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NOTATIONS

Following notations are generally adopted, unless

stated otherwise in the text. All figures, tables and

equations are numbered in decimal system e.g. 4.5 refers

to 5th figure of fourth chapter. However while refering

to them in text of the same chapter it may be refered to

as '51 for breivity.

A = Area

00 = Coefficient matrix

DO = Strain matrix

b b Super or subscript denoting a quantity
relating to base

00 = Elasticity matrix

QO = Rigidity matrix

E: = Modulus of elasticity

e = Shrinkage strain

{F} s Nodal forces

{fj = Vector of reactive forces,

G = Shear modulus, Second parameter of
generalised foundation model

jgj b Influence field

h = Thickness

H(x) = Hermitian Polynomial

I_,I b Moment of Inertia
x y

OH = Stiffness matrix
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Kc = Fracture toughness

K = Stress intensity factor

k b Modulus of subgrade reaction

/ = Radius of relative stiffness

(M) b Moments

M b Moment

M = Shape functions

0 = Super or subscript for denoting a
quantity relating to overlay

1 w = Active pressure

p = Subgrade reaction

Q = Shear force

1 = Shear stress

r = Radius, radius vector

oo = Stress matrix

t = Temperature

AT = Temperature difference between top and
bottom

{u} = Displacement vector

u,v = Displacement at a point in a continuum

"v*t
= Weighting constants of quadrature rule

w b Deflection

x,y = Global coordinates

z b Distance from neutral plane

a = Coefficient of thermal expansion

P b .Jk7G

Ko'Po b Bessel's functions



E,,n = Local coordinates,

{6} b Nodal displacements

a.. = Coefficient of explicitly integrated
1*J element for (i,j)th term

fe] = Strain components

9 = Temperature

v = Poisson's ratio

{/x} = Curvature

Tjj e Residual Force

ja] = Stress components

e to b Initial strain or stress

x = Shearing stress

Y = Shearing strain
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SYNOPSIS

Detailed finite element analysis with experimental

verification by model tests, have been carried out in

the present study for cement concrete overlays with

cracked or uncracked base slabs, representing subgrade

through several types of foundation models,for understand

ing the behaviour of such pavement systems, and in turn

developing an analytical approach for suggesting design

parameters.

Idealised in plane strain, the analysis initially

reported here is to gain insight into the mechanics of

load-deformation and stress distribution of cracked base

with a fully bonded overlay and an overlay with bond

broken in the neighbourhood of the crack.

Based on plane strain analysis, a formulation

is presented for slabs by numerically integrated

Hermitian plate bending finite elements. Sub-element

concopt is developed to model economically the crack,

non-uniformity in subgrade support and consistent

nodal loads. Capability to assess the stresses and

displacements due to hydro-thermal changes is also

incorporated in the computer program. Several tests

were applied to check the accuracy of the developed

technique and the computer program. Behaviour of

a single slab with a finite crack and a full length
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crack with shear transfer is studied and the results

are verified.

A formulation to modify this program for analysis

of a bonded overlay is then presented to evaluate

stresses and deflections under action of wheel loads,

temperature differential and differential shrinkage.

Analyses of some cases, with and without crack in the

base is reported here to establish the feasibility of

bonded overlays, estimate bond and flexural stresses,

and study the mechanics of stress distribution.

•Reinforced Key Technique', a method to inhibit

the menace of crack reflectance is suggested and its

action is brought out based on this study, the funda

mental principles of fracture mechanics, and the reported

field results.

Similar modification is also formulated and incor

porated to study the behaviour of sound or cracked slabs

having an unbonded Overlay.Comparative behaviour of bonded

and unbonded overlays is studied.

The computer program was further modified to cons

ider the subgrade not only as Winkler model but also

an elastic continuum. Results of non-linear analysig to

consider the subgrade as deformation dependent are presented,

The comparison between Winkler and elastic solid models

is made. An effective method to incorporate the general-

ized foundation model, such as due to Pasternak, is
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suggested and included in the program. A simple proced

ure to estimate the second parameter of the two para

meter foundation model is given.

Statistical evaluation of proposed method is

reported, based on the model tests carried out.

Theory of influence surfaces is included by s

a simple addition in the existing computer program to

evaluate the critical load positions exactly and eco

nomically. It is shown that the same influence sur

face results can also be used to obtain the influence

surfaces for temperature and shrinkage effects for

different temperature distributions at any location in

a pavement slab.

It is also shown that by adopting a modified

procedure, the standard solutions e.g. Westergaard's

equation or Pickett's influence charts can still be used

for stress computations in rigid pavement slabs which

have more than one layer of different properties in

bonded or unbonded conditions. Similarly, a procedure

is also, suggested to correctly evaluate the stresses in

base and overlay due to temperature differential by using

Bradbury's solution in a modified form. Also, a similar

procedure has been suggested for evaluating the shrinkage

stresses. For estimating wheel load stresses in cracked

base, a procedure based on beams on elastic foundation

is suggested.
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It is hoped that the present study would help

in evolving rational design of rigid overlays for

cement concrete pavements incorporating the effects

of wheel loads, temperature and shrinkage with parti

cular emphasis on the conditions of the base-overlay
systems and their interfaces.



CHAPTER

INTRODUCTION

1.1 PRACTICE AND PERFORMANCE OF SOME EARLY CEMENT
CONCRETE ROADS IN INDIA

The first cement concrete pavement laid in India

was probably in 1920(1). This was on the sharp curves of
Nainital-Kathgodam road. The thickness of the pavement

slab, varied from 10 to 15 cm and the mix used was 1:2.3r.

The foundation consisted of good metalled surface. In

1926-27 a small stretch of about yh of a km is also

reported to have been constructed in Uttar Pradesh . The

thickened edge section adopted for this slab was 22.5 - 15 -

22,5 cm using 1«2i*f cement concrete mix. The foundation
again was of good existing metalled section, however, an

insulation layer of 1.25 cm, thickness is reported to have

been provided by spreading sand. It was realised that

use of this thickness was too conservative and therefore,

in a later construction of 1935-37, Uo km long stretch of
Ghaziabad- Bulandshahar road was concreted using 15-10-15 cm
section. Cross sections as thin as 7.5-5-7.5 cm are reported
to have been adopted in 1937 and later on it became aprac
tice to provide auniform thickness of about 10 cm using
proportion of 1,2.*+ cement concrete mix . The foundation

always consisted of well compacted metalled section and the



slabs were directly laid on them. -Such slabs are termed

as bonded concrete pavement slabs in India.

On Bombay-Poona and Bombay-Nasik roads concreted

in 1937, 12.5 cm thick cement concrete slabs are reported

to have been laid on 10 to 15 cm of good consolidated Water

Bound Macadam section. The subgrade had CBR of 2 to 5 per

cent. Each of the two lanes were 3.05 meters wide and the

width of shoulders were 0.6 meter on either side. Though

bonded concrete slabs were used , on certain portions of

the road insulation by using paper was carried out .

The city roads of Hyderabad (1928), Chandni Chowk,

Delhi (1936), Marine Drive, Bombay (1939) and Central Avenue,

Calcutta (19I+O), carrying intensive traffic are some of the

early examples of use of cement concrete for urban roads in

India.

The performance of the concrete roads soon proved

their usefulness and their construction gained pace. Though

the early concrete roads were not designed to any accepted

standards and were initially carrying the then prevailing

wheel loads, they were required to carry heavy traffic. In

case of Bombay- Poona road, for example, which was carryiig

less than 10,000 tonnes per day(2)at the time of their conc-
(M

retmg, had to cater for *K),000 tonnes per day in late 60's.

During this period of 25-30 years, the pavements performed

well, specially looking to the fact that they sustained

varied traffic conditions, both during war and peace and



under heavy, mixed (i.e. pneumatic tyred as well as iron

tyred) traffic.

Thus, the early cement concrete pavements were

having an excellent base, though in certain cases the sub-

grade might have been poor, as the practice was to follow

stage construction. Though they were relatively thin,

they performed well under the prevailing traffic and envir

onmental conditions.

As pointed out above the rapid growth in traffic,

both with regard to number of wheel loads as well as its

size, has given a new dimension to the problems for exist

ing roads. The roads built, mostly in fourth or fifth

decade of this Century, had to carry at the most a five

tonner truck then.

The result of the phenomenal post war and post

independence increase in traffic is reflected in the form

of distress in pavements. To-day, as it stands, most of

the cement concrete roads, which were built of 1«2»*f plain

cement concrete on old metalled surface with thickness rang

ing from 7.5 cm to 13 cm , are distressed to varying degrees

There may be different causes or mechanisms that might have

led to these manifestations e.g., fatigue and environmental

effects, apart from excessive load. The non-uniform support

conditions created by widely existing expansive soils in

India are also known to lead to longitudinal cracking^*6^.



1.2 STRENGTHENING OF EXISTING CONCRETE PAVEMENT

The old cement concrete roads and airfield pavements

mostly need strengthening. If it is already distressed, it

would need strengthening to provide safety and comfort to the

vehicular traffic and also to check further damage to the

road surface. If it is in sound condition, even then it

would need strengthening so that the pavement may cater

for the increasing demand of traffic and so that the adv

antage of its strength can be taken for a longer period of

service. In either case, the answer to the problem is super

imposing another good layer ov r•the existing or ;. This

superimposed layor or tin overlay, may be of cement concrete

or of bituminous mixtures.

1.2.1 Strengthening by Bituminous Overlays

Long term behavioural studies of composite pavements

have been carried out by Reyll and Corkill^ in Canada on

stretches having different cross sections in order to

determine the best section. It has been concluded that

under the test conditions the best section had 8 cm of bitu

minous concrete overlay on a 21cm thick base of unreinforced

cement concrete. It was further observed that a thickness

of upto 10 cm bituminous concrete was insufficient to

bridge the joints, but this did not hamper its riding quality.

(8)Ghosh et. al. found a thin bituminous overlay

upto 2.5 cm to be harmful for existing concrete slab which

requires strengthening, because the temperature differentials



in the slab are found to increase.

It is also shown, on the basis of cost analysis

for Delhi region OJ , that bituminous overlays are unecono

mical . Incidentally, this cost analysis is on the basis

of rates prevalent during pre-petroleum price hike period.

As such the findings have become all the more valid.

It can therefore be said that a bituminous

overlay does not appear to be economical from the point

of view of strengthening a concrete slab, so as to save

it from distress due to increased wheel loads. Even other

wise* for a cracked cement concrete pavement slabj the

bituminous overlay may not be an answer, because in such

a case, the overlay is found to fail again unless it is

unusually thick(7»8'9»10) making the construction further
uneconomical.

1.2.2 Cement Conor-to Overlays

The cement concrete overlays enhance the load

carrying capacity of the base by adding to its rigidity.

There are two basic approaches which govern the construction

of cement concrete overlays. One approach is to provide

a bond between the base and overlay by a suitable bond

ing agent. This is termed as bonded overlay. The other

approach termed as unbonded overlay is the .one in which

a thin seperation layer is provided to inhibit bond between

the base and overlay. In bonded overlays the bond could be



achieved in many ways e.g. by using a. cementing agent

like epoxy resin, giving a neat slurry wash or by acid

treatment. Such constructions have been extensively used

and have shown excellent performance ,12'.

In design method, the overlay thickness is deter

mined by deducting the existing thickness from the requ

ired thickness calculated by standard methods. IRC '

recommends provision of bonded overlays on 'sound' or

'slightly cracked bases, but no allowance is suggested

to account for cracked condition, even though 'slight'.

Controversy also exists regarding the adequacy of bond.

Whereas, it has been found that . ^ the asperities in

base surface develop sufficient bond^1^>1lf,1^»16^ bond
failures in several cases are also reported^11,1" ,even

when the bond strength was high. It is therefore, often

felt that unless some mechanical methods to ensure bond

are adopted, the bond failure is bound to occur and the

bonded overlay can not be recommended ^'. Taneja^1^

reports to have provided shear pegs on cracked bases

constructed in 1969. The performance of overlay is claimed

to be excel1 eht.

Another aspect of bonded overlay is the reappea

rance of base crack on the overlay surface ,12»1^, like

the one in bituminous surfaces. No definite mechanism is
( 12,20,21)

assigned to this manifestation. However, it is believed

that the reflection cracking takes place due to horizontal

and vertical movements of the base slab.



It is also thought that reflection cracking can be

avoided by adopting unbonded construction^ 20' and therefore,
unbonded overlay is recommended on pavement slabs which are

moderately cracked^10'. However, it appears that not many
case studies are available to justify this recommendation.

Besides this, the design methods give an allowance on an

intuitional basis^10>19) in the existing base thicknesses

to account for the cracks. The unbonded overlays are

known to be heavy because of their independent entity. The

cost of efforts required to inhibit bond^21^ gets added up
to the cost of additional concrete to make it even costlier.

A minimum separation course of 5 cm thick bituminous

material is recommended by IRC^10'.

The intermediate category of cement concrete over

lays, known as partially bonded overlays are constructed

on existing base without any special surface treatment

except careful cleaning and washing. Though laboratory

studies indicate sufficient shearing strength to develop

in such cases^ 3,16) ? the required strength is not known.

These overlays are recommended on fairly cracked bases^10^.

Different agencies like, Portland Cement Association, U.S.

Corps of Engineers, etc. have recommended different design

formulae for this case because of the uncertainty of bond

A method suggested for overlays on 'badly cracked

pavements is to completely break it up and lay the overlay
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after broken slab is reseated by heavy rolling^22^. No

special design method is suggested because, probably

such a case only means a stiff elastic foundation. However,

it can be argued that breaking the old slab not only means

additional cost to be incurred on breaking but also loss

of residual strength.

1.3 EXISTING ANALYSIS FOR PAVEMENT SLABS

The existing solutions for the analysis of rigid

pavements can be classed in two categories, depending upon

the foundation model assumed to represent the interaction

of the slab with the subgrade. The model formulated by

Winkler ^ has been adopted by Westergaard^^in his
classical analysis. The other model, in which the subgrade

is treated as an elastic half space has been adopted for
n . t (25,26,27,28,29)

stress analysis by Blot, Pickett, Hogg, Hall, Losberg

and others. Vesic and Saxena^0' observe that treating

the subgrade as elastic half space gives results which

are closer to reality, though values as obtained by

Winkler subgrade model are conservative.

Another distinction between the theories is the

basis of analysis. In those advanced by Westergaard,

Pickett, Hall, Hogg(2lf>26'27>28), the analysis is based
on elastic theory and the design on working stresses. On

the other hand Losberg, Mayerhof ,Ghostr2^1 »32) have

adopted ultimate strength or yield line theories to obtain

ot^



the upper bound limit on loads. Such an analysis might

have better applicability to reinforced concrete slabs

where the loads are of the order sufficient to develop

yielding in reinforcement under the load. It is corrobo

rated by experimental results of Losberg^2^ that for

stresses of the order lesser than these the elastic theory

is valid. Therefore, for the plain cement concrete slabs,

as practised in India, the use of elastic theory seems to

be valid.

One common feature of all these theories is the

assumption of the pavement slab as a uniform, homogeneous

and isotropic layer of infinite extent in horizontal plane

resting on a uniform bed. Deviation from these assumptions

have also been reported. Hudson and Matlock^") have

reported numerical solution of a pavement problem with

actual panel dimensions. In this case the subgrade may

have varying support characteristics at different places

in a panel and there may be a void or a gap. The method

suggested by themVJjy treated the subgrade as a Winkler

model. The discrete element method^) is a variation of

finite difference technique well known for plate problems .

The use of grillage or interconnected beam models has been

usual for solving plate problems(37). in the discrete element
model, as well, the slab is represented by interconnected

beams and bars. The foundation is represented by springs

attached to crossing points of these beams and the wheel
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loads are supposed to be acting as point loads at these

points. This numerical method was extended by Saxena *'

for the subgrade regarded as uniform elastic continuum.

Discrete element method is also extended to solve

the problem of lifting of the slab when acted upon by

wheel loads^9) # Ayyash and Hudson***0^1) modified the
earlier approach of Hudson and Matlock^3) to analyse a

continuously reinforced concrete pavement (CRCP) slab con

taining cracks. Modelling of the crack was based on the

assumption that the stress release has an effect upto a

distance of 30 cm (one foot) and they found that the

moments increased due to the presence of a crack. Findings
(*f2)

of Niu have also been similar . He has given a solution

for the stresses and deflections due to a uniformly distri

buted load in a large slab resting on liquid subgrade and

containing a crack which extends to infinity on both sides.

Moment distribution methods^ -^^ and variational

principles such as those due to Vlasov, Ressiner, Rayleigh-

Ritz or Galerkin have also been adopted for solving the

problems of beams and plates on plastic foundation ' '

1.h THE PROBLEM ASSOCIATED WITH THE ANALYSIS OF RIGID

OVERLAYS FOR PAVEMENT SLABS

There are two distinct cases in which the cement

concrete overlay of any type discussed above need analysis,

one is with uncracked base and the other containing cracks*
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Some methods of analysis are available for the first case,

but there is no report regarding the analysis of overlays

of either type on cracked bases. Numerous field studies

have reported frequent failures of overlays on cracked
(11 1? 17 or\\

base * ' ' however no attempt seems to have been

directed towards studying the mechanics.

In case of bonded overlays, the bond failure is

often reported in overlays well bonded to the base, but

explanations are lacking. The only remedial measures that

appear to have been suggested to prevent failure of overlay

on cracked base in flexure and bond appear to be either

in designing the system as unbonded or in providing rein

forcement. Even in this case how much and where the rein

forcement should be provided is not well known. As regards

unbonded overlays, while not many results of field studies

are available to justify their recommendation, the theore

tical treatment in this regard also lacks. The remedial

measures adopted against bond failure depend mostly on

intuition.

In another method suggested in which the cracked

pavement is broken up and rolled, the controversy again

exists regarding its effectiveness and economy. Since no

method exists to analyse the overlay on cracked pavemert ,

it is not possible to compare the advantages of providing

unbonded overlays vis-a-vis breaking up the old slabs and

reconstructing.
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Even in case of overlays on bases free of dis

tress, the rational methods of analysis and design do

not exist by which distribution of flexural stresses

could he estimated, specially where the elastic proper
ties of base and overlay differ in bonded and unbonded

construction. Rational estimation of interfacial shear
stresses between base and overlay with due regard of

temperature stresses in such pavement systems is also
not possible.

The need therefore is to develop a realistic

method for assessing the stresses and displacements of

a rigid pavement system, which may be of one or more

layers incorporating the following conditions :

(i) The elastic properties and thicknesses of these
layers need not necessarily be same.

(ii) One or more of the layers may possess cracks of
any size anywhere in the system.

(iii) The interface between the layers may he either
bonded or unbonded.

(iv) The thickness of the layers may vary in section
as in case of thickened edge pavement.

(v) Any of the layers may have reinforcement either
in its entire length or in a part of it.

(vi) The subgrade may be regarded as aWinkler model
Hookean model, nonlinear model or generalised



13

foundation model to. account for shear interaction

in case of stiff subgrades.

(vii) The wheel loads should be truly represented and

may act anywhere on the system. It should be

possible to take effect of gear configuration,

(viii) The effects of temperature changes should be given

due cognizance*

1.5 METHOD OF APPROACH

As is true for any problem, the two alternatives

to study the structural response of a system could be

an experimental study or theoretical analysis. Some exper

imental studies on full scale have already been carried

out * . However, there is still need to have studies

specially directed in this direction, with well instru

mented slabs. The outcome may be enlightening and reliable

but the results may have their applications for the narrow

range of experimental conditions, as is the case with

empirical methods. A study based on sound theoretical

analysis and supplemented by experimentation is the best

course.

Nature of the problem as posed above is extre

mely complicated even in its most simplified form. The

boundary conditions are too involved to be incorporated

in any closed or open form general solution. In recent

years, finite element method has emerged as a powerful

technique capable of handling complicated boundary conditions
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It is proposed to adopt this technique for evolv

ing a suitable method for the solution of the present prob

lem. An experimental verification is also intended to

assess the validity of the formulation and its basic

assumptions.

1.6 SCOPE OF THE STUDY

In the second chapter, some of the principles

of the finite element method are described, studying the

various forms and their applicability to the pavement

problem, as the formulation of the intended solution

is based on this.

The third chapter gives a description of basic

studies carried out for some of the models of pavements

in plane strain condition using finite element technique.

The results of this study generate insight into the

mechanics of stress distribution occurring in the vicinity

of the crack. A method of "Reinforced Key Technique"

is proposed to arrest the reflection cracking. The resul

ts of the basic study in third chapter is useful in

formulating an economical model for solving a pavement

system as plate resting on a suitable foundation. The

formulation in detail is described in the fourth chapter

to account for wheel loads, temperature stresses, cracks

in slab etc, as realistically as possible to represent them

through finite element model. .
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The stress analysis of a bounded overlay is

taken up in the fifth chapter, while in the sixth chapter

analysis of unbounded overlays are carried out. Formula*

tion proposed in fourth chapter is modified to solve the

problem of overlays. Flexural and interfacial shearing

stresses are calculated and mechanics of their distribu

tion and role is examined. A simple approach to determine

these stresses rationally in sound base overlay

system is proposed. A simplified procedure based on beams

on elastic foundation theory is also proposed to get an

idea about the magnitude of bond and flexural stresses

in cracked systems.

The seventh chapter includes a detailed study of

the implications of a foundation model "' . .also the

modification necessary in the proposed method is included

for application to cases of Boussinesq type models,

generalized foundation models and the nonlinear cases when

loss of contact with foundation may take place due to wheel

loads or environmental effects.

A comparison of the results of the proposed method

to the observed behaviour of model slabs is shown in the

eighth chapter in order to substantiate the theoretical

formulation.

Realising that influence surfaces are economical

tools for handling complex gear configurations, it is
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attempted to indicate in the ninth chapter how the

method can be applied for generating them.

Finally the conclusions of the study are listed

in the last chapter.



CHAPTER IT

BASIC CONCEPTS OF FTNTTE ELTOTONT METHOD AND Tra
APPLICATION TO PAVEMENT PROBT/KM

2,1 DEVELOPMENT OF FINITE ELEMENT MTCTTrnn

Finite element method can be viewed in different

perspective. Therefore, different authors have traced

its development in different ways. Martin and Carey and
Oden » attribute this development to ancient days
when for measurement of the perimeter of a circle, the
circle was approximated by a polygon. Thus, in those
days attempts were made to determine the value of s by
either an inscribed or a circumscribed polygon and
depending on these either a lower bound or upper
bound values were obtained. Naturally convergence was
achieved by increasing the number of elements i.e., the
sides of the polygon. Thus the view taken is, that the

basis of finite element method is essentially going
from 'Part to Whole*54).

Holland(53) credits Courant(55) as a pioneer in
this field and Zienkiewicz(54) also acknowledges it.
Courant solved the problem of torsion using a method,
which in essence is similar to finite element method,
viewed as based on energy principles. His wrk was

followed by that of Prager and Synge*56^.
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The use of matrix methods for solution of struct

ural engineering problems has been very well known.

Engineers, developed the finite element method viewing
it as another version of matrix method applied to

continuing57'58). However, the credit of giving the
final shape to this method is attributed to Turner,
Clough , Martin and Topp*59^.

There are three types of stiffness approaches in

finite element method. These are based on

(a) displacement variation,
(b) stress variation, and
(c) mixed.

Though the initial application and development

of the finite element method was for plane stress problems,

like plates with in-plane forces, it soon became apparent

that with only a minor changg in material property repre

sentation, based on the theory of elasticity, the same

could serve for plane strain problems as well. Similarly,

development and application of the method to axisymmetric

problems and problems of plate like models, subjected to

out of plane loads, as well as for a three dimensional

general solid followed the logical sequence.

The advancement continued in the direction to

modify the more basic elements like constant strain trian

gles, so as to yield better efficiency, i.e. towards
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developing such elements which will require handling
of less number of equations so as to save on valuable
computer time and space, the desired accuracy remaining
the same. The attempts also continue to have elements
of such shapes as to fit into arbitrary geometry, reduc
ing the approximation and thus increasing the accuracy
and efficiency. This search led to the elements with

(i) improved interpolation functions including
higher order polynomials,

(ii) greater number of nodes and degrees of
freedom per element,

(iii) curved shapes.

2.2 APPLICATION OF THE METHOD

Apart from application to the problem of structural

engineering and elasticity, the finite element method has

been applied to problems like, fluid flow, creep,

fracture, heat flow, electromagnetic fields, nuclear

technology etc. The possibility of its application to

the complex problems in these fields and many others,

which involve nonhomogeneity, nonlinearity and dis

continuity has attributed largely to the popularity of

this method. The adoption of this method in such complex
situations is possible, because the element system,

called finite element mesh, can be so designed as to

accommodate most of these arbitrary variations.
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2.3 BASIC IDEAS

2.3.1 Stiffness

Fundamental to any matrix displacement method

is the determination of the stiffness of the structural

element or the load necessary for a unit displacement.

The concept of 'spring stiffness' can be used to illus

trate this basically.

If there is a bar, with one end fixed and other

free the elongation A is given by

A = K P

where, K = A E/l • stiffness for uniform member of

length 'L1, cross-eectional area 'A' and modulus of

elasticity 'E'.

The determination of the stiffness value 'K' may

not be as straight forward for a two dimensional conti

nuum element as for a single bar element. If an attempt

is made on this basis, then the deformation along the

common boundaries of the adjacent elements may not match,

though they may match at the nodal points at which the

elements are supposed to be connected like members in a

frame work. This may lead to discontinuities, overlaps

and stress concentrations. Therefore, the adjoining

elements must act in unison, in a restricted manner.

As such, a restriction is imposed on the deformation

pattern by prescribing a shape function for each of the

deformations or the degrees of freedom for a node.
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2.3.2 Displacement Variation

This function is such that the displacement at any
point within the element, including the boundaries is

a function of the nodal displacement. These displacement
patterns, known as shape functions, are the kernel of

the method. Their choice greatly affects the efficiency
of the analysis, because they form the foundation for

establishing the necessary algebraic equations. These

functions, which are nothing but an assumed functional

for approximating the exact solution, are usually taken

in the form of polynomials.

If the functional assumed is DO, then for any

element

fu} = DQ{6) ... 2.1

where,

{U} = displacement of any point within the element
boundaries,

[6j = vector of nodal displacements.

As a general rule for interpolation, a higher order

polynomial is a better approximation towards convergence,

but the computation tim increases. Therefore, a compromise

between the two is the rule for obtaining an efficient

mean. Generally the terms contained in th polynomial

are such that following conditions are satisfied.

(i) The rigid body displacements should be realisti
cally permitted.
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(ii) Constant state of strain within the element
should be possible to be represented.

(iii) The compatability of deformations with
adjacent elements at their common boundaries
must hold.

Veubeke* has shown that if the assumed function
al satisfies the above requirements, then the strain

energy of the whole system in the displacement model,

represents the lower bound to the acttel strain energy.

This, in other words, means that the coefficients of

the stiffness matrix as obtained by the variational

principle applicable to the displacement model can be

expected to be numerically a larger value and the obt

ained static influence coefficients smaller than their

true value. However, it has also been shown that by

increasing the total degrees of freedom of the system

the two tend to converge. This result has been verified

for any particular assumed functional by conducting

numerical experimentations. ^4'54^

It may not always be possible to adopt such dis

placement models which fully satisfy all above requirements,

Some times it may be of advantage to use such formulations

which are non-conforming(6l) but then, the bound on the
results can not be guaranteed.
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2.3.3 Strain Displacem nt Relationship

If,

w components of strain at a point which
contributes to internal work,

{€} =

f &
ax

] ay

i ax T &y j

... ^ . t-

the: the individual strain components can be derived

from strain-displacement relationship(62) and then, it is
possible to write from equation 2.1 for a plane strain

problem at any point (x,y) in the el, me nt, with reference
to its local coordinate axes,

|U'i '

N - <

ax

ay
y

ay ax

... (2.3)

- = MW ... (2.4)

The matrix jjQ of equation 2.4 will be of the form
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... (2.5)



-24-

where, the subscript 'a' denotes that the quantities

relate to the nod- 'a' of the plane strain element.

2.3.4 Stress-Strain Relationship

The stresses {o\ at any point (x,y) in the element
can again be written as

W = Mf«) - M(c<>i - C*a) ... 2.6
where Q)] = Elasticity matrix^62K

For- a plane strain case proposed to be analysed in

Chapter III

v

(i=v7 0

Phi _ E(l-v) ) vLD-J " (i+v)(i-2vj" JTT37T x ° ...2.7

2T^};0 o

where,

E = = modulus of elasticity of the continuum,

v = value of its Poisson's ratio,

{e0| = initial strains,
fc0J = initial stresses.

It can therefore be seen that once the nodal displace

ments are known the displacements, strains and stresses

at any point can be determined by using equations 2.1, 2.4

and 2.6 respectively.
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2.3.5 Equilibrium Equations

Th- principle of Virtual Work can be applied.

From equations 2.1 and 2.4

dW = QG d(6j ... 2.8

and d{cj = QQ df6h ... 2.q

The work done by the applied nodal forces {>} during

any virtual displacement dfsf must equal the internal

work due to stresses fc} and distributed loads [pf.
Therefore,

d(6JT[F} = Id[e|T|;ofdv - .fdlujT|.pj dv,

- di'6|T|CBjTfo-]dv - di6lTfCNlT|p{ dv, from
2.8 and 2.9.

Therefore, from equations 2.6 and 2.4,

W =JLBDT&DCBDdvL6[ - ILBDTM(eoldv
+.rcBDTfc0}dv-rcNnT[P(dv ... 2.i0

2.3.6 Nodal Loads

The nodal forces based on work equivalency then

become,

(i) Due to pressure loadings and body fore es

Wp = "fW [Pl'dv ... 2.11



(ii) Due to initial strains like hydro-thermal
strains in cement concrete pavements,
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... 2.12

(iii) Due to initial stresses like those due to excava
tion etc.

W0 " fCBDT(cJdvWav ... 2.13

The stiffness QQ then b-ccmes

eh = .fCB:TD3CB:dv ... 2.14

Determination of proper values of nodal forces is
an important matter, because the loads as have been treated
in the previous article are discrete values. It will
seldom happen that the applied loads will lie on the

nodes itself. One of the obvious possibilities of finding
the nodal loads, is regarding them as static equivalent
of neighbouring loads, lumped at nodes. Such a formulation
is caHed 'lumped nodal load formulation'. Uncertainty
of the bound of the results obtained by lumped nodal loads
is its main defect.

A better approach therefore, is a 'consistent nodal
load formulation' in which work equivalency is the basis
of evaluation rather than static equivalence. Of course,
the loads determined in this fashion must check for
static equivalency also.
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It can be noted here that if the pressure loading

or body forces like pore pressures etc. of a particular

value are acting only on a part of the element, then the

integration needs to be performed only on that part.

2.3.7 Extension from 'Part to Whole'.

The solution of the problem in finite element method

is obtained by combining the solution of its parts. But,

it can be seen that there is no restriction in regarding

the virtual work of a continuum as a sum of the virtual

work of its parts. Further, it is found that on summing

up the individual equilibrium equations for different

regions, like eqn.2.10, the final set of equations ar- in

a banded form, resulting in economy.

The procedure therefore, will be in general to

(i) evaluate element stiffness as per equation 2.14
for each element and form equilibrium equations,

(ii) add all such equations and solve for displace
ments {6},

(iii) determine strains from relation 2.4 and stresses
from equation 2.6.

To evaluate element stiffness efficiently, numeri

cal integration procedure may be resorted to, a note on

which is included in Appendix 2.A.. For adding all equili

brium equations together, it is necessary that the stiff

ness of all the elements must be in the same frame work
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of reference coordinates. Aprocedure for this is
indicated in Appendix 2.B.

If the behaviour of the structure is load depend

ent e.g., loss of contact between the pavement and sub-

grade due to lifting up of the slab caused by wheel

loads or hydro-thermal gradients, then it is necessary

to adopt a procedure similar to that required for solv

ing any non-linear problem.

2.4 ELEMENTS

2.4.1 Nomenclature of Elements

The different element names are based, as per

their class, in different ways, e.g.,

(a) the shapes, such as triangular, rectangular,
quadrilateral, tetrahedral etc.,

(b) degrees of freedom e.g. 8,12, or 16 DOF,

(c) the completeness of their displacement pattern,
e.g., conforming or n on-con forming,

(d) the displacement model used e.g. linear,
para bolic . cubic , and,

(e) the behaviour of the element, e.g., elements
in plane stress, plane strain, axisymmetry,
plate bending elements, joint elements etc.

2.4.2 Choice of Elements

The finite element method is essentially a method

requiring engineering judgement. Therefore, personal skill
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plays a dominant role in picking up a suitable el ment

out of a galaxy of elements, which will best suit a

particular situation. However, certain basic factors can
be that

(i) the geometry of the structure shouldbe adequately
represented by th element mesh, isoparametric
elements can fit in almost any shape* 54\

(ii) the choice will depend on the nature of the
problem e.g., in situations like geotechnical
problems, quadrilateral elements with 8 degrees
of freedom are supposed to be enough^54 ', but
the efficiency of higher order el ments are
better where flexural stresses predominate.

The grading of finite element mesh is also impor

tant » though it is difficult really to set up any
norms. Use of two types of elements in a single problem

is also found to be useful and economical ^66K

2.5 ERRORS IN FINITE ELEMENTS ANALYSIS

It may be worth while to think over what might

be the errors in finite element analysis so that it may-

lead to an insight into their sources. Due regard can

then be given to them while planning the analysis.

Basically, finite element method being a numerical

method, all the errors pertaining to a numerical method

like numerical truncation etc., also necessarily hold

for this method.. Numerical round offs may be a potential
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source of error, specially if the difference in the

coefficients of the matrix to be inverted for the solut

ion of equilibrium equation is large. For this purpose

it is necessary to have elements, specially the adjacent

ones, of equal order of size. Melosh* '' has shown that

truncation errors can be of sizeable amount in certain

cases, thus, intermediate data generation and manipulation

is recommended in double precision. This will however,

significantly tax the computer memory and also the

computational time.

Apart from manipulation and truncation errors,

the other sources of error could be the error in modelling

say for example, a cut has to be imposed on d pth as well

as width to model a semi-finite half space like a sub-

grade. Also, another example could be id alization of a

circular section by polygons or representation of a three

dimensional solid by finite elements in plane strain or

plane-stress etc. Similarly, modelling the circular loads

as equivalent square might be another source where errors

might creep in.

Errors can also be due to choice of improper dis-

critization e.g. use of coarse mesh, omission of certain

important degree of freedom e.g. the term of 'twist' in

plate bending element or omission of e certain term in

the assumed displacement model can also play mischief.

Averaging required to be done to find stresses at

node points or even at th* area surrounding a Gauss point,
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if Gaussian integration is used, may also introduce

approximations.

These errors can be minimised if due care is

taken and proper judgement is exercised in the choice

of proper displacement model, discretization of structure

and above all programming the computer code'68'.

2.6 USE OF FINITE ELEMENT METHOD IN PAVEMENT ANALYSIS

The finite element method has been applied by

Clough and Rashid^ 9' to the Boussineeq's problem ^62'
of stress distribution in a homogeneous, semi-infinite,

isotropic, elastic half space. The results were found

to compare well with the classical elastic solution.

Duncan et al/70' applied this method to Burmister's
(71)problem* of stress distribution in an anisotropic

layered media with linear as well as non-linear material

(72)properties. Kachroow ' also studied a similar problem

and showed that by adopting finite element analysis the

results obtained are closer to measured values.

(73)Wilson ' analysed the transient and steady state

temperature distribution in plane and axisymmetric bodies.

Cheung and Nag174' analysed the problem of lifting of a
plate resting o.n elastic foundation using finite element

method. Sargious et al.*75' have applied the method,
using STRUDEL program to compare the field observations

on rigid pavements and conclude that finite element
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method is a potential method for analysis of pavement

problems.

(76}
Smith* ' has used triangular finite element in

axisymmetry to analyse plates on elastic foundation and

has compared the results with the model tests.

(77)
Wang, Sargious and Cheung* ' have used the rectan

gular, 12 degrees of freedom, plate bending element

to study the effect of foundation model on stresses in

pavement slabs and have later extended this study to

investigate the stresses when the slab has an opening

(78)
of rectangular shape similar to a manhole

(79)Huang and Wang* ' reported to have developed

a finite element program to study the effect of load

transfer efficiency of joints in concrete pavements on

the stresses and deflections of rigid pavements and have

shown to have obtained an excellent correlation with

AASHO road test results. The method used to simulate a

joint is by assigning a pre-determined efficiency value

for load transfer from a node on one side of joint to the

one which is on other side. Thus, the load applied to a

node on one side of th; joint is distributed among the

two nodes in proportion to the load transfer efficiency.

In another paper* ' the authors apply the analysis

to the problem of non-uniformity of subgrade support, in

which the subgrade reaction is supposed to b- lumped at

nodal points and in the vent of contact loss this
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reaction is supposed to be absent.

Pitorius*^81' has used the 'Prismatic Solid'

program for determining the stresses in pavements with

cement treated base. For this purpose, the three dimen

sional problem is converted into a two dimensional one

by representing the wheel loads with the help of harmonic
(83)analysis. Fossberg* J' has also used the same program,

reported, to have been developed by Wilson*8' to deter

mine the stresses in the slab containing a long crack

parallel to the centre-line.

In the next chapter, considerations are given to

generating a suitable model for analysing a distressed

pavement slab, overlaid by another lay-r.
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APPENDIX 2.A

NUMERICAL INTEGRATION

Numerical integration technique becomes a necessity
for integrating complex functions(84). In finite element
method the numerical integration technique is getting
increasingly popular because of its versatile nature

to accommodate arbitrary variations in geometric and

material properties of the element.

The basis of this technique is replacing the

integration by summation. There are various methods of

numerical integration. The one suited and more popular

in finite element technique is Gaussian Integration.

r+l n
I = J f(x)dx = I Wf(z ) ... 2.15

-1 i=1

where,

n = order of integration rule, i.e. number of
sampling points,

Wi= weight coefficient for ith sampling point,

z^~ abscissa of ith sampling point

fdXffej)* function

+1

1=1 f(x)dx = Af(a)+B.f(b)+Df(d) + ... ... 2.16

For two dimensional integration

+1 +1

I = f f f(x,y)dx.dy
-1 -1

n n

=11 W.W.f(z,,u.) 2 17
i=ij=i x J 1 y ••• ,17
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A f(a, a)+A.B.f(a,b)+A.C.f(a,c)
+A.B.f(b,a)+B2.f(b,b)+B.C.f(b,c)
+CA.f(c,a)+C.B.f(c,b)+C2.f(c,c) ... 2.18

while, one function say z±, is kept constant the other

\x. is varied and summed for each value of i thus, if

n = 3 then there will be total 9 operations.

Numerically Integrated Finite Element (NIFE) are

more exact, though integration itself is not, and give

better results towards convergence. They arc economical

and efficient as they allow the representation of

geometric and material properties that may vary arbi

trarily.
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APPENDK 2.B

COORDINATE TRANSFORMATION

Stiffness generation process requires the assembly
of stiffness of individual elements. The stiffness of
each element is in terms of its local coordinates. The

origin of the local coordinate system may be any conven
ient point like the centre of the element or one of its

nodes. When adding stiffnesses together for assembly, the
coordinates of all the elements must be on the same system.
As such the transformation becomes necessary.

Let the local coordinate system, in two dimensions,
be i and n, and that of global x and y.

Then, it is required to convert the shape funct
ions say JN/3 for any nod i in an element, from local
to global.

also

and

»i = fU.n)

y = f2U,n)

Eor the calculation of QG JJJ-] iQg qq^ lfl requ±red
as per equation 2.14 and &J in [V], say, for the case
of plane strain is,

I 8Ni
j ex u

1 j 9y
| 8N, ffl.
L 9y ax
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on

... 2.19

... 2.20

8N± au
~ and ~ aro local derivatives and are known. It is

required to find global derivatives. Above equation can
also be rewritten as,

1 8N.
i J-

ex

I 5Ni
ey

-i

- CO

j eN±
8£

8N.

erf

... 2.21

where [j] is known as Jacobian Matrix and its inverse
is required to determine the global derivatives. Also
it can be shown that^85^

dx.dy = J j Jd^ dn

n

Now, x = Tr n1 xiNi(un) and y = T yj (%,n)
1=1 i=1 i i

... 2.22
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Therefore, on differentiation the Jacobian matrix
becomes,

CO -

~ x± u C yj.

I*i
8^
W

8N
Z .V, r-—L y 1 en

... 2.23

Thus the Jacobian matrix can be evaluated, local

derivative of shape function being known and numerically
inverted in the computer at every point of Gaussian

integration U,o). This by equation 2.21 will then

yield required global values.

In case of plate bending el ments the matrix

\Bj comprises of the second partial derivative of [n.] ,
as such coordinate transformation will require deter

mination of analogous matrix known as Hessian.
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CHAPTER-III

STUDY OF THE BEHAVIOUR OF A CRACKFD

SLAB WITH AN OVERLAY

3.1 MODELING OF PAVEMENT STRUCTURE

In reality, even a simple three dimensional

analysis may not be an answer to a pavement problem which

essentially involves layered system with variable bound

ary conditions and variable material properties, subjected

to wheel loads and environmental effects. Such an analysis

is obviously not possible at the present time due to the

limitation of computing facilities. Analysis of pavement

idealised as two dimensional plane, axisymmetric or a

plate with suitable foundation model app ar to be feasible.

Selection regarding material constants, geometry, boundary

conditions and nature of loading are crucial.

Truly speaking there is no material the behaviour

of which is linearly elastic at all the stress levels
(fifi1

even in the working range \ Yet, it is found that

assumption of linear elasticity for several construction

materials have always resulted in behaviour quite satis

factory from the point of view of engineering design.

Similarly, the behaviour of practically all the materials

is time dependent and in many cases also dependent on

stress path or history dependent. Again, the assumptions

like isotropy and homogeneity of the materials are open
to question.
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The idealisation regarding configuration of the

structure is made to reduce the computation, wherever

it is found that this would not adversely affect the

result, e.g. considering the problem of a retaining wall

or a dam as a plane problem is usual. Similarly, a slab,

if not very thick, is regarded as a thin plate problem.

The problem of central loading of a homogeneous axi

symmetric body can be converted into a simpler problem

by regarding it as axisymmetric. In theoretical methods,

the plate on elastic foundation of limited dimensions is

treated as semi-infinite whereas, in numerical methods

it is just the otherway. Boundaries need to be assigned

to the depth and width of the subgrade.

A cement concrete pavement some times can not be

treated as an axisymmetric structure, because loading at

the edge or corner can not be simulated then. When it is

intended to consider a slab having a crack, which usually

is non-circular, such consideration is ruled out.

Considering the pav ment as a two dimensional plane

structure like a plane strain model, has the difficulty

in truly assigning the wheel loads, though the cracks can

be considered as long straight ones. These kinds of

difficulties, have been overcome by Wilson^82 ^ and No.yak
(87)

and Jain through the use of Fourier's terms and such

a method has also been applied by Pitorius(81) and FossbJg
to pavements. However, the main features of this analysis
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arel

(a) 8 to 10 times costlier on computer time as
compared to an ordinary plane, elastic analysis,

(b) variation of geometric and material properties
in the longitudinal direction can not be
incorporated.

