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For conéistency control one case is a SISO system for which both Lambda and Ziegler
Nichols( Z-N )tuning methodologies have been used to find out the PID and Pl control
parameters for both analog(S-domain) and digital( Z-domain) control system. As usual for
Z-N tuning, however Bode's stability criterion has been used. After developing the
characteristic models, a PI/PID based control loop and the corresponding SIMULINK
model have been developed. For the same casé of SISO consistency control an ANN
control system (BPNN) along with the necessary algorithm has also been d.esigned.'The
network is trained with PI/PID simulated data. Similarly the second :case of consiste.ncy
control with two inputs and single output (TISO) has been dealt with assuming hegligible
interactions betweé'n parar_netérs. Accordingly simulations have been carried out for b.oth
Pland ANN controllers. |

For stock flow control model equations are élready‘ available. In this case mill data for
training for ANN controller are employed. Data‘predvicted from theoretical models are also
used for fraining purposes. For the case of total head control an example of control ldop
with hydraulic headbox available in Iiterature’has been used for analys’i‘s. The dyhémio
modéls of all the eleménts_of closed loop have been found out and closed loop transfer
~ function are developed. This has been used for further analysis through MATLAB
simulation and neural computation. Similar analyses have been made for stock level, pH,
temperature and basis we—ight, first by developing appropriaté dynamic models in laplace
domain, converting to Z-domain, then desighing glassical control loops and analyzing
them. These are then followed by transforming in to a neural network based control
system. Itis well known that if the process 'interabtions are significant, even the best multi-

loop control system may not provide satisfactory control. In these situations there are



incentives for considering multivariable contro‘l strategies such as decou_ﬁing cc;ntfol. and
model predictive control.

" Hence, development of control systém for MIMO systems with some examples from
paper machine lwet end including headbox has been attempted. The éxémples are:
ihferactions of total head and stock level, air pressdre and stock level (fonf air cushion
head box), retention on forming wire and consistency control with two inputs and singlé
output (TISO)system. For multi .input multi output (MIMO) system.éonsidéfed ih this
pfesent investigation both relative gain array (R.GA) and decoupling techniques are used.
For the case of MIMO system, however, the samé procedures as in thé case of SISO
éys’t’em have been followed. The oniy-addi_tional .- parameters ,o,f 'c.ontrol included in the
analysis of MIMO system for estimating the degrees of interaction and pairing of
controlled and manipulated variables between different sets of control lo‘dps héve-been
thé relative gafn array method (RGA) ~-and. decoﬁpling tecHnique for adjusting the
interaction. Th’e relative gain be’tween 0 to 1 are only considered for analysis.

In chapter-6, an attempt hés been made to computé data from various‘mod‘els fcf bbth
SISO and MIMO system using the classicél controller and neural nefwork based control
with the help of MATLAB SIMULINK toolbox. The pro‘ce“duresA laid “down in Chapter-4, the
va.ri'ous 'equations_ presehted therein, the algorithm developed fof the ANN and for PID,
and-finally the models developed for the vérious wet end pararﬁe’;ers given in Chapter-5
ére used.

From the plethora of data frdm MATLAB Simulation of the préc"éss parémeters., sorhe :
dynamic characteristics have been drawn in various graphs with respon‘se asa ‘functioni of
time for all the above mentionéd parameters when unit step input signél is épplied as a

forcing function and then performances are evaluated.



While fbr consié‘tency control, the dynamic responses using both P! & PID are studied and
compared with performances of ANN baséd -’oontroller, the cases of total head, stock leVel
and pH only Pl and ANN, for temperature and basis weight only PID and ANN are
empioyed, analyzed and compared. | |
Co'nclusiohs based on the present study are finally drawn in the concluding Chapter-?,
conclusions and reéommendations. Recommendations based on thé present work.,

limitations and scope of further study are also briefly discussed in this. concluding chapter.

vi
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CHAPTER-1
INTRODUCTION

1.1 Status of Indian pulp and paper'vmill: |

The paper Industry accounts. for 3.5% of the world’s industrial production and 2.0% of
world trade with an employment potential of over 3. 5Amiliion people lndia'vtrith 16.0 % of
the world population consumes approximately only 1.0-1 25% of the world’s paper
production. In India the paper lndustry is one of the 35 high- pnorlty rndustnes and belongs

to a core sector industry.

'P‘ap.er is an essential commodity material. Per capita consumption-of pape'r in a country is
an‘i‘ndex of civilization and directly proportional to the literacy rate .of a country. In India
though per - capita- consumption s very low, on an average 6.5-7.0% comp_ared to
developing country’s a\)e'rag'e of tZ.O kg and developed country's average of 152 kg, the
growth rate is very high. The present grthh rates are: 5.0-6. 0‘;/0 for cultural paper alnd‘ '
paper board-the largest segment (45.0%) of the market share, 4. 0% for newsprint,10. O-
15.0% for industrial paper, and 15 0-20.0% for corrugated paokagmg Thrs is almost three
, tim_es higher than those in USA and Europe. This data amply indicates that there is an
upward swing in terms of Indian economy (GDP‘and GNP) and growth of this _industry in -
thie country.'ln the year 2008, the production achieved was 54.8 lakh tonnes paper and
paper board, 10.9 lakh tonn‘es of newsprint_, totaling 6.57 million tonnes.

It has also been predicted that In the yearl2010 and 2015 the demand forecasts will bein
the range of 8.5-10.0 million tonnes and 10.8-14.0 million to,nnee reepeotively. In 2010,
while the'grthh rate of the pulp and paper industry the world over and in Asia will be
2.2% ’and 4.4% respectively, this rate will be much higher for India. With 'the expected

increaee in |iteraoy rate, the growth of the economy and an increase in the per capita

.



consum'p'ti'on, a very high growth rate is expected jn the near future. Massive investment
in termsi'of rapacity and technology will be required in the indian pulp, p‘aper and allied
Industries to take up the challenges for meeting tne demand of around 14 million tonnes
by 2015. Therefore Indian paper industry inducts an attractive proposition to the global
market for necessary investment in this sector.
This Industry is however, capital intensi\)e in terms of conSumption of raw materials,
chemicals, energy (both-thermal and electncal) water and labour. It also generates huge
amount of pollutants (solid, particulates, hqwds and gaseous emission). Approxnmately
2 5-3.0 t of raw materials,150-200 m* of water 8-15 t of steam and 800-1500 Kwh of
| electrical energy are required for one tonne of paper. This leads to generatlon of pollution
loads to an extent of 24.0-45.0 kg of BOD, 80.0-150 kg of COD, 2.0-5.0 kg of AOX in the |
efﬂuents. The consumption of the above inputs are therefore disproportionately high.‘and
at the same time due to high cost of energy and other inputs compared to North American
or European Industry, the Indian indus'try is struggling hard for its sostainabilify. There
are around efforts in India to reduce all these inputs to the level of international standards
for mere survival, for sustained production and to stand the stiff oompet_i_tion in
international market. The ‘main reasons for‘ low profit-investment ratio, low oapacify
utilization are due to lower production capacity, adopting relatlveiy older technology,
obsolete equpment and low degree of automation. In order to keep pace with sustamable
productlon to meet the ever increasing demand of paper in India, some of the measure=
to be taken by the indian mdustry are: to upgrade their process and equipmen
technology scaling up the process and equipment, to seek optimum deS|gn and
operational parameters, introducing up-to-date process instrumentation, measurements

and control. In fact, the use of automation and control is not very widespread unlike many



chemical process. industries in indian industry. The low degree of automation (2.0-3.0% of
investment) is one of the causes for low profit to 'investment‘statu's of this industry.
T.h0ug.h a few industries are slowly adopting new process and eduipment,’ the status of
sophisticated instrumentation and oontrol has remained almost stagnant. Therefore it is
felt necessary to carry out more investigation in the area of instrumentation and control.
The paper is produced through a number of unit operations and processes in a paper ~
industry. From instrumentation view point these may be termed as su'bsystems like raw
materiai preparation, puiping, washing of brown stock, bleaching, stock preparation,_
approach flow system, wet end operation., drying, calendaring and chemical recovery
operation. Surface sizing, filling an.d. coating are rather additionai operations. Chemical
reoovery o_p‘eration in turn consists. of concentration of waste‘ liquor, combustion,
causticization and calcinations of lime sludge. Some instrumentations and control
systems are in use for some subsystems of Indian mill, but the same in paper machine
- area is rather meagre except in drying operation. Major emphasrs is thus needed in the :
» ,_wet end of paper machine Even in the wet end approach flow system headbox and
former, preferential priority must be given Use of proper measurement and control in
headbox approach flow, headbox and former in Indian paper industry thus become an
imperattve necessity. | |

In Indian paper industry in paper. machine wet end, manual control and offline
measurements for parameters like pH, temperature(optional),flow, consistency, stock
level, total head, retention have been in use in many situations. of Iate. if u‘navoidabie
some have started adopting on line continuous measuring inst'ruments and classical |
P/PI/PID control. This is only applied when it is absolutely necessary a‘n'd manuai control

“is not providing at all the required service. One barrier to use classical control system



instead of manual co‘ntrol ié the cdét of the on-line sens‘orj or trénsd.ﬁvcer, “tranvsmitter,
nﬁeasurement system and the controlier which Indian paper mill could not afford so far.
| It is well known that most the parameters in chémical process industries usually nonlinear
in nafure. Paper industry wet end process parameters are not the exception. This prbcess
may be controlled usually using single input-single output (SISO) system, also referre‘d as
single loop control concept. In this case, the cbntrol problems have only one cbntrolle,d
variable and one manipulated yariable. Bﬁt in many practical control problems of bhemical
process industries, more than one control and more than one manipulated variable are
involved. These problems are referred to as multiple—input_ mﬁltiple-output (MIMO)Vc-:ontrol
problems. vBe‘sides, most the parameters in thi.svsubs.ystem of paper industry, i.e. wet end
| are interactive in nature, thus belonging to MIMO system vx;hich needs .de_coupling t_he

loops.

Chemical process Industry in general and paper ihdustry in particular fa}eiy" concentrate
on these issueé and'dépend largely on the consultants .and suppliers of the DCS wthe
design phil_osophy for Idops for control brocessor(CP) and application.processdr(AP) are
not known _to.the customers. Linearizing »é nonlinear control parameter is alsq an
approximate one. Classical contro! loops can serve some purpoée by suitably {unihg the
cohtrol!éf with the entire process ioops by trial and error methods. It is also a fact that the
assuming linear transfer functiohs forv nonlinear parameters affect the accuracy and
~ reproducibility of the measurands and control action will not be very satisfactory.

Hence, there is an 'urgént need to address these issues and enough vro.o‘m exists for |

further studies in this important area of paper machine for the benefits of Indian paper

industry.



One impbrtant aspect for desigr.'sing' of a control system is the dynamicé of the eleméhts of
the loop such as process, sensing dévice, contrblle; or final control elements irespective
of.the’ parameters are linear or ndnlinear, non-‘interéctive or interactive‘in nature.vThe
most difficult one is to éssess for the process which has dead time of significant
magnitude .The time constant is also }r’elatively unknown. In addition it ‘is not possible to
perform experiment in industry to find out the values of various pérameters_ of control
systems, such as‘delay time(td),- rise time(t), settling time(ts), ovérshoot. (overdamping;
critical, and underdamping), and offsef. Designs of -all control systems dep_énd on the
values ofltime conétaht (0), controllér gain (Ke), and-process gain (kp). In abéence of data it
is prac’tically impéssible to design and analyse a robust control system and Ito asses‘ its
loops berformance normally used in'distributed bontrbl' éystem (DCS). Résearchers and
desig‘ners therefore explore the possibility of using pilot plant défa of computer simulated
daté for des'igning such a system, However, the daté on pilot plant for control of headbo*,
and approach flow system are very scarce..Mos’t of the pavrémeter_s‘ﬁeeded'for de_sighing .‘
écbntrol system or in existing industry in operation are shroﬁded with secrécy. There is
therefore enough .potenti'al -femaihing fo further study the parameteré ‘of-d‘ynam_ics-.of the
system'in order to désign a classical control loop for wet end o‘peration of paper .industry.
In this -situ'ation if is prudent to also re-examine the dynamics of classical control Ioo'ps
a‘lread'y keported.

On the other hand nonlinear lo_oﬁé ca'n: be éxamined by several rﬁethods like phase plane
| analysis, fuhction techniques, model adaptation and knowledge based systém. But the

most recent one ié the use of Artificial Intelligence (Al) techn'iques. )



1.2 Artificial Intelligence and its use:
' Use of artificial intelligence (A1) has of late become an indispansable tool for optimization
and control of various process parameters in ‘c.hemi,cal process and allied industries
including pulp and papér. The Al includes mainly artificial neural network (ANN), Fuzzy
Logic (FL), Genet_ic Algorithm (GA) or their combinations. Typically these are: Neufo-_
}F'uzzy,. Fuzzy-'GA,. Neuro-FL-GA etc. Out of the so many methodolo_glies"‘available, m
overwhélmingly majority of cases ANN is found by the designers to be the most -
convenient one and is currently being applied in almost all process industries 'for» |
optimizing, process mbdeling, simulating, fault detectioh and diagnosis and cdntrolling of
varic_)us prdceéses and operations. In addition, neural 'Vnet\./vorks have élso' méde
significant aids in the area of conﬁnuous speech . recognition and 'syntheéis, pattern |
recognit_ion, classificaﬁon of noisy data, nonlinear feature detection,‘ and market
fofecasting, weathér‘forecasting and adaptiVé control. ANN can assimilate operating data B
from an 'mdusirial pracess and learn about the’ cAomp}iex relationships exisfihg within fhe |
procéss, even when the input-output information is noisy and imprecise. This’ab‘ility
makés the neural network .concept well suited for modeling, especially compléx in_duétrial
- processes. Begause industrial operating data are Wide!y avéilabge from distrib@ted control
system (DCS), neural network modeling basedb_n past dataiappears tobea genéric.and _
cost-efficient approach that can be applied across many plants including pu|p.and paper.
It has already been indicated that all the subsystems of paper industry are intricate in
nature, generally nonlinear in character ahd often too complicated to be accurately
descr_ib_ed with physical models. Néural networks are powerful tools -that.c‘a‘n solvé a

- variety of nonlinear modeling problems of this industry.



ANNs represent a.new technology that mimics the structure and pr_ooess of biological
neural systems, i.e. brain. This tool has oecome a remarkable one and uses a rule based
systems and traditional data base manipulation techniques to form a 'neural network
control system performing two functions: one, the creation of software sensors, which
prov_ide on-line measurements of variables that in the past could only be measured in the
laboratory; other, an advisory control system to complement a regulatory 'control.system
ad\dres‘sing the previously described complex multi-rlariabre ap‘pli,caﬁOns.’ in fact, these
abilities make the neural network technology very well suited for solving probl_ems'in the
complex' process industries lik'e vp.ulp and paper. Aoplicatio'n of ANN. in modeli'ng and
cOntroI.'in paper industry has been in focus in almost all areas except paper machine wet
end system, especially paper machine headbox. Attempts can be made to use these
important technigues in .modeling ano oontrol. | |

However, before attempting to control system design for papér machine, some basic
".elements and methodology of ANN need to explained. These are drscussed briefly in the

;;.foilowmg sections. For designing of ANN, a few parameters need to be defrned These

are:

1.24 Activation function.or transfer function:

This function s also sometimes referred to as_ squashing funotion.The activation funotion;
architecture of ANN (single layer o_r multilayered),. algorithms to be adopted and the
lea'r'ning process involved (supervised or unsupervised) are requrred for designing ANN
based control system. |

The transfer function takes the rnput (Wthh may have any value between plus and minus
mfrnlty) and squashes the output into the range 0 to 1 Some of these transfer functlons

generally used by the designers are summarized in table-1.1(Appendix-1).The log-



| sigmoid transfer function is most commonly Qsed in multilayer networks that aretfained'
using the back-propagation algorithm, in part because this function is differentiable.
One of the major ta_sks in the design of a neural network is the selection of érchitecfure
Which dependé'on the nature of the problem. lnappropriate choice of ANN results into
poor performance. Thé,commonly used network architectures for modeling and control
applications, ADALINE (ADAptive LINear Elément) and its extension to MADALINE (er
-»many ADALINES), feed forward neural network (FFNN), forward-propagati‘bn'and balck‘-
propégation. The architecture of feed forward is the most popular structure in pkactice due
to its non-parametric, non-linear mapping between input and output. Networks with. thisv
architecture are known as universal approximators,- including multilayer féedforw_ard
| neural netWorks employing sigmoidal hidden unit activat‘ions.' These nefworks can
. apprg)ximate not only an unknowh fuhction but also its derivativé (29). |
The feedforward neural networks include one or more layers of hidden units between the
input and out;')ut léyers. AIIY connections point from input towards output. Multilayer of
neurons with nonlinear activation functions allows this type of neuralnethork to léam :
nonlinear and linéar relaﬁonship between input and output vectors. Each input.h_as an
appropriate weighting Vectbr W. The sum of the weighted inputs and the bias B or b for'm's‘,
- the input to the t‘ransfer func‘tibn. Any differentiable acﬁvaﬁon function may be used to
generate outputs. Three of the most §ommonly used adivétion functions are purelin, log-
sigméid and téh-sigmoid (table-1.1, Appendix-1). The activation functions of the hidden
units have to be diﬁerentiable nonlinear functions. If activation function is linear, then one
can always collapse the net to a single layer and thus lose the univer‘sal approximat_ion' B

capabilities. Each unit of the output layer is assumed to have the same activation

function.



1.2.2 Artificial neural network learning/training processes:
All artificial neural network needs Ieaming/training which implies that the neu'r‘on'
somehow changes its rnput/output behavrour in response to the envuronment Neurons.in
the network learn by changing the weights on the mputs Learning methods in neural
networks, can be broadly classified into three basic types: supervrsed, unsupervrsed, and
reinforced. These are further sub classified as. error correction gradie_nt descent,
stochastic least mean square backpropagatron and hebbran competitive etc. Most of the
researchers and designers prefer to use supervise Iearnmg with gradient descent |
technique either using least square or backpropagation_ techniques. Augmented
backpropagation networks, i.e. iogvarithmic neurons and exponential neurons added'to the
neural network’s input and output iayers_ and conjugate backpropagation neural network is
vused to.avoid time consuming Iine‘isearch. In unsupeNised learning ‘met'hod, the target
outout is not required to learn by itself. | | |

These techniques 'have potential for training of ANN in paper machine 'approach‘fiow
control system design. Therefore, studies must deal with: various appropriate‘ learning
“techniques to design approach flow system. Perhaps there is nolliteratu're available in
correction with the approach ﬂow system design. o

1.2.3 Artificial neural network control methodoiogles

There are various control methodologres used for controlling the process such as
supervised control, direct inverse control, model referenced adapti\I/e control namely:‘
 direct adaptive control, indirect adaptive controi; back propagationthrough time'conltroi
and adaptive critic control etc (85). Although'ali are used in specific situation; former two

are mostly adopted by the practicing and design engineer.



When the data to}be genérated, supervised control can take help of a classicallco‘n‘trol for
learning whereas direct inverse control e-mpkloys thev input-output data from plant or
process. This should be carefully examined andv}scrutinized.'

1.3 Need forvapplying ANN in paper making process:

~ There are many problems found in pulp and paper mills that have characteristics which
make this problem difficult to handle from}a pontrbl standpoint. This is mainly due to the
nonlinear nature of most of the subsystems of paper mill. CombinationA of a neural'
network system, a rule bésed system and a conventional computational sly.stem can
provide. a tool to handle these problems -with simplicity and effectiveness. Neural
networks can also be very useful for “quick and' dirty” models (19). The ANNs are:able‘ to
. accﬁrately represent even complex nonlinear be-havior, the nature of which is not known
to the user (124); It is with this intention this present problem has‘ been undertaken to
develop control System with artiﬁdal neural network application in pép‘er ‘machine
headbox. which has been dealt till now very sparingly. As ‘already indicated, paper making
A'pro.cess consists of a large number of subsystems (unit operations and prbcesseS). Somé’ -

of the applications related to modeling and control of papef mill subsystéms are depicted

in chapter 2, section 2.3.

1.4 Present Objectives:
- The present invesﬁgation haé been planned to study the various .aspects required for
designing control.systems using artificial neural networks for, wet end paper machine -
parameters, approach flow and headbox in particUl._ar with the following distinct objectives:
‘1. To develop-and‘_analyze appropriate dynamicvmodels in both continuous and
discrete signals for c@nsistency, total head, level, pH, stock temperat‘ure_ahd basis - |

weight assuming all these parameters as linear systems in approach flow system
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.. and headbox of a paper machine. These models 'are baééd on unsteady state |
material balance or energy balance or combination of both 'the two.
. To design various closed Iloop control systems for consistency control using
classical controller (P‘l/PlD"és the case may be) and Bode stability criterion
'Aassuming servo or regulator problem'and then fo design the process using the
estimated controller parameters. These will be followed: by éelecting appropriate
tuning methodology and to cohpére the reésponses for both Pl and PID and also
with continuous and discrete signals.
. To ana‘ly.ze the available data for stock flow control ih’indus.try and to compare the -
responses with theoretically model predicted data assuming typical ﬂow control
techniques prévalént in many Indian paper mills. |
. To study the responses of all other control parameters as mentioned in stép-_’lv by
.suitably designing appropriate control loob for each parameter and to compare the
responses with continuous and’dis'créte signals. | |
. To dévelop and analyze the models for basis weight control in ap‘prdach‘ ﬂdw in
both analdg and digital sysfcems and to compare theirAresp_onse's. |
5. Tb design a model for the MIMO system such as inteféctibn of total heéd_ and stoék |
- level, air pressure énd level in a pressurized headbox, st_ock fllow an_d‘-stock jlevel,_
and ret.ention brocess in the wet end and.then to compare the results of total head
and stock level assuming thém as SISO system as in step-4. |
To convert all the above models of conﬁ'ol parameters o.f'the wet end approach
flow syétem including headbox I_as mentioned above( steps no. 1-6) in to a neural

| system-using the various - procedures for neural computation( feedforward, back -



' propagation, ADALINE ) with changing values of ANN parametefé such as
momentum and leéfning rate, and others. | |

8.To compare the results of ANN based computation usi_ng MATLAB simulation with
SIMULINK tools with those estimated vélues from dassical control loops for all

SISO and MIMO system.



‘CHAPTER-2
LITERATURE SURVEY

This Chapter attempts to review the literature pertaining to the artificial rLeu‘ral network,
modeling, simulation and control aspects of paper mill in génefal,.approa‘ch flow system
and headbox of wet end papef m_achin.e in particular,and the application of ANN in all thé
‘aforesaid areas, especially 'the‘désign of control systems ina paper mil‘l.' .

21 Artifiqial neural network: |

Using artificial neural networks (ANNs) paradigm hés-become a pbwerfu_l -.tool and thus a
potential solution strategy to solve cbmplex proble’rﬁ or problems with unpredibtable énd |
imprecise information or where daté ‘are . incomplete. The example_s are: process
engineering, process désign (168,169), modeling and simullation. (ﬁ73),_' process
subervision, control and estimation (92), process faulf detection and diaghosié which rély_ .
on the effective processing of covmplex daté; | |
The use of artificial neural hetwbrks (ANNSs) and its associated factors in éolviﬁg ‘problefns
have béen shown concisely in Chapter 4 Sectién 4.3. Because of its‘ability to represent
‘non.linear rhappings between input' and output éf‘the problérﬁs sﬁch as modeling,
_svimUIation, optimization .and control of chemical engineering Systéms including of paper
mill"sul:‘; systems, they can be most readiiy exploited in the synthesis (jf nonlin'ear
systems. |

In 'the following paragraphs a éomprehenéive review of these aﬁbli'cations ére feprbducéd_ :
here, just to stress on the feasibility of various methodology -o.f ANN such as
backpropagation, "ADALINE, feed forward etc. in real life p'robler_n's ' With pfoven

technology in existing paper mills.



Viharos et al. (161) described a novel appfoach for learning and applying artificial neural -
network mogels based on incomplete data. The developed algorithm is compared with
three d'ata-eﬁelndihg-methods and resulted in a model with superior estimation
capabilitiés‘. Thé algorithm is teéted through artificial data and found that it is completely
able to handle. missing oﬁtput data.

Hernandez et_al (56) studied the stability of the model's inverse. If the neural n’etwo‘rk
model of a system is trusted at least around some operating point, -theh the inverse
dynamics of the model can providé a good. indication of how the plant’s inglerée'may
behave.‘

Vanhala et al (1,60)‘ suggested that artificial neural networks ‘can be used to model difficult
complex syét_ems where only input-output data are available.

Irwin et al.(64) used multilayer perceptron (MLP) neural networks to offline identification
of a simulation model of a 200MW boiler ,oil fired, drum type boile'r with turbo generator
uni{ at Bally lumford powér station in Northern Ireland. ‘

Ozgur et al.(98) suggestéd that the Levehberg-Marquardt algorithm has t‘).‘een found
being faster and having bétter petrformance than the other algorithms in training.
Savkovic-Stevanovic (131) devéloped and applied neural networks for analysis énd
optimization of industrial pr‘od'uction data. Aﬁificiél neural networks based on feed-forward
architecture and train;ed by the back-propagatioh 'teéhnique.

Andre et al (3) used neural networks succesSfully for s{eady state process mod'eling. He
further applied dynamib, neuron network (RDNN) for predicting non-linear ties such as
asymmetric dynamic response including steady state modeling, steady state planhing and

‘steady state optimization.



Barry et al. (8) demonstrated model based predictive control (MB'PC) through numerous
on-'line industrial applications to be anv accurate and robust method of process control.
Wilson et al (170) presented online state estimation of proce_ss systems based on
embedding a hybrid ANN mechanistic process model within an extended _kaiman filter.
The filier algorithm calls for local linearization of the process_,model‘and general formulae -
for evaluation of the Jacobian matrix for a feedfonNard neural network are also presented.
Surya (153) suggested tha’r neural networks have made strong advances in ’r‘he areas of
continuous speech recognition, pattern recognition, classification of noisy data, nonlinear .
feature detection, market forecasting, and process modeling. Tbese'abilities make the
neural network technology very well suited for soiving problems m process industries. |
Bhat (15) suggested that neural netwdrks have been shown to be successful in modeiing
nonhnear dynamic systems. Its use has also been proposed in model- based control
aigorithms and as nonlinear controllers by ldentlfyrng the piants inverse by Psaitis et ai‘ '
(111). | |

‘Di Massimo, et. al (32) invesrigated the applicability of neural netWorks ‘for imprbiring
' process operability. Techniques based on the use of neural netWork based_ model (NNMs)
may offer significant advantages over conventional model based techniques.

.Scott et al (133-137) has extensively studied on applications of knowledge based artificiai
neural netvrork for various practical solutions of many intricate problems of Iinear model
struct'ures The most important .appiication's were laid in the field-'of 'CSTR modeling,'
design and control. He has used the known dynamics for srngle and multi stage CSTR |
battery and then converted them in to artificial neural networks based soiutlon He has
cited comparrson,between conventlonal Pl‘D and ANN based control_ and demonstrated |

how refining of PID controller using neural networks has been possible. He further
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interpreted nonlinear models by creating nonlinear NN process | models. ‘These_
a.pplications oan be used conveniently in CSTR system in paper industry (cadsticizétion)ﬁ
2.2 Modeling, simulation, measurement and control of psper making subsystems:
Ullmann et al (159) recognized that frequent and accurate control of'key pulp parameters
are determining' factor of end product quality. |

Garceau and their co-workers (43, 44), Di}on_and Garceau (33-36) further developed the
.controi strategy for on-line characterization of the fiber size of pulp by ac_ousto-opti_cal
methods in various operations of paper industry including the wet end'operetions. The
modeis developed for the. purpose for both optical and acoustical techniques have been_ |
simulated through experimentai_' results. Further mode]s are also developed for kraft
- pulping delignification kinetics for making pulp and th‘en post treatment pdlps_ heve also
been characterized through on-line methods. |

Ghosh (45-48) worked extensively on modeirng and simulation, wet end chemrstry, paper
drying and optrmrzation refining and screening.

Ramarao and his co-workers (114,115) developed models for the gravity dra‘ina‘ge‘of .
papermaking suspensions, pulp characterization: using permeability Ameasu.res, using
measures obtained from d_rainage data based -on both permeab-ility and compressibility, |
establishing relationship between compressibility and permeability with lime mud -and
papermaking pulp, retention of filler and fine particle retention m rnoompressrbie and
compressible fibrous media in the wet end of paper machine and solved the modeis :
with numerical techniques and finaily simulated the modeis through experimental data.
Banerjee ¢t al (5- 6) carried out extensrve mvestigation on various aspects of many'
operations of a paper mill. Some of the processes include improvrng energy effrcrency, -

improvrng centrifugal cleaner effiorency modelrng simulation and controi
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Potusek (108-110) investigated the dispersion rrrodeling using one,d_imensional parameter
(peclet number) and then simulated through experimental data of displacement washing
of pulp in a.series of experiments. These models could pe used as a basis for corrtrolling
not only brown stock washers, ahd bleach washers but also in wet end formation for

some of the parameters.

David wood(27) presented a corﬁprehensive description of ‘moder»‘n concept of headbox
control and explained how consistent paper properties across the paper width is pessible
by positioning the slice as near to parallel as possible by stabilizirrg the headbox and slice
fip mou'ntinﬁagai»nst temperature variations. He further emphasized t_hat‘the autorrratipn
and adjustable slice lip can improve headbox control. Peter' Seifert investigated basis
weight variations in headbox approach system and discussed ’rhe effects of pump
pulsatiens and dampening. -

Pearson J.H (1Q5) discussed. about functions of automati'c' headbq* opera'tions for both
open and closed headboxes and desigh the various contrpl loops for vari'ops cor‘reern"‘
“headboxes. Further demonstrated the headbox model no.200 with the variation of speed

- total head range selectron with range selector switch position, an instrumentation point
and pump operatron under vacuum and pressure The discharge coefﬂcrent has been
assumed as one. | |

Smghal (144 145) designed low cost basrs werght control system for small paper il

Basis welght control particularly when manufactunng reel orders rs very lmportant and
discussed manual control and feed forward control systems. Basis weight contro! with
feed forward control is a good choice for the small paper mﬁls who cannotlaf_ford costly

QCS system. -

17



Johnson (66, 67) has reviewed the basic measurement and instrumen'tatlon' applied to
paper machine wet end operation. The principle of the measurements of flow, level,‘
density, conslslenoy, pressure, temperature; pH, freeness, speed and draw were
- presented. He further reviewed various unit processes making up wet end of paper
machine from instrumenlation and control stand point aspects witn the design of stralegy
of various control, sub loops. He further shown how an integrated system \rvith feed
forward technique developed to improve lhe proeess automation through the
microprocessor technology and distributed control system.

The headbox modeling in terms of process response has been done frorn the first
principle by Mardon (83) and Smlth et al(150) by including conservation of mass of the
liquid and gas phases assummg ideal gas law which relates air pad mass, pressure and
volume, the relatronshlp have been linearised about operationpoint based on machine
speed. Donald crted the advantage of mechanistic model developed by the above
lnvestrgator in terms of automatic tuning facrlrty Wthh schedules the controller
- parameters based on machrne speed and indicated that the response of headbox‘
parameters can be modeled from the first prlnclples. | | |
- Talvio(154), Smith(lSO), and Chao et al(22) for their investigation on theoretical and |
experimental studies in to the stability and 'c_ontrol of paper maclrlne headboxes, and
controi system with linear transfer functions.

Dumdie(37) has developed the system approaeh to the censistency control and dry stbck
blend Bhartiya. and his cowarkers (14) developed a thermo-hydraulic model based‘
management of kappa profile for feedstock grade transltron in a continuous digester

which can simulate the plug flow behavrour of the motion of blends of hardwood and



softwood wood chins. Two controller strategies, namely decentralized Pl and linear
Model Predictive Control were expidred.

Francils and his co-workers (40,41) has reported application of model-based contro.i-
strategy for to thé pulp and paper industfy with particular refejrence to kappa number
profile contfol of continuous pulp digester by empirically derived process rnodél using
subspace identification techniques. A state space model predictive controill algorithm is
used to adjust five manipulated inpUts in order to regulate five procesa outputs, in
response to five randomly Varying process disturbances (of three are méas_urable) .Proﬁle '
sensitivity to clnsed loop response is also explored.

‘Paljlonis and Krishnagopalan (102-104) develOped‘adaptivevinferential control system
| based on mathematical models with nn-line_liquor analysis to predict kappa number uéing
In-Situ conducﬁvity sensor. lon chrnmatography refract_ive' indax and UV absorbency .
‘analysis measures various othern parameters. kinetics of kraft delignification based on
quUor 'analysis, liguor concentration measurement fdr caus_ticiZing- Qontral .and later the
state spaca modeling of modified kraft nUIping were also developed.

Balderud. et al (11) p‘resent'ed- nunwerical experimenté’ for both mixing«nnaracfEristiba and
transport delays in the piping netwqu have a si'gnificant effect on wet-end attenuation of
'stobk,concentration disturbances. The transpbrt’ .delay in the. pipe rnns introduces
rééOnance frequencies that can be e.nha_'nced by both op;erating conditions and process
des}ign. | |

Turnbull et al (158) derived a one-dirnensional model of a paper forming. process on a
single.wire crescent former from fundamental consen}ation lawsvf The model can describe

dynamic and steady state behavior of the forming process.
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, Rigopoulos et al. (121) studied the papér properties such as'basié'weigh_t, moisture
content and caliper which are the functions of the direction along which {he paper moves-
* machine direction, direction across the width Of_the paper machine, and cross -directi'on,
Wallér (163) has made an extenéive survey of developments of control of paper making |
" headboxes and their in-corporation into forming section. Detailing about the headboxes
for fwin-\)veir and fourdrinier machine with their equipment and control description has
been emphasised.
Panda (99, 100) in his various publications d'iscussed. théor_etical_ approaches Vfor.
improvement of pUIp yield, energy cbnsumption' aspects of pulp and péber mills, anélysis
of detailed cost for newsprint production from Hindustan Paper Corporation, India and
indicated how to make the industry hore energy efficient and cost effective & also’
analysed the pulp ’samples' collected from different sections, namely stuff-box, headbox
~ and couch press of three newsprint mills in lndfa. The pulp samples were collected from
: millé‘based dh’ 'cherﬁioal bamboo pulp, imported. CTMP, eucalyptus CMP and refinéd in
bbth PFl mill and Spfodd Waldron refiner up to the same freeness level. Thé parameters_
determined were: ‘freeness, drainage time, ash content, fiber fractions based on Mc-N.ett
Bvauer classifier and finally: print through' (Maébeth density) proAperties_b of hand she'ets
, through IGT printability tester. . | |
Tuladhar et al(157) studied nonlineaf dynamic modeling of headbox and wet end
pressure pulsaﬁoh analysis derived from first bri_nciple for Sym-Flo héadbox, the hydraulic
headbox _with cértai_n assumptions. Results wéré presented of'mili test on ah operating
paper machihe and MD basis weight signal flow were analysed. The result in.dicated the
presence of very low frequency variation, caused by éonsistency dynamics. Silicbn clay

addition has been shown to cause a blending problem. The pressure pulsation analysis
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has also been 'shown_ to signifiCant'improvement in thle wet end performance after éddi}ng
a second screen. The simulation result indicated that the decoupled cpntrol action is
;feasible_using MPC controller. |

Kumar Prasanna et al(77) has described paper machine contr_o.l ‘and optimization for
different su:b system of paper machine loop including consistency controlIA in approach
ﬂ_ow, headbdx, ma}inly single variéble and total head have been controlled traditio_nally by
covntrolling air pad for étream flow va]ve; the recirculation valvé or by fén .pumh speéd
control. The jet wire ratio is cascaded with the total head and any bhénges in wire speéd
are feed forwérd to the total head controller in ofder to maintain jet }Wire .ratio. 'They
' suggés-ted also the control strategy for conéistehcy and furnish control usiﬁg ratio control. -
vMetho-d of analyzing variability thét exists af a particular period is discussed and
suggested an elimination method. |

Whalley ét .a|(1'66)addresses t.he probiem of regulating the flow of pulp solution or stock
from a fourdrinier pa’per méking "machine headbox. A multivariab_le, time invariant model
for a fourdrinier machine headbox is considered. An optimumﬂn, fhinimum éontrol eﬁért
strategy-is prbposed. The head_box model contains a perfebt iﬁtegfator wﬁich slowly
changes the head box level and hence the Qut‘pui flow rate. | |
Keswani (72) has reported the status of varioﬁ_s instrumentation and control system in
pulp a’nd pape.r industry including the wet end oberation; Indigenous c'apa‘bility.for design
and manufacturing of electronic process control in pulp and 'p-apér industry has been
emphasized. |

The d'esignihg of measuring systems for flow, pressure, level, t_empératur‘e; C_onsi,stenc;:y,
moisture, basis weight, and speed, tension and draw have Béen exemplified. The

feasibility of on-line measurement system and the control application are extensively dealt
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with from the industrial ‘point of view. He further ah.alyzed in details the relative gain of‘
: using microp'rOCessor/electronic control system under the roof of DCS applicativon as‘a
whole in the paper mill. |
The neceésity of various types of process cbntrol applications in a pulp and paper"mill'
have been dealt wi_th by Mishra (87), Rao (116-118), and Bihani et al. (16-18). However
~ most of the' wbrks of the above researchers ére devoted to pulping and bleaching of
woo>ds, mixed h'ardwoods and non woods. Economic‘uti_lization of alum in sizing has been '
efnphésized by Rao (11_9). | | |
Rao, Bansal, and Ray (119) studied the applicatidn of various methods to measure fhe
‘relevant paramete'rs in a pulp and paper mill emphasiZing the stafus of ivnstrur‘nentatioh in |
papef'rhill with particular reference of paper machine. They have further retreated the
selection of instrumentation in terms of cost énd added that in paber machine sectiéh the
measurerﬁ'enf and control of headbox tempe‘ravtu‘re along with héadbox lével are essential.
| And also de:velbped a model for profitability analysis of syn’thetiéwire in wet énd ‘secfion
of a paper mill 'ahd simulated the mbdel with various data from th‘e wire of a number of
nﬂitls‘ | |
Sankaranarayanan and his co-workers (127-129) reviewed exhaustively the usequ
electronic control énd the parameters of importance for monitoriné {control td maintain {he
papef quality in mills sUch as basis weight, moisturé content, thickness or caliber,
b'rightnes's, color and opécity of papér, ash content, consistency of stock, hea.dbox.
- consistency and 'quality of pulp. Developments of indigenously microprocessor 'based
| instr'um.ents‘for designing real time higH oonsist.evncy transmitter, low con‘s,istehcy monitor
baéed on radio vfrequ_ency technigue, real time scanning or measurement of ,_blasis weight

with wide range (40 gsm-500 gsm) by neucleonic technique, moisture monitor, and profile
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control of papér machine for bpne weight, moisture and basié weight by boﬁh analogue
and digital techniques have been- made. Further, dynamic nﬁeasuremeﬁt'of thickness,
measurement of color and turbidi~tvy, nondestructive technique for measuring tensile .
stre_ngth and breaking length using sonic wave propagation and coat thickness
measurement have been demonstrated. In all theAcases of méasurément of parémeters
field testing were performed. For control of basis weight dynamic models were developed,
simulated and used for testing in the mills for single loop feedbéck bontrol in p'aper'mlill.
Besides the developmeht principleé of computer control of di’gesterllwe_re reported.

