two principal requirements namely, rise in the coefficient of friction and increases in the wear resistance of the material.

The friction elements fitted with friction product are manufactures in the form of discs, sectoral linings and blocks of different shapes, as a rule, there design consist of a load-bearing steel frame lined with a single or double sided layer of a sintered friction materials. The sintered material consists of the base metal, the components improving the mechanical and thermo physical properties of the base, and the components improving the resistance of the material to seizing and the coefficient of friction of the pair[110].

Disc shaped elements are mainly used in the friction assemblies working with lubrication. In order to ensure the required lubricant circulation between the friction surfaces, grooves of different shapes are made on the disc. They ensure supply of cooling oil, fast removal of the excess oil from the rubbing surfaces at the instance of starting, and trapping and removing the wear products. In the friction assemblies working under dry friction conditions (brakes, clutches, etc.) besides the dis-shaped working elements, one makes use of the components in the form of cones, strips, blocks, etc[114].

Most frequently, the friction products are manufactured in circular form or as segments (mainly reinforce with steel frames) and are bonded to the load bearing steel structures. The Fe based friction elements are usually produced in the form of linings with cup shaped reinforcing iron strips. Such linings are bonded in pairs to a disc shaped steel support usually having slots for avoiding warping due to thermal stresses originating during operation. Such a design of brake pads is recommended for heavy duty application for example in aircraft's. The brittleness of the friction product makes it necessary to bond it to a reinforcing steel frame by sintering. Sintered friction elements work in a friction assembly in pair with an abradant. Generally these abradants are made of steel [7,20].

2.7 Counterpart (drum/disc) material:

Grey Cast Iron (GCI) is the dominant material for use in brake drums/discs for the past history and is still used as counterpart material in most of the automobiles [8, 9, 13, RR1]. The excellent wear resistance of GCI under dry sliding conditions is due to the presence of graphite flakes in the microstructure (fig), a pearlitic matrix and type A randomly distributed flake graphite of medium size 4-5 gives the optimum performance [146, ASTM A247]. Fine graphite flakes result in low wear of the rotor and friction material/lining [4]. The effect of frictional characteristics with regards to gray iron microstructures and the correlation between the relative amounts of phases on the gray iron were made by changing the carbon equivalent and cooling speed of melts. It was found that the amount of free ferrite (and pearlite) on the gray iron disk did not affect the COF, with higher graphite area percentage, COF got increased on the gray iron disk and it was common for steel-containing linings such as semi-metallic type friction material. Fade resistance was improved with higher graphite content on the gray iron disks [15] Under braking conditions, graphite in the microstructure smears out on to the sliding surface and forms a surface layer which reduces metal to metal contact and thus improves coefficient of friction (COF), also provides frictional stability to the brake pad material. It has good thermal conductivity due to the graphite phase, which is an excellent thermal conductor and graphite flakes are interconnected and disposed in the form of plates which results in faster heat dissipation [16].

Further, addition of alloying elements like molybedenum, silicon, neobium, titanium etc. and high carbon enhances mechanical, thermal properties and as well as frictional properties. Such kinds of combinations are introduced for passenger car and heavy truck brake rotors [16,113]. Addition of phosphorous improves wear resistance, seizure resistance and scuffing resistance under mild to severe conditions. Grey cast iron with 1.2% phosphorous content was standardized for railway brake blocks in France and U.K.. Influences of different graphite morphologies in cast irons with phosphorous addition of 0.7% are studied and suggested phosphorous compacted graphite cast iron is most suitable material due to combinational effect of highest friction coefficient and lowest wear loss as compared with other morphological phases.[5]

There is a limitiation of using grey cast iron brake disks i.e. some times, grey cast iron disks will corrode and/or surface oxidation takes place after service period of under prolonged time. This surface oxidation may result in high wear for grey cast iron [91,144]. However, it was seldom found and not only corrosion resistance of cast iron also its tribological characteristics can also be improved by means of different coating. Three different coating on Ni-base, Co-base and Fe-base were deposited using high-velocity oxy-fuel thermal spray (HVOF) technique [90]. These coating had better corrosion resistance and low wear rates. Slight decrease in COF but frictional stability was found for these coating. However, coating business would not give satisfactory response under severe sliding conditions though the friction was high [163].

In the last several decades, a great deal of effort has been devoted to improve the friction performance of brake rotors (or drums). The effort includes the development of non-ferrous materials such as copper alloys, aluminum metal matrix composites (Al-MMCs), and carbon composites as new candidates. However, gray cast iron is mainly

used for automotive brake rotors due to its excellent damping capacity, high thermal conductivity, easy fabrication, and, in particular, low cost [16].

Aluminium Metal Matrix Composites (Al—MMCs) are latest brake disk materials and competitor to grey cast iron. Advantages of Al-MMCs with regards to brakes are low weight, high theraml conductivity, for thermal expansion, high specific strength, hardness, wear resistance, and improved mechanical properties etc. Many automobile manufacturers' put their efforts on the replacement of cast iron by Al-MMCs for brake applications throughout the world [48,148,149]. Research on this material are growing for the application of brakes are interested due to of its better frictional properties, weight savings, enhanced load-bearing capacity due to addition of ceramics etc [136].

Altering type of reinforcement (SiC, B_4C etc), its amount, its type and so on variety of Al-MMCs are developed and its tribological properties are evaluated against different types of organic friction material [10,131]. The NAO type friction materials with different metal fibers addition sliding under two different counterdisks namely grey cast iron and Al-MMCs were investigated. Al-MMCs had higher COF and lead to better frictional performance. However, the wear trend is same for both types of disks [53].

The physical properties and microstructures of grey cast iron and Al-MMCs are mentioned below (shown in Table 2.6) where graphite flakes in former and composite phase in latter are visible [53].

Physical properties	Grey Cast Iron	A 356 Al alloy + 30% SiC		
Density (×10 ³ kg/m ³)	7.2	2.85		
Specific heat (J/g K)	0.498	1.027		
Thermal conductivity (W/m K)	47.3	148.1		
Coefficient of thermal expansion at $50-100^{\circ}$ C (10^{-6} K ⁻¹)	12.6	17.4		
Hardness (kg/mm ²)	80 ± 10	98.4 ± 2.4		

Table 2.6. Physical properties of gray cast iron and Al-MMC

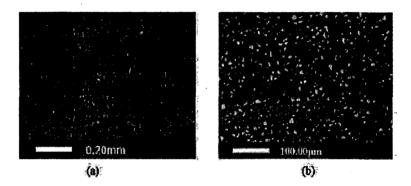


Fig.2.1. Microstructures of two counterdisks (a) gray cast iron; (b) Al-MMC.

2.8 MANUFACTURING TECHNOLOGIES FOR FRICTION MATERIALS

Conventional manufacturing technology of making composite friction materials are briefly described here. However, methods pertaining to its modifications, alterations, improvements etc. from the existing technique and the new solutions or production techniques for making such materials are not included/covered here.

2.8.1 Manufacturing technique for Organic type Friction Material

Steps involved are as follows

- 1. Dry mixing
- 2. Hot pressing
- 3. Post curing
- 4. Finishing

Dry Mixing: Mixing was carried in plough shear-type mixer to ensure the macroscopic homogeneity for the desired mixing using a chopper supped of 3000rpm. The mixing

sequence involves feeding of all the powdered ingredients, then the metallic additives, inorganic and organic fibers. Glass fibers were added last to minimize fiber damage and to open up the strands to provide mechanical isotropy to the mixture. The mixing duration will vary according to powder characteristics, type, size etc. but here it was 5min. the resin-based organic friction material was prepared by firstly, dry mixing of appropriate amount of different powders such as phenolic resin powder, copper powder, steel wool, and so on.

Hot pressing: The mixture was then placed into a four-cavity mould supported by the adhesive-coated back plats. Each cavity was filled with constant quantitye of the mixture and then heat cured in a compression-moulding machine at different temperatures under a pressure of Mpa for 10-12 min. Thus dry mixed powder mixture was hot pressed at 150°C-250°C for 10-30 minutes under a pressure of 0.5-15 MPa. The temperature, time and pressure will vary according to materials (or ingredients) added, its bonding and other characteristics and shall be carefully chosen.

Post curing: There intermittent breathings were also allowed during the initiation of curing to expel volatiles. The pads were then removed and were then post-cured in an oven at 100°C-350°C for 1-10 hrs. to relieve the residual stresses in the sample pads. **Finishing:** Finally, finishing operation was done by grinding, sizing etc. Thus surfaces of the pads were then polished with a grinding wheel to attain the desired thickness and to remove the resinous skin [13,53,54].

The above said four steps are same for NAO type whereas for semi-metallic type friction materials only hot pressing & curing temperature and time are slightly varied.

2.8.2 Manufacturing technique for sintered friction materials

The metal powders namely matrix which provides the basic strength, must have a sintering activity which is as high as possible. Because of addition of non metallic powder components which are added and which do not take much action in sintering process. They should also form a sufficiently stable structure. For this reason spongy and dendirtic powders with particle size below 150um are preferred since they have high surface area. Spongy iron powders which are produced by reduction of oxides are mainly used for Iron based friction material. For copper base material electrolytic powder is

used. Further, copper alloys like brass, bronze and Ti are also used since they forms transient liquid phase during sintering. Mixing should be done carefully.

Friction materials are composite materials consisting of metallic and nonmetallic constituents. Their manufacturing is not possible by the conventional route in which miscibility plays main role of different constituents in the liquid state. This limitation can be overcome by using powder metallurgy technique in which different powders can be mixed irrespective of their miscibility limitations. The composition and final properties can be controlled by powder metallurgy route as different metallic and nonmetallic constituents otherwise immiscible can be properly blended in powder form to develop properties desired.

In sintering technique following are the basic steps in the production technology of friction components.

1. Preparation of powders and the load bearing steel frames,

2. Blending of the components,

3. Compaction of the performs of friction components,

4. Sintering the products under pressure in a protective atmosphere,

5. Finishing operations (polishing, groove cutting etc.) [7]

The finishing operation will be same for the elements either prepared by sintering technique or hot forging technique.

All powders are screened through a sieve of required mesh size before mixing since many of the powders used tend to agglomerate and this is most undesirable. Mostly fine size powders are preferred to achieve uniformly distributed microstructures. Mixing can be carried out in many ways. Generally this is carried out in conventional types equipment such as double cone or V- cone blenders or ribbon type mixers. But using pot mill mixer is very much beneficial because in the mixing itself we can achieve mechanical alloying of different elements.[2,3]

Compaction is done in a large hydraulic press. Iron based materials are compacted in the pressure range of 400 to 800 Mpa. Copper based products the compacted pressure in the range of 150 to 300 Mpa.

Sintering is carried out in a number of ways like pressure-less sintering, sintering under pressure, liquid phase sintering, electric discharge and electric arc sintering, double sintering with intermediate repressing, sintering in conjunction with supplementary heat treatment, etc. The backing plate can be joined with friction element either by brazing or welding, or by sintering the two components together under pressure.

The sintering temperature of the copper based components is usually in the 650°C to 900°C range and in the case of the iron based ones; it is the 1030°C to 1070°C. The sintering time of the friction components depends on the chemical composition of the material and the required final density. In the case of the copper-based components it varies from 15 to 20 minutes up to 4 hours, and in case of iron based components, it amounts to 3 to 4 hours. Sometimes, raising the sintering time and temperature increases the wear of iron-phosphorous base materials and slight increment in friction; pressure applied during sintering has no effect upon the wear of the material but results in higher coefficient of friction [133].

During sintering, the stack of disc is subjected to a load using hydraulic, pneumatic, or mechanical devices. For copper base products, the pressure amounts to 0.5 to 1.0 MPa and for iron-base components it amounts to 1.0 to 1.5Mpa. The sintering operation is carried out in a protective atmosphere under pressure in conveyer furnaces or in special continuous furnaces in which the shaft is positioned vertically so that the pressure can be applied on the pile of discs.

The finishing operation may include sizing or coining, repressing, lathe turning; or polishing, groove making, shaping conical or cylindrical by forging etc. Iron base materials can be heat treated for improving the properties of the layer. Annealing is carried out at 900°C for decreasing the hardness of the friction layer. Quench hardening is conducted from a temperature 900°C to 950°C in oil or hot water followed by tempering 500°C

Fig. 2.2 and 2.3 are the illustrative flowcharts for manufacture of copper and iron based brake pads respectively employing sintering technology.

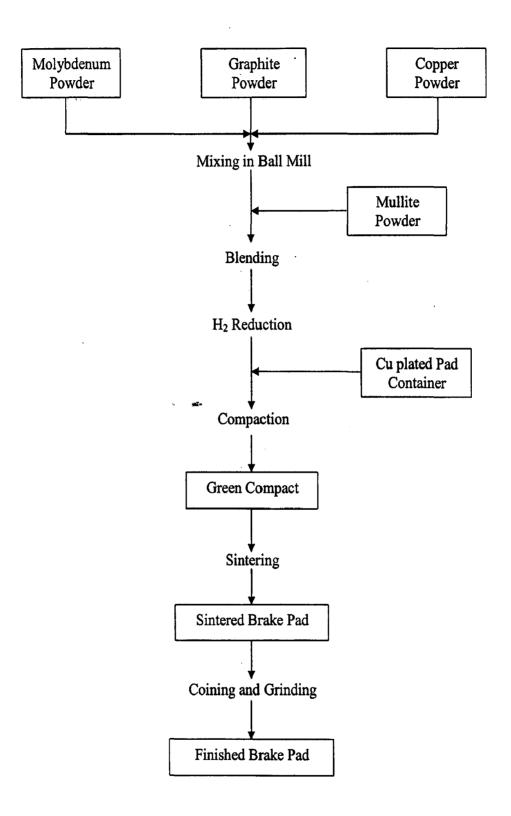


Fig. 2.2 P/M process for the manufacture of copper based brake pad [25]

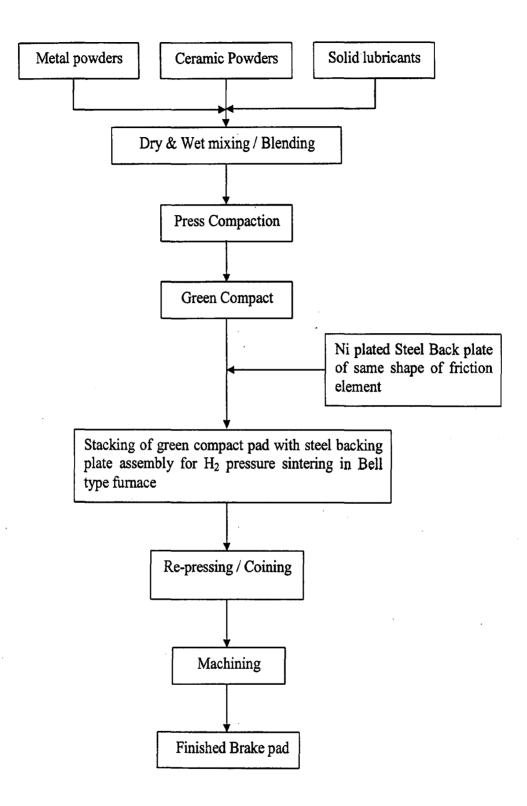


Fig. 2.3 P/M process for the manufacture of iron based brake pad [25]

2.8.3. Manufacturing Technique of Carbon/Carbon Friction Materials

These materials are also produced by compacting and sintering route but containing predominantly graphite based powder. The friction and mating part both are graphite based and are essentially lubricating type of materials with very low coefficient of friction. These are excellent friction materials for heavy duty applications due to high temperature stability of ceramic graphite. However, this type of friction materials is beyond our scope of the present investigation [RR1].

2.9 CHARACTERIZATION OF FRICTION MATERIALS

The different characteristics of friction materials namely physical, frictional, metallurgical and thermal properties are briefly described below.

2.9.1 PHYSICAL PROPERTIES

Apart from the values which directly concern the

metal facings there are other physical characteristics which influence their performance of a facing in service and are therefore taken into consideration at the design stage Some of these shown in Table 2.7 below. The heat resistance of these materials, as shown by the softening temperatures, is very much higher than for conventional organic facings, giving greater stability at high running temperatures and freedom from fade [20].

Property	Bronze		Bronze- ceramic	Iron	Iron- graphite	Iron- ceramic
Heat capacity, cals/gm/°C	0.102	0.102	0.118	0.121	0.119	0.119
Thermal conductivity, cals/sec/sq. cm/cm/°C	0.0340	0.0350	0.0300	0.0295	0.0300	0.0284
Softening temperature, °C	845	845	870	1180	1100	1180
Compressive crush strength, lb/in ²	12100	22700	7620	64800	22100	25750
Transverse rupture, lb/in ²	9200	11800	7300	41400	14300	20800

Table 2.7 Physical characteristics of sintered friction facings

2.9.2 FRICTIONAL PROPERTIES

The coefficient of friction is probably the most important single property of a facing material, but its application to the design of working assemblies requires careful interpretation. The data quoted in the Table 2.8 below are determined under standardized conditions [1,20]. A new specially designed equipment for evaluating tribological performance of ceramic-based composites for braking applications were developed [69, 122] As the final conclusion from the author, if the speed increases wear rate of the sintered iron increases [49,50,126]

	Grade No	Coefficient of friction			Permissible				
Туре		Dynamic		Static		facing pressure		Typical applications	
		Oil	Dry	Oil	Dry	Oil, psi	Dry, lb/in ²		
Bronze	Durasint S1	0.08	0.31	0.16	0.29	75- 600	50- 300	Main drive, steering & powdershift clutches	
Bronze- ceramic	Durasint S14	-	0.35	-	0.48	-	50- 250	Heavy duty dry industrial clutches	
Bronze- graphite	Durasint S73	-	0.21	-	0.23	•	30- 300	Torque limiting and safety clutches (dry)	
Bronze	Ferodo SM1	0.07	0.31	0.11	0.37	100- 500	50- 300	Main drive, steering & powdershift clutches	
Bronze	Ferodo SM6	0.09	-	0.11	-	100- 500	-	Automatic transmission, power and steering clutches in oil	
Iron- ceramic	Durasint S92	-	0.39	-	0.45	-	30- 500	Disc brakes and dry main drive clutches	
Iron- graphite	Durasint S210	-	0.30	-	0.30	-	25- 150	Dry main drive and steering clutches	

Table 2.8 Properties of some sintered friction materials

2.9.2.1 Calculations for Sub-scale dynamometer test parameters [147, MIL D 5013]

Input parameters

1. Energy absorbed per brake stop (E_s):

The kinetic energy absorbed per stop (E_s) and the resulting heat produced in the friction material is the major factor influencing brake service life. The following formulae are used to calculate the kinetic energy absorbed by the

brake per stop (Es).

(a) For a caliper brake, the kinetic energy absorbed by the brake per stop is given by,

$$Es = WR^2 N^2 / 5872,$$

Where $E_s =$ energy absorbed per stop, ft. lb (N.m);

W = weight of body stopped,

R =radius of gyration, ft (m);

N = number of turns to stop.

Some times, the value of inertia (WR^2) is also mentioned by the machine builder.

. 1

....Ĩ:

(b)The kinetic energy absorbed is also calculated by,

 $Es = \frac{1}{2} I \omega^2$

Where I = Inertia, (provided by the machine builder)

 ω = angular velocity = $2\pi N/60$

(c) Kinetic Energy = CWV^2 , ftlb, according to [MIL W 5013]

Where C = 0.032 for nose wheel of aeroplanes and for all helicopters

C = 0.026 for tail wheel airplanes

W = Weight of aircraft in pounds under the loading conditions

V = Power-off stalling speed of the aircraft in mph at the weight W

A speed of 40 mph shall be used for helicopters, unless otherwise specified.

2. Speed, Brake force / brake pressure:

The rotational speed of tire is the same as that of the brake where it is fitted. Thus, the speed (rpm) can be estimated from the vehicle speed at the time of application of

brakes. For example, if the landing speed of aircraft is 280km/hr, brakes are applied say at 240km/hr, correspondingly the speed in rpm is $((240 \times 1000)/60)/\pi$ D, where D is wheel diameter for the vehicle.

Brake force / brake pressure is strongly dependent on vehicle design specifications; the number of brake cylinders, stroke length, and diameter of piston will determine the brake force/pressures.

The kinetic energy, rotational speed, brake force/pressure as estimated above, are set as the testing input parameters for sub scale inertia dynamometer test of the brake pad material/element.

Output parameters [147]

1. The brake torque,

T = 5250 PK / s, lb.ft (N.m)

Where, T = brake torque which the brake handles,

P = hp absorbed (kw),

K = a safety factor between 1.5 and 5 as the duty cycle of the brake increases,

s = brake rotation speed, rpm.

For example, if P=5 kw, K=5, s=3600 rpm then

T = 5250 (5) (5) / 3600 = 36.46 lb.ft (49.4 N.m)

2. The average brake torque required to stop the vehicle load,

 $T_a = Wk^2n / (308t)$, lb ft

Where, T_a = average torque required to stop the load,

 Wk^2 = Inertia, load including brake rotating member, lb.ft² (kgm²),

W = weight of body stopped, lb (kg),

 $\mathbf{k} =$ radius of gyration, ft (m),

n = shaft speed prior to braking, rpm,

t = required or desired stopping time, s,

For example, $T_a = (200) (1800) / [308 (40)] = 29.2$ lb.ft. or 351 lb.in (39.7 Nm)

A service factor varying from 1.0 to 4.0 is usually applied to the average torque to ensure that the brake is of sufficient size for the load.

Applying a service factor of 1.5 for this brake yields the required capacity = 1.5(351) = 526

in.lb. (59.4N.m)

 No. of Revolutions prior to stopping, run down revolutions R_s = (tXn) / 120 Where, R_s = number of revolutions prior to stopping;

Other symbols as given above;

For example, $R_s = (40) (1800) / 120 = 600 r$.

4. Stopping distance,

 $t = (2) (\pi) (k) (R_s)$, t and k both are either m or in ft.

á

 \mathcal{L}

5. The heat the brake must dissipate,

 $H = 1.7FWk^2 (n / 100)^2$, ft.lb / min

Where, H = heat generated at friction surfaces, ft.lb / min

F = number of duty cycles per minute,

Other symbols are as described earlier,

For example, $H = 1.7 (1) (200) (1800/100)^2 = 110200 \text{ ft.lb/min.} (2490.2 \text{ N.m/s})$

6. Required radiating area of the brake,

A = 42.4 hpF / K

Where, A = required brake radiating area, in²,

hp = power absorbed by the brakes,

F = brake load factor = operating portion of use cycle,

K = constant = Ct_r, where C = radiating factor (a value for different temperature rise); t_r = brake temperature rise, °F; Assume C = 0.00083 for t_r = 300°F;

For example, $A = 42.4 (20) (0.5) / [(0.00083) (300)] = 1702 \text{ in}^2 (10980.6 \text{ cm}^2)$

7. Heat produced in the brake

The heat produced in the brake by the energy absorbed is found from $H = E_s / 778.3$,

Where H = heat absorbed per stop, Btu (kJ)

8. The temperature rise of the brake is

 $T_r = H / 0.12W$,

Where T_r = temperature rise per stop, °F (°C)

9. Average disk temperature per stop,

 $T_{d} = HT_{a} / 2.25A,$

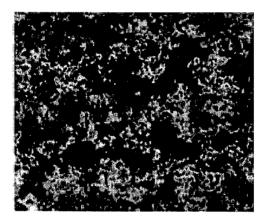
Where T_d = disk temperature per stop °F (°C);

 T_a = average disk temperature ;

 $A = disk surface area, ft^2 (m^2),$

In this expression the factor 2.25 is the cooling index used when the disk is stationary during cooling- the usual condition following an emergency stop. However, if the disk rotates during cooling, a factor of 4.5 should be used instead.

10. The peak temperature of the brake,


 $T_p = T_d + 0.5T_r;$

Where, the temperatures are in either °F or (°C).

11. The brake service life (L), in number of stops for a brake, L = (1.98 x 106)ZY / E_s, where the service factor, Z, is found from standard curves available from brake manufacturers and friction-material suppliers; Y = total friction material volume, in³ (cm³)

2.9.3 METALLURGICAL PROPERTIES

The microstructures as shown in Fig. 2.4 depict the non-metal components namely SiO_2 and C encompassed by the metal matrix. When observing the friction layersteel base interface, the formation of a solid solution of copper and nickel is observed and at some places the formation of a solid solution of copper and nickel with the iron from the matrix was also noticed. It is also registered that the thickness of the intermediary layer is restricted. A deeper diffusion of the solder into the steel base, bearing in mind the thickness of the steel base 1.2 mm., would weaken the mechanical properties of the steel base. On the other hand, deeper penetration of the solder into the friction layer would cause considerable changes in the structure of the friction material. This would result in a change in the mechanical and friction properties in that part of the friction layer and would completely reduce the expected life of the friction pads.[105,108]

....

Fig.2.4 Microstructure of sintered iron base friction material

2.9.4 THERMAL PROPERTIES

The influence of the temperature on the wear and friction of some brake pads has been described under thermal characteristics. During braking operations, a temperature in the order of 1000°C has occasionally observed. Hence there is a need to study and understanding of the chemical-physical decomposition processes that occur when a friction material is exposed to severe thermal conditions. Differential thermal analysis (DTA), thermo gravimetric analysis (TG), and evolved gas analysis (EGA) have been used to study their effects. By means of the combined use of DTA and TG thermal characteristics are studied for the investigation of brake pad and its wear residues produced during the long service of a largely used automobile are carried out in order to study the chemical and physical changes suffered by the combination of heat and mechanical actions and to estimate the brake pad contact surface temperature. [57,73,121]

2.10 REVIEW OF PATENTED LITERATURE ON FRICTION MATERIALS

This review on patents purely confines to sintered iron base friction materials/brake elements only. However, in the present investigation, Hot Powder Forging process and the product is first time developed and patented literatures is not available elsewhere. US Patent 7094473 comprise of wear resistant iron based sintered contact material applied to sealing material or like for use in rotating parts of construction machines etc. with a view to achieving improved seizure resistance and preventing abnormal wear to attain increased wear. It is composed of sintered contact material sintered bonded to a backing plate and is applicable to floating seals used for encapsulation of lubricating oil, thrust washers for use in the joint of a work implement, and end faces of a crawler track bushing in a chassis.

US Patent 6439353 cited are aircraft wheeling segments of stator brake disks and rotor brake disks. The pads are made of sintered metal and the rotor brake disks are made of ceramic or ceramic composite. This patent mainly describes on brake designs aspects rather the technique of producing the friction materials

US Patent 6143051 describes a method of preparing a friction material, where in a mixture of iron fibers, iron particles, graphite particles and metallic binder is cold pressed at a pressure of at least 100 MPa to form compacts which are sintered at 800-1140 0 C for a long time. It does not however, include ceramics components which are needed for heavy duty brake elements.

US patent 6110268 describes a method for manufacturing a fiber reinforced ceramic brake member/ brake lining where a mixture of carbon particles, metal particles with polymer binding agent, silicon carbide or titanium carbide particles as abradants and solid lubricants are cold pressed into green compacts and then sintered in vacuum or protective atmosphere.

US patent 4576872 describes a method of manufacturing a friction element which beds-in quickly and which has a 'feel' similar to a resin based element where the powdered metallic friction material is subjected to resistance sintering, so as to produce a a sintered substrate and un-sintered or partly sintered surface layer.

US Patent 4415363 comprises friction lining material for a cast iron mating surface. The friction materials lining layer has iron as base and reacts with its alloys and hold substantially equal weight percentages of graphite and coke in a fixed position. The friction layer has constant wear rate upto 300°C and linear wear rate between 300-500°C. This technique also manufactured by compacting and sintering route only

US Patent 4391641 claims an iron base, sintered powder metal friction material for railroad braking use, formed by solid phase sintering and consisting essentially of, by volume, 10-70% carbon in the form of coke or graphite; 0-2.5% sulfur, 0-10% alumina; 9-40% of a metal powder additives of copper, manganese, ferrochrome and chrome carbide compounds and the balanced iron. Two dynamometer test procedures UIC (European) and AAR (USA) are used for determination of friction characteristics. The technology and the materials so developed exhibit low metal pickup. Here, the application is narrow and only suitable for railways and also bonding between friction materials and backing plate is not provided

US Patent 4350530 describes Fe-based sintered alloy for friction materials containing 3^{**} to 15% of bismuth of Bi-Pb alloy containing 5 to 100% bismuth, provides stable friction coefficient over wide ranges of temperature zones with excellent wear resistance. It states that Bi or Bi-Pb alloy can produce desired lubricity for various service temperature zones. Two stage sintering is recommended where the bonding between friction material and the backing plate is due to second stage pressure sintering.

US Patent 4311524 comprises sintered iron based friction materials and limits the application in friction devices operating under liquid lubrication conditions at medium performance modes; listed composition of the friction materials fades under severe energy levels and are not suitable for heavy duty applications. The patent does not describe the materials for use in dry operating conditions. It also does not spell about the bonding between friction elements and backing plate.

48

US patent 4280935 describes 20-60 wt.% of a high carbon iron powder instead of a ceramic powder in the conventional friction material and thus improving in wear resistance at high temperature by further adding 0.5-10.5wt. % of antimony trioxide as a flame retarding material.

US patent 4278153 describes friction modules with the grid reinforcement in either a mold or with in the brake disc cup that too using the sintering in brake manufacturing.

US patent 3341931 describes a method of producing railroad brake shoe, in the form of a sintered body of powdered metal including iron and graphite, by subjecting the sintered body to repeated pressure at elevated temperature.

US patents as sited above do not cover the joining of friction material with that of baking plate and the perfect ness of joint or the joint strength. Further, all these patents comprise of compacting and sintering in manufacturing a brake element, which is not involved in the present method of manufacturing of brake elements.

IP Patent application No.2420/DEL/2006 comprise of a novel low cost process for manufacturing Cermet friction materials/ composites/brake elements using hot powder forging with built in backing plate for medium to heavy-duty applications.

IP Patent application No.2421/DEL/2006 Development of hot powder forged iron based cermet brakes with built in backing plate and the new friction material there of, suitable for use in light to heavy duty automobiles, rails and aircrafts.

IP 198715/2002 deals with the preparation of metal-ceramic (Fe-based and Cu-based) friction materials with cup type or flat plate type steel baking frames that too following compacting and sintering route only. The baking plate is joined by pressure sintering.

FORMULATION OF PROBLEM

3.1 SCOPE OF THE PRESENT THESIS

The existing or presently practiced manufacturing technology available world over for Metallo-Ceramic brake friction materials is conventional P/M. i.e. compacting and sintering technique. Friction materials so produced have much more wear resistance, better frictional and other properties such as thermal shock resistance, fatigue strength, shear strength, compressive strength etc.

The compacting and sintering is the only technique followed till now for manufacturing iron base friction materials and there is no other alternate technology available for manufacturing the same. Minor modifications such as double sintering, repressing and pressure sintering etc. are there but have not contributed to significantly enhance performance parameters of such friction materials.

The scope of the present investigation is that developing new friction materials by a new technology called 'Hot Powder Forging'. The hot powder forging significantly differs from the existing technique where simultaneous application of pressure and temperature for a short period of time causes material to severely deform. Thus the purpose of compacting and sintering is fulfilled in a single step only. Further, the brake elements are developed with built-in backing plates, which have better bonding with the friction material layer on it. The main motto of the present investigation is to adopt this technique for manufacturing iron base friction products for brake application.

The 'Hot Powder Forging' technique used in the present investigation has already been used for developing iron phosphorous based soft magnetic materials, ODS superalloys in the past four to five years in the department and same were patented earlier.. However, the technique in the present case differs from the above mentioned past material processing technique where the steel capsule cover after forging is removed by machining to characterize the inner part of the material. In the present work, the capsule cover becomes part of brake pad material i.e. it serves as backing plate. This is likely to produce better bonding between backing plate and friction material in comparison to compacting and sintering technique.

3.2 LIMITATIONS OF THE EXISTING TECHNOLOGY

The compacting and sintering technology for the manufacture of brake pads involves complicated process variables, complicated processing steps, and also it has its own limitations. **Kolpakov Ya V. et al** [74] has critically mentioned some problems in the manufacturing iron base friction material and suggested few modifications from the earlier practiced process based on sintering technique. These limitations are summarized as follows:-

- 1. Bonding of metallic and nonmetallic constituents is poorer resulting in frequent breakage during manufacture and usage.
- 2. Poor density level of the resulting product due to limitations of compacting and limited extent of pressure application during pressure-sintering,
- 3. Poorer thermal conductivity due to high level of porosity in the product resulting in overheating of the product in actual application.
- 4. Inadequate joining of backing plate with friction element due to improper wetting characteristics at the interface. Joining is non-uniform throughout the entire area of the brake pad.
- 5. Brake fading (stable coefficient of friction (COF) with rise in temperature) owing to high temperature generation.
- 6. Poor quality of product owing to segregation along prior particle boundaries (PPB'^s).
- 7. The friction material is anisotropic in nature towards compacting pressure direction and thus it may results in limited or insufficient shear strength to withstand frictional forces under actual conditions.
- 8. The resulting product also suffers from wide variations in final characteristics due to large number of complex variables involved.
- 9. Substantial rejection rate in compacting and sintering due to brittle nature of the product and also due to improper joining of backing plate and friction element.
- 10. Higher content of abrasive constituents adding further to the cost to compensate for poorer density of products as achieved in the existing technology.

- 11. Large consumption of hydrogen gas during sintering.
- 12. Costly raw materials owing to precise requirement of cold compacting process involved.
- 13. High cost of die due to different brake pad shape and sizes. Die wear is also an associated problem.
- 14. Costly manufacturing technique due to number of complex operations involved.
- 15. Heavy capital investment in the form of costly custom built equipments.

3.3 ALTERNATIVE TECHNOLOGY

The Hot Powder Forging technique evolved in the present investigation employed for the first time to produce brake pads differs from the existing technique. It can be briefle described as-

The hot forging technology of the present investigation is likely to improve product performance in following manner-

- 1. Bonding of metallic and non-metallic constituents are always better than sintered products due to simultaneous application of pressure and temperature; simplifies the process.
- 2. Powder specifications are no more rigid as shaping of the product is achieved by simultaneous application of pressure and temperature unlike cold compacting.
- 3. When the material is get deformed the powders are plastic-like soft in nature hence density of the final product can be increased to very high range if desired. Hence, any level of density is achievable.
- 4. Owing to higher density achievable, thermal conductivity of the product likely to improve and thus providing lesser damage to the product during heavy duty applications.
- 5. Brake pads with in built backing plates are produced, eliminating the problem of joining of backing plate with Brake pads. Thus it has improved the performance of the brake pad material and significantly reduced the overall production cost.
- 6. Joining of backing plate is also simultaneously achieved in one operation itself where high forging force and temperature make a perfect joint.
- 7. Effective material designing is possible by substantially reducing ceramic content without sacrificing end properties. This results in economy of manufacture.

- 8. Brake fading is also reduced to very low levels and it is always expected to be better than their sintered counterparts.
- 9. Product is much cleaner prior to deformation, due to the flow of hydrogen gas in loose powder mixture. Hence joining of particles during shaping is better than sintered counterparts. There is complete absence of prior particle boundaries (PPB'^s) as well as impurity segregation owing to heavy deformation of particulate matter during shaping. Some residual impurities if present may get uniformly distributed in the iron matrix. PPBs are possibly removed only by high rate of forming method like forging.
- 10. The fine ingredients present in the powder mixture is uniformly distributed and the side walls of the product is restricted to standard size by using channel die set up and application of compressive load due to this side wall restriction is constant and hence the product may result in isotropic in nature.
- 11. Brittleness of the final product does not adversely affect the hot forging process.
- 12. The problems associated with the use of dies in compacting and sintering problems such as dimensional instability, swelling and warpage are completely eliminated. The cost of die related toolings are substantially reduced.
- 13. Better scope of designing new set of materials and thereby delivering better combination of final properties of brakes.
- 14. Consumption of protective gases involved in sintering furnace is significantly reduced due to lesser area of processing.
- 15. The cost of raw materials (Fe-powders etc) is remarkably reduced as the powders do not require stringent characteristics as being required in Fe-based sintered brake pads.
- 16. Only simple equipments are involved which rendering low capital investment; whereas compaction presses, sintering furnaces are costly in sintering technique.
- 17. Simplified technology.

Thus the limitations of existing technology as mentioned in 3.2 are successfully overcome.

The present investigation is now formulated with the aim to exchange sintered iron base products with hot powder forged iron base friction products where it have lower cost per brake pad, improved abrasive, wear resistance, superior performance and longer life.

Further, the unique features of Hot Powder Forging technique are

- Better control of properties by way of improved control over the density of the product.
- Process provides for effective cleaning of powder particle surfaces prior to forging thereby allows use of economical and poor grade powders.
- Provides much stronger joint between friction element and backing plate than the one obtained by sintering technology- established through Ultrasonic Test.
- > Does not require any specialized training or skilled labour to manage the process.
- Only simple indigenous equipments are required. No imported equipment is needed.
- Improved economy in running cost and improved saving in fixed capital investment.

3.4 OBJECTIVES OF THE INVENTION

Powder forging technology for the manufacture of metallo-ceramic brakes is developed with the aim to overcome the problems associated with presently practiced compacting and sintering technique followed by methods proposed leading to improvement and thus fulfilled the following objectives.

ercen: Aller

- 1. To adopt the hot powder forging technique in manufacturing the friction materials to overcome the difficulties of present process.
- 2. To obtain new set of iron-based friction materials
- 3. To produce friction element with built-in backing plate
- 4. To produce brake elements in desired shapes and sizes for different applications without using compacting dies.
- 5. To produce brake pads with in built backing plates with adequate adherence to eliminate the problem of joining backing plates with braking pad material.
- 6. To obtain desired density and superior performance in heavy-duty applications.
- 7. To allow the use of economical powders as compared to powders required in existing technology.

- 8. To reduce ceramic content without sacrificing end properties, in turn resulting in economy and simplification of chemistry.
- 9. To improve thermal conductivity of the product thus extending life of the elements.
- 10. To reduce brake fading
- 11. To characterize the friction product and compare its performance vis-à-vis their compacted and sintered counterpart.
- 12. To improve upon the quality of product as produced by sintering technique.
- 13. To reduce failure rate of the product due to breakage and warpage of the product.
- 14. To economize processing with improved product performance.
- 15. To avoid use of sophisticated and costly custom built equipments.
- 16. To develop less costly technique.

Chapter 4 EXPERIMENTAL WORK

Friction material's are very complex multiphase composites. Normally an iron based metallo-ceramic friction material contains 6 to 9 constituents. There are two principle requirements for these iron base friction pads one to achieve improved wear resistance and second to obtain high and stable coefficient of friction. In the present investigation, the iron based metallo-ceramic friction materials have been produced by a new 'Hot Powder Forging' technique.

4.1. Hot Powder Forging

The existing compacting and sintering process basically involves four steps powder mixing, cold compacting in heavy presses, pressure sintering under controlled atmosphere and finally finishing which includes grinding, coining, etc. Powder Forging (P/F) is the process of making the more dense products by use of metal preform with further deformation to yield final shape by single or multiple strokes. Here the preform is forged thus the porosity is closed up and eliminated by the action of plastic deformation. In the present investigation, Hot Powder Forging differs from the preform forging process that the powder mixtures are loosely packed under closed steel cover in hot condition under hydrogen atmosphere and then deformation by operation is carried. Hence, the process employs high rate of forming where the material (powder mixture) undergoes severe plastic deformation as well as consolidation under application of impact load at high temperature; purpose of compacting and sintering both are thus fulfilled simultaneously in a single step.

The different ingredients namely metallic powders, ceramic powders, abrasive powders, and solid lubricants are chosen, these powders are mixed/blended in wet/dry media and encapsulated/filled in specially designed mild steel capsule (inner side being copper coated). This powder filled steel capsule is heated at 1050°C in hydrogen atmosphere and forged under hot condition followed by homogenization treatment at 1050-1100°C to allow inter diffusion of different constituents. The mild steel skin wherever not required, is removed by machining. However, it is predominantly retainied along with friction element as its backing plate. The flow diagram of the proposed method of forming friction material based on 'Hot Powder Forging' technique is given in the Fig. 4.1.

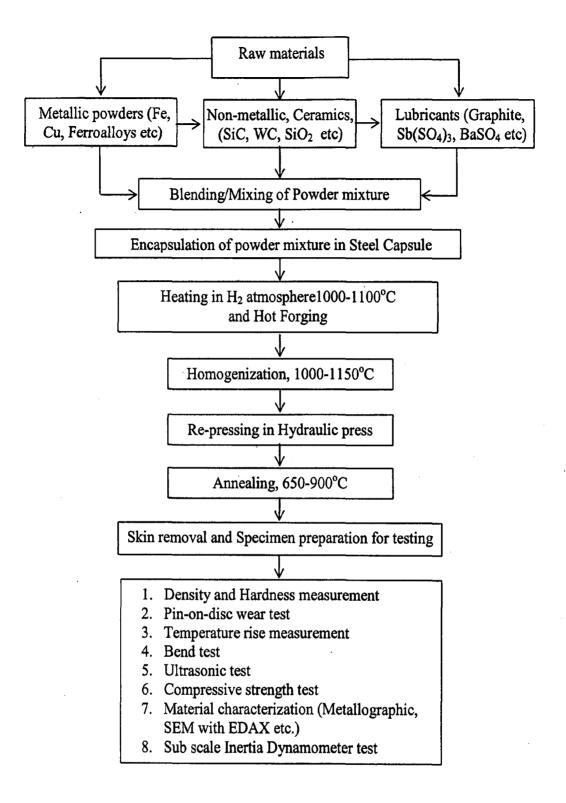


Fig. 4.1 Process Flow Chart

4.1.1 Raw Materials

The different raw materials/constituents namely, metallic (Fe, Cu, Sn, Zn, Al etc.) powders, ceramic (SiC, Al_2O_3 , WC, SiO₂ etc.) powders and solid lubricants (graphite, BaSO₄, BN, CaSO₄, Sb₂O₃, etc.) are chosen from the literature available in accordance with improved wear resistance, frictional stability, thermal conductivity, higher strength and so on. A total of 16 different constituents of the friction material has been formulated in the present investigation and is shown in Table 4.1.

Since the materials are iron base, first of all the iron powder was analyzed using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-Unit). It was found that electrolytic grade of iron powder, which was used in the present investigation, contains 0.016%C, 0.012%S, 0.007%P, and 0.075%Si. Sieve analysis was carried and iron powder with $-120 \mu m$ was chosen for subsequent use in the present investigation.

Copper addition to the iron base sintered friction materials improves strength by forming a liquid phase and precipitation hardening thereafter. Further, copper improves thermal conductivity and upto 10% addition it increases COF. [54]. Addition of nickel improves strength and frictional properties under low friction powers, whereas at higher conditions, high temperature evolved in rubbing surface where phase transformation of austenite is formed. It was concluded that addition of nickel content is independent of frictional properties. Low melting non-ferrous metals can lower the wear of iron-graphite system and also it may improve lubricating capacity under higher load conditions due to the presence of liquid phase. Addition of phosphorous improves wear resistance. Addition of phosphorus in the manufacturing of iron-graphite base friction composites, is in the form of Ferro phosphorus. Ferro phosphorous addition is simpler, more economical, and more suitable and safer for the workers' health.[54]. Further, Ferro alloys like Fe-W, Fe-Mn, Fe-Ni, Fe-Cr, Fe-Si are also added to improve mechanical properties and wear resistance.

