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ABSTRACT 

The subject of pollutant mixing and its transport in streams has been at the 

forefront of research for the determination of pollutant concentration along the river 

course and for regulating disposal of pollutants in rivers. While abundant literature is 

available for solute transport modelling under steady flow conditions, only a few 

researchers have studied the problem of solute transport in rivers under unsteady 

streamflow conditions. Majority of the studies available in literature employ complex 

numerical algorithms for solution of the governing equations of flow and solute 

transport phenomena, which require river cross-section details at close spatial intervals, 

in addition to flow and solute concentration measurements at those locations. The 

existing models do not allow the integration of flow.  and solute transport model 

parameters and simultaneous flow and solute routing. Further, existing transient storage 

models for simulating solute transport in the presence of transient storage zones along 

river reach require complex numerical solution algorithms. The present study attempts 

to overcome the above limitations in modelling the longitudinal dispersion of solutes 

under unsteady flow conditions using the following approach: 

1. Simplification of the Advection-Dispersion (AD) equation for solute 

transport modelling and coupling it with a flow routing model based on 

the Approximate Convection- Diffusion (ACD) equation for 

simultaneous routing of flow and solute. 

2. Simplification of the governing equations of the Transient Storage (TS) 

model for solute transport modelling along the river reach and coupling 

it with the flow routing model based on the ACD equation. 

Important assumptions used in the development of this approach, are: i) the 

flow in small reach length Ax is steady and uniform over a routing time interval At, but 

varies from one time interval to the next interval, and ii) the concentration varies 

linearly within a small reach length Ax. 
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Similarity between the simplified form of the (AD) equation governing the 

solute transport, and the Approximate Convection-Diffusion (ACD) equation (Perumal 

and Ranga Raju, 1999) governing the flow transport is established. The similarity of the 

simplified forms of the flow transport and solute transport equations has enabled the 

development of the AD-VPM model for studying solute transport in rivers under steady 

flow conditions. The appropriateness of the AD-VPM model is first tested under steady 

flow conditions by reproducing the analytical solution of the AD equation for a given 

uniform pulse input and for different combinations of flow velocity (U) and dispersion 

coefficient (DL). It is found from the analysis of a number of numerical experiments 

that analytical solution of the AD model is closely reproduced by the proposed AD-

VPM model as indicated by the Nash-Sutcliffe criterion, it  99% , when DL,5_ 415.64 

U1 •71  defining the applicability domain of the AD-VPM model. The proposed AD-VPM 

model has also been verified under steady flow conditions using i) two laboratory test 

data, and ii) three field experiments data, (the Colorado River, the Rhine river, and the 

Missouri river). The dispersion coefficient, which is a parameter in the AD-VPM model 

is estimated using the relationship suggested by MCQuivey-and Keefer (1974) because 

of its simplicity and accuracy. Satisfactory reproduction of the C-t curves demonstrates 

the suitability of the AD-VPM model for its application under steady flow conditions, 

within its applicability domain. 

The acceptable performance of the AD-VPM model for steady flow conditions, 

has enabled to extend it for studying solute transport under unsteady flow conditions. 

This is achieved by integrating the parameters of the AD-VPM model with the 

parameters of the VPM flow routing model for simultaneous routing of the solute under 

unsteady flow conditions. Numerical experiments on two hypothetical channels having 

a width of 50m and 100m, characterised by different Manning's roughness coefficient 

and bed slope values, demonstrate the ability of the AD-VPM model for solute 

transport by reproducing the results obtained from the numerical solution of the 

coupled Saint-Venant equations for flow routing and the AD equations (SVE-AD 
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for an uniform pulse input, and ii) using two field experiments data ( Mimram river and 

Uvas Creek). Since the form of the ATS model is same as that of the AD model, the 

applicability criterion of the ATS-VPM model under steady flow conditions is 

considered as the same as that obtained for the AD-VPM model with U replaced by the 

solute transport velocity (Us) and DL replaced by the ATS dispersion coefficient (Dun). 

The ATS-VPM model has been extended to study solute transport in rivers 

under unsteady flow conditions, following the same approach as adopted in the case of 

AD-VPM model. Numerical experiments on three hypothetical channels of different 

characteristics demonstrate the adequacy of the ATS-VPM model, by satisfactorily 

simulating the C-t curves as obtained by the numerical algorithm solutions of the Saint-

Venant's Equations and the TS equations (SVE-TS model). The ATS-VPM model has 

also been verified for its applicability using the field experiments data of Huey creek 

recorded under unsteady flow conditions (Runkel et al., 1998). 

Based on the study it is concluded that the proposed AD-VPM and ATS-VPM 

models simulate the solute transport in rivers and streams under steady as well as 

unsteady flow conditions satisfactorily within their applicability ranges. 



ACKNOWLEDGEMENT 

I express my profound gratitude and indebtedness to Dr. U.C. Chaube, 

Professor, WRDTC, Dr. M. Perumal, Associate Professor, Centre for Continuing 

Education, and Dr. C.S.P. Ojha, Associate Professor, Department of Civil Engineering, 

I.I.T. Roorkee, Roorkee, the supervisors, whose inspiring guidance, suggestions and 

encouragement were invaluable in undertaking the research work presented in the 

thesis. I owe my gratitude to Dr. G. C. Mishra, Professor, WRDTC, for his constant 

encouragement and help extended during the research work. 

Special mention of thanks is due to Dr. K. S. Hari Prasad, Dept. of Civil 

Engineering for the support and help extended during the study. I am very much 

thankful to Dr. Robert L. Runkel, USGS (USA) for his assistance during the research 

work. 

I would like to thank Dr. M. Meulenberg, Secretary, ICHR, The Netherlands, 

for permitting to use the data of River Rhine and the USGS, WRD, Tucson, AZ, USA 

for providing the data of Colorado River. Special thanks are also due to Dr. Julia Badal 

Graf (USA), Dr. Steve Longsworth (USA) and Dr. Albert Van Mazijk (The 

Netherlands) for providing the data sets used in the present study. 

I acknowledge the cooperation and help rendered by my friends K. Ramji, M.P. 

Rajurkar, J. Deva Sunder, R. Jha, colleagues at Andhra University, Visakhapatnam and 

those who have directly or indirectly helped during the period of this work. 

I am thankful to my organisation, Andhra University, Visakhapatnam, for 

granting me permission to carry out the research work under Q.I.P. at I.I.T. Roorkee. I 

also thank the Q.I.P. Centre, I.I.T. Roorkee, for providing the fellowship to do the 

present study. 

I gratefully acknowledge the moral support given by my parents and parents-in-

law during the study. Last but not the least, I extend thanks to my wife Lakshmi and 

daughter Hari Chandana for their forbearance and sacrifice throughout the duration of 

the research work. 

SEEPANA BALA PRASAD 

vi 



CONTENTS 

Page No. 

Candidate's Declaration 

Abstract 	 ii 
Acknowledgement 	 iv 

Contents 	 vii 

List of Tables 	 xii 

List of Figures 	 xv 
Notations 	 xxi 

Chapter 1 INTRODUCTION 	 1 

1.1 GENERAL 	 1 

1.2 BACKGROUND 	 2 

1.2.1 Studies on Solute Transport Under Steady Flow Conditions 	2 

1.2.2 Need to Study Solute Transport in Rivers Under Unsteady 	4 
Flow Conditions 

1.2.3 Studies on Solute Transport Under Unsteady 	 4 
Flow Conditions 

1.3 SCOPE OF THE PRESENT STUDY 	 6 

1.4 OBJECTIVES OF THE STUDY 	 7 

1.5 ORGANISATION OF THE THESIS 	 8 

Chapter 2 LITERATURE REVIEW 	 11 

2.1 GENERAL 	 11 

2.1.1 Solute Transport Process 	 11 

2.2 SOLUTE TRANSPORT UNDER STEADY FLOW CONDITIONS 	14 

2.2.1 Advection-Dispersion Approach 	 14 

2.2.1.1 Analytical solution 	 15 

2.2.1.2 Numerical solution 	 16 

2.2,2 Cells-In-Series Model. 	 20 

vii 



2.2.3 Modified Fickian Approach 	 21 

2.2.4 Dead Zone Model 	 22 

2.2.5 Aggregated Dead Zone Model 	 23 

2.2.6 Transient Storage Model 	 26 

2.3 STUDIES ON DISPERSION COEFFICIENT 	 30 

2.3.1 Theoretical Method 	 30 

2.3.2 Determination of Dispersion Coefficient Using 	 31 
Concentration Curves 

2.3.3 Empirical Relations for Dispersion Coefficient 	 31 

2.4 SOLUTE TRANSPORT UNDER UNSTEADY FLOW 	 34 
CONDITIONS 

2.4.1 Flow Routing 	 34 

2.4.2 Solute Routing 	 37 

2.4.2.1 Based on the advection-dispersion model 	 38 

2.4.2.2 Based on the transient storage model 	 41 

2.4.2.3 Based on the aggregated dead zone model 	 42 

2.5 CONCLUSIONS 	 43 

	

Chapter 3 SOLUTE TRANSPORT MODELLING USING 	 47 
APPROXIMATE ADVECTION-DISPERSION 
EQUATION : STEADY FLOW CASE 

3.1 GENERAL 	 47 

3.2 DEVELOPMENT OF AN APPROXIMATE ADVECTION- 	 48 
DISPERSION EQUATION 

3.3 SOLUTE TRANSPORT MODEL FORMULATION 	 52 

3.4 DETERMINATION OF THE DISPERSION COEFFICIENT 	 54 

3.5 ANALYSIS OF MODEL APPLICABILITY USING 	 56 
ANALYTICAL SOLUTIONS 

3.5.1 Analysis of the Model Parameters 	 56 

3.5.2 Applicability of the AD-VPM Model 	 57 

3.5.3 Sensitivity Analysis 	 65 

3.5.3.1 Sensitivity analysis of dispersion coefficient 	 65 

	

3.5.3.2 Sensitivity analysis of spatial step size 	 67 

viii 



3.5.4 Negative Initial Response 	 70 

3.5.5 Mass Conservation 	 70 

3.6 APPLICATION OF THE AD-VPM MODEL IN FIELD 	 70 
AND LABORATORY TEST CASES 

3.6.1 Laboratory Test Case 	 71 

'3.6.1.1 Application to laboratory test case 1 	 71 

3.6.1.2 Application to laboratory test case 2 	 74 

3.6.2 Field Test Cases 	 75 

3.6.2.1 Application to Missouri River 	 76 

3.6.2.2 Application to Rhine River 	 81 

3.6.2.3 Application to Colorado River 	 86 

3.7 DISCUSSION OF RESULTS 	 89 

3.8 CONCLUSIONS 	 93 

Chapter 4 SOLUTE TRANSPORT MODELLING USING 	 95 
APPROXIMATE ADVECTION-DISPERSION 
EQUATION : UNSTEADY FLOW CASE 

4.1 GENERAL 	 95 

4.2 MODEL DEVELOPMENT 
	

96 

4.2.1 Solute Transport Simulation Under Unsteady 	 97 
Flow Conditions 

4.2.1.1 Flow Routing 	 97 

4.2.1.2 Solute Routing 	 99 

4.3 EVALUATION OF THE MODEL 	 101 

4.3.1 Solution of the SVE-AD Model 	 104 

4.3.2 Hypothetical Test Case 	 105 

4.3.3 Mass Conservation 	 113 

4.3.4 Time of Release of Solute 	 115 

4.4 COLORADO RIVER TEST CASE 	 120 

4.4.1 Flow Routing 	 126 

4.4.1.1 Calibration and verification of roughness coefficient 	126 

4.4.2 Solute Routing 	 129 

ix 



4.5 DISCUSSION OF RESULTS 	 133 

4.5.1 Differences in Velocities of Flood Wave and Solute Cloud 	134 

4.5.2 Effect of Channel Type on Solute Transport 	 135 

4.5.3 Solute Transport in Colorado River 	 135 

4.5.3.1 Variability of the dispersion coefficient 	 137 

4.6 CONCLUSIONS 	 138 

Chapter 5 DEVELOPMENT OF AN APPROXIMATE TRANSIENT 	139 
STORAGE MODEL 

5.1 GENERAL 	 139 

5.2 DEVELOPMENT OF AN APPROXIMATE TRANSIENT 	 142 
STORAGE MODEL 

5.3 CHARACTERISTICS OF THE APPROXIMATE TRANSIENT 	145 
STORAGE MODEL 

5.3.1 Advantages of the model 
	

147 

5.4 ANALYTICAL SOLUTION OF THE APPROXIMATE 
	

148 
TRANSIENT STORAGE MODEL 

5.5 DEVELOPMENT OF THE MUSKINGUM SOLUTE 
	

149 
TRANSPORT MODEL 

5.5.1 Solute Transport Model Formulation- Steady Streamflow 	149 
Conditions 

5.5.2 Solute Transport Model Formulation- Unsteady Streamflow 	152 
Conditions 

5.6 CONCLUSIONS 	 155 

Chapter 6 APPLICATIONS OF THE APPROXIMATE TRANSIENT 	156 
STORAGE MODEL 

6.1 GENERAL 	 156 

6.2 COMPARISON OF THE TRANSIENT STORAGE AND 	157 
THE APPROXIMATE TRANSIENT STORAGE MODELS 

6.2.1 Applicability Analysis of the ATS Model 	 158 

6.3 APPLICABILITY ANALYSIS OF THE ATS-VPM MODEL 	164 

6.4 APPLICATION OF THE ATS-VPM MODEL UNDER STEADY 	168 
FLOW CONDITIONS 

6.4.1 Application to Mimram River Tracer Experiment 	 169 



6.4.2 Application to Uvas Creek Tracer Experiment 	 173 

6.5 APPLICATION OF THE ATS-VPM MODEL UNDER UNSTEADY 177 
FLOW CONDITIONS 

6.5.1 Solution of the SVE-TS Model 	 178 

6.5.2 Hypothetical Test Studies 	 179 

6.5.3 Application to Huey Creek Tracer Experiment 	 185 

6.6 DISCUSSION OF RESULTS 	 190 

6.6.1 Solute Transport Under Steady Flow Conditions 	 190 

6.6.2 Solute Transport Under Unsteady Flow Conditions 	 193 

6.7 CONCLUSIONS 	 199 

Chapter 7 CONCLUSIONS AND RECOMMENDATIONS 	 200 

7.1 CONCLUSIONS 	 200 

7.2 RECOMMENDATIONS FOR FURTHER STUDY 	 203 

REFERENCES 	 204 

APPENDIX-A DISPERSION DATA OF TESTS CONDUCTED IN 	 211 
LABORATORY CHANNELS 

A.1.1 Laboratory Experiment Data - Series 2600 
	

211 

A.1.2 Laboratory Experiment Data - Series 2700 
	

213 

APPENDIX-B DISPERSION DATA OF TESTS CONDUCTED IN RIVERS 	214 

B.1.1 Missouri River Experiment Data 	 214 

B.1.2 Rhine River Experiment Data 	 214 

B.1.3 Colorado River Experiment Data 	 219 

B.1.4 Mimram River Experiment Data 	 220 

B.1.5 Uvas Creek Experiment Data 	 221 

B.1.6 Huey Creek Experiment Data 	 224 

APPENDIX-C FORTRAN PROGRAM LISTING 	 227 

xi 



LIST OF TABLES 

Table No. 	 Title 	 Page No. 

Table 2.1 	The empirical equations for estimation of dispersion 	32 
coefficient 

Table 3.1 	Results showing the limiting DL estimated from numerical 	59 
experiments and determined using the applicability criterion 
equation 

Table 3.2 	Results of the sensitivity analysis for the dispersion 	67 
coefficient 

Table 3.3 	The effect of variation of ix on the solution of the AD- 	69 
VPM model. 

Table 3.4 	Summary of the calibration results of Di, for the data series 	73 
2600 laboratory experiments 

Table 3.5 	Summary of the calibration results of DL for the data series 	74 
2700 laboratory experiments 

Table 3.6 	Hydro-geometric characteristics of the Missouri River reach 	78 
(Yotsukura et al., 1970) 

Table 3.7 	Dispersion coefficient and Nash-Sutcliffe criterion for 	80 
different sub-reaches of Missouri River 

Table 3.8 	Hydro-geometric characteristics of the Rhine River reach 	82 
(Van Mazijk, personnel communication) 

Table 3.9 	Steady State Gain at sampling stations on Rhine River 	83 

Table 3.10 Dispersion Coefficients for different reaches of River Rhine 	84 

Table 3.11 Summary of the characteristics of the simulated and 	85 
observed C-t curves of the Rhine River 

Table 3.12 Dispersion coefficients for different sub-reaches of the 	87 
Grand Canyon reach in the Colorado River during steady 
flow 

xii 



Table No. 	 Title 	 Page No. 

Table 4.1 	Configurations of hypothetical channel 	 105 

Table 4.2 	Results showing the reproduction of peak concentration and 	109 
its time of occurrence for hypothetical test case 

Table 4.3 	The range of velocities, DL and limiting DL for the 	110 
hypothetical channels 

Table 4.4 	Results showing the reproduction of peak concentration and 	110 
its time of occurrence for hypothetical test case for peak flow 
of 500m3/s used in Eqn. (4.25) 

Table. 4.5 	Mass conservation results for solute transport under unsteady 	114 
flow conditions 

Table 4.6 	Results for the hypothetical channel with B=100m for 	120 
different hypothetical loading cases 

Table 4.7 	Channel characteristics corresponding to the discharge of 	125 
680m3/s (Graf, 1995) 

Table 4.8 	Classification of the Grand Canyon reach, Colorado River 	125 
(Camacho, 2000) 

Table 4.9 	Manning's roughness coefficient calibration and verification 	129 
results 

Table 4.10 The summary of calibrated values of tv 	 131 

Table 4.11 Observed and predicted dispersion characteristics during 	133 
unsteady streamfiow in Colorado River 

Table 6.1 	Summary of the results for the determination of limiting 	161 
criterion of ATS model to reproduce the TS model solution 

Table 6.2 	Limiting value of a, computed using Eqn. (6.3) and from 	166 
Numerical experiments for given U, 0, Dts, and limiting Dlis 

Table 6.3 	The hydro-geometric characteristics and the parameters for 	169 
Mimram tracer experiment (Lees et al., 2000) 

Table 6.4 	The magnitude of X, DLLs, and limiting Dus  based on 	169 
parameter values given by Lees et al. (2000)- Mimram river 

Table 6.5 	Estimated values of the parameter using the ATS-VPM model 	172 
and the value of ri at site B and site C 



Table No. 	 Title 	 Page No. 

Table 6.6 	The flow characteristics and simulation parameters of the 	174 
experiments in the Uvas creek (Bencala and Walters, 1983) 

Table 6.7 	ATS-VPM parameters and the limiting criterion values for 	175 
Uvas Creek 

Table 6.8 	Configurations of hypothetical channel 	 179 

Table 6.9 	Peak concentration and its time of occurrence for hypothetical 	180 
test studies 

Table 6.10 	Area and velocity at different locations given by Runkel et al., 	186 
(1998) 

Table 6.11 	Parameters used for flow routing (Runkel et al., 1998) 	187 

Table 6.12 	The TS model parameter values of the reaches of Huey Creek 	188 
given by Runkel et. al. (1998) 

Table 6.13 	The computed values of Das  (Eqn. 5.18) and limiting DLts 	188 
(Eqn. 6.2) values for the reaches of Huey creek 

Table A 1.1 Time-Concentration data -Series 2600 	 211 

Table A 1.2 Time-Concentration data -Series 2700 	 213 

Table B 1.1 Distribution of cross-sectional average dye concentration with 	215 
time, Missouri River, November 1967 

Table B 1.2 Distribution ofcross-sectional average dye concentration with 	216 
time,-River Rhine, June, 1991 
(Van Mazijk, personnel communication). 

Table B 1.3 The bed slope in different sub-reaches 	 219 

Table B 1.4 Time-concentration data from experiments on the Uvas Creek 	222 
(Bencala and Walters, 1983) 

Table B 1.5 Inflow Hydrograph for Huey creek (Runkel et al., 1998) 	225 

Table B 1.6 Distribution of cross-sectional average Li concentration with 	225 
time, Huey creek (Runkel et al., 1998) 

xiv 



LIST OF FIGURES 

Figure No. 	Title 	 Page No. 

Figure 1.1 	Modelling Approach 	 10 

Figure 2.1 	Conceptualisation of the river reach (top) by the ADZ model 	24 
(bottom) 

Figure 2.2 	Solute transport in streams and river affected by transient 	27 
storage mechanism (Source: Worman, 2000) 

Figure 3.1 	Definition sketch of the Muskingum solute routing reach 	50 

Figure 3.2(i) 	Analytical solution and AD-VPM solution for U=0.35m/s, 	60 
X=3 km, Nr=15 (a) DL=32m2/s, (b)DL=60m2/s, and 	(c) 
DL=120m2/s 

Figure 3.2(ii) Analytical solution and AD-VPM solution for U=1.0m/s, 	61 
X=6km, Nr=30 (a) DL=60m2/s, (b) DL=200m2/s, and 	(c) 
DL=500m2/s 

Figure 3.2(iii) Analytical solution and AD-VPM solution for U=1.75m/s, 	62 
X=9km, Nr=45 (a) DL=200m2/s, (b) DL=700m2/s, and 	(c) 
DL=2500m2/s 

Figure 3.2(iv) Analytical solution and AD-VPM solution for pulse input at 	63 
different downstream distances for U=1.0m/s and 
DL=250m2/s 

Figure 3.3 	Applicability domain of the AD-VPM model 	 64 

Figure 3.4(i) 	Sensitivity of the AD-VPM solution for variations in DL by 	66 
±20% in reproducing the analytical solution at X=5km for 
U=0.5m/s, DL=50m2/s 

Figure 3.4(ii) Sensitivity of the AD-VPM solution for variations in DL by 	66 
±20% in reproducing the analytical solution at X=10km for 
U=1.0m/s, DL=120m/s 

Figure 3.5(i) 	Analytical solution and AD-VPM solution for different 	68 
number of reaches (Nr) at X=Skm, U=0.25m/s and 
DL=3 0m2/s 

Figure 3.5(ii) Analytical solution and AD-VPM solution for different 	68 
number of reaches (Nr) at X=15km, U=1.0m/s and 
DL=200m2/s 

xv 



Figure No. 	Title 	 Page No. 

Figure 3.6 	AD-VPM application to Fischer (1966) data series 2600 	73 

Figure 3.7 	AD-VPM application to Fischer (1966) data series 2700 	75 

Figure 3.8 	Schematic study reach, Missouri River between Sioux City, 	77 
Iowa, and Plattsmouth, Nebraska (Yotsukura et al., 1970). 

Figure 3.9 	Observed and simulated C-t curves at different downstream 	80 
stations in Missouri River 

Figure 3.10 	Schematic study area, channel discretisation and location of 	81 
dye sampling sites (Source : Camacho, 2000) 

Figure 3.11 	Observed and simulated C-t curves at different downstream 	85 
stations in Rhine River 

Figure 3.12 	Schematic study area, channel discretisation and location of 	86 
dye sampling sites of Colorado River (Graf, 1995) 

Figure 3.13 	Observed and simulated C-t curves at different downstream 	88 
stations in River Colorado 

Figure 3.14(i) Analytical and AD-VPM solutions for U=0.45m/s, 	91 
DL=227.6m2/s, X=4.0km 

Figure 3.14(ii) Analytical and AD-VPM solutions for U=0.1m/s, 	91 
DL=54.7m2/s, X=2.0Icm 

Figure 4.1 	Definition sketch of the Muskingum flow routing reach 	97 

Figure 4.2 	The solution algorithm for the AD-VPM model under 	102 
unsteady streamflow conditions 

Figure 4.3(i) 	SVE-AD and AD-VPM solution for (1)=0.058, channel type C- 	107 
1, at 10, 20 and 30km downstream from source of solute 

Figure 4.3 (ii) SVE-AD and AD-VPM solution for (1)=0.116, channel type C- 	107 
1, at 10, 20 and 30km downstream froth source of solute 

Figure 4.4(i) 	SVE-AD and AD-VPM solution for (1)=0.058, channel type C- 	107 
2, at 20 and 30km downstream from source of solute 

Figure 4.4(ii) SVE-AD and AD-VPM solution for (1)=0.116, channel type C- 	108 
2, at 20 and 30km downstream from source of solute 

Figure 4.5(i). 	SVE-AD and AD-VPM solution for (1)=0.058, channel type C- 	108 
3 at 10, 20, and 30 km downstream from source 

xvi 



Figure No. 	Title 	 Page No. 

Figure 4.5(ii) SVE-AD and AD-VPM solution for 4)=0.116, channel type C- 	108 
3 at 10, 20, and 30 km downstream from source of solute 

Figure 4.6(i) 	SVE-AD and AD-VPM solutions for 4)=0.058, channel type 	109 
C-4 at 20km and 40km downstream from source of solute 

Figure 4.6(ii) SVE-AD and AD-VPM solutions for 4=0.116, channel type 	109 
C-4 at 20km and 40km downstream from source of solute 

Figure 4.7(i) 	Flow details for channel type C-1 for If  = 500m3/s along with 	111 
input C-t curve 

Figure 4.7(ii) SVE-AD and AD-VPM solutions at 20km and 40km 	111 
downstream from source for channel type C-1 and the loading 
shown in 4.7(i). (a) 4) =0.058, (b) (1) =0.116 

Figure 4.8(i) 	Flow details for channel type C-3 for /1.= 500m3/s along with 	112 
input C-t curve 

Figure 4.8(ii) SVE-AD and AD-VPM solutions at 20km and 40km 	112 
downstream from source for channel type C-3 for the loading 
shown in 4.8(i). (a) 4) =0.058, (b)4) =0.116 

Figure 4.9(i) 	Inflow and outflow hydrographs with input concentration 	116 
distribution located in the rising limb of hydrograph (C-4, 
Case A) 

Figure 4.9(ii) Inflow and outflow hydrographs with input concentration 	116 
distribution located in the rising limb of hydrograph (C-2, 
Case B) 

Figure 4.9(iii) Inflow and outflow hydrographs with input concentration 	116 
distribution located in the receding limb of hydrograph (C-4, 
Case C) 

Figure 4.10 (i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 	117 
input of solute for channel type C-2, 4=0.058 (Case A) 

Figure 4.10(ii) SVE-AD and AD-VPM solutions at 20km and 40 km d/s 	117 
from input of solute for channel type C-4,4)=0.116 (Case A). 

Figure 4.11(i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 	117 
input of solute for channel type C-2, 4)=0.116 (Case B) 

Figure 4.11(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 	118 
Input of solute for channel type C-4,4)=0.116 (Case B) 

xvii 



Figure No. 	Title 	 Page No. 

Figure 4.12(i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 	118 
input of solute for channel type C-2,4)=0.116 (Case C(i) ) 

Figure 4.12(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 	118 
input of solute for channel type C-4,4)=0.116 (Case C(i)) 

Figure 4.13(i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 	119 
input of solute for channel type C-2,4)=0.116 (Case C(ii)) 

Figure 4.13(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 	119 
input of solute for channel type C-4,4)=0.116 (Case C(ii)) 

Figure 	SVE-AD and AD-VPM solutions at 20km and 40km d/s from 	119 
4.13(iii) 	input of solute for channel type C-4,4)=0.3 (Case A) 

Figure 4.14 	Observed hydrograph and the associated observed Dye 	122 
concentration at the sampling sites for the unsteady flow 

Figure 4.15 	Observed and simulated (in calibrating Manning's n) 	127 
hydrographs at the different streamflow gauging stations 

Figure 4.16 	Observed and simulated (in verification of Manning's n) 	128 
hydrographs at different streamflow gauging stations 

Figure 4.17 	Observed and computed C-t curves at different sampling 	132 
locations under unsteady flow conditions — Colorado River 

Figure 5.1 	Definition sketch of the Muskingum solute routing reach 	150 

Figure 5.2 	The solution algorithm of the ATS-VPM method under 	154 
unsteady streamflow conditions 

Figure 6.1 	Solutions of ATS and TS models for U=0.125m/s, 13=0.25 at 	160 
x = 2km and 4km, a) a=0.00025/s, b) a=0.00035/s 

Figure 6.2 	Solutions of ATS and TS models for a=0.000075/s, 	161 
U=0.5m/s,13=0.05 at x=5 km and 10km 

Figure 6.3 	Solutions of ATS and TS models for a=0.0005/s, U=0.5m/s, 	161 
13=0.5 at x=5 km 

Figure 6.4 	Solutions of ATS and TS models for a=0.00035/s, 	161 
U=0.75m/s, 0=0.25 at x=5 km 

Figure 6.5 	Solutions of ATS and TS models for a=0.0006/s, U=0.75m/s, 	162 
13=0.75 at x=5 km 

xviii 



Figure No. 	Title 	 Page No. 

Figure 6.6 	Effect of cc on the solute transport in the presence of transient 	162 
storage zone mechanism for U=1.0m/s, 0=0.75 at x=5 km 

Figure 6.7 	Solutions of ATS and TS models for a=0.000075/s, 	162 
U=0.125m/s, 0=0.25 at x=2 km 

Figure 6.8 	Solution of ATS model and ATS-VPM model for 	167 
a=0.000075/s, 0=0.1, U=0.75m/s, Du=30m2/s, at x=41cm and 
8km 

Figure 6.9 	Solution of ATS model and ATS-VPM model for 	167 
oc=0.00005/s, 0=0.1, U=0.5m/s, Dts=7.5m2/s, at x=2km, 4km 
and 10km 

Figure 6.10 	Solution of ATS model and ATS-VPM model for a.=0.0002/s, 	167 
0=0.3, U=0.5 m/s, Dis=10m2/s, at x=2.61cm and 51cm 

Figure 6.11 	Solution of ATS model and ATS-VPM model for a=0.0003/s, 	168 
0=0.5, U=1.0m/s, Dts=2.5m2/s, at x=4km and 6km 

Figure 6.12 	Solution of ATS model and ATS-VPM model for 	168 
a=0.00025/s, 0=0.5, U=0.5m/s, Dth=2.5m2/s, at x=2km and 
4km 

Figure 6.13 	Observed and simulated concentration at sites B and C using 	170 
ATS-VPM model and TS parameters given by Lees et al. 
(2000) - Mimram-River 

Figure 6.14 	Observed and simulated concentration at sites B and C using 	172 
AD-VPM model - Mimram River 

Figure 6.15 	Observed and simulated concentration at sites B and C using 	172 
ATS-VPM model - Mimram River 

Figure 6.16 	Observed and simulated concentration-time profiles at 	176 
different sections downstream of the pulse injection-Uvas 
Creek 

Figure 6.17 	Solutions of SVE-TS and ATS-VPM model for (1)=0.058, 	182 
0=0.3, at x=20km and 40km d/s from solute source (Channel 
type-2) 

Figure 6.18 	Solutions of SVE-TS and ATS-VPM model for 	182 
a=0.000075/s, (1)=0.058, 0=0.5, at x=20km and 40km d/s from 
solute source (Channel type -2) 

xix 



Figure 6.30 

Title 	 Page No. 

Solutions of SVE-TS and ATS-VPM model for a=0.0005/s, 	183 
4)=0.058, 13=0.5, at x=201cm and 40km d/s from solute source 
(Channel type -2) 

Solutions of SVE-TS and ATS-VPM model for 183 
a=0.000075/s, (3=0.3, at x=20km and 40km d/s from solute 
source (Channel type -1) 

Solutions of SVE-TS and ATS-VPM model for a=0.0001/s, 	184 
4)=0.116,13=0.75, at x=20km and 40km d/s from solute source 
(Channel type -2) 

Solutions of SVE-TS and ATS-VPM model for 4)=0.025, 	184 
0=0.5, at x=201cm and 40km d/s from solute source (Channel 
type -1) 

Solutions of SVE-TS and ATS-VPM model for a=0.0003/s, 	185 
(1)=0.05,13=0.75, at x=20km and 40km d/s from solute source 
(Channel type-1) 

Map of Huey Creek showing tracer sampling and streamflow 	185 
measurement stations (Runkel et al., 1988) 

Inflow hydrograph for Huey creek at x-Om computed by 	189 
Runkel et al. (1998) 

Simulated and observed Li concentrations at d/s sampling 	189 
locations — Huey Creek 

Numerical solution of TS model showing oscillations during 	190 
advection dominated solute transport at x=51cm for U=0.5m/s, 
a=0.000075/s, 13=0.25 

Variation of D1  with the variation of (3 for different values of 
	

191 
a for a given value of U=1m/s, and Dts=10m2/s 

Solutions of ATS and ATS-VPM models for a=0.00001/s, 	192 
13=0.1, U=0.lm/s, and Dts=15.0m2/s at a distance of x=lkm 
and 2km 

Solutions of ATS and ATS-VPM models for a=0.000075/s, 	192 
13=0.3,11=0.5m/s, and Dts=5.0m2/s at a distance of x=2km and 
4km 

Relation between the % attenuation and exchange coefficient 	196 
(a), (a)4)=0.05, 13=0.5, (b) 4)=0.025, 13=0.3 

Figure No. 

Figure 6.19 

Figure 6.20 

Figure 6.21 

Figure 6.22 

Figure 6.23 

Figure 6.24 

Figure 6.25 

Figure 6.26 

Figure 6.27 

Figure 6.28 

Fig. 6.29(i) 

Fig. 6.29(ii) 

xx 



NOTATIONS 

A 	cross-sectional area of flow, [L2]; 

A 	storage zone cross-sectional area normal to the flow, [L2]; 
A(I1) 	polynomial in z'1; 

A' 	area at four nodes,[L2]; 
B 	width of the channel, [L]; 
B(11) 	polynomial in 11; 

C 	cross-sectional averaged concentration, [ML-3]; 

C 	mean concentration of solute in the cell, [ML-3]; 

Ca 	mean concentration of solute in the main stream, [ML-3]; 

Cb 	initial concentration, [ML-3]; 

Cc , 	 I •th computed concentration ordinate, [MO]; 

Cd 	 mean concentration of solute in the dead zone, [MO]; 

inflow concentration of solute, [ML-3]; 

C10 	concentration of solute in injected solution, [ML-3]; 

Co 	output concentration of solute, [ML -3]; 

CObj 	 ith  observed concentration ordinate, [ML-3]; 

Cob, 	mean of the observed concentration ordinates, [ML"3]; 

C p 	peak concentration,[ML-3]; 

C s 	cross-sectional averaged concentration in the storage zone, [MI:3  

C(0, t) 	concentration of solute at x=0 and time,t, [ML-3]; 

C(x,,t)and C(x2 ,t) concentration of solute at distances x, and x2  at time t, [ML-3]; 

C(x, 0) 	concentration of solute at distance x and time t = 0, [ML-3]; 

C(x, t) 	concentration of solute at distance x and time t, [ML'3]; 

sp 	concentration in side pockets, [ML-3]; 

Ck 	 wave celerity, [LT2]; 

Df 	flow diffusion coefficientAL2T]; 

xxi 



DL 	longitudinal dispersion coefficient, [L2T-1]; 

DLs 	longitudinal dispersion coefficient in DZ model, [L271]; 

Dus 	ATS dispersion coefficient, [L2T-1]; 

Dts 	longitudinal dispersion coefficient in the main channel in TS model, 
[L2T1 ]; 

DF 	dispersive fraction; 

d/s 	downstream 

FM 	Froude number at the middle of the reach Ax; 

G1,G2 and G3 Muskingum coefficients for flux routing; 

g 	acceleration due to gravity, [LT-2]; 

ga 	adsorbed solute mass per unit volume in storage zone, [M1;3]; 

ga 	dissolved solute mass per unit volume in storage zone, [ML-3]; 

Ib 	initial steady flow, [L3T-1]; 
Ip 	peak flow, [L3T-1]; 

space discretisation index; 
j 	 time discretisation index; 

Kc 	reach travel time of solute of the AD-VPM model, [T]; 

reach travel time of solute of the ATS-VPM model, [T]; 

K f 	reach travel time in the Muskingum flow routing method, [T]; 

K m 	reach travel time in the Muskingum flux routing method, [T]; 

L 	characteristic length of the reach, tix, [L]; 

LB 	overall bend length measured along the centerline of the channel, [L]; 
M 	mass of conservative solute, [M]; 
Mr 	mass flow rate of conservative solute past a section, [MT'']; 

m 	constant (=2/3 for Manning's friction law and =1/2 for Chezy friction law); 

N, 	Courant number; 

Nci 	number of sub-reaches; 
Nr 	number of sub-reaches; 
n 	total number of ordinates; 
P 	wetted perimeter, [L]; 

Pe 	Peclet number; 

Q 	rate of flow, [L31-1]; 

rate of inflow, [L3T-1]; 



Qo 	rate of outflow, [L3T4]; 

q 	lateral flow rate per unit length, [L3T4L4]; 
q, 	discharge per unit width of channel, [L3T4L4]; 
R 	hydraulic radius, [L]; 
r 	 radius of the pipe, [L]; 
re 	radius of curvature of bend, [L]; 
S 	storage of flow in the reach, [L3]; 
Se 	mass storage per unit volume in the reach; 

So 	bed slope; 

Sf 	friction slope; 

T,. 	residence time parameter, [T]; 

travel time, [T]; 
t 	 temporal co-ordinate,[T]; 

and t2 	mean times of passage of tracer cloud at measuring stations located at 

longitudinal distance xl  and x2  from the section of solute injection, [T]; 

tp 	time to peak flow, [T]; 
tcp 	 time to peak concentration,[T]; 
U 	ensemble mean cross-sectional velocity, [LT4]; 
U' 	mean of velocities at four nodes, [LT4]; 
U. 	shear velocity, [LT4]; 

Ua 	actual velocity measured in the river, [LT"']; 
Ur 	velocity in the representative trapezoidal cross-section, [LT4]; 
u' 	deviation of velocity from the cross-sectional mean velocity, [LT4]; 
V 	volume of each cell, [L3]; 

Vro 	volume of injected solution, [L3]; 

x 	notation denoting longitudinal distance co-ordinate, [L]; 
y 	depth of flow, [L]; 

Ym 	maximum depth, [L]; 

Yd 	 dead zone depth in the channel, [L]; 

Yn 	 normal depth of flow in the main channel, [T]; and 

z 	back shift operator; 



Symbols 

erfc(z) 	complimentary error function; 

ratio of the storage area to the main channel area; 

Von Kaman's coefficient; 

(°1:1 ,W K 2 and con  Muskingum coefficients for the exponential scheme; 

s2 and e3  Muskingum coefficients for flow routing; 

,o2 , and (03  coefficients of the AD-VPM model routing equation; 

, o.)„,2 , and coo  coefficients of the ATS-VPM routing equation; 

relational constant; 

rl 	Nash-Sutcliffe's criterion; 

velocity conversion coefficient; 

skewness factor for concentration distribution; 

skewness factor for flow distribution; 

O f 	weighting parameter of the Muskingum flow routing method; 

Oc. 	weighting parameter of the AD-VPM model; 

Oct, 	weighting parameter of ATS-VPM model; 

0„, 	weighting parameter of flux routing; 

2■, 	applicability criterion parameter; 

Er 	transverse mixing coefficient, [LT"2]; 

a 	 stream storage exchange coefficient, [T-1]; 

ad 	 mass exchange coefficient between the main flow and the dead zone, [T-1]; 

time variable, [T]; 

d 	 time delay, [T]; 

ra 	ratio of the interfacial area between the mainstream and dead zone to the 

mainstream volume; and 

td 	ratio of the interfacial area to the dead zone volume; 

dummy variable; 

At 	routing time interval, [T]; and 

Ax 	reach length, [L] 

The other notations have been described in the section as they first appear. 

xxiv 



Chapter 1 

INTRODUCTION 

1.1 GENERAL 

In recent years, with the increasing industrialisation and urbanisation, 

generation of waste has increased manifold. Rivers have been traditionally used as 

sinks for waste disposal with or without treatment. This has resulted in the 

deterioration of water quality in many rivers in recent times because of the limited 

capacity of these rivers to assimilate the pollutants without endangering the 

associated ecosystem. Moreover, the inadvertent usage of fertilizers, pesticides and 

herbicides in agriculture and their consequent deterioration in quality of return 

flows is becoming an added problem while dealing with the water quality., 

management of rivers. Therefore, to keep the waste disposal within the self-

purification capacity of a river, it is necessary to know the transport characteristics 

of the pollutants disposed off into a river. Hence, acquisition of knowledge of the 

pollutant transport in rivers has been at the forefront of research for determination 

of pollutant concentration along the river courses and for regulating disposal of 

pollutants in rivers. During the solute transport in a river, the flow of water may be 

(i) steady and uniform, or (ii) steady and non-uniform or (iii) unsteady. Wastes in 

water are generally characterised by various fornis of 01h-it-ants. Solute is defined 

as any dissolved substance or entity (pollutant such as pesticides, hydrocarbons, 

trace elements etc.) in a fluid solvent (herein water). The solute transport along a 

river course may be classified into three—dimensional, two-dimensional and one-

dimensional processes based on the mixing mechanism. The solute transport process 

is (i) three—dimensional in the near—field where the advection and dispersion occur 

in vertical, transverse and longitudinal directions, (ii) two-dimensional in the mid- 
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field where the advection and dispersion are predominant in transverse and 

longitudinal directions, and (iii) one-dimensional in the far-field where the 

advection and dispersion are primarily important in longitudinal direction only. 