(c) corner loading can not be simulated.

(d) the crack can only be regarded as a long,
straight crack and always in the longitudinal
direction.

(e) non-linearity in material properties can not
be considered.

The only advantage of such an analysis is proper
representation of the wheel load which is essential

for true assessment of stresses and deflections. Howev.r,
for qualitative assessment of transverse behaviour of

pavement with longitudinal crack, the plane strain analysis
is quite satisfactory.

Modelling, a pavement slab as a thin plate on
elastic foundation is a -justified conu.ntin^i(24,26-33,38,40,42,43,45) ntional proc_
dure and is also intended in this work. However,
before doing so, it is proposed to model the pavement
slab with a long, longitudinal crack and an overlay as a
body in plane strain.

3.2 AIM OF THE STUDY

The object of this study is to gain an insight into
the mechanism of load deformation and stress distribution



-42-

of layered, cracked and uncracked pavement system.

Therefore, to fulfil this, the model chosen is the

plane strain study of a pavement slab with an overlay
considered as bonded to the base which has a long crack

parallel to its centre line. The behaviour is studied

under a load near the centre line. It is thought that
the proper insight into the mechanism will help in

modeling the pavement slab correctly, so as to truly
assess the parameters of importance in design, through
an analysis.

For this purpose, th* crack is modeled by a hinge.
This is reasonable, as it is found by actual load tests

that through a full depth crack the shear transfer does

take place though the moments can not be transferred^88^.
This attribute is considered to be due to the aggregate
interlock 89 , and perhaps rightly so, because the
formation of crack surface in cement concrete is at the

expense of the energy rather than a slip mechanism(90).

3.3 PROGRAMME OF INVESTIGATION

3.3.1 Astudy of following models in plane strain condi
tion is proposed to investigate their behaviour;

(i) A sound pavement slab,

(ii) Apavement slab with a full depth crackmodeled
in accordance with the requirements of para 3.2.

(iii) Aslab having an overlay fully bonded.
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(iv) Aslab having a fully bonded overlay but
a crack in the base.

(v) Aslab with a crack in the base and having
an overlay but with bond broken in the
vicinity of the crack.

3.3.2 The main considerations in designing this numerical

experimentation to understand the mechanics, have been:

(i) to make the experimentation as simple as
possible, in order to make the re.sults apparent,
clear and meaningful. With this end in view

the elastic properties of the base and overlay
were assumed to be identical.

(ii) to have the dimensions and properties of all
the parameters as realistic as possible so as
to simulate the actual conditions. Details of
all these parameters and justification of their
adoption is discussed in the following para
graph s.

(iii) to perform basic study and not the parametric
study. From this view point all the parameters
wero kept constant. However, two sets of studies
were performed by only drastically changing
the subgrade properties so as to have confirm
ation of the results of both sets qualitatively.
Incidentally, this gives the additional inform
ation regarding the parameter'effect of sub-
grade quality.'

3.3.3 Finite Element Analysis

The element chosen to generate the plane strain

model was an isoparametric(54) quadrilateral element with
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8 nodes and 16 degrees of freedom per element. It has

already be.rn mentioned in last chapter that the selec

tion of an element and its arrangement to discretize

a structure is a matter of engineering judgement. The

decision to adopt this element has been on the following
bases!

(i) This element is reported to be efficient!91^

(ii) As the pavement slab is to be represented,
which is a long and thin structure, the
aspect ratio of the elements has to be kept
high to achieve economy and a superior element
is therefore, required.

(iii) The bending effects predominate in the case
of a pavement slab and these can be better

evaluated by an isoparametric element^54").
m

The computer simulation and analysis of these plane

strain models were carried out by an efficient and

well tested finite element program with the acronym

'PSPSAS' (Plane Stress, Plane Strain, Axi-symmetric
(92)

Program) , using IBM 360/44 Data processing System at
Delhi University.

3.3.4 Numerical Assignment

For numerical analysis of the cases describ.-d in

Table 3.1, it is necessary to prepare data in accordance

with clause(ii) para 3.3.2. Following values have

therefore been adopted.
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(a) The Elastic Properties of the Slab

For structural concrete, I.S.I 456-1964(93) does
not provide an explicit relationship for determination

of modulus of elasticity, although an equation of the

form*. E » 750 fc, where fc is the compressive strength
gives an approximate estimate for the grade of concrete.

Paving concretes have lower w/c ratios and therefore,
it is natural to have higher strength. At the same time

the relation given by above authority are known for its
lower bound values(94). Therefore, considering even
M 150 structural concrete the value obtained of

11.25x10 kg/cm is a lower value for the concrete of
about one month age.

Orchard, et.al(95> have discussed about relationship
between static and dynamic values of modulus of elast
icity and find that dynamic values are slightly higher
than static values for concrete and olher materials.

Considerations for the use of dynamic modulus is relevant
under moving wheel loads.

Keeping the above facts in view, the modulus of

elasticity of concrete is taken as Ec = I50xl03 kg/cm2,
and Poisson's ratio- , v = 0.15.

It is recognised that the elastic properties of
concrete increase with age, though at a very slow rate

later . On the other hand it could decrease as
well under fatigued96) On these counts the elastic
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properties of the base and overlay should be taken

as different values. However, as clarified in clause

(i) of para 3.3.2 they arc taken as same values.

(b) The Properties of the Subgrade!

The elastic properties of the subgrade are chosen
t

so as to have two widely different values. The values

of elastic properties should be high because as discussed

in first chapter the old concrete pavement slabs nor

mally were founded on good base as a result of stage

construction. The following ratios of modulus of

elasticities of concrete and subgrade are therefore

chosen, (i) Ec/Eg = 200, (ii) Ec/Eg = 2000. The second
value is chosen in accordance with clause (iii) of para

3.3.2. In both the cases the Poisson's ratio is taken as

0.45.

According to Vesic and Saxena^97' and MccLlough
and Boedecker(98) they fall in the range of modulus of
subgrade reaction K= 0.5 to 10 kg/cm5, approximately.

(c) Slab Dimensions

For the purpose of numerical analysis the thick

ness of the pavement slab is taken as 22.5 cm and that

of overlay as 15 cm. The width of the slab, however,

was fixed from the consideration that it should be so

much as not to effect the behaviour at the point of

maximum stress. The best way, therefore, was to adopt such

values as to simulate infinite slab effect or in other

-
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words the full basin shape should d velop. Following
the Ohio River Division Laboratory<" >recommendations
the slab width is assumed as thrice the rad ius of

relative stiffness, ifB?*, D= Ech3/l2(l-v2) and h = slab
thickness.

According to these requirements the width of the
slab for the combination of base and overlay on weaker
subgrade was assumed as 900 cm.

(d) Subgrade Dimensions:

The consideration in deciding the width and tte
depth of th, subgrade was such that the size effect was
minimised in making the comparative study. As per
Vesic and Saxena<97) the depth could be considered
infinite if for the values adopted in this study, the
subgrade is deeper than 660 cm. 3he depth of elastic
continuum was taken as 720 cm. The width of the sub-
grade was taken as 1300 cm which is about 1.5 times the
width of the pavement.

Figure 3.1 shows the finite element id alization
of the pavement structure. The subgrade is represented
by elements 1 to 14. The Cement concrete slab is divided
into 8 elements, i.e. el ment members 15 to 22. Thus,
there are a total of 22 elements, each with 8 nodes. Total
number of nodes are 85. Ae the pavem.nt is considered
to be symmetric about centre line, only the right hand
half is considered for analysis, effecting a saving in
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computer time. Thus 15 nodes, which are on the centre

line, are consid red as restrained horizontally. Five

nodes on the bottom boundary of the subgrade are consi

dered as restrained vertically, whereas, another five on

the right hand boundary on which cut as discussed above,

are restrained horizontally. Thus, total 23 nodes are
restrained.

(e) The Crack

The attributes of the crack are already described

in article 3.2.- To simulate the crack, same point was
assigned two node numbers ie. one node which is on the

crack is split into two. But this was not done for all

the nodes along the depth of crack. One of the nodes,
the uppermost in th, crack was intact, in order to

simulate a hinge. Th location of crack was parallel

to the centre line of the slab at a distance of 60 cm from
it. This distance was however taken arbitrarily. This
is shown in figure- 3.2(a).

(f) Bond Condition

The bond is considered to hold between the base

and the overlay i.e. it is assumed that full strain

compatibility ,xists at the interface. However, in
Case V, as described in Table 3.1, the bond is assumed
to be broken for adistance of 15 cm on either side of



-49-

the crack in order to investigate the change in

mechanism of stress distribution if the bond is broken.

The representation of this in finite elements is shown

in Figure 3.2(b).

(g) Load

Like all other parameters in the study, an attempt

was made to simulate the load also as realistically as

possible. Lewis and Harr^100^ report . to have determined
a value of 125 lbs/in. to be equivalent to a standard

axle load of 18,000 lbs for a 12 ft. wide pavement.

Taking this result as a guide, the load was taken as

30 kg/cm. However, it was found that this load induces

very little stress specially in Set I, as per Table 3.1.

Therefore, the load was taken as 300 kg/cm.

3.4 ANALYSIS AND DISCUSSION OF RESULTS

The results of the finite element analysis carried

out on the cases as described in article 3.3 are presented

in figures 3.3 to 3.13.

3.4.1. Studies on Single Slab with and without
a Crack (Case I and II)

Figure 3.3(a) shows, how this crack is modelled

by finite elements. Figure 3.3(b) shows the variation

of bending moment in Case I of Set I i.e. a 22.5 cm slab

and compares it with that with a fully cracked one.The
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effect of crack across which only shear is transferred
is evident. The moment at cracked section becomes zero
as now there is no section available to resist it.
Moment on the right hand side becomes negative due to
shear transfer. The situation can then be compared with
those of beams on elastic foundation^). Pigure 3>3(c)
compares the deflections in Case I and II of Set I and
shows increase in maximum deflection on cracking. But
the deflected basin resembles like one of a nore
flexible slab.

3.4.2 Studies on Slabs with Overlays
(Cases III, iv and V) Y

3.4.2.1 Deflection Studies

Deflected profiles for cases III, IV and V, of
Bet I as defined in Table 3.1, are plotted in figure 3.4.
It can be seen that the maximum deflection of the slab
with a crack is about 5 percent mor than that without
a crack. However, the effect of loss of bond in the crack
zone is to increase the deflection further by 7 percent.
Figure 3.5 shows these very variations for Set II, i.e
when Ec/,s =2000. It is evident from the figure thai '
the deflection patterns are exactly Identical to those
in figure 3.4 for Set I. But in Set II i.e. where the
subgrade is weaker the deflection increases by approxi
mately 20 per cent for cracked case and about 40 per cent
in case of bond loss accompanying a crack. This pb^^tion

camuL uwi wivrwTr of momk \{EOORKEE \4
V -"l JIs/'
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leads to the conclusion that the cracieing of a pave

ment base slab on a weaker subgrade, induces dis-

proportionally severe conditions in the pavement

structure. This also gives an indication that at the

crack location, when the base is unable to carry any

moments, the overlay will have to play a much more

important role specially if the subgrade is weak.

Reactive pressures are also drawn in the figure 3.5

and they do approximately testify that the theory of

modulus of subgrade reaction i.e. the Winkler's model

is not very incorrect as in the neighbourhood of the

load the reactive pressures are more or less proportional
to the deflections. A detailed discussion of this is

however, included in the Chapter VII.

3.4.2.2 Effect of Crack and Bond Loss on Stresses.

Figure 3.6 is an instructive diagram, drawn to

show the variation of bending stresses at different

typical cross-sections of the pavement slab for Set I.

Diagram (i) shows this variation at a section near to

the crack of case V i.e. when bond is lost, while
diagram (iii) is for Case IV and diagram (iv) is for

Case III, the location being the same. Thes- three

diagrams havt three distinct forms. The diagram (iv)
which is for a sound base shows a continuous and smooth

stress variation. (This however, is incidentally because
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the elastic properties of the overlay are taken to

be same as base deliberately, just for making analysis
more clear). These stress distributions can be regarded
as equivalent to three moments as analysed in diagram(iii)
for case IV i.e. when the bond is intact near the crack.
One moment is in the overlay, the other is in the base

and the third one is generated by forming a couple due
to bond. This analysis can also be done for case V i.e.
when bond is lost. However, there can not be any moment
resisting couple in the vicinity of the crack due to bond

as in this case the bond is supposed to be broken. The

small forces are only the balancing forces from the zone
beyond the zone of bond loss where such a couple does
form.

The pattern of stress distribution in diagrams
(i) and (iii) are different and effect of bond is clear.
The bond makes the stress variation at interface contin
uous in diagram (iii).

Diagram (ii) is for case Vbut at a section which

is at a distance from the crack equal to about twice the
depth of crack. The pattern of this variation is identical
to diagram (iv) and ther fore, indicates that the dis

turbances created by the presence of crack have subsided
in this zone. Beeby(l04) obs,rved that in controlled
constant curvature tests on reinforced cement concrete

members, the spacing of the cracks were about twice their
size. Thus, he inferred that in the spirit of St.Venant's
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principle the effect of crack should extend upto a dis

tance equal to the depth of crack on its either side.

The diagram (iii) and diagram (iv) are for the

same locations of Case IV and III respectively. Diagram

(iii) shows an increase in the compressive overlay stress

by about 15 per cent. However, the effect of crack which

extends upto this distance (6.75 cm) has an effect of

stress release and therefore, the base stress is less.

This observation is similar to that of Fossb. rg^85^. He
has shown variations of stresses at the crack location and

at a distance of15 cm from crack. These are reproduced

in figure 3.7. It is seen that at the crack the base is

free of stress due to stress release. However, at 15 cm

from the crack (i.e. the depth of largest crack in this

case) the disturbance is almost over.

The inferences that can be drawn from figure 3.6 are:

(i) the cracking causes stress release in the base
and the section available to resist moments at

this location is only that of overlay.

(ii) The effect of stress release is local. However,
it does extend upto a certain distance, which

based on this study, these of Fossberg^85^
and Beeby^ ^' and also in the spirit of

(62 )
St.Venant's principlev J, can be taken as
equal to the depth of cracks in the base.

(iii) Bond loss in the vicinity of the crack puts
the overlay under heavy stress, because of

lack of moment resisting couple due to bond
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and reduction in lever arm between tension
and compression areas.

3.4.2.3 Effect of Bond Loss on Moments

Figure 3.8 illustrates the variation of bending

moment in overlays in Cases III, IV and V of Set I.

It is clear from this diagram that the overall behaviour

of these cases are similar to reduction in radius of

relative stiffness in Cases III, IV and V progressively.

Figure 3.9 shows the forces generated due to bond which

form a coupl., even though the slab may contain a crack.

This diagram pertains to Case IV of Set I. It is seen

that tho forces generated in the base are generally

lower than in the overlay. This is, in fact because

of the reason that the subgrade is also considered as

bonded to the base in the finite element analysis. But,

while computing these forces from stresses, the effect

of subgrade is neglected.

Tho results plotted for Set II are exactly of same

nature and there is no difference except in numerical

magnitudes. They are therefore not repeated for para

meters similar to those shown in figure 3.6, 3.8 and 3.9.

Figure 3.10 shows, how the bending moments are

shared between base and fully bonded overlay in Case IV

of set I. It is clear that at ine location of the crack

the overlay has to carry a large amount of moment. The

overlay is therefore, very highly stressed in this zone.
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Every where else, the base carries a larger portion of
the load, its rigidity (i.e. 'EI') being more. The
same observation is true for setn shown in figure 3.11,
but in this case the bending moment carried by the over
lay in the vicinity of the crack is proportionately
large, du, to higher deformations, as noticed in figure
3.5.

Eigure 3.12 is drawn to compare the magnitudes of
moments carried by the overlays in fully bended case
and in case when bond is broken. The numerical values
are for set I in this figure and for Set II in figure
3.13. It is Been from both these figures that the
moments in overlay leaving the zone of the crack with
bond broken are somewhat lesser than that with full
bond. This is because it car be noticed from figure 3.8
that the slab with broken bond behaves as a more flex
ible slab than one with full bond at the cracks. However,
at the crack and in its vicinity th, situation is the
otherway, the stress resultants are very heavy in case
when the bond is broken. Ihis is also seen from figure
3.6{i) and (iii) where stress variation is drawn and the
reasons for h.avy stress resultants are clear from this
diagram, it is also Been that overlay with broken bond
is taxed much severely in case of weaker subgrade as in
figure 3.13. The r ason is explained by increased defor
mations as shown in figures 3.4 and 3.5. In case of
figure 3.5 the increase of deformations due to bond
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loss ar. thrice as much as in figure 3,4.

%a %iu - ». (96,102-105)
3.4. 0 Discussions based on experimental studies

Observations on some of the performance studies

reported, are pertinent in this regard. Prasad, Sharma

and Jain in an experimental field investigation

found that reflection cracking did not occur on rigid

overlays bonded to rigid base, using Araldite (an epoxy

compound of good quality used for bonding).However, it

did soon occur on slabs wher: reliance was placed on bond

ing by priming with rich mortar after etching with acid.

Observations of Gillette'105^ on Selfridge Air
Force Base are also applicable in this regard. Gillette,

reporting, that bonded cement concrete overlay was provi

ded on the apron to cover various defects in cement

concrete pavement including numerous cracks, writes*.

" Since construction of bond:d overlay, this
apron has hen continually used for parking
jet fighter aircraft. A loss of bond has been

experienced in approximately 10 per cent of the
area with practically the entire amount occuring
along joints or cracks that have reflected through
the overlay from the base pavement".

His observations for Standiford Field Airport arc

also similar.

(105)Felt gives his observations on many overlay r

projects. In all of these projects one feature that was

{

I
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common, was of crack reflectance. In about half a dozen

of these projects, bond loss in the area adjoining a

reflected crack is reported, even though the bond

strength of all the core samples taken were sufficiently

high.

It can be argued on the basis of above reports

that bond loss and crack reflectance does appear to

have a bearing on one another. One is the manifestation

and other the mechanism. This leads to the dilemma like

'egg and chicken'. However, the findings of Prasad,

Sharma and Jain ' does lead to an answer and results

through figure 3.9 confirm this. The tensile forces

transferred through the bond at the location of the

crack are of the order 150 kg/cm length of the pavement.

These forces would have been of greater magnitude, had

the load been nearer to the crack. This tensile force

will act at the point considered as hinge at the inter

face and its tendency will be to destroy bond and

induce 'slip'. If the full bond strength of the inter

face is mobilized, bond failure is liable to occur. Even

if it is not mobilized in single load application, damage

is likely to take place under rep. ated load applications.

However, it is difficult to say, whether these forces

will act as concentrated line loads at the cracks or in

what manner they nay be distributed in the overlay.

A similar observation can be made with regard to

bond stresses considered as complimentary shearing
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stresses. If actual values of the moments obtained at

the sampling points, located on either side of the

crack are taken from figure 3.8, the change in moment

is found to be 4100 kg.cm/cm over an average distance of

13.25 cm. It is difficult to say, how the shearing stresses

will be distributed in the neighbourhood of the crack.

But if it is argued that at some point in this zone the

neutral axis lies at the interface (and this is not very

unlikely), then, perhaps the distribution of shear stress

es can be assumed as if in a rectangular section with

depth equal to twice the overlay thickness. In such a

case the sh.ar stresses work out to be roughly 15 kg/cm2

at the interface which is quite a high value and can

threaten the bond.

Findings of Sinno and Purr^9 ' are of significance
in respect of bond. They report to have performed

repeated load tests on reinforced precracked beams of

8" x 8" (20 cm x 20 cm) size overlaid with ji* and 2"

(3.75 cm and 5 cm) bonded overlay, bonding being done

with epoxy and also by cement grouting in some cases. The

load applied was of such a level as to induce 20,000 psi

(1400 kg/cm ) tensile stress in steel bars in all cases.

No bond or any other kind of failure occured in any of

the beams even under 2x10 load cycles, though the

deformations increased due to fatigue. The load was then

increased to 150 per cent and no failure occured even

und< r additional 1x10 load applications. Thereafter,
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for additional load cycles, the tensile cracks in

the overlay were observed abote the Crack in base beam.

Here, it can be observed that the force in the base

at the crack location must have been carried by the steel

bars, relieving the bond at base overlay interface.

The conclusion can therefore, be drawn, that if

the overlay is to be saved from failure over the crack

then bond must not be allowed to break, this being specially

necessary in case of weaker subgrades.

3.5 REMEDIAL MEASURES FOR BOND FAILURE IN PLAIN
CONCRETE SLAB WITH A CRACK

As it is noticed that the bond failure can endanger

the serviceability of the overlay, it is.a fact that a

measure against this is essential. Figure 3.14 shows

the path of stresses diagramatically. In diagram (i) the

base pavement does not contain any irregularity whereas

in diagram (iii) the disturbance is cr :ated due to a dis

continuity in the path as a result of a crack in the

base. The tensile forces will have to take a path through

the interface at the point of discontinuity. An obvious

way to avoid this is to generate an additional path

through which these stresses can pass the discontinuity.

This can perhaps be done by inserting a steel bar at the

level shown in diagram (iii).

Based on these concepts a method named as 'Reinforced

Key Technique' is suggested. The steps involved in this
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method are'.

(i) As a steel bar is to be inserted in the base

at about its mid-depth, it is necessary to cut

a groove in the slab, across the crack. The

depth of the groove may be about half the depth

of the slab and its width can be about 3 to 4

times the size of aggregate. The length of the

groove will have to bo kept equal to .the bond

length on either side of the crack or joint. The

spacing of the grooves will be based on the

force it is expected to carry(150 kg/cm length

of slab in case of set I analysed above). The

plan of the grooves cut in this way are shown

in figure 3.15 (i).

(ii) The reinforcement, the size and spacing of which

can be calculated from the consideration of axial

force/unit length is placed in the groove,

figure 3.15 (ii).

(iii) The groove can be concreted along with the overlay,

figure 3.15 (iii). A section of completed

overlay along a crack.is shown in figure 3.15(iv).

Iyenger is of the vi ,w that this method has its

recognized merits as a crack arrester, but he feels that

making the cut in the pavement may not be practical and

therefore, suggests the use of reinforcement at the

+ Personal communication from C.L.N:Iyengar, The Concrete
association of India, Bombay.
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interface rather than in the groove. His contention is,

that if the deflection is not too much, then the rein

forcement provided at either place will not make much

difference.

According to Ghosh+ a method very similar to the

proposed one is already in extensive use in Germany.

While agreeing with the theoretical findings on stress

conditions in rigid overlays, he felt that method may not

be economical.

The groove can be cut by a concrete cutting hammer.

The hammer is developed by concrete section of Structural

Engineering Research Centre of Roorkee. The replaceable

cutting tool of tempered steel is fixed along with the

hammer which weighs about 2 kg and can be operated by one

hand. One man:, can normally cut about 3-4 grooves in a

working day, as has been experienced in the tests performed

in tho laboratory. The advantage of this hammer is that

a worker can use only one hand at a time.

However, a much faster and economical method of

cutting these grooves is by power driven tools. Tnese may

be either electrically operated or may be operated by an oil

engine mounted over it. Depending upon the tool used and

the efficiency of the operator, a groove can be cut in

+ _

Personal communication from Dr.R.K.Ghosh, Head of Rigid
Pavement Division, Central Road Res-arch Institute of
India, New Delhi.
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between 7 to 20 minutes time.

Obviously the groove, cut in any manner, will

seldom have smooth faces and as such a good bond between
the base and the overlay can be expected.

Alternatives

Some alternatives to Reinforced Key Technique can
be proposed, with a view to achieve greater efficiency
and economy.

(i) a groove can be cut along the crack and

reinforcement placed longitudinally, in a manner

similar to that done at right angles to it.

This would impart far more strength to the bond

and cater for any breakage likely from stress

concentrations at the corners of joint between

crack and transverse grooves.

(ii) Fibre reinforcement(106,107) ±s gaining populnrity
as an alternative^08'10?). Overlay of fibre
reinforced concrete exhibited far better

performance on airport pavements (110) as compared
to usual overlays. The alternative that c ould
be suggested are:

(a) Use of fibre reinforced concrete in
grooves cut in 'Reinforced Key
Technique1, as proposed with overlay
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of usual concrete.

(b) Use of fibre reinforced concrete in groove-
cut along and perpendicular to the crack
and overlaying with unreinforced concrete.

(c) Using fibre reinforced concrete for groove
filling, as in above two cas s as well as
for entire overlaying.

3.6 CONCLUSIONS

Tht study, therefore, leads to the following
conclusions*.

1. Deformations increase on development of a crack
and are further increased if the bond in its neigh
bourhood is lost.

2. This increase in deformations are disproportion
ately high on very weak subgrades.

3. Stresses decrease in the base due to stress
release on cracking, and it is reasonable to assume
this zone as equal to twice the depth of crack.

4. Stresses in the overlay increase at the crack
location and tensile stresses also develop in it which
may not be there in the uncracked case.

5. Bonding of the interface has a great effect as
a larger portion of moment of resistance of a bonded
overlay is due to this quality.
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6. The interfacial bond is liable to fail in case

of cracked base unless special measures are adopted
to cheek it.

7. Failure of interfacial bond at the crack,

increases the overlay stress further, specially it

develops large tensile stresses at the bottom of the

overlay slab. Therefore, if the overlay is to be saved

from failure, it is necessary to ensure that the bond

does not fail.

8. Though the base may be cracked but still it

is an advantage as the tensile stresses developed in

fully bonded overlay are of low order.

9. Findings of Ohio River Division Laboratory

with regard to size of slab for infinite action does

appear to be reasonable as by having adopted these the

complete: basin shaped trough did develop.

10. Three types of remedial measures to check

reflection cracking have been suggested to arrest bond

and flexural failures. Field feasibility studies of

these measures ar., however required to be carried out.
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TABLE 3.1
CASES STUDIED.

Set pase
No. No.

Ec
j
; Base condition
I

Base

thickness-

Overlay
thick

ness

i

Remarks

I I 200 Sound 22.5 cm

II 200 Cracked at 60 cm
from centre
line

22.5 cm m•

III 200 Sound 22.5 cm 15 cm

IV 200 Cracked at 60 cm
from centre
line

22.5 cm 15 cm

V 200 Cracked at 60 cm
from centre line

22.5 cm 15 cm Bond broken

for 15 cm on
either side
of the crack

II I

II

III

IV

2000

2000

2000

2000

2000

Sound

Cracked at 60 cm
from centre line

Sound

Cracke^d at 60 cm
from centre line

22.5 cm

22.5 cm

22.5 cm

22.5 cm

Cracked at 60 cm 00 c- _
from centre lane

15 cm

15 cm

,[- Bond broken forJ3 cm 15 cm Qn ojLther
side of the
crack.
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CHAPTER IV

FORMULiiTION FOR ANAIISIS OF PAVTCETBNT ST.ATI

WITH CRACKS

4.1 INTRODUCTION

As has already been mentioned, truly, a three

dimensional analysis is required for determining the

stresses and displacements in a pavement slab wh."ch has

a layered construction and also possesses discontinui

ties. However, for reasons pointed out in last chapter,

it becomes necessary to handle only a two dimensional

analysis. It was decided that out of several possible

two dimensional conversions, e.g., considering the

problem as a plane-strain, plane stress or axisymmetric

case, the one in which th- pavement slab is considered

as a transversely loaded plate on a suitable foundation

is the' most appropriate one. In such a modi, it is poss

ible to account the effect of important parameters like

load placements, temperature differential etc., on a

realistic basis. It is quite natural that this conversion

of a three dimensional problem into two dimensional one,

will call for certain assumptions and approximations.

One such approximation is that the Subgrade can not be

treated as a continuum and has to be represented by a
mathematical model such as Vinkler^23\ Biot^2^,
Pasternak^45' or any other type.^111^
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4.2 GENERA! ASSUMPTIONS

Following assumptions are regarded as valid for

making the two dimensional analysis of a cement concrete

pavement possible!

1. The material of the cement concrete pavement

behaves as an elastic homogeneous mass in accor

dance with the Hookds law. The validity of such

an assumption has already been discussed.

2. It is assumed that "the pavement slab behaves

as a plate. This means,

(a) that at any cross-section, the normal
boundai-\y stresses are linearly distributed,
and

(b) that the- deformations are small enough so
as not to give rise to any appreciable

amount of stretching at the neutral plane.

The validity of this assumption stems from the fact

that the thickness of the pavement slab is small in

comparison to its other dimensions and that deformations

have to be limited in order to prevent cracking.

A corollary of this assumption is the validity of

bending theory and therefore, it is implied that the usual

assumptions of the theory of bending are valid, viz.

(c) The points lying initially on the normal to

neutral plane, in the undeformed state, remain

on the same normal in the deformed state also.
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(d) The transverse defoliation of all points on

a normal to the middle plane are same i.e.,

the stresses normal to the neutral plane and

the change in thickness can be disregarded.

The validity of these assumptions can be supported

through the analysis using continuum elements reported

in Chapter III.

4.

The loads acting are either considered as

transverse loads or as moments. The body forces

are disregarded, but they can be considered as

a part of applied transverse loads.

It is assumed that the subgrade can be adequately

represented by a suitable foundation model.If

the subgrad- is represented by dense liquid

as adopted by Westergaard^24' the following
usual implications apply:

(a) the reaction of foundation at each point
is supposed to be proportional to the

deflection of the slab at that point.

(b) the reaction is assumed to be vertical.

(c) the reaction at a point is independent of
the reactions at its neighbouring points.

(d) the pavement slab and the foundation are
in contact at every point.
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4.3 MATERIAL CHARACTERIZATION

The most important point in stress-deformation

analysis is proper modeling of the actual material

behaviour. On being subjected to load, the material of

the body undergoes deformations or displacements. These

deformations in case of cement concrete pavements, are
small and therefore it is reasonable to adopt a linear

definition of strain with respect to the original confi

guration of tho point under consideration i.e., the Cauchy's
definition. Thus,(112)

2 6u± eu^
eij =2~(~ + 8xf} (i,i=l,2,3) ... 4.1

where, e,u and x relate to strain, displacement and

position, respectively.

Stress will be induced du to these nine strain

components. For a general material the stress is a funct

ion of time and temperature and as such, the constitutive

relationship to describe stress can be written as*.

o.j = F(e. .,x,T,t) (i,j = 1,2,3) ... (4.2)

where, 0, Tand t relate to stress, temperature and time,
respectively.

c

The material presently under consideration is Cement

arete and the loading is a moving wheel load. The

temperature changes to which the material is to be



-85-

subject<d is only atmospheric temperature variations.

Since the time of load application is small and it is

also known that the moment diagram has a steep peak under

the load,v it is reasonable to assume that the

material behaviour is independent of time and temperature

The stress at a point therefore becomes dependent on the

strain and the position of the point.

Thus,

°ij " F<eij'x> (i,3=1,2,3) ... 4.3

These nine components reduce to only six because

of the symmetry of the stress tensor'112'.

Also, according to tho assumption (ii)(d) of article 4.2,

the stress in the transverse direction i.e, z direction

of the pavement is negligible. This means,

a = X m X =0
z xz yz ... (4.4)

Therefore, the stress-strain relationship can

be written as,

r

jCll °12 C13
4ay [=|G12 C22 °23

i 11

xy
10

13 C23 °33!

* e <
: y ;
s i
I Y

... (4.5)

It is seen that if the coordinate axes are chosen

in such a manner that the principal direction of

orthotropy coincides with them, then

°13 = C23 = °



and
xy 33'xy

(37)
For orthotropic material in plane stress

!°x i
rE_

j6 v = «-4— !v e
• y l-v_v„ .' y

x y
y x

v E
x y

E.

0
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' y

xyj j 0 0 (1-vvjG,
x y xy_ j_'xy;

... (4.6)

where, E , E, v , v and G are elastic constants for
x y x y xy

the orthotropic material.

or, [a] - COM ... (4.7)

It is necessary to give an explicit definition to

lej.

From figure 4.1 which shows th deformed shape of

the slab in accordance with the assumption (ii) of

Article 4.2.

and

u = -z
6w

dx f

= —Z •5—
9y

2

the strain e_. » •££ * -z £-£
x Sx ax2

y ^ 77

md Y = |u + p. = _2z -AJL
xy dy dx axay

On substituting these values in equation 4.6

... (4.8)
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... (4.9)

Bending mom,nts M^My, and Mxy can be obtained by integrat
ing the moments of stresses

Ji/2 "
Mx = J oxz dz

Similarly,

-h/2

,3

12" vwll
I

8x

(C-,, *-* +C2 %
dy

M„ •
h-

• ~ " 12"(C12
9 w . r 9w\

+ C22 "TV
aydx

and following (114)

h/2

Mxy = Myx " i -C33VZ dz
-h/2

• 24^T £>
12^33 axey

Therefore, it is possible to write

« t

M

; x 1 :
(My v.;
! 1 '

M
' xy|

Dll D12 0

I 2 IJ>12 D22 0 J. I4t
ay

2T0 0 D,J |2 |=K. -
33' | dxeyi

..(4.10)

... (4.11)
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Th- formulation can be c'xtended to problems with vary

ing flexural rigidities along x and y directions. However,

the formulation becomes uncertain due to the Poisson's

ratio. A better proposition therefore, is to treat the

material as isotropic but its flexural properties diff

erent in x and y directions. Tnus, defining |jT] as^114'115^

V = —4-» i
11 (1-7) x

*22 =71^77Iy
*U-*J*S*h ... (4.12)

D21 = D12

and D33 = TT D12

where E = modulus of elasticity of concrete

v c Poisson's ratio for concrete

and 1x'1y= moncnt of inertia per unit length of the "
equivalent section about its neutral axis,
in x and y directions respectively.

4.4 MODELING OF PAVEMENT BY FINITE ELEMENTS

4.4.1 Selection of Element

It is now observed that with the basic assumptions

stated in article 4.2, the pav ment can very well be

modeled by plate bending elements^54' 51' 54\ There arc a
number of elements of plate bending type with triangular,
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rectangular, quadrilateral or parallelogram configurat

ion. There is no restriction imposed on the element

shape because the straight forward geometry of the

pavement can be accurately modeled by elements of any

shape.

Also the elementi of the plate bending type could

be classified as a conforming or a non-conforming one.

The main implication of non-conforming element is with

respect to the minimization of the strain energy of the

system and its bound towards achieving monotonic conver

gence as the total-degree of freedom of the system is

increased. It is shown * ' that in case of 'plate bending

elements' if 'constant strain' criterion is satisfied

and if the displacement function chosen is such that with

decrease in element size the- continuity condition becomes

more and more complete, then it is possible to achieve

convergence with non-conforming displacement function.

However, it is well known that the solutions in

which continuity is also maintained, leads to a proper

bound on the true strain energy of the system^ ''.From

this point of view, it is straight forward to adopt a

conforming formulation as it has been reported, that in

many nonconforming plate models, the convergence is not

achieved as the mesh size is reduced^118'.

Bogner, Fox and Schmit^ ' have shown that a

conforming displacement function for a rectangular plate
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bending element can be generated by using Hermite

interpolation polynomial. This element has four corner

nodes and each node is assigned four degrees of freedom,

viz., lateral deflection 'w', two orthogonal slopes 'aw/ax'

and '6w/ay' and the twist 'a w/axay'. The Hermite inter

polation polynomial uses the function value and the value

of the first derivative at each point. Thus the polynomial

is tangent to the function at every point^ 1\ The trans

verse displacement 'w' is represented by the function and

its tangents are slopes 'ew/ax' and 'aw/ay'. Gallagher^1 '

commenting on the efficiency of the Hermitian polynomial

states,

"—The results obtained with complete and

compatible function were of superior accuracy

at any given level of refinement for the case-

studied' .

These observations and also those of Argyris and

Willianr '', institute sufficient confidence to adopt

this element. The only probable disadvantage of this

element is that of its shape because of which all corners

must contain a right angle and as such the element size

can be increased only in one direction. The effect of

this constrain is on the aspect ratio which tends to be-

high as element size is increased and limiting the aspect

ratio results in loss of economy. A compromise-

between economy and accuracy is therefore imperative.
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4.4.2 Evaluation of Element Stiffness for
Orthotropic Slab

The explicitly d rived coefficients of the element

stiffness matrix for a 4 noded rectangular element, with

16 degrees are for isotropic plate bending element. However,

in the present formulation it is necessary to treat the

element as orthotropic, so as to properly model the

cracked pavement slab. It is therefore, necessary to

completely derive the stiffness coefficients for such an

element.

The Hermitian Polynomials defined for interval (o,a) are!

H01(x)

HQ2(x)

H1:L(x)

Hl2(x)

Then,

^(2x3-3ax2+a3)
or

i5-(3ax2-2x3)
a?

4r(x5-2ax2+a2x)
a

^2-(x3-ax2)
a

... (4.13)

w(x,y) -j^ .I^oiW- Vy)'WiJ ♦■uUX^jW^U
+Hoi(x).H1;j(y).wyij+H1:L(x).H1;j(y).wxyi.]

where,

w(x,y)

w

w.

1J

'xij

d flection of the slab at any point (x, y) within
the el.ment, including its boundaries.

deflection of node (i,j) according to figure 4.2,

slop^; in local 'x' direction at node (i,j)



wyij = slope in local 'y' direction of node (i,j)

wxyi;j= twist at node (i,j).

Also, from equation 2.1
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w(x,y) = QQM ... (4.15)

where,

QO = matrix containing shape functions with proper
coordinate values,and

{&] = list of nodal degrees of freedom taken in proper
order.

Equation 4.15 can be written explicitly as*.

t -;

(2x3-3ax2+a3)(2y3-3by2+b3) )
a(x3-2ax2 + a2x) (2y3-3b2y +b3)i
b(2x3-3ax2+a3)(y3-2by2+b2y)
ab(x3-2ax2+a2x)(y3-2by2+b2y)
(3ax2-2x3)(2y5-3by2+b3)
a(x3-ax2)(2y3-3b2+b3)

b(3ax2-2x3)(y3-2by2+b2y)
ab(x3-ax2)(y3-2by2+b2y)
(3ax2-2x3)(3by2-2y3)

a3b3j a(x3-ax2)(3by2-2y3)
|b(3ax2-2x3)(y3-by2)
jab(x3-ax2)(y3-by2)

(2x3-3ax2+a3)(3by2-2y3)
a(x3-2ax2+a2x)(3by2-2y3)
b(2x3-3ax2+a3)(y3-by2)

ab(x3-2ax2+a2x)(y3-by2)

T

w(x,y)= -J-

V
11

w.
xll

w

yii

w.
xyll

w.

w.

w.

12

xl2

yi2

w xyl2

t w22

w.

w

x22

y22

w.xy22

w2l

w.

w

x2l

y2i

vwxy2i/

&.,<>
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where,

a

and b

dimension of the element along x direction,

dimension of the element along y direction.

,let i = x/a and n = y/bnow

therefore,

also

and

Again

and

ML = I
ax a

and m = |
ay b

&£ _ .2* iLL 1 9w i
ex at, ax a ae, i

iii _ 2E M i jjw j
dy^ ~ an ay b a^ J

2 2
a w _ a rawi a w
.2 - ax let' ~ "2" T~2~
ax

2 2
jL> _ i aw

ay b^ a-o

a ae,

a w _ .a__/^WN i_
axay axvay' : ab arid£

,2
a w

It can also be seen that

as; en = ~ dx dy

Therefore from equations 4.8 and 4.11,

{*) =

- i-4
a?
a w

"ay2
2a w
ex ay

.. (4.17)

.. (4.18)

.. (4.19)

.. (4.20)

... (4.21)



1 I? 0 0
!a2w]

a es

0
1

"C2
0

J e2w
b ,1 ; an

0 0
2 | i 2

; e w
abj I eiiey

or JX.J = UQ

\k
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... (4.22)

Similar to equation 2.2 the curvature-displacement relat

ionship can be

{%) = DOl*} = B3CW

where [~B~| for plate bending case will be

3x16

eV
ex

2e nx
._

ey

2
81,

2 i
ex ay

2
e i.

ex

2
81,

"7*ay

2e%
exey

e2N3
ex

2
81,

ey

2
81,

3
exey

... (4.23)

?2n16
ex

e2N

ey

a2N

16

16

exey

and Qr\] in local coordinates can be explicitly written

as,



_T

6(2^-1)

a(6^-4)

6b(2^-l

abU-4)

6(1-20

a(6^-2)

6b(l-2^

ab(6^-2

6(1-20

a(6^-2)

6b(l-2jr

ab(6^-2

6(2^-1)

(6s;-4)

6b(2^-l

ab(6^-4

2n3-3T)2+l)
2-03-3n2+l)

n3-2n2+r))

2ri3-3n2+l)
2t13-3t)2+1)
(t)3-2t12+ti)

(n3-2n2+r|)
3Ti2-2n3)

3n2-2ri3)

(nW)

(irW)
3n2-2r,3)

3t|2-2ti3)

(n3-r)2)

6(2^3-3^2+1)(2t1-1)
6a(^3-2^2+0(2r)-l)

(T)3-2T12+n) b(2^3-3^2+l)(6r]-4)
abU3-2£2+6)(6T)-4)
6(3^2-2^3)(2r,-l)
6a(^-^) (2-0-1)

b(3^2-2^3)(6r!-4)
ab(^3-^2)(6r!-4)
6(3^2-2^3)(l-2n)

6a(^3-^2)(l-2n)
b(3^2-2^3) (6-0-2)

ab(^3-^2)(6T!-2) ab(3^2-20(3r)2-2-n)
6(2^3-3^2+l)(l-2n)
6a(^3-2^2+^)(l-2n)
b(2^3-3^2+l)(6n-2)

(-oW) ab(^3-2^2+0(6Ti-2)
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36U2-O(r)2-0)
6a(3^2-4^+l)("02-ri)
6b(^2-O(302-4ri+l)

ab(3^2-4^+lX3n-4Ti+]J
36(^-^2)(112-r))

6a(3£2-20(r)2-r])

6b(^-^2)C5t)^4r)+l)
ab(3^2-2O(3n2-4'0+D
36(E)-^2)(r)-r12)

6a(3^2-2O(n-"02)
6b(^-^2)(3r)2-211)

36(^2-0(ri-^2)

6a(3^-4^+l)(o-»l2)
6bU2-0(3r)2-2n)

ab(3^-4^+l)(3o-2o)

... (4.24)

because of the relationships shown in tabular form below
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Hermitian ,
Polynomial! H

d^
--i -r , , j

d2H d3H
dr

H01U) (2*5-3*2+l) 6(|2-*) 6(2^-1) 12

HQ2(0 (3i-2-2C3) 6U-*;2) 6(1-26) -12

HX1(0 a(^3-2^2+0 a(3^2-4^+l) a(6i--4) 6a

H12(0 a(^3-^2) a(3^2-20 a(6c-2) 6a

It is now possible to determine the element stiff-
e

ness for plate alone [j^jj which according to equation 2.14
is

e

Bp3 - I""1 ^CbD^DLbD dx.dy
r oo

Using equation 4.23, this can be also written as

0 0

... (4.25)

Value of jj*] can be substituted from equation (4.24) and
that of [pj| from equation 4.12.

This equation can be evaluated explicitly or the

integral value can be obtained by numerical integration
(Appendix 2.A).