Friction additives such as silica and alumina improve frictional stability but higher addition may decrease compressive strength.[118]. Addition of lubricants may reduce wear, seizure, scoring but improves frictional stability and engagement of brakes.

			Ch	emistry (wt.%)	Processing parameters*					
Symbol	Common					Density	Hardness			
	constituents			Others	Heat Treatment					
	Fe	Cu	Graphite		·	gm/cc	BHN			
FM01N	76.2	6	5	P- 0.8, Al -3.5, Asbestos-2.5, B ₄ C- 4.0, SiO ₂ -2.0		4.96	124			
FM02N	80.7	6	6	P-0.8, Al-1.0, Asbestos-2.5, B ₄ C -3.0		5.99	342			
FM03N	82.5	7	8	P-0.5, Asbestos-1, B ₄ C -1		5.83	146			
FM04N	78.5	7	8	P-0.5, Sn -3, CaSO ₄ -1, Zn -2		6.37	75			
FM05N	78.5	7	8	P-0.5, Sn -2, CaSO ₄ -1, Zn -3		6.35	60			
FM06N	81.3	7	5	P-0.7, Sn-2.5, CaSO ₄ -1, Zn-2.5		6.69	186			
FM07N	78.7	7	6	P-0.8, Sn -3, CaSO ₄ -1.5, Zn -3	Democradian cond	6.46	92			
FM08N	82.2	7	6	P-0.8 Sn -3, CaSO ₄ -1	Repressed once and Normalized thereafter	6.67	120			
FM09N	78.2	7	6	P-0.8, Sn -3, SiC -4, CaSO ₄ -1	Normalized mereatter	5.92	171			
FM10N	78.5	6	6	Sn -3, SiC -4, CaSO ₄ -1, Ceramic Wool-1.5		5.68	112			
FM11N	78.9	6	6	P-0.6, Sn -3, SiC -3, CaSO ₄ -1, Ceramic Wool -1.5		6.06	121			
FM12N	81.0	5	5	P-0.4, Sn -2.5, SiC -4.5, Sb ₂ S ₃ -0.8, Ceramic Wool -0.8,		5.96	145			
FM13N	80.05	5	5	P-0.45, Sn -2.5, , WC -5, Sb ₂ S ₃ -1.2, Ceramic Wool -0.8		6.67	116			
FM14AA1	70.3	10	7	P-0.7, Sn -1, SiC -6, Sb ₂ S ₃ -5	Repressed once and annealed at 1050°C, 2hrs time	5.26	132			
FM14AC3	70.3	10	7	P-0.7, Sn -1, SiC -6, Sb ₂ S ₃ -5	Repressed thrice and annealed at 680°C, 5hrs time	5.78	112			
FM14AB1	70.3	10	7	P-0.7, Sn -1, SiC -6, Sb ₂ S ₃ -5	Repressed once and annealed at 710°C. 5hrs time	5.56	97			
FM15AB1	70.3	10	7	P-0.7, Sn -1, SiC -6, BaSO ₄ -5	Repressed once and annealed at 710°C 5hrs time	6.05	67			
FM15AB3	70.3	10	7	P-0.7, Sn -1, SiC -6, BaSO ₄ -5	Repressed thrice & annealed at 710°C 5hrs time	6.10	83			
FM16AB1	68.5	11	6	P-0.5, Sn -2, SiC-3.5, BaSO ₄ -5, BN-1.5	Repressed once and annealed at 710°C 5hrs time	5.33	167			
FM16AB3	68,5	11	6	P-0.5, Sn -2, SiC-3.5, BaSO₄-5, BN-1.5	Repressed thrice and annealed at 710°C 5hrs time	5.38	178			

Table 4.1 Nomenclature of Friction Materials

*Forging temperature- 1050°C; Homogenization temperature 1050°C, ½ hr soaking period; Repressing temperature being 1050°C, Density and hardness values reported are corresponding to end portions of forgings.

4.1.2. Blending/Mixing of Powder mixture

Once the chemistry was fixed, blending/mixing of these powders were carried in Ball Milling and in Double Cone Blender. It was planned to have a sequence of mixing of the various ingredients, i.e., to mix the metallic ingredients and ceramic ingredients separately as individual mixes and then finally mix them together along with lubricant additions. Firstly, all the metallic powders like Fe, Ferro alloys, Cu, Sn, Al, P etc. were taken according to their weight percentages and then mixed in double cone blender for about 6-10 hrs depending upon its volume, flow rate, apparent density etc. This constitutes metallic powder mixture. Secondly, ceramic powders like SiC, WC, SiO₂ etc and low dense powders such as BaSO₄, Sb₂S₃ are mixed under wet media with alcohol based solution (preferably ethyl alcohol) with steel balls in the ratio of 1:1:0.5. This wet mixture is dried in oven at 100-120°C for about 1-2 hrs. The purpose of wet mixing is to coat SiC powder so that it easily mixes with other constituents. Ceramic powders mixture so prepared is now added to metallic powder mixture and then mixing is carried in ball mill for about 2 hrs. Lubricants such as graphite or any other high temperature lubricant like BN, CaSO₄, is mixed subsequently in double cone blender for about 2 hrs. Thus, entire procedure of mixing is developed to obtain uniform distribution of constituents with widely differing characteristics. Now the powder mixture is ready for next step.

4.1.3. Encapsulation of powder mixture in Steel Capsule

A mild steel capsule was specially designed for producing iron base friction pads and is shown in Fig. 4.2. The center steel pipe, cup portions and the two end tubes are welded properly such a way that there should not be any leakage or brakeage during forging operation. The inner side of steel pipe is copper coated with a thickness of 150-300 μ m by displacement method using copper sulphate solution. Priorto coating the steel tube is thoroughly cleaned by diluted sulphuric acid for any contaminants sticking at the inner surface. The aqueous solution of cupric sulphate (50 gram of CuSO₄.5H₂O was dissolved in 1 litre of distilled water and 10 ml of conc. H₂SO₄ was added) was filled in the steel pipe (capsule center part) by closing one end. The copper sulphamate solution makes following reaction with iron content of steel part.

虚影

$Cu SO_4 + Fe \rightarrow Cu + Fe SO_4$

The purpose of copper coating is to improve joint between steel pipe with friction layer during forging operation. Hence, the forged slab cover (steel) pipe act as a backing

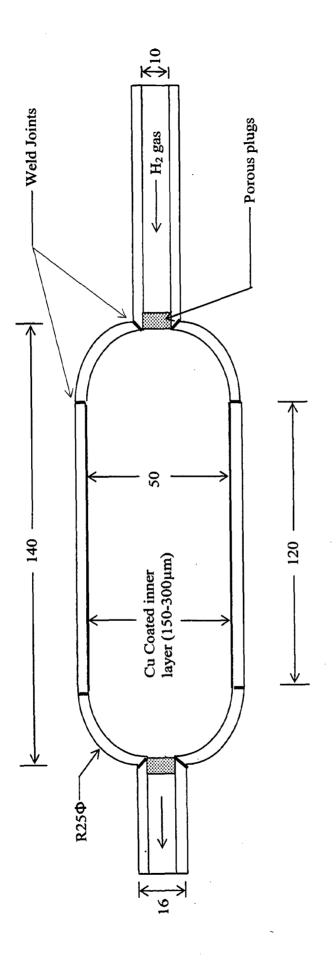


plate for the friction pad so produced. Thus friction composites/pads are produced with built-in backing plate in single operation only. Whereas in sintering process, the compacted preform is joined with separate steel plate of same or similar size under pressure sintering. There is wide flexibility of changing the center copper coated steel pipe with carbon steel or high strength low alloys steel pipes etc. for different low, medium and high energy aircraft braking applications in the existing process of forging.

The powder mixture is encapsulated/filled into steel capsule via closing one end by means of porous plugs (ceramic wool). Once the powder mixture is filled, the other end is also closed by porous plug. The quantity of powder mixture filled is maintained at constant level which depends upon volume or size of steel capsule.

Since powder filling involves manual operation care must be taken to ensure proper quantity of powder mixture inside the steel capsule commensurate with its inner volume.

4.1.4. Heating and Hot Forging

The powder filled steel capsule as shown in Fig.4.2 is now checked for hydrogen flow from one end to the other end to ensure proper hydrogen flow by igniting at other end portion and thus creating a positive hydrogen atmosphere inside the steel capsule. This was performed prior to heating. Now, this steel capsule with hydrogen flow is on inserted in a tubular furnace which is already heated and maintained to in the range 1000-1100°C. The capsule is soaked for 0.5 to 1.0 hr in order to heat the powder mass uniformly reducible impurities of the powder mass and thereby clean it prior to forging. The hydrogen pressure regulator is adjusted from time to time in such a way that a constant flame length is maintained. The capsule is also slowly rotated about its longitudinal axis.

At the end of soaking time, the hot steel capsule is transferred in a channel die set up of forging press. Forging is carried out in friction screw press of 200 metric ton capacity. Two to four blows tare performed till red hot condition of 850° C approximately remains. The impact force of the order of 150-230 tons with ram speed of 250-350 mm/sec is maintained. Dry H₂ gas supply through encapsulated powder mix automatically terminates till the first blow of the forging hammer. In this process since the powder mass is cleaned of impurities prior to forging, powder characteristics are of little consequence as regards to the final quality of forged product. This aspect is absent in existing technology of compacting and sintering. Furthermore, simultaneous

62

application of temperature and impact force of high magnitude ensures removal of prior particle boundaries (PPB's) in the product.

Now the steel cylindrical can (capsule) get deformed heavily into a flat forged slab. The percentage of deformation interms of cross-sectional area is about 50%.

4.1.5 Homogenization,

Homogenization treatment is carried out at 1000-1150°C for 1/2-1 hr in a muffle furnace followed by air cooling to ensure uniform distribution of alloying elements throughout the cross-section of forged component. Further, this treatment allows inter diffusion of metallic and some ceramic constituents which results in elimination or decrease the chemical segregation.

The samples from FM01N to FM13N are processed up to above mentioned steps and then directly skip into section **4.1.8**. Remaining samples from FM14... to FM16...were further processed as per following two sections **4.1.6** and **4.1.7** respectively.

4.1.6 Re-pressing in Hydraulic press

It was planned to estimate the role of density on frictional response and thus the forged slab is further repressed at number of times to increase the densification of product. The homogenized forged slab was hot pressed in a hydraulic press of 60Tonne capacity at 1050°C for 10 minutes. The number of repressing will depend on density of forged slab required. Thus wide range of density could be achieved.

4.1.7 Annealing

Heating to and holding at a suitable temperature and then cooling at a suitable rate with the aim to reduce hardness, improving machinability, facilitating cold working, producing a desired microstructure and also to obtain desired physical, mechanical and frictional properties. In some of initial samples the hardness values are high. With the aim to further reduce the hardness, to improve ductility of the friction materials, annealing was carried out at 650-900°C for 2-5 hrs in the muffle furnace.

4.1.8 Skin removal and Specimen preparation for testing

The slab material so processed from the above sections has mild steel skin (steel capsule cover) on both sides of friction powder compact. This mild steel skin wherever not required can be removed by machining using shaper, grinder etc. While the slab material was machined near to interface layer (copper coated), a hard and poor machinability layer was observed and the tool tip gets blunted at this portion. This indicates that the copper layer gets highly diffused on either sides of friction material as

well as steel baking plate. This is due to severe deformation of powder mixture with steel part by simultaneous application of high pressure and temperature. Thus relative tough maching of the interface layer confirms that the joint strength between friction layer and backing plate may be higher than the sintered product. The specimens are prepared with different shapes and sizes with or without backing plate for different characterizations.

4.2 Characterization of Friction materials/pads

The friction materials/composites so produced with built-in backing plates are characterized for physical, frictional and metallurgical properties namely density, hardness, pin-on-disc wear test, temperature rise, microstructures, SEM with EDAX analysis and sub-scale brake inertia dynamometer tests were carried. The bond quality between friction material and backing plate was also checked by bend test and ultrasonic test. The fractured surface of bend test samples was examined by SEM microscope. For density and hardness, compressive strength, wear test, temperature rise tests only friction element was prepared. For dynamometer test, bend test, ultrasonic test and metallurgical analysis brake pad (friction element with backing plate) was used.

4.2.1 Density and Hardness measurement

Densities of the friction material were estimated by measuring the volume of the given piece of the material by water displacement method based on Archimedes principle and its weight in air using a chemical balance. Prior ot density measurement the sample of is wax coated to seal surface porosity if any.

 ∞

Hardness measurements were carried using Brinell's hardness testing machine employing a 31.25 kg Load with ball diameter of 2.5mm and kept constant throughout the experiment for all friction materials. The load was applied for 30 seconds on a sample. At least 5 indentations were made on each sample; average hardness was reported.

4.2.2 Pin-on-disc wear test

An initial laboratory level based pin-on-disc wear test was performed under different set of parameters (applied load, sliding speed, and sliding time/distance) according to ASTM G99 standard test procedure. The pin circular or square or rectangular cross section can be used to clamp between the fixed jaw and the removable jaw. A pin made from friction material of squire size of 30mmx7mmx7mm was used in the present study. The counterface disc is made of EN-32 steel hardened to 45 HRC. To ensure proper contact between the test piece and the steel disc, test pin adjusting screw is

64

provided. Normal loading on the test piece is provided by the slotted weight, which are hanged on pan. This load is transferred through the frictionless wheel to the specimen holder. Electric motor is directly connected to the steel disc and the speed of the disc can be controlled by variable regulator.

The pin on contact side of the disc was rubbed on polish paper of 1/0, 2/0 before clamping and counter disc is also made smooth surface finish by the polish paper of 2/0 at each cycle. The load applied is 5kg and 8kg with specific pressure of $100N/cm^2$ and $160N/cm^2$ respectively. Sliding speed of 9m/s (1140 ± 10 rpm at a track radius of 75mm) was kept constant for the whole experiment. Sliding time is varied from 10 to 50 minutes with the interval of 5 minutes. The wear loss after each cycle, the frictional force generated at every 1 minute was recorded.

The noise generated during the wear process is also recorded by means of special microphone based noise level meter in decibels (dB). This gives an idea about the noise behavior of friction materials during the test.

4.2.2.1Temperature rise measurement

Measurement of rise in temperature of the wear surface as a function of time and during wear test was carried out using a thermocouple made of Chormal-Alumel wire is placed at 5mm away from the wearing surface by making hole of 2mm diameter with 3mm depth approximately. The rise in temperature is recorded till the temperature at the wear surface becomes stable. Care must be taken while brazing thermocouple bead inside the hole at friction material. Simultaneous measurement of coefficient of friction and temperature rise during the test would provide brake fading characteristics.

4.2.3 Subscale Dynamometer test

The laboratory qualification test on individual samples of the newly developd hot powder forged friction materials were carried in sub-scale brake inertia dynamometer tests. However, to qualify the brake pads for airworthiness, actual field trial performance and full scale dynamometer are required. The brake inertia dynamometer tests were carried where these newly developed friction pads are fitted with a caliper brake assembly and subjected to repeated cycles of real time brake performance tests on a brake dynamometer simulating the actual aircraft brake energy conditions. Pair of two brake pad samples were tested at a time in subscale dynamometer with different parameters (K.E., Brake speed, Brake force etc.) under near actual conditions of AN-32 military transport aircraft, MIG 21/27 fighter aircrafts. Once reaching the speed of brake disc at the required level, brakes are applied with appreciable pressure and thus disc is stopped. The responses are run down revolutions (revolutions prior to stopping), run down time (stopping time), brake torque (mean and peak), drag force (mean and peak), COF, temperature of brake pad/disc were calculated and recorded for each cycle. The number of cycles was 50.

For an aircraft, there are three brake energy conditions for which the parameters are varying and are calculated, fixed accordingly. First, normal landing conditions which refers to normal aircraft condition which corresponds to the normal landing speed of the aircraft. Second, rejected take off (RTO) conditions which are refers that when the aircraft take off from the runway, due to technical fault or some other reason the aircraft would like to land immediately. In such cases, the brake pads are able to withstand higher applied pressures, operating temperatures, and hence able to stop with particular short distance within runway. Third, overload conditions, which refer to extreme beyond loading conditions. In all of these conditions, the input parameters of dynamometer tests will vary and new calculations were made and fixed.

In the present investigation, sub-scale dynamometer tests were carried under s RTO brake energy conditions and the specifications of dynamometer is as follows.

1.	Make	: Dynaspede Integrated Systems Pvt. Ltd.	• .
2.	Inertia	: 14-54 Kg.m2 (Stepless by electrical simulation)	
3.	Maximum energy	: 1.2 Laks kgfm = 1.18 MJ	55
4.	Speed	: 100-2000 rpm	5
5.	Braking force	: 50-1000 Kgs	*
6.	No of disc	: 2 (alloy cast iron and alloy steel)	
7.	Disc diameter	: 500mm	
8.	Maximum no. of cycles	: 200	
9.	Acceleration time	: 30sec	
10	. Noise level	: 85 dB	

4.2.4 Metallographic analysis

The microscopic examinations of so produced friction composite (hot powder forged friction materials) are analyzed through optical microscope. Microstructures of backing plate, interface layer and friction element have been studied and compared with sintered friction pad structures of MIG-21 brake. Pore morphology and microstructures, the distribution of graphite flakes, copper rich phase, and ceramic constituents such as SiC, SiO₂, Al₂O₃ etc. with the iron matrix, ferrite content, bond quality, thickness of

plating (Ni or Cu coating), back plate structure, presence of porosity and their influences, are analyzed. Specimens (about 15X15mm surface area) having cross section of backing plate and friction element are cut from the selected composition and these samples are mounted by hot mounting using thermosetting based plastic granules. Metallographic specimens were prepared as per the ASTM E3, E407 standard test procedures. Conventional polishing techniques, such as grinding on emery papers up to 4/0 grade and polishing on cloth are used in the preparation of these samples for optical metallographic examination. Particle size of the abrasive being used in the formation of slurry for polishing, wheel speed and policing time play a significant role in clearly revealing pores and grain boundaries of a sintered ferrous material. During cloth polishing, the polishing cloth (3-6 µm grade) with fine grains and abrasive slurry of 1 to 0.1 micron alumina powder are used. In order to reveal the morphology of pores, microstructures are studied in unetched condition, as being also suggested earlier. Microstructural examination is also carried out in etched condition after etching with freshly prepared etchant, nital (2% nitric acid and methanol). Sometimes, repeated etching and policing is applied in order to reveal pores and grain boundaries clearly. REICHER-JUG MeF3 and OLYMPUS PME-3 microscopes were used in this study.

4.2.5 SEM with EDAX

The surface morphology of the friction material, backing plate, and interface layer are analyzed through SEM. X-ray elemental mapping of different constituents present in the samples have been done to check homogeneity of the constituents in friction elements. To identify the element wherever required was carried with the help of point/surface area analysis of EDAX analysis. QUANTA FEG 200 FEI Netherland make was used in the present study.

4.2.6. Bend Test

A three point bend test is used with the aim to check the joining strength of friction material with backing plate. Hounsfield H25K-S Universal Testing Machine with three rollers of 25mm diameter with span length of 50mm was used. The sample (of about 58mm×17mm×7mm in size) was placed facing the friction material on two roller (bottom) supports and back plate on single roller (top) side. Once the sample is bent, the angle of bend and load at which friction material cracked upto interface layer or upto steel back plate are calculated. The fractured section is also viewed under stereo

microscope to detect crack etc. at the interface between friction material and backing plate.

4.2.7 Ultrasonic Test

The bond quality of the friction material with the backing plate is also identified through non-destructive method of Ultrasonic test of pulse echo principle. An Ultrasonic instrument (USM 35 model of Krauntker, Germany) equipped with Transmitter Receiver (TR) probe of 10mm diameter with 4 MHz frequency range was used to identify any defect at the interface between backing plate and friction element. Initially, the equipment is properly calibrated with standard step block (provided by the make of the instrument) by considering the brake pad thickness. A clear echo is seen through screen; adjust gain/sensitivity to get reflection from plate to full height on the screen and thereafter image is stored. Then the brake pads are subjected to testing by applying couplant on steel back plate side and thereby placing probe gently on it. The peak signal may be seen through screen as initial, intermediate and bottom signals and thereby examining acceptable or rejectable signal patterns.

Chapter 5 RESULTS AND DISCUSSTIONS

In the present investigation, total of sixteen formulations were developed based on iron as a main constituent for heavy duty friction materials. Iron varied from 68.50 to 82.25%, copper varied from 5 to 11% and graphite varied from 5 to 8%. Other constituents were Phosphorous, Aluminium, Asbestos, Boron carbide, Silica, Calcium sulphate, Tin, Zinc, Silicon carbide, Ceramic wool, Antimony sulphide, Tungsten carbide, Barium sulphate and Boron nitride in varying percentages. Processing parameters were as follows.

Forging temperature -1050° C,

Homogenization temperature - 1050°C, and

Repressing temperature - 1050°C

Thereafter, the samples are either normalized or annealed in the temperature of 680°C to 1050°C. Based on above chemistry and processing parameters, Table 5.1 provides complete details of nomenclature of friction material developed in the present investigation. This table also gives an idea of density of the final product ranging from 4.96 to 6.69 gm/cc and hardness from 60 to 342 BHN. Based on the chemistry and processing parameters symbols are also assigned to each type of friction materials developed in the present investigation.

Following tests were conducted to characterize the friction materials developed in the present investigation.

- 1. Density and Hardness
- 2. Pin-on-disc wear test at different loads and sliding speeds using heat treated steel disc having hardness of 45 Rc.
- 3. Sub-scale dynamometer test with varying energy, speed, and brake force.
- 4. Optical microscopy to identify the distribution of different constituents as well as interface structure examination with back plate.
- 5. EDAX analysis to confirm distribution of different constituents.
- 6. Bend test to asses the joining of friction material and backing plate.

7. Ultrasonic flaw detection to establish quality of joint between friction layer and backing plate.

Investigations were carried out in detail in selective cases only where there is a scope for further exploitations towards application of friction elements developed in the present investigation for heavy duty military aircrafts such as MIG 21, MIG 27, as well as military transport aircraft AN-32 for which entire work of the thesis is concentrated.

In the following sections, it is proposed to discuss the details of the results obtained. Results have also bee compared with the performance of sintered samples for equivalent test parameters.

5.1 Density and Hardness

Density and Hardness of Friction Materials are reported in Table 4.1. Both these parameters depend upon extent of repressing and normalizing/annealing treatments thereafter. They also indirectly depend upon, chemistry of friction materials. The technology developed in the present investigation is capable of developing these parameters in wide ranges which is not possible in sintering technology. Accordingly, the technology developed has capability to control these parameters in very precise manner and therefore it is possible to develop friction layers for different ranges of application (light to very heavy duty) by merely controlling these two parameters. And thereby easing the restriction of chemistry choice. It will be established in subsequent sections that density is a very dominating parameter to decide the suitability of friction `element which can be employed in AN 32 to MIG 27 aircrafts. Literature surveyed in the present investigation has not given any indication about the role of density on varying ranges of applications. All the literature cited in the present investigation emphasizes more on chemistry and there is no systematic approach to the selection of chemistry for various ranges of applications.

70

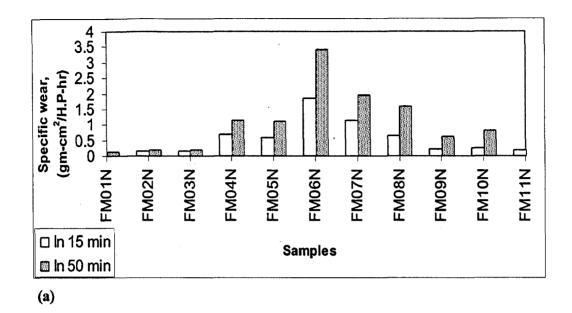
5.2. Wear studies on Pin-On-Disc Machine

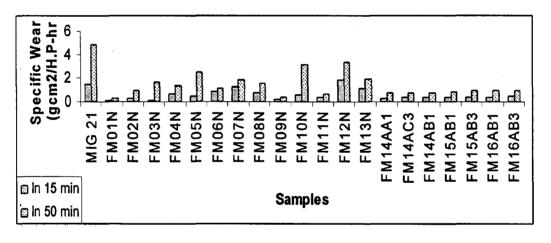
Pin-on-disc wear test were carried out in all the samples made in the present investigation for preliminary assessment of suitability of test materials. Based on pin on disc results, certain samples were omitted from Dynamometer testing.

The pin on disc tests were performed on the pin size of 7mmx7mm with sliding speed of 9m/s and load 5 kg and 8 kg respectively. Tables 5.1 and 5.2 provide the summary results of these samples. Grey Cast Iron (GCI) and MIG 21 sample were also included for the purpose of comparison. It may be noted that the wear in case of GCI is excessively high in comparison to friction materials developed in present investigation. It is justifiable since GCI does not contain wear resistant constituents in it. Wear in case of MIG-21 is also on the higher side in comparison of our samples made in the present investigation. And therefore complete test could not be carried out in MIG 21 samples (owing to limited thickness available with the finished sample). Accordingly in the tables, some of the columns are blank and at few places, time of wear is indicated in parenthesis which happens to be lesser than the time planned for the experiments. Fig. 5.1 to 5.4 are graphical representation of these samples tested in Pin-on-Disc. It may be inferred from these graphs that up to sample no. FM09N the wear is gradually increasing from very low value to higher values thereafter it shows a significant drop in the amount of wear. This is possible because there is simultaneous role of wear resistant constituents and lubricants. In the initial composition only Phosphorous is present which develops wear resistance but in later compositions, more wear resistant constituents were incorporated such as Silicon carbide, Silica, Alumina etc. This is apparent because wear resistant materials, like silicon carbide, Silica etc. first increase COF and lubricants improve the engagement. Combined effect of these two types of constituents optimizes the net wear loss. The noise level during the test is not significantly altered in all the cases. This is because of the fact that the noise level is related to met metal content of the brake elements which in our case varies from 82% to 90%.

£ 5,

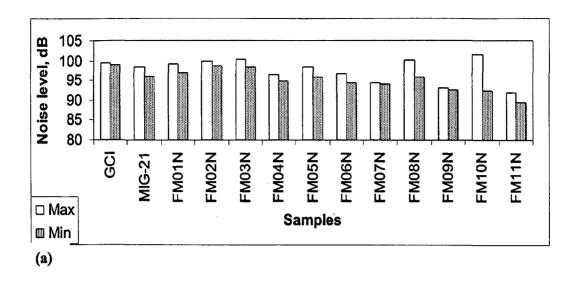
Samples Cumulativ Wear loss, g (min.)		ss, gm	Specific wear, (gm- cm ² /H.P- hr)		COF		Temperature		Noise level, dB		
	15'	50'	15'	50'	Max	Min	Avg	oC	Sec	Max	Min
GCI	3.80(2.5)	6.83(5)	75.2	67.9	0.40	0.20	0.30	290	540	99.4	99.0
MIG-21	0.612	-	2.03	-	0.54	0.48	0.51	286	270	98.5	96.1
FM01N	0.027	0.13	0.09	0.13	0.60	0.54	0.57	149	600	99.1	97.0
FM02N	0.049	0.18	0.16	0.18	0.54	0.40	0.47	179	590	99.8	98.7
FM03N	0.046	0.21	0.15	0.21	0.54	0.48	0.51	163	470	100.3	98.4
FM04N	0.203	1.13	0.67	1.13	0.40	0.40	0.40	81	1500	96.4	94.8
FM05N	0.174	1.09	0.58	1.09	0.34	0.34	0.34	92	1400	98.5	95.7
FM06N	0.557	3.45	1.85	3.43	0.54	0.48	0.51	131	1540	96.8	94.2
FM07N	0.342	1.97	1.13	1.95	0.48	0.40	0.44	86	1620	94.4	94.0
FM08N	0.200	1.60	0.66	1.59	0.54	0.48	0.51	86	820	100.1	95.8
FM09N	0.072	0.61	0.24	0.61	0.48	0.40	0.44	93	970	93.1	92.6
FM10N	0.079	0.82	0.26	0.81	0.54	0.40	0.47	86	1800	101.5	92.5
FM11N	0.062	0.59	0.21	0.59	0.54	0.48	0.51	84	1330	91.8	89.4


....


Table 5.1 Pin-On-Disc Wear Test results at 5kg Load(100N/cm²), 9m/s Sliding Speed

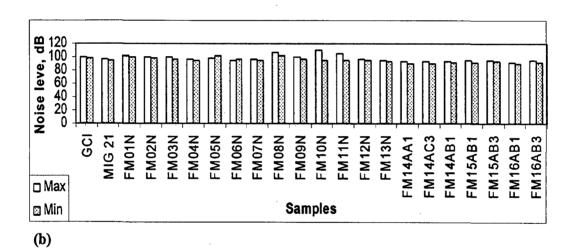
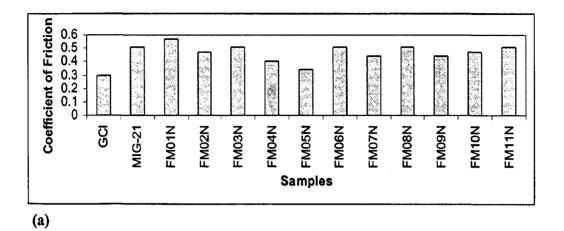
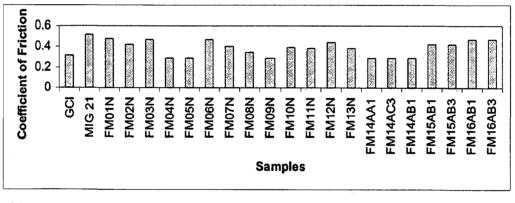
.

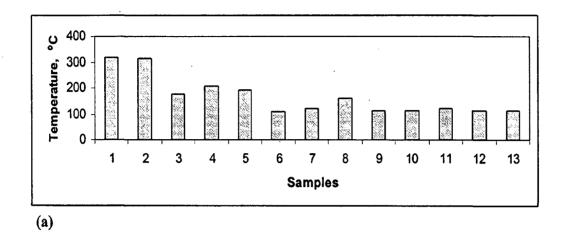
Samples Cumulative Wear loss, g (min.)		s, gm	Specific wear, (gm- cm ² /H.P- hr)		COF		Temperature		Noise level, dB		
	15'	50'	15'	50'	Max	Min	Avg	°C	Sec	Max	Min
GCI	4.80(2)	•	69.65	-	0.33	0.29	0.31	115	120	99.8	98.6
MIG 21	0.96(10)	-	1.46	4.86	0.54	0.46	0.51	235	390	96.6	95.8
FM01N	0.042	0.51	0.087	0.31	0.50	0.46	0.48	162	860	102.4	100.1
FM02N	0.09	1.56	0.29	0.97	0.44	0.40	0.42	170	960	100.2	98.0
FM03N	0.048	2.56	0.10	1.59	0.50	0.44	0.47	155	1200	99.5	97.2
FM04N	0.31	2.14	0.65	1.33	0.29	0.29	0.29	89	1100	96.1	95.2
FM05N	0.23	3.94	0.48	2.45	0.29	0.29	0.29	102	900	98.9	101.1
FM06N	0.26	1.90	0.86	1.18	0.50	0.44	0.47	131	1260	95.1	97.1
FM07Ň	0.58	2.89	1.20	1.79	0.42	0.38	0.40	92	1240	96.1	95.2
FM08N	0.73	2.47	0.74	1.53	0.38	0.29	0.34	156	800	107.2	102.1
FM09N	0.19	1.36	0.19	0.41	0.33	0.24	0.29	120	700	100.1	96.2
FM10N	0.52	.10	0.53	3.16	0.46	0.33	0.39	111	750	110.5	95.5
FM11N	0.34	2.22	0.34	0.68	0.42	0.33	0.38	141	700	104.4	94.5
FM12N	1.81	7.68	1.83	3.34	0.50	0.38	0.44	91	730	96.4	94.8
FM13N	1.16	6.21	1.18	1.89	0.42	0.33	0.38	97	770	95.1	93.9
FM14AA1	0.15	1.19	0.31	0.74	0.29	0.29	0.29	94	870	94.1	90.5
FM14AC3	0.17	1.27	0.35	0.78	0.29	0.29	0.29	<u>99</u>	920	93.2	90.6
FM14AB1	0.17	1.27	0.35	0.79	0.29	0.29	0.29	102	950	93.1	91.3
FM15AB1	0.18	1.40	0.37	0.87	0.44	0.40	0.42	112	850	94.6	91.1
FM15AB3	0.20	1.48	0.41	0.92	0.44	0.40	0.42	110	840	95.2	93.6
FM16AB1	0.18	1.46	0.37	0.91	0.50	0.44	0.47	97	920	92.1	90.5
FM16AB3	0.21	1.53	0.43	0.95	0.50	0.44	0.47	105	910	94.3	91.6

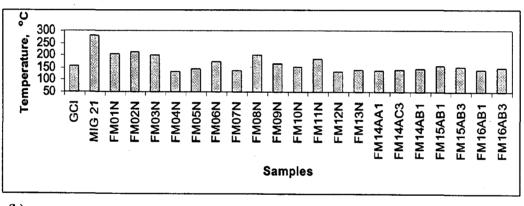

Table 5.2 Pin-On-Disc Wear Test results at 8kg Load (160N/cm²), 9m/s Sliding speed

(b)

.Fig. 5.1. Specific wear at (a) 5kg load, (b) 8 kg load of various samples.


Fig.5.2. Noise level (a) at 5kg load and (b) at 8 kg load of various samples



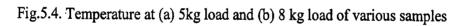

(b)

Fig.5.3. COF at (a) 5kg load and (b) 8 kg load of various samples

5.3. Sub scale inertia dynamometer tests

Sub scale dynamometer tests are one of the most important tests to assess the suitability of brake pads for actual applications. Since the present investigation has been aimed at applications relating to military aircrafts, it was imperative to test the pads developed in the present investigation at HAL Bangalore where only such a facility is available. They readily provided us this facility. The detailed computer generated result sheets corresponding to our samples are available in Annexure-I of the thesis. These tests were carried out employing cast iron wheels as inertia wheels having specifications given in Table 5.3. No effort has been made to assess the wear in of these wheels during testing although this aspect is also important for applications other than aircraft brakes.

Diameter	Thickness	Composition	Heat treatment	Hardness
500mm	25±1mm	C-3.20 to3.80	Soak at 550oC	163 to 217
		Si-1.60 to 2.30 Mn-0.60 to 1.0	for 3 hrs. and	BHN
		Cr-0.15 to 0.45	air cool in	
		Mo-0.20to 0.50 Ni-0.80 to1.40	furnace	
		S-0.10%Max		
		P-0.30%Max		

Table 5.3 Specifications of Inertia wheels

The tests were conducted for the purpose of different military aircrafts' applications. Table 5.4 provides the details of the test input parameters including the model of aircraft where brake pads can be employed.

Table 5.4 Test input parameters

Brake pad contact area: 25.8 cm	°[As	Show	in	Fig.	5-4	(A]`[
---------------------------------	------	------	----	------	-----	-------	--

Applications	Test Parameters							
Applications	Kinetic energy, kgfm	Brake Speed, rpm	Brake Force, kgf					
AN 32 Rotor	17300	1000	150					
MIG 27 Stator	32000	1360	135					
MIG 27 Rotor	36123	1445	135					

This table has been arrived at on the basis of calculations as indicated in the literature review section 2.7.3 for Rejected Take Off (RTO) conditions of these aircrafts and their vehicle dynamic parameters such as velocity, momentum etc at RTO. Rejected

Take Off conditions mean extreme energy developed by the vehicle just prior to take off. This condition is regarded as the most extreme condition of the vehicle where brake assembly has to absorb that quantum of energy within the available air strip length. The test parameters for assessing the performance of brake pads can also be evaluated from the same model calculation as given in section 2.9.2.1 of literature review. These are provided in table 5.5 for the purpose of evaluating performance of our brake pads with varying chemistry. It may also be mentioned that most of the sintered brake pads also observe these parameters as given in the table 5.5.

Application	Test parameter									
PProducti	RD T	'ime, sec	COF		Maximum Wear (for 50 cycles					
<i>,,</i>	Min	Max	Min	Max	in grams, gm	in thickness, mm				
AN 32 Rotor	6	12	0.18	0.40	14	1.25				
MIG 27 Stator	-	25	0.12	0.35	20	1.5				
MIG 27 Rotor	-	18	0.20	0.45	10	0.70				

Table 5.5 Test output parameters

Note: Some of the graphs appearing under this section have shaded regions. These indicate permissible ranges of the parameter shown in these graphs as per the output parameters indicated in this table.

The different test parameters as obtained from sub scale inertia dynamometer tests are as follows.

- 1. Run Down time:- This parameter relates to the time required for a pair of brake pad in absorbing the energy fed from the dynamometer. This time should preferably be on the lower side for efficient brake application.
- Run Down Revolution:- This is also a parallel parameter corresponding to the one above. However, it is actually number of revolutions of inertia wheels to get stopped by the pair of brake pads. Like RD time, RD revolutions also should be on the lower side for efficient braking.
- 3. Coefficient of Friction (COF):- This is the ratio between input energy and observed energy by the pair of brake pads under dynamic conditions of inertia dynamometer. This should be preferably on the higher side for efficient braking. But at the same time, not too high also, resulting into jerky application of brakes.

- 4. Brake torque:- It is the force developed by the brakes under dynamic conditions and it is parallel to the COF. This parameter also like COF, should be moderate.
- 5. Wear:- wear has been reported in two units one corresponding to thickness of brake pad and other corresponding to weight loss for 50 cycles of braking operation. This parameter should be also moderate.
- 6. Temperature rise:- During braking operation, temperature of brake pad always rises. This rise might adversely affect the test parameters described above. It should be therefore moderate only. However, on account of defect in brake assembly, temperature data could not be obtained. But it has already been qualitatively ascertained that the temperature rise during testing of brake pads of has been moderate only, and, that, it has not significantly affected other test parameters. It is further to state number of test cycles and temperature rise are parallel parameters meaning thereby greater number of cycles indicate greater temperature rise.

5.3.1. Testing under low energy range (for AN 32 rotor Aircraft)

Fig.5.5 shows the test performance of six combinations of chemistry starting from FM08N to FM13N for AN 32 aircraft application. The shaded regions in these figures indicate maximum and minimum ranges of test parameters as described in the note below Table 5.5

Experimental points in these figures have not been shown for the sake of clarity and the curve smoothening has been done through Microsoft Excel. This has been done just to get a clearer picture of the performance. Shaded regions in these graphs wherever, shown, are corresponding to Table 5.5 which decides the suitability of application of brake pad developed in the present investigation.

There is a general trend in these figures such that a property changes are more severe upto 8 No. of cycles of the test. Thereafter, the property tends to stabilize. This is possibly because of the initial mechanical adjustments of stationery brake pads with moving inertia wheel during testing.

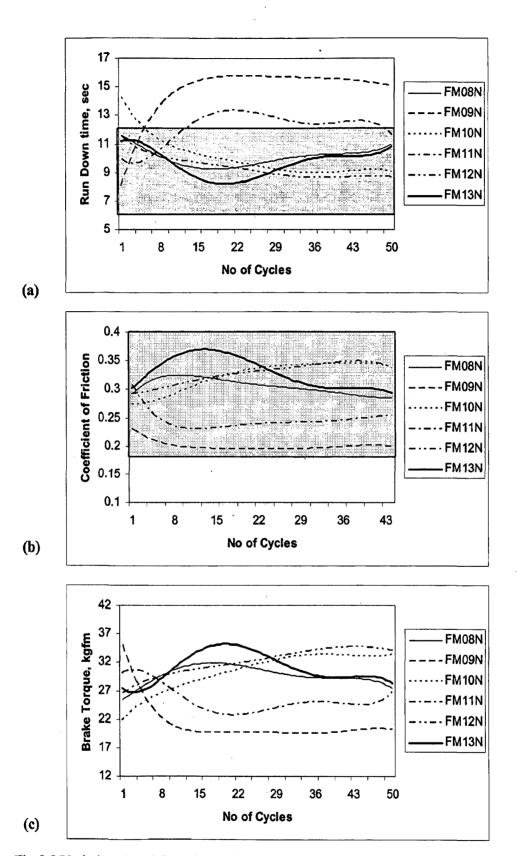


Fig.5.5 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque for test parameters corresponding to AN32 aircraft rotor application.

It can be easily inferred from these figures that with exception of FM09N (which has performed worst), all the combinations tested in the present investigation are suitable for AN-32 application. However, preference is in the following order:-

FM12N > FM10N > FM13N > FM08N > FM11N.

It may further be mentioned that the region for poor performance of FM09N, is due to higher hardness and lower density combination only There appears to be nothing wrong in the choices of chemistry of the pads.

All these samples could have given even more improved performance, if they were given annealing treatment instead of normalizing treatment. This is on account of the fact that annealing would lead to coarse grain microstructure which will offer better grip for the brake pads and hence would provide better performance.

The most significant aspect of these samples relate to stable performance with increasing number of cycles. In this context, brake fading tendency in our pads is completely absent. It is also noteworthy to mention that for application like AN 32 aircraft a high dose of abrasives in the chemistry formulation is not necessary. Mere addition of 0.8% Phosphorous takes care of abrasive resistance of the pads, and, accordingly, a very simple chemistry like FM08N is qualified for such an application. This aspect has emerged out from the present investigation only and has not been reported sofar.

Fig.5.6 depict wear in grams and as well as in thickness for 50 number of cycles in respect of combinations FM08N to FM13N. The shaded region in these figures pertain to permissible ranges of wear. It may be inferred that FM11N and FM12N show fairly high wear. Other formulations namely FM08N to FM10N and FM13N are qualifying in accordance with wear criterion based on thickness.

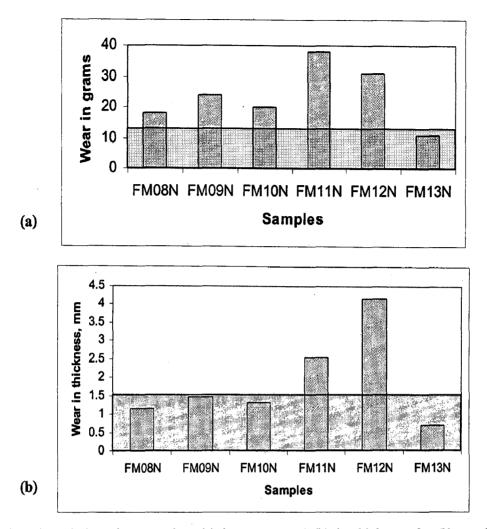


Fig.5.6 Variations in wear data (a) in grams, and (b) in thickness for 50 numbers of cycles for test parameters corresponding to AN32 aircraft rotor application.

5.3.2. Testing under high energy conditions (for MIG 27 stator)

Fig.5.7 represents results corresponding to MIG 27 stator application. The symbols and terms employed have usual meanings as described in previous sections. Here an additional curve corresponding to MIG 21 sintered pad has also been shown but owing to limited thickness of the sintered pads, tests could be performed upto 21 cycles only. It is obvious from these figures, that all the formulations starting from FM08N to FM13N are suitable for such an application as the properties in every case fall within the shaded regions.

