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ABS TRACT

More than a century ago, E/erest derived the dime

nsions of a spheroid on which the Indian Geodetic System was

based. Its orientation at the Kalianpur origin of the Indian

triangulation system has been arbitrarily chosen at various

times. Local fitting of the spheroid could lead to confli

cting claims by neighbouring countries in the definition of

their national boundaries. The absolute orientation of the

geodetic system is therefore a prerequisite for the readju

stment of the Indian triangulation net for use as a global

geodetic system. The present work is the first long -

awaited attempt to redefine the values at the orientation

parameters at the initial point, with reference to the
CiRs'67

Geodetic Reference System, 1967, by determining their

absolute geocentric values.

The classical gravimetric principle has been used

as the principal tool to accomplish the task. The well - '

known Stokes' formula relates the gravity anomalies over

the entire surface of the earth to the undulation of the

geoid above a geocentric reference spheroid, as a solution

of the third boundary-value problem of the earth's gravi

tational potential. The Vening Meinesz' expressions sim

ilarly provide the meridional and the prime vertical
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oomponents of the deviations of the vertical. The results

of these three global integrations of known gravity anoma

lies weighted by functions of the spherical distance, are

compared to the corresponding astro-geodetic values exist

ing in terms of the local system to arrive at the required

correction parameters.

The irregularity of the gravity field over the

earth's surface precludes the functional evaluation of the

geoidal undulations, necessitating numerical discrete

summation. The spherical surface is accordingly partitioned

by finite elements with representative mean values of grav

ity anomalies expressed over them. The grid divisions have

been adopted in this work as being well-suited for automa

tic computations. Furthermore, the nature of the Stokes'

and Vening Meinesz' functions suggests that coarser grids

may be used in the exterior regions without seriously

affecting the accuracy of computation as long as compar

atively finer meshes are used in the region of interest.

Five-degree Squal-Area-Blocks have been used in the outer

region, and further subdivisions of 1 , 0 .25, 0 .05,

0°.01 have been suggested for the interior region.

The first part of the computational work started

with evaluations of the contribution of a recent set of

five-degree mean free-air gravity anomalies, extending
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beyond a considerable margin around India. To suit machine

evaluations on a digital computer, a number of analytical

schemes have been developed in the formulation, such as,

(a) matrix form of interstation separation,

(b) non-dimensional forms of surface area and anomalies,

(c) modification of the Vening Meinesz' function and

rearrangement of the functions in algebraic forms.

The geoidal parameters have been evaluated at the

five-degree grid corners covering India and presented as

an intermediate bye-product of the present investigation

which may be useful for further work. The undulation ranges

from -13 metres to -22 metres, whereas the deviation compo

nents smoothly vary between +1". A bicubic spline inter

polation technique was used to compute the values at any

desired point.

The next smaller size of mesh used is the one-

square degree Meridian-Parallel-Grid type unit. The availa

ble data are nearly complete and updated. Gaps in farther

areas have been filled up by a simplified procedure, keeping

consistency of the average value over a block. For nearby

unrepresented units, ho\\rever, a loeal covariance interpo

lation has been used. The weighting functions which incr

ease with decrease in distance, have been further norma

lized to minimize Inaccuracies caused by exploding terms.

After developing working formulae for computations from
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gridded data, the partial geoid parameters have been comp

uted at 1° corners within India using the one-degree mean
free-air anomalies covering the interior region. The profil

es are seen to be mutually consistent, whereas the slope

components vary sharply.

A combination of the void geoid and the partial

geoid gives a pictorial representation of the one-degree

mean free-air geoid in India. The variation is from -1+0

metres to -85 metres, with geoidal lows Vin the Himalayan

region and in the Southern peninsula.

The last part of the main objective has been acco

mplished by completing the numerical algorithm using denser

gravity details in the immediate neighbourhood of the com

putation point, which includes a further modification of

the intorstation vector to a differential expression. In

order to estimate quarter-degree mean anomalies from point

observations, simple average and patchwise surface-fitting

have been used. For finer mesh sizes, a truncated pyramid

window has been proposed. A few existing and suggested

techniques for the evaluation of the effect of the inner

most zone have-also been enumerated. The numerical work

consists of using modified terrain-corrected free-air

anomalies around the initial point for further precision in

the determination. The final results obtained are,
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6 N = -59-0 metres,

6 £ = +0.65 arcsecond,
'O

5 t] = +2.6C arcseconds.

Although the orientation through the initial point

itself provides the most reliable and stable positioning,

the formulation of the gravimotric method permits any other

astro-geodetic station also to be considered as a computa

tion point. A first-order triagulation station with a

commendable distribution of gravity coverage all around,

may even act as a supercontrol point. An invariant shift

vector has been introduced to further generalize the proce

dure and four zones at four geographical corners in India

have been chosen for test computations. The limitations of

availability and measurements of gravity data called for

filling up some compartments of surrounding regions by

prediction, for which a truncated local, covariance inter

polation has been used. Despite all the defects and appr

oximation in these stations, the various sets or orientation

parameters provide consistent numerical checks. The variat

ions of results between themselves as well as with those

obtained at the initial point are of the order of 3 metres

in 6N and 1" in 6£ or &ti , which are a little too
o o o7

high for obvious reasons.

An alternative proposition to obtain the absolute
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orientation parameters from the regional gravity data

and the astro-geodetic geoid, forms the subject matt

er of a subsequent chapter. The inherent errors in

the available informations being of fluctuating nature,

a practical solution of the orientation problem may

be achieved by the logic of minimization of their non-

coincidence in a least-squares sense. The matching of

undulations seems preferable to the parallelism cond

ition, and the shift vector formulations are further
modified to simpler expressions. The existing astro

geodetic geoid has been converted to one corresponding
to the GRS 67 spheroid without changing the present

orientation. The comparison of its undulations at some

points with those of the gravimetric geoid obtained

from one-degree mean free-air anomalies are made to

frame condition equations and consequent normalization

to yield optimal estimates of orientation parameters.

The results differ by 1 metre in 6 NQ , 1 m 6^0

and l" ^ in 6*1 from the gravimetric results at the
-' o

origin, showing thereby the possibilities of the

exercise for further refinement.

With a view to formulating an integrated

strategy to tackle the orientation problem, another

plausible solution without requiring the use of any

gravity data directly, has been tested in this work.
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Similar to the astro-gravimetric geoid matching attem

pted earlier ,the astro-geodetic geoid heights in this

case have been compared with those obtained from the

satellite-derived geopotential coefficients, on assu

ming the apparent misfit to be solely duo to the local

non~geocentric orientation of the former. To obtain a

smoothened geoid a 7th-order surface has been fitted

using a number of astro-geodetic deviations, and its

comparison with the present geoid shows an average

discrepancy of 3 to\ metres, the difference getting

progressively increased with the distance from the

origin. The other geoid is computed from the recent

GSM 10 coefficients. Whilst the results obtained rev

eal that further work is necessary in this regard to

achieve a reliable solution, the present work contri

butes all necessary formulations including the various

recursion relations to optimize computer economy,

which will be useful for future researchers.

The concluding part of the thesis summarizes

various outputs of the methods adopted in the present

work and compares them among themselves as well as

with the datum shift values supplied by the satellite

research organizations in respect of their adopted ell

ipsoids. All the sets fall within the reasonable limits
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of accuracy and the three alternative methods, viz.,

(I) the general astro-geodetic orientation,

(ii) the least-squares coincidence approach, and even

(iii) the astro-satellite matching provided quite useful

checks. The linear shift components obtained from the pre

sent determinations are,

AX = 2^-3 metres,

AY = 733 metres,

AZ = I7J+ metres.

The corrections to the existing geoidal heights,

latitudes and longitudes, have been presented in functional,
digital as well as graphical forms. Finally, the various

contributions of the study have been enumerated to deline

ate the scope of future advancement and further studies In

this field.



-1-

CHAPTER I

INTRODUCTION

1.1 GENERAL

All levelling and astronomical measurements are

necessarily made with respect to the level surface of the

earth or the equipotential surface, conventionally coinci

ding with the mean sea level, called the geoid. The geoid

is, however, a complicated surface with discontinuities in

its curvature, caused by irregular distribution of masses

within the earth, and is therefore ill-suited for being

used as a reference surface. This difficulty can be circ

umvented by adopting a regular mathematical model closely

approximating the geoid, as reference for mapping and math

ematical computations, as long as the geoid itself is also

completely defined with respect to this surface.

1.2 DIMENSIONS 07 REFERENCE SURFACE

Attempts at determining the shape and size of a

reference surface suitable for mapping the earth date back

to primitive ages, when it was assumed to be a plane (Enc

yclopaedia Britannica, 1962). Later, Pythagorus, Aristotle

and Eratosthenes argued that the earth was spherical in

shape, and still later it was proved to be an ellipsoid

(Heiskanen and Vening Meinesz, 1958), although there
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remained a controversy, even reflected in literature (Sharni,

1973)? as to whether it was an oblate or a prolate spheroid.

The rotational ellipsoid concept fitted well with the prin

ciples of physical geodesy and is supported by satellite

observations also. Other suggestions for a reference, such

as a triaxial ellipsoid made by Russian scientists, and the

pear-shape (Ramanathan, 1978) derived from satellite data

•are equally unsuitable owing to their lack of simplicity.

An ellipsoid of revolution defined by its major axis and

flattening (Figure 1.1) is still found to be the most con

venient reference surface. Three such surfaces related to

the Indian geodetic system are described in Table 1.1

TABLE 1.1

DIMENSIONS OF SOME REFERENCE SURFACES

T

Name

Everest Spheroid

Hayford Inter
national Spheroid

Geodetic Reference
System I967

20922931.8 Indian
feet

6378388 metres

6378160 metres

1/f

300.8017

297.0

298.2lf7l7
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GEOID i ROTATION AXIS

•*> X»0

FIGURE II- REFERENCE SPHEROID AND GEOID
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1.3 GEOID DETERMINATION AND ABSOLUTE ORIENTATION

OF DATUM

Hirvonen(1935+) was the first to compute geoidal

undulations gravimetrically, followed by Tanni(l9lf8) with

more gravity data. Zhonogolovitch, Heiskanen, Uotila

(1>59), Talwani are among others who used gravity data for

determining the global geoid or a part of it. Uideland

(1\55) detailed the Swedish part, Honkasalo(1956) the

Finland area, and the Russian part was carried out by

Molodenskii. Rapp(l97^) has given a detailed account of

definition and determination of geoid.

The geocentric orientation of their respective

triangulation systems have been determined or.are being

determined by most countries towards providing a globally

consistent reference. Rice(1952) oriented the North

American system by gravimetrically correcting it at the

origin, Meades Ranch. The Australian orientation was simi

larly carried out by Mather(1970)•

l.If STATUS OF THE INDIAN GEODETIC SYSTEM

In iSifO, Everest selected Kalianpur as the initial

point of the Indian geodetic system as it was more or less

in the centre of the country.in a flat lying area. Figure

1.2 shows its approximate position. The arbitrary values

of the geoid parameters were chosen as follows?



.t; -

FIGURE iva- APPROXIMATE POSITION OF ORIGIN

OF INDIAN 8EO0ETIC SYSTEM
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K0 = 0.0 m

r - -0".29 (1«D
s0

nQ = 2".89

In 192^, the Hayford spheroid was adopted by the

International Union of Geodesy and Geophysics, and in 1927,

it was adopted as a reference surface for India. A least-

squares solution was carried out to obtain the best fit to

the compensated geoid and the resulting values were J

N0 = 9.5 •

S0 = 2".42 (1.2)

% = 3".17

Whilst latitudes and longitudes are still expressed

in terms of the Everest spheroid, Gulatee(1955) had changed

the deviations of the vertical of the astrogeodetic statio

ns in the International spheroid system, reporting a further

correction of 3".16 in the longitude.

1.5 OBJECTIVS OF THE PRESENT UORK

Arbitrary stationing of the reference spheroid by

individual countries can lead to discrepancies of over 100

metres or more in the definition of common boundary points

and much avoidable confusion in a progressively shrinking

world. Such discrepancies could bo greatly minimized if
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the absolute orientation of the spheroid is determined and

adopted so as to be globally consistent as far as possible.

This provided the basic motivation for undertaking the

research work embodied in this thesis, i.e. determination

of the absolute orientation values for the Indian geodetic

system.

Geocentrically oriented systems being intrinsically

absolute and of global character, offer a number of other

allied advantages, notably,

(i) in establishing supercontrol points needed for

the absolute positioning of artificial satellites (Dixit,

1977),

(ii) in providing more accurate values of the gravita

tional field for better understanding of mass distribution

thereby delineating subscrustal anomalies inside the earth

for use in geodjmamical as well as exploration studies

(Ray and Bhattacharji, 1977)'

1.6 METHODS USED AND SCOPS

The present study primarily uses informations con

tained in gravimetric data to obtain reliable values of

orientation parameters. Heterogeneous mass distributions

in the earth produce several associated phenomena detect-t

able at the surface, namely,
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(i) anomalies in the gravity field,/

(ii) undulations of the geoid, and )J

(iii) deflections of the vertical

All these three variations stemming from the same

cause are,- naturally^ related to each other and each one can

be computed from a knowledge of the other. This possibility

underlines the basic concept of physical geodesy which is

exploited in the gravimetric method discussed in detail in

the subsequent chapters.

Starting basically from the gravity data, the pre

sent work combines other existing information, particularly

astrogeodetic and satellite, with a view to designing an

integrated strategy in arriving at an optimal solution

within the framework of available resources.

While formulating the physical principles in terms

of mathematical expressions and subsequently translating

the latter into tractable computational algorithms, vari

ous innovations and modifications have necessarily been

made for software development that will accomplish accep

table trade-offs between accuracy and cost. However, no

attempt has been made to analyze the basic inputs critica

lly nor the claims to their declared accuracies which

have been accepted in good faith. Simplifications have

been made as and when necessary, keeping in view the
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specific purpose and order of reliability of the final out

put, the physical interpretations being considered more

important than formal mathematical rigor, without however

severely impairing the latter.
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CHAPTER II

GRAVIMETRIC PRINCIPLE

2.1 GENERAL

G.G. Stokes, a pioneer in the field of scientific

geodesy, provided for the first time (181+9) an integral

expressing the height of geoid above the reference spher

oid, in terms of gravity anomalies over the entire earth.

This was extended by Vening Meinesz(l928) to derive the

slope components of the geoid, which is directly related

to the corrections to be made on the astronomical coordi

nates, viz., latitude and longitude, to enable one to

compute the parameters for the absolute orientation of a

geodetic system.

2.2 THE GEOID AND THE SPHEROID

The mean sea level which is the reference surface

for astronomical observations and spirit levelling, is a

physical surface of constant potential, in equilibrium

under the forces of attraction by the underlying masses

and those above, including the topographical features and

extraterrestrial planetary bodies as well as by the iner-

tial forces arising from the rotation of the earth about

its axis.
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The potential of gravitational attraction and rot

ation of the earth at a point P (Figure 2.1) can be written

as,

•' _ B-f dm , 1 2/2,2W= V+ V =Kf Y +I u'ix'+y*) (2.1)

The gradient vector of W, called 'gravity' , is the

total force acting on a unit mass at P,

[g] = gradW=[ - ,- , - ] (a.a)

A level surface or equipotential surface, is defined

as the surface on which

W(x,y,z) = constant = W , n = 0,1,2,... (2.3)

or in other words,

CgMSs] =£fi'f~'f!3' Cdx, dy, dz]T=0 (2.1,)
where,

[ds] = [dx, dy, dz] is a line element along the level

surface.

The vanishing of the dot-product of the vectors

implies that the gravity vector is normal to the equipot

ential surface, termed 'geop' .

Of the x^hole family of equipotential surfaces des

cribed by the above expressions, the particular one for

which the constant W is equal to W and coincides with
n o
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FIGURE SI-POTENTIAL AT A POINT
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FIGURE 22-GEOID AND SPHEROID
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the idealized free ocean surface is called the GEOID. The

latter being normal to the plumbline, constitutes a refe

rence for all astronomical observations. The surface

tangent to the body-bubble in measuring instruments is

parallel to the geoid at open sea. On land, however, the

curvature of the plumbline must be taken into account while

reducing observations down to the geoid.

For mapping and other practical purposes, however,

the geoid is not acceptable as a direct reference surface

owing to its irregularity which is, in turn, brought about

by heterogeneous density distributions inside the earth

generally and in the crustal region in particular.

The potential of attraction V(Squation 2.1) may be

expressed as follows in terms of spherical harmonic func

tions,

v- Kf $jr =vo +v1+v2+v3+vIf+.... (2.5)
where,

v= K,
o r

represents the major part of the potential and is equal

to the attraction potential of a spherical earth with

radially symmetric density distributions, the total mass

being equal to that of the actual earth.

The magnitude of the first-order term,
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Vl =~l ^X ^x,dm +yfy,dxa + z/z'dm) (2.6)
r

depends upon the position of the centre of gravity of the

earth with respect to the reference axes. By making the

reference system geocentric, V, reduces to zero.

Similarly, the second-order term V_ involves the

mass moments of inertia, and may be expressed in terms of

the moments and products of inertia about different axes

(Figure 2.1) defined as follows,

A = f(y,2+z'2)dm ,

B - /(xt2+z'2)dm ,

0 - /(x1 +y' )dm ,

D = Jx'y'dm ,

E - Jy' z' dm ,

(2.7)

F = • /z' xf dm ,

It can be shown that V_, V\ and other higher order terms

can also be interpreted in a similar fashion.

Transforming the geocentric rectangular coordin

ates to the spherical coordinates and recognizing z axis

to be a principal axis, the total geopotential function
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reduces to

W
KM +^T {kc-A)(l-3sin2^) +3-(B-A)cos20cos2Xr3 l 2V~ "'v* J°^ n V

+3. Dcos20 sin2X] +.... ^2^2cos20 >#>
2 3 2

uhere, A - ——- , and

0 is the geocentric latitude (2.8)

The surface of the geoid is therefore expressed as

W = W , a constant (2.9)

With the assumption of a symmetrical density dist

ribution about the Z -axis and about the equatorial plane,

the shape of the regularized geopotential surface, known

as spheroid, becomes

tt _ KM f ,, a2 , ,n , • 2-I-, . 1 mr^ m 2-zu - -— [ i+ —- j (1-3sin <P) + - -= cos ^
r 2r2 2 2 a3(l-f)

+ Sj- p(sin^0- | sin2^ +-i )} +..... =W, (2.10)

where, T _ C-A _ 2 ,- 1 m 1 -2 .1 ..
J„ = —-w = — (f - — m- — f H— fm;
2 14a2 3^22 7

w2a3(l-f)
KM

P = ? f2 -I fm
2 2
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The geometry of the fourth-order spheroid surface

very nearly corresponds to a rotational ellipsoid with

semimajor axis a and. flattening f. The residual' deviations

of the geoid or its gravity field are small enough to be

considered linear.

The gradient of this equipotential surface would,

in turn, yield a reference for the total gravitational

field, which is called the ' normal gravity',

[ Y] = grad U (2.11)

The closed formulae, neglecting terms of order

higher than the square of flattening, are as follows?

KM = abYa(l+ 21 +i fm + 2. m2) (2.12)

U = aY0(l- 2f + iim - t- f2 - - fm + ~m2)
0 a 3 6 5 7 *f •

Y =Y (1 + f2 sin20 + f^ sin 0)

wnere,

f o ~ - f+^-m+i-f2- -^fm + iim2
2 2 2 7k

f2 5fh =- I +2 fm >
,, a-b ,f = , and

2

a
• = ^
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A careful scrutiny reveals that the expressions

may be evaluated from four quantities namely, a, f, Y fu

The change of Y with elevation h is given by,

Yh
2Y 3 Y

=y~~T {l+f+m+(-3f +|m)sin20}h+ -^ h2 (2.I3)

For the International spheroid, the values adop

ted are (Heiskanen and Moritz, 1967) as follows:

a = 6378388 metres

f = 1/297.0 (2.|4)

Ya = 978.0^9 gals

w = 0.72921151 x 10"^ rad/sec

From the above, the following values are obtained

f2 = 0.00526>+8,

f^ = 0.0000236,

J2 = 0.0010920, (2.J5)

m = O.OO3M+986,

UQ = 6263978.7 Kgal metre

KM * 3.9363290 x 10llf m3 sec"2, and

\ = Y-fc.30877 - O.OOOif5sin20)h + 0.000072h2

where h is in metre and Y in milligal.
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The recent internationally agreed reference spheroid
is the Geodetic Reference System, I967 (International Union

of Geodesy and Geophysics, 1967) with the following basic
elements,

a = 6378I6O m

J2 = 0.0010827

KM = 3.98603 x 101I+ m3 sec"2 (2.16)

w = 7.29211511+67 x 10"5 rad/sec

The other values, as derived from these, are (Williamson
and Gaposchkin, I975) as follows:

f = 1/298.2k7167k27

Y = 978031.85(1+5.278395 x 10"3 sin20

+ 2.3I+62 x 10"5 sinV) mgal (2.17)

2.3 DISTURB DIG POTENTIAL AND GRAVITY ANOMALY

As discussed earlier, the major part of the geopo

tential Wmay be represented by a smooth normal part, i.e.,
the spheropotential U, and the residual anomalous component
is termed as the disturbing potential T.

Referring to Figure 2.2, the geoid is defined by

W- WQ , whereas the reference spheroid by U = fy . Bruns'

formula relates the separation of the two surfaces by,
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T - W - U = ¥ - f U + ( -t ) Hi
P P P l q 6h 'q >

- W - W + YH = Yn
o o

or, N = T/Y (2.18)

Tiie gravity anomaly at a point is conveniently

defined as the actual gravity value reduced at a corres

ponding point on the geoid minus the normal gravity at

the corresponding spheroid point. Referring again to

Figure 2.2 and assuming, for the present, that the two

normals are almost coincident,

Ag = gp - Yq

=-( |f )♦ (g )• (2.19)
T &Y _ ejT
Y 6h "' oh

A spherical approximation, applied in respect of

all the anomalous components, leads to the relations,

Y
KM

~ r2

6Y s &I
6h 6r
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As=-e-f
On the geoid,

r=R=|V^ =a(l-f)1/3 (2.21)

2.1+ STOKES' AND VENING MEINESZ5 FORMULAE

The rotation term, contained both in the geopote

ntial w and in the spheopotential U, vanishes in the expr

ession for the disturbing potential, making T a harmonic

function outside the earth, obeying the Laplace's equation,

AT = ifS 2^ 62T {9 99)&l —£ + —- + —- = o (2.22)
6x 6y2 6z2

the atmosphere being assumed to have negligible mass comp

ared with that of the earth. The physical geodesy problem,

i.e., to determine the undulation of the geoid from the

known gravity anomalies, then reduces simply to the third

exterior boundary-value problem of potential theory in

which the function T to be determined is harmonic outside

a surface s, while a linear combination of T and its nor-

mat derivative ••-» is specified everywhere on s. The bou-
6r

ndary function known on the geoid surface is the gravit3r

anomaly,
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Ag = (- §)T + (-1) £1 (2.23)
R 6r

This classical problem was solved by Stokes(18^9)

presumably as a mathematical exercise. However, he did

net use the spherical harmonic expansion but a closed

expression of the following form (Figure 2.3),

N= Y^n $Ag S(lJ)dP (2.2lf)
where,

N = undulation of the geoid with respect to the

reference spheroid at any .point,

R = average radius of the earth,

G = average gravity of the earth,

do = elemental surface area on the earth,

Ag - gravity anomaly on the element da

S(IJJ) = Stokes' function

= ••1 •-6sin I+1-5cos f
sin I

2

-3cos f/n (sin |+sin2 | ),
and,TJJ = spherical distance of the gravity element from

the computation point.

In determining the orientation parameters, the

other gravimetric quantity needed to position the mappi

ng surface is the first horizontal derivative of N. Its
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two components, namely, the meridional and the prime

vertical deviations of the vertical, are expressed as,

R 6 0

6H

?

n = -
Rcos^ &x

i«er e,

0 = geodetic latitude of the point,

6N = elemental increase in geoid undulation

(positive above spheroid),

6 <P = elemental increase in latitude 0 (positive

northward),

6X = elemental increase in longitude A(positive

eastward).

The minus sign comes from the sign convention

adopted.

Differentiating T£xpression 2. 2*f with respect to <p

and X, the expressions (Vening Meinesz, 1928) are obtained

as follows

K = t— § Ag 7(f)cosa da

(2.26)

1 ' ^~ § Ag V(ttO since dp

where,
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£ - the meridional (North-South) component of the

deviation of the vertical,

T) = the prime-vertical (East-West) component of

the deviation,

a = azimuth of the arc of the great circle joining

the deviation point to the gravity element reckoned in the

clockwise direction from the North (Figure 2.3),

,rtn - dS( III )
j^yj - = Vening Meinesz5 function

dljf

= cosfr/2 + 8sin$ - 6cosf/2
2sin2^/2

_ 3(l-sinl|J/2) +3sinT|J /n(sinf/2+sin2l|r/2)
sinljJ

Other symbols have been explained earlier.

2.5 ORI^TATION OF N3T\ORK

A regional geodetic datum raajr be said to be defin

ed by seven parameters (Swing and Mitchell, 1970);

(a) lengths of tvro axes of the rotational ellipsoid

us ed,

(b) two conditions related to geodetic azimuth and

parallelism of minor axis,

(c) three parameters to assign the magnitudes of the
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tilt and the separation between the geoid and the

reference ellipsoid at a point on the earth's sur

face, usually the origin of the geodetic system.

Whilst the first two constants are specified by

adopting suitable dimensions of the reference spheroid,

the next two are satisfied by astronomic reference and

check on Laplace azimuth (Clark, 1968) during measurem

ents.

For the last three unknowns, usually the origin

is assigned some specific values of geodetic latitude <P ,

longitude X_, and altitude h above the mapping reference
o 3

i.e., the local spheroid used. Either the astronomical

coordinates <P , X themselves and the height above the

mean sea level h_ are used directly, implying tangency

of both the geoid and the spheroid at the point g or some

other reasonable criterion, e.g., local least-squares

fitting, regional averages etc., is used. The astrogeo

detic deviations of the vertical and the relative geoid-

spheroid height at the point are then (Figure 2.4)

. 3ag a *g

**ag = (Xa~ V cos0g (2'27)

Nag = hs " hm

The gravimetric principle of physical geodesy,



-26-

outlined In the earlier paragraphs, relates the separation

of the geoid and a geocentric reference spheroid, includ

ing the deviations of the former with respect to the lat

ter, to the gravity anomalies over the entire surface of

the earth, involving three global integrations to obtain

absolute values of Ngr, £gr, t]gr at any initial point of

the national triangulation network. Dimensions of the

globally accepted spheroid may differ from the locally

used one, as in the case of India.

The corrections to be made to reduce the network

to absolute terms, are then,(Figure 2.4)

6N0 — Ngr Wag

6?o = sgr sag

6 r\
0

— n
gr

r\
ag

6 a ^Z

agjf " a/o

6 f — t_, - t*

(2.28)

where a * , f » refer to the new spheroid and a* , tm

refer to the existing reference spheroid.

Once the absolute orientation parameters defined-

above are determined, the corrections needed to the exi

sting geographical latitudes, longitudes and spheroidal
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heights at any point connected to the network are comp

utable from the following datum shift formulae (Vening

Meinesz, 1950);

-60 = (cos0 cos0 + sin0 sin0cosAA) 6?
o o o

-(sin^sinAA) 6 i\

-[(sin0 cos0-cos0 sin0cosAA)•

•( 6K° ^6a +sin20Q 6f)]

-2cos0(sin0-sin0 ) &t ,

- &Acos0 = (sin0 sinAX) &£ + (cosAA) 6^

°N + 6a
+ (cos# sinAX)( -2 + sin 0 6f),

O J{ o

Oh/B = -(cos0 sin0-sin0 cos0cosAA) 6 £
O O o

-(cos0 sinM) 6n

+(sin0 sin0+cos0 cos0cosAa).
o o

-~ +(sin2^-2sin0osin0) 6f,

where, £0, 6A, 6h are the corrections at (0,a),

0 , Xq are the coordinates of the initial point, and

(2.29)
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AX = A - A
o

2.6 'SUMMARY

The proceeding paragraphs describe in brief the

basic concepts of the gravimetric principle of absolute

orientation of a national geodetic system. Starting from

the idea of the commonly used equipotential surface, and

its division into aregularized and an irregular part, the

practical computation formulae needed for a geometrical

description of the geoid are discussed, culminating to

the expressions for conversions of local geographical

latitude, longitude and geometrical altitude of any sta

tion to their absolute values.

