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ABSTRACT

More than a century ago, Bverest derived the dime-
nsions of a sphernid on which the Indian Geodetic System was
based. Its Qrientation.@t the Kalianpur origin of the Indian
triangulation system has Dbeen arbitrarily chosen at various
times. Local fitting of the spheroid could lead to confli-
cting claims by neighbouring comntries in the definition of
their national boundaries. The absolute orientation of the
geodetic system is therefore a prerequisite for the readju-
stment of the Indian triangulation net for use as a global
geodetic system. The present work is the first long -
awaited attemnt to redefine the values at the orientation
parameters at the initial point, with reference té the
Geodetic Refé}%%%% System, 1967, by determining their

absolute geocentric values.

The classical gravimetric principle has been used
as the principal tool to accomplish the task. The well -
known Stokes? formula relates the gravity anomalies over
the entire surface of the earth to the undulation of the
geoid above a geocentric reference spheroid, as a solution
of the third boundary-value problem of the earth’s gravi-
tational potential. The Vening Meinesz® expressions sim-

ilarly provide the meridicnal and the prime vertical
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components of the deviations of ‘the vertical. The results
of these three global integrations of known gravity anoma-
lies weighted by functions of the spherical distance, are
compared to the corresnonding astro-geodetic values exist-
ing in terms of the local system to arrive at the required
corraction parameters.

The irresularity of the gravity field over the
earth’s surface precludes the functional evaluation of the
gecidal undulations, necessitating numerical discrete
summation. The spherical surface is accordingly partitioned
by finite elements with representative mean valnues of grav-
ity anomalies expressed over them. The grid divisions have
been adopted in this work as being well- suited for automa-
tic computations. Furthermore, the nature of the Stoles’
and Vening Meinesz’ functions sug-ests that coarser grids
may be used in the exterior regions without seriously
affecting the accuracy of computation as long as compar-
atively finer meshes are used in the region of interest.
Five-degree Hgnal-Area-Blocks have been used in the outer
region, and further subdivisions of e gt v i 0°.05,

0°.01 have been sugrested for the interior region.

he first part of the computational work started
with evaluations of the contribution of a raocent set of

o =

five-Ce8ree mean free-air gravity anomalies, extending
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beyond a considerable margin around India. To suit machine
evaluations on a digital computer, a number of analytical
schenes have been developed in the formulation, such as,
(a) matrix form of interstation separation,
(b) non-dimensional forms of surface area and anomalies,
(c) modification of the Vening Meinesz’ function and

rearrangement of the functions in algebraic forms.

The geoidal parameters have been svaluated at the
five-degree grid corners covering India and presented as
an intermediate bye-product of the present investigation
which may be useful for further work. The undulation ranges
from -13 metres to -22 metres, whereas the deviation compo-
nents smoothly vary between + 1. A bicubie spline inter-
polation technique was used to compute the values at any
desired point.

The next smaller size of mesh used is the one-
square degree Meridian-Parallel-Grid type unit. The availa-
ble data are nearly complete and updated. Gaps in farther
areas have been filled up by a simplified procedure, keeping
consistency of the average value over a block. For nearby
unrepresented units, however, a loeal covariance interpo-
lation has been used. The weighting functions which incr-
ease with decrease in distance, have been further norma-
lized to minimize inaccuracies caused by exploding terms.

After developing working formulae for computations from
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gridded data, the partial geold parameters have been comp-
uted at 1° corners within India using the one-degree mean
free-air anomalies covering the interior region. The profil-
€s are seen to be mutually consistent, whereas the slope

components vary sharply.

A combination of the void geoid and the vartial
geold gives a pictorial representation of the one~-degree
mean free-air geoid in India. The variation is from L0
metres to -85 metres, with geoidal lows ~+1in the Himalayan

region and in the Southern peninsula.

The last part of the main objective has been acco-
hed by completing the numerical algorithm using denser
gravity details in the immediate neighbourhood of the com-
putation point, which includes a further modification of
the interstation vector to a differential expression. In
order to estimate quarter-degree mean anomalies from point
observations, simple average and patchwisec surface-fitting
have been used. For finer mesh sizes, a truncated pyramid
window has becn proposed. A few existing and suggested
tochniques for the evaluation of the effect of the inner-
nmost zone haveglso been enumerated. The numerical worl:
consists of using modified terrain-corrccted free-air
anomalios around the initial point for further nrecision in

the determination. The final results obtained are,
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& NO = -£0.0 metres,
B . = E swmeasentd
6 ‘:O —= 'Ol 6/ BEECSECOIIC )
n = #2.,60 aresccondss
5 o

Al thou~zh the orisntation through the initial point
itsclf provides the most reliable and stable nositioning,
the formulation of the gravimetric method permits any other
astro-seocdetic station also to be considered as a computa-
tion point. A first-order triagulation station with a
ibution of gravity coverage all around,
mav even act as a supercontrol point. An invariant shift
voector has been intreduced to further generalize the proce-
durz and four zones at four geographical corners in India
have been chosen for test computations. The limitations of
availahility and moasurements of gravity data called for
filling up some comartments of éurrounding regions by
prediction, for which a truncated local covariance inter-
polation has been 1sed. Despite all the defects and appr-
oximation in these stations, the various sets or orientation
parameters provide consistent numerical checks. The variat-
ions of results between themselves as well as with those
obtained at the initial point are of the order of 3 metres

in &N and AR 5, ] S8E, oT &My which are a little Too

higia for obvions reasons.

An alternative proposition to obtain the absolute
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orientation parameters from the regional gravity data
and the astro-geodetic geoid, forms the subject matt-
er of a subsequent chapter. The inharent errors in

the available informations being of fluctuating nature,
a practical solution of the orientation problem may
be achieved by the logic of minimization of thelr non-
coincidence in a least-squares sense. The mateching of
undulations seems preferable to the parallelism cond-
ition, and the shift vector formulations are further
modified to simpler expressions. The existing astro-
geodetic geoid has been converted to one corresponding
to the GRS 67 spheroid without changing the present
orientation. The comparison of its undulations at some
points with those of the gravimetric geoild obtained
from one-degree mean free-air anomalies are made to
frame condition equations and consequent normalizgation
to yield optimal estimates of orientation parameters.
The results differ by 1 metre in & N  , 1" in gL,
and 1% 3 in gn  from the gravimetric results at the
orisin, showing thereby the possibilities of the

excrcise for further refinement.

With a view to formulating an integrated
strategy to tackle the orientation problem, another
plausible solution without requiring the use of any

gravity data directly, has been tested in this work.
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Similar to the astro-gravimetriec geoid matching attem-
pted earlier ,the astro-geodetic geoid heights in this
case have been compared with those obtained from the
satellite-derived geopotential coefficients, on assu-
ming the apparent misfit to be solely duc to the local
non-peocentric orientation of the former. To obtain a
smoothened geoid a 7th-order surface has been fitted
using a number of astro-geodetic deviations, and 1ts
comparison with the present geoid shows an average
discrepancy of 3 to 4 metres, the difference getting
progressively increased with the distance from the
origin. The other geeid 1s computed from the recent
coM 10 coefficients. YWhilst the results obtained rev-
cal that further work is necessary in this regard to
gchieve a reliable solution, the present work contri-
putes all necessary formulations including the various
reeursion relations to optimize computer economy,

which will be useful for futurc researchers.

The concluding part of the thesis summarizes
various outputs of the methods adopted in the pfesent
work and compares them among themselves as well as
with the datum shift values supplied by the satellite
rcecarch organizations in respect of their adopted ell-

ipsoids. All the sets fall within the rcasonable limits
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of accuracy and the threc altcrnative methods, viz.,

(1) the general astro-geodetic orientation,
(ii) the least-squares coincidence approach, and cven
(ii1) the astro-satecllite matching provided quite useful

2.
i
i

checkss The lincar shift components obtained from the pre-

sent determinations arc,

AX = 243 metres,
AY = 733 metres,
AZ = 174 metres.

The corrections to the cxisting geoidal heights,
latitudes and longitudes, have becn presented in functional,
digital as well as graphical forms. Finally, the various
contributions of the study have been cnumerated to deline-

ate the scope of future advancement and further studies in

this field.
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CHAPTER I

IINTRODIJCTION
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A1l levelling and astronomical measurements are
necsssarily made with resmect to the level surface of the
earth or the equinotential surface, conventionally coinei-
dinz with the mean sea level, called the gzeoid. The geoid
is, however, a complicated surface with discontinuities in
its curvature, caused by irregular distribution of masses
within the earth, and is therefore ill-suited for being
used as a reference surface. This difficulty can be circ-
umvented by adovting a regular mathematical model closely
approximating the geoid, as reference for mapping anc math-
ematical computations, as long as the geoid itsslf is also

completely defined with respect to this surface.

a2 DIMEN'SIOLS OF REFERENCE STRFACE

Attempts at determining the shape and size of a
reference surface suitable for mapping the earth date back
to orimitive ages, when it was assumed to be a vnlane (Ene-
vclopaedia Britannica, 1962). Later, Pythagorus, Aristotle
and Zratosthenes argued that the earth was sphericsl in
shape, and still later it was proved to be an ellipsoid

(Heiskanen and Vening Meinesz, 1958), although there
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remained a controversy, even reflected in literature (Sharni,
1973), as to whether it was an oblate or a prolate spheroid.
The rotational ellipsoid concept fitted well with the prin-
ciples of physical geodesy and is supported by satellite
observations also. Other sugzestions for a reference, such
as a triaxial ellipsoid made by Russian scientists, and the
near-shape (Ramanathan, 1978) derived from satellite data
"are equally unsuitable owing to their lack of simplicity.

An ellipsoid of revolution defined by its major axis and
flattening (Figure 1.1) is still found to be the most con-
venient reference surface. Three such surfaces related to

the Indian geodetic system are described in Table 1.1

TABLE 1.1

DIMINSIONS OF SOMEZ RIFIRENCE SURFACE

Name a 1 i/8
Everest Spheroid | 20922931.8 Indian| 300.8017
feet
Hayford Inter- 6378388 metres| 257.0

national Spheroid

Geodetic Referencq 6378160 metres| 298.24717
System 1967

!
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FIGURE 1.1 - REFERENCE SPHEROID AND GEOID
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1.3 GEOID DETERMINATION AND ABSOLUTE ORIENTATION

OF DATUM

Hirvonen(l934) was the first to compute geoidal
undulations gravimetrically, followed by Tanni (1948) with
riore gravity data. Zhonogolovitch, Heiskanen, Uotila
(1,59), Talwani are among others who used gravity data for
Geterminine the global geoid or a part of it. "ideland
(1u55) detailed the Swedish part, Honkasalo(1%56) the
Finland area, and the Russian part was carried out by
lolodenskii. Rapp(ly7%) has given a detailed accomnt of

cefinition andé determination of geoid.

The geocentric orientation of their respective
triangulation systems have been determined or are being
cetermined by most countries towards providing a globally
consistent refersnce. Rice(1952) oriented the North
American system by gravimetrically correcting it at the
origin, lMeades Ranch. The Australian orientation was simi-

larly carried out by Mather(1970).

1elg STATUS OF THE INDIAN GEODETIC SYSTEM

In 1840, Everest selected Kaliannur as the initial
point of the Indian geodetic system as it was more or less
in the centre of the country.in a flat lying area. Figure
1.2 shows its apnroximate position. The arbitrary values

of the geoid parameters were chosen ac follows:?
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No = 0.0 m
£ = -0'29 (1.1)
o
P "
no 27,89

In 1924, the Hayford spheroid was adopted by the
International Union of Geodesy and Geophysics, and in 1927,
it was adopted as a reference surface for India. A least-
squares solution was carried out to obtain the best fit to

the compensated geoid and the resulting values were

N, = 9.5 m
B = 21,42 (1.2)
no = e S 3 |

Whilst latitudes and longitudes are still expressed
in terms of the ZEverest spheroid, Gulatee(1959) had changed
the deviations of the vertical of the astrogeodetic statio-
ns in the International spheroid system, reporting a further

correction of 3'.16 in the longifude.

Lo B OBJZICTIVE OF THE PRESEINT WORK

Arbitrary stationing of the reference spheroid by
individual countries can lead to discrepancies of over 100
metres or more in the definition of common boundary points
and much avoidable confusion in a progressively shrinking

world. Such discrepancies could be greatly minimized if



the absolute orientation of the spheroid is determined and
adooted so as té be globally consistent as far as possible.
This provided the basic motivation for undertaking the
research work embodied in this thesis, i.e. determination
of the absolute orientation values for the Indian geodetie
sy stem.

Geocentrically oriented systems being intrinsically
absolute and of global character, offer a number of other

allieéd advantages, notably,

(i) 1in establishing supercontrol points needed for
the absolute positioning of artificial satellites (Dixit,
1977 ),

(ii) din providing more accurate values of the gravita-
tional field for better understanding of mass distribution
thereby delineating subscrustal anomalies inside the earth
for use in geodynamical as well as exploration studies

(Ray and Bhattacharji, 1977).

1.6 METHODS USZD AND SCOPE

The present study primarily uses informations con-
tained in gravimetric data to obtain reliable values of
orientation parameters. Heterogeneous mass distributions
in the earth produce several associated phenomena detect—

able at the surface, namely,



(1) anomalies in the gravity field,)
(i1) wundulations of the geoid, and

(iii) deflections of the vertical

A1l these three variations stemming from the same
cause are;naturally,related to each other and each one can
be computed from a knowledge of the other. This possibility
underliﬂes the basic concept of physical geodesy which is
exploited in the gravimetric method discussed in detail in

the subsequent chapters.

Starting basically from the gravity data, the pre-
sent worlk combines other existing information, particularly
astrogeodetic and satellite, with a view tovdesigning an
integrated strategy in arriving at an optimal solution

within the framework of available resources.

While formulating the physical principles in terms
of mathematical exdressions and subsequently translating
the latter into tractable computational algorithms, vari-
ous innovations and mocdifications have necessarily been
made for software developrment that will accomplish accep-
table trade-offs between accuracy and cost. However, no
attempt has been made to analyze the basic inputs critica-
11y nor the claims to their declared accuracies which
have been accepted in good faith. Simplifications have

been made as and when necessary, keeping in view the



specific purpose and order of reliability of the final out-
put, the physical interpretations being considered more
important than formal mathematical rigor, without however

severely impairing the latter.



CHAPTER II
GRAVIMETRIC PRINCIPLE

2.1 GEINERAL

G.G. Stokes, a pioneer in the field of scientific
geodesy, provided for the first time (1849) an integral
expressing the height of geoid above the reference spher-
oidy in terms of gravity anomalies over the entire earth.
This was extended by Vening Meinesz(1928) to derive the
slope components of the geoid, which is directly related
to the corrections to be made on the astronomical coordi-
nates, viz., latitude and longitude, to enable one to
compute the parameters for the absolute orientation of a

geodetic system.

242 THE GEOID AND THE SPHZIROID

The mean sea level which is the reference surface
for astronomical observations and spirit levelling, is a
physical surface of constant potential, in equilibrium
under the forces of attraction by the underlying masses
and those above, including the topographical features and
extraterrestrial plancstary bodies as well as by the iner-
tial forces arising from the rotation of the earth about

its axis.
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The potential of gravitational attraction and rot-

ation of the earth at a point P (Figure 2.1) can be written

&S,

w=v o+ v o=kl 9[1 + ]E‘wz(xgﬂrg) (2.1)

The gradient veetor of W; called 'gravity' , 1& the

total force acting on a unit mass at P,
[2] = grada W= 7= 3= ;== ] (2.2)

A level surface or equipotential surface, is defined

as the surface on which

W(x,7,2z) = constant = W , n = 0,1,2,... (2.3)

or in other words,

(o]
=

T
[glefas] = [ ]. [dx, dy, a2]°=0 (2.4)

O |On
i
O';.IO’
< =
O,‘
=

where,
fds] = [dx, dy, dz] is a line element along the level
surface.
The vanishing of the dot-product of the vectors
implies that the gravity vector is normal to the equipot-

ential surface, termed 'geop' .

Of the whole family of equipotential surfaces des-
cribed by the above expressions, the particular one for

which the constant h%_is equal to h% and coincides with
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FIGURE 21-POTENTIAL AT A POINT
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the idealized free ocean surface is called the GEOID. The
latter being normal to the plumbline, constitutes a refe-
rence for all astronomical observations. The surface
tangent to the body-bubble in measuring instruments is
parallel to the geoid at open sea. On land, however, the
curvature of the plumﬁline must be taken into account while

reducing observations down to.the geoid.

For mapping and other practical purposes, however,
the geold is not acceptable as a direct reference surface
owing to its irregularity which is, in turn, brought about
by heterogeneous density distributions inside the earth
generally and in the crustal region in particular.

The potential of attraction V(Equation 2.1) may be

expressed as follows in terms of spherical harmonic func-

tions,
v=xf 9 -y o4y vV 4T+ (2.5)
_,.7_ O -L 2 3 )+uaoc 3
where, H
V == K.lil.?
O i i

represents the major part of the potential and is equal
to the attraction potential of a spherical earth with
radially symmetric density distributions, the total mass

being equal to that of the actual earth.

The magnitude of the first-order term,
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I
B =3 (x x4+ glytan « 2fo' dn) (2.6)
depends upon the position of the centre of gravity of the
earth with respect to the reference axes. By making the

reference system geocentric, V; reduces to zero.

Similarly, the second-order term Vs involves the
mass moments of inertia, and may be expressed in terms of
The moments and products of .irertia about different axes

(Figure 2.1) defined as follows,

= f(y'2+Z'2)dm -
B = - [(x'%+z'%)dm ,
¢ = f(x%+yt)am
(2.7}
D = Jx'y'dm ,
E = fytz'dm ’
Fo=e fetwtdm ,

It can be shown that V., Vh and other higher order terms

3

can also be interpreted in a similar fashion.

Transforming the geocentric rectangular coordin-
ates to the spherical coordinates and recognizing z axis

to be a principal axis, the total geopotential function
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reduces to

Wa ﬁ‘%g + % { %—(C—'A) (l—3sin2¢) - -:_l(B-A) cos2szcos2}\
T

= 22 s
+ % D c052¢ NPT * bpeu wir cos” ¢

2 LN )

4 - +
wnere, A = AEE s and

is the geocentric latitude

(2.8)

The surface of the geoid is therefore expressed as

W = W, , a constant

With the assumption of a symmetrical density dist-

ribution about the Z -axis and about the equatorial vlane,

the shape of the regularized geopotential surface, known
as spineroid, becomes

i 2 5 3
J = %# { 3 —25 J2(l-3sin2¢) T p—
i

2_
2 a3(l-f)

cos“ ¢

+ QE p(sinha--% 5in®® +.§% ¥ ises B Wy
¥

(2910)
waere =
g - 2p_Lpotetildopy
2 Mg? E | 2 2
= w2a3(l-f) .
KM
B = % f2 - 2 fm
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The geometry of the fourth-order spheroid surface
very nearly corresponds to a rotational ellipsoid with
seminajor axis a and flattening f. The residual deviations
of the geoid or its gravity field are small enough to be

considered linear.

The gradient of this equinotential surface would,
in turn, yield a reference for the total gravitational

field, wnich is called the ' normal gravity!',

[Y] = grad U (2.11)

The closed formulae, neglecting terms of order

higher than the square of flattening, are as follows:

M- = -I-ln_l. 3. —9—2
KM abYé(l- 5 + g fm + n =) (2.12)
2 13 j L 3{ &
g = l- =f +=m - =~ = ffm + =
3 S Reghanipti ety 7 ol
Y =‘Ya(l + fo sin2¢ + Py sin4¢)
where,
s e e b iBEG
f2 f-|-2m+2f 7m+)+m,
2.
; A,
=l i e S
f)+ > 2fm,
F = 2D y and
a
2
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a4 careful scrutiny reveals that the expressions

may be evaluated from four quantities namely, a, f, Yot W

The change of Y with elevation h is given by,

¥
h

=Y - :—é {1+f+m+(-3f + ém‘sin2¢}1+ —ié n®
a ' 3 i s e

(2.13)

For the International spheroid, the values adop-

ted are (Heiskanen and Moritz, 1967) as follows:

a = 6378388 metres

f =1/297.0 (214)
Y, = 978.049 gals

W = 0.9292115] % lO_LF rad/sec

Froﬁ the above, the following values are obtained

£, = 0.0052648,

£, = 0.0000236,

J, = 0.0010920, (215)

n = 0.003%08E,

U, = 6263978.7 Kgal metre

3.9863290 x 1ot 3 sec_z, and

)
Y=
=
i

n = Y -(030877 - 0.00045s5in%¢)h + 0.000072h°

=
I

wiaere h is in metre and Y in milligal.



=

The recent internationally agreed reference spheroid
is the Geodetic Reference System, 1967 (International Union
of Geodesy and Geophysics, 1967) with the following basic

elements,

a = 6378160 m

J, = 0.0010827

KM = 3.98603 x 10°% m3 sec™2 (2.16
w = 7.2921151467 x lO"5 rad/sec

The other values, as derived from these, are (Williamson

and Gaposchkin, 1975) as follows:

f = 1/298.247167427
Y = 978031.85(1+5.278895 x 1073 sin’s
+ 2.3462 x lO"5 sinu¢) mgal Bl s
Fa DISTURB ING POTENTTAL AND GRAVITY ANOMALY

As discussed earlier, the major part of the geopo-
tential ' may be represented by a smooth normal part, i.e.,
the spheropotential U, and the residual anomalous component

is termed as the disturbing potential T.

Referring to Figure 2.2, the geoid is defined by
g g 9 o
W= VI, , whereas the reference spheroid by T = ye Bruns’

formula relates the separation of the two surfaces by,
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T=W -0 = W —{Uq+(-‘§-g)qN}

or, N o= /Y {2.18)

The gravity anomaly at a voint is conveniently
cefined as the actual gravity value reduced at a corres-
poncing point on the geoid minus the normal gravity at
the corresponding soheroid point. Referring again to
figure 2.2 and assuming, for the present, that the two

normals are almost coincident,

t

Ag e = Y

iy

q

~(E - (- 8 - (&Ehm

ETl D (s P &h
8T Ay L
==( = = )N )
( b ) = h ) (2.19)
= U3 gr @ =
Y &h ¢h

A spherical approximation, applied in respect of

all the anomalous components, leads to the relations,

T

|

&h Sr
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1 af 2
2l gh 14 r
haw = 22 gl (2.20)
. 6]:‘ T ®
Cn the geoid,
r=R=} aagb = a(1-r)+/3 {2.91)
e STCKES? AND VENING MEINESZ®’ FORMULAR

The rotation term, contained both in the geopote-
ntial '] and in the spheopotential J, vanishes in the expr-
ession for the disturbing potential, making T a harmonic

function outside the earth, obeying the Laplace’s equation,

2m 2 2|
AT = & L 4 é_-,ZT_ 5 ,53___12[ 1 {pu22)
sx~ &y &z

the atmosphere being assumed to have negligible mass comp-
ared with that of the earth. The physical geodesy problem,
i.e., to determine the undulation of the geoid from the

gnown gravity anomalies, then reduces simply to the third
exterior boundary-value problem of potential theory in

wialch the function T to be determined is harmonic outside
a surface sy while a linear combination of T and its nor-
°F
o

mal derivative -~ 1is specified everywvhere on s. The bou-

6
ndary function known on the geoid surface is the gravity

anomaly,



bz = (- )T+ (-1) f—g (2.23)

This classical nroblem was solved by Stolkes(18L4s)

)
PJ
()
051
o
=]
—
Q
v

5ly as a mathematical exercise. However, he did

*ical harmonic expansion but a closed

not use the sphe

expressiocn of the following form (Figure 2.3),

R = MS‘G bnz S(Mado (2.24)
wiere,
N = undulation of the geoid with resvect to the
reference spheroid at any 'point,
R = average radius of the earth,
G = average gravity of the earth,
éaog = elemental surface area on the earth,
Ag = gravity anomaly on the element do
S(¥) = Stokes’ function
= -fl—m - 6 sin % +1~ 5cos ¥
sin =
2
- 3cos T fn (sin g + gin? % ¥y
and, = spherical distance of the gravity element from

the computation point.
In determininz the orientation parameters, the
other gravimetric quantity needed to position the mappi-

ng surface is the first horizontal derivative of N. Its
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two components, namely, the meridional and the prime

vertical deviations of the vertical, are expressed as,

E:..?JL ? (2.25)
RO ¢
3 EN
N T
where,
$ = geodetic latitude of the point,
61 = elemental increase in geoid undulation
(positive above spheroid),
¢ = clemental increase in latitude ¢ (positive
northward),
O x = elemental increase in longitude A(positive
eastward).
The minus sign comes from the sign convention
adoated.

Differentiating xpression 2.24 with resnect to ¢
and A, the expressions (Vening Meinesz, 1928) are obtained

as follows

g = ﬁ%a $ Az V(P)cosa do
(2s 26)
N = =B fe V(Psiva do
L .

where,



-2 Am

+

€ = the meridional (North-South) component of the
deviation of the vertical,
N = the prime-vertical (Zasit-West) component of

the deviation,

a azimuth of the arc of the great circle joining
the deviation noint to the gravity element reckoned in the

clockwise direction from the Lorth (Figure 2.3),

V(m) = ds( w )

= Vening lMeinesz? function

. _ _cosl/2 8siny - 6cosl/2
2sin2l/2

= 3(lTSinm/2) +3sin¢ Kn(sinw/2+sin2w/2)

sin®

Cther symbols have been explained earlier.

- ORITITATION OF NETWORK

4 regional geodetic datum may be said to be defin-

ed by seven parameters (3wing and Mitchell, 1970)3
J B 5 9

(a) lengths of two axes of the rotational ellipsoid
used,

(b) two conditions related to geodetic azimuth and
parallelism of minor axis,

(c) three parameters to assign the magnitudes of the
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tilt and the separation between the geoid and the
reference ellipsoid at a point on the earth’s sur-

face, usually the origin of the geodetic system.

Whilst the first two constants are specified by
adoating suitable dimensions of the reference spheroid,
the next two are satisfied by astronomic reference and

check on Laplace azimuth (Clark, 1968) during measurem-

1
i

ents.
For the last three unknowns, usually the origin

is assigned some specific values of geodetic latitude ¢_,

ug

longitude Ag, and altitude hS above the mapping reference
i.e., the local spheroid used. Iither the astronomical
coordinates ¢a, A, themselves and the height above the
mean sea level hm are used directly, implying tangency
of both the geoid and the spheroid at the point g or some
other reasonable criterion, e.g., local least-squares
fitting, regional averages etc., is used. The astrogeo-
detic deviations of the vertical and the relative geoid-

spheroid height at the point are then (Figure 2.4)

S gt
e 7 (Aa - kg) cos¢g C 2B
N,e = Bg = By

The gravimetric principle of physical geodesy,
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ocutlined in the earlier paragraphs, relates the separation
of the geoid and a geocentric reference spheroid, includ-
ing the deviations of the former with respect to the lat-
ter, to the gravity anomalies over the entire surface of
the earth, involving three global integrations to obtain
absolute values of Ugry Egrs Mgr at any initial point of
the national triangulation network. Dimensions of the
zlobally accented spheroid may differ from the locally

used one, as in the case of India.

The corrections to be made to reduce the network

to absolute terms, are then, (Figure 2.4)

& FO = Igr - Nag
& e T Eqr = Eag _
faom = n = (2.28)
0 TET ag
GuE | = ag[ - a{o
& = =

where a_, g refer to the new snheroid and a . £
: o | fo T o
refer to ths existing reference spheroid.

Once the absolute orientation parameters defined.

(8]

above are determined, the corrections needed to the exi-

sting geographical latitudes, lonszitudes and spheroidal
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heights at any point conneeted to the network are comp-
utable from the following datum shift formulae (Vening
Meinesz, 1950):
-b¢ = (cos¢ocos¢ + sing_singcosAd) 58
- (singsinAn) & n

~[ (sing cosp-cos¢_singcosar) -

( éNO +6a o

il
e sin“g 61 ]

-2cosd (sing- sin¢o) Ep y

- & Acosp = (sin¢osinA)\) 6, + (cosAn) &n

617+ 8a -
* (cos¢osinAA)( --Q-—-ﬁ——-—— * sing &f),
(2.29)
dh/R = -(cos¢osin¢-sin¢>ocos¢cosA}\) 5 Eo

~(cos® sinAn) 6no

p +(sin¢osin¢+cos¢ocos¢cosAA) s

Ny +8a

“¢ - + sin2¢o 5 )

- %—?; +(sin2¢—231n¢osin¢) B,

where, &¢, 8A, &h are the corrections at (¢,\),

¢O, )\O are the coordinates of the initial point, and
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The preceeding parasranhs describe in bhrief the
basic concepts of the gravimetric principle of absolute
rientation of a national geodetic system. Starting from
the idea of the commonly used equipotential surface, and
its divisicn imto aregularized and an irregular part, the
practical computation formulae needed for a geometrical
description of the geoid are discussed, culminating to
the expressions for conversions of local zeogranhical
latitude, longitude and geometrical altitude of any sta-

tion to their absolute values.