The general form of an element 'K..' of 16x16 matrix
e 10

GC1 i82 2
at", a^.

a XJ b 1J
K,
ij a.b D^a3 .(b/a)2+ D22a^(a/b)2+Dl2a5.+D33a6 .J

... (4.26)
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1 2 3 4 R fi
These coefficients a , a , a , a , a and a for each

value of i and j are given in the table 4.1. For a linear

system to which Maxwell-Betti theorem(124) is applicable,
e

the matrix flc]] must be symmetric. The coefficients

are therefore given for only lower triangular matrix.

:

4.4.3 Properties of Slab with Subgrade

4.4.3.1 Reactive Forces due to Subgrade

The slab is resting on an elastic bed and it is ass

umed that the two are having full bearing at every point.

Thus, at each point of contact, there will be a reactive

force acting on the slab due to the foundation. In order

to reduce the problem to a degree of determinacy, it is

necessary to assume a mathematical correlation between

this reactive force and the slab deformation. The simplest

and usually assumed model among these is the Winkler's

model (23^.

In the linear Winkler foundation model, it is

assumed that the subgrade behaves as a dense liquid of

density 'k' such that the reactive pressure 'f' at any

point, where deflection is 'w' is given by

f = -kw

4.4.3.2 Lumped Foundation Stiffness

These reactive pressures can be regarded as nodal

forces and treated as a concentrated force acting at nodal

point. The formulation in such a treatment is straight
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forward and the equation of equilibrium i.e. equation

2.10 can be modified as

(ClpD+ kCaDH'oi6 = [F|e ... (4.27).
where,

[ip] = stiffness matrix of pavement, and
DO = a diagonal matrix, the diagonal terms

represent the area under command of a
node over which the subgrade reaction
is supposed to be uniformly distributed.
It may be noted that [aj contains zero
terms corresponding to derivatives of w.
This is an approximation. Moreover terms
corresponding to 'rotational stiffness, if

and any, can not be included.

|F} = vector of nodal forces due to applied loads.

Such a formulation is reported to have been

successfully adopted by Huang and Wang^79,80^.
Obviously, adopting this procedure will mean, replacing

infinite number of springs by a finite number with one

spring attached to each node with the assumption that

there is const ait deflection at all the points surround

ing a node.

4.4.3.3 Consistent Foundation Stiffness

It is more appropriate to treat the subgrade

reaction at each point as variable, consistent, with

the deformation »w* and its derivatives, if any, at

that point, and apply the principle of virtual work.

This will make the behaviour of the pavement certain
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and a bound will be assured. '117)

In general, the reactive forces ff |> due to Winkler

foundation du<? to (nxl) deformation vector fw) =
j" aw aw i t
tw» ax»"py" ••• ) can be written as

W --MM
nxl nxn nxl

where £k~} is a constant diagonal matrix at a point
and n = 1 for ordinary Winkler foundation.

The internal virtual work done by the reactive

forces can be equated to the work done by its equivalent

nodal forces j.F}¥ during virtual nodal displacement df6j>.

-fjdfwjT{f}dS =d|6}T|F¥} ... (4.28)

Substituting the deformation at a point

M = [OS) and d|Y|T = dj'6lT[NlT'
nxl nxl6

the equivalent nodal forces

M„ =-Cf'JWTCkl&^ds3(6} =-CKS1(6} ... (4.29)
where,

&sI3 = stiffness matrix of subgrade.

The final equation of equilibrium then reduces to

M = BpUN + iKBii&j
= MM .. (4.30)
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where [k]]=stiffness of the pavement (slab+subgrade
combined).

For n = 1, the stiffness matrix of the subgrade becomes

1^2 « ITMT*Md« ...(4.3o)

Thus, in this manner, the stiffness of the sub-

grade is to be added to the stiffness of the pavement

slab.

If K . . is the element (i,j) of the matrix Ik 1

then, it is possible to write an explicit integration

of equation 4.30.

Ksij =a ±j- b15-k-aij ••• U.3D
12 7

The values of a , a and a' are given in Table 4.1

for different values of (i,j). Again, since [K 1 has to
s

be symmetric, only lower triangular values of coeff

icients need to be evaluated.

4.4.4 Evaluation of Nodal Forces

4.4.4.1 Consideration for representing
the Wheel Loads

The main considerations for realistic representation

of wheel loads to obtain their influence on the pavement

are:

(a) The wheel load is not static but is moving. This
fact gives rise to two main considerations:
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(i) The consideration of time effect on material
behaviour.*

With the increase in the speed of the vehicle

the loading time is reduced. Ther fore, as a result

of a narrow and steep force time curve obtained in pave

ments, the material character tends to become independent

of time factor. This is specially true for cement

concrete which does not appreciably exhibit visco-

elastic characteristic during short-term loadings.

Even for flexible pavements it is observed that the

(72)
effects are negligiblew '. However, the usefulness of

dynamic modulus of elasticity of concrete as obtained

by Orchard, Walker and Stewart*9^) is useful.

(ii) Tho consideration of dynamic or the inertial
effects due to wheel movement:

Such effects are a function of several variables

like, speed of the movement, suspension system of the
/"•IOC 1 O £ \

vehicle* * ;, tyre conditions, inflation pressure,

pavement roughness etc. These variables make the assess

ment difficult and it is recommended'127' that a further-

study is warranted. However, Sargious st al.*75' based

on actual measurement observe that,

"....The negligible dynamic effect observed

lends support to current design practice of

considering static load only".

According to Jones, lister and Thower*128', the
effect of moving wheel loads is essentially of quasi-static
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type in which inertial forces have negligible effect due
to a large difference in velocity of wave propagation in
pavement material and the speed of the moving vehicle

(b) The second consideration in wheel load representation
stems from the wheel load location. *gain, there are two
points worth considering*.

(i) The absolute position of a wheel load on the

pavement slab. From this point of view it is

conventional to consider three locations viz.,

interior, edge and corner, of a slab. However,

the critical location may be other than one

of these due to the presence of a crack or a

discontinuity. Therefore, it should be possible

to determine the influence of the wheel load

located any where on the slab.

(ii) Apoint may not be influenced by the position of
a single wheel load but may also be under the

influence of another adjoining load. Thus, the

relative locations of wheel loads also become

important. Though, it may not always be necess

ary to consider the location of adjoining wheel

load due to the fact that the stress distribution

in the pavement is highly localized because, it

is known that the stress distribution curve

has a steep peak below the wheel load*'113). The

true representation of dual tyre load is important,
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(c) As the stresses in the pavement slab are highly
sensitive to the location and the distribution of the

wheel load, contact pressure on the pavement surface

needs due consideration. Once again, the two points that
arise are*.

(i) The distribution of contact pressure- It has

been found that the distribution of contact

pressure is a function of type of tyre (number

of ply rating), inflation pressure, tyre condi

tion type of road surface, load coming on the

tyre and also the speed of the vehicle. Markwick
(129)and Starksv *' observed that for normally loaded

tyres the pressure is greater at the centre but

for overloaded tyres it is greater under the

walls. According to Bones and Kuhn^130\ the
modern automobile tyre is more like a overloaded

one. Also, the centre of the reactive tyre press

ure must fall ahead of the centre of axle in

the direction of motion so as to give rise to

rolling resistance*131'.

A me-food is therefore, required which

can economically represent these variations, with

in the practical limitations, as realistically
as possible.

The interfacial shear stresses will also

be present, specially at the instant when brakes
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are applied. However, as is often the pract

ice, these are not given importance for the

analysis.

(ii) The Shape of Contact Area.*

In the analysis it has been usual to regard it as

circular or semi-circular*'24*26' 29\ However, for a loaded
wheel of a heavy highway vehicle or an aircraft the contact

area more closely resembles a rectangle with rounded

corners ', where the imprint is taken on an unyielding

surface. This, therefore, holds true for rigid pavement.

It is therefore, appropriate to represent the contact

area by a rectangular geometry.

4.4.4.2 Evaluation of Nodal Forces due to Wheel Loads

In Chapter II. it was resolved that the consistent

load vector is one which is based on work equivalency,

rather than on statical equivalency alone. Therefore,

from equation 2.11 with the notations as defined

M«rmT{p}4A
A

This integration can be explicitly evaluated or

the integral value can be obtained by numerical integra

tion.

If F^ is the ith term of vector [?} then on

explicit integration it is seen that it is possible to
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write, for the element under consideration

r10l± ... (4.32)*i = P a'1 b"1 / a10

where, a ,a9 and a10 are given in Table 4.2 for each value
of it.

However, a limitation of such a formulation is that

the whoa* of the element has to be treated as loaded and

that too with a uniform pressure. This means that the

element size is governed by the loaded area and becomes

an over-riding factor in structural idealisation. However,

the numerical integration technique provides a flexibility
in the solution.

( "\rXrZ \

Aweighted quadrature rule like Gaussian quadrature
can be used. As per details of numerical integration

(Appendix 2.A), the summation sign can replace the integra
tion sign and accordingly,

W=""Jill ^i.J^M Wi «j •••. (4-33)
where,

i,j = sampling point in x and y direction respectively,
n = order of the quadrature rule,

pij = c°ntact pressure between tyre and pavement in the
sub-interval supposed to be under command of
sampling point (x., y.),

W±»W- ith and j th weighting constants respectively in
accordance with the adopted quadrature ruleU33)

i
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As a numerical example the equivalent nodal loads

are given in Table 4.3 for the case of an element of

3mx3m size which is divided in 9 areas and each area is

successively loaded with a pressure of 1000 kg/m .

Say, for example if part I (figure 4.3) is loaded,

then from Table 4.3 values of equivalent nodal forces

can be obtained for i=l, j=l taking moments about the

centre of elanent in x direction is ^ M = 0.

It is seen that,

moment of nodal ,r*r ^c o-z ei ^ o^t* c<%\ -, ^fnrf)pfi • (646.36-23. 61-0.86+23.61)xl.5
eS -178.34+22.65+0.83-6.51

= 806.85
and

TeTlYJ ^ " <i3*5><fff"> (1000*0.387*3)
= 806.25

Similarly, it can be seen that,

l ^ =0.

Aleo, sum of nodal forces in vertical directions must

equal to the applied load

applied load = (iex3)(|gx3) x 1000
• 694.44.

no^al°ffo?cesiCal = 646.36+23.61+23.61+0.86
= 694.74.

Thus, the static equilibrium conditions hold good.
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4.4.4.3 Evaluation of Nodal Forces due to
Temperature Changes

The effect of temperature and moisture changes

are essentially similar in nature.Therefore, the effects

of one is convertible into the equivalent effects of

other by introducing a factor. Hence, it is appropriate

to deal with only one say thermal effects.

Considerations to following points are necessary

to evaluate thermal effects.

The changes in pavement temperature can be treated

in two parts-

(1) Changes in average temperature which will cause

the slab to expand or contract. This expansion

or contraction will be resisted by frictional

stresses at the bottom of the slab. The coeff

icient of friction will thus play an important

role.

(2) Non-uniformity in temperature through the pave

ment cross-section will result in differential

expansion and contraction between the top and

bottom fibers of the slab. This will result in

warping.. The weight of the slab will restrain

warping. It is reported*134'' by actual field

measurements that warping does occur. However,

it is conventional to assume full restrain

in the analysis*135""139'. Therefore, keeping
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in line with these, full subgrade restrain

is again assumed as valid in the present

analysis.

The stresses will depend on temperature gradient,

subgrade stiffness, pavement slab stiffness and coeff

icient of thermal expansion of the slab.

The slab is continuously in motion due to temperat

ure changes and therefore, it can be termed as 'quasi-

static since the stresses are changing at every

instant. But at a particular instant, the instant which

will give the worst effect, they can be treated as cons

tant because of the slow rate of change. Thus, a static

analysis is appropriate. The problem becomes a thermo-

elastic problem because the temperature field in non

uniform through the cross-section and the pavement is

treated as an elastic body. For solution, it is necessary

to convert the temperature field into the stress field.

Under the assumption of full restrain, the net

strains are bound to be zero(141). it is usual to assume
the temperature as same at all the points lying on a plane

parallel to the middle and the distribution of temperature

through the cross-section is linear. Therefore,

£x =£x-^=-e +|(ax-v a) =0 i
cx »
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(4.34)

where,

ex'ey and YXy are net strains,

ex*ey and Yxy are the c01"1^spending values for
restrained thermal strains,

cx, Cy and t are the stresses developed.

a • coefficient of thermal expansion, and

9 = fall of temperature at a point which is at
a distance 'z' from neutral plane.

Solving equation 4.34

and

ax - ay ~ (1-v)

v = °

c_ z dz

... (4.35)

Therefore, to convert the thermoelastic problem

into an elastic problem it is necessary to apply these

stresses at every point. This will however, violate- the

conditions of equilibrium* Thus it is necessary to apply

a moment at the edges to satisfy this condition. Therefore,
h/2

Mx " J"
-h/2

h/2
- JL2L f n A~~(~) J ez'dz

-h/2
and similarly

h/2

My =(Tqi) J ©z-dz
-h/2

... (4.36)
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Putting e • jp. z and integrating equation 4.36

E a AT h2
«xBl,y = 12(1 -"tTT ••• <4*37)

where,

AT = difference of temperature between top and
bottom of slab,and

h = thickness of slab

Thus, the system of forces which are equivalent

to thermal non-uniformity are completely defined. The

procedure will be to

(i) apply moments at all edges as given by
equation 4.37.

(ii) subtract the stress given by equation 4.35

from the stresses developed due to applied

edge moments.

The equivalent nodal forces due to applied moments

are to be evaluated so that they may form the part of

the load vector in equation of equilibrium (equation 2.10)

These edge moments are once again to be applied

in the form of consistent nodal loads. The value of these

nodal loads have to be obtained by principle of virtual

work as was done in Chapter II.

Therefore, from equation 2.12

T

M = jjcbh b>3i>} dA ... (4.38)



-111-

Again, as usual the equation can be explicitly

evaluated or the integral value can be obtained by

numerical integration. The explicit integration yields,
12 13

hi tf ITF± = p ajx(a | + b x ) ... (4.39)

where, E* mith term of vector £f)

ai = multiplying coefficient

a = dimension of element parallel to axis of x

b = dimension of element parallel to y axis

exponential ck
respectively,

12 13
a ,a *= exponential coefficients of a and b

and,

_ Eh3 a.AT
12(l-v2)' »

It may be recognised that,

Eh3 -.
" . A .== 1)

i \I2(l-v*)
= rigidity of the pavement slab

and «*£!- =^
h

= curvature of slab due to
temperature differential
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4.5 MODELING OF CRACKED SLAB

A crack forms a discontinuity in the stress field

and can be regarded as analogous to obstruction in fluid

flow. This is demonstrated in figure 4.4. For a plate in

bending, a crack would effect in loss of bending stiffness

in the direction perpendicular to the crack. This will be

as a result of loss of the capacity of the fibers to

resist imposed moments and as such they will undergo greater

rotation. However, in the other direction, i.e., the one

parallel to the crack, the situation will not alter very

much. An obvious method to model the crack is therefore,

to simulate its effect by orthotropic properties i.e., by

taking different moment curvature relationships in the two

orthogohal directions.

Difficulty now arises in characterising the loss of

rigidity of the cracked section. Not much could be said

with certainty regarding the rigidity of the section perpen

dicular to the crack, in case of plain cement concrete slabs,

However, there is enough evidence to feel convinced that

the rigidity of this plane could be correctly assessed in

case of reinforced cement concrete slabs. Thisis based on

studies performed by Branson*142', Yu and Winter*143', Beeby
and several others.

4.5.1 Modeling the Crack through Finite Elements

Attempts are reported to have been made towards

characterising the crack in plate bending finite element
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model by treating the element as cracked(145'146). Bell(l47)
later stated that treating the element as partly cracked
has become unsuccessful and therefore- suggested the case of
an element which is wholly cracked. To find the moment-
curvature relationship, the author prefers using the method
suggested by Priestley(148).

Plane continuum elements have often been used to
simulate crack<*»•*»>. ^ ±g ^^ ^ ^ disconnect_
ing the nodal points which ar, on the common boundary of
the crack. Aprocedure similar to this has been adopted
in Chapter III.

It has been shown(n5) by using 20 noded, three
dimensional isoparametric elements that in case of beams,
good correlation exists between the observed behaviour and
predicted values.

An iterative scheme has been suggested(l53> in which
layers of finite elements go on successively cracking as
the load is incremented. It is stated that the modified
EI approach, as adopted by Jofriet and McNiece(l54'155) does
not yield good results. By taking the experimental value*
for the slab obtained by Jofriet and McNiece • the aut
hors show that their results converge.

Jofriet and McNiece(l55) conclude that Beeby'a
m-thnr!^104) • -,.method yieids results which show excellent agreement
with the experimental observations. Beeby's method is based
on modifying the rigidity i.e. EI of the cracked section in
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the direction perpendicular to the plane containing the

crack.

This method is simple and economical. Moreover, it

is directly applicable to the cas„ of pavement slabs where

the cracks are known as a priori. The only problem is to

model them and this can be done by using Bee by's recommend

ations for reinforced concrete slabs. Beeby suggests

modification in 'EI' of the cracked part by taking value

of 'E' as 0.57 of that of the uncracked part and 'I' is

the value of moment of inertia of the cracked section.

However, no recommendation of this kind is known for the

plain cement concrete and therefore, pending extensive

investigation, the safest recourse seems to consider

total loss of rigidity for the entire crack depth.

It can therefore, be said that based on the work

reported by several inv stigators, the method of model

ing a crack in the slab by assigning orthotropic propert

ies to the element appears to be appropriate. While Beeby's

method for determination of the constitutive law in the

direction perpendicular to the crack, seems to be appli

cable for reinforced cement concrete, for plain cement

concrete, all the stiffness of the cracked part may be

neglected. This fact is also backed by the limited studio

of cracked slab, reported in the previous chapter, when

it was observed that at the crack section tho part, which

is cracked does not participate in carrying the stress.
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Another very important issue in modeling the

crack is with regard to the width of the crack. The crack

width itself may be very small. In case of plane conti

nuum elements i.e., in case of plane stress, plane strain

or even in axisymmetric or three dimensional elements, the

crack can be easily represented by splitting a node into

two. Both these nod.s may have same coordinates but just

form a discontinuity in between the element boundaries

and additional degrees of freedom are assigned. This is

simple and straightforward. But in case of plate elements

the continuity of slope must exist in the direction of

the crack, so also, the deflection of the two adjoining

nodes on a crack must be same due to dowel action of the

aggregates. Therefore a modeling by splitting the nods

will lead to inaccurate results in plate bending. There

is ample evidence to bell ve that substantial load transfer

is possible across the crack due to aggregate inter--

locking*"88'89'153). This is because the formation of a
crack in concrete is not a phenomenon based on slip but

is because of the energy used up in causing fracture like

one in brittle mate-rial*156',

Among the earlier work done in this direction, to

model the crack in finite element in plate bending,

Jofriet and McNiece(l54'155) have not stated anything
about the size of the element in their work. Bell and

Elms have also not touched this point, though they

mention that, should the mesh size app ar to be improper
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in the course of load increments, the mesh geometry may

have to be changed. However, no specific definition to

this statement, is given.

Beeby observed that in a controlled constant

curvature test, the cracks in the beams are spaced at a

distance of approximately twice the depth of the crack.

This ho attributes to the effect of stress release due to

the crack, which in the spirit of St.Venant's principle

should exist for a distance equal to the depth of crack

on either side of it because in case of a uniform stress

field, which was adopted in his test, the crack will only

have an effect of a local disturbance in an otherwise

undisturbed surroundings. Similarly, the tests based on

photoelastic studies carried out by Post*157^ and several

others, using interferometric isopachic technique, indicate

the isochromatic fringe pattern supporting that in the case

of beams the zone adjoining the crack is almost free

of stress upto a distance equal to about the d pth of

crack. Post's work was later substantiated by Williams*'158^
who gave ai theoretical explanation for the observed stress

distribution pattern.

It therefore appears to be appropriate to take the

effect of stress release within a zone equal to one to

two times the depth of cracks. It is to be agreed that

more extensive investigations on cracked pavement slabs

are necessary to uncover the truth. However, the obs rva-

tions based on the limited numerical experimentation
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described in Chapter III endorse this judgement.

4.6 NUMERICAL INTEGRATION

Apart from programming advantages and quick

implementation for nonlinear situations numerical integ

ration is proposed with the following advantages in view.*

1. In case of explicit formulation, the stresses

are obtained at nodal points, whereas, in

numerical integration procedure stresses and

displacements can be readily obtained at

sampling points of numerical integration scheme.

These are more reliable.

2. It has already been shown that by using numerical

integration scheme it is possible to load only

a part of element and obtain the consistent nodal

loads. This leads to a great deal of economy.

3. By a similar argument, it can be shown that sub-

grade discontinuities, in a part of an alement

can also be accommodated, without resorting to

modification of structural idealization.

4. Advantage can be taken of reduced integration

technique. It has already been mentioned that

since the mathematical foundation of the finite

element method is based on minimization of

potential energy by variation of shape., the
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obtained solution tends to be stiff^60^.A

method of improving the result is to provide

greater number of degrees of freedom to the

system. However, this tends to uneconomy.

Reduced integration technique is therefore

suggested in which by adopting a quadrature

rule of an order one less than the exact,

it is claimed that results significantly

improve*159'160'. Incidentally there is also
a significant saving in computational time

because of the reduced computations.

5. Earlier attempts to model partially cracked

element in bending have not been very success

ful. But by adopting a numerical integration

scheme such a possibility exists as the

variation of material constants across the

element can be considered without any complica

tion.

6. Numerical integration can in general be more

economical. Nayak*1 1' has shown that by use of
the concept of generalised modulus matrix the

use of QQ matrix can be avoided and [B*3

is to be calculated only once for the parent

element at all the integrating points.
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4.7 REPRESENTATION OF LOSS OF CONTACT WITH
THE SUBGRADE

The basis of coupling of subgrade reaction with

the pavement slab is same as that of determination of

consistent loads, both being based on work principles.

Thus, the subgrade stiffness, given by equation 4.30

6»D = 17 DO kQQdB

can also be evaluated by numerical integration and it

can be argued that if a part of subgrade has lost contact

with the pavement, then the work done by the remaining

part can be obtained by numerical integration performed

on the remaining subintervals.

Loss of contact or variation in subgrade modulus

known as a priori, because of reasons like pumping,

shrinkage, swelling etc. (l62'163'164> can therefore be
realistically taken into account, without much restriction

being imposed on the geometry of the finite element

idealisation. Earlier, loss of contact have been taken

into account in finite element method by Huang and Wang^80^
This was done by removing the spring supposed to be

attached to the relevant node.

4.8 EVALUATION OF THE PROPERTIES OF PARTLY
CRACKED ELEMENT

Though it will usually be possible to adjust the

element size in such a way that an entire element may
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represent the crack as per the resolutions male in

last article. However, some times it may so happen
that this may not be possible, for reasons of economy.
In such cases it may be necessary to treat only a part
of the element as cracked. This appears to be possible,
through numerical integration procedure. Nayak(l65) has
shown that it is possible to assign different consti
tutive relationships to different parts of an element
(sub-element), each part having its centre at the Gauss
point and area equal to the weightage corresponding to
that Gauss point. Thus, the procedure becomes similar
to the one adopted for partial loaded element.

This means that if,

QijH = rigidity of the slab corresponding to the
. sampling point (i,j)

[M} =stresses corresponding to that point,
\M =strains corresponding to that point

t5ij3 = OH matrix with coordinates of Gaussian
J sampling point (i,j)

then,

and

IV - n>iP»} ... (40)

Cljl = BiPW ... (4.41)

will still hold good. The implication of this formulation
is that the strain remains to be continuous, though the
stress will become discontinuous. However, there cannot
be any objection to writing the strain energy of the
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element as

A

the only difference being that the integral is not

continuous and therefore has to be done in parts. By

usual numerical integration procedure

It fft iTS_ = ill jli^iJ1 fMii[ ¥iWi - (4'42)
where,

Wi# W. = weighting constants of the adopted weighted
quadrature rule.

By equating this to the work done by external forces as

in article 2.3.2.2 it can still be proved that

W=ab< ! 2 CBiP^D Id 1 ){6j 1LW .. (4.43)
i=l j=l J :LJ x;] * J

Thus, it is possible to arrive at the proper stiffness

of the element which is

[ig =abJi J^jfQ^lCBiPWiWj ..(4.44)

Use of equation-40 will be necessary in stress

calculations and in this formulation it becomes obligat

ory to calculate stresses on these very sampling points.

4.9 ANALYSIS OF AN INC H NED CRACK

The transformation of flexural rigidity matrix

E5Q wil1 °e necessary if the direction of crack docs
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not coincide with the direction of local coordinates.

If M£, M^ and M^y are moments in transformed direc
tion (parallel and perpendicular to the crack) and if

a is the angle between these two sets of directions

measured clockwise positive from x direction, then it

can be shown that the relationship between M1 and M

is

fM'J =

2
cos a

. 2
sin a

sinacosa

QalfM}

sin a

2
cos a

-sinacos a

-2sina cosa

2 sina cosa

2 2
cos a-sin a

M

(4.45)

This follows directly from well known stress trans

formation law of elasticity/114^ Asimilar operation on
curvature can yield

cos a
2

sin a -sinacosa

2 2
sin -a cos a sinacosa go

j 2 p
j 2sinacosa -2sinacosa cos a-sin a

DepTO .. (4.46)

These transformation matrices are such that

OJ -BJ .. (4.47)

Therefore,

GPU =&21 EDO^H .. (4.48)
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where, all the dashed quantities refer to coordinates

which coincide with principle directions of orthotropy

and those without prime refer to local coordinate axis

of element.

A comparison of explicitly multiplied transformed

flexural rigidity matrix with Hearmon*166) or Lekhnitskii
proves its correctness.

A numerical integration process does not present

any difficulty in either stiffness formulation or stress

computation for any arbitrary direction of crack. Through

explicit integration formulation this may be an unecono

mical process.

4.10 FORTRAN IV CODING AND DEBUGGING

The only computer available at Roorkee is IBM 162 0

model I at S.E.R.C. Roorkee. This has a punched card

input/output system. This however, proved to be a boon

in disguise. Because of the memory limitations it is not

possible to run the whole program in a single go on this

system, even for a smallest test problem. The program was

therefore split up in three parts. The output of the

first part was read in the second part and so on.In the

first part the geometry of the idealised slab was read in

and the stiffness of the slab was computed and taken as

output.

In the second part this s tiff ness was read in. The
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applied loads were also read in and got converted into

equivalent nodal loads. The equilibrium equations were

then formed and the solutions for displacements were

obtained by Gaussian Elimination process. Tnese dis

placements were obtained as punched output.

The third part of course was simple and did not

mobilize much of memory either. The displacement were

fed in and the stresses at each Gaussian point was

obtained for the whole slab. The whole process was cumber

some and time consuming too, as it required practically

10 to 15 days for getting a single problem solved, but

was admittedly advantageous on two counts. Firstly,

because it provided lot of insight in the processes, which

might have gone hidden up in a fast computer and secondly,

it saved lot of precious time of a fast computer.

Three problems were tried in this way-

(i) A simply supported square isotropic plate of

5m x 5m size, the quarter of which was consi

dered because of double symmetry. The quarter

of this plate was divided into 4 elements.

(ii) Above slab with fixed edges instead of simply
supported.

(iii) A 4m x 4m slab on winkler foundation.

The results of (i) and (ii) were compared with

standard solution of Timoshenko*'114) and the difference
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was within 2*/. . m case of (iii) the values of stresses
given by the program under the load were 4.5*/ higher
than those given by Westergaard(24> in the correspond
ing semi-infinite slab in interior load position.

The three parts of the program were then combined

into a single one. The uneconomical statement to suit the
constrains of IBM 1620 computer were changed. Results

were obtained on IBM 360/44 Data Processing System at

Delhi University Computer Centre. The total program runs
in some 1000 FORTRAN statements at this stage and takes

about 220 sec. to compile it. This time includes the

time required for printing the FORTRAN listing and locat
ion MAP, the printer being an on-line type, directly

coupled with the CPU. Some of the details of this

program are given in the f inal form (i.e., after addition

of layers analysis of bonded or unbonded type f Elastic
Solid type foundation, two parameter foundation, foundation

with loss of contact and the required modification for

influence surfaces) in the Appendix 'A'.

Test runs were conducted with the program on IBM 360/44

with a view to check the correctness of the formulation

with minimum expenditure of computer time. Thre;. important
aspects were looked in for-

(i) Comparison with existing solutions in cases

where this is possible, e.g. by Westergaard's

jes
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solution* 4) or for cracked slab by solut
ion given by Niu and Picket*'168^.

(ii) Static check in all cases particularly those
for which solution does not exist for

comparison.

(iii) Physical feel.

Following material properties have been taken in
all test cases!

Ec - modulus of elasticity of concrete
30x104 kg/cm2

vc - Poisson's ratio for concrete = 0.15

k - Modulus of subgrade reaction = 12 kg/cm2

The justification for adopting these properties
have already been discussed earlier.

Test Case I- Comparison with Westergaard's solution

The slab of following dimensions

Length of slab = 6 meter,
Width, of slab = 6 meter.

Thickness = 23.0 cm

was considered.

The reason for adopting a square panel was to

simulate the semi infinite slab conditions for comparison
with Westergaard's interior load solution. Size 6mx6m

was considered as a slab with enough size to satisfy



-127-

the conditions sought.

Aload of 8000 kg was considered to be acting on
120 cm x 120 cm area in the exact centre of this panel.
Only one quarter of the panel was analysed because of
the double symmetry. The finite element mesh was graded
to achieve maximum economy with minimum loss of accuracy.
The basis of this was however, only the physical judgement.
In calculations by Westergaard's equation, the load was
taken of equal magnitude and radius of contact was taken
as equal to half the width of the square contact area.

Figure 5(c) shows the plan of this quarter slab,
Figure 5(a) indicates variation of bending moment M
along section A-A'. Variation of My along section B-B'
is shown in figure 5(b). Figure 6(a) shows the variation
of moment Mx along AA«. Deflections along Y-axis and
X-axis are shown in Figure 6(b) and Figure 6(c) respect
ively.

It is to be noted that-

(i) Stresses deflections and slopes must be
symmetrical about the diagonal.

(ii) When compared with Westergaard's solution(24)
the maximum moment works out to be 590 kg.cm./cm.
as compared to 610 kg.cm./cm. given by the
analysis.

(iii) Static check must apply. Static equilibrium may
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be checked from two considerations-

(a) Sum of all reactive forces must equal the

applied loads. For this purpose, a weightage

is given to each node corresponding to the

area it is supposed to represent. This is

similar to lumped nodal reaction formulation

discussed earlier and adopted by Huang

and Wang(79'80). it is an approximate
method and in present case the error in

static equilibrium is 2.8'/. even though it

is a very symmetrical case with least possi

bility of approximation in assigning the

weightages.

(b) Another method of checking the static, is to

consider the equilibrium of a part of the

slab. The applied loads and the reactive

forces must be in equilibrium wi th the side

shears and moments as shown in figure X(a).

The distribution of reactive forces has

to be guessed again. But this time, by taking
only a small part this guess may be more

correctly approximated by a linear inter-

polation. The error is therefore , less

and is within 1*/. for all different sections

to which these checks have been applied in

x as well as in y direction.
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Case II- Checking correctness of Part Loading
Formulation.

Same slab as tested in Case I, but for testing
the partly loaded element formulation, was analysed.

The loaded area was represented by Gauss point

No.l as shown in figure 7(b) i.e. by an area of 33.33 cm

by 33.33 cm which gives a load of 5540 kg This gives
a maximum moment of 972 kg.cm./cm. which when extra

polated for centre of the loaded area gives 990 kg.cm/cm

The calculated value of maximum moment as per Wester-

gaard's equation works out to be 1030 kg.cm/cm for the

load of 5540 kg and radius of contact 16.65 cm.

The static equilibrium, when checked as per para

(iva) of case I gives sum of reactive forces as 5663 kg.
i.e. an error of 2.2*/. .

Case III. Testing of Fully Cracked Element

A finite crack of 120 cm length across the centre

along x-axis of the kind already discussed in article 4.5

was considered in the slab with other condition identical

to that in case I. The crack was supposed to have an

effect upto 60 cm i.e. whole element width.

Direct comparison of this with standard solution

is not possible. The other tests, therefore, have to
be ajplied.

The sum of all reactive forces add upto 7648 kg.

as against 8000 kg applied load. The equilibrium of
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different parts compare with +2.5*/. difference. The

difference is specially more near the cracked part

because of the uncertainty of the reactive pressure

distribution.

Case IV. Testing of Partly Cracked Element
Formulation.

All the conditions were kept same as in Case III

except that in this case the crack was supposed to have

an effective zone of stress release as equal to that

of the weightage of the Gauss Point No.l in the ele

ment. This amounts of taking the zone of stress release

as 33.33 cm.

Remarks for Case III also hold for this case.

4.11 DISCUSSION OF RESULTS

In absence of a standard solution and having

ascertained that the static equilibrium conditions

ar , satisfied within reasonable limits, the physical

feel, which can be called a 'qualitative check' as

compared to 'quantitative check', will at least

provide a confidence in correctness of the formulation.

Variations of M , Mv and deflections are drawn in

figure 5(a,b,c) and 6(a,b,c). These diagrams are

very instructive as well.

These figures indicate that behaviour of partly

cracked element is essentially same as that of fully
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cracked one and its effect is lesser than the fully

cracked element. This is quite justified.

Figure4.5a shows reduction in stresses in the

crack zone due to stress release. However, these stresses

are bound to be diverted in the sound part, which is

ahead of the crack tip, and as such a concentration of

stresses can be expected in that zone. This is schemati

cally depicted in figure 4.5(c) and the crack is analogous

to obstruction in stream lined fluid flow shown in

figure4.4.The shaded zone of stress release shown in

figure 4.5 (9) being similar to wake zone in figure 4.

Stresses can be expected to increase in magnitude

at the crack tip if the centre of loaded contact area

coincides with it. This, however, has not been studied

quantitatively as it is besides the main theme of the

present work . However, it is illustrative that the

crack, once formed, is liable to progress due to stress

concentration as shown in figure 4.5(c).

Figure 4.5(b) presents the variation of moment, M
y

in y- direction. The effect of stress release in direction

perpendicular to the crack is clear. This is equivalent

to applying a released moment in that direction.

Figure 4.6<a) shows that cracking increases the moment

in x direction because, higher load is shared in that

direction due to its higher rigidity. Looking upon from

the considerations of statics this is justified because
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in cracked state the deflections in direction of crack

increases. This is agreeable with the findings of Niu-

and Pickett*168' as also of Abou Ayyash and Hudson^40,41^
though their findings are for long cracks. Figure 6(b)

and (c) show that deflection along the crack have increased

on cracking while in the orthogonal direction the inc

rease is only local. This is truly so because in direct

ion perpendicular to the crack the slope becomes higher

due to loss of rigidity.

Case V- Comparison of Stresses and Deflection
with the Solution given by Niu(42).

To simulate the conditions of a long crack the

slab dimensions were taken as 11 meters x 11 meters. A

straight transverse crack along centre of the pavement

was considered. This crack was simulated by a partly

cracked element (article 4.8) along its central Gaussian

point of 3 point Gaussian integral ion which means that

zone of stress release was taken as 24 cm wide. The other

material properties were same as in Case I.

The loading was simulated by partly loading this

cracked element on its corner Gaussian point, of 5 point

integration rule.

The maximum bending moment as determined by inter

polation from Niu* ' is 52.2 kg cm/cm whereas, that

found under load by finite element analysis was

58.5 kg.cm/cm. The deflection as per Niu is 0.665xlO~3 cm
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and that obtained was 0.56xlO~3 cm. Thus it is seen that

the moment is more while deflection is lesser. Ihe r-ason

that can be attributed to this greater rigid behaviour of

the pavement slab could be:

(i) Finite length of slab.

(ii) The rigidity is not supposed to be totally lost
in crack zone in crack direction but is taken
as 1*/. of the original.

(iii) The width of the zone of stress release is taken
arbitrarily as 24 cm.

(iv) Interpolation from Tables might have also
contributed to diff erdices in the values.

The results are plotted in figure (8). Figure 8(c) is the

plan of the slab showing crack and load position and finite

element Idealisation of the central part. Figure 8(a) shows

variation of bending moments along Gaussian sampling points

which are 3.63 cm away from the line of symmetry. Influence

of crack on bending moment M can be seen from this figure.

It is also seen that the moment M is still almost symmetri-
-A.

cal about load. Similar effect is also evident on d flect

ions plotted in figure 8(b). These patterns show remarkable

resemblance to those obtained from the analysis of plane

continuum element observed in Chapter III.

Case VI Uncracked Slab with (i) temperature gradient
and self load, (ii) temperature gradient alone.

Both these were analysed on pavement slab the part

iculars of which are given in Case I. Both these cases give



-134-

identical results as regards stresses, indicating that

gipvity loads have no effect on linear analysis with

Winkler foundation.

The results of maximum stresses obtained with temp

erature gradients are within 4Jr/. of those given by
Bradbury's solution for edge stresses but for interior

stresses the results tally within l/. .

4.12 OBSERVATIONS FROM STUDY OF TEST PROBLEMS

It can be observed from above discussion that

i) The formulation yields results which are in

close agreement with those due to Westergaard* '

for similar conditions.

ii) The results are comparable with those due to
(42)

Niu when the load is placed near a long

straight crack.

iii) The static equilibrium conditions in all the

cases hold within reasonable limits of accuracy.

iv) All the results can be given a physical inter

pretation and are therefore justifiable.

v) The temperature stresses calculated by the

formulation agree very well with those given by

Bradbury for a. sound slab.

The observations can incid -ntally also be drawn

ith regard to some aspects of the behaviour of pavementw
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slab e.g.,

i) Stresses ahead of crack increase as a result of

the presence of a finite crack and thereby, if

cracking is once initiated it is likely to progress

under variable and variably placed wheel loads.

ii) Behaviour of the crack is analogous to the flow

of fluid.

iii) The effect of a crack is to release the stress in

direction perpendicular to it. However, the stresses

in orthogonal direction increase.

iv) The effect of width of stress release zone taken

quantitatively different by whole element and by

part element is essentially similar in nature.

However, the effect is more pronounced when the

width is greater.
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TABLE-4.1

EXPLICIT COEFFICIENTS FOR COMBINED STIFFNESS OF

SLAB AND SUBGRADE

i

| •1 a%35 j a4-x 35 !
j

a5x 25 a6x 25 j a7x 1225

1 1 0 0 156 156 72 144 169

2 1 1 0 78 22 36 12 143/6

2 2 2 0 52 4 8 16 13/3

3 1 0 1 22 78 36 12 143/6

3 2 1 1 11 11

ft

61/2 1 121/36

3 3 0 2 4 52 8 16 13/3

4 1 1 1 11 11 11/2 1 121/36

4 2 2 1 22/3 2 4 4/3 11/18

4 3 1 2 2 22/3 4 4/3 11/18

4 4 2 2 4/3 4/3 8/9 16/9 1/9

5 1 0 0 -156 54 -72 -144 117/2

5 2 1 0 -78 13 -6 -12 169/12

5 3 0 1 -22 27 -36 -12 33/4

5 4 1 1 -11 13/2 - 3 - 1 143/72

5 5 0 0 156 156 72 144 169

6 1 1 0 78 -13 6 12 -169/12

6 2 2 0 26 -3 -2 -4 -13/4

6 3 1 1 11 -13/2 3 1 -143/72

6 4 2 1 11/3 -3/2 -1 -1/3 -11/24

6 5 1 0 -78 -22 -36 -12 -143/6

Table continued
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Table 4.1 continued

i

!

i j 1 a1
1 2
1 a j a3x35 a4x35 |a5x25 ! a6x25 ! a7xl22

6 6 2 0 52 4 8 16 13/3
7 1 0 1 -22 27 -36 -12 33/4

7 2 1 1 -11 13/2 -3 -1 143/72

7 3 0 2 -4 18 -8 -16 3/2

7 4 1 2 -2 13/3 -2/3 -4/3 13/26

7 5 0 1 22 78 36 12 143/6

7 6 1 1 -11 -11 -61/2 -1 -121/36

7 7 0 2 4 52 8 16 13/3

8 1 1 1 11 -13/2 3 1 -143/72

8 2 2 1 n/3 -3/2 -1 -1/3 -11/24

8 3 1 2 2 -13/3 2/3 4/3 -13/36

8 4 2 2 2/3 -1 -2/9 -4/9 -1/12

8 5 1 1 -11 -11 -11/2 -1 -121/36

8 6 2 1 22/3 2 4 4/3 11/18

8 7 1 2 -2 -22/3 -4 -4/3 -11/18

8 8 2 2 4/3 4/3 8/9 16/9 1/9

9 1 0 0 -54 -54 72 144 81/4

9 2 1 0 -27 -13 6 12 39/8

9 3 0 1 -13 -27 6 12 39/8

9 4 1 1 -13/2 -13/2 1/2 1 169/144

9 5 0 0 54 -156 -72 -144 117/2

9 6 1 0 -27 22 36 12 -33/4

9 7 0 1 13 -78 -6 -12 169/12

9 8 1 1 -13/2 11 3 1 -143/12

Table continued
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Table 4.1 continued

.

i
1

11 1«1
1a
i

1 2
1" a3x35 j a4x35 a5x25 a6x25 ja7*l225

9 9 0 0 156 156 -72 144 169

10 1 1 0 27 13 -6 -12 -39/8

10 2 2 0 9 3 2 4 -9/8

10 3 1 1 13/2 13/2 -3 -1 -169/144

10 4 2 1 13/6 3/2 1/6 2/6 -13/48

10 5 1 0 -27 22 36 12 -33/4

10 6 2 0 18 -4 -8 -16 -3/2

10 7 1 1 -13 11 3 1 -143/72

10 8 2 1 13/3 -2 -2/3 -4/3 13/36

10 9 1 0 -78 -22 -36 -12 143/6

10 10 2 0 52 4 8 16 13/3

11 1 0 1 13 27 -6 -12 -39/8

11 2
1 1 13/2 13/2 -1/2 -1 -169/144

11 3 0 2 3 9 2 4 -9/8

11 4 1
!