Aidun et al (1) studied two kinds of secondary fldws~in headbox derived from 'geofnetric
effects and kinematics andthe oth‘er from turbulent motion of the‘- flow field and the
developed nﬂodellwés analysed through direct numerical simulation.

Scott.' Pantaleo(138) devéloped a new headbox design featuring consistency profiling
decou.pled' from fiber orientation ré’spohvse‘ which providedl‘ ‘nar‘rower basis weight
response than a slice bending system. |

In the ‘area of dry end of paper machine, modeling and control éysteﬁ were ‘dev'eloped by
Chen<(24) through analytical modeling and brocess identifiéation Aénd_ impleAm:entedA énd
tested on different types of paper machines. Heaven et al. (55) examined some -'bf the
traditional parametrié ide‘ntifiCation techniques ,‘ap'piied to data collected from a paper
ma'chin.e. Process data obtained from é pa‘per. machine excited with pseudo random
binary- sequences (PBRS) are used to determiné process dynamics neéded to e'val'uaté
exciting and new control strategies. 'Il_?igpp‘oulos et al (121) developéd control relevént
distufbance modeling of paper maohihe Aull prdfile properties using adéptivé PCA.
Develdpment of state variable model by Berrada et al.(141‘3), parametevr optimization by

Akesson Johan (2),modeling and control for drying section of paper machines by Xia et
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al.(172) , modeling and simulation of paper drying by Wihelmemsson et al.(167),
optimizing paper machin'e dryer control by Nelson and Gardner(93). |
Orccotoma et al (97) investigated fhe effect of disturbances on the two outp Lit v'ariableé of
paper machine with twin wire formers (gap formers), viz, basis weight and first pass
rétehtion by using the concept of contfollability. Time delays and high frequency
disturbances of the thick stock consi‘stency were shown to affect the process. Importance
of consistency loop in the mixing chest of pulp preparation area of paper machine has
been found to‘.be critical. Analysis of a paper machine formiﬁg zone in a newsprint mill
was performed to determine the maximum allowable va‘riabi-l'ity of pulp; furnished to the
,probess. First-pass retention is consideredAan uncontrolled variable -and fpuhd to.beA
dependent on fines content of the thick stock. They have demonstrated that .-th"e. nonlinear
processes (basis weight‘and first pass retention). can well be represénted by linear
ﬁodels. Non-linearity did not pose any significant error.
- Nissinen, et. al. (95) studied the feasibility of designing multivariable P} cohtroller.for
headbox with rectifier rolls without overflow provided with air cﬁsﬁion in a mult‘i-grade‘
paper machine. The system has been considered as multiple input-rﬁ.ultipie output
(MIMO) instead of single input- single output (SISAO)A syStem. The process dynamics for
such system was idenfiﬁed. Based_ on the process model and the structuré of the
rhultivariable PI controller é process simulator was built uéing Simulink. The_.si_mulato'r
was used to test different tuning methods which could be applied to the system.
2.3 Modeling in paper mill subsystems with ANN: |
- Qian et al (113) modeled and implemented a complex wood-chip refinving sy.stém using

feed forward neural network. A neural network model was trained using data from a

24



commercial CTMP refiner. The model's predictions of pulp and paper properties were in
excellent agreement Wlth industrial refiner data.
Inferential models for kappa number are developed using the methods of'partial le‘ast
square regression (PLS) and feed forward neural networks.
Dayal et al (28) investigated above technique to build empirical models for kappa number
using historical data from an- industrial continuous kamyr digeeter. A static model-for
kappa number based on the 21 input process parameters has been d_evelopect. | |
The p:urpose of the model is to provide a real time indlcatibn.,of brlghtness so that
operators can-reduce chemical use. Zhu et al (173) developed the neural network models
for Dg,Eqp,D1 and Ez to Dz stages using ANNlE(artrfrcral neural network lntegrated
envlronment), in which, data preparation, network topology selection, network training,
_evaluatlon, modilication, code generation and simulation are integrated. A single global
neu'ral network model for the bleaohplant (DZ brightness) has als'orbeen develop,ed and
selected the back-propagation algorithm for multilayer feed forward networks. 4
Rooke et al. (122) presented a novel apvproach for modeling the retention of‘materlal( fines
and fillers) on the papermaklng wire usrng a comblnatron of black box (neural networks) .
and physically derived models. ANNs model the complex evolution’ of the white water'
stock concentration v_ery_accurately, whilst the physical models of the mrxrng‘and blendlng
chest; ‘vmultistage centricleaners (hydro oyclon'esl and pressure‘soreens are used to
describe_ the headbox stock concent}ration. |
: l\lenad et al. (94), studled feedforward neural networks applied.to estimate‘the outlet
water temperature of the scrubber 'pro'oess. The networks are trained with data obtained
from experiments carried out on two pilot scrubbers. The neural networks consisted of

seven inputs and one output. The inputs were mass flow rate, temperature, inlet humid‘ity |
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of the supply air, mass flow rate of the water, inlet water temperature, 'héight of the
scrubber and water pressure in the nozzle. The oﬁtput was the outlet water temperature
from the scrubber. |

Paper has different propeﬂies such as physical, mechanical strength, s'tructur‘al, opticél
and surface properties. Defebt of paper is also defined in terms of some unwanting
properties. Curl is one of such pfoperties normally characterized as defect. Paper‘ can. be
* rejected if care is not taken during processing to eliminate curling. Paper “curl” can only

be measured re‘lia‘bly OFF-LINE after manufacture, making it‘difﬁcult to control.

Edward et al (39) predicted curl, normally an unv'vr_anti.ng property (defect) of“pa‘per (fro.m
parameters defining the current characteristics of'a‘ reel and fhe plant. machinery usingﬁ
‘heural hetwo‘rk techniques avhd developed a model for the two tasks and used multilayér '
percéptron (MLP) neural networks with a sigmoidél output stage for the “in-specification”
prediction and a linear output stage for the cUH prediction task.

Temesgen (156) wvork'ed on the process design of black liquor multiple effect ‘eva‘porator
system after dé\/e_loping the modeling of the system and then. solving by both nume_rical
teChhiqués-Newton Raphson or its modified methqu and back prOpagation neural
nétworks and comparéd the results. The suberio'rity of ANN technique over the
c;o'nvention techniques was reported. |
‘Kooi et al (76) proposed a backpropagation NN as a controller té replace the-self—tun'iﬁg |
regulétor for providing a closed loop control of the 'energy in the woodchip refining -
processes. Both static and dynamic NN chtrollers perform vefy wéﬂ in emulating the.
self-tuning reQu!a’tor fo:r processes having a non minimum phasé properties. Thé dynamic

NN pontrol\ér provides a satisfactory control compared to thé_self tuning regulafor. '
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Rudd (124) reported that there are many network: paradrgms in use today For the |
A 'nultrvanable contrnuous processes in pulp and paper mills, one successful network .
paradigm is the backpropagation network. [t is one of the easiest networks to. understand
because it's learning and updated procedures are intuitively appealing. |
Rudd (125) used the NN to determine real time values for soda loss washer nwat
consrstency & washer mat unit density in brown stock washer, the former is used as soft
sensor. The target is to control stabilize the black liquor solids carrred out by the pulp mat
+ " to the bleach plant. Results show a 25% reduction in standard deviation of the black-
liquor solids using an eight day trial. The controller also mai'htained__larger di'sturha.nces.in. _
an automatic mode for the input variables. These values are used to c_ontrolthe washing . |
operation. Data from a process domain is collected along with known results to develop
“training sets used to _traln a conﬁgured neural network. The structural configuration of NN
controller is shown in Fig. 2.1. The NN based control strategy consists of dilution factor
' .controller (DC), consistency (K), werght (w) speed( ) and flow controller (FC). N N‘
controller (NNC) gets a signal for a set point or target value. The output signal from NNC
goes to dilution factor controller which in turn sets out a srgnal to the flow controller ina
cascading mode The output signal from DC goes to control the flow of water to the frlter ‘.

mat. Similar configuration can be drawn for single stage bleach plant washer.
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Fig-2.1.NeuraI network based control Strategy
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Ozaki has described a system where the bed shape from the imagé analysis 'syjstem’is
first classified by three layers back propagation NN in to three désses as ideal shape,
wide based, and high. This is. followed by a fuzzy logic controller which changes the air
flows in-to the recovery boiler by uéing the c,lassifier information. o

While the dynamib mathematical model has been developed by Smith (150) and Edwards
(39), the model predictive control of an industrial kiln was developed by Charos etal (23~)
wi.thout the application of ANN. The internal mode! control strategy (IMC) for thé rotary
lime kiln co'htrol Has been sugg_ested'by Ribeiro. It uses multilayer feed forward back
propagation network with 8 inputs, 2 outputs, and 2 hidden Iaye_rs'. wi‘th 20.a"n‘d iO‘nodes.
Fig.2.2 shows the principal contfol strategy of lime kiln. EXpert systen{s and NN h'ave‘
beeﬁ used in quélity control system in paper mills. The primary objecti\_/esg('bf a:paper

quality expert systemA are: to secure the quality of paper,

29



u(k)

!

~—p(—>  Filter —'ﬂ Neural network kiln
>

(k1) —] q‘ | controller ;Limekiln plant
' y (K)
¥
) g
o  Neural network kiln - 3
- model £

Ymk)

Fig.-2.2 Neural network based corifrol strategy for lime kiln .
minimize variations betw_een shifts, reduce‘production cgsts, subport operators, provide a
flexible simuia’tion tool, use existing knowledge, and train new staff mémbe’rs._ The basic
| functiohs of one system are to collect real time process and quality data, evaluate thé
measuredv quality against custqmer speci'fications, recommend necessary corréctiv_e‘
actions and simulat_e fQIﬁlIing of these actions.
- Gornik et al'(50) developed models to estimate.' brightness, Qpabity, gloss and print glbss
of cda‘ted» paper which are baéed on radial basis funbtion neural network.
Desmond et al (31) presented a design of hybrid éon_troller consisting of a néural network
and classical cantrol technique and tested the schéme on the bilinear model of a paper
making machine (headbox) as well. Scharcanski Jacob et al. (132) presented a néwI
_ approaéh to the controllable simulation of paper formi'ng, using artificial neufal network

methods. The model incorporates dynamics of the forming process, like turbulénce,

drainage speed, and preferential drainage through earlier less-dense regions and fiber
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properties, I~ike propensity to clump, or “ﬂocculate,;’ fiber flexibility, and cdnéentfation of
fibers in the suspension. Results for mbn’o—ﬁber Iayéf strucfgres are descrilbed, showing
effects of turbulence and its decay during drainage in causing ciumping, or “flocculation."
~ The commercial process has one'of its main goals, the reduction to toie‘rable levels of the
non-uniformity in mass distribution resulting from flocculation.

2.4 Conclusion: |

A ’combrehensive review of artificial neural network strategy and its architecture héve
been outlih_ed and available a!gorithm is cited to arrive at the result. A review of
 feedforward backpropagation' network is highlighted “with superviéory ASAtrategy.
Applicétions of neural network for modeling, simulatién, control' and fault dila_g'nos'is have
been exemplified with the subsystems used in a paper mill notably modeling of kappé
number in kamyr digester, pulp'bléaching process, ahd éontrol of brow-.n.s‘tockaashér a.nd
bleach _wésher, incineration of black'liquor,vﬂlime kiln, quality control én‘d finally prediction
of é typical péper property known as curl, Advaﬁtages of usihg ANN‘ based control
syS’tems are cited.to demonstrate hovy to.achieve a robust control of the abovelpaper mill
subsystemé_which are difficult to control by conventional conterII‘ers. Itis evident f_rom the
literature that use of 'NN techndlogy is beneficial if the process model is strongly nonlinear
orvits étructure is unknown.. Fromthé survéy of literature it is éléo'fbund that féedforwérd :
artificial neural networks (FANNs) have emerged in recent yeérsés useful tools in
" 3mical procéss engineéring system applications. it is imp‘orta.nt fo n{entioh' that
;ordihg to Rumelhart et al (128) out of so many varieties of NN, the feed forward back
)pagation network.is found to be fnost widely used control tools.for different application
réal life problem in indﬁstry. Ove-rwhelmingly majority of applicaﬁo‘ns in pufp and paper

nill and allied industries also favoured this network. Other networks such as ADALINE, |
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single layer perceptron, adaptive resonance theory, éugmented back propagation are
infre‘quentty‘used., MADAL]NE, resilient back propagation, radial basis function etc. heve
been used onl'y very sparingly. It is also evident that large volumes of works on ANN are |
devoted to the areas otmodeiingrcompared to those for control system design. The areas
of control in paper mill covered are pertihent to fiber processing such as‘pulptng,
bleaching and. alse in recovery section. Though these works have been concentrated on ‘.
- ANN based modeling and control, the ANN based work in the paper machine wet end
areas are extremely limited. The modeling and simulation on paper machine pressurized.
- headbox have been dealt with by Whalley et al. and other lnvesttgators (166) Although
| Whalley attempted to modify the prewousty developed aforesaid models for air cushion
headbox and opttmtzed the Imear,mutttvartate MIMO models, these are Iimite‘d to only
classical control techniétue and did not include ANN ‘concept. Only one Werk available_
which used the ANN in designing a nonlineér control system of head-box of wet end of
paper machine is due to Desmond et al. (31) which used a hybrid controller cdhsisting of
an ANN to solve hontinearity of the problem and a classical controller. However‘, there is a ‘
retic.ent stlence about the detailed derivatien ‘o’r' description of design. It app'ears that 'the‘
| design of control system using single or multivariable algortthm f_or real life ptoblem with
‘or without ANN or adaptation logic are secret. It may be emphésized that most of the
researchers or ‘practioners in Indian paper mills. were mostly confined to production of
pulp, its processing and control.

In this present investigation efforts will be made to develop various dynamic models of
approach flow system parameters and headbox in both analeg and digital stgnats and
'then various ANNs in the design of control system in paper machine pressurized headbox

with emphasis on air cushion type will be applied for control purposes. They'witt be
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- compared with each other followed by the comparison with the application of classical
~controllers (P/PI/PID). Attempts will also be made to solve some bfoblem‘s with retention

in hydraulic headbox.
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CHAPTER-3 |
PAPER MANUFACTURE, OPERATIONAL PARAMETERS AND
CONTROL PRACTICE IN A TYPICAL INTEGRATED lNDIAN PAPER
INDUSTRY

3.1 Brief description of paper man}ufacturing process:

The paper machine is the last part of the long chain of prOceéses for making paper. In fact
it is an important_subsystem at the end of the entire paper making system‘, consisting of
| the raw méte'rial preparation steps .to paper finishing stage as shown in fig..3.1'.

Paper making process starts with preparation of raw matériél (size reduction-chipping,
cutting, grinding efc., size separation-screéning), pulping(cooking) to convert raw material
to pulp. Méking.of pulp consists of getting the éellulose fiber separaféd‘ by chémical |
treatment of suitable raw material under proper pressure and 'temperaturé in' é reactor
uhder pressure called digester operatéd in a batch manner (batch digester) or iﬁ a
continuous way in continuous digester. Kamyr digester isa typical continuous digester
employed for converting mostly forest baséd raw materials (wood, bamboo)' into pulp
_wﬁich neceésitates sophisticated control of pulp parameters. For agri-residues iike '
bagasse and straw, the design of cdntinuous digester is- radically different. Pandiya .
digester is an example. The pulping process can be of many .types-Kraft, soda, sul_phi"ce
efe, depénding upon the type of chemicals used and level of pH elm.plo'yed. In kraft
| pulping (also balled sulphate pulping), pulp quality is generally measuréd .by kappa
number which is related to the lignin conteht remaining in the pulp. Output produét-pulp
from the_digester is freated in brown stock washer (BSVW),V one of the most important
subsystems 6f a pulp mill to separate clean brown pulp from biack liquor through a multi-
stage counte.rcurrent washing system. The main variables affecting the process are: input

consiétenoy in the vat, rom of washer, input flow rate, temperature, vacuum and'vat level
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etc. Thé washed pulp is the 'tr_eated in several station.s for multiple stage cleaning (centri-
. cleaners) and screening operations (pressure screens).The pulp is then bleached - in
muItistage—ﬁulti-Sequence bleaching operétions. |
The objective_bf bleach plant is to obtain the brightness of pulp at a.desire'd level while |
minimizing the use of bleach’ing_ chemicals like Clo, ClO, etc. There afe various
sequences of bleaching like CEH, CEDD, DEDED etc. mainly used by Indian paper mill.
An 'ON;LI_NE meésurement of D-stage brightness is desi_red for process control. Howe\)er,
becau.se' of seﬁsor limitations, brightness is méasured OFF-LINE by an hourly manuél
test. To ensure adequate pulp brighthess, c‘Jp.erators occasionally control to a 'high.er than
required brightness with a corresponding increased .use of bleachi_ng chemicals. |
For CMP (Chemi-mechanical pulping)/CTMP (Chemi-‘therm;)— mec__h_ahicél pUI.pirig) refiner
(generally chip refiner) is used to produce pulp under vr.nild conditions vof_ chenﬁcal

treatment.
For 'pape‘rfmakihg brocess the stock after refining need special treatment in stock
;«pre'parétioh section of the paper rhachine, where stock fiber is broken into very small \
pieces bf few microns in size by Using mechanical devices (called .pulp refiners or
beaters) followed by chemical additioh(sizing'agent for internal siiihg) and a host of other
inorganic and organic chemicals. Internal sizing agénts are‘added if_papef_s ére réqu.ired
to be rﬁade watér resistant. For acid sizing, rosin is added élpng‘ with alum fo' set the, size :
on the individual fiber. ‘On the other hand, for alkaline sizing process, AKD With alum to
(Alkyl Ketene Dimers) or ASA ‘(Alker.lyl Succinic Anhydri-de) are used. instead of rosin-

alum system. Neutral sizing employs dispersed rosin and works slightly above acid siz_ed

pH.
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The fiber/water ratio is decided on the type of paper to be 'manufactured. The above
~ chemicals improve paper properties. The chemicals (clay, talc,vsoapstone, CaCQs, TlOg
called fillers) and fibers should be retained on the wire as maximum as possible. This can
be done by combination of physical entrapment and complex physlcd-chemical
i_nteractions generally reflected by the addition of}polymerlc retention aids and.‘ also ‘by
drainage aids. This means that the retention of fiber and filler on the wiresectlon is an
extrernely difficult process to describe using derived physical equation only.
After several cleanrng and fiber treatment steps, the slurry normally around 4.0-6. 0%.
consrstency is delrvered to the main feed, or machine chest at about 3.0% consrslency
Stock from this chest is then fed to the fan pump via the basrs weight valve. The main
feed to the fan pump is dilution water from the white water chests that hold _v_valer that is
drained from th‘e machine. The machine chest stock is injected into this dildtion water at
the fan pump suction, with _’rhe fan pump acting as an in-line mixer. The stock is now
<1 .0% consistenoy. Stock then is pushed to the paper machine headbox aleo“called flow
box through machlne chest and box via some final cleaning and screening equlpments
The dilute stock from the headbox is spread on the wire. The pnmary function of the.
headbox is to unrformly distribute the stock on the next element of wet end of paper
| machine, called wire. This is situated just below the opening of the headbox as a
continuous ere mesh, moving at a constant speed such that when stock falls on it, the
water is drained out to-give shape of loose wet Sheet- of fiber which goes to the press.
_sec‘tion. The speed of the moving wire meeh should be so adjusted in relation 0 the
falling rate of stock on it from headbox such that a uniform sheet of a partieular grade is
formed. For high ‘speed rnachlne or for better property development, twin 'wlre or hybrid

wire are used instead of open wire.

36



v

Water drains from the stock through. the wire and is returned to the white water chests.
Only 50- 80% of the fibers are- retained on the wire, so this water contains 50 20% of the
fiber originally delivered to headbox. Thus, the re- crrculating fibers can be equuvalent in
mass flow rate to the fiber delivered from the machine chest. Simpie- and vacoum assisted
drainage can only.remove a limited amount of water, typically giving a web of about 20%
solids (or 80% water). This web is then fed to a set ot presses which remove' more-water |
for squeezing out from the wet sheet by pressmg the sheet between metal cylinders and
| thick woolen textile/synthetic fiber sheet known as telt with high water absorbing and
retaining. The sheet Ieaves the press at 40-50% solids. The .press water is typica!ly
filtered and used on various showers; some is re-circulated for stock dilution. The semi-
dry web of approximately 40% dryness is then fed to a series of dryers .(MF or MG or
combination) where the final water is removed by evaporation. Other kinds of‘dryers like -
air-floatation, through dryers, infrared dryers etc. are available for special appiic_ations
capacity. The MF/MG dryer consists of hollow cast iron cylinders heated internally with
steam inside, proi/ided with hoods' where it ‘becomes dry paper and'is finaily taken out on
'the pope reel through calendars. Jost like felts in press section screen is used as dryer
fabrics. » |

Paper. machines require a large qu_antit_y,o'f heated dry air for the drying process in paper
machine. This air is used for the machine hood and. pocket ventilation. After the drying
process, the mixture of hot air and eva.porated water, which.: has a speoific enthalpy '
: several times'greater than the air delivered to the drying hood is conducted through t_he
system of heat exchangers calied recuperators. The last stage of'the' system of the heat

exchanger usually represents a scrubber.
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Recovery Section:

The important section of a paper mill which brings eoonomy in one hand. by supplying
| thermal and. electric,al energy for process heating and sustainability of the mil, reducing
and controlling pollution on the other is its recovery. and recycle section. This section
mainly consists of multiple effect evaporation for concentrating black liquor obtained from
brown etook w_asher up to 55-65% concentration, incineration of concentrated black iiquor |
by spraying in the recovery furnace for combustion in the black liquor furnace and finaiiy
causticization and caloinations in lime kiln In the black liquor furnace, the morganic '
components( N32003, NazS and very small amount of _NaOH) _remains in the same form
o or the other anci sink 'through the char bed~(principaiiy lcarbvon) which is formed. by
decomposition, -and-pyrolysis of organic constituents( iignin,‘hemiceliuioses etc.) preéent
in biaok iiquor.‘The shape and size of the char bed are the important p'aram'eters for
control of combustion m recovery furnace. Lime vkiin i's used primarily to produce lime
..required to convert green liquor to white liquor by causticization process in three to four
stage co-current caustimzmg reactors (back mix flow reactor-CSTR). The white quuor is
then feed to the digester to get pulp from various fibrous raw materials. The control of |
lime kiln is essential for getting good quality of lime in terms of size and reactivity. The

control itself includes both buining zone control and combustion control.
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Fig.-3.1 PLin and paper making system
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3.2 Status of approach flow systeni and wet end of paper machine in miils:

In order-to get paper of desired quality various meaéurément and control systems have
been attempted for sensing and controlling numerous parameters in the paper mill. But
these are not adequate and constant efforts‘a're being made to upgrade the measurement

and control of the operations and processes. The following sectidn details ab_out the

existing practices of control and instrumentation of the wet end section. The subsystem |

selected. for modeiing in this present investigation starts from the machine cheét to mainly
headbox, and retention for wet end machine. However, the oorhp!ete paper machiné is

extended up to the, pope reel through presses, driers and calendars as shown in fig.3.2
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Fig.-3.2 (a) Process flow in Pépér Machine
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A typical wet end machine is drawn for Fourdrinier machine (fig.3.2 b).
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Fig.3.2 (b) A typical sketch .of wet end fo'rm_ation equipment (Fourdrinier Machine)
The flow diagram for app_roaoh flow system is shown in fig. 3.3(21). This system includes
~ blending chest, consistency r.egulators and controllers, flow control devices and constant
head tank/stuff boX, megnetic flow meter,~ basis weight valve(stock valye),secondary '
refiner, mixing box( to mix with white water) and machine chest. The stock is pumped by
- primary fan pump to a series of centri-cleaners at a oon31stency of 0.6- 1 0% conSIStency‘
and then again to vacuum treatment and screening operation. Then comes: the headbox
that stores the stook for further processing. The’headbo‘xA consists of a pond section, _
dispersing devices and slice open equiVaient to the width of wet end paper machine atits
bottom that can be controlled if n.ecessary. It can be either open to atmosphere or closed
" with arrang'ement for ‘applying air pressure at'the top of the stock. The open and'air
padded headbox invariably contains a number of rotatlng rectifier rolls (perforated rolls)
oailed holey rolls. Hydraulic headbox another important improvement of open head or air
pressure headbox, used for high speed machine, does not contain moving parts or rotary.

' "devices and is controlled by the pressure of fan pump. A hydrauiic headbox also
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additiohally uses air pressure. Symflo headbox is an example which may be treated as a

hydraLllic headbox with an integral attenuator tank.
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Fig. 3.3 Approach flow system schematic diaigr_am

Thé headbox must not only spread out the stock eQenIy across the Width of the machine
at the correct sp_eed and éng!e, butv.mus't level out cross-currents, machinevdire'ct_ion
velocity grad’ients, and consistency variations as shown in ﬂg.3v.‘4, Fiber flocking must be
controlled by th.e creation of turbulence with a piece of precision .équipment which. must |

be easy to ope_raté and maintain while minimizing production.



and pron‘:ess‘d.esign aspécts and the current status of instrumentation and contrdl system'
used in'wet end of Indian paper mill. |

3.3.2 Mechanical and proceés design features of headbox:

There are various designs for headbox available marketed by numerous manufacturers
wﬁh their trade names, even for the same kind of headbox, like open headbox, air
pressure .headbfox, and hydraulic headbox compatible with fofmer( Fourdinier, twin wiré or
hybrid wire). The original designers were BelinHarnisdhfeger, Black clawsbn, S.andy hill,
Sulzer-Escher Wyss, Valmet/ Ahlstrom, Voith, WartAsiIla, aﬁd KMW. Some of the
manufacturers are not presently existing. However, whatever may be thé desig_n f'eature's,.
the bas’ic parameters are the same. In the following paragraphs the prdbess and desigh
parameters and their relationship are discuséed:

3.3.2.1 Head, Jet velocity and épouting velocity (Tappi 0410-05, Tis 0410-02-04):

~ The total head H is. reférred to the datum level at the middle of the slice operﬁng. The total
head includes fhé height of stock above the slice, added. pressure or vacuum of an
enclosed headbo*, and corréctiéns for the poéitioh ‘of the head measurement. The
symbols are given in Ch.apter of nomenclature. | |

“The model for flow velocity and volumetric flow can be obtained‘from‘Bern‘ou_Ili equation |

for incompressible fluid like stock as under:

(Pelp)+ 9Za+(0aV "4 2)+(IW)= (Polp)+ 9Zs+ (0o s/2)hy B
For the case of stock flow from head box slice the gZ, and ga are cancelled out, and
work added by pump nWp is neglected. Therefore the equatioh in reduced form can be

represented as-

(@oV2/2)- (@aV%al2)= [(Pa-Po)lp]- he | [3.1bj
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Using continuity equation v,=(Dy/D,)> Vo ,and defining (p=(Db/Da)' the above eouation can
be writteh as _ |

Ve=[1U( 05 § “a;)C[2(P-Py) oI F |  pag
Wh_ere Fis defined as (2h ay- ¢ %0,)°® |

The equation for v, is reduced to ve=[C./(1- ¢ “0%2(Ps-Py) p°®

Usually the ratio of diameter is less than 0.25, the approach velocity and the term ¢ can
be neglected and resuilting equation stands as Vp=Ci[2(P-Py)/ p® R [3.1d]
Deleting the suffix b, one canwrite v=C2gh)>* - I [3.1¢]
If H is measured close to the slice, and v is measured at the\rena contracta of the
jet,Cy=1 for most slices. The relatronshrp between total head (sometlmes referred to as
theoretrca! head) and jet velocrty is thus given by the following srmphf ed formula
v=l2gH) - l o . 3.2
F.rictioh losses, due to holey roll or to boundary drag a!ong a very small ahgle nozzle will
reduce Cy possibly to around 0.98. |

Velocity at vena contracta:

The jet leavrng the slice continues. for a short while to contract rn thrckness to a vena
contracta, at whrch point the spoutmg velocity is reached. The spoutrng velocity at the
vena contracta can be found out as follows:

If A, is the cross-sectional area at the vena oohtracta, A_s the area of slice openihg, then
A=CAs, Cc‘, the.coefﬂci'ent of contraction whose value can be estimated accurately from
the deta'iled model equations given 'in‘ the Appendix -3.

Neglecting ¢* as discussed earlier ohe can get the following eddation

VECC2gH)=Cl2gH) =CoVogH) B3]
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| For true nozzle slice, C¢=1, otherwise for different geometry of slices designed by varidus_
manufacturer fhe values are différent'(Voith desvign, C=0.85-0.95; Nielson slice, Cc=0.65-
0.7_5); The velocity v is at thé vena contracta following contraction of the jét which can
only be obtained from the detailed design of the slice flow.
| The actual head/velocity relationship is not as preéise asA implied by these simple
theoretical rélationships which have ignored thé effects of factors such as temperature,
viséosity, and approach velocity. |
3.3.2.2 Head and slice flow:
_The totél flow (Q) through the headbox (m'ak'ing allowance for any'header bypass, bléed-
flows, etc.), .sli.ce opening (b), slice width (w) are relatéd to the jet velocity by‘t‘h'e' folloWing |
relation. Volume of stock which flows per unit time from the headbox is also eqUal to |
| Q=AN=ALC(1- 0" PPy oI
~ Neglecting ﬁ)“ .as'discussed earlier one can get the following equation | 4
Q =CCCVASV(2gH)=CqAS«/(2gH ) =Cq wb\/(2gH)' | o [3.3b]
In fnost cases the value of Cq and C¢ are almost numerically equal. Using_\)arious unif
conversion factors, one can write the folloWing equation; ' _
- Q= Bwvs Ki=b wV C, Ko= bwC; K; KVH - - | o - 34
As already mentioned, the contraction coefficient, 'Cc can ‘be found frbnﬁ .the slice
 geometry, angle ‘and thé model developed (given in Appedix-3). The values of, ‘K of
eqn[3.4] depe_nds upon the conversion unit as shown invth.e Appendix-3. |
~ 3.3.2.3 Relation between paper production and stock ﬂofv:
The volumetric flow of stock on the former can be calculated fro'mvpaper production' on
the pope reel Ioéated at the end of the paper machine as under:

- Q=mg10*]C(100-S5)psus] o 3.5]
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one can write, ms=vr/nanSk | ' D - [38]
Combining the above ‘eqn.[3.5] through [3.6], the following equation can be,written as
Q= w,,vnqsk1oﬁromo_o-sgpsu's]' ', | : o '[3.71
By comp_aring the eqn.[3.3] and eqn.[3.7] ,the following eqrr. is obtained:
b= WoVrgS0YC(00-Selpsss v ] - - [3.8]
Slice opening can also be obtained irr other way as
b=Q.S¢(100+8)(100-5)/( CER 10°) 'A - | 3. '9]‘
- Width of paper web on the pope reel and width of stock stream flowing on ‘the wire can be
related as under: | _
W=Wr(100-05)/100 | . o -~ [3.10]
Width of elice opening w can be expressed ia rerms of trimmed 'widtH of haper
w=wo+22+[(w0+2z) 8s}/(100- 6s)+2r ‘ : ) | | S [3.11]
Total head can also be calculated based on the types of headbox design (grven ir
Appendlx-3) For air cush|on headbox the eqn.[3. 12] is valid: . .
H=hrtPai/Psusg= gzs vn2/¢229k = (Vi € B /D) 2gk;. . 4 o [3"12]
AIong with the values of the contractlon coefficient, C, the thrckness of the jet, d the
angle of outflow can be estlmated accurately based on the geometrrc conﬂguratron of' :
slice. There are many kinds of shces Three prlmary types of shce vertlcal slrce 45° slrce
and mchned slice. The geometry of the shce and the operational parameters denved from
| the geometric configurations are grven in (Appendrx73).The headbox flow rate, Q, can be

calculated as under

Qh( gsm/inch)= 0.052(Slice opening)(vC,) - o [3.13]
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For design of control systems apart from controllers and final control elements the other

34 StatUs of existing sensors and their dynamics:

important subsystems are sensors/detectors, transmitters(combination of transducer and
signal condltioning devices) and measuring instruments. For development of total system |
dynamlcs, the static and dynamic characteristlcs of each subsystem are require‘d to.be
evaluated. These are lmportant for developing closed loop characterlstlc system equation.
As measuring element is a subsystem of the total control system, the selection of most
appropriate instrument from a range of commercially available instruments necessitates
the knowledge of these factors. The static characteristics include parameters lke
range,span,turndown,sensithlty,resolution,repeatabillty,accuracy or précisio_n, blas a_nd', |
measurement error, threshold, dead band, de_ad space, and dead zone, scale readablllty',
zero shlft(zero‘error).The dynamic characteristics generally include steady state gain, Kc.
or proportional band, time constant, order, and transfer function, G ,delay time deoending
: dpon the positioning of the sensors and measurement system and the characteristics of
second and higher order systems( overshoot, period of oscillation, settling ti‘me, rise tlme, 4
and resonance etc.) are reviewed in the following ‘p‘aragraphs: |

- As i'ndicated earller the sensors used in the wet end (approach flow, headbox_and wire
‘control)’are: consistency, flow, total head, stock level, pH, and basis weldht. | |
The timie constant of the sensor is usual‘ly much lower than that of the system. So it
“should not be a factor. Howeyer, the time constant may depend upon how the sensor 3
used. Optical sensors (made of CdS or CdSe) have time constant of about 100ms and 10
~ ms respectively. Photovoltaic cells have time constants on the order of 1-100 ys.

The overwhelmingly majority of consistency sensors which .most of the Indian mills are

using at present are of mechanical type (rod or rotor) though many special sensors of non
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contact type'nave been developed over the years. These i'ncluvde optical _sensors based
on depolarization or absorption and scattering based principle, mierowave and NIR (near-
infrared reflectance spectroscopy. These are reported in various -publications and
reviewed in tables 3.1 & 3.2, Appendix-1. | |

_Temperature sensors generally used by mills are: .RTD, Thermistor and thermocouple.
Ot_her temperature sensors include integrated circuit(lC), bimetallic strip ‘and optical
pyrometer. - Electrical position sensors include potentiomete’r, eapacitlve, reslsthe,
inductive and reluctance type sen.sors.»Reluetance type Sensors, a type of transformer are
_the basis of the prevalent LVDT (linear variable differential frans_ferrner) has’ s'en’sit_ivity on
the order of 0.001 mm movement; |

- The various values of static and'dy_namic characteristics of sensors are 'glven-by Johnson
(66,67) and more details in various manufacturer's catalogue such as Omegav A
» comprehensrve description of the sensors and their characterlstlcs are presented in table
| 3.1 and 3.2 (Appendix-1) for the present mvestrgatlon

3 5 Headbox system of a paper m|Il

Headbox, sometimes also called flow boxA is the Amost important equlprnent- for paper
mechine of a paper mill in its -approach ﬂdw section of paper,_m‘ac.hine.‘ T ne» paper
machine headbox_ consists of three'. sections, inlet manifold,. headbox .pondls.ection-plus
dispersion ele‘ments and slice. The function of head box is to take the Stock delivered by
the fan pump and transfo_rm the pipe flow into a ‘unlform rectangular flow equal in width to
the paper machine wet end sectlon spread stock at a_uniform vel00|ty |n the machlne
dlrectlon and match approximately the slurry speed at the jet (jet velocity or spouting
velocrty) thh forming section speed (called ere speed). The other obJectlves of headbox

are to level out cross currents and cons:stency variations, machine direction velocity
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gradients and to create controlled small scale thbulénce (called micro turbulence) to
~eliminate fiber flocking énd impinge on the wire at the correct location and aﬁgle. -TurnbuH.
(158) pkedicted that 2.0% diéturbances in jet velocity may result in neavrlvy 7.0% variation
ih th.e' basis weight due to the aforementioned resonance of the fund_améﬁtal mode. Theré
are mainly two types of head box, open heédbox (open to atmosphere) and enclosed or
pressurized headbox. The open headbox Was generally used ea}rlier older slow speed
| paper machine(600-800 ft/min, requiring a varié‘tioh of-'abproxima,tely 14.5 inches in lével
to c.hange the borresponding spouting velocity(jet vel_ocity).For higher speed( at least
gréater than 1000 ft/mih,3000—5000ﬁ/min)a level éhange hundreds of inches _bf water was
necesséry to produce the required spouting velocity. In such a situation,'it is impqssible_ to_-
..Cont.rol‘ cross-flow currents or to ensure that all fiber aggregates are brovkven up. béfore 'tHe '
A sfock reaches the slice. This nﬁade pfactically impbssible to operate the open headbox.
To overcome these de‘ﬂciencies,v one has 'tvov use enclosed headbox. The later again is
classified into'tvs;fo' typels:' air cushion/air padded headbox and hydraulio headbox.
| 3.6 Status of cqntrol'loops ’in head box:
Installation of a good headqu control system i‘s_considered probably one_df the most
frﬁitful investments in t.he area of paper machine automation if one goes .f’or economic_
justific’ation and to ensure uniform quality péper (21).
: A comprehenéive .control system solves the complexity of headbbx operatidn'-and alldws |
papefmaker to conveniently alter operating Qonditions (épeed, drag, flow through the box
etc.). With implementation of sophisticated control system, ft is easier to achieve‘
| increases i.n prodUcﬁdn (through speed-Ups). |
To ensure unifdrm quality paper few factors sho‘uvld be brought under control, 6ut of which

three are moét important. Flow through the headbox, liquid level and total head. The
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others are éonsistency, pH, and temperéture (a]thoﬁgh the later two jnﬂuehcés to a slight
extent). To minimize basis weight variations in the 'sheet,'headb_ox toial' head must be
'tighﬂy controlled. In 'addition, when machine speed changes occur, the ratid between jet
velocity and wire speed must b'e automatically maintained to minimize production. A
typical ¢ohtrol system for a hydraulic headbox is shown in fig. 3.5:

3.6.1 _Totai head pressure controlf

Total héad pressure is controlled by-p_ositio_n’ing the fan pump recirculation control vaive.

The stream"valve will be manually positioned to keep the fan pump recirculation control

Hydrauiie
o Haopdbax

4 Hesdsax

& Recirculation.

.gﬂ;?,m : Wire Speset ' B
o -

Fig. 3.5 Hydraulic headbox control system .
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valvé within ope‘ratin-g range. Some paper machines use a trim valve in paraﬂel with the
st.ream valve or by using variable speed fan pump, the speed of which can. bé precisely
set with SCR motor control.

