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ABSTRACT 

Most of the real life optimization problems arising in various fields of science and 
engineering can be modeled as global optimization problems. In such problems it is desired and 
is often necessary to determine a global optimal solution rather than a local optimal solution. 
Determining the global optimal solution of a nonlinear optimization problem is considered to be 
more difficult as compared to the problem of determining a local optimal solution. The various 
approaches available for solving the global optimization problems can be broadly categorized as 
deterministic and probabilistic approaches. 

Deterministic approaches extensively use the analytical properties such as continuity, 
convexity, differentiability etc of the objective and the constraints to locate a neighborhood of 
the global optimum. Most of these techniques are designed to solve a particular class of 
optimization problem. Consequently, these techniques are not generic in nature. 

On the other hand stochastic methods, utilize randomness in an efficient way to explore 
the set over which the objective function is to be optimized. Stochastic methods performed well 
in the case of the most of the realistic problems over which these have been applied. 

Among stochastic approaches, Evolutionary Algorithms (EA) or Nature Inspired 
Algorithms (NIA) are found to be very promising search techniques for solving global complex 
optimization problems. Some popular EA/NIA includes Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Differential Evolution (DE) 
etc. 

The focus of the present study is on DE, which has emerged as a powerful optimization 
tool for solving complex global optimization problems. Comparative studies have confirmed 
that DE outperforms many other optimizers. Practical experiences however show that DE is not 
completely flawless. It is vulnerable to problems like slow and/ or premature convergence, is 
sometimes unable to locate global optima or gets stuck in local optima. Also, like most of the 
other population based EA/NIA, the performance of DE deteriorates with the increase in the size 
of the problem. These shortcomings of DE become more persistent in case of multimodal or 
noisy functions. 
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This study concentrates on development of efficient variants of DE 'algorithm for solving 
global optimization problems. Initially, three variants of DE are proposed named as: Differential 
Evolution with Cauchy mutation (CDE), Differential Evolution with mixed mutation strategy 
(MSDE) and Synergetic Differential Evolution (SDE). 

The first variant CDE maintains a failure counter (FC) to keep a tab on the performance 
of the algorithm by scanning or monitoring the individuals and makes use of Cauchy mutation 
operator in an effective manner which helps in escaping the individual entrapped in local 
minima. 

The second variant MSDE uses the concept of evolutionary game theory to integrate 
basic DE mutation and quadratic' interpolation based mutation to generate a new solution. This 
is contrast to the basic DE where a single mutation operator is used throughout the algorithm. 

The third version which is SDE is based on the rule of synergy that the combined effect 
s,. 

is always beneficial than the individualistic effect. In SDE three algorithmic components are 
fused together. These concepts are three recent modifications in DE (1) opposition based 
learning (OBL) (2) tournament method for mutation and (3) single population structure. These 
features have a specific role which helps in improving the performance of DE. 

First of all the performance of these algorithms are analyzed on a set of unconstrained 
benchmark problems. For this purpose, a comprehensive set of well-known complex benchmark 
functions is employed to experimentally compare and analyze the three proposed algorithms. 
The test suite consists of 25 traditional/ classical problems and 7 nontraditional shifted 
benchmark problems. All the algorithms are also compared with some of the recent modified 
versions of DE and the results showed that the proposed variants are either superior or at par 
with the competing algorithms. 

The algorithms are also analyzed statistically with the help of non parametric tests. It is 
observed that although all the proposed variants achieve solutions with good accuracy, maintain 
stable convergence characteristics and are simple to implement within a satisfactory 
computation time; MSDE and SDE are better than CDE. 

MSDE and SDE after suitable modifications are further applied to solve the constrained 
optimization problems (COP). For this purpose a comprehensive set of 24 constrained 
benchmark problems is considered over which the proposed algorithms are analyzed and are 
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ompared with other modified DE versions for solving COP. The numerical and statistical 
esults indicated that both the algorithms performed quite satisfactorily over the considered test 

uite of COP. However, taking into account the simple structure of SDE algorithm, it is further 

riodified for solving multi objective optimization problems (MOPs). For analyzing the 
)erformance of SDE on MOPs, 9 unconstrained, bi-objective MOPS are taken from literature 

Lnd the obtained results are also compared with some of the contemporary algorithms for 

solving MOPs. The efficiency of SDE was observed numerically and statistically for dealing 

with multiple objectives as well. 
Finally, the proposed SDE algorithm is applied for solving two real life problems; (1) 

frim Loss Problem (TLP) arising in paper industry, which is a highly constrained non-linear, 

non convex integer programming problem and (2) Image Thresholding Problem which arises 

frequently in the area of Image Processing. The complex mathematical model of both the 

problems makes it a challenging task for an optimization algorithm to obtain the global solution 

and it was observed that SDE was able to deal with both the real life problems in quite an 

efficient manner giving quality solution while maintaining a reasonably good convergence 

speed. 
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Chapter 1 

Introduction 

This chapter is introductory in nature; besides giving some basic definitions related to 

optimization, it provides a detailed description of Differential Evolution (DE); literature survey 

related to DE and its applications to various fields. The scope of the chapter is to introduce the 

motivation underneath this research work as well as the current challenges in this field. The 

proposed research objectives and contributions are also discussed followed by the thesis outline. 

1.1 What is Optimization? 

One of the most fundamental principles in our world is the search for .an;optimal state. It 

begins in the microcosm where atoms in physics try to form bonds in order to minimize the 

energy of their electrons (Pauling, 1960). When molecules form solid bodies during the process 

of freezing, they try to assume energy- optimal crystal structures. These processes, of course, 

are not driven by any higher, intention but purely result from the laws of physics. 

The same goes for the biological principle of survival of the fittest (Spencer, 1864) 

which, together with the biological evolution (Darwin, 1859), leads to a better adaptation of the 

species to their environment. Here, a local optimum is a well-adapted species that dominates all 

other animals in its surroundings. Homosapiens have reached this level, sharing it with ants, 

bacteria, lice, cockroaches, and all sorts of other creepy creatures. 

As long as humankind exists, we strive for perfection in many areas. We want to reach a 

maximum degree of happiness with the least amount of effort. In our economy, profit and sales 

must be maximized and costs should be as low as possible. Therefore, optimization is one of the 

oldest of science which even extends into daily life (Neumaier, 2006). In the most basic sense, it 

can be defined as an art of selecting the best alternative among a given set of options. Global 

optimization is the branch of applied mathematics and numerical analysis that deals with the 

optimization of single or multiple even conflicting criteria. These criteria are called objective 
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functions. The result of an optimization process is the set of inputs for which these objective 

functions return optimal values. 

1.2 Formal Definition 

To formalize the concept of optimization, consider S to be the set of candidate solutions 
to the optimization problem. Typically S is D-dimensional over some domain, for example in 

case of binary: S = (0,1}D or in case of real-values: S 9 RD. The domain S is often referred to 

as the search-space. 

Let the optimization problem be defined by the function f, which is called the fitness 

function (or cost function/ error function/ objective function) and rates how well the candidate 

solutions in S fare on the given problem. 

Without lack of generalization this thesis considers minimization problems, that is, to 

minimize the fitness function f and hence obtain the candidate solution that fares best. 

Maximization problems can be optimized merely by introducing an auxiliary function. Suppose 

f is a fitness function to be maximized, then the analogous minimization problem can be 

considered instead, simply by introducing the function: h(X) = -f(X) 

The general non-linear unconstrained optimization problem is defined as: 

Minimize f(X):X cS---R 

that is, to minimize the fitness function [and hence obtain the candidate solution that fares best, 
find X c S so that: 

`TeS:.f(X)~.f(Y) 
Such a point X is known as a global minimum for the function f. 

The general non-linear constrained optimization problem is defined as: 

Minimize - f (X) : X E S —  R 

Subject to' X = (xi ,x2 ,...,XD ) E S 

where S is defined by 

g1(X)<_0, j=l,2,...,I 

I; S x, <_u; (i=l,......,D). 

0 
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1 and in are the number of inequality and equality constraints respectively, l;  and u, are lower 

and upper bounds of the decision variable xi  , respectively. 

Given a function that contains multiple minima on its feasible set only the smallest 

minimum will be the global minimum and all others will be classified as local minima. In 

general, global minimum are difficult to locate and verify. The task of locating the global 

optimum is referred to as global optimization. 
Optimization problems can be categorically differentiated according to the various 

properties of the objective function, constraints and decision variables. The objective function 

and the constraints (if any are present) can either be linear or nonlinear. The decision variables 

can be continuous or discrete or a combination of both. 
If a problem has a linear objective function and linear constraints it is considered to be a 

linear optimization problem. If the solution has an additional requirement that the decision 

variables are integers then the model is called integer programming optimization problem. 

Whereas, if a problem has either a nonlinear objection function or constraints or both, it is 

classified as a nonlinear optimization problem. These definitions apply to problems with 

continuous decision variables. If however some decision variables are integers and some others 

are real then the problem is classified as mixed-integer problem, on the other hand if the 

variables are discrete then the problem is discrete optimization problem. 

In this thesis the work is concentrated on continuous variables except for a real life 

problem in Chapter 5 which contains discrete as well as binary variables. 

1.3 Local and Global Optimal Solutions 

For a minimization problem, a feasible solution X * is said to be a global minima of the 

problem if f (X*) _5 f (X) for all X e S. If f (X*) f (X) for all X E S n N£  (X*) , where 

N Z  (X *) is called a s neighborhood of X * , then X' is called local minima. A point X* is a 

stationary point if the derivative of the function f(X) is zero atX * . Graphical illustration for 

local and global optima is given in Figure 1.1. 
An optimization problem may have no optimal solution, only one optimal solution or 

more than one optimal solution. If the problem has a unique local optimal solution, then it is 

3 
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also the global optimal solution. However, if the problem has more than one local optimal 

solution, then one or more of these may be global optimal solutions. In an LPP, every local 

optimal solution is also the global optimal solution, on the other hand in an NLPP, if the 

objective function (for minimization case) is convex and its domain of definition defined by the 

set of constraints is also convex, then the local optimal solution is also the global optimal 
solution. 

In most of the NLPP, a global optimal solution rather than a local optimal solution is 

desired. Determining the global optimal solution of a NLPP is much more difficult than 

determining the local optimal solution. However, because of the practical reasons, the search for 

the global optima is often desired. 

ocal Maxima 
	 Global Maxima 

N4 	 • ` 

Local Minima Global Minima 

Figure 1.1: Global and local optima. 

1.4 Nature Inspired Computational Search Techniques 

Considering the practical utility of the global optimization algorithms, efforts have been 

made to develop efficient global optimization algorithms (Grosan and Abraham, 2009). In the 

past few decades emphasis has been laid on the development of general purpose algorithms that 
are problem independent and can efficiently determine the global optimal solution. 

4 
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Nature Inspired Computational Search Techniques (NICST) are such general purpose 
algorithms that have gained significant attention of the researchers dealing with global 

optimization problems. Some popular NICST include Genetic Algorithms (GA), Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), 

Differential Evolution (DE) etc. As the name NICST suggests, these algorithms are based on 

some natural phenomena. For example while GA and DE are based on the Darwin's theory of 

survival of the fittest and natural selection; ACO and PSO are based on socio cooperative 

behaviour displayed by various species (Engelbrecht, 2005). 

These algorithms have been developed and modified by several researchers for solving 

constrained and unconstrained global optimization problems (Liu et al., 2006; Liu et al., 2007; 

Ali, 2007; Ali and Bagdadi, 2009; Omran et al., 2009; Ghosh et al., 2010; Sabat et al., 2011). 

These algorithms have also been applied to a wide range of problems= like Multi-Objective 

Optimization Problems (Grosan and Abraham, '2008); noisy functions .(Mininno and Neri, 

2010); heat exchanger design (Baba and Shaik, 2007); sequence alignment (Jangam and 

Chakraborty, 2007); assignment problems (Liu and Abraham, 2007); scheduling problems (Liu 

et al., 2010); Mixed Integer Non Linear Programming Problems (Shaik and Gudi, 2005); power 

systems (Panigrahi and ` Pandit 2010), portfolio optimization (Suganya and Vijayalakshmi, 

2010); electronics (Sabat et a1 , 2010, Sreelaja and Vijayalakshmi, 2010); chemical engineering 

(Mondal et al., 2011). 

The focus of the present study is Differential Evolution (DE) which is relatively a newer 

NICST. Sections 1.5 — 1.8 are devoted to the detailed description of DE. 

1.5 Differential Evolution 

Storn and Price developed Differential Evolution (DE) to be a reliable and versatile 

function optimizer that is also easy to use. The first written publication on DE appeared as a 

technical report in 1995 (Storn and Price, 1995). Since then, DE has proven itself in 

competitions like the IEEE's International Contest on Evolutionary Optimization (ICEO) in 

1996 and 1997 and in the real world on a broad variety of applications. Differential Evolution 

(DE) is relatively a new optimization technique in comparison to Evolutionary Algorithms 
(EAs) such as Genetic Algorithms (Goldberg, 1989), Evolution Strategies (Rochenberg, 1973), 
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Evolutionary Programming (Fogel, 1965), Ant Colony Optimization and Particle Swarm 
Optimization (PSO) (Kennedy and Eberhart, 1995). Within a short span of around fifteen years, 

DE has emerged as one of the most simple and efficient technique for solving global 

optimization. Recently, Mathematica® added DE to its numerical optimizer package. 

A general DE scheme may be defined as DE/a/b/c, where DE denotes the Differential 

Evolution algorithm; `a' represents a string denoting the vector to be perturbed; it may be the 
best vector of the population or it may be a random vector. `b' indicates the number of 

difference vectors considered for perturbation of a; it may be one or two. And `c' stands for the 

type of crossover being used, binomial (bin) or exponential (exp). 
Like all other population based search algorithms, DE starts with a population S of NP 

candidate solutions: X,G = {xr,;c, X2 ,G, xs.,c, •••, xD.t.c}, i = 1, . . . , NP, where the index i 
denotes the ith  individual of the population, G denotes the generation to which the population 

belongs and D denotes the dimension of the problem. Each parameter of the problem, may have 

a certain range within which the value of the parameter should be restricted, often because 

parameters are related to physical components or measures that have natural bounds (for 

example if one parameter is a length or mass, it cannot be negative). The initial population 

should; cover this range as much as possible by uniformly randomizing individuals within the 
search .space constrained by the prescribed lower and upper bounds: l = {l1 , 12, ..., I D } and u 
{u 1 , U2, ..., uD }. Ffence, j" component of the i`" vector may be initialized as follows: 

x1 10  =i /  +rand; j [0,1]x(u, —1J ) 

where rand1,1[0, 1] is a uniformly distributed random number lying between 0 and 1, including 

both values, and is instantiated independently for each component of the ith  vector. The three 
main operators of DE are mutation, crossover and selection which may be defined as follows: 

Mutation: Once the initialization is complete, DE enters the mutation phase. In this 

phase a donor vector VG is created corresponding to each member or target vector X,G in the 
current generation. The method of creating donor vector differentiates one DE scheme from 

another. The most often used mutation strategies implemented in the DE codes are listed below. 
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DE/rand/l: V,,, =X rG +F*(Xr2G —X,, c ) (1.2) 

DE/rand/2: V,,c =X +F * (Xrz,(; —Xr,,G)+F*(Xr,,G —Xr5,G) (1.3) 

DE/best/1: V = X bes~,c + F (X.,,c —'Yrz,c) 	 1.4 

DE/best/2: Vf,G = X hest,G + F * (X rl G — X r,,G ) + F * (X r,,r — X r4,G ) (1.5) 

DE/rand-to-best/1: V = X r,,G + F * (XheG — X rz ,c ) + F * (X r,,c — Xr,,c) 	 (1.6) 

The indices r1, r2, r3, r4 and r5 are mutually exclusive integers randomly chosen from the 

range [1, NP] and all are different from the base index i. these indices are randomly generated 

once for each vector. The scaling factor F is a positive control parameter and is used for scaling 

the difference vectors. Xb,,t G is the individual having the best fitness function value in the 

population at generation G. Mutation scheme given in equation. (1.2) is represented in Figure 

1.2. 

Frequently referred strategies implemented in the public-domain DE codes for producing 

the donor vectors are also available online at: kttp://www. icsi. berkeley. edu/storn/code. html. 

x2 
' NP parameter vectors from generation G 
o Mutated parameter vector 

F * (Xr2,G `— Xr3,G) 

Minimum 

I 	III / I ---- I 

,G 	/~ 

Vi,G = XrI,G + F * (Xr2,G — Xr3,G) 
X, 

Figure 1.2: Illustrating simple DE mutation scheme of equation (1.2). 

7 



Chapter 1 

Crossover: once the donor vector is generated in the mutation phase, the crossover phase 
of DE is activated. The crossover operation of DE helps in increasing the potential diversity of 
the DE population. The DE family of algorithms may use two types of crossover schemes; 
exponential (exp) and binomial (bin). During the crossover operation, the donor vector 
V,G = {v/, t,G, vz.,,G, V3,,,G ...I VD. ,G} exchanges its components with the target vector X~; = {xl,,,G, 

x2, =,c, X3,rG. •.., xD.t} to form a trial vector Ui,G = (u1,i,G. • • .. UThG) 

According to binomial crossover the trial vectors are generated as follows: 

J 1,i.aifrc4,I o1]<c vJ -" frj 

u j,i.G — x ,.G 	 otherwise (1.7) 

where, j - 1... D and j,,,,d ,E {1, ;:.. ,, D} is a random parameter's index, chosen once for each i. 

Cr is a positive control parameter (crossover probability) set by the user. DE's version of 
binomial crossover begins by taking a randomly chosen parameter from the mutant vector so 
that the trial vector will not simply replicate the target vector. Comparing Cr to rand1~ [0,1 ] 
determines the source for each remaining trial parameter. If randi,JO, I] < Cr, then the parameter 
comes from the mutant vector; ; otherwise, the target vector is the source. Figure 1.3 illustrates' 
the binomial crossover process. 
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XJ,i,G 	 UJ,LG 	 V L,G 

Figure 1.4: Illustrating exponential crossover scheme of DE. 	aY f+S 

In exponential crossover, as in binomial crossover, one parameter is initially chosen at 

random and copied from the mutant to the corresponding trial parameter so that the trial vector 

will be different from the vector with which it will be compared. The source of subsequent trial 

parameters is determined by comparing Cr to a uniformly distributed random number between 1 

and 0 that is generated a new for each parameter. As long as rand11[0,1] < Cr, parameters are 

taken from the mutant vector, but the moment, rand1;[0,1 ] > Cr, the current and the remaining 

parameters are taken from the target vector. Its graphical representation is given in Figure 1.4. 

Selection: The final phase of the DE algorithm is that of selection, which determines 

whether the target or the trial vectors generated in the mutation ' and crossover phases will 

survive into the next generation. The population for the next generation is selected from the 

individual in current population and its corresponding trial vector according to the following 

rule 

Ui.G if f (Ui.G) f(XG )  

X G+~ = Xr.v 	 otherwise 	
(1.8) 

0 
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Xt G 	f(Xi,G) 

f (Ui,G)
{~

CJ (Xi,G) 	
False 

IJ i, G 	
J (Ui, G) 	H 	 1 True 

	

Xi G+1 = Ui G 	 X,G+I X,G 

Figure 1.5: Illustrating selection scheme of DE. 

Thus, each individual of the advance (trial) population is compared with its counterpart 
in the current population. The one with the lower objective function value will survive from the 
tournament selection to the population of the next generation. As a result, all the individuals of 
the next generation are as good as or better than their counterparts in the current generation. In 
DE, the trial vector is not compared against all the individuals in the current generation, but only 
against its counterpart in the current generation. 

Pseudocode of DE is given in Algorithm 1.1. 
Algorithm 1.1 Pseudocode of DE illustrating how the procedure acts on. a population of individuals, repeating 
mutation, crossover and selection until the convergence criteria is met. 
Step 1: 	Generate randomly NP individuals ,,X, , i=l,2,...,NP, using equation (1.1). Set the values of control 

parameters F,:Cr. 
Step2: Seti=O. 

Step 3: 	i=i+1. 
Step 4: 	Corresponding to target individual X select three distinct individuals X,.,, X.2 and X.3 such that i t rl 

r2 t r3 from population and generate perturbed individual T, using equation •(1.2) and go to step 5. 
Step S: 	Recombine the target vector X with perturbed individual P, generated in step 4 to generate trial 

vector U, using equation (1.7) and go to step 6. 
Step 6: 	If all parameters of the trial vector is within the given range then go to step 7 otherwise uniformly 

generate that parameter within given range using equation (1.1) and go to step 7. 
Step 7: 	Calculate the objective function value for vector U,. Choose better of the two (function value at 

target and trial point) using equation (1.8) for next generation and go to step 8. 
Step 8: 	If i < NP then go to step 3 otherwise go to step 9. 
Step 9: 	Check whether the termination criterion is met. If yes then stop otherwise go to step 2. 

10 



Introduction 

1.6 Working of Differential Evolution, 

Throughout the present study DE/rand/1/bin version of , DE will be used (unless 

otherwise mentioned), which is perhaps the most frequently used version and shall be referred 

as basic version. 
With the objective of demonstrating the DE optimization process in continuous spaces, a 

simple example is analyzed. 

min f(X)=x; +x2 where -25x,,x2  S2 

1. Select the control parameter of DE: Problem dimension n = 2, population size NP = 10, 

scaling factor F = 0.5 and crossover rate Cr = 0.9. 

2. Initialize the population using equation (1.1). 

Individual 
Parameter 

X1 X4 X3 X4 	..... X8 X9 XIO is 

-1.22 0.92 -1.23 1.23 -1.23 0.15 -1.54, 
x2,;  1.89 -0.14 0.34 0.33 -0.32 -1.34 1.23. 

Fitness 5.0605 0.866 1.6285 1.6218 	..... 1.6153 1.8181 3.8845 	!- 

3. Select the target vector from current population (say XI). 

4. Select randomly three distinct vectors from current population (say X4, X9, X2). 
5. Apply the mutation operation to generate the mutant vector according to (1.2). 

_ 0.84 V = X4 +F* (X9 -X Z ) 
1-0.27 

6. Create the trial vector by means of the crossover operation according to equation (1.7). 

Target individual 	Mutant individual 	Random number 	Trial individual 
u l ,, 	 -1.22 	 0.845 	 0.78 	 0.845 
u2,; 	 1.89 	 -0.27 	 0.46 	 -0.27 

Fitness 	5.0605 	 0.786925 	 -- 	 0.786925 

7. Select the individual that will advance to the next generation according to equation (1.8). 

Individual  
Parameter 

X1 	X? 	 X3 	X4 	_____ 24 	 Xq 	X10  
0.845 	 ..... 
-0.27 

Fitness 0.786925 

11 
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8. Return to step 3 and repeat these task for all individual within the current population. 

9. Update the current population by trial population. 

10. This procedure is executed for several generations until a convergence criterion is 

satisfied. 

1.7 Survey of Literature 

Differential Evolution has emerged as one of the most simple and efficient technique, for 

solving global optimization. Practical experience, however, shows that DE is not completely 

flawless. Like all other population based stochastic search techniques in their basic form, DE 

also has certain drawbacks associated with it. DE has some unique characteristics that make it 

different from many others in the family of EAs. The generation of offspring and selection 

mechanism of DE is completely different from its counterparts. DE uses a one-to-one spawning 

and selection relationship between each individual and its offspring. These features though help 

in strengthening the working of DE algorithm; they can sometimes turn into its weakness. 

As pointed out by Lampinen and Zelinka (2000), DE may occasionally stop proceeding 

towards the global optimum even though the population has not converged to a local optimum 

or any other point. This situation is usually referred to as ° stagnation: : Several instances are 

available in literature which; aims at improving the performance of DL. 

DL has three main control parameters namely population size, crossover rate Cr and 

scaling factor F. A number of investigations have been carried out to determine the optimum 

settings of these parameters. Storn and Price (1995) indicated that a reasonable population size 

could be between 5D and I OD, where D denotes the dimensionality of the problem. They also 

recommended that a good initial choice of F can be 0.5. 

Later, Gamperle et al. (2002) suggested that the population size should be between 3D 

and 8D. They also suggested that the scaling factor F should be 0.6 and the crossover rate Cr 

should be in the range of [0.3, 0.9] for best results. Ronkkonen et al. (2005), on the other hand, 

recommended the use of F values between [0.4, 0.95] with. F = 0.9 being a good initial choice. 

They further pointed out that the Cr values should lie within the range [0, 0:2] when the function 

is separable while it should lie in [0.9, 1] when the function's parameters are dependent. 
However, a drawback in their analysis is that in case of real life problems, it is very difficult to 

12 
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examine beforehand the true nature of the function. Thus, it can be seen that there are different 

views and recommendations for the choice of parameters. 
To avoid the manual tuning of parameters, researchers recommended the use adaptive/ 

self adaptive setting of parameters, where instead of having a fixed value the control parameters 

are changed dynamically based on some feedback of the search space. Some of the works done 

in the development of adaptive/self adaptive control parameters are as follows: Abbass (2002) 

self-adapted the crossover rate Cr for multi-objective optimization problems, by encoding the 

value of Cr into each individual and simultaneously evolving it with other search variables. In 

his algorithm, the scaling factor F was generated for each variable by using a Gaussian 

distribution N (0, 1). Zaharie (2003) proposed a parameter adaptation strategy for DE (ADE) 

based on the idea of controlling the population diversity, and implemented a multi-population 
approach. Later, Zaharie and Petcu (2004) designed an adaptive Pareto DE algorithm for multi-

objective optimization and also analyzed its parallel implementation. 
Liu and Lampinen (2005) introduced fuzzy logic in DE and developed ` an algorithm 

called Fuzzy Adaptive Differential Evolution (FADE). Omran et al. (2005) proposed an 

algorithm called SDE in which they introduced a self-adaptive scaling factor parameter F and 

generated the value of Cr for each individual from a normal distribution N (0.5, 0'.15). Brest et 

al. (2007) proposed jDE algorithm using adaptive F and Cr. Epitropakis et al. (2009) suggested 

evolutionary adaption of the control parameters of differential evolution. Yang et Al. (2009) 

developed an adaptive co-evolutionary DE named JACC-G and applied it for solving large scale 

global optimization problems. Although most of the self adaptive versions of DE, involve 

adaption of Cr and F, work has also been done on the adaption of the population size (DESAP 

by Teng et al., 2009) and on the adaption of trial vector generation. strategies (SaDE by Qin et 

al., 2009). 

Das et al. (2005) introduced two schemes for adapting the scale factor F in DE. In the 

first scheme they varied F randomly between 0.5 and 1.0 in successive iterations. They 

suggested decreasing F linearly from 1.0 to 0.5 in their second scheme. This encourages the 

individuals to sample diverse zones of the search space during the early stages of the search. 

During the later stages, a decaying scale factor helps to adjust the movements of trial solutions 

finely so that they can explore the interior of a relatively small space in which the suspected 
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global optimum lies. Teo (2006) proposed an attempt at self-adapting the population size 

parameter in addition to self-adapting crossover and mutation rates. Brest et al. (2006a) encoded 

control parameters F and Cr into the individual and evolved their values by using two new 

probabilities tit  and t2. In their algorithm, a set of F values were assigned to each individual in 

the population. With probability til, F is reinitialized to a new random value in the range of 

[0.1, 1.0], otherwise it is kept unchanged. The control parameter Cr, assigned to each individual, 

is adapted in an identical fashion, but with a different reinitialization range of [0, 1] and with the 

probability tie. With probability 't2, Cr takes a random value in [0, 1j, otherwise it retains its 

earlier value in the next generation. Differential Evolution with Preferential Crossover (DEPC) 

was suggested by Ali (2007). In his work he suggested three changes in the basic DE structure. 

The DEPC algorithm uses F;  as a random variable in [-1, -0.4] u [0.4, 1] for each targeted point. 

Secondly, DEPC used two population sets Sj and S2 containing N points. The function of the 

auxiliary set S2  in DEPC is to keep record of the trial points= that are discarded in DE. Potential 

trial points in S2 are then used for further explorations. Finally, DEPC used a new crossover 

rule, namely the preferential crossover, which always generates feasible trial points. Ali tested 

his algorithm on comprehensive set of benchmark problems and showed that DEPC outperforms 

the basic DE in most of the test cases. 

Yang et al. (2008) proposed a self adaptive differential evolution algorithm with 

neighborhood search (SaNSDE). SaNSDE proposes three self-adaptive strategies: self adaptive 
choice of the mutation strategy between two alternatives, self-adaptation of the scale factor F,, 

and self-adaptation of the crossover rate Cr. Qin et al. (2009) proposed a Self-adaptive DE 

algorithm (SaDE), where the choice of learning strategy and the two control parameters F and 

Cr are not required to be pre-defined. During evolution, the suitable learning strategy and 

parameter settings are gradually self-adapted according to the learning experience. 

Hybridization is another concept which has been applied to DE to enhance its 

performance. Some hybridized versions of DE available in literature are as follows: Hendtlass, 

(2001), Zhang and Xie (2003), Talbi and Batchoue (2004) and Kannan et al. (2004) hybridized 

DE with PSO. Later, Omran et al. (2009) proposed a hybrid version of Bare Bones PSO and I)E 

called BBDE. In their approach, they combined the. concept of barebones PSO with self 

adaptive DE strategies. Zhang et al. (2009) proposed a DE-PSO algorithm in which a random 
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moving strategy is proposed to enhance the algorithm's exploration abilities and modified DE 

operators are used to enhance each particle's local tuning ability. Wu and Gu (2009) proposed 

Particle Swarm Optimization with prior crossover differential evolution (PSOPDE). 

Yang et al. (2008a) proposed a Neighborhood Search Differential Evolution or NSDE by 

including a concept of local neighborhood search in the structure of DE. Later, Yang .et al. 

(2008b) used Self-adaptive NSDE in the cooperative co-evolution framework for optimizing 

large scale non-separable problems (up to 1000 dimensions). 

Caponio et al. (2009) proposed a hybridization of DE with three metaheuristics out of 

which one was PSO and two were local search methods. Omran and Engelbrecht (2009) 

proposed Free Search DE (FSDE) in which DE is hybridized with a newly developed `Free 

Search Algorithm' and OBL. Menchaca-Mendez and Coello Coello (2009) hybridized Nelder 

Mead algorithm with DE for solving constrained optimization problems. A hybrid DE based on 

the one-step k-means clustering, called clustering-based DE (CDE), is presented; for the 

unconstrained global optimization problems by Cai et al. (2011). 

Other modifications which aim at improving the performance of DE include.; 

development of new mutation schemes; for example Fan and Lampinen (2003) suggested the , 

stochastic application of a newly developed Trigonometric Mutation Operator (TMO) and called 

their algorithm as Trigonometric DE (TDE). Kaelo and Ali (2006) designed a new mutation .  

scheme for DE based on random localization and named the corresponding algorithm as DERL. 

Pant et al. (2009a) and Pant et al. (2009b) developed a `parent centric mutation' operator PCX 

and Laplace mutation operator for DE and named corresponding versions as DE-PCX and LDE 

respectively. Pant et al. (2009c) also recommended a mixed strategy DE (MSDE) in which 

instead of having a single mutation strategy throughout the generations, two mutation strategies 

were used in a competitive environment. More recently a new mutation operator based on 

wavelet theory was suggested by Lai et al. (2009). 

Besides the variation in mutation scheme, some other interesting modifications in DE 

include: use of single population structure in DE (Thompson, 2004, Babu and Angira, 2006), 

crossover based local search method for DE proposed by Noman and Iba (2005, 2008), use of 

opposition based learning (OBL) for generating the initial population by Rahnamayan et al. 

(2008). The corresponding algorithm called ODE was also applied for solving large scale 
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optimization problems by Rahnamayan and Wang (2008); Brest et al. (2009) performed 

dynamic optimization using DE, Ting and Huang (2009) varied the number of difference 

vectors in DE. Tasgetiren et al. (2009) included of variable parameter search in DE. A 2- Opt 
based differential evolution was proposed by Chiang et at (2010). Some variants of DE can 

also be found in Chakraborty (2008), Montgomery (2009), Wang et al. (2009) and Peng et al. 
(2009). A detailed review of literature and recent advances on DE is given in Das and 

Suganthan (2010) and Neri and Tirronen (2010). 

1.8 Applications 

Differential Evolution algorithm and its variants have been applied successfully to. a 

wide variety of problems occurring in different fields of science and engineering. It is very 

difficult to summarize all the applications, therefore considering the brevity of space, in this 

section a brief review of some of the applications is given. 
DE algorithm has been successfully applied to diverse domains of science and 

engineering, such as mechanical engineering design (Rogaiski et al, 1999; Joshi and Sanderson, 

1999), signal processing (Das and Konar, 2006),, chemical engineering (Wang and Jang, 2000; 
Lampinen, 1999; Onwubolu and Babu, 2004), machine intelligence, and pattern recognition 

(Omran et al, 2005), (Das et. al, 2008). Das and Konar (2009) proposed an evolutionary-fuzzy 

clustering algorithm to automatically group the pixels of an image into different homogeneous 

regions. Noktehdan et al. (2010) proposed a grouping version of differential evolution (GDE) 

algorithm and its hybridized version with a local search algorithm (HGDE) to solve 

benchmarked instances of cell formation problem posing as a grouping problem. A DE based 

neural network approach to nonlinear system identification was proposed by Subudhi and Jena 
(2011). Many of the developments in DE algorithm design and applications can be found in 

Chakraborty (2008). 
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1.9 Objective of the Present Work 

The main objective of the present work is to suggest enhanced DE variants by implying 

simple and efficient modifications in the basic structure of DE algorithm to improve its 
performance and to minimize its drawbacks, so that they can effectively solve the test as well 

as real life application problems. 

The major objectives of this dissertation are: 

1. To design efficient and reliable variants of DE algorithm for obtaining the global optimal 

solution of unconstrained non-linear optimization problems. 

2. To extend the algorithms for solving constrained and multi-objective problems and test 

the algorithms on benchmark problems given in literature. 

3. To use the algorithms for solving real life optimization problems arising in various fields 

of science and engineering. 

1.10 Thesis Overview and Organization 

The thesis is structured as follows: 
Chapter 1 details the basic DE method and type of optimum. Besides stating the 

relevant definitions definitions it gives literature related to the topic. 	 .~ 

Chapter 2 describes the three modified versions of the basic, Differential Evolution (DE) 

algorithm namely CDE, MSDE and SDE. The overall features of the aforementioned schemes 

are explained in details. A rigorous analysis of the algorithms is done numerically and 

statistically on a comprehensive set of 25 traditional benchmark problems and 7 nontraditional 

benchmark functions. Several performance metrics are considered to analyze the performance of 

the proposed algorithms in comparison to basic DE algorithm and to other advanced versions of 

DE. 
Chapter 3 extends MSDE and SDE to solve constrained optimization problems. Pareto 

ranking constraint handling mechanism is used to handle the constraints. The performance of 

the algorithms is validated on constrained benchmark set proposed in CEC 2005. The proposed 

algorithms are also compared with other algorithms. 
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Chapter 4 extends SDE for solving multi-objective optimization problems. The 
performance of SDE is validated on nine problems and the numerical results are compared with 

other algorithms as well. 
Chapter 5 further validates the performance of SDE for solving the real life trim loss 

problems arising in paper industry. 

Chapter 6 includes a new optimization-based image thresholding algorithm using SDE. 

It also compares SDE with other algorithms on thresholding of test images. 

Although each chapter in this thesis has its own concluding remarks, Chapter 7 is 
dedicated to summarize the entire work and draw some final conclusions._ Future research 

directions have also been discussed in this chapter. 
There are 5 Appendices in the thesis. Contents of these Appendices are as below:. 

Appendix I 	- List of unconstrained test problems. 

Appendix II 	- 	List of shifted test problems. 

Appendix III - List of constrained test problems. 

Appendix IV - List of multi-objective test problems. 

Appendix V - Non parametric tests 
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Enhanced DE Variants for Unconstrained 
Optimization 

In this chapter three enhanced versions of DE are presented for solving unconstrained 

optimization problems. The first one is called Differential Evolution with Cauchy mutation 

(CDE), which employs Cauchy mutation to prevent premature convergence of 

DE. Second variant is named Differential Evolution with Mixed Mutation Strategy (MSDE) 

which uses the concept of evolutionary game theory to integrate two different mutation 

strategies in the basic structure of DE in a competitive gaming environment. The third version, 

named Synergetic Differential Evolution (SDE), is a fusion of three algorithmic components 

suggested in the recent modifications of DE. 

