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For consistency control one case is a SISO system for which both Lambda and Ziegler 

Nichols( Z-N )tuning methodologies have been used to find out the PID and PI control 

parameters for both analog(S-domain) and digital( Z-domain) control system. As usual for 

Z-N tuning, however Bode's stability criterion has been used. After developing the 

characteristic models, a PI/PID based control loop and the corresponding SIMULINK 

model have been developed. For the same case of SISO consistency control an ANN 

control system (BPNN) along with the necessary algorithm has also been designed. The 

network is trained with PI/PID simulated data. Similarly the second case of consistency 

control with two inputs and single output (TISO) has been dealt with assuming negligible 

interactions between parameters. Accordingly simulations have been carried out for both 

PI and ANN controllers. 

For stock flow control model equations are already available. In this case mill data for 

training for ANN controller are employed. Data predicted from theoretical models are also 

used for training purposes. For the case of total head control an example of control loop 

with hydraulic headbox available in literature has been used for analysis. The dynamic 

models of all the elements of closed loop have been found out and closed loop transfer 

function are developed. This has been used for further analysis through MATLAB 

simulation and neural computation. Similar analyses have been made for stock level, pH, 

temperature and basis weight, first by developing appropriate dynamic models in laplace 

domain, converting to Z-domain, then designing classical control loops and analyzing 

them. These are then followed by transforming in to a neural network based control 

system. It is well known that if the process interactions are significant, even the best multi-

loop control system may not provide satisfactory control. In these situations there are 
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incentives for considering multivariable control strategies such as decoupling control and 

model predictive control. 

Hence, development of control system for MIMO systems with some examples from 

paper machine wet end including headbox has been attempted. The examples are: 

interactions of total head and stock level, air pressure and stock level (for air cushion 

head box), retention on forming wire and consistency control with two inputs and single 

output (TISO)system. For multi input multi output (MIMO) system considered in this 

present investigation both relative gain array (RGA) and decoupling techniques are used. 

For the case of MIMO system, however, the same procedures as in the case of SISO 

system have been followed. The only additional parameters of control included in the 

analysis of MIMO system for estimating the degrees of interaction and pairing of 

controlled and manipulated variables between different sets of control loops have been 

the relative gain array method (RGA) and decoupling technique for adjusting the 

interaction. The relative gain between 0 to 1 are only considered for analysis. 

In chaOter'-6, an attempt has been made to compute data from various models for both 

SISO and MIMO system using the classical controller and neural network based control 

with the help of MATLAB SIMULINK toolbox. The procedures laid down in Chapter-4, the 

various equations presented therein, the algorithm developed for the ANN and for PID, 

and finally the models developed for the various wet end parameters given in Chapter-5 

are used. 

From the plethora of data from MATLAB Simulation of the process parameters, some 

dynamic characteristics have been drawn in various graphs with response as a function of 

time for all the above mentioned parameters when unit step input signal is applied as a 

forcing function and then performances are evaluated. 



While for consistency control, the dynamic responses using both PI & PID are studied and 

compared with performances of ANN based controller, the cases of total head, stock level 

and pH only PI and ANN, for temperature and basis weight only PID and ANN are 

employed, analyzed and compared. 

Conclusions based on the present study are finally drawn in the concluding Chapter-7, 

conclusions and recommendations. Recommendations based on the present work, 

limitations and scope of further study are also briefly discussed in this concluding chapter. 
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CHAPTER-I 
INTRODUCTION 

1.1 Status of Indian pulp and paper mill: 

The paper Industry accounts for 3.5% of the world's industrial production and 2.0% of 

world trade with an employment potential of over 3.5 million people. India with 16.0 % of 

the world population consumes approximately only 1.0-1.25% of the world's paper 

production. In India the paper industry is one of the 35 high-priority industries and belongs 

to a core sector industry. 

Paper is an essential commodity material. Per capita consumption of paper in a country is 

an index of civilization and directly proportional to the literacy rate of a country. In India 

though per capita consumption is very low, on an average 6.5-7.0% compared to 

developing country's average of 12.0 kg and developed country's average of 152 kg, the 

growth rate is very high. The present growth rates are: 5.0-6.0% for cultural paper and 

paper board-the largest segment. (45.0%) of the market share, 4.0% for newsprint,10.0- 

15.0% for industrial paper, and 15.0-20.0% for corrugated pabkaging. This is almost three 

times higher than those in USA and Europe. This data amply indicates that there is an 

upward swing in terms of Indian economy (GDP and GNP) and growth of this industry in 

this country. In the year 2006, the production achieved was 54.8 Iakh tonnes paper and 

paper board, 10.9 lakh tonnes of newsprint, totaling 6.57 million tonnes. 

It has also been predicted that In the year 2010 and 2015 the demand forecasts will be in 

the range of 8.5-10.0 million tonnes and 10.8-14.0 million tonnes respectively. In 2010, 

while the growth rate of the pulp and paper industry the world over and in Asia will be 

2.2% and 4.4% respectively, this rate will be much higher for India. With the expected 

increase in literacy rate, the growth of the economy and an increase in the per capita 
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consumption, a very high growth rate is expected in the near future. Massive investment 

in terms of rapacity and technology will be required in the Indian pulp, paper and allied 

Industries to take up the challenges for meeting the demand of around 14 million tonnes 

by 2015. Therefore Indian paper industry inducts an attractive proposition to the global 

market for necessary investment in this sector. 

This Industry is however, capital intensive in terms of consumption of raw materials, 

chemicals, energy (both thermal and electrical), water and labour. It also generates huge 

amount of pollutants (solid, particulates, liquids and gaseous emission). Approximately 

2.5-3.0 t of raw materials,150-200 m3  of water, 8-15 t of steam and 900-1500 Kwh of 

electrical energy are required for one tonne of paper. This leads to generation of pollution 

loads to an extent of 24.0-45.0 kg of BOD, 80.0-150 kg of COD, 2.0-5.0 kg of AOX in the 

effluents. The consumption of the above inputs are therefore disproportionately high and 

at the same time due to high cost of energy and other inputs compared to North American 

or European Industry, the Indian industry is struggling hard for its sustainability. There 

are around efforts in India to reduce all these inputs to the level of international standards 

for mere survival, for sustained production and to stand the stiff competition in 

international market. The main reasons for low profit-investment ratio, low capacity 

utilization are due to lower production capacity, adopting relatively older technology, 

obsolete equipment and low degree of automation. In order to keep pace with sustainable 

production to meet the ever increasing demand of paper in India, some of the measures 

to be taken by the Indian industry are: to upgrade their process and equipmen 

technology, scaling up the process and equipment, to seek optimum design and 

operational parameters, introducing up-to-date process instrumentation, measurements 

and control. In fact, the use of automation and control is not very widespread unlike many 
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chemical process industries in Indian industry. The low degree of automation (2.0-3.0% of 

investment) is one of the causes for low profit to investment status of this industry. 

Though a few industries are slowly adopting new process and equipment, the status of 

sophisticated instrumentation and control has remained almost stagnant. Therefore it is 

felt necessary to carry out more investigation in the area of instrumentation and control. 

The paper is produced through a number of unit operations and processes in a paper 

industry. From instrumentation view point these may be termed as subsystems like raw 

material preparation, pulping, washing of brown stock, bleaching, stock preparation, 

approach flow system, wet end operation, drying, calendaring and chemical recovery 

operation. Surface sizing, filling and coating are rather additional operations. Chemical 

recovery operation in turn consists of concentration of waste liquor, combustion, 

causticization and calcinations of lime sludge. Some instrumentations and control 

systems are in use for some subsystems of Indian mill, but the same in paper machine 

area is rather meagre except in drying operation. Major emphasis is thus needed in the 

wet end of paper machine. Even in the wet end approach flow system, headbox and 

former, preferential priority must be given. Use of proper measurement and control in 

headbox approach flow, headbox and former in Indian paper industry thus become an 

imperative necessity. 

In Indian paper industry in paper machine wet end, manual control and offline 

measurements for parameters like pH, ternperature(optional),flow, consistency, stock 

level, total head, retention have been in use in many situations. Of late if unavoidable 

some have started adopting on line continuous measuring instruments and classical 

P/PI/PID control. This is only applied when it is absolutely necessary and manual control 

is not providing at all the required service. One barrier to use classical control system 



instead of manual control is the cost of the on-line sensor or transducer, transmitter, 

measurement system and the controller which Indian paper mill could not afford so far. 

It is well known that most the parameters in chemical process industries usually nonlinear 

in nature. Paper industry wet end process parameters are not the exception. This process 

may be controlled usually using single input-single output (SISO) system, also referred as 

single loop control concept. In this case, the control problems have only one controlled 

variable and one manipulated variable. But in many practical control problems of chemical 

process industries, more than one control and more than one manipulated variable are 

involved. These problems are referred to as multiple-input multiple-output (MIMO) control 

problems. Besides, most the parameters in this subsystem of paper industry, i.e. wet end 

are interactive in nature, thus belonging to MIMO system which needs decoupling the 

loops. 

Chemical process Industry in general and paper industry in particular rarely concentrate 

on these issues and depend largely on the consultants and suppliers of the DCS whose 

design philosophy for loops for control processor(CP) and application processor(AP) are 

not known to the customers. Linearizing a nonlinear control parameter is also an 

approximate one. Classical control loops can serve some purpose by suitably tuning the 

controller with the entire process loops by trial and error methods. It is also a fact that the 

assuming linear transfer functions for nonlinear parameters affect the accuracy and 

reproducibility of the measurands and control action will not be very satisfactory. 

Hence, there is an urgent need to address these issues and enough room exists for 

further studies in this important area of paper machine for the benefits of Indian paper 

industry. 
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One important aspect for designing of a control system is the dynamics of the elements of 

the loop such as process, sensing device, controller or final control elements irrespective 

of the parameters are linear or nonlinear, non-interactive or interactive in nature. The 

most difficult one is to assess for the process which has dead time of significant 

magnitude The time constant is also relatively unknown. In addition it is not possible to 

perform experiment' in industry to find out the values 'of various parameters of control 

systems, such as delay time(td), rise time(tr), settling time(ts), overshoot (overdamping, 

critical, and underdamping), and offset. Designs of all control systems depend on the 

values of time constant (0, controller gain (IQ, and process gain (kp). In absence of data it 

is practically impossible to design and analyse a robust control system and to asses its 

loops performance normally used in 'distributed control system (DCS). Researchers and 

designers therefore explore the possibility of using pilot plant data or computer simulated 

data for designing such a system. However; the data on pilot plant for control of headbox, 

and approach flow system are very scarce. Most of the parameters needed for designing 

control system or in existing industry in operation are shrouded with secrecy. There is 

therefore enough potential remaining to further study the parameters of dynamics of the 

system in order to design a classical control loop for wet end operation of paper industry. 

In this situation it is prudent to also re-examine the dynamics of classical control loops 

already reported. 

On the other hand nonlinear loops can be examined by several methods like phase plane 

analysis, function techniques, model adaptation and knowledge based system. But the 

most recent one is the use of Artificial Intelligence (Al) techniques. 



1.2 Artificial Intelligence and its use: 

Use of artificial intelligence (Al) has of late become an indispensable tool for optimization 

and control of various process parameters in chemical process and allied industries 

including pulp and paper. The AI includes mainly artificial neural network (ANN), Fuzzy 

Logic (FL), Genetic Algorithm (GA) or their combinations. Typically these are: Neuro-

Fuzzy, Fuzzy-GA, Neuro-FL-GA etc. Out of the so many methodologies available, in 

overwhelmingly majority of cases ANN is found by the designers to be the most 

convenient one and is currently being applied in almost all process industries for 

optimizing, process modeling, simulating, fault detection and diagnosis and controlling of 

various processes and operations. In addition, neural networks have also made 

significant aids in the area of continuous speech recognition and synthesis, pattern 

recognition, classification of noisy data, nonlinear feature detection, and market 

forecasting, weather forecasting and adaptive control. ANN can assimilate operating data 

from an industrial process and learn about the complex relationships existing within the 

process, even when the input-output information is noisy and imprecise. This ability 

makes the neural network concept well suited for modeling, especially complex industrial 

processes. Because industrial operating data are widely available from distributed control 

system (DCS), neural network modeling based on past data appears to be a generic and 

cost-efficient approach that can be applied across many plants including pulp and paper. 

It has already been indicated that all the subsystems of paper industry are intricate in 

nature, generally nonlinear in character and often too complicated to be accurately 

described with physical models. Neural networks are powerful tools that can solve a 

variety of nonlinear modeling problems of this industry. 



ANNs represent a . new technology that mimics the structure and process of biological 

neural systems, i.e. brain. This tool has become a remarkable one and uses a rule based 

systems and traditional data base manipulation techniques to form a neural network 

control system performing two functions: one, the creation of software sensors, which 

provide on-line measurements of variables that in the past could only be measured in the 

laboratory; other, an advisory control system to complement a regulatory control system 

addressing the previously described complex multi-variable applications. In fact, these 

abilities make the neural network technology very well suited for solving problems in the 

complex process industries like pulp and paper. Application of ANN in modeling and 

control in paper industry has been in focus in almost all areas except paper machine wet 

end system, especially paper machine headbox. Attempts can be made to use these 

important techniques in modeling and control. 

However, before attempting to control system design for paper machine, some basic 

elements and methodology of ANN need to explained. These are discussed briefly in the 

_following sections. For designing of ANN, a few parameters need to be defined. These 

are: 

1.2.1 Activation function or transfer. function: 

This function is also sometimes referred to as squashing function.The activation function, 

architecture of ANN (single layer or multilayered), algorithms to be adopted and the 

learning process involved (supervised or unsupervised) are required for designing ANN 

based control system. 

The transfer function takes the input (which may have any value between plus and minus 

infinity) and squashes the output into the range 0 to 1.Some of these transfer functions, 

generally used by the designers are summarized in table-1.1(Appendix-1),The log- 



sigmoid transfer function is most commonly used in multilayer networks that are trained 

using the back-propagation algorithm, in part because this function is differentiable. 

One of the major tasks in the design of a neural network is the selection of architecture 

which depends on the nature of the problem. Inappropriate choice of ANN results into 

poor performance. The commonly used network architectures for modeling and control 

applications, ADALINE (ADAptive LINear Element) and its extension to MADALINE (for 

many ADAUNES), feed forward neural network (FFNN), forward-propagation and back-

propagation. The architecture of feed forward is the most popular structure in practice due 

to its non-parametric, non-linear mapping between input and output. Networks with this 

architecture are known as universal approximators, including multilayer feedforward 

neural networks employing sigmoidal hidden unit activations. These networks can 

approximate not only an unknown function but also its derivative (29). 

The feedforward neural networks include one or more layers of hidden units between the 

input and output layers. All connections point from input towards output. Multilayer of 

neurons with nonlinear activation functions allows this type of neural network to learn 

nonlinear and linear relationship between input and output vectors. Each input has an 

appropriate weighting vector W. The sum of the weighted inputs and the bias B or b forms 

the input to the transfer function. Any differentiable activation function may be used to 

generate outputs. Three of the most commonly used activation functions are purelin, log-

sigmoid and tan-sigmoid (table-1.1, Appendix-1). The activation functions of the hidden 

units have to be differentiable nonlinear functions. If activation function is linear, then one 

can always collapse the net to a single layer and thus lose the universal approximation 

capabilities. Each unit of the output layer is assumed to have the same activation 

function. 
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1.2.2 Artificial neural network learning/training processes: 

All artificial neural network needs learning/training which implies that the neuron 

somehow changes its input/output behaviour in response to the environment. Neurons in 

the network learn by changing the weights on the inputs. Learning methods in neural 

networks can be broadly classified into three basic types: supervised, unsupervised, and 

reinforced. These are further sub classified as: error correction gradient descent, 

stochastic, least mean square, backpropagation and hebbian, competitive etc. Most of the 

researchers and designers prefer to use supervise learning with gradient descent 

technique either using least square or backpropagation techniques. Augmented 

backpropagation networks, i.e. logarithmic neurons and exponential neurons added to the 

neural network's input and output layers and conjugate backpropagation neural network is 

used to avoid time consuming line search. In unsupervised learning method, the target 

output is not required to learn by itself. 

These techniques have potential for training of ANN in paper machine approach flow 

control system design. Therefore, studies must deal with various appropriate learning 

techniques to design approach flow system. Perhaps there is no literature available in 

correction with the approach flow system design. 

1.2.3 Artificial neural network control methodologies: 

There are various control methodologies used for controlling the process such as 

supervised control, direct inverse control, model referenced adaptive control namely: 

direct adaptive control, indirect adaptive control, back propagation through time control 

and adaptive critic control etc (85). Although all are used in specific situation, former two 

are mostly adopted by the practicing and design engineer. 



When the data to be generated, supervised control can take help of a classical control for 

learning whereas direct inverse control employs the input-output data from plant or 

process. This should be carefully examined and scrutinized. 

1.3 Need for applying ANN in paper making process: 

There are many problems found in pulp and paper mills that have characteristics which 

make this problem difficult to handle from a control standpoint. This is mainly due to the 

nonlinear nature of most of the subsystems of paper mill. Combination of a neural 

network system, a rule based system and a conventional computational system can 

provide a tool to handle these problems with simplicity and effectiveness. Neural 

networks can, also be very useful for "quick and dirty" models (19). The ANNs are able to 

accurately represent even complex nonlinear behavior, the nature of which is not known 

to the user (124). It is with this intention this present problem has been undertaken to 

develop control system with artificial neural network application in paper machine 

headbox which has been dealt till now very sparingly. As already indicated, paper making 

process consists of a large number of subsystems (unit operations and processes). Some 

of the applications related to modeling and control of paper mill subsystems are depicted 

in chapter 2, section 2.3. 

1.4 Present Objectives: 

The present investigation has been planned to study the various aspects required for 

designing control systems using artificial neural networks for wet end paper machine 

parameters, approach flow and headbox in particular with the following distinct objectives: 

1. To develop and analyze appropriate dynamic models in both continuous and 

discrete signals for consistency, total head, level, pH, stock temperature and basis 

weight assuming all these parameters as linear systems in approach flow system 
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and headbox of a paper machine. These models are based on unsteady state 

material balance or energy balance or combination of both the two. 

2. To design various closed loop control systems for consistency control using 

classical controller (PI/PID as the case may be) and Bode stability criterion 

assuming servo or regulator problem and then to design the process using the 

estimated controller parameters. These will be followed by selecting appropriate 

tuning methodology and to compare the responses for both PI and P1D and also 

with continuous and discrete signals. 

3. To analyze the available data for stock flow control in industry and to compare the 

responses with theoretically model predicted data assuming typical flow control 

techniques prevalent in many Indian paper mills. 

4. To study the responses of all other control parameters as mentioned in step-1 by 

suitably designing appropriate control loop for each parameter and to compare the 

responses with continuous and discrete signals. 

5. To develop and analyze the models for basis weight control in approach flow in 

both analog and digital systems and to cornpare their responses. 

G.. To design a model for the MIMO system such as interaction of total head and stock 

level, air pressure and level in a pressurized headbox, stock flow and stock level,. 

and retention process in the wet end and then to compare the results of total head 

and stock level assuming them as SISO system as in step-4. 

/. To convert all the above models of control parameters of the wet end approach 

flow system including headbox as mentioned above( steps no. 1-6) in to a neural 

system using the various procedures for neural computation( feedforward, back 
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propagation, ADALINE ) with changing values of ANN parameters such as 

momentum and learning rate, and others. 

8.To compare the results of ANN based computation using MATLAB simulation with 

SIMULINK tools with those estimated values from classical control loops for all 

SISO and MIMO system. 
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CHAPTER-2 
LITERATURE SURVEY 

This Chapter attempts to review the literature pertaining to the artificial neural network, 

modeling, simulation and control aspects of paper mill in general, approach flow system 

and headbox of wet end paper machine in particular,and the application of ANN in all the 

aforesaid areas, especially the design of control systems in a paper mill. 

2.1 Artificial neural network: 

Using artificial neural networks (ANNs) paradigm has become a powerful tool and thus a 

potential solution strategy to solve complex problem or problems with unpredictable and 

imprecise information or where data are incomplete. The examples are: process 

engineering, process design (168,169), modeling and simulation (173), process 

supervision, control and estimation (92), process fault detection and diagnosis which rely 

on the effective processing of complex data. 

The use of artificial neural networks (ANNs) and its associated factors in solving problems 

have been shown concisely in Chapter 4 Section 4.3. Because of its ability to represent 

nonlinear mappings between input and output of the problems such as modeling, 

simulation, optimization and control of chemical engineering systems including of paper 

mill sub systems, they can be most readily exploited in the synthesis of nonlinear 

systems. 

In the following paragraphs a comprehensive review of these applications are reproduced 

here, just to stress on the feasibility of various methodology of ANN such as 

backpropagation, ADALINE, feed forward etc. 	in real life problems with proven 

technology in existing paper mills. 
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Viharos et al. (161) described a novel approach for learning and applying artificial neural 

network models based on incomplete data. The developed algorithm is compared with 

three data-extending-methods and resulted in a model with superior estimation 

capabilities. The algorithm is tested through artificial data and found that it is completely 

able to handle missing output data. 

Hernandez et al (56) studied the stability of the model's inverse. If the neural network 

model of a system is trusted at least around some operating point, then the inverse 

dynamics of the model can provide a good indication of how the plant's inverse may 

behave. 

Vanhala et at (160) suggested that artificial neural networks can be used to model difficult 

complex systems where only input-output data are available. 

Irwin et al.(64) used multilayer perceptron (MLP) neural networks to offline identification 

of a simulation model of a 200MW boiler ,oil fired, drum type boiler with turbo generator 

unit at Bally lumford power station in Northern Ireland. 

Ozgur et al.(98) suggested that the Levenberg-Marquardt algorithm has been found 

being faster and having better performance than the other algorithms in training. 

Savkovic-Stevanovic (131) developed and applied neural networks for analysis and 

optimization of industrial production data. Artificial neural networks based on feed-forward 

architecture and trained by the back-propagation technique. 

Andre et at (3) used neural networks successfully for steady state process modeling. He 

further applied dynamic neuron network (RDNN) for predicting non-linear ties such as 

asymmetric dynamic response including steady state modeling, steady state planning and 

steady state optimization. 
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Barry et al. (8) demonstrated model based predictive control (MBPC) through numerous 

on-line industrial applications to be an accurate and robust method of process control. 

Wilson et al (170) presented online state estimation of process systems based on 

embedding a hybrid ANN mechanistic process model within an extended kalman filter. 

The filter algorithm calls for local linearization of the process model and general formulae 

for evaluation of the Jacobian matrix for a feedforward neural network are also presented. 

Surya (153) suggested that neural networks have made strong advances in the areas of 

continuous speech recognition, pattern recognition, classification of noisy data, nonlinear 

feature detection, market forecasting, and process modeling. These abilities make the 

neural network technology very well suited for solving problems in process industries. 

Bhat (15) suggested that neural networks have been shown to be successful in modeling 

nonlinear dynamic systems. Its use has also been proposed in model-based control 

algorithms and as nonlinear controllers by identifying the plant's inverse by. Psaltis et al 

(111). 

Di Massimo, et. at (32) investigated the applicability of neural networks for improving 

process operability. Techniques based on the use of neural network based model (NNMs) 

may offer significant advantages over conventional model based techniques. 

Scott et at (133-137) has extensively studied on applications of knowledge based artificial 

neural network for various practical solutions of many intricate problems of linear model 

structures. The most important applications were laid in the field of CSTR modeling, 

design and control. He has used the known dynamics for single and multi stage CSTR 

battery and then converted them in to artificial neural networks based solution. He has 

cited comparison between conventional PID and ANN based control and demonstrated 

how refining of PID controller using neural networks has been possible. He further 
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interpreted nonlinear models by creating nonlinear NN process models. These 

applications can be used conveniently in CSTR system in paper industry (causticization). 

2.2 Modeling, simulation, measurement and control of paper making subsystems: 

Ullmann et al (159) recognized that frequent and accurate control of key pulp parameters 

are determining factor of end product quality. 

Garceau and their co-workers (43, 44), Dion and Garceau (33-36) further developed the 

control strategy for on-line characterization of the fiber size of pulp by acousto-optical 

methods in various operations of paper industry including the wet end operations. The 

models developed for the purpose for both optical and acoustical techniques have been 

simulated through experimental results. Further models are also developed for kraft 

pulping delignification kinetics for making pulp and then post treatment pulps have also 

been characterized through on-line methods. 

Ghosh (45-48) worked extensively on modeling and simulation, wet end chemistry, paper 

drying and optimization, refining and screening. 

Ramarao and his co-workers (114,115) developed models for the gravity drainage, of 

papermaking suspensions, pulp characterization using permeability measures, using 

measures obtained from drainage data based on both permeability and compressibility, 

establishing relationship between compressibility and permeability with lime mud and 

papermaking pulp, retention of filler and fine particle retention in incompressible and 

compressible fibrous media in the wet end of paper machine, and solved the models 

with numerical techniques and finally simulated the models through experimental data. 

Banerjee et al (5-6) carried out extensive investigation on various aspects of many 

operations of a paper mill. Some of the processes include improving energy efficiency, 

improving centrifugal cleaner efficiency, modeling, simulation and control. 
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Potusek (108-110) investigated the dispersion modeling using one dimensional parameter 

(peclet number) and then simulated through experimental data of displacement washing 

of pulp in a. series of experiments. These models could be used as a basis for controlling 

not only brown stock washers, and bleach washers but also in wet end formation fof 

some of the parameters. 

David wood(27) presented a comprehensive description of modern concept of headbox 

control and explained how consistent paper properties across the paper width is possible 

by positioning the slice as near to parallel as possible by stabilizing the headbox and slice 

lip mounting against temperature variations. He further emphasized that the automation 

and adjustable slice lip can improve headbox control. Peter Seifert investigated basis 

weight variations in headbox approach system and discussed the effects of pump 

pulsations and dampening. 

Pearson J.H (105) discussed about functions of automatic headbox operations for both 

open and closed headboxes and design the various control loops for various concern 

headboxes. Further demonstrated the headbox model no.200 with the variation of speed, 

total head range selection, with range selector switch position, an instrumentation point 

and pump operation under vacuum and pressure. The discharge coefficient has been 

assumed as one. 

Singhal (144,145) designed low cost basis weight control system for small paper mill. 

Basis weight control particularly when manufacturing reel orders is very important and 

discussed manual control and feed forward control systems. Basis weight control with 

feed forward control is a good choice for the small paper mills who cannot afford costly 

QCS system. 
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Johnson (66, 67) has reviewed the basic measurement and instrumentation applied to 

paper machine wet end operation. The principle of the measurements of flow, level, 

density, consistency, pressure, temperature, pH, freeness, speed and draw were 

presented. He further reviewed various unit processes making up wet end of paper 

machine from instrumentation and control stand point aspects with the design of strategy 

of various control, sub loops. He further shown how an integrated system with feed 

forward technique developed to improve the process automation through the 

microprocessor technology and distributed control system. 

The headbox modeling in terms of process response has been done from the first 

principle by Mardon (83) and Smith et al(150) by including conservation of mass of the 

liquid and gas phases assuming ideal gas law which relates air pad mass, pressure and 

volume, the relationship have been linearised about operation point based on machine 

speed. Donald cited the advantage of mechanistic model developed by .the above 

investigator in terms of automatic tuning facility which schedules the controller 

parameters based on machine speed and indicated that the response of headbox 

parameters can be modeled from the first principles. 

Talvio(154), Smith(150), and Chao et al(22) for their investigation on theoretical and 

experimental studies in to the stability and control of paper machine headboxes, and 

control system with linear transfer functions. 

Dumdie(37) has developed the system approach to the consistency control and dry stock 

blend. Bhartiya and his coworkers (14) developed a thermo-hydraulic model based 

management of kappa profile for feedstock grade transition in a continuous digester 

which can simulate the plug flow behaviour of the motion of blends of hardwood and 
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softwood wood chips. Two controller strategies, namely decentralized PI and linear 

Model Predictive Control were explored. 

Francis and his co-workers (40,41) has reported application of model-based control 

strategy for to the pulp and paper industry with particular reference to kappa number 

profile control of continuous pulp digester by empirically derived process model using 

subspace identification techniques. A .state space model predictive control algorithm is 

used to adjust five manipulated inputs in order to regulate five process outputs, in 

response to five randomly varying process disturbances (of three are measurable) .Profile 

sensitivity to closed loop response is also explored. 

Paulonis and Krishnagopalan (102-104) developed adaptive inferential control system 

based on mathematical models with on-line liquor analysis to predict , kappa number using 

In-Situ conductivity sensor. Ion chromatography refractive index and UV absorbency 

analysis measures various other parameters. Kinetics of kraft delignification based on 

liquor analysis, liquor concentration measurement for causticizing control and later the 

state space modeling of modified kraft pulping were also developed. 

Balderud et al (11) presented numerical experiments for both mixing characteristics and 

transport delays in the piping network have a significant effect on wet-end attenuation of 

stock concentration disturbances. The transport delay in the pipe runs introduces 

resonance frequencies that can be enhanced by both operating conditions and process 

design. 

Turnbull et al (158) derived a one-dimensional model of a paper forming process on a 

single wire crescent former from fundamental conservation laws. The model can describe 

dynamic and steady state behavior of the forming process. 
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Rigopoulos et al. (121) studied the paper properties such as basis weight, moisture 

content and caliper which are the functions of the direction along which the paper moves-

machine direction, direction across the width of the paper machine, and cross direction. 

Waller (163) has made an extensive survey of developments of control of paper making 

headboxes and their in-corporation into forming section. Detailing about the headboxes 

for twin-weir and fourdrinier machine with their equipment and control description has 

been emphasised. 

Panda (99, 100) in his various publications discussed theoretical approaches for 

improvement of pulp yield, energy consumption aspects of pulp and paper mills, analysis 

of detailed cost for newsprint production from Hindustan Paper Corporation, India and 

indicated how to make the industry more energy efficient and cost effective & also 

analysed the pulp samples collected from different sections, namely stuff box, headbox 

and couch press of three newsprint mills in India. The pulp samples were collected from 

mills based on chemical bamboo pulp, imported CTMP, eucalyptus CMP and refined in 

both PFI mill and Sproud Waldron refiner up to the same freeness level. The parameters 

determined were: freeness, drainage time, ash content, fiber fractions based on Mc-Nett 

Bauer classifier and finally print through (Macbeth density) properties of hand sheets 

through IGT printability tester. 

Tuladhar et al(157) studied nonlinear dynamic modeling of headbox and wet end 

pressure pulsation analysis derived from first principle for Sym-Flo headbox, the hydraulic 

headbox with certain assumptions. Results were presented of mill test on an operating 

paper machine and MD basis weight signal flow were analysed. The result indicated the 

presence of very low frequency variation, caused by consistency dynamics. Silicon clay 

addition has been shown to cause a blending problem. The pressure pulsation analysis 

20 



has also been shown to significant improvement in the wet end performance after adding 

a second screen. The simulation result indicated that the decoupled control action is 

feasible using MPC controller. 

Kumar Prasanna et al(77) has described paper machine control and optimization for 

different sub system of paper machine loop including consistency control in approach 

flow, headbox, mainly single variable and total head have been controlled traditionally by 

controlling air pad for stream flow valve, the recirculation valve or by fan pump speed 

control. The jet wire ratio is cascaded with the total head and any changes in wire speed 

are feed forward to the total head controller in order to maintain jet wire ratio. They 

suggested also the control strategy for consistency and furnish control using ratio control. 

Method of analyzing variability that exists at a particular period is discussed and 

suggested an elimination method. 

Whaliey et al(166)addresses the problem of regulating the flow of pulp solution or stock 

from a fourdrinier paper making machine headbox. A multivariable, time invariant model 

for a fourdrinier machine headbox is considered. An optimum, minimum control effort 

strategy is proposed. The headbox model contains a perfect integrator which slowly 

changes the head box level and hence the output flow rate. 

Keswani (72) has reported the status of various instrumentation and control system in 

pulp and paper industry including the wet end operation. Indigenous capability for design 

and manufacturing of electronic process control in pulp and paper industry has been 

emphasized. 

The designing of measuring systems for flow, pressure, level, temperature, consistency, 

moisture, basis weight, and speed, tension and draw have been exemplified. The 

feasibility of on-line measurement system and the control application are extensively dealt 

21 



with frOm the industrial point of view. He further analyzed in details the relative gain of 

using microprocessor/electronic control system under the roof of DCS application as a 

whole in the paper mill. 

The necessity of various types of process control applications in a pulp and paper mill 

have been dealt with by Mishra (87), Rao (116-118), and Bihani et al. (16-18). However 

most of the works of the above researchers are devoted to pulping and bleaching of 

woods, mixed hardwoods and non woods. Economic utilization of alum in sizing has been 

emphasized by Rao (119). 

Rao, Bansal, and Ray (119) studied the application of various methods to measure the 

relevant parameters in a pulp and paper mill emphasizing the status of instrumentation in 

paper mill with particular reference of paper machine. They have further retreated the 

selection of instrumentation in terms of cost and added that in paper machine section the 

measurement and control of headbox temperature along with headbox level are essential. 

And also developed a model for profitability analysis of synthetic wire in wet end section 

of a paper mill and simulated the model with various data from the wire of a number of 

mills. 

Sankaranarayanan and his co-workers (127-129) reviewed exhaustively the use of 

electronic control and the parameters of importance for monitoring /control to maintain the 

paper quality in mills such as basis weight, moisture content, thickness or caliper, 

brightness, color and opacity of paper, ash content, consistency of stock, headbox 

consistency and quality of pulp. Developments of indigenously microprocessor based 

instruments for designing real time high consistency transmitter, low consistency monitor 

based on radio frequency technique, real time scanning or measurement of basis weight 

with wide range (40 gsrn-500 gsm) by neucleonic technique, moisture monitor, and profile 
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control of paper machine for bone weight, moisture and basis weight by both analogue 

and digital techniques have been made. Further, dynamic measurement of thickness, 

measurement of color and turbidity, nondestructive technique for measuring tensile 

strength and breaking length using sonic wave propagation and coat thickness 

measurement have been demonstrated. In all the cases of measurement of parameters 

field testing were performed. For control of basis weight dynamic models were developed, 

simulated and used for testing in the mills for single loop feedback control in paper mill. 

Besides the development principles of computer control of digester were reported. 

Aidun et al (1) studied two kinds of secondary flows in headbox derived from geometric 

effects and kinematics and the other from turbulent motion of the flow field and the 

developed model was analysed through direct numerical simulation. 

Scott. Pantaleo(138) developed a new headbox design featuring consistency profiling 

decoupled from fiber orientation response which provided narrower basis weight 

response than a slice bending system. 

In the area of dry end of paper machine, modeling and control system were developed by 

Chen (24) through analytical modeling and process identification and implemented and 

tested on different types of paper machines. Heaven et al. (55) examined some of the 

traditional parametric identification techniques applied to data collected from a paper 

machine. Process data obtained from a paper machine excited with pseudo random 

binary sequences (PBRS) are used to determine process dynamics needed to evaluate 

exciting and new control strategies. Rigopoulos et al (121) developed control relevant 

disturbance modeling of paper machine -full profile properties using adaptive PCA. 