Various assumptions, explanations and modificat-
ions made for computing the integrals numerically are

discussed in detail in the sibsequent chapters.
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CHAPTER III

DETERMII ATION O THE BFFECT OF OUTER REGION
N T'TE GEOIDAL PARAMETERS

201 GEI ERAL

Theoretically one needs a complete knowledge of
The earth’s gravity field at every point of its surface
in order to compute the departure of the geoid from a
reference spheroid through Stokes’® and Vening Meinesz’
integrals. However, since the gravity field of the earth
is irregular, and cannot be expressed in a mathematical
form, the integrals can only be evaluated numerically by
considering them as sums in finite intervals. The accur-
acy of computation depends on the size of meshes chosen
for the summation as well as on other factors related to

the weighting function and the input variance involved.

However, the near-linearity in the variations of
the Stokes? function at large radial distances towards
the antipode of a computation point and its progressively
decreasing magnitude suggests that at larger distance
from a point in question, one could choose comparatively
larger sized finite elements without sacrificing the
precision significantly. This is also true for the slope

components as the linearity of the Vening Meinesz’
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function used for their computation.is even more pronounced

at larger distances.

In order to carry out the computations, every
mesh 1is characterized by a single value of the gravity
ancmaly equal to the mean value of the anomaly over it.
As explained above, the size of the meshes could be cho-
sen to be fairly large in the region of integration which
is far from the point at which computations are made,
whilst it has to be smaller for the region of integrat-

ion immediately surrounding this point.

In the present worl, the total domain of integr-
ation of the Stokes’ and Vening Meinesz'integrals has
been divided into a far exterior region made up of large
mesh intervals and a near interior region wherein the
meshes are of smaller dimensions. Finally in the immedi-
ate neighbourhood of the points in question, the meshes
are further shortened for gaining higher accuracy. This
ig done merely to compute once for all the contribution
to the geoidal parameters arising from the exterior reg-
ion which could subsequently be simply superimnosed over
that arising from the near region and from the immediate
neighbourhood, to obtain the total values of the Stokes?

and Vening Meinesg'integrals.

The contribution of the exterior region to the
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geoidal undulations will be referred to as the 'void
geoid' . It has been calculated from the recently avail-
able mean free-air gravity anomalies published by the

Ohio State University (Rapp, 1977).

The computation of the void geoid and various
innovations macde to accomplish it numerically, forms the
subject matters of this chapter, whereas that correspon-
ding to the contribution of the interior region and the
immediate neighbourhood are discussed in Chanter IV and

V respectively.

3.2 INTERSTATION VECTOR

Evaluations of the Stokes’ and Vening Meinesz’
functions primarily need the values of ¥ and g, the sph-
erical distance and the azimuth of the line joining the
computation station and the gravity station. The follo-

wing relations follow from spherical trigonometry:

I

cosf = sin¢g sing  + cos¢g cose, cos(}\g - 2,
81n¢gcos¢c - cos¢g51n¢c cos(l&g - AC)
COsEm = : -9
sinl

(3.1)

& AR SN )
os¢g ( . CJ

s
sin®
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where

¢C, A, = latitude and lomgitude of the station

where N, &, N are needed
P, Ag = latitude and longitude of the gravity
stations, or of the geometrical centre of

the gravity element.

The cqstomqry formulationslmentioned above are
not well-suited for automatic computations in the form
as they are. A better analytical expression is the mat-

rix fom in which the above equations can be written as

follows:
cosT
~-sinTcos g
-sinflsing
E 1 G =
-51n¢c cos¢ccoskc cos¢C31nAc ~-sing

= cos¢C slnqbccos)\C 51n¢031n>\C cos¢gcos}\g

0 sinAC —cos)\.C _jwcos¢g51nkg

(1.2

The matrix notation, arrived at, offers several
advantages such as,
(a) the trigonometric elements related to the two sta-

tions are now separated,
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(b) the transformation matrix elements are to be compu~
ted enly once for a computation station and stored for
further use,

(c) the transformation matrix is recognized to be orth-
ogonal, and this unique property may be exploited any time

with advantage, knowing that its inverse is equal to its

transpose.

3.3 THE AREAL ELZMENT

The mean gravity anomalies are usually expressed
over a trapezoidal area bounded by two meridians and two
parallels. The area in square degrees is usually (Figure
3.1) approximated by

a =~ Dd. DA. cos¢g (3.3)

When the block~-size is large, this approximation

gives an appreciable error. The true value is,

A, +D0/2 ¢, +Dp/2
a = ) g G cos¢ d¢ ai
A _-DA/2 ¢ _-D¢/2
g g
= {sin(4,+D4/2) - sin(¢,-Dp/2) 3D (3+%)
= Dp DX

20 ) Sin e
cos¢g <

The divisor 4w in original Stokes’ and Vening

Meinesz’ integrals may conveniently be absorbed here,
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FIGURE 3. - SHAPE OF A GRAVITY ELEMENT.

Meridion paralisi E qual orea

FIGURE 3-2-FIVE DEGREE BLOCK TYPES.
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to express the area in terms of the solid angle subtended
by the quad at the centre of the earth. The customary

unit of angle being in degrees,

o = a/lw
. Tl T, 1 1
= e ° — [ L o 30
2 cos¢g sin 5 ) = (3.5)
= =, cos¢ .sin.EB?
36{) & 2
wiere the sollid angle g is now in steradians and DA in
degrees,
D¢ = latitude interval,
¢ = latitude of the centre of the block.

g
The expression has at least two advantages,

(a) the irrational factor w vanishes from the computa -
tion, except in two trigonometric terms, which should bet-
ter be evaluated in double precision,

(b) for any particular belt in the Tqual-Area-Block

system, every quantity except DA remains invariant .

3ok SIZE dF AN ELEMENT

The global unit of a surface element for mean
anomaly is an element of 50 X 50 size. Two categories
of mesh divisions (Figure 3.2) have been used in prac-

tice,
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(a) Meridian-Parallel Grid : The entire earth’s surf-
acé may be divided by meridian lines at 5 ~degree intervals,
and parallels of longitudes at 5 -degree intervals. Due to
latitude-longitude asymmetry, the area of a block will vary
according to its position. In the equatorial reglon 1t will
be nearly 25 square-degree, but in the polar region it could
be as small as 1 square-degree. The total number of blocks

thus chosen will be 2592.

(b) BEqual-Area Block : Another way of dividing the
earth’s surface into elements, are to frame blocks of app-
roximately 25 square-degree surface area on the sphere.
The latitude interval may be kept as 5 degrees, but the
width in longitude direction changes from 5 degrees in
the equatorial region to as large as 120 degrees in the
polar region. The total number of blocks thus becomes

1654.
2.5 THE WEIGHTING FUNCTIONS

Another improvement has been made by expressing
the Stokes’ and Vening Meinesz’ expression in algebraic
arguments instead of trigonometric quantities, as shown
belows

(a) The Stokes’ function contains the cosW and sin %
terms only, of which cos¥ is directly obtained as the

first element of the interstation vector. The other may
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be obtained by either of the two expressions,

sin y = f 1-cosy
2 ) ¥
(3+6)
o i
adn % - / sin“Y .
N 2(1+cos T)

So far as the computational precision i1s concer-
ned, the first expression clearly becomes inaccurate as
cos tends to 1, whereas the second expression may cause

overflow when coslf approaches -1. Noting also that,

sinzw = (-sin$bosa)2 + (—sin$sina)2 ' 0%

the Stokes’ function can be finally rewritten as,

S = T - 6x +1- £ (583n(x@+x))  (3.8)
where,
- A O-5(l—[i) when Zl < 0
=L 0502 + (2/@rty)  when £ 2 0,
in W’hiCh9
‘(l : [ cosT .
La = |-sinflcosq : (3:9)
(3 -sinfsing

are the elements of the interstation vector L, given by

b= LY,
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T being the transformation matrix, and
P, the position vector of the centre of the mesh,

detailed in Expression 3,2

(b) Two more trigonometric terms, viz., sinl and

cos oceur in the Vening lMeinesz’ function. Moreover,

| =

in the final integrals, cosq and sing are to be multiplied
which are not explicitly available so far except as the

products - sinffcosa and ~sinfsin g

Dividing the original function by -sin¥ and rear-

ranging, the modified form becomes,

V(1) (3:10)

-sinf

S( == 34 A ) /x - (B+34n(x(14x)))

This expression i1s fortunately in terms of x

only, and in the integrals the g term vanishes as,

V(ID)COSG U(I[T)Ig 9

(3.11)
V(¥)sina

I

U($)(3

Flgure 3.3 shows the graphical representation of the

functions S(U), V(U) and U(Y) with cosU as the argument.
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3¢6 GLOBAL AVERAGE VAL'TES OF GRAVITY AND THE

EARTH’S RADIUS

A5 A result of spherical approximation, two ave-
raged quantities appear in the Stokes’ and Vening Meinesz?

integrals. These are defined as follows:

(a) G is defined as the average global value of gra-
vity, usually taken as 979.8 gals. To render it more pre-

cise, the following derivation is used in the present

study:
27 /2
f Y cosg d¢ daa
A=o -17/2
G = (3.12)
2T
§ 5ﬂ/2 cos$ d¢ dx
A=Q  -T/2
where,
s S i e sin2¢ + f sinh¢)
a 2 L
whence, £ fh
2
G=Y_ (1 +=+ =) (3.13)
a RS SR

which is a general expression for a given spheroid.

In particular, for the Geodetic Reference System

1967, the value of G turns out to be 979757.41 milligals.

(b) R, the equivalent radius of the earth, is the
radius of the sphere having the same volume as that of

the reference spheroid. Thus,



g

R = p¥ o5 = a(l-r)l/3 (3.11)

It becomes 6371023.4 metres in respect of the GRS67 spheroid.

3.7 NONDIMENSIONAL FORMS

Input anomaliles if divided by G and multiplied by

¢ syield a dimensionless factor,

£ | _
B = —¢ (3-15)

Similarly, the geoid-spheroid separation may be
divided by the equivalent radius of the earth”tb render

it non-dimensional

w; = N/R,
whereas Wy, A (3.16)
and u =

are already non-dimensional being in radians.

3.8 FORMULATION OF BLOCK COI'TRIBTTION

The numerical integration procedure may now be

expressed as,

3 =k 0 (3.17)

where the undulation vector for each integration element

is,
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AT

I
o
£
I
-

the weighting vector being,

i Wy é S (1)
W = W2 = U(w) %2
Wy U($)13
3.9 DATA DESCRIPTION

For the present part of study, three different
i - 0 0
sources were explored for obtaining the 5° x 5 mean free-

air gravity anomalies.

(a) One set is that published by the Bureau Gravimet-
rique International (Coron, 1972), hereafter designated as
BGI data. The mesh is on the Meridian-Parallel-Grid system
and anomalies are related to the 1930 formula for normal
gravity corresponding to the International Spherodid , and

the o0ld Potsdam value of gravity.

(b) The second set designated as SAO, is an incompl-
ete Squal-Area-Block set (Williamson and Gaposchkin. 1975)

compiled by the Smithsonian Astronhvsical Observatory.
iy I o
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The SAQ set, consisting of 1452 blocks is referred to the
IGSN 71 network of gravity and the 1967 formula for norm-

al gravity.

(¢) The third set, i.e. the 0SU data set recently
published by the Ohio State University (Rapp, 1977) is
a complete set of Hqual-Area-Block mean free-air anomal .=
ies derived on the basis of the IGSN 71 network and the

GRS 67 formula.

Before any comparison is made regarding their
suitability and reliability, these data sets must be
reduced to a common standard, i.e. to the same network
and spheroid. Appendix A describes the corrections
applied to the BGI set to reduce it to the GRS 67,

IGSN 71 base. From the values in and around the Indian
continent in the SA0 and 0SU sets, mean values for 5%
gridded divisions are estimated proportionately, in
order to convert the blocks to Meridian-Parallel-Grid
system. Table 3.1 contains the descriptions of the

sample values taken.

From the sample statistics shown in Table 3.1,
the primary observation reveals that the fluctuation
is higher in the BGI set than that in the other sets,
whilst the mean values are nearly same in all cases.

The recent data are the results of incorporating greater
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TABLE 3.1

STATISTICS OF 5-DEGREE DATA ST SAMPLZS

| Area Covered = 5° to 40°%F, 65° to 100°E

| Tumber of blocks = 49

e~ ]

g Tnit = mgal
Set Maximum Ag Minimum Ag Mean Standard
! Deviation
EAO 332 ~68.8 5 1 4% A 19.0
GI 49,2 -67.1 -12.9 28X
0 SU 28.2 -56.5 -11.3 16.6

L

number of observations and hence likely to produce more
averaged-out representative block-mean values, thereby

reducing the fluctuations considerably.

Another comparison of the differences of mean
anomaly values of the same area obtained from the three

sets, is presented in Table 3.2

The same conclusion emerges from Table 3.2 also,
where the results for'BGI minus 0SU' and 'BGI minus SAO!
are more or less equivalent, the '0SU minus SA0' values

show a marked improvement.
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TABLE 3.2

COMPARISON OF SAMPLT STTS OF ANOMALTIES

-

Difference, without regard

! ; !
; Sets to sign Mean RMS

Diffe- Diffe-
Maximum Minimum Average rence rence

compared

BGI-0SU 39.9 D 9.4 = e -

10 SU=-8A0 B % 5 - 5 5 543 -0.2 AL
}
;

BGI-SAC 42.8 Bed Bl «1e9 B P

3.10 ON SUITABILITY OF USING THE DATA

Regarding the economy of using the mean anomalies,
as input data, the objective of the excercise is the pri-
me determinant. For example, if a generalized geoid shape
is needed for the Indian region, the Meridian-Parallel-
Grid type is convenient for computation by numerical int-
egration. The computation noints in this case may be
chosen to coincide with the grid corners for which the
coefficients to be multiplied by Ag are to be evaluated
only once for the entire latitude belt and for only one
side of the meridian, as has been done by Tanni(1948).
Moreover, the minimum distance from a computation point
to a gravity point, i.e. to the centre of the block, is

more or less fixed being equal to 3.5 degrees. This
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uniiformity makes the inaccuracy due to numerical integ-
ration uniform and less pronounced for all computation
noints.

Using the other type of division, namely the
Dqual-Area-Block, the minium distance may be as small
as 2.5 degrees when a computation point falls on the
csame meridian as the centre of the upper or lower block,
causing the inaccuracy in N to be higher for that point,
as the Stokes’ function changes sharply with decreasing
distance. Therefore, for a general mapping of the geoid
from five-degree corner values of I', the Meridian-Parallel-
Grid type is better suited. The result of a test run
with BGI data is presented in Appendix B, and with ano-
ther preliminary attempt on absolute orientation on

International Spheroid is reported in Appendix C.

All the advantages mentioned would, however, be
infructuous 1if the computation point is a general astr-
ogeodetic station like the origin of a local geodetic
system. The Equal-Area-Block obviously affects economy
in the computations, the elements being about 35 per-
cent less in number. Moreover, the surface area being
nearly the same for all, the weightage of input values
are similar to each other. Hence for gravimetric comp-

utations for a deviation station, the Iqual-Area-Block
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system would clearly prove to be a better choice.

For the present investigation, therefore, the
updated 0S7 data have been preferred. Since the Inter-
national Spheroid has been superseded by the universally
accepted GRS 67 Spheroid, the absolute orientation para-
reters determined have been utilized to reduce the publ-
ished geographical coordinates in terms of the Everest

Spheroid to the GRS 67 system.

Akl INVER LIMIT OF THE EXTZERIOR REGION

The effect of the exterior region, from a certain
distance onwards right up to the antipode, varies smoothly
and 1s therefore interpolable. The desired accuracy of
the determination and the availability of detailed data
in the interior region, are the two Dbasic factors which
define the inner limit. An aperture of 20° is a generally
éccepted recommendation for N, whereas 150 may be suffic-
ient for § or . In the present case, a clear margin of
15° beyond the borders of the country was to be chosen,
as outside this limit, sufficient coverage of 1° x 1°

mean anomalies was not available.

However, owing to lack of continuity of meridians
in the Zqual-Area-Block type division, the inner bounds
of the gravity cannot be defined by distinctly delimi-

ting longitudes. The area for which the gravity
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anomalies were not considered for evaluating the void
geoid are detailed in Table 3.3 and depicted in Figure
.y

TABLE 3.3

LIMITS OF THE INNER ZONE NOT CONSIDZRED IN THE
DETZRMINATION OF THE VOID GZOID

Latitude Limit of belt Corresponding Longitude Limit
Northern Southern Western Eastern
559N 50°N 57°% 115°E
50°N 459N 51°% 110°r
459K 40N 54°R 115°E
40°N 35°N 5198 11L°R
35 30°N 53°g 112°g
30°1 259y 51°® 113°%:
25N 20°N 54°F 113°%
20°% 15°N 5208 115°E
15 10°N 51°E : i -
10°H 59N 51°% 112°8

5% o° 50°z 115°%

enntdes .
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Table 3.3 continued

g° 5% 50°® 115°%

g . 53°R 112

Total number of blocks = 141

3.12 RESULTS OF COMPUTATION

After developing the computer programmes for
determining the void geoid parameters at any general
point, 64 grid corners at 50 intervals covering the
Indian subcontinent (Figure 3.4), were selected so as
to give sufficient interpolable informations. Uotila
(1959) also recommended a similar grid with parabolic
interpolation. The inner limit, being fixed and inde-
pendent of the position of the computation point, might
ofcourse give rise to nonuniform precision at various
corners but values at an interior station in the Indian

region would not be sufficiently affected by this.

For evaluating the series of undulation and
tilt components at all points of the 8 x 6 grid, the
gravity data including positions and sizes of the 1513
blocks must be read from cards over and over again, oT

to be stored in the computer core as subscripted
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variables, thereby requiring a large memory and search
time. This was avoided by arranging the cards to be first
read by the machine, evaluating the elements of the vec-
tor P and of B for each block, and then storing these on
a magnetic tape as non-subscripted serial array in bina-
ry code. In the next phase, the tape was mounted and
the usual RTVIED statement was used after evaluating N ,
Ev’ ﬂv at every grid corner. The total CPU time needed
for both the phases was about 5 minutes on IBM 370
computer.

Table 3.4 shows the final results for N, the
contributions to the void geoid, and the values &, M,
of the slope comvonents are given in Table 3.5 and 3.6

respectively.

3,13 THTERPOLATION FROM CORNER VALUZES

Tnterpolation of the N_, Lor Ty values at inter-
mediate points is in this case rather simple as the grid
values change smoothly. Even linear interpolation could,
therefore, serve the purpose with no significant loss of
accuracy, but a two-dimensional cubic spline interpolat-
ion has been preferred and developed. The spline-fitting
technique is generally recommended to be a very powerful

tool for its minimum norm pronerty (Ahlberg et al.,1967)

and an odd-order function has been considered to be the
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TABLT 3.4

‘DULATIONS OF THE VOID GZO0ID IN AND AROUND INDIAN REGICH

B 65° s 75° 80° - 85° 90° *-950 100°
¢ | Values are in metres. I\.eg.ative sign indicates h"e;ght below G*RS 67

H - 9.08 =11 x36 -12.87 ~13.69 ':13.82 413.29 ~12.11 -10.32
35°  -10.3%  -1l2.L2 ~13.66 ~14.15  =13.92 -12.99 =11.39 - 9.9
30° -12.25 -13.97  -14.91 a7 SN § RS | 3,18 SELIG = Bl
250 -llh.h6  ~15.79 16445 1635  ~15.46  ~13P6 s-1l.22 - 7.87
00°  -16.61 -17.71  -18.15 _17.85  -16.72  ~14%.68 -11.67 = 7-63
159 <if.&3 ~19.62 ~19.97 +19. 56 -18.28 8.0l ;-12.60 -
1% A58 ~21.49 oY% ~-21.4%9 R s By =117 - 8,00
9 _29.96 -23.2% -23.80  -23.68  -22.60  -20.31 ey BT = 0

_ag-



MERIDIOWAL DEVIATIONS

TABLE 3.5

OF THE VERTICAL OF THE VOID GEOID IN AND AROUND INDIA

X 65° 70° 75° 80° 85° 90° 95° 1.00° ;
¢ Values are in arcseconds and referred to GRS 67 T
1 T, o - S 55 “Ds 183 ~0.060 0.080 0w 233 0.386’ 0.526- ?
35°  -0.605  -0.498  -0.389  -0.27L  -0.1k0 0.006  0.168 0.33% | &
30°  -0.790  -0.639  =0.525  -O.klk  -0.291  -0.146  0.830 0. 249 i
250 _0.823  =0.702  -0.608  -0.516  -0.410  -0.275 ~0.09% 0.158 |
20°  -0.772  =0.713  =0.656 -0.597  ~0.52L  -0.412 -0.248 0.005
15 870 -0.704 ~-0.687 -0.673 -0.642 D577 20,453 (s 257 |
10° ~0.683 -0.676 o N B | =0 758 T 0. 78Y. | =8a725 =0 SHL.

N Y, ~0.616 -0.736 -0.877 ~0.998 oL 0L ~Il0BR =1 D80




TABLE 3.6

PRIME VIRTICAL DEVIATIONS OF THZ VERTICAL OF THZ VOID GZOID IN AND AROUI'D INDIA

65° 70° 759 80° 85° 90° 95° 100°

s el

Values are in arcseconds and referred to GRS 67

| S SE—— SNE

| 40°  1.298 0.912 0. 562 08 -0.098 s 7 T S ¢ P 1. IO v |
b St 0« 7h4L 0.399 0.057 ~0.265 ~0.576 ~0.866 ZN 3 By
P p.enm D567 0.239 ~0.084% -0.408 0,726 =1.028 ~1.985
25°%  0.671 0.413 0.117 ~0.198 ~0.529 ~0.868 ~1.209 LRy
.54 0.3%2 0.03Y% ~0.278 ~0.621 -0.992 -1.388 -1.808

157 S0l 0.263 -0.004 ~0.316 ~0+675 1,082 wl oSk ~2. 070

Lol 717 % 0. 255 0.011 ~0. 299 ~0.677 S 1 I s 415 -

, S T 0.303 0.100 ~0.207  =0.6l2  -1.105 -1.686  -2.383

—JV 9_
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best. For the present study, the third-order function
having continuity up to the second derivative has been
extended both along the meridians and the parallels,
generalizing it as a '"bicubic' spline surface. This may
further prove useful in improving digital models for
terrain contouring which is usually accomplished by
polynomial DTM technique (Ghosh and Ayeni, 1977). The
formulation of the spline-surface and a few useful tab-
les are presented in Appendix D which may be found use-

ful by future researchers in thig field.

The parameters of geoid-spheroid departure are,
thereafter, interpolated at every 1° corner around the
Indian boundary, and are depicted in Figures T 5y Ank
and 3.7, in contoured forms. It is important to mention
here that the pictorial presentations are not based on
any conventional projection system. Equidistant and
perpendicular lines are drawn to indicate the meridians
and parallels at equal intervals. The national boundar-
jes are also purely approximate, just to indicate a ge-

neral shape only.

3.1k SUMITARY AND DISCUSSIOL:

As a first step towards determining the naramet-
ers of the Indian geoid gravimetrically from the GRS67

spheroid, the effect of the outer region on the



undulations of the geoid has been computed and presented
in this chapter. This is subsequently added to the cont-
ribution of the interior region discussed in succeeding

chapters to obtain the parameters of Absolute Orientation.

The conventional formulations have been modified
to suit automatic computation on a digital computer with
high efficiency, The interstation separation has been
formed in a matrix form and the area of the integration
element has been expressed in terms of the solid angle
subtended by it at the centre of the earth as these are
found to be more suitable for computations involving
‘gridded data. The Stokes? function and the modified
version of the Vening Meinesz? function have been rear-
ranged in algebraic form, to avoid repetitive computat-
ions of trigonometric quantities. Further, the average
value of G has been improved. Finally the contribution
formula has been expressed involving dimensionless quan-
tities.

After formal comparison of the qualities of the
existing data sources for their suitability of use, the
0SU data, being most uptodate and also economical for
for computer use, has been chosen for the analysis pres-
ented in this chapter. The data set, extending beyond a

margin of about 15 degrees from the boundaries of the
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Indian subcontinent, has been used to compute its contr-
ibution to the deviation parameters N_, I , N at 64 grid
corners covering the Indian region. Snline fitting has
been used to interpolate values at intermediate points,
and the final results are presented in tabular and con-

toured forms.

Whilst the contribution of the exterior region
has been used here as a part of the total objective of
this work,i.e.,to obtain the parameters of absolute ori-
entation of the Zverest Spheroid at the origin of the
Indian geodetic system, these results thus made availab-
le in a digital form can be used in future to further
refine the total correction as and when more close and
complete data accrue in respect of the local region and
in the immediate neighbourhood of a point in question,

simply by superposition.

The shape of the 'void geoid' is found to comp-
are well with that of the satellite-derived geoid in the
Indian region (Gaposchkin, 1973), particularly in respect
of the following:

(a) the geoidal low in the Southern part of the
peninsula,
(b) the downward trend in the North-South profile,

(¢) flatness of the geoid in the Bast-West direction.
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The absolute values of the void geold heights
are much smaller, obviously due to the absence of anom-
alies in the near region later found to be mostly negat-
ive. However, these are perfectly consistent with the
RMS influence of the region beyond the average spherical
radius of 18° (Heiskanen and Moritz, 1967)3 being +18
metres in N and i1ﬁ8 in £ or n, obtained statistically
from the degree variances of gravity anomalies (Kaula,
1959).

The choice of the inner limit is further confi-
rmed from Rapp(1974), who presented the standard devia-
tion of undulation assuming gravity coverage beyond a
certain limit woo Whilst a sharp decline is seen from
g, = 0° to G = 20°, the standard deviation remains
practically constant further up to mb = 80°, indicating
no practical gain of accuracy by extending the limit

beyond -t 340

The computation points for the voild geoid
lying well within the Indian region thus gatisfy all
necessary conditions for obtaining the desired accuracy,
despite the asymetry of the region of influence with

respect to the computation point.
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CHAPTER IV

EFFICT OF THE INTERIOR ONE DEGREZ ANOMALY
RAGION ON THE GHZOIDAL PARAMETERS

h.1 GENERAL

The determination of the geeidal parameters using
a basic global coverage of gravity anomalies over five-
degree elements, has been attempted in the previous cha-
pter. For computing the effect of the interior region with
acceptable precision, however, the size of the integration

element has to be considerably smaller.

The next smaller size of areal element for the
latter is chosen to be one-square degree Meridian-Parallel-
grid. The outer bounds of the interior region were chosen
to extend up to a distance of about 15° from the boundaries
of the Indian region, coinciding with the inner limit of

"

the exterilor region considered for the void geoid and

described in Table 3.3.

This chapter embodies the formulation of the prob-
lem of computing the effects of the interior rezion and
results obtained at 1° grid corners, using the mean free-
alr gravity anomalies mostly from the DMAAC data (Defense
Mapping Agency Aerospace Centre, 1973), and termed as

4 o % ==l e i .
partial geoid . The superposition of these partial geoid
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parameters ol the void geoid' values gives a smoothened set
for further use in determining the orientation parameters

in ahsplute ferms.

e 2 ASSUMPTIONS MADE IN THE INTEGRALS
(a) The first and foremost source of inaeccuracy in the

numerical integration arises from the large size of the
integral element. In the diserete summation analogue of

the integration continuum, two variables are approximated:

i) each of the weighting functions which are actually
continuously varying functions of position over an areal
element, is replaced by a single value corresvonding to
the distance of the centre of the areal element with the
computation station as pole, for the entire element,

id) the variations in gravity anomalies within the
element have similarly replaced by a single mean value.
(h) Furthermore, the Stokesian integral basically ass-
umes that the disturbing potential T is a harmonic function
The solution will therefore be perfect only if no masses
lie outside the geoid, an assumption which is rarely ful-
filled over land. This assumption, given effect by free-
air reduction, adds another source of inaccuracy as it

yields the cogeoid instead of the geoid.

(e) The errors of measurement in the determination

of gravity and altitude values combined with modelling
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errors in averaging also add to the inaccuracies of the
final results which therefore tend to represent only est-

imates with large variance.