Near-field and mid-field together are commonly referred to as advective zone or 

initial mixing zone or convective zone and the far-field is commonly referred to as 

dispersive zone or equilibrium zone. Present study deals with the study of one-

dimensional (longitudinal) transport of conservative solutes in rivers. 

Over the past two decades, a number of approaches have been developed to 

study the one-dimensional transport of pollutant in solute form in rivers (Taylor, 

1954; Elder, 1959; Fischer, 1968; Banks, 1974; Beltaos, 1982; Jirka, 1982; Bencala 

and Walters, 1983; and Beer and Young, 1983).' Further, most of the studies on 

solute transport to date pertain to the periods of low flow in which flow in rivers 

may be assumed steady (Runkel et al., 1998). 

This chapter , presents (i) a brief description of solute transport studies in 

rivers under steady flow conditions, (ii) the relevance of solute transport in rivers 

under unsteady flow conditions, (iii) a brief description of solute transport studies 

under unsteady flow conditioris, and the scope of the present study, (iv) the 

objectives of the present study, and (v) the details of the organization of the thesis. 

1.2 BACKGROUND 

Brief background pertinent to the solute transport study is presented in the 

following sections. 

1.2.1 Studies on Solute Transport Under Steady Flow Conditions 

Several researchers have studied solute transport in open channels under 

steady flow conditions using Advection-Dispersion (AD) model and its 

modifications (Elder, 1959; Fischer, 1968; Liu and Cheng, 1980; Beltaos, 1982, 
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Koussis, 1983, and Komatsu et al., 1997). Experimental studies by Godfrey and 

Frederick (1970), Nordin and Sabol (1974), and Day (1975) show that the AD 

equation fails to simulate the observed concentration time profiles (C-t curves), 

particularly with long tails, of rivers with dead zones or transient storage zones. In 

an attempt to explain the observed long tails in C-t curves, some researchers have 

postulated Dead Zone (DZ) model (Thackston and Krenkel, 1967; and Valentine 

and Wood, 1977), Transient Storage (TS) or One-dimensional Transport with 

Inflow and Storage (OTIS) model (Bencala and Walters, 1983; and Runkel, 1998), 

and Aggregated Dead Zone (ADZ) model (Beer and Young, 1983). Among these 

alternative approaches, Transient Storage model is the one which suitably 

incorporates the dead zone concept, considered as responsible for the development 

of elongated tails in observed C-t curves (Bencala and Walters, 1983). The 

analytical solution of the governing equations of the TS model is not possible 

(Nordin and Troutman, 1980; and Czernuszenko and Rowinski, 1997). Complex 

numerical solution schemes are necessary to solve the governing equations of the 

TS model simultaneously. Therefore, it may be desirable in practice to have a 

simplified model, which serves the same purpose as the TS model. In an attemptto 

simplify the DZ model formulation, the ADZ model, which is a conceptual 

approximation to the DZ model, was developed (Beer and Young, 1983). 

The flow in rivers• is usually non-uniform due to variations in channel 

cross-sections, bed slope and channel roughness, which play an important role in 

the flow transport and solute transport phenomena (Wallis, 1994). Recognising the 

importance of streamflow variability on solute transport, Li and Zhou (1997), 

Zoppou and Knight (1997), Guymer (1998), and Ranga Raju et al. (1997) studied 

the longitudinal dispersion under steady and non-uniform flow conditions. Thus, 

majority of the models developed so far is suitable for longitudinal dispersion of 

solute under steady flow conditions only. 
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1.2.2 Need to Study Solute Transport in Rivers Under Unsteady Flow Conditions 

Often the major mechanisms of water quality and ecological change in rivers 

are closely linked to seasonal flow conditions in river (steady or unsteady flow) and 

in-stream mixing mechanisms (Orlob, 1983). Several situations arise in practice in 

which solute transport under unsteady flow conditions is important, such as 

(i) Water quality disruptions in rivers during storms resulting from a 

combination of point discharges of accumulated urban waste and persistent 

lateral inflow from non-point sources. The input rates are often quite high 

and of relatively short duration. Further, the interaction of basin topography 

and storm pattern may result in several flood waves during a storm. In order 

to determine the permissible waste loads, it is necessary to predict the water 

quality disruptions caused by storms (Bedford et al., 1983). 

(ii) Streams affected by mine drainage and acid rain as well as large 

geo-chemical changes occurring in response to rainfall and snowmelt events 

(Runkel et al., 1998). 

(iii) Operation of water and wastewater treatment facilities wherein the operation 

cost can be significantly reduced by planning the waste disposal in 

accordance with the flow variation in a river. This is particularly important 

during monsoon season and could be effectively utilised in situations where 

it may be quite expensive to treat the wastewater from different sources. 

1.2.3 Studies on Solute Transport Under Unsteady Flow Conditions 

Modelling unsteady flow transport and associated river water quality is 

essential in water resources and environmental studies for pursuing an effective 

application of river water quality management and control (Orlob, 1983; and 

Thomann and Mueller, 1987). Many researchers (Whitehead et al., 1979,1981; 

Runkel, 1998; and Camacho, 2000) have foreseen the need, advantages, and 
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increased capabilities of developing a time-varying water quality perspective to 

address intrinsically dynamic water quality problems. Flow and solute transport 

models provide the time scales of system residence times that govern physical, 

biological and chemical interactions. Therefore, rigor in the descriptions of solute 

transport process under time varying flow condition should not be neglected or 

underestimated. However, if the time varying flow is considered along with 

transient storage mechanism in a river, then the governing equations become still 

more complex. Therefore, it would be desirable to develop simplified models 

considering the effects of transient storage in solute transport process. 

Studies on longitudinal dispersion of pollutant under unsteady flow 

conditions in rivers are much less compared to the studies of pollutant dispersion 

during steady flow because of the complexities involved in modelling the 

phenomena. During unsteady flow, pollutant transport is dominated by advection 

process and solute concentrations are more of a consequence of advection, rather 

than dispersion (Bedford et al., 1983). The problem of less understood pollutant 

transport in time-varying flow regime was studied using coupled flow and transport 

models (Keefer and Jobson, 1978; Price, 1982; Runkel et al., 1998; Gabriele and. 

Perkins, 1998; and Camacho, 2000). Graf (1995), and Krein and Symader (2000) 

studied the dispersion phenomena by performing field experiments during unsteady 

flow. Pollutant transport phenomena under unsteady flow conditions requires better 

description of the flow transport as well. Accuracy of the mass transport model 

depends on the accuracy of the flow routing model. In flow routing studies the use 

of simplified methods to model flow transport is sufficient for many field conditions 

(NERC, 1975) besides the reason that these methods are simple to formulate, and 

more suitable for operational purposes. Further, problems associated with numerical 

solution techniques of the governing equations of the flow routing transport 

problems, such as numerical instability, oscillations and mass conservation are 

absent in simplified methods. 
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1.3 SCOPE OF THE PRESENT STUDY 

A physically based flood routing method, popularly known as the 

Muskingum method, has been widely used to model flood wave movement in 

streams and rivers. Several investigators have studied the Muskingum method and 

suggested its modifications (Cunge, 1969; Koussis, 1978; Ponce and Yevjevich, 

1978; and Perumal, 1994a). Koussis et al., (1983) presented an approach to model 

unsteady solute transport process in streams under steady flow conditions, using a 

Muskingum type method derived on the basis of the concept of matching the 

numerical dispersion with the physical diffusion of flood wave. Solute transport 

modelling in unsteady streamflows necessitates the selection of an appropriate flow 

routing model for proper understanding of the solute transport process. Variable 

Parameter Muskingum method (Perumal, 1994a), derived directly from the Saint-

Venant Equations (SVE), is one such method which has been selected to route the 

flow, in the present study. The solute transport process under unsteady `streamflow 

conditions can be studied appropriately, if the model structure adopted is same for 

both flow and transport phenomena. 

The model structures for solute routing and flow routing advocated by 

Koussis (1983) are the same. However, there are logical errors in the development 

of the solute routing method, which is derived using the concept of matched 

diffusivity approach employed in the Muskingum flow routing method. The logical 

errors arise due to the fact that while the concept of employing one-to-one 

relationship between stage and discharge is responsible for the development of flow 

routing equation (Koussis, 1983), the same concept cannot be employed for solute 

transport phenomenon, as there is no other variable available to relate with the 

concentration, as in the case of flow with the stage. Further, the AD equation 

governing the solute transport process has been developed using the analogy of the 

Fick's law, which states that the mass flux is proportional to the concentration 
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gradient, implying that the concentration gradient induces diffusion. Hence, 

adoption of a governing equation based on advection only (i.e. physical dispersion 

is absent) to describe the solute transport process in a manner similar to that of the 

governing equation describing the flow transport process as envisaged by Cunge 

(1969) and Koussis (1978), is not logically correct. Further, there are process 

description inadequacies and application problems commonly associated with most 

one-dimensional models that include the inability to simultaneously model solute 

transport and unsteady flow processes. In particular, previous attempts often do not 

clearly distinguish between different flow and solute transport residence times and 

propagation velocities. One of the reasons that the existing methods do not allow 

one to route both the flow and solute simultaneously, is that the flow and solute 

transport phenomena are solved using different numerical schemes, and, thereby, 

increasing the complexities. 

1.4 OBJECTIVES OF THE STUDY 

In the light of the scope for improvement of the existing methods of solute 

transport modelling under unsteady streamflow conditions, the major objective of 

the present study is to investigate the solute transport process in streams and rivers 

under unsteady flow conditions by developing physically based simplified methods. 

Only conservative solutes are considered in this study. 

The following are the objectives of the present study: 

1. To develop a simplified Advection-Dispersion equation governing the solute 

transport process in rivers under steady flow conditions, having a form same 

as that of the Approximate Convection-Diffusion equation governing the 

unsteady flow in rivers, and also to develop a solution algorithm for this 

simplified equation. 

2. To extend the above simplified model for simulating solute transport process 

in rivers under unsteady flow conditions. 
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3. To derive a simplified transient Storage model having a form similar to that 

of the Advection-Dispersion model, which is amenable to solution using 

simplified algorithms, and 

4. To develop a solution algorithm for this simplified transient storage model 

for simulating solute transport in rivers under steady as well as unsteady 

streamflow conditions. 

1.5 ORGANISATION OF THE THESIS 

The research work consists of development of simplified longitudinal 

dispersion solute transport models with and without considering transient storage 

mechanism in the transport process, under steady as well as unsteady flow 

conditions. The ability of these models to simulate solute transport process under 

unsteady flow conditions depends on the ability of the sub-components of these 

models in simulating 1) the solute transport process under steady flow conditions, 

and 2) the unsteady flow process in which the solute transport takes place. The 

suitability of these models to serve the respective intended purposes is tested using 

various data sets such as (i) hypothetical test data from analytical and numerical 

solutions, (ii) laboratory experimental data, and (iii) field data collected from 

experiments conducted in rivers and streams. In order to make it easy to 

comprehend the research work, models development and their extensions are 

discussed in separate chapters alongwith the applicability analysis. Figure 1.1 shows 

the modelling approach and its presentation in thesis. 

The research work on solute transport in rivers under unsteady streamflow 

conditions is presented in seven chapters as follows: 

Chapter 1: In this chapter a general introduction of the investigations carried out 

and background for the present research work is presented. 

Chapter 2: Solute transport process is explained in brief. It is followed by literature 

review focussing on the conservative solute transport under steady and unsteady 

streamflow conditions. Study of the solute transport under unsteady flow 
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conditions, requires the use of the flow routing model. Therefore, literature on flow 

routing, which is specifically relevant to the present study has been reviewed. Based 

on the literature review, conclusions with regard to the need for this research study 

are arrived at. 

Chapter 3: In this chapter, an approximate Advection-Dispersion equation, which 

governs conservative solute transport phenomenon under steady flow conditions has 

been developed from the AD equation. Using this approximate Advection-

Dispersion equation, the solute routing equation having a form similar to that of the 

VPM routing equation has been developed. The AD based VPM (henceforth, 

abbreviated as AD-VPM) model has been studied for solute dispersion under steady 

flow conditions and tested using hypothetical, laboratory and field data. 

Chapter 4: The AD-VPM model has been studied for solute transport under 

unsteady streamflow conditions and tested using numerical solution of coupled 

Saint-Venant Equations and AD (SVE-AD) model due to hypothetical input (SVE 

for flow routing and AD for solute transport), and also using the data of Colorado 

River. 

Chapter 5: An Approximate Transient Storage (ATS) model, which is a simplified 

form of the TS model for solute transport modelling has been developed. The 

analytical solution of the ATS equation is presented. Based on the developed ATS 

equation, solute routing equation similar to VPM (henceforth, abbreviated as ATS-

VPM) method has been developed. 

Chapter 6: The applicability criterion of the ATS model is developed by siniulating 

the complete solution of the TS model using the ATS-VPM model. The developed 

ATS-VPM model has been tested against the analytical solution of the ATS model 

and the field data under steady flow conditions, and against the numerical solution 

of SVE coupled with TS model for hypothetical input and the field data of Huey 

creek under unsteady flow conditions. 

Chapter 7:' The conclusions based on the study are presented. Recommendations for 

further research work are made. 
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Chapter 2 

LITERATURE REVIEW 

2.1 GENERAL 

In several branches of aquatic science, the need arises to predict the 

concentration of solutes being transported in rivers. Solute transport in rivers 

becomes one-dimensional when vertical and transverse concentration gradients are 

relatively insignificant. One-dimensional solute transport (often referred as 

longitudinal dispersion) involves two kinds of mechanisms, viz. advection and 

dispersion. Over the past two decades, different one-dimensional approaches have 

been developed that can represent the effects of solute transport phenomena in 

rivers in distributed and lumped manner. But, still there is no unified and widely 

adopted modelling approach to study the solute transport process. In this chapter, 

the state-of-the-art of modelling of one-dimensional solute transport under .steady 

and unsteady flow conditions in streams is reviewed. As longitudinal dispersion of 

solute under unsteady streamflow conditions is the main topic of research in the 

present study, this subject matter is discussed in more details. The review has been-,  

classified into three main categories as follows: 

i) Solute transport under steady streamflow condition, 

ii) Studies on dispersion-coefficient-,-and- 

iii) ' Solute transport under unsteady streamflow condition 

2.1.1 Solute Transport Process 

In a stream, when pollutant or solute is disposed, it is carried away from 

point of disposal by the current through a process termed advection, and it spreads 

out because of the process of dispersion. Advection is the bodily movement of a 

parcel of fluid resulting from an imposed current. Advection transports any solute 
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that may be dissolved or suspended. The spreading of solute or tracer resulting from 

the mixing of dissolved substances due to Brownian motion is termed as molecular 

diffusion. Turbulence or eddy diffusion refers to mixing of dissolved and fine 

particulate substances caused by microscale turbulence. The interaction of turbulent 

diffusion with velocity gradients caused by shear forces in water body causes a 

greater degree of mixing, known as dispersion. In flow region close to the point of 

solute disposal, termed as near-field, advection and dispersion are important in all 

three co-ordinate directions. In mid-field, once the solute has mixed uniformly over 

the complete channel depth, vertical concentration gradients are not important. In 

this mid-field zone the dispersion becomes two-dimensional, i.e., varying in 

longitudinal and transverse directions. In far-field; solute mixes uniformly over the 

entire channel cross-section. Beyond that point, vertical and transverse 

concentration gradients become relatively negligible, and so the solute transport 

process has been termed as one-dimensional or longitudinal dispersion. The laws of 

conservation of water mass, momentum, energy and mass of water quality 

constituents form the basis of most flow and- water quality models. Reynolds 

analogy states that transport of mass, momentum, and heat is analogous (Taylor, 

1954). Taylor (1953,1954) studied the diffusion process in pipes based on Fick's 

law of diffusion and Reynolds analogy. Taylor's analysis led to the suggestion that 

in stationary and homogeneous turbulence, turbulent diffusion could also be 

modelled using Fick's law analogy provided sufficient time has elapsed since solute 

injection. Since turbulence in irregular natural channels is seldom homogeneous or 

stationary, the theoretical models are only an approximation of reality. Based on 

Fick's gradient law analogy, the solute transport in near-field is governed by three-

dimensional advection-diffusion equation. In the mid-field, solute transport process 

is governed by two- dimensional advection-dispersion equation, obtained by 

averaging three-dimensional advection-diffusion equation over the depth. In the far- 
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field, attention can be focused on the rate at which the cross-sectional averaged 

concentration is advected downstream and dispersed longitudinally making it 

predominantly a one-dimensional process (Rutherford, 1994). The time period 

required for attaining uniform concentration distribution over the entire cross-

section is known as 'initial mixing time' or 'convective time', and the distance 

traveled is known as 'initial mixing zone or advective zone'. The period beyond 

convective zone is known as dispersive period, and the zone is called as dispersive 

zone or equilibrium zone. 

One-dimensional solute transport (often termed as longitudinal dispersion) 

has been modelled by averaging the three-dimensional advection-diffusion equation 

over the entire channel cross-sectional area to yield the one-dimensional Advection-

Dispersion equation in open channel (Orlob, 1983; and Rutherford, 1994), 

+ ac  u 1 a  (AD Tx - 	
) 

at 	E; L ax 
(2.1) 

where, C is the ensemble cross-sectional averaged concentration, [ML*3]; U is the 

ensemble mean cross-sectional velocity, [LT-1]; A is the cross-sectional area, [L2]; 

and DL is the longitudinal dispersion coefficient, (hence forth referred as dispersion 

coefficient) [L2T-I], x and t are the longitudinal distance and temporal coordinates, 

respectively-. • Using Eqn. (2.1) the advection-dispersion equation- --for---one-

dimensional solute transport in rivers under steady flow condition, i.e., when A, U, 

and DL are 'all constant with respect to time and distance, is expressed as 

ac 	ac 	82c 
at 

+ ax  =DL ax 2 	 (2.2) 

Equation (2.2) is generally referred as Advection-Dispersion (AD) equation. AD 

equation represents two kinds of transport mechanism, viz., advection represented 

by 
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ac ,ac —+U—=V 
at ax 

and dispersion represented by 

ac  D a2c  at 	L ax2 

Longitudinal dispersion arises because vertical and transverse shear carries 

the solute downstream more slowly near bed and banks than in mid-channel. 

Transverse shear velocity in a river channel makes a greater contribution to 

longitudinal dispersion of solute compared to vertical shear (Fischer et al., 1979). 

Following the study by Elder (1959), one-dimensional solute transport in 

rivers has been mainly studied using AD model. But other models such as Cells-in-

Series (CIS) model, Dead Zone (DZ) model, Transient Storage (TS) model, and 

Aggregate Dead Zone (ADZ) model have also been used. 

2.2 SOLUTE TRANSPORT UNDER STEADY FLOW CONDITIONS 

2.2.1 Advection-Dispersion Approach 

In 1921 Taylor published a classic paper in which he made a theoretical 

analysis of the spreading of a cloud of tracer particles released into stationary, 

homogeneous turbulence. This analysis remains even today the key to quantify 

turbulent diffusion. Taylor's analysis demonstrates that in stationary homogeneous 

turbulence, the variance of the tracer cloud increases linearly with time at 

asymptotically large times (Fischer et al., 1979). The assumptions of the Fickian 

model (Eqn. 2.2) are (Chatwin, 1980; and Chatwin and Allen, 1985): 

i) The solute cloud has been evolving for a sufficiently long time, 

ii) The turbulence is statistically stationary and homogeneous, 

iii) The flow cross-section is independent of x and t, and 

iv) The solute is passive or it has no effect on the flow. 

(2.3) 

(2.4) 
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Taylor's concept was extended by Elder (1959) to describe the dispersion of 

the pollutant or solute in the turbulent flow in open channels. Eqn. (2.2) has been 

used to simulate the variation of concentration with time (C-t curve) by solving it 

analytically and numerically. 

2.2.1.1 Analytical solution 

Analytical solution of the AD equation (Eqn. 2.2), for steady and uniform 

flow conditions in a river, and for uniform step input boundary condition 

(C(x,0) =0, and C(0, t)= C, ), popularly known as Ogata and Banks (1961) solution 

is expressed as 

C(x,t) 	C 	— Ut [ erfc[x Ux + 
(13 

e x rfc 

given 

+ Ut - (2.5) 

(2.6) 

2 	2 l\/571 

where erfc(z) is complimentary error 

z  exp (–e erfc(z) =1 — —2  So  

ex p 
L  

function 

21.07j 

by 

Analytical solution of the AD equation for an impulse injection of conservative 

solute mass M has been given as (Sayre, 1968) 

— 	 1 C(x, t) = 	, 	exp  (x —  Ut)2  
A.V42I L t 	4D L t 

(2.7) 

Analytical solution of the AD equation for uniform pulse input of duration, T, is 

given-by-Eqn. (2-.5)- for t < 7 and-fort > T, it is expressed as-(Kunkel, 1996)- 

C(x,t 

[erfc[ 
2 ljCt 

erfc x —U(t —  r)  
(t — 	r))1+ 

x —  U  ( 

exp — erfc [Ux  e ][ 	(  x +Ut  erfc  , (x +U(t – r)  
D, 	

) 
21/D (t 

Dispersion in open channel has been well studied by Fischer (1967,1968) 

presenting the dispersion mechanism, the pollutant concentration response 
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distribution (C-t curve), and the solution procedure to compute the dispersion 

coefficient. Fischer (1967) first recognized the importance of transverse velocity 

profiles. It was shown that longitudinal dispersion caused by the interaction of 

transverse velocity gradients and concentration completely dominates those caused 

by vertical velocity gradients. It has been shown (Fischer, 1968) that the one-

dimensional analysis is applicable only in the dispersive zone. Fischer (1968) 

obtained analytical solution of the AD equation (Eqn. 2.2). The observed C-t curve 

at a section located at a longitudinal distance xl  from the solute injection section is 

used as the initial tracer distribution. The C-t curve at a downstream section located 

at a distance x2  ( x2 > x, ) from the solute injection section is predicted using the 

solution given by Fischer (1968) and is expressed as 

C(x2, t) = f C(x, , t) exp dr 	(2.9) 
+00 

	

(U(i2  — — + 0)2 	 

where, C(x2 ,t) is concentration of solute at a distance x2  and at time t, C(x, ,t)is 

concentration of solute at a distance x, and at time t, U is the cross-sectional mean 

flow velocity, 1, and 12  are mean times of passage of tracer cloud at measuring 

stations located at longitudinal distance at x, and x2  from the section of solute 

injection, respectively. 

Analytical solution of the AD equation can be obtained only by making 

simplified assumptions. A generalised closed-form solution to this equation is not 

available. Due to mathematical complexities and availability of analytical solutions 

for specific solute input conditions only, as discussed above, numerical methods 

have been proposed by various researchers to solve the AD equation for practical 

cases employing various discretisation schemes. 

2.2.1.2 Numerical solution 

The AD equation, given by Eqn. (2.2), is a linear parabolic partial 

differential equation. Therefore, generally, the AD equation has been solved using 

4DL (t2 -1,) 	.147zDL  (t2  — 

16 



finite difference numerical methods. However, numerical solution of this equation 

is cumbersome and not accurate because of the generated numerical dispersion, 

which may be several times greater than the physical dispersion, and thus the 

solution may differ from the actual one. Numerical solutions have been given by 

several investigators, based on combined operator approach (Bella and Dobbins, 

1968; Stone and Brian, 1963; Keefer and Jobson, 1978; Jaque and Ball, 1994; and 

Ranga Raju et.al., 1997), and split operator approach (Holly and Preissmann, 1977; 

Koussis, 1983; Li, 1990; Schohl and Holly,1991; and Komatsu et al., 1997). In split 

operator approach, numerical solution of the AD equation is obtained through 

independent solution of advection (Eqn. 2.3) and dispersion (Eqn.2.4) equations. In 

combined operator approach, advection and dispersion processes of the AD 

equation (Eqn. 2.2) are solved together using a numerical method. Most of the 

numerical methods which solve the advective part of Eqn. (2.2) are generating 

artificial numerical dispersion in addition to the physical dispersion, and also 

causing oscillatory results (Jobson, 1980; and Islam and Chaudhry, 1997). Method 

proposed by Koussis et al. (1983) is devoid of artificial dispersion problem and it is 

able to simulate the advection dominated solute transport phenomena closely. As 

the solution approach adopted in the present study employs a routing equation of the 

Muskingum type, similar to the one used by Koussis et al. (1983), it is pertinent to 

dwell on the method proposed by Koussis et al. (1983) to solve AD equation. 

Koussis et al. (1983) proposed a procedure to solve the AD equation known 

as the Matched Advection Diffusion (MAD) scheme. It is based on the concept of 

matching the numerical dispersion (obtained by solving Eqn. (2.2), assuming 

dispersion coefficient equal to zero) with the physical dispersion given by the 

quotient of 82C/axe  . Koussis et al. (1983) obtained the following solute routing 

equation in a form similar to that of the well known Muskingum flood routing 
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equation given in the hydrology literature (Chow et al., 1988). 

Cij++11  = COKI 	WK 2  fij+1  WK 3  .Ci+i 
	 (2.10) 

in which i and j are the space and time discretisation indices respectively. 

Expressions for wic, AK2 , and a.K3  were given, based on the exponential scheme in 

which the input variation was assumed linear over the routing time interval At, as 

1— f3, 
c4)  K1 = 	PC N 

(2.11a) 

COK2  = 1 
1-QC 	 (2.11b) 

C 

Nc = = exp(  
1-9 

(2.11c) 

where, N, is the Courant number, (= At/K, ) and 0, is the weighting parameter. 

The travel time lc and 0, are expressed as 

Ke = (2.12) 

and 
-I 

 
9,=1—N, {ln[ 

 2D L  + (1 + Nc)U Ax (2.13) 
2DL  + (1— N, )L1 Ax 1} 

Though the solution equation given by Eqn. (2.10) is able to closely 

reproduce the specific analytical solution and some field observations (C-t curves) 

as demonstrated by Koussis et al. (1983), there are logical errors involved in the 

development of Eqn. (2.10). In mass transport process, the dispersive flux is 

proportional to the concentration gradient. The AD equation governing the solute 

transport process has been developed using the analogy of the Fick's law, which 

states that the presence of concentration gradient induces dispersion. Hence, the 

presence of concentration gradient aqax implies the presence of dispersion. 

Considering the presence of concentration gradient aC/ax and absence of 
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dispersion is not consistent with the logic of Fick's law. Further, the Matched 

Advection Diffusion (MAD) scheme proposed by Koussis et al. (1983) follows a 

concept similar to that employed in the Muskingum-Cunge method (Cunge, 1969) 

for flood routing, in which it is assumed that there is a one-to-one relationship 

between stage and discharge during the passage of floods. But the same concept is 

not applicable for solute transport in rivers, as there is no second variable, like 

stage, to relate with the solute concentration, C . Hence, there are logical in 

consistencies in the development of the solute routing method by Koussis (1983) 

while adopting the concept employed in the flow routing advocated by Cunge 

(1969). Koussis et al. (1983) claimed that his exponential numerical scheme of Eqn. 

(2.2) is better than the fractional numerical scheme advocated by Cunge (1969). 

Koussis et al. (1983) approach does not allow the usage of unequal temporal step 

sizes, as the weighting parameter is a function of spatial and temporal step sizes 

(Eqn. 2.13). 

Koussis et al. (1983) suggested that his routing procedure could be used to 

(i) approximately describe the AD processes in rivers with spatially variable 

characteristics by adjusting scheme parameters through spatial averaging to reflect 

changes in U, A, and DL over individual segments, and (ii) to accommodate 

variations of U with respect to time. But Koussis et al. (1983) did not consider these 

two extensions any further. 

The theoretical assumptions underlying the derivation of the AD equation 

ensures that, at asymptotically long times, the concentration distribution is 

Gaussian. The analytical or numerical solutions of the AD equation also result in 

Gaussian distribution. However, many observed data at long distances from the 

sources do not indicate a Gaussian shape as predicted by the AD model. The 

deficiencies of the AD model stimulated the investigators to develop alternative 

approaches including modification of the AD equation. 
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2.2.2 Cells-In-Series Model 

As an alternative to the AD model, Cells-in-Series (CIS) model has been 

developed to study the longitudinal dispersion (Banks, 1974; Stefan and 

Demetracopoulos, 1981; and Beltaos, 1982). The Cells-in-Series model 

conceptualises the river reach under consideration to be consisting of cells arranged 

in series having the same filling time T,.. The governing equation of the CIS model 

is a first-order ordinary differential mass transport equation expressed as (Banks, 

1974; and Stefan and DemetracopOulos, 1981) 

V d a;  = QC, —QC'; dt 
(2.14) 

where V is the volume of each cell, [L3]; Q is the rate of flow, [LT-3]; C1  is inflow 

concentration, Co  is average concentration in the cell. The basic assumption in CIS 

model is that the solute in a cell is thoroughly mixed over the entire volume of the 

cell. In other words, the outflow solute concentration of a cell is equal to the mean 

solute concentration within the cell. 

It was identified that the CIS model has a fixed relationship between number 

of cells, travel time of solute and dispersive properties (Beltaos, 1982; and 

Rutherford, 1994). The CIS model describes the dispersion properties, but does not 

reproduce the persistence skewness, which is usually observed in the C-t curves in 

rivers. Unknown number of cells are required to represent observed advection and 

dispersion characteristics in a single river reach. Stefan and Demetracopoulos 

(1981) studied the comparison of the CIS model and AD model. Stefan and 

Demetracopoulos (1981) also stated that further study on the relationships between 

number of cells and river hydro-geometric characteristics is needed. 

It is pertinent to point out herein that there exists a similarity between the 

form of the governing equation of the well known Muskingum flood routing method 

20 



and that of the characteristic reach of the CIS model. If the weighting factor is equal. 

to zero, the Muskingum method for flow routing gives an equation that is similar to 

the governing equation of the CIS model (Eqn. 2.14). Therefore, it can be inferred 

that the CIS model resembles as a special case of the Muskingum method, if rate of 

inflow and outflow are replaced by the input and output concentrations and the 

weighting factor is equal to zero. 

Godfrey and Frederick (1970), Nordin and Sabol (1974), and Day (1975) 

have investigated solute transport in rivers from an extensive series of experiments 

in rivers. Based on the experimental results, it is concluded that the observed C-t 

curves in most of the rivers are almost invariably skewed with steeper rising limbs 

and elongated tails. Moreover, in many solute transport experiments, it is observed 

that the variance of the C-t curves grows more rapidly, and the peak concentration 

attenuates more rapidly than predicted by the one-dimensional AD model (Nordin 

and Sabol, 1974; and Day, 1975). It is widely recognized that the AD model and the 

CIS model fail to simulate the long tails that are, in general, common features of the 

C-t curves observed in rivers. Hence, modified Fickian models have been developed 

to simulate the observed C-t curves. 

2.2.3 Modified Fickian Approach 

The failure of the AD and CIS models to simulate the observed 

concentration time distributions (C-t curves) in natural channels stimulated 

researchers to modify the AD model. Much of the past research work has been 

concerned with the development of appropriate modification in the AD equation to 

account for the observed non-Gaussian behaviour of dispersants and solutes by 

introducing one or more parameters in addition to the existing ones (Beltaos, 1980; 

and Liu and Cheng, 1980). Chatwin (1980) incorporated higher-order moments into 

the AD equation in order to quantify the skewness and kurtosis. But these models 
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fail to simulate the long tails satisfactorily even with the additional parameters (Liu 

and Cheng, 1980). A common method for simulating these long tails has been to 

allow for 'storage zones' or 'dead zones' along the stream channel which has been 

widely used in present day research. 

2.2.4 Dead Zone Model 

In an attempt to explain the skewness in observed C-t curves in rivers, some 

researchers postulated Dead Zone Models (Thackston and Krenkel, 1967; Thackston 

and Schnelle, 1970; and Valentine and Wood, 1977). In these formulations, the 

mechanism responsible for skewness has been incorporated in a dead zone equation 

in addition to the modified AD equation. The dead zone models are by nature the 

modified Fickian models. The governing equations of the Dead Zone models are 

(Nordin and Troutman, 1980; and Beer and Young, 1983) 

2  ac c  + u ac = D. a 	a  + ad  Fa  (Cd  — Ca) 	 (2.15a) at 	ar 	L ar2  

aC  d =ad rd(ca —cd) 

in which Ca  is the concentration in the main stream, Cd  is the concentration in the 

dead zone, DLa  is the longitudinal dispersion coefficient, ad  is the mass exchange 

coefficient between the main flow and the dead zone, ra  is the ratio of, the 

interfacial area between the main stream and dead zone to the main stream volume, 

and rd  is the ratio of the interfacial area to the dead zone volume. The existence of 

dead zones, the channel irregularities and channel non-uniformity is responsible for 

prolongation of the travel time of the solute cloud, if there is an exchange of the 

solute between the main channel flow and the dead zones (Valentine and Wood, 

1977; and Liu and Cheng, 1980). In a river reach with dead zone mechanism, the 

solute transport velocity and the mean flow velocity are different, and the 

relationship between these is given as (Valentine and Wood, 1977) 

at (2.15b) 
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U 
s
= 

1+/3 
	 (2.16) 

where = Ayd /Yr, 	 (2.17) 

yd  is the dead zone depth in the channel, and y,, is the normal depth of flow in the 

main channel. 

2.2.5 Aggregated Dead Zone Model 

Beer and Young (1983) conceptualised Aggregated Dead Zone (ADZ) 

modelling approach to represent the advective and dispersive behaviour of a solute 

in streams with transient storage mechanism. The underlying concept in the 

development of the ADZ model is that the dead zones are primarily responsible for 

observed dispersion and, thus, the dispersion coefficient of the AD equation 

characterising the longitudinal dispersion in the main channel no longer needs to 

appear in the model. In the ADZ model, fundamental importance lies with the 

residence time of the solute. The ADZ model incorporates an advective time delay 

parameter that is mainly responsible for solute advection. 

In the ADZ model, each reach of the river has been treated as being 

composed of an advective cell in which the solute undergoes pure plug flow with a 

concentration Ct  and then enters the mixing tank representing the aggregated dead 

zones emerging with a concentration Co. (Fig.2.1). Governing equation of the ADZ 

model is an ordinary differential delay equation expressed as (Beer and Young, 

1983; and Rutherford, 1994): 

dC 
V — - 2  - = Q[C (I — )—C di 	 1 	d 	0 (2.18) 

where, to is the cell time delay. T, is the ADZ residence time parameter, which is 

equal to V I Q . The travel time (7 ) defines the total time a solute spends in the 
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reach being advected and dispersed, given by 1 =T, +rd  . Eqn. (2.18) can be written 

in discrete form as (Beer and Young, 1983) 

Co (k) = -at Co (k-1) + bo. Cr (k-td) 	 (2.19) 

where Co (k) and Co (k-1) are the output concentrations of the reach at times kAt 

and (k-1) At. C1 is the input concentration at the input section of the aggregate 

dead zone. 'Ed is the time delay in an integral number of sampling instants 

a l  = -exp(-At/T.) and bo  = 1+ai. 

• River reach with 
	 Output 

Input —I> 	 del zones 

Input Main channel reach, 
responsible for advection, 
(Time delay t) 

ADZ 
element 
(dispersion) 

—i> 
Output 

—1-1>  

Figure 2.1 Conceptualisation of the river reach (top) by the ADZ model 

(bottom) 

An important assumption made in the ADZ model is that the output 

concentration Co(t) is linearly related to the mean concentration of the solute in the 

reach, (t) (Lees et al., 2000). 

C(t) =DF. C(t) 	 (2.20) 

where DF is the dispersive fraction that defines the mixing characteristics of the 

solute in the reach. It is important to note that in a continuously stirred tank reactor 

(CSTR) or completely mixed cell, the concentration in the reactor is identical to the 

output concentration, i.e., DF = 1. Interestingly if DF=1 and lag, rd =0, the ADZ 

formulations will reduce to the CIS model implying that the CIS model is a special 
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case of the ADZ model. The ADZ river reach is considered as an imperfectly mixed 

system in which the volume that can be considered as fully mixed volume is only a 

fraction of the total reach volume Va. Serial or parallel connections of the first order 

ADZ models may be required to describe the observed higher order transport 

mechanisms (Young and Wallis, 1993). A generalised multi-order ADZ model, 

consists of several first-order ADZ elements with different time constants (1/7) 

and time delay ('r) are combined in series and/or parallel, in discrete form is given 

by (Beer and Young, 1983) 

C 0(k) = B(1-
z-1)

1) .0 1(k — r) 	 (2.21) 
A(  

where A(11) and B(11) are polynomials in 11  defined as 

A(II) = 1 + al 	+ 	+ anin 	 (2.22a) 

B(z"1) = b. + biz'' + 	+ bm  z m (2.22b) 

11  is the backward shift operator, i.e., 11  C(k) = C(k-1). n and m are respectively 

the order of polynomials A(I1) and B(I1) which define the number of values of 

Co(k) and C1  (k-td) needed to explain the observed C-t curves. Co(k) and CI (k-td) 

represent the concentrations at the appropriate upstream and downstream locations 

of the channel. Aggregated Dead Zone model can explain solute transport in rivers 

more satisfactorily compared to the AD equation with constant dispersion 

coefficient, and the CIS model. The assumption of incomplete mixing_ implicit in the 

residence time parameter Tr  is contributing to the ADZ model's ability to describe 

skewed distributions 

Rutherford (1994) interpreted the ADZ model as a variant of the CIS model. 

The main difference between the CIS and ADZ models is that in the ADZ model a 

pure time delay is introduced into the input concentration. The time delay 

introduced in the ADZ model allows advection and dispersion to be decoupled. The 

ADZ formulation is not derived from a detailed physical understanding of the 
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mechanisms which cause dispersion, but rather is an intuitive description of the 

combined effects of dead zones and advective transport (Rutherford, 1994). The 

practical difficulty of the ADZ model is in the identification and estimation of the 

number of model coefficients (Eqn. 2.22). It is not easy to interpret the physical 

significance of the model coefficients, viz. cell residence time, cell time delay and 

the number and arrangement of cells (Rutherford, 1994). Further work is needed 

before model coefficient can be predicted from hydro-geometric channel 

characteristics. 

2.2.6 Transient Storage Model' 

Bencala and Walters (1983) presented the Transient Storage (TS) model 

based on the inference that " there is in fact a mechanism that presents itself as a 

transient storage of solute mass along the length of the stream. Hence we do not 

believe that a strict dead zone model is a physical description of the processes 

occurring in mountain streams, but rather that the observed 'transient storage ' can 

be empirically simulated using the identical equations". Transient storage zones, on 

the riverbed and on the riverbanks, may trap some part of the solute temporarily and 

release it at a later stage (Fig. 2.2). Delayed release of these trapped portions of 

solute back into the main flow may result in the observed long tails and, thus, larger 

skewness of the concentration-time curves at fixed locations. The TS model is an 

extension of the dead zone model with the identical governing equations and 

different interpretation of the temporary trapping and release-mechanism of solute 

in rivers. Bencala (1983) further stated that with the dead zone model, the 

hydrologic system is separated into two interacting compartments: first, the flowing 

stream channel and second, the storage zones which mix with the stream channel 

water, but have no longitudinal velocity. The storage zones will include both, water 

visible in the channel and water concealed from view in the coarse gravel and 

cobble bed". 
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Transient Storage approach includes the effects of the transient storage in 

longitudinal solute transport model using a first-order mass transfer equation in 

which all underlying mechanisms have been averaged in a non-dimensional form. 

The governing equations of the TS model, under steady and uniform flow 

conditions, are (Bencala and Walters, 1983; Runkel and Chapra, 1993; and Seo and 

Cheong, 2001). 

ac ac a2c + U = D ts 	+ a (C, -C) —at   
• 

as 
=a—A (Cs  -C) at 	As   

(2.23a) 

(2.23b) 

where C, is the concentration in the storage zone [MI:3], C is the concentration in 

the main or active channel [MU3], As  is the storage zone cross-sectional area 

normal to the flow [L2], a is the exchange coefficient [71], Dts  is the longitudinal 

dispersion coefficient in the main channel. [L2T-1], and x is longitudinal distance [L]. 

It is to be noted that the values of DL and Dt, are not the same. The following are the 

assumptions involved in the development of the TS model (Bencala and Walter, 

1983; and Runkel, 1998) 

i) 	There exist storage zones and these are assumed to be stagnant relative to the 

longitudinal flow of the stream. 