Similar to other evolutionary algorithms having stochastic nature, a strong convergence 

proof for DE does not exist (Feoktistov, 2006). It means that even two different versions of DE 

cannot be compared mathematically (unlike deterministic algorithms which can be compared 

through algorithm complexity analysis). Therefore, a comprehensive set of benchmark problems 

is employed to analyze the performance of the proposed DE. The analysis is done on.the basis 

of several performance metrics. Convergence speed, success rate and solution quality are three 

core measures in the following study. 

The chapter is structured as follows. Section 2.1 is the introduction which reviews the 

available literature regarding the concepts used in the DE versions in the chapter. In section 2.2, 

Differential Evolution with Cauchy mutation (CDE) is explained. Differential Evolution with 

Mixed Mutation Strategy (MSDE) is explained in section 2.3. In section 2.4, Synergetic 

Differential Evolution (SDE) is introduced. Section 2.5 describes the benchmark test suit. 

Performance evaluation criteria are given in section 2.6. Parameters setting are given in section 

2.7. Results are analyzed and discussed in section 2.8- 2.12. Finally the summary of the chapter 
is given in section 2.13. 
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21 Introduction 

The DE versions suggested in this chapter are aimed at minimizing the shortcomings of 
DE by incorporating simple and efficient changes without disturbing the basic structure of DE. 

The first algorithm, CDE, suggested in this work incorporates an additional component 
of mutation in it. As already discussed in the previous chapter, mutation in DE is significantly 
different from the mutation operators used in other evolutionary algorithms (like that of Genetic 
Algorithms), where these are based on some probability distribution. A review of literature 

shows that though there are several types of mutation operators (Fan and Lampinen, 2003; 
Kaelo and Ali, 2006; Pant et al., 2009a, 2009b, 2009c; Lai et al., 2009), Gaussian and Cauchy 
are perhaps the most commonly used distribution for mutating the particles in an evolutionary 
algorithm. Studies have shown that while applying Gaussian distribution, large mutation steps 
are very unlikely. This may reduce the convergence speed of a search algorithm and may also 
increase its risk getting caught in a local minimum. Cauchy distribution, on the other hand, is a 

more slowly decaying distribution in comparison to Gaussian and allows even the large 
mutation step sizes. Cauchy distribution has reportedly outperformed Gaussian distribution as 
per the instances available in literature (Lan and Lan, 2008, Rudolph, 1997; Yao et al., 1999; 
Birru et al., 1999; Wang et al., 2007;' Coelho and Krohling, 2005). 

In the previous chapter, a very brief description is given about the various mutation 
strategies proposed for the basic DE. From there it can be seen that each strategy has a unique 
feature of its own which guides the working of DE. However, a strategy that works very well 
for a particular type of function may not be well suited for another function. For example, the 
greedy mutation strategy (equation 1.4 and 1.5) which works well for a Unimodal function like 
sphere, may not give good results for a multimodal function like Restringin. A natural 
remediation for this is to use a combination of strategies instead of a single strategy so that the 
resulting variant is well suited for all types of problems. Keeping this fact in mind, in the second 
variant called MSDE, based on the concept of evolutionary game theory (Weibull, 1995; Dong 
et al., 2007), employs two different strategies in a competitive environment. 

The third algorithm, Synergetic DE, presented in this chapter is a combination of three 
different algorithmic components suggested in the recent past by different researchers for 
improving the performance of basic DE algorithm. SDE is based on the concept of synergy 
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according to which "the combined effort is always better than the individual effort ". While in 

CDE and MSDE mutation strategies are targeted, in SDE, besides working on the mutation 

strategy emphasis is also laid on initial population and two population structure of DE. 

In the following sub sections a detailed description of all the three algorithms is given 

one-by-one. 

2.2 Differential Evolution With Cauchy Mutation (CDE) 

Differential Evolution algorithm described in section 1.5 typically converges at a rapid 

pace in the initial stages of the search procedure and then gradually slows down as it approaches 

global optimum. The performance of DE can easily be viewed by observing the fitness function 

value. If there is an improvement in fitness in successive generations, it then signifies that the 

new trial point generated by DE is better than target vector. Consequently, the new trial point 

replaces the target vector in next generation. However, in case there is no improvement in 
fitness of an individual, then it is an indication that the individuals are clustered together in a 

region and their vector difference (second term of equation (1.2)) is either zero or very 

insignificant to allow any improvement of function value. In such a case, it is necessary to 

introduce a perturbation in the population which will help the individuals to move to a new 

location. 

CDE introduces a mechanism which not only keeps a track of the progress of individuals 

but also helps the individuals in escaping the local basin by allowing them to jump to a new 

region. In order to keep a record of the success of individuals, it uses a failure counter' (FC). 

The work of FC is to monitor the working of individuals in terms of fitness function value for a 

specified number of generations. If there is no improvement in fitness, then FC is increased by 

unity in each generation. This process is repeated until FC achieves user-defined value of 

maximum failure counter (MFC). Once MFC is attained, it is an indication that perturbation in 
the population is needed which will allow the individual to jump (or move) to a new position. 

In order to achieve this, Cauchy mutation (Stacey et al., 2003) is applied for which the 

probability density function (PDF) is given by the following equation: 
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(2.1) 

where 
xo is the location parameter, specifying the location of the peak of the distribution. 
yo is the scale parameter which specifies the half-width at half-maximum. 

Effect of using Cauchy mutation: The graph of PDF for different values of xo and yo is 
illustrated in Figure 2.1. From this figure, it is clear that for large values of yo a fat tail curve is 
obtained, where as for smaller values of yo, the shape of the curve changes towards a sharper 
peak. In the present study yo is taken as 0.1, which produces a very sharp peak, resulting in a 
small area around the mean. 
A new trial vector U, G = (u1;, 	G) by CDE is generated as follows: 

x hesrG +C(yo , 0) if rand (Q, 1) <_0.9 
1j,i.G 

- 1 
~,, 

x j,1.G 	 otherwise 

where C (yo, 0) stands for random number generated by Cauchy probability distribution with 
scale parameter yo and centered at origin. After generation of a new point, selection process, 
similar to that of basic DE is used. 

This modification enables the algorithm to get a better tradeoff between the convergence 
rate and robustness. Thus, it is possible to increase the convergence rate of the differential 
evolution algorithm and thereby obtain an acceptable solution with a lower number of objective 
function evaluations. Such an improvement can be advantageous in many real-world problems 
where the evaluation of a candidate solution is a computationally expensive operation and 
consequently finding the global optimum or a good suboptimal solution with the original 
differential evolution algorithm is too time-consuming or even impossible within the time 
available. 

22 



Enhanced DE Variants for Unconstrained Optimization 

0.7 

>' 0.5 
x 

0.4 
0 0 

0.3 

0.2 

0.1 

C 

 

-5  -4  -3  -2  -1  0  1  2  3  4  5 

Variable x 

Figure 2.1: Probability density function of Cauchy distribution for different values of Yo and x0. 

Working of CDE: working of CDE is same as DE except for the two major differences: 

first, it is the use of a failure counter to avoid a possible stagnation of performance of an 

individual and second, the use of two mutation operators depending on the failure counter; basic 

DE mutation and Cauchy mutation. Sensitivity analysis of the additional parameter MFC of 

CDE is discussed later in this chapter. 

The working procedure of the CDE is outlined below through flow chart and 

pseudocode: 
Algorithm 2.1 Pseudocode of CDE illustrating how the procedure acts on a population of individuals, repeating 
mutation, crossover and selection until the convergence criteria is met. 
Step 1: 	Generate randomly NP individuals X, , i=1,2,..., NP, using equation (1.1). Set the values of control 

parameters F, Cr, and MFC. Set failure_counter[iJ = 0. 
Step2: Set i=0. 
Step 3:  i =:i±1.  
Step 4: 	If failure counter[i] < MFC then go to step 5 otherwise go to step 7. 

Step 5: 	Corresponding to target individual X select three distinct individuals X 1, Xr, and Xr3 such that i rl 
# r2 ~ r3 from population and generate perturbed individual V; using equation (1.2). 

Step 6: 	Recombine the target vector X, with perturbed individual V1 generated in step 5 to generate trial 
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vector U, using equation (1.7) and go to step 8. 

Step 7.• 	Generate a trial vector using equation (2.2) and go to step 8. 

Step 8: 	If all parameters of the trial vector is within the given range then go to step-9 otherwise uniformly 

generate that parameter within given range using equation (1.1) and go to step 9. 

Step 9: 	Calculate the objective function value for vector U. Choose better of the two (function value at 

target and trial point) using equation (1.8) for next generation, if trial vector is selected for next 

generation then failure_counter [i] = 0 otherwise increase the value of failure_counter [i] by one. 

Step 10: If i < NP then go to step 3 otherwise go to step 11. 

Step 11: Check whether the termination criterion is met. If yes then stop otherwise go to step 2. 

Start 

Randomly Generate Initial Population of Size NP 

Set i=  I 

S 	 failure counter[i]<MFC7 	 No,  

Generate trial Individual by DEMutation, 	 Generate Trial Individual by Cauchy 
Crossover and Evaluate Function Value 	 Mutation, Evaluate Function Value and 

and Perform Selection Operation 	 Perform Selection Operation 

Trial Individual Selected 	 Yes 0 for Need Generation ? 	
Set failure_counter[iJ =  

No 

Increase failure counter[iJ by one 

i<NP? 

No 

Update the Population forNext Generation 

Termination criteria 	No 
Satisfied ? 

Yes 

Stop 

Figure 2.2: Flow chart of CDE. 
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2.3 Differential Evolution With Mixed Mutation Strategy (MSDE) 

The second algorithm proposed in this chapter is Differential Evolution with Mixed 

mutation strategy or MSDE, based on the classical evolutionary game theory. In MSDE 

algorithm the individuals are regarded as players in an artificial evolutionary game applying 

different mutation operators (set of strategy) to generate trial vector. Each player tries to 

improve its performance by selecting a strategy from the given set and the value of the game 

changes accordingly. Based on this analogy individuals of the MSDE are referred as players and 

the mutation operation as the strategy. This is in contrast with the basic DE, where all the 

individuals are subject to a single mutation operator. In MSDE, every individual of the 

population may select any one of the two strategies provided to it in order to produce a 

perturbed (mutant) vector V1,G. A single mutation operator is called a pure strategy in the terms 

of game theory. A strategy profile, vector S , is a collection of pure strategies such that 

S = (sl , ..., sa ) , where s;  is the pure strategy used by individual i. 

Strategies used in MSDE: 
In the MSDE, only two mutation strategies sl  and s2  are considered where s, denotes the 

usual mutation operation as given by equation (1.2) and s2  is defined - as: 

I  (XY1,G - x 2,G / ✓  (xr3,C1) + ( X r2,G - xr3,G )✓  ( Xr1,G) + (xr3,[3 - X r1,G) X  r2,G ) S =-  
2 2  ( X r1,G - X r2,G )f ( X r3,G) + ( X r2,G 	r3,G )f ( X r1,G) + (Xr3,G - Xr1,G )f (Xr3,G) (2.3) 

The second strategy s2 denotes quadratic interpolation, which determines the point of 

minima of the quadratic curve passing through three selected points. It is clear from the Figure 

2.3 of quadratic interpolation that the fitted function passing through these three points is 

parabola and new point is produced at minimum of this parabola. There is no particular rationale 

for choosing quadratic interpolation as the second strategy except that it is a well known method 

that makes use of gradient in a numerical way. It is a direct search optimization method and has 

given good results in several cases (Mohan and Shanker, 1994; Deep and Das, 2008). 
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Figure 2.3: Parabolic curve of quadratic interpolation. 

Start 

Randomly Generate Initial Population of Size NP 

Isetiij4  

Generate Trial Individual by DIE Muta- 	 Generate Trial Individual by Quadratic 
tion, Crossover and Evaluate Function 	 Interpolation, Evaluate Function Value 

Value and Perform Selection Operation 	 and Perform Selection Operation 

Update Mid Strategy , , 

i = i +1 	
Yes 	i <NP ? 

No 
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Termination Criteria 
Satisfied ? 

Yes 

Stop 

Figure 2.4: Flow chart of MSDE. 
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Working of MSDE: At each generation, every individual chooses a mutation operator 

from its strategy set based on a probability distribution. This distribution over the set of pure 

strategies available to an individual is called the mixed strategy of individual i and is 

represented by a vector'.; _ (21 (s1 ),..., 2; (sR )) , where 6(=2 in this case) is the number of 

strategies, and A; (a) is the probability of individual i applying pure strategy a in mutation. To 

each individual a payoff is assigned according to its performance using particular mutation 

strategy. An individual can adjust its mixed strategy based on the payoffs of strategies. Usually, 

the strategy with a better payoff will be preferred with a higher probability in the next 

generation. If the target vector X, uses strategy sa, where a = 1, 2 and new point survive in next 

generation (G+1) then update probability as: 

AG+' (s~)_A,`~(s,,)-2G(sf)y Vf ~a 
otherwise 

	

	 (2.4) 
2G+1 (sa) = A, (sa )—a';̀ ' (sa ) y, Il i('+' (sn ) =/ZG (se )+/1.,G (sfl ) y V/i : a 

For the proposed MSDE, no additional parameter setting is required. For the probability 

update, the parameter y has been chosen as suggested in Dong et al. (2007). Sensitivity analysis 

of y is done later in the chapter. 
The procedure of MSDE through flowchart (Figure 2.4) and pseudocode is outlined as 

follows: 
Algorithm 2.2 Pseudocode of MSDE illustrating how the procedure acts on a population of individuals, 
repeating mutation, crossover and selection until the convergence criteria is met. 

	

Step 1: 	Generate randomly NP individuals X , i = 1,2,..., NP, using equation (1.1). Set the values of control 

parameters F, Cr, and y. Initially assign mixed strategy as 
. =(2. (s2 ), A; (s2 ))=(0.5,0.5) 

	

Step 2: 	Set 1=0. 

	

Step 3: 	i =i+1. 

	

Step 4: 	For target vector X (parent vector) choose strategy (mutation operator) according to probability 

distribution ,.i. If probability of pure strategy s, is greater than the probability of strategy s2 then go 

to step 5 otherwise go to step 6. 

	

Step 5: 	Corresponding to target individual X select three distinct individuals X,.1 , X,z and X,-3 such that i r1 

: r2 # r3 from population and generate perturbed individual V using equation (1.2) and go to step 7. 

	

Step 6: 	Select one best point and other two distinct points from population and generate perturbed individual 
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v by quadratic interpolation given in equation (2.3) and go to step 7. 

Step 7: 	Recombine each target vector X with perturbed individual generated in step 5 or 6 to generate a trial 

vector U;  using equation (1.7) and go to step 8. 

Step 8: 	If all parameters of the trial vector are within the given range then go to step 9 otherwise uniformly 

generate that parameter within given range using equation (1.1) and go to step 9. 

Step 9: 	Calculate the objective function value for vector U,. 

Step 10: Choose better of the two (function value at target and trial point) using equation (1.8) for next 

generation. 

Step 11: Update the probability according to equation (2.4). 

Step 12: If i < NP then go to step 3 otherwise go to step 13. 

Step 13: Check whether the termination criterion is met. If yes then stop otherwise go to step 2. 

2.4 Synergetic Differential Evolution (SDE) 

, This section introduces the Synergetic Differential Evolution (SDE), a fusion of three 
different algorithmic components; Opposition based-learning (OBL)- for generating the initial 
population, random localization for selecting the base vector and a one population DE 
framework. To make the proposed algorithm self explanatory, these schemes are briefly 

described in the following subsections. 

2.4.1 Opposition Based Learning (OBL) For Generating the Initial Population 

The main idea behind OBL is the simultaneous consideration of an estimate and its 
corresponding opposite estimate (i.e., guess and opposite guess) in order to achieve a better 
approximation for the current candidate solution. Opposition based initial population is based on 
the concept of opposite numbers. Before explaining the opposition based initial population, the 
definitions of opposition based random numbers and opposition based optimization are given 
which form the basis of the opposition based initial population. 

Opposition based random numbers: if x E [l, u] is a real number, then its opposite 
number x is defined as 

x`=l+u—x 	 (2.5) 
here l and u indicates the lower and upper bounds of the variables. This definition can be 
extended for higher dimensions also as suggested in Rahnamayan et al. (2008). If X 
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(x1, x2, ..., XD ) is a point in D-dimensional space, where x1, x2 , ..., xD E R and xi E [1~, u1] V i E 

[1,2, ... , D}, then the opposite point X' = (x~, xZ , ... ,x) is completely defined by its 

components. 

	

x' L = 1i + ui — xi 	 (2.6) 

Opposition based optimization: by employing the opposite point definition, the 

opposition- based optimization can be given in three simple steps: 

✓ Let X = (x1, x2 , ..., XD ) be a point (i.e., a candidate solution) in D-dimensional space 

with xi E [li, ui] and assume j(x) is a fitness function which is used to measure candidate 

optimality. According to the opposite point definition, X' = (xi, xZ , ..., xD) is the 

opposite point of X = (x1, x2 , ... , Xe ) . 

✓ Evaluate the fitness of both points f (X) and f(X'). 

✓ If f (X') <_ f (X) (for minimization problem), then replace X with X'; otherwise, continue 

with X. 
The point and its opposite point are evaluated simultaneously in order to continue with 

the fitter one. 

Opposition based initial population: A random population P of size NP using equation 

(1.1) and its corresponding opposite population, also of size NP using following equation 

ox 0 .. =l +U1 —x.. 
J 	J 	J,.0 	 (2.7) 

..are generated and merged together to form a population of size 2NP. Where xj,l,o and ox1,1 ,o 

denote the jt" variable of the ith individual of the population and its opposite population vector, 

respectively. Out of this population, NP best candidates are selected as the initial population of 

the SDE algorithm. 

Effect of using opposition based initial population: Purely random re-sampling or 

selection of solutions from a given population has the chance of visiting or even revisiting 

unproductive regions of the search space. As demonstrated by Rahnamayan et al. (2008), the 

chance of this occurring is lower for opposite numbers than it is for purely random ones. In fact, 
a mathematical proof has been proposed to show that, in general, opposite numbers are more 

likely to be closer to the optimal solution than purely random ones (Tizhoosh, 2005). 
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2.4.2 Randomized Localization for Selecting the Base Vector 

According to this rule, three distinct points Xri, X 2  and X,,3 are selected randomly from 

the population corresponding to target point X. A tournament is then held among the three 

points and the region around the best point is explored. That is to say if Xj is the point having 

the best fitness function value then the region around it is searched with the hope of getting a 
better solution. For the sake of convenience the tournament best point will be denoted as (say) 

Xb. Assuming that Xb =XI,  the mutation equation (1.2) becomes: 

vi,G+1 = Xth,G + F X (Xr2,G Xr3,G) 	 (2.8) 

This variation gradually transforms itself into search intensification feature for rapid 

convergence when the points in S form a cluster around the global minima. 

Effect of tournament best for base individual: In order to see the effect of tournament 

best method for mutation, the two common strategies of DE; DE/best/1/bin and DE/rand/l/bin 

will be discussed briefly. In DE/best/1/bin, the base vector is always selected as the one having 

the best fitness function value. It can be seen, that here the probability of selecting the best 

vector as the base vector is always 1. This strategy may provide a fast convergence in the initial 
stages. However, as the search procedure progresses it may lead to the loss of diversity in the 

population due to its greedy nature resulting in premature convergence. 

On the other hand, the strategy DE/rand/1/bin is completely random in nature. Here all 

the points for mutation are randomly selected and the best point of the population may or may 

not be included in them. This strategy, due to its random nature helps in preserving the diversity 

but may result in a slower convergence. 

Now, if we look at the tournament best method we see that although the three points for 

mutation are randomly selected, the base vector is always chosen as the one having the best 

fitness. This makes it neither purely greedy nor purely random in nature but provides a localized 

effect which helps in exploring the different regions of the search space around the potential 

candidates. Making use of hyper geometric distribution, we can say that the probability of 

getting the best vector among the three chosen points for mutation is (') x ( N3 1) . (NP) 

where M is the number of best points in the population. Initially, it is very much likely that there 

is one best point but as the evaluation process proceeds the number of best points keeps on 

increasing. 
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In case of strategy, DE/rand/l/bin the probability that the best point of the population is 

among the three chosen points for mutation is (Mj x (N3_ ) = (3P) and the probability that the 

best point is also selected as the base vector is 3 * [() x (N3 M) ± ( P)]. When the 

tournament best strategy is applied, the probability selecting the best point from the three chosen 

will be 1. Thus the probability that the selected base vector is the best solution of the population 

becomes 1 * [(1"i) x ( N 	
l 	

1P-Ml _ (NP ) Thus it can be seen that the probability of selecting the 1 	1 

best point of the population as base vector, for tournament best strategy lies between the 

probabilities of DE/rand/l/bin and DE/best/l/bin. 3 * I(i) X (NP M) = (NP )] < [(M) x 
(NP-norl (NPl 	. 	helps in maintaining the exploration and exploitation capabilities l 3-1 / l /~ < 1 This helI~ i 	itii g th l~l ti 	d Plitti 	of  
the proposed SDE ensuring fast convergence and balanced diversity: 

2.4.3 Single Population Structure 	 rm 	, 

In a single population DE, only one population is maintained and the individuals are 
updated as and when a better solution is found. Also, the newly found better solutions can take 
part in mutation and crossover operation in the current generation itself as opposed to basic DE 

(where another population is maintained and the better solutions take part in mutation and 
crossover operations in next generation). This concept was suggested by Thompson, (2004) and 
Babu and Angira (2006). 

Effect of using a single population structure: In the basic structure of DE, where two 
populations (current and advance) are considered simultaneously in all the iterations which 
results in the consumption of extra memory and CPU time leading to higher number of function 
evaluations. Updating the single population continuously enhances the convergence speed 

leading to lesser number of function evaluations as compared to basic DE. 
Working of SDE: The structure of SDE is same as of DE but differ from it only in the 

ways of initialization, mutation and population update. 
The working of SDE is given below with the help of flowchart and algorithm: 
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C Start 

Randomly Generate Population P of Size NP 
Calculate Opposite Population OP ofsize NP 

Select NP Fittest Individuals from {PUOP} as Initial population 

Seti=I 

Generate Trial Individual by Taking Tournament Best as Base Vector in Muta-
tion, Crossover and Evaluate Function Value and Perform Selection Operation 

Trial Individual Better 
than Parent ? 

Yes 	 No 

Replace Parent by Trial Indi- 	 Continue with Parent 
vidual in Current Population 

i=i+l 	
Yes 	i<NP? 

No 

Termination criteria 	No 
Satisfied ? 

Yes 

Stop 9 
Figure 2.5: Flow chart of SDE. 
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Algorithm 2.3 Pseudocode of SDE illustrating how the procedure acts on a population of individuals, repeating 
mutation, crossover and selection until the convergence criteria is met. 
Step 1: 	Generate randomly NP individuals X , i = 1,2,..., NP, using equation (1.1) and (2.7). Set the values 

of control parameters F and Cr. 

Step 2: 	Seti=O. 

Step 3:  1=1±1.  

Step 4: 	Corresponding to target individual X, select three distinct individuals Xr j , Xr2 and Xr3 such that i ~ rl 

~ r2 t- r3 from population and generate perturbed individual V using equation (2.8). 

Step 5: 	Recombine the target vector X, with perturbed individual V1 generated in step 4 to generate trial 

vector U; using equation (1.7). 

Step 6: 	If all parameters of the trial vector are within the given range then go to step 7 otherwise uniformly 

generate that parameter within given range using equation (1.1) and go to step 7. 

Step 7: 	Calculate the objective function value for vector U;. Choose better of the two (function value at 

target and trial point) using equation (1.8) for current generation if trial vector is better than target 

individual then update population otherwise continue with old one. 

Step 8: 	If i < NP then go to step 3 otherwise go to step 9. 

Step 9.• 	Check whether the termination criterion is met. If yes then stop otherwise go to step 2.  

2.5 Benchmark of Unconstrained Problems 

Two sets of benchmark problems are considered for analyzing the performance of the ., 

proposed algorithms. 

The first set consists of a test suite of twenty five standard/traditional benchmark 

problems taken from Rahnamayan et al. (2008) and Zhang and Sanderson (2009). This test set 

includes fixed, lower dimension problems as well as scalable problems for which the dimension 

can be increased to increase the complexity of the problem. Mathematical models of the 

traditional functions along with the true optimum value are given in APPENDIX I. 

The second set consists of seven nontraditional problems selected from the set of 

recently proposed benchmark test suite for CEC 2008 special session and competition on large 
scale global optimization (Tang et al., 2007). This test suite was specially designed to test the 

efficiency and robustness of a global optimization algorithm like DE. All the seven problems are 

tested for dimension 500. Name of these functions and their properties are listed in APPENDIX 
IL 
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2.6 Performance Metrics 

In order to validate the practicality of the proposed algorithms (CDE, MSDE and SDE) 
the following two performance metrics were considered. 
Performance metric I 
➢ Number of Function Evaluations (NFE): It is one of the most common performance metric 

used for evaluating the performance of an algorithm. It is obtained by recording the number 
of times a function is evaluated for acquiring an error value less than € before the maximum 
number of function evaluations is reached. 

➢ Average NFE: Considering the stochastic nature of the algorithm, average NFE obtained 
NR NFE 

during different runs is calculated as:`  '  
NR 

Where NR represents the, total numbers of runs. 
➢ Average error: It is another common criterion used for measuring the reliability of the 

algorithm. The minimum function error value that an algorithm can find, using predefined 
maximum NFEs, is recorded in each run and then average of the error values are calculated. 
The function error value, used for performance measures for an obtained solution x is defined 
as If (x). — f (x*) I = e, where x*  is the global optimum of the function. 

Percentage Acceleration rate (AR): it is the ratio of the NFE of the algorithm to be compared 
and the NFE of the algorithm to which it is being compared (Rahnamayan et al., 2008), e.g. 

% 	% /o 	 (NFE) cDTs the /o AR of CDE in comparison to DE will be  AR = (1 — 	* 100 
(NFE)DE 

Success rate (SR): The number of times, for which the algorithm succeeds in reaching the 
desired accuracy (€) for each test function, is measured as the success rate. 

SR= 
Number of times reached accuracy (c) 

Total nnumber of trials 
SR is a commonly used metric to quantify the robustness of the algorithms. 

➢ Average AR = N Z 1  ARi  

➢ Average SR = N f 1  SR j  

where N denotes the number of problems. 
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Performance metric II statistical analysis 

The proposed algorithms are also analyzed statistically using non parametric tests 

(Garcia et al., 2009). A detailed description of non parametric tests used in this study is given in 

Appendix V. 

Graphical illustrations 

The performance of algorithms is also illustrated with the help of convergence graphs 

and statistical plots. 

2.7 Parameter Settings 

After conducting several experiments and referring to various literatures, following 

settings have been taken for all the experiments unless otherwise mentioned. 

➢ Population Size (NP) = 100 for traditional benchmark problems and 500 for nontraditional 

problems (Zhang and Sanderson, 2009; Rahnamayan and Wang, 2008). 

Scaling/ amplitude Factor F = 0.5 (Rahnamayan et al., 2008). 

Crossover Rate Cr = 0.5 for DE and CDE (Rahnamayan et al., 2008); 0.33 for MSDE and 0.9 

for SDE. 

➢ Maximum NFE = 10000*D, for traditional problems while it is 5000*D for notraditional 

problems, where D is the dimension of the problem (Noman and Iba, 2008; Rahnamayan and 

Wang, 2008). 

Accuracy (c) = 10 8 for all the test problems except noisy function (f7 ) for which it is set as 

10-2  (Zhang and Sanderson, 2009). 

Number of trials = 50 (Rahnamayan et al., 2008). 

PC configuration:— 

✓ Processor: Intel dual core 

✓ RAM: 1 GB 

✓ Operating System: Windows vista 

Software used.-- 

✓ DEV C++ 
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✓ SPSS 16 (Software Package for Social Science) 

Random numbers are generated using inbuilt rand () function with same seed for 

every algorithm 

Handling of boundary violations 

Boundary violations, which are often encountered while performing a mutation 
operation in DE variants, are dealt by replacing each and every member violating variable 

bounds with a new member generated randomly between the lower and upper bounds of 
,variables. This approach is referred to as random generation. 

Algorithms taken for comparison: 

➢ Basic DE (Storn and Price, 1997) 

➢ ODE (Rahnamayan et al.,.2008) 

DERL (Kaelo and Ali, 2006) 

➢ MDE (Babu and Angira, 2006) 

➢ SaDE (Qin et al., 2009), 

jDE (Brest et al., 2007; Brest et al., 2006) 

> JADE (Zhang and Sanderson, 2009). 

2.8 Sensitivity Analysis of Additional Parameters Used in Proposed 
Algorithms 

Out of the three DE variants proposed in this chapter, CDE and MSDE use MFC and 'y 
as additional parameters respectively. In this section sensitivity analysis of these parameters is 

done on the basis of numerical results obtained for problems listed in Appendix 1. It was 

observed that simply on the basis of error, no concrete judgment can be made therefore NFE is 

used as an evaluation criteria for deciding the values of MFC and y. 
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2.8.1 Analysis of Parameter Maximum Failure Counter (MFC) 

A series of experiments conducted to determine an appropriate value for MFC showed 

that very high and very low values for MFC are rarely effective. For example if MFC is taken as 

1, then it is more or less like applying mutation after every iteration. On the other hand, keeping 

MEG very high naturally resulted in higher NFE. In the present study, the NFE obtained for 

three values of MFC viz. 3, 5, 10 is recorded to achieve accuracy mentioned in Section 2.7. 

From the corresponding results summarized in Table 2.1, it can be seen that except for f5 

and f9 for which the desired accuracy was not achieved, 5 is a relatively good choice of MFC. 

2.8.2 Sensitivity Analysis of Parameter y 

The additional parameter, y of MSDE acts like a weighting parameter defined by the 

user at the beginning of the program. Empirical analysis of y was done for various values 

between 0 and 1 for which NFE obtained for 'y = 0.001, 0.1, 0.25, 0.33 and 0.95 are recorded in 

Table 2.2. 

An analysis of these results show that smaller values of y results in slower convergence 

thereby increasing the number of function evaluations. Values between 0.25 to 0.95 are most 

suited for the optimization problems taken in the present study. Consequently, the value ofd y =. 

was taken as 0.33 as suggested in Dong et al. (2007). 

2.9 Comparison of the Proposed Algorithms With Basic DE, ODE, 

DERL and MDE 

Initially, the proposed CDE, MSDE and SDE are compared with basic DE, ODE, DERL 

and MDE. ODE, DERL and MDE are specially taken because their algorithmic components 

form the basis of the proposed SDE algorithm or it can be said that these are the parent 

algorithms of SDE. The algorithms are analyzed according to the performance metrics 

mentioned in section 2.6 and the corresponding results are recorded in Tables 2.3 — 2.12. 
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2.9.1 Comparison in Terms of Error and Standard Deviation. (Std.) 

First of all the proposed algorithms are analyzed and compared in terms of error and 
Std., for which the results are recorded in Table 2.3. From this Table, it can be seen that out of 
25 test cases SDE outperformed the other algorithms in 6 test cases while MSDE outperformed 
others in 7 cases in terms of both error and standard deviation. In the remaining cases all the 
algorithms gave more or less similar results. 

2.9.2 Comparison in Terms of Number of Function Evaluations 

On the basis of the NFE, for which the results are given in Table 2;4, it can be seen that 
MSDE gave a superior performance in comparison to other algorithms in 17 out of 25 cases. 
The second place went to SDE which gave a performance better than other algorithms in 5 cases 
and the last place was secured by CDE which outperformed the others only in 1 case. 

DE, ODE, MDE, CDE and MSDE were not able to solve the fifth function J, while none 
of the algorithms, except MSDE, were able to reach the desired accuracy of 10-8  for the function 
f9 and were therefore terminated when the maximum NFE (= 1 0' D) was reached. 

The performance of the proposed algorithms is illustrated with the help of convergence 
graphs, drawn according to the fixed NFE (and not according to fixed accuracy), for few 
selected functions in Figure 2.6. 

2.9.3 ° Comparison in Terms of Acceleration Rate (AR) 

Acceleration Rate is another criterion which helps in analyzing the speed of an 
optimization algorithm. The % AR of all algorithms against DE is calculated and is recorded in 
Table 2.5. 

From this Table it can be observed that for the first proposed version, CDE, the AR is 
more than 70% for one test problem only (for function fis) and more than 60% for two test 
cases. The AR was calculated to be more than 40% for one test problem and more than 10% for 
7 cases. For 3 cases, it was more than 20% and for 6 cases the AR was more than 1%. For f7  and 
f24, the convergence rate of DE was better than CDE and hence the negative AR in these two 
cases. On an average, the AR for CDE was calculated as 12.6%. 
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For the second variant, MSDE, the AR is more than 70% for 11 test problems; more than 

40% in 6 cases and more than 10% in 5 cases. The average AR for MSDE is calculated to be 

58%. 
For the third proposed version, that is SDE, it was seen that for 11 test problems the % 

AR of SDE in comparison to DE is more than 50%. For 7 test problems the % AR is more than 

40% and for 4 test problems it is more than 30%. On an average the AR of SDE against DE is 

46%. 

For the competing algorithms: ODE, DERL and MDE, the average AR was calculated as 
1%, 38% and 9% respectively. -' 

It is also to be mentioned that in case of f9, AR is not recorded because none of the 

algorithms were able to meet the desired accuracy criteria while in case offs, AR is not recorded 

because DE was not able to solve it successfully. 

2.9.4 Comparison in Terms of Success Rate (SR) 

The successful performance of all the algorithms is summarized in Table 2.6. Here it can 

be seen that on an average, the SR of the proposed SDE algorithm is 95%, which is the best in 

comparison to all the algorithms. Second place went to MSDE and DERL, for which the 

average SR came out to be 92% for both the algorithms. For DE and ODE, the average SR was 

calculated to be 89% each while for MDE and CDE, the SR was calculated as 88% for both the 

algorithms. 

DE, ODE, SDE, CDE and MSDE were not able to reach the desired accuracy for 

function fs  and none of the algorithm except MSDE was able to meet the desired accuracy 

criteria for function f9. 

2.9.5 Statistical Analysis 

Error values included in Table 2.3 allow us to carry out a rigorous statistical study in 

order to check whether the results of the algorithms are significant for considering them 

different in terms of quality on approximation of continuous functions. 

Table 2.7 shows the result of applying Friedman's tests in order to see whether there are 

global differences in the results. Given that the p-value of Friedman test is lower than the level 

of significance considered a = 0.05, there are significant differences among the observed results. 
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Attending to these results, a post-hoc statistical analysis is done to detect concrete differences 

among algorithms. First of all, Bonferroni-Dunn's test is employed to detect significant 

differences for the control algorithm SDE. Table 2.8 summarizes the ranking obtained by 

Friedman's test and the Critical Difference (CD) of Bonferroni-Dunn's procedure. 

In Figure 2.7, Bonferroni-Dunn's graphic illustrates difference among rankings obtained 

for each algorithm. Here, the horizontal cut line represents the threshold for the best performing 

algorithm, the one with the lowest ranking bar, in order to consider it better than other 

algorithms. A cut line is drawn for each level of significance considered in the study at height 

equal to the sum of the ranking of the control algorithm and the corresponding Critical 
Difference computed by the Bonferroni-Dunn method. The bars which exceed this line are 

associated to an algorithm with worse performance than the control algorithm. The application 

of Bonferroni-Dunn's test informs us of the following significant differences with SDE as 

control algorithm: 

• SDE is better than DE and CDE with a = 0.05 and a = 0.10 (2/6 algorithms). 

Until now, procedures for performing multiple comparisons were used to check the 

behaviour of the algorithms. Now pairwise comparison of SDE is done with the rest of the 

algorithms using Wilcoxon test. The corresponding results are given in Table 2.9. It displays the 

statistics, p-value and number of +ve ranks (where control algorithm performed better than 

comparing algorithm), -ve ranks (where control algorithm performed worse than comparing 

algorithm) and tie (both algorithms performed equivalently), mean and sum of these ranks. 

From this Table, it can be seen that in case of DE, for 13 problems SDE performed better 

than it, while for 12 cases both the algorithms performed similarly. In case of SDE and MDE, 

for 11 test cases SDE performed better than it while for 1 case MDE performed better than SDE. 

In the remaining 13 cases both algorithms performed equivalently. SDE outperformed ODE in 

12 cases while in the remaining 13 cases both algorithms performed equivalently. SDE 

performed better than DERL in I1 cases, in 13 cases there was a tie i.e. both algorithms 

performed equivalently while in 1 case DERL outperformed SDE. 

