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ABSTRACT 

Optimization problems arise in various disciplines such as Engineering Designs, 

Agricultural Sciences, Manufacturing Systems, Economics, Physical Sciences, Pattern 

Recognition etc. In fact newly developed computational techniques are being used in every 

sphere of human activity where decisions are to be taken in some complex situations that can be 

represented by a mathematical model. In view of their practical utility there is a need for 

efficient and robust computational algorithms, which can numerically solve on computers 

mathematical models of medium as well as large size optimization problems arising in different 

fields. 

Mathematical models of real life problems often turn out to be nonlinear in nature. Such 

problems may have local as well as global optimal solutions. Global optimal solution is usually 

more difficult to obtain, as compared to local optimal solution, but in many cases it is 

advantageous and sometimes even necessary, to search for the global optimal solution. 

In order to determine the global optimal solution of a nonlinear optimization problem, 

usually two approaches are followed: (1) The Deterministic Approach and (2) The Probabilistic 

Approach. Deterministic methods extensively use analytical properties such as continuity, 

convexity, differentiability etc. of the objective and the constraints to locate a neighborhood of 

the global optimum. It is now established that deterministic methods are best suited for 

restricted classes of functions, namely convex functions, one dimensional rational or Lipchitz 

functions and Polynomials etc. whose mathematical properties can be easily determined and 

utilized at specified points or in specified intervals. The stochastic methods, on the other hand, 

utilize randomness in an efficient way to explore the set over which the objective function is to 

be optimized contrary to general expectation. Stochastic methods perform well in the case of the 

most of the realistic problems over which these have been tried. In stochastic or probabilistic 

methods, two phases are generally employed. In the first phase, also called global phase, the 

function is evaluated at a number of randomly sampled points. In the second phase, also called 

local phase, these points are manipulated by local searches to yield a possible candidate for a 

global optima. Although probabilistic methods do not give an absolute guarantee of determining 

the global minima, these methods are sometimes preferred over deterministic methods, because 



they are applicable to a wider class of functions as they depend of function evaluations alone 

and do not assume any mathematical properties of the functions being used. 

Nature Inspired Algorithms (NIA) are relatively a newer addition to class of population 

based stochastic search techniques. These algorithms are based on the evolutionary, self 

organising and collective processes in nature for example the concepts of natural evolution like 

selection, reproduction and mutation form the key ingredients of certain NIA whereas the socio-

cooperative behaviour displayed by natural species like birds, ants, termites and bees (and also 

human behaviour) form basis of some other NIA. These algorithms seem promising because of 

their social — cooperative approach and because of their ability to adapt themselves in the 

continuously changing environment. 

Some popular NIA include Genetic Algorithms (GA), Ant Colony Optimization (ACO), 

Evolutionary Programming (EP), Evolutionary Strategies (ES), Particle Swarm Optimization 

(PSO), Differential Evolution (DE) etc. These algorithms have been successfully applied to 

several bench mark and real life problems arising in various fields of Science and Engineering. 

Although, these algorithms give a better performance than the classical optimization techniques 

in most of the cases, it has been observed that most of the stochastic algorithms have certain 

drawbacks like slow or premature convergence (resulting in inferior solution), inability to locate 

a global optima or getting stuck in a local optima. These problems become more persistent in 

case of multimodal problems i.e. problems with several local and global optima or noisy 

functions with shifting optima (dynamic optimization problems), i.e. to say problems in which 

global optima is not static but keeps on changing with time. 

Keeping in mind the shortcomings of the existing techniques, algorithms are developed/ 

modified in this Thesis which not only keep a balance between the two antagonist factors; 

exploration and exploitation (thereby maintaining diversity of the population and preventing 

premature convergence), but are also be efficient in terms of computational time. 

In the present study the two stochastic population based search algorithms namely, PSO and 

DE are considered because of their popularity and wide applicability. In the past few years, 

these two techniques have emerged as powerful optimization tools for solving complex 

optimization problems, which are otherwise difficult to solve by the usual classical methods. 
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Both PSO and DE have been successfully applied to a wide range of problems including 

benchmark and real life problems. 

The objectives of this thesis are: 

(1) To design efficient and reliable computational techniques based on DE and PSO 

algorithms for obtaining the global optimal solution of constrained / unconstrained 

nonlinear optimization problems. 

(2) To test the proposed algorithms on test problems appearing in literature. 

(3) To apply the algorithms for solving real life problems arising in various fields of Science 

and Engineering. 

Different aspects of PSO and DE algorithms like initialization of population, effect of 

diversity and inclusion of evolutionary operators (for PSO), modifications in the existing 

operators (for DE) and hybridization of algorithms are considered in this Thesis and several 

modifications are suggested for the improvement of these two algorithms in terms of 

convergence rate without compromising with the solution quality. Finally the algorithms are 

validated on a set of several test and real life problems. 

The Thesis is divided into ten chapters. 

The first chapter is introductory in nature in which definitions and literature t. review are 

presented. 

In the second chapter, various analyses are done on the generation of initial population for 

the PSO and DE algorithms. Uniformly distributed random numbers are generally used for the 

initialization of population in population based search algorithms. However in the second 

chapter, the initial population for DE and PSO algorithms is initiated using various probability 

distributions and low discrepancy sequences. For this investigation, the probability distributions 

namely: Gaussian (G), Exponential (E), Beta (BT) and Gamma (GA) distributions and the low 

discrepancy sequences namely: Van der Corput (VC) sequence and Sobol (S) sequence used. 

Based on the above mentioned distributions and low discrepancy sequences, the following 12 

modifications are proposed viz. VC-PSO, SO-PSO, GPSO, EPSO, BTPSO, GAPSO, VC-DE, 

SO-DE, GDE, EDE, BTDE and GADE. The proposed algorithms are tested on standard 

benchmark problems and the results are compared with the basic versions of PSO and DE which 

follows the uniform distribution for initializing the swarm. The simulation results show that a 
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significant improvement can be made in the performance of PSO and DE, by simply changing 

the distribution of random numbers to other than uniform distribution as the proposed 

algorithms outperform the basic versions by a noticeable percentage. In an overall comparison, 

the algorithms which follow the Beta distribution and Van der Corput sequence are superior to 

other algorithms. 

Chapter 3 deals exclusively with the possible modifications in the PSO algorithm in order to 

improve its performance. For this purpose other evolutionary operators like mutation and 

crossover are added to the basic PSO algorithm and the results are recorded. A quantum 

behaved PSO is also designed in this chapter. In all, chapter 3 consists of several modified 

versions of basic PSO algorithm. Some of these versions are: ATREPSO, GMPSO, BMPSO, 

GAMPSO, BGMPSO, QIPSO I, QIPSO2, QIPSO3, QIPSO4, SMPSOI, SMPSO2, 

GWPSO+UD, MPSO, Q-QPS01, Q-QPSO2, SMQPSO1 and SMQPSO2. The proposed 

algorithms are tested on standard benchmark problems. The results obtained by these algorithms 

on all benchmark problems are either superior or at par with the basic PSO algorithm. In an 

overall comparison, the improved PSO algorithms assisted with Quadratic Interpolation operator 

(QIPSOs and Q-QPSOs) algorithms gave the best results. 

Chapter 4 is devoted to the modifications for the DE algorithm. Two new mutant vectors 

based on the Laplace probability distribution (LDE) and the using the concept of Quadratic 

Interpolation (DE-QI) are proposed. Five versions of LDE are suggested namely LDE1, LDE2, 

LDE3, LDE4 and LDE5. Also, an improved version of DE with adaptive control parameters 

(ACDE) is proposed. The performance of all the proposed algorithms is validated on a set of test 

problems and the numerical results are compared with basic DE and with two other versions of 

DE. The numerical results show that the proposed algorithms help in improving the 

convergence rate up to 50% in comparison to the basic DE and at the same time maintained a 

good success rate as well. In comparison among all the proposed algorithms, LDE4 and DE-QI 

are superior with others. 

Chapter 5 deals with the concept of hybridization of algorithms which is a class of modified 

algorithms consisting of the integration of two or more algorithms. Three hybrid global 

optimization algorithms namely DE-PSO, MDE and AMPSO algorithms are proposed. The 

performance of proposed algorithms are validated on a set of benchmark problems and the 
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numerical results are compared with classical DE, PSO, EP and 5 other variants of DE, PSO and 

EP available in the literature. The numerical results show that the proposed algorithms are either 

superior or at par with all the compared algorithms in terms of convergence rate and solution 

quality. 

In chapter 6, focus is laid on the solution of constrained optimization problems. A new 

constraint handling mechanism for solving constrained optimization problems is proposed. It is 

a simple approach for handing constraints which do not require any additional parameters. 

Based on the new constraint handling mechanism, two algorithms are proposed namely ICPSO 

and ICDE. The performance of ICPSO and ICDE algorithms are validated on 20 constrained 

benchmark problems and compared with two other variants (constraint) of PSO and DE in the 

literature. The numerical results show that the proposed algorithms are quite promising 

algorithms for solving constraint optimization problems. 

Chapters 7, 8 and 9 are devoted to real life optimization problems. In chapter 7, the problem 

is to determine the In-Situ efficiency of Induction Motor without performing no-load test, which 

is not easily possible for the motors working in process industries where continuous operation is 

required. This problem is modeled as an unconstrained optimization problem and is framed by 

four different methods. The differences in the method are based on the number of input 

parameters used to the optimization algorithms and modifications in the equivalent circuit of the 

motor. Basic versions of PSO, DE and their 6 variants namely QPSO, ATREPSO, GMPSO, 

SMPSO1, LDE1 and DE-QI are used to solve this problem. The results obtained by the above 

mentioned family of PSO and DE algorithms are compared with Genetic Algorithm (GA) and a 

physical efficiency measurement method, called torque-gauge method. The performances in 

terms of objective function and convergence time prove the effectiveness of the proposed 

variants of PSO and DE algorithms used for comparison. 

In chapter 8, another problem that is quite common in the field of Electrical Engineering is 

considered. For this problem, the objective is to compute the values of the decision variables 

called relays, which control the act of isolation of faulty lines from the system without 

disturbing the healthy lines. This problem is modeled as a nonlinear constrained optimization 

problem, in which the objective function to be minimized is the sum of the operating times of all 

the relays, which are expected to operate in order to clear the faults of their corresponding 



zones. Three cases of the IEEE Bus system are considered viz. IEEE 3-bus, IEEE 4-bus and 

IEEE 6-bus system. It is a very complex problem and many PSO versions proposed in this thesis 

were not able to solve it. The problem was finally solved by using the family of DE algorithms 

namely LDE1, LDE2, LDE3, LDE4, LDE5 and DE-QI. The results obtained by the aforesaid 

algorithms are compared with the earlier published results. From the numerical and graphical 

results, it is shown that the proposed DE algorithms used in this study are either best or 

comparable with the other algorithms both in terms of solution quality and convergence rate. 

Chapter 9 consists of 12 small real life problems taken from different fields. 

The Thesis finally completes with Chapter 10, where conclusions based on the present work 

are drawn and suggestions for future work are made. 
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Chapter 1 

Introduction 

[The present chapter is introductory in nature. It gives the basic definitions relevant to 

the present study. It also provides a brief literature review concerning the Particle Swarm 

Optimization and Differential Evolution techniques, which forms the basis of the present work. 

The chapter ends with an outline of the work done in this thesis] 

1.1 Optimization 

Optimization is ubiquitous and spontaneous process that forms an integral part of our 

day-to-day life. In the most basic sense, it can be defined as an art of selecting the best 

alternative among a given set of options. Optimization problems arise in various disciplines 

such as engineering designs, agricultural sciences, manufacturing systems, economics, physical 

sciences, pattern recognition etc. In fact optimization techniques are being extensively used in 

various spheres of human activities, where decisions have to be taken in some complex situation 

which can be represented by mathematical models. Optimization can thus be viewedi as a kind 

of decision making, or more specifically, as one of the major quantitative tools in network of 

decision making, in which decisions have to be taken to optimize one or more objectives in 

some prescribed set of circumstances. In view of their practical utility there is a need for 

efficient and robust computational algorithms, which can numerically solve on computers 

mathematical models of medium as well as large size optimization problem arising in different 

fields. 

1.2 Definition of an Optimization Problem 
An optimization problem consists of three main components; (i) an objective function, 

(ii) decision variables and (iii) a set of constraints. The function to be optimized could be linear 

or non-linear, fractional or geometric etc. Sometimes, even the explicit mathematical 

formulation of the function may not be available. Often the function is to be optimized in a 
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prescribed domain which is specified by a number of constraints in the form of inequalities and 

equalities. The process of optimization addresses the problem of determining those values of the 

independent variables which do not violate the constraints and at the same time give an optimal 

value of the function being optimized. 

The general non-linear optimization problem is defined as: 

Minimize / Maximize f (x), where f : R" --> R 

Subject to: xES c Rn  

where S is defined by: 

g(x) 0 , j = 1,2,„., p 

h k  (Y) = 0 , k = 1,2,..., q 

ai  x i  bi  (i = 1„n). 

p and q are the number of inequality and equality constraints respectively, al  and bi  are lower 

and upper bounds of the decision variable xi  . 

Any vector x satisfying all the above constraints is called feasible solution. The best of the 

feasible solution is called an optimal solution. If the objective function and all constraints are 

linear then the model is called Linear Programming Problem (LPP). If the solution has an 

additional requirement that the decision variables are integers then the model is called Integer 

Programming Problem (IPP). If some variables are integers and other variables are real then the 

problem is called Mixed Integer Programming Problem (MIPP). If the objective function and/or 

constraints are nonlinear then the problem is called Non-Linear Programming Problem (NLPP) 

(Kapur, 1996; Bector, 2005). 

1.3 Local and Global Optimal Solutions 
For a minimization problem, a feasible solution X *  is said to global minima of the 

problem if f (x*) 	(x) for all x E S . If f (x*) 	(x) for all xeSn N z (x*), where N ,(x*) is 

called a s neighborhood ofx*, then x* is called local minima. A point x* is a stationary point if 

the derivative of the function f (x) is zero at x *. 

2 
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An optimization problem may have no optimal solution, only one optimal solution or more 

than one optimal solution. If the problem has a unique local optimal solution, then it is also the 

global optimal solution. However, if the problem has more than one local optimal solution, then 

one or more of these may be global optimal solutions. In a LPP, every local optimal solution is 

also the global optimal solution, on the other hand in a NLPP, if the objective function (for 

minimization case) is convex and its domain of definition defined by the set of constraints is 

also convex, then the local optimal solution is generated to be global optimal solution. 

In most of the NLPP, a global optimal solution rather than a local optimal solution is 

desired. Determining the global optimal solution of a NLPP is much more difficult than 

determining the local optimal solution. However, because of the practical necessity, the search 

for the global optima is often necessary. 

For a twice-differentiable function conditions exists which can be used to find a local 

optimal solution. If the test fails then due to the continuous differentiability of the function a 

point with a lower function value can be found in its neighborhood. In this way a sequence of 

points converging to the local optimal can be conducted. However, such tests are not sufficient 

in solving global optimization problems. In a way we can say that the global optimization 

problem is unsolvable in a finite number of steps. It is so because for any given point it cannot 

be guaranteed that it is not the global minima without evaluating the function in aLleast one 

point of every neighborhood of that point. Since the neighborhoods of a point can be unbounded 

so infinite numbers of steps are needed to reach the global minima. 

1.4 Methods for Global Optimization 
Global Optimization refers to finding the extreme value of a given nonconvex function 

in a certain feasible region and such problems are classified in two classes; unconstrained and 

constrained problems. Solving global optimization problems has made great gain from the 

interest in the interface between computer science and operations research. 

In general, the classical optimization techniques have difficulties in dealing with global 

optimization problems. One of the main reasons of their failure is that they can easily be 

entrapped in local minima. Moreover, these techniques cannot generate or even use the global 

information needed to find the global minimum for a function with multiple local minima. 

3 
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The interaction between computer science and optimization has yielded new practical 

solvers for global optimization problems, called meta-heuristics. The term "meta-heuristics" 

was first coined by Glover in 1986 (Glover, 1986). The word "meta-heuristics" contains all 

heuristics methods that show evidence of achieving good quality solutions for the problem of 

interest within an acceptable time. The structures of meta-heuristics are mainly based on 

simulating nature and artificial intelligence tools. Meta-heuristics mainly invoke exploration and 

exploitation of search procedures in order to diversify the search all over the search space and 

intensify the search in some promising areas. Therefore, meta-heuristics cannot easily be 

entrapped in local minima. 

2010 
Artificial Bee Algorithm 

2005 Honey Bee Algorithm 

2000 
v Estimation of Distribution Algorithm 

1995 	Particle Swarm Optimization & Differential Evolution 

1990 	Ant Colony Optimization 

1985 	Tabu Search 

Simulated Annealing 

1980 

1975 	Genetic Algorithms 

1970 

Evolutionary Programming 
1965 	Evolution Strategies 

1960 

Figure 1.1 Main meta-heuristics in chronological order 
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Meta-heuristics can be classified into two classes; population-based methods and point-to-

point methods. In the latter methods, the search invokes only one solution at the end of each 

iteration from which the search will start in the next iteration. On the other hand, the population-

based methods invoke a set of many solutions at the end of each iteration. Simulated Annealing 

(Kirkpatrick, 1983) and Tabu Search (Fred, 1986) are examples of point-to-point methods. 

Some of the population-based methods are: Genetic Algorithm (Goldberg, 1986), Evolutionary 

Programming (Fogel et al, 1965), Evolution Strategies (Rochenberg, 1973), Ant Colony 

Optimization, Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) and 

Differential Evolution (DE) (Storn and Price, 1995). The present study is concentrated on two 

meta-heuristics namely PSO and DE. 

1.5 Particle Swarm Optimization for Global Optimization 
The concept of classical/basic PSO (PSO/BPSO) was first suggested by Kennedy and 

Eberhart (1995). Since its development, PSO has become one of the most promising optimizing 

techniques for solving global optimization problems. Its mechanism is inspired by the social and 

cooperative behavior displayed by various species like birds, fish, termites, ants and even 

human beings. The PSO system consists of a population (swarm) of potential solutions called 

particles. These particles move through the search domain with a specified velocity in search of 

optimal solution. Each particle maintains a memory which helps it in keeping the track of its 

previous best position. The positions of the particles are distinguished as personal best and 

global best. In the past several years, PSO has been successfully applied in many research and 

application areas. It has been demonstrated that PSO gets better results in a faster, cheaper way 

in comparison to other methods like Genetic algorithms, Simulated Annealing etc. 

Another reason for the popularity of PSO is that there are few parameters to adjust. The 

main parameters of the classical PSO are Swarm Size (say S), Inertia Weight w and 

Acceleration Constants c1, c2. These control parameters are user defined and have to be 

carefully selected in order to make the algorithm efficient and robust. One version, with slight 

variations, works well in a wide variety of applications. Particle Swarm Optimization has been 

used for approaches that can be used across a wide range of applications, as well as for specific 

applications focused on a specific requirement. 

5 
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It can be said that PSO algorithm is not only a tool for optimization, but also it is a tool for 

representing socio-cognition of human and artificial agents, based on principles of social 

psychology. Some scientists suggest that knowledge is optimized by social interaction and 

thinking is not only private but also interpersonal. PSO as an optimization tool provides a 

population-based search procedure in which individuals called particles change their position 

(state) with time. In a PSO system, particles fly around in a multidimensional search space. 

During flight, each particle adjusts its position according to its own experience, and according to 

the experience of a neighboring particle, making use of the best position encountered by itself 

and its neighbor. Thus, as in modern GAs and memetic algorithms, a PSO system combines 

local search methods with global search methods, attempting to balance exploration and 

exploitation. 

1.6 Working of Particle Swarm Optimization 
The particles or members of the swarm fly through a multidimensional search space 

looking for a potential solution. Each particle adjusts its position in the search space from time 

to time according to the flying experience of its own and of its neighbors (or colleagues). 

For a D-dimensional search space the position of the ith  particle is represented 

as Xi  = 	xid ,..., xiD ). Each particle maintains a memory of its previous best 

position Pi  =(pii, pi2,..., pid,..., pip) . The best one among all the particles in the population is 

represented as Pg  = (pgi , pg2 ,..., pgd,..., pgD ). The velocity of each particle is represented 

as Vi  = 	, vi2,..., vid ,..., viD  ), 	is 	clamped 	to 	a 	maximum 	velocity 

Vmax = (Vmax,19 Vmax,29•-9 	Vmax,D) which is specified by the user. Vmax  determines the 

resolution with which regions between the present position and the target position are searched. 

Large values of Vmax  facilitate global exploration, while smaller values encourage local 

exploitation. If Vmax  is too small, the swarm may not explore sufficiently beyond locally good 

regions. On the other hand, too large values of Vmax  risk the possibility of missing a good region 

(Engelbrecht, 2005). 
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During each generation each particle is accelerated towards the particles previous best 

position and the global best position. At each iteration a new velocity.value for each particle is 

calculated based on its current velocity, the distance from the global best position. The new 

velocity value is then used to calculate the next position of the particle in the search space. This 

process is then iterated a number of times or until a minimum error is achieved. The two basic 

equations which govern the working of PSO are that of velocity vector and position vector given 

by: 

vid  = vid  + 	(pid - x ) + c2r2(p gd - xid) 	 (1.1) 

;cid xid + v id 
	 (1.2) 

Here c1  and c2 are acceleration constants. They represent the weighting of the stochastic 

acceleration terms that pull each particle toward personal best and global best positions. 

Therefore, adjustment of these constants changes the amount of tension in the system: Low of 

these constants allow particles to roam far from the target regions before tugged bacl, while 

high values result in abrupt movement toward, or past, target regions (Eberhart and Sfii, 2001). 

The constants r1, r2 are the uniformly generated random numbers in the range of [0, 1]. 

The first part of Eqn. (1.1) represents particle's previous velocity, which serves as a memory 

of the previous flight direction. This memory term can be seen as a momentum, which prevents 

the particle from drastically changing direction, and to bias it towards the current direction. The 

second part (i.e. c1r1(p id - x id)) is the cognition part and it tells us about the ,;personal 

experience of the particle. In a sense, this cognition part resembles individual memory of the 

position that was best for the particle. The effect of this term is that particles are drawn back to 

their own best positions, resembling the tendency of individuals to return to situations or places 

that most satisfied in the fast. The third part (i.e. c2r2 (pgd — xid )) represents the cooperation 

among particles and is therefore named as the social component (Kennedy, 1997). This term 

resembles a group norm or standard which individuals seek to attain. The effect of this term is 

that each particle is also drawn towards the best position found by the particle's neighborhood. 

Shi and Eberhart (1998) have introduced a new parameter called inertia weight in to the velocity 

vector equation (1.1). Then the velocity vector becomes: 

vid  = co * vid cri (pid - xid)+ c2r2(p gd - xid) 	 (1.3) 

7 
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The inertia weight w is employed to control the impact of the previous history of velocities 

on the current velocity, thereby influencing the trade-off between global and local exploration 

abilities of the particles. It can be a positive constant or even a positive linear or nonlinear 

function of time. A larger inertia weight facilitates global exploration while a smaller inertia 

weight tends to facilitate local exploration to fine-tune the current search area. Suitable selection 

of the inertia weight provides a balance between global and local exploration abilities and thus 

requires less iteration on average to find the optimum (Eberhart and Shi, 1998). Initially the 

inertia weight was kept static during the entire search duration for every particle and dimension. 

With the due course of time inertia weights with dynamic weights were introduced. 

Maurice Clerc (Clerc, 1999; Clerc and Kennedy, 2002) has introduced a constriction factor 

K that improves PSO's ability to constrain and control velocities and Shi and Eberhart (2000) 

found that K, combined with constraints on Vmax, significantly improved the PSO performance. 

The value of the constriction factor is calculated as a function of the cognitive and social 

parameters c1 and c2: 

2 

I2__ 2  — 4co 

With the constriction factor K, the PSO formula for computing the velocity is: 

vid = K(vid +cin(pid — xid)+c2r2(pgd T  xid)) 	 (1.5) 

Usually, when the constriction factor is used, y is set to 4.1 (c1  = c2 = 2.05), and the 

constriction factor K is 0.729. Carlisle and Dozier (2001) show that cognitive and social values 

of c1-2.8 and c2=1.3 yield good results for their test set. 

The constriction approach is effectively equivalent to the inertia weight approach. Both 

approaches have the objective of balancing exploration and exploitation, and in doing so of 

improving convergence time and the quality of solution found. Low values of w and K result in 

exploitation with little exploration, while large values result in exploration with difficulties in 

reefing solutions (Engelbrecht, 2005). The working of PSO in space is given in Figure 1.2. 

K = , co = cl  +c2  , cc,  > 4 	 (1.4) 
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Figure 1.2 Searching mechanism of PSO 

1.7 Differences between PSO and other Meta-Heuristics 
The most striking difference that separates PSO from other meta-heuristics is` thatPSO 

chooses a philosophy of cooperation over competition. The other algorithms commonly use 

some form of decimation, survival of the fittest. In contrast, the PSO population is stable and 

individuals are not destroyed or created. Individuals are influenced by the best performance of 

their neighbors. Individuals eventually converge on optimal points in the problem domain. In 

addition, the PSO traditionally does not have genetic operators like crossover between 

individuals and mutation, and other individuals never substitute particles during the run. Instead, 

the PSO refines its search by attracting the particles to positions with good solutions. Moreover, 

compared with Genetic Algorithms (GAs), the information sharing mechanism in PSO is 

significantly different. In GAs, chromosomes share information with each other. So the whole 

population moves like a one group towards an optimal area. In PSO, only gbest (or Pbest) gives 

out the information to others. It is a one way information sharing mechanism. The evolution 

only looks for the best solution. In PSO, all the particles tend to converge to the best solution 

quickly, comparing with GA, even in the local version in most cases. 
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1.8 Types of Neighborhood Topologies of PSO 
The feature that drives PSO is the social interaction. Particles within the swarm learn 

from each other and on the basis of the knowledge acquired moves towards better neighbors. 

Within the PSO, particles in the same neighborhood communicate with one another by 

exchanging information about the success of each particle in that neighborhood. All particles 

move towards some quantification of what is believed to be a better position. With a highly 

connected social network, most of the individuals can connect with one another, with the 

consequence that the information about the previous best member quickly filters through the 

social network. Different social network structures have been studied for PSO and empirically 

studied. In this section we give an overview of some of the structures that have been studied in 

the past. 

> Star topology 

> Wheel topology 

> Ring or Circle topology 

> Von Neumann or Square topology 

> Hybrid topology 

1.8.1 Star topology 
Star Topology is also known as gbest, is a fully connected neighborhood relation. In star 

topology, one particle is selected as a hub, which is connected to all other particles in the 

swarm. However, all the other particles are only connected to the hub. Using the gbest model 

the propagation is very fast (i.e. all the particles in the swarm will be affected by the best 

solution found in iteration t, immediately in iteration t+1). However, this fast propagation may 

result in the premature convergence problem. This occurs when some poor individuals attract 

the population- due to a local optimum or bad initialization - preventing further exploration of 

the search space. The Star or gbest topology links every individual with every other, so that the 

social source of influence is in fact the best-performing member of the population. 
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Figure 1.3 Star topology 

1.8.2 Wheel topology 
The Wheel topology effectively isolates individuals from one another, as all information 

has to be communicated through the focal individual. This focal individual compares 

performances of all individuals in the neighborhood, and adjusts its trajectory toward the very 

best neighbor. If the new position of the focal particle results in better performance, then the 

improvement is communicated to all the members of the neighborhood. The wheel network 

slows down the propagation of good solutions through the swarm. 

Figure 1.4 Wheel topology 

1.8.3 Ring or Circle topology 
A Ring topology is also known as lbest, connects each particle to its K immediate 

neighbors (e.g. K = 2 (left and right particles). The "flow of information" in ring topology is 

heavily reduced compared to the star topology. fn the ring topology, which is a regular ring 

lattice as studied by Watts and Strogetz (1998), parts of the population that and distant from one 

another are also independent of one another. However, using the ring topology will slow down 

the convergence rate because the best solution found has to propagate through several 
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neighborhoods before affecting all particles in the swarm. This slow propagation will enable the 

particles to explore more areas in the search space and thus decreases the chance of premature 

convergence. 

Figure 1.5 Circle topology 

1.8.4 Von Neumann or Square topology 
Von Neumann is also a type of ]best model. Von Neumann topology was proposed by 

Kennedy and Mendes. In Von Neumann topology, particles are connected using a grid network 

(2-dimensional lattice) where each particle is connected to its four neighbor particles (above, 

below, right, and left particles). However, not like Ring topology, ]best here represent the best 

value obtained so far by any particle of the neighbors (above, below, right, and left particles). 

Like Ring topology, using Von Neumann topology will slow down the convergence rate. Slow 

propagation will enable the particles to explore more areas in the search space and thus 

decreases the chance of premature convergence. 

Figure 1.6 Square topology 
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1.8.5 Hybrid topology 
Hybrid topology (or model) is a combination of star, ring and Von Neumann topologies. 

For each generation, the particle will analyze its next position using all different topologies. 

Particle will select the topology with the smallest fitness value and will update its velocity and 

position according to it. 

1.9. Literature Survey on Particle Swarm Optimization 
In PSO, many variations have been developed to improve its performance. Parsopoulos 

and Vrahatis (2002) presented a modified PSO algorithm called "stretching" (SPSO) that is 

oriented towards solving the problem of finding all global minima. In this algorithm, the so-

called deflection and stretching techniques, as well as a repulsion technique are incorporated 

into the original PSO. Miranda and Fonseca (2002; 2002a) introduced self adaptation 

capabilities to the swarm by modifying the concept of a particle to include, not only the 

objective parameters, but also a set of strategic parameters. Xie et al (2002) proposed a 

dissipative Particle Swarm Optimization according to the self-organization of the dissipative 

structure. In the dissipative PSO, the authors reinitialize velocities and positions based on chaos 

factors which serve as probabilities of introducing chaos in the system. 	
‘.4 

Zhang et al (2003) have considered the adjustment of the number of particles, and the 

neighborhood size. Li (2004) has proposed a species-based PSO (SPSO). According to this 

method, the swarm population is divided into species of subpopulations based on their 

similarity. Each species is grouped around a dominating particle called the species seed. At each 

iteration step, the species seeds are identified and adopted as neighborhood bests for the species 

groups. Over successive iterations, the adaptation of the species allows the algorithm to find 

multiple local optima, from which the global optimum can be identified. 

The cooperative PSO (CPSO), as a variant of the original PSO algorithm, is presented by 

van den Bergh and Engelbrecht (2004). CPSO employs cooperative behavior in order to 

significantly improve the performance of the original PSO algorithm. It uses multiple swarms to 

optimize different components of the solution vector cooperatively. Passive congregation, a 

mechanism that allows animals to aggregate into groups, has been proposed by He et al (2004) 

as a possible alternative to prevent the PSO algorithm from being trapped in local optima and to 
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improve its accuracy and convergence speed. Baskar and Suganthan (2004) have proposed a 

cooperative scheme, referred to as concurrent PSO (CONPSO), where the problem hyperspace 

is implicitly partitioned by having two swarms searching concurrently for a solution with 

frequent message passing of information. 

Xen et al (2007) proposed an Adaptive Dissipative Particle Swarm (ADPSO) with mutation 

operation that combines the idea of the particle swarm optimization with concepts of mutation 

from Evolutionary Algorithm. The ADPSO algorithm uses Cauchy mutation operation to escape 

from the attraction of local minimum and also uses an adaptive inertia weight strategy. Wei et al 

(2008) have proposed an improved Particle Swarm Optimization algorithm named Elite Particle 

Swarm Optimization with mutation (EPSOM). In EPSOM, the elite particles and the bad 

particles are distinguished from the swarm after some initial iteration steps, bad particles are 

replaced with the same number of elite particles, and a new swarm is generated. Also they 

introduced a new mutation operator in order to avoid the loss of diversity. Many of the 

improved versions of PSO algorithm can be found in (Banks et al, 2008; Das et al, 2008). A 

detailed literature survey on diversity based improved versions of PSO, mutation based PSO, 

Crossover based PSO etc. are given in Chapter 3. 

1.10 Differential Evolution for Global Optimization 
Differential Evolution (DE), a vector population based stochastic optimization method 

was introduced by Price and Storn (1995). It is capable of handling nondifferentiable, nonlinear 

and multimodal objective functions. 

DE is easy to implement, requires few, easily chosen control parameters and exhibits fast 

convergence. The three control parameters of DE are the scale factor F, the crossover rate Cr 

and the population size. The scale factor F is a positive real number that controls the rate at 

which the population evolves. While there is no upper limit on F, effective values are seldom 

greater than 1.0. The crossover rate, Cr e [0, 1], is a user-defined value that controls the fraction 

of parameter values that are copied from the mutant. Experimental results have shown that 

performance of DE is better than many other well known Evolutionary Algorithms (EAs) (Storn 

and Price, 1997; Storn, 1999). While DE shares similarities with other EAs, it differs 
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significantly in the sense that in DE, distance and direction information is used to guide the 

search process (Engelbrecht, 2005). 

In a population of potential solutions within an n-dimensional search space, a fixed number 

of vectors are randomly initialized, then evolved over time to explore the search space and to 

locate the minima of the objective function. At each iteration, called generation, new vectors are 

generated by the combination of vectors randomly chosen from the current population 

(mutation). The outcoming vectors are then mixed with a predetermined target vector. This 

operation is called recombination and produces the trial vector. Finally, the trial vector is 

accepted for the next generation if and only if it yields a reduction in the value of the objective 

function. This last operator is referred to as a selection. The working of DE is discussed in more 

detail in section 1.11. 

DE is similar to GAs in that a population of individuals is used to search for an optimal 

solution. The main difference between Gas and DE is that, in GAs, mutation is the,result of 

small perturbations to the genes of an individual while in DE mutation is the result of arithmetic 

combinations of individuals. At the beginning of the evolution process, the mutation operator of 

DE favors exploration. As evolution progresses, the mutation operator favors exploitation. 

Hence, DE automatically adapts the mutation increments (i.e. search step) to the best value 

based on the stage of the evolutionary process. Mutation in DE is therefore not based on a 

predefined probability density function. 

1.11 Working of Differential Evolution 
A general DE variant may be denoted as DE/X/Y/Z, where X denotes the vector to be 

mutated, Y specifies the number of difference vectors used and Z specifies the crossover scheme 

which may be binomial or exponential. For the more details the interested reader may refer to 

http://www.icsi.Berkley.edu/—storn/code.html. 

The working of DE is as follows: First, all individuals are initialized with uniformly 

distributed random numbers and evaluated using the fitness function provided. Then the 

following will be executed until maximum number of generation has been reached or an 

optimum solution is found. 

15 



Chapter 1 

Mutation: 

For a D-dimensional search space, for each target vector x,,g  at the generation g, its 

associated mutant vector is generated via certain mutation strategy. The most often used 

mutation strategies implemented in the DE codes are listed below. 

DE/rand/1: Vi,g  = Xri,g  F * (X r2,g. — X r3,g ) 	 (1.6) 

DE/rand/2: V;- ,g  = Xri,g  F * (X r2,g  — X r3,g )+ F * (X r4,g  — X r5,g ) 	 (1.7) 

DE/best/1: ri,g X best,g F * (X 	— X r2 ,g) 
	

(1.8) 

DE/best/2: Vi,g  = X best,g  + F * (X ri,g  — X r2,g ) + F * (X r3,g  — X r4,g ) 
	

(1.9) 

DE/rand-to-best/1: V,g  = 	F * (Xbest,g — X r2 ,g)+ F * (Xr3 ,g — X r4 ,g)g 	 (1.10) 

where r1, 	E f1 2 1 , 2 r3 , 4 , 5 _ 	NP} are randomly chosen integers, different from each other and also 

different from the running index i. F (>0) is a scaling factor which controls the amplification of 

the difference vector. xb„,,g  is the best individual vector with the best fitness value in the 

population at generation g. 

Crossover: 

Once the mutation phase is over, crossover is performed between the target vector and the 

mutated vector to generate a trial point for the next generation. Crossover is introduced to 

increase the diversity of the population (Storn and Price, 1997). 

The mutated individual, Vi,G+I = 01,i,G+1, . • • VD,r,G+d, and the current population member, 

116,G = (X/,/,G,  • • • , XD,i,G), are then subject to the crossover operation, that finally generates the 

population of candidates, or "trial" vectors,U,,G+i = 	. 	up,,,G+/), as follows: 

u j,i,G+1 
j,i,G+1 f rand j  <— Cr v j= k 
x j ,i,G 	 otherwise 

  

Where j, k E 11,..., D} k is a random parameter index, chosen once for each i, Cr  is the 

crossover probability parameter whose value is generally taken as CA E [0, 1]. 

Selection: 

The final step in the DE algorithm is the selection process. Each individual of the temporary 

(trial) population is compared with its counterpart in the current population. The one with the 

lower objective function value survives the tournament selection and go to the next generation. 

16 



{

Ui,G+1 if f ( I i,G+1) f(Xi,G) 
G 

Xi,G+1 =  v  otherwise 
(1.12) 

Introduction 

As a result, all the individuals of the next generation are as good as or better than their 

counterparts in the current generation. A notable point in DE's selection scheme is that a trial 

vector is not compared against all the individuals in the current generation, but only against one 

individual, its counterpart, in the current generation. The population for the next generation is 

thus selected from the individuals in current population and its corresponding trial vector 

according to the following rule: 

Thus, each individual of the temporary (trial) population is compared with its counterpart in 

the current population. The one with the lower objective function value will survive from the 

tournament selection to the population of the next generation. As a result, all the individuals of 

the next generation are as good as or better than their counterparts in the current generation. In 

DE trial vector is not compared against all the individuals in the current generation;.but only 

against one individual, its counterpart, in the current generation. The working of DE in space is 

given in Figure 1.7. 

Figure 1.7 Working of DE 
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1.12 Literature Survey on Differential Evolution 
This section presents a brief review of different variants of DE available in literature. 

Vesterstroem and Thomsan (2004) compared the DE algorithm with particle swarm 

optimization (PSO) and EAs on numerical benchmark problems. DE outperformed PSO and 

EAs in terms of the solution's quality on most benchmark problems. All and Torn (2004) 

proposed a new version of DE algorithm, and also suggested some modifications to the classical 

DE in order to improve its efficiency and robustness. They introduced an auxiliary population of 

NP individuals alongside the original population and proposed a rule for calculating the control 

parameter F automatically. Sun, et al. (2004) proposed a combination of the DE algorithm and 

the estimation of distribution algorithm, which tries to guide its search towards a promising area 

by sampling new solutions from a probability model. Liu and Lampinen introduced Fuzzy 

Adaptive Differential Evolution (FADE) (Liu and Lampinen, 2005) using fuzzy logic 

controllers, whose inputs incorporate the relative function values and individuals of successive 

generations to adapt the parameters for the mutation and crossover operation. Based on the 

experimental results over a set of benchmark functions, the FADE algorithm outperformed the 

conventional DE algorithm. 

Yang et al. (2007) proposed a hybridization of DE with the Neighborhood Search (NS), 

which appears as a main strategy underpinning Evolutionary Programming. The resulting 

algorithm, known as NSDE, performs mutation by adding a normally distributed random value 

to each target-vector. Rahnamayan et al (2008) have proposed an Opposition-based DE (ODE) 

that is specially suited for noisy optimization problems. The conventional DE algorithm was 

enhanced by utilizing the opposition number-based optimization concept in three levels, namely, 

population initialization, generation jumping, and local improvement of the population's best 

member. Yang et al. (2008) used a Self-adaptive NSDE in the cooperative coevolution 

framework that is capable of optimizing large scale non-separable problems (up to 1000 

dimensions). They proposed a random grouping scheme and adaptive weighting for problem 

decomposition and coevolution. Noman and Iba (2005; 2008) proposed the Fittest Individual 

Refinement (FIR); a crossover-based local search method for DE. The FIR scheme accelerates 

DE by enhancing its search capability through exploration of the neighborhood of the best 

solution in successive generations. 
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There are quite different conclusions about the rules for choosing the control parameters of 

DE. Price and Storn (1995) stated that the control parameters of DE are not difficult to choose. 

On the other hand, Qmperle et al. (2002) reported that choosing the proper control parameters 

for DE is more difficult than expected. Liu and Lampinen (2002) reported that effectiveness, 

efficiency, and robustness of the DE algorithm are sensitive to the settings of the control 

parameters. The best settings for the control parameters can be different for different functions 

and the same function with different requirements for consumption time and accuracy. 

However, there still exists a lack of knowledge on how to find reasonably good values for the 

control parameters of DE for a given function (Liu and Lampinen, 2005). 

Das et al. (2005) introduced two schemes for adapting the scale factor F in DE. In the first 

scheme they varied F randomly between 0.5 and 1.0 in successive iterations. They suggested 

decreasing F linearly from 1.0 to 0.5 in their second scheme. This encourages the individuals to 

sample diverse zones of the search space during the early stages of the search. During the later 

stages, a decaying scale factor helps to adjust the movements of trial solutions finely so that they 

can explore the interior of a relatively small space in which the suspected global optimum lies. 

Teo (2006) proposed an attempt at self-adapting the population size parameter in addition to 

self-adapting crossover and mutation rates. Brest et al. (2006, 2006a) encoded control 

parameters F and Cr into the individual and evolved their values by using two new probabilities 

tiand T2. In their algorithm, a set of F values was assigned to each individual in the population. 

With probability t1, F is reinitialized to a new random value in the range of [0.1, 1.0], otherwise 

it is kept unchanged. The control parameter Cr, assigned to each individual, is adapted in an 

identical fashion, but with a different re-initialization range of [0, 1] and with the probability T2. 

With probability T2, Cr takes a random value in [0, 1], otherwise it retains its earlier value in the 

next generation. Differential Evolution with Preferential Crossover (DEPC) was suggested by 

M. M. Ali in 2007 (Ali, 2007). In his work he suggested three changes in the basic DE structure. 

The DEPC algorithm uses F, as a random variable in [-1, -0.4] L.) [0.4, 1] for each targeted point. 

Secondly DEPC used two population sets S I  and S2 containing N points. The function of the 

auxiliary set S2 in DEPC is to keep record of the trial points that are discarded in DE. Potential 

trial points in S2 are then used for further explorations. Finally DEPC used a new crossover rule, 

namely the preferential crossover, which always generates feasible trial points. All tested his 
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algorithm on comprehensive set of benchmark problems and showed that DEPC outperforms 

the basic DE in most of the test cases. 

Yang et al. (2008a) proposed a self adaptive differential evolution algorithm with 

neighborhood search (SaNSDE). SaNSDE proposes three self-adaptive strategies: self adaptive 

choice of the mutation strategy between two alternatives, self-adaptation of the scale factor F, 

and self-adaptation of the crossover rate Cr. Qin et al (2009) proposed a Self-adaptive DE 

algorithm (SaDE), where the choice of learning strategy and the two control parameters F and 

CR are not required to be pre-defined. During evolution, the suitable learning strategy and 

parameter settings are gradually self-adapted according to the learning experience. 

1.13 Applications of PSO and DE Algorithms 
PSO and DE algorithms have been applied successfully to a wide variety of problems 

occurring in different fields of science and engineering. It is very difficult to summarize 	the 

applications of PSO and DE algorithms, therefore considering the brevity of space, in this 

section a brief review of some of the applications of these algorithms is given. 

PSO has been applied to solve a number of interesting test problems including evolving 

weights and structures of neural networks (He et al, 1998; van den Bergh, 1999; Salerno, 1997), 

analyzing human tremor (Eberthart and Hu, 1999), registering 3D- 3D biomedical image 

(Wachowiak et al, 2004), controlling reactive power and voltage (Yoshida, 2000; Abido, 2002), 

pattern recognition (Paterilni and Krink, 2006), quadratic assignment problems (Liu and 

Abraham, 2007), job scheduling (Liu et al, 2009), multimedia processing (Hassanien et a], 

2008), bioinformatics problems (Hassanien et al, 2008a). 

DE algorithm has also been successfully applied to diverse domains of science and 

engineering, such as mechanical engineering design (Rogalski et al, 1999; Joshi and Sanderson, 

1999), signal processing (Das and Konar, 2006) chemical engineering (Wang and Jang, 2000; 

Lampinen, 1999; Onwubolu and Babu, 2004), machine intelligence, and pattern recognition 

(Omran et al, 2005), (Das et. al, 2008). Many of the most recent developments in DE algorithm 

design and applications can be found in (Chakraborty, 2008). A comparison of DE and PSO 

algorithms is made in the following papers (Pant et al, 2008; 2008a; Mishra, 2006). 
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1.14 Computational Steps of Basic PSO and DE Algorithms 
This section gives the computational steps of basic PSO and DE algorithms which have been 

followed throughout the thesis. 

Computational Steps of basic PSO algorithm: 

Step 1 	Initialize PSO parameters 

Step 2 	Randomly initialize the positions and velocities of all particles 

Step 3 	Evaluate the fitness function values of all particles in the swarm 

Step 4 	Update particles personal best position and global best position (i.e. Pi  and Pg) 

Step 5 	Set t = 1, t refers the iteration number 

Step 6 	Update the velocity vector using Eqn. (1.3) 

Step 7 	Update particle's position using Eqn. (1.2) 

Step 8 	Evaluate particle's fitness values 

Step 9 	Update P, and Pg  

Step 10 	Set t = t+ 1 

Step 11 	If (Stopping criteria is reached) then go to step 12 

Else go to step 6 

Step 12 	Print the global best particle and the corresponding fitness function value 

Computational Steps of Basic DE algorithm: 

Step I 	Initialize DE parameters 

Step 2 	Randomly initialize the positions of all particles 

Step 3 	Evaluate the fitness function values of all particles (X) in the population 

Step 3 	Set g =1 

Step 4 	// Mutation 

Generate mutant vectors Vi,g+i  corresponding to each target vector X,g via one of 

the Eqns. (1.6) to (1.10) 

Step 5 	// Crossover 

Generate trial vector U;,g+i for each particle using Eqn. (1.11) 

Step 6 	//Selection 

Update particles position using Eqn. (1.12) 
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Step 7 	Set g = g + 1 

Step 8 	If (Stopping criteria is reached) then go to step 9 

Else go to step 4 

Step 9 	Print the global best particle and the corresponding fitness function value 

1.15 Objective of the Present Work 
Though PSO and DE have been successfully applied to a wide range of test and real life 

problems experimental analysis shows that sometimes these algorithms do not perform up to the 

expectations. Like all other population based search techniques there are certain drawbacks 

associated with these algorithms. For example premature convergence is a problem common to 

both PSO and DE algorithms. In such a case the population converges to some local optima of a 

multimodal objective function, losing its diversity. The situation when the algorithm does not 

show any improvement though it accepts new individuals in the population is known as 

stagnation. The probability of stagnation depends on how many different potential trial solutions 

are available and also on their capability to enter into the population of the subsequent 

generations. Further, like other evolutionary computing algorithms, the performance of PSO and 

DE deteriorates with the growth of the dimensionality of the search space as well. The main 

objective of the present work is to suggest simple and efficient modifications in the basic 

structure of PSO and DE algorithms to improve their performance by overcoming their 

drawbacks, so that they can effectively solve the test as well as real life application problems. 

1.16 Outline of the Thesis 
This thesis is divided into ten chapters which are organized as follows, 

Chapter 1 gives the brief introduction to Particle Swarm Optimization and Differential 

Evolution algorithms. 

Chapter 2 investigates the effect of initiating the population of PSO and DE with different 

probability distributions like Gaussian, Exponential, Gamma and Beta and classical low 

discrepancy sequences like Vander Corput sequence and Sobol sequence for solving global 

optimization problems in large dimension search spaces. The proposed algorithms are tested on 

standard benchmark problems and the results are compared with the basic versions of PSO and 
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DE which follows the unifOrm distribution for initializing the swarm. The simulation results 

show that a significant improvement can be made in the performance of PSO and DE, by simply 

changing the distribution of random numbers to other than uniform distribution and quasi 

random sequence as the proposed algorithms outperform the basic versions by noticeable 

percentage. 

Chapter 3 describes the improved versions of the Particle Swarm Optimization algorithm. The 

main focus is on the design and implementation of the improved PSO algorithms based on 

diversity, Crossover and Mutation using different probability distributions and Low-discrepancy 

sequences. Also this chapter introduces a new velocity vector and inertia weight in classical 

PSO. The proposed algorithms are applied to various benchmark problems including unimodal, 

multimodal, noisy functions and comparisons made with some other variants of PSO in the 

1 iterature. 

Chapter 3A discusses about Quantum Particle Swarm Optimization (QPSO) and describes the 

improved versions of QPSO; it is an extension of chapter 3. 

Chapter 4 describes the improved versions of the classical Differential Evolution algorithm. 

The improved algorithms are based on the mutant vector, the scale factor F and the crossover 

rate Cr of DE. This chapter proposes two new mutant vectors based on the concept of Quadratic 

Interpolation (DE-QI) and the Laplace probability distribution (LDE). Five versions of LDE are 

proposed namely LDE1, LDE2, LDE3, LDE4 and LDE5. This chapter also introduces a 

dynamic scaling factor and Crossover rate. The proposed algorithms are examined with several 

standard benchmark problems and the results are compared with the classical DE and some 

other variants of DE in the literature. 

Chapter 5 presents three hybrid two phase global optimization algorithms namely DE-PSO, 

MDE, AMPSO for solving global optimization problems. DE-PSO consists of alternating 

phases of Differential Evolution and Particle Swarm Optimization. MDE consists of alternating 

phases of Differential Evolution and Evolutionary Programming. AMPSO algorithm is a hybrid 

version of Particle Swarm Optimization and. Evolutionary Programming. Two versions of 

AMPSO called AMPSOI and AMPSO2 are proposed. Both the algorithms use EP based 

adaptive mutation using Beta distribution. AMPSOI mutates the personal best position of the 
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swarm and AMPS02 mutates the global best swarm position. The performance of proposed 

algorithms is evaluated on standard unconstrained test problems. 

Chapter 6 proposes a new constraint handling mechanism for solving constrained optimization 

problems. Based on the new constraint handling mechanism, two algorithms are propOsed 

namely ICPSO and ICDE. The Improved Constraint Particle Swarm Optimization (ICPSO) 

algorithm is initialized using quasi random Vander Corput sequence and differs from 

unconstrained PSO algorithm in the phase of updating the position vectors and sorting every 

generation solutions. Also, the Improved Constraint DE (ICDE) algorithm differs from 

unconstrained DE algorithm only in the place of initialization, selection of particles to the next 

generation and sorting the final results. The performance of ICPSO and ICDE algorithms are 

validated on twenty constrained benchmark problems. The numerical results show that the 

proposed algorithms are quite promising algorithms for solving constraint optimization 

problems. 

Chapter 7 investigates the performance of PSO, DE and their proposed variants with the real 

life problem namely In-situ efficiency determination of Induction Motor (5hp). By the 

application of PSO and DE algorithms in this problem, the motor efficiency can be obtained 

without performing no-load test, which is not easily possible for the motors working in process 

industries where continuous operation is required. Results are compared with Genetic Algorithm 

(GA) and a physical efficiency measurement method, called torque-gauge method. The 

performances in term of objective function (error in the efficiency) and convergence time prove 

the effectiveness of the optimization algorithms used for comparison in this chapter. 

Chapter 8 presents the model of Directional Overcurrent Relay settings in Electrical Power 

Systems, which is modeled as a constrained nonlinear optimization problem. The optimization 

problem corresponding to IEEE 3-bus, IEEE 4-bus and IEEE 6-bus system is considered. The 

five DE algorithms namely: LDEI, LDE2, LDE3, LDE4, LDE5 and DE-QI discussed in chapter 

4 are used to solve the resulting optimization problem. 

Chapter 9 gives eleven real life problems, which are collected from various fields. They are: 

Static Power Scheduling problem, Dynamic Power Scheduling problem, Cost Optimization of 

Transformer Design, Weight Minimization of a Speed Reducer, Heat Exchanger Network 

Design, Gas Transmission Compressor Design, Optimal Design of a Industrial Refrigeration 
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System, Optimization of Transistor Modeling, Optimal Capacity of Gas Production Facilities, 

Optimal Thermohydralic Performance of an Artificially Roughened Air Heater and Design of a 

Gear Train. The proposed algorithms discussed in chapter 2, 3, 4 and 5 are used to solve the 

above real life problems. Empirical results show that the proposed algorithms are quite 

competent for solving the considered real life problems. 

Chapter 10 finally concludes the thesis and gives the scope for the future work. 

Appendices (List of unconstrained test problems, List of constrained test problems) are given in 

the end. 
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Efficient Initialization Methods in PSO and DE 

[This chapter investigates the effect of initiating the population with various probability 

distributions and low discrepancy sequences on the behavior of the basic Particle Swarm 

Optimization and Differential Evolution algorithms. The probability distributions: Gaussian, 

Exponential, Beta and Gamma distribution and the low discrepancy sequences: Van der Corput 

and Sobol are considered in this study for generating the initial population. The proposed 

algorithms are tested on standard benchmark problems and the results are compared with the 

basic versions of PSO and DE which follows the uniform distribution for initializing the swarm. 