) 	Within the storage zone, solute is uniformly and instantaneously distributed. 

iii) 	The transport of solute between the storage zone and the main channel obeys 

a first—order mass transfer type of exchange relationship. That is, the 

exchange of solute between the main stream channel and a storage zone is 

proportional to the difference in concentration between the stream and the 

storage zone. 
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Bencala and Walters (1983) solved Eqn. (2.23) using both the finite 

difference and the finite element numerical methods. Runkel and Chapra (1993) 

solved Eqn. (2.23) using Crank-Nicolson implicit numerical scheme by decoupling 

Eqns. (2.23a) and (2.23b). However, as stated by Manson et al. (2001), solution of 

the numerical scheme suggested by Runkel and Chapra (1993) give oscillatory 

results when it is used to solve the advection dominated solute transport. 

Lees et al. (2000) obtained an expression, which is same as Eqn. (2.16), 

relating flow and solute transport velocities using a parameter f3 (/3 = As  / A ). The 

dead zone model and transient storage model differ only in the interpretation of the 

storage zone and the parameters describing the storage zone. Even though, TS 

model can simulate the observed C-t curves, it is not possible to get an analytical 

solution of the Eqn. (2.23) to compute the concentration C(x, t) (Nordin and 

Troutman, 1980; and Czernuszenko and Rowinski, 1997). The model equations 

need to be solved numerically using efficient numerical schemes to obtain solutions. 

Moreover, considerable uncertainty remains in determining the physically realistic 

values of the parameters. It is not easy to obtain unique calibration values of Dt„ a, 

and 13 in a particular channel reach (Rutherford, 1994). In addition, it is not feasible 

ter) theoretically estimate a from hydro-geometric characteristics of a river. As more 

number of parameters are involved, this may pose problem related to parametric 

uncertainty. Therefore, its practical utility has been limited because of the 

complexities involved in the estimation of parameters (Rutherford, 1994). Hence, it 

is desirable to model solute transport in rivers affected by transient storage 

mechanism using simplified equations. 

29 



2.3 STUDIES ON DISPERSION COEFFICIENT 

Dispersion coefficient, DL of the AD equation is a parameter that represents 

the dispersive characteristics of a stream. It can be estimated using either theoretical 

methods or empirical expressions, some of which are discussed below. 

2.3.1 Theoretical Method 

Elder (1959) derived an equation to compute the longitudinal dispersion 

coefficient for an uniform flow in an infinitely wide open channel. Elder assumed 

Von Karman's logarithmic velocity profile, and similarity between the momentum 

transfer coefficient and mass transfer coefficient in the vertical direction as 

0.404 K 
DL =   
 K 3 	6 

(2.24) 

where lc is the Von Karman's coefficient, and U. is the shear velocity. However, 

further studies suggested that Eqn. (2.24) was not able to estimate the dispersion 

coefficient in natural streams (McQuivey and Keefer, 1974; Fischer et al., 1979; and 

Seo and Cheong, 1998). An alternative expression to compute the DL has been given 

by (Fischer et al., 1979) 

1   
DL  = – f uyi--1 u'y dydydy 	 (2.25) 

—A 0 0 e
1  
tY 0 

where u' is the deviation of velocity from the cross-sectional mean velocity, y is 

the depth of flow, and c, is the transverse mixing coefficient. It is difficult to 

estimate DL using Eqn. (2.25) because of the data requirements and accuracy needed 

in the estimation of transverse mixing coefficient. Therefore, alternative methods as 

discussed below have been suggested to estimate the dispersion coefficient based on 

the observed C-t curves and hydro-geometric characteristics of a river. 
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2.3.2 Determination of Dispersion Coefficient Using Concentration Curves 

Dispersion coefficient, DL can be estimated from observed C-t curves using 

either the change of moment method (Fischer et al, 1979) or the routing procedure 

(Fischer, 1968) or the diffusive transport method (Fischer, 1968). The change of 

moment method is simple to use. However, it may not provide the physically 

meaningful dispersion coefficient, because the variance of the C-t curve that is used 

in the change of moment method gets significantly affected by the skewed 

concentration distributions. Mathematically, the routing method is a convolution of 

the input distribution with a linearised one-dimensional response function given by 

Eqn. (2.9). The routing procedure gives better estimates of DL compared to the 

change of moment method, but its application is limited to the simplified form of 

Eqn. (2.1). When U, A and DL are varying, this method also cannot be used. 

Diffusive transport method gives good results when: (i) the channel is uniform and 

its geometry must be accurately defined (ii) measurement of concentrations is made 

at sufficient number of points in the cross-section to adequately define the 

concentration variation, and (iii) measurement of C1  is accurate. 

2.3.3 Empirical Relations for Dispersion Coefficient 

Several investigators have proposed different empirical equations to estimate 

DL in terms of the known hydro-geometric characteristics of a stream based on 

experimental studies. Empirical equations for the estimation of DL, as recommended 

by various investigators, are presented in Table 2.1. It is important to note that even 

after four decades of research, till date, there is no generally acceptable expression 

to estimate DL. 

Among the various empirical expressions developed, McQuivey and Keefer 

(1974)'s expression (SI. No. 9, Table 2.1) is simple for predicting longitudinal 

dispersion coefficient. The similarity between the mathematical formulations of 
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flow and solute transport was exploited for the development of the expression for 

DL. McQuivey and Keefer's expression for DL predicts the measured or observed 

values relatively well (Seo and Cheong, 1998) and is consistent with the observation 

that the value of the dispersion coefficient increases with increase in discharge 

(Rutherford, 1994). The standard error of estimation of DL was referred as 

approximately 30% (McQuivey and Keefer, 1974). 

Table 2.1 The empirical equations for estimation of dispersion coefficient 

Si. 
No 

Investigator Equation 	. Remarks 

1.  Taylor 
(1954) 

DL= 10.1 U. r ; where, r is the 
radius of the pipe 

Pipe 	flow, 	dispersion 	mainly 
due to diffusive transport. 

2.  Elder (1959) DL  = 6.3 U. y ; where, y is the 
depth of flow 

Wide 	channel; 	considering 
Von 	Karman's 	vertical 	log 
velocity profile. 

3.  Yotsukura 
and Fiering 
(1964) 

DL  = 9.0 to 13.0 U. y For 	hydraulically 	rough 	and 
smooth boundary. 

4.  Fischer 
(1966) D— 0 011 112 /32 Using data for smooth and 

rough 	laboratory 	flume 	and 
field data. 

L  — . 	yU, 

5.  Thackston 
and Krenkel 
(1967) 

u 	4 
' 

DL  .7.25U.y [=--) U. 

Using both the laboratory and 
the field data. 

6.  Sooky 
(1969) 

DL = 1(.1 + K' + K" 
U. 	y„, K1 K CI - 

; K' = aK" 

Considering 	shape 	of 	the 
stream 	and 	velocity 
distribution. y,„ is max depth in 
x-section. 	a is proportionality 
constant. 
K is Von Karman constant. 

=0.2222 —2 K 
1 

K.  =:— a/c Usy„, 
9 

7.  Sumer 
(1969) 

DL= 6.23 U. y Considering 	velocity 	profile 
and 	vertical 	turbulent 
diffusion. 

8.  Fukuoka and
Sayre (1973) 

D r 2 
' 

1.4 

Hydraulic 

Considering 	the 	meandering 
effect, 	re 	is 	the 	radius 	of 
curvature of bend and LB is the 
overall bend length measured 
along 	the 	centerline 	of the 
channel. 

=0.8[—` 
.  RU LBy 

where, 	R 	is the 
radius 
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Table 2.1 (Contd...) 

SI. 
No 

Investigator Equation Remarks 

9.  McQuivey 
and 	Keefer 
(1974) 

D 	0.058 Q = Based on data from 18 rivers 
using analogy between flow and 
solute dispersion. So  = bed slope 
and Q is'discharge. 

' 	SoB 

10.  Jain (1976) U2 B2 DL  =  Considering shape of the stream, 
k = 0.1 to 0.2 and increases with 
B/y. 

kAU. 

11.  Beltaos 
(1978) 

DL 	B 2 -- 
Used Sooky's finding. al  is the  
proportionality constant. RU 

= a1 
. 

( 
R
) 

12.  Liu (1978) Q 2  
D — 

U.)2 

U 

Considering transverse diffusion 
coefficient, Et  = 0.23 yU.. 

L  — 2U, R' 

13.  Marivoet and 
Craenenbroe 
ck (1986) 

U 2  B2  =0.0021 
Based on data from canals. 

DL  
yU. 

 
14.  Asai 	et 	al. 

(1991) 
D L 
	2.0 = 

p 	1.5 
-j-.) 

R  

By analysing field and lab data. 

yU , 

15.  Ranga Raju 
et.al, (1997) 

Dr, 0.4P = Using gradient search technique. 
Tv 	is 	the 	discharge 	per unit 
width of channel. 

gesso  
D 	2.16 ( r r  )-0.82 

0. 0 pt  = ( . 01 	 .... L L 	 (So  r3 

R 	U. 

16.  Koussis and 
Mirasol 
(1998) 

Used 	Von 	Karman's 	law 	of 
velocity profiles. Mean .4)=0.6. 

J gRS , 	, 
DL 	1 	B2  =0 

Y 

17.  Seo and 
Cheong 
(1998) 

0.620 
DL =5.915(21) ( 

U 
I.J. 

1.4 Used 56 river data sets. 

yU. 	y 

18 Kezhong and 
Yu. (2000) 

D 	, , 
= ..i. a 

B 	1.125 

y 

u  

U. 

0.25 Using genetic algorithm. 

yU. 
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2.4 SOLUTE TRANSPORT UNDER UNSTEADY FLOW CONDITIONS 

Majority of the studies to date relate to solute transport under steady flow 

conditions only. Attempts have also been made by few researchers to study the 

transport process under non-uniform streamflow conditions (Li and Zhou, 1997; 

Zoppou and Knight, 1997; and Guymer, 1998). Guymer (1998) studied the effects 

of varying cross-section under different discharges. Variations of longitudinal 

dispersion with discharge have been attributed to longitudinal changes of cross-

sectional area. Even in situations (chapter 1, section 1.2) where the assumption of 

steady streamflow conditions do6 not hold good, steady streamflow condition has 

been assumed in majority of models. Such models are unable to accurately simulate 

the transport process under unsteady streamflow conditions. 

Solute transport under unsteady streamflow conditions deals with both flow 

routing and solute transport processes. Therefore, study of solute transport 

phenomenon in streams under unsteady flow conditions require the knowledge of 

flow variation with time. The accuracy of mass transport model under unsteady flow 

condition would depend on the accuracy of the flow model. Hence, coupled flow 

and solute routing models need to be developed. A brief review of the studies 

available on the coupled flow and solute routing models is presented herein. 

2.4.1 Flow Routing 

Flow transport in a natural stream is a distributed process because geometric 

characteristics of the channel, i.e., cross-sectional area, roughness coefficient and 

bed slope, and flow conditions, i.e., discharge, depth, and velocity vary with 

distance. It is well recognised that one-dimensional (1-D) models can provide 

acceptable approximations of flow transport in a river (Price, 1982). Present work 

concentrates on the study of one-dimensional flow modelling approaches that can be 

potentially used with their correspondent one-dimensional solute transport 
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modelling approaches for studying the solute transport phenomenon in streams 

under unsteady flow conditions. 

The governing partial differential equations for distributed one-dimensional 

unsteady open channel flow are popularly known as the Saint-Venant Equations 

(SVE). 

The continuity equation without lateral flow is given as 

a Q aA _ 
ax at 

and the momentum equation is 

ay Q au au S = - — — — 
f 	° 

 

ax gA ax g at 
(2.27) 

where, Q is the rate of flow, Si is the friction slope, So is the bed slope, and g is the 

acceleration due to gravity. Because of the complexities and numerical problems 

involved in solving the complete Saint-Venant equations, simplified methods have 

been developed for flood routing studies. Hayami (1951) proposed a simplified 

diffusive wave flow routing technique using convection—diffusive equation 

expressed as 

2  + c 	=D aQ  at 	ax 	 f  ax2  
(2.28) 

where, ck  is the wave celerity, and Df is the flow diffusion coefficient expressed as 

D #. =  Q  
2S o B 

(2.29) 

Simplified methods have been considered to be important tools of flood 

routing because of their simplicity in application, lesser data requirements for their 

solution and practical applicability. Among the simplified methods, the Muskingum 

method and its modifications have been widely used in flood routing studies (Price, 

1982). The governing equations of the Muskingum method are 

(2.26) 
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—Kf OI + 0t/2 
C l  = K f  (1— 9 f ) + At/2 

(2.33a) 

d S 1.1  
dt  — vi - vo (2.30) 

Q, and Q0  are rate of inflow and outflow respectively and S represents the storage 

in the reach and is expressed as 

S= K f [OfQ, + (1— 0 f )Q0 ] 	 (2.31) 

where the parameter K f  denotes the travel time, and Of  is the weighting parameter. 

The routing equation is expressed as 

(Qo )1  = 	), +82(Q/) j--1 + 63(Q0)j-1 
	 (2.32) 

where (a) j  and (Q0 );  are the rate of inflow and outflow at time jAt respectively. 

(Q1 ) j_, and (Q0 )1_, are the rate of inflow and outflow at time (j-1)0t respectively, 

where At is the routing time interval. The Muskingum coefficients el  e2  and e3  are 

expressed as 

Kf  O f  + L12 
C l = 

K(1-91 ) + At/2 

Kf (1- 9 f )- AtA/2 
e3  = 

	

	  
K f  (1 — O f  ) + At/2 

(2.33b) 

(2.33c) 

The parameters K f  and O f  are expressed in terms of physical characteristics 

of flow and channel geometry (Cunge, 1969; and Koussis, 1978). The Muskingum 

method has the defect of producing unrealistic initial outflow commonly referred to 

as negative or reduced flow. Ponce and Yevjevich (1978).  proposed a variable 

parameter Muskingum method based on the matched diffusivity approach. The 

technique of varying the parameters was not physically based in this method 

(Perumal, 1994a). 
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Perumal (1994a) developed a Variable Parameter Muskingum (VPM) flood 

routing method based on the concept that during flood flow there exists a unique 

relationship between the stage at a given section and the corresponding steady 

discharge, occurring not at the same section, but somewhere downstream from that 

section. In developing the VPM method, it has been assumed that the water surface 

and discharge are varying linearly along the small reach length Ax. Perumal (1994a) 

used the Saint-Venant equations to arrive at the expressions for the parameters K1  

and O f  . The VPM method is a physically based method which has the advantage of 

routing both stage and discharge simultaneously with systematic variation of 

parameters from one time interval to another time interval. 

Using the Saint-Venant equations, Perumal and Ranga Raju (1999) derived 

the Approximate Convection-Diffusion (ACD) equation as: 

(2.34) 

They stated that "ACD equation in discharge formulation enables one to develop a 

Variable Parameter Muskingum (VPM) method as proposed by Perumal (1994a) 

which has the inherent ability to model the physical diffusion of a flood wave, 

without attributing the diffusion exhibited by it to any numerical scheme as 

theorized by Cunge (1969)". 

2.4.2 Solute Routing 

Under unsteady flow conditions in a river, the advection and dispersion of 

flow and solute occur simultaneously. The solute transport under unsteady flow 

conditions in a rive; is an advection dominated process (Bedford et al., 1983). 

Analysis of unsteady flow induced solute transport is a difficult problem requiring 

the solution of coupled nonlinear equations. However, the analysis may be made 

less complicated by adopting two step solution process: First, using the flow model 
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to arrive at the unsteady flow information, which then is subsequently used for 

solving the solute transport problem. This approach may be considered appropriate 

as the flow transport process affects the solute transport process and not vice-versa. 

Studies on solute transport under unsteady streamflow conditions are not many, 

because of the complexities involved in modelling the phenomena. Some of the 

available studies are reviewed in the following paragraphs. 

2.4.2.1 Based on the advection-dispersion model 

Keefer and Jobson (1978) studied the solute transport under unsteady flow 

conditions coupling both flow and solute transport equations and solving them using 

implicit finite difference numerical schemes. Flow model uses one-dimensional 

continuity equation and momentum equation for gradually varied flow. Forward 

linear implicit scheme identical to Amein and Fang scheme (1970) was used , for 

flow modelling. Variant of Stone and Brian (1963) numerical scheme was used to 

solve the transport equation is expressed as 

a(AC)a(AUC)  a ( A, ac) 
at 	ax 	AD ax  ax  (2.35) 

In solving Eqn. (2. 37), DL = 0 was assumed as the numerical scheme adopted to 

solve Eqn. (2.37) itself generated numerical dispersion which was more than the 

physical dispersion introduced by DL. The velocities required in solute transport 

simulations are computed from the flow model. The flow and solute transport 

equations are solved using different numerical schemes. 

Price (1982) presented numerical solution of the AD equation with lateral flow 

Ti ac 
at 	—=DL 2  q ac 	c 

ax 	ax2 (2.36) 

where, q is the lateral inflow or out flow per unit length normal to the direction of 

flow. Considering C as the ratio of rate of mass flow past a section, Mr  to the rate of 

flow at the section, C = M r  /Q , and using 
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aA a Q 
Vai= g 

in Eqn. (2.36) gives 

	

a(mriu)  + —amr = AD  L 
a 	

Q) 
2 

at 	&C 	ax 

(2.37) 

(2.38) 

Equation (2.38) has been solved using a finite difference scheme similar to the one 

used in the Variable Parameter Muskingum-Cunge (VPMC) method. The relation 

between the weighting parameter of the Muskingum method and the dispersion 

properties of solute is not clearly established. Price (1982) did not take into account 

the variation of flow on the dispersion coefficient. 

Graf (1995), and Krein and Syamder (2000) studied the solute transport 

phenomenon under unsteady flow condition by conducting experiments in rivers. 

Graf (1995) studied the dispersion process under steady and unsteady stream flow 

conditions, by conducting experiments on Colorado River. To date, this is an unique 

experiment conducted to study the effect of flow variations on solute transport 

process. 

Gabriele and Perkins (1997) studied the metal transport for Aberjona river 

watershed. Metal transport has been strongly influenced by different flow 

components of Aberjona river watershed. Metal flux transport was modelled by 

assigning metal concentration to each stream flow. It has been observed that three 

stream flow components viz., quick flow, slow flow and base flow play a significant 

role in determining the total transport of contaminants in the Aberjona River. The 

Muskingum method was used to route the stream flow, the suspended sediments, 

and the metals through channels. Gabriele and Perkins (1997) interpreted the 

storage of the Muskingum method as a sum of two compartments: one 

compartment, SI, a function of inflow Q1  only and the second compartment SQ 

function of outflow Q0  only. Considering a pollutant mass, M, is being carried with 
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inflow discharge Q, and outflow discharge Qo . C, denotes the concentration of 

the input mass, Co  denotes the concentration of the output mass, Ms1 the mass of 

solute in Si compartment and Mso is the mass of solute in So compartment, and the 

total mass Ms is given by 

Ms = Msi Mso 	 (2.39) 

By analogy with the flow system 

dM 
dt

s =Q1c1 - Q0c 0 	 (2.40) 

M s .K.0„,(Q,C1 )+K„,(1-0m XQ0C0 ) 	 (2.41) 

where, K„, is time between the centroids of the input and output mass flux 

distributions and Om  is the weighting parameter used to weigh the relative effects of 

input and output on the mass stored in the reach. The finite difference solution of 

Eqn. (2.40) combining with Eqn. (2.41) gives 

(Qo Co ),+, Gi (Q, Cr ),+, + G2 (Q/C/ ) j  + G3 (Q0C0 ) j  

and G1 , G2 , and G3  are the coefficients of Muskingum method for mass flux routing 

(2.42) 

expressed as 

1 	2A'DL   ]/[  1  G, = 
[Ur 	Q1.1-1U . Ax 

G2  .[ 1 2A DL   1/[ 1 
Qiu' .6x 	u;:  ii 	

2201.  

[= L- 
	2A'DL 
 L  G3 

 14+1 Naa Qii_IU'Ar 

A = 4  - (A,11-1  +Am + Al +Aj ) ,+1 	i 	. 	 1 

U.  = 4 -1(Uf+' +U;+1  +U: +U:+1 ) 
+1  

(2.43 a) 

(2.43b) 

(2.43c) 

(2.44) 

(2.45) 

2A DL  
+N +  . , Q/++1, u. 

[

1
. +N + 

 2A.130 
U..:1  1 	 Q,J++11U' dr 
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where j denotes the time step, i denotes the space step, Nat  is inverse of Courant 

speed,( Alf& ), A' is mean of areas at four nodes i, i+1, j, and j+1. U' is mean of 

velocities at four nodes i, i+1, j, and j+1. 

Equation (2.42) is similar to the Muskingum routing equation for stream 

flow. They recognized that the contaminant mass flux distribution and the 

associated hydrograph do not travel at the same speed through a channel reach, and 

relative effects of input and outputs on the solute and flow transport processes may 

not be the same. Even after recognising the differences between velocity of 

propagation of solute cloud and flow hydrograph, Gabriele and Perkins (1997) have 

chosen to set K. and equal to the K J. and O f  values of Muskingum stream flow 

routing method. In reality K„, # K J. and O„,#O f  . This is because of the differences 

(i) between velocity of flow propagation and that of solute transport, and 

(ii) between the flow diffusion coefficient and the solute dispersion coefficient. 

2.4.2.2 Based on the transient storage model 

Runkel et al. (1998) presented an application of the TS solute transport 

model under unsteady flow conditions for the Huey Creek, an Antarctic stream. The 

modelling framework couples the kinematic wave flow routing approximation with 

a TS model of solute transport. Flow equations are based on channel routing 

algorithm of Alley and Smith (1982), as referred in Runkel et al. (1998). Time 

varying discharges and cross-sectional areas computed by means of the flow routing 

model are used as input data to the one-dimensional solute transport model, which 

Runkel (1998) termed as One-dimensional Transport with Inflow and Storage 

(OTIS) model. The governing equations of transport model have been solved using 

the Crank-Nicolson numerical scheme proposed by Runkel and Chapra (1993). 

A tracer experiment under unsteady flow varying between 50 It/s and 120 lt/s was 

performed in the Huey Creek by injecting a solution containing Lithium Chloride 
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(LiC1) and Lithium Bromide (LiBr) at a constant rate for about 3.75 hours. Runkel 

et al. (1998). obtained good calibration results of Lithium (Li) C-t curves at four 

sampling stations along a 1-km long stretch. The modelling framework proposed by 

Runkel et al. (1998) does not allow simultaneous flow and solute routing. In this 

approach, flow details need to be computed prior to the solute transport modelling. 

As already stated, the numerical method used to solve the TS model equations 

(Runkel and Chapra, 1993) fails to give satisfactory results in advection dominated 

dispersion process, which is prominent under unsteady flow condition, 

2.4.2.3 Based on the aggregated dead zone model 

An extension of the ADZ solute transport model integrated with a 

Multilinear Discrete Lag Cascade (MDLC) flow routing model, which has a 

similarity with the ADZ model, was developed by Camacho (2000) for the study of 

longitudinal dispersion under unsteady flow conditions. The proposed MDLC-ADZ 

modelling framework of Camacho, (2000), is a model involving two-parameter, 

viz., DF, the ratio of the residence time of solute to the total travel time of the solute 

in the reach, and 13, the solute lag coefficient. It works well during steady flow, but 

fails to model dispersion during unsteady flow. Similarly, single-parameter (13) 

model that works satisfactorily for dispersion studies during unsteady flow fails to 

model dispersion during steady flow. As steady flow is a special case of unsteady 

flow, the model applicable for dispersion during unsteady flow should also be 

capable of modelling dispersion under steady flow conditions. The Camacho (2000) 

model lacks this capability. Moreover, the model used for dispersion studies during 

unsteady flow results in amplified outflow peak concentrations which, is 

contradictory to the characteristics of dispersion process of conservative solutes. 

This implies that there is some deficiency in the Camacho's (2000) model. Camacho 

(2000) even fails to suggest either a single or two-parameter model for the study 

reach considered. 
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2.5 CONCLUSIONS 

Based on the review of literature presented in the preceding sections of 

this study, certain conclusions which are relevant in the context of objectives 

(Chapter 1, section 1.5) of this study have been drawn. These are stated below: 

1. In majority of the studies available in literature, one—dimensional solute 

transport was modelled using the Advection—Dispersion equation under 

steady streamflow conditions. Based on the AD equation, a finite 

difference method similar to that of the Muskingum flow routing method 

was proposed by Koussis et al. (1983) to study the solute transport in a 

river under steady flow conditions. Though the model structures for flow 

routing using the Muskingum method and for solute routing using the 

Matched Advection Diffusion method advocated by Koussis et al. (1983) 

are the same, there exist logical inconsistencies in the development of the 

solute routing method, which is based on the concept of matched 

advective diffusivity approach used in the flow routing method (Cunge, 

1969). Koussis et al. (1983) assumed dispersion coefficient to be zero 

implying absence of dispersion. However, at the same time considered 

the presence of concentration gradient (r/ax ), which is inconsistent 

with the logic of Fick's law. Further, the concept of one-to-one 

relationship between stage and discharge used in the development of the 

Muskingum-Cunge flow routing method is not applicable for the solute 

routing method advocated by Koussis et al. (1983), as there is no second 

variable, like stage to relate with the solute concentration. 

2. Cells-In-Series (CIS) model was developed as an alternative to the AD 

model. In the CIS model, there exists a fixed relationship between the 

number of cells, the reach travel time, and the dispersive characteristics, 

for a series of equal cells. This model is sensitive to the number of cells, 

in which a river reach is divided. 
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3. It has been widely recognized that the AD model and the CIS model fail 

to simulate the long tail of the observed C-t curves in rivers. Hence, the 

Dead Zone, the Transient Storage and the Aggregated Dead Zone models 

were developed to simulate the long-tails of C-t curves observed in rivers 

affected by transient storage mechanism. 

4. Transient storage model is capable of simulating the observed C-t curves 

even with long—tails satisfactorily. However, it is difficult, if at all 

possible, to obtain an analytical solution of the TS model for general 

boundary conditions. Efficient numerical methods are required to solve 

the governing equations of the TS model. It is not easy to obtain an 

unique set of calibration values of Dts, a, and 13 in a particular channel 

reach. It is also not possible to theoretically estimate a from hydro-

geometric characteristics of a river. Hence, the practical utility of the TS 

model has been limited. Therefore, it is desirable to model solute 

transport in rivers affected by transient storage mechanism using 

simplified equation. 

5. Aggregated Dead Zone model is an approximation of the Dead Zone 

model. It has also been interpreted as a variant of the CIS model. It 

simulates the C-t curves observed in rivers satisfactorily. However, it is 

difficult to identify and estimate the model coefficients. Moreover, it is 

not easy to interpret the physical significance of the model coefficients. 

In view of the problems stated above with the TS model and the ADZ 

model, it is necessary to explore an alternative method for solute 

transport in rivers affected by transient storage mechanism. The 

alternative method should be reliable and also simple in comparison to 

the TS and ADZ models. 
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The modelling framework coupling flow and solute transport models was 

used to study the one-dimensional solute transport under unsteady flow 

conditions. The flow routing models were coupled either with the AD 

equation (Keefer and Jobson, 1978, Price, 1982) or with the TS equations 

(Runkel et al. 1998). However, the modelling framework does not allow 

the integration of model parameters and simultaneous flow and solute 

routing. Flow routing equations and solute routing equations were solved 

using different numerical methods. Further, governing equations of the 

TS model, when coupled with the flow routing equation increase the 

complexities in the solution procedures. The numerical solution 

procedure of the TS model used in the modelling framework, given by 

Runkel and Chapra (1993), failed to model the advective dominated 

dispersion phenomenon. Hence, there is need to evolve a model which 

integrates the parameters of flow transport and solute transport models, 

and allows simultaneous routing of both flow and solute. 

7 	The Muskingum method was used to model both the flow and the solute 

transport processes to study the dispersion under unsteady streamflow 

conditions, because of the similarities in model structures and parameters 

(Price, 1982; and Gabriele and Perkins, 1997). However, the 

relationships between the model parameters of flow and solute transport, 

such as U, Di and DL, have neither been clearly defined nor taken into 

account while dealing with solute transport studies under time-varying 

flows. 

8. 	Flow routing in streams was modelled satisfactorily using the Variable 

Parameter Muskingum method (Perumal, 1994b; and Perumal et al., 

2001) within the domain of its applicability. It may be worthwhile to 

explore the use of the logic of the VPM method for developing a solute 
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transport model for its applications under unsteady flow conditions. The 

parameters of the VPM method are varied form one time interval to the 

next time interval in a physically based manner, which may help in 

integration of parameters of flow and solute transport. 

9. 	A model used to study the dispersion under unsteady flow conditions 

should be capable of simulating solute transport under steady flow 

conditions also, as steady flow is a particular case of unsteady flow. 

However, the Multilinear Discrete Lag Cascade-ADZ model (MDLC-

ADZ model) proposed by Camacho (2000) fails to do so. Further, an 

application study of the model shows unnatural amplified routed peak 

concentration at downstream locations over and above the corresponding 

upstream peak concentrations. Therefore, a solute transport model, which 

consistently simulates the solute transport process under steady and 

unsteady flow conditions, is required to be developed. 
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Chapter 3 

SOLUTE TRANSPORT MODELLING USING 
APPROXIMATE ADVECTION-DISPERSION EQUATION: 

STEADY FLOW CASE 

3.1 GENERAL 

In stream flow transport, laws of conservation of mass and conservation of 

momentum are used to develop the flow routing model, whereas in solute transport, 

law of conservation of mass and Fick's law of diffusion are used to develop the 

solute routing model. Reynolds analogy states that the transport of momentum, 

mass and heat are analogous. Assuming flow transport and solute transport to be 

one-dimensional, it may be stated that mathematical similarity exists between the 

governing equations of the solute transport (Eqn.2.2) and the flow transport 

(Eqn. 2.28). This similarity enabled Koussis et. al. (1983) to develop a routing 

equation for solute transport modelling which has the same form as that of the well 

known Muskingum method used for flow routing (Cunge, 1969; and Koussis, 

1978). The development of both of these physically based Muskingum flow routing 

and the Muskingum type solute routing equations is based on the matched 

diffusivity approach. It was pointed out in Section-2.2 that unlike in the case of flow 

routing, wherein a one-to-one relationship between stage and discharge is possible, 

as postulated by Cunge (1969) implying absence of dispersion, the same logic is not 

applicable for solute transport in rivers as no such one-to-one relationship exists 

between the concentration and any other variable. Further, the AD equation 

governing the solute transport process has been developed using the analogy of the 

Fick's law, which states that the mass flux is proportional to the concentration 

gradient, implying that the concentration gradient induces diffusion. Hence, 

adoption of a governing equation based on advection only (i.e., physical dispersion 

is absent) to describe the solute transport process in a manner similar to that of the 
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governing equation describing the flow transport process as envisaged by Cunge 

(1969) and Koussis (1978) is not logically correct. Therefore, to overcome these 

logical errors, the present study attempts to develop an alternative approach, for 

developing the routing equation needed for studying the solute transport process. 

Moreover, as the steady flow is a special case of unsteady flow, the model based on 

VPM approach needs to be tested first for solute transport modelling under steady 

flow conditions for verifying its appropriateness. 

This chapter presents (i) the development of an approximate AD equation, 

(ii) the formulation of the solute- routing equation, based on this approximate AD 

equation, for studying longitudinal dispersion under steady flow condition, and 

(iii) the applicability of the proposed model. The suitability of the proposed model 

has been verified by testing it against a variety of available data. 

3.2 DEVELOPMENT OF AN APPROXIMATE ADVECTION-

DISPERSION EQUATION 

One-dimensional solute transport under steady flow condition in a uniform 

channel is described by the AD equation expressed as (Rutherford, 1994). 

ac ac a2c 
—at +u—ax =D L  ax2 	 (3.1) 

where, C is the cross-sectional average concentration of a conservative pollutant, U 

is the cross sectional average velocity of flow, and DL is the longitudinal dispersion 

coefficient. The one-dimensional Convection-Diffusion (CD) equation proposed by 

Hayami (1951) to describe the movement of flood waves in open channel is 

expressed as 

c 2  -1-1  .3 Q —+ 
at 	k  ax 	f  ax 2  

where, ck  is the wave celerity, and D f  is the flow diffusion coefficient given by 

D =  Q  
2S013 

(3.2) 

(3.3) 
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where Q is the discharge. So is the bed slope and B is the top width of flow. 

The similarity between Eqn. (3.1) and Eqn. (3.2) may be readily recognised 

and it enables one to consider that the solution approach adopted for solving the 

flow equation (Eqn. 3.2) may also be adopted for solving the AD equation 

governing the solute transport process. 

Variable Parameter Muskingum (VPM) model advocated by Perumal 

(1994a) is an alternative to the physically based Muskingum methods proposed by 

Cunge (1969) and Koussis (1978). The VPM model has been developed using the 

Approximate Convection-Diffusion (ACD) equation (Perumal and Ranga Raju, 

1999), which has been directly derived from the Saint-Venant equations. It has been 

shown by Perumal and Ranga Raju (1999) that though the ACD equation has the 

same form as that of the kinematic wave equation used in the development of the 

physically based Muskingum methods (Cunge, 1969; and Koussis, 1978), it is 

capable of accounting for physical dispersion directly without attributing to any 

numerical dispersion as has been done in the case of matched diffusivity based 

approaches. In the present study a concept analogous to the one used in the 

Approximate Convection-Diffusion (ACD) (Eqn. 2.34) equation is employed by 

replacing the discharge variable with that of the concentration in the development of 

a VPM type model for modelling the longitudinal dispersion of solute under steady 

flow conditions in uniform channels and rivers. 

The following assumptions are made in the development of the approximate 

advection-dispersion equation considering steady flow conditions 

1. The flow is steady and uniform. 

2. Solute concentration is varying linearly with x over a small reach length 

Ax. 

3. Longitudinal dispersion coefficient (DL) is constant with reference to x 

and t. 
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For the development of the Approximate Advection-Dispersion equation, Eqn. (3.1) 

may be re-written as 

ac ac a c =0 at 	ax 	aX 2 
(3.4) 

Equation (3.4) may be modified by grouping the space differential terms together as 

8(C) +tj a(c,,,,)  .0  
at 	ax 

where, CM  = C 
DL  ac  
U ax 

(3.5) 

(3.6) 

3 
Ax/2 	D C 	 Ax/2 

M 

Figure 3.1 Definition sketch of the Muskingum solute routing reach 

If Cm  is considered as the concentration at the middle of the reach (at section 

M as shown in the definition sketch), (Fig. 3.1), and C3  is the concentration at a 

section, which is located at a length L downstream of the mid-section of the reach, 

denoted as section-(3) in Fig. 3.1, then using assumption (2), CM  can be expressed 

as 

CM = C3  L a—C-1 	 (3.7) ax  

and using the similarity between Eqns. (3.6) and (3.7), the dispersion coefficient DL 

can be expressed as 

DL = L U 	 (3.8) 
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Eqn. (3.8) is in confirmation with the interpretation of Graf (1998) that the 

dispersion coefficient is the product of a characteristic length and velocity, and the 

choice of the characteristic length, L and the dispersion coefficient, DL must be 

determined from relevant experiments. The assumption of linear variation of C 

with x over the reach length, Ax, enables one to write 

acM  ac 
ax ax 

(3.9) 

Therefore, Eqn. (3.5) may be expressed as 

OC ac +U —ax  =0  
at 

(3.10) 

Equation (3.10) is termed as the Approximate Advection-Dispersion 

equation. The form of Eqn. (3.10) is similar to that of the ACD equation (Eqn. 2.34) 

proposed by Perumal and Ranga Raju (1999). Therefore, the solution algorithm of 

the VPM model for flow routing is equally applicable to solve Eqn. (3.10) using the 

solute concentration, C as a variable instead of discharge, Q. Perumal and Ranga 

Raju (1999) derived the Approximate Convection-Diffusion (ACD) equation, which 

has the inherent ability to model the physical diffusion of a flood wave directly 

without attributing the diffusion exhibited by it to any numerical scheme as 

theorized by Cunge(1969):. Therefore, based on Eqns. (3.7) and (3.8), it can be 

interpreted that there exists a relationship between the concentration at mid-section 

and concentration at a distance L downstream from the mid-section in such a way 

that it satisfies Eqn. (3.5), and, thereby, implicitly accounting for dispersion 

analogous to the one that exists in the ACD equation. Though the form of Eqn. 

(3.10) is the same as that of the governing equation adopted by Koussis et al. 

(1983), it considers the presence of dispersion (i.e., D L L 0) unlike that of the 

governing equation of Koussis et al. (1983) which assumes that dispersion is absent 

(i.e., D L  = 0). Hence, the proposed approach of arriving at the governing equation of 
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the solute transport process is devoid of the logical error involved in the 

corresponding approach of Koussis et al. (1983). 

3.3 SOLUTE TRANSPORT MODEL FORMULATION 

Applying Eqn. (3.10) at section (3) of Fig. 3.1 yields 

ac 
at 

=0 

3 
(3.11) 

  

Due to the assumption of linear variation of concentration over the reach 

considered, (aCiax)13 may be expressed as 

aC DC 
ax 13  ax 

C =  0 C I  

2 
(3.12) 

 

where C, and Co  denote the concentrations at the inlet and the outlet of the reach 

respectively. Again using the assumption of linear variation of concentration within 

the reach ix, C3  may be expressed as 

C3  = Co  + C 
Ax ° 
	L) 	 (3.13) 

Equation (3.13) may be rewritten in the form of weighted concentration by grouping 

the input and output concentration terms together, as 

C3  = Oc  + (1—  Oc  )Co 	 (3.14) 

where, the weighting parameter O, is expressed as 

0  1 L 
(3.15) 

c 	Ax 

in which, L =  DL 

From Eqns. (3.15) and (3.16), Oc  is expressed as 

1 D 0, = 
- 2 IJAx 

(3.16) 

(3.17) 

The ratio (Di, AI.TAxD is termed as dispersion number. Inverse of dispersion number 
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KA+ At/2 
C0  2 = Kc(1-0c )+ At/2 

(3.22b) 

is termed as Peclet Number. Substituting Eqns (3.12) and (3.14) in Eqn. (3,11) and 

changing the partial differential notation to total differential notation yields 

C1  -Co  =Kc —cit pc  c, 	- oc)co i 	 (3.18) 

where, Kc  denotes the average travel time of the solute cloud in moving from 

section (1) to section (2) of Fig. 3.1, and it is expressed as 

Ax v  n..- 
U 

(3.19) 

The form of Eqn. (3.18) is the same as that of the governing equation of the 

Muskingum method with the term corresponding to the Muskingum storage 

expressed as: 

Sc  = Kc fric  C I  +(1-0c )C0 1 	 (3.20) 

where, Sc  is the mass per unit discharge in the reach. Using the analogy of the 

governing equation of the Muskingum flow routing method, (Eqns. 2.30 to 2.33, in 

Chapter 2) the solute routing equation may be derived from Eqn. (3.18) as 

C0  = a)  ICI , / + CO 2 CI j 	W 3 C 0 ,j• I 

	 (3.21) 

where, C1,1  and 	are the input concentrations at time jAt and (j-1) !,,At 

respectively; Co,;  and Co.,_, are the output concentrations at time jAt and (j-1)At 

respectively, and col  ,a)2 , and cf) are the coefficients of the routing equation 

expressed as 

-KcOc  +At/2 
Kc(1-Oc )+At / 2 

(3.22a) 

Kc (1-9c )- At/2 
Kc (1-8c )+At12 

(3.22c) 

The output C-t curve for any given input C-t curve can be obtained by using 

the solute routing equation given by Eqn. (3.21) recursively. Since the approach 
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employed in the development of the VPM model (Perumal, 1994a) has been used in 

arriving at Eqn. (3.21), and considering that the VPM type model has been 

developed using the Approximate Advection-Dispersion equation (Eqn. 3.10), 

this model of solute routing may be called as AD-VPM model. Interestingly Cells-

in-Series (CIS) model proposed to study the solute transport in rivers (Banks, 1974), 

also has the same dispersion concept as that of the proposed AD-VPM model. In 

CIS model, it is assumed that the output concentration is equal to the concentration 

in the cell or sub reach considered. However, in the AD-VPM model, the mass 

storage per unit volume in the reach is a linear function of both input and output 

concentrations (Eqn. 3.20). If Oc.= 0, the AD-VPM model reduces to the CIS model. 

Hence, it can be concluded that the CIS model is a special case of the proposed 

model. Therefore, the dispersion built-in in the proposed model should not be 

attributed to any numerical dispersion as has been done in the approach adopted by 

Koussis et al. (1983). 

The weighting parameter O, depends on the dispersion coefficient, DL 

(Eqn. 3.17). Therefore, estimation of 9,. needs the estimation of DL. Todate, even 

after four decades of research in this area there is no uniformly accepted equation to 

compute DL without employing empiricism. 