(é) Other sources of errors arising from imperfect
assumptions, €.g.,
i) equal potential for the geoid and the épheroid,
143 their possessing equal masses and volumes, ther-
eby meaning a negligible zero order term,

%) coincidenee of the geoid with the mean sea level,

as well as other smaller order discrepancies, though
theoretically quite important are considered to be neg-

ligible enough to be ignored in the present determination.

4.3 ERRORS OWING TC AVZRAGING OF THE WBIGHTING
FUNCTIONS
An estimate of the errors caused by replacing the
continuous function S() and V(J) by their mean values
over an element can be made by considering a suitably ori-
ented nearmost block. Since the block containing the
computation point will have ¥ = 0 where the functions are

discontinuous, one bounded by U = 5° to ¥ = 10° ‘and

a =-—2? 5 to & = 2?'5 may be chesen for the error estimation.
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£ 5(7.5) &
Irr § = o Oa T
or in 8() KleS(W)sin¢d¢7551051n$d¢ %
5
Error in W(¥) =41 - ¥47:5) # 2.8 %
5flOV(IH)sinq}dulr /5 §10sinyay

In the direction of a, the error will be of the order of

sin 2°.5
T X 2.5/180 ¢

which is about 0.03 percent only.

The Stokesian solution is based on the spherical
approximation which implies that quantities of the order
of flttening, i.e., 1/298 or approximately 0.3 percent,
can be neglected. Therefore, the averaging of functions
does affect the accuracy at ¥ = 10° or nearer. The effect
of the element referred to above being nearly 0.08 metre/
milligal in N and 0.02 arcsecond/milligal in the devia-
tion 6, the absolute orders of error for an element over
which the anomaly may be as high as 200 milligals, will

be 6 centimetre and C' .1 resnectively.
T 13 ERRORS DJZ TO AVERAGING OF THE GRAVITY
ANOMALISS

The gravity anomalies are usually of random tyne

with high fluctuations specially when the topography 1is
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rugged or the crustal density contrast is sharp. The error
estimates will therefore be different at different nlaces
and only a sample was considered from the real data in

Indian region.

he mean values may be estimated either as a

simple average
n
L Ag.
-

A?S_)’ = —_— : (L}..l)

n

or, the average after weighting by the corresnonding arca
covered, i.e.
& L(cos¢g Ag)i

g = (% 2)
hX (COS¢g)i

The two means were calculated and compared to the value

given by Rapp(1977). Table 4.1 shows the sample statistics.
TABLE 4.1

SAMPLE STATISTICS OF MFA ANOMALIZS

Zone covered 308 e 3OON, 79 to 8L4°E
Range ~163 to + 61
Ag -72.04
Bg ~72.05 L
Maxm.difference 133
RMS difference 52.9 't
5° Mean -68.5 + 3.1

unit .milligal




The standard deviation in the set is too highj the
region is in the lower Himalayan area and is thus an extreme
case of fluctuating values, the deviation being an upper
bound.

The three mean values are consistent among them-

selves as they do not significantly differ from one another.

4.5 RIDUCTIONS OF ANOMALIES

he loss of precision for want of suitable reduct-
ion methods had been discussed at length by geodesists.
Theoretically, the correct thing to do is to apply the con-
densation correction (Helmert, 1884). However, from pract-
ical considerations, the free-air reduction proves to be
the optimum. Isostatic anomalies have also been recommended
as they are geodynamically significant and interpolable,
and the indirect effects involved are moderate (Heiskanén
and Moritz, 1967). Mather (1970) computed the Australian
geoid on the basis of regional gravity data, where he
recommended the method of free-air reduction. As the
errors arising from the use of free-air anomalies are comp-
arable to the modern accuracy of measurements, it may be
safely used for one-degree mean anomaly data, where the

standard error of the mean itself is 5 milligal or more.

Figure 4.1 is a schematic diagram of various red-

uction methods showing their effects on gravity and geoid-
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FIG. 4-1 VARIOUS GRAVITY REDUCTION METHODS
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cogeold separations. The comparisons clearly cstablish

the facts that simple free-air anomaliss may be considered
as very nearly equivalent to condensed free-air anomalies,
and the frec-air cogeoid coinciding with the actual geoid

to the same degree of approximation.

L.6 NORMALIZATIOHE OF W3IIGHTING FUNCTIONS

The Vening Meinesz? function has already been
modified and reported in section 3.5 of chapter III. As
the spherical distance involved in the present case is

less than 900, the following formulation for x is adopted

J
x = sin(§/2) =[0.5((3 + £5)/ L4y (4:3)

As the value of x is now small, evaluation of the
function S(¥) and U(Y) should be carcfully arranged to
avoid loss of precision due to computer overflow and
truncation. DouBle brecision may well be used in this
phase of computation, aven though it will involve greater

computer time.

A clear review of the computation logic will be
in order to illuminate the strategies adopted for effe-
cting cconomy. Firstly, the behaviour of various torms
that comprisc the functions S(¥) and U(Y) is visualized
from their velues oresented in Table 4.2. After gaining

an idea of the order of components, they are rearranged



in a sequence of increasing magnitudc.

ensure that the larger magnitudes do not render small

.....

“TO-

Thde - d'g- -~ Gpoha- b

the first significant digits of the latter terms are at a

place lower than the precision level. (Rajaraman,1978).

VALUES OF VARIOUS TERMS IN THE

TABLE

Le2

WEIGHTING FUNCTIONS

& T B o e l:x%— : ux—%* i
0.12° BH.3 0.7 1.0 1.0 145 25 47 2
s | 0.7 1.8 L 188 27 56 2
0.10 10.0 0.6 180, Yag 125 30 63 1
0.0y 11.1 £:5 L6 19 ' 343 3 85 ;)
008 125 0.5 1.7 [Esh 488 38 109 1
0.07 1ka3 0.4 L0 2 558 43 143 0
08 16.7 0.3 L8 3.2 | 1158 50 197 0
V.05 20.0 0.3 1.6 3.8 | 2000 60 285 -1
| I
| g=1l+x , p=7 +3 L (xq)

It is further observed that the terms with 1/x

and 1/x3 are the exploding ones.

These factors are there-

fore used as the normalising factors evolving thereby two

new normalized exprossions wherein the awkward infinity
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does not occur at all. The proposed functions are, rear-

rangaed in increcasing order,
S = x s

= x(-6x +1 - Alp) 71 (Lo ly)
and Y s x> U

-x(x(x(3+p)-3) ~ 0.75/a) + 0.25

where,

»
I

sin{/2

=1 = 2X2

>~
e
|

gL = r ¢35

p= 2+3 L (5

In these forms, only one type of paranthesis has
been used to make these suitable for changing to Fortran
statements.

Methematically the term p becomes infinity when x
is exactly zero, but for all practical purposes the mini-
mum value of x is l.37 x 10'13 corresponding to a distance
of 1 millimetre for which p is only equal to -64% . However,
as is well-known, a poSitional accuracy of 1 millimetre is

only of rigorous theoretical immortance.

Figure 4.2 shows the granhs of the normalized

functions S(¥) and U(Y) with x as argument.
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-
b7 FORMULATION FOR NUMERIC AL INTEGRATION

With the normalized functions, the numerical summa-

tion formulation is also refined as follows:

rAul b

AT = Au, = WP
_Au3 y

vhere, i # | Té(W)x2—T
W= w, |= | DL, (1 5)
i UL,
and @ = a2 9,
' Gx3

The symbols used are self-explanatory, and have been defi-

ned carlier.

4.8 Ol E-DEGRER DATA SET

Two basic sources of data were explored for one-

degree mean free-air anomalies:

(a) A major global coverage, by the Defense Mapping
Agency Aerospace Centre (DMAAC, 1973}, of 1° x 1° Meridian-
Parallel-Grid type division. The DMAAC set is in the IGSN71,

GRS67 system.
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standard error of the mean determination which is of the

order of +12 milligel and is seldom less than 5 milligals.

(b) The mean free-ailr anomalies should be converted to
condensation-corrected anomalies. Zvan a simple terrain
correction will yield a modified free-air anomaly set
suitable for the present use. The evaluation, however,
requires a cetailed knowledge of the topography of the
region, involving an enormous task. The indirect effects
of condensation on N, £, 1 through the change of potential
must also be simultaneously taken into account, thus, making
the task quite complicated. The resulting change will be
agbout 2 milligals in a point value in the most rugged part.
The ruggedness again makes this change fluctuating between
positive and negative extremes, least affecting the mean

anomaly in an 1° x 1° areal element.
4.9 FILLING OF ELEMETS HAVING NO DATA

Even after the sets are combihed in the manner
detailed earlier, there remain several gaps in the region
which must be suitably filled up before proceeding to
process the anomalies. Luckily enough, the gaps in known
values of anomalies correspond to regions that lie at
great distances from the origin at Kalianpur, the minimum
distance being nearly 1000 kilometres. Fig.4.3 shows the

WL e . 5 . 5 (0]
positions of such gaps that lie within approximately 20
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(b) The other data set is from the Lamont Geologiecal
Observatory (Kahle and Talwani, 1973). The grid shape is
same as that of the DMAAC set, butthe values are in the
old Potsdam system and referred to the 1930 formula for
normal gravity.

The DMAAC data set was first compiled for the reg-

ion covered by the following boundaries,

o o,
¢ =12"8 to 58°N,

!

2 = 48%8 to 1189E,
leaving a clear margin of 20° beyond the boundaries of the
Indian subcontinent.

For filling up the gaps, the second set was then
used after converting the required anomalies to the same
system, as outlined in Appendix A. Thereafter updating of

some values were done through personal communication with

scientists in India (Chugh, 1977) and abroad (Decker,1978).
Two points may be recalled in this context:

(a) The Potsdam correction should not be directly appl-
ied for local determinations. Another correction of about
1 milligal comes from the revised IGSN71 network in respect
of the Indian region. However, the corrections are needed
for a few elements only, mostly lying outside the Indian
continent and the oceanic regions not connected by precise

gravity networks. Moreover, the amount is less than the
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radius frar Kalianpur.

Most of the remaining gaps are found to be beyond
the 53OE meridian in the West and beyond 100°E in the
Sast. The situation towards the Horthern and Southern

sides is comparatively more favourable.

For interpolating the values of gravity anomalies
in these distant unrepresented areas, a simple procedure
detailed below has been adopted, as its precision ddes

not significantly affect the final determination.

For any one-square-degree unit, or units, the cor-
responding twenty-five square-degree Zgual~Area-Block is
selected according to Rapp (1977), and the predicted value,

or values Agp may be determined by,

n~-k
7. - N . 5

b ¢l g 5

Ag. = 6
P k (
where,
n = total number of units in the block,
Agb = block mean gravity anomaly,
k = number of unsurveyed units in the block,
<Agu)i = the mean anomaly in the i th unit.

Hereafter, the term 'unit'will be used to denote

0
a 1° x 1° element and 'block' to denote a ol 50 element®
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in the Equal-Area-Block system.

The prediction equation 4.6 implies assigning a
value of the anomaly to a unit, or same values to each
of the unsurveyed units in the block, such that the sim-
ple average of all the units remain the same as the mean
anomaly of the block.

For the nearer units, however, a better represen-

tation is necessary.
4,10 PREDICTION OF MEAN ANOMALIZS

Free-air anomalies are not interpolable and hence
any prediction will be rather arbitrary in a strict dete-
rministic sense. A zero anomaly in the unit is the sim-
plest assumption to start with. But a zero value in the
midst of high values of the same sign all around would

be an improbability.
Another simple way would be to take the mean of
the neighbouring units. The probability of such a value

being truly representative of the unit will be more than

Iax

nat of null representation. In the absence of any other
evidence, therefore, the arithmatic mean is the expecta-
nce with least standard deviation for unweighted array

and is easy to compute as well.

Another scheme would be to use a weighted mean
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but theoreticglly this also presents a problem, as a math-~
ematical model is fitted to non-interpolable data. Reaso-

ning may differ in assigning the weights.

The statistical covariance prediction (Rapp,l9ék)
howaver apnears the most reasonable, being a combination
of the classical probabilistic concepts (Kaula, 1959).
Based on least-square-error theory, the principle is equ~
ally suitable for regular and systematic data, as well as
those of random nature. The theory behind the covariance
prediction is briefly discussed in Appendix E for the
sake of completeness of the present work. The computer-

oriented formulations with a few modifications proposed,

are also presented therein.

4.11  VARIOUS COVARIAICE FULCTIONS

he statistical eorrelation of gravity anomalies
are completely characterized by the covarianee function,
a function relating interdenendency of values with their
mutual distanece. Starting with the value of variance at
zerc distance, their typical decreasing nature highlights
the randomness of the values. IZxamples from some publica-
tions are shown in Figure 4.4, wherein the ordinates have
been standardized by dividing the original covariances by
the respective variances, in order to render them compar-

able.
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A linear estimate that depends only on the covar-
iance, can be derived when stationarity and isotropy are
assumed (Kaula, 1967). Stationarity of data means that
statistical properties of the data remain unchanged with
position whereas isotropy implies that its proverties are

independent of azimuth or direction.

There is some evidence that gravity data are not
stationary (Gaposchkin, 1973) as also discernible from
Figure Y.Y4. The statistical prooerties would most proba-
bly vary over land areas from those over oceanic regions
or in equatorial regions from those over polar regions.
The gravity anomalies, as computed by subtracting the
normal gravity from the observed value after the free -
air reduction, are functionally denendent on the latitude
¢ and the topographic height h. The background of non-
stationarity is thus evident from thisj continents with
wider topogranhic variation and near-surface density con-
tragts, would be characterized by more random anomalies
as compared with those over oceanic areas where no mass
liess above the zeoid, and deeper heterogenities produce
rather smoot. anomalies. Furthermore, the flattening of
Tiie earth causes a systematic variation in gravity ano-

malies from equator to pole.

) 1 H .
It was bherefpre felb that a "Ioeal’ covarisnce

estimation will yield better results than a global one,
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walen primarily means that the covariance obtained is in
resnect of a shortar distance.

m

To illustrate the short-distance pronerty numeri-
cally, covariograms around a few unsurveyed units have
been presented in Figure 4.5. After some distance, the

cirves swinz towarcds the nezative side.

be io forms have | ied b
A number of functional rms have been tried dy

various authors. For example,

Hirvonen (1963) suggested

2 2)

C(f) Co/(l+a T

(4. 7)
Kaula proposed

Slry = 0y 0 o (4:8)
Rapp (1964) recommended |

C(I‘) = Co + ClI' - C21‘ B grals <)+o9)

The polynomial presentation appears to be the
best, as neither the hynerbolic equation, nor the expo-
nential expression accounts for the negative value at
increased distance.

However, so far as the present problem is conc-
erned none of these need be apnlied at this stage, as
the gravity centres are uniformly gridded, except for
the inappreciable change due to the parallels not bei-
ng great circle. This effect can safely be neglected

because,
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(a) the Indian region fortunately lies in the equat-
orial region,
(b) for the local covariance funetion, variation from

the average grid distance is not appreciable.

The predicted values of the anomalies in the units
not renresented by measured values, are tabulated in Table

he3a
TABLE 4.3

UNIT MaZAN ANOMALIES ESTIMATSED BY COVARIANCE PREDICTION

Latitude Limit |Longitude Limit Anomaly
10°N 11°x 259 76°3 -31 mgal
10%F 11°%u 82°% 83°E ~61
140w 15% 81°3 82°8 <R
15°1 16°N 82°z 83°% -17
16°% 179K 73°% 7408 - 29
16°N 17°% 83%= 84°3 <l
18°x: 19°% B5°H 86°3 i
19°N 2091 86°% 87°%L -29
19° 20°W 87°E 88°x -16
20%y 21 %y B7%m 88°% <18
21.9] 22°1 90°E 91°®m ~27
21K 22°n 9193 92°E +y

B .
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L. 12 R

B

SULTs OF COMPTUTATION

Jsing the numerical summation formulation with
the normaligzed function, deseribed in section 4.7 of
chapter IV, two computer programs have been developed,

as follows,

(a) computation of geoidal parameters at any general
point,
(b) computation at 1° unit corners only.
The first one is a general program used later with further
subdivision of areal elements in the immediate neighbour-
hood. Otherwise, with 1° unit as the smallest division,
a general point may give rise to unrepresentatively high

value due to the effect of the unit containing it.

The second program similar to the test program
described in Appendix B, is with an aptly simplified algo-
rithm, by considering the effect beltwise and taking

advantage of the symmetry of 1wy, ﬁ2 and the antisymmetry

of w about a meridian. The local effects due to the

39
variations in gravity anomalies within the units, are
uniformly truncated during their evaluations at the grid

corners, leaving the systematic part behind.

he outer region was defined by the boundaries

detailed in Table 3.3. Some logical statement have been
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incorporated in the computer program to take care of the
boiindary, by skipping calculations wherever a boundary is

crossed on the either side.

The grid undulations N as well as the deviation
components Eo’ np are evaluated at grid corners well wit-
hin the Indian geographical boundary, and given in Tables

hoy 4o5 and Labe

Figures 4.6, 4.7, 4.8 present two profiles of each

of T £ n, cne along a meridian and another along a
E I

p7
parallel.

T SUMMARY AND DISCUSSION

The effect of the exterior region on the geoidal
parameters having been discussed and computed in the last
chapter, the contribution of the interior region has been
computed with higher precision using a more detailed

gravity anomaly set mostly furnished by DMAAC.

After preliminary discussions on the assumptions
made in the numerical analogue of the Stokes’ and Vening
Mzinesz? integrals, the errors owing to averaging the
components of the integrals, namely the weighting func-
tions and the gravity anomalies, have been estimated
alongwith a sample check of consistency of the one -

degree data with the 0ST data. hese are found to be



gquite satisfactory for use without the necessity of any
recuctions, such as the condensation reduction etc., for

achieving an order of nrecision compatible with that of

he numerical algzorithm has been further refined
in this study by normalization of the Stokes’ and modified
Vening lMeinesz? functions tc achieve better computation
efficiency.

The compilation of the data set has been done
from various sources, after standardizing all into the
same system. Gaps have been filled up by using a simple
formula for the eonsistency of data sets. Gravity anomal-
ies of the nearer unsurveyed units are estimated by a
local covariance prediction technique. The geoidal para-
meters at 1° grid corners within the Indian subcontinents
have been computed from the data set extending up to the
inner limit of the exterior region, and the computed
'partial geoid' are presented in the tabular form, with

a few profiles for the graphical representation.

The profiles are found to be mutually consistent.
The maxima or minima in Ho tallies with the correspnonding
zero slope in the apprepriate direction, thus providing a
numerical check. Whilst the undulations are smoothly

varying, the Eo’ np values show occasional sharp changes
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at places where the changes of the mean anomalies between
the acdjacent units are also seen to be sharp, thus high-
lighting the fact that the two deflections components

are much affected by local changes.

The partial geoid obtained, however, represents
a general trend only, and for obtaining the required higher
nrecision for the absolute orientation of the geodetic
system, finer subdivisions of the gravity field are esse-
ntial. These intermediate results may directly be taken
for the purpose without repeating the entire process over
again. The steps are,

i) covering an area, bounded by two meridians and
narallels of whole number of degrees around any astro-
geodetic station, by a dense gravity survey,

ii) computing I'_, £, N from the 'void geoid' parameters
at the station, by suitable interpolations,
iii) computing the effects of the 1° mean anomalies of
the newly covered zone, at the four 1° corners around the
station ,

iv) removing these effects from the corresponding Y),

T

g

astrogeodetic station ,

59 ﬂ_3 values and interpolating the net values at the
I i .

v) superimposing the void geoid parameters computed
in step (i) and the effects of the detailed gravity reg-

. . a - . . o
ion, starting from O. 25 mesh size to finer grids.



-89~

he gravimetric measurements may be planned judi-
ciously to obtain representative mean values with ontimum
number of observations. To matech with the nrecision in the
'void geoid' s a coverage of 3° to 4° around the station,
1s recommended.

Another use of the 'partial geoid' parameters for
obtaining the absolute orientation parameters, will be
discussed in chapter VI, where an alternative approach has
been proposed.

The geophysicél importance of the regional geoid
obtained during the course of this investigation, need rrt
however, be overemphasised. Its special significance
(Woollard and Xhan, 1970) to delineation of mass anomalies
and to the resulting geoid prosvecting (Ray and Bhattacharji,
1977) is considerable among other thinzs and the results
provided here furnish a major portion of total computative
effort involved in such problems. Accordingly, a map of
the regional free-air geoid in India has been vroduced in
Figure 4.y, which may be found useful by geophysicists

generally.and by future researchers in geodesy.
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TABLE 4.4

INDIAN REGION

negative sign indicates'below GRS 67 spheroid

N values in metres

Ao
3k
o
32
Al
30

28

28

27

26

7L

79
79
i
79
80
80
80

82
92

95

-28.8
~30,8
-36.0
~39.4
~38.9
373
=36+9
-34.9
-51.8
-26.6

+42:6
~47.2
~45.)
-3649
~32.8

-27.2 =26,
-27.4 -26.
-~30.0 =24,
-35.8 -29.
~39.4 -36.
-38.4 -39,
-37.2 =38,

-35.4 -35.
=53.2 =53,
07 “3%‘:

"'2805 "32

=33.4 =33
=5L.1 =53
-3%9.5 =37
=36.7

-33.% ~3%

1 -23.8 -21L.4

L -25.6 -24.5

4 -23.8 -25.3

Q -25.3 -26.3

3 -31.4 -28.1 -27.4
-40.2 -39.1 -37.2 =36

O

2 =40.0 -42.7 =45.7 =47

6 -3645 =37.8 =40.0 =43

= Ao

0 -50.

O

.8 -34.6 -35.8 -37.6 =40
«8 =55.1 =55.7 =547 =52
B -3648 =35.9 =35.4 =34

.5 =35.6 -37.8 -40.7 -43

~48.5 =51.1 =53.7 -56.1 =57.1 -56.5 =54
_.).’.9.]_ -)+6¢5 ")'f—)'*'o6 -)-1-3-0 ")+Oc8 "39-6 -39

"36-6

7
.6 ")-{-80)4'

o)+ —)+706

.2 ")+3-5
.8 =5C.5
.7 =35.6

ol “)'1'506
LR L
06 -3801

contd.
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Table L4.4 contd.

A N values in meters
¢ From To negative sign indicates'below GRS 67 spheroid'
25 71 "'33.0 "3)+-O "'3)4-09 “3601 —3805 -)+Ou8 ""+2~’+ "')+)+a2

~46.5 -48.4 -50.5 52,5 ~53.4 =52.9 ~50.9 -U8.9
88 "1+706 ")‘1'6-8
25 193 94| =40.6 -38.9

24 |71 -34¢8 -35.8 -36.7 -38.0 -39.6 -40.9 -L42.1 -43.6
=453 -h6.3 -47.2 -48.3 -48.6 -48.3 ~47.3 -L6.1
88 | -45.9 -46.5

23 71 '370’4‘ "3806 "3908 "')+O-6 ")+10L|- ")"'20)4' ")"'3'5 Ll""+‘3
-.).{J-}-n7 -)"'501 ")+6o0 ")+7v2 ")+8n0 ")+80)+ -)-|'8l5 _Ll'8a3
88| -47.7 ~47.3

22 |70 -38.3 =39.5 -40.8 =42.0 =42.9 ~43.6 -4L4.7 -L45.5
—Ll-5o6 ")+505 —4600 -)+7ol -)‘+806 "'50.1 -51-)+ -52-0
89| -51.6 -50.1 -48.1 -46.9

21 |71 -42.6 =43.3 =43.9 -L44.8 -45.8 -46.6 -47.2 =L47.5
-48.0 -48.5 -49.4 -51.0 =53.0 -5h.} -54.6 =53.5

87 |=P1.5
20 173 ~=L46.6 -47.2 -48.0 -48.8 -49.% -49.9 ~50.6 ~51.0

86 | -51.3 -53.1 -55.3 ~56.2 -55.8 -54.8

19 | 73 UG ~h9. T =503 =SLo0 =Bl & =F2.1 ~53,8 59,2
8L | -53.5 =55.1 -56.9 =57.9

contd.
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Table 4.4 contd.

A

, - N values in metre

¢ |From To negative sign indicates 'below GRS67 spheroid’

2 173 ~52.0 =5L.8 =52.7 ~53.6 =54.2 =54.5 =55.1 -55.2

83 |=55.8 -56.5 -57.0

17 174 =o4e8 =55.5 =56.7 -57.3 =57.5 -57.8 -57.4 -57.3
82 |-57.4

16 7)+ 81 "5807 "58-5 "59.2 ""60.0 _6006 _6006 -59.2 —58.3

15 75 80 "'6102 "60-8 -61-3 —6202 —6108 -60.8

3..)+ 75 80 "63-6 _62-1 -6101 "61-3 -6102 -62-)"'

13 {75 80 |-65.0 =62.8 =61.2 -61.0 =60.9 =63.0

12 |76 79 [-63.9 -62.6 -62.0 -61l.k4

11 |76 79 |-65.6 -63.0 -62.0 -61.9

10177 79 [|-62.0 -62.4 -63.8
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MERIDIONAL DEVIATIONS OF
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TABLE 4.5

THE VERTICAL OF
GECID IN INDIA

IE PARTTIAL

¢ Froa e £ in arcseconds

341 76 78 0.43  6.02 =-0.42

33' 76 78{-11.23 5.69 10.06

32| 76 78 1-14.09 -24.8% -1k, U1

JLlge 981 055 <712 <10.81

30/ 75 79| 0.69 0.56 =-7.53 =-20.87 -29.81

291 75 79| 0.87 0.68 =1.51 -5.70 -13.36

28l 74 80] 2.53 1.13 =0,40 =0.4l =0.82 =2,90'-3.77

27! 73 | 1.43  0.49 -0.06 -0.43 0.31 2.92 6.58 6.23
81t 2.1k

261 72 =1.,04 =1:08 0.50 =~0473 =1.84% 1.29 L4.09 L.87
83 9.98 lLeg3 2.17 0.62

25 72 | -1.34% =-0.00 =2,12 ~1.93 1.57 1.92 2.05 3.4
87§ F.40 8.B% 12.76 15.22 15.02 13.2h 12:26 Bs%5

2l - go -5.63 =6.94% ~-5.30 -2.43 -1.11 -0.23 0.28 1.57
871 3.17 4.63 5.24% 5.45 4.58 2.16 -0.35 -0.69

23l 72 “L.B8 8.5 =512 =417 <lnBhY -5.50 -2,99 1.31
87| 1.89 0.83 =0.68 =2.76 =4.6L4 -7.02 -8.61 -6.79

contd..



Table 4¢5 continued
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Y

R

¢ From T4 £ in arcseconds

22 {75 ~le k9 '-3.83 -é.o5 =1.87 =3.94% =4.93 =5.22 -4, 7k
87 =5.73 =7.56 =-2.08 =L.73 -3.02

21 | 75 -3+89 =3.54 -L4.07 -5.28 =-5.75 -4.82 -3.48 -L4.41
85 |-5.83 =4.51 =3.10

20 |75 sl SRhE S0 =3.98 4. 59 <887 -3.70-=3.%0
83 |-3.20

19 | 75 82 |-4.25 =-3.84 -4.25 -4,25 -3.88 -3.55 -L.78 -3.73

18 | 75 81 |-4.92 =-6.15 =5.63 -L.74% =4.49 -3,78 -L4,20

17| 75 80 |-5.66 =5.64 =6.25 -6.55 -6.14 -L.63

16| 76 79 [-3.33 -4.18 -5.93 -L4.57

151 76 79 |-2.49 -0.51 =-0.24  0.38

14| 76 79 |=2.10 2.04 466 3.07

13| 76 79 1=0.52 =-1.96 =-2.54 -1.4k
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TABLE 4.6

PRIME VERTICAL DEVIATIONS OF THE VERTICAL OF THE PARTIAL
GEOID IN INDIA

@ Frog To N in arcseconds
34 ]76 78 | ~k.66 .79  -L,11
33|76 78 |-19.15 -7.05 L.94
32|76 78 |-15.93 -15.96 -1.25
L IFE B =185 -12.57 10.71
AT o9 3.40 3.23 -1.83 -3.,22 =-5.61
29170 79 i ] 5. &7 6.89 6.84  2.10
B |7 80| 2.7 2.83  6.89 8.08 10.67 8.18 1.60
27 | 73 2,10 3.08 Lo%0 -2.01 %20 9.17 2.0E (%A
81 2,62
26 1 72 2.58 22 2.57 6.64% 6.06 L4.08 6.45 5.87
83 | 5.20 6.5%  L.34% 0.91
a5 1 72 &% 1.0 4,15 5.88 L4.28 2,13 5.20 k.67
| 87 3.29 5.76 3.24 0.80 =3.19 ~5.44 -3.,23 ~1.61
2&2 e 1.78 1.63 3270 3.00 £33 2.6 Rz 328
| 87 071 2.5 1401 0.1 =Llo42 <2.85 ~1.91 1.32
o B P S G e 2.79 0«31 2.52 1.78 2.64 O«kh 0.91
87 Q. 57 2470 2.37 0.87 0.86 ~0.12 -0.45 -1.64

contd.