The simulation results show that a significant improvement can be made in the performance of 

PSO and DE, by simply changing the distribution of random numbers to other than uniform 

distribution and quasi random sequence as the proposed algorithms outperform the basic 

versions by a noticeable percentage.] 

2,1 Introduction 
Many of the population based stochastic search techniques which depend on the 

generation of random numbers work very well for problems having a small search area (i.e. a 

search area having low dimension), but as we go on increasing the dimension of search space 

the performance deteriorates and many times converge prematurely giving a suboptimal result 

(Liu et al, 2007). This problem becomes more persistent in case of multimodal functions having 

several local and global optima. One of the reasons for the poor performance of these algorithms 

may be attributed to the dispersion of initial population points in the search space i.e. to say, in 

case of PSO, if the swarm population does not cover the search area efficiently, it may not be 

able to locate the potent solution points, thereby missing the global optimum (Grosan et al, 

2005). This difficulty may be minimized to a great extent by selecting a well-organized 

distribution of random numbers which constitute the initial population. 

The most common practice of generating random numbers is the one using an inbuilt 
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subroutine (available in most of the programming languages), which uses a uniform probability 

distribution to generate random numbers. This method is not very proficient as it has been 

shown that uniform pseudo-random number sequences have discrepancy of order (log (log 

N))"2  and thus do not achieve the lowest possible discrepancy. Also, it has been shown that 

uniformly distributed particles may not always be good for empirical studies of different 

algorithms. Moreover, the uniform distribution sometimes gives a wrong impression of the 

relative performance of algorithms as shown by Gehlhaar and Fogel (1996). 

Subsequently, researchers have proposed an alternative way of generating `quasirandom' 

numbers through the use of low discrepancy sequences. Their discrepancies have been shown to 

be optimal, of order (log N)S/N (Gentle, 1998; Knuth, 1998). These sequences are useful for 

global optimization, because of the variation of random numbers that are produced in each 

iteration, thus providing a better diversified population of solutions and thereby increasing the 

probability of getting a better solution. 

Some instances on the use of different initialization methods (other than uniform 

distribution) available in literature are as follows; Kimura and Matsumura (2005) used Halton 

sequence for initializing the Genetic Algorithms (GA) population and showed that a real coded 

GA performs much better when initialized with a quasi random sequence in comparison to a GA 

which initialized with a population having uniform probability distribution. Instances where 

quasi random sequences have been used for initializing the swarm in PSO can be found in 

(Parsopoulos and Vrahatis, 2002; Brits, 2002; Brits, 2002a; Nguyen, 2007). In (Parsopoulos and 

Vrahatis, 2002; Brits, 2002; Brits, 2002a) authors have made use of Sobol and Faure sequences. 

Similarly, Nguyen et al (2007) have shown a detailed comparison of Halton, Faure and Sobol 

sequences for initializing the swarm. In the previous studies, it has already been shown that the 

performance of Sobol sequence dominates the performance of Halton and Faure sequences. 

However to the best of our knowledge, no results are available on the performance of Van 

der Corput sequence which is a well known sequence and forms the basis of many other 

sequences and also no one has used different Probability distributions for generating the initial 

population. Keeping this fact in mind, the present study is to scrutinize the performance of PSO 

and DE using Van der Corput sequence along with Sobol sequence and different probability 

distributions (Gaussian, Exponential, Beta and Gamma) for population initialization and tested 
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them for solving global optimization problems in large dimension search spaces. 

The organization of this chapter is as follows: Section 2.2 and 2.3 briefly describes the low 

discrepancy sequences and the probability distributions used in this study respectively. In 

section 2.4, the twelve proposed algorithms of PSO and DE with different initialization methods 

are given. Section 2.5 and 2.6 give the parameter settings of PSO and DE algorithms and the 

numerical results respectively. Finally this chapter concludes with section 2.7 

2.2 Low-Discrepancy Sequences 
Mathematically, the discrepancy of a sequence is the measure of its uniformity which 

may be defined as follows: 

For a given set of points xi, x2, ... ,xN  EIS  and a subset G c f, define a counting function 

SN(G) as the number of points xi  E G. For each x = (xi, x2, ....xs) E /8, let Gx  be the rectangular 

s-dimensional region. 

Gx  = [0,xd x [0,x2) x x [0,xs) with volume x1x2—xN. 

Then the discrepancy of points is given by D*N(x', x2, x3....xN ) = Sup I SN(Gx) — Nxix2...xs I , xe 

Is. 

The discrepancy is therefore computed by comparing the actual number.of sample points in 

a given volume of a multi-dimensional space with the number of sample points that should be 

there assuming a uniform distribution. 

A Low-discrepancy sequence is a sequence with the property that for all values of N, its 

subsequence x1 ,..., xN  has a low discrepancy. Low-discrepancy sequences are also called quasi-

random or sub-random sequences, due to their use as a replacement of uniformly distributed 

random numbers. 

2.2.1 Van der Corput Sequence 
A Van der Corput sequence is a low-discrepancy sequence over the unit interval first 

published in 1935 by the Dutch mathematician J. G. Van der Corput (1935). It is a digital (0, 1)-

sequence, which exists for all bases b> 2. Many of the relevant low discrepancy sequences are 

linked to the Van der Corput sequence introduced initially for dimension s = 1 and base b = 2. 

The Van der Corput discovery inspired other quasi random sequences like Halton (1960), Faure, 
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Sobol (Sobol, 1967; Sobol, 1976) etc. 

It is defined by the radical inverse function Vb: No-40, 1). If n E No has the b-adic expansion 

T 
n = 	a ibi-1 	 (2.1) 

j=0 

with a., E {O,..., b — 1} , and T = Llogb  n then yob is defined as 

T aj 
Cob(n)= E 	 (2.2) 

j=0 

In other words, the jth b-adic digit of n becomes the jth b-adic digit of cob(n) behind the 

decimal point. The Van der Corput sequence in base b is then defined as (yob(n)),>0. 

The elements of the Van der Corput sequence (in any base) form a dense set in the unit 

interval: for any real number in [0, 1] there exists a sub sequence of the Van der Corput 

sequence that converges towards that number. They are also uniformly distributed over the unit 

interval. Figure 2.1 shows the random numbers distributed by Van der Corput sequence. 

2.2.2 Sobol Sequence 
The Sobol sequence is the most widely deployed low-discrepancy sequence, and is used 

for calculating multi-dimensional integrals and in quasi-Monte Carlo simulation.. The 

construction of the Sobol sequence (Chi et al, 1999) uses linear recurrence relations over the 

finite field, F2, where F2 = {0, 1}. Let the binary expansion of the non-negative integer n be 

given by n = n120 + n2 21 4_ 	nw 2 w-1. Then the nth  element of the jth  dimension of the Sobol 

Sequence, X n( ' ) , can be generated by: 

X n( J )  = n1v1( j)  0 n2 v2(i) 	0 nu,v,,,, (i) 	 (2.3) 

where vi ( j)  is a binary fraction called the ith  direction number in the jth  dimension. These 

direction numbers are generated by the following q-term recurrence relation: 

vi(j)  =aivi_PlOctvi_2(i)  e...@aqvi_q+PlOvi4 e(vi,u) 22) 	 (2.4) 

We have i > q, and the bit, a, comes from the coefficients of a degree-q primitive polynomial 

over F2. Figure 2.2 shows the random numbers distributed by Sobol sequence. 
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Figure 2.1 Sample points generated using Van der Corput sequence 
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Figure 2.2 Sample points generated using Sobol sequence 
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2.3 Probability Distributions 
In probability theory and statistics, a probability distribution identifies either the 

probability of each value of an unidentified random variable (when the variable is discrete), or 

the probability of the value falling within a particular interval (when the variable is continuous). 

The probability distribution describes the range of possible values that a random variable can 

attain and the probability that the value of the random variable is within any (measurable) subset 

of that range. When the random variable takes values in the set of real numbers, the probability 

distribution is completely described by the cumulative distribution function, whose value at each 

real x is the probability that the random variable is smaller than or equal to x. 
There are two types of probability distributions: discrete probability functions and 

continuous probability functions. A discrete probability function is a function that can take a 

discrete number of values (not necessarily finite). This is most often the non-negative integers or 

some subset of the non-negative integers. Continuous probability functions are defined for an 

infinite number of points over a continuous interval. Discrete probability functions are referred 

to as probability mass functions and continuous probability functions are referred to as 

probability density functions. The term probability function covers both discrete and continuous 

distributions. When we are referring to probability functions in generic terms, we may use the 

term probability density functions to mean both discrete and continuous probability functions. 

Some practical uses of probability distributions are: 

➢ To calculate confidence intervals for parameters and to calculate critical regions for 

hypothesis tests. 

➢ For univariate data, it is often useful to determine a reasonable distributional model for 

the data. 

➢ Statistical intervals and hypothesis tests are often based on specific distributional 

assumptions. Before computing an interval or test based on a distributional assumption, 

we need to verify that the assumption is justified for the given data set. In this case, the 

distribution does not need to be the best-fitting distribution for the data, but an adequate 

enough model so that the statistical technique yields valid conclusions. 

➢ Simulation studies with random numbers generated from using a specific probability 

distribution are often needed. 
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There are various probability distributions that show up in various different applications. 

Among all the probability distributions, the present study investigates the characteristics of PSO 

and DE with four probability distributions namely: Gaussian distribution, Exponential 

distribution, Beta distribution and Gamma distribution. 

2.3.1 Gaussian Distribution 
The normal distribution or Gaussian distribution is a continuous probability distribution 

that describes data that clusters around a mean or average. The graph of the associated 

probability density function is bell-shaped, with a peak at the mean, and is known as the 

Gaussian function or bell curve. The probability density function of a Gaussian probability 

distribution is given by: 

(x-,u)2 

f (x) = 	
1
, 	20-2 

, - 00 < X < 00 	 (2.5) 
crV2Ir 

where p, is the mean and a is the standard deviation. For a mean 0 and standard deviationl, this 

formula simplifies to: 

X2  

f (x). 	
1 	 e---2 	 (2.6) 

-V2ir 

In the present study, Gaussian distributed random numbers with mean zero and r standard 

deviation 1 is used. 

2.3.2 Exponential Distribution 
The Exponential distribution is a only continuous memoryless probability distribution 

that describes the times between events in a Poisson process, i.e. a process in which events 

occur continuously and independently at a constant average rate. It is a continuous analog of the 

geometric distribution. Also, it is a commonly used distribution in reliability engineering. 

Mathematically, Exponential distribution is a fairly simple distribution, which many times lead 

to its use in inappropriate situations. It is, in fact, a special case of the Weibull distribution. 

The probability density function (pdf) of an exponential distribution is, 
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f (x, 2,) 	
.3.e0, , x 0 (2.7) 

x < 0 
Here 2 > 0 is the parameter of the distribution, often called the rate parameter. The distribution 

is supported on the interval [0, co). 

The generalized exponential probability function is defined by, 

f (x) = 2 1
be

-(x - a) I b  - Go x co , a,b > 0 
	

(2.8) 

It is evident that one can control the variance by changing the parameters a and b. This study 

uses the Eqn. (2.8) to generate the exponentially distributed random numbers. 
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Figure 2.3 Probability density function of Gaussian distribution 
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Figure 2.4 Probability density function of Exponential distribution 

2.3.3 Beta Distribution 
The Beta distribution is a family of continuous probability distributions parameterized 

by two positive shape parameters, typically denoted by a and I.  It is a general type of statistical 

distribution and also related to the gamma distribution. In Bayesian statistics, it can be seen as 

the posterior distribution of the parameter p of a binomial distribution after observing a - 1 

independent events with probability p and (3 - 1 with probability 1 - p, if the prior distribution 

of p was uniform. The beta distribution is a more flexible probability density function compared 

to the normal distribution because it can accommodate different ranges and different shapes 

from left skew. The Probability density function of Beta distributions is given by: 

	„ a,fi>0 	 (2.9) 
B(a, /3)(b - a) a 4-  

where a and 13 are the shape parameters, a and b are the lower and upper bounds, respectively, 

of the distribution, and B(a, (3) is the beta function. 

B(a, p) = j x 	- x)fi-1  dx 	 (2.10) 
0 
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The case where a = 0 and b = 1 is called the standard beta distribution. The equation for the 

standard beta distribution is: 

f (x)= 
xa-1*(1 — x)fl-1 

B(a, f3) 

0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1 
x 

Figure 2.5 Probability density function of Beta distribution 

2.3.4 Gamma Distribution 

A gamma distribution is a general type of statistical distribution that is related to the beta 

distribution and arises naturally in processes for which the waiting times between Poisson 

distributed events are relevant. It is widely used in engineering, science, and business, to model 

continuous variables that are always positive and have skewed distributions. Gamma 

distributions have two free parameters, shape parameter and scale parameter labeled as a and 

0. If a is an integer then the distribution represents the sum of a independent exponentially 

distributed random variables, each of which has a mean of O. 

The general formula for the probability density function of the gamma distribution is: 

(2.11) 
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x a-1e (7) 

f (x) 	  
0 * F (a) 

, 	a,0>0 	 (2.12) 

co 
where F (a) = ft a'Cidt 
	

(2.13) 
0 

The case where pi, — 0 and 0 = 1 is called the standard gamma distribution. The probability 

density function for the standard gamma distribution is: 

a-1 -x 
f (x) 

x 
= 	

a F 	
, x 0; a > 0 

() 
(2.14) 
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Figure 2.6 Probability density function of Gamma function 

2.4 Proposed PSO and DE Algorithms 
Based on the low discrepancy sequences and probability distributions mentioned in the 

previous sections, 6 versions of PSO and 6 versions of DE are proposed in this chapter. The 

computational steps of the proposed versions are as same as of basic PSO and DE algorithms 

and they differ only in the phase of initializing the population. 
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The six modified versions of PSO are: 

❖ GPSO: PSO algorithm, initializing the population with Gaussian distributed random 

numbers 

❖ EPSO: PSO algorithm, initializing the population with Exponential distributed random 

numbers 

❖ BTPSO: PSO algorithm, initializing the population with Beta distributed random 

numbers 

❖ GAPSO: PSO algorithm, initializing the population with Gamma distributed random 

numbers 

❖ VC-PSO: PSO algorithm, initializing the population with the random numbers generated 

by Van der Corput sequence 

❖ SO-PSO: PSO algorithm, initializing the population with the random numbers generated 

by Sobol sequence 

The six modified versions of DE are: 

❖ GDE: DE algorithm, initializing the population with Gaussian distributed random 

numbers 

• EDE: DE algorithm, initializing the population with Exponential distributed random 

numbers 

❖ BTDE: DE algorithm, initializing the population with Beta distributed random numbers 

❖ GADE: DE algorithm, initializing the population with Gamma distributed random 

numbers 

❖ VC-DE: DE algorithm, initializing the population with the random numbers generated 

by Van der Corput sequence 

❖ SO-DE: DE algorithm, initializing the population with the random numbers generated by 

Sobol sequence 

2.5 Parameter Settings 
In order to check the compatibility of the proposed algorithms a test suite of five 

unconstrained, classical bench mark functions are considered, given in Appendix I, that are 

often used for deciding the credibility of an optimization algorithm. For each function, four 
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different dimension sizes of 10, 20, 30 and 50 are taken. The maximum number of generations 

is set as 1000, 1500, 2000 and 3000 with population sizes of 20, 40 corresponding to the 

dimensions 10, 20, 30 and 50 respectively. Stopping criteria for all the algorithms is taken as the 

maximum number of generations. A total of 30 runs for each experimental setting are conducted 

and the average fitness of the best solutions throughout the run is recorded. For all the PSO 

algorithms, a linearly decreasing inertia weight (0.9 - 0.4) is used along with the user defined 

parameters c1= c2=2.0. For all the DE versions, the scaling factor F is taken as 0.5 and the 

crossover rate Cr is taken as 0.9. The mean best fitness value and the percentage of 

improvement for all the given functions are recorded in Tables 2.1 — 2.6, in which P represents 

the swarm population, D represents the dimension and Gne represents the maximum number of 

permissible generations. Figure 2.7 (a) — 2.7 (e) shows the performance curves of PSO, GPSO, 

EPSO, BTPSO, GAPSO, VC-PSO and SO-PSO algorithms. The performance curves of DE, 

GDE, EDE, BTDE, GADE, VC-DE and SO-DE algorithms are shown in Figure 2.8 (a) — (c). 

2,6 Numerical Results and Discussion 
Comparison of Proposed PSO algorithms with basic PSO: 

Performance comparisons of proposed PSO algorithms with basic PSO in terms of mean 

best fitness values are given in Tables 2.1 and 2.2. Table 2.3 gives the improvement (%) of 

proposed versions of PSO with basic PSO. The numerical results of Table 2.1 and 2.2'show that 

in all the test cases (40 cases for each algorithm) except two cases in EPSO algoilthm, the 

proposed versions of PSO perform much better than the basic PSO algorithm. If the comparison 

is made with the performance of proposed algorithms with each other then it can be seen that 

BTPSO gave better results than the other compared algorithms in 32 test cases out of 40 cases 

tried. In 4 test cases, the performance of VCPSO is better than others. EPSO algorithm' performs 

well in 2 test cases, GPSO and GAPSO algorithms gave better result than the other algorithms 

in one case for each. Thus the numerical results show that the modified initialization methods 

improved the performance of PSO with a noticeable percentage, particularly the beta 

distribution is working well in the initialization process of PSO. 
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Comparison of Proposed DE algorithms with basic DE: 

Performance comparisons of proposed DE algorithms with basic DE in terms of mean 

best fitness values are given in Tables 2.4 and 2.5. Table 2.6 gives the improvement (%) of 

proposed versions of DE with basic DE. From the numerical results it can be seen that all the 

proposed DE algorithms are either better or at par with basic DE algorithm. For each algorithm, 

a total of 40 test cases tried. If the comparison is made with the proposed algorithms with each 

other, then in most of the test cases VCDE algorithm, which follows the Vander Corput 

sequence for Initial population, gave better performance than other algorithms. VCDE algorithm 

is working well in 23 cases out of 40 cases. In 10 test cases BTDE, the DE algorithm which 

follows the beta distribution for initializing the population, is better than other compared 

algorithms. BTDE and VCDE algorithms are performed the same in 2 test cases and in 3 test 

cases; all the proposed algorithms are perform the same. Thus from the numerical results it is 

concluded that the modified initialization methods improved the performance of DE algorithm 

with a noticeable percentage, particularly the low discrepancy Van der Corput sequence is 

working well in the initialization process of DE. 
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Table 2.1 Comparison results of PSO, GPSO, EPSO, BTPSO and GAPSO 

Function P D Gne PSO GPSO EP SO BTPSO GAPSO 

RS 

20 

10 1000 5.5572 4.279237 5.194298 0.149243 3.930455 
20 1500 22.8892 19.450845 19.211362 1.542594 20.103193 
30 2000 47.2941 39.200201 45,251921 4.863791 44.89109 
50 3000 105.46585 89.870645 86.615777 6.288665 94.627789 

40 

10 1000 3.5623 3.234385 2.785873 0.198991 3.427863 
20 1500 16.3504 14.228897 16.416922 2.159893 15.778632 
30 2000 38.5250 33.481344 32.68904 3.840700 31.840566 	• 
50 3000 92.840048 74.711812 83.488755 5.689304 84.665796 

GR 

20 

10 1000 0.0919 0.028665 0.034969 1.626e-20 0.003328 
20 1500 0.0313 0.009839 0.025832 3.385e-17 1.125e-16 
30 2000 0.0182 0.008239 0.012904 3.329e-13 0.001849 
50 3000 0.014701 0.002463 0.004312 6.519e-10 0.004557 

40 

10 1000 0.0862 0.029166 0.034237 2.711e-21 0.006584 
20 1500 0.0286 0.013535 0.029871 6.776e-20 5.421e-20 
30 2000 0.0127 0.005053 0.012316 8.298e-16 3.027e-15 
50 3000 0.009857 0.003696 0.007507 2.365e-11 0.007010 

RB 

20 

10 1000 96.1715 4.540158 3.497455 4.775826 6.864273 
20 1500 214.6764 22.654988 23.16014 15.132349 19.179048 
30 2000 316.4468 36.824102 52.497253 25.579255 41.526082 
50 3000 533.64808 86.800428 100.78990 45.529225 83.657666 

40 

10 1000 70.2139 3.619349 4.022827 4.306128 3.624577 
20 1500 180.9671 19.152783 14.194387 14.483019 15.039252 
30 2000 299.7061 34.613255 49.837002 24.958234 29.332349 
50 3000 482.13533 68.619791 76.646435 44.33589 78.453189 

ACK 

20 

10 1000 6.965e-12 4.830e-12 6.863e-13 2.521e-12 2.067e-12 
20 1500 3.560e-07 5.239e-08 6.186e-08 2.987e-08 6.168e-08 
30 2000 3.618e-05 8.495e-06 8.791e-06 1.197e-06 5.263e-06 
50 3000 3.43866 0.528656 0.861133 7.767e-05 0.569936 

40 

10 1000 7.897e-13 3.660e-13 2.301e-13 1.477e-14 1.435e-13 
20 1500 5.045e-08 1.567e-08 1.662e-08 1.002e-09 9.988e-09 
30 2000 7.269e-06 4.119e-06 3.495e-06 1.093e-07 4.040e-07 
50 3000 1.966554 0.080034 0.101208 8.179e-06 0.001329 

SWF2.21 

20 

10 1000 4.831e-05 8.572e-06 9.252e-06 1.055e-06 9.064e-06 
20 1500 1.501872 0.163695 0.174117 0.011875 0.187012 
30 2000 10.918735 0.781431 0.96442 0.137883 0.891136 
50 3000 33.567141 1.646942 2.527187 0.300847 2.177328 
10 1000 7.421e-07 2.193e-07 1.508e-07 2.967e-08 1.571e-07 

40 
20 1500 0.343671 0.038344 0.038119 0.004469 0.039788 
30 2000 7.481037 0.53136 0.563958 0.076697 0.500093 
50 3000 29.928682 1.59299 2.393682 0.324051 2.079004 
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Table 2.2 Comparison results of PSO, VC-PSO and SO-PSO 

Function P D Gne PSO VC-PSO SO-PSO 

RS 

20 

10 1000 5.5572 3.880492 4.647559 
20 1500 22.8892 19.61551 22.2139 
30 2000 47.2941 40.79308 41.61307 
50 3000 105.4659 81.50977 88.21129 

40 

10 1000 3.5623 3.351035 2.984863 
20 1500 16.3504 15.91926 16.0216 
30 2000 38.525 31.75592 34.68411 
50 3000 92.84005 62.149 66.01864 

GR 

20 

10 1000 0.0919 0.003326 0.001229 
20 1500 0.0313 0.002583 0.000986 
30 2000 0.0182 0,000986 7.65e-12 
50 3000 0.014701 1.85c-09 2.16e-09 

40 

10 1000 0.0862 0.005169 0.001725 
20 1500 0.0286 0.003194 8.67e-20 
30 2000 0.0127 3.06e-14 3.28e-14 
50 3000 0.009857 3.77e-11 5.84e-11 

RB 

20 

10 1000 96.1715 3.650252 4.233931 
20 1500 214.6764 13.44568 	' 16.28811 
30 2000 316.4468 32,39934 33.61518 
50 3000 533.6481 84.53622 86.26835 

40 

- 

10 1000 70.2139 4,041561 3.908925 
20 1500 180.9671 12.40308 15.8566 
30 2000 299.7061 31.89796 36.66065 
50 3000 482.1353 81.06562 83.58392 

ACK 

20 

10 1000 6.97e-12 3.11e-12 3.00e-12 
20 1500 3.56e-07 8.57e-08 6.68e-08 
30 2000 3.62e-05 2.65e-06 8.69e-06 
50 3000 3.43866 2.02e-03 5.69e-04 

40 

10 1000 7.90e-13 5.61e-14 3.50e-14 
20 1500 5.05e-08 2.65e-09 2.51e-09 
30 2000 7.27e-06 4.42e-07 6.69e-07 
50 3000 1.966554 1.37e-04 1.09e-05 

SWF2.2 I 

20 

10 1000 4.83e-05 2.21e-11 4.42e-06 
20 1500 1.501872 0.069028 0.086019 
30 2000 10.91874 0.443966 0.437305 
50 3000 33.56714 0.828851 0.802782 

40 

10 1000 7.42e-07 4.65e-15 5.89e-08 
20 1500 0.343671 0.016538 0.020741 
30 2000 7.481037 0.32125 0.280413 
50 3000 29.92868 0.706595 0.508336 
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Table 2.3 Improvement (%) of proposed PSO algorithms in comparison with basic PSO 

Function P D Gne GP SO EPSO BTPSO GAP SO VC-PSO SO-PSO 

RS 

20 

10 1000 22.9 6.5 97.3 29.3 30.2 16.4 
20 1500 15.0 16.1 93.3 12.2 14.3 2.95 
30 2000 17.1 4.3 89.7 5.1 13.7 12.0 
50 3000 14.8 17.9 94.0 10.3 22.7 16.4 

40 

10 1000 9.2 21.8 94.4 3.8 5.93 16,2 
20 1500 12.9 - 86.8 3.5 2.64 2.01 
30 2000 13.1 15.1 95.2 17.4 17.6 9.97 
50 3000 19.5 10.1 93.9 8.8 33.1 28.9 

GR 

20 

10 1000 68.8 61.9 100 96.4 96.4 98.7 
20 1500 68.6 17.5 100 100 91.7 96.8 
30 2000 54.7 29.1 100 89.8 94.6 100 
50 3000 83.2 70.7 100 69.0 100 100 

40 

10 1000 66.2 60.3 100 92.4 94.0 98.0 
20 1500 52.7 - 100 100 88.8 100 
30 2000 60.2 3.0 100 100 100 100 
50 3000 62.5 23.8 100 28.9 100 100 

RB 

20 

10 1000 95.3 96.7 95.0 92.9 96.2 95.6 
20 1500 89.4 89.2 92.9 91.1 93.7 92.4 
30 2000 88.4 83.4 91.9 86.9 89.8 89.4 
50 3000 83.7 81.1 91.5 84.3 84.2 83.8 

40 

10 1000 94.8 94.3 93.9 94.8 94.2 94.4 
20 1500 89.4 92.2 91.9 91.7 93.1 91.2 
30 2000 88.5 83.4 91.7 90.2 89.4 87:8 
50 3000 85.8 84.1 90.8 83.7 83.2 82.7 

ACK 

20 

10 1000 30.7 90.1 63.8 70.3 55.3 57.0 
20 1500 85.3 82.6 91.6 82.7 75.9 81.2 
30 2000 76.5 75.7 96.7 85.5 92.7 76.0 
50 3000 84.6 75.0 100 83.4 99.9 100 

40 

10 1000 53.7 70.9 98.1 81.8 92.9 95.6 
20 1500 68.9 67.1 98.0 80.2 94.7 95.0 
30 2000 43.3 51.9 98.5 94.4 93.9 90.8 
50 3000 95.9 94.9 100 99.9 100 100 

SWF2.21 

20 

10 1000 82.3 80.8 97.8 81.2 100 90.9 
20 1500 89.1 88.4 99.2 87.5 95.4 94.3 
30 2000 92.8 91.2 98.7 91.8 95.9 96.0 
50 3000 95.1 92.5 99.1 93.5 97.5 97.6 

40 

10 1000 70.4 79.7 96.0 78.8 100 92.1 
20 1500 88.8 88.9 98.7 88.4 95.2 94.0 
30 2000 92.9 92.5 99.0 93.3 95.7 96.3 
50 3000 94.7 92.0 98.9 93.1 97.6 98.3 
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Table 2.4 Comparison results of DE, GDE, EDE, BTDE and GADE 

Function P D Gne DE GDE EDE BTDE GADE 

RS 

20 

10 1000 4.14561 2.87204 4.06888 0.000177 4.1401 

20 1500 15.2779 10.6392 13.3219 0.239455 13.262 
30 2000 29.73 19.3196 29.1693 0.174208 27.2259 
50 3000 74.4649 46.0006 44.3187 1.82141 61.7617 

40 

10 1000 5.53601 3.41977 5.17709 0.00000 2.84298 
20 1500 23.0242 19.8479 17.0667 0.00000 13.7773 
30 2000 27.5721 24.4541 24.305 0.497477 17.5868 
50 3000 35.8071 31.8632 30.7283 0.299003 35.7962 

GR 

20 

10 1000 0.067271 1.45e-06 0.000227 1.95e-07 1.27e-05 
20 1500 0.615169 0.004686 0.00436 7.13e-06 0.007953 
30 2000 2.20295 0.001803 0.008911 5.35e-05 0.012796 
50 3000 6.95086 0.005007 0.025115 0.000291 0.030986 

40 

10 1000 0.020922 0.00000 0.00000 0.00000 0.00000 
20 1500 0.002464 0.00000 0.00000 0.00000 0.00000 
30 2000 0.008624 0.00000 0.00000 0.00000 0.00000 
50 3000 0.016103 1.10e-08 4.57e-17 2.17e-20 7.18e-09 

RB 

20 

10 1000 25.0847 7.93441 7.0691 8.11989 4.66401 
20 1500 67.711 21.653 38.7838 18.276 41.3566 
30 2000 71.6169 45.539 73.7554 28.1323 49.939 
50 3000 148.814 88.337 123.72 48.3172 114.997 

40 

10 1000 5.82618 5.53632 5.10122 6.99747 4.37098 
20 1500 15.1055 15.923 15.931 16.7332 14.9939 
30 2000 27.6945 26.0006 26.5588 27.1433 44.7165 
50 3000 40.6621 47.6049 50.4318 47.2391 78.9742 

ACK 

20 

10 1000 0.234128 0.119102 0.002729 0.000129 0.003586 

20 1500 2.93381 0.036436 0.497017 • 0.004674 0.975587 
30 2000 3.91141 0.395057 0.694482 0.014302 1.34968 

50 3000 7.95975 0.809041 1.41343 0.052592 2.2413 

40 

10 1000 5.00e-16 1.45e-16 8.55e-16 1.45e-16 1.45e-16 
20 1500 3.70e-15 3.70e-15 3.70e-15 3.70e-15 3.70e-15 

30 2000 2.04e-14 1.09e-05 6.54e-15 3.70e-15 1.32e-07 
50 3000 1.13794 0.000451 0.015031 0.000158 0.102721 

SWF2.21 

20 

10 1000 5.60763 0.111252 0.123874 0.00402 0.302069 
20 1500 19.2351 0.502519 0.558345 0.047622 0.873595 
30 2000 29.5582 0.541165 0.881994 0.099099 1.09369 
50 3000 35.1416 0.813952 1.17845 0.183615 1.31309 

40 

10 1000 0.011005 0.002528 3.77e-05 8.83e-06 0.004511 
20 1500 3.07155 0.084686 0.116829 0.009763 0.246686 
30 2000 12.9832 0.286121 0.405295 0.040504 0.669035 
50 3000 25.4099 0.523261 0.777208 0.112097 0.954586 
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Table 2.5 Comparison results of DE, VC-DE and SO-DE 

Function P D Gne DE VC-DE SO-DE 

/?S 

20 

10 1000 4.14561 0.198991 3.98875 
20 1500 15.2779 0.497477 9.24878 
30 2000 29.73 11.442 16.4139 
50 3000 74.4649 2.68638 30.233 

40 

10 1000 5.53601 0.00000 1.69142 
20 1500 23.0242 0.00000 7.66115 
30 2000 27.5721 10.049 13.5318 
50 3000 35.8071 0.198991 22.486 

GR 

20 

10 1000 0.067271 0.00000 0.001461 
20 1500 0.615169 0.00000 0.011825 
30 2000 2.20295 0.00000 0.005593 
50 3000 6.95086 5.42e-20 0.007802 

40 

10 1000 0.020922 0.00000 0.00000 
20 1500 0.002464 0.00000 0.00000 
30 2000 0.008624 0.00000 0.00000 
50 3000 0.016103 5.42e-20 5.53e-07 

RB 

20 

10 1000 25.0847 3.11355 4.1753 
20 1500 67.711 13.4495 28.1569 
30 2000 71.6169 37.4939 50.0921 
50 3000 148.814 45.2356 122.317 

40 

10 1000 5.82618 2.64441 2.18146 
20 1500 15.1055 13.6994 11.3377 
30 2000 27.6945 23.6749 24.0394 
50 3000 40.6621 46.8276 56.9271 

ACK 

20 

10 1000 0.234128 2.28e-15 0.117151 
20 1500 2.93381 5.12e-15 1.03826 
30 2000 3.91141 1.98623 1.01891 
50 3000 7.95975 1.51e-14 1.09739 

40 

10 1000 5.00e-16 1.21e-16 1.45e-16 
20 1500 3.70e-15 4.41e-16 3.70e-15 
30 2000 2.04e-14 1.97e-15 5.47e-15 
50 3000 1.13794 1.79e-14 9.83e-07 

SWF2.21 

20 

10 1000 5.60763 1.05e-08 0.319372 
20 1500 19.2351 5.40e-05 0.579449 
30 2000 29.5582 0.296617 0.618857 
50 3000 35.1416 0.019521 0.618857 
10 1000 0.011005 5.90e-09 0.004488 

40 
20 1500 3.07155 1.20e-05 0.381279 
30 2000 12.9832 0.000362 0.407118 
50 3000 25.4099 0.001418 0.51291 
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Table 2.6 Improvement (%) in terms of average fitness function value of proposed DE algorithms in 

comparison with basic DE 

Function P D Gne GDE EDE BTDE GADE VC-DE SO-DE 

RS 

20 

10 1000 30.7 1.85 100 0.13 95.2 3.78 
20 1500 30.4 12.8 98.43 13.2 96.7 39.5 
30 2000 35 1.89 99.41 8.42 61.5 44.8 
50 3000 38.2 40.5 97.55 17.1 96.4 59.4 

40 

10 1000 38.2 6.48 100 48.6 100 69.4 
20 1500 13.8 25.9 100 40.2 100 66.7 
30 2000 11.3 11.8 98.2 36.2 63.6 50.9 
50 3000 11 14.2 99.16 0.03 99.4 37.2 

GR 

20 

10 1000 100 99.7 100 100 100 97.8 
20 1500 99.2 99.3 100 98.7 100 98.1 
30 2000 99.9 99.6 100 99.4 100 99.7 
50 3000 99.9 99.6 100 99.6 100 99.9 

40 

10 1000 100 100 100 100 100 100 
20 1500 100 100 100 100 100 100 
30 2000 100 100 100 100 100 100 
50 3000 100 100 100 100 100 100 

RB 

20 

10 1000 68.4 71.8 67.63 81.4 87.6 83.4 
20 1500 68 42.7 73.01 38.9 80.1 58.4 
30 2000 36.4 - 60.72 30.3 47.6 30.1 
50 3000 40.6 16.9 67.53 22.7 69.6 17.8 

40 

10 1000 4.98 12.4 - 25 54.6 62.6 
20 1500 - - - 0.74 9.31 24.9 
30 2000 6.12 4.1 1.99 - 14.5 13.2 
50 3000 - - - - - - 

ACK 

20 

10 1000 49.1 98.8 99.95 98.5 100 50 
20 1500 98.8 83.1 99.84 66.7 100 64.6 
30 2000 89.9 82.2 99.63 65.5 49.2 74 
50 3000 89.8 82.2 99.34 71.8 100 86.2 

40 

10 1000 71.1 - 71.07 71.1 75.8 71.1 
20 1500 0 0 0 0 88.1 0 
30 2000 - 67.9 81.87 - 90.3 73.2 
50 3000 100 98.7 99.99 91 100 100 

SWF2.21 

20 

10 1000 98 97.8 99.93 94.6 100 94.3 
20 1500 97.4 97.1 99.75 95.5 100 97 
30 2000 98.2 97 99.66 96.3 99 97.9 
50 3000 97.7 96.6 99.48 96.3 99.9 98.2 

40 

10 1000 77 99.7 99.92 59 100 59.2 
20 1500 97.2 96.2 99.68 92 100 87.6 
30 2000 97.8 96.9 99.69 94.8 100 96.9 
50 3000 97.9 96.9 99.56 96.2 100 98 
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2.7 Conclusion 
This chapter presented some modified versions of PSO and DE algorithms. These 

algorithms are differing from the basic versions only in the place of initializing the population. 

The probability distributions: Gaussian, Exponential, Beta and Gamma distribution and the low 

discrepancy sequences: Van der Corput and Sobol were considered in this study for initializing 

the population of PSO and DE. With respect to the above mentioned probability distributions 

and low discrepancy sequences, a total of 12 modified versions of PSO and DE (6 versions for 

each algorithm) were reported. The presented algorithms were tested with five standard 

benchmark problems with different dimensions (10, 20, 30 and 50) and different population 

sizes (20 and 40) and the results are compared with the basic versions of PSO and DE which 

follows the uniform distribution for initializing the swarm. The numerical results show that only 

with the change in the initial distribution of random numbers the improvement in average fitness 

function value is as high as 100% in many of the test cases. In overall comparison, the 

algorithms which follow the Beta distribution and Van der Corput sequence were superior to 

other algorithms. 
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Chapter 3 

Improved Particle Swarm Optimization 

Algorithms 

[This chapter describes the improved versions of Particle Swarm Optimization 

algorithm. The main focus is on the design and implementation of the improved PSO algorithms 

based on diversity, Crossover and Mutation using different distributions and Low-discrepancy 

sequences. Also this chapter introduces a new velocity vector and an inertia weight in classical 

PS0.1 

3.1 Introduction 
Many variants of PSO have been developed in the past to improve its performance. 

Some of the interesting modifications that helped in enhancing the performance of PSO include 

introduction of inertia weight and its adjustment for better control of exploration and 

exploitation capacities of the swarm (Shi and Eberhart, 1998; Eberhart and Shi 2001), 

introduction of constriction factor to control the magnitudes of velocities (Clerc, 1999), impacts 

of various neighborhood topologies on the swarm (Kennedy, 1999), extension of PSO via 

genetic programming (Poli et al, 2005), use of various mutation operators into PSO (Ting et al, 

2003; Paquet and Engelbrecht, 2003; Parsopoulos et al, 2001). This chapter proposes some 

variants of PSO based on diversity, mutation and crossover. Also a new inertia weight and a 

velocity vector are introduced. 

This chapter has ten sections including the introduction. In section 3.2, two simple diversity 

guided PSO are given and in Section 3.3, four diversity based mutation versions of PSO are 

given. In section 3.4, four modified versions PSO with crossover operator is described. Section 

3.5 gives two mutation based variants of PSO; Section 3.6 and 3.7 introduces a new inertia 

weight and a new velocity vector in classical PSO respectively. Parameter settings are given in 

section 3.8 and the result analysis are given in section 3.9. The chapter finally concludes with 

section 3.10. 
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3.2 Diversity Based Simple Variants of PSO 
Diversity is a very important aspect in population-based optimization algorithms. Large 

diversity directly implies that a large area of the search space can be explored. It may be defined 

as the dispersion of potential candidate solutions in the search space. 

The diversity measure of the swarm can be calculated as (Krink et al, 2002; Vesterstrom et al, 

2002): 

1 	
I 

ns  n 
Diversity(S(t))=— 	I 	(t) — xj(t))

2 	 (3.1) 
ns  

where S is the swarm, ns  = I S I is the swarm size, nx  is the dimensionality of the problem, xy is 

the j'th value of the i'th particle and xj(t) is the average of the j-th dimension over all particles, 

i.e. 

Riget et al (2002) gives an alternate formula for calculating the swarm diversity, it is based on 

the diameter of the swarm. 

s  n, 
Diversity(S(t))— 	

1 	1 
E 	E (t)- xi (0)2 	 (3.3) 

diameter(S(t)) ns 	" 

Where diameter(S(t)) is the diameter of the swarm, i.e. the distance between the two furthest apart 

particles. Interested readers may refer to (Engelbrecht, 2005; Olurunda and Engelbrecht, 2008; 

Shi and Eberhart, 2008) for different formulae used for calculating diversity. 

Most of the population based search techniques work on the principle of contracting the 

search domain towards the global optima. Due to this reason after a certain number of iterations 

all the points get accumulated to a region which may not even be a region of local optima, 

thereby giving suboptimal solutions (Liu et al, 2007). Loss of diversity becomes more 

prominent for multimodal functions having several optima or noisy functions where the 

optimum keeps shifting from one position to other. Loss of diversity generally takes place when 

the balance between the two antagonists processes exploration (searching of the search space) 

and exploitation (convergence towards the optimum) is disturbed. In case of Evolutionary 
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Algorithms (EA) the population diversity is generally lost during the process of evolution 

(crossover and mutation), whereas in case of PSO the diversity loss is generally attributed to the 

fast information flow between the swarm particles. Thus in absence of a good diversity 

enhancing mechanism the optimization algorithms are unable to explore the search space 

effectively. 

Previously, Riget et al (2002) proposed a diversity guided PSO called ARPSO, in which, 

when diversity of population drops below a lower bound, di0W, it will be switched to the 

repulsion phase, in which the diversity will increase. Finally, when a diversity of dh,gh is 

reached, it will be switched back to the attraction phase. PSOBC algorithm is also a diversity 

guided algorithm proposed by Niu et al (2006). In PSOBC, the individual particle was repelled 

by the worst known particle position and its own previous worst position and it was proved that 

it much more like the nature works than ARPSO. In DRPSO (Jiang et al, 2008),the individual 

particle was repelled by the worst known particle position and its own previous worst position, 

at the same time particles do diffusion movement in the process of repulsion. 

This section presents two algorithms Attraction — Repulsion PSO (ATREPSO) and 

Quadratic Interpolation PSO1 (QIPSO1) which uses different diversity enhancing mechanisms 

to improve the performance of the swarm. These two algorithms use diversity threshold values 

d10,,, and dhigh to guide the movement of the swarm. The threshold values are predefined by the 

user. In ATREPSO, the swarm particles follow the mechanism of repulsion so that instead of 

converging towards a particular location the particles are diverged from that location. In case of 

QIPSO1 evolutionary operator crossover is induced in the swarm to perturb the population. 

These algorithms are described in the following subsections. 

3.2.1 Attraction — Repulsion Particle Swarm Optimization 

(ATREPSO) 
The Attraction — Repulsion Particle Swarm Optimization Algorithm (ATREPSO) is a 

simple extension of the Attractive and Repulsive PSO (ARPSO) proposed by Riget et al (2002), 

where a third phase called in between phase or the phase of positive conflict is added. It is quite 

natural to think that (diversity <) &N, and (diversity >) diugh may not be the only two possibilities 

for deciding the movement of the swarm, but many times the diversity may lie in between the 
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two threshold values. For this reason a third phase is proposed, which is activated when the 

diversity is greater than chow  but less then dhigh. In ATREPSO, the swarm particles switches 

alternately between the three phases of attraction, repulsion and an 'in between' phase which 

consists of a combination of attraction and repulsion. The three phases are defined as: 

Attraction phase (when the particles are attracted towards the global optimal) 

vid =wvid + cirt(pid - xid)+ c2r2(pgd - xid) 	 (3.4) 

Repulsion phase (particles are repelled from the optimal position) 

vid =wvid - cirt(pid - xid)- c2r2(pgd - xid) 
	

(3.5) 

In-between phase (neither total attraction nor total repulsion) 

vid  = wvid  ct rl  ( pid - xid) - c2r2(p gd - xid) 	 (3.6) 

In the in-between phase, the individual particle is attracted by its own previous best position p d 

and is ,repelled by the best known particle position pgd. In this way there is neither total 

attraction nor total repulsion but a balance between the two. 

The swarm particles are guided by the following rule 

vid = 

wvid + cirl(Pid xid) + c2r2 (Pgd xid),div > dhigh 

wvid clri(Pid xid) - c2r2(Pgd xid), dlow < city < dhigh 

wvid - cirt(pid - xid) - c2r2(pgd - xid),div < diow  

(3.7) 

  

Here div represents the diversity of the swarm. The idea behind the introduction of third phase is 

to improve the exploring and exploiting capabilities of ARPSO. 

3.2.2 Quadratic Interpolation Particle Swarm Optimization 

(QIPSO1) 
The Quadratic Interpolation Particle Swarm Optimization (QIPS01) algorithm described 

in this section uses the concept of reproduction. Not many references are available in literature 

on the use of reproduction operator. One of the earlier references on the use of reproduction 

operator can be found in Clerc (2001). The reproduction operator applied in QIPSO1 is a 

quadratic interpolation (QI) operator. The quadratic interpolation operator is a nonlinear 

reproduction operator which makes use of three particles of the swarm to produce a new 
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particle. QI is a gradient free direct search technique used for solving nonlinear optimization 

problems. Mathematically, the point generated by QI lies at the point of minima of the quadratic 

curve passing through three points. This concept has been used earlier in controlled random 

search technique (Mohan and Shanker, 1994; Ali and Torn, 2003). The method of quadratic 

interpolation takes advantages of the fact that a second-order polynomial often provides a good 

approximation to the shape of the function near optimum. 

In QIPS01 algorithm in order to provide more randomness to explore the search space the 

particle having the best fitness value (global best particle, Pg) is always selected whereas the 

other two points are randomly chosen from the remaining population. Mathematically, the 

working of QI operator may be defined as: 

If a = Pg  represents the global best position of the swarm and let b, c represent randomly chosen 

swarm particles such that a # b #, then the coordinates of the new point generated by using QI 

operator is given as x = (x1 , 	where 

1 (b? — c,2 )* f (a) + (c,2  — a,2 )*  f (b)+ (a — b ,2 )* f (c)  
x. 

2 (b, — c ,)* f (a)+ (c — a ,)* f (b)+ (a , — b )* f (c) 
(3.8) 

QIPS01 is a simple and modified version of PSO with an added reproduction operator to 

enhance the performance of PSO without disturbing the inherent features of PSO. Like ARPSO 

(Riget et al, 2002) and ATREPSO, QIPSOI algorithm uses diversity as a measure t6 guide the 

swarm, but instead of repulsing the population points, it makes use of reproduction operator to 

explore the promising areas of the search domain. When the diversity becomes less than dlow, 

then the QI operator is activated to generate a new potential candidate solution. The process is 

repeated iteratively till the diversity reaches the specified threshold dhigh. 

3.3 Diversity Based Mutation Versions of PSO 
One of the simplest methods to overcome the problem of diversity loss is to capitalize 

the strengths of EA and PSO together in an algorithm. A variety of methods combining the 

aspects of EA and PSO are available in literature (Robinson et al, 2002; Shi and Krohling, 2002; 

Shi et al, 2003; Zhang and Xie, 2003; Hao et al, 2007; Yang et al, 2007a) etc. Out of the EA 

operators, mutation is the most widely used EA tool applied in PSO (Hu et al, 2003; Juang, 

2003). The concept of mutation is quite common to Evolutionary Programming and Genetic 
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Algorithms. Mutation has been introduced into the PSO as a mechanism to increase the diversity 

of PSO, and by doing so improving the exploration abilities of the algorithm. Mutation can be 

applied to different elements of a particle swarm. The effect of mutation depends on which 

elements of the swarm are mutated. If only the neighborhood best position vectors are mutated, 

then effect is minimal, compared to mutation of particle position vectors. Velocity vector 

mutation is equivalent to particle's position vector mutation, under the condition that the same 

mutation operator is considered. 

There are several instances in PSO where mutation is introduced in the swarm. Some 

mutation operators that have been applied to mutate the position vector in PSO include Gaussian 

(Wei at al, 2002; Higashi and Iba, 2003; Secrest and Lamont, 2003; Krohling, 2005; 

Sriyanyong, 2008), Cauchy (Stacy et al, 2003; Krohling, 2005), Chaos mutation (Dong et al, 

2008; Yang at al, 2009; Yue-lin et al, 2008) etc. 

3.3.1 Proposed Diversity Based Mutation Algorithms 
Based on diversity based mutation, four modified versions of PSO are proposed in this 

section. They are: Gaussian Mutation PSO (GMPSO), PSO with Beta Mutation (BMPSO), PSO 

with Gamma Mutation (GAMPSO), and Beta & Gamma mutation PSO (BGMPSO). The 

GMPSO algorithm uses Gaussian mutation operator with the help of Gaussian distribution to 

mutate the particle; Likewise BMPSO and GAMPSO algorithms use Beta mutation operator 

and Gamma mutation operator respectively. The average of beta and gamma distributed 

random numbers are used to mutate the particles in BGMPSO algorithm and the mutation 

operator is called as Beta Gamma mutation operator. 

The four mutation operators are defined as: 

Gaussian mutation operator: 

xi t+1 = x / +ri *N(0,1) 	 (3.9) 

Where N(0,1) is a random number generated by Gaussian distribution with mean zero and 

standard deviation one and rl is a scaling parameter. 

Beta mutation operator: 

The Beta mutation operator is Evolutionary Programming based mutation operator. 
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X`  t-1-1 = A ‘, ± 0"; * Betarand j () 
	

(3.10) 

where, o = cri  * exp(z-  N(0,1) + z' N (0,1)) 	 (3.11) 

N(0,1) denotes a normally distributed random number with mean zero and standard deviation 

one. N 1(0,1) indicates that a different random number is generated for each value of j. z and 

are set as 1/ -127/ and 1/V2Nri; respectively. Betarandj  () is a random number generated by beta 

distribution with parameters less than 1. 

Gamma mutation operator: 

The mutation operator is similar to beta mutation operator; but instead of using beta distribution, 

it used gamma distribution. 

X/ 1  = Xi` + a: * Ganunarand j () 	 (3.12) 

Here a, is same as of Eqn. (3.11). 

Beta Gamma mutation operator: 

X1+1  = X1 +o * 0.5* (Betarand + Gammarand j ()) 	 (3.13) 

Here a, is same as of Eqn. (3.11). 

The four diversity based mutation algorithms have two phases namely attractive phase and 

mutation phase. The attractive phase is also define as the classical PSO, while in the mutation 

phase the swarm particles position vectors are mutated by using one of the above mentioned 

mutation operator. Also, the proposed algorithms use diversity threshold values di„,, and dh,gh to 

guide the movement of the swarm. The threshold values are predefined by the user. The general 

c++ style code for applying diversity based mutation operator is given below: 

Initialize the population 

Do 

If (diversity < di„) 

(Apply mutation operator] 

Else 

(Apply the usual position and velocity update equations of PSO) 

End if 

Update personal and global best positions of the particles 
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Until stopping criteria is reached 

The proposed algorithms start with classical PSO i.e. it uses attractive phase (Eqn. (1.3)) for 

updating velocity vector and uses (1.2) for updating position vector. In the attractive phase the 

swarm is contracting, and consequently the diversity decreases. When the diversity of 

population drops below a lower bound, dlow, it will be switched to the mutation phase, with the 

hope to increase the diversity of the swarm population. This process is repeated until a 

maximum number iteration is reached or the stopping criterion is reached. 

3.4 Crossover Based Variants of PSO 
In PSO, the particles or members of the swarm fly through a multidimensional search 

space looking for a potential solution. When particles are exploring the search space, if some 

particle finds the current best position, the others will fly toward it. If the best position is a local 

optimum, particles cannot explore over again in the search space. Consequently, the algorithm 

will be trapped into the local optimum, results a premature convergence. This problem becomes 

more persistent in case of highly multimodal problems having several global and local optima. 

This drawback of PSO is due to the lack of diversity, which forces the swarm particles to 

converge to the global optimum found so far (after a certain number of iterations), which may 

not even be a local optimum. Thus without an effective diversity enhancing mechanism the PSO 

algorithm/ technique is not able to efficiently explore the search space. Inorder to improve the 

diversity of the swarm crossover is introduced. Crossover is the process of creating one or more 

new individuals through the combination of genetic material randomly selected from two or 

more parents. If selection focuses on the most-fit individuals, the selection pressure may cause 

premature convergence due to reduced diversity of the new populations. The crossover can help 

the particles jump out of the local optimization by sharing the others' information. 

One of the earlier references on the use of reproduction operator can be found in Clerc 

(2001). Hao et al (2007a) proposed a crossover operator in classical PSO; the crossover is taken 

between each particle's individual best positions. After the crossover, the fitness of the 

individual best position is compared with that of the two offspring, and the best one is taken as 

the new individual best position. Niu and Gu (2006) proposed a modified PSO algorithm with 

genetic mutation and crossover operators and compared the results with GA and proved the 
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modified PSO is better than PSO and GA with several benchmark problems. A multi-parent 

crossover operator is introduced by Wang et al (2008). 

This section presents three QIPSO algorithms namely QIPS02, QIPS03 and QIPSO4, 

which are modified versions of QIPSO1 algorithm in section 3.2.2. These algorithms differ 

from each other in selection criterion of the individual. 

3.4.1 Proposed Crossover Based Algorithms (QIPS02, QIPSO3 and 

QIPSO3) 
The new crossover operator is based on Quadratic Interpolation and is called as QI 

operator. For details about the proposed QI operator refer section 3.2.2. Based on the QI 

crossover operator, three algorithms are proposed. They are: QIPS02, QIPS03 and QIPSO4. 

These algorithms are differing from each other in selection criterion of the individual. The 

difference between the algorithms given in this section and QIPS01 algorithm given in section 

3.2.2 is that these algorithms do not use diversity to apply the crossover operator. 