3.4 DETERMINATION OF THE DISPERSION COEFFICIENT 

Dispersion coefficient, DL depends on flow and channel reach 

characteristics. A number of empirical relationships are available to compute DL 

based on the flow and channel reach characteristics (Table 2.1 in Chapter 2). All the 

empirical equations given in Table 2.1 link DL only with flow and channel 

characteristics implying that the flow induces dispersion of the solute. The major 

objective of the present work is to study the dispersion of solute under unsteady 

flow conditions in rivers. Consequently, DL is related to flow diffusion coefficient, 
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Di as (McQuivey and Keefer, 1974) 

DL= Df 	 (3.23) 

in which Df is given by Eqn. (3.3). 4) is the relational constant. During steady flow, 

the discharge Q required to compute the value of Df is constant and hence, DL is 

constant. During unsteady streamflow conditions, D1 is a variable and, hence, DL is 

a variable. Eqn. (3.23) has been developed based on the similarity between the 

diffusion equations governing the unsteady flow movement and the solute transport. 

Seo and Cheong (1998) compared the observed dispersion coefficients with the 

computed dispersion coefficients using the expressions presented by different 

researchers and for different rivers. They stated that the dispersion coefficient 

computed using Eqn. (3.23) proposed by McQuivey and Keefer (1974) gave 

relatively accurate values close to the observed DL values. Hence, Eqn. (3.23) has 

been chosen to compute DL in the proposed study. 

The relational coefficient 4) in Eqn. (3.23) has been determined using the DL 

obtained from the observed C-t curves at two successive sections of the reach under 

consideration and using the hydro-geometric characteristics of the channel. The DL 

required in Eqn. (3.23) has been calibrated by simulating the C-t curve observed at a 

downstream section of the reach using the input C-t curve at the upstream section 

and based on the close agreement between the observed and simulated C-t curves. 

The Nash-Sutcliffe's criterion (Nash and Sutcliffe,. 1970), rl in % has been used as a 

measure of agreement between the simulated and the observed C-t curves. ASCE 

task committee on definition of criteria for evaluation of the watershed models 

(1993) has also recommended this criterion. The DL estimated based on the 

maximum value of Nash-Sutcliffe criterion has been used to arrive at the relational 

coefficient, 4). The value of the variance explained 1-1 is computed by 
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77=  1.1 	 i=1 	X100 
(co  - Cob,i  )2  

1.1 

(3.24) 

where, n is the total observed concentration ordinates; Cob,;  is the ith  observed 

concentration ordinate, Cc  „is the 	computed concentration ordinate, C01,,, is the 

mean of the observed concentration ordinates. The value of 4) (=0.116) suggested by 

McQuivey and Keefer (1974) may be used to estimate the solute dispersion 

coefficient, if observed C-t curves are not available. 

3.5 ANALYSIS OF MODEL APPLICABILITY USING ANALYTICAL 

SOLUTIONS 

The approximate AD equation (Eqn. 3.10) is obtained from the complete AD 

equation (Eqn. 3.1) using the assumption of linear variation of concentration over 

the reach Ax. Hence, the proposed approach considers the presence of DL while 

approximating the AD equation in contrast to the existing method considering that 

the dispersion is absent (Koussis et al., 1983). In this section, the analysis of the 

applicability of the proposed AD-VPM model is presented. In the present study 

Nash-Sutcliffe criterion was used as the criterion for evaluating the AD-VPM model 

performance while verifying it against hypothetical, laboratory and field data. 

3.5.1 Analysis of the Model Parameters 

Given the physical dispersion coefficient, DL solute routing can be 

performed through proper adjustment of the routing parameters Kc  and Oc  . 

The advective velocity and the dispersion coefficient are sufficient to estimate 

the routing coefficients coo w2 and co3 . The C-t curves can be simulated using 

Eqns. (3.21) and (3.22) for specified values of Ax and At and for known average 

advective velocity and dispersion coefficient. As long as DL and U remain constant 

for a given reach Ax, the value of Kc  and Oc  would remain unchanged. 
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The reach travel time Kc  is a physically based parameter and it can be 

determined using observed velocity and the reach length. As the reach travel time 

increases, the residence time of the solute increases, leading to increase in 

dispersion. The weighting parameter Oc  varies with the characteristic length, L. 

When the section (3) (Fig. 3.1) coincides with the outflow section, then L = Ax/2 

and Oc  =O. If the section (3) coincides with the mid-section of the reach, then L =0 

and Oc  =0.5, which leads to pure translation of C-t curve without any attenuation. 

Dispersion increases when Oc  decreases from the value of 0.5. The dispersion 

process has been termed as advection dominated when the dispersion number 

(= DAUAx)) is less than 0.2 (Koussis et al., 1983). The proposed AD-VPM model 

is suitable for advection dominated dispersion phenomena. The parameter Oc  

assumes negative values when the dispersion number is more than 0.5 (Eqn. 3.17). 

In the proposed model, only DL is to be calibrated from the measured C-t curves. In 

solute transport phenomenon, it is always necessary to calibrate one or more model 

parameters. There is no solute transport model that can be used without calibration 

of one or more model parameters unlike in flow routing where model parameters 

can be determined without any calibration process. 

3.5.2 Applicability of the AD-VPM Model 

The applicability of the model has been studied based on the analytical 

solution of the AD equation presented by Runkel (1996) for a. given hypothetical 

uniform pulse input. The hypothetical analytical solution is considered as the bench 

mark solution with which the proposed approximate model solution is compared, 

because it 'will not exhibit any noise as observed in real life data arising due to 

conditions imposed on the system which are extraneous to the model assumptions. 

Solute is, generally, disposed off into a river under three disposal or loading 

scenarios. First one is a slug of solute instantaneously disposed off at the upstream 

boundary, which generally happens during accidental spill of waste substances. 
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Second type is the one in which solute is disposed continuously and uniformly at 

the upstream boundary for a finite duration of time, (i.e., uniform pulse input 

loading case), which is the most general waste loading scenario. The third type of 

pollutant disposal is the one in which the solute is disposed continuously and 

uniformly over the cross-section of the channel at the upstream boundary (uniform 

step input case). As the second type of input loading is the most common and 

practically realizable scenario, the same is used in this study for evaluation of the 

AD-VPM model using hypothetical data. Moreover, use of uniform pulse input to 

obtain the analytical solution of the AD equation is preferred over that of the 

uniform step input as it allows one to know all the characteristics of the C-t curves 

such as magnitude of peak concentration, time to peak concentration, and the entire 

profile of the C-t curve including the rising and the receding limbs. This enables 

one to understand in a better way the capabilities of the proposed model in 

reproducing all the characteristics of the C-t curve. The use of the uniform step 

input for obtaining the analytical solution would not produce all the characteristics 

of C-t curve such as magnitude of peak concentration and its time of occurrence, 

and the receding limb profile. The agreement between the solutions using proposed 

model and the analytical method is measured using the Nash-Sutcliffe's criterion, 

(Nash and Sutcliffe, 1970) that is expressed using Eqn. (3.24). 

It is considered that the AD-VPM model is able to closely reproduce the 

analytical solution, when n > 99%. Such a criterion adopted in this work for 

evaluating the proposed model in reproducing the analytical solutions may be 

considered very stringent, when applied to field problems. 

A hypothetical uniform pulse input of 100 mg/1 for 2hrs duration is applied 

to arrive at the analytical solution of AD equation for the purpose of evaluating the 

applicability of the AD-VPM model. Solution of the AD-VPM model for this input 

is compared with the respective analytical solutions obtained for different 

combinations of velocities and dispersion coefficients. In these numerical 
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experiments, the flow velocities used are the characteristics of those observed in 

natural rivers as reported by Nordin and Sabot (1974) and Seo and Cheong (1998) 

and the velocity varies in the range of 0.2m/s-1.75m/s. The dispersion coefficient 

DL used in these experiments varies in the range of insignificant dispersion to those 

values, which results in the values of ri ?. 98%, Typical results showing the 

comparison between the analytical solution and AD-VPM model solutions are 

presented in Fig. 3.2. 

Based on these numerical experiments it is observed that 

(i) 
	

For a given specified velocity of flow there exists a DL, termed as 

limiting DL. When DL is greater than this limiting DL, then the 

performance of the AD-VPM model in reproducing the analytical 

solution of AD model leads to poor agreement resulting in ri< 99%. It is 

observed that as the velocity increases the value of the limiting DL 

increases. The velocities and their corresponding limiting dispersion 

coefficients are reported in Table 3.1. 

Table 3.1 Results showing the limiting DL estimated from numerical 

experiments and determined using the applicability criterion 

equation 

SI.No. Velocity 
(m/s) 

Limiting DL estimated 
(m2/s) 

Limiting DL (Eqn. 3.24) 
(m2/s) 

1 0.20 27 26.40 
2 0.35 70 69.00 
3 0.60 165- 173.40 
4 1.00 400 415.64 
5 1.25 600 610.00 
6 1.50 875 832.00 
7 1.75 1100 1083.30 
8 2,00 1555 1362.00 
9 2.50 2100 2000.00 
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Figure 3.2(i) Analytical solution and AD-VPM solution for U=0.35m/s, X=3km, 

Nr=15. (a) DL=32m2/s, (b) DL=60m2/s, and (c) DL=120m2/s 
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Figure 3.2(ii) Analytical solution and AD-VPM solution for U=1.0m/s, X=6km, 

Nr=30. (a) DL=60m2/s, (b) DL=200m2/s, and (c) DL=500m2/s 
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Figure 3.2(iv) Analytical solution and AD-VPM solution for pulse input at 

different downstream distances for U=1.0m/s and DL=250m2/s 

(ii) 	The relationship between the velocity and the limiting DL is shown in 

Fig: 3.3 demarcating the applicability domain of the model within which the 

reproduction capability is measured with 1> 99%. The demarcating curve is 

represented by the regression equation 

DL=416.64 UL71 	 (3.25) 

It is noted that Eqn. (3.25) is not dimensionally homogeneous. While 

developing Eqn. (3.25), the objective was to get a better regression relationship to 

define the applicability domain. This equation allows one to know the limiting 

dispersion coefficient for an observed velocity, below which the performance of the 

proposed model in reproducing the analytical solution of AD equation is with 

ri> 99%. 

In addition, the relationship between the velocity and the limiting DL is 

shown in Fig. 3.3 demarcating the applicability domain of the model within which 

the reproduction capability is measured with i>98%. 
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Figure 3.3 Applicability domain of the AD-VPM model 

The velocities and their corresponding dispersion coefficients estimated from 

the observed C-t curves of a number of natural rivers as reported in the literature 

(McQuivey and Keefer, 1974; McCutcheon, 1989; Rutherford, 1994; and Seo and 

Cheong, 1998) are plotted in Fig.3.3. It is inferred from Fig. 3.3 that most of the 

estimated dispersion coefficients for different river reaches, corresponding to the 

observed velocities, are well within the applicable limits of the proposed AD-VPM 

model, i.e., within the domain defining the applicability criterion, i>99% and a 

very few observed values fall within the demarcation curves of ri= 98% and 

rl = 99%. Hence, it may be considered that the AD-VPM model is suitable for most 

of the practical cases. 

The applicability of Eqn. (3.25) in the extrapolation range was tested by 

considering velocities beyond 1.75m/s, the upper limit of velocities used in 

developing Eqn. (3.25). Two velocities of 2.0m/s and 2.5m/s were used for different 

combinations of DL to arrive at the respective limiting values of DL similar to what 

was carried out in the numerical experiments used in the development of 

Eqn. (3.25). These experiments result in the limiting values of DL = 1555 m2/s and 
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DL=2100 m2/s respectively. The use of these velocities in Eqn. (3.25) yields the 

limiting values of DL=1362 m2/s and 2000m2/s respectively, which may be 

considered as the close estimate of the observed limiting DL. This experiment 

demonstrates the applicability of Eqn. (3.25) in the extrapolation range of the 

velocity. The results are shown in Table 3.1. 

3.5.3 Sensitivity Analysis 

3.5.3.1 Sensitivity analysis of dispersion coefficient 

The parameter Oc  is a function of the spatial step size (Ax) and the 

dispersion coefficient (DL). Therefore, it is necessary to study the sensitivity of the 

solution for the variations in spatial step size and dispersion coefficient. The DL 

computed using Eqn. (3.23) has a standard error of estimate of approximately 30% 

based on comparative data over a wide range of flow conditions for 18 streams and 

40 time-of- travel studies (McQuivey and Keefer, 1974). Hence, in the present 

study, the sensitivity of the solution of the AD-VPM model for the variation of DL 

by an error less than 30% was studied. The sensitivity of the parameter DL is studied 

by varying it by ± 20% from the true value. The numerical experiments show that ± 

20% variation in the dispersion coefficient does not affect the simulation results of 

the AD-VPM model in reproducing the analytical solution. The results of the 

sensitivity analysis for different given velocities (viz., 0.25m/s, 0.5m/s, 1.0m/s, and 

1.5m/s) and dispersion coefficients are presented in Table 3.2 and the comparison of 

the solutions are shown in Fig. 3.4. 
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Figure 3.4(i) Sensitivity of the AD-VPM solution for variations in DL by ± 20% 

in reproducing the analytical solution at X=5km for U=0.5m/s, 

DL=50m2/s 

Figure 3.4(ii) Sensitivity of the AD-VPM solution for variations in DL by ± 20% 

in reproducing the analytical solution at X=10km for U=1.0m/s, 

DL=120m2/s 
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Table 3.2 Results of the sensitivity analysis for the dispersion coefficient 

Velocity 
(m) 

DL for analytical 
solution 
(m2/s) 

Location form 
injection point 

(km) 

DL for the AD- 
VPM model 

(1112/s) 

Variance 
explained (i) 

(%) 
0.25 30 5 24 98.780 

30 99.835 
36 99.137 
40 98.090 

0.5 50 5 30 98.875 
40 99.713 
50 99.990 
60 99.880 
70 99.500 

1.0 120 15 100 99.747 
120 99.940 
140 99.896 
150 99.800 

1.5 400 15 300 99.604 
400 99.972 
500 99.808 
600 99.293 

3.5.3.2 Sensitivity analysis of spatial step size 

The sensitivity of the AD-VPM model for change in number of reaches was 

studied for a given velocity U and dispersion coefficient DL taking into account the 

applicability of the model governed by Eqn. (3.25). It was observed that the 

performance of the AD-VPM model in reproducing the analytical solution improves 

by using increased number of equal size sub-reaches in the given routing reach. 

This may be due to the reason that, for smaller sub-reaches the validity of the 

assumption of linear variation of concentration along x holds good. However, use of 

more number of sub-reaches beyond a certain limit would not improve the 

AD-VPM model capability in reproducing the analytical solution closely. The 

hypothetical numerical experiments were conducted at velocities equal to 0.25 m/s, 

0.5 m/s, 1.0 m/s and 1.5 m/s and the dispersion coefficients of 30 m2/s, 80 m2/s, 
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200 m2/s and 500 m2/s respectively. The hypothetical numerical experimental 

results are summarised in Table 3.3. The comparison of the analytical solution and 

the AD-VPM model solution for different number of sub-reaches is shown in 

Fig. 3.5 and the Nash- Sutcliffe criterion are given in Table 3.3. 

This is an advantage of the proposed model over the Cells-In-Series model, 

which is sensitive to the spatial step size. 

Figure 3.5(i) Analytical solution and AD-VPM solution for different number of 

reaches (Nr) at X=5km, U=0.25m/s and DL=30m2/s 
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Figure 3.5(ii) Analytical solution and AD-VPM solution for different number of 

Teaches (Nr) at X=15km, U=1.0m/s and DL=200m2/s 
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Table 3.3 The effect of variation of Ax on the solution of the AD-VPM model. 

Velocity 
(m/s) 

Dispersion 
coefficient 

(m2/s) 

Location from 
injection point 

(km) 

No. of sub- 
reaches 

11 
(%) 

0.25 30 5.0 5 84.313 
7 96.168 
8 97.892 

10 99.238 
12 99.655 
15 99.835 
20 99.879 

0.50' 80 5,0 3 88.048 
4 95.874 
5 98.397 
7 99.640 

10 99.911 
15 99.950 
20 99.951 
25 99.948 

1.0 200 10.0 5 96.717 
7 99.251 

10 99.897 
15 99.990 
20 99.988 

15.0 30 99.970 

5 84.685 
7 95.590 

10 99.066 
12 99.627 
15 99.898 
20 99.989 
25 99.990 

1.5 500 15.0 5 97.197 
7 99.391 

10 99.910 
15 99.989 

. 	20 99.986 
30 99.974 
40 99.970 
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3.5.4 Negative Initial Response 

In flood routing, negative initial response is obtained while using the 

Muskingum routing method, which is well documented in flood routing literature. 

Even though there is a dip in the initial outflow, Muskingum flow routing method 

has been used widely because of its simplicity. Perumal (1992) showed that the 

assumption of linear variation of discharge with reference to x over a given reach is 

responsible for the negative or reduced outflow at the beginning of the flood 

hydrograph. 

The AD-VPM model also produces an negative initial response as the 

assumption of linear variation of concentration with x within a small reach Ax is 

used in the development of the solute routing equation, which has the same form as 

that of the Muskingum flow routing equation. One may accept the negative initial 

response, as long as it does not affect the practical utility of the results. 

3.5.5 Mass Conservation 

The AD-VPM model was tested for conservation of mass of solute based on 

hypothetical numerical experiments conducted for varying values of velocity 

ranging from 0.2m/s to 2.5m/s. The dispersion coefficient was varied for each 

velocity within the applicable range of the model as governed by Eqn. (3.25). In all 

cases, a hypothetical uniform pulse input with the concentration rate of 100 mg/1/sec 

for a duration of 2 hrs was used. Based on the numerical experiments it is found that 

the mass is conserved with an error of less than 1% for the cases studied. 

3.6 APPLICATIONS OF THE AD-VPM MODEL IN FIELD AND 

LABORATORY TEST CASES 

Any model proposed to simulate the solute transport process needs to be 

tested for its applications using a variety of data. Hence, the proposed model was 

tested for its applications using hypothetical data, laboratory data and field data. 
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Analysis of the model using hypothetical test cases was presented in section 3.5. 

However, the practical utility of the AD-VPM model can be demonstrated only if it 

is tested using laboratory data and data collected from the tracer experiments 

conducted in natural rivers. Two sets of laboratory experimental data (Fischer, 

1966) and three sets of field experiments data (USGS Water Supply Paper, 1899-G, 

Tracer studies data on Colorado and Rhine Rivers) were used for validating the 

AD-VPM model. 

Unlike the routing method of Koussis (1983), the AD-VPM model enables 

one to use the observed C-t curve measurements at unequal time intervals. 

However, to estimate the Nash-Sutcliffe criterion (II) by the AD-VPM model in 

simulating the observed C -t curves, it is necessary to have observed concentration 

values at the same time of the simulated concentration values. When this is not the 

case, it becomes necessary to arrive at the output C -t values by interpolating the 

observed C-t values so that the simulated and observed concentrations are available 

at the same time. 

3.6.1 Laboratory Test Case 

The data set of series 2600 and series 2700 from the laboratory experiments 

conducted by Fischer (1966) are used for this test case. The details of the observed 

data are presented in Appendix A. 

3.6.1.1 Application to laboratory test case 1 

Test case 1 refers to series 2600 containing C-t curves at four successive 

sections at a distance 7.0m apart; viz., at 7.06m (section 1), at 14.06m (section 2), at 

21.06m (section 3), and at 28.06 m (section 4). The mean velocity in the channel 

was 0.269 m/s. The observed C-t data of series 2600 at section (2), (3), and (4) were 

adjusted for conservation of mass as suggested by Fischer (1966). These C-t curves, 

thus adjusted for mass conservation were used for calibration and verification of the 

AD-VPM model. 
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In the data set of 2600 series, observed input C -t measurements were 

available initially at 0.5 seconds time intervals (upto 26th  second from the time of 

release of dye) and later on at 1.0 second time intervals. The observed timings of 

the concentration measurements of this data series are consistent with the 

requirements of simulation, (using the observed C-t measurements at unequal time 

intervals), as pointed out earlier. The DL was determined by trial and error approach 

using the following procedure: 

The C -t curve at section (1) was routed through the reach, for an assumed 

Oc , to arrive at the computed C -t curve at section (2). The computed and observed 

C -t curves at section (2) were compared using the Nash- Sutcliffe criterion as given 

by Eqn. (3.24). This experiment was repeated for different Oc  values, and that Oc  

which results in the maximum value of variance explained was considered as the 

best value. This Oc  was used in the estimation of the best DL using Eqn. (3.17). The 

summary of the results obtained in estimating the DL are shown in Table 3.4. The 

best DL, thus obtained in this 2600 series laboratory test case using the above 

procedure is 0.0096 m2/s. This DL obtained from the calibration of C -t curve at 

section (2) was used to simulate the C-t curves at section (3) and section (4) in the 

verification mode. Figure 3.6 shows the simulated C-t curves and the corresponding 

observed C -t curves, in which results at section (2) were obtained in calibration 

mode and that at sections (3) and (4) were obtained in verification mode. The AD-

VPM model is able to simulate the observed C-t curves at sections (3) and (4) in 

verification mode, with Nash-Sutcliffe criterion (TO =99.395% and 99.651% 

respectively. It may be noted herein that the value of DL =0.0096 m2/s estimated by 

the AD-VPM model is close to the value of DL = 0.0117 m2/s obtained by Fischer 

(1966). It is also seen from Table 3.4 that a minimum Ax 0.40m is required to be 

used for accurate reproduction of C-t curve at section (2). 
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Figure 3.6 AD-VPM application to Fischer (1966) data series 2600 

Table 3.4 Summary of the calibration results of DL for the data series 2600 

laboratory experiments 

No. of sub- 
reaches 

- DL  DL 
(m 2/s) 

Maximum value of T1 

(%) 
7 0.3700 0.0350 68.48 

10 0.3950 0.0198 84.27 

14 0.4050 0.0128 95.20 

18 0.4025 0.0102 99.04 

21 0.3925 0.0096 99.61 

22 0.3700 0.0111 99.42 

23 0.3750 0.0102 99.56 

24 0.3750 0.0098 99.52 

28 0.3500 0.0100 99.21 

30 0.3375 0.0102 99.06 
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3.6.1.2 Application to laboratory test case 2 

Test case 1 refers to series 2700 containing C-t curves at two sections at a 

distance of 11.0m apart. The mean velocity of flow is 0.362m/s. The observed C-t 

data were adjusted for conservation of mass as suggested by Fischer (1966). The 

observed concentration measurements were available at unequal time intervals (0.5, 

1.0 and 2.0 seconds). Even though, the AD-VPM model enables one to use the 

observed C-t curves at unequal time intervals, the observed concentration 

measurements at the output section were not available at the same time at which 

simulated concentrations were obtained. Hence, it is necessary to arrive at the input 

and output C-t values by interpolating the observed concentrations, so that 

simulated and observed concentrations at the output section are available at the 

same time. 

The observed C -t curve at section (1) was considered as the input and the C-

t curve at section (2) was simulated using the procedure described in the analyses of 

data set of series 2600 laboratory experiments. The summary of the results obtained 

in estimating the DL are shown in Table 3.5. The best dispersion coefficient, thus 

obtained using the above procedure is 0.0225 m2/s. 

Table 3.5 Summary of the calibration results of Di, for the data series 2700 

laboratory experiments 

No. of sub-reaches ec 
DL 

(m 2/s) 
Maximum value of i 

(%) 
10 0.400 0.0398 91.681 
15 0.415 0,0225 98.948 
20 0.390 0.0219 98.941 
23 0.370 0.0225 98.365 
24 0.365 0.0224 98.195 
25 0.355 0.0231 98.039 
30 0.325 0.0232 97.427 
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The simulated C -t curve could closely reproduce the corresponding 

observed C-t curve at section (2). It may be noted herein that the DL estimated by 

the AD-VPM model is 0.0225 m2/s, which is close to the value of Di, = 0.0236 m2/s 

estimated by Fisher (1966). The comparison of simulated and observed C -t curves 

is shown in Fig. 3.7. 

Figure 3.7 AD-VPM application to Fischer (1966) data series 2700 

3.6.2 Field Test Cases 

In the present study, the data of three sets of tracer experiments conducted 

on three rivers, viz., the Missouri River (Yotsukura et al., 1970), Colorado River 

(Graf, 1995) and the Rhine River (Van Mazijk, personnel communication) were 

used for evaluating the applicability of the AD-VPM model for studying solute 

transport in natural rivers. 

The C -t curves recorded at each sampling station were tested for mass 

conservation against the input C -t curve. In all the cases, solute mass at each 

location was computed using a trapezoidal integration approximation (Camacho, 

2000) of the mass evaluated for continuous distribution as 

M = fQ C dt 	(QC)/ At 	 (3.26) 
0 
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The flow in each of these rivers was assumed to be steady during these tracer 

experiments. The steady-state-gain (SSG), defined as the ratio of the area under 

QC -t curve at a downstream location to the area under the input QC -t curve, is 

used as an indication of mass gain or loss. SSG>1 is an indication of mass gain and 

SSG<1 is an indication of mass loss (Camacho, 2000). 

The above method is generally useful when the details about the injection of 

tracer are not available. If information about the amount of tracer injected, 

discharge during injection and type of injection are available, then recovery ratio 

method (Yotsukura et. al., 1970) may be used to determine mass loss or gain, 

thereby, the concentration-time distribution can be adjusted appropriately. Recovery 

Ratio (RR) is defined as the ratio of the amount of dye or tracer actually recovered 

at the cross-section to the total amount that was injected initially and is expressed as 

co 

fQCdt 1(QC), At 
RR  =  0 	 (3.27) 

r7/0Clo 	1710C10 

where V10  and C10  are the volume and the concentration of injected solution 

respectively. 

3.6.2.1 Application to Missouri River 

Yotsukura et al. (1970) conducted tracer experiments in a 227km reach of 

Missouri River between Sioux city and Plattsmouth (Fig. 3.8). The C-t measurement 

data are presented in Appendix B 1.1. Observed C-t curves of dye available at four 

down stream samples locations: Decatur Highway Bridge (RK 1112), Blair 

Highway Bridge (RK 1042.8), Ak-sar-ben Bridge in Omaha (RK 991.3) and 

Plattsmouth Highway Bridge (RK 951) were used in the present test case. The 

measured concentrations are compensated for dye loss that occurred in the stream at 

each down stream dye sampling station using recovery ratio given by Yotsukura et 

al. (1970). The recovery ratio at Blair Highway bridge, Ak-sar-ben bridge and 

Plattsmouth Highway bridge are 0.78, 0.775 and 0.775 respectively. Discharge in 
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the reach varies from 883.5 m3/s to 977m3/s and velocity varies from 1.19m/s to 

1.84m/s. The slope of the entire reach is 0.0002. The observed hydraulic 

characteristics are presented in Table 3.6. 
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Figure 3.8 Schematic Study reach, Missouri River between Sioux City, Iowa, 

and Plattsmouth, Nebraska (Yotsukura et al., 1970) 
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Table 3.6 Hydro-geometric characteristics of the Missouri River reach 

(Yotsukura et al., 1970) 

Station (distance 
from dye 

injection point) 

Discharge 

(m3/s) 

Area 
(m2) 

Velocity 

(m/s) 

Width 

(m) 

Depth 

(m) 

Decatur bridge, 
(65.658 km) 883.50 710.71 1.24 185.92 3.81 

Blair Highway 

Bridge, 

(134.37 km) 

976.35 558.35 1.75 182.90 3.05 

Ak-sar-ben 

Bridge, 

(186.67km) 

942.40 589.00 1.60 175.87 3.35 

Plattsmouth 
bridge, 

(226.90 km) 
962.20 523.41 1.84 178.30 2.93 

The observed C-t curves available at Decatur Highway bridge, Blair 

Highway bridge, Ak-sar-ben Highway bridge in Omaha, and at Plattsmouth 

Highway bridge were used to test the AD-VPM model. The available observed 

concentration measurements at all the sampling stations are at irregular time 

intervals. Hence, the interpolated values were used in simulations without loosing 

the observed concentration measurements as far as possible. Therefore, a temporal 

time step of 900.0 seconds was used while simulating the observed C-t curve at 

Blair bridge sampling station and 1800 seconds was used while simulating the C-t 

curves at Ak-sar-ben bridge and Plattsmouth bridge sampling stations. The velocity 

was varying in the entire reach with a minimum of 1.243 m/s at Decatur bridge to 

1.84 m/s at Plattsmouth bridge. Hence, in each sub-reach average values of 

hydraulic characteristics were computed and those were used in simulating the 

observed C-t curves. The average velocity computed in the sub-reach between 
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Decatur bridge and Blair bridge, sub-reach between Blair Highway bridge and 

Ak-sar-ben bridge in Omaha, and in the sub-reach between Ak-sar-ben bridge and 

Plattsmouth bridge were 1.496 m/s, 1.68 m/s and 1.72 m/s, respectively. Dispersion 

coefficient was calibrated by simulating the C-t curve observed at Blair Highway 

bridge using the AD-VPM model based on the procedure described in 

section 3.6.1.1 while analysing series 2600 laboratory test data. The DL that gives 

the maximum Nash-Sutcliffe criterion (TO was considered as the appropriate 

dispersion coefficient. Based on the estimated DL, and flow and channel 

characteristics of sub-reach Decatur bridge-Blair bridge, the relational coefficient 4) 

was estimated using Eqn. (3.23) as 0.0651. The value of 4)  thus obtained was used to 

estimate the DL for the subsequent reaches. 

The C-t curves were simulated at Blair Highway bridge station in calibration 

mode, and at Ak-sar-ben Highway bridge and at Plattsmouth bridge in verification 

mode. The C-t curve observed at Blair Highway bridge was taken as input for the 

simulation of C-t curves at Ak-sar-ben Highway bridge and Plattsmouth bridge in 

verification mode. The comparison of observed and corresponding simulated C-t 

curves is shown in Fig. 3.9. Based on the studies it may be concluded that the AD-

VPM model is able to simulate the observed C-t curves at all the sampling stations 

downstream of Decatur bridge satisfactorily as indicated by the values of Nash-

Sutcliffe criterion (1) in Table 3.7. It is interesting to note that the variance 

explained (=96.97%) obtained in simulating the observed C-t curves at Balir Bridge 

in calibration model, is less in comparison with the variance explained in simulating 

the observed C-t curves at Ak-sar-ben and Plattsmouth bridge (=99.81% and 

99.20% respectively) in verification. 
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Figure 3.9 Observed and simulated C-t curves at different downstream 

stations in Missouri River 

Table 3.7 Dispersion coefficient and Nash-Sutcliffe criterion for different sub-

reaches of Missouri River 

Sub-Reach 
Reach 
length 

(m) 

Number 
of sub- 
reaches 

Reach 
length 

(m) 

Average 
velocity 

(m/s) 

Dispersion 
coefficient 

(m2/s) 

1.1 value 
(%) 

Decatur bridge 
to 

Blair bridge 
68716.0 12 68716.0 1.496 820.0 96.93 

Blair bridge 
To 

Ak-sar-ben 
bridge 

52292.5 12 52292.5 1.680 867.0 99.81 

Ak-sar-ben 
bridge to 

Plattsmouth 
bridge 

46707.5 12 46707.5 1.720 874.0 97.20 
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3.6.2.2 Application to Rhine River 

Dispersion studies under relatively steady flow conditions were conducted 

extensively in the River Rhine (Van Mazijk, personnel communication). Figure 3.10 

shows the schematic representation of the River Rhine along with locations of the 

sampling stations used in the tracer experiments. The data was supplied by Dr. 

Albert Van Mazijk of Delft University of Technology and the permission to use the 

data in the present work was given by Dr. Mr. M. Meulenberg of Commission 

International de L'Hydrologic du Bassion dtt Rhine (ICHR), The Netherlands. 

Figure 3.10 Schematic study area, channel discretisation and location of dye 

sampling sites (Source: Cam acho, 2000) 

In the present work, the C -t curves available at the sampling stations 

between Koblenz (RK 590.35) and Lobith (RK 863.3) were taken for testing the 

applicability of the AD-VPM model. The C-t measurement data are presented in 

Appendix B 1.2. The hydraulic and geometrical characteristics are presented in 

Table 3.8 (Van Mazijk, personal communication). 
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Table 3.8 Hydro-geometric characteristics of the Rhine River reach (Van 

Mazijk, personnel communication) 

Reach 
Sub- 

Reach 
ID 

Sub-Reach 
Length 

(m) 

Q 

(m3/s) 

Velocity 
(m/s) 

Area 

(m2/s 

Width 
(m) 

Koblenz 
(RK590.35) 

To 

Bad Honnef (RK 
640.0) 

2205 2.15 2142 1.42 1511.25 280 

2301 12.5 2292 1.47 1359.39 330 

2401 9.0 2287 1.25 1594.09 315 

2402 20.0 2287 1.22 1629.09 310 

2501 6.0 2315 1.35 1711.42 310 

Bad Honnef (RI( 
640.0) 

To 

Koeln (RK 689.5) 

2501 7.5 2315 1.35 1711.42 310 

2502 12.5 2315 1.40 1652.71 445 

2503 11.0 2315 1.44 1611.36 450 

2601 17.0 2375 1.47 1612.17 390 

2602 1.5 2375 1.34 1771.06 410 

Koeln (RK 689.5) 

To 

Dusseldorf (RK 
759.60) 

2602 13.0 2375 1.34 1771.06 410 

2603 13.5 2375 1.39 1709.8 395 

2701 20.0 2408 1.35 1778.23 365 

2702 5.2 2408 1.38 1743.82 325 

2703 15.4 2408 1.36 1775.96 425 

Dusseldorf (RK 
759.60) 

To 

Wesel (RK 814.0) 

2703 2.4 2408 1.36 1775.96 425 

2801 18.8 2434 1.31 1863.66 300 

2802 16.2 2434 1.15 2114.09 300 

2901 17.0 2407 1.20 2011.12 300 

Wesel (RK 814.0) 

To 

Lobith (RK 863.3) 

2902 13.0 2407 1.15 2099.22 300 

3001 10.0 2409 1.08 2230.97 300 

3001 14.9 2409 1.08 2230.97 300 

3002 10.1 2409 1.08 2229.40 300 

3101 1.3 2383 1.16 2041.02 340 

82 



The observed C-t curves are available at Koblenz (RK 590.35), Bad Honnef 

(RK 640), Koeln (RK 689.5), Dusseldorf (RK 759.6), Wesel (RK 814), and at 

Lobith (RK 863.3). The observed concentration measurements were analysed for 

conservation of mass. The results of mass conservation analysis are summarised in 

Table 3.9. Based on the analysis for conservation of mass, the C-t curves at Wesel 

and Lobith were modified. The C-t measurements at Wesel and Lobith were divided 

by 0.7980 and 0.6711 to account for the loss of mass of the tracer. 

Table 3.9 Steady State Gain at sampling stations on Rhine River 

Measuring Station 
Observed 
discharge 

(m2/s) 

Steady State 
Gain 

Koblenz 2142 Reference mass 

Bad Honnef 2315 0.9734 

Koeln 23 75 0.9771 

Dusseldorf 2408 0.9554 
Wesel 2407 0.7980 
Lobith 2383 0.6711 

The dispersion coefficient, DL was estimated by the AD-VPM model as 

described in section 3.6.1.1 while testing the proposed model using 2600 series 

laboratory data. The DL that gives the maximum, value of Nash-Sutcliffe criterion 

(1) was considered as the appropriate dispersion coefficient. In this test case, the 

C -t curves at the station Koblenz and Bad Honnef were taken to estimate the 

dispersion coefficient. Based on the estimated reach averaged DL and the average 

flow and flow and channel characteristics of the reach between Koblenz to Bad 

Honnef, the relational coefficient If, was estimated using Eqn.(3.23) as 0.116. The 

value of 4  thus estimated was used to determine the DL for the subsequent sub- 
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reaches using the Eqn. (3.23). The dispersion coefficients thus determined for 

different sub-reaches are presented in Table 3.10. 

Table 3.10 Dispersion Coefficients for different reaches of River Rhine 

Reach Sub- 
Reach ID 

Sub-Reach 
Length 

(km) 

Dispersion 
Coefficient 

(m2/s) 
Koblenz 

(RK590.35) 
To 

Bad Honnef (RK 
640.0) 

- 49.65 1844.60 

Bad Honnef (RK 
640.0) 

To 
Koeln (RK 

689.5) 

2501 7.5 1883.17 
2502 12.5 1311.87 
2503 11.0 1297.29 
2601 17.0 1535,67 
2602 1.5 1460.76 

Koeln (RK 
689.5) 

To 
Dusseldorf (RK 

759.60) 

2602 13.0 1460.76 
2603 13.5 1516.24 
2701 20.0 1663.66 
2702 5.2 1868.41 
2703 15.4 2053.88 

Dusseldorf (RK 
759.60) 

To 
Wesel (RK 814.0 

2703 2.4 2053.88 
2801 18.8 2941.08 
2802 16.2 2941.08 
2901 17.0 2908.46 

Wesel (RK 
814.0) 

To 
Lobith (RK 

863.3) 

2902 13.0 2908.46 
3001 10.0 17249.63 
3001 14.9 17249.63 
3002 10.1 17249.63 
3101 1,3 15055.99 

The C -t curves were simulated at Bad Honnef station (RK 640) in 

calibration mode, and at Koeln (RK 689.5), Dusseldorf (RK 759.6), Wesel (RK 

814), and at Lobith (RK 863.3) stations in verification mode. The C -t curve at 
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station Koblenz (RK 590.35) was taken as the input for the simulations in the reach 

under consideration. Comparison of the observed and simulated C-t curves for 

Rhine River is shown in Fig. 3.11 and the results are summarised in Table 3.11. The 

AD-VPM model is able to simulate the observed C-t curves at all sampling stations 

downstream of Koblenz, except at Lobith, satisfactorily. 

Figure 3.11 Observed and simulated C-t curves at different downstream 

stations in Rhine River 

Table 3.11 Summary of the characteristics of the simulated and observed C-t 

curves of the Rhine River 

Observed Simulated by the AD-VPM 
model Nash- 

Station at Time to peak Peak Time to peak Peak Sutcliffe 
concentra concentra concentra concentra criterion (n) 

tion tion tion tion (%) 
(days) (41) (days) (1-18/1) 

Bad Honnef 4.427 0.570 4.427 0.520 98.5 
Koeln 4.844 0.530 4.844 0.489 98.2 

Dusseldorf 5.386 0.400 5.469 0.446 92.0 
Wesel 5.844 0.396 6.010 0.392 89.7 
Lobith 6.407 0.296 6.428 0.301 65.0 

85 



A Gaging station and river kilometre (RK) 
from dye injection site 

0 Dye-sampling site 
8 Subreach number 

Grand 
Canyon 

Lake 1; 	National 
Mead 	Park 

Pada Glen Canyon Dam 

Nautiloid 
Canyon (RK58) 

3 
above the 
ittle Colorado 
war (RK98) 

below 40/6, 
Nevill's 	0  
Rapid (RK123) 

6 
Phantom 
Ranch 
(RK142) 

Mile 118 Camp 
RK(189) 

5 4 

Lees Ferry 
(RKO) 

Glen Canyon 
1 USGS 09379910 

(RK-25) 

Diamond Creek 
10 (RK362) 

National 
Canyon 
(RK267) 

Pumpkin 
Springs (RK343) 

Gneiss Canyon 
(RK381) 

3.6.2.3 Application to Colorado River 

The data set of the tracer studies conducted on the Colorado River (Graf, 

1995) were used to test the proposed AD-VPM model. Details of tracer 

experiments, the research inflow hydrographs controlled at Glen Canyon Dam, and 

available hydro-geometric channel characteristics for the sub-reaches of 380 km 

reach have been discussed by Graf (1995). The C-t data are presented in Appendix 

B 1. 3. The schematic diagram of the Colorado River reach is shown in Fig. 3.12. 

Figure 3.12 Schematic study area, channel discretisation and location of dye 

sampling sites of Colorado River (Graf, 1995) 

During these experiments, under steady flow conditions, concentration 

measurements available at Nautiloid Canyon, above the Little Colorado, below 

Nevill's Rapid, Mile 118 camp, National canyon, Pumpkin spring, and at Gneiss 

Canyon located at a downstream distances of 58 km, 98 km, 123 km, 189 km, 267 

km, 343 km, and 381 km from the tracer injection location respectively were used in 

this test case. The mass conservation analysis results showed that the dye loss was 
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insignificant at all the sampling stations (Graf, 1995). Hence, the observed C -t 

curves were used in the present study without any modification for mass 

conservation. 

Reach averaged DL was determined using the C-t curves at Nautiloid Canyon 

(input C -t curve) and at the station above Little Colorado River by the proposed 

AD-VPM model as described in section 3.6.1.1. This dispersion coefficient was 

used for the estimation of the relational coefficient 4) using Eqn. (3.23) as 0.072. 