In an interesting observation, it is seen that according to Wilcoxon test there is no 

significant difference between SDE and MSDE algorithms. 
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Following the procedure given above a similar analysis for NFE was done for which the 
results are given in Table 2.4. The statistical results based on it are summarized in Tables 2.10- 
2.12. From these Tables and from the graphical illustration given in Figure 2.8, it can be seen 
that in an overall comparison MSDE and SDE are at par with each other while the remaining 

algorithms perform worse than SDE. 

2.10 Further Analysis of the Proposed Algorithms 

In the following subsections, some further analysis is done for the proposed algorithms. 
Firstly, the algorithms are analyzed for two important factors; dimension of the problem and 
population size. The second analysis is done for the proposed SDE algorithm. In Rahnamayan et 
al. (2008), the authors proposed the concept of jumping in their algorithm ODE. Since ODE is 
the parent algorithm of SDE, it is justified to see if jumping provides any additional benefit in 
the working of SDE. 

2.10.1 Influence of Dimensionality 

As already mentioned, the proposed algorithms were first analyzed on scalable problems 
of dimension 30. To further investigate effect of the size of the problem on the working of the 
proposed algorithms the dimension of the scalable problems was varied as D/2 (= 15) and 2D (= 
60). The corresponding results in terms of average NFE and Success Rate are reported in Tables 
2.13 and 2.14. For dimension 15, MSDE outperfromed all the remaining algorithms by a 
significant difference for all the functions except f9, for which neither of the algorithms were 
able to reach the desired accuracy and were therefore terminated when the maximum NFE was 
reached. It was also observed that the average success rate for basic DE is 0.83 only whereas for 
SDE and MSDE the average success rates are 0.93 each and for CDE it is 0.85. 

When the dimension was increased to 60, the performance of DE deteriorated in 
comparison to the proposed algorithms. DE was not able to solve problems f4  and fs  for 
dimension 60 under the given parameter settings. None of the algorithms, except MSDE, were 

able to solve function f9. 
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2.10.2 Influence of Varying the Population Size (NP) 

After observing the effect of varying the size (dimension)` of the problem on the 
proposed algorithms, the effect of varying the population size was also investigated by taking 
two different population sizes as NP/2 (= 50) and 2NP (_ 200). The dimension of the scalable 
problems is fixed as 30. The corresponding NFE and SR are recorded in Tables 2.15 and 2.16. it 
was observed that for smaller population size (NP = 50) all the algorithms performed reasonably 
well in terms of NFE. However, the success rate deteriorated in comparison to the success rate 
for population size 100. For larger population (NP = 200), the SR improved at the cost of 
increase in NFE. This is an expected outcome as most of the population based search techniques 
are sensitive to the population size. 

2.10.3 Effect of Jumping on SDE Algorithm 

The concept` of jumping is such that new points based on OBL are generated within the 
contracted search space obtained after the end of a generation. Instead of applying jumping at 
the end of every generation it is applied probabilistically with the help of some predefined 

random number, known as the jumping rate. The same concept is applied on the proposed SDE 
algorithm, taking jumping rates as 0.1 and 0.3 and the results are recorded in terms of NFE in 
Table 2.17. From this Table it can be seen that by applying the concept of jumping, the modified 
SDE algorithms (SDEjO.3 and SDEjO.1) were not able to solve function f8 besides f9. Also, the 
average NFE increased. This shows that the idea of jumping is not beneficial for the SDE 
algorithm. 

2.11 Numerical Results for Nontraditional Benchmark Problems 

After evaluating the performance of the algorithms for solving traditional benchmark 
problems, their performance is further validated on a set of 7 nontraditional benchmark 
functions and the corresponding numerical results are reported in Table 2.18 in terms of best, 
median, worst and mean error and standard deviation. From these results SDE performed better 
than DE for all the test cases with an improvement of up to 99% in the best function value for 
Fl, F3 and F5 and an improvement up to 75% for F2, F4 and F6. For the last function F7, the 
improvement is around 8%. After SDE, it was ODE that gave a good performance. Considering 
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2.12 Comparison of SDE and MSDE With Other State of the Art 

Algorithms 

According to the various performance metrics, it was observed that MSDE and SDE 

outperformed the CDE algorithm. These two algorithms are, therefore, further compared with 

three other state of the art DE algorithms on the basis of average fitness, standard deviation 

(Std.), number of function evaluations and success rate (SR). The algorithms,= taken for 

comparison are jDE, JADE and SaDE. Although these algorithms are adaptive in -nature and 	,oz, 
Ski 

their comparison with SDE and MSDE may not be completely justified but these are some of 

the recent variants of DE and have given good performance in comparison to both adaptive and 

nonadaptive algorithms. All the algorithms are executed according to the maximum number of 

generations as given in Table 2.19. The remaining parameters are kept same as discussed in the 

earlier section 2.7. 

2.12.1 Comparison in Terms of Fitness Value and Standard Deviation 

From Table 2.19 which gives the results on the basis of fitness and standard deviation it 

can be seen that all the algorithms performed more or less in a similar manner though SDE, 

MSDE and JADE outperformed the others in certain cases. 

2.12.2 Comparison in Terms of NFE 

On the basis of NFE the results are given in Table 2.20. From this Table, it can be 

noticed that MSDE took lesser NFE in most of the test cases. The average NFE of MSDE is 

around 24676. The worst performance was given by SaDE, which took an average NFE of more 
than 75000 for solving the 25 test problems. 
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2.12.3 Comparison in Terms of SR 

On the basis of average SR from Table 2.21, JADE gave the best performance for which 
the SR comes out to be 96%. SDE came in second with an average SR of 95%. For MSDE, the 

SR came out to be 92% while for SaDE and for jDE, the success rates are 94% and 92% 

respectively. 

2.12.4 Statistical Analysis 

Statistical analysis of the algorithms on the basis of NFE are given in Tables 2.22- 2.24. 
An overall comparison of algorithms is given in Tables 2.22 and 2.23. 

Table 2.22 shows that there is a significant difference between the algorithms. From 
Table 2.23, it can be observed that MSDE, SDE and JADE are at par with each other while the 
remaining two algorithms jDE and SaDE do not perform as well as these. This is illustrated 
graphically in Figure 2.9.`Pairwise comparison of MSDE and SDE with JADE, jDE and SaDE 
is summarized in Table 2.24. From this Table it is noted that, Wilcoxon test shows that there is a 
significant difference between MSDE, jDE and SaDE, while there is no difference between 

MSDE, SDE and JADE. 

2.13 Summary 

This chapter presents three enhanced versions of DE named Differential Evolution with 
Cauchy mutation (CDE), Differential Evolution with mixed mutation strategy (MSDE) and 
Synergetic Differential Evolution (SDE). The performance of these algorithms vis-a-vis seven 
other modified DE versions is analyzed analytically with the help of various performance 
metrics. The conclusions that can be drawn at the end, of this chapter can be summarized as 

follows: 
From the algorithm design point of view, SDE is perhaps the simplest of the proposed 
algorithms. It employs three efficient and easy to apply algorithmic components and do not 

require an additional parameter like that of CDE and MSDE. 
Various analysis have been done to validate the performnace of the proposed algorithms in 
terms of efficiency, reliability and robustness. Effect of the dimension of the problem and 
the effect of population size is observed for all the algorithms. It was seen that a population 
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size (NP) =100 is quite effecient for solving problems up to dimension .30. Also, it was 

observed that although jumping, a concept of ODE, improved its performance it did not 

have any added benefit on the proposed SDE. 

➢ On the basis of empirical analysis done for the traditional benchmark problems, it was 

observed that although on the basis of error and standard deviation no concrete conclusion 

can be drawn about the performance of the algorithms but by analyzing the other 

performance criteria like NFE, AR and SR the superior performance of the proposed CDE, 

SDE and MSDE over the basic DE and most of the competent algorithms (ODE, DERL and 

MDE) can be clearly observed. A comparison of the proposed algorithms among themselves 

indicates that SDE and MSDE are significantly better than CDE. 

➢ Analysis of AR shows that MSDE is 58% faster while SDE is 46% o faster than the basic DE, 

while CDE is around 13% faster than the basic DE. Also it is observed that SDE was able to 

solve the 25 traditional benchmark problems with 95% SR while MSDE and CDE gave an 

SR of 92% and 88% respectively. 

Credibility of the proposed algorithms is further validated by their successful performance 

for solving the 7 nontraditional benchmark problems. 

➢ The further comparisons of MSDE and SDE (which performed better than the third variant 

CDE) with some other state of the art DE variants also show the competence of these two 

variants for solving the unconstrained benchmark problems. 

➢ Statistical analysis of the results strengthens the fact that the proposed algorithms are better 

or at par with the traditional DE as well as with other algorithms. 
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Table 2.1: Sensitivity analysis of Maximum Failure Counter (MFC) in terms of NFE. Here `--' indicates 
that the algorithms were not able to obtain the desired accuracy for specified maximum NFE. 

Fun D MFC =3 MFC =5 MFC = 10 
fl  30 93430 85070 87310 
J 2 30 164620 145230 133930 
f3  30 111700 99320 98900 
f, 30 269892 268990 272329 
fs 30 

_- __ 
-- 

ff  30 7190 9760 13480 
f, 30 283600 133814 250375 
f8  30 85370 78250 -- 78540 
f9 30 _- _- 

f, 30 170340 150620 142370 
f 1  30 85890 79410 79180 
f, 30 75120 70780 71560 
f,3  30 87790 80300 78890 

J ,:, 30 124750 102000 113390 
J 5  2 1060 1350 1870 
J 2 4940 5640 5770 
J ,  2 4090 3970 4150 

J 2 5570 4330 5450 

J 9 2 3500 3560 4000 
f JO  3 6360 4910 5600 
f11  4 10266 10375 10622 
fzz 4 10642 10230 10922 
f23  4 10780 9950 10811 
f24  4 35050 11950 33633 
f s  6 20650 12580 17550 
Average 41049.88 35122.19 37235.5 
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Table 2.2: Sensitivity analysis of parameter Gama (y) in terms of NFE. Here '--' indicates that the 
algorithms were not able to obtain the desired accuracy for specified maximum NFE . 

Fun D y=.001 y=.1 'y=.25 'y=.33 y=.95 
ft  30 25820 26750 25680 24980 26380 
f1  30 37530 36480 37270 36590 37130 
f.3  30 28300 28640 27230 27370 28330 
f. 30 113900 110830 112670 111120 113210 
f5 30 -- -- -- -- -- 
f6  30 6890 7340 6910 7460 7230 
f, 30 24200 23670 21780 20080 23290 
f8  30 128630 127820 128110 129420 129220 
f, 30 30280 31730 31520 32760 32140 
ffo  30 40700 40880 39910 39160 40250 
J l  30 26880 26670 25770 26230 25420 
f 2  30 23710 24280 23670 24660 23280 
J 3  30 28600 28220 29120 28270 27330 
fl , 30 24520 26390 25640 25320 25240 
f s  2 2740 2740 2570 2870 2810 
f 6  2 1930 1820 1880 1780 1910 
f„ 2 1300 1370 1320 1400 1410 
f78  2 1780 1720 1770 1740 1620 
J l, 2 2350 2380 2360 2270 2290 
fz0  3 2460 2510 2630 2620 2490 
fJl 4 13760 11340 13280 10020 11270 
f22 4 8690 8470 8610 8380 8260 
fa3 4 7530 7690 7480 7880 7560 
fz  4 7650 7730 7410 7580 7670 
f25 6 11728 11680 11787 12266 12130 
Average 19816.4 19822.5 19676.35 19608.3 19641 
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Table 2.4: Comparison of proposed algorithms with DE and their parent algorithms in terms of NFE. 
Here `--' indicates that the algorithms were not able to obtain the desired accuracy for specified 

maximum NFE 

Fun NFE D DE DL  ODE DERL CDE MSDC SDE 
f, 30 104310 94700 101040 56700 85070 24980 45980 
fz  30 173850 160240 165570 93890 145230 36590 77830 
f, 30 110700 101400 102400 59700 99320 27370 48600 
f, 30 274150 297600 263140 245250 268990 111120 258886 
f 30 -- -- -- 257100 -- -- 190600 
f 30 31890 28770 30030 17080 9760 7460 14850 
f7  30 131640 137370 130680 80660 133814 20080-  70680 
fR  30 226850 210986 222033 108800 78250 129420 101067 
fy 30 _ -- _- _` 

- 32760 
_- 

f o  30 163020 149200 162310 87430 150620 39160 72800 
f„ 30 108930 99600 106300 58430 79410 26230 48077 
f z  30 95400 85600 94460 50910 70780 24660 43340 
fl3 30 104310 91100 104060 55110 80300 28270 46680 
f,., 30 104540 91500 100300 55050 102000 25320 46580 
f s  2 5220 5360 5260 3640 1350 2870 3330 
f h  2 5720 4810 5690 4020 5640 1780 3330 
f ,  2 6930 6750 7050 4970 3970 1400 4790 
f,N  2 4470 3930 4460 3200 4330 1740 2850 
fy 2 4160 3840 4350 3190 3560 2270 2640 
f 0  3 5010 4390 4950 3410 4910 2620 2870 
.f2I  4 11990 10350 11920 7570 10375 10020 6640 
J a  4 11290 9380 11260 7430 10230 8380 6220 
f23 4 11330 10090 11090 7440 9950 7880 6190 

24  4 11220 9750 11800 7780 11950 7580 6050 
f s  6 44400 13100 13560 8825. 12580 12266 7050 
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Table 2.5: Comparison of proposed algorithms with DE and their parent algorithms in terms of AR. Here 
indicates that AR cannot be calculated for them. 

Acceleration Rate (AR)  
Fun 	D 	MDE 	ODE 	DERL 	CDE 	MSDE 	SDE 

vs. DE 	vs. DE 	vs. DE 	vs. DE 	vs. DE 	vs. DE 
f 	30 	9.21 	3.13 	45.64 	18.45 	76.05 	55.92 
/2 	30 	7.83 	4.76 	45.99 	16.46 	78.95 	55.23 
f. 	30 	8.40 	7.50 	46.07 	10.28 	75.28 	56.10 
f4 	30 	-8.55 	4.02 	10.54 	1.88 	59.47 	5.57 
/530 	-- 	 -- 	 -- 	 -- 	 -- 	 -- 
f6 	30 	9.78 	5.83 	46.44 	69.39 	76.61 	53.43 
f 	30 	-4.35 	0.73 	38.73 	-1.65 	84.75 	46.31 
J 	30 	6.99 	2.12 	52.04 	65.51 	42.95 	55.45 
/930 	-- 	 -- 	 -- 	 -- 	 - 
J 	30 	8.48 	0.44 	46.37 	7.61 	75.98 	55.34 
fi 1 	30 	8.57 	2.41 	46.36 	27.10 	75.92 	55.86 
/12 	30 	10.27 	0.99 	46.64 	25.81 	74.15 	54.57 
f13 	30 	12.66 	0.24 	47.17 	23.02 	72.90 	55.25 
,f 4 	30 	12.47 	4.06 	47.34 	2.43 	75.78 	55.44 

2 	-2,68 	-0.77 	30.27 	74.14 	45.02 	36.21 
/16 	2 	15.91 	0.52 	29.72 	1.40 	68.88 	41. 
f, 7 	2 	2.60 	-1.73 	28.28 	42.71 	79.80 	30.88 
f18 	2 	12.08 	0.22 	28.41 	3.13 	61.07 	36.24 
fig 	2 	7.69 	-4.57 	23.32 	14.42 	45.43 	36.54 
f2, 	3 	12.38 	1.20 	31.94 	2.00 	47.70 	42.71 
f, 	4 	13.68 	0.58 	36.86 	13.47 	16.43 	44.62 
/22 	4 	16.92 	0.27 	34.19 	9.39 	25.78 	44.91 
f23 	4 	10.94 	2.12 	34.33 	12.18 	30.45 	45.37 
f24 	4 	13.10 	-5.17 	30.66 	-6.51 	32.44 	46.08 
/25 	6 	9.03 	5.83 	38.72 	12.64 	1 	14.82 	51.0 
Average 	9.03 	1.51 	38.72 	12.62 	 11 	46.l 
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df- Degrees of freedom 	N - Total No of functions 

Table 2.8: Ranking obtained through Friedman's test and Critical Difference (CD) calculated through 
Bonnferroni-dunn's procedure of Table 2.3. 

Algorithm Mean Rank 
DE 4.98 

SDE 2.88 
MDE 4.00 
ODE 4.24 

DERL 3.48 
CDE 5.00 

MSDE 3.42. 
CD for a 	0 .05 1.611845 
CD fora=0.10 1.462758 

Chapter 2 

Table 2.6: Comparison of proposed algorithms with DE and their parent algorithms in terms of SR. 

Fun D Success Rate (SR) 
DE MDE ` ODE DERL CDE MSDE SDE 

fi 30 1 1 1 1  1  
1 1 

fa 30 1 1 1 
1;  1  1  1  

f. 30 1 1 1 
1  1  1  1  

f, 30 0,36 0.52 0.52 0.44 0.39 0.8 0.9 
f 30 0 

0  0  1  0  0  1  

A 30 1 1 1 1 1 
1  1  

f, 30 1 1 1 1 1 1 1 
j 30  1  1  1  1  1 1  1 
J 30  0  0  0  0  0  1  0 
fig  30 1 1 1 1 I I I 
f„ 30 1 1 1 1 1 1 1 
.fie 30  1  1  1 1  1  1  1 
f,3  30 1 1 1 1 1 1 1 
f a  30 1 1 1 1 1 1 1 
fry 2 1 1 1 1 1 1 1 
fl6 2 

1  1  1  1'  1  1 _ 1  

fl7 2 1 1 1 1 1 
1  1  

fa 2 1 1 1 1 I 1 1 
2 1 1 

1  1  1  1  1  

.20 3 1 1 1 1 1 1 
,1 

fir ., 4 1 1 1 1 0.8 0.9 1 
f22 41 1 1 1 1  1 1 
fz.3 4  1  1 1 1 1 1 1  
f24 4 1 1 1 1 0.9 0.7 1 

f25  6 0.84 0.48 0.62 0.44 0.9 0.60 0.8 
Average 0.89 0.88 0.89 0.92 0.88 0.92 0.95 

Table 2.7: Results of Friedman's test based on error of Table 2.3. 

IN! Friedman df p value value  
25 36.097 6 <0.001 
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Table 2.9: Results of pair wise comparison based on error of Table 2.3. 
Wilcoxon test SDE 

Vs. +ve 
rank 

-ve 
rank 

tie Mean of 
+ve rank 

Mean of 
-ve rank 

Sum of 
+ve rank 

Sum of 
-ve rank Stat. p-value 

DE 13 0 12 7.00 0.00 91.0 0 -3.180 0.001 
MDE 11 1 13 6.80 10.0 68.0 •10 -2.275 0.023 
ODE 12 0 13 6.50 0.00 78.0 0 -3.059 0.002 

DERL 11 1 13 6.09 11.0 67.0 11 -2.197 0.028 
CDE 14 1 10 8.00 8.00 112.0 8 -2.953 0.003 

MSDE 7 9 9 10.29 7.11 72.0 64 -0.207 0.836 

Table 2.10: Results of Friedman's test based on NFE of Table 2.4. 

N  Friedman df p  value value 
25 114.339 6 <0.001 

df-Degrees of freedom 	N - Total No of functions 

Table 2.11: Ranking obtained through Friedman's test and Critical Difference (CD) calculated through 
Bonnferroni-dunn's procedure of Table 2.4. 

Algorithm ' Mean Rank 
DE 6.46 

SDE 2.02 
SDE 5.78 
ODE 2.94 

DERL 4.90 
CDE 4.22 

MSDE 1.68 
CD for a=0.05 1.611845 
CD for a = 0.10 1.462758 

Table 2.12: Results of pairwise comparison based on NFE of Table 2.4. 

Wilcoxon test 

MSDE 
Vs. 

+ve 
rank 

-ve 
rank 

tie Mean 
of 

+ve 
rank 

"Mean 
of -ve 
rank 

Sum of 
+ve rank 

I  Sum of 
-ve 
rank Stat. p-value 

DE 24 0 1 12.50 0 300 0 -4.286 <0,001 
MDE 24 0 1 12.50 0 300 0 -4.286 <0.001 
ODE 24 0 1 12.50 0 300 0 -4.286 <0.001 

DERL 19 6 0 13.95 10 265.0 60.0 -2.758 0.006 
CDE 22 2 1 12.82 9.0 282 18 -3.771 <0.001 
SDE 18 7 0 13.50 11.71 243 82 -2.166 0.030 
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Table 2.13: Influence of dimensionality on the proposed algorithms and DE in terms of NFE. Here `--' 
indicates that the algorithms were not able to obtain the desired accuracy for specified maximum NFE. 

Fun D= 15 D=60 
DE CDE MSDE SDE DE CDE MSDE SDE 

49050 36090 14630 23250 192400 147180 41060 ~ 85800 
a 8Q440 61860 23150 39350 305120 221170 56720 134890 
f3 52900 40960 15550 24100 215700 199700 45900 96800 
f4 123210 120243' 53050 60400 -- -- 239800 528000 
f5 -- -- 62550 -- 

__ 
-- 546000 

f6 14310 4790 4270 7040 57000 27230 11890 26990 
f, 43740 56400 8510 29580 451600 423820 68920 432000 
fR 57960 33780 41530 40155 594000 222900 201240 516000 J -- -- 

20330 -- _- 51620 
- 

f0 77990 65950 24430 37750 288800 234920 62040 125900 
fit 98700 46850 17070 39200 184600 123390 41860 85500 
12 44640 30710 13380 21450 165000 140970 45030 90400 
f3 47460 33870 15080 23240 191400 136360 54310 102000 
f., 45380 42220 13660 21550 208100 160900 44690 96000 

Table 2.14: Influence of dimensionality on the proposed algorithms and DE in terms of SR. 

Fun D= 15 D=60 
-DE CDE MSDE SDE DE CDE MSDE SDE 

1 1 1, 1 1 1 1 1 

12 I 1 1. 1 1 1 1 1 
f3 1 1 1 

1 1 I 1 1 

f.~ 0.65 0.9 1 1 0 0 0.8 ' 0.73 
fs 0 0 0 1 0 0 0 0.89 h 1 I 1 1 1 1 1 1 

f7 1 1 1 1 1 1 1 1 

18 1 1 1 1 0.9 1 0.5 1 
I 0 0 1 0 0 0 1 0 . 

f,0 1 1 1 1 1 1 1 1 
.fry 1 1 1 1 0.47 1 1 1 
f2 1 1 1 

1 1 1 1 1 

fi3 1 1 1 1 
I 1 1 1 

1 1 1 1 1 1 1 1 
Average 0.83 0.85 0.93 0.93 0.74 0.79 0.88 0.90 
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Table 2.15: Influence of varying population size on the proposed algorithms and DE in terms of NFE. 
Here '--' indicates that the algorithms were not able to obtain the desired accuracy for specified 

maximum NFE. 

D  NP = 50 NP = 200 
Fun DE CDE MSDE SDE DE CDE MSDE SDE 
f, 30 40310 41345 11945 19770 286200 171180 50720 128800 
fz  30 61460 69215 16910 29170 -- 295220 74920 223940 
f3  30 42350 49600 12995 21445 -- 203600 56400 138000 
fa  30 -- 278390 52775 -- -- -- 222800 -- 
f5 30 -- -- -- -- -- -- 
f6  30 12320 5695 3695 6165 87000 15760 14220 39800 
f, 30 70455 150910 14795 65195 260000 -- 42980 245600 
fH  30 96650 38605 65288 75362 -- 157380 257400 296244 
f9  30 -- -- 12805 -- -- -- 74400 -- 
flo  30 62650 72745 18455 32450 -- -- 79960 202600 
J , 30 41450 39305 12770 20350 297000 157720 53880 133120 
f12  30 42177 35040 13810 20438 208321 139640 46260 118560 
f13  30 65218 38985 16265 27255 186323 160960 51760 123600 
J}, 30 52287 52365 11890 21840 165328 144620 51480 128000 
fis 2 2572 845 2365 1690 6521 2260 5040 5820 
fJ6  2 2577 2845 900 1540 8723 9280 2920 6740 
f„ 2 3572 2160 775 2000 13272 7440 2200 9660 
u8  2 2466 2785 970 1405 9832 10600 3320 5320 

79 2 2784 1955 1260 1395 6299 6920 4080 5140 
f o  3 2943 3045 1425 1485 8734 7320 4620 5560 
f2i  4 6282 5192 8142 3050 18923 20100 22820 12900 
f2, 4 7132 5171 4950 2970 20223 19825 16220 12120 
f23  4 6980 5570 3815 3005 19890 17422 14880 11920 
f,., 4 6721 19383 29816 3450 18723 17865 12320 11440., 
f s  6 6823 13783 6966 3350 19838 20100 28777 14688`,:; 
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Table 2.16: Influence of varying population size on proposed algorithms and DE in terms of SR. 

D  NP =50 NP=200 
Fun DE CDE MSDE SDE DE CDE MSDE SDE 

._iL__]ii 1 1 1 1 1 1 1 1 
f2 30 

1  1  1  1  0  1  1  1  

f3  30 1 1 1 1 0 1 1 1 
30 0 1 1 0 0 0 1 0 

fs  30 0 0 0 1 0 0 0 0 
f6  30 1 1 1 1 1 1 1 1 
f7 30 1 1 1 1 1 0 1 1 
fH  30 0.65 0.56 0.88 0.63 0 1 0.91 0.96 

i2i 0 0 1 0 0 0 1 0 
fin 30 1 1 1 1 1 0 1 1 
fig 30 0.87 1 1 1 1 1 1 1 
fie  30 1 1 1 1 1 1 1 1 
,fl3  30 1 1 1 1 1 1 1 1 
fia 

30 
1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 
.116  2 1 1 1  1  1  1  1  1  

J 2 1 1 1 1 1 1 1 1 

J__ib 2 1 1 1 1 1 1 1 1 
f19  2 1 1 1 1 1 1 1 1 
fza 3 1 1 1 1 1 1 1 1 
fai  4 1 0.9 0.7 1 1 1 1 1 

aZ  4 1 0.8 0.9 1 1 1 1 1 
f23  4 1 0.5 1 1 1 0.9 1 1 
J24 4 1 0.9 0.6 1 1 0.5 0.9 1 
fzs 6 0.72 0.6 0.6 0.56 0.89 0.8 0.9 0.93 
Average 0.85 0.85 091 0.89 0.90 0.77 0.95 0.95 
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Table 2.17: Effect of jumping on proposed SDE algorithm with jumping rates as 0.1 and 0.3. The results 
are tabulated for number of function evaluations (NFE). Here '--' indicates that the algorithms were not 

able to obtain the desired accuracy for specified maximum NFE. 

Fun D SDE SDEj0.3 SDE'0.1 
f, 30 45980 48870 48270 
f2  30 77830 80960 78540 

f3 30 48600 53400 50700 

f, 30 258886 267000 26T000 

fs 30 190600 248300 212000 

f6 30 14850 15540 14670 

f 30 70680 82000 75420 

f~ 30 101067 -- -- 
f9 30 -- -- -- 
f0 30 72800 76670 73200 

fl 30 48077 52383 49444 

f12 30 43340 43811 43280 

f13 30 46680 48744 46920 

fa 30 46580 48300 47700 

,s 2 3330 3265 3290 

fh 2 3330 3243 3510 

f„ 2 4790 4840 4520 

f,R 2 2850 2983 3070 
f9 2 2640 6560 2960 

f2O 3 2870 3045 3560 
fal 4 6640 6538 6930 
f22 4 6220 6458 6510 
fj 4 6190 6245 6350 

f24 4 6050 6234 6540 
f25 6 7050 7143 7620 
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Problem 

D 
Error 
value Dl 

ODE 
(Rahnamayan 

and  

Wang,, 2008) 

CDE MSDE 

SDE 

Best 2, 636.54 15.66 10.48 4.98 3.48 
Median 3, 181.45 36.61 19.32 5.89 5.32 

F, 500 Worst 4, 328.80 292.65 23.43 8.28 7.57 
Mean ' 3,266.24 80.17 19.54 5.03 4.86 
Std. 409.68 79.24 37.32 5.78 4.34 

500 Best 79.74 3.60 20.42 2.78 19.82 
F, Median 82.39 4.86 12.32 4.93 11.88 

z  Worst ' 85.92 11.91 34.69 7.32 12.26 
Mean 82.93 5.78 27.00 3.92 11.87 
Std. 2.09 2.37 8.50 2.49 1.93 

500 Best 76, 615, 772.08 39, 718.90 807,641.56 763,323.45 727, 996.00 
F3  Median 119, 733, 49.20 137, 279.03 582,743.33 782,301.74 731, 546.21 

Worst 169,_316,779.50 407, 661.64 673,494.23 789,873.56 732, 763.93 
Mean 123, 184, 755.70 154, 306.34 467,232.85 779,289.90 730, 473.25 
Std. 29, 956, 737.58 114, 000.53 124,845.43 ̀ 117,328.93 116,325.43 

500 Best 5,209.99 2, 543.51 1,287.74 1,183.84 1, 155.15 
Median 5, 324.57 4,_279.56 4,133.49 4,382.63 3, 243.87 

FF Worst 5, 388.24 6, 003.94 5,238.32 4,829.43 4, 478.90 
Mean` 5,332.59 4,216.34 4,141.32 4.132.54 4,212.76 
Std. 43.82 1,017.94 61.32 67.32 58.60 

500 Best 24.29 1.25 1.10 1.09 0.31 
F Median 24.71 1.55 1.36 1.32 0.87 

5  Worst 27.59 2.13 1.56 1.58 0.96 
Mean 25.16 1.75 1.52 1.38 0.56 
Std. 1..10 0.37 0.26 0.18 0.05 

500 Best 4.66 2.49 2.52 2.37 1.18 
Median 4.97 4.12 3.98 3.83 1.47 

F6  Worst 5.15 6.73 4.13 5.18 1.56 
Mean 4.94 4.51 4.02 4.27 1.25 
Std. 0.17 1.44 0.14 1.06 0.07 

500 Best -3683.07 -3957.85 -3961.29 -3983.32 -3992.76 
Median -3575.13 -3834.07 -3832.43 -3889.49 -3836.65 

F' Worst -3565.73 -3830.36 -3830.24 -3738.54 -3833.21 
Mean -3593.75 -3851.82 -3856,47 -3883.85 -3863.59 
Std. 32.74 38.80 31.34 34.54 29.31 

Table 2.18: Comparison of proposed algorithms with DE and ODE for nontraditional shifted functions in 
terms of error (best median, worst and mean) and standard deviation (Std.). 
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Table 2.19: Comparison of SDE and MSDE with jDE, JADE, and SaDE in terms of fitness function 
value_ 

Fun D #Gen jDE JADE SaDE MSDE SDE 
2.34343e-28 1.73443e-60 3.54533e-20 4.94619e-70 2.74298e-36 

30 1500 (1.92383e-28) (7.34344e-60) (5.79432e-20) (1.02143e-70 (3.94901e-36) 
3.09343e-23 2.38353e-25 1.02398e-14 1.57077e-51 1.10654e-24 f 30 2000 (8.38772e-24) (8.47876e-25) (1.83421e-15) (1.15935e-51 (8.28990e-25) 
3.39041e-14 4.44584e-61 9.04322e-37 0 4.81002e-131 

f3  30 5000 (3.82921e-14) (1.32743e--60) (3.44302e--37) (0 (0) 
0 8.43245e-24 6.49202e--11 6.38436e-43 5.92984e-11 

f4  30 5000 
(0) (4.20037e-23) (1.63430e-10) (3.87941e-43) (8.36854e-10) 
0 8.94840e-02 2.34993e-01 8.30564e+00 0 

f,- 30 20000 
(0) (5.97326e-01) (2.33498e-01) (9.43304e+00) (0) 

0 0 0 0 0 fh  30 1500 
(0) (0) (0) (0) (0) 

2.31545e-43 8.54564e-04 3.58832e-03 7.36002e-04 2.05093e-04 f, 30 3000 (7.38443e-04) (2.32534e-04) (1.62992e--03) (4.32394e-03) (1.04551e-03) 
-12569.5 -12569.5 -12569.5 -12569.5 -12569.5 

18 30  9000 (8.00132e-12) (0) (8.43901e-08) (1.45519e-11) 1.09766e-10) 

0 0 0 0 8.95493e+00 f9  30 5000 
(0 (0) (0) (0) (1.59359e+01) 

7.09431e-15 5.65784e-15 7.38286e-14 1.44633e-16 4.05954e--15 f o  30 1500 
(1.72928e-15) (0) (3.48321e-14) (0) (0) 

fig  30 2000 (0) (0) (0) (0) (0) 
5.93708e-30 1.06754e-32 2.43748e-19 1.3536e-19 1.35993e-30 f z  30 1500 (2.32384e-30) (3.43503e-48) (0) (0) s (0) 
6.90221e-29 4.65656e-32 2.83043e-19 1.29115e-19 1.29390e-29 

fr3 30 1500 (3.84204e-29) (4.14394e-48) (0) (2.39491e-20) (0) 
3.49941e-51 6.67607e-61 7.38393e-58 1.84302e-83 1.47748e-76 fi4  30 3000 

(7.34301e-53) (8.57008e-63) (3.45843e-60) (3.94943e-89) (5.93376e-77) 
0.998004 0.998004 0.998004 0.998004 0.998004 fi5  2 100 

(1.90023e-16) (1.77884e-16) (1.32943e--16) (1.32943e-16) (1.21077e-16) 
-1.03163 -1.03163 -1.03163 -1.03163 -1.03163 f,6  2 100 

(8.43843e-I2) (2.56648e-15) (1.48430e-16) (2.22045e-1 6) (2.22875e--16) 
0.397887 0.397887 0.397887 0.397887 0397887 

f„ 2 100 
(4.43492e-08) (0) (0) (0) (0) 

3.0 3.0 3.0 3.0 3.0 
118 2  100 

(1.98237e-15) (2.42127e-17) (2.43493e-16) (6.8798e-16) (1.61278e-16) 

f,9  2 100 -1 
(0 

-1 
(0) 

-1 
(0) 

-1 
(0) 

-1 
(0) 

-3.8623 -3.8626 -3.8623 -3.8623 -3.8623 f a  3 100 
(9.32384e-15) (7.76755e-14) (7.34399e-15) (3.97205e-16) (4.44089e-16) 

f21  4 100 -10.1532 -10.1532 -10.1532 -10.1525 -10.1532 
(3.34321e-06) (4.88743e-13) (4.23484e-15) (3.44387e-11) (1.77532e-15) 

-10.4029 -10.4029 -10.4029 -10.4029 -10.4029 
.f22 4 100 

(5.25234e-07) (8.57584e-13) (2.43438e-15) (3.45834e-15) (1.25879e-15) 
-10.5364 -10.5364 -10.5364 -10.5364 -10.5364 

.123 4  100 (5.02913e-06) (8.76765e-1 1) (7.43483e-14) 3.15095e-07) (1.94865e-15) 
4.29044e-04 6.78786e- 05 8.43984e-04 3.07491e-04 3.05132e-04 

.124 4  4000 (3.28494e-04) (3.07102e-04) (4.54989e-08) (2.43617e-08) (9.71256e-09) 

.125 6  100 
-3.2863 -3.2986 -3.3182 -3.28625 -3.2807 

(6.34934e-06) (5.75433e-05) (6.34348e-03) (2.34984e-03) (2.39493e-03) 
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Table 2.20: Comparison of SDE and MSDE with jDE, JADE, and SaDE in terms of NFE. Here '-- 
indicates that the algorithms were not able to obtain the desired accuracy for specified maximum NFE. 

Fun D 'DE JADE SaDE MSDE SDE 
fl  30 60100 29900 73490 ' 24980 45980 
J a  30 83220 52550 118932 36590 77830 
f3  30 299399 94840 181673 27370 48600 
f 30 297650 170890 290380 111120 258886 
fs 30 -- 151000 278890 -- 19Q600 
f6  30 24860 11560 28410 7460 14850 
f, 30 98000 30000 128764 20080 70680 
f 30 88940 130480 121830 129420 101067 
f9  30 118630 131000 170765 32760 -- 
f,o 30 90620 45610 119090 39160 72800 
fl 30 64270 34000 80688 26230 48077 
f 2  30 54310 26950 72346 24660 43340 

30 61287 30988 73432 28270 46680 
J;4 30 71290 50380 89372 25320 46580 
_5  2 3578 3455 3672 2870 3330 
f/6  2 3298 3310 3320 1780 3330 
f„ 2 4872 4520 4810 1400 4790 
f18  2 3389 3080 3010 1740 2850 
f,9  2 3456 3050 3480 2270 2640 
,fzo 3 3154 2990 3080 2620 2870 
fl l 4 6829 6745 6770 10020 6640 
f22 4 6194 6389 6395 8380 6220 
fz3 4 6530 6090 6672 7880 6190 

4 6648 6532 6438 7580 6050 
f"5 6 7410 7000 7832 12266 7050 
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Table 2.21: Comparison of SDE and MSDE with jDE, JADE, and SaDE in terms of SR. 