Table 4.6 contd.

¢ Fron}a\ To n in arcseconds

22175 2.9 1.97 1.22 =1.0% 0,15 l.74% 3.01F 333
g 87 | 3.08 2.51L 0,18 =-1.70 -L.26

zli a 1.87 1.38 0.62 0.71 0.99 1.07 2.72 %.05
| 85 | 4.60 Ll.44 -0.79

20! i 1.97 Lel® " 106 Le3h 1.37 -0406 Ikl 6013
| 83 | 3.22

19|75 82 | 1.98 0.96 1.27 0.98 1.99 -0.66

18‘ 25 81 2,59 1l.22 .87 -Oub6 177 ~1.33

17 | 75 80 |} .44 1.57 0.56 0.08 '1.39 =3.18

16I 76 79 | 1.63 1.95 0.64 -0.95 '

15] 76 79 | 0.12 2.36 1.54% =3.60

1%y 76 79 |-3.55 -0.35 1.09 -1.68

13! 76 79 |-4.70 -1.89 0.71 =-0.65
i
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| . Values are in metres
2.Geold is below GRS 67 spheroid

3. Natlenal boundary is
dpproximate
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FiG. 4-9 ONE DEGREE MEAN FREE-AIR GEOID IN INDIA
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CHAPTER V

GRAVIMETRIC ORIGITATION OF GTUODETIC SYSTEM THROUGH
GENERAL ASTRO-GEODETIC STATIONS

21 GENERAL

he reduetion of a local geodetic network to an
absolute reference system requireg the definition of five
orientation parameters. These are the parameters a and
f of the reference spheroid, and the absolute geoidal
parameters NO, Eo’ [ at the initial point of the trian-~
gulation or trilateration network, which together deter-

mine the World Geodetic System .

The transformation may be done by determining the
geoidal parameters directly at the initial point, using
the global broad gravity coverage in the exterior region
and dense gravity network in the interior region around.
Any astrogeodetic station could also be chosen for the
nurpose, provided adequate gravity cdata is available in

the interior region around the computation station.

he present chapter deals with formulations
related to a finer detailing of the Stokesian integrat-
ion with specific numerical works carried out for various
stations in India, with a view to obtaining gravimetric-

ally the absolute orientation parameters more precisely.
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The problem in the present context is of course
an inverse one. However, the equations being generalized,

a simple interchange of the subscrints o and n serves the

purnose .
5.3 NUMERICAL EXAMPLES
ta) Determination of the undulation vector at the

origin at Kalianpur from the grid values obtained in the
earlier chapters is a matter of routine interpolation.
Simple linear interpolations from the nearest four grid

corners yield the following values:

Ngr =N_+ Np = -59.9 metres,

" g t =
ggr = é} + gp = Q24 (5= 2)
n-gr — ﬂv Sind ’ﬂD =i sk 3n'44

The formulae 5.1 with interchangec¢ subscripts are reduced

to simple expressions, by using ¢n = ¢O = 24.119794 degrees,

N = A, = 77.654880 degrees, as

6Nb = 6Nn = ~59.9 - 0.0 = -59.9 metres
BE, = 8F, = =0.24 =(-0.29) = + 0™.05 (5.3)
(Sn_o = 6nn = ¥3.44 - 2.89 = + 0''.55

(b) Two more stations, one in the North and another in

he Hast are taken as test cases. The astrogeodetic dev-

iations of the vertical being obtained directly in terms
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b2 THE ORIENTATICN FORMILA

In order to obtain corrections to be anplied

rogzeodetic values ofN,E,n at a point from those known

at the origin, the following datum shift formulae (Vening

Meinesz, 14 50) could be used directly:

gg? = (sing sing +cos¢ cosd cosM\) g€
—(cos¢osin¢n—sin¢ocos¢n cosAN) 15
-(cos¢nsinAA) 6”0 - 6a/R
+(sin2¢n-2sin¢osin¢n) &f
s, —(sin¢ocos¢n-cos¢osin¢ncosAA) & €,
+(cos¢ocos¢n+sin¢osin¢ncosAA) 560
~ (sing sin/A) 5ﬂo -2cosp (sing -sing )&f
f>ﬂn B +(cos¢osinAA) be, + (sin¢osinAA)é &

+(cosAN) 6no

where, ¢o’ho = coordinates of the origin
¢n,kn = poordinates of any station n
&
éeO: ..3{9.'*' ..6:3;+Sj_n2¢ ¢ f
R R 0
M s '}\n—)\'o.7

other symbols have been defined earlier.

(5.1)
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of the iverest spheroid (Gulatee, 1955), the geoidal hei-
ghts were estimated from a geoidal map (Bhattacharji,l973)
where the Nag values are in terms of the International Sph-
eroid with the revised orientation (Expression 1.2). To
reduce the heights to the original Everest system again,

the datum shift relations would be,

6No = 0.0 - 9.5 metre

6, =~0.29 = 2.42 arcseconds

&n, = 2.89 - 3.17 arcseconds (5.4)
ba = 6377299 - 6378388 metres

&£ =(1/300.8017) - (1L/297.0)

It is to be noted here that the metric equivalent
of the semimajor axis of the Everest spheroid is the result
of a conversion from ' Indian feet 'to metres (Bhattacharji,
1961).

The coordinates of the stations and astrogeodetic
quantities and the interpolated gravimetric values there
are given in Table 5.1. The geoidal parameters are exp-
ressed in a non-dimensional form for ease of computation.
The change of dimensions of the spheroids, namely the
Sverest and GRS67, are

135.1L wrad

1}

Sa/R
4 (5.5)

1

&F 28.47 prad
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TABLE 5.1

GECIDAL PARAMETERS OF NORTH AND EAST STATIONS

] . - f T
posl-,.. & o N N
L2 e g o s x F fmile
North 1 ?8.73#581 77.648975{0.36 -23.75 31.05| =9, 54 -1%.38 41,58
Bagst 2 é3.395269 86.98698012.23  0.98-34.42] -9.72 -28.15 -4, 26
z
unit E degree ppm or microradian

-

Table 5.2 presents the three sets of orientation

corrections at the origin, obtained from three astrogeod-

etic stations. Large discrepancies in these results are

visualized. For, it is quite obvious that the orientation

TABLE 5.2

EXAMPLE OF ORIENTATION PARAMETERS THROUGH VARIOUS
ASTROGEODETIC STATIONS

Point Code % 6Nb(metre) 560(") 6n (") N
0 l -59.9 +0. 05 +. 55
b5 -60,1 +0. 50 +3,18
2 , 3.6 ~5.25 +24 52
s -

parameters obtained from a single point evaluation with

basic input upto one-degree mean will not be reliable. It

may be recalled here that astro-geodetic deviations
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derived from actual measurement possesses a complete spec-
trum of energy, even upto the shortest wavelength compon-
ents, whereas the graviretric values obtained through

averaged gravity anomalies are effectively bandlimited.

A comparison of the sets sugzest that attempts to
determine reliable values of absolute orientation para -
meters are liable to be futile until both the astrogecde-
ticand gravimetric sets are equally weighted using either

of the following methods:

(a) increasing the accuracy of numerical integration
using a more detailed set of gravity anomalies at least

in the immediate neighbourhood of the point, say upto

3° radius,

(b) averaging the astrogeodetic values to correspond
with the automatically smoothed gravimetric values by
filtering out the short wavelength components.

The’first of these two alternatives has been attempted and
forms the subject matter of this chapter, whilst the second

has been tested in the next chapter.
Rel) EFFECT OF ERRORS IN GRAVITY DATA

The success of absolute orientation depends on the
quality of gravity data, topographic information and the
accuracy of numerical nrocedures. The physical inhomoge-

nity of the earth causing the warping of the geoid, is

fully reflected in the gravity field end iy the astronomic
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regults. The preeision of -gpravity -anomalies ~should -therefore
be of the order comparable to similar lst-order astro -
observations.

The basic sources of errors are as follows:

i) instrumental and observational errors, including
drift and tidal effects,
ii) errors in measurements of heights,
iii) errors in station positions,
iv) errors in absolute gravity values derived from
the reference base station,
v) inaccuracies in reductions of gravity values to
geoid level.

The gravimeters are generally capable of reading
gravity values precisely up to 0.5 milligal with usual
human skill, Lacoste Romberg gravimeters being more stable
and precise than the Worden instrument. Drift errors may
be checked by occasional corrections assuming linear vari-
ations whereas tidal effects may go up to 0.2 milligal at
times.

Inaccuracies in height estirmations probably cont-
ribute the most. For example, an error of 1 metre, which
is quite common, produces an error of 0.3 milligal in the
reduced free-air anomaly.

Inaccuracies in the actual coordinates of a

station also introduce errors by affecting the normal
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value of gravity calculated for the given latitude. An
error of 0.0l degree in latitude determination can be
commonly found to occur. An estimate of discrepancies
arising from this source, in the Indian region, can be
made from the differential of Y with respect to ¢, which

is found to be 05 milligal %o 0,9 milligsl.,

The absolute value of gravity at the reference
base station may be in error due to standardization of
network. The error being constant will have an effect

on N but not on £ and n.

A condensation correction needs to be apnlied for
the presence of the protruding topographic masses above
the geoid. As the free-air anomalies very nearly corre-
spond to the condensation values, error in a flat terrain
would normally be inappreciable but could be about 1 milli-
gal in the rugged terrain (Rice,1952). The geoid-cogeoid
separation may amount to as much as 3 metres in terrains
of large topographic variation and an error of 0.5 metre
is usually anticipated.

The total estimate of errors from various sources
in the input data thus turns out to be about 1 milligal in

the interior region on the average.

Finally, errors also stem from mathematical comp-

utations and computer truncations. The mean value of
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anomalies beyond radial distances of 3° to 4° from the
computation points, are estimated to have rms deviation

of as much as 5 milligals. Truncation errors during

computations are, however mostly eliminated, if the reco-

mmended subdivision of meshes are adhered to.

Fortunately, the gravity defects do not so much

contribute to geoidal undulations as they essentially

amount to summations and are in the nature of being self-

compensating.

for a non-recursive digital filter, as the present

problem is, where the process may be formulated as

E{y}l = 81%) F 8%, teeeanaeata x

The estimated variance in y is given by
2
o2{yt = (2a ) 42{x},

assuming no correlation between the x values.

Using circle-ring zones as elements, when all

(5.6)

(5.7)

" . = -
factors are reduced to 0.00L, the variance in the deviat-

lon of the vertical, for an rms error of 3 milligal up to

>0th zone, turns out to be
GZ{e} = 50(2(0.00Lcosa)?) (3)°
or, error 1n & = g 05

i ON INTEGRATION TECHNIQUES

The surface integrals in the Stokes’ and Vening

(5.8)
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Meinesz’ formulae, are replaced by discrete summation of
contributions arising from compartments of finite size
obtained by suitably subdividing the surface of the earth.
In the template method which is a graphical procedure, a
transparent sheet marked with concentric circle and radial
lines is placed on the gravity map, its centre coincidirg
with the computation point on the map. Another techniqgue
uses rectangular compartments formed by the grid lines of

geographical coordinates ¢ and A.

The simplicity and flexibility of the template
method made it universally acceptable for a long time.
Rice(1952) used it to compute the deflections of the vert-
ical at a number of astrogeodetic stations, whilst Uotila
(1959) used it to investigate the shape of the earth. The
integrals S(J) and V(¥) are computed over each element,
thus avoiding the inaccuracy introduced by averaging the
functions, as pointed out in Section 4%.3. This advantage
is however lost because of the inaccuracies that creep in
during the estimation of the mean gravity anomaly obtain-
ed through the following steps:

(a) plotting of gravity stations on a map and of the
gravity anomaly values,

(b) contouring the iso-anomaly lines by inspection
or using a graphical method,

(c) estimating the mean simply by experience or thr-

ough some qualitative methods.
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All the above steps are extremely laborious, gre-
atly susceptible to personal skill and wanting in accuracy
as compared with that of the weighting functions, which
severely limit its application despite the apparent advan-
tages.

Moreover, the gravity anomalies, specially the
free-air, are not generally interpolable except in regions

with flat topography and homogeneous crustal structure.

The rectangular elements, on the other hand,enable
the use of a general digital technique matching modern
needs and amenable to modern tools. The mean anomalies can
‘be evaluated using the same principle analogous to the plo-
tting, contouring and estimating sequence, without any
further loss of accuracy, and once evaluated, they may be
stored on magnetic tapes for varied future uses such as
gravity explorations. Smaller sized compartments also
reduce the errors of centering the weighting functions .
Fischer (1966) has discussed these advantages at length
and computed factors for gravimetric interpolation using

an electronic computer.
5.6 COMPARTMENT SIZE AND INNER LIMITS

Following the recommendations of the General
Conference on leights and Measures in 1960 (Ramaswamy and

Rao, 1971) to use the SI units - " Systeme International
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d’Unites" -also accepted by India, the unit for plane angle
will be radians (rad) and for solid angle steradians(sr).
he multinles kilo, mega and submultiples milli, miecro will
also be used with their usually acceptable meanings. The
division of a circle into 3600, a nondecimal division, is
also in vogue, though some countries are using grade
systems.

Global maps are made using the degree grids whilst
local maps use minutes or linear grids. Gravity mans are often
made using a 15' gridded interval which onermit an easy

"adoption of decimals being equal to 0°.25. TUse of sub-
multiple arcseconds is however generally restricted only

to very small order terms like the difference in astrono-
mical and geodetic latitudes. Decimal degree compartments
are natﬁrally best suited for grid divisions and for prac-
tical measurements whereas radians may be used in computer
applications, with the recommended submultiple micro(y deg,
Rrad) used to avoid the repetitive exponent notation.

(@]
Mather (1970) used 5°,1°, %

and 0.1° grids, but
the intermediate subdivisions of 1° to 3 does not seem

to have much advantage. Instead, a division sequence like
SO,lo, 0°.25, 0°.05, 0°.0lprovides a more balanced scheme,

the succeeding divisions being always in fractions of

1/5th or 1/4th of the earlier size. Further, the grid
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sizes of 0.25 and 0.05 degree are equal to whole number

in minutes, being 15 and 3' respectively.

The inner limits of various compartments to be
used should be chosen such as to produce comparable eff-
cts on the geoidal parameters. For the same anomaly, the
product of the weighting function corresponding to the
limiting U and the area of the compartment used should

remain the same, i.e., for computing undulations

8(U;) o= 8(W,) o, (5.9)

and for the deviation of the vertical,

V(¥ 7y = v(¥,) o, (H:10)
where Wl, Wz are the inner limits of compartments and
0,0, are the areas of respective compartments.
Starting from the values of 15° to 20° for a
59 x 5° block as used earlier, the inner limits for diff-

erent compartments covering the above recommendations

are given in Table 5.3.
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TABLE 5.3

RECOMMENDZID INNER LIMITS OF VARIOUS MESH SIZES

Compartment size Inner 1limit between
5 15° to 20°
i g7 g L0
0
ok 25 0.75 to 39
o)
0.05 15 te: 082
ovo1 0903 to 0704
8.7 FORMULATION FOR LOCAL COORDINATES

The interstation vector L earlier obtained from
the unit position vector P through the transformation
matrix T cannot be used as such for evaluation in the
immediate neighbourhood owing to the following disadvan-
tages:

(a) the first element cosU becomes very nearly equal
to 1 and an exact value may not therefore be obtained
owing to truncation errors,

(b) the latitudes ¢, and ¢g being very near to each
other, the negative terms in the second element 12 differ

from the positive terms by a very small amount discernible
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only in the third or fourth place of decimalj the relative
error in the deduction process therefore becomes quite
high,

(e) a similar effect is found in the third element

13 as the longitude difference is also small.

The determinations should therefore be based on
'differences' between the coordinates rather than on
their individual values.

Accordingly, the basic expressions in Zquations
3.1 can be rearranged in a difference relation form. Int-

roducing the trigonometric versed sine notation, i.e.,

vers 6 = l-cosb ,

the resulting modifications are,

Iy = cosT = cosAg - cos¢gcos¢cversAA, (5,11
- O -sinffcosa = —(sinA¢+cos¢gsin¢CversAl),
13 = ~sinfsing = —cos¢gsinAk
where, A$ = ¢g =R
AV Ag - AC
versM = l-cosAA
¢g’ lg and ¢C, A, are respectively the coordinates of the

gravity station and the computation station.
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5.8 EFFECT OF THE INNERMOST ZONE

If representative mean values are available,
numerical summation may be extended up to compartment
sizes of 0.0l degree square for a properly planned grav-
imetric net, except for the compartment containing the
computation point. However, an actual situation may not
always be so favourable and the innermost zone may range

te & few'kilometers.

Whilst the computation formulae for determining
this effect using the template method is available, some
approximate method must he resorted to for data available
in a grid form. Techniques for accomplishing this are

enumerated below including others proposed anew:

(1) the innermost zone may be defined by a staggered
boundary and split up into a mean circular area and a series
of positive and negative parts whose effects are approxim-

ated and added/subtracted as the case may be (Figure 5.la),

(2) the zone may be divided to four rectangles surr-
ounding the computation point (Figure 5.1b) and the effects
of £,n may be computed by suitable formulation (Fischer,

1966). N-effects are however not yet available.

¢3) for directly processing the point gravity anoma-

lies, atriangular division scheme may be proposed. A
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FIG. 5:1 VARIOUS PROPOSALS FOR EVALUATION OF THE
EFFECTS OF INNERMOST ZONE
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chain of trisngles is formed (Figure 5.1c¢) depending upon
the distribution of gravity data. The following simplif-

ications are made for any element,

S = 1,
() = 0.25 , (5.12)
Zl g3

(2 N0 = -(¢g-¢c) radian

’3 - -cos¢c(lg-lc) radian

W O
x ~2/12 v 1

. B cos¢c{¢l()\2—?\3)+ ¢2(A3-A1) + ¢3 (A -2,013
8w
-A N Agl+Ag2+g3
e 3
b1+ 95+ 4,
¢-g [ 3
o T S e
1 - 4 S
5 3
(W) another practical approach is to replace the‘

innermost rectangular zone by a circle of the same area
(Figure 5.1d) and apply the original formulae (Heiskanen

and Moritz, 1967):
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g
\i = ——
hl . Agp
5, g
2 = - = Sy
El 2G
]
f] . = - --.O- g
1 2G 7
In the proposed modification, then,
2
s 2% Rx 2 x sin D X TXDA o ooso
o 180 <
s (AgN - Ags)180
£ wRDP
gy = ,
TRDA cos? ,
finally reducing to
N4
_ Ag
R B,
. o
B 180 -
£, =-Yo = By
- 180 =
P Vo = N sec¢c
L _ DA ; D¢
wnere, = ga cosy, sin =

(5.13)

(5.14%)

(5:15)
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- W slope of %g in A direction, per degree

The value Agp and the slopes may be obtained by

a simple surface fitting of the form,

B = A + By + CA + Dp° + Epr + A7 (5.16)
where @,A are expressed in degreesj
then,
8p = A +Bp_ +CA_ +Dp 2+ BN +F\°Z
G o & & o s &
g =B ¥ 2Dp, + B, (5.17)
B, =€+ E¢C + 2FA

A minimum of six observations should be available
in the innermost zonej otherwise, a few outside points

should be taken for the matching.

The first method and the third proposal are not
fully automatic, owing to difficulties in defining the
zigzag boundary and forming the triangles respectively.
The second method is the optimum one, but the fouxrth pro-
posal has been used in the present work, being readily
accentable to computer programming, although it is liable
to be inaccurate if the inner zone deviates from a square

shape.
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5.9 DATUM SHIFT RELATIONS

The conventional datum shift formulation of
Zquations 5.1 which stems from first principles is unf-
ortunately inconvenient for automatic computation where
repetitive use is made of similar quantities. A matrix

formulation is therefore adopted.

First the equations are split into two components:
the first involving terms related to the corrections in the
deviation components and of the undulation, and the second
involving changes in the dimensions of the reference elli-
psoid. Then, denoting the correction vector at any point
as:

& N/R

go= Dy =g, B (5.18)

o1

The resulting expressions, after a long sequence
of mathematical manipulations involving trigonometric ide-
ntities not elaborated here in order to retain .. contin-

uity of purpose, are finally obtained as follows:

Cu

T ¢
DI )

and o

g = (TB. #90 (5.19)

where, the matrices are



and, the vectors are

p—
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~-sing cos@PcosA cosPsini
cos® sin¢cosX singsini
0 sina ~COSA
= gy oot -+
51n¢o 251n¢o sin ¢o
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cos¢ocos AO sin ¢Ocos¢ocosko
k S ;
cos¢051nho sin ¢Ocos¢051nko
—31n¢o cos¢ocosAO cos¢031nko
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substitution of which in Expression (£.18) yields

- ! _r|
e L=l T TO CO (T fo EO)+E)D

or C TX + ED {5 20)

wnere, X T 1
o}

(CO—EOD)
The newly evolved vector X may be termed as the shift
vector. The supnerscript' indicating the matrix transpose

as usual, whilst the subscript refers to the origin.

0
The square matrices T and T, are seen to be orthogonal
and are identified with the transformation matrix intro-

duced in Chapter III.
5.18 THE INVARIANT SHIFT VECTOR

The transformation matrix is recalled to be an

orthogonal matrix satisfying the identity,

t 1

PRt s Tl ey (5.21)

where I indicates 2 unit matrizx.

The use of this relationship leads from Equation

5. 20 &5
7'¢c = 7'TX + T'ED = IX + T ED
or
X = ™C - ED)
— ‘ — ' - °
=D (€, ~BM =T (T, E D), (5.22)

which is a generalized expression introducing X as an

invariant vector, an outcome of astro-geo-gravimetric
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corrections at a general station n. The final quantities
sought for the definition of the datum in absolute terms,
are then the elements of this shift vector X in relation

to the geocentre .

53T CHOICE OF STATIONS

A single solution of the orientation vector obt-
ained at the initial point, though theoretically adequate,
may be seriously affected by the inadequacies or inaccura-
cies of the gravity field determinations. On the other
hand, control stations away from the network will have
less reliability on the geodetic parameters due to the

systematic errors in measurements and computations.

The Indian subcontinent has some peculiar feat-
ures which must be taken into account for the selection of
computation stations through which shift vectors have to
be determined. It has a diamond shaped boundary surroun-
ded by an ocean on two sides and its topography ranges
from medium altitudes to the steepest peaks in the Himal-
ayan region. The choice of the initial point naturally
falls over a centrally located flat region. The triangul-
ation net extends from this control point to all four
directions along meridians and parallels, with necessary

extensions of survey tributaries to cover the vast land.
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The astronomical stations also conform to this pattern,

having two main orthogonal profiles.

The astrogeodetic stations are chosen to be at

the ends of the profiles, but not too near the oceanic

zone nor to the rugwed regions.

This is done to ensure

reliability of their determinations and similarity in

the order of their systematic errors.

Five computation

points were selected keeping in view the scope of inves-

tigations and the availability of data.

Table 5.4 describes the relevant basgic details

and Figure 5.2 indicates their approximate positions. The

astrogeodetic N values had to be reduced from the Inter-

national Spheroid system to the

with the orientation components

TABLE 5.4

Sverest Spheroid system

given in Expression 5.L.

ASTROGEODCTIC QUANTITIES OF THE COMPUTATION STATIONS

Cod.

T "pe Yoo | Tag/® fay
Central O |24.119794% 77.654880( +0.00 -1l.41 +14.01
North 1 128.734581 77.648975| +0.36 ~23.75 +31.05
Bast 2 123.395269 86.986980| +2.23 + 0.98 =-3L4.42
South 3 |17.400630 78.556258 | -1.62 -24.19 -5.67
West L {24, 258153 972.184680] +#1.29 -39.75 <1.94
unit degrees ppm or micro rad.

DE =
publish~
ed
Everest
coordi-
nates
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FiG. 52 APPROXIMATE POSITIONS OF COMPUTATION POINTS
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bel2 THE DATA SET

The data set gleaned from various sources in the
country and supplemented by actual measurements especially
made for this purpose can be classified as follows with

respect to their information content:

(1) data set comprising of coordinates and gravity
enomalies in respect of some points,

£44°) data set comprising of coordinates, heights, grav-
ity values and anomalies in respect of some points,
(1147 data set comprising of station distribution maps,
heights and relative gravity values referred to various

arbitrary gravity datum.

The available cdata mainly consisted of gravity
values measured by Worden gravimeters supported with
altimeter heights or those measured by Lacoste Romberg
gravimeters and supported by levelling heights. Additional
fieid work was undertaken with a view to filling up broad
gaps 1in the gravity anomaly data as well as to checking
up and standardizing existing data. The gravimeters used
for this purpose were (i) the “orden gravimeter (geoph-
ysical model) and (ii) the La-coste Romberg gravimeter.
Heights were estimated from topographic maps with occas-
ional checks from nearby Bench Marks. Usual drift corr-

ections were made assuming linearity over time.



Compilation of the above data sets into a common
format, for storage on computer cards needed various mod-
ification such as those given below:

(a) digitization of station position, from plane table
sheets or printed maps, to decimal degrees of latitude and
longitude,

(b) reduction of all latitudes and longitudes in deei-
mal degree up to the nearest 0.0001 degree,

(e) conversion of heights from feet to metres upto the
nearest 0.1 metre,

(d) updating of the relative gravity values to absol-
ute ones by comparison with standard stations,

(e) reduction of all gravity values to IGSN 71 system,
by applying the usual Potsdam correction wherever needed,

¢t computation of anomalies by comparing IGSN 71 gra-
vity values with 7'67, duly reduced for the appropriate

free-air effect. i

Whenever gravity values as well as gravity anoma-
lies, were both available, the basic gravity values were
converted to free-air anomalies and compared with the
corresponding anomalies duly corrected (vide Appendix A).
In case where discrepancies were found to exceed 1 to 2
milligalsy, the source records and punched cards were
scrutinized for detection of any human errors and reject-

ed if the differences still persisted. In cases where
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the discrepancies were within the limit, the derived anoma-
lies were retained for further use.
Table 5.5 chows the area covered by each zone and
the total number of gravity stations finally used.
TABLE 5.5

GRAVITY STATION DISTRIBUTION IN VARIOUS ZONZS

T
Zone Latitude Longitude | No. of
Limits Limits stations| Heuianxs

Central | 23.00 25.00 } 76.00 79.00 1224 |Well-distribut-

ed, modified
_ free-air

North 28.00 30.00 76,00 79.00 188 [No dense net

Tsxd 23.00 24.00 | 86.00 88.00 392

South 1925 LS | 78.25  yELFH 135 |Limited zone

West SLLO0 BheS0 1 72.00 7RSO 833 |Mostly confi-
ned to a very
limited area
only

5113 EVALUATION OF THE MEAN ANOMALIES

The mean value over a compartment obtained from

the point anomalies computed from field observations of
gravity and altitude data, are bound to be functions of
the density and distribution of points. In case large

coverage is available, a simple arithmetic mean as given



~130-

below will be adequate:

n
2 Agi
Biie,} = e (5.23)

The major consideration for the adoption of a sim-
ple mean is the sample size ns Mather (1970) suggested a
lower bound equal to 0.5 N where N is the number of stat-
ions in a fully represented compartment. For example, in
a 0.25 degree compartment usually a 5 KM x 5 KM station
grid is usually sufficient if the region is more or less

flat, in which case N will equal 25.

In case the sample size is not satisfactory, some

predicted values Agj could be generated using correlation

techniques, and the mean obtained as

n N
T Mgy * 2 E{Ag.}
1= j=n+l J

N

B{ag,} = (5.24)

Prediction technique may be broadly classified
into two
(i) heterogenous correlation
(ii) autocovariance prediction.
The first of these require a detailed knowledge
of the topography with heights measured accurately. For,

an error of 1 metre in assessing the heights will lead
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to inaccuracy of 0.3 milligal which will, in turn, affect
the correlation factor and the final prediction. The
other type (Rapp, 1964) which is based on the interdepe-
ndance of gravity anomalies with distance will also cause
similar cumulative errors due to the inaccuracies of obser-
vation. In both these cases, therefore, the reliability
of the basic input data is of prime importance. They may
therefore be used only if noise is small as compared with
the signal.