Using this value of 4)=0.072, the DL for each of the subsequent sub-reaches used in 

the verification study was estimated from Eqn. (3.23). The observed reach length, 

the velocity, and the estimated dispersion coefficient of each of the sub-reaches are 

presented in Table 3.12. 

Table 3.12 Dispersion coefficients for different sub-reaches of the Grand 

Canyon reach in the Colorado River during steady flow 

Reach 
Length of 

reach 

(m) 

Average Velocity 
(m/s) 

Dispersion 
Coefficient 

(m2/s) 

Nautiloid - above 
Little Colorado 

40600.0 0.75 154.40 

Above Little 
Colorado.-Nevills 

rapid 

24900.0 1.10 75.01 

Nevill's rapid — 
M118 camp 

66100.0 0.97 122.40 

M118 camp — 
National Canyon 

78600.0 1.10 135.56 

National Canyon- 
Pumpkin spring 

75700.0 1.10 204.86 

Pumpkin spring - 
Gneiss Canyon 

36900.0 1.00 132.31 
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The C-t curve observed at Nautiloid was routed using the dispersion 

coefficient DL calibrated in the above manner to estimate the C -t curves at the 

downstream sampling stations in the Grand Canyon reach in verification, mode. The 

comparison of observed and simulated C-t curves is presented in Fig. 3.13. 

Figure 3.13 Observed and simulated C-t curves at different downstream 

stations in River Colorado 

The Nash-Sutcliffe criterion, rl value estimated at all the sampling stations 

were greater than 99% indicating the close reproduction of the observed C -t curves 

at each of these sampling stations. Such a good reproduction may be attributed to 

the quality of the experiments conducted under controlled environment, keeping the 

flow in the entire Grand Canyon reach as constant at approximately 428m3/s by 

controlling the Glen Canyon dam releases. The following statement of Graf (1995) 

confirms this inference 

"the C-t data under steady flow fit a simple one-dimensional mixing model 

.without modification to account dead zone, better than data for many rivers for 

which measurements are available." 
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3.7 DISCUSSION OF RESULTS 

The AD-VPM model is developed based on the concept (section 3.2 and 3.3) 

used in the development of the VPM model. It is appropriate to bring out the fact 

that the model formulated using Eqn. (3.19) to Eqn. (3.22) is the same as that 

proposed by Koussis et al. (1983). However, Koussis et al. (1983) obtained the 

parametric, relationships for Kc  and Oc  using the matched advective diffusivity 

approach advocated by Cunge (1969). Further, the matched diffusivity approach of 

Koussis et al. (1983) has been developed from the equation governing pure 

advection only, without considering dispersion process, which is contrary to the 

Fick's law governing the solute transport process in streams. Unlike in the case of 

flow routing wherein a one-to-one relationship between stage and discharge is 

possible, as postulated by Cunge (1969), implying absence of dispersion, the same 

logic is not applicable for solute transport in rivers. The proposed approach in the 

present study is devoid of these logical errors. The advantage of the proposed 

approach is that it enables to extend the use of Eqn. (3.19) to Eqn. (3.22) for solute 

transport modelling under unsteady flow conditions also, as discussed in Chapter 4. 

This is due to the reason that the AD-VPM model enables the integration of its 

parameters Kc  and Oc  with K f  and Of  of the VPM flow routing model. 

In the Koussis et al. (1983) approach the weighting parameters 0, is a 

function of Courant number (= UAt/Ax) and dispersion coefficient (Eqn. 2.13). 

Hence, to match the numerical dispersion generated in his model with a constant 

physical dispersion coefficient, it is necessary to keep Ax and At at constant values 

over the entire routing period (Eqn. 2.13). It is not possible to use unequal At 

values, which will lead to change in ec  and, thereby, change in the dispersion 

coefficient. Therefore, it is not possible to use the observed concentration 

measurements, which are generally available at unequal time intervals. However, in 
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the AD-VPM model the weighting parameter 9,. is a function of the solute 

dispersion coefficient, velocity and spatial step size (Eqn. 3.17). The change in 

routing time interval At will not alter Oc  and thereby the dispersion coefficient. In 

the AD-VPM approach, the parameters Kc  and ec  can be kept at a constant values 

and the routing coefficients co,, co, and ro3  (Eqn. 3.22) can be varied for any change 

in the time interval At over the routing period. Hence, the AD-VPM model can 

handle situations where the observed concentration measurements are available at 

unequal time intervals. This has been proved while validating the AD-VPM model 

using series 2600 laboratory experimental data (section 3.6.1.1). 

It is seen from Figs. 3.2 (i) to Fig. 3.2 (iii) that for a given velocity as the 

value of DL increases, the solution of the AD-VPM model deviates from the 

analytical solution of AD equation. Proposed AD-VPM model reproduces the 

analytical solution of the AD equation (Eqn.2.2) satisfactorily, if the dispersion 

coefficient is within the applicability range of the proposed model (section 3.5.2). If 

the dispersion coefficient is higher than the limiting dispersion coefficient for a 

given velocity (Eqn. 3.25), then the proposed model fails to give satisfactory results 

as seen in Fig. 3.14. 

In solute transport studies, when observed C-t curves are not available, the 

DL has to be estimated using a suitable expression from among the expressions 

available in the literature (Table 2.1). Generally, it is not possible to determine the 

dispersion coefficient accurately in a river reach using any one of the empirical 

expressions developed for estimating the DL as a function of the hydro-geometric 

characteristics of the river. When error in estimation of DL is within ± 20% , the 

AD-VPM model can be used to simulate the downstream C-t curves satisfactorily, 

as explained in section 3.5.3 (Fig. 3.4). 
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Figure 3.14(i) Analytical and AD-VPM solutions for U=0.45m/s, 

DL=227.6m2/s, X=4.0km 

Figure 3.14(ii) Analytical and AD-VPM solutions for U=0.1m/s, DL=54.7m2/s, 

X=2.0km 
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The AD-VPM model produces initial negative response, particularly at high 

spatial step sizes. Reducing the spatial step size may reduce or eliminate this 

problem. However, one may accept the initial reduced response, as long as it does 

not affect the practical utility of the results. 

The proposed AD-VPM model is verified under steady flow conditions by 

simulating (i) the analytical solutions obtained for an uniform pulse input (ii) using 

two laboratory test data (Fisher, 1966), and (iii) using three field experimental data 

sets. The satisfactory performance of the AD-VPM model in the above cases 

demonstrates the suitability of the proposed AD-VPM model for its application to 

longitudinal dispersion studies in rivers. 

The performance of the AD-VPM model in the Missouri River test case 

(section 3.6.2.1) in reproducing the observed C-t curves in terms of Nash-Sutcliffe 

criterion, (II) is found to be greater than 96%. The flow and channel characteristics 

are not constant from one sampling station to another sampling station. Hence, the 

sub-reach averaged flow and channel characteristics in each-sub-reach were used in 

the simulations of the observed C -t curves. The satisfactory simulations of the 

observed C -t curves using the AD-VPM model implies that the sub-reach averaged 

hydro-geometric characteristics can be used as the representative values of the 

respective sub-reaches. It is worth noting that the parameter DL obtained by the 

AD-VPM model for Fischer's laboratory data and Missouri river data (Yotsukura et 

al., 1970) closely correspond to the values of DL obtained by Fischer (1966) and 

Yotsukura et al. (1970) respectively. 

In the case of Rhine River, agreement between the simulated and observed 

C-t curves at Lobith in verification mode is not satisfactory (Fig. 3.11 and 

Table 3.11). This may be due to the fact that there is considerable loss of mass of 

solute at Lobith. The observed C-t curve at Lobith is modified using a dividing 

factor of 0.6771 based on the estimated loss of mass (Table 3.9), which is as high as 

32%. Because of the considerable loss, there will be uncertainties involved in the 
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modified C-t curves (Nordin and Troutman, 1980). The observed loss of mass of 

solute at sampling station Wesel and Lobith may be due to some additional 

mechanism that is responsible for considerable loss of mass, which is to be actually 

accounted for while simulating the C-t curve at these sampling stations. Moreover, 

the dispersion coefficient is too high (Table 3.10). The large dispersion may be due 

to the presence of either dead zone or transient storage mechanism, or absorption or 

a combination of these processes. It was already stated that the proposed AD-VPM 

model might not simulate such dispersion dominated solute transport process 

satisfactorily (section 3.5.1). 

In the Colorado River test case, the performance of the AD-VPM model in 

simulating the observed C-t curves is good. The following may be the possible 

reasons: 

(i) The dye loss was insignificant during each measurement, no adjustment 

of C-t curve for loss of mass was required. 

(ii) The flow from the dam is released under controlled condition to maintain 

a steady flow of approximately 428 m3/s in channel during the entire 

period of experimentation. 

In Colorado River tracer experiments, the loss of mass of dye was '- 

insignificant unlike in the case of tracer experiments in other rivers where the loss 

of mass was noted. The results demonstrate the ability of the AD-VPM model for 

practical solute transport applications. It is noteworthy that the approach followed in 

the present study allows one to extend it to the study of dispersion under unsteady 

flow conditions. 

3.8 CONCLUSIONS 

In this chapter an equation termed as Approximate Advection-Dispersion 

equation (Eqn. 3.10) has been developed, assuming linear variation of concentration 

with x within a small reach length Ax. Using the Approximate Advection- 
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Dispersion equation and adopting the concept used in the development of VPM flow 

routing model, a model termed as AD-VPM model for solute routing has been 

proposed (section 3.3). The proposed AD-VPM model is devoid of the logical 

inconsistencies that exist in the Koussis et al. (1983) approach. The concept of the 

VPM flow routing approach adopted in the development of the proposed AD-VPM 

model enables one to use the observed input C-t measurements at unequal time 

intervals in routing the solute concentration through a river reach. In the Koussis 

approach it is not possible to use solute concentrations at unequal time intervals as 

input, because the variation in time step size changes the dispersion coefficient 

(Eqn. 2.13). It is found that the proposed AD-VPM model is capable of reproducing 

the analytical solution of the AD equation for uniform pulse input with Nash-

Sutcliffe criterion (TO > 99% when 1311, 415.64 U1'71  (section 3.5.2). The analysis of 

the model parameters is presented. It is observed that ±20% variation in DL does not 

affect the simulation results obtained by the AD-VPM model in reproducing the 

analytical solution for a given dispersion coefficient. The sensitivity of the solution 

of the AD-VPM model for a change in number of reaches has also been studied 

(section 3.5.3.2). It is found that the decrease in size of sub-reach length below a 

particular Ax, in which the assumption of linear variation of concentration with x 

holds well, would not influence the solution of the AD-VPM model. The practical 

utility of this model is demonstrated by verifying its applicability, using laboratory 

data (Fischer, 1996) and three sets of field data from experiments conducted on 

Missouri River, Rhine River, and Colorado River. It is found that the proposed 

model works satisfactorily to simulate the solute transport in these rivers. 

The similarity of both the VPM flow routing model and the AD-VPM solute 

transport model enables to integrate their parameters. This integration of parameters 

is important while using the AD-VPM model to simulate the solute transport under 

unsteady streamflow conditions. This extension is presented in the next chapter. 
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Chapter 4 

SOLUTE TRANSPORT MODELLING USING 
APPROXIMATE ADVECTION-DISPERSION EQUATION: 

UNSTEADY FLOW CASE 

4.1 GENERAL 

The solute transport under unsteady stream flow conditions is a combined 

process of unsteady flow and unsteady solute movement. The flow diffusion and the 

solute dispersion models need to be coupled properly for simultaneous routing of 

both the variables. In the past, attempts have been made to couple both flow and 

solute routing models (Keefer and Jobson, 1978; Price, 1982; and Gabriele and 

Perkins, 1997). However, deficiencies with the existing coupled models (Section 

2.4.2 in Chapter 2) such as improper integration of flow and solute movement 

processes, use of complex solution approaches, and inability to link the model 

parameters of both the processes necessitate the development of an alternate 

approach that is reliable and less cumbersome. To overcome the above mentioned 

deficiencies, the mathematical similarity between the convection-diffusion equation 

(Eqn. 3.1, Hayami, 1951) governing the flood wave movement and the advection-

dispersion equation (Eqn. 2.2) governing the solute dispersion process may be 

favourably employed to develop a common solution structure suitable for modelling 

both the processes. The AD-VPM model developed in Chapter 3 to study the solute 

transport process in rivers under steady flow conditions has a model structure 

similar to that of the VPM model used for flood routing. This AD-VPM model can 

be extended to study the longitudinal dispersion of solute under unsteady 

streamfl ow conditions. 

This chapter presents (i) a brief description of the VPM model for flow 

routing, (ii) establishing the linkage of parameters of the AD-VPM and the VPM 
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models, and (iii) developing simultaneous routing procedure for flow and solute 

dispersion. The proposed model is tested using hypothetical and field data. 

4.2 MODEL DEVELOPMENT 

The AD model governing the solute transport process in rivers with uniform 

cross-section is described by equation (also see Eqn. 2.2) 

ac 	 a , rT  ac D 2  c 
-1" 	= 	 (4.1) at 	ax 	L  ax2  

The flow routing model governing the flow movement in rivers with uniform 

cross-section has the same form as that of the solute transport model, given by (also 

see Eqn. 2.28) 

a42 +c 342  D a2Q 
at 	k  ax 	ax2  

The combined process of flow and solute movement in rivers under unsteady 

flow condition may be modelled either by solving the above two equations 

simultaneously or solving them one-by-one, first solving the flow equation to arrive 

at the entire discharge hydrograph, which is subsequently used to solve the solute 

transport equation to arrive at the C-t curve. The simultaneous solution of 

Eqns.(4.2) and (4.1) to solve for the variables Q and C respectively at any time 

using the numerical methods is cumbersome procedure. But the one-by-one 

sequential solution approach is used in the current practices (Keefer and jobson, 

1978). However, simultaneous solution of Eqns (4.1) and (4.2) may be arrived at 

using the following approximate equations. 

6C ac - - + u70--x 	= 0 	 (4.3) 

and 
aQ aQ +C 
at 	k  aX 

(4.4) 

The solution of Eqn. (4.3) using the VPM type algorithm was demonstrated 

in Chapter-3 to model the solute dispersion process under steady flow conditions. 

(4.2) 
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4.2.1 Solute Transport Simulation Under Unsteady Flow Conditions 

The VPM method of flow routing is briefly described herein for the sake of 

bringing out the similarity in the solution procedures of flow routing and solute 

routing. Location of cross-sections referred in discharge routing may be seen from 

the definition sketch given in Fig. 4.1. 

1 

3 

QM , 	 Q3 
-0) ----00" 

Ax/2 
	

Ax/2 
M 

Figure 4.1 Definition sketch of the Muskingum flow routing reach 

4.2.1.1 Flow Routing 

The Variable Parameter Muskingum method proposed by Perumal (1994a) is 

used in the present study for flow routing: 

The VPM flow routing parameters K f  and O f  have been expressed in terms 

of physical properties of flow and channel geometry as 

K f 
[1+ m[ P aRlay  

dr 

23 [1 _7112F2 [PaRlayi 2  
OY 

Of = 1 	  

2  2S0  aA[i+m[P.aRiaYllu Ar ay 3L 	L  way J3]  3 

(4.5) 

(4.6) 

where, R is the hydraulic radius, FM  is the Froude number at the middle of the 

reach Ax, P is the wetted perimeter, ni is a constant (=2/3 for Manning's friction 
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law and =1/2 for Chezy friction law), and the suffix 3 refers to a section 

downstream from the mid-section of the routing reach Ax under 

(Fig. 4.2). The above expressions of K and O f  can be written as 

K./ —Ax 

in which ck is the wave celerity, given by 

c,=[1+rn(PaRlay  
U3  

\ allay )3_ 
 

and 
Df  f  

2 ck  Ax 

in which Df can be termed as the flow diffusion coefficient given by 

Q3 [1-  M 2  Fx24(P a")2  
w1ay  ,,,, 

2S0(%)3  

The flow routing equation is expressed as 

(Q0), = ci 	62(21) 	63(Qo) 

(4.10) 

(4.11) 

where (Q1) j  and (Q0 ) i  are the rate of inflow and outflow at time jit, respectively. 

(Q1 );_, and (Q0) 1_1  are the rate of inflow and outflow at time (j-1)At, respectively, 

where At is the routing time interval. The Muskingum coefficients el  , 32  and 33  are 

expressed as 

81  = 

81  = 

63  = 

– K19 f + At/2 
K1(1– 0I ) + At/2 

K10 f  + At/2 
K1(1-04+ At/2 
K1(1-19 1 )- At/2 
K f  (1– 19 f ) + At/2 

(4.12a) 

(4.12b) 

(4.12c) 

C  k 

consideration 

(4.7) 

(4.8) 

(4.9) 
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In the VPM flow routing, the parameters K1  and O f  are constant during a 

routing time interval At, but vary from one time interval to the next time interval in 

accordance with the variation of flow. 

4.2.1.2 Solute Routing 

The solute routing model (AD-VPM) has been developed in Chapter-3 for 

studying the solute movement in uniform channels and rivers under steady flow 

conditions. The routing equation and the associated parameter relationships are 

expressed as 

C01 = colC,,i  +co2CE.i_I  +o)3C0J _ I 	 (4.13) 

where, C1,/  and 	are the inflow concentrations at time j At and ( j -1)At 

respectively; C01andCo,i_, are the outflow concentrations at time jAt and (j-1)At 

respectively; CO, , co2 , and co3  are the coefficients of the routing equation expressed 

as 

—Klic +  At/2 = 
Kc(1-0,)+AtI2 

KcOc + At / 2 
c°2 = IC,(1-00)+At/2 

Ic(1-0,)--At/2 w3 —  
Ic(1-0,)+ At/2 

in which 

K 
U 

and 

(4.14a) 

(4.14b) 

(4.14c) 

(4.15) 

n  1 DL  cfc  = 2- — usx 	 (4.16) 

The proposed AD-VPM model developed for steady flow conditions is 

extended to study longitudinal dispersion of solute under unsteady streamflow 

conditions. In extending this model, it is assumed that the stream flow in a river 
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reach, Ax, is steady and uniform over a routing time interval At, but varies from one 

time interval to the next time interval due to unsteady flow conditions. 'Based on 

this assumption, Eqn. (4.13) to (4.16) can be used to study the longitudinal 

dispersion of solute under unsteady streamflow conditions. The velocity at 

section 3, as shown in Fig. 3.1, is used to compute the characteristic reach length, L 

(Eqn. 3.16, section 3.3). Hence, during unsteady flow Eqn. (4.15) and Eqn. (4.16) 

are expressed as 

.—u 	 (4.17) ,  

and 
1 DL  Oc  = 
2 1.13,60c 

(4.18) 

The solute transport model parameters Kc  and 0, are kept constant during a 

routing time interval At. But Kc  and Oc  are varied from one time interval to the 

next time interval in accordance with the variation of flow. Thus, a variable 

parameter solute routing model is developed which is similar to that adopted in 

VPM flow routing model, wherein the model parameters K f  and O f  are constant 

during a routing time interval but vary from one time interval to the next time 

interval. 

The model structure of the VPM flow routing and the AD-VPM solute 

routing being similar, it is now possible to simulate both the processes 

simultaneously. To achieve this, the parameters of flow routing (K1  and 0 f ), and 

solute routing (Kc  and 9c ) methods are interlinked. The reach travel time of flow 

(K1 ), and that of solute cloud (Kc ) are estimated using Eqn. (4.7) and Eqn. (4.17) 

respectively. The relationship between K f  and Kc  is obtained using Eqns. (4.7), 

(4.8) and (4.17), as 

Kc =K f [1+m 
(

PaR / ay  
aA / ay )3  (4.19) 
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In a similar manner, the relationship between Of  and 9, may be obtained using 

Eqns. (4.9), (4.18) and (3.23) as 

1 
ec = —2 0 [1  + m (13:AR/1 (0.5 — Of) :1]  (4.20) 

Using Eqns. (3.23) and (4.10), the relationship between DL and D1 can be expressed 

as 

2 - 
2F2 [PaRio))  

M  OA/ 

2S0(ayoy)3  

Using Eqns. (4.18) and (4.21), the parameter 0, can be expressed in terms of flow 

and channel characteristics as 

(4.21) 

9, 
0Q3[1-2FA24 { PaaAit 	1

n  

1 ay(  Y 

2 

imi 

,,i 

117   

2 	 aA 
u
, .. 

2s0 	3LI IC ay 3 

(4.22) 

In the proposed solute dispersion studies under unsteady flow conditions, the 

necessary flow details such as Ck  , U3, and pf were obtained from the VPM flow 

routing model and these are used to determine the solute routing parameters in a 

routing time interval, At. The solution algorithm is depicted in Fig. 4.2. 

4.3 EVALUATION OF THE MODEL 

The AD-VPM model has been described in Chapter-3 and it was meant for 

solute transport under steady flow conditions. The same is employed herein also, 

but for solute transport under unsteady flow conditions. The AD-VPM solute 

routing model is coupled with the VPM flow routing model for solute transport 

under unsteady flow conditions. Hence, for satisfactory application of the model, it 

should satisfy the applicability criteria of both the VPM flow routing model and the 

AD-VPM solute transport model. 
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Routing Step J =  

Estimate initial K f  and 01  and Kc  and Oc  using Eqns. (4.5) 
& (4.6) and Eqns. (4.19) & (4.22) using initial values of flow 

	 0,1 J = J 1  

Iteration step I =  

   

Estimate 61, 62  & 63, 
—K f  0 f  + 12 	K I 0 f +  At  2 	 K1(1- I  ) - I 2 

Ki.(1-01)+,402 , 62 = K1(1-01)+At12
; 63= 

K1(1 - 0 )+At12 

and wo(oz  and (o3 using Eqns. (4.14) 

 

    

    

   

Estimate (Q0); = 61(Q/); + 62 (Q1/ 	+ E3 (Qo 
Cod  = 	+ 	+ 0)3C0,1-1 

   

     

Estimate Q3  = O f  (Q/ )f + (1- Or  ) (Qo  )i 

   

   

Estimate ym  using Newton-Raphson Method from Q3  = AM  Cf R M  S iol 2  

 

                       

        

Estimate QM  = ( a) ,+ (Q0),112 

    

       

Estimate FM  = QM  (OA/ 0001 g (Am  ) 

    

                       

  

Estimate, y3= YM  + (Q3-ef) / PARY)Im {1 + m RPOR/Oy)/(OA/ay)]m}Um 

                       

         

Estimate A3  corresponding to y3  

     

         

Estimate U3  = Q3  /A3  

     

   

Estimate revised K f  and 0 f  and Kc  and Oc  for the present routing 
step using Eqns. (4.5) & (4.6) and Eqns. (4.19) & (4.22) respectively 

I = I + 1 

  

     

                   

     

No 

           

                   

                       

yes 
Estimate y1=  ym  (0i  - QA,f )/( aA/0y)Im  {1+ m [(PaR/8y)/(0A/ay)]m  }Um  

No 	IS J z N steps? 
--I, yes 

STOP 

Figure. 4.2 The solution algorithm for the AD-VPM model under unsteady 
streamflow conditions 
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The hydrograph to be routed should satisfy the criterion l(1/S0)(8y/ax)1< 1 at 

any time for successful application of VPM flow routing model with So and ay/ax 

denoting channel bed slope and water surface slope respectively (Perumal, 1994b). 

In the development of the AD-VPM solute routing model under unsteady 

flow conditions, it is assumed that the flow is steady during a routing time interval, 

but varies from one time interval to the next. Hence, the applicability criterion of 

the AD-VPM model evaluated in Chapter 3 under steady flow conditions is 

applicable here also. This applicability criterion is expressed as DL=415.64 U1'71, 

Eqn. (3.25), and has been developed based on the ability of the AD-VPM model to 

closely reproduce the analytical solution of the AD equation for uniform pulse 

input. Accuracy of the AD-VPM model depends on the estimated dispersion 

coefficient for a given velocity. If the estimated DL is less than the limiting value of 

DL obtained using Eqn. (3.25), at any time during routing, the performance of the 

proposed AD-VPM model under unsteady flow conditions may be considered 

accurate. 

The experimental studies of solute transport under unsteady streamflow 

conditions in rivers are very few, perhaps, due to the following difficulties in 

experimentation: 

1. Controlling flow variation in the river to suit the experimental 

requirement, 

2. Simultaneous monitoring, and recording of discharges and 

concentrations at regular time intervals at different downstream 

sections from the point of injection of solute or tracer. 

Further, it is not possible to obtain an analytical solution of the system of 

partial differential equations governing coupled flow and solute transport processes. 

Hence, the proposed AD-VPM model for studying solute transport under unsteady 

flow conditions needs to be tested by simulating the numerical solution of the AD 
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equation coupled with the Saint- Venant Equations (SVE), termed herein as the 

SVE-AD solution for hypothetical data input. 

4.3.1 Solution of the SVE-AD Model 

To arrive at the benchmark solution of the SVE-AD model, the following 

procedure was used: 

A given hydrograph at the input section of a uniform rectangular cross-

section was routed to the desired location in the channel reach using the numerical 

solution procedure of the Saint-Venant equations (Viessman et al., 1977) expressed 

as: 

and 

aA a Q + 	v at ax 

S = Q au au 
g at ax  

(continuity equation) 	 (4.23) 

(momentum equation) 	 (4.24) 

The results obtained by solving the SVE were used in solving the AD 

equation to arrive at the benchmark SVE-AD solution using the following approach: 

Runkel (1998) used the Crank-Nicolson numerical method to solve the 

Transient Storage (TS) model equations (Eqns. 2.29a and 2.29b). These equations 

converge to AD equation, if a and (3 are assumed to be zero. Hence, the algorithm 

suggested for solving the TS model can be used for AD model by assuming a = 0 

and (3=0. The oscillation problems associated with Runkel solution (1998) were 

avoided by maintaining the Peclet Number (Pe  = UAVDL  ) sufficiently low, based 

on the numerical experiments carried out during the study. Thus, the stable solution 

obtained by solving the SVE-AD equations was considered as the benchmark 

solution needed for the evaluation of the solution of the AD-VPM model. 

104 



The agreement between the solutions of the AD-VPM model and the SVE-

AD method is measured using the Nash-Sutcliffe criterion (1)(Nash and Sutcliffe, 

1970) given by Eqn. (3.24). 

4.3.2 Hypothetical Test Case 

The numerical experiments were carried out by routing a given inflow 

hydrograph and a given C-t curve in uniform rectangular channels using the SVE-

AD equations. The rectangular channels of 40km length with uniform width of 50 m 

and 100 m were considered for hypothetical tests. The configurations of the 

channels considered in the study are described in Table 4.1. 

Table 4.1 Configurations of hypothetical channel 

Channel ID  Width 

(m) 

Bed Slope (So) Manning's 
roughness (n) 

C-1 50 0.0002 0.02 

C-2 100 0.0002 0.02 

C-3 50 0.0004 0.04 

C-4 100 0.0004 0.04 

The inflow hydrograph, defined by a four parameter Pearson Type-III 

distribution was used in these numerical experiments and it is expressed as 

1(0= Ib  + (ip  — Ib) 
—17-1 

 exp 
rtitp ) 

r - P 

where, Ib is the initial steady flow (100 m3/s), Ip  is the peak flow (1000 m3/s), tp  is 

the time to peak (10 hr), and y is the skewness factor (1.15). Similarly, an input C-t 

curve having the form of Pearson Type-III distribution expressed by the following 

equation was used, as the input required for solute routing in the channel. 

(4.25) 
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1 
ty: 	(I -411,p )  

C(t) = C b 	p  C 	exp 	_1  (4.26) 

where, C b  is the initial concentration (0 mg/1), C p  is the peak concentration 

(50 mg/l), tcp  is the time to peak (l0hrs), and y, is the skewness factor (1.15). The 

same form of input was used by Camacho (2000) while studying the solute transport 

in channels using the ADZ model under unsteady flow conditions. The inflow 

hydrograph and the C-t curve applied at the same input point were simultaneously 

routed through the channel using the proposed AD-VPM model. A routing time 

interval of 15 min. was used in the numerical experiments. A value of 4)=0.116 was 

used in the hypothetical test cases as it is recommended by McQuivey and Keefer 

(1974) to compute the dispersion coefficient using Eqn. (3.23). An additional value 

of (1)=0.058 was considered to evaluate the performance of the AD-VPM model 

during advection dominated solute transport process, as dispersion during unsteady 

flow is advection dominated phenomenon (Bedford et al., 1983). The accuracy of 

the reproduction of C-t curve shape and size was evaluated using the Nash-Sutcliffe 

criterion given by Eqn. (3.24). The results are shown in Table 4.2. The comparison 

of the solutions of the AD-VPM model with the corresponding benchmark solutions 

is shown in Figs. 4.3 to 4.6. Typical range of velocities, the estimated DL values and 

the limiting DL values computed using Eqn. (3.25) for these experiments are 

summarised in Table 4.3. 
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Figure 4.3(i) SVE-AD and AD-VPM solutions for 4) = 0.058, channel type C-1 
at 10, 20 and 30km downstream from source of solute. 

Figure 4.3(ii) SVE-AD and AD-VPM solutions for 4) = 0.116, channel type C-1 
at 10, 20 and 30km downstream from source of solute. 

Figure 4.4(i) SVE-AD and AD-VPM solutions for 4) = 0.058, channel type C-2 
at 20 and 30km downstream from source of solute. 
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Figure 4.4(ii) SVE-AD and AD-VPM solutions for 4) = 0.116, channel type C-2 
at 20 and 30km -downstream from source of solute. 

Figure 4.5(i) SVE-AD and AD-VPM solutions for 4 = 0.058, channel type C-3 at 
10, 20 and 30km downstream from source of solute. 

Figure 4.5(ii) SVE-AD and AD-VPM solutions for 4 = 0.116, channel type C-3 at 
10, 20 and 30km downstream from source of solute. 
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Figure 4.6(i) SVE-AD and AD-VPM solutions for 4) = 0.058, channel type C-4 
at 20 and 40km downstream from source of solute. 

Figure 4.6(ii) SVE-AD and AD-VPM solutions for 4) = 0.116, channel type C-4 at 
20 and 40km downstream from source of solute. 

Table 4.2 Results showing the reproduction of peak concentration and its time 
of occurrence for hypothetical test case 

Channel 
Type 4) 

SVE-AD model AD-VPM model Nash-
Sutcli Sutcliffe 
Criterion 

(%) 

Time to 
peak 
(hr) 

Peak 
Concentra 

-tion 
(mg/1) 

Tme to 
peak 
(hr) 

Peak 
Concentra 

-tion 
(mg/I) 

C-1 0.058 14.75 48.40 14.75 48.13 99.22 
0.116 14.75 46.95 14.75 46.34 98.81 

C-2 0.058 16.00 48.46 16.00 48.23 99.23 
0.116 16.00 46.46 16.00 46.51 98.90 

C-3 0.058 16.00 48.40 16.00 48.18 99.22 
0.116 16.00 46.90 16.00 46.35 98.80 

C-4 0.058 17.50 48.59 17.50 	. 48.34 99.44 
0.116 17.50 47.07 17.50 46.73 99.04 
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Table 4.3 The range of velocities, DL and limiting DL for the hypothetical 
channels 

Type of 
channel 

Inflow 
velocity 

(m/s) 

Outflow 
velocity 

(m/s) 4) 
(n1 

DL 
2  /s) 

Limit 
(m 2 

in  
/s)
g DL 

Min. Max. Min. Max. Min. Max. Min. Max. 

C-2 0.80 2.03 0.80 1.95 
0. 0.058 145 1450 

286 1406 
0.116 290 2900 

C-4 0.65 1.62 0.65 1.55 0.058 72.5 725 
199 952.6 

0.116 145 1450 

An inflow hydrograph defined by Eqn. (4.25) was used in the numerical 

experiments with the following characteristics: initial steady flow (Ib=100 m3/s), 

peak flow (If=500m3/s), time to peak (tp=10hrs) and skewness factor (y=1.15). The 

C-t curve defined by Eqn. (4.26) with an initial concentration, Cb  =0 mg/1, peak 

concentration C I, = 50 mg/1, time to peak tep  = 6hr, and, skewness factor y, = 1.15, 

was used as the input required for solute routing in the channels. These inflow 

hydrograph and input C-t curve applied at the same input point were simultaneously 

routed through the channels C-1 and C-3 using the proposed AD-VPM model for 

solute transport under unsteady flow condition. A routing time interval of 15 min. 

was used in the numerical experiments. The results are presented in Table 4.4 and 

the comparison of the solutions of the AD-VPM model with the corresponding 

benchmark SVE-AD solutions are shown in Figs. 4.7 and 4.8. 

Table 4.4 Results showing the reproduction of peak concentration and its time 
of occurrence for hypothetical test case for peak flow of 500m3/s 
used in Eqn. (4.25) 

Channel 
Type (i) 

SVE-AD method AD-VPM model Nash- 
Sutcliffe 
Criterion 

(%) 

Time to 
peak 
(hr) 

Peak 
Concentra 

-tion 

Tme to 
peak 
(hr) 

Peak 
Concentr- 

ation 

C-1 
0.058 12.50 43.76 12.75 42.91 99.03 
0.116 12.50 38.98 12.75 38.12 98.80 

C-3 
0.058 14.25 43.85 14.25 42.43 99.67 
0.116 14.00 38.56 14.50 37.57 99.38 
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Figure 4.7(i) Flow details for channel type C-1 for If = 500m31s along with input 
C-t curve 

Figure 4.7(ii) SVE-AD and AD-VPM solutions at 20 and 40km downstream from 
source for channel type C-1 for the loading shown in Fig.4.7(i) 
(a) 4) =0.058, (b) 4) =0.116 
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Figure 4.8(i) Flow details for channel type C-3 for If = 500m3/s along with input 
C-t curve 

Figure 4.8(ii) SVE-AD and AD-VPM solutions at 20km and 40 km downstream 
from source for channel type C-3 for the loading shown in Fig. 4.8(i). 
(a) 4) =0.058, (b) 4) =0.116 
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4.3.3 Mass Conservation 

The AD-VPM model was tested for conservation of mass of solute based on the 

hypothetical numerical experiments performed in rectangular channels with uniform 

width of 50m and 00 m and for different channel configurations. The configurations of 

the channels considered in the study are described in Table 4.1. In addition to the 

channel types given in Table 4.1, rectangular channels with a width of 100m and 

characterised by different bed slopes of 0.0006, 0.0008, and 0.002 and each having a 

Manning's roughness coefficient of 0.04 were also used in these mass conservation 

studies. In all the cases, a hypothetical input hydrograph and a C-t curve given by Eqn. 

(4.25) and Eqn.(4.26), respectively, were used. The value of peak flow equal to 

1000m3/s was used in the Eqn. (4.25). In order to estimate the dispersion coefficient 

required for solute transport studies the empirical relationship established by McQuivey 

and Keefer, (1974) linking the flow diffusion coefficient to the solute dispersion 

coefficient given in Eqn. (3.23) was used with a value of 4)=0.116. Additional 

experiments were carried out with values of (1)=0.058 and 0=0.025. This was used to 

know the performance of the AD-VPM model under advection dominated dispersion, 

as dispersion during unsteady flow is advection dominated phenomenon (Bedford et al., 

1982). The specific concern is that the numerical solution of the AD equation using a 

given C-t curve as the boundary condition may not conserve mass given an unsteady 

flow regime as shown in Figs. 4.11 to 4.13. To test the mass conservation, 

concentration-discharge profiles were integrated with respect to time to determine the 

mass passing a given sampling location (Runkel et al., 1998). The total solute mass was 

computed from the integration of mass flow rate over time. The total mass, M passing 

through the outflow section was estimated as 

M = f QC dt =i(QC); At 
0 

(4.27) 

where i is the discretisation index. 

The area under the mass flow rate-time curve was determined by numerical 
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integration using Eqn. (4.27). The results are summarised in Table 4.5. In all the test 

cases it was found that the AD-VPM model under unsteady flow conserved mass with a 

maximum error of 3.63% in channel type C-2. The loss of mass of solute is very less in 

case of channels with flow characterised by kinematic wave phenomenon. If a diffusive 

wave process governs the unsteady flow, the loss of mass is more compared to the 

corresponding one during kinematic wave unsteady flow process (Table 4.5). The 

complexities involved in the modelling of the longitudinal dispersion under unsteady 

flow condition, which is a highly non-linear process, and the approximations involved 

in the development of the AD-VPM model may be responsible for the loss of mass upto 

3.63% (Table 4.5). However, the value is specific and applicable to this case (C-1) 

only. Based on the mass conservation analysis, it can be concluded that the proposed 

AD-VPM model conserves mass satisfactorily within its applicability range. 

Table. 4.5 Mass conservation results for solute transport under unsteady flow 

conditions 

Channel type 
Relational 
parameter, 

(I) 

Conservation of Mass (% error) 

Flow Solute 

• C-1 
0.025 
0.058 
0.116 

-0.10 
1.87 
2.51 
3.63 

C-2 0.025 
0.058 
0.116 

-0.20 
1.41 
2.05 
3.14 

C-3 
0.025 
0.058 
0.116 

-0.13 
1.61 
2.27 
3.39 

C-4 0.025 
0.058 
0.116 

-0.28 
1.02 
1.63 
2.69 

C-5 
(S0=0.0006,n =0.04) 

0.025 
0 . 
0.1058 16 -0.34 . 

0.59 
0.89 
1.41 

C-6 
(S0=0.0008,n =0.04) 

0.025 
0 .0 
0.116

58  -0.34 

0.06 
0.23 
0.54 

C-7 
(So=0.002,n=0.04) 

0.025 
0 0.058 
0.116 

-0.28 -0.42  

-0.46 

-0.37 
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4.3.4 Time of Release of Solute 

The aspect of time of release of solute at different time points since the 

passing of the inflow hydrograph was investigated. The hypothetical channel of 

100m width and the inflow hydrograph and input C-t curve used in section 4.3.2 

were used in this case also. The studies have been made by injecting the 

hypothetical C-t curve i) during rising limb (case A: tcp=7hr), ii) around the peak 

flow (Case B: tcp=10hr), and iii) during receding limb (Case C: (i) tcp=7hr 

(ii) tcp=10hr), of the hydrograph. In Case A and Case B, both the input hydrograph 

and the input C-t curve start rising at the same time. In Case C, the input C-t curve 

starts rising after 7hrs from that of the input hydrograph. These studies help in 

deciding the time of disposal of stored or accumulated waste with less or no 

treatment so as to utilise the dilution capabilities of time varying flows in a river. It 

is found that the disposal during the rising limb would result in maximum 

dispersion and thereby reducing the concentration compared to the disposal around 

peak flow. Also, the residence time is less either in case A or case B loading 

conditions in comparison with case C loading conditions. If the disposal is around 

the peak flow of hydrograph, the flushing time will be less thereby carrying the 

solute at a faster rate in comparison with the disposal during rising limb or receding 

limb of the hydrograph. The input hydrograph along with input concentration 

distribution details are shown in Fig. 4.9. The solute transport simulation results are 

summarised in Table 4.6 and shown in Figs. 4.10 to 4.13. 
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— Inflow hydrograph 
• • • VPM soln. 

— SVE sole. 
Input Con. 

Inflow hydrograph 
— Outflow hydrograph 

Input Con. (case C(ii)) 
— Input Con. (Case C(i)) 

Figure 4.9(i) 	Inflow and outflow hydrographs with input concentration 
distribution located in the rising limb of hydrograph (C-4, 
Case A) 

Figure 4.9(ii) 
	

Inflow and outflow hydrographs with input concentration 
distribution located in the rising limb of hydrograph (C-2, 
Case B) 

Figure 4.9(iii) Inflow and outflow hydrographs with input concentration 
distribution located in the receding limb of hydrograph (C-4, 
Case C) 
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Figure 4.10 (i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 
input of solute for channel type C-2, 4)=0.058 (Case A) 

Figure 4.10(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 
input of solute for channel type C-4,14)=0.116 (Case A). 