Fun D jDE JADE SaDE MSDE SDE 
f, 30 1 1 1 1 1 
f2 30 1 1 1 1 1 
f3 30 1 1 1 1 1 
f, 30 0.8 0.92 0.86 0.8 0.9 
fs 30 0 0.7 0.29 0 1 
f6  30 1 1 1 1 1 
ff 30 1 1 1 1 1 
f8 30 0.68 1 0.81 1 1 
f9 30 1 1 1 1 0 

flo 30 1 1 1 1 1 
f~l 30 1 1 1 1 1 
f12 30 1 1 1 1 1 
f,3 30 1 1 1 1 1 
fu 30 1 1 1 1 1 

fis 2 1 1 1 1 1 
f h 2 1 1 1 1 1 
f„ 2 1 1 1 1 1 
f 8 2 1 1 1 1 1 
fl9 2 1 1 1 1 1 
fo 3 1 1 1 1 1 
f2l 4 1 1 1 0.9 1 

f22 4 1 1 1 1 1 

f234 1 1 1 1 1 
4 1 1 1 0.7 1 

f25 6 0.41 0.47 0.44 0.60 0.8 
Average 0.92 0.96 0.94 0.92 0.95 

Table 2.22: Results of Friedman's test based on NFE of Table 2.20. 

Friedman N df p value value 
25 33.852 	4 <0.001 

df— Degrees of freedom 	N - Total No of functions 

Table 2.23: Ranking obtained through Friedman's test and Critical Difference (CD) calculated through 
Bonnferroni-dunn's procedure of Table 2.20. 

Algorithm Mean Rank 
j DE 3.74 

JADE 2.44 
SaDE 4.20 
SDE 2.56 

MSDE 2.06 
CD fora=0.05 1.11714 
CD fora=0.10 1.002206 
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Table 2.24: Results of pairwise comparison based on NFE of Table 2.20. 

Wilcoxon test 
MSDE 

Vs. +ve 
rank 

-ve, 
rank 

tie Mean of 
+ve rank 

Mean of 
-ve rank 

Sum of 
+ve rank 

Sum of 
-ve rank Stat. p-value 

jDE 18 6 1 13.72 8.83 247 53 -2.771 0.006 

JADE 19 6 0 13.6 12.5 250 75 -2.354 0.019 

SaDE 18 7 0 14.67 8.71 264 61 -2.731 0.006 
SDE 18 7 0 13.5 11.71 243 82 -2.166 0.030 
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Figure 2.6: Performance graphs (best solution versus NFE) for performance comparison between DE and 
SDE. (a) — (1) represents functions fi, f2, 1, f4, fa, fio,.fir, fie, fi3 and f14  
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Figure 2.7: Bonferroni-Dunn's graphic corresponding to error of Table 2.3. 
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Figure 2.8: Bonferroni-Dunn's graphic corresponding to NFE of Table 2.4. 

Figure 2.9: Bonferroni-Dunn's graphic corresponding to NFE of Table 2.20. 
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In chapter 2, three enhanced variants of DE namely DE with Cauchy mutation (CDE), 

DE with Mixed Mutation Strategy (MSDE), and Synergetic DE (SDE) were proposed and 
validated on a set of unconstrained continuous optimization problems. In the present chapter, 
MSDE and SDE algorithms are further extended for solving the constrained optimization 
problems as it was observed that although all the three algorithms were compatible for solving 
the unconstrained optimization problems the performance of MSDE and SDE was superior to 
that of CDE. The performance of these two algorithms is validated on a test suite of 24 
constrained benchmark problems proposed in CEC 2006 (Liang et al., 2006) and the algorithms 
are also compared with some of the contemporary DE variants available in literature for solving 

the constrained optimization problems. 
The chapter is structured as follows. Section 3.1 gives the introduction of constrained 

optimization. Section 3.2 describes the techniques for handling the constraints. Benchmark test 
suit is given in section 3.3. Performance evaluation criteria are given in section 3.4. Parameters 
setting are given in section 3.5. Results are analyzed and discussed in section 3.6 and finally, the 

chapter is concluded in section 3.7. 

31 Introduction 

Optimization models of most of the real life problems occurring in the field of science of 
technology are often subjected to constraints and the corresponding problems are called 
constrained optimization problems (COP). The search space in COPs consists of two kinds of 
solutions: feasible and infeasible. Feasible points satisfy all the constraints, while infeasible 
points violate at least one of them. Therefore, the final solution of an optimization problem must 
satisfy all constraints. 

A general COP is formulated in chapter 1, having 1 inequality and m equality constraints, 
respectively. If both the objective and the constraints are linear then the problem is said to be a 
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linear programming problem but if either one of them (or both) is non linear then it is said to be 
a non linear COP. 
Considering that formulation, a solution X is called feasible if 

g (X)<_0, for all j=l ....,l 

hk(X)I —s! 0, for all k=1,...,m 

In the present chapter equality constraints are transformed into inequality constraints where c is 
taken as 0.0001 
A measure of the average constraint violation, which is often useful while handling constraints, 
is defined as: 

l 	m 

G.,( X )+ZHk( X ) 

l+m 

where G,(X) g.(X) if g.(X)>0 
0 	if g~ (X) < 0 

Hk (X) _ I hk (X) I if I hk (X) .~ —c > 0 

0 	if Ihk(X)I— ~o 

There are many traditional methods in the literature for solving COP. However, most of 
the traditional methods require certain auxiliary; properties (like convexity, continuity. etc.) of 
the problem and also most of the traditional techniques are suitable for only a particular type of 
problem (for example Quadratic Programming Problems, Geometric Programming Problems 
etc). Keeping in view the limitations of traditional techniques researchers have proposed the use 
of population based stochastic optimization methods and intelligent algorithms like Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) etc. for 
solving COP. 

3.1.1 Constraint Handling Techniques Applied to Population Based Search Techniques 

Based on the research efforts in literature, constraint handling methods have been 
categorized in a number of classes (Engelbrecht, 2005). These are: 

Reject infeasible solutions, where solutions are not constrained to the feasible space. 
Solutions that find themselves in infeasible space are simply rejected or ignored. 
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Penalty function methods, which add a penalty to the objective function to discourage search 

in infeasible areas of the search space. 

➢ Converting the constrained problem to an unconstrained problem and then solving the 

unconstrained problem. 

➢ Preserving feasibility methods, which assumes that solutions are initialized in feasible space, 

and applies specialized operators to transform feasible solutions to new feasible solutions. 

These methods constrict solutions to move only in feasible space, where all constraints are 

satisfied at all times. 

Pareto ranking methods, which use concepts from multi-objective optimization, such as 

nondominance, to rank solutions based on degree of violation. 

➢ Repair methods, which apply special operators or actions to infeasible solutions to facilitate 

changing infeasible solutions to feasible solutions. 

A state of the art survey on constrained optimization is given in (Coello Coello, 2002). 

3.1.2 Application of DE for Solving COP 

DE has been successfully applied for solving constrained optimization problems. Several 

variants of it are available in literature. A feasible region shrinking mechanism was proposed by 

Storn (1999). The aim was to relax all the constraints of the problems at the beginning of the 

process. As the time progresses, the pseudo-feasible region shrink at each generation until it 

matches the real feasible region. Storn also proposed the idea of each parent to generate more 

than one offspring. In Store's approach the process finishes when one offspring is better than its 

parent or when (say) certain numbers of offspring have been generated. He applied his approach 

on "DE/best/1/bin" version. He also added an aging mechanism to avoid a solution to remain in 
the population for too long. His approach was well suited for problems having inequality 

constraints, but was not very efficient while dealing with equality constraints. A static-penalty 

approach, coupled with DE to solve engineering design problems was proposed by Lampinen 

and Zelinka (1999a, 1999b, 1999c, 1999d). The main drawback of their approach is that a 
careful tuning is required for the penalty factors. Chiang et al. (2002) proposed an augmented 

Lagrangian approach with an adaptive mechanism to update the penalty parameters. The 

approach performed well against typical EA-based techniques. An extension of DE to solve 
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constrained optimization problems was proposed by Lampinen (2002). The original DE 
replacement mechanism (based only on the objective function value of the parent and its 
corresponding offspring) was substituted by three selection criteria based on feasibility 
originally proposed by Deb (2000). The difference between Deb's and Lampinen's approach is 
in the third rule. In Deb's approach the solution with the lowest sum of constraint violation is 
selected. On the other hand, in Lampinen's technique, the solution which Pareto-dominates the 
other in the constraints space will be selected. Mezura et al. (2004) proposed a DE-based 
approach where the newly generated offspring is added to the current generation (instead of 
including the solution to the next generation). The idea was to allow newly generated solutions 
to be selected to influence the selection of search directions of the offspring in the current 
generation and to speed up the convergence. More recently a constrained based approach was 
suggested by Ali and Bagdadi (2009). 

The applications of DE to the constrained optimization problems can also be found in 
Storn (1999), Lampinen (2002), Koziel and Michalewicz (1999), Lampinen (2001a, 2001b), Lin 
et al. (2002), Chiou and Wang (1999), Sarimveis and Nikolakopoulos (2005) Becerra and 
Carlos (2005) and Carlos (2002). 

3.2 Constraint Handling Techniques Used in the Present Study 
In the present study, Pareto ranking method proposed by Deb (2000) for constraint-

handling is adopted for dealing with COP. This method is based on the following three rules: 
> Between two feasible vectors, the one with the best value of the objective function is 

preferred. 
> If one vector is feasible and the other one is infeasible, the feasible one is preferred. 
> Between two infeasible vectors, the one with the lowest sum of constraint violation is 

preferred. 
Besides following the above three rules, equality constraints were transformed into 

inequations as explained in Section 3.1 by using the following tolerance value: c= 1e4. 



3.3 Test Problems 
24 benchmark problems provided in the special session on constrained problems in CEC 

2006 (Liang et al., 2006) are considered in the present chapter for analyzing the performance of 

MSDE and SDE. This test suite consists of a wide variety of COP including 7 quadratic 

problems, 7 nonlinear problems, 2 cubic problems, 2 polynomial problems and 6 linear 
problems. The number of variables vary from 2 to 24 and the problems consist of both equality 

and inequality type constraints. The list of problems along with the function code, actual 

minima and other characteristics is summarized in Table 3.1. Mathematical model of the 

problems is given in Appendix 1I. 

Table 3.1: Name of constrained test problems, assigned codes and characteristics 
Function D .f(X) Type of 

nction fu  NEQ NIEQ Na 

g01 13 -15.0000000000° quadratic 0 9 6 
g02 20 -0.803.6191042 nonlinear 0 2 1 
g03 10 -1.0005001000 polynomial 1 0 1  
g04 5 -30665.538671783 quadratic 0 6 2  
g05 4 5126.4967140071 cubic 3 2 3 
g06 2 -6961.8138755802 cubic 0 2 2 
g07 10 24.3062090681 quadratic 0 8 6 
g08 2 -0.0958250415 nonlinear 0 2 0 
g09 7 680.6300573745 polynomial 0 4 2 
gl0 8 7049.2480205286 linear 0 6 6 
gll 2 0.7499000000 quadratic 1 0 1 
g12 3 -1.0000000000 quadratic 0 1 0 
g13 5 0.053941514Q nonlinear 3 0 3  
g14 10 -47.7648884595 nonlinear 3 0 3 
g15 3 961.7150222899 quadratic 2 0 2 
g16 5 -1.9051552586 nonlinear 0 38 4 
17 6 8853.5396748064 nonlinear 4 0 4 

g18 9 -0.8660254038 quadratic 0 13 6 
g19 15 32.6555929502 nonlinear 0 5 0 
g20 24 0.2049794002 linear 14 6 16 
21 7 193.7245100700 linear 5 1 6 
g22 22 236.4309755040 linear 19 1 19 
g23 9 -400.0551000000 linear 4 2 6 
g24 2 -5.5080132716 linear 0 2 2 

D — Dimension of the problem 
f(X*)- best known function value 
NEQ - Number of equality constraints 
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All these algorithms have been successfully used for solving the constrained 	nark 

problems proposed in the special session of CEC 2006 

3.5 Parameter Settings 

After conducting several experiments and consulting the literature, following settings 

have been taken for all the experiments unless otherwise mentioned. 

> Maximum NFE = 500000, fixed for all problems (Liang et al., 2006). 

Accuracy (c) = i0 °4  for all the test problems (Liang et al., 2006). 

All other parameters are same as given in chapter 2. 

3.6 Results and Discussions 

3.6.1 Results of MSDE and SDE 

Tables 3.2 — 3.13 are devoted exclusively to the performance of MSDE and SDE. In 

Tables 3.2 — 3.5 and 3.7-3.10, the performance of MSDE and SDE is recorded in terms of best, 

worst and average error along with the standard deviation (Std.) while increasing the NFE 

(number of function evaluations) to three different values 5 x 103, 5 x 104  and 5 x 105. 
In Tables 3.6 and 3.11, the results of MSDE and SDE are summarized after fixing the 

accuracy criteria as 0.0001. The comparison of MSDE with SDE algorithm is given in Tables 

3.12 and 3.13. In Tables 3.2 — 3.5, and 3.7-3.10 `c' denotes the number of violated constraints 

(including the number of violations by more than 0.0001, 0.01 and 1) and v denotes the mean 

violation at the median solution and the number in parentheses indicate the unsatisfied 

constraints. 

From Tables 3.2-3.5 and 3.7-3.10 it is clear that both MSDE and SDE found the results 

very close to global optimal. The error is very small in every case except for g03, g20 and g22. 

From Tables 3.6 and 3.11, which give the number of function evaluations, it can be seen that the 

results are quite encouraging. MSDE and SDE gave 100% feasibility rate for all the test 

problems except for g20 and g22 where it is 0%, implying that none of these algorithms were 

able to find a feasible solution for these problems. 
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MSDE gave 100% o SR in 17 test problems, 88% SR in two test problems and 72% and 
60% SR in one problem each. However, for g03, g20 and g22, it was not able to obtain any 
success. While for SDE the SR is 100% for 16 test problems, 84%, 80%, 60%, 65% and 24% 
for one each. However, for g03, g20 and g22, it was not able to achieve any success. On an 
average the feasibility rate of MSDE is 92% and the SR is 84%. While for SDE the feasibility 
rate is 91% and SR is 80%. 

In terms of convergence speed it can be seen that SDE takes lesser number of function 
evaluation than MSDE in almost all the cases. Convergence graphs of all the problems are 
illustrated in Figures 3.1- 3.8 for both the algorithms. 

3.6.2 Comparison With Other Algorithms 

Results for comparison of MSDE and SDE with other versions of DE are given in Tables 
3.14 and 3.15. From these Tables, it can be seen that the success rate is highest for EDE, which 
is 91%. MSDE performed either at par or better than other algorithms. For jDE-2 and ZRDE, 
the success rate is 74% and 78%, respectively, and for SaDE, it is 83.5%. For MDE and MDE1, 
the success rate is same as that of MSDE i.e. 84%. 

It should be noted here that for g20 and g22 neither of the algorithms taken in the 
present study were able , to give . a successful performance. However, for g03, WE , MDE, 
MDE1 and SaDE were able to perform well while jDE' and ZRDE along with MSDE and SDE 
were not successful at all. 

In order to further analyze the algorithms they were compared statistically. Non 
parametric tests were conducted on the algorithms in terms of mean function evaluations to 
derive some conclusion. First, the algorithms are compared, by using non parametric Friedman's 
and Bonferroni Dunn's test to analyze the overall performance. These tests, for which the results 
are given in Tables 3.16 and 3.17, show that all the algorithms (except jDE-2 and SaDE) 
perform at parwith each other in terms of average function evaluations and were superior to 
jDE-2 and SaDE. This can also be observed from Figure 3.9, which illustrates graphically, the 
behavior of all the algorithms. Secondly, the algorithm SDE was analyzed one by one with all 
the algorithms using the Wilcoxon test. From this test for which the results are given in Table 
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Table 3.2: Error values "achieved .by MSDE when NFEs = 5x 103, NFEs = 5X104, NFEs = 5x105 for problems 1-6. 

Prob. 
FES 

g0I g02 g03 g04 g05 g06 

Best 2.2328e+00(0) 3.50263e-01(0)" 9.18082e-01(0) 5.48381e+0.0(0) 7.88670e+00(3) 1.85916e-01(0) 
Median 3.1881 e+0O(0)  4.08990e-01(0) 9.95901e-01(0) 9.64867e+00(0) 1.99109e+02(3) 4.16645e-01(0) 
Worst 4.2009e+00(0) 4.50712e-O 1(0) 1.00046e*00(0) 1.72503e+01(0) 7.6431 e+02(0) 3.25477e+00(0) 

5 x103 c 0,0,0 0,0,0 ;0,0,0 0,0,0 0,2,3 0,0,0 u 
0 0 0 0 3.44809e-02 0 

Mean 3.3242e+00 4.18559e-01 9.84616e-0l 1.20831e+01 2.75189e+02 8.61851e-01 
Std. 6.2025e-01 2.74252e-02 2.31103e-02 4.05658e+00 2.2038e+02 1.0949e+00 
Best " 1.7234e-07(0) 1.62894e-02(0) 6.85799e-01(0) 8.00355e-11(0) 0(0) 5.72982e-11(0) 

Median 4.6271;7e-07(0) 8.11970e-02(0) 9.18852e-01(0) 8.00355e-11(0) 2.28064e+01(0) 5,72982e-11(0) 
Worst _,. 3.20588e-06(0) 1.53001e-01(0) 9.90945e-01(0) 8.36735e-11(0) 4.05407e+02(0) 5.72982e-1 1(0) Sx104 

0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
v 0 0 0 0 0 0 

Mean 6.93423e-07 7.34131e-02 8.53123e-01 8.33097e-11 1.25584e+02 5.72982e-11 
Std. 0 ' 2..68711e-03 1.20395e-01 1.09139e-12 2.72848e-13 0 
Best 0(0) 1.34148e-08(0) 5.85904e-01(0 8.00355e-11(0) 0(0) 5.72982e-11(0) 

Median 0(0) 9.87368e-08(0) 8.698666-01(0) 8.00355e-11(0) 0(0) 5.72982e-11(0) 

"Worst . " 	" 	0(0)'" 8.'95710e-03(0)" 9.43275e-01(0) 8.36735e-1"1(0); ' 	0(0), 5.72982e-11(0) 
5x101 

c, •
0,0,0 0 00,0 0,0,0 0,0,0 

p...~ 0 0 0 0 0 

Mean 0 8.95757e-04 7.98692e-01 8.03993e-11 0• 5.72982e-11 
Std. 0" 8.49740e-03 3.80723e-01. 3.45129e-12 0 0 

Table 3.3: Error values achieved by MSDE when NFEs = 5 x 103 NFEs = 5 X 104, NFEs = 5x 105 for problems 7-12 

Prob. 
FES: 

g07 g08 g09 glO gll g12 

Best 2.73353e+01(0) 8,83258e-07(0) 8.69717e+00(0) 2.19811e+03(0) 3.70353e-08(0) 2.36478e-14(0) 
Median 3.01337e+01(0) 8.83258e-07(0) 1.05122e+01(6) 2.76555e+03(0) 8.30096e-02(0) 7.60503e-14(0) 
Worst 5.01731e+01(0) 8.83258e-07(0) 1.26877e+01(0) 3.47093e+03(0) 3.520990-04(0) 5.11036e-13(0) 

5x1O3 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
V 0' 0 0 0 0 0 

Mean 3.12556e+01 8.83258e-07 1.02144e+01 2,9257e+03 1.95120e-02 1.71940e-13 
Std. 6.72901e+00 5.04968e-17 1.24686e+00 4.08190e+02 2.57633e-02 1.50946e-13 
Best 6.64148e-03(0) 8.83258e-07(0) 2.32308e-09(0) 1.87936e+00(0) 0(0) 0(0) 

Median 2.1482e-02(0) 8.83258e-07(0) 2.55977e-09(0) 4.17884e+00(0) 0(0 ) 0(0) 
Worst 2.89947e-02(0) 8.83258e-07(0) 1.38608e-08(0) 9.33135e+00(0) 0(0) 0(0) 

5x104 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
V 

0 
0 

Mean 1.82096e-02 8.83258e-07 6.13596e-09(0) 3.30128e±00 0 0 
Std. 3.907990-15 0 4.54747e-14(0) 3.98216e-11 0 0 
Best 7.9801 le-1 1(0) 8.83258e-07(0) 9.79981e-11(0)" 6.91216e-11(0) 0(0) 0(0) 

Median 7.98011e-11(9) 8.83258e-07(0)"9.81117e -11(0) 6.91216e-11(0) : 	0(0) 0(0) 
Worst 7.98153e 11(0) 8:83258e-07(0) 9.81117e-11(0) 6.91216e-11(0) 0(0) 0(0) 

5x105 c 0,0,0, 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
V 0 0 0 0 0 0 

Mean 7.98106e-11 8.83258e-07 9.80890e-11 6.91216e-11 0 0 
Std. 1.23581e-14 0 1.43804e-13 "" ." 	, 0: 0 0 
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Table 3.4: Error values achieved by MSDE when NFEs = 5x10,  NFEs = 5x10,  NFEs = 5 x 105 for problems 13-18 

Prob. 
FES 

g13 g14 g15 g16 g17 g18 

Best 2.95759e-01(3) 2.38212e+00(3) 1.08207e-01(2) 1.38310e-02(0) 2.99626e+01(4) 4.52177e-01(0) 
Median 8.71456e-01(3) 4.41679e+00(3) 2.26109e-01(2) 1.69478e-02(0) 1.50391e+02(4) 6.55249e-01(0) 
Worst 9.40891e-01(3) 7.61513e+00(3) 2.44829e+00(2) 2.77160e-02(0) 3.44834e±02(4) 7.68085e-01(0) 

5 X10' c 0,3,3 0,1,3 0,0,2 0,0,0 1,4,4 0,0,0 

v 6.28157e-02 2.32473e-02 1.16100e-03 0 5.498739e-01 6.34650e-01 
Mean 7.27570e-01 5.48375e+00 1.05094e+00 2.06490e-02 1.28984e+02 9.08582e-02 
Std. 2.05594e-01 1.55581 e+00 8.38747e-01 5.08476e-03 8.382406e-01 9.08582e-02 
Best 7.37830e-04(0) 2.15395e-03(0) 6.09361e-11(0) 6.52225e-11(0) 1.94414e+01(0) 6.36800e-04(0) 

Median 8.12504e-04(0) 5.76329e-03(0) 3.94230e-01(0) 6.53251c-11(0) 8.66369e+01(0) 1.80242e-03(0) 
Worst 4.05454e-01(0) 1,19311e-02(0) 9.14075e-01(0) 6.53251e-11(0) 1.11386e+02(0) 4.50338e-03(0) 

5x104 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
v 0 0 0 0 0 0 

Mean 2.01164e-01 5.86988e-02 2.46219e-01 6.52582e-11  8.36554e+02 2.18953e-03 
Std. 1.89624e-01 2.13163e-15 3.34211e-10 0 3.39322e+01 5.551.12e-17 
Best 8.19243e-05(0) 1.05995e-06(0) 6.09361e-11(0) 6.52149e-11(0) 5.79999e-08(0) 1.55613e-11(0) 

Median 8.19243e-04(0) 1.05995e-06(0) 6.09361e-11(0) 6.52149e-11(0) 2.99626e-07(0) 1.55614e-11(0) 
Worst 3.80067e-01(0) 1.05995e-06(0) 6.09361e-11(0) 6.52149e-11(0) 7.40520e-07(0) 1.55614e-11(0) 

5x10 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0 ,0 ° 0,0,0 
v 0 0 0 0 0 0 

Mean 1.90443e-01 1.05995e-06 6.09361e-11(0) 6.52149e-11 7.66887e-07 1.55614e-11 
Std. 5.99643e-01 6.7408e-015 0 0 2.23362e-08 1.75542e-16 

Table 3.5: Error values achieved by MSDE when NFEs = 5x 103, NFEs = 5x 104, NFEs = 5x 105 for problems" 19-24 

Prob. 
FES 

g19 g20 g21 g22 g23 g24 

Best 8.22433e+01(0) 3.20423e+00(20) 1.33383e+02(5) 1.28277e+02(19) 4.07401e+01(5) 962840e-07(0) 
Median 8.22433e+01(0) 3.21427e+00(20) 2.70507e+02(5) 1.54448e+04(19) 1.01929e+02(5) 5.51560e-06(0) 
Worst 2.31858e+02(0) 5.46043e+00(20) 7.90876e+02(5) 1.63401e+04(19) 3.40542e+02(5) 6.05468e-06(0) 

5x103 c 0,0,0 2,18,20 0,4,5 17,19,19 0,4,5 ~"0,0,0 
v 0 1.75721e+00 6.21370e-02 6.20343e+05 1.78671e-01 0 

Mean 1.36668e+02 4.15232e+00 4.81019e+02 9.60174e+03 1.79501e+02 2.81235e-06 
Std. 3.95853e+01 7.91606e-01 2.00387e+02 5.45609e+03 1.06477e+02 1.79679e-06 
Best 3.18893e-01(0) 6.58755e-03(20) 6.70068e-05(0) 4.02714+03(19) 1.20009e+02(0) 4.65317e-12(0) 

Median 7.43132e-01(0) 1.25717e-02(20) 1.29576e-02(0) 6.48001e+03(19) 2.80670e+02(0) 4.65317e-12(0) 
Worst 1.05122e+00(0) 5.02642e-02(20) 1.30982e+02(0) 1.94930e+04(19) 4.46977e+02(0) 4.65317e-12(0) 

5x104 c 0,0,0 0,6,20 0,0,0 17,19,19 0,0,0 0,0,0 
v 0 2.15111e-02 0 4.08852e+04 0 0 

Mean 5.66698e-01 2.79470e-02 9.03673e+01 9.70419e+03 2.79155e+02 4.65317e-12 
Std. 1.1099e-14 7.76073e-07 6.41660e+01 4.27823e+03 " 8.33960e-11 0 
Best 4.63345e-11(0) 4.76843e-06(l) 3.48166e-11(0) 6.26246e+03(6) 3.97904e-13(0) 4.65317e-12(0) 

Median 4.63345e-11(0) 7.48033e-06(1) 3.48166e-11(0) 1.06714+04(6) 3.97904e-13(0) 4.65317e-12(0) 
Worst 4.63771 e-11(0) 7.48033e-06(1) 1.30978e+02(0) 1.91762e+04(6) 2.71882e-10(0)= 4.6-5317e-12(0) 

5x105 c 0,0,0 0,0,1 0,0,0 3,6,6 0,0,0 0,0,0 
v 0 7.18618e-03 0 2.17228e+00 0 0" 

Mean 4.63459e-11 5.33570e-06 7.85870e+01 1.41397e+04 3.73404e-11 4.65317e-12 
Std. 3.50982e-14 2.45416e-06 2.02911e+02 1.35290e+04 2.6372le-10 0 
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Table 3.6; Number of NFEs to achieve the fixed accuracy level ((fr) f *)) < 0.0001), Success Rate, 
Feasibility Rate and Success Performance by MSDB, 

Feasible Success Success, Prob. Best Median Worst Mean Std. Rate Rate Performance 
O1 31800 	"' 35425 36250 34970 1253 100% 10.00/. 34970 

g02 105400 119675 137500 120625 10674 100% 100% 120625 
g03 -- __ 100% 0% 
"04 16050 17075 18550 17195 761 100% 100% 17195 

gOS 16700 117650" 218200'' 122090 55788 100% 100% 122090 
g06 7650 8150 9000 	""' 8235 "X361 100%° 100% : 8235 
g07"" 85200 98550 108250` 98070 6540 100% 100% 98070 
g08 450 1325 1600  1235 296 100% , 100% 1235 
g09 24750 28300 29700 27830 - 	1512, 100% 100% 27830 
g10 120450 127775 135200 128095 4372 100% 100°/u 128095 
gil 3450 15950 30600 15140 8443 100% 100% ' 15140 
g12 750 1000 1250 1010 149 100% 100% 1010 
g13 32350 44600 56550 44525 9695 100% 88% 50596 
g14 68550: 70400 77650 71350 2531 100% 100% 71350 
g15 14100 76225 111250 67750 26873 100% 100% 67750 
g16 12050. 13200 14550 	"' 13320 618 100%p. 100% ' 13320. 
g17 204350 228200 299900.";240163 "-36796: -: 	100%''" 88% 272912 
g18 73100 82850' 101200`; "84065- " 8166 100% 100% 84065 
g19 152600. 168500 181860 '`167925 9746 100% 1006/6 ' 167925 
20 -" -- ` -- -- -- 0% 0% 

- 
g21; 46950 49350 62350 ' 51016 5230 100% 72% 70856 
g22 -- -- -- - 	' -- 0% 0% 

- 
g23 198200 228075 271600 231385 .22864 100% 60% 385641 
g24 3050- "3700" 4100 3650 264 100° 100% 3650 
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7. 1,-,-..,. 	 by CfP xxrhon N1FT = c x 10 NP1~ c = 5 x 1 n4 _ NFEs = S x 1 05 for nroblt 

Prob. 
FES g01 g02 g03 g04 g0 5 

Best 1.66651e+00(0) 3.38672e-01(0) 5.25821e-01(0) 1.01423e+00(0) 1.56252e+00(3) 5.8' 
Median 2.66785e+00(0) 3.48828e-01(0) 6.87642e-01(0) 1.22702e+00(0) 2.41341e+00(3) 8.9: 
Worst 4.1648e+00(0) 4.53219e-01(0) 8.70172e-01(0) 5.28069e+00(0) 4.77922e+00(3) 2.2 

5 x 103 c 0,0,0 0,0,0 0,0,0 0,0,0 0,2,3 
v 0 0 0 0 9.83244e-02 

Mean 3.01379e+00 3.89322e-01 0.728744 3.1947e+00 2.60157e+00 7. 
Std. 7.25838e-01 3.15807e-02 0.107681 1.45584e+00 8.48998e-01 6. 
Best 2.49437e-09(0) 2.68458e-02(0)7 06243e-02(0) 3.31784e-09(0) 7.10043e-09(0) 1.4; 

Median 1.09052e-08(0) 7.51118e-02(0)8 72004e-02(0) 3.31784e-09(0) 7.10043e-09(0) 1.4 
Worst 3.77633e-08(0) 1.08780e-01(0)9.11032e -02(0) 3.32147e-09(0) 7.10043e-09(0) 1.4. 

5x104 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
v 0 0 0 0 0 

Mean 1.46368e-08 6.67891e-02 2.35011e-02 3.32002e-09 7.10043e-09 1., 
Std. 0 8.14764e-03 2.89565e-04 1.09139e-12 0 
Best 0(0) 1.12504e-08(0) 3.18147e-02(0) 8.00355e-11 (0) 0(0) 1.4: 

Median 0(0) 2.86178e-08(0)3.31784e -O2(0) 8.00355e-1 1 (0) 0(0) 1.4' 
Worst 0(0) 6.28391e-08(0) 3.83409e-02(0) 3.32147e-09(0) 0(0) 1.4. 

5x105 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
v 0 0 0 0 0 E 

Mean 0 3.02811e-08 3.96721e-02 3.32111e-09 0 1 , 
Std. 0 6.65799e-08 9.00283e-06 3.45129e-12 0 

Tahln R- Frrnr vahiae arhiavpd by QT)R when NFF.v = 5x103 NFF,s = Sxl04_ NFEs = 5x105 for nroble 

FES g07 g08 g09 g10 gil g12 

Best 1.62644e+01(0) 8.83258e-07(0) 4.09591e+00(0) 1.93349e±03(0) 1.50394e-07(0) 9.21485e-15(0) 
Median 2.36368e+01(0) 8.83258e-07(0) 5.8835e+00(0) 2.82773e+03(0) 1.67374e-05(0) 4.39648e-14(0) 
Worst 2.93178e+01(0) 8.83258e-07(0) 1.09018e+01(0) 3.60685e+03(0) 8.10640e-02(0) 2.61569e-13(0) 

5x103 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
v 0 0 0 0 0 

Mean 2.31701e+01 8.83258e-07 7.34266e+00 2.61855e+03 9.52244e-03 7615$2e-14 
Std. 4.30983e+00 1.30923e-17 2.28494e+00 5.01995e+02 2.41154e-02 6.85416e-14 
Best 9.55995e-03(0) 8.83258e-07(0) 9.81117e-11(0) 6.69388e-10(0) 0(0) 0(0) 

Median 1.41390e-02(0) 8.83258e-07(0) 7.36236e-10(0) 6.55146e-01(0) 0(0) 0(0) 
Worst 2.33647e-02(0) 8.83258e-07(0) 3.1464e-09(0) 1.94167e+00(0) 0(0) 0(0) 

5x104 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
v 0 0 0 0 0 0 

Mean 1.35753e-02 8.83258e-07 9.81004e-11 0.915356 0 0 
Std. 2.13163e-15 1.30923e-17 1.07853e-13 3.63798e-13 0 0 
Best 7.98117e-11(0) 8.83258e-07(0) 9.79981e-11(0) 6.91216e-11(0) 0(0) 0(0) 

Median 7.98117e-11(0) 8.83258e-07(0) 9.79981e-11(0) 6.91216e-11(0) 0(0) 0(0) 
Worst 7.98117e-11(0) 8.83258e-07(0) 9.81117e-11(0) 6.91216e-11(0) 0(0) 0(0) 

5x105 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
v 0 0 0 0 0 0 

Mean 7.98117e-11 8.83258e-07 9.80057e-11 6.91216e-11 0 0 
Std. 6.7408e-15 1.30923e-17 3.41061e-14 1.15043e-12 0 0 
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Table 3.9: Error values achieved by SDE when NFEs = 5x103.  NFEs = 5x104.  NFEs = 5x10 for problems 13-18 
Prob. 

FES g13 g14 g15 g16 g17 g18 

Best. 9.62527e-03(3) 1.53957e+01(3) 1.65314e-04(1) 4.58283e-03(0) 2.33195e+01(4) 2.95209e-0l(0) 
Median 6.46529e-02(2) 1.80240e+01(3) 1.22720e-03(1) 5.54017e-03(0) 7.43504e+01(4) 3.94191e-01(0) 
Worst 6.08188e-01(3) 4.31482e+01(3) 7.70481e-01(2) 1.15618e-02(0) 2.25439e+02(4) 5.27015e-01(0) 

5x103  c 0,2,2 0,3,3 0,0,1 ' 0,0,0 1,4,4 0,0,0 
V 5.86143e-02 5.45758e-01 5.32557e-04 0 1.0855e+00 0 

Mean 2.39419e-01 ' 2.38573e+01 8.18152e-02 8.28083e-03 8.90232e+01 4.28404e-01 
Std. 1.98708e-01 8.85313e+00 2.29628e-01 2.27290e-03 5.74606e+01 6.78757e-02 
Best 8.19243e-04(0) 1.07811e-03(0) 9.96090e-09(0) 8.53478e-09(0) 5.79999e-03(0) 5.38834e-04(0) 

Median 3.80067e-01(0) 1.25419e-03 0) 9.96101e-09(0) 8.53479e-09(0) 2.55867e+00(0) 6.15036e-04(0) 
Worst 3.80067e-01(0) 9.02366e-03(0) l.13231e-08(0) 8.53479e-09(0) 9.13463e+01(0) 2.79150e-03(0) 

5 x104  c 0,0,0 0,0,0 
0,0,0  0,0,0  0,0,0 

0,0 ,0 
V 0 0 0 0 0 0 

Mean 3.04217e-01 2.70743e-03(0) ,1.00972e-08 8,53478e-09 1.35020e+01 1.38421e-03 
Std. 1.51699e-01 '' 0 3.41061e-14 5.99520e-16 . 3.70231e+01 5.08768e-17. 
Best 8.19243e-05(0) 1.05995e-06(0) 6.09361 e-11(0) 6.52149e-11(0) 5.79999e-08(0) 1.55614e-11(0) 

Median 3.80067e-01(0) 1.05995e-06(0) 6.09361e-11(0) 6.52149e-11(0) 5.79999e-03(0) 1.55614e-11(0) 
Worst 3.80067e-01(0) 1.05995e-06(0)" 6.09361e-11(0) 6.52149e-11(0) 7.40521e+01(0) 1.55614e-11(0) 

5x 105  c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 
V 0 0 0 0 0 0 

Mean 3.04217e-01 1.05995e-06 6.09361e-11 6.52149e-11 3.70289e-01 1.55614e-11 
Std. 4.79715e-01 0 1.07853e-13 1.89585e-15 . 1.17077e+01 1.60887e-16 

Table 3.10: Error values achieved by SDE when NFEs = 5x10,  NFEs = 5 X1ø, NFEs = 5 x 105  for problems 19-24 
Prob. 