The crossover based algorithms start like the usual PSO algorithm using Eqns. (1.3) and 

(1.2). In QIPS02, the new particle is accepted in the swarm irrespective of the fact whether it is 

better or worse than the worst particle present in the swarm. In this way the search is not limited 

to the region around the current best location but is in fact more diversified in nature. The 

process is repeated iteratively until a better solution is obtained. 

QIPS03 and QIPSO4 differ from each other and from QIPSO1 only in the selection criteria. 

In QIPS03, if the new particle is better than the worst particle in the swarm then the worst 

particle is replaced by the new particle. Also in QIPSO4, if the new particle is better than the 

global best (Pg) particle in the swarm then the global best particle is replaced by the new 

particle. 

3.5 Mutation Based Variants of PSO 
Mutation is a popular phenomenon in the field of evolutionary algorithms like GA and 

EP. The work of mutation operator is to induce diversity in the population. Ratnaweera et al. 

(2004) state that lack of population diversity in PSO algorithms is understood to be a factor in 
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their convergence on local minima. Therefore, the addition of a mutation operator to PSO 

should enhance its global search capacity and thus improve its performance. Most of the modern 

mutation operators defined in literature makes use of random probability distribution. Higashi et 

al. (2003) use a mutation operator that changes a particle dimension value using a random 

number drawn from a Gaussian distribution. Stacey et al. (2003) implement a mutation operator 

similar to that of Higashi et al. (2003), but a Cauchy probability distribution is used instead. 

Wang et al (2007) also used Cauchy probability distribution for mutation. Esquivel et al. (2003) 

incorporate a mutation operator into PSO that was developed by Michalewicz for use in real-

valued Genetic Algorithms in (Michalewicz, 1996). This is called the Michalewicz's non-

uniform mutation operator as the random numbers used to mutate values depends on the current 

algorithm iteration, with the probability of a value being mutated by a large amount being 

higher at the start of an optimization run. Secrest and Lamont (2003) also used Gaussian 

mutation operator to adjust the particle's position. Some of the recent researchers used chaos 

mutation in their study (Dong et al, 2008; Yang et al, 2009; Yue-lin et al, 2008). Wang et al 

(2007a) used the Cauchy distribution for mutation in the opposition based Particle Swarm 

Optimization algorithm. The mutation operator based o,n Cauchy probability distribution also 

used by Zhang et al (2007). 

3.5.1 'Sobol Mutated PSO Algorithms (SMPSO1 and SMPSO2) 
In this Section, the effect of mutation operator is analyzed to preserve the diversity of the 

swarm. A new mutation operator based on Sobol sequence called Sobol Mutation (SM) 

operator is introduced to improve the performance of PSO. The SM operator unlike most of its 

contemporary mutation operators do not use the random probability distribution for perturbing 

the swarm population, but uses a quasi random Sobol sequence to find new solution vectors in 

the search domain. The reason behind using quasi random sequence is that quasi random 

sequences cover the search domain more evenly in comparison to the random probability 

distributions, thereby increasing the chances of finding a better solution. The SM operator is 

applied to two versions of PSO called SMPSO1 and SMPSO2. In SMPSO1, mutation is applied 

to the global best (gbest) particle, where as in SMPSO2, the worst particle of the swarm is 
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mutated. The presence of SM operator makes the mutated particles to move systematically in 

the search space. 

The proposed SM .  operator is defined as 

SM = Sl  + (S2  / In ) 	 (3.14) 

Where S1  and S2 are random numbers in a Sobol sequence. 

The proposed SMPSO algorithms start like the usual PSO algorithm up to the point of 

evaluating the position and velocity of the particles after which the systematic mutation is 

applied to the global best/worst particle to produce a perturbation in the population. If after 

mutation, the performance of the global best/worst position is improved, then the global 

best/worst particle is replaced with the mutated version. The quasi random numbers used in the 

SM operator allows the worst particle to move forward systemically and helps in exploring the 

search space more efficiently. As a result the probability of getting a better solution increases. 

3.6 New Inertia Weight in PSO (GWPSO) 
In case of PSO algorithms the concept of inertia weight w was introduced by Shi and 

Eberhart (1998) as a mechanism to control the exploration and exploitation skills of the swarm. 

The inertia weight controls the momentum of the swarm by weighing the contribution of the 

previous velocity. The value of inertia weight is very significant in order to ensure an optimal 

tradeoff between exploration and exploitation mechanisms of the swarm population. For co 1, 

velocities increase over time, accelerating towards the maximum velocity and the swarm 

diverges. For co <1, particles decelerate until their velocities reach zero (Engelbrecht, 2005). 

Larger values of w enhance the exploration by locating promising regions in the search 

space whereas a smaller value helps to endorse the local exploitation. Initially the inertia weight 

was kept static during the entire search duration for every particle and dimension. With the due 

course of time inertia weights with dynamic weights were introduced. These approaches start 

with large inertia weight values, which decrease over time to smaller values. The choice of 

value for o has to be made in conjunction with the selection of the acceleration constants c1  and 

c2. Some of the PSO algorithms using dynamic inertia weight available in literature include 

linearly decreasing inertia weight (Yoshida et al, 1999; Fan and Chiu, 2007) (used most 

frequently), Non linear decreasing inertia weight (Peram et al, 2003; Naka et al, 2001), Fuzzy 
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adaptive inertia (Shi and Eberhart, 2001), dynamic inertia weight (Yang et al, 2007; Fan and 

Chang, 2007; Wang and Qian, 2008; Jiao et al, 2008), logarithm inertia weight (Yue-lin et al, 

2008) etc. Besides these methods an approach which is worth mentioning is the inclusion of 

constriction factor introduced by Clerc (Clerc, 1999; Clerc and Kennedy, 2002). This approach 

is very much similar to the concept of inertia weight, where, the velocities are constricted by a 

constant K known as constriction coefficient. Thus suitable selection of the inertia weight 

provides a balance between global and local exploration and exploitation and results in less 

iteration on average to find a good optimum. 

Keeping this in mind, a new inertia weight based on Gaussian distribution is introduced. 

Although Gaussian inertia weight has already been used (Engelbrecht, 2005), the present 

approach is completely different from their approach; in the present study the absolute value of 

Gaussian random numbers are used. Moreover most of the PSO algorithms use uniformly 

distributed random numbers for the generation of the swarm but besides using the uniform 

distribution (GWPSO+UD) the probability of using Gaussian (GWPSO+GD) and exponential 

(GWPSO+ED) distributions are also discussed for generating the initial swarm. 

The new inertia weight suggested in this chapter uses half of the value of the Gaussian 

random number. The two factors responsible for the uniqueness of the three proposed 

algorithms introduced in this section are: 

e Development of a new dynamic inertia weight using Gaussian distribution. 

• Using of different probability distributions other than the uniform distribution for the 

generation of the initial swarm. 

The definition of the proposed inertia weight is given as: 

w = abs(N(0,1)12 	 (3.15) 

where N(0,1) is a random number having Gaussian distribution with mean zero and standard 

deviation one. 

3.7 Modified PSO with New Velocity Vector (MPSO) 
Many researchers have studied the performance of PSO, mostly about the basic control 

parameters, such as the acceleration coefficients, inertia weight, velocity clamping, and swarm 

size (Kennedy and Eberhart, 2001; Zhang et al., 2005; Lee and Chen, 2007; Fan and Zahara, 
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2007; Ho et al, 2007). From these empirical studies, it can be concluded that PSO is sensitive to 

control parameters, but few studies are involved in the basic mechanism. In the classical PSO, 

velocity is an important parameter and is dynamically adjusted according to the historical 

behaviors of the particle and its companions. The position of the particle is changed by adding a 

velocity to the current position of the particle. The velocity vector drives the optimization 

process and reflects both the experimental knowledge of the particle and socially exchanged 

information from the particle's neighborhood. The experimental knowledge of a particle is 

generally referred to as the cognitive component, which is proportional to the distance of the 

particle from its own best position found since the first time step. The socially exchanged 

information is referred to as the social component of the velocity equation. 

Based on the velocity update Eqn. (1.1), each particle's new position is influenced by the 

particle itself through its personal best position and the best position in its neighborhood. 

Kennedy and Mendes (2003) introduced a new velocity equation in which each particle is 

influenced by the success of all its neighbors, and not on the performance of only one 

individual. Thompson et al (2003) implemented an alternative approach where different velocity 

update equations are used for cluster centers and particles within clusters. In their method, each 

particle is adjusted on the basis of the distance from its own personal best position, the 

corresponding cluster's best position, and the current position of the cluster center. Blackwell 

and Bentley (2002) developed the charged PSO based on an analogy of electrostatic energy with 

charged particles. The charged PSO changes the velocity equation by adding a particle 

acceleration to standard velocity update equation (1.3). The Fitness-Distance-Ratio PSO (FDR 

PSO) is introduced by Peram et al (2003), in which a new term is added to the velocity update 

equation; each particle learns from the experience of the neighboring particles that have a better 

fitness than itself. Wei et al (2004) introduced a disturbance in velocity or position to prevent 

the premature phenomenon in basic PSO algorithm. Krohling (2005) proposed a velocity update 

vector with the use of absolute value of the Gaussian probability distribution. 

Yang and Simon (2005) proposed NPSO algorithm, in which each particle adjusts its 

position according to its own previous worst solution and its group's previous worst solution to 

find the optimum value. That is the velocity update equation of NPSO depends upon the 

particle's personal worst position and the global worst position whereas in classical PSO the 
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velocity update equation depends on the particle's personal best position and the global best 

position. Also PSO-E, a new PSO algorithm proposed by Krohling (2006), in which the 

exponential distribution is used for generating the weighting coefficients of velocity update 

equation of classical PSO. 0-PSO algorithm is a recently proposed PSO algorithm by Zhong et 

al (2008), which is based on the phase angle vector but not the velocity vector. In O-PSO, an 

increment of phase angle vector MI replaces velocity vector v and the positions are adjusted by 

the mapping of phase angles. 

This section proposes a Modified Particle Swarm Optimization Algorithm (MPSO) with 

new velocity vector, which is based on the maximum distance between any two points in the 

solution space, distance between the global best particle and the personal best particle, objective 

function value of global best particle, objective function value of current particle and the current 

iteration number. 

In the proposed PSO version, a probability P, is fixed and is having a certain threshold value 

provided by the user. In every iteration, if the uniformly distributed random number U(0, 1) is 

less than P,, then the velocity vector is generated by using Eqn. (3.16) otherwise the velocity 

vector follows the standard PSO algorithm i.e. the velocity vector is generated by using Eqn. 

(1.3). 

The proposed velocity vector is defined as: 

Vid = a* ai * a2 * a3 * (Pgd  — Pid ) 	 (3.16) 

Where 

a is an adjustable coefficient. 

= (MAXITE — ITE) I lt/IAXITE , 1VIAXITE represents the maximum number of iterations and 

ITE represents the current iteration number. 

a2 = (dmax  — d gi ) I d max  , dmax  represents the maximum distance between two points in the 

solution space and dg, represents the distance between the global best particle and the i th  particle. 

a3  = f (Pg ) / f (X i ), Where f(Pg) is a fitness function value of the global best particle Pg  

(Y) is a fitness function value of the ith  particle X,. 

The maximum distance d„ax  between two points in the solution space (a, b) is computed as: 
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D 
dmax 1, (bi 	)2  Where a= (ai ,a2 ,...,a D ), b 	 D ) 

Y 1=1 

The distance between two particles xp  and xq  can be calculated as follows: 

il
D  

d pq  = E (xpi  — xqi)2  , D represents the dimension of swarm particle. 
i=t 

A C++ style computational code for the proposed algorithm may be given as: 

Initialize the population 

Do 

Linearly decrease w from 0.9 to 0.4 and set ci  = c2  = 2.0 

For 1=1 to population size M 

For d=1 to dimension D 

Set P, and Generate U(0,1) 

If (U(0,1) < Pr) then 

rid a* al *a2 *a3 *(PO -Pd) 

Else 

v id  = wvid  + ci ri (pid  — xid )+ c2r2(p gd  — xid ) 

End if 

X = X id  +V id  

End for 

If (kxd < f(1))) Pi = Xi  

If (kJ') <fflid) Pg — Pi 
End if 

End if 

End for 

Until stopping criteria is reached 

The four parameters a, al, a2, a3  helps in controlling the velocity of the swarm particles. 

Unlike the usual velocity equation of the basic PSO (given by Eqn. (1.3)) the proposed velocity 

vector do not make use of inertia weight and acceleration constants and is more or less adaptive 

in nature. From the velocity Eqn. (3.16), it can be easily seen that in the beginning the velocity 
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is large therefore the particles move rapidly but during the subsequent generations the velocity 

decreases and the particles slows down as they reach towards the optimum solution. The 

presence of the parameter Pv, which helps in stochastic application of the basic velocity vector 

and the proposed velocity vector, helps in preventing the algorithm in becoming greedy in 

nature, thereby helping in preventing the premature convergence of the swarm. 

3.8 Parameter Settings 
Like all Evolutionary Algorithms, PSO has a set of parameters which are to be defined 

by the user. These parameters are population size, inertia weight, acceleration constants etc. 

These parameters may be varied as per the complexity of the problem. For example the 

population size in PSO related literature has been suggested as 2*n to 5*n, where n is the 

number of decision variables or a fixed population size. In the present study a fixed population 

size of thirty is taken for all the problems, which gave reasonably good results. 

In order to make a fair comparison of PSO and proposed PSO algorithms, a same seed of 

random numbers is fixed so that the initial population is same for all the algorithms. A linearly 

decreasing inertia weight is used which starts at 0.9 and ends at 0.4, with the user defined 

parameters c1 =2.0 and c2=2.0. The diversity measure of the swarm is calculated by using Eqn. 

(3.1). For MPSO, the velocity probability P, are varied for different values and observed that 

the best results are obtained for 0.6 and the adjustable coefficient a is set as 0.5. A total of 30 

runs for each experimental setting were conducted and the average fitness of the best solutions 

throughout the run was recorded. For comparison of proposed PSO algorithms with basic PSO, 

a collection of standard benchmark problems are considered. Mathematical models of the 

problems along with the true optimum value are given in Appendix I. 

3.9 Results and Discussions 
In order to compare the proposed PSO algorithms with basic PSO various performance 

metrics like average fitness function value, standard deviation (STD), NFE, CPU time, t-test 

values and percentage of improvement (%) are considered to check the efficiency and reliability 

of the algorithm. 
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3.9.1 Performance Analysis I: Comparison of Diversity Based 

Algorithms with Basic PSO 
For comparison of PSO, ATREPSO , and QIPS01 algorithms, a test suit of ten 

benchmark problems (RS, DeJ, GR, RB, DeJ-N, SWF, ACK, Mic, MH and SB1) with box 

constraints are considered to analyze the behavior of the algorithms. The first eight problems are 

scalable i.e. the problems can be tested for any number of variables. However for the present 

study medium sized problems of dimension 2 to 20 are taken. The population size and 

maximum number of generations are taken as 30 and 10000 respectively for all the test 

problems. 

The results of the given benchmark problems are shown in Table 3.1 in terms of mean best 

fitness and standard deviation. In Table 3.2, the improvement (%) of proposed algorithms in 

comparison with classical PSO and the t-values are given. Figure 3.1 shows the performance 

curves of PSO, QIPSO I and ATREPSO algorithms. From the numerical results it can be seen 

that both the proposed versions (ATREPSO and QIPSO1) outperform the PSO algorithm in all 

the test cases by a significant difference. From the comparison of proposed algorithms with each 

other, it can be seen that QIPSO1 algorithm is better than ATREPSO algorithm in 8 test cases 

out of 10 test cases. ATREPSO gave better solution than QIPSO1 in only one test case. 

Remaining one test case both the algorithms perform the same. 

3.9.2 Performance Analysis II: Comparison of Diversity Based 

Mutation Algorithms with Basic PSO 
For comparison of PSO, GMPSO, BMPSO, GAMPSO and BGMPSO algorithms, a 

collection of 10 benchmark problems (RS, GR, RB; SWF, DeJ-N, ACK, SWF1.2, SWF2.22, 

SWF2.21 and SF7) with box constraints are considered to analyze the behavior of the 

algorithms. The entire given test problems are scalable i.e. the problems can be tested for any 

number of variables. However for the present study the dimension is taken as 30 for all the test 

problems. For each algorithm, the maximum number of generations is set as 2000 generations 

and the population size is set as 20. The results of the given benchmark problems are shown in 

Table 3.3 in terms of mean best fitness and standard deviation. In Table 3.4, the improvement 
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(%) of proposed algorithms in comparison with classical PSO and the t-values are given. Figure 

3.2 shows the performance curves of PSO, GMPSO, BMPSO, GAMPSO and BGMPSO 

algorithms. 

From the numerical results in Table 3.3, it can be seen that all the proposed algorithms 

perform better than the classical PSO algorithm by a significant difference. From the 

comparison of proposed algorithms with each other, it can be seen that GMPSO algorithm is 

better than the other three algorithms in 7 cases out of 10 cases; BMPSO is better than the other 

three in 2 cases; remaining one test case BGMPSO gave the better solution than the other three 

algorithms. The first test function is rastringin function, which is a multimodal function. For this 

function GMPSO, BMPSO, GAMPSO and BGMPSO gave a remarkable percentage of 

improvement of approximately 87%, 72%, 77% and 72% respectively in comparison with PSO. 

For the function SWF, BMPSO, GAMPSO and BGMPSO algorithms perform little better than 

PSO, but in this test case GMPSO algorithm gave approximately 40% improvement in 

comparison to classical PSO. Likewise all the other test cases also it can be seen that there is a 

noticeable percentage of improvement in average mean value by using the proposed diversity 

based mutation algorithms. 

3.9.3 Performance Analysis III: Comparison of Crossover Based 

Algorithms with Basic PSO 
For comparison of PSO and QIPSO (QIPS02, QIPS03 and QIPSO4) algorithms, a 

collection of 15 benchmark problems (RS, DeJ, GR, SWF, GPI, GP2, SWF2.22, SWF2.21, 

DEJ-N, SWF1.2, RB, LM, SF7, T2N and SB2) are considered. The number of particles in the 

swarm and the dimension are set as 30. For each algorithm, the maximum number of iterations 

allowed is set to 30,000. The results of the given benchmark problems are shown in Table 3.5 in 

terms of mean best fitness and standard deviation. In Table 3.6, the improvement (%) of 

proposed algorithms in comparison with classical PSO and the t-values are given. Figure 3.3 

shows the performance curves of PSO and the proposed QIPSO algorithms. 

From the numerical results in Table 3.5, it can be seen that all the proposed QIPSO 

algorithms perform better than the classical PSO algorithm by a significant difference. If the 

comparisons are made with the proposed algorithms with each other then it can be seen that 
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QIPSO2 algorithm is better than the other two algorithms in 4 cases out of 15 cases; QIPSO3 is 

better than the other two in 2 cases; QIPSO4 is better than the other two in 7 cases; in one test 

case QIPSO3 and QIPSO4 algorithms perform the same; remaining one test case all the 

algorithms including classical PSO also gave the same performance. The first test function is 

Rastringin function, which is a multimodal function. For this function QIPSO2 performs better 

than the other algorithms, followed by QIPSO4 and QIPSO3. For the second and third test 

problems, that are Dejong's function and Griewank function, QIPSO4 outperforms the other 

two, followed by QIPSO3 and QIPSO2. But for the SWF function QIPSO3 gave better 

performance than QIPSO2 and QIPSO4. The function GPI is a multimodal function; for this 

function all the tested algorithms perform the same. For the functions GP2, SWF2.22, SWF1.2, 

RB, LM and T2N also QIPSO4 gave better performance than the other two algorithms. From 

the numerical results it is concluded that the quadratic interpolation based crossover operator 

improved the performance of classical PSO with a noticeable percentage. 	 7. 

3.9.4 Performance Analysis IV: Comparison of Mutation Based 

Algorithms with Basic PSO 
For comparison, 15 benchmark problems (RS, GR, RB, DeJ, ACK, DeJ-N, SWF 2.22, 

SWF 1.2, ST, GP1, GP2, SWF, LM, SF7 and T2N) are considered. Each problem is evaluated 

for three different dimensions 10, 20 and 30 and size of the swarm is varied as 20, 40 and 80 for 

each of these population sizes. The stopping criteria is taken as the maximum numbers of 

generations reached which are 1000, 1500 and 2000 for dimensions 10, 20 and 30 respectively. 

The corresponding numerical results are given in Tables 3.7 - 3.10. 

From the numerical results, it can be seen that the proposed SMPSOI and SMSPO2 

algorithms perform better than the classical PSO algorithm. From the comparison of SMPSO 

Proposed algorithms with each other, it can be seen that SMPSO2 in which the worst particle is 

mutated is marginally better than SMPSO1. From the numerical results reported in Table 3.10, it 

can be seen easily judge that the proposed algorithms give a better performance in comparison 

to the PSO for almost all the cases. The superior performance is more evident when the 

dimension of the problems is increased up to 30. The convergence graphs of the proposed 

algorithms for selected benchmark problems are illustrated in Figure 3.4. 
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3.9.5 Performance Analysis V: Comparison of GWPSO Algorithms 

with Basic PSO 
For all the four algorithms (PSO, GWPSO+UD, GWPSO+GD and GWPSO+ED), the 

number of particles in the swarm (swarm size) is taken to be 30. A test suite of 20 standard 

benchmark functions (RS, DeJ, GR, RB, DeJ-N, SWF, ACK, GP2, SF7, SB2, GP 1, T2N, LM, 

DeJ-1, ST, SWF 2.21, SWF 2.22, MC, MH and Mic are considered. The test suite consists of a 

diverse set of problems of different dimensions including unimodal and multimodal functions, a 

noisy test function and a function with plateaus. The dimensions of the problems vary from 2 to 

20. For each algorithm, the maximum number of iterations allowed was set to 10,000. The 

numerical results of the benchmark problems are shown in Tables 3.11 and 3.12 in terms of 

mean best fitness and standard deviation. In Table 3.13, the percentage of improvement for the 

three proposed algorithms in comparison with PSO is shown. Figure 3.5 shows the performance 

of PSO and GWPSO algorithms. From the numerical results it is quite evident that the proposed 

algorithms performed better than the PSO for almost all the test problems. 

For the function RS, which is a highly multimodal Rastringin function, GWPSO+ED, 

GWPSO+GD and GWDPSO+UD gave a remarkable percentage of improvement of 

approximately 50%, 37% and 5% respectively in comparison to PSO. For function DeJ, a 

simple sphere function all the algorithms gave more or less similar results and converged to 

optimum. However the GWPSO algorithms showed some improvement in the average mean 

value in comparison to the PSO. For functions RB and SWF there is an improvement in the 

average mean value for any of the proposed GWPSO algorithms in comparison to PSO. Once 

more for function LM, a highly multimodal function, there is a huge improvement in 

comparison to PSO. Likewise for other functions also one can see that in most of the cases there 

is an improvement in average mean value by using the three proposed GWPSO algorithms. 

3.9.6 Performance Analysis VI: Comparison Results of MPSO 

Algorithm 
To check the efficiency of the proposed MPSO algorithm, a suit of thirty six benchmark 

problems are considered, which are given in Appendix I. For each algorithm, the stopping 
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criteria is to terminate the search process when one of the following conditions is satisfied: (1) 

the maximum number of generations is reached (assumed 1000 generations), (2) If j  max fmin 

104  where f is the value of objective function. A total of 30 runs for each experimental setting 

were conducted. Also the MPSO algorithm is compared with another variant of classical PSO 

called 0-PSO. 

The results of all the benchmark problems are shown in Table 3.14 in terms of mean best 

fitness, standard deviation and SR (success rate). Table 3.15 gives the results of all benchmark 

problems in terms of diversity, NFE (number of function evaluations) and time. The percentage 

of improvement and t-values of proposed MPSO algorithm in comparison to classical PSO are 

given in Table 3.16. Performance curves of selected benchmark problems are given in Figure 

3.6. Comparison results of MPSO algorithm with BPSO and 0-PSO algorithms are given in 

Tables 3.17 and 3.18. In order to make a fair comparison of MPSO and 0-PSO, the same error 

goal is fixed as stated in (Zhong et al, 2008) as: for DeJ, GR and RB are 0.01, 0.1 and 100 

respectively. 

The MPSO algorithm is compared with the classical PSO in terms of Average fitness 

function value, number of function evaluations (NFE), Success rate in % (SR) and run time. As 

expected the proposed MPSO algorithm performed much better than the classical PSO 

algorithm. From Table 3.14 it can be seen that when MPSO is used to solve the given 

benchmark problems the improvement in terms of average fitness function values is more than 

99% in comparison to the PSO for about 9 out of 36 test cases. Also MPSO gave more than 

75%, 50% and 30% improvement in 3 test cases for each in comparison with PSO in terms of 

fitness value. For all the remaining test cases both the algorithms gave the same performance in 

terms of fitness value. In comparison of PSO and MPSO in terms of success rate, MPSO gave 

better performance than PSO in most of the test cases. Some of the test cases (DeJ, GR, ACK, 

SWF1.2, SWF2.21, GP1, GP2, LM, CB6 and T2N) PSO gave 0% SR whereas MPSO gave 

more than 30% SR (including 100% SR). In terms of number of function evaluation also MPSO 

gave much better performance than PSO. But in terms of convergence time taken by PSO and 

MPSO then MPSO has taken more time for convergence than PSO in 22 test cases, this is 

because of the inclusion of added velocity part in the algorithm. Even though MPSO has the 

new added velocity part, it has taken less time than PSO in 14 test cases out of 36 test cases. 
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Thus from the numerical results, it is concluded that the incorporation of the proposed 

velocity vector helps in improving the performance of classical PSO in terms of final objective 

function value, NFE and convergence rate. Also the performance of proposed MPSO algorithm 

is compared with 0-PSO, a variance of classical PSO. From the numerical results of Table 3.17 

and Table 3.18, it is clear that the performance of proposed MPSO is better than the 0-PSO 

algorithm also. 

3.9.7 Performance Analysis VII: Comparison of Proposed 

Algorithms with each other 
The numerical results for comparison of all proposed algorithms with each other (in 

terms of fitness, standard deviation and success rate) are given in Table 3.19. In Table 3.20, the 

comparison results in terms of NFE and convergence (in seconds) are given. A test suit of five 

benchmark problems (RS, DeJ, GR, RB, ACK) are considered for this comparison. The 

dimension of the each problem is set as 10 and the population size is taken as 50. For each 

algorithm, the stopping criteria is to terminate the search process when one of the following 

conditions is satisfied: (1) the maximum number of generations is reached (assumed 1000 

generations), (2) Ifma. 'Am I < 10-4  where f is the value of objective function. A total of 30 runs 

for each experimental setting were conducted. For the first test problem, GWPSO+UD which is 

Gaussian inertia weight PSO initializing with uniform distribution, is superior with all the other 

compared algorithms. QIPSO3 algorithm gave better results in two test cases (for DeJ and RB). 

For the remaining two test cases, BMPSO and GWPSO+GD algorithms gave better results than 

the other algorithms. 
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Table 3.1 Comparison results of PSO, ATREPSO and QIPSO1 (Mean /standard deviation) 

Function PSO ATREPSO QIPS01 
RS 22.3391 (15.932042) 19.4259 (14.3490) 11.9468 (9.1615) 
DeJ 1.16e-45 (5.22e-46) 4.00e-17 (0.00024) 0.0000 (0.0000) 
GR 0.0316 (0.0253) 0.0251 (0.02814) 0.0115 (0.0128) 
RB 22.1917 (1.61e+04) 19.4908 (3.96e+04) 8.9390 (3.1063) 
DeJ-N 8.6816 (9.0015) 8.0466 (8.8623) 0.4511 (0.3286) 
SWF -6178.55 (4.89e+02) -6183.6776 (469.61) -6355.5866 (477.53) 
ACK 3.48e-18 (8.35e-19) 0.0184 (0.0147) 2.46e-24 (0.0144) 
Mic -18.1594 (1.0510) -18.9829 (0.2725) -18.4696 (0.0929) 
MH -3.3314 (1.24329) -3.7514 (0.17446) -3.7839 (0.1903) 
SBI -186.7309 (0.00001) -186.7309 (0.00001) -186.7309 (3.48e-14) 

Table 3.2 Improvement (%) and t-value of ATREPSO and QIPS01 in comparison with .PSO 

Function 
ATREPSO QIPSOI 

Improvement 
(%) 

t-value Improvement (%) t-value 

RS 13.04081185 0.744187639 46.52067451 3.572735456 
DeJ - -9.12871e-13 100 12.17161239 
GR 20.56962025 0.940827748 63.60759494 4.351471702 
RB 12.17076655 0.000346064 59.71917429 0.004508573 
DeJ-N 7.314319941 0.275335568 94.80395319 5.008088107 
SWF 0.082831601 0.041345491 2.865179034 1.982854226 
ACK - -6.855846978 99.99992931 22.82722339 
Mic 4.53484146 4.154259498 1.708206218 1.616589318 
MH 12.60731224 1.832328709 13.58287807 1.993456533 
SB1 0.00000 0.00000 0.00000 0.00000 
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Table 3.3 Comparison results of PSO, GMSPO, BMPSO, GAMPSO and BGMPSO in terms of average 

fitness values and standard deviation 

Function PSO GMPSO BMPSO GAMPSO BGMPSO 

RS 47.29223 
(11.06489) 

5.98732 
(7.59559) 

13.34445 
(4.690) 

10.90207 
(6.456038) 

13.46373 
(6.904967) 

GR 0.0182 
(0.244025) 

0.006451 
(0.011695) 

0.002525 
(0.001589) 

0.002669 
(0.001841) 

0.002562 
(0.001473) 

RB 316.4468 
(80.001) 

54.6533 
(25.7658) 

74.76106 
(24.37858) 

81.10299 
(30.47879) 

88.04853 
(0.002478) 

SWF -6466.19 
(643.4821) 

-8968.49 
(684.388) 

-6718.49 
(666.7723) 

-6951.59 
{369.7281) 

-6587.17 
(497.698) 

DeJ-N 0.617222 
(0.492993) 

0.113899 
(0.034068) 

0.072433 
(0.21498) 

0.21431 
(0.281486) 

0.43356 
(0.250547) 

ACK 1.70 
(4.53e-01) 

0.239636 
(0.263923) 

0.077461 
(0.06742) 

0.078481 
(0.05728) 

0.011117 
(0.012603) 

SWF1.2 271.793 
(208.325) 

1.81142 
(0.681979) 

28.938 
(98.7083) 

63.4677 
(59.2094) 

156.43 
(98.7083) 

SWF2.21  15.2228 
(3.652739) 

0.74461 
(0.085948) 

9.96414 
(2.00684) 

1.23348 
(0.297061) 

1.82377 
(0.509892) 

SWF2.22 0.209776 
(0.072407) 

0.095135 
(0.074405) 

0.169551 
(0.625909) 

0.176346 
(0.616302) 

0.16719 
(0.623 I 12) 

SH7 4.22028 
(0.416) 

1.8681 
(0.235079) 

4.10447 
(0.460416) 

3.41021 
(0.3585) 

2.24576 
(0.460416) 

Table 3.4 Improvement (%) and t-value of GMSPO, BMPSO, GAMPSO and BGMPSO in comparison 

with PSO 

Function 
GMPSO BMPSO GAMPSO BGMPSO 

IMP t-value IMP t-value IMP t-value IMP t-value 

RS 87.33 16.85 71.78 15.47 76.94 15.55 71.53 14.2 

GR 64.55 0.26 86.12 0.35 85.33 0.34 85.92 0.35 

RB 82.72 17.06 76.37 15.82 74.37 15.05 72.17 15.63 

SWF 38.69 14.58 3.9 1.49 7.5 3.58 1.87 0.81 

Dej-N 81.54 5.57 88.26 5.54 65.27 3.88 29.75 1.81 

ACK 85.86 15.21 95.43 19.36 95.36 19.4 99.34 20.37 

S WF1.2 99.33 7.09 89.35 5.77 76.64 5.26 42.44 2.74 

SWF2.21 95.1 21.7 34.54 6.91 91.89 20.9 88.01 19.89 

SWF2.22 54.64 6.04 19.17 0.34 15.93 0.29 20.3 0.37 

SH7 55.73 26.96 2.74 1.02 19.19 8.07 46.78  17.42 

76 



Improved PSO algorithms 

Table 3.5 Comparison of proposed QIPSO2, QIPSO3 and QIPSO4 algorithms with PSO in terms of 

average fitness function value and standard deviation 

Function PSO QIPSO2 QIPSO3 QIPSO4 

RS 81.58668 
(35.57092) 

0.597167 
(0.659803) 

0.994954 
(2.354492) 

5.173762 
(5.069386) 

DeJ 2.62144 
(7.86432) 

8.51799e-43 
(1.67879e-42) 

2.5236e-45 
(6.50519e-45) 

1.0865e-52 
(2.32221e-52) 

GR 0.035265 
(0.029109) 

0.0294 
(0.023866) 

0.015979 
(0.013563) 

0.012296 
(0.015833) 

SWF  -8406.742 
(595.7797) 

-9185.054 
(589.2412) 

-9185.074692 
(760.633113) 

-8909.10755 
(474.904681) 

GPI 5.50585e-13 
(2.75701e-25) 

5.50585e-13 
(3.02157e-26) 

5.50585e-13 
(1.91386e-25) 

5.50585e-13 
(9.81166e-26) 

GP2 -1.147328 
(0.003296) 

-1.148241 
(0.004395) 

-1.149339 
(0.003296) 

-1.150438 
(9.93014e-17) 

SWF2.22 4.0000 
(4.89897) 

1.15457e-20 
(3.24544e-20) 

5.02094e-30 
(1.27187e-29) 

1.10655e-3.4 
(1.45317e-34) 

SWF2.21 0.000244 
(0.000187) 

0.000351 
(0.00023) 

0.000148 
(8.12894e-05) 

0.000162 
(0.000491) 

DeJ-N 24.53298 
(14.64057) 

0.454063 
(0.354884) 

0.454374 
(0.353778) 

0.454653 
(0.354973) 

SWF1.2 8.1039e-06 
(3.62322e-06) 

4.07231e-37 
(6.0998e-37) 

2.61421e-40 
(5.84872e-40) 

5.45193e-50 
(1.46719e-49) 

RB 99.79576 
(438.4913) 

31.27418 
(24.32459) 

77.916591 
(166.009829) 

24.79044 
(30.2989) 

LM -13.01387 
(9.36361) 

-21.50231 
(3.55271e-15) 

-21.502311 
(3.55271e-15) 

-21.502311 
(3.55271e-15) 

SF7 3.531709 
(2.484447) 

0.858533 
(0.263027) 

0.974427 
(0.283325) 

0.904524 	. 
(0.344629) 

T2N -77.0129 -77.95535 -77.201394 -77.955352 
(1.049466) (0.461703) (0.565469) (0.461703) 

SB2 -155.6138 
(17.66488) 

-325.8289 
(10.99762) 

-179.040627 
(30.28809) 

-185.807307 
(23.57774) 
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Table 16 Comparison of proposed QIPSO2, QIPS03 and QIPSO4 algorithms with PSO in terms of 

Improvement (%) and t-test values 

Function 
QIPSO2 QIPSO3 QIPSO4 

Improvement t-value Improvement t-value Improvement t-value 
RS 99.26 12.46 98.78 12.38 93.65 11.64 
DeJ 100 1.82 100 1.82 100 1.82 
GR 16.63 0.85 54.68 3.28 65.13 3.79 
SWF 9.25 5.08 9.25 4.41 5.97 3.61 
GP1 0 0 0 0 0 0 
GP2 0.07 0.91 0.17 2.36 0.27 5.16 
SWF2.22 100 4.47 100 4.47 100 4.47 
SWF2.21 - -1.97 39.34 2.57 33.6 0.85 
DeJ-N 98.14 9.00 98.14 9.00 98.14 9.00 
SWF1.2 100 12.25 100 12.25 100 12.25 
RB 68.66 0.85 21.92 0.25 75.15 0.93 
LM 65.22 4.96 65.22 4.96 65.22 	• 4.96 
SF7 75.69 5.86 72.4 5.6 74.38 5.73 
T2N . 1.22 4.5 0.24 0.86 1.22 4.5 
SB2 109.38 44.8 15.05 3.65 19.4 5.61 

Table 3.7 Comparison of proposed SMPS01 and SMPSO2 versions with PSO for function RS in terms 

of average fitness function value 

Pop Dim Gne SMPS01 SMPSO2 PSO 

20 
10 1000 0.881465 0.641812 5.5382 
20 1500 5.014802 4.52709 23.1544 
30 2000 13.152097 12.669938 47.4168 

40 
10 1000 1.241561 0.85634 3.5778 
20 1500 5.91223 5.472557 16.4337 
30 2000 13.005205 14.523385 37.2896 

80 
10 1000 1.182363 0.813593 2.5646 
20 1500 5.501107 4.97266 13.3826 
30 2000 10.210538 15.028891 28.6293 
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Table 3.8 Comparison of proposed SMPSO1 and SMPSO2 versions with PSO for function GR in terms 

of average fitness function value 

Pop Dim Gne SMPSOI SMPSO2 PSO 

20 
10 1000 0.006896 0.007877 0.09217 
20 1500 0.009177 0.008486 0.03002 
30 2000 0.025227 0.014541 0.01811 

40 
10 1000 0.009677 0.009515 0.08496 
20 1500 0.017195 0.012269 0.02719 
30 2000 0.030103 0.011066 0.01267 

80 
10 1000 0.00886 0.006402 0.07484 

20 1500 0.010828 0.01296 0.02854 
30 2000 0.024265 0.004692 0.01258 

Table 3.9 Comparison of proposed SMPSOI and SMPSO2 versions with PSO or function RIP in terms of 

average fitness function value 

Pop Dim Gne SMPSOI SMPSO2 PSO 

20 
10 1000 6.4165 6.4104 94.1276 

20 1500 17.3111 17.2875 204.336 
30 2000 30.5664 28.2597 313.734 

40 
10 1000 6.4147 6.4011 71.0239 
20 1500 17.2344 17.2504 179.291 
30 2000 28.1147 28.640997 289.593 

80 
10 1000 6.4161 6.3453 37.3747 
20 1500 17.4405 17.1907 83.6931 
30 2000 28.3247 30.1533 202.672 
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Table 3.10 Comparison of proposed SMPSOI and SMPSO2 versions with PSO for the remaining 12 

functions in terms of average fitness function value 

Function Dim Gne SMPSO1 SMPSO2 PSO 

DeJ 
10 1000 1.62763e-10 1.69783e-10 1.04431e-07 
20 1500 0.000297 0.000391 0.000801 
30 2000 0.004315 0.003344 0.009211 

ACK 
10 1000 0.000368 0.000131 0.003435 
20 1500 0.026621 0.018378 0.123742 
30 2000 0.115094 0.140612 1.31424 

DeJ-N 
10 1000 0.003347 0.006410 0.008474 
20 1500 0.023071 0.031297 0.031376 
30 2000 0.005992 0.084939 0.089811 

SWF2.22 
10 1000 9.25975e-05 7.01387e-06 0.000102 
20 1500 0.010336 0.008547 0.020129 
30 2000 0.061249 0.089932 0.174977 

SWF1.2 
10 1000 2.55247e-07 2.90956e-06 0.001198 
20 1500 0.041532 0.036888 4.40991 
30 2000 3.80048 4.09788 271.793 

ST 
10 1000 0.000000 0.000000 0.000000 
20 1500 0.000000 0.000000 0.000000 
30 2000 0.000000 0.000000 5.8 

GPI 
10 1000 3.17643e-09 2.61458e-09 6.13307e-07 
20 1500 1.7112e-05 1.32619e-05 0.083184 
30 2000 0.000109 0.000238 0.87767 

GP2 
10 1000 -1.15042 -1.15044 -1.15007 
20 1500 -1.13147 -1.12577 -0.813208 
30 2000 -1.12011 -1.04616 11.5649 

SWF 
10 1000 -3439.57 -3456.7 -3308.83 
20 1500 -6355.59 -6593.98 -6258.6 
30 2000 -9221.62 -9830.23 -8872.75 

LM 
10 1000 -20.5621 -20.604 -20.346 
20 1500 -18.9347 -19.0519 -17.479 
30 2000 -17.2635 -16.1726 -13.4851 

SF7 
10 1000 0.346679 0.29003 0.612593 
20 1500 1.203 1.07035 2.41555 
30 2000 1.82546 1.7637 4.22028 

T2N 
10 1000 -78.3323 -78.3323 -78.0496 
20 1500 -75.6455 -76.9185 -74.9025 
30 2000 -75.4883 75.4935 -74.3619 
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Table 3.11 Comparison results of PSO, GWPSO+UD, GWPSO+GD and GWPSO+ED: in terms of Mean 

fitness values 

Function PSO GWPSO+UD GWPSO+GD GWPSO+ED 

RS 22.33916 21.125507 14.031235 11.077155 

DeJ 1.17e-45 9.81e-46 8.41e-46 1.12e-45 

GR 0.031646 0.031237 0.002125 0.007694 

RB 22.19173 16.408472 12.207816 10.041835 

DeJ-N 8.681602 2.865745 2.776164 20.044952 

SWF -6178.56 -6802.169271 -6735.788021 -6868.30208 

ACK 3.48E-18 3.08e-18 3.37e-18 3.25e-18 

GP2 -1.14934 -1.141943 -1.148241 -1.150072 

SF7 1.082386 0.712431 0.640038 0.665112 

SB2 -1591.82 -1902.101172 -2400.224219 -2333.74349 

GP1 8.29e-13 0.051834 7.36e-13 8.28e-13 .  

T2N -77.2956 -71.923682 -77.489144 -77.546712 

LM -9.10049 -19.05978 -21.491327 -21.347021 

DeJ-1 6.084537 2.863311 5.368709 17.985173 

ST 0.00000 0.00000 0.00000 0.00000 

SWF2.21 1.69e-08 2.55e-09 7.04e-10 9.75e-10 

SWF2.22 7.19e-45 3.74e-45 1.36e-44 5.09e-45=- 

MC -1.87691 -1.905961 -1.913223 -1.928496 

MH -3.33149 -3.712778 -3.783962 -3.783962 

Mic -1.77459 -1.801301 -1.801301 -1.774591 
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Table 3.12 Comparison results of PSO, GWPSO+UD, GWPSO+GD and GWPSO+ED: in terms of 

Standard Deviation 

Function PSO GWPSO+UD GWPSO+GD GWPSO+ED 

RS 15.93204 17.228723 7.367918 4.477165 

DeJ 5.22e-46 6.42e-46 6.86e-46 5.61e-46 

GR 0.025322 0.038953 0.00855 0.014311 

RB 1.62e+04 13.576216 11.478216 2.605667 

DeJ-N 9.001534 4.847958 5.52229 23.23373 

SWF 4.89e+02 425.958668 427.933234 363.798421 

ACK 8.36e-19 8.50e-19 1.16e-18 8.67e-19 

GP2 0.003296 0.02478 0.004395 0.001972 

SF7 1.3815 0.221431 0.22872 0.157151 

SB2 162.1692 240.813568 96.004723 83.766385 

GP 1 4.34e-16 0.122662 3.11e-14 7.09e-16 

T2N 1.150406 2.386087 2.119984 2.929179 

LM 9.922227 7.731291 0.032962 0.365476 

DeJ-1 6.928662 6.823871 9.477964 19.321758 

ST 0.00000 0.00000 0.00000 0.00000 

SWF2.21 1.79e-08 2.82e-09 9.22e-10 1.78e-09 

SWF2.22 1.01e-44 4.05e-45 5.82e-44 2.31e-43 

MC 0.081189 0.039106 2.30e-07 0.128774 

MH 1.24329 2.488714 3.172452 3.172452 

Mic 0.143838 6.36E-07 6.36e-07 0.143838 . 
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Table 3.13 t-test values and Improvement (%) of GWPSO+UD, GWPSO+GD and G WPSO+ED in 

comparison with PSO 

Function 
GWPSO+UD GWPSO+GD GWPSO+ED 

t-value Improvement 
(%) 

t-value Improvement 
(%) t-value Improvement 

(%) 
RS 0.283278 5.43284 1.939151654 37.18995 3.727349 50.4137309 

DeJ 1.236393 16.00002 2.163685822 28.00001 0.33395 4.000003425 

GR 0.048217 1.292422 3.480259699 93.28509 4.510400 75.68729065 

RB 0.001961 26.06040 0.003384872 44.98933 0.0041192 54.74964204 

DeJ-N 3.115683 66.99059 3.163673234 68.02244 -2.497924 - 

SWF 5.264902 10.09311 4.70446948 9.018737 6.1957669 11.1634782 

ACK 1.859792 11.61826 0.531367872 3.319495 1.0516589 6.63899081 

GP2 -1.6205 - -0.240576681 0.095533 1.0452814 0.063775788 

SF7 1.448273 34.17958 1.731671894 40.86786 1.643763 38.55131164 

SB2 5.853668 19.49223 15.25110038 50.78490 22.26361 46.60851129 

GP 1 -2.31454 - 4.14892e-12 11.21045 3.250681 0.059518165 

T2N -11.1076 - 0.400130882 0.25035 0.436999 0.32483337 

LM 4.336644 109.4369 5.395429072 136.1558 6.7556988 134.5701208 

DeJ-1 1.814268 52.94118 0.403170738 11.7647 -3.175529 - 

ST 0.000000 0.000000 - 0.000000 - 0.000000 

SWF2.21 4.327379 84.88793 4.884777816 95.82213 4.838184 94.2:1.607542 

SWF2.22 1.743164 48.05194 -3.227212131 88.96111 0.049907 29.28571905 

MC 1.765464 1.547593 2.206845618 1.934505 1.855900 -2.7482346 

MH 0.75069 11.44503 0.890837968 13.58173 0.727334 -13.5817389 

Mic 1.017094 1.505135 1.017093502 1.50513 0.000000 0.000000 
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Table 3.14 Result comparison of PSO and MPSO (Mean fitness/Standard deviation/SR (%)) 

F Dim PSO MPSO 
Fitness Std SR Fitness Std SR 

RS 10 8.44052 4.03724 - 3.52897 1.34857 - 
DO 10 2.49e-08 2.86e-08 - 1.27e-11 2.11e-11 100 
GR 10 0.09489 0.03934 - 0.03903 0.01274 30 
RB 10 23.7877 34.4229 - 5.09976 6.65036 - 
ACK 10 9.9569 9.95228 - 2.19e-08 3.42e-08 50 
DeJ-N 10 0.00480 0.00191 - 0.00296 0.00167 - 
Mic 2 -1.8013 9.93e-03 100 -1.8013 1.57e-06 100 
Mic 5 -4.32364 0.44702 - -4.66848 0.04535 - 
Mic 10 -6.62579 0.67245 - -9.3255 0.22641 - 
ST 10 0.00000 0.00000 60 0.00000 0.00000 70 
SWF1.2 10 0.83576 3.76452 - 1.04e-12 2.69e=12 40 
SWF2.21 10 0.00015 0.00018 - 9.98e-10 1.26e-09 60 
SWF2.22 10 0.09027 0.03896 - 0.01979 0.02145 - 
SDP 10 1.53e-11 4.01e-11 100 1.05e-13 2.12e-13 100 , 
ALP 10 0.00667 0.01921 - 0.00021 0.00065 - 
GP1 10 -1.1504 4.23e-05 - -1.15044 2.46e-11 60 
GP2 10 1.44e-06 1.90e-06 - 1.72e-12 1.53e-13 90 
SWF 10 -3201.6 369.23 20 -3751.61 130.28 70 
LM 10 -19.4018 4.2009 - -21.5023 1.10e-12 30 
DeJI 2 3.87e-11 7.29e-11 30 9.53e-16 2.83e-15 100 
HMI 3 -3.86278 3.97e-16 100 -3.86278 3.71e-16 100 
HM2 6 -3.18244 0.14725 90 -3.25608 0.06475 100 
SF6 2 0.00000 0.00000 100 0.00000 0.00000 100 
MT 2 1.81e-15 5.23e-15 100 0.00000 0.00000 100 
CB6 2 -1.03163 2.22e-22 - -1.03163 2.22e-22 80 
APH 10 5.58e-13 1.13e-12 80 1.53e-1-5 4.01e-15 100 
CLV 4 0.05054 0.05190 - 0.03758 0.03171 - 
GP 2 3,00000 1.60e-15 100 3.00000 2.90e-16 100 
MC 2 -1.91322 0.00000 100 -1.91322 0.00000 100 
SB1 2 -186.731 4.21e-14 - -186.731 2.00e-14 - 
SB2 10 -98.4351 10.4653 - -117.776 1.60425 - 
SK 2 1.00000 1.85e-16 80 1.00000 9.93e-17 100 
BR 2 0.397886 0.00000 50 0,397886 0.00000 100 
SF7 10 0.67169 0.20006 - 0.29862 0.08075 - 
T2N 10 -78.3323 1.92e-06 - -78.3323 3.55e-13 90 
MH 2 -3.58972 0.388473 30 -3.78396 0.00000 50 
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Table 3.15 Result comparison of PSO and MPSO (Diversity/NFE/Time (sec)) 

F Dim PSO MPSO 
Diversity NFE Time Diversity NFE Time 

RS 10 3.05529 50050+ 2.7 1.02237 50050+ 3.2 
DeJ 10 0.0805151 50050+ 2.7 0.0405957 43570 2.9 
GR 10 0.713923 50050+ 2.4 2.6207 47540 3.1 
RB 10 4.58719 50050+ 6.3 0.678667 50050+ 8.8 
ACK 10 4.1804 50050+ 1.7 0.00014 46800 3.7 
DeJ-N 10 0.647542 50050+ 2.1 0.39727 50050+ 4.6 
Mic 2 0.00365 38495 0.7 0.0433284 18375 0.5 
Mic 5 0.0524459 50050+ 2.6 0.0291604 50050+ 2.8 
Mic 10 2.14912 50050+ 5.8 1.35232 50050+ 6.4 
ST 10 0.793882 49215 0.5 0.14526 46860 0.3 
SWF1.2 10 0.59298 50050+ 2.1 0.02419 49715 2.6 
SWF2.21 10 0.06367 50050+ 0.1 2.07e-05 48615 0.24 
SWF2.22 10 3.21891 50050+ 0.1 0.38093 50050+ 0.25 
SDP 10 0.16440 34135 0.6 0.32737 22315 0.21 
ALP 10 3.73003 50050+ 0.2 0.91417 50050+ 0.25 
GP1 10 1.80214 50050+ 5.4 0.38154 49550 7.4 
GP2 10 0.443238 50050+ 5 0.00436 45745 6.1 
SWF 10 0.45694 49630 2.2 0.00704 48510 2.6 
LM 10 0.10776 50050+ 4.8 0.46810 48680 6.9 
DeJ1 2 0.14613 49970 2 0.13494 40755 4.1 
HM1 3 0.01927 37945 2.2 0.01299 20465 1.4 
HM2 6 0.01558 43920 5.1 0.00763 37295 4.3 
SF6 2 0.00693 37020 1.0 0.00053 22525 0.7' 
MT 2 0.18571 33945 0.2 0.16375 17655 0.1 
CB6 2 0.27273 50050+ 1.1 0.0069 38575 0.9 
APH 10 0.16440 45700 5 0.00153 34135 4.1 
CLV 4 0.27199 50050+ 2.2 0.16179 50050+ 3.0 
GP 2 0.00021 40895 1.0 0.00184 19885 0.6 
MC 2 0.11743 32970 0.4 0.01701 13855 0.2 
SB1 2 1.57827 50050+ 0.2 0.91083 50050+ 0.4 
SB2 10 2.9924 50050+ 2.0 3.38776 50050+ 2.2 
SK 2 0.07937 39390 12.5 0.38103 37840 12.1 
BR 2 0.01523 42785 1.0 0.01535 41820 0.6 
SF7 10 7.09519 50050+ 2.8 1.60477 50050+ 3.4 
T2N 10 0.05004 50050+ 3.9 0.00107 45840 3.6 
MH 2 1.08611 47120 1.0 0.15180 35930 0.8 
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Table 3.16 Comparison of proposed MPSO with PSO in terms of Improvement (%) and t-test values 

. Function Improvement 
(%) t-value . Function Improvement 

(%) 
t-value 

RS 58.190135 6.320111 LM 10.82632 2.738678 
DeJ 99.948996 4.7662 DeJ1 99.99754 2.907591 
GR 58.868163 7.398961 HMI 0.00000 0.00000 
RB 78.561357 2.919559 HM2 2.313948 2.507455 
ACK 100 5.479768 SF6 0.00000 - 
DeJ-N 38.333333 3.972251 MT 100 1.89556 
Mic 0.00000 0.00000 CB6 0.00000 0.00000 
Mic 7.9756872 4.203663 APH 99.72581 2.69725 
Mic 40.745481 20.84008 CLV 25.64306 1.16712 
ST 0.00000 - GP 0.00000 0.00000 
SWF1.2 100 1.215997 MC 0.00000 - 
SWF2.21 99.999335 4.564324 SB1 0.00000 0.00000 
SWF2.22 78.07688 8.679908 SB2 19.64838 10.00557 
SDP 99.313725 2.075443 SK 0.00000 0.00000 
ALP 96.851574 1.840845 BR 0.00000 - 
GP1 0.0034771 5.17941 SF7 55.54199 9.47145 
GP2 99.999881 4.151155 T2N 0.00000 0.00000 
SWF 17.179223 7.694049 MH 5.411007 2.738662 

Table 3.17 Comparison of MPSO with PSO and 0-PSO 

Fun Algorithm Swarm 
size Dim 

Number of iterations to achieve the 
goal 

w = 0.6, c i  = c2  = 1.7 
Minimum Average SR 

DeJ 

PSO 20 30 722 778 100 
0-PSO 20 30 523 598 100 
MPSO 20 30 236 324 100 
PSO 40 30 783 847 100 
0-PSO 40 30 352 406 100 
MPSO 40 30 270 321 100 

GR 

PSO 20 30 368 455 100 
0-PSO 20 30 343 512 100 
MPSO 20 30 211 390 100 
PSO 40 30 684 836 100 
0-PSO 40 30 231 334 100 
MPSO 40 30 219 293 100 

RB 

PSO 20 30 426 533 100 
0-PSO 20 30 223 376 100 
MPSO 20 30 208 267 100 
PSO 40 30 544 597 100 
0-PSO 40 30 194 283 100 
MPSO 40 30 184 214 100 
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Table 3.18 Comparison of MPSO with PSO and 0-PSO 

Fun Algorithm size 
Swarm 
si  Dim 

Number of iterations to achieve the 
goal 

 w = 0.729,c1 = c2  = 1.494 
Minimum Average SR 

DeJ 

PSO 20 30 598 682 100 
0-PSO 20 30 362 734 100 
MPSO 20 30 207 239 100 
PSO 40 30 620 707 100 
0-PSO 40 30 266 683 100 
MPSO 40 30 203 233 100 

GR 

PSO 20 30 420 686 100 
0-PSO 20 30 385 564 95 
MPSO 20 30 178 198 100 
PSO 40 30 883 965 100 
0-PSO 40 30 263 356 100 
MPSO 40 30 192 294 100 

RB 

PSO 20 30 363 443 100 
0-PSO 20 30 328 402 100 
MPSO 20 30 140 185 100 
PSO 40 30 459 537 100 
0-PSO 40 30 272 325 100 
MPSO 40 30 165 198 100 	_. 
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3.10 Conclusion 
This chapter presented some modified versions of PSO algorithm. In a total of 15 modified 

versions of PSO were reported. These algorithms are based on diversity, mutation and 

crossover. Also a new inertia weight and a new velocity update equation were presented. The 

modified algorithms are: 

■ Attraction-Repulsion Particle Swarm Optimization (ATREPSO) 

■ Quadratic Interpolation Particle Swarm Optimization (QPSO1, QPSO2, QPSO3 and -

QPS04) 

■ Gaussian Mutation Particle Swarm Optimization (GMPSO) 

■ Beta Mutation Particle Swarm Optimization (BMPSO) 

■ Gamma Mutation Particle Swarm Optimization (GAMPSO) 

■ Beta & Gamma Mutation Particle Swarm Optimization (BGMPSO) 

■ Sobol Mutated Particle Swarm Optimization (SMPS01 and SMPSO2) 

■ Gaussian Inertia Weight Particle Swarm Optimization (GWPSO) 

■ Modified Particle Swarm Optimization with New Velocity (MPSO) 

The performance of presented algorithms was tested with some standard benchmark problems. 