Various assumptions, explanations and modificat

ions made for computing the integrals numerically are

discussed in detail in the subsequent chapters.
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CHAFTER III

DSTERMH ATION OE THE EFFECT OF OUTER REGION

ON THE GEOIDAL PARAMETERS

3.1 GENERAL

Theoretically one needs a complete knowledge of

the earth's gravity field at every point of its surface

in order to compute the departure of the geoid from a

reference spheroid, through Stokes' and Vening Meinesz'

integrals. However, since the gravity field of the earth

is irregular, and cannot be expressed in a mathematical

form, the integrals can only be evaluated numerically by

considering them as sums in finite intervals. The accur

acy of computation depends on the size of meshes chosen

for the summation as well as on other factors related to

the weighting function and the input variance involved.

However, the near-linearity in the variations of

the Stokes' function at large radial distances towards

the antipode of a computation point and its progressively

decreasing magnitude suggests that at larger distance

from a point in question, one could, choose comparatively

larger sized finite elements without sacrificing the

precision significantly. This is also true for the slope

components as the linearity of the Vening Meinesz5
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function used for their computa.tion.is even more pronounced

at larger distances.

In order to carry out the computations, every

mesh is characterized by a single value of the gravity

anomaly equal to the mean value of the anomaly over it.

As explained above, the size of the meshes could be cho

sen to be fairly large in the region of integration which

is far from the point at which computations are made,

whilst it has to be smaller for the region of integrat

ion immediately surrounding this point.

In the present work, the total domain of integr

ation of the Stokes' and Vening Meinesz'integrals has

been divided into a far exterior region made up of large

mesh intervals and a near interior region wherein the

meshes are of smaller dimensions. Finally in the immedi

ate neighbourhood of the points In question, the meshes

are further shortened for gaining higher accuracy. This

is done merely to compute once for all the contribution

to the geoidal parameters arising from the exterior reg

ion which could subsequently be simply superimposed over

that arising from the near region and from the immediate

neighbourhood, to obtain the total values of the Stokes'

and Vening Meinesz'integrals.

The contribution of the exterior region to the
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geoidal undulations will be referred to as the 'void

geoid . It has been calculated from the recently avail

able mean free-air gravity anomalies published by the

Ohio State University (Rapp, 1977).

The computation of the void geoid and various

innovations made to accomplish it numerically, forms the

subject matters of this chapter, whereas that correspon

ding to the contribution of the interior region and the

immediate neighbourhood are discussed in Chapter IV and

V respectively.

3.2 INTERSTATION VECTOR

Evaluations of the Stokes' and Vening Meinesz5

functions primarily need the values of l|T and a, the sph

erical distance and the azimuth of the line joining the

computation station and the gravity station. The follo

wing relations follow from spherical trigonometry;

cosi]J = smn^ sin0 + cos0 cos0 cos(Ap> - X ),

sin0 cos0^ - cos0 sin0^ cos(a - X )
g c g c g c

cos a 1 m 5

sinl|J

(3.1)

COS0 sln(A - A )
g g c

sin a =
sinf



where

c' c

-sin0

COS0.

0
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= latitude and longitude of the station

where N, £, r\ are needed

^gf X • latitude and longitude of the gravity
stations, or of the geometrical centre of

the gravity element.

The customary formulations mentioned above are

not well-suited for automatic computations in the form

as they are. A better analytical expression is the mat

rix form in which the above equations can be written as

follows;

cosl|T J

-sin'JJcosa

-sinfJsina

COS0 cosX
c c

sin0 cosX
c c

sinX

cos0 sinX
c c

sin0 sirX
c c

-cosX,

-sin0

COS0 cosX

cos0 sinX
g g

(3-2)

The matrix notation, arrived at, offers several

advantages such as,

(a) the trigonometric elements related to the two sta

tions are now separated,
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(b) the transformation matrix elements are to be compu-

ed only once for a computation station and stored for

further use,

(c) the transformation matrix is recognized to be orth

ogonal, and this unique property may be exploited any time

with advantage, knowing that its inverse is equal to its

transpose.

3.3 THE ARSAL ELEMENT

The mean gravity anomalies are usually expressed

over a trapezoidal area bounded by two meridians and two

parallels. The area in square degrees is usually (Figure

3.1) approximated by

a « D0. DX. cos0 (3°3)

When the block-size is large, this approximation

gives an appreciable error. The true value is,

Xg +DA/2 t +D0/2
a =• ,f 1 cos0 d0 dX

X -DX/2 0 -D0/2
o g

a {sin(0 +D0/2) - sin(0 -D0/2)}DX (3.^)
o g

= 2.cos0 .sin ~. DX
g 2

The divisor hn in original Stokes' and Vening

Meinesz' integrals may conveniently be absorbed here,
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to express the area in terms of the solid angle subtended

by the quad at the centre of the earth. The customary

unit of angle being in degrees,

a = B.A+TT

_ DX , . D0
- — . cos0 .sin —I

360 g 2

where the solid angle 0 is now in steradians and DX in

degrees,

D0 = latitude interval,

0 = latitude of the centre of the block.

The expression has at least two advantages,

(a) the irrational factor it vanishes from the computa

tion, except in two trigonometric terms, which should bet

ter be evaluated in double precision,

(b) for any particular belt in the Equal-Area-Block

system, every quantity except DX remains invariant .

3.^ SIZE OF AN ELEMENT

The global unit of a surface element for mean

anomaly is an element of 5° x 5° size. Two categories

of mesh divisions (Figure 3.2) have been used in prac

tice,
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(a) Meridian-Parallel Grid : The entire earth's surf

ace may be divided by meridian lines at 5 -degree intervals,

and parallels of longitudes at 5 -degree intervals. Due to

latitude-longitude asymmetry, the area of a block will vary

according to its position. In the equatorial region it will

be nearly 2.5 square-degree, but in the polar region it could

be as small as 1 square-degree. The total number of blocks

thus chosen will be 2592.

(b) Equal-Area Block t Another way of dividing the

earth's surface into elements, are to frame blocks of app

roximately 25 square-degree surface area on the sphere.

The latitude interval may be kept as 5 degrees, but the

width in longitude direction changes from 5 degrees in

the equatorial region to as large as 120 degrees in the

polar region. The total number of blocks thus becomes

165k.

3.5 THE WEIGHTING FUNCTIONS

Another improvement has been made by expressing

the Stokes' and Vening Meinesz' expression in algebraic

arguments instead of trigonometric quantities, as shown

below?

(a) The Stokes' function contains the coslfr and sin X

terms only, of which coslfr is directly obtained as the

first element of the interstation vector. The other may
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be obtained by either of the two expressions,

sin 1 =

sin * = 1 •

* 2(l+cos i|r)

1-cosTjT

sin2ljl

(3.6)

So far as the computational precision is concer

ned, the first expression clearly becomes inaccurate as

cosljj tends to 1, whereas the second expression may cause

overflow when cosljl approaches -1. Noting also that,

4-2* _sin TjT = (-sinfcosa) + (-sinljrsina) ,

the Stokes' function can. be finally rewritten as,

(3-7)

SOJD - - - 6x + 1 - A (5+3/n(x(l+x))) (3.8)
x x

where.

in which,

/

u

x = y 0. *>(!-/]_) when A < 0

=rz

1

50| +(p/(l+J(1) when /x >0

cosl|J

-sinl(Jcosa

-sinlpsina

(3-9)

are the elements of the Interstation vector L, given by

L a T.P,
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T being the transformation matrix, and

P, the position vector of the centre of the mesh,

detailed in Expression 3.2

(b) Two more trigonometric terms, viz., sinfr and

cos 1 occur in the Vening Meinesz' function. Moreover,
2

in the final integrals, cos a and since are to be multiplied

which are not explicitly available so far except as the

products - sinljlcosa and -sinl|Jsina«

Dividing the original function by -sinljl and rear

ranging, the modified form becomes,

U(t) a jffl- (3.10)
-sinf

=( ~ +3 + : '\ • )/x - (8+3/n(xd+x)))
^2 lfx(l+x)

This expression is fortunately in terms of x

only, and in the integrals the a term vanishes as,

VOtDcosa = U(l|J)/9 ,
d (3-ID

V(f)sina = U(T|r)/

Figure 3.3 shows the graphical representation of the

functions S(l|0, V(f) and U(ljr) with cosf as the argument.
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FIGURE 3-3 ORIGINAL AND MODIFIED WEIGHTING FUNCTIONS WITH Cosy AS ARGUMENT
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3.6 GLOBAL AVERAGE VALUES OF GRAVITY AND THE

EARTH'S RADIUS

As a result of spherical approximation, two ave

raged quantities appear in the Stokes' and Vening Meinesz'

integrals. These are defined as follows?

(a) G is defined as the average global value of gra

vity, usually taken as 979'8 gals. To render it more pre

cise, the following derivation is us«d in the present

study;

2tt it/2
I f Ycos0 d0 dX
A=o -77/2

G = _ (3.12)

\ ^/Z cos^ a<P dx

where,

Y= Ya(l+f2sin20 +f^sinV)
whence, f f

G=Ya(i +^ +Jt ), C3-X3I

which is a general expression for a given spheroid.

In particular, for the Geodetic Reference System

1967? the value of G turns out to be 979757-^1 milligals.

(b) R, the equivalent radius of the earth, is the

radius of the sphere having the same volume as that of

the reference spheroid. Thus,
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R - IV^2h = a(l-f)1/3 (3*lh)

It becomes 6371023.if metres in respect of the GRS67 spheroid.

3-7 NONDIMSNSIONAL FORMS

Input anomalies if divided by G and multiplied by

$ ,yield a dimensionless factor,

Similarly, the geoid-spheroid separation may be

divided by the equivalent radius of the earth'to render

it non-dimensional

u~ = N/R ,

whereas u.

ASa

K

and u a t]

are already non-dimensional being in radians.

3.8 FORMULATION OF BLOCK CONTRIBUTION

(3.15)

(3.16)

The numerical integration procedure may now be

expressed as,

N/R

U = K = 2 AU , (3-17)

1
-_

where the undulation vector for each integration element

is,
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Au,

AU Au
2 s T'M,

Au„

the weighting vector being,

3-9

W

w 1 j

w,

W- u(Tjr)/3
-

DATA DESCRIPTION

For the present part of study, three different

were explored

air gravity anomalies.

sources were explored for obtaining the 5° x 5° mean free-

(a) One set is that published by the Bureau Gravimet-

rique International (Coron, 1972), hereafter designated as

BG'I data. The mesh is on the Meridian-Parallel-Grid system

and anomalies are related to the I93O formula for normal

gravity corresponding to the International Spherodd , and

the old Potsdam value of gravity.

(b) The second set designated as SAO, is an incompl

ete Equal-Area-Block set (Williamson and Gaposchkin. 1975)

compiled by the Smithsonian Astrophysical Observatory.
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The SAO set, consisting of lk52 blocks is referred to the

IGSN 71 network of gravity and the 1967 formula for norm

al gravity.

(c) The third set, i.e. the OSU data set recently

published by the Ohio State University (Rapp, 1977) is

a complete set of Equal-Area-Block mean free-air anomal

ies derived on the basis of the IGSN 71 network and the

GRS 67 formula.

Before any comparison is made regarding their

suitability and reliability, these data sets must be

reduced to a common standard, i.e. to the same network

and spheroid. Appendix A describes the corrections

applied to the BGI set to reduce it to the GRS 67,

IGSN 71 base. From the values in and around the Indian

continent in the SAO and OSU sets, mean values for 5°

gridded divisions are estimated proportionately, in

order to convert the blocks to Meridian-Parallel-Grid

system. Table 3.1 contains the descriptions of the

sample values taken.

From the sample statistics shown in Table 3.1,

the primary observation reveals that the fluctuation

is higher in the BGI set than that in the other sets,

whilst the mean values are nearly same in all cases.

The recent data are the results of incorporating greater
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TABLE 3.1

STATISTICS OF 5-DEGRES DATA SET SAMPLES

i Area Covered = 5° to lfO°N, 65° to 100°S
i

Numb.3r of blocks := >f9

| Unit = mgal
!

bet
1

Maximum Ag Minimum Ag Mean Standard
Deviation

!
ISAO 33.2 -68.8 -11.1 19.0

BGI 1+9.2 -67-1 -12.9 25.1

'OSU 28.2 -56.5 -11.3 16.6

number of observations and hence likely to produce more

averaged-out representative block-mean values, thereby

reducing the fluctuations considerably.

Another comparison of the differences of mean

anomaly values of the same area obtained from the three

sets, is presented in Table 3*2

The same conclusion emerges from Table 3.2 also,

where the results for'BGI minus OSU' and 'BGI minus SAO'

are more or less equivalent, the OSU minus SAO' values

show a marked improvement.
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TABLE 3.2

COMPARISON OF SAMPLE SETS OF ANOMALIES

1
Sets

Difference, without
to sign

regard
Mean

Diffe
rence

RMS

Diffe

rence
compared

1
Maximum Minimum Average

BGI-OSU 39-9 0.1 9.*+ -1.7 13-3

-OSU-SAO 17. k 0.1 5.3 -0.2 7-'+

Ibgi-sao lf2.8 0.1 8.U -1.9 13.2

3.10 ON SUITABILITY OF USING THE DATA

Regarding the economy of using the mean anomalies,

as input data, the objective of the excercise is the pri

me determinant. For example, if a generalized geoid shape

is needed for the Indian region, the Meridian-Parallel-

Grid type is convenient for computation by numerical int

egration. The computation points in this case may be

chosen to coincide with the grid corners for which the

coefficients to be multiplied by Ag are to be evaluated

only once for the entire latitude belt and for only one

side of the meridian, as has been done by Tanni(l9)+8).

Moreover, the minimum distance from a computation point

to a gravity point, i.e. to the centre of the block, Is

more or less fixed being equal to 3.5 degrees. This
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uniformity makes the inaccuracy due to numerical integ

ration uniform and less pronounced for all computation

points.

Using the other type of division, namely the

Equal-Area-Block, the minimum distance may be as small

as 2.5 degrees when a computation point falls on the

same meridian as the centre of the upper or lower block,

causing the Inaccuracy in N to be higher for that point,,

as the Stokes' function changes sharply with decreasing

distance. Therefore, for a general mapping of the geoid

from five-degree corner values of N, the Meridian-Parallel-

Grid type is better suited. The result of a test run

with BGI data is presented in Appendix 3, and with ano

ther preliminary attempt on absolute orientation on

International Spheroid is reported in Appendix C.

All the advantages mentioned would, however, be

infructuous if the computation point is a general astr

ogeodetic station like the origin of a local geodetic

system. The Equal-Area-Block obviously affects economy

in the computations, the elements being about 35 per

cent less in number. Moreover, the surface area being

nearly the same for all, the weightage of input values

are similar to each other. Hence for gravimetric comp

utations for a deviation station, the Equal-Area-Block
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system would clearly prove to be a better choice.

For the present investigation, therefore, the

updated OSU data have been preferred. Since the Inter

national Spheroid has been superseded by the universally

accepted GRS 67 Spheroid, the absolute orientation para

meters determined have been utilized to reduce the publ

ished geographical coordinates in terms of the Everest

Spheroid to the GRS 67 system.

3.11 INNER LIMIT OF THE EXTERIOR REGION

The effect of the.exterior region, from a certain

distance onwards right up to the antipode, varies smoothly

and is therefore interpolable. The desired accuracy of

the determination and the availability of detailed data

in the interior region, are the two basic factors which

define the inner limit. An aperture of 20° is a generally

accepted recommendation for N, whereas 15° may be suffic

ient for £ or t\ . In the present case, a clear margin of

15 beyond the borders of the country was to be chosen,

as outside this limit, sufficient coverage of 1° x 1°

mean anomalies was not available.

However, owing to lack of continuity of meridians

in the Equal-Area-Block type division, the inner bounds

of the gravity cannot be defined by distinctly delimi

ting longitudes. The area for which the gravity
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anomalies were not considered for evaluating the void

geoid are detailed in Table 3.3 and depicted in Figure

3.If •

TABLE 3.3

LIMITS OF THE INNER ZONE NOT CONSIDERED IN THE

DETERMINATION OF THE VOID GEOID

Latitude Limit of belt Corresponding Longitude Limit

Northern Southern Western Eastern

55°N 50°N 57°S 115°E

50°N 1*5°N 51°S 110°E

lf5°N »+0oN fPf°S 115°E

lfO°N 35°N 51°E lllf°E

35°N 30°N 53°s 112°E

30°N 25°N 51°E H3°F

25°N 20°N 5h°E H3°s

20°N 15°N 52°E 115°E

15°N 10°N 51° s 113°E

10°N 5°N 51°E 112°E

5°N o° 50°E 115°E

contd...
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Table 3.3 continued

o° 5°s 50°e 115°s

5° 3 10°3 , 51°3 H2°E

Total number of blocks = I'+l

3.12 RESULTS OF COMPUTATION

After developing the computer programmes for

determining the void geoid parameters at any general

point, 6*+ grid corners at 5° intervals covering the

Indian subcontinent (Figure 3.^), were selected so as

to give sufficient interpolable informations. Uotila

(1959) also recommended a similar grid with parabolic

interpolation. The inner limit, being fixed and inde

pendent of the position of the computation point, might

ofcourse give rise to nonuniform precision at various

corners but values at an interior station in the Indian

region would not be sufficiently affected by this.

For evaluating the series of undulation and

tilt components at all points of the 8x8 grid, the

gravity data including positions and sizes of the 1513

blocks must be read from cards over and over again, or

to be stored in the computer core as subscripted
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variables, thereby requiring a large memory and search

time. This was avoided by arranging the cards to be first

read by the machine, evaluating the elements of the vec

tor P and of pfor each block, and then storing these on

a magnetic tape as non-subscripted serial array in bina

ry code. In the next phase, the tape was mounted and
the usual REWIND statement was used, after evaluating Ny,

r n at every grid corner. The total CPU time needed
sv5 v

for both the phases was about 5 minutes on IBM 370

computer.

Table 3.If shows the final results for Nv, the

contributions to the void geoid, and the values ^j \
of the slope components are given in Table 3-5 and 3-6

respectively*

3.I3 INTERPOLATION FROM CORNER VALUES

Interpolation of the Ny, £v, \ values at inter
mediate points is in this case rather simple as the grid
values change smoothly. Even linear interpolation could,
therefore, serve the purpose with no significant loss of
accuracy, but atwo-dimensional cubic spline interpolat
ion has been preferred and developed. The spline-fitting
technique is generally recommended to be avery powerful
tool for its minimum norm property (Ahlberg et al.,1967)
and an odd-order function has been considered to be the



TiiBLE 3-1+

UNDULATIONS OF THE VOID GEOID IN AND AROUND INDIAN REGION

\x 65° 70° 75° 80° 85° 90° 95° 100°

I

4> Values are in me•tres. Negative sign Indicates height bel ow GR3 67

ko° _9-08 -11.36 -12.87 -13-69 -13.8 2 -13.29 -12.11 -10.32

35° -10.3*+ -12.1+2 -13.66 -iif.-l5 -13.92 -12.99 -11.39 -9.20

30° -12.25 -13.97 -11+.91 -15.09 -ih.5* -13.19 -11.11+ - 8.1+2

25° -11+A6 -15.79 -16.45 -16.35 -15.*+6 -13.76 -11.22 - 7-87

20° -16.61 -17.71 -18.15 -17.85 -16.72 -11+. 68 -11.67 - 7-63

15° -18.63 -19.62 -19.97 -19.56 -18.28 -16.01 -12.60 - 7-92

10° -20.55 -21A9 -21.85 -21.%9 - 20. 21 -17.83 -11+.17 - 9.00

5° -22.26 - 23 • 2*f -23.80 -23.68 -22.60 -20.31 -16.59 -11.16

I
vn

rv>

I



TiiBLE 3.5

MERIDIONAL DEVIATIONS OF THE VERTICAL OF THE VOID GEOID IN AND AROUND INDIA

X 65° 70° 75° 80° 85° 90° 95° 100°

I

t Values are in arcseconds and referred tc GRS 67

1+0° -O.322 -0.279 -0.183 -0.060 0.080 0. 231 0.386 0. 526

35° -0.605 -0.1+98 -O.389 -0.271 -0.11+0 0. 006 0.168 0. 33^ \

30° -0.790 -0.639 -0.525 -0.1+11+ -0.291 -0. 1^6 O.630 0. 21+9

25° -0.323 -0.702 -0.608 -0.516 -0.1+10 -0. 275 -O.09I+ 0. 158

20° -0.772 -0.713 -0.656 -0.597 -0.521 -0. 1+12 -0.21+3 0. 005

15° -0.730 -O.70I+ -0.687 -0.673 -0.61+2 -0.•577 -0.1+53 -0 .237

10° -0.683 -0.676 -0.711 -0.758 -0.792 -0 .787 -0.725 -0 .581+

5°
/

-0.573 -0.616 -0.736 -0.877 -0.998 -1 .071 -1.083 -1 .029



TABLE 3.6

PRIMS VERTICAL DEVIATIONS OF THE VERTICAL 0? THE VOID GEOID IN AND AROIKD INDIA

x 65° 70° 75° 80° 85° 90° 95° 100°

<p Values are in arcseconds and referi?e& to GRS 67

\ 1+0° I.298 0.912 0.562 0.228 -0.098 -0.1+15 -0.721 -1.011

35° 1.151+ 0.7'+l+ 0.399 0.057 -0.265 -0.576 -0.866 -1.110
1

vn

30° 0.907 0-567 0.239 -0.081+ -0.1+08 -0.726 -1.028 -1.28 5 t

25° 0.671 0.1+13 0.117 -0.198 -0.529 -0.868 -1.209 -1.532

20° 0.51+1 O.3 + 2 O.O3I+ -O.278 -0.621 -0.992 -I.388 -1.808

15° 0.1+91 0.263 -0.001+ -O.3I6 -0.675 -1.082 -1.5^1 -2.070

10° O.M+7 0.255 0.011 -0.299 -0.677 -1.121+ -1.61+6 -2. 272

5° 0.1+11 0.303 0.100 -0.207 -0.612 -1.105 -1.686 -2.383
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best. For the present study, the third-order function

having continuity up to the second derivative has been

extended both along the meridians and the parallels,

generalizing it as a 'bicubic' spline surface. This may

further prove useful in improving digital models for

terrain contouring which is usually accomplished by

polynomial DTM technique (Ghosh and Ayeni, 1977)- The

formulation of the spline-surface and a few useful tab

les are presented in Appendix D which may be found use

ful by future researchers in this field.

The parameters of geold-spheroid departure are,

thereafter, interpolated at every 1° corner around the

Indian boundary, and are depicted in Figures 3«5, 3*6

and 3.7, in contoured forms. It is important to mention

here that the pictorial presentations are not based on

any conventional projection system. Equidistant and

perpendicular lines are drawn to indicate the meridians

and parallels at equal intervals. The national boundar

ies are also purely approximate, just to indicate a ge

neral shape only.

3.II+ SUMMARY AND DISCUSSION

As a first step towards determining the paramet

ers of the Indian geoid gravimetrically from the GRS67

spheroid, the effect of the outer region on the
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undulations of the geoid has been computed and presented

in this chapter. This is subsequently added to the cont

ribution of the interior region discussed in succeeding

chapters to obtain the parameters of Absolute Orientation.

The conventional formulations have been modified

to suit automatic computation on a digital computer with

high efficiency. The interstation separation has been

formed in a matrix form and the area of the integration

element has been expressed in terms of the solid angle

subtended by It at the centre of the earth as these are

found to be more suitable for computations involving

gridded data. The Stokes5 function and the modified

version of the Vening Meinesz' function have been rear

ranged in algebraic form, to avoid repetitive computat

ions of trigonometric quantities. Further, the average

value of G has been Improved. Finally the contribution

formula has been expressed involving dimensionless quan

tities.

After formal comparison of the qualities of the

existing data sources for their suitability of use, the

OSUdata, being most uptodate and also economical for

for computer use, has been chosen for the analysis pres

ented in this chapter. The data set, extending beyond a

margin of about 15 degrees from the boundaries of the
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Indian subcontinent, has been used to compute its contr

ibution to the deviation parameters N , £ , v\ at 61+ grid-

corners covering the Indian region. Spline fitting has

been used to interpolate values at intermediate points,

and the final results are presented in tabular and con

toured forms.

Whilst the contribution of the exterior region

has been used, here as a part of the total objective of

this work,i.e.,to obtain the parameters of absolute ori

entation of the Everest Spheroid at the origin of the

Indian geodetic system, these results thus made availab

le in a digital form can be used in future to further

refine the total correction as and when more close and

complete data accrue in respect of the local region and

In the immediate neighbourhood of a point in question,

simply by superposition.

The shape of the void geoid' is found to comp

are well with that of the satellite-derived geoid in the

Indian region (Gaposchkin, 1973), particularly in respect

of the following;

(a) the geoidal low in the Southern part of the

peninsula,

(b) the downward trend, in the North-South profile,

(c) flatness of the geoid in the East-West direction.
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The absolute values of the void geoid heights

are much smaller, obviously due to the absence of anom

alies in the near region later found to be mostly negat

ive. However, these are perfectly consistent with the

RMS Influence of the region beyond the average spherical-

radius of 18° (Heiskanen and Moritz, 1967)j being +18

metres in N and +1.8 in £ or t\ , obtained statistically

from the degree variances of gravity anomalies (Kaula,

1959).

The choice of the inner limit is further confi

rmed from Rapp (197*4-) » who presented the standard devia

tion of undulation assuming gravity coverage beyond a

certain limit l|r . Whilst a sharp decline is seen from

III = 0° to t = 20°, the standard, deviation remains
'o To '

practically constant further up to TJTQ = 80°, indicating
no practical gain of accuracy by extending the limit

beyond 20 .

The computation points for the void geoid

lying well within the Indian region thus satisfy all

necessary conditions for obtaining the desired accuracy,

despite the asymetry of the region of influence with

respect to the computation point.
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(2) Negative height means
below spheroid

FIGURE 3-5 UNDULATIONS OF THE VOID GEOID IN INDIA
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FIGURE 36 MERIDIONAL DEVIATIONS OF THE VERTICAL

OF THE VOID GEOID
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Values are in

arc second

FIGURE 3 7 PRIME VERTICAL DEVIATIONS OF THE VERTICAL

OF THE VOID GEOID
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CHAPTER IV

EFFECT OF THS INTERIOR ONE DEGREE ANOMALY

REGION ON THS GEOIDAL PARAMETERS

*f.l GENERAL

The determination of the ge^idal parameters using

a basic global coverage of gravity anomalies over five-

degree elements, has been attempted in the previous cha

pter. For computing the effect of the interior region with

acceptable precision, however, the size of the integration

element has to be considerably smaller.

The next smaller size of areal element for the

latter is chosen to be one-square degree Meridian-Parallel-

grid. The outer bounds of the interior region were chosen

to extend up to a distance of about 15° from the boundaries

of the Indian region, coinciding with the inner limit of

the exterior region considered for the void, geoid and

described in Table 3.3.

This chapter embodies the formulation of the prob

lem of computing the effects of the interior region and

results obtained at 1 grid corners, using the mean free-

air gravity anomalies mostly from the DMAAC data (Defense

Mapping Agency Aerospace Centre, 1973), and termed as

partial geoid . The superposition of these partial geoid
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parameters on the void geoid' values gives a smoothened set

for further use in determining the orientation parameters

in absolute terms.

k.2 ASSUMPTIONS MADS IN THE INTEGRALS

(a) The first and foremost source of inaccuracy in the

numerical integration arises from the large size of the

Integral element. In the discrete summation analogue of

the integration continuum, two variables are approximated:

i) each of the weighting functions which are actually

continuously varying functions of position over an areal

element, is replaced by a single value corresponding to

the distance of the centre of the areal element with the

computation station as pole, for the entire element,

ii) the variations in gravity anomalies within the

element have similarly replaced by a single mean value.

(b) Furthermore, the Stokesian integral basically ass

umes that the disturbing potential T is a harmonic function.

The solution will therefore be perfect only if no masses

lie outside the geoid, an assumption which is rarely ful

filled over land. This assumption, given effect by free-

air reduction, adds another source of inaccuracy as it

yields the cogeoid instead of the geoid.

(c) The errors of measurement in the determination

of gravity and altitude values combined with modelling
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errors In averaging also add to the inaccuracies of the

final results which therefore tend to represent only est

imates with large variance.

(d) Other sources of errors arising from imperfect

assumptions, e.g.,

i) equal potential for the geoid and the spheroid,

ii) their possessing equal masses and volumes, ther

eby meaning a negligible zero order term,

iii) coincidence of the geoid with the mean sea level,

as well as other smaller order discrepancies, though

theoretically quite important are considered to be neg

ligible enough to be ignored in the present determination.