2 3/2 13/6 1/6 1/3 -13/48

11 5 0 1 -13 78 6 12 -169/12

11 6 1 1 13/2 -11 -3 -1 143/72

n 7 0 2 -3 26 -2 -4 -13/4

n 8 1 2 3/2 -11/3 1 1/3 11/24

n 9 0 1 -22 -78 -36 -12 -143/6

n 10 1 1 11 11 61/2 1 121/36

ii 11 0 2 4 52 8 16 13/3

-

12 1 1 1 -13/2 -13/2 1/2 1 169/146

12 2 2 1 -13/6 -3/2 -1/6 -1/3 13/48

Table continued
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Table 4.1 continued

i

1

i j a1 i 2 i1 a j a3x 35 j <x4x35 i 5-
| ax 25
1

a6x25 a7xl225

12 3 1 2 -3/2 -13/6 -1/6 -1/3 13/48

12 4 2 2 -1/2 -1/2 l/l8 1/9 1/16

12 5 1 1 13/2 -11 -3 -1 143/72

12 6 2 1 -13/3 2 2/3 4/3 -13/36

12 7 1 2 3/2 -11/3 1 1/3 11/24

12 8 2 2 -1 2/3 -2/9 -4/9 -1/12

12 9 1 1 11 11 11/2 1 121/36

12 10 2 1 -22/3 -2 -4 -4/3 -11/18

12 11 1 2 -2 -22/3 -4 -4/3 -11/18

12 12 2 2 4/3 4/3 8/9 16/9 1/9

13 1 0 0 54 -156 -72 -144 117/2

13 2 1 0 27 -22 -36 -12 33/4

13 3 0 1 13 -78 -6 -12 169/12

13 4 1 1 13/2 -11 -3 -1 143/72

13 5 0 0 -54 -54 72 144 81/4

13 6 1 0 27 13 -6 -12 -39/8

13 7 0 1 -13 -27 6 12 39/8

13 8 1 1 13/2 13/2 -1/2 -1 -169/144

13 9 0 0 -156 54 -72 -144 117/2

13 10 1 0 78 -13 6 12 -169/12

13 11 0 1 22 -27 36 12 -33/4

13 12 1 1 -11 13/2 -3 -1 143/72

13 13 0 0 156 156 72 144 169

Table continued
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Table 4.1 continued

i i «1
2

a a3lx35 \ a4 x 35 Ia5 x 25J a6"x 25 a7xl225

14 1 l 0 27 -22

'„. in

-36 -12 33/4

14 2 2 0 18 -4 -8 -16 3/2

14 3 1 1 13/2 -11 -3 -1 143/72

14 4 2 1 13/3 -2 -2/3 -4/3 13/36

14 5 1 0 -27 -13 6 12 39/8

14 6 2 0 9 3 2 4 -9/8

14 7 1 1 -13 -13 1/2 ] 169/144

14 8 2 1 13/6 3/2 1/6 1/3 13/48

14 9 1 0 -78 13 -6 -12 169/12

14 10 2 0 26 -3 -2 -4 -13/4

14 11 1 1 11 -13/2 3 1 143/72

14 12 2 1 -11/3 3/2 1 1/3 II/24

14 13 1 0 78 22 36 12 143/6

14 14 2 0 52 4 8 16 13/3

15 1 0 1 -13 78 6 12 -169/12

15 2 1 1 -13 11 3 1 143/72

15 3 0 2 -3 26 -2 -4 -13/4

15 4 1 2 -3/2 11/3 -1 -1/3 -11/24

15 5 0 1 13 27 -6 -12 -39/8

15 6 1 1 -13/2 -13/2 1/2 1 169/144

15 7 0 2 3 . 9 2 4 -9/8

15 8 1 2 -3/2 -13/6 -1/6 -1/3 13/48

15 9 0 1 22 -27 36 12 -33/4

Table continued
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Table 4.1 continued

i 1 d : al 2
' a a3x35 ia4x35 |a5x25 a6x25 ja7xl225

15 10 1 1 -11 13/2 -3 -1 143/72

15 11 0 2 -4 18 -8 -16 3/2

15 12 1 2 2 -13/3 2/3 4/3 -13/36

15 13 0 1 -22 -78 -36 -12 143/6

15 14 1 1 -11 -11 -61/2 -1 121/36

15 15 0 2 4 52 8 16 13/3

16 1 1 1 -13/2 11 3 1 -143/72

16 2 2 1 -13/3 2 2/3 4/3 -13/36

16 3 1 2 -3/2 11/3 -1 -1/3 -11/24

16 4 2 2 -1 2/3 -2/9 -4/9 -1/12

16 5 1 1 13/2 13/2 -1/2 -1 -169/144

16 6 2 1 -13/6 -3/2 -1/6 -1/3 13/48

16 7 1 2 3/2 13/6 1/6 1/3 -13/48
16 8 2 2 -1/2 -1/2 1/18 • 1/9 1/16

16 9 1 1 11 -13/2 3 1 143/72

16 10 2 1 -11/3 3/2 1 1/3 11/24

16 11 1 2 -2 13/3 -2/3 -4/3 13/36

16 12 2 2 2/3 -1 -2/9 -4/9 -1/12

16 13 1 1 -11 -11 -11/2 -1 -121/36

16 14 2 1 -22/3 -2 -4 -4/3 -11/18

16 15 1 2 2 22/3 4 4/3 11/18

16 16 2 2 4/3 4/3 8/9 16/9 1/9

Table concluded



TABLE 4. 2

EXPLICIT COEFFICIENTS OF NODAL LOAD
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i 8 | 9a l[ a/ ! °10

1 1 1 4.0

2 2 1 24.0

3 1 2 24.0

4 2 2 144.0

5 1 1 4.0

6 2 1 -24.0

7 1 2 +24.0

8 2 2 •-144.0

9 1 1 4.0

10 2 1 -24.0

11 1 2 -24.0

12 2 2 144.0

13 1 1 4.0

14 2 1 24.0

15 1 2 -24.0

16 2 2 -144.0



TABLE 4. 3

EQUIVALENT NODAL LOADS FOR ELEMENT LOADED IN PARTS

Nod,

Equivalent Nodal Loads Corresponding to

w

1 646.35985
2 23.611106
3 0.862498
_4 23.611106

1 1182.336500
2 43.189986
3 20.441378
4 559.587760

1 1205.947600
2 44.052480
3 44.052480
4 12Q5,9475QQ

l 1741.924200
2 580.029140
3 63.631360
4 1225.526300

1 2186.368600
2 1024.473500
3 508.075800
4 1669.970700

1 2205.9474
2 1044.0523
3 1044.0523
4 2205.9473

' g* ,

178.3392
-22.652 0
-0.8275
6.5146

326.2222
-41.4356
-19.6111
154.3976

332.7368
-42.2631
-42.2631
332.7368

734.7193
-444.2456
-56.9472
347.4209

1068.0526
-777.5789
-390.2806
680.7543

1082.7367
-792.2631
-792.2631
1082.7367

£w

_8z_

178.3392
6.5146

- 0.8275
-22.6520

580.3217
21.1987

-15.5162
-424.6345

602.9737
22.0264

-22.0264
.r602.97?7

750.8567
169.9092
-40.8098

-621.7573

1084.1900
503.2425

-374.1431
-955.0906

1102.9735
522.0261

-522.0261
•1102. 9735

62w

49.2091
-6.2500

0.7988
-6.2500

160.1184
-20.3377
14.8815

-117.1622

166.3684
-21.1355

21.1355
-166.3684

277.2806
•132.C438

35.2192
•180.45 61

527.2805
•382.0438
285.2192

•430.4561

541.3683
-396.1315
396.1315

-541.3683
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- Area in Fig. 3

=w. x w. (sq.m)

I, area«<|gx3)(5g)
=25/36

I+II area

36 18x18
= 65/36

I+II+III area

I+II+III+IV area
22 4- 40 130

= iz + fz = 36-

I+II+II+IV+V area

I+II+III+IV+V+VI.
area . 124. 40 2

***•»*

Table continued



Table 4.3 continued

Node1 j j
Equivalent noda1 lo ad s correspond ing to

_—

a w

Qxe.y.

3

w

1 2229.5585
2 1690.4120
3 1067.6634
4 2206.8097

1 2249.1373
2 2226.3886
3 1603.6400
4 2226.3885

1 2249.9999
2 2249.9997
3 2249.9997
4 2249.9997

5w

ex

1105.3887
-970.6022

-798.7776
1083.5641

1124.1722
-1118.4852
-946.6606
1102.3476

1124.9996
-1124.9998
-1124.9998
1124.9996

1109.4884
700.3653

-544.6782
•1103.8010

1124.1722
1102.3477
-946.6606

•1118.4856

1124.9996
1124.9997

-1124.9998
•1124.9997

547.6183
-445.337 6
402.3815

-542.1622

561.7060
•556.2499
513.2937

•556.2493

562.4998
•562.4999
562.4999
•562.4999

Ares in Fig.3

w. X w.

1 3

-144-

I+II+Iii+iv+V+VI+VII

I+II+III+IV+V+VI+VII+VIII

I+II+III+IV+V+VI+VII+VIII+JX
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TABLE 4.4

COEFFICIENTS FOR LOAD VECTOR DUE TO TEMPERATURE
DIFFERENTIAL

i ~ ""a11 ~~ f
i

12
a i «"

1 0

2 1/2
- 1 |

3 1/2 1 _

i

j

,
4 1/12 2 2

i

5 0
- _

6 -1/2
- 1

7 1/2 1 _

8 -1/12 2 2

9 0
- —

10 -1/2
- 1

11 -1/2 1 _

12 1/12 2 2

13 0 - _

14 1/2 - 1

15 -1/2 1 _

16 -1/12 2 2

«,
i
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CHAPTER V

ANALYSIS OP BONDED CONCRETE OVERLAYS

5.1 INTRODUCTION

Tests of cement concrete slabs laid directly

on old cement concrete pavements proved that the load

which they were able to cater, without distresfe, was far

in excess of what could have been expected'̂ "8' ^,105)^

This observation instituted confidence that overlay slabs

can behave as a monolithic unit with the base and thereby

enhance the load carrying capacity to a large extent.

Later, tests conducted by superficial observations,

e.g. soundings^ 5* ^' as well as those detailed ones, in

which cores were cut out of the in-service pavements with

overlays'- ' ^' showed that the interfacial kond remained

intact in the normal circumstances. However, it appears,

that the controversy continued to exist, whether the bond

developed was enough for full shear transfer, necessary

for efficiency of the bonded overlay, or not. This may

have been due to the fact that many field observations

did report bond failure. But a critical search of the

reports reveal that most of these reported bond failures

were only in the limited areas, adjoining the reflected

cracks or joints or in the neighbourhood of the free

edges * .In certain cases it has been recognised

that the bond failure has been the result of improper
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construction technique or substandard work^ '.

5.2 EFFECTIVENESS OF BONDING

A common question that has often been asked is

whether a bonded overlay is feasible at all. Doubts

have often arisen that unless some specific measures,

like provision of shear pegs etc., are adopted, the base

and the overlay can not act as a single unitv y. Fear,

also appears due to the reason that the repeated load

ings or fatigue might destroy the bond and slipping at

the interface might occur. Warping is also thought of

as a cause that could separate the overlay from the

base*170'.

However, the fleld(U.48,102,105,105.169) aa wll

as laboratory studies^ ' provide conclusive evidence

in favour of bonded overlays. The fact that most of the

covered areas (90 percent or more) is often found to

retain bond intact even after a number of years of in-

service life^11,1 ' K itself establishes a point in

favour. Further full scale tests were performed on pave

ments slabs overlaid by bonded overlays, to verify

whether full shear transfer takes place at the inter

face. The results of these well instrumented tests

indicate that full strain compatibility conditions did

hold true at the interface of base and overlay, which

means that full shear transfer was taking place

On the other hand tests wore also performed on base
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slab overlaid by concrete overlay with bonding prevented

and the results indicate that there was no transfer of

shear at the interface.

Laboratory tests carried out on beams by Sharma^16'
indicate that even when reliance is placed on asperities

of old and new slab to develop friction like bond, the

action of the two beams, one placed on the other is mono

lithic. However, by grouting method a sufficiently high

quality of bond can be developed, its value being as high

as 75 percent of the value of monolithic beam, casted as

a single unit.

Sinno and Furr^ ' conducted a series of laboratory

tests to study the effect of repeated load application

on bond failure. Two kinds of bonding methods were used,

the grouting and the epoxy bonding. An observation of signi

ficance was that the cracks in the old pre-cracked beams

developed vertically through tho overlay as well, but

not under the normal repeated designed loading. It was

only after increasing the designed loading to 150 percent

that this failure was observed under load cycling. Keeping

the fact in view that in all cases the beam in the base

was reinforced with 4 steel bars, this fact is significant

from the point of view of the findings reported in

Chapter III.
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5.3 PROBLEMS OF BONDED OVERLAY

The problem of running of the base crack or reflec

tion cracking in bonded overlay, is a menace, that has

bothered the highway engineers to a great extent and

has instituted doubt in the supremacy of the bonded over

lays. Because of this reason, some agencies like Indian

Roads Congress^ do not recommend a bonded construction
on a significantly cracked base slab.

Crack reflectance is not the only minus point dis

crediting the bonded overlay, although it is a major

one. Special considerations are often necessary to ensure

effective and durable bonding, as the success of the whole

system lies in it. This adds to the cost of overlay

concrete.The temperature differential between the top of

the overlay and the bottom of the base is likely to be

higher du^ to greater thickness. This fact may, therefore,

offset the advantage gained by bonding to some extent. Apart

from this, the differential shrinkage might take place

between the overlay and base. Had there been no bond, this

differential movement would have been unrestrained and

there would have been very little stress. But, when over

lay is bonded to base, the restraint offered by the base

will generate stresses in both overlay and base.

On these counts, it becomes necessary to pay due

consideration to thermal and shrinkage stresses in case

of bonded overlays, apart from wheel load stresses.
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5.4 METHODS OF ANALYSIS

5.4.1 Existing Methods

The existing methods of analysis of rigid over

lays on rigid bases are due to P.C.A. and U.S.Corps of

(21)
Engineers. ' Field observations as well as controlled

strain and deflection measurements have shown that the

overlay bonded to base acts as a monolithic system.

Therefore, for the purpose of analysis, it is logical

to take the sum of the base and overlay thickness as the

thickness of the pavement slab and find the stresses.

However, this will hold good only in case when over

lay and base have id.ntical material characteristics. Gen

erally, even if the material composition is same (i.e.

mix proportion and ingredients), the elastic properties

of the old and new cement concrete may notbe same as a

result of difference of age ^ . Apart from this, if the

materials of base and overlay are different , then the

elastic properties of the two are bound to be different.

In such cases, analysis by existing methods is not possible,

It seems that no attempts have been reported to

consider the temperature effects on the base-overlay system,

However, Ghosh et al^17 *±*J' have considered the effect of

differential drying shrinkage between the overlay and base

following the initial strain approach as given by

Birkeland^174' for precast beams, overlaid by cast-in -

situ slabs.
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5.4.2 Considerations for Analysis

It, therefore, appears that it is necessary to

evolve a suitable method of analysis which could, on

sound theoretical basis, give due recognition to the

difference in elastic properties of the base and overlay

for calculation of stresses and deflections in whole of

the pavement structure for wheel loads placed any where

on it. Not only this, the method should also be able to

assess the stresses and displacements in the pavemtnt when

it is subjected to environmental influences. Also, it is

possible that the old base might contain cracks. It is

proposed to extend the method of Chapter IV by which the

stresses and deflections can be calculated with fair

degree of accuracy when the cracked pavement is overlaid

by a bonded overlay.

5. 5 GMERAL FORMULATION FOR THE ANALYSIS OF BONDED
OVERLAY ON SOUND OR CRACKED BASE DUE TO WHEEL LOADS,
THERMAL GRADIENTS AND DIFFERENTIAL SHRINKAGE.

5.5.1 General Assumptions!

1. It is assumed that all the plate theory assumpt

ions stated in article 4.2 are also valid for

this analysis.

2. It is assumed that condition of perfect bond

exists at the base overlay interface i.e. at

this face, full shear transfer takes place and

the condition of full strain compatibility
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holds good. The justification of this assumpt

ion is based on field observations, instrumented

full scale tests and laboratory results as

discussed in article 5.2.

3. Due to orthotropic properties the centroidal

axes of the cross-sections along the orthogonal

directions will not lie in the same plane. Effects

due to this will however be neglected.

4. The temperature distribution in the pavement

cross-section is assumed to be linear.

5. It is assumed that, as discussed and formulated

in Chapter IV, the effect of the crack can be

simulated by the orthotropic properties.

6. It is also assumed that the coordinate axis

taken as reference frame coincides with the

principal directions of orthotropy. However, if

they do not, then the expressions can be obtained

using rotation matrix as described in Chapter IV.

7. Shrinkage is assumed to be constant across the

depth of the overlay.

5.5.2 General Formulation

It is seen from equations of Chapter IV that for
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an orthotropic slab:

> . ' w ?
1 x : 7~2 {

2

f y^* ey2> ••• (5.1)
iv ! L2£-E-

'xy !~ ?xcyr

and from equation 4.6

r* 1 :Cin n0 0x | j"11 wi2 v jjei
ii

j
i

W H°2l C22 ° |;ey f ... (5.2)
Id o o c„|!y ^i, XYJ - 33 - v'xy;

Let the superscript 'o* relate to overlay and

superscript 'b' relate to base.

Also let:

tm = mean temperature rise or fall (with fall
taken as positive)

eg = differential shrinkage strain i.e. difference
of strain in overlay and base,

At = difference of temperature between top and
bottom surfaces,

z = distance from centre of gravity of composite
section,

h = thickness of pavement (i.e. base and overlay),

h^ = distance of top of overlay from the centre of
gravity of the composite section,

* values will be different in different orthotropic
directions.
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*h„ =

ch, =

distance of the bottom of overlay from the
centre of gravity of the composite section,

distance of the bottom of the base from the
centre of gravity of the composite section,

coefficient of thermal expansion of the
material of overlay and base.

o b
a , a

Then, from 5.2
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Similar expressions can be written for the base
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(5.4)

The stress resultants can be obtained by integrating

the stresses in the respective direction, over the depth.

Accordingly,

ho - h-z ..

K_ •- f <£ z dz + f ab z dz
X £ X •", X

hl h2

Putting the values from equation 5.3 and 5.4,

... (5.5)

* values will be different in different orthotropic
direc tions.
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By putting appropriate values of e from equation 5.1,

integrating, simplifying and rearranging

1

^(h2-h|)es(c°1+oJ2)

?X

+Cbo(-^ +ab^): ... (5.7)
ey n

If all 'C are given their appropirate values and they are

combined with (h^-h|) and written as:

• i-(h5-h;h rc° (- •£-£ + ry° 4^ + p° f £_w a°Atx -i3^ 1 Q2/«'ll^ 2 + a •£•"' + °12(~ 2 + h J J

»q - 3^i-n2J0ll

D22 =?(^>C22
Dj2 =^4-4)0*2
D33 =|(^-h|)C°3
D12 " j(^-h^)Cb2

22 = T 2~b3 22
* Depending upon the orthotropic elastic constants

h-^ho^h, will be different
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... (5.8)

M. . -(D°1+Dbll)^ - (D12+ D12)^ +(D11^12) «° &*
+(Db +Db )«b ^ +(D?:+D?:)11 "12 h

Similarly, it can be written,

2

| +(D21+D2 )-
?y 5x

y" -[<D2°2<>S ♦0>Sl«|l)£ltM

'11^12^8

]
b At4.(D§2+D^)a° £fc + (Db2+Db1)ab £

and

M
yx

= 2

+es(D22+I)2l)

D° +Db
^33 ^33

lefw
J 5xay

(5.9)

... (5.10)

... (5.11)

Equation 5.9,5.10 and 5. U can be written in a compact
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... (5.12)

It is found that aggregate type is an important factor

(175)
on which the coefficient of thermal expansion depends

As the aggregate type is likely to remain same in a locality,

it is reasonable to assume that, a =a = a.

Equation 5.12 can be written in a further simplified

form as:
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(5.13)

At this stage if effects of shrinkage are separated out,

then writing

Dn =D!i+ Dii
D12 = D°2 +D^
D21 =D^ +D^

D22 = D22 + D22

D33 = D33 + D33

Equation 5.13 becomes

- i r

Mx ! D
11

D12 0

1My } s D21 D22

! !
M 0l^xyj '- 0

0

'33 J

| ex2 <
.2

I aw At

" T2 hay
2

2a w
ex ay

Again this can be written symbolically as

m = MOtt+DQtV

... (5.14)

... (5.15)

... (5.16)

where the constitutive relation matrix of equation 4.11

holds •
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If the direction of orthotropy and reference

axis is not coincident then using equation (4.4 8), the

[jDj| is modified and in such a case all the terms in
Q)J will be non-zero terms.

If Q denotes out-of-plane shear then(114^

aM dM
q = —x + —sy^x ax T ey

Therefore, from equations 5.9 and 5.10

* LH 8x5 12 8x?y2 15 9x2dyJ

"[D51-^ +D52 *% -2D55—2] •- (5-17)«-J ax av JC av; ^a*aw J'ax ay * ey^ -^axey

and similarly

QV " -fD21 *-¥ +D2? *k ~2D?^ —p]y L21 ax^ay 22 ay5 23 axay2 J

TD31 % +D32 -*?*- -2D33 -4*=| ••• (5.18)*-JX ?x-> 2* ay ax ^ ax^ay1

However, if coordinate axis are chosen such that plane

xz and yz are planes of elastic symmetry, then

D13=D31=D23=D32 = 0

and equations 5.17 and 5.18 are modified accordingly.

5.5.3 Determination of Stresses and Deflections
at a Point:

The procedure of determination of statical influences

can follow the same procedure as in the previous Chapter
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sinc,; the basic relationship given by equation 5.16 is

in a form readily adaptable to finite element method,

the important feature of the previous article being to

express the equation of base with overlay in the same

form as for the single slab if the shrinkage effecteare

not considered.

Having known the modified constitutive law the

equations of equilibrium can be formed, in the usual

manner as given by equation 4.30. From the solution of

these simultaneous equations, the unknown displacements,

i.e. slopes and deflections at various points can be

obtained. The strains can then be calculated by use of

equation 2.4 as they are derivatives of displacements.

Having obtained the strains,the stresses in the

overlay and base can be calculated by using the funda

mental equations 5.3 and 5.4 respectively.

5.5.4 Determination of the Interfacial stress.

Figure 5.1(a) shows an infinitismal element of the

pavement slab of dimensions dx, dy. For brevity, all the

stress components are not shown.

Applying the method of sections and considering

the equilibrium in x and y direction respectively,

h2 b2 b2 eo°
J a°x dy dz + r *gy dx dz = x^ dx dy +J (o£+ ^ dx)
h hl hl

h hx
+ I" 2(t° + -r-ZZ dy)dx dzJh v xy ay J"

nl



-167-

where, x = interfacila shear stress, and other quantities

are as defined in article 5.5.2.

Therefore,

h0 . o
r 2 e°xxxzdx dy = -J ^r- dx dy dz

d ox

I ZZ dx dy dz ... (5.19)
ay

But from equation 5.3 values of o° and x° can be obtained

and substituted in equation (5.19) on simplification,
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.. (5.20)

... (5.21)

Now, in order to determine the interfacial shear

stress3S from equations 5.20 and 5.21, it is necessary to

know the derivative of the curvatures i.e. the third

partial derivatives of the deflections at various points.
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The second derivatives of deflections are already known

as derived in equation 4.22. Exactly, similar procedure

of obtaining local derivatives can be adopted for obtain

ing the third derivatives.

Though, the procedure of local derivatives is

accurate and straightforward, it is a burden on costly

computer time. Also, it is taxing on the memory which is

falling short in case of elastic solid type foundation.

It is therefore, proposed to determine the derivatives by

finite difference metthod using forward difference techn

ique. This method becomes exceedingly economical without

excessive loss of accuracy.

5.5.5 Determination of Stresses due to
Differential Shrinkage!

Viest*1' ' and others have treated the problem of

the determination of stresses due to differential shrink

age in a cast-in-situ slab overa pre-cast beam. All of

them consider the problem as one dimensional. Approach of

Birkeland^ ' is basic and a modification of all these,

but in this approach too the problem is regarded as a

beam problem. Zuk^ ^ has also analysed the same problem,

but it is a further modification on Birkeland's analysis

because in this approach he considers the effect of

transverse shrinkage of the cast-in-situ slab, which

was neglected by Birkeland.
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Figure 5.1(b) illustrates the mechanics of differen

tial shrinkage

As shown in diagram (i) the magnitude of shrinkage stress

P =esA0E° "• (3'28)

where A = cross-sectional area of overlay.

The self-equilibrating system of forces ara shown

in diagram (iv). These forces will generate stress at

top and bottom of overlay and base as shown in diagram (v).

If,

f.. = stress at top of overlay,

f2 = stress at bottom of overlay,

f-z = stress at top of base, and

f, = stress at bottom of base-

then, these are given by

E r-, -, C(C+ J
f. = F

E- , C(C+2^)1

c(c- 6-)
f = p^

n °(c- 2~} i
f3 • -p \j + r J• and

b , o -1
n C-(h+ %-) -\

f4 =-p [i +—i-1"] ••• (5-29)

n i ^ri

where,

A1 ss equivalent cross-sectional area of overlay,

A = equivalent cross-sectional area of base and
overlay

I = equivalent moment of inertia of the section,and
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distance between centre of gravity of overlay
and composite.

These forces can also be viewed as direct forces

and couples as. shown in diagram (vi).

Birkeland's approach in its original form has also

been applied for determination of stresses in bonded

concrete overlays over concrete pavement slabs by Ghosh

et-al(166,167).

However, the equilibrium of the self-equilibrating

force system will get modified due to the presence of

reactions of elastic foundation which are bound to come

into play.

Therefore, it is necessary to adopt the finite

element formulation as was proposed in equation 5.13.

On examining equation 5.13 it can be seen that it is

not necessary to periorm the finite element analyses

exclusively for shrinkage if it is already done for temp

erature stresses and vice-versa. The conversion factor can

be determined as follows!-

From equations 5.13 and 5.15,
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(5.31)
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where superscript 't' denotes temperature and 's' stands

for shrinkage.

In isotropic case M = M .

In can therefore be seen that

Mx a ATrDll+ D12f^llT
Ms " h e„ I ^0' ^o
Mx s Lll+ D12

(5.32)

which on substitution of appropriate values from equation

5.14, 5.8 and 4.6 and simplification becomes,

33 3 3

M* 2 g ATrVh2 , Eb l-v° h2-h3"| fl-w
M sL-h-.-h2 E 1-v h-,-h2-1

The shrinkage of overlay will give rise to ax^al

forces and moments as shown in figure 5.1(b). Thestresses

due to moments can be evaluated by equation 5.33. If the

stresses generated due to axial forces in base and overlay

are represented by primed quantities and if 'e1 is the

elastic strain generated in the base-overlay interface due

to these forces then,

net strain in the overlay = e_ - e ... (5.34)
s

Therefore, the stresses due to axial forces in overlay will

be

f" ix r "if

k:l Eo fi »oiiv
kl" ^Lv0

i \ ... (5.35)

es"e.

or
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and stresses due to axial forces in base will be
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(5.36)

... (5.37)

... (5.38)

... (5.39)

Therefore, the net stresses at any point in the base

overlay system will be a combination of the effects due

to axial forces and moments. Stresses due to moments

can be either determined directly by using equations

5.31 and then applying the procedure as outlined in

Chapter IV for determination of equivalent nodal forces

for temperature stresses or could also be determined

indirectly from equation 5.33 from temperature stresses.

The stresses due to axial forces can be determined

from equations 5.36, 5.38 and 5.39.
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5.6 MODELING OF CRACKED BASE

The rigidity of the base slab is expressed in

equation 5.16 in such a form which represent the ortho

tropic conditions, i.e. the rigidities in two orthogonal

directions need not be same. This condition suits model

ing of crack amicahly. If the direction of crack coin

cides with one of the coordinate axis, the equation

5.15 can directly be used. However, if the direction of

crack is arbitrary, transformation as given by equation

4.48 is necessary.

If the base has a crack, the effect of the crack

will be to release stresses in the base in the direction

perpendicular to the crack alignment. As has already been

discussed in article 4.5, the effect of this stress

release will extend upto a certain distance on either

sid of the crack, which can reasonably be assumed as

equal to the depth of crack on either side. The rigidity

of the orthogonal direction can be assumed as unaffected.

The rigidities for the cracked transformed section

can be determined by equation 4.12.

5.7 MODIFICATION OF COMPUTER PROGRAM

5.7.1 In Chapter IV, it is reported, that the program

is coded, debugged and tested for a single layer of

pavement slab resting on Winkler foundation. The slab

may be isotropic,homogeneous or may have arbitrary cracks.

The wheel loads acting on the slab can be represented by
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rectangular contact area and the stresses due to

temperature differential can be evaluated.

In the first stage of modification of this very

program, the solution algorithm for bonded overlays, is

included as discussed hitherto. Following changes are

incorporated:

(i) An identification procedure is set so as to

select the calculation procedure according to

the number of layers.

(ii) An identification procedure is also built to

select the operations, in accordance with the

condition of the base i.e. whether sound or

cracked.

(iii) If the base is cracked, then it is again necess

ary to select operations according to whether

the crack extends on the whole element or only

a partly cracked element is used as discussed

in article 4.8.

(iv) If the crack orientation makes an angle with

the reference frame, then constitutive laws

have to be modified, the ability to do so

already exists.

(v) The stresses at top and boi.tom of overlay

and base are required. The interfacial stress

is also to be evaluated as discussed in

article 5.5.4. A modification in this respect
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is also incorporated.

5.7.2 Testing of Program with Modification

The modified program, incorporating the operations

as mentioned above for determination of stresses and

displacements has to be checked for its correctness on

the lines of article 4.10.

For this purpose the cases to be analysed are as

shown in Table 5.1. The details of this analysis is

discussed below. For all the cases following properties

are taken:

(i) Base thickness = 10 cm

(ii) Overlay thickness= 8 cm

(iii) Wheel load of 4500 kg. is simulated in FEM

analysis through dual-tyre assembly with contact

area 25 cm x 10 cm with a gap of 16 cm in

between. In interior location, this assembly

is located with its centre coincident with

centre of the pavement. In the edge region,

the exterior edge of the outer tyre is supposed

to be over the pavement edge.

(iv) For comparison with Westergaard's solution,

the wheol load is taken as 4500 kg acting over

a circular contact area of 850 sq.cm. giving

same pressure.



-177-

(v) Modulus of subgrad reaction is taken as

12 kg/cm .

(vi) Size of the pavement slab is assumed as

3.5mx9m for finite element analysis.

(vii) The difference of temperature between top

of overlay and bottom of base is assumed

as 13°C.

(viii) The modulus of elasticity of the material of

the base which is assumed as isotropic, is
A ?

taken as 30x10 kg/cm and its Poisson's ratio

as 0.15.

(ix) Coefficient of thermal expansion is taken as

-5
0.8x10 per degree centigrade for overlay

as well as for base.

Case i: In addition to abov conditions the modulus of

elasticity of the overlay is taken to be same as base
A P

i.e. 30x10 kg/cm . Three cas.s are analysed:

(a) Wheel load is placed at the centre of the pave

ment slab. When compared with Westergaard's

solution^ , the difference in maximum stress

under the wheel load is found to be 1.285 per

cent as shown in Table 5.1.

(b) With the wheel load placed at edge position as

described in para (iii) above, the maximum

moment as determined by the present formulation
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differs by 0.92 percent as compared to that

found by Westergaard's equation.

(c) A temperature difference of 13°C is supposed to

exist between top and bottom slab. The stress

developed due to this is determined by finite

element analysis and is compared with the interior

stress- as given by Bradbury's solution. As shown

in Table 5.1 the results are within 1.2 percent.

It may be noted that the 10 cm base fully bonded

to 8 cm overlay, will be equivalent to 18 cm pavement

slab when the elastic properties of base and overlay are

considered to be the same. The results of the present

formulation also confirms this, because the results of

Westergaard's solution with 18 cm thick slab agree,

reasonably with the numerical results.

Case II: In this case the elastic properties of the

overlay are supposed to be different than that of the

base. The modulus of elasticity of the overlay is assumed

as half of that of base i.e. 15xl04 kg/cm2. The Poisson's

ratio is taken as 0.2. Each layer is considered as having

isotropic properties.

It is not possible to directly apply the Wester

gaard's solution to this case. Therefore, a modification to

solution is done. Accordingly, based on the formulation

discussed in article 5.5.2, the value of radius of



-179-

relative stiffness */• is determined for using Wester -

gaard's equation, for the combined base-overlay system.

Three cases are again solved:

(a) In this case the wheel load is placed at

the interior region and the maximum stress

as determined by finite element solution

differs by 0.8 percent with the one deter

mined by modified Westergaard's solution.

(b) The wheel load is placed at the edge. The

maximum stress under the wheel load parallel

to the edge as found by the finite element

program differs by 1.31 percent as compared

to modified Westergaard's solution.

(c) The Bradbury's equation is also modified by

computing the equivalent radius of relative

stiffness in exactly the same way and the

stress . due to temperature differential, as

given by finite element program is compared

to those calculated by Bradbury's procedure.

The results are found to differ by 1.26 percent.

Modified Bradbury's procedure is given in appendix

5C and modified Westergaard procedure is described in

Appendix 5D. It is therefore observed that:

(i) If the modulus of elasticity of the base and

overlay does not differ, then the existing
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practice of taking the combined thickness

of base and overlay as a single thickness is

justified.

(ii) If the elastic properties of base and overlay

differ, then it is possible to evaluate the

maximum stress using a modified Westergaard's

solution procedure for wheel load stresses and

modified Bradbury's solution for temperature

stresses.

5.8 ANALYTICAL INVESTIGATION

A very large number of variables are involved for

truly examining the behaviour of a cement concrete

overlay laid on a base slab, with the assumption of full

strain compatibility of the interface. To name a few

variables:

(i

(ii

(iii

(iv

(v

(vi

(vii

(viii

(ix

(x

Thickness of base

Thicknes s of overlay

Properties of subgrade

Modulus of elasticity of base

Modulus of elasticity of overlay

Wheel load positions, size, spacing,
magnitude

Thermal effects

Shape, size, location and spacing of cracks

Size of pavement panel

Effect of differential shrinkage.
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An analysis which involves a study of all these

variables will no doubt create a true insight into the

behaviour. Such a study can only be carried out by using

the finite element method which has a provision to

consider them. The only other requirement, then, for

such a parametric study would be, availability of

computer effort and also availability of time for

analysis and interpretation and parametric correlations.

However, presently following analysis is proposed:

(i) Base Thickness:

3 base thicknesses are considered i.e. 8 cm,

12 cm and 16 cm. The reason for choosing these thicknesses

is, as was discussed in chapter I, that most of the exist

ing highway pavements, that need overlays fall in this

range.

(ii) Thickness of Overlay*.

To study the effect of overlay thickness economica

lly only two overlay thicknesses are considered i.e.

10 cm and 6 cm. These thicknesses are however, adopted

rather arbitrarily, though bonded overlays that are

normally adopted in practice may have, somewhat similar

value.

(iii) Subgrades may have widely variable properties:

The subgrades with a bas, course layer on them is

however a typical of an existing concrete road cross-

section in the country. For this reason the value of



-182-

modulus of subgrade reaction chosen for analysis is

12 kg/cm . Only one value is chosen, so as to limit the

computations.

(iv) Modulus of elasticity of Overlay:

Modulus of elasticity of the overlay is taken as
A ?

15x10 kg/cm . The justification of taking such a value

has already been discussed in chapter III. Again, to

limit the computations, this factor is not taken as a

parameter for study. Poisson's ratio is taken as 0.2.

(v) Modulus of Elasticity of Base.'

Modulus of elasticity of base has been assumed as
A 0

30x10 kg/cm and only one value is taken for the reason

stated above. The higher value is adopted because it is

known that modulus of elasticity of cement concrete

increases with time, though at a very slow rate. The old

base, being considered, may be as old as 25-30 years, as

most of cement concrete roads built in the country which

need strengthening, are that old. Many times a lower

value of modulus of elasticity is also adopted to take

the effect of fatigue into consideration. However, since

cracking is given due regard in the present analysis

in the form of stress release a value lower than its

initial value may not be justified. Tne Poisson's ratio

is taken as 0.15.

(vi) Wheel Load Position:

Wheel loads may vary in size, shape and pressure
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of contact. They may also differ in magnitude, spacing

and location with respect to pavement. The three critical

positions, as proposed by Westergaard viz. , interior,

edge and corner are well known. However, for a pavement

slab with arbitrary cracks, these may not be true.

The wheel load taken in the analysis is a dual

tyre load, loaded with 4500 kg. which is a standard value

for highway loading. The size of the contact area and

spacing of tyres is taken on the basis of actual measur

ed area of the tyre print of a loaded highway truck,It

was found that the areas of each of the two tyres of a

dual tyre assembly were more or less same. The shape

resembled a rectangle with rounded edges. On the basis

of this the size of each tyre was taken as a lectangular

strip of 25 cm x 17 cm with a gap of 16 cm in between the

two tyres.

The load is positioned, at the edge loading posi

tion, with an intention that this might perhaps be the

most serious location, although more loading positions

can be tried. Analysis for each successive load position

takes only 1/4 to 1/5 of the time for the first position.

This is because, the time of reading data, stiffness

generation and partly of inversion is saved. For every

subsequent loading the partially inverted and stored stiff

ness matrix is used for solution of equilibrium equations.

However, the printing time of the on-line printer is
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large and perhaps can not be avoid, d. Thus, only one load

position is considered. Further, to economise, the load

is taken at the centre of the edge, so that the struc

ture may become symmetrical and only half will require

analysis.

(vii) Thermal Effect:

The thermal effect considered is that due to temper

ature differential set up between the top of the pave

ment slab and the bottom of base due to the difference

in the ambient temperature of top and bottom. This tempera

ture difference will cause unequal expansions or contract

ions of top and bottom fibres leading to curling. The

coefficients of thermal expansion of concrete for base

and overlay both are taken as 8xl0~6 per degree centi
grade. The value of this differential is taken from

(1 78^
IRC which is based on the thickness of the slab

and the regions in which road is situated and is shovm

in Figure 5.18. It is assumed that the variation of

temperature within the pavement slab is linear. This is

justified, because, the thermal properties of hardened

cement concrete do«g not change very much with the age

and therefore, the base and overlay are likely to act

as a single thickness.

(viii) Crack:

Out of various parameters like crack size (length),

location, shape (orientation) etc., it is aimed at
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studying the behaviour of the slab when there is an

isolated transverse crack in a long panel. To economise

on computer effort, it is assumed that this crack

bisects the slab, so that advantage of symmetry may be

obtained. The crack is assumed to be a full depth crack

in base slab and to traverse throughout the pavement

width.

(ix) Size of pavement panel:

The lateral and longitudinal dimensions of the

slab exhibit influence on the stresses and deflections.

It is not proposed to study this influence. Therefore,

the transverse dimension of a panel is assumed as 3.5

meter. This value is taken on the basis, that normally

for a dual carriageway of a highway, this value would

approximate the width of the slab. The length of the

slab is taken as 9 metre.

(x) Differential Shrinkage:

The contraction of two layers, i.e. the base and

overlay are bound to be different due to difference in

age. In fact, the shrinkage in the overlay itself may

not be uniform. The water held in the calcium silicate

gel structure which is known to be similar to 1he mineral

(179)tobe-rmoritev , formed on hydration of cement may dry

out faster at the surface than the interior. This tran

sient state may exist for a considerable time. This would
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lead to upward warping causing compression at the

base. The analysis of such a variation is easily possi

ble by appropriate modification of shrinkage strain 'e '
s

in equation 5.3. However, this will be subject to relia

ble data. In the present analysis, as formulated in

equation 5.3, the steady state condition is assumed.

The value of restrained differential shrinkage is

taken as 0.0002 as recommended by Branson^142^ and adopted
by Ghosh et.al.(172'175) and Cement Concrete Association^13^.

5.9 RESULTS AND DISCUSSIONS

The results of analysis for the cases described

in article 5.8 are presented in the form of figures and

tables and are discussed below. Figure 5.2 shows the

general finite element idealisation for pavement slab.

The double hatched zone indicates the load placement as

discussed in article 5.7.2.

5.9.1 Analysis of Stresses and Deflections in
Pavement Slabs With Overlay on Sound
Base, Under Wheel Load at Edge.

Figure 5.3 is drawn to compare variation of deflec

tion along edge of pavements having 10 cm overlay on

8 cm and 16 cm base. It is seen that the deflection of

8 cm base under wheel load is higher than 16 cm base. But

the deflected basin is of greater radius on stiffer slab.

The reason for this behaviour is clear from figure 5.4

which shows the variation of slope along edge. It is seen
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from this figure that slope as well as rate of change

of slope is higher for pavement slab which is less

rigid.

Variation of d- flection along perpendicular direct

ion to the edge for above two cases is plotted in

figure 5.5. Again it is seen that deflection for stiff-

er slab is lesser, under the load but is greater else

where. This is because the slope in this direction, as

shown in figure 5.6 is greater for less stiffer slab

and is constant under loaded area which is approximately

50 cm. Thus, cantilever like d flection pattern perpend

icular to the edge is evident from these figures which

causes tensile flexural stresses at the top of the pave

ment slab at a certain distance resulting in cracking

under ultimate load^29'31'32^.

Again, in figure 5.4, the slope first increases

and then decreases causing positive and negative curvat

ures respectively. The effect of this on moment is reflected

in Figure 5.7, which compares the variation of moment 'M '

(parallel to the edge) along the edge. The three curves

relate to moments in pavements having 10 cm overlay on

8 cm, 12 cm and 16 cm base. All these curves show that

the moments are very high under the load but they decrease

at a very fast rate due to high stress gradients and soon

acquire a negative value. This justifies the considera

tion of a single wheel load. It is also seen that moment

in a stiffer slab is greater, though the deflections,
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slope and rate of change of slope were lesser as seen

from figures 5.3 and 5.4. This is because higher moment

is necessary to cause same curvature in a stiffer slab.

Also since the deflection basin, as seen from figures

5.3 and 5.5 is larger in case of stiffer slab, the

greater moment can be expected in this case from the

consideration of statics.

Stress gradients are slightly higher in a less

stiffer slab. Therefore, the shearing forces will be

larger in their case.

Table 5*2 compares the maximum bending moments M
<J

for different combinations of base and overlays, as

determined by finite element method to those determined

by modified Wes tergaard's equation. Tne maximum moment

will occur under the centre of the loaded area, in the

direction parallel to the edge. Since, in the finite

element analysis the sampling point is slightly off the

centre of the loaded area, the maximum moment is to be

determined by extrapolation in the region where gradients
of stresses are high.

As stated earlier, the Westergaard »s equation is

applied to the base overlay system by adopting equation

5.16 for determination of the value of '/' i.e. the radius

of relative stiffness of the pavement. It is seen that th,

two values are in close agreem nt and therefore, the

maximum wheel load stresses can be determined very
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economically by using this modified procedure.

It is also seen that for the values adopted in

the study the maximum values of moments are almost equal

in pavement slabs having equal overlay and base thick

ness combination i.e. moments for say 10 cm overlay on

8 cm base is almost equal to moment in 6 cm overlay on

12 cm. base the combined thickness of both being 18 cm.

This is because there is not much difference in the

radius of relative stiffness, which is proportional to

the fourth root of the stiffness. The values of radius

of relative stiffness is 54.19 and 54.71 respectively.

However, the maximum compressive stresses at the top of

the overlay differ by about 6 percent, which is because

of the difference in strains, which are function of

curvature and distance from neutral axis. It is also seen

that as expected the value of stresses at the bottom of

overlay is exactly half, of that at the top of base.

This is because full strain compatibility between base

and overlay holds. Thereby the strains at the bottom of

overlay and top of base become equal. But the stresses

in overlay are half because the modulus of elasticity of

the overlay material is assumed to be half of that of the

base.