FES g19 g20 g21 g22 g23 g24 

Best 6.60169e+01(0) 1.01651e-f-00(20) 7.73472e+00(5) 2.00461e+02(18) 4.21079e+02(5) '3.57405e-08(0) 
Median 7.88958e+01(0) 2.24645e+00(20) 3.22758e±01(5) 2.02665e 02(28) 6.15288e+02(5) 6.21463e-08(0) 
Worst 128065e+02(0) 2.52606e+00(20) 1.1595e+02(5 2.33617e+02(18 '6.58727e+02(5) 1.1646e-07(0) 5X103  c  0,0,0 2,18,20 1,5,5 18,18,18 2,5,5 0,0,0 

V 0 1.52951e+00 6.15919e-01 1.58915e+06 7.11753e-01 0 
Mean 8.94169e+01 1.81900e+00 ` 6.62669e+01 2.20016e+02 7.53218e+02 7.56426e-08 
Std. 2.03685e+01 4.42047e-01 3.93103e+01 1.25180e+01 6.78559e+00 2.58786e-08 
Best 2.16857e-01(0) 5.47738e-02(19) 7.46949e-06(0) 2.31307e+02(18) 1.79542e+01(2) 4.65317e-12(0) 

Median 4.23096e-01(0) 5.55880e-02(20) 7.46949e-06(0) 2.34730e+02(18) 2.12415e+02(2) 4.65317e-12(0) 
Worst 5.3733le-01(0) 7.62731e-02(19) 3.07502e-05(0) 2.36323e+02(18) 3.28436e+02(2) 4.65317e-12(0) 

5x104  c 0,0,0 0,4,20 0,0,0 16,18,18 0,2,2 0,0,0 
V 0 2.00149e-02 0 5.99771e+04 7.08644e-02 0 

Mean 3.37506e-01 6.51989e-02 7.48647e-06 2.34109e+02 1.82419e-02 4.65317e-12 
Std. 3.25612e-15 9.65038e-03 5.55880e-02 1.2796e-11 9.33119e+01 0 
Best 4.63274e-11(0) 2.78755e-02(1) 3.48166e-11(0) 2.36431e+02(9) 3.97904e-13(0) 4.65317e-12(0) 

Median 4.63274e-11(0) 5.33038e-02(1) 3.48166e-11(0) 2.36431e+02(9) 2.48538e+02(2) 4.65317e-12(0) 
Worst 4.63274e-11(0) 6.19949e-02(1) 3.48166e-11(0) 2.36431e+02(9) 3.27808e+02(2) 4.65317e-12(0) 

5x105  c 0,0,0 0,1,1 
0,0,0  2,6,9 

0,2,2 
0,0,0 

V 0 1.51715e-02 0 7.60051e+01 8.28466e-02 0 
Mean 4.63274e-11 4.43923e-02 3.48166e-11 2.36431e+02 1.80106e+02 4.65317e-12 
Std. 1.02967e-14 3.05172e-02 1.81822e-14 4.04645e-11' 2.95078e+02 0 



Constrained Differential Evolution 

Table 3.11: Number of FES to achieve the fixed accuracy level ((f(x)- f -*)) S 0.0001), Success Rate, Feasibility 

Rate and Success Performance by SDE. 

Prob. Best Median Worst Mean Std. 
Feasibl 
e Rate 

Success 
Rate 

Success 
Performance 

O1 28300 29225 32600 29750 1340 100% 100% 29750 
g02 104600 119350 133200 120943 8594 100% 80% 151178 
g03 -- -- -- -- -- 100% 0% o -- 
04 13100 13825 15100 13910 545 100% 100% 13910 

g05 10100 14250 40650 18280 8970 100% 100% 18280 
g06 5500 6125 6500 6105 278 100% 100% 6105 
g07 82650 91450 101500 90810 5223 100% 100% 90810 
g08 1050 1250 1700 1325 199 100% 100% .1325 
g09 24800 25700 28600 26105 1128 100% 100% 26105 
g10 99550 109850 117650 109865 5604 100% 100% 109865 
g11 3000 6125 16650 7662 4365 100% 100% 7662 
g12 1000 1100 1250 1100 83 100% 100% 1100 
g13 27000 32600 35700 31766 3600 100% 84% 37816 
g14 63050 68025 73250 68575 3448 100% 100% 68575 
g15 5850 11325 28000 13312 7992 100% 100% 13312 
g16 10150 10950 11700 10945 480 100% 100% 10945 
g17 208989 211342 213456 209765 4578 100% 24% 874020 
g18 59300 67975 83400 69205 7093 100% 100% 69205 
19 143450 153325 169000 154915 8005 100% 100% 154915 

g20 -- -- -- -- -- 0% 0% 
21 38100 42400 44600 41430 2339 100% 60% 69050 

g22 -- -- -- -- -- 0% 0% -- 
g23 111900 117700 133050 120883 8923 80% 56% 215862 
g24 2450 2725 3050 2760 204 100% 100% 2760 

f ,r 
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Constrained Differential Evolution 

Table 3.13: Comparison of MSDE and SDE on the basis of Number of NFEs to achieve the fixed 
accuracy level ((f(x) - f(x*)) <_ 0.0001). 

Prob. Best Worst Mean Std. Success Performance 
SDE MSDE SDE MSDE SDE MSDE SDE MSDE SDE MSDE 

O1 28300 31800 32600 36250 29750 34970 1340 1253 29750 34970 
g02 104600 105400 133200 137500 120943 120625 8594 10674 151178 120625 
g03 -- - 

-_ 
-- -- -- 

__  _- 
-- 

g04 13100 16050 15100 18550 13910 17195 545 761 13910 17195 
g05 10100 16700 40650 218200 18280 122090 8970 55788 18280 122090 
g06 5500 7650 6500 9000 6105 8235 278 361 6105 8235 
g07 82650 85200 101500 108250 90810 98070 5223 6540 90810 98070 
g08 1050 450 1700 1600 1325 1235 199 296 1325 1235 
g09 24800 24750 28600 29700 26105 27830 1128 1512 26105 27830 

10 99550 120450 117650 135200 109865 128095 5604 4372 109865 128095 
g1l 3000 3450 16650 30600 7662 15140 4365 8443 7662 15140 
g12 1000 750 1250 1250 1100 1010 83 149 1100 1010 
g13 27000 32350 35700 56550 31766 44525 3600 9695 37816 50596. 
g14 63050 68550 73250 77650 68575 71350 3448 2531 68575 71350 
g15 5850 14100 28000 111250 13312 67750 7992 26873 13312 67750 

16 10150 12050 11700 14550 10945 13320 480 618 10945 13320 
g17 208989 204350 213456 299900 209765 240163 4578 36796 874020 272912 
g18 59300 73100 83400 101200 69205 84065 7093 8166 69205' 84065 

19 143450 152600 169000 181800 154915 167925 8005 9746 154915 167925 
g20--  -- -- -- -- -- -- -- -- 
g21 38100 46950 44600 62350 41430 51016 2339 5230 69050 70856 
g22 -- 

-- 
-- -- -- -- -- -- -- -- 

g23 111900 198200 133050 271600 120883 231385 8923 22864 215862' 385641 
g24 2450 3050 3050 4100 2760 3650 204 264 2760 3650 

83 



Chapter 3 

Table 3.14: Number of NFEs to achieve the fixed accuracy level ((f) - (*)) <_ 0.0001), Success Rate, 
Feasibility Rate and Success Performance by all the algorithms for problems 01-12. 

Problem Algorithm g Best Worst Mean Feasible 
Rate (%) 

Success 
Rate (%) 

Success 
Performance 

MSDE 31800 36250 34970 100. 100 34970 
SDE 28300 32600 29750 100 100 29750 

ZRDE 30511 38028 33414 100 100 33414 
jDE-2 46559 56968 50386 100 100 50386 

g01 &DE 57122 61712 59308 100 100 59308 
MDE 37633 49654 43430 100 100 43430 
MDE1 63300 90900 75373 100 100 75373 
SaDE 25115 25115 25115 100 100 25115 
MSDE 105400 137500 120625 100 100 120625 
SDE 104600 133200 12-0943 100 80 151178 

ZRDE 95501 129363 ` 113298 100 84 134879 
g02  jDE-2 101201 173964 123490 100 92 145899 

EDE 126152 175206 149825 100 100 149825 
MDE 260388 301048 280573 100 92 304970 
MDE1 53250 245550 96222 100 16 96250 
SaDE 76915 - 188990 100 84 183850 
MSDE ^_ -_ 100 0 

- 
SDE` - - 100 0 -  

ZRDE _ _ _ 100 0 
jDE-2 - - 100 0 -  

g03 EDE 86748 91328 89407 100 100 89407 
MDE 119629 277057 109298 100 84 " 24860 
MDEI 36000 61350 44988 100 100 44988 
SaDE' 30000 - 243520 100 96 298960 

MSDE 16050 18550 17195 100 100 17195 
SDE' 13100 15100 13910 100 100 13910 

ZRDE 14048 18362 15986 100 100 15986 

g04 jDE-2 38288 42880. 40728- 100 100 40728 
sDE 24800 28206 26216 100 100 26216 

MDE 19717 22609 20883 100 ' 100 20883 
MDE1 33900 61950 41562 100 100 41562 
SaDE 25107 25113 25107 100 100 25107 

MSDE 16700 218200 122090 100 100 122090 
SDE 10100 40650 18280 100 100 18280 

ZRDE 16994 204151 107076 100 100 107076 
jDE-2 133340 482304 206620 100 68 446839 

g05 FOE 96812 98589 97431 100 100 97431 
MDE 39701 477209 216469 100 100 216469 
MDEI 19350 24000 21306 100 100 21306 
SaDE 35500 152000 74340 100 100 73000 

MSDE 7650 9000 8235 100 100. 8235 
SDE 5500 6500 6105 100 100 6105 

ZRDE 6147 7995 7143 100 100 7143 
g06 'DE-2 26830 31299 29488 100 100 29488 

sDE 6499 8382 7381 100 100 7381 
MDE 9872 11528 10574 100 100 10574 
MDEI 4650 5250 5202 100 100 5202 

84 



Constrained Differential Evoluti 

SaDE 12546 18347 14394 100 100 12546 
MSDE 85200 108250 98070 100 100 98070 
SDE 82650 101500 90810 100 100 90810 

ZRDE 84889 104026 93793 100 100 93793 
jDE-2 114899 141847 127740 100 100 127740 

g07 EDE 69506 78963 74303 100 100 74303 
MDE 52438 63445 57400 100 100 57400 
MDE1 124650 380400 194202 100 100 194202 
SaDE 25195 422860 143090 100 100 27637 

MSDE 450 1600 1235 100 100 1235 
SDE 1050 1700 1325 100 100 1325 

ZRDE 831 1337 1086 100 100 1086 
jDE-2 1567 4485 3236 100 100 3236 

g08 EDE 327 1334 1139 100 100 1139 
MDE 990 2068 1515 100 100 1514 
MDE1 900 1350 918 100 100 918 
SaDE 782 1775 1268 100 100 1323 

MSDE 24750 29700 27830 100 100 27830 
SDE 24800 28600 26105 100 100 26105 

ZRDE 23828 27424 25805 100 100 25805 
jDE-2 49118 58230 54919 100 100 54919 

g09  EDE 19530 24790 23121 100 100 23121 
MDE 18608 24025 21044 100 100 21044 
MDE1 14850 19200 16152 100 100 16152 
SaDE 12960 33166 18560 100 100 21446 

MSDE 120450 135200 128095 100 100 128095 
SDE 99550 117650 109865 100 100 109865 

ZRDE 105673 132270 119217 100 100 ' 119217 
jDE-2 139095 165498 146150 100 100 146150 

g10 EDE 93743 122387 105234 100 100 105234 
MDE 42610 60924 48628 100 100 48628 
MDEI 152400 179850 164160 100 100 164160 	'r 

SaDE 26000 15300 58760 100 100 44167 
MSDE 3450 30600 15140 100 100 15140 
SDE 3000 16650 7662 100 100 7662 

ZRDE 1384 24356 13380 100 100 13380 
jDE-2 17834 432169 49700 100 96 53928 

g11 EDE 5407 29510 16420 100 100 16420 
MDE 3884 55738 22422 100 96 23356 
MDE1 1200 4950 3000 100 100 3000 
SaDE 12643 25120 23353 100 100 25111 

MSDE 750 1250 1010 100 100 1010 
SDE 1000 1250 1100 100 100 1100 

ZRDE 342 7307 5104 100 100 5104 
jDE-2 1820 9693 6355 100 100 6356 

g12 EDE 1645 5540 4124 100 100 4124 
MDE 1044 6510 4238 100 100 4238 
MDEI 1200 1650 1308 100 100 1308 
SaDE 463 2576 1611 100 100 2576 

85 



Chapter 3 

Table 3.15: Number of NFEs to achieve the fixed accuracy level ((f(z) - (*)) ~ 0.0001), Success Rate, 
Feasibility Rate and Success Performance by all the algorithms for problems 13-24. 

Problem Algorithm Best Worst Mean Feasible 
Rate (%) 

success 
Rate (%), 

Success 
Performance 

MSDE. 32350 56550 ' 	44525 100 88 50596 
SDE 27000 35700 31766 100 84 37816 

ZRDE 242289 288226 265703 100 32 830322 
'DE-2 - - - 100 0 

-  
g13 

cDE 8287 68608 34738 100 100 34738 

MDE 268723 429252, 356433 88 48 742568 
MDE1 19500 24450. 21732 100 100 21732 

SaDE 25161 126080 42372 100 100 25168 
MSDE ." 68550 77650 71350 100 100 

SDE 63050. 73250 68575 100 100 68575 

ZRDE 57727 81392 68226 100 ` 100 68226 
'DE-2 88954 107951 97845 100, 100 97845 

g14 
EDE 106816 121656 ": 113439 100  , 100 113439 -u 
MDE 34099" 58180 42715 100 100 42715 

MDE1 208236 408036 291,642 100 100 291642 

SaDE 32000 154320 .100 80 45000 
MSDE 14100> 111250, 67750 100 100 67750 
SDE'." 5850 28000  "°"""13312 100 '100 13312 

ZRDE 7151 137487 57968 100 100 57968 
DE-2 '51321., 432766 222460, 100 96 241383 

g15 eDE 57729 -90593 ""84216 100 100 84216 

MDE 12240 490328 200174 100 100 200174 

MDE1 9750 11850 10458 100 100 10458 

SaDE 25500 97000 45240 100 100 27000 

MSDE 12050: 14550 13320 100 100 13320 

SDE` 10150." 11700 "" ';: 10945 - 100. 100 10945 
ZRDE 9837; ,  " " 	12619`"' '. 	11592 1.00 	~ 106 11592 

g16 
'DE-2 28230 34182 31695 100 100 31695 

sDE 12347 13923 12986 100 100 12986 

MDE "-11036_ 14418 13063 100 100` ~ 13063 
MDE1 7950 9450 8730 100 10.0 8730 

SaDE 13144 15797 14545 100 100. 14948 

MSDE 204350 299900  ;' 240163 100 88 272912 

SDE'I - 208989 213456 209765 100 24 874020 
ZRDE . 201798-. 328448 "265692 100  20 1328459 

17 jDE-2 449306 449306 179710 100 " 4 11232650 

eDE ; . 97274 . ;100144 " 98861 100  - 100 98861 
MUE~ 117917, 270372 ` 204791 -  96 28 731396 

MDEI 20400 34950 26364 100 100 26364 
SaDE;  

" 
...443000 - 497720 100 4 12500000 

MSDE ,73100 101200 84065 , . 100 100 84065 
SDE 59300 83400 69205 100 100 69205 
ZRDE 70290 96334 79557 100 100 79557 

g18 jDE-2 91049 142674 104460 100 100 104462 
sDE 51035 72112 59153 100 100 59153 
MDE 36211 57603 44045 100 100  . 44045 
MDE1` 54000 133800 103482 100 100 103482 
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SaDE 26000 - 65400 100 92 28261 
MSDE 152600 181800 167925 100 100 167925 

SDE 143450 169000 154915 100 100 154915 
ZRDE 150864 198377 177229 100 100 177229 
jDE-2 170950 234038 199850 100 100 199850 g19 EDE 319636 451685 356350 100 100 356350 
MDE 102385 146392 118274 100 100 118274 
MDE1 

-- -- -- 
100 0 

-_ 

SaDE 25531 78048 48733 100 100 52165 
MSDE -- -- -- 0 0 -- 

SDE _ __ 
_- 0  0  _- 

ZRDE -- -- -- 0 0 
-- 

jDE-2 -- -- -- 4 0 __ 
g20  EDE -- -- -- 0 0 

_- 
MDE -- -- -- 0 0 - -MDE1 

-- -- 0 0 -- 
SaDE -- -- -- 0 0 

-- 

MSDE 46950 62350 51016 100 72 70856 
SDE 38100 44600 41430 100 60 69050 

ZRDE 41559 213297 97614 100 60 162691 

g21  'DE-2 96552 147030 107080 100 92 126507 
WE 126194 216905 135143 100 100 135143 

MDE 42542 303029 142159 100 68 209057 
MDE1 82350 201150 112566 100 100 112566 
SaDE 98500 -- 327660 100 60 164170 

MSDE _- -- 0 0 
--  

SDE 
__ -- -- 0 0 -- 

ZRDE -- -- -- 0 0 
--  

g22 jDE-2 -- -- -- 0 0 _-  
EDE -- 100 0 -- 
MDE -- -- -- 0 0 -- 

MDE1 - -- -- 0 0 -- 
SaDE -- -- -- 100 0 -- 

MSDE 198200 271600 231385 100 60 385641 
SDE 111900 133050 120883 80 56 215862 

ZRDE -- __ 100 0 
--  

'DE-2 205404 495721 g 23 302550 100 92 357452  
... EDE 158742 281071 200765 100 100 200765 

MDE 109493 293966 210661 100 100 210661 
MDE1 247500 476250 360420 100 100 360420 
SaDE 82500 -- 294540 100 88 129550 

MSDE 3050 4100 3650 100 100 3650 
SDE 2450 3050 2760 100 100 2760 

ZRDE 2514 3356 3024 100 100 3024 

g24 'DE-2 7587 11550 10196 100 100 10196 
EDE 2661 3474 2952 100 100 2952 
MDE 3623 5099 4342 100 100 4342 
MDE1 1650 1950 1794 100 100 1794 
SaDE 4280 5657 4847 100 - 100 4624 
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N Friedman I 
 df p-value 

I I 	value 
24 	j 30.747 	J 7 <0.001 

df — Degrees of freedom 	N - Total No of functions 

Table 3.17: Ranking obtained through Friedman's test and Critical Difference (CD) calculated through 
Bonnferroni-dunn's procedure. 

Table 3.18: Results of pairwise comparison based on NFEs. 

Wilcoxon test 
SDE +ve -ve tie Mean of Mean of Sum of Sum of 
Vs. rank rank +ve -ve rank +ve rank -ve rank Stat, p-value 

rank 
MSDE 18 3 3 12.5 2 225 6 -3.806 <0.001 
ZRDE 17 4 3 12.41 5 211 20 -3.319 0.001 

IDE 20 1 3 11,  11 220 11 -3632 	1 0.000 
eDE 15 7 2 11.6 11.29 174 79 
MDE 14 8 2 10.93 12.50 153 100 

MDE1 11 11 2 14.09 8.91 155 98 
SaDE 15 7 2 12.20 10 183 70 

	

-0.925 	0.355 

	

-1.834 	0.067 
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Figure 3.1: Convergence graph for problems 01-06 of SDE. 
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Figure 3.2: Convergence graph for problems 07-12 of SDE. 
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Figure 3.3: Convergence graph for problems 13-18 of SDE. 
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Figure 3.4: Convergence graph for problems 19-24 of SDE. 
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Figure. 3.5: Convergence graph for problems 01-06 of MSDE. 
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Figure 3.6: Convergence graph for problems 07-12 of MSDE. 
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Chapter 4 
SDE for Multi-Objective timization 

Up till now this thesis dealt with the constrained and unconstrained optimization 
problems having single objective. However, many application problems involve multiple, often 
conflicting optimization criteria. Such problems are called multi-objective optimization 
problems (MOPs). The presence of more than one objective hampers the application of classical 

optimization techniques, which require a certain structure of the problem and are mostly 
designed to handle only a single objective. 

Considering the algorithmic simplicity of the proposed SDE algorithm and its efficient 

performance for solving the constrained/ unconstrained optimization problems, in the present 
chapter, it is suitably modified and extended for solving multi-objective optimization problems 

The performance of this extended version named MO-SDE is investigated on a set of nine 
standard benchmark MOPs and is compared with some recently modified versions of DE and 
some other Multi-Objective Evolutionary Algorithms (MOEAs). The empirical analysis of the 

numerical results shows the efficiency of the proposed algorithm. 
The remainder of the chapter is structured as follows. Literature is given in section 4.1. 

Section 4.2 provides some definition related to this research. Section 4.3 describes the proposed 
MO-SDE. Experimental settings, test problems and performance metric are given in section 4.4. 
Results are discussed in section 4.5. Finally, the conclusions based on the present study are 

drawn in section 4.6. 

4.1 Introduction 

In the past few decades there has been a significant rise in the application of 

Evolutionary Algorithms (EAs) for solving multi-objective optimization problems (MOPs). This 

is primarily because of the fact that EAs deal with a set of solutions which help in the generation 

of well distributed Pareto optimal front more quickly and efficiently in comparison to the 

classical techniques. In mid 80's the application of EA was first suggested by Schaffer for 
solving MOPs (1984, 1985). Subsequently, several different algorithms have been proposed and 
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successfully applied to various benchmark and real life problems. For comprehensive overviews 
and discussions, the interested reader may refer to Fonseca and Fleming (1993, 1995), Horn 
(1997), Veldhuizen and Lamont (2000), Zitzler and Thiele (1999), Coello Coello (1996, 2000), 
Srinivas and Deb (1994) and Deb et al. (2002). Many more studies about the development and 
application of EA for solving MOPs can be found in' Nakib et al. (2010), Hammouche et al. 
(2010), Bader and Zitzler (2008), Deb and Tiwari (2008) and Zitzler and Thiele (2010). 

4.1.1 Application of DE for Solving MOP 

Several researchers have studied the extension of DE to solve multi-objective 
optimization problems in continuous domain. Abbass et al. (2001, 2002) were the first to 
explore the potential of DE for solving MOPs. In their algorithm called Pareto Differential 
Evolution (PDE), DE is employed to create new solutions and only the nondominated solutions 
are kept as the basis for next generation. Their results showed the competence of DE for solving 
MOPS. 

Madavan (2002) developed a multi-objective DE using a similar concept as that of PDE 
of Abbas et al. (2001). His algorithm, called Pareto Differential Evolution Approach (PDEA)1 , 
applies DE to create new solutions and keeps them in an auxiliary population. It then combines 
the two -populations and 'calculates the nondominated rank and diversity rank, based on 

• crowding distance for each solution. He demonstrated that with this approach the performance 
of DE for solving MOPs can be improved further. 

Xue et al. (2003) introduced Multi-Objective Differential Evolution (MODE). This 
algorithm also uses Pareto-based ranking assignment and crowding distance metric, but in a 
different manner than PDEA. In MODE the fitness of a solution is first calculated using Pareto-
based ranking and then reduced with respect to the solution's crowding distance value. This 
fitness value is then used to select the best solutions for next generation. 

Robic et al. (2005) proposed Differential Evolution for Multi-objective Optimization 
(DEMO) and achieved good results. This algorithm, similar to PDEA algorithm, uses Pareto- 
based ranking assignment and crowding distance metric, but has a different population update 
strategy. According to this algorithm, if the newly generated solution dominates the target 
solution, then there is an immediate replacement of target solution in the current population. 

~ This acronym was not used by Madavan. It was introduced by Robic and Filipic (2005) in their paper. 
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However, if both are nondominated, then the new solution is added to the population for later 
sorting, otherwise the target solution is retained. 

Multi-objective Differential Evolution Algorithm (MDEA), * proposed by Adeyemo and 
Otieno (2009), generates new solution using DE variant and compares it with target solution. If 
it dominates target solution then it is added to new population, otherwise target solution is 
added. As the termination criterion is reached, dominated solutions are removed from last 
generation using Nave and Slow approach (Deb, 2001). 

Huang et al. (2007, 2009) extended their Self adaptive DE (SaDE) to solve MOPS by a 
so called Multi-Objective Self adaptive DE (MOSaDE). They further extended MOSaDE by 
using objective wise learning strategies in WO-MOSaDE. 

4.2 Background 

This section briefly describes the terminologies and concepts used in the chapter. 

4.2.1 Multi-Objective Optimization Problem (MOP) 

An unconstrained MOP can be formally defined as the problem of finding all X = 

(x1, x2 , ..., XD ) to optimize the vector function: 	
4, 

Minimize (fi(X),f,(X),..., f k (X)) 

In other words, the aim is to determine those decision vectors X in the decision;. space D 

which satisfy all the box constraints and optimize the objective function vector. The box 
constraints define the feasible region `FR' and any vector X in the feasible region is called a 
feasible solution. 

4.2.2 Pareto Dominance 

Pareto dominance can be defined as (Deb, 2001): 

A solution X1 = (xi,i , x1,2, ..., x1,D ) 	is 	said to dominate the 

X2 = (x2,1, x2,2 , ... , X2,o ) if both the conditions mentioned below are satisfied: 
V i e (1,2,...,k) : f,(X1) ~ f(X 2 ) 

2.  

other solution 
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Alternatively, it can be said that a solution dominates the other only if it is strictly better 
in at least one objective, and not worse in any of them. Thus, while comparing two different 
solutions XI  and X2i  there are three possibilities: 

✓ Xj dominates X2  
Xl is dominated by X2  
Xj and X2  are nondominated 

4.2.3 Fast Nondominated Sorting 

In this approach introduced by Deb et al. (2002), for each solution i of 'a set S. two entities 
are calculated: 

1. Domination count n;, the number of solutions which dominate the solution i. 
2. S, a set of solutions that the solution dominates. 
At the end of this procedure, all solutions in the first nondominated front F1 have their 

domination count as zero. Now, for each solution i with n;  = 0, it visits each member (j) of its 
set S, and reduces its domination count by one. While doing so, if for any member j the 
domination count becomes zero then it is put in a separate list P. These members belong to the 
second nondominated front F2. The above procedure is continued with each member of P and 
the third front F3 is identified. This process continues until all fronts are identified. 

4.2.4 Crowding Distance Metric 

Crowding distance (Deb, 2001; Deb et al., 2002) is used to get an estimate of the density 
of solutions surrounding a particular solution i in the population, it calculates the average 
distance of two solutions on either side of solution i (i.e. i+ 1 & i-1) along each of the objectives. 
The crowding-distance computation requires sorting the population according to each objective 
function value in ascending order of magnitude. Thereafter, for each objective function, the 
boundary solutions (solutions with smallest and largest function values) are assigned an infinite 
distance value.. All other intermediate solutions are assigned a distance value equal to the 
absolute normalized difference in the function values of two adjacent solutions. This calculation 
is continued with other objective functions. The overall crowding-distance value is calculated as 
the sum of individual distance values corresponding to each objective. Each objective function 
is normalized before calculating the crowding distance. 
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4.3 Multi-Objective Synergetic Differential Evolution (MO-SDE) 

The main challenging task for modifying the DE algorithm to deal with MOPs is to 
develop a robust strategy for generating a new point resulting in faster convergence to optimal 
Pareto front and to replace the points to obtain a solution set as diverse as possible. 

4.3.1 Working of MO-SDE 

The initial working of MO-SDE is same as that of the SDE algorithm proposed in 
chapter 2. That is to say, it uses OBL for generating the initial population and tournament based 

method for generating the trial vector. After the initialization and mutation phases are complete, 
MO-SDE performs crossover, as defined by equation (1.7), and enters the selection phase. This 
is perhaps the most important phase in terms of MOPs because a careful selection of candidate 

solutions helps in the generation of a good Pareto optimal front. The selection process of MO-
SDE is defined in the following subsection. 

4.3.2 Proposed Selection Mechanism Used in MO-SDE 

MO-SDE combines the concept of PDEA (Madavan, 2002) and DEMO (Robic and 

Filipic, 2005) but with slight difference. In order to explain the selection process of the proposed 
MO-SDE, first a short description of the selection process of PDEA and DEMO is given. «u.: 

PDEA applies the DE to create NP new solutions and keeps them in other (advance) 
population. It then combines the two (current & advance) populations. Note that the total size of 
the set after combination becomes 2NP. After that, NP solutions are selected on the basis of 

nondomination rank and crowding distance rank (crowding distance in last front being 
accommodated in population) for next generation. PDEA allows a global non-domination check 

among both the parent and offspring solutions although it requires additional computational 
effort in sorting the combined rather than only the offspring population, as is done in many of 

the other approaches. 
In DEMO, the trial solution replaces the target solution if it dominates it. If the target 

solution dominates the trial solution, the trial solution is discarded. Otherwise, the trial solution 
is added to the population. Thus, at the end of a generation, total size of the population is 
between NP and 2NP. This population is truncated for the next step of the algorithm. The 
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truncation process consists of nondominated sorting and evaluating the solutions of the same 
front with the crowding distance metric. The truncation procedure keeps only the best (elite) NP 

solutions in the population. The idea of immediate replacement of solutions in DEMO makes it 
greedy in nature, therefore though it has a faster convergence, it may lose some important 
information while discarding the solution. 

In MO-SDE, trial solution is compared to the target solution, if it dominates target 
solution, then it replaces target solution immediately in current population (as in DEMO) and 
target solution is added to advanced population, otherwise new solution (i.e. the trial solution) is 
added to the advanced population. After each generation, the two populations (current & 
advanced) are combined. Note that the total size is 2NP (as in PDEA). 

Besides the above modifications, the MO-SDE also incorporates an effective elite-
preserving and an explicit diversity-preserving strategy, borrowed from NSGA-II (Deb, 2001; 
Deb et al., 2002) for truncation of 2NP solutions to NP. 

4.3.3 Effect of Using the Proposed Selection Mechanism 

The immediate replacement of the parent solution with the candidate that dominates it is 
the core of MO-SDE. The newly created solution that enters the population instantly takes part 
in the creation of the new solutions. This helps in achieving the first goal of multi-objective 
optimization — convergence to the true Pareto front. 

In case, there are many fronts in the current population and the target solution (say X) 
belongs to first front and trial solution dominates it, then it is discarded in DEMO. However, for 
MO-SDE, instead of discarding X, it is stored in the advanced population for latter sorting, 
because it may get place in subsequent front of the population for next generation. 

Pseudocode of MO-SDE is given in Algorithm 4.1. 

4.3.4 Computational Complexity Analysis 

The proposed MO-SDE approach is simple to implement, yet efficient in yielding true 
Pareto optimal solutions. The computational complexity of MO-SDE is also reasonable. Here, 
complexity is defined as the total number of function value comparisons. Basic operations and 
their worst case complexities are as follows: 
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Algorithm 4.1 Pseudocode of MO-SDE illustrating how the procedure acts on a population of individuals, 
repeating mutation, crossover and selection until the convergence criteria is met. 
Step 1: 	Generate randomly NP individuals, using equation (1.1) and NP opposite individuals using equation 

(2.7). Merge these two and select NP fittest solutions as initial population using nondominated 
sorting and crowding distance metric. Set the values of control parameters F and Cr. 

Step 2: 	Set i = 0. 
Step3: 	i =i+1. 
Step 4: 

	

	Corresponding to target individual X select three distinct individuals X1, Xr2  and Xr3 such that i ~ rl 
~ r2 r3 from population and generate perturbed individual V using equation (2.8). For this 
operation tournament best is selected on the basis of non domination. 

Step 5: 

	

	Recombine the target vector X with perturbed individual V1 generated in step 4 to generate trial 
vector U, using equation (1.7). 

Step 6: 

	

	If all parameters of the trial vector are within the given range then go to step 7 otherwise uniformly 
generate that parameter within given range using equation (1.1) and go to step 7. 

Step 7: 

	

	Calculate the objective function values for vector U,. If trial vector U dominates target vector X, then 
it immediately replace target vector in current population and target vector is added to auxiliary 
population otherwise trial vector is added to auxiliary population. 

Step 8: 	If i < NP then go to step 3 otherwise go to step 9. 
Step 9: 

	

	Merge these two population (current and auxiliary) and select NP fittest solutions for next generation 
using nondominated sorting and crowding distance metric. 

Step I0: Check whether the termination criterion is met. If yes then stop otherwise go to step 2. 

1. Selection of NP solutions out of 2NP solutions for initial population using nondominated 

and crowding distance sorting: 0 (k x (2NP)2) + 0 (k x (2NP) x log (2NP)). 
2. Procedure to check tournament best of three solutions for mutation for one iteration: 0 

(2 x k x NP). 
3. Procedure to check the domination status of new solution with target solution for one 

iteration: 0 (k x NP). 
4. Selection of NP solutions out of 2NP solutions (NP old and NP new) for next generation 

using nondominated and crowding distance sorting: 0 (k x (2NP)2) + O (k x (2NP) x 
log (2NP)). 
For large NP, 0 (k x (2NP) x log (2NP)) is smaller than 0 (k x (2NP)2 ). Therefore, the 

overall complexity of the MO-SDE is less than or equal to O (k x (2NP)2 ), which is in well 

agreement with the latest versions of multi-objective evolutionary algorithms (MOEAs). For 
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The last problem, ZDT6, is another problem considered to be difficult. The two major 
difficulties with this problem are (1) thin density of solutions towards the optimal Pareto-front 
and (2) nonuniform spread of solutions along the front. 

Mathematical models of these problems are given in Appendix IV. 

4.4.2 Experimental Setup 

To be consistent with literature (Abbass, 2002; Madavan, 2002; Xue et al., 2003), the 
following setting has been taken: 

➢ Crossover probability Cr = 0.3 
Maximum number of function evaluations = 25000 

➢ Number of trial = 10 
Population size (NP) and scaling factor F are same as in chapter 2. In every case, a run is 

terminated when the number of function evaluations (NFE) reaches the threshold value of 
25000. Also the boundary violation is handled in same manner as in chapter 2. 

4.4.3 Performance Metric I 

To validate proposed approach, it used the methodology normally adopted in the 
evolutionary multi-objective optimization literature. The two common metrics used to compare 
MO-SDE with other MOEAs are (1) Convergence Metric (2) Divergence Metric. They 
represent both quantitative and qualitative comparisons with MOEAs. For these metrics it needs 
to know the true Pareto front for a problem. In this chapter experiments use 500 uniformly 
spaced Pareto optimal solutions as the approximation of the true Pareto front. A brief 
introduction of these metrics is given here: 

➢ Convergence metric T (Deb et al., 2002), measures the distance between the obtained 
nondominated front NF and optimal Pareto front PF. Mathematically, it may be defined 
as: 

N 

di 
1= '=' 

N 
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A Multi-objective Differential Evolution Algorithm (MDEA) (Adeyemo and Otieno, 

2009). 

4.5 Results and Discussions 

In this section, result of nine test problems using the proposed MO-SDE algorithm are 
compared with the results of nine other algorithms using convergence and diversity metrics. The 

results of other algorithms are taken from literature (Deb et al., 2002; Adeyemo and Otieno, 

2009). 
Tables 4.1- 4.9 represent the mean and variance of the values of convergence and 

diversity metrics of ten runs. The results are also compared statistically and corresponding 

results are given in Tables 4.10 and 4.11. Figures 4.1- 4.9 illustrate the obtained nondominated 
Pareto front and optimal Pareto front (PF). Besides the quantitative investigation of MO-SDE, it 

is also analyzed qualitatively with the help of graphical illustrations. 