Development of state variable model by Berrada et al.(13), parameter optimization by 

Akesson Johan (2),modeling and control for drying section of paper machines by Xia et 
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al.(172) , modeling and simulation of paper drying by Wilhelmemsson et al.(167), 

optimizing paper machine dryer control by Nelson and Gardner(93). 

Orccotoma et at (97) investigated the effect of disturbances on the two output variables of 

paper machine with twin wire formers (gap formers), viz, basis weight and first pass 

retention by using the concept of controllability. Time delays and high frequency 

disturbances of the thick stock consistency were shown to affect the process, Importance 

of consistency loop in the mixing chest of pulp preparation area of paper machine has 

been found to be critical. Analysis of a paper machine forming zone in a newsprint mill 

was performed to determine the maximum allowable variability of pulp furnished to the 

process. First-pass retention is considered an uncontrolled variable and found to be 

dependent on fines content of the thick stock. They have demonstrated that the nonlinear 

processes (basis weight and first pass retention) can well be represented by linear 

models. Non-linearity did not pose any significant error. 

Nissinen, et. al. (95) studied the feasibility of designing multivariable PI controller for 

headbox with rectifier rolls without overflow provided with air cushion in a multi-grade 

paper machine. The system has been considered as multiple input-multiple output 

(MIMO) instead of single input- single output (SISO) system. The process dynamics for 

such system was identified. Based on the process model and the structure of the 

multivariable PI controller a process simulator was built using Simulink. The simulator 

was used to test different tuning methods which could be applied to the system. 

2.3 Modeling in paper mill subsystems with ANN: 

Qian et at (113) modeled and implemented a complex wood-chip refining system using 

feed forward neural network. A neural network model was trained using data from a 
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commercial CTMP refiner. The model's predictions of pulp and paper properties were in 

excellent agreement with industrial refiner data. 

Inferential models for kappa number are developed using the methods of partial least 

square regression (PLS) and feed forward neural networks. 

Dayal et al (28) investigated above technique to build empirical models for kappa number 

using historical data from an industrial continuous kamyr digester. A static model for 

kappa number based on the 21 input process parameters has been developed. 

The purpose of the model is to provide a real time indication of brightness so that 

operators can reduce chemical use. Zhu et al (173) developed the neural network models 

for Do,Eop,Di and E2 to D2 stages using ANNIE(artificial neural network integrated 

environment), in which, data preparation, network topology selection, network training, 

evaluation, modification, code generation and simulation are integrated. A single global 

neural network model for the bleach plant (D2 brightness) has also been developed and 

selected the back-propagation algorithm for multilayer feed forward networks. 

Rooke et al.(122) presented a novel approach for modeling the retention of material( fines 

and fillers) on the papermaking wire using a combination of black box (neural networks) 

and physically derived models. ANNs model the complex evolution of the white water 

stock concentration very accurately, whilst the physical models of the mixing and blending 

chest, multistage centricleaners (hydro cyclones) and pressure screens are used to 

describe the headbox stock concentration. 

Nenad et al. (94), studied feedforward neural networks applied to estimate the outlet 

water temperature of the scrubber process. The networks are trained with data obtained 

from experiments carried out on two pilot scrubbers. The neural networks consisted of 

seven inputs and one output. The inputs were mass flow rate, temperature, inlet humidity 
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of the supply air, mass flow rate of the water, inlet water temperature, height of the 

scrubber and water pressure in the nozzle. The output was the outlet water temperature 

from the scrubber. 

Paper has different properties such as physical, mechanical strength, structural, optical 

and surface properties. Defect of paper is also defined in terms of some unwanting 

properties. Curl is one of such properties normally characterized as defect. Paper can be 

rejected if care is not taken during processing to eliminate curling. Paper "curl" can only 

be measured reliably OFF-LINE after manufacture, making it difficult to control. 

Edward et al (39) predicted curl, normally an unwanting property (defect) of paper (from 

parameters defining the current characteristics of a reel and the plant machinery using 

neural network techniques and developed a model for the two tasks and used multilayer 

perceptron (MLP) neural networks with a sigmoidal output stage for the "in-specification" 

prediction and a linear output stage for the curl prediction task. 

Temesgen (156) worked on the process design of black liquor multiple effect evaporator 

system after developing the modeling of the system and then solving by both numerical 

techniques-Newton Raphson or its modified methods and back propagation neural 

networks and compared the results. The superiority of ANN technique over the 

convention techniques was reported. 

Kooi et al (76) proposed a backpropagation NN as a controller to replace the self-tuning 

regulator for providing a closed loop control of the energy in the woodchip refining 

processes. Both static and dynamic NN controllers perform very well in emulating the 

self-tuning regulator for processes having a non minimum phase properties. The dynamic 

NN controller provides a satisfactory control compared to the self tuning regulator. 
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Rudd (124) reported that there are many network paradigms in use today. For the 

muJtivariable continuous processes in pulp and paper mills, one successful network ,  

paradigm is the backpropagation network. It is one of the easiest networks to understand 

because it's learning and updated procedures are intuitively appealing. 

Rudd (125) used the NN to determine real time values for soda loss, washer mat 

consistency & washer mat unit density in brown stock washer, the former is used as soft 

sensor. The target is to control stabilize the black liquor solids carried out by the pulp mat 

' to the bleach plant. Results show a 25% reduction in standard deviation of the black 

liquor solids using an eight day trial. The controller also maintained larger disturbances in 

an automatic mode for the input variables. These values are used to control the washing 

operation. Data from a process domain is collected along with known results to develop 

training sets used to train a configured neural network. The structural configuration of NN 

controller is shown in Fig. 2.1. The NN based control strategy consists of dilution factor 

controller (DC), consistency (K), weight (w), speed(s) and flow controller (FC). NN 

controller (NNC) gets a signal for a set point or target value. The output signal from NNC 

goes to dilution factor controller which in turn sets out a signal to the flow controller in a 

cascading mode. The output signal from DC goes to control the-flow of water to the filter 

mat. Similar configuration can be drawn for single stage bleach plant washer. 
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Fig-2.1 Neural network based control Strategy 

28 



Ozaki has described a system where the bed shape from the image analysis system is 

first classified by three layers back propagation NN in to three classes as ideal shape, 

wide based, and high. This is followed by a fuzzy logic controller which, changes the air 

flows in to the recovery boiler by using the classifier information. 

While the dynamic mathematical model has been developed by Smith (150) and Edwards 

(39), the model predictive control of an industrial kiln was developed by Charos et al. (23) 

without the application of ANN. The internal model control strategy (IMC) for the rotary 

lime kiln control has been suggested by Ribeiro. It uses multilayer feed forward back 

propagation network with 8 inputs, 2 outputs, and 2 hidden layers with 20 and 10 nodes. 

Fig.2.2 shows the principal control strategy of lime kiln. Expert systems and NN have 

been used in quality control system in paper mills. The primary objectives of a paper 

quality expert system are: to secure the quality of paper, 
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Fig.-2,2 Neural network based control strategy for lime kiln 

minimize variations between shifts, reduce production costs, support operators, provide a 

flexible simulation tool, use existing knowledge, and train new staff members. The basic 

functions of one system are to collect real time process and quality data, evaluate the 

measured quality against customer specifications, recommend necessary corrective 

actions and simulate fulfilling of these actions. 

Gornik et al (50) developed models to estimate brightness, opacity, gloss and print gloss 

of coated paper which are based on radial basis function neural network. 

Desmond et al (31) presented a design of hybrid controller consisting of a neural network 

and classical control technique and tested the scheme on the bilinear model of a paper 

making machine (headbox) as well, Scharcanski Jacob et al. (132) presented a new 

approach to the controllable simulation of paper forming, using artificial neural network 

methods. The model incorporates dynamics of the forming process, like turbulence, 

drainage speed, and preferential drainage through earlier less-dense regions and fiber 
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properties, like propensity to clump, or "flocculate," fiber flexibility, and concentration of 

fibers in the suspension. Results for mono-fiber layer structures are described, showing 

effects of turbulence and its decay during drainage in causing clumping, or "flocculation." 

The commercial process has one of its main goals, the reduction to tolerable levels of the 

non-uniformity in mass distribution resulting from flocculation. 

2.4 Conclusion: 

A comprehensive review of artificial neural network strategy and its architecture have 

been outlined and available algorithm is cited to arrive at the result. A review of 

feedforward backpropagation network is highlighted with supervisory strategy. 

Applications of neural network for modeling, simulation, control and fault diagnosis have 

been exemplified with the subsystems used in a paper mill notably modeling of kappa 

number in kamyr digester, pulp bleaching process, and control of brown stock washer and 

bleach washer, incineration of black liquor, lime kiln, quality control and finally prediction 

of a typical paper property known as curl. Advantages of using ANN based control 

systems are cited to demonstrate how to achieve a robust control of the above paper mill 

subsystems which are difficult to control by conventional controllers. It is evident from the 

literature that use of NN technology is beneficial if the process model is strongly nonlinear 

or its structure is unknown. From the survey of literature it is also found that feedforward 

artificial neural networks (FANNs) have emerged in recent years as useful tools in 

?.mical process engineering system applications. It is important to mention that 

;ording to Rumelhart et al (126) out of so many varieties of NN, the feed forward back 

)pagation network is found to be most widely used control tools for different application 

real life problem in industry. Overwhelmingly majority of applications in pulp and paper 

nill and allied industries also favoured this network. Other networks such as ADALINE, 
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single Layer perceptron, adaptive resonance theory, augmented back propagation are 

infrequently used. MADALINE, resilient back propagation, radial basis function etc. have 

been used only very sparingly. It is also evident that large volumes of works on ANN are 

devoted to the areas of modeling compared to those for control system design. The areas 

of control in paper mill covered are pertinent to fiber processing such as pulping, 

bleaching and also in recovery section. Though these works have been concentrated on 

ANN based modeling and control, the ANN based work in the paper machine wet end 

areas are extremely limited. The modeling and simulation on paper machine pressurized 

headbox have been dealt with by Whalley et al. and other investigators (166). Although 

Whalley attempted to modify the previously developed aforesaid models for air cushion 

headbox and optimized the linear multivariate MIMO models, these are limited to only 

classical control technique and did not include ANN concept. Only one work available 

which used the ANN in designing a nonlinear control system of head-box of wet end of 

paper machine is due to Desmond et al. (31) which used a hybrid controller consisting of 

an ANN to solve nonlinearity of the problem and a classical controller. However, there is a 

reticent silence about the detailed derivation or description of design. It appears that the 

design of control system using single or multivariable algorithm for real life problem with 

or without ANN or adaptation logic are secret. It may be emphasized that most of the 

researchers or practioners in Indian paper mills were mostly confined to production of 

pulp, its processing and control, 

In this present investigation efforts will be made to develop various dynamic models of 

approach flow system parameters and headbox in both analog and digital signals and 

then various ANNs in the design of control system in paper machine pressurized headbox 

with emphasis on air cushion type will be applied for control purposes. They will be 
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compared with each other followed by the comparison with the application of classical 

controllers (P/Pl/PID). Attempts will also be made to solve some problems with retention 

in hydraulic headbox. 
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CHAPTER-3 
PAPER MANUFACTURE, OPERATIONAL PARAMETERS AND 

CONTROL PRACTICE IN A TYPICAL INTEGRATED INDIAN PAPER 
INDUSTRY 

3.1 Brief description of paper manufacturing process: 

The paper machine is the last part of the long chain of processes for making paper. In fact 

it is an important subsystem at the end of the entire paper making system, consisting of 

the raw material preparation steps to paper finishing stage as shown in fig. 3.1. 

Paper making process starts with preparation of raw material (size reduction-chipping, 

cutting, grinding etc., size separation-screening), pulping(cooking) to convert raw material 

to pulp. Making of pulp consists of getting the cellulose fiber separated by chemical 

treatment of suitable raw material under proper pressure and temperature in a reactor 

under pressure called digester operated in a batch manner (batch digester) or in a 

continuous way in continuous digester. Kamyr digester is a typical continuous digester 

employed for converting mostly forest based raw materials (wood, bamboo) into pulp 

which necessitates sophisticated control of pulp parameters. For agri-residues like 

bagasse and straw, the design of continuous digester is radically different. Pandiya 

digester is an example. The pulping process can be of many types-Kraft, soda, sulphite 

etc, depending upon the type of chemicals used and level of pH employed. In kraft 

pulping (also called sulphate pulping), pulp quality is generally measured by kappa 

number which is related to the lignin content remaining in the pulp. Output product-pulp 

from the digester is treated in brown stock washer (BSW), one of the most important 

subsystems of a pulp mill to separate clean brown pulp from black liquor through a multi-

stage countercurrent washing system. The main variables affecting the process are: input 

consistency in the vat, rpm of washer, input flow rate, temperature, vacuum and vat level 
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etc. The washed pulp is the treated in several stations for multiple stage cleaning (centri-

cleaners) and screening operations (pressure screens).The pulp is then bleached in 

multistage-multi-sequence bleaching operations. 

The objective of bleach plant is to obtain the brightness of pulp at a desired level while 

minimizing the use of bleaching chemicals like C12, C102 etc. There are various 

sequences of bleaching like CEH, CEDD, DEDED etc. mainly used by Indian paper mill. 

An ON-LINE measurement of D-stage brightness is desired for process control. However, 

because of sensor limitations, brightness is measured OFF-LINE by an hourly manual 

test. To ensure adequate pulp brightness, operators occasionally control to a higher than 

required brightness with a corresponding increased use of bleaching chemicals. 

For CMP (Chemi-mechanical pulping)/CTMP (Chemi-thermo- mechanical pulping) refiner 

(generally chip refiner) is used to produce pulp under mild conditions of chemical 

treatment. 

For paper makihg process the stock after refining need special treatment in stock 

- ypreparation section of the paper machine, where stock fiber is broken into very small 

pieces of few microns in size by using mechanical devices (called pulp refiners or 

beaters) followed by chemical addition(sizing agent for internal sizing) and a host of other 

inorganic and organic chemicals. Internal sizing agents are added if papers are required 

to be made water resistant. For acid sizing, rosin is added along with alum to set the, size 

on the individual fiber. On the other hand, for alkaline sizing process, AKD with alum to 

(Alkyl Ketene Dimers) or ASA (Alkenyl Succinic Anhydride) are used instead of rosin-

alum system. Neutral sizing employs dispersed rosin and works slightly above acid sized 

pH. 
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The fiber/water ratio is decided on the type of paper to be manufactured. The above 

chemicals improve paper properties. The chemicals (clay, talc, soapstone, CaCO3, TiO2 

called fillers) and fibers should be retained on the wire as maximum as possible. This can 

be done by combination of physical entrapment and complex physico-chemical 

interactions generally reflected by the addition of polymeric retention aids and also by 

drainage aids. This means that the retention of fiber and filler on the wire section is an 

extremely difficult process to describe using derived physical equation only. 

After several cleaning and fiber treatment steps, the slurry normally around 4.0-6.0% 

consistency is delivered to the main feed, or machine chest at about 3.0% consistency. 

Stock from this chest is then fed to the fan pump via the basis weight valve. The main 

feed to the fan pump is dilution water from the white water chests that hold water that is 

drained from the machine. The machine chest stock is injected into this dilution water at 

the fan pump suction, with the fan pump acting as an in-line mixer. The stock is now 

<1.0% consistency. Stock then is pushed to the paper machine headbox also called flow 

box through machine chest and box via some final cleaning and screening equipments. 

The dilute stock from the headbox is spread on the wire. The primary function of the 

headbox is to uniformly distribute the stock on the next element of wet end of paper 

machine, called wire. This is situated just below the opening of the headbox as a 

continuous wire mesh, moving at a constant speed such that when stock falls on it, the 

water is drained out to give shape of loose wet sheet of fiber which goes to the press.  

section. The speed of the moving wire mesh should be so adjusted in relation to the 

falling rate of stock on it from headbox such that a uniform sheet of a particular grade is 

formed. For high speed machine or for better property development, twin wire or hybrid 

wire are used instead of open wire. 
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Water drains from the stock through the wire and is returned to the white water chests. 

Only 50-80% of the fibers are retained on the wire, so this water contains 50-20% of the 

fiber originally delivered to headbox. Thus, the re-circulating fibers can be equivalent in 

mass flow rate to the fiber delivered from the machine chest. Simple and vacuum assisted 

drainage can only remove a limited amount of water, typically giving a web of about 20% 

solids (or 80% water). This web is then fed to a set of presses which remove more water 

for squeezing out from the wet sheet by pressing the sheet between metal cylinders and 

thick woolen textile/synthetic fiber sheet known as felt with high water absorbing and 

retaining. The sheet leaves the press at .40-50% solids. The press water is typically 

filtered and used on various showers; some is re-circulated for stock dilution. The semi-

dry web of approximately 40% dryness is then fed to a series of dryers (MF or MG or 

combination) where the final water is removed by evaporation. Other kinds of dryers like 

air-floatation, through dryers, infrared dryers etc. are available for special applications 

capacity. The MF/MG dryer consists of hollow cast iron cylinders heated internally with 

steam inside, provided with hoods where it becomes dry paper and is finally taken out on 

the pope, reel through calendars. Just like felts in press section screen is used as dryer 

fabrics. 

Paper machines require a large quantity of heated dry air for the drying process in paper 

machine. This air is used for the machine hood and pocket ventilation. After the drying 

process, the mixture of hot air and evaporated water, which has a specific enthalpy 

several times greater than the air delivered to the drying hood is conducted through the 

system of heat exchangers called recuperators. The last stage of the system of the heat 

exchanger usually represents a scrubber. 
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Recovery Section: 

The important section of a paper mill which brings economy in one hand by supplying 

thermal and electrical energy for process heating and sustainability of the mill, reducing 

and controlling pollution on the other is its recovery and recycle section. This section 

mainly consists of multiple effect evaporation for concentrating black liquor obtained from 

brown stock washer up to 55-65% concentration, incineration of concentrated black liquor 

by spraying in the recovery furnace for combustion in the black liquor furnace and finally 

causticization and calcinations in lime kiln. In the black liquor furnace, the inorganic 

components( Na2CO3, Na2S and very small amount of NaOH) remains in the same form 

or the other and sink through the char bed (principally carbon) which is formed by 

decomposition, and pyrolysis of organic constituents( lignin, hemicelluloses etc.) present 

in black liquor. The shape and size of the char bed are the important parameters for 

control of combustion in recovery furnace. Lime kiln is used primarily to produce lime 

required to convert green liquor to white liquor by causticization process in three to four 

stage co-current causticizing reactors (back mix flow reactor-CSTR). The white liquor is 

then feed to the digester to get pulp from various fibrous raw materials. The control of 

lime kiln is essential for getting good quality of lime in terms of size and reactivity. The 

control itself includes both burning zone control and combustion control. 
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Fig.-3.1 Pulp and paper making system 

3.2 Status of approach flow system and wet end of paper machine in mills: 

In order to get paper of desired quality various measurement and control systems have 

been attempted for sensing and controlling numerous parameters in the paper mill. But 

these are not adequate and constant efforts are being made to upgrade the measurement 

and control of the operations and processes. The following section details about the 

existing practices of control and instrumentation of the wet end section. The subsystem 

selected for modeling in this present investigation starts from the machine chest to mainly 

headbox, and retention for wet end machine. However, the complete paper machine is 

extended up to the pope reel through presses, driers and calendars as shown in fig.3.2 

(a). 

Mixina Tank 

Calender 

Fig.-3.2 (a) Process flow in Paper Machine 
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A typical wet end machine is drawn for Fourdrinier machine (fig.3.2 b). 

Fig.3.2 (b) A typical sketch of wet end formation equipment (Fourdrinier Machine) 

The flow diagram for approach flow system is shown in fig. 3.3(21). This system includes 

blending chest, consistency regulators and controllers, flow control devices and constant 

head tank/stuff box, magnetic flow meter, basis weight valve(stock valve),secondary 

refiner, mixing box( to mix with white water) and machine chest. The stock is pumped by 

primary fan pump to a series of centri-cleaners at a consistency of 0.6-1.0% consistency 

and then again to vacuum treatment and screening operation. Then comes the headbox 

that stores the stock for further processing. The headbox consists of a pond section, 

dispersing devices and slice open equivalent to the width of wet end paper machine at its 

bottom that can be controlled if necessary. It can be either open to atmosphere or closed 

with arrangement for applying air pressure at the top of the stock. The open and air 

padded headbox invariably contains a number of rotating rectifier rolls (perforated rolls) 

called holey rolls. Hydraulic headbox, another important improvement of open head or air 

pressure headbox, used for high speed machine, does not contain moving parts or rotary 

devices and is controlled by the pressure of fan pump. A hydraulic headbox also 

40 



Ilea no Chest 
Consistency 
regulation Refining Dilution 

Flow 
control 

Box 
Overflew 
return 

Consistency 
measurement 

Chest 

Valve Dilution 
water 

,tr:r  Controller 
White . 

Magnetic 	water 
flow meter 

Machine 
heacibox 

Sti›C 
Va I ve 	Mixing 	 Screen t 

box 	 Rejects Refiner 
Vortex cleaner 

ejects 

Refiner 
Machine 
chest Pump 

Pump 

Vacuum 

Deaeration 

additionally uses air pressure. Symflo headbox is an example which may be treated as a 

hydraulic headbox with an integral attenuator tank. 

Fig. 3.3 Approach flow system schematic diagram 

The headbox must not only spread out the stock evenly across the width of the machine 

at the correct speed and angle, but must level out cross-currents, machine direction 

velocity gradients, and consistency variations as shown in fig.3.4. Fiber flocking must be 

controlled by the creation of turbulence with a piece of precision equipment which must 

be easy to operate and maintain while minimizing production. 
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and process design aspects and the current status of instrumentation and control system 

used in wet end of Indian paper mill. 

3.3.2 Mechanical and process design features of headbox: 

There are various designs for headbox available marketed by numerous manufacturers 

with their trade names, even for the same kind of headbox, like open headbox, air 

pressure headbox, and hydraulic headbox compatible with former( Fourdinier, twin wire or 

hybrid wire). The original designers were Beloit/Harnischfeger, Black clawson, Sandy hill, 

Sulzer-Escher wyss, Valmet/ Ahlstrom, Voith, Wartsilla, and KMW. Some of the 

manufacturers are not presently existing. However, whatever may be the design features, 

the basic parameters are the same. In the following paragraphs the process and design 

parameters and their relationship are discussed: 

3.3.2.1 Head, Jet velocity and spouting velocity (Tappi 0410-05, Tis 0410-02-04): 

The total head H is referred to the datum level at the middle of the slice opening. The total 

head includes the height of stock above the slice, added pressure or vacuum of an 

enclosed headbox, and corrections for the position of the head measurement. The 

symbols are given in Chapter of nomenclature. 

The model for flow velocity and volumetric flow can be obtained from Bernoulli equation 

for incompressible fluid like stock as under: 

(PalP)+ ga+(aav2a/2)+(riWp)= (Pb/p)+ gZb+(abv b/2)+hf 	 [3.1a] 

For the case of stock flow from head box slice the gZa  and gZb are cancelled out, and 

work added by pump riVVp is neglected. Therefore the equation in reduced form can be 

represented as 

(abv2b/2)- (aav2a/2)= [(Pa-Pb)/P]- hf 	 [3.1 b] 
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Using continuity equation va=(Db/Da)2  vb ,and defining q)=(Db/Da) the above equation can 

be written as 

vb=[1/( 	q) 4aa)(15][2(Pa-Pb)/ p]0.5- F 	 [3.1c] 

Where F is defined as (2hf/ air  cp 4aa)
0.5 

The equation for vb is reduced to vb=[C,/(1-4(p )0.5][2(pa_pb)/ 0.5 

Usually the ratio of diameter is less than 0.25, the approach velocity and the term q) can 

be neglected and resulting equation stands as vb=Cv[2(Pa-Pb)/ 0.5 
	

[3.1d] 

Deleting the suffix b, one can write v= C,(2gh)°.5 	 [3.1e] 

If H is measured close to the slice, and v is measured at the vena contracta of the 

jet,Cv=1 for most slices. The relationship between total head (sometimes referred to as 

theoretical head) and jet velocity is thus given by the following simplified formula. 

v=-N1(2gH) 	 [3.2] 

Friction losses, due to holey roll or to boundary drag along a very small angle nozzle will 

reduce Cv possibly to around 0.98. 

Velocity at vena contracta: 

The jet leaving the slice continues for a short while to contract in thickness to a vena 

contracta, at which point the spouting velocity is reached. The spouting velocity at the 

vena contracta can be found out as follows: 

If k is the cross-sectional area at the vena contracta, As the area of slice opening, then 

Av=CcAs, Cc  , the coefficient of contraction whose value can be estimated accurately from 

the detailed model equations given in the Appendix -3. 

Neglecting q) 4  as discussed earlier one can get the following equation 

v =CcCv*2gH)=Cq-\1(2gH ) =Cq  .■1(2gH) 	 [3.3a] 
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For true nozzle slice, Ce--1, otherwise for different geometry of slices designed by various 

manufacturer the values are different (Voith design, Cc=0.85-0.95; Nielson slice, Cc=0.65- 

0.75). The velocity v is at the vena contracta following contraction of the jet which can 

only be obtained from the detailed design of the slice flow. 

The actual head/velocity relationship is not as precise as implied by these simple 

theoretical relationships which have ignored the effects of factors such as temperature, 

viscosity, and approach velocity. 

3.3.2.2 Head and slice flow: 

The total flow (Q) through the headbox (making allowance for any header bypass, bleed 

flows, etc.), slice opening (b), slice width (w) are related to the jet velocity by the following 

relation. Volume of stock which flows per unit time from the headbox is also equal to 

Q =Avv=Av[Cv/(1- 4)0.5][2(prpb)/ 

Neglecting cp4  as discussed earlier one can get the following equation 

Q =CcCvAs.g(2gH)=CqAsq(2gH ) =Cq  w bA2gH) 	 [3.3b] 

In most cases the value of Cg  and Cc are almost numerically equal. Using various unit 

conversion factors, one can write the following equation. 

Q= b Vs K=bwV Cc  K2= bwCc  K2 K\iFI 	 [3.4] 

As already mentioned, the contraction coefficient, Cc  can be found from the slice 

geometry, angle and the model developed (given in Appedix-3). The values of K of 

eqn[3.4] depends upon the conversion unit as shown in the Appendix-3. 

3.3.2.3 Relation between paper production and stock flow: 

The volumetric flow of stock on the former can be calculated from paper production on 

the pope reel located at the end of the paper machine as under: 

Q=m,104/[C(100-Ss)Psus] 	 [3.5] 
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one can write, ms=wnVnqSk 	 [3.6] 

Combining the above eqn.[3.5] through [3.6], the following equation can be written as 

Q= wnVnqSk104/[C(100-Ss)Psus] 	 [3.7] 

By comparing the eqn.[3.3] and eqn.[3.7] the following eqn. is obtained: 

b= wnVnqSk104/[C(100-Ss)psus  v w 	 [3.8] 

Slice opening can also be obtained in other way as 

b=Q.Sk(100+S)(100-ös)/( CU,  106) 	 [3.9] 

Width of paper web on the pope reel and width of stock stream flowing on the wire can be 

related as under: 

w=w,,(100-5s)/100 	 [3.10] 

Width of slice opening w can be expressed in terms of trimmed width of paper 

w=wc+2z+Rwc+2z) 6s1/(100- os)+2r 	 [3.11] 

Total head can also be calculated based on the types of headbox design (given it 

Appendix-3). For air cushion headbox the eqn.[3.12] is valid: 

Fl=hnitPairIPSUSVt2 p2 
vn2/022gk 	oin  p /0)2i 2gki 	

[3.12] 

Along with the values of the contraction coefficient, Cc, the thickness of the jet, d the 

angle of outflow can be estimated accurately based on the geometric configuration of 

slice. There are many kinds of slices. Three primary types of slice, vertical slice, 45°  slice 

and inclined slice. The geometry of the slice and the operational parameters derived from 

the geometric configurations are given in (Appendix-3).The headbox flow rate, Qh can be 

calculated as under 

Qh( gsm/inch)= 0.052(Slice opening)(vC ) 	 [3.13] 
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3.4 Status of existing sensors and their dynamics: 

For design of control systems, apart from controllers and final control elements, the other 

important subsystems are sensors/detectors, transmitters(combination of transducer and 

signal conditioning devices) and measuring instruments. For development of total system 

dynamics, the static and dynamic characteristics of each subsystem are required to be 

evaluated. These are important for developing closed loop characteristic system equation. 

As measuring element is a subsystem of the total control system, the selection of most 

appropriate instrument from a range of commercially available instruments necessitates 

the knowledge of these factors. The static characteristics include parameters like 

range,span,turndown,sensitivity,resolution,repeatability,accuracy or precision, bias and 

measurement error, threshold, dead band, dead space, and dead zone, scale readability, 

zero shift( zero error).The dynamic characteristics generally include steady state gain, K .  

or proportional band, time constant, order, and transfer function, G ,delay time depending 

upon the positioning of the sensors and measurement system and the characteristics of 

second and higher order systems( overshoot, period of oscillation, settling time, rise time, 

and resonance etc.) are reviewed in the following paragraphs: 

As indicated earlier the sensors used in the wet end (approach flow, headbox and wire 

control) are: consistency, flow, total head, stock level, pH, and basis weight. 

The time constant of the sensor is usually much lower than that of the system. So it 

should not be a factor. However, the time constant may depend upon how the sensor is 

used. Optical sensors (made of CdS or CdSe) have time constant of about 100ms and 10 

ms respectively. Photovoltaic cells have time constants on the order of 1-100 ps. 

The overwhelmingly majority of consistency sensors which most of the Indian mills are 

using at present are of mechanical type (rod or rotor) though many special sensors of non 
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contact type have been developed over the years. These include optical sensors based 

on depolarization or absorption and scattering based principle, microwave and NI R (near.' 

infrared reflectance spectroscopy. These are reported in various publications and 

reviewed in tables 3.1 & 3.2, Appendix-1. 

Temperature sensors generally used by mills are: RTD, Thermistor and thermocouple. 

Other temperature sensors include integrated circuit(IC), bimetallic strip and optical 

pyrometer. Electrical position sensors include potentiometer, capacitive, resistive, 

inductive and reluctance type sensors. Reluctance type sensors, a type of transformer are 

the basis of the prevalent LVDT (linear variable differential transformer) has sensitivity on 

the order of 0.001 mm movement. 

The various values of static and dynamic characteristics of sensors are given by Johnson 

(66,67) and more details in various manufacturer's catalogue such as Omega. A 

comprehensive description of the sensors and their characteristics are presented in table 

3.1 and 3.2 (Appendix-1) for the present investigation. 

3.5 Headbox system of a paper mill: 

Headbox, sometimes also called flow box is the most important equipment for paper 

machine of a paper mill in its -,approach flow section of paper , machine. The paper 

machine headbox consists of three sections, inlet manifold, headbox pond section plus 

dispersion elements and slice. The function of head box is to take the stock delivered by 

the fan pump and transform the pipe flow into a uniform rectangular flow equal in width to 

the paper machine wet end section, spread stock at a. uniform velocity in the machine 

direction and match approximately the slurry speed at the jet (jet velocity or spouting 

velocity) with forming section speed (called wire speed). The other objectives of headbox 

are to level out cross currents and consistency variations, machine direction velocity 
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gradients and to create controlled small scale turbulence (called micro turbulence) to 

eliminate fiber flocking and impinge on the wire at the correct location and angle. Turnbull 

(158) predicted that 2.0% disturbances in jet velocity may result in nearly 7:0% variation 

in the basis weight due to the aforementioned resonance of the fundamental mode. There 

are mainly two types of head box, open headbox (open to atmosphere) and enclosed or 

pressurized headbox. The open headbox was generally used earlier older slow speed 

paper machine(600-800 ft/min, requiring a variation of approximately 14.5 inches in level 

to change the corresponding spouting velocity(jet velocity).For higher speed( at least 

greater than 1000 ft/min,3000-5000ft/min)a level change hundreds of inches of water was 

necessary to produce the required spouting velocity. In such a situation, it is impossible to 

control' cross-flow currents or to ensure that all fiber aggregates are broken up. before the 

stock reaches the slice. This made practically impossible to operate the open headbox. 

To overcome these deficiencies, one has to use enclosed headbox. The later again is 

classified into two types: air cushion/air padded headbox and hydraulic headbox. 

3.6 Status of control loops in head box: 

Installation of a good headbox control system is considered probably one of the most 

fruitful investments in the area of paper machine automation if one goes for economic 

justification and to ensure uniform quality paper (21). 

A comprehensive control system solves the complexity of headbox operation and allows 

papermaker to conveniently alter operating conditions (speed, drag, flow through the box 

etc.). With implementation of sophisticated control system, it is easier to achieve 

increases in production (through speed-ups). 

To ensure uniform quality paper few factors should be brought under control, out of which 

three are most important. Flow through the headbox, liquid level and total head. The 
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others are consistency, pH, and temperature (although the later two influences to a slight 

extent). To minimize basis weight variations in the sheet, headbox total head must be 

tightly controlled. In addition, when machine speed changes occur, the ratio between jet 

velocity and wire speed must be automatically maintained to minimize production. A 

typical control system for a hydraulic headbox is shown in fig. 3.5: 

3.6.1 Total head pressure control: 

Total head pressure is controlled by positioning the fan pump recirculation control valve. 

The stream valve will be manually positioned to keep the fan pump recirculation control 

Fig. 3.5 Hydraulic headbox control system 
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valve within operating range. Some paper machines use a trim valve in parallel with the 

stream valve or by using variable speed fan pump, the speed of which can be precisely 

set with SCR motor control. 

3.6i Total head control: 

Total head is controlled to achieve control of the velocity of the stock jet issuing from the 

slice, because this factor must be adjustable if a constant drag (wire speed —jet velocity) 

between wire and jet is to be maintained. Total head is sensed via a D/P cell mounted to 

measure gauge pressure at the floor of the box. This serves as the feedback signal for a 

controller that usually modulates the position of the valve controlling flow into the 

headbox. The prime function of a total head controller is to maintain a constant drag on 

the wire. As a result total head set point is a function of wire speed, it is necessary to 

adjust it when changes in speed occur. This requires a system that sense wire speed; 

takes note of drag set point and calculate an appropriate total head set point. Such a task 

can be accomplished via analog or digital hardware. The later is favoured in most of the 

modern installations. Total head itself is most frequently controlled via electronic, analog 

hardware with PI action and a remote set point feature. With this hardware, loop tuning is 

normally by cut-and-try methods, unless decoupling with liquid level is being attempted, 

via digital algorithms, in which case, complex identification and tuning procedures must 

be employed. 