1+.3 ERRORS OWING TO AVERAGING OF THE WEIGHTING

FUNCTIONS

An estimate of the errors caused by replacing the

continuous function S(T|0 and V(f) by their mean values

over an element can be made by considering a suitably ori

ented nearmost block. Since the block containing the

computation point will have $ = 0 where the functions are

discontinuous, one bounded by f = y to TJJ = 10 and

a = ~2.° 5 to c = 2] '5 may be chosen for the error estimation
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. S(7.$)
;10s(f)sini|rdi|r/^ r10siriT}jdijr

^(7.5)

r,5lcv(i|i)sim}rdi|r / f10sinfdi|r
5 5

Q.lf#

« 2.8 £

In the direction of a, the error will be of the order of

sin 2°.5
ti x 2.5/180

which is about 0.03 percent only.

The Stokesian solution is based on the spherical

approximation which implies that quantities of the order

of fattening, i.e., 1/298 or approximately 0.3 percent,

can be neglected. Therefore, the averaging of functions

does affect the accuracy at TJJ = 10° or nearer. The effect

of the element referred to above being nearly 0.08 metre/

milligal in N and 0.02 arcsecond/milligal in the devia

tion 0, the absolute orders of error for an element over

which the anomaly may be as high as 200 milligals, will
it

be 6 centimetre and 0 .1 respectively.

If.if ERRORS DIE TO AVERAGING OF THE GRAVITY

ANOMALIES

The gravity anomalies are usually of random type

with high fluctuations specially when the topography is
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rugged or the crustal density contrast is sharp. The error

estimates will therefore be different at different places

and only a sample was considered from the real data in

Indian region.

The mean values may be estimated either as a

simple average
n

2 Agi

A*g- =
1=1

n
Of.D

or, the average after weighting by the corresponding area

covered, i.e.

*

Ag =

Z(cos0 Ag)±

2(cos0 )±
(If. 2)

The two means were calculated and compared to the value

given by Rapp(1977). Table l+.l shows the sample statistics.

TABLE lf.1

SAMPLE STATISTICS OF MFA ANOMALIES

Zone covered 25 to 30°N, 79 to 8if°E

Range -163 to + 61

Ag -72.0V
_ *

Ag -72.05
•

Maxm.difference 133

RMS difference 52.9

5 Mean -68.5 i 3-1

unit .milligal
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The standard deviation in the set is too high; the

region is in the lower Himalayan area and is thus an extreme

case of fluctuating values, the deviation being an upper

bound.

The three mean values are consistent among them

selves as they do not significantly differ from one another.

if. 5 REDUCTIONS OF ANOMALIES

The loss of precision for want of suitable reduct

ion methods had been discussed at length by geodesists.

Theoretically, the correct thing to do is to apply the con

densation correction (Helmert, 188if). However, from pract

ical considerations, the free-air reduction proves to be

the optimum. Isostatic anomalies have also been recommended

as they are geodynamically significant and interpolable,

and the indirect effects involved are moderate (Heiskanen

and Moritz, 1967). Mather (1970) computed the Australian

geoid on the basis of regional gravity data, where he

recommended the method of free-air reduction. As the

errors arising from the use of free-air anomalies are comp

arable to the modern accuracy of measurements, it may be

safely used for one-degree mean anomaly data, where the

standard error of the mean itself is 5 milligal or more.

Figure if.l is a schematic diagram of various red

uction methods showing their effects on gravity and geoid-



-68

HELMERTF REE IMR BOUGUER HAYFORD AIRY RUDZKI

i

h 0 TOPO

GRAPHY
Po f>o P0 po

OO

i

P0xb

t
T

1
t

i
i f

1

COMPENSATION
r i 0

1
*C%

P0xh

*4P LP

r-^-T i

1

xh

V 20 150 30 20 ? 20 mgai

N X 400 10

&g - Change in gravity

10 0 2 metre

&N- Geoid-cogeoid separation

RG. 4 1 VARIOUS GRAVITY REDUCTION METHODS



-69-

cogeoid separations. The comparisons clearly establish

the facts that simple free-air anomalies may be considered

as very nearly equivalent to condensed free-air anomalies,

and the free-air cogeoid coinciding with the actual geoid

to the same degree of approximation.

if. 6 NORMALIZATION 0? WEIGHTING FUNCTIONS

The Vening Meinesz9 function has already been

modified and reported in section 3-5 of chapter III. As

the spherical distance involved in the present case is

less than 90 , the following formulation for x is adopted

x=sin(f/2) =/0.5(/2 ♦ tp/a+Xi) 0M)

As the value of x is now small, evaluation of the

function S(TJJ) and U(T[0 should be carefully arranged to

avoid loss of precision due to computer overflow and

truncation. Double precision may well bo used in this

phase of computation, even though it will involve greater

computer time.

A clear review of the computation logic will be

in order to illuminate the strategies adopted for effe

cting economy. Firstly, the behaviour of various terms

that comprise the functions S(I|Q and TJ(f) is visualized

from their values presented In Table h•2. After gaining

an idea of the order of components, they are rearranged
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in a sequence of increasing magnitude. This is done to

ensure that the larger magnitudes do not render small

additions negligible as would happen if the position of

the first significant digits of the latter terms are at a

place lower than the precision level. (Rajaraman, 1978).

TABLS If. 2

VALUES OF VARIOUS TSRMS IN THS WEIGHTING FUNCTIONS

X
1

X

6x 1 -Xjjp
1

Vx3 X

3
*fx 2q

3+P

0.12 8-3 0.7 1.0 1.0 lh5 25 h7 2

0.11 9.1 0.7 1.0 1.3 188 27 56 2

0.10 10.0 0.6 1.0 1.6 ' 250 30 68 1

0.0?' 11.1 0.5 1.0 1.9 3^3 33 85 1

0.08 12.5 OO 1.0 2.3 WQ 38 109 1

0.07 1^3 O.lf 1.0 2.7 558 *+3 1*3 0

0.06 16.7 0.3 1.0 3-2 1156 50 197 0

0.05 20.0 0.3 1.0 3.8 2000

1

60 285 -1

•

q = 1+x , p = 5 + 3 Xr,(xq)

It is further observed that the terms with 1/x

and l/x^ are the exploding ones. These factors are there

fore used as the normalising factors evolving thereby two

new normalized expressions wherein the awkward infinity
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does not occur at all. The proposed functions are, rear

ranged in increasing order,

S(f) = x S(f)

- x(-6x + 1 - AjV) * 1 OfA)

and U(Ijr) = x3 U(f)

= -x(x(x(3+p)-3) - 0.75/1) + 0.25

where,

x = sinTjr/2

J(± =1 - 2x2
q = x + 1

P = 5+3 /n(xq)

In these forms, only one type of paranthesis has

been used to make these suitable for changing to Fortran

statements.

Methematically the term p becomes infinity when x

is exactly zero, but for all practical purposes the mini

mum value of x is 1.37 x 10 ^ corresponding to a distance

of 1 millimetre for which p is only equal to -6h . However,

as is well-known, a positional accuracy of 1 millimetre is

only of rigorous theoretical importance.

Figure \.2 shows the graphs of the normalized

functions S(T(l) and U(f) with x as argument.
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k.7 FORMULATION FOR NUMERICAL INTEGRATION

"With the normalized functions, the numerical summa

tion formulation is also refined as follows;

AU

Au-^ -1

Au2

_AU3

= W. B

where,
wn

W = w,

w.

- Act 0
and 8 = u^ •

Gx3

S(l{J)x2

Of. 5)

The symbols used are self-explanatory, and have been defi

ned earlier.

If.8 ON3-DEGREE DATA SET

Two basic sources of data were explored for one-

degree mean free-air anomalies:

(a) A major global coverage, by the Defense Mapping

Agency Aerospace Centre (DMAAC, 1973>? °f 1° x l0 Meridian-
Parallel-Grid type division. The DMAAC set is in the IGSN71,

.GRS67 system.



-75-

standard error of the mean determination which is of the

order of +12 milllgal and is seldom less than 5 milligals.

(b) The mean free-air anomalies should be converted to

condensation-corrected anomalies. Evan a simple terrain

correction will yield a modified free-air anomaly set

suitable for the present use. The evaluation, however,

requires a detailed knowledge of the topography of the

region, involving an enormous task. The indirect effects

of condensation or. N, K, r\ through the change of potential

must also be simultaneously taken into account, thus, making

the task quite complicated. The resulting change will be

about 2 milligals in a point value in the most rugged part.

The ruggedness again makes this change fluctuating between

positive and negative extremes, least affecting the mean

anomaly in an 1° x 1° areal element.

lf.9 FILLING OF ELEMENTS HAVING NO DATA

Even after the sets are combined in the manner

detailed earlier, there remain several gaps in the region

which must be suitably filled up before proceeding to

process the anomalies. Luckily enough, the gaps in known

values of anomalies correspond to regions that lie at

great distances from the origin at Kalianpur, the minimum

distance being nearly 1000 kilometres. FigA.3 shows the

positions of such gaps that lie within approximately 20
o
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(b) The other data set is from the Lamont Geological

Observatory (Kahle and Talwani, 1973). The grid shape is

same as that of the DMAAC set, but the values are in the

old Potsdam system and referred to the 1930 formula for

normal gravity.

The DMAAC data set was first compiled for the reg

ion covered by the following boundaries,

<P = 12°S to 58°N,

X = US°E to 118°E,

leaving a clear margin of 20° beyond the boundaries of the

Indian subcontinent.

For filling up the gaps, the second set was then

used after converting the required anomalies to the same

system, as outlined in Appendix A. Thereafter updating of

some values were done through personal communication with

scientists in India (Chugh, 1977) and abroad (Decker,1978).

Two points may be recalled in this contexts

(a) The Potsdam correction should not be directly appl

ied for local determinations- Another correction of about

1 milligal comes from the revised IGSN7I network in respect

of the Indian region. However, the corrections are needed

for a few elements only, mostly lying outside the Indian

continent and the oceanic regions not connected by precise

gravity networks. Moreover, the amount is less than the
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radius from Kalianpur.

Most of the remaining gaps are found to be beyond

the 53°E meridian in the West and beyond 100°E in the

East. The situation towards the Northern and Southern

sides is comparatively more favourable.

For interpolating the values of gravity anomalies

in these distant unrepresented areas, a simple procedure

detailed below has been adopted, as its precision does

not significantly affect the final determination.

For any one-square-degree unit, or units, the cor-
i

responding twenty-five square-degree Equal-Area-Block is

selected according to Rapp (1977), and the predicted value,

or values Ag may be determined by,

n-k

nAgb - Z^ (Agu).
Ag = • (If. 6)

P k

where,

n = total number of units in the block,

Ag^ = block mean gravity anomaly,

k = number of unsurveyed units in the block,

(Ag ). = the mean anomaly in the i th unit.

Hereafter, the term 'unit'will be used to denote

a 1° x 1° element and 'block' to denote a 5° x 5° element
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in the Equal-Area-Block system.

The prediction equation If. 6 implies assigning a

value of the anomaly to a unit, or same values to each

of the unsurveyed units in the block, such that the sim

ple average of all the units remain the same as the mean

anomaly of the block.

For the nearer units, however, a better represen

tation is necessary.

if. 10 PREDICTION OF MEAN ANOMALIES

Free-air anomalies are not interpolable and hence

any prediction will be rather arbitrary in a strict dete

rministic sense. A zero anomaly in the unit is the sim

plest assumption to start with. But a zero value in the

midst of high values of the same sign all around would

be an improbability.

Another simple way would be to take the mean of

the neighbouring units. The probability of such a value

being truly representative of the unit will be more than

that of null representation. In the absence of any other

evidence, therefore, the arithmatic mean is the expecta

nce with least standard deviation for unweighted array

and is easy to compute as well.

Another scheme would be to use a weighted mean
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but theoretically this also presents a problem, as a math

ematical model Is fitted to non-interpolable data. Reaso

ning may differ in assigning the wBights.

The statistical covariance prediction (Rapp>196lf)

however appears the most reasonable, being a combination

of the classical probabilistic concepts (Kaula, 1959).

Based on least-square-error theory, the principle is equ

ally suitable for regular and systematic data, as well as

those of random nature. The theory behind the covariance

prediction is briefly discussed In Appendix E for the

sake of completeness of the present work. The computer-

oriented formulations with a few modifications proposed,

are also presented therein.

If. 11 VARIOUS COVARIANCE FUNCTIONS

The statistical correlation of gravity anomalies

are completely characterized by the covariance function,

a function relating interdependency of values with their

mutual distance. Starting with the value of variance at

zero distance, their typical decreasing nature highlights

the randomness of the values. Examples from some publica

tions are shown in Figure h.h^ wherein the ordinates have

been standardized by dividing the original covariances by

the respective variances, in order to render them compar-

abl e.
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A linear estimate that depends only on the covar

iance, can be derived when stationarity and isotropy are

assumed (Kaula, 1967)- Stationarity of data means that

statistical properties of the data remain unchanged with

position whereas isotropy implies that its properties are

independent of azimuth or direction.

There is some evidence that gravity data are not

stationary (Gaposchkin, 1973) as also discernible from

Figure If.If. The statistical properties would most proba

bly vary over land areas from those over oceanic regions

or in equatorial regions from those over polar regions.

The gravity anomalies, as computed by subtracting the

normal gravity from the observed value after the free -

air reduction, are functionally dependent on the latitude

<P and the topographic height h. The background of non-

stationarity is thus evident from this| continents with

wider topographic variation and near-surface density con

trasts, would be characterized by more random anomalies

as compared with those over oceanic areas where no mass

lies above the geoid, and deeper heterogenities produce

rather smooth anomalies. Furthermore, the flattening of

the earth causes a systematic variation in gravity ano

malies from equator to pole.

It was therefore felt that a 'local' covariance

estimation will yield better results than a global one,
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which primarily means that the covariance obtained is in

reseect of a shorter distance.

To illustrate the short-distance property numeri

cally, covariograms around a few unsurveyed units have

been presented in Figure !+. 5« After some distance, the

curves swing towards the negative side.

A number of functional forms have been tried by

various authors. For example,

Hirvonen (I963) suggested

C(r) = C0/(l+a2r2) (If. 7)

Kaula proposed

C(r) = C0 e"ar (!+.8)

Rapp (196U-) recommended

C(r) = C0 +Cxr + C2r2 + ... (If. 9)

The polynomial presentation appears to be the

best, as neither the hyperbolic equation, nor the expo

nential expression accounts for the negative value at

increased distance.

However, so far as the present problem is conc

erned none of these need be applied at this stage, as

the gravity centres are uniformly gridded, except for

the inappreciable change due to the parallels not bei

ng great circle. This effect can safely be neglected

because,
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(a) the Indian region fortunately lies in the equat
orial region,

(b) for the local covariance function, variation from

the average grid distance is not appreciable.

The predicted values of the anomalies in the units

not represented by measured values, are tabulated in Table

if. 3.

TABLE If. 3

UK IT MEAN ANOMALIES ESTIMATED BY COVARIANCE PREDICTION

Latitude Limit Longitude Limit Anomaly

10°N 11°N 75°z 76° E -31 mgal

10°F 11°N 82°S 83°S -61

D+°F 15°N 81°E 82°S -28

15°H 16°N 82°E 83°E -17

16°N 17°K 73°3 7lf°B -29

16°N 17°F 83°3 8*f°B -2h

18 °h 19°N 8^°S 36°E -h-7

19°N 20°R 86°3 87°- -29

19°N 20°N 87°S oo -i -16

20°» a°H 87°S 88° E -15

21°N 22°F 90°E 91°E -27

21°K 22°E 91° 3 92°E -flf
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1+.12 RESULTS OF COMPUTATION

Using the numerical summation formulation with

the normalized function, described in section h*7 of

chapter IV, two computer programs have been developed,

as follows,

(a) computation of geoidal parameters at any general

point,

(b) computation at 1° unit corners only.

The first one is a general program used later with further

subdivision of areal elements in the immediate neighbour

hood. Otherwise, with 1° unit as the smallest division,

a general point may give rise to unrepresentatively high

value due to the effect of the unit containing it.

The second program similar to the test program

described in Appendix B, is with an aptly simplified algo

rithm, by considering the effect beltwise and taking

advantage of the symmetry of w,, Wg and the antisymmetry

of vL, about a meridian. The local effects due to the

variations in gravity anomalies within the units, are

uniformly truncated during their evaluations at the grid

corners, leaving the systematic part behind.

The outer region was defined by the boundaries

detailed in Table 3.3. Some logical statement have been
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incorporated in the computer program to take care of the

boundary, by skipping calculations wherever a boundary is

crossed on the either side.

The grid undulations Np as well as the deviation

components £ . i\ are evaluated at grid corners well wit-
P' p

hin the Indian geographical boundary, and given in Tables

*f.*f) h«b and h» 6.

Figures ^.6, *+.7, U-.8 present two profiles of each

of N , £ , i\ one along a meridian and another along a
p' *p' p to

parallel.

if. 13 SUMMARY AND DISCUSSION

The effect of the exterior region on the geoidal

parameters having been discussed and computed in the last

chapter, the contribution of the interior region has been

computed with higher precision using a more detailed

gravity anomaly set mostly furnished by DMAAC.

After preliminary discussions on the assumptions

made in the numerical analogue of the Stokes5 and Vening

Meinesz9 integrals, the errors owing to averaging the

components of the integrals, namely the weighting func

tions and the gravity anomalies, have been estimated

alongwith a sample check of consistency of the one -

degree data with the OSU data. These are found to be



-87-

quite satisfactory for use without the necessity of any

reductions, such as the condensation reduction etc., for

achieving an order of precision compatible with that of

the source data.

The numerical algorithm has been further refined

in this study by normalization of the Stokes' and modified

Vening Meinesz' functions to achieve better computation

efficiency.

The compilation of the data set has been done

from various sources, after standardizing all into the

same system. Gaps have been filled up by using a simple

formula for the consistency of data sets. Gravity anomal

ies of the nearer unsurveyed units are estimated by a

local covariance prediction technique. The geoidal para

meters at 1 grid corners within the Indian subcontinents

have been computed from the data set extending up to the

inner limit of the exterior region, and the computed

'partial geoid' are presented in the tabular form, with

a few profiles for the graphical representation.

The profiles are found to be mutually consistent.

The maxima or minima in N tallies with the correspondingp o

zero slope in the appropriate direction, thus providing a

numerical check. Uhilst the undulations are smoothly

varying, the F , n values show occasional sharp changes
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at places where the changes of the mean anomalies between

the adjacent units are also seen to be sharp, thus high

lighting the fact that the two deflections components

are much affected by local changes.

The partial geoid obtained, however, represents

a general trend only, and for obtaining the required higher

precision for the absolute orientation of the geodetic

system, finer subdivisions of the gravity field are esse

ntial. These intermediate results may directly be taken

for the purpose without repeating the entire process over

again. Hie steps are,

i) covering an area, bounded by two meridians and

parallels of whole number of degrees around any astro

geodetic station, by a dense gravity survey,

ii) computing H , £ ,^v from the 'void geoid' parameters

at the station, by suitable interpolations ,

iii) computing the effects of the 1° mean anomalies of

the newly covered zone, at the four 1° corners around the

station ,

iv) removing these effects from the corresponding N ,

F , ti values and Interpolating the net values at the
^p' p

astrogeodetic station ,

v) superimposing the void geoid parameters computed

in step (i) and the effects of the detailed gravity reg

ion, starting from 0.° 25 mesh size to finer grids.
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The gravimetric measurements may be planned judi

ciously to obtain representative mean values with optimum

number of observations. To match with the precision in the

'void geoid' , a coverage of 3° to if0 around the station,
is recommended.

Another use of the 'partial geoid' parameters for

obtaining the absolute orientation parameters, \>rlll be

discussed in chapter VI, where an alternative approach has

been proposed.

The geophysical importance of the regional geoid

obtained during the course of this investigation, need nr t

however, be overemphasised. Its special significance

(Uoolkrd and Khan, 1970) to delineation of mass anomalies

and to the resulting geoid prospecting (Ray and Bhattacharji,

1977) is considerable among other things and the results

provided here furnish a major portion of total computatlve

effort involved in such problems. Accordingly, a map of

the regional free-air geoid in India has been produced in

Figure *f.9, which may be found useful by geophysicists

generally, and by future researchers in geodes:^.
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TABLE If. If

UNDULATIONS OF THE PARTIAL GEOID IN INDIAN REGION

79

79

79

79

80

80

80

82

95

95

95

•28.8

•30.8

•36.0

•39.1+

•38.9

•37-3

•36.9

-3)+. 9

-51.8

-26.6

-32.6

-h-7.2

.if5.*f

•36.9

-32.6

-1*8.5

-if9-l

-36.6

N values in metres

negative sign indicates'below GRS 67 spheroid'

• 27.2

•27. 1+

•30.0

•35.8

.39. If

-38.^

-37.2

-35.>+

-53.9

-28.5

-26.1 -23.8 -21.If

-26.^ -25.6 -2U--5

-2*f.lf -23.8 -25.3

-29.9 -25.3 -26.3

-36.3 -31.^ -28.1 -27.if

-39.9 -ifO.2 -39.1 -37.2 -36.7

-38.2 -ifO.O -if2.7 -if5.7 -*f.7-6

-35.6 -36.5 -37.8 -ifO.O -lf3.if

-53.0 -50.1

-32.7 -3^9

•33A -33-8 -3^-6' -35.8 -37-6 -if0.2

.51.1 -53.8 -55.1 -55.7 -5*f#7 -52.8

•39.5 -37A -36.8 -35.9 -35-if -3^-7

•36.7

•33-l+ -3^-5 -35.6 -37-8 -ifO.7 -**3«i

-51.1 -53.7 -56.1 -57.1 -56.5 -5^5

.L6.5 -!+i+.6 -if3.0 -if0.8 -39.6 -39.6

•ifS.if

•1+7.6

•1+3.5

•50.5

•35.6

•1+5.6

•51.9

-38.1

contd.
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Table !+.!+ contd.

<P

25

25

2k

23

22

21

20

19

From To

71

93

71

71

70

71

73

73

88

91+

88

88

89

87

86

8 if

N values in meters
negative sign indicates'below GRS 67 spheroid'

-33.O -3I+.0 -3^.9 -36.I -38.5 -if0.8 -If2.if -iflf.2

-lf6.5 -i+8.if -50.5 -52.5 -53.i+ -52.9 -50.9 -1+8.9

-1+7.6 -1+6.8

-1+0.6 -38.9

-3*f.8 -35.8 -36.7 -38.0 -39.6 -ifO.9 -!+2.1 -1+3.6

-1+5.3 -^6.3 -if7.2 -1+8.3 -i+8.6 -1+8.3 -*+7-3 -1+6.1

-1+5.9 -1+6.5

-37.+ -38.6 -39.8 -1+0.6 -i+l.if -if2.if -1+3.5 ^i+if.3

-kl+,7 -L5.1 _L6.o -1+7.2 -i+8.0 -1+8.if -1+8.5 -1+8.3

-i+7.7 -1+7-3

-38.3 -39.5 -1+0.8 -if2.0 -if2.9 -1+3.6 -1+1+.7 -if5.5

-1+5.6 -i+5.5 -i+6.0 -i+7.1 -1+8.6 -50.1 -51.1+ -52.0

-51.6 -50.1 -1+8.1 -1+6.9

-if2.6 -1+3.3 -+3«9 -Mf.8 -lf5.8 -1+6.6 -i+7.2 -1+7.5

-lfS.O -i+8.5 -i+9.if -51.0 -53-0 -51+.1+ -51+.6 -53.5

-51.5

—1+6.6 -i+7.2 -i+8.0 -i+8.8 -1+9.k -i+9.9 -50.6 -51.0

-51.3 -53.1 -55-3 -56.2 -55.8 -5*f.8

-1+9.6 -1+9.7 -50.3 -51.0 -51.6 -52.1 -52.9 -53.2

-53.5 -55.1 -56.9 -57.9

contd.
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Table If.If contd.

<b

17

16

X

From To

73

83

7+

82

7+ 81

15 75 80

lif 75 80

13 75 80

12 76 79

11 76 79

10 77 79

N values in metre
negative sign indicates'below GRS67 spheroid'

-52.0 -51.8 -52.7 -53*6 -5+.2 -5k.5 -55.1 -55-2

-55.8 -56.5 -57-0

-51+.8 -55*5 -56.7 -57*3 -57*5 -57-8 -57*k -57*3

-57 *k

-58*7 -58.5 -59-2 -60.0 -60.6 -60.6 -59.2 -58-3

-61.2 -60.8 -61.3 -62.2 -61.8 -60.8

-63-6 -62.1 -61.1 -61.3 -61.2 -62.1+

-65.0 -62.8 -61.2 -61.0 -60.9 -63.0

-63.9 -62.6 -62.0 -61.1+

-65.6 -63.O -62.0 -61.9

-63.O -62.1+ -63.8
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40 m -

45 m

45 m

-SOrr.

-35 m -

RG. 4-6 PROFILES OF THE UNDULATIONS OF THE PART GEOID
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TABLE If. 5

MERIDIONAL DEVIATIONS OF THE VERTICAL OF THE PARTIAL

GEOID IN INDIA

0
From to K in arcseconds

3+ 76 78 0.1+3 6.02 -0.1+2

33 76 78 -11.23 5.69 10.06

32 76 78 -II+.09 -21+.81+ -11+. 1+1

31 76 78 0.1+5 -7.12 -10.81

30 75 79 0.69 0.56 -7.53 -20.87 -29.81

29 75 79 0.87 0.68 -1.51 -5.70 -13.36

28 7+ 80 2.53 1.13 -0.1+0 -0.1+1 -O.82 -2.90 -3.77

27 73

81

1.+3

2.11+

0.1+9 -0.06 -0.1+3 0.3I 2.92 6.58 6.23

26 72 -1.01+ -1.08 0.50 -0.73 -1.81+ 1.29 1+.09 1+.87

83 5-79 +.63 2.17 0.62

25 72 -1.3+ -0.00 -2.12 -1.93 1.57 1.92 2.05 3-+6

87 5.+0 8.81+ 12.76 15.22 15.02 13.21+ 12.26 8.95

2>+ 72 -5.63 -6.9+ -5.30 -2.1+3 -1.11 -0.23 0.28 1.57

87 3.17 1+.63 5.21+ 5.1+5 +.58 2.16 -0.35 -0.69

23 72 -1+.88 -5.56 -5.12 -1+.17 -1+.8+ -5.59 -2.99 1.31

87 1.89 0.83 •-0.68 -2.76 -I+.6+ -7.02 -8.61 -6.79
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Table 1+. 5 continued

<P X
From To K in arcseconds

2 75 r+.+9

-5-73

-3.89

-5.83

•3.83 -2.05

•7-56 -2.08

•3.5*f -1+.07

•1+.51 -3.10

-I.87 -3.9+ -if.93 -5.22 -M-.71+

-+. 73 -3.02

-5.28 -5*75 -if.82 -3.1+8 -i+.i+l21

20

19

18

17

16

15

ii+

13

87

75

85

75

83

75 82

75 81

75 80

76 79

76 79

76 79

76 79

-1+.11+ -I+.1+5 -1+.07 -3.92 -i+.59 -+.87 -3.70 -3-70

-3.20

-1+.25 -3.8+ -+.25 -i+.25 -3.88 -3.55-+.78 -3.73

-1+.92 -6.15 -5.63 -1+.7+ -+.i+9 -3.78 -1+.20

-5-66 -5.61+ -6.25 -6.55 -6.11+ -k.63

-3.33 -1+.18 -5.93 -^-57

-2.1+9 -0.51 -0.21+ 0.38

-2.10 2.01+ k.66 3.O7

-0.52 -1.96 -2.5+ -l.+lf
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IG. 4 7 PROFILES OF THE MERIDIONAL DEVIATIONS OF THE

VERTICAL OF THE PART GEOID
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TABLE If. 6

PRIME VERTICAL DEVIATIONS OF THE VERTICAL OF THE PARTIAL

GEOID IN INDIA

<p Fro

X

m To t] in arcseconds

3+

1

76 78 «*V. 66 c.79 -if. 11

33 76 78 -19.15 -7.05 +.9+

32 76 78 -15.93 -15-96 -1.25

31 76 78 -1.55 -12.57 -10.71

30 75 79 3.+0 3.23 -I.83 -3.22 -5-61

29 75 79 2.11 5-67 6.89 6.81+ 2.10

28 7+ 80 2.71 2.83 6.89 8.08 10.67 8.18 1.60

27 73

81

2.10

2.62

3. 08 If. 50 7.01 7.21 9.17 7.88 3-67

26 72

83

2.58

5.20

2.12

6.5+

2.57

if. 3+

6.6+

0.91

6.06 1+.08 6.1+5 5.87

25 72 2. if5 1.01 if.15 5.88 if. 28 2.13 5.20 +.67

87 3-29 5-76 3-2+ 0.80 -3.19 -5.++ -3-23 -1.61

21+
i

72 1.78 1.63 3.71 3-00 2.13 2.68 3.82 3-29

87 0.71 2.95 1.01 0.11 -1.1+2 -2.85 -1.91 I.32

23 72 2. if 2 2.79 0.31 2.52 1.78 2.6+ O.lflf 0.91

87 0.5? 2.70 2.37 0.87 0.86 -0.12 -o.if5 -1.61+

contd.
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Table if.6 contd.