5.9.2 Analysis of Stresses and Deflections Due to
Wheel Load in Pavement Slabs having Cracked Base.*

5.9.2.1 Effect of Cracking:

Comparison of variation in deflection, along
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edge for 10 cm overlay on 12 cm base when the base is

sound with that when the base contains a crack is made

in Figure 5.8. A similar comparison for slopes is made

in Figure 5.9. As can be expected, the deflection in

the Central part, is more when the base has a crack. The

slope also increases and as a result the deflection acquires

a smaller value for cracked slab at a small distance from

the load. The rate of change of slope is very high in the

vicinity of the crack.

Figure 5.10 compares the variation of moment along

the edge for the case of a 10 cm overlay on 12 cm base to

that when this overlay is on a base of same thickness

but containing a full depth transverse crack centrally.

It is seen that the positive moment developed at the

centre of the load is very much reduced in cracked case.

This is as a result of stress release in the base due to

cracking, which is taken to be effective for a distance

equal to the depth of the crack on either side of it, as

already discussed. This figure has striking resemblance

with Figure 3.8 where the pavement structure was idealised

in plane strain and curves were plotted for moments on

sound base with overlay to compare it with the case when

the base is cracked. Thus, this provides a 'qualitative

check'. A solution procedure based on the theory of beams

on elastic foundation is d< veloped and described in

Appendix 'A' to VI chapter, for a rough check as truly



-191-

sp.aking a slab cannot be compared to a beam.

Figure 5.11 shows the variation of deflection

along the direction perpendidular to the edge for a

10 cm overlay on 12 cm. base and compares it with the

case when the base contains a crack. Figure 5.12

compares the slope for above two cases in the same

direction. It is seen that the deflection in case of

cracked base is higher under load but unlike in the

direction parallel to the edge, it continues to be

higher even away from the edge. This is because the slope,

as shown in Figure 5.12 has same rate of change in cracked

case as in uncracked case, though numerically the slope

is slightly higher. The moments 'M ' in the direction

perpendicular to edge can be expected to remain unchanged

in the two cases as the two curves in figure 5.12 are

parallel.

5.9.2.2 Comparison of Cracked Bases

Figure 5.13 compares the moments along edge for

the case when the base of 8 cm, 12 cm and 16 cm, under

the 10 cm. overlay is having a crack. It can be Been from

this figure that the base thickness has a beneficial

effect as the maximum mom. nt developed in the overlay at

the crack is lesser for the base of larger thickness.

Same observation is valid for the case of 6 cm overlay

on 8 cm. 12 cm and 16 cm base having a crack. The variation
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of moment 'M * along the edge for this condition is

plotted in figure 5.14.

A comparison of figure 5.13 and 5.14 indicates

that the maximum moment at crack is greater in 10 cm

overlay as compared to 6 cm overlay for any particular

base thickness. However, variation of flexural stress

at the top fibre of the overlays is plotted in figure 5.15.

This variation is along the pavement edge. In both the

cases the base is 16 cm thick having a crack. It is seen

that though as shown in figure 5.13 and 5.14 the moment

is higher in 10 cm overlay, the flexural stress is higher

in 6 cm overlay, when the base is same in the two oases.

Figure 5.16 compares the top fibre bending stresses

in 10 cm overlay on 8 cm, 12 cm and 16 cm base. On compar

ing the numerical values from figure 5.15 and 5.16, it is

observed that a 4 cm increase in overlay thickness has a

more beneficial effect than tho same increase in base

thickness, though the rigidity of the overlay is half

that of base. This shows that the damaged base and sound

overlay can not be compared on the same basis.

Moreover, comparison of stresses as shown in

figure 5.16 needs further discussion. The stress in 10 cm

overlay on 8 cm base is higher than the stress in 10 cm

overlay when the base is 12 cm and on the basis of normal

stress yield criterion (Appendix 5. A) the latter system

is safer. But it may not necessarily be so according to
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the concepts of fracture mechanics. A 12 cm cracked base

has c/d ratio of 12/22 = 0.545 while that of a 8 cm base

will be (8/f8) = 0.444. A higher c/d i.e. crack depth to

total depth ratio means a higher stress concentration.

As per Kaplan^ ' the average value of critical

strain energy release rate *G ' has been found as 0.024

kg.cm/cm for three different kinds of cement concrete

mixes.

Adopting this average value as a guide, the deter

mination of critical overlay stress 'c°' in a 10 cm over-
Q

lay on 8 cm cracked base, will be as follows:

The stress concentration factor f(c/d) for a ratio of

c/d = 0.44 is found as 0.48 approximately^1 '.

Thei•ef ore, according to equation 5. 47 (Appendix 5..A).

On substituting E = 15x10 kg/cm

and h = 10 cm.

o° = 27 kg/cm2

Mom* :-nt 'M ' corresponding to this critical stress
Co

is

450 kg.cm/cm. r\+\% * X»£~ >t^r*

(1 82 )
Salam and Monismithv ' have adopted the following

equation due to Buecknerv '

r 6M r-(°)
Kt ~(d-c)^2 g(d)
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where K = stress intensity factor in opening mode,

and g(e/d) = function dependent on c/d as reproduced in
figure 5.23.

c/d 0.05 0.1 0.2 0.3 0.4 0.5 0.6

g(§0 0.36 0.49 0.6 0.65 0.69 0.72 0.73

Therefore if, M is taken as M. i.e. the critical

mcment, then the corresponding value of critical stress

intensity factor will be K- which is defined as 'fracture

toughness1. Fracture toughness is a material property,

related to G by

Kc -J5
If suffix *1' relates to 10 cm overlay on 8 cm cracked

base and '2' refers to 10 cm overlay on 12 cm cracked

base, then

6M=2 ,% 6M<n .%
(a2-c2)"s °V - (4l-c,)"2 eV

But &2.~cl = d2""c2 = 10 cm* and from figure 5. 23,

g(c1/d1) = 0.7

and g(c2/d2) = 0.725

Mc = 450 kg. cm./cm.
1

Accordingly, M„ = 437.5 kg.cm/cm.
. c2

Similarly, M„ , relating to 10 cm. overlay on 16 cm base =
?431.5 kg.cm./cm.
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Thus it is seen that as the thickness of the

cracked base increases, the critical mcment decreases.

This is because, the moment release in a thicker cracked

base will be higher, i.e. numerically the value of p.a

in figure (Appendix 5.A) will be larger. The result

of this will be that there will be a higher stress

concentration at the root of crack causing greater dis

tress in the material at that point.

However, it can be seen from structural analysis

that a larger thickness of cracked base will give higher

support and therefore, will undergo lesser deformation.

The result of this will be lesser stress in overlay.

Therefore, the larger thickness will be an advantage,

but perhaps not as much as expected by normal yield

criterion (Appendix 5A). This is clear from figure 5.24.

It may be argued that base and overlay have diff

erent modulus of elasticity. However, the value of 'G '

may not be effected very much due to this. But the effect

of higher modulus of elasticity of cracked base on stress

intensity factor may be worse than expected. The

standard value of stress intensity factor for such an

anisotropic structure is not known. However, use of

finite element method can be mad; ^184'185'186^ to deter
mine this accurately. ~ "

However, the above discussions based on qualitative
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analysis is useful to show that it is very important

to reduce stress concentration. This is possible through
provision of 'Reinforced Key' at the crack as shown in

figure 3,14 and 3.15.

Figure 5.17 shows the variation of flexural stress s

at the top of overlay. This variation is along the edge
for a 10 cm overlay.on 12 cm base for the cracked and

uncracked base. It is seen that the stresses in the over

lay at the crack location are almost doubled in case

when base is cracked. However, elsewhere the overlay

on cracked base is having lesser stresses. This is bec

ause the ciracking makes the pavement more flexible and

as a result the moments are reduced. Similar result

was observed in analysis of pavement slab in chapter III.

5.9.3 Analysis of Pavement Slab Subjected to Tempera
ture Variation:

Figure 5.18 shows the variation of temperature

differential for different thickness of concrete pave

ment slabs. This is based on 'General Report on Road

Research in India"(178). As Roorkee is situated in
Northern region, the curve pertaining to this region is

adopted for data.

Table 5.3 shows the maximum temperature differen

tial for different pavement thickness and also the maximum

moments and stresses due to it. It is seen that the temper

ature differential and moment increases with pavement
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thickness, however, there is not much difference in

stresses. This indicates that there is practically no/
beneficial effect of overlay on temperature stresses. (

Figure 5.19 compares the deflection of 10 cm over

lay on 8 cm base for cracked and uncracked conditions

under a temperature differential of 13°C between top

of overlay and bottom of base. It is seen that the

deflections in these two cases significantly differ only

in the central part, i.e. in the vicinity of the crack.

Elsewhere, they are practically the same. This indicates

that the effect of crack, assumed in the transverse

direction along the centre lin of the pavement, is only
local.

Figure 5.20 shows the contours of the deflected

profile for the uncracked case of 10 cm overlay on 8 cm

base. From the diagram it can be seen that the corners and

the edges tend to warp up, while the central part maintains

contact with the subgrade. The figure also shows that the

slope is gradual along longitudinal centre line while

along transverse centre line it is steep. This is because

the values of Mx and M generated due to temperature

differential are equal but the transverse dimension of

slab is lesser than the longitudinal dimension.

Figure 5.21 shows variation of stress parallel to

edge due to wheel load and temperature differential for

10 cm overlay on 8 cm base. It can be seen that the
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thermal stresses remain practically constant in the

central part of the edge (at the end of the edges the

stresses are bound to be zero to satisfy the static equil

ibrium) and their magnitude is practically half of the

maximum wheel load stress at the centre of the edge.

Figure 5.22 compares the bending moments developed

due to temperature gradient along the longitudinal centre

line of the pavement slab having 10 cm overlay on 8 cm

base to that when the base has a central transverse crack.

The curve for mcment in case of sound pavement slab is

exactly similar to that obtained by Wiseman, Harr and

Leonards^ 9'. From this figure it may be seen that the

moments are unaffected by crack at all places except over

the crack itself where it drops down. This is due to the

reason that the applied loads due to temperature gradients

which are in the form of moments applied at the edges

do not cause an appreciable increase in curvature of the

slab due to the crack which is in the central part of the

slab, i.e. away from the transverse edge • . Thus,

the moment due to this curvature is reduced at the crack

due to reduction in stiffness at that location. However,

to satisfy statics, this would result in increase in shear

ing forces.

5.9.4 Shrinkage Effects

Table 5.4 compares the stresses developed due to

differential shrinkage in sound base-overlay systems at
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the top and bottom of base and overlay, by the Birkelands

approach and by finite element analysis. It can be

noticed that the results generally agree for the values

at top of base and bottom of overlay. However, they differ

significantly for top of overlay and bottom of base. It is

also seen that the values are generally higher.

While formulating the analysis earlier in this

chapter, it was seen that the shrinkage effects were

considered in two parts viz. one due to direct forces and

other due to moments developed because of the eccentricity

of the centre of shrinkage force. The subgrade has no

part to play in case of direct forces. Therefor,,, the

magnitudes of these forces are almost same in Birkeland's

approach and in finite element analysis, except that in the

later analysis effect of Poisson's ratio is taken into

consideration while the earlier is for beams and there

fore neglects it.

However, the subgrade restraint has to play an

important role in cases of moments. Therefore flexural

stresses differ in two case i.e. one in which subgrade

restraint is taken into account and in another where sub

grade is supposed to be absent, and the stresses will

naturally be higher when the restraint is considered.

The reason of agreement in stresses at the inter

face is that the interface is close to neutral axis and

therefore at that location,only the axial stresses
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predominate.

It can also be seen from table 5.5 that though

the contribution from shrinkage in interfacial stresses

is largest still the values are within the permissible

limits.

Fl.xural, direct tensile and interfacial stresses

in overlay are tabulated in table 5.6 in case of cracked

base. It is seen that the tensile stresses are very

heavy in the case of thin overlays on thin bases,

but they tend to come down in the permissible range as

the base or overlay thickness increases. The reason

for this is that the stresses due to moment component

reduces on account of cracking (it can be observed

to be reverse of that in uncracked condition. Also the

effect due to mom nt component is similar to moments

due to wheel loads). However, the axial stress compo

nent increases with base thickness due to greater

restraint. Not much change of axial stress component

can be expected in cracked and uncracked conditions,

because this component induces tension in overlay and

compression in base. However, if a gap is gen rated

at the crack then the values obtained can be regarded

as conservative.

It can therefore be said that there could be two

possible alternatives to reduce these stresses. One is

to provide unbonded overlay at the cost of increased
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overlay thickness or to develop moment resisting capac

ity in cracked base. The latter appears to be a better

alternative.

5.9.5 General Discussions

It can be observed from the table 5.6 that an

increase in bast thickness reduces the overlay stress.

However, the same increase in overlay thickness reduces

the stress even more.

It was seen in para 5.9.1 that the pavements of

equal total thickness give almost same moments for un

cracked base. But this is not true when the base contains

a crack. This is obviously because of the difference in

the size of crack.

These stresses can be defined as nominal stress

values, as they are calculated from bending theory^ '.

However, the stress in the bottom of the overlay may be

quite different at the crack location. This is due to

the fact that stress concentrations are bound to occur

at that point, due to the presence of crack. The amount

of stress concentration will depend upon the depth of

crack, being more for deeper crack^. Not only this,

the stress concentration also depends on the proximity

of another crack. Another crack in its neighbourhood

reduces the stress concentration, by making the stress

path more stream lined^ 9 '. Neuber^191' has found that
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for beams, with deep notch the value of stress (maximum

stress) at the crack tip, may be as much as 3 to 4 times

the nominal stress values. Thus yield and plastic •

flow is likely to occur in a small zone ahead of crack

tip. It is possible that during the course of repeated

load application the zone of plastic flow may extend

leading to propagation of crack. It has been found that

bolts with single groove had lesser life in fatigue

than those of same size with many threads* . This

shows the eff ct of stress concentration on fatigue

life.

Many alternatives to reduce stress concentrations

in highway pavement with a view to avoid reflection

cracking, could therefore be:

(i) providing multiple cracks by breaking up
(21 22)the pavement slab is many times suggestedv ' .

It lis however, seen that the presence of a

crack in the bast, increases the overlay

stress considerably. Thus, breaking up of the

base would mean:

(a) further increase: in overlay stress due to
reduced rigidity of base and ther. fore
a thicker overlay would be required.
However, it is a point to be seen
for any particular base-overlay combina
tion whether reduction in stress concen
tration factor( yo) has an overriding
influence on this increase in nominal
stress value, caused by loss of base
rigidity.
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(b) cost incurred in pavement breaking.

(ii) provide unbonded overlay: Providing unbonded

overlay would mean expenses to be incurred

on:

(a) increased overlay thickness as the
advantage of moment resisting couple
due to bonding (Chapter III) is
not being taken, aid

(b) providing separation course or other
methods to prevent any bond from
occurring due to friction.

(iii) provide thicker overlay so as to have lesser

str ss concentration which would mean greater

cost,

(iv) provide reinforcement in overlay, which would

mean increased cost and infact this would

act more like a crack arrest mechanism

rather than a mechanism to reduce stress.

(iv) adopt reinforced key technique as described

in chapter III which would effectively reduce

stress concentration.

It is also seen from table 5.6 that stress due to

temperature differential decreases with the increasing

thickness of base for any overlay thickness. However,

reverse is the effect on shearing stresses at the inter

face. This is du£- to the fact that on a thicker cracked

base the rate of decrease of moment is higher, due to

greater amount of stress release. The moment in the

uncracked part is also higher. Therefore, this results
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in greater shearing forces. When shearing stresses

are computed from tbese shearing forces, they also

work out to be higher (though higher shearing force

may not necessarily mean higher shearing stresses at

the interface). The shearing stresses are of signi

ficant magnitude, specially those due to thermal

differential and differential shrinkage. The magni

tude of total shearing stresses are enough to threaten

bond failure. Interfacial shearing stresses due to

wheel loads are of nominal magnitude and by them

selves insignificant. Failure of bond would mean

further loss of rigidity of base overlay system in

the vicinity of the crack. This further loss of

stiffness would result in further increase in d. flect

ions, slopes and curvatures as seen in chapter III.

Thus.it is possible that a well designed overlay, in

which full reliance is placed on effective bonding,

might crack at the location of the old crack due to

ovorstressing. This explains the phenomenon observed,

in which bond failure is found to exist at the location

of reflected cracks or joints in the overlay* ^' 5%

It can be pointed out that 'Reinforced Key

Technique' not only acts as a measure against stress

concentration it is an effective method of ensuring

bond at the location of a crack.

Superimposing deflections due to gravity load

at 2.35 kg/cnr on those of fig. 5.20, it can be seen
(134)

that curlingN ; does occur.
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5.10 CONCLUSIONS

Following conclusions can be drawn out of the

limited numerical experimentation reported in this

Chapter:

1. The formulation as proposed in this chapter

forms a suitable and efficient system for

realistically assessing the statical influence

parameters like, moments, shear, deflections

etc. at any point in the system under

following conditions:

(a) The whet. 1 load may be represented by a

rectangular tyre, print. Any number of

such wheel loads may be placed at any

location in the pavement. Dual tyre load

can be realistically represented.

(b) The base may contain a bonded overlay.

(c) The base may have elastic properties signi

ficantly different as compared to overlay.

This makes the solution procedure applicable

to semirigid pavements with overlays, the

rational analysis of which was not possible

hitherto.

(d) The base or overlay may contain any number

of cracks of any size or shape and at any

location.

(e) Due regard can be paid to temperature

stresses in abov. system.



-206-

(f) Differential shrinkage, that is likely

to take place due to age difference

of has*, and overlay will give rise to

stresses, which can be evaluated by

finite element method and also by a

modification of Bradbury's solution

as given in Appendix '5.C

2. By adopting the proposed approach for deter

mination of equivalent stiffness of sound base

overlay system, it is possible to determine the

maximum wheel load stresses by use of Wester

gaard's equation which is applicable for single

layer. This is given in Appendix '5.B'.

3. Similarly, b*- using the same stiffness, it is

possible to use Bradbury's solution for stress s

due to temperature differential.

4. It is observed that on cracking the deflections

and slopes increase in the direction of the

crack as well as in the orthogonal direction,

under the action of wheel load. However, the rate

of change of slope does not increase appreciably

in the direction of crack while in the direction

orthogonal to the crack there is a significant

increase.

5. Increase in base thickness, which is cracked,

as well as increase in overlay thickness, tend
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to decrease the stress in overlay at the

crack location. How ver, the increase in

overlay thickness has much more significance

than an equal increase in base thicknesses,

though the rigidity of the overlay material

is assumed as half that of base material.

6. The cracking gives rise to high interfacial

shearing stress due to temperature differential

which is further increased due to differential

shrinkage. So much so that the bond is likely

to break under repeated load cycling.

7. It is seen by stress analysis that reflection

cracking is very much likely to occur in bonded

overlays.

8. From the considerations of points6 and 7 above,

the usefulness of 'Reinforced Key Techniques'

as proposed in Chapter III is emphasised.

9. Interfacial bond stresses occuring in an overlay

laid on a sound base is of very nominal order

both due to wheel load as well as temperature

gradients. As such a bonded overlay an a sound

base is very much feasible and advisable beyond

any point of controversy.

10. Curling*1^ under temperature and self load

is seen to occur.

*
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APPENDIX 5. A

Failure of any material is conventionally supposed

to be governed by one of the many strength theories like

Von Mise-s, Tresca, Mohr-Coulomb. These failure criteria

are based on triaxiality of stresses and failure is

supposed to take place by a slip mechanism along a

plane on which the stress combinations are such that

they satisfy the yield conditions.

The simplest among these is the normal or square

yield criterion,according to which, the failure occurs

in a multi-axial system wh n either the principal

tensile or compressive stress reaches the uniaxial

tensile or compressive strength. For brittle material;

as also for concrete, the ultimate tensile strength

°ut is consid-^rably smaller than the ultimate compress

ive strength a . In the Figure 5.25, which represents

biaxial conditions, with o, and o2 principal stresses

and a-? = 0, the normal stress criterion is represented

by square CFHJ.

The strength of a bar under uniaxial tension is

OB as shown in the figure. However, it can be noticed

that the presence of any orthogonal tensile or compress

ive principal stress do s not alter this strength.

Mohr's yield criterion for biaxial stress field
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is also illustrated in figur. 5.25 superimposed on
the square yield criterion. It is based on the principlo
that the, failure occurs when the shear stress reaches
some critical value xf on a piano such that this stress

is a function of the normal stress on on that plane.
Usually this function is expressed as.'

xf = C + 0n tantf ... (5.40)
where,

C and 0 are constants for the material.

Investigations carritd out by Kupfer et al.1'195)

and Liu and others(l94) indicate that biaxial stress
field does effect failure of concrete. Based on their

investigations the authors have suggested the failure

criterion of concrete which is somewhat similar to Mohr's

failure criterion. Applicability of Mohr-Coulomb theory
to concrete is often verified^195,196).

Apart from these failure theories, Griffth^197^

postulated another theory, according to which, every
material contains flaws or voids and these flaws act as

stress raisers or pockets of stress concentrations. In

cement concrete microcracks d volop during setting and
hardening or during subsequent loading(l98). These cracks
may form due to shear or tensile stresses and may exist

at mortar-aggregate interface or in the mortar itself(l99).
Griffth suggested that the strain energy of the system
decreases as the crack length increases, under any ajpli,d
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stress. This happens because energy is used up in creat

ing new surfaces formed during fracture.

If y • surface energy per unit area,

U = strain energy released per unit thickness (in
plane stress given by l/2 x stress x strain x area)

= " 2* a E~ Pa as Shown in figure 5.26(a),

6 = a constant for zone in tkich the stress 'a' is
supposed to be released, and

E = Modulus of Elasticity,

Therefore, for an increase in crack length 'da',

dU a2

According to Griffth's accurate analysis,
i 2 2

tt q 7i a
u - - £ "

2

While, j| = - G-jp, in plane stress ... (5.41)

The total energy 'W' in plane stress is given by

This is shown in Figure 5.26(b). As the crack

ext nds, its surface energy increases because new surface

is formed. But this is at the cost of reduced strain

energy.

The maximum in total energy curve is given by

dV

da
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ia

.. (5.43)v = 2¥a

Thus in figure 5.26(b) the line of strain energy
release rate and surface energy line intersect at a

point where aQ is the crack length. This crack length
is the critical length of the crack i.e. such a value

at which the crack will grow under applied stress
system.

Thus,

fracture strength ap =J|ft- ... (5.44)

In other words if the strain energy release rate

exceeds a critical value then growth of crack will take
place.

No consideration has yet been given to stress concen

tration at the crack tip. Due to the fact, that the crack

acts as stress raiser, the stress at the crack tip will

be higher than at otht.-r points in an otherwise uniform

stress field V and it is usual to express this as:

* =-*=. forr« a<20°) ... (5.45)
,g27tr

where, r = distance of point from crack tip

K = stress intensity factor, and

c = nominal stress e.g. value given by the equation

„ - 6M0 ~ ^2 ... (5.46)
in a beam in bending.
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However, the stress level at the crack tip will

be a function of the (a/6.) ratio,

where, d = depth of beam

or in other words it may be possible to write!

Strain energy release rate = G

Winne and Wundt^ ' derived expression for

f(a/d). This has been used by Kaplan^ ' and Salam

and Monismith. ^182^

It has been found that the critical strain

energy release rate 'G ' is a fundamental property of
c

a brittle material and is constant like modulus of

t+ (2ol)elasticityv '.

Kaplan^180' has evaluated G„ for three different
mixes of cement concrete and has found that the values

(202)
are fairly constant. BlightK ' has given some methods

which can be used for determination of G .

Determination of stress intensity factor is a

complex problem even for the simplest geometries

Finite element method is extensively being applied for

its evaluation for cases where standard solution do not

exist(l84,185,186,203,204). Beuckner<183> has used bound-

ary collocation meihod to determine the stress intensity

factor in case of cracked beams in bending and this

method has also been adopted by Ramsamooj^ . The
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standard values of stress intensity factors d. rived are

for the simply supported, isotropic, homogeneous beams

containing a crack. These could only very approximately

be applied for the qualitative purposes to the analysis

of anisotropic plates as presently under study.

Failure of concrete is often studied as a fracture

mechanism. Glucklich*206' concludes that law of fracture
mechanics are applicable to concrete though according

to him the energy released is higher than energy of sur

faces created because prior to cracking, there are many

microcracks which absorb released energy. Also, the reason

for low strength of concrete is duu to the fact that ratc

of energy: release increases with crack length in tension

whereas it is constant in compression.

(207)Naus and Lottv (/ have studied the parameters that

influence the value of fracture toughness 'K ' of concrete
C

and state that bigger size aggregate act as crack arresters,

Applicability of the laws of fracture mechanics to conc

rete are also investigated by many other workers'90'204'
208-210)

Although the applicability of the laws of fracture

mechanics is being justified*211'2l2 \ it is felt that
data is not enough to put it on an accurate quantitative
footing*187.188. 233 )b
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APPENDIX 5.B

SIMPLIFIED PROCEDURE FOR MAXIMUM WHEEL LOAD
STRESS DETERMINATION

It is seen that the maximum stresses obtained by

finite element analysis can be compared with Westergaard's

closed form solution by adopting a very simple modificat

ion.

For any section modulus = jj* of a pavement slab
having a base and overlay,

where a, • maximum stress for any load position 'j' like
interior, edge, or corner as given by
Westergaard's equation^16^), -

e.g. for interior, (with all the assumptions of Westergaard

taken valid)

Mi "S*|1§£[fl°g10 £- +1.069J ...(5.48)

where,

P = load,

b = equivalent radius of resisting section,

=Jl*6a2+h2 - 0.675 for g<1.724

Otherwise, b = a,

where, a = radius of contact, and

/ = radius of relative stiffness = 4J~~
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Since, 'D' the rigidity, can be determined for base slab

with bonded overlay as described in preceding articles

of this chapter, it is possible to calculate moment.

The curvature can now be determined from equations

5.9 and 5.10 and therefore it is possible to determine

strain by equation 5.1 and stress from relation 5.2.

Note: 1. The modified procedure for determination of the

value of radius of relative stiffness is general
and same procedure can be adopted for determina
tion of the value of 'L » for use in Pickett's
equation and charts* 14'for both Winkler as well
as elastic solid models.

2. The same value of '/' can be used to determine
deflections as well by usual formulae-.

3. A flow diagram is included here.

4. Table 5.7 compares the deflections as computed
by finite el; ment method to those given by
Westergaard's solution
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FLOW CHART
FOR

Program for Calculation of Moments and Stresses in
bonded and unbonded base-overlay systems with diff
erent elastic constants based on Modified Westergaard's
approach.

Description

N BOND = Bond condition

= 0 for no bond or single slab

= non-zero for bonded overlay

HO b Overlay thickness,

HB = Base thickness,

EO, AMUO = Modulus of Elasticity Poisson's ratio
over Overlay

EB, AMUB = Modulus of Elasticity Poisson's ratio
overlay Base

AK = Modulus of subgrade reaction,

P - Load,

A = Radius of contact of tyre print

out-put:

Punches out moments below load and stresses due

to it at

(i) top of overlay

(ii) bottom of overlay

(iii) top of bawe

(iv) bottom of base



{ START3
READ,NBOND,HO,HB,
EO,EB,AMUO,AMB,
AK,P,A

YES

CALCULATE
NEUTRAL

AXIS

CALCULATE
'D'^Rigidity

E
CALCULATE
'/'=radius
of relative

stiffness

CALCULATE

MOMENTS AT

EDGE,INTER
IOR AND

CORNER

CALCULATE

STRESSES

iPUNCH TITLE]

PUNCH RiiDIUS OF
RELATIVE STIFF
NESS, MOMENTS AND
STRESSES

STOP

NO

NO
—*-

CAICU ATE D

CALCULATE

STRESSES

z
UPUNCH TITIE
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APPENDIX 5.C

SIMPLIFIED PROCEDURE FOR MAXIMUM TEMPERATURE
STRESS EVALUATION

A procedure similar to that described in Appendix 5.B
can be adopted to evaluate temperature T^

The value of radius of relative stiffness can be

evaluated and the values of warping stress coefficients
(136)

C1 and C2 determined from the graph.

Bradbury's equation can be written as^162^

a
- r £ a AT- c. —^ _ (5#49

where,

C b C1 for edge, and
0-,+v C2

c = ( ^—), for interior
1 - v*

The value of C can be evaluated if it is assumed that

v = v° = vb

It is possible to write for moment

M=C- fofb'D ... (5.50)
because, it can be recognised that £aA1 is the curvature

due to temperature differential 'AT' K" ' in slab of thick-

ness (h +h ), based on assumptions stated in article.

Thereafter, procedure for determination of stresses can
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be identical as stated in Appendix 5.B.

APPROACH FOR SHRINKAGE STRESSES

As described in text the shrinkage stresses can

be regarded in two parts. The effect of moment part can

be evaluated by finding the appropriate ratio as described

in equation 5.33 and the stresses can be evaluated by

superimposing the axial stresses given by equations

5.36 and 5.38.

TEMPERATURE STRESSES IN CRACKED SLAB WITH OVERLAY

Table 5.8 compares the moments as calculated by

modified Bradbury's approach for the case when the base

contains a crack as adopted in the present study. Since

the crack adopted in the present study was onr: which is

away from the edge, it was seen during the course of

analysis that the maximum principal curvature due to

'initial strain' remained constant even after cracking.

Thus, the procedure that could bo adopted lei

(i) determine maximum moments for uncracked slab due to

temperature gradients,

(ii) determine curvature from relation

7 M
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(iii) determine moment in overlay at the cracked part
from

where, E°h°3
Dc = TTTTT12(1-v")

Note.: Same procedure can be applied for shrinkage stress
determination at crack.
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TABLE-5.1

COMPARISON OF MAXIMUM MOMENTS FOR LAYERED
PAVEMENT SLABS

S.

No.

•

Loading
Thickness (cm)Modulus of El-pT"

asticity(kg/cni) FEM
Base ! Overlay! Base 'Overlay

Modified y

Bradbury H?en~

Case I (a) Interior 8

(b) Edge 8

(c) Temperature 8

Case II (a) Interior 8

(b) Edge 8

(c) Temperature 8

10

10

10

10

10

10

30x104 30xl04 893.0 881v522 1.285
30xl04 30xl04 1306.0 1293.983 0.92
30x1O4 30x104 789.4 799.000 1.20

30xl04 15x1O4 873.0 866.028 0.80
30xl04 15xl04 1280.0 126.3.185 1.31

780,2 790.000 1.2630x1O4 15x1O4



TABLE-5.2

COMPARISON OF MAXIMUM MOMENTS DOB TO WHEEL LOADS ON EDGE

.Mod.of E'lasticity'jMoments (kg.cm/cm)
j (kg/cm2] I

-22 2-

Thickness (cm) Stresses*** (kg/cm2)
S.No. I

Overlay Base s' T?b FEM

Modified !
Wester- ;
gaard i0P

Overlay

1.

2.

3.

4.

5.

6.

10

8

12

16

8

12

16

15x10

15x10^
15x10^

15x10

15x10

15x10^

4

30x10^

30x104
30xl04

4
30x10

30x10'

30x10^

1280

1340

1480

1105

1253

1397

1263.18

1353.20

1414.80

1129.70

1270.40

1365.40

19.30

13.64

9.90

27.90

18.10

12.40

+ Values extrapolated from nearest Gauss point to centre of loading,

++ Stresses arc computed by Modified Westergaard's solution

-ve Sign indicates tension.

Bottom

0.98

2.90

3.30

7.2

7.4

6.3

Base

Top

1.97

5.90

6.50

14.40

14.90

12.65

Bottom

-27.33

-19.74

-14.80

-40.70

-27.60

-19.66



TABLE 5.3

MOMENTS iiND STRESSES AT THE CENTRE IN PAVEMENTS WITH BONDED OVERIAY DU^ TO
TEMPERA TURE DI FF EREN TI AL

(Finite Element Results, a = 8xlO""6/°C)
H^^^^~Tempera- jMaxim^m i StFiFi

ture Moment Bases.

No. JBase [Over- . Differen- |(kg/cm/cm)
; ! lay | tial

Overlay

Top j Bottom Top + -?Bottom

1. 8 10 13.0°C 780

2. 12 10 13.8°C 1048

3. 16 10 14.5°C 1573

11.07

11.02

11.44

0.58

2.38

3.76

1.16

4.76

7.52

-17.05

-15.80

-16.88
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TABLE 5.4

COMPARISOF OF SHRINKAGE STRESSES BY FEM
AND BIRKELAND rS APPROACH

Case

Net Stress by Birkeland's Approach - Total stress by FEM
hOverlay Base

Top Bottom Top Bottom

10 on 8 7.6 -17.00 25.68 -13.65

10 on 12 3.9 -15.82 28.08 -17.29

10 on 16 -1.29 -15.60 28.45 -17.82

Overlay

Top Bottom

14.19 -16.75

7.82 -14.90

4.39 -13.80

Base

Top

26.4

30.6

32.2

-224-

Bottom

-27. 3

-23.3

•25. 9

P'11**! «' * •



S.
No. !
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TABLE -5.5

INTERFACIAL SHEARING STRESSES AT EDGE IN BONDED
OVERLAY AND UNCRACKED BASE DUE TO WHEEL LOADS,
TEMPERATURE DIFFERENTIAL AND DIFFERENTIAL SHRINKAGE

Thickness (cm)

Base I Overlay

Interfacial shearing
stresses (kg/cm^)

Wheel Temperature
.Load. j Differential

Differen
tial

Total

Stress
Shrinkage (kg/cm )

1. 8 10 1.89 0.48 1.440 3.810
2. 12 10 1.43 0.41 1.080 2.920
3. 16 10 0.98 0.33 0.786 2.096

4. 8 6 1.30 0.52 6.500 8.320

5. 12 6 1.06 0.46 4.100 5.620
6. 16 6 0.58 0.43 3.03 4.040
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TABLE-5. 6

STRESSES IN BOTTOM OF OVERLAY ON CRACKED BASE AT THE CENTRE OF THE EDGE

Overlay Thick- Flexural stresses (kg/cn?)
S. Thick- !ness of [" Wheel""
No. ness ;cracked j Load

(cm) j Base(cm)

1

2

3

4

5

6

6

6

6

10

10

10

8

12

16

8

12

16

41.7

37.5

33.3

31.2

27.6

24.0

7.10

5.60

4.50

6.03

4.60

3.20

81.33

49.90

31.60

78.00

12.10

7.62

Axial

Tempera-TShrinkage'; JtrfeSS
Sh t ar ing stress as (kg/cm2j"

dheitk jWheel Load i TemPeraturejShrinkage

6.0

7.5

8.6

18.4

21.1

22.8

0.63

1.32

1.67

1.38

1.79

2.15

4.80

5.30

7.00

6 80

9.85

10.10

54.90

47.20

47.50

20.05

25.92

24.05
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TABLE 5.7

COMPARISON OF DEFLECTIONS OBTAINED BY FEM WITH CLOSED FORM SOLUTION

Case

25 cm slab

25 cm slab

10 cm overlay
on 8 cm base
(unbonded)

10 cm overlay
on 16 cm base
(unbonded)

10 on 8(bonded)

10 on 16

(cm)

Position of

Loading

76.20 Interior

76.20

38.41

Interior

Edge

55.97 Edge

54.19

71.75

Edge

Edge

Note! 1. K = 12.0 kg/ccP in all cases

2. For interior load = W;L= ^jf [l-(|)2(C.217-0.367 log|)l

Type of Loading
(radius of

contact)

(cm)

Load

(kg)

Distributed 1818
radius = 30 cm

Distributed 7272
radius = 60 cm
Point Load 4500

Distributed 4500
25x50 cm

Distributed 4500
25x50 cm.

Distributed 4500
25x50 BBU

3. For edge load = w= tt(1+0.4v).£
6 J6 K/

Deflection

Diff

erence

Closed Form
Solution

(cm)

0.00025

0.00093

0.10990

0.05180

0.05530

0.03150

Finite
Element
Solution

0.00024 5.74

0.00091 1.80

0.10660 3.10

0.03498 48.00

0.03754 47.00

0.0249 26.50

4. Large Difference obtained in 'edge case' is because the closed form solution dees
not take load distribution into account.
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TABLE -5.8

COMPARISON OF STRESSES AT THE BOTTOYI OF OVERLAY
OVER CRACK (FEM SOLUTION VS MODIFIED BRADBURY|

S.
No.

Overlay
Thickness

.1. 10 cm

2. 10 cm

3. 10 cm

Base

Thickness

8 cm

12 cm

16 cm

Finite Ele
ment Solu
tion (kg/cm)

6.03

4.60

3.20

Modified
Bradbury

(kg/cm2)

5.92

4.33

3.08

1.
Difference

1.66

5.87

3.75
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FIG. 5.1 a -INTERFACIAL SHEARING STRESSES
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CHAPTER-VI

ANALYSIS OF UNBONDED OVERLAYS

6.1 INTRODUCTION

Analysis of bonded cement concrete overlays on base

of cement concrete or any other .material that satisfies

the bonding theory is dealt in Chapter V . It was seen

that in bonded overlays the condition of full strain

compatibility is assumed. As a result of this condition

the slip between overlay and base is restricted while

bending. A high moment resisting couple develops due to

bonding.

However, two counts on' which the bonded overlay

becomes a liability are the efforts required to ensure

bond and secondly, as per theory postulate d by Griffith^197'

the cracks, if any, produces inherent weakness in pavements

duo to stress concentrations. Indian Roads Congress^10^
therefor©, recommends unbonded overlay slabs on signifi

cantly cracked pavements.

Whereas, it was a problem to ensure bond between

base and overlay in case of bonded system, it is also taken

as a problem to inhibit bond in the other system^2l^ and
expenses are Supposed to be incurred on this item.

Moreover, it is argued in favour of the previous system

that the cost incurred on extra thickness required in
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unbonded overlay is many times more than the expenditure

on bonding.

From the considerations of analysis the unbonded

overlay is free from the problem of stresses duo to

differential shrinkage, interfacial shear stresses and

to a certain extent problem of stress analysis due to

temperature differential. This is because difference of

temperature between top and bottom of overlay are to be

treated on the basis similar to single pavement slab^216^.
However, rational evaluation of wheel load stresses in

the unbonded overlay and base, that may have cracks- does

pose a problem.

6.2 UNBONDED CONSTRUCTION

A layer of concrete simply overlaid on the other

layer that does not contain any structural defects may

not essentially behave as an unbonded overlay. This is

because the interfacial shearing stresses in such a system

may not be of significant magnitude, as shown in Chapter V.

Also, it is found by laboratory testing that sufficiently

good amount of strength can develop^15,16^ even when no
special interfacial treatment is given.

Therefore, special treatment is necessary if bond

is to be prevented. This would call for the necessity of

providing an intermediate layer of sand asphalt, paper or

other similar material. However Mellinger^48^ reports the
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findings of experiments carried out at Sharonville Heavy
/ 217)

Load Tracks' .". The overlay was cast on the base which

was cured using membrane curing compound. The strain

meters provided at the top and bottom of overlay as well

as top and bottom of base indicated that there was no

shear transfer at the interface because the membrane

curing compound was not removed before casting the over

lay and this prevented the formation of any bond between

the two layers of cement concrete.

6.3 EXISTING METHODS FOR DESIGN AND ANALYSIS

The basis of design of overlay on rigid pavements

has been mostly empirical. The method suggested by Corps

of Engineers, Civil Aeronautical Administration and P.C.A.

fall under this category*21'218'219^.

According to Corps of Engineers formulae*.

h2 =h2 - Chj3 ... (6.1)

where, h = thickness of existing slab,

hQ ss thickness of overlay slab,

h = design slab thickness for a single slab
placed directly on subgrade,

C = a coefficient depending upon the condition
of existing slab,

'. = 1 for sound slab,

= 0.75 for slabs having initial cracks,
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C = 0.35 for badly cracked slab.

I.R.C. has suggested values of C for five

different categories of distress in base slab, •

Burmister's layered theory*'1' is also often used

to determine the overlay thickness. This use is however,
(221 221)

indirect. Bose hasv u' x' suggested a method in which

the value of modulus of subgrade reaction 'k' is deter

mined by use of plate load test on subgrade. The modulus

of elasticity of subgrade from Burmister's equation'71^
is given by

Es = 1.18xrQxk ... (6.2)

where,

Eg = modulus of elasticity of subgrade,

rQ - radius of test plate = 37.5 cm.

This value was then used to determine the coefficient

•Pw' which is based on the B_/]L and h a ratio,

Eb = modulus of elasticity of existing concrete
slab, and

a = radius of contact.

The modulus of elasticity of the combined system

could be determined from!

E

E(s+b) = JT ••' (6'3)

The equivalent modulus of subgrade reaction for the
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base and overlay could be then found by use of equation
6.2. The overlay could now bo designed by using Wester-
gaard's method<24> or Pickett design charts(2l4) as8uming
this value of subgrade reaction.

Asimilar method hag be n used by Lemcoe and Mahala(222)
to determine the modulus of subgrade reaction to be adopted
for analysis of overlay, stresses.

In the method by Bose(22°' 22l> the value of radius
of contact 'a' is taken as standard plate radius. However,
Lemcoe and Mahala<222) take it as actual contact radius plus
the depth of overlay slab, assuming 45° distribution through
the overlay.

Another assumption on the method proposed by Lemcoe
and Mahala is taking an arbitrary value of slab thick

ness to account for distress in existing slab. Bose(220),
however, does not propose any such assumption and the appl
icability of the method is restricted to sound existing
slab only.

It is also a point worth considering that how far

can tho Burmister method(71) be applied to determine the
support value of base slab when the region under study is

the edge or corner, being more important locations. However,
a plea for unified approach has already been made by
McCllough and Beodecker^98^.

U.S. Navy Department has adopted the recommendations
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of Marcus and Palme r^22^. According to this method!

3
-p i _ -p E h .
xo ~ Io " ,3 3— ••• (6»4)

Ebhb + E°h°

A*3
3B£ fv = fv T ffi c^

f^ • maximum stress in overlay under a given
applied load when new slab rests on the
base slab,

fQ = maximum stress in overlay when overlay is
directly resting on subgrade without base slab,

f.£ • maximum stress in the base when the load is
applied on overlay,

fb = maximum stress in the base when the base acts
alone,

It can be seen that the values of f and f, can
O D

be obtained by using Westergaard's equation or design

charts as per conventional procedure. Therefore, the

stresses in base and overlay can be analysed.

Mellinger(48' has suggested the following formula
for use in determining the equival nt base thickness 'h , ',

for edge loading,
2urb ,_.Ow,..b

h
R,hD (l+v°)(3+vb)nl/2pitbn u+y~H3+v ) -jl/2

Rn(l+vD)(3+v°)
o

and for interior loading

t2h.,o^ _l/2
h

Rhhu (i+v°)
eb * ltt^—d - (6-7)•E0(l+vL)

The formulae is based on the rupture strength of
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base and overlay. The effect of Poisson's ratio can be

seen to be small.

Rb and Rq denote modulus of rupture of base
and overlay.

These formulae are based on model analysis (224).
(218)A need for experimental verification has been emphasised.

/ 22^)
Shackelv •>' reported experimental investigation

on beams having a separation course interposed. The

comparison with theory based on Marcus and Palmer(22^)

indicated acceptable prediction, proving the justification

of the assumptions made in the theory.