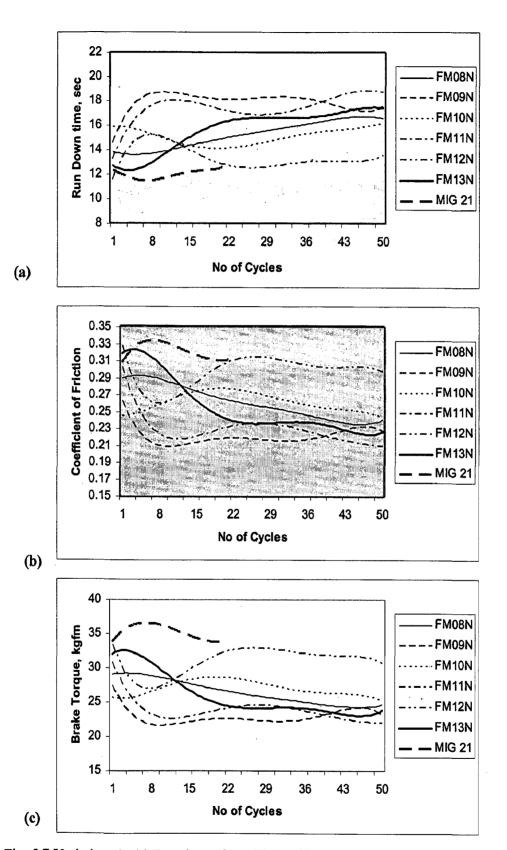


Fig. 5.7 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque test parameters corresponding to MIG 27 aircraft stator application.

Fig. 5.8 represents wear data for 50 cycles of the test. According to this FM13N is within the permissible range whereas FM11N and FM12N are showing very high wear. As mentioned in previous section, this wear data could improve by annealing instead of normalizing such that all the samples would come within permissible limits of wear.

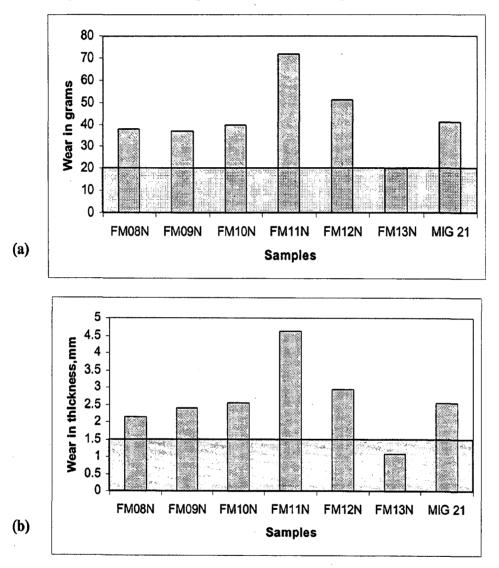


Fig. 5.8 Variations in wear data (a) in grams, and (b) in thickness for 50 numbers of cycles for test parameters corresponding to MIG 27 aircraft stator application.

It is noteworthy to mention, that MIG 27 stator application is very specialized high energy condition for which chemistry of sintered pads is very complex and costly. In comparison to this, chemistry developed in the present investigation is much simpler and offer wide variety of choices to suit this challenging application. It may further be stated test input and output parameters corresponding to MIG 27 stator and rotor application differ very marginally, they are likely to clear such an application as well. It can be therefore be inferred that the formulations developed in the present investigation along with processing would suit both these critical applications.

5.3.3. Role of Density and Annealing

The test described in the previous section corresponds to chemistry development in the present investigation. The data obtained in previous section made it very clear, that apart from chemistry, density and heat treatment also have prominent role to play. It was therefore decided in subsequent development to involve annealing cycle as the final heat treatment. It was observed during the trials that annealing temperature of 710°C with 5 hrs. duration would be the most suitable for sound brake pad processing. The density levels were altered by exercising number of repressings. Our technique of manufacturing permits us to control density parameter and therefore, it has been possible to produce these results which are not available in the literature. The results are described for different energy ranges of applications as given in Table 5.3.4

Chemistry			Density levels	(in gm/cc) obta	ained
Nomenclature (as per table 4.1)	Energy levels	D 1	D2	D3	D4
FM14Å	Low	5.40	5.62	5.78	-
	Medium	5.28	5.46	5.70	5.85
	High	5.28	5.46	5.85	-
FM15A	Low	5.22	5.29	-	-
	Medium	5.23	5.42	-	-
FM16A	Low	5.72	-	-	-
	Medium	5.29	5.88	-	-

Table 5.6 Role of Density

5.3.3.1 Density corresponding to AN 32 Rotor application

Fig 5.9 describes the test output parameters for AN 32 aircraft rotor application corresponding to three density levels of FM14A. According to these figures entire range of density from starting 5.4 to 5.78gm/cc qualify for the application.

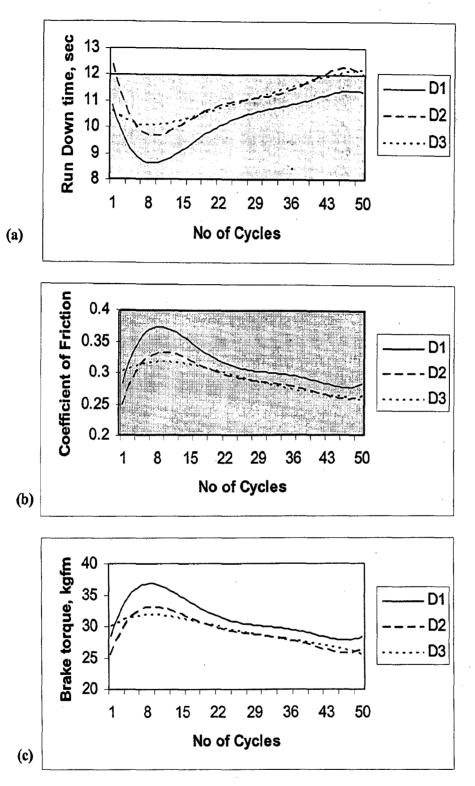


Fig. 5.9 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque test parameters corresponding to AN 32 aircraft rotor application and chemistry of FM14A at different density levels as referred in Table 5.6.

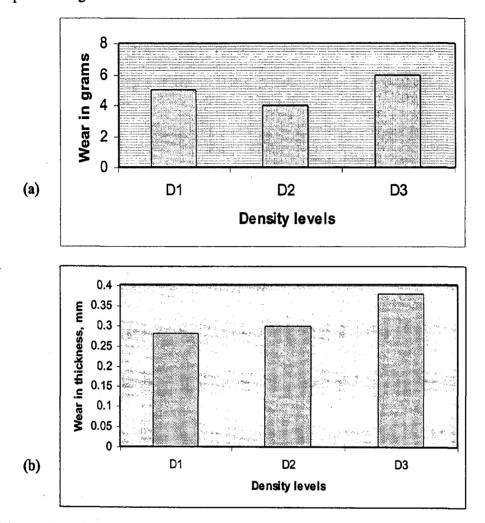


Fig.5.10 represents wear data where again the entire density range is within the stipulated range of wear.

Fig. 5.10 Variation of wear data (a) in gram, and (b) in thickness for 50 numbers of cycles for test parameters corresponding to AN32 aircraft rotor application and chemistry of FM14A at different density levels as referred in Table 5.6.

Fig.5.11 corresponds to FM15A for two density levels 5.22 and 5.29 gm/cc (which are much lower in comparison to 5.4 and 5.78) while RD time and COF appear to be reasonably O kay, the wear has gone much beyond the permissible range as shown in fig. 5.12. FM14A and FM15A are not different in chemistry but because of the significance difference in their density levels, the performance of FM15A has detoriated.

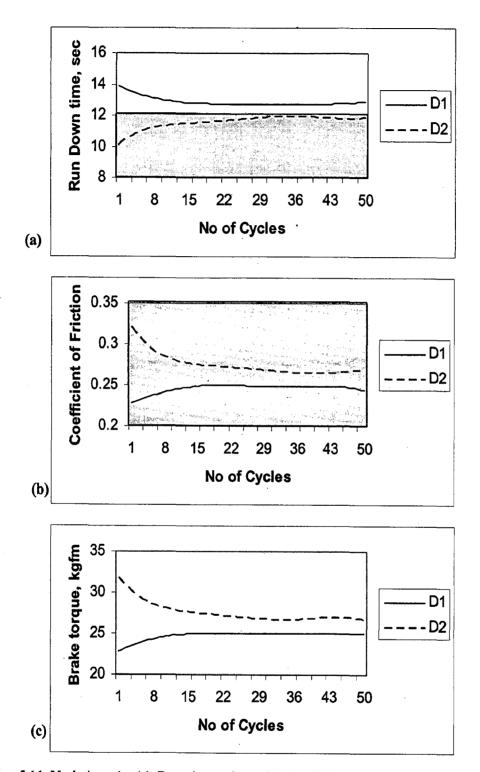


Fig. 5.11 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque test parameters corresponding to AN 32 aircraft rotor application and chemistry of FM15A at different density levels as referred in Table 5.6.

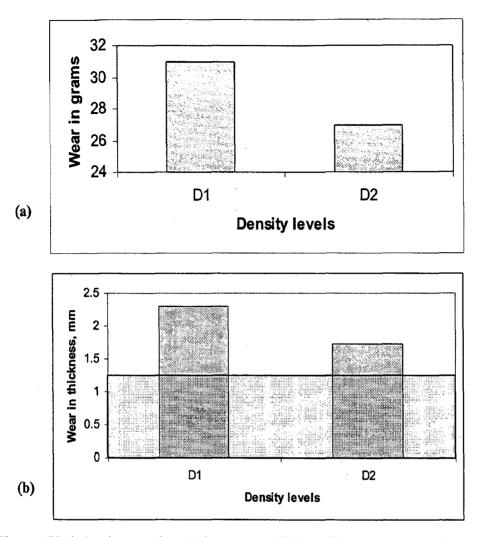


Fig.5.12 Variation in wear data (a) in gram, and (b) in thickness for 50 numbers of cycles for test parameters corresponding to AN32 aircraft rotor application and chemistry of FM15A at different density levels as referred in Table in 5.6.

Fig 5.13 corresponds to FM16A with only one density level 5.72. In this case, while it qualifies for this application, the wear data is higher by about 60% from permissible range as shown in figure 5.14 (a). However, wear from thickness point of view is close to be interpreted as qualifying.

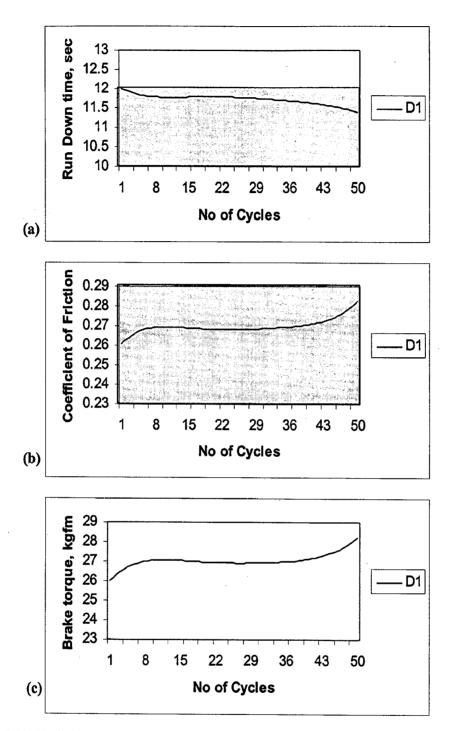


Fig. 5.13 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque test parameters corresponding to AN 32 aircraft rotor application and chemistry of FM16A at different density levels as referred in Table 5.6.

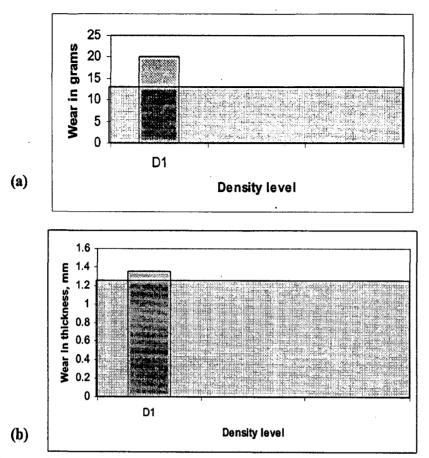


Fig. 5.14. Variation in wear data (a) in gram, and (b) in thickness for 50 numbers of cycles for test parameters corresponding to AN32 aircraft rotor application and chemistry of FM16A at different density levels as referred in Table in 5.6.

Based on the results described above, it can be concluded that higher density greater than 5.4 gm/cc of brake pad friction element is desirable for low energy application such as AN 32. But contents of the lubrication (such as Ba SO₄, Sb₂S₃, Sn, and graphite) should not exceed 13%. Because FM16A inspite of higher density, had total lubricants of the order of 14.5% and it has marginally qualified at high density level. **5.3.3.2 Density corresponding to MIG-27 stator application**

Fig.5.15 represents four density levels starting from 5.28 to 5.85 gm/cc corresponding to FM14A chemistry. The entire range of density studied in the present investigation qualified for MIG 27 stator application. For the sake of comparison, data corresponding to MIG 21 sintered specimen has also been shown. Fig.5.16 shows the wear data for these density levels, and here also the different density levels qualify for the application. MIG 21 sample however does not qualify, and shows excessive wear for obvious reasons.

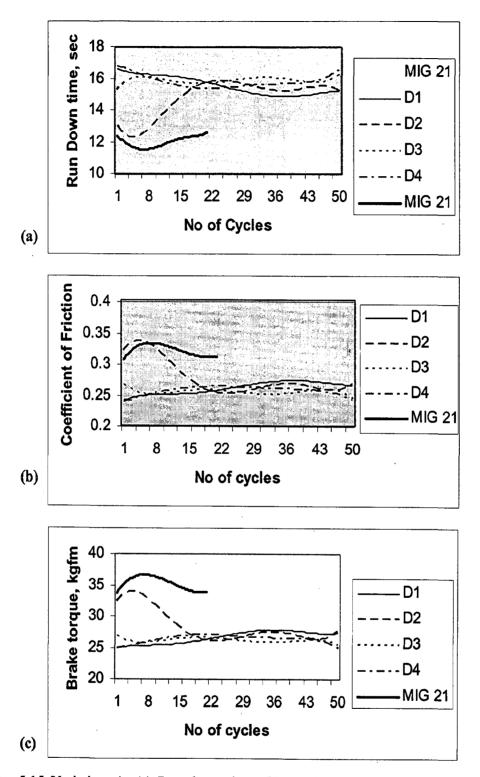


Fig. 5.15 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque test parameters corresponding to MIG 27 aircraft stator application and chemistry of FM14A at different density levels as referred in Table 5.6.

Fig. 5.16. Variation in wear data (a) in gram, and (b) in thickness for 50 numbers of cycles for test parameters corresponding to MIG 27 aircraft stator application and chemistry of FM14A at different density levels as referred in Table in 5.6. (*Computed wear data for MIG 21 sample for 50 cycles comes out to be 41 gms)

Fig.5.17 represents the effect of density (ranging from 5.23to 5.42gm/cc) corresponding to FM15A chemistry. According to this figure both density levels qualify for the application, however the wear data for corresponding to FM15A is much higher and does not qualify for this application as shown in Fig. 5.18

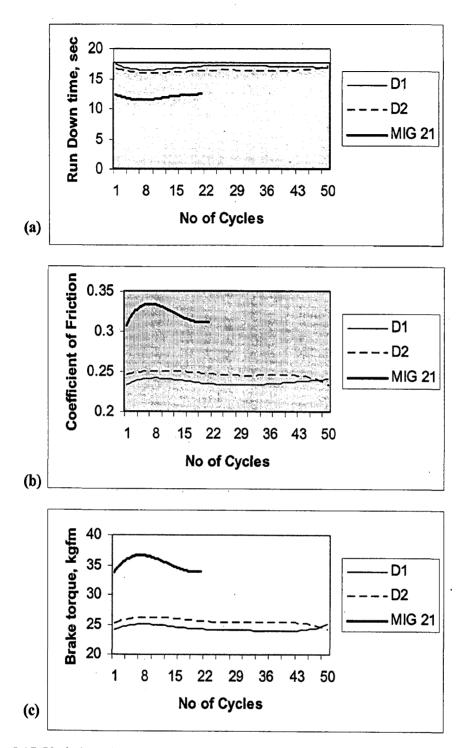
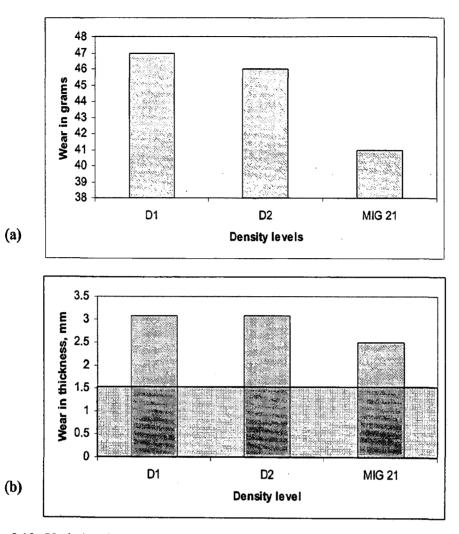



Fig. 5.17 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque test parameters corresponding to MIG 27 aircraft stator application and chemistry of FM15A at different density levels as referred in Table 5.6.

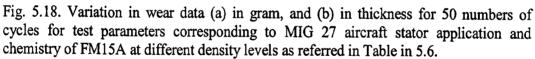


Fig.5.19 describes the performance of FM16A with density values varying from 5.29 to 5.88gm/cc. According to this fig. both the density levels qualify for application however, wear data corresponding to 5.88gm/cc marginally exceeds the prescribed limits as shown in fig. 5.20 and may be accepted as qualified.

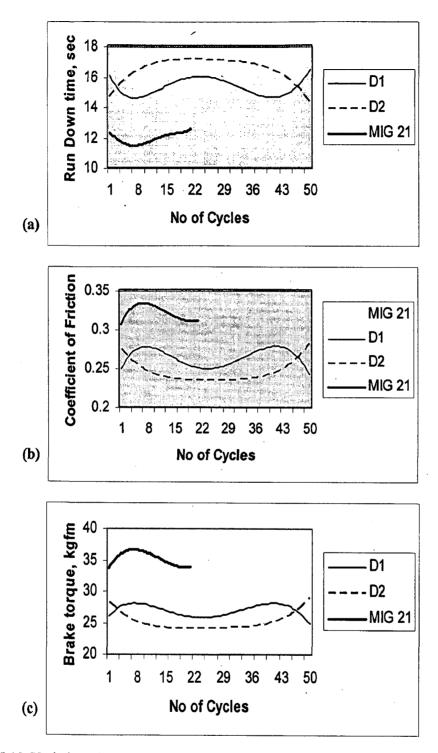
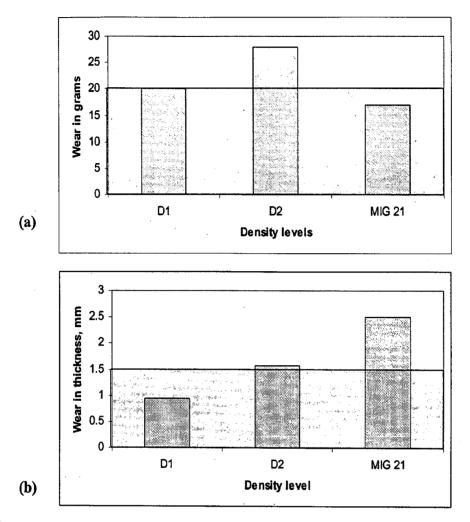
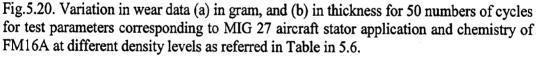




Fig. 5.19 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque test parameters corresponding to MIG 27 aircraft stator application and chemistry of FM16A at different density levels as referred in Table 5.6.

It may be therefore inferred that density for such a range of application is significant parameter and lower density is desirable for improved wear performance. Furthermore, quality of lubricants such as Sb_2S_3 would be more suited in comparison BaSO₄ and BN.

5.3.3.3 Density corresponding to MIG 27 rotor application

Fig 5.21 represents the role of density varying from 5.28 to 5.85gm/cc for FM14A chemistry. According to this fig. the entire range qualifies for the application. Fig.5.22 shows the wear data where again the entire density range qualify for the application however, lower density ranges (5.28, 5.46) are comparatively more suitable for such applications.

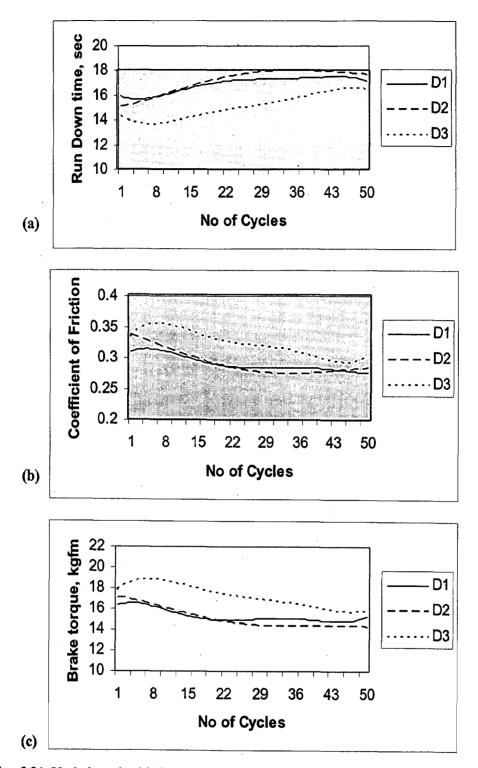


Fig. 5.21 Variations in (a) Run down time, (b) Coefficient of friction, and (c) Brake torque test parameters corresponding to MIG 27 aircraft rotor application and chemistry of FM14A at different density levels as referred in Table 5.6.

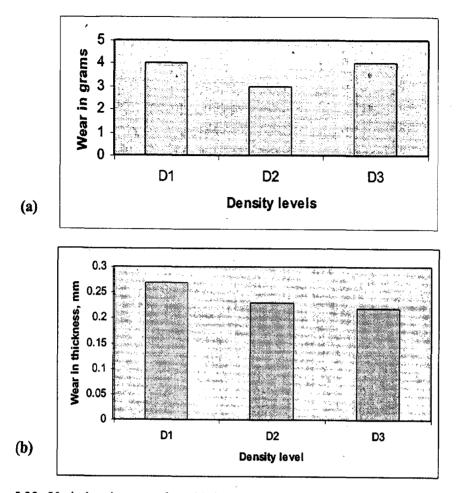


Fig. 5.22. Variation in wear data (a) in gram, and (b) in thickness for 50 numbers of cycles for test parameters corresponding to MIG 27 aircraft rotor application and chemistry of FM14A at different density levels as referred in Table in 5.6.

5.3.4 Summary of Dynamometer Test Results

All the results pertaining to sub-scale dynamometers mentioned above are summarized in Table No 5.7 for a cursory look and quick comparisons.

As a final conclusion, it may be inferred that for relatively lower energy applications; one should aim for high density ranges preferably >5.5gm/cc whereas for high energy applications such as MIG 27 rotor, intermediate density ranges of the order of 5.45gm/cc would be suitable, of course, with suitable choice of lubricants.

Furthermore, it is established form the present investigation that apart from chemistry, annealing treatment and density adjustments are equally important for different energy ranges of application.

Table 5	5.7 8	Summery	of	Sub)-scal	e d	ynamometer	test results
---------	-------	---------	----	-----	--------	-----	------------	--------------

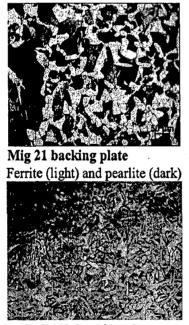
4	50	RD	RD		Mean	Peak	Mean	Peak		We	ar	
Sample			time,	ÇOF	Torque,	Torque,	Drag,	Drag,	Thicl	c.,mm	Wt.	, gm
	Cys.	Revl.	Sec		kgfm	kgfm	kgf	kgf		Pad2		
FM08N	Max	106	12.7	0.33	33	86	182	476	0.86	1.43	16	20
	Min	75	9.0	0.23	· 24	39	131	218	1			
	Avg	84	10.1	0.30	30	51	165	286				
FM09N	Max	135	16.2	0.37	35	66	192	366	1.3	1.62	21	26
	Min	72	8.6	0.19	19	17	106	94	1			
	Avg	123	14.8	0.21	21	43	117	241				
FM10N	Max	127	15.3	0.36	34	72	192	398	1.27	1.36	18	21
	Min	72	8.7	0.20	20	49	112	274				
	Avg	83	10.0	0.31	30	61	169	341	1			
FM11N	Max	115	13.8	0.34	34	82	188	454	2.40	2.35	38	37
	Min	74	8.8	0.22	22	44	124	244	1			
	Avg	101	12.1	0.25	25	52	141	288				
FM12N	Max	103	12.3	0.35	35	81	196	447	1.88	2.29	29	32
	Min	70	8.4	0.25	25	50	137	275				
	Avg	78	9.3	0.32	32	57	178	315			:	
FM13N	Max	96	11.5	0.38	36	69	201	385	0.8	0.61	13	9
	Min	63	7.6	0.26	25	40	141	223				
	Avg	80	9.7	0.32	31	52	173	291	1			
FM14AA1	Max	105	12.6	0.35	34	73	190	403	0.40	0.21	5	3
	Min	78	9.4	0.25	25	50	140	275	1			
	Avg	92	11.0	0.29	29	60	161	331				
FM14AC3	Max	105	12.6	0.33	33	77	183	428	0.47	0.29	8	4
	Min	81	9.7	0.25	25	50	141	280				-
	Avg	92	11.0	0.29	29	58	162	323				
FM14AB1	Max	98	11.8	0.38	38	71	209	394	0.38	0.19	6	4
	Min	71	8.5	0.27	27	53	151	296				-
	Avg	85	10.2	0.32	31	61	175	339				
FM15AB1	Max	116	13.9	0.25	25	48	141	267	2.12	2.49	31	31
	Min	104	12.5	0.23	23	36	128	201				
	Avg	107	12.9	0.25	25	41	138	229				
FM15AB3		101	12.1	0.32	32	56	179	314	1.73	1.74	27	27
	Min	83	9.9	0.26	26	37	146	207				
	Avg	96	11.6	0.27	28	44	153	242				
FM16AB1	Max	105	12.6	0.28	28	62	156	343	1.42	1.29	21	20
	Min	92	11.0	0.25	25	42	141	234				20
	Avg	98	11.7	0.27	27	47	150	263				

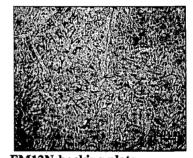
a) Test parameters for AN32 rotor applications as per table 5.3.2

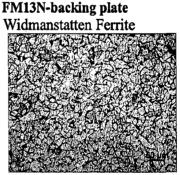
	50	DD	RD		Mean	Peak	Mean	Peak	Wear			
Sample	50 Cus	RD revl.	time,	COF	Torque,	Torque,	Drag,	Drag.	Thick.,mm Wt., gm			gm
	Cys.	revi.	sec.		kgfm	kgfm	kgf	kgf		Pad2		
FM08N	Max	184	17	0.31	31	64	170	354	2.26	2.01	41	35
	Min	139	12.8	0.23	24	36	133	197	1			
	Avg	165	15.2	0.26	26	45	147	252	1			
FM09N	Max	209	19.3	0.27	28	58.	154	322	1.85	2.92	28	46
	Min	156	14.4	0.20	21	34	117	190	1			
	Avg	194	17.9	0.22	23	42	127	234]			
FM10N	Max	-178	16.5	0.28	29	63	161	352	2.49	2.62	39	41
	Min	150	13.9	0.24	25	47	136	258				
	Avg	163	15.0	0.26	27	54	150	299				
FM11N	Max	214	19.8	0.31	31	58	173	322	4.83	4.44	79	64
	Min	141	13.0	0.20	21	40	117	223				
	Avg	189	17.4	0.23	24	46	132	258				
FM12N	Max	169	15.6	0.32	33	68	183	377	3	2.91	57	45
	Min	129	11.9	0.25	26	49	146	_274				
	Avg	145	13.3	0.30	31	59	172	325				
FM13N	Max	197	18.2	0.34	34	61	187	340	1.26	0.94	23	17
	Min	128	11.9	0.22	22	35	124	196				
	Avg	170	15.7	0.26	26	41	144	230				
FM14AA1	Max	187	17.3	0.27	28	61	154	341	0.18	0.23	2	2
	Min	162	15.0	0.23	24	41	134	229			l	
	Avg	171	15.8	0.26	26	49	146	275				
FM14AC3	Max	179	16.5	0.27	28	63	154	349	0.14	0.16	2	2
	Min	162	14.9	0.24	25	41	139	227				
	Avg	172	15.8	0.26	26	49	145	270				
FM14AB1	Max	180	16.7	0.38	38	69	209	385	0.54	0.34	7	5
	Min	120	11	0.24	25	43	139	242				
	Avg	160	14.8	0.28	28	53	157	292				
FM14AB1	Max	183	16.9	0.29	29	59	161	328	0.25	0.15	3	2
	Min	154	14.2	0.24	25	44	136	242	1			
,	Avg	168	15.5	0.26	27	50	148	277				
FM15AB1			17.6	0.25	25	53	141	294	3.06	3.09	46	47
	Min	177	16.4	0.23	24	12	131	202	-			
	Avg	180	16.7	0.24	24	42	136	231				
FM15AB3	Max	185	17.1	0.25	26	50	146	279	2.87	3.3	48	44
	Min	171	15.8	0.23	24	40	135	220	4			
	Avg	176	16.3	0.25	25	44	141	244			L	
FM16AB1	Max	189	17.5	0.29	30	60	165	336	1.9	1.27	31	24
	Min	151	14.0	0.23	24	38	132	211	1			
	Avg	179	16.5	0.25	25	49	140	271			L	
FM16AB3	Max	180	16.6	0.29	29	70	163	390	1.52	0.36	27	12
	Min	153	14.1	0.24	25	44	138	244	4	ļ	ļ	
	Avg	166	15.4	0.26	27	52	150	288	1			

b)Test parameters for MIG 27 stator applications as per table 5.3.2

103

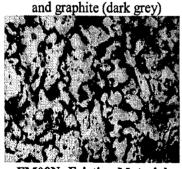

	1		DD		Maan	Deals		Deals	Wear			
Sample	50 Cys.	RD Revl.	RD time, sec.	COF	Mean Torque, kgfm	Feak Torque, kgfm	brag, kgf	kaf	We Thickness mm		Weight, gm	
			sec.						Pad1	Pad2	Pad1	Pad2
FM14AA1	Max	223	18.5	0.34	17	38	95	213	0.30	0.16	3	3
	Min	181	15	0.27	14	27	78	150				
	Avg	207	17.2	0.29	15	31	84	172				
FM14AC3	Max	203	16.8	0.37	20	64	108	356	0.22	0.23	4	3
	Min	160	13.2	0.29	15	32	86	180				
	Avg	181	15	0.32	17	39	96	217	ŀ			
FM14AB1	Max	216	17.9	0.33	17	78	94	431	0.24	0.31	3	4
	Min	183	15.1	0.28	14	26	80	144				
	Avg	205	16.9	0.29	15	36	85	197				


c) Test parameters for MIG 27 rotor applications as per table 5.3.2

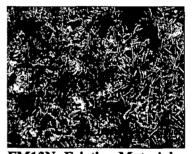

5.4. Metallographic examination

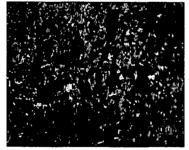
On the basis of detailed metallographic examination carried out, we have observed that the microstructures of friction layer as well as backing plate are finer and more homogeneous in case of forged samples in comparison to sintered pad represented by MIG 21 sample.

To illustrate this, three random forged samples were taken and compared with that of MIG 21. Fig. 5.23 consist of backing plate microstructures. It may be seen that backing plate of MIG 21 sample consists of ferrite-pearlite coarse structure with roughly 50% of pearlite in it. In contrast to this backing plate in forged samples is essentially a low carbon steel but with very fine ferrite grains, and, in one case it is Widmanstattan ferrite. This is because of high speed forging employed during processing providing fast cooled fine grained structure which in turn yields high strength backing plate without resorting to higher carbon steel. We are also likely to get the better toughness of backing plate due to fine ferrite grain structure which may help better engagement of brakes in actual applications.

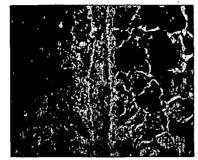


FM09N- backing plate FM14AA1- backing plate Fig.5.23 Microstructure of Backing plates of Sintered and Hot powder forged Friction pads.


Fig.5.24 consist of microstructures of different friction materials. It may be noted that distribution of graphite in MIG 21 sample is very coarse and blocky whereas in forged samples it is much finer and better distributed. Apart from this, graphite in MIG 21 sample appears to be oriented perpendicular to the direction of pressing whereas forged samples do not have such orientation. Dull grey particles of SiC (to be confirmed after EDAX analysis) are also clearly visible in MIG 21 sample and these particles are very coarse (more than 100 microns). The distribution of other constituents in forged samples is also uniform. But variety of structures are developed depending upon the chemistry and subsequent treatments given to the forged samples. This is clear from the three microstructure shown the figure 5.4.2. Actual characterization of other phases and their distributions will follow in the section of EDAX analysis.


Mig 21- Friction Material Coarse pearlite with uniform distribution of SiC particles (dull grey)

FM09N- Friction Material


FM13N- Friction Material ferrite with graphite flakes thin elongated (black) grains.

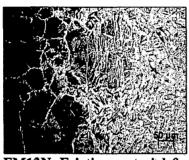
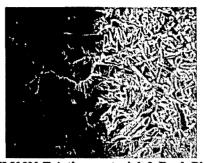
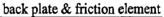
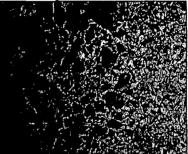

FM14AA1- Friction Material

Fig.5.24 Microstructure of Friction Materials Sintered and Hot powder forged Friction pads.


Fig.5.25 contains microstructure of intermediate location having backing plate on one side and friction material on another side. It may be seen that in case if MIG-21 sample there is distinct layer at the interface of about 60 microns thick separating backing plate and friction material. This layer is essentially electroplated Ni layer over the backing plate prior to sintering (this will be conformed by EDAX analysis). This layer appears to hinder diffusion carbon from friction element to backing plate and it is likely to weaken the joint strength which was indicated in bend test results. Due to the presence of this layer carbon appears to be segregated adjacent to the friction element side (Due to blockage of diffusion process by this layer) leading to coarse pearlite structure surrounded by ferrite network. In contrast to this, the interface layer in forged brake elements is completely absent. In fact, there is no such plating performed during the present investigation. The only plating done in the present investigation is of copper which has fully diffused towards friction element side during processing. In absence of may interface layer, carbon can easily diffuse towards the backing plate side leading to development of fully pearlitic structure in the adjacent backing plate. Depending upon the subsequent treatments performed on the forged samples, variety of fine microstructures are observed starting from bainitic, martensitic and fine ferritic (necklace type decoration) in the friction element adjacent to backing plate. All the microstructures of forged samples at the interface indicate strong bonding between backing plate and friction element because of enhanced diffusion of carbon from friction element side to backing plate side and absence of any layered structure at the interface. No attempt has been made to study the response of subsequent treatment on strength of joint in the present in the investigation. However, looking into the verity of microstructures developed in the present investigation, it will be worthwhile to further investigate the details of strength verses heat treatments in such composite samples so treatments that one can develop optimum joint strength for efficient braking applications. It is all the more important since sintered materials suffer from this limitation very seriously.


Mig 21 - Friction material & Back plate Ni (~100µm) layer at interface



FM13N- Friction material & Back plate

FM09N-Friction material & Back Plate Coherent interface between

FM14AA1-Friction material & Back plate

Fig.5.25 Microstructure of Friction Material with backing plate of Sintered and Hot powder forged Friction pads.

5.5 EDAX analysis of selected samples

Fig. 5.26 (a) represents the EDAX microstructure corresponding to sintered MIG 21 sample at a magnification of 100X. The first picture is the microstructure of the region which has been analyzed for distribution of different elements. In subsequent pictures distribution of following elements are shown. This is clear from the pictures that carbon is visible in the form of flakes, and coarse copper particulates are separately visible. Distribution of oxygen and silicon is highly heterogeneous, and coarse. Fig. 5.26 (b) shows combination of elements such as silicon and oxygen, silicon and carbon, magnesium and oxygen in the form of overlaps. It may be inferred from these that SiC particles appear to have oxidized at the surface and hence overlapping of SiC and SiO₂ appear identical. Our observation from the previous section is confirmed that SiC particles are $\pm 100\mu$ and they are heterogeneously distributed. Similar features are available in Fig.5.27 and 5.28 at different locations of MIG 21 sintered sample.

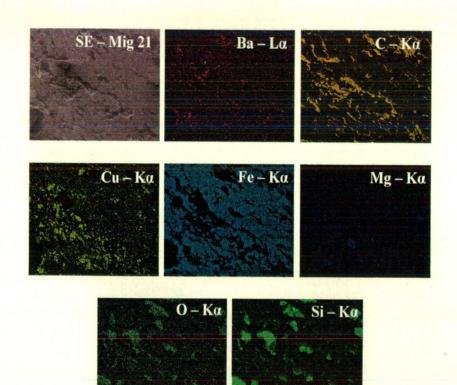


Fig. 5.26 (a) X-Ray mapping at 100X showing particle distribution of Mig 21 Sintered Friction Material

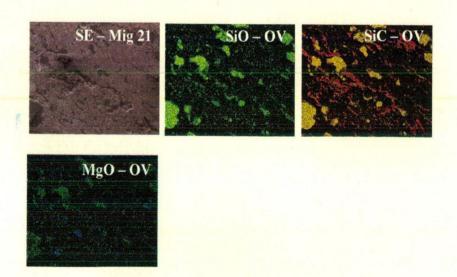


Fig. 5.26 (b) X-Ray mapping at 100X showing different constituents of Mig 21 Sintered Friction Material

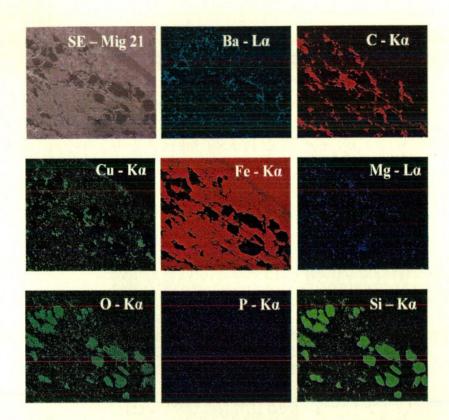


Fig. 5. 27 (a) X-Ray mapping at 100X showing particle distribution of Mig 21 Sintered Brake pad (interface layer)

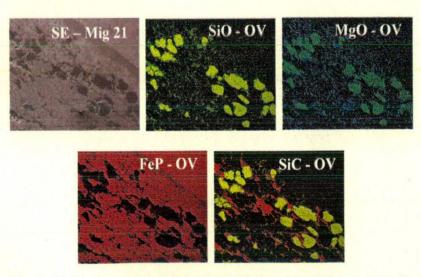


Fig. 5. 27 (b) X-Ray mapping at 100 X showing different constituents of Mig 21 Sintered Brake pad (interface layer)

Fracture Specimen

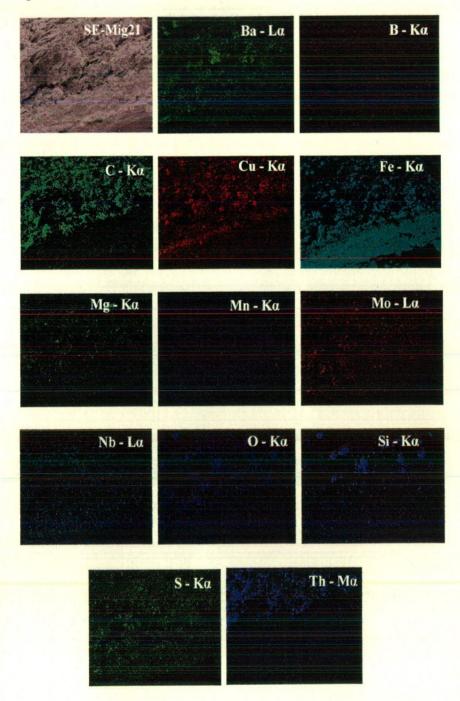


Fig. 5.28 (a) X-Ray Mapping at 100X showing particles distribution of Fractured Mig 21 Sintered brake pad material

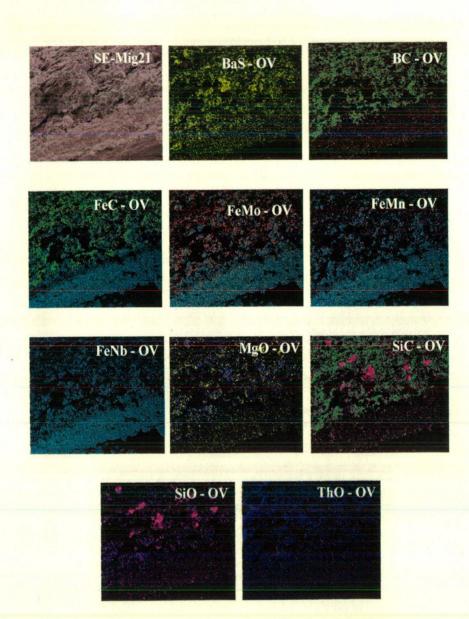


Fig. 5.28 (b) X-Ray Mapping at 100X showing different constituents of Fractured Mig 21 Sintered brake pad material Fig. 5.29 is the structure at the interface of friction material and backing plate in case of MIG 21. Interface layer of about 60μ is clearly visible which is confirmed by this analysis as of nickel. This layer obstructs the diffusion of elements like carbon and copper from friction layer to backing plate. It is also a source of weakness (being pure nickel) which is responsible for inadequate coherency between friction layer and backing plate.

.

Fig. 5.29 (a) X-ray mapping of MIG 21 sintered brake pad at interface layer (backing plate and friction material) at 100X

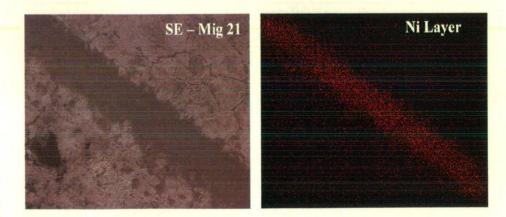


Fig. 5.29 (b) Ni layer at the interface between friction material and backing plate in Mig 21 Sintered Brake pad, 200X

Figs.5.30-5.33 shows the distribution different elements in sample No FM09N, FM13N and, FM14A. It is clear from these pictures the constituents present in the samples are uniformly distributed. There appears to be no segregation of constituents in the structure. Accordingly, the performance of these samples in actual service conditions is expected to be more consistent in comparison to sintered samples.