The results obtained by these algorithms on all benchmark problems were either superior or at 

par with the basic PSO algorithm. In overall comparison, among other algorithms PSO assisted 

with Quadratic Interpolation operator algorithms gave the best results. 
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Chapter 3A 

Improved Quantum Particle Swarm 

Optimization Algorithms 

[This chapter is an extension of chapter 3. In this chapter a new concept in the field of 

PSO namely Quantum Particle Swarm Optimization (QPSO) algorithm is discussed and 

different versions based on QPSO are proposed.] 

3A.1 Quantum Particle Swarm Optimization 
One of the recent developments in the field of PSO is the application of Quantum laws 

of mechanics in the structure of PSO. Such PSO's are called Quantum PSO (QPSO). The 

development in the field of quantum mechanics is mainly due to the findings of Bohr, de 

Broglie, Schr8dinger, Heisenberg and Bohn in 1920's. Their studies gave a different meaning to 

the concepts of classical mechanics and the traditional understanding of the nature of motions of 

microscopic objects (Pang, 2005). Recently, the concepts of quantum mechanics and physics 

have gained considerable attention in the development of optimization techniques (Hogg, 

Portnoy, 2000; Protopescu and Barhen, 2002; Bulger, Baritompa and Wood, 2003). 

As per classical PSO, a particle is stated by its position vector x; and velocity vector v,, 

which determine the trajectory of the particle. The particle moves along a determined trajectory 

following Newtonian mechanics. However if we consider quantum mechanics, then the term 

trajectory is meaningless, because x, and v, of a particle cannot be determined simultaneously 

according to uncertainty principle. 

Therefore, if individual particles in a PSO system have quantum behavior, the performance 

of PSO will be far from that of classical PSO (Feng and Xu, 2004). In the quantum model of a 

PSO, the state of a particle is depicted by wavefunction P(x,t), instead of position and velocity. 

The dynamic behavior of the particle is widely divergent from that of the particle in traditional 

PSO systems. In this context, the probability of the particle's appearing in position x, from 
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probability density functionlY(x, 012 , the form of which depends on the potential field the 

particle lies (Liu et al, 2006). 

The particles move according to the following iterative equations (Sun et al, 2004a; Sun et al, 

2004b): 

x(t +1) = p + fi *Imbest – x(t)1* ln(1/ u) if k 0.5 

x(t +1) = p –fi *Itnbest–x(t)1* ln(1 / u) if k < 0.5 

where 

(3A,1) 

P = (ciPid 	c2Pgd)/(c1 + 2) (3A.2) 

1 M 1 NI n 1 	111 ,
I
D I 	n 

mbest =— 	= 
M 

(3A.3) 
M i=1 M i=1 

~Pid  
M1=1 

Mean best (mbest) of the population is defined as the mean of the best positions of all 

particles, u, k, c1 and c2 are uniformly distributed random numbers in the interval [0, 1]. The 

parameter 13 is called contraction-expansion coefficient. The computation steps of QPSO algorithm 

are given below: 

Step 1 	Initialize the swarm with uniformly distributed random numbers. 

Step 2 	Calculate mbest using equation (3A.3) 

Step 3 	Update particles position using equation (3A.1) 

Step 4 	Evaluate the fitness value of each particle 

Step 5 	If the current fitness value is better than the best fitness value (Pbest) in history 

Then update P, (personal best) by the current fitness value 

Step 6 	Update Pg (global best) 

Step 7 	Go to step 2 until maximum iteration is reached 

QPSO algorithm is depicted only with the position vector without velocity vector, which is a 

simpler algorithm. And the results show that QPSO performs better than basic PSO on several 

benchmark test functions and is a promising algorithm due to its global convergence guaranteed 

characteristic (Liu et al, 2005; Sun et al, 2006; Liu et al, 2006). 
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3A.2 A Brief Review of QPSO 
Xu and Sun (2005) introduced a diversity guided model in QPSO with two phases attraction 

and repulsion. This algorithm is similar to ARPSO algorithm of Riget et al (2002). Liu et al 

(2005; 2006) introduced a mutation operator with the help of probability distribution in QPSO, 

in which particle's global best position and the variable mbest are mutated by using Cauchy 

distribution. Sun et al (2006) proposed a new QPSO called DCQPSO, which is a method of 

controlling the diversity of QPSO. Again Sun et al (2006a) explored the applicability of the 

QPSO to data clustering and proved that QPSO has overall better performance than K-means 

and PSO clustering algorithms for data clustering, because the QPSO is a global convergent 

optiniization algorithm. A Quantum PSO algorithm with chaotic mutation operator is introduced 

by Coelho (2006) and he proved that the chaotic mutation based QPSO is a powerful strategy to 

diversify the QPSO population and improve the QPSO's performance in preventing premature 

convergence to local minima. 

A diversity guided QPSO (DGQPSO) is proposed by Sun et al (2006b), in which a mutation 

operator is exerted on global best position of the particle to prevent the swarm from clustering, 

enabling the particle to escape the sub-optimal solution. Again the same authors introduced a 

diversity maintained algorithm in QPSO (Sun et al, 2006c). 

From the update equations of PSO or 'QPSO, we can see that all particles in PSO or QPSO 

will converge to a common point, leaving the diversity of the population extremely low and 

particles stagnated without further search before the iteration is over. To overcome this problem 

Sun et al (2007) proposed a new QPSO called Revised QPSO by exerting a Gaussian 

disturbance on the mean best position of the particle. Coelho et al (2008).used the Gaussian 

probability distribution in QPSO. G-QPSO algorithm is developed by them, in which the 

constriction factor ((3) of QPSO follows the Gaussian distribution and the proposed algorithm is 

applied to tune the design parameters of Fuzzy Logic Control with Proportional-Integral-

derivative conception. 

Some other improved versions of QPSO are Improved QPSO by Simulated Annealing (Liu 

et al, 2006a), QPSO with binary coding (Sun et al, 2007a), QPSO with immune operator (Liu et 

al, 2006b), QPSO with generalized local search operator (Wang and Zhou, 2007), QPSO with 

hybrid probability distribution (Sun et al, 2006d), modified QPSO (Sun et al, 2007b), etc. 
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In order to further improve the performance of QPSO, in this chapter a recombination 

operator based on quadratic interpolation (QI operator) and a mutation operator based on the 

low discrepancy sobol sequence (SM operator) are incorporated in the QPSO algorithm. The 

following sections present four algorithms namely Quadratic Interpolation based QPSO (Q-

QPS01, Q-QPS02) and Sobol Mutated QPSO (SMQPS01, SMQPS02) which uses QI operator 

and SM operator respectively to improve the performance of the swarm. 

3A.3 Quadratic Interpolation based Quantum PSO (Q-QPSO) 
The proposed Q-QPSO algorithm is a simple and modified version of QPSO in which 

we have introduced the concept of recombination. Also the Q-QPSO algorithm is similar to 

QIPSO algorithms (section 3.4), which uses the QI crossover operator to improve the 

performance of QPSO. The QI operator is a nonlinear operator which produces a new solution 

vector lying at the point of minima of the quadratic curve passing through the three selected 

swarm particles. For more details about the QI operator refer section 3.2.2. Two versions of Q-

QPSO algorithms are proposed in this section. In Q-QPSO1, QI operator is applied to the global 

best (gbest) particle, where as in Q-QPS02, the crossover operator is applied to the worst 

particle of the swarm. 

The Q-QPSO algorithm starts like the usual QPSO using Eqns. (3A.1), (3A.2) and (3A.3). 

At the end of each iteration, the QI recombination operator is invoked to generate a new swarm 

particle. The new particle is accepted in the swarm only if it is better than the global best 

particle (i.e. the particle having minimum fitness) present in the swarm in Q-QPS01, whereas in 

Q-QPS02, the new particle is accepted in the swarm only if it is better than the worst particle in 

the swarm. This process is repeated iteratively until a better solution is obtained. 

The simple flow of Q-QPSO1 is given below: 

Initialize the Swarm 

Do 

Calculate mbest by Eqn. (3A.3) 

Update particle's position vector using Eqn. (3A.1) 

Update P, and Pg  

Find a new particle using QI operator 
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If the new particle is better than the global best particle in the swarm then 

Replace the global best (Pt) particle by the new particle 

While (stopping criterion is reached) 

The flow of Q-QPSO2 is same as that of Q-QPS01, except for the fact that the worst particle in 

the swarm is mutated instead of the best particle. 

3A.4 Sobol Mutated Quantum PSO (SMQPSO) 
The proposed SMQPSO algorithm is an extension to the quantum Particle Swarm 

Optimization, by including the component of mutation in it and it is similar to the SMPSO 

algorithm (section 3.5). The SMQPSO algorithm uses the SM operator (refer section 3.5) of 

SMPSO algorithm to mutate the global best and worst particle in the swarm. Two versions of 

SMQPSO algorithm are proposed; they are: SMQPSO1 and SMQPSO2. The two versions differ 

from each other in the sense that in SMQPSO1, the global best particle of the swarm is mutated, 

whereas in SMQPSO2, the worst particle of the swarm is mutated. The idea behind applying the 

mutation to the worst particle is to push the swarm from the back. The quasi random 'numbers 

used in the SM operator allows the worst particle to move forward systemically. 

The simple flow of SMQPSO1 is given below: 

Initialize the Swarm 

Do 

Calculate mbest by Eqn. (3A.3) 

Update particle's position vector using Eqn. (3A.1) 

Update P, and Pg 

Find a new particle using SM operator 

If the new particle is better than the global best particle in the swarm then 

Replace the global best (Ps) particle by the new particle 

While (stopping criterion is reached) 

The flow of SMQPSO2 is same as that of SMQPSO1, except for the fact that the worst particle 

in the swarm is mutated instead of the best particle. 
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3A.5 Parameter Settings of Proposed QPSO Algorithms 
In the present study three benchmark problems (RS, GR and RB), are considered. The 

mathematical models of the benchmark problems are given in Appendix I. All the test problems 

are highly multimodal and scalable in nature. The real optimum of all the test problems is zero. 

Each function is tested with a swarm size of 20, 40 and 80 for dimension 10, 20, 30. The 

maximum number of generations is set as 1000, 1500 and 2000 corresponding to the dimensions 

10, 20 and 30 respectively. A total of 30 runs for each experimental setting are conducted and 

the average fitness of the best solutions throughout the run is recorded. Also, comparison of the 

proposed algorithms is done with basic PSO and QPSO. 

3A.6 Numerical Results and Discussion 
The mean best fitness value for the functions RS, GR and RB are given in Tables 3A.1 —

3A.3, respectively, in which Pop represents the swarm population, Dim represents the 

dimension and Gne represents the maximum number of permissible generations. Table 3A.4 —

3A.6 shows the improvement (%) of proposed algorithms in comparison with QPSO. Figure 

3A.1 shows the performance curves of PSO, QPSO and the proposed QPSO variants. 

The numerical results show that in all the test cases except six cases (out of 27 cases) in 

Griewank function the proposed algorithms perform much better than the other algorithms. If 

one compares the performance of proposed algorithms with each other then from the numerical 

results it can be seen Q-QPS01 gave better results than the other algorithms in 17 test cases out 

of the total 27 cases tried. Q-QPOS2 algorithm gave better solution than other algorithms in 8 

test cases. Remaining two test cases SMQPSO2 performs better than others. From the 

comparison results of all the proposed algorithms with the algorithms in the literature, it can be 

seen that all the proposed versions of QPSO gave better results than the variants of QPSO in the 

literature. Thus from the numerical results, it is concluded that the proposed algorithms 

improved the performance of QPSO with a noticeable percentage. 
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Improved QPSO Algorithms 

Table 3A.5 Improvement (%) in terms of average fitness function value for function GR in 

comparison to QPSO 

Pop Dim Gen Q-QPS01 Q-QPSO2 SMQPSO1 SMQPSO2 

20 

10 1000 94.40643 24.79054 13.26371 30.53535 

20 1500 99.99452 74.95819 - 26.69946 

30 2000 99.99984 - - - 

40 

10 1000 96.2963 16.96615 40.76534 34.25058 

20 1500 99.99982 65.02401 13.7575 - 

30 2000 100 32.17916 - 13.69509 

80 

10 1000 96.92132 10.12828 19.44413 - 

20 1500 100 54.56849 - 9.082192 

30 2000 100 41.47887 9.022887 - 

Table 3A.6 Improvement (%) in terms of average fitness function value for function RE3' in 
comparison to QPSO 

Pop Dim Gen Q-QPSO I Q-QPSO2 SMQPSOI SMQPSO2 

20 

10 1000 83.5193 90.67831 90.4605 90.74051 

20 1500 74.68409 85.95921 85.64042 85.79338 

30 2000 68.13284 82.5979 82.35757 82.4157 

40 

10 1000 64.83499 59.70283 59.04843 59.60457 

20 1500 44.7743 69.61517 69.16533 69.61929 

30 2000 38.28247 59.12808 58.29587 58.66788 

80 

10 1000 73.44524 66.50116 68.21415 70.8209 

20 1500 57.28729 66.4768 65.61396 65.39336 

30 2000 44.87729 56.49481 55.66699 55.88 

117 



Chapter 3A 

90 

80 

 70 
U) 

60 
4Z- 
2 50 

--- 40 
U) U) 
2 30 

u_ 
20 

10 

0 

BPSO 4144 444 Qpso ........, 0,--QP.F101 

.5.[V1QPL.02 — — 0,-QPS02 — .SMOYS01 

Nsist.:44.. 

Ni. 

144. 

11% 

" 4441,4 4 

UM 
41 474  11"ib 

* 	— 	1  ' ' 1  4' 064 4F4 i 441 . 1r 0  

100 200 300 400 500 600 700 800 900 1-000 
Generation 

Fig 3A.1 (a) Function RS 

2 

1.6 
U) 
2 1.4 
C 

1-1-  1.2 
C 

C0.6 

0.4 

0.2 

1 

lii I 8P50 .44 4 4 op,so ........,... 0.-0,5.01 

— .... Q-QPSO2 ....i. . . v'l 	PS01 ....—* - Sivl P PS 02 

. 	• 

• • 
_ \ 

41 41  

k • • ,„ • •,,, .... • • • , 6,  4. 	.11 41 a. , , . . 

" " 41‘ *" ""' lel MOP morm 71110* OM 

41111111 a 01•0 v a 	.... 	, 	. .4i  1.61671.1;aaalH....abis.ler re% 4. 	a 

' 100 200 300 400 500 600 700 .800 900 10.00 
Generation 

Fig 3A.1 (b) Function GR 



'.1  
BPSO • •••• CPSO 

. — 

..... Q.-QF SO1 

0,-QP.502 • S A 0,P50 .••••••• • SiM 0, P SO2 

...:1"*. 01:44*... 4■11.11.111P11 r -- MiNINIMO 

91 

190 

170 
-,T5- 150 
U) 
a) 

2 110 

90. 
(r) 70 
a 

50 

310 
110 

-10 

c 130 
Cr= 

Improved QPSO Algorithms 

100 200 .300 400 500 600 700 800 900 1000 
Generation 

Fig 3A.1 (c) Function RB 

Fig 3A.1 Performance curves of PSO, QPSO and the proposed QPSO variants 

3A.7 Conclusion 
This chapter presented some modified versions of PSO based on the quantum laws 

application to PSO. It is one of the latest developments in the field of 

PSO. Four modified versions of Quantum PSO algorithm are discussed in this chapter are: 

• Quadratic Interpolation Quantum Particle Swarm Optimization (Q-QPS01„,and Q-

QPS02) 

• Sobol Mutated Quantum Particle Swarm Optimization (SMQPSO1 and SMQPS02) 

The performance of presented algorithms was tested with some standard benchmark 

problems. The numerical results of proposed variants were compared with basic PSO, QPSO 

and two other variants of QPSO algorithm available in the literature. The results obtained by 

these algorithms on all benchmark problems were either superior or at par with the basic PSO 

and Quantum PSO algorithms. In an overall comparison, QPSO assisted with Quadratic 

Interpolation operator (Q-QPSOs) algorithms gave the best results. 
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Chapter 4 

Improved Differential Evolution Algorithms 

[This chapter describes the improved versions of the classical Differential Evolution 

algorithm. The improved algorithms are based on the mutant vector, the scale factor F and the 

crossover rate Cr of DE. This chapter proposes two new mutant vectors based on the Laplace 

probability distribution (LDE) and on the concept of Quadratic Interpolation (DE-QI). Five 

versions of LDE are proposed namely LDEI, LDE2, LDE3, LDE4 and LDE5. Also this chapter 

introduces an adaptive scaling factor and Crossover rate. The proposed algorithms are 

examined on several standard benchmark problems and the results are compared with the 

classical DE and some other variants of DE in the literature.] 

4.1 Introduction 
Differential Evolution is a stochastic, population based search strategy developed by 

Storn and Price (1995). It has been consistently ranked as one of the best search algorithm for 

solving global optimization problems in several case studies. DE has been designed as a 

stochastic parallel direct search method, which utilizes concepts borrowed from the broad class 

of EAs. The method typically requires few, easily chosen control parameters. Experimental 

results have shown that performance of DE is better than many other well known EAs (Storn 

and Price, 1997; Storn, 1999). While DE shares similarities with other EAs, it differs 

significantly in the sense that in DE, distance and direction information is used to guide the 

search process (Engelbrecht, 2005). 

Despite several attractive features, it has been observed that DE sometimes does not perform 

as good as the expectations. Empirical analysis of DE has shown that it may stop proceeding 

towards a global optimum even though the population has not converged even to a local 

optimum (Lampinen and Zelinka, 2000). The situation when the algorithm does not show any 

improvement though it accepts new individuals in the population is known as stagnation. 

Besides this, DE also suffers from the problem of premature convergence. This situation arises 
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when there is a loss of diversity in the population. It generally arises when the objective function 

is multimodal having several local and global optimums. Like other EA, the performance of DE 

deteriorates with the increase in dimensionality of the objective function. Several modifications 

have been made in the structure of DE to improve its performance. A brief survey on these 

modifications of DE is given in Chapter 1. 

This chapter has seven sections including the introduction. Section 4.2 describes the 

proposed LDE algorithms; in section 4.3, the proposed DE-QI algorithm is described. In section 

4.4, an adaptive scale factor and crossover rate in classical DE is introduced. Based on these 

adaptive parameters a new DE algorithm, ACDE algorithm, is proposed. Section 4.5 deals with 

the parameter settings and the benchmark problems used for this study; section 4.6 gives the 

result analysis. Finally the chapter concludes with section 4.7. 

4.2 Differential Evolution with Laplace Mutation (LDE) 
The LDE algorithm is a simple and modified version of basic DE algorithm. The 

structural difference between the proposed LDE algorithm and the basic DE is in the mutation 

phase. In this study five new mutation schemes for the basic DE algorithm are proposed. These 

schemes are based on the absolute difference between the vectors to generate a mutant vector. 

The amplification factor (or scaling factor), F, is replaced by a random variable following 

Laplace distribution. The five schemes are named as LDE1, LDE2, LDE3, LDE4 and LDE5. 

The first scheme, LDE1, uses only two vectors to generate a mutant vector. The second scheme, 

LDE2, is like target to best scheme of basic DE where the vector having the best fitness function 

value is used. In LDE3, which is the third scheme two vectors are generated and the one having 

the better fitness function value is accepted as a mutant vector. In the fourth scheme the original 

mutation scheme as given by Eqn. (1.6) and the LDEI scheme are applied stochastically 

according to the user defined parameter PLDE. Uniformly distributed random numbers between 0 

and 1 are generated. If the random number is greater than the parameter PLDE, then LDEI is 

applied to generate the mutant vector otherwise the mutant vector is generated using Eqn. (1.6). 

In the fifth case the mutant vector is generated by adding a random vector to the amplified 

distance between the best vector and another randomly generated vector. 

The mutation schemes for the DE versions are summarized as follows: 
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A. LDEI Algorithm 

v 	xri,g  + L*1 xri,g  — x r2, g 	 (4.1) 

B. LDE2 Algorithm 

v i,g+1= xbest,g L* I xri ,g xr2,g 

C. LDE3 Algorithm 

= X r 	L* I xri,g  —x,2,g  

4,g+i — xr2,g  + L*1 xri,g  —xr2,g  

If (f (v;,g+i ) < f (4,g+1 )) then 

Else vi,g+i = 

D. LDE4 Algorithm 

//Generate a uniformly distributed random number between 0 and 1 as U(0,1) 

If (U(0,1) > P mDE) then 

v i,g+i 	rbg  + L* I x rhg  — xr2,g I 

Else 

v 	X
r1'  g 

 F * 
(Xr2' 

g  X r
3'  g

) 

E. LDE5 Algorithm 

= xri,g  + L* I xbest,g xr2 ,g 

For all the LDE algorithms, the notations have their usual meaning as described in chapter 1. 

As mentioned earlier the amplifying factor in all the cases is a random variable L, following 

Laplace distribution. The Probability Density Function (pdf) of Laplace distribution is similar to 

that of normal distribution however, the normal distribution is expressed in terms of squared 

difference from the mean, Laplace density is expressed in terms of absolute difference from the 

mean. The density function of Laplace distribution is given as: 

f(x10)=—I exp(—Ix---91 	) , 
2p 	It 

(4.2) 
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Its distribution function is given by: 

1 	
exp( 

x  —  ) 
f x< 0 

1 — exp( 
0  — x  ) if x>0 

p 	is the scale parameter. 

From the proposed schemes, it can be seen that the newly generated mutant vector will lie in 

the vicinity of the base vector. However its nearness or distance from base vector will be 

controlled by L. For smaller values of the mutant vector is likely to be produced near the 

initially chosen vector, whereas for larger values of p, the mutant vector is more likely to be 

produced at a distance from the chosen vector. This behavior makes the algorithm self adaptive 

in nature, which in turn helps in preserving the diversity of the population by exploring the 

search space more effectively. 

4.3 Differential Evolution Algorithm with Quadratic Interpolation 

Based Mutation (DE-QI) 
The proposed DE-QI algorithm is a simple and modified version of basic DE algorithm. 

In the proposed DE version, a mutation probability Pq, is fixed and is having a certain threshold 

value provided by the user. In every iteration, if the uniformly distributed random number U (0, 

1) is less than Pqi  then the mutant vector is generated by using QI operator otherwise the mutant 

vector follows the basic DE method. The QI operator, based on quadratic interpolation (Mohan 

and Shanker, 1994), is a nonlinear operator which produces a new candidate solution lying at the 

point of minima of the quadratic curve passing through the three selected candidates. Detailed 

description of QI operator is given in Chapter 3. 

A C++ style computational code for the mutation phase of DE-QI algorithm is given as: 

//Generate U(0,1), a uniformly distributed random number between 0 and 1 

If (U(0,1) <= Pq, ) 

2,u 
(4.3) 
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. — 

(X 
r2'g 

2 -x 
r3
2 
'g 

)* f(xr  )+ (x 2,$
2 

,g 
-x2  )*f(Xr2,g )+(Xr2i,g  -Xr22,g)*f(Xr3,g ) 

= 5* 
(xr2,g. — xr3,g)*  f(xn ,g)+(xr3,g — xri,g)*  f(xr2,g)+(xrbg — xr2,g)*  f(xr3,g) 

Else 

xri,g+ F* (xr2 	xr3,g) 

Where r1 ,r2 ,r3  E {1,2,...., NP} are randomly chosen integers, different from each other and also 

different from the running index i. NP represents the population size. 

4.4 Differential Evolution Algorithm with Adaptive Control 

Parameters (ACDE) 
Choosing suitable control parameter values is, frequently, a problem-dependent task. The 

trial-and-error method used for tuning the control parameters requires multiple optimization 

runs. The appropriate values of these control parameters lead to better (fitter) individuals which 

in turn are more likely to survive and produce fitter offspring. In this section, an adaptive 

Differential Evolution (ACDE) algorithm is presented. The main structural difference between 

the proposed ACDE algorithm and the basic DE is selecting the control parameters. The ACDE 

algorithm follows adaptive scale factor and cross over rate. The new scaling factor and 

crossover rate are calculated as: 

F

g+1 —

_ Ft  + randillGrand i 2 + Grand22 	PF < rand2 

F0 	 otherwise 
(4.4) 

{Cri *  rand3  
Crg+i = 

Cro  
if Pcr  <rand4  

otherwise 
(4.5) 

Eqns. (4.4) and (4.5) are used to produce factors F and Cr in a new generation. Here, rand .  

j E {1,2,3,4} are uniform random numbers in the interval (0, 11 Grand'  and Grande are 

Gaussian distributed random numbers with mean 0 and standard deviation 1. Pp and PCr  are the 

probabilities to adjust the factors F and Cr respectively. In this study, PF and Pc, are set as PF  

PCr = 0.5. Also the values of the constants Ft, Fo, 	 Cro are set as Fr= Cr1 = 0.1, Fo = Cro = 

0.5. Also, in this experiment the following bounds for F are used. 
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If Fg+1  > FL, then Fg+1  = Fu * rands  
If Fg±i  < Fl  then Fg+i  = F1  * rand6  

Where randl- ' j E {5,6} are uniformly distributed random numbers in the interval (0, 1/ The 

value of Fu  is set as 0.5. Thus, the new F takes values in the interval (0, 0.5] and the new Cr 

takes values in the interval (0,0.1] U {0.5} . Fg+i  and Crg±i are obtained in every iteration. So, 

they influence the mutation, crossover and selection operations of every new particle. The basic 

DE algorithm has three control parameters that need to be adjusted by the user. It seems that 

ACDE has even more parameters, but note that here the values of F1, Fu, Fo, Cr1, Cro, PF and Pcr 

are fixed for all the test problems in our ACDE algorithm. The user does not need to adjust 

those additional parameters. 

4.5 Parameter Settings and Benchmark Problems 
In order to make a fair comparison of DE and all the proposed algorithms, the same seed 

for random number generation is fixed so that the initial population is same for all the 

algorithms. The population size is taken as 50 for all the test problems for all algorithms. 

However, this is a heuristic choice and may be increased, depending on the complexity of the 

problem. The other parameters, crossover rate and scaling factor F, for classical DE and DE-Q1, 

are fixed at 0.2 and 0.5 respectively. For LDE schemes also the crossover rate is taken as 0.2. 

The value of additional parameter PLDE in LDE4 scheme is taken as 0.2. -As mentioned in section 

4.2, the scaling factor for all LDE schemes is a random variable which follows Laplace 

distribution. For DE-QI algorithm, the mutation probability Pq, is taken as 0.1. For each 

algorithm, the maximum number of iterations allowed is set to 5000 and the error goal is set as 

1*e-04. A total of 30 runs for each experimental setting were conducted and the average fitness 

of the best solutions throughout the run was recorded. 

In order to check the compatibility of the proposed LDE, DE-QI and ACDE algorithms a 

suite of ten benchmark problems are considered; they are: RS, DeJ, GR, RB, De-N, SWF, 

ACK, Mic, MH and SB1. The mathematical models of the test problems with the true optimum 

value are given in Appendix I. The performance curves of proposed DE algorithms with 

classical DE for all benchmark problems are shown in Fig 4.1(a) — Fig 4.1(j). 

(4.6) 
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4.6 Results and Discussion 
In order to compare the proposed LDE, DE-QI and ACDE algorithms with basic DE and 

other modified versions of DE various performance metrics like average fitness function value 

and standard deviation (STD) are considered to check the efficiency and reliability of the 

algorithm. To compare the convergence speed of algorithms the average number of function 

evaluations (NFE) is recorded. Smaller number of function evaluations indicates faster 

convergence. The speed of the algorithm is also measured by recording the total CPU time and 

the average CPU time taken by the algorithm to meet the stopping criteria. Besides this success 

rate (SR) and average success rate (ASR) are also measured. A run is considered a success if the 

value obtained at the end of the algorithm is within one percent of the desired accuracy. The 

definitions of performance measures used in this study are given by: 

NFE( 
Average NFE 	

A) 
 

n 

Improvement (%) in terms of NFE 

Total AFFE (basic DE algorithm) — Total NFE ( l gorithm to be compared)' 
Total NEE (basic DE algorithm) 

Acceleration rate (AR) 
Total NEE for basic DE 

Total NFE for algcrrithm to be compared 

Average CPU time — 	  
n 

Improvement (%) in terms of CPU Time = 

Total time (basic DE algorithm) -- Total tirne (Algorithm to be compare 
Total NFE (basic DE algorithm) 

E
11SR(f ) 

 

11 

Peiformance comparisons of all proposed De algorithms with basic DE are given in Tables 

4.1 — 4.4. Performance analyses of LDE, DE-Q1 and ACDE algorithms with ODE (Rahnamayan 

et al, 2008) and ODE (Rahnamayan et al, 2008) are given in Table 4.5 and Table 4.6 

respectively. 

00 

Average SR = 

100 
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4.6.1 Performance Analysis I: Comparison of LDE Schemes with 

Basic DE 
From Table 4.1 which gives the average fitness function value, it can be seen that all the 

LDE schemes performed better than the basic DE for all the test problems. Particularly in case 

of function RS (Rastringin function) and function RB (Rosenbrock function), there is a 

significant improvement in the performance of DE using the proposed LDE3, LDE4 and LDE5 

schemes. In case of function RS, there is an improvement of 97% in the function value while 

using LDE5 scheme. Similarly for function RB, the use of LDE3 scheme improves the function 

value up to 99%. For other functions also, the proposed schemes outperform the basic DE 

algorithm. The superior performance of proposed schemes is more evident from Tables 4.2 to 

4.4 which give the convergence speed, average CPU time and success rate of the proposed DE 

schemes and the basic DE. From these tables, it can be seen that there is more than 50% 

improvement in the convergence speed with the implementation of LDE1, LDE4 and LDE5 

schemes. LDE3 scheme improves the performance by 44%. Under the present parameter 

settings, LDE2 scheme did not show much improvement as the improvement in convergence 

rate is only 0.33%. When Acceleration Rate (AR) is greater than 1, then it means that the 

proposed algorithm is better than the basic algorithm. For all the proposed MDE schemes, the 

AR is greater than 1. When one observe the CPU time given in Table 4.3, it can be seen that the 

average time taken by all the proposed LDE schemes to solve the given test problems is less 

than the time taken by DE algorithm. With LDE1 scheme, the improvement is 64% and with 

LDE3, LDE4 and LDE5 schemes the improvement in time is more than 50%. However with 

LDE2 scheme, this improvement is only 5%. If we talk about the success rate, which is given in 

Table 4.4, it can be seen that on an average the proposed LDE1, LDE3 LDE4 and LDE5 gives 

more than 80% success while LDE2 gives more than 65 % success for all the test problems 

considered in this study. 
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4.6.2 Performance Analysis II: Comparison of DE-QI Algorithm 

with Basic DE 
The DE-QI algorithm is compared with the basic DE in terms of Average fitness 

function value, number of function evaluation, convergence time and success rate. The results 

are shown for dimension 30 and are given in Table 4.1 to 4.4. From the numerical results it is 

evident that DE-QI gave a better performance in terms of all considered performance measures 

for all the test problems. Particularly in case of function RS, there is a significant improvement 

in the performance of DE using the proposed QI based mutation operator. In this function, there 

is an improvement of 99.99% in the function value while using DE-QI algorithm. Similarly, for 

function DeJ-N, which is a noisy function, the improvement of DE-QI algorithm in terms of 

average fitness function value is 83.87%. Likewise for all other functions also, there is a 

noticeable improvement in classical DE while using the proposed QI mutation operator. The 

better performance of DE-QI is more visible from Table 4.2 and 4.3, where NFE and CPU time 

are reported. From these tables it is clear that the proposed DE-QI algorithm much faster than 

the classical DE. The total number of function evaluations for solving 10 test problems is 

1030110 for DE-QI algorithm whereas for DE the total NFE is 1479540. Therefore, there is an 

improvement of 30.4% in NFE for DE-QI algorithm in comparison with DE. Similarly, the total 

time taken by DE-QI is 104.1 seconds whereas the total time taken by DE is 370.6 seconds. 

Thus from the numerical results, it can be said that the proposed QI based mutation operator 

improved the performance of classical DE with a noticeable percentage. 

4.6.3 Performance Analysis III: Comparison of ACDE Algorithm 

with Basic DE 
Performance comparisons of ACDE algorithm is performed with classical DE in terms of 

the performance measures average fitness function value, NFE, CPU time and success rate. 

From the numerical results given in Table 4.1 — 4.4, it can be seen that ACDE algorithm gave 

better performance than classical DE in all the test cases except for the function RB. From Table 

4.1, it can be seen that for the function RS, the difference in the average fitness function values 

for DE and ACDE is quite significant. The true global minimum for the function RS is located at 
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0.0. None of the algorithms were able to reach this value. However ACDE gave the value near 

about the true optimum and it is much better value in comparison to DE. In this case the 

improvement of ACDE in terms of fitness function value in comparison with DE is 99.55%. 

Similarly for function DeJ-N, the use of adaptive control parameters improves the function value 

up to 80.5%. For other functions also, the proposed ACDE algorithm outperform the basic DE 

algorithm. In terms of NFE the improvement of ACDE algorithm is around 53% in comparison 

with the DE algorithm. From Table 4.3, it is clear that the proposed ACDE converges much 

faster than the classical DE; there is an improvement of 83% in CPU time. The total time taken 

by classical DE is 370.6 seconds whereas the total time taken by ACDE is 61.35 seconds only. If 

we talk about the success rate, which is given in Table 4.4, it can be seen that on an average the 

proposed ACDE gives more than 88% success for all the test problems considered in this study. 

4.6.4 Performance Analysis IV: Comparison of LDE, DE-QI and 

ACDE Algorithms with each other 
If one compares the performance of proposed LDE, DE-QI and ACDE algorithms with 

each other then from the numerical results it can be seen that LDE3. and DE-QI algorithms 

perform better than other algorithms in 2 test cases for each out of 10 test cases in terms of 

fitness function values. LDE4, LDE5 and DE-QI are performed the same in one test case. If one 

compares the NFE then LDE1 is the clear winner in comparison with other proposed algorithms; 

it gave an improvement of 57% in total NFE. But in comparison of CPU time taken by the 

algorithms, ACDE is the winner. The total time taken by ACDE algorithm is an average of 

6.135 seconds. In terms of success rate LDE3 algorithm perform better than other compared 

algorithms. 

4.6.5 Performance Analysis V: Comparison of LDE, DE-QI and 

ACDE Algorithms with other Variants of DE 
Besides using the basic DE for comparison of proposed DE algorithms two recent 

versions of DE namely Opposition based DE i.e. ODE (Rahnamayan et al, 2008) and 

Differential Evolution with Preferential crossover or DEPC (Ali, 2007) are also used. While 
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comparing the performance of proposed DE algorithms with DEPC and ODE, the parameter 

settings of proposed DE algorithms were changed as same as that of the algorithms to which 

they were compared. This was done to give an equal opportunity to all the algorithms. In these 

comparisons the average CPU time was not recorded because it was not mentioned in the 

literature. The remaining performance metrics are kept as same as mentioned in Section 4.6. 

Performance analyses of LDE, DE-QI and ACDE algorithms with ODE (Rahnamayan et al, 

2008) are given in Table 4.5. From this Table it can be seen that under the changed parameter 

settings, except for LDE2 algorithm for function RS (Rastringin function) where it failed to give 

any result, the performance of the remaining proposed DE algorithms is either better or at par 

with ODE in terms of NFE. In terms of reliability, the SR for ODE is 85% while LDE3, LDE5, 

DE-QI and ACDE algorithms gave an average of 100% success for all the test problems that 

were considered. The SR of LDE1 and LDE4 is more than 95%. However, the SR of LDE2 

algorithm is only 75%. 

In Table 4.6, the performance comparison of proposed DE algorithms is given with DEPC 

algorithm. Here also the parameter settings of all the proposed algorithms were changed 

according to DEPC (Ali, 2007). Here, an interesting thing was observed that LDE2 algorithm 

which was giving the worst performance in previous cases started performing very well under 

the changed parameter settings. It gave the best results in terms of NFE for function RS for 

which it failed in previous cases. For function RB, the DE-QI algorithm is failed to give any 

result. The other algorithms performed more or less in a stable manner giving good results (an 

average success rate of 90%) which are once again either better or at par with the DEPC 

algorithm. The success rate for DEPC algorithm was however 98% but this is quite expected 

because the parameter settings are in favor of DEPC. 
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4.7 Conclusion 
This chapter presented three modified improved versions of DE algorithm. The improved 

algorithms are based on variation in the mutant vector, the scaling factor F and the crossover 

rate Cr of DE. The modified algorithms are: 

• Differential Evolution with Laplace mutation operator namely LDE1, LDE2, LDE3, 

LDE4 and LDE5 

■ Differential Evolution with QI based mutation operator (DE-QI) 

■ Adaptive Control parameter Differential Evolution (ACDE) 

The performance of the proposed algorithms was validated on a set of 10 test problems and 

the numerical results were compared with basic DE and two other versions of DE. The 

numerical results show that the proposed algorithms help in improving the convergence rate up 

to 50% in comparison to the basic DE and at the same time maintain a good SR as well. Also it 

was observed that out of the seven proposed algorithms LDE2 was most sensitive to the 

parameter settings as its performance changed drastically when the parameter settings were 

changed. However the remaining six algorithms performed more or less in a stable manner 

giving good performance even when the parameter settings were changed according, to the 

algorithms to which they were being compared (i.e. DEPC and ODE). 
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Hybrid Algorithms 

[This chapter presents hybrid versions of DE and PSO algorithms. The hybridization of 

these algorithms is done with each other and also with evolutionary programming. The 

proposed algorithms are compared with each other and also with other variants available in the 

literature.] 

5.1 Introduction 
DE and PSO have undergone a plethora of changes since the last few years to improve 

their performance. One of the class of modified algorithms consists of the hybridization of 

algorithms, where the two algorithms are combined together to form a new algorithm. Some 

hybrid versions of DE and PSO include Hendtlass approach (Hendtlass, 2001), where the 

population evolved by DE is optimized by using PSO, Kalman approach (Kannan et al, 2004); 

in which DE is applied to each particle for a finite number of iterations to determine the best 

particle which is then included into the population. Methods of Zhang and Xie (2003) and Talbi 

and Batauche (2004) apply DE to the best particle obtained by PSO. In the hybrid version of 

Hao et al (2007), the candidate solution is generated either by DE or by PSO according to some 

fixed probability distribution. Recently a hybrid version of PSO and DE is proposed by Omran 

et al (2007) which is named as Barebones DE. In this chapter three hybrid versions of PSO and 

DE algorithms are proposed. The hybridization methods presented in this chapter consists of 

merging PSO and DE algorithms with each other and the second type of hybridization consists 

of combining PSO and DE algorithms with Evolutionary Programming (EP). The algorithms 

developed in this chapter are: DE-PSO, which as the name suggests is a hybrid version of DE 

and PSO algorithm; Adaptive Mutation Particle Swarm Optimization or AMPSO which is a 

hybrid version of PSO and Evolutionary Programming and Modified Differential Evolution or 

MDE which is a hybridization of DE and Evolutionary Programming. 
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The remaining of the chapter is organized as follows: in Sections 5.2, 5.3 and 5.4 describe 

the proposed DE-PSO, AMPSO and MDE algorithms respectively. Section 5.5 deals with the 

parameter settings and the benchmark problems used for this study; section 5.6 gives the result 

analysis. Finally the chapter concludes with section 5.7. 

5.2 DE-PSO: A Hybrid Algorithm of Differential Evolution and 

Particle Swarm Optimization 
The DE-PSO algorithm is a hybrid version of DE and PSO. It starts like the usual DE 

algorithm up to the point where the trial vector is generated. If the trial vector is better than the 

corresponding target vector, then it is included in the population otherwise the algorithm enters 

the PSO phase and generates a new candidate solution using Particle Swarm's velocity and 

position update equations with the hope of finding a better solution. The method is repeated 

iteratively till the optimum value is reached. The inclusion of PSO phase creates a perturbation 

in the population, which in turn helps in maintaining diversity of the population and producing a 

good optimal solution. 

The pseudo code of the Hybrid DE-PSO algorithm is: 

Initialize particle's position and velocity vectors 

Do 

For i = I to N (Population size) do 

Select r1, r2, r3 E N randomly 

// r1, r2, r3  are selected such that r4 r2 r3// 

For j = 1 to D (dimension) do 

Select (rand ED 

If (rand 0 < CR or j tirand) 
1/ rand 0 denotes a uniformly distributed random number between 0 and 

1 // 

U1I ,g+1 = X ri,g  F*(X r2,g  — X r3,g ) 

End if 

End for 
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If ( (U i,g +1) < f (X i,g ) ) then 

Xi,g +1 = 	g +1 

Else 

7/ PSO phase activated 

Find a new particle using Particle Swarm's velocity and position update 

equations. 

Let this particle be TX =(txbtx2 ,...,txD ) 7/ 

For =1 to D (dimension) do 

g +1  = W
*  Vii 5 g ci ri (Pij,g  — xij,g )+ c2r2(Pgbestj,g xij,g )  

1"Xij = 	 +Vij, g+1 

End for 

If ( f (TX ; ) < f (X is )) then 

Xi3g+i = TX 

Else 

X i,g+i = X 1.,g  

End if 

End if 

End for. 

Until stopping criteria is reached 

Here w, c1, c2, r1, r2 are Particle Swarm's control parameters and Pi  and P gbest are particle's 

personal best and global best positions. 

5.3 AMPSO: A Hybrid Algorithm of Particle Swarm 

Optimization and Evolutionary Programming 

In the second type of hybridization, the PSO algorithm is combined with EP. The 

proposed AMPSO algorithm is a simple, modified version of PSO including EP based adaptive 

mutation operator using Beta distribution. Two versions of AMPSO namely AMPS01 and 
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AMPS02 are proposed. AMPSO1 and AMPS02 differ from each other in the sense that in 

AMPS01, the personal best (Pbest) position of the swarm particle is mutated and in AMPS02, 

the global best or the gbest position of the particle is mutated. The EP phase is activated at the 

end of each iteration (after the velocity and position vector update is complete), where the 

particles are mutated according to the following rule: 

= xu  + 6th  * Betarand 	 (5.1) 

where, cfii  = 61j  * exp(i-  N(0,1) + z' N (0,1)) 

N(0, 1) denotes a normally distributed random number with mean zero and standard deviation 

one. NJ  (0, 1) indicates that a different random number is generated for each value of j. ti and 

are set as 1/12Ti and 1/ A/2/1; respectively (Engelbrecht, 2005), where n is the population size. 

Betarandi  () is a random number generated by beta distribution with parameters less than 1. 

The pseudo code of proposed AMPS01 algorithm is given below: 

Initialize particle's position and velocity vectors. Each particle is taken as a pair of real-valued 

vectors, (X i ,o-i ). The X ;  's give the ith  particle of the swarm and a, 's the associated strategy 

parameters. i varies from 1 to N (population size) 

Do 

// Update velocity and position vector 

For j = 1 to D (dimension) do 

• = W * V if c 	— x 	c2r2(Pgi  Xy) 

• x•• +v•• 1.1 

End for 

Calculate the fitness value, f (Xi ), of each particle 

f (x < f (Pi) ) P = x 

If( f(P)<f (Pg)) P = 

End if 

End if 

If (U (0, 1) < 1/D) then 

//Apply mutation to Pi  (personal best position of particle) using Eqn. (5.1) // 

148 



Hybrid Algorithms 

For j =1 to D (dimension) do 

P'• = P. • + a- !• * Betarand • () 1.1 	1.1 

exp(r N(0,1) + r' N (0,1)) 

End for 

 

End if 

Evaluate the fitness value of Pi , f (Pi) 

df ( f (P3 < f(P) ) Pi 

pf (f (Pi) < f (Pg) ) Pg = Pi 

End if 

End if 

Until stopping criteria is reached 

Here U (0, 1) is the uniformly distributed random number in the interval (0, 1) and D is the 

dimension. The algorithmic steps of AMPSO2 algorithm are the same as the above, just Beta 

distribution mutating the global best particle (Pg) instead of personal best position (Pi ). 

5.4 MDE: A Hybrid Algorithm of Differential Evolution and 

Evolutionary Programming 

The proposed MDE algorithm is a hybrid version of Differential Evolution and 

Evolutionary Programming and it is similar to DE-PSO algorithm. The only difference between 

DE-PSO and MDE is DE-PSO uses PSO phase whereas MDE uses EP phase. MDE also starts 

like the usual DE algorithm up to the point where the trial vector is generated. If the trial vector 

is better than the target vector, then it is included in the population otherwise the algorithm 

enters the EP phase and generates a new candidate solution using EP based mutation. The 

method is repeated iteratively till the optimum value is reached. 

The initial numerical results showed that the proposed MDE algorithm gave a better 

performance than the other hybridized versions presented in this chapter. Therefore in order to 

further analyze its performance, it was initialized with different distributions. Three versions of 

MDE based on the initialization scheme are proposed; MDE algorithm initialized with uniform 
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distribution is called as U-MDE, with Gaussian distribution it is termed as G-MDE and with low 

discrepancy Sobol sequence it is called as S-MDE. 

The C++ style pseudo code of the MDE Algorithm is: 

Initialize the population using uniform (/Gaussian/ Sobol sequence) distributed random 

numbers 

Do 

For i = 1 to N (Population size) do 

Select r1, r2, r3  E N randomly 

// r1, r2, r3  are selected such that r4 r2 r3  // 

For j = 1 to D (dimension) do 

Select jrand ED 

If (rand 0 < CR or j = j  ranw 
// rand 0 denotes a uniformly distributed random number between 0 and 

1// 

U ,g+1 = Xri,g  F *(xr2,g  — xr3,g ) 

End if 

End for 

If(f(Ui,g+1) < f (X i,g ) ) then 

Xi,g+1=-Ui5g+i 

Else 

// EP phase activated 

Find a new particle using EP based mutation 

Let this particle be TX = 	 /1 

For j =1 to D (dimension) do 

tx j  = xu , g  + au * N (0,1) 

cr = Cr * exp(r N(0,1) + N j  (0,1)) 

End for 

If ( f(TX i ) < f (X g )) then 
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X i,g+i  =TX I  

Else 

X i , g+1 X i , g 

End if 

End if 

End for 

Until stopping criteria is reached 

Here N(0,1), Ni  (0,1), 1-  and 2-' are same as in section 5.3. 

5.5 Parameter Settings and Benchmark Problems 
The main parameters of DE are crossover rate Cr and scaling factor F, which are taken 

as 0.2 and 0.5 respectively for the basic DE as well as for the proposed DE-PSO and MDE 

algorithm. For basic PSO and for proposed DE-PSO and AMPSO, inertia weight w is taken to 

be linearly decreasing (0.9 — 0.5) and acceleration constants ci  and c2 are taken as 2.0 each. 

Besides these settings all the problems are tested for dimensions 30 for which the population 

size is taken as 30 for all the algorithms. Stopping criteria for all the algorithms is decided 

according to the maximum numbers of generations which is fixed at 3000. 

The compatibility of the proposed DE-PSO, AMPSO and MDE algorithms is tested on a 

suite of twelve benchmark problems; RS, DeJ, GR, RB, SWF, GPI, GP2, ACK, DeJ-N, 

SWF2.21, SWF2.22 and ST. The mathematical models of the test problems with the true 

optimum value are given in Appendix I. 

Besides using the basic DE and PSO for comparison of proposed DE-PSO and MDE 

algorithms we have also used two recent versions namely DEPSO (Hao et al, 2007) and BBDE 

(Omran et al, 2007). When the proposed algorithms are compared with two other algorithms in 

the literature the same experimental settings as that mentioned in the literature is taken, in order 

to make a fair comparison. When the proposed algorithms are compared with DEPSO 

population size of the swarm is taken as 30 and dimension of the problems is also taken as 30, 

while the maximum number of generation is fixed at 12000 for both the algorithms. In the 

comparison of proposed algorithms with BBDE, the dimension and population size of the 
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swarm are fixed at 30 each while the stopping criteria is taken as the number of function 

evaluations instead of number of generations like the previous comparisons. The maximum 

number of function evaluations is set as 100000. The proposed AMPSO algorithm is compared 

with three other algorithms in the literature namely: CPSO (Stacey et al, 2003), FEP and CEP 

(Yao and Liu, 1996) in addition with the comparison of PSO and EP. 

5.6 Results and Discussion 
The proposed algorithms are compared with basic DE, PSO, EP and 5 other variants of 

DE, PSO and EP in the literature. 

5.6.1 Performance Analysis I: Comparison of DE-PSO with DE and 

PSO 
The proposed DE-PSO algorithm is compared with the basic DE and PSO algorithms 

and the corresponding numerical results are given in Table 5.1. As expected the proposed DE-

PSO algorithm performed much better than the classical PSO and DE. From Table 5.1 it can be 

seen that when DE-PSO is used to solve the present benchmark problems the improvement in 

terms of average fitness function is more than 95% in comparison to basic PSO for 8 test cases 

out of 12 test cases. For all the remaining test cases there is an improvement of more than 20%. 

If the comparison is made with the performance of DE-PSO with basic DE then it can be seen 

that improvement in fitness function value is more than 40% in 4 test cases and an improvement 

of more than 20% in 2 test cases. For functions GR and ST, both DE and DE-PSO gave same 

results. The performance curves of proposed DE-PSO algorithms with DE for selected 

benchmark problems are given in Figure 5.1 (a) — 5.1 (d) and the performance curves of DE-

PSO and PSO for all benchmark problems are shown in Figure 5.2 (a) — Fig 5.2 (d). 