4.5.1 Results Based on Performance Metric I 

From Table 4.1, which gives the result of SCI-1 function, it is clear that MO-SDE was able 
to attain both the goals. This behaviour of MO-SDE is also evident from Figure 4.1 which 
illustrates a well predicted Pareto front and a large number of optimal solutions spread out over 

the entire front. 
For the second function, FON, it can be clearly seen from Table 4.2 and Figure 4.2 that 

the proposed MO-SDE effectively finds diverse solutions along the optimal PF. 
For the next function, POL, it can be observed from Figure 4.3 that the proposed method 

is able to predict the two disconnected Pareto fronts that lie on the boundaries of the search 

space. However, from Table 4.3 it is seen that although MO-SDE achieves better convergence, 

better spread of solution is achieved by NSGA-II (real). 
For the function, KUR, apparently a difficult function having three disconnected curves, 

it is observed from Table 4.4 and from Figure 4.4 that MO-SDE performed quite well for it. 
For the fifth function, ZDT1, all the algorithms converged to the Pareto optimal front 

with good spread over the entire front. However, the convergence metric of MO-SDE is much 
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smaller in comparison to the others, shown in Table 4.5, which demonstrates a superior 
convergence ability of the proposed MO-SDE. 

A nondominated solution obtained by MO-SDE on ZDT2 is shown in Figure 4.6, from 
which it is clear that MO-SDE attains both the goals of multi-objective optimization; also it is 
obvious from Table 4.6, that MO-SDE found a better spread with a smaller convergence and 
diversity metric values than the other algorithms. 

From Figure 4.7, it can be observed that the nondominated front obtained by MO-SDE 
almost converges to the optimal Pareto front. From Table 4.7, it is seen that the best spread is 
found by MDEA; however in terms of convergence MO-SDE outperforms. 

The eighth problem ZDT4 for which the results are given in Table 4.8, it can be 
observed that, in terms of convergence and diversity metrics, MO-SDE performs much better 

• than all other algorithms. This behaviour can also be seen from Figure 4.8, which illustrates that 
• the Pareto front obtained by the proposed algorithm overlaps the optimal PF. 

The last problem, ZDT6, which is once again a considerably difficult problem it can be 
observed that MO-SDE fmds a better spread in comparison to all the other algorithms however, 
its convergence is not as good in comparison to ADEA, MODE and MDEA. The spread of 
solutions obtained by, MO-SDE is also clear from Figure 4.9. 

Additionally, it can be seen from Tables 4.1- 4.9 that variance values resulting from the 
• MO-SDE algorithm are very small in every case, demonstrating the robustness of the MO-SDE 

algorithm. 

4.5.2 Results Based on Performance Metric II 

Besides, comparing MO-SDE on the basis of convergence and diversity metrics, it is also 
analyzed the statistically vis-a-vis other algorithms using Wilcoxon's signed ranks test. The 
corresponding results are given in Tables 4.10 and 4.11 for convergence and diversity metric 
respectively. 

These tables display the statistics, p-value and sum of positive ranks (where MO-SDE 
algorithm performed better than the competing algorithm), negative ranks (where the competing 
algorithm performed better than MO-SDE). 

From Table 4.10, it can be seen that in case of convergence MO-SDE outperformed all the 
algorithms except DEMO and MDEA. This shows that although statistically there is no 
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significant difference between MO-SDE, DEMO and MDEA, MO-SDE performed 
comparatively better than the remaining seven algorithms. 

Likewise, from Table 4.11, which shows the results on the basis of diversity, it is observed 
that MO-SDE is better than SPEA and PAES and is equivalent to other algorithms. 

4.6 Summary 

In the present chapter, SDE algorithm introduced in chapter 2 is suitably modified for 
solving MOPs. The prime objective of MO-SDE is to attain the true optimal front, by 
maintaining a careful balance between the convergence and diversity metric. 

MO-SDE inherits the basic features of SDE in population initialization (using OBL) and 
mutation (tournament selection) but employs a different selection procedure which is the 
immediate replacement of the parent vector with the candidate that dominates it. This helps 
MO-SDE to obtain a faster convergence. MO-SDE also follows the concept of global 
nondomination check among the parent and offspring candidates, so that none of the 
information is lost during the selection process. For truncating the population of 2NP solution to 
NP solutions, it uses the nondominated sorting and crowding distance metric. 

The numerical results show that with the help of proposed modifications, SDE can be y rk  ar  
suitably extended for solving MOPs. 

MO-SDE performed better than the competing algorithms or at least at par for most of 
the problems considered in the present study. The following conclusions can be drawn from the 

analysis of MO-SDE: 
> The overall computational complexity of the MO-SDE is quite reasonable. It is less than 

or equal to 0 (k x (2NP)2 ), which is better than or comparable to the overall 
computational complexity of some of the other competing algorithms for solving MOPs. 
In terms of convergence metric, MO-SDE outperformed the other algorithms for all the 
test problems, except for ZTD6. For this function, DEMO gave the best performance. 
In terms of diversity metric, which tells about the spread of Pareto front, it is observed that 
in five cases MO-SDE gave a better result in comparison to other algorithms but, in the 
remaining problems, some of the other algorithms performed better than MO-SDE. This 
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Table 4.1: Statistics of the results on the test problem SCH. 

Algorithm Convergence metric Divergence metric 
NSGA-II(real) 0.003391±0.000000 0.477899±0.003471 

NSGA-II(binary) 0.002833±0.000001 0.449265±0.002062 
SPEA 0.003403±0.000000 1.021110±0.004372 
PAES 0.001313±0.000003 1.063288±0.002868 

MO-SDE 0.000531±0.000000 0.376085±0.000836 

Table 4.2: Statistics of the results on the test problem FON. 

Algorithm Convergence metric Divergence metric 
NSGA-II(real) 0.001931±0.000000 0.378065±0.000639 

NSGA-II(binary) 0.002571±0.000000 0.395131±0.001314 
SPEA 0.125692±0.000038 0.792352±0.005546 
PASS 0.151263±0.000905 1.162528±0.008945 

MO-SDE 0.001642±0.000000 0.286400±0.001003 

Table 4.3: Statistics of the results on the test problem POL. 

Algorithm Convergence metric Divergence metric 
NSGA-II(real) 0.015553±0.000001 0.452150±0.002868 

NSGA-II(binary) 0.017029+0.000003 0.503721±0.004656 
SPEA 0.037812±0.000088 0.972783±0.008475 
PAES 0.03 0864±0.000431 1.020007±0.000000 

MO-SDE 0.001252±0.000000 0.797450±0.000228 

Table 4.4: Statistics of the results on the test problem KUR. 

Algorithm Convergence metric Divergence metric 
NSGA-11(real) 0.028964±0.000018 0.411477-+0.000992 

NSGA-II(binary) 0.028951±0.000016 0.442195±0.001498 
SPEA 0.045617±0.000050 0,852990±0.002619 
PAES 0.057323±0.011989 1.07983810.013772 

MO-SDE 0.002753±0.000002 0.506228±0.000340 

Table 4.5: Statistics of the results on the test problem ZDT 1. 

Algorithm Convergence metric Divergence metric 
NSGA-II(real) 0.033482±0.004750 0.390307±0.001876 

NSGA-II(binary) 0.000894±0.000000 0.463292±0.041622 
SPEA 0.001799±0.000001 0.784525±0.004440 
PAES 0.082085±0.008679 1.229794±0.000742 
PDEA N/A 0.298567±0.000742 
MODE 0.005800.+0.000000 N/A 
ADEA 0.002741±0.000385 0.382890±0.001435 
DEMO 0.001132±0.000136 0.319230±0.031350 
MDEA 0.000921±0.000005 0.283708±0.002938 

MO-SDE 0.000469±0.000001 0.333027±0.000995 
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Table 4.6: Statistics of the results on the test problem ZDT2. 

Algorithm Convergence metric Divergence metric 
NSGA-1I(real) 0.072391±0.031689 0.430776±0.004721 

NSGA-II(binary) 0.000824±0.000000 0.435112±0.024607 
SPEA 0.001339±0.000000. 0.755184±0.004521 
PAES 0.126276±0.036877 1.165942±0.007682 
PDEA N/A 0.317958±0.001389 
MODE 0.005500±0.000000 N/A 
ADEA 0A02203±0.000297 0.345780±0.003900 
DEMO 0.0007800.000035 0.326821±0.021083 
MDEA 0.000640±0.000000 0.450482±0.004211 

MO-SDE L 	0.000514±0.000000 0.321888±0.000457 

Table 4.7: Statistics of the results on the test problem ZDT3. 

Algorithm Convergence metric Divergence metric 
NSGA-II(real) 0.114500±0.004940 0.738540±0.019706 

NSGA-11(binary) 0.043411±0.000042" 0.575606±0.005078 
SPEA 0.047517±0.000047 0.67293.8±0.003587 
PAES 0.023872±0.000010 0.789920±0.001653 
PDEA N/A 0.623812±0.000225 
MODE 0.021560±0.000000 N/A 
ADEA 0.002741±0.000120 0.525770±0.043030 
DEMO 0.001236±0.000091 0.328873±0.019142 
MDEA 0.001139±0.000024 0.299354±0.023309 

MO-SDE 0.000681±0.000000 0.730341±0.000046 

Table 4.8: Statistics of the results on the test problem ZDT4. 
Algorithm Convergence metric Divergence metric 

NSGA-II(real) 0.513053±Q.118460 0.702612±0.064648 
NSGA-It(binary) 3.227636±7:307630 0.479475±0.009841 

SPEA 7.340299±6.572516 0.798463±0.014616 
PAES 0.854816±0.527238 0.870458±0.101399 
PDEA N/A 0.840852±0.035741 
MODE 0.6389500.500200 N/A 
ADEA 0.100100±0.446200 0.436300±0.110000 
DEMO 0.041012±0.063920 0.407225±0.094851 
MDEA 0.048962±0.536358 0.406382±0.062308 

MO-SDE 0.000603+0.000000 0.3 72672±0.003498 
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Table 4.9: Statistics of the results on the test problem ZDT6. 
Algorithm Convergence metric Divergence metric 

NSGA-II(real) 0.296564±0.013135 0.668025±0.009923 
NSGA-II(binary) 7.806798±0.001667 0.644477±0.035042 

SPEA 0.221138±0.000449 0.849389±0.002713 
PAES 0.085469±0.006664 1.153052±0.003916 
PDEA N/A 0.473074±0.021721 
MODE 0.026230±0.000861 N/A 
ADEA 0.000624±0.000060 0.361100±0.036100 
DEMO 0.000642±0.000029 0.458641±0.031362 
MDEA 0.000436±0.000055 0.305245±0.019407 

MO-SDE 0.001474±0.000000 0.302587±0.000076 

Table 4.10: Statistical results by Wilcoxon test for convergence. 

MO-SDE Vs. R+  R-  Statistics p-value 
NSGA-II(real) 45 0 -2,666 0.008 

NSGA-II(binary) 45 0 -2.666 0.008 
SPEA 45 0 -2.666 0.008 
PAES 45 0 -2.666 0.008 
PDEA -- -- -- 

_- 

MODE 15 0 -2.023 0.043 
ADEA 14 1 -1.753 0.049 
DEMO 11 4 -0.944 0.345 
MDEA 11 4 -0.944 0.345 

Table 4.11: Statistical results by Wilcoxon test for diversity. 

MO-SDE Vs. R R-  Statistics p-value 
NSGA-II(real) 33 12 -1.244 0.214 

NSGA-II(binary) 29 16 -0.770 0.441 
SPEA 44 1 -2.547 0.011 
PAES 45 0 -2.666 0.008 
PDEA 9 6 -0.405 0.686 
MODE 
ADEA 10 5 -0.674 0.500 
DEMO 8 7 -0.135 0.893 
MDEA 8 7 -0.135 0.893 





gure 4.4: True PF and nondominated solutions by MO-SDE on K Fi 

gure 4.5: True PF and nondominated solutions by MO-SDE on ZD Fi 
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Figure 4.6: True PF and nondominated solutions by MO-SDE on ZDT2. 
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In chapters 2 and 3, SDE algorithm was applied to solve unconstrained and constrained 
numerical benchmark test functions, respectively, where the results clearly indicated the 
competence of this algorithm for solving such problems. However, in the real world, 
mathematical model of optimization problems is significantly different from that of benchmark 
functions. In this chapter the efficiency of SDE algorithm is validated on a well known "trim 
loss" (TLP) or "cutting-stock" (CSP) problem arising in various industries (glass, fabric and 
paper industries etc.). In this chapter CSP and TLP will be used alternatively. Mathematically, it 
can be described as a nonconvex mixed integer nonlinear programming problem subject to 
several constraints. 

Four hypothetical but relevant cases of trim loss problem arising in paper industry are 
taken for experiment. 

The chapter is structured as follows: Section 5.1 reviews the available literature 
regarding the problem considered in this chapter. Section 5.2 presents the formulation of the 
trim loss problem. Section 5.3 states the implementation of SDE for solving trim .loss "problem. 
Finally, section 5.4 provides summary of the chapter. 

5.1 Introduction 

Production planning in the fine paper industry is extremely difficult because a huge 
variety of finished paper products are demanded by customers. The TLP is the most common 
problem encountered during the cutting of different type of ordered products from the available 
limited raw material to satisfy the customer's demands. Therefore the aim of manufacturers is to 
produce desired products to meet the customer's demands economically with the maximum 
utilization of available raw materials, thereby minimizing the inevitable waste of material. 

The procedure followed in the paper industry may be broadly described as follows: fixed 
width reels of a given paper grade, also referred to as jumbo rolls, are produced on paper 
machines in a paper mill. These reels are then cut into several rolls of smaller diameters and 



Figure 5.1: The pulp and paper supply chain. 
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Figure 5.2: A schematic illustration of trim loss problem. 
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❑ Product 1 M Product 2 	. Product 3 ® Product 4 	Waste 

m1 =2 	 mZ =1 	 m3=1 

n11 =3 	 n12 = 2 	 n23 =1 
n22 = 1 	 n33 = 1 

n43 =1 

Figure 5.3: The cutting pattern. 

widths on a winder. A significant part of the rolls produced in the paper mill are transformed 

into cut-sheet finished products on sheeters in a converting plant, which may generate some trim 

loss. The rolls sheeted into finished products are known as parent rolls. 

A systematic representation of supply chain is shown in Figure 5.1 (adapted from 

Rodriguez and Vecchietti, 2008). The CSP is a common problem in almost every link in pulp 

and paper supply chain. Consequently, the industries perform their activities in a very 

competitive market trying to maintain an efficient production plan besides providing convenient 

product prices and just in time order deliveries. 

Considering the practicality and importance of the TLP, it has been given considerable 

attention by the researchers for developing its model and for recommending various methods to 

solve it efficiently. 

From the mathematical formulation point of view, many articles are available in which 

the CSP has been studied with different goals such as minimizing trim-loss (Harjunkoski et al., 

1996; Harjunkoski et al., 1999; Trkman and Gradisar, 2007), minimizing the production costs 
(Harjunkoski et al., 1998; Harjunkoski et al., 1999), minimizing the number of patterns 

(Johnston and Sadinlija, 2004), minimizing the total length and overproduction (Correia et al., 

2004) etc. 
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It was observed that TLP can be modelled as a global optimization problem having a 
complex formulation (mathematical formulation of TLP is discussed in the next section) and 
therefore efficient techniques are required for finding its solution. Basically three different 
classes of solution methods exist for solving the CSP (i) Algorithmic methods which guarantee 
the optimal solution for the problem to be found but the drawback of these methods is 
computational complexity which often results into high running times, especially with large 
dimension problems. For this reason, purely algorithmic approaches for solving the CSP are 
usually avoided. (ii) The second class of solutions is heuristic methods, which may not find the 
exact optimal solution, but usually generate a faster and an acceptable solution. A heuristic is 
considered acceptable if the solutions are close enough to the known or expected optimal 
solution. Heuristic methods are also highly domain-dependent i.e. to say that they use.  
information about the particular problems for which they are developed. Thus they may appear 
to be little of use on apparently similar problems (Hinxman,. 1980), (iii) finally there are 
Metaheuristic methods which have an ability of not being trapped into local optima as might 
happen with traditional heuristics. In metaheuristic methods, the solution process is often guided 
by some lower level heuristic. 

A series of articles are available in literature using heuristic and metaheuristic methods. 
Some of these; are: linear programming approximations for the reel cutting' stock (Gilmore and 
Gomory, 1961). However it. was observed that linear approximation was not a very pragmatic 
approach for solving such a complex problem. Therefore efforts were made to solve the non-
linear models heuristically (Haessler, 1971; Coverdale and Wharton, 1976; Johnston, 1979). 

Considering the fact that the decision variables of a TLP are of integer type therefore, 
mixed integer linear programming (MILP) has also been applied for solving trim loss problems. 
A good overview of different formulations and solution methods is given in Hinxman (1980). 
Instances of application of heuristic techniques for solving TLP can be found in Beasley (2004), 
Riehme et al. (1996), Harjunkoski et al. (1996), Harjunkoski et al. (1998) and Westerlund and 
Isaksson (1998) etc. 

Taking into account the complexity of TLP, metaheuristic techniques are probably a 
more pragmatic approach for solving such problems. Different metaheuristics that have been 
used include Tabu Search (Alvares-Valdes et al, 2002), Simulated Annealing (Lai and Chan, 
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1997), PSO (Xianjun et al, 2007), Genetic Algorithm (Wagner, 1999), Hybrid Genetic 

Algorithm (Ostermark, 1999) etc. 

5.2 Mathematical Formulation 

The trim-loss problem appears when a set of ordered product reels are to be cut from raw 

paper reels or from other reels having specified widths. The cutting process is simply a winding 

process, where the raw paper is wound through the slitter and is cut by a set of knives positioned 

on the line (Figure 5.2). Product widths can rarely be combined to the exact raw paper widths; 

therefore waste appears during the cutting process. The objective is to minimize the trim loss 

while satisfying the demand specifications. In this chapter the mathematical formulation of TLP 

suggested by Adjiman et al. (2000) and Yen et al. (2004) is taken into consideration. 

A raw paper roll of width Bmax must be cut to satisfy the following order specifications. 

There are i = 1,...,N different products, n, rolls of order i with a width b, must be cut. All 

products rolls are assumed to be of equal length. In order to identify the best overall scheme, a 

maximum of j = 1,...,P; different cutting patterns are postulated. A pattern is defined by the 

position of the knives. The number of times patternj is repeated is given by an integer variable 

m~. The existence of a product in a given pattern is denoted by an integer variable r,. The binary 

variable y3 is introduced to a change in pattern. 

If a new pattern is introduced (m1> 0), then yj is equal to one. A sample cutting pattern is 

shown in Figure 5.3. 

The actual cost of the trim loss is the total amount of raw materials used, that is, the sum 

all repeated patterns multiplied by a cost factor C~, in addition to the cost of changing knife 

positions between patterns. 

Let the pattern change be weighted by a coefficient c;. 

The trim loss problem may now be defined as: 
P 

Minimizel (C1.mi +cJ .j.y1 ) 	 (5.1) 
n+~,Y1,r1 	

l=1 

restricted by the following constraints: 
The number of rolls of each product must be greater than customer's order. 
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M,,1 >_n,, i=1,...,N 
(5.2) 

The width of each pattern must be less than the width of raw paper roll and width of cut 

product in each pattern must exceed a certain minimum A: 

( Bmax —A)yj C 	Uirj C B1 )j, j= 1,...,P 

(5.3) 

This constraint imposes a lower bound on the total number of patterns made: 

>_ max{[; n; /Nkma (,I ±nb; /Bm.1} 
~[i ,sI 	I - 	 (54 )  

There must be at least one product in a pattern and total number of knives limited to Nknax: 
N 

Yj <_ri <_ Nkm Y j , j=1,...,P 
(5.5) 

There must be at least one pattern after a knife change and the maximum number of pattern 

repetition is limited to M: 

Y; Vi m; ~ MY; , j =1, ..., P 
(5.6) 

Constraints (5.7) and (5.8) introduce an order on y and m variables to reduce degeneracy: 

Yk+l : Yk' k =1, ..., P -1 	 (5.7) 

' k+l 5 171k' k = 1,...,P- 1 
(5.8) 

Y;E{0,1}, 7=1,...,P 	 (5.9) 

in E[0,M,]nZ, j =l,...,P 	 (5.10) 

r,; E[0,Nk»,ax]nZ, i=1,...,N, j=1,...,P (5.11) 

cJ =1, j =1,...,P and C j =0.1, j =1,...,P 	 (5.12) 
where Z is a set of integers. 

The maximum number of knives is Nk,,,ax +1, since edge cuts need to be made at both 
sides of raw paper reel. The width of an edge cut depends entirely on the product quality and the 

machine used and can't be controlled by the schedule. For this reason, it is not considered in the 

mathematical model. All the variables are either integer or binary in nature. The presence of 

bilinear inequality (5.6) makes the problem nonlinear and nonconvex. 
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5.3 Implementation of SDE for Trim Loss Problem 

Up till now in this thesis SDE has been applied for solving problems having continuous 
variables. The TLP however turns out to be a MINLP problem (having binary variables as well) 
therefore suitable changes are made in SDE to adapt it for dealing with integer as well as binary 
variables. This is described in the following section: 

5.3.1 Handling of Integers and Binary Variables in SDE 

In its canonical form SDE, as DE, is only capable of handling continuous variables.' 

Extending it to optimize integer variables is, however, an easy task and requires only a couple of 

simple modifications. Integer values can be used to evaluate the objective function and 

constraints, while SDE itself works internally with continuous floating points. 
According to the literature, getting integer values for evaluating objective function and 

constraints can be done in two ways (1) by rounding the continuous variables (Srinivas and 

Rangaiah, 2007) to the nearest integers and (2) by truncating the values to integers (Angira and 
Babu, 2006). 

In the present study, rounding off method is used because it has an equal probability to 
choose between nearest lower and nearest upper integer values. For example, if the continuous 
variable has a value of 5.7 in one case and 5.4 in the second case, then rounding off the digits 
takes the nearest highest integer as 6 in the first case and the nearest lowest integer as 5 in the 
second case. Truncation, on the other hand, takes the value as 5 in both the cases since it always 
takes the nearest lowest integer value. Thus, it can be seen that the former method is unbiased 
and is therefore more reasonable. 

Binary variables are also handled in the same fashion as that for integers except that in 

this case the bounds are restricted between 0 and 1. 

5.3.2 Handling Constraint and Boundary Violations 

Constraints for TLP are handled using the method described in chapter 3. Boundary 
violations, are dealt as described in chapter 2. Before checking the boundary violation the 
variable is rounded off to the nearest integer. 

119 



• Chapter 5 

5.3.3 Control Parameter Settings 

Fine tuning of SDE parameters was done to obtain the appropriate value of control 
parameters for solving the TLP. 

A series of experiments were conducted and it was observed that a smaller crossover rate 
(< 0.5) gave good results for TLP. In this study, the value of Cr is therefore taken as 0.3. 

Considering the complexity of the problem the numbers of function evaluations (NFE) 
were kept quite high as 1,500,000. 

Finally, a reasonable accuracy of 10-04  was taken to analyze the performance of SDE. 
All the other parameters are kept same as given in chapter 2. 

5.3.4 Numerical Results 

SDE has been tested on four problems for the model described in section 5.2. The orders 
of the customers for the problems are given in Tables 5.1-5.4 and problem parameters are given 
in Table 5.5. In order to minimize the effect of the stochastic nature of the algorithm each 
problem is executed 50 times with different random seeds and the average fitness value of the 
best solutions throughout the optimization run is recorded. An Intel Dual Core personal 
computer with 1 GB RAM is used in this experiment. The experimental best results with fitness 
value are given in Tables 5.6-5.9 and the cutting patterns are given in Tables 5,10-5.13. 
Alternate solutions obtained by the ,SDE are listed in Tables 5.14 and 5.15. Other results which 

• consist of the best and the worst results, standard deviation (Std.) and average values of the 
• obtained results for all problems are recorded in Table 5.16. Additionally, the computational 

times, number of functions evaluation (NFE) and success rate (SR) are also included in Table 
5.16. 

The convergence graphs of SDE, illustrating best fitness vs. number of function 
evaluation are given in Figures 5.4 and 5.5. Further, the convergence graphs of constraints 
violation are also illustrated in the same figures on secondary axis. 

Comparison of SDE with other algorithms on the basis of NFE and SR, are given in 
Table 5.17. 

From Tables 5.6 and 5.7 it can be seen that for problems I and 2 all the algorithms give 
same optimal solution. While from Tables 5.8 and 5.9 it can be said that ILXPSO (), a PSO 
variant used for solving this problem, does not achieve the global optimum. 
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From Tables 5.10-5.13, which gives trim loss in terms of width, it can be said that trim 
loss is very less. Success rate of SDE for problems 1-4 are 93, 100, 89 and 93, respectively. 
Also variance is very less. SDE is also compared with GMIN-aBB (Adjiman et al., 2000), 
ILXPSO (Deep et al., 2009), RCGA (Deep et al., 2009) in term of NFE and SR. From Table 

5.17 it is clear that performance of SDE is better than other algorithms in both criteria. CPU 
absorbances time for the algorithms is not compared here, since they were implemented in 
completely different environments while it is recorded for SDE in Table 5.16. 

5.4 Summary 

In this chapter, the performance of SDE is analyzed on a real life problem of trim loss 

(or TLP), arising frequently in paper industries. TLP is specially suited for testing the efficiency 
of an optimization algorithm like that of SDE because of its complex mathematical model which 

is nonlinear and non-convex and contain integer as well as binary variables. Also, it has several 
constraints associated with it. Conclusions drawn at the end of this chapter can be summarized 
as follows: 

➢ SDE can be easily modified for solving the problems having integer or/and binary 
restrictions imposed on it. 

➢ SDE can deal efficiently with nonlinear/ nonconvex optimization problems subject to 

several constraints. This is important in real life scenarios where usually the problems are 
complex in nature. 

SDE outperformed some of the contemporary optimization algorithms in terms of 
solution quality as well as convergence rate. 



Table 5.1: Example order 1. 
Product 	Width 	Quantity 

1 	 290 	15 
2 	 315 	28 

3 	 350 	21 

4 	 455 	 30 

Table 5.2: Example order 2. 
Product 	Width 	Quantity 

1 	 330 	 9 

2 	 360 	 7 

3 	 385 	 12 
4 	 415 	 11 

Table 5.3: Example order 3. 
Product 	Width 	Quantity 

1 330 12 

2 360 6 

3 370 15 

4 415 6 

5 435 9 

Table 5.4: Example order 4. 
Product 	Width Quantity 

1 330 8 

2 360 16 
3 380 12 

4 430 7 

5 490 14 

6 530 16 

Table 5.5: Parameters of the problems. 
Pro. no. Bmsx  A cj  Ci  Nk,,, Mi 	J `— 1,...,P 

1 1850 100 0.1 1 5 E [0, 30]4  n z4  

2 1900 200 0.1 1 5 E [0, 15] x [0,12] x 10,9] x [0, 6] n z4  

3 2000 200 0.1 1 5 E [0, 15] x [0, 12] x [0,9] x [0, 6] x [0, 6] n z5  

4 2200 100 0.1 1 5 E [0,15] x [0 12] x [0, 8] x [0, 7] x [0, 4] x [0,2] n z6  
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Table 5.6: Results for the Trim-Loss Problem 1. 

Objective 
Algorithm function value y m r 

1 1 1 0 1 0 
1 3 2000 GMIN-aBB 19.6 1 2 0530 

0 0 2010 

1 14 1010 
1 3 2000 ILXPSO 19.6 
1 2 0530 

0 0 2010 

1 9 1 0 2 0 
1 7 2110 SDE 19.6 
1 3 0300 
0 0 21 20 

Table 5.7: Results for the Trim-Loss Problem 2. 

Objective 
Algorithm function value y m r 

1 11 1000 
0 0 1 0 0 0 GMIN-aBB 

8.6 0 0 2000 
0 0 1000 

1 5 1210 
1 2 1020 ILXPSO 8.6 
1 1 2100 
0 0 12 2 0 

1 4 1 1 3 0 
1 3 0210 SDE 8.6 
1 1 3000 
0 0 1210 
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Table 5.8: Results for the Trim-Loss Problem 3. 

Objective 
Algorithm function value y m r 

1 15 10000 
0 0 10000 

GM]CN-uBB 10.3 0 0 1 0 0 0 0 
0 0 10000 
0 0 10000 

1 3 23000 
1 2 1 0 1 0 1 

ILXPSO 11.5 1 2 00334 
1 2 00120 
1 1 22000 

1 6 2 0 0 0 0 
1 4 1 0 0 0 0 

SDE 10.3 0 0 04000 
0 0 10000 
0 0 1 1 0 0 0 
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Table 5.9: Results for the Trim-Loss Problem 4. 

Algorithm 
Objective 

function value y m r 

1 8 1 0 0 0 0 0 
0 7 2 0 0 0 0 0 

GMIN-aBB 0 0 0 2 0 0 0 0 
153 

0 0 0 1 0 0 0 0 
0 0 0 2 0 0 0 0 
0 0 1 0 0 0 0 0 

1 9 1 0 0 0 0 0 
1 7 1 1 0 0 0 0 
0 0 0 2 0 00 

ILXPSO 16.3 0 0 100000 
0 0 0 2 0 0 0 0 
0 0 2 0 0 0 0 0 

1 8 1 0 0 0 0 0 
1 7 2 0 0 0 0 0 
0 0 0 2 0 0 0 

SDE 15.3 
0 0 0 1 0 0 0 0 
0 0 0 2 0 0 0 0 
0 0 2 0 0 0 0 0 
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Table 5.10: Solution results for problem 1. 

Cutting pattern no. 	Cutting pattern generated Trim loss 

I 	 (290x1)+(315x2)+(455x2) 20 

2 	 (315x1)+(350x3)+(455x1) 30 

3 	 (290X2)+(3f5xl)+(455x2) 45 

Total trim loss 95 

Table 5.11: Solution results for problem 2. 

Cutting pattern no. 	Cutting pattern generated Trim loss 

1 	 (330x1)+(385x3)+(415x1) 0 

2 	 (330x1)+(36Ox2)+(415x2) 20 

3 	 (330x3)+(360xl)+(415xl) 135 

Total trim loss 155 

Table 5.12: Solution results for problem 3. 

Cutting pattern no. 	Cutting pattern generated Trim loss 

1 	 (330x2)+(360x1)+(415x1) +(435x 1) 130 

2 	 (370x4)+(435x 1) 85 

Total trim loss 215 

Table 5.13: Solution results for problem 4. 

Cutting pattern no. 	Cutting pattern generated Trim loss 

1 	 (330x1)+(360x2)+(530x2) 90 

2 	 (380X2)+(430X1)+(490X2) 30 

Total trim loss 120 
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Table 5.14: Alternate optimal solutions of problem 1. 

S.no. ml m2 m3 	rll 	r12 	r13 	r21 	r22 	r23 	r31 	r32 r33 r41 r42 r43 

1 9 7 3 	1 	2 	2 	1 	1 	 3 2 1 2 
2 11 5 3 	1 	1 	2 	2 	3 2 2 1 1 
3 12 4 3 	1 	1 	2 	1 	 3 3 2 1 1 
4 8 6 5 	1 	2 	2 	2 	2 1 1 2 2 

5 14 3 2 	1 	1 	2 	 5 3 2 1 

Table 5.15: Alternate optimal solutions of problem 2. 

S.no. ml m2 m3 rlI r12 r13 r21 r22 r23 r31 r32 r33 r41 r42 r43 

1 	5 	2 	1 	1 	2 	1 	1 	 2 	2 	1 	 1 	2 	2 
2 	4 	3 	1 	1 	1 	2 	2 	2 	3 	 1 	2 	1 

Table 5.16: Best, worst, mean fitness and standard deviation, average NFE, time and success rate for all 

problems. 

Problem no. Best Worst Mean Std. Average NFE Time % SR 
1 19.60 20.60 19.75 357071e01 205500 2.01 92 
2 8.60 8.60 8.60 1.77636e-15 188000 0.90 100 
3 10.30 11.30 11.05 4.33013e-01 1091500 8.35 89 
4 15.30 16.30 15.85 4.97494e-01 1335000 11.80 93 

Table 5.17: Comparison of SDE. ILXPSO and RCGA on average NFE and success rate for all problems. 

Problem no. 

1 

2 

3 

4 

NFE 

SDE ILXPSO RCGA 

205500 375100 600000 

188000 375100 600000 

1091500 900200 1050000 

1335000 1200200 1920000 

% SR 

SDE ILXPSO RCGA 

92 85 60 

100 80 55 

89 65 30 

93 40 10 
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Figure 5.4: Plot of fitness and constraint violation versus NFE for problem 1. 
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Figure 5.5: Plot of fitness and constraint violation versus NFE for problem 2. 
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Chapter 6 
Multi-level Image Thresholding 

In the previous chapter, SDE algorithm was used for solving Trim Loss Problem (TLP) 
by considering the case of paper industry. TLP was modelled as a constrained global 
optimization problem having integer and binary variables. It was observed that SDE was able to 
solve such problem successfully. To further investigate the efficiency of SDE, in the present 
chapter another important area of that of image thresholding is considered. 

Image thresholding is a challenging task in image processing field. Image segmentation 
is the process of-dividing an image into different regions based on some criterion such that each 
region is homogeneous. Many efforts have already been made to propose universal and robust 
methods to handle a wide range of images. Among them two popular methods are (1) the 

maximum entropy thresholding criterion and (2) the approximation of normalized histogram of 
an image by a mixture of Gaussian distribution. Typically, finding the parameters of Gaussian 

distribution leads to a nonlinear optimization problem, for which obtaining the solution is 
computationally expensive and time-consuming. Such problems provide a useful platform for 
testing the efficiency of an optimization algorithm like that of SDE. 

The chapter is structured as follows. Section 6.1 gives the introduction of image 
thresholding. Section 6.2 describes the techniques for image thresholding. Results are analyzed 
and discussed in section 6.3 and finally, chapter is concluded in section 6.4. 

6.1 Introduction 

Image thresholding is definitely one of the most popular segmentation approaches for 
extracting objects from the background, or for discriminating objects from objects that have 
distinct gray-levels. It is typically simple and computationally efficient. It is based on the 
assumption that the objects can be distinguished by their gray levels. The optimal threshold is 
the one that can separate different objects from each other or from the background to such an 
extent that a decision can be made without further processing (Gonzalez and Woods, 2002; 
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Otsu, 1979). The automatic fitting of this threshold is one of the main challenges of image 
segmentation. There are a lot of approaches classifying thresholding methods. 

Sezgin and Sankur (2004) presented a survey of a variety of thresholding techniques. 
They labeled the methods according to the information they exploited, such as histogram shape, 
space measurement clustering, entropy, object attributes, spatial information and local gray-
level surface. They also classified the thresholding techniques in terms of parametric and non 
parametric approaches. 

Parametric thresholding methods exploit the first-order statistical characterization of the 
image to be segmented. An attempt to find an estimate of the parameters of the distribution that 
best fit the given histogram data is made by using the least-squares estimation method. 
Typically, it leads to a nonlinear optimization problem, its solution is computationally expensive 
and time consuming. Over the years, many researchers have proposed several algorithms to 
solve the objective• function of Gaussian curve fitting for multi-level thresholding. Some 
instances of parametric thresholding methods in literature ` are: Weszka and Azriel (1979) 
proposed a parametric method where the gray-level distribution of each class is assumed to be a 
Gaussian distribution. Other examples of the use of parametric methods for thresholding are as 
follows: Snyder et al., (1990) presented an alternative method for fitting curves based on a 
heuristic method called tree annealing; Nakib et al. (2007, 2008) proposed a fast scheme for 
optimal thresholding using 'a simulated annealing algorithm; Zahara et al. (2005) proposed a 
hybrid Nelder-Mead Particle Swarm Optimization (NM-PSO) method. More recently a hybrid 
method based on Expectation Maximization (EM) and Particle Swarm Optimization (PSO+EM) 
is proposed by Fan and Lin (2007) and application of basic Differential Evolution (DE) for 
solving image segmentation problem is shown in Cuevas et al. (2010). 