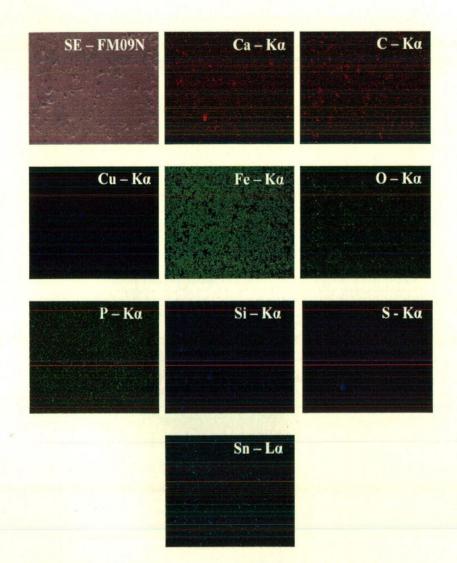


Fig. 5.30 (a) X-Ray mapping at 100X showing particle distribution of FM09N Friction Material

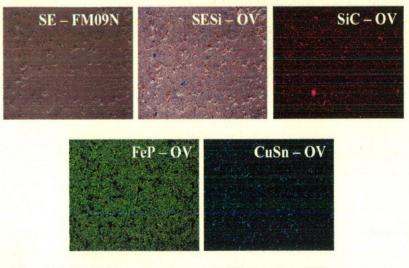


Fig. 5.30 (b) X-Ray mapping at 100X showing different constituents of FM09N Friction Material

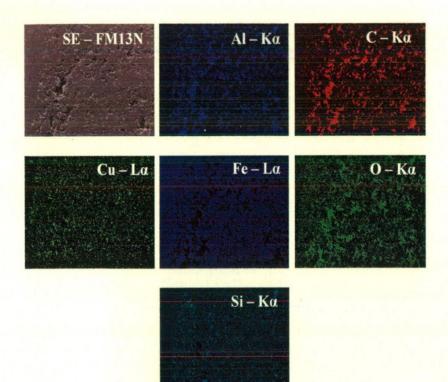


Fig. 5.31 X-Ray mapping at 100X showing particle distribution of FM13N Friction Material

Fractured specimen

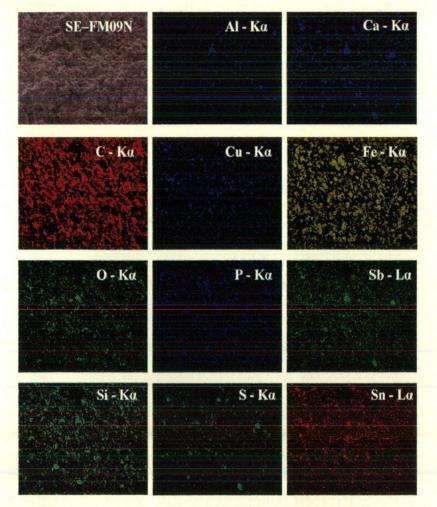


Fig. 5.32 (a) X-Ray Mapping of Fractured FM09N Hot Powder Forged friction material at 100X

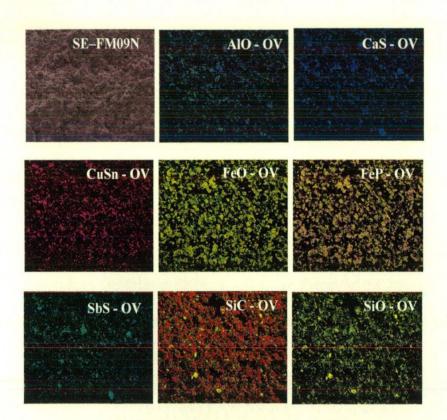


Fig. 5.32 (b) X-Ray Mapping of Fractured FM09N Hot Powder Forged Friction Material at 100X

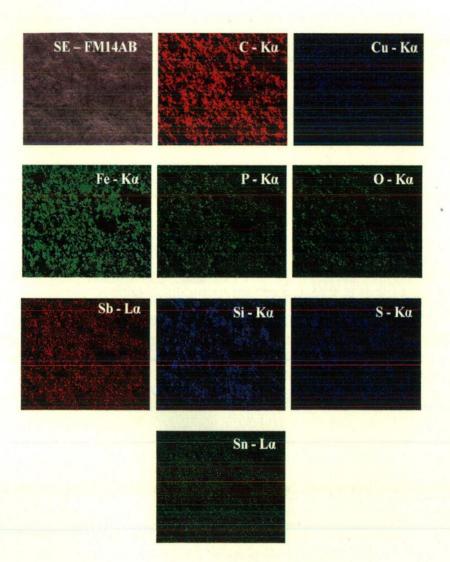


Fig. 5.33 X- Ray mapping of different constituents of FM14AA1 Friction Material at 100X

5.6 Bend Test

Bend test was carried out on few random samples by employing three pin support as described in Fig.5.34. Table 5.8 provides the results of the test. This table also contains the results of sintered brake pad employed in MIG 21. It may be noted that thickness of friction material is varying from 3mm to 4.7mm. Thickness of backing plate varies from 1.5 to 2.8mm however, there is no significant change in the load reading obtained prior to separation of friction layer. Similarly the angle of bend till the cracking of friction layer is nearly independent of friction layer thickness and backing plate thickness which is close to 15° - 16° only. This angle is significantly higher than the angle obtained in sample corresponding to MIG 21 brake pad (12°).

It may therefore be inferred that the bending behavior of forged brake pad samples is significantly superior to sintered sample for equivalent applications. It may also be mentioned that the separation of backing plate with friction element is not observed after bending in case of our forged samples where as for sintered sample there is clear cut separation along the interface. This establishes that joining between backing plate and friction element is superior owing to hot forging technique in comparison to pressure sintering technique employed in MIG 21 pads. This will be further confirmed by ultrasonic testing and metallographic examination described in subsequent sections.

Table 5.8: Bend Test Results

Test Parameters: Strain rate- 1mm/sec Span length- 50mm; Diameter of roll- 25mm; Initial dimensions of the specimens: length-57.5mm; width; 16.5mm

	no or the spe	Widding & Ordeninin					
Speci	fications of fi	Load sustained	Angle of bend				
Specimen	T	nickness, in	mm	in bending,	till the friction		
notation	Friction Backing		Total	KN	layer cracks		
notation	Material	Plate			(in degrees)		
FM08N	4.7	2.4	7.1	0.603	15		
FM09N	3.4	2.8	6.1	0.714	16		
FM10N	3.8	2.7	6.5	0.831	15		
FM14AC3	3.3	2.7	6.0	0.692	15		
MIG 21	3.0	1.5	4.5	0.652	12		

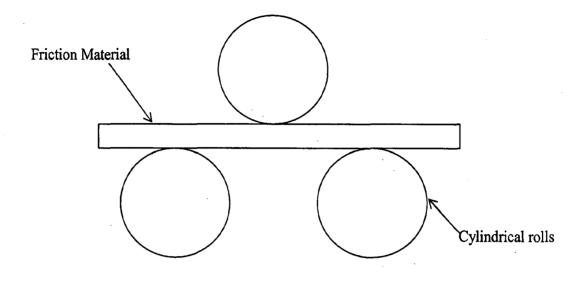


Fig. 5.34. Three Point Bend Test

5.7. Ultrasonic Flaw Detection test

In order to investigate the soundness of the interface between friction material and backing plate, sintered sample of MIG 21 and forged samples of present investigation were taken. They were subjected to ultrasonic flaw detection tests employing dual probe system of M/S Krauntker, Germany' model USM 35. The probe was placed over the backing plate side whose thickness was in the range of 3mm. Fig. 5.35 to5.38 represents the echo pattern obtained from the MIG 21 sample at four different locations, randomly chosen. It is clear from these figures that significant peaks showing the interface are observed at a depth ranging from 1.33 to 2.00mm whereas in sample FM14A the first significant peak is observed at a depth, ranging from 6.2 to 6.58mm (this corresponds to overall thickness of the sample itself) as shown in fig. 5.39 to 5.41.

It is therefore, obvious, that MIG 21 sample contains a defect layer possibly at the interface between backing plate and friction element which is giving echo whereas no echo is observed in our samples from the interface. Repeated tests on our other samples also confirm this finding.

It can therefore be concluded that forged brake pads developed in the present investigation possess sound, defect free interface between backing plate and friction layer unlike sintered pads.

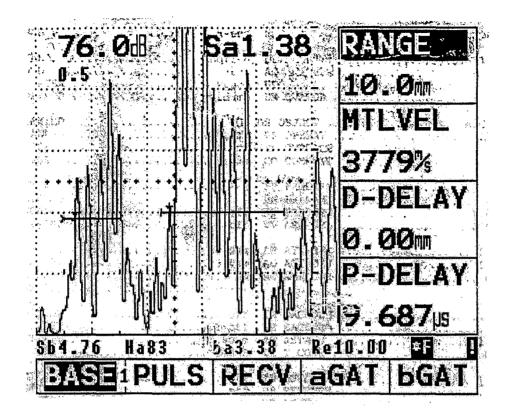


Fig. 5.35 Ultrasonic echo pattern for MIG 21 Sintered brake pad

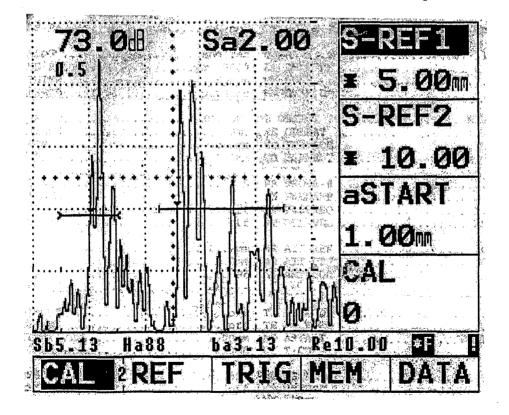


Fig. 5.36 Ultrasonic echo pattern for MIG 21 Sintered brake pad

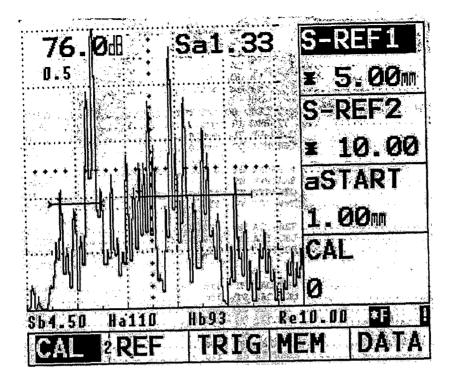


Fig. 5.37 Ultrasonic echo pattern for MIG 21 Sintered brake pad

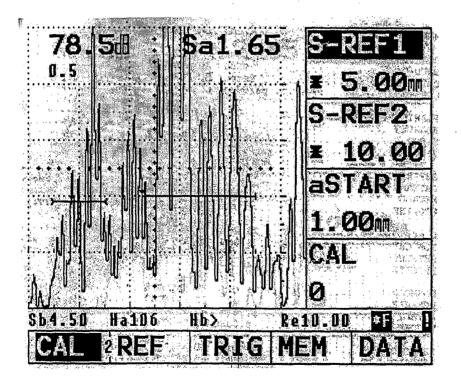


Fig. 5.38 Ultrasonic echo pattern for MIG 21 Sintered brake pad

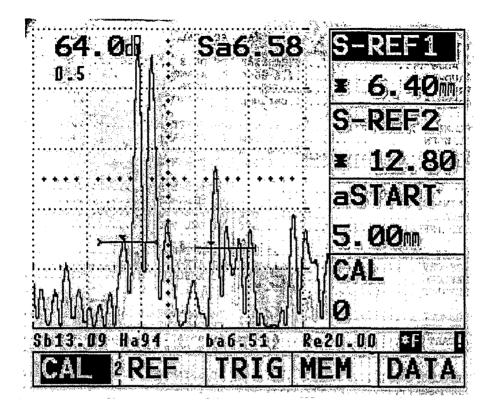


Fig. 5.39 Ultrasonic echo pattern FM14AA1 Hot powder forged brake pad

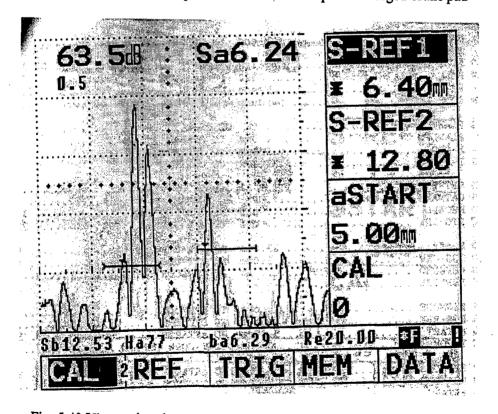


Fig. 5.40 Ultrasonic echo pattern FM14AA1 Hot powder forged brake pad

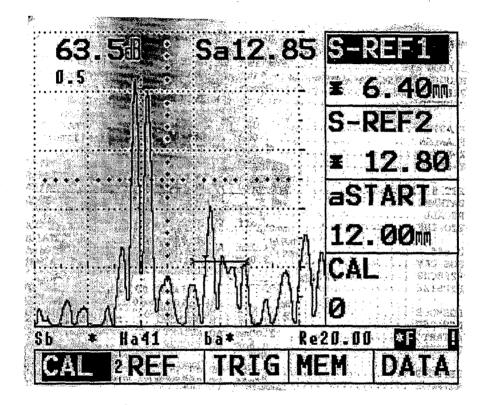


Fig. 5.41 Ultrasonic echo pattern FM14AA1 Hot powder forged brake pad

5.8 Correlations between the Pin-on-disc tests and Sub-scale dynamometer tests

No strict correlations are possible between these two types of tests for the simple reason that the test conditions are entirely different. However, Pin-on-disc test is a good test to assess the performance of chemistry formulations.

Qualitatively, specific wear data as obtained in Fig. 5.1 is similar to the wear data as shown in Table 5.5 corresponding to aircraft applications. Relatively a pattern of wear is available and individual samples can be compared under both the conditions. Similarly, barring few exceptions, the COF shown in Fig. 5.3 (corresponding to Pin-on-disc) also has similarity with respect to Table 5.5.

It can be therefore be concluded that Pin-on-disc tests must be performed as a preliminary testing and once the data obtained are in appropriate range, such samples can be subjected to sub scale dynamometer for further testing. To this extent, this correlation can be helpful for further work in developing brake pads for heavy-duty applications.

Chapter 6 CONCLUSIONS AND SUGGESTIONS

6.1 CONCLUSTIONS

The present investigation has been primarily meant to develop alternative technology for the manufacture of heavy duty brake pads and test the quality of these pads so developed for the purpose of possible applications in actual military based aircrafts. This primary objective has been successfully met and it can be reasonably concluded that this investigation has given rise to development of brake pads by a new alternative technology for the first time in the world.

The detailed significant achievements have been listed as follows in the chronological order in accordance with objectives setout in section 3.4 of Chapter 3.

- 1. Hot powder forging for the manufacturing of friction materials overcoming the limitation of sintering process has been successfully developed.
- 2. New set of iron based friction materials have been prepared with simpler chemistry and superior application with regard to aircrafts such as AN 32, and MIG 27.
- 3. Brake pads with sound joint between backing plate and friction element has been possible by the forging technology.
- 4. Any shape and sizes of brake pads is possible to produce for variety of vehicles.
- 5. The technology completely eliminates the problems of joining between backing plate and friction element on account of simultaneous application of pressure and temperature.
- 6. It has been observed that with simpler chemistry of friction layer, but changing density level during processing, superior performance in heavy duty range is possible. For relatively low energy applications such as AN 32 aircraft high density of friction layer such as greater than 5.45gm/cc is adequate. For heavy moderate duty applications such as MIG 27 aircraft, density in the range 5.28 to 5.8gm/cc, but preferably 5.6gm/cc would be suitable.

- 7. Although no effort has been made to economize on the raw material quality but because of the inherent potential of the present technology of cleaning the powders during processing, it is expected that quality of the final product would not affect, if inferior quality raw materials are employed in the present technology.
- 8. It has been possible to reduce costly ceramic content by incorporating phosphorous as an alloying element and thereby affecting simplicity in the chemistry of brake elements.
- By judicious use of copper in brake elements heat transfer capabilities of these have been improved and thereby life of brake elements could be extended by way of improved wear resistance.
- 10. No problem of brake fading has occurred in brake pads developed in the present investigation.
- 11. Detailed characterization of brake pads developed in the present investigation and their comparison with sintered counterpart has led to possible substitution in actual application.
- 12. Overall performance of the product made by forging technology has led to significant improvement in quality comparison to existing sintering technology.
- 13. It has been possible to eliminate the failure rate of brake pads due to breakage and warpage of the product. This is mainly because of the simplified chemistry with overall greater weightage of metallic constituents.
- 14. The forging technology as developed in the present investigation is free from the use of sophisticated and custom built equipments.
- 15. The forging technology is expected to be cost effective on account of features described in point number 14 above. However, no effort has been made in the present investigation to quantify the economy.
- 16. The present investigation has developed a suitable co-relation between pin-ondisc tests and sub scale dynamometer tests which is likely to help further investigation towards developing new friction materials.

6.2 SUGGESTIONS FOR THE FUTURE WORK

The present investigation has primarily focused on development of technology and product, and provides a viable alternative to existing sintering technology. Some of the points that emerged during investigation need to be further investigated in detail. These are as follows.

- 1. To employ iron powder of inferior quality with relatively higher oxygen content and coarse particle size such as mill scale obtained from Hot rolling mills and optimize processing parameters for such a raw material.
- 2. To investigate in detail the role of phosphorous in brake pads
- 3. To investigate in detail the performance of sulphur based compounds as lubricants with respect to coefficient of friction and wear resistance obtained.
- 4. To fine tune the chemistry employing phosphorous and sulphur based lubricants in combinations for variety of brake applications and investigate if hard abrasive particle employed in such pads can be altogether eliminated.
- 5. To extend the application of forged brake pads for other aircrafts as well as vehicles with an intent of substitution of resin bonded brake pads.
- 6. Monitoring the noise levels of brake pads by varying chemistry.
- 7. To carryout detailed economic analysis of brake pad manufacturing with specific applications.

RESESEARCH PAPERS

PRESENTED/PUBLISHED

- Lenin Singaravelu D., Chandra K., Misra P.S., "Friction and Wear Characteristics of Fe-based Friction Pads for Heavy Duty Brake Applications", paper presented in the ASMP 2006 – Asian Symposium on Materials and Processing 2006 organised by Japan Society of Mechanical Engineers, Japan held at Sofitel Central Plaza Bangkok, Thailand from November 9-10, 2006.
- 2. Lenin Singaravelu D., Chandra K., Misra P.S., "Wear Characteristics of Iron based Friction Materials for brake applications", presented and published in the Proceedings of the International Symposium for Research Scholars on Metallurgy and Materials Engineering (ISRS 2006) organized by Indian Institute of Technology Chennai, from December 20-23, 2006.
- 3. Lenin Singaravelu D, Chandra, K., Mishra P.S., 'A Comparative Study of Wear characteristics for sintered and hot powder forged friction materials', presented in PM-07 International conference on Powder Metallurgy and Particulate Materials organized by Powder Metallurgical Association of India, Noida, Feb. 09-11, 2007.
- 4. Lenin Singaravelu D, Chandra, K., Mishra P.S., 'Tribological Studies of Hot Powder Forged Iron based Brake pads', presented and published in the Proceedings of the Second International Conference on Recent Advances in Composite Materials 2007 (ICRACM) held on Feb. 20-23, 2007, at New Delhi, pp898-902.

The complete specification for Patent on 'Iron based Cermet Friction Materials / Composites / Brake Elements with Builtin Backing Plates' has been filed on Nov. 6, 2007; the provisional specifications were filed on Nov.7, 2006 (Patent application No.2421/DEL/2006).

.

References:

- 1. Adelina Borruto, Gianni Crivellone, Filippo Marani, 'Influence of surface wettability on friction and wear tests', Wear 222, 1998, pp57-65.
- 2. Aleksandrova A. B., Kryachek V. M., Fedorchenko I. M., 'Effect of technological factors on the properties of mk-5 friction material i. effect of pressing and sintering parameters on the physicomechanical properties of mk-5 material' Powder Metallurgy and Metal Ceramics Vol. 11, No. 9, 1972, pp730-732.
- 3. Aleksandrova A. B., Kryachek V.M., Levit G.B., Rozenshtein D.G., Fedorchenko I.M, Prikhod'ko P., Izvekov G.V., 'Effect of technological factors on the properties of friction materials ii) effect of sintering conditions on the structure and frictional and wear properties of powder metallurgy friction disks', Powder Metallurgy and Metal Ceramics Vol.11, No.10, **1972**, pp831-833.
- 4. Anderson A.E., 'Friction and wear of automotive brakes', ASM Handbook, Vol.18, Friction Lubtrication and Wear Technology, ASM International, The Materials Information Society, 1992, pp569-577.
- 5. Andrew W. Batchelor, Gwidon W. Stachowiak, 'Tribology in materials processing', Journal of Materials Processing Technology 48, 1995, pp 503—515.
- 6. Antti Papinniemi, Josepth C.S. Lai, Jiye Zhao, Lyndon Loader, 'Brake squeal: a literature review', Applied Acoustics 63, 2003, pp391-400.
- 7. Arunachalam V.S, 'Powder Metallurgy Recent advances', Oxford and IBM Publishing Co. Pvt. Ltd., 1989, pp156-167.
- 8. Bhabani K. Satapathy, Jayashree Bijwe, 'Composite friction materials based on organic fibres: Sensitivity of friction and wear to operating variables', Composites: Part A Applied Science and Manufacturing, Vol.37, Issue 10, 2006, pp 1557-1567.
- 9. **Bhabani K.**, Satapathy, Bijwe J., 'Wear data analysis of friction materials to investigate the simultaneous influence of operating parameters and compositions', Wear, Volume 256, Issues 7-8, 2004, pp 797-804.
- Bhargava A. K., Tiwari A.N., Mulik U.P., Negi Y.S., 'Wear resistance of RS-D2 steel reinforced aluminium composites', Trans. of the Indian Institute of Metals 58 (5), 2005, pp827-833.
- 11. **Bijwe J.**, Nidhi, Majumdar N., Satapathy B.K., 'Influence of modified phenolic resisns on the fade and recovery behavior of friction materials', Wear 259, 2005, pp1068-1078.
- 12. Blanco C., Bermejo J., Mars H., R. Menendez, 'Chemical and physical properties of carbon as related to brake performance', Wear 251, 2001, pp1469-1476.
- 13. Chan D, Stachowiak G.W., 'Review of automotive brake friction materials', Proc. Instn Mech. Engrs Vol. 218 Part D: J. Automobile Engineering, 2004, pp953-966.
- 14. Chapman T.R., Niesz D.E., Fox R.T., Fawcett T., 'Wear-resistant aluminumboron-carbide cermets for automotive brake Applications', Wear 236, 1999, pp81-87.
- 15. Cho M.H., Cho K.H., Kim S.J., Kim D.H., Jang Ho., 'The role of transfer layers on friction characteristics in the sliding interface between friction materials against gray iron brake disks', Tribology Letters, Vol.20, No.2, 2005, pp101-108.

- 16. Cho M.H., Kim S.J., Basch R.H., Fash J.W., Jang H., 'Tribological study of gray cast iron with automotive brake linings: The effect of rotor microstructure', Tribology International 36, 2003, pp 537–545.
- 17. **Daniel Thuresson**, 'Influence of material properties on sliding contact braking applications', Wear 257, 2004, pp 451-460.
- 18. Derkacheva G. M., Panaioti I. I., 'Trends in the composition and manufacture of friction powder materials (survey)', Powder Metallurgy and Metal Ceramics, Vol. 34, Nos. 3,4, 1995, pp207-212.
- 19. Derkacheva G.M., Panaioti I.I., 'Friction powder materials(review)', Powder Metallurgy and Metal Ceramics, Vol. 12, 1989, pp968-975.
- 20. Dixon R.H.T., Clayton A., 'Powder Metallurgy for engineers', Machinery Publishing Co., Ltd., London, 1971, pp166-183.
- 21. Dorofeev V. Yu. and I. V. Selevtsova, 'Theory and technology of the process of articles forming borided hot-worked powder materials based on iron. iii) Wear resistance and mechanical properties', Powder Metallurgy and Metal Ceramics, Vol. 40, Nos. 9-10, 2001, pp 452-457.
- 22. Drava Giuliana, Leardi Riccardo, Portesan Alberto, 'Application of chemometrics to the production of frictional materials: Analysis of previous data & search of new formulations', Chemometrics and intelligent laboratory systems, Vol. 32, 1996, pp245-255.
- 23. **Dufek V.**, Miculek J., 'Investigation of cermet friction materials in Czechoslovakia', Powder Metallurgy and Metal Ceramics Vol.6 No.6, 1967, pp507-515.
- 24. **Dutta D.,** Chatterjee B., Krishnadas Nair C.G., 'Major achievements in indigenization of high performance aerospace materials', published in 'Metallurgy in India: A Retrospective (ISBN 81-87053-56-7)', Edited by P. Ramachandra Rao and N.G. Goswami, NML Jamshedpur, 2001, pp 407-426.
- Dutta D., Mohan G., Chatterjee B., Krishnadas Nair C.G., 'Development of sintered metalloceramic friction material for the wheel brakes of a military transport aircraft', published in, 'Composites: Science and Technology (ISBN 81-224-1251-3)' edited by R.C. Prasad, P. Ramakrishan, New Age International (P) Ltd., New Delhi, 2002, pp 94-114.
- 26. Enomoto Yugi, Yamamoto, Takashi, 'New materials in automotive tribology'. J.C.Baltzer AG, Science Publishers Vol. 5, 1998, pp13-24.
- 27. Eriksson M., Jacobson S., 'Friction behaviour and squeal generation of disc brakes at low speeds', Proc. Instn. Mech. Engrs. Part D: Journal of Automobile Engineering, 215, 2001, pp1245-1256.
- 28. Eui-Sung Yoon, Hosung Kong, Oh-Kwan Kwon, Jae-Eung Oh, 'Evaluation of frictional characteristics for a pin-on-disk apparatus with different dynamic parameters', Wear 203-204, 1997, pp 341-349.
- 29. Evtushenko O. O., Ivanyk E. H., Horbachova N. V., 'Analytic methods for thermal calculation of brakes (review)', Materials Science, Vol. 36, No. 6, 2000, pp 857-812.
- 30. Evtushenko O.O., Yu. O. Pyr'ev, 'Calculation of the contact temperature and wear of frictional elements of brakes', Materials Science, Vol. 34, No. 2, 1998 pp 249-255.
- 31. Fedorchenko I. M., Panaioti I. I., Derkacheva G. M., Ya Dzykovich I., Gordan G. N., 'Investigation of friction materials', Powder Metallurgy and Metal Ceramics Vol.4, No.9, 1965, pp 746-748.

- 32. Fedorchenko I. M., Pugina L. I., Kryachek V. M., 'Current state of production of sintered bearing and frictional materials and some new development trends (review)', Powder Metallurgy and Metal Ceramics, Vol. 16, No.4, 1977, pp308-315.
- 33. Fedorchenko I.M., 'Sintered bearing and friction materials', Powder Metallurgy and Material Strengthening edited by Dhar P.R. et al, Oxford and IBH publishing Company, Calcutta, 1970, pp71-74.
- 34. Fedorchenko I.M., 'Sintered materials for friction units', Powder Metallurgy and Metal Ceramics, Vol.6, No.10, 1967, pp806-813
- 35. Fedorchenko I.M., 'Tendencies in creating composite materials for equipping friction assemblies', Powder Metallurgy and Metal Ceramics, Vol. 5, 1992, pp44-53.
- 36. Fedorchenko I.M., Derkacheva G. M., Panaioti I. I., 'Effect of phosphorus on the friction properties of a material based on alloyed iron', Powder Metallurgy and Metal Ceramics Vol. no. 8, No.11, 1969, pp945-947.
- Fedorchenko I.M., Panaioti I. I., Derkacheva G. M., 'Studies of friction materials (Part 1)', Powder Metallurgy and Metal Ceramics Vol.4, No.5, 1965, pp 391-393.
- Fedorchenko I.M., Panaioti I. I., Derkacheva G. M., 'Studies of friction materials (Part 2)', Powder Metallurgy and Metal Ceramics Vol.4, No.5, 1965, pp 391-393.
- 39. Fedorchenko I.M., Shevchuk Yu. F., Miroshnikov V. N., Borisenko V. A., 'Elevated-temperature mechanical properties of sintered iron-base materials containing calcium fluoride additions', Powder Metallurgy and Metal Ceramics Vol.15, No.3, 1976, pp238-242
- 40. Fieldhouse J. D., Newcombh T. P., 'Double Pulsed Holography Used to Investigate Noisy Brakes', Optics and Losers in Engineering 25, 1996, pp 455-494.
- 41. Filip P., Marx D.T., Wright M.A., 'On-Highway Brake Materials Characterization and Performance Evaluation', Materially Speaking. Vol. 11, 1997, page 2.

× A

- 42. Filip P., Wright M. A., 'Characterization of composite materials for automotive braking industry', Practical Metallography, Special issue 30, 1999, page 449.
- 43. Fischer, 'Case Study Well-founded selection of materials for improved wear resistance', Wear 194, 1996, pp 238-245.
- 44. Francesco Massi, Laurent Baillet, Oliviero Giannini, Aldo Sestieri, 'Brake squeal: Linear and nonlinear numerical approaches', Mechanical Systems and Signal Processing, ARTICLE IN PRESS
- 45. Garcia-Prieto I., Faulkner M.D., Alcock J.R., 'The influence of specimen misalignment on wear in conforming pin on disk tests', Wear 257, 2004, pp 157-166.
- 46. Gissinger G.L., Menard C., A.Constans, 'A mechatronic conception of a new intelligent braking system', Control Engineering Practice 11, 2003, pp163-170.
- 47. Goetzel C.G., 'Treatise on Powder Metallurgy', Interscience Publisher Inc., New York, Vol.2, 1961, pp543-557.
- 48. Goni J., Mitxelena I, Coleto J, 'Development of low cost metal matrix composites for commercial applications', Materials Science and Technology, Vol.16, No.7-8, July 2000, pp743-746.
- 49. Gopinath K., 'The influence of speed on the wear of sintered iron-based materials', Wear, Vol.71, Issue 2, Sept. 1981, pp161-178.

- 50. Gopinath K., Rayudu G. V. N., Narayanamurthi R. G., 'Friction and wear of sintered iron', Wear, Vol. 42, Issue 2, April 1977, pp 245-250.
- 51. Goyal R.K., Negi Y.S., Tiwari A.N., 'Preparation of high performance composites based on aluminum nitride/poly(ether-ether-ketone) and their properties', European Polymer Journal, Vol. 41, Issue 9, Sept. 2005, pp2034-2044.
- 52. Hausner H.H., 'Perpectives in Powder Metallurgy Friction and Antifriction Material', Vol.4, Plenum Press, NewYork London, 1970, pp.3-71,112-150.
- 53. Ho Jang, Ko K., Kim S.J., Basch R.H., Fash J.W., 'The effect of metal fibers on friction performance of automotive brake friction materials', Wear, Vol.256, 2004, pp406-414.
- 54. **Ho Jang**, Seong Jin Kim, 'The effects of antimony trisulfide (Sb₂S₃) and zirconium silicate (ZrSiO₂)in the automotive brake friction material on friction characteristics', Wear 239, **2000**, pp229–236.
- 55. Ho S.C., Chern Lin J.H., Ju C.P., 'Effect of carbonization on mechanical and tribological behavior of a copper-phenolic-based friction material', Carbon 43, 2005, pp491-502.
- 56. Howell G.J., Ball A., 'Dry sliding wear of particulate-reinforced aluminium alloys against automobile friction materials', Wear 181-183, **1995**, pp 379-390.
- 57. Ingo G.M., Uffizi M. D, Falso G., Bultrini G., Padeletti G., 'Thermal and microchemical investigation of automotive brake pad wear residues', Thermochimica Acta, Vol.418, Issues 1-2, 2004, pp 61-66.
- 58. Jang jing P, 'Surface characterisation of brake pads after running under silent and squealing conditions', Wear 232, 1999, pp163–167.
- 59. Jia Q.L., Zhangb M.Q., Rongb M.Z., Wetzelc B., Friedrichc K., 'Friction and wear of epoxy composites containing surface modified SiC nanoparticles', Tribology Letter, Vol.20, No.2., 2005, pp115-123.
- 60. Jing Li, Yansheng Yin, Hongtao Ma, 'Preparation and properties of Fe₃Albased friction materials', Tribology International 38, 2005, pp 159–163.
- 61. Jocelyn Pritchard, Overview of Landing Gear Dynamics', Journal of Aircraft Vol. 38, No.1, Jan-Feb. 2001, pp130-137.
- 62. John P.L., S.V.Prasad., A.A.Voevodin, L.S.Zahinski, 'Calcium sulfate as a high termperature solid lubricant', Wear 219, 1998, pp. 155-161.
- 63. Ju C.P., Chern Lin J.H., 'Auger electron microscopy study of transfer film induced in an aircraft braking tribosystem', Materials Chemistry and Physics 44, 1996, pp30-36
- 64. Jun Jiang, Heinz Ulbrich, 'Derivation of coefficient of friction at high sliding speeds from energy conservation over the frictional interface', Wear 247, 2001, pp. 66–75.
- 65. Karyuk G. G., Kolesnichenko L. F., Yuga A. I., Krizhanovskii S. S., Zametailo V. V., 'Frictional properties of materials based on dense modifications of boron nitride', Powder Metallurgy and Metal Ceramics Vol.23, No.9, 1984, pp 727-731.
- 66. Katarzyna Peszynska-Bialczyk, Ken B. Anderson, Szymanski T., Milan Krkoska, Peter Filip, 'Thermal analysis of bulk carbon-carbon composite and friction products derived from it during simulated aircraft braking', Carbon, Vol. 45, Issue 3, 2007, pp524-530.
- 67. Kato T., Sout H., 'Friction materials design for brake pads using database', Tribology Transactions (USA) Vol. 44, Jan., 2001, pp137-141.

- 68. Kennedy F.E., Balbahadur, Lashmore D.S., 'The friction and wear of Cu-based silicon carbide particulate metal matrix composites for brake applications', Wear Vol. 203-204, 1997, pp715-721.
- 69. Kermca M., Kalina M., Vi^{*}zintina J., 'Development and use of an apparatus for tribological evaluation of ceramic-based brake materials', Wear 259, 2005, pp 1079–1087.
- Kima S.J., Choa M.H., Baschb R.H., Fashb J.W., Jang H., 'Tribological properties of polymer composites containing barite (BaSO₄) or potassium titanate (K₂O Æ ₆(TiO₂))', Tribology Letters, Vol. 17, No. 3, 2004, pp 655-661.
- 71. Kinkaid N. M., O'Reilly O.M., Papadopoulos P., 'Review automotive disc brake squeal', Journal of Sound and Vibration 267, 2003, pp105-166.
- 72. Kolesnichenko L. F., Trushko P.V., 'Electron microscopical investigation of the structure of metallic films during heating', Powder Metallurgy and Metal Ceramics Vol. 9 No.1, 1970, pp61-65.
- 73. Kolesnichenko L.F, Trushko P.V., Pugina L.I., Ageeva V.S., Pushkarev V.V, 'Thermal stability of some metallic sulfides in sintered iron base materials', Powder Metallurgy and Metal Ceramics, Vol.11, No.7, **1972**, pp 559-562.
- Kolpakov Ya. V., Krysin B. T., Ignatov L. N., Lebedeva L. P., Mikhailovskii V. A., 'Some problems in the manufacture of sintered iron-base friction materials', Powder Metallurgy and Metal Ceramics Vol.5, No.12, 1966, pp952-954.
- 75. Korol V.N., Bychkov S.A., Molyar A.G., Nechiporenko O.YU., Semenchenko V.P., Romashko I.M., Trofimiv V.A., 'Sintered powder materials for friction units of Antonov Aircrafts', Material Science, Vol.39, 2003, pp132-135.

1.

-2

- 76. Kostornov A.G., Simeonova YU.M., Fushchich O.I. Chevychelova T.M., Sotirov G.E., Kostenko A.D., 'Effects of factors governing dry friction on structure formation for the tribological synthesis zone in composites based on copper', Powder Metallurgy & Metal Ceramics Vol. 44, 2005, pp5-16.
- 77. Kragel'skii V., Silin Ao A., 'The design of low-wear friction materials', Powder Metallurgy and Metal Ceramics Vol.5 No.2, 1969, pp245-248.
- Krishnadas, C. G., Dutta, D., Mohan, G. 'Development of Metalloceramic Friction Materials for aircraft brake', published in proceedings (ISBN 0-87339-251-5) of International Conference on Advanced Composites: Advanced Composites'93, held on Feb. 15-19 at Wollongong (Australia), 1993, pp61-67.
- 79. Kryachek V. M., 'Main trends in the development sintered friction materials in the USSR', Powder Metallurgy and Metal Ceramics Vol.9, No.1, **1970**, pp83-87
- 80. Kryachek V. M., Shvedkov E. L., 'Sintered friction materials based on aluminum bronze-1. Effect of composition and structure of base on the properties of the material', Powder Metallurgy and Metal Ceramics Vol.8 No.9, 1969, pp738-712.
- 81. Kryachek V. M., Shvedkov E. L., 'Sintered friction materials based on aluminum bronze- Part II. Effects of some production technology factors on properties of materials', Powder Metallurgy and Metal Ceramics Vol.8 No.10, 1969, pp829-831.

- 82. Kryachek V.M., Fedorchenko I. M., Aleksandrova A.B., Rovinskii D.Ya., Prikhod'ko L.P., 'Effect of technological factors on the properties of MK-5 friction materials em dash 5. Effect of storage of charge materials and pressed linings on the properties of sintered disks', Powder Metallurgy and Metal Ceramics Vol. 12, No. 12, 1973, pp 967-970.
- 83. Kryachek V.M., Fedorchenko I.M., Aleksandrova A.B., Rovinskii D.Ya., 'Effect of technological factors on the properties of MK-5 friction material em dash 3. Effect of pressing conditions on the structure and frictional and wear properties of sintered disks', Powder Metallurgy and Metal Ceramics Vol. 12, No. 10, 1973, pp 818-821.
- Kryachek V.M., Fedorchenko I.M., Aleksandrova A.B., Rovinskii D.Ya., 'Effect of technological factors on the properties of MK-5 friction material em dash 4. Effect of sintering time on the structure and service properties of sintered disks', Powder Metallurgy and Metal Ceramics Vol. 12, No. 11, 1973, pp 892-894.
- 85. Kryachek V.M., Perepelkin A.V., Shvedkov E.L., 'Relationship between the structure and properties of sintered aluminum bronze base frictional materials', powder metallurgy Vol. 13, No. 9, 1974, pp743-746.
- 86. Kryachek, V.M., 'Friction composites: Traditions and new solutions(review).I, Powder materials', Powder Metallurgy & Metal Ceramics', Vol. 43, Nov-Dec., 2004, .pp581-592.
- 87. Kryachek, V. M., 'Friction composites: Traditions& new solutions (review).parts2. composites', Powder Metallurgy & Metal Ceramics, Vol. 44, Jan.,2005, pp05-16.
- 88. Lars Hammerström, Staffan Jacobson, 'Surface modification of brake discs to reduce squeal problems', Wear, Vol. 261, Issue 1, 2006, pp53-57.
- 89. Lazarev G. E., 'Evaluation of wear resistance of friction materials', Powder Metallurgy and Metal Ceramics Vol.7 No.10, 1971, pp903-905.
- 90. Liu Y.C., Schissler J.M, Mathia T.G., 'The influence of surface oxidation on the wear resistance of cast iron', Tribology International Vol. 28, No. 7, 1995, pp. 433-438,
- 91. Luciano Afferrante, Paolo Decuzzi, 'The effect of engagement laws on the thermomechanical damage of multidisk clutches and brakes', Wear 257, 2004, pp66-72.
- 92. Luise Gudmand-Høyer, Allan Bach, Georg T. Nielsen, Per Morgen, 'Tribological properties of automotive disc brakes with solid lubricants', Wear 232, 1999, pp168–175.
- 93. Malcolm K. Stanford, Vinod K. Jain, 'Friction and wear characteristics of har coatings', Wear 251, 2001, pp990-996.
- 94. Mamedov V., 'Microstructure and mechanical properties of PM Fe-Cu-Sn alloys containing solid lubricants', Powder Metallurgy Vol.47, No.2, 2004, pp173-179.
- 95. Martin Petersson, Tore Vernersson, 'Noise-related roughness on tread braked railway wheels-experimental measurements and numerical simulations', Wear 253, 2002, pp 301–307.
- 96. Martinez M. A., Navarro C., Corti S R., RodrGuez J., S/Kn Ch Ez V.- G ,Lvez, 'Friction and wear behaviour of Kevlar fabrics', Journal of Materials Science 28, 1993, pp 1305-1311.
- 97. McCook N.L., Burris D.L., Dickrell P.L., Sawyer W.G., 'Cryogenic friction behavior of PTFE based solid lubricant composites', Tribology Letters, Vol.20, No.2, 2005, pp109-113.

- 98. Mikael Eriksson, 'Friction and contact phenomena of Disc Brakes Related to squeal', Comprehensive summaries of Uppsala Dissertations from the faculty of science and technology 537, Acta Universitatis Upsaliensis, Uppasala, 2000.
- 99. Mikael Eriksson, Filip Bergman, Staffan Jacobson, 'On the nature of tribological contact in automotive brakes', Wear, Vol. 252, Issues 1-2, 2002, pp26-36.
- 100. Min Hyung Cho, Seong Jin Kim, Daehwan Kim, Ho Jang, 'Effects of ingredients on tribological characteristics of a brake lining: an experimental case study', Wear 258, 2005, pp 1682–1687.
- Mohsen Masoomi, Ali Asghar, Katbab, Hossein Nazockdast, 'Reduction of Noise from Disc Brake using composite friction materials containing thermoplastic elastomers (TPEs)', Applied Composite Materials, Vol.13, No.5, 2006, pp305-319.
- 102. Mohsen Mosleh, Peter j Blau, Delia Dumitrescu, 'Characteristics and morphology of wear particles from laboratory testing of disk brake materials', Wear, Vol. 256, Issues 11-12, 2004, pp1128-1134.
- 103. Murali T. P., Prasad S. V., Surappa M. K., Rohatgi P. K., Gopinath K, 'Friction and wear behaviour of aluminium alloy coconut shell char particulate composites', Wear, Vol.80, Issue 2, 1982, pp149-158.
- 104. **Myalski J.**, Sleziona J., 'Glassy carbon particles as component to modification of tribological properties', Journal of Materials Processing Technology, Vol.175, Issues 1-3, 2006, pp291-298.
- 105. Nadezda M., Talijan, Du'san S. Trifunovic', Dejan D. Trifunovic', 'The influence of different iron powders on the friction properties of sintered friction materials based on iron', Materials Letters 46, 2000, pp255-260.
- 106. Ole von Uexkull, Staffan Skerfving, Reed Doyle, Michael braungart, 'Antimony in brake pads-carcinogenic component?', Journal of Cleaner Production, Vol. 13, Issue 1, January 2005, pp19-31.
- 107. Olesiak, Yu. Pyryev, Yevtushenko A., 'Determination of temperature and wear during braking' Wear 210, 1997, pp120-126.
- 108. Österle W, Griepentrog M., Th. Gross, I. Urban, 'Chemical and microstructural changes induced by friction and wear of brakes', Wear 251, 2001, pp 1469–1476.
- 109. Ostermeyer G.P., 'On the dynamics of the friction coefficient', Wear 254, 2003, pp 852-858.
- 110. **Panaioti I.I.**, Povod V. K., and I. M. Fedorchenko, 'Investigation of phase and structural changes in the surface layers of friction pair materials part 1. Metallographic analysis at optical and superoptical magnifications', Powder Metallurgy and Metal Ceramics Vol.5 No.4, **1966**, pp277-284.
- 111. **Panier S.**, P. Dufrénoy, D. Weichert, 'An experimental investigation of hot spots in railway disc brakes', Wear 256, **2004**, pp. 764–773.
- 112. Peter J. Blau, 'The significance and use of the friction coefficient', Tribology International 34, 2001, pp585-591.
- 113. Peter J. Blau, Brian C. Jolly, 'Wear of truck brake lining materials using three different test methods', Wear 259, 2005, pp 1022–1030
- 114. Peter J. Blau, Harry M. Meyer, 'Case study Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials,', Wear 255, 2003, pp 1261–1269.