5.6.2 Performance Analysis II: Comparison of AMPSO with PSO 

and EP 
Since AMPSO contains the features of both PSO and EP we compared its performance 

with basic PSO and EP. In Table 5.2, the comparison of AMPSO1 and AMPSO2 is shown with 
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PSO and EP. From the numerical results of Table 5.2, it can be seen that the AMPSO algorithms 

perform better than the PSO and EP algorithms in all the considered test problems except the 

function SWF, where EP gave a slightly better performance. If the AMPSO algorithms are 

compared with each other then the AMPS02 (in which the global best particle is mutated) 

algorithm gives the best values in terms of average fitness function value for all the test 

functions except the functions GP1 and ST, where both the algorithms perform the same. The 

performance curves of the proposed AMPSO algorithms with respect to few selected test 

problems are given in Figure 5.3 (a) — (d). 

5.6.3 Performance Analysis III: Comparison of MDE with DE and 

EP 
In Table 5.3 the comparison of the proposed MDE versions is given with the basic DE 

and EP in terms of average fitness function value and standard deviation. In terms of ,average 

fitness function value all the algorithms gave good performance as it is evident from Table 5.3, 

though the proposed versions gave a slightly better performance in some of the test cases. If the 

standard deviation is compared, then also it can be observed that all the algorithms converged to 

the desired objective function value with small value for standard deviation which is nearer to 

zero in almost all the test cases. This tendency shows the stability of the algorithms. When the 

proposed versions are compared with the EP algorithm in terms of fitness function value; it can 

be clearly seen that the proposed MDE algorithms gave much better results than EP. If the 

comparisons are made with the proposed MDE algorithms with each other then half of the test 

cases (6 cases out of 12 test cases) S-MDE, which is the hybrid of DE and EP and follows sobol 

sequence for initial population, gave better performance than other two (U-MDE and G-MDE) 

algorithms. In 2 test cases out of 12, G-MDE is better than other compared algorithms, U-MDE 

is better than others in one test case. The performance curves of the proposed MDE algorithms 

with respect to few selected problems are given in Figure 5.4 (a) — (d). 
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5.6.4 Performance Analysis IV: Comparison of DE-PSO, AMPSO 

and MDE with each other 
The numerical results of comparison of all proposed algorithms are given in Table 5.4. 

From the numerical results of Table 5.4, it can be seen that S-MDE algorithm is superior with 

other algorithms. It gave better result than other compared algorithms in 5 test cases out of 12 

test cases. For the first function, which is Rastringin (RS) function, G-MDE gave better 

performance than. all other proposed algorithms. In this case S-MDE gave slightly higher fitness 

value than U-MDE. The second function is a simple sphere function, in which all the proposed 

algorithms perform more or less same in terms of fitness function value but if we do the exact 

comparison then S-MDE is the winner. From the results of Griewank (GR) function, which is 

the third test case, DE-PSO, G-MDE and S-MDE algorithms converged to the exact global 

optimum value. Again S-MDE gave better performance in the 4th  test case. In case of Schwefel 

(SWF) function, U-MDE converged to the exact global minimum and for GP2, DE-PSO 

algorithm converged to the true optimum. For generalized penalized function 1 (GP1) and for 

function ST, all the proposed algorithms gave the same fitness value. On Ackley (ACK) 

function, the performance of G-MDE is better than DE-PSO, AMPSOI, AMPSO2, U-MDE and 

S-MDE. For the remaining three test problems, S-MDE is a clear winner. 

Also, the comparison of all proposed hybrid algorithms is made with PSO and DE using the 

performance measures average fitness function value, standard deviation, success rate, number 

of function evaluations, average number of generations and CPU time using a test suit of five 

benchmark problems (RS, DeJ, RB, GR and ACK). A run is considered as success run if the 

function value satisfies the accuracy level Ifma. -fmml < 10-4. The comparison results are given in 

Tables 5.5 and 5.6. From these results also, it can be seen that the superior performance of the 

proposed hybrid algorithms in comparison with PSO and DE. 

5.6.5 Performance Analysis V: Comparison of DE-PSO, AMPSO 

and MDE with other Algorithms in the Literature 
The performances of the proposed DE-PSO and MDE algorithms are further compared 

with BBDE and DEPSO. In order to make a fair comparison of algorithms the same parameter 
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settings for the DEPSO and BBDE as mentioned in (Omran et al, 2007) and (Hao et al, 2007) 

are taken. Corresponding numerical results for these algorithms are given in Table 5.7 and 5.8. 

From Table 5.7, it can be seen that the proposed DE-PSO and MDE algorithms are better or at 

par with DEPSO for all the test functions. In comparison to BBDE, DE-PSO and MDE 

algorithms gave a superior performance in three out of five test cases tried. For function ST, all 

the algorithms gave same performance. 

Table 5.9, gives the comparison of AMPSO versions with two versions of EP namely FEP 

and CEP and one version of PSO namely CPSO. FEP uses self adaptive Cauchy mutation, CEP 

is the classical EP using self adaptive Gaussian mutation and CPSO is the basic PSO with 

Gaussian mutation. The difference in the results of EP given in Table 5.2 and CEP given in 

Table 5.9 is because of different experimental settings (see (Yao and Liu, 1996) for 

experimental settings of CEP and FEP). Despite different experimental settings, it can be 

observed from Table 5.9, that AMPSO2 gave a superior performance in 7 out of 12 problems 

whereas FEP gave better results in 4 out of 12 test problems. In case of function ST, except for 

CEP, all the algorithms converged to the true global optimum. 
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Table 5.1 Comparison of proposed DE-PSO with PSO and DE in terms of average fitness function value 

and standard deviation (std) 

Function PSO DE DE-PSO 

RS 37.819279 
(7.455974) 

2.53134 
(5.19026) 

1.61412 
(3.88547) 

DeJ 3.542765e-16 
(4.267806e-16) 

2.55105e-047 
(3.03209e-047) 

4.07701e-48 
(1.59336e-47) 

GR 0.018439 
(0.023367) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 

RB 81.27341 
(41.218071) 

31.1369 
(17.1211) 

24.2024 
(12.3086) 

SWF -10652.332146 
(663.174189) 

-12534 
(54.2753) 

-12545.8 
(47.3753) 

GP2 -1.138451 
(0.005241) 

-1.149356 
(1.85776e-016) 

-1.15044 
(0.00000) 

GP1 0.020733 
(0.052857) 

5.50443e-013 
(0.00000) 

5.50585e-013 
(0.00000) 

ACK 1.026221e-08 
(1.906846e-08) 

7.25006e-015 
(7.74296e-016) 

3.69735e-015 
(0.00000) 

DeJ-N 0.508692 
(0.250828) 

0.00744261 
(0.00170156) 

0.00766934 
(.00206289) 

SWF2.22 5.357442 
(3.204075) 

4.23925e-006 
(1.32717e-006) 

2.47426e-006 
(1.44023e-006) 

SWF2.21  2.063802e-11 
(5.853435e-12) 

8.91504e-027 
(3.34859e-027) 

4.79286e-027 
(4.523 57e-027) 

ST 0.05 
(0.217945) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 
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Table 5.2 Numerical Results of proposed AMPSO algorithms in comparison with basic PSO and EP in 

terms of average fitness function value and standard deviation (std) 

Function PSO AMPS01 AMPSO2 EP 

RS 37.819279 
(7.455974) 

31.838496 
(6.004726) 

18.307161 
(2.658596) 

184.097 
(20.4831) 

DeJ 3.542765e-16 
(4.267806e-16) 

2.320141e-36 
(4.57339e-36) 

4.343247e-40 
(7.930461e-40) 

25.2578 
(5.71493) 

GR 0.018439 
(0.023367) 

1.626303e-19 
(9.812327e-09) 

8.673617e-20 
(3.160965e-20) 

1.0735 
(0.0250742) 

RB 81.27341 
(41.218071) 

29.137924 
(25.014428) 

24.171648 
(16.361839) 

157.385 
(154.873) 

S WF -10652.332146 
(663.174189) 

-11937.8019 
(383.462609) 

-12214.171614 
(212.294602) 

-12297.4 
(676.107) 

GP2 -1.138451 
(0.005241) 

-1.139848 
(0.024136) 

-1.144443 
(0.010626) 

-0.986551 
(0.185161:) 

GP1 0.020733 
(0.052857) 

5.505851e-13 
(0.00000) 

5.505851e-13 
(0.00000) 

14.7636 
(5.04623) 

ACK 1.026221e-08 
(1.906846e-08) 

5.616167e-17 
(1.046215e-17) 

3.187554e-17 
(3.913005e-13) 

10.3051 
(1.05315) 

DeJ-N 0.508692 
(0.250828) 

0.467018 
(0.31365) 

0.416838 
(0.220852) 

5.38792 
(1.71161) 

SWF2.22 5.357442 
(3.204075) 

0.155533 
(0.110062) 

0.147111 	. 
(0.131858) 

9.91998 , 
(1.3015) 

SWF2.21 2.063802e-11 
(5.853435e-12) 

4.555099e-16 
(1.821241e-15) 

1.392284e-17 
(3.438109e-17) 

32.8945 
(4.47881) 

ST 0.05 
(0.217945) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 

1.53333 
(2.27645) 
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Table 5.3 Comparison of proposed MDE with DE and EP in terms of average fitness function value and 

standard deviation (std) 

Function DE EP U-MDE G-MDE S-MDE 

RS 2.53134 
(5.19026) 

184.097 
(20.4831) 

1.43079 
(3.31876) 

0.11534 
(0.296985) 

0.198991 
(0.397982) 

DeJ 2.55e-47 
(3.03e-47) 

25.2578 
(5.71493) 

2.62e-47 
(1.82e-47) 

4.20e-48 
(3.51e-48) 

9.14e-49 
(6.50e-49) 

GR 0.00000 
(0.00000) 

1.0735 
(0.025074) 

1.08e-20 
(2.16e-20) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 

RB 31.1369 
(17.1211) 

157.385 
(154.873) 

30.4642 
(12.8225) 

24.5408 
(0.770056) 

23.8297 
(0.95337) 

SWF -12534 
(54.2753) 

-12297.4 
(676.107) 

-12569.5 
(1.67e-005) 

-12537.9 
(67.923) 

-12514.2 
(121.299) 

GP2 -1.149356 
(1.85e-16) 

-0.986551 
(0.185161) 

-1.15037 
(1.27e-05) 

-1.15036 
(1.71e-05) 

-1.15038 
(1.28e-06) 

GP1 5.50e-13 
(0.00000) 

14.7636 
(5.04623) 

5.50e-13 
(0.00000) 

5.50e-13 
(0.00000) 

5.50e-13 
(0.00000) 

ACK 7.25e-15 
(7.74e-16) 

10.3051 
(1.05315) 

4.05e-15 
(1.06e-15) 

2.54e-15 
(2.36e-16) 

3.69e-15 
(1.12e-16) 

DeJ-N 0.007442 
(0.001701) 

5.38792 
(1.71161) 

0.007806 
(0.001528) 

0.005396 
(0.001858) 

0.000205 
(2.93e-05) 

SWF2.22 4.23e-06 
(1.32e-06) 

9.91998 
(1.3015) 

4.63e-06 
(1.44e-06) 

7.72e-08 
(3.12e-08) 

6.16e-08 
(6.05e-08) 

SWF2.21 8.91e-27 
(3.34e-27) 

32.8945 
(4.47881) 

8.37e-27 
(3.68e-27) 

1.95e-27 
(8.25e-28) 

9.94e-28 
(3.72e-28) 

ST 0.00000 
(0.00000) 

1.53333 
(2.27645) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 
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Table 5.4 Comparison results of proposed DE-PSO, AMPSO1, AMOSO2, U-MDE, G-MDE and S-MDE 

algorithms 

Function DE-PSO AMPSOI AMPSO2 U-MDE G-MDE S-MDE 

RS 1.61412 
(3.88547) 

31.8384 
(6.0047) 

18.307161 
(2.658596) 

1.43079 
(3.31876) 

0.11534 
(0.296985) 

0.198991 
(0.397982) 

DeJ 4.07e-48 
(1.59e-47) 

2.32e-36 
(4.57e-36) 

4.34e-40 
(7.93e-40) 

2.62e-47 
(1.82e-47) 

4.20e-48 
(3.51e-48) 

9.14e-49 
(6.50e-49) 

GR 0.00000 
(0.00000) 

1.62e-19 
(9.81e-09) 

8.67e-20 
(3.16e-20) 

1.08e-20 
(2.16e-20) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 

RB 24.2024 
(12.3086) 

29.137924 
(25.014428) 

24.171648 
(16.361839) 

30.4642 
(12.8225) 

24.5408 
(0.770056) 

23.8297 
(0.95337) 

SWF -12545.8 
(47.3753) 

-11937.80 
(383.4626) 

-12214.17 
(212.29) 

-12569.5 
(1.67e-05) 

-12537.9 
(67.923) 

-12514;2 
,(121.299) 

-1.15044 -1.139848 -1.144443 -1.15037 -1.15036 -1.15038 GP2 (0.00000) (0.024136) (0.010626) (1.27e-05) (1.71e-05) (1.28e-06) 

GP1 5.50e-13 
(0.00000) 

5.50e-13 
(0.00000) 

5.50e-13 
(0.00000) 

5.50e-13 
(0.00000) 

5.50e-13 
(0.00000) 

5.50e-13 
(0.00000) 

ACK - 3.69e-15 
(0.00000) 

5.61e-17 
(1.04e-17) 

3.18e-17 
(3.91e-13) 

4.05e-15 
(1.06e-15) 

2.54e-15 
(2.36e-16) 

3.69e-15 
(1.12e-16) 

DeJ-N 0.007669 
(0.002062) 

0.467018 
(0.31365) 

0.416838 
(0.220852) 

0.007806 
(0.001528) 

0.005396 
(0.001858) 

0.000205 
(2.93e-05) 

SWF2.22 2.47e-06 0.155533 0.147111 4.63e-06 7.72e-08 6.16e-08 
(1.44e-06) (0.110062) (0.131858) (1.44e-06) (3.12e-08) (6.05e-08) 

SWF2.21 4.79e-27 4.55e-16 1.39e-17 8.37e-27 1.95e-27 9.94e-28 
(4.52e-27) (1.82e-15) (3.43e-17) (3.68e-27) (8.25e-28) (3.72e-28) 

ST 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 
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Hybrid Algorithms 

Table 5.6 Comparison results of all the proposed hybrid algorithms in terms of average number of 

generations to achieve the accuracy level Ifmax  fminl < 104  

Function PSO DE DE- 
PSO AMPSO1 AMPSO2 U-MDE G-MDE S-MDE 

RS 1000 371 312 741 706 327 322 301 

DeJ 1000 150 137 291 306 144 122 110 

GR 1000 557 477 834 830 482 102 94 

RB 1000 1000 1000 1000 1000 1000 1000 1000 

ACK 1000 286 236 428 433 261 216 196 

Table 5.7 Comparison of DE-PSO, U-MDE, G-MDE and S-MDE with DEPSO (Mean best (std)) 

Function DEPSO DE-PSO U-MDE G-MDE S-MDE 

RS 24.216 0.00000 0.0000 0.0000 0.0000 
(6.417) (0.00000) (0.0000) (0.0000) (0.0000) 

GR 6.2e-16 0.00000 0.0000 0.0000 0.0000 
(4.1e-16) (0.00000) (0.0000) (0.0000) (0.0000) 

SWF -12547.7 -12554.3 -12569.5 -12569.5 -12569 
(66.25) (95.3042) (0.00000) (0.00000) (1.04275) 

GP1 3.9e-20 5.505e-13 5.51e-13 5.32e-18 4.71e-22 
(4.1e-21) (0.00000) (0.0000) (0.0000) (0.0000) 

ACK -0.0002 3.697e-15 3.69e-15 3.69e-15 3.69e-15 
(0.0002) (0.00000) (0.0000) (0.0000) (0.0000) 

Table 5.8 Comparison of DE-PSO, U-MDE, G-MDE and S-MDE with BBDE (Mean best (std)) 

Function BBDE DE-PSO U-MDE G-MDE S-MDE 

RS 72.185823 
(3.018019) 

31.2688 
(4.87695) 

1.73e-13 
(1.36e-13) 

1.99e-18 
(3.66e-18) 

0.0000 
(0.0000) 

GR 0.269504e-01 8.13e-21 2.16e-20 5.42e-21 5.42e-21 
(0.767095e-02) (1.93e-020) (2.65e-20) (1.62e-20) (1.62e-20) 

RB 14.295707 25.254 48.129 25.51 25.69 
(0.948028) (0.873509) (25.23) (0.9108) (3.91) 

ACK 2.136173 9.20e-15 2.18e-14 1.08e-14 7.25e-15 
(0.159471) (1.76e-15) (4.03e-15) (3.55e-15) (2.31e-15) 

ST 0.00000 0.00000 0.00000 0.00000 0.00000 
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 
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Table 5.9 Numerical Results of proposed AMPSO algorithms in comparison with FEP, CEP and CPSO 

Function AMPSOI AMPSO2 FEP CEP CPSO 

RS 31.838496 
(6.004726) 

18.307161 
(2.658596) 

4.6e-2 
(1.2e-2) 

89.0 
(23.1) 

69.050 
(16.419) 

DO 2.320141e-36 
(4.57339e-36) 

4.343247e-40 
(7.930461e-40) 

5.7e-4 
(1.3e-4) 

2.2e-4 
(5.9e-4) 

2.362e-26 
(1.500e-25) 

GR 1.626303e-19 
(9.812327e-09) 

8.673617e-20 
(3.160965e-20) 

1.6e-2 
2.2e-10 

8.6e-2 
0.12 NA 

RB 29.137924 
(25.014428) 

24.171648 
(16.361839) 

5.06 
(5.87) 

6.17 
(13.61) 

29.084 
(31.460) 

SWF -11937.8019 
(383.462609) 

-12214.171614 
(212.294602) 

-12554.5 
(52.6) 

-7917.1 
(634.5) NA 

GP2 -1.139848 
(0.024136) 

-1.144443 
(0.010626) 

1.6e-4 
(7.3e-5) 

1.4 
(3.7) NA 

GP1 5.505851e-13 
(1.75799e-12) 

5.505851e-13 
(1.75799e-12) 

9.2e-6 
(3.6e10) 

1.76 
(2.4) NA 

ACK 5.616167e-17 
(1.046215e-17) 

3.187554e-17 
(3.913005e-13) 

1.8e-2 
(2.1e-3) 

9.2 
(2.8) 

5.651 
(1.333) 

DeJ-N 0.467018 
(0.31365) 

0.416838 
(0.220852) 

7.6e-3 
(2.6e-3) 

1.8e-2 
(6.4e-3) NA 

SWF2.22 0.155533 
(0.110062) 

0.147111 
(0.131858) 

0.3 
(0.5) 

2.0 
(1.2) NA 

SWF2.21 4.555099e-16 
(1.821241e-15) 

1.392284e-17 
(3.438109e-17) 

8.1e-3 
(7.7e-4) 

2.6e-3 
(1.7e-4) NA 

ST 0.00000 
(0.00000) 

0.00000 
(0.00000) 

0.0000 
(0.0000) 

577.76 
(1125.76) NA 
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5.7 Conclusion 

Hybridization is a popular concept being applied to evolutionary algorithms to increase 

their efficiency and robustness. In this chapter three simple and efficient hybridised versions of 

DE and PSO algorithms are presented. They are: 

• Hybrid of Differential Evolution and Particle Swarm Optimization (DE-PSO) 

• Hybrid of Particle Swarm Optimization and Evolutionary Programming (AMPSO) 

• Hybrid Differential Evolution and Evolutionary Programming (MDE) 

The performance of proposed algorithms were validated on a set of 12 benchmark 

problems and the numerical results were compared with classical DE, PSO, EP and 5 other 

variants of DE, PSO and EP in the literature. Although all the modified versions presented in 

this chapter performed either superior or at par with the basic DE and PSO algorithms, it was 

observed that MDE, the hybridized version of DE with EP was better than other suggested 

algorithms. In order to further analyze the performance of MDE it was initialized with different 

probability distributions which showed that S-MDE (MDE initialized with sobol sequence) 

outperformed the other versions by a significant difference in terms of average fitness function 

value and number of function evaluations. 
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Chapter 6 

Constraint Handling Mechanism for PSO and 

DE Algorithms 

[This chapter proposes constraint handling mechanism for PSO and DE algorithms. It is 

a simple approach and does not need any additional parameters. Based on this approach, two 

algorithms namely ICPSO and ICDE are proposed. The Improved Constrained Particle Swarm 

Optimization (ICPSO) and the Improved Constrained DE (ICDE) algorithm differs from basic 

PSO and DE algorithms for unconstrained optimization problems only in the phase of selection 

of particles for the next generation and during the sorting of the final results. Besides the 

selection and sorting rules, the ICPSO algorithm starts with quasi random sequence and ICDE 

uses a dynamic scaling factor. The performance of ICPSO and ICDE algorithms are analyzed 

on a test suite of twenty constrained benchmark problems. The numerical results show that the 

competence of proposed algorithms for solving constrained optimization problems] 

6.1 Introduction 
The search space in Constrained Optimization Problems (COPs) consists of two kinds of 

solutions: feasible and infeasible. Feasible points satisfy all the constraints, while infeasible 

points violate at least one of them. Therefore, the final solution of an optimization problem must 

satisfy all constraints. 

The general NLP is given by nonlinear objective function f, which is to be minimized 

/maximized with respect to the design variables x =(x1 ,x2 , 	 xn ) and the nonlinear inequality 

and equality constraints. This can be formulated by, 

Minimize I Maximize f (V) 

Subject to: g (5E) 15_0, j =1„ p 	 (6.1) 

hk  (Y). 0, k =1„ q 	 (6.2) 

xi min  xi  xi max  = 1„ n). 
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Where p and q are the number of inequality and equality constraints respectively and n is the 

number of variables. A measure of the constraint violation is often useful when handling 

constraints. A solution -±" is called as feasible solution if 

r (i) < 0, for all j = 1,...., p 

I hk (V) I 	0, for all k =1,...,q 

Here equality constraints are transformed into inequality constraints and usually E is set as 

0.0001. The constraint violation is defined as: 

_ 
17= E G -(Y) + 	(x) 

j=1 	k =1 
(6.3) 

Where G (Y) = 
g1(x) if g 	> 0 

0 if gi(.500 
(6.4) 

  

{1 hk(i)1 if 1 hk (f) 1 —s > 0 
(6.5) H k (5) =  

0 	if Ihk  (301—s < 0 

There are many traditional methods in the literature for solving NLP. However, most of the 

traditional methods require certain auxiliary properties (like convexity, continuity etc.) of the 

problem and also most of the traditional techniques are suitable for only a particular type of 

problem (for example Quadratic Programming Problems, Geometric Programming Problems 

etc). Keeping in view the limitations of traditional techniques researchers have proposed the use 

of stochastic optimization methods and intelligent algorithms for solving constrained NLP. 

Based on the research efforts in literature, constraint handling methods have been categorized in 

a number of classes (Engelbrecht, 2005). They are: 

Reject infeasible solutions: 

It is one of the simplest ways to deal with constraints. In this method particles that violate 

any of the constraints are rejected. Infeasible particles can be treated in a number of ways: Do 

not allow infeasible particles to be selected as personal best or neighborhood global best 

positions. 
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Penalty function methods: 

Many evolutionary algorithms incorporate a constraint-handling method based on the 

concept of exterior penalty functions which penalize infeasible solutions. These methods differ 

in important details, how the penalty function is designed and applied to infeasible solutions. 

Convert the constrained problem to an unconstrained problem: 

Sometimes the constrained problem may be converted into an unconstrained one using a 

suitable penalty approach. 

Preserving feasibility methods: 

Preserving feasibility methods ensure that adjustments to particles do not violate any 

constraints. The particles are initialized to contain only feasible particles, and particles are not 

allowed to move into infeasible space. 

Repair methods: 

Repair methods allow particles to move into infeasible space, but special operators/methods 

are then applied to either change the particle into a feasible one or to direct the particle to move 

towards feasible space. 

Other hybrid methods: 

These methods combine evolutionary computation techniques with deterministic procedures 

for numerical optimization problems. 

Out of the aforesaid techniques, penalty methods have been most frequently used for solving 

constrained optimization problem. However the drawback of this approach is the selection of a 

suitable penalty parameter. Repair method is another approach which is commonly used for 

constraint handling. The advantage of this approach over the penalty method is that it does not 

require any additional parameter and gives good results. In this chapter a new constraint 

handling mechanism based on repair methods is proposed which uses simple selection and 

sorting rules. 

The rest of the chapter is organized as follows: section 6.2 explains the constraint handling 

method, section 6.3 and.6.4 describes the proposed ICPSO and ICDE algorithms. In section 6.5, 

the experimental results and discussion are given and finally the chapter concludes with section 

6.6. 
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6.2 Constraint Handling Mechanism Used in this Thesis 
The constraint handling method used in this thesis is easy to implement and does not 

require the user to set any additional parameters except providing the constraint functions when 

programming the evaluation function routine. It differs from unconstrained optimization 

algorithm only in the phase of selecting candidate solution for the new generation and sorting 

the final results. It follows the following selection and sorting rules. 

Selection Rules: 

The following three selection rules are used for selecting the next generation candidate 

solution: 

1) If both the compared solutions are feasible then select the one having the minimum (in 

case of minimize problem) or maximum (in case of maximize problem) function value. 

2) If both the compared solutions are infeasible then select the one with less constraint 

violation 

3) If one is feasible and another one is infeasible then select the feasible solution 

Sorting Rules: 

Also at the end of every iteration, the particles are sorted by using the three criteria: 

1) Sort feasible solutions in front of infeasible solutions 

2) Sort feasible solutions according to their fitness function values 

3) Sort infeasible solutions according to their constraint violations. 

Based on the above rules, two algorithms are proposed namely Improved Constrained Particle 

Swarm Optimization (ICPSO) and Improved Constrained Differential Evolution (ICDE). 

6.3 Improved Constraint Particle Swarm Optimization Algorithm 

(ICPSO) 
The proposed algorithm ICPSO algorithm is a simple algorithm for solving constraint 

optimization problems, it is easy to implement. The additional feature of ICPSO algorithm is 

that it uses quasi random Vander Corput sequence to initialize the swarm besides using the 

selection and sorting rules given in Section 6.2. 

The computational steps of ICPSO algorithm are given below: 
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Step 1 	Initialize the population (X) using low discrepancy Van der Corput Sequence 

Step 2 	For all particles 

Evaluate the objective function 

Calculate the constraint violation 

End for 

Step 3 	w linearly decreases from 0.9 to 0.4 

Step 4 	For all particles 

//Update velocity vector V (=(vii ,vi2 ,....viD )) and find a new particle 

NX 	(= (nxii ,nxi2 ,....nxiD )) using the previous particle XI 

(= (x,t  i ,x,t  2 ,.,„xto )) where D is the dimension// 

t w *vt. + cin (Put  — xi + 	(P —jt 	c2r2 	• x. ) v11
+1 	

1 	y 

nxij = x 	+i - 11 	11 

If ( NX and XI are feasible) Then 

If ( f (NX) < f(4)) Then 

4+1  = NX 

Else 

End if 

End if 

If (NX and 	are infeasible) Then 

If (constraint violate (NX)<constraint violate (X:)) Then 

4+1  = NX 

Else 

x1+1  = x: 
End if 
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End if 

If (NX is feasible and X, is infeasible) Then 

xf +1  =NX 

Else 

xt" =4 
End if 

Update Personal best position (P) and global best position ( Pg ) 

End for 

Step 5 	Sort the particles using the three sorting rules 

Step 6 	Go to Step 3 and repeat the loop until stopping criteria is reached 

6.4 Improved Constraint Differential Evolution Algorithm 

(ICDE) 
Like ICPSO is a constrained version of PSO, ICDE algorithm is a simple and modified 

version of DE algorithm for solving constraint optimization problems. It uses the selection and 

sorting rules mentioned in Section 6.2 and its additional feature is the use of dynamic scaling 

factor F which follows Rayleigh distribution to generate a random number. 

The computational steps of ICDE algorithm is given below: 

Step 1 

Step 2 

Step 3 

Initialize the population and set control parameters of DE except F (i.e. 

population size and Crossover rate Cr) 

For all particles 

Evaluate the objective function 

Calculate the constraint violation 

End for 

// dynamic scaling factor: F ranges in the interval (0, 0.9] // 

F = 0.1+ U(0, A1 1)Grandi  + Grand22  { 	 2  	if 0.5 < U(0,1) 
0.5 	 otherwise 

If F > 0.9 then F = 0.9 
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Where U(0,1) is a uniformly distributed random number in the interval (0, 1], 

Grandi  and Grand2  are Gaussian distributed random number with mean zero 

and standard deviation one. 

Step 4 	// Mutation 

For all particles 

Vi,g+1 = ri,g  +F* (X rvg  — X ryg ) 

// where x 	xr2  and xr3 are randomly selected particles and are 

different from each other // 

End for 

Step 5 	// Crossover (Generate trial vector U i,g+1  ) 

For all particles 

Select jrand E (1, ...,D} 

For j 1 to D 

., If (U(0,11 Cr5 orj= j  ran A) Then 

uii,g+i  =vii,g+i  

Else 

u-• 	1= xej•- g,g+ 	,g 

End if 

End for 

End for 

Step 6 	//Selection 

For all particles 

If (U i,g+i and X i,g  are feasible) Then 

If ( f (U 	 f (X i,g )) Then 

Xi ,g+1=Ui , g+1 

Else 

X i5g+i-X 
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End if 

End if 

If (U ig+i  and X i,g  are infeasible) Then 

If (constraint violate (U i,g+i ) < constraint violate ( X 1,g )) Then 

X i5g+1=U i3g+i 

Else 

X i 5 g+1-X i 5 g 

End if 

End if 

If (U ig+1  is feasible and X i,g  is infeasible) Then 

X i7g+F-U 

Else 

X i ,g+FX 

End if 

End for 

Step 7 	Sort the particles using the three sorting rules 

Step 8 	Go to step 3 and repeat the loop until stopping criteria is reached. 

6.5 Results and Discussion 
A set of 20 constrained benchmark problems is considered to evaluate the performance 

of the proposed ICPSO and ICDE. All the problems are nonlinear in nature i.e. either the 

objective function or the constraints or both have a nonlinear term in it. The mathematical 

models of the problems along with the optimal solution are given in Appendix II. A total of 25 

runs for each experimental setting are conducted and the average fitness of the best solutions 

throughout the run is recorded. The population size is taken as 50 for both the algorithms. 

For ICPSO, a linearly decreasing inertia weight is used which starts at 0.9 and ends at 0.4, 

with the user defined parameters c1= c2=2.0 and r1 , r2 as uniformly distributed random numbers 
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between 0 and 1. The proposed ICPSO algorithm is compared with two more variants of PSO 

namely ZRPSO (Zielinski and Rainer, 2006) and PESO (Angel et al, 2006). 

For ICDE, the crossover rate is set as 0.9 the scaling factor F as already mentioned follows 

Rayleigh distribution. The proposed ICDE algorithm is also compared with two more variants 

of DE namely: ZRDE (Zielinski and Rainer, 2006a) and jDE-2 (Brest et al, 2006). 

Several criteria are used to measure the performance of the proposed ICPSO and ICDE 

algorithms and to compare them with other versions available in the literature. In Tables 6.1 -

6.4 the performance of the proposed ICPSO is recorded in terms of best, worst and average 

fitness function value along with the standard deviation (Std) while increasing the NFE (number 

of function evaluations) to three different values 5 x 103, 5 x 104, 5 x 105. In Table 6.5 the 

performance of ICPSO is compared with ZRPSO and PESO for solving constrained 

optimization problems. Tables 6.6 — 6.10 shows the numerical results of proposed ICDE with 

respect to the above said performance measures. 

Besides using the performance indices mentioned above, the following comparison criteria 

(Liang et al, 2006) are also used to analyze the performance of the algorithms considered in the 

present study. These criteria are: 

Feasible Run: A run during which at least one feasible solution is found in maximum NFE. 

Successful Run: A run during which the algorithm finds a feasible solution x satisfying (f(x) 

f(x*) <= 0.0001. 

Feasible Rate (FR) = (Number of feasible runs) / total runs 

Success Rate (SR) = (Number of successful runs) / total runs 

Success Performance (SP) = mean (FEs for successful runs) x (Number of total runs) / 

(Number of successful runs) 
N 

(FR), 
Average Feasibility Rate (AFR) — `=1  

N 
E (SR) , 

Average Success Rate (ASR) — 	 
N 

N 
E(SP), 

Average Success Performance (ASP) — i=1 	 
N 

N 
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Where N stands for the number of problems (=20 in the present study). 

6.5.1 Analysis of Numerical Results for ICPSO and ICDE 
From Tables 6.1 — 6.4, it can be seen the performance of the proposed ICPSO improves 

with the increase in the number of function evaluations. This is quite an expected out come. 

However it can be said that 5 x 104  NFE is sufficient for reaching a good optimum solution 

which lies in the vicinity of the true optimum value, under the present parameter settings. Also, 

it can be seen that except for problem number 5 ((g05), where the standard deviation (std) is 

56.177, the std for all the remaining problems is quite low. This shows the consistency and 

stability of the proposed ICPSO algorithm. The superior performance of ICPSO is more visible 

from Table 6.5 where the results are recorded after fixing the accuracy at 0.0001. In this table it 

can be seen that the proposed ICPSO gave a better or at par performance with the other two 

algorithms. We will now take the comparison criteria one-by-one and discuss them briefly. The 

first criterion is that of a feasible run. A run is said to be feasible if at least one feasible solution 

is obtained in maximum number of function evaluations. According to this criterion all the 

algorithm gave 100% feasible rate for all the test problems except ICPSO which gave 96% 

feasible rate for test problem g17. However, from the observation of second criterion which is of 

successful run and is recorded when the algorithm finds a feasible solution satisfying the given 

accuracy (=0.0001 in the present study) it can be seen that the proposed ICPSO outperforms the 

other algorithms in all the test cases including g17. In g17, the percentage of success rate for 

ICPSO is 72, whereas the other algorithms were not able to reach the prescribed accuracy in any 

of the run. The third criterion is that of the success performance which depends on the feasibility 

rate and success rate, as described in the previous subsection. Here also ICPSO gave a better 

performance in comparison to the other two algorithms taken for comparison. 

The performance of proposed ICDE algorithm is shown is Table 6.6 — 6.9 in terms of best, 

worst and mean fitness function values with standard deviation values for three different NFEs. 

Table 6.10 shows the number of function evaluations to achieve the fixed accuracy level (f(x) -

f(x*) <=0.0001), where f(x*) is the true of the problem, feasible rate, success rate and success 

performance performed by ICDE algorithm for the given set of 20 constrained test problems. 

The proposed ICDE algorithm found at least one feasible solution for all the test problems 
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except for the test problem g03. The success rate of ICDE is 100% for 16 test problems. For the 

remaining four test problems (g03, gll, g13, g17), ICDE was not able to give 100% the success 

rate, but in these cases also it gave more than 25% success rate except g03. The overall success 

rate for all 20 test problems is 87.7%. The proposed ICDE algorithm is also compared with two 

other variants of DE namely: ZRDE (Zielinski and Rainer, 2006a) and jDE-2 (Brest et al, 2006). 

From the numerical results of Table 6.10, it can be seen that the proposed ICDE gave a better or 

at par performance with the other two compared algorithms. 

In comparison of ICDE and ICPSO algorithms with each other, it can be seen that both 

the algorithms gave more or less similar results in terms of the performance measures 

considered in the present study. Further, g03 was the only problem for which neither ICDE nor 

ICPSO were able to achieve any success rate. 
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Table 6.1 Results of ICPSO: Fitness function values achieved when NFE=5 x 103, NFE=5 x 104  

and NFE=5 x 105  for problems g01 - g05 

NFE g01 g02 g03 g04 g05 

5 x 103  

Best -12.7810 0.412234 -0.5123 -30665.5314 5126.2298 

Worst -10.3994 0.354648 -0.2144 -30665.3480 5189.3433 

Mean -11.3257 0.363072 -0.4231 -30665.3712 5165.7069 

Std 0.77603 0.021727 0.0393 0.228162 56.177 

5 x 104  

Best -15 0.803138 -0.7181 -30665.5386 5126.4967 

Worst -15 0.784856 -0.3990 -30665.5386 5126.4967 

Mean -15 0.793258 -0.6495 -30665.5386 5126.4967 

Std 9.3e-09 0.00976 0.1294 1.02e-12 5.53e-05 

5 x 105  

Best -15 0.803618 -0.8324 -30665.5386 5126.4967 

Worst -15 0.794661 -0.4751 -30665.5386 5126.4967 

Mean -15 0.803113 -0.7563 -30665.5386 5126.4967 

Std 1.5e-11 0.009781 0.0245 0.0000 2.40e-12 

Table 6.2 Results of ICPSO: Fitness function values achieved when NFE=5 x 103, NFE=5 x 104  

and NFE=5 x 105  for problems g06 - g10 

NFE g06 g07 g08 g09 g 1 0 

5 x 103  

Best -6961.8127 25.5805 -0.095826 680.6481 8207.3551 

Worst -6939.9306 28.9778 -0.095826 681.1337 8399.2033 

Mean -6958.7191 27.6499 -0.095826 680.7835 8344.4623 

Std 10.1347 0.9488 2.77e-18 0.1498 2.734 

5 x 104  

Best -6961.8138 24.3062 -0.095826 680.6303 7049.2533 

Worst -6961.8138 24.3118 -0.095826 681.0767 7049.2738 

Mean -6961.8138 24.4006 -0.095826 680.6683 7049.2697 

Std 9.09e-13 0.01911 4.80e-19 0.089227 0.01456 

5 x 105  

Best -6961.8138 24.3062 -0.095826 680.6301 7049.2480 

Worst -6961.8138 24.3246 -0.095826 680.6435 7049.2480 

Mean -6961.8138 24.3073 -0.095826 680.6329 7049.2480 

Std 1.98e-15 0.00402 0.0000 0.0525 1.81e-13 
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Table 6.3 Results of ICPSO: Fitness function values achieved when NFE=5 x 103, NFE=5 x 104  

and NFE=5 x 105  for problems gl 1 - g15 

NFE gl 1 g12 g13 g14 g15 

5 x 103  

Best 0.7499 -1 0.4923 -44.4379 961.7302 

Worst 0.8539 -1 0.9997 -39.8987 962.0497 

Mean 0.8102 -1 0.8807 -42.1293 961.7565 

Std 0.0733 0.0000 0.1940 1.3022 1.9369 

5 x 104  

Best 0.7499 -1 0.3212 -47.6380 961.7150 

Worst 0.7499 -1 0.6389 -45.7222 962.6006 

Mean 0.7499 -1 0.4783 -46.2218 962.2491 

Std 2.22e-16 0.0000 0.1067 1.0495 0.8847 

5 x 105  

Best 0.7499 -1 0.0531 -47.7648 961.7150 
Worst 0.7499 -1 0.434 -47.7648 961.7150 

Mean 0.7499 -1 0.32736 -47.7648 961.7150 

Std 2.22e-16 0.0000 0.171017 4.71e-15 4.42e-1T 

Table 6.4 Results of ICPSO: Fitness function values achieved when NFE=5 x 103, NFE=5 x 104  

and NFE=5 x 105  for problems g16 - g20 

NFE g16 g17 g18 g19 g20' 

5 x 103  

Best -1.9015 8967.5800 -0.6485 -5.50801 1.39331 

Worst -1.8991 11028.714 -0.4833 -5.50801 1.39331 

Mean -1.9001 9311.915 -0.5261 -5.50801 1.39331 

Std 0.00251 7.618 0.05928 2.348e-08 2.693e-08 

5 x 104  

Best -1.9051 8868.7455 -0.8657 -5.50801 1.39331 

Worst -1.9051 10903.986 -0.8644 -5.50801 1.39331 

Mean -1.9051 9070.5204 -0.8650 -5.50801 1.39331 

Std 7.90e-16 4.8995 0.00066 8.580e-16 2.220e-16 

5 x 105  

Best -1.9051 8853.5338 -0.8660 -5.50801 1.39331 

Worst -1.9051 8853.5338 -0.8660 -5.50801 1.39331 

Mean -1.9051 8853.5338 -0.8660 -5.50801 1.39331 

Std 8.05e-17 1.00e-12 1.06e-16 8.580e-16 2.220e-16 
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Table 6.5 Comparative Results of ICPSO with ZRPSO and PESO: NFE to achieve the fixed accuracy 

level ((f(x) — f(x*)) <= 0.0001), success rate, Feasible Rate and Success Performance for problems g01 - 

g20 

Problem Algorithm Best Worst Mean Feasible 
Rate (/o) 

Success 
Rate (/o) 

Success  Performance 

g01 
ICPSO 25250 55250 29796 100 100 29796 
ZRPSO 25273 346801 76195 100 52 146530 
PESO 95100 106900 101532 100 100 101532 

g02 

ICPSO 81800 135750 115850 100 100 115850 

ZRPSO - - - 100 0 - 
PESO 180000 327900 231193 100 56 412844.3878 

g03 
ICPSO - - - 100 0 - 
ZRPSO - - 100 0 - 
PESO 450100 454000 450644 100 100 450644 

g04 

ICPSO 7750 12650 9568 100 	• 100 9568 
ZRPSO 15363 25776 20546 100 100 20546 
PESO 74300 85000 79876 100 100 79876 

g05 

ICPSO 13350 65400 19286 100 100 19286 
ZRPSO 94156 482411 364218 100 16 2276363 
PESO 450100 457200 452256 100 100 452256 

g06 
ICPSO 7300 9600 8252 100 100 8252 

ZRPSO 16794 22274 20043 100 100 20043 
PESO 47800 61100 56508 100 100 56508 

g07 
ICPSO 29050 57800 40046 100 100 40046 

ZRPSO 315906 338659 327283 100 8 4091031 

PESO 198600 444100 352592 100 96 367282.9861 

g08 

ICPSO 1050 1350 1158 100 100 1158 

ZRPSO 1395 3921 2360 100 100 2360 

PESO 2800 8400 6124 100 100 6124 

g09 

ICPSO 10450 29550 16248 100 100 16248 
ZRPSO 45342 84152 58129 100 100 58129 
PESO 77000 129000 97544 100 100 97544 

g 1 0 
ICPSO 66050 84900 75920 100 100 75920 
ZRPSO 290367 486655 426560 100 32 1332999 
PESO 398000 475600 452575 100 16 2828593.75 
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Table 6.5 Contd... 

Problem Algorithm Best Worst Mean Feasible 
Rate (%) 

Success 
Rate (%) 

Success 
Performance 

g 1 1 
ICPSO 1650 24250 13630 100 100 13630 
ZRPSO 5475 21795 16386 100 100 16386 
PESO 450100 450100 450100 100 100 450100 

g12 
!CPS() 850 1100 976 100 100 976 
ZRPS 0 1409 9289 4893 100 100 4893 
PESO 3300 10900 8088 100 100 8088 

g13 
ICPSO 88700 111100 102512 100 	' 16 640700 
ZRPSO - - - 100 0 - 
PESO 450100 453200 450420 100 100 450420 

g14 
ICPSO 21250 339550 50614 100 100 50614 
ZRPSO - - - 100 0 - 
PESO - - - 100 0 - 

g15 
ICPSO 7400 128100 54306 100 100 54306 
ZRPSO 17857 348138 176827 100 80 221033 
PESO 450100 450100 450100 100 100 450100 

g16 
ICPSO 7100 10650 8732 100 100 8732 

ZRPSO 24907 51924 33335 100 100 33335 
PESO 43400 53900 49040 100 100 49040 

g17 
ICPSO 256800 463350 408506 96 72 567369 
ZRPSO - - - 100 0 - 
PESO - - - 100 0 - 

g18 
ICPSO 53600 89900 71694 100 100 71694 

ZRPSO 85571 455907 191220 100 80 239026 

PESO 120800 394900 214322 100 92 232958.4121 

g19 
ICPSO 2200 2850 2600 100 100 2600 

ZRPSO 9833 18382 13791 100 100 13791 

PESO 14600 22700 19980 100 100 19980 

g20 
ICPSO 3000 3450 3263.33 100 100 3263.33 
ZRPSO NA NA NA NA NA NA 

PESO NA NA NA NA NA NA 
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Table 6.6 Results of ICDE: Fitness function values achieved when NFE=5 x 103, NFE=5 x 104  and 

NFE=5 x 105  forproblems g01 - g05 

FES g01 g02 g03 g04 g05 

5 x 103  

Best -12.912 0.533948 0.097667 -30665.5 5126.62 

Worst -10.6738 0.393898 -0.001257 -30653.8 5325.05 

Mean -11.6328 0.45796 -0.053420 -30658.1 5269.37 

Std 0.753357 0.036574 0.11039 12.9959 1.7625 

5 x 104  

Best -15 0.803366 -0.395644 -30665.5 5126.498 

Worst -14.9827 0385104 -0.025106 -30665.5 5126.498 

Mean -14.9988 0.795961 -0.11585 -30665.5 5126.498 

Std 0.004318 0.009150 0.109245 0.232389 1.5367e-02 

5 x 105  

Best -15 0.803618 -0.525045 -30665.5 5126.498 

Worst -15 0.803602 -0.239068 -30665.5 5126.498 

Mean -15 0.803611 -0.34022 -30665.5 5126.498 

Std 0.00000 0.0020312 0.118131 1.40132e-06 1.194e-05 

Table 6.7 Results of ICDE: Fitness function values achieved when NFE=5 x 103, NFE=5 x 104  and 

NFE=5 x 105  for problems g06 - g10 

NFE g06 g07 g08 g09 g10 

5 x 103  

Best -6961.81 28.7617 -0.0958259 680.67 7421.73 

Worst -5783.19 35.0193 -0.0958259 682.35 8231.56 

Mean -6643.96 31.2817 -0.0958259 680.881 7890.08 

Std 71.2902 2.42755 2.888e-17 0.398674 288.741 

5 x 104  

Best -6961.81 24.3062 -0.0958259 680.63 7049.3 

Worst -6961.81 24.3066 -0.0958259 680.63 7066.38 

Mean -6961.81 24.3064 -0.0958259 680.63 7052.41 

Std 1.2125e-04 0.000831 1.8619e-17 2.807e-07 82.1743 

5 x 105  

Best -6961.81 24.3062 -0.0958259 680.63 7049.25 

Worst -6961.81 24.3062 -0.0958259 680.63 7049.25 

Mean -6961.81 24.3062 -0.0958259 680.63 7049.25 

Std 1.27e-07 2.726e-12 2.775e-17 8.56e-016 0.000493 
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Table 6.8 Results of ICDE: Fitness function values achieved when NFE=5 x 103, NFE=5 x 104  and 

NFE=5 x 105  for problems gl 1 - g15 

NFE gll g12 g13 gI4 g15 

5 x 103  

Best 0.750673 -1 0.492094 -45.5992 961.723 
Worst 0.928549 -1 0.997157 -39.1403 963.337 
Mean 0.86372 -1 0.78893 -41.2485 962.457 
Std 0.06879 0.0000 0.170059 2.30428 0.684965 

5 x 104  

Best 0.7499 -1 0.053123 -47.6919 961.715 
Worst 0.750062 -1 0.434013 -46.8961 962.288 
Mean 0.749906 -1 0.329706 -47.2343 961.753 
Std 0.000103 0.0000 0.146536 0.366103 1.45398 

5 x 105  

Best 0.7499 -1 0.053122 -47.7649 961.715 
Worst 0.7499 -1 0.434008 -47.7649 961.715 
Mean 0.7499 -1 0.332439 -47.7649 961.715 	' 
Std 1.110e-16 0.0000 0.168434 9.53e-15 3.497e-13 

Table 6.9 Results of ICDE: Fitness function values achieved when NFE=5 x 103, NFE=5 x 104  and 

NFE=5 x 105  for problems g16 - g20 

NFE g16 g17 g18 g19 g20 

5 x 103  

Best -1.90357 8890.67 -0.77478 -5.50801 1.39331.  

Worst -1.89976 9818.1 -0.619384 -5.38881 1.39331 

Mean -1.90023 8942.23 -0.735716 -5.50006 1.39331 

Std 0.0023671 7.7282 0.0462197 0.029734 3.05e-05 

5 x 104  

Best -1.90516 8877.24 -0.866025 -5.50801 1.39331 

Worst -1.90516 8968.57 -0.866025 -5.50801 1.39331 

Mean -1.90516 8940.43 -0.866025 -5.50801 1.39331 

Std 8.347e-16 7.63093 5.416e-07 1.36e-05 1.09e-06 

5 x 105  

Best -1.90516 8853.53 -0.866025 -5.50801 1.39331 

Worst -1.90516 8927.59 -0.866025 -5.50801 1.39331 

Mean -1.90516 8894.44 -0.866025 -5.50801 1.39331 

Std 9.064e-16 5.60309 1.251e-09 1.29e-12 5.23e-07 
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Table 6.10 Comparative Results of ICDE with ZRDE and jDE-2: NFE to achieve the fixed accuracy 

level ((f(x) — f(x*)) <= 0.0001), success rate, Feasible Rate and Success Performance for problems g01 - 

g20 

Problem Algorithm Best Worst Mean F e 
Rates 

i 
 (%) 

e ) Success  
Rate 

 eSuccess  z  ) 
Performance 

g01 
ICDE 25350 62600 32466 100 100 32466 
ZRDE 30511 38028 33414 100 100 33414 
jDE-2 46559 56968 50386 100 100 50386 

g02 
ICDE 66850 124900 111503 100 100 111503 
ZRDE 95501 129363 113298 100 84 134879 
jDE-2 101201 173964 123490 100 92 145899 

g03 
ICDE - - - 100 0 - 
ZRDE - - - 100 0 - 
jDE-2 - - - 100 0 - 

g04 
ICDE 6750 11300 9836.67 100 100 9836.67 
ZRDE 14048 18362 15986 100 100 15986 
jDE-2 38288 42880 40728 100 100 40728 

g05 
ICDE 13450 29550 18460 100 100 18460 
ZRDE 16994 204151 107076 100 100 107076 
jDE-2 133340 482304 206620 100 68 446839 

g06 
ICDE 5900 15200 13933.3 100 100 13933.3 
ZRDE 6147 7995 7143 100 100 7143 
jDE-2 26830 31299 29488 100 100 29488 

g07 
ICDE 32700 43450 38550 100 100 . 38550 
ZRDE 84889 104026 93793 100 100 93793 
jDE-2 114899 141847 127740 100 100 127740 

g08 
ICDE 758 1400 1346.67 100 100 1346.67 
ZRDE 831 1337 1086 100 100 1086 
jDE-2 1567 4485 3236.4 100 100 3236 

g09 
ICDE 13150 296600 35373.3 100 100 35373.3 
ZRDE 23828 27424 25805 100 100 25805 
jDE-2 49118 58230 54919 100 100 54919 
ICDE 59450 216900 168727 100 100 168727 

g 1 0 ZRDE 105673 132270 119217 100 100 119217 
jDE-2 139095 165498 146150 100 100 146150 
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Table 6.10 Contd... 

Problem Algorithm Best Worst Mean Feasible 
Rate (%) 

Success 
Rate (%) 

Success 
Performance 

gll 
ICDE 1950 37400 29030 100 67 43545 
ZRDE 1384 24356 13380 100 100 13380 
jDE-2 17834 432169 49700 100 96 53928 

g12 
ICDE 850 1200 1083.33 100 100 1083.33 
ZRDE 342 7307 5104 100 100 5104 
jDE-2 1820 9693 6355.6 100 100 6356 

g13 
ICDE 46150 71000 60150 100 27 225562 
ZRDE 242289 288226 265703 100 32 830322 
jDE-2 - - - 100 0 - 

g14 
ICDE 89400 111900 104337 100 100 104337 
ZRDE 57727 81392 68226 100 100 68226 
jDE-2 88954 107951 97845 100 100 97845 

g15 
ICDE 18450 90200 82653.3 100 100 82653.3 
ZRDE 7151 137487 57968 100 100 57968 
jDE-2 51321 432766 222460 100 96 241383 

g16 
ICDE 7650 9500 8546.67 100 100 8546.67 
ZRDE 9837 12619 11592 100 100 11592 
jDE-2 28230 34182 31695 100 100 31695 

g17 
ICDE 222400 448950 347327 100 60 578878 
ZRDE 201798 328448 265692 100 20 1328459 
jDE-2 449306 449306 179710 100 4 11232650 

g18 
ICDE 16300 21600 19443.3 100 100 19443.3 
ZRDE 70290 96334 79557 100 100 79557 
jDE-2 91049 142674 104460 100 100 104462 

g19 
ICDE 2450 4250 3146.67 100 100 3146.67 
ZRDE 2514 3356 3024 100 100 3024 
jDE-2 7587 11550 10196 100 100 10196 

g20 
ICDE 2050 2550 2410 100 100 2410 
ZRDE NA NA NA NA NA NA 
jDE-2 NA NA NA NA NA NA 
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6.6 Conclusion 
This chapter presented a new constraint handling mechanism for solving constrained 

optimization problems. It is a simple approach for handing constraints and no need of additional 

parameters. Based on the new constraint handling mechanism, two algorithms were proposed 

namely ICPSO and ICDE. The Improved Constraint Particle Swarm Optimization (ICPSO) 

algorithm was initialized using quasi random Vander Corput sequence and differs from 

unconstrained PSO algorithm in the phase of updating the position vectors and sorting every 

generation solutions. Similarly, the Improved Constraint DE (ICDE) algorithm differs from 

unconstrained DE algorithm only in the phase of selection of particles to the next generation and 

sorting the final results. Also the proposed ICDE uses dynamic scaling factor following 

Rayleigh distribution. The performance of ICPSO and ICDE algorithms are validated on twenty 

constrained benchmark problems and compared with two other variants of PSO and DE in the 

literature. From the empirical analysis it can be seen that both the proposed algorithms gave an 

average feasibility rate of 100%. In terms of success rate, ICPSO gave an ASR of 89% while 

ICDE gave an ASR of 87%. Finally in terms of success performance, ICPSO gave an ASP of 

91053, while ICDE gave an ASP of 78936. 
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In-Situ Efficiency Determination of Induction 

Motor 

[This chapter investigates the performance of PSO, DE and their proposed variants with 

the real life problem namely In-situ efficiency determination of Induction Motor (5hp). By the 

application of PSO and DE algorithms in this problem, the motor efficiency can be obtained 

without performing no-load test, which is not easily possible for the motors working in process 

industries where continuous operation is required. Results are compared with Genetic 

Algorithm and a physical efficiency measurement method, called torque-gauge method. The 

performances in terms of objective function (error in the efficiency) and convergence time prove 

the effectiveness of the optimization algorithms used for comparison in this chapter.] 