3.6.3 Wire speed control: 

Wire speed is measured and used in computation of the rush-drag ratio. Calculated jet 

velocity is compared with measured wire speed in a rush-drag ratio controller. The output 

of this controller provides a cascaded set point for the headbox total head controller. A 

manual adjustment is provided for setting the desired rush-drag ratio. Should there be 
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temporary failure of the wire speed digital transmitter; this rush-drag ratio cascaded set 

point control can be uncoupled from the total head controller. Stock flow to the headbox 

can then still be controlled on a single-loop basis from total head pressure. 

3.6.4 Headbox stock level control: 

Headbox stock level is controlled to maintain proper holey roll emersion and to prevent 

large level variation for practical reasons. This is control on a single loop basis by 

controlling the padding air and vent control valves. These valves are usually arranged so 

that the headbox pad can be controlled with a positive pressure or under vacuum. Since 

actual headbox level is less critical than total head, level is used to control the slower 

.esponding padding air and vent control valves. 

-leadbox level is usually sensed by a D/P cell with one side sensing pressure at the 

)ottom of the box and the other the pressure in the air pad at the top. The output of the 

3/P cell goes to level controller. Liquid level is most commonly controlled by conventional 

pneumatic, analog hardware with PI action. Controller tuning is usually by manual cut-

,and-try methods, unless decoupling of liquid level from total head is being attempted, 

whereupon, digital controllers are used and sophisticated identification and tuning 

procedures are required. 

3.6.5 Headbox stock flow control: 

Stock flow through the headbox is controlled to allow compensation for changes in pulp 

drainage properties and easy adjustments of formation characteristics of paper. Flow 

through the headbox is best measured by a magnetic flow meter located just upstream of 

the, box. The variable manipulated by most flow controllers is slice position. Changes in 

slice position cause upsets in total head that are compensated by adjustments in the 

position of the valve controlling flow to the box. Normally, only proportional action is 
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required of the flow controller, but it is usually advisable to include a dead band around 

the set point. This is most easily accomplished digitally. Controller tuning is normally by 

trial and error methods and seldom is required for the flow controller. Headbox slice 

position is used to control the "water rate" which determines headbox consistency. 

Headbox slice position can be set manually or by computer. 

3.6.6 pH control of stock: 

Paper machine headbox pH is usually controlled by adding acid (sulfuric acid, alum or 

both) to the suction of the fan pump depending upon the requirement of desired system 

pH value. 

Fig.3.6a Paper machine pH control 

A portion of the paper machine whitewater drainage is usually sampled for pH. The flow 

to the headbox is used as a feed forward index to position the sulfuric acid/alkali valve. 

This control valve position is then readjusted from the pH controller. An alternative pH 
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sample location is off the headbox recirculation line. The higher flow velocity at this point 

.combined with longer fibers tends to keep the electrodes cleans. On-Off control is also 

used in many situations. A typical control system for acid sized stock is shown in fig. 3.6a. 

Another important consideration is the shower water pH .to the felt cleaner system. 

Maintaining the shower water pH at the same level as the headbox pH assists in more 

effective operation of the felt conditioners. Another scheme given in fig.3.6b(144,145) has 

also been proposed. 

Stock Pump 

Fig. 3.6 b pH control system 
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the stock coming from the broke chest is the same consistency as that in the machine 

chest. (Machine control attempts to do this, but the dynamics of the process prevent 

excellent control) with consistency to the machine chest upset, the mass flow of fiber to 

the headbox changes. Breaks may last 5-10 minutes (and sometimes a lot longer) which 

is sufficient time for the basis weight control to drift rather significantly from its target. 

When the web is re-established on the reel, the sensor then resumes control and 

attempts to bring all measurements back in line. This may take several minutes and the 

production made in this period is off quality, hence, may need to be rejected. 
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Fig.3.7 A typical control loop of basis weight control 

3.7 Conclusion: 

In this chapter, a comprehensive description of the manufacturing process is outlined 

along with present status of approach flow system in Indian paper mill, the various unit 

operations and processes involved and design features of headbox flow system. The up-

to-date review of existing control practice and their loops, and status of various sensors 

are made. The details of both static and dynamic characteristics of sensors are compiled. 

The controlling parameters which are focused in connection with the approach flow 
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system and headbox are: consistency, flow, total head, level, pH, and temperature and 

basis weight. The design information regarding various loops for controlling the 

parameters in and around the headbox is stressed upon. From the study it is found that 

the dynamics for all sensor parameters are extremely fast with very small time constant 

values compared to the values for the process alone. In addition, the systems approach 

first order with gain nearly equal to 1. 
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CHAPTER- 4 

METHODOLOGY OF SYSTEMATIC INVESTIGATION, 
PARAMETER ESTIMATION AND SELECTION OF ALGORITHMS 

In thiS Chapter detailed methodology for systematic investigation in the present work are 

developed as under: 

4.0 Development of strategy of systematic investigation: 

The strategy adopted for systematic investigation of the present problem is as follows: 

1. Development of dynamic models for consistency, flow, total head, level, pH, stock 

temperature, and basis weight assuming all these parameters as linear or 

approximately linear systems in approach flow system of a paper machine. As usual 

these models are based on unsteady state material balance or energy balance or 

combination of both the two from fundamental principles. 

2. After deriving the dynamic models, if some of the models of control parameters of 

process are found to be nonlinear, these are linearized using usual Taylor series 

expansion technique or by Pade's approximation for dead time if at all it exists. 

3. Designing a negative feedback loop for classical control system for consistency 

using Bode plot and designing the complete process using the conventional 

controller ( PI and PID). For this purpose flow chart are to be designed (fig. 4.1a and 

4.1 b). 

4. Identifying the static and dynamic characteristics of meas.urands and the 

characteristics (table-3.2, Appendix-1) of each and every elements of the closed loop 

of the intended control system as a whole and then following the development of 

their dynamic models as in stepsl-2 and analyzing the stability as in step 3. The 
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classical control system is then designed adapting various appropriate tuning 

methodology such as Ziegler- Nichols, and lambda tuning. 

57. Studying the variation of the response of each and every parameter as a function of 

time using control loop assuming servo and regulator problem. 

6. For comparison purposes the response models using both analog and digital 

methods(analog and discrete) are to be developed for all parameters such as 

consistency, total head, stock level, stock pH , stock temperature, and basis weight 

control. For stock flow, data from the industry and those predicted from model are to 

be compared. 

7. Developing model for the MIMO system indicating interaction of input and output 

parameters such as total head and stock level, air pressure and level in a 

pressurized headbox, input stock flow and stock level, and retention process in the 

wet end. 

8. Comparisons between analog and digital models both SISO and MIMO systems are 

to be accounted for. 

9. Designing a model for the MIMO system as discussed in step 7 such as interaction 

of total head and stock level, -air pressure and level in a pressurized headbox, input 

stock flow and stock level, and retention process in the wet end and then to 

compare the results with those of SISO system. Analysis should be made based on 

relative gain array (RGA) method and decoupling control techniques. 

V. Selecting the appropriate methodology of ANN for the control parameters such as 

back propagation neural network, adaptive linear neural element network 

(ADALINE), perceptron, adaptive resonance theory (ART1), and augmented back 

propagation network. 
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1 d, Comparing the results obtained from the MATLAB simulation for each and every 

parameter (either in analog or digital form) for both SISO and MIMO system using 

both classical control system and neural network control system: 

12.. In order to achieve the objectives mentioned in step 11, convert all the models of 

control parameters of the wet end approach flow system including headbox as 

mentioned above (steps 1-2) in to a neural system using the various procedures for 

neural computation as described in step 10 with changing values of ANN parameters 

such as momentum rate, learning rate, and others. A flow chart for General ANN ' 

computation .is given in fig.4.lb.lndividual flow charts and algorithms for different 

ANN methodologies are given in figs. 4.5- 4.6. 

13. Comparing the results of ANN computation using MATLAB simulation with 

SIMULINK tools with those estimated values from classical control loops for all SISO 

_ and MIMO systems. 

4.1 Design and analysis of classical control systems: 

Methodology of design and analysis of a classical control system is well known. It 

requires the design of the loop ( single or multiple) for SISO or MIMO systems which in 

turn demands the knowledge of individual loop elements, their dynamic and static 

characteristics, defining characteristics equation of individual as well as the system as a 

whole, stability analysis based on continuous or discrete signals, linear time invariant in 

time domain(Routh Hurwitz criterion/Root Locus) or frequency domain( Bode or Nichols 

plot/ Nyquist plot), then finally adjusting the controller parameters by various tuning 

methodologies . This is then checked for response as a function of time. The procedure 

followed in this present investigation is depicted in flow chart (fig.4.1). MATLAB software 

is used to design and analyze the system. 
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4.2 Procedures for estimation of parameters: 

The following paragraphs describe some salient features of parameters and their relative 

importance for computation of classical control system ( P/PI/PID) and ANN for this 

present investigation. Though the estimation procedure for parameters for classical 

control system well known, it is important to mention that even for classical control loop 

the time constants for various elements such as process( SISO and MIMO), measuring 

element, controller and final control element are required to be obtained. These are either 

found out from published information or self generated through simulation technique by 

MATLAB software. The parameters for ANN are relatively less known and thus require 

attention. Therefore in this chapter procedure for estimating ANN parameters are 

described here. 

For learning or training of ANN, the • parameters of importance are: momentum 

coefficient(rate or factor),a, learning rate(or coefficient) q, number of hidden nodes n, 

activation function(or transfer function, or squash function), threshold function, identity 

function, weight vectors ,W,V, mean squared error, tolerance, accuracy, gradient descent 

term for back propagation network( BPN), and gain(sigmoidal gain for sigmoid function),) 

or scaling factor and delta rule. Some the above parameters are defined as under: 

4.2.1 Momentum coefficient: The momentum coefficient, a is implemented by adding a 

fraction of the last weight change to the next set of the weights eqn. [4.1]. There are 

various algorithms that can change the level of this momentum based on the error 

involved. The momentum coefficient has been used for reducing the training time of 

network and also overcomes the effect of local minima. 

[Awri .-naBaw a[AW 	 [4.1] 

The values of a being positive (<1), lie in the range of 0.0-0.9, generally between 0.5-0.9. 
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In the present investigation, the value of a has been selected iteratively using MATLAB 

programming detailed in Chapter-5. 

4.2.2 Learning rate: Learning rate determines the size of the weight adjustments made 

at each iteration and hence influences the rate of convergence. The values of ri lie 

between 0.01-1.0 though higher value of even 0.6 has been assumed in specific situation. 

However, if the learning rate coefficient is too large, the search path will oscillate and 

converges more slowly (58). On the other hand if the coefficient is too small, the descent 

will progress in small steps significantly increasing the time to- convergence. During 

training, the training process stops when the error for all the cases falls below the learning 

tolerance. If the learning rate is too small, the learning process never stops. The learning 

rate always starts with a higher tolerance level and monitors the weight changes with 

decreasing tolerance levels. 

In order to get quick convergence and best results in the present investigation, the 

optimized value of learning coefficient has been selected based on error rate .as a 

function of learning rate as detailed in Chapter-5. 

4.2.3 Number of hidden layers and hidden nodes: 

The number of hidden layers and hidden nodes are very important factors in order to 

optimize the physical number of calculations in both the training and operational mode. If 

all factors in ANN computational procedure (value of momentum coefficient, value of 

learning rate etc.) fail, increase the number of neurons in the hidden layer to improve the 

model. For getting best results for feed forward network in BPN, normally . equivalent 

single hidden layer for a multilayer system is assumed, and then the number of hidden 

nodes is calculated in a single layer. 
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Dimension of probability theory proposed the following equation to calculate the required 

number of hidden nodes. 

Number of hidden nodes= 10*T/(1 +13); 

where hand 13 denote input and output nodes and however, one commonly used method 

is to train different networks with varying number of neurons in hidden layer and to test 

their predicted accuracy. As an approximation (91) suggested the following equations to 

predict the number of hidden neurons in hidden layer. 

No. of hidden neurons= [(no. of inputs) + (no. of outputs)]/2 

Or No. of hidden neurons= [(no. of inputs)2+ (no. of outputs)2]°5/2 

4.2.4 Accuracy: 

As the number of the hidden nodes increases, the accuracy increases until a point is 

reached where the network is over-parameterized. When the curve reaches the bottom of 

the knee, that number of hidden nodes is the proper number. The no. of hidden neurons 

has been selected based on error rate as detailed in Chapter- 5. Many times the accuracy 

is referred to as the training threshold or learning threshold. The learning threshold can be 

calculated as under 

Learning threshold= 0.8*(ZE2/2). 	 [4.2] 

4.2.5 Gradient descent term: 

Gradient descent term is based on the minimization of error, E defined in terms of weights 

and the activation function of the network. Also, it is required that the activation function 

employed by the network is differentiable, as the weight update is dependent on the 

gradient of the error, E (161). 

Thus, if AM is the weight update of the link connecting the it"  and jth  neuron of the two 

neighbouring layers, then dWil is defined as 
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AvV.: n  aE 
	

[4.3] 

aw 

where, n  is the learning rate parameter and aE/aWj is the error gradient with reference to 

the weight W. 

Now using the above parameters the algorithms of mainly four types of ANN 

methodologies are either modeled or selected from available from published information. 

Though there are some other ANN methodologies are available like resilient back-

propagation, radial basis function network (RBF) and ART2. 

4.3: Modeling techniques through ANN: Development of flow chart and selection 

of algorithms: 

As indicated in Section 4.2 there are many ANN methodologies available for design of 

control system which are process specific. A general algorithm is presented here (174). 

However, for detail analysis in this investigation the flow charts and algorithms of five 

methodologies are attempted as under. 

• Adaptive linear neuron netwbrk(ADALINE) 

® Perceptron neuron network(PNN) 

Back propagation neuron network( BPNN) 

• Adaptive resonance theory(ART1) 

o Augmented back propagation network(ABPN) 

The results using MATLAB software will be compared in Chapter-6.These are described 

in the following paragraphs: 
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Fig. 4.1a Flow chart for the design of the classical control system including stability 
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Fig. 4.1b Flow chart for general neural network algorithm 
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4.3.1 Algorithm for solving problem through ADALINE: 

This Adaptive linear neural element network( ADALINE) which uses supervised learning 

algorithm, consists of a single output neuron and the output values are bipolar(-1 or +1). 

The input x, could be binary, bipolar or n real valued. It also has a bias whose activation is 

always '1'. If the weighted sum of the inputs is greater than or equal to zero then the 

output is 1, otherwise it is -1. An ADALINE network is shown in fig.4.2 (148). 

Fig.-4.2 ADALINE neuron model 
The input to the neuron, xis represented as 

X=.[X0,X1, X2 	Xn] 

Xo=bias=1; 

a= Learning coefficient 

t=target output 

y=computed output 

i W=[wo, W1,W2 	WnjT  represents the weight factor 

Yin=WX=output of the neuron before the non linearity 

y=sgn( yin). sgn (WX)= output from the neuron after the non linearity 
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The weighted sum of the inputs including a bias term is calculated and it is compared with 

target output and based on the delta rule, the weights are adjusted. To teach an adaline 

model, the following steps are used: 

ADALINE algorithm: 

Step:1 Randomly choose the value of weights in the range -1 to 1. 

Step:2 While stopping condition is false, follow steps 3 to 7. 

Step:3 For each bipolar training pair s:t; do step 4-7. 

Step:4 Select activations to the input units, X0=1, X,=s (i=1,2 	n). 

Step:5 Calculate y= 4.0 n  X; W. 

Step:6 Update the bias and weights. 

Wo(new)=Wo(old)+ a(t-y)X0, (X0=1) 	 [4.4] 

W, (new)=W,(old)+ a(t-y)X; 	 [4.5] 

Step:7 If the largest weight change that occurs in step 3 is smaller than a specified value, 

stop, else continue. 

4.3.2 Algorithm for solving problem through perceptron network: 

A typical model of the perceptron (PNN) is given in fig.4.3. 

x2 

X, 

xn  

Fig. 4.3-Perceptron neural network 

The learning algorithm of PNN is enumerated as under. 
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Step:1 Select weights and bias. The value of learning rate has been used from 0 to 1. 

Step:2 while stopping condition is false, do steps 3 to 7. 

Step:3 For each training pair s:t, do step 4-6. 

Step:4 Select activations to the input units, X=s,(i=1,2 	n). 

Step:5 Compute input to the perceptron and calculate the perceptron output 

Yin=b+Zr1,=1 XiWi 

Yin>8 ; 8 is the threshold 

y = 	0 e<="Ym<= 9 

yin5 

Step:6 Update the bias and weights if the target is not equal to the output value. 

If tO y ; If xi # 0 

14(new)=W;(old)+ a X, t 	 [4.8] 

Else no change in weights 

b(new)=b(old)+ at 	 [4.9] 

Step:7 Test for stopping condition, if no weight change in step 3 stop else continue. 

4.3.3 Algorithm for solving problem through backpropagation neural network 

(BPNN): 

Backpropagation networks consist of multiple layers of neurons. For a three layer NN 

system (Fig.4.4), there are an input layer, a middle layer (commonly referred to as a 

hidden layer), and an output layer. The network is constructed in such a way that nodes 

of each layer are connected to the nodes of the next layer. In a back propagation network, 

a randomized set of weights on the interconnections are used to present the first pattern 

to the network and the calculations are made for input and output of hidden and output 

layers. The process is repeated until the prescribed performance criteria are achieved. 

[4.6] 

[4.7] 
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The network must be trained by various learning processes as mentioned in the Section 

1.2.2. For control application, the Algorithm based on Delta-Rule has been found to be 

most appropriate. For step by step computation of ANN, the following notations, are 

followed. 

Three layer network with input layer having 1 nodes, hidden layer having m nodes, and 

output layer with n nodes. The flow chart for the calculation procedure is depicted below 

(Fig.4.5). 

Input layer 	 Hidden layer 	• Output layer 

(1= 1,2......i) 	(m=1,2 	j) 	(n=1,2...........k) 

Fig.4.4 Multi layer feedforward'neural network 

Output from input layer 0; 

lut from hidden layer OH 

►ut from output layer 00  

ep: Normalize the inputs and outputs values to their maximum values. 

Step: 2 Select the number of neurons in hidden layer which lie between 1<m<21. 

Step: 3 Select the weights V (between input and hidden neurons) and W (between 

hidden and output neurons), 

Step: 4 Introduce the input into the neural network; calculate the output from first layer 

(input layer) using equation. 
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01 =1i, 
Step: 5 Calculate the input to the hidden layer using following equation. 

'H.:VT  *01 

Step: 6 Knowing the output from the first layer, Calculate the output from second layer 

(hidden layer) using equation 

OH=1/(1+e-lHi) 
	

[4.10] 

Step: 7 Knowing the output from second layer, Calculate result from output layer using 

sigmoid function. 

10 .[W]T  {Oil} 
00= 1/(1+e" 0j) 	 [4.11] 

Step: 8 Calculate total mean square error, E for jth  training set. 

E=sqrt(Z (T,700j)2/n. 	 [4.12] 

Step: 9 Calculate gradient descent term, D. 

D.(TicOok) Ook (1-000 	 [4.13] 

Step: 10 Calculate gradient descent for jth  node on the hidden layer 

y={0}H *D 	 [4.14] 

Step: 11 Knowing gradient descent term for hidden, calculate weight changes between 

input & hidden layer nodes. 

[AM t+1=r1[Yl+a[AW] t 	 [4.15] 

Step: 12 Knowing gradient decent term for hidden and output layer, calculate weight 

changes between hidden layer & output layer nodes. 

[AVIt+1=r1[x]+ a[AV]t 	 [4.16] 

Where [x]={01} D*  

D*=e; (OH) (1-OH;), 	 [4.17] 

{e}=[w]D 
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where n is the learning rate, and a is the momentum coefficient, momentum is simply an 

added weight used to speed up the training rate. 

For example, if one calculates the changes in weights, [W] t+1  and [V] t+1. It requires 

arbitrarily to set the learning rate ti =0.9, momentum coefficient, a=0.7. 

Y 

Fig. 4.5 Back-propagation training flow chart 

Step: 13 After knowing weight changes, update the weights according to the equations 
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[\iv] t+1 =[w]  t 	[Ow] 
[V] t+1  =[v ] t  +[ Av] t+1  

[4.18] 
[4.19] 

Step: 14 Find error rate 

Error rate= YE/n set 	 [4.20] 

Step-15: This process is continued until the network predictions are within some defined 

tolerance of acceptability. 

4.3.4 Algorithm for solving problem through adaptive resonance theory (ART1): 

ART is capable of developing stable clustering of arbitrary sequences of input patterns by 

self-organisation. Pattern can be viewed as points of N-dimensional feature space. There 

are two distinct models based on ART, namely ART1 and ART2 networks. ART1 self 

organizes recognition categories for arbitrary sequence of binary input patterns and ART2 

does the same for either binary or analog inputs. The novel property of the ART1 network 

is the controlled discovery of clusters. 

The ART1 algorithm has been described step by step as follows. Flow chart of the ART1 

algorithm is shown in fig.4.6. 

Step:1 The vigilance threshold p is set, and for n input vectors and M top layer neurons 

the weights are initialized. The matrices W,V are calculated as(174). 

W=[1/(1+n)] 	 [4.21] 

V=[1] ; 0< p <1 

Step:2 Input vector x is represented at input nodes as 

xi=0,1, for i=1,2 	,n. 

Step:3 All matching scores are computed as 

Y°m=Zni=1=Winixi, for m=1 ,2,....M 	 [4.22] 

In this step, selection of the best matching existing cluster, j is performed as follows 

yoi-_maxm=1,2...m(Y°m). 	 [4.23] 
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Step:4 The similarity test for the winning neuron j is performed as follows 

[1/11XII ] Eni.i.Vjx? p, where p is the vigilance parameters if it is passed then go to step 5, 

if.the test is failed, the algorithm goes to step 6 only if the top layer has more than a single 

active node left. Otherwise goes to step 5. 

The norm IIXII is defined for the purpose of this algorithm as follows 

IIXII= 
	 [4.24] 

Fig. 4.6 Flow chart of the ART1 algorithm 
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Step: 5 Entries of the weight matrices are updated for index j passing the test of step 4, 

updates are only for entries (i, j), where i= 1,2, 	M and are computed as follows 

Wi(t+1)=[ Vu(t)x,/ .5+ 	(t)xi] 	 [4.25] 

Vq(t+1)= x, Vii  (t) 	 [4.26] 

This updates the weights of the ith  cluster. The algorithm returns to step2. 

Step: 6 The node j is deactivated by setting yi to 0. The algorithm goes back to step 3 and 

it will attempt to establish a new cluster different than j for the pattern under test. 

4.3.5 Augmented back propagation network: 

The architecture is of a standard back propagation network, mathematically expressed in 

eqn.[4.27]. The augmented neurons are highly sensitive in the, boundary domain, thereby 

facilitating the construction of accurate mapping in the model's boundary domain. The 

network denotes each input variable with multiple input neurons, thus allowing highly 

interactive functions on hidden neurons to be easily formed. The architecture of the 

augmented neural network is shown in fig.4.7. 

I I 71 I 	g IgIg A°  I I 
I I I 44 I W.,‘"4 likM I OA I I I I I I -0 tINTI 	All°  I I 
I I I 1 	4 I I Hidden Layer 

Input Layer 
	 Output Layer 

Fig. 4.7 Architecture of augmented neural network 
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Ai=ln(1.175Xi+1.543) 	 [4.27] 

where 	is the i th  input value of training data and Ai, the output of i th  logarithmic neuron in 

the input layer. The input layer's exponent neurons receive natural exponent 

transformation of the corresponding input value by the training data using the following 

eqn.[4.28]. 

13;=0.851exp(X,)-1.313 	 [4.28] 

Where B; is the output of ith  exponent neuron in the input layer. The logarithm neuron and 

exponent neuron of the output layers are given as under 

C1=exp(1.718y1+1) 	 [4.29] 

Dj=exp(0.6931yi-1) 	 [4.30] 

Where .Cj is the output of ith  exponent neuron in the output layer and yj  is the output or the 

network output which can be represented as under 

yr=y{f(X,A, B)} 	 [4.31] 

Although multilayer feedforward networks using backpropagation have been widely 

employed for classification and function approximation, existing theoretical results provide 

only very loose guidelines for selecting these parameters in practice(162). 

4.4 ANN control methodologies: 

Once the ANN methodology has been identified it is prudent to write the control 

architecture for learning as well as actual process for parameter control. The ANN 

methodology as described in Section 4.3 is now used for control application with the 

following architectures. 
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in this investigation experimental data on stock flow and basis weight for digital system 

are used for comparison purposes. Reported experimental data are also used for 

retention and ash simulation for neural computation. 

The control loops for all the parameters are simulated through MATLAB Simulink tool. If 

dynamic characteristics of a process parameter is not known, that can be found out by 

iterative procedure using again Simulink tool within a broad range of parameter available 

in literature. The simulation is, however, based on the analysis of closed loop control 

system including adjustment of selected controller parameters. 

A step by step procedure as described in section 5.1.3 for SISO consistency control is 

used to train the artificial neural network (ANN) for all the cases of SISO and MIMO 

system using MATLAB software. The MATLAB programming for all above mentioned 

parameters have been shown in Appendix-2. The performance of classical controller 

(PI/PID) and ANN controller are compared in terms of simulated results in Chapter-

6.These are discussed as a case to case basis as follows: 

[A] DEVELOPMENT OF MODELS OF SISO SYSTEM OF PAPER INDUSTRY 

CASE-5.1 Modeling of consistency of stock in the approach flow to the headbox: 

The diagram of consistency control for a headbox is shown in fig.-5.1. In order to achieve 

the above objective, it is an imperative necessity to develop system model of consistency 

control of headbox. The sensors largely used in measuring consistency are reported in 

Chapter-3, Section 3.4.The models developed as already indicated are based on mass 

balances in steady and unsteady state forms as follows: 

One of the most important aspects in the design of consistency controller is to make sure 

that the dilution water added is well mixed with the stock before reaching the consistency 

sensor. It is possible to control consistency on the basis of either a sample taken from the 
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	s To wire 

Thin stock to headbox 
via centricleaner and screen 

systems 

- overflow Fan 
Pump 

Dilution water from 
white water silo 

Thick stock 

V 

Head-box 

Consistency 
Sensor 

main stream or by making the appropriate measurement directly in the main channel of 

flow. Consistency is usually measured at three different points in the system as shown in 

fig.5.1. The various possibilities of sensing consistency are shown through dotted lines. 

However sensors or transmitters have not been shown. These are: thick stock before 

dilution in the approach flow system, usually 2.0 to 4.0 percent consistency, paper 

machine headbox, usually 0.1 to 1.0 percent consistency, and white water usually below 

0.5 percent consistency. At present, it appears that direct in-line sensing is not used in 

Indian mill but it should be preferred (21). These can be measured with more 

sophisticated on—line non-contact consistency sensor or transmitter (like optical based, 

microwave based or NIR based) with very fast dynamics. These are described in Chapter 

3, Section 3.4 and table-3.2(Appendix-1). Consistency can be controlled by controlled 

dilution of the stock with the computer doing the necessary calculations. This produces 

more satisfactory results even when using white water for dilution which has an 

appreciable consistency. 

5.1.1 Headbox dynamics for consistency in analog and digital forms: 

Fig.-5.1 Consistency control for a headbox 
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The mass balance for a steady state system with respect to consistency in headbox 

consists of two inlet flows with two inlet consistencies. The symbols are given in Chapter 

of nomenclature. 

mj cyj Md Cyd = rno Cy0 
	 [5.1] 

Overall mass balance on the same system 

At steady state, t=0, mo  = m Os;  mi =mis ; and =mas 

mo = mi +ma 
	

[5.2] 

At unsteady state, Input=output +accumulation 

For fiber balance using consistency of each flow 

mi cyi + and  cyd  = mo  cy0+ d(Vp cy0)/dt 	 [5.3] 

Also, overall mass balance is written as, 

mi + and  = mo+ d(Vp)/dt 	 [5.4] 

For constant density and constant volume thin stock system at steady state, 

d(Vp)/dt=0 and therefore mi  + and  = mo  

Eqn.[5.3] can be written as 

Vpd(cyo)/dt= mi  cema  cyd— mo  cy0  or d( cyo)/dt= (1N){(mi/  p) cy1+ (ma, p) cyd  —(mo 1  p) cy } 

Or d( cy0)/dt= (1N){qi  cy,+ qd cyd — qo cy0} 	 [5.5] 

Expressing in terms of deviation variables, eqn.[5.5] can be written as given below 

At t=0, 

cyi 	
Cyis 

Cyd 
	

Cyds 

cyo 	cyos 

d(cyo — cyos)/dt=(1 	q,(cy , — cyis)+ qd (cyd- Cyds) + qd(cyd- cps)} 

d( Cyo)/dt=(1N){QiCyi  + Qd Cyd Qo Cyo} 
	

[5.6] 
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where C C C:C C C :C C C yo=  -y0 -7 -yos , -yj=  -yj —  _yjs _yd= 	Cyds=O 

Eqn.[5.5] can be dealt with for two cases: 

Case -a: Constant dilution water density, volume, flow and consistency at a variable inlet 

stock flow consistency which is clearly a SISO system. 

Case —b: Variable inlet stock flow at constant consistency and constant dilution water flow 

consistency and variable input consistency which indicates an interactive process 

containing two variables which is a MIMO system. 

Case-a: The balance. eqn. [5.6] reduces to 

d( Cyo)/dt=(1N){ Qi Cyi QoCyo} 	 [5.7] 

If Qi  =Q0, flow remains constant 

d( Cyo)/dt=(QN){Cy; — Cy0} or Cyj= Cyo+(V/Q) dCy0/dt = Cyo+ dCyddt 

Cyi(s) = Cs,0(s)-1- sCy0(s) = Cy0(s)[1+ s] 

Cy0(s)/ Cyi(s) =[1I(1+  s)] 	 [5.8] 

Effective process transfer function for the consistency control 

Gp=K0/( s+1) 	 [5.9] 

Case-b: 

The balance equation can be written as 

;yi macyd= mo cy0 + d(V p cyo)/dt 	 [5.10] 

(cyo)/dt = mi cy, + mdcyd - mo  cy0 

;cyo)/dt = (1N){qi cyl+ qdcyd} 	 [5.11] 

In terms of deviation variables, 

d(cyo)/dt= (1/V){Qi Cyi + QdCyd -Q0cyo} 	 [5.12] 

Where, 

d(cyoV)/dt = V d(cy0)/dt + cy0  dV/dt 
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Substituting the value of d(cy,V)/dt in eqn.[5.10], eqn.[5.10] can be written as 

or m, cy; + mdcyd = mo  cyo  + p V dcyo  / dt + p cyo  dV/dt 	 [5.13] 

or cy, q1+ cyd qd - cy0 q0= dcyo/dt + cyo  dV /dt 

Substituting dV/dt from the overall mass balance and canceling terms, one can get: 

dcyo/dt = Q,N (cy; - cy0) + QdN (cyd cy0) 	 [5.14] 

or cyo(s+ Q,/v+ Qd/v)= Qi/v(cy;)+ Qd/v(cyd) 

if cyd=0; then eqn.[5.14] can be written as 

cyo(s+ Qi/v+ Qd/v)= Qi/v(cyi) 

or co) co= [Qi/(sv+ (11+ Qd)] 

or cy0/ cy1= [Q/g1  s+1)] 	 [5.15] 

if cyi=0, then eqn.[5.14] can be written as 

cyo(s+ Q;/V+ Qd/v)= Qd/v(cyd) 

cyo/ Cyd= [QdI(sv+ Qi+ Qd)] 

cyo/ cyd= [Qd/g2 s+1)] 	 [5.16] 

Analysis of consistency control loop with known process dynamics: 

The consistency control loop can be designed by various configurations (91) such as 

negative feedback, cascade, feedforward and feedback combination, feedforward and 

cascaded feedback, and ratio control. For simplicity negative feedback control 

configuration has been considered in this present study. It is usual that the dilution water 

from various sources(white water from papermaking wire and/or overflow re-circulated 

from headbox /spreader) is always added to the thick stock immediately before fan pump 

and then led to flow to a consistency sensor, and then to the other equipments of 

approach flow system including headbox. A feedback signal is obtained from the 

consistency sensor which is transmitted to the consistency controller through a 
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transmitter. A comparator is used in the loop to compare the set point and measured 

variable to produce an error which goes to the controller to determine .an appropriate 

position of the valve controlling the flow of dilution water to the stock immediately ahead 

of the pump. The most important point in the design of consistency controller is to make 

sure that the dilution water added is well mixed with the stock before reaching the 

consistency sensor by incorporating a pump after the point of dilution water addition. The 

other important point to consider is the minimum length of the line between the point of 

water addition and location of consistency sensor to minimize the dead time or distance 

velocity lag. The value of the dead time for consistency control depends upon type of the 

process, loop design and location of sensor as given in the table 3.2, Appendix-1. 

The transfer function of consistency control process can be adequately represented (91) 

by first order plus dead time as under 

Gp(s) = Kp  [e-eds /(1+ s)] 	 [5.17a] 

Carrying out bump test on the approach, flow system flow loop, Nancy (91) developed 

dynamic equations (given in Appendix) in form of first order with dead time. In one of such 

equation, the dead time was reported of the order of 6.84s which is due to transmitter 

location relative to the dilution point. The time constant of 3.84s is due to the sensor 

measurement dynamics. 

Gp(s)=-0.0407 e-6.84s/(1+3.84s) 	 [5.17b] 

The eqn.[5.17b] must be expressed in terms of effective process gain, Kp(effective).  The 

effective process gain is defined as the ratio of % consistency and % controller output 

(2% to 4%). Using these values, one can get the following effective process transfer 

function with effective process gain of the order of -2.035. 

Gp(s) = -2.035 e-6'84  /(1+3.84s) 	 [5.17c] 
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(a) Lambda tuning: 

According to Lambda tuning, one can write the following equation for open loop control 

system 

G, (s) * Gp(s) =1/ As, 

So, G0 (s) = 1/ As* 1/Gp(s), 

And the corresponding closed loop transfer function can be written as 

H(s)= G(s)/1+G(s) =1/(1+ As) 

After first order Pade's approximation of e-6'84s, the process transfer function for open loop 

can be written as 

Gp(s) 	= -2.035 * (-3.42s + 1) / (1+ 3.84s) (3.42s + 1), 

Gp(s) 	= -2.035 (-3.42s + 1) / (13.13 s2  + 7.26s +1), 

Gc(s) =1/ As* (13.13 s2  + 7.26s +1)/ -2.035 (1-3.42s), 

Or Gc  (s)=[ (13.13 s2  + 7.26s +1)/ A  As (1-3.42s)*(-2.035)] 	 [5.19] 

Eqn.[5.18] can be written as 

G, (s)= 	4d s2+ s+1] 	 [5.20] 

Eqn.[5.20] multiplying by (1-3.42s) to both numerator and denominator, 

Ge  (s)= 	411 41 yd s2  + 4,s+1) (1-3.42s) I s (1-3.42s) 

Or G, (s)= Kci 4,1-3.42s 	s3 	-3.42 	s2+(41-3.42) s+1] / s (1-3.42s) 	[5.21] 

Comparing eqn.[5.21] and eqn.[5.19], one can find 

1-3.42 =7.26, or 41  =10.68 s 

d-3.42 =13.13, 

d=4.65 s 

K,/ 41=1/-2.035A 

K,=-5.248/ A 
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By using various values of lambda, the minimum of which equals to sum of process time 

constant and dead time(10.68s in this case),one can find out the values of the controller 

gain, Kc  from the above equation. As A is user defined value that determines the closed 

loop time constant, one can choose the value of lambda suitably which can give less 

overshoot. Higher value of lambda provides a slower response (91). A value of lambda 

sets the closed loop speed of response equal to open loop response. Typically the closed 

loop speed of response is set at half speed of the open loop response (lambda=20. This 

prevents excessive control action. In this present investigation the value of lambda is 

selected on the basis of trial and error method above 2 to 	or + 	equal to 10.68s. 