(p From To

22 75

21 75

20 75

19 | 75

18 | 75
i

17 75
|

16 1 76

15

lif

13

76

76

76

87

85

83

82

81

80

79

79

79

79

n in arcseconds

2.28 1.97 1.22

3.O8 2.51 0.18

1.87

if. 60

1.97

3-22

1.98

2.57

3.+1+

1.63

0.12

-3-55

-If. 70

I.38

1.1+1+

1.19

0.96

1.22

1.57

1.95

2.36

-0.35

-1.89

0.62

•0.79

1.06

I.27

0.87

0.56

0.6+

1.5+

1.09

0.71

-1.05 0.15 1.7+ 3-oi 3.33

-1.70 -1+. 26

0.71 0.99 1.07 2.72 h*05

I.3I+ I.37 -0.06 1.1+1 6.13

O.98 1.99 -0.66

0.1+6 1.77 -1-33

0.08 1.39 -3.18

-0.95

-3.60

-1.68

-0.65
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FIG. 48 PROFILES OF THE PRIME VERTICAL DEVIATIONS

OF THE VERTICAL OF THE PART GEOID
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I . Values are in metres

2. Geoid is below GRS 67 spheroid

3. Notional boundary is
approximate

FIG. 4 9 ONE DEGREE MEAN FREE-AIR GEOID IN INDIA



-101-

CHAPTER V

GRAVIMETRIC ORIENTATION OF GEODETIC SYSTEM THROUGH

GENERAL ASTRO-GEODETIC STATIONS

5.1 GENERAL

The reduction of a local geodetic network to an

absolute reference system requires the definition of five

orientation parameters. These are the parameters a and

f of the reference spheroid, and the absolute geoidal

parameters N , £ , fl at the initial point of the trian-
o? ^o' o

gulation or trilateration network, which together deter

mine the World Geodetic System .

The transformation may be done by determining the

geoidal parameters directly at the initial point, using

the global broad gravity coverage In the exterior region

and dense gravity network in the interior region around.

Any astrogeodetic station could also be chosen for the

purpose, provided adequate gravity data is available In

the interior region around the computation station.

The present chapter deals with formulations

related to a finer detailing of the Stokesian integrat

ion with specific numerical works carried out for various

stations in India, with a view to obtaining gravimetric

ally the absolute orientation parameters more precisely.
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The problem in the present context is of course

an inverse one. However, the equations being generalized,

a simple interchange of the subscripts o and n serves the

purpose.

5.3 NUMERICAL EXAMPLES

(a) Determination of the undulation vector at the

origin at Kalianpur from the grid values obtained in the

earlier chapters is a matter of routine interpolation.

Simple linear interpolations from the nearest four grid

corners yield the following values?

Ngr =Ny + Np = -59.9 metres,

K— = K. * C, s - 0».24 (5.2)
6L V P

!gr v p ' *w

The formulae 5-1 with interchanged subscripts are reduced

to simple expressions, by using <P = 0 = 2h.H979k degrees,

^n = Xq = 77.65^80 degrees, as

off = 6N = -59-9 - 0.0 = -59-9 metres

5^o = 6?n = -0.2!+ -(-0.29) = +0".05 (5-3)

6T1o = 6T1n = +3#Ifl+ " 2*89 = + °M«55

(b) Two more stations, one in the North and another in

the East are taken as test cases. The astrogeodetic dev

iations of the vertical being obtained directly in terms
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5* 2 THE ORIENTATION FORMULA

In order to obtain corrections to be applied to

astrogeodetic values cfN,£,ti at a point from those known

at the origin, the following datum shift formulae (Vening

Meinesz, 1>50) could be used direct^;

6Nn

R
= (sin0 sin0 +cos0 cos0 cosA>0 ££

-(cos0 sin0 -sin0 cos0 cosM) 6£
o n o n ^o

-(cos0nsinAX) &r) - 6a/R

+(sin20n-2sin0osin0n) 8f (5*D

8£n = -(sin0ocos0n-cos0osin0ncosAX) 5eq

+ (cos0 cos0 +sin0 sin0 cosAX) ° £
o n o n o

-(sin0 sinAX) 6*1 -2cos0^(sin0^-sin0^) 6f
n o n n o

6 t| = +(cos0 sinAX) 6 e + (sin0 sinAX) 6 K

+(cosAX) 6n

where, 0 ,X = coordinates of the origin
1 o * o

0 ,X = coordinates of any station n

6e - tlo + 5a + sin20 £f
° R R °

AX = X - X ,
n o ?

other symbols have been defined earlier.
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of the Everest spheroid (Gulatee, 1955), the geoidal hei

ghts were estimated from a geoidal map (Bhattachar,ji,1973)

where the N m values are in terms of the International Sph-
ag

eroid with the revised orientation (Expression 1.2). To

reduce the heights to the original Everest system again,

the datum shift relations would be,

6N = 0.0 - 9.5 metre

6£0 = -0.29 - 2.U-2 arcseconds

&no = 2.89 - 3.17 arcseconds (5»k)

6a = 6377299 - 6378388 metres

6f =(1/300.8017) - (1/297-0)

It is to be noted here that the metric equivalent

of the semimajor axis of the Everest spheroid is the result

of a conversion from 'Indian feet 'to metres (Bhattacharji,

1961).

The coordinates of the stations and astrogeodetic

quantities and the interpolated gravimetric values there

are given in Table 5«1« The geoidal parameters are exp

ressed in a non-dimensional form for ease of computation.

The change of dimensions of the spheroids, namely the

Everest and GRS67, are

6a/R = 135.1U- urad
(5.5)

6f = 28.V7 urad



P?si-co-ition de

North 1 128.73^581 77*6U8975jO.36 -23.75 31.0?
!

East 2 23.395269 86.986980 2.23 0.98-3if.k2
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TABLE 5.1

GEOIDAL PARAMETERS OF NORTH AND EAST STATIONS

K
gr gr

-9.5^ -l^f.38 ifl.58

-9.72 -28.15 -^.26

unit degree

-____„

ppm or microradian

Table 5*2 presents the three sets of orientation

corrections at the origin, obtained from three astrogeod

etic stations. Large discrepancies in these results are

visualized. For, it is quite obvious that the orientation

TABLE 5.2

EXAMPLE OF ORIENTATION PARAMETERS THROUGH VARIOUS
ASTROGEODETIC STATIONS

Point Code

—1

6N (metre)
0 ««,(")

6%(n)

0 -59.9 +0.05 +0.55

1 - -60.1 +0.50 +2.18

2

\
3.6 -5.25 +2.52

parameters obtained from a single point evaluation with

basic input upto one-degree mean will not be reliable. It

may be recalled here that astro-geodetic deviations ,



-106-

derived from actual measurement possesses a complete spec

trum of energy, even upto the shortest wavelength compon

ents, whereas the gravimetric values obtained through

averaged gravity anomalies are effectively bandlimited.

A comparison of the sets suggest that attempts to

determine reliable values of absolute orientation para -

meters are liable to be futile until both the astrogeode

tic and gravimetric sets are equally weighted using either

of the following methods?

(a) increasing the accuracy of numerical integration

using a more detailed set of gravity anomalies at least

in the immediate neighbourhood of the point, say upto

3° radius,

(b) averaging the astrogeodetic values to correspond

with the automatically smoothed gravimetric values by

filtering out the short wavelength components.

The first of these two alternatives has been attempted and

forms the subject matter of this chapter, whilst the second

has been tested in the next chapter.

5*k EFFECT OF ERRORS IN GRAVITY DATA

The success of absolute orientation depends on the

quality of gravity data, topographic information and the

accuracy of numerical orocedures. The physical inhomoge-

nity of the earth causing the warping of the geoid, is

fully reflected in the gravity field and.in the astronomic
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regults. "The-precision of-g-ra-vity--anomalies-should -tfeer-efore

be of the order comparable to similar lst-order astro -

observations.

The basic sources of errors are as follows:

i) instrumental and observational errors, including

drift and tidal effects,

ii) errors in measurements of heights,

iii) errors in station positions,

iv) errors in absolute gravity values derived from

the reference base station,

v) inaccuracies in reductions of gravity values to

geoid level.

The gravimeters are generally capable of reading

gravity values precisely up to 0.5 milligal with usual

human skill, Lacoste Romberg gravineters being more stable

and precise than the Ubrden instrument. Drift errors may

be checked by occasional corrections assuming linear vari

ations whereas tidal effects may go up to 0.2 milligal at

times.

Inaccuracies in height estimations probably cont

ribute the most. For example, an error of 1 metre, which

is quite common, produces an error of 0.3 milligal in the

reduced free-air anomaly.

Inaccuracies in the actual coordinates of a

station also introduce errors by affecting the normal
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value of gravity calculated for the given latitude. An

error of 0.01 degree in latitude determination can be

commonly found to occur. An estimate of discrepancies

arising from this source, in the Indian region, can be

made from the differential of Y with respect to 0, which

is found to be 0.5 milligal to 0.9 milligal.

The absolute value of gravity at the reference

base station may be in error due to standardization of

network. The error being constant will have an effect

on N but not on £ and n.

A condensation correction needs to be applied for

the presence of the protruding topographic masses above

the geoid. As the free-air anomalies very nearly corre

spond to the condensation values, error in a flat terrain

would normally be inappreciable but could be about 1 milli

gal in the rugged terrain (Rice,1952). The geoid-cogeoid

separation may amount to as much as 3 metres in terrains

of large topographic variation and an error of 0.5 metre

is usually anticipated.

The total estimate of errors from various sources

in the input data thus turns out to be about 1 milligal in

the interior region on the average.

Finally, errors also stem from mathematical comp

utations and computer truncations. The mean value of
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anomalies beyond radial distances of 3° to h° from the

computation points, are estimated to have rms deviation

of as much as 5 milligals. Truncation errors during

computations are, however mostly eliminated, if the reco

mmended subdivision of meshes are adhered to.

Fortunately, the gravity defects do not so much

contribute to geoidal undulations as they essentially

amount to summations and are in the nature of being self-

compensating.

For a non-recursive digital filter, as the present

problem is, where the process may be formulated as

E{y} = a1x1 + a2x2 +........+&nxn (5-6)

The estimated variance in y is given by

aHvl =(2an2) a2{x], (5*7)

assuming no correlation between the x values.

Using circle-ring zones as elements, when all

factors are reduced to o".001, the variance in the deviat

ion of the vertical, for an rms error of 3 milligal up to

50th zone, turns out to be

02{6} = 50(S(0.001cosa)2)(3)2

or, error in 6 « QM -05 (5.8)

5>5 ON INTEGRATION TECHNIQUES

The surface integrals in the Stokes' and Vening
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Meinesz' formulae, are replaced by discrete summation of

contributions arising from compartments of finite size

obtained by suitably subdividing the surface of the earth.

In the template method which is a graphical procedure, a

transparent sheet marked with concentric circle and radial

lines is placed on the gravity map, its centre coinciding

with the computation point on the map. Another technique

uses rectangular compartments formed by the grid lines of

geographical coordinates 0 and X.

The simplicity and flexibility of the template

method made it universally acceptable for a long time.

Rice(1952) used it to compute the deflections of the vert

ical at a number of astrogeodetic stations, whilst Uotila

(1959) used it to investigate the shape of the earth. The

integrals S(l|J) and V(1$0 are computed over each element,

thus avoiding the inaccuracy introduced by averaging the

functions, as pointed out in Section k.3. This advantage

is however lost because of the inaccuracies that creep in

during the estimation of the.mean gravity anomaly obtain

ed through the following steps?

(a) plotting of gravity stations on a map and of the

gravity anomaly values,

(b) contouring the iso-anomaly lines by inspection

or using a graphical method,

(c) estimating the mean simply by experience or thr

ough some qualitative methods.
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All the above steps are extremely laborious, gre

atly susceptible to personal skill and wanting in accuracy

as compared with that of the weighting functions, which

severely limit its application despite the apparent advan

tages.

Moreover, the gravity anomalies, specially the

free-air, are not generally interpolable except in regions

with flat topography and homogeneous crustal structure.

The rectangular elements, on the other hand,enable

the use of a general digital technique matching modern

needs and amenable to modern tools. The mean anomalies can

be evaluated using the same principle analogous to the plo

tting, contouring and estimating sequence, without any

further loss of accuracy, and once evaluated, they may be

stored on magnetic tapes for varied future uses such as

gravity explorations. Smaller sized compartments also

reduce the errors of centering the weighting functions .

Fischer (1966) has discussed these advantages at length

and computed factors for gravimetric interpolation using

an electronic computer.

5.6 COMPARTMENT SIZE AND INNER LIMITS

Following the recommendations of the General

Conference on Weights and Measures in 1960(Ramaswamy and

Rao, 1971) to use the SI units - "Systeme International
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d'Unites" -also accepted by India, the unit for plane angle

will be radians (rad) and for solid angle steradians(sr).

The multiples kilo, mega and submultiples milli, micro will

also be used with their usually acceptable meanings. The

division of a circle into 360°, a nondecimal division, is

also in vogue, though some countries are using grade

systems.

Global maps are made using the degree grids whilst

local maps use minutes or linear grids. Gravity maps are often

made using a 15 gridded interval which permit an easy

adoption of decimals being equal to 0o.25« Use of sub-

multiple arcseconds Is however generally restricted only

to very small order terms like the difference in astrono

mical and geodetic latitudes. Decimal degree compartments

are naturally best suited for grid divisions and for prac

tical measurements whereas radians may be used in computer

applications, with the recommended submultiple micro(u deg,

Urad) used to avoid the repetitive exponent notation.

Mather (1970) used 5°,1°, | and 0.1° grids, but
o 1 °

the intermediate subdivisions of 1 to — does not seem
2

to have much advantage. Instead, a division sequence like

5°,1°, 0°.25, 0°.05* 0°.01provides a more balanced scheme,

the succeeding divisions being always in fractions of

l/5th or 1/Vth of the earlier size. Further, the grid



-113-

sizes of 0.25 and 0.05 degree are equal to whole number

in minutes, being 15'and 3' respectively.

The inner limits of various compartments to be

used should be chosen such as to produce comparable eff-

cts on the geoidal parameters. For the same anomaly, the

product of the weighting function corresponding to the

limiting Tjj and the area of the compartment used should

remain the same, i.e., for computing undulations

S(I|F1) ox= S(I(T2) c2 (5-9)

and for the deviation of the vertical,

VO^) a±= V(I|J2) a2 (5*10)

where TJL , TJT are the inner limits of compartments and

a-,,cjo are the areas of respective compartments.
12

Starting from the values of 15° to 20° for a

5° x 5° block as used earlier, the inner limits for diff

erent compartments covering the above recommendations

are given in Table 5*3'
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TABLE 5.3

RECOMMENDED INNER LIMITS OF VARIOUS MESH SIZES

Compartment size Inner limit between

5°

•

15° to 20°

1°
•

3° to lf°

0°.25 o°.75 to 1°

o?o5 o?i5 to 0?2

0?01 0?03 to 0?0lf

FORMULATION FOR LOCAL COORDINATES

The interstation vector L earlier obtained from

the unit position vector P through the transformation

matrix T cannot be used as such for evaluation in the

immediate neighbourhood owing to the following disadvan

tages!

(a) the first element cosl|J becomes very nearly equal

to 1 and an exact value may not therefore be obtained

owing to truncation errors,

(b) the latitudes 0 and 0 being very near to each
c g

other, the negative terms in the second element / differ

from the positive terms by a very small amount discernible
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only in the third or fourth place of decimal; the relative

error in the deduction process therefore becomes quite

high,

(c) a similar effect is found in the third element

/- as the longitude difference is also small.

The determinations should therefore be based on

1differences' between the coordinates rather than on

their individual values.

Accordingly, the basic expressions in Equations

3.1 can be rearranged in a difference relation form. Int

roducing the trigonometric versed sine notation, i.e.,

vers e = 1-cosO ,

the resulting modifications are,

/-, = cost|J = cosA0 - cos0 cos0 versAX, (5*11)
J. g C

jf_ = -sinfcosa = - (sinA0+cos0frsin0cversAX),

/~ = -sintysina - -cos0 sinAX

where, A0 = 4> - 0Q

AX = X - X
g c

versAX = 1-cosAX

0 , X and 0 , X are respectively the coordinates of the
g' g c'c -

gravity station and the computation station.
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5-8 EFFECT OF THE INNERMOST ZONE

If representative mean values are available,

numerical summation may be extended up to compartment

sizes of 0.01 degree square for a properly planned grav

imetric net, except for the compartment containing the

computation point. However, an actual situation may not

always be so favourable and the innermost zone may range

to a few kilometers.

Whilst the computation formulae for determining

this effect using the template method is available, some

approximate method must be resorted to for data available

in a grid form. Techniques for accomplishing this are

enumerated below including others proposed anew-

(1) the innermost zone may be defined by a staggered

boundary and split up into a mean circular area and a series

of positive and negative parts whose effects are approxim

ated and added/subtracted as the case may be (Figure 5«la),

(2) the zone may be divided to four rectangles surr

ounding the computation point (Figure 5«lb) and the effects

of £,t] may be computed by suitable formulation (Fischer,

1966). N-effects are however not yet available.

(3) for directly processing the point gravity anoma

lies, atriangular division scheme may be proposed. A
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chain of triangles is formed (Figure 5«lc) depending upon

the distribution of gravity data. The following simplif

ications are made for any element,

s(ijf) S 1,

u(i|r) z 0.25 (5*12)

/x a i

/2 ~ -A0 = -(0 -0C) radian

/_ S -cos0 (X -X ) radian
3 c g G

i./^+4

a

cos0c{01(X2-X3)+ 02(X3-X1) +^3(VX2^

AP

*5

-A. X

g 3

(!+) another practical approach is to replace the

innermost rectangular zone by a circle of the same area

(Figure 5«ld) and apply the original formulae (Heiskanen

and Moritz, 1967)s

Ag1+Ag2^g3

0., + 0 + 0
*1 v2 ^3

V V N

8tt
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In the proposed, modification, then,

180 (T'so r**j K X 2 x sin —- 3
2

(AgN - Ags)180
gx irRD0

=

(AgE - Agw)l80

gy rrRDX cos0

finally reducing to

Hi
— e* 5L

R G

q = -fa =J- g0

DX , . D0
where, <* = — cos0c sin —

g. - slope of ^ in 0 direction, per degree

(5.13)

(5.1*0

(5,15)
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g, = slope of —S- in X direction, per degree
G

The value Ag and the slopes may be obtained, by
y

a simple surface fitting of the form,

M = A + B0 + CX + D02 + E0X + FX2 (5-16)

where 0,X are expressed in degrees;

then, ^.
-^ =A+B0C +CXc +D0c2 +W0\ * FX/

i0 =B+2D0C +EXc (5.17)

ix = C + E0C + 2FXc

A minimum of six observations should be available

in the innermost zone; otherwise, a few outside points

should be taken for the matching.

The first method and the third proposal are not

fully automatic, owing to difficulties in defining the

zigzag boundary and forming the triangles respectively.

The second method Is the optimum one, but the fourth pro

posal has been used in the present work, being readily

acceptable to computer programming, although It is liable

to be inaccurate if the inner zone deviates from a square

shape.
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5-9 datum shift relations

The conventional datum shift formulation of

Equations 5*1 which stems from first principles is unf

ortunately Inconvenient for automatic computation where

repetitive use is made of similar quantities. A matrix

formulation is therefore adopted.

First the equations are split into two components;

the first involving terms related to the corrections in the

deviation components and of the undulation, and the second

involving changes in the dimensions of the reference elli

psoid. Then, denoting the correction vector at any point

as:

6N/R

(5.18)

6r]

= C + C
u <

The resulting expressions, after a long sequence

of mathematical manipulations involving trigonometric ide

ntities not elaborated here in order to retain IT" contin

uity of purpose, are finally obtained as follows;

and

C,, = T T C
u o o

Ce = (T BQ + S)D

where, the matrices are

(5-19)
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-sin0 cos0cosX cos0sinX

T = cos0 sin0cosX sin0sinX

0 sinX -cosX

f-rtin0
o

2sin0 -sin-V
o o

B =
o

T =
o

E s

COS0 cos X
o o

cos0 sinX
O 0

sin 0 cos0 cosX
ooo

p
sin 0 cos0 sinX

ooo

-sin0 COS0 cosX
o o

cos0 sinX
o o

COS0
o

sin0 cosX
o o

-1 sin 0

0 -sin20

0 0

sinX

sin0 sinX
o o

-cosX
o

and, the vectors are

C =
o

6H /R
o

*K.

&n

D =

It can be further shown that,

T' E = -B
o o o

6a/R

6f
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substitution of which in Expression (5.18) yields

or

where

C = T T' G + (T(-T ' E )+E)D
00 o o

G = TX + ED (5.20)

' X - T- (C -B D)
00 o

The newly evolved vector X may be termed as the shift

vector. The superscript' indicating the matrix transpose

as usual, whilst the subscript refers to the origin.

The square matrices T and T0 are seen to be orthogonal

and are identified with the transformation matrix intro

duced in Chapter III.

5.10 THE INVARIANT SHIFT" VECTOR

The transformation matrix is recalled to be an

orthogonal matrix satisfying the identity,

T l'= T' T = I, (5-21)

where I Indicates a unit matrix.

The use of this relationship leads from Equation

5.20 to

t'c = t'tx + t'ed = ix + t'ed

or

X = 3f(C - ED)

= T' (C - ED) = T* (C - ED), (5-22)
n v n n 00 o '

which is a generalized expression introducing X as an

Invariant vector, an outcome of astro-geo-gravimetric
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corrections at a general station n. The final quantities

sought for the definition of the datum in absolute terms,

are then the elements of this shift vector X in relation

to the geocentre .

5.11 CHOICE OF STATIONS

A single solution of the orientation vector obt

ained at the initial point, though theoretically adequate,

may be seriously affected by the inadequacies or inaccura

cies of the gravity field determinations. On the other

hand, control stations away from the network will have

less reliability on the geodetic parameters due to the

systematic errors in measurements and computations.

The Indian subcontinent has some peculiar feat

ures which must be taken into account for the selection of

computation stations through which shift vectors have to

be determined. It has a diamond shaped boundary surroun

ded by an ocean on two sides and its topography ranges

from medium altitudes to the steepest peaks in the Himal

ayan region. The choice of the initial point naturally

falls over a centrally located flat region. The triangul

ation net extends from this control point to all four

directions along meridians and parallels, with necessary

extensions of survey tributaries to cover the vast land.
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The astronomical stations also confofm to this pattern,

having two main orthogonal profiles.

The astrogeodetic stations are chosen to be at

the ends of the profiles, but not too near the oceanic

zone nor to the rugged regions. This is done to ensure

reliability of their determinations and similarity in

the order of their systematic errors. Five computation

points were selected keeping in view the scope of inves

tigations and the availability of data.

Table 5« + describes the relevant basic details

and Figure 5*2 indicates their approximate positions. The

astrogeodetic N values had to be reduced from the Inter

national Spheroid system to the Everest Spheroid system

with the orientation components given in Expression 5*k*

TABLE 5. k

ASTROGEODETIC QUANTITIES OF THE COMPUTATION STATIONS

Posit
ion

Code 0 X
pe pe V S s

Central 0 2>f.ll979+ 77* 651+o,80 +0.00 -l.lfl +l*f.01 pe =

North 1 28-73+581 77-6W75 +0.36 -23.75 +31.05
publish
ed

East 2 23.395269 86.986980 +2.23 + 0.98 -3k.k2 Everest
coordi

South 3 17.+00630 78.556258 -1.62 -2^.19 -5-67
nates

West k 2k. 258153 72.18^680 +1.29 -39.75 -1.9+

unit degrees ppm or micro rad. 1 .

•.::,,
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F1G, 52 APPROXIMATE POSITIONS OF COMPUTATION POINTS
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5.12 THE DATA SET

The data set gleaned from various sources in the

country and supplemented by actual measurements especially

made for this purpose can be classified as follows with

respect to their information content;

(i) data set comprising of coordinates and gravity

anomalies in respect of some points,

(ii) data set comprising of coordinates, heights, grav

ity values and anomalies in respect of some points,

(iii) data set comprising of station distribution maps,

heights and relative gravity values referred to various

arbitrary gravity datum.

The available data mainly consisted of gravity

values measured bj^ Worden gravimeters supported with

altimeter heights or those measured by Lacoste Romberg

gravimeters and supported by levelling heights. Additional

field work was undertaken with a view to filling up broad

gaps in the gravity anomaly data as well as to checking

up and standardizing existing data. The gravimeters used

for this purpose were (i) the Worden gravimeter (geoph

ysical model) and (ii) the La-coste Romberg gravimeter.

Heights were estimated from topographic maps with occas

ional checks from nearby Bench Marks* Usual drift corr

ections were made assuming linearitjr over time.
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Compilation of the above data sets into a common

format, for storage on computer cards needed various mod

ification such as those given below:

(a) digitization of station position, from plane table

sheets or printed maps, to decimal degrees of latitude and

longitude,

(b) reduction of all latitudes and longitudes in deci

mal degree up to the nearest 0.0001 degree,

(c) conversion of heights from feet to metres upto the

nearest 0.1 metre,

(d) updating of the relative gravity values to absol

ute ones by comparison with standard stations,

(e) reduction of all gravity values to.IGSN 71 system,

by applying the usual Potsdam correction wherever needed,

(f) computation of anomalies by comparing IGSN 71 gra

vity values with Y, %duly reduced for the appropriate

free-air effect.

Whenever gravity values as well as gravity anoma

lies, were both available, the basic gravity values were

converted to free-air anomalies and compared with the

corresponding anomalies duly corrected (vide Appendix A).

In case where discrepancies were found to exceed 1 to 2

milligals, the source records and punched, cards were

scrutinized for detection of any human errors and reject

ed if the differences still uersisted. In cases where
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the discrepancies were within the limit, the derived anoma

lies were retained for further use.

Table 5'5 shows the area covered by each zone and

the total number of gravitjr stations finally used.

TABLE 5-5

GRAVITY STATION DISTRIBUTION IN VARIOUS 20NES

Zone Latitude

Limits

Longitude
Limits

T
No. of 1
stations

Remarks

Central 23.OO 25.00 76.00 79.0C 122*f Well-distribut
ed, modified
free-air

North 28.00 30.00 76.00 79-00 188 No dense net

East 23.OO 2k. 00 86.00 88.00 392

South 17.25 17.75 78.25 78.75 135 Limited zone

West 2^.00 2k. 50 72.00 72.50 833 Mostly confi
ned to a very
limited area

only

5.13 EVALUATION OF THE MEAN ANOMALIES

The mean value over a compartment obtained from

the point anomalies computed from field observations of

gravity and altitude data, are bound to be functions of

the density and distribution of points. In case large

coverage is available, a simple arithmetic mean as given
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below will be adequate:

n

E{Ag } = i== (5.23)
m' n

The major consideration for the adoption of a sim

ple mean is the sample size n.' Mather (1970) suggested a

lower bound equal to 0.5 N where N is the number of stat

ions in a fully represented compartment. For example, in

a 0.25 degree compartment usually a 5 KM x 5 KM station

grid is usually sufficient if the region is more or less

flat, in which case N will equal 25»

In case the sample size Is not satisfactory, some

predicted values Ag • could be generated using correlation

techniques, and the mean obtained as

n N

S Ag, + 2 E{Ag.}
1=1 x j=n+l 2

E{Agm} = (5*2k)

Prediction technique may be broadly classified

into two ,

(i) heterogenous correlation

(ii) autocovariance prediction.

The first of these require a detailed knowledge

of the topography with heights measured accurately. For,

an error of 1 metre in assessing the heights will lead
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to inaccuracy of 0.3 milligal which will, in turn, affect

the correlation factor and the final prediction. The

other type (Rapp, 196*f) which is based on the interdepe-

ndance of gravity anomalies with distance will also cause

similar cumulative errors due to the inaccuracies of obser

vation. In both these cases, therefore, the reliability

of the basic input data is of prime importance. They may

therefore be used only If noise is small as compared with

the signal.