6.4 CONSIDERATION FOR ANALYSIS

It is therefore, necessary to evolve a suitable

method of analysis which could, on sound theoretical basis,

give due recognition to the difference in elastic propert

ies of base and overlay for the calculation of stresses

and displacement in whole of the pavement structure for

wheel loads placed anywhere on it. The method should have

its applicability to the general case when the overlay

is laid on a cracked base as the main aim of providing

an unbonded overlay is to cover a distressed base rather

than simply enhance its structural capacity.

A formulation for such an analysis is proposed

in following paragraphs.
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6.5 GENERAL FORMULiiTION FOR THE ANAITSIS OF THE
UNBONDED OVERLAY ON SOUND OR CRACKED B^SE.

6.5.1 General Assumptions made are as under:

1. All the assumptions relating to plate theory

as stated in article 4.2 are also valid for

the analysis of unbonded overlays.

2. The interface between base and overlay is

perfectly smooth and therefore, no interfacial

shear stresses develop.

3. Under the action of wheel load the deflection

of base and overlay are same.

4. As discussed and formulated in chapter IV, the

effect of crack can be simulated by assigning

orthotropic properties.

5. The coordinate axis taken as reference frame

coincides with the principal direction of ortho-

tropy. However, if they do not, then expressions

can be obtained using rotation matrix as described

in chapter IV.

6. The temperature gradient is assumed as linear

throughout the depth of pavement.

Assumptions 2 and 3 as stated above need clarification,

Assumption 2 imposes a condition which is only true in

theory. In reality, the interface between base and overlay

can not be free of any interfacial shear, though it is
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possible that slippage might occur between base and ever-

lay after a certain value of stress is exceeded. This

would impose a condition of partial bonding. Though an

attempt for analysis of partial bonding is reported^226'227'228),
a rational analysis for such a condition would not have

much value in the absence of reliable data^15,229^. it

is also seen that an assumption neglecting any shear res

istance at interface gives the other extreme case.

It is difficult to say how far could the assumption 3

be valid for every point on the interface. However, it may

be argued that the truth of assumption, under the action

of wheel can not be violated in the neighbourhood of the

loaf,. However, it is possible that it may not be valid for

the zones away from the load. Fortunately, the effect of

this will not adversely effect the stresses and displace

ment in the base-overlay system in the vicinity of the load.

The point of interest, is generally the neighbouring area

around the centre of gravity of the wheel load, this being

the most severely stressed location. The validity of this

assumption can be upheld on these grounds.

6.5.2 General Formulation

A general formulation, incorporating evaluation of

stresses and displacement in base and unbonded overlay

having different elastic properties and discontinuities,

is proposed based on the assumptions as stated in article

6.5.1.
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If superscript 'o* refers to overlay and 'b' to base,
then from equation 6.8,
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... (6.10)

... (6.11)

Equation 6.10 and 6.11 are for the case when the prin

cipal direction of orthotropy are coincident with coord

inate axis. However, if the two are different then

equation 4.48 can be used to modify them.
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The stress resultants can be obtained by integrat

ing the stresses over the depth with base and overlay

taken separately. Treating assumption 2 ac valid, the

stress distribution along depth will be as shown in

Figure 6.1(a):

y/2 • hb/2
MK - JhO/2 °X ZdZ +ihb/2 4 ZdZ ••• <6-12'

By substituting proper values of o° and cb from
-A. X

equation 6.10 and 6.11

rh°/2
Mx =J (Cllex+Cl2ey)Z dZ

-h°/2

^/2 h v+ihb/2(Cll£x+Cl2£y)Z dZ
Cn substituting values of e and e from equation 6.9,

x y

integrating, simplifying and rearranging,

*- ax ay J

Similarly

3
o

L

I?

"TrL^V "ir-)+c22(77 + —r* }J ••• (6-14)

and
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... (6J.5)

All »C and 'h' of these equations can be combined to

be written in a more compact form as.*

*°LoD - TT0:11 ~ I2^u " IT^ii

D
12

D
22

D
33

o3 3
1^°12+ h °12 = D21'12

l£Lo +hb3fb
lT^22+h C22

o5 3
12^33 n *°33

The equations can then be written as

and

2 2
M - D /8 w 4. a'ATN -, /aw, a.ATNMx - Dll(~2" + h )-L12(7"2+ TT")

ax ax

M

M_.. s 2D a w

xy ' 33 axay

Equations 6.17 can be written in matrix form as

M.

Mv> =

M
xy

Dll L12

D21 D22

C 0

Or symbolically,

0

D
33

f a w . aA T ]
ax

ax

, a2w
' axay

... (6.16)

... (6.17)

... (6.18)
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W = ftlVQ+OQilt} ... (6.19)

Thus, it is seen again that equation 6.19 is of

the same form as equation 4.11 or equation 5.16. There

fore the formulation proposed in those chapters after these

equations are also valid hereafter.

6.5.3 Modeling of Cracked Base

The modelling of cracked base can be done exactly

in the way described in article 5.6 for bonded overlays.

However, in the present case there is no bond at the

interface between the overlay and base. Therefore, it is

possible that the effect of stress release in the base

might extend for a larger distance than equal to the

thickness of the cracked base. This distance can be

incorporated in the analysis, based on further detailed

investigations, as carried out by Beeby* ' for slabs

and beams which is applicable to monolithic construction

i.e. bonded overlay.

However, in the present analysis the zone of stress

release is supposed to extend upto a distance equal to

the depth of crack en its either side.

6.6 MODIFICATION AND TESTING
6.6.1 Modification of Computer Program

First stage of modification of the computer

program reported to have been coded in Chapter IV was

described in Chapter V, wherein modification required for
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incorporating bonded overlays was aimed. Modification

for incorporating unbonded overlays is exactly on the

same lines.

6.6.2 Testing of Modified Program

It is proposed to test the program directly by

comparing tho results of proposed analytical investiga

tions with those of modified Westergaard*s solution.

Westergaard•s solution procedure is modified by finding

the value of rigidity by equation 6.16 and determining the

value of '/• i.e. radius of relative stiffness from this.

The comparative values of these two sets are shown in

Table 6.1,

The material properties for overlay and base, the

pavement dimensions in length and width, the wheel loads

and the subgrade properties are assumed id.ntical to those

adopted in chapter V. The finite element discretisation

was similar to that shown in Chapter V.

6.7 ANALYTICAL INVESTIGATIONS

The analytical investigations proposed are similar

to that described in article 5.8, Based on the experience

of article 5.9, a 6 cm unbonded overlay is too thin to be a

practical proposition and the limitation of computer time

for this study only one overlay thickness i.e. of 10 cm

is analysed by finite element method. 6 cm overlay is

analysed by modified Westergaard•s and Bradbury's approach
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to compare the values with bonded overlays.

6.8 RESULTS AND DISCUSSIONS

The results of analyses for tho cases described

above are presented in the form of graphs and tables and

are discussed below;

6.8.1 Analysis of Stresses and Deflections
in Pavement Slabs with Overlay on Sound
Base, Under Wheel Load at Edge.

Figures 6.1(b) and 6.1(c) compare the variation

of deflection and slope along edge of the pavement having

10 cm overlay on 8 cm base with that having the same over

lay on 16 cm base when the wheel load is placed at the

centre of the edge in both the cases.

Figure 6.2 shows the variation of moments along

edge in a pavement with 10 cm overlay on 8 cm base to

one with 16 cm base. Similarity between this figure and

figure 7 of Chapter V is obvious. The remarks relating to

these figures made in article 5.9.1 also hold here.

Table 6.2 is made on the basis of modified Wester

gaard 's method (Appendix 5.B). It is seen from Table 6.1

that the results of finite element method agree well with

those of modified Westergaard's approach. Results in

Table 6.2 can therefore be regarded as acceptable. It is

seen from this table that the maximum moment value

increases as the base thickness increases for bonded

<
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as well as for unbonded case. It is also seen that the

values of maximum moments for 10 cm overlay on 12 cm

base is close to that of 6 cm overlay on 16 cm base in

bonded case as was discussed in article 5.9.1. However,
this is not so in unbonded case. On the contrary, in
unbonded case the maximum moment on pavement slab with

10 cm overlay with 12 cm base and that on 6 cm overlay
on same base is very nearly the same. The reason for this

is that the increase in rigidity is very slight due to

extra 4 cm of unbonded overlay the modulus of elasticity

of which is only half of that of base. As a result, the

radius of relative stiffness in the two cases are 46.7 and

44.5 cm respectively in unbonded case. These values

for bonded case are 63.1 and 54.7 cm respectively. Thus,

it is seen that whereas the modulus of elasticity of the

overlay has relatively less effect in bonded overlay

and tho dimension is more important, in unbonded construct

ion the modulus of elasticity is important. It could also

be stated that in case of unbonded overlays, the pavement

behaviour is governed more by the layer which is of greater
rigidity.

Also, comparing maximum values of moments in 10 cm

overlay on 16 cm base with the pavement slab where overlay

is 6 cm,it is seen that the value for 6 cm overlay on

16 cm base is greater than 10 cm overlay on 16 cm base.

The values of radius of relative stiffness *(' are 54.7

and 55.9 cm respectively. However, in Westergaard»s
\
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equation the stress is a function of l/b, where 'b» is

equivalent radius of contact^\ Accordingly, the
values of l/b for the two cases work out as 4.2 6 and

4.32 respectively. This explains why the value of maximum

moment is greater in case of 6 cm overlay on 16 cm base

than 10 cm overlay on 16 cm base.

Table 6.2 also shows that the values of maximum

moment in pavement slabs with unbonded overlay in above

two cases is almost same, and the stresses in the thicker

overlay is more although the base thickness is same. This

can be viewed as follows.

According to basic moment-curvature relationship:

Mlgy = g = curvature

Since, curvature is constant as per assumption 3,

... (6.20)

M + M. b M ... (6.21)

Therefore moments are distributed among overlay

and base in proportion tc their rigidities. Thus 10 cm

overlay carries moment in proportion Of 118.192 whereas

the 6 cm overlay will carry 1238.

If analysed by the method proposed by Marcus and
(? ?^ ^

Palmer the stresses in the overlay are 5.776 and 2.59 kg/cm2

for 10 and 6 cm overlay respectively on 16 cm base slab.

Mo
~ Vb

V Mfe = M
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By adopting proposed Modified Westergaard•s procedure

these are 8.0 and 5.32 kg/cm respectively. The
values as obtained from Marcus and Palmer formulae are

given in Table 6.3 ♦

If a comparison is sought between bonded and

unbonded overlays, it may be seen that moments in bonded

overlay for any combination of base and overlay is higher.

But the maximum tensile stress at the bottom fibre of

the base is far in excess in unbonded case. Moreover,

in the range of proposed analytical study (article 5.8

and 6.7), the tensile stresses do not develop in the

bonded overlay.

It can also be seen that except for 10 cm overlay

on 8 cm and 12 cm base, the maximum compressive stresses

in the top fibre of the overlay have greater magnitude

in case of bonds?d overlays than unbonded overlays. This

probably is again due to the facts that in unbonded case

the overlay gets less share of moment (equation 6.20)

in all above cases and also that the stress is function

of distance from neutral axis. This distance is small in

unbonded overlay.

6.8.2 Temperature Stresses

It is realised that Bradbury's approach can be

applied to determine temperature stresses. Table 6.3

shows the moments and stresses generated in base and

overlay due to this. It is seen that the overlay stresses
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decrease as the base thickness increases.

6.8.3 Effect of Cracked Base on Stresses

Figures 6.3a and 6.3b compares the deflections

and slopes in 10 cm overlay on 16 cm base for cracked

and uncracked conditions. It is seen that the deflect

ion under load has increased due to existance of crack.

Also the slope as well as the rate of change of slope

has become high, thus increase in curvature will take

place.

Figure 6.4 compares moments developed along the

edge of pavement slab having 10 cm overlay on 8 cm base

for cracked and uncracked conditions. Figure 6.5 is

for the case when base is 16 cm thick. It is seen that

in both the cases the value of maximum positive mcment

developed under the wheel load reduces on having cracked.

Whereas, in case of 10 cm overlay on 8 cm base the

ratio of uncracked to cracked moment is 0.8, that in

case when base is 16 cm thick is 0.487. This indicates

that the reduction in moment is greater on a thick base

when it gets cracked. This is due to the fact that on

having cracked the thick base which was carrying greater

moment loses it moment carrying capacity. This is some

what similar to moment release due to cracking (article

5.9.2.1) observed in case of bonded overlays. Physically,

this phenomenon m..-ans that greater support is provided

by a thicker slab than a thinner one even in cracked
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conditions.

Principles of 'Beans on Elastic Foundation'^101^

can be applied to those cases i.e. to the cases when the

beam is supposed to have two layers of similar thicknesses

as base and overlay and their material properties are

also supposed to be same as those of the layers of pave

ment slab. However, the load representation does pose

difficulty and therefore, it is assumed that the load is

of same magnitude as wheel load. It is applied as knife

edge load with width equal to dual tyres i.e. 50 cm. The

width of the beam is also assumed to be 50 cm. The formula

tion and solution is described in Appendix 'A".

Figures 6.6 and 6.7 show the comparison of stresses

at the top of 10 cm overlay when it is resting on 12 cm

and 8 cms bases in uncracked and cracked conditions. It

can be seen that there is a tremendous increase in the

maximum top fibre stress of the overlay when the base is

considered as cracked. Comparing it with the Figure 5.17

where variations were plotted for same conditions but

for bonded interfacial condition, it is seen that the

increase in stress on cracking is far more in unbonded

condition than in the bonded condition. This observation-

is also in line with the findings of Chapter III where it

was observed that the stress increase on cracking was

far more when in the analysis the bond was supposed to

have been lost in the vicinity of the crack.
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Figure 6.5 compares the variation of moments along

edge in pavement slabs having 10 cm overlay on 8 cm

cracked base to that when the cracked base is of 16 cm

thickness. Figure 6.8 compares the variation of top

fibre stress in overlay for these two cases. It is seen

that as stated above, the thickner base has a beneficial

effect and an increase of 8 cm in base-thickness, though

cracked, reduces overlay stress by almost 12 kg/cm2 which
is about 30 percent of the maximum stress.

6.9 CONCLUSIONS

The results as discussed in article 6.8 leads to

following general conclusions regarding overlays!

1. The formulation envisaged in this chapter is

a realistic and rational method for determination of

wheel load stresses in an overlay provided on a sound

or cracked base with a thin separation course in between

to act as a bond breaker. The pavement slab may have any

dimension, the overlay and base may have different sizes

and different elastic properties, the wheel loads can

be of any size and magnitude and any number of them can

be placed anywhere and the crack may have any size, shape

or location.

2. It is seen that a modification, which is based

on 'equivalent radius of relative stiffness' can be used

to determine the maximum stresses in an unbonded base
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overlay system.A flow diagram of a small and economical

computer program is included in appendix 5.B which is

applicable for bonded as well as for unbonded overlays.

3. It is shown for the case of sound base, and

overlay that a thicker overlay may not necessarily result

in reduction of stresses in the overlay. Same statement

is also true for base i.e. if the overlay is much more

rigid than the base, then a slight increase in base-

thickness may not reduce the stresses in it, on the other

hand it may increase. But "the stresses in overlay would

reduce in that case.

4. If the base is cracked then the above conclusion

does not hold. An overlay on a thicker base positive 3y

has less stresses.

5. Stresses greatly increase in the overlay when the

base is considered as having a crack. This increase is far

more in excess than that where the base and overlay was

considered as bonded.

6. Even in case of sound base and overlay the maxi

mum stresses at the section reduce considerably when the

overlay is considered as bonded to the base. From these

considerations, it may be safe to allow the bond to develop

of its own, if it does s.o, when "the overlay is designed

on the basis of no bond at interface.

7. It is shown in Appendix 6A that it is possible

to derive expressions to solve the problem of 'Cracked
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Beams on Elastic Foundation' and its behaviour is
exactly similar to that of 'Cracked Slab'. Therefore,
the procedure described in Appendix '6.A' can be used
aa a guide, both for bonded as well as unbonded case and
for both the condition i.e. when base is sound and when
it is cracked.

8. Bradbury's solution can be adopted to determine
stresses in overlay and base , by the procedure as proposed
in Appendix 5.C.
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APPENDIX 6.A.

ANALYSIS OF CRACKED BEAM WITH OVERLAY ON
ELASTIC FOUNDATION

Figure 6.9 shows a beam having two layers and

resting on an elastic foundation. Following general

assumptions are supposed as valid*.

1. Assumptions (i), (ii) and (iv) stated in

article 4.2 with respect to slab is also

supposed to hold good for beams.

2. Load is assumed as knife edge load acting at

the centre of the beam.

3. The crack is in one of the beams, at its

centre and extends for its entire depth.

4. The crack can be modeled as discussed in

articles 4.5 and 5. 6.

5. The origin of coordinates is assumed at centre

of the beam.

The differential equation governing the defor

mation and equilibrium of the beam on elastic foundation,
under the validity of the assumptions 1,2 and 5 stated

(101)
above is I

t?t d W ,.-
EI T"? = ~w*& ... (6.22)

dx

where, w = deflection of any point 'x' of the beam
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B = width of the b,„am,

K = modulus of subgrade reaction,

P = load at centre.

w characteristic length

I -^f4EI
X _W,K.B ... (6.23)

EI = rigidity of beam.

The solution of equation 6.22 is,

Xx \w=e (ClCcsXx +C2sinXx) +e~Xx(C3cosXx+P4sinXx)
... (6.24)

But it is known that

e-Xx+eXx
= cosh Xx

2

Xx -Xx
and I—=| = sinhXx

Therefore, eXx = cosh Xx + sinh Xx

and e"" = cosh Xx - sinh Xx

Substituting these values in equation (6.24)

w = ii cosh Xx cos Xx + B cosh Xx sin Xx + C sinh Xx cos Xx
+ C sinh Xx sin Xx ... (6,25)

where, A = C^+Cp,

1 = c2+c4,

C mC1-C3 and

L • C2-°4 ... (6.26)

If for a <x< b
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A,B,C,D= constants in equation (6.26)

M = moment at any section

9 = slope

S = shear to the left of any section and for
0 < x < a

X • characteristic length

K-jL = subgrade reaction
• modulus of subgrade reaction x width of the beam

w-j_ = deflection

Vl = rigidity of the overlay

ApB^, C^,D^ mconstants in equation 6.26

9-j_ = slope

M^ = moment at any section

then, for a <x< b

by differentiating "equation 6.25 w.r.t. x and rearranging

B=slope =gg =-|jA-l)cos h Xx. sin Xx -(A+D)sinh Xx cos Xx
-(B+C).cosh Xx cos Xx - (B-C) sinh Xx.sin Xx

... (6.27)

and curfature,

2

—n b -2X [A.sinh Xx.sin Xx - B.sinh Xx cos Xx
dx

+C.cosh Xx.sin Xx - D.cosh Xx . cosXx] ... (6.28)

Similarly, further differentiating equation (6.28)

w.r.t. x and rearranging,
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--f - -2X C(A+D)cosh Xx.sin Xx + (B+C).sinh Xx.sin Xx
-(B-C).cosh Xx.cos Xx+(A-D).sinh Xx.cos Xxj ... (6.29)

Now, considering the part between x = 0 to x = a„ In this

part it is assumed that on account of the stress release

due to the crack, the base does not carry any stress. The

value of 'a' would be equal to 'h^' where »hb' is base
thickness. This is in line with the discussions of

article 4.5 and 5.6.

The equation 6.26 for this part can be written as

w= A1.cosh X^.cosh X-,_x + B-^osh Xx.sin X^+C^sinh X-jX.
cos X-,x

+D1sinh Xx.sin X-,x. x

It can be seen from the assumptions that 'w' has to

be a symmetric function 'x',

Therefore,

B1=0 ,* Q-b 0, and

w-,_ = i^coshX^.cosX-LX + L1sinhX1x.sinX1x ... (6.30)

By differentiating w.r.t. *x' and rearranging,

dw,

91 = dx~ = xiC (iii+D1).sinhX1x.cosX1x - (ii1-B1)coshX1x.sinX1x]
2 ... (6.31)

d w- 2
—2" = 2X1[l)1coshX1x.cosX1x-i\1.sinhX1x.sinX1x] ... (6.32)

It can be seen that there are six unknowns, viz.
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A,B,C,L,A1,D1.

Following boundary conditions can now be arplied

to evaluate the unknowns,

(1) at x = a, w m w,
(2) at x = a, e = e

(3) at x = a, M= M1
(4) at x = b, M - 0

(5) at x = b, shear force S = 0 and

(6) for equilibrium sum of all vertical forces
must vanish, accordingly^ v = 0

Applying, these conditions

from condition (l) at x = a, w = w-L, therefore
from equations (6.25) and (6.30)«

A. coshXa.cosXa+B.coshXa.sinXa+C.sinhXa.cosXa
+E. s inhXa. sin Xa

= ii1.coshX-La.cosX1a+L1.sinhX1a.sinX1a ... (6.33)

From condition (2), at x = a, e = e

therefore from equations 6.27 and (6.31),

X£ (L-A) .coshXa.sinXa+(A+I/) .sinhXa.cosXa+(B+C)coshXa.cosXa
+(B-C). SinhXa. sinXa]

= Xl^ (^+Di)'s;ijlllXia'cosX1a+(L1-A1)coshX1a.sinX1a]
... (6.34)

From condition (3), at x = a, M = M,,

Therefore, from equations (6.28) and (6.32)
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p

-2EIX [A.sinhXa.sinXa-B.sinhXa.cosXa+C.coshXa.sinXa.
-L.coshXa.cos .Xa]

p

~2E1I1X1 Q^sinhX-ja. BinX^a^.ooshX^a. ooeX,a]
____ _ J. J. X X —

... (6.35)

From condition (4), at x = b, M = 0,

Therefore from equation (6.28),

P

-2EIX [a.sinhXb.sinXb-B.sinhXb.cosXb+C.coshXb.sinXb
-D.coshXb.cosXb]

= ° ... (6.36)

From condition (5) at x » b, S = 0,

Therefore from equation (6.29):

(L-A).sinhXb.cosXb-(A+D)coshXb.sinXb+(3-C).coshXb.cosXb
+(B+C).sinhXb.sinXb

= ° ... (6.37)

Frcm condition (6), Jv = 0 i.e. sum of all reactive

forces to the right hand side of x • 0 must equal

to half the active force.

Tf

Therefore,

K-jJ w,dx + Kf w.dx = £
0 0

or

Kli ©l»GOshX^3t«obsX^X + I/1.sinhX1x.sinX-,x] .dx +

K I Qi.coshXx.cosXx+B.coshXx.sinXx+C.sinhXx.oosXx
+L. sinhXx.sinXx].dx

• = 2 ... (6.30)



On integrating and rearranging

2X LU+£)(coshXb.sinXb-coshXa.sinXa)+(A-B)(sinhXb.cosXb
-sinhXa.cosXa)+(B+C)(sinhXb.sinXb-sinhXa.sinXa)

-(B-C) (coshXb.cosXb-coshXa.cosXa) J
+ 2x~C (il+Di)coshX1a.sinX1a-
+(i\1-L1)sinhX1a.cosX'1a]

=P/2 ... (6.39)

Equations 6.33 t._ 6.39 can be rearranged and written

in the form!

KW.-W ' ... (6.40)

where, Q»"] - coefficient matrix of known values,
(L-J = matrix of unknowns,
[r} = vector of knowns

Values of {i^J can be obtained by finding inversion of Q/].

The appropriate value of deflection, slope, moment

or shear can then be determined by using equation 6.25 to

6.32.

Note!

1. Because of the large disparity in the numerical
magnitudes between coefficients of matrix QQ,
it is necessary to use double precision in
floating point.
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2. Recognising that /=4,j|T

where D= rigidity 'D^1 as determined by either
equatien 5.14 or equations 6.16.The

formulation has its applicability for
beams with bonded as well as unbonded
overlays.

3. By choosing K-^K, the formulation becomes
applicable to case when subgrade reaction is
uniform all through the length of beam,

4. By adopting X-.=X, the formulation becomes applicabl<
to uncracked beams.

5. The applicability of this formulation to pavement
slabs is more 'qualitative than quantitative'.
However, use of beam action hypothesis to pavpm-nt
slabs is already discuss d (230;. This formulation
provides a rational procedure for solution of
stresses and displacements in such ascase.

6. The formulation is particularly useful for deter
mination of nominal stresses (Appendix '5.A')

at the crack section in a beam on elastic founda
tion, being tested for crack propagation and fati-
que life studies. How: ver, limitation due to assum
ption 4 must be accorded due recognition.

7. Flow diagram for determination of moments and
deflections at an interval of b/5 is included.

ANALYSIS OF SOME CASES OF NON-PRISMATIC
BEAMS IN BONDED AND UNBONDED CONDITIONS

Figure 6.10 shows the flow chart of computer

program based on formulation discussed above.

The analysis, is proposed on beams of same length,

thickness and properties as the base and overlay of the

pavement slab. The width of the beam is assumed as
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50 cm., being the width of dual tyre and the load is
900 kg/cm.

Figure 6.11 is drawn to conp are the 10 cm un

bonded overlay to a base beam of 8 and 12 cm thickness.

It is seen that as observed earlier in case of pavement

slabs the moment in beam with 12 cm base is more. The

variation of moments along length of beam is similar to

that observed in case of moment along edge in pavement

slab with edge load. To have a check on formulation,

comparison is also shown in this figure with a standard

solution of an infinitely long beam. The characteristic

length 'X* is determined for the non-prismatic beam

as in case of overlays (Appendix '5.B'). The length of

finite beam is 9 meters which fall in the category of

long beams '. Th close agreement of the tiro curves in

the figure shows the correctness of the foimulation for

uncracked beams with non-prismatic properties*

Figure 6.12 represents deflections in beams with

10 cm overlay having 8 cm base in so >net and cracked

conditions. The trend of these curves are similar to

figures 5.8 and 6.3(b).

Moments for b jams with 10 cm overlay and 8 cm

base in uncracked condition is compared for 2 cases in

figure 6.13, viz. bonded case and unbonded case. These

are also compared to results of finite element analysis

for a pavement slab with 10 cm unbonded overlay on 8 cm
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base. The moments are plotted along the edge for the
edge loading. It can be seen that for beams, the
maximum moment in bonded case is greater than in

unbonded beam. This observation also holds for pave

ment slabs. Comparison with unbonded slab shows that

the moments in slab is still lower but the nature of

the variation of moment along the edge is same.

Figure 6.13 also shows the comparison between

moments in beams with 10 cm overlay on 8,12 and 16

cm base. These curves are similar to thos^ in figure

5.7.

Figure 6.14 compares moments in beams with

10 cm bonded overlays when base beam of 8,12 and 16 cm ha.

ing a central cracks. It is again seen that the

diagram is similar to figure 5.13. Chapter V and

remarks made there are upheld. The variation of

moments along edge in pavement slab with 10 cm bonded

overlay on 12 cm cracked base is also shown. The

moments in cracked slab is lesser than in beam,

though the behaviour in both the cases is similar.

The maximum negative moment in cracked

beam acquires a high value, due to the moment that

is released on cracking. In case of slabs. These values

do not acquire such a magnitude.

In figure 6.15 a comparison is attempted between

beam and slab with unbonded overlays of 10 cm thickness
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when the base is having a crack. The variation in moments

for slabs, as obtained by finite element analysis, having

8 andl6 cm base is plotted and are compared with 'modified

moments' of beams. The modified moments are calculated

as follows.

The maximum moment 'M ' as calculated by the modi

fied Westergaard's approach for edge load given in

Appendix 5.B is determined in pavement slab with sound

base. The maximum moment,Mb and M- , in beam with same base,

overlay combination in cracked and uncracked condition

respectively are also determined. The ratio M :M,_ is
s b

calculated and the moment in beam in cracked condition

i.e. M. is reduced in this proportion to determine
M Dl

s

Mbx M • This is t&rmed as modified moment and plotted in
1 b

figure 6.15.

It can be seen that maximum values of modified

moments in beam and the maximum moment in cracked slab

match fairly well.

Table 6.4 gives moments in beams with overlays

in cracked and uncracked conditions -

It is therefore, seen that by adopting this

simple procedure. The maximum moment in overlay on a

cracked base slab can be estimated from beam analysis.

Beam results ar- higher. In pavement the distribution of
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bending moment along the other direction reduces the

deflections and bending moment. These factors can be

worked out only in simple cases such as edge loading

or at the centre.



TABLE 6.1

COMPARISON OF MAXIMUM MCMENTS BY MODIFIED

WESTERGAARD AND FEM
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Thickness (cm)

s.No.r
Moments (kg.cm/cm)

Overlay

1 10

2 10

3 10

Bast

8

12

16

j Modified
! Westergaard

1006.72

1129.67

1229.70

FEM3

1012

1135

1250

* Maximum values determined by extrapolation to the
centre of loaded area.

*,
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TAB I .E-6.2*
—

COMPARISON OF

THICKNESS (r>™ ^M/aYTIUTTM uirmTxam

MOMENTS AND STRESSES
-r=~ss —

s.

No.
Dver-

l

I Base Bonded

1

1
•Unbonded

i— ...

B0NDEI overlay! unbonded over
- - J -LAY

BONDED
STPwESS

BASE
IN**

UNBONDED
i

BASE "

lay

I
Top Bottoxri | Top Bottom Top jBottom Top >' Bottom

1 10 8 1263.2 1006.7 19.3 1.0 30.20 -30.20 1.9 -27.3

i

47.18

.1

-47. IB2 10 12 1353.2 1129/7. _ 13.6 2.9 15.21 -15.21 5.9 -19.7 36.50 -36.50
3 10 16 1414.8 1229.7 9.9 3.2 8.00 - 8.00 6.5 -14.8 25.6L8 -25.618
4

5

6

6

6

6

8

12

16

1129.7

1270.4

1365.4

919.5

1116.2

1247.3

27.9

18.1

12.4

7.2

7.4

6.3

26.51

10.94

5.32

-26.51

-10.94

- 5.32

14.4

14.9

12.6

-40.7

-27.6

-19.6

87.58

43.77

28.48

-87.58

-43.77

-28.48

+ Ti&acsr1 r\M r-io A-t-fi 4~A
-—. , __._

« -ve sign indicates tension
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TABLE6.3

COMPARISON OF STRESSES BY MARCOS AND PALMER
WITH MODIFIED bESTERGAARD*S

PROCEDURE (Appendix 5.B)

s.
No. Case

j Marcus a.
f onnulae

i Overlay

rid Palmer

(kg/cm2)
Mod ified Wes tergaafd's

Procedure(kg/cm2)

Base Overlay ! Base

1. 10 on 8 +26.23 ±42.49 ±30.20 ±47.18

2. 10 on 12 ±11.91 ±36.26 ±15.21 ±36.50

3. 10 on 16 ±5.77 ±26.80 ± 8. 00' ±25.62

4. 6 on 8 ±17.58 ±69.35 ±26.51 ±71.19.

5. 6 on 12 ± 5.94 ±44.00 ±10.94 ±43.77

6. 6 on 16 ± 2.59 ±29.3 0 ± 5.32 ±28.40

S. i Case
no. ;

TABLE 6.3A

MOMENTS AND STRESSES AS PER MODIFIED
jg^BURY'S APPROACH (APPENDIX 5.0)

AT(°C) ITotal l~~ ™ent ^ Stresses
Moment jOverlayj Base lOverUayiBasee h

1. 10 on 8 13°

2. 10 on 12 13.8

3. lOoon 16 14.5

221

421

770

109.0 112.0 ±6.5 2 ±10.50
kg/cm

94.6 326.0 ±6.67 ±13.60

83.7 684.0 +5.02 +16.06
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TABLE 6.4

COMPARISON WITH BEAMS ON ELASTIC FOUNDATION

S.No.; Case

1. 6 on 8 bonded

2. 6 on 12 bonded

3. 6 on 16 bonded

4. 10 on 8 bonded

5. 10 on 12 bonded

6. 10 on -16 bonded

7. 10 on 8 unbonded

8. 10 on 12 unbonded

9. 10 on 16 unbonded

Westergaa-i Mb I Mt L Ms I!Mblx gS- jActual-MfeJSSfeely » i Di

1130 1492 580 440 380

1270 1864 384 262 350

1365 2236 280 - 300

1263 1770 1114 800 530

1353 2108 893 560 460

1414 2450 500 290 380

1006 1300 1170 900 820

1130 1640 890 612 706

1230 1656 1005 670 602

Note: Mg = values of moments obtained by Modified
Westerga.ard's solution for uncracked case

Mb = values of moments obtained for beam in
uncracked case,

M:b = value of moment obtained by 'cracked beam'
1 formulation

= Estimated value of moment in slab with cracked
MblxMs

M,
based obtained by simplified procedure,

actual = value of moment in crack case obtained by
finite element method
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FLOW CHART FOR 'CRACKED BEAM ON ELjjSTIC FOUNDATION'
1QM "

f~START )

e°,j^Vak,b, al,p

YES JO

Calculate !ei
of cracked and
uncracked part

YES

YES
CALCULATE

»EI'

OSCULATE 'EI' OF
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CRACKED PARTS

PUNCH

TITLE.
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TITLE

CALCULATE CHARAC
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X AND X

FORM EQUATION

V x.
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(stop)

figure -6.10 flow chart for 'cracked
beam on elastic foundations

DESCRIPTION- NC = Crack condition,

= 0, for no crack

= non-zero for crack at centre,

NB ss bond condition

= 0, for no bonded or single beam

= non-zero for bonded

HO = thickness of overlay, E°=modulus of elasticity
of overlay

HB = thickness of base, E modulus of elasticity
of base

AK = Modulus of subgrade fraction

B = Width of beam,

AL = Length of beam

EI = Rigidity of beam

[X3 = Coefficient Matrix'of equation (6.40) in
text

{Lf = Unknown vector

{r} = Active Load Vector

OUTPUT- Punches out moments and deflections at (i) centre
(ii) HB: from centre, (iii) at every AL/5 distance from
centre.



2OO0

-400

-BOO

-120O

O—O 10ON12 SOUND BASE, FINITE BEAM
A -A 10 ON 8
x k 10 ON 8 SOUND BASE,IN FINITE BEAM

FIG. 6-11-MOMENTS IN LAYERD BEAMS IN UNBONDED CONDITION

o
o



O1O0I

FIG. 6.12-DEFLECTION IN BEAM WITH CRACKED AND UNCRACKED BASE,
BONDED OVERLAY

O



*

2400

- 80 0

O

FIG. 613. COMPARISON OF LAYERED**AND SLAB ON SOUND BASE



E
u

E^
u

en

i

c

(D

E
o

2

1200

800

400

400

-800 —

-1200

-1600

FIG. 6.14 -VARIATION ^F MOMENT BEAM WITH BONDED OVERLAY ON
O



1000

-400

-600

O O 10cm OVERLAY ON 8cm BASE SLAB

X —-£< »» •» * 16cm « •»>

A— - —A * * * Bern " Beam

A, A. » " " 16 cm " "

£v-l
Distance _ cm

FIG. 6-15- MOMENTS IN CRACKED CASES BEAMS VS SLAB
UNBONDED CONDITION

N

o



-305-

CHAPTER-VII

INFLUENCE OF SUBGRADE MODEL

7.1 NEED FOR A MODEL

The pavement slab is assumed to be continuously

resting on the 'subgrade'. The wheel load induces deforma

tions in the pavement slab and because of the assumption

of continuous support, the same deformations occur in

subgrade as well. Forces are also generated at the pave

ment-subgrade interface. Dae sum of these reactive forces

need to be in equilibrium with the active forces. However,

the exact distribution of these reactions is yet a guess

work. A relation is therefore sought, through a 'sub-grade

model' to give a definite shape to this so that distribution

of reactions can be obtained. This would reduce highly

indeterminate problem of slab on subgrade to a degree of

detorminacy.

7.2 PAVEMENT SUBGRADE MODEIS

Various 'Subgrade mod Is' are thus, put forward

for the primary response analysis of a pavement slab.

(23)
The model suggested by Winklerv ' was the earliest

one among such models and is still quite in vogue.

Simplicity is the most attractive characteristics of this

model and perhaps the other reason why it could stand the;

S
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test of time is the often repeated phrase*, "for all

practical purposes it gives sufficiently accurate results".

The impact of this phrase on the exactitude and economy
of analysis is often questioned. This was principally
the reason why by the end of the first half of this

century, investigators were prone to improve upon this
subgrade model.

7.2.1 Dense Liquid Subgrade

Implications of Winkler's model are.*

(1) The reaction at the slab-subgrade interface

at a point of contact is supposed to be proportional to

the movement of the slab perpendicular to the interface! The

implication of this in turn is that if the component

of displacement perpendicular to the interface is 'w'

then the reac tion'.

p = k.w

where, k = a constant, called modulus of subgrade
reaction.

The further implication of this assumption is that

this reaction is independent of stress level and the size

of loaded area. Extensive investigation with various plate

dianeters have revealed that load-deformation curve is

non-linear. Fortunately, the magnitude of subgrad,- react

ion is quite low in a cement concrete pavement. Therefore;

use of a constant value of 'k' does appear justified.

This, however, is not the case with plate diameter 'kf
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relationship. The value of modulus of subgrade reaction

'k' changes significantly with plate diameter. A relation

of the form k = a + b/B, with 'a1 and 'b' as constants

and 'B' plate width, was suggested by Bngesser^2^1^
based on experimental study. Goldbeck et al.'2'2' also

observed similar behaviour. Arlington tests resulted

in the conclusion that since the change in value of 'k'

is insignificant after a plate diameter of about 75 cm this

size should be regarded as standard. The reason for the

variation of 'k' with plate diameter is explained by
(231)Terzaghiv ', based on pressure bulb. Another explana

tion that can be accorded to it, could be from the

consideration, which labels this model as artificial.

In reality, on being loaded the plate and the area

covered by it is not the only zone that undergoes dis

placement, but the adjoining mass as veil deforms. This

is because, in reality the subgrade is not the aggregate

of infinite number of closely spaced, individual springs,

as propounded by the theory, but does behave in a mann-r,

as if there is an interconnection between them. Thus,

on being subjected to a specified displacement 'w ' the

adjoining mass offers a certain resistance, the value of

which depends on the shape of deflected profile, but this

could be somewhat a constant value. Thus, with increase

in plate size, the relative effect of this resistance

becomes minor.

Thus, adopting a value of 'k' corresponding to 75 en
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diamoter may be safe but inaccurate.

(2) The subgrade reaction is supposed to be perpendi
cular to the interface. This moans that in case of pave
ment slabs no shearing forces exist at the slab subgrade
interface, iinalysis by Cheung and Nag(74) has shown that
significant change in stresses can be expected if due

consideration is given to horizontal forces that are

generated due to vertical loads in footings. However,

validity of this for pavement slabs, where loads trans

ferred to subgrade is relatively on a large area is yet
to be verified.

•(c) Continuous contact is assumed between the pave
ment slab and the subgrade. This however, may not always

be true. Loss of contact along edges or corners may take

place due to wheel loads and/or temperature differential.

Agrawal and Hudson(59) have found lifting to occur in
model steel plate resting on clay subgrade. They assign

this reason to explain the large difference between

observed and calculated values of stresses. They there

fore recommend 'No tension analysis'. However, the no-

tension or bilinear subgrade model has be n adopted by

Tsaiand Weetman. (255\ They show that suoh a model is
hardly significant and the results of two models are not-

very different. Sargious(l34) and Lall^16) conclude that
loss of contact due to temperature warping does occur.
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Earlier observations of Hveem(l64) and Geldmacher
et al. were also similar. Based on this Leonard

and Harr suggested a theory to account for loss

of contact in circular slab. Later, Lewis and Harr*100)

solved the problem of partial contact in a pavement

slab resting on viscoelastic foundation subjected to a

moving line load. Huang and Wang(80), in a recent paper,
have applied finite element meliiod to evaluate static

influence due to a wheel load when contact is lost either

due to warping or is known as a-priori.

Loss of contact can be adopted on priori basis

if it is known that a certain zone has sunk due to

some reason or the other like, settlement due to repeated

load(257) or due to moisture movement*258'259»240) or
adjoining ground movement etc. Richart and Zia*240\
Brown and Laytton and Meyer*1651 have attempted
to deal with such conditions.

The subgrade is thus supposed to behave as an

ideal viscous fluid and therefore, the term 'Dense

Liquid Subgrade' is given to such a. subgrade model.

7.2.2 Elastic Solid Subgrade

Looking to the artificial nature of the Winkler's

model, it is often thought that regarding the subgrade

as an isotropic, homogeneous, linearly elastic half

space, like one treated by Bossinesq^ *62^ may be
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closer to reality. However, following points arise.

(a) Determination of the value of elastic

parameters E and v of the subgrade requires/

elaborate equipment like triaxial cell*^>y)
etc. Moreover, the procedure is cumbersome,

time consuming and requires good measurements

which can not be reliably done in field.

(b) The elastic parameters are not constants but

are stress dependent*7^ and also depend on
the method of experimentation*'0'.

(c) The subgrade may not be homogeneous. The

elastic properties may vary with depth*76'.

It is also possible that the subgrade may

consist of natural or artificial layered

deposits having different elasticity for diff

erent layer. Characterising such a condition

as isotropic may be erroneous. On the other

hand treating it as such may be difficult

because of difficulty in computations and also

because of detailed soil-survey that may be

required. However, Mednikovv f) has given a

method by which a single equivalent value of

'E' and 'v' can be obtained for known layer

thicknesses.

(d) Any loss of contact between slab and subgrade
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may present greater difficulty in such a

model.

(e) Elastic solid mod, 1 is a function of depth
which may not always be assessable easily.

Yet, it is found that the elastic solid subgrade

model is abetter representation of the subgrade*50^.
Attempts are therefore reported to have been directed

towards comparing these two models*50,76,77'9'7'98'248).
However, results of different authors in this regard

(49,247)
differ so much that definite inferences can not be drawn.

Because of all these drawbacks it is considered

that Winkler model may be better specially if something

could be done to improve its drawbacks as mentioned

ab ove.

7.2.3 Generalised Subgrade Model

Attempts were therefore directed towards evolving

such a foundation model which will improve upon the

dense liquid model and may be free from the drawbacks

of the elastic solid model. This follows the suggest

ions by Hetenyi, Filonenko-Borodich, Reissner, and

Pasternak^ 4 ', Aim of all these models have been to
d.velop analogy with springs in such a way that not only

thoso springs,* which ar.. dir,ctly und. r the load art

displaced, but the adjacent springs which are not

load ,;d, are also involvi d.
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In case of Pasternak's model sh.ar interaction

is assumed between spring elements. Physically, this

could be imagined by an interconnection between adjoin

ing springs through an incompressible b^am. Figure 7.1

shows the deflected surface profile of a subgrad duo to

a load placed at a distant point. It is supposed to be

made up of the elements, as shown in the figure. A shear

force exists between them which pulls them down. For the

load-deformation relation, the vertical equilibrium of

the element in figure 7.2 may be considered.