- 115. Peter J. Blau, Kenneth G. Budinski, 'Development and use of ASTM standards for wear testing', Wear 225–229 1999, pp1159–1170.
- 116. Potamoshnev I. P., Kravchenko V. G., and Belolipetskii A. Ya., 'Some operational characteristics of sintered friction materials working under conditions of dry and lubricated friction', Powder Metallurgy and Metal Ceramics Vol.2, No.3, 1967, pp83-87.
- 117. **Prochazka V.**, Miskovic V., 'A contribution to the investigation of dry friction of sintered steel', published in 'Perspective in Powder Metallurgy: Friction and Antifriction Materials –Vol. 4', edited by Hausner Henery H., Roll Kempton H., Johnson Peter K.- Plenum Press, New York-London, 1970, pp23-36.
- 118. Prochazka V., Navara E., 'The influence of silica and alumina additions to sintered iron based friction materials', published in 'Perspective in Powder Metallurgy: Friction and Antifriction Materials -Vol. 4', edited by Hausner Henery H., Roll Kempton H., Johnson Peter K.- Plenum Press, New York-London, 1970, pp61-72.
- 119. **Prochazka V.,** Navara E., Miskovic V., Kosta K., 'The influence of copper on the properties of sintered iron-graphite friction materials', published in 'Perspective in Powder Metallurgy: Friction and Antifriction Materials –Vol. 4', edited by Hausner Henery H., Roll Kempton H., Johnson Peter K.- Plenum Press, New York-London, 1970, pp123-127.
- 120. Ramakrishnan P., 'Power Metallurgy: Processing for Automotive, Electrical, Electronic and Engaging Industry', ISBN : 81-224-2030-3, publishers-New age International (P) Ltd., New Delhi, 2007, pp28-39.
- 121. Ramousse, S., Hoj, J.W., Sorensen, O.T, 'Thermal charecterisation of brake pads', Journal of Thermal Analysis & Colorimetry, Vol. 64, 2001, pp933-943.
- 122. Rapoporta L., Nepomnyashchya O., Lapskera I., Verdyana A., Soifera Y., Popovitz-Birob R., Tenneb R., 'Friction and wear of fullerene-like WS₂ under severe contact conditions: friction of ceramic materials', Tribology Letters, Vol. 19, No. 2, 2005, pp143-149.
- Roger Enblom, Mats Berg, 'Simulation of railway wheel profile development due to wear—influence of disc braking and contact environment', Wear 258, 2005, pp1055-1063.
- 124. Rooij M.B. de, Schipper D.J., 'A wear measurement method based on the comparison of local surface heights', Wear 217, 1998, pp 182-189.
- 125. Roussette O., Desplanques Y., Degallaix G., 'An investigation into friction behaviour of dispersion-strengthened copper under severe railway braking conditions', Tribology Letters, Vol 21, No.2, 2006, pp101-105.
- 126. Sanders, P.G., Dalka T, Basch M. R.H., 'A reduced-scale brake dynamometer for friction characterization', Tribology International 34, 2001, pp. 609–615.
- 127. Sands C.R., Shakespeare R.I, 'Powder Metallurgy Practice and Applications', George Newnes Limited, 1966, pp.198-199.
- 128. Seong Jin Kim, Kwang Seok Kim, Ho Jang, 'Optimization of manufacturing parameters for a brake lining using Taguchi method', Journal of Materials Processing Technology 136, 2003, pp 202–208.
- 129. Severin D., Dörsch S., 'Friction mechanism in industrial brakes', Wear 249, 2001, pp771-779.
- 130. Shevchuk, Yu. F., Zozulya, V. D., Khrienko, A.F., 'Friction of materials with additions of substances acting as solid lubricants', Poroshkovaya metallurgiya, Vol. 12 Dec., 1968, pp69-73.

- 131. Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., 'Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad', Wear 256, Issue 11-12, 2004, pp1176-1181.
- 132. Shvedkov E. L., 'Procedure in the control and acceptance testing of friction materials', Powder Metallurgy and Metal Ceramics Vol.11 No.2, 1972, pp146-149.
- 133. Shvedkov E.L., Derkacheva G.M., Panaioti I.I., 'Friction and wear of a sintered iron-phosphorus-base frictional material I. Phenomenology of friction and wear under moderate-load conditions', Powder Metallurgy and Metal Ceramics Vol. 15, No. 1, 1976, pp64-66.
- 134. Shvedkov E.L., Derkacheva G.M., Panaioti I.I., 'Optimization of the manufacture of a sintered iron-phosphorus base frictional material', Powder metallurgy and metal ceramics Vol. 14, No. 4, 1975, pp304-307.
- 135. Shvedkov E.L., Derkacheva G.M., Panaioti I.I., Fushchich O.I., Yaremenko Z.A., 'Friction and wear of a sintered iron-phosphorus-base frictional material II. Mechanism of operation of a rubbing pair under moderate-load conditions', Powder Metallurgy and Metal Ceramics Vol.15, No.2, 1976, pp136-138.
- 136. Sinha S.K., Biswas S.K., 'Frictional characteristics of Al-SiC composite brake disc', Journal of Materials Science, Vol.30, No.9, 1995, pp237-247.
- 137. Sinyavskaya M. D., 'Friction and wear in aggressive media', Powder Metallurgy and Metal Ceramics Vol.2 No.1, 1967, pp58-61.
- 138. So H., 'Characteristics of wear results tested by pin-on-disc at moderate to high speeds', Tribology International 29, No. 5, 1996, pp415-423.
- 139. Stachowiak G.W., Podsiadlo P., 'Classification of Tribological Surfaces', Tribology International, , Vol. 37, 2004, pp. 211-217.
- 140. Straffelini G., Pellizzari M. Molinari A., 'Influence of load and temperature on the dry slinding behaviour of Al-based metal-matrix-composites against friction material', Wear 256, Issues 7-8, 2004, pp754-763.
- 141. Suckchoon Kang, 'A study of friction and wear characteristics of copper- and iron-based sintered materials', Wear 162-164, 1993, pp1123-1128.
- 142. **Talib R.J.**, Muchtar, Azhari C.H., 'Microstructural characteristics on the surface and subsurface of semimetallic automotive friction materials during braking process', Journal of Materials Processing Technology 140, 2003, pp694-699.
- 143. Tatarzycki E.M., Webb R.T., 'Friction and wear of aircraft brakes', ASM Handbook, Vol.18, Friction Lubtrication and Wear Technology, ASM International, The Materials Information Society, 1992, pp582-587.
- 144. **Terheci M.**, Manory R.R., Hensler J.H., 'The friction and wear of automotive grey cast iron under dry sliding conditions Part 2. Friction and wear—particle generation mechanisms and their progress with time', Wear 185, **1995**, pp 119-124.
- 145. Tiwari A. N., 'Composite Materials for Automotive Brakes' in Power Metallurgy: Processing for Automotive, Electrical, Electronic and Engaging Industry;, edited by P. Ramakrishnan, New Age International Pub. New Delhi, 2007, pp 86-102.
- 146. Todorovic J., Duboka C., Arsenic, 'Operational life expectancy of rubbing elements in automotive brakes', Tribology International Vol. 28, No. 7, 1995, pp. 423-432.
- 147. Tyler.G.Hicks, 'Handbook of mechanical engineering calculations-II edition', ISBN 0071458867, 2006, McGraw-hill publications.

- 148. Uyyuru R.K., Surappa M.K., Brusethaug S., 'Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribo-couple', Wear, Vol.260, Issues 11-12, June 2006, pp1248-1255.
- 149. Uyyuru R.K., Surappa M.K., Brusethaug S., 'Tribological behavior of Al-Si-SiC_p composites/automobile brake pad system under dry sliding conditions', Tribology International, Vol. 40, Issue 2, 2007, pp365-373.
- 150. Venkateswaran K., Kamraj M., Rao K.P., 'Wear behavier of Fe3Al intermetallic particle reinforced PM based iron metal matrix composites', Powder Metallurgy 49 March, 15, 2006, pp374-379.
- 151. Vernersson T., 'Thermally induced roughness of tread-braked railway wheels Part 1: brake rig experiments', Wear 236, 1999, pp96–105.
- 152. Vernersson T., 'Thermally induced roughness of tread braked railway wheels, Part 2: modelling and field measurements', Wear 236, 1999, pp106–116.
- 153. Weiss Z., Crelling J.C., Simha Martynková G., Valášková M.and Filip P., 'Identification of carbon forms and other phases in automotive brake composites using multiple analytical techniques', Carbon, Vol. 44, Issue 4, 2006, pp 792-798.
- 154. Werner Osterle, Ingrid Urban, 'Third body formation on brake pads and rotors', Tribology International 39, 2006, pp401-408.
- 155. Y.Lu., 'A Golden Section approach to optimization of automotive friction materials', Journal of Material Science, 38, 2003, pp1081-1085.
- 156. Yafei,Lu, Tang, Choong-Fong, Yonglizhao, Wright Maurice A., 'Optimization of a semi metallic friction material formulation', Journal of reinforced plastics and composites, 23, 2004, pp1537-1545.
- 157. Yang. L.J., 'A test methodology for the determination of wear coefficient', Wear 259, 2005, pp. 1453–1461.
- 158. Yannick Desplanques, Olivier Roussette, G'erard Degallaix, Reynald Copin, Yves Berthier, 'Analysis of tribological behaviour of pad-disc contact in railway braking Part 1. Laboratory test development, compromises between actual and simulated tribological triplets', Wear 262, 2007, pp582-591.
- 159. Yas D. S., Osvetimskii L. A., Dyadenko N. S., Zaporozhets A. A., Belentsova N. A., 'Copper- graphite materials with copper-clad graphite granule additions, (i) effect of bare and copper-clad graphite on the strength characteristics of copper-graphite materials', Powder Metallurgy and Metal Ceramics Vol. no. 19, pp401-405.
- 160. Yas D. S., Osvetimskii L. A., Zaporozhets A. A., Podmokov V. B., Lupanov A. F., 'Effect of copper-clad graphite on the properties of iron base sintered Materials', Powder Metallurgy and Metal Ceramics, Vol.11, No.6, 1972, pp494-497.
- 161. Yevtushenko, Ivanyk E, 'Determination of temperatures for sliding contact with applications for braking systems', Wear 206, 1997, pp 53-59.
- 162. Yuji Enomoto, Takashi Yamamoto, 'New materials in automotive tribology', Tribology Letters 5, 1998, pp13-24.
- 163. Zhang Y.Z., Wu S.J., Liu W.M., Chena Y., Shang B., Guana, X.H., Tie, F. Nia, 'Metallurgical investigations of dry sliding surface layers in phosphorus iron/steel friction pairs', Wear 252, 2002, pp 269–275.
- 164. **Zhao Xingzhong**, Liu Jiajun, Zhu Baoliang, Xue Qunji, Ouyang Jinlin, 'The influence of lubrication on tribological properties of Si₃N₄/1045 steel sliding pairs', Journal of Materials Science 32, **1997**, pp 661-666.

165. Zmago Stadler, Kristoffer Krnel, Tomaz Kosmac, 'Friction behavior of sintered metallic brake pads on a C/C-SiC composite brake disc', Journal of the European Ceramic Society 27, 2007, pp1411-1417.

Research and Business Survey Reports Referred:

Research Reports

RR.1 Research report on 'Compositions, Functions, And Testing of Friction Brake Materials and Their Additives' prepared by Peter J. Balu, Oak Ridge National Laboratory, Oak Ridge, Tennessee, managed by UT-B ATTELLE, LLC, sponsored by U.S. Department of Energy, under contract DE-AC05-000R22725, submitted in August 2001.

MIL D 5013 – US military standard.

Business Survey Report

GB212 R The Friction Products and materials Market, Jan. 17, 2007, by BCC Research

Internet source

- 1 The brake bible, url:http://www.carbibles.com/brake_bible.html
- 2 SAE manual, url:http//www.sae.org/brakes

PATENTS REFERRED:

Ref. No.	Patent	Dated	Title of Patent	Inventers
TICDA1	No.	(yyyy-mm-dd)		
USP01	7094473	2006-08-22	Wear resistant sintered contact	Takemori Takayama,
			material, wear resistant sintered	Kazuo Okamura
			composite contact component and	Yoshikiyo Tanaka,
TIODOO			method of producing the same	Tetsuo Ohnishi
USP02	6439353	2002-08-27	Aircraft wheel brake with	Gerd Roloff,
	+		exchangeable brake segments	Tilman Haug
USP03	6143051	2000-11-07	Friction material, method of	Ole Kraemer,
			preparing same and friction lining	Niels Bramso,
				Erik Simonsen,
				noel De Leon, Knud
				Strande Rolf Tornberg,
				Claes Kuylenstierna
USP04	6110268	2000-07-29	Sintered brake lining and method for	Gerhard Gross,
			its manufacture	Bobingen; Tilmann
				Haug, Uhldingen-
				Muhlhofen
USP05	4576872	1986-03-18	Friction element and method of	Melvyn Ward, Redditch
			manufacture thereof	
USP06	4415363	1983-11-15	Sintered iron base friction material	Keith E. Sanftleben,
				Waler R. Tarr,
USP07	4391641	1983-06-05	Sintered powder metal friction	Herbert W. Lloyd,
			material	Monsey N.Y.
USP08	4350530	1982-09-21	Sintered alloy for friction materials	Nobuo Kamioka,
				Kasukabe
USP09	4311524	1982-01-19	Sintered iron-based friction material	Valery A. Genkin ulitsa
				Gaya, Alexandr A
	1			Dmitrovich, bulvar
				Lunacharakogo, Efim I
				Fishbein Ulitsa
	400000	1001.06.00		Brilevskaya
USP10	4280935	1981-06-28	Friction material comprising an iron	Osao Ogiwara, Hanyu
			powder having a carbon content of	
	10 701 70	1001.06.01	from 0.5-1 percent	
USP11	4278153	1981-06-14	Brake friction material with	Doulatabad A. Venkatu
			reinforcement material	Stow
USP12	3341931	1967-09-19	Brake shoes	Herbert L. Libbin, New
				Shrewsbury, and
				Roswell S. Frichette,
				jr., Ramsey, N.I., and
				Howard B. Huntress,
				Suffern.
IP01	Patent	2006-11-07	A Process for Manufacturing Cermet	Dr. P.S. Misra
	application		Friction Materials / Composites/	Dr. K Chandra
	No.2420/D		Brake Elements with Builtin Backing	
	EL/2006		Plates	
IP02	Patent	2006-11-07	Iron based/ Cermet Friction	Dr. P.S. Misra
	application		Materials/Composites/Brake	Dr. K Chandra
	No.2421/D		Elements with Builtin Backing Plates	
·	EL/2006			
IP03	198715/	Year 2002	Preparation of novel ceramic friction	HAL, Bangalore.
	2002		composites	·

USP-United State Patent

JP -Japanese Patent IP -Indian Patent

.

Annexure Sub scale dynamometer test results (Page A1 to A62)

84 33

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT

Brake pad material -FM08N Date 7/24/2006 Time 2:13:39 PM **Project Name** IIT Rootkee Part No C11C12 **Batch Number** C11C12 Brake Speed 1000 RPM Brake Pressure 17.15 kg/sq.cm Brake Force 150 kgf File Name Testing brake padsss_7_24_2006_2_13_39 PM

	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgt)	(DegC)	(DegC)
Max	17330	106	12.7	0.33	33	86	182	476	0	0
Min	17330	75	9	0.23	24	0	131	0	0	Ø
Avg	17330	84	10.1	0.3	30	51	165	286	0	0

WEAR REPORT

PAD	THICK	NESS in n	າຸກ	WE	GHT IN grams	
No	Initial	Final	Wear	Initial	Final	Wear
1	10,05	9.19	0,86	2488	2472	- 16
2	10.03	8.6	1.43	2492	2472	20

.

Total Number of Cycles completed: 50

DISPOSITION

Released for academic work Wind 2/8/00.

PRODUCTION/DEVELOPMENT :

FOUNDRY AND FORGE DIVISION

···	nanden al - ersse and de anteren gymennen find			FRICTIC	ON TEST F	INAL REPOR	2т			
	1127 de 1764 5 8 4 444,455,556		Date		7/24/2006		· ·			
			Time		2:13:39 PM					
			Project Na	me	IIT Roorkee					
			Part No		C11C12					
			Batch Nun	nber	C11C12					
ļ			Brake Spe		1000	RPM	Dul	1	1 53 (00)	T
			Brake Pres		17.15	kg/sq.cm	Brake pa	ad materia	al -FM08N	1
			Brake For File Name		150 Testing brake pa	Kgf adsss_7_24_200	6_2_13_39 PM			
SI	Kinetic Energy	RD rev.	RD time	Coefficient		Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NÓ	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
1	17330	90	10.8	0.27	27	0	153	0	0	0
2	17330	92	11.0	0.27	27	0	151	0	0	0
3	17330	106 93	12.7	0.23 0.27	24 27	57 56	131	314	0	0
4	17330 17330	89	11.1 10.6	0.27	27	56 60	150 155	309 335	0	0 Q
5	17330	91	10.0	0.28	28 27	55	153	307	0	0
י ו	17330	91	10.9	0.28	27		153	476	0	0
8	17330	81	9.7	0.28	30	70	169	389	0	0
9	17330	80	9.7 9.6	0.31	31	70	169	435		0
10	17330	77	9.3	0.32	32	66	178	367	0	0
11	17330	76	9.2	0.33	32	59	180	329	o	ő
12	17330	78	9.3	0.32	32	61	178	340	0	0
13	17330	75	9.0	0.33	33	57	182	315	0	0
14	17330	85	10.2	0.29	29	48	161	269	0	0
15	17330	77	9.2	0.33	32	54	179	302	0	0
16	17330	77	9.2	0.33	33	54	181	301	0	0
17	17330	77	9.2	0.32	31 -	53	174	293	0	0
18 19	17330	76 80	9.1 9.5	0.33	32 31	53 50	180 173	296 280	0	0
	7330	77	9.3	0.32	32	53	175	296	0 0	0
1.21	17330	79	9.4	0.32	- 32	54	175	298	0	0
1.1	17330	80	9.6	0.31	31	52	172	288	0	0
23	17230	80	9.6	0.32	31	· 57	173	316	0	0
1.1	· 7 º 30	79	9.5	0.32	31	54	174	301	0	o
25	0611	81	9.7	0.31	31	52	171	288	÷ 0 .	0
30	130	80	9.6	0.32	31	52	173	288	0	0
	17330	82	9.9	0.31	30	52	168	287	0	0
28	17330 17330	81 79	9.7 9.5	0.30	30 30	48 55	167	265	0	0
30	17330	82	9.5	0.31	30	55	169 169	307 285	0	0
31	17330	84	10.1	0.30	30	49	166	273	0	0
32	17330	86	10.3	0.30	29	52	162	290	0	l õ
33	17330	84	10.1	0.30	30	54	165	299	Ő	ŏ
34	17330	85	10.1	0.30	30	50	165	278	0	0
35	17330	82	9.9	0.30	30	47	166	261	0	0
36	17330	85	10.1	0.30	30	50	164	280	0	0
37	17330	85	10.2	0.30	29	60	164	333	0	0
38	17330	85	10.2	0.30	30	50	. 164	280	0	0
39	17330	85	10.2	0.30	29	64	163	357	0	0
40		87 86	10.4 10.3	0.29 0.30	29 29	46	161	254	0	0
41		86	10.3	0.30	29	47 50	163 161	262	0	0
42		86	10.3	0.29	29	49	160	279	0	0
44		88	10.5	0.29	29	45	159	246	0	0
45		87	10.3	0.29	29	46	161	256	0 0	0
46		89	10.7	0.29	28	48	158	265	0	ŏ
47		88	10.5	0.29	29	41	161	227	Ō	0
48	17330	91	10.9	0.28	28	49	154	273	0	0
49		90	10.8	0.28	28	39	156	218	0	a
50	1'/330	89	10.7	0.29	28	41	158	226	0	0

٨	2
А	-)

HAL

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT Date 7/31/2006 Time 6:51:21 PM Project Name **IIT ROORKEE** Brake pad material -FM08N Part No C11C12 HIGH Batch Number C11C12 HIGH Brake Speed 1300 RPM **Brake Pressure** 17.79 kg/aq.cm Brake Force 150 kgf C11C12 HIGH_7_31_2006_6_51_21 PM **File Name** Kin Jc Energy RD time | Coefficient| Mean Torque | Peak Torque | Mean Drag | Peak Drag | Pad1-Temp | Pad2-Temp RD rev. (ligfm) 19158 (Sec) of friction (kgfm) (kgfm) (kgf) (kgf) (DegC) (DegC) Max 184 17 0.31 31 84 170 354 ñ Min 139 29158 12.8 0.23 24 38 133 197 ñ Ö 165 15.2 26 Avg 29158 0.26 A6 147 252 Ô WEAR REPORT THICKNESS in mm WEIGHT IN grams PAD No Initial Final Wear Initial Final Wear 2471 2468 9.15 6.89 2.28 2430 1 41 2.01 2433 2 8.79 6.78 35 **Total Number of Cycles completed:** 50 Released for academic work Reine 2/8/06 : DISPOSITION PRODUCTION/DEVELOPMENT :

•

· .

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

tut u din 1574				FRICTI	ON TEST F	INAL REPOR	रा	· ·		
			Date Time Project Na Part No Batch Nun Brake Spe Brake Pres Brake Ford File Name	nber ed ssure ce	7/31/2006 6:51:21 PM IIT ROORKEE C11C12 HIGH C11C12 HIGH 1300 17.79 150 C11C12 HIGH_7	RPM kg/sq.cm Kgf _31_2006_6_51_	-	d material	-FM08N	
SI	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-T
NO ·	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(Deg
1	29158	157	14.5	0.28	28	60	154	334	0	0
2	29158	145	13.3	0.30	30	64	165	354	0	0
3	29158	144	13.3	0.30	30	61	166	336	0	0
4	29158	149	13.8	0.28	28	54	158	298	0	0
5	29158	139	12.8	0.31	31	61	170	338	0	0
6	29158 -	156	14.4	0.28	28	52	154	290	0	0
7	29158	149	13.7	0.29	29	57	161	316	U	0
8	29158	148	13.6	0.29	29 20	49	162 160	271 287		0
9	29158 29158	148 152	13.7 14.0	0.29	29 28	52 51	157	287		0
10		152	13.9	0.28	29	49	160	272	l o	o
11	29158 29158	151	14.3	0.29	28	56	155	312	0	Ő
13	29158	153	14.1	0.28	28	46	156	256	0	0
14	29158	158	14.6	0.27	27	41	151	226	0	0
15	29158	156	14.4	0.27	28	49	154	272	0	0
16	29158	158	14.6	0.27	28	44	153	244	0	0
17	29158	158	14.6	0.27	27	43	152	240	0	0
18	29158	158	14.5	0.27	27	43	152	238	0	0
19	29158	156	14.4	0.27	28	40	154	224	0	0
1.26	29158	159	14.6	0.27	27	45	152	249	0	0
	29158	166	15.3	0.26	26	48	146	265	0	0
1/22	29158	163	15.0	0.26	27	54	148	301	0	0
23	2916e	161	14.9	0.27	27	47	150	262 225	l õ	0
2		164	15.2	0.26	26	40	147	225	0 0	C C
1 25	244,818	162	14.9	0.26	26	40 42	140	233	0	C C
20	2011	169	15.6	0.26	26 26	42	146	258	0	l č
21	1 29168	167 170	15.4 15.7	0.26	26	48	143	269	ō	c c
28	29158 29158	168	15.7	0.25	26	38	144	213	0	C C
29	29158	165	15.5	0.25	26	42	146	235	D	
31	29158	173	16.0	0.25	25	40	141	221	0	(
32	29158	171	15.8	0.25	26	46	142	256	0	(
33	29158	171	15.8	0.25	26	46	142	254	0	(
34	29158	173	15.9	0.25	25	40	141	221	0	(
35	29158	174	16.1	0.25	25	41	140	225	0	1 1
36	29158	175	16.1	0.25	25	37	140	208	0	
37	29158	176	16.3	0.24	25	41	137	227	0	
38	29158	175	16.1	0.24	25	47	139	260	0	
39	29158	180	16.6	0.24	24	40	135	220	0	1
40	29158	180	16.7	0.24	24	39	136	214 253	0	
41	29158	179	16.5	0.24	24	46	136 138	253	0	}
42	29158	178	16.5	0.24	25 25	. 39 	130	218	0	1
43	29158	178	16.5	0.24	25	36	137	204	0	1
44	29158	183	16.9	0.23	24	41	135	202	0	
45	29153	179 177	16.6	0.24	24	40	139	220	0	
46	29153 29158	178	16.4 16.4	0.24	25	37	138	207	0	
48	29158	184	17.0	0.23	24	36	134	197	0	1
49	29158	181	16.7	0.24	25	36	136	200	0	
50		180	16.7	0.24	24	40	136	224	0	1

-						FORGE DIVISIO					
			F	RICTION	TEST CO	NSOLIDATED	REPORT				-
			Date Time Project N Part No Batch Nu Brake Sp Brake Pr Brake Fo File Nam	imber beed essure brce	7/25/2006 3:39:40 PM IIT Roorke C21C22 C21C22 1000 17.39 150 C21C22_7_20	A	Brake pa	d materia	al -FM0)9N	
Ķ	Service Energy	RD rev.				ue Peak Torqu					
	(Ligfm)	135	(890)	of friction 0.37		(kgfm)	(kgf)	(kgf)	(Deg	<u>c)</u>	(DegC)
••	17330	72	16.2 8.6	0.19	35	66 17	192 106	366	0		0
	17330	123	14.8	0.21	21	43	117	241	0		0
	TUCK	NESS In	WEAR R		EIGHT IN gran	ne I	٦				
┢	initial	Final	Wear	Initial	Final	Wear	4				
Ĺ	9.95	8.65	1.3	2473	2452	21	1				
	10	8.38	1.62	2467	2441	26]				
	al Number of	Cycles co	mpleted:	50							
To	POSITION		:	Ruel	eased	for ac m2 2/8/06	oden:	c Wor	K .		
					URI	M_L					
DI	ODUCTION/D	evelopn	AENT :			2/8/06	٩				
DIS	oduction/di	Evelopn	RENT :			2/8/06	٩				

FOUNDRY AND FORGE DIVISION

}										
				FRICTI	ON TEST F	INAL REPOI	RT			
			Dato Time Project Na Part No Batch Nun Brako Spe Brako Pre: Brako Fon Filo Namo	nbor Iod Scuro Co	7/25/2006 3:39:40 PM IIT Roorkee C21C22 C21C22 1000 17.39 150 C21C22_7_25_2	RPH kg/sq.cm Kgf 006_3_30_40 Pk	-	ad materi	al -FM091	4
	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)		(500)	of friction	(kgfm)	(kgfm)	(kạf)	(kqf)	(DegC)	(DegC)
1	17330	72	8.6	0.38	35	58	192	320	Ó	0
2	17330	72	8.6	0.37	34	57	191	317	0	0
3	17330	86	10.4	0.30	29	56	180	309	0	0
4	17330 17330	90 99	10.8 11.9	0.28 0.25	27 25	55 54	162 137	308 301	0	0
6	(1		0
7	17330 17330	105	12.6	0.24 0.23	24	51	131	284	0	0
8	17330	110	13.2 13.8	0.23	23 22	56 46	127 123	366 254	0	0
9	17330	118	13.0	0.22	22	40 48	123	286	0	0
10	17330	121	14.5	0.21	21	62	117	345	ŏ	0
11	17330	123	14.7	0.21	21	47	116	262	ŏ	ŏ
12	17330	124	14.8	0.21	21	47	115	258	Ō	Ō
13	17330	125	15.0	0.20	20	43	114	240	0	0
14	17330	126	15.1	0.20	20	61	111	337	0	0
15	17330	130	15.6	0.20	20	63	110	348	0 .	0
16	17330	130	15.6	0.20	20	42	109	235	0	0
17	17330	130	15.6	0.20	20	45	110	248	0	0
18	17330	132	15.9	0.19	19	- 39	107	218	0	0
19	17330	129	15.5	0.19	20	40	109	224	0	0
20	17330	132	15.9	0.19	19	39	108	218	0	0
21	17330	130	15.6	0.20	20	17	109	94	0	0
22	17330	133	15.9	0.19	19	42	107	235	0	0
23	17330	133	16.0	0.19	19	50 41	107 109	230	0	0
24 25	17330 17330	131 132	15.7 15.8	0.20	20	41	109	230	0	0
26	17330	130	15.8	0.20	20	41	110	230	0	Ö
27	17330	128	15.4	0.20	20	36	110	199	ŏ	0
28	17330	130	15.6	0.20	20	36	110	198	0	ŏ
29	17:330	127	15.3	0.20	20	37	111	206	0	ŏ
30	17:330	135	16.2	0,19	19	54	106	303	0	Ō
31	17:330	134	16.0	0.19	19	38	107	208	0	· 0
32	17:330	127	15.2	0.20	20	38	110	209	0	0
1 53	17:130	132	15.8	0.19	19	37	107	203	0	0
1 34	1/030	132	15.9	0.19	19	40	108	221	0	0
25 36	17'030 17'030	131 131	15.8	0.19	20	38 38	109 108	211	0	0
37	17030	133	15.7	0.19 0.19	20 19	37	108	212 205	0	0
38	17330	129	15.5	0.20	20	38	110	205	0 0	0
39	17:130	130	15.5	0.20	20	40	110	222	ő	0
40	17:330	129	15.4	0.20	20	37	111	203	ŏ	0
41	17330	127	15.2	0.20	20	39	112	217	ŏ	Ō
42	17330	127	15.2	0.20	20	38	111	214	ŏ	0
43	17330	131	15.7	0.20	20	37	110	205	Ó	Ō
44	17330	129	15.4	0.20	20	38	111	210	0	0
45	17330	128	15.4	0.20	20	41	110	228	0	0
46	17330	129	15.5	0.20	20	35	111	194	0 .	0
47	17330	129	15.4	0.20	20	38	111	213	0	0
48	17330	124	14.8	0.20	20	37	113	204	0	0
49	17330	127	15.3	0.20	20	37	113	204	0	0
50	17330	125	15.0	0.20	21	38	115	200	0	0

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT

- Date Time Project Name Part No Batch Number Brake Speed Brake Pressure Brake Force File Name
- 6:33:38 PM IIT ROORKEE B: C21C22 HIGH C21C22 HIGH 1300 RPM 17.93 kg/eq.cm 150 kgf C21C22 HIGH_7_31_2006_6_33_38 PM

7/31/2006

Brake pad material -FM09N

	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
[(kgfm)		(Sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Nex	2:91 58	209	19.3	0,27	28	58	154	322	0	0
elin	291 58	156	14.4	0.2	21	- 34	117	190	0	0
Ave	:1 58	194	17.9	0.22	23	42	127	234	0	0

WEAR REPORT

PAD	THIC	KNESS in n	nm	WEIC	GHT IN grams	
No	Inklai	Final	Wear	Initial	Final	Wear
1	8.59	6.74	1.85	2451	2423	28
2	8.25	5.33	2.92	2439	2393	46

50

Total Number of Cycles completed:

DISPOSITION

Released for academic work

PRODUCTION/DEVELOPMENT :

FOUNDRY AND FORGE DIVISION

 										
				FRICTI	ON TEST F	INAL REPOI	RT			
			Dato Time Project Na Part No Batch Nun Brako Spc Brako Pro Brako Fon Filo Namo	nbor od saure co	7/31/2006 5:33:38 PM IIT ROORKEE C21C22 HIGH C21C22 HIGH 1300 17.93 150 C21C22 HIGH_7	RPM kg/sq.cm Kgf _31_2005_6_33,	·	ad materi	al -FM091	1
SI	Cheffe Inergy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgim)		(000)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DogC)	(DegC)
1	191158	156	14.4	0.27	28	51	154	284	0	0
2	. <u>#9</u> 158 .#9158	166 182	15.4 16.8	0.25 0.23	26 24	48 45	145 133	267 248	0	0
4	.29158	190	17.6	0.23	23	40	128	240	0	0
5	29158	192	17.8	0.22	23	41	126	225	0	ŏ
6	29158	199	18.3	0.21	22	45	123	249	0	0
7	29158	199	18.4	0.21	22	45	123	253	0	0
8	29158	198	18.2	0.22	22	43	124	237	0	0
9	29158	209	19.3	0.20	21	43 41	117 123	238 227	0	0
10	29158 29158	198 196	18.3 18.1	0.21 0.22	22 23	40	123	220	0	0
11	29158	199	18.4	0.22	23	43	122	237	ŏ	ŏ
13	29158	202	18.7	0.21	22	39	121	217	Ō	0
14	29158	200	18.5	0.21	22	37	122	207	0	0
15	29158	207	19.1	0.21	21	34	119	190	0 -	0
16	29158	197	18.1	0.22	22	38	125	208	0	0
17	29158	200	18.4	0.21	22 22	37 50	122 125	205 278	0	0
18	29158 29158	192 195	17.8 18.0	0.22	23	38	128	209	ŏ	ŏ
20	29158	195	18.0	0.22	23	38	126	212	0	0
21	29158	196	18.1	0.22	23	45	125	251	0	0
22	29158	198	18.3	0.21	22	39	123	217	0	0
23	29158	197	18.1	0.22	23 .	38	125	210	0	0
24	29158	198	18.3	0.22	22 23	40	124 126	220 215	0	0
25	29158 29158	195 199	18.0 18.4	0.22	23	40	124	221	ŏ	ō
26 27	29158	187	17.3	0.22	23	44	129	246	Ō	0
28	29158	194	17.9	0.22	23	45	125	248	0	0
29	29158	206	19.1	0.21	21	39	119	215	0	0
30	29158	202	18.6	0.21	22	44	122	244	0	0
31	29158	198	18.3	0.22	22	40	124	224 226	0	0
32	29158	194	17.9	0.22	23 22	41	127	240	0	0
33	29158 29158	199 199	18.4 18.4	0.21	22	40	124	222	0	ŏ
34	29158	202	18.6	0.21	22	39	123	215	Ō	Ő
36	29158	198	18.1	0.22	22	39	125	214	0	0
37	23158	198	18.3	0.22	22	42	125	233	0	0
30	158	187	17.3	0.23	24	41	131	229	0	0
1 0		193	17.8	0.22	23	42 42	128 131	233 233	0	0
40 41		189 189	17.4 17.4	0.23 0.23	24	42	131	255	0	l õ
		187	17.3	0.23	24	44	132	243	0	0
40		196	18.1	0.22	23	41	128	228	0	0
44	23158	185	17.1	0.23	24	43	134	238	0	0
1 45	23158	186	17.2	0.23	24	58	133	322	0	0
46		185	17.1	0.23	24	55	134	303		0
47		188	17.4	0.23	24	42 42	131 132	231 231	0	0
48		188 194	17.3 17.9	0.23	24 23	42	132	231	0	ŏ
49		182	16.8	0.22	23	40	136	224	0	0
<u> </u>	20100	1 102	1 10.0	1 V+8+"Y						

,

						· · · · · · · · · · · · · · · · · · ·				A-
Ś	कहिए।	ल	HINDU		ι	LIMITED -	BANGALO	ORE		
y.	T HAI	L		FOUN	DRY AND FOI	RGE DIVISION				
			F	RICTION	TEST CONS	OLIDATED	Report			
			Date Time Project N Part No Batch Nu Brake Sp Brake Pro	imber Need	7/25/2006 5:18:01 PM IIT Roorkee C31C32 C31C32 C31C32 1000 16.8	RPM kg/sq.cm	Brake j	pad mater	rial -FM O	9N
			Brake Fo File Nam	rce	150	kgf 006_5_18_01 PM				
					<u> </u>					
	Kinetic Energy	RD rev.	RD time	Coefficient		Peak Torque	Mean Drag			Pad2-Temp
	(kgfm)		(SOC)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC) 0	(DegC) 0
x	17330 17330	127	16.3	0.36	<u>34</u> 20	<u>72</u> 49	192	398	0	0
	17330	83	10	0.31	30	61	169	341	0	0
					•					
			WEAR R	EPORT						
D	THICK	NESS in	mm	1 WE	IGHT IN grams	T	· · ·			
)	Initial	Final	Wear	initial	Final	Wear				
12	9,38	8.59 8.62	1.27	2460 2468	2442 2447	18 21				
1	otal Number of	Cycles co	ompleted:	50			•		,	
I	DISPOSITION		:	Rel	eased	for 0	cade	mie -	work	
ł	PRODUCTION/D	EVELOPI	WENT :			for a	218	fus		
							- 1 -			
							- 1 -	-		

•

FOUNDRY AND FORGE DIVISION

	FRICTION TEST FINAL REPORT														
	Dato 7/25/2006 Time 5:18:01 PM Project Name IIT Roorkee Part No C31C32 Batch Number C31C32 Brako Spood 1000 RPM Brake pad material -FM10N Brako Pressure 16.8 kg/sq.cm Brake pad material -FM10N Brako Force 160 Kg/ Filo Name C31C32_7_26_2006_6_18_01 PM SI Kinetic Energy RD rev. RD time Coefficient Mean Torque Peak Torque Mean Dreg Peak Drag Pad1-Temp Pad2-Temp														
SI	Kinetic Energy	RD rev.	RD time	Coofficient	Moan Torquo	Poak Torque	Mean Drag	Poak Drag	Pad1-Tomp	Pad2-Temp					
NO	(kgfm)		(80C)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DogC)	(DegC)					
1	17330	127	15.3	0.20	20	50	112	279	0	0					
2	17330	108	13.0	0.24	24	49	132	274	0	0					
3	17330 17330	104 103	12.5 12.3	0.25 0.25	24 25	52 54	135 138	288 299	0	0					
5	17330	99	12.3	0.25	25	55	138	305	0	0					
6	17330	97	11.6	0.20	26	55 52	145		0	-					
7	17330	97	11.6	0.27	20 26	52 57	140	290 317	0	0					
8	17330	97	11.0	0.28	20 27	57 54	144	317 300	0	0					
9	17330	92	11.1	0.28	27	54	150	300	0	ŏ					
10	17330	90	10.8	0.28	27	64	152	355	ŏ	ŏ					
11	17330	90	10.8	0.29	28	61	156	336	ō ·	ŏ					
12	17330	91	11.0	0.28	27	61	152	340	0	0					
13	17330	86	10,3	0.29	28 、	60	157	335	0	0					
14	17330	90	10,8	0.29	28	61	155	340	0	0					
15	17330	86	10.3	0.30	29	58	161	324	0	0					
16	17330	91	10,9	0.28	28	62	153	346	0	0					
17	17330	88	10.5	0.29	28	60	158	332	0	0					
18	17330	82	9.9	0.31	30	63	165	348	0	0					
19	17330	82	9.8	0.31	30 31	58 59	169 171	324 327	0	0					
20	17330	81	9.7	0.32	31	59 59	181	328	0	ő					
21	17330	78	9.1 9.5	0.34	33	60 60	174	336	0	0					
22	£330 5,330	81	9.5	0.32	30	68	169	380	0						
24	17030	77	9.2	0.31	32	60	180	333	o	ō					
25	17330	80	9.5	0.34	31	68	174	376	ŏ	o					
26	17330	79	9.4	0.33	31	64	174	353	ŏ	ő					
27	17330	75	9.0	0.34	33	65	183	361	o	ŏ					
28	17330	77	9.2	0.34	32	65	180	359	Ó	0					
29	17330	78	9.3	0.34	32	66	180	369	0	0					
30	17330	76	9.1	0.34	33	70	183	392	0	0					
31	17330	76	9.1	0.34	33	64	182	358	0	0					
32	17330	75	9.0	0.34	33	71	182	394	0	0					
33	17330	75	.8.9	0.35	34	61	186	341	0	0					
34	17330	76	9.2	0.34	33	61	181	340	-0	0					
35	17330	79	9.4	0.33	32	62	179	343	0	0					
36	17330	77	9.2	0.34	33	62	182	342	0	0					
37		76	9.1	0.34	33	67	183	370	0	0					
38		· 76 78	9.1	0.34	33 33	63 61	184 183	351 340	0	0					
40		78	9.1	0.34	33	66	184	366	0	0					
41		70	8.7	0.34	34	72	192	398	0	0					
42		74	8.9	0.35	34	67	188	374	ŏ	0					
43		77	9.2	0.35	33	85	183	381	0	0					
44		75	9.0	0.35	33	62	186	343	ŏ	0					
45		74	8.8	0.36	34	60	191	334	ŏ	0					
48		75	8.9	0.34	33	66	184	368	ŏ	ŏ					
47		79	9.4	0.33	32	64	180	356	ŏ	ŏ					
48		74	8.9	0.35	34	61	190	337	ŏ	o					
49		77	9.3	0.34	33	63	183	352	0	ō					
50		77	9.3	0.34	33	64	181	356	0	0					

A-11

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

	<u></u>									
			Ff	RICTION	TEST CONSO	DLIDATED (REPORT			
-			Date Time Project N Part No Batch Nu Brake Sp Brake Pro Brake Fo File Name	imber Ged SSSUTO Irce	18.02	RPM kg/sq.cm kgf	Brake pac 56 PM	1 materia	–FM10N	
824 V 86 141	Kinatic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
	(xgfm)		(\$90)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Max	:9158	178	16.5	0.28	29	63	161	362	0	0
Min	:19158	150	13.9	0.24	25	47	136	258	0	0
Avg	29158	163	15	0.26	27	54	160	299	0	0
			WEAR R				•			
PAD		NESS in n			IGHT IN grams		1			
No	Initial	Final	Wear	Initial	Final	Wear	f ·			
1	8.37	5.88	2.49	2441	2402	39	Į			
2	8.6	5.98	2.62	2448	2405	41	ł			•
	Total Number of (DISPOSITION	Cycles co	mpleted:	50 Re	Quase	d for	acad	bric	word	<
	DISPOSITION PRODUCTION/DI	EVELOPM		y.	lease	Q n	<u>.</u>			

.