7.1 Introduction 
Induction motors (IMs) have become the most widely used machines in any industry. 

These motors consume around 70% of the electricity used. Indian electricity tariff, on which 

electricity and other public utility rates are highly dependent, are increasing and hence many 

industrial consumers have migrated away from the grid. Also, process industries are found to be 

energy intensive (4% of energy cost in the total input cost in case of textile industry) compared 

to other industries like chemical, food, computer manufacturing etc., (Palanichamy et al, 2001). 

Therefore, a small increment in the efficiency of these motors can result in substantial saving in 

the long period. Since the Induction Motors operate at part load in industries is unavoidable, 

there exist a large opportunity for energy savings by implementing efficient controller with 

Adjustable Speed Drives (ASD). Adoption of energy conservation in these motors by providing 

ASD or replacing it by energy efficient motors is highly depends on the savings and payback 

periods. In this situation, accurate in-situ efficiency determination in these motors is essential 

but it requires the motor's electrical parameters. 
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Many non-linear programming techniques like the Newton-Raphson technique, cyclic 

method, Hook and Jeeves and Rosenbrock methods have been applied to parameter estimation 

and hence efficiency determination of IM. The optimum determined by the Newton-Raphson 

technique depends heavily on the initial guess of the parameter, with the possibility of a slightly 

different initial value causing the algorithm to converge to an entirely different solution 

(Nangsue et al, 1999). Also this algorithm needs derivative during the optimization process, 

which may be difficult to calculate. Bounekhla et al (2005) have proved Rosenbrock method is 

better than scatter search and Hook and Jeeves methods in terms of fast and efficient search. 

Apart from conventional methods, some of the evolutionary techniques like GA (Pillay et al, 

1998), Genetic Programming (Nangsue et al, 1999), PSO (Benaidja and Khenfer, 2006), DE 

(Ursem and Vadstrup, 2003), Evolution Strategy (Ursem and Vadstrup, 2004), and a variant of 

PSO based on diversity (Ursem and Vadstrup, 2004) have also been successfully applied to 

Induction Motor parameter (electrical and mechanical) estimation. In this chapter, PSO, QPSO 

and DE and their variants (ATREPSO, GMPSO, SMPS01, LDEI and DE-QI) are applied to the 

in-situ efficiency determination of Induction Motor. A wide comparison is performed on the 

results obtained from these algorithms along with GA (Pillay et al, 1998), and torque-gauge 

method (Ontario Hydro Report, 1990). 

The rest of the chapter is organized as follows: Section 7.2 explains the standards for 

Induction Motor efficiency determination. In section 7.3, mathematical model of the in-situ 

efficiency determination is given; section 7.4 gives the method of solution and result discussion. 

Finally the chapter concludes with section 7.5. 

7.2 Standards for Induction Motor Efficiency Determination 
The methods for efficiency measurements can roughly be divided into two categories: 

direct and indirect methods. In direct method, shaft torque is directly measured and calculate the 

efficiency by using the ratio of motor output power to the input power. But the preferred method 

of determining efficiency in three-phase Induction Motor is the summation-of-losses method. 

The IEEE 112 (USA) (IEEE standard, 2004), IEC 34-2 (European) (IEC standard, 1972) are the 

international standards and the Indian standard IS 325: sub rule IS 4029 (Indian standard, 2002), 

represent the most important references for the three-phase Induction Motor efficiency 
194 



In-Situ Efficiency Determination of Induction Motor 

measurements. These standards recommend different measurement procedures, in particular for 

the stray losses determination and the temperature corrections of the copper losses. 

The IEEE 112-2004 (revised of IEEE 112-1996) (IEEE standard, 2004) consists of five 

basic methods to determine the efficiency: A, B, C, E and F. In method A, the input and output 

power is measured and the efficiency is directly obtained. This method is only used for very 

small machines. Method B employs a direct method to obtain the stray load losses. It is not a 

direct method for determining the motor efficiency. 

Method B is the recommended method for testing of induction machines up to 180 kW. 

Method C is a back to back machine test. The total stray load losses are also obtained via a 

separation of losses for both motor and generator. The stray load losses are then divided 

between the motor and generator proportional to the rotor currents. Method E and E1 are indirect 

methods; the output power is not measured. In method E the stray load losses are directly 

measured using the reverse rotation test. In method E1, the stray load losses are set to an 

assumed value. From an experimentation (Thangaraj et al, 2007), IS 325 is similar to IEEE 112- 

E. 

In method F and F1, the equivalent circuit of the machine is used and offer more 

advantageous when test under load are not feasible or not desirable (Pillay et al, 1998). The 

stray load losses are again directly measured or in the case of F1 an assumed value is used. 

There also exist some additional methods, e.g. the use of the equivalent circuit but calibrated at 

a load point. These methods are less suitable field measurements (in-situ motor) because they 

require no-load land locked rotor results. The method developed by Otaduy (1996) requires only 

speed measurement and nameplate data to construct an equivalent circuit with electrical 

parameters. 

7.3 In-Situ Efficiency Determination 
The method to be described in this chapter considers IEEE E1  and F1  methods of 

efficiency determination. The procedure followed in this chapter is same as of Pillay et al (1998) 

but PSO, DE and their variants are used to solve the algebraic equations instead of GA. 

Because, PSO and DE techniques have become very popular since last decade to solve multi 
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dimension non linear programming problems due to its less complexity, fast convergence, etc., 

than Genetic Algorithm and Evolutionary Programming. The general block diagram of in-situ 

efficiency determination of Induction Motor using optimization algorithms is shown in Figure 

7.1. 

Figure 7.1 Block diagram of Induction Motor in-situ efficiency determination 

First, the stator line resistance is measured after shutting down the motor. 5HP, 4 pole 

Induction Motor considered as test motor. Summation of losses method of efficiency 

determination is used with the assumption of stray load losses. The winding arrangement of a 

star connected motor is shown in Figure 7.2 and the resistance per phase is calculated as in Eqn. 

(7.1). 

r = rlline  
2 

(7.1) 

where rnme is stator line resistance 

r1 is stator phase resistance 

A 

Figure 7.2 Winding arrangement of star connected motor 
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Before entering into the development of algorithm some measurements are required to find 

the equivalent circuit parameters which are: stator line to line voltage VI, stator current II, input 

power Pmp  and rpm at difference load points. Then, power factor can be calculated as in Eqn. 

(7.2). The measured and calculated values of the test motor for a wide range of loads and the 

equivalent circuits considered in this chapter are taken from (Pillay et al, 1998) and are shown in 

Table 7.1 and Figures 7.3 and 7.4 respectively. 

Pinp  
Pf = kil

l  
(7.2) 

Table 7.1 Measured data of the test motor 

% load voltage V, 
Volts 

current I, 
Ampere 

input power 
Pinp, Watts 

power 
factor, pf 

Speed, 
rpm 

25 460 2.7 381 0.177 1794 

50 460 4 2047 0.642 1764 

75 460 5.3 3272 0.775 1741 

100 460 6.7 4326 0.81 1719 

Two variations were performed in these circuits from the conventional exact equivalent 

circuit for comparison that are: (i) inclusion of stray load loss resistance rst, shown in Figure 

(7.3) and (ii) parallel connection of Xm, r,, is transformed into series connection as X'„, r',„ 

shown in Figure (7.4), and its calculation can be performed as in Eqn. (7.3). 

2 	 2 r x 	 r x 

	

m 	r 	M M 
rm  = 

2 	2 
; X m  = 2  

	

r +x 	r 
+x 
 
m 2 

 

where Xm  is mutual inductance and rm  is core loss component. 

Next step is to find the stray load losses at any load point from its assumed value at full load 

as per the recommendation in IEEE standards section 5.7.4 (IEEE standard, 2004). The 

recommended value of stray load losses for different capacity motors is shown in Table 7.2. In 

the present study, we have considered this loss at full load is 1.8% and its calculation at different 

load point is shown in Eqn. (7.4). The remaining Eqns. (7.5) - (7.20) of Induction Motor which 

is involved in the present study are as follows (Pillay et al, 1998). 
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/22  
Psi = Pst ji 2  

/2fl  

where Pst, Pstii are stray load losses at any point and full load respectively; 12, 12fl are rotor 

currents at these load points. 

The stray load loss resistance rst  is 

(1— s fl  ) 
rst  = 0.0 1 8r2 	 

sfl 

where sfl slip of the motor under full load. 

Figure 7.3 Equivalent circuit of Induction Motor with stray loss resistance 

(7.4) 

(7.5) 

Figure 7.4 Equivalent circuit of Induction Motor (Modified) 
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Table 7.2 Stray load losses for the different capacity motors 

Motor rated power Stray load losses relative to 
the output power 

0.75 — 90 kW 1.8% 
91 — 375 kW 1.5% 

376 — 1800 kW 1.2% 
1800 kW and higher 0.9 % 

Temperatures of stator and rotor windings are assumed to be the same and calculated as in Eqn. 

(7.6) with the IEEE recommended reference temperature. 

Tt  = 	(Tr  —Ts )+Ts 	 (7.6) 
— /0 

where II, In are the measured and nameplate stator currents 

Io is the stator current under no-load DC test 

Tr  = 75°C is the reference temperature for the insulation system of class A (IEEE 

standard, 2004) 

Ts  = 25°C is the ambient temperature. 

Eqns. (7.7), (7.8) are used to correct the stator and rotor resistances to the test temperature 

rl  (Ti  +Ice ) 
rlc = 	

T +k 	
(7.7) (7.7) s   

r2 (Tt  +ka)  
r2c 	 (7.8) 

Ts  +k, 

where r1  is the stator resistance measured during DC test. 

r2 is the assumed rotor resistance. 

The complex admittances of the branches of the equivalent circuits of Figures 7.3 and 7.4 are 

given below (Pillay et al, 1998). 

Y2 = 	 (7.9) 
r c  s + rst  + jx2  

For the equivalent circuit Figure 7.3: frm  = J + 1 	 (7.10) 
xm  rm  

1 
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For the equivalent circuit 

1 

+Ym ) 

Figure 

be estimated 

7.4: 

Y2 

rotor current 

1 
17m  

V1 Y1  

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

= 	, 
rm  + jxm  

as 

can be estimated as 

of Figure 7.3: 4, = 

of Figure 7.4: Im  = 

7.3 can be estimated 

7.4 can be estimated 

I ) + im 2  rm  ) 

as 

Y1 =  
ric 	/xi 

The stator current 

'lest —1 1-11—  

where V1  = 

The power factor 

93(11) 

can 

V1Y1 (Y2 
+Y2 

Vl  / 

and 

+ Ym 

17; /71 
Pfest = 

'lest 

The current through 

The current through 

The input power 

Pinpest = 3(/12r1c 

The input power 

Pinpest —3(11 

The output power 

Poutest = 312 

The efficiency 

t = Poute s  100% _ 

; 12 = 

rm  

rn, 

of the 

of the 

2ric + 

can 

2 	1 — s 

Y1 + Y2 

for the 

for the 

circuit 

circuit 

2 (r2c  

+/22(r2c/s+rst)±/m2 rm) 

be estimated 

+ Ym 

circuit 

circuit 

of Figure 

of Figure 

s 	rst  

as 

rm(Yi ++ Y2  +Ym) 

171YiYm 

Yi +Y2 + Ym 

as 

as 

r2c 
S 

can be estimated 

Pinf est 

The goal of optimization algorithms is to minimize the errors between the measured and 

calculated parameters. Four methods are considered in this study. They are: 
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Method 1: The objective function is, 

Maximize ffi = 	
1  

11
2 

+12
2 

where fl = (I lest — Ii )100 I /1 and 12 = (Pinf est — Pinf )100 / Pinf 

Method 2: The objective function included stator current, input power and power factor, which 

is: Maximize ff2 = 	  
1 

 
11

2 
+12

2 
+f3

2 

Wherefi ,f2  are as same as in objection functionffi  and 

Method 3: The objective function included stator current, input power and output power, which 

is: Maximize ff3  = 

 

ft
2 + f22 + f42 

Wherefi ,f2 are as same as in objection function ffi and f4 = ( -Poutest Pout )100 / P0,41  

Method 4: The objective function included four input parameters. They are stator current, input 

power, power factor and output power. The objective function is: 

Maximize 	 I  fl4  = 
112  + 12

2 
+13

2 
+ 14

2 

The unknown variables of the above objective functions are xi, r2, xm  (or xm') and rm  (or 

rm'). The optimization algorithms are used to determine the above said unknown variables. The 

assigned parameters of the given motors are: Ka  = 225, Ke  = 234. 5, r1 = 1.635 ohm. 

7.4 Method of Solution and Discussion of Results 
For solving the above optimization model, basic PSO, DE and some of their variants 

discussed in the previous chapters viz. QPSO, ATREPSO, GMPSO, SMPSOI, LDEI, DE-QI 

are used. These algorithms gave slightly better results than the other algorithms developed in 

13 = (Pf est — Pf)1°° I Pf 
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this thesis for this particular problem. For comparison, the results of Genetic Algorithm (Pillay 

et al, 1998) and tarque-gauge method (Ontario Hydro Report, 1990) are used. 

Parameter settings of PSO and DE algorithms: 

The main parameters of PSO algorithm are inertia weight w and acceleration constants 

c1 and c2. For all the PSO algorithms, the inertia weight w is taken to be linearly decreasing 

from 0.9 to 0.5 and the acceleration constants c1 and c2  are taken as 2.0. For QPSO algorithm, 

the parameter 1 is linearly decreased from 1.0 to 0.5. The main parameters of DE are crossover 

rate Cr and scaling factor F, which are taken as 0.2 and 0.5 respectively for the entire DE 

algorithms. Besides these settings a total of 30 runs for each experimental setting were 

conducted and the average efficiency was recorded. 

Result Analysis: 

The comparison result of all algorithms corresponding to Figure 7.3 is given in Table 7.3 

— 7.10. Table 7.11 — 7.14 shows the comparison results of given algorithms corresponding to 

Figure 7.4. Performance curves of algorithms are given in Figures 7.5 — 7.11. Figure 7.12 — 7.15 

shows the comparison among the optimization algorithms at 25% load for Figure 7.4. 

In the comparison among the four methods, the results indicate that the methods 

corresponding to Figure 7.4 (which is considered the equivalent circuit with a series connection 

, r,'„) gave better results than the one with parallel connection in term of error in the 

efficiency estimation. The addition of fourth input (method 3), nameplate output power, to the 

input parameters of the algorithm helps to achieve minimum convergence time and number of 

function evaluations (NFE) at all the loads. But, no positive effect of this variable in the error 

minimization. The standard deviation (SD) of method 3 is 6.08e-7, which proves its superiority 

whereas SD value in method 1 is 4.65e-5. The performance of method 4, which is also 

considered f4 (output nameplate power) in addition with current, input power and power factor 

as input parameter of the algorithm, is poor than method 3 in terms of convergence time and 

NFE. 

The results from method 3 and 4 indicate that the effect of third (power factor) input 

parameter in the performance of the algorithms is almost negligible. But its contribution in 
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method 2 is significant to achieve good performances in comparison with method 1. Hence, the 

parameters namely, current, input power, speed and output power are sufficient to determine the 

motor parameters quickly and if the knowledge of output power is not available, power factor 

should be considered in addition with the first two inputs to get better performance. 

In the comparison among the algorithms in terms of error, the results indicate that LDE1 

outperformed the other algorithms at 100% load. ATREPSO and DE-QI algorithms produced 

better results at 75% and 50% loads respectively. At 25% load, SMPSO1 and ATREPSO are 

outperformed the other algorithms. If we compare the algorithms in terms of convergence speed, 

then the results indicate that DE-QI offered better performance than all the other algorithms at 

100% and 75% loads. SMPSO1 at 50% load and at 25% load, almost all the algorithms 

performed well in term of speed of convergence. 

Over all, it can be said that method 2 which is solved by ATREPSO, SMPSOI, LDE1 and DE-

QI algorithms gave better results in many cases in terms of accuracy in efficiency estimation. 

The method 3 solved by the algorithms SMPSO1 and DE-QI offered very good results in terms 

of convergence time at all the load points. 

203 



N 
0.) 

• .- 
••1-1 
4-4 
0 

0 
C.) 

a) 

U 

a) 

O 
O 
s•-• 
a) 

>-, 

C 

a) 

U 

(.1-4 

a) 

c.1-4 
0 

3-  
a) CI) 1-0 

• '- 
(/) 
5 

▪ 0 

q_4 
0 
kn 

CI) 

0 

az: 

5 0 

M 
N 

ct 
H 

Ch
ap

te
r  

C' ''•;)  
CD e--I 

5-• 0 1... 
.._.,'-' 1-1-1 

kr) N kr) 
C> 

• N 2.
02

2 VD 00 
N 0 
Ci 

VD 1/40 
el 0 
C',j 2.

04
79

 

r•-•  en en 
0 
(•,1 

CV N CT 
.0* 
.--i 2.

02
41

 

%.0 M 
N 

CD 
Ef

fic
ie

nc
y  
 

85
.5

52
5 N 

c•si 

VI 

00 

‘0 
(-A 

kr) 

k()  00 

00  
VD 
(-NI 

in 

kr) 00 

ON 
••:1-  

kr) 

kr) 00 85
.5

33
7 

85
.4

92
2 •-. 

'Ct• 
cs) 

kr) 

kr) 00 

V> 
oo 

• 
kr) 

00 83
.5

 

C7: 1'  WI 

Er
ro

r  
 

2.
90

29
 

Cl 0 
ON 
Csi 

N 
C::> 
ON 
r'i 2.

90
23

 

00 00 . 
" 

kr) 0 
ON 
N.  

1/40 
V) 
00 
N . 2.

90
23

 
1.

88
 

.---. ,_  
= CN1 
N C) • — c.) 	...._ .N 

,..., 	00 
i-c-r 

87
.7

02
9 

C.N1 
C) N 
r-: 
00 

CA 
CD N 
r-: 
00 

00 

'1  
r-:  
°° 

WI 
C) 

t■ 
00 

N 
VD Le) 
1---: 
00 87

.7
02

3 
86

.6
8 

84
.8

 

%
O

g
 
 

o r---. 
O 

Wkr; 4.
9 2

55
 

4.
88

85
 

4.
88

85
 

■.c) 
crN N 
•1:  4.

77
75

 

v:;) 
N 
N 
.7t' 4.

77
4

1
  

-1-  _. 
kr; 

Ef
fic

ie
nc

y  
 

89
.3

74
 
 

V) 
V) 
N N 
CT 00 

V) 
00 -  00 
--. 

CT 00 89
.1

8
8

5
 	

1 

'Cr 
VD CT 
0 

CT 00 

V') 
N 1"--- 0 
CT 00 

‘Cr 
\O 

C-- 0 
CT 00 

•—• 
.1-  
r-- 40 
CT 00 89

.4
4 

84
.3

 

0 

kr) 

N 

Er
ro

r  
 

13
.76

2
2
  

0.
4

9
1

4
  

0.
01

8 •—. 
•--. 
Cr) VD 
01 

00 
N \O 
C> 
oci 

N CT 
CA 
•—' 
ca: 

e-. 
tr) 
CD 
•—. 
t--:  

kr) 
0 
r'''' 
VD 
S 

CT •—• •  
•—• 
N  

Ef
fic

ie
nc

y  
 

61
. 5

6
2
2
  

48
.2

9 1
4
 
 

47
. 8

18
 

57
. 4

31
1  
 

55
.8

67
8  s ON 

CN1 CT 
v:i4 kr) 

s 

1/1 
C> CT 
4 kr) 

kr) 

C> 
r--  71: 
kr) kr) 

CS CA 
00 
■D 

00  
e-: 
''/- 

O
Sd  

aK M
.102 1V  

— 
0 
V) a 
U) G

M
P

S
O

  
A

T
R

E
P

S
O

  
Q
P

S
O

  

___, 

...1 1-) n G
A

 
 

T
G

 
 

O  

0 

0 

--, 

i-■ 
0 
;... 

.1 r , . ' • . • ■ 

00 
(::7  
1■1 

C: D • N 2.
01

81
 

2.
0 1

7
4

 

q:,  
VD 

.. 

0 
c,i 2.

01
22

  

0N 
"0 

..'.4  

0 
(-4 

in 

ON '••0 
o N 
—. 

N. 
•—, •--. 
0  . 
cm 

1.--- 

. — ■ 

>„ 

c.) 

G 
a) _, 

c.) 

c4:1 4-4 
[Li 

oo O\ 
...... 

In 
kr;  00 85

.5
18

1 -1-  r.- 
, 

kn 
kr; 00 

1/40 1/40 
, 

v-) 

kr; 00 

el el 
, 

kr) 

kr; 

00 

ON 1/40 
--, 

kr, 

kr; 

00 

irl 1/40 
.71: 

kr) 00 

0,  

r.--  ,--4 
kr) 

kr; 00 84
.7

7 

kr) 

r,-; 

oo 

,,,C,) 
V) r•-•• 

" 
o ;.., 
'-' 

00 
`0 • j- 
CT 
N 

kr) 
N 
CT 
N 

..-•■ 
el 
VD 
CT 
Cl 

00 
0 •—■ 
CN 
Cl 2.

95
03

 

.C) 0 .--. 
CT 
(-9 

e-- 00 D.  . 
N 

c-01 
0 ,--. 
C:71 
C \ 1 

1.0
7 

__ 
•••1 
C 
a) 

• .. 

U , ..., 
Li-1 
(II 87

.7
46
8
 	

 
87

.7
12

5 VD
c)  1--- 
00 

0 
.__4 

e-- 
00 87

.7
50

3  

•-•-I
0 
e.- 
00 

oo 

1/40 
-- 00 87

. 7
10

3 

00 

t r; 00 . 84
.8

 

0 

0 kr) 

Er
ro

r  
 

t7,en  
0 

1";  

00 
o0 

o 

kri 

CT 
t--  

0 

kr; 

kr) 

%4D 

0 

In 

rn  
■-r) 

O\ 

4  4.
96

04
 

4.
88

21
  

VD 

kr) 

ca, 

4 

2.
74

 

ct, 

0 • :- 
tr::  

41 
4--i 

rn 
Cr" cn 
cf■ 
00 89

.3
8

8
8

  

•—• 
CT h crl 
CT 00 

CN 
In 
V, crt 
CT 00 

ce)  
■0  
N 
''' 00  

.1- 
0 ■.0 
Cs4 
CT 00 

•—■ 
cl 00 
•—, 
Cr■ 00 

VD \O kr) 
N 
CT 00 

87
.0

4 
84

.3
 

0 kr) 
N 

Er
ro

r  
 

.--4 
0) 
N N 
r,i 

tn 
VD vl 00  
. 

vl 
0 cn ki) 
6 

1/40 
•—• 
Cr\ 
•—. 
(NI 12

. 72
08

 

1/40 d-  ,-1 
1/44). 
co 

00 
1/40 

Tt •  

CT 
1/40 
N 

• r- 

e•-• 1/4.0 
r-4: 
—4 

E f
fic

ie
nc

y  
I
  

—. 

cr,  N 
0 

O 

va 

kr) 

va,  

in 

,..0 

S 

kr) 

kr) 

0 

en 

rn 

GO 

kn 

■4::) 

-- 

a,  

a, 

a; 

kr) 

oo 

0 

(NI

in 

0 1/40 58
.4

14
6  a\ 

oo 

(NI 

N kr) 

N 

0, 

0 

kr; I.r) 

s 

k
•  

va 

oo 

S 

''1-  

A
lg

or
ith

m
  

O
Sd 

S
M

P
S

O
1
  

G
M

P
S

O
  

A
TR

E P
SO

 
Q

PS
O

 
 

D
E

 
 

•—■ 

rzi ._ 

I—, 0, 

Wis) G
A

 
 

TG
 

L
 



In
-S

itu
  E

ffi
ci

en
cy

  D
et

er
m

in
at

io
n  

of 
 In

du
ct

io
n  

M
ot

or
  

S 
a) 1.. 

0 

C 
0 

U 

a) 

a) 

O 
is 0 
a) 
$.4 

-o 

a) . - co 

c•-•e 
0 
en 

a) 

z 

0 
bA 

0 
en 

I. 

0 

0 

S

•••-+ 

ccs 

kr) 

a) 

N 

IDA 

(4-4 
0 

0 

e•+■ 
a) 

a) 

O
• -) 

is 0 
a) 

-o 
ccs 
>-) U 
a) 

a) 
(4-1 

<4-4 
0 

5 
a) 

a 
(/) 

%E. 
0 
!DO 
cd 
(4-4 
0 

a) 
en 

0 

0. 
'65 

0 

S 
a) 55  
cct 

se;'' 
<0 
CD> 

E
rr

or
  
 

VD 
0- 
ten 
0 
CV 

N 
0•\ 
0i- 
0- 
CV 2.

44
7 

2.
47

3
1
 
 

2.
44

8 9
 

2.
45

15
 

2.
44

26
 

2.
44

2 CO 
00 
N 

E
ff

ic
ie

nc
y  
 

-4. 
kr) C 
In 00 85

.9
49
7
 
 

4- CT 
kr; oo 

L  
85

.9
73

1 oo 
.ct 
CT 
LA oo 

•-- 
1r) 
ON 
kr; oo 85

.9
4
2
6
  

85
.9

42
 

v3 
en 
VS 00 83

.5
 

kr) 

E
rr

or
  
 

I. 
--. 
CT 
N 

...-, 
k.0 CO  

eNi 

oo 

VD
N 

00  

C. i 

c.si`c )  
. CO 

oo 
N 

c V 

kr, 
CO
00 

N 

en -. 
0- 
CO 
N 

1
 

2.
59

0
2
  

3.
24

 

, 
z 
a) • -• C.) tr... 

t4-■ 
(I.) 87

.7
13
4
 
 

87
.4

60
1
 
 

8 7
.4

8
9
8
  

N 
V0 
N: 
00 87

.4
73

8 

c> 
00 
`1" 

00 

N
.

-
 

87
.4

41
3 

c) 
C71 
V-) 

00 

,zi- 
0 

84
.8

  

'c:"' O tr, 

E
rr

or
  
 

czn 

N(-4 
VD 

va 
kr) 
kin 

kr) s (.4 0' 

4.
35

45
  

4.
76

44
 . 

c-,1 oo . 
%.r3 s 
01 0- 

4.
6 8

32
 

oo 
v) 
01: 

>-‘ c.) 
el) 
• 5' 
t0 (4-■,_, 
114 

an 
N 
CT 
xi oo 

va 
kin 
00 
oc; oo 88

.7
27
5
 
 

88
.6

54
5 

89
.0

64
4 .- 

" 
c:: oo 

v, 
N 
CT 
N 
06 
00  88

.9
83

2 
88

.8
8 en 

0: 
00 

V1 
N 

E
rr

or
.  
J
 

16
. 8

35
7
 
 

01 

`Zr 
tr1 

00
 

 

13
.4

84
1
 
 

CN1 

01 . 
en 

° 11) 
N 

• it, - 18
.3

70
4
  

16
.4

54
9 

1   
1
2
.4

36
6 

23
.4

4  

E
ff

ic
ie

nc
y  

I 

N in 
Ctin 
4 CO 54

.3
4
8
9
 _

I 
1 	

61
.2

84
1 (NI .- 

N. ..-. 
■0 

N c:,in kr) . 
eel 
CO 66

.1
70

4 
64

.2
54

9 VD 
re, 
N  
i.0 

.:::":. 
CO  

I 	
71

.2
4 oo 

r•-! .4. 

A
lg

or
ith

m
  

PS
O

 
SM

PS
O

1 
G

M
PS

O
 

A
T

R
E

PS
O

 

0 
C/) 
O• a I.1) 

..._, 
W c) 
.1 1  D

E
-Q

I 

¢ 
(.7 

0  
E-1 

O co - 

E
rr

or
  
 

(..... 
c" ''t" 
c`i 

vD 
kr) r.4 .1- 
c,i 

en 
kr) s 
-4. 
c,i 2.

44
35

 
2.

41
65

 .--, v:,  •4- -,:i. 
N 2.

40
91

 
2.

44
47

 

kr) v0 
(NI 

E
ff

ic
ie

nc
y  
 

s 
Cr\ 
Ch

i  00 

vD 
N 
CT 
ki 00 

en 

I-- 
CT 
kr; 00 

kr) 
0 
CT 
k; 00 v00i 

kel 
)..o  
-. 
ON 

00 

.-- 
0- ON 
00DD 

- 
0
CT 
vi DO 

1_ 	
85

.9
44

7 

--,  
v:3 oo 

I 	
83

.5
 

c'S' 
kf) 
N 

E
rr

or
  
 

00 
v:) co 
c■i 

If) 
■D 
(-,i 

CO
 

2.
84

05
 

cr\ 
S 
C•i 

s VD VD 
C,i 

Oh CD t•-- 
(N1 

s r-- VD 
(Ni 

s C•■ VD 
C•i 

-- ---. • cn 

›• 
Q 
0 

c.... 
[4 

87
.6

6
8
3
  

87
.4

65
1
 
 

kr) 
CI 

0000 

VD 
ON 

00 
4.7:  

--. 
e--- 

00 

■CD 
CT 

00 87
.4

77
8
 
 

N 
S 

00 

-. 

84
.8

 

cc' 

E
rr

or
  
 

CO 

,...., 
4 

VD 01
 

3.
88
1
8
  

c-1 
00 
CT 
evi 

— 
N.) 
N cT 
e•-; 

-1- 
0 
00 CO 
4 

(NI 
10 
N v-) 
4 4.
42

5  co) 
10 
kr) s • 
en 

kr) 
len 
.4- 

. - o 
E 
ci..1 

0)
  a
 

88
.4

65
6
 
 

88
.1
8
1
8
  

os, oo 
N 
00 oo 

en c.4 
N 
00 oo 

-1- c) .-- 
CT 
oci oo 88

.8
76

2 
88

.7
2
5
 
 

en 
,.o 
tr) 
0 

00 00 

. r) oo 
• oo 00 

en 

ez :' 
kr) 
CV 

k.• 0 
}-. 
•-• 

r 
 

CT 
CO 
N 

0, ,•-• 
CN 
V) 
N 

vn ,--• 
CA 
' 
CT 

N 
CO 
ch 
0- 
eak 

01- 
00 
CN
CA 

N 7.
59

47
 00 

en 
0- 
CT 
kr; 

N COV 
CT 
N 
OR 

CO  
00 
rei 
C'l 

>, 
C.) 
0 a) . ... V  
w 
L4 

55
.4

9
1
9
 
 

ON 
--. a, -1- 
V) 
 ken 

V") 
,•-■ a, ei 
(-4 
V) 

N 
001
■.0, el 
N: 
kr, 

0- 
00 a) t---;  
In V) 

l"-- 
o,01-  
en 
Ili kin 53

.7
43

8 e•-• 
. c"VD  

co 
S 
k) 

vD 
va.  __, 
5 

oo 
N .4- 

,.., 
0 
0A 

E —
 

PS
O

 

0 
C/1 
fO• 

CA G
M

PS
O

 
A

TR
E

PS
O

 
Q

PS
O

  

LD
E

1 
D

E-
Q

I 

< 
0 

0 
E•0  



T
ab

le
  7

.7
 C

om
pa

ri
so

n  
r e

su
lts

  o
f  

al
go

ri
th

m
s  

in
  te

rm
s  

of
 N

FE
  a

nd
 t i

m
e  

(s
ec

):  
O

bj
ec

ti
ve

  f
un

ct
io

n  f
fi

  o
f 

Fi
gu

re
  7

.3
 

N 

LT-4 
4-4 
0 

0 

0 
. 

C4-4 
O 
• — 
U a) 

0 
0 O 
Cl') 

• — 

c1 

C-1-4 z 
4-4 
0 

O 

O 
it 

c)  
s., 

••••• 
C/3 

0 

cd 

E 
0 

00 
S 
0.) 

,''• 0 0 

kr) 
6 

to 
6 

co.  

kr) 
0 0.

4 rq 
6 0.

2 
0.

2 Q 
Z 

N
FE

  
45

21
 

71" ,:t. 40
62

 
.—o 
71- 

r--■ 
•Rt 

r, 
N 23

46
 

21
72

 

Z 

.c ,:": 
kr) 
N 

T
im

e  
 

0.
7 Ir--- 

6 
.CD 
6 

■40 
6 

c's1 
6 

N 
6 

N 
6 

< 
Z 

N
FE

  S86g  
 

	
 

58
2
3
  

C•1 
kr1 
t--- 
71-  4 6

44
  

CN 
N 
7i" 
cn 

(T 
l--- 
VD 
N 23

70
 

20
85

  

-, 
Z 

g,.' 0 kr-) 

1..) 

r ,•'-' 

ON 
6 

00 
6 

00 
6 

01 
6 

00 
6 

7}-' 
6 

' M 
6 0.

4 < 
Z 

W 4, 
Z 8

0
0
7
  

71
6
1
 
 

6
3
5
7
  

N kr) 
‘.0 57

04
 

41
04

 
 

29
4
9
 
 

2
8
0
8
  

N
A

  

gZ tr) N 

(I) 
5 •,,-, t— 

N. 
,— 1.

8 00 
,—, 

0 . N 
00 . ,--I 

N 
— 1.

8 a■ — < z 

N
F

E
  

15
0
3
0
 
 

15
03
0
 
 

15
03
0
  

15
03

0 
15

03
0 

15
0
3
0
 
 

15
03
0
  

15
03

0 

< 
Z 

A
lg

or
ith

m
  

O
Sd SM

P
SO
1
 

 
G

M
P

SO
 

A
TR

E
PS

O
 

Q
P

S
O

 
 

D
E

 
 

LD
E

1  ,5  

al 0  ., 

g,' o a> 

T
im

e  

VD 00 ■0 

0.
6 	

I 

VD 
6 
h 
6 0.

3 
0.

4 M 
6 

< 
Z 

N
F
E

  

0 ,— 
0kr) 48

90
 

42
0 9

 
43

68
 

vD --, 
-1-  

CA  -1- 
0 
c•') 

 kr> ■C. 
N   2

3
1
9
  

< 
Z 

kr) N 

a) 

E H 0.
7 ■O 

6 
h 

6 
N 
6 

if) 
6 

rn 
6 

rn 
6 

r..) 
6 

< 
Z 

c.r..1 
4 

00 
`1") 
kar) 62

46
 N 

d- 
00 -7t. 49

02
 

43
92

  

en 
N 
ON 
N 23

37
  

20
79

  

< 
4 

0" 
0 tn 

T
im

e  
 

co 
0 

N 
0 

N 
0 

N 
0 

CO 
0 

v.) 
0 

en 

0 
en 

6 
< 

Z 
N

FE
  

 

,— 
N 
CN ■1;) 

,— 
N 
01 q) 

M 
VD 
'I-  
kr) 54

84
 

—, 
en 
'1-  
kr) 

00 
"1-  
N 
,:t 

kr) 
en 
00 
N 2

8
1
7
  

N
A

  
1  

c,3,̀' 
v.) 
N 

N 
E 

1:: 0.
01

 ,-4 
O 

6 
,--4 
C : ) 

6 6 
,-4  
0 

6  6  6 0.
1  ¢  

Z 

N
FE

  
 

rel 
01 9

3
  

7 4
 

CD 
oo 

00 
00 
N 

":1-  
N 
en 

I--- 
--. 

en 
0 
en N

A
  

A
lg

or
ith

m
  

P
S
O

 
 

SM
PS

O
1  

 
G

M
P

SO
 0 

C/) a, 

1-4 < Q
P

S
O

  

[.1.) n LD
E

1 

D
E

-Q
I  

< C 



Cr) 
N 

V 

O 

z 

0 

O 
• -SD 

;-:, 
0 

0 

-c) 

0 

uJ 

tki) 

4-4 

ct) 4-4 

V 

0 

O 

V 
Cd 
H

•■••■1 

0 0 0 

•:1- 
0 0.

4  'I- 
0 

kr) 
0 0.

4 	
1 

0.
3 	

1 

V
N

. 

N
FE

  
 

3 6
60

 
3
5
1
0
  

32
46

 
34

14
  

20
59

 
2 4

03
 

21
30

 
19

47
 

z 

gZ 
in 

T
im

e  
0.

3  
0.

3  
0.

2  
0 .

2  N 
6 

rn 
6 

N 
6 

,—. 
6 N

A
  

N
 

N
F

E
  

1
9
3
8
  

1
8
8
6
  

17
46

 
17

31
  

14
48

  0 
--+ 
N 

I-- 
If) 
V) 

en 
tr) 
Cr) 

c:',"' 
0 
kr) 

T
im

e  
 

0.
2  

0.
1  

0.
1  

0.
2  

6 
N 
6 

r 9 
6 

,—, 
6 

.: 

N
FE

  
 

85
8

 
 

75
0
 
 

78
9  

82
5  N 

CT 
h 

N 
N 
CT 

kr) 
CT 

V
N. 

X0000 

•—■ 	v--I 	1.--1 

0 0 0,  0 

P, 6 6 6 6 0.
01

  

v--1 

0 

6 

r+-1 

0 

6 

r—I 

'0 

6 

_.,e1 

'''. 

).', 
kr) 
N 

N
FE

  
87

  
87

  
87

  
87

 

re) 
0 \ 12

6  
13

5  

A
lg

or
ith

m
 

 

PS
O

  
 

SM
P S

O
I
 
 

G
M

PS
O

  
A
T

R
E

P
S

O
  

Q
PS

O
  
 

LU 
L4 
C:) 
6-1 

CY 
LO 
C I  G

A
 
 

0" 
O 
O 

T
im

e  
I 

..1- 
6 0.

4  
0.

4  kr) 
0 

I' 
c; 

en 
6 

en 
6 

en 
6 

.‹ 
z 

w 
LI.• 
Z 37

02
 

o 
N 
•:1- 
M 35

07
 

35
70

 

29
5 4

 
27

3 9
 

in ,—, 
,—, 
cv 2 0

10
 

•, 
4 

so:<"! tr) 
N 

T
im

e  
0.

3 rn 
6 

N 
6 

rn 
6 

m 
6 

ff.) 
6 

ff., 
6 

N 
6 N

A
  

N
FE

  
20

82
 

0 
00 

,-4 
N 1 8

00
 

■.0 
N 

-1- 
N 

c2N 
0 

t:) 
•Tr 

.'t 
.,Z 

0 
0 
w-) 

C) 
E v■I 

E.- 6 

4-4 

0 
1■4 

6 
•—■ 

6 
•—■ 

6 
v—. 

6 
N 
6 

,--. 
6 N

A
  

N
FE

  
 

79
8  o 
o 74

1  

72
0  

89
8  r- 

o

  
61 78 
6£ 6 

d 
,z 

T
im

e  
 

0.
01

 
0.

01
  .--, 

0 

6 0.
01

 —, 
0 

6 

—, 
0 

6 

— 
0 

6 

— 
0 

6 

.,...1 

'4,  

Z 

t`,.`' v-1 
N 

N
FE

  
 

60
  0 ■0 0 VD 0 VD 0 VD 0 VD 0 0 

A
lg

or
ith

m
  

PS
O

 

.--, 
0 Cl) 
*.%' • 4 
Ci) G

M
PS

O
 

A
T

R
E

PS
O

 

Q
PS

O
  

[-T-1 
M 

--, 
W 
12) 
t-- 

'. /4  
sil 
41 
C) G

A
 



e-: 
L 
bso 

O 

0 
U 

4-4 

• 
U 

0 
O 
L a) 

U 

Ei 
r+4 4-0 a) 
c+.4 
O 

E 

O 
bq

•  

4-4 
O 

a) 

O 

;-, 

ad 

O 

r 
4) 
C

v--I 

N 
a> 

bA 

(1-0 0 

O 

U O z 

'et.5 ct) 

0 

O 

C cd 

C 

el) 
0 

1.;•)  

kr) 
E 

• r. 
O bi) 

O 

c» a) a. 

O 

O 
U 
N 

• $7; 

vcs 

c:,)  O co 
er

ro
r  

2.
15

85
 

,■..I 
.7t- 00 
00 
-, 

N 
VD
N 

N 2.
07

12
 

0
 

 1.
33

55
 

1.
23

22
 

't 
CT ‹) 
0 
C5 

ON 
N 
S 
6 

,
L") 

1 
d 

cz)  

E
ff

ic
ie

nc
y  , 	kr) 

00 kr1 
V.') 
kr; 
00 85

.3
84

1 N ■.c. 
N kin 
kr; oo 

N
_ 
h cen 
kr; oo 

I 	
84

. 8
35

5 N 
en 
N 
N 
4 oo 

"1- 
CA 

 VO kn 
en oo 84

. 2
29

1 
83

. 1
8
 
 

83
.5

 
 

0:', kr, 
h 

8  
',' 

o, 00 
71- • N 

in co 
oo 

• ,-. 

.: 

 

(:), 
N. ct. ,- 

• N 

00  
z  ::) . 
-. 1.

40
04

 (3, , 
0 
n ..- 

-. --, 
M 

. 
upp 

N 
oo 
N 
.71. ,--• 

cA 
N 
d 

0  

, 
r•-■ 0 
Z a) • c'3' 

t4C 
W...,_, 

00 
CA 
O\,  
N 
S: oo 

in 
0 c•1 
VD 
<5 
00 

CN 
N 
CT 
Zi 
00 

4 °00 

.1" 
00  

'I' 
C o N 
■r5 
00 

C/1 
•.' o en 
v3 
00 84

. 9
31

1 
86

.2
28

2 
85

. 5
9
 
 

84
.8

 
 

0 kr> 

I
er

ro
r  .0rn 

00 
O 
M 

L  
3.

0 4
03

 kN) ■„0 
N. ,--, 
c‘i 

N --, 
e:••■ k:, 
--. 

ZLLZ
7   -0

.8
97

7  kn co. r--. .,t. 
93  

kr, 
N -- 0  

8:i' 

(;) N . o 
1  

o 

E
ff

ic
ie

nc
y  

87
. 3

83
6
 
 

M 0 •7r. rn 
N 
00 

tn 
■C) 
N 47t. 
\L.; 
00 

c-- 
,--• a, cr, 
Vi 
00 

N 
h N 
kn 
116 
00 

M 
N o 
7r 
erl 
00 83

. 8
2
0
5
  

84
. 2

82
5 

83
. 5

1
 
 

84
.3

  

t.:N<, 

er
ro

r  N 
N rn 
C2) 
tr; 2.

51
45

  
 

■ID 
0 
6 

vo 
ggg0.0 

01 
S 
kr) 
16 .--■ 

N 1-- . cA . c:) .--4 

-• 

CN! 

■,0  
rn 

• 
kfl 0 

kr) 
N >.., 

c.) 
O a) ... 
L). 
w 52

.8
3 2

7
 
 

50
.3

1 4
5
 
 

10 v::) oo 
t---: 

tn kr, 
kn 00 
r...: 
N 64

. 3
4
7
9
  

cl r- ,- 
N • 
,45, 

'-' •-• 
c:' 0; V) 

vr) in m oo • 
N 

oo en • z 
00  
t--: •71- 

A
lg

or
it h

m
  

o 0 a. 

I  
SM

P
SO
1
 
 

G
M

P
S
O

  
A

T
R

E
P
S
O

  

o 0 
0.4 a 

I  D
E

 
 

,--. w o ..) 

6, 
LI) a) ¢ c. 0 

-

0.
52

18
  

I 

ON 
kr) 
N 
6 

kr)  
kr)  
en 
6 

1 	
 

-

0.
7 9

66
 

0.
85

14
 

1.
24

73
  

1.
20

72
 

V1 
C; 1 

0 

10
0 °

.  
Ef

fic
ie

nc
y  

83
.8

70
5 N 

N 
01 
csi co 

,-.. 
71- 
N 
M 
00 83

.8
5

15
 

I' 
0 h 
N 00 c, 4 

'I- 
kr) 
en 

00 

en 
.1- s 
4 
00 

N 
0 r•-• 
4 
00 

- 
ON • 
ocvo 

83
.5

 

1  -
0.

57
28

 

.--• 
en 
.-.■ 
-, 

M tn
 

1.
14

43
  cn 

en en 
c; 

•-■ 
N 
00 00 • -. 

\C) ,--, 
N 00 
-, 

ILII 
--. 

 .-• 
'I- 
01 
0  

O 

75
°A

 
E

ff
ic

ie
nc

y  
84

.8
40

3 
84

. 2
27

2 ,-- 
rn CA 
kr; oo 

rn 
71- CA 
kr; oo 85

. 1
35

3 
86

. 6
82

1 ■c) 
N 10 
■d,  00 

CT • N oo 
h • (f) oo 00  

4 00 

M t--- 0 
,r 0.

5 4
32

 

•- ,-• .0 v) 

ZSOZ*1
 
 

g8S5.0 

N 
cn — — O . 

,- 
oo N m •• 

M .0 . (-1  
o 

50
°A

 
E

ff
ic

ie
nc

y  
85

. 3
1
7
9
  

rn 
N 
0 r-- 
In 00 84
. 8

4
3
2
  

„. '''' 
.0 00 
7i 00 84

. 8
5 8

5 
85

. 5
05

2 
8 4

. 1
86

3 
85

. 6
7
8
1
  

C■1 
CN 
v3 00 M 

00 

.0 CR 
01 00 

6.
02

24
 

2.
71

16
 

4.
47

99
 

8.
70

57
  

6.
94

54
  

6.
60

74
  

S- 
01 
6 

25
°.  

E
ff

ic
ie

nc
y  

5 8
. 0

9
0
5
  

■to 0■ o■ ■o 
0,6 53

. 8
22

4 	
1 

50
. 5

11
6  

52
. 2

7 9
9 

56
.5

05
7 

00  in
 

54
. 7

45
4 

54
. 4

07
4
 
 

N N 
o 

47
.8

  

A
lg

or
it h

m
  

S
P

S
O

 
 

SM
P
S
O

 
 

G
M

P
SO

  
 

A
T

R
E

P
S
O

  

0 ce) 
a 
CY 

raa 
C.) 

w 

x 
)-I 

,...., 

W 

C.)
 
G

A
 
 

1 



In
-S

itu
  E

ffi
ci

en
cy

  D
et

er
m

in
at

io
n  

of 
 In

du
ct

io
n  

M
o t

or
  

T
ab

le
  7

.1
3

 C
om

pa
ri

so
n  

re
su

lts
  o

f a
lg

or
ith

m
s  

in
  te

rm
s  o

f e
ff

ic
ie

nc
y  

an
d 

er
ro

r:
  O

bj
ec

ti
ve

  f
un

ct
io

nf
f3

  o
f  

Fi
gu

re
  7

.4
  

T
ab

le
  7

.1
4

 C
om

pa
ri

so
n  

re
su

lts
  o

f a
lg

or
ith

m
s  i

n  
te

rm
s  o

f e
ff

ic
ie

nc
y  

an
d 

er
ro

r:  
O

bj
ec

ti
ve

  f
itn

ct
io

nf
f4

  o
f  F

ig
ur

e  
7.

4 

'5  Zi•- C> 
0 ,-. 

er
ro

r  N 00 00 
1 /4.0 
N 

N 00 oo 
VD 
N 2.

68
52

 N 00 00 
‹) 
N 2.

68
9 8

 en 
N 0\ 

1 /4.0 
N 

•••4-  
,1-  kr) 
•d-  
CV 

k.0 00 00 
ktD 
N 

en 1/40 
(..,i 

>.--, 
= 0 • -. U 

4-1 H_, I.J.4 

00 00 ,, 
■C; oo 

00 00 ,, 
'4:5,  oo 

uNNNcloom kr) oo 
,,-1 

q3 oo 

00 00 ,, 
■C3 oo 

Ch c0 ,, 
■.c; oo 

N 
ON 
,-. 
■c; oo 

[ 	
85

.9
54

4
  

',ID 00 CO '-: 
■ci 
00 

en ,-. 
1/4.i. oo 83

.5
 

7
5

%
 
 

6-' 0 
s... 	• cL> 

rn 
 01 

kn • d-  2.
49

44
  

2.
49

27
  rn 

kr) 

kr) 
N 

r- 
•-. 

1/40 
di 

c:, In 
kr) 
d:  2.

58
38

 ,- 
-, 
kn . 
N 

kn 
• en 

Ef
fic

ie
nc

y  M 
0\ oo 
M 
O 00 87

.2
94

4  
 

I-- N 
Cr\ 
N 
I-- oo 

en (n 
0. en 
r-: oo 89

.4
01

7  
 

0\ kr) 
O\ en 
IT 00 87

.3
83
8

 
 

-, -. 
0\ en . r- 00 

kr) Cr‘ • I--- oo 84
.8

 	
1
 

..3.>"Z 0. 

e r
ro

r  
5.

94
22

 
4.

47
78

  
4.

41
65

  r- 
r- 
O
kt) 

N 
re; 

. r- csi cs1 
1::; 

N oo 
c3,en 
V:5 5.

28
05

  
4.

23
45

  LS  "b 

0 C 0 . _ 
0 

4-, 
LT) 90

.2
42

2  oo 
I-- I-- I-- 
00  oo 

In 
k0 -. 
r--. 
00 00 

t•-• t•-• 
1 /4.0 N 
00 00 egi

  

90
.5

27
1
 
 

N 
00 0 
■1:) 
c; C 89

.5
8

0
5

  

kr) 
d-  m kr) 
00 00 

I--- 00 
vi 
00 

en 
.t.  
c4  

ZiZ v-) 
N 

er
ro

r  
6.

55
75

 
3.

05
3
2
  

VD en in 
00 

,-. 
•:1- 
1/4.0 -. 
C5 

■D 
..... 
00 -. 
c5 

`. 
til 
• ■ - 00 _ 
4 

0\ 
kr)  
vi 

kr) 
 N1-. 

e5 24
.5

7
  

E f
fic

ie
nc

y  in 
V> 
M 
4 kr) 

N 
In  00 
c> 

1 /40 
kr) 1/4.0 
--,  kr) 

--, 
'1/40 
ON 
r-: kr) kr ) 

kr> 
00 
Cr■ 
r-: kr) 

1 /40 
-, 
VD 
r,i VD 

1 	
53

.3
79

3 kr) 
d-  
CD 
CO kn 

en 
N " f -- 

00 . 
.:J- N 

A
lg

or
ith

m
  

0 
Ca. 
(JD SM

PS
O

 
 

G
M

PS
O

 
 

A
TR

EP
SO

 
 

Q
PS

O
 
 

 CI 
L.T. 

LX
D
E

 
 

D
E-

Q
I
 
 

G
A

 

C...7 
H 

0 CD 

er
ro

r 	
I 

N 

I-- ,_ 

1  
0.

94
74

  
0.
4
0
2
2
 

k0 

:D. 

5
3
 

 0.
12

47
 

0.
75

24
 I

  

--. 

1/40 
c5, 

. 
C> 

• N 

Ef
fic

ie
nc

y  ZISZ.S8   

84
.4

47
4 

83
.9

02
2 

82
.8

62
4 I-- •d• 

N \O 
M; 00 84

.2
52

4 -. 
Cr\ 
k.0 ,-. 
4 00 84

.0
61

 

CT ,- 
1/4.1:5 
Go 83

.5
 

C:)''  
VI 

er
ro

r  •.:1-  
kr) in 
r•i 

0\ 
N en 
N -0

. 0
70

6 
0.

04
54

 
 

en 
C> 0\ 
C> 

d- 
In 00 
-. 

.--, 
1/40 00 
C,  

-. 
‘zr kr) 
,"'. 

CI cz) 

.."`• 
 C.>

__ 

-,_,--. --. 
.._, 1-1.4 

471-  

en r.__.: 
' 00 87

.1
2

1
9

  
84

.7
29

4 
84

.8
45
4
 
 

en 

r-; 
kr) 
00 

'7r 

VD 
.6 
00 

.---. 