3.6.2 Total heéd control:

Total }head is controlled to achieve control of the velocity of the stock jet issuing from ‘the
slicé, because this factor must be adjuétablé if'a constant drag (wire speed ;jet veloc‘ity).'
between wire and jet is to be maintained. Total head is sensed via a D/P cell mounted to |
measure gauge_pre_ss'ure at the floor of the box; This serves as the feedback signal for a
controller that ‘usually_modulates the position of the valve rcontrolling 'roW'into the
headbox: The prime function of a total head controller is to maintain a constant drag on
the wire. As a result total head set point is .a function of wire speed, it is necessary to
adjust it when changes in speed occur. This requireé a system that sensé wire spe.ed;
'takes note of drag set point and calculate an appropriate total head set point. Such atask
Cén be accomplished via'analog or digital hardware. The later is favoured in most of the
__ modern installations. Total head 'itself is most frequently bohtrolled via electronic, analog
hardware with Pl action and a remote set point feature. With this hardware, qup tuning is
normally by cut;and-try_ methods, unless decoupling with liquid level is being attempted,
via digital algorithms, in which case, complex identification and tuning procedures must
be émployed.

3.6.3 Wire speed control: |
" Wire speed is measured and‘used in computation of the rush-drag ratio. Callculated jet
velocity is compared with measured wire spee_d in a rush-drag ratio controller. The out.put
of thlis controlier providés a cascaded set point for the.heédbox total head controller. A

manual adjustment is provided for setting the desired rush-drag ratio. Should there be
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temporary failure ‘of the wire speed digltal transmitter; this rusnedrag ratio cascaded ‘set
point control can be uncoupled from the total head controller. Stock_,flow to the neadbox
can then still be controlled on a single-loop basis from' total nead‘press'ure.' |

3.6.4 Headbox stock level control:

Headbox stock level is controlled to maintain proper holey roll emersion and to prevent
large'level variation for practical reasons. This ls control on a» single loop basis by
controlllng the padding air and vent’control valves. Thes-e valves are usually arrange'd o)
that the headbox pad can be controlled with a posrtrve pressure or r under vacuum Srnce
actual headbox level is less critical than total head, level is used to control the slower
espondrng paddrng air and vent control valves.

-leadbox level is usually sensed by a DIP cell wrtn one srde sensrng pressure at the
yottom of the box-and the other the pressure in the air pad at the top. The output of the
J/P cell goes to level controller. Liquid level is most con1monly controlled by corrventional
pneundatic, analog hardware with Pl action. Controller tuning is usually by manual cut-
_::_andftry methocls, unless de,coupllng_ of liguid level from total head is being attempted,.
whereu-pon,_ digital controllers are used and sophisticated ‘_identification.and'tuning
proc‘edures are required. |

3.6.5 Headbox stock flow contrvol:} '

Stock flow through the headbox is controlled to allow com’pensatlo'n for changes in pulp _
drainage properties and easy adjustments of formation characteristlcs of paper. Flow
through the headbox is best meas.ured by a rnagnetic flow meter located just upstream of
the,box. The variable manipulated by most ﬂO\rli controllers is slice position. Changes in
slice posltlon cause upsets in total head that are contpensated by adestr_nents ln the

position of the valve controling flow to the box. Normally, only proportional action: is
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req_uired of the flow-bontroller, but it is usually advisable to include a dead band around
the set point. This is most easily accomplished digitally. Controller tuning ivsnormally by
| trial and error methods énd seldom is required for the flow controller. Headbox slice
_ poéition is used to control the “water rate” which‘determinels headbox_conéistency. B

Headbox slice position can be set manually of by computer. |

3.6.6 pH vcontrol of stock:

Paper machine headbox pH is usually controlkled by adding acid (sulfuric écid, élunﬂ or
~ both) to the suction of the fah pump depending upon the requirement of désired system

pH value.

. Headbox

Furnish

1
. i From N XN
_________ . ' Stuf‘f /L\/\ ANEN
© Toprimary | box
cleaners v White
fix) | : water silo

- O

Fig.3.6a Paper machine pH control

A portion of the paper machine whitewater dréinage is usually sampled for pH. The ﬂow
- to the headbox is used as a feed forward index to position the sulfuric acid/alkali valve.

| Thi.s- control valve position is then readjusted from the pH controller. An alternative pH
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s>arhp_le location is off the headbox recirculation line. The higher f_lbw velocity at this point
.combined With longer fibers tends to keep the electrodes cleans. On-Off co‘ntrol is also
used in many sﬁuatlons A typloal control system for ac1d sized stock is shown in fig. 3.6a.
Another important consideration is the shower water pH. to the felt cleaner system
Maintaining the shower water pH at the same level as the headbox p_H assists in _more
effective operation of the felt cdnditioners. Another scheme given in ﬂg.3.}6b(‘l44,145) has

also been proposed.

- Alum Tank Stock box

y

Electro
v Mechanical
: Actuator

pH sensor.
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Dosing valve controller

Maphine chest

tq

Stock Pump

Fig. 3.6 b pH control system
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the stock coming'from the broke chest is the same cbnsis’tency as that in the machine
chest. (Machine control attempts to do this, but the dynamics of the procéss prevent
excellent coﬁtrdl) with consistency tov the machine chest upset, the mass flow of fiber td
the headbox changes. Breaks may last 5-10 minutes‘(and sometimes a lot longer) whi‘ch_
is sufficient t‘ime for the basis weight control to drift rather significantly from its target.
When the web is re-established on the reel, the ‘sensor then resumesﬁ ‘c'bntrol énd
attempts to bring all measurements back in line. This may take several minutes and the

productiovn made in this period is off quality, hence, may need to be rejected.

Basis Wceight
Valve

Machine

. Fan H bao ' <
| Chest ——— @————» Pump . | Headbox ] Wire
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. Stock Feed ' )
to System N T
. X . White Water l

. . Overflow to
B Basis Weight White water
‘White water . Control Action

: Chest
for consistency
...................................... v BASIS Weight
. Set Point

control
. Presses &
j———_‘ Dryers . o

Fig.3.7 A typical control loop of _basié wéight control
3.7 Conclusion: |
In this chapter,. a comprehensive description of the manufacturing process is outlined
along with present status of approach flow system in Indian paper mill, the various unit
operations and processes involved and design features of headbox flow system. The up- |
tb-date review of existing control practice and their loops, and status of vafious sensors
‘are made. The details of both static and dynarﬁic characteristics of sensors aré con‘wpviled.’ '

The controlling parameters which are focused in connection with the approach flow
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system and Headbox are: consistenoy, ﬂow total head level, pH, and te'mperature ahd
basis weight. The desrgn rnformatron regardrng varrous loops  for controllrng the
parameters in and around the headbox is stressed upon. From the study lt is found that

the dynamrcs for all sensor parameters are extremely fast with very small time- constant
| values compared to the values for the process alone. In addition, the systems approach

first order with gain nearly equal to 1.
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CHAPTER- 4

METHODOLOGY OF SYSTEMATIC INVESTIGATION,
PARAMETER ESTIMATION AND SELECTION OF ALGORITHMS

In this Chapter detailed methodology for systematic investigation in'the present work are
developed as under: | |
4.0 De\_)elopment of strategy of systematic investigation:
Thé_strategy adopted for systematicv investigation of fhe present prbblem is as follows:
1. Development of dynamic models_ for consisténcy, flow, total head, levél,‘ pH, stock
“temperature, and basis weight assuming all these parameters as linear or
approxim_atély linear systemé in approach flow system of a paper méchine.. As usual
these mod’els are based on uhsteady state material b-alaﬁcé"of enérgy lbalance or -
combination of both the two from fundamental principles. |
2. Aﬁer deriving the dynamic mOdels, if some Qf the models of _contfol pérameters of
| brocess are'.found to bé nonlinear, theée'areAlinearized using usual Taylor series
expansion technique or by Pade’s approxinﬂation’for dead time if at all it exists.
3. Designing a negative feedback loop for classical control .éys’tem for consistency
“using ‘»Bode plot and d‘esigning‘ the: complete process using thé " convéntiénal
controller ( Pl and PID). ForAthis purpo'se- flow chart are to beA deSigned,(fig.'4.1a and
41D) a o
4, Identifying the static and dynamic characteristics of rﬁeés.urands a'n'd the
characteristics (table-3.2, Appéndixk-1)_‘of>each_ and every elements of the clo’sed loop
of the intended control system.as a wholé and then following the development of

- their dynamic models as in steps1-2 and analyzing the stability as in step 3. The
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classmal control system is then desxgned adapting varrous approprlate tunlng
methodology such as Ziegler- NlChOIS and lambda tuning.

Studylng the variation of the response of each and every parameter as a functlon of
time using control Ioop assuming servo and regulator problem

For comparison purposes the response models using both analog and digital
methods(analog and discrete) are to h_e developed for all parameters such as
consistency, total head, stock level, stock pH , stock temperature, and basis weight
control. For sto.ok flow, data from the indus'try and those predicted from model are to
.be compared | |

Developing model for the MIMO system mdrcatrng interaction of mput and output
parameters such as total head and stock level, air pressure and Ievel in a

pressurized headbox, input stock flow_ and stock level, and retention prooess in the

wet end.

-

. Comparisons between analog and digital models both SISO and MIMO systems are

to be accounted for.

3 Designing a model for the MIMO eystem as discussed in step 7 such as interaction
of total head and stock level,-air pressure and level in a pressurlzed headbox mput |
stock flow and stock level, and retention process in the wet end and then to
compare the results with those of SISO system. AnalyS|s should be made based on
relative gain array (RGA) method and decouplmg control techniques.

. Selecting the approprlate methodology of ANN for the control parameters such as
back. p’ropagation neural network, adaptive linear nedral element network

(ADALINE) perceptron, adaptive resonance theory (ART1), and augmented back

_propagatron network

64



18, Comparihg the results obtained from.the MATLAB simul~atibn for each and every
'parameter (either in analog or digital form) for both SISO and MIMQ system using -
both classical control system and neural networkAcon'trol’ system: |
12. In order to achieve the objectives mentioned in step 11, 6o‘n'vert all. the.- mddels :of 1
_ control parameters of the wet end approach ﬂow system ‘inclu‘ding headbox as
mentioned above (steps 1-2). in to a neural system using the various‘procedurés for
| heural computation as described in step 10 with changing values of ANN parémet‘ers |
-such as momentum‘ rate, Iearﬁing rate, and others. A flow chart for General A_NN '
compufation .‘is-given in fig.4.1b.Individual ﬂoW charts and. algorithms for different
| ANN methodologies are given in figs. 4.5- 4.6. |
18. Comparing the results of ANN  computation  using .MATL'AB' simulation with
SIMULINK tools with those estimated values from classi‘calncc.)‘htrol loops for all SISQ 3
_ and MlMQ systems. . |
41 Design and analysis of vclas's,i~cal bohtro! systems:
Methodology of design 'and analys.is of a vcla.ssical control’ .systém is well known. It
reqqirés- the design Qf the loop ( single. or multiple) for SISQ or MIMO s‘ysfems whiéh in
turn "demands the knowledge of individual loop elements, 'their. dynamic and s_t_atic
characteristics, defining charaéteristicééquéﬁon of individual as well as the system aé_ a
whole; stabiﬁty analysis based on continuous or discrete 's'igna_[s, linear tiAr.ne‘ _in‘variant‘in
time domain(Rduth Hurwitz criterion/Root Locus) or frequency dofﬁéin( Bode or Nichols |
plot/ Nyquist plot}, then finally~ adjusting the controller paraméters by various tuning
methodologies . This is then chécked for response as a function of ti.me. .The procedure
followed m this pfesent investigation is depicted in flow phart (fig.4.1). MATLAB softwére |

| is used to design and analyze the system.
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4.2 Procedures for‘estimation of paremeters:
The i‘ollowing pa.ragraphs describe some salient features of parameters and their reiatiye
importance for oomputaﬁon of classical control system ( P/PI/PID) an.d"ANN for this
present investigation. 'Though the estimation procedure for parameters foi classical
| controi system well known, it is important to mention ihat even for classical control loop
the time con_stents for various elements sueh as prooese( SISO and MIMO), measuring
element, controller and final control element are required to be obtained. These are either
found outvfrom’publi‘shed information or self generated through simulation technique by
MATLAB software. The parameters foi‘ANN are relatively less known and thus require -
attention. Therefore in this chapter procedure for estimating ANN _perameter$~ are '
* described here. | | :
For iearning or training of ANN, the: parameiers ofimportance are: momentum
coeffic:ieni(rate or factor) a, iearning rate(or coefﬂCient) n, number of hidden nodes n,
activation function(or transfer function or squash function), threshoid function identity
function, weight vectors \W,V, mean squared error, tolerance, accuracy, gradient descent
- term for back propagetion network( BPN), and'gain'(sigmoidai gain for sigmoid function),A

or scaling factor and delta rule. Some the above 'pérameters are defined as under:

4.2.1 Momentum coefficient: The momentum coefficient, a ie impiemeritéd by addin.g:a |
fraction‘ of the last weight change to the next set of the weights egn. [4.1]. There are
various algor_ithms that can change the  level of this momentum based on the erior
involved. The 'momentum. coefficient has »be‘en‘ used for ieducing the_tréining time of
network and also overcomes the effect of local minima. |

| [AW}"+1 =-n3E/aW+d[AW]“_ | , ' - ,‘ ' [4‘.1.] |

The values of a being positive (<1), lie in the range of 0.0-0.9, generally between 0.5-0.9.
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In the present investigation, the value of a has been selected iteratively us'i'ngMATLA.B
programming detailed in Chapter-5. |

4.2.2 Learning rate: Learning rate determines the size of the weight adjustments made
at.each iteration and hence influences the rate of-con\re’rgenceT The values of n lie
between 0.01-_1 .0 though higher value of even 0.6 has been ‘assumed in spec,iﬁc situation:
However, if the leaming rate coefficient is too large, the search path‘wlll os.cillate and
converges more slowly (58). On the other hand if the coefficient is too small, the descent
will progress rn.small steps significantly increasing _the time to- convergence. Dunng |
trainlng the training process stops when the error for all the casesfalls bel.ow. the learning
tolerance If the learning rate is too small the learning process never stops The learning

rate always starts with a higher. tolerance level and monitors the werght changes wrth‘

decreasrng tolerance levels.

In order to get qurck convergence and best results in the present rnvestlgatron the
optimized value of leamln'g coefﬂcrent has been selected based on error rate .as a
‘ functron of learnlng rate as detailed i in Chapter—5

4.2.3 Number of hldden layers and hidden nodes

The number of hidden layers and hldden nodes are very important factors in order to
optimize the physrcal number of calculatrons in both the tralmng and operatlonal mode If
all factors in ANN computational procedure (value of momentum coefflcrent value of -
learnlng rate etc.) fail, increase the number of neurons in the hidden Iayer to lmprove the -
model. For getting best results for feed forward network in BPN, normally equivalent
single hidden layer for a multil'ayer system is assumed, and then the number of hidden

nodes is calculated in a single layer. -
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~ Dimension of probability theory proposed the followrng equationto calculate the required

number of hrdden nodes

Number of hidden nodes= 10°T/(l1+15);

wheré liand I3 denote input and output nodes and however, one commonly,used methcd
- is to train different networks with varying‘ number of neurons in hidden Iayer an‘d to test
 their predicted accuracy As an approxrmahon (91) suggested the foliowmg equations to
predict the number of hidden neurons in hrdden layer. |

No. of hidden neurons= [(no. of inputs) + (no. of cutputs)]lé

Or No ofhrdden neurons= .[(no of inputs)®+ (no, of outputs) 2572

4.2, 4 Accuracy |

o As the nu'mber o_f the h_idden nodes increases, the accuracy increases- Un_til' a-'poi‘nt 'is '
reached where the network is over-parametenzed When the curve reaches the bottom of
the knee that number of hidden nodes is the proper number. The no. of hidden neurons
. has been selected based on error rate as detalled in Chapter— 5. Many times the accuracy
is referred to as thetraining threshold or Iearning threshold. The learning threshold can be
ca‘lculated as under ' |

Learning thre_shold='t).8*(282/2). o - | A_ [4.2]

- 4,25 Gradient Idesce.nt term:

Gradient descent term 1s‘based on the minimization of error, E defined in terms of werghts
~and the actrvatron function of the network. Also, it is requrred that the actrvatron functlon
employed by the network is drfferentrable, as the weight update is dependent on the
gradient of the error E (161).

Thus, if AWU is the weight updateof the link connectlng the i and f“ neuron of the two

| nerghbourmg Iayers then AW.I isdefinedas
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N 43
aWj

where; r] is the Ieafning rate parametér and’ dE/oWj is the error gfadient with refer_en{ce. to
the weight W, |

Now .using the above parameters the a|gorithmé of mainly. four fybes of ANN
methodologies are either modeled or selected from available from published inforrﬁation:
Though there are some dther. _ANN methodologieé are available like -res’ilient'-back-
propagatio.n,‘ radial basis function hetwork (RBF) aﬁd ART2.

43: Modeling techniques through ANN: Déveldpment of flow chart: and selection
of algorithms: | |

As indicatéd in Seation 4.2 there are many ANN methodologiés available for design of
control system which are procésé speéi_fic. A general algor_ifhm is ‘presenfad. hére (174).
Hdwever, for detail analysis in thia inveétigation tha flow c_haffs'and alg‘orithmsl of five

methodologies are attempted as under.

Adaptive linear neuron network(ADALINE)

Perceptron neuron network(PNN)

Back propagation neuron network( BPNN)~~

Adaptive resonance theory(ART1)

o .

Augmented back propagation né_twork(ABPN) |
The results using MATLAB software will be compared in Chapt.er-G.These" are described

in the following paragraphs:
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Nonlinear process
model

Apply stability tests
for nonlinear system

Linearize?

Obtain transfer function
model- time domain

No.
Model contains
time delay?
' v -
Applying stability criteria- Routh stability
l yes | | = criteria or Root Locus technique

A
Approximate
e*?

No

Analyse or Design using Frequency domain;
- Replace s=jw or apply frequency response
stability
Criteria- Bode plot/ Nyquist plot

S

Test the model for. performance
criteria of the control system(
decay ratio, settling time, rise
-time, overshoot , oscillation -of

Use required Tuning Methology ' .
Z-N, Cohen Coon, A tuning etc fo get the:
value of controller parameters in relation to |

process for T, Tg, Ti, ke, : » the transient and time integral -
' performance criteria(ISE,

IAE,ITAE) . B

Y

Test with various appropriate forcing ‘
functions such as step, impulse, sinusocidal : l

etc. and test the response curve. as a
function of time '

Process model

Fig. 4.1a Flow chart for the design of the classical control system including stability -
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Choose ANN methodology

Y

Initialize network
parameters(n, a, no. of
neurons), input and output
values

k4

Select weights between
 layers

¥ .
Calculate network OQutput

v

T

Calculate MSE (error between
actual output and network
output)

Network is
trained

IfNO

Change the weights

|
\
!
|
L

Fig. 4.1b Flow chart for general neural network algorithm




4.3.1 Algorith_m for solving problem thr§ugh ADALINE:
| This Adapﬁve linear neural elemeht network( ADALINE) which uses supe_rVised learning
algorithm, consists of a single output neuron and the output values are bipolar(-1 or +1).
The input x; coqld be binary, bipolar or n réal valued. It also has a bias whose activation is‘
always ‘1. If the weighted sum of thé inputs is greater than or equal ’.[o‘ zero thén.tﬁe |

output is 1, othérWise itis -1. An ADALINE network is shown in‘ﬁg.4.2 (148).

R ®/ Moo oty
—_——p .

' Adgptive <— Outputerror“ l—
weights generator ‘

Fig.-4.2 ADALINE neuron mode!
The input to the neuron, X Is represented as

| X0'=bias=1.; -

a= Learning coefficient

t=target output -

y.=computed output

W=wo, wi,Ws.....wo]" répresents the weight factor
ym—WX—output of the neuron before the non llnearlty

y=sgn( y.n) sgn (WX)= output from the neuron after the non linearity
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- The weighted sum of the inputs inc.luding a bias term is calcuiated and it is compared with
target output and based on the delta rule, the weights are adjusted. To teagh an adaline
model‘, the following steps are used. -

ADALINE algorithm:

Step:1 Randomly choose the value of wéighié in the range -1 to 1.

Step:2 While stopping condition is false, follow steps 3to 7. |

Step:3 For each bipolar training pair st, do step 4-7.

Step:4 Select activations to the ih'pqt units, Xo=1, Xi=S}(i=1 2....0):

Step:5 Calculate y= Zi-p" Xi Wi, |

Step:6 Update thé bias and weights.

WirewWiod ey (1) o ua
W, (new)=VWi(old)+ a(t-y)X; - | a @5
Step:7 If thé largest weight change that'dccdrs instep 3 is smallér than a speéified vélue,
stop, else oontinLle. |

4.3.2 Algorithm for solving probiem through percepﬁ'én network:

A typical model of the perceptron (PNN) is given in fig.4.3.

Fig. 4.3-Perceptron neural network

The learning algorithm of PNN is enumerated as undert..
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Step:1 Select Weights and bias. The value of learning rate has been used from 0 to 1.
Step:2 while stopping condition is false, do steps 3 to 7.
Step:3 For each training pair sit, do step 4-6. |
| Step:4 Select activations to the input units, Xi=s '(i=1 2.....n).
- Step:5 Compute input to the perceptron and calculate the perceptron output
Y.n-b+Z 1 X, - | | 48]
1 vin>0 ; Bis the threshold | |
y= 40 Beyese 7
a1 Yin< 9‘ ’ | B
Step: 6 Update the bias and welghts if the target is not equal to the output value
_lft#y lfx#0 _ |
Wi(new)=Wj(old)+ o X; t S o | , 48
Else}no change in wei'ghts. | | |
o b(new)=b(old)+ ot - | . o 49]
Step 7 Test for stopplng condition, |f no weight change in step 3 stop else contmue
433 Algorlthm for solving problem through backpropagatlon neural network
(BPNN):
Backpropagatlon networks consrst of multlple layers ‘of neurons. For a three layer NN
~system (F|g 4 4), there are an input layer, a middle fayer (commonly referred to as a
hidden layer), and an output layer. The network is constructed in such a way that nodes _
}of each layer are connected to the nodes of the next layer. In a back propagatlon network
a-randomized set of weights on the mterconnectlons are used to present the fl_rst pattern
to the network}and the calculations are made for input and output of hidden and output |

layers. The process is repeated until the'p.rescribed performance criteria are achieved.
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The network must be trained by various learning processes as mentloned in the Sectlon
1.2.2. For control appllcatlon, the Algorithm besed on Delta-Rule has been found to be
most appfopriate. For step by step computation of ANN, the following notations are
followed'. |

Three Iayef.network with input layer haying I nodes, hidden layer having m nodes, a‘nd
output iayer with. n nodes. The flow chart for the calculation procedure is depiofeo below

(Fig.4.5).

Input layer Hidden layer A | - Qutput layer
(=12......1) (M=1,2.00e0..u]) (n=1,2.........K)
‘Fig.4.4 Multi Iayer feedforward neural network

Outpuit from input layer Oi
ut from hidden layer OH
>ut_frdfn output layer O,
ep: 1 Normalizethe ianJts and oUtputs val_ues‘_to their maximum.values‘.- ‘
Step: 2 Select the number of neurons in‘hi_d.den layer which lie betWeen l<m<2.
Stepf 3 Select the weights V (between input and hidden neurons) and W (between

hldden and output neurons),

Step 4 Introduce the input into the neural network; calculate the output from flrst !ayer |

(input layer) using equation. .

75

|
!



O, _ | '
Step: 5 Calculate the input to the hidden layer using following equation.

lg=VT *0

Step: 6 Knowihg' the output from the first layer, Calculate the output from-second layer
(hidden layer) using equation | |
Ol - B
Step: 7 Knowing the output from second layer, Calculate result frofn output .'Iay'er,us‘ing »

 sigmoid function.

Op= 1(1+e¢7) | : . 4]

Step: 8'Ca!c_uléte total mean square error, E for tréin'ing set. |
E:sqrt(z'(_TJ-OOJ)Q/n. | o o [4.42]

_ Sfép: 9 Cal.(‘:mate gradient descent term, D. | |

D - (Te-Oox) 0o (1-Oae) S - 413
Step: 10 Calculéte gradient descént for ™ hode on the hidden layer - - |

y={Oh D | - e
Step: 11 Knowing gradient' descent term for hidden, calculate weight chaﬁges‘,between
input & hidden layer nodés. | | |

aW] =rileolaW] S X
Step: 12 Knowing gradient decent term for hidden and o‘utput‘ layer, calculaté' Wei‘ght
chénges‘ betWeen hidden layer & output layer nodes. |

[AV]*'=n[x]+ afaV] | . | R | [4.16] -
© Where [x]={0}} D' ) o
D'=e; (Ox) (1-On), | B

{eliwp
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where n'is the learning rate, and ais the momentum_coefﬁcient, m-ome'ntum is simply an
added weight used to speed up the tramlng rate.
For example, if one caloulates the changes in welghts [wi ! and [V] ™It requires

arbitrarily to set the Ieamlng rate n -0 9, momentum coefficient, d-O 7.

Initialize weights W,V, and
Select no. of nodes |

‘Begin of a new training cycle Begin of a new training step

i
7

A 4

Submit input, output
patterns and compute layer
output

v
Compute mean square error

Calculafe gradient descent
-term

' : A
N — -
' Calculate weight changes
Yy : Or
] ) E< Adjust weights of output
) Emax ) : l.ayer
: Calculate weight changes
Or

‘Adjust weights of hidden
. la){er

More
. pattemin
~ the training
set?

 Fig. 4.5 Back-propagation training flow chart
Step: 13 After knowing weight changes, update the weights according to the equations
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M = | | g
T =] A - o 9]

Step: 14 Find error rate
Error rate= ZE/n'set | - : [4.20]
Step-1 5: This hrocess is continued until the network predictions are within some defined
' tolerance of acceptability |
434 Aigorithm for solvmg problem through adaptive resonance theory (ART1)
ART is capable of developlng stable clusterlng of arbitrary sequences of input patterns by :
seif—organisation. Pattern can be viewed as points of N-dmtensuonai feature space. There _
are two distinct models based on ART-,‘ nameiy ART1 and ART2 networks. ‘A'RTt self
organizes recoghitibn_ categories for arbitrary sequence of binary input patterns and ART2
does the same fer either binary or analog inp'uts; The novei property of the ART1 network -
is the controiied discovery of clusters. - ‘ |
The ART1 aigorithm has been described step by step as foitows Flow chart of the ARTH
algorithm is shown in fig.4.6.
| Step':1 The vigilance threshold p is set, and for n input vectors anot M top .iayer ne‘u‘rons '
| the Weights are initialized. The matrices W,V are célCuiated as(174).
- W=[1/(t+n)] | | o | | | o | 4211
| v=[1]-o<p%1 o
Step 2 Input vector X is represented at input nodes as
x,—O“l, for i=1 2 ..
Step:3 All matching 'scores are computed as
Y= Wi, for m=1,2,...M o B N 4.22] |
In thi.s step, selection of the best matching existing eiuster, jis eerformed‘ as follows

YoEmaKn=2. uy'm. - Y5



Step:4 The simflarity test for the winning neuron j is performéd as féilows

[1Xn] i“i=1=Vijxi¥ p, where p is the vigilance parameters if if is passed then go to step 3,
if the test is failed, the algorithm goes to step 6 only if the -top layer h-as more than a single
active hode left. Otherwise goes to step 5.

The norm |IXIl is defined for the purpose of this alkgorithm as follows

IXli= el - | [4.24]

Initialize weights W, p

Y
v,

A
Present pattern X to MAXNET |

4

\ 4
Find the best matching
* cluster j among M existing
clusters
: Disable node j by f_orci'ng 4
v : ‘ y=0
Perform. the similarity test for °

x and cluster j

Yes

Is there more
.-than a single top .
layer node left?

Is the vigilance
test passed ?

Add new

Yes cluster

_ ¥ . ' : No
Update W,V for the cluster : '

' Yes

No

ls further adaptation - Output

needed ?

Fig. 4.6 Flow chart of the ART1 algorithm
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Step': 5 Entries of the weight matrices are updated for index j passing thve test of atep 4,

updates are on.Iy for entries (i, J), where i=1,2,......M and are computed as follows |

W]j(t+1)=[ Vij(t)Xi/ 5+ 2V (DX - [4.25]

V=X V30 | | | Y

Thrs updates the weights of the " cluster. The algorithm returns to step2.

_ Step 6 The node jis deactrvated by setting y; to 0. The algorithm goes back to step 3 and

it will attempt to establish a new cluster diﬁ‘er’ent'than j for the pattern under test.

435 Augmented back propagation network:

The architecture is of a standard back propagation network, mathematrcally expressed in
eqn. [4 27]. The augmented neurons are hrghly sensitive in the boundary domarn thereby

facilitating the construction of accurate mapprng in the model's boundary domaln The

network denotes each rnput varrable with multrple rnput neurons, thus allowrng hlghly

interactive functions on hidden neurons to be easily formed. The architecture of the

- augmented neural network ie shown in fig.4.7. -

Hidden Layer _

tout L
Input Layer Outout Layer

: Fig. 4.7 Architecture of augmented neural network
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A=In(1.175X+1.543) ' o ‘ [4.27]
where X; is the i input value of {réining data and A, the output of i Iogérithmic neuron in
the inputv layer. The input layer's exponent' neurons receive natural exponent
trahsformation of the corresponding input'value}byAthe training data usiﬁg the following
eqn.[4.28]. - | |

B=0.851exp(X)-1.313 - - g
Where B; is the output of i expohen‘t nveuron in the input fayer. The qua_rithm. neuron and

exponent neuron of the output layers are given as under

Ci=exp(1.718y+1) | |  [429]

D=exp(0.6931y;-1) o S a0
Wheré Cj is the output of j exponent neurdn in the output layer an.d y;is the output or the
network'o'ut;.)ut which can be represé_nted as under | |
AR - o st
Although hﬁultilayer feedforward networks using'backbropagation have been widely
: e_mployéd for élassification and fuhction approximation, existing theoretical resﬁlfs provide
only very loose guidelines for selectfng‘the.se parameters in pracﬁcé(162)-. -
4.4 ANN control methodollogie;sv:
Once the ANN methodology.has been idéntiﬁe_d it is prudent to write Ithe cbﬁtrol
architecture for learning as well as actual pfo_ce_ss for parémefer control. The ANN
methodology as described in Sectio_n 4.3 is now used for control appIiCation with the

following architectures.



i this investigation experimental data on stock flow and basis weight for digital system
are used for comparison purposes. Reported experimental data are also used ‘for
retention and ash simulation for neural computation. |
The control loops for all the parameters are simulated through MATLAB Simulink tool. If
dynamic characteristics of a process parameter is not knowh, that can be found out by
iterative prOcedure using again Simulink tool within a broad range of parameter available
in literature. The simulation is, however, based on the _analysis of closed loop control
'system including adjustment of selected controller parameters.

| A step by step proce_dure as described in section 5.1.3 for SISO consistency control_ is
used to train the artificial neural network (ANN) for all the cases of SISO and MIMO
system usrng MATLAB software. The MATLAB programmrng for all above mentroned
parameters have been shown in Appendrx2 The performance of classical controller -

(PI/PID) and ANN controller are compared in terms of simulated results in Chapter-

6.These are disoussed as a case to case basis as fotlo‘ws:

[A] DEVELOPMENT OF MODELS OF SISO SYSTEM OF PAPER INDUSTRY
CASE-5.1}M0deIing of consistency of stock in the approach flow to the‘ headbox:
The diagram of consi_stency control for a headbox is shown in fig.-5.1. In order to achieve
the above objeotrve it is an imperative necessrty to develop system model of consistency
control of headbox. The sensors largely used in measurrng consrstency are reported in
Chapter-3, Section 3.4.The models developed as already rndrcated are based on mass
balances in steady and unsteady state forms as follows:

One of the most- important aspects in the design of oonsistenoy controller is to make sure
that the dr!utron water added is well mixed wrth the stock before reaching the consrstency

~sensor. ltis possrble to control consistency on the basis of either a sample taken from the
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main stream or by rﬁaking the appfopriate measurement directly-ih the n'jain channei of
flow. Consistency is usually measured at three different points i-n the sysfem-asshowh |n
fig.5.1; The various possibilities of sér'wsin'g‘ consistency are shown through dotted lines.
However sensors or transmitters have hot been éhown. These are: thick stock before
dilution in the approach flow system, usually 2.0 to 4.d percent cdnsiétenéy,— paper
machine headbox, usually 0.1 to 1.0 percent consistency, aﬁd white water Qs@ally béiow
Ol.5 percent consistency. At preéent, it appears that direct in-line s‘ens-ing, is not used in
Indian mill but it éhould be preferred (21). These can be measured with more
SOphistiCafed on-line non-contact éonsistency sensor of transﬁritter (Iikeﬁ optical basedl,.
, micrOWéve based or NIR based) with yéry fast dynamics. These are described in Chabter
3, S_ection-'3.4 ahd table-3.2(Appendix-1).. -C'bn-sistency can bé_vcdntrolled by controlléd
dilution of the stock with the chputef doing the necessafy calculations. ‘Th‘is "p.roduces
more satisfactory results even when using white wateffdr‘ vdilu‘tio‘n Whié_h has an
appreciable consistency.

5.1.1 Headbox dynamics for consistency in analog and digital forms: -

e ’ Head-box
Thin stock to headbox C
via centricleaner and screen S : ‘ ,
systems ' ‘
Consistency : .
Sensor : : -
N>  Towire
< .
) Set point
Consistency |4 .
Fan Controller ’ -
Pump ;" - overflow
|
1
1

_____________ V____. Dilution water from
. white water silo

Thick stock,  =====-m=mmomomeme 4

Fig.-5.1 Conéistency control for a headbox
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The mass balance for a steady state system with respect to consistency in headbox
consists of two inlet flows with two inlet consistencies. The symbols are given in Chapter

of nomenclature.

M Cyi + Mg Cyg = Mo Cyo | B I [54]

Overall mass baEancev on the same system
At steady state, t=0, mo = m o5, m; =mj; n.qd.=mds
Me=mi+mg | N - B2
At unsteady stéte‘, Input=output +a.ccumulation |
For fiber balance using consistency of each fow
m, cyi'%L My cyg =M, cy°+ d(Vp cyo)/dt | - . | [5.3]
Also,‘ overall mass baI‘ancé is written as, N -
" my + mg = m+ d(Vp)/ct R o B4

- For constant density and constant volume thin stock system at steady state,

d(Vp)/dt=0-and therefore m; 4-md =mo

Eqgn.[5.3]can be. written asﬁ N

v'p_d(cy;)/dt= m, ‘cy}+md Cyg— Mo Cyo OF d( cyo)/dt'= (ANY(mi; 0) S+ (M p) Sy ~(Me/ ) Cyo}
Ord(oldts (VMO G- to G}  bs
Expressing in terms of deviation variables,.eqn.[5.5] éan be Written as given below

Att=0, | |

6 o

C Cyg—>  Cyis

Cyo 5  Cyos

d(Cyo = Cyos)/ dt=(1/V){ 0i(Cyi— Cyis)* a (Cya~ Cyas) + Jo(Cyo~ Cyos)}

d(Cpo)ldt=(1V{QC, + Qg Cya— Qo Cyo} | 58]
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where K_Cy0= Cyo— Cyos; Cyi= Cyi— Cyis; Cyd= Cyd- Cyas=0
Eqn [5.5] can be dealt with for two cases
~ Case -a: Constant dllutlon water density, volume, flow and consistency at a variable inlet
~ stock flow consistency which is clearly a SISO system.

Case -h: Vanable inlet stock flow at constant con31stency and constant dilution water flow
consistency and variable mput consxstency which mdloates an mteractlve process
containing two variables which is a MIMO system.

Case-a: The bélance.eqn. t5.6] reduces to |

A C=N] QiCy -QuCd | | | [5.7]

rlf Q. =Q,, flow remains constant | | | |

d( Cyo)/dt =(QNV)Cyi - Cyo} or Cy= Cyo (V/IQ) dCyo/dt = Cyot C dCyoldt

- CylS) = CyolS1#7 SCyofs) = Cyol®)[1+ 8] |
Cyuls) Cy(s) =[1/(1+ T )] | B o b8
Effective process transfer function for the consistency control J o
Go=Ko/( { 5H1) . | By
Case-b_: | -
The bélance equation can be written as
Sy MaGye= Mo Cyo +d(V p Gyolfdt o | © [540)
1 (Cyo)/dt = m Cy; + M4Cyd - Mo Cyo
coldt= (Mot aed | o
In terms of deviation variables, | | o
(e et= (Vs + QG -y - B
Where, o

d(cyoV)idt = V d(cyo)ldt + oy dV/dE
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Substituting the value of d(cyoV)/dt in eqn.[5.10], eqn.[5.10] can be written as

o.r M Gyi + MGy - Mo Cyo + PV deye / dt + p cyo dV/dt o [5.13]
Or Cyi Gi + Cyg G - Cyo Jo= V dCyofdt + Cyo dV /dt

Substituting dV/dt from the overall mass balance and canceling termsﬁ, one can get:
doyefdt = QA (G- Cyo) + QuV (G- Ce) B
or byo(s+ Qv+ Qulv)= Qilv(cy)+ Qd/v(cyd). |

if c,¢=0; then eqn.[5.14] can be written as

Cyo(s+ Qiv+ Qulv)= Q;/v(cyi)

or  cyol oy Y[Qi/(sv+ Qi Qq)] |

or Gyol o= [Q(Zs s+1)] | - | 515
if ¢,i=0, then eqn.[5.i4] can be written as |

Cyolst+ Qv+ Qulv)= Qalv(Cye)

© Cyol Cy= [le(sv+ Qi+ Qq)]

o 6= [Qul(Ga 5+1)] . -_  [546]
A'nélysis of consistenéy control lo'op with known process dynamics: |

The cohsistenby control loop can be designed by Avarbus ponfiguratidns (91) such as
negative .feedbac_k, cascade, feedforward ahd feedback combination, feédforwar‘d and
| .ca.scaded féedback_, and ratio | control. For simplicity negative feedback con.trél ‘
configuration has been considered in this prese'nt» study. It is usual that the dilution water
from‘_various sources(white water from pépermaking wire and/or overflow re-circul_atéd
~ from headbox /spreader) is always' add‘ed to the thi'ck stock immediately Befdre fanfpump
and then led fo 'ﬂow-to a consistency sensor, and then to 'the. othereduipments_bf
approach flow system including head.box'. A feedback signal is obtained from the

consistency sensor which is transmitted to the consistency controller through a
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transmitter. A comparator is used in the loob to compare the set point‘and meééqred
yariable to prodUCe an érror which goes fo the controller tovde’_terrhine .an appropriate
position-of the valve controlling the flow of dilution water to the stock immed(ia‘tely ahead
of tﬁe pump. The most important point in the design of consisténcy‘controller is to make

sure that the dilution water added is well mixed with the stock before reaching the

consistency sensor by incorporating a pump after the point of dillu_tioh' wate_r-add'ition. The

other important point to consider is the minimum length of the line between the point of |

water addition and location of consistency sensor to minimize the dead'_time_ or distance
velocity lag. The value of the dead time for,cdnsistency control depen‘ds u.pon type‘of the
process, loop design and location of éensor as given in the tablé' 3.2, Appendix-1.