Another way 1s to use a polynomial expansion of
the anomalies which is quite analogous to the graphical
estiration technique (Nagy, 1973). Expanding the anomalies

ag a function af position,

_— ' 2 N i 2
Ag(x,y) = AO ; AlX " A2y * A3X - AL{_XY + A5y 9

(5-25)
one obtains for the estimated mean,
(f
= ;Ag dx dy
g = (5.26)
» ff ax ay

where the integration is carried out over the compartment.

With the restricted data source and the nature of
their variances, the covariance and correlation prediction
techniques were ruled out. Wherever the number of stati-
ons within a 0225 compartment exceeds ten, the arithmetic

average was used, whilst in cases where the number was
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nearer ten, a surface fitting up to the third order was

used with the following modifications in Nagy's procedure:

¢i - ¢m
(1) s o
= ki-lm :
<11) yl = T ' (5‘ 27)
(441) Ag* = ZlAgy/n
(iv) 5 = Agy - Ag* = Ao + Ayxy + Anyi + ueo
T ey = s e
f § ax ay
-1/2 -1/2

where, ¢m’ A, are the coordinates of the centre of the
compartment.

Thi s standardization renders the design matrix well-
conditioned as the off-diagonals elements are refiuced to
very nearly zero, specially so when the distribution is

of a symmetrical type-

In the case of 0.05 degree square elements how-
ever, the situation is usually quite different. Some
elements have only one or two gravity stations whereas
some others are completely devoid of any data, A compro-
mise scheme had therefore to be sought between the accu-
racy desired and the economy of computations, the various

steps of which are described below ¢
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(a) when the number of observations in an element
was more than two, a simple average was taken, the stan-
dard deviation being usually within 1 milligal,

(b) vhen number of observations was two or less, the
adjacent elements were also considered and a weighted
mean was obtained giving full weight to the values in the
particular element and a linearly reducing weightage in
the adjacent ones. Figure 5.3 represents this decaying
type weighting scheme graphically. This window was used
to utilize surrounding values as and when needed, to cir-
cumvent defects associated with sudden truncation, and it
is simple so far as computer logic is concerned,

(c) when no observations existed in an element but
three or more points existed in the acdjoining elements,
the same weightage scheme was apnlied thus using the
outside values for interpolation,

- f) when none of the above mentioned conditions were
satisfied the element mean was not computed, and predicted

later on.

The remainder of the excercise was of a statis-
tical nature. The covariance function was evaluated from
the mean values for all the compziatments. For the inter-
nolation of missing values, neighbouring values were

collected up to a distance which corresponded to that ... .
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at which the covariance function crossed over to the nega-
tive side, excent when the number of such source values
become less than three in which case the influence zone

was extended to at least three sources.

Figure 5.4 explains the coverage made for various
compartment sizes. Figure 5.5 and 5.6 show two typical
covariograms. Table 5.6 presents some 0. 25 degree mean

anomalies obtained in the various zones considered.

Bell RESULTS OF COMPUTATION

A Fortran IV computer programme has been developed
to compute the orientation vector at the initial point.
This is accomplished by first calculating the gravimetric
geoidal parameters at any general astrogeodetic station
using gravity mean values starting from five-degree blocks
in the exterior region to one-degree unit and smaller com~
partments in the inner zone, thereafter the invariant shift
vector as well as the absolute orientation parameters at
the initial point. Various parts of the programme have been

discussed in Apnendix F.

The final gravimetric values of the geoidal undu-

1ations and deviation components are presented in Table

5,7,
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76° 23°

FIG. 5-4 LIMITS OF VARIOUS ELEMENT MESHES ARQUND THE
COMPUTATION POINTS
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TABLE 5.6

SOME QUARTER~DEGREE MEAN GRAVITY ANOMALIES WITHIN INDIAN
e A0
Boundaries o ; . e
Latitude Longitude Anomalies in milligal

3C.0C 29.75 76,00 78.00 | =26 -29 -49 -57 -69 -81 -93 -111
25+75 29.50 76.00 78.00 |-23 -25 -34 -43 =51 -60 =69 =83
29.50 29.25 76.00 78.00 | =20 =18 ~25 =34 -43 =52 -69 76
29.25 29.00 76.00 78.00 | =14 =13 -21 -27 =29 -37 =44 61
29.00 28.75 76.00 78.00 | ~10 =7 -20 =24 -27 =31 =34 -L4§

i

28.75 28.50 76.00 78.00 | -=8 -8 -18 -30 -22 =4 -35 =31

ol B0, 2 25 F2.00 72,50 | 30 36
225 24.00 72.00 72.50 | 11 4D

!

N

25.00 24.75 76.75 78.50 , 8 8
2475 24 50 7.6 78 50 Eof 3 g =H o= O
2h50 9.2 76.75 7. 50 3 B o2 L 2 H 8§
2L, 25 24,00 76.75 78.50 90 A1 2 19 1% 12 g
24.00 23.75 76.75 78.50 ; 30 21 21 15 6 8 1k
23.75 23.50 76.75 78.50 | 32 25 17 10 L 10 18
23«50 23.2% 76«75 7B, 50 g B 39 k- of: 407 ¥

24.00 23,75 B6.0088.00 | -1 -2 L 6 26 3y 23 =19
23.75 23.50 86.00 88.00 B ot Yy CRFE w15 =3l
23:50 231.25 BE.00 688.00 1 11 13 I% 13 ‘20 12 2 =31
23: 25 23.00 86+00 88.00 | 17 16 12 13 12 3 -13 =35

17:75 1750 78+25 78.75 1 -6 =%

To.50- 17,25 78,25 98.9% 1 =8 =12

1wy I7.00 0825 7. 75 ) -2 -13
|
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TABLE 5.7

GRAVIMETRIC GEOID PARAMETERS AT VARICUS COMPUTATION
STATIONS
Code 0 1 2 3 L unit
Egr -56.00 | ~61.86 =-62.05 =75.94 -51.86 metre
Egr + 03B E="2HE = 2,51 = BB - 7.71 | arcsec
e ® Belid | + 8,86 = Lall + 147 = 1.12 |aresec
o
The elements of the correction vector at any
station are computed using the relation.
o " . =
hgr/R Nag/R
C = Egr = Eag
n n
- 8T ag

Table 5.8 shows the intermediate C vector, the

(5.28)

corresponding X vector and finally the orientation para-

meters C,, obtained from various computation points.

5.15

SUMMARY AND DISCUSSION

Gravimetric determination of the geoidal undula-

tion and the deviations of the vertical at any point,

using finer mesh sizes in the immediate neighbourhood,
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TABLE 5.8

ABSCL'ITE ORIENTATION PARAMETERS THROUGH VARIOUS
ASTRC-GEODETIC STATIONS

—

Point .
code U 1 2 3 4 Unit
Cl "C\o 26 —lOno7 "'1.1097 -10-30 "'9.)'*'3 ppnl
¢y 3.15 7.63 -13.17 =2 B 2:.35 | micro

rad.
Cq 12.61 9,01 s 8 12.79 -3.51 micro
- rad.
Xl _270 2)“' "29:1 23 '-)+O-l7 -239)“‘6 "28008 me
X, 38.09 34. 28 3471 36.50 33.36 | ppm
%y 115.0% ‘Jiih. e 1lo0.85 @ I15.86 115.28 | ppa
SNb -59.00 |-62.05 -56.67 -66.14 -61.31 |metre
S{o +0. 65 + 0.1% -2.24 +1.40 +0.43 | arcsec
én_ +2.60 +1.86 +2.13 +2, 25 +1.64 |arcsec

has been discussed in this chapter. If the point hapoens to

be occupied by an astrogeodetic station also, the corre-

ctions required to be applied to the astro-geodetic para-

meters, may be computed. The corresponding corrections at

the initial

ntation formula suitably rearranged.

“point can then be calculated using the orie-

A few numerical
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examples have been Qorked out using the results obtained
in the previous chapters. Various sources of errors in

the gravity data and their effect on the determination

of undulation of the geoid and deviations of the vertical,
are hriefly discussed. The grid method has been preferred
to the graphical technique, and decimal degree compartments
used in order to conform with the SI system of units. Con-
sistent inner limits for the size of various compartments

have also been discussed.

The transformation of conventional geographical
coordinates of any gravity station to local coordinates
using the computation station as the pole, is formulated
in a differential form. A few proposals for evaluating
the effect of the innermost zone have also been included.
The datum shift relation is formulated in a generalized
form starting with the intrcduction of a shift vector
whose elements are independent of the coordinates of the

computation station as well as these of the initial point.

A brief discussion concerning the selection
af the astro-geodetic station, is included and five
stations have been chosen on the Indian continent along
two profiles, intersecting at the origin. The sources
ané qualities of the data set used in this investigation

are of diverse forms, having been collected for different
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PUrpOSEeS, €.g., explorations etc. which were further supp-
lemented by additional field measurements made. For conv-
erting the distributed point gravity anomalies to represe-
ntative mean walues, various practical methods including
a sort of weighted average have been chosen. However, in
respect of compartments where no mean values were availa-
ble, the covariance interpolation was used. Finally the
results of computation have been presented as sets of the

shift vector as well as in the conventional form by 6 NO,

6{07 ) values.

The results from various computation stations
show that the wvalues of § NO are more or less consistent
among themselves whereas those of the slope components
are found to be highly discrepant. A standard deviation
of 3 metre in & No may be comparable to the similar clos-
ure error in the astro-geodetic geoid. In & Eo’ the
standard deviation works out to be 1.2, whish is rather
high. In 6no, the deviation is 03 around the mean, but
the values from all other stations are lower than that

obtained from the initial point.

Out of all the results, the values obtained from
the initial point is obviously the best estimate. There
is no systematic error as the network starts from the

centrally placed initial point itself. The astronomic
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determinations are alsc perfect to the extent possible.

The gravity data distribution compared to that at any
other station, is alsc by far the best, leading to as
accurate gravimetric results as practicable . The eircle-
ring method was also applied up to about 500 KM radius

-and the results (Bhattacharji and Ray,1978) are in satis-
factory agreement with those obtained from the grid

method apnlied here. The anomalies used are modified
free-air (Bhattacharji, 1971), i.e., corrected for regional
terrain effect, and thus provide better simulation of the

Stokesian boundary-value problem.

The other determinations are not so satisfactory,
basically due to want of necessary density of gravity
data around them. The local determinations are more suscep-
tible to altitude and standardization errors. For example,
the data in the "estern zone has been updated by compar-
ison with a single pendulum station. Moreover, a North-
South flowing river separated the two sets of observations.
There being no common station between these two groups,
the anomalies were matched along the two sides of the
river in an arbitrary manner, which could be considera-
bly in error due to possible sharp changes in density

along the river-bed separating the two s=2ts. A somewhat

similar situation prevailedrin the Bast station also. For
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the inadequacy of gravity data in the North zone, the mean
ancmalies over 0.05 degree compartments had to be taken
as that over 0.25 degree compartment. In no case was the

inner limit suggested in Table 5.3 achieved.

Even if the gravimetric determinations are made
accurately, the results from these stations could still
differ from the real values because of the unknown syste-
matic errors in the triangulation network. Whilst the
gravimetric and astronomic determinations could be of com-
parable accuracy, the geodetic coordinates have to be
burdened with errors propagated along the cantilever
extension. The South station is a temporarily occupied
one and not a triangulation station. The West point is
the only Laplace station used in this study where a discr-

epancy of 1" was found (Gulatee, 1955).

For obtaining a better revised set from a general

astro-geodetic station, the following steps are recommended:

{i) computation points be chosen to coincide with
Laplace stations,
{143 gravity values used as reference should be stan-
dardized,
- ; A . o__0
(441 ) gravity data in the inner zone say 3 X3 be meas-
ured accurately alongwith precise altitude values

of the station,
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Notwithstanding these shortcomings, the present
determinations from various computation points have indi-
cated a first-hand check on the numerical computations,

which can be utilized for systematic planning in future.

Computations from several stations have earlier
been recommended by geocdesist for obtaining a reliable
estimate. Rice (1952) used 16 stations and Mather (1970)
chosen 38 stations, with suitable gravity coverages in
the immediate neighbourhoods. An attempt to incorporate
a somewhat similar logic has been subsequently discussed

in the following chapter.
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CHAPTER VI

A LEAST-SQUARES COINCIDENCE APPROACH TO ABSOLUTE
ORIENTATION

6.1 GENERAL

Theoretically, a complete knowledge of the gravity
anomaly : field over the entire earth is a prerequisite for
obtaining the absolute orientation of a local geodetic
network using the classical gravimetric method. This being
an unattainable condition, precise determinations of the
absolute geoid and its orientation parameters basically
constitute an ill-posed problem in geodesy, calling for
careful processing and interpretation of all available
data. The techniques and nrocedures designed to accomplish
this task as well as the results obtained in respect of the
Indian geodetic system have been discussed in earlier
chapters.

The basic guidelines for selecting an appropriate
cemputation station for the determination of the absolute

orientation vector are as follows :

(i) the point should be a first-order astro-geodetic
station, and
(11) that it should be surrounded by a reasonably dense

gravity network.
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The numerical examples cited in Section 5.3 as
well as the final results obtained from the various com-
putation stations described later, highlighted the defects
arising from the limitations and inaccuracies of astrogeo-
detic and gravimetric data around a station. However, this
could be circumvented if, a number of astrogeodetic stations
and regional gravimetric data are available. The use of
this proposition forms the subject matter of the present
chapter, illustrated with numerical examples to obtain a
set of orientation parameters for the Indian geodetic

system.
6.2 SOTTRCES OF ERROR IN ASTRO-GEODETIC DATA

Although the gravimetric orientation through an
astro-geodetic station appears perfect theoretically, the
solution obtained is never absolutely correct in a mathe-
matical sense, but can only be regarded as an estimate
whose reliability depends upon those of the input data
and of the various linkages of the overall numerical pro-
cedure. Sources of error in gravimetric data have already
been discussed in Chapter V. Those in astro-geodetic data
can be broadly classified into two categories, viz.,(a)
errors associated with astronomic observation and redu-
ction processes and (b) errors in geodetic determinat-

jion of coordinates.
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he basic sources of errors in astronomic deter-

minations as follows @

(i) instrumental and observational errors,
(ii) effect of polar migration,
(iii) wuse of various star catalogues,

(iv) reduction of observations to the geoid,

Denending upon the instruments used, the observ-
ational procedures followed and the human skill deployed,
errors in measurements may range from 0.0l for zero-order
determination up to even a few seconds. Whereas instrum-
ents are liable to produce cumulative errors, various
astrofix method are designed to compensate for or mini-
mize them in order to achieve a final reliable result. For
the particular purpose of orientation, the astro-station
should be of first order, to a precision of 0:05 or higher,
Whilst latitudes may be measured with greater accuracy,
the longitudes are liable to further errors due to an
additional measurement of time, which fortunately has
been considerably improved in recent years following the

use of wireless signals.

The inaccuracy arising from the slight wandering
of the terrestrial pole affects the basic geocentric co-
ordinate system as a whole. This variation 1s quite sig-

nificant, and appropriate corrections need be applied to
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astronomic coordinates including the azimuth.

Another important celestial feature shows up in
the star almanac published at various times. Various cat-
alogues have been nused for the calculation of astronomic
positions, and systematic variations are found to occur
between them. As the Indian net includes some century
old observations,errors of 0.2 or more may be expected if

they are all reduced to the present FKu system.

For the purpose of computing geoidal coordinates,
observed values must be reduced to the hypothetical mean
sea-level below the station. The shape and density distri-
bution of the surrounding topography controls the deviation
of the slope of the geop on the earth’s surface from that
of the geoid below. The normal amount of error, in the
Indian zone, 13 0f the order eof 0v15 per kilometre of elev-
ation. Though the correction is customarily mace, it is
computed on the assumption of a "regularized earth' poss-
essing rotational symmetry and hence applied only to lati-
tudes. Any asymmetry in terrain, however, will have its
effect on longitude also, which may be estimated from the

gravity data around the station.

The great triangulation survey conducted by the
Survey of India was a major step towards producing cons-

istency in the national geodetic grid. However, for such
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a large subcontinent as India, propagation of inaccuracies
due to centilever extension assumes considerable signific-
ance. The major inhomogenities in the Indian triangulation

system are as follows:

(i) a scale-error due to adoption of various foot -
metre ratios at various timesj this aspect has been inve-
stigated by Bhattacharji (1961),

{11) lack of azimuth control due to inadequancy of

Laplace stations as reported by Gulatee(1955).

Two other errors that generally creep in a geodetic
network computation are discussed below:?

(i) Reduction of a base-line and other observations to
the corresponding ellipsoid of computation needs an a-priori
knowledge of the geoid-spheroid separation below the base-
line. But these heights are only known after all the astro-
geodetic deviations are made available. Thus a recomputat-
ion is necessary to correct the whole net after constructing

the preliminary geoidal chart.

(ii) Adjustment of closure errors are based on some
theoretical assumptions, e.g. equal shift, linear propag-
ation, or least-squares-error. The departures from reality
of these assumptions, give rise to inaccuracies at places

away from check bases.
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These limitations underline the need for a careful
consideration of various factors involved if a general
astro-geodetic orientation is to be attempted. For a more
reliable and stable orientation, it is always preferable
to chocse the initial point, where repeated astronomic
observations and dense network of gravity station may be

made available.
6e3 THE LEAST-SQUARES APPROACH

From the above discussions of the various errors
and their estimates, it should be clear that an orientation
point should be so chosen as to be a supercontrol point at
which all measurements of the astronomic, geodetic and gra-
vimetric quantities and their computations are made with
utmost care, calling for high skill, best quality instrum-
ents and comparable software. However, for a country like
India, time and economy are as much of the essence and
whilst precision and refinement should be continually imp-
roved, a practicél solution must be found in the context of

available informations with all their inherent errors.

As the errors are largely of a random nature, a
reliable assessment can be made by assuming that they con-
stitute a gaussian distribution. Accordingly, one can use
the logic of least-gquares for minimizing their effect

provided that the sample size 1is well distributed. There
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are a number of astro-geodetic stations and'gravimetric
geoidal values determined from mean anomalies over one-
degree units. The orientation parameters may thus be

selected by framing normal equations so that the sum of
the discrepancies between astro-geodetic and gravimetric

values is constrained to be a minimum.

Either of two conditions stated below may be

fulfiiled- 2

(i) condition of coincidence,

(ii) condition of parallelism.

The coincidence condition assumes that the sum of

the squares of the differences between N“f and Nag at

suitable points will be least, physically meaning thereby

(=]

that the two surfaces are in an average sense coincident

e eachother.

The other condition requires that the two surfaces
to be as closely parallel to each other as possible, rather,
the total non-parallelism over the region, numerically
represented by the sum of the departures of their slope
components at various points be constrained to a minimum.
The slope vector is conventionally expressed in terms of
its components £ and N in two orthogonal directions. The
parallelism condition should thus be obtained by constr-

aining the quantity Z((&g)2 + (611)2)to be a minimum.



~15Y-

6ol FORMULATIONS FOR LEAST-SQUARES ORIENTATION

The general datum shift relations for any station

n may be written as follows

~- = — - -
811 Bo B3 ot by
81 5n a23 ¢, = b2 (6.1}
Y A a a e b
; 31 32 33 n, o 3 3! m

The elements 25 3 are complex trigonometrical func-
tions of ¢n’ An’ ¢o9 AO and can be obtained by rearranging
the orientation formulae (ZEquations 5.1). The elements of
C are the conventional parameters 6NO/R, 650, 6ﬂo resp=-
ectively. Hlements bi are the differences between the gra-
vimetric and astrogeodetic geoidal parameters at station n
combined with the effect of change in the dimensions of the
spheroids.

Using the first row of the matrix B for various
stations, coincidence condition equations can be obtained

ag followsz

811 (w)%(0) ¥ 22w ®2(0) T A13(w)%3(0) T Pi(u)?
1 B S SR . | (6.2)

where, U is the total number of undulation stations.

If U > 3, a normalization will be needed to satisfy the
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least-squares fitting.

Similarly, for the parallelism condition,

351 (m)%1 (o) * 222(m)%2(0) * 223(m)®3(0) = P2(m),

m= 12500 M (6.3)
and

831 ()% (0) * 232(0)%2(0) ¥ 233(p)%3(0) = P3Py
P = 1y240.0,4P y

are the condition equations where m denotes a meridional
deviation station and p denotes a prime vertical deviation
station, and other symbols have their usual meanings.

A station may be common to both groups. If (M+P) > 3,
normalization will be required to obtain the design matrix.
This indicates that while coineidence matching will require
at least three computation stations, two common deviation
stations would be sufficient for matching the condition

of parallelism.

6+5 COMPUTATION WITH SELECTED STATIONS

The initial point together with four astro-geodetic
stations were considered in Chapter V for orienting the
system by gravimetric method. The same stations may be
used for the proposed least-squares matching using the

coincidence and parallelism conditions.
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First, the contributiong of the void geoid para-
meters are computed by linear interpolation from the four
nearmost corner values of N_y Z .y N e For the partial
geoid parameters, however,a curvilinear interpolation
technique has been preferred to take care of the regional

changes. he procedure adopted is as follows:

(i) 16 surrounding grid corners around the computation

station (¢,)\) are considered such that,

b4 < ¢, <P <P <D,
(6+4)

and k-l < AO ¢ ki Al < kg

(ii) The Lagrange polynomial interpolation yields four

intermediate values in the ¢ -direction, as

g = -p(-p)(2-p) (L+p) (1-p)(2-p)
i 7 6 - s 5 i,0
(L+p)p(2-p) (1+p)p(1-p)
+ p I; P Zi,l = = Zi,2 3
1 ==1 0,12 (6.5)

where, p = ($-¢_)/(¢1-2,)

and Zi ; are the data points at grid corners.
9

(iii) From these again, the interpolated value af - & 1&

found by the same principle in the A - direction , as
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g = vaiiegl(2=q) o i (1+q) (A-q)(2-q) g

e . e SR e A e 0O

6 2

+ (4q)a(2-q) ¥ = (L+q)q(1-q) H, (6.6)
2 6

where, q = (A-ko)/(kl-ko)
The final values of N, £, N are given in Table 6.1.
TABLE 6.1

GRAVIMETRIC PARAMETERS OF COMPUTATION STATIONS INTERP-
GLATED FROM FIVE-DEGREE AND ONE-DEGREE CORNER VALUES

£ R I
ond ond
o | -59.8 ~0.20 3.53
1 ~60.8 ~2.97 8.58
2 -61.9 -5.81 -0.88
3 =75k -6.142 1,04
b -51.8 -5kl 1.99 .

Values are referred to GRS 67
A comparison of these values with those presented in

Table 5.7, chapter V, reveals that informations of the
order of 1 metre in N and 2" to 3" in £ or f| mey be

hidden in the local gravity details .
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The solution for coincidence matching and parall-
elism matching involved normalization of matrices of order

5 x 3 and 10 x 3 respectively.

The results are presented in Table 6.2 in convent-

ional form as well as in terms of the shift vector elements.
TABLE 6.2

ORIENTATION PARAMETERS OBTAINED BY IMPOSING LEAST =~
SQTARES CONDITIONS AT SELECTED STATIONS

Condition Coincidence Parallelism
6 N metre | -60.34 -854.148
5 r(; “ Q02 -0.76
& n;' Lol 2:85
2 ppm ~31:56 16.09
X, Dpm 32.94 15:62
X3 ppm 117'99 3'95
6.6 PARALLELISM VERSUS COINCIDENCE

It is immediately apparent from:the results obt-
ained by the above exercise, that a complete solution of
the orientation problem is not possible by the method of

least-squares parallelismj the value of E)NO is impro%able,
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In the two-fold process of determining Egr and ngr at the
astrostation, the original information suffers considerably
owing to the following reasons:

(i) In approximating the integration by numerical summ-
ation, inaccuracies introduced is greatest from the nearest
gravity unit, with maximum effect on the deviations of the
vertical. In the absence of adequate gravity detail and
finer mesh sizes, the grid corner values thus neither
represent the local fluctuations, nor do they have any

reason to be considered as zonal values.

(ii) sSimilarly, any interpolation of Egr and ngr from

the sharply changing corner values is equally arbitrary.

An alternative scheme of matching the slopes at
grid corners does not seem to yield reliable result either

for the following reasons:

(1) Astro-geodetic stations are not necessarily located
at grid corners thereby rendering imterpolated values of Eag
and ﬂag at the corners from limited distributed data, also
arbitrary.

(ii) The high density of astro-geodetic stations reg-

uired for a representative interpotation is not practicable.

The differences in gravimetric and astro-geodetic -

values, in either case mentioned above, contain some
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significant signal data and should not be assumed to be

only the uncorrelated random noise due to various errors.

On the other hand, informations regarding undulatio-
ns are obtained in a similar way for both cases: gravimet-
rically, by integration of the amplitudes of the gravity
vector and astro-geodetically by integrating the phase
of the vector. These Ngr and Nag values ére therefore
of comparable order. The smoothness of the geoid heights
in both cases makes them interpolable also. The average
coincidence in a way also brings about the parallelism
closer as a little change of & 4 1M will affect the N

heights systematically.

From the overall considerations, therefore the
coincidence matching at grid corners ig suggested as a
more optimal choice.

6.7 SHIFT VECTOR FORMULATION FOR COINCIDENCE

MATCHING

The extension of the least-squares technique to
matching of geoid heights at the corner points only, may

now be framed as a general procedure.

Corrections due to the change of spheroid without
affecting the NO, Eo’ ﬂo values may be done first, by the

procedure detailed below.

Rewriting the transformation relations as given



in Section 5.9,

C

where, X

For no change in

& N

hence C_ being
o}

X

X

and é

o)
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= TX + ED

1
C
To( o

- EOD) (6.7)

X+ X

1l

geoid parameters at the initial point,
= 650: 61’10:09

a null vector,

t'c =0

O

1
= =ip H
o O

B3 O

D, (6.8)

= TX + ED

For computing only the undulations, the first element of

C will be needed, whose expression turns out ta he,

&N _

e . -

2 (sin¢)il + (cos¢cosk)k2 . (cos¢sin}\);c3

+ d.sin¢

-\ a

(6.9)

In the present case, application of this correc-
tion to the Everest geoid will form an 'Arbitrary..GRS67
Geoid' which may now be compared with the 'Gravimetric
GRS67 Geoid'.

The D vector being now null, the relation is

simply given by,

(6.10)

Q!
"
|
5a 1
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of which only the first element is to be used here, yielding,

—(sin@);l + (cos¢cosk)§2 + (cos¢sink)i3 2 ﬁ%§~ (6.11)

where, &5 N is the gravimetric value minus the arbitrary
GRS67 value.

By solving the above sets of equations for % after
usual normalization, one obtains the conventional correct-

ion at the origin as,

Co = To X (6.12)

Also, the shift vector X may be directly obtained by,

X=X+ X

U

X-i T'E D (6.13)

The whole procedure has several advantages, notably,

(i) the intermediate bye-product,i.e.,the'arbitrary
GRS 67 geoid' may be used in future whenever

revised corrections C_ are available,
(ii) the complex trigonometrical relations are elimi-

nated,

(iii) for geographical latitude-longitude grids, the
same coefficients will occur for a number of
times - and subscripted variables may be used to

effect an efficient computer programme.
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6.8 RESOULTS OF COMPUTATION

The grid corners considered for the Yeast-squares
coincidence matching for orientation, were arranged in
three sets as follows (Figure 6.1)

(a) Set A : 15 corners along two orthogonal profiles,
(b) Set B * 8 points near boundaries of Indian region,

(c) Set C : 23 points, combining set A and set B.

he astro-geodetic geoidal heights were obtained
from a contour map (Bhattacharji ,1973) referred to the
International Spheroid. The values are converted to those
on the Everest Spheroid using the correction parameters
given in Ixpressions 5.4 of chapter V. The arbitrary GRS67
geoid heights are obtained thereaften using the relation

expressed in Equation 6..

The gravimetric GRS 67 geoid heights were already
obtained superimposing the partial geoid heights computed
in chapter IV, on the void geoid heights calculated at 5
corners by cubic spline interpclation from the 50 corner
values computed in chapter ITII. Two profiles of both types
of geoid, the arbitrary GRS 67{astro—geodetiq)and the gra-

vimetric GRS 67, are depicted in Figure 6.2.