Figure 4.11(i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 
input of solute for channel type C-2, 4)=0.116 (Case B) 
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Figure 4.11(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 
input of solute for channel type C-4, 4=0.116 (Case B) 

Figure 4.12(i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 
input of solute for channel type C-2, 4)=0.116 (Case C(i) ) 

Figure 4.12(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 
input of solute for channel type C-4, 4)=0.116 (Case C(i)) 
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Figure 4.13(i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from 
input of solute for channel type C-2, 4=0.116 (Case C(ii)) 

Figure 4.1300 SVE-AD and AD-VPM solutions at 20km and 40km d/s from 
input of solute for channel type C-4, 4=0.116 (Case C(ii)) 

Figure 4.13(iii) SVE-AD and AD-VPM model solutions at 20km and 40km d/s 
from input of solute for channel type C-4, 4)=0.3 (Case A) 
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Table 4.6 Results for the hypothetical channel with B=100m for different 

hypothetical loading cases 

Loading 
case 

Channel 
type 

SVE-AD solution AD-VPM model 
Time to peak 
concentration 

(hr) 

Peak 
concentration 

(mg/I) 

Time to peak 
concentration 

(hr) 

Peak 
concentration 

(mg/1) 
Case A C-2 0.058 13,00 46.40 13.25 45.36 

0.116 13.00 42.73 13.50 41.40 
C-4 0.058 14.50 47.07 14.75 45.23 

0.116 14.75 42.45 15.00 41.24 
Case B C-2 0.058 16.00 48.46 16.00 48.23 

0.116 16.00 46.46 16.25 46.51 
C-4 0.058 17.50 48.59 17.50 48,34 

0.116 17.50 47.07 17.75 46.73 
Case 
C(i) 

C-2 0.058 21.75 46.91 21.50 46.81 
0.116 22.00 44.34 21.50 44.11 

C-4 0.058 23.75 47.30 23.50 47.25 
0.116 24.00 44.87 23.50 44.87 

Case 
C(ii) 

C-2 0.058 27.00 48.30 26.50 48.41 
0.116 27.00 46.77 26.75 46.95 

C-4 0.058 29.25 48.61 29.00 48.69 
0.116 29.25 47.20 29.00 47.45 

4.4 COLORADO RIVER TEST CASE 

The available data from the experiments conducted in a 380km long Grand 

Canyon reach of the Colorado River in May 1991 (Graf, 1995) was used to test the 

proposed AD-VPM model. Details of tracer experiments, the controlled inflow 

hydrographs released at Glen Canyon Dam, and available hydro-geometric channel 

characteristics for the sub-reaches of Grand Canyon reach have been discussed by 

Graf (1995). The experiments conducted in the Colorado River are useful for the 

present study as simultaneous measurements of hydrographs and the C-t curves 

enable the field testing of the proposed model. This unique experiment provides an 

opportunity to explore the dispersion mechanism and its relation with the flow in 
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rivers. The flow releases from Glen Canyon dam were controlled so as to provide 

two flow conditions for research viz., steady and unsteady flow conditions. The 

flow hydrographs during 5th  to 19th  May 1991 consist of variation of discharge 

ranging from 92 m3/s to 754 m3/s. 

In Grand Canyon reach, observed hydrographs are available at Lees. Ferry 

(RK 0;USGS 09380000), at above the Little Colorado river near Desert View (RK 

98; USGS, 0938100), at Phantom Ranch near Grand Canyon (RK 142; USGS 

09402500), at National Canyon near Supai (RK 267; USGS 09404120) and at 

Diamond Creek near peach springs (RK 362; USGS 09404200). The hydrograph 

data were given in Appendix B 1.3. The schematic diagram is shown in Fig. 3.12. 

Discharge data at 15min. interval are available at all the above said sections. 

The C-t curve measurements, during unsteady flow, available at Nautloid 

Canyon (RK 57.7), at the Little Colorado above Desert View (RK 98.3), at Nevill's 

rapid (RK 123), at Mile 118 camp (RK 189), at National Canyon (RK 267), and at 

Gneiss Canyon (RK 381) were used in the present test case. But the C-t curves at 

Mile 118 camp and at National canyon were incompletely observed during the 

unsteady flow resulting in absence of the leading edges. Simultaneous flow and dye 

concentration measurements are available only at Little Colorado and National 

canyon gauging stations. Figure 4.14 shows the observed flow hydrographs along 

with observed C-t curves. It is important to note that the observed C-t curves at 

sampling stations during unsteady flows do not have the long tails, and the same 

was observed under steady flow condition also (Chapter 3). The absence of long 

tails are indicative of the absence of the dead zone mechanism in the Grand Canyon 

reach of the Colorado River. 
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Figure 4.14 Observed hydrograph and the associated observed dye 

concentration at the sampling sites during unsteady flow. 
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(v) at National Canyon 
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Figure 4.14 Observed hydrograph and the associated observed dye 

concentration at the sampling sites under unsteady now 
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The channel characteristics of the Grand Canyon reach used in the analysis 

were estimated corresponding to a discharge of 680 m3/sec (Graf, 1995). Based on 

these characteristics, the Grand Canyon reach has been divided into 9 sub-reaches. 

The details are summarised in Table 4.7 and Table 4.8. 

Wiele and Smith (1996) presented a procedure to compute the representative 

cross section using the observed cross-section measurements of Colorado River. 

The cross-section measurements on Colorado River consist of a distance from the 

left water edge and a corresponding depth. To average the cross-sections, each was 

first normalized in the cross-stream direction by dividing the cross-stream location 

by the water surface width so that the cross-stream dimension ranged from 0 to 1. 

The depths at corresponding cross-stream fractions were then averaged. The width 

was restored by multiplying the cross-stream fraction by the average channel width. 

Reach averaged representative trapezoidal sections (Camacho, 2000) are arrived at 

for the irregular natural channel adopting the procedure proposed by Wiele and 

Smith (1996) for the large range of discharges observed. In the present study, reach 

averaged trapezoidal sections arrived at by Camacho (2000) for the Grand Canyon 

reach has been taken. The bed width and side slopes of narrow channel are 35m and 

1(horizontal) in 3.16 (vertical) respectively. The bed width and side slopes of wide 

channel are 48.75m and 1(horizontal) in 5.31(vertical) respectively. The 

representative trapezoidal cross-sections were arrived at by Camacho(2000) using 

the profiles measured at 199 sections along the Grand-Canyon reach. This may be 

additional reasons for the differences in velocities in the natural river section and 

assumed trapezoidal section of Camacho (2000). 
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Table 4.7 Channel characteristics corresponding to the discharge of 680m3/s 

(Graf, 1995) 

Sub- 
reach 

ID 

Length 

‘• 	(Km) 
Bed Slope 

Width 
(m) 

Depth 

(m) 

Ratio of 
width to 

depth 

Area 

(m2) 

2 57.7 0.00141 71.6 8.2 ' 8.7 573 
3 40.6 0.00126 106.1 6.1 17.4. 642 
4 24.9 0.00274 119.2 5.2 22.9 613 
5 18.8 0.00195 59.1 8.8 6.7 517 
6 47.3 0.00195 59.1 8.8 6.7 517 
7 78.6 0.00151 63.4 7.6 8.3 468 
8 75.7 0.00134 94.2 6.7 14.1 609 
9 18.4 0.00161 71.6 9.1 7.9 661 
10 18.5 0.00161 71.6 9.1 7.9 661 

Table 4.8 Classification of the Grand Canyon reach, Colorado River 

(Camacho, 2000) 

Reach 

• 

Sub-reach 
Classification 

based on 
width*. 

Sub- 
reach 

Identific 
ation 
No. 

Lees Ferry - 
above Little 

Colorado river 

Lees Ferry - Nautiloid Canyon Narrow 2 

Nautiloid Canyon - above 
Little Colorado river Wide 3 

Above Little 
Colorado river - 
Grand Canyon 

Above Little Colo.-Nevill's 
rapid Wide 4 

Nevill's rapid - Grand Canyon Narrow 5 

Grand Canyon - 
National Canyon 

Grand Canyon - Mile 118 
camp Narrow 6 

Mile 118 camp - National 
Canyon Narrow 7 

National 
Canyon- 

Diamond creek 

National Canyon - Pumpkin 
spring Wide 8 

Pumpkin spring-Diamond 
creek Narrow 9 

Diamond creek- Gneiss Narrow 10 

*The sub-reaches are classified as wide, if the top width > 85m, and narrow, if top width < 85m 
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Flow and solute routing were carried out using the proposed AD-VPM model. 

The agreement between observed and simulated distributions (for both hydrographs and 

C-t curves) was measured using the Nash-Sutcliffe criterion (/). Flow details required 

in solute routing under unsteady flow conditions were arrived at from flow simulations. 

The hydrograph available for a longer duration is split into two parts: i) data set during 

5th-11th  May, 1991 and ii) data set during 13th-18th  May, 1991. The first data set was 

used for calibrating the Manning's n using the VPM flow routing model and the second 

data set was used for verifying the same model using hydrograph simulations. 

4.4.1 Flow Routing 

In flow routing apart from the available channel characteristics and 

hydrographs, the Manning's roughness coefficient, n had to be calibrated from the 

available observed hydrographs. 

4.4.1.1 Calibration and verification of roughness coefficient 

The Variable Parameter Muskingum (VPM) model, was used to simulate the 

flow transport through the entire Grand Canyon reach from Lees Ferry to Diamond 

Creek to calibrate the roughness coefficient. 

The observed hydrographs between 5th  to 111  May 1991 were used to calibrate 

Manning's n for all the reaches considered. Manning's n was calibrated based on 

closest match between the observed and the simulated hydrographs at different 

downstream sections by routing the inflow hydrograph observed at immediate upstream 

section (Keefer and Jobson, 1978) for different values of Manning's n, varying from 

0.03 to 0.08. The selected value of Manning's n for each reach is within the normal 

range, generally observed in natural channels (Chow et al., 1988). The hydrographs 

simulated in calibration mode are shown in Fig. 4.15. Using the calibrated Manning's 

n, the observed hydrographs between 13th  to 18th  May 1991 are simulated at 

downstream sections of each reach in verification mode. The hydrographs simulated in 

verification mode are shown in Fig. 4.16. The salient features of the calibration and 

verification results are presented in Table 4.9. 
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Figure 4.15 Observed and simulated (in calibrating Manning's n) 
hydrographs at the different streamflow gauging stations 
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Table 4.9. Manning's roughness coefficient Calibration and verification results 

Reach Sub-reach Manning's n 
Nash-Sutcliffe criterion, 

1 (%) 
Calibration Verification 

Lees Ferry- 
above Little 

Colo 

.2.Lees Ferry — 
Nautiloid 

3.Nautiloid- Little 

0.055 

0.064 
98.46 98.10 

Colo. 
Above Little 4.above Little 0.062 
Colo.- Grand Colo-Nevill's 

Canyon rapid 99.79 98.43 
5.Nevill's rapid — 0.042 ' 

Grand Canyon 
Grand Canyon 6. Grand Canyon — 0.052 

— National Mile 118 
Canyon 7. Mile 118 — 0.048 

99.03 95.41 

National Canyon 
National 8.National 0.048 
Canyon- 
Diamond 

Canyon-Pumpkin 
spring 

creek 9. Pumpkin spring- 0.046 99.34 97.69 
Diamons creek 
10. Diamond 
creek- Gneiss 

0.046 

4.4.2 Solute Routing 

In solute transport studies it is necessary to use the observed velocities in the 

natural river section. Hence, in solute transport studies under unsteady flow 

conditions, Runkel, et al. (1998) adjusted the widths of the channel so that the 

simulated velocities agreed with the observed velocities during single discharge 

measurements of the unsteady flow event. The calibration adopted by Runkel et al. 

(1998) resulted in differences between the observed and simulated discharges and 

cross-sectional areas. 

In the present study, two representative trapezoidal cross-sections (one to 

represent the wide channel and another to represent the narrow channel of the Grand 

canyon reach as classified by Camacho (2000) and as shown in Table 4.7) were 
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used for flow routing in the Grand Canyon reach of the Colorado River. The 

observed hydrograph at a gauging location was used as inflow hydrograph for flow 

routing in each of the immediate sub-reach of the Grand Canyon reach. The 

Manning's n was calibrated so that the simulated discharge hydrographs agreed with 

the observed discharge hydrographs at downstream of each of the sub-reaches of the 

river. The usage of averaged trapezoidal cross-section representing the natural river 

cross-section, and the calibration of Manning's n to match the simulated 

hydrographs with observed hydrographs results in the velocity differences between 

those observed in natural river and that is estimated for the corresponding 

representative trapezoidal section reaches. This can be observed from the velocity in 

the trapezoidal section computed for each sub-reach at an approximate discharge of 

425m3/s during steady flow conditions in comparison with the velocity in the 

respective sub-reach of the natural river section at a discharge of 425m3/s during 

steady flow given by Graf (1995) presented in Table 4.10. Based on the results 

presented in Table 4.10, it was observed that the velocity in the trapezoidal reach 

section at 425m3/s is higher than the velocity observed in the corresponding natural 

river reach. 

Hence, a parameter kv has been introduced to estimate the observed velocities 

in the actual river from the velocities computed from the reach averaged trapezoidal 

section using a relationship 

= 	r  
a 	(1 + 17) (4.28) 

where Ua  is the actual velocity measured in the river, Ur  is the velocity estimated for 

the trapezoidal cross section 	representative reach. The velocity conversion 

coefficient (w) is calibrated using observed flow and concentration time series from 

the experiments conducted on Colorado river during controlled steady flow 

conditions from 206  May, 1991. The parameter NI calibrated during simulation of 

dispersion under steady flow is summarised in Table 4.10. 
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Table 4.10 The summary of calibrated values of w 

Reach 
Velocities observed 
in natural channel at 

cs-s 425 m3/s 
(m/s) 

Velocity estimated in 
reach averaged 

section at .1425 m3/s 
(m/s) 

Calibrat 
ed value 

of y 

Nautiloid-Above 
Little Colorado 0.75 . 1.26 0.64 

Above Little 
Colorado-Nevill 
rapid 

1.00 1.69 0.57 

Nevill rapid - Grand. 
C any. 
Grand .Cany. - Mile 
118 

0.97 2.01 
0.68 

1.21 

Mile118-National 
Canyon 1.10 1.87 0.74 

Nat. Canyon to 
Pumpkin spring 1.10 • 1.58 0.45 

Pumpkin 	spring 	to 
Gneiss canyon 1.00 1.96 0.86 

The'AD-VPM model, with parameter values of w  thus obtained under steady 

flow condition, was used to simulate the C-t curves, in verification mode, for the 

period of unsteady flow tracer experiments between 5th  and 13th  May 1991. Both the 

computed hydrograph from VPM flow routing and the observed C-t curve at 

Nautiloid canyon were used as the inflow hydrograph and the input C-t curve for the 

VPM flow routing model and AD-VPM solute routing model respectively. Using 

the AD-VPM model coupled with the VPM flow routing model, the C-t curves at 

different downstream sampling stations were computed. The salient features of the 

results obtained are summarised in Table 4.11. The results of the MDLC-ADZ 

model (Camacho,2000) are also presented in Table 4.11. The comparison between 

the observed and computed C-t curves is shown in Fig. 4.17. The computed C-t 

curves using the MDLC-ADZ model are also presented for comparing the results 

with that of the AD-VPM model. 
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Figure 4.17 Observed and computed C-t curves at different sampling locations 

under unsteady ❑ow conditions — Colorado River 

The simulated results show that the AD-VPM model is able to reproduce the 

characteristics of the observed C-t curves such as shape, peak concentration, time of 

travel to peak concentration and rl, and thus validating the proposed AD-VPM 

model. The Nash-Sutcliffe criterion, 11 estimated in simulating the C-t curves at 

Mile 118 camp and National Canyon are not actually representative because of the 

non-availability of the data in rising part of observed C-t curves. However, the 

Nash-Sutcliffe criterion values at Mile 118 camp and National Canyon are estimated 

to compare with the corresponding values arrived at using MDLC-ADZ model by 

Camacho (2000). The predicted peak concentrations and their time of occurrences 

are matching closely with those of the observed C-t curves in comparison to the 

simulation results of MDLC-ADZ model. The time of travel to peak concentration 

at above Mile 118 camp is well predicted by the MDLC-ADZ model in comparison 

with the AD-VPM model. 
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Table 4.11,  Observed and predicted dispersion characteristics during unsteady 

streamflow in Colorado River 

.Station 

Observed AD-VPM model ADZ-MDLC model (Camacho, 
2000) 

Time 
to 

peak, 
(hr) 

Peak 
concent- 
ration, 
(41) 

Time 
to 

peak, 
(hr) 

Peak 
concent- 
ration, 
(µg/1) 

n  
(%) 

. 

Time 
to 

peak, 
(hr) 

Peak 
concent- 
ration, 
(fign) 

11* 

(%) 

/2*  
(ova) 
%) 

Above 
Little 
Colo 

32.00 13.40 30.25 12.75 86.7 30.95 14.45 70.0 46.3 

Nevill's 
rapid 38.94 10:94 37.94 12.52 75.1 38.95 14.08 86.5 83.1 

Mile118 
camp 53.41 , 10.14 54.66 10.32 84.8 52.45 8.82 95.4 81.5 

National 
Canyon 76.50 9.74 76.75 9.53 96.0 74.45 9.66 67.2 80.0 

Gneiss 
Canyon 101.70 8.26 103.25 7.84 90.0 102.45 5.83 88.0 77.8 

* m. /12 are the Nash-Sutcliffe criterion for single and two-parameter MDLC-ADZ model 
(Camacho,2000) 

4.5 DISCUSSION OF RESULTS 

The proposed AD-VPM model for solute routing under unsteady flow 

conditions has the advantage of integration of the parameters of flow (K f  and O f ) 

and solute transport (lc and Oc ) models. Hence, it allows routing of the flow and 

solute concentration simultaneously. This integration and simultaneous routing is 

not possible in the approach suggested by Koussis et al. (1983), as (i) it is necessary 

to adjust the spatial and temporal step sizes with the variations in flow diffusion 

coefficient and transport dispersion coefficient accordingly, and (ii) the velocity that 
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is to be used in computing the solute routing model parameters (IQ and O c ) under 

unsteady flow is not clearly identified. The AD-VPM model coupled with the VPM 

method enables to overcome these problems. Unlike in the procedure adopted by 

Gabriele and Perkins (1997), the AD-VPM model for solute transport coupled with 

the VPM model for flow routing considers the solute transport velocity and the 

solute dispersion coefficient while routing the solute through the channel. The 

proposed AD-VPM model provides the means to relate the solute transport 

parameters, i.e., Kc  and DL to the flow and hydro-geometric characteristics of the 

channel (Eqns. 4.19 and 4.21). The results shown in Fig. 4.3 to Fig. 4.8 illustrate 

that the proposed AD-VPM model with integrated parameters is able to reproduce 

the benchmark solution obtained using SVE-AD model satisfactorily within the 

applicability range of the AD-VPM model and the VPM method. 

4.5.1 Differences in Velocities of Flood Wave and Solute Cloud 

Equations (4.7) and (4.17) reveal that the reach travel time of solute cloud is 

more than that of flow. Therefore, the solute mass residence time in a reach is more 

compared to flood wave residence time for a given Ax. Based on these observations, 

it can be inferred that the C-t curve travels with a lesser velocity compared to the 

hydrograph during unsteady flow. Hence, C-t curves lag behind the corresponding 

flow hydrographs during unsteady flow. It is interesting to note that the same 

phenomenon has been observed in solute transport studies under unsteady 

streamflow conditions in rivers (Glover and Johnson, 1974; McCutcheon, 1989; 

Graf, 1995; Gabriele and Perkins, 1997; and Krien and Symander, 2000). Gabriele 

and Perkins (1997) state that "the contaminant mass-flux distribution and 

streamflow hydrograph do not travel at exactly the same speed through a channel 

reach". 
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4.5.2 Effect of Channel Type on Solute Transport 

The solute transport under unsteady flow conditions has been studied using 

hypothetical inflow hydrographs and C-t curves in hypothetical channels as 

illustrated in section 4.3.2 and 4.3.4. Based on the results given in Table 4,2 and 4.4 

and shown in Figs. 4.3 to 4.8, it can be stated that the percentage of attenuation of 

peak concentration is approximately the same in C-2 and C-4 type channels. The 

time of occurrence of peak concentration in channel type C-4 is delayed in case A, 

case B, case C(i) and case C(ii) loading conditions by 1.5 hrs, 1.5 hr 1.0 hr and 2.5 

hrs respectively in comparison with the time of occurrences of peak concentrations 

in channel type C-2 (Table 4.6). This implies that the solute residence time in 

channel type C-4 is more than the solute residence time in channel type C-2. The 

velocities in the channel C-2 ranging, from 0.804 to 2.04 m/s, are higher in 

comparison with the velocities in channel C-4 ranging from, 0.652 m/s to 1.624 m/s. 

(Table 4.3). This might be the reason for the delayed occurrence of peak 

concentration at downstream distances in channel type C-4. It implies that if the 

velocity of flow is more the dispersion will be less and vice-versa. If the value of 

dispersion coefficient exceeds its limiting value given by Eqn. (3.25) at any time, 

then AD-VPM model solution starts deviating from the reference solution (Fig. 

4.13 (iii)). 

4.5.3 Solute Transport in Colorado River 

The AD-VPM model was used to simulate the observed C-t curves under 

unsteady flow conditions in the Grand Canyon reach of the Colorado River (Fig. 

4.17). A constant value of Manning's n for each of the sub-reaches of the Grand 

Canyon reach was used in routing the hydrograph using the VPM flow routing 

method. Based on the calibration and verification results, it is concluded that the 

VPM method for flow routing gives good results for the calibrated Manning's n 
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values, which are within the practical range stated in the literature (Chow et al., 

1988). Wiele and Smith (1996) proposed a variable roughness parameter in place of 

constant Manning's n, stating that a constant Manning's n will not predict the 

hydrographs satisfactorily. However, VPM flow routing model used in the present 

study simulates the observed hydrographs at different downstream stations using 

constant Manning's n values satisfactorily (section 4.4.1). Moreover, the observed 

hydrographs at different downstream stations in Grand Canyon reach were also 

simulated with a value of Nash-Sutcliffe criterion, /I > 98%, using constant 

Mannign's n and Multilinear Discrete Lag Cascade (MLDC) method (Camacho, 

2000). Hence, it may be concluded that the observations drawn by Wiele and Smith 

(1996) may be model specific and are not a generalised conclusion. 

From the results obtained using the MDLC-ADZ model (Camacho, 2000) in 

solute routing under unsteady flow conditions, it is interesting to note that a model 

that gives satisfactory results in simulating dispersion under unsteady flow 

condition fails to simulate the C-t curves under steady flow, and vice-versa. Steady 

flow is a special case of unsteady flow, therefore a model applicable for solute 

transport under unsteady flow condition should be applicable for solute transport 

under steady flow condition also. MDLC-ADZ model presented by Camacho (2000) 

lacks this characterisation. However, the proposed AD-VPM model in the present 

study works well for simulation of solute transport under both steady as well as 

unsteady streamflow conditions. 

Camacho (2000) used a parameter 13 to estimate the velocity in the natural 

channel from the velocity obtained using a reach averaged trapezoidal section 

(Eqn. 2.16) attributing the difference in these velocities to the transient storage 

solute transport mechanism. It is widely recognised that the observed C-t curves are 
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skewed particularly with long tails in streams in the presence of dead zones or 

transient storage zones (Day, 1975; Bencala and Walter, 1983; and Young and 

Wallis, 1992). However, the observed C-t curves in Colorado river do not show any 

long tails at any of the sampling stations, neither during steady flow nor during 

unsteady flow. Further, Graf (1995) stated that " If the dead zones are present that 

trap water for a significant length of time, then either their volume is small enough 

that they have no detectable effect on fluid transport in the main channel or they 

have sufficiently disconnected from the main flow that very little exchange takes 

place." Hence, it cannot be claimed that the differences, between observed 

velocities in river and computed velocities in reach averaged representative section, 

are because of the dead zone or transient storage zone mechanism, which is 

insignificant in the Grand Canyon reach under consideration (Graf, 1995). 

Hence, the velocity conversion coefficient NO used in the present study is a 

better representation to account for the velocity differences between observed in 

natural channel and reach averaged channel section (section 4.4.2). 

4.5.3.1 Variability of the dispersion coefficient 

The variations in DL due to variations of rate of flow and flow diffusion 

process are well accounted for, because DL is related to Df that describes the flow 

diffusion process. The solute dispersion coefficient is estimated from flow diffusion 

coefficient using Eqn. (4.21). The relational coefficient 4  in Eqn. (4.21) was 

calibrated using the observed C-t curves under steady flow condition and is kept 

constant for large variations of flow between 92 m3/s to 754 m3/s. Reasonably good 

predictions of solute transport process under unsteady flow conditions are obtained 

using a constant relational coefficient O. This implies that the assumption of a 

constant relational coefficient O is reasonable for the studied Grand Canyon reach. 
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The key to the demonstrated success of the suitability of the proposed AD-VPM 

model coupled with the VPM model for solute transport studies under unsteady 

flow conditions can be attributed to the integrated parameterisation that enables the 

computation of solute cloud travel time lc and weighting factor ec. from hydro- 

geometric channel characteristics and hydraulic variables. 

4.6 CONCLUSIONS 

In this chapter an integrated parameterisation of flow and solute transport is 

presented. This enables the simultaneous routing of both the flow and solute 

transport phenomena. The integration of parameters of flow and solute routing 

models has been made by exploiting the similarity in model structure and their 

parameters. The routing procedure was presented in Fig 4.2. The reach travel time 

lc, and the weighting parameter O. are physically based parameters. The limiting 

conditions for the successful application of the AD-VPM model under unsteady 

flow condition was presented. The aspect of time of release of solute so as to take 

the advantage of dispersion capabilities of the varying river flow was studied. The 

proposed AD-VPM solute routing model coupled with VPM flow routing method 

was demonstrated for its applicability using hypothetical data and field data from 

experiments conducted on the Colorado River. However, Advection-Dispersion 

model cannot simulate the observed C-t curves in rivers in the presence of dead 

zone or transient storage mechanism. Therefore, the proposed AD-VPM Model also 

cannot model the solute transport in the presence of the dead zone or transient 

storage mechanism. Hence, a simplified Transient Storage model to simulate the 

C-t curves observed in rivers in the presence of dead zone or transient storage zones 

is presented in the next chapter. 
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Chapter 5 

DEVELOPMENT OF AN APPROXIMATE TRANSIENT 
STORAGE MODEL 

5.1 GENERAL 

The bulk of the existing theories on solute dispersion in streams is based on 

a gradient transfer process. Since late 1960s, it has been realised that the classical 

AD equation, with constant dispersion coefficient, is not able to simulate the 

observed C-t curves, particularly with long tails. Hence, researchers (Thackston and 

Krenkel, 1967; Day, 1975; Sabol and Nordin, 1978; and Liu and Cheng, 1980) have 

been concerned with the development of a more appropriate theory for solute 

transport in rivers accounting for long tails. Various theories have been proposed to 

overcome the shortcomings of the AD model in simulating the observed C-t curves. 

One such theory considered that temporary entrapment of the solute mass in some 

pockets of the channel is primarily responsible for the C-t curves with long tails. In 

this theory, it was conceptualised that the solute transport process in a river reach 

takes place in two zones, viz., the main channel and a transient storage zone. The 

main channel is defined as that portion of the stream in which advection and 

dispersion are the dominant transport mechanisms. The transient storage zone 

encompasses those zones adjacent to the main channel, on stream bed and bank 

irregularities, representing relatively stagnant zones of water that are stationary in 

comparison to the fast moving water of the main channel. Solute transport in this 

transient storage zone is dominated by the mechanism of dispersion. In recent years, 

research has been focused to study the mechanism of solute transport in streams 

with transient storage zone. Mechanism of temporary solute mass trapping within 

the pockets, termed as dead zones or storage zones, of the channel has been thought 
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to be significantly affecting the longitudinal dispersion process in rivers. Initially, 

the transient storage zone acts as sink to reduce the solute concentration in main 

channel, as the concentration gradient is towards the transient storage zones. When 

the concentration of solute in the main channel becomes less than the concentration 

of solute in the transient storage zone, the solute mass from the transient storage 

zone starts entering into the main channel. This produces the observed long tail in 

the C-t curves. Based on this observation, Bencala and Walters (1983) inferred that 

" there is in fact a mechanism that presents itself as transient storage of solute mass 

along the length of the stream. Hence, we do not believe that a strict dead zone 

model is physically descriptive of the processes occurring in mountain streams, but 

rather that the observed transient storage' can be empirically simulated using the 

identical equations." Transient Storage model describing one-dimensional solute 

transport in a steady, uniform river reach with transient storage zone has been 

represented by the following governing equations (Bencala and Walters, 1983; and 

Seo and Cheong, 2001) as 

ac 	ac 	a2c 
T u  —ax 	ts —ax2 + (cs -C) 	

(5.1) 

as 
	,4 

— = a — (u – Cs) 	 (5.2) 
at 

where, C is the solute concentration in the main channel, Q is the volumetric flow 

rate, A is the cross–sectional area of the channel, Do  is the main channel dispersion 

coefficient of TS model, Cs  is the solute concentration in the storage zone, As  is the 

representative cross-sectional area of the storage zone, and a is the stream storage 

exchange coefficient. Eqn. (5.2) and the coupling term a(C. – C) in Eqn. (5.1) are 

deceptively simple, for they embody several physical principles and Constraints. 

Storage zones are assumed to be stagnant relative to the longitudinal flow of the 

stream and assumed to obey a first–order mass transfer exchange relationship. That 
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is, the exchange of solute between the main stream channel and the storage zone is 

proportional to the difference in concentration of solute between the main channel 

and the storage zone. 

The TS model ideally describes a system with the following characteristics (Bencala 

and Walters, 1983): 

i) Solute concentration varies only in the longitudinal direction (i.e., 

concentration does not vary with depth or width). 

ii) There exists a storage zone that is not moving. 

iii) Within the storage zone, solute is instantaneously and uniformly mixed. 

iv) The difference in concentrations and an exchange coefficient simply 

determine the transport of solute between the storage zone and the main 

channel. 

The effect of transient storage on solute transport has been included in 

longitudinal transport models using the first order mass transfer equation in which 

all underlying mechanism are arranged in model parameters, such as exchange 

coefficient (a) and ratio As/A. 

The analytical solution of the transient storage model equations has not yet 

been derived. However, solution of the transformed Transient Storage model 

equations into the so called x-s image (Laplace) space using Laplace transform 

method is available, which is inadequate to solve the governing system of partial 

differential equations of TS model analytically in simple (x,t) plane (Nordin and 

Troutman, 1980; Czernuszenko and Rowinski, 1997). Numerical solutions of 

Eqns. (5.1) and (5.2) lack simplicity and require calibration of as many as three 

parameters. The TS model has not been widely used perhaps because of the 

complexities involved in the solution procedure and due to difficulties in estimating 

the parameters of the model. 

Complexities increase further when the TS model is coupled with flow 
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routing model to study the solute transport under unsteady flow conditions. It is not 

possible to solve both the flow routing model and the TS model equations using a 

similar solution algorithm that enables simultaneous routing of flow and solute. So 

far, the flow and transport model equations have been solved using different 

numerical methods. The ADZ model, a simplified version of the Dead Zone model 

(Thackston and Krenkel, 1967; Valentine and Wood, 1977; and Sabol and Nordin 

1978), has been developed to study the solute transport in rivers with transient 

storage (Beer and Young, 1983). The governing equation of the ADZ model 

resembles the governing equation of delayed Muskingum flow routing model 

(Strupczewski and Napiorkowski, 1990). In ADZ model identification and 

estimation of parameters is equally complicated. Hence, an attempt has been made 

in the present study to develop a simple TS model equation. The proposed equation 

allows one to solve it either analytically or using simple numerical methods. 

This chapter presents (i) the development of an Approximate Transient 

Storage (ATS) model, (ii) the analytical solution of the developed ATS model 

equation for impulse, uniform step and pulse input boundary conditions, and 

(iii) Muskingum type solute routing formulation based on the ATS model under 

steady and unsteady streamflow conditions. 

5.2 DEVELOPMENT OF AN APPROXIMATE TRANSIENT STORAGE 

MODEL 

An Approximate Transient Storage model is developed using the governing 

equations (5.1) and (5.2) of the TS model. Eqn. (5.2) can be re-written as 

at p 
	 (5.3) 

in which, )6 = A B  /A 

Using Eqn. (5.3), Eqn. (5.1) can be written as 
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—acat 44j —aarc =Dts --Taar2c 	 .at:  
Differentiating Eqn. (5.1) with reference to t and rearranging the terms yields 

acs — _1 a2c + u a2c  ac Dt,  a3c  
a at' a at ax 	at 	a at ax2  

Substituting Eqn. (5.5) in Eqn. (5.4) and rearranging the terms gives 

ac U  aC Dts  02c, 	 [a2c, u a2C 
 + 	

Dts  a3c,  

+ 	 (5.6) 
at 1+fl ax 1+16 ax 2  cto + fl) at e 	at ax 	a(1+ )3) at axe  

The expressions for 02clat 2  and 02clatax in Eqn. (5.6) can be arrived at from the 

following steps: 

Differentiating Eqn. (5.4) with reference to x and rearranging the terms results in 

a2c --u  a2c + D —a3C  fl a2cs 
ax at 	ax2 	" ax3 	ax at 

(5.7) 

Differentiating Eqn. (5.5) with reference to x gives an expression for (a2c3ax at) 

in Eqn. (5.7) as 

a2c, 1 a3c + U a3c + a2c Dot,  a4c (5.8) 
ax at a ax at 	a at ax ax at a aratax2  

Substituting Eqn. (5.8) into Eqn. (5.7) and rearranging the terms, yields 

02c 	u a2c 	 fi  r  a3c +u  53c  1+  Dts   a3c + Dts  fl 	a4c  
ax at 	1+13 ax2 	a(l+fl) Lax at 2 	at axe 	1+13 ax3 	a (1+ f3) axatax 2  

(5.9) 

Differentiating Eqn. (5.4) with reference to t yields 

a2c _ _ u  a2c 	a2c 	a3c L ts  
at 2 	at ax 	at2 	at axe  

Differentiating Eqn. (5.5) with reference to t, gives 

a2c, 	a3c U a3c +  a2c D,  a4c  
01 2 	a at3 	a at'ax 	at 2 	a at 2  ax2  

(5.10) 

(5.11) 

(5.4) 

(5.5) 
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Substituting the expression for a2cdat 2  from Eqn. (5.11) in Eqn. (5.10) and 

rearranging the terms gives 

a2c u 	a2c )61 	a3c Dts 	a3c 	Dts 	a4c + 
at e  1+f3 at ax 

[a3c +U 
a(l+fl) 	at 3 	at e  ax 1+ f3 atax2+ a (1- - 13) at 2  ax2  

(5.12) 

Substituting Eqn. (5.12) in Eqn. (5.6) and rearranging the terms, results in 

ac u ac 
at 1- ax 
D ts  a2c 	132 u  a2c 	16 2  	r a3c 	a3c 	 

1+f3 axe 	a(1+ )6)2  ax at +  «20+ fl)2  L at' 
+Tr 
 at'ax 	a(1+fl)2  

fl2Dts 	a4c 

a3c  
atax2  

a2(1+ 13)2  012  ax2  
(5.13) 

Substituting the expression for a'clax at from Eqn. (5.9) into Eqn. (5.13), results 

in 

ac u ac 
at 1+fl ax 

D U2,32  
[1+ fl 	all + )6)3  _ 

a2cfl2   {[a3c +u  a3c 
ax2 

+ 
a  2 0 + fly at3 	at  2ax  

Ufl  [  a3c  +u  a3c  ]} 
(1+13) axat2 	axatax 

U162  Dis  53c 	/3 Dts  	53c 	fi'Dts   [a4c 
all+16)3  ax3 	a(1+ )51)2  at axe  a2 (1+ f3)2  at 2ax 

U18  54c  (5.14) 2+ 
(1+ ,G) axatax2  

Neglecting third and fourth order derivatives in Eqn. 

which is in a form similar to that of AD equation as 

ac + U ac .[Dts  +  U2/32  	a 2c 
at 1+/3 ax 	1+fl a(l+fi)3 axe 

Eqn. (5.15) can be written as 

aC ir  6C 	a2c 
at 

+ u 	— DLL  U

$ axaxe 
where, 

(5.14), gives an equation 

(5.15) 

(5.16) 

(5.17) 
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and 
Es 	U2g2  pus_   

L1+,3 a(l+fl)3  
(5.18) 

Equation (5.16) is termed as the Approximate Transient Storage (ATS) equation of 

the ATS model. This is an approximation of TS model as third and fourth order 

derivatives, of concentration are negligible. The term 132/a2(1+(3)2  appearing with 

third and fourth order derivatives in Eqn. (5.14) has been used subsequently to 

develop an applicability criterion of ATS model so that the simulations using this 

ATS model are in close agreement with the TS model. 

5.3 CHARACTERISTICS OF THE APPROXIMATE TRANSIENT 

STORAGE MODEL 

The ATS model is an approximation of the TS model. The assumptions used 

in the development of the TS model also hold good for the ATS model. The 

governing equation (Eqn. 5.16) of the ATS model is in a form similar to that of the 

AD equation (Eqn. 2.2). If 13 =0, and Dts= DL, then Eqn. (5.16) gets reduced to 

Eqn. (2.2). The ATS model enables one to distinguish the role of the transient 

storage model parameters 13 and a on solute transport process in rivers. When there 

is no exchange of solute between the main channel flow and transient storage zone 

(a—>0), the effect of transient storage zones on solute transport will be absent. This 

situation was termed as frozen cloud phenomenon (Czernuszenko and Rowinski, 

1997). Hence, 13 will influence the velocity of solute cloud U. only in the presence 

of a, but a will not alter the value of Us explicitly. In the ATS model, the 

relationship between the solute transport velocity and the flow velocity is obtained, 

as given by Eqn. (5.17), directly from the governing equation itself without 

involving the use of moment matching technique as has been done by Lees et al. 

(2000). Valentine and Wood (1977), Worman (2000), and Lees et al. (2000) 

suggested the same relationship between U and Us  as expressed by Eqn. (2.16) in 

which f3=As/A. 
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In TS model, the dispersion is predominantly due to the rate of exchange of 

solute between the main flow and storage zone represented by the exchange 

coefficient a. It is seen from Eqn. (5.18) that the effect of D. on dispersion of 

solute may be incorporated in a and 0 so as to avoid the usage of Dts  explicitly. This 

concept is indirectly used in the development of the ADZ modelling which was 

conceptualized based on the Dead Zone model, where the effect of D., a, and 0 
were embodied in the dead zone residence time (Beer and Young, 1983) and 

advection is incorporated using a time delay parameter, 'Ed (section 2.2.5). Similarly, 

the effects of a and 0 on dispersion of solute may be incorporated in Dts  enabling 

one to eliminate the theoretically less understood exchange coefficient a. This 

concept is used in the present study of developing the ATS model, where the effect 

of D., a, and 0 is embodied in a parameter PL., in a way similar to DL of the,AD 

model. The parameter Dus  is termed as the ATS dispersion coefficient. 

Unlike the ADZ model, which is conceptualised by neglecting the main 

channel dispersive characteristics, the governing equation of the ATS model has 

been derived directly from the TS model. The ATS model gives a greater insight 

into the dispersion mechanism of transient storage zone in comparison with the 

ADZ model. In the TS modelling approach there is yet a rather poor understanding 

of the role of exchange coefficient, a on the exchange of solute between the storage 

zone and the overlying water, and it is not feasible to estimate a theoretically 

(Rutherford, 1994). But the usage of a can be avoided In the ATS modelling by 

lumping the effects of D., a, and 0 into the single parameter Dus. This also avoids 

the estimation of Dts  separately. 

It may be inferred from Eqn. (5.18) that the parameters responsible for 

dispersion, viz., D., 0, and a are interrelated. Hence, it is possible to have different 

combinations of these parameters that can simulate the solute transport in rivers in 

the presence of transient storage. The same has been pointed out by Rutherford 
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(1994) stating that "It is not easy to obtain a unique calibration of Dts, 13, and a 

from a set of tracer results." As pointed out by Rutherford (1994), more research is 

still needed to interpret the physical significance of the model parameters, since 

comparatively few data sets have been analyzed and not enough information is 

available for practitioners. 

5.3.1 Advantages of the model 

The following are the advantages of the proposed ATS model (Eqn.5.16) 

over the TS model's system of partial differential equations in the TS model (Eqns. 

5.1 and 5.2) 

1. The ATS equation (Eqn. 5.16) is in a form similar to that of the AD 

equation, which enables one to develop analytical solutions analogous to that 

of AD equation (Eqn. 2.2) 

2. The ATS equation can be solved using simple numerical methods, which 

have already been used and tested to solve the AD equation, unlike the 

complex numerical methods used to solve the governing equations of the TS 

model. 

3 	The effect of individual parameters U, f3, a, and Dts  on the overall dispersion 

of the ATS model can be investigated based on Eqn. (5.18). 

4. The number of parameters of the TS model can be reduced by replacing the 

combined effects of U, a, 13, and Dts  on dispersion with a single 

representative parameter DIAs analogous to the dispersion coefficient DL of 

the AD equation. This reduces the problems associated with parametric 

uncertainty (because of the reduction in parameters) and estimation of a 

unique calibration set of Dts, a, and 13 values of the TS model. 

5. The ATS equation using the parameter pus avoids the usage of exchange 

coefficient a: This enables one to overcome the difficulty expressed by 

Rutherford (1994) in estimation of model parameter, a that there is yet no 
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clear understanding of the rate of exchange between transient storage zone 

and the overlying water and it is not feasible to theoretically estimate a from 

physical characteristics of flow and channel. 