FOUNDRY AND FORGE DIVISION

				FRICTI	ON TEST F	INAL REPOI	रा.						
			Date		7/31/2005								
			Timo		4:20:56 PM								
			Projoct No	ime	IT ROORKEE								
			Part No	- h	C31C32 HIGH								
			Batch Nur Brake Spo		C31C32 HIGH								
			Brake Pro			RPM kg/sq.cm	Brake p	ad materi	al –FM10	N			
			Brako For			Kaf							
			Filo Namo		C31C32 HIGH_7	_31_2006_4_20_	66 PM						
SI	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	.Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp			
NO	(kgfm)		(000)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)			
1	29158	167	15.4	0.25	26	49	145	271	0	0			
2	29158	169	15.6	0.25	26	53	- 144	296	0	0			
3 4	29158 29158	177 175	16.3 16.2	0.24 0.24	25 25	47 48	138 139	258 267	0	0			
5	29158	170	15.7	0.24	26	40	143	259	o l	0			
6	29158	172	15.9	0.25	25	48	141	267	0	Ō			
7	29158	162	15.0	0.26	27	48	148	289	0	0			
8	29158	166	15.3	0.26	26	51	147	282	0	0			
9	29158	165	15.2	0.26	27	50	148	279	0	0			
10 11	29158 29158	161 159	14.9 14.7	0.26	27 27	58 48	148 153	312 265	0	0			
12	29158	154	14.3	0.27	28	52	157	289	ŏ	ō			
13	29158	158	14.5	0.27	28	53	154	297	Ō	0			
14	29158	153	14.1	0.27	28	53	155	293	0	0			
15	29158	154	14.3	0.28	28	51	157	286	0	0 0'			
16	29158	· 153	14.1	0.28	29 29	54 63	159 159	301 352	0	0			
17 18	29158 29158	154	14.0	0.28	29	59	160	330	ŏ	Ō			
19	29158	150	13.9	0.28	29	59	159	330	0	0			
20	29158	155	14.3	0.27	28	60	157	331	0	0			
21	29158	151	13.9	0.28	29	57	161	318	0	0			
22	29158	156	14.4 14.3	0.27	28	55 58	156 157	307 320	0	ŏ			
23 24	29158 29158	155 151	14.3	0.27	29	59	161	331	ŏ	õ			
25	29158	158	14.6	0.27	28	55	155	308	0	0			
26	29158	160	14.8	0.27	27	51	153	285	0	0			
27	29158	162	14.9	0.27	27	58	152	324	0	0			
28	29158	161	14.9	0.26	27	54 58	151 154	301 322	0	0			
29	29158 29158	153 158	14.2	0.27	28	53	155	293	. 0	0			
31	29158	158	14.6	0.27	28	56	155	313	Ō	Ō			
32	29158	165	15.2	0.26	27	55	149	305	0	0			
33	29158	159	14.7	0.27	28	54	154	303	0	0			
34	29158	162	14.9	0.26	27 26	60 53	152 147	334 294	0	0			
35	29158 29158	164	15.1 14.9	0.26	20	60	153	334	0	Ő			
37	29158	168	15.5	0.25	26	54	146	298	0	Ö			
38	29158	164	15.1	0.26	27	56	150	309	0	0			
39	29158	168	15.5	0.26	27	53	147	292	0	0			
40	29158	169	15.6	0.25	26	50 58	147 150	275 323	0	0			
41 42	29158 29158	163 173	15.0 16.0	0.26 0.25	27 26	50	150	280	0	ŏ			
43	29158	173	16.0	0.24	25	55	142	307	0	ō			
44	29158	174	16.0	0.25	26	54	142	302	Ō	0			
45	29158	171	15.8	0.25	26	53	145	295	0	0			
46	29158	174	16.0	0.25	26	50	143	279	0	0			
47	29158	173	16.0	0.25	26	50 53	144	276 296	0	0			
48		169 168	15.6 15.5	0.25 0.25	26 28	53	140	290	0	0			
50		178	16.5	0.24	25	51	139	281	ŏ	ŏ			

	A RU HA		HINDU		1	S LIMITED - DRGE DIVISIOI		ORE		
			F	RICTION	TEST CON	SOLIDATED	REPORT			
			Date Time Project N Part No Batch Nu Brake Sp Brake Pr Brake Fo File Nam	umber beed essure brce	7/26/2006 10:34:41 AM IIT Roorkee C41C42 C41C42 1000 17.68 160 C41C42_7_26_2	RPM kg/sq.cm kg1 2006_10_34_41 Al		d materia	al –FM111	N
		<u>-</u>			······································					
	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Tem
	(kgfm)		(80C)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
lax lin	17330 17330	<u>115</u> 74	13.8 8.8	0.34	<u>34</u> 22	82	158	454	0	0
vg	17330	101	12.1	0.25	25	52	141	288	0	0
0	THICK	NESS in I	WEAR R		IGHT IN grams		· . I			
1	Initial	Final	Wear	Initial	Final	Wear				
2	9.95 9.94	<u> </u>	9.95	2473 2466		2473 2466				
	otal Humber of		iENT :	50 K	leleas	ed A	or aca	do mic 1 B	= W00	ſk

,

.

HINDUSTAN AERONAUTIČS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

				FRICTI	ON TEST F	INAL REPO	RT						
	Date 7/26/2006 Timo 10:34:41 AM Projoct Name WT Roorkee Part No C41C42 Batch Number C41C42 Brako Spood 1000 RPH Brako Prossure 17.68 kg/sq.cm Brake pad material -FM11N Brako Prossure 150 Kgf File Name C41C42_7_25_2006_10_34_41 AM SI Kinetic Energy RD rev. RD time Coofficient Mean Torque Peak Torque Mean Drag Peak Drag Pad1-Temp Pad2-Temp												
SI	Kinetic Energy	RD rev.	RD timo	Coefficient	Moon Torquo	Poak Torque	Moan Drag	Peak Drag	Pad1-Temp	Pad2-Temp			
NO	(kgfm)		(800)	of friction	(kgfm)	(kgfm)	(kgf)	(kaf)	(DegC)	(DegC)			
1	17330	86	10.3	0.29	20	64	164	356	0	0			
2	17330	84	10.1	0.29	29	60	162	331	0	0			
3	7330 17330	82 78	9.8 9.4	0.31 0.32	30 32	69 82	168 176	382 454	0	0			
5	7330	74	8.8	0.34	34	70	188	388	0	0			
8	7330	80	9.5	0,30	30	65	169	363	0	õ			
7	17330	83	9.9	0.30	30	80	168	332	0	ŏ			
0	7330	85	10.1	0.30	29	77	164	425	ō	0 ·			
1 9	7330	89	10.7	0.28	28	54	155	300	0	0			
10	7330	97	11.6	0.26	26	50	143	276	0	0			
1 1	7330	104	12.5	0.24	24	46	135	258	0	0			
12	7330	104	12.5 12.5	0.24 0.24	24 24	52 48	135	286	0	0			
14	7330	104	12.5	0.24	24	40 50	134 137	267 280	0	0			
15	7330	110	13.2	0.23	23	47	129	260	. 0	. 0			
16	7330	108	12.9	0.23	24	45	131	251	ŏ	ŏ			
17	17330	106	12.7	0.23	24	48	132	266	ŏ	ŏ			
18	17330	109	13.0	0.23	23	47	130	258	Ō	Ō			
19	17330	112	13.4	0.23	23	44	127	246	0	0			
20	17330	111	13.3	0.23	23	. 47	129	259	0	0			
21 22	17330 17330	115	13.8	0.22	22	56	124	309	0	0			
23	17330	109	13.1 13.0	0.23 0.24	23 24	44 52	130 131	246 287	0	0			
24	17330	107	12.9	0.24	24	51	133	283	0	0			
25	17330	106	12.7	0.24	24	44	134	247	ö	ŏ			
26	17330	103	12.3	0.24	24	52	136	289	ŏ	ō			
27	17330	105	12,6	0.24	24	48	136	265	o	0			
28	17330	107	12.9	0.24	24	49	133	270	o	Ō			
29	17330	107	12.9	0.24	24	46	133	257	0	0			
30	17330	105	12.8	0.24	24	46	135	256	0	0			
31	17330	106	12.7	0.24	24	47	135	262	0	0			
32	17330 17330	103	12.4 12.9	0.24 0.24	25 24	49 48	139	271	0	0			
34	17330	108	12.9	0.24 0.25	24 25		132	266	0	0			
35	17330	102	13.1	0.25	25 24	49 45	140 132	274	0	0			
36	17330	107	12.9	0.24	24	56	133	310	0	0			
37	17330	107	12.9	0.24	24	45	134	251	ŏ	õ			
38	17330	103	12.3	0.24	25	47	138	264	Ō	Ō			
39	17330	107	12.8	0.24	24	44	135	244	0	0			
40	17330	103	12.4	0.25	25	47	139	259	0	0			
41	17330 17330	108 103	12.7 12.3	0.24	24	52	138	290	0	0			
43	17330	100	12.0	0.25 0.26	25 28	44	139	244	- 0	0			
44	17330	98	11.8	0.26	26 26	72 54	144 145	400 299	0	0			
45	17330	107	12.8	0.24	24	45	135	248	0	0 0			
48	.7330	105	12.6	0.24	25	48	138	240	0	0			
47	17330	101	12.1	0.25	25	48	142	268	0	0			
48	7330	98	11.8	0.25	26	47	143	259	o	0			
49	7330	104	12.4	0.25	25	46	140	257	Ō	Ö			
50	7330	99	11.9	0.26	26	48	146	269	Ō	Ō			

A-15

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT

- Date Time Project Name Part No Batch Number Brake Speed Brake Pressure Brake Force File Name
- 7/31/2006 9:45:54 PM IIT ROORKEE Br; C41C42 HiGH C41C42 HiGH 1300 RPM 18.07 kg/sq.cm 160 kgf C41C42 HiGH_7_31_2006_9_45_54 PM

Brake pad material -FM11N

	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
<u> </u>	(kgfm)		(800)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Max	29158	214	19.8	0.31	31	58	173	322	0	0
Min	29158	141	13	0.2	21	40	117	223	0	.0
Avg	29158	189	17.A	0.23	24	48	132	268	0	0

WEAR REPORT

PAD	THIC	KNESS in n	WEIG			
No	Initial	Final	Wear	Initial	Final	Wear
1	7.51	2.68	4.83	2435	2356	79
2	7.28	2.84	4.44	2426	2362	64

:

50

Total Number of Cycles completed:

DISPOSITION

Released for a cademic work Reins 2 2/2/06

PRODUCTION/DEVELOPMENT :

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

				FRICTIO	ON TEST F	INAL REPOR	रा	<u></u>		
			Date Time Projoct Na Part No Batch Nun Brako Spe Brako For Filo Namo	nber od ssure co	7/31/2006 9:45:54 PM IIT ROORKEE C41C42 HIGH C41C42 HIGH 1300 18.07 160 C41C42 HIGH_7	RPM kg/sq.cm Kgf _31_2003_9_46_	-	ad materi	alFM111	N
SI	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)		(500)	of friction	(kgfm)	(kgfm)	(kạf)	(kgf)	(DegC)	(DegC)
1	29158	145	13.3	0.30	31	68	170	322	Ó	0
2	29158	141	13.0	0.31	31	50	173	276	0	0
3	29158	165	15.2	0.26	27	55	148	304 278	0	0
4	29158 29158	179 189	16.5 17.4	0.24 0.23	25 24	50 46	137 131	278	0	0
		1	1						-	
6	29158	188	17.4	0.23	24	46	131	254	0	0
7	29158	195	18.0	0.22	23	51	127	285	0	0
B	29158	190	17.5	0.22	23	57	130	318	0	0
9	29158	192	17.7	0.22	23	44	129	247	0	0
10	29158	192	17.8	0.22	23	41	129	229	0	0
11	29158	190	17.5	0.22	23.	49 44	130	270 242	0	0
12	29158 29158	189 190	17.5	0.22	23	42	129 130	238		0
14	29158	190	17.5	0.23	23	47	130	262	0	ŏ
15	29158	190	17.5	0.23	24	41	131	228	o o	ŏ
16	29158	190	17.6	0.23	23	41	130	226	ŏ	ő
17	29158	187	17.2	0.23	24	40	134	223	o ·	ŏ
18	29158	191	17.7	0.22	23	40	130	225	Ö	ŏ
19	29158	193	17.8	0.22	23	43	129	237	Ō	0
20	29158	188	17.1	0.23	24	44	134	247	0	0
21	29158	189	17.4	0.23	24	44	132	242	0	0
22	29158	194	17.9	0.22	23	43	129	241	0	0
23	29158	183	16.9	0.24	24	43	136	239	0	0
24	2£158	187	17.2	0.23	- 24	45	133	249	. 0	0
25	21158	191	17.6	0.23	24	43	131	240	0	0
26	29158	188	17.4	0.23	24	47	133	262	0	0
27	29158	185	17.1	0.23	24	49	134	274	0	0
28	26158	181	16.7	0.24	25	49 .	137	273	0	0
29	2£158	184	17.0	0.23	24	42	135	233	0	0
30	26158	178	18.5	0.24	25	47	140	260	0	0
31	26158	182	16.8	0.24	25	48	137	264	0	0
32	29158	187	17.2	0.23	24	47	134	261 239		0
33	29158	190	17.5	0.23	24		132	239	0	0
34	29158 29158	189 179	17.4	0.23	24 25	43 45	132	259	0	0
35	29158	1/9	17.0	0.24	25	48	135	269	Ö	lö
37	29158	185	17.1	0.23	24	48	133	257	0	Ö
38	29158	193	17.8	0.22	23	49	130	271	ŏ	ŏ
39	29158	185	17.1	0.23	24	55	134	305	0	ō
40	29158	199	18.3	0.22	23	52	126	291	0	ō
41	29158	195	18.0	0.22	23	46	128	254	ō	0
42	29158	204	18.8	0.21	22	48	122	267	ŏ	Ō
43	29158	197	18.2	0.22	23	49	127	270	l õ	l o
44	29158	208	19.2	0.21	22	47	120	261	0	0
45	29158	199	18.4	0.22	23	44	126	246	0	0
46	29158	214	19.8	0.20	21	48	117	253	0	0
47	29158	211	19.5	0.20	21	40	118	224	0	0
48	29158	201	18.5	0.21	22	47	123	263	0	0
49	29158	202	18.6	0.21	22	47	124	259	0	0
50	29158	198	18.2	0.22	23	48	126	268	0	0

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT

Date Time Project Name Part No Batch Number Brake Speed Brake Pressure Brake Force

File Name

12:34:02 PM IIT Roorkee C51C52 C51C52 1000 RPM 17.2 kg/sq.cm 150 kgf C51C52_7_26_2006_12_34_02 PM

7/26/2006

Brake pad material -FM12N

	Kinesic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Padz-Temp
1	(kgfm)		(80C)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Man	7330	103	12.3	0,35	35	81	196	447	0	0
Min	7330	70	8,4	0.25	25	50	137	275	0	0
Avg	17330	78	9.3	0.32	32	87	178	316	0	0
A was shown										

WEAR REPORT

PAD	THIC	KNESS in n	nm	WEIC	·	
No	Initial	Final	Wear	Initial	Final	Wear
1	9.99	8.11	1.88	2465	2436	29
2	9.97	7.68	2.29	2461	2429	32

Total Number of Cycles completed: 50

DISPOSITION

Released for academic work

PRODUCTION/DEVELOPMENT :

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

					FRICTI	ON TEST F	INAL REPOI	RT			
				Time Projoct Na Part No Batch Nun Brako Spo Brako Pro Brako For	nbor od sauro co	12:34:02 PM IIT Roorkee C51C52 C61C52 1000 17.2 150	kg/sq.cm Kgf	•	d materia	1 –FM12N	[
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Contraction of the local division of the loc		RD rev.	RD time					Peak Drag		Pad2-Temp
	the second se									(DogC)	(DegC)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											-
4 1730 87 10.4 0.29 29 53 100 296 0 0 5 17330 84 10.1 0.29 29 53 160 323 0 0 6 17330 85 10.2 0.29 29 63 161 334 0 0 7 17330 85 10.2 0.29 29 63 161 303 0 0 8 17330 85 10.0 0.30 30 54 164 305 0 0 10 17330 84 10.1 0.30 30 55 164 305 0 0 12 17330 84 10.1 0.30 30 55 164 305 0 0 0 0 13 173 286 0 0 0 0 0 0 0 0 0 0 0 0 <											
5 17330 84 10.1 0.26 29 58 160 325 0 0 6 17330 85 10.2 0.29 29 60 161 334 0 0 7 17330 85 10.2 0.29 29 55 161 303 0 0 9 17330 85 10.2 0.30 30 56 164 305 0 0 10 17330 84 10.1 0.30 30 56 164 305 0 0 11 17330 84 10.1 0.30 30 55 154 306 0 0 13 17330 84 10.1 0.30 30 55 154 306 0 0 14 17330 81 9.7 0.31 31 53 177 226 0 0 0 0 0 0 0<	1										-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17330	85	10.2	0.29	29	60	161		0	
9 17330 85 10.2 0.30 30 54 164 301 0 0 10 17330 84 10.1 0.30 30 55 164 305 0 0 11 17330 84 10.1 0.30 30 56 164 305 0 0 12 17330 84 10.1 0.30 30 56 164 305 0 0 13 17330 84 0.7 0.31 31 50 170 279 0 0 16 17330 81 9.7 0.31 31 50 170 279 0 0 0 16 17330 81 9.7 0.31 31 50 174 286 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,									0	
	1 -									-	
				3						-	
										-	
14 17330 81 9.7 0.33 31 50 170 279 0 0 15 17330 79 9.5 0.31 31 55 173 286 0 0 16 17330 78 9.4 0.32 31 55 174 286 0 0 17 17330 81 9.7 0.31 31 50 170 279 0 0 18 17330 81 9.8 0.31 31 52 172 289 0 0 20 17330 80 9.6 0.31 31 51 173 285 0 0 21 17330 77 9.3 0.32 32 53 180 295 0 0 23 17330 77 9.2 0.33 33 55 182 306 0 0 24 17330 71 <td< th=""><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	4										
1517330769.50.313153173295001617330769.40.323153174246001717330819.70.313150170279001817330819.80.313056169312001917330809.60.313151173285002017330809.60.313151173285002117330779.30.323251178282002217330748.80.333354161282002317330769.10.333257179308002417330779.20.333257179308002517330718.50.343481187447002617330758.90.333355183307002717330718.50.343481187447002817330758.90.333356185309002917330758.90.33335618531800 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th>										-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	17330	78								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	17330	81	9.7	0.31	31		170		0	
$ \begin{array}{c cccccccccccccccccccccccc$	•		}		0.31	30			312	0	. 0 .
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										-	
			1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										-	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1					-	
		•			1						
30 17330 73 8.8 0.33 33 61 184 338 0 0 31 17330 75 9.0 0.32 32 57 180 317 0 0 32 17330 75 9.0 0.33 33 56 185 312 0 0 33 17330 72 8.6 0.34 34 59 190 328 0 0 34 17330 73 8.8 0.34 34 53 167 294 0 0 35 17330 74 8.9 0.33 33 61 185 339 0 0 36 17330 74 8.9 0.34 34 58 188 323 0 0 37 17330 72 8.7 0.35 35 60 194 336 0 0 39 17330 71		17330	75	1							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								1	1		0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1			
36 17330 74 8.9 0.34 34 58 188 323 0 0 37 17330 72 8.7 0.35 34 59 191 330 0 0 38 17330 72 8.7 0.35 34 59 191 330 0 0 38 17330 72 8.7 0.34 34 57 191 316 0 0 39 17330 70 8.4 0.35 35 60 194 336 0 0 41 17330 71 8.5 0.35 35 57 194 318 0 0 42 17330 74 8.9 0.34 34 58 188 323 0 0 43 17330 74 8.9 0.34 34 58 188 323 0 0 43 17330 71											
37 17330 72 8.7 0.35 34 59 191 330 0 0 38 17330 72 8.7 0.34 34 57 191 316 0 0 39 17330 70 8.4 0.35 35 60 194 336 0 0 60 17330 71 8.5 0.35 35 57 194 336 0 0 40 17330 71 8.5 0.35 35 57 194 336 0 0 41 17330 71 8.5 0.35 35 58 196 324 0 0 42 17330 74 8.9 0.34 34 58 188 323 0 0 43 17330 71 8.6 0.35 35 57 193 316 0 0 44 17330 72											
38 17330 72 8.7 0.34 34 57 191 316 0 0 38 17330 70 8.4 0.35 35 60 194 336 0 0 60 17330 71 8.5 0.35 35 57 194 318 0 0 41 17330 71 8.5 0.35 35 58 196 324 0 0 42 17330 74 8.9 0.34 34 58 188 323 0 0 43 17330 74 8.9 0.34 34 58 188 323 0 0 43 17330 71 8.6 0.35 35 57 193 316 0 0 44 17330 72 8.6 0.35 35 57 193 316 0 0 45 17330 71						34	59				
38 17330 70 8.4 0.35 35 60 194 336 0 0 60 17330 71 8.5 0.35 35 57 194 336 0 0 41 17330 71 8.5 0.35 35 57 194 318 0 0 42 17330 74 8.9 0.34 34 58 186 324 0 0 43 17330 74 8.9 0.34 34 58 188 323 0 0 43 17330 71 8.6 0.35 35 57 193 316 0 0 44 17330 72 8.6 0.35 35 57 193 316 0 0 45 17330 71 8.5 0.35 35 58 194 320 0 0 46 17330 71		17330	72			34	57				
60 17330 71 8.5 0.35 35 57 194 318 0 0 41 17330 71 8.5 0.35 35 58 196 324 0 0 42 17330 74 8.9 0.34 34 58 188 323 0 0 43 17330 71 8.6 0.35 35 68 194 365 0 0 44 17330 71 8.6 0.35 35 57 193 316 0 0 44 17330 72 8.6 0.35 35 57 193 316 0 0 45 17330 72 8.6 0.35 35 58 194 320 0 0 46 17330 71 8.5 0.35 35 67 193 370 0 0 47 17330 71 8.6 0.35 35 67 193 370 0 0 48				8.4	0.35	35	60		336		
42 17330 74 8.9 0.34 34 58 188 323 0 0 43 17330 71 8.6 0.35 35 65 194 365 0 0 44 17330 72 8.6 0.35 35 65 194 365 0 0 45 17330 72 8.6 0.35 35 57 193 316 0 0 45 17330 72 8.6 0.35 35 58 194 320 0 0 46 17330 71 8.5 0.35 35 67 193 370 0 0 47 17330 71 8.6 0.35 35 67 193 370 0 0 48 17330 74 8.9 0.34 34 59 189 325 0 0 49 17330 73						35	57		318	0	0
43 17330 71 8.6 0.35 35 68 194 365 0 0 44 17330 72 8.6 0.35 35 57 193 316 0 0 45 17330 72 8.6 0.35 35 57 193 316 0 0 46 17330 71 8.5 0.35 35 67 193 370 0 0 47 17330 71 8.6 0.35 35 67 193 370 0 0 48 17330 71 8.6 0.35 35 67 196 370 0 0 48 17330 74 8.9 0.34 34 59 189 325 0 0 49 17330 73 8.7 0.34 34 56 191 310 0 0						35	58				
44 17330 72 8.6 0.35 35 57 193 316 0 0 45 17330 72 8.6 0.35 35 58 194 320 0 0 46 17330 71 8.5 0.35 35 58 194 320 0 0 0 47 17330 71 8.6 0.35 35 67 193 370 0 0 0 48 17330 71 8.6 0.35 35 67 196 370 0 0 0 48 17330 74 8.9 0.34 34 59 189 325 0 0 49 17330 73 8.7 0.34 34 56 191 310 0 0							58				
45 17330 72 8.6 0.35 35 58 194 320 0 0 46 17330 71 8.5 0.35 35 67 193 370 0 0 47 17330 71 8.6 0.35 35 67 193 370 0 0 48 17330 71 8.6 0.35 35 67 196 370 0 0 48 17330 74 8.9 0.34 34 59 189 325 0 0 49 17330 73 8.7 0.34 34 56 191 310 0 0							67				
46 17330 71 8.5 0.35 35 67 193 370 0 0 0 47 17330 71 8.6 0.35 35 67 193 370 0 0 0 48 17330 71 8.6 0.35 35 67 196 370 0 0 0 48 17330 74 8.9 0.34 34 59 189 325 0 0 49 17330 73 8.7 0.34 34 56 191 310 0 0	1	17330								4	
47 17330 71 8.6 0.35 35 67 196 370 0 0 48 17330 74 8.9 0.34 34 59 189 325 0 0 49 17330 73 8.7 0.34 34 56 191 310 0 0	1										
48 17330 74 8.9 0.34 34 59 189 325 0 0 49 17330 73 8.7 0.34 34 56 191 310 0 0										-	
49 17330 73 8.7 0.34 34 56 191 310 0 0										l	
										6	
	50	17330	74	8.8	0.34	34	55	190	306	o	0

ų.

i

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT

- Date Time Project Name Part No Batch Number Brake Speed Brake Pressure Brake Force File Name
- 8/1/2006 9:29:04 AM IIT ROORKEE B; C51C52 HIGH C51C52 HIGH 1300 RPM 18.05 kg/sq.cm 150 kgf C51C52 HIGH_8_1_2006_9_29_04 AM

Brake pad material -FM12N

	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
	(kgfm)		(SOC)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Max	29158	169	15.6	0.32	33	68	183	377	0	.0
Min	29158	129	11.9	0.25	26	49	146	274	0	0
Avg	29158	145	13.3	0.3	31	59	172	325	0	0

WEAR REPORT

PAD	THIC	KNESS in n	nm	WEIG	GHT IN grams	
No	Initial	Final	Wear	Initial	Final	Wear
1 1	8.07	5.07	3	2436	2391	45
2	7.66	4.75	2.91	2428	2371	57

:

50

Total Number of Cycles completed:

DISPOSITION

Released for academic work

PRODUCTION/DEVELOPMENT :

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

.

 										
				FRICTI	ON TEST F	INAL REPOI	RT			
			Dato Timo Project Na Part No	ime	8/1/2006 9:29:04 AM IIT ROORKEE C51C52 HIGH					
			Batch Nun		C51C52 HIGH	-				
			Brako Spo Brako Pro	soure	1300 18.05	RPM kg/sq.cm	Brake p	ad materia	al –FM121	Ν
			Brako Fon Filo Namo		150 C51C52 HIGH_8	Kgf _1_2006_9_29_(04 AM			
SI	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)		(500)	of friction	(kgfm)	(kgfm)	(kaf)	(kgf)	(DogC)	(DegC)
1	29158	129	11.9	0.32	32	59	179	329	0	0
2	29158 29158	133 142	12.3 13.1	0.32 0.30	33 31	53 61	182	293	0	0
4	26158	155	14.3	0.30	28	57	171 157	338 319	0	0
5	29158	162	14.9	0.26	27	52	152	289	ŏ	Ő
e	29158	165	15.2	0.26	27	50	150	275	0	0
7	29158	164	15.2	0.26	27	51	150	284	0	0
1 8	29158	166	15.3	0.26	27	57	148	317	0	0
	27158 25158	169 160	15.6 14.8	0.25 0.27	26	52	146	287	0	0 -
1 11	20158	162	14.0	0.27	28 28	53 53	154 153	297	0	0
1.2	27158	161	14.8	0.27	20	49	153	296 274	0	0
	23158	150	13.9	0.29	30	56	185	309	ŏ	0
1 14	23158	151	14.0	0.28	29	58	163	311	l õ	Ő
1 -5	23158	149	13.7	0.29	30	55	186	307	0	0
16	27158	149	13.7	0.29	30	55	166	307	0	0
18	29158 29158	145 142	13.4 13.1	0.29 0.30	31 31	61 59	170	340	0	0
19	29158	145	13.4	0.30	31	60	174 171	326 331		0
20	29158	138	12.8	0.31	32	58	160	321	0	0
21	29158	137	12.7	0.31	33	59	181	329	ŏ	ŏ
22	29158	138	12.8	0.31	32	60	179	333	Ó	0
23 24	29158	141	13.0	0.31	32	60	176	332	0	0
25	29158	137 137	12.6 12.6	0.31 0.31	33 33	62	182	347	0	0
26	29158	137	12.6	0.32	33	64 60	182 183	356 334	0	0
27	29158	135	12.4	0.31	33	63	183	350	0	0
28	29158	140	12.9	0.31	32	62	179	343	0	0
29	29158	137	12.7	0.31	32	61	180	336	ŏ	ŏ
30	29158	138	12.7	0.31	33	60	181	-334	0	0
31	29158 29158	137 137	12.6 12.7	0.31	33	64	181	358	0	0
33	29158	137	12.7	0.32 0.31	33 33	63 62	182 182	349	0	0
34	29158	136	12.6	0.32	33	62	182	345 347	0	0
35	29158	141	13.0	0.30	32	68	176	377	0	0
36	29158	140	12.9	0.31	32	61	178	336	0	· 0
37	29158	142	13.1	0.30	32	56	176	314	Ō	ō
38 39	29158 29158	137 144	12.8 13.3	0.30	32	63	176	350	0	0
40	29158	143	13.3	0.30 0.30	31 31	54 61	173	301	0	0
41	29158	142	13.1	0.30	32	61	174 175	341	0	0
42	29158	140	12.9	0.31	32	64	175	341 357	0	0
43	29158	142	13.1	0.30	32	61	175	341	o	0
44	29158	140	12.9	0.31	32	59	178	327	ŏ	0
45	29158	142	13.1	0.30	32	61	176	340	Ō	0
46	29158 29158	142 144	13.1	0.30	32	61	176	339	0	0
48	29158	144	13.3 13.4	0.30 0.30	31 31	58 58	174	313	0	0
49	29158	145	13.4	0.30	31	56 59	172 173	309	0	0
50	29158	143	13.2	0.30	31	56	173	326 310	0	0
							<u> </u>		L0	0

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT Date 7/25/2006 Time 2:08:47 PM Brake pad material -FM13N **Project Name** IIT Roorkee Part No C61C82 **Batch Number** C61C62 Brake Speed 1000 RPM **Brake Pressure** 16.62 kg/sq.cm **Brake Force** 150 kgf **File Name** C61C62_7_25_2006_2_08_47 PM Kinetic Energy RD rev. RD time | Coefficient | Mean Torque | Peak Torque | Mean Drag | Peak Drag | Pad1-Temp | Pad2-Temp (kgfm) 36 (kgf) 385 of friction (DegC) (DegC) (kgfm) (80C) (kgfm) (kgf) Max 17330 11.5 0.38 69 201 0 0.2 25 40 141 223 ۵ Min 17330 63 7.6 Û 9.7 173 17330 80 0.32 31 82 291 Ô Avg WEAR REPORT **THICKNESS** in mm WEIGHT IN grams PAD No Initial Final Wear Initial Final Wear 2474 2481 0.8 13 9.61 8.71 1 1. 9.61 0.61 2479 2470 2 9 Ó Y.t. **Total Number of Cycles completed:** 50 Released for academic work DISPOSITION : PRODUCTION/DEVELOPMENT :

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

					FRICTI	ON TEST F	INAL REPOR	RT			
				Time Project Na Part No Batch Nun Brake Spe Brake Pro Brake For	nbor od Sauro Co	2:08:47 PM IIT Roorkee C61C62 C61C62 1000 16.62 150	kg/eq.cm	-	ad materia	al –FM131	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I K	(inetic Energy	RD rev.	RD timo	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
2 17300 66 10.8 0.30 29 65 159 356 0 4 17330 96 11.5 0.26 27 26 64 141 356 0 5 17330 96 11.5 0.27 26 61 146 340 0 6 17330 96 11.5 0.27 26 61 146 344 0 7 17330 88 10.6 0.29 28 60 157 331 0 9 17330 81 9.7 0.33 31 58 173 321 0 10 17330 80 9.5 0.33 33 54 178 385 0 12 17330 73 8.8 0.35 33 56 188 386 0 18 0 115 0 15 17330 74 8.9 35 55 186	_						(kpfm)		(kgf)	(DogC)	(DegC)
3 17330 91 11.0 0.28 27 98 1131 3578 0 4 17330 98 11.5 0.27 28 61 144 386 0 5 17330 98 11.5 0.27 28 62 147 344 0 6 17330 88 10.6 0.29 28 62 147 344 0 9 17330 82 0.8 0.32 30 61 169 340 0 9 17330 81 0.7 0.33 32 64 179 355 0 11 17330 78 0.35 0.35 35 58 0.35 0 <									367	0	0
4 17380 96 11.5 0.28 28 64 144 336 0 6 17330 96 11.5 0.27 28 61 146 340 0 7 17330 88 10.6 0.29 28 60 157 331 0 8 17330 81 9.7 0.33 31 58 173 321 0 10 17330 61 9.7 0.33 31 58 173 321 0 11 17330 62 9.8 0.35 33 69 183 385 0 12 17330 73 8.7 0.36 34 57 100 318 0 13 17330 73 8.7 0.36 34 57 103 318 0 14 1730 73 8.7 0.38 36 54 201 302 0											0
5 17330 96 11.5 0.27 28 91 146 340 0 6 17330 96 11.5 0.27 28 62 147 344 0 7 17330 82 0.8 0.32 30 61 169 340 0 9 17330 81 0.7 0.33 31 58 173 321 0 10 17330 80 9.5 0.33 32 64 178 355 0 11 17330 76 0.1 0.35 33 56 183 385 0 12 17300 73 8.7 0.35 33 56 186 311 0 144 1330 71 8.5 0.35 34 65 186 306 0 15 1330 68 8.2 0.37 35 52 186 306 0											0
617309611.50.2726621473440717308810.60.292860157331081730619.70.33315617332101017330619.70.33315617332101017330629.80.35336918338501217330829.80.35335417236101317330738.70.35335518633101417330738.70.35335518630101517330738.70.35346719031801617330688.20.37355819732301717330688.20.38365420130201617330728.70.38346518031201617330688.20.37355518630401717330688.20.37355518630401817330718.50.37355218630401917330708.40.37355218630402217330<										-	ŏ
7 1730 88 10.6 0.29 28 60 167 331 0 8 17330 82 9.8 0.32 30 61 169 340 0 9 17330 80 9.5 0.33 31 58 173 321 0 10 17330 80 9.5 0.33 32 64 178 355 0 11 17330 76 6.1 0.35 33 54 172 301 0 13 17330 73 8.8 0.35 33 55 185 306 0 14 17330 73 8.7 0.36 34 67 100 318 0 15 17330 74 8.9 0.35 33 55 185 306 0 16 17 1330 68 8.2 0.37 35 58 197 291 0 16 17330 72 8.7 0.36 34 56 196		17330	96	11.5	0.27	26					0
8 17330 82 9.8 0.32 30 61 169 340 0 9 17330 81 9.7 0.33 31 58 173 321 0 10 17330 80 9.5 0.33 32 58 173 321 0 11 17330 76 8.1 0.35 33 69 183 385 0 12 17330 73 8.7 0.36 34 67 100 318 0 14 17330 73 8.7 0.36 34 67 100 318 0 15 17330 74 8.9 0.35 33 55 185 306 0 16 17330 63 7.6 0.38 36 54 201 302 0 17 1730 68 8.2 0.37 35 55 196 304 0			88	10.6	0.29				1		0
											0
										-	0
12 17330 82 0.8 0.33 31 54 172 301 0 13 1:330 73 8.8 0.35 33 56 188 311 0 14 1:330 73 8.7 0.36 34 57 190 318 0 15 1:730 74 8.9 0.35 33 55 185 306 0 16 1:7330 68 8.2 0.37 35 58 197 323 0 16 1:7330 63 7.6 0.38 36 53 199 206 0 20 1:7330 68 8.2 0.37 35 55 196 304 0 21 1:7330 72 8.7 0.38 34 56 190 312 0 22 1:7330 72 8.7 0.36 34 56 190 312 0 23 1:730 71 8.6 0.37 35 52 196 286<										-	0
$ \begin{array}{ccccccccccccccccccccccccccccccc$											0
14 1330 73 8.7 0.36 34 57 100 318 0 15 1730 74 8.9 0.35 33 55 185 306 0 16 17330 71 8.5 0.35 34 52 187 223 0 17 17300 71 8.5 0.35 34 52 187 221 0 18 1730 63 7.6 0.38 36 54 201 302 0 20 17300 72 8.7 0.38 34 56 190 312 0 21 17330 72 8.7 0.38 34 54 190 312 0 22 17330 71 8.5 0.37 35 52 196 286 0 23 17330 72 8.6 0.36 34 49 195 270 0 24 17330 72 8.6 0.36 34 42 186 226											0
15 97330 74 8.9 0.35 33 55 185 306 0 17 17330 68 8.2 0.37 35 58 197 323 0 16 17330 63 7.6 0.35 34 52 187 291 0 16 17330 63 7.6 0.38 36 53 190 302 0 19 17330 68 8.2 0.38 36 53 190 206 0 20 17330 68 8.2 0.37 35 52 196 206 0 23 17330 70 8.4 0.37 35 52 197 281 0 24 17330 72 8.6 0.36 34 48 189 286 0 25 17330 74 8.8 0.35 34 42 187 281 0 26 17330 77 9.2 0.34 32 46 180 256										-	0 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											0
											0
16 17330 63 7.6 0.38 36 54 201 302 D 19 17330 68 8.2 0.38 36 53 199 226 D 20 17330 72 8.7 0.38 34 56 190 312 D 21 17330 68 8.2 0.37 35 55 196 304 D 22 17330 71 8.5 0.37 35 52 1966 2266 D 23 17330 70 8.4 0.37 35 49 195 270 D 24 17330 70 8.4 0.37 35 49 195 270 D 26 17330 72 8.6 0.36 34 48 169 224 O 26 17330 72 8.6 0.34 33 50 183 276 D 28 17330 74 8.9 0.34 32 48 1800 289 O 29 17330 74 8.9 0.32 31 49 174 275 D 31 17330 76 9.4 0.32 31 49 174 275 D 31 17330 76 9.2 0.34 33 46 181 254 D 34 17330 81 9.7 0.32 31 45 174 228 D											ŏ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	17330	63	7.6	0.38	36				-	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								199			ō
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_							-	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			**							-	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										-	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										-	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						3				-	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										-	0
							1	4		-	ő
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						31					ŏ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			r i i i i i i i i i i i i i i i i i i i						248	0	. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										0	0
35 17330 80 9.6 0.32 31 46 173 258 0 36 17330 84 10.1 0.31 30 50 165 279 0 37 17330 85 10.2 0.30 29 52 162 289 0 38 17330 84 10.1 0.30 29 53 162 294 0 39 17330 84 10.6 0.29 28 43 158 237 0 40 17330 83 10.0 0.31 30 47 167 280 0 41 17330 83 9.9 0.31 30 46 169 253 0 42 17330 84 10.1 0.30 29 42 161 231 0 43 17330 84 10.1 0.31 30 44 166 244 0										0	0
36 17330 84 10.1 0.31 30 50 165 279 0 37 17330 85 10.2 0.30 29 52 162 289 0 38 17330 84 10.1 0.30 29 53 162 294 0 39 17330 84 10.6 0.29 28 43 158 237 0 40 17330 83 10.0 0.31 30 47 167 280 0 41 17330 83 9.9 0.31 30 46 189 253 0 42 17330 84 10.1 0.30 29 41 162 230 0 43 17330 86 10.3 0.30 29 41 162 230 0 44 17330 86 10.3 0.30 29 41 166 244 0											0
37 17330 85 10.2 0.30 29 52 182 289 0 38 17330 84 10.1 0.30 29 53 162 294 0 39 17330 84 10.6 0.29 28 43 158 237 0 40 17330 83 10.0 0.31 30 47 167 280 0 41 17330 83 9.9 0.31 30 46 189 253 0 42 17330 84 10.1 0.30 29 42 161 231 0 43 17330 86 10.3 0.30 29 41 162 230 0 44 17330 86 10.3 0.30 29 41 166 244 0 45 17330 86 10.3 0.30 29 44 166 246 0											0
38 17330 84 10.1 0.30 29 53 162 294 0 39 17330 88 10.6 0.29 28 43 158 237 0 40 17330 83 10.0 0.31 30 47 167 260 0 41 17330 83 9.9 0.31 30 46 189 253 0 42 17330 84 10.1 0.30 29 42 161 231 0 43 17330 84 10.1 0.30 29 41 162 230 0 44 17330 84 10.1 0.31 30 44 1666 244 0 45 17330 86 10.3 0.30 29 40 162 223 0 46 17330 86 10.4 0.30 29 40 162 2238 0							52				0
39 17330 88 10.6 0.29 28 43 158 237 0 40 17330 83 10.0 0.31 30 47 167 280 0 41 17330 83 9.9 0.31 30 46 169 253 0 42 17330 84 10.1 0.30 29 42 161 231 0 43 17330 86 10.3 0.30 29 41 162 230 0 44 17330 86 10.3 0.30 29 41 162 230 0 44 17330 86 10.3 0.30 29 41 163 244 0 45 17330 86 10.4 0.30 29 40 162 223 0 46 17330 87 10.4 0.30 29 43 162 238 0							53				0
40 17330 83 10.0 0.31 30 47 167 260 0 41 17330 83 9.9 0.31 30 46 189 253 0 42 17330 84 10.1 0.30 29 42 161 231 0 43 17330 86 10.3 0.30 29 41 162 230 0 44 17330 86 10.3 0.30 29 41 166 244 0 45 17330 86 10.3 0.30 29 44 163 248 0 45 17330 86 10.4 0.30 29 40 162 223 0 46 17330 87 10.4 0.30 29 43 162 238 0 47 17330 87 10.4 0.29 29 43 160 240 0			88		0.29	28	43			2	0
41 17330 83 9.9 0.31 30 46 169 253 0 42 17330 84 10.1 0.30 29 42 161 231 0 43 17330 86 10.3 0.30 29 41 162 230 0 44 17330 86 10.1 0.31 30 44 166 244 0 45 17330 86 10.3 0.30 29 44 163 246 0 46 17330 86 10.4 0.30 29 40 162 223 0 47 17330 87 10.4 0.30 29 43 162 238 0 48 17330 87 10.4 0.29 29 43 160 240 0					0.31	30	47			-	ŏ
42 17330 84 10.1 0.30 29 42 161 231 0 43 17330 86 10.3 0.30 26 41 162 230 0 44 17330 84 10.1 0.31 30 44 166 244 0 45 17330 86 10.3 0.30 29 44 163 246 0 46 17330 86 10.4 0.30 29 40 162 223 0 47 17330 87 10.4 0.30 29 43 162 238 0 48 17330 87 10.4 0.29 29 43 160 240 0							46	189	253	1	ō
44 17330 84 10.1 0.31 30 44 166 244 0 45 17330 86 10.3 0.30 29 44 163 246 0 46 17330 86 10.4 0.30 29 40 162 223 0 47 17330 87 10.4 0.30 29 43 162 238 0 48 17330 87 10.4 0.29 29 43 160 240 0							42		231	0	Ō
45 17330 86 10.3 0.30 29 44 163 246 0 46 17330 86 10.4 0.30 29 40 162 223 0 47 17330 87 10.4 0.30 29 43 162 238 0 48 17330 87 10.4 0.29 29 43 160 240 0											0
46 17330 86 10.4 0.30 29 40 162 223 0 47 17330 87 10.4 0.30 29 43 162 238 0 48 17330 87 10.4 0.29 29 43 162 238 0											0
47 17330 87 10.4 0.30 29 43 162 238 0 48 17330 87 10.4 0.29 29 43 160 240 0			1							1	0
48 17330 87 10.4 0.29 29 43 160 240 0										Ł	0
										1	0
49 17330 84 10.1 0.31 30 49 166 272 0		17330								1	0
<u>50 17330 92 11.0 0.29 28 51 153 283 0</u>	0								283		0.