The solution of Equation 6.1l yields the X vector
from which the orientation vector CO and the shift vector

X are computed wusing Equations 6.12 and 6.13 respectively.
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FiG., 61 POSITIONS OF POINTS CONSIDERED FOR

LEAST-SQUARES COINCIDENCE MATCHING
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The final results obtained from the three sets are tabul-
ated in Table 6.3. The standard errors of various soluti-
ons are also indicated therein to illustrate how well they

coincide with each other,

TABLE 6.3

SHIFT VECTOR AND ORIENTATION PARAMETERS OBTAINED BY LEAST-
SQUARES COINCIDENCE

D PRI —— -

1 o 1
e i £ B ¢ unit
Points compared ! 15 8 23
B I S ..- S IO Tk At G
el i -32.03 2 -30.92 ' -31.37 ppm

L ! i
X, { 32.81 ; 30.36 | 31.38 | ppm
x, ; 113.85 §114.91 114.%46 | ppm
Standard error | 1.0 ? 247 Li'y metre
) NC | -59.8 !—59,8 ~-59.0 metre
3 -0.45 ! -0.1¢ -0.30 | arcsec
LV 8 1:59 ! 1.05 1.27 | arcsec

s
= L i J i

Two observations may be made from the results obtained
from various sets :2

(1) the solutions do net differ from each other sign-
ificantly thus satisfying the intsrnal consistency of the

nethed s
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(ii) the standard error is minimum for set A, indica-
ting that the result of including greater number of stations

riay net be always advisable.
6.9 SUMMARY AND DISCUSSION

This chapter begins with discussion of the various
sources of inaccuracies involved in the absolute orientation
of a geodetic system through a general astro-geodetic sta-
tion. The sources of error in the astronomic and geodetic
neasurements and computations, alongwith estimates of errors,
are briefly enumerated. Thereafter assuming a gaussian dis-
tribution of those errors, a least-squares approach to the

problem is followed.

Following the formulations of the least-squares

matching of

(i) geoid undulations, and

(ii) slopes of the astrogeodetic and gravimetric geoids,
both the methods have been apolied to compute the orienta-
tion parameters, using some selected astrogeodetic stations.
After a comparative study, finally the coincidence approach
has been adopted in a general way. Computer~oriented for-
mulae are developed and three consistent sets of orienta-
tion parameters are obtained, which may be compared with

the sets obtained through alternative methods.

The virtue of a least-square solution proposed and
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tried in this study should not however be overstressed, as
it only partially circumvents the want of precisely deter-
nined gravimetric and astro-geodetic data. For, a large
nurber of observations alone may not procduce reliable resu-
1lts in all cases as the variance may become even greater
than the original looseness of the set of observations,

and an additional station may be an outlier unduly affec-

ting the system as a whole.

Furthermore, the mathematical expression contains
another term N, which has not been taken into account, as
it does not appear in the Stokesian geoid height, while
the astro-geodetic geoid is not considered to be precise
enough to yield this value accurately. The term may be
visualized as absorbed in other coefficients or neglected
altogether, similar to the term representing the geoid-

cogeoid separation.

The present determination must therefore be regar-
ded only a set of secondary check values, whilst a truly
representative picture must await more precise knowledge
of the gravity field and its accurate reduction for purpose-
es of orientation. Revision of the astro-geodetic geoid
with greater detail and sharpening of the tools for trea-
ting and handling such data in view of future refinements

would also render this exrercise more realistic.
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CHAPTER VII

ABSOLUTE ORIENTATION BY COMPARISON OF ASTRO-GEODETIC AND
SATELLITE-DERIVED GEOIDS

Y1 GENERAL

Al though the classical gravimetrie method is the
main approach followed in this work for determining the
absolute orientation parameters of the Indian Geodetic
System, an attempt has also been made to determine these
using the asgtro-geodetic deviations of the vertical and

he satellite-derived geopotential coefficients.

The astro-geodetic geoid based on the measured
deviations of the vertical gives a reasonably detailed
picture of the mean sea level surface, its fine structure
depending upon the distribution of the deviation stations
and the method of integration used. However, this geoid
suffers from a major defect in that it is only relative,
the extent of non-geocentricity depending upon the arbit-
rariness of the orientation parameters chosen for the
initial stafion.

Recent gatellite data have helped define a gene-
ralised shape of the geoild expressed in terms of a limi-

ted number of geopotential coefficients. This surface,
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whilst being unrepresentative of loecal features, is positi-~

oned and oriented in space in an absolute sense.

The satellite~derived geoid may be compared with
the astro-geodetic geoid in a least-squares sense. Before
this is done however, the latter must be rendered compara-
ble to the former and both these reduced to a common sph-
ercid. The thrce factors needed to accomplish this are
the elements of the shift veector introduced earlier in
this work, or the corresponding conventional quantities,
viz., the radial translational component and the two tilt
components, which incidentally are the paramcters sought

for absolute orientation.

72 THE INDIAN ASTRO-GEODETIC GEOID

The Indian astro-geodctic geoid (Bhattacharji,1973)
was obtained using the well-known Helmert’s integration
(Helmert,1880). Accordingly, a series of loops:of geoidal
profiles are determined by direet integration of the avai-
lable deviations of the vertical at appropriate intervals,
in the form

B, = N; , = lfl(zcosa + Neinag) ds {741}
where,N, 1s the geoidal height of the ith station,
£4N arc resgpectively the deviation components in

the meridional and the prime vertical planes, and
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a i1s the azimuth of the profile connecting the

two stations the (i-1)th and the ith.

However, owing to the idcal assumptions implicit
in the mathematical formulation and defeets in the data,
the loop closures are found to be in appreciable error
which are subsequently adjusted usually by some sort of
linear distribution of errors along the loops. Thereafter,
the geoidal heights are linearly interpolated at points
inside the loops and a map of geoidal height econtours is

drawn with reference to the adopted spheroid.

A variation of this method is to interpolate devi-
ations of the vertical at geographic grid intersectioﬁs
and compute the geoidal profiles along this grid lines,
finally adjusting the heights so that the plosurc errors

along the loops reduce to zoro.

743 DEFECTS IN HELMERT’S INTEGRATION METHOD

The cevaluation of the geoidiby Helmert?s method
has amongst others, the following limitationg:
(a) both components of the deviation, i.e., in respeet
of £ ag well as N, mist be available at = stationgy meri-
dional deviation valucs alone are not usable unless the

station perfectly lie along a North-South profile,

(b) station interval should be small so that variations
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between adjacont stations may be assumed to be linear,

(e ) gaps between profiles are not represented with
equal weightage, being oversmoothened compared to the
profiles.

The alternative method, using interpolation at
grid corners, does not provide a reliable geoid either, as
the observed deviations of the vertical are trwmcated and
Treasonable interpolations are not possible -unless the

station distribution is dense enough around the grids.

In the case of the Indian geoid, the defects are
quite pronounced as there exist only about 500 stations in
this vast subcontinent at which values of both deviation
components are available, and these too, not uniformly
distributed. ' Only a few dominant profiles can thus be
obtained providing about 4 or 5 loops of fairly large

size with larger data gaps within them.
7ol THE SURFACE-FITTING TECHNIQUE

Vaniceck and Merry (1973) have proposed a polynom-
ial surface-fitting technique in three-dimensions amenable
to automatic machine computation that may replace Helmertss
method. This technique has been used here to compute geoid
heights in the Indian region which are, in turn, compared

with existing values.
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The equation of the surface used in the present

work is
. n
i max n Xp—m o
W, FieeE % X Crm (. 2)
n=0 m=0
where,
= ¢
Y = Acosd,

and the latitudes and longitudes are expressed in radians.
The original scheme has been hereby slightly modified

(a) to enable a better computer-oriented arrangement
of the power series,

(b) to make all variables dimensionless,

(c) to eliminate the coordlinates of the initial point
from the expressions of X and Y, so as to avoid underflow

in computations which could have occured if as initially

X

(¢—¢O)R

b

(A-AO)Rcos¢,

specially when a station shares the same meridian or para-
1lel with the initial point,

Another advantage of the modified expressions of
X and Y, specially applicable to India because of its loc-
ation in the North-Eastern part of the globe, stems from

the positive values of both X and Y thereby avoiding negative
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bases in exponentiation.
Recalling that

6 X

]

69 4 and
5X

1}

&X cosd,

and differentiating expression 7.2 with respect to ¢ and A,

S u

—53(}' = =f = ZXCrm(n-m)X> 1y

5 . (7+3)
u

: Yl = of) = $50py X (m)yl-l

Expressions 7.3 provide the conditions for obtain-
ing the unknowns Cpy by framing the equations, in a matrix
form, as

AC =B (7+14)
where, A is the design matrix, whose elements are functi-
ons of position of the deviation station,

C is the coefficient vectory, to be determined from

the astrogeodetic data,

B is the deviation vector, comprising the compon-

ents of the deviations of the vertical in radians

with reversed sign.

Each measurement of either £ or n will provide
one equation which offers an added advantage over Helmert®’s

method. Both components of #eviation at a station provide
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two equations.

The solution, after usual normalization, is

¢ = (an )"t (wa) (7+5)

It 1s noted that the ecaffiotent Co cannot be determined

0

by the least-squares solution, as it does not appear in

Zquations 7.3. For evaluating C the known geoid height

007

I, at the initial point will be needed, whence

N n max n n-nm
0. & Sitie 7 5 i (7.6)
00 R sl [l nm 'XO e}
where,
Xb d ¢o ?
Yo = AO cos¢o.

e coefficients now being all known, the geoid
height at any point may be computed by evaluating expre-

ssions 7.2

T OPTIMUM ORDIR OF FITTED SURFACE

A high~order surface might at first appear attrac-
tivgiit contains larger number of coefficients, but while
computing intermediate values of the geoid heights, sudd-
en ripples may occur due to involvement of shortwave comp-

onents that may have high amplitude.

On the other hand, a low-order surface will be too
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smooth with a high standard error. The criteria of a logi-
cal choice are well-discussed by statisticians, and the
unbiased variance may act as a quantitative measure:y
controlled by the degree of freedom of the “@quation-

unknown compatibility.
The unbiased variance is defined as

B - Brata)

L (7+7)
nun—neq
where,
L P number of unknowns related to the order of
the surface,
- O number of equations equal to the number of

deviation compnonents used.
I - 3
The product B B is computed once for all, while
reading the data cards. as sctuell
g s 9

{

B'B =35 (£° +n9) | (7.8)

The number of unknowns excluding C depends on

00?7

the order of the surface, ngprg , by the relation
nun = Mopdg (nord - 3)/2 9 <7°9)
the value of n,,.35 being 1 for a plane surface.

As the number of unknowns cannot exceed the num-
ber of equations. the highest order of surface that can

be incorporated, turns out to be (Equation 7.9),
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nopq = {( /5 + 8 8‘n'e'q -3)/2} (7.10)

where the parantheses { } signifies that Preg 28 the dni

eger value of the expression enclosed.

Beginning thus, with a higher-order surface dicta-
ted by Equation 7.10 for calcuiating variances, the order
can be progressively decreased and variances compared,
and the order corresponding to the minimum v adopted for

a final fitting.
746 INVERSION OF THE NORMALIZED MATRICES

The technique for obtaining the optimum order of
surface, as outlined above, involves the inversion of large
matrices quite a few times, thereby requiring long computer
time and large storage. This difficulty has been circumven-
ted in the following manner:

(a) First, normalization of the original equations 1is
carried out up to the highest order and by framing A'A and
A’'B directly, instead of A. The data need not be stored
in this procedure. The normaligzed matrix being symmetric,
only the upper triangular part need be stored in a single-
subscripted array.

(b) The least-squares matrix is proved to be a positive
definite one and hence inversion by factorization is much

more convenient. The factorization into triangular matrices
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is done by Cholesky’s square root method, using the follo-

wing recurrence relation,

A'A =D =R'R (7+11)
wheTre, c -1
-
Jk =1 1J ik
T ik - - J J Lk
3J

The elements r are stored in the same location as d to

minimize core space requirements.

(c) Inversion of R is now done using another recurrence

relation, i.e.,

°.§. Edn 2ot
- J=1+ i<k
Tik - 5 ’ {(‘Fxligd
i §
= iy,
and IT,: === ,
o Tii

I : -1
r denoting the elements of R

It is found that truncation of the original
normalized matrix D down to any size and subsequent inve-
rsion of the factorized triangular matrix leads to exactly
the same elements, as those obtained from the direct tru-
ncation of the matrix R™1 to the same size. Therefore,
this computation need be executed only once with the lar-
gest sized matriz. While reduwsing the order of surfage, the

elements r of the shortsized matrix, truncated according
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to the Din value, need be used.

(d) The coefficients Cpp and the variance v for any

order of surface may Be directly generated by,

- - 743
c = (&)@t (o B) (23]
and the expression 7.7,

where the number of elements will be truncated accordingly.
LV RESULTS OBTAINED BY STRFACE-FITTING

For the sake of comparison with the published geoid
map, the deviations of the vertical reduced to the Inter-
national Spheroid were used. A preliminary study (Ketaurai,
1978) on testing of puolyriomial surfaces by fitting them
pieccewise within short blocks of 4° x 4° size proved un-
satisfactory due to insufficient data and errors in extra-
polation + A single surface was therefore fitted for the

whole Indian region.

366 stations giving both the deviation components,
and 387 stations giving only the meridional component were
consicered, rejecting a number of astrogeodetic stations
to avoid clustering of data points. The order of the poly-
nomial surface was reduced from 10 to 3, and the seventh-

order surface was found to be optimum.

Table 7.1 presents the standard errors Vv in
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respect of various surfaces. The highest order surface
could not be adopted for want of adequate storage and time
on the available computer IBM 1620. Also, it was felt
that although a detailed geoid would necessitate a higher
order surface, the present objective was to obtain only
smoothened values, similar to the smooth geoid derived
from satellite data-

TABLE 7.1

STANDARD ERRORS OF GEOID SURFACES OF VARIOUS ORDERS

Order of
surface 10 7 8 i 6 2 4 .

Number of 65 5l L), 35 247 20 T 9

Coefficilients

Standard
error
(arcsecond)

13.9 1.8 I1.9 7.9 10.1 10.9 12.1 12.8

Figure 7.1 shows two profiles of the geoid thus
obtained alongwith the existing profiles for purposes of
comparison. Sample statistics of height comparison of a

few points are presented in Table 7.2.
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TABLE 7.2

SAMPLE STATISTICS OF COMPARISON OF ASTRO-GEODETIC GEOIDS

Existing Surface-fitted| Number of points
Geoid Geoid compared = 23
Maximum | 12.9 metre 12.1 metre Maximum = LO.4 m
Height Difference
Minimum -2.0 metre -2.1 metre Minimum = 0.l m
Height Difference
Average 6.8 metre 5.3 metre RMS = 3.5m
Height Difference
748 SATELLITE-DERIVED GEOPOTENTIAL COEFFICIENTS

The disturbing potential of the earth being a
harmonic function, it can be expressed as a series of sphe-
rical harmonic terms. From Bruns® formula, the geoid undu-

lation functien finally takes the form,

Uy = N/R
(] n - = -
=1 - Zz S (Cpyp cosmh + S sinmh) Ppp )
n=2 m=0
- - B, -
n=1
The quantities anm’ énm are the geopotential coe-

fficients computed by analyzing the satellite orbits, and

he coefficients Jzn are related to the reference spheroid
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adoptec. The summation involves the second-order and
higher terms only, as the zero and first-order terms vanish
owing to the equality of mass, the geocentricity and coaxi-
ality of the system with that of the actual earth. The
geopotential coefficients vielded by satellites are being
continuously refined from tire to time to progressively

higher cdegrees and orders as new satellites provide addit-

ional informations.

79 RECURSION OF THE LONGITUDE AND LATITUDE TERMS

(a)  For computation of the longitude terms, the follo-

wing recursion relations have been used in the present work:

1

sinmd sin{(m-1)X CA + cos(m-1)A Sy

(7.15)

CO ST cos (m-1)A CA ~ sin(m-1)A S

A

with starting elements,

2
§

COSA,

AN

10p]
H

This simple recursion avoids the repetitive use

O

f the irrational factor w,and the accuracy is not affe-

3 i

cted if C,s Sy are first computed in double precision.

(b) The latitude term P, in the geopotential series
is the fully normalized Associated L egendre function of

degree n and order m, the general expression being,
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Prm
; e
je(2n+l) [ B-1 m ] K |on-ok n-m-2k
AT ﬁglh L (-lzr 22 ()
L (2) k=0 k- | o~k | n-m-2k
where, (7.16)
o
¢ = cosd
s = sing
" n-m
and = —_—
J { 5 9

Here ¢ 1is the geocentric latitude of a point,
and the paranthesis { } signifies the largest integer

value of the guantity within it.

When m = 0, the zonal harmonics are the Legendre’s

polynomials,

wiere,
. . o
o | sl % -37* - fa= o  (a)” & (7.17)
n n = P——
(2) k=o lli_ Ill"‘k ] = Ok

In the spheropotential series, only the even-order

polynomials possessing equatorial symmetry occur.

(c) The expressions in the Legendre function contains
lonz series and factorials. A continuous series summation
on a computer is 1ikely to affect the precision of the
final output due to round-off errors. Further, the fac-
torial being a long product of numbers, gives rise to over-
flow. Recursion formulae are therefore resorted to for

evaluation of these polynomials and functions.
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(1) For the zonal harmonics, the following formula is

used,
= _ (en-1)sPy 1 ~ (n-1)Pp.o
Pn = Pn7o = S S {718
n
and P, =/ on+l Pp
taking initially.
Pl = s
(1%) In the case of Associated Legendre functions, how-

gver, the normalizing factor under the radical sign should
not he isolated as the conventional Ppy values are highly
divergent for higher degrees and orcders. Two Tynes of re-

cursions may he used,

(1) orcer-wise recurrence, keening the degree n

unchanged (NGEEESSNEER (Caposchkin,1973),

(2) dezree-wise recurrence, Xeeping the order m

unchanged (Hopkins,1973).

Considering the efficiencies of the computer as

regards the storage and machine time, the following reci-

L)

rsions were found to be optimum:

(1) diagonal recursions:

B o g P

P, =¢ i > n-1,n-1 (7.19)
\
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(2) prediagonal recursion:

Pl = Tz §n,n (a2t}

(3) row recursion:
Pn?m—2

(2m-2)t Enlm—l - VQnrm+l)(n+m) Py m

m ———— e )

ot .. Y. .

J(n—m+2)(n+m—l)
where, t = tanp = s/c Y

The relation between the geocentric latitude and

the geodetic latitude is,

tang = (1-£)° tang (7.22)

710 RESULT O3TAINED TJSII'G SATELLITE DATA

The rescursion formulae for harmonics are first
tested numerically. As a test example, the attraction part

of the normal gravity was expanded in harmonic series (Ray,
1978a) evaluated in terms of GRS 67 adding the rotation term

and compared with the normal formula for Y67. The results

are reported in Appendix G.

Thereafter the GEM 10 satellite coefficients
(Lerch, 1978) completed upto the 722nd degree and order
with a number of additional terms upto 30th degree, were

mace use of. For the spheropotential coefficients, the
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normalized values were generated from conventional J, value

2
usinz the relation

) (- 123 (%)™ (1 <n + 5uT./e" )
Top = - e (7.23)
(en + 1)(on + 3) vin + 1

where, e = £(2-f)

Two profiles of the GEM 10 geoid obtained are shown
in Fig 7.2. BSimilar profiles are also drawn for a geoid
computed by the Smithsonian Astrophysical Observatory

QGaposthiE, 1473) %ermed as the SAQ IIT geoid,

While the general trend of the geoids compare Véll,
the other differences observed between the two are most
likely to be for the following three reasons,

(a) difference of equatorial’ radius of the reference
elllpsoids,
(b) difference of the flattening wvalues,

(¢) addition and updating of geopotential coefficients.

Table 7.3 indicates a samnle statistics of the
satellite-cderived geoid and the gravimetric geoid obtained
from mean free~air anomalies over one-degree areal glcments.A
rms difference of 8 metres is readily detectable, the
gravimetric geoid heights being numerically greater than

hose of the satellite geoid. Information in respect of
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an average height of about 8 metres still therefore seems
to be hidden in the higher order coefficients yet to be

evaluated from surface gravity and near-earth satellites.

TABLE 7.3

SiMPLE STATISTICS OF COMPARISON OF SATELLITE - DERIVE
AND GRAVIMETRIC GEOID

o
Satellite- Gravimetric i Number of points
| derived ' compared = 23
1 4
Maximum|-83.13 metre -81l.48 metre |Maximum
value difference + 18.38 &
Minimum{-39.78 metre -49.17 metre |Minimum
value difference = Dall
Mean -56.5, metre -62.35 metre | RMS
difference = B.08 o
. I, L 2 e

The maximum difference being double this amount,

d

R

and the minjimum being nearer to zero, the residual geo
information is likely to cover a quarter of a wave in the
profile span of 150, corresponding to the 6th degree zonal
harmonic.

However, since detailed investigations in this
regard were beyond the scope of this work , - only some

broad comments may be made, notably,

(1) higher degree geopotential coefficients will be

required to make the satellite-derived geoid comparable
a & [
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to the gravimetric geoid,

(1i1) for purposes of orientation through comparison,
the astro-geodetic geoid should be truncated to be equiv-

alent to the satellite-~derived geoid.

kel RIENTATIONI PARAMETER BY ASTRO-SATELLITE

MATCHING

The astro-geodetic ceoid obtained upon the seventh-
order surface fitting is in terms of the International

Spheroid. It must be reduced to the 'Arbitrary GRS 6 eoid!
iy o g

(defined in chapnter VI) before comparigen. A direct conve-
rsion was effected by applying the following corrections @
() he orientation corrections were applied to refer

The geoid to the orientation of Everest Spheroid at the

origin from that of the International Snheroid, i.e.
6 N, =0.0=9.5m

§.E = ~("29 - 2".42 (7.24)

é no = 2”-89 - 3”017
(ii) the dimensions of the reference surface were changed

from the International Spheroicd to the GRS 67 spheroid,

using the rel~tions 3}

da = 6378160 -~ 6378388 m,

(7 .25}

&f = 1/208,24717 = 1/297.0
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The same points used for least-squares coincidence match-
ing (section 6.8) were considered in the present case also.

(Figure 6.1). Equation 6.11 of chapnter VI was also used,as

~(sing) %1 + (cospcosd) %

1 5 + (cos¢sind) ;%

N - N
L sat ag (7.26)

R

where, Ng.t and Nag are the heights of the satellite -
derived and astro-geodetic geoids respectively. The final
results are tabulated in Table 7.4 from which it can be seen
that the solutions in this case are also mutually consistent
as those obtained in the previous chapter with minimum stan-

dard error appearing in the set A.

PABLE 7.4

SHIFT VECTOR AND ORIENTATION PARAMETERS OBTAINED USING
ASTRO--SATELLITE GEOID MAICHING

— - -

Set A B C
Points Compared 15 8 1]
il ppm "5. 18 e 5- 90 _5Il 61
ig ppm { -7.99 -6.56 ~F 12
i3 ppm RS - T <1075 =101
Standard
error m 33 et 3e3
5 NO m -52.3 -53.8 -52.8
6 E’O m ‘ "ln93 “2. ll ""20 03
(C) ,ﬂ "'1018 _Ol85 "'0008

()
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7212 SUITMARY AND DISCUSSION

Beginning with a brief description of the princi-
ples behind the astro-geodetic and satellite~derived geoid-~
matching for absolute orientation, the present status of
the Indian astrogeodetic geoid has been discussed. In
view of the practical linitations of Helmert’s integration
method, the surface-fitting technique has been used. Crit-
erla for fixing an optimum order of the surface has been
Giscussed and the unbiased variance has been suggested as
the determining factor. The solution algorithm of the high-
order polynomial surfaerfitting was obtained by inversion
of the normal matrix which has been eptly simplified for
efficient evaluation on a mediumsized computer. The resu-
lting values were then comnared with existing values.

The next part describes the harmonic series expan=—
sion of the geoidal undulation using geopotential coeffic-
ients. Recursion relations have been judiciously chosen to
economize automatic computations. Finally, the geoid -
spheroid separation with GEM 10 coefficients were computed

at a few points and compared with another satellite-derived
geoid, SAO0 III, and the one-degree mean free-air geoid

obtained earlier in this work.

After reduecing the surface-fitted astro-geodetic
geoid to the GRS 67 system keeping its orientation the

same as that of the original Everest Spheroid, it was then
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compared with the GEM 10 geoid to arrive at values of the
orientation parameters. Three sets of points were chosen
for the purpose, the first consisting of a couple of int-
ersecting profiles, the second consisting of a few widely

spread¢ points and the third, a combination of these two.

The surface-fitting technique could prove better
than Helmert’s method, with its three-dimensional appr-
oach and fully automated formulation. Further, a number
of low-order geoidal surfaces constrained by the condi-
tions of continuity are expected to be more representative
than a single surface of very high order. This will avoid
systematic errors as distances from the initial point
increase. A procedure equivalent to forming loops in the
Helmert?s method may well be adopted with a provision for
distributing the closure error, the irregular lines being

replaced by regular grids.

The comparison of the satellite-derived geoid with
fhe gravimetric one showed some systematic differences,
probably due to missing terms in the harmonic series.
Assuming that a change in 6Nb will produce equal changes
everywnere and that 1" of extra deviation of the wvertical
at the origin will produce an undulation of 0.5 metre per
1° of horizontal extent in the appropriate direction, it

is estimated that an additional undulation of 4 metre in
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N and deviations of about 1" each in E, and n_ are nece-

ssary to minimize the discrepancy.

The gravimetric method still being theoretically
the best for obtaining the parameters of absolute orienta-
tion, and significant gaps still existing in the informa-
tion content of the satellite-derived geoids,therefore,
further data would have to be awaited before attempting
to obtain a precise set of orientation parameters by matc-

hing the astro-geodetic and satellite derived geoids.



CHAPTER VIIT

ANALYSTIS OF RESULTS AND CONCLUSIOIV .

3.1 GENERAL

As explained earlier, the basic objective of the
present work was to obtain the parameters of absolute ori-
entation of the 'Indian Geodetic System. This was a long-
awaited Job reguired to relate the local system to an
internationally accepted global framework. Originally the
orientation parameters of the ini{ial point were chosen
on a relative basis in terms of the Everest Spheroid. Later,
these were expressed in terms of the International Spheroid
by Least-squares fitting but purely on local considerations.
It has therefore been felt that the time isbripe for comp-
uting the orientation vector at the initial point of the
Indian Geodetie System in terms of the GRS 67 spheroid

which is gradually replacing all local reference systems.

The main basis of this axercise attempted here
is gravimetric. Fof, desnite the advent of sophisticated
techniques such as satellite altimetry, gravimetric methods
still continue to be the most reliable. Nor is the use of
satellite stations (Chatterjee, 1973) quite satisfactory

in the Indian eontext, there being as yet only a single
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camera staticn in existence in the entire country, and
other technigues such as laser and doppler tracking are

vet to be adopted for efficient space triangulation for

want of adequate cdensity of traecking stations (Dixit,1976)

The requisite computer software for this ewmercise
has been carefully developed to match future refinements
in data acquigition and improvement in data distribution.

These formulations have been couched in a simnle form
explolting various mathematical manipulations to conserve

computer time and memory storage.

The results of this exercise comprise a set of
parameters of absolute orientation at the initial point
of the Indian geodetic System alongwith a pictorial resre-
sentation of the Indian geoid which appeared as a bye-

product of this investigation.

8.2 SUMMARY OF VARIOTS RESULTS

In the nreceeding chapters, three different meth-
ods were discussed and used for obtaining sets of orien-

tation parameters. These were:

(a) gravimetric cdetermination of the geoid-spheroid
separation and deviations of the plumb-line at astro-
geodetic stations,

(b) a least-squares solution using undulations of
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a similar comparison of a smoothened astro -
geodetic geoild with the regional satellite~ derived geoid

over the Indian region.

As already stated, the first of these constitutes
the central idea behind the exercise for orientation, which

can further be classified into two categories :

(1)} gravimetric orientation at the initial point itself,
(ii) orientation through any other astro-geodetic
station.

The latter two were also used as pltausible altern-
atives where want of adequate gravity data and comparable
astro-geodetic accuracy precluded a serious consideration
of the former.