Nancy also recommended a value of lambda of 15s. It has also been found in this present 

investigation the values of lambda between 15s-16s the system gives less overshoot. 

(1) For A=15 s. 

Kc=-5.248/15 =-0.3498 

(s)= Kc[1+11 his + 	cis] 	or 

G, (s)=-0.0328[49.662 s2  +10.68s +1]/s 

Gp(s) 	= -2.035 * (-3.42s + 1) / (13.13 s2  + 7.26s +1), 

GcL= [ G, (s)*Gp  (s)/1+ Ge  (s)*Gp  (s)], 

= [(-11.34s3+ 0.8766s2+0.4845s+0.0667) /(1.79s3+ 8.1366s2  1.8445s+0.0667) 

[5.22] 

[5:23] 

[5.24] 

(2) For A =16 s. 

K,=-5.248/16 = -0.328 

Gc(s) = Kc[1+1/ i,,s + cis] 

Ge(s) =-0.0307[49.662 s2  +10.68s +1]Is 

Gp  (s)= Kp  [e43ds  (1+ s)]s 

=-2.035 e-6.84/ (1+3.84s) 
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After Pade's approximation of e-8 84  , the process transfer function can be written as 

Gp(s) =-2.035 * (-3.42s + 1) / (13.13 s2  + 7.26s +1), 

GcL=1 Gc  (s)*Gp (s)/1+ Gc  (s)*Gp (s)l, 

GcL=R-10.614 s3+ 0.823 s2+0.4453s+0.06625)/ (2.516 s3+ 8.0835 s2+1.4453s+0.06625)] 

[5.25] 

Digital form of the closed loop transfer function: 

Closed loop transfer function in eqn.[5.24] can be written for discrete system as under 

-6.335 zA3 + 19.01 zA2 - 19.01 z + 6.34 
[5.26] 

zA3 - 2.955 zA2 + 2.911 z - 0.9556 
Sampling time: 0.01 

Closed loop transfer function in eqn. [5.25] can be written for discrete system 

-4.219 zA3 + 12.66 zA2 - 12.66 z + 4.222 
[5.27] 

zA3 - 2.968 zA2 + 2.937 z - 0.9684 
Sampling time: 0.01s 

(b)Z-N tuning: 

For the sake of comparison Z-N tuning of the controller has been attempted as it is the 

most commonly used method for controller parameters setting for other processes. 

However Z-N tuning requires the analysis of frequency response characteristics of the 

control system which will estimate the values of controller parameters for specified gain 

and phase margin. In order to get the controller parameters (Ks, h 	by Z-N method for 

various control actions (P/PI/PID) stability analysis should be followed by using ultimate 

gain and ultimate period. The estimation of gain and period can be estimated by Nyquist 

and Bode stability criterion. Though the Nyquist criterion can be applied to the all systems 

but involved polar plot of the system frequency response in the complex plane. 
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In this present problem the Bode plot is used, because the Bode plot of a transfer function 

is simpler than Nyquist analysis, though it applies only to system for which amplitude ratio 

and phase shift vary monotonically with frequency. It is however very easy to see the 

effect of performance of changing system parameters on the Bode plot. It is to be noted 

that by adding derivative term, the cross over frequency increases which is desirable, 

whereas the amplitude ratio also gets increased which is not at all desirable. The 

following step by step procedure of Bode's plot is to be followed. 

Step-1: 

For estimation the cross over frequency, one should use phase margin or phase angle as 

under: 

Total phase angle=Controller phase angle+ Process phase angle+ Transportation phase 

angle 

441 (I) (1)3 

-Tr=0-tari1  (3.84w,0)-(000*ed 

- Tr =0-tan-1  (3.84coc 0)- 6.84.wc 0  

tan-1(3.84o, (,)= -7-6.84coc  

3.84co, 0=tan(7-6.84wc 0) or 3.84wc0=-tan (6.840)00) 

By iterative method, one can find we 0=0.3278 rad/sec. 

Step-2: 

For estimation of Gain margin or amplitude ratio (AR) is as follows. 

Total amplitude ratio = (Amplitude ratio for controller) x (Amplitude ratio for process) x 

(Amplitude ratio for transportation lag) 

1= K0* [-Kph/0 + 20.)2)]* 1 	 [5.28] 

1= Kc. [-2.035/1[1+(3.84)2(0.3278)2] *1 
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lc= -0.789= Kai 

Pl1=27t/C0c 0=19.158 min/cycle 

For PI controller (according to Zeigler-Nichol (Z-N) controller setting table) 

Kc  =0.45*K., = -0.355, 	Pu/1.2 =15.965, 

After substituting these values, the controller transfer function can be written as 

Gc= [-0.355(15.965s+1)/15.965s] 

After Pade's approximation, the process transfer function can be written as 

Gp=-2.0351(3.84s+1)1-3.42s+1)/(3.42s+1)] 

[5.29] 

[5.30] 

In paper mill, the most important paper property i.e. basis weight of paper depends on 

consistency of pulp. According to GSM requirement, consistency has to be changed. 

Thus changing consistency in a consistency control system can be termed as servo 

problem. 

For closed loop servo problem of consistency control, transfer function for PI controller 

can be written as 

Y(s)= Gc  Gp/ (1 Gc  Gp) 

Gc  Gp= [(-5.6675s-0.355)/15.965s][(-2.035+6.9597s)/(13.1328s2  7.26s+1)] 

=(-39.444s2  +9.065+0.722)/(209.665s3+115.9059s2+15.965s) 

Y(s)= (-39.444s2  +9.06s+0.722)/(209.665s3+115.9059s2+15.965s)  
[(209.665s3+115.9059s2+15.965s-39.444s2+9.06s+0.722)/ 
(209.665s3+115.905952+15.9655)1 

Y(s)=R-39.4452+9.06s+0.722)/(209.67s3+76.46s2+25.02s+0.722)] 	 [5.31] 

Taking inverse Laplace transform one can get eqn. [5.31] for analog system 

Y(t) =[1-exp(-0.1654t)(.4438cos(0.29460+0.9518sin(0.2946t)] 	 [5.32] 
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For PID controller (according to Z-N tuning method) 

Kp=0.6* Kpu=0.6*(-0.789)= -0.474 

4; =Pu/2=19.158/2=9.579 

4d = PJ8=2.39 

Gc=q1+1/ s + 4ds] 

Gc=-0.474[1+9.58s+23s2]/9.58s 	 [5.33] 

After Pade s approximation the eqn.[5.33] can be written as 

Gp=-2.035 e"6.84s/(3.84s+1)*(-3.42s+1)/(3.42s+1) 	 [5.34] 

The closed loop transfer function for PID controller as under 

Y(s)/X(s)= [Gp Gp/(1+ Gc  Gp)] 

= [(-7.86s3- 0.97s2  +0.616s+0.1)/(5.27s3+ 6.28s2  +1.616s+0.1)] 

Y(s)= [(-7.86s3- 0.97 2  b-..616s+0.1)/(5.27s3+ 6.28s2  +1.616s+0.1)]* 1/s 	[5.35] 

Taking inverse Laplace transform of eqn. [5.35], eqn.[5.36] is obtained as. 

Y(t)=[5.27-9.38e4612t+0.202 23791..3 .95 e-.09261 	 [5.36] 

Response Equation in digitized(z-domain) form: 

Transforming in discrete form , eqn.[5.35] can be written as 

Y(z) = [(-1.491z3+4.473z2-4.471z+1.49)/(z3-2.988z2+2.976z-.9882)] 	 [5.37] 

Expressing in discrete form(z-domain) for digital control system, eqn[5.31] can be written 

as 	 -0.001876 z^2 + 0.003756 z - 0.001881 
[5.38] 

z^3 - 2.996 zA2 + 2.993 z - 0.9964 
The control loop configuration for analog system is shown in fig. 5.2a. The Simulink MIMO 

model for consistency control is shown in fig. 5.2b.( Case-b).The simulation results of PI & 

PID controllers are shown in figs. 6.1&6.2,chapter-6. 
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gain and time constant, and tuned the controller using hit and trial method using Simulink 

tool. The control loop for the case b is shown as under. 

Fig. 5.2b Simulink model for consistency control (case-b) 

CASE: 5.2 Modeling of stock flow control of the headbox: 

5.2.1 Model for stock flow: 

The static models for stock flow are described in Chapter 3,Section 3.4, eqns.[3.1-3.13] 

and table-3.2 (Appendix-1) wherein the equations for stock flow velocity at the outlet of 

slice and at the vena contracta have been shown. The simplified formula derived from 

Bernoulli's equation relating continuum mechanics for mechanical energy balance is 

reproduced below: 

Stock flow controller S.P. 

Fan pump qc,(t) MFM 

Stock flow, q(t) 

Fig. 5.3a Flow control loop 

Velocity of slice discharge V=C'I(2gh) 	 [5.39a] 
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Using q for flow, Q for deviations from steady state value, h for stock level, H deviation 

from steady state value, hs, the equations can be rewritten as 

q=CcCvAsq(2gh)=CgAs-\1(2gh ) =CI  w bg(2gH)=Ccwb4(2gh) 	 [5.39b].  

Q7-"chqs=4.429C,wb(h-hs)=4.43wb(H)°  5  

Thus it is clear that the model for stock flow is connected with level control problem. The 

equation is thus a nonlinear control problem. 

The derivation for dynamics for both stock flow and stock level from first principles will be 

discussed in details in Section 5.2.2. The simple flow diagram for a stock flow control is 

shown in fig 5.3a. Flow can be measured with different types of flow-meters but 

electromagnetic flow-meter is widely used for corrosive acids, slurries etc, especially for 

paper pulp. The measuring element, the magnetic flow meter (MFM) supplies the 

feedback signal for the flow controller which in turn, compares the measured flow with set 

point and adjusts a flow control valve accordingly. 

As far as dynamic model of stock flow is concerned the following linear stock flow model 

of first order has been the representative one. As already indicated,using q as a 

volumetric flow rate (fig.5.3a) and Q , the deviation from steady state value one can write, 

1c1Q0/dt +Qo (t) =Q(t) 

sC)c,  (s) +Qa(s):=Q(s) 

Q0(s)/Q(s) =[11(1+4s)] 

In reality, for flow control there are three elements joined in series, hydraulic flow in pipe, 

valve and flow measuring devices: Nancy (91) has reported the overall transfer function is 

a third order process with time constants of the order of 0.5s, 0.8s and 2.0s respectively 

and process gain 1.5. This when coupled with a PI controller and considering interactions 

with the other parameters of the system, the control problem become more complicated 
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to analyse. To avoid this complexity majority of Indian pulp and paper industry use the 

coarse flow and fine flow control techniques .for stock flow to the head box and its 

approach flow. These are analyzed below: 

The fine flow controller receives the total head and wire speed as inputs. It then 

calculates the jet/wire ratio and uses this as process variable. The controller compensates 

for all minor disturbances with the help a bypass valve to reach set value as shown in fig.- 

5.3b. 

Wire speed 
	

RID or JAN 
Total head 
	

Target 

To bypass 
	

To coarse 
valve 
	

flow 
controller 

Fig.-5.3b Fine flow control 

5.2.2 Development of ANN controller for the case of stock flow control in approach 

flow system: 

Fig.-5.4 shows a simplified control block diagram for neural control of head box system. 

As already indicated, JAN is the system output representing the ratio of speed of the jet 

and speed of the wire and e is the error. Several important parameters must be properly 

determined in neural network design such as the learning rate and the neuron numbers in 

each layer. The program runs n iterative training cycles for the neural network with a fixed 
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hidden neuron numbers which progressively increase as shown in fig.5.5. Relationships 

between wire speed and pressure or vacuum applied to head box at various values of 

coefficient of discharge, C, and coefficient of contraction, Cc  obtained from theoretical 

model for industry as well as detailed models are shown in table 6.3(Appendix-1). Using 

the above artificial neural controller for stock flow control has been designed and 

simulated. For ANN controller, the back propagation algorithm is used and neural network 

is trained using MATLAB program shown in Appendix-2. In order to get the desired 

results the algorithm developed in chapter 4, section 4.3.3 is employed. The comparisons 

of data for industry and those obtained from models with simulated data from ANN 

controller are discussed in Chapter-6. 

v, 
e= -J NV 

        

JNV 

    

Neural 
Network 

  

Head-box 
system 

 

        

        

          

          

          

          

Fig.-5.4 A neural network control for 
fine flow control 

0/P 'aye 
wk  or layer'3 

Input layer 	• 
or layer '1' 

Hidden layer or layer'2' 

Fig.-5.5 Multi-layer neural 
network structure 

CASE:5.3 Modeling of total head of the headbox: 

5.3.1 Model for total head: 

Paper machine head box total head control is one of the most important control 

applications on a paper machine. It achieves the transformation from stock to sheet. It is 

also extremely fastest loop in the papermaking process(91).The total head measurement 

on the side of the headbox and the PI controller which adjusts the fan pump reference 
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Sampling time: 0.01 
The model for both open loop and closed loop transfer functions for analog and digital 

control system are subjected to MATLAB simulation. The stability test and tuning for PI 

controllers have been done. The results of Simulation are shown in Chapter-6 for both 

analog and digital system. MATLAB Simulink model of headbox total head control is 

shown in fig. 5.7. 

Fig. 5.7 Simulink model of headbox total head control system 

5.3.2 Development of ANN controller for the case of total head control in approach 

flow system: 

The reference total head and actual total head are used as input for ANN and these 

inputs are represented by one vector. The input of process uses an output for ANN 

controller which is the appropriate signal for the head box total head at desired level, The 

training pattern required for training the ANN are obtained from PI controller using the 

back propagation algorithm. 

The number of layers and number of neurons in different layers are decided by trial and 

error procedure as already discussed in earlier section. The ANN controller is designed 

with 2 neurons in the first layer, 8 neurons in hidden layer and 1 neuron in output layer. In 

this network log-sigmoid activation functions are used. 

108 



CASE : 5.4 Modeling for stock level control of headbox: 

The modeling of level control is well documented in all control literature both for linear and 

nonlinear systems. Here we apply this model for dynamics of stock level in open 

headbox, or in closed air pressure headbox where interactions with other parameters are 

considered negligible. For open headbox the head due to stock level is the only driving 

force for the stock flow as the external force implied on the stock is atmospheric pressure. 

For closed headbox (air padded) the additional air pressure are added to the stock head 

and in hydraulic headbox the entire driving force is from fan pump. The force balance 

equations for controlling stock level in various types of headbox are given in Appendix-3. 

In the case of air cushion headbox, two interactive parameters are involved namely, 

stock level and stock flow conforming to MIMO system. The interaction between two 

parameters for MIMO system is described in section B. This can be measured with 

different types of transmitter (like differential pressure, potentiometric and intelligent) with 

very fast dynamics. These are described in Chapter 3, Section '3.4 and table-3.2, 

Appendix-1. 

5.4.1 Model for stock level: 

As usual it starts with material balance across equipments at steady and unsteady state 

conditions as shown in the following paragraph. In this case only the density of pulp 

suspension within the range of consistency 0.1 to 1.0% is included, resulting slight 

variation of density from that of water. For practical calculation however the density can 

be assumed the density of water. 

For development of model of stock level control in open headbox the fig.5.8 is depicted as 

a simplified sketch of the headbox slice system actually drawn in Appendix-3. Using the 
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symbols for various input and output parameters given in the Chapter -Nomenclature the 

following Mass balance equation can be written for all types of level control systems (25). 

Fig.5.8 Model for stock level 

For Linear or Non-Linear System 
q(t)p -q0(t)po=d(vp)/dt=d(Ahp)/dt 	 [5.44] 

Stock being incompressible fluid all density terms in eqn.[5.44] are cancelled out  

q(t)-q0(t)=Adh/dt 

The output flow q0(t) depends on level of stock and resistance of valve, R, the above 

equation can be written as for both linear and nonlinear system as under: 

q(t)-h(t)/R=Adh/dt 

or,Adh/dt-i-h/R(t)=q(t) 

The systems can be defined linear, or nonlinear or with constant flow output (with a pump 

or a flow controller). Depend upon the nature of qo  as under: 

Linear: q0=h/R 
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integrator: qc=constant 

Nonlinear: qo  =Ch" where n may have values such as 0.5, 1.5 etc. 

if t=0,then h=hs, q=qs,qo=clos 

[Ad(h-hs)/dt+(h-hs/R)1=q-qs 	 [5.45] 

or 	AdH/dt + H/R=Q 

Taking Laplace transform for linear first order system, one can get 

AsH(s)+H(s)/R=Q(s) 

RAsH(s)+H(s)=Q(s).R 

sH(s)+H(s)=Q(s).R 

4sH(s)+H(s)=Q(s)R 

H(s)[ 4s+1]=QsR 

H(s)/Q(s)=[R/(1+4s)] 	 [5.46] 

If R tends to infinite, the eqn.[5.46] reduces to 1/As, the transfer function for a liquid level 

system with constant flow outlet i.e. an integration. 

The eqn.[5.45] is of first order 

When, H/R=qo  or H=qoR 

qo(t)-q(t)=A(q0R)/dt=ARdqo/dt 

elQ0/dt +Qo (t)=Q(t) 

sC20(s) +Qo(s)=Q(s) 

Q0(s)/Q(s)=[1/(1+4s)] 	 [5.47] 

Non Linear System Dynamics: 

If valve is nonlinear 

q(t)-q0(t)= Adh/dt 

q = ch112  
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qo = qo(s)-I.  qo (hs)+qo"(hs)(h-hs)2/21+qo"'(hs)(h-hs)3 /3 + 	 

q0 (1-1, )=1/2chs-1/2 = (R1)-1  

q0=clos+1/2chs-1/2(h-h,)=q„+1/Ri(h-hs) 

if q-q0=Adh/dt ,then 

q(s)-(qa(s)+1/Ri (h-hs)]=Adh/dt 

(qo-q0s)-1/R1(h-hs)=Ad(h-hs)/dt 

Q-(1/R1H)=AdH\dt 

Q(s)-(1/R1H(s))=AsH(s) 

H(s)/Q(s)=[Ri/(1+s)] 	 [5.48] 

Analysis of SISO level control closed loops 

The parameters for process gain, Kp and time constant (product of resistance and 

capacitance) depend upon the type of headbox, and the designs of both approach flow 

design and headbox itself. In absence of any dynamic characteristics of headbox system, 

the process gain is arbitrarily assumed to be 1.0 and the time constant is varied to any 

realistic value which will give the required response, corresponding to 63.2% of the 

ultimate value. Eqn.[5.48] has been tuned and simulated with the help of MATLAB 

Simulink toolbox using trial and error method as indicated above, one can get the 

transfer function for stock level. 

Gp(s) = 1/(0.2s+1) 	 [5.49] 

Digital form of process dynamics 

Transforming the eqn.[5.49] for digital form(z-domain), one can get the following equation. 

GP (z) =5Z/( Z-0.9512). 

However the above equation can not be applied for digital control system as does not 

content hold dynamics. In order to simulate through the MATLAB software hold dynamics 
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must be taken into account in all cases. Conversion of analog to digital form in MATLAB 

software the procedure is as follows: 

The MATLAB command sysd=c2d (sysc, Ts, Method) converts the continuous time model 

sysc to a discrete time model sysd with sample time Ts. The String Method selects the 

discretization method such as zoh (zero order hold),foh (first order hold),imp(impulse), 

etc. Using MATLAB program, eqn.[5.49]can be transformed in discrete(z-domain) form 

as under 

G(z) =[(0.04877)/(z-0.9512)] 	 [5.50] 

The model of level control in headbox system in both analog and digital forms are 

simulated with the help of Simulink tool in MATLAB software and results are displayed in 

figs.6.28, 6.29(Chapter-6). 
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Fig. 5.9 Closed loop control strategy 

5A.2 Development of ANN controller for the case of stock level control in approach 

flow system: 

Based on the procedure detailed in Chapter-4, the ANN controller is designed with 2 

neurons in the first layer, 3 neurons in hidden layer and 1 neuron in output layer. In this 

network log-sigmoid activation functions are used. The number of layers and number of 

neurons in different layers are decided by trial and error procedure. 
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CASE-5.5: Modeling for pH control of stock: 

The pH of the stock being handled by a wet end , of paper machine has a pronounced 

effect on drainage and retention. The pH is a difficult variable to control, particularly so in 

the region of pH 7.0, because the major difficulties with pH sensors are inherent nonlinear 

characteristics, noise and sensitivity. However, this range of pH is very important for 

manufacturing various kinds of paper. 

In Chapter 3 it is indicated that based on sizing principles at the stock preparation section 

of the paper mill, various sizing chemicals are added to maintain the pH of the stock. For 

acid sizing paper, rosin and alum are usually used to maintain head box pH in the range 

Fig. 5.10a pH control strategy 
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between pH range 4.4-4.6(ay.4.5) while for alkaline sizing, AKD or ASA or both are used 

to maintain pH generally above 7.0 (for AKD, pH range 6.0-9.0 but most effective at level 

of 8.0-9.0, for ASA, pH range, 5.0-9.0).The neutral sizing with dispersed rosin works in 

the pH range between 4.6-5.3 in the stock at the point of sheet formation. Whatever the 

desired value of the pH is required, that can be achieved by proper adjustment of the 

local conditions to secure optimum overall results. Some control system uses feed 

forward control to compensate for certain disturbances, variable gain feed back control to 

offset the nonlinearity of pH and large process capacities to damp out variations in pH. 

The above objective can also be fulfilled by controlling the flow rate of the acidic or basic 

reagent with the help of control valve operated by PI or P1D controller in a negative 

feedback loop. This is obtained using the feedback signal and the stem position of the 

alum/acid, or alkali or dispersed rosin valve as manipulated variable. The chemicals' can 

be added preferably at the suction side of the fan pump (shown in fig.5.10a) or at the thick 

stock in the blending chest or at the machine chest or at the machine chest pump. The pH 

measurement can be made at various locations: measurement from the stock entry to the 

headbox in the recirculation line before distribution header, in the discharge ,  from the fan 

pump, in the white water from the trays or from the white water from the wire pit entering 

to the fan pump. Out of these alternatives, the first one is most recommended location. 

5.5.1 Model for pH of stock: 

Analysis of various available pH control strategies 

pH though widely defined as pH=-Iog1o[H1 is not however amenable to measurement and 

controlling. Hence a pH meter is expected to show a nonlinear response to a step or 

sinusoidal changes in solution concentration, since the pH depends on the logarithm of 

the concentration. 
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Therefore it needs operational definition of pH by specifying the e.m.fs of two standard 

cells (electrodes.) provided with a high impedance voltage measuring device. The pH of 

the paper machine stock is measured by the potential difference between a glass 

electrode and a reference electrode (usually Ag electrode, or calomel electrode or 

others):The measured potential across the system, can be written as E=Eir+ Em+ 	Eer, 

where Eir, E 	Eer, are the e.m.fs generated at the internal reference electrode, 

membrane, liquid junction and the external reference electrode. Under normal conditions 

the e.m.f at liquid junction is negligible and the same at the internal reference electrode 

and at the external reference electrode are constant. Therefore the above equation can 

be written as E Eo+Em, where E0  is a constant. For any ion selective electrode (H+  ion in 

this present case), one can rewrite the Nernst equation, E=Eo+(RTinF) where a is the 

activity of H. Hence equation for sensing and measuring pH can be expressed as 

pH=F(Eo-E)/2.303 RT= ( Ere Eobserved)/kT, 	 [5.51] 

where k=R/F 

The electrode assemblies can be either immersed directly in stock lines or installed in a 

sample box or flow through electrode chamber through which a sample of stock is 

continuously run. All electrodes demand periodic servicing and cleaning preferably 

through ultrasonic cleaning devices. There are usually three models available, equilibrium 

constant models, the process identification with simulation or experiment and the titratior 

curve method as under: 

(a)Equilibrium Constant model 

The approach for modeling pH dynamics requires that the various chemical species 

pertinent to the process must be known and also their equilibrium constants. In many 

actual plant situations, this data are not available. Schnelle et.al.,VVright and Kravaris(59) 
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have developed various techniques for linear and nonlinear control of pH of many 

chemical processes including waste water treatment. Mahuli et al.(59) and Sung et. 

al.(59) also investigated the pH control for nonlinear system using statistical technique for 

continuous on-line model adaptation or through identification reactor. But they have 

limitations for controlling effective pH control of headbox stock in papermaking wet end 

due to complicated nature of thin stock, and their time varying nature. Modeling of pH 

control using equilibrium constant model needs thorough understanding about the 

chemical environment and charged species inside the mixing box in the commercial stock 

which can be correlated to the [F11 ion concentration. 

(b) Process identification techniques: 

Fig. 5.10b pH dynamics 

When the dynamic model of the process is not known for which either PID constants are 

to be found, its open loop response for a step input is determined experimentally or by 

simulation (90). The dynamic response is S-shaped (sigmoid function). Similar curve is 

also found for pH as a function of concentration in the titration curve but it passes through 

origin instead of intercept in the pH axis. The response curve is characterized by two 

constants, dead time and time constant, which are determined by drawing a tangent at 
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the inflection point (control point) and finding its intersection with the time axis and the line 

corresponding to the steady state value of output. The response in this case can be again 

modeled as first order with dead time as shown above. 

The gain Kp  corresponds to the steady state value of the output response, after finding 

the values of Kp, 	d . The values of PI and PID control parameters can be found out by 

Z-N (Zeigler-Nichols)open loop tuning method using the following(given in Appendix-1). 

Kc=1.2 / d, KJ= 2 	, 1.41=0.5 d 

Nagrath and Gopal (90) derived the titration curve of pH is a function of time from the 

actual set up of pH control plant (Approximate data is shown in the Appendix-1). If the pH 

of stock is to be obtained at a set point in the pH range 4.0 to 7.0, the gain of the valve is 

found of the order of 5.6m1/s of basic reagent/rad. opening of the valve. 

On the analysis of open loop step response of the plant by drawing the tangent of 

inflection point one can get the value of dead time, time constant , controller gain, integral 

time and derivative time of the order of 19.9s,1.8s,0.108, 39.8s, and 9.95s respectively. 

The PID controller is tuned to this values and the closed loop step response is shown in 

fig 5.10b. The performance indices are found as % overshoot, rise time and settling time, 

26%, 0.3s, 9.2s respectively. The dynamic equation of the pH control system can be 

written as under: 

G(s)= 5.67e-lus/(1 .8s+1) 

(c) Titration curve method: 

The third model- .the equivalent titration method requires the titration curves for systems 

with or without buffering the solution. The dynamic model keeps track of the amount of 

each stream that is in the vessel at any point in time. 
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For the paper machine stock depending on the range of pH at the headbox at least three 

types of neutralization curve are required for dynamic modeling of the system. In this 

present investigation only one type of neutralization curve for desired pH either at 

5.5(neutral sizing) or at 8.0 (alkaline sizing)are taken as a base case. Unfortunately no 

data were available to draw the titration curve for papermaking approach flow system. 

Hence the titration curve (shown in fig.5.10c) obtained by from Harriott (53) is taken for 

analysis. This curve is the same as drawn by Hong Wang et. al. pH as a function of 

dimensionless concentration for paperrnaking. 

Fig. 5.10c Titration curve for pH 

Analysis of the titration curves which are strongly nonlinear, indicate that there are two 

inflexion points which are considered as control points. This can be assumed as a 

combination of two first order systems joined at the first inflexion. point. It can also be 

modeled as first order system with time lag as shown below: 

G(s)= Kp  e" si(gyp s+1)  

Actually the two time constants are associated with the standard flow cell for industrial pH 

control-one hold up time, v/q, if the cell is well mixed and a diffusion time constant with a 
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special low hold up cell response (which is usually of very low order of magnitude, hence 

negligible) is more nearly first order but too fast to show clearly the effect of flow rate. 

These are affected by the changes in load resulting from change in concentrations and 

changes in flow. The load changes affect the process gain and may alter the time 

constants of the system. From the curve, the slope at the control point is determined first 

and then value of process gain, Kp is evaluated as a ratio of % change in pH and % 

change in flow. For all practical design the value of Kp is kept normally above 1. Harriott 

recommended this value at about 6 for nearly neutral pH( pH=7.0)and 64 for pH of the 

order of 8.0, both based on pH range of 5.This data is a prerequisite in order to calculate 

the controller gain, Kc. 

To estimate Kmax, in eqn.[5.52],one has to estimate the time constants of all the elements 

in the open loop and A.R. is then determined after assuming a suitable value of critical 

frequency to get the target 180°  phase lag in an iterative way. The gains for the other 

elements are to be determined or assumed. 

Kmax=1/A.R. at 180°lag 	 [5.52] 

Kcmax=Kmaxi( K1 K2K3.—Kn) 	 [5.53] 

For stable operation the product .of maximum gain and the critical frequency as an index 

of controllability has been used. 

A control system designed for regulator operation must minimize the effect of load 

changes on the process output. At the optimum controller settings, the response to a load 

change is similar to that of underdamped second order sy8tem, and the frequency is 10-

30 per cent less than the critical frequency and the decay ratio is usually 1/4. For a gain 

that gives a decay ratio of % , the damping coefficient, c is 0.22 and the peak error is 1.5 
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times the steady state error(offset).Therefore load changes at the start of the system the 

peak error can be represented as under which is applicable for proportional control only. 

Peak error41.5 KL/(1+K) where K=Ke(Ki K2K3... Kn) 	 [5.54] 

To apply the above in actual pH control system provided with proportional or proportional 

reset controller, the elements comprising of dynamic modeling of the process, the acid or 

alkali mixing tank(Kp, p) ,dynamics of control valve(Kv, ;,),electrodes((KE, 

the transportation lag in mixing tank( 	and due to sampling P2)  must be known. For 

all the elements instead of theoretical time constants, effective time constants are used. 

To estimate the time constant for process one has to know the capacity and resistance of 

the process (size of the mixing tank and volumetric flow rate), but for pH electrodes the 

following equation is used. 

E=0.5z2/Dv 	 [5.55] 

Where z is the effective film thickness and 1), , the volumetric diffusivity. The value of 

generally varies between a minimum 0.4 s to 2.0 s for buffered solution and lOs to 20 s 

for unbuffered solution depending upon the velocity and the ion concentration. The value 

could be reduced significantly to 30 ps if necessary by using a high velocity flow cell and 

cleaning by sudden jet of solution. The detailed data used for dynamic study for pH 

control process are shown in the Appendix-3. 

Development of Model of pH control system 

On analysis of the three types of pH control procedure and in absence of experimental 

data the titration curve method is the most suitable for industrial practice. Hence it is 

adopted in this work.ln the preset investigation based on the data reported, the dynamics 

of the pH control system is assumed to be of first order for a control pH. The values of 
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(Kp, 1=3) are varied between 5.0- 8.0 and 1.0 s-2.0 s. The parameters for other loop 

elements except the controller are assumed as follows: 

cel= \r= 0.0 and the corresponding gain values are: KE= Kcei= Kv=1.0. 

The values of time constant and process gain are found through MATLAB simulation 

and found to be of the order of 1.5 s and 7.0(% change of pH)/(% change in flow) 

respectively.Therefore the process transfer function can be represented as 

G(s) = 7.0/(1.5s+1) 	 [5.56] 

From the plant experience the value as mentioned earlier Kp=6.0 and time constant 1.5 to 

1:8s closely tally with the simulated values (7.0 and 1.5s). The block diagram for closed 

loop system for pH control is shown in fig.5.10d. 

Fig.5.10d pH control strategy 

S.P 

Gceli 

Fig. 5.10e Block diagram for stock pH control process 
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Digital form of process transfer function: 

The eqn.[5.56] should be discretized for digital computer simulation. The discrete time 

model of pH can be developed in two ways in terms of z-transform or modified z-

transform and with the use of difference equation. Both discrete models are inter 

convertible and are demonstrated by Seborg et al. (139). The model based on difference 

equation has been developed by Hong et al.(59)which is shown in the Appendix-3. 

However more simple approach is to get the analog model by simulation and transforming 

the same to discrete form applicable for digital system. 

The eqn.[5.56] can be written in z-domain( z-transform) as 

4.6z /(z-0.5132) 

The procedure of conversion for continuous to discrete form using MATLAB software is 

detailed in section 5.4.1. The continuous model in discrete form (z-domain) with zero hold 

order can be written as 

3.406 
(5.571 

z - 0.5134 
with sampling time of 1.0s 

Ehe closed loop system with a fixed PID controller for the pH is shown in fig.5.10f.The pH 

)rocess transfer function has been described by eqn.[5.56].The PID controller parameters 

are based on a trial and error approach owing .to difficulties in establishing an analytical 

solution for the nonlinear process. The controller parameters on MATLAB simulation are 

found are: Kc=2.5, 
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Fig. 5.10f Closed loop system 

`5.5.2 Development of ANN controller for the case of pH control of stock in 

approach flow system: 

The ANN controller is designed with 2 neurons in the first layer, 12 neurons in hidden 

layer and 1 neuron in output layer. In this network, logsig activation functions are used. 

The number of layers and number of neurons in different layers are decided by trial and 

error procedure. 

CASE: 5.6 Modeling for stock temperature control: 

5.6.1 Model for stock temperature: 

It is well known fact that higher temperature of stock will increase the drainage rate on the 

wire by reducing surface tension and viscosity of water. Stock temperature can be 

measured by different types of sensors-transmitters with reasonable dynamic 

characteristics. The sensors which provide measurement in terms of electrical signal such 

as thermocouples, resistance bulb thermometers, and thermistors are most common 

types, The dynamic response of most sensors is usually much faster than the dynamics 

of the process itself. The time constants for various temperature measuring devices vary 

widely depending upon the construction type. These are described in Chapter 3, Section 

3.4 and Appendix-1, table-3.2. Luyben (81) has reported for thermocouples of the order of 
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30 s with a heavy thermo well but Nancy(91) reported this to be of the order of 2 s .The 

value of time constants of thermistors, semiconductors and optical 

sensors(photoconductors, and photovoltaic cell) are of the order of 0.3s,0.01s,10ms,1- 

100ps respectively whereas the same for resistance temperature detector(RTD) though 

possess very fast dynamics, may have the values intermediate between thermocouples 

and thermistors. Their basic dynamic behaviour can also be examined in terms of 

temperature profiles. For temperature control of approach flow system including the • 

headbox there are two kinds of dynamics available. One for the measurement system 

itself with appropriate sensor and the other when temperature of the stock is controlled in 

the system. However, the temperature control system can preferably be used before 

entering to the headbox. In most cases, the temperature of stock in headbox or silo with 

temperature as a feedback signal is controlled by modulating the amount of live steam as 

manipulated variable entered to the silo or the flow of gas to a special gas fired white 

water heater. The controller used is usually a conventional PI controller. 