If G = sh-ar modulus of the subgrade

xz rxz Kcx 8z;
and

6w . 8V<x = G y = G(£iL+£JL) /7 1\

where,

w = deflection of surface of subgrade

If Nx b shear force/unit length in x-direction,

N = shear force/unit length in y-direction,

eu/pz and 3v/dz are horizontal components and can

be neglected.

1

Nx = r *„.** =a tI8w

and

1
N = %

yz eyNy - J1 *„.*« - G-H ..- (7.2)
Considering, the equilibrium of the element in vertical
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direction, figure 1.

eNx eN
H" + ey + f - p = ° ... (7.3)

Substituting the values from equation (2)

,2 7
f = -Q(LJ* + ew)+p

a 2
ex ey

where,

f = applied surface pressure,

and p = subgrade reac tion

b kw

f =kw.G(lfw. +ifw) ( • }
ex ey

For an axisymmetric case like a loaded circular plate

it is better to convert equation 7.4 (r,z) coordinate

system and write it as

t =k..*-s<a% +i . fe ... (7.5)
er L

The general solution of the equation is

w(r) b iiK0(8.r)+BIo(pr) ... (7.6)

where, (3 =J*

IQ= modified Besscl's function of first kind
and zero order,

KQ= modifted Bessel's function of Second kind and
zero-order.

A,B b constants
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By applying the boundary condition that at r = 00 ,
w(r) b 0, B = 0

therefore, w(r) = A.KQ(p.r) ... (7.?)

This is the solution of the damping curve generate
due to deflection w at r = r

o o

Thus,

w0 = A.Ko(p.rQ) ... (7.8)

and w(r) K0(P.r)
w0 - K0(B.r0) ... (7.9)

Thus, the equation 7.9 is in, non-dimensional f ozm.

The general differential equation of a plate on

elastic foundation therefore,gets modified, in accordance

with equation 7.4, to

Dll ^4+D22 £j +*\2 4-? - **»-0(^ +̂ ) -.. (7.10)
ox ey ex ey ex ey

where, Q = surface loads,

and Dn»D22»-Dl2 = usual plate rigidities.

A procedure for determination of ' G' is developed

in Appendix 7.A.

7.3 MODELING OF PAVEMENT BLAB WITH SUBGRADE
AS ELASTIC CONTINUUM

The modeling of a pavement slab with subgr&de

assumed as dense liquid has been described in Chapter IV
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in accordance with the Winkler's assumptions. It was

supposed therein that th... load at a point causes inf

luence at that point only and all other points are free.

However, in case of an elastic half space, the distur

bance at a point will result in displacements at all the

points lying on its surface, theoretically even upto an

infinite distance. Thus the force-displacement relation

ship is a stiffness matrix in this case rather than a

stiffness coefficient as in Winkler's case. Moreover,

as the effect of one point is on all other points, this

stiffness matrix will naturally be full rather than

sparse*77'249).

Deflection at point 'j' due to a load at point 'i*

is given by Boussinesq's equation* ,

P(l-v2)
. w = ^— ... (7.11)

iJ % E d. .
s IJ

where, w^. = deflection at 'j' due to load at 'i'

djj b distance between points i and j

P = load at i

Eg and vg= elastic parameters for subgrade

AH the assumptions in this case are same as those
( f o\

of Boussinesqv and their validity is already discussed

in last article.

The deflection at the centre of the uniformly

loaded rectangular area can be obtained by treating the



pressure p/ab over an area d^.dn as a concentrated

load 'P' in equation 7.11 as shown in Figure 7.3.

E=a/2 n=b/2 P(l-v2) d
Wii " :' J ab nE,=o *«0 « «srn

ri +ti

-316-

Solving this elliptical integral and placing the limits

w.
*i-*«2>
J**£

x f ... (7.12)

where, f are the coefficients as given in Table7.1.

Now in the finite el ment formulation if it is

assumed that a node is the centre of uniform pressure

then its deflection due to this pressure can be obtained

from equation 7.12. Also, deflection at any other nodal

point due to this nodal pressure can be obtained from

equation 7.11.

Since the assumption of linear elasticity is

supposed to hold, the law of reciprocal deflection must

also be valid and therefore it is possible to write.*

OU = DOW ... (7.13)

where,

jFgj = reactive forces at nodes due to the nodal
displacements |6f

and 0^sZI= stiffness matrix of subgrade containing
coefficients, the diagonal ones being
derived from equation 7.12 and the off-
diagonal frem equation 7.11 with proper
application of Maxwell's law of reciprocal
deflection.

A = Area of rectangle with side a and b
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Equation 7.13 is directly in the form of equat

ion of equilibrium as derived in equation 4.29 and

therefore total nodal forces and displacements can be

summed up to write.

(?) = JFp}+iFs}
= BpUCsJ + &B2M ... (7.i4)

where, fFp} = nodal forces of pavement slab,
{K } = stiffness of pavement slab.

Since, law of reciprocal deflection holds fll 1
•— s-1

will be symmetric like \j J and by choosing the nodal

points in such a way that they coincide for slab and sub-

grade the size of [li" 1 and {k^ will be same. Therefore,
equation 7.14 becomes

|F} = [J3 (6) ... (7.15)

which is a standard form, in finite element algorithm.

But, restrictions on usual finite element procedures

are now imposed and they are!

1. [JO is fully populat d and therefore, the

usual finite element assembly and solution

algorithms do not hold.

2. Since there is interaction between each and

every point it is not possible to take advan

tage of symmetry even for the most symmetric
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case. Huang ' has however, treated this

as a symmetric problem. This was later pointed

out by Wang et al. * ^U

These restrictions hav« a tremendous impact on

economy. Both due to full (triangular) matrix storage

requirement, as well as full structure geometry to be

analysed, the memory falls short for a sizeable problem.

Th.- computation time also increases.

7.4 MODELING OF PAVEMENT SLAB INCORPORATING
LOSS OF CONTACT

Loss of contact betw en subgrade and pavement

slab, at their interface, may occur due to various

reasons. The reasons for these have been discussed in

para 3 of article 7.2.1. The problem of loss of contact

can be of two typ^s. One in which the loss of contact

is due to such reasons, that the zone of contact loss

can be determined before commencement of the analysis.

The problem in this case is of linear nature and the

procedure that could be adopted has already been for

mulated and discussed in article 4.7.

Other problem associated with loss of contact is

a non-linear one. The loss of contact at a point may

occur due to a wheel load placed at some distant point

or due to curling, resulting from hydro-thermal gradients.

Thus the zone of contact loss is not known at the instant
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of taking up the analysis as it depends on the behaviour

of the pavement structure subjected to inputs. There

fore, the procedure of non-linear analysis becomes

a necessity. Various usual procedures for non-linear

analysis and their relative merits have been discussed

in Appendix 7.B. The procedure selected for the present

analysis is that of constant stiffness type because

of its advantages stated therein of calculating invers

ion of stiffness matrix once for all.

The equation governing the solution algorithm

is thor fore equation 7.18 in which unbalanced forces

i..,. the difference between forces assumed beforfe

starting the analysis and after completion of the first

cycle is found on the basis of displacement level

achieved in the first cycle. Thus, if there is any

negative deflection (i.e. loss of contact due to lift

ing), the unbalanced forces will be affected, because

according to the new constitutive law, these reactive'

forces will have to be taken as zero, whereas, in the

first cycle theey are causing a downward reaction. Thus

an equal and opposite force has to be applied. These

forces are again taken as applied nodal loads in accor

dance with the concept of consistent nodal loads. Th*.;

stresses and displacements du to this are found and

are added to the original. The process is repeated till

the additional stresses generated are insignificant.
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7.5 PAVEMENT SLAB ON TWO PARAMETER SUBGRADE MODEL

The equation 7.4 gives reactive pressure for two

parameter subgradf model. This has to be incorporated

now in equation 7.14. Accordingly, the equation 7.14

can be written as

ffl - CKpiPi * CKsni>;i + (i2:-!ai ... <7-.i6)

where,

JK23 b stiffness coefficient matrix for second
term in equation 7.4.

[jsH = stiffness matrix, same as that for
Winkler subgrade,

|a| = curvatures corresponding to second term
of equation 7.4.

This formulation is though possible*250', but

does not appear to be good, as it is. uneconomical.

Therefore, another formulation is attempted. It is

noticed that as vector |a] contains small quantities

as such the effect of the third term in equation 7.16

is small. An iterative scheme is proposed in which the

solution to equation 7.16 is sought with third term i.e.

shear interaction of foundation is neglected. This is as

usual for Winkler foundation. Then the unbalanced

forces are calculated as in article 7.4 for the defor

mations obtained with due consideration of shear inter

action in the subgrade. This modifies the forces which

would have otherwise balanced. Thus unbalanced forces,

which are obtained are again applied and statical
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influences are determined, their net value being the sum

of this and the earlier one. Iterations are again performed

till convergence is obtained between two consecutive

cycles. The stiffness matrix is once calculated and kept

constant. Therefore the assembled stiffness matrix is once

partially inverted and kept stored on tape. The procedure

is thus similar to the one adopted for analysis when

material property of the structure is changing with level

of deformation.

Mednikov^ has given a procedure by which the
equivalent values of 'k» and »G' for use in equation 7.4

can be obtained for a multilayered subgrade, the height

and elastic properties of each layer being known.

7.6 DISCUSSION ON VALIDITY OF WINKLER'S MODEL AND
ITS EQUIVALENCE WITH CONTINUUM MODEL

Figure 7.4 shows the variation of pressure within

the subgrade, under a 38 cm thick concrete slab when

subjected to 1500 kg/cm knife edge load. The contours

are for same vertical stress. These contours very much

resemble the pressure bulbs under a strip footing*252^.
The ratio of surface pressure and deflection can be used

to evaluate *k* i.e. the modulus of subgrade reaction.

The variation of »k* along the length of the slab for the

case of 38 cm and 23 cm slabs are shown in figure 7.5.

This is for 1he case when Bc/Eg i.e. modulus of elasticity
of concrete to subgrade is taken as 2000. It is seen that
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in the neighbourhood of the load the value of 'k* is

fairly constant for one particular slab rigidity.However,

it does appear to change slightly with rigidity of the

slab.

Figure 7.6 shows the variation of 'k' along the slab

length for the above two cases when E /E = 200. In this
c s

the variation along slab length is large, meaning thereby

that the value of 'k' is not constant throughout the slab

length. This behaviour is also indicated for a 38 cm thick

circular slab considered as loaded by 4000 kg and the

variation of 'k' is plotted in figure 7.6 along radial

distance from the centre. Therefore, it can be- concluded

that k1 varies not only with the elastic properties of

soil and the rigidity of the slab as has been pointed out

by Vesic and Saxcna, but it also varies with pressure.

Details regarding calculation of 'kr arc given in table 7.2.

Vesic and SaxehaV3 ' conclude that there is no unique

value for ,kr of a particular soil. The value of »k'

corresponding to any particular value of 'E » is different
S (98)

for deflection and moment. However, McCllough and Boedccker

give a unique value of »k» for any value of 'E '. Values of
s

'k* as computed by data from finite element analysis are

averaged for a particular slab rigidity and 'E '. This is
s

then compared with those given by Vesic and Saxena' •' as per

their computation of equivalent 'k' value for infinite
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subgrade depth on the basis of deflections. This is

because, in the analysis the subgrade is taken as

deeper than the restriction imposed on them. This

comparative statement along with the values given by

McCllough and Boedccker*' ' is shown in Table 7.3.

In a thin slab like a 23 cm one the pressure and

deflection under the load is higher than a 38 cm slab,

but due to the higher rate of change of slope they

acquire a lower value away from the load. The value

of •£.» then falls below that for 38 cm slab. On this

basis, the value of *X* for given 'E ' appears to be a
s

function of pressure.

It is a matter of uncertainty as yet that how

does the: value of modulus of subgrade reaction, as

determined by the standard perfectly rigid 75 cm dia

meter plate, fits into the case of flexible cement

concrete slabs. Thus, the value of V is infact not

standard. On the other hand the standard value of

'E' determined by a certain procedure,* like triaxial
s

test, plate load test, Vander poels stiffness factor,

or any other method; is not a constant either* . Not

only this, the value of same subgrade soil is a funct

ion of confining pressure^ ' as well as stress

level* . Therefore, this value is more non-standard.

Apart from this the point against use of elastic solid
(253)

subgrade mentioned in article 7.2.2 and pIso by Arorav
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has to be borne in mind. This apart from the fact that

the slight variation in support characteristics of

the subgrade has negligible effect on the pavement

stresses ' puts the Winkler's model on a superior
footing.

However, the foundation model incorporating the

shear interaction as proposed by Pasternak*248^ or a

similar one, certainly is a better proposition.

7.7 MODIFICATION OF PROGRAM

The third stage of modification in the program

was mentioned in the last chapter in which the modification

was done to incorporate unbonded overlays. In the fourth

stage, modification was done to incorporate different

kinds of foundation models. The modification to incorpor

ate Pasternak's model as well as Winkler's model where

tension in the foundation is not allowed, are very

similar as mentioned in article 7.4 and 7.5. An identi

fication system was built in so that proper model out of

the. three could be chosen. If Pasternak's model is to be

adopted then value 'G' in equation 7.4 has to be defined.

If 'G' is taken as zero, then it amounts to adopting

Winkler's model with loss of contact (article 7.4).

However? the elastic solid model is not included

in the same program. The r, ason being that the memory
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limitations in this program is very severe due to

reasons mentioned in article 7.3. The stiffness assembly

and solution algorithm is also different for this case

because of fully populated nature of the stiffness

matrix. Thus, it is separately programmed.

However, the procedure for solution of bonded and

unbonded overlays remains same without any change and all

kinds of analysis possible on Winkler's model are poss

ible on these three models as well.

7.8 ANALYSIS AND RESULTS

A 23 cm cement concrete pavement slab with foll

owing properties are analysed:

Ec b modulus of elasticity of concrete = 15xl04 kg/cm2

vQ = Poisson's ratio for cement =0.2

Eg b modulus of elasticity of subgrade = 750 kg/cm2

vg = Poisson's ratio for subgrade = 0.45

L = length of slab - 600 cm

B = width of slab = 400 cm

P = Load _ 4500 kg

A = loaded area

• 44x56 cm in cas of interior loading,
= 44x28 cm in cas- of edge loading.

Figure 7.7 shows variation of moments along edge

in cas< of edge loading. In cas of interior load, the

moments in direction parallel to edge are plotted along
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longitudinal centre line in same figure.

Results of non-linear analysis are shown in

table 7.4 and 7.5. It is clear from these tables that

th. effect of lifting caused due to wheel load at edge
is negligible on stress resultants. Findings of Tsai and

Westman *233> have also been similar. Though the conver
gence is slow, all checks for convergence are satisfied.
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APPBNDIX-7.A

DETERMINATION OF SECOND PARAMETER OF TWO

PARAMETER_FOUNDATION MODEL

It is necessary to know the value of parameter 'G'

in order to use the Pasternak's foundation model. A

simple mechanical procedure- is developed based on theory

of coupled spring foundation* 54' which is same as general
ised foundation model*248'.

For a rigid plate pressed down, by a pressure ' p'

through a distance *w0' the modulus of subgrade reaction

will be

P
K B —

wo

If the deflection *w' are known for some points

then it is possible to determine the ratio w/w at these

points and plot them against the nondimensionalized dis

tance —-.

where, 2rQ = diameter of the standard test plate = 75 cm

and r = distance of the point at which deflection is
'w' measured from the edge of the plate.

If the scale of this plot is matched with that of

figure 7.8 and the plot is on a piece of transparent

paper, then this curve can be matched with the curves in

the figure and a value of •p1 can be interpolated.
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Recognising that 'k' is found and that (3 =4175 , the

parameter «G' can be found. However, if the experimental

curvt falls outside the range of the graph given in the

figur, 7-S , it would be necessary to first plot more
graphs using equation 7.9
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APPENDIX 7.B

(Modification of material properties based on
deformations)

Changes in geometrical or material properties of the
system with deformations require recourse to special tech
nique. On examining the equation of equilibrium equation
4.30, it can be noted that deformations are functions

of loads as well as stiffness. Thus, the changes in

material properties will affect the stiffness and thereby
deformation. The deformations in turn will affect the
stresses.

Incremental Method

A straight forward, approach to nonlinear solution

is therefore obvious, in which the load is applied in

parts. During each small load increment the properties

are supeosed to be constant and for each increment new

stiffness matrix is generated and inverted. The stress- s

as obtained by previous load increment are treated as

initial stresses in equation 2.10.

Iterative Methods

Under this category a procedure that is direct is

variable stiffness procedure . Full load is applied and

stiffness matrix is determined based on non-lin ar
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constitutive law for initial modulus i.e. zero displace
ment. Based on this stiffness the displacements are

calculated. The constitutive law will now give another

stiffness for the deformations new cycles are thus per
formed, each time with a new stiffness matrix.

Both of the above procedures require updating of

stiffness matrix at each step and are therefore costly.

Constant Stiffness Method

A procedure is therefore batter in which constant

initial slope is used for stiffness calculations. However,

the stresses are calculated from the constitutive law

corresponding to the strain level achieved. Since now,

ther. is a difference between the elastic solution and

the stresses level achieved the equilibrium conditions will

fail to hold and there will be an 'unbalanced force'. This

unbalanced force is required to be redistributed till

balance is obtained.

If (ft = vector of unbalanced nodal forces,

then the difference of internal and external work done dur

ing virtual displacement d{6} will give

d{6} |>J =/d[>] {a}dv-d(6}TJF} ... (7.17)
v

But (ej = [B]]£6) as per eqn.2.4

.•.d|e] = ejCaJM
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or df£fT = d{6|TCBDT

.-• W =/MTWdv-|F} ... (7>18)

The process is similar to Newton-Ralphson type
in which initial tangent stiffness is generated (and also
kept constant) and trial values of [6}, are obtained.

These are used then to calculate the unbalanced forces as

given by Eqn.7.18. These forces are now taken as applied
loads and are redistributed. In other words difference

between elastic solution and the true stress level is

found at the end of each trial, and the process continues

till the unbalanced force is negligible.

The process requires larger number of iterations

but each iteration may require only a fraction of time

as compared to iteration of variable stiffness if the

initial stiffness is once generated and stored after part
ial inversion for use in every iteration.

However, for better results a combination of above

two procedures can be used.
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VALUE

TABLE 7.1

OF COEFFICIENT 'f
FOR VALUES OF a/b

(equation 7.12)

a/b 1 2 3 j 4 5 6

f 0.95 0.92 0.88 0.82 0.71 0.37

TABLE 7.2

COMPUTATION OF MODULUS OF SUBGRADE REACTION FOR

ELASTIC CONTINUUM

No.l Case

i

!

-Distance
from cen-
|tre of
islab

i
<

[Deflect-
lion
! 'w'
i

j
i

SubgradeMod ulus
ReactioriSubgrade

p Reaction
|K=p/u>
i

Average

1 ! 2 1 3 1 4 i 5 I 6 j ~j

0,0 1.706 0.494 0.276

30.48 1.676 0.501 0.299
I Plane Strain

38 cm slab
E /E =2000

61.00

106.70

.1.646

1.524

0.480

0.446

0.291

0.292
0.301

e s
152.40 1.372 0.409 0.298

213.40 1.128 0.341 0.302

274.00 0.823 0.289 0.351

0.0 2.524 0.749 0.297

30.48 2.480 0.754 0.304

II Plane Strain

23 cm slab
E /s =2000

61.00

106.70

2.370

2.110

0.685

0.587

0.289

0.278
0.29

e s
152.40 1.770 0.488 0.275

213.40 1.290 0.348 0.270

table continu d
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Table 7.2 continued

1 2 j3

0.0

j 4 | 5 6 7

0.301 0.965 3.20

..i - ....

III Plane strain
38 cm slab

30.48

61.00

0.293

0.273

0.973

0.801

3.32

2.93
Sc/Eg b 200.00 106.70 0.232 0.611 2.64 2.82

152.40 0.182 0.473 2.60

213.40 0.118 .266 2.25

0.0 0.387 1.472 3.80

IV Plane Strain 30.48 0.369 1.415 3.83
23 cm slab
Ec/Es b 200.00

61.00

106.70

0.329

0.250

0.976

0.597

2.96

2.39

3.24'

0.0 0.0128 0.0556 4.340

30.48 0.0119 0.0556 4.670
V Axisymmetric

38 cm slab
E /Eo b 200.00

61.00

106.70

0.0107

0.0085

0.0439

0.0283

4.103

3.330 3.73C

152.40 0.0067 0.0219 3.270

213.40 0.0045 0.0120 2.66

Table concluded.
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TABLE 7.3

COMPARISON OF MODUIUS OF SUBGRADE REACTION

S. jMe hod of Computing
No. i

1. Vesic and Saxena^0^
(based on moments)

2. Vesic and Saxena^50^
(based on deflection)

3. McCllough and
Boedecker(97j

4. Finite Element
-Analysis

Modulus of Subgrade Beactionjkg/cm?)

_SLAB_THICENE SS
38 cm 23 cm

0.221 0.3456

0.093 0.1450

1.710 1.7100

0.301 0.2930

SMB_THICpESS_
38 cm 23 cm

4.750 7.435

1.995 3.122

13.12 13.120

2.820 2.658
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TABLE 7.4

RESULT OF NON-LINEAR ANALYSIS TO ACCOUNT FOR
LIFTING DUE TO LOAD POSITION

Itera- Maximum Sagging Maximum Hogg- jMaximum (+ive)lMaximum (-ve)
tion Moment IinS Moment Deflection |Deflection
Number ,, / x , ,

(kg.cm/cm) jkg.cm/cm

1 1247.97

2 1248.74

3 1249.50

4 1250.05

cm ; cm

322.00 349.83xl0"4 5.93x10"4

321.00 351.13xl0"4 10.07xl0"4

320.75
-4

352.06x10 13.34x10""4

318.88 352.82xl0"4 I6.07xl0~4



TABLE 7.5

CALCULATION OF NORMS -336-

CYCLE
NORM DUE TO LOAD

(R Residue2 jp2=T Load;

1. j13714.6426 1254400.00
2. j Print-out not obtained

3. j 6498.1200 1254400.00

R'lUEQRMBjSgglOO

10.465/.

7.197*/

ffOBtt DUE TO_DeFl£CTION

c2=Icoerechon2 id2=Itotal

1.9236x1O"6

1.8233xlO~6

1.3062x1O"6

L0Ni_^^%_D2Xl00

3678.717xlO~6 2.286*/
3698 807xlO"6 2.210'/.
3718.401X10""6 1.874*/.
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x+dx

FIG.71. DEFLECTION IN SUBGRADE AWAY
FROM LOAD

x+-dx

'to Pl^Ny
T

My+-* <V* fqs

FIG-7.2-EQU!UBR(UM OF AN ELEMENT OF
SUBGRADE

FIG.73. REFERENCE FIGURE FOR ELASTIC SOLID
SUBGRADE
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SUBGRADE LEVEL

FIG. 7 4- CONTOURS OF PR&SSURk IN SUBGRADE , (kg/cm2)
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8.1 INTRODUCTION

Blare can be no doubt regarding the perfection
of the theoretical treatment viz. the finite element
method. However, the chances of deviation from reality
do exist. This is because it is very difficult to

assess 'nature' through theoretical treatment. There

fore some simplifying assumptions are always involved.
The assumptions involved in the present theoretical

analysis are listed in relevant chapters. Secondly,
there could be an error in the new program which runs

in some 1600 statements. However, the results given
by the program is tested in various ways, e.g. checking
the statics, physical interpretation of the r suits

or quantitative and qualitative comparisons with other

existing solutions wherever possible. This has already
been done and therefore possibility of error in program-
ing is eliminated. The only doubt then, that might arise
is due to the assumptions, especially those which are

made to solve such cases, the solution of which are not

available for comparison. These, are particularly with
respect to validity of assumptions of full bonding at
interface in case of bonded overlays, continuous
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contact in case of unbonded overlays and stress release

at 45 in case of a crack. Apphysical verification of

statical influence will institute perfect confidence

in the solution system.

8.2 CHOICE OF METHODS AND THEIR LIMITATIONS

A wide choice of possibilities exist for veri

fication. These range from actual field tests for

establishing the pavement behaviour to controlled model

simulation. The field tests are naturally the best.

However, they require elaborate testing over a long

period by a group of researchers. Full scale laboratory

testing is another possibility. But the main drawback

of this procedure is that the development of desired

conditions may be doubtful e.g. simulation of a crack

in the base. Moreover, the time of testing increases

for a number of cases to be studied.In case of model

testing a number of conditions can be studied with rel

ative ease. The choice of model testing then opens up

the desired avenue.

Models are usually definedas^ 55' a device which

is so related to a physical system, known as prototype

that the observations on the model may be used to accura

tely predict the performance of the prototype. The model

envisaged here is not strictly a model according to this

definition. This is because the purpose of testing here

is different. The theoretical analysis can be substantiated
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on any device that simulates the required conditions,

without necessarily being related to a prototype.

However, it can still be called a model because the

proposed tests are made with an ultimate aim of rep

resenting the pavement system.

The chief advantages of selecting such a test are!

(i) Control over simulation is possible. It helps

to develop condition of full bonding by cement

ing the layers. Similarly, by adopting smooth

surfaces at interface, 'no bond condition' can

be developed. Idealised subgrade conditions as

well as simulation of a crack or joint in the

base is possible.

(ii) In many cases, time is saved by adopting a model.

This is particularly true under the present

circumstances because time of curing the test

slab for each case and its overlay as well, in

every case would have required prolonged periods,

the test site always being the same.

(iii) Large quantities of material are required in full

scale pavement testing. In mode Is it is not so.

(iv) The number of cases studied could be more in case

of model tests, because of ease of handling

and saving in time and cost.
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(v) Keeping the aim of the present tests

i.e. verification of the finite element

solution in view, the model tests have quali

tative superiority over the full scale tests.

8.3 REQUIREMENTS OF THE MODEL

The model should be such that it should represent

the pavement properties as closely as possible. With

this end in view following requirements need to be

satisfied!

(i) The subgrade of the pavement slab is usually

supposed to be simulated by a mathematical

model like that of Winkler type. The test

model should simulate the same.

(ii) The pavement slab can be assumed to be made

up of elastic material (article 3.1). The

model material should also behave similarly,

within the range of testing.

(iii) The full bonded and unbonded conditions should

be possible to be Simulated.

(iv) It may however, be mentioned that no restrict

ion need be applied to geometrical properties

of the model, because in the proposed method,

analysis is possible for any geometry.
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8.4 SELECTION OF MODEL MATERIAL

A wide range of materials can be considered for

the preparation of model which will satisfy the above

constraints. These could be:

(a) For Subgrade;

(i) Clayey soil with controlled moisture content

(ii) Dry sand^257^

(iii) Synthetic subgrade made out of sand-bitumen-
latex or similar other combinations(258)

(iv) Rubber subgrade'259)

(v) Closely spaced uniform springs^26°^
(vi) Dense liquid(26l) , .

(vii) Liquid in an elastic container1 '
(b) For Pavement Slab:

(i) Metallic plate e.g. steel, copper, aluminium
or any other metal(256).

(ii) Micro concrete^265)

(iii) Plaster of Paris, Hydrostone Gypsum Cement
Mortar.(264)

(iv) Perspex or similar plastics.

The materials selected are.*

(a) Dry sand.* The reasons of selecting dry sand
as a model material are.*

(i) It is possible to obtain uniform density even
in a very loose state.(257>265'

(ii) The- properties of local sand are already
well known.^265^
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(iii) Formulation for elastic solid model can
be tested through this medium.

(b) Closely spaced uniform springs: This type of
subgrade was selected for truly representing the
Winkler eubgrad... model as assumed in the theory.

(c) Perspex was selected for simulating the pavement
slab, with following advantages in view.*

(i) Uniformity of thickness,

(ii) . Elastic, homogeneous and isotropic material
properties.

(iii) Large measurable strains can be expected
even under small loads * . This has a

specific advantage in case of pavement

model because it is known that stress grad

ients are very high in the vicinity of

the loaded area, therefore error in record

ing are minimised. Moreover, away from the

load, the strains are very low and in a

stiff material these may be too small to be

measured unless heavy loads are applied.

(iv) Bond conditions at interface can be developed
easily. The surface of perspex is smooth

enough to simulate unbonded condition when

one layer is place^d on another. Bonding can

easily be done by araldite mixed with acetone

as thinner or chloroform.

However, it is also known that this material

contains certain drawbacks. These are.*

(i) The deformation in perspex is time dependent.
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(ii) Modulus of elasticity changes with temper

ature, age and moisture content.

(iii) Perspex assumes curvature under its own

weight and therefore if the sheets are not

stored properly for a long time, it is poss

ible that the surface of the perspex sheet

may contain initial curvature.

The effect of time dependent deformation can

usually be avoided^265'266'. The change in elastic
properties due to ambient conditions and age do not pose

a problem because, it was proposed to complete the test

ing in a season when temperature remains fairly uniform.

To be specific the strain measurements were done in the

month of March and a part of April. All possible efforts

to reduce the time of testing was made by proper plann

ing.

8.5 PROPOSED INVESTIGATIONS

Following cases were studied on Winkler subgrade

(a) Single 3lab on subgrade,

(b) Base slab with unbonded overlay,

(c) Unbonded overlay with ba.se slab having a
discontinuity.

(d) Bonded overlay with base having a disconti
nuity.

(e) Bonded overlay with sound base.
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All above five cases were also studied on sand

subgrade.

A comparison with Finite Element solution for

all above ten cases was proposed. It was also decided

to test the model under two load positions, viz.

interior and edge loadings.

8.6 FABRICATION OF THE MODEL

8.6.1 Selection of Model Dimension

(i) Slab

As the finite element analysis is possible for

any slab size, the size of the perspex slab had no

constraint. Therefore, from the considerations of ease

of handling and proper instrumentation, the size of

perspex slab was kept as 60 cm x 60 cm. The square

plate was adopted to take the advantage of double

symmetry so that number of strain gauges could be red

uced. This was necessary notonly to reduce the cost,

but also from the point of feasibility as this would

have exceeded the capacity of the multichannel switch

ing unit. The thickness should be such that it should

be small as compared to slab dimension, a requirement

as per the assumption of plate theory (article 4.2).
Based on this requirement and availability the thickness

of the perspex sheet selected was 0.63 cm. The

perspex sheet used was from ICI, a standard make.
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The overlay was also kept of same dimensions. The

crack was simulated by cutting the perspex sheet in the

base into two pieces. Since the overlay is placed on

its top and the load over it, it can be visualized that

shear transfer as envisaged hi modelling the crack

(article 4.5) will take place. This was done with due

cognizance of the aim i.e. verification of the effect

of main assumptions involved in finite element formulat

ion on the stresses in the base overlay system, specially
th, overlay.

(ii) Winkler Subgrade

The subgrade was mad, of high tensile steel,

helical springs of 5 cm length and 1.75 cm dia. with a

pitch of 5 mm. Th wire diameter was 1.5 mm. This spring

was selected out of several springs examined for their

suitability. The springs were placed on a rigid mild

steel plate of 6 mm thickness and size 62x62 cm. The

plate was supported on a rigid frame with cross under

support to ensure its rigidity. Holes of 1.25 cm dia

meter were drilled 5.0 cm apart to accommodate the

spring guides. Springs were placed on these holes with

spring guides inserted. The spring guide ends were

provided with threads and nuts to enable adjustment of

the spring height by +2 mm. This was essential because

an earlier attempt was foiled where springs were

directly fixed on a firm base and the perspex sheet
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was placed on it. It was observed that only 60 percent

of the springs maintained contact with the plate. This

could have been because of the slight curvature in

the plate due to self-weight or the other reason

could be unequal height of the springs due to improper

fixing on the firm base. The adjustment of the spring

height by the sleeve and nut arrangement enabled the

assurance of perfect contact betwe-n the subgrade

and the slab. A drawback of this system was that the

adjustment caused unequal precompressions in certain

springs. However, the precompression was negligible

and only a minority of springs were subjected to it.

Thus the total effect of this precompression on the

average value of modulus of subgrade reaction was

considered to be negligible.

The details of the final subgrad- model are

shown in figure 8.1. Also the view of this arrangement

is shown in figure Q.2.
(ii'l) S<x.r\<A Su6qra.4e :

Same perspex plate was used on sand subgrade also.

The sand was filled in the container by rainfall method

with 1 metre height of fall. The container was mad^ of

2 cm. thick wooden planks. Its dimensions were lxl

meter in plan and depth was 30 cm. The decision to keep

this depth was based on approximate calculations to

simulate the semi-infinite subgrade conditions.

Formula given by Vesic and Saxena^8) was taken as a
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guide. The horizontal dimensions were taken as li

times the plate dimensions with an intention that the

boundaries will be significantly away to have any

influence on semi-infinite conditions adopted in

Boussinesq's equation. The arrangement for elastic

solid model is shown in figure 8.3.

8.6.2 Instrumentation

8.6.2.1 Strain gauges

The survey of available, electrical resistance

strain gauges indicated that the gauges with following

specifications could be procured for use in the present
study:

1. Type *. bonded wire strain gauge, helical coil

2. Size : (a) 5 mm

(b) 10 mm

3. Resistance : (a) 121.4+0.2 ohms

(b) 120.8+0.2 ohms

4. Gauge factor!(a) 2.05+2 percent
(b) 2.05+2 percent

8.6.2.2 Location of the Strain Gauges:

The fact that the stress gradients are high in

the neighbourhood of the load, was k pt in mind in

deciding the location of the strain gauges. As it was

^
decided to perform tests under interior and edge load
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positions the strain gauges were fixed at close spacing

towards these locations. The strain gauges used in the

vicinity of these load positions were of smaller size

so that the average strain recorded by the gauge may be

accurate enough. Also, this would permit closer spacing

and larger number of gauges to be fixed, /mother const

raint in fixing the strain gauges was that it was decided

tha-o the test plate in the base after performing the

Case (a) and (b) on both the spring and the sand

subgrade, would be cut to simulate the cracked base.

It was, therefore, necessary to shift the position of

strain gauges by 0.5 cm towards one side of the centre

line.

Figure 8.4 shows the placement of the strain gauges

in the base slab. The locations of the strain gauges in

the overlay is shown in the figure 8.5. These along with

the connecting leads is also shown in figure 8.6. It may •

be noted that the strain gauges between points 0 and E

in Figure 8.4 and O'-E' in figure 8.5 are placed in

pairs at right angles to each other. This was done to

enable the stress computation with due consideration of

Poisson's effect. Strain gauges were also placed between

0-A, 0-C and C-E in the base.

8.6.2.3 Fixing of Strain Gauges

The location of the strain gauges weire accurately

marked on the perspex plate to be used as base as well as
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that which was to be adopted as overlay. This was as

per the details shown in figure 8.4 and 8.5. The surface

were now thoroughly cleaned and slightly roughened by

fine sand paper. A thin layer of 'Araldite • was applied

on the surface of the perspex at the location of the

gauges and also to the back side of the gauge. The

gauges were fixed and kept under a constant pressure of

about 5 kg/cm for 24 hours. Leads were connected to

them thereafter, each lead being marked simultaneously

with a number tag corresponding to the number shown

in the figures 8.4 and 8.5 to ease their identification.

The leads were bunched and taped together neatly to avoid

interference witii the springs. The ap propria te arrange

ment of bunching is shown in figure 8.6. The side of the

base plate on which strain gauges were fixed was kept

in contact with the subgrade, whereas, the strain gauges

were fixed on the top of the overlay. This was necessary

to have good contact at th- interface.

8.6.3 Loading Arrangement

It was decided to adopt square contact area, since

simulation of square or rectangular loaded area is simple

in finite element method. There isnno restriction about

the, size of loaded area. Therefore the size of contact

area was adopted as 3 cm by 3 cm. Incidentally, the

results of Paxon^ '; indicate that for pavement slab
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the shape of contact area does not have significant

influence. The load was applied by keeping standard

weights of 2 kg and 4 kg. over the stiff rubber pads

of 3x3 cm size so as to achieve as uniform a pressure

distribution as possible. Th. rubber pad, through which

the load was applied, was firmly secured to the position

of loadings so that during subsequent loading and un

loading the position of the pad does not change.

8.6.4 Strain Measuring Bridge

The strain measuring bridge used was manufactured

by National Aeronautical Laboratory, Bangalore. The bridge

can sense the magnitude of strain of the electrical resis

tance gauges of 120 to 1000 ohms directly. Gauge factor

range varies from 1.5 to 4.5. The total range is 0 to

+10,000 microstrains with a least count of a unit micro-

strain. The instrument has a built in power supply regu

lator/unit for stable operation on 230 volts 50 cycle
A/C mains.

8.6.5 Multichannel Switching Unit

Multi-channel switching unit facilitates the

reading of a number of strain gauges in sequence by

connecting the relevant gauge and the dummy with the

strain measuring bridge through a. knob control. The

available multichannel switch was of local make with
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an arrangement to accommodate 50 strain gauges at a

time. During trials, it was found that the contact

resistance of the switch varied on each manipulation

of the knob control. This necessitated due precautions

while using it.

8.7 EXPERIMENTAL PROCEDURE

8.7.1 Determination of Slab and Subgrade Properties

Since the deformation in the perspex plate are

time dependent, it was, ther fore, necessary to eliminate

the error that might creep in due to this behaviour.
/ o r *z \

Roll has mentioned two methods to account for the

error due to time dependent behaviour. He however, sugg

ests that waiting for a period of 20 to 30 minutes after

loading would eliminate the errors due to creep. The

strain vs time relationship was studied before the

commencement of the experimentation and strain-time

curve is shown in figure 8.7. It can be observed that

under the range of loading adopted for present study,

the change in strain reading after a lapse of 5 minutes

was only of the order of 1 micro-strain. It was, there

fore, decided that for all loadings the readings of strain

be taken after lapse of 5 minutes.

Slab Properties

It is necessary to know the elastic properties

i.e. modulus of elasticity and Poisson's ratio of the
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slab material, for computation of stresses. These values

were determined by simply supported beam tests under

two point symmetrical loading. It was also seen that

the strain occuring in the beam had a time dependent

variation. This in turn shows that the value of 'E' is

time dependent. Therefore due precaution in accordance

with the preceding paragraph was taken. The average
values obtained were.'

E = modulus of elasticity = 24000 kg/cm2

v = Poisson's ratio =0.3

Subgrade Properties

(a) Modulus of Subgrade Reaction of Spring Subgrade

The average value of modulus of subgrade react

ion was obtained by centrally loading, rigid plates of

sizes 10x10 cm, 16x16 cm and 20x20 cm. It was noticed

that there was practically no difference between the k

values so determined. The average value obtained was

0.65 kg/cm3.

(b) Modulus of Elasticity of Dry Sand Subgrade

The elastic properties under various confining

pressures have been determined by Srivastava^265^ for

local sand. The method of sand filling adopted by him

was same as in the present case. The confining pressure

under the test slab will be low. Therefore, adopting

his results for low confining pressures the value of
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modulus of elasticity was taken as 25 kg/cm2 and

Poisson's ratio as 0.25.

8.7.2 Strain Recording Under Loaded Condition *

The strain measuring bridge was calibrated,

initially balanced and set for the gauge factor as per

the instruction manual of tha bridge. The connection

of the measuring bridge to multichannel switching unit

was made.

Strain recording for various strain gauges was

commenced serially. The knob switch of the multi

channel unit was set to the proper gauge. Initial

reading of the strain measuring bridge was taken by

balancing the bridge. The load of 2 kg was then placed

at the proper location. The strain measuring bridge

was again balanced after giving a time gap of five

minutes to allow for the termination of time-deforma

tion effect as decided in article 8.7.1. The load was

then increased to 4 kg, 5 minutes were allowed again

and thereafter the strain recording was done.

The load was removed and again a time gap of

5 minutes was given for the strains to recover. The

initial reading of the balanced strain measuring bridge

for the second strain gauge connected through the multi

channel switching unit was recorded. The load was again
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placed in position taking due precaution that there

was no impact loading. The procedure similar to that

adopted for recording the strain in the first gauge

was repeated for this and all subsequent recordings.

A detailed precautionary investigation was

carried out to ensure accuracy of results, by checks

and rechecks. This detailed preinvestigation was necess

ary because of the temperamental functioning of the

multichannel switching unit, because of which it was

necessary to carry out the arduous procedure described

above, consuming about 12 hours for each test.

8.7.3 Sequence of Testing

The following sequence was adopted to carry out

the testing of the various cases enumerated in article

8.5.

Case I SINGLE LAYER

The single layer perspex sheet was first placed

on Winkler subgrade and was tested as stated above for

edge and interior load positions.

The single slab was then placed on dry sand bed

and was tested at interior and edge locations.

CASS II- UNBONDED OVERLAY ON UNCRACKED BASE:

Second layer of perspex sheet was carefully
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placed on the first layer to simulate unbonded overlay
on uncracked base and the strains were measured on dry

sand for interior and edge load positions. The set up

was then removed. It was placed carefully on the spring
bed, and was tested under interior and edge loadings.

CASE III- UNBONDED OVERLAY ON CRACKED BASE

The set up was removed and the base slab was

cut as planned in article 8.6 to simulate a straight

transverse crack. This slab along with the overlay

was placed back on the spring subgrade and tested for

interior and edge load positions. It was then removed

and placed on the sand bed and tested for interior and

edge load positions.

Case: IV- BONDED OVERLAY ON CRACKED BASE

The set up was removed and the two halves of the

base were bonded to the overlay with a mixture of 'Aral-

dito' and Acetone to give ftin consistency for uniform

bonding. The two were kept under a pressure of about

5kg/cm for 24 hours. Thereafter it was removed and was
placed on the sand bed and tested for interior and edge

load positions. The testing for interior and edge load

positions on Winkler subgrade was done thereafter.

CASE V-BONDED OVERLAY ON UNCRACKED BASE

Another set of two plates of 60x60 cm and 0.63 cm

thickness were taken and bonded together as described
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above. The system of strain gauges were fixed to the

bottom of the base and top of the overlay by adopting

a similar procedure as described earlier. This set up

after due drying and setting was placed first on

spring subgrade to test for interior and edge load

positions and thereafter on sand subgrade to test the

strains generated in base and overlay when the load

was placed in the centre and edge of the overlay.

8.7.4 Precautions during Testing

Besides careful observation of every aspect

following precautions were taken.

1. At each time of shifting of the respective

pavement system from spring subgrade to sand subgrade

and vice-versa it was ensured that the subgrade was in

full contact with the base. It was usually noticed that

on spring subgrade one or two springs required slight

readjustment. In case of sand subgrade no difficulty

was faced. After placing the plate on the sand a slight

manipulation of the plate ensured full contact.

2. In case of unbonded overlays the interface

was cleaned and a thin layer of french chalk powder was

uniformly sprinkled on the top of the base. The overlay

was then placed on it to observe the pockets of lack

of contact, at the interface. It was observed that the

lack of contact towards one of the edges did exist,though
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it was only in a small zone. This was considered as

negligible.

3. Care to avoid impact during loading and unloading

was ensured.

4. To ensure that there was no effect of loading

and unloading on the strains, sample of the readings were

rechecked after completion of the full strain measurement.

It was seen that there was practically no difference

between the two sets.

5. All precautions necessary for strain measuring

as per Perry and Lissner(268) and the operating manual of
the strain measuring bridge manufacturers were taken.