VD 
kr; 
00 

L   8
6.

34
41

  

. 00, oo... ,- 
-q- 00 

e:','  
O v-) 

er
ro

r  
4.
0

9
4

7
  

3.
8
7
1
4
  

cr, 
,,r 
N 
rn 3.

8
2

7
5

  
4.

42
29

 

a q

:
 

2.
15

78
 ,

  

.c) 
0 r- cp:  
-, 

ch 
00 .71" -. 
N 

N I-- 4 c, 
Ef

fic
ie

nc
y  
 

88
.3
9
4
7
  

88
.1

71
4
 
 

Cr\ 
'71-  
N N 
N 
06 00 

to 
r- 
--. 
00 
00 88

.7
22
9

 
 

00 
N kr) 
d.  
■0 oo 

1/40 0 
N 

 
N 
V6 oo 

01 00 
.71-  
.1-  
1/40 00 

Ni 
C>..

'
, 

cr4„ 
00. 

_ 
' 
•:I• 

,. 

0 kr) 
N 

s. 0 

(1)  

tr, 
m 
S 0\ 
N.  

oo 
N 
N en 
N.  

ea, 
,..o 
kr) 1/4.0 
en.  

00 
00 
-. k.0 
cri 

0\ --, _ 
(1 
--' 

•-•-, 
N s 
v.' 
-4  

r- 
0, 
'1: 
--' 

,0 
c.' 
N:  

_  
tri 
e'l 

(:) 

>, o 
C 
eu _ 
U 

I,C .._., 11-1 

In 
en 
N 
(-- cr3 tr.) 

00 
N N 
d tr) 

0\ 
■0 kr) 
'1-. — kr) 51

.4
18
8
 
 

0\ , -- 
C> o< kr) 

-, 
r- N 
en of kr) 

I--- 
oo C 
N 
o< kr) 

re) 
t-- N 

 
. 

v )  -) 

N C7\ 
' N r-- 47

.8
 

A
lg

or
ith

m
  

0 
v) 
a• v) SM

PS
O

 
 

G
M
P

S
O

  
A

TR
EP

SO
 
 

Q
PS

O
 
 

D
E

 
 

LX
D
E

 
 

,7:7,, 
'''ic 

G
A

 
 

TG
  



90 

85 

80 

75 

a.) 
Egi' 7.0 
P.4 

g 65 

rv1PSO 

–♦– - M 

ATREP '0 

.PS0 

—4--  DE1 

44– - DE 

DE-0,1 

---,--Tarou !wage thod 

50 

45 

-4 

60 

.55 

Chapter 7 

20  30 	40 	50 	60 	70 	80. 	90 	100 	110 

% Load 

Figure 7.5 Performance curves of algorithms using objective functionffi  of Figure 7.3 

9,0 

85 

80 

p), 75 

a9 
FA 70 

o  55 

60 

55 

50 

45 

20 	30 	40 	50 	60 	70 	80 	90 	100 	110 

% Load 

Figure 7.6 Performance curves of algorithms using objective functionff2  of Figure 7.3 
210 



90 

85 

80 

`.hod iLersiy e uageme 

— • —SMPSO 

	ATREPS 

I( 

• PSO • 

GPVIPSO 

— USD 

LDE1 

b5 

60 

55 

50 

45 

20 	30 	40 	50 	60 	70. 	80 	90 	100 	110 

oho Load 

Figure 7.7 Performance curves of algorithms using objective functionff3 of Figure 7.3 

90 

85 

80 

,_)% 75 

--4—+-Tarque auage me 

65 

60 

55 

50 

45 

In-Situ Efficiency Determination of Induction Motor 

20 	30 	40 	50 	60 	70 	80 	90 	100 	110 

% Load 

Figure 7.8 Performance curves of algorithms using objective functionffi of Figure 7.4 
211 



90 

85 

80 

– 	.S. . 1 

—.4— ATREPSO 

—0— BE 

DE Ctl 

--0--Tarque g age rraed- oci 

50 

55 

WE1  

GA 
50 

45 

- PSO  

— GMRSO 

BE 

DE-QI  

Tarque guage method 

--IN • SMPS0'_  

ATREPSO 

Chapter 7 

20 	30 	40 	50 	60 	70 
	

80 	90 	100 	110 

% Load 

Figure 7.9 Performance curves of algorithms using objective functionff2  of Figure 7.4 

95 

90 

85 

80 

C.) ' 5 
7  

• E; EH 70 

• 65 

50 

55 

50 

45 

30 	4 0 	50 	60 	70 	80 	90 	100 	110 

% Load 

Figure 7.10 Performance curves of algorithms using objective functionff3  of Figure 7.4 
212 



In-Situ Efficiency Determination of Induction Motor 

90 

85 

80 

75 

di 

EN 70 

65 

60 

55 

50 

45 

20 	30 	40 	50 	60 	70 	80 	90 	100 	110 

% Load 

Figure 7.11 Performance curves of algorithms using objective functionffi  of Figure 7.4 

18 

16 
	 laps(), 	• DE 

14 

IDE: 
ATP 	EP-r 

DE-0.1 • GA 8 

F11 6 

• P50 
4 

2 0 SM PSO 1 

• ski se 	 
4 	6 	8 	10 

Algorithm 

Figure 7.12 Comparison of algorithms for objective function ffi  at 25% load corresponding to Figure 7.4 

0 	 

0 

213 



12 

10 

2 

0 

Chapter 7 

• P50 
• G A 

• DE 

L D El • DE-0I 
• GMPSO , 

• QP5.., 

• ATREPSO 

• SNIP S01 

0. 
	 4 	6 

	
8 
	

10 
Algorithm 

Figure 7.13 Comparison of algorithms for objective functionff2  at 25% load corresponding to Figure 7.4 

30 

	

25 	 GA 

	

20 	  

	

4115 	 ut 
.5 

41 
--A-T-PEFLE:0 • • Q P D 	• DE 0.1 

• P50 
5 

SNIPS01 • 
	Gip t P30 

0 
	

6 	$ 	10 

Algorithm 

Figure 7.14 Comparison of algorithms for objective functionff3  at 25% load corresponding to Figure 7.4 

214 



30 

25 

5 

0 

In-Situ Efficiency Determination of Induction Motor 

• CA 

Q3S0 • • 
DE 

• LDE1 

DE-0.1 

pw 	---ENAPSO- 
• 

• 
0 

SMPS01 
• ATREPSO 

0 
	

2 	Algorithm 
6 	S 
	10 

Figure 7.15 Comparison of algorithms for objective functionff4  at 25% load corresponding to Figure 7.4 

7.5 Conclusion 
In this chapter, a comparison was made among PSO, QPSO, DE and their variants (five 

improved versions) with Genetic Algorithm and torque-gauge methods for in-situ efficiency 

determination of an induction motor through its parameter identification. This problem was 

framed by four different methods. The differences in the method were based on the number of 

input parameters used to the optimization algorithms and modifications in the equivalent circuit 

of the motor. All the algorithms have proven their numerical stability and their robustness 

towards error minimization in a short time. 

In summary, ATREPSO, SMPSO1, LDE1 and DE-QI outperformed the other algorithms in 

many cases in terms of efficiency evaluation with minimum error. In case of speed of 

convergence, mutation based variants of PSO and DE were the winners in all the cases. The 

influence of output power as an input parameter of the algorithm is significant. Finally, 

induction motor in-situ efficiency can be accurately calculated by using input power, current, 

speed and output power as the input parameters of optimization algorithms. Modification in the 

equivalent circuit of the induction motor helped to estimate the efficiency with high accuracy. 
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Chapter 8 

Optimization of Over-current Relay Settings in 

Electric Power Systems 

[This chapter presents the model of Directional Over-current Relay settings in Electrical 

Power Systems, modeled as a constrained nonlinear optimization problem. The optimization 

problem corresponding to IEEE 3-bus, IEEE 4-bus and IEEE 6-bus system is considered. The 

six DE algorithms namely: LDEJ, LDE2, LDE3, LDE4, LDE5 and DE-QI discussed in chapter 

4 are used to solve the resulting optimization problem. For handling constraints, the mechanism 

described in Chapter 6 is used. .1 

8.1 Introduction 

Electrical power system operates at various voltage levels from 415 V to 400kV or even 

more. This system can be divided into three parts: generation, transmission and utilization 

(load). Among these three, transmission of power is carried out by the electrical conductors, 

called transmission lines, placed in open. Therefore such lines more frequently undergo 

abnormalities than other parts in their life time due to various reasons: like faults (which create 

over-current), over load, over-voltage, under-frequency etc. One well known source for 

occurrence of over-voltage in such lines is lightning. These abnormalities cause interruption of 

the supply and may damage the equipments connected to the system, arising the need for 

protection. Over-current relay is the most commonly used protection scheme in -the power 

system to protect the system from various faults. 

Directional over-current relays (DOCRs) are good technical and economic alternative for the 

protection of interconnected subtransmission systems and secondary protection of transmission 

systems (Urdaneta et al, 1997). These relays are provided in electrical power systems to isolate 

only the fault lines in the event of the faults in the system. Relay is a logical element and issues 

a trip signal to the circuit breaker if a fault occurs within the relay jurisdiction and are placed at 
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both ends of each line. Their coordination is an important aspect of the protection system 

design. Relay coordination problem is to determine the sequence of relay operations for each 

possible fault location so that faulted section is isolated, with sufficient coordination margins, 

without excessive time delays. This sequence selection is a function of power network topology, 

relay characteristics, and protection philosophy (Birla et al, 2006). 

In DOCR protection scheme, two types of settings: current, which is referred as Plug 

Setting, and Time Dial Setting must be calculated. Optimization of these settings (main 

objective in this chapter) results in efficient coordination of relays that can be achieved and 

isolate the faulty transmission line, thus maintaining continuity of supply to healthy sections of 

the power systems. The above stated problem of coordinating each DOCR with one another in 

electrical power system is modelled as a non-linear constrained optimization problem. The two 

settings (PS and TDS) of each relay are considered as decision variables. Sum of the operating 

times of all the primary relays, which are expected to operate in order to clear the faults of their 

corresponding zones, is considered as objective function and the constraints of this problem are 

bounds on all decision variables, complexly interrelated times of the various relays (called 

selectivity constraints) and restrictions on each term of the objective function to be between 

certain limits. 

The rest of the chapter is organized as follows: In section 8.2 literature review of the 

problem is given. The DOCR problem formulation is given in section 8.3. The general model of 

the DOCR coordination problem is stated in section 8.4. The optimization problem 

corresponding to IEEE 3-bus, IEEE 4-bus and IEEE 6-bus system are given in section 8.5, 

section 8.6 and section 8.7 respectively. The method of solution and discussion of results are 

given in section 8.8. Finally this chapter concludes with section 8.9. 

8.2 Review on Previous Work 
Several optimization techniques have been applied for coordinating directional over-

current relays. Before applying optimization theory in these problems, trial and error approach 

was used but it has a well known drawback that slow rate of convergence due to the large 

number of iteration needed to reach a suitable relay setting. To overcome such disadvantage in 

trial and error method, many authors have assumed the value of DOCR settings based on 
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expert's experience and solved these problems in linear environment (Irving and Elrafie, 1993; 

Chattopadhyay et al, 1996; Urdaneta et al, 1996; Urdaneta et al, 2001). But linear approach can't 

ensure correct settings of the relays (Laway and Gupta, 1993). They do not consider all possible 

operating conditions of the power system. Urdeneta et al (1988) was first to report the 

application of optimization theory in the coordination of DOCR. A detailed literature survey on 

this problem has been performed by Birla et al (2005). They have classified the previous works 

on DOCR coordination into three categories: curve fitting technique, graph theoretical technique 

and optimization technique. 

Sparse Dual Revised Simplex method of linear programming has been used in (Irving and 

Elrafie, 1993) to optimize TDS settings for assumed non-linear PS settings. Some linear 

programming techniques applied in DOCR coordination problem include (Chattopadhyay et al, 

1996; Urdaneta et al, 1996; Braga and Saraiva, 1996; Abyaneh and Keyhani 1995; Alidelaziz et 

al, 2002). Laway and Gupta (1993) applied Simplex and Rosenbrock - Hillclimb methods (non-

linear programming technique) to optimize TDS and PS settings respectively, in a similar way, 

as used by Urdeneta et al (1988). The optimization of DOCR settings with Artificial Intelligence 

(AI) and Nature Inspired Algorithms (NIA) has received considerable attention recently. Some 

of the NIA algorithms, Evolutionary Programming (So and Li, 2000), Genetic Algorithm (GA)) 

(So et al, 1997; Farzad et al, 2008; Thakur, 2007), Modified Evolutionary Programming (So and 

Li 2000a; 2004), Particle Swarm Optimization (Mansour and Mekhamer, 2007; Zeineldin, 

2006; Bansal and Deep, 2008), have been applied successfully in this problem. Self Organizing 

Migrating Algorithm (SOMA) and its hybridization with GA have been applied in (Dipti, 2007). 

Some of the AI methods, fuzzy logic (Abyane et al, 1997) and expert systems (Brown and Tyle, 

1986; Lee et al, 1989; Hong et al, 1991; Jianping and Trecat, 1996) have also applied in this 

problem. Birla et al (2006) and Deep et al (2006) used Random Search Technique (RST2) to 

solve the relay coordination problem for IEEE 6-bus model and IEEE 3-bus, 4-bus models 

respectively. 

8.3 Problem Formulation 
An important characteristic of some types of protection in an electrical circuit is their 

capacity to determine the direction of the flow of power. Because of this characteristic they 
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inhibit opening of the associated switch when the fault current flows in the opposite direction to 

the setting of the relays. Directional relays can tackle this situation when relays face fault 

currents in both directions because they operate only when fault current flows in specified 

tripping direction. Hence, directional over-current relays are used extensively for the protection 

of feeders having infeed from both the ends (e.g. loop systems, parallel feeders). 

A DOCR consists of two units: 

(i) An instantaneous unit 

(ii) A time-delay unit 

The instantaneous unit operates with no intentional time-delay when current is above a 

predefined threshold value, known as the instantaneous current setting. Time-delay unit is used 

for current, which is below the instantaneous current setting but exceeds the normal flow due to 

a fault. This unit operates at the occurrence of a fault with an intentional time-delay. Two 

settings are associated with the time-delay unit, which are as under: 

• Time dial setting (TDS) 

• Plug setting (PS) (e.g. tap setting) 

The time dial setting adjusts time-delay before a relay operates whenever the fault current 

reaches a value equal to or greater than the pick-up current. Tap setting is a value that defines 

the pick-up current of the relay, and currents are expressed as multiple of this. These settings 

essentially specify the particular time-current characteristics from the family of available curves 

and the multiple of tap setting to be used to find the relay operating time for a given current 

flowing through the relay. Threshold" or "Pick-up current" is the minimum current for which 

the relay operates and is determined by selecting one of the plug settings taps available on the 

relay. 

8.4 General Model of the Problem 
The operating time (T) of a DOCR is non-linear function of the relay settings (Time Dial 

Settings (TDS) and Plug Settings (PS) and the fault current (/) seen by the relay. Therefore, 

Relay operating-time equation for a DOCR is given by a non-linear equation as given below 
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T 
a x TDS 	

(8.1) 

I 	 
LPS x CTpri _rating j 

Only TDS and PS are unknown variables in above equation. These are the "decision 

variables" of the problem. a, p and y are the constants representing the behaviour of 

characteristic in a mathematical way, in which operating time of the DOCR varies and are given 

as 0.14, 0.02 and 1.0 respectively as per IEEE standard (1997). Value of CTpri_rating depends 

upon the number of turns in the equipment CT (Current Transformer). CT is used to reduce the 

level of the current so that relay can withstand it. With each relay one "Current Transformer" is 

used and thus, CTpri_rating is known in the problem. Value of I (Fault current passing through 

the relay) is also known, as it is a system dependent parameter and continuously measured by 

measuring instruments. Number of constraints for systems of bigger sizes will be dependent 

upon the number of lines in the system. Details of the number of lines in few larger systems are 

given in Table 8.1. In practice, in electrical engineering, power systems may be of even bigger 

sizes and there are other types of relays also besides DOCRs. Coordinating DOCRs with other 

types of relays generates even larger number of constraints are shown in Table 8.1. It is evident 

from Table 8.1 that simultaneous optimization of both the settings (TDS and PS) of each DOCR 

of the system is a complex problem 

Table 8.1 The complexity of the DOCR problem as the bus size increases 

IEEE 3-bus IEEE 4-bus IEEE 6-bus 

No. of lines 3 4 7 

No. of DOCRs (relays) 6 8 14 

No. of decision variables 12 16 28 

No. of selectivity constraints 8 9 38 
Constraints imposing restrictions on 
each term of objective function 

24 32 104 
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Objective function and Constraints of the problem: 

To solve any problem using optimization techniques an objective function subject to 

some criteria is minimized or maximized. The optimal coordination problem of DOCRs using 

optimization technique consists of minimizing an objective function (performance function) 

subject to certain coordination criteria and limits on problem variables. The relay, which is 

supposed to operate first to clear the fault, is called primary relay. A fault close to relay is 

known as the close-in fault for the relay and a fault at the other end of the line is known as a far-

bus fault for this relay. Conventionally, objective function in coordination studies is constituted 

as the summation of operating-times of all primary relays, responding to clear all close-in and 

far-bus faults. 

The objective function is as follows: 

N  N 	 far • 
Minimize OBJ= E Ti 	+ Tpri_ (8.2) pri d in 	 far _bus =1 — j=i 

where, 

N ci 

N fw. 

Tpri _el _ in 

Tpri _far _bus 

is number of relays responding for close-in fault. 

is number of relays responding for far-bus fault. 

is primary relay operating-time for close-in fault, 

is primary relay operating-time for far-bus fault. 

The constraints are as follows: 

(1) Bounds on variables TDSs 

TDSinun TDSi TDSimax , where i varies from 1 to Nel • 

TDS'min is lower limit and TDSi max is upper limit of TDS1. These limits are 

0.05 and 1.1, respectively. 

(2) Bounds on variables PSs 

PSi rnin < PS < PS max , where j varies from 1 to NeL  

Psimm is lower limit and PSimax is upper limit of Psi . These are 1.25 and 1.50, 

respectively. 

222 



Optimization of Over-current Relay Settings 

(3) Limits on primary operation times 

This constraint imposes constraint on each term of 	objective function to lie 

between 0.05 and 1.0. 

(4) Selectivity constraints for all relay pairs: 

Tbackup — Tprimary — CTI > 0 

Tbackup is operating time of backup relay and Tprimary is  operating time of primary 

relay 

8.5 The IEEE 3-bus Model 
For the coordination problem of IEEE 3-bus model, value of each of Nct and Nfar  is 6 

(equal to number of relays or twice the lines). Accordingly, there are 12 decision variables (two 

for each relay) in this problem i. e. TDS' to TDS6  and PSI  to PS6. The 3-bus system can be 

visualized as shown in Figure 8.1. 

Figure 8.1 A typical IEEE 3-bus DOCR coordination problem model. 

Objective function (OBJ) to be minimized as given by: 

6 	 6 
OBJ = ZTpi  ri_cl_in ±ZTpi  ri_far_bus 

i=1 	 j=1 

Where 

. 	)0.02 

a . —1 
PS' xbi  

0.14x TDSi  
Tpi  ri _cl _in — ( 

(8.3) 

(8.4) 
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0.14 x TDSi 
Tpri_ far bus — )0.02 ci   

Constraints for the model: 

(1) Bounds on variables TDSs : 

TDS min 	TDS 	TDS max , where, i varies from 1 to 6 (1N1,1) 

(2) Bounds on variables PSs : 

1 	1 	1 
PS min 	PS 	PS max', where, j varies from 1 to 6 (1\1c1) 

(3) Limits on primary operation times: 

This constraint imposes constraint on each term of objective function to lie 

between 0.05 and 1.0. 

(8.5) 

Psi x di  

The values of constants ai, 	c' and d are given in Table 8.2. 

(4) Selectivity constraints are: 

Ti 	—T i 	— CTI 0 backup 	primary 

Tbackup is operating time of backup relay and T p,,,,,„y  

primary relay. Value of CTI is 0.3. Here, 

i 	 0.14  x TDSP 
Tbackup = 

	

i 	\0.02 
e 

 

PSP x 

T rimary 
0.14 x TDSq 

( gt 	0.02 

— 1 

(8.6) 

is operating time of 

(8.7) 

(8.8) 

PS4  x 

The values of constants e', f', g' and h' are given in the Table 8.3. 
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Figure 8.2 A typical IEEE 4-bus DOCR coordination problem model 

Table 8.4 Values of constants al, b', c' and d' for IEEE 4-bus model 

Ti  pri _cl _ in Tpi  ri _ far _bus 
TDS' ai  b' TDS' c' 4:11  
TDS' 20.32 0.48 TDS2  23.75 0.48 
TDS2  88.85 0.48 TDS' 12.48 0.48 
TDS3  13.61 1.1789 TDS4  31.92 1.1789 
TDS4  116.81 1.1789 TDS3  10.38 1.1789 
TDS5  116.7 1.5259 TDS6  12.07 1.5259 
TDS6  16.67 1.5259 TDS5  31.92 1.5259 
TDS7  71.7 1.2018 TDS8  11 1.2018 
TDS8  19.27 1.2018 TDS7  18.91 1.2018 

Table 8.5 Values of constants e', g' and h' for IEEE 4-bus model 

Tkickup Tprimary 

P ei  f q g' h' 
5 20.32 1.5259 1 20.32 0.48 
5 12.48 1.5259 1 12.48 0.48 
7 13.61 1.2018 3 13.61 1.1789 
7 10.38 1.2018 3 10.38 1.1789 
1 1.16 0.48 4 116.81 1.1789 
2 12.07 0.48 6 12.07 1.1789 
2 16.67 0.48 6 16.67 1.5259 
4 11 1.1789 8 11 1.2018 
4 19.27 1.1789 8 19.27 1.2018 
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8.7 The IEEE 6-bus Model 
The next coordination problem is IEEE 6-bus model, value of each of No and Nfar  is 14 

(equal to number of relays or twice the lines). Accordingly, there are 28 decision variables (two 

for each relay) in this problem i. e. TDS/  to TDS" and PSI  to PS". The 6 bus system can be 

visualized as shown in Figure 8.3. The value of CTI for this model is 0.2. For the nominal state 

of the sample 6-bus model, 48 selectivity constraints are generated corresponding to all the 

possible near-end and far-end faults sensed by all the relays of the system. Based on the 

observation of Birla et al (2006a), ten constraints are relaxed. 

The objective function and constraints for this model will be of same form as in the case 

of IEEE 3-bus problem with Na = 14. The values of constants a', b', c', d' and e', f', g', for 6-

bus model are given in Table 8.6 and Table 8.7 respectively. 

Table 8.6 Values of constants a, b', c' and d' for IEEE 6-bus model 

TI 	_cl _in Tpi  ri _ far _bus 
TDS' a' b TDS' c' d' 
TDS' 2.5311 0.2585 TDS2 5.9495 0.2585 

TDS2  2.7376 0.2585 TDS1 5.3752 0.2585 

TDS3  2.9723 0.4863 TDS4 6.6641 0.4863 

TDS4  4.1477 0.4863 TDS3 4.5897 0.4863 

TDS5  1.9545 0.7138 TDS6 6.2345 0.7138 

TDS6  2.7678 0.7138 TDS5 4.2573 0.7138 

TDS7  3.8423 1.746 TDS8 6.3694 1.746 

TDS8  5.618 1.746 TDS7 4.1783 1.746 

TDS9  4.6538 1.0424 TDS10 3.87 1.0424 

TDS10  3.5261 1.0424 TDS9 5.2696 1.0424 

TDSII  2.584 0.7729 TDS12 6.1144 0.7729 

TDS12  3.8006 0.7729 TDS11 3.9005 0.7729 

TDS13  2.4143 0.5879 TDS14 2.9011 0.5879 

TDS14  5.3541 0.5879 TDS13 4.335 0.5879 
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Table 8.7 Values of constants e', g' and h' for IEEE 6-bus model 

T1. vackup T r primary 

P e' f q 
gi 111  

8 4.0909 1.746 1 5.3752 0.2585 
11 1.2886 0.7729 1 5.3752 0.2585 
8 2.9323 1.746 1 2.5311 0.2585 
3 0.6213 0.4863 2 2.7376 0.2585 
3 1.6658 0.4863 2 5.9495 0.2585 

10 0.0923 1.0424 3 4.5897 0.4863 
10 2.561 1.0424 3 2.9723 0.4863 
13 1.4995 0.5879 3 4.5897 0.4863 
1 0.8869 0.2585 4 4.1477 0.4863 
1 1.5243 0.2585 4 6.6641 0.4863 

12 2.5444 0.7729 5 4.2573 0.7138 
12 1.4549 0.7729 5 1.9545 0.7138 
14 1.7142 0.5879 5 4.2573 0.7138 
3 1.4658 0.4863 6 6.2345 0.7138 
3 1.1231 0.2585 6 6.2345 0.7138 

11 2.1436 0.7729 7 4.1783 1.746 
2 2.0355 0.2585 7 4.1783 1.746 

11 1.9712 0.7729 7 3.8423 1.746 
2 1.8718 0.2585 7 3.8423 1.746 

13 1.8321 0.5879 9 5.2696 1.0424 
4 3.4386 	. 0.4863 9 5.2696 1.0424 

13 1.618 0.5879 9 4.6538 1.0424 
4 3.0368 0.4863 9 4.6538 1.0424 

14 2.0871 0.5879 11 3.9005 0.7729 
6 1.8138 0.7138 11 3.9005 0.7729 

14 1.4744 0.5879 11 2.584 0.7729 
6 1.1099 0.7138 11 2.584 0.7729 
8 3.3286 1.746 12 3.8006 0.7729 
2 0.4734 0.2585 12 3.8006 0.7729 
8 4.5736 1.746 12 6.1144 0.7729 
2 1.5432 0.2585 12 6.1144 0.7729 

12 2.7269 0.7729 13 4.335 0.5879 
6 1.6085 0.7138 13 4.335 0.5879 
12 1.836 0.7729 13 2.4143 0.5879 
10 2.026 1.0424 14 2.9011 0.5879 
4 0.8757 0.4863 14 2.9011 0.5879 

10 2.7784 1.0424 14 5.3541 0.5879 
4 2.5823 0.4863 14 5.3541 0.5879 
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Figure 8.3 A typical IEEE 6-bus DOCR coordination problem model 

8.8 Methods of Solution and Discussion of Results 
All the three optimization models stated above are solved using the DE algorithms 

namely: DE, LDE1, LDE2, LDE3, LDE4, LDE5 and DE-QI. In order to make a fair comparison 

of all versions of DE algorithms, same seed for random number generation is fixed so that the 

initial population is same for all the algorithms. The population size is taken as 50. The 

crossover constant CR is set as 0. 5 and the scaling factor F is set as 0.5. For each algoiithm, the 

stopping criteria is to terminate the search process when one of the following conditions is 

satisfied: (i) the maximum number of generations is reached (assumed 10000 generations), 

(ii)Iffnax  -fm. I < 104  where f is the value of objective function. Constraint handling mechanism 

discussed in chapter 6 is used for handling constraints. A total of 30 runs for each experimental 

setting were conducted and the best solution throughout the run was recorded as global 

optimum. For comparison, previously quoted results by RST2 (Deep et al, 2006; Birla et al, 

2006), GA, SOMA, SOMGA (Dipti, 2007), LX-POL and LX-PM (Thakur, 2007) are used. 

Figures 8.4 — 8.9 show the performance of DE and the proposed DE algorithms on IEEE 3-bus, 

4-bus and 6-bus models. 

The best solution obtained by DE and modified DE algorithms of IEEE 3—bus model 

interms of optimal decision variable values, objective function value and number of function 

evaluations are given in Table 8.8. From the numerical results, it can be seen that LDE4 gave 
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better result than the other algorithms in terms of objective function value. On the other hand, in 

terms of comparisons of NFE, then the performance of LDE5 is better than all other compared 

algorithms. The experimental results of IEEE 4-bus and 6-bus models are given in Table 8.9 and 

8.10 respectively. For the IEEE 4-bus model also, LDE4 performs better than other algorithms 

interms of best objective function value. Once again LDE5 gave better results in terms of NFE 

than other compared algorithms for 4-bus model. But the results of IEEE 6-bus model is entirely 

different from the results of previous two models. In this case DE-QI is a winner in terms of 

objective functive value and LDE2 is a winner interms of NFE. From the numerical results of 

Table 8.8, 8.9 and 8.10, we can see that all the modified versions of DE outperform the basic 

DE algorithm by a significant difference. In Table 8.11, the improvement (%) of modified DE 

algorithms in comparison with basic DE is given. 

Also the numerical results of DE and the proposed DE algorithms for IEEE 3-bus, 4-bus 

and 6-bus models are compared with the results of some other algorithms in the literature; the 

corresponding results are given in Table 8.12. From the numerical results in Table 8.12, it can 

be seen that LDE4 and DE-QI algorithms are perform better than other algorithms for IEEE 3-

bus and 6-bus models respectively; but in the case of 4-bus model, LX-POL, which is a 

modified version of real coded GA, gave better performance than other algorithms. 
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Table 8.8 Optimal design variables, objective function values and number of function of evaluations 

(NFE) of IEEE 3-bus model by DE and the proposed DE algorithms 

DE LDE1 LDE2 LDE3 LDE4 LDE5 DE-QI 

TS1  0.05 0.05 0.05 0.05 0.05 0.05 0.05 

TS2  0.219387 0.217774 0.197872 0.198761 0.197648 0.197648 0.197649 

TS3  0.05 0.05 0.05 0.05 0.05 0.05 0.05 

TS4  0.213499 0.209044 0.209474 0.209048 0.209037 0.209035 0.209034 

TS5  0.19498 0.181208 0.184715 0.181215 0.181208 0.181206 0.181206 

TS6  0.195307 0.180682 0.182734 0.180678 0.180677 0.180676 0.180677 

PSI  1.25 1.25 1.25 1.25 1.25 1.25 1.25002 

PS2  1.25 1.25 1.49996 1.48497 1.49999 1.5 1.5 

PS3  1.25001 1.25 1.25 1.25 1.25 1.25 1.25001 

PS4  1.46053 1.49988 1.49999 1.49985 1.49997 1.5 1.5 

PS5  1.25 1.5 1.43182 1.49982 1.49994 1.5 1.5 

PS6  1.25 1.4999 1.46195 1.49996 1.49997 1.5 1.5 

F 4.84218 4.80699 4.78728 4.78227 4.78067 4.78068 4.78069 

NFE 78360 72350 73350 97550 69270 38250 56700 
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Table 8.9 Optimal design variables, objective function values and number of function of evaluations 

(NFE) of IEEE 4-bus model by DE and the proposed DE algorithms 

DE LDE1 LDE2 LDE3 LDE4 LDE5 DE-QI 

TS1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

TS2 0.224898 0.212176 0.212356 0.21217 0.21217 0.212174 0.212183 

TS3 0.05 0.050001 0.05 0.05 0.05 0.05 0.050001 

TS4 0.151592 0.151593 0.151587 0.151596 0.151577 0.15158 0.151594 

TS5 0.126413 0.126401 0.126401 0.126412 0.126236 0.126401 0.126244 

TS6 0.05 0.05 0.05 0.05 0.05 0.050001 0.05 

TS7 0.133788 0.133801 0.137135 0.133809 0.133799 0.133787 0.133791 

TS8 0.050001 0.05 0.05 0.05 0.05 0.050001 0.050001 

PS1 1.27344 1.27338 1.27334 1.27336 1.25 1.2734 1.25 

PS2 1.25 1.49986 1.49598 1.5 1.5 1.49993 1.49983 

PS3 1.25001 1.25001 1.25001 1.25 1.25 1.25002 1.25006 

PS4 1.4997 1.49965 1.49975 1.49958 1.5 1.49997 1.49985 

PS5 1.49976 1.5 1.5 1.49974 1.5 1.5 1.49983 

PS6 1.25 1.25001 1.25 1.25 1.25 1.25001 1.25003 

PS7 1.5 1.49975 1.42747 1.49952 1.49989 1.5 1.49999 

PS8 1.25 1.25003 1.25 1.25 1.25 1.25 1.25 

F 3.67744 3.66945 3.67349 3.66925 3.66749 3.66941 3.66757 

NFE 95400 43400 67200 99700 55100 35330 70650 

41. 
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Table 8.10 Optimal design variables, objective function values and number of function of evaluations 

(NFE) of IEEE 6-bus model by DE and the proposed DE algorithms 

DE LDE1 LDE2 LDE3 LDE4 LDE5 DE-QI 

TS1 0.117325 0.117186 0.114991 0.103403 0.114487 0.102494 0.101411 

TS2 0.208261 0.186646 0.203752 0.186301 0.18641 0.186341 0.186334 

TS3 0.099714 0.096582 0.098299 0.096107 0.094739 0.094675 9.46E-02 

TS4 0.112537 0.111923 0.103672 0.112567 0.10061 0.106796 0.100603 

TS5 0.050005 0.050013 0.05 0.050001 0.050001 0.050002 5.00E-02 

TS6 0.058011 0.050019 0.05 0.05 0.050008 0.05 0.05 

TS7 0.050002 0.050001 0.050001 0.05 0.05 0.05 0.050001 

TS8 0.050004 0.05 0.05 0.050003 0.050004 0.050002 0.050001 

TS9 0.050005 0.050006 0.050001 0.05 0.05 0.05 0.050005 

TS10  0.071966 0.070608 0.057507 0.070325 0.070155 0.056329 0.056263 

TS11 0.064995 0.064998 0.066782 0.06499 0.064981 0.065005 0.064976 

TS12 0.061796 0.061796 0.056615 0.050917 0.050917 0.055312 0:050903 

TS13 0.050007 0.05 0.063515 0.05 0.050009 0.050005 0.050006 

TS14 0.08566 0.086012 0.085904 0.085723 0.070928 0.070994 0.070851 

PS1 1.25057 1.25153 1.26356 1.49956 1.26024 1.49911 1.49967 

PS2 1.25009 1.49594 1.29936 1.49996 1.4987 1.49994 1.50E+00 

PS3 1.25121 1.25258 1.26226 1.25754 1.27617 1.27716 L27752 

PS4 1.25151 1.26329 1.43227 1.25082 1.49924 1.36503 1.50E+00 

PS5 1.25 1.25004 1.25 1.25 1.25002 1.25005 1.25001 

PS6 1.25E+00 1.38225 1.38859 1.38102 1.38142 1.38181 1.38091 

PS7 1.25005 1.25002 1,25083 1.25001 1.25 1.25005 1.25E+00 

PS8 1.25E+00 1.25011 1.25 1.25008 1.25053 1.25003 1.25009 

PS9 1.25022 1.25005 1.25147 1.25004 1.25 1.25 1.25 

PS10 1.25023 1.25014 1,49707 1.25211 1.25 1.49961 1.49939 

PS11 1.49987 1.49994 1.47597 1.49981 1.49998 1.49987 1.49998 

PS12 1.25757 1.25297 1.47 1.49979 1.5 1.39319 1.5 

PS13 1.48058 1.46644 1.27288 1.46474 1.46151 1.46134 1.4612 

PS14 1.25577 1.25001 1.26242 1.25404 1.4979 1.49747 1.49936 

F 10.6272 10.5067 10.6238 10.437 10.3812 10.3614 10.3287 

NFE 212190 72960 18180 101580 100860 106200 163980 
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Table 8.11 Improvement(%) of proposed DE algorithms in comaprison with DE interms of objective 

function values 

Algorithm IEEE 3-bus IEEE 4-bus IEEE6-bus 

LDE1 0.726739 0.217271 1.133883 

LDE2 1.133787 0.107412 0.031993 

LDE3 1.237253 0.222709 1.789747 

LDE4 1.270296 0.270569 2.314815 

LDE5 1.270089 0.218358 2.501129 

DE-QI 1.269883 0.268393 2.80883 

Table 8.12 Comparison results of IEEE 3-bus, 4-bus and 6-bus models: interms of objective.function 

values 

Algorithm IEEE 3-bus IEEE 4-bus IEEE 6-bus 

DE 4.84218 3.67744 10.6272 

LDE1 4.80699 3.66945 10.5067 

LDE2 4.78728 3.67349 10.6238 

LDE3 4.78227 3.66925 10.437 

LDE4 4.78067 3.66749 10.3812 

LDE5 4.78068 3.66941 10.3614 

DE-QI 4.78069 3.66757 10.3287 

RST2 4.835427 3.705018 10.619223 

GA 5.07616 3.85874 13.7996 

SOMA 8.01016 3.78922 26.1495 

SOMGA 4.78989 3.67453 10.3578 

LX-POL 4.826506 3.574931 10.60281 

LX-PM 4.828629 3.583045 10.62195 
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8.9 Conclusion 
In this chapter, electrical engineering power system DOCR coordination problem, which 

is a constrained non-linear optimization problem, is solved by DE and six modified versions of 

DE namely LDE1, LDE2, LDE3, LDE4, LDE5 and DE-QI. The problem is to determine the 

optimal value of Time dial setting and Plug setting so that the relay time can be minimized. 

Three models of this problem namely IEEE 3- bus, IEEE 4-Bus and IEEE 6-bus were solved by 

using DE and its variants. The complexities of all the models are different due to different 

decision variables and constraints. The results obtained. by modified DE algorithms on all 

models were superior with the basic DE algorithm. Also, the results obtained by DE and its 

variants were compared with RST2, GA, SOMA, SOMGA, LX-POL and LX-PM algorithms in 

the literature. In all the considered models, DE variants were superior or at par with all other 

algorithms; this variants are found to be a robust technique for solving such type of constrained 

nonlinear optimization problems. 
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Optimization of Some Real Life Problems Using 

PSO and DE 

[In this chapter, some real life problems, collected from various fields, are solved using 

the versions of PSO and DE presented in this thesis. These problems are: Static Power 

Scheduling problem, Dynamic Power Scheduling problem, Cost Optimization of Transformer 

Design, Weight Minimization of a Speed Reducer, Heat Exchanger Network Design, Gas 

Transmission Compressor Design, Optimal Design of a Industrial Refrigeration, System, 

Optimization of Transistor Modeling, Optimal Capacity of Gas Production Facilities, Optimal 

Thermohydralic Performance of an Artificially Roughened Air Heater and Design of a Gear 

Train. The proposed algorithms discussed in chapter 2, 3, 4, 5 and 6 are used to solve the above 

mentioned real life problems.] 

9.1 Introduction 
Many engineering problems can be formulated as optimization problems. These 

problems when subjected to a suitable optimization algorithm help in improving the quality of 

solution. In particular there has been a focus on stochastic algorithms for obtaining the global 

optimum solution to the problem, because in many cases it is not only desirable but also 

necessary to obtain the global optimal solution. In order to further validate the efficiency of the 

proposed algorithms (discussed in chapters 2, 3, 4, 5 and 6), they were tested on several real life 

problems. These problems are segregated as constrained and unconstrained problems. The 

constrained problems are solved using ICDE and ICPSO algorithms. For unconstrained 

problems almost all the algorithms discussed in this thesis gave more or less similar results 

(better than basic versions of PSO and DE algorithms) however for the sake of brevity results 

are given for only a few chosen algorithms which gave marginally better results than the other 

algorithms developed in this thesis for solving unconstrained problems. The constrained 
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problems are given in section 9.2 to 9.8, and section 9.9 onwards unconstrained problems are 

given. A brief description of the problems is given in the following subsections. 

9.2 Static Power Scheduling Problem (Source: B-Biggs (1978)) 

In this problem the decision variables xi and x2 are the real power outputs from two 

generators; x3  and x4  are the reactive power outputs; x5, x6  and x7  are voltage magnitudes at three 

nodes of an electrical network and x8  and x9  are voltage phase angles at two of these nodes. The 

constraints other than the bounds are the real and reactive power balance equations, stating that 

the power flowing into a node must balance the power flowing out. 

Mathematical model of Static Power Scheduling problem is given by: 

Minimize f (x) = 3000x1  +10004 + 2000x2  + 666.6674 

Subject to: 

0.4 — x1  + 2Cx52  + x5  x6  [D sin(—x 8 ) — C cos(—x 8 )] 

+ x5  x7  [D sin(—x9  ) — C cos(—x9  )] = 0 

0.4 — x2  + 2Cx6 2 + x5  x6  [D sin(x 8 ) — C cos(x8 )] 

+ x6  x7  [D sin(x8  — x9 ) — C cos(x8  — x9 )] = 0 

0.8 + 2Cx7 2  + x5  x7  [D sin(x9 ) — C cos(x9  )] 

+ x6 x7 [D sin(x9  — x8 ) — C cos(x9  — x8 )] = 0 

0.2 — x3  + 2Dx5 2  — x5x6  [C sin(—x8 ) + D cos(—x8 )] 

— x 5  x7  [C sin(—x9 ) + D cos(—x9  )] = 0 

0.2 — x4  + 2Dx6 2  — x5  x6  [C sin(x8 ) + D cos(x 8 )] 

— x6 x7 [C sin(x8  — x9 ) + D cos(x8  — x9 )] = 0 

— 0.337 + 2Dx72  — x5  x7  [C sin(x9 ) + D cos(x9 )] 

— x6  x7  [C sin(x9  — x8  ) + D cos(x 9  — x8 )1= 0 

xi  ? 0 i =1,2. 

1.0909? xi  ? 0.90909 i = 5,6,7. 
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C = sin(0.25)48.4 / 50.176 

D = cos(0.25)48.4 / 50.176 

This problem is a constrained optimization problem; it has 9 decision variables and 6 

equality constraints. 

9.3 Dynamic Power Scheduling Problem (Source: 13-Biggs (1978)) 

This problem is a representation of the problem of scheduling three generators to meet 

the demand for power over a period of time. The variable x3k+, denotes the output from the ith  

generator at time t(k). The constraints in the problem are upper and lower limits on the power 

available from each generator, bounds on the amount by which the output from a generator can 

change from time t(k)  to t(k+1), and the condition that the at each time t(k)  the power generated 

must at least satisfy the demand. 

Mathematical model of this problem is given by: 

Minimize 

4 , f (x) = E (2.3x3k+1  + 	nila3k+1  1 /
,7 x 3 k 2 

k=0 

Subject to: 

0.000 ix 3k+2 2.2x3k+3 + 0.00015x32k+3  ) 

—7 x3k+1 - x3k_2 < 6 6 k = 1„4 

—7 

— 7 x3k+2 	7 k =1, 	,4 

—10 

—7 :5 x3k+3 - x3k 6 k =.1„4 

xl + x2 + x3  60 

x 4 + x5 + x6 50 

x7  + x8  + x9  70 

x10  +x11 +x12  > 85 

x13  +x14  +x15  100 
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0 	x3k+i 90 k =1„4 

0 < x3k+2 120 k = 1„4 

0 5._ x3k+3 < 60 k =1„4 

This problem is a constrained optimization problem; it has 15 decision variables, 35 

inequality constraints and 30 boundary constraints. 

9.4 Cost Optimization of a Transformer Design 
(Source: B-Biggs (1978)) 

The objective function represents the worth of the transformer, including the operating 

cost, and the constraints refer to the rating of the transformer and the allowable transmission 

loss. The decision variables xi, x2, x3 and x4  are physical dimensions of winding and core and the 

variables x5, x6 are magnetic flux density and current density respectively. 

The mathematical model of this problem is given by: 

Minimize f = 0.0204x1x4(x1 + x2 + x3 ) +0 .0187x2x3(xi  +1.57x2  + x4) + 

0.060 7.xix4x52 (xi +x2 + x3) + 0.0437x2x3x62 (xi +1.57x2 + x4) 

Subject to: 

x1 x2x3x4x5x6  2.07x103  

1— 0.00062x1  x4x52  (xi  + x2 + x3) — 0.00058x2 x3 x6 2  (xi +1.57x2 + ) 0 

xi  0 (i 

This problem is a constrained optimization problem; it has 6 decision variables, 2 inequality 

constraints and 6 boundary constraints. 

9.5 Weight Minimization of Speed Reducer 
(Source: Floudas and Pardalos (1990)) 

The problem involves the design of a speed reducer for small aircraft engine. 

The mathematical model of this problem is, 

Minimize f (x) = 0.7854x1  x22  (3.3333x32  +14.9334x3 — 43.0934) 
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-1.508x1(x62 + x72) + 7.477(x63 + x73) + 0.7854(x4x62  + x5x72) 

Subject to: 

x1x2 2x3  ?. 27, xi x22 x32 397.5, x2x6 4x3x4-3  1.93, 

1100 

Where Al  = [(745x4x2-1x3-1)2  +16.96116  ]0'5  , B1  = 0.1x63  

A2  B2-1  <850 

Where A2  =[(745x5 x2-1x3-1) 2  +15.75106 ]M  , B2  = 0.1x73  

x2 x3. 40, xi x2-1 	 _12, 1.5x6  -x4  -1.9, 1.5x7  -x5  -1.9. 

2.6 	3.6, 0.7<x2  0.8,  17<x3  28, 7.3<_x4  58.3, 7.3 x5 8.3, 2.9 	3.9, 

55 x7 55.5 

It is a constrained optimization problem having 7 decision variables, 10 inequality 

constraints and 14 boundary constraints. 

9.6 Heat Exchanger Network Design (Source: Babu and Angira (2008)) 

This problem addresses the design of a heat exchanger network as shown in Figure 9.1. 

It has been taken from Babu and Angira (2008). Also, it has been solved by Adjiman et al. 

(1998) using otBB -Algorithm. One cold stream must be heated from 100 °F (37.78 °C) to 500 °F 

(260 °C) using three hot streams with different inlet temperatures. The goal is to minimize the 

overall heat exchange area. 

The mathematical model of this problem is, 

Minimize f (x) = x1  + x2  +x3  

Subject to: 

- 1+ 0.0025(x4  +x6 ) 0, 

-1+ 0.0025(x$  +x7  - x4 ) 5 0 , 

- 1+0.01(x8  -x5 )57.0 , 

-xix6  +833.33252x4  +100x1- 83333.333 5 0, 

243 



Chapter 9 

- X2 X7 + 1250x5  + x2x4  —1250x4  5 0 , 

— x3x8  +1250000+ x3x5  —2500x5 <_ 0, 

—100 	10000 , 1000 xi  10000 (i = 2,3) , 10 xi  1000 (i = 4,...,8) 

300 	400 	 600 

100  
X 4 ► 3 

500 

 

     

X6 	 X7 	 X8 

Figure 9.1 Heat exchanger network design problem 

This problem is a constrained optimization problem; it has 8 decision variables, 6 inequality 

constraints and 16 boundary constraints. 

9.7 Gas Transmission Compressor Design 
(Source: Beightler and Phillips (1976)) 

In this problem the values of design parameters P1, xi, x2, x3 are to be determined such 

that they deliver 100 million cu. Ft. of gas per day with minimum cost for a gas pipe line 

transmission system as shown below. 

The mathematical model is, 

Minimize f (x) = 8.61x 105  x1112  X2  x3-23  X4  —112  + 3.69 x104  x3  

+7.72x108 xi-1x20.219 —765.43x106 

Subject to: 

	

—2 	—2 
X 4. X2  + X2  

	

20 .x][ 	1 5x2 	20..x3  550, 0.1....x4 	60 
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	> 

1 inequality 

  

P1 

    

     

     

     

       

       

Xq 

Figure 9.2 Gas transmission compressor 

This problem is a constrained optimization problem; it has 4 decision variables, 

constraint and 8 boundary constraints. 

9.8 	Optimal Design of Industrial Refrigeration System 
(Source: Paul and Tay (1987)) 

In this problem an individual refrigeration system is to be designed to meet the following 

requirements. 

Refrigeration capacity 	 : 615.3 kW (175 tons)  

Leaving chilled water temperature : 6.7°C 

Entering condenser water temperature : 28°C 

Condensing temperature : 40°C 

Evaporating temperature : 5°C 

Refrigerant : R — 2°C 

The various cost considered are evaporator fabrication cost, condenser fabrication cost, 

evaporator insulation cost and pumping cost. Apart from the above costs, physical size and heat 

transfer requirements have been incorporated in the formulation of the problem. The design is 

based on a standard vapour — condensation cycle. The condenser and evaporator are of the 

horizontal multi-pass, shell & tube type. The expansion device thermostatic expansion value and 

the compressor are off-the-shell items. The model is formulated based on some first principles 

of thermodynamics and according to certain standards set by ARI, ASTM, ASME and 

ASHRAE. The design presented here emulates a commercially available system. 

The mathematical model is, 

Minimize f (x) = 63098.88x2 x4 x12  + 5441.5x22x12 +115055.5x21'664x6 

+ 6172.27x22x6 + 63098.88x1x3x1 + 5441.5x12x11  
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+115055.5x11.664x5  + 6172.27x12x5  + 140.53x1x1  

+ 281.29x3x11 + 70.26x12  + 281.29x1x3  + 281.29x32  

+14437.41.8812 x120.3424 xioxi4-1,x12.x7x9-1 + 20470.2x72.893x110.316x12 

Subject to: 

1.524x7 	1, 1.524x8 	1, 0.07789x1  - 2x7  lx9  1, 

7.05305x9-1x12x10x8 lx2 lx14 1  ._ 1, 0.0833x13 1  14 < 1,  

47.136x20. 333. -1 x 10 	-1.333x8x132'1195  + 62.08x132.1195x12-1x80.2x10-1 

1.8812 	0.3424 0.04771xiox8 	x12 	-- 1,  

<1 

	

1.893xi 10.316 	 -1 	 -1 	 -1 0.0488x,x7 	 0.0099xi x3 	1, 0.0193x2 x4 	1, 0.0298xi x5  

0.056X2  x6 	<1, 2x9-1 	2x10-1 	x12x11 1  _<1, 

0.001 	5, i =1,...,14 

This problem is a constrained optimization problem; it has 14 decision variables, 15 

inequality constraints and 28 boundary constraints. 

9.9 Optimization of Transistor Modeling (Source: Price (1978)) 

The objective function of this problem provides a least-sum-of-squares approach to the 

solution of a set of nine simultaneous nonlinear equations, which arise in the context of 

transistor modeling. 

The mathematical model of the transistor design is given by, 

n 2 Minimize f (x) = y 2 
 + (ak 2  +Pk ) 

k=1 

Where 

ak  = (1- xi  x2  )x3  { exp[x5  (gik g3kx7 x10 3  - g 5kx8 x10 3  - 1}g5k g 4kx2 

fik  = (1- xi  x2  )x4  { exp[x6  (g1k - g 2k g3kx7 x10-3  + g 4kx9 x10-3  )]-1}g5kxj.  + g 4k 
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-X2 X4 

Subject to: 

xi 	0, i 	1, 2, ... , 9 

And the numerical constants g,k  are given by the matrix 

0.485 0.752 0.869 0.982 	- 
0.369 1.254 0.703 1.455 

5.2095 10.0677 22.9274 20.2153 
23.3037 101.779 111.461 191.267 
28.5132 111.8467 134.3884 211.4823-  

This problem is an unconstrained optimization problem; it has 9 decision variables and 9 

boundary constraints. 

9.10 Optimal Capacity of Gas Production Facilities 
(Source: Beightler and Phillips (1976)) 

This is the problem of determining the optimum capacity of production facilities that 

combine to make an oxygen producing and storing system. Oxygen for basic oxygen furnace is 

produced at a steady state level. The demand for oxygen is cyclic with a period of;one hour, 

which is too short to allow an adjustment of level of production to the demand. Hence the 

manager of the plant has two alternatives. 

(1) He can keep the production at the maximum demand level; excess production is lost in 

the atmosphere. 

(2) He can keep the production at lower level; excess production is compressed and stored 

for use during the high demand period. 

The mathematical model of this problem is given by: 

2 	. Minimize f (x) = 61.8+ 5.72x1  + 0.2623[(40 - x1)1n(2x6-0)I0 85  

+ 0.087(40 - x1) ln(2020   ) + 700.23x2-015  

Subject to: x1  17.5 , x2  > 200;17.5 	40 , 300 x2  600 . 
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This problem is an unconstrained optimization problem; it has 2 decision variables and 4 

boundary constraints. 

9.11 Optimal Thermohydraulic Performance of an Artificially 

Roughened Air Heater (Source: Prasad and Saini (1991)) 

In this problem the optimal thermohydraulic performance of an artificially roughened 

solar air heater is considered. Optimization of the roughness and flow parameters (p/e, e/D, Re) 

is considered to maximize the heat transfer while keeping the friction losses to be minimum. 

The mathematical model of this problem is given by: 

Maximize L = 2.51*ln e+  + 5.5 - 0.1Rm  -GH  

Where Rm  = 0.95x20'53 ; GH = 4.5(e+ )0.28(03)0.57 ; e+ _ xi x3(1 I 2)112  ; f = (fs  + fr )12; 

fs  = 0.079x3-025  ; fr  = 2(0.95x30.53  + 2.5 * ln(1/ 2x1 ) 2  — 3.75)-2  ; 

Subject to: 

0.02 	0.8 ,10 < x2  40 , 3000 x3 :5_ 20000 

This problem is an unconstrained optimization problem; it has 3 decision variables and 6 

boundary constraints. 