Eqns.[5.63-5.69] represent the dynamic models of temperature measurement as well as 

approach flow system to the .headbox. In this present investigation, the models 

considered are as under. 

125 



steam 

VVI-Ite 
water 
/stock inlet 

T White water 
(stock outlet 

Fig.5.11 Temperature control strategy 

Dynamics of temperature measurement system (thermo well or thermocouple): 

The energy balance equation on the thermo well can be expressed as 

mCp dTddt=UA(T-Tm) 	 [5.58] 

The above equation can be rearranged as 

[(mCp /UA)dTm/dt]+Tm=T 

Converting to deviation variables and taking the laplace transform, one can write 

( 4+1) T'n,(s)=T'(s) or T'n,(s)ir(s)= 1/( 4s+1) 	 [5.59] 

Where m=rnass, Cp=specific heat, Tm= measured temperature, T=surrounding 

temperature, U= heat transfer coefficient, A= heat transfer area 

The dynamics of thermocouple-thermowell combined system when the resistance of 

thermowell is not neglected one can derive a second order system with two first order 

interacting system joined in series. 

In general temperature measurement system can be modeled as under: 
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One capacity process 

G(s)=T'(s)T1-:(s) = Kp/( 4s+1) 	 [5.60] 

For two capacity processes 

2  ci2Tidt2+2 4dT/dt+ T=T; 	 [5.61a] 

G(s)=Kp/[ 2  s2+2 s+1] 	 [5.61b] 

Two capacity processes joined in series (non-interacting type) 

Gp(s)=Kp/(1+ is)( 	2s) 	 [5.62] 

Dynamics of temperature control process: 

Fig.5.11 is a typical temperature control system (shown as a purpose of model building) 

for heating a stock storage tank where steam is used as manipulated variable. 

An unsteady state energy balance equation can be written as 

pCp VdT/dt=q+wCp (Ti-T0)-wCp (T-To) 	 [5.63] 

At steady state condition dT/dt=0; then eqn.[5.63]becomes 

qs+ wCp (Tis-To)-wCp (Ts-T0)=0 	 [5.64] 

subtracting eqn.[5.63] from eqn.[5.64] one can write 

q-qs  =wCp [(1-1-ts)-(T-Ts)]= pCp Vd(T-Ts)/dt 	 [5.65] 

if deviation variables Q= q-qs  ; 	; T'= T-Ts  

Eqn.[5.65] can be written as 

Q=wCp (t-T')= pCp Vdt/dt 	 [5.66] 

Taking Laplace transform of eqn.[5.66] 

Q(s)= wCp [Ti'(s)-T(s)? pCp V sT '(s) or T'(s)[( pCp /w)s+1]=Q(s)/wCp+t(s) 

Or T'(s)= [(1/wCp)Q(s)]/( s+1) + Ti'((s)/  4s+1) 

If there is a change in Q(t) only, then t(t)=0, the transfer function relating T' to Q 
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T'(s)/Q(s) (1/wCp)/( s+1) 
	

[5.67] 

If there is a change in t(t) only, then Ci(t)=0, the transfer function relating T' to T1' 

T'(s)/Ti'(s) = 1/( s+1) 
	

[5.68] 

There are many dynamic models available in literature for temperature control system 

which belongs to either first order or second order, or first order with dead time or two first 

orders joined in series. However in real situation, dynamics of temperature measurement 

is found to be an over damped system. The dynamic parameters used by various process 

control engineers are summarized in table 5.5, Appendix-1. 

In the present investigation the time constant has been taken on the order of 0.2 and the 

value of Kp has been varied between 1 to 100 during MATLAB simulation. The best value 

of Kp  was found on the order of 60. This indicates that small changes in A input give very 

high A output. In other word the system appears very sensitive as it displays very high Kp 

value for small change in input. 

The equation is representing temperature control process as under 

Gp(s)=[60/(0.2s+1)] 	 [5.69] 

Digital form of process transfer function: 

Transforming the equ.[5.69] for digital form(z-domain), one can get the following equation. 

G p (Z) - 30z/(z-e-5t) 

The procedure of conversion of analog to digital form in MATLAB software is already 

detailed in section 5.4.1. Eqn.[5.69]can be written in discrete form(z-domain) using zero 

hold order as under: 

Gp(z) =[(2.926)/(z-0.9512)] 	 [5.70] 

As already indicated, the model for stock temperature control is simulated with the help of 

Simulink tool in MATLAB software and results are shown in Chapter-6. 
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Fig.-5.12 Closed control loop (Simulink model) 

5.6.2 Development of ANN controller for the case of stock temperature control in 

approach flow system: 

The artificial neural network controllers have been developed using three multilayer 

perceptron methodologies such as MLP, DLFANN(direct linear feed through ANN), 

MFLANN(modified functional link ANN). .A single hidden layer MLP is employed to 

develop the direct inverse controller '  which is used for implementation of neuro-control. 

The DLF ANN used in this investigation to model the process makes use of additional 

weights, which directly connects the input layer to the output layer. Rest of the 

architecture is akin to that of MLP. The DLFANV is able to model the linearity in stock 

temperature control system. But M-FLANN adds only self and lateral feedback 

connections to the output layer. 

In the present study, two neurons account for two inputs, stock flow rate F, stock inlet 

temperature Ti .One neuron in the output layer is used to determine control signal. The 

network is 2:10:1. The training of MLP as direct inverse of a headbox stock temperature is 

shown in fig. 5.13. 
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Fig-5.13 Training of MLP as direct inverse of a head box system 

CASE: 5.7 Modeling of basis weight of the paper (Analog system): 

For high quality rolls and reels of paper, basis weight as well as its moisture content is 

necessary to control. Basis weight of paper depends on the headbox slice opening as the 

adjustment of slice has a decided effect on the flow of stock through several of the 

adjoining sections of the slice. This must be taken into account in any controller (analog 

or digital) that is to be successful in leveling basis weight. Analog system is characterized 

by the fact that this is continuous. Both error detection and control actions are carried out 

continuously. The control action requffed of an analog controller is developed by applying 

the error detected to an accurate electronic or pneumatic analog of the control action 

wanted. This is inexpensive for small control jobs and usually quite simple but it is very 

difficult to implement complex control algorithms. It is also virtually impossible to adjust 

the amount of proportional, integral or derivative action derivable from an analog 

controller on a continuous basis. One of the most common controllers available 

commercially is the proportional integral controller. Incidentally many mills are currently 

using a PI controller for the basis weight control (144). 
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5.7.1 Model for basis weight: 

Fig. 5.14a Basis weight control loop 

Fig.5.14a shows a simplified loop for basis weight control. The relation in between, stock 

flow to the paper machine and the basis weight of the paper have been approximated by 

the following transfer function models by Ogunnaike and Ray (120) for the SISO system. 

Y(s)= [0 .55e-8s/(7.5s+ 1)] u (s) 	 [5.71a] 

Y(s)=[0.40e-10s/(8.0s+1)]u(s) 	 [5.72a] 

where u= Stock flow rate and Y=Basis weight of paper 

Digital form of the response 

Transforming eqns.[5.71a & 5.72a] in discrete form(z-domain) 

Transfer function: 
0.1287 z + 0.02717 

zA(-3) * 	 
zA2 - 0.7165 z 

Sampling time: 2.5 

Transfer function: 
0.02423 z + 0.04415 

zA(-6)* 	  
zA2 - 0.829 z 

Sampling time: 1.5 

[5.71b] 

[5.72b] 

The Simulink model for basis weight control is shown in fig.5.14b. 
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Fig.-5.14b Closed control loop 

5.7.2 Development of ANN controller for the case of basis weight control: 

The reference basis weight and actual basis weight are used as input for ANN and these 

inputs are represented by one vector. The input of process uses an output for ANN 

controller, which is the appropriate signal for the paper basis weight at desired level. The 

training pattern required for training the ANN is obtained from PI controller. The ANN is 

trained using the back propagation algorithm. During training, weights and biases of 

neural network are adjusted to minimize the network performance- the negative of 

gradient and the training is stopped when desired goal is reached. 

The ANN controller is designed with 1neuron in the first layer, 5 neurons in hidden layer 

and 1 neuron in output layer. In this network log-sigmoid activation functions are used. 

The number of layers and number of neurons in different layers are decided by trial and 

error procedure. 

CASE:5.8 Modeling of basis weight of the paper( Digital system): 

In the above case,. analog controller has been used for controlling the basis weight. With 

the advent of microprocessor based computer control, it would be advantageous to 

employ digital control technique for controlling basis weight. The well known two mode 

analog Pl is replaced by software based control algorithm which resides in the computer. 
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The merit of digital controller is not only in its efficiency to control but the simplicity with 

which it can be tuned i.e. by proper adjustment of controller parameter for obtaining the 

best result. 

5.8.1 Model development for basis weight: 

The dynamics of basis weight in digital form has already been reported (127,128) thougl 

detailed derivation was not available and probably is not in line. The approaches were 

also quite different. Some used the basis of first principles whereas the other employed 

order reduction process. As a result analysis of the available closed loop in direct digital 

control system became difficult. 

Model development from first principles: 

To re-examine the dynamics, the control scheme used by Shankarnarayan(127) shown 

in the diagram(fig.-5.15) is again subjected to analysis. To compare the role of position of 

hold element another control scheme (fig.5.16a) has also been proposed. The 

development of both the loops and the transfer function of the process in terms of z-

transform equation are shown below: 

R(s) 	E(s) 
G(z) 

Digital Zero order hold Process 
Controller 

E'(s) 

Gds) 	 Gl(s) 	 G2(s) 

C(s) 
Fig. 5.15 Digital closed control loop 

If the output is specified, the transfer function of a digital controller is determined to give 

desired output for the process. The output'can be expressed as 

C(z)=[G(z)Gc(z)R(z)/1+G(z)Gc(z)] or Gc(z).[ C(z)/G(z)[R(z)-C(z)]] 
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Or Gc(z)= 1/G(z)[{C(z)/R(z)}/[1- C(z)/R(z)}] 	 [5.73a] 

The following digital control scheme is proposed by Sankranaranan (128). 

Ge(zl 
	

G(z) 

Fig. 5.16a Digital closed control loop 

The transfer function of a zero hold device is an important element in designing a digital 

control loop, which is described as under. 

The device retains the value of x(t) at each sampling instant, xhold(t) in a series of steps. 

xhold(t)=x(0)[u(t)-u(t-T)]+x(T)[u(t-T)-u(t-2T)]+x(2T)[u(t-2T)-u(t-3M+ 	[5.73b] 

where u(t) is unit step function starting at t=0, u(t-T) is unit step function starting at t=T. 

Taking laplace transform of eqn.[5.73b], one can write 

, xhold(s)=x(0)[(1-e-Tsys]+x(T)R e-Ts- e -2Ts  )/s1-1-x(2T)[ (e-2Ts- e-3Ts)/s]+ 

or 	= (1- e-TS)/s[x(0)+x(-0e--rs+x(2-0e:rs+ 	] or (1- e-Ts)/s[x.(s)] 

The laplace transform of a zero hold device in s-domain can be written as 

Gi(s)= (1- eTs)Is 

Process transfer function can be assumed as first order 

G2(s)=Kci(tcs+1) 

Or G(s)=G1G2(s) 

G(s)= [(1- ejs)/s][ Kc/(tcs+1)] 

Or =(1- eTs)[ Kds(tcs+1)] 

[5.73c] 

[5.73d] 

R(s) 
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=(1-z-1)1C * Z-transform of[(1/s)-(to/ tos+1)] 

Or G(z)=(1-Z-1)1C[z/(z-1)-z/(z-e-titc)] 

Or 	=Ko(z-1)[(z-e-titc)- (z-1)]/ (z-e-titc)(z-1) or Ko[(z-e-utc)- (z-1)]/ (z-e-utc) 

e-tacz-i) 	 (i_e-titc) [5.73e]  =Koff 	 or =( KoPt1)/(1-(1-P)z-1) ; Where P= 

Because of N+1 sampling period, eqn.[5.73e] becomes 

G(z)=[K, Pl(N+1)/ 1-(1-P)Z-1] 	 [5.73f] 

T, the sampling time, IC, the process gain, to, time constant,Z1  ,delay due to one 

sampling time, Z(N+1)= delay due to (N+1) sampling periods 

If the required response Gd(z) is exponential having a closed loop time constant to, then 

Gd(s)=[(1-e-st)/s][1/1+sto)] 

Or Gd(z)= Qz(N+1)/1-0_coz-i  [5.74] 

Where Q= (1-e'tb) 

The desired closed loop response is Gc1(z) (output/input) can be written as 

Gd(z)=[G(z)Go(z)/1+G(z)Go(z)] or Gd(z)+G(z)Go(z)Gd(z)=G(z)Gc(z) 

Or Go(z)G(z)[1-Gd(z)]= Gd(z) 	or Go(z)= [Gd(z)/1-Gd(z)]* 1/G(z) 	[5.75] 

Putting the value of Gd(z) in eqn.[5.75]  one can get 

Go(z)=(1/G)[Qz-(N+1)/1-(1-Q)z-1-Qe+1)] 	 [5.76a] 

Go(z)= [[Qz"(N+1)/ 1-(1-Q)f1y [1-(1-Q)z-1-Qz4N+1)/ 1-(1-Q)z-1]] [1-(1-P)z-1]l KPz-(N+1)] 

Or Go(z) = Q[1-(1-P)f1] / KP[1-(1-Q)z-1-Q -0+1 	[5..76b] 

Converting the above positional eqn.[5.76b] into an incremental one 

-AGo(z) = change in controller output/ controller input 

AGo(z) = Q[1-(1-P)f 1] (1-z- 1)/ KP[1-(1-Q)z-1-Qz"(N+1)] 	[5.77] 

The eqn.[5.77] enables writing an appropriate algorithm for providing digital control. 
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Modeling by Order reduction process: 

If each section of the paper making process is considered separately then the process is 

quite complex. But under certain ideal conditions, it can be considered a single 

input/single output system with the gate opening of the mixing tank as input and basis 

weight of paper (weight of unit area of paper i.e., of 1 m2) in gram per square meter (gsm) 

as output. The input/output data collected by Tee et al(155) have been used for the 

purpose of obtaining model of the system. Experiments were conducted on a Fourdrinier 

machine manufacturing 50 g/m2  wood free book paper where input variable was the scale 

reading on the stock gate opening located in the mixing box and the output was recorded 

in terms of gsm of paper measured by weighing three samples taken out every 1 minutes. 

The equation [5.77] can be written in form below (eqn.5.78) which has been the starting 

model reported by Mukherjee(89) in his attempt for order reduction process The same 

has been reproduced for further development of neural model and analysis with 

experimental data and MATLAB simulation as under: 

If G(z). 	 a0  +aif' + 	 amfm  
X(z) = 

	
[5.78] 

U(z) 	1+b1z-1  + 	  +bnz' 

Eqn.[5.78] can be put in the form of difference equation as. 

m 	n 
Zaj Uk - Zbi xk-i 

i=0 	1=1 
Where 

Li] (i = 1,2 	N) 

xi (i = 1,2 	N) 

[5.79] 
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uj , xi  are input and output of the system recorded N-times each after constant interval of 

time known as sampling time. In order to determine the parameters ao, 

b1,b2..bn, following eqn. can be formed out of [5.79] 

	 .am  and 

Uk Uk_4 	-Xk_i 7Xk_2 	-Xk-n 	 ao 	 Xk 

Uk+1 Uk ...Uk-rp+1 -Xk 	. -Xk-n+1 a1  

[5.80] 
b1  

• • .Uk+p-m-1 	-Xk+p-2 -Xk+p-3.. • 	••"Xk+p-n-' 	b2 
bn  

Uk+p_ Uk+p-2 

Xk-1 

Xk+p-1_," 

Where k = n+ 1, p= m+n+ 1 

Here the data is assumed to be noise free. After having obtained the parameters ao, 

a1, 	 an, and bi, b2 	 bn  for a particular value of m, n, it has to be ascertained 

whether the orders selected i.e., values of m and n are proper. For this, the method of 

Graupe et al (51) is used. As per this method, if a system is modeled as 

1+a1 z1  +a2z2+ 	 + a nizm  
G(z)= 	 [5.81] 

1+ biz.' +b2z2  + 	  +bnzn  

g 
G(z) - 	  

1+ cizl  +c2z2  + 	  
By cross multiplication and equating the coefficients of powers of z yields, then the 

coefficient are 

b1 = a1  + ci  

b2 = a2 + 	ci C2, 

= an 	an_i C1+.... ......... .Cn 

0 = an  ci + an.1 Ci+i 	Cr,+1 	for 1=1, 

where al  = 0 for I = m+1, m+2, 	n. Then the following relationship is obtained as 
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Cn  

Cn+1 

Cn+m-1 

Cn-1 

Cn 

Cn-m+I 

Cn-m+2 

Cn 

= 

Cn+1 

—n+2 

Cn+m 

[5.82] 

The square matrix involving ci in [5.82] gives an idea of the minimal order of m and n. 

Denoting the matrix as A nm, its determinant is calculated, n and m are minimal if 

IA n,m1=0 for n> n, m> m 	 [5.83] 

As suggested by Graupe et al , the condition eqn. [5.83] can be replaced by a test 

IA 	5.o.  for some n > n, m > m and some small a> 0. 

The system modeled is stable and hence after identifying the parameters for a minimal n 

and m, its stability is also to be tested by finding out the poles and ensuring them to be 

within the unit circle. Ultimately making a reasonable compromise, a system is 

synthesized which is both stable and satisfies the order test as given in eqn. [5.83]. In this 

case, with the input / output data available of a paper machine, the constants ao, a1, am  

and b1 b2, 	 bn, are computed for different values of m and n like(m=2, n=2), (m=2, 

n=3) 	(m=2,n=7), (m=3, n=3) 	(m=3, n=7) 	( =4, n=4) ... and so on and each 

time the value of the determinant 1—A rip' is calculated as shown in above eqn.[5.82]. It is 

found to give satisfactory result at m=2; n=7 i.e., determinant 1—A n,m1 is zero for these 

values of m and, at the same time do not increase enormously for subsequent higher 

values of m and n. Hence the order of the identified model is seven. The final results are 

given as under. If G(z) is the z-transfer function of the system considered, one can write, 

ac +a1 z-1  +a2f2  
G(z) = 	 [5.84] 

"I biz-1  +b z-2  + b3z-3  + b4z-4  + b5f5  + losz-6  +b7f7  
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Substituting .the values of all constants in eqn.[5.84], one can obtain the overall transfer 

function of the system as under 

G(z) = 	-2.1606+2.486521-0.029922  
1-0.257021-0.130922-0.162923-0.0739z4-0.03752b-0.0599e3-0.084821  

G(z)= 	 [ -2.161z7+2.4865z6-0.0299z5] 

[z7- 0.257z6-0.1309z5-0.1629z4-0.0739z3-0.0375z2-0.0599z-0.0848] 
[5.85a] 

Transfer function: 

-2.161 sA7 - 40.19 sA6 - 2217 sA5 - 2.524e004 sA4 - 4.707e005 sA3 - 1.886e006 sA2 
- 6.472e006 s + 2.778e007 

sA7 + 24.67 sA6 +1454 sA5 + 2.104e004 sA4 + 4.735e005 sA3 + 3.21e006 sA2 
	5.85b] 

+ 2.954e007 s 4.87e007 

This system is controlled using the digital control algorithm as shown in edn.[5.76], which 

includes the ZOH element with the time delay dynamics. There are several different 

digital controller design techniques that fit into general direct synthesis schemes such as 

deadbeat controller, Dehlin's controller, and Vogel-Edgar controller. In this present 

investigation only Dehlin's controller has been used. If t=tr=to=1, K=1/to, so that eqn.[5.76] 

becomes 

Gdc(z)=1/G(z) [0.63221/(1-z-1)] 	 [5.85c] 

Gdc(z)=j1 -0.257Z-0.1309z" 2-0.1629f3-0.0739f4-0.0375f5-0.0599t6-0.0848f7r0.632Z1  
[-2.1606+2.486f1-0.029922]11-f1] 

Gdc(z)=0.632fz7-0.257z6-0.13092-0.1629z4-0.0739z3-0.0375z2-0.0599z-0.08481 
[ -2.161z8+2.4865z7-0.0299z6][1-f 1] 

Or Gdc(z)= 0.632z -0.162z6-0.827z5-0.1029z4-0.0467z3-0.023z2-0.0378z-0.0346  
-2.161z8+4.647Z-2.516z6+0.0299z5 

	
[5.85d] 

The simulink model for digital time controller is shown in fig. 5.16b The simulation results 

have been depicted in Chapter 6. 
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Fig.5.16b Sil ulink model for a discrete time controller 

5.8.2 Development of ANN controller for the case of basis weight control: 

The first step is that the process data are re-examined for their suitability for model 

development. More specifically, it is important that the data used to develop the process 

models are sufficiently exciting to extract accurate input and output relationships. Once 

these data are suitably exciting for identification purposes, it is important to consider the 

effects of feedback controllers when collecting data. If the model is to be used for control 

purposes, then using the data collected under closed loop operation may introduce 

problem. If however the model is to be used for monitoring purposes, then the process 

data should be collected with the system in its standard configuration. As per 

conventional linear modeling, the performance of the developed neural network is very 

much dependent upon the amount of the process data collected and used during training. 

Once the data is collected, these can be divided into three sets: one set for the training 

which comprise of half the available data and the remaining data is split evenly between 

testing and validating data sets. The artificial neural network models for basis weight of 

paper are shown in fig.-5.17. 
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Fig.-5.17 Artificial neural network models 

The network is consisting one neuron in input layer (gate opening as input), five neurons 

in hidden layer and one output layer. 

[B] DEVELOPMENT OF MODELS OF MIMO SYSTEM OF PAPER INDUSTRY 

For analysis and control of MIMO system the following cases related to approach flow 

system and headbox are developed and analyzed: 

CASE: 5.9 Modeling of total head and stock level of rectifier roll headbox: 

The total head and stock level are two variables which interact with each other. The 

interaction between the total head and stock level can be compensated using MIMC 

controller. The comparators compare feedback signal with reference point and create 

error signals which affect the control input of the air valve and fan pump as shown in fig 

5.19a. Changes in total head are taken into account in the control input of the stock leve 

using a cross controller C21, before the error signal exists. The normal feedback control of 

the stock level corrects possible errors which are not compensated with C21. 
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process dynamics. The steady-state process transfer function(s=0) is called the process 

gain matrix, K. 

Y1=K11ui+K12u2 ; Y2=K21uil-K22u2 

Kij  denotes the steady state gain between yi and uj  

For stable processes, the steady gain model related to the dynamic model is expressed 

as K=Gp(0)=Iim,, 	0 Gp(s) 

Kii=(ayiraui)u2 ; K12=(ay1/au2)u1 ; K21=(ay2/au1)u2 ; K22=(ay2/au2)u1 

Pairing of controlled and manipulated variables: 

In a multi loop control scheme, the controlled variables and the manipulated variables 

have been paired for stable operation. An incorrect pairing can result in poor control 

system performance and reduced stability margin. The relative gain array(RGA) is a 

systematic approach for determining the best pairing of controlled and manipulated 

variables. 

After estimating the steady -state gains, one can get relative gain arrays 

A11 =1/[1-(Ki2K2i/Kii l<22)] =A22 ; Al2= A21=(1- A11) 

Thus the relative gain array can be expressed as 

A= A 1-A 

1- A 	A 

There are mainly five cases arising as under: 

(i) A=1. In this situation, opening or closing loop2 has no effect on loop 1. It means that yi 

should be paired with u1. 

(ii) A=0. In this case, the open loop gain between y1 and u1 is zero, and thus u1 has no 

direct effect on yi. Consequently, u1 should be paired with y2 rather than yi. 
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(iii) 0<A<1. The open loop gain between input,u1 and output,y1 is smaller than the closed 

loop gain. Within this range, the interaction between the two loops is largest when A=0.5. 

(iv) A 1. For this situation, closing the second loop reduces the gain between yi and u1. 

Thus, the control loops interact. When A is very large, it is impossible to control both 

outputs independently. 

(v) A<0. In this case, the open loop and closed loop gains between yiand u1 have different 

signs. It follows that yi should not be paired with u1. The closed loop system may become 

unstable. 

For steady state gain matrix, s=0 (120), the above eqns. will not work since their (2,1) 8 

(2,2) elements contain the integrator term(represented by 1/s--d). The eqns.[5.88, 5.87: 

expressed in matrix form are as under: 

K11=0.528, K12= 0.0630, K21= 0.0001, 1(22=0.0007 

K=lim G(s),0=limi, 0.528 0.0630 
0.00011 -0.00071 

• = (Ki  K21 )1 (Ki 11(22)=0.017045 

From a matrix, the values of arrays are found out as follows: 

A22  = 1/1- = 0.98 , 

Al2 =A21 =- 	- , =0.02 , 

After solving the 'relations, the relative gain array A can be expressed in matrix form a 

follows 

[ 	A11=0.98 
[. 	A21=0.02 

Al2= 0.02 
A22= 0.98 

Pairing recommendation: 

In the present investigation, In headbox control system as shown in fig.-5.20, th 

interaction exists between the total head and the stock level. Changing the stock levE 
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with the pressure of the air cushion also affects the total head by the same amount. On 

the other hand, total head control using the fan pump also affects the stock level. 

Therefore yi and y2 to be paired with u1 and u2 respectively. 

Decoupling control: 

The above MIMO control problem for total head and stock level can also be solved by 

partial or full decoupling of loops. In this investigation perfect decoupling has been made 

as the accurate process transfer functions are available. The transfer functions can be 

used to determine the effect of a change in either u1 or u2 on Y1 and Y2 as under 

(fig.5.19a). 

Yi(s)=. Gii(s)ui(s)+G12(s)u2(s) 
	

[al] 

)12W= G21(S)Ut(S)+Gp22(S)U2(S) 
	

[a2] 

The decoupling control system for MIMO process is shown in fig. 5.19b. By adding 

additional controllers called decouplers to a conventional multiloop configuration, the 

design objective of reducing control loop interactions can be realized. The decoupler 

expressions have been described as under. 

Yspl u1 

U2 
V7 

Fig. 5.19b A decoupling control system 

U17V1+ (C121C22)V2 	 [b1] 

U217V2+ (C21ICI1)V1 	 [b2] 
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G11-(G12 G21/G22) 
Cl' 

Substituting eqns.[b1,b2] into eqns.[al, 2], one can get 

Y1(s)= (G11+G12 C21/C11)v1 + (G1iC12/C22+G12)v2 

Y2(s)=" (G21+G22 C21/C11)v1 + (G21C12/C22±G22)v2 

When v1 affect Y1 & eliminate the effect of v2 on Y1, then 

G11C12/C22+G12 =0 or C12/C22= - G12/G11 	 [cl] 

When v2 affect Y2 & eliminate the effect of v1 on Y2, then 

G21÷G22 C21/C1 1.0 or C21/C11=-G21/G22 	 [c2] 

The expressions c1 and c2 are for ideal decoupler. One can interpret a decoupler as a 

type of feed forward controller with an input signal that is manipulated variable rather thar 

a disturbance variable. The corresponding two SISO systems can be obtained by 

decoupling the loops as shown in fig.5.20. The overall transfer functions can be written as 

under. 

Y1=( G11-(G12 G21/G22)V1; Y2= G22-(G12G 21/G11)V2 

Ref 111 

Y2 
G22-(G12G 21/G11) 

Ref 

Fig.-5.20 Two SISO systems for total head and stock level 

As the present decoupling appears to be good the independent tuning of each decouplec 

loops can be easily carried out without detrimental to the stability of the whole system. A: 

the process is approximated as linear, there is no need of using adaptive decouple 
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Again these models have been simulated with the help of Simulink tool (MATLAB 

software). The simulated data have also been used for designing PID and ANN 

controllers. The comparison between PID and ANN controllers are also interpreted. 

Assuming all constants, dynamic equations of pressurized headbox have been modeled 

and simulate with the help of Simulink tool. The simulated results have been used for 

artificial neural network modeling. In this present investigation, the dynamic responses of 

both mathematical and. ANN models are compared. 

(a) Headbox filled with stock: 

Using the fig.5.21, the following mass balance equations are developed. 

For equilibrium condition, the equation can be written as 

dmfb/dt=min-mourrnoi 	 [5.92] 

Eqn.[5.92] may be represented by the following relationship 

dAmfb/dt=AmirAmout-Amoi 	 [5.93] 

where Amfb=mfb-mt. Amin= 	;Amour= moot-moot. ; Amor= rnal-r101. 

mfb= VI), or AfbniPs  

Rise in Amfb amounts to Afb  Ahlps 	or Amfb= Afbhi. ui los  or Amf=mfb. 

Amount of inlet stock min  depends on opening of inlet valve Ci, the term min  can be written 

as min= min(Ci, P11, P12) 

Amin= (amin/aCi) .ACi+(amin/aH) AP11+(aminbaP1) .AP12 	 [5.94] 

Assume that the characteristic of inlet valve of stock is linear, then 

(amin/aCi) tc=nlinmax/Clmax or (amin/aCi) .AC1= (MinmaxiClmax) z\C1 

(am 	 [5.95] 

Flow of stock through the regulating valve C1 as under 

min": Ac.0 42Ps(P11-P12) 
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(amiulaH) AP11=-1/2 min. psg(hi.■ P11-P12) ui. 

(amin/aP).AP.12=-1/2 min. (P./ P11-P12) 

Flow of stock from slice lip 

moot= mout(C2, 

Amdut=(am uttac2)..AC2+(aMout/ahi) Ahi+(amout/aP) AP 

(amout/aC2)00=moutmax/C2max or (amout/aC2)0= dC2=(Moutmax/C2max) AC2 

(aMout/aC2) AC2=MoutmaxP2 

[5.96] 

[5.97] 

[5.98] 

[5.99' 

Flow of stock through the slice 

moot= Alip.Cd2Ps(h1g Ps+P) 

(am • t/ahi).Ahi=1/2 mout00 pg(hi../ h1g Os+P) u1 	 [5.100 

(arnout/aP).AP=1/2 mout. (P./ hig ps+P) 	 [5.101] 

Flow of stock through overflow 

mod= Cd3b psq2g(h3)1.5  or Amol=3/2 Cd3b psh3042gh3Ah3/ h30 

Am01=3/2moi00 u3 	 [5.102 

Substituting above all eqns. in eqn. [5.93], one can write 

d(V1 ps  ui)/dt=[ MinmaxP1-1/2  min00 Psg(1.11j P11-P12) U1-1/2 Min. (P./ P11-P12) P'- moutmakp2 

1/2 moot.,  pg(h100/ h1g ps+P ) u1-1/2 moot. (P./ h1g ps+P) P'-3/2molo u3] 

If C2 is constant value therefore p2=0,equ.[5.103] can be written as 

1/ 	— 1 ps  dui/dt=[ minmaxP1-1/2 min00 Psg(h100/ P11-P12) u1-1/2 min., (P./ P11-P12) P' 

-1/2 Mout.. pg(h100/ hig p-,+P ) u1-1/2 mout. (P./ h1g ps+P) P'-3/2m01. u3] 

Or (Vi ps  /minmax) *000= [Pi-  Rmtn./minmax) 1/2 psg(hi./ P11-P12)] u1- [(min./minmax) 

1/2(P./ P11-P12)] P'-[1/2  pg(h100/  h1g ps-ER)(  moutedminmax)lui 

• -R moutdminthax )1/2(P.„/ h1g ps÷P) 1F-3/2mol00/minmax u31 

Or Tfb.idu1/dt=[1-11-(W1K1v1+VV2 K2v1) U1-(w1K1P-Eiii2K2p)F-3/2w31 

[5.10: 

[5.10 
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Considering that 	h1=ho+h3  or Ah1=Ah3=1, so u3= (hi./h3.) u1  or a13  ui, 

Eqn. [5.104] can be rewritten as 

Tfhidui/dt=[ pi-(wilC1v1+w2 K2v1) u1-(w1K1p+w2K2p)P'-3/2w31  a13 uil 

Or Tbdui/dt+A u1= p1-BP' 

Where A= wi 	W2K20+3/2W31 u3 ; B= w1K1p+w2K2p, an= u3/ 

(b) Material balance for overflow system: 

Equation for material balance for overflow can be written as 

dmeh/cit=nno-m02 

or 	mch=AchhoPs=VcriPs 

Rise in ma, 

dAmch/dt=Am0ii-Amo12 

Allich= AchhchooPs U2 

[5.105] 

[5.106] 

[5.107] 

[5.108] 

Flow of stock can be written as 

mo12=AcpCd4 -42ps(hch  psg+P). 

Am012=1/2 mo12. psg(hch./ hch  g ps+P ) u2+1/2 m012 (P./ hchg ps+P) P' 	 [5.109] 

Substituting the values of Am011,Am0i2& Amch  • into eqn.[5.107], one can get 

d(V2  ps  u2)Idt= 3/2m01. u3  -1/2 m012. (P./ hog ps+P) P'-1/2 m012. psg(ho./ hen g Ps+P) u2 

or V2  ps(du2/dt) = 3/2m01. anul  -112 m012. (P./ hchg Ps+P) P'-1/2 moi2. Psg(heh./ hen g Ps+P ) u2 

or (V2  ps/ mci2-)Ps (du2/dt) = [3/2m01./ aisui  -1/2 m012. (P./ hog ps+P) P'-1/2 m012. psg(hch./ 

hch g ps+P ) u2]/ 111012.0 	or 	Tflpio  dU2/dt =W21  u1-K3pP'-K1v2 u2 

or Tfhl0  du /dt + K1v2 U2=W21 U1-K3PP' 
	

[5.110] 

(c ) Material balance for air cushion: 

Equation for material balance for air cushion can be written in the form as under 

Mair=nisurnirem or dmair/dt=Amsup-Amrem 
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AMair=Mair-rnair. Arnsup=  Msup-Msup. ; Arnrem=  Mrem-Mrem-,  

Mair=V3 Pa 	
[5.112] 

V3W0-V1-V2 	 [5.113] 

AMair=Pa. AV3+V3.6,Pa 	 [5.114] 

Putting the value of V3 in eqn.[ 5.114], then 

Amair=Pa.(AV1-AV2)+V3.paAP/R. or Amair=-Pa.AV1-AV2 paw+V30PaP' 	 [5.115] 

Loss of air through valve C5 & C6 

Msup=Ac5K5-42Pa(P51-P52) 

Mrem=Ac6K6'\12Pa(P61-P62) 	 [5.117] 

Amsup=msupmax. (AC5/C5max)-1/2  msupw. (P52w/P51-P52)P'  

if valve C5 is linear, the term Amsup can be written as 

Or AMsup=Msupmax. p5-1/2 msupoo. (P52-/P51-P52)P' 

AMrem=Mremmax. (AC6/C6max)-1/2  Mrem.. (P61./P61-P62)P'  

Or Am remm=—remmax. P6-1/2 Mrem.. (P61 1P61-P62)P'  

C is constant, so p6=0; 

Amrem= -1/2 m 	(P /P P 61.0- - 61-- 62,-1P 

Putting the values of Amair, Amsup 3 Amrein into eqn.[5.111], one can get 

cl/dt(p Av3+v3wApa)=  msupmax. P5-[(1/2 msup-. P524P51-P52)-1/2  Mrero... (P61./P61-P62)1P'  

or d/cIt(-Avi paw-Av2 paw+ N/3 PaP')= 
 

Msupmax. p5-(1/2 	(P.52.LP51-P52)-1/2 mrem. 