The disadvantage of the ATS model is that it cannot reproduce the TS model 

solution beyond a certain range of a and 0 because of the assumptions and 

approximations involved in its development from the TS model equations. The 

terms containing a and 0, particularly a2 in the denominator, associated with the 3"I 

and higher order derivatives of concentration restrict the applicability of the ATS 

model well within the applicability range of the TS model. In addition, further 

research is necessary to know the concentration of the solute in the transient storage 

zone using ATS model. 

5.4 ANALYTICAL SOLUTION OF THE APPROXIMATE TRANSIENT 

STORAGE MODEL 

The Transient Storage model cannot be solved to give an analytical solution 

for the concentration C(x,t), However, the form of the ATS model enables one to 

develop analytical solutions analogous to those corresponding to the AD equation 

developed for impulse input, step input, and pulse input boundary conditions under 

steady flow conditions assuming U and DLts as constant. The analytical solution of 

Eqn. (5.16), for steady and uniform flow conditions in a river, for uniform step 

input boundary condition (C(x,0) = 0, and C(0,0 = C1 ), (known as Ogata and 

Banks (1961) solutions for the AD equation), has been given as 

C(x,t)= 
2 erfc(

x —1jS 	exp[Us x erfc[ x 	s 	 (5.19) 
21/Dust 	DL~s 	 2.1.1FC./ 

 

where, erfc(z) is complimentary error function given by Eqn.(2.5) Us and DLts are 

given by Eqn. (5.17) and (5.18) respectively. 

The analytical solution of the Eqn. (5A6) for an impulse input of 

conservative solute mass M is given as 
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—(x—  U, 2 ] 
C(x, = 	, 	exp 

0  
AV411D Lti  t 	 4D Lts  t 

(5.20) 

The analytical solution of Eqn. (5.16) for uniform pulse input of duration, T, during 

t 5 ti is given by Eqn (5.19) and during t > T, it is given as 

erfc 	 erfc
(x  —, U,(t — r)) x —  U, t 

2 F31 , 	,s 	2VD L„(t — r) 

exp 
[

Us  xi erfc i x +Ust 1  erfc  x + Us  (t 	r) 
Dus t 2/1507—Ast 2VDus (t— r) 

C(x,1)=— 
el 
2 

(5.21) 

Based on the AD equation, a simplified Muskingum type solute routing model 

(AD-VPM model) was developed in Chapter 3. In a similar way, a simplified 

Muskingum type solute routing model can be developed using the ATS model 

equation for modelling solute transport process in the presence of transient storage 

zone along the river reach. 

5.5 DEVELOPMENT OF MUSKINGUM SOLUTE TRANSPORT MODEL 

The Approximate Transient Storage model enables the development of 

Muskingum flow routing type solute transport model formulation based on the 

concept of the VPM method in a way as demonstrated for the case of the AD 

equation (sections 3.2 and 3.3) 

5.5.1 Solute Transport Model Formulation- Steady Streamflow Conditions 

The assumptions made and the procedure followed to develop an 

approximate AD equation (Eqn. 3.12) in section 3.2 of Chapter 3 can be adopted to 

develop a simplified ATS equation as described below: 

Eqn. (5.16) can be written as 

aca(usc) a' (),„c)  (5.22) at 	ax 	axe 

149 



Us  ax 
CM  =c Dus  ac 

(5.24) 

1 

Ax/2 	D 4 	 Ax/2 

Figure 5.1 Definition sketch of the Muskingum solute routing reach 

Assuming  that the concentration varies linearly over a small reach length as shown 

in the definition sketch Fig. 5.1, Eqn. (5.22) can be written as 

a(c D LLLc) u ax —+U$  ax.  – o (5.23) 

In a way similar to Eqn. (3.8), the concentration at the middle of the reach CM  is 

represented as 

using  the Eqn. (5.24), Eqn. (5.23) is expressed as 

ac acm  + u 	= v 	 (5.25) at 	ax 

The linear variation of C over the small reach enables one to write 

/5x)=(5C/ax). Then Eqn. (5.25) can be written as 

ac ac —al  +U s  —ax  =0 	 (5.26) 

The form of Eqn. (5.26) is similar to the approximate Advection-Dispersion 
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equation (Eqn.3.10) given in Chapter 3. The Muskingum type solute transport 

model can be formulated based on Eqn. (5.26), using the assumptions made in 

section 3.2 of Chapter 3, and adopting the procedure similar to that presented based 

on the approximate AD equation (Eqn. 3.10) in section 3.3 of Chapter 3. This 

formulation is presented below: 

Assuming linear variation of the concentration (assumption 2, section 3.2) and 

applying Eqn. (5.26) at section 3, shown in Fig. 5.1, yields 

dS,.„ 
dt 

where C, and Co  are the inflow and outflow concentrations, at a time step 

respectively and Scts is the storage of mass per unit inflow rate analogous to the 

storage of flow and is given by 

Sct, 	 (5.28) 

where, IC,„ denotes the travel time and is expressed as 

dx = U, 
(5.29) 

9,„ denotes the weighting parameter and is expressed as 

4. 	1 	DL,„ 
2 U,dx  

(5.30) 

Substituting the expression for Us  from Eqn. (5.17) and Dus from Eqn. (5.18), in 

Eqns. (5.29) and (5.30) respectively gives 

=A-r-(1+ /3) 	 (5.31) 

and 
1 [  Dt3 	1.12fl2   ](1+fl)  

Oct
'. 2 	(1+ /3) 

+ 
a(1 + /3)3  U.& 

Eqn. (5.32) can also be written as 

(5.32) 

=C1 —Co 	 (5.27) 
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B„ 	— [D ts  tjfi2 	1  
2 	

+ 
a ilax 

Using Eqn. (5.28) in Eqn. (5.27), the solute routing equation is expressed as 

C 	co C. + 	C. + 	C 0,1 	 ,,j 	ts2 	1c3 oj-1 

(5.33) 

(5.34) 

where, Ci. j  and 	are the inflow concentrations at time jAt and (j-1) At 

respectively; Co.)  and C0.1_, are the outflow concentrations at time jAt and (j-1)At 

respectively; and (ow  , co,s2 , and cow  are the coefficients of the routing equation 

expressed as 

+At/2 
Ka,(1-0„)+ At /2 

K„9„ +At/2 
ẁ s 2 

 
K, (1— Ocis )+At/2 

co = 	
ec„)—At/2 

Ics(1-0,„)+ At/2 

W ts1 (5.35a) 

(5.35b) 

(5.35c) 

It is interesting to see that if f3 = 0, the expressions for Kcts  and Oct, get 

reduced to Kc  (Eqn. 3.21) and Oc. (Eqn. 3,31). Eqns. (5.31) to (5.35) can be used to 

study the solute dispersion under steady flow condition. Since the approach 

employed in the development of the VPM method (Perumal, 1994a) has been used 

in arriving at Eqn. (5.34), and considering that the proposed method has been 

developed using the simplified Approximate Advection-Dispersion equation 

(Eqn. 5.26), this method of solute routing may be called as ATS-VPM method. 

5.5.2 Solute Transport Model Formulation- Unsteady Streamflow Conditions 

Simultaneous routing of flow and solute using the AD-VPM was envisaged 

in Chapter 4, based on the Approximate Advection-Dispersion equation of the 

respective process, to study the one-dimensional solute transport under unsteady 

flow conditions. The VPM method was used to model the flow diffusion process. 
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Similar assumptions and solution procedure can be adopted to study the solute 

transport in rivers under unsteady streamflow conditions in the presence of the 

transient storage mechanism affecting the solute transport. The parameters of the 

AD-VPM solute routing method (lc and Oc.) were integrated with the parameters 

of the VPM flow routing method (K1  andOf  ) as described in section 4.2, Chapter 

4. In a similar manner the parameters of the ATS-VPM method (K  and 0,0 and 

the parameters of the VPM flow routing method (K1  and 19/  ) may be integrated, 

and the parametric relationships thus obtained are expressed as (using Eqns. 5.31 

and 4. 5) 

C,„ =K f  [1+ m P  (  aY)1(1  + 13) 	 (5.36) 
(way) 

and (using Eqns. 5.30 and 4.9) 

1 D1  
Octs 	O f  = 	+ 

.4_ miPaR'aY1 
ail lay ), 

(1+ fl)Dus  (5.37) 

However, the integration of 9c„ with, Of  needs further studies, as unlike in 

the case of AD-VPM method where DL is directly related to Dj, Dus is not directly 

related to D1. The relationship between Dus and Dj is not yet established. DLts 

depends not only on the dispersion of the main channel flow, but also on the 

dispersion due to storage zone mechanism. Flow and solute can be routed 

simultaneously because of the similarity in the model structure and the integration 

of parameters of both the models. The algorithm of the ATS-VPM model coupled 

with the VPM flow routing method to simulate the solute transport under unsteady 

flow conditions in the presence of transient storage mechanism affecting dispersion 

process is presented in Fig. 5.2. 
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Figure 5.2 The solution algorithm of the ATS-VPM method under unsteady 

streamsflow conditions 

154 



5.6 CONCLUSIONS 

Approximate Transient Storage (ATS) model has been developed from the 

governing „equations of the TS model. The merits and demerits of the ATS model 

were discussed. The analytical solutions of the ATS model equation were presented 

for impulse, pulse, and step input boundary conditions. The ATS-VPM solute 

transport method was presented for studying the transport processes under steady 

and unsteady streamflow conditions. 

The comparison of the ATS model and the TS model, the applicability 

criterion of the ATS-VPM method and the applications of the proposed ATS-VPM 

method are presented in the next chapter. 
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Chapter 6 

APPLICATIONS OF THE APPROXIMATE TRANSIENT 

STORAGE MODEL 

6.1 GENERAL 

Several researchers have suggested that the transient storage mechanism in 

natural channel is responsible for the skewed nature of solute concentration 

variation with time in rivers. Transient Storage (TS) model has been used to model 

the solute transport in rivers affected by transient storage mechanism. The TS model 

divides the flow into two zones viz., the main stream in which the one-dimensional 

equation given by Eqn. (5.1) governs the solute transport process, and the transient 

storage zone along the bed and banks, in which the solute is assumed to be 

thoroughly mixed and the concentration is assumed to be uniform. Exchange of 

solute takes place between the main channel flow and the transient storage zone. 

These two processes are described using a set of governing equations given by 

Eqns. (5.1) and (5.2) (Bencala and Walters, 1983). 

In the present study, an Approximate Transient Storage (ATS) model 

described by the Eqn. (5.16), has been developed in Chapter 5 for studying solute 

transport process in rivers subjected to the TS process under steady as well as 

unsteady flow conditions. The governing equation of the ATS model was derived 

from the TS model equations (Eqns. 5.1 and 5.2). Equation (5,16) incorporates the 

effects of transient storage mechanism on flow velocity as Eqn. (5.17) and on 

dispersion coefficient as described by Eqn. (5.18). Based on the proposed ATS 

model, the ATS-VPM model was developed (section 5.4). 

This chapter is intended to evaluate the ATS model and the ATS-VPM 

model in detail presenting (i) the comparison between the solutions of the TS model 
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and the ATS model (ii) the applicability of the ATS-VPM model, and (iii) the 

applications of the ATS-VPM model under steady and unsteady streamflow 

conditions. 

6.2 COMPARISON OF THE TRANSIENT STORAGE AND THE 

APPROXIMATE TRANSIENT STORAGE MODELS 

In the development of the ATS model from the governing equations of the 

TS model, it was assumed that the 3rd  and higher order derivatives of concentrations 

are negligible. Hence, the ATS model is only an approximation to the TS model. It 

can be inferred from Eqn. (5.14) and the equation of the ATS model (Eqn. 5.16) that 

the parameter 13 used in the TS model is responsible for the difference between the 

velocity of solute cloud and that of the flow. The parameter c3, defining the ratio of 

the transient storage zone area to the main channel area, influences the dispersive 

mechanism provided the exchange of solute between the main channel and the 

transient storage zone exists. The influence of D1  on dispersion of solute depends 

on the rate of exchange of solute a, and f3 (Eqn. 5.18). In the TS modelling, the 

dispersion of a solute in a river is contributed by the main channel flow and by the 

transient storage zones. The parameters a and r3 governing the transient storage 

mechanism are mainly responsible for the dispersion of solute, particularly under 

low flow conditions. The rate of exchange represented by the parameter a ranges 

from a value as low as 10-6/s (Seo and Cheong, 2001) to a value of 0.0162/s (Runkel 

et al., 1998). When a, is low, its effect on the dispersion of solute would be more in 

comparison with the corresponding effect of Dts  in the presence of transient storage 

mechanism. This may be explained using Eqn. (5.18) in, which a is present in the 

denominator of the second term of the right hand side of the equation. 
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6.2.1 Applicability Analysis of the ATS Model 

As the ATS model is an approximation to the TS model, it is necessary to 

evaluate the applicability criterion under which the ATS model can reproduce the 

complete TS model solution. This has been studied based on the numerical solution 

of the complete TS model equations (Eqns. 5.1 and 5.2) for a given hypothetical 

uniform pulse input. The numerical solution of the TS model used in the present 

study was obtained using the Crank-Nicolson model suggested by Runkel and 

Chapra (1993). The numerical solution, thus obtained for the hypothetical input is 

considered as the benchmark solution with which the analytical solution of the 

proposed ATS model is compared. The analytical solution of the ATS model was 

obtained using Eqns. (5.19) and (5.21) for uniform pulse input. The agreement 

between the solutions of the ATS model and the TS model is measured using the 

Nash and Sutcliffe criterion, ti given by Eqn. (3.24). 

In general, the solutions of numerical models are compared with the 

analytical solutions so as to know the performance of a numerical model. However, 

in the present study the analytical solution of the ATS model is compared with the 

benchmarkliumerical solution of the TS model. Hence, it is considered that the ATS 

model is able to closely reproduce the numerical solution of the TS model, when 

rp.98%. However, criterion with il<98% may also be adopted for applying the 

model to field problems provided the results are.acceptable under prevailing field 

conditions. 

The term [13/(a(1+,6))]2 that is associated with the 3"1  order derivative of 

concentration (Eqn. 5.14) influences the close reproduction of the TS model by the 

ATS model. When, [ft' 1(a(1+ fig is considered to be insignificant, then the 

solution of the TS model and that of the ATS model may not be significantly 

different from each other. Therefore, the magnitude of [fl/(a(1 + X3))]2  may be 
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considered as the criterion for the applicability of the ATS model for the 

satisfactory approximation of the TS model. For further discussion on this chapter 

let it be expressed as X, i.e., 

2 

=[ fi  
a(1+ 13) 

(6.1) 

The A. is determined by reproducing the TS model results, obtained using 

hypothetical data, by the ATS model for the same data. In this study, it is 

considered that when the ATS model is able to closely reproduce the TS model 

results with Nash-Sutcliffe criterion, 11 >98%, then the ATS model is an acceptable 

approximation of the TS model. 

A hypothetical uniform pulse input of 50 mg/1 for 2 hrs. duration is applied 

to arrive at the numerical solution of the TS model. The analytical solution of the 

ATS model for this input is compared with the respective numerical solutions of TS 

model obtained for different combinations of velocities, dispersion coefficients, 

exchange coefficients and different values of 13. The value of U and (3 used in the 

numerical experiments vary in the range of 0.125m/s to 1.0m/s, and 0.1 to 0.75 

respectively. The value of 13, generally ranges from 0.01 to 0.50 (Seo and Cheong, 

2001), but values as high as 3.0 (Bencala and Walters, 1983) and 15.9 to 34.3 

(Runkel et al., 1998) have also been reported in literature. However, Runkel et al. 

(1998) stated that such high value of (3 might not be realistic. The value of a. used in 

these numerical experiments ranges from 0.000025 /s to 0.0007/s. Since the 

magnitude of X, decides the closeness of the solution of the ATS model and the TS 

model, it is obvious from Eqn. (5.14) that the value of Dt, would have less or 

insignificant effect in reducing the TS model to the ATS model. This inference can 

be made from Eqn. (5.14) wherein Dis  is present in the terms [UP 2D,s1(a(1+ p))31 

and [fiD, f/(a(1+/3)2 )] associated with the 3rd  order derivatives of C and these 

terms containing Dts  cannot magnify the 3"I  order derivatives of C, because of the 
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presence of a in their denominator to an extent that influences the TS model 

solution. Hence, a constant value of Dts =2.5 m2/s was used in the numerical 

experiments. The comparison of both the ATS and TS models solutions are shown 

in Figs. 6.1 to 6.6. The results are summarised in Table 6.1. Based on the numerical 

experiments it is concluded that the ATS model can reproduce the TS model 

solution with a rp98%, when the value of < 106. 

Figure 6.1 Solutions of ATS and TS models for U=0.125m/s, (3=0.25 at x=2km 

and 4km, a) a = 0.00025/s, b) a= 0.00035/s 
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Figure 6.2 Solutions of ATS and TS models for a=0.000075/s, U=0.5m/s, 13=0.05 
at x=5 km and 10km . 

Figure 6.3 Solutions of ATS and TS models for a=0.0005/s, U=0.5m/s, (3=0.5 at 
x=5 km 

Figure 6.4 Solutions of ATS and TS models for a=0.00035/s, U=0.75m/s, f3=0.25 
at x=5 km 
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Figure 6.5 Solutions of ATS and TS models for oc=0.0006/s, U=0.75m/s, J3=0.75 
at x=5 km 

Figure 6.6 Effect of a on the solute transport in the presence of transient!. 
storage zone mechanism for U=1.0m/s, 0=0.75 at x=5 km 

Figure 6.7 Solutions of ATS and TS models for oc=0.000075/s,U=0.125m/s, 
13=0.25 at x=2 km 
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Table 6.1 Summary of the results for the determination of limiting criterion of 
ATS model to reproduce the TS model solution 

Velocity 
(m/s) 

i3  a 
(s-1) 

X 11 
(%) 

0.125 
0.1 

0.000025 1.32E+07 0.94 
0.00005 3.31E+06 0.98 

0.000075 1.47E+06 0.99 
0.0001 8.26E+05 0.99 

0.25 

0.00005 1.60E+07 0.89 
0.000075 7.11E+06 0.94 

0.0001 4.00E+06 0.97 
0.00025 6.40E+05 0.99 
0.00035 3.27E+05 0.99,  

0.25 0.1 0.00005 3.31E+06 0.96 
0.000075 1.47E+06 0.98 

0.25 
0.000075 7.11E+06 0.89 

0.0001 4.00E+06 0.96 
0.00025 6.40E+06 0.99 

0.5 
0.0001 1.11E+07 0.91 

0.00025 1.78E+06 0.96 
0.00035 9.07E105 0.98 

0.0005 4.44E+05 0.99 
0.5 

0.05 
0.00001 2.27E+07 0.92 
0.00003 2.52E+06 0.96 
0.00005 9.07E+05 0.98 

0.000075 4.03E+05 0.99 
0.25 0.00025 6.40E+05 0.98 

0.5 
0.0003 1.23E+06 0.97 
0.0004 6.94E+05 0.99 
0.0005 4.44E+05 0.99 

0.75 0.0004 1.15E+06 0.97 
0.00055 6.07E+05 0.98 

-' 	0.75 
0.25 

0.0001 4.00E+06 0.90 
0.00025 6.40E+05 0.98 
0.00035 3.27E+05 0.99 

0.5 
0.00025 1.78E+06 0.98 
0.00035 9.07E+05 0.98 
0.0005 4.44E+05 0.99 

0.75 
0.0004 1.15E+06 0.97 
0.0005 7.35E+05 0.97 
0.0006 5.10E+05 0.98 

1 
0.25 

0.000075 7.11E+06 Oscillatory 
0.00025 6.40E+05 0.98 

0.0005 1.60E+05 0.99 

0.5 
0.0003 1.23E+06 0.98 
0.0004 6.94E+05 0.98 
0.0005 4.44E+05 0.98 

0.75 
0.00025 2.94E+06 0.96 

0.0004 1.15E+06 0.99 
0.0007 3.75E+05 0.99 
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1+fl 
416.64 [ 	

1.71 
(6.2) - 

6.3 APPLICABILITY ANALYSIS OF THE ATS-VPM MODEL 

In order to enable the application of the ATS model to field problems, it is 

necessary to develop a solution algorithm based on the ATS equation. Using the 

similarity between the ATS equation (Eqn. 5.16) and the AD equation (Eqn. 3.1), it 

is considered appropriate to develop numerical solution algorithm using the 

approach employed in the development of the VPM model. Accordingly, the 

ATS-VPM model, an approximation of the ATS model was developed in a way 

similar to that of the AD-VPM model. The ATS model gets reduced to the AD 

model, if 13=0. Hence, the applicability criterion arrived at for the AD-VPM model 

in reproducing the solution of AD equation (Section 3.5.2) can be adopted here also 

to arrive at the applicability criterion of the ATS-VPM model for the close 

reproduction of the analytical solution of the ATS model with Nash-Sutcliffe 

criterion, ii>99%. Using Eqn. (3.25), and Eqns. (5.17) and (5.18), the relationship 

between the solute cloud velocity U„ 13 and the limiting DLtS, describing the 

boundary of the applicability domain expressed as 

For a given value of U and 13 the value of the limiting DLtS,  for the successful 

application of the ATS-VPM model, can be determined using the Eqn. (6.2). The 

limiting DLtS obtained for a given velocity and f3 allows one to know the domain 

within which the performance of the ATS-VPM model in reproducing the analytical 

solution is satisfactory using the Nash-Sutcliffe criterion (n) greater than 99%. 

Using Eqn. (5.18) and Eqn. (6.2), the expression to compute the minimum value of 

a above which the ATS-VPM model can reproduce the solution of the ATS model 

can be arrived at, and is expressed as 
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,8 2 U2 a = 	  
DL (1+Q)3  —DX +/V 

(6.3) 

The validity of Eqn. (6.3) was tested by computing the minimum value of a 

and estimating the corresponding value of a by performing numerical experiments 

for a given set of U, 0, and D. The hypothetical uniform input of 100 mg/1 for a 

duration of 2hrs was used in the numerical experiments to arrive at the analytical 

solution of the ATS model. The analytical solution of the ATS model was obtained 

for uniform pulse input using Eqns. (5.19) and (5.21). The agreement between the 

solutions of the ATS model and TS model is measured using the Nash and 

Sutcliffe's criterion. The value of a thus obtained was close to the value of a 

computed using Eqn. (6.3). The summary of the results is presented in Table 6.2. 

The comparison between the solutions of the ATS-VPM model and the ATS model 

is shown in Figs. 6.8 to 6.12. While conducting the numerical experiments based on 

the hypothetical data for varying values of U, 0 and a (Table 6.2), it is found that 

the ATS-VPM model conserves mass with an error of less than 1 % for all the cases 

studied. 

Because of the similarity between the AD-VPM and the ATS-VPM models, 

the conclusions arrived from the studies of parameter sensitivity and the effect of 

using different number of sub-reaches in a given routing reach, as described in 

section 3.5 for the AD-VPM model are applicable for the ATS-VPM model also. 

Hence, when there is a variation of ± 20% in the value of DLts, the solution of the 

ATS-VPM model would not be affected significantly. This aspect can be observed 

in Mimram River experimental test case presented in the next section. 
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Table 6.2 Limiting value of a computed using Eqn. (6.3) and from Numerical 
experiments for given U, 13, Db, and limiting DLts 

R 
Velocity 

(m/s) 
Dt3 (m2/0  

' 

Limiting 
DLts 

(m2/s) 

a from 
numerical Expt. 

(s4) 

a 
from Eqn. 
(6.3) 	(s'1) 

0.1 0.1 1 6.85 0.000013 0.0000126 
5 6.85 0.000033 0.0000325 

0.25 5 32.90 0.00002 0.0000166 
15 32.90 0.000033 0.0000244 

0.5 15 107.78 0.000022 0.000020 
50 107.78 0.000031 0.0000301 

100 107.78 0.00011 0.000111 
0.75 50 215.76 0.000025 0.0000248 

150 215.76 0.000054 0.0000532 
200 215.76 0.00013 0.000125 

1 75 353.07 0.000027 0.0000264 
200 353.07 0.000044 0.0000439 
300 353.07 0.000095 0.0000935 

1.25 100 517.32 0.00003 0.0000275 
1.5 100 706.82 0.00003 0.0000274 

500 706.82 0.00007 0.000067 
0.3 0.25 7.5 24.77 0.00014 0.000135 

20 24.77 0.00026 0.000274 
0.5 25 80.97 0.00017 0.000166 

75 80.97 0.0004 0.00044 
1 100 265.25 0.00022 0.000218 

200 265.25 0.00035 0.000368 
1.5 25 531.02 0.00013 0.00018 

75 531.02 0.00015 0.000195 
0.5 0.25 7.5 19.35 0.00034 0.000323 

20 19.35 0.00085 0.00077 
0.5 10 63.38 0.00035 0.000327 

25 63.38 0.0004 0.000396 
0.75 25 126.88 0.00038 0.000378 

75 126.88 0.00055 0.000542 
1 50 207.62 . 	0.0004 0.000425 

150 207.62 0.00065 0.000688 
1.5 50 415.64 0.0004 0.000436 

200 415.64 0.00075 0.00059 
0.75 0.25 5 14.86 0.000575 0.000547 

10 14.86 0.00075 0.000717 
0.5 5 48.68 0.00057 0.000573 

25 48.68 0.00077 0.000763 
0.75 10 97.45 0.000625 0.000644 

50 97.45 0.00086 0.000857 
1 10 159.46 0.00065 0.000683 

50 159.46 . 	0.0008 0.000802 
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Figure 6.8 Solution of ATS model and ATS-VPM model for a=0.000075/s, 
(3 = 0.1, U=0.75m/s, Dt8=30m2/s, at x=4km and 8km 

Figure 6.9 Solution of ATS model and ATS-VPM model for a=0.00005/s, 
j3 = 0.1, U=0.5m/s, Dt8=7.5m2/s, at x=2km, 4km and 10km 

Figure 6.10 Solution of ATS model and ATS-VPM model for a=0.0002/s, 
13=0.3, U=0.5m/s, Du=10m2/s, at x=2.6km and 5km 
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Figure 6.11 Solution of ATS model and ATS-VPM model for a=0.0003/s, 
13=0.5, U=1.0m/s, Dt92.5m2/s, at x=4km and 6km 

Figure 6.12 Solution of ATS model and ATS-VPM model for a=0.00025/s, 
13=0.5, U=0.5m/s, Dt,=2.5m2/s, at x=2km and 4km 

6.4 APPLICATION OF THE ATS-VPM MODEL UNDER STEADY FLOW 

CONDITIONS 

The applicability of the ATS-VPM model needs to be tested using 

hypothetical data, and data from tracer experiments conducted in rivers. Analysis of 

the model using hypothetical data was presented while conducting the numerical 

experiments in section 6.3. Two sets of solute dispersion experiments, one on the 

Mimram river (Lees et al., 1998) and another on the Uvas creek (Bencala and 

Walters, 1983), were used to test the applicability of the ATS-VPM model for field 

conditions. 
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6.4.1 Application to Mimram River Tracer Experiment 

A tracer experiment was conducted by Lees et al. (1998) in a reach length of 

approximately 200 m on Mimram River near the Panshanger flow gauging flume in 

Hertfordshire, England. The experimental details are given in Appendix B 1.3. The 

available C-t measurements of this experiment at Site A at 100 m downstream from 

injection point; site B at 40 m downstream from site A; and Site C at 50 m 

downstream from site B were used in this test case. The observed hydro-geometric 

characteristics and the values of the parameters estimated by Lees et al. (2000) for 

the reaches between sampling stations A and B, and stations B and C are presented 

in Table 6.3. 

Table 6.3 The hydro-geometric characteristics and the parameters for 

Mimram tracer experiment (Lees et al., 2000) 

Reach 
Reach 
Length 

(m) 

Cross-section 
area 
(m2  ) 

Velocity 
(m/s) 

Dts 
(m2/s) 5  

a 
(s') 

A-B 40 0.6798 0.3692 0.25 0.1896 0.0059 
B-C 50 1.0150 0.2473 0.64 0.1785 0.0017 

Using the parameter values estimated by Lees et al. (2000), the values of A" 

DLts, and the limiting value of DLts were computed to know whether these values fall 

within the applicability domain of the ATS-VPM model. The computed values of X, 

and DLts and the limiting value of DLts for the observed velocity are shown in 

Table 6.4. It can be inferred from these values that the ATS-VPM model can be 

used to simulate the C-t curves observed from tracer experiments conducted on 

Mimram River. 

Table 6.4 The magnitude of X, DLts and Limiting DLts based on the parameter 

values given by Lees et al. (2000)- Mimram River 

DLts Limiting DLts 
Reach 2,, (1112/s) (1112/s) 

A-B 0.73 x 103  0.70 56.0 
B-C 7.94 x 103  1.24 28.8 
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Using the ATS-VPM model and the parameter values presented in Table 6.3, 

which were estimated by Lees et al. (2000), the C-t curves at site B and at site C 

were computed. The observed C-t curves at site A and B define the input C-t curves 

for the reaches A-B and B-C respectively (Lees et al., 2000). The ATS-VPM model 

was able to simulate the observed C-t curves at site B and at site C satisfactorily 

with a ri equal to 97.303% and 90.843% respectively. The comparison of the 

observed and computed C-t curves at site B and site C are shown in Fig 6.13. 

Figure 6.13 Observed and simulated concentration at sites B and C using 

ATS-VPM model and TS parameters given by Lees et al. (2000)- 

Mimram River 

It is important to note that the values of the parameters, viz., a, 13 and Dts, 

used for the simulations of the observed C-t curves were estimated by Lees et.al. 

(2000) for the TS model simulations. 

Estimation of the parameter values by one model and use of these in another 

model of different structure may pose difficulties. Therefore, it seems prudent to 

apply the same model for identification and prediction of a system (Koussis et al., 

1983). Hence, instead of using the parameter values estimated for the TS model by 

Lees et al. (2000), the parameter f3 and pus  were estimated using the ATS-VPM 

model. In estimating the values of parameters 13 and Dus, the C-t curves at sampling 

sites A and B define the input concentration for reaches A-B and B-C respectively. 
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The parameters were estimated by trial and error using the following procedure: 

i) The value of 13 is varied from 0 to a value of 0.4, which is 

approximately more than twice the value given by Lees et al. (2000). 

ii) For each value of p, the best DUs was determined using the following 

procedure, which is the same as that adopted in section 3.6.1 

(Chapter-3) to estimate the dispersion coefficient, DL: 

The C -t curve at an input section is routed through the reach, for an 

assumed 0„ to arrive at the computed C -t curve at output section. 

The computed and observed C -t curves at output section are 

compared using the Nash-Sutcliffe criterion, rl. This experiment is 

repeated for varying Oc,„ values, and that Octs  which results in the 

maximum value of Nash-Sutcliffe criterion, /I, is considered as the 

best value. This O was used in the estimation of the best Du, using 

Eqn. (5.30). 

iii) The step (ii) was repeated for varying values of13. 

iv) The combination of 13 and Dus  that result in maximum rl was 

considered to be the best set of parameter values. 

The calibrated values of 13 and Dus  in simulating the C-t curves at site B and 

Site C are presented in Table 6.5. The best value of DIA8 for 13=0 gives the DL of the 

AD-VPM model. The C-t curves at sites B and C were computed for the estimated 

value of DL using the AD-VPM model. Comparison of the observed and the 

simulated C-t curves using the AD-VPM model is shown in Fig 6.14. The C-t 

curves at site B and site C were simulated using the ATS-VPM model with the 

estimated values of the parameters 13 and Dus, and the comparison of the observed 

and simulated C-t curves is shown in Fig 6.15. 
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Figure 6.14 Observed and simulated concentration at sites B and C using 

AD-VPM model — Mimram River 
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Figure 6.15 Observed and simulated concentration at sites B and C using 

ATS-VPM model — Mimram River 

Table 6.5 Estimated values of the parameter using the ATS-VPM model and 

the values of nat site B and site C 

Reach 13 Dus (m2Is) il 
(%) 

Remarks 

A-B 0 0.554 94.788 AD-VPM 
0.1375 0.487 98.098 ATS-VPM 

B-C 0 0.696 85.275 AD-VPM 
0.2625 0.490 96.314 ATS-VPM 
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Using the ATS-VPM model and the value of 0=0.1375 and Dus  = 0.4869 

m2/s obtained for the reach A-B during calibration (of C-t curve at site B, Table 

6.5), to simulate the observed C-t curve at site C with the C-t curve at site B defines 

the input concentration, gives a ri=94.005%. The simulated C-t curve at site C in 

verification mode is shown in Fig. 6.15. 

6.4.2 Application to Uvas Creek Tracer Experiment 

Bencala and Walter (1983) described the tracer experiments conducted 

in Uvas Creek, a mountain stream. The experiments were conducted during a period 

of low flow of 0.0125 m3/s. The observed C-t curves at a distance of 38m 

(station 1), 105m (station 2), 281m (station 3) from the tracer injection point were 

used in the present test case. The C-t data used in this test case are presented in 

Appendix B 1.5. 

The significant feature of the concentration data is the extent of the long tails 

present in the observed C-t curves. Bencala and Walters (1983) observed that the 

AD model would not explain the tracer transport in Uvas creek that is dominated by 

transient storage mechanism. Hence, they used the TS model to simulate the 

transport of chloride in Uvas Creek River. For the application of the TS model, the 

best fit model parameters were obtained in downstream sequence for each of the 

five reaches between successive sampling locations. Bencala and Walters (1983) 

selected the model parameters by visually determining the set of parameters, which 

yielded the best fit to the C-t curves. The parameter values thus estimated by 

Bencala and Walters (1983) are presented in Table 6.6. The effective storage zone 

area As  for Uvas creek is greater than or equal to the main channel flow cross 

sectional area A. This may be due to very low velocities of flow in the Uvas Creek 
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(Table 6.7). Bencala and Walters (1983) stated that the following may be the 

plausible reason for the high value of storage area compared to main channel area. 

1. turbulent eddies generated by large-scale bottom irregularities, 

2. large, but slowly moving recirculating zones along the sides of pools, 

particularly located immediately downstream of the entrance to a pool 

from a riffle section, 

3. small, but very rapidly mixing recirculating zones located behind flow 

obstruction, particularly located in riffle sections where cobble, small 

boulders, and vegetation commonly protrude through the flow, 

4. side pockets of water effectively acting as dead ends for solute transport, 

and 

5. flow into, out of, and through coarse gravel and cobble bed. 

Table 6.6 The flow characteristics and simulation parameters of the 

experiments in the Uvas creek (Bencala and Walters, 1983), 

Reach 
range 
(m) 

Discharge 
(m3/s) 

Cross-sectional 
area, A 

(m2)  

Dts  
(m2/s) 

Storage zone 
Area, As  

(m2)  

Exchange 
coefficient a 

(sec) 

0-38 0.0125 0.3 0.12 0 0 

38-105 0.0125 0.42 0.15 0 0 

105-281 0.0133 0.36 0.24 0.36 0.3 x 10-4  

281-433 0.0136 0.41 0.31, 0.41 0.1 x 10-4 

433-619 0.0140 0.52 0.40 1.56 0.45 x 10'4  

Using the parameters a, J3, and Dts  (Table 6.6) estimated by Bencala and 

Walters (1983), the parameters of the ATS-VPM model, i.e., DLts  and 13, the 

applicability criterion given by X (Eqn. 6.1) and the limiting value of pus (Eqn. 6.2) 
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were computed to know whether these values are within the applicability domain of 

the ATS-VPM model. The computed values of these parameters for the observed 

velocity are shown in Table 6.7. 

Table 6.7 ATS-VPM parameters and the limiting criterion values for Uvas 

Creek, 

Reach 
range 
(m) 

Velocity 
of flow 
(ml s) 

13 
DI-As 

(m2 1 s) 

Limiting DLts 
(m2/s) 

D us  

X 
Limiting Du, 

0-38 0.0417 0 0A21 1.8052 0.066 0 

38-105 0.0298 0 0.150 1.0156 0.148 0 

105-281 0.0369 1.0 5.806 0.4478 12.96 2.78x108  

281-433 0.0332 1.0 13.908 0.3724 37.35 2.50 x109  

433-619 0.0269 3.0 2.365 0.0795 29.74 2.78x108  

The values of X computed for the Uvas creek reach after 105 m (station 2) 

from the point of injection of tracer are much greater than the limiting value 

(1106) required for the successful application of the ATS model. Moreover, DLts 

values estimated using Eqn. (5.18) for the reaches after station (2) were also found 

to be higher than the values of limiting DLts required for the successful application 

of the ATS-VPM model. 

Based on the values of the X, Dus, and the limiting Du„ it can be inferred 

that the ATS-VPM model is applicable to simulate the observed C-t curves in tracer 

experiments conducted on Uvas creek upto a distance of 105m. Hence, the ATS-

VPM model is not applicable to simulate the solute transport after station (2), i.e., 

for simulating the observed C-t curves at station (3), (4) and (5). To demonstrate 

this, the ATS-VPM model, with the parameter values estimated by Bencala and 
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Walters (1983), was used to simulate the C-t curves at station (1), (2) and (3). In 

these tracer experiments, performed for an uniform input of solute with a 

concentration of 11.4 mg/1 for duration of 3 hours was made. The same was used as 

the input to the ATS-VPM model. The comparison of observed and simulated C-t 

curves at stations (1), (2) and (3) are shown in Fig 6.16. 

Figure 6.16 Observed and simulated concentration-time profiles at different 

sections d/s of the pulse injection-Uvas Creek 

The results show that the ATS-VPM model can reproduce the observed C-t 

curves at section (1) and (2) successfully with Nash-Sutcliffe criterion, ri> 98%. As 

stated earlier, the ATS-VPM model failed to simulate the observed C-t curve at 

station (3) because the solute transport process in the reach after 105m from the 

point of injection of dye is not within the applicability range of the ATS model. 

Hence, the ATS-VPM model, which is an approximation of the ATS model, is 

applicable to simulate the solute transport upto the section located at 105m from the 

injection point of solute. It is noted that the value of 13 in the reach upto 105m is 0, 

which implies the absence of TS mechanism. It was already stated that the 
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ATS-VPM model get reduced to AD-VPM model for 13=0. Hence, the AD-VPM 

model is also applicable for the reach upto 105m. 

6.5 APPLICATION OF THE ATS-VPM MODEL UNDER UNSTEADY 

FLOW CONDITIONS 

The ATS-VPM model developed in section 5.5 is meant for solute transport 

under steady flow conditions. The same may be suitably adopted for modelling 

solute transport under unsteady flow conditions also (section 5.6). This is achieved 

by using the assumption that the flow remains steady within a given routing time 

interval, but varies from one time interval to the next. The. ATS-VPM model is 

coupled with the VPM flow routing model for solute transport under unsteady flow 

conditions. Hence, for the satisfactory application of the model, it should satisfy the 

applicability criteria of both the VPM flow routing model and the ATS-VPM solute 

transport model. 

The hydrograph to be routed should satisfy the criterion 1(1/So )ayfaxl <1 

at any time for successful application of VPM flow routing model (Perumal, 

1994b). In the development of the ATS-VPM model under unsteady flow 

conditions, it is assumed that the flow is steady during a routing time interval, but 

varies from one time interval to the next. Hence, the applicability criterion of the 

ATS-VPM model evaluated in section 6.3 (Eqn. 6.2) under steady flow condition is 

applicable here also. 

Accuracy of the ATS-VPM model depends on the estimated dispersion 

coefficient for a given velocity of flow and the parameter 13. If the estimated Dus  is 

less than the limiting value of Dus  obtained using Eqn. (6.2) at any time during the 
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routing, the performance of the proposed ATS-VPM model may be considered 

accurate. 

The experimental studies on solute transport under unsteady streamflow 

conditions in rivers are very few, perhaps, due to difficulties in experimentation as 

discussed in section 4.3. Further, it is not possible to obtain an analytical solution of 

the system of partial differential equations governing the coupled flow (Saint-

Venant Equations) and solute transport processes (TS model). Hence, the 

application of the proposed ATS-VPM model for solute transport studies under 

unsteady flow conditions needs to be tested by simulating the numerical solution of 

the TS model coupled with the Saint-Venant Equations (SVE), termed herein as the 

SVE-TS model for hypothetical data input. 

6.5.1 Solution of the SVE-TS Model 

To arrive at the benchmark solution of the SVE-TS model, the following 

procedure was used: 

A given hydrograph at the input section of a uniform rectangular cross-

section was routed to the desired location in the channel reach using the numerical 

solution procedure of the Saint-Venant equations (Viessman et al.,.1977) given by 

Eqns. (4.23) and (4.24). The results obtained by solving the SVE were used in 

solving the TS equation, to arrive at the benchmark SVE-TS solution. 