The transfer function of consistency control process cén'be adequately rebresented 91) |
by first order plus dead time as under . _
Gp(s) =.K'p [6% /(1+ Zs)] . - ' | . [5.17q]

Carrying out bump test on the approach. flow system flow loop, Nancy (91).developed

dynamic equations (given in Appendix) in form of first order with dead time. In one of such

equation, the dead time was reported of the order of 6.84s which is due to transmitter

location relative to the dilution point. The time constant of 3.84s is due to the sensor

measurement dynamics.

Gp(s)¥-o.o4o7 e 8841 43-.843) o : , - [5.175]
The eqn.[5.17b] muét be expressed ln téfms of effebtive proc‘ésé gain, KP(effective).- The
effective précessv gain is defined as the. raﬁo of % consistency and % controller output
(2% to 4%). U_sing these values, one can get the folldv\‘}i:ng eﬁepti've procésé transfer
function with effective process gain of the order of -2.035. | | |

Gols) =-2.035 6% /(1+3.84s) | ! [5.17¢]



(a) Lambda tuning:

According to Lambda tuning, one can write the following equation for open loop control

system
Gc (s) * Gp(s) =1/ As,
- So, G (s) = 1/ As* 1/Gy(s),
And the corréspondin'g closed loop trans_fer funcﬁOn can be written as

H(s)= G(s)/1+G(s) =1/(1+ As)

After first order Pade’s approximation of €%, the process transfer function for open loop

can be written as

Gyls) =-2.035*(-3.42s + 1)/ (1+ 3.84s) (3.42s + 1), |

Gos) =-2.035* (-_3.42s +1)/(13.13 62+ 7.2_és +1),

Gefs) =1/As*(13.13 s*+ 7.26s +1)/ -2.035 (1-3.42s),

Or Ge(s)=[ (13.13 %+ 7.263 +1)/ As (1-3.423)*(—2.0'35)]

Eqn.[S.ié] ca.n be written as B

Go(o)= KdG s GsHl s

E'qn.[5.20] multiplying by (1-3.42s) to both numerator and denominatoAr,
Ge ()= Ko (G Qas” + §s+1) (1-3.425) /s (1-3.425)

Or G (s)= Ko/ §[-3.428 § L $° +01 Ga-3.42 0)) s%+(( -3.42) s+1]/ s (1-3.423)
Comparing e‘qn.t5.21] and eqn.[5.19], one can find

{,-3.42 =7.26, of  =10.68s

(10s-3.42(=13.13,

(465’5 |

Ko §=1/-2.035A

Kc=-5.248/ A
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By using various values of lambda, the-minimum of which equals to 3um of process time
constant and dead time(10.68s in this cése),one can‘ find out the values of the cér-ltrdl-ler
gain, K from the-above equation. As A is user defined value that determines the closed
ioop time constant, one can choose the value of lambda suitably which can give Iess
overshoot. Higher value bf lambda provides a slower response _(91-). A valu.e ‘of lambda
sets the closed.loop speed of response equal to open loop response. Typically the closed
loop speed of response is set at half speed of the open loop response (Iambdé=2€). This
prévents excessive control action. }ln _this present investigatioﬁ the valué of.- larﬁbda.is
selected on the basis of trial and error mefhod abéve_a 2 10 3¢ or C + Cd equal to 10_;683. |
Nancy also reéommended a vaiue. of lambda of 15s. It has also been f0uﬁd in:this p"r-esent
in.vestigation the values of lambda be'tweenl153-‘1.63 the system gives less overshoot.
(1) For A=15s. |

K.=-5.248115 =-0,3498

G: (8)= K1+ g + sl or

G (s)=-0.0328[49.662 32-1-10.683‘ 1)l A - - B2z
Gyfs) =-2.035* (:3.42s + 1)/ (13.13 24726 +1), o . [5;23]'

‘Go= [ Ge (8)*Gp (8)/1+ G (s)*Gp (8],

Goy =[(-11.34s+ O.8766sz+0.484_5's+0.066.7) (1.798%+ 8.136632'%1 ._8445340.0667) '[5.24]- |
@ Forh=16s. | .
K.=-5.248/16 = -0.328

Gc(é) = K141/ gs + tds]

Gufs) =-o.0307[49.662 2410685 +1Jis
Gp (5)= Kp [ (1+ {s)Is

=-2.035 £5%/ (1+3.845)
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After Pade’s approximation of e%% the _probess transfer funcfion can bé' Written aé _ |

Gpls) =-2.035*(-3.42s + 1)/(13.13 ¢ +7.26s +1),

Goi=l Ge (G, (501 G (6)°G, (1],

Ge=[(-10. 614 s>+ 0.823 s2+0.4453s+0. 06625)/ 2. 516 s3+ 8.0835 s2+1 4453s+o 068625)]
[5.25]

| Dféita! form of the Qlosed_ioop tl;ansfer function: - |

Closed loop transfer function in eqn.[5.24] can bve.written for discrete system as under . -

-6.3352"3 + 19.012/2 - 19.01 2 + 6:34 o
- [5.26]

z"3-2.9552"2+2.911z-0. 9556
Sampling time: 0.01 '
Closed loop transfer function in eqn. [5.25] c_:én be written for discrete systém_
-4.2_19 zZM3+12.66 z°2 - 12.66 z + 4.2'22 ,
15.27]

© zM3-2.9682"2+2.937 2-0.9684
Sampling time: 0 01s

| (b)Z-N tuning:
For the saké of comparison Z-N tuning of the controller haé been a}ttempted,as it is fh’e_‘ |
most} commonly used m'ethod for controller‘barameters sefting Af}o}r other proce’ése’s. '
HoWéver Z-N tuning requires the analysis of ffequency response characteristics of the
- control system which will estimate tﬁe values of controller pafameters for specified gain
and phase‘marg_in. In order to get the controller paramete_ré (Ke, G, Gg) by Z-N method for
various contfol_actions (P/PI/PID) stability analysis'should bé followed by using _ulﬁmate
géi‘n aﬁd uitimate period. The estimation of gair_\.and period can be estima_téd by Nyquis"c ‘
and Bode stability crif_erion. Though the ‘Nyquistvcriterion can be applied to thé all systems

but involved polar plot of the system frequency response in the complex plane.
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In this present problem the Bode plot is used, because the Bode plot of a transfer function
is simbler thaﬁ_Nyquist analysis,-though it applies only to system for which amplitude ratio
and phase shift vary monotonicalfy with freduency‘ It is howevér very e‘asy to séé the
effect of performance of changing s}ystem pa.rameters on the Bode plot. It is to be noted
that by adding deriv_ative term, the cross over frequency increases whiéh is desiréble',
whereas the amplitude ratio also gets increased which is not .ét. all desirable. The
foIIoWing step by step procedure of Bode’s 'piot is to be followed.

Step-1:

For estimation fhe Cross over frequency, one should use phase méfgin ori phéée anglé as
under: |

Total phase angle=Controller phésé angle+ Pro;:es’s phase anglé+ Transportation phase
ang-le | | | |

pbrvir+is

-=0-tan™(3.840¢ o) 'O

- =0-tan”(3.840c o)- 8.84+5.

tan™(3.840¢ o)= T-6.840¢ o

384(,0(; o=tan(Tr"6840)c 0) or 3840)3 o=“tan (6«84030 0) '

By iterative me’chod, one ca.n find ®¢,=0.3278 rad/sec.
Step-2:

'For estimation of Gain margin or am'plitude ratio (AR) is as follows..

fotél amplitude ratio = (Amplitude ra_tb for control'ler) X (Amplitlu.de ratio for brocess) X

(Amplitudev ratio for transportation lag) |

1= Kt KA1+ L3P 1 o | - . [528]

1= Kc*[-2.035/\/[1+(3.84)2(0,3278)2] 1 | | o
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Ke= -0.789= Koy

Py=2n/0¢ ,=19.158 min/cycle
For Pl controllér (according to Zeigler-Nichol (Z-N) controller setting table)
| Ko =0.45%Key, =-0.355,'ci= P./1.2 =15.965,'

After substitutihg these values, the controller transfer function can be written as

Ge= [-0.35_5(15.9653+1)/15;965s] | - | [5.29)
_ After Pade’s épproximation, the process transfer function can be written as

Gp=-2L035/(3§84s+1)".*[-3.4»23+1)/(3.425+v1 ) R ' [5.30]

I‘n péper _mill, the most important paper property ife. basis weight of papef depen‘ds'o‘n |
- consistency of pulp. AcCording to GSM requirement, consistency h’és .to-'.be changed.
| Thus changing consisfency in a consistency control system can be ter_med as ser\/c
problem. | |
| Fcr closed Ioop'servc pro'blem of consistency ccntroi'; tfansfer functiovn'for‘P‘I controller
ca.’r_l be written as | . | |
Y(8)= Ge Gof (1+ Gc Gp)

Ge G,= [(-5.66755-0.355)/1 5.9653][(-2.035_+6‘9597s)/(1i3.1_32'832+7.263+1)]

| =(-39.444s? +9;063'+0.722)/(209.66533.+1 15.90595%+15.965s) -

Y(s)= (-39.444s7 +9.065+0.722)/(209. 6655%+115.90595%+15, 965s)

[(209.6655°+115.90595%+15.9655-39.44452+9.065+0. 722)
(209.6655+115.90595%+15.9653)]

Y(s)=[(-39.44s _+9.06s+0.722)/(209.67.s +76.4632+25,.0234_r0.-722)] [6.31]
Taking inverse Laplace transform one can get egn. [5.31] for analog systém

Y (t) =[1-exp(-0.1654t)(.4438005(0.2946t)+0.9518sin(0.29460)] | [5.32]
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. For PID controller (according to Z-N tuning method)
Ke=0.6" K,=0.6"(-0.789)= -0.474
i =P./2=19.158/2=9.579
{s = P,/8=2.39 |
Ge=K 141/ §s + s8]
G¢=—O.474[1+9.58s+2332]'/9.588 | | o T 5.33]
After Pade s apbroximation the eqn.t5.33] can be written as | |
G,=-2.035 6984%/(3.845+1)*(-3.425+1)/(3.425+1) | - j - 15.34]
The cfosed loop transfer function for PID controller as--under. | | |
Y(s)/X(s)= [G¢ Gp/(1+ G; Gp)]
=[(-7.86s 0.975° +O.6.1.6s+0.1)l(5.2733+ 5.2852 +1 .6165+0.1)j

" Y(s)=1(-7.865° 0,9752%6%0.1)/(5;273%6,2852 +1.616s+0. N 1/s . [5.35]

Taking inverse Laplace transform of eqn.' [5.35], eqn;[5.36} is obtained as. .

Y(t)=[5.27-9.38e"0"%40.202 e ¥".3.95 ¥  15.36]

Response Equation in digitized(z-domain) form:

Transforming in discrete form e’qn..[5..35] can be wriﬁen as |

Y@2) = [(-1 .491z3+4.473z2-4.471z+1'.49)/(23-2.98822+2.976zf.,9882)«]' - [5.37]
Expressing in discrete form(z-domain) for di'gital control system, eqn[5.31] can be written |

as -0.001876 z*2 + 0.003756 z - 0.001881

: : [5.38]
" z"3-2.996 z"2 +2.993 z- 0.9964 4
The control loop configuration for analog system is shown in fig. 5.2a. The Simulink MIMO

model. for consistency control is shown in fig. 5.26.( Case-b).The simulation results of PI &

PID controllers are shown in figs. 6.1&6.2,Chapter-6.
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gain and time constant, and tuned the controller using hit and trial method Using Simulink

tool. The control loop for the case b is shown as under.

1

3541 | . e »
PID Contollert  Transfer Fen .

Cyo
. 1
-l =

T PID Controlier Transfer Fen

3

Fig. 5.2b S'imulink model for .consis'tency control (case-b)

CASE: 5.2 Modeling of stock flow control of the headbox::

5.2.1 Model for stock flow:

" The static models for stock flow are described 'in Chapter 3,Sectionv3.4,' éq'ns.[3.1-3.13]
and table-3.2 (Appendix-'l)wherein the equationé for stock flow velocity af th‘e‘outlet of
 slice and at the vena contracta have been shown. The simplified formula derived from

Bernoull’'s equation relating continuum mebhanics for mechanical energy balance is

reproduced below: |

....... - ‘Stock flow controller ‘

X
[
1
1
1
1

‘EE _ o MEM

\ A

Fanpump > q(f)

Stock flow, g(f)

F'ig. 5.3a Flow control loop

Velocity of slice discharge V=C+(2gh) [5.39a]



- Using q for flow, Q for deviatlons from steady state value, h for stock level, H devia’rion !
from _s,teady state value, h;, the equa’rlons can be rewritten as ) o | | |
q=ccchs\/(2gh)=chsl(2gh ) =Cq wbV(2gH)=CowbV(2gh) - ‘ [5.39b]
Q=q-qs=4.429'chb(h-hs)=4,.43v_vb(H)°'5 |

Thus it is clear that the mode! for stock flow is connected with level control problem. The
equation is thus a nonlinear control p.roblem. |

The derivation for dynamics for both stock flow and stocl( level from first prlnclples will- be
discussed in details in Section 5.2.2. The simple flow diagram 'for a stock flow control is
~ shown in fig 5.3a. Flow can be measured with different types of flow4meters but
electromagnetrc flow-meter is widely used for corrosive acids, slurrres etc especrally for
paper pulp The measuring element, the magnetic flow meter (lVlFlVl) supplres the
feedback signal for the flow controller which in turn, compares the measured flow with set
point and adjusts a flow control valve accordmgly. :

Asfar as dynamlc model of stock flow is concerned thefollowing linear stock flow m_o.del
of flrst order has been- the representative one. As already indicated,using g as a
volumetric f_|0\lll rate (fig.5.3a)'and Q, the deviation from steady state‘value one carl wri_’r'e,‘
WOdt+Qo Q) |

5Q0(5) +Qo(s)=Q(s)

Qo(s)Qfs) =[1/(1+Ce8)]

In reality, for flow control there .arethree elements joined in series, hydrau_licflow irl_pipe,
valve and ﬂow measoring devices. Nancy (91) has reported the overall transfer functlon is
a thrrd order process with time constants of the order of 0.5s, 0 8s and 2. Os respectlvely
and process gain 1.5. This when coupled wrth a PI controller and considering rnteractrons '

with the other parameters of the system, the control problem become more complrcated
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tQ-analys'e. To avoid this complexity majority‘of In‘dian,p‘ulp vand paper industry use the
coarse ﬂoW and fine flow contro‘l techniques vf-orvstock flow to the head box and its -
approach flow. Thesé are analyzed below:

‘The v_fine flow controller feceives the total head and wire speed as inputs. It then
- calculates the jet/wire ratio and uses this as pfoc;ess variable. The controlléhCompehsatés

for all minor disturbances with the help a bypasé valve to reach set value as ‘shown in fig.-

5.3b.

~ Wire speed . . R/D or JW
~ Total head Target
I VIN | W \

R/D OR JW J
CALCULATION ¢

To bypass . Tocoarse -
valve ' flow
controller

Fig.-5.3b Fine flow control

5.2.2 Deve!qpment-bf ANN controller for the‘cése of sto.cl_( flow contro.! ih approach
'Iﬂow system: -

Fig.-5.4 shows ‘a simplified control block diagram for neural céntrol of hvééd'-box sys;tem. ‘
As already indicated, J/W is the system output .repr'esenting the ratio of speed of fhe_ jet
" and speed bf the wire and e is the érror} Several important pérameters must be.propev'rly
determined in néurél network design such as the leaming rate and the neuron numbers in

each Iayér. The program runs n iterative training cycles fof_ the neural network with a fixed
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hidden neuron numbers which progressively increase as shown in fig.5.5. Relationships
between wire speed and pressure or vacuum applied to head box at various values of
coefficient of diecharge, C, and coefficient of c:on’trac;tionv,‘Cc ob_teined fr0m.the_oreticel
model for industry as well as detailed madels are shown in table 63(Appendi$<—1). Using
the above artificiel neural controbller for stock flow control has been designed_ and
 simulated. For ANN controller, the back propagation algorithm is used and neural network
i tfained Ausing MATLAB program shown in Appendix-z In order to get the desired
resulte the algorithm developed in chapter 4, secﬁon 4.3.3 is employed. The comparisOne
of data for indusiry and those obta'ihed'from models with simulated data from ANN

controller are discussed in Chapter-6.

e=-JW ' !

' JW
.| Neural .| Head-box R
"1 Network - " system i
A OIP layer
Input layer v, Vi orlayer3
orlayer't’ - o :
Hidden layer or layer2’
Fig.-5.4 A neural network control fpr _ Fig.-5.5 Multi-layer neural

fine flow control , network structure

CASE:5;3 Modeling of total head ef the ‘headbox:

5.3.1 Model for total head: |

Paper machine head box toia| lhead control is one of the 'mos't irﬁportant cbntrol |
applieations on apaper machine. It achieves the transformatieh from stock to sheet. It is
also extremely fastest lon in the p‘epermaking eroceSs(91).The total head measurement
on the side of the headbox and {he Pl controller which.adjust‘s‘ the fan pump reference
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Sampling time: 0.01 ‘
The model for both open loop and closed loop transfer functions for analog and digital

control system are subjected to MATLAB simulation, The stability test and tuning.for Pl
controllers have been done. The results of Simulation are shown in Chapter-6 for both
~analog and digital system. MATLAB Simulink model of headbox total head control is

showh in fig. 5.7.

2554200

Tanderfad | TinserFend Transfel Fcn1

Fig. 5.7 Simulink model of headboi total head control system
| 5.3.2 Development of ANN contfoi!er for the cese of total head contre_l ih appreech,
flow system: |
~The vreferehce fotal head and actual total head are used as‘ input for ANN and theée
inpﬁts are represented by. one vector. The inbut of process uses an output for ANN
controller which is the appropriate si.gnall forthe head box totaIA head at deeired-le\}ei. The
training paﬁerh required for training the ANN are ebtain_ed from Pl» controller using the
back propagetion_ algorithm. |

THé number"of layers and numbef' of neurons in different IaS/ers are decided'by trial énd
error procedure as already discussed in earlier section. The ANN controller is designed
~ with :2 neurons in the first layer, 8 neurohs‘in hidden fayer and. 1 neuron in output layer: In‘

this network log-sigmoid activation functions are used.
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 CASE:5.4 Modeling for stock level control of headbox:

The modeling of level control is well documented in all control Iiteratdre both for-linear and
nonlinear systems. Here we apply this modei for dynamics of stock level in open
headbox, or in closed air pressure headbox where rnteractions wrth other parameters are
consrdered negligible. For open headbox-the head due to stock levei is the only drivmg
force for the stock_flow as the external force implied on the stock rs.atmospheric pressure.
For closed headbox (air pa.'dded)lthe additional air pressure are Aad-ded to _the'-stock.lhe‘ad
and in hydr_auiic headbox the entire driving force is from fan pump. The force balance‘
equations-tor controlling stock level in various -types of headbox are given in Appendix-3. |
In the case of air cushion headbox two interactive parameters are involved namely,
stock level- and stock flow conformmg to MIMO system The interaction between two
parameters for MIMO system is described in section B. ‘This can be me_asiired with
different types ot transmitter (like diﬁerent‘iaipressure, potentiometric and ‘inteiiige'nt) \ivith
very fast dynamics. These are described in Chapter 3, Section 3.4 and table-3.2;
Appendix-1. | | | | |

5.4.1 i\fibdei for stock level:

As usual it starts with material balance across equrpments at steady and unsteady state
conditions as shown in the followrng »par.agraph. In this case only the densrty of pulp
suspensionvwithin the range of consistency 0.1 to 1.0% is included, resultrng slight
variation of density from that of Water.'r:or practical calcdiation however the_density can
be assumed the density of water. | |

For development of model of _stdck Ievel control in open headbox the fig.5.8 is depicted as

a simplified sketch of the headbox slice system actually drawn in Appendix-3. Usin'g the



symbols for various input and output parameters given in the Chapter -Nomenclature the

- following Mass balance equation can be Wfitten for all types of level control systems (25).

Headbox
1 ‘ h{t) Upper slice lip
) adjustment

- Gl -

WIRE

New stock _ \

o

Fan pump o

Fig.5.8 Model for stock level

For Linear or Non-Linear System o N . .
q(t)p -Go(t)po=d(vp)/dt=d(Ahp)/dt o [b44

* Stock being incompres_sible fluid all density terms in eqn.[5.44] are cahAce!led‘_ ou:t.:
 qlt)-aolt)=Adhidt |
Thé output flow qy(t) depends on level of stock and _resistance of va‘lve, R, fhe above
équation can belwri'tté.n as‘for both linear and nonlinear syétem as under;
q(t)-h(t)/R=Adh/dt

or Adh/dt+h/R(t)=q(t)

The systems.can be defined linear, or nonlinear or wi'.thv constant flow output (with a purhp -
ora flow controller). Depehd upon the nature of g, as under:
' Linear: g,=hiR |
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integrator: q0=constént _

Nonlinear: Qo =Ch" wheré n may have values'such as 05,15 etc.

=0,then h=hs, 4=qs,qo=Cos |

~ [Ad(h-hs)/dt+(h-hs/R)]=q-qs - - | 4[5.45]
o AdHIdt+ HIR=Q | | |
Taking Laplace transform for Iinear first order system, one can get |
AsH(s)+H(s)/R=Q(s) }A

RAsH(s)+H(_s)=Q(s).R

: CsH(s)+H(S)_=Q(s)_'.R |

ZsH(SHHE)=QER

HE) Gs+11=QsR o |
HoQEeROS] N Y
If R tends tc; infinite, the eqn.[5.46] reducés to 1/As, 'the transfer function fora ‘iiqUI‘d level
sy'ste!ﬁ with con,»stant flow outlet i.e. an integration. | .. |

The eqn.[5.45] is of first order |

When, HR=go o H=qoR

Qo at)=A(R)idt=ARdqo/dt

ZdQu/dt +Qo (t=Q(t

{sQu(s) +Qo(s)=Q(s) o |
Qe - )
Non Linear System Dynamics: | |
If valve is nonlinear

qft)-qo(t)= Adh/dt .

9= Ch1/2
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G0 = Go* Qo (Me)+q0"(hs)(h-he)2/21+G0" (hs)(h-hs) /3 | +-eemmmeems

Golhs )= 112ehs™ = Ry

| qo=qos+1/20h5'”2(l"1-h5)=q°s+.1/R1(h-h5'-)
if g-qo=Adh/dt then |
q(s)-[do(s)+1_/R1(h-hs)]=Adh]dt
(Go-os)-1/Re(h-he)=Ad(h-hy)ct

- Q-(1/R{H)=AdH\dt

QR H(E)=ASH(s) | N
HeQERRATS] o Ba
An’alysis of SISO level control ciosed loops “ N
~The parameters for Iprocess gain,.' Kp -énd timé constant (product of 'resistalnce and
capacitance).deperidvupon thé type of headbox, and the designs of both approach flow
design and headbo* itself. In absence of any dynamic ‘charaCte_ristics of Headbox sYstem,
the prbceésv'gain'is arbitrarily assumed to be 1.0 and thé time constant is'varied to any
| realistic value whicﬁ will give the required r'e,spoAnse, corfesponding to“63.2% of the
ultim‘éte value. Eqn.[5.48] has been tuned and simulated with th‘e help of MATLAB |
~ Simulink 't'o’olbék using ,tfial and error method as indicated abbﬁé‘, one -can get' the '
| transfer function for stock level. |

" Gel(s) =‘1/(O.23+1) - S B | . [5.49]
 Digital form of process dynamics

Transforrhingj the eqn.[5.49] for digital form(z—’dorhain), oné cavnvget the folloWing-equation.
Gp (2) 52 2:09512). .

However the. above'.'_equation can not be appl‘iedv for digital control systém‘ as does not

content hold dynamics. In order to simulate through the MATLAB software hold dynam,ios'
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must be taken into account in all cases. Conversion of analog to digitai form in MATLAB
software the procédu;e is as follows:.

The MATLAB command sysd=c2d (sysc, Ts, Method) converts the continu‘_ous time model
sysc to é discrete time model sysd With sample time Ts. The String Method selects the
discretization method such as zoh (zefo }oArder hold),foh (first 'c_).rder hold);imp(impulse),
etc. Using MATLAB program, eqn.[5.49]can betransforme‘d in dis.crete(i—démain) form
as under | o

G(z) =[(0.04877)/(z-0.9512)] ’ o , [5'50]’
The model of level vcontrdl in ‘h‘eadbox system in .bo‘[h analog a_nd.digital formé ére
. Simulatéd with the help of Simulink tool in MATLAB software and results are displayed in

figs.8.28, 6.29(Chapter-6).

Outt

4 FIb 2541

Step PID Controller Transfer Fen

Fig. 5..9 Ciosed Io_ogﬁ control strategy |
5.4.2 ‘D’eve!opmie'nt of ANN co-ntroi.l.erfor'thé éase of stock level control in approach
flow system: | |
Baséd on the procedure detailed in-Ch’ap’tef—4, the ANN .con'trolle'r .is designed with 2
neurons in the first layer, 3 néurqns ih.hidden layer and 1 neuron in output layer. In this
network Iog-sigmoid activation functions are used. The nu'mber_of léyers ,'and n'ur_nber‘of

neurons in diffefent layers are decided by trial and error procedure.



CASE 5.5: Modeling for pH control of stock: |

The pH of the stock being handled by a wet end of paper machine has a pronounced

" effect on drainage and retention. The pH is a difficult variable to control, partrcularly 50 in

the region of pH 7.0, because the major diﬁieulties with_ pH sensors are inherent nonlinear
characteristics, noise and sensitivity.- However, this range of pH is.very i‘mportant for

manufacturing various kinds of paper.

In Chapter 3 itis indicated that based on sizing principles at the stock preparation section

of the paper mrll various srzmg chemicals are added to maintain the pH of the stock. For

.acrd sizing paper rosrn and alum are usually used to marntam head box pH in the range

A 4

b Cleaner
~sand .
screens:

- Wire
Pit

Stock from machine chest —*

H, 504 JAlum
Rosin /dispersed rosin

NaOH

Fig. 5.10a pH control strategy
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‘ between pH- range 4.4-4..6(av.4.5) while for alkaline sizing, A‘KD or ASA or bbt_h are used
to maintain pH generally above ?.0 (for AKD, pH range 6.0-9.0 but moet'effeotive at level
of 8§0-9.0, for ASA, pH range, 5.0-9.0).The neutral sizing with dispersed rosin works in
the pH rahge between 4.6-5.3 in the stock at the point of sheet formatioh. Whatever the
desired .va!ue of the pH is required, that can be achieved by proper adjustment of -the
local conditions t‘o secure optimum.overali results. Some oohtrol system. uses feed
forward control to oompensate for certain disturbances, variable gain,feed baok :controi to
offset the nonlinearity of pH and large process capacities to damp out variat'i‘ons' in pH.
The above objective can also be fulﬁl!ed by controlling the flow rate of the acidic or basio
reagent with the help of oontrol.va!ve operated by- Pl or PID. "contr.o.ller in a negattve
feedback Ioop This is obtamed usmg the feedbacx signal and the stem posrtron of the
atum/acrd or alkali or drspersed rosin valve as mampuiated variable. The chemrcals can
be added preferably at the suction side of the fan pump (shown i in frg 5. 10a) orat the thick
stock in the blendmg chest or at the machine chest or at the machme chest pump The pH

.measurement can be made at various locations: measurement from the stock entry to the
headbox in the recirculation Ime before distribution header, in the dlscharge from the. fan
pump, in the white water from th_e trays or from the white water from the wire pit ent_errng
to the fan pump. Out of these alterhatives, the first one is most reoommendedllocation'.
5.5.1 'Modeﬂ‘for pH of stock: | | | |
Analysis of vari.ous available pH eontrot strategies
pH' though w_idely defined as pH=-logo[H'] is not however amena,ble'to measurement and
controlling. Hence a pH meter is expected to show a nonlinear response t0-a step or
s_inuso_idal changes in solution concentration, since the pH-depends. on the ‘Iog'arithm of

the concentration.



Therefore it needs operational definition of pH by specifying the e.m.fsvof t\rvo standard
cells (‘eiectrodes,) provided with a high impedance voitage measuring device. The pH of
the paper machine stock is measured by the potential difference between 'a,glass
' electrode and»a reference electrode (usually- Ag electrode, or ca'lomei electrode or
othe'rs).'The measured pote}ntial across the system, can be written as E=E;+ En+ Ef- Eer,
where E; En Ej Ee are the em.fs generated at the internal reference .electrode,
memb‘rane, liquid jUnction and the external reference electrode. Under normal conditions
the e.m.f at liqdid junction is negligible and the same at the intemal reference eiectrode
“and at the externai reference electrode are constant Therefore the above equation can
be written as E= E°+Em, where E; is a constant For any IOI'I selective eIectrode (H jonin
" this present case), one can rewrite the Nernst equation, E=Eo+(RT/nF), where a is the '.
| activity of H'. Hence equation for sensing and measuring pH can be eXpressed as |

PH=F(E,-E)/2.303 RT= ( Eret- Ecpsenes)/KT, ,' S [5.51]
~where k=RIF . |

The electrode assemblies can be either immersed directly in stock lines orinstalled in a
sample bOxllor flow through electrode chamber through which a sar‘nple.of stock is
continuousiy run. All eiectrodes demand periodic servicing and cleaning preferably

through uitrasonic cieaning devices. There are usually three models avarlable equrlibrrurr

o constant models the process identification with simulation or experiment and the trtratior

curve method as under:

(a)Equiiibrium Constant model

The appro'ach-for 'modeiing pH dynamics requires that the various .chemical species
pertinent to the process must be known and also their equrirbnum constants. In ‘many

actual plant situations, this data are not avaiiable Schnelle et.al. Wright : and Kravarrs(59)
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have developed various techniques for linear and nonlinear 'eonirol o’f‘ pH of many
chemical processes including waste water treatment Mahuli et al. (59) and Sung et

al.(59) also investigated the pH control for nonlinear system using statrstrcal technique for
contrnuous on-line model adaptation or through identification reactor. But they have
limrtations for controlling effective pH controi of headbox stock in papermakrng wet end
due to complicated nature of thin stock., and their‘time varying nature. Modeling of pH
control using equilibrium constant model needs thorough understanding about the
chemical environment and charged species inside the mixrng box in the commercral stock
whrch can be correlated to the [H* ] ion concentration

(b) Process identification techniques:

Fig. 5.10b pH dynamics

When the _dynamio model of the process is not known for which either PID constants .are
to be‘found,' its open Ioop response for 'a s*tep-inpu_t is determined experimentally or by
simulation (90). The dynamic response is S-shaped '(si'gmoid function).' Similar cur\re is
also found for pH as a function of concentration in the titration curve but it passes through
origin instead of intercept in ihe pH axis. The response curve is characterized, by iwo

constants, dead time and time constant, { which are determined by drawing a tangent at
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the inflection }'pdin't (control point) and finding its intersection with the time axis and the line
* corresponding to the steady state value of outp’@t. The response in this céSe éan be again
model.ed as ffrst order with dead time vas shown ab‘ové.v |
The gain K, correspond?to the steady state value of the output reépon_se‘, aftér fin‘d‘ing .
 the values of K;, g, {a . The values of Pl and PID control parameters.can be found out by
- Z-N (Zeigler-Nichols)open loop “tuning method using the following(given in'Appendix-ﬂ;
Ke=120/Cq, K= 284, KfO.S Ca
Nagrath and Gépal (90) derived the titration curve of pH is a function of time frdm the
actual set 'up"of‘ pH control plant (Approximaté datais shoWn in the Appe{ndix—j). If} the pH |
of stopk is to .be obtained at a set point in the pH r‘a'n.ge 4,010 7.0, the ga‘ih of the valve is
-f_ound of the order of 5.6mlfs of basic feagent/rad. .opéningi of kthe valve. |
On the analys'is. of opeh loop step response of the plant by dréWing- t_he.tangeht of
ihfleétion point one can get the value of dead time, time constant , coﬁtroller-gain, inteéral
- time and derivative time of the ordér of 19.98,1.85,0.1.08,.39.83, and 9.95s respectivély. ‘
The PID controller is tune_d to this values an.d the- closed. loop step response is shown in‘
fig 5.10b. The performance indices are fouhd as %‘ovérshoot, rise time and settling time,
26'%, 0.35;‘9.23 lrespectively.' The dynamic eqUatiqn of the pH control system can be
| Writtér_\ as under: | o | -
G(s)é 5.67¢1%%(1.85+1)

(c) Titration curve method:
The ihird model- the equivalent titration method requires the titration curves for systems -
- with or without buffering the s_o\utioh. Th‘e‘ dynamic model keéps track of the amount of

- each stream that is in-the véssel at any point in time. -



For the paper machine stock d'ep'ending oﬁ the range of pH at the -he'adbo>-<.at léast three
tybes of neutfalization curve are réquired for dynarﬁic modeiivr'ig“*ofvthe éystém.' In _this
present investigation only one type of neutrahzatlon curve for deSIred pH either at
5. 5(neutral smng) or at 8.0 (alkallne Slzmg)are taken as a base case. Unfortunately no
data were available to draw the tltratlon curve for papermakmg approach flow system
Hence the titration curve (shown in ﬂg 5.10c) obtalned by from Harnott (53) is taken for
analysxs ThlS curve is the same as drawn by Hong Wang et aI pH as a functlon of

dimensionless concentration for papermaking;
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Fig. 5._16(: Titration curve for pH |
Analysis of the titration curves which are strongly nonlinear, indicate that fhere a(e‘ two.
inflexion points which are conls,i.dered as contrql p'oints. This can be assumed as a
' com.bin‘atidn, of two first order systems joined at the first inflexion point. It can also be
modeled as first order system with tilme lag as shown below: |
G(s)= Kp ™% ™ G 5+1) -
Actu_ally thé_two time constants are aésopiated with _the standard_ﬂow cell for industrial pH

control-one hold up time, v/q, if the cell is well mixed and a diffusion time constant with a
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special low hold-uocell response (which is usually of very‘ low order of magnitude, he_nce
negllgible) is more nearly first order but too fast to show clearly the effect of flow rate.
These are affected by the changes in load resultlng from change in concentrations and
vchanges in flow The load changes affect the process galn and may alter the trme
constants of the system. From the curve, the slope at the control pomt is: determrned frrst
and then value of process gain, Kp is evaluated as a ratio of % change in pH and %
change in flow. For all practrcal design t-he value of K is kept normally above‘l. Harrioft
recommended this value at about 6 for nearly neutral pH( pH=7. 0)and 64 for pH of the
order of 8.0, both based on pH range of 5.This data is a prereqursrte in order to calculate
: the controller garn Kec.
“To estimate Kyax, in- eqn. [5 52],one has to estlmatethe time constants of alI the elements
in the open loop and AR.is then determined after assuming a surtable value of crltlcal
frequency to get the target 180° phase lag in an iterative way. The:galns for the other '
elements are to be determined or assumed. | |
Kna=1/AR. at 180°%ag | N | 552
Komes=Knad( Ki KoKs...Ky). R | [5.53]
For stable on_er_atlon the product .of maximum gain and the critical frequency as an: index
of controllabity has been used.
A control system deslgned for regulator operation must minimize the effect of load
changes on the process output At the optrmum controller settlngs the response to a load
change IS srmrlarto that- ofunderdamped second order system and the frequency is 10- |
30 per cent less than the critical frequenvcy and the decay ratio is usually %. For a gain

that gives a decay ratio of % , the damping coefficient, ¢ is 0.22 and the peak erroris 15
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times the steady state error(offset.)..Therefo,re‘load changes at the s‘taﬁ of .the'system the
peak érror éan be represented as under which is applicable for‘proportional control only.
Peak error=1.5 KJ(1+K) where K=K¢(Ky KoKs...K) | : [5.54] |
- To apply the above in actual pH control syétem provided with pfo'portional or propbrtiohal
resét contro'ller, the élements comprising of | dynamic modeling of the process, the acid or
'alkaﬁ mixing.tahk(Kp, (p) ,dynamics-of control valve(K,, CV),électrodgs;((KE, ('E).,cell(Kcl, Ca),
the t'ransporta.tion lag in mixing tank( {p4) and due to sampi'ing (p2) must be known_. For
all the elements inétead of théoretit;al time cons‘tants, effective time constanté are used.
To estimate the time 'constant fof process one has to know the _capaci_ty and resistance of
the‘prdceés (sizev of the mixing tank and volumetric flow rate), ‘but for pH electrodes ;che
followivng equation is used. |
e=0.522D, | R - [5.55]
Where z is fhe effective'ﬁlm. thickﬁess ahd ‘DVV , thev volumetric d.iffusivity. The \Jallue of
ge’neréily varies between -a minimum 0.4 s t0 2.0 s for buﬁ:ered;sglut.ioh and 108 tc20s.
for unbuffered éolution depending upon thel velocity and thé 4ion concentra'tibln.l_ Thé \/élue'.
cbuld be réduced significantly td 30 ps if necessary by using a high velocity flow céil a nd
cleaning by_sudden -jet of solution., The detailed data used for dynamic study for pH
control probess are shown in the Ap_’pendix,-3. |
D*evéloﬁment of Mode] of pH control system
On _analysié of thé three tybes of pH control procedure and in absence of experim_en.tal
data the titration curve method " is the most suitable for industrial _practi'ce.“ H_ence it is
ad'optéd in this Work_.ln the preset investigation based on the data reported, -thé dynami'cs

of the pH control system is assumed to be of first order for a control pH. The values of



(Kp, Cp) are varied between 5.0- 8.0 and 1.0 s-2.0 s. The parameters for other loop

elements except the controller are assumed as follows:

Jo= (= {ee= (= 0.0 and the corresponding gain values are: Ke= Kee= K,=1.0.