(1'61.0/P61-P62)P' 	 or 

(V3pa/msupmax)(dP/dt)+F[(1/2Msup4P52../P51-P52) 1/2  Mremw. (P61./P6i-P62)] =P5+viPadui/dt 

v2p8du2/dt or TairdPidt=w4(k4+k6)P'=  p 	dui/dt+ Ttv2 du2/dt 	 [5.12( 

Where 

Tajr (V3Pa1 Msupmax); W4=  Msup../ Msupmax; k4 1/2(P52./P51-P52), k5= 1/2( 361.1P61-P62); 

[5.118] 

[5.119] 
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or in discrete form( z-domain) 

1.382e-005 zA2 + 7.971e-005 z - 9.298e-005 
[5.131] 

zA3 - 2.989 zA2 +2.977z-0.9886 

when 111=0; 

Lhead2=R-.0004s3-.000947s2-.001035s-.0062)/(s4+.584s3+.034569s2+.0001358s)] [5.132] 

or in discrete form ( z-domain) 

-4.036e-006 zA3 1.201e-005 zA2 - 1.192e-005 z + 3.941e-006 
[5.133] 

zA4 - 3.994 zA3 + 5.983 zA2 - 3.983 z + 0.9942 

Phead2=R-.001s3+.0040868s2+.0034719s+.0122)/(s4+.5284s .005429s4.0092)] [5.134] 

or in discrete form(z-domain) can be expressed as 

or -0.001 zA3 + 0.003041 zA2 - 0.003081 z + 0.001041 
[5.135] 

zA3 - 2.995 zA2 + 2.989 z - 0.9947 

The Simulink models for air pressure and level of stock have been developed using 

Simulink tool in MATLAB software. These are shown in figs. 5.22-5.25. 

Fig. 5.22 Closed loop system for Lheadl, when p5=0 
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Fig.-5.23 Closed loop system for P - 	when p5=0 

Fig.-5.24 Closed loop systeM for Lhead2, when pi=0 

Fig.- 5.25 Closed loop system for P - head2 when pi=0 
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5.10.2 Development of ANN controller for the case of air pressure and level control 

of stock in air cushion headbox: 

For the case of air pressure (Phead)  and level of stock (Lhead), the ANN controllers have  

been designed with back-propagation algorithm. The MATLAB programs for the same are 

shown in Appendix-2. 

CASE: 5.11 Modeling of stock flow and stock level of the pressurized headbox: 

5.11.1 Model for stock flow and stock level: 

The pressurized headbox is used to project a stream of pulp in a 99% aqueous solution 

on to a wire. Drainage occurs as the pulp is transported towards the presses, where 

further water is removed from the remaining fibre by pressure, whilst forcing the pulp in to 

greater contact. Thereafter, drying using steam heated cylinders, before calendaring and 

reeling the sheet, forros the dry-end operation. Fourdrinier machine is widely used for the 

manufacture of paper. 

The head box arrangement will produce output interaction in that changes in the stock 

flow will produce stock level and output stock flow rate changes. The physical 

configuration of the paper making machine, and the sheet forming system depicted by 

Whalley (166) is shown in figure.5.26. 
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Fig.5.26 Headbox arrangement 

Model of this type of pressurized headbox is derived by Rosenbrock et al(123). 

Headbox model: 

Pressurised headbox model with general multivariable system models may be 

represented by an input-output relationship. Herein, transformed, pre-compensated 

models are assumed to be linear, finite dimensional,, in Laplace variable s, and denoted 

by G(s). 

System transfer for matrix 

G(s) = Gp(s)P(s)T(s) 	 [5.136] 

Models with "m" i/p & "m" o/p admit a rational factorization 

G(s) = L(s) {A(s)/d(s)} R(s) T(s) 	 [5.137 

Where L(s), A(s), R(s), T(s) & d(s) € RH., s?0, 

The transformed input-output disturbance relationship can be written as 

y(s)= G(s)u(s)+6(s) 	 [5.13E 

if the control law is u(s)=[k(s)r(s)-h(s)y(s)] 	 [5.13c 
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CASE: 5.12 Modeling of retention process in the wet end: 

Retention is an important variable which describes the efficiency in the wet end of paper 

machines. It is defined in many ways such as first pass retention (FPR), first pass ash 

retention, first pass fines retention, overall retention, first pass fiber retention, first pass 

solids retention etc. First pass retention is defined as the ratio of the amount of material 

that leaves the headbox slice compared to the amount of material that is contained in the 

paper web leaving the couch roll (typically 20-90%) and mathematically expressed as 

FPR (%)=100x(CHB —C ,,N )/CHB 

The corresponding first pass ash retention, % can also be written as 

First pass ash retention (FPAR)=100x(CHBAHB—C A.)/CHBAHs 

First pass fines retention (FPFR)=100 x[(CHB FHB—Cm  FWW)/CHBFHB 

Where CHB, Cww refer to the headbox and white water consistencies respectively and A 

refers to the ash level in the respective equipment. 

First pass total solids retention can also be defined as 100x total solids flow in paper/total 

solids flow from headbox. Overall retention can be defined in the same way as the ratio of 

the amount of material that is sent to the wet end of a paper machine compared to the F 

or control of amount that goes in to the reel at the dry end of the machine( typically 90- 

95%).  

In a recently developed feedback closed loop retention control system, total first pass 

retention, first pass ash retention, and total recycled white water consistency are 

evaluated to determine which parameter would give the most rapid response to a 

significant process disturbance. The control scheme utilizes two consistency sensors 

(headbox and white water tray) and a computational module. The sensors are capable of 

determining both the total consistency and ash consistency of the sampled streams. 
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Based on the analysis it has been concluded that the total recycled white water 

consistency measurement provided the quickest response to a process disturbance and 

would therefore be the best control variable. For control purposes, the following equation 

is useful. y(k)=Kret(1-Cww/CHs) 	 [5.143] 

Kret is a machine dependent constant, y(k) reflects the percentage of fiber and other 

additives remaining in the final produced paper at sample number, k and thus indicates 

both the efficiency of the use of raw material and the run ability of paper machines. New 

demands for better retention control have arisen from' increased production speed, 

improved use of various chemicals, enhanced formation, and environmental' requirement 

and so on. Owing to the complicated nature of the wet end of paper machines, retention 

is affected by many variables. Typical examples are retention aids(polymers), stock pH 

values, stock flow rate, sheer forces, pulp quality (CSF), head box slice geometry, raw 

material contaminants, drainage, machine speed and structure of white water system etc. 

Structure of 
Water systems 

Disturbances 
Retention aids 	 
additives 

Retention pH 
	 Retention 
	 Process Machine 

speed 	 

Contaminants 
in raw material 

Position of 
Chemicals inputs 

Fig. 5.28 Retention process 

It is a multiple input and single output system, as shown in the fig.5.28. Moreover, owinc 

to constant variation of all of the input variables during paper production and the 
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involvement of fluid dynamics during the formation phase on the wire section, the system 

is dynamic, non linear and stochastic. An added complexity is that the retention is coupled 

strongly with other chemical systems in the wet end, such as sizing and wet strength 

control systems. This means that an accurate physical model of the retention process is 

very difficult to obtain. As a result, model-based feed back control retention has remained 

a unsolved problem (94). 

5.12.1 Model of retention process: 

The paper machine retention process model is divided in to two zones. The parameters 

(total fibrous material retention, long fiber retention, fines retention, water retention) for 

both zones represent the fraction of each pulp component that is retained on the web 

during paper forming. The first pass retention considers the effect of the fines content in 

the pulp stream from the headbox. This can be calculated as follows: 

y=.(yfi-7F) yf+yF 	 [1.144] 

In eqn.[1.144] , y is the retention and subscripts f and F represent the fines and fibers 

respectively. The model of retention process developed by Orccotoma et al.(97) contains 

the first pass retention,y as output variable. There is one input variable, thick stock flow, 

F1, and two disturbances, the consistency, and the fines content of the thick-stock stream, 

denoted by C1  and Y1, respectively. The modeling equation of retention is as follows: 

y(s)=[(G,G,,G21)/(1+ GcG,GliGm)]BWsp(s)+[Gui-{(GdiiGmGcG,G21)/(1+ GmGcG,Gi1)}1C1(s) 

+[Gd22-{(Gd12GmGcG,G21)/(1+ GmGcGvG11)}]Y1(s) 	 [1.145] 

F1(s) Gc(s)(BWsp-BVV) 

Where Gc, Gm, G, are the controller, the measure delay and the thick-stock control valve, 

respectively. G11 and GA are the ijth elements of the process and the disturbance transfer 

functions on eqn.[ 5.146]. It is noteworthy to mention that in a commercial paper machine, 
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the flow of a retention aid polymer is used as input variable. for control of retention. 

Therefore, the model represents the short recirculation loop when no chemical is used for 

control of retention. The scaled transfer function of the paper forming section is as follow. 

1.28(s+1.44)(s+0.26 r• .26(s+1.44)(s-0.01 
= 	  F1 + 	  

(s+1.40)(s+0.44) 	(s+1.40)(s+0.44) 
1 

1-0.63(s+1.44)(s+0.0` 
Ci + 

(s+1.40)(s+0.44) 

[5.146] 

Transforming the eqn.[5.146] in discrete form(z-domain) as under 

1.28z2-2.538z+1.258 	0.26z2-.5163z+0.2563 	-.63z2+1.2446z-0.616 
y(z)= 	  F1 + 	  C1 + 	  Yi 

Z2-1.982z+0.9818 	Z2-1.982z+ 0.9818 	Z2-1.982z+0.9818 
[5.147] 

Retention control strategy: 

Retention aids have limited power to control retention. The control range of retention aids 

can be improved by also controlling the head box consistency (especially filler 

consistency). The proposed control system manipulates both headbox ash content and 

retention simultaneously. Ash content is the ratio of the ash consistency to the total 

consistency expressed as a percentage as already mentioned. This is shown, in fig. 5.29, 

in which the filler is controlled by a PID controller. 

A point.  

    

4; 

   

    

     

     

     

Fiq. 5.29 Retention control system 
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The results are shown in Chapter-6. 

5.12.2 Development of ANN controller for the case of retention control of stock in 

wet end: 

The design procedure of a multi-layer neural network controller is described in chapter 4. 

The network is designed with 2:4:1 network. It indicates two neurons in input layer, four 

neurons in hidden layer and one in output layer with purelin activation functions. The 

training program is shown in appendix 2. The supervised control methodology for 

retention process has been used as shown in section 4.4, Chapter-4. 

5.13 Conclusion: 

In this Chapter, modeling and control of various parameters pertinent to approach flow 

system and head box operation of a paper machine are described using both single input-

single output (SISO) system (also with one control variable and one manipulated variable) 

and multiple input multiple output(MIMO)have been attempted. The modeling begins with 

a brief survey of the status of the existing models , selecting the appropriate procedure for 

modeling and then finally their development. Firstly the development of dynamic 

equations of various SISO parameters modeled from both steady state and unsteady 

state material and/or energy balance equations along with rate equations (if applicable) 

are attempted. This is then followed by developing a traditional PID SISO system and 

single loop control architecture and then converting to neural network based control 

system. The parameters to be measured and to be controlled in this section are: stock 

consistency, stock flow, total head, stock level, pH of stock, stock temperature and basis 

weight. For SISO system as an example, the total head and stock level are controlled 

independently which means that the calculated control output is based only on the error 

signal between the set point and the measured value of the variable. Interaction between 
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variables is assumed negligible. But in many practical control problems, multiple input 

multiple outputs, MIMO control problems (also number of control variables and a number 

of manipulated variables) do exist if the process interactions are significant. In these 

cases,-̀  even the best multi-loop control system may not provide satisfactory control and 

one has to consider multivariable control strategies such as decoupling control and model 

predictive control. 

In this present problem MIMO system in headbox considered are: total head and stock 

level, air pressure and level, stock flow and stock level, and retention of fibre fines. 

As experimental data on dynamics for most of the processes are not available on 

industrial scale, either known dynamics were considered or simulations run were taken. 

However, in this investigation experimental data from industry on stock flow, and basis 

weight for digital system are used for comparison purposes. 

All dynamic models of the process in both analog and digital form (either known or 

derived) are analysed through MATLAB simulation in order to get the unknown 

parameters of process (gain or sensitivity) or controllers. 

The open or closed control loops for all the parameters are simulated through MATLAB 

Simulink tool. 

As already indicated, if dynamic characteristics of a process parameter is not known, 

that has been found out by iterative procedure using again Simulink tool within a broad 

range of parameter available in literature. The simulation is, however, based on the 

analysis of closed loop control system including adjustment of selected controllers. 

Models are converted from analog to digital or vice versa and then a neural controller for 

the closed loop system is designed. 
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A step by step training procedure developed in this investigation is used to train the 

artificial neural network (ANN) for all the cases of SISO and MIMO system using MATLAB 

software. The performance of classical controller (PI/PID), (both analog and digital) and 

ANN controller are compared in terms of simulated results. 
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CHAPTER-6 
ANALYSIS OF DATA AND DISCUSSIONS 

An attempt is made in the section to compute data from various models for both SISO 

and MIMO systems using the classical controller and neural network based control with 

the help of MATLAB Simulink toolbox. The procedures laid down in Chapter-4, the 

various equations presented therein, the algorithm developed for the ANN and for PID, 

and finally the models developed for the various wet end parameters given in Chapter-5 

are used. From the plethora of data from MATLAB simulation dynamic characteristics of 

process control parameters for both MIMO and SISO system have been drawn in terms of 

response as a function of time. The details of dynamics of process parameters are given 

in Chapter-5. These are interpreted as follows: 

[A] ANALYSIS OF SISO SYSTEM OF PAPER INDUSTRY: 

The SISO control system consists of consistency, stock flow, total head, stock level, stock 

pH, stock temperature, and basis weight. These are explained as under: 

Case-6.1: Consistency control: 

For consistency control, the effects of tuning parameter, types of signals (continuous and 

discrete), and types of controllers (PI and PID) for SISO and MIMO system on response 

are shown. The training responses for the design of ANN controller are given. 

Comparison of performances of both conventional and ANN are made. These are 

discussed in the following sections. 

6.1:1: Effect of tuning on consistency control: 

Both lambda tuning and Ziegler-Nichols tuning are attempted to examine their effects on 

responses for comparison purposes.These are shown in figs. 6.1-6.2. 
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In Chapter 5, Section 5.1 it has been found that as we increase the A value of the PI/PID 

controller, the settling time decreases and offset value becomes zero. It also reduces 

overshoot but more oscillation occurs. It has been proved that the values of lambda time 

must lie between 15s-16s. Using the eqns.[5.24,5.25], the figs.6.1a and 6.1b have been 

drawn for both values of A. The simulated data are given in tables-6.1a & 6.1b (Appendix-

1) for 15s, and 16s respectively. It can be concluded that higher values of A of the order of 

15s or 16s would be the best tuning parameter for consistency controller. 

Fig.6.1a (when A =15 seconds) 	Fig.6.1b( when A =16 seconds) 

Figs. Lambda tuning responses 

Higher values of A of the order of 15s or 16s would be the best tuning parameter for 

consistency controller. 
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Figs. 6.2 Comparison between Lambda & Z-N tuning method 

Fig. 6.2 has been drawn for comparing Z-N and Lambda tuning method for consistency 

control; it indicates that the Z-N tuning method is found to be more suitable in this case 

compared to lambda tuning though no oscillations were found. This is most unlikely. The 

performances are more clearly shown in table 6.1c. 

Table: 6.1c Comparison of performances between Lambda and Z-N tuning 

Performance criteria 	Lambda tuning 	 Z-N tuning 

Delay time 	 6s 	 4s 

Rise time 	 50s 	 40s 

Settling time 	 45s 	 35s 

em 

MATLAB simulation of step response models (Seborg(139), Nagrath(90) etc).Therefore 

is not a. very surprising phenomena.This is usual for model based control. 

6.1.2: Effect of discrete and continuous signals for consistency: 

The results of simulation for continuous and discrete system using the eqns,[5.31an 

5.35], are shown in figs. 6.3,and 6.4. While fig.6.3 for PI controller indicates an ov( 

damped system P1) displaying non oscillatory but sluggish characteristics, the fig. 6 
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for PID controller represents an under damped system (<1) with overshoot and 

oscillatory behaviour. The nature of the curves for both continuous and digital signals in 

each case (PI or PID) are found to be the same. The time average value of consistency 

over the time range of 0 to 100 s is estimated statistically. The data for both analog signal 

and digital signal for PI as well as PID are compared in table 6.1d. The minimum value of 

consistency exhibit negative values for all the cases. It might be due to the consistency 

dynamics reported by Nancy with negative steady state gain values. It is interesting to 

note that both digital and analog systems display overdamped systems. The negative 

values in the lower range obtained in the response curves with both PI and PID controller 

are not unusual for model based control. 

Table:6.1d Comparison of statistical data for consistency control 

Performance criteria PI controller PID controller 

Continuous Discrete Continuous Discrete 

Minimum -0.163 -0.151 -1.491 -1.491 

Maximum 0.999 0.999 0.999 1.000 

Mean 0.925 0.994 0.860 0.869 

Median 0.994 0.99.4 0.977 0.994 

Std. deviation 0.182 0.185 0.314 0.399 

Range 1.163 1.151 2.491 2.491 

From the statistical analysis given in table 6.1 d It can be concluded that the results for 

continuous signal as compared to digital signal are more appropriate which is expected 

for chemical process industry. 
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6.1.3: Comparison between conventional and ANN controller data: 

The consistency responses of head box controllers using unit step input for both PI, and 

PID are shown in figs.6.5 to 6.8. Fig. 6.5 for PI control with normalized values, figs. 6.7 

Fig.6.3 Step responses of PI controller for continuous and discrete system 

Fig. 6.4 Step responses of PID controller for continuous and.discrete system 

without normalization for PID control whereas figs. 6.6 and 6.8 with normalized, withot. 

normalized value for ANN controller are drawn. The analyses of the responses for all th 

above cases are made and compared in tables 6.1e and 6.1f .The comparisons betwee 

conventional controller(PI and PID) and ANN controller are made for predictin 
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performances in terms of the parameters ,delay time, settling time and overshoot 

parameters. 

Table:6.1e Comparison between PI and ANN controller for consistency( case-a) 

Performances criteria  PI Controller ANN Controller 
Delay time (s)  7.0 0.1 
Settling time(s)  40 0.5 
Overshoot (%) 8.7 0.0 

Table: 6.1f Comparison between PID and ANN controller for consistency case-a) 

Performances criteria  PID Controller ANN Controller 
Delay time (s)  5.0 0.0 
Settling time(s)  30 0.1 
Overshoot (%) 2.0 0.0 

These tables show that the ANN controller is best suited for consistency control because 

it gives immediate control action( means less delay time),removes overshoot, and settling 

time is very less as compared to conventional controllers. 

Firstly the training patterns are obtained from conventional PI and PID controllers. During 

training, the values of gradient descent term for PI controller in network performance 

calculations of the order of 9.99995e-005 and error goal 0.0001 are met at 6062 epochs. 

Similar calculation for PID controller, shows the value of the order of 9.99997e-006, and 

error goal e-005 at 12308 epochs. The training responses for both PI and PID are shown 

in figs.-6,9 & 6.10. The training responses are found to be quite satisfactory. 
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Fig.-6.5 Response for closed loop system 
(normalised data) 

Fig.-6.6 ANN controller response 
normalised data 

Fig.-6.7 Response for closed loop system 	Fig.-6.8 ANN controller response 
Fig.-6.3 to 6.8 Consistency responses(PI/PID/ANN)controllers 

Fig.- 6.9 Error goal with respect to epochs during training.(PI controller data) 
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Fig.-6.10 Error goal with respect to epochs during training.(PID controller data) 

For case-b given in Chapter-5, the closed loop control system is simulated with two 

consistency parameters namely: dilution water consistency, Cyd and thick stock 

consistency, C. When consistency model is treated as MIMO system (two input but one 

output), the simulation results are plotted in figs,6.11& 6.12 and also used for training the 

neural network. During training, the fig.6.13 indicates-  the gradient descent term of the 

order of 9.9983e-006, and error goal of 0.00001 at 5791 epochs. After training the 

network, the ANN controller is tested at the rated normalized consistency 0.97 as shown 

in fig.-6.14. The comparison between controller parameters for case-b is given in table 

6.2(Ap pend ix-1) . 

Table:6.2 Comparison between ANN and PI controllerfor consistency( case-b) 

Performances criteria PI Controller( Cy;) PI Controller( Cyd) ANN Controller 

Delay time(s) 3.75 4.0 2.5 
Settling time(s) 15.0 25.0 3.0 
Overshoot (%) 2.6 10.9 0.99 

Rise time(s) 7.5 8.0 5.0 
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Fig. -6.11 Input consistency of stock simulation response(case-b) 

Fig. 6.12 Dilution water consistency simulation response(case-b) 

Fig. 6.13 Artificial neural network training response (case-b) 
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Plot between Errors Vs no, of iteration 
When no. of hidden neurons 18, samples 15 

Learning rate versus Error in Total head 

' 	Yrg  

-9-'2.-  ,, 

, 

0:5 	 0.6 	 0.7 
	

0.8 
	 0.9 

Learning. rate 

0.007 
0.006 
0.005 

Error 
0.004 
0.003 
0.002 
0.001 

It reveals that for higher velocity the error almost becomes equal to zero for -higher value 

of iterations (>600). 

Plot between Error Vs No of hidden neurons 

0.025 

0.02 

Error 0.015 

0.01 

0.005 

0 
6 	6 	10 	12 	14 	16 	18 	20 	22 	24 

No. of hidden neurons in hidden layer 

Fig-6.15 Plot of error vs hidden neurons 

Fig.- 6.16 Effect of iterations on error 

Fig.-6.17 Effect of learning rate on the error of total head 
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Learning.Tate]. 

Fig.-6.18 Effect of changing momentum 

Fig.-6.19 Effect of changing learning rate 

Fig.-6.20 Effect of changing of momentum 
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Fig.-6.21 Effect of changing of hidden neurons 

Comparison between actual and ANN values, when no. of neurons 18, momentum,0.8, learning 
rate,0.9 
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Comparison between actual and ANN.values, 
when no. of hidden neurons 20, momentum 0.8, learning rate 0.9 
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Fig.- 6.22 Comparison between actual and ANN data 

Fig.6.23 Comparison between actual and ANN data 
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From the analysis of plots of ANN parameters as a function of error, it can be found that 

the neural network parameters indicate satisfactory results of JNV values or total head at 

the values shown in table 6.4. 

J/VV ratio profiles as a function of speed indicate that ANN controller give better 

prediction than the same from the data obtained from industry. The plots also reveal that 

above the speed of 450 m/min the values obtained from ANN simulated results and the 

data obtained from industry closely tally with each other. However there are noticeable 

deviations in the range of values between 300.3 m/min to 450 m/min. 

Table:6.4 The range of parameters for neural network controller design 

Number of hidden 
layers 

Number of hidden 
neurons 

Learning rate Momentum 

1.0 18-20 0.6 0.9 

Case-6.3: Total Head control: 

6.3.1: Effect of discrete and continuous signals for total head: 

Using the eqn.[5.42] in chapter-5, the simulation result for continuous and discrete models 

of total head dynamics with PI controller is shown in fig. 6.24. The data from fig.6.24 

have been analysed statistically in terms of maximum, mean, median, standard deviation 

and range. These are shown in table 6.5.. From the analysis of data it can be concluded 

that continuous signal as compared to digital signal which gives delayed response due tc 

sampling. 

Table:6.5 Comparison of statistical data for total head control 
Performance criteria Continuous model Discrete model 

Minimum 0.000.  0.000 

Maximum 1.282. 1.018 
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Mean 0.992 0.955 

Median 1.000 1.000 

Std. deviation 0.101 0.214 

Range 1.282 1.018.  

6.3.2: Comparison between conventional and ANN controller data: 

The model for total head is simulated with the help of MATLAB Simulink toolbox (fig.5.7, 

chapter-5). The simulation result is shown in fig.6.25 and used for training the neural 

network. The neural network error goal 0.0001 is met at 100200 epochs during training. 

The responses of total head of head box using PI and ANN controllers at rated total head 

are shown in figs.-6.26,and 6.27. The responses of PI controller and ANN are more 

clearly reflected in figs.6.25 and 6.26 respectively. The plots reveal the following 

characteristics: 

Overshoot, decay ration, rise time and response time for both analog and digital signals. 

The performances of both the controllers are compared in fig.6.27. 

Fig.6.24 Plot between continuous and discrete data 
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Fig. 6.25 Simulation of head-box total head control system(PI controller) 

Fig.6.26 ANN controller response 

Fig.6.27 PI and ANN Controller response 
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From the analysis of rise time, overshoot and settling time of both the controller, it is 

revealed that the ANN controller gives better results. The performance indicators 

between ANN and PI controller is more clearly shown in table 6.6, which indicates that the 

ANN controller is more reliable than conventional controller because ANN controller 

reduces the delay time, and minimizes the overshoot. 

Table:6.6 Coma prison between ANN and P1 controller for total head 
Performances 

criteria 
ANN controller PI controller 

Minimum value 0.00003 0.0 
Maximum value 42.25 51.25 

Mean 32.24 31.88 
Median 39.89 39.99 

Standard 
deviation 

15.88 19.14 

Range 42.25 51.26 

overshoot,% 
Maximum  5.6 .4 28.1 

Delay time, s 0.8 1.8 

Case-6.4: Stock level control: 

6.4.1 Effect of discrete and continuous signals for stock level: 

The first order dynamics proposed in eqn.[5.49] given in chapter-5 has been simulated 

with the help of MATLAB software. The simulation results with unit step input for 

continuous and discrete system with PI controller are shown in fig. 6.28. It indicates 

approximately the same values for both continuous and discrete systems. The profiles 

coincide with each other. 

6.4.2: Comparison between Conventional and ANN controller data: 

Stock level response of headbox using PI controller is shown in fig. 6.29. The 

performance of PI and ANN are compared in fig.6.30. The plot shows that the PI 

controller indicates the settling time of 12s and delay time of 3s whereas ANN controller 

shows the same of the order of 10s, and 2.1 s respectively. The performance of ANN and 
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PI controller in terms of statistical data is also shown in table.6.7. It concludes that the 

ANN controller is best suited for the stock level control. 

Table:6.7 Comparison between PI and ANN controller for stock level 
Performances criteria PI data ANN data 

Delay time,s 3.0 2.1 

Settling time,s 12.0 10.0 

Mean value 14.91 15.8 

Maximum value 19.93 19.93 

Std. 6.79 5.9.1 

Median 18.47 19.09 

Range 19.93 19.93 

Fig.6.28 Plot between continuous and discrete data (without controller) 
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Fig. 6.29 PI controller response ( simulation of model) 

Fig. 6.30 Controller response 

Case-6.5: pH control of stock: 

6.5.1: Effect of discrete and continuous signals for stock pH: 

In case of pH, the dynamic equation of first order eqn.[5.56] developed in Chapter 5, 

simulated with the help of MATLAB software. The simulation results for continuous and 

discrete system with conventional controller (PI) are shown in fig. 6.31. Subsequently the 

simulated data are used for training the neural network. The data from fig.6.31 are 
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analysed statistically. Std. deviation of the order of 1.493, mean of the order'of 6.21 for 

continuous signal while std. deviation of the order of 1.505, mean of the order of 6.19 for 

discrete signal are obtained. It reveals that there is no appreciable variation in continuous 

and discrete signal. 

6.5.2: Comparison between conventional and ANN controller data: 

The artificial neural network training response is shown in fig.6.32. It shows the network 

performance of the order of 0.000301793, error goal of the order of 0.0003 at 80000 

epochs. After training, the conventional controller has been replaced by ANN controller. 

Fig. 6.31 Plot between continuous and discrete data(without controller) 
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6.6.2: Comparison between conventional and ANN controller of different designs 

data: 

The performances of the PID controller, MLP, MFLANN (modified functional link ANN) 

and DLFANN (direct linear feed through ANN) controllers for temperature are compared 

in table-6.9 and responses shown in figs.6.35 to 6.38. Table-6.8 shows that the MLP 

response gets the steady state value of the order of 38,88s in a very short period ( settling 

time) with rise time when the set point is 40°c. The performances of all the ANN 

methodologies along with PI are compared in table 6.9. 

Fig. 6.34 Plot between continuous and discrete data(without controller) 

Fig.-6.35 PID controller response 
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Fig.-6.36 MLP neural network controller response 

Fig.-6.37 MFLANN neural network controller response 
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Fig.-6.38 DFLANN neural network controller response 

Table:6.9 Comparison of PID ,MLP, DLFANN , and MFLANN controllers 	 
MFLANN 

Criteria Controller 

Set point Steady state Time(s) 560 380 380 270 

Value 40 39.88 39.86 40 

Overshoots Max. Nil Nil Nil Nil 
(°C) 

Performances • PID MLP DLFANN 
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Min. Nil Nil Nil Nil 
Undershoot Max. Nil 0.16 0.11 Nil 

Table 6.9 shows the values of settling time, and overshoots for PID, MLP, DLFANN, and 

MFLANN controllers. Based on the results it can concluded that the settling time of MLP 

and DLFANN controllers are less as compared to other ANN architecture. Therefore 

MLP and DLFANN controllers give comparable values. Therefore either design can be 

used. 

Case-6.7: Basis weight control (Analog system): 

As shown in Chapter-5, there are two dynamic models relating stock flow rate and basis 

weight are available , both in analog eqns[5.71a,5.72a] as well as in digital form 

eqns.[5.71b,5.72b], in addition to the model derived by order reduction process and its z 

transformed equation. The analog model along with conventional and ANN controllers are 

simulated. The results of analog simulation are interpreted as under: 

6.7.1: Effect of discrete and continuous signals for basis weight: 

The simulation results of the process dynamics for continuous and discrete signals 

without controller as shown in fig. 6.39 reveals that the continuous signal represents basis 

weight values with the std. deviation of the order of 0.1593, mean of the order of 0.477, 

while std. deviation of the order of 0.1642, mean of the order of 0.474 are obtained for 

discrete signal. 

6.7.2: Comparison between conventional and ANN controller data: 

The Simulink model between stock flow rate and basis weight as shown in fig.5.14, in 

chapter-5 is used. Industrial data are used for training the network (table-6.10). The 

analog simulation results of basis weight model with PI controller are given in fig.6.40 

(set-point response for the closed loop system) and in fig.6.41 (closed loop response for a 
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unit. step disturbance). The mean value of the normalized basis weight is obtained of the 

order of 0.8233 in the former case (fig.6.40) whereas the value of normalized basis weight 

is reduced to 0.06144 in the later case (fig.6.41). Also more oscillation is exhibited in the 

case when unit step input for disturbance variable is used. Basis weight response using 

ANN controller at the rated basis weight at 59% of the gate opening(normalized value 

1.00) are given in fig-6.42 and fig.6.43 where PID , and ANN data are compared with mill 

data. The maximum data of ANN tally with Mill data. The artificial neural network training 

response is shown in fig.6.44. The data from ANN based control provide quite satisfactory 

control as except the range of data between 5 to 7. PID control based data is found to be 

inferior to the ANN controller data. 

Fig. 6.39 Simulation results of continuous and discrete system (without controller) 
when sampling period=2.5s 
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Fig. 6.40 Unit step point response for closed loop system 

Fig. 6.41 Unit step point response for a unit step disturbances 
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Fig-6.42 Basis weight test result 
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Mill data 
—u--ANN data 

PID data 

Basis weight control response 

Fig. 6.43 Comparison between mill data, ANN, PID data 

Fig. 6.44 ANN training response 

Training data for basis weight ANN controller have been obtained as under. 

Table: 6.10 Mill data and comparison between PID & ANN data 

S..No 
Normalized basis 
weight(Mill data) 

BW in % 

Stock flow 
LPM & 

Normalised 

Basis weight(PID 
data) 

Basis weight(ANN 
data) 

1 	150% 0.847 3004 0.8159 1.0 0.846 

2 	51% 0.864 3079.65 0.8364 1.0 0.878 

3 	52% 0.881 3155.10 0.8569 1.0 0.881 
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6.8.2: Comparison between conventional and ANN controller.  data 

For simulating the eqns.[5.84 and 5.85] in chapter-5 with MATLAB software, the artificial 

neural network is trained using different neural network algorithms like gradient descent 

technique, Levenberg-Marquardt(LM) algorithm and GDX. 

The figs.6.45b to 6.48 show the performances of different networks, when the network is 

designed as 1:5:1, error goal is e-c25  met at 18502 epochs in case of gradient descent 

algorithm. The training error goal is met at 5 epochs in case of Levenberg-Marquardt 

algorithm while the training error goal is met at 234 epochs in case of error gradient 

descent algorithm. The performance of dynamic model in digital form and artificial Neural 

Network model are found out with the help of MATLAB programming, shown in table-

6.11. The minimum error is observed in case of gradient descent and LM techniques. 

Figs. 6.49 to 6.51 indicate the basis weight output response with respect to number of 

samples. The maximum number of samples of dynamic model closely tally with those 

obtained from gradient descent technique but the training time is large compared to 

Levenberg -Marquardt algorithm and error gradient descent technique. The results are 

more clearly compared in table 6.10. 

Fig.-6.45b ANN training response 
	Fig.- 6.46ANN training response(LM) 
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Fig.-6.47 ANN training response(gdx) 	Fig.-6.48 Effect of different paradigm 

Fig.-6.49 Comparison between model based data and ANN data 

Fig.-6.50 Comparison between model based data and ANN data(gdx) 
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Fig.-6.51 Comparison between model based data and ANN data(LM) 

Fig.- (6.49 to 6.51) Basis weight output response with respect to number of samples.  