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT Date 7/31/2006 Time 8:20:16 PM Brake pad material -FM13N **Project Name IIT ROORKEE** Part No C61C62 HIGH Batch Number C61C62 HIGH Brake Speed 1300 RPM **Brake Pressure** 17.73 kg/sq.cm **Brake Force** 150 kgf File Name C61C62 HIGH_7_31_2006_8_20_16 PM Kinetic Energy RD rev. RD time Coefficient Mean Torque Peak Torque Mean Drag Peak Drag Pad1-Temp Pad2-Temp (kgf) 187 (kgfm) of friction (80C) (kgfm) (kgfm) (kgf) (DegC) (DegC) 29158 Max 197 18.2 0.34 34 61 340 Ő 196 Min 128 0.22 22 11.9 36 124 a 0 29158 170 16.7 Avg 0.26 144 26 41 ٥ Ô WEAR REPORT PAD WEIGHT IN grams **THICKNESS in mm** No Initial Final Wear Initiai Final Wear 1 8.79 7.53 1.26 2464 2441 23 2 8.06 2468 2451 9 0.94 17 **Total Number of Cycles completed:** Released for academic work Aking 2/8/06 50 DISPOSITION : PRODUCTION/DEVELOPMENT :

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

				501020						
				FRICTI	ON TEST F	INAL REPOI	RT			
			Dato		7/31/2006		•		•	
			Time		8:20:16 PM				•	
			Project Na Part No	ime	IIT ROORKEE C61C62 HIGH					
			Batch Nur	nhor	C61C62 HIGH					
			Brako Spc		1300	RPM .				l
			Brake Pre		17.73	kg/sq.cm	Brake p	ad materi	al -FM13	N
			Brako For		150	Kgf	· •			
			Filo Namo		C61C62 HIGH_7	_31_2006_8_20	_16 PM			
SI	Kinetic Energy	RD rev.	RD time	Coefficient			Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)		(000)	of friction	(kgfm)	(kafm)	(kgf)	(kgt)	(DogC)	(DogC)
1 2	29158 29158	145 129	13.4	0.30 0.34	30	51	167	283	0	0
3	29*58	132	11.9 12.1	0.34	34 33	61 50	187 183	340 279	0	0
4	28:58	134	12.3	0.32	33	61	181	282	ŏ	Ö
5	.∛9° 58	128	11.9	0.34	34	53	187	292	Ō	Ō
6	29158	143	13.2	0.30	30	54	168	298	0	0
7	29*58	134	12.4	0.32	32	53	180	292	0	0
8	29158	146	13.5	0.29	30	46	165	258	0	0
9 10	29158 29158	140 149	13.0 13.7	0.31 0.29	31 29	46 44	171	257	. 0	0
11	29158	148	13.5	0.29	30	47	163 164	243 259	0	0
12	29158	153	14.1	0.28	28	45	157	251	. ŏ	ō
13	29158	161	14.8	0.27	27	52	150	290	0	0
14	29158	167	15.4	0.28	. 26	39	145	215	0	0
15	29158 29158	166	15.3 15.0	0.28	26 27	41 42	145	227	0	0
17	29158	165	15.2	0.28	26	41	149 146	234 227	0	0
18	29158	189	15.6	0.25	26	41	143	230	o	ŏ
19	29158	170	15.7	0.25	26	39	142	215	0	Ō
20	29158	172	15.9	0.25	25	40	141	222	0	0
21	29158 29158	178 176	16.5 16.3	0.24	24 25	36 36	136 137	199	0	0
23	29158	178	16.5	0.24	25	37	137	199 204	0	0
24	29158	162	16.8	0.23	24	38	133	199	l o	0
25	29158	180	16.6	0.24	24	35	135	196	Ō	ō
28	29158	178	16.4	0.24	25	35	136	197	0	0
27 28	29158 29158	176 181	16.3 16.7	0.24	25 24	37 38	137	204	0	0
29	29158	180	16.6	0.23	24	38	132 135	213 213	0	0
30	29158	183	16.9	0.23	24	42	133	235	0 0	0
31	29158	179	16.5	0.24	24	38	136	211	0	ō
32	29158	180	16.6	0.24	24	39	134	218	0	0
33 34	29158 29158	181	16.7	0.24	24	44	134	245	. 0	0
35	29158	183 178	16.9 16.5	0.23	24 24	37 36	133 138	208 199	0	0
36	29158	180	16.6	0.24	24	42	135	232	. 0	0
37	29158	181	16.7	0.24	24	38	134	209	ŏ	0
38	29158	188	17.3	0.23	23	43	130	239	Ō	Ō
39	29158	181	16.7	0.24	24	37	134	203	0	0
40 41	2:9158 2.9158	178 185	16.5 17.0	0.23	24 24	38	134	210	0	0
42	29158	186	17.0	0.23	24	36 37	132 130	199 206	0	0
43	29156	180	18.6	0.23	24	36	132	200	0	0
44	29158	179	16.6	0.24	24	39	136	215	ŏ	0
45	29158	197	18.2	0.22	22	38	124	212	0	Ō
46	29158 29158	181 194	16.7 17.9	0.23	24	36	132	199	0	0
48	29158	194	17.9	0.22	23 23	37 37	126 127	205 207	0	0
49	29158	192	17.7	0.22	23	38	127	212	0	0
50	29158	186	17.1	0.23	24	36	131	203	ŏ	0

* :

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

FRICTION TEST CONSOLIDATED REPORT

Date Time Project Name Part No Batch Number	1/30/2007 2:46:36 PM IIT A3 A62 LOW A3 A62 LOW	Brake pad material –FM14A
Brake Speed	1000	RPM
Brake Pressure	17.38	kg/sq.cm
Brake Førce	150	kgf
File Name	A3 A62 LOW	_1_30_2007_2_46_36 PM

ورا کاردندر	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
	(kgfin)		(sec)	of friction	(kgfm)	(kgfm).	(kgf)	(kgf)	(DegC)	(DegC)
Мах	17330	105	12.6	0.35	34	73	190	403	0	189>
Min	17330	78	9,4	0.25	25	50	140	275	0	0
Avg	17330	92	11	0.29	29	60.	161	331	0	46

WEAR REPORT

PAD	THICI	KNESS in m	พท	WEIC	GHT IN grams	
No	Initial	Final	Wear	initial '	Final	Wear
1	6.34	5.94	0.4	2399	2394	5
2	6.48	6.27	0.21	2408	2405	3

Total Number of Cycles completed: 50

DISPOSITION

•

PRODUCTION/DEVELOPMENT :

,

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

} 				FRICTI	ON TEST F	INAL REPOR				
			Date Time Project Na		1/30/2007 2:46:36 PM UT			<u></u>		
İ			Part No		A3 A62 LOW					
			Batch Nun Broke Spe		A3 A62 LOW	•				
			Brake Spe Brake Pre		17.38	RPM kg/sq.cm	Brake	e pad mate	erial –FM1	4A
			Brake For File Name		150 A3 A62 LOW	Kgf _1_30_2007_2	_46_36 PM			
SI	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)		(50C)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
1 2	17330 17330	105 93	12.6 11.2	0.25 0.28	25 29	60 56	140 159	334 310	0	0 0
3	17330	94	11.3	0.28	28	57	157	319	0	58
4	17330	88	10.6	0.30	30	59	168	329	0	O
5	17330	86	10.3	0.31	31	57	172	315	0	88
6	17330	81	9.7	0.33	33	63	183	352	0	0
7	17330 17330	81 82	9.7 9.8	0.33	33 33	61 60	183 181	340	0	0
9	17330	82 79	9.8 9.5	0.33	33	60	181 181	334 338	0	0
10	17330	78	9.4	0.35	34	68	190	379	ŏ	29
11	17330	81	9.8	0.33	33	70	182	390	0	0
12	17330	82	9.8	0.33	33	59	181	327	0	0
13	17330 17330	86 82	10.3 9.8	0.31	31 32	66 70	173 177	368	0	0
15	17330	87	10.4	0.32	31	73	170	387 403	0	0
16	17330	84	10.1	0.32	32	62	175	345	ŏ	87
17	17330	92	11.0	0.29	29	61	162	340	0	85
18 19	17330 17330	85	10.2	0.32	31	64	175	356	0	0
20	17330	84 87	10.1	0.32	32 31	60 65	176 170	334 360	0	87 116
21	17330	87	10.4	0.31	31	61	171	336	ŏ	44
22	17330	93	11.1	0.29	29	59	159	327	Ō	93
23	17330	93	11.1	0.28	28	64	157	354	0	93
24 25	17350 17350	87 97	10.4 11.6	0.30	30 27	63 56	166	349	0	16
26	17330	90	10.8	0.27	30	61	152 164	309 339	0	169 148
27	17330	92	11.0	0.29	29	59	161	326	ŏ	95
28	17320	90	10.8	0.30	30	60	165	331	Ō	80
29	17350	93	11.2	0.28	29	55	159	308	0	0
30 31	17300 17330	96 92	11.5 11.0	0.28	28 29	61 61	154	338 340	0	189 0
32	17330	93	11.0	0.28	29	59	157	325	Ö	113
33	17330	92	11.0	0.29	29	57	161	316	0	159
34	17330	93	11.2	0.28	28	58	157	322	0	63
35 36	17330 17330	93 95	11.1	0.28	28	55	157	303	0	174
37	17330	95	11.4 11.3	0.28	28 28	61 58	155 154	337 322	0	134 0
38	17330	95	11.3	0.27	27	57	152	319	. 0	36
39	17330	105	12.6	0.25	25	56	141	311	Ō	140
40	17330	96	11.5	0.28	28	59	155	329	0	0
41	17330 17330	101	12.1 12.6	0.26	26 25	59 54	145 141	330	0	
43	17330	98	11.8	0.23	25	50	141	302	0	0
44	17330	99	11.8	0.27	27	51	150	281	0	0
45	17330	102	12.2	0.26	26	67	145	370	0	0
46	17330	99	11.9	0.27	27	55	149	308	0	0
47	17330 17330	102 105	12.2 12.5	0.26 0.25	26 25	58 52	145 142	320 286	0	0
49	17330	101	12.1	0.26	26	50	146	275	0	0
50		100	12.0	0.26	26	50	147	280	0	0

	-7. 63	A								A-2
	Z EU HA	ler L	HINDU		1	S LIMITED - Rge division		DRE		
			F	RICTION	TEST CON	SOLIDATED	REPORT			
			Date Time Project N Part No Batch Nu Brake Sp Brake Pro	mber eed	1/31/2007 2:52:15 PM IIT A2 A51 LOW A2 A51 LOW 1000	RPM	Brake p	bad mater	ial –FM1	4A
			Brake Fo File Name	rce	17.38 150 A2 A51 LOW	kg/sq.cm kgf _1_31_2007_2_5;	2_ 15 P M			
	<u></u>									
	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
l	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Max	17330	105	12.6	0.33	33	77	183	428	0	0
Min Avg	17330 17330	81 92	9.7	0.25	25 29	50 58	<u>141</u> 162	280 323	0	0
PAD	тніскі	NESS in t	WEAR R		IGHT IN gram's	·	ł			·
10	lin:tial '	Final	Wear	Initial	Final	Wear				
1	<u>6.47</u> 6.2	6 5.91	0.47	2405 2404	2397	8				
	otal Number of O	Cycles co	ompleted:	50 A C -	·~~					
F	PRODUCTION/DE	VELOPM	IENT :							

4

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

	FRICTION TEST FINAL REPORT													
			Date Time Project Na Part No Batch Nun Brake Spe Brake Pre Brake For File Name	nber ed ssure ce	1/31/2007 2:52:16 PM IIT A2 A51 LOW A2 A51 LOW 1000 17.38 150 A2 A51 LOW	RPM kg/sq.cm Kgf _1_31_2007_2_6		pad mate	rial –FM1	4A				
51	Kmelic Ebergy	RD (ev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp				
:IC	(kgtir-)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgt)	(DegC)	(DegC)				
1	17320	89	10.6	0.30	30	57	166	319	0	0				
1.2	17:30	84	10.0	0.32	32	51 ·	177	281	0	0				
ز ! ه	17330	87	10.4	0.31	31	55 50	170	307	0,	0				
4	17330	89 87	10.6	0.29	29	56	162	312	0	0				
1 -	17330	-	10.4	0.31	31	60	171	332	0	0				
6	17330	84	10.0	0.32	32	56	177	312	0	0				
7	17330	87	10.4	0.31	31	59	170	327	0	0				
8	17330	83	10.0	0.32	32	56	178	309	0	0				
9	17330	85	10.2	0.31	31	66	174	368	0	0				
10	17330 17330	83 83	10.0	0.32	32	55	178	306	0.	0				
12	17330	81	9.9	0.32	32	60	179	334	0	0				
13	17330	83	9.9	0.33	33 32	57	183	314	0	0				
14	17330	84	10.1	0.32	32	59	179	329	0	0				
15	17330	85	10.1	0.32	31	57 63	176 174	319 350	0	0				
16	17330	90	10.2	0.30	30	59	1/4	329	0	0				
17	17330	87	10.4	0.31	31	59	170	329	0	0				
18	17330	87	10.4	0.31	31	56	169	314	0	0				
19	17330	87	10.5	0.30	30	56	169	310	0	0				
20	17330	87	10.5	0.31	31	57	170	318	0	0				
21	17330	92	11.0	0.29	29	59	162	318	0	0				
22	17330	87	10.4	0.31	31	54	170	298		0				
23	17330	92	11.0	0.29	29	55	160	304	0	0				
24	17330	92	11.0	0.29	29	71	161	393	0	ŏ				
25	17330	92	11.0	0.29	29	64	160	355	ŏ	0				
26	17330	91	10.9	0.29	29	60	163	332	ŏ	0				
27	17330	92	11.0	0.29	29	54	161	299	ŏ	o				
28	17330	91	10.9	0.29	29	58	160	325	l · ŏ	o o				
29	17330	92	11.0	0.29	29	53	161	293	Ĭŏ	ō				
30	17330	90	10.8	0.29	29	55	163	303	0	0				
31	17330	94	11.2	0.29	29	77	163	428	Ō	ō				
32	17330	95	11.4	0.27	28	57	153	314	0	0				
33	17330	96	11.5	0.27	28	55	153	307	0	0				
34	17330	100	12.0	0.26	27	60	148	332	0	0				
35	17330	. 94	11.3	0.28	28	50	158	280	0	0				
36	17330	96	11.5	0.28	28	55	154	307	0	0				
37	17330	96	11.5	0.27	28	73	154	404	0	0				
38	17330	93	11.1	0.28	29	66	159	366	0	0				
39 40	17330 17330	98	11.7	0.27	27	53	151	293	0	0				
40	/330	96 96	11.6	0.27	28	52	153	287	0	0				
42	'330	102	11.6 12.2	0.27	27	57	153	318	0	0				
43	17330	98		0.26	26	65	145	359	0					
-14	17330	98 100	11.8	0.27	27	73	151	407	0	0				
45	17330	100	12.0 12.5	0.26	27	58	148	322	0	0				
46	17330	104	12.5	0.25	26	51	142	282	0	0				
47	17330	99	12.0	0.26	26	53	147	292	0	0				
48		105	11.9	0.27	27 25	56	150	312	0	0				
49		100	12.0	0.25	25	54	141	298	0	0				
50		100	12.0			57	145	314	0	0				
				0.26	26	56	144	310	0	0				

, ¥

			F	RICTION	TEST CON	SOLIDATED	REPORT			
.			Date Time Project N Part No Batch Nu		1/31/2007 1:50:11 PM IIT A22 A31 LOW A22 A31 LOW		Brake p	ad mater	rialFM14	4A
			Brake Sp Brake Pro Brake Fo File Name	eed Ssure rce	1000 17.34 150 A22 A31 LOW	RPM kg/sq.cm kgf _1_31_2007_1	_50_11 PM			
			. <u></u>			<u></u>				
ĸ	inetic Energy	RD rev.	RD time		t Mean Torque		Mean Drag	Peak Drag		Pad2-Te
lax	(kgfm) 17330	98	(sec) 11.8	of friction 0.38	(kgfm) 38	(kgfm) 71	(kgf) 209	(kgf) 394	(DegC)	(DegC
Ain	17330	71	8.5	0.27	27	53	151	296	0	0
lýg	17330	85	10.2	0.32	31	61	175	339	0	0
			WEAR R	EPORT						
AD	THICK	NESS in r	nm	WE	EIGHT IN grams					
>	Initial	Final	Wear	Initial	Final	Wear	4			•
1 2	7.23 6.2	6.85 6.01	0.38	2413 2404	2407 2400	6	j			
	tal Number of (SPOSITION	Cycles co	mpleted: :	50		-			·	

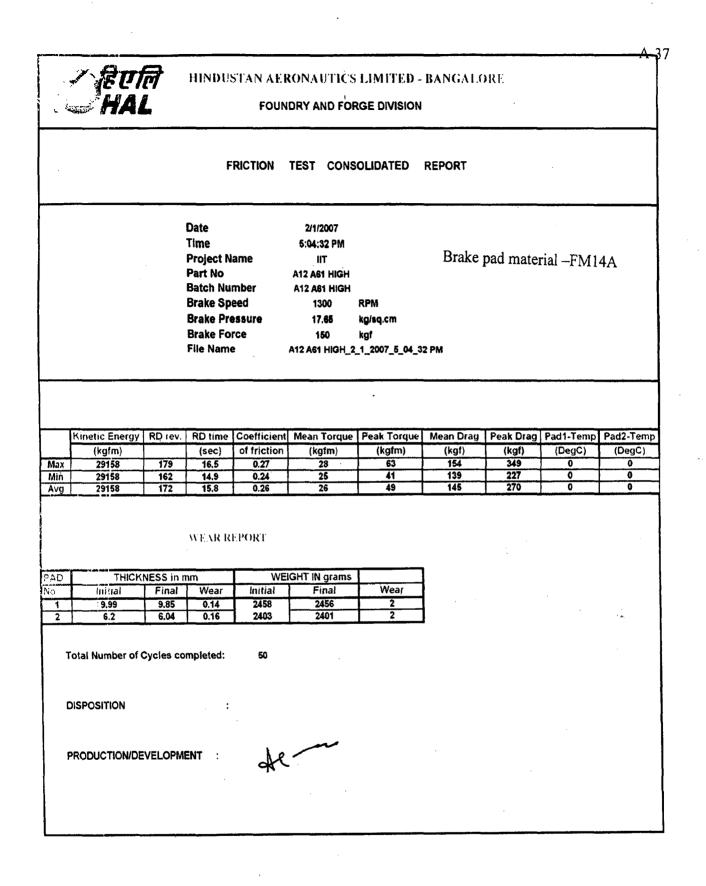
HINDUSTAN AERONAUTICS LIMITED - BANGALORF

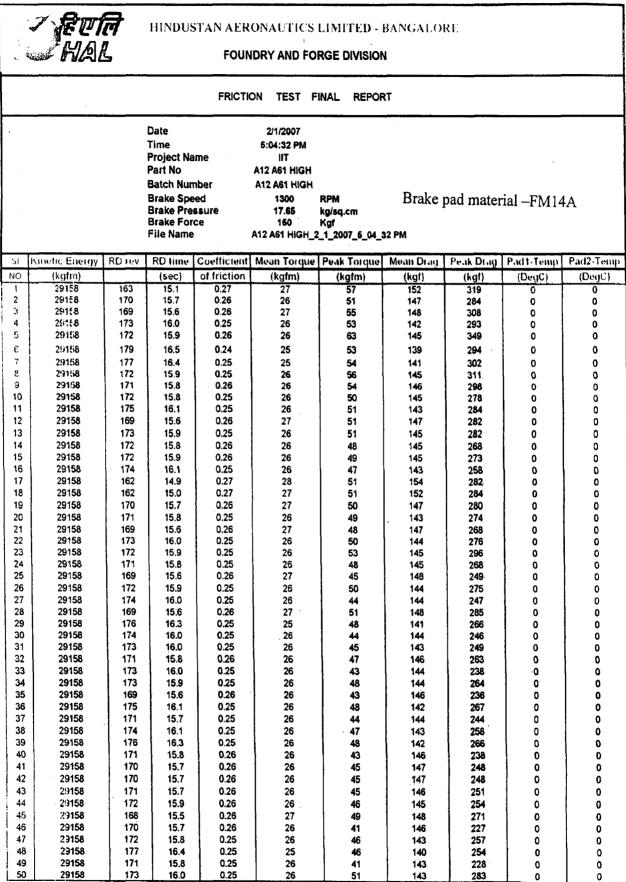
FOUNDRY AND FORGE DIVISION

										
				FRICTIO	ON TEST F	INAL REPOR	RT			
			Date Time Project Na Part No Batch Nun Brake Spe Brake Pres Brake For File Name	nber A ved ssure ce	1/31/2007 1:50:11 PM INT A22 A31 LOW 1000 17.34 150 A22 A31 LOW	RPM kg/sq.cm Kgf _1_31_2007_1		pad mate	rial –FM1	4A
S!	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	. (kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kyf)	(kgf)	(DegC)	(DegC)
11	17330	94	11.3	0.27	27	56	153	312	0	0
2	17330	87	10.5	0.30	30	59	169	328	0	0
3	17330 17330	79 73	9.4	0.34	34	58	188	320	0	0
5	17330	71	8.7 8.5	0.36 0.38	36 37	60 59	198 208	333 327	0	0
6	17330	74	8.9	0.36	36	1 1			i -	0
7	17330	74	8.6	0.36	30	61 57	200	338	0	0
8	17330	73	8.8	0.36	36	57 60	206 197	318	0	0
9	17330	73	8.8	0.30	36	71	202	333 394	0	0
10	17330	77	9.2	0.35	35	66	193	367	ŏ	0 0
11	17330	71	8.5	0.38	38	64	209	358	ŏ	ŏ
12	17330	75	9.0	0.35	35	68	192	380	0 .	ů
13	17330	77	9.3	0.35	34	61	191	336	o	ō
14	17330	75	9.0	0.36	35	62	197	347	Ó	0
15	17330	76	9.1	0.35	35	68	193	380	0	0
16	17330	77	9.3	0.34	34	69	189	383	0	0
17	17330	81	9.7	0.33	33	71	183	394	0	0
19	17330 17330	80	9.6 9.7	0.33	33 33	64	183	354	0	0
20	17330	78	9.4	0.33 0.33	33	61	183	341	0	0
21	17330	81	9.7	0.33	33	69 65	184 183	385 363	0	0
22	17330	83	9.9	0.32	32	66	179	367	0	0
23	17330	82	9.9	0.32	32	64	180	358	ŏ	0
24	17330	83	10.0	0.31	31	67	174	374	ŏ	ŏ
25	17330	89	10.7	0.29	29	66	163	364	o .	ō
26	17330	83	9.9	0.32	32	64	179	354	0	Ō
27	17330	88	10.6	0.30	30	61	168	339	0	0
28	17330	90	10.8	0.30	30	65	165	361	0	0
30	17330 17330	87 90	10.4	0.31	31	70	170	387	0	0
31	17330	88	10.8 10.6	0.30	30 30	61	164	340	0	0
32	17330	93	11.1	0.30	29	57	167	318	0	0
33	17330	86	10.3	0.29	31	57	160 172	316 318	0	0
34	17330	92	11.0	0.29	29	55	161	318 304	O O	0
35	17330	87	10.4	0.31	31	57	170	317	0	0
36	7:30	92	11.0	0.29	29	53	162	296	ŏ	0
37	17330	95	11.4	0.28	28	55	156	304	0	ő
38	17330	89	10.7	0.30	30	57	166	316	ō	Ō
39	17330	92	11.0	0.29	29	55	162	305	0	o
40	17330	94	11.3	0.28	28	63	158	348	0	0
41	17330	94	11.2	0.28	28	56	158	312	0	0
42	17330 17330	95	11.4	0.28	28	57	156	318	0	O
43	17330	93 91	11.2	0.28	28	61	158	339	0	0
45	17330	93	10.9 11.1	0.29	29	54	160	301	0	0
46	17330	95	11.4	0.29	29 28	55	160	307	0	0
47	17330	93	11.1	0.28	20	59 57	156	328	0	9
48	17330	95	11.4	0.28	29	56	160 156	315	0	0
49	17330	98	11.8	0.27	27	58	150	312		0
50	17330	94	11.3	0.28	28	60	157	323	0	0
·				+	+	<u> </u>		<u></u>	<u> </u>	

7. A	क्ति	HINDUS	TAN AFI	RONAUTICS	IIMITED				A	31
H	AL	mitott		IDRY AND FOI			-			
		F	RICTION	TEST CONS	OLIDATED	REPORT				
		Date Time Project N Part No		2/3/2007 2:21:33 PM IIT (A1 A4 MEDIUM		Brake p	ad mater	ial –FM1	4A	
		Batch Nu Brake Sp Brake Pro Brake Fo File Name	eed Issure Ice	A1 A4 MEDIUM 1450 3,39 83 A1 A4 MEDIUM_	RPM kg/sq.cm kgf 2_3_2007_2_21	_33 PM			• •	
	<u></u>			<u>.</u>					ļ	
Kinetic Ene (kgfm) Max 20524 Min 20524 Avg 20524		RD time (sec) 18.5 16 17.2	Coefficient of friction 0.34 0.27 0.29	Mean Torque (kgfm) 17 14 15	Peak Torque (kgfm) 38 27 31	Mean Drag (kgf) 95 78 84	Peak Dra (kgf) 213 150 172	g Pad1-Ten (DegC) 0 0		
Avg 20524	207	WEAR R				L	<u></u>		_	
PAD T No Initial 1 6.32 2 5.98	HICKNESS in Final 6.02 5.82		WE Initial 2405 2395	IGHT IN grams Final 2402 2392	Wear 3 3				•	
Total Numbe			50		· · · · · · · · · · · · · · · · · · ·	-				
DISPOSITIO	V	:								
PRODUCTIC	N/DEVELOP	Ment :	A							
· ·		•		•						
	•					•	· · ·	· · ·	· .	
	:			· ·	•		۰.			•• .

		• •		-						A-32
1	7. EU	R	HINDUS	STAN AER	ONAUTICS	LIMITED -	BANGALO	RE		
j.		5		FOUN	IDRY AND FO	RGE DIVISIOI	N		•	
				FRICTI	ON. TEST F	INAL REPOR	रा			
<u></u>			Date Time		2/3/2007 2:21:33 PM					
		•	Project Na Part No Batch Nun		IIT A1 A4 MEDIUM A1 A4 MEDIUM		•			
			Brake Spe Brake Pre Brake For	ed ssure ce	1450 8.89 83	RPM kg/sq.cm Kgf		pad mate	rial –FM1	4A
	17		File Name		A1 A4 MEDIUM_					
SI NO	Kinetic Energy (kgim)	RD rev.	RD time (sec)	of friction	Mean Torque (kgfm)	Peak Torque (kgfm)			Pad1-Temp (DegC)	Pad2-Temp (DegC)
1	20524	183	15.1	0.33	17	35	(kgf) 93	(kgf) 194	(Dego)	50
2 3	20524 20524	181 185	15.0 15.3	0.34 0.34	17 17	33	95	185	0	51
4	20524	184	15.3	0.34	17	31 35	96 94	172 194	0	53 55
5	20524	188	15.6	0.32	17	34	92	191	Ō	55
6	20524	188	15.6	0.32	17	32	92	176	0	57
7	20524	189	15.7	0.32	16	38	91	211	0	61
8 9	20524	194 196	16.1 16.2	0.31	16 16	29	· 89	159	0	63
10	20524	193	16.0	0.31	16	34 35	88 89	188	0	64 68
11	20524	195	16.1	0.31	16	28	89	154	0	65
12	20524	196	16.3	0.31	16	33	88	185	0	71
13	20524	193	16.0	0.31	16	32	89	177	0	72
14 15	20524 20524	201	16.6 16.8	0.30	16	30	86	169	0	75
18	20524	203	16.6	0.30	15	30 29	#385*#171	165 162	0	78
17	20524	206	17.1	0.29	15 15	28	84	154		72 72
18	20524	207	17.1	0.29	15	P 31.	84/	174	ŏ	76
19	20524	204	16.9	0.30	15 8424	33		184	0	82
20 21	20524 20524	208 216	17.2	0.29	15	T 30	₍₇₇ 83	167	0	105
22	20524	213	17.9 17.6	~ \0.28 * 0.28	14	30	80	169	0	86
23	20524	213	17.6	0.28	15	28 J	82	156	ŏ.	132
24	20524	214	17.7	0.28	15	28	81	155	Ō	139
25 26	20524	212	17.5	0.28	15	29	82	159	0	86
26 27	20524 20524	212 220	17.6 18.2	0.28	15 14	28	82 79	156	0	91
28	20524	217	17.9	0.27	14	31 28	80	172 156	0	87 152
29	20524	218	18.0	0.27	14	38	79	213	Ö.	101
30	20524	222	18.3	0.27	14	29	78	160	0	154
31 32	20524 20524	217 221	17.9	0.28	14	28	80	154	0	138
33	20524	213	17.6	0.27	14 15	28 29	79 81	154 163	0	192 0
34	20524	207	17.2	0.29	15	31	83	174	0	95
35	20524	214	17.7	0.28	15	29	81	161	0	102
36 37	20524 20524	216	17.9	0.27	14	27	79	150	0	203
37	20524	223 222	18.5 18.4	0.27	14	32 29	78	180	0	203
39	20524	218	18.0	0.28	14	30	78 79	161 164	0	0 47
40	20524	215	17.8	0.28	15	30	81	168	. 0	130
41	20524	215	17.8	0.28	14/5	30	80	167	· 0	101
42	20524 20524	213	17.6	0.28	. 15	34	81	188	0	161
44	20524	219	18.4 18.2	0.27	14 14	29 36	. 78	163.	0	154
45	20524	213	17.9	0.28	14	30	78 80	198 168	0	203 199
46	20524	210	17.4	0.29	15	37	83	207	0	199
47	20524	218	18.0	0.28	14	32	80	179	Ö	105
2		1 010	1 470					• • • • • • •		
40	20524	216	17.8	0.28	14 15	30 29	80 82	166 161	0	0 203


A BUR HAL		ERONAUTICS LIMITE			A-33
	FRICTION	TEST CONSOLIDATED	REPORT		
	Date Time Project Name Part No Batch Number Brake Speed Brake Pressure Brake Force File Name	2/3/2007 9:49:19 AM IIT ADAT/FIGH A21 A52 MEDIUM 1450 RPM 9.24 kg/eq.cm 83 kg/ A21 A52 MEDIUM_2_3_2007_1		naterial –FM14A	A
	•				
Kinetic Energy RD rev. (kgfm)	RD time Coefficier (sec) of friction 16.8 0.37 13.2 0.29 15 0.32	nt Mean Torque Peak Torqu n (kgfm) (kgfm) 20 64 15 32 17 39	(kgf) (k 108 3 86 1	Drag Pad1-Temp F gf) (DegC) 56 0 80 0 17 0	Pad2-Temp (DegC) 203 0 99
	WEAR REPORT			•	
THICKNESS in m Initial Final 6.38 6.16 7.11 6.88	nm Wear: hilla 0.22 2407 0.23 2416	EIGHT IN grams // Wear Final/			• • •
Total Number of Cycles co	mpleted: 50		• • • • • •		
DISPOSITION	:			•	
PRODUCTION/DEVELOPM	ENT :	<i>Қ</i> ~~			
· ************************************					
				· · · · · · · · · · · · · · · · · · ·	


	Z EU UAL	7 L	HINDUS		ONAUTICS			RE		
				FRICTI	ON TEST F	INAL REPOR	RT			
			Date Time Project Na Part No Batch Nun Brake Spe Brake Pre Brako For File Name	nber / ved ssure ce	2/3/2007 0:40:10 AM IIT A21 A52 MEDIUM A21 A52 MEDIUM 1450 9.24 83 A21 A52 MEDIUI	RPM kg/sq.cm Kgf M_2_3_2007_9_4	49_19 AM		ial –FM14	-
SI	Kinetic Energy	RD rev.	RD time		Mean Torque			Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)	400	(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
1 2	20524 20524	180 170	14.9 14.1	⁷ 0.32 `0.34	17 18	64 28	96	354	0	71
3	20524	163	14.1	0.34	18	36 36	100 106	202 201	0	50 53
4	20524	166	13.7	0.35	19	36	105	199	ō.	52
5	20524	160	13.3	0.36	19	37	107	205	ŏ	54
6	20524	162	13.4	0.36	19	36	108	197	· 0	59
7	20524	160	13,2	0.37	20	39	108	216	0	-63
8	20524	164	13.5	0.36	19	37	106	206	0	66
9	20524 20524	166	13.7	0.35	19	39	104	217	0	83
11	20524	168 169	13.9 14.0	0.35	19 18	37 38	103	204	0	72
12	20524	169	14.0	0.35	18	36	103 102	212 198	0	75 86
13	20524	173	14.3	0.34	18	40	102	222	0	
14	20524	174	14.4	0.33	18	38	100	212	l õ	95
15	20524	182	15.1	0.32	17	48	95	266	ŏ	- 84
16	20524	172	14.3	0.34	18	35	101	194	Ō	82
17	20524	179	14.8	0.32	17	36	97	199	0	115
18	20524	177	14.7	0.33	18	39	98	216	0	114 ·
19	20524 20524	182	15.0	0.32	17	39	96	214	0	143
20	20524	175	14.5	0.33	18 18	48	99 99	268	0	171
22	20524	176	14.6	0.33	18	38	98	212	0	185 201
23	20524	178	14.7	0.33	18	36	98	200	0.	86
24	20524	172	14.2	0.33	18	44	99	247	ő	195
25	20524	179	14.8	0.33	17	36	97	197	-0	169
26	20524	177	14.7	0.33	18	50	97	276	0	100
27	20524	183	15.1	0.32	17	37	95 -	205	0	190
28	20524	179	14.8	0.33	17	33	97	182	0	80
29 30	20524 20524	170 185	14.1	0.34	18	36	101	200		. 0
31	20524	185	15.3	0.32	17 17	36 34	94 94	_201 191	0	0
32	20524	194	16.0	0.30	16	36	90	201	0	200
33	20524	192	15.9	0.30	16	34	89	189	O O	144
34	20524	191	15.8	0.31	16	34	91	188	Ō	198
35	20524	202	16.7	0.29	16	57	86	316	0	155
36	20524	196	16.2	0.30	16	37	89	203	0	Q
37	20524	194	16.0	0.30	16	35	88	197	0	189
38 39	20524 20524	198 189	16.4 15.7	0.30 0.31	16 17	32 37	- 88	180	0	53
40	20524	196	16.2	0.30	16	41	92 89	207		200
41	20524	195	16.1	0.30	16	37	89	204	o	169
42	20524	189	15.6	0.31	16	41 、	91	226	o	201
43	20524	199	16.5	0.29	16	38	87	209	Ő	66
44	20524	201	16.6	0.29	16	35	- 86	194	0	0
45	20524	193	16.0	0.30	16	35	90	193	0	203
46	20524	195	16.1	0.30	16	34	89	191	0.	0
47	20524 20524	192	15.9	0.30	16	39	90	218	0	0
40	20524	195 193	16.1	0.30	16 16	37 36	89 89	207	D	0
50	20524	203	16.8	0.29	15	64	86	203 356	0	0
L_30	20024	1_203_	10.0	1 0.29	1 15	1 04	1 86	306	0	0

ł.

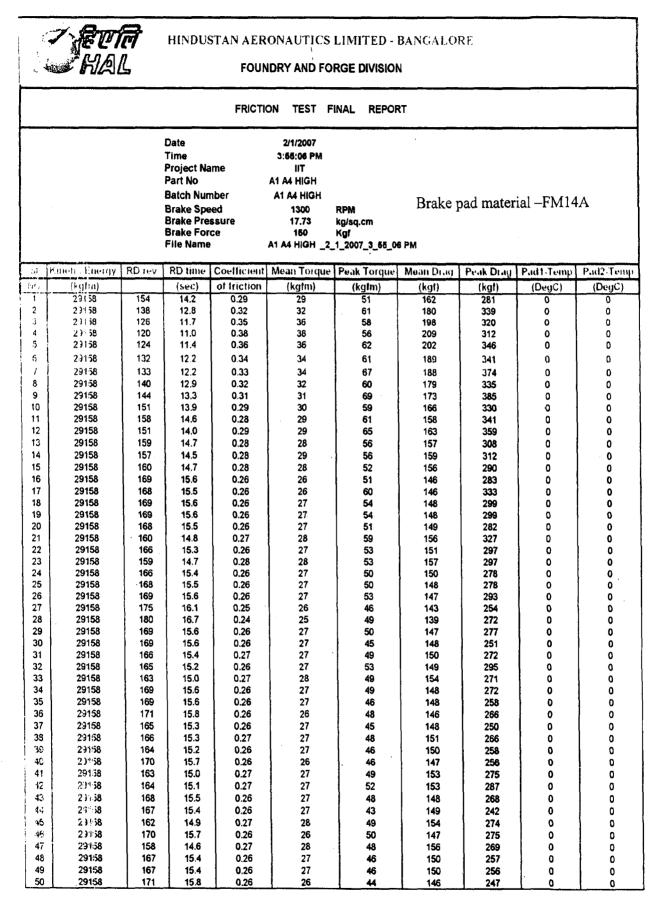
A-35 HINDUSTAN AERONAUTICS LIMITED - BANGALORE FOUNDRY AND FORGE DIVISION FRICTION TEST CONSOLIDATED REPORT Date 2/3/2007 Time 12:45:06 PM **Project Name** Brake pad material -FM14A IIT Part No A32 A42 MEDIUM Bath Number A32 A42 MEDIUM Brake Speed 1450 RPM Brake Pressure 9.02 kg/sq.cm **Brake Force** 83 kgf File Name A32 A42 MEDIUM_2_3_2007_12_45_06 PM Kinetic Energy RD rev. RD time Coefficient Mean Torque Peak Torque Mean Drag Peak Drag Pad1-Temp Pad2-Temp (kgfm) (sec) of friction (kgfm) (kgfm) (kgf) (kgf) (DegC) (DegC) Max 20524 17.9 216 0.33 17 78 94 431 0 202 Min 20524 183 15.1 0.28 14 26 80 144 ۵ 6 197 0 93 Avg 20524 205 16.9 0.29 15 36 85 WEAR REPOR WEIGHT IN grams **THICKNESS in mm** 64.9 PAD 6.24 latis Final No Initial Final Wear 0.24 7.04 6.8 2414 2417 1 6.74 0.31 2410 2406 6.43 2 Total Number of Cycles completed: 50 DISPOSITION PRODUCTION/DEVELOPMENT

		•							•	A-30
	Z EU UNA		HINDUS		ONAUTICS			RE		
				· · · · · · · · · · · · · · · · · · ·				· · · · · ·		
				FRICTI	ON TEST F	INAL REPO	रा		n ganganan ang	
			Date		2/3/2007				·····	
·			Time Project Na		12: 45:05 PM IIT			•		
]			Part No		32 A42 MEDIUN	A '				
		•	Batch Nur		32 A42 MEDIUN			•		
			Brake Spe Brake Pre		1450 9.02	RPM kg/sg.cm	Brake	pad mater	rial –FM14	A
ł			Brake For File Name		83 A32 A42 MEDIU	Kgf	AR OF DM			1
									· · · ·	
SI	Kinetic Energy	RD rev.	RD time		Mean Torque			Peak Drag	Pad1-Temp	Pad2-Temp
NO 1	(kgfm) 20524	201	(sec) - 16.6	of friction 0.30	(kgfm) 16	(kgfm) 48	(kgf) 86	(kgf) 269	(DegC)	(De(IC) 49
2	20524	190	15.7	0.31	16	34	· 91	188	0	48
3	20524 20524	186 185	15,4	0.32	17	32	92	178	0	49
5	20524	185	15.3 15.5	0.32	17 17	35 33	94 92	192	0	46 44
6	20524	183	15.1	0,33	17	35	94	195	0	58
7	20524	190	15:7	0.31	16	34	89	190	Ō	59
8	20524	195	16.1	0.31	16	34	89	169	0	61
10	20524 20624	198 194	16.4 16.0	0.30	16 16	34	- 55 89	190	0	67
11	20524	197	16.3	0.30	18	30	88	163	0	66 64
12	20524	196	16.2	0.31	16	33	88	183	ŏ	70
13 14	20524	202	16.7	0.29	15	69	85	381	0	70
1 15	20524	208 207	17.2	0.29	15	78	83	431	0	67
16	204.24	199	16.5	0.29	15	30	84 • 85 -	171	0	· 68 70
17	20524	203	16.8	0.29	154	29	85	162	o	78
18	20524 20524	203	16.8 16.9	***0:29	15 ***	30	85	165	0	72
20	20524	204	16.9	0.29	67 15 E	28	85	154 172	0	75
21	20524	206	17.1	0.20		32	84	181	0	99 75
22	20524	204	16.9	0.29	15 4	30 the	84	164	Ŏ	78
23	20524 20524	200	16.5 16.8	0.30	16 15	34 32	87	188	0	85 ⁻
25	20524	209	17.3	0.29	15	54	85 83	176 301		82 82
26	20524	212	17.5	0.28	15	52	82	291	0	85
27	20524 20524	213 208	17.7 17.2	0.28	15 15	64	81	354	0	90
29	20524	210	17.4	0.28	15	34 33	83	187 181	0	89 90
30	20524	208.	17.2	0.29	15	29	84	160	ŏ	90. 191
31	20524 20524	208 214	17.2	0.29	15	32	83	177	0	90
33	20524	214	17.7 17.1	0.28 0.29	15 15	48 30	81 84	269 167	0	143 142
34	20524	213	17.7	0.28	15 🐍	30	81	167	0	142 105
35	20524	206	17.1	0.28	15	31	81	170	0	123 • 6
30	20524 20524	215 211	17.8 17.5	0.28	15 15	44	81	247	0	6
38	20524	213	17.7	0.28	15	28 28	82 81	156 157	0	93 111
39	20524	206	17.1	0.29	15	31	83	172	0	49
40	20524 20524	213	17.6	0.28	15	29 48	82	161	0	136
41	20524	216 213	17.9 17.6	0.28	14	48	80	268	0	89
43	20524	205	17.0	0.29	15	31	81	150 · 170	0	162 201
44	20524	210	17.4	0.28	15	27	82	149	o ·	201
45 46	20524 20524	208 215	17.2	0.28	15	27	82	152	0	202
47	20524	215	17.8 17.5	0.28 0.28	15 15	28 27	81 82	154	0	139
48	20524	214	17.7	0.28	15	29	81	152 163	0	127 88
49	20524	210	17.3	0.29	15	38	83	212	0	123
50	20524	215	17.8	0.28	15	26	81	144	0	107

	A SEUT	ने -	HINDUSTAN AERONAUTICS LIMITED - BANGALORE FOUNDRY AND FORGE DIVISION									
			F	RICTION	TEST CONS	OLIDATED	REPORT					
			Date Time Project N Part No Batch Nu Brake Sp Brake Pro Brake For File Name	mber eed essure rce	2/1/2007 6:12:20 PM IIT A32 A42 HIGH A32 A42 HIGH 1300 17.57 150 A32 A42 HIGH_1	RPM kg/sq.cm kgf 2_1_2007_6_12_2		d materia	al –FM14A	A		
T	Kine ic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp		
ľ	ikgfin)		(sec)	of friction	(kgtm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)		
Мах	29158	183	16.9	0.29	29	59	161	328	0	0		
Min Avg	29158 29158	154 168	14.2	0.24	25	<u>44</u> 50	136 148	242	0	0		
PAD	тніскі	VESS in	WEAR R		IGHT IN grams	<u> </u>	1					
No	Initial	Final	Wear	Initial	Final	Wear	1					
1 2	7.23	6.98 6.71	0.25	2419 2412	2416 2410	3].			* .		
T	otal Number of C DISPOSITION PRODUCTION/DE	Cycles co	ompleted:	50	\$1		-					