The values of time constant and process gain are found through MATLAB simulation

and found to be of the order of 1.5 s and 7.0(% change of pH)/(% change in flow)

respectively. Therefore the process transfer function can be represented as

G(s) = 7.0/(1.5s+1) -

[5.56]

From the plant experience the value as mentioned earlier K,=6.0 and time _con‘stant 1.510

1:8s closely tally with the simulated values (7.0 and 1.5s). The block‘diagfém for closed

loop system for pH  control is shown in fig.5.10d.
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Fig. 5.10e Block diagram for s'tock pH control process



Digital form of procéss transfer function:

T‘he. eqh.[5.56] should be discretized for digital computer simulation. The discrete ‘ti'me
mode! of pH can be developed in two ways in terms of z-transform or modified z-
transform and with the use of différence equation. Both d.iscrete models afe in’ter
convertible and are demonstrated by S‘eborg et al. (139). The ondel based on difference
equatibn has been developed by Hong et al.(59)which is shown in ’Ache: Appendix-é.
However more simple approach is to get the analog model b.y simulation and Itr-ansforrr'wing
the same to discrete form applicab{e for digitai_ system. '

The eqn.[5.56]» can be written in z-domain( z-transform) as

4.6z /(2-0.51 32)

The. probedure of conversion for cohtin’uous o discrete form using MATLAB soﬁware ié
detailed in section 5.4.1. The continuo@s rrvzbd'el in discrete form (z-domain) with zero hold

order can be written as

z-05134
with sampling time of 1.0s

__________ | | T  557]

he closed loop system with a fixed PID co_ntrbller for the pH is shown in fig.5;10f.THe pH
ocess tran'sfer‘function has been described .by‘ eqn.[5.56].Thé PID controller pafameters
are based on a trial and error approach owing to difficdlties in establishing an analytical
solufion for the nonlinear process. The controller parameters on MATLAB simulafibn are

found are: Kc=2.5, {=0.8.
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Fig. 5.10f Closed loop system

’5;5.2 Development of ANN controller for the case of pH control of stock in
approach flow system:

The ANN controller is designed with 2 neurans in the first layer, 12 neurons in hidden

layer and 1 neuron in outp‘ut layer. In this network, iogsig activation functions are?used.

The number of léyers.and number of neurons in different layers are decided by tfial and

error procedure.

. CASE: 5.6 Modei;ing for stock temperature controi:
| 5.6.1 Model for stock temperature; |
it is well known fact that higher températ'uré of stock will increaée the drainage rate on the
wire by réducing éurface tension and viscosity of water. Stock temperature can be
measured byv diﬁerent types of sensors-transmitters with reasonable dyhamic
characteristics. The sensors which provide me.a_surement in terms of electrical signal such
| as thermocouples, fesistance bulb thermometers, and thermistors are m.ost common
- types. The dynamic response of most s.ensors is usually much faster than the dynémics_
~ of the process itself. The time constants for Various temperatuvre measurihg devices vafy
widely depending upon the construction type. Tﬁese are described in Chapter 3, Section

34and Appendix-1, tabie-3.2. Luyben (81) has reported for thermocouples of the order of
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30 s with a heavy thermo well but Nancy(91) reported this to be of the order of 2 s The

. value of time constants of thermistors, semiconductors and  optical

Sensors(photoconductors, and phofovoltaic cell). are of the order of 0.3s,0,01s,10m$,1.-
100}13 respectively whereas the same for resistance temperaturé detector(RTD) though
possess very fast dynamics, may have the values intermediate between thermocoupies
and thermistors. Their basic dynamic behaviour can also be examined m terms of
temperature profiles. For temperature_ control of approach ﬂé\& "systerﬁ incIudfng thé -
 headbox there are two kinds of dynamics available. One for the'measurement'system
 itself with apprbpriaté sensor ahd the other when temperature of‘{he stock is corﬁroﬂed in
| the system. However, the temperature cc-mtrol‘ system can 'prefera'b!y be: Lised bef‘ore" :
.e'.ntering. to the headbox. In most céses_, the tempera{uré of stock in headbox or silo'with
tenﬁjoeraturel asa feédback signal is controlied by modulating ihe.amount of live steam as
manipulated variable entered 'to the silo or the flow of gas to a special gas ﬁred white
water heater. The controller used'is usually a conventional Pl oo}nt’roll‘er. -

Egns.[5.63-5.69] represeht the dynamic rﬁodeIs of temperature‘.méasurement'as well és |
, approéch ﬂow system to the headbox. In this present ihyeétigétiqn, the .models

considered are as under.
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Dynamics of tempe?aturé measurement system (thermo weli or ther.molc‘ouple):
The energy balance equation on the thermo well can be expressed as , ,
mCp dTr/dt=UA(T-Tn) o 558
The above equation can be rearranged as |

[(mCp /UAYIT/dt]+ T =T
- Converting to deviation_variables and taking the laplace transform, one can Wfite

(Cs+1) Tw(§)=T(s) or Tm(s)T(s)= 1/( s+1) : , [5.59]
Where m=mass, -Cp=specific heat, Tn= measured temperature, T=surroﬁnding
temperature, U= heat‘trans'fer coefficient, A= heat transfer area
The dynamics 'of thermocouple-thennowell. combined system when the resistance of
thermowell is not neglected one can derive .a éecbnd order system with tw§ first order |

inferacting system joined in series.

In general temperature measurement system- can be modeled as under:



One :cépaéity process 7

G(s)=f’(s)rri'(s) = Kp/( s+1) ' | " : ,[5-601
For two capacity processes | _ |

& dZT/dt2+2§ {dT/dt+ T=T; . | | : - [5.613]
.G(s)=Kp/[ & sz+2§ s+1]. ' : SR - [5.61b]
Two capacity processes joined in series (non-interacting type) |
Grls)=Kol(1+ L1 1+ &9) . o I Y7
' Dyhamics of temperature control process:.

Fig;5.“l1 isl a typical temperature cdntrol system (shbwn.as a purpose of fnode‘l building.)
fbr-ﬁeati.ng a stock storage tank wherééteam is used as manipulated variable.

An _unsteady state energy balance eqt.xatii’on can be writtern as |
pCe VgT/dt=qrwCp (T-Te)4Co (T-To | | N ; 563

A-t"steédy state condition dT/dt=0; then eqn.[5.63]becdmes .

t
'

q5+ WCP (Tis"To)"W_CP (Ts‘To):Q ) ‘ ‘ . [5 64]

subtracting eqh.[5.63] from veqn.[5A.64] one can Wrifie; |

G-Qs =pr'_[(Ti-Tis)-(T-Ts)]= 0Cp VA(T-To)/dt . . - | [5.65]
if déviati_on variables Q= q-qs ; Ty =Ti-Tis ; T'= T‘-Ts | |

Eqn.[5.65] can be written as | | | _
Q=wCp (T-,"-T’)= pCp VAT /dt - | | '; | | ‘[5.66]_ §
Taking laplace transform of eqn.[5.66] | |

Q('s)= WCp [Ti(6)-T (9)1= 9C» VST () or T(S)[( pc;; w)s+1IQE)WCHT(S).

- OrT(s)= [(1WCR)Q(S)I(s+1) +,T{(s>/(' ist1)

If there is a chénge in Q(t) only,v then T; (t)=0, the transfér function relating T' to Q
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T'(S)/Q(s) = (1WCp)/( gs+1) e
If there is a change in T;(t) .only, then Q'()=0, the transfer function relating T' to T |
T(S)Ti(s) = 1/( Ls+1) | | [5.68]
" There are many dv’yna’mic models available in .rliterature for temperature control sylstem
which belongs to éither first order or second order, or first order with dead time or twd first -
orders joined in series. However in real situation,‘dynémics of temperature measurement
is found to be én over démped system. The dynamic‘pa‘rameteré used by vaﬁpus proce'.ssv
- éontrol engineers are summérized in table 5.5, Appendix-1. | |

In thé present investigation the time constant has been taken on the order of 0.2 and thé ._
value of Kp has been varied between 1.’to‘ 1-00 during MATLAB simulation. The best value-
of K, was found. on the order of 60. This indicates that small changes in A input give very
' .high A output. In other word the syétem appear_é very senéitive as Efdisplays very high' Kp
valué for small éhange ininput. - | |
The equation is represénting temperature control procéss_ as under

Go(s)=[60/(0.25+1)] | o ., [5.69]‘"

' ‘Digital form of process transfer function:

Transfo‘rming the equ.[5.69] for digital form(z-domain), one can get the following equation.
| Go(2) ;302/(z-e'5t)_ | | |

The procedure of éohversion of analog fo digital form in MATLAB software is already

detailed in secfiqn 54.1. Eq’n.[5.69]can be written in disérete fdrm(z-domain) using _z.ero

hold order as Qnder:. | |

G;,(z) =[_(2.926)/(z-0.951.'_2)] o - . | [6.70] |

| As already indicated, the model for stock témperature control is simulated with the help of |

| Simulink tool ih MATLAB software and results are shown in Chapter-6.

128



| 60 |
| L den® Outt
Saturation . TransferFen

Constant ' PID Controller

Fig.-5.12 Closed control loop (Simulink model)

._5.6.2 Development of ANN controller for the case of stoek te.m_peir‘ature cenirol in

approach flow system:
The artificial neural network cbntrollers have been deveioped, using three muit’iiayerl
perceptron methodologles such 'as MLP, DLFANN(direct linear feed through ANN)
MELANN(modrﬂed functional link ANN) A smgle hidden layer' MLP le employed to
develop the dlrect inverse controller Wthh is ueed for implementation of neuro-con‘trei
The DLF ANN used in this mvestlgatlon to mode! the process makes use of addmonal
weights, Wthh directly connects the mput Iayer to the output Iayer Reet of the
architecture is akm to that of MLP. The DLFANN is able to model the hneamy in stock
temperature control system. But M-FLANN adds on!y self and lateral feedback
connections tothe output layer.- | |
In the preeent study,l two neurons account for two inputs, stock flow rate F, stock inlet
temperature T; .One neuron in the .'output-layer'is used to determine conirol signel The

network is 2:10:1. The training of MLP as dlrect inverse of a headbox stock temperature is

shown in flg 5. 13
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Fig-5.13 Training of MLP as direct inverse of a head box system -

CASE: 57 Modeling of basis weight of the paper.(Analog sys{em):
- For high quality rolls and reels of paper, basis'wéight as well as its moisturé content is
neceséary to control. Basis weight of paper depends on the headbox slice ovpeni'ng as the -
édjustment of slice has a decided effect on the fiow of stock through éev"eral of the
- adjoining sections of thevslice. This must be taken into account in any confroller (analog
or digital) that is to be succéssful in leveling basis weight. Analog system is characterizéd
by the fact that this is continuous. Both erfor detection‘an_d control actions are éarried out
continuously:. The control abtion requited of an analog controller is develdped by applying
the error detected to an accurate electronic or pneumatic analog of the .control .action
wanted. This is inexpensive for small control jébs and usually quite sim.plle‘but it is very
difﬁcuft tb im.plement' complex control algorithm‘s.' It 'is also Virtually impdssible to adest |
the amount of proportio‘nal, integral or derivative action derivéBle from_ “anA ana‘log‘ .
céntroller on a continuous basis. One of the most common cbntrollers avai!ébie ‘
commercially is the proportional integral controller. Incidentally many rhills are 'curréhtly

using a Pl contraller for the basis weight controf (144).



'5.7.1 Model for basis weight:

------ Stock. flow controller < Basis weight 4— Sp
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Fig. 5.14a Basis weight control loop

Fig.5.14a shows a simplified loop for basis weight control. The relatiOn in betwe‘en stock

flow to the paper machine and the basis weight of the paper have been approxrmated by

- the following transfer function models by Ogunnalke and Ray (120) for the SISO system

Y(s)= [0.55¢/(7.55+1)]u(s)
'Y(s)=[0.40""°%/(8.0s+1)]u(s)
where u= Stock flow Yrate and Y=Basis weight of paper
Digital form'of the response'
Transformrng eqns.[5.71a & 5.72a] in dlscrete form(z-domam)

‘Transfer functlon
0.1287 z + 0.02717

ZM2-0.7165z
Sampling time: 2.5

Transfer function:
- 0.02423 z + 0.04415

2/2-0.829 2

Sampling time: 1.5

-The Simulink model for basis weig'nt control is shown in fig.5.14b. - -
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Fig.-5.14b Closed control loop

5 7.2 Development of ANN controller for the case of basis weight control
The reference basis welght and actual basrs weight are used as input for ANN and these
_ lnputs are represented by one vector, The input of process uses an output for ANN'

controller which is the approprlate signal for the paper basrs weight at desrred level The
| tralnlng pattern requrred for training the ANN is obtained from Pl controller. The ANN is
vtral_ned using the back propagation algorithm. -During tralnmg, weights and biases of
“neural network are -_'adjusted to minimize the network performance- the .negative‘of
,gradient and the trainlng is stopped when deslred'goal is reached.
The ANN controller is designed with 1neuron in the first layer, 5 neurons, in h‘idden Iayer .
" and 1 neuron in output layer. In this network log-sigmoid activation functions are usedr _

The number of layers and number of neurons in different layers are decided by trial and

error procedure.

CASE:5.8 Modellng of basis weight of the paper( Dlgntal system)

Inthe above case; analog controller has been used for controlhng the basrs weight. With
the advent of microprocessor based computer control, it would be advantageous to
employ digital control technique for controlling basis weight. The we[l k'nown two mode

analog Pl is replaced by software based control algorithm which resides in the computer.
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_The merit of digital controller is iiot_ only in its efficiency to:conv.trql but the simplicity with
which it can beiuned i.e. by proper adjuétment of controller pa‘ra'hvieter for obtaiiiing'tiie_
best résuit. | |

. 5._8.1 Mbdei development for i)asis weighAt:’

The diynamics of basis weight in digital form ha§ already been reported (127,128) thoug|
d.etailed‘d»erivation was not available and probably is not in iine.ATiie apprqaches Were
alsd quite difierent. Some used the basis-of first principles whereas the other' employed»
order redui;iion process. As ai_re_suit aiiaiysis' of the available closed loop in direct digital
~control system became difiicui_t;

Model deveiopi’nent fro:in first principi‘es:

- To re-examinleA the dynamics, the controi scheme used by Shankarnarayan(’1_27) shown
in the diagram(fig.-5.15) is again s'ubjected‘to. analysis. To compare thé roie of position of
hold éiemeht aiiother .control scheme (fig.5.16a) has aisO beén proposed. The
devel_opm'ent of both the loops and the transfer furzi:ticin of the process in terms of z-

transform equation are shown below:

G(z2)

RS) - E® | < — —
S Digital . Zeroorderhold | - | Process
—Wm Controller [ o™ o >
| T EE — f —
' T ' . Gds) Gi(s) O}

_ : _ : C(s)
- Fig. 5.15 Digital closed control loop

If the output is specified, the transfer function of a digitél controller is detérmin_ed to give
desired outpUt for the process. The oufput can be expressed as

- C(2)=G(2)G:(2)R@)/1+G(2)Ge(2)] or Ge(2)=] C(2)/G(2)[R(2)-C(2)]
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Or Golz)= 1GEICERR@M- CRIR@Y o | 573

The following digital control scheme is proposed by Sankranaranan (128).

) 'GQ{Z}, G(Z} ‘ N
R{s) e < > <) : .
Controller .| Zero order hold Process
] . .'q P >
T X{t) :
Gi(s) Gafs)

Fig. 5.16a Digital clesed control loop

The -tr'ansfer function pf a zero hold device is an important élement in désigning a dig?talr |
control loop, which is desbribed as under.' | | B
The device retains the valug of x(t) at each sampling instant, Xoa(t) invé series of steps. |
Xho;d(t)=$((0)[u(t)-u(t-T)]+x(T)[u(t—T)-u(t—2T)]+x(2T)[u(t-2T)-u(t-3T)]+ ...... o ‘I'[5.73b]
where u(t) is unit step function starting at t=0, u(t-T) is unit step function starting at t=T.
Taking laplace tfansform of egn.[5.73b], one ban write

xgo.d(s)=x(o>{(.1 s (T €™ e TV sl+x(2T)] (627 )]+

o = (1_Q-TS)/S[X(’O)+x(T)e‘T5+x(2T)efT5+......;.] or (1- ™)X (5)]

The laplace transform of a zero hold device in s-domain can be written as

Gi(s)= (1- €™ls | ‘ - R [5.73¢1
Process transfer function can be assumed as first order

Go(s)=Ko/t:s+1) o T 573
Or G(s)=GGafs)

G(9)= [(1- e ™)s][ Kelltes+1)]

Or =(1-e ™) Kifs(tes+1)]



S =(12)K Z-transform of[(1/s)-(tef ts+1)]
Or G(Z)=(1-z'1)K¢[z/(z-1)_Z/(Z_e-vtc)] |

Or  =K(z-N)[(z-e") 1)) (z-e")(z-1) or Kc[(z-e"’t°)- (z-i)]/ (z-e™) -

=Kc[z"(1-e"f‘°>]/(1-e'”t°z'?) or =(KPZY(1-(1-P)Z) ; Where P= (1-e1) '[5.7.3e]
Because of N+1 sampling pe»riod,' éqn.[5.73e] ‘become,s |
G@)=[K. PZ™"/ 1-(1-P)Z"] » 'A R [5.73f]
T.,‘the' sampling time, K., the process Qain, te, tin‘qe‘constaht,zﬂdeléy -d.ue to.oh'e'
sampling time, Z"*!= delay due to (N+1) sampling periods
If the required response Gq(2) is expoﬁential having:'a cioséd Ioop time constant t,, then
CuloRl(eTtsst)] o |
Or Go(2) =QZ‘<N+1)/_1-(-1-Q)Z'1 o i | - [574)
~ Where Q= (1-6™) | |
The desired closed loop resp,onsévivsv ,G°' (2 (ogtput/input) can be writteﬁ as
Gc.qz)={e(z)éc(z))1+e(z)ec(z)] or Gcl(z)%re(z)ec(z>éc_,(z)=<3(z)ec(z) |

. Or GIG@I-Gu@= Guld)  or Gol2)= [Gu@/-Gu@] 1GE)  [5.75]
Putting_ the value of Gy(z) in eqn.[5.75] ,'oineAcan get | | |
=GR (10 - - [5.764]
Ge(2)= [0z 1-(1-Q)zY [t-(1-Q)z"-Qz ™Y 1-(1-Q)z ] 4[1-(1Q-é)_é;1]/ Kpz ]

Or Gufz) = QU-(1-PJz] / KPH-(1-Q) -0z ] © [5.760]

Converting the.abéve positiohal éqn.[5.76b] into an incremental one
.AG;(z) = change in cdntroller output/ controller input , A

| AG(z) =Q[1.-'(1-'VP)zf1] (142")/‘KP[_1-(1-Q)z";Qz"N*”] [5.77]

The. eqnv.[5.7.7] enables writing an appropriate algorithm for providing digital control.
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Modeling by Order reduction procéss:

If each section of the paper making process is considered separately then the process is
quite complex. But -und‘er certain} ideal o'onditions, it cah be considered a single
| input/singlé output system'with thve gate opening of the mixing tank as in‘put and basis
weight of paper (weiéht of unit area of paper i.e., of 1 m?) in gram per square meter (gsm)

as outbut. The input/output data collected by Tee et al(155) have been used for the
purpose of bbtaining model of the system. Experiments were conducted}bn” a Fourdrinier |
machine manufacturing 50 g/im?® wood free book paper where input variable was the scale
reading on the stock gate opening located in the mixing box_ and the outpﬁf was recorded
in termé of gsm of paper measured by weighing threé Sam'pies taken out every 1 minutes.
The equation [5.77] can be written in form bé_low (eqn.5.78) which has been the staﬁing
mbdel reportéd- by Mukherjee(89) in his s;ttempt for order reduction proqeés .The same

has been re’prbduced for further deVelopmént of neural model and analysis with

- experimental dat»a and MATLAB simulation as under:

fGz= a*taz' + + anz™ |
. ' X(z) = g : - [6.78]
U) bz +e +bnz” o
Eqn.[5.78] can be p'ut in the form of difference equation as.
m n ' , ' _
Xk=rZa} Uk -‘Zbi Xkl - ) . [579]
‘ - =0 i=1 o o
Where : o :
ui=12..... N)
Xi(i= 12 ...... N)



Ui, % are input and output of the system recorded N-times each after constant intérva_l‘o’f
time known as sampling time. In order to determine the parameters a,, a...... ...am and

b1,b2..by, following eqn. can be formed out of [5.79)

‘- _ NN Yy
Uy Uk—4---uk-m> “Xg-g “Xg2e v veeni=Xgen 2o Xk
Ugeq Uk collemet Xk Kkt K ar I Xk

| am | = [5.80]
. . . b1 R
Ugsp1 Ukep-2 colkspmed Kiep2 'Xk+p-3---<-----"xk+p-r_|- .bz ’

L U e
Where k =n+ 1, p= mén+ 1 | |
Here the data is assumed to be nplse free. After havmg obtarned the parameters o,
‘@y,......, @y, and bl, D2 veeenn, bn for a partlcuiar vatue of m, n, it has to be ascertalned
whether the orders selected i.e., values of m and n are proper For this, the method of
Graupe et al (51) is used. As per thls method, if a system is modeled as )

41 Z 422 e, + 8z

Gz — — o [5.81]
- 1+ er1 +.b222 + ‘ . :

G{z) =
1+ crz FCZ2F oot ’
By cross multrpllcatron and equatrng the coeﬁrcrents of powers of z yrelds then the

coefficient are
bi=a; +¢
by=az+asc+cy,

......................................

bn - an + an-1 C1+ .............. Cn
0_ =8, Citant Ciutevvnrennn, Cn+i for i=1,2
where a; = 0 for j = m+1, m+2,..... . Then the following relationship is obtained as -
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( A N

Cn Cr1 Chm+ a1 Che1 _
Cr1 Cn Chms2 ‘a2 |5 Che | [5.82]
Chem-1 : Cn L 4 ) Com )

The scjuare matrix involving ¢ in [5.82] gives an idea of the minimal order of m and n.
Denoting the matrix-as “A o, its determinant is calculeted, nand mare min}imal if

"A aml=0forn>n, m>m | | [5.83]
Assuggestect by Graupe et al , the condition egn. [5.83] can be replaced by a test

|"A iml* <o forsome n>n, m>m and some small > 0.

The system modeled is stable and hence after identifying the parameters for a mlmmal n
and m, its stablllty is also to be tested by finding out the poles and ensurmg them to be
Wxthm the - unit circle. Ultimately makmg a reasonable compromise, a system is
syntheSIzed WhtCh is both stable and satlsfies the order test as.given in eqn. [5 83]. In this
case, with the input / output data available of a paper machine, the constants a,, a1, anm
and by, bz,..._ ..... by, are computed for different values of m and n hke(m 2, n=2), ( =2,
n=3)........ (m=2,n—7)_, (m=3, n=3) ..v....(m-3, n=7) ... ( =4, n=4) .. and s0 on and each
time the value of the determinant A ol is caleul'atendtas shown in above eqn.[5.82]. It is
' tound to give satisfactory result at m=2; n=7 i.e., determinant [ A h,ml is :zer.o for these
values of m and, at the.same time do not increase .enormously fo'r'subsequent higher
values of m and n. Hence t.he order of the identified model is seven. The final results are
given as under. If G(z) is the z-transfer function of the system considere_d,-on'e can write,

“ag+ag -’ +z':1§z‘2

G(z) = N | [5.84]
'1+'b12‘1 +b22'2 + b3Z'3 + b42-4 + sz—5 + bf;Z-6 '*'byZ'7
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Subsututmg the values of all constants in eqn [5 84], one can obtain the overall transfer

Tuncuon of the system as under

G(z) = -2.1606+2.4865z-0: 02992 -
1-0.25702-0.1309z" nO 16292 -0.0739z-0.03752-0. 05992 -0. 08482

G(z)= [-2.1612 +2.48652 -0.02997°]

. A [5.85a]
[2'- 0.2572°-0.13092>-0.16292"-0.07392°-0.03757°-0.05992-0.0848]

T‘rans—fe'r function'

2161 7 - 40.19 86 - 2217 $15 - 2 5246004 54 - 47076005 513 - 18866006 $h2
. - 6.4726006 s + 2.7782007

[5.85b]

"7 +24. 67' S16 +1454 15 + 2.1046004 M + 4.7356005 13 + - 3.212006 s12
_ +2. 9546007 S+ 4 87e007

_This system is controlled using the d|gltal control algorithm as shown in leq‘n.[;‘é.'?é], which

includes the ZOH element With,.th'e time deiay. dyhamics-.ﬂThére-v ére _s’e\)efal different
digital controller design techniques thaf fit into general direct synthesi‘s--sohemes such aé |
deadbeat oon’troller,_ Dehlin’s 'cbntrolle};-and Vogél~Edgar co‘htroller‘. In fhis‘ p‘res'éht
in'vest'ig'étic")n ‘only‘ Dehlin’s contro!lér has be'en uéed. If t=t=to=1, K$1/‘to, so that eqn.[5.76]
beéomeé | o |

Gac<2)=1/e(z) [0.6322'1/(1'-'2")] | S {5.850] 

| Gdc()['l 0.2577'-0.13087%0.16297™ 007397. -0.03757° 0.05997°-0.08487710.6327”"
| | [-2.1606+2.4867" 002907 ][1 3

Gdc() 0.632177-0.2577°-0.13002°-0,16297°-0.07307° 0.03757" 0.05992-0.0848]
[-2.16125+2.48652-0.02992°][1-2 ]

Or Guo(z)= 0.6322"-0.1622>-0.8277°-0.10297*-0.04677°-0.02372-0.03782:0.0346] .
-2.1612%+4.6472"-2.5162°+0.02992° - -, [5:85d]

The simulink model for digital time controller is shown in fig. 5.16b. The simulation results

have been depicted in Chapter 6.
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5.8.2 Development of AN,N controller for the case of basis welght control:
The first step is that the pr'ocess data are re-examined for their suitability for model
development More specifically, it is rmportant that the data used to develop the process.
models are sutﬂcrently exciting to extract accurate lnput and output relatlonshlps Once
these data are sur*ably excrtrng for |dentrf|catron purposes it is important to consrder the
| effects of feedback controllers when collectrng data lt the model is to be used for control
purposes then using the data collected under closed Ioop operatron may |ntroduce | |
o problem If however the model is to be used for monrtonng purposes then. the process :
data should be collected with the system in its standard confrgurat ion. As per -
' conventlonal linear modeling, the performance of the- developed neural network is very
much dependent upon the amount of the process data collected and used durrng training.
Once the data is collected‘ these can be divided into three setS' one set for the trainlng
which compnse of half the avallable data and the remalnrng data is spllt evenly between _

testing and valldatrng data sets. The artificial neural network models for basis werght of

" paper are shown in fig.-5.17.
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Fig.5.17 Artificiafl neural network models

The network is consrstlng one neuron in lnput layer (gate openrng as input); five neurons

in hidden layer and one output layer.

[B] DEVELOPMENTVOF MODELS OF MIMO SYSTEM OF PAPER INDUSTRY |
For analysrs and control of MIMO system the following cases related to approach flow

system and headbox are developed and analyzed

CASE:_ 5.9 Modeling of total head an_d '_stock level of rectifier roll headbox:

The total head and stock level are two var.iableswhich interact wlth each' cther The
rnteractron between the total head and stock level can be compensated usmg MIMC
controller. The comparators compare feedback signal wrth reference pornt and create
| error signals which affect the control input of the air valve and fan pump as shown in-fig.
- 5.1%a. Changes in total head are taken into account in the control input of the stock leve
Lsmg a cross controller Cy, before the error S|gnal exists. The normal feedback control of

the stock level corrects possible errors which are not compensated with 021
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process dynamics. T_he steady-state process rransfer,function(s=0) is calred the process
gain matrix, K. |

y1=K11U1+KrzU2 b Y2=Korli+Koaus |

Ky denotes the steady state gain between yi and'u;

For stable processes the steady gain model related to the dynamrc model is expressed
- as K—G(O) lrm&__g,oG() |

Kir= (3y1/0l.l1)u4, Kig= (ayd@uz)ur Kzi= (6y2/6u1)u2 » Kop=(ay2/ous)ut

| Parrmg of controﬁied and mampula‘ted variables:

In a multl loop control scheme, the controlled variables and the manipulated variables
have been paired for stable operation. An mcorrect pairing. can result in poor control.
' system performance and reduced s’rabrlr*‘y margm The relative gain array(RGA) is a |

systematic approach for determining the best pairing.of controlled and manipu}ated '

varrables
After estlmatmg the. steady -state gains, one can get relatsve gam arrays
)\11 ~1/[1-(K12Kg1/K11K22)] =A22 ,v-)\rz— Aor=(1- )\11)
_ Thps the relative gain array ’can be expressed as -
N S
1-A . A
- There are mainﬂy five cases aris'hg as under:
(i) A=1. In this situation, openmg or closmg loop2 has no effect on loop 1. It means that y; _‘
| should be parred with uy. |
\u) A=O. In this case, the _open loop gain betrrrreen V1 anpl Uy is zero, and thus uys has no

direct effect on yr. Consequently, u{should be paired with y, ra’rher than vy,



(i:fi) O<)\_<1. The open loo-p gain between input,us and output,y; is émaller thén fhe- clo;c,_ed
loop gain. Within this range, the interaction between the two !oobs ié largest when _)\=0.'5.
-(iv) A>1. For this situation, closing the second loop reduces the gain betwelen.y1 and uy,
' Thus, the control loops interact. When Ais very large, it is irﬁb‘dss‘ible fo,cbntfol both

 outputs independently. |
(v) A<0. In this Case, the opén lbop'and closed Ioop» gains betweeh ysand ‘u'1 héve.diffefen1
signs.' It follows that y4 should not be'paired with us. fheclosed loop system may become
ﬁnstable. | | | | |
Fo.r.steady ‘s'tate gain métrix, s=0 (120), the above eqns. will not Wp‘rk since.tlﬁeir‘(2,1) 8
(2,2) e'lemé.nts contain the intégrator ferm(represented by 1/s—l). The eqns.[5.86, 5..87j
-e_xpreséed in matrix form are as Llnder: | |
Kyr=0.528, Kiz= 0.0630, K= 0.0001, Kez=0.0007
K=lim G(s)sg=lim;.. [0.528 © 0.0830
, , 0.00011 - -0.0007I j

= (KK )l (Kin'Keo)=0.017045 .
| From a matrix, the values of arraysj‘are foundAout as follows:
i = A2 =111- =098, |
Mo = oy = (/1= 7,002,
.After solving the relations, the rela'tive'gain array A can be( expressed in _métrix form a
follows | |

M=098 A= 002

A2=0.02 A= 0.98: }
Pairing recommendation:
In ihe_ present investigation, In headbox control syStem as ‘s'hown m fig.-5.20, th

iﬁfe’raétion exists between the total head and the stock level. Changing the stock leve
| 145 o |



W|th the pressure of the air cushron also affects the totalhead by the same amount. On
the other hand total head control using the fan pump also affects the stock Ievel
Therefore ys and y to be paired with u; and uj respectlvely

Decoupling control:
| The above MIMO control problem for total head and stock level can also be solved by -
parlial'or_full decoupling of loops. In this investigation perfect decoupling_ has been.made
. as the acCurate_ process transfer fu'nCtions are available. Thé transfer -funbtions can be

Aused to determine the effect of a change in either uq or u?_ on Y4 and Y, as under

(fig.5.19a). | | | |
Yoz Guu(sy Gl Bl
Y= Gar(S)ur(s)Goza(s)uals) a R |

" - The decoupllng control 'system for MIMO process is shown in fig. 5. 19b By addlng .

addrtlonal controllers called decouplers to a conventional multrloop conflguratron the

desrgn objective of reducmg }control loop interactions can be reallzed.‘The‘decoupler

expressions have been described as under. N

) i . ’ oVt - .
Yept '®—’ Ciu — —— l %l > u

E

y
o
N .
~——
O

N
_‘::
I
¥
]
N
N

ﬂ@-——} CZZ . @—b Us |
. ’ o Vo . v
- Fig. 5.19b A decoupling control system
Ug=vyt (Crzfczz)Y2 ' ' v‘ o [b4]

U2‘=V2*v‘ (Cas/Ciq)v4 , , | | , o [o2]
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Substituting eqns.[bs,b;] into eqns.[é1_,a2], one can get

Y (§)= (G11+G12 CoifCyy)vy + (G11C12/C.22‘+G12)v2

Ya(s)= (GzﬁGzz CalCrovy + (G2}1C.1z/sz4szz)Vz

When v, affect Y1 & eliminate the effect of v, on Y+, then |
G11C1/C+Gy, =0 or C1}2/022= ;G12/G11 A B - o [ci]
When v, affeét_ Y, & gliminate the effect of v4 on Yy, then |

Gp#G2 CoCyi=0 o Car/Crr=-Gas/G | - I
The eXpre‘séions_ ¢y and ¢; are for "ideal decoupler.AOne can‘inte_rpf‘et a decoupler as a
type of feed forward controller with an input signal thaf is> manipulated \)ariéble rather .thah
a disturba_n_ée vafiable. The corresponding two SISO syste‘ms-c‘:an be obtaihed_‘by
dec’bup__ling t'he'lolops as shown.in ﬁg.5..20. The overall transfer functions can be written as
‘under. |

Y1=( G11.-(G12-’G21/G22)V1: Y2= G22-(G12G 21/G11)v2

Ref

G11‘(G12 G21/Gy2) B Yy

v

Y2

v

| .Gzz'(G1_2G 21/G11)

Fig.-5.20 Two SISO systems for total head and.stdcik-‘level -

As the present decoupling appe'a'rsv to be good the independent tuning of each dechpl‘ec
loops can be easily carried out without detrimental to the stability of the whole system. A

the proceés is approximated as Iihear, there is no need of using adaptive decouple
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Again these'mode‘ls_ have béen simulated with the help of Simulink tool (MATLAB
software). The .simulated data have also been used for 4designing PID and ANN
controllers. Thé obmparison between PID and ANN oontro‘llers are also in_terpreted.
| Assuming allvcbnstahts, dynamic equations of'pres‘s‘urized headbox have been modelsd
and simulaté with the help of Simulink tool. The. sifnulated results have been used _for |
artificial neural hetwork m.odeimg, In this preseht investigation, the cA{}ynami'c‘ re.spénsés of
both mathematical and ANN modsls are compared. | |
{2} Headbcx filled with stock:
Using th-e ﬁg.i5.-2"1, the following mass balance equations are dévéloped. _
For equiljbrium _conaition, the equation can bé written aé '
dmfb/d£=mg‘n;hﬁout-fno, o | - - [5.92‘1
| Eqn.v[5;.921 may be répresehted by the following rélationship | v _
'dAm@/dt;Amin-émout-Ambx A N | . [v5.93'];
| w_heré AMip=Me-Mom © AN MigMine AMou= MoyrMogte ; AMo= MorMoie |
' mm=.V1ps or ~ Aghips |
Rise in Amg, amounts to Ag Ahsps or Anﬁﬂf Aghte UtPs OF AMEMee Uy
- Amount of inlet s_‘toc._k mi, depends on bpenihg of inlet valve C@the termm, can be written

as e me(Cy, Py, P | |
Ami= (amgn,/acnmAc_1+(amm/aH>,f,mpu(earn-m/a_;rg)OQAP12 | 594
Assume that the chafacteristic of inlet valve of stock is linear, then |

. ('amih/aoj) «=Mime/C1max  OF (amm/ac{) ;AC1=‘(mmmax/C1max) ACy |

4 (3m;n/8C1)~.AC1.= MinmaxM1 ‘ | | | - [5,95]
Fbw of_ stock through the regulating valve Csas ‘undér |

| Min= Ac-Cc1‘/29s(P11'P12)
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(amin/aH).aAP11=_;1/2 Mine Dsg(N1e/ Pﬁ-%) Us. . -  [5.96]
(OMnl6P) « AP =112 e (Pl Py1-P) P’ e
- Flow of stock from slice lip |
Mou= Maut(Ca, P) |
AMou=(@manddC) - ACH (MoslOny) - AN HomaldP) aP | [5.98]
:(amout/acz) «=Moutmax/C2max OF (6mou;/aCZ)..,ACZ=(mout‘ma,;/CZmax) AC, |
OmasddC)-ACMoumatts B
" Flow of stock through the slice |
Mou= Anp CazV2ps(M1g ps*P) _
(@mgut/Sh) Ah1=1/2 Moute P/ h1g ps+P ) Ug . : | . “ [5.100
(OMalP) « AP=1/2 Mot (P! g ps+P) P | - ‘-['5,'10'1]
FIow of stock through overflow } , | |
Mot Casb ps«lzg(h3)1 > or Amo,-s/z Casb pshg.,«lzgmm/ haw
M3/ U5 o - 102
Substltutmg above all eqns. in eqn [5.93], one can write
d(V4 ps u1)/dt—[ m.nmaxp1-1/2 m,n.., psg(hq.,/ P14-P12) u1-1/2 Mipe (Pl P14-P12) P'- moutmaxug
12 mout.,; pg(hi«/ hig pstP ) u1-1/2 Moute (P! h1g pstP) P -3/2m<,.‘=° ug] - [5.10
I C, is constant value therefore |J2—0 equ. [5 103] can be wntten as |
| ‘V1 psduddt—[ m.nmaxp1 -1/2 Mipe psg(h1.°/ P14-P1g) us- 1/2 Mige (P! P11 P12) P | |
- =12 Moyt pg(h1.°/. hig ‘p‘s+P ) U171/2 Moyt (P=/ h1g ps+P_) P’-3/2m°[w Us)
| Or (Vips IMinmax) *(dU1/dt)= [ps- [(ml'_n;/minmaX) -1/2' psg(h1a/ P11-P1‘2)] Ur- [(minw/minm;x) i
112t PPl P-{12 09(1/ G putP Y MMl
-[( moutw/mmmax Y112(Pa/ h1g pstP) 1P~ 3I2mo|w/m|nmax U3]

OI’ beldU1/dt—[ M1- (W1K1V1+W2 K2v1) Uq- (W1K1p+W2sz)P 3/2W31 U3] o [5;10
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- Considering that h1=h§+h3 or ‘Ah1=Ahg=1,so Us= (N1wlhze) Uy ora‘1v3 u1

Eqn. [5:104] cavn be reWritte'n as

Tradusfdt=] pi-(wsKy 4w Kour) ur-(wiks o+wKap)P'-3/2w31 2 U1]

- OF Trdusfdt+A U= 1-BP | - 7 (5.105]
Where A=}w1K1\,'1+sz2V1+3/2w31 Us ; B= wiKip+woKop, aqs- ugl U1

- {b) Material balance for overflow system:

_Equation for mat_erial balance for overflow can bé written as

dmgldt=marmee ) o Bog]

" or. mch=Achhchps=Vchps

Rise in Meh
dAMGy/dt=Amg-Amgp S , - | [5.107]
AMe= AgthenePs Uz | B [5.108]

Flow of stock can be writteh as
- Maz=AoCas ¥2p5(Nen "psg+P‘); |
Amol§¥1/2 mo;za psg(hghm/ heh g Ps*P ) Up+1/2 Mo (PJ ﬁchg p;+P) P’ | [5.109]
Substituting the values of _' AMoi1, AMoiz & AMen-into eqn.[5.107], one ca:n get o -
(V2 e U2)/Ot= 32Meie Us 112 Mope (Pl hesg o) P1/2 Mo 00(hene! hen g ps+P ) Uy |

. or Vsz(dUg/dt)A: 32mg a1.3u1 =172 Mypa (Fﬂ( hewg ps*P) P-1/2 M PG (Nl hchg ps+_P ).Uz
o (Vz ps/ Mops)ps (dualdt) = [3/2Man! @101 112 Moo (P bk pstP) P12 Moz P3Nt/
henG Ps+P ) Usll Mo oo Tooduddt=wg ui-KepPKnauy |

Or Taio dualdt + Kz U=ty u1-KopP' - o B0
~ (c) Material balan_cé for air cushion: o

Equa’;ion for material.balance for air éushion can be written in the form as Qnder

mair"'msup'm'rem or dmair_/dt=Amsup-'Amrem' ’ ' | : [5-111] ‘.
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Ama.ir=|'\'1air‘|'1"1.'airm ; AMgyp= |'nsup'r7.1sup-=° ) Am_rem= Mrem-Mrem=
mair=v‘_3 Pa

Va=Vo VeV

Amgi= Pa'«° AVS;"V%Apa

Puting the value of Vsin egn.[ 5.1 14], then

'Amair=pa=°(AV1‘AV>2)+V3m PaAP/P o1 Amair:‘PawAVrAVZ pa~+v3°°paP;

Loss of air through valve Cs s Cs
msup=A05K5‘12-pa(P51'P52')
Meer=AcsKsV2pa(Pe1-Pe2)

 AMuy=Meupmax, (ACs/Csman)-1/2 Msspe. (PeelPsi-Pe)P”
if valye C5 is linéar, the térm Amg,, can be written as
OF  AMaug=Mepmae Hs-1/2 Meups, (PszelPsi-Ps2)P
A =M (ACe/Comad1/2 Mo, (Pete/Pst-Pea)P’
O A=y, Ho-1/2 Mieme, (Pete/Po-Pez)P’

| Csis constant, so He=0; |

AMgen™ -1/2 Mreme. (Po1</Pe1- -Pe2)P’

Puttlng the values of AMg, Amsup , AMeen into eqn [5 111], one can get

© [5.112]

5.113]

5.114)

[5.115]

'[5.1_1'6]

5117

[5.118]

(5.119]

.d/dt(PawAVs'*'szApa) Msypmax, M5 [(1/2 Msype, P52/ (P51-Ps2)- A2 Meeqe, (Pe1=o/Pe1 Psz)]P

or d_/dt('AVIpaw’AVZ Pa=t V3 paP) Msupmax. M5 -(1/2 msupﬂ° (Ps2w/Ps1- P52) 1/2 mrem

(Ps1+/Ps1-Pe2)P’ or

: (V3pa/méupmax)(dP’/dt)'*'P,[m/2msupw(P§2w/P51‘P52)+1/2 Mreme. (P61=°/P61'P62)] =U5+Vipadu1/dt

VPt of TP Idt=wa(ketke)P'= st Tur drflts Tog dugldt

Whére |

[5.12(

Tar= (Vspa/.msupméx)§ W= Meyped Meupmax; Ke= 1/2(Ps2e/P51-Ps2), ks= 1/2(Ps1=/Pe1-Pe2); :
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or in discrete form( z-domain)

. 1.382e-005 22 + 7.971e-005 z - 9.298e-005

, [5.131]
213 - 2.989 /2 + 2.977 z - 0.9886

when p‘#—'O;
Lheacz=[(- 00045°-.0009475%-.0010355-.0062)/(s*+ 5845>+.0345695%+.0001358s)]  [5.132]
or in discrete form ( z-domain)

-4,036e-006 z"3 +1.201e-005 22 - 1.192e-005 z + 3.941e-006

oo e [5.133] -
Z" - 3.994 7/3 + 5.983 212 - 3.983 z + 0.9942

Phead2=[(-.oo1s3+,.oo4'0868s2+.0034719s+.o122)/(s4+.5284534.0054293%.0092)] [5.134]
or in discrete form(z-doméin) can be expressed as - |

| of -0.001 z*3 + 0.003041 z*2 - 0.003081 z + 0.001041

- [6.135]
zA3 -2.995 "2 + 2.989 z - 0.9947

- The Simulink models for air preSsure and level of stock have been developed using

Simulink tool in MATLAB software. These are shown in figs. 5.22-5.25.
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Fig. 5.22 Closed loop system for Lyeat, When pis=0



T——{=
den(s)

" TransferFen

© ToWodspace

num(s)

den(s)
PID Controller yiznsfer Fen1 -

- Clock To Wodspacet

Fig.-5.23 Closed loop system for P,,;m, when}u5=0

,,,,,,, : e
m e

- .
Teansfar Fon
¥
hytes e
¥ - T P Contolier  [BISterFend ’
t |
§!6¢k To\iodepacet -

Fig.-5.24 Closed loop system for Lyezas, When ;=0

. den(s)

_Transfer Fen

. ToWeksp aéé

num(s)

" den(s)
Transfer Fenl
o— |
Clok To Wotspaced

Fig.-5.25 Closed'l'oop system for Pheaq2, when p4=0.