9.12 Design of Gear Train (Source: Sandgren (1988)) 

This problem is to optimize the gear ratio for the compound gear train. This problem 

shown in Figure 9.3 was introduced by Sandgren (1988). It is to be designed such that the gear 

ratio is as close as possible to 1/6.931. For each gear the number of teeth must be between 12 

and 60. Since the number of teeth is to be an integer, the variables must be integers. The 

mathematical model of gear train design is given by, 

Minimize f 
1 2  1 2  xi x2 

x3  x4 
 } 

6.931 
TdTb} 
TaT f 6.931 

Subject to: 12 xi  < 60 i =1,2,3,4 
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[xi, x2, x3, x4] =[Td,Tb,Ta ,Tf], xi's should be integers. Ta, Tb, Td, and Tf are the number of 

teeth on gears A, B, D and F respectively. 

Figure 9.3 Compound gear train 

This problem is an unconstrained optimization problem; it has 4 decision variables and 9 

boundary constraints. 

9.13 Methods of Solution and Results Discussion 
All the constrained real life problems are solved by using the constraint handling 

algorithm (ICPSO and ICDE) discussed in chapter 6. For solving unconstrained real life 

problem, the algorithms which gave the best results in chapter 2 to 5 are used. In order to make 

a fair comparison of all algorithms, same seed for random number generation is fixed so that the 

initial population is same for all the algorithms. The population size is taken as 50. For DE 

versions, the crossover constant CR is set as 0. 5 and the scaling factor F is set as 0.5. For PSO 

algorithms, the acceleration coefficients cl = c2 = 2.0 and the inertia weight w linearly 

decreases from 0.9 to 0.4. For each algorithm, the stopping criteria is to terminate the search 

process when one of the following conditions is satisfied: (i) the maximum number of 

generations is reached (assumed 2000 generations), (ii) I fmax -,/min I < 10-4  where f is the value of 

objective function. A total of 50 runs for each experimental setting were conducted andLthe best 

solution throughout the run was recorded as global optimum. For comparison, previously quoted 

results in the literature are used. The numerical results of constrained and unconstrained real life 

problems are given in Table 9.1 and 9.2 respectively. 

The first seven problems are constraint optimization problems. Out of this seven, ICDE gave 

a better performance in 3 cases; in one test case ICPSO is better than ICDE and the remaining 3 

test cases both the algorithms perform the same. In comparison of the results of ICPSO and 
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ICDE with the quoted results in the literature, it can be seen that both the algorithms are better 

than the source results. Likewise, for unconstrained problems also PSO and DE versions 

performed well in all the test cases in comparison with the results of basic versions of PSO and 

DE and the quoted results in the literature. 

Table 9.1 Results of constrained real life problems using ICDE and ICPSO algorithms 

Static Power Schedu ing Problem 

Algorithm Best 
Fitness 

Average 
Fitness 

Worst 
Fitness 

Standard 
deviation NFE Time 

(sec) 
Source 
result 

ICPSO 5048.46 5109.37 5136.04 37.77 2658 0.89 Time: 
3.8 sec ICDE 5046.69 5102.58 5175.51 53.29 3760 0.62 

Dynamic Power Scheduling Problem 

ICPSO 664.015 703.223 742.139 17.540 4212 1.68 Time: 
 40.7 sec ICDE 661.719 721.045 730.654 18.2442 3978 1.44 

Transformer Design 

ICPSO 86.648 87.036 87.394 0.2696 41324 0.88 Time: 
3.5 sec ICDE 86.601 87.617 89.37 2.2033 53245 1.23 

Weight Minimization of a Speed Reducer 

ICPSO 2863.36 2863.36 2863.36 1.56e-05 3802 0.52 Fitness: 
2994.47 ICDE 2863.36 2863.36 2863.36 1.84e-05 7458 1.08 

Heat Exchanger Network Design 

ICPSO 7049.25 7049.25 7049.25 6.17e-05 6316 0.18 Fitness: 
7049.25 ICDE 7049.25 7049.25 7049.25 3.33e-05 7598 0.16 

Gas Transmission Compressor Design 

ICPSO 2.963e+06 2.963e+06 2.963e+06 8.79e-06 14634 0.56 Fitness: 
2.99e+06 ICDE 2.963e+06 2.963e+06 2.963e+06 3.17 e-06 6640 0.28 

Optimal Design of Industrial Refrigeration System 

ICPSO 13646.5 13646.5 13646.5 7.82e-05 72312 8.34 Fitness: 
19230.0 ICDE 13646.6 14282.5 15373.3 1.18 96749 9.83 
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Table 9.2 Results of unconstrained real life problems using PSO, BTPSO, QIPS03, DE, LDE4 and S- 

MDE algorithms 

Transistor Modeling 
Item PSO BTPSO QIPS03 DE LDE4 S-MDE Source Result-1  
xl 0.9010 0.9004 0.9019 0.9010 0.9010 0.9016 0.90 
x2 0.8841 0.5224 0.8951 0.8856 0.6535 0.8770 0.45 
x3 4.0386 1.0764 3.6675 4.0593 1.4207 3.5323 1.0 
x4 4.1488 1.9494 3.6735 4.1728 2.0913 3.6724 2.0 
x5 5.2436 7.8536 5.4421 5.2300 7.2996 5.5123 8.0 
x6 9.9326 8.8364 11.2697 9.8842 10.00 10.802 8.0 
x7 0.1009 4.7712 0.0979 0.0259 4.0985 0.5626 5.0 
x8 1.0599 1.0074 1.1053 1.0625 1.0097 1.0746 1.0 
x9 0.8066 1.8545 0.6799 0.8024 1.5988 0.7965 2.0 

f(x) 0.0695 0.0113 0.0618 0.0673 0.0514 0.0657 NA 
NFE 22195 17845 20743 21761 16423 19860 NA 
Time 0.86 0.36 0.42 0.93 0.33 0.40 NA 

Optimal Capacity of Gas Production Facilities 
x1 17.5 17.5 17.5 17.5 17.5 17.5 17.5 
X2 600 600 600 600 600 600 465 

f(x) 169.844 169.844 169.844 169.844 169.844 169.844 173.76 
NFE 342 270 324 483 423 367 NA 
Time 0.02 0.01 0.02 0.02 0.02 0.02 NA 

Optimal Thermohydraulic Performance of an Artificially Roughened Air Heater 
xl  0.05809 0.134009 0.032359 0.12469 0.15301 0.08508 0.052 
x2 10 10 10 10 10 10 10' 
x3  10400.2 3000 16643.4 3811.07 3000 5935.45 10258 

f(x) 4.21422 4.21422 4.21422 4.21422 4.21422 4.21422 4.182 
NFE 6207 5190 4425 3652 3115 2947 NA 
Time 0.3 0.3 0.3 0.2 0.2 0.2 NA 

Design of Gear Train 
xl 13 16 19 16 19 19 18 
x2 31 19 16 19 16 16 22 
x3 57 49 43 49 43 43 45" 
x4 49 43 49 43 49 49 60 

f(x) 9.98e-11 2.78e-12 2.78e-12 2.78e-12 2.78e-12 2.78e-12 5.7e-06 
Gear ratio 0.14429 0.14428 0.14428 0.14428 0.14428 0.14428 0.14666 
Error (%) 0.007398 0.000467 0.000467 0.000467 0.000467 0.000467 1.65 

NFE 480 340 256 794 658 742 NA 
Time 0.1 0.01 0.01 0.1 0.02 0.1 NA 
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9.14 Conclusion 

Thfs chapter investigated the performance of two popular; population based 

Evolutionary Algorithms Particle Swarm Optimization, Differential Evolution and their 

improved versions (presented in chapter 2, 3, 4, 5 and 6) on 11 real life problems taken from 

different fields. Out of these first 7 problems are constrained while the remaining four are 

unconstrained in nature. The constrained handling method described in Chapter 6 is used for 

solving the first 7 problems. For the unconstrained problems best results obtained by using the 

algorithms discussed in Chapters 2 to 5 are given. The simulation results show that, PSO, DE 

and their improved versions not only gave a better solution than the one quoted in the literature 

but they were also very time effective. Thus it may be concluded that PSO, DE and their 

improved versions can be used for solving engineering optimization problems. 
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Conclusions and Future Scope 

[In this chapter, the concluding observations based on this thesis are presented. In 

section 10.1, the conclusions of this study are stated and in section 10.2, salient features of the 

algorithms developed in this thesis are given. Finally in section 10.3, future research work in 

this direction is suggested.] 

10.1 Conclusions 
The objective of this study was to develop computational algorithms for obtaining the 

global optimal solutions of unconstrained and constrained nonlinear optimization problems. The 

aim was to solve not only benchmark test problems appearing in literature but also to solve 

challenging real life optimization problems arising in various disciplines. The focus of the 

present work is on the modifications of Particle Swarm Optimization and Differential Evolution 

algorithms primarily because of their popularity and wide applicability. 

Various modifications were tested and implied on the basic structure of PSO and DE 

algorithms to further enhance their performance. These algorithms can be classified as: 

> Algorithms based on initial generation of random numbers 

Under this modification various distributions along with quasi random sequences were 

used to generate the initial population for PSO and DE algorithms. In all, 12 modified versions 

(GPSO, EPSO, BTPSO, GAPSO, VC-PSO, SO-PSO, GDE, EDE, BIDE, GADE, VC-DE and 

SO-DE) were proposed in which only the initial distribution of random numbers was changed 

from uniform to other probability distributions and quasi random sequences. 

The simulation results showed that a significant improvement can be made in the 

performance of PSO and DE by simply changing the distribution of random numbers to other 

than uniform distribution and to quasi random sequence as the proposed algorithms 

outperformed the basic versions by a noticeable percentage. 

> Modified PSO algorithms 
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The next focus was on the design and implementation of improved PSO algorithms 

based on the velocity vector, inertia weight, diversity, mutation and Quadratic Interpolation 

based crossover. For mutation the probability distributions Gaussian, Beta and Gamma and the 

low discrepancy Sobol sequence were used. Nineteen improved PSO algorithms were proposed: 

ATREPSO, GMPSO, BMPSO, GAMPSO, BGMPSO, QIPSO1, QIPSO2, QIPSO3, QIPSO4, 

SMPS01, SMPSO2, GWPSO+GD, GWPSO+ED, GWPSO+UD, MPSO, Q-QPSO I, Q-QPSO2, 

SMQPSO1 and SMQPSO2. 

D Modified DE algorithms 

The next focus was on the design and implementation of improved DE algorithms based 

on the mutant vector, scale factor F and the crossover rate Cr. Two new mutant vectors based on 

the Laplace probability distribution (LDE) and on the concept of Quadratic Interpolation (DE-

QI) were proposed. Five versions of LDE were proposed namely LDE1, LDE2, LDE3, LDE4 

and LDE5. Also, an improved version of DE with adaptive control parameters (ACDE) was 

presented. 

D Hybridized algorithms 

One of the class of modified algorithms consists of the hybridization of algorithms, 

where the two algorithms are combined together to form a new algorithm. Three hybrid two 

phase global optimization algorithms namely DE-PSO, MDE and AMPSO algorithms were 

proposed. Based on the generation of initial population, three versions of MDE were given: U-

MDE, G-MDE and S-MDE. 

D Constraint optimization algorithm 

A new constraint handling mechanism for solving constrained optimization problems 

was proposed. It is a simple approach for handing constraints and do not need any additional 

parameters. Based on the new constraint handling mechanism, two algorithms were presented 

namely ICPSO and ICDE. The performance of ICPSO and ICDE algorithms were validated on 

twenty constrained benchmark problems and compared with two other variants (constraint) of 

PSO and DE in the literature. 

D Real life problems 

The first real life problem is taken from the field of Electrical Engineering. The problem 

is to determine the In-Situ efficiency of Induction Motor without performing no-load test, which 
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is not easily possible for the motors working in process industries where continuous operation is 

required. This problem was modeled as an unconstrained optimization problem and was framed 

by four different methods. The differences in the method were based on the number of input 

parameters used to the optimization algorithms and modifications in the equivalent circuit of the 

motor. Basic versions of PSO, DE and their six variants namely QPSO, ATREPSO, GMPSO, 

SMPSO1, LDE1 and DE-QI were used to solve this problem. 

The second real life problem is also taken from the field of Electrical Engineering. The 

problem is to compute the values of the decision variables called relays, which control the act of 

isolation of faulty lines from the system without disturbing the healthy lines. This problem was 

modeled as a nonlinear constrained optimization problem, in which the objective function to be 

minimized is the sum of the operating times of all the relays, which are expected to operate in 

order to clear the faults of their corresponding zones. Three cases of the IEEE Bus system were 

considered namely, IEEE 3-bus, IEEE 4-bus and IEEE 6-bus system. This problem was solved 

by using the family of DE algorithms namely LDE1, LDE2, LDE3, LDE4, LDE5 and DE-QI. 

Finally, a collection of eleven real life problems, taken from various fields of Science and 

Engineering, were given. Out of eleven problems, seven problems were constrained real life 

problems and four problems were unconstrained real life problems. All the problems were 

analyzed with both PSO and DE family of algorithms and were compared with the results in the 

literature. Empirical results showed that the families of proposed PSO and DE algorithinS were 

quite competent for solving the considered real life problems. 

10.2 Salient Features of the Algorithms Developed in the Thesis 
This section describes the features of the proposed algorithms in this thesis. 

➢ All the algorithms developed in the present work were tested on a wide range of test 

problems occurring in literature and were also compared with other versions of PSO and 

DE algorithms. The numerical analysis of results showed that even a simple 

modification like changing the initial generation can make a significant difference in the 

performance of the algorithm. 

➢ While comparing the algorithms presented in the thesis with other versions available in 

literature, different parameter settings and performance measures were considered 
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according to the parameter settings and performance measures given in literature. This 

was done in order to have a fair comparison of the proposed algorithms with the 

available versions. 

➢ The algorithms proposed in the present study are simple to imply and can be understood 

by even a person of non-mathematical background. 

➢ Most of the modifications like different probability distributions for generation of 

random numbers or the selection and sorting rules for constrained optimization 

suggested in the present work are generic in nature and can be applied to any population 

based search technique. 

10.3 Future Scope 
The process of research is an everlasting and iterative process. This work is no exception 

to it. Several modifications can be incorporated in the present work. A few of them are listed 

below. 

(1) The present study deals with only single objective optimization problems, work can be 

done in extending these algorithms to multi objective optimization problems as well. 

(2) The algorithms are developed for the continuous optimization problems. However there 

are several real life optimization problems that have discrete variables. The algorithms 

developed in the present thesis can be suitably modified for discrete/ combinatorial 

cases. 

(3) An extensive empirical analysis of numerical results has been done in the present work. 

It would be interesting to research on the theoretical analysis of the operators used while 

modifying various algorithms of the thesis. 
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Appendix I 
List of Unconstrained Test Problems 

Table 1.1 Name of unconstrained test problems, assigned codes and characteristics 

SI. 
No. Name of the function Function 

code 
Characteristics 

UM/MM S L/NSL SP/NSP 

1 Ackley's path function ACK MM SL NSP 

2 Alphine function ALP MM SL SP 

3 Axis parallel hyperellipsoid APH UM SL SP 

4 Branin function BR MM NSL NSP 

5 Colvillie function CLV UM NSL NSP 

6 Dejong's function DeJ UM SL SP 

7 Dejong's functionl (no noise) DeJI UM SL SP 

8 Dejong's function with noise DeJ-N UM SL SP 

9 Generalized penalized function 1 GP 1 MM SL NSP 

10 Generalized penalized function 2 GP2 MM SL NSP 

11 Goldstein and price problem GP MM NSL NSP 

12 Griewank function GR MM SL SP 

13 Hartmann function I HM1 MM NSL NSP 

14 Hartmann function 2 HM2 MM NSL NSP 

15 Levy and Mantalvo function LM MM SL NSP 

16 Matyas function MT MM NSL NSP 

17 Mccormic function MC MM NSL NSP 

18 Michalewicz function Mic MM SL NSP 

19 Modified Himmelblau function MH MM NSL NSP 

20 Ratringin function RS MM SL SP 

21 Rosenbrock function RB UM SL NSP 
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Table 1.1 contd... 

21 Rosenbrock function RB UM SL NSP 

22 Schwefel function SWF MM SL SP 

23 Schwefel's function 1.2 S WF1.2 UM SL SP 

24 Schwefel's function 2.21 SWF2.21 UM SL NSP 

25 Schwefel's function 2.22 SWF2.22 UM SL NSP 

26 Shaffer's function 6 SF6 MM NSL NSP 

27 Shaffer's function 7 SF7 MM SL NSP 

28 Shekel's Foxholes function SK MM NSL NSP 

29 Shubert function 1 SB I MM NSL NSP 

30 Shubert function 2 SB2 MM SL SP 

31 Six hump camel back function CB6 MM NSL NSP 

32 Step function ST UM SL SP 

33 Sum of different power SDP UM SL SP 

34 Test2N function T2N MM SL SP 

35 Zhakarov ZK UM SL NSP 

UM — Unimodal 

MM — Multimodal 

SL — Scalable 

NSL — Nonscalable 

SP — Separable 

NSP — Nonseperable 
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Unconstrained Problems 

I. Ackley's path function (ACK) (Ackley, 1987) 

min f (x)= 20 +e —20 exp(-0.2 	Ex•2 )  2  — exp(1  cos(27cci )), 
n i=1 	n 

—32 S xi  S 32, x* = (0,0,...,0), f (x*)= 0. 

This function is widely used multimodal function. The number of local minima is not known, 

but the global minimum is located at the origin. 

40 

Figure 1.1 3D plot of Ackley's path function 

2. Alphine function (ALP) (Rahnamayan et al., 2008) 

min f(x)= E I xi  sin(xi ) + 0.1xi  I , 
x 	i=1 

—10 xi  10 , x* = (0,0,0...,0) , f (x*) = 0 

-10 

10 10 

Figure 1.2 3D plot of Alphine function 
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3. Axis parallel hyper ellipsoid (APH) [site] 

n  - 2 min f (x) = Dci  , 

—5.12 xi  5 5.12, x* = (0,0,...,0), f (x*) = 0 

This problem is similar to DeJong's function. It is also known as the weighted sphere model. It 

is continuous, convex and unimodal. 

Figure 1.3 3D plot of Axis parallel hyper ellipsoid function 

4. Branin function (BR) (Branin, 1972) 

min f (x) = (x1 - 5  x02  +— 5 xo  — 6) 2 +10(1 — —
1

) cos(xo ) +10 , 
x 	 47r 2 	2z- 	 821-  

—10 xi 10 , x* = (9.42,2.47), f (x*) = 0.397886 

This function has three global minima. 
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Figure 1.4 3D plot of Branin function 
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5. Colvillie function (CLV) (Michalewicz, 1996) 

min f (x)=100(x2 	 )2  + (1— x3 )2  +10.1((x2 	+ (x4 —1) 2 ) _ x12 )2 +0  _ x1)2 + 90(x4  _ x32 	 2 
x 

+19.8(x2  —1)(x4  —1) , 

—10 xi  5 10 , x* = (1,1,1,1) , f (x*)= 0 

This function has a saddle point near (1,1,1,1). The only minimum is located at (1,1,1,1) with 

the minimum value zero. 

6. Dejong's function (DeJ) (De Jong, 1975) 

min f (x)= E xi' 
x  i=1 

—5.12 5 xi  5 5.12 , x* = (0,0,...,0), f(x*) = 0 . 

This function is the dream of every optimization algorithm. It is also called the sphere model. It 

is smooth and symmetric. Also this function is continuous, convex and unimodal. 

4 	4 

Figure 1.5 3D plot of Dejong's function 

7. Dejong's function] (no noise) (DeJ1) (Rahnamayan et al., 2008) 

min f (x) = E
n-1 

 (i +1)xi4 , 
x 	 i=0 

—1.28 5 xi  5 1.28, x* = (0,0,...,0), f (x*) = 0. 
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Figure 1.6 3D plot of Dejong's functionl 

8. Dejong's function with noise (DeJ-N) (De Jong, 1975) 

n-1 
min f (x) (E (i + 1)xi 4 )+ rand[0,1], 

x 	i=0 

-1.28 xi  5_1.28, x* = (0,0,...,0) , f (x*) = 0 . 

This function is a simple unimodal function padded with noise. Algorithms that do not do well 

on this test function will do poorly on noisy data. 

9. Generalized penalized function 1 (GP1) (Yao et al., 1999) 

min f (x) —{10 sin 2  (v)
n-1

i) + E (yi  - 1)2  [1 + 10 sin 2  (yi+  )] 
i=i 

n  + (y n  —1) 2  } + 1U(x ,10,100,4), 
i=1 

1 , 
Where y 	

, 4 
- 1  +1) , 50 S xi  5. 50, x* = (0,0,...,0), f (x*) = 0 

This function is a multimodal function where the number of local minima increases 

exponentially with the problem dimension. It appear to be the most difficult class of problems 

for many optimization algorithms. 
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Figure 1.7 3D plot of generalized penalized function 1 

10. Generalized penalized function 2 (GP2) (Yao et al., 1999) 

mm f (x) = (0.1){sin 2  (37ix1 ) + nE ((xi  - 1)2  (1 + sin 2  (37ixi±1 ))) 
x  i=1 

1 
+ (xn  - 1)(1 + sin 2(27-an ))) + 

n- 
 u(xi ,5,100,4) , 

i=o 

—50 xi  50, x* = (1,1,...,-4.76), f (x*) = —1.1428 

This function is similar to Generalized penalized function 1. It is a multimodal function where 

the number of local minima increases exponentially with the problem dimension. It appear to be 

the most difficult class of problems for many optimization algorithms. 

Figure 1.8 3D plot of generalized penalized function 2 
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In problem 9 and 10, 

u (x, a, b, c) = b (x-a)c 	if x > a , 

u (x, a, b, c) = b (-x-a)°  if x < -a , 

u (x, a, b, c) = 0 	if—a<x<a. 

11. Goldstein and price problem (GP) (Goldstein and Price, 1971) 

min f (x) = {1 + (xo  + x1  +1)2  (19 —14x0  + 3x02  —14x1  + 6x0  x1  + 3x12 )} 
x 

{30 + (2x0  — 3x1)2 	—32x0  + 12x02  + 48x1  —36xoxi  + 27x12)}, 

— 2 	<_2, x* = (0,1) , f (x*)= 3 

This problem has four local minima and one global minima. 

y 
	

10 
	

10 
	x 

20 20 

Figure 1.9 3D plot of Goldstein and Price problem 

12. Griewank function (GR) (Griewank, 1981) 

	

I n-1 	n-1 	x • 
min f (x) 	 E xi  ̀ 	E cos( 	, 	) +1, — 600 xi  _<_ 600, x* = (0,0,...,0), f (x*) = O. 

	

4000 i=o 	i=-0 	Vi+1 

This test problem is similar to Rastringin function. It has thousands of local minima and is used 

widely. However the locations of minima are regularly distributed. 
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20. Ratringin function (RS) (Rastringin, 1968) 

n   min f (x) = (x1 2 — 10 cos(27-txi  ) + 10), 
i=1 

—5.12 xi 	5.12 , x*= (0,0,...,0), f (x ) = 0 . 

This function is highly multimodal with regularly distributed many local minima. The total 

number of minima for this function is not exactly known but the global minimum is located at 

the origin. For 2 dimension, it has about 50 local minimas arranged in a lattice like 

configuration. 

Figure 1.16 3D plot of Rastringin function 

21. Rosenbrock function (RB) (DeJong, 1975) 

n-1 
min f (x) 	100(x i+1 — 

)c 	i=0 
2 ) 2 4_ (xi  _ 1)  2 — 30 xi  30, x* = (1,1,...,1), f (x*)= 0 . 

It is a classic optimization problem with a narrow global optimum hidden inside a long, narrow, 

curved flat valley. It is unimodal, yet due to a saddle point it is very difficult to locate the 

minimum. This function is also known as banana valley function. 
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Figure 1.17 3D plot of Rosenbrock function 

22. Schwefel function (SWF) (Schwefel, 1981) 

min f (x) = — xi  sin(V I xi 1), 

— 500 xi  :5., 500, x* = (420.97,420.947,...,420.947) , f (x*) = —418.9829 * n 

This function is deceptive in that the global minimum is geometrically distant, over the 

parameter space, from the next best global minima. Therefore the search algorithms are prone to 

converge in wrong direction. 

Figure 1.18 3D plot of Schwefel function 
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-10 

10 	10 

Figure 1.10 3D plot of Griewank function 

13. Hartmann function I (HMI) (Dixon and Szego, 1978) 

4 	3 
min f (x) — E a i  exp(— Ay (xi  —PO 2 ) , 

x 	 i=1 	 j=1 

0 S xi  51, x* = (0.114614,0.555649,0.852547) , f(x*)= —3.86278 

3 10 30 0.3689 0.117 0.2673 

Where, a =[ 1 1.2 3 3.2], A = 
0.1 10 35 

, P = 
0.4699 0.4387 0.747 

3 10 30 0.1091 0.8732 0.547 
0.1 10 35 0.03815 0.5743 0.8828 

This function has four local minima and one global minima. 

14. Hartmann function 2 (HM2) (Dixon and Szego, 1978) 

	

4 	6 
min f (x) = — E a i  exp(— E Bii  (xi  — ) 2 ) , 

	

i=1 	j=1 

0 5 xi  S 1, x* = (0.20169,0.'50011,0.476874, 0.275332,0.311652,0.6573) , f (x*) = —3.32237 
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Where a = [ 1 	1.2 3 3.2], B 

10 	3 
0.05 10 
3 3.5 

17 	8 

17 3.05 
17 	0.1 
1.7 	10 
0.05 10 

1.7 
8 

17 
0.1 

8 1  
14 
8 

14 

0.1312 
0.2329 
0.2348 
0.4047 

0.1696 0.5569 0.0124 
0.4135 0.8307 0.3736 
0.1451 0.3522 0.2883 
0.8828 0.8732 0.5743 

0.8283 
0.1004 
0.3047 
0.1091 

0.5886 
0.9991 
0.6650 
0.0381 

Q 

This function has four local minima and one global minima. 

15. Levy and Mantolva function (LM) (Rahnamayan et al., 2008) 

min f (x) = sin 2  (37rx1  ) + >1  (xi -02  (1 + sin 2  (37ix i+1)) + (xn  - 1)(1 + sin 2  (27tx n )) , 
x  i=1 

-10 xi 	x*  = (1,1,...,1,-9.7523), f (x*) = -21.5023 

This problem has several local minima. 

Figure 1.11 3D plot of Levy and Mantolva function 

16. Matyas function (MT) (Rahnamayan et al., 2008) 

min f (x) = 0.26(x12  + x2 2  ) - 0.48xi  x2  , 

-10 xi 10 , x* = (0,0), f (x*) = 0 
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Figure 1.12 3D plot of Matyas function 

17. Mccormic function (MC) (McCormic, 1982) 

min f (x)=-- sin(xi + x2 ) + (x i  -x2 )2  - 1.5x1  +2.5x2  +1, 

-2 S xi  S 2, x* = (-0.5471,-1.5473), f (x*) = -1.9132 

This problem has one local minima and one global minima. The local minima is at (2.59, 1.59) 
and the global minima is at (-0.5471, -1.5473). 
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Figure 1.13 3D plot of Mccormic function 

18. Michalewicz function (Mic) (Michalewicz, 1992) 

2 
min f (x) - E sin(xi )(sin(i 

x; ))2m  
x 	i=1 	 7C 

f (x*) = -1.8013 , If n 2, 

, M=10 	 , 
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f (x*) = —4.6876 , If n = 5, 

f (x*) —9.66015,If n= 10. 

This function is a highly multimodal, nonlinear, nonseperable test problem. It has n! local 

optima. The parameter m defines the steepness of the valleys or edges. Larger m leads to more 

difficult search. For every large m the function behaves like a needle in the haystack since the 

function values for points in the space outside the narrow peaks give very little information on 

the location of the global optimum. 

-10 

10 10 

Figure 1.14 3D plot of Michalewicz function 

19. Modified Himmelblau function (MH) (Kuo et al, 2006) 

min f (x) = (x2  + x12  —11) 2  + (xi + x22  — 7)2  + x1, 

—5 xi  5, x* = (-3.788,-3.286), f (x*) = —3.7839 

It has three local minima and one global minimum. 

Figure 1.15 3D plot of Modified Himmelblau function 
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25. Schwefel's function 2.22 (SWF2.22) (Yao et al., 1999) 

n-1 	n-1 
min f (x) = 	Ix11+ III xi I,  —10 xi 	x* = (0,0,...,0), f (x*) = 0 

i=-0 	1=0 

This function is a unimodal function. 

Figure 1.21 3D plot of Schwefel function 2.22 

26. Shaffer's function 6 (SF6) (Michalewicz, 1996) 

sing V(x12  +x22 ) — 0.5 
min f(x)= 0.5+ 	2 	2 2 	

105 xi  510, x*= (0,0), f (x*) = 0 

This function contains "minimum rings" around the global minima with almost the same fitness 

as the global minima. The number of local minima is not known but the global minima is at the 

origin. 

1+0.01(xi  +x2  ) 

-10 

10 10 

Figure 1.22 3D plot of Shaffer's function 6 
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23. Schwefel's function 1.2 (SWF1.2) (Yao et al., 1999) 

n-1 i 
min f (x) = E(E xi  )2  , — 100 5_ xi  100 , x* = (0,0,...,0) , f (x*) = 0 . 

x 	i=0 j=0 

This function is a unimodal function. 

Y 	50 	50 
100 100 

Figure 1.19 3D plot of Schwefel function 1.2 

24. Schwefel's function 2.21 (SWF2.21) (Yao et al., 1999) 

min f (x) = max xi  I , 0<_ i < n , 

-100 xi  100 , x* = (0,0,0...,0), f (x*) = 0 

This function is a unimodal function. 

10 
0 
6 
4 
2 
0 

-10 

Figure 1.20 3D plot of Schwefel function 2.21 
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27. Shaffer's function 7 (SF7) (Michalewicz, 1996) 

min f(x) . 	xi2 )1/4 [sin  2 (50(E  xj2)iii0)+1.0], 
i=1 

-32.767 5 xi  S 32.767, x*= (0,0,0,..,0), f (x*) = 0 

The number of local minima of this function is not known, but the global minima is located at 

the origin. 

-2 	 -2 
0 
	

0 
y 	2 
	2 	x 

4 
	

4 

Figure 1.23 3D plot of Shaffer's function 7 

28. Shekel's Foxholes function (SK) (Yao et al., 1999) 

1 	24 	1 
min f (x) = (— + 	(j +1+ (x1  - a i  •)6 )-1  )-1  , 

500 j.0 i=0 

-65.54 	65.54, x* = (-31.95,-31.95), f (x*) =1 

Where 
 

-32,...,-16,...,0,...,16,....,32,... 

This function is a low dimensional function; it has only a few local minima. 

29. Shubert function 1 (SB1) (Levy and Montalvo, 1985) 

5 	 5 
min f (x) = E j cos((j +1)x1  + j) j cos((j + 1)x2  + j), 

x 	j=1 

-10 x 	, f (x*)= -186.7309 
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The function has 760 local minima, 18 of which are global minima with the minimum of -

186.7309. 

-2 	 -2 
0 	 0 

y 2 2 
4 	4 

Figure 1.24 3D plot of Shubert function 1 

30. Shubert function 2 (SB2) (I. G. Tsoulos, 2008) 

n 5 
min f(x)= — E E j sin(( j + Oxi  + ) , —10 xi  10 , f (x*) = —24.06249 for n = 2. 

Figure 1.25 3D plot of Shubert function 2 

31. Six hump camel back function (CB6) (Dixon and Szego, 1978) 

min f (x) = 4x0 2  —2.1x04 +
3 
 x06  +x0 —4x12 + 4 x14 , 

— 5 5_ x 	5 , x* = (0.09,-0.71) , f (x*)= —1.03163 

This function has two global minima with the minimum of -1.03163. 
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0.5 
	0.5 

	
x 

1 	1 

Figure 1.26 3D plot of Six hump camel back function 

32. Step function (ST) (DeJong, 1975) 

n-1, 
min f (x) = 	Lx +11 2_12  , -100 xi 	x* = (0,0,...,0), f (x*) = 0 . 

x 	i=0 

It is the representative of the problem of flat surfaces. Flat surfaces are obstacles for 

optimization algorithms, because they do not give any information as to which direction is 

favorable. Unless an algorithm has variable step sizes, it can get stuck on one of the flat 

plateans. It has one global minimum and is discontinuous. 

Figure 1.27 3D plot of Step function 
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33. Sum of different power (SDP) [site] 

min f (x) = I x i l (i+1)  , —1< xi  <1, x* = (0,0,0...,0) , f (x*) = 0 

This function is a commonly used unimodal function. 

Figure 1.28 3D plot of Sum of different power function 

34. Test2N function (T2N) (I. G. Tsoulos, 2008) 

n  min . f (x) = — 	4 (xi  —16x12  + 	), 
n i=1 

—5 xi 	x* = (-2.903,-2.903,...,-2.903) , f(x*)= —78.3323 

This function has 2" local minima in the specified range. 
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Figure 1.29 3D plot of Test2N function 
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35. Zhakarov function (ZK) (Hedar Home page) 

E min f (x)= E xi
2 
 +(E 0.5ix i) 2 + ( 0.51xi  ) 4 , — 10 xi 510, x*  (0, 0,0..., , f (x*) = 0 

x 	i=1 	i=1 	i=1 

This function has no local minima, it has one global minima at the origin. 

Figure 1.30 3D plot of Zhakarov function 
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Appendix II 
List of Constrained Test Problems 

Table II.1 Name of constrained test problems, assigned codes and characteristics 

SI. No. Function Code Nv  NEQ NIEQ Na functionr Y P e   ° f  
1 Problem 1 g01 13 0 9 6 quadratic 
2 Problem 2 g02 20 0 2 1 nonlinear 
3 Problem 3 g03 10 1 0 1 polynomial 
4 Problem 4 g04 5 0 6 2 quadratic 
5 Problem 5 g05 4 3 2 3 cubic 
6 Problem 6 g06 2 0 2 2 cubic 
7 Problem 7 g07 10 0 8 6 quadratic 
8 Problem 8 g08 2 0 2 0 nonlinear 
9 Problem 9 g09 7 0 4 2 polynomial 
10 Problem 10 g10 8 0 6 6 linear 
11 Problem 11 gl 1 2 1 0 1 quadratic 
12 Problem 12 g12 3 0 1 0 quadratic 
13 Problem 13 g13 5 3 0 3 nonlinear 
14 Problem 14 g14 10 3 0 3 nonlinear 
15 Problem 15 g15 3 2 0 2 quadratic 
16 Problem 16 g16 5 0 38  4 nonlinear 
17 Problem 17 g17 6 4 0 4 nonlinear 
18 Problem 18 g18 9 0 13 6 quadratic 
19 Problem 19 g19 2 0 2 2 linear 
20 Problem 20 g20 7 5 1 6 linear 

N, — Number of variables 

NEQ  — Number of equality constraints 

NIEQ  — Number of inequality constraints 

Na  — Number of active constraints 
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Appendix II 

1. Problem 1 (g01) (Floudas et al, 1987) 

	

4 	4 2  13 
Minimize f (x) = 5 E xi  — 5 I xi — f xi  

	

i=1 	i=1 	i=5 

Subject to: 

gi  (x) = 2.xt  + 2x2  + x10  + x11  —10<_0 

g 2 (x) = 2x1 + 2x3  +x10  +x12  —1050 

g 3 (x) = 2x2 + 2x3 +x11  +x12  —10<-0 

g 4(x) = —8x1  +x10  0 

g5 (x) = —8x2 + x11 5 0 

g 6(x) = —8x3  + x12  0 

g7 (x) = —2x4  — x5  + x10  0 

gs  (x) = —2x6 x7  + x11  S 0 

g9 (x) — —2x8 — x9 + x12 0 

0 5_ xi 1 (i =1,2,...,9), 0S xi  <100 (i =10,11,12) , 0<x13  <1 

The optimum value is f (x*) = —15 at x* = (1,1,1,1,1,1,1,1,1,3,3,3,1) 

Constraints gi, g2, g3, g7, gs, g9 are active. 

2. Problem 2 (g02) (Koziel et al, 1999) 

cos 4  (xi  ) — 211r_i  cos 2  (xi  ) 
Maximize f (x) 

Subject to: 

(x) = 0.75 — n7 xi  o 

g2 (x)=Er i xi  —7.5n 

0 5 xi  510 (i =1,2,..., n) ,n = 20 

The optimum value is unknown. The known best value is f (x*) = 0.803619 

Constraint gi is active. 

yr l ixi2  
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Constrained Problems 

3. Problem 3 (g03) (Michalewicz et al, 1996) 

n 
Minimize f (x) = 	n)n  n xi  

Subject to: 

hi (x)=E i xi  2  'il_ 	—1 =-- 0 

0 xi 10 0 =1,2,...,0 

The optimum value is f (x*) = —1 at x*= (1/ji) ,n =10 . 

4. Problem 4 (g04) (Himmelblau, 1972) 

Minimize f(x) = 5.3578547x32  +0.8356891x1x5 +37.293239x1  — 40792.141 

Subject to: 

g1 (x)= 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 — 0.0022053x3x5  

g2 (x) = 80.51249 + 0.0071317x2  x5 +0.0029955x1x2 +0.0021813x32  

g3  (x) = 9.300961+ 0.0047026x3x5  +0.0012547x1x3  +0.0019085x3x4  

0-g1 (x)92 

. 

The optimum value is f (x*) = —30665.539 at 

x* = (78,33,29.995256025682,45,36.775812905788) 

5. Problem 5 (g05) (Hock et al, 1981) 

Minimize f(x) = 3x1  + 0.000001x13  + 2x2  + (0.000002 / 3)x23  

Subject to: 

g1  (x) = —x4  +x3  —0.55 < 0 

g 2(x)= —x3  +x4 -0.551_0 

90 

20 

78 

,g2(x).110 

g3(x) 	25 

< xl ..102, 33 < x2  < 45 , 27 < xi  45 (i = 3,4,5) 
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h3  (x) = 1000 sin(—x3  — 0.25) +1000 sin(—x4  — 0.25) +894.8 — x1  = 0 

h4  (x) = 1000 sin(x3  — 0.25) +1000 sin(x3 — x4  — 0.25) + 894.8 — x2  = 0 

h5  (x) = 1000 sin(x4  — 0.25) +1000 sin(x4  — x3  — 0.25) +1294.8 = 0 

0 xi  1200 (i =1,2), — 0.55 < x2  0.55 (i = 3,4) . 

The optimum value is f (x*) = 5126.4981 at 

x* = (679.9463,1026.067,0.1188764,-0.3962336) . 

6. Problem 6 (g06) (Floudas et al, 1987) 

Minimize f (x) = (x1  —10)3  + (x2  — 20)3  

Subject to: 

g1  (x) = —(x1  —5) 2  — (x2  —5) 2  +100 0 

g2  (x) = (x1  — 6) 2  + (x2  — 5) 2  — 82.81 < 0 

	

13 	05x2  <100 

The optimum value is f (x*) = —6961.81388 at x* = (14.095,0.84296) . 

7. Problem 7 (g07 (Hock et al, 1981) 

	

Minimize 	 x1 +x22  + xix2  f (x) 	2 x2  — 14x1  —16x2  + (x3  —10)2  + 4(x4  — 5)2  + (x5 — 5)2  

+ 2(x6  —1)2  +5x72  + 7(x8  —11)2  + 2(x9  —10)2 + (x10 — 7)2  + 45  

Subject to: 

gl (x) = —105 + 4x1  + 5x2  — 3x7  + 9x8  < 0 

g2  (x) =10x1  — 8x2  —17x7  + 2x8  15.. 0 

g3  (x) = —8x1  + 2x2  + 5x9  — 2x10  —12 5 0 

g4  (x) = 3(x1  — 2)2  + 4(x2  — 3)2  + 2x32  — 7x4  —120 < 0 

g5 (x)= 5x12  + 8x2  + (x3  — 6)2  — 2x 4  —40 0 

g6  (x) = x12  + 2(x2  — 2) 2  — 2x1  x2  +14x5  — 6x6  0 
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g7 (x) = 0.5(x1 — 8)2  + 2(x2  —4) 2  +3x5 2  — x6  —30 < 0 

g 8(x) — —3x1  + 6x2 	 - +12(x- 12(x9 8)2 7x10 

.10 

The optimum value is f (x*) = 24.3062091at 

x* = (2.171996,2.363683,8.773926,5.095984,0.9906548,1.430574, 

1.321644,9.828726,8.280092,8.375927) 

Constraints gi, g2, g3, ga, gs and g6 are active. 

8. Problem 8 (g08) (Koziel et al, 1999) 

sin 3  (22-cci  ) sin(277x2  ) 
Maximize f (x) = 	  

Subject to: 

(x) = x12  —x2  +1 < 0 

g2  (x) =1— x1  + (x2  —4) 2  < 0 

0 5_ xi 	10 (i =1,2). 

The optimum value is f (x*) --- 0.095825 at x* = (1.2279713,4.2453733). 

9. Problem 9 (g09) (Hock et al, 1981) 

Minimize 

f (x) = (x1  —10) 2  + 5(x2 -12)2  +x34  +3(x4 —11)2  + 

10x56  + 7x62  +x74  —4x6x7  —10x6  8x7  

Subject to: 

g1(x)= -127+2x12  +3x2 4  +x3  +4x4 2  +5x5 0 

g2  (x) = —282 + 7x1  +3x2  +10x32  +x4  —x5  0 

g3(x)= —196+ 23x1  + x22  + 6x62  — 8x7  0 

3 / kXi +x2)  
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g4 (x) = 4x12  + x22  — 3x1x2  + 2x32  + 5x6  — 11x7  0 

—10 xi 	10 (i =1,2,...,7) 

The optimum value is f (x*) = 680.6300573 at 

x* = (2.330499,1.951372,-0.4775414,4.365726,-0.624487,1.038131,1.5942270) . 

10. Problem 10 (g10) (Hock et al, 1981) 

Minimize f (x) = x1  + x2  + x3  

Subject to: 

g1 (x) = —1+ 0.0025(x4  + x6) 0 

g2 (x) =-1+0.0025(x5 +x7 — x4) 0 

g3 (x) —1+ 0.01(x8 — x5 ) 

g4 (x) = —x1x6 +833.33252x4 +100x1— 83333.333 < 0 

g5 (x) —x2x7 +1250x5 + x2x4 —1250x4 0 

86(x) 'x3x8 +1250000+ x3x5  —2500x5  0 

—100 5x1  < 10000 , 1000 5 xi  510000 (i = 2,3) , 10 < xi  51000 (i = 4,...,8) . 

The optimum value is f (x*) = 7049.25 at 

x* = (579.19,1360.13,5109.5979,182.0174, 295.5985,217.9799,286.40,395.5979). 

11. Problem 11 (g11) (Koziel et al, 1999) 

Minimize f (x)= x12  + (x2  —1) 2  

Subject to: 

hi(x)= x2— x12  =0 

(i=1,2) 

The optimum value is f (x*) = 0.75 at x*= (±1/ 	2). 
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12. Problem 12 (g12) (Koziel et al, 1999) 

Minimize f(x) = -(100 -(x1 -5)2  -(x2 _ 5)2 -(x3  5)2)/100  

Subject to: 

g(x)= (x i  - p)2  + (x2 q) 2  + (x3 - r)2 - 0.0625 0 

0 < xi 	10 , i =1,2,3 , p,q,r =1,2,...,9 

The optimum value is f (x*) = -1 atx* = (5,5,5) . 

13. Problem 13 (g13) (Hock et al, 1981) 

Minimize f(x)  = ex1 x2x3x4x5  

Subject to: 

(x) = 2 +x2 2  +x32  +x42  +x52  -10 = 0 

h2 (X) - X 2 X3 5 X 4 X5 =0 

h3  (x) = x13  + x23  +1 = 0 

-2.3 	2.3, 1,-1,2 

-3.2 < xi  3.2, i= 3,4,5 

The optimum value is f (x*) = 0.0539 at 

x* = (-1.7171,1.5957,1.8272,-0.7636,-0.7636) . 

14. Problem 14 (g14) (Himmelblau, 1972) 

( 

10 	x.  

	

Minimize f (x) =Ex i  c• +ln 	 
10 i=1 E x 

Subject to: 

h1(x) = x1  + 2x2  + 2x3  + x6  + x10  - 2 = 0 

h2(x)=x4 +2x5 +x6 +x7 -1=0 

h3(x)= x3 +.)C7 x8+2.X9 4-  x10 -1=0 
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0 <xi 	i=1,...,10 

Where cl  = —6.089, c2  = —17.164, c3  = —34.054, 

c4  = —5.914, c5  = —24.721, c6  = —14.986, 

c7  = —24.1, c8  = —10.708, c9  = —26.662, c10  = —22.179 

The optimum value is f (x*) = —47.7648 at 

x* = (0.04066,0.14772,0.78320,0.00141,0.48529, 

0.00069,0.02740,0.017950,0.03732,0.09688) 

15. Problem 15 (g15) (Himmelblau, 1972) 

Minimize f(x) =1000 — x1 2  —2x2 2  —x32  — xix2  — xi x3  

Subject to: 

h1(x) =x12 +x22 +x32 -25=0 

h2  (x) = 8x1  +14x2  + 7x3  —56 = 0 

0 	10 , i =1,2,3 

The optimum value is f (x*) = 961.7150 at x* = (3.5121,0.2169,3.5521) 

16. Problem 16 (g16) (Himmelblau, 1972) 

Minimize f(x) = 0.00011y14 + 0.1365 + 0.00002358y13 

+ 0.000001502y16 + 0.0321y12 + 0.004324)/5 

	

+ 0.0001 c15 	Y2 + 37.48 	0.0000005843)/17  

	

c16 	c12 

Subject to: 

0.28 
g1 = 0.72 Y5 Y4 g2 = x3 —1.5x2 0, 

62,212 < g3 = 3496  Y2  21<< 0, g4  =110.6 + Yl - 
C12 	 c17 

g5 = Y1 — 405.23 < 0, 

g6  = 213.1 — 	0 , g7  =Y 2  —1053.6667 0 , g8  =17.505 — y2  :5_0 

320 



Constrained Problems 

g 9  = y3  – 35.03 0 , gm =11.275 – 3 	, g11 = y4  – 665.585 0 , 

g12 = 214.228 y4 5  0 , g13 = y5  –584.463 0 , g14  =7.458 – y5  5 0 , 

g15 =Y6 – 265.916.5 0, g16  = 0.961– y6 50, 	g17  =y7  – 7.046 5_ 0, 

g18  =1.612–y7  50, g19 =Y8  –0.22250, g20  =0.146 –y8  50, 

g21 =y9  –273.36650  , gn =107.99 – y9 5 0 , g23 = 	–1286.1055-0, 

, 

g30  =1072.163– y13  5 0, g31  =y14  –26844.086 5 0, g32  =8961.448 y14  5 0, 

g33 =Y15  –0.3865.0, g34  =0.063–y15 50,  g35  =Y16  –140,000-5 0, 

g36  =71,084.33– Y16 0 , g37  – y17  –12,146,108 0, g38 = 2,802,713–y17  0 , 

Calculations:  

Yi =x2 +x3  +41.6, c1  =0.024x4  –4.62 , y2 
=12.5 

+12 , 
cl 

c2 =0.0003535x12  +0.5311x1 +0.08705y2x1 , c3 =0.052x1 + 78 + 0.002377Y2 x1  , 

c2 
Y3 =— 

C3 
Y4 = 19y3 

0.1956(x1  –y3 )2 
c4 = 0.04782(x1  – y3 ) + 	  + 0.6376y4  +1.594y3 , 

x2 

c5 =100x2 , C6 =x1 – Y3 – Y4 ,  c7 = 0.95 – 5-1, 	ys -=c6c7 , 
Cs 

cg 
Y6 – xi – y5 y4 – y3, c8 = (y5 + y4)0.995, 	

cg 
– —, y8 = 	 

3798' 

0.0663y7 	 9682 
c9 = y 	 0.3153, y9  = 

. 	+0.321yi, 
Y8 	 C9 

yio =1.29y5 +1.258)/4 + 2.29y3  +1.71y6  , Y11  =1.71x1  – 0.452y4  + 0.58y3  

12.3 C10 
= 752.3 	

=(1.75y2 )(0.995xi ), c12 = 0.995Ylo + 1998  , Y12 clOxl 
c12 

g24 = 922.693 – yio –< 0 , g25 = Yli – 1444.046  0,  g26 = 926.832 – Y11 5 0 

g 27  =y12  –537.141 5 0, g 28  =18.766–y12  5 0, g29  =y13  –3247.039_5 0, 

321 



Appendix II 

146312 
y9 + x5 

Y13 ci3 = 0.995y io  + 60.8x2  + 48x4  — 0.1121y14  — 5095 , y15  = 	 
ci3 

Y16 = 148000 — 331000y15  + 40y13  — 61Y15 Y13 , c14  = 2324y10  — 28740000y2  

Y17 =14130,000 —1328y10  — 	 11 531-.Y 	
c
1
4 	= Y13 	Y13  

c12 	y15  0.52 

c16 1.104 — 0.72)/15  , c17  = y9 + x5 . 

704.4148 	906.3855 , 68.6 x2  288.88 , 0 x3  134.75 , 193 x4  287.0966 , 

25 5x5  5 84.1988 . 

The optimum value is f (x*) = —1.905155 at 

x* = (-0.65777,-0.15341,0.32341,-0.94625,-0.65777, 

17. Problem 17 (g17) (Himmelblau, 1972) 

Minimize f(x)= (xi)+ /2 (x2) 

Constraints: 

A (xi)= 
31x1 	0 	300 

30x1  300 400 

f2 (X2 

 

28x2 	0 x2  :5_100 

29x2  100 x2  200 

30x2 	200 S x2  ..1000 

  

Y13 — c12 —1-75Y2 , y14 = 3623 + 64.4x2  + 58.4x3  + 

x1 	
x 	 0.90798x3  

= 300 	
3x4 

cos(1.48477 x6 ) + 	 
131.078 	 131.078 

2 
cos(1.47588) 

x3x4 	 0.90798x4 2 
x2 = 	 cos(1.48477 + x6) + 	cos(1.47588) 

131.078 	 131.078 

2 
x5 = 	 

x3x4 
m 

	

s(1.48477 + x6 ) + 
0.90798x4 
	sin(1.47588) 

131.078 	 131.078 

x3x4 	 0.90798x3 2 
200 	sin(1.48477 x6 ) + 	sin(1.47588) 0 

131.078 	 131.078 
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Constrained Problems 

0 5.x1  5 400 

0 5 x2  5..1000 

340 5x3  5 420 

340 5 x4  5 420 

—1000 5x5  5_1000 

0 5 x6  5 0.5236 

18. Problem 18 (g18) (Himmelblau, 1972) 

Minimize f(x)=-0.5(xix4 —x2x3 +x3x9 —x5x9  +x5 x8  —x6x7 ) 

Subject to: 

(x) = x3 2  +x42  —1G0 

g2 (x)= x92  —1 < 0 

g 3 (x)=---  x 5 2  +x62  —1< 0 

g 4(x) = x12  +(x2 — x9) 2 —1< 0  

g5(x)= (x i  x5 )2  + (x2  —x6)2  —1< 0 

g6(x)= (xi — x7)2  +(x2 —x8)2 —155_0 0 

g7(x)=(x3 — x 5 ) 2  + (x 4  —x6)2  —1 <-0 

g8(x)= (x3 —x7 )2  + (x4  —x8 )2  —1 < 0 

g9(x) = x7 2  +(x8  —x9 )2  —1 550 

g10(x)=x2x3 —xix5 5 0 

gii (x)=—x3x9 50 

g12(x)= x5x9 5_ 0 

g13(x)= x6x7 —x5 x8 5 0 

—10 5_xj .5 10, i=1,...,8, 05x9  5_10 
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Appendix II 

The optimum value is f (x*)= —0.8660 at 

x* = (-0.65777,-0.15341,0.32341,-0.94625,-0.65777, 

— 0.75321,0.32341,-0.34646,0.59979) 

19. Problem 19 (g19) (Floudas, 1999) 

Minimize f(x)= —x1  — x2  

Subject to: 

g1(x) = —2x14  + 8x13  — 8x12  + x2  — 2 < 0, 

S2  (x) = —4x14  + 32x13  — 88x12  + 96x1 + x2  2 < 0 

0_x2  4. 

The optimum value is f (x*) = —5.50801 atx*= (2.32952,3.17849) 

20. Problem 20 (g20) (Himmelblau, 1972) 

Minimize f (x) = (x1  — 2)2  + (x2 -1)2  

Subject to: 

h1(x)=x1  —2x2  +1=0 
x 4 2 

> g2 (x) = 	I 	 — x22  +1>>0  

The optimum value is f (x*) =1.393 at x* = (0.823,0.911) 
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