Non parametric approaches find the thresholds that separate the gray-level regions of an 
image in an optimal manner based on some discriminating criteria such as the between class 
variance, entropy and cross entropy. The most popular method is that of Otsu's (1979) in which 
optimal thresholds are selected by maximizing the between class variance. Sahoo et al. (1988) 
showed that the Otsu's .method is one of the better threshold selection methods for real world 
images with regard to uniformity and shape measures. However, inefficient formulation of 
between class variance makes the method very time-consuming in multilevel threshold 
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selection. To overcome this problem, Liao et al. (2001) proposed a fast recursive algorithm 

called Fast Otsu's method, along with a look-up-table and implemented it for multilevel 

thresholding. Ye et al. (2008) proposed the use of PSO algorithm to optimize the Otsu's 

criterion. Kapur et al. (1985) proposed a method for gray-level picture thresholding by using the 

entropy of the histogram. Abutaleb (1989) proposed a 2-D maximum entropy thresholding 

method for separating the regions of image. Zhang and Liu (2006) adopted PSO to maximize the 

entropy for underwater image segmentation. Madhubanti and Amitava (2008) proposed a hybrid 

cooperative-comprehensive learning based PSO algorithm based on maximum entropy criterion. 

Li and Lee (1993) proposed a method which selects the threshold by minimizing the cross 

entropy between the original and segmented images. Yin (2007) developed a recursive 

programming technique to reduce the order of magnitude of computing the multilevel thresholds 

and further used the PSO algorithm to minimize the cross entropy. Most recently Homg (2010) 

proposed honey bee mating optimization based multilevel thresholding using maximum entropy. 

All these metaheuristic based methods are shown to be efficient in solving the multi-

level thresholding problem and provide better effectiveness than the other traditional methods 

(local search and deterministic methods). However, finding of threshold in multilevel 

thresholding is a time taking process which indicates that further improvement is needed to 

enhance the efficiency of existing methods while maintaining quality effectiveness. In the 

present chapter, the proposed SDE is employed for improving the thresholding techniques. 

6.2 Methods Used for Image Thresholding 

Several objective functions have been proposed in the literature devoted to thresholding 

(Sezgin and Sankur, 2004). These functions are determined generally from the histogram of the 

image I, denoted by g(i), for i = 0, ... , L-1, where g(i) represents the number of pixels having 

the gray level i and L is the total number of gray levels. The normalized probability at gray 

level i is defined by the ratio h(i) = (g(i)/1V) where N is the total number of pixels. Among these 

functions, the objective function defined by Kapur et al. (1985) and Gaussian approximation of 

normalized histogram of the image are most popular. These methods are briefly described in the 

next subsections. 
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6.2 .1 Gaussian Curve Fitting 

A properly normalized multimodal histogram of an image I can be fitted with the sum of 
d probability density functions (pdf's) for finding the optimal thresholds for use in image 
segmentation (Snyder et al., 1990). The case where the Gaussian pdf's are used is defined by 

P(X) = P, exp _ 
	 (6.1) 

where P, is the amplitude of Gaussian pdf on pi , p; is the mean and 6,Z is the variance of 

mode i and d is number of Gaussians used to approximate the original histogram corresponding 
to the number of the segmentation classes. A pdf model must be fitted, to the histogram data, 
typically by using the maximum likelihood or mean-squared error approach, in order to locate 
the optimal threshold. Our goal is to find a set of parameters, ®, that minimizes the fitting error 
J, given by the following expression (Nakib et al., 2007, 2008): 

E Ih(i) - P(O ,x,)+ 
Minimize ®,~ h(i) 	 (6.2) 

and i ranges over the bins in the measured histogram. Here, J is the objective function to be 
minimized with respect to 0, a set of parameters defining the Gaussian pdf s and the 
probabilities, is given by 

6; 	=1,2,...,d} 

The standard process of setting the partial derivatives to zero results in a set of non-
linear coupled equations, the system usually being solved through numerical techniques. 

After fitting the multimodal histogram, the optimal threshold could be determined by 
minimizing the overall probability of error, for two adjacent Gaussian pdf s, given by 

e(t)-Pf p,(x)A+.'.1f m p,+ (x) , 	1=1, 2,... d--1 	 (6.3) 

with respect to the threshold t1 , wherep;(x) is the ith pdf (Gonzalez and Woods, 2002). Then the 

overall probability to minimize is: 

(6.4) 
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where T is the vector of thresholds: 0 < t1 < t2 < ••• < td _1 <L — 1. In this case L is equal to 

256. To find the thresholds values for which this error is minimal requires differentiating e(t1) 

with respect to t; (using Leibniz's rule) and equating the result to zero. The obtained equation is 

as follows: 

P' p;(0=— ,]'p,11(t ) 
	

(6.5) 

This equation is solved for t, to find the optimum threshold. Using equation (6.1) in the 

general solution of equation (6.5) results in the following solution for the threshold t. : 

At?+Bt; +C=0 
	

(6.6) 

where 
z 

B _ 
	

(6.7) 

C=o u ~ — a 2ft; +4o of 1In~°P/o,P,) 

Out of the two possible solutions of above quadratic equation, only one will be feasible. 

The optimal thresholding methods search for the thresholds such that the segment classes 

on the histogram satisfying the desired property. This is performed by minimizing or 

maximizing an objective function which uses the selected thresholds as parameters. This 

function is often referred to as objective function or criterion measure. 

6.2.2 Entropy Criterion 

The original algorithm was developed for bi-level thresholding and was later extended 

for multiple levels. The bi-level algorithm can be described as follows: 

Objective is to maximize the fitness function: 

f(t)=Ho +H1 	 (6.8) 

where 

Ho = —J h(Z) In h(i) , wo = I h(i) 

-' h(i)  H, = —~ 	In 	, w, _ h(i) 
=, w, 	w, =r 
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The optimum threshold is t which maximizes f(t). The multilevel thresholding problem 

consists in selecting the (d-1) - dimensional vector T = {(t1, t2, ... , td 1) : t1 <t2 < ... < td_I } of 

threshold which optimizes the objective function j(T): 

f(T)=Ho+H1+H2...+Hd_1 	 (6.9) 

where 
'- -1 

Ho = —Z h(1) in h~l) , 
1E -1 

coo = Z h(i) 

H, _ — 	h(l) In hEl) , wl = 	h(i) 

t,-1 h( Z ) h( l ) 

	

H z = 	In --, w2 2, h(r) 
2 (02 	0)z 	 i=t2 

	

Hd_1 _ 	In 	co, _ 	h(i) 
+=inb..~c 	~c 	 +=11-I 

This entropy ' criterion based measure tries to achieve more and more centralized 

distribution for each histogram based segmentation region in the image. 

6.3 Results and Discussions 

This section evaluates the performance of SDE with some other algorithms while 
implementing Gaussian curve fitting for multi-level thresholding and entropy criterion. These 
variants are referred to as SDE Gaus and SDE Entropy. The test images "Lena" and "Pepper" 
are of size 512x512 each and "Cameraman" is of size 256x256 pixels with 8 bit gray-levels, 
taken under natural lighting without the support of any special light source. Test images and 
their respective normalized histograms are given in Figure 6.1. The coding is done in Matlab 7. 
The stopping criterion used is the maximum number of iteration. SDE has 4 parameters that 
must be well fitted. Preliminary testing has been done for the purpose of getting suitable values 
of these parameters and the fine tuned results, which are different from the parameters given in 
chapter 2, are as follows: 

➢ Population size NP= (10*dimension), 
> Scaling factor = crossover rate = 0.25. 
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➢ Both SDE_Gaus and SDE_Entropy are halted after 200 generations. 

To judge the quality of segmented image, uniformity measure (Sathya and Kayalvizhi, 

2010) is utilized which has also been extensively used in several literatures. This uniformity 

measure is given as: 
nc-1 

(.f — ,)2 
' o iER~ 

U =1-2x(nc-1)x =  
N x (fmax — frnjn ) 

where, nc denotes number of classes, R~ denotes the jth segmented region, f indicates the 

gray level of the pixel i, ,u, implies gray level of pixels injth region, N denotes the total number 

of pixels in the given image, fm gives the maximum gray level of pixels in the given image and 

f,,,;,, gives minimum gray level of pixels in the given image. The value of the uniformity 

measure, U, should be a positive fraction lying between 0 and 1. A higher value of U indicates 

that there is better uniformity in the thresholded image, depicting better quality of thresholding 

and vice versa. 

The experimental results obtained by SDE_Gaus are listed in Table 6.1, in terms of 

number of classes, the threshold values, parameter values and CPU time. To measure the 

performance of the SDE Gaus algorithm, experimental results of previous multilevel 

thresholding methods based on GA and PSO (Sathya and Kayalvizhi, 2010) are included in 

Table 6.2. The quality of the thresholded images is evaluated by the uniformity measure which 

is a broadly used criterion. It can be observed from Table 6.2 that the results of the SDE_Gaus 

method have higher uniformity than those of the other two multilevel thresholding methods. 

Results of SDE Entropy method are given in Table 6.3. It includes number of 

thresholds, threshold values, fitness, time and uniformity measure. This table provides 

quantitative standard for evaluating several aspect. The computation times of SDE Entropy 

algorithm are relatively irrelevant to the size of image and the number of the thresholds. 

Furthermore, as the number of thresholds increase, the uniformity and the fitness value are 

enhanced. To provide the visual comparison between SDE_Gaus and SDE Entropy the results 

of multi-level thresholding are illustrated by indicating the derived thresholds on the histograms 

and displaying the corresponding thresholded images (Figures 6.2, 6.3 and 6.4). As can be seen 

(Figures 2(e, g), 3(e, g) and 4(e, g)), SDE Gaus method tend to produce thresholds at the 

valleys of the fitted histograms. The quality of segmented images obtained by SDE_Gauss is 
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superior to the quality of those obtained by SDE_Entropy. Comparison results of the SDE Gaus 
method to SDE Entropy demonstrate that SDE Gaus offers higher quality in visualization. Not 
surprisingly, SDE_Gaus incurs higher computation time than the SDE Entropy method, since 
curve fitting needs to search for the optimum values of more parameters (Tables 6.1 and 6.3). 

Finally, SDE Entropy method is compared with four other algorithms (Horng, 2010): 
(1) Maximum entropy based honey bee mating optimization thresholding (MEHBMOT) 
method, (2) Particle swarm optimization (PSO), (3) Hybrid cooperative-comprehensive learning 
based PSO algorithm (HCOCLPSO) and (4) Fast Otsu's method. Results for the comparison 
with the other algorithms are given in Tables 6.4-6.6. The CPU time for SDE Entropy 
algorithm is given in Table 6.3 but is not compared with other algorithms, as these are executed 
on different platform. It can also be seen from Tables 6.5 and 6.6 that the proposed 
SDE Entropy algorithm could achieve significantly better segmentation results as demonstrated 
by its higher values of U and fitness values in most of the cases, compared to other methods. 

6.4 Summary 

In this chapter, the efficiency of SDE is validated on the global optimization problem of 
image thresholding. The objects and background components within the image are assumed to 
fit into Gaussian distributions exhibiting non-equal mean and standard deviation. The histogram 
is thus approximated by a mix of Gaussian probability functions. SDE is used to estimate the 
parameters for the mixing density function as it seeks to get a minimum error between the 
density function and the original histogram. It is referred to as SDE_Gauss. On the other hand, 
SDE_ Entropy has used the objective function of maximum entropy. 

Conclusions that can be drawn at the end of this chapter are as follows: 
➢ SDE algorithm can be successfully applied to the area of image thresholding which is an 

important part of image segmentation. 
➢ Experimental results show that SDE Entropy produces more satisfactory results in 

comparison to SDE Gauss, in terms of computational efficiency. These results are quite 
expected because the segmentation results depend heavily on the objective function 
selected. However, in terms of picture quality, Gaussian method is preferred over the 
entropy method. 
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Figure 6.1: Test images and their normalized histograms. (a) Lena, (b) Pepper, (c) Cameraman, (d) 
histogram of Lena image, (e) histogram of Pepper image and (f) histogram of Cameraman image. 
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(h)  
Figure 6.2: Results of Lena image (a) segmented image with three classes by curve, (b) segmented 

image with three classes by entropy, (c) segmented image with five classes by curve, (d) 
segmented image with five classes by entropy, (e) fitted histogram and threshold of (a), (f) 
threshold of (b), (g) fitted histogram and threshold of (c) and (h) threshold of (d). 
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Figure 6.3: Results of Pepper image (a) segmented image with three classes by curve, (b) segmented 
image with three classes by entropy, (c) segmented image with four classes by curve, (d) 
segmented image with four classes by entropy, (e) fitted histogram and threshold of (a), (f) 
threshold of (b), (g) fitted histogram and threshold of (c) and (h) threshold of (d). 
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Figure 6.4: Results of Cameraman image (a) segmented image with three ` classes by curve, (b) 
segmented image with three classes by entropy, (c) segmented image with four classes by 
curve, (d) segmented image with four classes by entropy, (e) fitted` histogram and threshold 
of (a), (f) threshold of (b), (g) fitted histogram and threshold of (c) and (h) threshold of (d). 
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Table 6.1: Results obtained by SDEuGaus for images given in Figure 6.1. 
Number of 

Image 
Parameters of Gaussian Time Threshold 

classes approximations (Sec) 
Lena 	 3 P (0.0079, 0.0081, 0.0029) 5.8968 53, 170 

µ (24, 104, 194) 
a (10.7663, 49.9796, 17.4342) 

5 P (0.0084, 0.0070, 0.0066, 0.0074, 12.8077 	46, 80, 114, 176 
0.0032) 
p (25, 63, 94, 131, 191) 
a (12.1269, 15.6615, 16.0053, 
23.8994, 22.1594) 

Pepper 	 3 P (0.0027, 0.0-079, 0.0078) 5.7408 41, 133 
g (28, 96, 170) 
a (21.2210, 29.5961, 30.0024) 

4 P (0.0027, 0.0079. 0.0072, 0.0048) 8.6113 	40, 131, 176 
p (27, 94, 162, 193) 
a (22.9351, 27.2802, 29.3592, 
10.2470) 

Cameraman 	3 P (0.0235, 0.0061, 0.0114) 5.7876 33,130 
µ (13, 137, 169) 
a (4.3845, 39.2224, 15.4275) 

4 P (0.0231, 0.0014, 0.0061, 0.0118) 8.8609 	30, 52, 131 
g (13, 39, 136, 169) 
a (3.9712, 29.6954, 37.0420, 15.5644) 

Table 6.2: Comparison of SDE_Gaus with basic PSO and GA. 
Image 	No. of Threshold Uniformity measure 

classes 	PSO GA 	SDE_Gaus PSO 	GA SDEGaus 
Lena 	3 	61,166 53,178 	53, 170 0.9597 	0.9490 0.9533 

5 	46,84,119,186 	46,77,115,186 	46,.80, 114, 176 0.9774 	0.9758 0.9807 

Pepper 	3 	42, 135 38, 136 	41, 133 0.9740 	0.9738 0.9741 
4 	38, 141, 178 38, 134, 181 	40, 131, 176 0.9749 	0.9746 0.9752 

Camera 	3 	30, 135 30, 142 	33, 130 0.9752 	0.9744 0.9764 
man 	4 	28, 48, 145 28, 50, 145 	30, 52, 131 0.9735 	0.9732 0.9736 

Table 6.3: Experimental results of SDE_Entropy for images given in Figure 6.1. 
Image 	Number of threshold Threshold 	 Fitness Time (s) Uniformity 
Lena 	 2 80, 150 	 12.6990 1.17 0.9716 

3 60, 109,162 	 15.7667 1.19 0.9790 
4 56,110, 144, 184 	 18.5106 1.23 0.9777 
5 47, 78, 112, 137, 183 	21.2446 1.28 0.9843 

Pepper 	 2 74, 146 	 12.6348 1.46 0.9778 
3 62, 107,164 	 15.6896 1.62 0.9813 
4 57, 88, 143, 194 	 18.5406 1.87 0.9869 
5 45,77,114, 155, 195 	21.2910 1.98 0.9887 

Cameraman 	2 128, 193 12.1688 1.98 0.9363 
3 44, 104,193 15.2274 2.01 0.9625 
4 42,95, 156, 196 18.2461 2.34 0.9807 
5 40, 84, 119, 154,201 21.0971 2.62 0.9857 
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Table 6.5: Comparison of algorithms in terms of fitness corresponding to threshold given in Table 6.4. 

Number of Fast Otsu's 
Image MEHBMOT PSO HCOCLPSO SDE Entropy 

threshold method 
Lena 2 12.6990 12.6990 12.6990 12.6920 12.6990 

3 15.7658 15.7658 15.7658 15.7591. 15.7667 
4 18.5875 18.5875 18.5875 18.5084 18.5106 
5 21.2425 21.2400 21.2358 21.1301 21.2446 

Pepper 2 12.6348 .12.6348 12.6348 12.6044 12.6348 
3 15.6892 15.5772 15.6892 15.6829 15.6896 
4 18.5397 18.5395 18.5397 18.4699 18.5406 
5 21.2830 21.2806 21.2804 21.1905 21.2910 

Cameraman 2 12.1688 12.1688 12.1688 11.3367 12.1688 
3 15.2274 15.2274 15.2274 14.3235 15.2274 
4 18.3955 18.3955 18.3955 17.2633 18.2461 
5 21.0691 21.0680 21.0691 19.8241 21.0971 

Table 6.6: Comparison of algorithms in terms uniformity measure. 

Number of Fast Otsu's 
Image MEHBMOT PSO HCOCLPSO SDE Entropy 

threshold method 
Lena 2 0.9716 0.9716 0.9716 0.9702 0.9716" 

3 0.9789 0.9789 0.9789 0.9760 0.9790 
0.9792 0.9792 0.9792 0.9773 0.9777 

5 0.9840 0.9839 0.9838 0.9827 0.9843 

Pepper 2 0.9778 0.9778 0,9778 0.9752 0.9778 
3 0.9805 0.9792 0.9805 0.9802 0.9813 
4 0.9854 0.9881 0.9854 0.9838 0.9869 
5 0.9881 0.9879 0.9876 0.9853 0.9887 

Cameraman 2 0.9363 0.9363 0.9363 0.9243 0.9363 
3 0.9625 0.9625 0.9625 0.9560 0.9625 
4 0.9825 0.9825 0.9825 0.9759 0.9807 
5 0.9852 0.9851 0.9852 0.9816 0.9857 
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Chapter 7 

Conclusions and Future Research 

This chapter provides a summary of the research presented in this thesis. The general 
conclusions, including encountered challenges and limitations, are discussed, followed by a 

description of future research work. It consists of two sections; section 7.1 brings out the overall 
conclusions of the research work carried out in this thesis and section 7.2 suggests some 

research directions and possible extensions of the work presented in the thesis. 

7.1 Conclusions 

The objective of this research work was to design general purpose algorithms for solving 

global optimization problems (both unconstrained and constrained) and to apply them for 
solving multiple objectives and real life optimization problems. The goal was to create a solver 
that could easily and effectively deal with a wide assortment of problems without imposing any 

restrictions on the problems. DE has been taken as the base algorithm on which enhancements 
have been done to develop efficient and robust optimization algorithms. 

Three algorithms namely CDE, MSDE and SDE have been proposed in the second 

chapter for solving unconstrained global optimization problems. These algorithms are rigorously 
analyzed and are compared with basic DE algorithm and also with some of its enhanced variants 
with the help of various performance measures including a non parametric statistical analysis. 

For the -purpose of analysis, 25 classical benchmark problems and 7 nontraditional (shifted) 

functions were taken. 
It was observed that all the three proposed variants performed satisfactorily. However, 

MSDE and SDE performed better than CDE and were therefore compared with JADE, SaDE 

and jDE, some other advanced versions of DE. Here it was observed that MSDE and SDE 
perform at par with JADE, while they were better than SaDE and jDE. The results are also 

justified with the help of statistical analysis. 



Chapter 7 

Since MSDE and SDE performed better than COE for solving unconstrained 
optimization problems MSDE and SDE algorithms were suitably modified for constrained 
optimization problems. Pareto ranking approach is used for constraint handling. One of the 
salient features of this approach is that aside from the standard parameters required for MSDE 
and SDE no additional user input is required as in penalty approach. Each algorithm was tested 
on a set of twenty four test problems. " The results for both algorithms were found to be 
extremely promising, with SDE showing a slight dominance over the MSDE algorithm. The 
results of proposed algorithms were also compared with six other versions of constrained DE 
available in literature. These versions are ZRDE, jDE-2, MOE, HIDE-1, WE and SaDE. A 
statistical comparison of the algorithms has shown that all the algorithms perform at par with 
each other in terms of average number of NFE except for jDE-2 and SaDE which did not 
perform as well as the other algorithms. 

The efficiency of SDE for solving constrained and unconstrained benchmark and its 
simple algorithmic structure was the motivation to extend and modify it for solving multi-
objective optimization problems (MOPs). The modified SDE called as MO-SDE for solving 
MOPS is described in Chapter 4. The performance of MO-SDE was validated on a set of nine 
unconstrained MOPS. Its comparison with some recently modified versions of differential 
evolution and some other Multi Objective. Evolutionary Algorithms (MOEAs) once again 
showed the efficiency of the proposed SDE algorithm. 

The superior performance of SDE for solving unconstrained/ constrained and MOPs was 
an encouragement to further apply it for solving real life problems. For this purpose two real 
problems were considered: (1) Trim Loss Problem (TLP) and (2) Image thresholding which are 
described in chapter 5 and 6 respectively. 

The first problem (TLP) is a popular problem arising in various industries like glass, 
ceramic and textile etc. The particular industry that has been taken as an example here is the 
TLP arising in paper industry. Mathematically, it has a complex non linear/ non convex 
structure having integer as well as binary variables. 

The second problem is of image thresholding, which is a complex and difficult task in 
image processing field. The SDE algorithm was applied to solve the image thresholding 
problem was tested on three test images. 
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Conclusions and Future Research 

For both the real life problems, SDE once again showed its competence by finding a 

quality solution with a reasonably good convergence rate. 

An overall conclusion that can be drawn at the end of this study is that the suggested 

modifications helped in improving the performance of basic DE in terms of solution quality as 

well as convergence rate. SDE, which was the simplest of the three algorithms, emerged as a 

clear winner. However, it is worth mentioning that some cases were encountered where the 

proposed algorithms were not able to achieve the solution. For example, in ` case of 

unconstrained benchmark problems for Rosenbrock (fs ) and Rastringin (,1) function the 
proposed algorithms did not perform well under the given parameter settings. In case of 

constrained problems MSDE and SDE were not able to give a successful performance for three 

test cases; g03, g20 and g22. This shows that some further investigation is needed to make these 

algorithms compatible for solving all type of problems. 

The present work can be extended in several ways. Some future directions and 

suggestions regarding this work are given in the next section. 

7.2 Future Research 

Research is an iterative and everlasting process. The work presented in this thesis is not 4 
an exception Based on the experiments, several suggestions can be implemented for future 

work. A few of them are listed below: 

1. Population size plays an important role in algorithms success. Large populations give the 

more opportunity to find the desired solution since it can evaluate more thoroughly the 

feasible space at the expense of computational time. Small population tends to converge 

to a solution faster than the larger populations, but is more susceptible to local minima. 

So population can be taken in an adaptive manner instead of taking a fixed size 

population. 

2. An extensive empirical analysis of numerical results has been done in the present work. 

It would be interesting to do research on the theoretical analysis of the operators used in 

the proposed algorithms of the thesis. 

3. Fine tuning of parameters of proposed algorithms can be replaced with some suitable 

adaptive technique. Effects of adding some local search technique can also be observed. 
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Chapter 7 

4. In CDE, Cauchy mutation may be applied adaptively. 
5. MSDE has taken only two strategies in the present study; it may be extended with more 

strategies. 
6. SDE has been evaluated on unconstrained MOPs benchmark functions. It may be 

evaluated for solving constrained MOPS and also can be applied for solving multi-
objective real life application problems. 

7. The algorithms developed in this thesis may be hybridized among themselves or with 
other nature inspired algorithms like genetic algorithm, particle swarm optimization, ant 
colony optimization, bacterial foraging and honey bee mating optimization etc. 

8. Parallelization of these techniques is another viable option to increase overall 
performance and more easily handle larger data sets. 
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Appendix I 
List of Unconstrained Test Problems 

All these test problems are taken from (Rahnamayan et al., 2008; Zhang and Sanderson, 2009). 
1. Dejong 'sfunction (fl) 

D 

Minimize f (x) 

Properties: 

➢ —100—x, <100, x*=(0,0,...,0), f(x*)=0 

➢ This function is the dream of every optimization algorithm. It is also called the 
sphere model. It is smooth and symmetric. Also this function is continuous, 
convex and unimodal. 

f +s  

i J 

1 0 

J J 

Figure I.1: 3-D map for 2-D function f,. 
2. Schwefel 's function 2.22(12) 

D 	 D 

Minimize f (x) = I I x. ±fJ I x, 
7=1 1=1 

Properties: 

➢ —10 < x1  —10 , x* = (0,0,...,0) , f( x*) = 0 

➢ This function is a unimodal function. 
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Unconstrained Problems 

➢ 1 S i < D , —100 < xi  5100 , x* = (0,0,0...,0) , f (x*) = 0 

> This function is a unimodal function. 

10 
8 
6 
4 
2 
0 

-10 -10 

Y 	5 5 	x 
10 10 

Figure I.4: 3-D map for 2-D function f4  
5. Rosenbrockfunction (fs) 

U-I 
Minimize f (x) _ 	100(x;+1  — x,2  )Z + (x;  - 1)2 

Properties: 

➢ —30<x1   <30, x* _ (l,l,...,1) , f (x*) = 0 

➢ It is a classic optimization problem with a narrow global optimum hidden inside a 

long, narrow and curved flat valley. It is unimodal, yet due to a saddle point it is 

very difficult to locate the minimum. This function is also known as banana 

valley function. 

8 e-+07 
6e+07 
4e+07 
2e+07 

0 
-30 -30 

Figure I.5: 3-D map for 2-D function f. 
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Appendix I 

6 Step function (f6) 
n 

Minimize f (x) = Lx; +l/2]2  

Properties: 

➢ -100<x, <_100, x*=(0,0,...,0), f(x*)=0 

It is the representative of the problem of flat surfaces. Flat surfaces are obstacles 
for optimization algorithms, because they do not give any information as to 
which direction is favorable. Unless an algorithm has variable step sizes, it can 
get stuck on one of the flat plateans. It has one global minimum and is 

discontinuous. 

2 

0.5 

0 	 _1 

y 0.6 1 1 0.6 x 

Figure I.6: 3-D map for 2-D function f6. 
7. Dejong's function with noise (f7) 

v 
Minimize f (x) = (E ix;4 ) + rand[O, l] 

r_1 

Properties: 

— l .28 < xZ l.28, x* = (0,0,...,0) , f (x*) = 0 

➢ This function is a simple unimodal function padded with noise. Algorithms that 
do not do well on this test function will do poorly on noisy data. 

8. Schwefel function (f8) 

Minimize f (x) = —~ x; sin( I x; 1) 

Properties: 
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Unconstrained Problems 

➢ 

 

—500<  xi <— 500, x* = (420.97,420.947,...,420.947) ,. f (x*) _ —418.9829 * D 

➢ This function is deceptive in nature. Here the global minimum is geometrically 

distant, over the parameter space, from the next best global minima. Therefore 

the search algorithms are prone to converge in wrong direction. 

800 

400 
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-400 

-800 
-400 

-200 

2 00~'' 
400 

e' 200 
400 

`- -400 
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Figure I.7: 3-D map for 2-D function f . 
9. Ratringin function (19) 

D 

Minimize f (x) = I (x1 —10 cos(27rx,) + 10) 
=, 

Properties: 

➢ —5.125xi —5.12, x*=(0,0,...,0), f(x*)=0 

> This function is highly multimodal with regularly distributed many local minima. 

The total number of minima for this function is not exactly known but the global 

minimum is located at the origin. For 2 dimension, it has about 50 local minimas 

arranged in a lattice like configuration. 
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Unconstrained Problems 

➢ —600—xi  _<600, x*=(0,0,...,0), f(x*)=0 

➢ This test problem is similar to Rastringin function. It has thousands of local 

minima. However the locations of minima are regularly distributed. 

2 

1 

0 
-10 c 

-10 

- 	 X 
10 10 

Figure I.10: 3-D map for 2-D function fj j. 

12. Generalized penalized function 1(f12) 
D -1 

Minimize f(x) _ - { l0sin Z (iry,)+ 	(y;  —1)2 [1+lOsin Z (y;+1,r)] 

D 
+(YD  —1)2  } +Y u(x,,10,100, 4) , Where y, =1+--(x1     + 1) 

4 

Properties: 

> —50<—x1  <50, x*=(0,0,...,0), f(x*)=0 

> This function is a multimodal function where the number of local minima 

increases exponentially with the problem dimension. It appear to be the most 

difficult class of problems for many optimization algorithms. 

169 



120 
80 
40 

0 

170 



Unconstrained Problems 

• In problems 12 and 13, 
u(x,a,b,c)=b(x-a)° 	ifx>a, 
u (x, a, b, c) = b (-x-a)°  if x < -a , 

u (x, a, b, c) = 0 	if --a < x < a. 
14. Zhakarov function (f14) 

n 	o 	U 
Minimize f (x) _ x 2  + ( 0.51x1 )2  + ( 0.5ix;  )4  

Properties: 

➢ -5<-x;  <10 x*=(0,0,0...,0) f(x*)=0 

➢ This function has no local minima, it has one global minima at the origin. 

50000 
40000 
30000 
20000 
10000 

0 
-10 -10 

10 10 

Figure I.13: 3-D map for 2-D function f j4. 

15. Shekel's Foxholes function (fls) 

	

24 	1 
Minimize f (x) _ ( 1  + y_ ( j + 1+ E (x1  - a11) 

6 )  -1 )  -t 

	

500 j=0 	i=o 

Properties: 

➢ -65.54 <_x <_ 65.54, x* = (-31.95,-31.95) , f (x*) =1 " 

- 32,-16,0,16,32,...,-32,-16,0,16,32 
where a = 

-32,...,-16,...,0,...,16.....,32,... 
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Figure 1.15: 3-D map for 2-D function f ,. 
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Unconstrained Problems 

18. Goldstein and price function (8) 

Minimize f(x) _ {1 + (x, + x2 + 1)2 (19 —14x, + 3x12 —14x2 + 6x1x2 + 3x 2 )} 

{30+(2x, —3x2 )2(18-32x, +12x22 +48x2 —36x1 x2 +27x2 2 )} 

Properties: 

➢ —2 ~xi c2, x'_(0,1) , .f(x*) =3 

➢ This problem has four local minima and one global minima. 

8e+06 

6e+06 

4e+06 

2e+06 

0 
-20 -20 

20 20 

Figure I.16: 3-D map for 2-D function f,,4, 
19. Easom function (f19) 

Minimize f(x) _—cos(x,)cos(x2 )exp[—(x1 — Tr)2 —(x2 —.r)2 ] 

Properties: 

> —105x,:510 x* =(,r,ir) .f(x* )=-1 

> The function value rapidly approaches zero, when away from (7r, 7r). 

20. Hartmann function 1 (f2o) 
4 	3 

Minimize f(x)=-a1  exp(- E Ail (xl -I) 
 2 ), 

j=1  

Properties: 

➢ 

 

0<x1  <-1, x* = (0.114614,0.555649,0.852547) , f (x*) = —3.86278 
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3 10 30 

where, a=[  1 	1.2 3 3.2], A= 0.1 10 35 
3 10 30 

0.1 10 35 

0.3689 0.117 0.2673 
0.4699 0.4387 0.747 

P= 
0.1091 0.8732 0.5547 
0.03815 0.5743 0,8828 

➢ This function has four local minima and one global minima. 

21. Shekel 5 function (1j) 
5 4 

.f (x) 	LZ (x — a)(x1 — a;; )T + C; 
Minimize 	'- 1 =1 

Properties: 

> 0 xx <-10 x=(4,4,4,4) .f (x*) = -10.1499 

22. Shekel 7 function 
7 	4 

f(x) =- L~(x, —a)(x,. --a,.)` +C,.) 
Minimize 	 i=1 1=1 

Properties: 

> 0<_x<_10 x* _(4,4,4,4) f(x̀ ) _-10.3999 

23. Shekel 10 function (fj3) 
10 4 

.f (x) = -L LI (x1 — a11)(x.1 — a; )1 +c1]'  
Minimize 	/=1 f _1 

Properties: 

➢ 0~xi~10 x*=(4,4,4,4) .f(x* )=-10.5319 

> The values of constant a,; and c; for problem 21, 22 and 23 are given below. 



Unconstrained Problems 

4  4 4 4 0.1, 

1 	1 1 1 0.2 
8  8 8 8 0.2 

6  6 6 6 0.4 

3  7 3 7 0.4 

2 	9 2 9 
c= 

0.6 
5  5 3 3 0.3 

8  1 8 1 0.7 

6 	2 6 2 0.5 
7  3.6 7 3.6 0.5 

24. Kowalik function (f24) 

f(x)  ) — ~ a; — 
x~(b;2+b;xz) 

Z 

z 

Minimize  b; +b;x3 +x4 

Properties: 

➢ —5<_x1 <_5 x* = (0.192, 0.190, 0.123, 0.135) 	f (x* ) = 0.0003075 

➢ The values of constant a; and bt are given as below: 

0.1957 0.25 
0.1947 0.5 
0.1735 1 
0.1600 2 
0.0844 4 

a= 0.0627 b= 6 

0.0456 8 
0.0342 10 
0.0323 12 
0.0235 14 
0.0246 16 

25. Hartmann function 2 (f25) 

Minimize f (x) _ — E ai exp(— y_ By (x j — Q) 2 ) 
i=1 	j=1 
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Properties: 

➢ Q < xi  <1, x* = (0.20169,0.'50011,0.476874, 0.275332,0.311652,0.6573) , 

f (x*) = -3.32237 Where a = [ 1 	1.2 3 	3.2], 

10 	3 	17 	3.05 	1.7 	8 

0.05 	10 	17 	0.1 	8 	14 
B= 

3 	3.5 	1.7 	10 	17 	8 

17 	8 	0.05 	10 	0.1 	14 

0.1312 	0.1696 	0.5569 	0.0124 0.8283 	0.5886 

_ 0.2329 ̀ 	0.4135 	0.8307 	0.3736 0.1004 	0.9991 

0.2348 	0.1451 	0.3522 	0.2883 0.3047 	0.6650 

0.4047 	0.8828 	0.8732 	0.5743 0.1091 	0.0381 

This function has four local minima and one global minima. 
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Appendix II 
List of Shifted Test Problems 

All these problems are taken from (Tang et al., 2007). For all the problems: 

➢ D: Dimension 

➢ x—[x,,xz ,-..,xD ]  

➢ o  = [01, 02,  ..., oD ] : Shifted global optimum 

➢ z=x—o 
1. F j: Shifted Sphere Function 

D 

bias, 

Figure II.1: 3-D map for 2-D function F1 , 

Properties: 

➢  Unimodal 

➢  Shifted 

➢  Separable 

➢  Scalable 



> i-1005x;  5100 x' =o F,(x* )= f_bias, =-450 

2. F2 • Schwefel 's Function 2.21 

Fz  (x) = max{Iz1  l,1 < i < D} + f _ bias2 
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Unconstrained Shifted Problems 

➢ Shifted 

➢ Non-Separable 

➢ Scalable 

➢ Having a very narrow valley from local optimum to global optimum 

➢ 

 

—I005X, <_100 x*  =o F,(x*)= f _bias3  =390 

1 

M 

-1t 	-1QD 

Figure I1.3: 3-D map for 2-D function F3, 

4. F4: Shifted Rastrigin 's Function 
n 

F4(x) _ (z? —lOcos(27rz1)+10)+ f _bias4  

Properties: 

➢ Multi-modal 

➢ Shifted 

➢ Separable 

➢ Scalable 

➢ Local optima's number is huge 

➢ —5<_x, S5 x*  =o F4 (x* )= f_bias4  =-330 
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Unconstrained Shifted Problems 

Properties: 

➢ Multi-modal 

➢ Non-Separable 

➢ Scalable 

➢ —1 < xr  S 1, Global optimum unknown, F7  (x* ) unknown 
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APPENDIX III 
List of Constrained Test Problems • 

These problems are taken from (Liang et al., 2006). 
1. Problem 1 (g01) 

4  4  l3 

Minimize f(x)= 5 x1  - 51 x; — x1 , 
r=1  i=E  i=5 

Subject to: 
g1 (x)=(2x, +2x2 +x10 +xEE) -10 < 0, 
g2(x)=(2x1 + 2x3 - x10 +x12 -10 <0, 

g3(x)= (2x2 + 2x3 +x11 +x12)-10 ~ 0, 

g4 (x) = -8x1 + x10 < 0, 

95 (x) = --8x2 + x11 <_ 0, 
g6(x)=-8x3 + X12 CO3 

g7 (x) = —2x4 — x5 + x10 ~ 0, 

g8(x)= —2x6 —x7 +x11 :0, 

g9 (x) = —2xg — x9 + x12 < 0, 

Properties: 
> 0<_xi <1, 1=1,......,9, 0—x; 5100, i=10,11,12, 0—<x,3 <-1. 
➢ x# = (1,1,......1, 3, 3, 3,1) 
➢ f(x*)=-15. 