157



.-

- 5.10.2 Development of ANN controiler for the case of air pressure and level control
of stock in air cushion headbox:
For the case of air pressure (Phead) and level of stock (Lhead)'; the ANN ,contrbllers have

' been designed with back-propagation algorithm. The MATLAB programs for the same are

- shown in Appendix-2.

CASE: 5.1 Modelrng of stock flow and stock tevel of the pressunzed headbox
5.11.1 Model for stock flow and stock Ievel
The pressunzed headbox is used to prOJeot a stream of pulp in a 99% aqueous solution

on to a wire. Dralnage occurs as the pulp is transported towards the presses, where |

- further water is removed from the remaining fibre by pressure, whltst forcmg the pulp into -

greater contact. Thereafter, drymg using steam heated cylinders, before calendaring and ‘

- reeling the sheet, forms the dry-end operation Fourdrinier machine is widely used for the

manufacture of paper

The head box arrangement will produce output mteractron in that changes in the stock
flow will produce stock level and output stock flow rate changes. The physical .
| configuration of the-paper makmg machrne, and.the sheet formmg system depicted by

Whalley (166) is shown in figure.5.26.
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Air vent - Air flow diaphragm valve time delay T2=4sec., exp(-sT2)

i 4+— Airflow, -

L

Stock
input
flow

Wire mesh ..

Sheet to
presses,dryers
- calendérs
Pressurized K 2 ’ '
Headbox

NI A
Fig. 5 26 Headbox arrangement

Model of thls type of pressurrzed headbox is denved by Rosenbrock et al(123).

Headbox model:

Pressunsed headbox model with general multivariable system models may be

: represented by an mput-output relatronshxp Herein, transformed pre-compensated
_ mode]s,are assumed to be Ilnear, finite dwnensronal,, in Laplace vanable s, and denoted
oy G , : . ‘

| System transfer for matrix | | |

G(S) = GoePETE) N . a3
Modele‘with“m” ifp & “m" ofp admit a retienél' factoriZation ,

Oe) = L) AGVAEIRE TES) B
Where L(s), A_(s.), R(s), T(s) & d(s) €RH., s20, N | |
The transformed input-output disturbance relationship- can be written as- _' |

V(8= GS)uE)NSE) I o B

fthe control law is u(©)=K(S)XEhEYE] | B AL
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CASE: 5.12 Modeling of retention process in the we.t end:
Rete'ntiorr is an important variable which deseribes the etficiency in the Wet end of paper
rnachines. It is defined in many ways such as first pass retention (FPR), first pass ash
retention, first pass fines retention, overall retention, first pass fiber retention, first pass
vsolids'retentibn etc. First pass retention is deﬁhed as the ratio of the amount of material
t.hat leaves the ‘headbex slice compared to the amount of material that is.s‘ontained in the
paper web leaying the couch roll (typically 20-90%) and mathematically expressed as
* FPR (%)=100¢(Cre -Cun)/Cie
The corresponding first pass ash retention, % can also ‘be__ written as
First pass ash reterition (FPAR)=100x(CHBAH_§—CWW Aws)/CrieAsp
F‘irst pass -fi,nes' re’tent_ion (FPFR)=100 x[(Cng Fg—Cuw FWW)]CHBFHQ
~ Where Cug, Cw\_,_v refer to the headbox and white‘waterconsistencies respectively and A
refers 'to the 'ash level in the respective equipment.
First paés total solids ~retefntion can also be defined as 100x total solids flqw‘ t‘n‘ pa'per/tetal .
solids flow from headex. Overall retentiorr can be defined in the same way as the ratio ef |
- the amount of material that} is sent to the’wet end of a paper machine compared’ to the F
or control of amourit that goes in to the reel at the dry end of the machrne( typically 90-
95%) |
Ina recently' deyeloped feedback closed Ieop retention control system total first pass
' retentron frrst pass ash retentron and total recycled white water consrstency are
evaluated to determrne which parameter would give the most raprd response to a
srgnrﬂcant process drsturbance The control scheme utilizes two consrstency Sensors
(headbox and white water tray) and a computatronal module. The sensors are capable of

determining both the total consrstency and ash consistency of the sampled streams
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Based on the analysis it_ has been cencluded that the‘totelv' "recycled -white wafer
consietency nﬁeas'urement provided the quickest response to a precess distqrbahee and
would therefore be the best cohtrei-vaﬁable. For control purposes, the follewing eqeafion
s sseful, Y(K)=Kret(1-Cunsl Cr) o o [5.143]
Kret is a machine dependent constant, y(k) reflects the percentage of ﬁber.and other
additives remamlng in the final produced paper at sample number, k and thus mdlcates
both the efficiency of the use of raw matenal and the run ability of paper machlnes New
'demands for better retention control have. arisen” from' increased production speed

lmproved use of various chemlcals enhanced formation, and envrronmental reqmrement
and so on. meg 1o the comphcated nature of the wet end of paper machmes retentlon
is affected by many variables. Typlcal examples are retent|on alds(polymers), stock pH
values, steck flo}v'v rate, eheer forcee, pulp qﬁality (CSF), heed' bo* elice- geometry, raw

‘materi'al'contaminants, drainage, machine speed and structure of white water system etc.

Structure of = —————
Water systems -

Disturbances

* Retention aids4——
additives

pH — Retentien

Retention A
_Process >

- Machine
~ speed

Contaminants
in raw material

rlvvvv

~ Position of - |~ Fig. 5.28 Retention process
Chemicals inputs Co

It is a multiple input and single output system, as sﬁown in the fig.5.28. M'orebver, owing
to’ constant variation of all of the input variables'during _paper ‘produetion and the
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involvement of fluid dynami'cs during thev formation phase on the wire sect_lcn, ,thesystern |
is dynamic, non linear and stochastic. An added complexity is that the rete‘ntion is ccupled
strongly with other chemlcal systems in the wet end, such as srzrng and wet strength
control systems. ThlS means that an accurate physical model of the retention process is
very difficult to obtain. As a result, model-based feed back control retention has remained |
a unsolved problem (94). |
5;12.'1 Model of retentien process:
" The paper machine retention process model is divided in to two zones. Th‘e parameters |
 (total fibrous materral retentlon long fiber retentlon flnes retention, water retentlon) for
both zones represent the fraction of each pulp component that is retalned on the web'
during paper formlng. The first pass retention consr_ders the effect of the fines content in
the pulp stream. from the headbox. This can be calculated as follows:
'~r=(yf+yF) vt | | - - - 1441
In eqn [‘l 144] y is the retention and subscnpts f and F represent the flnes and frbers |
respectlvely The model of retention process developed by Orccotoma et-al. (97) contarns
the flrst pass retention,y as output variable. There is one input variable, thick stock flow,
F1, and two disturbances, the consistenc'y‘,,.a.nd the fines content of the thlck-stockAStream,
. denoted by C1 and Y4, respectively. The rncdelin'g equation cf retention is as follows:
y(s)=['(GchGz1)/(1+ GcGyG11Gm)IBWep(s )+[Gd21-{(Gd'11GmG_c'GVG21)/(1+ GmGgGVG'11)}lC1(s)
1B {(GuraGnGGGar(1+ Gmecsvsn)}w s) S g
F()= Gos) (BWeyrBWY) |
~ Where Gc, Gn, Gy are the controller the measure delay and the thick-stock control valve
| respectrvely Gl and Gg; are the iith elements of the process and the drsturbance transfer
functions on eqn.[,5.146]. Itis notew_orthytc mentron that in a commercial paper machine, ‘
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the flow of a rétention aid polymer is used as input vari'able, fp{ -'cohtrol' 6f 'retention.

Therefore, the model represents the short recirculation ioop Vvvvhen no chemic'al.is used for

control of retentioﬁ. The scaled t'ransfer function of the papér forming section is as fb_llow.
1 .28(8'»"1..44)(8';0.28) +.26(s+1.44)(s-0.01 -0.63(s+1.44)(s+0.80

Y= Fy . ) Cqi+ : _ Y
(s+1.40)(s+0.44) (s+140)(s+044) | | (s+140)(s+0.44)

[5.146]-

Transforming the eqn.[5.146] ih discreté form(z-domain) as under

| 1.287-2.538z+1.258  (1267°-5163z+0.2563 . -.637°+1.24462:0.616
12)= g Pt ' Ci+ = - Y
Z°-1.9827+0.9818 7°-1982z+0.9818 Z°-1.082z+0.9818

15147
Retention control s’grategy: o

Retentibn éids haVe limited power' to control retention. The control range of retention aids
can be improved by also contrﬁlling the ‘h’ead box consisténcy (éspe_cially filler
cdhéiétency). The vpropoéed control éyétem manipﬁlates both headbox ash content énd‘
retention si"multaneously. Ash c’onteﬁt |s the ratio of the ash‘Aco‘nsistenc‘y “to the total
_consisténcy expréssed as a percéntag}é as already mention‘ed. This is s_hoWn_ i'n:flgg. 5.29,

in Which_the filler is controlled by a PID controller.

. Gd
d T
tpoint - S v _ Y
> y Ce 5 & » Gi | >
Gnm

 Fig. 5.29 Retention control svs“tem_ :
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The results are shown ln vChapter-E.S.
5.12.2 Development of ANN controlier for the case of retention control of stock in
wet end: | | |
The design procedUre of a multi-layer neural network controller is described in chapter 4,
The network is designed with 2:4:1 network. It indicates fwo neurons in rnput Iayer four
neurons in hrdden layer and one in output Iayer wrth purelrn actrvatron functions. The
trarnln‘g program is ‘shown in appendix 2. The supervrsed control methodology for
retention process has been used as shown in section 4.4, Chapter-ll. | | -
' 5.13 Conclusion:
- In this Chapter, modeling and control of various parameters 'pertinent to- appro'ach flow
system and head box operatron of a paper machine are described using both single mput-.
single output (SISO) system (also with one control variable and one manrpulated varrable)
and multiple |nput multiple output(MlMO)have been attempted The modellng begrns with
‘a brref survey of the status of the existing models selectrng the approprrate procedure for
-modelrng and then finally therr development Firstly the development of dynamlc
equatlons of varlous SISO parameters modeled from both steady state and unsteady
state material and/or energy balance equations along with rate equatrons (if applicable)
are attempted. This is then followed by developing a traditional PlD SISO system and
} srngle loop control architecture and then convertrng to neural network based control.
system The parameters to be measured and to be controlled in thrs section are; stock
consrstency, stock flow total head, stock level pH of stock, stock temperature and basis
| werght. For SISO system as an example, the .total head and stock level are controlled
rndependently which means that the calculated control output is based only on the error

- srgnal between the set pornt and the measured value of the variable. Interactlon between '
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variables is assumed negligible. But in many practical control problems,'. mullt_ip.le input
multipte outputs, MIMO control problems (also 'number of contro‘l variables a_nd a number .
of manipulated variables) do exist if the process interactions ar’e‘significant. In.these
cases,‘ even the best multi;loop control system may .not provide satisfactory'controt a‘nd
_ one h'a_s to consider multivariab!e control strategies such as decoupling control and model
predictive control. | |

In this present problem MIMO system in headbox considered -a_re: fotal head'and stock
level, air pressure and level, stock flow and stock level, and retehtion of fibre fi‘nes.»

As exp'erimental data on dynamics for most of the processes are _not_ayailable on
indUstriaI scale, either known dynamics were considered or. simula'tions run_ vyere taken.
| However, in this investigation experimentat data from industry on stook tlow,‘an'd, _basis
'werght for dlgrtal system are used for companson purposes | o

All dynamrc models of the process in both analog and dlgltal form (elther ‘known-.or-
derlved) are analysed through MATLAB snmulatron in order to get the unknown ‘
pavrameters.of process (gain or sensitivity) or controllers.

The'-open or closed control -loops for allthe parameters are simulated through MATLAB
-Simulink tool. | | | |

| As already indicated, if dynamic charaoteristics of a process Iparameter is not vknovr/n
that has been found out by iterative procedure usmg again Slmulrnk tool W|th|n a broad
'range of parameter avallable in Irterature The simulation is, however based on the
analysis. of closed loop control system rnoludmg,adjustment of selected controllers.
- Models are converted from analog to digital or vice versa and then a neUrall oontroller. for

the closed loop syStem is designed. .
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- Astep by step training procedure developed in this investigation 'is used to train thé
* atificial neural network (ANN) for all the cases of SISO and MIMO system using MATLAB
software. The performance of classical controller (PI/PID), (both analog and digital) and

ANN controlier are compared in terms of simulated results.
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~ CHAPTER-6
* ANALYSIS OF DATA AND DISCUSSIONS

An attempt is made in the sectibn to compute data from vérious models for ‘bot.h SiSO
and MIMO systems using the cia’ssical controller and neural network based -c.ontro‘l with
the help of MATLAB Simulink toblbox. The procedures laid Adown in Chapter-4, the

various- equationé presented therein, the algbrithm developed for the ANN and for _PiD,
| and. fir.xa.lly the modelé developed for the varioué wet end parameters given in -Chapter—S
~are used. From the plethora of data ffofﬁ'MATLAB simulation dynamic characteristics of
probeés coni_rol parameters for'both MIMO énd S_ISO system havé_ been dre'_lwh m {errﬁs of
| respoﬁse as a f_antion of time. The details of dynaﬁics ofv ﬁrocess_pérémefers 'are given
in Chapter-5. These are interpreted as follbws: “ | N |

[A] ANALYSIS OF SISO S.YST'EMV'OF PAPER INDUSTRY:

The SISQ cOntroI'system consists of co'nsisltehcy,. stock flow, total Head, stock level, stock"
' pH stock temperature, and basis wéight. 'fhese ére explained as under;

Case-6.1: Consistency cdntrplﬁ

For bonsistency control, the‘eff.ec'ts of funing barameterl types of signals (con‘tih,uoﬁs and
'_discrejte), and types of controllers (Pl and PID) for SISO and MI}M‘Q "sys'tem on ’re,spon,se
are shdwn. Tﬁe training responses: for_. the design of ANN : c.c‘>_ntr.oli"er' ére gi\}en;
Comparison of pérformances_Of both conventional and ANN. are made;._TheSe are
discussedin the folloWing sectiohs. | |

6.1.1: Effecf of t@ning on consistency control:

Both Iémbdé tuning and Ziegler-Niéh‘oIs tuning are attempted to examiné ‘their-e'ﬁeéts oh

respohses for comparison purposes.The_sé are shown in figs. 6.1-6.2.
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In Chépter 5, Section 5.1 it has been found that as we increase the A value of the PI/PID
controlier, the settling time decreases. and offset value becomes z"e,ro.,ltv gléo 'redUc‘:es
' oVerShoot but more oscillation oceurs. It has been proved that the val.ues of lambda time _
- must lie between 15s-16s. ’Using the 'eqn's.[5.24,5.25],‘ the figs.6.1a and 6.1b have been
drawn for both values of A, Thé simulated data are inen in tables-6.1a & 8.1b (Appendix-

1) for 15s, and 16s respectively. It can be cohcluded thét higher values of A of the order of

15s or 163"wbuld be the best tuning parameter for consistency controller.

Fig.6.1a (whén A =15 seconds) Fig.6.1 b( when A=16 seéohds)
- Figs. Lambda.tunin‘g‘reAsponseAs A
Higher values of A of the order of 15s or 16s would be thé'bestfuning}p_af}arhete'r for

consistency controller.
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Figs. 6.2 Comparison between l.ambda & Z-N tuning method
Fig 6.2 has been drawn' for comparing Z-N and Lambda tunlng method for consisten'cy
control it lndlcates that the Z-N tuning method is found to be more surtable in this case

compared to lambda tuning though no oscrllatlons were found. This is most unllkely The

performances are more clearly vshown in table 6.1c.

Table: 6.1c Comparison of performances between Lambda and Z-N tuning

Performance criteria Lambda tuning Z-N tonlng
.Dela)-l_tfme Bs - 4s |
Rise time 50s 403
“Setting tme 455 35s

The negatnve values in all the responses in both analog and digital system‘are common il
MATLAB snmulatlon of step response models (Seborg(139) Nagrath(90) etc) Therefore

is not a very surprising phenomena This is usual for model based control.

6.1.2: Effect of dlscrete and contmuous signals for consrstency

The results of srmulatron for contmuous and dlscrete system using. the eqns [5 31an
- 5.35], are shown in figs. 6.3, and 6. 4 While flg 6.3 for PI controller lndlcates an ove

- damped system (§>1) displaying non oscillatory but sluggfsh«charactenstlcs, the fig. 6
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for PID controller .represents an under damped system'(§<l) with overshoot -and

oscillatory"behavlour. The nature ‘of the curves for both continuous and digital signals in

each case (Pl or PID) are found to be the sarhe The time average value of consistency

over the time range of 0-to 100 s is estimated statistically. The data for both analog srgnal |

and digital signal for Pl as well as PID are compared in table 6.1d. The minimum value of '

consrstency exhibit negative values for all the cases. It might be due to the consrstenc_y |

dynamics reported by Nancy with negative steady state gain values. It is lnterestlngto

note that both- digital and analog systems display 'overdantped systems. The negative

values in the lower range obtained in the response curves wrth both Pl and PID controller

are not unusual for model based control.

Table.s.ld‘ Comparlson of statistical data for consistency control

Performance criteria

Pl co_ntroller _PlD,controller ,
Continuous | Discrete Contlnuous: Discrete
Minimum 0.163 ~0.151 A49T | 1491
Maximum 0999 0.999 599 | 1000
Mean '_ D.925 ”o_.994" 0860 | 0.869
| Median 0694 055 | 097 | 099
ST, doviation 0.182 0185 | 031 | 0399
t Range 1163 5T 2400 2491

From the statrstrcal analysis given in table 6.1d, It can be concluded that the results for

contrnuous signal as compared to digital signal are more appropnate whrch is expected

. for chemical process rndustry.




6.1.3: Compafison between conventional and ANN controller data:
The consistency responses of head box controllers using unit step input for both P, and-

PID are shown in figs.6.5 to 6.8. Fig. 8.5 for Pl control with normalized values, figs. 6.'7‘

.
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.Fig. 6.4 Step res'pohses of PID ‘c_on_tro-ller for continuous ahd; discrete s'yst‘em-
without nor‘fnélization for PID 'cohtrol wﬁere_as figs. 6.6 and 6.S,wifh normélvi‘zle,d, withot
normalized v-aIUe'for ANN controller aré drawn. The analyses of the r‘espohses' for all th
éb'ove' cases are made and comparéd in tables 6.1e éﬁd 6.1f .Thé 'compaﬁsphs betwee

conventional “controller(P! and_ PID) and ANN controller are made fo,r‘predict‘in
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performances in terms of the parameters ,delay time,'setﬂing time and overshoot

parameters.

* Table:6.1e Compatrison between Pl and ANN controller for consistency( case-a}

Performances criteria Pl Controller ANN Controller
Delay time (s)’ 70 0.1
_ Settling time(s) 40 0.5
Overshoot (%) 8.7 0, 0

Table: 6.1f Comparrson between PID and ANN controlier for consrstency ( case- -a)

_ Performances criteria PID Controller ANN Controtler .
Delay time (s) 5.0 ' 0.0
Settling time(s) 30 : 0.1
Overshoot (%) 2.0 . 00

These tab!es show that the ANN controller is best surted for consrstency control because

, rt gives rmmedrate control actron{ means Iess delay trme) removes overshoot, and settling

time is very less as compared to conventional controlle’rs.

Firstly the training paherns are obtained from conventionei Pland PID oontrorrers. During 4
training, the values of ‘gradient descent term for Pl controlfer in network performance
calculations of the order of 9.99885e-005 and error goal 0.0001 are met at 6062 epochs
Simitar calculation for PID -controller shows the value of the order of 8. 99997e 006, and
error goal e- 005 at 12308 epochs The training responses for both Pl and PID are shown |

in figs.-6.9-& 5. 10 The training responses are found to be qurte satrsfactory
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:  ANN Controllar response

Fig.-6.5 Response for closed loop system ' Flg -6.6 ANN controller response
(normalised data)

LD Cetolls Ot respores

when set point=5.2747

| Fig.-6.7 Response for closed loop system - Fig.-6.8 ANN cohfroller response |
Fig.-6.3 to 6.8 Consistency responses(PIIPIDIANN)controIIers

Flg 6 9 Error goal wrth respect to epochs durmg training.(PI controller data)
175



Fig.-6.10 Error goal with respect to epochs during training.(PlD controller data)

For case- b glven in Chapter—5 the closed loop control system is srmulated with two

consrstency parameters namely drlutron water consrstency, Cya and thick stock

consrstency, _Cy[ When consistency model i is treated as MlMO system (two input but one

output) the srmulatlon results are plotted in figs.6.11& 6. 12 and also used for training the

neural network. During training, the fig.6.13 in‘dicates the gradient descent term of the

'order of 9 9983e-006 and error goal of 0.00001 at 5791 epochs After trammg the

network the ANN controller is tested at the rated normahzed consrstency 0 97 as shown

in fig.-6.14. The cornparrson between controller parameters for case-b is grven in table

6. Z(Appendlx-‘l)

Table'6 2 Companson between ANN and P controllerfor consistency( case-b)

Performances crteria | P Controller( Cy,) P Controller( Cy) | ANN Controfler |
. Delay time(s) 3.75 4.0 - 2.5 A
Settling time(s) 15.0 25.0 3.0
Overshoot (%) 2.6 10.9 0.99 A
Rise time(s) 75 80 50 |
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It reveals that for higher velocity the error almost becomes equal to zero "fbr -higherr value

of iterations (>600).

Plot between Error Vs No. of hidden neurons

0.025
0.02 23

0.015 \\
0.005 ' : — _

O : T H - T T

Error

10 12 14 18 18 20 2 - 24 .
No. of hidden neurons in hidden layer - o «

F_ig-6‘.15 Plot of error vs hidden neurons

Plot between Errors Vs no, of iteration
When no. of hidden neurons 18, samples 16

4 Enors

.~ Fig.- 6.16 Effect of iterations on error

Learning rate versus Error in Total head

05 06 o 08 09
Learning rate '

Fig.-6.17 Effect of learning rate on the error of tot'al‘heabdv
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Fig.-6.21 Effect of changing'of' hidden neurons

Comparison between actual and ANN valués, when no. of neurons 18, momentum,0.8, learning

rate,0.9
1.015
w10 —o— Acual
1.005 —=— ANN
X 1 : : % 3 &k . % R :
300 330 360 390 420 450 480 511
Speed (m/min) of wire '
'Fig.- 6.22 Comparison between actual and ANN data:
Comparison between actual and ANN values,
when no. of hidden neurons 20, momentum 0.8, learning rate 0.9 -
1.014
1.012
W4 gop —eo— Actual
= e
1.002

330.33 '

Speed (m/min) of wire

| Fig.6.23 Comparison between actual and ANN data




Fro'mAfthe énalysis of plots of ANN ﬁarameters asa function of error, it cah be found that
the 'neufal network parameters in'dicéte'satisfactory results of JW values or total head at
the values s"hown .in table 6.4. - | | |
JW ratio profiles as a function of 'speed indicate that ANN cqntrollér. glve better
prédiC{Eon than the same from the data obtained fronﬁ industry. The plots éls_o‘_reveal that
above the speed of 450 m/min the valiues obtained from ANN simulated results and thé
data obtained from industry clbsély tally with each cﬁher. However the.re‘aré noticeable
deviaﬁo.nsl_in the range of values bétween 3'00'.3 'mlﬁwih to 450 m»/miAn. '

Table:6.4 The range of parameter's for h;eural,network controller design

Number of hidden | Number of hidden | - Learningrate |- ~ Momentum _
layers neurons - |
10 820 | 06 | 09

Cése-é.S: Total Head control:

6.3.1: Effect of discrete and continuous éignals for total head:

Using the eqn.[5.42] in chabtef-S,- the simulation result for c_ontinu‘bus and diséfete models
of fotal head dyn{amics with Pl Ac.:ontrollerAis'_shown ‘in fig. 6.24. The 'data from fig.6.24
have been analysed statistically in t‘e}rms of maxfmum, mean,} rﬁe,dian,'standard deviatidn
an"d' range. These,'afe shbwn in t'able, 6.‘5...f_-'rom thé analysis of‘dét_a it can .b'e ‘conc|Uded

that continuous signal as compared to’di.gital signal which gives delayed response dué tc

»sampling.-
Table:6.5 Comparison of statistical data for totallv‘h'ééd confrol .-
Performance criteria - Continuous model Discrete model
“Minimum T ~0.000. | - 0.060,
~ Maximum 0 o 1282 . - . 1.018
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Mean —osm | 0%
Median 1000 1.000

" Std. deviation O [ 0.274
Range | 1282 o

, 6.3.2.: ‘Comparisdn betweén conventional and ANN controller data:

The model for total head is simulated with the help of _MATLAB Simulink toolbox (fig.5.7,

chapter-5). The‘simulatioﬁ result is shown in fig.6.25 and used_ for training the neural

network. The neural network error goal 0.0001 s met at 100200 epochs during training.

~ The responses of totél head of head box using Pl and ANN controllers af‘ rated total head

are SHown in figs.-6..26,and 6.27. The res_ponsés 6f. Plicdhtroller and ‘ANN are ‘more
clearly feflected in ﬁgs_._6.25 and 6.26 »_respectively. The Yplots:'fve‘veal'_thé f-oHow.ing.
| characteristics:. ” | |

- Overshoot, decay ration, rise time and résponse time for both analog and digitai §ignals. |

The performénces of both the controllers are compared in fig.8.27.
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From the analysis of rise'time, evershoot a‘nd seftling time. of both the _controller, it is
revealed that the ANN controller gives better results. The performance indilcatvors
between ANN and P'I' contreller is more s!early shown in table 6.6, which indicetes that the
ANN' controller is rnore reliable than convenﬁonal' controller because ANN controller
reduces the delay time, and mlnlmlzes the overshoot

Table:6.6 Comaprison between ANN and Pl controlier for total head

Performances | ~ ANN controller Pl controller
_ criteria . o _ ' '
Minimum value 0.00003 ) | 0.0
Maximum value | 42.25 ‘ » - 51.25
| Mean | 32.24 ) | 31.88
Median : 39.89 L - 39.99
. Standard . 15.88 , : 19.14
~.deviation . . S _ ' : :
Range - 4225 o 51.26 -
Maximum | - =56 - , =281
overshoot, % ' ' e ' B
Delaytime,s | = 08 - 1.8

 Case-6.4: Stock level control:
6.4, 1 Effect of discrete and continuoussignals for stock level:

The first order dynamics proposed in eqn [5. 49] given in chapter—5 has been slmulated
| with the help of MATLAB software. The s:mulatlon results w:th unlt step input for
contlnuousva_nd discrete system with PI controller are shown in fig. 6.28. It lndrcate_s

- approximately the same values for both Cpntinuous and discrete syste.m‘s.r The proﬂles |
‘coine'i‘de with'.eaeh otherf | |
o 6.4.2: Cdmparisen between Conyentional and ANN controller dafa:
Stock level respbnse_ sf headbox usiné Pl controller is shown in fié. .6.2'9-. The
~ performance of Pl and ANN are compared in fith.éO. vThe plot shows that the‘-_F-’l
controHer indicates 'the settling time of 12s-and delay time of 3s whereas ANN controller‘

shows the same of the order of 10s, and 2.1 s respectlvely The performance of ANN and
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Pl controller in terms of statistical ‘data is also shown in tabvle.6.7. It con‘cludes that the

ANN controller is best suited for the stock level control.

Table:6.7 Comparison betWeen Pl and ANN controller for stock level

- Performances criteria - Pl data ANN data
Delay time;s 30 24
Settllfr'ug time,s 12.0 : - 10.0
Mean value L T B8

Maxi_mum value 1993 | - -19.93
Std. 6.79 . 5.91
Median T A | 6.0
Range | 19.93' e 19.93
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pH control of stock:

- Case-6.5

Is for stock pH

igna

Effect of discrete and continuous s

6.5.1

In case of pH;

3

the dynamic equation of first order eqn.[5.56] de\iélope_d. in 'Ch'ap,ter' 5,

Y

simulated with the help of MATLAB software. The simulation results for continuous and

_ discrete system with conventional controller (P1) are shown in fig. 6.31. Subsequently the

lated data are used 'for.training the -neural nétWork; The data _from fig.6.31 are

simu
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analysed statistically. Std. deviation of the order of 1.493, mean of the o.rder of 6.21 for
continugus sighal while std.. de\}iati'on of the drder of 1.505, meaﬁ of the o'rdér of 6..'19. for
| dispréte signal are obtained. It revealé that fheré is no appreciable variati‘oqn in continuous
.and.disc,rete signal.

652 Comparison between conventional and ANN controller data:

The artificial neural network-tréining response is shown in fig.6.32. It shows the network
p.elrformance' of fhe order of 0.000301793, error goal of the order of 0.0003 at 80000

epochs. After training, the conventional controller has been réplacéd by ANN controller.
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| Fig. 6.31 Plot between continuous and discrete data(without controller)
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6.6.2: Co'r‘n.parison between conventionai ahd ANN controllér of di,'ffeféh’t desiglns |
| data: | | |
The performances of the PID. controllef, MLP, MFLANN (modified functional link‘AN‘N)
and DLFANN (direct linear feed through ANN) contfollers for temperature are compared
in'table-é.g and responses shown in ﬁgs.6‘..3’5 to 6.38. ATable-6;8 shows that the MLP
| reéponse gets the steady state value of the order of 38.88s in a very short p‘e;riod ( settling

time) with rise time when the set pdint is 40°%. The performances of all the ANN

‘methvodolo_gies aiong with Pl are compared in table 6.9.

45 pemmme
Stock © F—ps : “
Temp. 5 | foo
.
e | o |
o wm @ & - e 1 ;140

' Fig.-6.35 PID controller response
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Table:6.9 Companson of PID MLP DLFANN, and MFLANN controllers

Performances
~ Criteria

- PID
Controller |

MLP

DLFANN

MFLANN l

| Set point Steady state

Time(s)

560

- 380

380

270

Value

40

39.88

39.86

40

Overshoots

- Max.
c)

Nil

Nil

TONi

N
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- Min. - Nil Nil . Nil Nil
Undershoot Max. Nil 0.16 0.1 | Nil

Téble 6.9 shows the values of settling time, and overshoots for PID, VMLP, DLFANN, and
MFLAN.N controllers. Based on the results' it can concluded that the settling timé of MLP
and DLFANN controllers are less as compared to other ANN architecture. Therefore
MLP and DLFANN controllers give comparable va!ueé. Thefefore either design_éan be
used. | |
| Casé_—G.T: Basis weight control (Analog syster.'_n):. _

As shown in Chapter-5, there are two dynamic .models relating stock flow rate and .-basis_'
- weight éré a\}ailable , both in analdg--eqns[5.71a,5.72a] és well as m digitali for‘m
eq-ns.[5_.71b,5.72b], in addition to the model der‘iv'ed‘by order reduction process and its z
| trénsfbrmed equation. The analog mbdel alohg with conventioﬁal and ANN'control.lers aré_
simulated. The résu_lts of analog simulation are interpre_ted aé uﬁder: |
8.7.1: Eféecf of d'is:crete éhd continuous signals for baéis weight:
The simulva'ti.on results of the précess dynamics for continuous and "diécrete signal.s :
without controller as shown in fig. 6.39 reveals that the-continuous signal represents ‘ba,sis _
Weig‘ht valges with the std.. deviatioh of .th.e order of 0.1593, mean of the order of 0.47?,:
- while sid. d.evi‘ation of the order of Ov.1642, ﬁwean bf the order of 0.474-Aéfé"obtainled. fbr' |
discrete signal. |

6;7.2: Comparis.on‘ betWeen conventiohal and ANN Contr_oller data:

The Sinﬂulivnk mode! between stock flow rate a_nd basfis.weivght as shown in fig.5714, in
chapter-5 is used. Indusfrial data are used »for'tf'ainingi the network (table-6.10). The
' énlalog simulétion reéults of basis weight model with PI controller are given in fig.6v.40 .

(set-point response for the closed loop éystem) and in fig.6.41 (closed loop response fora
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u‘nit:steo disturbance). The mean val'ue of the normalized basis weight is obtained of the
order of 0.8233 in the former case (trg 6 40) whereas the value of normallzed basis werght
is reduced to 0.06144 in the later case (fig. 6 41). Also more oscillation is exhlblted in the
.c‘aSe When unitstep input for disturbance variable is'used. Basis weight resp‘onse using
ANN controller at the rated basis weight at 59% of the gate opening(normalized value
' 1.00) are given in fig6.42 and fig.6.43 where PID and ANN data are compared with mill
data. The maxrmum data of ANN taIIy with Mill data. The artrﬂcral neural network trarnrng
response is shown in fig.6.44. The data from ANN based control provide qurte satrsfactory
control as except the range of data between 5t07. PID control based data is found fo be

inferior to the ANN controller data.
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Fig. 6.39 Slmulatron results of continuous and discrete system (wrthout controller)
when samplmg perlod-z Bs:
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' Fig. 6.41 Unit step point response for a unit step disturbances

Basis
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Basis weiaht response

0.85
0.9

“—=—iil data.

0.85

—=— ANN data
0.8
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_ | Fig-6.42 Basis weight test result
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Basis weiaht control response

—e—Mill data
—a— ANN data
i PID data

5 6 7

8. 10

No. of sambles ‘

11

Fig. 6.43 Comparison between mill data, ANN, PID data

Fig. 6.44 ANN training response

Trai'ning data for basis weight ANN controller have been obtained é_s‘ under.

'Table: 6.10 Mill data and (;omparison between PID & ANN data -

_ : Normalized basis Stock flow  |Basis weight(PID} Basis weight(ANN
- 8..No | weight(Mill data) LPM &- data) . data)’
‘ BWin % Normalised -
1 150% 0.847-13004 0.8159 1.0 .0.846
2 B1% 10.86413079.65 0.8364 | 1.0 0.878
3 |52% 0.881)3155.10°  0.8569| 1.0 0.881
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B 8.2: Comparison between conventional and ANN controller data
For Simulating the eqns.[S. 84 and 5.85] in chapter-s with MATLAB software the artificial
neural network is trained using different neural network algorithms like gvradient descent
technique, Levenberg-Marquardt(LM) algorithm and GDX.
| The figs.6.45b ’ro 6.48 show the performances of different networks, when thenetwor_kis
designed as 1:5:1, error goal is €% met at 18502epochs in case of gradient descent -
’ algorithm The trainmg error goal is met at 5 epochs in case of Levenberg l\/larquardt
- algorithm while the training error goal is met at 234 epochs in case of error gradient
descent algorithm. The performance of dynamic model in _digital.form and ar’uﬁmal_Neural
Network model are found out with the help of lVlATLAB programming, shoWn in table-
6.11. The minimumerror is observed in case'of gradient descent andl.Ll\/l techniques.
Figs. 6.49 to 6. 51 indica’re the basis weight output response with respect to number of
B samples The maximum’ number of samples of dynamic model clcsely tally with those
obtained from gradient descent technique but the training time is large compared to
Levenberg -l\_/larquardt algorithm and error gradient descent technique. The results‘ are.