Table:6.11 Coma prison of performances between ANN controllers 
Performances 
criteria 

Model based 
Data 

ANN(Gradient. 
Descent) 

ANN(Levenberg- 
Marquardt) 

ANN(gdx) 

Minimum 147.0 146.7 146.7 146.8 
Maximum 148.5 148.3 147.8 148.5 
Mean 147.7 147.7 147.6 147.8 
Median 147.7 147.8 147.7 147.7 
Standard 
deviation 

0.4751 0.4414 0.2567 0.5424 

Range 1.5 1.6 1.1 1.7 

[B] ANALYSIS OF MIMO SYSTEM OF PAPER INDUSTRY: 

Case-6.9: Total head and stock level control: 

The simulation results of eqns. [5.86,5.87] for continuous and discrete system are shown 

in figs. 6.52 and 6.53( for Y11 & Y12) without using controller. These are interpreted as 

under: 

6.9.1: Effect of discrete and continuous signals for total head and stock level: 

The fig. 6.52 shows the performance in terms of std. deviation of the order of 0.1778, 

mean value of data of the order of 0.444 for continuous signal but for digital signal, and 

the std. deviation of the order of 0.187, and mean value of data of the order of 0.436 are 

obtained. However, the other statistical data remain the same. 
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6.9.2: Comparison between performances conventional and different ANN 

methodologies: 

The results have been computed using BPNN, perceptron and ART1 network for single 

neuron, for MIMO(two input single output ,TISO) and SISO system (as the case may be). 

It is well known that perceptron network is valid for single layer only and BP and ART are 

used for multi-layer NN problems. In this investigation various equations, for BP, 

eqns.[5.86 and 5.87], for perceptron, equations, eqns.[5.90 and 5.91] and for ART [5.86 

eqns 5.87] are employed for computation. The tuning parameters like learning rate, 

momentum coefficient are used with all the above mentioned equations. The results are 

computed through MATLAB and simulations are carried out. The training data are 

obtained from air cushion • headboxes from two paper mills in India. The training 

parameters for headbox problem are given in table-6.12. 

Table: 6.12 Parameters values and ranges 
Number of hidden 

layers 
Number of hidden 

neurons 
Learning rate Momentum 

Factor 
1.0 2-14 0.5-0.9 0.5-0.9 

The eqns.[5.90, 5.91] given in Chapter 5 represent the output in terms of total head and 

stock level in head box control system. From figs 6.54 to 6.55, it is evident that the lowest 

error occurs at learning value of 0.6 for network training. Therefore 0.6 is considered as 

optimum. The values of momentum coefficient have been varied between 0.5 to 0.9. 

From figs 6.56-6.57, it is clear that there is continuous linear decrease of error with the 

increase of momentum coefficient up to value of '0.9, there is no substantial change 

occurred thereafter. Besides most of the previous investigators employed the value o 

momentum factor close to 0.9. Therefore 0.9 has been chosen as optimum value o 

momentum factor in this present investigation. 
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The effect of hidden nodes on error is shown in fig-6.58. The normalized data of total 

head as a function of the number of samples is shown in fig.-6.59. The figs.(6.59 to 6.60) 

further indicate the comparison of values for output 1(total head) and output 2(stock level) 

for MIMO system. The values are more clearly shown in table 6.13. For SISO ( Single 

input single output) system as indicated earlier perceptron neural network is used. The 

simulated data are shown in figs 6.61 and 6.62, The figs indicate the comparison of 

values for output 1 and output 2 with actual values. It is evident that the values are closely 

tallying with each other. The effect of iterations on error for training is shown in fig.-6.63. 

The error is continuously decreased with the increase of number of iterations. For MIMO 

system the error has become minimum of the order of 0.0002. 

Fig.6.52 Simulation result of continuous and discrete data(Y11) 
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Learning rate versus Error in Total head(y1) 

Fig.6.53 Simulation result of continuous and discrete data(Y12) 
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Fig.6.54 Effect of learning rate (total head) 

Fig.-6.55 Effect of learning rate (stock level) 
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Fig.-6.58 Effect of hidden nodes 
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Fig.-6.59 Comparison between actual and ANN data for total head 
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Fig.-6.60 Comparison between actual and ANN data for stock level 

For SISO system: 	 . 

Fig.-6.61 Comparison between actual and ANN data for total head 
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Fig. 6.63b Comparison .between MIMO and SISO for stock level 

The equations[5.90,5.91] for decouplers given in Chapter-5 are used for estimating data 

for total head and stock level. Figs.6.63a and fig.6.63b are drawn for comparing the ANN 

data for MIMO and decoupled SISO systems. The data when analyzed statistically, the 

following important conclusions are drawn. 

Maximum error of the order of 0.0851, minimum error of the order of 0.0 and average 

error of the order of 0.0237 for total head have been obtained. 

The data from fig 6.63b was analyzed statistically. Max error of the order of 0.035, min 

error of the order. of 0.009 and average error of the order of 0.0205 for stock level were 

obtained. 

Table:6.13 Comparison between ANN methodologies 

Performances 
criteria 

Perceptron BPNN ART1 

MIMO yi Y2 Y1 y2 To 	overcome 	the 
problem 	of 	learning 
stability 

Min error % --- --- -3.5 -0.3 

Max. error% --- ---- 5.05 5.6 
---- 

Average error ---- 0.775 2.65 
SISO 

Min. error % 10.5 0.0 
Max. error % 15.5 0.9 ---- 
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Change in presspre of air(rho) 

Average error 
	

13.0 
	

0.45 
All the profiles indicate that the ANN controllers satisfy the requirement of adequate 

control for the MIMO system comprising of total head and stock level. 

Case-6.10: Comparison of simulated data between PID and ANN controller for air 

pressure and level: 

The modeling eqns.[5.92 to 5.135] for air pressure and level of the pressurized headbox 

have been desdribed in chapter 5. The simulation results of eqns.[5.128,5.130,5.132 & 

5.134] without controller are shown in figs. 6.64 to 6.67. The responses found out are 

found to be quite interesting. The pressure profile introduces overshoot but stock level 

exhibit first order characteristics. The nature of the responses became different based on 

the assumptions. When controllers are used, the responses display clearly second order 

system with overshoots of the order of 22.7% and 6.8%. The performances between PD 

controller and ANN controller for Lhead(neu), P • head(rho) are shown in table 6.14a, and 

6.14b. These profiles tally with those shown by Kikiewich et aI.(75). 

Fig.-6.64 Time characteristics of pressurized flow box when 1i5=0  
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characteristics: 	l'ESSEa (isiad fl ow box' 

Fig.-6.65 Time characteristics of pressurized flow box when ui=0 

Fig.-6.66 Unit set point response for closed loop system for 1-headi, when 1i5=0 

Fig.-6.67 Unit set point response for closed loop system for P - headl/ when p5=0 
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After simulating the process, data is used for training the network. The plots 6.68 to 6.70 

show the errors between PID and ANN data with a given set point. Both the controllers 

show over damped system. Statistical data are also depicted in table 6.15. Which show 

that the ANN controller gives approximately the same value as the conventional.  controller 

provides.. The comparison between PID and ANN is more clearly shown in figs.6.69 to 

6.70 where it is found that except two values of ANN other tally very closely. Therefore it 

can be concluded that that the ANN controller can be used for MIMO system successfully. ..  

Fig.-6.68 Comparison between classical and ANN data for Lheadl, when 1.15=0 

Fig.-6.69 Comparison between classical and ANN data for P headl I when 1.15=0 
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rppansgrt betwes-n1PID and Al`41'4,  clta 

Fig.-6.70 Comparison between classical and ANN data. for P - head2, when ui=0 

Table: 6.14a Comparison between PID controllers for Lhead, Phead 

Performances criteria PID value for (Lhead) PID value for(Phead)   - head, 

Max. overshoot 22.7% 6.8% 
Delay time(s) 5.4 2.14 

Min. 0.0000 0.0000 
Max. 1.2270 1.0680 
Mean 0.5174 0.8179 .  

Median 0.4415 1.0000 
Std. 0.5122 0.3852 

Table: 6.14b Com arison between PID & ANN controller for Lhead, Phead 
Performances 

criteria 
Phead2 Lheadl 

PID ANN PID ANN 
Min. -0.1503 -0.1.507 0.1280 -0.0621 
Max. 1.0000 0.9900 2.9470 2.9380 

• Mean 0.2834 0.2841 2.1240 2.1000 
Median 0.0209 0.0175 2.5800 2.5400 

Std. 0.4088 0.4059 1.0050 1.0480 
Range 1.1500 1.1410 2.7690 3.0000 

Table:6.15 Performances of air pressure and level 
Lheadl Min. error -0.0551 

Max. error 0.0852 
Average error 0,0242 

Pheadl 
Min. error -0.0009 
Max. error 0.0165 

Average error 0.0038 
Phead2 

Min. error -0.0912 
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Max. error 	 0.082 
Average error 	 -0.0008 

Case-6.11: Comparison of simulated data between PID and ANN controller for 

stock flow and stock level: 

Using the eqns.[5.136 to 5.142], the closed loop system model of headbox having 

interactions between stock flow and stock level has been simulated with the help of 

MATLAB Simulink toolbox (fig.5.27, Chapter-5) . The simulation results for Yi(stock flow) 

and Y2( stock level) are shown in fig. 6.71. The responses of these two control variables 

are completely opposite. These profiles tally with those shown by Whalley et 

al.(166).These data have been used for training the neural network. During training the 

neural network, the network performance of the order of 9.998 e"°°5  and error goal 

0.0001 	is 	met 	at 	115830 	epochs 
	

(fig. 	6.72). 

Fig. 6.71 Simulation results of headbox model 
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Fig 6.72 Artificial neural network training response 

The ANN and model responses for stock flow and stock level are shown in figs.5.73 and 

5.74 respectively. The responses for both the cases, namely for stock flow and stock level 

based on model and ANN closely resemble each other. However slight departure is 

noticed in the case of stock flow at the initial stages of data. Errors between models data 

and 	ANN 	data 	are 	shown 	in 	table 	6.16. 

Fig. 6.73 Comparison between ANN and model data(stock flow) 
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Comparison between ANN and Model data 
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Fig. 6.74 Comparison between ANN and model data (stock level) 

Table: 6.16 Errors be model 
Stock flow 

 _______ 
Min. error 

______ ...... 	.......... 
-0.1477 

Max. error 0.038 
Average error -0.020 

Stock level Mina error -0.0168 
Max. error 0.020 

Average error 0.002 

Case-6.12: Retention control: 

The various models for retention control are explained in Chapter 5, Section.5.12.1. The 

eqn[5.146] represents the model of the paper machine containing the first pass retention 

as output , thick stock flow as input and two disturbances namely: consistency and fines 

content of the thick stock stream. 

6.12.1: Effect of discrete and continuous signals for retention: 

Using eqn.[5.146], and assuming retention and thick stock flow only, the simulation runs 

are carried out and response profile for both analog and digital system is drawn in fig 

6.75b. This figure shows that the mean data of the order of 0.8897, median of the order of 
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0.8425, std deviation of 0.0975 for continuous signal and for discrete signal, the mean 

value of 0.8806, median of 0.8385, std deviation of 0.0997 are obtained. 

6.12.2: Comparison between conventional and ANN controller data: 

The closed loop control system for retention process is also simulated with MATLAB 

Simulink toolbox. The PID simulation response is shown in fig. 6.76. This simulated data 

obtained from PID has been used for designing the ANN controller. During training the 

neural network, the network performance in terms of parameter gradient descent term of 

the order of 9.82 e"°°5  and error goal 0.0001 are met at 101 epochs (fig. 6.77). The PID 

controller indicates delay time of the order of 1.25s, rise time of 25s and settling time of 

26s. On the other hand, the ANN controller response removes overshoot of the order of 

0.1, delay time of 0.5s, and settling time of 0.1s. The comparison between ANN and PlD 

controller is made in fig.6.78 and data are shown in table 6.17. 

Fig. 6.75a Retention model simulation without controller 
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Fig. 6.75b Simulation results of continuous and discrete data 

Fig. 6.76 Closed loop response (PID controller) 

Fig. 6.77 Training response 
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Fig. 6.78 Comparison between PID & ANN Controller 

Table: 6.17 Errors between simulated data and ANN data 

Performances criteria PID controller 'ANN controller 
Min. value 0.438 0.439 
Max. value 1.190 1.185 

Mean 0.890 0.892 
Median 1.096 1.099 

Std. 0.335 0.332 
Range 0.752 0.742 

Min. error between PID and ANN 	0.001 
Max. error between PID and ANN 	0.005 

The ash content data from mill was analyzed statistically. These data have also been 

used for training the neural network. The comparison between mill data and ANN data are 

shown in fig. 6.80. Maximum error of the order of 7.32, min error of the order of 0.21 and 

average error of the order of 3.507 for Ash Content (ANN & Mill Data) were obtained. It 

reveals that the mill data values revolve around those of ANN data. The data tally very 

closely which further indicate that performances of PID and ANN are comparable. 
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Comparison between mill data and ANN data 

FINES CONTENT 	FPR 
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Fig. 6.80 comparison between Mill data(Ash content) and ANN data 

The variation of retention and ash content as a function of time are shown in figs. 6.81a 

and 81b. Fig 6.81a indicates max., min. and average values for the fines content of the 

order of 52.1, 41.1 & 46.57 respectively. Max., min. and average values for the FPR were 

73.2, 60.6 & 66.544 respectively. Max., min. and average values for the FPFR were 35.5, 

24.16 & 29.623 respectively. The data is given in table 6.18 

Fig. 6.81a Retention data 

Table -6.18 R 
FINES CONTENT  

- 	-----,----- 	--- 
FPR 

- -, 	
FPFR 

41.10  73.20 35.50 
41.67  72.50 33.30 
45.00  70.00 30.00 
44.16 68.33 29.67 
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Comparison between mill data(SRT) and ANN 
data 

45.00 67.50 30.00 
46.67 65.80 30.00 
51.67 64.17 32.50 
48.33 61.67 24.16 
50.00 61.67 25.80 
52.10 60.60 25.30 

Fig. 6.81b shows the comparison between mill data( retention) and neural network ata. It 

indicates the minimum error, maximum error, and average error of the order of .007, 

6.573, and 1.151 respectively. In this investigation, the neural network model works well. 

The data are given in table 6.19. 

Fig.:6.81b Comparison between mill data and ANN( Solid retention) 

Table:-6.19 SRT mill data and ANN data 

No. of Samples Mill data(SRT) ANN Data 
1 0.809 0.8787 
2 0.872 0.88 
3 0.877 0.878 
4 0.88 0.876 
5 0.89 0.876 
6 0.90 0.90.  
7 0.91 0.92 
8 0.91 0.90 
9 0.92 0.92 
10 0.92 0.914 
11 0.93 0.937 
12 0.94 0.935 
13 0.95 0.948 
14 0.98 0.964 
15 1 0.98 
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The ANN simulsated data very closely tally with the actual data obtained from 

experiments in the mill. Thus it can be concluded that ANN based control can be used for 

retention and ash control in a paper mill. 

6.13: Conclusions: 

This chapter concludes that the ANN controller can be used for controlling SISO, TISO 

and MIMO systems. In simulating various SISO systems (such as consistency, total head, 

stock level, pH, stock temperature and basis weight) in paper mill approach flow and 

headbox,. TISO system(thick stock consistency and white water consistency) and MIMO 

system( total head and stock flow, air pressure and stock level, stock flow and stock level, 

and retention) it is found that it takes less time to reach at steady state value,decreases 

the overshoot,improves delay time. When artificial neural network is trained successfully 

then ANN controller can give precise and immediate action to the final control element 

which corrects the plant variable. More detailed conclusions are given in Chapter 7, 

conclusions and recommendations. 
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CHAPTER-7 
CONCLUSIONS AND RECOMMENDATIONS 

In the present investigation design of artificial neural network based control system has 

been analyzed and designed for adaptation in Indian paper mill. To examine its feasibility, 

performances of conventional controllers (P/PI/PID) and ANN controllers are compared 

through simulations in MATLAB Simulink toolbox.The parameters studied were both 

3ISO, and MIMO systems in the approach flow systems and headbox of paper machine 

vet end process. The SISO systems were thick stock consistency,stock flow,total 

lead,stock level,pH of stock,stock temperature and basis weight. The TISO(two input and 

;Ingle output) system was only consistency(consistency of thick stock and white water 

consistency). For MIMO system parameters involving interaction of parameters 

were:stock flow and stock level,air pressure and stock level for air cushion headbox, total 

head and stock.flow, and retention of fibre fines for basis weight and consistency. 

In order to achieve the above objective strategy of methodology of systematic 

investigation on the estimation and controlling of process parameters for both classical 

control( P/PIIPID) and ANN with relevant algorithms has been developed in terms of both 

analog (continuous signal) and digital(discrete signal) techniques. 

The detailed dynamic modeling of processes such as consistency(SISO and TISO), were 

made in analog systems whereas digital dynamics for basis weight with zero order hold 

is derived from first principles using unsteady state material and/or energy balance 

equations. However, modeling of process dynamics of pH(SISO),Ievel(SISO) and 

temperature(SISO) were done iteratively through computer simulation using Simulink tool 

within a broad range of parameter available in literature. The simulation was, however, 

based .on the analysis of closed loop control system including adjustment of selected 
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controllers. For air cushion headbox detailed derivation of the dynamics were derived 

especially as in most of the Indian paper mills( medium to large capacity) are using this 

type of headbox. 

Other analog' models for SISO systems like total head(SISO),basis weight(SISO), and all 

MIMO systems as indicated above were used from published information. All models 

either open loop or negative feedeback closed loop were developed in this study and 

transformed in to digital models including the process models. 

For consistency control only for SISO system both Lambda and Ziegler Nichols (Z-N ) 

tuning methodologies with Bode stability criterion have been used to just examine the 

effect of tuning on responses. For other cases, SISO, TISO, MIMO (both analog and 

digital) computer simulation (MATLAB Simulation techniques with SIMULINK tool) were 

employed for tuning. 

For ANN solutions, adaptive linear neural network (ADALINE), perceptron neural network( 

PNN), back propagation neural network(BPNN), adaptive resonance theory( ARTI) and 

augmented back propagation network(ABPN) were used.Two ANN control architectures 

used, for training of neural controllers were :supervised control, and direct inverse 

control. 

All single loop control architectures(SISO and MIMO) have been converted to neural 

network based control system using different types of activation functions with sigmoid/ 

log sigmoid and linear equations.For the case of SISO systems an ANN control system 

(BPNN) along with the necessary algorithm has also been designed. All MIMO systems 

however all the above mentioned ANN methodology were used. The network was trained 

with PI/PID simulated data in all the cases except stock flow, basis weight and retention in 

which cases experimental/ industrial data were used for training. 
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For simulation of MIMO system considered in this present investigation both relative gain 

array(RGA) and decoupling techniques were used. RGA was employed for estimating the 

degrees of interaction and pairing of controlled and manipulated variables between 

different sets of control loops whereas decoupling technique was used for adjusting the 

interaction. The relative gain between 0 to 1 are only considered for analysis. 

Data were computed from various models for both SISO and. MIMO systems and for 

continuous and digital signals using the classical controller and neural network based 

control with the help of MATLAB SIMULINK toolbox and the algorithm developed for the 

purpose. 

From the plethora of data from MATLAB. Simulation of the process parameters, some 

dynamic characteristics have been drawn in various graphs with response as a function of 

time for all the above mentioned parameters when unit step input signal is applied as a 

forcing function and then performances are evaluated.While for consistency control, the 

dynamic responses using. both PI & PID are studied and compared with the performances 

of ANN based controller, the cases of total head, stock level and pH only PI and ANN, for 

temperature and basis weight only PID and ANN were employed, analyzed and 

compared. From the detailed analysis the following noteworthy conclusions can be made: 

The comparison of dynamic responses of PI, PID and ANN based controller with 

unit step input signals for headbox consistency control indicates that ANN 

controller removes the overshoot and improves the settling time while the settling 

time of PI controller is found to be larger. The addition of derivative action attempts 

to reduce sluggishness of the PI control. 

o Higher values of A time of the order of 15s or 16s would be the best tuning 

parameter for consistency controller. Comparing the performances between 
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lambda and Z-N tuning method,the later is found to be slightly better. This should 

be unlikely. The dynamics also displays mostly overdamped characteristics.On 

analysis of responses the performance for continuous signal is found to be better 

compared to digital signal. These aspects need further investigation. 

• In case of neural network controller design, the selection of optimum number of 

neurons in the hidden layer plays , an important role. The neural network control 

reduces the error and gives satisfactory results between 18 to 20 neurons in the 

hidden layer. One can use the different number of neurons in the hidden layer (16 

to 24 neurons) and different values of momentum factor. The learning rate 0.9 and 

momentum factor 0.8 can be chosen as the most acceptable values. 

• For flow control, JNV ratio profile as a function of speed indicates that ANN 

controller gives good prediction when simulated with the data obtained from 

industry or from theoretical models. It is evident that above the speed of 450 m/min 

the values obtained from ANN simulated results and the data obtained from 

industry closely tally with each other. However there are noticeable deviations in 

the range of values between 300.3 m/min to 450 m/min. This also needs further 

study. 

• For total head, SISO system ANN controller indicates the overshoot(less than 

5.6%) while PI controller indicates the overshoot approximately 28.1% which is 

much greater than 5.6%. ANN controller also improves the delay time by 0.8 s. 

• For headbox level control analysis, it is clear that ANN controller decreases the 

overshoot. The delay time and settling time for ANN controller are 2.1s and 10s 

respectively while PID controller presents the delay time and settling time of the 
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order of 3s and 12s respectively, which are greater than ANN controller time. 

Statistical data amply clarifies that the ANN controller can give quick response. 

o In case of pH controller design and analysis, it is found that the performances of 

both the controllers, namely conventional as well as ANN are the same. Therefore 

any one can be used for pH control. 

o In case of temperature control, the four controllers namely PID, MLP, DLFANN, 

and MFLANN have been tested using simulation tests for analyzing their ability to 

track varying set point, reject or recover from disturbances and perform under 

variable delay or dead times. MLP and DLFANN controllers give comparable 

values. Therefore either design can be used. 

o Comparison between PID, ANN and Mill-data of basis weight shows that the error 

is minimized with the help of ANN controller. The error goal (0.0001), mean square 

error MSE (9.99997e-005/0.0001), and gradient (3.24514e-005/1e-010) meet at 

111164 iterations. Thus ANN controller removed overshoot and had better 

performance than conventional (PI) controller. 

o From the analysis of responses of digital basis weight control and on comparison 

of three ANN methodologies such as BPNN, LM and the gradient descent 

technique, the latter is found to be best suitable. 

For MIMO (TISO) systems, on comparing it is found that three types of ANN 

taxonomy namely, perceptron, back propagation and adaptive resonance 

theory(ART). The minimum error is found of the order of .0.0002 during training in 

case of using back propagation methodology. For SISO system using perceptron 

neural network. The minimum error was found of the order of 0.10 whereas the 

same for back propagation was 0.05. In case of BPNN also, the data is closely 
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tallied with actual data. Therefore, BPNN is the best ANN for designing control 

system with sigmoid function for head box control of paper mill compared to other 

taxonomies. 

o In case of air pressure head (P 	) and level (Lhead)  data analysis, when relative change (P head) 

in opening of inlet valve c,, pi=0, the pressure has been increased but level of the 

headbox is decreased. When relative change in opening of inlet valve c5, p5=0, the 

pressure has been decreased but level of the headbox is increased. The maximum 

number of ANN controller data tallied with the simulated data with minimum delay 

time. ANN controller response reached immediately at steady state. 

® ANN controller error goal performance is met at 115830 epochs. In case of ANN 

controller, the delay time for stock flow response is found to be less than PID 

controller response time. All model data and ANN data are closely tallied with each 

other. ANN controller error goal performance is met at 101 epochs. All model data 

and ANN data are closely tallied with each other. 

® ANN controller can be used for both SISO and MIMO systems. It takes less time to 

reach at steady state value. When artificial neural network is trained successfully 

then ANN controller can give precise and immediate action to the final control 

element which corrects the plant variable. 

® The neural network models work well for nonlinear systems where the network 

provides clues as to underlying physical phenomena, especially where data is the 

only method of defining the phenomena..  

® The ANN controller is robust in the sense that the controller is independent of a 

prior knowledge of delay time, and process dynamics. Generally MIMO systems 

are complex which can be solved by ANN which are trained on data only. There is 
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minimum theory required and there are no software bottlenecks. 

• More detailed investigation are required for MIMO system when there are 

interaction between more than two input and more than two output variables. In 

headbox these types of interaction exemplify total head, stock flow and wire speed. 

• Robust design,resiliency and sensitivity analysis with suitable MIMO tuning 

methodology should be attempted. 

• All the parameters for control in headbox should be analysed using z transforms 

for digital control system and suitable method for stability criterion for discrete data 

system must be used. 

• Most of the problems in wet end paper machine are either feed forward type or 

involves multiloop control strategy. Multiloop systems like feed forward- feedback, 

cascade, ratio, split range etc. must be analyzed. 

• Many ANN architectures such as RBF, ART2 should be used for comparison 

purposes. 

• Other Neuro-Fuzzy, Neuro-GA, Neuro-Fuzzy-GA based control system may be 

attempted. 

• Other control system based on simulated annealing can also be attempted. 

• The ANN models can also be applied to examine the effect of couch roll vacuum, 

pressure applied in the press, steam temperature in the drier, and moisture content 

of paper. 
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NOMENCLATURES 

Chapter-3 
Da=Diameter of pipe 
Db=Diameter of throat of meter 
va=Average upstream velocity 
vb=Average down stream velocity 
Pa, Pb=Upstream pressure, down stream pressure 
a=Kinetic energy correction factor 
Za= Elevation from datum line 
ri= Efficiency of pump 
Wp=Work done by pump 
hf=Friction head(fluid) 
g=Acceleration of gravity 
v= Jet velocity( also called mean spouting velocity) 
g =Acceleration of gravity 
H=Head of stock behind the slice 
K= Constant 
Cv= The coefficient of discharge 
Av=The cross-sectional area at the vena contracta 
As=The area of slice opening 
Cc  =The coefficient of contraction 
Q= Total flow through the head-box(making allowance for any header bypass, bleed 
flows, etc.) 
b=Slice opening 
w=Slice width or opening 
V= Actual speed of stock from the head-box 
w =Width of stock stream flowing on the wire 
Cci= The coefficient of volume discharge 
Vs=Average velocity under the slice lip 
Cc=Contraction coefficient 
K1,K2=Unit conversion constants 
Ss= The loss of dry fiber on machine 
C= The consistency of stock supplied on the wire( depends on the quality of paper 
produced) 
ms= The mass of over dry fibre 
Sk = The final dryness of paper 
q=Grammage 
\in= The speed of paper at the pope reel 
b,=The width of paper web 
S=Loss of stock on the wire 
os=Cross sectional shrinkage in the dryer 
c= Drag coefficient of wire in relation to stock stream 
[3=Lag coefficient of wire in relation to couch roll 
wn= Width of paper web on the pope reel and width of stock stream flowing on the wire 
%lc= Trimmed width of paper 
Z= Trim at the cross cutter 
r =Wet end trimming 

231 



d =The thickness of the jet 
q Head-box flow rate 
Co= Orifice coefficient 

Chapter:4 
T= The training samples. 
c = The normalized error between the network output and the actual output 

III II =Input to input layer 
a,, al =Output from input layer 

bi,131,bm  =Output from hidden layer 
C1, Ck, Cn =Outputs from output layer 

= Learning rate, 
a= Momentum coefficient; 
V= Weight between i/p and hidden layer. 
W=Weight between hidden layer and o/p layer 
Ta,Tb, Tc= Targets 
p= Number of training patterns 
E =Total mean square error,. 
6=Gradient descent term 
Ai= The output of ith  logarithmic neuron in the input layer. 
B.;  =The output of ith  exponent neuron in the input layer 
Cj = The output of jth  exponent neuron in the output layer 
Di= The output of ith  logarithmic neuron in the output layer 
X= Input vector 
pi= Center of a region called a receptive field 
crj = Width of the receptive field 
Gi(x)= Output of the jth  neuron 

CHAPTER:5 
= Inlet mass flow rate of thick stock 

and = Dilution water flow rate 
mo  =Thin stock flow rate 
cy, = Consistency of thick stock 
cyd = Consistency of dilution water 
cyo  = Consistency of thin stock 
V=Volume of head-box tank 
p= Density of thin stock 
q,=Thick stock volumetric flow rate, m,/p 
cio=Thin stock volumetric flow rate, mo/P 
qd=  Dilution water volumetric floe rate and/p, 
Go  (s) = Transfer function for a PID controller, 
Gp(s) = Transfer function for consistency process 
K = Controller 
Kp  =Process gain, 

=Integral time gain 
=Derivative time gain 

Od = Time delay in the process. 
=Process time constant 
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V=Total volume of the solution in the flow box; 
C,= Total concentration of the ith component in the effluent stream; 
F=Total flow rate of the feed( thick stock, chemicals and white water); 
u= Flow rate of the titration stream (acid or base); 
Cfi=Total concentration of titration stream(acid or base). 
u= Flow rate(input) 
x=Concentration(output) 
W= Mass of stock in the system 
win=Mass of inflowing stock 
wout=Mass of out flowing stock 
V= The volume of the stock 
hc=Heat capacity 

F = Liquid inflow and outflow rates respectively 
u1 fan pump control input 
u2 = air valve control input 
Y1=total head output 
Y2=  stock level 
mfi)=Amount of stock present in the flow box 
min=Amount of incoming stock 
mout=Amount of outgoing stock 
mc,I=Stock flow through the overflow line 
t=Time 
Afi)=Average cross-section area of flow box 
hi=hydrostatic pressure 
ps=Density of suspension 
Pa= Density of air 
u1=Relative deviation of, level 
P=Air pressure 
H=Height of stock to the axis of valve 
pi=Relative change in the opening of inlet valve 
Ac=Cross section of valve opening 
Cd1=Discharge coefficient 	, 
Ci=lnlet valve 
Pii=Pressure before entering valveC1 
P12=Pressure after valve C1 
P'=Relative change in pressure of air 
C2=Slice opening 
Afip=Cross-sectional area of lip opening 
Cd2=Discharge coefficient 
Cd3=Discharge coefficient 
b=VVidth of air flow 
h3=Height of overflow 
Tfi,1=Time constt. For flow box for level of stock in the box 
w1, w2, w3 =load factors 

,K20,K1p,K2 p.Ki v2, K3p,=Constant factors depending on the sped of the machine 
mch= Amount of stock present in the channel 

mr,,,,= Corresponding flow of stock in channel 
of stock 
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Ach= Average area of cross-sectional of the channel 
hoh= Height of stock level in channel 
Vph=Volume of channel 
Aop=Cross-sectional area of outlet pipe 
Tfb,„=Time constt. For flow box stock level in the overflow pipe 
W21=-Factor depending on u1 
mair= Amount of air present above the stock level in the flow box 
msup,mrem=Amount of air supplied and removed from the flow box 
V3=volume of air above stock level in the flow box 
Ap5A,6=Cross-sectional area of overflow valves C5, 05 
K5,K6=loss factors 
Psi,P52=lnlet & Outlet pressure of valve C5 
P61,P52=Inlet & Outlet pressure of valve 06 
Tairr-Time constt. Of flow box for air cushion 
W4=Load factor 
Tio,Ttv2=Time constt. For turbulence in the channel depending on ui, 
y(k) =The retention value at sample value at sample number k, 
Kret =Machine-dependent constant 
Cww = Consistency white water 
CHB = Consistency in head box 
y= Retention 
Fsf=Thick stock flow.  
Cts=Thick stock consistency 
YF=Thick stock fines content 
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APPENDICES: 

Appendix :-1 

Table: 1.1 Transfer Functions 

Name Input/Output 
Relations 

Icon MATLAB 
Function 

Hard Limit y = 0 	x<0 
y =1 	x.0 

Hardlim 

Symmetrical Hard Limit y = -1 	x<0 
y = +1 	x?0 

Hardlims 

Linear Y = x Purelin 

Saturating Linear y = 0 	x< 0 
y = x 	05)(51 
y=0 	x>1 

Satlin 

Symmetric Saturating 
Linear 

y = -1 	x<-1 
y = n 	-15x51 
y = 1 	x>1 

Satlins 

Log-Sigmoid y = 	1 Logsig 

X 
1+e' 

Hyperbolic Tangent 
Sigmoid 

y = ex-e-x  Tansig 
ex-e-x  

Positive Linear y = 0 	x<0 
y = x 	05x 

Poslin 

Competitive y =1 neuron with max n 
y = 0 all other neurons 

Compet 

C 
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Table: 3.1 Typical Control Loop Dynamics (Nancy) 

Typical sensors/Typical Parameters Time constant 
Fast beta gauge 20ms 
Slow beta gauge 100ms 

Pressure, flow 1sec. 
Fast Consistency 3sec. 
Slow Consistency lOsec. 
Slow temperature 20sec. 
Fast temperature 8 sec. 

Total head 1.0sec.(process), 3.0sec.(closed loop) 
Fan pump speed 0.1sec.(process), 0.3(closed loop) 

Basis weight 1.0min.(process), 3.0min.(closed loop) 
Level 1.0min.(standpipe); lhour(chest) 

Table: 3.2 Measuring devices and their characteristics 

Static/Dynamic models! 
Dynamic characteristics 

R=R„(1+at); 
Sensitivity ( Pt):=0.003850/ C)1°C( Germany 
Practice) to 0.00392 0/ f2/°C ( US practice) 
(Ni): 0.005/°C at room temperature 
Range :- 100 to + 600 °C( or 900 °C with 
ceramic materials), time constt.=0.2 to 0.5s 
in flowing water, 2 to 5s in air 

R=Ro  el f3(1 IT-111-0)] 
Sensitivity of 0.1 ni 0/°C (or 30 mV /°C) are 
possible. 
Time constant for uncoated thermistor): 10 

Comments 

Bridge measurement, 
multiplexing essential 

Widely used in 
industry where shock 
and vibration occur, 
for dynamic temp. 

measurement 

Parameters and 
Measuring devices 

Temperature 
RTD 

Thermistor 
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Thermocouple 

s( air) and 1.0 sin water. 
Coating with Teflon will increase the values 
by 2.5 times and above. 
Range:-50 °C to +150°C, 
time constt.=1s(water),10s(in air)for 

uncoated thermistor; time constt.=25s in 
air, lOs in water for coated with teflon 

E=aT+bT2  
For J type with reference temperature of 
0°C, sensitivity: 0.0515 mV/°C(. 50pV/°C) 
For range of 0°C to 760°C, accuracy of 0.1 
°C 
The response time can be less than 0.1 s( 
0.2 to 0.5 s) 
Second order transfer function; 
For J type thermocouple, time contt.=0.05s 
to 1s in air; sensitivity=0.0515mec, 
response time=51.5pv/°c(iron-constantan) 
(T)response time=40pv1)c(Cu-constantan) 
(K)response time=40pv/°c(chromel-alumel) 
(E)responsetime=62pv/°c(chromel-
constantan) 

Remote indication, For 
special purpose where 
high 	sensitivity 	is 
needed 

Flow .  
Variable head meter 
Variable area meter 

Electromagnetic flow meter 

pH 
pH meter  

Output value= b(t)=bi+(bf-bi)(1-e4g) ; 
Response time= ms 
Time constant of the order of 0.05 
s(0.025mm wire) and 1 s(0,125mm wire) in 
still air 

Tranfer Function( G)= 

No moving part 
Direct visual indication 
No obstruction in the 
flow line of meter fluid 

Glass electrode is 
quite adequate for pH 
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Least affected by the 
flow variation 
Suited for single fiber 
slurry application, not 
sensitive to normal 
flow. 