Another way is to use a polynomial expansion of

the anomalies which is quite analogous to the graphical

esti: ation technique (Nagy, 1973). Expanding the anomalies

as a function of position,

Ag(x,y) -AQ +AjX +A2y +A^x2 +A^xy +A^y2 ,
(5.25)

one obtains for the estimated mean,

- 51Ag dx dy

where the integration is carried out over the compartment.

With the restricted data source and the nature of

their variances, the covariance and correlation prediction

techniques were ruled out. Wherever the number of stati

ons within a 0.25 compartment exceeds ten, the arithmetic

average was used, whilst in cases where the number was
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nearer ten, a surface fitting up to the third order was

used with the following modifications in Nagy's procedure:

M Xl = D0

(ii) y. = ^2L (5.27)
.(ill) Ag* = SAgi/n

(iv) f± = Agi - Ag* = Ao + AlXi + A27i + ....

(V) *ha - ** \72 1/2
I J dx dy

-1/2 -1/2

where, <P , >- are the coordinates of the centre of the

compartment.

This standardization renders the design matrix well-

conditioned as the off-diagonali elements are reduced to

very nearly zero, specially so when the distribution is

of a symmetrical type*

In the case of 0.05 degree square elements how

ever, the situation is usually quite different. Some

elements have only one or two gravity stations whereas

some others are completely devoid of any data. A compro

mise scheme had therefore to be sought between the accu

racy desired and the economy of computations, the various

steps of which are described below t
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(a) when the number of observations in an element

was more than two, a simple average was taken, the stan

dard deviation being usually within 1 milligal,

(b) when number of observations was two or less, the

adjacent elements were also considered and a weighted

mean was obtained giving full weight to the values in the

particular element and a linearly reducing weightage in

the adjacent ones. Figure 5«3 represents this decaying

type weighting scheme graphically. This window was used

to utilize surrounding values as and when needed, to cir

cumvent defects associated with sudden truncation, and it

Is simple so far as computer logic is concerned,

(c) when no observations existed in an element but

three or more points existed in the adjoining elements,

the same weightage scheme was applied thus using the

outside values for Interpolation,

•.. (d) when none of the above mentioned conditions were

satisfied the element mean was not computed, and predicted

later on.

The remainder of the excercise was of a statis

tical nature. The covariance function was evaluated from

the mean values for all the compartments. For the inter

polation of missing values, neighbouring values were

collected up to a distance which corresponded, to that >.-..,..
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FIG, 5-3 WEIGHTING SCHEME FOR MEAN ANOMALIES
OVER 005 DEGREE ELEMENTS
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at which the covariance function crossed over to the nega

tive side, except when the number of such source values

become less than three in which case the influence zone

was extended to at least three sources.

Figure 5.k explains the coverage made for various

compartment sizes. Figure 5-5 and 5«6 show two typical

covariograms. Table 5.6 presents some 0.25 degree mean

anomalies obtained in the various zones considered.

5,1k RESULTS OF COMPUTATION

A Fortran IV computer programme has been developed

to compute the orientation vector at the initial point.

This is accomplished by first calculating the gravimetric

geoidal parameters at any general astrogeodetic station

using gravity mean values starting from five-degree blocks

in the exterior region to one-degree unit and smaller com

partments In the inner zone, thereafter the invariant shift

vector as well as the absolute orientation parameters at

the initial point. Various parts of the programme have been

discussed in Appendix F.

The final gravimetric values of the geoidal undu

lations and deviation components are presented in Table

5*7*
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TABLS 5.6

SOME QUARTER-DEGREE MEAN GRAVITY ANOMALIES WITHIN INDIAN

_£EGJON_
Boundaries of

Latitude Longitude

30.00 29.75 76.00 78.OO

29-75 29.50 76.00 78.00

29-50 29.25 76.00 78.OO -2

29.25 29.00 76.00 78.00

29.00 28.75 76.00 78.OO

28.75 28.50 76.00 78.OO

2^.50 2k. 25 72.00 72.50 30 36

2k. 25 2^f.00 72.00 72.50 11 kO

Anomalies in milligal

-26 -29 -k9 -57 -69 -81 -93 -111

-23 -25 -3^ -*+3 -51 -60 -69 -83

25 -3*+ -k3 -52 -69 -76

-Ik -13 -21 -27 -29 -37 -kk -61

-10 -7 -20 -2k -27 -31 -31+ -if6

-8 -8 -18 -30 -22 -kk -35 -31

25.00 2k.75 76.75 78.50 j 8 8 9 k -k -10 -17

2k.75 2k.50 76.75 78.50 1 6 11 2 -5 -2 0

2^f.50 2k. 25 76.75 78.50 3 9 20 16 7 k 8

2^.25 2^f.00 76.75 78.50 20 11 2k 19 15 12 16

2^f.00 23.75 76.75 78.50 30 21 21 15 6 8 Ik

23.75 23.50 76.75 78.50 32 25 17 10 if 10 18

23.50 23.25 76.75 78.50 22 25 17 k 6 10 7

21+.00 23.75 86.00 88.00 -1 -2 k 6 26 37 23 -19

23.75 23.50 86.00 88.00 5 -7 15 12 7 16 15 -31

23.50 23.25 86.00 88.00 11 13 Ik 13 20 12 2 -31

23.25 23.OO 86.00 88.00 17 16 12 13 12 3 -13 -35

17.75 17.50 78.25 78.75 -6 -if

17.50 17.25 78.25 78.75 -8 -12

17.25 17-00 78.25 78.75 -2 -13
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table 5.7

gravimetric geoid parameters at various computation

stations

Code 0 1 2 3 k unit

V -59.00 -61.86 -62.05 -75-9k -51.86 metre

?gr + O.36 - 3-32 - 2.51 - 5.51 - 7.71 arcsec

1
gr

+ 5*k9 + 8.26 - 1.11+ + 1.1+7 - 1.12 arcsec

The elements of the correction vector at any

station are computed using the relation.

C =

V/H"
£gr

-

V
_

N /R
aer

•ag

ag

(5-28)

Table $.8 shows the intermediate C vector, the

corresponding X vector and finally the orientation para

meters C0, obtained from various computation points.

5.15 SUMMARY AND DISCUSSION

Gravimetric determination of the geoidal undula

tion and the deviations of the vertical at any point,

using finer mesh sizes in the immediate neighbourhood,



TABLS 5-8

ABSOLUTE ORIENTATION PARAMETERS THROUGH VARIOUS

ASTRO-GEODETIC STATIONS

Point

code

'2

vl

x
2

x

3

£N_
o

o

o

0

12.61

-27-2^+

38.09

115. ok

- 59.oo

+0.65

+2.60

1

9.01

-29-23

3^.28

11*+. k2

-62.05

+ 0.15

+1.86

•II.97 -IO.30

•I3.I7 -2.51

28.87 12.79

•9-+3

2.35

•3.51

-1+0.17 -23A6 -28.08

3I+.7I 36.50 33-36

110.26 115.86 115.28

-56.67 -66.1+ -61.31

-2.2+ +1.1+0 +0.1+3

+2.13 +2.25 +1.6+

Unit

ppm

micro

rad.

micro

rad.

ppm

ppm

ppm

metre

arcsec

arcsec

has been discussed in this chapter. If the point hapoens to

be occupied by an astrogeodetic station also, the corre

ctions required to be applied to the astro-geodetic para

meters, may be computed. The corresponding corrections at

the initial point can then be calculated using the orie

ntation formula suitably rearranged. A few numerical
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examples have been worked out using the results obtained

in the previous chapters. Various sources of errors in

the gravity data and their effect on the determination

of undulation of the geoid and deviations of the vertical,

are briefly discussed. The grid method has been preferred

to the graphical technique, and decimal degree compartments

used in order to conform with the SI system of units. Con

sistent inner limits for the size of various compartments

have also been discussed.

The transformation of conventional geographical

coordinates of any gravity station to local coordinates

using the computation station as the pole, is formulated

in a differential form. A few proposals for evaluating

the effect of the innermost zone have also been included.

The datum shift relation is formulated In a generalized

form starting with the introduction of a shift vector

whose elements are independent of the coordinates of the

computation station as well as those of the initial point.

A brief discussion concerning the selection

of the astro-geodetic station, is included and five

stations have been chosen on the Indian continent along

two profiles, intersecting at the origin. The sources

and qualities of the data set used in this investigation

are of diverse forms, having been collected for different
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purposes, e.g., explorations etc. which were further supp

lemented by additional field measurements made. For conv

erting the distributed point gravity anomalies to represe

ntative mean values, various practical methods including

a sort of weighted average have been chosen. However, in

respect of compartments where no mean values were availa

ble, the covariance interpolation was used. Finally the

results of computation have been presented as sets of the

shift vector as well as in the conventional form by 6 NQ,

6 K ,6*1 values.

The results from various computation stations

show that the values of 6Nq are more or less consistent

among themselves whereas those of the slope components

are found to be highly discrepant. A standard deviation

of 3 metre in 6 K may be comparable to the similar clos-
•» o

ure error in the astro-geodetic geoid. In 6 £Q, the

standard deviation works out to be l". 2, which is rather

high. In 6n , the deviation is 0'13 around the mean, but
° o"

the values from all other stations are lower than that

obtained from the initial point.

Out of all the results, the values obtained from

the initial point is obviously the best estimate. There

is no systematic error as the network starts from the

centrally placed initial point itself. The astronomic
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determinations are also perfect to the extent possible.

The gravity data distribution compared to that at any

other station, is also by far the best, leading to as

accurate gravimetric results as practicable . The circle-

ring method was also applied up to about 500 KM radius

and the results (Bhattacharjl and Ray,1978) are in satis

factory agreement with those obtained from the grid.

method applied here. The anomalies used are modified

free-air (Bhattacharji, 1971), i.e., corrected for regional

terrain effect, and thus provide better simulation of the

Stokesian boundary-value problem.

The other determinations are not so satisfactory,

basically due to want of necessary density of gravity

data around them. The local determinations are more suscep

tible to altitude and standardization errors. For example,

the data in the Western zone has been updated by compar

ison with a single pendulum station. Moreover, a North-

South flowing river separated the two sets of observations.

There being no common station between these two groups,

the anomalies were matched along the Wo sides of the

river in an arbitrary manner, which could be considera

bly in error due to possible sharp changes in density

along the river-bed separating the two sets. A somewhat

similar situation prevailed in the East station also. For
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the inadequacy of gravity data in the North zone, the mean

anomalies over 0.05 degree compartments had to be taken

as that over 0.25 degree compartment. In no case was the

inner limit suggested in Table 5*3 achieved.

Even if the gravimetric determinations are made

accurately, the results from these stations could still

differ from the real values because of the unknown syste

matic errors in the triangulation network. Whilst the

gravimetric and astronomic determinations could be of com

parable accuracy, the geodetic coordinates have to be

burdened with errors propagated along the cantilever

extension. The South station is a temporarily occupied

one and not a triangulation station. The West point is

the only Laplace station used in this study where a discr

epancy of l" was found (Gulatee, 1955).

For obtaining a better revised set from a general

astro-geodetic station, the following steps are recommended:

(i) computation points be chosen to coincide with

Laplace stations,

(ii) gravity values used as reference should be stan

dardized,

(iii) gravity data in the inner zone say 3 x3 he meas

ured accurately alongwith precise altitude values

of the station,
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Notwithstanding these shortcomings, the present

determinations from various computation points have indi

cated a first-hand check on the numerical computations,

which can be utilized for systematic planning in future.

Computations from several stations have earlier

been recommended by geodesist for obtaining a reliable

estimate. Rice (1952) used 16 stations and Mather (1970)

chosen 38 stations, with suitable gravity coverages in

the immediate neighbourhoods. An attempt to incorporate

a somewhat similar logic has been subsequently discussed

in the following chapter.
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CHAPTER VI

A LEAST-SQUARES COINCIDENCE APPROACH TO ABSOLUTE

ORIENTATION

6.1 GENERAL

Theoretically, a complete knowledge of the gravity

anomaly :field over the entire earth is a prerequisite for

obtaining the absolute orientation of a local geodetic

network using the classical gravimetric method. This being

an unattainable condition, precise determinations of the

absolute geoid and its orientation parameters basically

constitute an ill-loosed problem in geodesy, calling for

careful processing and interpretation of all available

data. The techniques and procedures designed to accomplish

this task as well as the results obtained in respect of the

Indian geodetic system have been discussed in earlier

chapters.

The basic guidelines for selecting an appropriate

computation station for the determination of the absolute

orientation vector are as follows I

(i) the point should be a first-order astro-geodetic

...-' station, and

(••\ that it should be surrounded by a reasonably dense

gravity network.
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The numerical examples cited in Section 5v3 as

well as the final results obtained from the various com

putation stations described later, highlighted the defects

arising from the limitations and inaccuracies of astrogeo

detic and gravimetric data around a station. However, this

could be circumvented if, a number of astrogeodetic stations

and regional gravimetric data are available. The use of

this proposition forms the subject matter of the present

chapter, illustrated with numerical examples to obtain a

set of orientation parameters for the Indian geodetic

sjrstem.

6.2 SOURCES OF ERROR IN ASTRO-GEODETIC DATA

Although the gravimetric orientation through an

astro-geodetic station appears perfect theoretically, the

solution obtained is never absolutely correct in a mathe

matical sense, but can only be regarded as an estimate

whose reliability depends upon those of the input data

and of the various linkages of the overall numerical pro

cedure. Sources of error in gravimetric data have already

been discussed in Chapter V. Those in astro-geodetic data

can be broadly classified into two categories, viz.,(a)

errors associated with astronomic observation and redu

ction processes and (b) errors in geodetic determinat

ion of coordinates.
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The basic sources of errors in astronomic deter

minations as follows i

(i) instrumental and observational errors,

(ii) effect of polar migration,

(iii) use of various star catalogues,

(iv) reduction of observations to the geoid,

Depending upon the instruments used, the observ

ational procedures followed and the human skill deployed,

errors in measurements may range from o'.'Ol for zero-order

determination up to even a few seconds. Whereas instrum

ents are liable to produce cumulative errors, various

astrofix method are designed to compensate for or mini

mize them in order to achieve a final reliable result. For

the particular purpose of orientation, the astro-station

should be of first order, to a precision of o"o5 or higher ,

Whilst latitudes may be measured with greater accuracy,

the longitudes are liable to further errors due to an

additional measurement of time, which fortunately has

been considerably improved in recent years following the

use of wireless signals.

The inaccuracy arising from the slight wandering

of the terrestrial pole affects the basic geocentric co

ordinate system as a whole. This variation is quite sig

nificant, and appropriate corrections need be applied to
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astronomic coordinates including the azimuth.

Another important celestial feature shows up in

the star almanac published at various times. Various cat

alogues have been used for the calculation of astronomic

positions, and systematic variations are found to occur

between them. As the Indian net includes some century

old observations,errors of 0.2 or more may be expected if

they are all reduced to the present FK, system.

For the purpose of computing geoidal coordinates,

observed values must be reduced to the hypothetical mean

sea-level below the station. The shape and density distri

bution of the surrounding topography controls the deviation

of the slope of the geop on the earth's surface from that

of the geoid below. The normal amount of error, in the

Indian zone, is of the order of 0'.'l5 per kilometre of elev

ation. Though the correction is customarily made, it is

computed on the assumption of a 'regularized earth' poss

essing rotational symmetry and hence applied only to lati

tudes. Any asymmetry in terrain, however, will have its

effect on longitude also, which may be estimated from the

gravity data around the station.

The great triangulation survey conducted by the

Survey of India was a major step towards producing cons

istency in the national geodetic grid. However, for such
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a large subcontinent as India, propagation of inaccuracies

due to centilever extension assumes considerable signific

ance. The major inhomogenities in the Indian triangulation

system are as follows;

(i) a scale-error due to adoption of various foot -

metre ratios at various times\ this aspect has been inve

stigated by Bhattacharji (1961),

(ii) lack of azimuth control due to inadequancy of

Laplace stations as reported by Gulatee(l955)•

Two other errors that generally creep in a geodetic

network computation are discussed below:

(i) Reduction of a base-line and other observations to

the corresponding ellipsoid of computation needs an a-priori

knowledge of the geoid-spheroid separation below the base

line. But these heights are only known after all the astro

geodetic deviations are made available. Thus a recomputat-

ion is necessary to correct the whole net after constructing

the preliminary geoidal chart.

(ii) Adjustment of closure errors are based on some

theoretical assumptions, e.g. equal shift, linear propag

ation, or least-squares-error. The departures from reality

of these assumptions, give rise to inaccuracies at' places

away from check bases.
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These limitations underline the need for a careful

consideration of various factors involved if a general

astro-geodetic orientation Is to be attempted. For a more

reliable and stable orientation, it is always preferable

to choose the Initial point, where repeated astronomic

observations and dense network of gravity station may be

made available.

6.3 THE LEAST-SQUARES APPROACH

From the above discussions of the various errors

and their estimates, it should be clear that an orientation

point should be so chosen as to be a supercontrol point at

which all measurements of the astronomic, geodetic and gra

vimetric quantities and their computations are made with

utmost care, calling for high skill, best quality instrum

ents and comparable software. However, for a country like

India, time and economy are as much of the essence and

whilst precision and refinement should be continually imp

roved, a practical solution must be found in the context of

available informations with all their inherent errors.

As the errors are largely of a random nature, a

reliable assessment can be made by assuming that they con

stitute a gaussian distribution. Accordingly, one can use

the logic of least-squares for minimizing their effect

provided that the sample size is well distributed. There
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are a number of astro-geodetic stations and gravimetric

geoidal values determined, from mean anomalies over one-

degree units. The orientation parameters may thus be

selected by framing normal equations so that the sum of

the discrepancies between astro-geodetic and gravimetric

values is constrained to be a minimum.

Either of two conditions stated below may be

fulfilled :

(i) condition of coincidence,

(ii) condition of parallelism.

The coincidence condition assumes that the sum of

the squares of the' differences between N and N at

suitable points will be least, physically meaning thereby

that the two surfaces are in an average sense coincident

to each other.

The other condition requires that the two surfaces

to be as closely parallel to each other as possible, rather,

the total non-parallelIsm over the region, numerically

represented by the sum of the departures of their slope

components at various points be constrained to a minimum.

The slope vector is conventionally expressed in terms of

its components £ and *1 in two orthogonal directions. The

parallelism condition should thus be obtained by constr-

aining the quantity £((&£) + (6ti)t)to be a minimum.
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6.+ FORMULATIONS FOR LEAST-SQUARES ORIENTATION

The general datum shift relations for any station

n may be written as follows t

all a12 al3

a2l a22 a23

l3l 32
a

33

cl bi

C2
-

b2

n,o_ C3 0 I b3
1

_

n

(6.1)

The elements a., are complex trigonometrical func-

tions of #n> Xn, 0q, X and can be obtained by rearranging

the orientation formulae (Equations 5.1). The elements of

C are the conventional parameters 6NQ/R, 6£ , 6*iQ resp

ectively. Elements b. are the differences between the gra

vimetric and astrogeodetic geoidal parameters at station n

combined with the effect of change in the dimensions of the

spheroids.

Using the first row of the matrix B for various

stations, coincidence condition equations can be obtained

as follows'

a ll(u)Cl(o) + a12(u)°2(o) + al3(u)C3(o) bKu)>

u = 1,2,... ,U (6.2)

where, U Is the total number of undulation stations.

If U > 3, a normalization will be needed to satisfy the
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least-squares fitting.

Similarly, for the parallelism condition,

a2l(m)Cl(o) + a22(m)C2(o) + a23(m)c3(o) :b2(m),

m = 1,2,...,M (6.3)

and

a3l(p)cl(o) +a32(P)c2(o) +a33(P)C3(o) =Vp)'

p = 1,2,...,P *

are the condition equations where m denotes a meridional

deviation station and p denotes a prime vertical deviation

station, and other symbols have their usual meanings.

A station may be common to both groups. If (M+P) > 3,

normalization will be required to obtain the design matrix.

This Indicates that while coincidence matching will require

at least three computation stations, two common deviation

stations would be sufficient for matching the condition

of parallelism.

6.5 COMPUTATION WITH SELECTED STATIONS

The initial point together with four astro-geodetic

stations were considered in Chapter V for orienting the

system by gravimetric method. The same stations may be

used for the proposed least-squares matching using the

coincidence and parallelism conditions.
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First, the contributions of the void geoid para

meters are computed by linear interpolation from the four

nearmost corner values of Nyy £v, *ly. For the partial

geoid parameters, however,a curvilinear interpolation

technique has been preferred to take care of the regional

changes. The procedure adopted is as follows'

(i) 16 surrounding grid corners around the computation

station (0,X) are considered such that,

<P < 0 < <p < 0 < #

(6.1+)

and X_1 < XQ < X <X^ < X2

(ii) The Lagrange polynomial interpolation yields four

intermediate values In the <P -direction, as

H - -Pd-P)(2-P) 7 (H-p)(l-p)(2-p) ,H. _ _*. .-*- Zi,-1 + 2 %°

+ (1+P)P(2-P) z (l+p)p(l-p) z
2 i?1 6 x':

i = -1,0,1,2 (6-5)

where, p = (0-0Q)/(01-0o)

and Z. . are the data points at grid corners.

(iii) From these again, the interpolated value of Z is

fonnd by the same principle in the X - direction , as

>
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_ -q(I-q)(2-q) „ (1+q) (1-q) (2-q) „

6 2

+ (^q)q(2-q) H _ (l+q)q(l-q) H (6.6)

where, q = (X-Xo)/(X1~Xo)

The final values of N, £, *l are given in Table 6.1.

TABLE 6.1

GRAVIMETRIC PARAMETERS OF COMPUTATIOl STATIONS INTERP

OLATED FROM FIVE-DEGREE AND ONE-DEGREE CORNER VALUES

Point

code

N
gr

metre
^gr
arcsec-

ond

V
arcsec-

ond

0 -59-8 -0.20 3-53

1 -60.8 -2.97 8-58

2 -61.9 -5.81 -0.88

3 -75- + -6.+2 1.0+

k -51.8 -5*kk 1.99
i

Values are referred to GRS 67

A comparison of these values with those presented in

Table 5'.7, chapter V,. reveals that informations of the

order of 1 metre in N and 2" to 3" in I or *1 may be

hidden in the local gravity details .
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The solution for coincidence matching and parall

elism matching involved normalization of matrices of order

5x3 and 10 x 3 respectively.

The results are presented in Table 6.2 in convent

ional form as well as In terms of the shift vector elements.

TABLE 6.2

ORIENTATION PARAMETERS OBTAINED BY IMPOSING LEAST -

SQUARES CONDITIONS AT SELECTED STATIONS

Condition Coincidence Parallelism

6 N metre
0

-60.3+ -8 5k.k8

6
1!

r
"'0

-0.02 -O.76

6
11

f]
0

1.1+3 2.85

xx ppm -3I.50 16.09

Xp ppm 32.9+ 15.02

x^ ppm 117.99 3.95

6.6 PARALLELISM VERSUS COINCIDENCE

It is immediately apparent from -the results obt

ained by the above exercise, that a complete solution of

the orientation problem is not possible by the method of

least-squares parallelism^ the value of 6NQ is improvable,
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In the two-fold process of determining I and *l at the

astrostation, the original information suffers considerably

ox-zing to the following reasons;

(i) In approximating the integration by numerical summ

ation, inaccuracies introduced is greatest from the nearest

gravity unit, with maximum effect on the deviations of the

vertical. In the absence of adequate gravity detail and

finer mesh sizes, the grid corner values thus neither

represent the local fluctuations, nor do they have any

reason to be considered as zonal values.

(ii) Similarly, any interpolation of £ and r\ from

the sharply changing corner values is equally arbitrary.

An alternative scheme of matching the slopes at

grid corners does not seem to yield reliable result either

for the following reasons*

(i) Astro-geodetic stations are not necessarily located

at grid corners thereby rendering interpolated values of £ag

and ti at the corners from limited distributed data, also
ag

arbitrary.

(ii) The high density of astro-geodetic stations req

uired for a representative interpolation is not practicable.

The differences in gravimetric and astro-geodetic

values, in either case mentioned above, contain some
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significant signal data and should not be assumed to be

only the uncorrelated random noise due to various errors.

On the other hand, Informations regarding undulatio

ns are obtained in a similar way for both cases* gravimet

rically, by integration of the amplitudes of the gravity

vector and astro-geodetically by integrating the phase

of the vector. These N and N values are therefore

of comparable order. The smoothness of the geoid heights

In both cases makes them interpolable also. The average

coincidence in a way also brings about the parallelism

closer as a little change of £Q, *1Q will affect the N

heights systematically.

From the overall considerations, therefore the

coincidence matching at grid corners is suggested as a

more optimal choice.

6.7 SHIFT VECTOR FORMULATION FOR COINCIDENCE

MATCHING

The extension of the least-squares technique to

matching of geoid heights at the corner points only, may

now be framed as a general procedure.

Corrections due to the change of spheroid without

affecting the N , I , *l values may be done first, by the
0 o' o' o

procedure detailed below.

Rewriting the transformation relations as given
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in Section 5«9?

C = TX + ED

where, X= T^ (CQ - EqD) (6.7)

= X + X

For no change in geoid parameters at the initial point,

6NQ = 6KQ = 6% = 0,

hence C being a null vector,
o

X = t'c =0
o o

X = -t'e D, (6.8)
00'

and C = TX + ED

For computing only the undulations, the first element of

C will be needed, whose expression turns out to be,

6N

R

2

• • •

(sin0)x1 + (cos0cosX)x2 + (cos0sinX)x,

- dU +d2sin^ (6.9)

In the present case, application of this correc

tion to the Everest geoid will form an 'Arbitrary,. GRS67

Geoid' which may now be compared with the 'Gravimetric

GRS67 Geoid'.

The D vector being now null, the relation is

simply given by,

C = T X (6.10)
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of which only the first element is to be used here, yielding,

-(sin0)x1 + (cos0cosX)x_ + (cos0sinX)xo = —- (6.11)
-1- *- j R

where, 6N is the gravimetric value minus the arbitrary

GRS67 value.

By solving the above sets of equations for X after

usual normalization, one obtains the conventional correct

ion at the origin as,

C0 = TQ X (6.12)

Also, the shift vector X may be directly obtained by,

X = X + X

= x - t'ed (6.13)OO s J

The whole procedure has several advantages, notably,

(i) the intermediate bye-product,i.e.,the'arbitrary

GRS 67 geoid 'may be used in future whenever

revised corrections C are available,
o '

(Ii) the complex trigonometrical relations are elimi

nated,

(iii) for geographical latitude-longitude grids, the

same coefficients will occur for a number of

times and subscripted variables may be used to

effect an efficient computer programme.
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6.8 RESULTS OF COMPUTATION

The grid corners considered for the ie^st-squares
coincidence matching for orientation, were arranged in

three sets as follows (Figure 6.1)

(a) Set A • 15 corners along two orthogonal profiles,

(b) Set B i 8 points near boundaries of Indian region,

(c) Set C s 23 points, combining set A and set B.

The astro-geodetic geoidal heights were obtained

from a contour map (Bhattacharji ,1973) referred to the

International Spheroid. The values are converted to those

on the Everest Spheroid using the correction parameters

given in Expressions 5«1'- of chapter V. The arbitrary GRS67

geoid heights are obtained thereafter, using the relation

expressed in Equation 6.9.

The gravimetric GRS 67 geoid heights were already

obtained superimposing the partial geoid heights computed

in chapter IV, on the void geoid heights calculated at 1°

corners by cubic spline interpolation from the 5° corner

values computed In chapter III. Two profiles of both types

of geoid, the arbitrary GRS 67 'astro-geodeticj and the gra

vimetric GRS 67, are depicted in Figure 6.2.

The solution of Equation 6.11 yields the X vector

from which the orientation vector C and the shift vector
o

X are computed using Equations 6.12 and 6.13 respectively.
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The final results obtained from the three sets are tabul

ated in Table 6.3. The standard errors of various soluti

ons are also indicated therein to illustrate how veil thev

coincide with each other.

TABLE 6.3

SHIFT VECTOR AND ORIENTATION PARAMETERS OBTABTED BY LEAST-

SQUARES COBTCIDENCE

Set

Points compared

x3
Standard' error

6 N

6 K

6 %

o

Tito observations may be made from the results obtained

from various sets i

(1) the solutions do not differ from each other sign

ificantly thus satisfying the internal consistency of the

method..



-167-

(ii) the standard error is minimum for set A, indica

ting that the result of including greater number of stations

nay not be always advisable.