" more clearly compared in table 6.10.

-Fig.-6.45b ANN training response | Fig.- 6.46ANN training response(LM)
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Fig.-6.47 ANN training réspon;se(gdx)

Fig.-6.48 Effect of different paradigm

Basis Weight Response

—o—Mode!
—g—ANN

7 8 9 10 11 12 13 14 15 16 17 18

19 20
No.of Samples '

Fig.-6.49 Comparison between model based data and ANN data

149
1485
g 148
-2147.5
> 147
‘G 146.5
m 146

1455

Basis .Weight Res pohse

—e—Model
~— ANN(gdX)

R

7 89 10 11 _12.13'14 15 16 17 18 19 20
No. of Samples ' '

4 5 8

Fig.-6.50'Comparison between model baséd data and ANN data(gdx)
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Basis Weight Response

~&—Model |

~g— ANN(LM)

4.5 6 7

8 9 10 11 12'

No. of Sam ples

13 14 15 16 17 18

19 20

Fig.-6. 51 Comparlson between model based data and ANN data(LM)

Fig.- (6.49 t0 6.51) Basis weight output response with respect to number of samples

Table:6.11 Comaprison of performances between ANN controllers

Performances | Model based | ANN(Gradient. | ANN(Levenberg- | ANN(gdx)
criteria Data Descent) . | Marquardt) ‘

Minimum 147.0 1468.7 - 1467 146.8
Maximum 148.5 148.3 1478 . 148.5 . -
| Mean 147.7 147.7 147.6 147.8
‘Median 147.7 1478 147.7 1477
Standard 0.4751 0.4414 0.2567 - 0.5424
deviation : :

Range 1.5 16 1.1 1.7

| _ [B] ANALYSIS OF MIMO SYSTEM OF PAPER lNDUSTRY

Case- 6 9: Total head and stock level control

" The srmulatlon results of eqns. [5. 86 5. 87] for continuous and drscrete system are shown
in figs. 6 52 and 6.53( for Y11 & Yrp) without usrng controller These are rnterpreted as
under:- | | |

| 691 Effectof discrete and continuous Signals for total head and stocl( level:

The fig. 6.52 shows the performance in terms of std. deviation of the order of 0.1778,
mean value of data of the order of 0.444 for contlnuous S|gnal but for dlgltal srgnal and.
~ the std deviation of the order of 0. 187, and mean value of data of the order of 0.436 are

obtained. However, the other statistical data remain the same. 4
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6.9.2: Comparison | between | performances co_nventional and- different ANN
method'ologies: | | |
The results have been computed using BPNN, perceptron and ART‘I network for‘slngle
neuron, for MIMO(two input single output T!SO) and SISO system (as the case mau be).
lt is well known that perceptron network is valrd for single layer only and BP and ART are
used for multi-layer NN problems In thls rnvestrgatron various equatrons for BP,
eqns.[5.86 and 5.87], for perceptron -equations, eqns.[5.90 and 5. 91] and for ART [5 86
eqns 5.87] are employed for computatron. The tuning parameters Ilkelearnmg rate,
‘momentum coefficient are used with all the aboue mentioned equatlons'. The'r‘esults are
computed through MATl_AB and simulations are carried out. "l.;he'training' datav‘are
obtained from air 'cushion' headboxes from two paper mills. in India. T‘he training
| parameters for headbox problem are grven in table—6 12. |

Table: 6.12 Parameters values and ranges

"Nurnb,er of hidden | Number of hidden | " Learning rate ~ Momentum.
layers neurons - .. Factor .
1.0 ' 2-14 | 05089 05089 :

The eqns.[S.QO, 5.91] given.in ChapterS represent:the output in terms of total head and
stock level in head box control system. From figs 6.54 to 6.55, it_is_.e\rident.that the lowest
error occurs at learning value of}0.6 for network: training. Therefore 06 .ls considered as
optimum. The'values of Imomelntum coefficient have been"varied betWeen:O.S to 0.9.
From. flgs 6. 56 6. 57 lt is clear that there is contlnuous linear decrease of error wrth the
increase of momentum coeﬁrcrent up to value of 0.9, there is ‘o substantlal change
occurred thereafter. Besrdes most of the prevrous rnvestrgators employed the value )
momentum.factor close to 0.9. There_fore 0.9 has been chosen as optimum value o

momentum factor in this present investigation.
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~ The effect of hidden nodés on erfor is shown in fig-6.58. The norn1aliz’edlv‘data'of total
~ head asa function of the number of samples is shown in fig.-6.59. The figs.(6.59 to 6.60)
further indicate the comparison of values forv output 1(total head) and outpLIt 2(s'tock. level)

| fo‘r MIMO system. The values are more cleafly shown in table 6.13. For SISO ( Single
input single output) s_ystem as indicated earlier perceptron neurél network is used. The
“simulated data are shown in figs 6.61 and 6.62. The figs indicate 'thé’corﬁparison of
valueé for oUtvputv 1 and output 2 with éctua_l values. lt‘is‘ evident that the vélués are closely -
tallying with each othér. The effect of iterations on error for tré\-ining’ is shg@r_; ‘in ﬁgt-6.63.
' The error is contihuous!y decreased with fhe increase of number of i{ératioﬁs. For MIMO

- System the error has become minimum of the order of 0.0002. -
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Fig.6.52 Simulation result of continuous and discrete data(Y)
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Fig.6.53 Simulation result-of'cbhtinuohs and discrete data(Yr2)

Learning rate versus Error in Total h'ea’d(y1)< .

0.007
0.006
Error 0.004
0.003
0.002
0.001
. 0 - . .
0.5 06 07 .08 0.9
4Learning rate
Fig.6.54 Effect of learning rate (total head)
Learning rate Versus Error in Stock
level(Y2)
0.00002
Error  0-000015
0.00001
0.000005
04 . 05 06 - . 07 08 0.9
. Legrning Rate

Fig.-6.55 Effect of learning rate (stock level)
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Momentum factor versus Error in Total head(y‘l) ’
0.2 :
0.15
Error
0.08
0
Momentum factor
Fig.-6.56 Effect of momentum factor (total head)
Momentum’ factor vérsus Error in:Stock level(y2).
- 0.008
Error 0.604
0.002
05 06 - . 07 08 0.9
Mo‘mentuxvn_ factor '
Fig.-6.57 Effect of momentum factor (stock level)
hidden nodes versus error
0.008
0.006 .
Error 0.004
' 0.002
0

2 Y A 10 12 7 14

No. of hidden nodes

Fig.-6.58 Effect of hidden nodes
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For MIMO system

Outout1 of testina data

1.05
1
output - 0.95 N
0.9 )
085 —i— Actual
0.8
0.7 1 | 2 3. | 4 6 -
—o— ANN 108416 [09385 |0.9504 |0.9493 [0.9491 |0.9477
. | —m— Actual 08533 -|0.9065 | 0.953 - 1 |09498 109431

“No. of samoles

" Fig.-6.59 Comparison between actual and ANN data for total 'head

Output 2 of testing data

06

0.6

output
. 06

—+— ANN
—&— Actual

0.6

o bk el e o el
: EE 2 3 4 5 6 7 | 8 9
—&— ANN 0.638 |0.637 |0.636. | 0.83 | 0.683 | 0.63 0.6 063 | 0.63.-
—=—Actua 0637 |0.656 | 067 |0.656 0.637 | 063 | 06. | 063 | 06
' No. of samples

Fig.-6.6b Comparison betwgen }acvt’ua-,l and ANN data for stock level

For SISO system:
Output 1 of testing data
12
Normalised 0.8 - -
‘output 0'6 —&——— Actual
0.4 = ANN
02
0

No. of samples

~ Fig.-6.61 Comparison between éictual and ANN data for total head
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Output 2 of testing data

0.66

. 0.655
Normalised 0.65

Output 0.645

-0.64
0.635

0.63
0.628

1 2 3 4 5 & 1 8 9.
No. of samples

'Fig.-6.62 Comparison between actual and ANN data for stock level -

Fig.-6.63 Training response

Comparison between MIMO & SiSO for Total head
(outp_ut1) :

1.2

0.8
0.6
0.4
‘0.2

—e— MIMO
—t— SISO

Total head oUEAL

o - 2 a 6. . 8
No. of samples

Fig.6.63a Comparison between MIMO and SISO for Total head
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Comparlson between MIMO & SISO for stock

level(OQutput2)
© o0.68
0.67 -
g 0.66 - .
: "0.65 - i
o '0.64 - ) —e—MIMO|]|.
B 0.83 - | —=— SISO
0.62 -
g 0.61 -
" 0.8
0.59

o]
N
b".
0]
o)

10

No. of samples

Fig. 6;63b Comparison '\betwe_en MIMO and SISO for.stﬁck !eyel
The e-qUations[5.90,5.91} for decdupl_ers given in Chapter-5 are used fo‘r..estimating data
for total heéd and'étock level. .Figs.6.63a and fig.6.63b are d'rav;m fof compari‘ngth.e ANN
daté fo_r MIMO and decdupfed- SISO syétefné. The data when énalyzed statistically, the
.followi'ng importént_ conclusions are drawn. | o .
Maximum error of the order of 60851‘ minimum error of tvhe 6rd_er of 00 énd _ave_rége
error of the order of 0.0237 for total head have been obtained. |
- The data from fsg 8. 63b was analyzed statistically. Max error of the order of 0. 035 mln
error of the order of 0.009 and average error of the order of 0.0205 for stock level were

o‘btéined.

Table:6.13 Comparison between ANN methodologies
Performances Perceptron | | BPNN ART1
criteria - ' : e
MIMO | Yy | Y Yo |- Yy | To overcome  the
Min error % - - -3.5 -0.3 | problem of leaming
: stability
Max. error%' : - — |- 505 | 5.6
Aver'age error | ----- 0.77‘5V 265
_ SISO ' ' o '
Min.error % | 105 00 | - .
Max. error % 15.5 0.9 |-




[ Averageerror | 130 | 045 |- |- j - ]
All the profiles indicate that the ANN controllers satisfy the requirement of adequate |

control for the MIMO system comprising of total head and stock level..

Case-6,10: Comparison of simulated data between PID and ANN controller fqr air
pressure and level. |
The modelfng éqns.[5.92 to 5.135] fof air preSsure énd level of the prés’sufized headbox
have beén desdribed in éhapter 5. The simu!_atipn resuﬁs of eqns.[5.128,5.130,5.132 & |
_ 5134] withbut contr;iller afe éhoWn in figs. 6.64 to-6.67. The responses lfp'und out aré
found to be quite ih{eresting. The preséure profile introduces overshoot but stock level
exhibit first order char’acieﬁstics. The natufe of fhe reSpoﬁsesbecame different based'o.n}
. the assumptions. When controllers arei used, the résponses display c!eavr-lyv'éet;ondj order
system with overshoots of the order..of 22.7% and 6.8%. The perfornganceS be{_Ween PID |
éontroiler and ‘ANN cohtrdller for Lhead(ﬂeu), Pheag(rhb) are shown in table 6.14a, and

' 6.14b. These profiles tally with those shown by Kikiewich et al.(75).

Change in level(heu)

| Fig.-6.64 Time characteristics of_'preSSUriied'_ﬂow~ box when p5=0'
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Change in pressure(rho)

Change in levei(neo)

Fig.-6.67 Unit set point response for closed loop syétem for Pheadt, w‘hen p5:=0 :
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After simulating t.he‘process, data is used fbr training the nétwork. The‘ploté 6.68 t0 6.70
show t_hev errors between PID and ANN daté with a giveh sét'po‘int. Bothvtvhe controllers
| show ovef damped system. Statisﬁcal data are also depicted in table 6.15; Which show
that the ANN controller gives approximately the same value as the conventional control!er
provides, The comparison between PID ahd ANN is more cleariy .shdwn‘ in figs.6.69 t‘o‘
6.70 where it is found that except two valueé of_ANN other tally very»ciogeAly'.' There.fore: it

can be Vconclud.ed that that the ANN controller can be used for MIMO system. su'c'cessfully.r .

set point
— ANN
— PID -

o
.
'
‘
L
h
.

eoracemepmnenageonen

$accmpbocuoodnanue

iffececpracenpasocageans

mmecdmacaas

Fig..-6.69 C'omparison between 'clas'svi'cal and ANN data for Ppeag1, Whéh ps#o
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- Table: 6.14a Comparison between PID controllers for Liead, Phead

Performances criteria

" PID value for (Lnead)

P‘I‘D valué for(Phead) -

- 05122

Max. overshoot 22.7% 6.8%

~ Delay time(s) 5.4 . 214

" Min. 0.0000 0.0000
Max. 1.2270 1.0680
Mean - 0.5174 0.8179.
Median. - 0.4415 1.0000 .
Std. © 0.3852

Table: 6.14b Comparison between PID & ANN controller for Lead, Phead
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- Performances : Phead2 . Leadt _
criteria PID - ANN PID - ANN
Min. -0.1503 --0.1507 0.1280 -0.0621
Max. 1.0000 0.9900 2.9470 2.9380
" Mean 0.2834 0.2841 - 2.1240. 2.1000.
Median 0.0209 0.0175 2.5800 - 2.5400
Std. 0.4088 0.4059 1.0050 1.0480
Range 1.1500 1.1410 2.7690 3.0000
Table:6.15 Performances of air pressure and level ,
Lheadt - - Min. error -0.0551
: ) ‘Max. error 0.0852
: Average error 0.0242
Pheagt o : o
' Min. error - -0.0009
Max. error 0.0165
. ‘Average error . 0.0038
Phead2 » -
' Min. error - -0.0912




Max. error 0.082
Averageerror = ' -0.0008

Case-6 1. Companson of sumulated data between PID and ANN controller for

. stock flow and stock level:

Using the eqns.[5.136 to 5.142], theclosed 4Ioop system model of headbox having

mteractions between stock flow and stock level has been simulated w;th the heIp of

MATLAB Sxmulmk toolbox (fig. 5, 27 Chapter—5) . The simulation resuilts for Y1(stook flow)

and Yg(- stock Ievei) are shown in fig. 6.7-1-. The responses of these two control variables

are completely . opposrte These proflles tally W|th those shown by Whalley et
(166) These data have been used for training the neural network. Dunng tralnlng the

neural network the network performance of the order of 9998 e and errorgoal

00001 is  met  at  5830 ‘epochs  (fig.  6.72).

Vo= oY

Fig. 6.71 Simulation results of headbox model



Flg 6.72 Artificial neural network training response
The ANN and model responses for stock ﬂow and stock level are shown in figs.5.73 and
5.74 respectxvely The responses for both the cases, namely for stock flow and stock level
ba.sed» on model and ANN closely 'resemble each other. However slight departure is
noticed in the case of stock flow at the inifiél stages of data. Erfo‘r's‘between modéls data

and ANN data - are N shown in | table . 6.16.

Comparison between ANN and Mode! data
1.2

stockfiow |
(Normatised
Data) 0 8

—e— ANN

0'6_ —a&— Model
04
0.2

13 5 7 9 11 13 15 17 19
' No. of ‘'samples ' o

Fig. 6.73 Comparison between ANN and model daté(stock ﬂ_‘oW)“ .
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Comparison between ANN and Model data
Stock'o'1 '
Level =
(nom.-().2
Hlised
. Hat
* 03
0.4
-0.5 -
' —eo— Model data.
No. of samples . ANN data
Fig. 6.74 Comparison be'tween ANN and model data (stock level) .
. Table: 6.16 Errors between model data and ANN data
Stock flow - ' Min. error : -0.1477
- Max. error - ‘ o 0.038
__Average error ‘ -0.020
Stock level - |- Min. error -0.0168
' ' ' : Max. error - =~ 0.020.
Average error . 0.002

Case-6.12: Retention control:
" The various models for retention control are explained in Chapter 5,Section.}5.12.1'. The
eqn[5.146] represents the model of the paper machlne containing the first pass retentlon

as output , thick stock flow as lnput and two drsturbances namely: consrstency and fines

content of the thlck stock stream

6'.1_2.1: Effect of discrete and continuous signals for retention:

Usmg eqn. [5 146] and assuming retention and '[h]Ck stock flow only, the slmulatlon runs
are carned out and response profrle for both analog and dlgltal system is drawn in ﬂg |

6.75b. ThlS frgure shows that the mean. data of the order of 0. 8897 medran of the order of



0.8425, std deviation of 0.0975 for continuous signat and'for diso_rete'signal-, the mean
value of l0.880_6, median of 0.8385, std deviation of 0.0997 are obtained. |

6.12.2: Comparison between c'onventional and ANN controller datai

The closed loop control system for retention process is also simulated with MATLAB
Srmullnk toolbox. The PID simulation response is shown in fig. 6 76. Thrs simulated data
obtalned from PID has been used for desngnrng the ANN controller Durlng trarnlng the
neural network, the network performance in terms of parameter gradlent descent term of
the order of 9.82 €™ and error goal'0.0001 are met at 101 epochs (fig. 6.77‘).' The PID
oontroller indicates delay time of the order of 1 253 rise trme of 253 and settllng trme of
26s. On the other hand, the ANN controller response removes overshoot of the order of
0.1, delay time of 0.5s, and settling time of 0.1s. The comparison between ANN and PID

controller is made in fig.6.78 and data are shown in table 6.17.
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-~ Comparison between PID & ANN Controller

N
L ® ——PD - |’
g
[77] .
g 1 3 5 7 9 11 13 15 17 19 21
‘ , No. ofsamples '
Flg 6.78 Companson between PID & ANN Controller ”
Table 6.17 Errors between S|mulated data and ANN data
Performances criteria . |- PID controller T ANN controller :
Min. value 0438 ' - 0439
Max. value 1.190 - .185
Mean o - 0.890 , 0.892
Median L 1.096 - 1.099
- Std. ' 0335 0.332
Range 0.752 - - .0.742
’ Min. error between PID and ANN . 0.001
Max. error between PIDand ANN -~ -~ 0.005

The ash co_'ntent 'data from mill was ‘analyzed statistically. These-oata have also been
used for trai'ning the neural network. lne'oornoarison betweenmlll data and ANN data are
'shown in fig. 6. 80 MaXImum error of the order of 7.32, min error of the order of 0. 21 and
average error of the order of 3.507 for Ash Content (ANN & Mil Data) were obtamed It
- reveals that the mlll data values revolve around those of ANN data. The d‘ata-tally' very

closely which further indicate that performances of PID and ANN are comparable.
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80
70
60
50
40
30
20
10
0

5 10 15

No. of samples

Cdmparison between mill data and ANN data

—o— Mill data
—=— ANN

Fug 6. 80 comparlson between Mill data(Ash content) and ANN data

’ The vanatlon of retention and ash content as a function of time are shown in flgs 6 81a
and 81b. Fig 6.81a indicates max., min. and ave‘rage values for the fines content of the -
order of 52.1, 41.1 & 46.57 respectively. Max., min. and average values for the FPR were

73.2,60.6 & 66. 544 respectlvely Max., min. and average values for the FPFR were 35.5,

24 16 & 29, 623 respectlvely The data is glven in table 6. 18
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T‘ime(min._)
Fig. 6.81a Retentioh data
___Table -6.18 Retention data(mill data) -
FINES CONTENT . FPR FPFR
41.10 7320 35.50
41.67 72.50 - 33.30
45.00 70.00. 30.00.
-~ 44.16 68.33 2867




45.00 T 6750 | 30.00

46.67 ‘ 65.80 ' ' 30.00 -
5167 - 64.17 ' 32,50
48.33 61.67 - 24.16
50.00 ' 61.67 - 26.80
52.10 - 60.60 25.30

'Fig. 6.81b shows the comparison between mill data( retention) and neural netw.ofrk data. It
indicates the minimum error, maximum error, and average error ‘of the ordér of .007,
6.573, and 1.151 respectively. In this investigation, the neural network model works well.

The data are given in table 6.19.

. Comparison between mill data(SRT) and ANN
data

120
100
80
60
40
20

—e— Mill data(SRT)
_ —a— ANN data

°/eSFa

5 . 10 ' 15 20
No. of Samples

%

Fig.:6.81b Compa.rison"between mill data and ANN( Solid rétentibn)

Table:-6.19 SRT mill data and ANN data

No, of Samples " Mill data(SRT) ANN Data

1 0.809 - ' 0.8787
2 0.872 , 0.88
-3 - 0.877 . 0.878

- 4 088 - _ 0.876

5 0.89 , 0.876
6 0.90 , - - 090
7 .0.91 ' 3 092 .

8 0.91 , 090

9 0.92 , 0.92

10 0.92 . 0.914

11 e 093 ' g 0.937.

12 - ' 0.94 ' 0935

13 - 095 ) 0.948
14 ' 0.98 : 0.964

15 1 —0.98

21




The ANN simulsated data very closely tally with the actual data obtained from
- experiments in the mill. Thus it can be concluded that ANN based control can‘ be used for

reten_tton and ash control in a paper mill.

6.13: Conclusions:

* This chapter concludes that the ANN controller can be used for controlling SISO, TISO

and MIMO systems. In simdlating various SISO systems (such-as consistency, total head
stock level, pH, stock temperature and basxs welght) m paper mill approach row and

| headbox, TISO system(thlck stock consistency and white water conS|stency) and MIMO

system( total head and stock flow, air pressure and stock Ievel stock flow and stock Ievel

~and retention) |t is found that it takes less time to reach at steady state value ,decreases |

,the overshoot lmproves delay time. When artificial neural network is tralned successfully '

.. then ANN controller can give precise and immediate action to the flnal control element

 which corrects the plant variable. More detailed conclusions are glven in Chapter 7,

conclusions and recommendations.
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CHAPTER-7
CONCLUSIONS AND RECOMMENDATIONS

in the present investigation design of v_artiﬁcial neural network based control system hlas
been enalyzed -and designed for adaptati’on 4in Indiah paper mill. 't'o exémine its feesibility,
‘p'e‘rforr'nances o_fl conve-nt_ional controllers (P/PI/PID) and ANN 'cohtrollers are oompared
through simulations in MATLAB Simulink toolbox.The perameters studied A_we,re both
5ISO, and MIMO systems 'in'the 'approach flow systems and headbox of _pa.per mechi‘ne
vet. end prooess. 'fhe SISO systemS- were thick stock consistency,stock flow,total'
read stock level,pH of stock,stock temperature a‘nd basis weight The TISO(two input and
>|ngle output) system was only consrstency(consrstency of thick stock and white water
conslstency) For MIMO system paremeters mvo[vmg mteractlon of parameters
.were:stock flow and stock level,air pressure and _stook level for air cu__shl‘onl he.advbox, fotal
head and stock flow, ahd retention of fibre fines for basis yvei_g_ht 'ahdl'c-onsis‘tehoy. '
In order to -achieve the aboye objectiye .strategy‘ of methodology of systematio
investigation on the estimation latnd controlling of process parar,heters for both »cless’ioal
contrOI(. P/.PIIPID), and ANN with relevant 'algo‘rithms has been-develope_d in terms of both
anetOQ (continuous signal) and d'igitel(disc'rete.signat) techniques. |
' T"he' detailed dynamic modeling of prooesses such as consistenoy(SISO and 'TI'SO.), were
made in anelog systems whereas digital‘ dynamics for basis weight with Zero order hold
is derived from frrst prmcrples using unsteady state matenal and/or energy ba!ance
equatlons However,modeling of process dynamrcs of pH(SISO) Ievel(SISO) and
temperature(SISO) were done iteratively through computer srmuiatlon usrng Slmuhnk toot
within a broad'rangev of perameter available'in Iitereture. The s.i'mU|ation‘wa"s, hoWeyer,
| besed .on the. anelysis' of closed .‘lo0p Cori_trol Systeht including 'adjustment of selected
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controllers. For. air cushion headbok deteiled deriya‘tion of the dynamics ‘were derived
especnally as. in most of the Indlan paper mllls( medium to large oapacny) are usmg th|s
_ type of headbox | _ | |

Other analog modelsrfor SISO systemslike total 'head(SISO),basis. weight(SISO), and all
‘MIMO systems as indioafed above were used from pubdlished informatiOn All m'odels
elther open loop or negative feedeback closed loop were developed in thls study and

transformed in to d lgltal models including the process models. |

| For con}snstency control only for SISO system both’ Lambda and Ziegler .Nich'o!s (ZN )
3 tu‘ning methodologies with Bode stability criterion haye 'been used fo j'ust examine the
effect of 'tuning on responses For other cases, éISO TISO' MlMO (both analo'g and

digltal) computer S|mulat|on (MATLAB Slmulatlon techniques with SIMULINK tool) were

employed for tunmg
For ANN solutlons adaptlve linear neural network (ADALINE) perceptron neural network(
PNN), back propagatlon neural network(BPNN) adaptive resonance theory( ART1) and
| augmented back p.ropagatlon network(ABPN) were used.Two ANN control archltectures
used, for training of neural controllers 'were :supeniised control, and dire‘ot inverse
control. : | | | | .}
All single. lo'op' control architectures(SISO and MIMO) have ‘been converted to neural
- network based contpol system using different_types'of;activation function's With sigmoid/ |
log sigmoid 'éndllinear equations.For the case of'SISO systems an ANN control system
(BPNN) along with the necessary algorithm has also been designed. All M|_Mo systems
however all the above mentioned ANN methodology were used. The ‘networ"k was trained
~ with PI/PID simulated data in all the cases except stock flow, basis weight and retention in |

which cases experimental/ industrial data were used for training.
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For 'si_mul'ation of MIMO system co.nsidered !n this present investigation both relative gain
array(RGA) and decoupling techniques were used. RGA was employed for estimating the-
degrees of interaction and pairing of controlled and manrpulated variables between
different sets of control loops whereas decoupllng technique was used for adiusting the
mteraction The relative gain between 0 to 1 are only considered for analysrs
-Data were computed from various- models for both‘SlSO and. ll/l_llVlO systems .and for
continuous and digital signals using the classical controller and neural 'net\Alork based
control with the help of MATl_AB 'S‘IMULlNKf toolbox and the algorithm ’developed f'orthe'
purpose. |
From the plethora of data from MATLAB, SimulatiOn of the process parameters, s.o‘me.
| d'ynamic characteristics have been drawn in various graphs with re-sponse asa function of
Otime for all the above mentioned parameters when unit step input S|gnal is applied as a
forcmg function and then performances are evaluated Whrle for consrstency control the
.dynamic responses using. both Pl & PID are studied and compared wrth the performances
of ANN based controller, the cases of total head, stock level and pH only Pl and ANN, for
temperature and basis Weight '}o_nly PID and ANN were employed, _analyzed: and
" compared. From the detailed‘ analysis the following noteworthy. conclusions can be made:
o ‘The comparison of dynamic_.‘responses ot PI, PID and ANN based controller.with
. unit step input signals for headbox consistency cont_rol Jindicates that ANN
| controller removes the overshoot ‘and _improyes the Settling time while.the settling
time of Pl »'controller is found to be larger. The addition of derivative action_' attempts
.to, reduce sluggishness of the Pl control. |
o Higher values of A time of the order of 15s-or 16s would be the best tuning

parameter for consistency controlier. Comparing the performances between

205



lambda and Z-N tuning‘methbd,the‘later is found to bevsiightly bettér. Thi.s should
be Unlike‘l.y. The dynamics also displays most_ly'overdamped charécteristics.On
anélys_is of responSes the performancé for continuous signal is found to be better
coxﬁparéd to digital signal. These aspects 'need further investigation. -

n case of ne.'ural network controller design, the selection of optimum number of
| neurons_ih the hidden layer plays an important rdle. The neurél network co_ntrol‘
| reduées the error and gives satisfa’ctéry ‘res'ults between 18 to 20 ﬁ‘éurons >in.the
hidden Iéyer. One can use the different numbér of neUrpns in the hidden layer (16 '
to 24 neurpn_s) and different valuésof.mome'ntum faqtor. The learnihg rate O.’9 éhd
monﬁent'um factor 0.8 can be cﬁosen as the mbst écceptable values.

.Foer fl_ow cohtrol, JIW ratiq profile aé_ a fuhctioni of Spéed indicates fhaf ANN
contr'o.ller gives good prediction when simulated With the data obtained from
- industry 6.r frofn theoretical modevlvs. Itis évident that above the speed of 450 m/min‘ .
the values obtained from ANN si'mula'ted results and the data obtained from
~ industry closely tally with each other. Ho_wever there are noticeat;lé deviations in
the rangé of val.ues 'between‘_ 300.3 m/min to 450 m/min. This also_heéds_ further |
.study.- |

For total 'head, SI_SO éystem ANN cdhtroller .indic'ates the ovérshdot(less than
5.6%) while Pl controller indicates the ovefshoot'approxfmately 28.1% WHiﬁh is
much greater than 5.6%. ANN controller also improves the delay time by 08s.

} For headbox level control analysis, it is .cléar' that_ ANN control_ler decreases the
~ _oVershoOt. Thé delay time and settling time for A'NN controller a_(é '2.1s 'an,d' iOs _

‘ respecti\_/ely while PID controller presents the delay time and'settlin.g timé of the
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order of 3s and 12s respectively, which are greater than ANN oontroller:time.
- Statistical data amply claril’res that the ANN controller can olve quick response. |

In case ‘of.pH controller desi'gn and analysis, it is found that the p‘erformances of
"both the controllers, namely conventional as well as ANN are the same. Therefore
any one can be used for pH con}trol.: | | |

In case of temperature ‘control,'th‘e tour controllers namely PlD, lVlLF-’,"D'LF/A\NN,
:and MFL_ANN have been tested using simulation tests for a_nalyzlng their ability to
-track varying set point, reject or recover from distdrbances and perform under
variable delay or d’ead‘tlmes. MLP. and DLFANN cont_'rollersglve ’comp'arable
: yaltjes. Therefore either design can beused. | |
_Comparison between PID, ANN and lvlillidata of basis weight shovys that the error
s |s minimized with the help of ANN controller. The error goal (0.0001), mean ,squ.are

| _error'. MSE.(9.99997e-005/0.0601), and gradient (3.245'14é-005/1é-01"0) m'e_et.at

‘111164‘iterations. Thus ‘ANN controller removed 0vershoot:and, had better
‘performance than conventional (PI) controller. | | |
From the analysis of re.sponses of digltal basis weight control a'nd -on. oomparlson
of three ANN methodologles such as BPNN LM and the gradrent descent
‘ technrque the latter is found to be best swtable
For MIMO (TISO) systems on comparrng it is found that three types of ANN
taxonomy namely, perceptron ‘back propagation and adaptrve resonance
theory(ART). The. minimum error is found of the order of 0. 0002 durrng tramrng in
case of usrng back propagatron methodology For SISO system using perceptron
neural network The minimum error was found of the order of 0. 10 whereas the

“same for back propagation was 0.05. In case of BPNN also, the data i is cl_osely
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tallied with actual data. Therefore, BPNN: is the best ANN for designing coﬁtrol

system with sigmoid function fo‘r hééd box control of péper mill compared to. other
taxonomiés.

e In caée of air pressure (Pheaq) and Ievél (Lhead) d‘ata. anétysis, when relative _clhange

in dpe‘ning of inlet valve ¢4, 11=0, the pressure has been increased but level of the

‘headbox is dépreased. When relative change in opening of inlet vé_lvé Cs, M5=0, the

pressure has been decreased but level of. the headbox is increased. The max.imum'

| number 6f ANN controller data tallied with the simulated data Awith'rhinimum.delléy |

time. ANN controller response reaqhed iﬁmediately at steady state.

e ANN _controller error goal performance is met at 115830 epochs. In case of ANN -
c.ontroller,. thle ‘delay time for .stock.ﬂ_o'w résbohs'e ié found to be less than PID
_cohtrdller r_esponsé time. All model dafa and ANN d,ata' are blosely tallied with each
othéf.v'ANN‘co_ntrollevr error Qoal perform_ahce is mef at 101 epochs. All model‘ dat.a :

~and ANN datéll,are closely tallied with each other.

o ANN controller ‘can,’be vused for bdth SISO and MIMO systems. It takes less time t.o‘
reach at steady state value. Whén artific_ial neural network is Atraiﬁéd"succeésful.ly |
then ANN controller can give precise and ir‘nmediate.action to the ﬁhél_ control
'element which cdrrects the plant Qa'ri_éble. |

o The n_eﬁral network models work well for néniinéar systems where the network
provides clués as to underlying physiéa! phénomeﬁa, eépécially where data’ié the
o‘nly .r.n.ethod qf d‘efinihg} the phenoména.. ' |

o. The ANN confroller is robust in the sen's,e" that the controller is in‘dépendent of a.

| prior_knoWledge of delay time, ahd process dynamics. Generally MIMO systems

are cbmpléx which can be solved by ANN which are trained on data“onlly. There is
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hinimu,m theory required and there are no software bdtﬂenecks.

More detailed inve‘stigaﬁon are required for MIMO system 'when- thefe are
ihte'raction'betvween more than two input and more than two output variablest in
hea.dbox these types of interéction' exemplify total head, stock flow and wire speed.
Robust design,resiliency and’ sensif{ivity analysis with .s,'uitable MIMO  tuning
. _meth-odology should be -attempfed. | |
All the parameters for control iﬁ headbox should be_ analysed u_sing ztransforms
for digital control system and suitable method for s’}tabi_lity"'c‘riterion_fdr‘ discrete data
‘system must be used. |

Most of the problerﬁs in Wet end paper macﬁine are either fee.d" forWard_ t'y'pe‘.or
' i_thlves mUItiIoop-co’ntroI sfr_ategy. Mu‘_!tilOo;ﬁ systems like féed forward- feedback,
cascade, fatio,.split range etc. mvust'be anélyied. : |
' ‘Many- ANN akchi’(éctur_es such. .arls,RBF, ART2 should-bé used fo‘r‘ compariépn
purpﬁses. .

.Other' N'eﬁro-Fuzzy, Ne»ur.o-GA, Neuro-Fuzzy—GA baséd control systerﬁ may be
attempted. | N |

Other control system based c;n simuléted annealing can alsd bé 'a.ttempted.' -

The ANN models can aléo be applied io examine the effec’; of'coﬁbh fol| -vaéuﬁm,
| pressure applied in the press, steam témperature in th’e'drier, and moisture content

“of paper.
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NOMENCLATURES

Chapter-3
D,=Diameter of pipe
Dy=Diameter of throat of meter
Va=Average upstream velocity
vp=Average down stream velocity
P,, Po=Upstream pressure, down stream pressure
a=Kinetic energy correction factor
Z,= Elevation from datum line
n= Efficiency of pump
W,=Work done by pump
heFriction head(fluid)
g=Acceleration of gravity
v= Jet velocity( also called mean spoutmg velomty)
g =Acceleration of gravity '
H=Head of stock behind the slice
K= Constant . _
Cv= The coefficient of discharge .
A=The cross-sectional area at the vena contracta
As=The area of slice opening
C. =The coefficient of contraction a
Q= Total flow through the head- box(makmg allowance for any header bypass bleed
flows, etc.) .
b=Slice opening
w=Slice width or opening
V= Actual speed of stock from the head-box
w =Width of stock stream flowing on the wire
Cq= The coefficient of volume discharge
Vs=Average velocity under the shce lip
C.=Contraction coefficient
K1 Kz=Unit conversion constants
- S¢=The loss of dry fiber on machine .
C= The consistency of stock supphed on the wirg( depends on the quality of paper
produced) :
~ ms= The mass of over dry fibre
. Sk = The final dryness of paper
g=Grammage '
V= The speed of paper at the pope reel
b.=The width of paper web '
S=Loss of stock on the wire
ds=Cross sectional shrinkage in the dryer
&= Drag coefficient of wire in relation to stock stream .
B=Lag coefficient of wire in relation.to couch rell ‘
w,=Width.of paper web on the pope reel and Width of stock stream ﬂowmg on the wire
Wo= Trimmed width of paper
Z=Trim at the cross cutter
r=Wet end trimming

231



d =The thickness of the jet
- g =Head-hox flow rate -
C,= Orifice coefficient

Chapter:4
T= The training samples. o
€ = The normalized error between the network output and the actual output
l1, I, Iy =Input to input layer-
ay, a;, a =Output from input layer
bs,b;,bm =Output from hidden layer
Cs, Gy, C,=Outputs from output layer
n = Learning rate,
- a= Momentum coefficient;
V= Weight between i/p and hidden layer
-~ W=Weight between hidden layer and o/p layer
- T, Ty, T= Targets
. p= Number of training patterns
E =Total mean square error,.
- &=Gradient descent term
- A= The output of r”‘ logarithmic neuron in the mput Iayer '
B; =The output of i" exponent neuron in the input layer
C; = The output of " j exponent neuron in the output layer .
Di= The output of | logarithmic neuron in the output !ayer
X= Input vector
' uJ Center of a region called a receptive field
= Width of the receptrve field
G,(x) Output of the j™ neuron

CHAPTER 5

= Inlet mass flow rate of thick stock
md = Dilution water flow rate
mo =Thin stock flow rate

= Consistency of thick stock
cyd = Consistency of dilution water
Cyo = Consistency of thin stock
V=Volume of head-box tank
p= Density of thin stock
g=Thick stock volumetric flow rate, mi/p
0o=Thin stock volumetric flow rate, mo/p

- q¢= Dilution water volumetric floe rate my/p,

- G¢ (s) = Transfer function for a PID controller,
Gp(s) = Transfer function for consistency process
K: = Controller - ’

K. =Process gain,

¢ =Integral time gain

(s =Derivative time gain

0 = Time delay in the process.
{ =Process time constant
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V=Total volume of the solution in the flow box

C:=Total concentration of the ith component in the effluent stream

F=Total flow rate of the feed( thick stock, chemicals and white water);

u= Flow rate of the titration stream (acid or base);

Cq=Total concentration of titration stream(acid or base).

u= Flow rate(input) '

x=Concentration(output)

W= Mass of stock in the system

win=Mass of inflowing stock

wou=Mass of out flowing stock

V= The volume of the stock

hs=Heat capacity

Fi, F = Liquid inflow and outflow rates respectwely

us=fan pump control input -

u, = air valve control input

Y;=total head output

Y,= stock level -

mg=Amount of stock present in the flow box

mix=Amount of incoming stock

msu=Amount of outgoing stock:

me=Stock flow through the overflow line -

t=Time

An=Average cross-section area of flow box

hi=hydrostatic pressure

ps=Density of suspension

pa=Density of air .

ui=Relative deviation of level

P=Air-pressure

H=Height of stock to the axis of valve

Ws1=Relative change in the opening of inlet valve

A.=Cross section of valve opening -

- Cgs=Discharge coefﬂcnent

Cs=Inlet valve

P41=Pressure before entering valveC1

P12=Pressure after valve C;

- P'’=Relative change in pressure of air

C,=Slice opening - e

Aip=Cross-sectional area of lip opemng

Ca=Discharge coefficient

Cgs=Discharge coefficient

b=Width of air flow

hs=Height of overflow

Tr=Time constt. For flow box for level of stock in the box

w1, Wo, W3 =load factors ' '

- Kint, Koy Kip K2 p K1vz, K3p, =Constant factors dependtng on the sped of the machme )

me= Amount of stock present in the channel - :

ma« mnn= Corresponding flow of stock in channel
1 of stock
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Acn= Average area of cross-sectional of the channel

hen= Height of stock level in. channel

Vew=Volume of channel ,

Aq=Cross-sectional area of outlet plpe

Tri=Time constt. For flow box stock level in the overflow plpe
W,=Factor depending on uy

M= Amount of air present above the stock level in the flow box
Msup, Mrem=Amount of air supplied and removed from the flow box -
V=volume of air above stock level in the flow box

Acs Ass=Cross-sectional area of overflow valves Cs, Cs

Ks Ke=loss factors

Ps1,Psz=Inlet & Outlet pressure of valve Cs

Ps1,Ps2=Inlet & Outlet pressure of valve Cg

Ta=Time constt. Of flow box for air cushion

W,=Load factor '
Tu1, Twz=Time constt. For turbulence in the channel dependmg on Uy, Uz
y(k) =The retention value at sample value at sample number k,
Kret =Machine-dependent constant

- Cww = Consistency white water

Cug = Consistency in head box

1= Retention

- Fg=Thick stock flow

Cis=Thick stock consistency

Ye=Thick stock fines content
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APPENDICES:

Appendix :-1

Table: 1.1 Transfer Functions

Name Input/Output lcon MATLAB
' Relations Function
" Hard Limit V=0 x<0 . Hardiim
- y=1 x0 J:
Symmetrical Hard Limit 'y=-1 x<0 — Hardlims
o ' y=+1 x20 :|'_‘ , :
Linear Y=x | - "Purélin
Sattura’zing~ Linear y =0 x<0 - Satlin
y=x 0=x=1 ' ‘
y=0 x>1 [ .
Sym‘me‘tric Saturating y=-1 x<-1 4 Satlins
~ Linear y=n -1sx<1
- y=1 x>1 15l
~ Log-Sigmoid- y= 1 o Logsig -
Hyperbolic Tangent y= e-e* — ‘Tan’s‘ig
- Sigmoid ete™ - 7[ - .
‘Positive Linear yv= 0 x<0 : Poslin
y=x 0=x -/ ‘
'Co‘m,petiti‘ve y =1 neuron with max n

y =0 all other neurons

@)

Compet
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Table: 3.1 Typical Control Loop Dynamics (Nancy)

| Typical sensors/Typical Parameters

Time constant

Fast beta gauge ~20ms
Slow beta gauge 100ms
Pressure, flow 1sec.
. Fast Consistency 3sec.
Slow Consistency 10sec.
Slow temperature 20sec. -
Fast temperature 8 sec.
Total head 1.0sec.(process), 3.0sec.(closed loop)
Fan pump speed . 0.1sec.(process), 0.3(closed loop)
Basis weight - 1.0min.(process), 3.0min.(closed loop)
Level

1.0min.(standpipe); 1hour(chest)

Table: 3.2 Measuring devices énd their characteristics

Parameters and Static/Dynamic models/ «| . Comments
Measuring devices Dynamic characteristics -
Temperature - Co .
' Bridge measurement,

RTD R=Ry(1+at);

Thermistor - R=R, !PT} - |
: ' Sensitivity of 0:1 Q/ Q/°C (or 30 mV /°C) are | industry where shock

possible.