Table 8.1 summarizes the final results obtained
from these three methods in respect of the following para-
meters,

(1) the invariant shift vector,
(11) the conventional correction parameters at the

origin, namely E>NO, é{o, 6ﬂo

Whilst the elements of the invariant shift vector
have been expressed in non-dimensional units, as parts per

million, the orientation parameters have been tabulated in
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TABLE 8.1

SHIFT VECTOR COMPONENTS AND ORIENTATION PARAMETERS OBTAINED
BY VARIOUS METHODS

]
Egggod Sigilone pg% pi% _:% 61No ) go 6'no
k P metres arcsec arcsec
a 0 | -27.24% 38.09 115.04! -59.0 +0.65 +2.60
b T | +20.97 328 1lkbha| <62.1 +0.15 #1.88
b - 10,17 34.71 110.26| -56.7 =-2.24 +2,13
b 3 | ~23.46 236.50 115.86 «66.1  +1l.40  +2.25
o L | -28.08 33.36 115.28 -6l.3 +0.43  +l.64
c 23 =31.37 31.38 11h.46 -59.§ -0.30 +L.27
1 23 -39.5 20.2 114421 <52.8 -2.03 -0.98
|

e R ST — -
——— —_— - - — -

liethod Codes ¢

a ¢ Gravimetric computation at the initial point

b : Gravimetric computation at any other astro-
geodetic station

¢ ¢ Least-squares coincidence solution

[@F
o

Astro-satellite geoid-matching

Station Codes @

o E The initial point Kalianpur

44 The liorthern astro-geodetic station
2 ¢ The Eastern astro-geodetic station
3. 1 The Southern astro-geodetic station
3 The Western astro-geodetic station

o0

23 All 23 points of set € (Pigure 6.1)
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conventional units. The deviations of the vertical
have been expressed as customary in arcsecond units for
ease in analysis and interpretation, althbugh the mic-

ro degree unit seems to be consistent with the SI units

and the decimal degree divisions diseussed earlier.

For the two least-squares conjunctive methods,
only the solutions corresponding to the set ¢, taking
23 points into account, have been cited here. The sta-
ndard error is not the least for this set but the
results are nearer the average of those obtained for

all setss
83 ANALYSIS OF VARIOUS RESULTS

Out of the three methods, the classical gravi-
metric method is still by far the most preferable and
yields reliable results provided a certain precision in
respect of the input data are duly maintained. The
determination based on the initial point is most reliable,
as the quality and distribution of data conform to acc-
eptable standards. Moreover, the anomalies being 'modi-
fied ' by terrain corrections, the theoretical require-
ment of obtaining the geoid rather than the co-geoid
ig fulfilled, and the 'code a' results are therefore
straightway taken to be the best set of geocentric

orientation parameters obtained from the present exercise.
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'Code b' results are obtained using the same princ-
iple, but applied to various astro-geodetic stations. The
values are found to differ from each other as well as
from the 'code  a ' results. The defects that contribute
to the diserepancies are already discussed in Section 5.15.
The & NO value from station 3, and § Eo value obtained
from station 2 are very much discrepant whilst all other
results are in mutually good agreement with each other .
The extrapolation of anomalies over the smaller areal ele-
ments was not attempted as the truncated covariance predic-
tion (neglecting negative covariance) involving only a few
source values at one side, was suspected to produce erron-
eous results. The inner limits werec inevitably restricted,
thereby affecting the approximation of numerical summation,

which was, in turn, reflected in the results obtained.
by 9

The mean value of 6NO, excluding station 3, and
that of ézo, exeluding station 2 provide a satisfactory
check on 'code a' values. The mean §& M i1s however about
025 smaller. TVhilst absence of adequate information pre-
cludes exploration of various causes, increase of data is
likely to yield more encouraging results in the future.
Preliminary results from these stations were of prime
importance, but the speed of execution was a restrictive

faotor.
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The 'code ¢' results show marked variations from
'code a' values in respeet of the slope components, whereas
the gecid-spheroid senaration values are comparable. The
astro-geodetic geoid heights were estimated from a smooth-
ened map, which has possibly given rise to smaller values
of 550, 6ﬂo. The estimates in this case mainly depend
upon the following: |
(1) fineness of diseretization of the Stokes? integral
especially in the immediate neighbourhood of the computa-
tion point where the mesh size should be smaller, even if
the 1° mean anomaly values are only used in the smaller
elements,
(ii) distribution of the astro-geodetic stations lead-

ing to a small loop closure.

The orientation parameters obtained from the set

‘code d ' are signifieantly different from those obtained
from the set 'eode a's A discrepancy of over 6m in 6NO
and about 3" each in 6{0, - indicate that the princi-
ple in the present state is not very encouraging for the
purpose of absolute orientation, the main reasons being:

(1) truncation of the geopotential funétion,

(i1) model errors in the surface~-fitting technique,

(iii) inclusion of comparatively fewer points for matching.

Marsh and Vincent (1974) reported discrenancies of
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r 5 metres between the gravimetric and the satellite -
cerived geoid, and tilts of more than 1.5 arcseconds bet-
ween them. Further investigation is therefore necessary

in respect of this method, before using it for purpose of

absolute orientation.

8kt COMPARISON OF LINEAR SHIFTS OF SPHEROID CENTRES

A little reflection shows that the shift vector
is analogous to the linear shift components in rectangular
fartesian coordinates used by gpace Tesearch organizations,

the relation being

X, = ~-AZ/R
X, ¥ AX/R (6.1)
X, = AL/E

he transformation constants to reduce the Indian

Everest System to the various World Geodetic Systems, have

@ )
R

ffered according to different dimensions adopted for the
matched spheroids, e.g., the Modified Mercury, the SAO 1T,
the WGS 72 etc.(Remamathan et 41Jd976.Theoretically, tHegs’

-

values should not differ if a2l spheroids were absolutely
geocentric. However, these are within the limits of pre-
cision by satellites, even when only a single station is
avallable for space triangulation in the whole country.

o

ine ranges and the mean values in respect of a few recent

geodetic systems which nearly conform to the GRS 67
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in dimensions, are presented in Table 8.2

I'ABLZ 8.2

SHIFT COMPONENTS DERIVED FROM ARTIFICIAL SATELLITES

D o et i e 1110 Minimum Maximum Mean
X, ppm -40.5 449 <440
%, ppm 205 36.6 33.6
2
X?) ppm 106o)+ 108-8 10706

For a comparative analysis of various results, the

linear scalar magnitude of the shift vector,

r = Rix] = R\// Xf + xg + x§ (8.2)

has been calculated for each set, andvpresented in Table 8.3.

A striking feature revealed by this exercise is
that the astro-~ satellite fitting practically yields the
same values of r as obtained by other methods despite large
differences in individual elements. The hypothetical centre
of the satellite~derived geoid is thus found to be displaced
from that of the local spheroid by the same amount as the
latter from the earth’s centre. But, a systematic tilt
error appears to creep in the satellite-derivedgeoid, shi-

fting the centre along an arec.

The comparative values of r also uantitatively
9]



- 20).;_-.

indicate the order of reliability of the various methods.
Whilst the gravimetric determination at the initial point
is the most accurate, other methods inecluding even the
astro-satellite geold-matching, can also be considered to
be reasonably accurate vielding results better than atleast
The existine satellite solution whose positional inaccuracy

1s about 20 metres.

TABLE 8.3

LINEAR SHIFT OF CENTRE OBTAINED BY VARIOUS METHODS

Method| Station il X5 X Tt e
code { code | ppm ppm ppm | metre Romarks
[ !
a 0 =0, 2l 38.09  115.04]791 [ode e =
B Mean af 1. [-30.4% 3LhJ71 113.96| 783 [results
25344 from
; brtific-
& 2 23 -31.37 31.38 11heh6|{ 782 fal
3 satelli-
a | 23 <34, 5 20. 2 11442/ 781 ttes
! ;
e | mean =4, 0 33.6 1076 {771 |
i |
; |
! ).
B 5 ESTIMATE OF ACCURACY

The accuracy of the computed gravimetric quantities
can be estinated on the basis of the quality and distri-
bution of gravity data actually used. Many studies of this

nature have been made and nearly as many solutions advanced.
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The results of these analyses point out to errors of +5m
to +28m in the geoid height and of +0".2 to + 1.6 in the

deviation components (Szabo,1962).

Hirvonen (1956) estimated the errors to be as high
as 10 metres in N and 0".85 in £ or n. The high values of
these overall estimates were mainly due to the lack of data
in the Southern hemisphere. Kaula (1957) statistically
computed the inaccuracies to be of the order of 5 metres
in ¥ and 1" 1in the deviation, assuming gravity data to be
available in the surrounding zone only. Henrikson and
Nash (197C) cited an error of 0".55 in £ or N for an over-
all inaccuracy of 5 mgal in the gravity data. Obenson
(1973) presented formulations suitable for machine -
evaluation and sample calculations, the resulting errors
being 4.5 metres and 0.6 arcsecond in undulation and devi-

ation respectively.

However, all these estimates are of global nature
and a little worse as compared with local determinations
on land derived from closely distributed data. Rice(1952)
reported on error of 0.'Ll in £ or N with the circle-ring
method upto zone 51l. A lesser amount was estimated in
Section 5.% of chapter V in this thesis. Mather (1970)
while orienting the Australian Geodetic Datum, assessed the

error to be 0'.2 in £ and N and 0.2 metre in N, excluding
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the zero-degree term which was comhuted as,

~RE{ Ag}
N, = . -G (843)

where, E{Ag} is the global mean of gravity anomalies. The

rume rical valua of Lig for GRS 67 is ~2.8 metres.

The gravimetric results computed at the initial
point itself constitute the best set of geocentric orient-
ation parameters. The astronomic observations here contain
practically no errors. The origin too is cbviously free of
geodetic errors. The gravity data for the exterior region,
up to one-degree anomalies are most recent and undated up
to the year 1978, the inaccuracies diminishing pregressive-
1y« The surrounding region is also covered with well-
distributed data corrected for the terrain- effeet, thus
providing nearly perfeet simulation of the Stolkesian model.
The existing flat topography around the initial point also
renders the geoid-cogeoid departure negligible. The ecomma-
rison with the circle-ring method provides a further check
on the numerical algorithm, and the overall error is not

. 11
Likely to exceed O 2.

The difference between the mean results obtained
| ' \ s
from the set 'code b' and those from the set code a
are of the order of 2.5m in 6NO, O .7 9n & Ly D6 in

6M,+ These bounds, however, include all the errors
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explained earlier and should not be taken to underestimate
the standard of accuracy actually achieved in the final
determination. Similarly, the 'code c'and 'code &' results
are not to be considered for error estimation as they belong
to the different data sources and rest on methodologies

which need to be further investigated.

In & NJs the zero-order term has been automatically
excluded from the gravimetric determination. A major part
of the discrepancies of various results in respect of this
parameter is attributed to the incorrect assessment of
astro~geodetic geoid heights which at places may be out

by 1 metre or more.

AT the initial point, therefore, an estimate of
0«5 metre inaccuracy in «SNO and O& 4 each in 5>EO and

6N, may be safely regarded as constituting the upper limits.

846 CORRECTIONS TO ASTRO-GEODETIC GEOID AND

BASE LINES

The astro-geodetic geoid height at a place needs
a correction &N for conversion to geocentric geoid heighbs,
The numerical formula for the recommended shift vector

and the change of dimensions of the spheroids being given

by
&N = (173+.5 + 181L.4 sing)sing

+(2h2.7cosh + 732.9sinA)cosd - 861.0 metres
(8.4)
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The same formula yields the correction to be appl-
ied to the geometrical or spheroidal height from loecal to
absolute terms.

Table 8.4 presents the correction §N at 5° grid
corners covering the Indian region, and Figure 8.1 depicts the

the same in contoured form.

Consequent upon absolute orientation and change of
spheroid, base lines of the triangulation network also need
some corrections. Instead of reducing the base-line té the
local spheroid, a further reduction should be made before
changing over to another geodetic system, this correction

being

6b = - 8N/R (8.5)
with the sign convention used so far, and gb being positive

for addition. Accordingly, the correction formula becomes

b = =(27.2% + 28.47 sing)sing
- (38.09cosX + 115.04sin\)cose (8.6)
+ 125 1hL parts per million
The numerical value of this correction ranges from
. about 10 mm per km of base length in central India, to as
high as 30 mm per kilometre on the South-Eastern side, i.e.,

in the Burma region.



TABLE 8 . 4

CORRECTIOIS FOR CONVERSION OF ASTRO-GEODZETIC GZEOID HIIGHTS ON THE BVERIEST
SPHROID TO GEOCENTRIC GEOID HEIGHTS ON GRS 67 GiSy
A 65°E 70° 759 80° 85-‘;’” 90° 95° 100° |
g | feoniluph aFe dn petaes | o o
L0 ~87.1 ~83.4 =, X ~8Y.43 ~99.0 ST 5 T S [ 2 <153.9
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307 ~6L.8 ~60.7 ~6l. 4 -67.3 ~78.3 -9h.2  -114,.9 ~14%0.3
25° -60.3 ~55.9 ~56.8 ~624 Sl =H1.0 112,9 =139.13
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147 ~70.2 ~65. -664k -73,1 -85.5 -103.6 ~127.2 ~156.1
58 ~80.6  =75.7  =76.7  -83.5 =96.1  =llk.Y -138.2  -167.5
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FIG. 8:1 CORRECTIONS ON EXISTING GEOID HEIGHTS, FROM
EVEREST SYSTEM TO ABSOLUTE GRS 67
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8.7 CORRECTIONS TO EXTSTING LATITUDES AND
LONGITUDES

The adoption of absolute orientation values will
affect all published geodetic latitudes and longitudes.
Corrections for these may be obtained directly from the
formulae given in Ixpression 2029, or from the matrix rel-

ationships formulated in this work and the relations
6¢:— 6€ (8-7)
6 A= - § Nsecy
The correction needed in respect of latitudes, to

convert from local Everest system to the absolute GRS'67

system, turns out to be equal to :

8¢" = (5.62 + 11,7haind)oosd
- (7.86cosA + 23.73sinA)sing (8.8)

Table 8.5 tabulates the amount of this correction
at 5° grid corners. The correcﬁion contours are drawn in
Figure 8. 2.

The published longitudes are reported (Gulatee,
1955) to be already in error by an amount equal to 3 2 LB
When this correction is included,the final expression for

relevant longitude corrections becomes,

6X'= (23.73cosh - 7.86sin\)sece -3.16 (8+9)

The values at grid corners are tabulated in Table Beby
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CORRECTIONS TO PUBLISHED LATITUDES IN INDIA FOR CONVERSION TO ABSOLUT

GRS 67
SYSTEM
)
A 65° 70° i h 80° 85° 90° 95° 100°
6 | Values are in arcseconds
40° 58p <R wmos  SheE e B T Ther. | HBh
357 il ~hegh ~4.19 w14 07 -3.83 AR ITe <35 ~2.50
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10° +3.23 +34 20 +3. 2L +3. 25 +3,32 +3. 42 +3. 56 +3.72
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and the graphical representation is given in Figure 8.3.

The changes in longitude are found to be higher
on the Eastern side. A total correction of about 12" is
required along the North-East boundary adjoining China,
which is equivalent to a linear discrepancy of about
300 metres.
8.8 CONTRIBUTION OF THE WORK PRESENTED IN THE

THESIS

The present investigation which constitutes the
first integrated effort made in this country for obtain-
ing the absolute orientation of the Indian @Geodetic System
leads to a set of orientation parameters and corresponding
relations to reduce the existing geodetic latitudes and
longitudes in India to the absolutely oriented GRS 67

spheroid, so as to relate it to the World Geodetic System.

The work being restricted by available data set,
most of the recsults can only be regarded as being tentative,
Leaving asicde the gravimetric determination at the initial
point, the field data was far below the required standards
and had to be accepted as given. Furthermore, non -
availability of instruments and data precluded any syste-
matic and elaborate planning of data collection schemes.
Notwithstanding this, the computer-oriented formulations

of classical expressions and development of a number of
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subprogrammes were carried out with the maximum refineme-
nt possiblze. Further accuracy in the determination of these
parameters can thus be attempted in a routine way as and
when more accurate data including denser gravity material

becomes available in the future.

The various contributions made in the work prese-
nted here, apart from the accomplishment of the main obje-
ctive, that is, obtaining the parameters of absolute
orientation for the Indian geodetic system, may be summa-

rized as follows :

(a)  the contributions to geoidal undulations arising
from a global coverage of gravity, extending from a certain
reglonal limit, have been provided for the first time
(chapter III). These results constitute a permanent asset
to future work in the following directions:

(i) refining the orientation parameters from time to

time as better data becomes available,
¢11) interpolation in astro-gravimetric levelling,

(iii) construction of detailed geoid for the Indian region,

(b)  complete span of the numerical algorithm developed
for computing the absolute orientation of the Indian
Geodetic System through any given astro-geodetic station,
has been detailed. The accuracy of the determination how-

cver depends upon the reliability of the relevant astronomic,
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geodetic, gravimetric and topographic measurements,

(c) whilst absolute orientation is a task normally
performed at long intervals of time, another important
purpose might occasionally be served by utilizing the
computed gravimetric geoidal quantities at any point
combined with both astronomic observations and spipit
levelling, to arrive at the geocentric coordinates with-
out any geodetic measurements. This astrogravimetric
station may act as a control station for satellites and

georeceiver experiments with fair accuracy,

(d)  the intermediate values of the partial geoidal
parameters at 1° grid corners, presented in chapter IV,
may be taken directly to compute Ngr’ Egr’ ﬂgr at any
given point in the Indian region, as and when necessary

dense gravity data around the point are made available,

(e) a broad shape of the 1° mean free-air geoid in
the Indian region has been obtained and presented which
should provide a useful starting point for further studies

in this field,

i) a consistent series of mesh sizes for integration
according to the decimal degree system, has been recomm-
ended and the inner limits of the meshes are suggested
(Table 5.3) to maintain the high precision of gravimetric

determinations,



w S

(g) a few one-degree (Table 4.3) and quarter-degree
(Table 5.6) representative mean gravity anomalies around
and within the Indian region has been contributed for
storing and further use in geodetic and geophysical studies,
(h) a simple procedure for obtaining parameters of
absolute orientation, by comparison of astro-geodetic and
gravimetric geoids, has been attempted. This appears to
be full of interesting possibilities for further explorations,
(1) an alternative suggestion,; namely the comparison of
satellite-derived geoid and surface-fitted astro-geodetic

geold, has also been discussed.
8+9 SUGGESTIONS FOR FURTHER “WORK

Many difficulties and limitations were encountered
during this investigation, which on reflection yield the
following suggestions that may be found useful by future
resecarchers in this area.

(a) The number and distribution of point gravity values
in India are totally inadequate for integrated studies such
as that attempted herc. A centralized compiled data bank at
the national lovel, with reliable topography-cum~-gravity
data file, in unified IGSN 71 system therefore appears
quite essential and should prove valuable to diverse types

of studies based on the analyses of gravimetric dats.

(b)  The distribution of astro-geodetic stations are
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also quite unsatisfactory for a vast subcontinent such as
India and callgs for filling up of gaps in order to provide
a better representation. A best endeavour would be to pro-
vide all latitude stations with additional values of N as
well, which will make the average station density equal to

1 in 3000 square kilometres.

(e)  Evaluation and prediction of mean anomaly values
was carried out in the present work keeping in mind mainly
the immediate requirements as well as the limits of availa-
ble facilities. Not much physical insight could therefore
be achieved to establish the theorctical validity of some
of the procedures used. Various deterministic approaches
and probabilistic concepts (sueh asy correlation, collo-
cation ete.) may prove more helpful in achieving these
goals, with spccial reference to India as a whole or to

some region of interest within it.

(d) Evaluation of the effect of the innermost recta-
ngular compartment, needs to be further examined, to make
the procedure complete and error-free,

(e) Four strategically located super-control points
may be established at the first-order Laplace stations
of primary triangulation at four geographic corners. Gra-
vimetric determination of the geoidal undulations at

these points will provide the non~Stokesian,i.e., the
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zero-order term NO which controls the scale-error, simult-

aneously correcting the systematic errors in triangulation.

8.10 SUMMARY AND CONCLUSION

nis chapter, the concluding part of the thesis,
first recalls the basic objectives of and the motivation
for undertaking the work as well as other related outputs.
After compiling the shift vector components and correction
parameters obtained by using three different principles,
they were analyzed to yleld finally a set of geocentric
orientation parameters. These were again formally compared
with datum shift components provided from the orbital analy-
sis of satellites. After providing an estimate of accuracy
of the recommended values, necessary formulations have been
presented for correction of astro-geodetic geoid heights,
lengths of base~lines, published latitudes and longitudes
to convert these from the present Everest system to the
absolute GRS 67 system. The main contributions of the inv-
estigation have thereafter been enumerated with suggestions

for further studies and refinement.

The final results answering the basic objective
of the work are the following set of required correction
parameters of absolute orientation, obtained in respect of
the Kalianpur origin, to convert the present Indian Geo-

detic System based on the Everest Spheroid to the
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geocentric Geodetic Refercnce System 19671

6N, = =59.0 * 0.5 metres

i

88, = + 0.65 + 0.4 arcseconds

8Ny = *2.60 + 0.4 arcseconds
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APPENDIX - A

COLIVZRSION OF ANOMALIZS TO IGSHN 71, GRS 67 SYSTmM

The International Spheroid is defined by the foll-

cwing basic elements (Heiskanen and Moritz, 1967

GM = 3.986329El4m3 sec”?

w = 7-2921151E-05 rad sect
a = 6.378388E+06m

f = 1/297.0

The corresponding normal gravity formula is,

730 = 978049.0(1+0.005288% sin®¢ -5.9x10"6 sinos)
= 978049.0(1+5. 2648 E-03 sin®p +2.36% 05 sin’e)
milligal (4.1)

The Geodetic Reference System, 1967 (International

Union of Geodesy and Geophysics, 1967) is defined by

GM = 3.98603E + limisec™ 2

w = 7.29211514675-05 rad sec™T
a = 6.378L60E+06 m,

J, = 1.0827B-03,

2

from which, flattening is determined to be



f = 1/298.247167427,

and the corresponding reference gravity in milligal to be

Yé7

= 978031.85(1+5. 2788958-03 sin2p +2.34621 =05 sin’é)
+ 0.00% milligal (A 2)

The International Gravity Standardization Network,
1971 (Morelli and Gantar, 1974) shows a correction of
-14.01 milligal at the Potsdam base. In general, therefore,
each gravity value referred to the old system should be

corrected by

gne_‘/‘r = gold == l)+o Ol (A.O3)

The correction in the free-air gravity anomaly, neglecting
the small change in the vertical gravity gradient, is now

given by

b " = s - -
A= (Ag)new (Ag)old (gnex'._r 6'7) (gOld 30)

From expressions (4.1),(4.2),(A.3), the correction is,

i = (gold-lu.01-978031.85—5162.9274x—22.9466x2)
- (g1 4978049 0~ 5149 . 232%- 23. 08 2x°)

= (0.1354x%-13.6954)x + 3.1400 milligal (A. L)

where x = sin2¢
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APPENDIX - B
INDIAN GEOID FROM BGI DATA

The BGI values ( Coron, 1972 ) are expressed in
the Meridian-Parallel-Grid system, andin .terms of the old
Potsdam value of absolute gravity and the 1930 internati-
onal formula for normal gravity. Some blocks were assigned
more than one values by different sources in which cases
average values were adopted. Finally, the anomalies were
reduced to IGSH 71, GRS 67 values through a conversion
detailed in Appendix - A, and stored on punched cards,

after rounding off to nearest 0.1 milligal.

A general computer program in Fortran language
was developed to be used for determination of N, Z,n at
grid corners. In the present case, only N values were
evaluated at a few corners covering the Indian region.
The programme was later on used to compute the partial
geoid parameters described in chanter IV, after slight
modification needed for the zigzag outer limits in the

one-degree data. The flow diagram is shown in chart B.l.

Table B.l presents the corner values of N in
metres, whereas Figure B.l shows the N-contours in the

Indian region.
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TABLE R.1

VALUES OF N, IN INDIAI PART, FROM BGI ANOMALIES

65° 70° 759 80° B

[

90° 95° 1000

Values are in metre, referred to GRS67. Geoid is below the Spheroid

-21.98 -26.81 -28.66 -30.65 -31.63 -30.17 ~25.67  -2l.72

™

J

“12l81+ '"22013 "26-' O "25002 "2)4'-30 "23::12 20n81+ "18091!‘

C

-9.81 -22.76 -31.05 -33.12 =32.13 =29.22 -27.L0 - 2L, ol
~21.45 -28.5% -35.05 -41l.43  -41.41 -38.95 -35.38 -28.08

-34.82 -40.82 -44.70 -45.21 -44,97  -43.93  -36.57 - 26. 20

r

~46.66  -56.2%  ~60.40  -50.1h  -55.58  -47.95  -34.4L 20,60
~5L .09 -68.55 ~75.12 ~75.75 ~-67.68 -51.34 -31.81 ~-12.67

~57.78 -73.83 -84.55 -85.26 -73.12 -53.05 -29.50 -5.58

~9¢e -
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80°  B85°  90°

95°

(1) Values ars in matres
{2) Geoid is below spherold GRS 67

/ /

7,

- 80 - 60

- 20 -0
FIGURE B.!-INDIAN GEOID FROM BGI DATA
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APPENDIX - C

BROAD GRAVIMaTRIC GEOID IN INDIAN CONTINENT AND PRIMARY
ORIZNTATION OF NETWORK

( 4 paner presented in the Indian Science Congress )
Session, January 1973

Average free-alr gravity anomalies of five degree
blocks over the entire earth are used to determine the
zeoid—spheroid separations at five degree corners in Indian
nart. Numerical integration of the well—-known Stokes'
formula is done by electronic computer programming. The
obtained geoid man, equivalent to the broad wavelength
geold in satellite geodesy term, is then used to compute
the nrimary orientation-vector at the Indian origin of
triangulation network assuming linear interpolation along
meridians and parallels. Consequently, corrections in the
existing latitudes and longitudes are calculated and pres-

ented in contoired form.

Introduction

More than a century ago, Zverest derived the dimen-
sions of the Hverest spheroid on which the Indian geodetic
system is basedl. Its orientation at the datum has been

done at various times in arbitrary manner. After the
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International Spheroid was adopted by IUGS, the Indian geoid
was locally fitted to it by a least square solution, which
being again more or less arbitrary, 1s umfit for use as a

World Geodetic System.

The geocentric system refers to the spheroid as a
physical surface with its origin at the centre of gravity of
the earth and Z -axis as the mean axis of its rotation. The
absolute orientation of a geodetic system essentially means
defining the reference surface dimensions (a,f) and its
deviation components including separation from geoid surfa-

ce at the control point.

To accomplish the object, one must know the gravity
values on the entire earth surface and apply gravimetric
nrinciples for computing the gravity anomalies, properly
reducing these to geoid as a prerequisite for the boundary
value problem, and use numerical integration for Stokes'

formula.

Gravity Anomalies

The mean free-air gravity values at 50 X 50 blocks
are taken from Bulletin D7information29 referring to 1930

international formula with base elements @

Flattening = 1/297 3 Potsdam value = 981274 mgal

v = 9780490(1+0. 005288k sin’$-0,0000059 sin®2¢)mgal
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The single value for a block has been direetly taken, and

two values for the same box have been averaged, as serving

the present purpose.

Helmert’s condansation methoed for reduction gravity
has been recommended as most suitable for geoid determinat-
ion’. However, the mean free-air values correspond very
rearly to the condensation reduction and resulting undula-
tion of cogeoid differes by only a few meters, acceptable

for primary adjustment.

Basic PFormula and Modification

The undnlation of geoid from a reference spheroid

is obtained by,

=g 5f($)qu dq , integrated over whole earth,

B
e
@
R
®
-

o

I

Mean value for earth’s radius,
G = Mean value of gravity,
dq = Elemental surface area of the gravity element,

T = Angular distance of gravity element from
computation point,

qu = Average gravity anomaly in the surface element
and f£() = Stokeg'! runction

1l - 6sin % + cosee %

- cos [ 5+3 In. (sin g + sin® g)T
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The square division modification changes this to a summation
formula. Also if the corner points of the blocks are taken
as computation points, then same 7(T)will be repeated at
the points along a parallel and hence the evaluation of a
set of factors are sufficient for all corners at the same

o s ;
latitude. Tanni® did this by Desk Calculator; and that pos-

[N

ed no difficulty because of lack of gravity observations at
that time. It is worthwhile to mzntion here that he took an
average of 1.5 hrs. for one computation of N, and the present
computer programme took only 2 minutes for all the 81 corners,

in IBM 360. The resulting geoid contour is presented in

Flg.1.