6.9 SUMMARY AND DISCUSSION

This chapter begins with discussion of the various

sources of inaccuracies involved in the absolute orientation

of a geodetic system through a general astro-geodetic sta

tion. The sources of error in the astronomic and geodetic

measurements and computations, alongwith estimates of errors,

are briefly enumerated. Thereafter assuming a gaussian dis

tribution of those errors, a least-squares approach to the

problem is followed.

Following the formulations of the least-squares

matching of

(i) geoid undulations, and

(ii) slopes of the astrogeodetic and gravimetric geoids,

both the methods have been apolied to compute the orienta

tion parameters, using some selected astrogeodetic stations.

After a comparative study, finally the coincidence approach

has been adopted in a general way. Computer-oriented for

mulae are developed and three consistent sets of orienta

tion parameters are obtained, which may be compared with

the sets obtained through alternative methods.

The virtue of a least-square solution proposed and
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tried in this study should not however be overstressed, as

it only partially circumvents the want of precisely deter

mined gravimetric and astro-geodetic data. For, a large

number of observations alone may not produce reliable resu

lts in all cases as the variance may become even greater

than the original looseness of the set of observations,

and an additional station may be an outlier unduly affec

ting the system as a whole.

Furthermore, the mathematical expression contains

another term NQ which has not been taken into account, as

it does not appear in the Stokesian geoid height, while :

the astro-geodetic geoid is not considered to be precise

enough to yield this value accurately. The term may be

visualized as absorbed in other coefficients or neglected

altogether, similar to the term representing the geoid-

cogeoid separation.

The present determination must therefore be regar

ded only a set of secondary check values, whilst a truly

representative picture must await more precise knowledge

of the gravity field and its accurate reduction for purpose

es of orientation. Revision of the astro-geodetic geoid

with greater detail and sharpening of the tools for trea

ting and handling such data in view of future refinements

would also render this escercise more realistic.
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CHAPTER VII

ABSOLUTS ORIENTATION BY COMPARISON OF ASTRO-GEODETIC AND

SATELLITE-DERIVED GEOIDS

7.1 GENERAL

Although the classical gravimetric method is the

main approach followed in this work for determining the

absolute orientation parameters of the Indian Geodetic

System, an attempt has also been made to determine these

using the astro-geodetic deviations of the vertical and

the satellite-derived geopotential coefficients.

The astro-geodetic geoid based on the measured

deviations of the vertical gives a reasonably detailed

picture of the mean sea level surface, its fine structure

depending upon the distribution of the deviation stations

and the method of integration used. However, this geoid -

suffers from a major defect in that it is only relative,

the extent of non-geocentricity depending upon the arbit

rariness of the orientation parameters chosen for the

initial station.

Recent satellite data have helped define a gene

ralised shape of the geoid expressed in terms of a limi

ted number of geopotential coefficients. This surface,
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whilst being unrepresentative of local features, is positi

oned and oriented in space in an absolute sense.

The satellite-derived geoid may be compared with

the astro-geodetic gooid in a least-squares sense. Before

this is done however, the latter must be rendered compara

ble to the former and both these reduced to a common sph

eroid. The three factors needed to accomplish this are

the elements of the shift vector introduced earlier in

this work, or the corresponding conventional quantities,

viz., the radial translational component and the two tilt

components, which incidentally are the parameters sought

for absolute orientation.

7.2 THE INDIAN ASTRO-GEODETIC GEOID

The Indian astro-geodetic geoid (Bhattacharji,l973)

was obtained using the well-known Helmert's integration

(Helmort,1880). Accordingly, a series of loops-of geoidal

profiles are determined b}r direct integration of the avai

lable deviations of the vertical at appropriate intervals,

in the form

i

N. = N. , - J" (£cosa + nsina) ds (7-D
1 1"x i-1

where,Nj is the geoidal height of the ith station,

£,*! are respectively the deviation components in

the meridional and the prime vertical planes, and
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a is the azimuth of the profile connecting the

two stations,the (i-l)th and the ith.

However, owing to the ideal assumptions implicit

in the mathematical formulation and defects in the data,

the loop closures are found to be in appreciable error

which are subsequently adjusted usually by some sort of

linear distribution of errors along the loops. Thereafter,

the geoidal heights are linearly interpolated at points

inside the loops and a map of geoidal height contours is

drawn with reference to the adopted spheroid.

A variation of this method is to interpolate devi

ations of the vertical at geographic grid intersections

and compute the geoidal profiles along this grid lines,

finally adjusting the heights so that the closure errors

along the loops reduce to zero.

7.3 DEFECTS IN HELMERT'S INTEGRATION METHOD

The evaluation of the geoid by Helmert's method,

has amongst others, the following limitations!

(a) both components of the deviation, i.e., in respect

of £ as well as i\ , must be available at a station meri

dional deviation values alone are not usable unless the

station perfectly lie along a North-South profile,

(b) station interval should be small so that variations
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between adjacent stations may be assumed to be linear,

(c) gaps between profiles are not represented with

equal weightage, being oversmoothened compared to the

profiles.

The alternative method, using interpolation at

grid corners, does not provide a reliable geoid either, as

the observed deviations of the vertical are truncated and

reasonable interpolations are not possible -unless the •_-;.••-•':,

station distribution is dense enough around the grids.

In the case of the Indian geoid, the defects are

quite pronounced as there exist only about 500 stations in

this vast subcontinent at which values of both deviation

components are available, and these too, not uniformly

distributed. 'Only a few dominant profiles can thus be

obtained providing about If or 5 loops of fairly large

size with larger data gaps within them.

7.k THE SURFACE-PITTING TECHNIQUE

Vaniceck and Merry (1973) have proposed a polynom

ial surface-fitting technique in three-dimensions amenable

to automatic machine computation that may replace Helmert>s

method. This technique has been used here to compute geoid

heights in the Indian region which are, in turn, compared

with existing values.
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The equation of the surface used in the present

n max n
N , „ - „ ,,n-m „m"1=1=2 2 CnmXn-mYm (7.2)
K n=0 m=0

where,
X = <P

Y = Xcos0,

and. the latitudes and longitudes are expressed in radians.

The original scheme has been hereby slightly modified

(a) to enable a better computer-oriented arrangement

of the power series,

(b) to make all variables dimensionless,

(c) to eliminate the coordinates of the initial point

from the expressions of X and Y, so as to avoid underflow

in computations which could have occured if as initially

X = (0-0Q)R

Y a (X-X )Rcos0,

specially when a station shares the same meridian or para

llel with the initial point.

Another advantage of the modified expressions of

X and Y, specially applicable to India because of its loc

ation in the North-Eastern part of the globe, stems from

the positive values of both X and Y thereby avoiding negative
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bases in exponentiation.

Recalling that

6X = 60 , and

6Y = 6X cos0,

and differentiating expression 7.2 with respect to 0 and X,

1 _ r _ v^^n /» „\vn-m-Lrm-C = ZZCnmOi-iiOX11-^^111 ,
o X

i. 3 -f, = SZcm Xn~m(m)Ym-1Y nm

(7.3)

Expressions 7*3 provide the conditions for obtain

ing the unknowns Cj^ by framing the equations, in a matrix

form, as

AC = B (7.If)

where, A is the design matrix, whose elements are functi

ons of position of the deviation station,

C is the coefficient vector, to be determined from

the astrogeodetic data,

B is the deviation vector, comprising the compon

ents of the deviations of the vertical in radians

with reversed sign.
1

Each measurement of either £ or n will provide

one equation which offers an added advantage over Helmert>s

method. Both components of ieviation at a station provide
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two equations.

The solution, after usual normalization, is

C = (A'A )"1 (A'B) (7*5)

It is noted that the coefficient CQ0 cannot be determined

by the least-squares solution, as it does not appear in

Equations 7.3. For evaluating CQ0, the known geoid height

N0 at the initial point will be needed, whence

N0 n*axn »-m m , ^
Coo = f - S S C^Xo Y™ (7.6)

H n=l m=0

where,

Xo - *o >

Y = X cos0
000

The coefficients now being all known, the geoid

height at any point may be computed by evaluating expre

ssions 7- 2.

7.5 OPTIMUM ORDER OF FITTED SURFACE

A high-order surface might at first appear attrac

ts
tive^it contains larger number of coefficients, but while

computing intermediate values of the geoid heights, sudd

en ripples may occur due to involvement of shortwave comp

onents that may have high amplitude.

On the other hand, a low-order surface will be too
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smooth with a high standard error. The criteria of a logi

cal choice are well-discussed by statisticians, and the

unbiased variance may act as a quantitative measure.-;:)

controlled by the degree of freedom of the oftGuation-

unknown compatibility.

The unbiased variance is defined as

b'b - C(A'B)v = i (7.7)
nun-neq

where,

n^ = number of unknowns related to the order of

the surface,

n- number of equations equal to the number of

deviation comoonents used.

The product B B is computed once for all, while

reading the data cards, as actually,

b'b = S (K2 + n2) (7.8)

The number of unknowns excluding C , depends on

the order of the surface, nor^ , by the relation

nun = nord (nord + 3)/2 , . (7-9)

the value of nor(j being 1 for a plane surface.

As the number of unknowns cannot exceed the num

ber of equations-, the highest order of surface that can
• 1

be incorporated, turns out to be (Equation 7»9),
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nord = t< ^9 +8neq -3V2} (7-10)

where the parantheses {"'•} signifies that nord is the int

eger value of the expression enclosed.

Beginning thus, with a higher-order surface dicta

ted by Equation 7*10 for calculating variances, the order

can be progressively decreased and variances compared,

and the order corresponding to the minimum v adopted for

a final fitting.

7.6 DIVERSION OF THE NORMALIZED MATRICES

The technique for obtaining the optimum order of

surface, as outlined above, involves the inversion of large

matrices quite a few times, thereby requiring long computer

time and large storage. This difficulty has been circumven

ted in the following manners

(a) First, normalization of the original equations is

carried out up to the highest order and by framing A A and

a'b directly, instead of A. The data need not be stored

in this procedure. The normalized matrix being symmetric,

only the upper triangular part need be stored in a single-

subscripted array.

(b) The least-squares matrix is proved to be a positive

definite one and hence inversion by factorization is much

more convenient. The factorization into triangular matrices
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is done by Cholesky's square root method, using the follo

wing recurrence relation,

A'A = D = R'R (7.11)

where, j-1

djk - ±lx rij rik
rjk s ; , 3 <k

The elements r are stored in the same location as d to

minimize core space requirements.

(c) Inversion of R is now done using another recurrence

relation, i.e.,

k

" E rii rik

rik = T ' < (7-12)
ii

and r. . = -=f- ,
11 7» . .

Xll

r denoting the elements of R

It is found that truncation of the original

normalized matrix D down to any size and subsequent inve

rsion of the factorized triangular matrix leads to exactly

the same elements, as those obtained from the direct tru

ncation of the matrix R~ to the same size. Therefore,

this computation need be executed only once with the lar

gest sized matrix. I:Jhile redumng the order of surface, the

elements r of the shortsized matrix, truncated according
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to the n value, need be used.

(d) The coefficients Cnm and the variance v for any

order of surface may fee directly generated by,

C= (R~1)(R-1)' (A'B) &'**'
and the expression 7.7,

where the number of elements will be truncated accordingly.

7.7 RESULTS OBTAINED BY SURFACE-FITTING

For the sake of comparison with the published geoid

map, the deviations of the vertical reduced to the Inter

national Spheroid were used. A preliminary study (Ketaurai,

1978) on testing of polynomial surfaces by fitting them

piecewise within short blocks of ^ x k size proved un

satisfactory due to insufficient data and errors in extra

polation . A single surface was therefore fitted for the

whole Indian region.

366 stations giving both the deviation components,

and 387 stations giving only the meridional component were

considered, rejecting a number of astrogeodetic stations

to avoid clustering of data points. The order of the poly

nomial surface was reduced from 10 to 3, and the seventh-

order surface was found to be optimum.

Table 7*1 presents the standard errors yV in
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respect of various surfaces. The highest order surface

could not be adopted for want of adequate storage and time

on the available computer IBM 1620. Also, it was felt

that although a detailed geoid would necessitate a higher

order surface, the present objective was to obtain only

smoothened values, similar to the smooth geoid derived

from satellite data-

TABLE 7.1

STANDARD ERRORS OF GEOID SURFACES OF VARIOUS ORDERS

Order of

Surface
10 9 8 7 6 5 k 3

Number of

Coefficients
65 5k Mi 35 27 20 lk 9

Standard

error
13.9 11.8 ll.9 7.9 10.1 10.9 12.1 12.8

(arcsecond)

Figure 7*1 shows two profiles of the geoid thus

obtained alongwith the existing profiles for purposes of

comparison. Sample statistics of height comparison of a

few points are presented in Table 7.2.
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TABLE 7.2

SAMPLE STATISTICS OF COMPARISON OF ASTRO-GEODETIC GEOIDS

Maximum

Height

Minimum

Height

Average
Height

7.8

Existing
Geoid

Surface-fitted
Geoid

12.9 metre 12.1 metre

2.0 metre -2.1 metre

6.8 metre 5*3 metre

Number of points
compared = 23

Maximum = 10.k m
Difference

Minimum = 0.1 m

Difference

RMS
Difference

3.5 m

SATELLITE-DERIVED GEOPOTENTIAL COEFFICIENTS

The disturbing potential of the earth being a

harmonic function, it can be expressed as a series of sphe

rical harmonic terms. From Bruns' formula, the geoid undu

lation function finally takes the form,

U. = N/R

°o n

= (1 - S E (Cnm cosmX + Snm sinmX) Pnm )
n=2 m=0

00

"CI" 2 J^P^ )•
n=l

(7*lk)

The quantities Cnm, Snm are the geopotential coe

fficients computed by analyzing the satellite orbits, and

the coefficients J are related to the reference spheroid
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adopted. The summation involves the second-order and

higher terms only, as the zero and first-order terms vanish

owing to the equality of mass, the geocentricity and coaxi-

ality of the system with that of the actual earth. The

geopotential coefficients yielded by satellites are being

continuously refined from tine to time to progressively

higher degrees and orders as new satellites provide addit

ional informations.

7.9 RECURSION OF THE LONGITUDE AND LATITUDE TERMS

(a) For computation of the longitude terms, the follo

wing recursion relations have been used in the present work?

sinmX = sin(m-l)X C^ + cos(m-l)X S, ,

(7-15)

COsmX = cos(m-l)X C^ - sin(m-l)X S,

with starting elements,

C, = cosX,

S-. = s InX

This simple recursion avoids the repetitive use

of the irrational factor tt,and the accuracy is not affe

cted if C^, S^ are first computed in double precision.

(b) The latitude term Pm in the geopotential series

is the fully normalized Associated Legendre function of

degree n and order m, the general expression being,



-I'SJt-

^nm

/2(2n+l) |n-m (c)m j (_1}k |2n-2k (s)n-m-2k

t_£^ (2)u k=o ^; \—£~ 1n.nngh:

where, (7.16)

c = cos^

s = sin0

and j = { SzS. ]?

Here 0 is the geocentric latitude of a point,

and the paranthesis { } signifies the largest integer

value of the quantity within it.

When m = 0, the zonal harmonics are the Legendre's

polynomials,

Pn = </2n +1 Pn

where,

Pn =-^-n I (-Dk \2*L=J*. (s^ (7.17)
(2)I1 k_° Ji£ l&* In-2k

In the spheropotential series, only the even-order

polynomials possessing equatorial symmetry occur.

(c) The expressions in the Legendre function contains

long series and factorials. A continuous series summation

on a computer is likely to affect the precision of the

final output due to round-off errors. Further, the fac

torial being a long product of numbers, gives rise to over

flow. Recursion formulae are therefore resorted to for

evaluation of these polynomial's and functions.
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(i) For the zonal harmonics, the following formula is

used,

P _ P (2n-l)sPn_! - (n-l)Pn_2
pn - pn,o ILiL__-_±L£ (7.18)

n

and Pn = / 2n+l Pn ?

taking initially.

Pl ' s
p2 -o.5(3s2-D

(Ii) In the case of Associated Legendre functions, how

ever, the normalizing factor under the radical sign should

not be isolated as the conventional Pnm values are highly

divergent for higher degrees and orders. Two types of re

cursions may be used,

(1) order-wise recurrence, keeping the degree n

unchanged flBBBBBSBSS (Gaposchicin,1973) 5

(2) degree-wise recurrence, keeping the order m

unchanged (Hopkins,1973)•

Considering the efficiencies of the computer as

regards the storage and machine time, the following recu

rsions were found to be optimum*

(1) diagonal recursion;

Pn,n =e/l^ Pn-l,n-l C7.19)
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(2) prediagonal recursion;

Pn,n-1 - tv/in"" Pn,n (7-20)

(3) row recursion:

Pn,m-2

(2B-2)t PPtaHi -•(«»!)(n-HQ Pn>m

v(n-m+2) (n+m-1)

where, t = tan^ = s/c ,

The relation between the geocentric latitude and

the geodetic latitude is,

tan^ = (1-f)2 tan0 (7.22)

7.1C RESULT OBTAINED USING SATELLITE DATA

The recursion formulae for harmonics are first

tested numerically. As a test example, the attraction part

of the normal gravity was expanded in harmonic series (Ray,

1978a) evaluated in terms of GRS 67 adding the -rotation term

and compared, with the normal formula for Ysn. The results
0/

are reported in Appendix G.

Thereafter the GEM 10 satellite coefficients

(Lerch, 1978) completed upto the 22nd degree and order

with a number of additional terms upto 30th degree, were

made use of. For the spheropotential coefficients, the
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normalized values were generated from conventional Jp value

using the relation

(- l)n.3.(e2)n (1 -n + 5nJ2/e2 )j^= 1 . (7#23)
(2n + l)(2n + 3) An + 1

where, e2 = f(2-f)

Two profiles of the GEM 10 geoid obtained are shown

in Fig 7*2. Similar profiles are also drawn for a geoid

computed by the Smithsonian Astrophysical Observatory

^Gaposchkin, 1973) termed as the SAO III'geoid.

While the general trend of the geoids compare well,

the other differences observed between the two are most

likely to be for the following three reasons,

(a) difference of equatorial radius of the reference

ellipsoids,

(b) difference of the flattening values,

(c) addition and updating of geopotential coefficients.

Table 7.3 indicates a sample statistics of the

satellite-derived geoid and the gravimetric geoid obtained

from mean free-air anomalies over one-degree areal elements.A

rrns difference of 8 metres is readily detectable, the

gravimetric geoid heights being numerically greater than

those of the satellite geoid. Information in respect of
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an average height of about 8 metres still therefore seems

to be hidden In the higher order coefficients yet to be

evaluated from surface gravity and near-earth satellites.

TABLE 7.3

SAMPLE STATISTICS OF COMPARISON OF SATELLITE - DERIVED

AND GRAVIMETRIC GEOID

Maximum -83.I3 metre -81.kS metre
value j

Minimum J-39.78 metre -5+9.17 metre
value i

Mean

Satellite-
I derived

Gravimetric

-56.59 metre -62.35 metre

Number of points
compared = 23

Maximum

difference a 18.38 m

Minimum

difference = 0.kl m

difference 8.07 m

The maximum difference being double this amount,

and the minimum being nearer to zero, the residual geoid

information is likely to cover a quarter of a wave in the

profile span of 15°, corresponding to the 6th degree zonal

harmonic.

However, since detailed investigations in this

regard were beyond the scope of this work ,•' only some

broad comments may be made, notably,

(i) higher degree geopotential coefficients will be

required to make the satellite-derived geoid comparable
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to the gravimetric geoid,

(ii) for purposes of orientation through comparison,

the astro-geodetic geoid should be truncated to be equiv

alent to the satellite-derived geoid.

7.11 ORIENTATION PARAMETER BY ASTRO-SATELLITE

MATCHING

The astro-geodetic geoid obtained upon the seventh-

order surface fitting is in terms of the International

Spheroid. It must be reduced to the 'Arbitral GRS 67 geoid '

(defined in chapter VI) before comparison. A direct conve

rsion was effected by applying the following corrections °

(I) the orientation corrections were applied to refer

the geoid to the orientation of Everest Spheroid, at the

origin from that of the International Spheroid, i.e.

6 N = o.O - 9.5 m
o

6-£0 a -c"29 - 2".42 (7*2k)

£ ij a 2".89 - 3".17

(ii) the dimensions of the reference surface \reve changed

from the International Spheroid to the GRS 67 spheroid,

using the relations ;

6a = 6378160 - 6378388 m,
(7.25)

6f = 1/298.24717 - 1/297.0
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The same points used for least-squares coincidence match

ing (section 6.8) were considered in the present case also.

(Figure 6.1). Equation 6.11 of chapter VI was also used,as

where,

-(sin0) x-, + (cos^cos^-) x„ + (cos^sinX)
h

N'» iNisat "*"* ""ag

derived and astro-geodetic geoids respectively. The final

results are tabulated in Table 7.k from which it can be seen

that the solutions in this case are also mutually consistent

as those obtained in the previous chapter with minimum stan

dard error appearing in the set A.

Table 7a

shift vector and orientation parameters obtained using

astro-satellite geoid matching

Esat - Hag
R

(7.26)

and N„_ are the heights of the satellite

Set

Points Comp ared
A

15

B

8

c

23

x, ppm -5* 18 -5.90 -5.61

Xp ppm -7.99 -6.56 -7.12

x., ppm -9.83 -10.75 -10.31

Standard

error m
3.1 3*k 3.3

6 N m
0

-52.3 -53*8 -52.8

6 ?o m -1.93 -2.11 -2.03

6 \ -1.18 -0.85 -0.98
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7*12 SUIJMARY AND DISCUSSION

Beginning with a brief description of the princi

ples behind the astro-geodetic and satellite-derived geoid-

matcliing for absolute orientation, the present status of

the Indian astrogeodetic geoid has been discussed. In

view of the practical limitations of Helmert's integration

method, the surface-fitting technique has been used. Crit

eria for fixing an optimum order of the surface has been

discussed and the unbiased variance has been suggested as

the determining factor. The solution algorithm of the high-

order polynomial surface-fitting was obtained by inversion

of the normal matrix which has been aptly simplified for

efficient evaluation on a mediumsized computer. The resu

lting values were then compared with existing values.

The next part describes the harmonic series expan

sion of the geoidal undulation using geopotential coeffic

ients. Recursion relations have been judiciously chosen to

economize automatic computations. Finally, the geoid -

spheroid separation with GEM 10 coefficients were computed

at a few points and compared with another satellite-derived

geoid, SAO III, and the one-degree mean free-air geoid

obtained earlier in this work.

After reducing the surface-fitted astro-geodetic

geoid to the GRS 67 s^/stem keeping its orientation the

same as that of the original Everest Spheroid, it was then



-193-

compared with the GEM 10 geoid to arrive at values of the

orientation parameters. Three sets of points were chosen

for the purpose, the first consisting of a couple of int

ersecting profiles, the second consisting of a few widely

spread points and the third, a combination of these two.

The surface-fitting technique could prove better

than Helmert's method, with its three-dimensional appr

oach and fully automated, formulation. Further, a number

of low-order geoidal surfaces constrained by the condi

tions of continuity are expected to be more representative

than a single surface of very high order. This will avoid

sj^stematic errors as distances from the initial point

increase. A procedure equivalent to forming loops in the

Helmert's method may well be adopted with a provision for

distributing the closure error, the irregular lines being

replaced by regular grids.

The comparison of the satellite-derived geoid with

the gravimetric one showed some systematic differences,

probably due to missing terms in the harmonic series.

Assuming that a change in oN will produce equal changes

everywhere and that 1" of extra deviation of the vertical

at the origin will produce an undulation of 0.5 metre per

1 of horizontal extent in the appropriate direction, it

is estimated that an additional undulation of k metre in
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N and deviations of about l" each in £ and n are nece-
O ^0 0

ssary to minimize the discrepancy.

The gravimetric method still being theoretically

the best for obtaining the parameters of absolute orienta

tion, and significant gaps still existing in the informa

tion content of the satellite-derived geoids,therefore,

further data would have to be awaited before attempting

to obtain a precise set of orientation parameters by matc

hing the astro-geodetic and satellite derived geoids.
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CHAPTER VIII

ANALYSIS OF RESULTS AND CONCLUSION ,;

8.1 GENERAL

As explained earlier, the basic objective of the

present work was to obtain the parameters of absolute ori

entation of the Indian Geodetic System. This was a long-

awaited job required to relate the local system to an

internationally accepted global framework. Originally the

orientation parameters of the Initial point were chosen

on a relative basis in terms of the Everest Spheroid. Later,

these were expressed in terms of the International Spheroid

by Least-squares fitting but purely on local considerations.

It has therefore been felt that the time is ripe for comp

uting the orientation vector at the Initial point of the

Indian Geodetic System in terms of the GRS 67 spheroid

which is gradually replacing all local reference systems.

The main basis of this exercise attempted here

is gravimetric. For, despite the advent of sophisticated

techniques such as satellite altlmetry, gravimetric methods

still continue to be the most reliable. Nor is the use of

satellite stations (Chatterjee, 1973) quite satisfactory

in the Indian context, there being as yet only a single
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camera station in existence in the entire country, and

other techniques such as laser and floppier tracking are

yet to be adopted for efficient space triangulation for

want of adequate density of tracking stations (Dixit,1976)

The requisite computer software for this esercise

has been carefully developed to match future refinements

in data acquisition and improvement in data distribution.

These formulations have been couched in a simple form

exploiting various mathematical manipulations to conserve

computer time and memory storage.

The results of this exercise comprise a set of

parameters of absolute orientation at the initial point

of the Indian geodetic System alongwith a pictorial repre

sentation of the Indian geoid which appeared as a bye-

product of this investigation.

8.2 SUMMARY OF VARIOUS RESULTS

In the preceeding chapters, three different meth

ods were discussed and used for obtaining sets of orien

tation parameters. These were:

(a) gravimetric determination of the geoid-spheroid

separation and deviations of the plumb-line at astro

geodetic stations,

(b) a least-squares solution using undulations of
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the regional gravimetric geoid and those of the astro

geodetic geoid, and

•(c) a similar comparison of a smoothened astro -

geodetic geoid with the regional satellite- derived geoid

over the Indian region.

As already stated, the first of. these constitutes

the central Idea behind the exercise for orientation, which

can further be classified into two categories :

(i) gravimetric orientation at the initial point itself,

(ii) orientation through any other astro-geodetic

station.

The latter Wo were also used, as p?:.ausible altern

atives where want of adequate gravity data and comparable

astro-geodetic accuracy precluded a serious consideration

of the former.

Table 8.1 summarizes the final results obtained

from these three methods in respect of the following para

meters,

(i) the invariant shift vector,

(ii) the conventional correction parameters at the

origin, namely &N , b£ , 6*1

Whilst the elements of the invariant shift vector

have been expressed in non-dimensional units, as parts per

million, the orientation parameters have been tabulated in
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TABLE 8.1

COMPONENTS AND ORIENTATION PARAMETERS OBTAINED
BY VARIOUS METHODS

Method,
code

;

Station
code ppm

x2
ppm

x

X3
ppm

6N
0

metres

6 £so
arcsec

0

arcsec

a 0 l -27* 2k 38.09 115.0k ' -59.0 +0.65 +2.60

b 1 -29.23 3+-28 Ilk. k2 -62.1 +0.15 +1.86

b 2 **k0.l7 Ik. 71 110.26 -56.7 -2.21+ +2.13
b 3 -23.^6 36.^0 115.86 -66.1 +I.lf0 +2. 25

b k -28.08 33-36 115.28 -61.3 +0.1+3 +1.61+

c 23 -31.37 31.38 Hk.k6 -59.9 -0.30 +1.27

d 23 -39-5 20.2 Ilk.k2 -52.3 -2.03 -O.98

Method Codes

a : Gravimetric computation at the initial point

b s Gravimetric computation at any other astro

geodetic station

c ! Least-squares coincidence solution

d ! Astro-satellite geoid-matching

Station Codes t

0 : The initial point Kalianpur

1 i The Northern astro-geodetic station

2 * The Eastern astro-geodetic station

3 s The Southern astro-geodetic station

k * The Western astro-geodetic station

23 1 All 23 points of set C (Figure 6.1)
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conventional units. The deviations of the vertical

have been expressed as customary in arcsecond units for

ease in analysis and interpretation, although the mic

ro degree unit seems to be consistent with the SI units
and the decimal degree divisions discussed earlier.

For the two least-squares conjunctive methods,

only the solutions corresponding to the set C, taking
23 points into account, have been cited here. The sta
ndard error is not the least for this set but the

results are nearer the average of those obtained for

all sets.