Sensitivity ( Pt):=0.00385Q/ Q°C( Germany |_Multiplexing essential
Practice) to 0.00392 Q/ Q/°C ( US practice) - ' ‘
(Ni): 0.005/°C at room temperature
Range :- 100 to + 600 °C( or 900 °C with -
ceramic materials), time constt.=0.2 to 0.5s
in flowing water, 2 to 5s in air

Widely used in.

and vibration occur,

Time constant for uncoated thermistor): 10 | for dynamic temp.

measurement
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~ Thermocouple

Flow.
Variable head meter
Variable area meter
Electromagnétic flow meter

s( air) and 1.0 s'in water.

Coating with Teflon will increase the values
by 2.5 times and above.

Range:-50 °C to +150°C,

time constt.=1s(water),10s(in air)for
uncoated thermistor; time constt.=25s in
air, 10s in water for coated with teflon

E=aT+bT*
For J type with reference temperature of

|0°C, sensitivity: 0.0515 mV/°C( 50uV/°C)

for range of 0°C to 760°C, accuracy of 0.1
c .
The response time can be less than 0.1 s(
0.2t00.5) -
Second order transfer function;

For J type thermocouple, time contt.=0.05s
fo 1s in air; sensitivity=0.0515mv/,
response time=51 Buvlc(iron-constantan)
(T)response time=40pvl°c(Cu-constantan)
(K)response time=40pv/°c(chromel-alumel)'
(E)responsefime=62uvl°c(chrome|-
constantan) -

Outpuit value= b(t)=bi+(bf-bi)(1-e™); -

" Response tinle= ms

Time constant of the order of 0.05

~$(0.025mm wire) and 1 $(0.125mm wire) in

still air .

Remote indiéation, For
special purpose where
high - sensitivity is

| needed

No moving part
Direct visual indication
No obstruction in the
flow line of meter fluid

Glass electrode is

‘quite adequate for pH |

pH meter

Tranfer Function( G)=
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Pressure
"~ Manometer

. Strain gauge

Mc-leod.
Gauge
Bourdon tube gauge

Level
beta'and gamma ray

Differential pressure. devices

-Consistency
" Mechanical
Rod sensor
- Rotor sensor
Optical sensor
Microwave sensor
N(R.consistency analyzer

“Basis weight
Beta gauge

T.F=1/({ s+1) or second order. 1/({°s"

+2§é§s+1 o
/(2165+ )2 95+1)2.15+1)

Qact'cd k(ah)®

Fast dynamics

Qad‘c({sAl‘Af)(Z/g\) {§1 (Arhy)

M f P,
ﬂOW" pdogf P

E= [ABQ/d]* 10°®

2 / A‘.ZI

pH =log(1/hydrogen ion conc.)

H=(P4-P,)/pg

Second order

(S RYRER))

Useful resistance=120 Q(range 60-1000Q)

Gauge factor=2 for metals and 50 to ~ |

200( semi conductor) -

Sensitivity of metallic strain gauge-m6 ’

stram .
P=AyN-AY

=, &%

U= Joe™He

Response time 1.0 sec.

Dead time 6 fo 105 and total stabilizing time
155 .

measurement upto
9.0

Static pressure

~ Low pressure

Covers  very. high

pressure ranges

For solid and liquid
level measurement
For remote indication,
only for fiquid level

Least affected by the
flow variation

- Suited for single fiber
| slurry application, not
“| sensitive

fo normal |’
fiow. '

‘Obtained by bump test |
| for - consistency  of |

steady state value 3.1
t0 2.9%

For fast basis weight |-
control

252




_ Table: 5.1 ANN parameters for designing:ANN controller for the case of air =
pressure and level

253

ANN parameters V4{Lheao) P1(Pheza) P2 (Pread)
.Input nodes 2.0 2.0 2.0
Hidden nodes 5.0 5.0 5.0
Output nodes. 1.0 1.0 - 1.0

Activation function - Tansig Tansig . Tansig

Algorithm Gradient descent | Gradientdescent | Gradient descent
~ Table:5.2 Process dynamics
Parameters Time _ Proéess gain . Process trahs.fer‘func.tions
' constt. :
Cohsistency 14=6.84s | K,=-2.035 Gy -0.2.035¢°%/(3.84s +1)
o ,=3.84s - ' 584 L
o K,= -0.0407 Gp=-0.0407e™""/(3.84s +1)
For Atuning=15s 5 _
.- . : - \-Bdsy/ 4
{1,108 K,=0.03 Gp ,0'038_ /(1+1OS) |
, =-0.0625¢>%/(1+5
14=5,10,20s | K= -0.0625 Gp=-0.0625¢7(1+5s)
Tp=58 | | For fine consistency
o Kp=0.042 o
Tp=3s, - For hardwood consistency -
T¢=3s K,=0.0625 . -
Tp=5s, :
| 14=5s
Flow | Tpipe=0.50 Kp=1..5.. ' AAGp(s')=1'. 5/ (0.5s+1)(0.8+1)'(23‘+1)
1 1,=0.8s ‘ : : o
Tm=28
1,248 Gy(s)=1. 5/' @ 4s+1)
o o Go(s)=K,e™® /(1 5+1)
7,=8.0s Ko=4.0 Gy(s)=4.0/(1+8.0s)
=10.0s | Ky=24.0 Gp(s)=24.0/ (0. 53+1)(8s+1)(23+1)
o ' for hard wood - :
1p=5.08 Ko=23.4 Gy(s)=23. 4/(0 04s+1)(1 Os+1)(4 Os |
for pine flow
| Total head | Ky=1,  Current regulator&motorspeed
» - | 1=0:2s are assumed flrst order
, Ti=0.2, '
A=O.4s




Tr=1.0s; |
closed loop
T =2-3s
k,=1.05, T
| =3s ' o
) . . Gp(S)=er.es /S .
Level | 14=10s K,=0.00449 Gp(5)=0.00449¢"% /
Toce=10s; K,=0.00167 Gp(s)= 0.00167/s (10s+1)(5s+1) .
T,=58 K=1.0 Ge(s)= 0.0167/s (60s+1)
1=60s; | Go(s)=-1.6(1-0.5s)/s(3s+1)
K,=0.005 Gp(s)=0.005/s
- K=0.1 Gy(s)=0.1€™ /s
T=20s K,=0.0025 Gp(s)= 0.0025/s (20.0s+1)
~ pH Ko=5.67 Gy(s)= 5.67e"°%/(1.85+1)
- T,=1.88 ' o
1¢=19.9s
Harriott(52) | Kp=0.8 Gp(s)=0.820%/(1.55+1)
: : | 1¢=0.2min T
T,=1.5min '
Tm=0.05min Gm(s)=1/(0.05s+1)
Kp=6.4 Gp(s)=6.4e"%/(1.55+1)
T4=0.2min _
To=1.5min _ ‘
Tm=0.05min - Gm(s)=1/(0.05s+1).
N Gp(s)=Kp & “ “/(1+ {15)( 1+ {28)
~ Temp | 14=20s, Kp = Gp(s) =5¢™/(1+8s) (1+20s)
. . T2=8_3' _. . ‘ . ’
1d =4s; Kp=125" Gp(s) = 1.25¢"™/(1+65)(1+30s) -
| 14 =6, Kp =0.6 Gp(s) =0.6e"*/(1+20s) (1+5s)
| 12=30s Gp(s) =0.131(2.57s+1)/s(0.23s#1) |
1 14 =10s; Gp(s) =15.3(0.23s+1)/(2.57s+1)
11 =20s, First order system without dead
1=5s time Gp(s) =20/(40.2s+1)
Tq =58; Orfirstorder=k/ (1s+1)
Basis 1=10s Y(s)=[0.55¢™/(7 5s+1)Ju(s) .
weight K=0.0056 o
| = Y(s)=[0.40e"%/(8.0s+1)]u(s)
-1 0.021min. x :
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Table: 5.3 Z-N tuning equations

' Contrbiler, type

Proportional gain Integral gain - Derivative gain
Proportional | R R — [ — '
Pl 0.9k’ Ke/3.33T7 | memmeeee-
PID: 0.9/k[1/TT” 17201 1/2.0

Table: 5.4 A-tuning equations for interactive 'a_lg_ori‘thms -

Process médel Ke , K K; Td
Kf(1+18) KA 60/ 1 --
Koe-"®/(1+1s) T/KP()\+6d)‘ 60/1 -
Koo (T s) TIM642) | 60T 8120
| 'Kp e"*/(1+411'5) (1414 5) T IKo(A+83) '_ 60/ 14 T./60
Kofs 2K A 307A
Kre-"fs. (2 A+ Bg) / Ko(A+8g)° | B60/(2 A+ B4) -
Table: 5.5 Dynamic parameters fort'érhperat_q‘ré |
Process - Kp Cp1(s) | Cpa(s) | .Cu(s) | =
First order 200 | 402 | —m— | — | —m
" First order with delay 10 | 1212 2376
‘Two first order are joined in series | 1.0 A 10.0 9.0 |~ | 1.06 ‘,
‘Two first order are joined in series 5.0 - 8.0 20.0 4.0 1.1 -
With delay - ‘ I
“Second orderwith delay | 50 | 80 | 50 | 40 | 102
' ' : 125 6.0 300, 100 | 1.3
06 20.0 50 | 50 |12
Second order 1.0 192 | 048

* The values in the equation of transfer functions are in minutes.

255




| Table: 6.1a Lambda tuning controller response {when A=15sec)

Time(sec.)

' Output response
1.0667 0.3251 '

- 5.0428 0.4370
10.086 0.5344

- 15.031 0.6343 .

~ 20.074 0.7242
25.020 0.7958 -

- 30.083 0.8522
35.009 0.8937
40.051 0.9248 -
45.094 0.9472

© 49,940 0.9626

' Table: 6.1b Lambda tuning controller response (when )\=16$ec)‘ '

— Time(sec.)

Output response -
5.05 041995 -

1011 - 0.5218 -
- 15.04 0.6264

- 20.10 - 0.7208 -

- 25.033 0.7953
30.090 0.8540 -
35.020 0.8965
40.077 0.9282
45,134 0.9501
50.065 0.9660
60.053 . 0.9843
- 69.914 .0.9928

Table: 6.3 Relationship between wire speed and pressure or vacuum appliéd'tq |
o -~ head box eqns. [3.1 - 3.3]

Speed Cy

Total

No. | Spe: “Pump | V=V2gh | C, | Calculated/Actual
of | (m/min) head | operation | (m/min) : ordJw -~
Data | C,=0.98 (m) | V=Vacuum
. | P=Pressure |
1. | 3003 |0083 13208 | P 30324 | 0.99 10098
7. | 31631 |0986| 14478 | P | 31749 | 0893 . 1.0069
3. | 33033 [0.983 ] 16002 P 133378 |0993|  1.0104
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4 [345345]0882] 17556 | P 34931 [0993] 101148
5| 3603 |0982] 19050 P | 3418 | 0893 101060
6. [375.375| 0085 20574 | P 37847 | 0893 |  1.0082
739030 098 | 22088 | P | 36224 | 093 1004
8. |405405]0.987 | 23876 | P | 407.71 | 0993 "1._6056
9. |420420| 105 | 25654 | P 422.62}» | 0-993 "1_.0.052
0. |435435 | 0.985 | 27686 | P | 439.04 | 0093 |  1.0082

11. [450.450 0.983.2.97_148 TP | 45486 |0993] 10067
12. |465465 | 0.988 | 3.1446 | P | 467.90 | 0993  1.0052
T3 [ 48048 0664 33782| P | 48487 | 0993 70093

[ 74 455495 | 0885 | 35674 | P | 48934 | 0,963 1.0078
75 [510510(0084| 38T | P | 57503 [09%3 1.0088

AppendiX'-z

MATLAB PROG RAMS

- 11 Consustency S|mulat|on program:.

~ %Author: Rajesh Kumar

%To train backpropagation artificial neural network
clear

fid=fopen(rajesh.txt','w');

maxerr=1.0;

saveerr=1.0;

b=1;

in=input('Enter number of Input Nodes: ');
ih=input('Enter number of hidden Nodes: ');
io=input('Enter number of output Nodes: '),
sgerr=0;

v=rand(ih,in);

w=rand(io, h); :

alpha=input('Enter alpha: ');

' ~ learn=input('Enter Learning rate: '),

tri=input('Enter Number of Training Sets )
- disp(‘Enter Inputs: '),

for t=1:tri :

fori=1:in ‘

©imat(t,i, 1)=input(");

257




end = '
dlsp(EnterOutputs );
fori=1:io
- omat(t,i,1)=input("); .
end :
end
imaxx=max(imat);
omaxx=max(omat};
imax=max(imaxx):
omax=max(omaxx);
inii=imat/imax;
~ toi=omat/omax;
o
fprintf(fid, 'Initiat Weights randomly generated )
forintf(fid,"\n");
-~ fprintf(fid,'Weights(in->hid): );
fprintf(fid,'%f ',v);
fprintf(fid,\n");
~ fprintf(fid,'Weights(hid->out): );
fprintf(fid,'%f ', w);
hold on;
Back propagatnon algorithm ..
e ( program as descrlbed in2.1, appendlx-Z)- -
disp('See the Weights in out.txt!!");
if(b==1)
disp('Enter inputs to the trained Neural Network: '),
. fori=t:in
ti(i,1)=input(");
tini(i, 1)=ti(i, 1)/|max
-end
tinh=v*tini;
fori=1:ih
 touth(i, 1)=1/(1+(exp(-tinh(i,1)*alpha))); .
end '
tino=w*touth;
disp('The Outputs from the tramed Neural Network: ");
for i=1:i0
“touto(i,1)= 1/(1+(exp(—tmo(l 1)*alpha)));
- plot(j,touto); '
fprintf('%f ' touto(|,1) omax);
© end :
- fprintf(\n"); -
end
save w2 w;
saveV2v,
hold off,
folose(fid);

- % Consistency plot’
t=0:.01:10; . '
y=(1-.3915*exp(- 6856"t)+.3337*exp(- 1037*t) 9423%exp(. 0484*t))
~ plot(t.y).grid _

%t=55;

% conversion for continuous to discrete(Pl) v

a=tf({0 -39.45 10.46 .809],{209.67 76.46 26.28 .809));
>>b=c2d(a,2.5) -
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 >>step(a,~',b,-~);grid
% conversion for continuous to dlscrete(PID)
a=tf([-7.86-.97 .616 .1],[5.27 6.28 1.616 11)
- b=c2d(a,2.5),
step(a,-',b,--");grid

1. 2]Tram1ng program for consxstency ,
net=newff([.5967 1,.6 .6],[10 1].{ IogS|g' 'IOQSIg |3 'traingd
net.trainparam. show—100

net.trainparam.ir=6;

net.trainparam.epochs=80000;
net.trainparam.goal=1e-5;

p=[.6019 .6 .6 .6 .5976 .6043 .6066 .606 .6043 6024 6007 .5995 .5984 5978 5973 5971
5969 .5968 .5967 .5967,6 .6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6
t-[6.6.66666.666.6.66.666.6.6.6.6]

net=train(net,p;t);
a=sim(net,p);
gensim{net,.001);

[2.1] %Training for flow control
%To train Artificial Neural Network
clear
- fid=fopen('dpt.text,'w'); '
% C=[B1 B2 B3]; where B1=B(;,1)./max;
% B2=B(:,2)./max; BS=B(' 3)./max;
load Sise2;
load F; % column of set points for different wire speed
net=newff([. 58824 1; .34667 1],[6 1], {tanSIg' ’tan5|g } 'tra:ngdx)
in=2;
ih=6;
io=1; .
v=rand(ih,in);
w=rand(io,ih);
alpha=.6;
learn=.4;
- tri=14; : 4
iniii=Sis02(12:25,1:2); % inputs from matrix B(training sets, input+output)
toii=Sis02(12:25 3) % output from matrix B,coulon depends on no of outputs
- inii1=iniii(;,1); ' » T :
inii2=iniii(:,2);
inii=[inii1 inii2];
toi=toii(:, 1);
epoch=1;
"fpnntf(fld Initial Weights randomly generated )
fprintf(fid,\n");
fprintf(fid, 'Welghts(ln->lh) v
fprintf(fid, %f ',v);
forintf(fid,"\n");
forintf(fid,'Weights(ih->io): ;
forintf(fid, %f '.w); -
as algorithm.....
[2.2]% for testing
clear
in=2; .
ih=6;
io=1:
load v1;
~ad wi;

259



alpha=.5;
tini=[70/77.5;20/20];
tinh=v*tini;
for i=1:ih :
touth(i,1)=1/(1+(exp(-tinh(i,1)*alpha)));
- end
tino=w*touth; -
fori=1:io
touto(i,1)=1/(1+(exp(-tino(i,1)" alpha)))
tact=touto*18.875; ,
fprintf('%f ',tact);
end
- fprintf('\n');

 [31% Total head program

load nancyt;
“load nancyhead;
load nancyspeed;
net=newff([.0000 1.0000],[8 1], {tansng' 'tansng} 'tralngd)
net.trainparam.show=100;
net.trainparam.ir=0.6;
net trainparam.epochs=1500;
- net.trainparam.goal=1e-3;
b
t=a’,
net=train(net,p,t);
genSIm(net .001)
% conversion of continuous to dlscrete '
a=tf({0 0 0 70.09 6307.88 56070] [425 41. 8 1538.5.14520.09 26307.88 56070]);
b=c2d(a,2.5);
step(a,-',b,'--"),grid
[4]1 % Stock level program
load fevelin;
' load lavelout;
load levelref;
net=newff([1.0000 1.0000;0.0000 1.0000],[3 1] {tansng' 'tansig'}, traingd";
net.trainparam.show=100;
net trainparam.ir=0.1;
net.trainparam.epochs=15000;
net.trainparam. goal =1.5e-3;
a=r,
in=lo";
p‘=[a;i'n];
t=Ii",
net=train{net,p,t);
gensim(net .001);
- % conversion of continuous to dlscrete
=tf([0 1.[.2 1]);
b=c2d(a,.01);
>> step(a,-',b,"--")

[5] %Training for pH
load phtar;
net=newff([7 7;0 7],[12 1],{'logsig’, logsig’}, tralngd)
net.trainparam.show=100;
net trainparam.Ir=.6;
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net.trainparam.epochs=80000;

net.trainparam.goal=3e-4;

p=(777777777777771777777777717777777777777777777777

7777777777777,0000.0002.0010 .0052 .0262 .1306 .6482 2.0510 3.2034

. 4.3425 5.1927 5.8555 6.3522 6.7085 6.9510 7.1048 7.1921-7.2315 7.2384 7.2246 7.1991
7.1683 7.1365 7.1065 7.0798 7.0573 7.0391 7.0248 7.0141 7.0064 7.0012 6.9978 6.9959

'6.9951 6.9949 6.9952 6.9957 6.9964 6.9971 6.9977 6. 9983 6.9988 6.9992 6.9995 6.9997
89990777777 7T777)
t1=target;

t=t1",

net-traln(net po);

a=sim{net,p);

gensim(net,.001);

‘% conversion of continuous to discrete
=t{[0 71,[15 1]);

b=c2d(a,1);

step(a,'—',b -)grid

% conversion of contmuous to dlscrete for temperature
a=tf([0 40],[-2 1]); :
.b=c2d(a,.01);

>> step(a,-,b,"--');grid

[6] Basis weight general program
% conversion of continuous to discrete
.a=tf({0 .55],[7.5 1}, mputdelay 8);
>>b=¢2d(a,2.5)
(i) Transfer function:
10.0007328
zM(-800) * ~---m-mmm-
z-0.9987 .
Sampling time: 2.5

(i) Transfer function:
0.1074
ZMA4) ¥ -
z-0.7316

Sampling time: 2.5
>>step(a"b' -y

[71] % Total head and stock IeveI(BPNN) Trammg

- load Sis02; % n=[n1 n2 n3 n4]; n1 n2(fan pump input and air valve input)
% are the inputs and n3 n4 (total head and stock level)are outputs:
fid=fopen('rajesh.txt 'w)

maxerr=.001;

saveerr=.001;

b=1;

in=1;

th=2;

io=1;

sqerr=0;

v=rand(ih,in);

w=rand(io,ih);

alpha=.9;

Im=.8; -

© tri=14,

|mat-S|502(12 25 775,
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omat=Sis02(12;25,3)/18.875;
imaxx=max{imat);
omaxx=max(omat);
imax=max(imaxx);
omax=max(omaxx);

- inii=imat/imax;
toi=omat/omax;

=1 '
Back-propagahon algonthm(as 2.1 program)

[7 2] % For testmg
in=1,
ih=2;
io=1;
v=[1.7301;-2.3953];
w=[4.0942 -14.3059];
alpha=.9;
tin=.8;
thidden=v*tin;
fori=1:ih
(i, 1)= 1/(1+(exp(-th|dden(11) alpha)))
end ,
tinn=witt;
disp('The Outputs from the tralned Neural Network -
fori=1:io
oufput(i,1)= 1/(1+(exp(-tinn(i,1)*alpha))); -
- actual=output;
fprintf(‘%f',actual);
end :
% conversion of continuous to dlscrete (y1 1) :
a=tf({0 .528],[2.2 1], mputdelay B);
>> b=c2d(a,2.5);

Tra:nsfer_ function:-

0.002395

z(-600) * --oreeer
Z-09955

Sampling time: 2.5
>>'step(a,-' b, ~");grid
% conversion of continuous fo discrete (y12)
a=tf([1.28 2.2016 5161] [11.84.616]);
" b=c2d(a,1);
Transfer function:
1.28z¢2-2.538 z + 1.258

zh2-1.982z +0.9818
Sampling time: 1
step(a,-',b,'-+");grid

[7.3] % Cluster discovery (ART1 Program)
m=input('enter maxm number of clusters Bk
rho=0.7; :

L=[2]; % initialize parameter

%bottom up weights(from F1 to F2)

b=[.67 0.0 2;0.0 0.0.2;0.0 0.0.2;0.0 .67 2],

% top down weights( from F2 to F1)
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t=[1000,0001;1111];
s=[0011]);
g=sum(s);
c=[00 1 1}
x=c';
asb -
* %net input to each node in F2
y=a'x;
“%if reset is true then we take largest term of y say y1 or y2 ory3
% 2 for y2 has highest value
t1=4(2,:);
2=t1".
h=s*2;
u=hfg;
if u>=rho
delb=b
delt=t
refurn

% the value of u is greater than rho $0 weights are remain same

% if u is less than rho, so y2 is set to-1.0,and other y1 y3 are as same as calculated reset
is true -

% s0y3is greater then t3=11 1

~ else

2= t(3,:); :

t3=t2",

'-h-s*t3

u=h/q ; % u is greater than rho so’update weights are
db={(L*x)/(L-1+h)]; % this is the third column of b
delb=b(:,1:2); ' .
ddelb=[delb db]

end

[8] % Air pressure and IeveI(Rho, Neu) training
[8.1]load neuinnorm1;
load neuoutnorm?;
load neuret;
net=newff([1.0000 1.0000;.0001 .8291],[5 1], {tan31g' ‘purelin‘},'traingd’);
net.trainparam.show=100;
net.trainparam.ir=0.01; .
net.trainparam.epochs=350000;
net. tralnparam goal=1.5e-4;
tl
" in=a3"
p=[r;in;-
‘t=ad";
net=train(net,p.t);
gensim(net,.001);
B2
load rhoout1;
load rhoin1;
foad rhot1: R
‘net=newff([1.0000 1.0000;.0003 .0011],[5 1],{tansig','purelin’}, traingd");
net trainparam.show=100; : ‘
net.trainparam.ir=0.05;
net.trainparam:epochs= 35000
net.trainparam.goal=1.0e-4;
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p=[1111111111;.0003.001.0002.0011.0002 .0011 .0003 .0004 .0008 .0008];
t=[.0604 .9589 .9578 .9564 .9555 .9543 9517 9435 .9616 .9644];
net=train(net,p,t);

gensim(net,. 001)

[8.3]

load rhoout2;

load rhoin2;

load rhot2;

net=newff([1. 0000 1:0000;-1.0000 . 1435],[5 1]{tansug‘ ‘purelin'},'traingd");
net.frainparam.show=100; »

net.trainparam.ir=0.01;

net.trainparam.epochs=150000;

net.trainparam. goa!—5 Oe-4;

m=l;

Cins=j

p=({m;in};

=K

net=train(net,p,t);

gensim(net,.001);

[8] % Stock flow and stock level control Training
%To train Artificial Neural Network -
_ Clear
fid=fopen('m.txt,'w'):

load ref, % tcon.mat means input cons:stency

load stocklevel;

in=1;

ih=3;

io=1; :

v=rand(ih,in);
w=rand(io,ih);

alpha=.9;

learn=.6;
- ri=61;

imat=tnorm; % inputs from matrix B(trainmg sets mput+output)
omat=y2; % output from matrix B,coulon depends on no-of outputs
imaxx=max(imat);

omaxx=max(omat);

imax=max(imaxx);

omax=max(omaxx);

inii=imat/imax; .

toi=omat/omax;

-epoch=1;

...... Backpropagation algorithm(as program 2.1).‘_. .

[10] % Retentlon training :

As described in program 2.1, appendlx-z but values of data has been changed accordmg :

to retention process.

% conversion of continuous to discrete

a=tf([1.28 2.2016 .5161],[1 1.84 .616));
>> bh=c2d(a,1);

Transfer function:
1.28 22 - 2538z +1.258

772 -1.9827 + 0.9818
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Ap_pendix:-3

1. Static model for total pressure and stock level (hydrostatic head) in all kind of
headboxes:

Let P, p, V, f, |, D, v, m, g and h refer to pressure density, specific volume, friction factor,

Iength drameter velocrty mass, stock height and acceleration due to gravrty respectively,

then the following static models can be written as

Potential energy due to stock head=mgh

Potential energy due to pressure =P/p= PV

Kinetic energy=mv?/2

Loss due to friction= 2flv¥/gD

(a)ln order to get required jet speed and stock from the slice, static energy is converted
into krnetrc energy,

mgh=mv?/2 o or _ v=v2gh
- (b)If pressure energy is converted in to kinetic energy(K.E),then
PV=mv?2

{¢)If both combrned static energy & pressure energy are converted to K.E one can write
mgh+PV=mv4/2 -

The above equatrons are applied to three types of headboxes as under

[A] Open headbox:.

‘Actual flow speed of stock, Vm<V, due to friction in the slrce Irp and flow resrstance
through the baffles & perforated rolls.

If Vs, Vy, refer to wire speed and nominal speed of machine(dryer part) respectrvely
Vs<Vn

d=discharge coefficient depending on actual speed of stock on the wire in relatlon to the
theoretical speed

0=V ' . : ‘ [1]
. Lag factor of stock €=V/V=0.90-0.95 ‘ 2]
¥, lag factor of wire speed in relation to nominal speed of the machrne :
W=VN, A . 3]
Putting the value of Vs in eqn.[3], one ¢an get - '
EWYV =0V -

Orvn OV/E W = OV2gh/E W
Or V2= (0/€ W)? 2gh ‘
Hydrostatic head, h= (Vo2129) (€ W/ q>)

[B] Closed headbox(hydraulic headbox):

PV=mv?/2 or v=V (2PV/m) |

P=mv¥2V  (V2)mN or (V¥2) pulV

P=(v¥2)p or v=\2P/ py,

If € WV,= OV |
OrV,= q:wgw or (®/E W) (V2p/ pi) ‘ o

Or P= (€ Y/®)’ (Vn2/2) Piq - | 4]

[Cl Pressurrzed flow box with air cushion: T : ‘ -
mgh+PV= mv?/2 S o [5]
if V=m/ pliq : '
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Putting the value of V', the egn. becomes

or mgh + Pm/ pyg= mv /2

v (2mgh/m)+ (2Pm/ pjgm) = 2gh+2P/ Pig [6]
orv= V(2gh+2P/ pig) =V 2(gh+P/ pye) '
Normal speed of stock flow

¢ YVp= OV

or Vi =(®/¢ W) [ 2(gh+p/ pig)]

From eqn, 2P/ pje= V- 2gh

Or P=[(V- 2gh) piq /2]

Putting the value of P m eqgn.[6], one can get

(€ WIO) (V,12) pig= [ (VE- 26h) piq /2] B Iyl

2. Geometrical desigh of headbox slice:

Flow from a vertical slice:

l , d=Ccb

Fig.A-1 Dimensions for flow from a vertical slice

The primary variables which govern the angle of outflow and contraction. coefficient for .
vertical slice are shown in fig.A-1. The variables are as given below.
where B=Depth of stock at the slice

b= Slice opening

. L=Bottom lip extension

Cc= Geometric ratio

‘d=Thickness of the jet

B=Jetangle
The angle of outflow and the contraction coefflment have been calculated for a vertlcal
slice from the parametric equations :
L/B=(1+c% ) ln( -c/1 +c) (ccos B/ Tr)ln(1+cos B/1-cos B)—c sin 8 oo (8]
b/B=(1-¢%/ mjtan™ (2c1-c %)-(c sin B/ m)In(1+ sin B/1- sin B)+c cos B - [91
in which c=d/B=C.b/B is a geometric ratio related to the contraction coefﬂment C.. These
equations were derived by conformal transformation applicable to ir-rotational flows and
- are presented in a report by Appel D.W et al(4).
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Equations to calculate C; and B:

The following equations have been derived empirically by fitting curves to data calculated
from the parametric equations(71). The various values of the constants ( contractxon
coefficient) are used, shown in table A-1.

Cc=(ap-aiy/1-azy)expl-(as-asy/1-asy)XHas-ary/1-asy) S [10]
Angle of outflow ‘ ‘

B= [(bo+b1x-bay+bay>-baxy+bsxy?)/(1-bey) lexpl(- b7-*-'>z3><*”l¢>9y+b10><Y)/(1 -bey)] [11]
where

x = L/b and y = b/B; and 0<x £5.0; Osy £.95

3. Flow from a 45%lice:
The primary variables which govern the angle of outflow and contraction coefficient for a
45° slice are shown in fig.A-2

T

=Ccb

.’L,

Fig. A2 Dimensions for flos froma Slee
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The angle of outflow and contraction coefficient was calculated from the parametric
equations. :

(eosﬁln[’can(ﬁ/Z)HsmBln[tan(Tr/4 B/2)]+m/2( cosB+smB)+(1+c2/c)(tanh c)
+(1- ¢?/c)(tan”'c)
(cosp- smB)ln[tan(n/8+B/2)]+(cosB+smB)!n[tangTTIS [3/2)]+1TcosB+

L/b=1-2

(1+c%c)(tanh™V2¢/1+c?)+ (1-c¥/c)(tanh” V2e/1-cf)
| [12]
, i ‘ _
Ce=dlb=| (cosp- smﬁgln[tan (/8+R/2) ]+(cosB+smB)In[tan(ﬂf8 B/2)]+ﬂcos[3+
' (1+cc)(tanh™2c/1+6%)+ (1-c¥/c)(tanh™2c/1-c%) .
[13]

In which c=d/B=Cb/B is a geometric ratio related to the contraction coefﬁcxent Cc For the _
case that b/B 0, the equaﬂons can be reduced to

L/b=1-2 cosBlin[tan( B/2)]3‘sinBln[tan(1Tl4-B/2)1+TT/2(cosB+sinB)+2 _ .
1 (cos B-sin B)In[tan(mr/8+R/2)]+ (coS[3+sinB)ln-[tan(rr/S—B/Z)]+ TCOSP+2V2

and , o [14]

: T . |
Ce=d/b= | ' ‘ : . |
-

cos B-sin B)In[tan(1r/8+B/2)]+ (cosB+sinB)In[tan(Tr/8-B/2)]+ Trcos+2v2

151

These equations were ’derlved by applying conformal transformations to ir-rotational ﬂows
and are presented in the report by Appel and Yu. Additional information flows from

nozzles having angles from 10 to 30° presented by Attwood W, et al. The various values
of the constants are used, shown in (tableA-2).

Equations to calculate C; and : , ' . .
- Ce=[(ac-ary/1-azy)exp[-(as-asy/1- “asy)X T+ (8g-ary/1 aay)] 18]

B = [(botbx-bay+bay™baxy+bsxy?)/(1-bey)’] expl(-br-bex+bay+bsoxy)/(1- bsy)l (7]
- where x=L/b and y=b/B and 0sx <5.0; 0y .95

4., Flow from a nozzle(slice) with inclined upper lip:

The primary variables which govern the angle of outflow and contraction coefficient for.a

nozzle with inclined upper lip are shown in fig.A-3. The angle of outflow and contraction

- coefficient were calculated for a nozzle with an inclined upper lip from the parametric
equations. The various values of the constants are used, shown in table 3.
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Fig.A-3 Dimensions for flow from a slice

| | (1<™) (14 cosmBla)| -cB R [18]
L/B=c/m In ' : ’
(1+¢™)  (1- cosmRia) |
_ 2(1+cos mp/a L ' '
bB=(coiminl | +c . - 9]
(1 +CTF/C()2 .

in which ¢=d/B=C.b/B is a geometnc ratio related to the contraction coeﬁ’lment Cc
apphcable for small angles of hps(a less than 10° )

Equations to calculate CcandB:

Ce=[(ag-a1y)/(1-azy)] exp|-x’ (as-a4y/1—asy)]+(ae-a7y/1-asy) [20
- B= [(bo+brx-bay+bsy*-baxy+bsxy*)/(1-bey)*] exp((-b- baX+bsy+b1oXY)/(1 beY)] [21
- where x=L/b and y=b/B and 0sx <5.0: Osy .90

Values of coefﬂCIent to be used( when a =10°% are glven in tableA- 3

Table:A-1 Values of the coefficient to be used( vertical slice)

Ce ] - T B g
A 0.06461 b | 1583
A ' 0.06575 | by 27856
A, | tootez | b | 2359
A 391692 | b 80,84
TR 315442 — 4399
As N7 B S R T
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060597

Ag bs 0.7481
A 0.46721 by 2.008
Asg 0.84737 be 2.981
F 1.11253 be 1.389

b 2.416
Table: A-2 Values of coefficient to be used(45° slice)
Ce »

20 0.07021 by VLK
ar 0.07085 b, 200.9
a 0.97351 b, 1958
as 3.31994 b3 57.71
. 3.22893 bs 293.0
2 095911 bs 9758
35 0.74306 bs 0.7566
ar 0.68406 by 2.222
as 0.93916 bs 2527
F 1.10383 b 1571
. , b1o 1.971

Table:A- 3 Values of coefficient to be used(inclined upper lip)

Ce - ‘ : : -
ap 0.02870 bo 38.14

aq 0.03062 b, 39.56
a, 1.06208 b, 75.27
as 2.90190 ba 3714
as 3.07832 bs - 77.78
as 1.06000 bs 38.23
a6 0.92788 bg 91.86 -
ar 0.98750 by 2.124
ag 1.06449 bs Co2121

F 1.09008 bs 2104

bio 1.947
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Table:A-4 Estimation of theoretical velocity at the slice for eqn.[3.4]

m/min m/min m/min
mmHg mmH,0 Kpa
265.7 30.98 84.85
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