8.8 ANALYSIS

The primary aim of the analysis is to verify the

results of finite element analysis for various base over

lay systems with the model experimentation. For the ana

lysis following procedure was followed:

(a) Stress Computations from Model Tests*.

The strain readings at any point were converted

into stresses by the following formula,

0 - »_ (e + v e ) (c i^
i (i-v2) x yJ "• {8'1)

' 2TlVVev' ••• (8-2)

o„ =

(i-v*) y y

*—•le +ve )
i-v2 y x
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Along the edge the strain gauges were fixed only
in the direction parallel to the edge. This is because

stress o-y in the direction perpendicular to the edge is
zero. Therefore from equation 8.1 and 8.2,

o„ — £„.E o •*
xx ••• o.;

(b) Finite Element Analysis:

(i) Data Preparation; the finite element idealisation

of the slab is as shown in figure 8.8 for Winkler subgrade
The data with relevant properties was prepared for the

finite element program and the computer results were

Obtained on IBM 36/44. As shown in the figure the advant

age of double symmetry along the centre lines was taken.

This can be done for edge loading only if there is no

effect of edge load beyond y-axis. This was confirmed by
experimental tests. Therefore, it was decided that the

advantage of double symmetry could be taken to reduce
the computer time.

8.9 ANALYSIS OF RESULT'S AND DISCUSSION

The results of the finite element analysis have

been compared with the experimental observations. These

comparisons are shown in the form of graphs. All the

stresses are for unit load of one kg on 3 x 3 cm area.

For experimental values, these, stresses are computed by
using equation 8.1, from the strain measurements taken.
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The analytical values are obtained from the finite

element results. The finite element results give moments

at the Gaussian sampling points of the 3 point Gaussian

integration value for an element* "*. These moments

were converted into stresses and are then plotted in

the figures. The distance are measured from the centre

of the load in each case. The direction in all the fig

ures are with reference to figure 8.4.

8.9.1 Comparison of Results of Single Slab

Figures 8.9 to 8.12 relate to comparison of stresses

at the bottom of base as computed by Finite Element method

to those found by measurements. In Figure 8.9, the load

ing is at the centre of the slab, the subgrade is of

springs and the stresses are a varying from 0 to E as

given in figure 8.4.

Figure 8.10 relates to comparison of stresses along

E B parallel to the edge for cx stresses on spring sub-

grade with edge loading. Figure 8.11 is for same conditions

as figure 8.9 for sand subgrade. The close agreement of the

nature as well as numerical magnitude can be seen from

these figures. However, in case of figure 8.11, the

behaviour of the experimental slab as compared to the

analytical one is similar to one with higher radius of

relative stiffness. The behaviour of sand is highly

dependent on confining pressure and it is not known what
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might be the confining pressure in the present case.

Therefore, the value of 'E ' adopted from Srivastava^265^
s

may be on higher side, causing the discrepancy.

Another reason why stresses measured are lower than

the calculated in case of interior loading (figure 8.9)

is the 'saucer action'. It is believed that in-plane

forces come into play when the order of deflections

increase above 25-30 per cent of the plate thickness^165).

Incidentally the deflection under maximum test load of

4 kg do reach these values in case of single slab and

therefore the chances of presence of in-plane forces

increase in actual experiment. However, in finite element

solution; these forces arc not taken into account because,

in actual cement concrete pavement slabs, the deflection

of this order never develops.

In case, of figure 8.10 i.e. when the load is at the

edge, the two curvejs are matching. As the edges are free,

the in-plane forces are not prominent, though in this case

the deflections are of that magnitude.

Figure 8.12 related to the sand subgrade with edge

load shows an excellent correlation between observed and

calculated values.

8.9.2 Comparison of Unbonded Overlay on Uncracked Base

Figures 8.13 to 8.16 are. for this condition, with

figure 8.13 relating to interior loading on spring subgrade,
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figure 8.14 to edge loading on same subgrade. Figure 8.15

and 8.16 relate to sand subgrade with interior and

edge loadings respectively. Strains are measured at the

top of the overlay and bottom of the base, as such under

the load they are compressive and tensile, respectively.

Since the base and the overlay are of same rigidity, the

stresses at their top and bottom, respectively should be

equal in magnitude and opposite in nature, if the curvature

of both remain the. same all throughout. This is assumed

in finite element analysis? and therefore the analytical

curves in these figures are exactly symmetrical about the

distance axis. Regarding the symmetry of experimental

curves in figures 8.13 to 8.16 it can be seen that it

exists almost in all cases in the vicinity of the load.

Away from the load the symmetry does appear to be dis

turbed. This indicates that in these cases there could

be a difference in curvatures of base slab and overlay

at locations away from the load. However, in all the

cases, the maximum stresses which are occuring under the

load are agreeing with the finite element results. This

indicates that the differences in curvature that might

exist away from the load does not affect the magnitude

of maximum stresses which occur under the load, where,

due to the presence of load the curvatures in base and

overlay become the same. This was also argued in

Chapter VI and therefore the contention on which the

formulation was based is found to be correct by experimental
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verification.

The fact that the experimental and theoretical

curves are matching gives confidence for the theoretical

approach for unbonded overlays.

8.9.3 Comparison of Bonded Overlays on Uncracked Base.*

Figures 8.17 and 8.18 relate to bonded overlays

with uncracked base resting on spring beds under interior

and edge loading conditions, r spectively. Figure 8.19

and 8.20 are corresponding figures for sand subgrade. It

is seen that in all cases the experimental and calculated

values tally fairly well excepting figure 8.19 which is

the case of interior loading on sand subgrade. The experi

mentally observed values are generally lower than expected

ones. Moreover the curves are perfectly symmetrical. This

proves the applicability of the bending theory.

The. validity of the solution for bonded overlays

is thus checked.

8.9.4 Cracked Base with Unbonded Overlay

Figure 8.21 and 8.22 shows the variation of stresses

in base and overlay in the direction perpendicular to the

crack when the load is in the centre of the slab. Figure

8.21 is for spring subgrade and figure 8.22 for sand

subgrade. It is seen from figure 8.21 that tho stress in

the vicinity of th. crack is reduced. However, the value
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of stress in the neighbourhood of the crack is much less

than expected. This has disturbed the symmetry of the

base and overlay stresses as well. However, it can be

observed in the figure that the maximum stress measured

in the overlay is still agreeing with the expected value.

The maximum value in overlay is obtained from experi

mental curve by extrapolating the observations and as

the trend of the experimental and theoretical curves are

same in the neighbourhood of the load, the extrapolation

is reasonable.

Same observations are also applicable to figure 8.22

which relates to sand subgrade. However, in this case, the

stress released in the vicinity of the crack is not so

much. It therefore appears that the greatly reduced values

observed in figure 8.21 could be due to the subgrade supp

ort boing discrete in that case, as the distance of spring

support from the crack is about 2 cm.

Figure 8.23 is for edge loading condition on spring

subgrade. The stress release has similar nature as in

figure 8.21 causing disturbance in symmetry. Not only

this, the maximum overlay stress, as observed is also

less in this case by about 20 percent.

Figure 8.24 is once again similar to figure 8.22

both being for the cas of sand subgrade. The behaviour

of discrete springs are distinct from continuous subgrade.
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However, this does not disqualify the Winkler model which

considers infinite number of springs rather than finite,

as adopted in the model study. Tho analysis is based on

Winkler model and therefore, there is difference in stress

magnitudes as observed and as calculated for the case of

cracked slab.

Figure 8.25 compares stresses parallel to the

direction of crack. All the curves are drawn based on the

experimental data. Comparison is made between the stresses

in slabs in cracked and uncracked conditions. The diff

erence in base stresses can be observed, though the

overlay stresses increase on cracking, the base stresses

decrease. The reason for the lesser values of stresses

obtained for cracked base could be the Poisson's effect.

Due to stress release, the stress in other direction is

reduced in the base slab all along the crack. However,

the overlay is a separate entity and the crack in the base

has no direct connection with the material of the overlay.

As such due to the increase in deformations after cracking,

the stresses in the overlay increase. The magnitude of this

increase is not much as can be seen from the figure.

8.9.5 Bonded Overlay on Cracked Base

Comparison of calculated and obs rved values of

stresses in base and overlay slabs under interior loading
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condition is made in figures 8.26 and 8.27 for spring

bed and sand subgrade, respectively. The behaviour of

cracked base on spring subgrade is different in the

bonded case as compared to the unbonded case observed

earlier. The stresses observed in unbonded base were

seen to be very small in the vicinity of the crack when

the subgrade was a bed of springs. However, in bonded

case, the bond does not allow the stresses to decrease

very much. Still the predicted and observed stresses

are different even in the bonded case. The overlay

Stresses however match in both the figures.

Figures 8.28 and 8.29 are analogous t< figure 8.26

and 8.27 respectively for edge loading conditions. The

observations applicable to those figures are also applicable
for these.

Figure 8.30 compares the experimentally observed

values of stresses in the direction of crack, in base

slab and overlay for cracked and uncracked conditions.The

figure is similar to figure 8.25 which was for unbonded

condition. In this case also the increase in overlay

Stresses and decrease in base stresses can be observed

as was seen in unbonded case. Figures 8.31 and 8.32

compare the results of observations and the finite elements

solution analogous to figures 8.25 and 8.30 respectively.

It can be seen that the finite element solution gives

results which agree quite well with the experimental values.
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It could therefore be inferred that the crack

simulation by orthotropic properties, as are assumed in

the theoretical formulation, is reasonable.

8.10 CONCLUSIONS

This experimentation confirms the. validity of

the finite element analysis and the assumptions made

therein. Specifically, the following conclusions can

be drawn for both interior as well as edge load positions.*

(i) The results of the finite element analysis for

the slab on elastic foundation are valid for •

Winkler as well as elastic solid foundation

models.

(ii) The observed stresses and those calculated

for bonded and unbonded OVERLAYS agre* for

sound as well as cracked overlays in case of

both types of foundations.

(iii) The observed stresses in the bonded and un

bonded BASE for the sound condition agree with

finite element solution in both the foundation

mod Is.

(iv) In case of cracked bas. with unbonded overlay

the observed stresses in the base are very

small as compared to finite element solution.

However, in case of sand subgrade the difference

is reasonable though still their magnitude is small,
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(v) In case of bonded overlays on cracked base

also, the stress m asured in base is small as

compared to that calculated by finite element

method. However, the. difference is reasonable

in both types of foundation.

(vi) For true assessment of stresses in the base

near the crack, further studies are warranted,

(vii) Representation of crack in the slab by ortho
tropic properties is reasonable,

(viii) The statistical analysis for goodness of fit

between experimental and analytical values as

shown in Table 8.1 reveal that

(a) for single slab and cases of overlays with
uncracked base the curves fit within 99 per
cent degree of confidence.

(b) for cases of overlays with cracked base the
curves fit within 90 percent degree of
confidence.
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TABLE %i

STATISTICAL ANALYSIS FOR GOODNESS OF FIT BETWEEN EXPERI
MENTAL AND ANALYTICAL STRESS-DIST/iNCE CURVES

Serial

Number
Cast

1. Single layer-interior
load spring subgrade

2. Single layer-edge load
spring subgrade

3. Single layer-interior
load. Sand subgrade

4. Single Layer-Edge Load
Sand Subgrade

5. Uncracked Base with
Unbonded Overlay
Interior Load-Spring
Subgrade

6. Uncracktd Base with
Unbonded Overlay
Edge Load Spring
Subgrade

7. Uncracked Base with
Unbonded Overlay

Interior Load

S* nd Subgrade

8. Uncracked Base with
Unbonded Overlay
Edge Load,Sand
Subgrade.

9. Uncracked Base with
Bonded Overlay

Interior Load

Spring subgrade

]Degree
layer of

freedom

v=N-l

4

6

6

r cal-
culated

value

0.823

0.399

0.447

0.132

Base 6 0.042

Overlay 6 0.016

Base 6 0.119

Overlay 6 0.251

Base 6 0.597

Overlay 6 0.38 3

Base 6 0.233

Overlay 6 0.009

Base 6 0.227

Overlay 0.095

t table [Difference
value signifi-
for 99*/.
confi

dence __
6

0.872

0.872

0.872

e.8?2

cant.
Insigni
ficant

Insigni
ficant

Insigni
ficant

Insigni
ficant

Insigni
ficant

0 g*2 Insignificant
Insignificant

0.872

0.872

Insignificant

Insignificant

Insignificant

Insignificant

q gr^ Insignificant
Insignificant

0.872
Insignificant

Insignific ant

Table continu d
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10. Uncracked Base with
Bonded Overlay
Edge Load
Spring Subgrade

11. Uncracked Base with
Bonded Overlay
Interior Load
Sand Subgrade

12. Uncracked Base with
Bonded Overlay
Edge Load
Sand Subgrade

13. Cracked Base with
Unbonded Overlay
Interior Load

Spring Subgrade

14 Cracked Base with
Unbonded Overlay
Interior Load

Sand Subgrade

15. Cracked Base with
Unbonded Overlay
Edge Load
Spring Subgrade

16. Cracked Base- with
Unbonded Overlay
Edge Load
Sand Subgrade

17. Cracked Base with
Bonded Overlay
Interior Load

Spring Subgrade

Base 6

Overlay 6

Base 6

Overlay 6

Base 6

Overlay 6

Base 7

Overlay 7

Base 7

Overlay 7

Base 7

Overlay 7

Base 7

Ove rlay 7

Base 7

Overlay 7
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0.023 Insignificant
0.872

0.032 Insignificant

0.153

0.245

0.049

0.160

0.872

0.872

Insignificant

Insignificant

Insignificant

Insignificant

X Table
value for

90*/. con
fidence

0.933 Insignificant
2.833

0.236 Insignificant

1.080 Insignificant

2.833
0.485 Insignificant

1.760 Insignificant
2.833

2.85 Significant

1.032 Insignificant
2.833

2.770 Insignificant

0.264 2 Insignificant

0.184 Insignificant

Table continued



18. Cracked Base with
Bonded Overlay Base
Interior Load
Sand Subgrade Overlay

19. Cracked Base with
Bonded Overlay Basr-
Edgc Load
Spring Subgrade Overlay

20. Cracked Base with
Bonded Overlay Base
Edgo Load
Sand Subgrade Overlay

21. Cracked Base with
Unbonded Overlay Base.
Interior Load
Spring Subgrade Overlay

22. Cracked Base with
Bonded Overlay Base
Interior Load

Spring Subgrade Overlay

7

7

7

7

7

7

7
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0.389 Insignificant
2.833

0.550 Insignificant

0.318 Insignificant
2.833

1.392 Insignificant

0.360 Insignificant
2.833

0.676 Insignificant

0.255

0.154

0.312

0.283

2.833
Insignificant

Insignificant.

Insignificanti
2.833 \

Insignificant'

* Stresses along the crack

Note: Six degrees of freedom were considpr^d for statistical

analysis for single layer and cases of overlay on

uncracked base, at equal distances of 5 cm. each.

However, because of the large variation in base stresses

in the vicinity of the crack an additional point was

taken at a distance of 1 cm. from the point of loading

to give 7 degrees of freedom.
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FIG. 8.2 SPRING SUBGRaDS

*

FIG 8.3 WENKLBR MODEL
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FIG. 8.6 ELASTIC SOLID MODiilL
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CHAPTER-IX

influence agRiAgia.

9.1 INTRODUCTION

Influence lines(269) have their well established
identity in the casts where effects of amoving load

is to be studied for determination of its maximum value

in a one-dimensional structure like a beam or a truss .

Influence surfaces axe their extension for two dimensional

structures like plates or shells. Essentially, the deter

mination of the influence field is possible for only a
linear system, to which Maxwell-Betti-theorem is appli
cable.

Influence surfaces for plates have earlier been

analytically obtained by Pucher(27°) and Krug and Stein™
for isotropic and orthotropic rectangular plates by using
singular and regular solutions. A large group of workers

at University of Illinois hav; used finite difference

method for obtaining influence surfaces for various types
(272)

of bridges . Influence surfaces have also been obtained
by using model tests ^2^^\

Nayak and Davi.s(274) hav. extended the finite
element method for obtaining th.- influence surfaces for

bridge slabs. The finite element provides a suitable
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unified approach to the determination of influence
fields in elastic continua^275^.

The pavement slab on elastic foundation can be

similarly treated. The cases of multiple wheel loads,
temperature and shrinkage effects in the part or whole
Of the siab can be analysed with ease. She method is
essential for cases where it is difficult to find the

critical load positions such as in pavement with open
ings and overlay-pavement slab with multiple known
cracks in the base slab.

The technique of calculating the influence field

is a simple alteration in the existing finite element

program. In essence, a set of prescribed forces are

applied around the observation point to cause an 'elastic

pinch' and the resulting body deformations serve as^

influence fields for the quantity required at the obser
vation point.

In a pavement problem a set of self-equilibrating
'pinch' loads are applied to calculate any one of the

moments M^ My, Mxy, and shears Qx and Qy around an
observation point. The resulting deformations w *•
Sw ax '
dy serve as influence fields. The wheel load effect is

calculated by using the vertical displacement w as inf

luence field. The temperature and shrinkage effects are

calculated by using the slopes ff and f| corresponding
to thy equivalent moments caused by any varying thermal
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and shrinkage effects.

Finally there are the two main problems of gett

ing influence fields accurately and the use of influence

fields for the calculation of design values.

The details regarding the accuracy of influence

coefficients, suitable self-equilibrating 'pinch' loads
with respect to an observation point and the use for

calculating d_sign values are given in reference(274'271>

However, the theory of influence surfaces for pavements
and its use for calculating wheel loads, thermal and

shrinkage effects are given hereafter.

9.2 THEORY OE INFLUENCE SURFACES

Let g
1

... (9.1)ls<v*k>} • ;^2
Lg3J

define the influence function for a required quantity

M±(xk) at an observation point xfe of a pavement and t,
defines the point at which vertical loads P and unit

couples mx and my defined by a vector fl,l,l}-T is applied.

When general distributed surface loads fp} = fp,m°,m0},
line loads |qH.q,mx,my] and concentrated loads
{P]^ = fP>Mx,Myj, are acting

V*k) =1 (pPfgW {q}Tfg]dS+ J fPlV).
A *"' lo' ^ T'h

... (9.2)
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It is required to prove that the influence funct
ion fg} may be represented by aset cf displacements
•Jul - /—-.&¥ 6wiT

,w' ex' ay/ defining the influence field due to
aset of elastic pinch loads arround observation point x

k*

In afinite element formulation as described in
chapters II and IV, for apoint in an element e,

w-mW ... (9.3)
due to a set of nodal forces f*] causing displacements {«}.
tte nodal displacements and forces are linked by

w-w-^w ... (9.4)
and the inversion of the Btiffees. matrix is the basis
of standard finite eleoeat solut±on prog„Bs. ^ ^.^
may be repeated for many values of {*}. In the nbsenop
of any initial ,ffeots> the moments at a point in the
element are given by

W-Dqw-.to-MwVMw* ... (9.5)
where Cs3 is the element stress matrix.

Equation 9.5 le not reqalred direotly ^ an ^^
field program but may be used indirectly to determine
'elastic pinch- loads to be 8pplled near the ohgernti(m
point in order to simulate tho deformation discontinuities
at the point xfc corresponding to ^ e^d cause a s,t of
deformations fu) - lw £tt SwiT .,1 l ~ ,w' S» ejf throughout the pavement.
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Erom equation 9.5

\Uk) =[s.]T{6je= J S446,
lxn nxl J=1 ^ J ... (9.5a)

where n is the number of generalised displacement comp
onents for element e.

By applying unit load component (pj* ={lfOfO) at any
point m defined by ^. From reciprocal theorem the nodal
displacement 6- of {6}e due to unit load {pj is given
by

p = \o^

... (9.6)

or

p = of
E.

J
=1

j = w
. m

m

S. .6.

0
0)

F.=S..
J ij

w
m

Therefore, p ft,
m lol {EJ-HS,}

1J 3 m

and from equation 9.5a

M

m

Similarly for {*J =[o,l,0]T and frj = fo,0,lfT

ex'm

... (9.6a)

... (9.7)

... (9.8)

w • (ft) andHi(xk) .(£)* ''iJ ... (9.9)

Therefore, according to equation 9.1 for Jp }={l,l,ij
I w

W • ft
is
[ay.

w
OlHsJ

... (9.10)
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Vbe 'elastic pinch' loads for Mi(xk) defihed by
W ="Oil can be determined automatically from the
stress matrix already available within the program,

9.3 USE OE EXISTING PROGRAM

It is clear from equation 9.8 that the 'elastic
Pinch' loads can be determined by using stress matrix
given by

^ =MM ... (9.11}

Both Q>2 and QQ matrices at any point are already
available in existing program as these are required

for calculating stiffness matrix, equivalent nodal forces
due to thermal and shrinkage effects and stresses at any
point. If the observation point is located at a node,
appropirate 'weighting' of the pinch loads applied to the

set of nodes around the observation point may be used(274>.
The influence field represented by the deformation field
M will be 'correct' (determined by the accuracy for the
finite element idealisation of the, pavement) at all the
points except within the pinch zone around the observa

tion point. With reasonably graded mesh lines, this zone
will be small as compared to the size of the pavement.

The modifications in the existing program are necessary
to generate 'pinch' loads by using [pj and jjT] matrices
with suitable 'weighting' and to terminate the program
after the determination of displacement only. It is usual
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to do simple averaging for calculating influence sur
faces at a node point connecting several elements.

Further it is economical to calculate several
influence surfaces in one run by using the resolution
process similar to the process of solving a problem
of multiple right hand sides. This is done by keeping
the inverted stiffness matrix calculated once for all.

In order to use the influence surfaces at various
points the various sets of influence surfaces are usually
stored on magnetic discs.

In apavement problem the nodal displacement vectors
will also contain slopes and twisting curvatures. The
slopes and twisting curvatures are useful for calculating
the temperature and shrinkage effects.

9.3.1 Wheel Load Effect

For obtaining the stress value due to a wheel

load having a pressure 'p' and elliptical contact area
the tyre point can be placed at appropriate position. The
area can be divided into small rectangular patches and

the influence coefficient for each patch may b, deter
mined by interpolation. Influence of the load on the
patch at the observation point can then be determined
by multiplying this influence coefficient by area of
the patch and the contact pressure. Sum of all such

influences will give the total influence of the wheel
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load on the desired stress at the observation point.
Similarly several wheel loads in different positions
can be considered to obtain the maximum value of stress
at a desired point.

9.3.2 Thermal and Shrinkage Effect

The direct method of analysis for thermal and

shrinkage along with the results is given in Chapter .T.
In this analysis the equivalent nodal loads due to

thermal and shrinkage effects are calculated as

Mt =-{ CBlf&IH/lJdA ... (9.12)

where {lQ} is resulting initial strain curvature due to
thermal and shrinkage. For thermal effect

i "*

!ax h

fi \ - L &t tt-'Of ~ !ay J" f
0

... (9.13)

Equivalence of shrinkage with thermal effect for bending
analysis has already been established in Section 5.5.5

Therefore we can treat only the thermal effect. Let

Kl *

M_
xo

M
yo

0

= CM PU ... (9.14)

The equivalent nodal forces due to the constant

vector |mJ on arectangular area are the edge couples
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marked on the Fig.9.13a. If the thermal effect vector
fM0} is constant over the Hermitian rectangular element
then the equivalent nodal forces as shown in Fig.9.13b
can be obtained as

«t "HO, I0, Y0, XIo, 0, -X0, I _Xy
0, -Xo, .7o, XYQ, 0, Xo, To, .„^ ... (9.15)

where, „r ,
Mxob \ a Mb2 M a2

o 2 >Y0 - -r- - XYo= ir-+ -ir

The results of Fig.9.13 can be used as an ordinary
applied load vector similar to wheel load effect. The
initial strain effect is then added according to

W--M6UV ... (9.16)
The total effect from influence surface only gives
D>liT.] to which known DQ {#0} is to be added.

9.4 xiPPLICiiTION TO PAVEMENT SL,iBS WITH OVERLAYS

The overlay pavement on cracked or uncracked base

slab is modeled in the same way as described in Chapters V
and VI by using orthotropic properties and the problem is
treated as a linear one. Thereforp, the results obtained

by using the influenc, surface technique will be identical
to those obtained in Chapter V and VI by direct solutions
for particular wheel load positions cand temperature
gradients. However, the influence surface results are
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more general because the stress values can be obtained
for any other load positions.

Special advantage may be expected in case of pave
ment slabs with crack or cases when bonded or unbonded

overlays are existing on base slab containing single- or
multiple cracks and when the multiple wheel load confi

gurations are to be considered. Influence surface for

several locations can be economically obtained through
a single inversion operation as mentioned above. These

locations have to be decided by judgement and experience.

Similar use of influence surface in case of pavement
slabs can be in situations when the slab contains an

opening of square or any other shape like those adopted

as manholes or for underground drainage of surface water.

Us. of influence fields can also be emphasized for

cases of temperature stresses when a part of a slab pa

nel may be in shade and other subjected to direct action

of atmosphere. Similarly, cases of non-uniform shrinkage
can arise in case of pavement slab having non-uniform
thickness.

9.5 RESULTS

The various cases studied are shown in Table 9.1.
The influence surfaces plotted for these cases are plotted
in Fig.9.1 to 9.12.
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Checks have been applied by comparing the results
obtained by direct solution programs of Chapters V and

VI and by using the influence surface fields for calculat-
ing the wheel load, temperature and shrinkage effects
as discussed in Section 9.3.1 and 9.3.2.

The influence surface results are more general c-md

can be used for other positions of wheel loads and diff

erent thermal gradients which are likely to occur
in the pavement

9.6 DISCUSSIONS AND CONCLUSIONS

A simple method of finding the influence surfaces

for pavements by using the existing finite element

program has been presented. Tht: simultaneous use of

slopes 9w/ax and 9w/6y for calculating thermal and

shrinkage effects on any part of pav ment slab has been

established.

It is well known that the influence surface tech

nique is not very popular with the pavement designers

despite its versatility and computational efficiency.

A pavement designer usually requires critical values of

stresses only at reasonably selected points. The attract

ive features of influence methods of predicting the

effect of wheel loads placed any where on the pav ment

and complex thermal gradients and shrinkage effects
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art overshadowed by the availability of direct solutions
for simpler cases and also the direct solution pro-
grams.

In this chapter only th influence surfaces for
various cases of bonded and unbonded overlays on un-
oracked and cracked base slabs have been presented to
illustrate this technique. Checks have been made with
the results obtained by direct solution programs.

Finally in the conclusion it is recommended that
the influence surface programs should not be used to
produce tables and charts as has been done in this
chapter and elsewhere^, 271) .^^ ^ ^^
may be treated as 'one off and the influence field
data for vcarious observation points stored on magnetic
discs. These then can be used to find the critical
wheel load, thermal and shrinks, -,-p-p. ~+ciiiu b.u.ixnKage etiects and critical

magnitudes of stress needed for design purposes. In
order to gain confident on influence surface technique
it is recommended that the simultaneous use of direct
programs may be made Th, r>v.-^ v,+j v* maae. ±he present program contains both
of these facilities.
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CASES STUDIED
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Cast

/Thickness pocation ^
• of obse-

Basa
cm.

over

lay
cm.

!rvation '• Parameter jFig.No,
Point

1. Single slat 20
(U.C)

- Centre Mx'My M
xy 9.1 to 9

2. Bonded
overlay

8(U.C) 10 Centre

Edge
My

9.4

9.5

3. Unbonded 8(U.C.) 10 Centre
My
My

9.6

Edge 9.7

4. Bonded 16(U.C) 10 Centre

Edge

M
y

My

9.8

9.9

5. Bonded 16(C) 10 Centre

Edge
MX> My 9.10,9.11

9.12

U.C. - stands for uncracked bas<-,
C - stands for cracked base.
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FIG. 9.1 INFLUENCE SURFACE FOR MOMENT Mx AT POINT 'o'
IN 20cm PAVEMENT SLAB '



G 9.2. INFLUENCE SURFACE -OR MOMENT M at paimt 'n-IN 20cm PAVEMENT SLAB ^UMtN1 MVAT POINT 0
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FIG. 9.3 INFLUENCE SURFACE FOR MOMENT MXyAT POINT'O'
IN 20cm PAVFMPNT ciad *y r^i'Ni u20 cm PAVEMENT SLAB
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FIG. 9.4_INFLUENCE SURFACE FOR MOMENT Mv AT POINT *0'
10cm OVERLAY ON 8cm UNCRACKED ©PNPED BASE '
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FIG. 9. 5^ INFLUENCE SURFACE FOR MOMENT My AT POINT'O'
IN PAVEMENT SLAB WITH 10cm OVERLAY ON 8cm
BONDED UNCRACKED BASE
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FIG.9.7 INFLUENCE SURFACE FOR MOMENT Mv AT POINT 'O'
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* ^*FIG-9.8-INFLUENCE SURFACE FOR MOMENT Mx AT POINT 'o
IN PAVEMENT SLAB WITH 10cm OVERLAY ON 16 cm
UNCRACKED BONDED BASE
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PIS 910. INFLUENCE SURFACE FOR MOMENT Mx AT POINT *0
&5M!K,6NT SLAB W,TH 10cm OVERLAY ON 16cm
CRACKED, BONDED BASE



S. 911 -INFLUENCE SURFACE FOR MOMENT My AT POINT 'o' IN
b5VNDEEM0ENBTASSLEAB W'TH 1° ^ °V^AVyON 16cm CRACKED
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t^fFIG. 9.12 -INFLUENCE SURFACE FOR MOMENT My AT POINT 'o
rNDA^i^E^KSLAB W,TH 10cm OVERLAY ON 16 cmCRACKED, BONDED BASE



<o, Xo,-y0rxyo>
i>

t««

( b)

H-t-H

«

*o-

ya s.

Mxo- b

2

Myo a

433

*yQ =f2(Mxo.b+Myoo2)
<0,-xpf y0,-xy0)

M

FIG. 9.13- EQUIVALENT THERMAL EFFECT



-434-

CHAPTER X

S 0 N C L U S. IONS

Besides the inferences drawn and reported at the end

of each chapter, the following are the general conclusions.

10.1 METHOD OF ANALYSIS

Amethod of analysis is proposed based on finite

element technique. A computer program is written so as to

develop a system forthe pavement analysis due to wheel

loads and temperature gradients. The sub-element technique
is developed and incorporated to model crack, to evaluate
the consistent nodal loads and non-uniformity in subgrade
support with a view to achieve economy and accuracy. The
program can evaluate stresses and deflections in pavement

slabs with subgrade modeled through, Winkler foundation,
elastic solid foundation, non-linear foundation model and
generalized two parameter foundation model.

The pavement slab in cracked or uncracked condition
may have a bonded or unbonded overlay. The program is

capable to evaluate stresses and displacements due to

wheel loads, hydro-th.rmal gradients and shrinkage effects
of variable nature. Also, the non-uniformity in subgrade
can be considered in Winkler and non-linear foundation
models.
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The results of the model tests show adequacy

of the program for "Winkler as well as elastic solid

models.

10.2 OVERLAYS ON UNCRACKED BASES

10.2.1 Unbonded Overlay on Uncracked Base

A stiffer overlay, if provided, normally should

result in reduction of stressss in overlay. But it is

seen that this need not necessarily be true in all cases,

because of the ratio in which the loads are shared bet

ween base and overlay. This is specially true in cases

where overlay is relatively less stiff as compared to

base. Similarly, some times athicker base may be subjected

to larger stresses, though in such cases the stresses

in the overlay will be lesser. This is true for wheel

loads as well as for temperature stresses.

The comparison of results of the finite element

analysis with those given by Marcus and Palmer(22^)

show general agreement, however the latter analysis

underestimates the stresses in the overlay.

10.2.2 Bonded Overlay on Uncracked Base

Bonding of overlay to the base helps in reducing

the stresses by a substantial amount and greater reduc

tion can be expected by providing a thicker overlay or

same overlay on a stiffer base. No controversy is found



-436-

to exist in this case. Also it is found that the com

bined interfacial stresses due to wheel loads, tempera
ture gradients and shrinkage effects, which may tend

to destroy bond are of low order of magnitude thereby
establishing the feasibility of a bonded overlay. Further
the magnitude of interfacial stresses due to combined

effects, reduce with increasing thickness of base or

overlay for the range of parameters studied.

10.3 OVERLAYS ON CRACKED BASES

10.3.1 Bonded Overlay on Cracked Base

The moments in the direction perpendicular to the

crack decrease at the crack location whereas, there is a

slight increase in the orthogonal direction. However,
there is a substantial increase in the overlay fibre

stresses in the direction perpendicular to the crack.It

is also seen that the interfacial shearing stresses

between the overlay and the base due to the effect of

wheel load, temperature and shrinkage are significant

and the bond, if not securely provided is liable to be

damaged. Also, it is seen that the base though cracked '
may still be an advantage and overlay stresses on a

thicker base is less. *

Further the failure of bond in the vicinity of the

crack results in manifold increase in deflections, slopes
and flexural stresses. This is seen to be particularly
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disastrous in situation when subgrade is weak. Therefore,

enhancing the subgrade quality in the vicinity of the

crack is one of the obvious alternatives to improve

the stress conditions in overlay due to wheel loads.

However, the fundamental principles of fracture mech

anics show that stress concentrations are bound to occur

at base-overlay interface along the crack resulting in

elevated local stresses. Therefore, two conditions are

established to prevent reflection cracking,viz. the bond

failure must be prevented and the stress concentrations

must be avoided. Reinforced key technique' is suggested

to fulfil these conditions. Some alternatives to the

technique are also put forward to improve and economise

the suggested method.

10.3.2 Unbonded Overlay on Cracked Base

It is seen that.-cracking results in substantial

increase in deflections, slopes and moments in overlay

slab. A comparison of the stresses in unbonded and bonded

overlay of equal thickness on cracked base, shows that

stresses are practically twice in unbonded case forihe

given subgrade property adopted in the analysis. As in

case of bonded overlays, the cracked base of larger thick

ness results in lesser overlay stresses.

10.4 STRESSES IN CRACKED SINGLE SLAB

The stresses and deflections in cracked single slab
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have been determined to test the adequacy of the crack

modeling. The comparison of stresses and deflections

determined by modeling a long crack by sub-elements

show agreement with the values given by Niu'^ . The

results of a finite crack of small length can not be

compared by a standard solution but the results indicate

that the stresses increase ahead of crack due to stress

concentrations and therefore a crack once formed

is liable to propagate faster under subsequent loading.

10.5 INFLUENCE OF SUBG-RADE MODELS

Limited results of the finite element analysis

in plane strain show that proportinately between deflect

ion and subgrade reaction does hold in the vicinity of

the load. This validates the model as the property in

this zone is more important and is also the basis of

Winkler's hypothesis. However, whether this constant

of proportionality is same as one given by a standard

plate test remains questionable. But the analytical results

tend to validate the correlation between constants of

Winkler and elastic solid model found by Vesic and

Saxena(5°).

A method is developed to determine the second

parameter of two parameter foundation model from the

plate load test results. A method is also developed to

take the second parameter into considerations as well as
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to incorporate nonlinear effects due to lifting in pave
ment slab with overlays on cracked or uncracked bases.

10.6 INFLUENCE SURFACES

The influence surfaces for moments in the pave
ment are obtained by applying pinch 'loads' a simple
modification in the program. The results can be used
for estimating the temperature and shrinkage effects
even for cases when the temperature or shrinkage effects
are occuring in a part of the pavement. Therefore, the

method of influence surfaces is the most general one.
The utility of influence surfaces can be highlighted
when there are numerous cracks in the base and openings
in the pavement slab and it is difficult to finalise
the critical load positions .The versitility and computat
ional efficiency of the influence surface technique is
verified.

10.7 MECHANICS OF REFLECTION CRACKING

It has been observed that interfacial shearing
stresses due to wheel loads, temperature differentials
and differential shrinkage become very high at the

crack location. The bond failure is therefore liable to

occur. Thus, this explains the observed field behaviour.

The bond failure is liable to increase in deformations
and stresses by a- substantial amount causing overstressing
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of the overlay. This is specially disastrous on weak

snbgrades.

10.8 REMEDIAL MEASURES

The fundamental principles of fracture mechanics

indicate that stress concentrations are likely to occur

at crack tip resulting in weakening of the material at

that point. Therefore, reducing stress concentrations

and securing bond are two essential conditions to arrest

crack reflectance. With these in view, the Reinforced

Key Technique is suggested along with some of its

alternatives to achieve economy and efficiency.

10.9 PROPOSED* SIMPLIFICATIONS

10.9.1 Bonded and Unbonded Overlays on Uncracked
Bases

It is shown that by modifying the procedure for

calculating the value of 'radius of relative stiffness'

it is possible to adopt Westergaard's equation in a

modified form for calculation of stresses and deflections

in case of large pavement slabs with bonded or unbonded

overlays on uncracked base slabs. A similar procedure

can be adopted for calculation of wheel load influences

by Pickett's chart or other formulae.

It is also shown that for calculation of temper

ature stresses Bradbury's solution can be used in a



-441-

modified form for pavement slabs with bonded or

unbonded overlays. This modification is also princi

pally based on modifying the radius of relative

stiffness.

10.9.2 Bonded and Unbonded Overlays on
Cracked Bases

10.9.2.1 Wheel Load Stresses

A formulation based on the theory of beams on

elastic foundation is developed to evaluate the deflect

ion and stresses in a beam having another bonded or

unbonded beam with or without a crack on a unified basis.

It is shown that this can be used for estimating the

stresses in overlay when base slab is cracked.

10.9.2.2 Temperature and Shrinkage Stresses

It is shown that if the crack is the one as assumed

in this analysis i.e. parallel to one edge but away from

it, then it is still possible to adopt Bradbury's soluti

on for determination of stresses due to temperature
#

differentials. Determination of shrinkage stresses is

also possible in such a case by the simplified approach.

10.10 SUGGESTIONS FOR FURTHER WORK

Though many problems pertaining to overlays on

cracked and uncracked bases are solved, several others

are remaining. Also there are question marks that have
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come up during the present study.

It is felt that with the availability of the

analytical tool as formulated here, a better material

characterisation in the form of constitutive laws for

paving materials, their characteristics under one face

restrained shrinkage and thermal conditions with

particular reference to local environmental condition

are essential for realistic assessment and justificati

of a sophisticated analysis.

In a similar context, as already pointed out, noare
insight into the stress release mechanism for bonded and

unbonded systems on elastic foundation and the relevant

properties of material in such cases is infect required
for proper modeling the system.

With the availability of the method to analyse

pavement slabs on different types of foundation model,

fundamental model or full scale studies to establish,
their relative merit is warranted.

Field as well as laboratory studies on model or

on full scale is required to establish the efficacy of

'Reinforced Key Technique' and similar other suggested
alternatives.

Only fundamental principles of fracture mechanics

have been applied here to qualitatively judge the

behaviour of cracked base-overlay system. For true

stress determinations, it is necessary to apply these

s

on
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principles for anisotropic system as bonded overlay.

Parametric studies incorporating influence of

slab dimensions, random crack orientations and other
parameters as listed in article 5.8 may be done.

. Analysis incorporating non-linear thermal gradie-
nts, shrinkage effects and other material properties
can be performed with simple modification of the pro
gram, on lines similar to those adopted for non-linear

analysis incorporating lifting and two parameter found-
ation model.

With the developed program it is also possible

to study the behaviour of pavement slabs which undergo
warping and thus nonlinear conditions due to displace
ment dependent stresses occur under wheel loads.
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APPENDIX A

DESCRIPTION OF PROGRAM

INTRODUCTION

The program containing 1500 FORTRAN statements is

based on rectangular orthotropic plate elements as des

cribed in Chapter IV and has 16 subroutines and 'Phase'.

As stated in Chapter IV, V and VI it can solve the pro
blem of a sound or a cracked plate with a bonded or un

bonded overlay. It may be assumed to be supported on

Winkler foundation, elastic solid, non-linear Winkler or

Pasternak type generalised elastic foundation. Also the

plate can be assigned its appropriate boundary conditions

like simply supported, clamped or free. The loading may

be concentrated point loads and couples, distributed

surfac. pressures or body forces. The temperature stresses

can be considered and consistent nodal loads can be deter

mined for a part of the element loaded and crack can also

be mod led through partly cracked element.Development

of influence surface for any desired point for any of the

above d:sired condition for any stress resultant can be

obtained as deformations. Stress analysis from moments

in desired elements is possible. The function of each

subroutine is given below.

DETAILS OF SUBROUTINES

(i) GDATA :Reads, stores and prints data regarding
nodal coordinates the nodal connections
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of elements. Their material proper
ties and boundary conditions.

(ii) LOAD %Reads data regarding concentrated
loads pressure loads, self weight,

temperature gradient and influence

surface and generates and prints
appropriate consistent nodal loads.

(iii) PARTL(RL) '. Reads data and generates load vector
(RL) for an element which is partly
loaded.

(iv) SHAPE

(v) 3TIFN

Contains shape functions and their

derivates and generates (Tlj| and CBI3 •

Calculates element stiffness for

appropriate conditions and stores in

random acoess.

(vi) CRACK(N) .: Calculates element stiffness for partly
cracked element 'N' and returns to

'STIFN' to store it on random access.

(vii) GAUSSD

(viii) MOD(IM)

i Contains Gaussian data for 2nd to 6th

order Gaussian quadrature to be used

in partly loaded or cracked element,

stiffness calculation and stress comput
ation.

.' Calculate the QQ of slab for proper
ties stored in material no. 'IM1, with
due consideration to appropriate

overlay type or single slab. It is

used in 'elastic pinch' calculation,

and equivalent load for temperature

effect in 'LOAD*, stiffness calculation

in STIFN and stress calculation in STRESS.



(ix) MULT

(x) SOLVE

(xi) BSUB

(xii) RESOLV

(xiii)SOLVER
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T

: Multiplies [>] QQ [b] in cases
when direction of crack is other

than one of the coordinate axes.

I Reads element stiffness from appro
priate backing storage assembles

global stiffness matrix, applies
boundary constrains, stores back

partly inverted matrix on another

peripheral storage to be used for

another load case or subsequent
iterations in non-linear or general
ised foundation model, and solves

for the first load cas° or iteration

using Gaussian elimination process.

I Performs back-substitution operation
in Gaussian elimination procedure to
obtain displacements by solving equi
librium equations and writes them.

". Partly inverted stiffness matrix is

read from random access and with the

known vector the equations are formed
again.

: Forms global stiffness matrix for

elastic solid foundation and stores

its upper triangular part in a linear

array. Solves equilibrium equations by
Gaussian elimination to obtain dis

placements. Use of 'OVERLAY' is req
uired if this routine is used,because
of the memory limitations, and in such
an event subroutines, GDATA, LOAD,

SOLVE, RESOLV, BSUB, and PARTL are

suppressed.
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(xiv) STRESS I Computes curvatures and moments
for each element at all of its

Gaussian points and writes them

(xv) CSTRS(IM) : Calculates curvatures and moments
of a partly cracked element with

material properties 'IM' at the

Gaussian sampling points.

(xvi) ALAYER(IE) : Analyses the layers when stresses
and strains are desired at the top
and bottom of base and overlay in

any element 'IE' and prints them

out.

The calling sequence of these routines are indicated

in flow chart shown in FIG.A.1.
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