8.3 ANALYSIS OF VARIOUS RESULTS

Out of the three methods, the classical gravi

metric method is still by far the most preferable and

yields reliable results provided acertain precision in
respect of the input data are duly maintained. The
determination based on the initial point is most reliable,
as the quality and distribution of data conform to acc

eptable standards. Moreover, the anomalies being 'modi
fied' by terrain corrections, the theoretical require
ment of obtaining the geoid rather than the co-geoid

is fulfilled, and the 'code a' results are therefore
straightway taken to be the best set of geocentric
orientation parameters obtained from the present exercise.
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Code b' results are obtained using the same princ
iple, but applied to various astro-geodetic stations. The

values are found to differ from each other as well as

from the 'code a' results. The defects that contribute
to the discrepancies are already discussed in Section 5.15.
The 6Nq value from station 3, and 6^ value obtained
from station 2 are very much discrepant whilst all other

results are in mutually good agreement with each other .

The extrapolation of anomalies over the smaller areal ele

ments was not attempted as the truncated covariance predic

tion (neglecting negative covariance) involving only a few

source values at one side, was suspected to produce erron

eous results. The inner limits were inevitably restricted,

thereby affecting the approximation of numerical summation,
which was, in turn, reflected in the results obtained.

The mean value of 6NQ, excluding station 3, and

that of 6£q, excluding station 2 provide a satisfactory

check on 'code a' values. The mean 6*1 is however about
n

0.5 smaller. Whilst absence of adequate information pre

cludes exploration of various causes, increase of data is

likely to yield more encouraging results in the future.

Preliminary results from these stations were of prime

importance, but the speed of execution was a restrictive

factor.
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The 'code c' results show marked variations from

'code a' values in respect of the slope components, whereas

the geoid-spheroid separation values are comparable. The

astro-geodetic geoid heights were estimated from a smooth

ened map, which has possibly given rise to smaller values

of &K0* 6^0» The estimates in this case mainly depend

upon the following ?

(i) fineness of discretization of the Stokes* integral

especially in the immediate neighbourhood of the computa

tion point where the mesh size should be smaller, even if

the 1 mean anomaly values are only used in the smaller

elements,

(ii) distribution of the astro-geodetic stations lead

ing to a small loop closure.

The orientation parameters obtained from the set

'code d 'are significantly different from those obtained

from the set 'code a'. A discrepancy of over 6m in 6N

and about 3" each in 6^,6^ indicate that the princi

ple in the present state is not very encouraging for the

purpose of absolute orientation, the main reasons being:

(i) truncation of the geopotential function,

(ii) model errors in the surface-fitting technique,

(iii) inclusion of comparatively fewer points for matching.

Marsh and Vincent (197k) reported discrepancies of
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over 5 metres between the gravimetric and the satellite -

derived geoid, and tilts of more than 1.5 arcseconds bet

ween them. Further investigation is therefore necessary

in respect of this method, before using it for purpose of

absolute orientation.

8.If COMPARISON OF LINEAR SHIFTS OF SPHEROID CENTRES

A little reflection shows that the shift vector

is analogous to the linear shift components in rectangular

Cartesian coordinates used by space research organizations,

the relation being

xx = -AZ/R

x2 = AVR (8.1)

x0 = AY/R

The transformation constants to reduce the Indian

Everest System to the various World Geodetic Systems, have

differed according to different dimensions adopted for the

matched spheroids, e.g., the Modified Mercury, the SAO III,

the WGS 72 etc.(RamarLathan et silJL'97^.Theoretically, tHese"

values" she-old not differ if all spheroids were absolutely

geocentric. However, these are within the limits of pre

cision by satellites, even when only a single station is

available for space triangulation in the whole country.

The ranges and the mean values in respect of a few recent

geodetic systems which nearly conform to the GRS 67
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in dimensions, are presented in Table 8.2

TABLE 8.2

SHIFT COMPONENTS DERIVED FROM ARTIFICIAL SATELLITES

Minimum Maximum Mean

xl ppm -ko.5 -kk.9 -kk.O

Z2 ppm 30*5 36.6 33-6

*3
ppm 106. k 108.8 IO7.6

For a comparative analysis of various results, the

linear scalar magnitude of the shift vector,

r = Rjx| = R/ x2 + x2 + x2 (Q^2)

has been calculated for each set, and presented in Table 8.3.

A striking feature revealed by this exercise is

that the astro- satellite fitting practically yields the

same values of r as obtained by other methods despite large

differences in individual elements. The hypothetical centre

of the satellite-derived geoid is thus found to be displaced

from that of the local spheroid by the same amount as the

latter from the earth's centre. But, a systematic tilt

error appears to creep in the satellite-derivedgeoid, shi

fting the centre along an arc.

The comparative values of r also quantitatively
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indicate the order of reliability of the various methods.

Whilst the gravimetric determination at the initial point
is the most accurate, other methods including even the

astro-satellite geoid-matching, can also be considered, to

be reasonably accurate yielding results better than atleast

the existing satellite solution whose positional inaccuracy
is about 20 metres.

TABLE 8.3

LINEAR SHIFT OF CENTRE OBTAINED BY VARIOUS METHODS

Method Station
code code

c

d

e

Mean of 1

;2,3,+

23

I 23
! mean

3W71 113.96 783 results
from

artific
31.38 lllf.lf6 782 ial

satelli
20.2 ll*f.if2 781 jtes

33.6 IO7.6 771 !
i
L

•31.37

•39.5

•kh.O

8.5 ESTIMATE OF ACCURACY

The accuracy of the computed gravimetric quantities

can be estimated on the basis of the quality and. distri

bution of gravity data actually used. Many studies of this

nature have been made and nearly as many solutions advanced.
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The results of these analyses point out to errors of +5m

to +28m in the geoid height and of +0". 2 to + 1".6 in the

deviation components (Szabo,1962).

Hirvonen (1956) estimated the errors to be as high

as 10 metres In N and 0B.85 in £ or t*. The high values of

these overall estimates were mainly due to the lack of data

in the Southern hemisphere. Kaula (1957) statistically

computed the inaccuracies to be of the order of 5 metres
n

m N and 1 in the deviation, assuming gravity data to be

available in the surrounding zone only. Henrikson and

Nash (1970) cited an error of 0M. 55 in £ or *l for an over

all inaccuracy of 5 mgal in the gravity data. Obenson

(1973) presented formulations suitable for machine -

evaluation and sample calculations, the resulting errors

being If.5 metres and 0.6 arcsecond in undulation and devi

ation respectively.

However, all these estimates are of global nature

and a little worse as compared with local determinations

on land derived from closely distributed data. Rice(1952)

reported on error of 0." 1 in £ or *l with the circle-ring

method upto zone 51* A lesser amount was estimated in

Section 5.k of chapter V in this thesis. Mather (1970)

while orienting the Australian Geodetic Datum, assessed the

error to be 0". 2 in £ and *l and 0.2 metre in N, excluding
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the zero-degree term which was computed as,

-RE{Ag]

Nd = Q (8-3)
where, E{Ag} is the global mean of gravity anomalies. The

num-ericalvalue of Ii'0 for GRS 67 is -2.8 metres.

The gravimetric results computed at the initial

point itself constitute the best set of geocentric orient

ation parameters. The astronomic observations here contain

practically no errors. The origin too is obviously free of

geodetic errors. The gravity data for the exterior region,

up to one-degree anomalies are most recent and updated up

to the year 1978, the inaccuracies diminishing progressive

ly. The surrounding region is also covered with well-

distributed data corrected for the terrain- effect, thus

providing nearly perfect simulation of the Stokesian model.

The existing flat topography around the initial point also

renders the geoid-cogeoid departure negligible. The compa

rison with the circle-ring method, provides a further check

on the numerical algorithm, and the overall error is not

likely to exceed 0 ". 2.

The difference between the mean results obtained

from the set 'code b' and those from the set 'code a'

are of the order of 2.5m in 6n , 0".7 in 6 £ , 0." 6 in

6rl0. These bounds, however, include all the errors
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explained earlier and should not be taken to underestimate

the standard, of accuracy actually achieved in the final

determination. Similarly, the 'code c'and 'code d< results

are not to be considered for error estimation as they belong

to the different data sources and rest on methodologies

which need to be further investigated.

In 6No, the zero-order term has been automatically

excluded from the gravimetric determination. A major part

of the discrepancies of various results in respect of this

parameter is attributed to the incorrect assessment of

astro-geodetic geoid heights which at places may be out

by 1 metre or more.

At the initial point, therefore, an estimate of

0.5 metre inaccuracy In 6No and 0." If each in 6£ and

6 i}Q may be safely regarded as constituting the upper limits.

8.6 CORRECTIONS TO ASTRO-GEODETIC GEOID AND
BASE LINES

The astro-geodetic geoid height at a place needs

a correction 6N for conversion to geocentric geoid heighfc**

The numerical formula for the recommended shift vector

and the change of dimensions of the spheroids being given

hy

txll = (173*5 + 181.if sin0)sin0

+(2k2.7oosX + 732.9sinA)cos0 - 861.0 metres

(8.10
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The same formula yields the correction to be appl

ied to the geometrical or spheroidal height from local to
absolute terms.

Table Q.k presents the correction 6N at 5° grid

corners covering the Indian region, and Figure 8.1 depicts the

the same in contoured form.

Consequent upon absolute orientation and change of

spheroid, base lines of the triangulation network also need

some corrections. Instead of reducing the base-line to the

local spheroid, a further reduction should be made before

changing over to another geodetic system, this correction
being

6b = ~ 6N/K (8.5)

with the sign convention used so far, and 6b being positive

for addition. Accordingly, the correction formula becomes

6b = -(27-2if + 28.If7 sin0)sli#

-(38.09cosX + ll5.O>+sinMcos0 (8.6)

+ I35.l*f parts per million

The numerical value of this correction ranges from

about 10 mm per km of base length in central India, to as

high as 30 mm per kilometre on the South-Eastern side, i.e.,
in the Burma region.



TABLE 8 . k

CORRECTIONS FOR CONVERSION OF ASTRO-GEODETIC GEOID HEIGHTS ONTHE EVEREST
SPHEROID TO GEOCENTRIC GEOID HEIGHTS ON GRS 67

X 65°E 70° 75° 80° 85° 90° 95° 100°
• "i

0

— .

Value s are in metres

1+0° -87.1 -83.+ -8*f.l -8V-3 -99-0 -113.1 --131.1+ -153.9

35° -73.7 -69.7 -70.5 -76.1 -86. k -101.5 -121.1 -iif5.l

30° -6*f.8 -60.7 -61. if -67-3 -78*3 -9U.2 -lllf.9 -lifO.3

25° -6O.3 -55-9 -56.8 -62.9 -7k.k -91.0 -II2.7 -139.3

20° -59.9 -55.3 -56.2 -62.6 -7k. 5 -91.7 -11V.2 -llfl.8

15° -63-3 -58.5 -59.5 -66.1 -78.3 -96.0 -119.1 -lif7-5

10° -70.2 -65.+ -66. k -73.1 -85-5 -IO3.6 -127.2 -156.1

5°N -80.6 -75*7 -76*7 -83.5 -96.1 -lltf.i+ -138.2 -167.5

I

iY>
o
vo

I
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800 000 Approx

PIG. 8* I CORRECTIONS ON EXISTING GEOID HEIGHTS, FROM
EVEREST SYSTEM TO ABSOLUTE GRS 67
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8.7 CORRECTIONS TO EXISTING LATITUDES AND
LONGITUDES

Hie adoption of absolute orientation values will

affect all published geodetic latitudes and longitudes.

Corrections for these may be obtained directly from the

formulae given in Expression 2.29, or from the matrix rel

ationships formulated in this work and the relations

6* = - &K (8.7)

6 X = - 5 Tisec0

The correction needed in respect of latitudes, to

convert from local Everest system to the absolute GRS 67

system, turns out to be equal to t

o^"= (5.62 + 11.7lfsin0)cos0

-(7.86cosX + 23.73sinX)sin0 (8.8)

Table 8.5 tabulates the amount of this correction

at 5 grid corners. The correction contours are drawn in

Figure 8.2.

The published longitudes are reported (Gulatee,

1955) to be already in error by an amount equal to 3".16.

When this correction is included,the final expression for

relevant longitude corrections becomes,

6^'= (23.73cosX - 7.86sinX)sec0 -3.16 (8.9)

The values at grid corners are tabulated in Table 8.6,



TABLE -8-5

CORRECTIONS TO PUBLISHED LATITUDES IN INDIA FOR CONVERSION TO ABSOLUTE GRS 67
SYSTEM

X
•""•—••—" — -,••-..

65° 70° 75° 80° 85° 90° 95° 100°

+ Values are in arcseconds

-^.06
ko° -5.87 -5-98 -5.96 -5.81 -5*55 -5.17 -if. 67

35° -k.X2 -k. 21 -If. 19 -^.07 -3.83 -3.+9 -3.05 -2.50

3o° -2.k6 -2.5k -2.53 -2.*f2 -2.21 -1.91 -1.53 ••1.05

25° -O.90 -0.97 -0.96 -0.86 -0.69 -o.kk -0.11 +0.29

20° +0.56 +0.51 +O.52 +0.59 +0.73 +0.9^ +1.20 +1.53

15° +1.9+ +1.90 +I.90 +1.96 +2.07 +2.22 +2A2 +2.67

10° +3-23 +3.20 +3.21 +3.25 +3-32 +3.^2 +3-56 +3-72

5° +k.k5 +k.kk +k.k2 *k.k6 +1+.50 +k. 55 +^f.62 +*f.70

I

rv)
1
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Scaie 1: 1800 000 Approx.

FIG. 8-2 CORRECTIONS ON EXISTING LATITUDES .FROM
EVEREST SYSTEM TO ABSOLUTE GRS 67
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and the graphical representation is given in Figure 8.3.

The changes in longitude are found to be higher
on the Eastern side. A total correction of about 12" is
required along the North-East boundary adjoining China,
which is equivalent to a linear discrepancy of about
300 metres.

8.8 CONTRIBUTION OF THE WORK PRESENTED IN THE
THESIS

The present investigation which constitutes the

first integrated effort made in this country for obtain

ing the absolute orientation of the Indian Geodetic System

leads to a set of orientation parameters and corresponding
relations to reduce the existing geodetic latitudes and

longitudes in India to the absolutely oriented GRS 67
spheroid, so as to relate it to the World Geodetic System.

The work being restricted by available data set,
most of the results can only be regarded as being tentative.
Leaving aside the gravimetric determination at the initial

point, the field data was far below the required standards

and had to be accepted as given. Furthermore, non -

availability of instruments and data precluded any syste

matic and elaborate planning of data collection schemes.

Notwithstanding this, the computer-oriented formulations

of classical expressions and development of a number of



TABLE 8-6

CORRECTIONS TO PUBLISHED LONGITUDES IN INDIA FOR CONVERSION TO ABSOLUTS GRS 67
SYSTEM

X

o
ko

o
35

65c

0.63

0*39

70l

2.21

2.27

75;

5.ocy

•+•93

30° 0.19 -2.32 -if.83

25° 0.05 -2.35 -^. 76

20° -0.07 -2.38 -^. 70

15° -0.15 - 2.1+0 -If. 66

10° -Co 21 -2.1+2 -if. 63

5° -0.21+ -2. if3 -if.62

o
80 85c

o
90 95

values are in arcseconds

-7.89

-7.58

-7.3+

•7.15

-7.01

-6.91

-6.8if

-6.79

-10.68

-10.19

-9.81

-9-52

-C?.29

-9.13

-9.01

-8.9+

-13. if2

-12.76

•12. 2*+

•11.83

•11.52

•11.30

•11.11+

-16.08

~l5-2if

-Ik* 59

-lif. 08

-13.69

-13.1+1

-13.21

-11.05 -I3.IO

100'

-18.6*+

-17.6k

-16.86

-16.25

-15.78

-15.++

-15.20

-15.07

ro
H
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FIG 8-3 CORRECTIONS ON EXISTING LONGITUDES , FROM
EVEREST SYSTEM TO ABSOLUTE GRS 67
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subprograminos were carried out with the maximum refineme

nt possible. Further accuracy in the determination of these

parameters can thus be attempted in a routine way as and

when more accurate data including denser gravity material

becomes available in the future.

The various contributions made in the work prese

nted here, apart from the accomplishment of the main obje

ctive , that is? obtaining the parameters of absolute

orientation for the Indian geodetic system, may be summa

rized as follows »

(a) the contributions to geoidal undulations arising

from a global coverage of gravity, extending from a certain

regional limit, have been provided for the first time

(chapter III). These results constitute a permanent asset

to future work in the following directions;

(i) refining the orientation parameters from time to

time as better data becomes available,

(ii) interpolation in astro-gravimetric levelling,

(iii) construction of detailed geoid for the Indian region,

(b) complete span of the numerical algorithm developed

for computing the absolute orientation of the Indian

Geodetic System through any given astro-geodetic station,

has been detailed. The accuracy of the determination how

ever depends upon the reliability of the relevant astronomic,
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geodetic, gravimetric and topographic measurements,

(c) whilst absolute orientation is a task normally

performed at long intervals of time, another important

purpose might occasionally be served by utilizing the

computed gravimetric geoidal quantities at any point

combined with both astronomic observations and spirit

levelling, to arrive at the geocentric coordinates with

out any geodetic measurements. This astrogravimetric

station may act as a control station for satellites and

georeceiver experiments with fair accuracy,

(d) the intermediate values of the partial geoidal

parameters at 1° grid corners, presented in chapter IV,
may be taken directly to compute H , £ , f| at any

b^- S^ &^

given point in the Indian region, as and when necessary

dense gravity data around the point are made available,

(e) a broad shape of the 1° mean free-air geoid in

the Indian region has been obtained and presented which

should provide a useful starting point for further studies

in this field;

(f) a consistent series of mesh sizes for integration

according to the decimal degree system, has been recomm

ended and the inner limits of the meshes are suggested

(Table 5*3) "to maintain the high precision of gravimetric

determinations,
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(g) a few one-degree (Table If.3) and quarter-degree
(Table 5.6) representative mean gravity anomalies around

and within the Indian region has been contributed for

storing and further use in geodetic and geophysical studies,

(h) a simple procedure for obtaining parameters of

absolute orientation, by comparison of astro-geodetic and

gravimetric geoids, has been attempted. This appears to

be full of interesting possibilities for further explorations,
(i) an alternative suggestion, namely the comparison of

satellite-derived geoid and surface-fitted astro-geodetic

geoid, has also been discussed.

8.9 SUGGESTIONS FOR FURTHER WORK

Many difficulties and limitations were encountered

during this investigation, which on reflection yield the

following suggestions that may be found useful by future

researchers in this area.

(a) The number and distribution of point gravity values

in India are totally inadequate for integrated studies such

as that attempted here. A centralized compiled data bank at

the national level, with reliable topography-cum-gravity

data file, in unified IGSN 71 system therefore appears

quite essential and should prove valuable to diverse types

of studies based on the analyses of gravimetric data.

(b) The distribution of astro-geodetic stations are
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also quite unsatisfactory for a vast subcontinent such as

India and calls for filling up of gaps in order to provide

a better representation. A best endeavour would be to pro

vide all latitude stations with additional values of f] as

well, which will make the average station density equal to

1 in 3000 square kilometres.

(e) Evaluation and prediction of mean anomaly values

was carried out in the present work keeping in mind mainly

the immediate requirements as well as the limits of availa

ble facilities. Not much physical insight could therefore

be achieved to establish the theoretical validity of some

of the procedures used. Various deterministic approaches

and probabilistic concepts (such as, correlation, collo

cation etc.) may prove more helpful in achieving these

goals, with special reference to India as a whole or to

some region of interest within it.

(d) Evaluation of the effect of the innermost recta

ngular compartment, needs to be further examined, to make

the procedure complete and error-free,

(e) Four strategically located super-control points

may be established at the first-order Laplace stations

of primary triangulation at four geographic corners. Gra

vimetric determination of the geoidal undulations at

these points will provide the non-Stokesian,i.e., the
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zero-order term Nq which controls the scale-error, simult

aneously correcting the systematic errors in triangulation.

8.10 SUMMARY AND CONCLUSION

This chapter, the concluding part of the thesis,

first recalls the basic objectives of and the motivation

for undertalcing the work as well as other related outputs.

After compiling the shift vector components and correction

parameters obtained, by using three different principles,

they were analyzed to yield finally a set of geocentric

orientation parameters. These were again formally compared

with datum shift components provided from the orbital analy

sis of satellites. After providing an estimate of accuracy

of the recommended values, necessary formulations have been

presented for correction of astro-geodetic geoid heights,

lengths of base-lines, published latitudes and longitudes

to convert these from the present Everest system to the

absolute GRS 67 system. The main contributions of the inv

estigation have thereafter been enumerated with suggestions

for further studies and refinement.

The final results answering the basic objective

of the work are the following set of required correction

parameters of absolute orientation, obtained in respect of

the Kalianpur origin, to convert the present Indian Geo

detic System based on the Everest Spheroid to the



-222-

geocentric Geodetic Reference System 1967?

6NQ = -59.0 + 0.5 metres

oK0 = + 0.65 + O.lf arcseconds

o^o - +2.60 + O.lf arcseconds
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APPSNDIX - A

CONVERSION OF ANOMALIES TO IGSN 71, GRS 67 SYSTEM

The International Spheroid is defined by the foll

owing basic elements (Heiskanen and Moritz, 1967);

GM = 3.986329E+l*fm3 sec""2

u = 7.2921151S-05 rad sec"1

a = 6.378388E+06m ,

f = 1/297* 0

The corresponding normal gravity formula is,

Y30 =9780lf9.0(1+0.005288if sin2^ -5.9xl0~6 sin220)

= 9780*f9.0(l+5.26*f8E-03 sln2<p +2.36S -05 sinfy)
milligal (Ab1)

The Geodetic Reference System, 1967 (International

Union of Geodesy and Geophysics, I967) is defined by

GM = 3.986O3E + l*fm3sec~2

w = 7.2921l5l*f67S-05 rad sec""1

a = 6.378I6OE+O6 m,

J2 = 1.08273-03,

from which, flattening is determined to be
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f = 1/298.2if7l67*f27,

and the corresponding reference gravity in milligal to be

Y

67

= 978031.85(1+5.2788953-03 sin20 +2.3*f62E -05 sinfy)

+ 0.00*f milligal (A. 2)

The International Gravity Standardization Network,

1971 (Morelll and Gantar, 197*f) shows a correction of

-llf.01 milligal at the Potsdam base. In general, therefore,

each gravity value referred to the old system should be

corrected by

Snew = Sold " lh'01 CA.3)

The correction in the free-air gravity anomaly, neglecting

the small change in the vertical gravity gradient, is now

given by

A=^new " (Ag)old = (Snew "Y67} " (gold 'Y3o>

From expressions (A.1),(A.2),(A.3), the correction is,

A= (gQld-l*f. 01-978031.85-5162.927*fx-22.9^66x2)
-(gold-9780if9.o-51*f9.232x-23.082x2)

= (0.l35lfx-l3.695If)x + 3.11+00 milligal (A.1+)
p

where x = sin 0
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APPENDIX - B

INDIAN GEOID FROM BGI DATA

The BGI values ( Coron, 1972) are expressed in

the Meridian-Parallel-Grid system, and in terms of the old

Potsdam value of absolute gravity and the 1930 internati

onal formula for normal gravity. Some blocks were assigned

more than one values by different sources in which cases

average values were adopted. Finally, the anomalies were

reduced to IGSN 71, GRS 67 values through a conversion

detailed in Appendix - A, and stored on punched cards,

after rounding off to nearest 0.1 milligal.

A general computer program in Fortran language

was developed to be used for determination of N, £,n at

grid corners. In the present case, only N values were

evaluated at a few corners covering the Indian region.

The programme was later on used to compute the partial

geoid parameters described in chapter IV, after slight

modification needed for the zigzag outer limits in the

one-degree data. The flow diagram is shown in chart B.l.

Table B.l presents the corner values of N in

metres, whereas Figure B.l shows the N-contours in the

Indian region.
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TABLE B.l

VALUES 07 N, IN INDIAl PART, FROM BGI ANOMALIES

"N

A 65° 70° 75° 80° 85° 90° 95°

... .

100°

<P Values are in me tre, ref erred to GRS67. Geoid is bel ow the Sp heroId

ko° - 21.98 -26.81 -28.66 -30.69 -31-63 -30.17 -25.67 -21. 22

35° -12.8** -22.13 -26.60 -25.02 -2W3O -23.12 -20.8V -18.9k

30° -9.81 -22.76 -3I.05 -33.12 -32.13 -29.22 -27.1+0 - 2k. Ok

25° -21.k5 -28.55 -35.05 -iflA3 -Ifl.lfl -33.95 -35.38 - 28.08

20° -3^-82 -1*0.82 -kk.70 -V5.21 -kk.97 -V3.93 -36.57 ••26. 20

15° -V6.66 -56.2V -60. MD -55.ik -55.58 -k7.95 -3k.kk -20.60

10° -55-09 -68.55 -75.12 -75*75 -67-63 -51*3k -31.81 -12.67

5° -57-78 -73.83 -8V.55 -85-26 -73.12 -53-05 -29-50 -5.53

I

ON
i
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K3URE B.l-INDIAN GEOID FROM BGI DATA
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APPENDLX - C

BROAD GRAVIMETRIC GEOID IN INDIAN CONTINENT AND PRIMARY

ORIENTATION OF NETWORK

( A paper presented in the Indian Science Congress )
Session, January 1973

Abstract

Average free-air gravity anomalies of five degree

blocks over the entire earth are used to determine the

geoid^spheroid separations at five degree corners in Indian

Dart. Numerical integration of the well-known Stokes'

formula is done by electronic computer programming. The

obtained geoid map, equivalent to the broad wavelength

geoid in satellite geodesy term, is then used to compete

the primary orientation-vector at the Indian origin of

triangulation network assuming linear interpolation along

meridians and parallels. Consequently, corrections in the

existing latitudes and longitudes are calculated and pres

ented in contoured form.

Introduction

More than a century ago, Everest derived the dimen

sions of the Everest spheroid on which the Indian geodetic

system is based . Its orientation at the datum has been

done at various times in arbitrary manner. After the
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International Spheroid was adopted by IUGG, the Indian geoid

was locally fitted to it by a least square solution, which

being again more or less arbitrary, is unfit for use as a

World Geodetic System.

The geocentric system refers to the spheroid as a

physical surface with its origin at the centre of gravity of

the earth and Z -axis as the mean axis of its rotation. The

absolute orientation of a geodetic system essentially means

defining the reference surface dimensions (a,f) and its

deviation components including separation from geoid surfa

ce at the control point.

To accomplish the object, one must know the gravity

values on the entire earth surface and apply gravimetric

principles for computing the gravity anomalies, properly

reducing these to geoid as a prerequisite for the boundary

value problem, and use numerical integration for Stokes'

formula.

Gravity Anomalies

The mean free-air gravity values at 5° x 5° blocks
p

are taken from Bulletin D'information , referring to 1930

international formula with base elements ;

Flattening = 1/297 ; Potsdam value = 98127^ mgal

Y= 9780^90(1+0.005288^ sin20-O.0000059 sin220)mgal
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The single value for a block has been directly taken, and

two values for the same box have been averaged, as serving

the present purpose.

Helmert's condensation method for reduction gravity

has been recommended as most suitable for geoid determinat-

3
ion". However, the mean free-air values correspond very

nearly to the condensation reduction and resulting undula

tion of cogeoid differes by only a few meters, acceptable

for primary adjustment.

Basic Formula and Modification

The undulation of geoid from a reference spheroid

is obtained by,

R
K = r—- j"f(l(J)Ag dq , integrated over whole earth,

't-IT j q

where, R = Mean value for earth's radius,

G = Mean value of gravity,

dq = Elemental surface area of the gravity element,

IJT = AngTiLar distance of gravity element from
computation point,

Ag = Average gravity anomaly in the surface element

and f(ljr) = Stokes' function

= 1 - 6sln •£ + cosec *
2 2

- costy[5+3 Ln. (sin | +sin2 |)1
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The square division modification changes this to a summation

formula. Also if the corner points of the blocks are taken

as computation points, then same f(Tjr)will be repeated at

the points along a parallel and hence the evaluation of a

set of factors are sufficient for all corners at the same

latitude. Tanni 'r did this by Desk Calculator, and that pos

ed no difficulty because of lack of gravity observations at

that time. It is worthwhile to mention here that he took an

average of 1.5 hrs. for one compitation of I!, and the present

computer programme took only 2 minutes for all the 81 corners,

in IBM 360. The resulting geoid contour is presented in

Fig.l.