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION


			<u> </u>				·•			
				FRICTI	ON TEST F	INAL REPOR	रा			
			Date Time Project Na Part No Batch Nun Brake Spe Brake Pre	nber æd	2/1/2007 6:12:20 PM IIT A32 A42 HIGH A32 A42 'HIGH 1300 17.57	RPM kg/sq.cm	Brake	nad mate	rial –FM1	
			Brake For File Name		150 A32 A42 HIGH_	Kgf		pau mate		4A
.,	Fuelic Energy	RD rev	RD time	Coefficient	Mean Torque		Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)		(sec)	of friction	(kytm)	(kytm)	(kgf)	(kgf)	(DegC)	(DegC)
1	29158	175	16.2	0.25	25	50	141	275	0	0
2 3	29158 29158	183	16.9	0.24	25	51 57	136	285	0	0
4	29158	181 175	16.7 16.2	0.24	25 25	57 56	138	315	0	0
5	29158	172	15.9	0.25	25	- 58	141 144	311 323	0	0
6	29158	174	16.0	0.25	26	56	144	309	0	0
7	29158	177	16.4	0.25	25	59	144	328	0	0
8	29158	179	16.4	0.25	25	59	141	280	0	0
9	29158	177	16.4	0.25	25	53	140	296	0	0
10	29158	177	16.3	0.25	25	50	141	275	o	0
11	29158	177	16.3	0.25	25	49	142	271	ō	0
12	29158	178	16.4	0.25	25	47	140	262	ŏ	ō
13	29158	174	16.1	0.25	26	52	144	291	Ō	0
14	29158	169	15.6	0.26	27	52	149	291	ō	ō
15	29158	172	15.9	0.26	26	50	145	279	ō	ō
16	29158	174	16.0	0.25	26	47	144	261	0	Ō
17	29158	172	15.8	0.26	26	48	145	266	0	0
18	29158	171	15.8	0.26	26	52	146	286	0	0
19	29158	171	15.8	0.25	26	51	145	282	0	0
20	29158	170	15.7	0.26	26	48	147	264	0	0
21	29158	171	15.8	0.26	26	50	146	276	0	0
22	29158	169	15.6	0.26	27	48	148	267	0	0
23	29158	175	16.1	0.25	26	50	143	278	0	0
24	29158	170	15.7	0.26	26	48	147	265	0	0
25	29158	170	15.7	0.26	27	54	147	300	0	0
26	29158 23158	169 162	15.6	0.26	27	49	148	275	0	0
27	29158	162	14.9	0.27 0.26	28	48 45	154 148	265 251	0	0
20	29158	169	15.6	0.26	27	45	146	251	0	0
35	29158	160	14.8	0.28	27	47	140	275	0	ŏ
01	29158	167	15.4	0.26	27	47	150	260	0	Ö
32	29158	155	14.3	0.28	29	51	159	286	0	Ő
33	29158	165	15.2	0.27	27	48	151	267	l õ	a
34	29158	156	14.4	0.29	29	57	161	319	Ō	ō
35	29158	156	14.4	0.28	29	50	160	278	0	0
36	29. 58	165	15.3	0.27	27	47	151	261	0	0
37	29158	160	14.7	0.28	28	52	157	287	0	0
38	29158	159	14.7	0.28	28	48	157	268	0	0
39	29158	164	15.1	0.27	27	50	152	275	0	0
40	29158	160	14.8	0.27	28	46	155	253	0	0
41	29158	168	15.5	0.26	27	47	149	263	0	0
42	29158 29158	164	15.1	0.27	27	48	153	264	0	0
43		158	14.5	0.28	29	48	159	268	0	0
44	29158 29158	161	14.9	0.27	27	44	152	242	. 0	0
45	29158	164 165	15.1	0.27	27	48	152	268	0	0
40	29158	165	15.2 15.6	0.27	27 27	49 53	150	272	0	0
48	29158	161	15.0	0.26	27	45	148 155	292 250	0	0
49	29158	154	14.2	0.28	29	47	160	250	0	0
50	29158	171	15.8	0.26	26	46	146	255	0	0
بقت ا				<u>v.rv</u>			.1	L 6,90	<u> </u>	1

A-40

		<u></u>								A-4
	Z EU HA	ले L	HINDUS		1	S LIMITED - RGE DIVISION		DRE		
			F	RICTION	TEST CON	SOLIDATED	REPORT			
			Date Time Project N Part No Batch Nut Brake Spi	mber	2/1/2007 7:27:42 PM IIT A21 A52 HIGH A21 A52 HIGH 1300		Brake p	ad mater	ial –FM14	4A
			Brake Pro Brake For File Name	ssure rce	17.7 150	kg/aq.cm kgf 2_1_2007_7_27_4	42 PM			
	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag		Pad2-Tem
	(kgtm)	407	(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Max Min	29158 29158	187 162	17.3 15	0.27	28 24	61 41	154	341 229	0	0
Avg	29158	171	15.8	0.26	26	49	146	275	0	0
			WEAR R	EPORT						
AD		NESS in r			IGHT IN grams]			
ó	Initial	Final	Wear	Initial	Final	Wear	ł			
1 2	7.27	7.09 6.37	0.18 0.23	2418 2408	2416 2406	2	1 .			
C	otal Number of (DISPOSITION		:	50	1 - m					
F	PRODUCTION/DE	.velopm	CNI :	•						

										A-4
	A RAI	लि L	HINDUS		ONAUTICS			RE		
		<u></u>		FRICTI	ON TEST F	INAL REPOR	RT			
			Date Time Project Na Part No Batch Nun Brake Spe Brake Pre Brake For File Name	nber æd ssure ce	2/1/2007 7:27:42 PM JIT A21 A52 HIGH A21 A52 HIGH 1300 17.7 160 A21 A52 HIGH_	RPM kg/sq.cm Kgr 2_1_2007_7_27_		e pad mate	erial –FM1	4A
SI	Kinetic Energy	RD iev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
1	29158 29158	181	16.7	0.24	25	55	138	307	0	0
2 3	29158	180 187	16.6 17.3	0.24 0.23	25 24	61 51	139 134	341 282	0	0
4	29158	172	15.9	0.26	26	53	145	296	o	0
5	29158	177	16.3	0.25	26	48	142	264	0	0
6	29158	175	16.1	0.25	26	46	143	254	0	Ο.
7	29158	173	16.0	0.25	26	50	144	280	0	0
8 9	29158 29158	176 172	16.2	0.25	25	58	141	323	0	0
9 10	29158	172	15.9 15.8	0.26	26 26	50 58	145 146	279 322	0	0
11	29158	173	16.0	0.25	26	53	143	296	0	0
12	29158	170	15.7	0.26	26	49	147	273	o j	ō
13	29158	169	15.6	0.26	27	51	148	282	Ō	Ō
14	29158	170	15.7	0.26	27	52	148	291	0	0
:5	29158	167	15.4	0.26	27	49	150	275	0	0
15 17	29158 29158	167 169	15.4	0.26	27 27	51 51	149 148	283 282	0	0
18	23 56	162	15.0	0.25	27	53	140	296	0 0	0
۰ç	29 58	167	15.4	0.26	27	50	149	278	l õ	ŏ
20	29458	163	15.1	0.27	28	52	153	291	Ō	Ō
21	29158	167	15.4	0.26	27	49	149	272	0	0
22.	29158	167	15.4	0.26	27	56	150	309	0	0
23	29153	165	15.3	0.27	27	48	151	265	0	0
24	29158	168	15.5	0.26	27	49	148	270	0	0
25 26	29158 29158	169 171	15.6	0.26	27	50 50	148 146	276	0	0
27	29158	163	15.0	0.27	27	60	152	332	ŏ	ŏ
28	29158	170	15.7	0.26	26	45	146	253	0	0
29	29158	165	15.2	0.27	27	47	152	258	0	0
30	29158	166	15.3	0.27	27	44	151	245	0	0
31 32	29158 29158	171	15.8 15.6	0.26	26 27	49 47	146 147	271 263	0	0
33	29158	169	15.6	0.26	27	47	147	249	0.	a a
34	29158	163	15.0	0.27	28	52	154	286	0	0
35	29158	177	16.3	0.24	25	43	140	237	0	0
36 37	29158	169	15.6	0.26	26	47	146	263	0	0
37 38	29158 29158	168 167	15.5 15.5	0.26	27 27	52 53	149 149	290 293	0	0
39	29158	168	15.5	0.26	27	44	149	293	0	0
40		168	15.5	0.26	27	46	149	254	0	0
41		171	15.7	0.26	26	48	147	268	0	0
42		168	15.5	0.26	27	46	148	257	0	0
43		173	16.0	0.25	26	48	145	267	0	0
44 45		178	16.5	0.25	25	48	140	266	0	0
45 46		170	15.7 15.6	0.26 0.26	26	46	147	255	0	0
40		173	15.6	0.25	27 26	46	148	254 232	0	0
48	1	170	15.7	0.26	26	46	145	255	ŏ	0
49	29158	177	16.4	0.24	25	41	139	229	0	o
50		181	16.7	0.24	25	44	138	243	0	l o

	7 EU HA	लि L	HINDUS		RONAUTICS		BANGALO	DRE		
			F	RICTION	TEST CONS	OLIDATED	REPORT			
			Date Time Project Na Part No Batch Nu Brake Spo Brake Pro Brake For File Name	mber 20 0 Issure 7ce	2/1/2007 3:56:06 PM IIT A1 A4 HIGH A1 A4 HIGH 1300 17.73 150 A1 A4 HIGH _2_	RPM kg/sq.cm kgf 1_2007_3_65_06	-	ad materi	al –FM14	łA
	<u></u>		<u></u>			<u> </u>				
	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Max	29158	180	16.7	0.38	38	69	209	385	0	0
Min Avg	29158 29158	120	<u>11</u> 14.8	0.24	25 28	43	139 157	242 292	0	0
			WEARR	EPORT						
PAD	ТНІСКІ	NESS in I	nm	WE	IGHT IN grams	T	1		•••••	
No	Initial	Final	Wear	Initial	Final	Wear				-
1 2	6.83	6.29 6.05	0.54	2412 2400	2405	7				
	otal Number of ODISPOSITION		:	50						

	7 EU HA		F		TEST CONS		REPORT	<u></u>		
			Date Time Project N Part No Batch Nut Brake Sp Brake Pro Brake Fo File Name	mber eed essure rce	1/29/2007 2:18:18 PM B11 B12 LOW B11 B12 LOW IIT 1000 17.54 150 IIT 1 29 2	RPM kg/sq.cm kgf 007_2_18_18 PM		bad mater	ial –FM1:	5A
_			rite Mallie		11 _1_43_4					
	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Ten
	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Max	17330	116	13.9	0.25	25	48	141	267	203	168
Min	17330	104	12.5	0.23	23	36	128	201	0	0
lvg	173:30	107	12.9	0.25	25	41	138	229	98	15
			WEAR R	EPORT						
AC	THICK	NESS in	mm	WE	IGHT IN grams					
0	init al	Final	Wear	Initial	Final	Wear				
1	6.46 6.85	4.34	2.12	2401 2409	2370	31				*
	fotal Number of (Cycles co	ompleted:	50						

1	/ feth HAI	लि L	HINDUS		ONAUTICS			RF		
				FRICTIO	ON TEST F	INAL REPOR	RT	<u> </u>		
			Date Time Project Na Part No Batch Nun Brake Spe Brake For File Name	nber ed ssure ce		RPM kg/sq.cm Kgf 2007_2_18_18 Pi	M		erial –FM1	
SI	Kinetic Energy	RD rev.	RD time		Mean Torque		Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgfm)	44.4	(sec)	of friction	(kgfm)	(kgfm)	(kgt)	(kgf)	(DegC)	(DegC)
1	17330 17330	114 115	13.7 13.8	0.23 0.23	23 23	45 48	128 128	248 267	48 48	58 71
3	17330	116	13.9	0.23	23	45	128	247	49	68
4	17330	113	13.6	0.23	24	42	131	232	50	66
5	17330 17330	108	13.0	0.24 0,24	24	44	134	244	52	0
7	17330	111	13.3 13.1	0.24	24 24	42 42	133 134	234 235	53 54	0
8	17330	111	13.3	0.24	24	42	134	235	54 55	
9	17330	109	13.1	0.24	24	39	136	216	57	Ō
10	17330	108	12.9	0.24	25	43	137	237	57	168
11	17330 17330	107 106	12.8 12.7	0.25 0.25	25 25	43 46	139 139	239 254	59 62	71 69
13	17330	100	12.8	0.25	25	37	139	208	64	84
14	17330	107	12.9	0.25	25	40	138	221	69	122
15	17330	107	12.9	0.25	25	41	138	228	72	0
16	17330	106	12.7	0.25	25 25	37	140	207	70	
17	17330 17330	107 106	12.8 12.7	0.25	25	38	138 139	209	76 80	0
19	17330	108	12.9	0.24	25	42	137	231	80	ō
20	17330	108	12.9	0.25	25	41	138	226	82	0
21	17330	105	12.6	0.25	25	39	141	214	85	0
22	17330 17330	105	12.6 12.8	0.25	25 25	41 38	140 139	229	84 88	0
24	17330	107	12.8	0.25	25	41	139	213	84	ŏ
25	17330	106	12.8	0.25	25	43	139	239	127	Ō
26	17330	106	12.7	0.25	25	39	140	215	93	0
27	17330	106	12.8	0.25	25	40	139	224	96	0
28	17330	105	12.6	0.25	25	44	141 140	244	0	0
29 30	17330	106	12.7 12.7	0.25 0.25	25 25	39 44	140	216 243	157 11	0
31	17330	108	12.9	0.24	25	38	137	211	188	0
32	17330	106	12.7	0.25	25	42	140	233	203	0
33	17330	106	12.8	0.25	25	40	139	220	100	0
34	17330 17330	106	12.7 12.6	0.25	25 25	44	140 140	245 242	130 192	0
36	17330	105	12.0	0.23	25	41	138	242	203	0
37	17330	106	12.7	0.25	25	38	139	213	155	0
38	17330	107	12.8	0.25	25	41	139	228	136	0
39		106	12.7	0.25	25	40	139	222	4	0
40		107 107	12.8 12.8	0.25 0.25	25 25	42	138 139	233 226	199 0	0
42		108	13.0	0.24	25	38	137	213	203	0
43	17330	104	12.5	0.25	25	42	140	233	202	0
44	17330	107	12.8	0.25	25	37	138	206	131	0
45		105	12.6	0.25	25	47	141	262	40	0
46		107 108	12.8 12.9	0.25	25 25	36 37	139 137	201 203	168 202	0
48		106	12.5	0.24	25	41	140	205	198	0
49		108	12.9	0.25	25	40	138	223	192	Ŏ
_50		107	12.9	0.24	25	46	138	258	0	0

٠,

			F	RICTION	TEST CONS	OLIDATED	REPORT			
			Date Time Project N: Part No Batch Nui Brake Spe Brake Pre Brake Foi File Name	mber e eed Issure rce	1/30/2007 4:58:01 PM IIT B32 B42 LOW 132 B42 LOW 1000 17.38 150 B32 B42 LOW	RPM kg/sq.cm kgf _1_30_2007_4		oad mater	ial –FM1	5A
1	Kinetic Energy	RD Iev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
ax	17330	101	12.1	0.32	32	56	179	314	0	55
in	17330 17330	83 96	9.9 11.6	0.26	26 28	37	146 153	207 242	0	0
<u> </u>			11 E 1 D D	EPORT						
Avg_			WF.AXX							
	THE			14.00		· · · · · · · · · · · · · · · · · · ·	1			
D		NESS in	ທາກ		IGHT IN grams	Wear			. `	
D	Initial	Final	mm Wear	Initial	Final	Wear 27				
AD 2			ທາກ			Wear 27 27				•

• · · ·

							,			A
	- feri HAI	लि	HINDUS	STAN AER	ONAUTICS	LIMPTED - I	BANGALO	Ri		
ς.	HA	L		FOUN	IDRY AND FO	RGE DIVISION	ù			
				FRICTI	ON TEST F	INAL REPOR	RT_			
			Date		1/30/2007		41		·	
			Time Project Na	me	4:58:01 PM IIT					
•			Part No Batch Nun	nber F	832 842 LOW					
			Brake Spe Brake Pre Brake For	ed ssure	1000 17.38 150	RPM kg/sq.cm	Brake	pad mate	rial –FM1	5A
			File Name		B32 B42 LOW	Kgf _1_30_2007_4	4_58_01 PM			
51	Emetic Energy	RD rev.	RD time		Mean Torque			Peak Drag	Pad1-Temp	Pad2-Temp
<u>40</u> 1	(kgfm) 17330	84	(sec) 10.1	of friction 0.32	(kgfm) 32	(kglm)	(kgf)	(kµl)	(DryC)	(DegC)
2	17330	83	9.9	0.32	32	56 50	175 179	314 275	0	55 0
3	17330	88	10.5	0.31	30	48	169	266	Ō	0
4 5	17330 17330	93 92	11.2	0.29	29 29	47 48	159 161	263 267	0	0
6	17330	93	11.2	0.29	29	40	159	267	0	0
7	17330	94	11.3	0.28	28	46	157	258	0	ő
8	17330	92	11.0	0.29	29	46	159	256	0	0
9 10	17330 17330	95	11.4	0.28	28	48	156	267	0	0
11	17330	94 93	11.2	0.28	28 29	42 43	157 158	235 241	0	0.
12	17330	94	11.2	0.28	28	45	158	251	ŏ	ŏ
13	17330	94	11.3	0.28	28	43	157	238	0	0
14 15	17330 17330	93 95	11.2	0.28	28	45 40	157	253	0	0
16	17330	96	11.5	0.28	28	40	155 154	221 236	0	0
17	17330	98	11.7	0.27	27	41	151	230	Ō	0
18	17330	96	11.5	0.27	27	47	152	260	0	0
19 20	17330 17330	96 99	11.6 11.9	0.27	27 27	45 42	150 149	249 236	0	0
21	17330	96	11.5	0.27	27	44	149	247	l õ	ŏ
22	17330	97	11.6	0.27	27	43	152	241	0	0
23	17330	96	11.5	0.27	27	43	152	239		0
24 25	17330 17330	98 98	11.7	0.27	27	46 44	151	254 243	0	0
26	17330	99	11.8	0.27	27	42	149	231	Ō	0
27	17350	98	11.8	0.27	27	40	150	222	0	0
28 29	17330 17330	99 99	11.9 11.9	0.27	27 27	43 42	149 149	238 236	0	0
30		101	12.1	0.26	26	42	149	230	0	0
31	1 '3:0	100	12.0	0.26	26	54	146	302	0	0
32		100	12.0	0.26	26	41	147	226	0	0
33 34	1	99 100	11.9 12.0	0.27	27 27	38 50	148 148	213 280	0.	0
35	173:30	98	11.7	0.27	27	41	151	230	0	o
36		99	11.8	0.27	27	40	149	224	0	0
37 38	1	96 99	11.5 11.9	0.27 0.27	27 27	43 41	152	237 226	0	0
39		100	11.9	0.27	27	41	150	220	0	0
40	17330	98	11.8	0.27	27	39	150	216	0	0
41		99	11.9	0.26	27	43	148	238	0	0
42 43		100 101	12.0 12.1	0.26	27 26	39 41	148 146	219 228	0	0
44	17330	98	11.7	0.23	20	41	140	220	0	0
45	17330	98	11.7	0.26	27	37	149	207	0	0
46		98	11.7	0.27	27	40	149	223	0	0
47 48		101	12.1 11.9	0.26 0.27	26 27	39 41	146 148	215 227	0	0
49	17330	97	11.7	0.27	27	44	151	245	ŏ	o o
50		97	11.7	0.27	27	39	151	215	l õ	ō

										A-4
,	र हिए। НА	ति L	HINDU		1	S LIMITED -)RI		
			F	RICTION	TEST CONS	SOLIDATED	REPORT			
			Date Time Project N Part No Batch Nu Brake Sp Brake Pro Brake Fol File Name	mber B eed ISSUITE ICCE	1/29/2007 3:51:56 PM IIT B21 B22 HIGH 21 B22 HIGH 1300 17.75 150 B21 B22 HIGH	RPM kg/sq.cm kgf _1_29_2007_		pad mate	rial –FM I	5A
	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
	(kgfm)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
Max	29158	191	17.6	0.25	25	53	141	294	204	60
Min Avg	29158 29158	0	0	0.23	24 24	12 42	<u>131</u> 136	65 231	<u>0</u> 30	0
PAD		NESS in 1		WE	IGHT IN grams		}			
No	Initial	Final	Wear	Initial	Final	Wear				
1 2	7.01 6.98	3.95	3.06	2415 2414	2368	47	ł			•
	Total Number of DISPOSITION PRODUCTION/DE		:	50 - A.C.						

										<u> </u>
	~हेए।	M	HINDES	STAN AER	ONAUTICS	LIMITED - I	BANGALO	RE		
	CRUI HAI			FOUN	IDRY AND FO	RGE DIVISION	4			
				FRICTI	ON TEST F		 2T			
	مېر د در د د د د د د د د د د د د د د د د								<u></u>	
			Date Time		1/29/2007 3:51:56 PM					
			Project Na Part No	ime	IIT B21 B22 HIGH		19 -			·
			Batch Nun	nber B	21 B22 HIGH					
			Brake Spe Brake Pre		1300 17.75	RPM ka/sq.cm	Brake	pad mate	rial –FM1	5A
			Brake For	ce	160	Kgr		1		
			File Name		B21 B22 HIGH		_3_61_66 PM			
51	Kinetic Energy	RD rev.	RD time		Mean Torque		Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
10	(kgtm) 29158	191	(sec) 17.6	of triction 0.23	(kgfm) 24	(kgfm) 53	(kyt) 131	(kgt) 294	(DegC) 55	(DegC) 60
2	29158	0	0.0	0.23	24	12	131	65	54	54
3	29158 29158	184 178	17.0 16.4	0.24 0.25	25 25	44 45	136 141	243 248	62 62	0 0
5	29158	177	16.4	0.25	25	48	141	266	60	0
6	29158	179	16.5	0.24	25	53	140	292	63	0
7	29158	180	16.6	0.24	25	46	139	258	72	0
8	29158 29158	179 179	16.6 16.5	0.24 0.24	25 25	46 43	139 140	256 241	103 146	0
10	29158	182	16.8	0.24	25	41	137	229	74	ŏ
11	29158	180	16.6	0.24	25	40	139	224	150	0
12 13	29158 29158	179 179	16.5 16.5	0.24	25	44 45	137 138	246 248	140 90	0
14	29158	186	17.2	0.23	24	47	134	260	204	Ō
15	29158	185	17.1	0.24	24	48	135	267	· 0	0
16	29158 29158	187 182	17.2 16.8	0.23	24 25	40 49	134 137	221	0 159	0
18	29158	184	17.0	0.24	25	40	136	223	0	ŏ
19 20	29158 29158	183	16.9	0.24	25	41	137	227	0	0
20	29158	186	17.1	0.24	24	44 46	135 134	244 255		0 '
22	29153	183	16.9	0.24	25	43	136	240	0	0
23	29153 29153	184 184	17.0	0.24	24 24	42	136	232	0	0
25	29158	186	17.2	0.24	24	42	136 135	245 235	0	0
36	29158	187	17.3	0.23	24	46	134	257	Ó	ō
27	29158 29158	189 187	17.4	0.23 0.23	24 24	42 40	133 134	232 223	0	0
- 59	25-128	188	17.3	0.23	24	41	134	225	0	0
30	25:158	188	17.3	0.23	24	41	133	226	0	0
31	29158 29158	187	17.3	0.23	24 24	38 · 40	134	211	0	0
33	29168	187	17.3	0.23	24	40	132 133	221	0 Q	0
34	29158	184	17.0	0.24	24	38	136	213	0	Ō
35	29158 29158	184	17.0	0.24	24	41	136	226	0	0
37	29158	186 187	17.2 17.3	0.24	24 24	38 38	135 134	212	0	0
38	29158	189	17,4	0.23	24	36	133	202	· 0	0
39 40	29158 29158	187 186	17.3 17.1	0.23	24	38	134	209	0	0
40	29158	180	17.1	0.24 0.23	24 24	39 39	135	219 214	0	0
42	29158	182	16.8	0.24	24	39	136	215	0	ŏ
43	29158	185	17.1	0.24	24	39	135	215	0	0
44	29158 29158	182 184	16.8 16.9	0.24	24	39 42	135 135	217 235	0	0
46	29158	184	17.0	0.24	24	38	135	210	0	ů.
47		182	16.8 17.2	0.24 0.24	25	40	137	223	0	0
40	29158	186 183	17.2	0.24	24 25	40 40	135 136	224 222	0	0
50		183	16.9	0.24	25	41	137	229	0	0

<u>A-5</u>0

	T EUN HAI	(*7 -	HINDUS		DRY AND FOR	LIMITED -	BANGALO	RE		
			F	RICTION	TEST CONS	OLIDATED	REPORT			
			Date Time Project Na Part No Batch Nur Brake Spo Brake For File Name	nber eed essure rce	2/1/2007 2:42:51 PM IIT B31 B41 HIGH B31 B41 HIGH 1300 17.83 150 B31 B41 HIGH	RPM kg/sq.cm kgf _2_1_2007_2_42		bad mater	ial –FM1	5A
	·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
Ţ	Kinetic Energy	RD rev.			Mean Torque		Mean Drag		Pad1-Temp	Pad2-Tem
ax	(kgfm) 29158	185	(sec) 17.1	of friction 0.25	(kgfm) 26	(kgfm) 50	(kgf) 146	(kgf)	(DegC)	(DegC)
in	29158	105	17.1	0.25	26	40	146	279	0	0
vg	29158	176	16.3	0.25	25	44	141	244	0	0
			WFAR R	EPORT						
0		NESS in r			IGHT IN grams					
	6."8	Final 3.91	Wear 2.87	Initial 2409	Final 2365	Wear 44				
2	6.53	3.23	3.3	2407	2359	48				
	otal Number of C	Cycles co	mpleted:	50	a l _			·		
וס	ISPOSITION		:	Al-	~~~				·	
P	RODUCTION/DE	VELOPM	ENT :							

- - **	Z EU A	ल	HINDUS		ONAUTICS			₹ E		A'
				FRICTI	ON TEST F	INAL REPOR	RT		<u></u>	
			Date Time Project Na Part No Batch Nur Brake Spe Brake For File Name	nber æd ssure ce	2/1/2007 2:42:51 PM IIT B31 B41 HIGH B31 B41 HIGH 1300 17.83 150 B31 B41 HIGH	RPM kg/sq.cm Kgf _2_1_2007_2_4		pad mater	rial –FM1	5A
ŝi	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Temp
10	(kgfm)		(Sec)	of friction	(kgfm)	(kgfm)	(kgt)	(kyt)	(DeyC)	(DegC)
1	29158	177	16.4	0.25	25	43	141	241	0	0
23	29158 29158	182 177	16.8 16.3	0.24 0.25	25 26	42 48	138 142	234 269	0	0
4	29158	176	16.2	0.25	26	40	142	234	ŏ	0
5	29158	, 175	16.2	0.25	26	44	143	243	· o	Ō
6	29158	171	15.8	0.25	26	46	146	257	0	0
7	29158	171	15.8	0.25	26	44	145	243	0	0
3	29158	171	15.8	0.25	26	42	146	231	0	0
9	29158	171	15.8	0.25	26	46	t45	257	0	0
0 1	29158 29158	175 174	16.1	0.25	26	43	143	241	0	0
2	29158	174	16.1 15.9	0.25	26 26	43 45	144 145	237 250	0	0
3	29158	173	15.9	0.25	26	45	145	250	0	0
4	29158	173	16.0	0.25	26	46	144	254	ō	ŏ
15	29158	172	15.9	0.25	26	46	143	258	0	Ó
6	29158	175	16.2	0.25	26	45	142	252	0	0
7	29158	174	16.0	0.25	26	46	144	257	0	0
18	29158 29158	175 175	16.2 16.2	0.25	26 26	48 40	143 143	269 220	0	0
19 20	29158	175	16.2	0.25	28	40	139	220	o	0
21	29158	176	16.3	0.25	25	41	142	230	ŏ	ŏ
22	29158	173	16.0	0.25	26	41	143	225	Ō	Ō
23	29158	176	16.2	0.25	26	42	142	233	0	0
24	29158	179	16.5	0.24	25	47	139	260	0	0
25	29158	177	16.3	0.25	25	42	141	233	0	0
26	29158	179	16.5	0.24	25	42	139 138	232 234	0	0
27 28	29158 29158	181	16.7 16.4	0.24	25 25	42 45	138	234	0	0
29	29158	177	16.3	0.24	25	47	141	259	ŏ	Ő
30	29158	175	16.1	0.25	26	42	142	233	0	0
31	29158	179	16.5	0.24	25	44	140	245	0	0
32	29158	177	16.3	0.24	25	50	140	279	0	. 0
33 34	29158 29158	179 176	16.5 16.3	0.24 0.25	25 26	40 41	140 142	225 230	0	0
3 4 35	29158	176	16.3	0.25	25	40	141	224	Ö	0
36	29158	175	16.1	0.25	26	45	143	251	Ō	ō
37	29158	173	16.0	0.25	26	44	143	245	· 0	0
38	29158	179	16.5	0.24	25	48	140	268	0	0
39	29158	177	16.4	0.25	25	40	141	223	0	0
40 41	29158 29158	173 178	16.0 16.4	0.25 0.24	26 25	44 42	143 140	247 232	0	0
41	29158	178	16.4	0.24	25	48	140	269	0	0
43	29158	179	16.6	0.24	25	43	139	241	0	Ō
44	29158	178	16.4	0.25	25	45	140	248	0	0
45	29158	179	16.5	0.24	25	44	140	247	0	0
46	29158	179	16.5	0.24	25	44	139	247	0	0
47	29158	178	16.4	0.24	25	47	140	263	0	0
48	29158 29158	184	17.0 16.7	0.24 0.24	24 25	42 42	136 138	236 233	0	0
49										

, s^{at}

			F	RICTION	TEST CONS	OLIDATED	REPORT		
			Date Time Project N Part No Batch Nu Brake Sp Brake Pro Brake Fo File Name	mber eed essure rce	1/30/2007 3:53:18 PM IIT C32 C41 LOW C32 C41 LOW 1000 17:29 150 C32 C41 LOW	RPM kg/sq.cm kgf _1_30_2007_3		pad mater	rial –FM1
	Kinetic Energy	RD rev.	RD time	Coefficien	t Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp
	(kgtin)		(sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)
Max Min	17330	105	12.6	0.28	28 25	62 42	156 141	343	0
Avg	17330	98	11.7	0.27	27	47	150	263	0
PAD No 1 2	THICK Initial 6.39 6.31	NESS in Final 4.97 5.22	WFAR & NMFAR & Wear 1.42 1.29		EIGHT IN grams Final 2385 2392	Wear 21 20			
	Fetal Number of (Cycles co	ompleted:	50					
	DISPOSITION		:			~ .,			

	- EUN HAL	ति ।	HINDUS		ONAUTICS L Idry and Fo			RE		
				FRICTIO	ON TEST F	INAL REPOR	RT			
			Date Time Project Na Part No Batch Nun Brake Spe Brake For File Name	nber C ed ssure ce	1/30/2007 3:53:18 PM UT C32 C41 LOW 1000 17.29 160 C32 C41 LOW	RPM kg/sq.cm Kg1 _1_30_2007_:	3_63_18 PM	-	rial –FM1	
-51	Kinetic Energy	RD (ev.	RD time		Mean Torque			Peak Drag	Pad1-Temp	Pad2-Temp
NO	(kgtm)		(sec)	of friction	(kgfm)	(kgfm)	(kġf)	(kgf)	(DegC)	(DegC)
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	17330 17330	105 96	12.6 11.5	0.25 0.27	25 27	49 54	141 151	272	0	0
j.	17330	97	11.5	0.27	27	54 53	151 162	298 797	0	0
4	17330	98	11.8	0.27	27	47	150	260	0	0
5	17330	98	11.7	0.27	27	50	151	280	0	51
6	17330	99	11.8	0.27	27	50	150	275	0	0
7	17330 17330	98 99	11.8 11.9	0.27	27 26	46 45	151 146	258 249	0	0 0
9	17330	102	12.2	0.26	26	45	140	249	0	0
10	17330	99	11.9	0.27	27	47	149	260	o	Ō
11	1733)	99	11.9	0.27	27	47	150	260	0	0
12	17330	95	11.4	0.28	28	46	155	258	0	0
13	17330	98	11.7	0.27	27	46	149	255	0	0
14	17330 17330	98	11.8	0.27	27 27	48 46	150 148	264 254	0	0
16	17330	97	11.6	0.20	27	48	152	267	Ň	ŏ
17	17330	99	11.9	0.27	27	44	149	242	Ō	ō
18	17330	100	12.0	0.26	27	50	147	276	0	0
19		96	11.5	0.28	28	45	155	252	0	0
20	17330 17330	98 99	11.7	0.27	27 27	52 48	151 149	290 268	0	0
22		99	11.9	0.27	27	40	149	200		0
23		101	12.1	0.26	26	46	146	254	ŏ	0
24		96	11.5	0.26	26	42	146	234	0	0
25		95	11.3	0.28	28	46	154	254	0	0
26		98	11.7	0.27	27	46	151	258	0	0
27		98 101	11.7 12.1	0.27 0.26	27 26	45	151 146	253 256	0	0
20		97	11.7	0.28	20	46 45	140	230	l õ	0
30	17330	99	11.8	0.27	27 .	46	150	257	0	ō
31	17330	-99	11.9	0.27	27	44	149	246	0	0.
32		98	11.8	0.27	27	44	150	244	0	0
33		100 97	12.0 11.6	0.26 0.27	27	44	148	244	0	0
35		97	11.6	0.27	27	45	153	235	0	0
36		93	11.2	0.28	28	46	154	257	ō	0
37	17330	97	11.6	0.27	27	44	150	246	0	0
38		98	11.7	0.27	27	46	151	255	0	0
39		100 99	12.0 11.8	0.26 0.27	26 27	48 47	147 150	269 261	0	0
41		97	11.6	0.27	27	47	150	248	0	ŏ
42		96	11.5	0.28	28	45	154	249	0	l o
43	3 17330	97	11.6	0.27	27	46	153	254	0	0
44		98	11.8	0.27	27	50	150	280	0	0
4		96	11.5	0.27	27	49	151	272		0
46	1	96 92	11.5 11.0	0.28	28 28	52 50	154 156	290 275	0	0
4		96	11.5	0.28	28	45	156	251	0	Q
4	9 17330	96	11.5	0.28	28	62	154	343	0	0
5		96	11.5	0.28	28	51	155	286	0	0

(kgtin) (sec) of friction (kgfm) (kgfn) (kgf) (kgf) (DegC) (DegC) xx 29158 189 17.5 0.29 30 60 165 336 0 5 n 29158 151 14 0.23 24 38 132 211 0 0		Z EU HA	लि ।	HINDUS		1	LIMITED -	BANGALO	DRE		
Time 5:15:09 PM Brake pad material -FM16A Project Name IT Part No C11 C31 HIGH Batch Number C11 C31 HIGH Brake Speed 1300 Brake Pressure 17.83 Brake Pressure 17.83 Brake Pressure 15.0 Brake Force 150 Kinetic Energy RD tev RD time Coefficient Mean Cart C31 HIGH Stake Force 150 Kinetic Energy RD tev RD time Coefficient Mean Cart C31 HIGH Kinetic Energy RD tev RD time Coefficient Mean Cart C31 HIGH Kinetic Energy RD tev RD time Coefficient Mean Cart C31 HIGH Kinetic Energy RD tev RD time Coefficient Mean Trage Pais 175 0.235 24 326 0 179 16.5 0.235 25 43 140 271 0 131 Lise 132 1.127 2404 2380		·		F	RICTION	TEST CONS	OLIDATED	REPORT			
(kgtm) (sec) of friction (kgfm) (kgfn) (kgf) (kgf) (bcgC) (DegC) (DegC				Time Project N Part No Batch Nu Brake Spi Brake Pre Brake Fo	mber c eed ssure rce	5:15:09 PM IIT C11 C31 HIGH 11 C31 HIGH 1300 17.88 150	kg/sq.cm kgf		oad mater	ial –FM1	6A
(kgtm) (sec) of friction (kgfm) (kgfn) (kgf) (kgf) (bcgC) (DegC) (DegC							<u> </u>				
(kgtm) (sec) of friction (kgfm) (kgfn) (kgf) (kgf) (bcgC) (DegC) (DegC		Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Tem
n 29158 151 14 0.23 24 38 132 211 0 0 g 29158 179 16.5 0.26 25 49 140 271 0 0 WEAR REPORT O THICKNESS in mm WEIGHT IN grams Initial Final Wear 1 5.77 3.87 1.9 2400 2369 31 2 6.13 4.86 1.27 2404 2380 24 Total Number of Cycles completed: 50 DISPOSITION		and the second s				(kgfm)	(kgfm)	(kgl)			
g 29158 179 16.5 0.25 25 49 140 271 0 0 WEAR REPORT D THICKNESS in mm WEIGHT IN grams Initial Final Wear Initial Final Wear 1 5.77 3.87 1.9 2400 2369 31 2 6.13 4.86 1.27 2404 2380 24						the second s					
THICKNESS in min WEIGHT IN grams Initial Final Wear 5.77 3.87 1.9 2400 2 6.13 4.86 1.27 2404 Total Number of Cycles completed: 50 DISPOSITION JJC JJC	rg				and the second se	and the second					
Initial Final Wear 5.77 3.87 1.9 2400 2 6.13 4.86 1.27 2404 2380 24		Turk						I			
5.77 3.87 1.9 2400 2369 31 2 6.13 4.86 1.27 2404 2380 24 Total Number of Cycles completed: 50 DISPOSITION Sectors	-						Wear				
Total Number of Cycles completed: 50 DISPOSITION : AR											
DISPOSITION : AR		6.13	4.86	1.27	2404	2380	24			•	
PRODUCTION/DEVELOPMENT :			Cycl es co	mpleted: :	50 A.C	~~					
	Į	PRODUCTION/DE	VELOPM	ENT :							

.

•

BUIR HAL HINDUSTAN AERONAUTICS LIMITED - BANGALORE FOUNDRY AND FORGE DIVISION FRICTION TEST FINAL REPORT Date 7/29/2006 Time 9:58:42 AM Project Name DMRL Part No M11M12 Brake pad material -MIG 21 **Batch Number** M11M12 Brako Spoed Brako Pressure Brako Force RPH kg/sq. Kgf 18.88 File Name M11M21_7_29_2006_9_58_42 AM Kinetic Energy | RD rev. | RD time | Coefficient | Mean Torque | Peak Torque | Mean Drag | Peak Drag | Pad1-Temp | Pad2-Temp SI (kgfm) 32000 of friction (kgfm) 33 (kgf) 184 NO (kgf) 250 (500) (kgfm) (DegC) (DegC) 12.6 0.30 Ô Ô 56 11.7 0:33 Ō 35 36 11.7 0.33 ō 288 12.0 0.32 Ō 11.8 0.33 Ô Q 7 0.33 11.6 0.33 11.5 9 0.34 290 11.5 57 57 136 ò 11.3 198 0.33 36 36 35 11.7 138 0.32 ō 12 13 11.9 11.7 0.33 51 284 12.1 0.32 12.2 0.32 Q 12.2 0.32 144 144 12.4 0.31 382 299 292 288 34 34 35 69 54 53 52 0 0 12.4 0.31 **0** 195 12.3 0.31 ō Ō 12.0 0.32 12.7 0.31 Ì

12.6

0.31

										A-61
	B HAI	न	HINDUS		;	LIMITED - RGE DIVISION		RE		
	· · · · · · · · · · · · · · · · · · ·		FR	RICTION 1	EST CONS	OLIDATED	REPORT			
-			Date Time Project N Part No Batch Nu Brake Sp Brake Pro Brake For File Name	mber eed essure rce	7/31/2006 2:14:44 PM IIT Roorkee M21M22 870 71.33 600 M21M22_7_31_2	RPM kg/sq.cm kgf 006_2_14_44 PM	Brake pad	I material	MIG 21	
	Kinetic Energy	RD rev.	PD time	Coofficient	Maan Torruo	Peak Torque	Moon Droo	Donk Drog	Padi Tama	Pad2-Temp
1	(kgfm)	RD IEV.	(Sec)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
ax	13060	19	2.6	0.29	124	202	687	1123	0	0
lin Vg	13060	15 17	2.1	0.11	<u>49</u> 81	129 185	272 450	719	0	0
AD	the second s	NESS in		WE	IGHT IN grams]			
) 1	Initial 4.8	Final	Wear 1.06	Initial 2475	Final 2457	Wear 18	4			
I	4.51 fotal Number of DISPOSITION PRODUCTION/D		:	<u>2461</u> 20 Res	2440) & a s	zd for	acad Bin	len ic 2 2/8/01	2 Wr	-U

. ,

•

HINDUSTAN AERONAUTICS LIMITED - BANGALORE

FOUNDRY AND FORGE DIVISION

					ON TEST F	INAL REPOR	···			
Date 7/31/2006 Time 2:14:44 PM3 Project Name NT Roorkee Part No M21M22 Batch Number M21M22 Batch Number M21M22 Brake Spoed 870 Brake Prossure 71.33 Brake Force 600 Kgf File Name M21M22.7.31_2006_2.14_44 Ptd										
SI	Kinetic Energy	RD rev.	RD time	Coefficient	Mean Torque	Peak Torque	Mean Drag	Peak Drag	Pad1-Temp	Pad2-Tem
NO	(kgfm)		(300)	of friction	(kgfm)	(kgfm)	(kgf)	(kgf)	(DegC)	(DegC)
1	13060	19	2.6	0.23	104 .	129	579	719	. 0	0
2	13060	15	2.1	0.29	124	153	687	847	0	0
3	13060	19	2.6	0.11	49	199	272	1106	0	0
4	13060	18	2.4	0.13	54 -	188	303	1044	0	0
5	13060	15	2.1	0.16	69	191	386	1061	0	0
6	13060	17	2.3	0.17	73	185	405	1026	0	0
7	13060	17	2.4	0.16	67	198	371	1101	0	0
8	13060	17	2.3	0.19	79	190	439	1057	o i	0
9	13060	17	2.4	0.17	73	184	407	1024	Ó	C
10	13060	17	2.3	0.20	84	184	466	1024	.0	0
11	13060	16	2.2	0.19	82	188	458	1045	0	0
12	13060	17	2.3	0.18	78	189	431	1051	0	0
13	13060	17	2.4	0.19	78	202	436	1123	0	0
13	13060	17	2.3	0.19	79	187	441	1037	0	0
14	13060	17	2.4	0.21	86	198	480	1099	. a	0
		17	2.3	0.22	. 90	186	498	1034	0	0
14	13060	1 1/				186	578	1034	0	0
14 15		17	2.3	0.25	104					
14 15 16	13060			0.25 0.18	104 75	200	416	1111	0	0
14 15 16 17	13060 13060	17	2.3				416 528	1111 998	0	. O

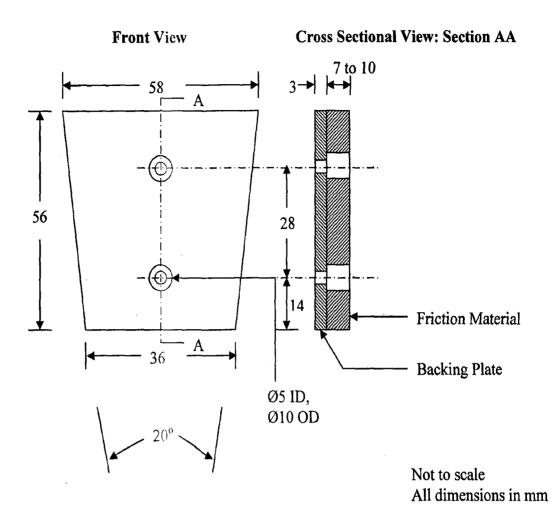


Fig. 5.4(A) Schematic diagram of tested sample