Orientation Vector and Adjustment

The geoid spheroid separation N at Kalianpur, the
initial points of Indian triangulation network, now comes
to be -53.4 m approximately. The meridional and prime verti-
cal components of the deviation of vertical are also assessed
by applying finite-difference slope at corners and linear
interpolation along meridians and parallels. Table 1

shows the values obtained, and the existing arbitrary

The elfect of this datum shift on latitiudes ang

]

longitudes are computed by the transformation formulae

derived by Vening Meinesgzand rearran-ced for the present
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GRAVIMETRIC PRIMARY
GEOID IN INDIA

VALUES ARE IN METRE
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BELOW SPHEROQID

{ INTERNATIONAL 1930)
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TABLE - 1

rientation Components of Indian Geodetic Datum

r Y

axisting Primary Gravimetric
Computation
.5 m N ~ 5%vd.m
=211 42 € - 4”.36
=347 n * Q.25

Both are referred to Hayford International Fl11li-
psoid,
a = 6373388 m $ £ = 1/297.0(1930)

purpose. The resulting corrections are shown, in contour

Torm, in rFig.2. This adjustment will thus make the Indian

vE:
U

oq

geodetic system primarily converted to the geocentric Inte-

{

rnational Spheriod Svstem.
Coneluision

The broad gravimetric geoid, obtained in the present
work by using numerical intezration of Stokes' formula on
mean 5° x 50 free air gravity valies, is rather a trend-
sirface and for more detailed evaluation, as needed for
accurate absolute orientation, the following noints are
amongst those to be considered carefully,

i) The free air values, specially in the continental

parts and around the comnutation points should be
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CORRECTION IN EXISTING

LATITUDES AND LONGITUDE N
INDIA

VALUES ARE IN SECONDS

LATITRHDE. s
LONGITUDE — = =~
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reduced by Helmert’s condensationy and finally the
indirect effect must bz acconted for to arrive at

the actual geoid.

="
[N
N

Closer network is needed near the computation points,
because the Stokes' function diverges as the spheri-
cal distance decreases.

. i i o)
iii) More anomaly values are required'for = 20

or less,
to have a correct representation of the gravity chan-
ges and proper integration procecure.

iv) The deviation-components of the vertical can better
be evaluated by differentiating the Stokeg! function,

as proposed by Vening Meinesz,and apnlying that dire-

ctly as summation weightage.

From satellite-derived geonotential coefficients
featuring the broad-wavelength properties, a comparable
geocentric geoid may be arrived at. The study of geoild by
sravimetry and satellite observation are of prime importa-
nce, not only for surveying and mapping purposes like (a)
correct base line reduction, (Db) proper defining of control
points for triangulation, including national boundaries,

(¢) Super control points for satellite geodesy and long-

ug

range hydrozraphic surveying, but also for researches in
geophysics so faras assessing invisible mass anomalies in
Indian part, for possible interpretation of natural reas-

ources, are concerned.
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APPENDIX~D

TWO-DIMEISIONAL CUBIC SPLINE INTERPOLATION

Let the discrete values of a variable at grid

corners be defined by the usual matrix convention,-

9

i Sy Lp |
1
i
- |
q = l hq - - i (D.1)
i
i = = By |
. i

waere hoy indicates the value at the corner(¢ , An)

(Figure D.1)

A cubie curve passing through the points (¢m?hn,
) : Y wit) T &5g - !
ﬂmn) and (¢m+l’ My B9 ) with curvatures 6pm9n and
at the resnective ends may bec expressed in

-6pm+l,n

Hermitian form as,

f¢ X.X
| | 1 ! i
D¢ ? |
! |
|
| I
i ¢,A
0
¢m |
[ W, 0
2,1 R -
|
FL ] ,:
e
A DA %
] &

FiG. .1
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g SR
(*m+l,n

where, ¢m.§ ¢ % ¢m+l g

x (¢-¢m)/D¢

il

XL -:l-X (DOQ)
a =1 - u2
== X2

Assuming similar cubic variation between Z(#,A,)
and Z(¢,hn+l) in the other direection, the gsneral expe-
ssion becomes,

Z(Pyh) = Z(¢,An)v + Z(¢,An+l)y + q(¢,kn)vc

* o q(Pyn 4 )vd

where, NS AL A
Y = A= Kn
v = =]l VA (D.3)
e =1 = 7°
d =1= y2

and the curvatures at the ends are —6q(¢,kn) and

"6q(¢ 9}\1'1'{‘1) i

The second derivative of expression D.2 will
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show lingarity in p. Assuming a similar linearity in ¢

along ¢ in the form,

qiPes_) = {a. o+ (g )x

men m+l ,n

(Do kt)

o Ci(@’}”nﬂl-l) - <qm,n+l)u - <qm+lsn)x7

f

the complete expansion o xoression D.3 hecomes

Z{P ) = (hm,n)uv o (hm,n+l)uy 1 (hm+l,n)xv

"I_(hrm—l,nﬂ_)Xy T (pm?n)uva &

(7 X {7 b, +
(9m9n+l)uya <9m+l,n)AVb

l)X:rb i (q )U-VC i

+(p
(Lm+l7n+ myn

H%mndﬁwd+(%wlmbWC+

>

The single value assigned to each of »n and q at each
corner ensures continuity of curvature of the whole
surface. Conditions of slope continuity at both direc-
tions at a general grid point ,my,n are achieved by,

4p

1 + = } - + b
pm—l,n myn pm+l,n ﬂm—l,n 2hm,n m+1 4N

+ Lg + = | - + h
qm9n-l +qm9n qm,n+l ﬂm,n—l 2hm,n m n-+l
(D 6)
Imposing the end conditiong that the surface becomes

planar Jjust beyond the boundaries, 1.2.,
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By = Q,

pl,n e s

qm,l Oy i
and qm,k = 0

Po1 Ppp il
T = - - = € «
i - - k—lﬂa
> 4 D.3)
i 412 Qo2 = (
T { a5 = « |=cH
’ - = 9 k-1

m

where T 1s a tridiagonal matrix of size (k-2) x (k=2)

¢f Lhe form,

VR 3 |
1 L i

o g ¢ - (D.9)

L L |
gBE M=y oy (D.10)

1 =g
s
£ =)
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: -1 ' 4
By operating T "C and adding two rows, of all zeros, at
top and bottom (to satisfy the end conditions ), a centr-

ogymmetric matrix S 1s formed. The final solution is then

P=SH
; (D.11)
=85

After getting numerical values of P and @ by Zguations

D.11 from input H and corresponding matrix S, interpola-

tion at any ¢,\ may be done by Expression D.b.

S matrix for k = 4,5,6,7, and 8 are given below:

S ] .J‘.-—
bxls T 75 TR 9 =k
AT 1
il 7T
| o 0 0 0 0
Usfg 3l =24 . & o
# R ] . 3
S5X5 56 | L 24 40 oL 4
D=1 6 -2k 3 =15
o 0 0 0 0
B g\
0 0 0 0 0 o i
-56 127 =90 24 " 1
15 -90 151 =96 ol Ty
; SR |
%x6 205 | -% 2 -96 151 =90 15
T - b —90 127 =56
0 0 0 0 0 0




0 0 0 0 C 0 ¢
-205 474 234 o0 =24 6 -1
6 =336 564 =360 96 =24 L
5 90 =360 570 =360 90 =15
b =24 96 =360 EEL -336 56
=1 6 =24 90 =336 474  -209
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1769 -1254% 336 =90 2 -6 ;3
) =1254 2105 -1344 360 =96 24 =k
336 =134y 2126 ~135C 360 =90 15
-90 360 =1350 2129 -1344 336 =56
2y  -96 360 -1344 2105 -1254 209
-6 24 -90 336 -1254 1769 -780

0 0 0 0 0 0 0
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APPENDIX - B

PREDICTION OF GRAVITY ANOMALIES USING COVARIANCE FUNCTION

PRINC IPLE

Let h  be a value to be predicted, and linearly
cependent on the known values hy, h ,hn which
are,in turn, mutually correlated according to their sepa-

ration distances. The relation may be expressed as

h‘: = Z aifli (Eo l )

If the expectance of the values are to be consis-

tent before and after inclusion of the predicted ho’ then,

I

E{hi} E{hp}

% oay B{h;} = Efh;3}Za, (B 2)

If S # 1 as a general case, then E{h;} must be
zero, indicating thereby that h values should initially be

centered such that their mean is zero.

The mutual correlation are expressed by the co-
variance obtained by fymming the average product of pairs of

of values hi’ hj constrained by a distance Si39 il.e.

c(sij) = E{hihj}, ' (E.3)
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a special case for s = 0 being the variance,

o, _
6,0 = e{0)'= ¥ = E{hi} F (B 4)

The error of prediction may be denoted as,
- = ht . 1’}. <Ea5)
p
where ht is the true value of hb.

According to least-squares principle, the relating

coefficients a; are to be chosen in such a way that,

2
§Efe?
B e RO N oL T (E.6)
o ay
where,
2y _ @l 1 £
E{e“} = E{(hy - Zaini) 3

= B{ny°} - 28a; Bfngh;) + Snagay B{hghil

Substitution of (E.3) in the differential relation (E.6)

leads to,

H

O — O = 2C(Sti)+ 2Zajc<sij) 9 j_ l’?7ono,n

or, the set of simultaneous equations,

a7 clsyq)ta, olsyp) + ay c(syp) = elsgy)y
% Ofs Yras olss,) # 5. als..) = als, .},
i} 2L 2 22 n 20 g (Ea7)
! C<Snl)+a2 C<Sn2) " an C(Snn) - C(Stn)



The linear equations may be solved if the statisti-

cal behaviour of the values are determined first through

the covariance function. On getting the coefficient 8y

then, the valne hp may be predicted from the Expression

B, i

=

MODIFICATION

In the present work, a few modifications of the

basic principle have been made for computer-oriented formu-

lation, which are described belows:

(=) to disceretize the function, a digitization gap

needs to be assigned. The shortest distance between the

known points may be used. In gridded data, the gap is

simply,
d:D(‘b: DA (Eo8)9
(b) to compute and store the covariances as subscripted

variable, an eqguivalent integer subscript is formed as,

s (E.9)

ij { a2 + 05}

e 2
(xi—xj) i (yﬁ—yj)

where { } indicates the integer part within it. This

avoids unnecessary evaluation of gquare roots,

as already explained, the original gravity anom-

()

alies are centred and h_ is obtained by,

—

Agp = Zagh; + Ag



e &

e

e = =h0g5
n

4= Ay i E8

OV
)
o
3
1

(a) the original covariances are standardized by divi-

ding them by the variancej this makkes all the diagonal
elements of the Equation E-7 as unity. In the program, %
counter array has also been provided to count the number
of pair of points. The subroutine COVAR developed in
Fortran II language suitable for IBM 1620 is given as
follows to illustrate the algorithm for computing the

standardized covariances.

SUBROUTINE COVAR (X,Y,DG,NP,G,M,C,GM )

DIMENSION X(100), Y(100), DG(100), C(200), P(200)
X,Y,DG = POSITICY CCORDINATES AND ANOMALIES

NP = NUMBER OF DATA POINTS, G = DIGITIZATION GAP

M = MAXM. DIMENSION OF ¢ = (LARGEST DISTRANCE/G)¥¥*2+1
T =gTANTARDIZED COVARIANCE, GM= MEAN OF INPUT ANOMALIES
P = COUNTING ARRAY

INPUT = X,Y,DG,NP,G,M, OUTPUT = ¢, GM

DO 41 N = 1,M
g(¥) = 0.0

(E.10)



42

43

44
45
99
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H= NP
H = 1./H
GM = 0.0
¥ = U

DO 42 J = 1,NP
D = Da(J)

GM = GM+D

¥ =¥ +:D¥D

GM = GM¥*H

V = V*H - GM*GM

H = 1./(G*g)

DO 43 § = 1,NP

XN = X(N)

IN = Y(N)

ZN = DG(N)-GM

L =10«

G 439 = L%

L = (X = X(J))**2 + (YN=Y(J))**2)*H + 0.5

It

o(@) c(L) + zZN*(DG(J)-aM)

P(L)

i

P(L) + 1.0
DO 45 N = 1,1

H = P(L)
IF(H)99,45,44
o(N) = o)/ (E*V)
CONTINUE

RET URN

END
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APPENDIX -~ F

DESCRIPTION OF COMPUTER PROGRAMMES

F.l INTRODUCTION

The primary objective of getting an undated defini-
tion of the correétion parameters at the Indian origin to
make the reference frame absolute as well as to convert
the existing ill-fitting spheroid to an internationally

accepted one , has been achieved through this investigation.

But this is not the final word; the attempts and the
findings are constrained by various limitations, specially
those of aveilability and reliability of usable data, of
proper consciousness of mathematical and statistical models
for processing the same and last but not the least, by

restrictions on time, skill, software and finance.

However, the exercise may open up further avenues
of research and development in the methodology of gravim-
etrie orientation in India and looking for a practically
complete data bank in near future, the comparable efficient
computational link hereby will make the revision a routine
jobe

The universally recognized FORTRAN language has

been used in the computations for this study. The FORGO
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version were needed to run intermediate routines, in IBM
1620 with card output, for checking and converting raw
data in formatted cards. An IBM 360 computer, and later
on another IBM 370 recently installed could be made avai-
lable. Peripherals were not exploited fully, due to lack

of proper expertise.

F. 2 MATN PROGRAMMES

The basic programme ORIENT computes the orientation
parameters and shift vector, using mean gravity anomalies
around any general astro-geodetic station, which may be
the initial point itself also, through the subprogrammes
VOID and PART.

The subprogramme VOID uses Five-degree Equal-Area-
Block mean values in the exterior region to compute NV/R,
Ev’ ﬂv parameters. The PART subprogramme similarly compu-
tes the contribution of the interior region from the gri-
dded mean values of Onc -degree units and finer compartmes- -
nts, down to the innermost zone (through the subroutine
ZONIN).

The flow charts of the programmes ORIENT, VOID
and PART are shown in the following pages, with an exam-
ple of data cards for the VOID subroutine. Other utility
subroutines COSIN, DCOSIN, COVERS, STOVM, STOVN, ZOWIN

and SURFIT are also briefly described thereafter.
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FLOW CHART FOR “MAIN PROGRAM ORIENT

é tart \
1

(Fead ¢o’ko’a(o’ l/f),(O

lCompute TQ7E%'

: ¢
rﬁ%ead agf’l/fgl’ Yé’fé’f4'
; ¢
’Compute R7G,D,EOD||
5
A[%ead ot oNop98,09M,, OF computation p01ntl
4
Frame T, X = - T'EDﬁ
i
—— e
CALL VOID
Store U

i

| CALL, PART

’ Tpdate U
| N
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FLOW CHART FOR SUBPROGRAMME VOID

@

T

y Read inner ﬁmits,D#" w]'

et vector U = 0, d = sin(D¥/2)/(360G) |

—— Y )
/Tond .of [ ;
L blocks in the be _ | tiv
| No.of stripwidth | o822 |

variations,strip- * /" No

i~ widths.

IFrame pl’ 2 cos¢ ,set AU=0 l

¥
[/'Read stripwidth codes*
Set J =0
Y

¢'Read Ag array of North belt

Inner 1i 1m1
2 Set x o9 DN J

Gompute PyPooPy

}P [‘p]_:"Pl i : - vector L

it W Ao gm uteCﬁLLusgggg AU |
of South belt A oot p
| No

i
|||
=

T
>
C}.
N

e

No

\‘?
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EXAMPLE OF INPUT DATA CARDS FOR BLOCK MEAN ANOMALIES

The anomalies are inputted beltwise, from polar to

equatorial region, i.e. changing [¢g| from B7.% to 20.5,

with finally a negative buffer. The advantages of this

arrangements are : (i) the stripcoding requires lesser num-

ber of data cards, (ii) the peirwise input avoids repetit4ye

computation, (iii) India being

in the equatorial part,

the contributions progressively increase and the beltwise

sum minimizes truncation error.

card format is shown below:

-3
-8

-90

1st
2nd
ard
Lth
5th
6th
i
8th

An example of data distribution and corresponding

A 1p0° 2l 0° &
| g
- vl 1 i
8 mga 6 550
| 20 42 ! 9 0 80°
| 100 260 °
1680°
OO
59 _ 24 Lk 0 -25
o e, S ) =& 1360°
FORMAT
Card @ 87.5 3 1 120. (F5.1,215,13F5.1)
Card @ 113 ‘ ELLT ... =
Card @ -5 16. 1h. (1675,1)
Card : -8. A 5 -5. ' (1675,1)
Card s B2. 5 L 2 106. B80.
Card 3 1221
Card : 20, Lo, 9. 0
Card : 2k L, O -25.
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FLOW CHART FOR SUBPROGRAM PART

b
£ _\"/Start

J -
J = 0, Set Vector UP=O 3 trahsfer/inne
limits from VOID .

lSet prev1ous inner limits as outer limits
- i' o -
/Read Tnner leltsl
. nnei
| call zoNIN Limig\\\“\/
‘update Up ‘ all zerog/// | | )\

%t (Read D¢9 i
a

=D\ 51n(D¢/2)/(360G2J
v

 ;

- i
Aéréot ¢ J
T
” All\.
//// belts > Yes = [
~complete
B N No
kompute & cos?gi?l fo r—i_gjé?“for J'>C
¥
Read Ag array for the belt'
?"}s unlt'
-
nside Paslly Tor 4 =
Inner , 2773 q
EEF- Limit AN for I> 0 |
Next Yes «*mi——~>L ]
Unit |vector
CALL sTovN f
unlts computo B, W
complete Update U, ‘
< Yes i '




Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

20
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It takes any angle in decimal degrees as
input,; changes it to radian, and returns
the cosine and sine values.

The double precision version of COSIN

- Similar to DCOSIN, it also computes the

Vversin of the angle. In the PART prog-

ramme, this is used instead of DCOSIN
when J # 0.

With elements of vector L as input, it
checks the sign of [l s correspondingly
computes x, S(¥) and U(Y), the modified
Vening Meinesz’ function.

It computes x, and the normalized
weighting functions é(w) and U(T).
Taking the point value and the slopes
of Ag/G at the computation point, this
subprogramme calculates the effects
Ni/R, Ei’ 15 of the innermost zone of
D¢, DA. For processing the gravity
anomalies at data points, a subroutine
SURFIT is called.

From the given point values distributed
in a rectangular compartment, this sub-
routine fits a corresponding polynomial

surface, computes the mean over the
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compartment and also the predicted value
and slopes of the surface at any desired
point. For zero-order surface, the arith-

metic average is obtained.

F.3 OTHER PROGRAMMES

During the course of investigation, many subnrogrammes
were made for various intermediate commutations. Only a few

salient routines have been indicated as follows:

SPLINE : This programme reads the grid size and corner’
values, selects the 5 matrix (#ppendix - D) and
computes the elements of P and Q matrices. For
interpolating the value at any desired point or
points, it selects the corresponding m and n,
and computes Z using Equation D.5. The elements
of S matrix from 4 x 4 to 8 x 8 size are built

in the programme.

COVAR ¢ The standardized covariances (Appendix E) are
calculated as subscrinted variables. The algo-
rithm and the Fortran II version of the subrou-

tine is given in Appendix E.

PREDIC ¢ TUsing the covariance function evaluated in COVAR,
this programme predicts the anomaly at any desi-

red point. T™wo  options have been provided as



NOSPIN

GMEAN

- 266~

follows
(1) all the data points are used in the
prediotion,

(ii) the points up to the distance within which
the covariance function is positive, are
usedj if the number of such points is less
than three, the influence zone is extended

to cover three points.

The COVAR program actually evaluates some non-
uniformly spaced values, as can be seen from
the various covariograms shown in chapter V.
This program generates all other values by
using a general non-uniform cubic spline inter-
polation. In the present work, however, the
subroutine was not used, as intermediate cova-
riances were not needed owing to the gridded

aata.

The mean anomaly over a compartment from the
point anomalies are evaluated through this progr-
amme. Depending upon the compartment size and
number of stations within it, various options
are coded, €.g.,

(1) usual arithmetic average

(ii1) surface-fitted mean, using SIRFIT
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(1ii) weighted mean, using adjacent compartments,

by calling WIMEAN,

WIMEAN : The truncated pyramicd window, as detailed in
chapter V, is used to get the average value.
The various options are already described in the
text.

GEOFIT ¢ The surface-fitting technique, described in

- chapter VII, to get the geoid height from the
astro-geodetic deviations of the vertical has
been translated to PFortran statement in this
programme. The various parts are :

(i) framing of normalized matrix,
(i1) inversion of the factorized upper trian-
gular matrix,
(iii) selecting the optimum order of surface,
(iv) computing Cyq, and then geoid height at

any desired point.

SATELA -t This programme computes the geoid height at any
point, from the inputted geopotential coeffici-
ents and spheroidal parameters, namely Jg,f,a.
The parts of the programme are as follows 3

{3 an from J, value,

(ii) recursion of zonal harmonics,



- 268~

(iii) recursion of Ppm( ¢ ),
(iv) recursion of longitude terms,
(v) summation of the spherical harmonic

series.

A part of the programme, as a test routine, has

been presented in Appendix G.
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NORMAL GRAVITY BY SPHZRICAL HARMONICS

( A paper published in IKDIAN SURVEYOR, January,l973 )

Abstract
Spherical harmonic expansion of tThe theoretical
gravity on the reference spheroid has been formulated,
considering up to second order of eccentricity and cross
radial derivative of the sphero-potential. A computer
subroutine for evaluating the normalized Legendre polyn~

omial and its differential is presented.

Computations at some latitudes in the Indian part
are tabulated and compared with the 1967 normal gravity
formula. Finally the results are discussed in the light

of satellite geocesy.

introduction

Geometrical geodesy deals solely with geodetic
triangulation and astronomical observations, to give the
general shape of the earth and coordinates of points on
its surface in terms of latitude, longitude and height.

Physical geodesy uses gravimetric method to orient the
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reference surface in geocentric position by defining the
geold-spheroid separation and deflections of vertical at

one or more triangulation stations.

The gravimetric computation requires the normal
gravity caused by a regularized earth having symmetry
about its axis of rotation and the equatorial plane. Prese-
nt trends in satellite geodesy needs evaluation of geoid

parameters by spherical harmonicse.

Expansion of normal gravity in harmonics is one of the re-
guirements for determining gravity anomalies on the geoid

surface.

Formulation

The normal gravity has two parts, the major being
‘eravitational' due to the attraction of earth’s masses,
and the other 'rotational' due to the spin of earth about
its own axis. The second part is expressable, in closed
form and depends upon the rotational rate w and ellipsoidal
geometry (see Fig.l for symbols), and takes the following

simple form

-w? a cos° ¢
y, = (1l

v

1 - f£(2-f) sin?¢

The other part is the radial derivative of gravitational

potential V, as :
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A
: 4 (?r)

2,
5 1@

+ (552 (2)

In spherical harmonic expansion, the normal gravitational
potential of the reference spheroid is the series (Heiska-

nen and Moritz, 1967),

QM oo o = -
R B i R TR S o e R (3)
iy n=l,2 2n. én

where, J2n and P2n are respectively the spheropotential
coefficients and the Legendre’s polynomial of even degree

2ny, in fully normalized form.

From (2) and (3) the expression for yg are obtained

as,
_ . GM e MR ‘)
Vg =* 3 { (1+zq) (2R )1} (%)

! &, 2n = =
where Qn = {afz) i€ el x Jgn P2n
and R = (a/r)2n X 3 X P £

n 2n on

- a =

= §F (PZn)

Binomial expansion of the term under square root
! 2 2
and neglecting terms of order more than (Qn) and (Rn) .
finally yields,

y, = Vx(@/mZxf1+q+LEr)?) (5)

g
a
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Ellipsoidal Term

The ellipsoid may be expressed in terms of radius

vector r and geocentric latitude ;, where,
- 2
tang = (1-f)° tang (6)

Also, we get by series expansion and ignoring high-

er order terms,

(a/r)2 £l 2o 4 8F) singa (7)

Zonal Harmonics

The sphrical harmonics, in fully normalized form,
are required for even degree only. A recursive relation
for conventional zonal polynomials facilitating computer cal-

culation (Heiskanen and Moritz 1967),

5 (8)

n
with-P_ = 1; By = 8.5 sing
finally, F = V&+T.ER,

A similar relation for the derivative has been found out,

as follows,

- (9)
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and 55 =V 20+ 1 . P;

A fortran subroutine has also been developed by the author
to calculate the harmonics by recurrence (Appendix:ﬂp. The
routine is optimized for computer time, memory storage and
accuracy, by avoiding recall of subscripted array, reusing
the same space (U, V, PMID, PTOP, PBCT), and noting that n,

n-1, 2n-1 are appearing in arithmetic progression.

: p = | 75 =
Fig.2 shows the values of P., P,’ B, B, for ¢
g? Tor Ty vl
o}
uptico 4LO“.
Reference Spheroid
In the present article, the spheroid nused is Refer-
- . - i e | 8 i
ence Spheroid, 1967, as defined by the following constants

(*illiamsen and Gaposchkin, 1975),

M = 3.98603E + 20 ece/sec/sec
W = 2.2921151E - Qh rad/sec
a = 6.378160E + 08 cm

J, = 0.0010827

4 = 1208 gWTLT

he reference normal gravity is expressed as,
Yo = 978031.85(1+5.30286E - 03 sin‘y
—5.32B06 sin°2¢) (10)
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where o is in milligal and ¢ is the geographic latitude.
The spheropotential coefficients can be derived from,J2 by

the relation,

2.0 bl
e pay R Lo BteT) g g % il
PSR s i Sl RELE

wiere e2 = f(2~f)

The first three coefficients calculated are,

32 = 4. 84198175 - Ok,
34 = +7.9042088% - 07, and
36 = .1.6877169% - 09,

This shows that the series is highly convergent, and for

mgal accuracy, these three terms are sufficient.

Results and Discussions

The different parts of the computations of normal
gravity by spherical harmonics and comparison with the
reference formula are shown in Table - 1, for nine geogra-

phic latitudes relating to Indian part.

The excellent agreement is evident. The ellipsoi-
dal term, and the rotation term constitutes approximately
upto 0.3 percent and O.4 per cent of the total gravity.

he harmonic part is about 0.2 percent, mostly shared by

the first harmonic. The tangential component Rn is
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limited to 1 to 2 mgal only.

For the purpose of computing gravity anomalies, or
determining geoid vector from satellite derived geopotential
coefficients, thus, three terms of Y, are suffiecient, giving
accuracy of the mgal order. The crossradial term also can
be safely neglected. The rotational term is usnally deduct-
ed by the space flight centres, (as done by Smithsonian

Astrophysical Observatory) and the disturbing potential is

obtained simnhly by deducting the harmonic nart of V.

However, present age of fast digital computers with
high precision makes us free from these simplifying assump-
tions, and direct formulation is recommended keeping in

view the truncation inaccuracies only.
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FIG, i

FIG. 2 NORMALIZED HARMONICS



Jable - 1

Normal gravity through spherical harmonics and by standard formula
(rounded to 0.1 mgal)

aM/a’

e

il e o= o= . Ty ” g e RS
= ya(aﬁﬁ§ harmonic rotation standard

0 979827.8 0.0 NSES.T -3391.6  978031.9 9780%1.8 ,
5 ~do- 49.3 1560.0  -3365.9  978071.2 978071.0 3
10 -do- 196.5 1453, 1 -3289.7 978187.7 972187.6 |
15 ~do- 436.9 1278.7 -3165.1  978378.3 978377.8

20 ~do 763.4 1041.6 -2996.1  978636.7 978636.2

25 ~do- 1166.5 748.8 -2878.5  978954.6 978954.8

30 —do- 1634.3 408.6 -2545.8 979325.1 979324.2

35 ~do~ 2153.0 2.7 =2278.3° S79134.2 9TS153.1

40 ~do~ 2707.0 ~371.4 -1993.1  980170.3 980169.2
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APPENDIX - ()

SUBROUTINE ZONAL (S,C, NDG, PDS, PDB)
DIMENSION PDS(NDG), PDB(NDG)
PTOP = 1.

PMID = S
U = 3
v=1
PDS(1) = S*SQRT(3)
DO 104 N = 2, NDG
PBOT = U*S*PMID - V*PTOP
=% + 1
PBOT = PBOT/V
=" % 2.
PTOP = PMID
PMID = PBOT

104PDS(N) = PBOT*SQRT(U)
PTOP = 0. O
PMID = C
U= 3
¥ o= 4.
PDB(1) = C*SQRT(3)
D0204N = 2,NDG
PBOT = U¥S*PMID-(V+1)*PTOP
PBOT = PBOT/V
A7 T R
7 =g+
PTOP = PMID
PMID = PBOT

204PDB(N) = PBOT*SQRT(U)
RETURN
END

tl

it
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