Obtained by bump test 
for consistency of 
steady state value 3.1 
to 2.9% 

Pressure 
Manometer 

Strain gauge 

T.F= 1/(4 s+1) or second order: 1/(42s 
+g4s+1) 
e-2. s/(21.6s+ 1)(2.9s+ 1)(2.1s+1) 
Qact=Cd k(Oh) 5  
Fast dynamics 
Oact=ca(At-Af)(29).5/[(1-(AtAt)2/At2) 

[ Vf(Prcp5f0f pd 
flow=o(AP) 
E0=[413Q/d)* 10-8  
pH =log(1/hydrogen ion conc.) 
li=,(P1 P2)/pg 
Second order 1/(e52+gs+1)  
Useful resistance=120 O(range 60-10000) 
Gauge factor=2 for metals and —50 to -
200( semi conductor) 
Sensitivity of metallic strain gauge=10-6  
strain 
P=Ay2NrAy 

Mc-leod 
Gauge 

Bourdon tube gauge 

I=I0  esPP4  
ren—a1C  

Response time 1.0 sec. 
Dead time 6 to 10s and total stabilizing time 
15s 

Low pressure 

Covers very. high 
pressure ranges 	• 

measurement upto 

Static pressure 

For solid and liquid 
level measurement 
For remote indication, 
only for liquid level 

Level 

beta and gamma ray 

Differential pressure devices 

Consistency 
Mechanical 
Rod sensor 

Rotor sensor 
Optical sensor 

Microwave sensor 
NCR consistency analyzer 

Basis weight 
Beta gauge 

For fast basis weight 
control 
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Table: 5.1 ANN parameters for designing ANN controller for the case of air 
ressure and level 

ANN parameters Vi (Lhead) pi (Phead) P2 (Phead) 
Input nodes 2.0 .2.0 2.0 

Hidden nodes 5.0. 5.0 5.0 
Output nodes 1.0 1.0 1.0 

Activation function Tansig Tansig Tansig 
Algorithm Gradient descent Gradient descent Gradient descent 

Table:5.2 Process dynamics 

Parameters Time 
constt. 

Process gain Process transfer functions 

Consistency Td =6.84s 
Tp=3.84s 

Tp=1 OS 

Td=5,10,20s 
T =5s P 

T =3s P 	1 

Td=35 
Tp=5s, 
Td=5s 

Kp= -2.035 

Kp= -0.0407 

For A tuning=1 s 

Kp= 0.03 

Kp= -0.0625 

Kp=0.042 

Kp=0.0625 

Gp= -0.2.035e-6.84s/(3.84s +1) 

Gp= -0.0407e-6.84s/(3.84s +1) 

Gp=0.03e-eds/(1+10s) 

Gp=-0.0625 es/(1+5s) 
 

For fine consistency 

For hardwood consistency 

Flow Tope=0.50 
Tv= 0.8s 
-rm=2s 

Tp=2.4s 

Tp=8.0s 
Tp=10.0s 

Tp=5.0s 

Kp=1.5 

Kp=4.0 
Kp=24.0 

Kp=23.4 

Gp(S)=1. 5/ (0.5s+1)(0.8+1)(2s+1) 

Gp(s)=1. 5/(2.4s+1) 
Gp(s)=Kpe's  /( t.  s+1) 
Gp(s)=4.0/(1 +8.0s) 
Gp(s)=24.0/ (0.5s+1)(8s+1)(2s+1) 
for hard wood 
Gp(s)=23.4/(0.04s 1)(1.0s+1)(4.0s 
+1) 
for pine flow 

Total head Kp=1, 
Td=0.2s 
ii=0.2, 
A=0.4s 

Current regulator & motor speed 
are assumed first order 
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T =1.0s; 
closed loop 
r =2-3s 
kp=1.05, r 
=3s 

Level Td= 1 Os 

rpc1=10s; 
rp=5s 
r;:,--60s; 

rp=20s 

Kp=0.00449 

Kp=0.00167 
Kc=1.0 

Kp=0.005 
Kp=0.1 
Kp=0.0025 

Gp(s)=Kpe-es  Is 
Gp(s)=0.00449e-10s  / s 

Gp(s)= 0.00167/s (10s+1)(5s+1) 
Gc(s)= 0.0167/s (60s+1) 
Gp(s)=-1.6(1-0.5s)/s(3s+1) 
Gp(s)=0.005 Is 
Gp(s)=0.1e-3s  I s 
Gp(s)= 0.0025/s (20.0s+1) 

pH 

Harriott(52) 

Kp=5.67 
rp=1.8s 
rd=19.9s 

Kp 0.8 
rd=0.2min 
rp=1.5min 
rm=0.05min 

Kp 6.4 
rd=0.2min 
rp=1.5min 
rm=0.05min 

Gp(s)= 5.67e-199s/(1.8s+1) 

Gp(s)=0.8e-us/(1.5s+1) 

Gm(s)=1/(0.05s+1) 

Gp(s)=6.4e2s/(1.5s+1) 

Gm(s)=1/(0.05s+1) 

Temp r1 =20s, 
r2=8s 
id =4s; 
Ti =6s, 
r2=305 
Td =10s; 
Ti =20s, 
r2=5s 
Td =5s; 

Kp =5 

Kp =1.25 
Kp =0.6 

Gp(s)=Kp e" 4d s/(1+ 	1 s)( 1+ 	2s) 
Gp(s) =5e4s/(1+8s) (1+20s) 

Gp(s) = 1.25e-105/(1 +6s)(1 +30s) 

Gp(s) =0.6e'5s/(1+20s) (1+5s) 
Gp(s) =0.131(2.57s+1)/s(0.23s+1) 
Gp(s) =15.3(0.23s+1)/(2.57s+1) 
First order system without 	dead 
time Gp(s) = 201(40.2s+1) 
Or first order= k/ (r s+1) 

Basis 
weight 

r =10s 
K=0.0056 
Ti= 

0.021min. 

Y(s)=[0.55es/(7.5s+1)]u(s) 

Y(s)=[0.40e-1°5/(8.0s+1)]u(s) 
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Table: 5.3 Z-N tuning equations 

Controller type Proportional gain Integral gain Derivative gain 
Proportional 1/k[r/T]"1  

PI 0.9/k[r/T]"1  Kp/3.33 T 
PID 0.9/k[r/T]-1  1/2.0 T r/2.0 

Table: 5.4 A-tuning equations for interactive algorithms 

Process model K, , K K1 Id 
Kp/(1+r s) r/KpA 60/ T 

Kp  e-eds/(1+T s) T /Kp(A+ed) 60/ T -- 

Kp  e-eds/(1+T s) T /Kp(A+Ad/2) 60/ T 8d/120 

Kp e-uds/(1+T1 s)  (1+T1  s) Ti /Kp(A+ed)  60/ ri T2/60 

Kp/s 2/Kp  A 30/ A -- 

Kp  e-9ds/s (2 A+ ed) / KA+ed)2  60/(2 h+ ed) -- 

Table: 5.5 Dynamic parameters for temperature 

Process Kp 4 P1  (s) 4 P2 (s) 4C1 (s) 

First order 20.0 40.2*  

First order with delay 1.0 12.12*  2.376*  

Two first order are joined in series 1.0 10.0.  5.0 1.06 
Two first order are joined in series 5.0 8.0 20.0 4.0 1.1 

With delay 

Second order with delay 5.0 8.0 5.0 4.0 1.02 
1,25 6.0 30.0 10.0 1.3 
0.6 20.0 5.0 5.0 1.25 

Second order 1.0 192*  0.48 

* The values in the equation of transfer functions are in minutes. 
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Table: 6.1a Lambda tuning controller response (when A=15sec) 

Time(sec.) Output response 
1.0667 0.3251 
5.0428 0.4370 
10.086 0.5344 
15.031 0.6343 
20.074 0.7242 
25.020 0.7958 
30.063 0.8522 
35.009 0.8937 
40.051 0.9248 
45.094 0.9472 
49.940 0.9626 

Table: 6.1b Lambda tuning controller response (when A=16sec) 

Time(sec.) Output response 
5.05 0.41995 
10.11 0.5218 
15.04 0.6264 
20.10 0.7208 
25.033 0.7953 
30.090 0.8540 
35.020 0.8965 
40.077 0.9282 
45.134 0.9501 
50.065 0.9660 
60.053 0.9843 
69.914 0.9928 

Table: 6.3 Relationship between wire speed and pressure or vacuum applied to 
head box eqns. [3.1 - 3.3] 

No. 
of 

Speed 
(m/min) 

Cv  Total 
head 

Pump 
operation 

V=-\12gh 
(m/min) 

C, Calculated/Actual 
or J/W 

Data Cv=0.98 • '(m) V=Vacuum 
P=Pressure 

1.  300.3 0.983 1.3208 P 303.24 0.99 1.0098 

2.  315.31 0.986 1.4478 P • 317.49 0.993 • 1.0069 

3. 330.33 0.983 1.6002 P 333.78 0.993 1.0104 
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4.  345.345 0.982 1.7526 P 349.31 0.993 1.01148 

5.  360.36 0.982 1.9050 P 364.18 0.993 1.01060 

6.  375.375 0.985 2.0574 P 378.47 0.993 1:0082 

7.  390.39 0.988 2.2098 P 392.24 0.993 1.0047 

8.  405.405 0.987 2.3876 P 407.71 0.993 1.0056 

9.  420.420 1.05 2.5654 P 422.62 0.993 1.0052 

10.  435.435 0.985 2.7686 P 439.04 0.993 1.0082 

11.  450.450 0.983 2.9718 P 454.86 0.993 1.0097 

12.  465.465 0.988 3.1446 P 467.90 0.993 1.0052 

13.  480.48 0.984 3.3782 P 484:97 0.993 1.0093 

14.  495.495 0.985 3.5814 P 499.34 0.993 1.0078 

15.  510.510 0.984 3.81 P 515.03 0.993 1.0088 

Appendix:-2 

MATLAB PROGRAMS: 
[1.1] Consistency simulation program: 

%Author: Rajesh Kumar 
%To train backpropagation artificial neural network 
clear 
fid=fopen('rajesh.txrw'); 
maxerr=1:0; 
saveerr=1.0; 
b=1; 
in=input('Enter number of Input Nodes: '); 
ih=input('Enter number of hidden Nodes: '); 
io=input('Enter number of output Nodes: '); 
sqerr=0; 
v=rand(ih,in); 
w=rand(io,ih); 
alpha=input('Enter alpha: '); 
learn=input('EnterLearning rate: '); 
tri=input('Enter Number of Training Sets: '); 
disp('Enter Inputs: '); 
for t=1:tri 

for i=1:in 
imat(t,i,1)=input("); 
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end 
disp('Enter Outputs: '); 
for i=1:io 

omat(t,i,1)=input("); 
end 

end 
imaxx=max(imat); 
oma)c<=max(ornat); 
imax=rnax(ima>c<); 
omax=maX(omaxx); 
inii=imat/imax; 
toi=omatlomax; 
01; 
fprintf(fid,'Initial Weights randomly generated: '); 
fprintf(fid,'In'); 
fprintf(fid,'Weights(in->hid): '); 
fprintf(fid,'%f ',v); 
fprintf(fid,'\n'); 
fprintf(fid,'Weights(hid->out): '); 
fprintf(fid,'%f ',w); 
hold on; 
Back propagation algorithm .. 

	 ( program as described in 2.1, appendix-2) 
disp('See the Weights in out.txt!!'); 
if(b==1) 

disp('Enter Inputs to the trained Neural Network: '); 
fori=1:in 

ti(i,1)=input("): 
tini(i,1)=ti(i,1)/imax; 

end 
tinh=v*tini; 
for i=1:ih 

touth(i,1)=11(1+(exp(-tinh(i,1)*alpha))); 
end 
tino=w*touth; 
disp('The Outputs from the trained Neural Network: '); 
for i=1;io 

touto(i,1)=1/(1+(exp(-tino(i,1)*alpha))); 
plot(j,touto); 
fprintf('%f ',toutO(i,1)*omax); 

end 
forintf('\n'); 

end 
save w2 w; 
save v2 v; 
hold off; 
fclose(fid); 

% Consistency plot 
t=0:.01:10; 
y=(1-.3915*exp(-.6856*0+.3337*exp(-.1037N-.9423*exp(.04841)); 
plot(t,y);grid 
%t=55; 
% conversion for continuous to discrete(PI) 
a=tf([0 -39.45 10.46 .809],[209.67 76.46 26.28 .809]); 
>> b=c2d(a,2.5) 
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» step(a,'-',b,'-');grid 
% conversion for continuous to discrete(PID) 
a=tf([-7.86 -.97 .616 .1],[5.27 6.28 1.616 1]); 
b=c2d(a,2.5); 
step(a,'-',b,'-');grid 

[1.2]Training program for consistency 
net=newff([.5967 1;.6 .6],[10 1],flogsig',1logsiglitraingd'); 
net.trainparam.show=100; 
net.trainparam.lr=.6; 
net.trainparam.epochs=80000; 
net.trainparam.goal=1e-5; 
p=[.6019 .6 
.5969 .5968 
t=[.6 .6 .6 .6 

.6 .6 .5976 .6043 
.5967 .5967;.6 .6 
.6 .6 .6 .6 .6 .6 .6 

.6066 .606 .6043 
.6 .6 .6 .6 .6 .6 .6 
.6 .6 .6 .6 .6 .6 .6 

.6024 .6007 

.6 .6 .6 .6 .6 

.6 .6]; 

.5995 .5984 
.6 .6 .6 .6 .6 

.5978 
.6]; 

.5973 

net=train(net,p,t); 
a=sim(net,p); 
gensim(net,.001); 

[2.1] %Training for flow control 
%To train Artificial Neural Network 
clear 
fid=fopen('dpt.text',1w1); 
% C=[B1 B2 B3]; where B1=B(:,1)./max; 
% B2=B(:,2)./max; B3=B(:,3)./max; 
load Siso2; 
load F; % column of set points for different wire speed 
net=newff([.58824 1; .34667 1],[6 1],ftansigVtansig'ytraingdx1); 
in=2; 
ih=6; 
io=1; 
v=rand(ih,in); 
w=rand(io,ih); 
alpha=.6; 
learn=.4; 
tri=14; 
iniii=Siso2(12:25,1:2); % inputS from matrix B(training sets,input+output) 
toii=Siso2(12:25,3); 	% output from matrix B,coulon depends on no of outputs 

inii2=iniii(:,2); 
inii=[iniil inii2]; 
toi=toii(:,1); 
epoch=1; 
fprintf(fid,'Initial Weights randomly generated: '); 
fprintf(fid,1\n'); 
fprintf(fid,'Weights(in->ih): '); 
fprintf(fid,1%f ',v); 
fprintf(fid,11n1); 
fprintf(fid,'Weights(ih->io): '); 
fprintf(fid,'%f ',w); 
as algorithm 	 
[2.2]% for testing 
clear 

in=2; 
ih=6; 
io=1; 
load v1; 
'-ad W1; 

.5971 
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alpha=.9; 
tini=[70/77.5;20/20]; 
tinh=v*tini; 
for i=1:ih 

touth(1,1)=1/(1+(exp(-tinh(i,1)*alpha))); 
end 
tino=w*touth; 
for i=1:io 

touto(i,1)=1/(1+(exp(-tino(i,1)*alpha))); 
tact=toutol 8.875; 
fprintf('%f ',tact); 

end 
fprintf('\n'); 

[3]% Total head program 

load nancyt; 
load nancyhead; 
load nancyspeed; 
net=newff([.0000 1.0000],[8 1],['tansig',1 tansigl'traingd'); 
net.trainparam.show=100; 
net.trainparam.lr=0.6; 
net.trainparam.epochs=1500; 
net.trainparam.goal=1e-3; 
p=b'; 
t=a'; 
net=train(net,p,t); 
gensim(net,.001) 
% conversion of continuous to discrete 
a=tf([0 0 0 70.09 6307.88 56070],[.425 41.8 1538.514520.09 26307,88 56070]); 
b=c2d(a,2.5); 

[4] % Stock level program 
load levelin; 
load lavelout; 
load levelref; 
net=newff([1.0000 1.0000;0.0000 1.0000],[3 1],ftansig',1tansig'ytraingd'); 
net.trainparam.show=100; 
net.trainparam.lr=0.1; 
net.trainparam.epochs=15000; 
net.trainparam.goal=1.5e-3; 
a=r1; 
in=lo'; 
p=[a;in]; 
t=li'; 
net=train(net,p,t); 
gensim(net,.001); 
% conversion of continuous to discrete 
a=tf([0 1],[.2 1]); 
b=c2d(a,.01); 
>> 

[5] %Training for pH 
load phtar; 
net=newff([7 7;0 7],[12 1],clogsig',1logsigytraingd'); 
net.trainparam.show=100; 
net.trainparam.lr=.6; 
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net.trainparam.epochs=80000; 
net.trainparam.goal=3e-4; 
p=[7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
7 7 7 7 7 7 7 7 7 7 7 7 7; 0 0 0 0 .0002 .0010 .0052 .0262 .1306 .6482 2.0510 3.2934 
4.3425 5.1927 5.8555 6.3522 6.7085 6.9510 7.1048 7.1921.7.2315 7.2384 7.2246 7.1991 
7.1683 7.1365 7.1065 7.0798 7.0573 7.0391 7.0248 7.0141 7.0064 7.0012 6.9978 6.9959 
6.9951 6.9949 6.9952 6.9957 6.9964 6.9971 6.9977 6.9983 6.9988 6.9992 6.9995 6.9997 
6.9999 7 7 7 7 7 7 7 7 7 7 7]; 
tl=target; 
t=tl'; 
net=train(net,p,t); 
a=sim(net,p); 
gensim(net,.001); 
% conversion of continuous to discrete 
a=tf([0 7],[15 1]); 
b=c2d(a,1); 
step(a,'-',b,'--');grid 

% conversion of continuous to discrete for temperature 
a=tf([0 40],[.2 11); 
b=c2d(a,.01); 
>> step(a,'-',b,'-');grid 

[6] Basis weight general program 
% conversion of continuous to discrete 
a=tf([0 .55],[7.5 1],'inputdelay',8); 
>> b=c2d(a,2.5) 
(i) Transfer function: 

0.0007328 
zA(-800)* 	 

z - 0.9987 
Sampling time: 2.5 

(ii)Transfer function: 
0.1074 

z^(-4)*-------- 
z - 0.7316 

Sampling time: 2.5 
>> step(a,'-',b,'-') 

[7.1] % Total head and stock level(BPNN) Training 
load Siso2; % n=[n1 n2 n3 n4]; n1 n2(fan purnp input and air valve input) 
% are the inputs and n3 n4 (total head and stock level)are outputs: 
fid=fopencrajesh.6Cw'); 
maxerr=.001; 
saveerr=.001; 
b=1; 
in=1; 
ih=2; 
io=1; 
sqerr=0; 
v=rand(ih,in); 
w=rand(io,ih); 
alpha=.9; 
Irn=.6; 
tri=14; 
imat=Siso2(12:25,1)I77.5; 
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omat=Siso2(12:25,3)/18.875; 
imaxx=max(imat); 
omaxx=max(omat); 
imax=max(imaxx); 
omax=max(omaxx); 
inii=imat/imax; 
toi=omat/omax; 
i=1; 
Back-propagation algorithm(as 2.1 program) 

[7.2] % For testing 
in=1; 
ih=2; 
io=1; 
v=[1.7301;-2.3953]; 
w=[4.0942 -14.3059]; 
alpha=.9; 
tin= .8; 

thidden=v*tin; 
for i=1:ih 

ttt(i,1)=1/(1+(exp(-thidden(i,1)*alpha))); 
end 
tinn=w*ttt; 
disp('The Outputs from the trained Neural Network: '); 
for i=1:io 

output(i,1)=1/(1+(exp(-tinn(i,1)*alpha))); 
actual=output; 
fprintf('%f,actual); 

end 
% conversion of continuous to discrete (y11) 
a=tf([0 .528],[2.2 1],'inputdelay',6); 
» b=c2d(a,2.5); 

Transfer function: 
0.002395 

z^(-600) * 	 
z - 0.9955 

Sampling time: 2.5 
>> 
% conversion of continuous to discrete (y12) 
a=tf([1.28 2.2016.5161],[1 1.84 .616]); 
b=c2d(a,1); 
Transfer function: 
1.28 z^2 - 2.538 z + 1.258 
----- 	--------- 

zA2 - 1.982 z + 0.9818 
Sampling time: 1 
step(a,'-',b,'--');grid 

[7.3] % Cluster discovery (ART1 Program) 
m=input('enter maxm number of clusters:'); 
rho=0.7; 
L=[2]; % initialize parameter 
%bottom up weights(from F1 to F2) 
b=[.67 0.0 .2;0.0 0.0 .2;0.0 0.0.2;0.0 .67 .2]; 
% top down weights( from F2 to Fl).  
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[1 0 0 0;0 0 0 1;1 1 1 1]; 
s=[0 0 1 1]; 
q=sum(s); 
c10 0 1 11; 
x=c1; 
a=b'; 
%net input to each node in F2 
y=a*x; 
%if reset is true then we take largest term of y say y1 or y2 or y3 
% 2 for y2 h6s highest value 
t1=t(2,:); 
t2=t1'; 
h=s*t2; 
u=h/q; 
if u>=rho 
delb=b 
delt=t 
return 

% the value of u is greater than rho, so weights are remain same 
% if u is less than rho, so y2 is set to -1.0,and other y1 y3 are as same as calculated reset 
is true 
% sO y3 is greater then t3=1111 
else 
t2=t(3,:); 
t3=t2'; . 
h=s13; 
u=h/q ; % u is greater than rho so'update weights are 
db=[(12`x)/(L-1+h)]; % this is the third column of b 
delb=b(:,1:2); 
ddelb=[delb db] 
end 

[8] % Air pressure and Ievel(Rho, Neu) training 
[8.1]load neuinnorml; 
load neuoutnorml; 
load neurel; 
net=newff([1.0000 1.0000;.0001 .8291],[5 1],ftansig',1purelin'ytraingd'); 
net.trainparam.show=100; 
net.trainparam.lr=0.01; . 
net.trainparam.epochs=350000; 
net.trainparam.goal=1.5e-4; 
r=t'; 
in=a3; 
pt;in]; 
t=a4'; 
net=train(net,p,t); 
gensith(net,1001); 
[8.2] 
load rhooutl; 
load rhoin1; 
load rhot1; 
net=newff([1.0000 1.0000;.0003 .0011],[5 1],{1tansig',1purelin'},'traingd'); 
net.trainparam.show=100; 
net.trainparam.lr=0.05; 
net.trainparam:epochs=35000; 
net.trainparam.goal=1.0e-4; 
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p=[1 1 1 1 1 1 1 1 1 1; .0003 .001 .0002 .0011 .0002 .0011 .0003 .0004 .0008 .0006]; 
t=[:9604.9589 .9578 .9564 .9555 .9543 .9517 .9435 .9616 .9644]; 
net=train(net,p,t); 
gensim(net,.001); 
[8.3] 
load rhoout2; 
load rhoin2; 
load rhot2; 
net=newff([1.0000 1.0000;-1.0000.1435],[5 1],ftansig',1purellnl'traingd); 
net.trainparam.show=100; 
net.trainparam.lr=0.01; 
net.trainparam.epochs=150000; 
net.trainparam.goal=5.0e-4; 
m=l'; 
in=j1; 
p=[m;in]; 
t=k1; 
net=train(net,p,t); 
gensim(net,.001); 

[9] % Stock flow and stock level control Training 
%To train Artificial Neural Network - 
clear 
fid=fopen('rn.txt,'w1); 
load ref; % tcon.mat means input consistency 
load stocklevel; 
in=1; 
ih=3; 
io=1; 
v=rand(ih,in); 
w=rand(io,ih); 
alpha=.9; 
learn=:6; 
tri=61; 
imat=tnorm; % inputs from matrix B(training sets,input+output) 
omat=y2; 	% output from matrix B,coulon depends on no of outputs 
imaxx=max(imat); 
ornak(=max(omat); 
imax=max(imaxx); 
omax=max(omaxx); 
inii=imat/imax; 
toi=omat/omax; 
epoch=1; 

Backpropagation algorithm(as program 2.1)..... 

[10] % Retention training 
As described in program 2.1, appendix-2. but values of data has been changed according 
to retention process. 
% conversion of continuous to discrete 
a=tf([1.28 2.2016 .5161],[1 1.84 .616)); 
>> b=c2d(a,1); 

Transfer function: 
1.28 zA2 - 2.538 z + 1.258 

zA2 - 1.982 z + 0.9818 
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Appendix:-3 

1. Static model for total pressure and stock level (hydrostatic head) in all kind of 
headboxes: 

Let P, p, V, f, I, D, v, m, g and h refer to pressure, density, specific volume, friction factor, 
length, diameter, velocity, mass, stock height and acceleration due to gravity respectively, 
then the following static models can be written as 
Potential energy due to stock head=mgh 
Potential energy due to pressure =P/p= PV 
Kinetic energy=mv2/2 
Loss due to friction= 2flv2/gD 
(a)In order to get required jet speed and stock from the slice, static energy is converted 
into kinetic energy, 
mgh=mv2/2 	 or 	 v=q2gh 
(b)If pressure energy is converted in to kinetic energy(K.E),then 
PV= mv2/2 
(c)If both combined static energy & pressure energy are converted to K.E one can write 
mgh+PV= mv2/2 
The above equations are applied to three types of headboxes as under: 

[A] Open headbox:.  
Actual flow speed of stock, Vm<V, due to friction in the slice lip and flow resistance 
through the baffles & perforated rolls. 
If Vs, Vn  , refer to wire speed and nominal speed of machine(dryer part) respectively 
V,<Vn  
(1)=discharge coefficient depending on actual speed of stock on the wire in relation to the 
theoretical speed 
(1)=VmN 	 [1] 
Lag factor of stock, =\/,,,,Ns=0.90-0.95 	 [2] 
LP, lag factor of wire speed in relation to nominal speed of the machine, 
LP=VsNn 	 [3] 
Putting the value of Vs in eqn.[3], one can get 

4Nn= (I)V 
Or Vn= cl)V/ LP = (I)-\12gh/ LP 
Or Vn2= (cK 4i)2  2gh 
Hydrostatic head, h= (Vn2/2g) ( 	0)2  

[B] Closed headbox(hydraulic headbox): 
PV=mv2/2 or v=4 (2PV/m) 
P=mv2/2V (v2/2) mN or (v2/2) pvN 
P=(v2/2)p or v=42P/ 
If i LINn= IN 
Or Vn= 1:1)V/ LP 	or (cl)/c LP) (42p1 Ng) 
Or P= 440)2  (V6212) Pliq 

[C] Pressurized flow box with air cushion: 
mgh+PV= mv2/2 
if V=m/ pig  

[4]  

[5]  
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Putting the value of V . , the eqn. becomes 
or mgh + Pm/ pig= mv2/2 
v2=(2mgh/m)+ (2Pm/ plicm) = 2gh+2P/ pliq.  
or v= -V(2gh+2P/ pllq) = -V 2(gh+P/ Ng) 
Normal speed of stock flow 

LIN,= (1)\/.  
or V, =((t)/ P) 	2(gh+p/ Piiq)] 
From eqn., 	2P/ pig= 	2gh 
Or P=[(V2- 2gh)

q 
 /2] 

Putting the value of P in eqn,[6], one can get 
4V/1))2  (Vn/2) pig= [(U2- 2gh) Piiq  /2] 

2. Geometrical design of headbox slice: 

Flow from a vertical slice: 

Fig.A-1 Dimensions for flow from a vertical slice 

The primary variables which govern the angle of outflow and contraction coefficient for , 
vertical slice are shown in fig.A-1. The variables are as given below. 
where B=Depth of stock at the slice 

b= Slice opening 
L=Bottom lip extension 
Cc= Geometric ratio 
d=Thickness of the jet 
13= Jet angle 

The angle of outflow and the contraction coefficient have been calculated for a vertical 
slice from the parametric equations 
L/B=(1+c2/ rr) In(1-c/1+c)+(c cos [3/ Tr)In(1+cos 13/1-cos (3)-c sin p 	 [8] 
b/B=(1-c2/7)tan-1(2c/1-c2)-(c sin (31 Tr)ln(1+ sin pm- sin (3)+0 cos (3 	 [9] 
in which c=d/B=Ccb/B is a geometric ratio related to the contraction coefficient Cc. These 
equations were derived by conformal transformation applicable to ir-rotational flows and 
are presented in a report by Appel D.W et al(4). 

[6]  

[7]  
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Equations to calculate Cc  and f3: 
The following equations have been derived empirically by fitting curves to data calculated 
from the parametric equations(71). The various values of the constants ( contraction 
coefficient) are used, shown in table A-1. 
Cc=(ao-a1y/1-a2y)exp[-(a3-a4y/1-a5y)Xf]+(ao-a7y/1-aoy) 	 [10] 
Angle of outflow 
[3= Rbo+b x-b2Y+ v 2-b.i.xy+boxy2)/(1-boy)21exp[(-b7-boxi-boy+bioxy)/(1-boy)] 	[11] 
where 
x = L/b and y = b/B; and 05x 55.0; 05y 5.95 

3. Flow from a 45°slice: 
The primary variables which govern the angle of outflow and contraction coefficient for a 
45°  slice are shown in fig.A-2 

F. A-2 Vrnenscons 	flota -from a Wce. 

267 



and 

Tr 
Cc=d/b= 

cos (3-sin (3)In[tan(TT/8+(3/2)1+ (cosp+sin(3)In[tan(Tr/813/2)]+ ncos[3+212 

The angle of outflow and contraction coefficient was calculated from the parametric 
equations. 

 

cosp1n[tan((3/2)]+sinf3In[tan(Tr/4-13/2)1+-7/2(cosP+sinp)+(1+c2/c)(tantfic) 
+(1- c2/c)(tan-lc)  

(cosp-sin(3)In[tan(Tr/81/2)]+(cosp+sin(3)In[tan(Tr/8-p/2)]+TrcosP+ 
(1+c2/c)(tanh-1 2c/1+c2)+ (1-c2/c)(tanh-i.J2c/1-c2) 

  

L/b=1-2 

  

   

    

    

U 
Cc=d/b= 	(cosp-sin(i)In[tan(u/81/2)]+(cos3+sin(3)In[tan(Tr/8-(3/2)1+TrcosP+ 

(1+c'/c)(tanh-1.N12c/1+c2)+ (1-02/c)(tanh"1-42c/1-c2) 
[13]

./  
In which c=d/B=Ccb/B is a geometric ratio related to the contraction coefficient Cc. For the 
case that b/B=0, the equations can be reduced to 

    

L/b=1-2 cospin[tan((3/2)]+sinpin[tan(Tr/4-(3/2)]+u/2(cosp+sin(3)+2 

  

   

 

(cos 3-sin (3)In[tan(Tr/8+(i/2)]+ (cosp+sin(3)in[tan(Tr/843/2)]+ Trcos13+2-J2 

 

[15] 

These equations were derived by applying conformal transformations to ir-rotational flows 
and are presented in the report by Appel and Yu. Additional information flows from 
nozzles having angles from 10 to 30°  presented by Attvvood W, et al. The various values 
of the constants are used, shown in (tableA-2). 
Equations to calculate C, and (3: 
Cc=[(a0-aiy/1-a2Y)exP[-(a3-a4Y/1-a5y)xf]+(a6-a7y/1-aBy)] 	 [16] 

[17] 

4. Flow from a nozzle(slice) with inclined upper lip: 
The primary variables which govern the angle of outflow and contraction coefficient for a 
nozzle with inclined upper lip are shown in fig.A-3. The angle of outflow and contraction 
coefficient were calculated for a nozzle with an inclined upper lip from the parametric 
equations. The various values of the constants are used, shown in table 3. 

= [(bo+bix-b2Y-1-bsy2-b4xy+b5xy2)/(1-beY)2] exPR-ID7-bsx+b9y+bioxY)/(1-b5Y)i 
where x=L/b and y=b/B and 05x 5.5.0; 05y 5..95 
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Fig.A-3 Dimensions for flow from a slice 

(1-ella) 	(1+ cosTr13/a) -c [18]  
L/B=cfrr In 

(1+011/c) 	(1- cosTri3/a.)}  

2(1+cos Tri3/a 
b/B= (ca/Tr)In +c [19]  

(1+C10)2  

in which c=d/B=Ccb/B is a geometric ratio related to the contraction coefficient Cc 
applicable for small angles of lips(a less than 10°). 

Equations to calculate Cc  and (3: 
C0=f(acra1y)/(1-a2y)] exp[-xf(a3-a4y/1-a5y)]+(a5-a7y/1-aeY) 

ft= [(bo+bix-b2y+b3y2-b4xy+b5xy2)/(1-b6Y)21exPR-brbex+b9Y+bioxY)/(1-b6Y)1 
where x=L/b and y=b/B and 05x 55.0; 05y 5.90 
Values of coefficient to be used( when a =10°) are given in tableA- 3. 

[20 
[21 

Table:A-1 Values of the coefficient to be used( vertical slice) 

Cc  

Ao 0.06461 bo 158.3 

A1 0,06575 b1  278.6 

A2 1.00162 b2 235.9 

A3 3.91592 b3  80.84 

A4 3.15442 b4 439.9 

A5 0.73227 b5  166.1 
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A5 0.60597 bs 0.7481 

A7 0.46721 b7 2.008 

AB 0.84737 b8 2.981 

F 1.11253 b9  1.389 

blo 2.416 

Table: A-2 Values of coefficient to be used 45°  slice 
Cc  B 

ao 0.07021 b0 141.1 

al 0.07085 b1 200.9 

a2 0.97351 b2 195.8 

a3 3.31994 b3 57.71 

a4 3.22893 b4 293.0 

a5  0.95911 b5 97.58 

a6 0.74306 b6  0.7566 

a7  0.68406 b7 2,222 

a3  0.93916 lb, .2.527 

F 1.10383 b9 1.571 

1110 1.971 
Table:A- 3 Values of coefficient to be used inclined upper li 

C, B 

ao  0.02870 b0 38.14 

al 0.03062 b1  39.56 

a2 1.06208 b2 75.27 
a3 ' 2.90190 b3 37.14 

a4 3.07832 b4 77.78 

a5 1.06000 b5 38.23 

a6 0.92788 b6 91.86 

a7 0.98750 b7 2.124 

a6 1.06449 1)8 2.121 

F 1.09008 b9 2.104 
b10 1.947 
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Table:A-4 Estimation of theoretical velocity at the slice for eqn. 3.4 
V m/min m/min m/min 

H mmHg mmH2O Kpa 

K 265.7 30.98 84.85 
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