Cjr1entation Vector__and_ Adjustment

The geoid spheroid separation N at Kalianpur, the

initial points of Indian triangulation network, now comes

to be -53*k m approximately. The meridional and prime verti

cal components of the deviation of vertical are also assessed

by applying finite-difference slope at corners and linear

interpolation along meridians and parallels. Table 1

shows the values obtained, and the existing arbitrary

vector.

The effect of this datum shift on latitudes and

K
longitudes are computed by the transformation formulae-'

derived by Vening Meineszand rearranged for the present
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TABLE - 1

Orientation Components of Indian Geodetic Datum

Existing Primary Gravimetric
Computation

+9.5 m N - 53.4 m

-2".42 K - 4".36

-3". 17 n + C".25

Both are referred to Hayford International Elli
psoid,

a = 6378388 m ; f = 1/297-0(1930)

purpose. The resulting corrections are shown, in contour

form, in Fig. 2. This adjustment will thus make the Indian

geodetic system primarily converted to the geocentric Inte

rnational Spheriod System.

Conclusion

The broad gravimetric geoid, obtained in the present

work by using numerical integration of Stoke S' formula on

mean 5 x 5 free air gravity val ies, Is rather a trend -

s irface and for more detailed evaluation, as needed for

accurate absolute orientation, the following points are

amongst those to be considered carefully,

I) The free air values, specially in the continental

parts and around the computation points should be
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reduced by Helmert5s condensation; and finally the

indirect effect must be accounted for to arrive at

the actual geoid.

ii) Closer network is needed near the computation points,

because the Stokes' function diverges as the spheri

cal distance decreases,

iii) More anomaly values are required'for ty= 20 or less,

to have a correct representation of the gravity chan

ges and proper integration procedure.

iv) The deviation-components of the vertical can better

be evaluated by differentiating the Stoke8 i function,

as proposed by Vening Meinesz,and applying that dire

ctly as summation weightage.

From satellite-derived geopotential coefficients

featuring the broad-wavelength properties, a comparable

geocentric geoid may be arrived at. The study of geoid by

gravimetry and satellite observation are of prime importa

nce, not only for surveying and mapping purposes like (a)

correct base line reduction, (b) proper defining of control

points for triangulation, including national boundaries,

(c) Super control points for satellite geodesy and long-

range hydrographic surveying, but also for researches in

geophysics so far as assessing invisible mass anomalies in

Indian part, for possible interpretation of natural reas-

ources, are concerned.
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APPENDIX- D

TWO-DIMENSIONAL CUBIC SPLINE INTERPOLATION

Let the discrete values of a variable at grid

corners be defined T»y the usual matrix convention, •

h
11

h.
12

h
21

(D.l)

hKK

where h^ indicates the value at the corner(0, X)

(Figure D.l)

A cubic curve passing through the points (0n*^ni

V and (0m+l> V Vl'n- with curvatures -6pmjn and
-6pm+1 at the respective ends may bo expressed in

Hermitian form as,

•<P

D0

0
m

2,1

1,1

0,X
0

n

na. t>.f

DX

K,K

*
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3^ V = ^hm,n) ^+<Vl,n>X+ ^m,n>Ua

+ (PmH-l,n} xb

where, ^ < <* < 0m^ ,

x = (0-0m)/D^

u = 1 - x <D.2)

a = 1 - u2

b = 1 - x2

Assuming similar cubic variation between Z(0,X )

and Z(0,X .,) in the other direction, the general expe-

ssion becomes,

Z(0,X) = Z(0,Xn)v + Z(0,Xn+1)y + q(0,Xn)vc

+ q(0,Xn+1)yd

where, X^ < X < Xn+]_

y =x-xn

(D.3)
2

v = 1 - y

c = 1 - v

.2d •= 1 - y

and the curvatures at the ends are -6q(0,X ) and

-6q(0,Xn+1).

The second derivative of expression D.2 will
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show linearity in p. Assuming a similar linearity in q

along <p in the form,

q(^,Xn) = (qm?n)u + (qm+1?n)x
CD.If)

and g(<P«X ,, ) = (q ,- )u + (q ,-, )x,-v ? n+1' ^m,n-HL wm+l,n 5

the complete expansion of expression D.3 becomes

z<**> = (\,n)uv + ^,n+l>^ + <Vl,n)anr

+(\+l,n+l)xy + (pm,n)uva +

+(Pm,n+l)uya + (Pm+l,n)xvb +

+^m+l,n+l)xy* + (qm,n)uvc +

*<^,ntl>U3rd + (qm-M,n)xvc +

+̂ m+l,n+l-)xyd <D-*>

The single value assigned to each of p and q at each

corner ensures continuity of curvature of the whole

surface. Conditions of slope continuity at both direc

tions at a general grid point ,m,n are achieved by,

pm-l,n + ^mjn + pm+l,n = \-ljn "2hm,n + \+l,n

qm,n-l + +qm,n + qm,n+l ~ \,n-l "2hm,n + hm,n+l
(D.6)

Imposing the end conditions that the surface becomes

planar just beyond the boundaries, i.e.,



Pl,n = °i

pk,n = °>

qm,l = °>

and qm,k = °

the relations become

21 P
22

ql2 q22

ql3
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(D.7)

= CH ,

pk-l,k

(D.3)

= CH

H^k-l

where T is a tridiagonal matrix of size (k-2) x (k-2)

of the form,

T a

and C =

If

1

1

k

-2 1

1 -2

k

1-2 1

(D.9)

(D.10)
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By operating T~ C and adding two rows, of all zeros, at

top and bottom (to satisfy the end conditions ), a centr-

osymmetric matrix S is formed. The final solution is then

P = S H

Q' = 3 H'

After getting numerical values of P and 0 by Equations

D.ll from input H and corresponding matrix S, interpola

tion at any 0,X may be done by Expression D.5*

S matrix for k = ^,596,7, and 8 are given below!

\xk

'5x5

s
6x6

JL
15

1_
56

_ _1_
209

0

-If

i 1

L°
r

1 °
1-15

if
i

-1

10

0

-56

15

-k

1

0

0

9

-6

0

0

3^

-2k

6

0

0

127

-90

2k

-6

0

0

•6

9

0

0

1

-k

0

0

•2k

ko

•2k

0

0

-90

151

-96

2k

0

0

6

•2k

3h

0

0

-1

k

-15

0

2k

-96

151

-90

0

0

-6

2*f

-90

127

0

(D.ll)

0

1

-If

15

-56

0



7x7

1_
780

38xo 29II

0

-209

56

-15

k

-1

0

0

k7k

•336

90

-2k

6

0
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0

-^36

56k

-360

96

-2k

0

0

90

-360

570

-360

90

0

0 0 0 0

-780 1769 -125^ 336

209 -125^ 210 5 -I3l+lf

-56

15

-If

1

0

0

-2k

96

-360

56>+

•336

0

0

6

-2k

90

•336

k7k

0

o

_1

if

-lc-j

56

-20>

0

~1

0 0 0 0

-90 2k -6 1

360 -96 2k -k

336 -131+1+ 2129 -1350 360 -90 15

-90 36O -1350 2129 -13 ^ 336 -56

2k -96 360 -I3I4J+ 2105 -125^ 209

-6 2*f -90 336 -125^ 1769 -780

0 0 0 0 0 0 0
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APPENDIX - E

PREDICTION OF GRAVITY ANOMALIES USING COVARIANCE FUNCTION

PRINCIPLE

Let h be a value to be predicted, and linearly

dependent on the known values h-,, h , lu,.....,h which

are,in turn, mutually correlated according to their sepa

ration distances. The relation may be expressed as

n

h = Z a.h, (E.l)
p i=1 ii

If the expectance of the values are to be consis

tent before and after inclusion of the predicted h^, then,

E{h.} = E{hp]

=Z a. E{h1] = E{h1}Za1 (E. 2)

If Zq. ^ 1 as a general case, then E{hi} must be

zero, indicating thereby that h values should initially be

centered such that their mean is zero.

The mutual correlation are expressed by the co-

variance obtained by fflpning the average product of pairs of

of values h., h. constrained by a distance s.., i.e.
i <J •*•«)

c(s..) = E{h.h }, • (E.3)
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a special case for s = 0 being the variance,

9 Zh?
c(sii) = c(0) = v = E{h£] = —± (E.1+)

The error of prediction may be denoted as,

e = ht - \ (E.5)

where h+ is the true value of h .
x. P

According to least-squares principle, the relating

coefficients a. are to be chosen In such a way that,

wiiere,

&S{e2] , ,
• • • • • • = 0 , i = l,2,...,n (S.6)

6 a^

.2-> _ *,r^ «,_ fc s2iE{e^} - E{(ht - XaJi.)']

= E{ht2} - 2Za1 Sfhthjl +ZZa^.. Bfhj.h,}

Substitution of (S.3) in the differential relation (S.6)

leads to,

0 = 0- 2c(sti )+ 22a,c(siJ , I = l,2,...,n

or, the set of simultaneous equations,

al c(sll)+a2 C(s12) + an c(sln} = ^tl^

al c(-s2.1^+a2 C("s22') + an 0(^s2n^ = c^st2')'
(E.7)

al c<snl)+a2 c(sn2} + an c(snn} = c^sUn)
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The linear equations may be solved if the statisti

cal behaviour of the values are determined first through

the covariance function. On getting the coefficient a.,

then, the value h may be predicted from the Expression
P

S . 1.

MODIFICATION

In the present work, a few modifications of the

basic principle have been made for computer-oriented formu

lation, which are described belowJ

(a) to discretize the function, a digitization gap

needs to be assigned. The shortest distance between the

known points may be used. In gridded. data, the gap is

simply,
d * Ttf = DX (E.8),

(b) to compute and store the covariances as subscripted

variable, an equivalent integer subscript is formed as,

(x.-x.)2 + (y.-y.)2
L ={— ^-i_ +0.5} <E-9>

J d^

where { } indicates the integer part within it. This

avoids unnecessary evaluation of square roots,

(c) as already explained, the original gravity anom

alies are centred and h is obtained by,

Ag = Za^ + Ag
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where, Ag = ZAgi (E.10)
n

and h± = Ag± - Ag ,

(d) the original covariances are standardized by divi

ding them by the variance; this makes all the diagonal

elements of the Equation E-7 as unity. In the program,*

counter array has also been provided to count the number

of pair of points. The subroutine COVAR developed in

Fortran II language suitable for IBM 1620 is given as

follows to illustrate the algorithm for computing the

standardized covariances.

SUBROUTINE COVAR (X,Y,DG,NP,G,M,C,GM )

DIMENSION X(100), Y(100), DC(100), c(200) , P(200)

C X,Y,DG = POSITION COORDINATE! AND ANOMALIES

C NP = NUMBER OF DATA POINTS, G - DIGITIZATION GAP

C M - MAXM. DIMENSION OF C = (LARGEST DISIRANCE/G)**2+1

U ANDARDIZSD C0VARIAr-CE3GM= MEAN OF INPUT ANOMALIES

C P - COUNTING ARRAY

0 INPUT - X,Y,DG,NP,G,M, OUTPUT = 0, GM

DO 41 N - 1 ,M

0(H) - 0.0
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H • KB

H = 1-./H

GM = 0.0

V = 0.0

DO 4-2 J = 1 ,NP

D - DG(J)

GM - GM+D

42 V = V + D*D

GM = GM*H

V = V*H - GM*GM

H = 1./(G*G)

DC- 43 N - 1,NP

XN = X(N)

YN - Y(N)

ZN = DG(N)-GM

I = N + 1

DO 43 J = I,NT

L - ((XN - X(J))**2 + (YN-Y(J))**2)*H + 0.5

C(L) - C(L) + ZN*(DG(J)-GM)

43 P(L) - P(L) + 1.0

DO 45 N - 1 ,M

H - P(L)

IF(H)99,45,44

44 C(N) = C(N)/(H*V)

45 CONTINUE

99 KBTURE

END



-258-

APPENDIX - F

DESCRIPTION OF COMPUTER PROGRAMMES

F.l INTRODUCTION

The primary objective of getting an updated defini

tion of the correction parameters at the Indian origin to

make the reference frame absolute as well as to convert

the existing ill-fitting spheroid to an internationally

accepted one , has been achieved through this investigation.

But this is not the final word; the attempts and the

findings are constrained by various limitations, specially

those of availability and reliability of usable data, of

proper consciousness of mathematical and statistical models

for processing the same and last but not the least, by

restrictions on time, skill, software and finance.

However, the exercise may open up further avenues

of research and development in the methodology of gravim

etric orientation in India and looking for a practically

complete data bank in near future, the comparable efficient

computational link hereby will make the revision a routine

job.

The universally recognized FORTRAN language has

been used in the computations for this study. The FORGO
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version were needed to run intermediate routines, in IBM

1620 with card output, for checking and converting raw

data in formatted cards. An IBM 360 computer, and later

on another IBM 370 recently installed could be made avai

lable. Peripherals were not exploited fully, due to lack

of proper expertise.

F. 2 MAIN PROGRAMMES

The basic programme ORIENT computes the orientation

parameters and shift vector, using mean gravity anomalies

around any general astro-geodetic station, which may be

the initial point itself also, through the subprogrammes

VOID and PART.

The subprogramme VOID uses Five-degree Equal-Area-

Block mean values in the exterior region to compute NTV/R,

£ , t\ parameters. The PART subprogramme similarly compu

tes the contribution of the interior region from the gri

dded mean values of One -degree units and finer compartme*.-

nts, down to the innermost zone (through the subroutine

ZONIN).

The flow charts of the programmes ORIENT, VOID

and PART are shown in the follox^ing pages, with an exam

ple of data cards for the VOID subroutine. Other utility

subroutines COSIN, DCOSIN, COVERS, STOVM, STOW, Z0N1N

and SURFIT are also briefly described, thereafter.
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FLOW CHART FOR .'MAIN PROGRAM ORIENT

Start

I,/Read 0o,Xo,afo, 1/f,pj
Compute T , E"|

^ead ag/,l/fg/, g^
ICompute R,G,D,E D|

, ' , • ,

pead ^c?Xc?Nag^ag?T1ag of comPutation point

Frame T, X = - f EDI

A

CALL VOIDj

Store U

J_

CALL PART

Update U

Compute C, X = TC+X,C0
Print C,X,CQ
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FLOW CHART FOR SUBPROGRAMME VOID

Read inner limits,Dy>
mil)' Hmmm, •».•»• m

Set vector U = 0, d = sin(D0/2)/(36OG)
w—n.i,,,,^!. i •••» n»iN»>ii tmmmfm^M• mttmmmm mnnrw-. • mmumm

> ii MWi'*m "_, ..«',,'•• , .. ., i » I) MBIIHUI

./Read |0 | ,N .of
} blocks in the belt

No.of stripwidth
variations,strip-
widths-
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EXAMPLE OF INPUT DATA CARDS FOR BLOCK MEAN ANOMALIES

The anomalies are inputted beltwise, from polar to

equatorial region, i.e. changing \<p |from 87.5 to 2°. 5,
with finally a negative buffer. The advantages of this

arrangements are : (I) the stripcoding requires lesser num

ber of data cards, (II) the pairvise input avoids repetitive
computation, (iii) India being in, the equatorial part,

the contributions progressively increase and the beltwise

sum minimizes truncation error.

An example of data distribution and corresponding

card format is shown below;

X 120C 2lfOC

85°
-8 mgal 16 Ik

- ><

20 k2 9

1

0 ,

1()0° t

26 0°
I

o
80

1st Card

2nd Card

3rd Card

*+th Card

5th Card

6th Card

7th Card

8th Card

2k.

180

kk 0 -25

-3. 11 -5
o

36Q

FORMAT

87.5

111

-8.

-8.

82.5

3
i

16.

11.

k

1

Ik.

-5.

2

120.

100. 80

(F5.1,2I5,13F5.1)
(7211)

(16*5.1)
(16?5.1)

•

1221

20. 1+2. 9* 0.

2k. kk. 0. -25«
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FLOW CHART FOR SUBPROGRAM PART

J = 0, Set Vector Up^O 5 transfer/inner
limits from VOID

—w^wIHpw •• "^1"

Set previous inner limits as outer limits

3
•»——Wtf»—p> **•'

Call ZONIN
update U

etur

HnitfiM'*^-'"

/Read Inner Limits

Urine:
Limit

all zeros,

\/ No •;'"**
Read D0,--DX

a =TA sin(D0/2)/(36OG)

'"ST

All

belts
*'Ss>NComplete

•? ^ No

Yes

I* i

Compute J" cos^ ,p, for J=O,A0 for J >0

±{r-" —— "

Read Ag array for the belt

... iiy »'"> '""'»»

j = j+i

p2,p for J = 0
AX for J > 0

I vector L

VTLVl stovF-
compute 6, W

Update U



Subroutine COSIN

Subroutine DCOSIN

Subroutine COVERS

Subroutine STCVM

Subroutine STOVN

Subroutine ZONIN

Subroutine SURFIT

-26*f-

It takes any angle In decimal degrees as

input, changes it to radian, and returns

the cosine and sine values.

The double precision version of COSIN

Similar to DCOSIN, it also computes the

versin of the angle. In the PART prog

ramme, this Is used instead of DCOSIN

when J / 0.

With elements of vector L as input, it

checks the sign of /-^ , correspondingly

computes x, S(fJ) and U(l|J), the modified

Vening Meinesz' function.

It computes x, and the normalized

weighting functions S(l|J) and U(lfr).

Taking the point value and the slopes

of Ag/G at the computation point, this

subprogramme calculates the effects

N.j/R, £^. i}^ of the innermost zone of

D0, DX. For processing the gravity

anomalies at data points, a subroutine

SURFIT is called.

From the given point values distributed

in a rectangular compartment-, this sub

routine fits a corresponding polynomial

surface, computes the mean over the
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compartment and also the predicted value

and slopes of the surface at any desired

point. For zero-order surface, the arith

metic average is obtained.

F.3 OTHER PROGRAMMES

During the course of investigation, many subprogrammes

were made for various intermediate computations. Only a few

salient routines have been indicated as follows*

SPLINE j This programme reads the grid size and corner'

values, selects the S matrix (Jppendix - D) and

computes the elements of P and Q matrices. For

interpolating the value at any desired point or

points, it selects the corresponding m and n,

and computes Z using Equation D.5. The elements

of S matrix from k x k to 8 x 8 size are built

in the programme.

COVAR ; The standardized covariances (Appendix E) are

calculated as subscripted variables. The algo

rithm and the Fortran II version of the subrou

tine is given in Appendix E.

PREDIC : Using the covariance function evaluated in COVAR,

this programme predicts the anomaly at any desi

red point. Ttoo options have been provided as
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follows J

(I) all the data points are used in the

prediction,

(ii) the points up to the distance within which

the covariance function is positive, are

used; if the number of such points is less

than three, the Influence zone is extended

to cover three points.

NOSPIN j The COVAR program actually evaluates some non-

uniformly spaced values, as can be seen from

the various covariograms shown in chapter V.

This program generates all other values by

using a general non-uniform cubic spline inter

polation. In the present work, however, the

subroutine was not used, as intermediate cova

riances were not needed owing to the gridded

data.

GMEAN : The mean anomaly over a compartment from the

point anomalies are evaluated through this progr

amme. Depending upon the compartment size and

number of stations within it, various options

are coded, e.g.,

(i) usual arithmetic average

(ii) surface-fitted mean, using SURFIT
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(iii) weighted mean, using adjacent compartments,

by calling WTMEAN.

WTMEAN : The truncated pyramid, window, as detailed in

chapter V, is used to get the average value.

The various options are already described in the

text.

GEOFIT i The surface-fitting technique, described in

•chapter VII, to get the geoid height from the

astro-geodetic deviations of the vertical has

been translated, to Fortran statement in this

programme. The various parts are I

(1) framing of normalized matrix,

(ii) inversion of the factorized upper trian

gular matrix,

(iii) selecting the optimum order of surface,

(iv) computing C0Q, and then geoid height at •

any desired point.

SATELA ••? This programme computes the geoid height at any

point, from the inputted geopotential coeffici

ents and spheroidal parameters, namely J ,f,a.

The parts of the programme are as follows :

(I) J2n from J2 value,

(ii) recursion of zonal harmonics,
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(iii) recursion of Pnm( 0 ),

(iv) recursion of longitude terms,

(v) summation of the spherical harmonic

series.

A part of the programme, as a test routine, has

been presented in Appendix G.
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APPENDIX- G

NORMAL GRAVITY BY SPHERICAL HARMONICS

( A paper published in INDIAN SURVEYOR, January,I978 )

Abstract

Spherical harmonic expansion of the theoretical

gravity on the reference spheroid has been formulated,

considering up to second order of eccentricity and cross

radial derivative of the sphero-potential. A computer

subroutine for evaluating the normalized Legendre polyn

omial and its differential is presented.

Computations at some latitudes in the Indian part

are tabulated and compared with the 1967 normal gravity

formula. Finally the results are discussed in the light

of satellite geodesy.

Introduction

Geometrical geodesy deals solely with geodetic

triangulation and astronomical observations, to give the

general shape of the earth and coordinates of points on

its surface in terms of latitude, longitude and height.

Physical geodesy uses gravimetric method to orient the
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reference surface in geocentric position by defining the

geoid-spheroid separation and deflections of vertical at

one or more triangulation stations.

The gravimetric computation requires the normal

gravity caused by a regularized earth having symmetry

about its axis of rotation and the equatorial plane. Prese

nt trends in satellite geodesy needs evaluation of geoid

parameters by spherical harmonics.

Expansion of normal gravity in harmonics is one of the re

quirements for determining gravitjr anomalies on the geoid

surface.

Formulation

The normal gravity has two parts, the major being

•gravitational' due to the attraction of earth's masses,

and the other 'rotational' due to the spin of earth about

its own axis. The second part is expressable, in closed

form and depends upon the rotational rate w and ellipsoidal

geometry (see Fig.l for symbols), and takes the following

simple form

?u

2 2
-w a cos 0

"^1 - f(2-f) sin2<P

The other part is the radial derivative of gravitational

potential V, as s
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7. = (|«)2+(#|V)2 (2)
o

In spherical harmonic expansion, the normal gravitational

potential of the reference spheroid is the series (Heiska

nen and Moritz, 1967),

V=2£ (1 + 2 (a/r)2n J P ) (3)
r n=i,2 ^n "n

where, J? and P? are respectively the spheropotential

coefficients and the Legendre's polynomial of even degree

2n, in fully normalized form.

From (2) and (3) the expression for y are obtained

as

GM f /1XBn v2 , ,„n v2

where 0^ = (a/r)2n x (2n+l) xJ2n F>2n

On ~ - /and Rn = (a/r)^1 x J2n x P2n

5 = c4 (?2n}
Binomial expansion of the term under square root

2 2and neglecting terms of order more than (0 ) and (Rn) ,

finally yields,

yg = %x(q/r)2 x{1 +0^ +\ (2Rn)2 } (5)
ct



-272-

Sllipsoldal Term

The ellipsoid may be expressed In terms of radius

vector r and geocentric latitude 0, where,

tan^ = (1-f)2 tan0 (6)

Also, we get by series expansion and ignoring high

er order terms,

(a/r)2 = 1 + f(2 + 3f) sin20 (7)

Zonal Harmonics

The sphrical harmonics, in fully normalized form,

are required for even degree only. A recursive relation

for conventional zonal polynomials facilitating computer cal

culation (Heiskanen and Moritz 1967.),

Pn =i[(2n-l)s Pn„! "(n-DPn_2]
— (P,)

with P = lt Pi = s = sin^
o 'l

finally, P = Y 2n + 1 •pn

A similar relation for the derivative has been found out,

as follows,

Pn =E^(2n-1)s Pn-1- (n)Pn-2^
(9)

with Pq = 0, P^ = c= cos0
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and P' = Y~2n+ 1 . p'
n n

A fortran subroutine has also been developed by the author

to calculate the harmonics by recurrence (Appendix (L)) • The

routine is optimized for computer time, memory storage and

accuracy, by avoiding recall of subscripted array, reusing

the same space (U, V, PMID, PTOP, PBOT), and noting that n,

n-1, 2n-l are appearing in arithmetic progression.

Fig. 2shows the values of P2, P^' \ ,P^ for <P
upto k0°.

Reference Spheroid

In the present article, the spheroid used is Refer

ence Spheroid, 1967, as defined by the following constants

(Williamson and Gaposchkin, 1975),

GM = 3.98603s + 20 cc/sec/sec

co = 7.292II5IE - 05 rad/sec

a = 6.378160E * 08 cm

J2 = 0.0010827

f = 1/298.2^717

The reference normal gravity is expressed as,

-5.32E06 sin220) (10)

yq = 978031.85(1+5-302863 - 03 sin20
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where yg is in milligal and <p is the geographic latitude.

The spheropotential coefficients can be derived from J_ by

the relation,

J_ =(_i)n „-Kjil!l (l-n+5n -§ )/V *fn+l
2n *' (2n+l)(2n+3) e2

where e2 = f(2-f)

The first three coefficients calculated are,

J2 = -if.8»fl98l7E - Ok,

\ = +7-90lf2088E - 07, and

J6 - -1.68771693 - 09-

This shows that the series is highly convergent, and. for

mgal accuracy, these three terms are sufficient.

Results and Discussions

The different parts of the computations of normal

gravity by spherical harmonics and comparison with the

reference formula are shown in Table - 1, for nine geogra

phic latitudes relating to Indian part.

The excellent agreement is evident. The ellipsoi

dal term, and the rotation term constitutes approximately

upto 0.3 percent and O.k per cent of the total gravity.

The harmonic part is about 0.2 percent, mostly shared by

the first harmonic. The tangential component Rn is
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limited to 1 to 2 mgal only.

For the purpose of computing gravity anomalies, or

determining geoid vector from satellite derived geopotential

coefficients, thus, three terms of 0 are sufficient, giving

accuracy of the mgal order. The crossradial term also can

be safely neglected. The rotational term is usually deduct

ed by the space flight centres, (as done by Smithsonian

Astrophysical Observatory) and the disturbing potential is

obtained simply by deducting the harmonic part of V.

However, present age of fast digital computers with

high precision makes us free from these simplifying assump

tions, and direct formulation is recommended keeping in

view the truncation inaccuracies only.

Acknowledgement

The author acknowledges with profound gratitude his

indebtedness to Dr. J.C. Bhattacharji for his valuable gui

dance and encouragement in this part of work and for his

kindly going through the article very critically.

References

1. Heiskanen, W.A. and Moritz , H. (1967), Physical
Geodesy. W.H. Freeman and Co.

2. Williamson, M.R. and Gaposckin, E.M. (1975), The
Estimation of 550 km x 550 km Mean Gravity Anomalies.
Smithsonian Astrophysical Observatory, Special Report
363-



>g,W»

-276-
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RG. ELLIPSOID OF REVOLUTION

FIG. 2 NORMALIZED HARMONICS



Table - 1

Normal gravity through spherical harmonics and by standard formula
(rounded to 0.1 mgal)

0 yn = GM/a2 ye =
** ya(a/f)

yh
harmonic rotation

y=yg+^ ys
standard

0 979827.8 0.0 1595.7 -3391.6 978031.9 978031.8 ,
5 -do- 49.3 1560.0 -3365.9 978071.2 978071.0 ^

10 -do- 196.5 1453.1 -3289.7 978187.7
1

978187.6

15 -do- 436.9 1278.7 -3165.1 978378.3 978377.8

20 -do 763.4 1041.6 -2996.1 978636.7 978636.2

25 -do- 1166.5 748.8 -2878.5 978954.6 978954.8

30 -do- 1634.3 408.8 -2545.8 979325.1 979324.2

35 -do- 2153.0 31.7 -2278.3 979734.2 979733.1

40 -do- 2707.0 -371.4 -1993.1 980170.3 980169.2
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SUBROUTINE ZONAL (S,C, NDG, PDS, PDB)

DIMENSION PDS(NDG), PDB(NDG)

PTOP - 1.

PMID = S

U - 3-

? - 1.

PDS(1) - S*SQRT(3.)

DO 104 N = 2, NDG

PBOT = U*S*PMID - V*PTOP

V = V + 1.

PBOT = PBOT/V
U = U + 2.

PTOP = PMID

PMID = PBOT

104PDS(N) = PBOT*SQRT(U)

PTOP =0-0

PMID = C

U = 3.

7-1.

PDB(1) = C*SQRT(3-)

D0204N - 2,NDG

pbot = u*s*pmid-(v+i)*ptop

pbot - pbot/v

7-7 + 1.

U - U + 2.

PTOP - PMID

PMID = PBOT

204PDB(N) = PBOT*SQRT(U)

RETURN

END

APPENDIX - (l)
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