2. Problem 2 (g02) 

	

D 	 D 

lcos4 ( xi) — 2[J COS2 (a,,) 

	

Minimize f(x) = — 1=1 	 ;=1 
D 

ix? 

Subject to: 
D 

g 1 (x)=0.75--flxi <0, 

g2 (x)=>x,--7.5n<-0, 
i-1 

Properties: 



Appendix III 

➢ 0<_x;  <_10 where(i= 1,.....,D)andD=20 

➢ x* _ (3.16246061572185, 3.12833142812967, 3.09479212988791, 
3.06145059523469, 3.02792915885555, 2.99382606701730, 2.95866871765285, 

2.92184227312450, 0.49482511456933, 0.48835711005490, 0.48231642711865, 

0.47664475092742, 0.47129550835493, 0.46623099264167, 0.46142004984199, 

0.45683664767217, 0.45245876903267, 0.44826762241853, 0.44424700958760, 

0.44038285956317) 

➢ f(x*) = - 0.80361910412559 (the best found till date). 
3. Problem 3 (g03) 

Minimize(j)Dflh) x  

Subject to: 
 

h►(x)= 	 ,x;z  -1=0 

Properties. 
➢ 0 < x, .<-1 where (i = 1, 2, ..., D) and D =10 

➢ x* = (0.31624357647283069, 0.316243577414338339, 0.316243578012345927, 

0.316243575664017895, 0.316243578205526066, 0.31624357738855069, 

0.3162435754729495 12, 0.316243577164883938,: 0.316243578155920302, 

0.316243576147374916) 
➢ f (x*) _ -1.00050010001. 

4. Problem 4 (gO4) 

Minimize f(x) = 5.3578547x3 +0.8356891x1x5 +37.293239x, —40792.141 

Subject to: 
g,(x) — 85.334407+0.0056858x2x5  +0.0006262x1x4  —0.0022053x3x5  —92 <_ 0 
g2  (x) = —85.334407-- 0.0056858x2x5  — 0.0006262x,x4  + 0.0022053x3x, < 0 

93  (x) 80.51249 + 0.0071317x2x5  + 0.0029955x,x2  +0.0021813x —110<_0 
g4(x) =-80.51.249-0.0071317x2x5 —0.0029955x,x2  — 0.0021813x3 +90 <_ 0 

g5(x) = 9.300961+0.0047026x3x5 +0.0012547x1x3  +0.0019085x3x4  -25 < 0 

9b  (x) _ —9.300961- 0.0047026x3x5 — 0.0012547x,x3  — 0.0019085x3x4  +20 :5 0 

Properties: 
➢ 78<—x,:5102, 33:5x2:545 and 27:5x;  S45 (i=3,4,5) 

186 



Constrained Problems 

> x*  =(78,33,29.995256025682  , 45 , 36.775812905788 ) 

> f (x*) = -30665.539 

5. Problem 5 (g05) 

Minimize f (x) = 3x1  + 0.000001x; + 2x2  + (0.000002/3)x2 

Subject to: 
g1(x)=—x4 +x3 -0.55<-0 

g2 (x) =—x3  +x4 -0.550 

h3  (x) =1000 sin(—x3  — 0.25) + 1000 sin(—x4  —0.25)+894.8---x1   = 0 

h4  (x) = 1000 sin(x3  — 0.25) + 1000 sin(x3  — x4  — 0.25) + 894.8— x2  = 0 
h5  (x) = 1000 sin(x4  — 0.25) + 1000 sin(x4  — x3  — 0.25) + 1294.8 = 0 

Properties: 
➢ 05x1  —51200, 0:5x2  51200, —0.555x3  —50.55 and --0.55-5x4  _50.55. 

➢ 	x` = (679.9453,1026.067,0.1188764,-0.3962336) 

➢ f (x*) = 5126.49671. 

6. Problem 6 (g06) 

Minimize f (x) _ (x, —10)3  +(x2  —20) 

Subject to: 
g, (x) _ —(x, — 5)2  — (x2 _5)2  +100<-0  

g2(x)= (x1 -6)2+(x2-5)2-82.81—<0 

Properties: 
➢ 13:5 x, :5100 and 0 :5 x2  5100 

➢ 	x*  = (14.095,0.84296) 

➢ f(x`) = —6961.81388 . 

7. Problem 7(g07) 

Minimize f (x) = x1 +x +X
1  x2  —14x1  —16x2  +(x3  _10)2  +4(x4 _5)2  

+(x5  —3)2  +2(x6  —1)2  +5x.; +7(x8  —11)2  +2(x9  —10)2  +(x10  —7)2  +45 

Subject to: 
g1(x) _ —105+4x, +5x2  —3x7  +9x$  <-0 

g2(x)=10x1 -8x2 -17x7 +2x8  S0 

g3(x)=-8x1 +2x2 +5x9 -2x,0 -1250 
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ga (x) = 3(x1— 2)2  +4(x2  — 3)2  + 2x3 — 7x4  —120 0 

g5 (x) = 5x; + 8x2  + (x3  - 6)2  — 2x4  —40 < 0 

g6 (x) = xi +2(x2  _2)2  — 2x,x2  +14; —6; <— 0 

g7(x)=0.5(x,-8)2 +2(x2 -4)2 +3x5 -x6 -30<_0 
g8 (x) — -3x, +6x2  +12(x9 —8)2  —7x,0  <— 0 

Properties: 
—10<—x 510 (i=1,...,10) 

x' = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 

1.321644. 9.828726, 8.280092, 8.375927) 

➢ f (x* ) = 24.3062091. 

8. Problem 8 (gO8) 

Minimize f (x) _ — sin' (27 ix,) sin(2i 2 )  

x! (x1 +x2)  

Subject to: 
g1(x)=4 -x2 +1<0 
g2 (x) 1xt +(x2 -4)Z  <0  

Properties: 
0<x1  <10 and 0<_x2  <_10 

> x*  =(1.22797135260752599,4.24537336612274885)  

> f (x*) = -0.0958250414180359. 

9. Problem 9 (gO9) 

Minimize f(x) = (x, —10)2  +5(x2  —12)2  +x3 +3(x4  —11)2  

+104 +74 +x. — 4x6x7  —10x6  —8x7  

Subject to: 
g1(x) = -127+24+3x +x3 +4x4 +5x5 <-0 
g2(x)=-282+7x1  +3x2  +104 +x4  —x5  <_0 
g3(x)=-196+23x1+4 +6x6 —8x7  <- 0 
94(x)=4x1 +x$ —3x,xz+2x3 +5x6-11x, <-0 
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Constrained Problems 

Properties: 
➢ —105x, —10 for(i=1,...,7) 

➢ x' =(2.33049935147405174,1.95137236847114592,-.477541399510615805, 

4.36572624923625874, -0.624486959100388983, 1.03813099410962173, 

1.5942266780671519) 

➢ f (x`) = 680.630057374402 

10. Problem 10 (g10) 

Minimize f (x) = x, + x2  + x3  

Subject to: 
g,(x)=-1+0.0025(x4 +x6 )_<0 

g2  (x) _ —1+0.0025(x5  +x7  —x4 ) <— 0 

g3(x) _ —1+0.01(x8  —x5 )<-0 

g4  (x) —xlx6  +.833.33252x4  +100x1  — 83333.333 <— 0 

g5  (x) _ —x2 x7  + 1250x5  + x2 x4  —1250x4  <— 0 

g6  (x) _ —x3x8  +1250000 + x3x5  —2500x5  S0 

Properties: 
➢ 

 
I00 S x, 510000, 1000<x, 510000 (z=2,3) and 10<x, 51000 (i =4, ... ,8)  

➢  x*=(579.306685017979589, 1359.97067807935605, 5109.97065743133317, 

182.01769963061534, 	295.601173702746792, 	217.982300369384632, 

286.4 1652592786852, 395.60 1 173702746735) 

➢ f(x) = 7049.24802052867. 

11. Problem 11 (gll) 

Minimize f (x) = x; + (x2 — 1)2  

Subject to: 
hi (x) =x2 — x2 =0. 

Properties: 
➢ —15x1 <1, i=1,2. 

➢ x* = (-0.707036070037170616, 0.500000004333606807) 

> f(x* ) = 0.7499 
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12. Problem 12 (g12) 

Minimize f(x) =-(100 —(x1 
— 5)2 — (x2  — 5)2 —(x3  — 5)2 )1100 

Subject to: 
g(x) (x, —p)2  +(x2  —q)2  +(x3  —r)2 )-0.0625 5O 

Properties: 

0<x,  <_10(i =1,2,3) and p,q,r = 1,2, ,9 

> The feasible region of the search space consists of 93  disjoint spheres. A point (xi, 
X2, x3) is feasible if and only if there exist p,q,r such that the above inequality 
holds. 

> x*  = (5,5,5) 

➢ f(x * )= -1  

13. Problem 13 (g13) 

(x1 x2x3X4x5) 
Minimize f(x) = e 

Subject to: 
h(x)=x +xZ +x3 +x4 +xs —10 0 
h2  (x) = x2 x3  - 5x4 x5  - 0 
h3 (x)= x1'+xZ+1=0 

Properties: 
➢ 

 

—23<x,-23 (i=1,2)and —32<x1 532 (i=3,4,5) 

➢ x * 	_ 	(-1.71714224003, 	1.59572124049468, 	1.8272502406271, 	- 
0.763659881912867, -0.76365986736498) 

➢ 
 

f(x*) = 0.053941514041898 

14. Problem 14 (g14) 

to 	x;  Minimize f(x) = x;  c;  + In to 
t_1 	 Exj  

j= 

Subject to: 
h1 (x) = xl  +2x2  +2x3  +x6  +x10  -2 = 0 
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Constrained Problems 

h2  (x) = x4  +2x5  +x6  +x7  -1 = 0 
hj(x)=x3 +x,+x8 +2x9 +x10-1=0. 

Properties: 
➢ 0<x,<_10 (i =1,...,10), and c1 =-6.089, c2 =-17.164, c3 ---34.054, 

c4  =-5.914, 	c5  =-24.721, 	cb  =-14.986, 	c, =-24.1, 	c8  =-10.708, 

c9  =-26.662,  clo  =-22.179.  

➢  x*=(0.0406684113216282, 	0.147721240492452, 	0.783205732104114, 

0.00141433931889084, 	0.485293636780388, 	0.000693183051556082, 

0.0274052040687766, 	0.0179509660214818, 	0.0373268186859717, 

0.0968844604336845) 

➢ f(x) = -47.7648884594915 

15. Problem 15 (g15) 

Minimize f (x) = 1000— x; —2x —x — x Ix2  — x1x3  

Subject to 
h,(x)=xl +xZ +x3 —25=0 
h2  (x) = 8x1  + 14x2  + 7x3  — 56 = 0 

Properties: 
➢ 0<_x; :510 (i=1,2,3) 

➢ x*=(3.51212812611795133, 0.216987510429556135,3.55217854929179921). 

➢ f (x* ) = 961.715022289961 

16. Problem 16(g16) 

Minimize f (x) _ —0.0000005843y17  + 0.000117y14  + 0.1365 + 0.00002358y13  

+ 0.000001502y16  + 0.0321y12  + 0.004324y5  + 0.0001-- + 37.48-- 
c12  

Subject to: 
0.28 

g1(x)= Y4-0.72y5'-0 
92(x)=1.5x2 —x3 >_0 

g3(x)2i-34962 -?0   =  	 2   

X12 
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g4 (x) = 
62,212 

—110:6 — yi > 0 

g5(x)=Y —213.1?0 
g6(x)=405.23—y1 >_0 

g7(x)=Y2 -17.505 >-0 

gs (x) =1053.6667 — y2 ~ 0 

g9(x) Y3-11.2750 
g10(x) 35.O3—y3 ~0 

g11 (x) = y4 —214.228>-0  
812(x)=665.585—y4>0 

g13 (x) = y5 —7.458  > 0 

g14 (x) 584.463 -- y5 ?0 

g15(x)=Y6-0.961>-0 :. 

g16(x)=265.916— Y6 ? 0 
817(x)=Y7-1.612>-0 

818(x)=7.046-y,>_0 

519(x)=Y8-0.146?0 

g20 (x) = O.222-y8 >_ 0 

g21(x)y9 -107.99>O 

g22 (x) = 273.366—y9 ? 0 

923(x)=YM -922.693>0 

924(x)=1286.105—yo ?0 

825 (x) = YII —926.832 > 0 
g26 (x)1444.046 — y,  >0 

g27(x)=Y12-18.766>0 
828 (x) = 537.l41—y12 > 0 
g29 (x) Y13 —1072.163 >— 0 

g30 (x) = 324'7.O39—y13 > 0 
931(x) =Y14 —8961.448>0 

g32 (x) = 26844.O86—y14 > 0 
g33 (x) Y15"— 0.063 ? 0 

g34 (x) = 0.386—y15 ?0 

935(x)=Y6-71084.33>0 

g36) =140000 — y16 >0 
837 (x) y„ —2802713>_0 
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Constrained Problems 

g38 (x) =12146108 — y„ >_0 

where: 

y, =x2 +x3 +41.6 
cl = 0.024x4 -4.62 

12.5  
Y2  +12 = 

Cl 

c2 = 0.0003535x1 + 0.5311x, + 0.08705y2x1 

c3 = 0.052x1 + 78 + 0.002377 y2x1 

C, 

Y3 =- 
C3 

Y4 = 19Y3 

x 
c4 = 0.04782(x, —y3)+ °1956' 

 —y3)2 
+ 0.6376y4 + 1.594y3 

xZ 

C5 =100x2 
c6 = X1—y3—y4 

c7 =0.950—- 
05 

Y5 = C6C7 

Y6 = XI YS Y4 Y3 

C8 = (ys +y4 )0.995  

c8 

Y, 
_ C8 

yg ~3798 
c  
9 =Y7 - 

0.0663y7 —0.3153 

Y8 

y9= 96.82 +0.321y, 
C9 

y,o =1.29y5 + 1.25 8y4 +2.29y3 + 1.71y6 

y„ =1.71x, - 0.452y4 + 0.5 80y3 

12.3 

CIO = 752.3 
C„ = (1.75y2)(0.995x,) 

c,2 = 0.995y,0 + 1998 

193 



Appendix III 

Y12 =c1ox,+ c-1  
C12 

y13  = C12  — 1 .75y2  

Y14 — 3623 + 64.4x2  + 5 8.4x3  + 
 146.312  

Y9 + x5 
c13  = 0.995y10  + 60.8x2  + 48x4  — 0.1121y14  - 5095 

— Y13 
Y15 -  

C13 

Y16 =148000 — 331000y15  +4O)) 3  — 6ly15 Y13  
c14  = 2324y,0  - 28740000y2  

Y17  =14130000 --1328y10  -- 53 ly,1  + c14  
C12 

_ Y13 	Y13  C  
l5 — 	-0.52 Y1s 

c16 1 104— 0.72y5  
c„ = + x5  
Properties: 

➢ 	704.4148<—x1  <- 906.3855,68.6<—x2 5288.88,0<_x3  <_134.75, 

193 <_x4  <— 287.0966 and 255x5  <_84 1988 

> x* ` =(705.174537070090537, 68 5999999999999943, 102.899999999999991, 

282.324931593660324,37.5841164258054832) 

> f (x* ) =-1.90515525853479 

17. Problem 17 (g17) 

Minimize f (x) = f(x1) + f(x2 )  

where 

f(xl)=  30x1 	05x1 <300 
31x, 300 <x1  < 400 

28x2 	0<_x2 <100 
J (x1) - 29x2  100 <_x2  < 200 

30x2  200 <.x2  <1000 
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Constrained Problems 

Subject to: 

h1  (x) = —x1  + 300 —  x3x4  cos(1.48477 — x6 ) +  0.90798x3 cos(1.47588) 
131.078 	 131.078 

h2  (x) _ —x2 

—34 

 cos((1.48477 + x6 ) +  0.90798x4 cos(1.47588) 

	

131.078 	 131.078 

h3  (x) = —x5 
—34 

 sin((1.48477 +x6)+  
0.90798x4 

 sin(1.47588) 

	

131.078 	 131.078 
2 

h4  (x) = 200— x3x4  sin((1.48477 + x6) + 0.90798x sin(1..47588) 

	

131.078 	 131.078 
Properties: 

> 0_<x1  S400, 	0Sx2  —1000, 	340<x3  5420, 	340_5x4  <-420, 

—1000<x5  S1000 and 0<x6  S0.5236 

➢ x*=(201.784467214523659,99.9999999999999005,383.0710348527732.66, 420, 

109076584514292652, 00731482312084287128) 

> f (x`) = 8853.53967480648 

18. Problem 18 (g18) 

Minimize f (x) = —0.5(xlx4  — x2  x3  + x3  x9  — x5  x9  + x5  x8  — x6  x7  ) 

Subject to: 

g1(x)=x3 +x4 —1<_0 

g2(x)=x9 —1_<0 

g3 (x)=x5+x6-1<-0 

g4(x)=x +(x2  —x9)2   —1  0 

g5 (x) = (x1  — x5 )2  + (x2  —x6 )2  —1 < 0 

g6 (x) = (x1 — x7 )2   + (x2  — x8 )2   —1<0 

g7(x) = (x3  —x5 )2  +(x4  —x6 )2  —1<0 

g8(x) =(x3  — x7 )2  +(x4  —x8 )2  —1 < 0 

g9(x)—x7 +(x8  —x9)2-1<0 

810(x)=.72x3 -71x4  <0 

811 (x) = —73x9  —<0 

g12 (x) = x5  x9  < 0 

813(x)-x6 77 —x578  —< 0 

Properties: 
➢ —10 x;  <-10 (i = 1,....,8) and 0 S x9  <_ 20 
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x*=(-0.657776192427943163,-0.153418773482438542, 

0.323413871675240938,-0.9462576116513.04398, -0.657776194376798906, - 

0.753213434632691414, 0.323413874123576972, -0.346462947962331735, 

0.59979.466285217542) 

➢ j(x) = -0.866025403784439 

19. Problem 19 (g19) 

 

5 5  
5 	10 

Minimize f(x) — ~ c,; x(IO )X( O+j) + 2~ d,4+J) —b  ,x, 

	

j=1 i=1 	jal 	; 

Subject to: 
5  10 

g / (x)=-2~cyx(10+) —3dJx(~0+;j — e1 + a;;x, <_ 0 j=1,...,5 

Properties: 
➢ b = [-40, —2, -0.25, —4, —4, —1, —40,,-60, 5, 11,0 <x, < 10 (i = 1, ... ,15) and 

the remaining data is in Table III.1 
➢ x*=(1.66991341326291344e-17,3.95378229282456509e-16, 

3.9459904514323378.4, 1.0603659747972121le-16, 3.2831773458454161, 

9.99999999999999822,1.12829414671605333e-17, 

1.2026194599794709e-17,2.50706276000769697e-1 5, 

2.24624122987970677e-15,0.370764847417013987, 0.278456024942955571, 

0.523838487672241171, 0.388620152510322781, 0.298156764974678579) 

➢ f (x*) = 32.6555929502463 

Table II1.1: Data set for test  problem 19. 1 2 
3 45 

-15 -27 -36 -18 -12 

cl i 30 -20 -10 32 -10 
c2 j -20 39 -6 -31 32 
c3 -10 -6 '10 -6 -10 
c4i 32 -31 -6 39 -20 
csj -10 32 -10 -20 30 _ 

4 8 10 6 
- 

2 
al -16  2 0 1 0 
a2• 0 -2 0 0.4 2 

a3• -3.5 0 2 00 
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a41 0 -2 0 -4 - I 
a51 0 -9 -2 1 -2.8 

a61 2 0 -4 0 0 
a71 -1 -1 -1 -1 -1 

a81 -1 -2 -3 -2 -1 

a91 1 2 3 4 5 
a101 1 1 1 1 1 

20. Problem 20 (g20) 
24 

Minimize f (x) _ ax, 

Subject to: 
(x1 ± x(;+12) ) < 0 	i — 	2 3 
Z~=1 x.i +e1 

g, (x) _ (x(1+3) +x(/+15)) < 0 
	i = 4 ,5 ,6 

24 
x~ + e,. 

x(i+i2) 	

- 	

Clxl h,( x) — 	 0 — 	= — 0 	i =1,2,........,12 

	

24 xi 	 1 
12
2 

b(,+12)'E f=13 b 	40b; E_ 
EL 
 b 

	

! 	 J 
24 

h13 (x)= x; -1=0 

h, 4 (x) 	12 x' + k 24 x' 1.671 =0 
i=1  ,  1=13 

Properties: 

➢ 

 

k=0.7302 530 
40 	

0 < xi < 	i =1 ( 	)( 	1 ) ~ 	I , 	10 ('  ,  	... , 24) and the data set is detailed 

in Table II1.2. 

➢ x* = (1.28582343498528086e — 18, 4.83460302526130664e —34, 0, 0, 

6.30459929660781851e — 18, 7.57 192526201 145068e — 34, 

5.03350698372840437e — 34, 9.28268079616618064e — 34, 0, 

1.76723384525547359e -- 17, 3.55686101822965701e — 34, 

2.99413850083471346e-34,0.158143376337580827, 
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2.29601774161699833e-19, 1.06106938611042947e-18, 

1.31968344319506391e - 18, 0.530902525044209539, 0, 

2.89148310257773535e - 18, 3.34892126180666159e-18, 0, 

0.310999974151577319, 5.41244666317833561e-05, 

4.84993165246959553e-16) 

➢ This solution is a little infeasible and no feasible solution is found so far. 

21. Problem 21 (g21) 

Minimize f (x) = x, 

Subject to 
g1(x)=-x1  + 35x0.6  +35x6 <0 

h, (x) _ -300x3 + 7500x5  - 7500x6 - 25x4x5  + 25x4 x6  + x3 x4  = 0 

h2  (x) =100x2  +155.365x4  +2500x7  - x2 x4  -25x4x, -15536.5 = 0 

h3  (x) = -x5  + ln(-x4  + 900) =0 
h4 (x)=-x6  + ln(x4  +300)=0  

h5  (x) = -x, + In(-2x4 + 700) = 0 

Properties: 
➢ Oxl  <_1000,0 <_ x2 , x3  <_40, 100:5x4  <_300, 6.3<x5  -6.7, 5.9<_x6  <6.4 

and 4.5 <x7 <6.25. 

➢ x* = (193.724510070034967, 5.56944131553368433e-27, 

17.3191887294084914, 100.047897801386839, 6.68445185362377892, 

5.99168428444264833, 6.21451648886070451) 

➢ f (x`) =193.724510070035 

Table 1I1.2: Data set for test problem 20. 
1 0.0693 44.094 123.7 31.244 0.1 
2 0.0577 58.12 31.7 36.12. 0.3 
3 0.05 58.12 45.7 34.784 0.4 
4 0.2 137.4 14.7 927 0.3 
5 0.26 120.9 84.7 82.7 0.6 
6 0.55 170.9 27.7 91.6 0.3 
7 0.06 62.501 49.7 56.708 
8 0.1 84.94 7.1 82.7 
9 0.12 133.425 2.1 80.8 
10 0.18 82.507 17.7 64.517 
11 0.1 46.07 0.85 49.4 
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12 0.09 60.097 0.64 49.1 
13 0.0693 44.094 
14 0.0577 58.12 
15 0.05 58.12 
16 0.2 137.4 
17 0.26 120.9 
18 0.55 170.9 
19 0.06 62.501 
20 0.1 84.94 
21 0.12 133.425 
22 0.18 82.507 
23 0.1 46.07 
24 0.09 60.097 

22. Problem 22 (g22) 

Minimize f(x) = xl  

Subject to: 
g1 ̀ x) _ -x1  + xz .6 + x3.6 + x°  C 0 
h1 (x)=x5  -100000x8  +1x107   = 0 
h2 (x)=x6  ±100000x8  -100000x9  =0 
h3 (x)=x7  +100000x9  -5x107  =0 
h4 (x)=x5  +l00000x10  -3.3x  107  =0 
h5 (x)=x6  +100000x11  -4.4x107   = 0 
h6 (x)=x7  +100000x12  -6.6x  107  =0 
h..(x) =.x5  -120x2x13  =0 
h8 (x) = x6  - 80x3 x14  = 0 
h9 (x)=x7  - 40x4x15  =0 
h10 (x) _ x8  '--' x11  + x16  = 0 
h11 (x)=x9  -x12  + x17 =0 

1z12 (x)=—x18  + In(x10  —100)=0 
h13 (x)=-x19  + In(-x8  +300)=0  

h14 (x) _ -x20  + ln(x16) = 0 
h15  (x) _ -x21  + ln(-x9  + 400) =0 

h16 (x) _ -x22  + In(x17) = 0  
h17 (x) _ —x8 — x10 + x13 x18 — x13 x19 + 400 = 0 
h18 ('x) - 'x8 - x9  - x11  + x14 x20 - x14  x21  + 400 = 0 
h19  (x) = x9  - x12  - 4.60517x, 5  + x15  x22  + 100 = 0 
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Properties: 
➢ 0 < x1 < 20000, 0 X2 , x3 , x4 1 X 106 , 0 ~ x5 , x6 , x7 < 4 x 107 , 100 < x8 < 

299.99, 100 x9 399.99, 100.01 < x10 300, 100 < x11 < 400, 100 <_ x12 < 600, 
0 -< X13 , X14 , x15 < 500, 0.01 < x16 < 300, 0.01 < x17 < 400, —4.7 <_ Xi s , x19 , X20, 

X21 ,X226.25. 

➢ x* — (236.430975504001054, 135.82847151732463, 204.818152544824585, 

6446.54654059436416,  3007540.83940215595,  4074188.65771341929, 

32918270.5028952882,  130.075408394314167,  170.817294970528621, 

299.924591605478554,  399.258113423595205,  330.817294971142758, 

184.51831230897065,  248.64670239647424,  127.658546694545862, 

269.182627528746707,  160.000016724090955,  5.29788288102680571, 

5.13529735903945728,  5.59531526444068827,  5.43444479314453499, 

5.07517453535834395) 

A f(x) = 236.430975504001 

23. Problem 23 (g23) 

Minimize f (x} = —9x5 —15x8 + 6x1 + 16x2 +1 0(x6  + x7 ) 

Subject to: 
g1 (x) = x9x3 + 0.02x6 — 0.025x5 < 0 

g2 (x) = x9x4 +0.02x7 —0.015x8 <— 0 

h1 (x) = x, + x2 — x3 - x4 = 0 
h2 (x) = 0.03x1 + 0.01x2 — x9 (x3 +x4 ) = 0 

1; (x) = x3 + x6 -- x5 = 0 

h4 (x) = x4 + x7 — x8 = 0 

• Properties: 
➢ 0 < xl ; xi  

➢ x * = (0.00510000000000259465, 99.9947000000000514, 

9.01920162996045897e — 18, 99.9999000000000535, 

0.000100000000027086086,2.75700683389584542e —14, 

99.9999999999999574,2000.0100000100000100008) 

➢ f (x*) = —400.055099999999584 
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24. Problem 24 (g24) 

Minimize f(x) = — xl  -- x2  

Subject to: 

.x2  <2x14  -8x13  +8x1 2  +2 

x2  S 4x14  —32x13  +88x12  — 96x, + 36 

Properties: 
➢ 0<—x153,0<— x2<-4 

➢ x* = (2.32952019747762, 3.17849307411774) 

➢ f(x* ) = -5.50801327159536 
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List of Multi-Objective Test Problems 

All these test problems are taken from (Deb, 2001). 

1. Schaffer 'sfunction (SCH) 

fi (x) = x 2 f2 (x) = (x - 2)
2 

Properties: 

➢ -1000<- x<_1000 

➢ Optimal solutions at x E [0,  2 ] 

Convex 

2. Fonseca and Fleming function (FON) 
3  1  2 

.f1(x)=1—exp — \
xi 	J 

Properties: 

➢ —4 S x; <_ 4, i = 1, 2, 3 

1  2 

f2(x) = 1— exp 	; + ~J 

➢ Optimal solutions at (xi =x2 = x3 ) E [-1 / J,1 / J] 

➢ Non convex 

3. Poloni 's function (POL) 

f 1 (x) _ [1 + (A 1 - B 1 ) 2 + (A 2 
- B2 )2] 	 f2 (x) _ [ (x 1 + 3 ) 2 + (x2 + 02 ] 1 

A1 =0.5sin1-2cosl+sin2-1.5cos2 A2 = 1.5sinl—cosl+2sin2-0.5cos2 

B, = 0.5sinx, -2cosxi +sinx 2 -1.5cosx2 B2 =1.5sinx, -cosx1 +2sinx 2 -0.5cosx2 

Properties: 

➢ -7z<-x ; <_7c,i=1,2 

➢ Optimal solutions at (Deb, 2001) 

➢ Non convex 

➢ Disconnected 
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4. Kursawe 's function (KUR) 
n-1 

f1(x) = 	(-10 exp (-0.2 x? + x; )) 

.f2(x) _ 	(ixi°.s + 5 sin(x; ) 

Properties: 
- 55x; <_5, i=1,2,3 

Optimal solutions at (Deb, 2001) 
➢ Non convex 

5. ZDTI function (ZDTI) 

fi(x) =x l 	f2(x) = $(x)[1— xi/g(x)] g(x)=1+9( 	x ; )/(n-1) 

Properties: 

➢ 0<_x; <_1, i=1,2,...,30 

Optimal solutions at X1 E [0,1], x, = 0, i = 2, 3, ... 3 0 

> Convex 

6. ZDT2 function (ZDT2) 

f1 (x)=x1 fi (x) = 9(x) [ 1 - (x1 / g(x))2 

g(x) = 1 + 9(~ x;) 1(n -1) 

Properties: 

➢ 0<x; <1, i=1,2,...,30 

> Optimal solutions at x, E [0,1],x1 = 0, i = 2,3,...,3 0 

> Non convex 

7. ZDT3 function (ZDT3) 

fi(x) = xl 
f,(x)=g(x)

L
I— x1/g(x)— g(x)sin(1o~rx,)] 

n 

g (x) = 1 + 9(~ x ; ) /(n - 1) 

Properties: 
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0<x;  <_1, i=1,2,...,30 

> Optimal solutions at x, E [0, l], x ;  = 0, i = 2, 3, ..., 3 0 

This function is convex and disconnected in nature. 

8. ZDT4 function (ZDT4) 

f1(x) 	X1 f 2 (x) = g(x)[1 — x, g(x)] 

n 

g(x) = 1 + 10(n — 1 ) + 2 [x ;Z  — 1 0 cos(4,zx ; )] 
j-Z 

Properties: 

0 <- x;  < 1, i = 1, 2, ...,10 

> Optimal solutions at x, e [0,1 ], x ;  = 0, i= 2,3,...,10 

➢ Non convex 

9. ZDT6 function (ZDT6) 

.fi (x) =1- exp(-4x,) sin6  (6)rx,) f 2 (x) = g (x) [ 1 - ( A (x) / g (x)) Z  

0.25 

g(x) = 1 + 9 [( 	x ; ) /(n - 1)] 

Properties: 

0 < x, < 1, i = 1,2,...,10 

➢ Optimal solutions at x, E [0,1], x, = 0, i = 2, 3, ...,10 

> Non convex 

➢ Non uniformly spaced 
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Non Parametric Tests 

Due to the lack of strong theoretical convergence proofs in the field of evolutionary 

algorithms, the researchers mainly rely on empirical analysis to compare two algorithms. 

Statistical analysis of algorithms can be done on the basis of (i) parametric tests or (ii) non 

parametric tests. 

According to the literature, parametric tests have been used more frequently in 

comparison to non parametric tests. The most commonly used statistical criterion is the use of 

parametric paired t-test. However, the application of paired t-test requires the fulfilment of the 
following three conditions: 

1. The data in the set should be independent 

2. The sample should be normally distributed 

3. Variance of the samples should be equal 

If any of the above three conditions are not satisfied then the paired t-test may give a 
wrong conclusion. 

Non parametric tests on the other hand are more suitable for comparing the algorithms 

because they do not require any specific condition for their application. A detailed study on the 
use of non parametric tests is given in Garcia et al. (2009). 

Non parametric tests can be used for comparing algorithms whose results represent 

average values for each problem, in spite of the inexistence of relationships among them. In this 
thesis, results are analyzed statistically for multiple problem analysis (a comparison of 

algorithms over more than one problem simultaneously) by using the following non parametric 
tests. 

➢ Friedmann test 

➢ Bonferrani Dunn test 

➢ Wilcoxon test 



All the tests used here find the associated p-value, which represents the dissimilarity of 
the sample of results. Hence, a low p-value points out a critical difference. The definitions 
relevant to the present study are described as follows: 

Hypothesis and p-value 

Hypothesis testing: Hypothesis testing is a procedure in which sample data are 
employed to evaluate a hypothesis. In order to evaluate a research hypothesis, it is restated 
within the framework of two statistical hypotheses; the null hypothesis (Ho) and the alternative 
hypothesis (H1). 

The null hypothesis is generally a hypothesis that the researcher expects to be rejected. 
The alternative hypothesis represents a statistical statement indicating the presence of an effect 
or a difference. In this case, the researcher generally expects the alternative hypothesis to be 
supported. 

Once the data is collected, it is evaluated by means of an appropriate inferential 
statistical test to obtain a test statistic interpreted by employing special tables that contain 
information with regard to the expected distribution of the test statistic. 

The conventional hypothesis testing model employed in inferential statistics assumes 
that prior to conducting a study, a researcher stipulates whether a directional or nondirectional 
alternative hypothesis is employed, as well as at what level of significance is represented the 
null hypothesis to be evaluated. The probability value which identifies the level of significance 
is represented by a. When one employs the term significance in the context of scientific 
research, it is instructive to make a distinction between statistical significance and practical 
significance. Statistical significance only implies that the outcome of a study is highly unlikely 
to have occurred as a result of chance, but it does not necessarily suggest that any difference or 
effect detected in a set of data is of any practical value. 

p-value: A p-value is obtained when instead of stipulating a priori a level of significance 
a, one calculates the smallest level of significance that results in the rejection of the null 
hypothesis. p-value is a useful datum for many while conducting statistical analysis. It provides 
information about the significance of the statistical hypothesis. The smaller the p-value, the 
stronger is the evidence against the null hypothesis. 
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Friedman's test 

It is applied to see if there are global differences in the results of k samples (k > 2). It is a 
multiple comparison test that aims to detect significant differences between the behaviour of 
two or more algorithms. 

The null hypothesis for Friedman's test is Ho: 01 = 02  = 	= 9k  ; the median of the 
population i represents the median of the population j, i j, I < i < k, 1 < j < k. The alternative 
hypothesis is HI: Not Ho. 

It computes the ranking of the observed results for algorithm (rr  for the algorithm ] with 
k algorithms) for each function, assigning first rank to the best performing algorithm, and k" 
rank to the worst performing algorithm. Under the null hypothesis, formed from supposing that 
the results of the algorithms are equivalent and therefore their rankings are also similar, the 
Friedman's statistic 

2  _ 12N 	
R.I. 

— k(k + 1)2  
xF 	 4  

is . distributed according to XF2 with k — 1 degrees of freedom, being R1  = N Zti  if and N the 

number of functions. The critical values for the Friedman's statistic coincide with the values 
established in the X2 distribution when N> 10 and k> 5. 

The rejection of the null hypothesis does not involve the detection of the existing 
differences among the algorithms being compared. It only informs that there are differences 

among the samples of results compared. 

In order to conduct pair wise comparisons within the framework of multiple 
comparisons, a post-hoc procedure is employed. In this case, a control algorithm (maybe a 
proposal to be compared) is chosen, Then, the post-hoc procedures proceed to compare the 

control algorithm with the remaining k — 1 algorithms. It is done by the Bonferroni-Dunn's test 
given below. 

Bonferroni Dunn's Test 





Non Parametric Tests 

In this study SPSS software package is used for statistical analysis. The level of 
significance is considered at a = 0.05 (5%) and 0.10 (10%). A p-value greater than a indicates 

that there is no significant difference between the results. 
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