The algorithm of Runkel (1998) was used for solving the TS model in the 

present study. The oscillation problems associated with Runkel solution (1998) have 

been avoided by maintaining the Peclet Number (P. = U,Ax/DL ) sufficiently low, 

based on numerical experiments carried out during the study. Thus, the stable 

solution obtained by solving the SVE-TS model was considered as benchmark 
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solution needed for the evaluation of the solution of the ATS-VPM model. The 

agreement between the solutions of the ATS-VPM model and the SVE-TS model 

was measured using the Nash-Sutcliffe criterion, n (Eqn. 3.24). 

6.5.2 Hypothetical Test Studies 

Rectangular channels having different channel configurations, but with a 

uniform width of 100 m are considered for the hypothetical tests. The slope and 

Manning's n of the channels used in these numerical experiments are given in 

Table 6.8. 

Table 6.8 Configurations of hypothetical channel 

Channel Type Bed Slope (So) Manning's roughness (n) 

1 0.0002 0.02 

2 0.0004 0.04 

3 0.0004 0.02 

The inflow hydrograph and C-t curve used in these numerical experiments 

was defined by Eqns (4.25) and (4.26) respectively with the same values of 

Ib (=100 m3/s), Ip  (=1000 m3/s), tp (=10 hr.), and y (=1.15) for hydrograph, and CI, 

(= 0 units), C , (= 50 units), tcp  (=10 hr.), and r  (= 1.15) for C-t curve. The inflow 

hydrograph and the C-t curve are routed through the channel for a reach length of 

40km using the proposed ATS-VPM model. A routing time interval of 15 min. was 

used in the numerical experiments. The accuracy in the reproduction of C-t curve 

shape and size has been evaluated using the Nash-Sutcliffe criterionm. The results 

are given in Table 6.9 and the solutions of the SVE-TS and the ATS-VPM model 

are compared in Figs. 6.17 to 6.23. 
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Table 6.9 Peak concentration and its time of occurrence for hypothetical test 

studies 

13  4 Channel 
Type 

04, (s") 
SVE-TS model ATS-VPM model 

Time to peak 
010 

Peak 
Concentra 

lion 

Time to peak 
(hr) 

Peak 
Concentra 

lion 

0.3 

0.025 1 0.00005 18.00 42.670 18.75 41.738 
0.000075 18.25 44.212 18.50 43.819 

0.0001 18.25 45.244 18.50 44.965 
0.0003 18.25 47.772 18.25 47.455 

2 0.00005 20.25 41.758 21.00 40.382 
0.000075 20.50 43.632 20.75 43.140 

0.0001 20.75 44.871 20.75 44.442 
0.0003 20.75 47.916 20.25 47.315 

3 0.00005 16.25 44.175 16.75 43.301 
0.000075 16.25 45.550 16.75 45.239 

0.0001 16.50 46.529 16.50 46.299 
0.0003 16.25 49.007 16.25 48.494 

0.05 1 0.00005 18.00 41.940 18.75 40.870 
0.000075 18.25 43.370 18.50 42.826 

0.0001 18.25 44.319 18.50 43.916 
0.0003 18.25 46.661 18.25 46.286 

2 

• 

0.00005 20.50 40.978 21.00 40.080 
0.000075 20.75 42.724 21.00 42.287 

0.0001 20.75 43.867 20.75 43.524 
0.0003 20.50 46.677 20.50 46.280 

3 0.00005 16.25 43.750 16.75 43.032 
0.000075 16.50 45.690 16.75 44.943 

0.0001 16.50 46.003 16.50 45.981 
0.0003 16.50 48.322 16.50 48.155 

0.5 

,0.025 1 0.000075 19.50 39.030 20.50 37.731 
0.0001 20.00 40.584 20.50 39.795 
0.0003 20.00 45.209 20.00 45.105 
0.0005 20.00 46.819 19.75 46.380 

2 0.000075 22.50 37.839 23.50 36.649 
0.0001 23.00 39.673 23.25 38.880 
0.0003 23.00 45.386 22.75 44.757 
0.0005 23.00 46.941 22.50 46.220 

3 0.000075 17.25 . 40.742 18.00 39.472 
0.0001 17.50 42.139 18.00 41.500 
0.0003 17.75 46.901 17.75 46.534 

0.05 1 0.000075 19.50 38.366 20.50 36.900 
0.0001 20.00 39.783 20.50 38.840 
0.0003 20.25 44.282 20.25 43.776 
0.0005 20.00 45.470 20.00 44.986 

2 0.000075 22.75 37.133 23.50 35.982 
0.0001 23.00 38.846 23.50 38.090 
0.0003 23.25 44.079 23.00 43.568 
0.0005 23.00 45.501 22.75 44.932 

3 0.000075 17.25 40.340 18.00 39.209 
0.0001 17.50 41.676 18.00 41.196 
0.0003 17.75 46.266 17.75 46.162 
0.0005 17.75 47.500 17.50 47.291 
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0.75 0.025 1 0.000075 20.75 33.526 22.50 31.160 
0.0002 22.75 39.916 22.75 39.219 
0.0003 22.75 42.241 22.50 41.664 
0.0005 22.50 44.505 22.25 43.950 

2 0.000075 25.00 31.913 26.50 29.955 
0.0002 26.75 39.249 26.50 38.480 
0.0003 26.75 41.861 26.25 41.106 
0.0005 26.75 44.457 26.25 44.007 

3 0.000075 17.75 35.632 19.50 32.898 
0.0002 19.50 41.436 19.75 40.981 
0.0003 19.50 43.805 19.50 43.408 
0.0005 19.50 46.007 19.25 45.612 

0.05 1 0.000075 20.75 32.994 22.50 30.527 
0.0002 22.75 38.915 22.75 38.071 
0.0003 22.75 41.014 22.75 40.311 
0.0005 22.75 43.033 22.50 42.404 

2 0.000075 25.00 31.395 26.50 29.462 
0.0002 27.00 38.236 26.75 37.551 
0.0003 27.00 40.612 26.50 40.025 
0.0005 26.75 42.941 26.25 42.363 

3 0.000075 17.75 35.300 19.50 32.698 
0.0002 19.50 40.876 19.75 40.612 
0.0003 19.50 43.123 19.50 42,974 
0.0005 19,50 45.341 19.25 45,121 

1 0.025 1 0.0001 23.75 30.936 25.00 28.968 
0.0002 25.50 36.205 25,50 35.218 
0.0003 25.75 39.083 25.25 38.298 
0.0005 25,75 42.093 25.25 41.395 

2 0.0001 29.25 29.600 30.25 ' 27.894 
0.0002 31.00 35.419 30.50 34,423 
0.0003 31.25 38.567 30.50 37.696 
0.0005 31.25 41.914 30.00 41,041 

. 	3 0.0001 19.50 32.761 . 	.21.25 30,601 
0.0002 21.25 37.661 21.50 36.967 
0.0003 21.50 40.661 21.50 40.107 
0.0005 21.50 43.787 21.25 43.249 

0.05 1 0,0001 23.75 30.421 25.00 28.335 
0.0002 25.50 35.309 25.50 34.183 
0,0003 25,75 37.916 25.50 37.015 
0.0005 25.75 40.588 25.25 39.821 

2 0.0001 29.25 29.097 30.25 27.409 
0,0002 31.00 34.539 30.50 33.614 
0.0003 31.25 37.419 30.75 36.667 
0.0005 31.25 40.426 30.25 39.758 

3 0.0001 19.50 32.444 21.25 30.400 
0.0002 21.25 37.164 21.50 36.630 
0.0003 21.50 39.974 21.50 39.684 
0.0005 21.50 42.968 21.25 42.726 
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Figure 6.17 Solutions of SVE-TS and ATS-VPM model for 0=0.058, (3=0.3, at 

x=20km and 40km d/s from solute source (Channel type-2) 	— 

Figure 6.18 Solutions of SVE-TS and ATS-VPM model for oc=0.000075/s, 

0=0.058, (3=0.5, at x=20km and 40km d/s from solute source 

(Channel type-2) 
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Figure 6.19 Solutions of SVE-TS and ATS-VPM model for a=0.0005/s, 

4)=0.058, 0=0.5, at x=20km and 40km d/s from solute source 

(Channel type-2) 

Figure 6.20 Solutions of SVE-TS and ATS-VPM model for a=0.000075/s, 13=0.3, 

at x=20km and 40km d/s from solute source (Channel type-1) 
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Figure 6.21 Solutions of SVE-TS and ATS-VPM model for a=0.0001/s, 

4)=0.116, f3=0.75, at x=20km and 40km d/s from solute source 

(Channel type-2) 

Figure 6.22 Solutions of SVE-TS and ATS-VPM model for 4=0.025, f3=0.5, at 

x=20km and 40km d/s from solute source (Channel type-1) 
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Figure 6.23 Solutions of SVE-TS and ATS-VPM model for a=0.0003/s, 

4)=0.05, 0=0.75, at x=20km and 40km d/s from solute source 

(Channel type-1) 

6.5.3 Application to Huey Creek Tracer Experiment 

A tracer-dilution experiment conducted in Huey Creek, in January 1992, 

to determine the extent and rate of hyporheic exchange was described by Runkel 

et al. (1998). The details are given in Appendix B 1.6. The C-t measurements 

available at downstream distances of 9m (location 1), 213m (location 2), 457m 

(location 3), 762m (location 4), and at 1052m (location 4) from the point of 

injection of the LiCI injectate were used in the present test case (Fig. 6.24). 

Figure 6.24 Map of Huey Creek showing tracer sampling and streamflow 
measurement stations (Runkel et al., 1998) 
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A Parshall flume provided a continuous stream flow record of Huey 

Creek above the outlet to Lake Fryxell at 945 m. Stream flow measurements of 

this site were fair to poor, with measurement errors potentially > 15% (von 

Guerard et al. (1995) as referred in Runkel et al., 1998). Flume estimates of 

stream flow varied from 50 to 120 1/s during the tracer addition. In addition to 

this, discharge data measured and used by Runkel et al. (1998) at sites 213m, 

457m and 610m (Fig. 6.24) was used in the present study also. Field 

observations of Huey creek indicated that the channel was approximately 

rectangular (Runkel et al., 1998). Channel widths were available from the 

discharge measurements at sites 213m, 457m, and 610m (1.0, 1.2, and 1.2 m, 

respectively). Average channel widths used in the routing model were adjusted 

upward from 0.4 to 0.6m as part of the calibration process. Widths were 

adjusted such that simulated velocities agreed with velocities observed during 

the given discharges at sites 213m, 457m, and 610m. The discharge, flow area 

and velocity are shown in Table 6.10. 

Table 6.10 Area and velocity at different locations given by Runkel et al. (1998) 

Gauging Location Time Flow Area Velocity 
(m) (hrs) (Ws) (m2) (m/s) 
213 11.8 93.4 0.13 0.73 
457 12.3 101.9 0.12 0.85 
610 12.7 96.3 0.12 0.79 

Runkel et al. (1998) used surveyed cross-sections, bed-slopes and reach 

lengths together with the point velocity measurements to back-calculate reach 

estimates of the Manning's n required for the routing model. The bed slope, 

channel width and the Manning's n for the various flow routing reaches given by 

Runkel et al. (1998) are presented in Table 6.11. 
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Table 6.11 Parameters used for flow routing (Runkel et al., 1998) 

Reach 
range 

(m) 

Bed 
Slope 
(%) 

Channel 
width 
(m) 

Manning's 
roughness 

(n) 

0-9 9.1 1.4 0.100 
9-213 12.3 1.4 0.100 

213-457 6.9 1.6 0.061 
457-610 5.0 1.8 0.054 
610-762 5.2 1.8 0.054 
792-945 4.0 1.8 0.054 
945-1006 . 	1.9 1.8 0.054 

1006-1052 1.1 1.8 0.054 

In the study, flow estimates from the Parshall flume indicated substantial 

variation in flow rate during the tracer addition. Failure to consider stream flow 

variability would result in a flat concentration profile (plateau) during this 

period (Runkel et al., 1998). Therefore, in the present study, the ATS-VPM 

model, coupled with the VPM flow routing model as described in section 5.5 

was used to simulate the solute transport in the Huey creek. In this modelling 

framework, The VPM flow routing and ATS-VPM solute routing are carried out 

simultaneously within each routing time interval. Runkel et al. (1998) 

developed an inflow hydrograph at the upstream boundary (the injection point, 

at site 0km) using the observed downstream hydrograph at,site 945m. 

Runkel et al. (1998) calibrated the TS model parameters for each reach 

using the observed C-t measurements. The values of the parameters thus 

estimated are presented in Table 6.12. Using these values of a, A„ and Dts  (Table 

6.13), the parameters values of the ATS-VPM model, i.e., DLts and f3 are obtained. 

The applicability criterion X (Eqn. 6.1) and the value of limiting Dus  (Eqn. 6.2) 

were computed to know whether these values are within the applicability domain of 
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the ATS-VPM model. The computed values of X and DLts and the value of limiting 

DLts  (Eqn. 6.2) for the observed velocity are shown in Table 6.12 and Table 6.13. 

Table 6.12 The TS model parameter values of the reaches of Huey Creek given 

by Runkel et al., (1998) 

Reach 
Range 

(m) 

Storage zone 
area, As  

(m)  

13 
(,_. As/A) coefficient a 

(s  ) 

Exchange  

Min Max Min Max 
0-213 0.20 1.1' 1.8 1.07x 10'3, 2.37x105  3.61x105  

213-457 0.25 1.5 2.4 5.43x 10-4  1.22x106  1.69x106  
457-762 0.14 0.8 1.4 1.62x 10'2  0.75x103  1.30x103  
762-1052 3.07 15.9 34.3 4.67x 104  4.04x106  4.33x106  

Table 6.13 The computed values of pus (Eqn. 5.18) and limiting DLts (Eqn. 6.2) 

values for the reaches of Huey creek 

Gauging 
Location 

(m) 

Velocity 
(m2/s) 

a 
(S1) 

P DLts (m2/s) Limiting DLts  (m 2/s) 

Min Max Min Max Max Min 

213 0.73 0.001070 1.1 1.8 65.31 73.69 68.26 41.71 
457 0.85 0.000543 1.5 2.4 191.80 195.14 65.72 38.82 
610 0.79 0.016200 0.8 1.4 4.51 5.67 101.74 6248 

Based on the computed values of X., DLts, and the limiting DLts, it can be 

concluded that the ATS-VPM model is applicable for the reach upto a distance of 

762.0m from the point of injection of solute in Huey Creek. Using the ATS-VPM 

model for solute routing coupled with the VPM model for flow routing and the 

values of parameters given by Runkel et al. (1998), the C-t curves at 213m, 457m, 

762m, and at 1052m were computed. The inflow hydrograph estimated by Runkel et 

al. (1998), was used as the input for flow routing (Fig. 6.25). The observed C-t 

curve at 9m (location 1) was used as the input for the computation of C-t curves. 

The results comparing the observed and simulated C-t curves at downstream 

sampling locations are shown in Fig. 6.26. 
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Figure 6.25 Inflow hydrograph for Huey creek at x=0m computed by Runkel 
et al., (1998) 

Figure 6.26 Simulated and observed Li concentrations at d/s sampling 
locations — Huey Creek 
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6.6 DISCUSSION OF RESULTS 

6.6.1 Solute Transport Under Steady Flow Conditions 

The ATS model is a simplified approximation of the TS model. Hence, if the 

assumptions made in its development are not satisfied, the ATS model fails to 

reproduce the TS model solution satisfactorily. This can be observed from the 

results of numerical experiments presented in Table 6.1 and Figs. 6.1 to 6.6 that, if 

the magnitude of the.applicability criterion, the X. is within the approximate limiting 

value of 106, the ATS model can reproduce the numerical solution of the TS model 

satisfactorily with Nash-Sutcliffe criterion being greater than 98%. When this 

criterion is not satisfied, the analytical &lution of the ATS model fails to reproduce 

the numerical solution of the TS model as seen in Fig. 6.7. The comparison between 

the solutions of the ATS and TS models was not made for cases such as one shoWn 

in Fig. 6.27, because the numerical method proposed by Runkel and Chapra (1993) 

to solve the TS model produces oscillatory results. 

50 	 
45 -
40 -
35 -
30 -
25 -
20 - 
15 - 
10 -
5- 
0 	 
 0 

Figure 6.27 Numerical solution of TS model showing oscillations during 

advection dominated solute transport at x=5km for U=0.5m/s, 

a=0.000075/s, 13=0.25 
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It is seen from Fig. 6.28 that (i) the value of Dus  increases with increase in 13 

for given values of U, Dts  and a, and (ii) the value of Dus  decreases as the value of 

a increases for given values of U, Dis, and R.  It implies that for higher values of a 

the effect of TS zones on the dispersion is less. This may. be attributed to the 

phenomenon that at higher value of a the TS zones act as active part of the main 

channel. 

Figure 6.28 Variation of Dus  with the variation of 13 for different values of a 

for a given value of U=1m/s, and Dts=10m2/s 

Based on the results from numerical experiments presented in Table 6.2 and 

Figs. 6.8 to 6.12, it can be observed that the ATS-VPM model reproduces the 

solution of the ATS model when the value of Du., is less than the value of the 

limiting Dus  given by Eqn. (6.2). It is seen from Fig. 6.29 that the ATS-VPM model 

fails to reproduce the solution of the ATS model as the value of DLLs  is more than 

the value of limiting DLLs. For a given set of values of U, a, and Dts, as the value of 

R increases, the velocity of solute cloud decreases and Du, increases with decrease 

in the magnitude of limiting Dus. It implies that for a given U, a, and Dts  as 13 

increases the applicability range of the ATS-VPM model in reproducing the solution 

of ATS model decreases. Also for a given U and 13, the magnitude of the limiting 
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dispersion coefficient of the ATS-VPM model is less than that of the corresponding 

AD-VPM model. 

60 
ATS sole 

,-,50 
- • ATS-VPM soln. 
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Fig. 6.29(i) Solutions of ATS and ATS-VPM models for a=0.00001/s, 13=0.1, 

U=0.1m/s, and Dts=15.0m2/s at a distance of x=lkm and 2km 

Fig. 6.29(ii)Solutions of ATS and ATS-VPM models for ct=0.000075/s, 13=0.3, 

U=0.5m/s, and Dts=5.0m2/s at a distance of x=2km and 4km 

The Mimram River tracer experimental test case demonstrates the 

applicability of the ATS-VPM model to simulate the solute transport in rivers in the 

presence of transient storage zones (Fig. 6.15). In Mimram river tracer experimental 
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test case, the results show that the parameter values estimated using the observed 

C-t curves for the reach A-B, when used in simulating the C-t curve at site C in 

verification mode, closely reproduces the observed C-t curve at site C satisfactory 

with i=94.005%. Failure to consider the effect of transient storage zones would 

results in relatively poor simulation results in comparison with those obtained 

considering the transient storage zone effects (Table 6.5). The Mimram tracer 

experimental test case demonstrates that the usage of a can be avoided in using the 

ATS-VPM model. 

The AD-VPM model results obtained using the calibrated values of Di, show 

an agreement with the observed data at sites B and C with the ri values of 94.79% 

and 85.275% respectively. The ATS-VPM model results obtained using the values 

of 13 and DLts estimated using the parameter values given by Lees et al. (2000) show 

an agreement with the observed data at sites B and C with rl values of 97.303% and 

90.843% respectively. The ATS-VPM model results obtained using the calibrated 

values of 13 and Dus (Table 6.5) show an agreement with the observed data at sites B 

and C with rl values of 98.10% and 96.319% respectively. This reveals that the 

ATS-VPM model gives better results in comparison with the AD-VPM model for 

the observations of Mimram experiments. The usage of parameters 13 and DLts 

calibrated using the ATS-VPM model in the simulations of C-t curves gives good 

results particularly at site C with a ri value of 96.319% in comparison with that 

obtained using the values of 0, and Dus  which is estimated from the values of U, a, 

(3 and Dts  given by Lees et al. (2000). 

In Uvas Creek dye experimental test case, it was observed that the solute 

transport phenomenon upto a distance of 105m from the injection point is not 

affected by the transient storage mechanism. Hence, the C-t curves computed at 

station (1) and (2) by the ATS-VPM model with 13=0 are in good agreement with the 
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observed C-t curves at the corresponding stations (Fig. 6.16). The C-t curves at 

section (1) and (2) are arrived at using the values of the parameters given by 

Bencala and Walters (1983). It is noted that the C-t curve computed by the 

ATS-VPM model at section (3) fails to reproduce the observed C-t curve at the 

same section (3). This is due to the reason that the applicability criterion estimated 

for the reaches after 105m from the point of injection indicate the applicability of 

the ATS model and Table 6.7 brings out this aspect. The low velocity (0.02692 m/s 

to 0.03694 m/s), high values of f3 (1 to 3), and the low value of exchange coefficient 

(1x10-5  Is to 4.5x10-5/s) may be responsible for the failure of the ATS-VPM model 

to simulate the solute transport in the reach after 105m from the point of injection of 

tracer. The low exchange results in large dispersion because of higher solute 

residence time in transient storage zones. As the value of a is low, the solute gets 

trapped in the transient storage zone for larger time and it will be released very 

slowly into the main channel (Fig.6.6). These low values of a associated with high 

values of 13 may be responsible for substantially low interaction of solute between 

main channel and the storage zone. This low interaction may be the reason for the 

presence of considerable long tail concentration in C-t curves observed in tracer 

experiments conducted on Uvas creek. 

6.6.2 Solute Transport Under Unsteady Flow Conditions 

Based on the results of the numerical experiments (Table 6.9 and Fig. 6 17 to 

6.23), it was observed that the ATS-VPM model coupled with the VPM model of 

flow routing is capable of reproducing the numerical solution of SVE-TS model 

within the applicability range of the ATS-VPM model and the VPM flow routing 

model as specified in section 6.5. The results of the numerical experiments carried 

out (Table 6.9) reveal the following: 
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1. For a given value of 0 and 4), as the value of a increases, the accuracy of the 

ATS-VPM model under unsteady flow condition in reproducing the solution 

of the SVE-TS model increases (Figs. 6.17, 6.18, 6.19). Similarly, for a 

given value of a and 4), as the value of 13 increases, the accuracy of the ATS-

VPM model in reproducing the solution of the SVE-TS model decreases 

(Figs. 6.17(a) and 6.18). This may be due to the fact that an increase in 13 

decreases the solute velocity. This leads to the increase in residence time, 

which in turn increases the dispersion of solute cloud. 

2. In channel type 3, the peak concentrations at the location of 40km are 

realised earlier in comparison with those realised in channel types 1 and 2 at 

the same location. It implies that the solute mass is getting flushed out 

quickly in channel type 3. This may be due to higher velocities of flow in 

channel type 3 in comparison with the velocities observed in channel types 1 

and 1. The realisation of shorter travel time of peak concentration at the 

location of 40km in different channels used in the numerical experiments 

follows, in general, the order, channel type 3, 1 and 2. 

3. For a given value of bed slope So, as the Manning's roughness n increases, 

the velocity decreases, thereby, the residence time of solute cloud increases. 

Residence time of solute in a reach should be as less as possible so as to 

reduce the effects of polluting solute on the ecosystem of a river reach. The 

realisation of longer residence time of solute cloud in channels follows, in 

general, the order channel type 2, 1 and 3. 

4. Based on the solutions of SVE-TS model, it can be inferred that the 

attenuation of peak concentration in rivers affected by transient storage 

mechanism increases with increase in the value of a upto a limiting value of 

peak concentration. Any further increase in the value of a results in decrease 

in the % attenuation of peak concentration (Fig. 6.30) 
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Figure 6.30 Relation between the % attenuation and exchange coefficient ( a) 

(a) 4) = 0.05,13 = 0.5, (b) = 0.025,13 = 0.3 

The ATS-VPM model can reproduce the benchmark SVE-TS model solution 

for values of a greater than that produces maximum attenuation of peak 

concentration (Fig. 630). Within the applicability range of the ATS-VPM model, as 

a increases the attenuation of peak concentration decreases. This characteristic may 

be attributed to the retention time of solute in the transient storage zone. There 
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exists an a beyond which the transient storage zone acts as active part of the main 

channel. The same is observed in Fig. 6.30, as attenuation is approximately constant 

or the attenuation curve is asymptotic to the horizontal axis beyond a value of a, 

making the effect of transient storage mechanism on dispersion is to be negligible. 

Related to the aspect of conservation of mass, it can be observed from Figs. 

6.17 and 6.21 that there is some gain in concentration. However, there is no gain in 

mass even though it appears that there is some gain of concentration. Runkel et al. 

(1998) stated that "The specific concern is that the numerical solution of the TS 

equations using the concentration boundary condition may not conserve mass given 

an unsteady flow regime. To test the mass conservation, concentration-discharge 

profiles were integrated with respect to time to determine the mass passing a given 

sampling location. These integrated values agreed closely with the mass introduced 

via the upstream condition " . The conservation of mass was tested by Runkel et al. 

(1998) for the modelling frame work suggested by him and it was found that it 

conserves mass with a maximum error of 0.074%. (Runkel et al., 1998). As the 

numerical solution of the TS model suggested by Runkel (1998) under unsteady 

flow conditions is being reproduced by the ATS-VPM model within its applicability 

range, it can be concluded that the proposed ATS-VPM model also conserves mass 

satisfactorily. 

The Huey creek experimental test case results show that there is close 

agreement between the observed and computed C-t curves at 213m, 451m, and 

762m. The agreement between the observed and computed C-t curves at 1052m is 

relatively poor because the ATS-VPM model is applicable in the reach upto 762m 

only. The 13 in the last reach of Huey creek, varying between 15.9 to 34.3, is very 

large. The actual storage zone area for the final reach might have been considerably 

lower than the estimated value (Runkel et al., 1998). In the Huey Creek 

experimental data (Runkel et al., 1998), the inflow hydrograph at the upstream 
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boundary was developed based on the observed downstream flow data at site 945m. 

This was required because a continuous record of the hydrograph at the upstream 

boundary was not available. Errors might have been associated with the 

development of inflow hydrograph based on the downstream data (Runkel et al., 

1998). Because of the errors in the estimated input flow hydrograph, the routed 

hydrograph may have associated errors, which in turn affects the solute transport 

estimates. To avoid any such errors, it is necessary to have simultaneous flow and 

C-t measurements. 

In computing the C-t curves using the ATS-VPM model for Huey Creek 

experimental data, the parameter a was used. The value of DIAs was calculated using 

Eqn. (5.18) and the available value of a, 13 and Dts  estimated by Runkel et al. (1998) 

so as to demonstrate the validity of the model proposed in the present study for the 

field conditions. 

Future efforts could consider modifications in the model that express the 

transient storage parameters as a function of the flow regime. Several researchers 

have noted that the value of the exchange coefficient increases with increasing 

streamflow (Harvey et al., 1986, and Morrice et al., 1997). The physical reason for 

the increase in a with discharge may be due to the increase in stream velocity. At 

higher stream velocities the exchange between the active channel and the transient 

storage zone may be significant (Runkel et al., 1998). Harvey et al. (1996) and 

Morrice et al. (1997) indicate that a decrease in the transient storage zone area and, 

consequently the magnitude of (3 decreases with increasing streamflow (Runkel et 

al., 1998). This decrease may be due to the reason that the storage zones at low flow 

may become active parts of the main channel at high flow. Comparatively few data 

sets are available and not enough information is available for practitioners (Lees et 

al., 2000) to test these inferences. Hence, more research is needed to understand and 

interpret the physical significance of the model parameters of TS and ATS models. 
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6.7 CONCLUSIONS 

In this chapter the comparison of the TS and ATS models was made. The 

effect of a, 13 and Du  on solute transport in rivers affected by transient storage 

mechanism was analysed based on the ATS model. The applicability criterion for the 

ATS model to reproduce the TS model solution was presented. It was found that the 

ATS model is capable of reproducing the numerical solution of the TS model with a 

variance explained using Nash-Sutcliffe criterion, 	>98% when 	106. The 

applicability of the ATS-VPM model to reproduce the solution of the ATS model 

under steady flow conditions was also presented. It was found that the ATS-VPM 

model is capable of reproducing the ATS model solution with a Nash-Sutcliffe 

criterion, ri > 99%, when the value of Dus  is less than 416.64 [U/(1+ M1.71. An 

equation (Eqn. 6.3) to compute the exchange coefficient a, for a given value of U, 13, 

and Dts  above which the ATS-VPM model can reproduce the ATS model solution 

was presented. The practical utility of the ATS-VPM model under steady flow 

conditions was demonstrated by verifying its applicability using field data from 

experiments performed on Mimram River and Uvas Creek. It was also demonstrated 

that when the applicability criterion is not satisfied, the model would fail to model the 

solute transport in rivers affected by transient storage mechanism. The performance 

of the ATS-VPM model for solute routing coupled with the VPM model for flow 

routing for solute transport under unsteady flow was evaluated using SVE-TS model 

solutions obtained using hypothetical data. From the numerical experiments, it was 

found that the ATS-VPM model under unsteady flow conditions can reproduce the 

SVE-TS model solution for values of a greater than that produces maximum 

attenuation of peak concentration (Fig. 6.30). The practical utility of the ATS-VPM 

model under unsteady flow conditions subjected to the satisfaction of its applicability 

criterion, was demonstrated by using the data from experiments performed on Huey 

Creek, an Antarctic stream. 
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Chapter 7 
CONCLUSIONS AND RECOMMENDATIONS 

7.1 CONCLUSIONS  

The present study stems from the recognition of the need for the development of 

longitudinal solute dispersion models that adequately consider the governing flow 

regime, and yet require cumbersome solution algorithms. Accordingly, the problem of 

solute transport process in rivers and streams under unsteady flow conditions is studied 

by developing coupled flow routing and solute routing models based on simplified 

governing equations of these processes. The simplification of the governing equations 

sought in this study are those of the well known Advection-Dispersion model, and the 

Transient Storage model which combinedly consider the solute dispersion due to main 

channel flow, and due to the presence of storage zones in rivers. The modelling 

approach proposed in this study is to develop first the simplified solute transport model 

under steady flow conditions and then extend it to study the same process under 

unsteady flow conditions. The capabilities of the developed models for studying 

longitudinal solute dispersion process under unsteady flow conditions are demonstrated 

using hypothetical, laboratory and field experimental data. The main findings of the 

present study are as follows: 

1. 	The evaluation of the existing model proposed by Koussis et al. (1983) for 

solute transport modelling under steady flow conditions brings out certain 

logical inconsistencies in his approach. To overcome these inconsistencies, an 

approximate Advection-Dispersion equation, based on the assumption of linear 

variation of concentration along a small river reach length Ax, is developed. 

Using this equation and the concept used in the development of the Variable 

Parameter Muskingum (VPM) flow routing model, a model termed as AD-VPM 
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model is developed. The suitability of the AD-VPM model is first studied for 

dispersion under steady flow conditions against analytical solution of the 

AD model, and for variety of data from laboratory experiments and field 

experiments. It is found that the model is capable of reproducing observed C-t 

profiles satisfactorily within the applicability range governed by the criterion DL 

415.64 1.11'71. 

2. A methodology for solute routing under unsteady flow conditions is presented 

by integrating the parameters of the AD-VPM model and the VPM model. The 

advantage of the proposed method is that it allows simultaneous routing of flow 

and solute, as the model structure is similar for both the processes. The 

appropriateness of the application of the AD-VPM model under unsteady flow 

conditions has been then tested using hypothetical data obtained by solving the 

Saint-Venant's equations coupled with the AD equation (SVE-AD model). It 

was found that AD-VPM model could closely reproduce the results obtained 

from numerical solutions of the SVE-AD model and also could reproduce the 

field experimental data of the Colorado River. Based on the proposed method's 

performance in the reproduction of the SVE-AD solutions and the observed C-t 

curves in field experiments, it can be concluded that the proposed method is 

suitable for simulation of solute transport under unsteady flow conditions within 

the applicability range defined previously. 

3. An Approximate Transient Storage (ATS) model is developed from the 

TS model equations which incorporate solute transport due to transient storage. 

The ATS model has a form similar to that of the AD model, but incorporates the 

transient storage parameters. Based on the developed governing equation of the 

ATS model, analytical solution is presented in analogy to the analytical solution 

of the AD model under steady flow conditions. 
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4. The appropriateness of the ATS model under steady flow conditions is tested by 

comparing the numerical solution of the TS model with the corresponding 

analytical solution of the ATS model. It is found from the analysis that the 

ATS model is able to closely simulate the TS model solution when magnitude 

of 02/(a (1+13))2  < 106, where a and 13 are the model parameters. 

5. Using the similarity of the ATS model and the AD model, a model termed as 

the ATS-VPM model is developed on the same lines as that of the AD-VPM 

model. The appropriateness of the ATS-VPM model has been demonstrated 

under steady flow conditions using the analytical solution of the ATS model and 

a criterion (chapter 6) has been developed for the successful application of the 

ATS-VPM model similar to that of the AD-VPM model, in reproducing the 

analytical solution of the ATS model. The suitability of the ATS-VPM model 

was also demonstrated for field applications. 

6. The procedure for the application of the ATS-VPM model for simulating solute 

transport process under unsteady streamflow conditions was presented by 

integrating its parameters with the VPM flow routing model. The suitability of 
_ 

the ATS-VPM model for simulating solute transport process under unsteady 

streamflow conditions was demonstrated by reproducing the benchmark 

solutions obtained from the numerical solutions of the Saint-Venant Equations 

coupled with the TS model equations (SVE-TS model) and, subsequently, the 

observed data from field experiments. The results of this study suggest the 

suitability of the ATS-VPM model for its application to solute transport 

modelling under unsteady streamflow conditions in the presence of transient 

storage zones in the river reach. 

Based on the study it can be concluded that the proposed AD-VPM and ATS-VPM 

models simulate the solute transport in rivers and streams under steady as well as 

unsteady flow conditions satisfactorily within their applicability ranges. 
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7.2 RECOMMENDATIONS FOR FURTHER STUDY 

Based on the present study, the following recommendations are made for further 

studies: 

1. The AD-VPM and ATS-VPM models proposed in the present study may be 

extended to the simulation of non-conservative solute transport by properly 

incorporating the first order decay phenomenon. 

2. Expressions to compute f3 and Dus  using hydro-geometric characteristics of 

rivers may be developed, which need the analysis of many experimental data 

sets conducted on rivers. 
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APPENDIX - A 

DISPERSION DATA OF TESTS CONDUCTED IN 
LABORATORY CHANNELS 

This appendix contains the data of the series 2600 and series 2700 experiments 

conducted in laboratory flume by Fischer (1966). These experiments were conducted 

in a 40m long rectangular laboratory flume having a width of 1.10m. Conservative 

Rhodamine WT was used as the tracer for the experiments. 

A 1.1 Laboratory Experiment Data-Series 2600 

Series 2600 data of time-concentration measurements at four successive 

sections at a distance 7.0m apart are given in Table A1.1. 

Table A 1.1 Time-Concentration data -Series 2600 

Distance from 
source = 7.06m 

Distance from 
source = 14.06m 

Distance from 
source = 21.06m 

Distance from 
source = 28.06m 

Section-1 Section-2 Section-3 Section-4 
Time 
from 

release 
(sec) 

Mean 
Concentr 

ation 
(CU)* 

Time 
from 

release 
(sec) 

Mean 
Concentr 

ation 
(CU)* 

Time 
from 

release 
(sec) 

Mean 
Concentr 

ation 
(CU)* 

Time 
from 

release 
(sec) 

Mean 
Concentr 

ation 
(CU)* 

20.0 0.1 41 0.0 64 0.0 88 0.2 
21.0 5.6 42 0.2 65 0.3 90 1.7 
21.5 18.8 43 0.8 66 1.0 92 6.6 
22.0 44.9 44 4.0 67 2.1 94 20.3 
22.5 75.7 45 14.8 68 5.6 96 45.5 
23.0 102.1 46 36.9 69 13.2 98 74.8 
23.5 105.4 47 66.3 70 26.9 100 95.0 
24.0 96.3 48 83.9 71 43.5 102 98.4 
24.5 82,0 49 94.0 72 63.5 104 87.2 
25.0 69.5 50 94.4 73 83.7 106 68.7 
25.5 57.4 51 87.3 74 97.0 108 48.0 
26.0 46,0 52 76.9 75 104.2 110 31.6 
27.0 28.9 53 63.4 76 104.9 112 19.0 
28.0 16.3 54 49.2 77 99.2 114 10.5 
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Table A 1.1 (Contd....) 

Distance from 
source = 7.06m 

Distance from 
source = 14.06m 

Distance from 
source = 21.06m 

Distance from 
source = 28.06m 

Section-1 Section-2 Section-3 Section-4 
Time 
from 

release 
(sec) 

Mean 
Concentr 

ation 
(CU)* 

Time 
from 

release 
_(sec) 

Mean 
Concentr 

ation 
(CU)* 

Time 
from 

release 
(sec) 

Mean 
Concentr 

ation 
(CU)* 

Time 
from 

release 
(sec) 

Mean 
Concentr 

ation 
(CU)* 

29.0 8.3 55 36.6 78 87.9 116 5.7 
30.0 4.7 56 25.0 79 73,4 118 3.7 
31.0 2.7 57 16.9 80 60.6 120 2.3 
32.0 1.4 58 11.0 82 39.2 122 1.3 
33.0 0.5 59 7.1 84 23.6 124 1.0 
34.0 	' 0.2 60 4.4 86 13.0 128 0.3 
35.0 0.0 62 2.0 88 6.1 132 0.2 
36.0 0.0 64 0.9 90 3.2 

66 0.4 92 1.5 
68 0.2 95 0.7 
72 0.0 100 0.1 

105 0.0 
* concentration units as measured by Fischer (1966). 

212 



A 1.2 Laboratory Experiment Data-Series 2700 

Series 2700 data of time- concentration measurements at two sections at a 

distance of 11.0m apart are given in Table A 1.2. 

Table A 1.2 Time-Concentration data -Series 2700 

Distance from source =14.06m Distance from source = 25.06m 
Section-1 Section-2 

Time from 
release 
(sec) 

Mean 
Concentration 

(CU)* 

Time from 
release 
(sec) 

Mean 
Concentration 

(CU)* 
32 0 57 0 
33 1.5 59 0.7 
34 16.2 61 13,4 

34.5 31.2 62 31.4 
35 42.4 63 52.4 

35.5 54 64 72.5 
36 70 65 91.5 

36.5 73.3 66 . 102.1 
37 72.9 67 106.6 

37.5 70.6 68 105.3 
38 66 69 97.1 

38.5 58.4 70 84.3 
39 51.7 71 71.6 

39.5 46.3 72 61.4 
40 41 73 50.6 
41 34.3 74 41.1 
42 25.6 75 32.1 
43 16.1 76 25 
44 10.9 77 18.4 
46 4.7 79 10.3 
48 1.7 81 4.9 
50 0.5 83 2 
52 0.2 85 1 

87 0.5 
89 0.2 

* concentration units as measured by Fischer (1966). 
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APPENDIX - B 

DISPERSION DATA OF TESTS CONDUCTED IN RIVER 

In this appendix details of the data used in the present study from experiments 

conducted on Missouri River (Yotsukura et al., 1970), Rhine River (Van Mazijk, 

personnel communication), Colorado River (Graf, 1995), Mimram River (Lees et al., 

1998), Uvas Creek (Bencala and Walters, 1983) and Huey Creek (Runkel et al., 1998) 

are presented. 

B 1.1 Missouri River Experiment Data 

Yotsukura et al., (1970) conducted tracer experiments in a 227km reach of 

Missouri River between Sioux city and Plattsmouth A total of 272.16 kg. of 

Rhodamine WT 20 percent solution was injected downstream from Combination 

Bridge at Sioux City at about 17 hrs. November 13, 1967. Time-concentration 

measurements of dye are available at four down stream sampling locations: Decatur 

Highway Bridge (RK 1112), Blair Highway Bridge (RK 1042.8), Ak-sar-ben Bridge 

in Omaha (RK 991.3) and Plattsmouth Highway Bridge (RK 951). The data consists 

of cross-sectional average dye concentration as a function of time at each sampling 

cross-section and are given in Table B 1.1. 

B 1.2 Rhine River Experiment. Data 

Dye experiments were conducted, in June 1991,(Van Mazijk, personnel 

communication) in a relatively normal discharge range from 2140 m3/s to 2290 

m3/s. The sampling stations, where the time-concentration measurements were taken 

are located in a reach length of 273 km (Fig. 3.10). The observed data available at 

the sampling stations between Koblenz (RK 590.35) and Lobith (RK 863.3) are 

given in Table B 1.2. The bed slope in different sub-reaches is given in Table B 1.3. 

(Note. The data of these experiments have been used in the present study with prior 

permission from Dr. Mr. M. Meulenberg of Commission International de 

L'Hydrologic du Bassion du Rhine (ICHR), The Netherlands.) 
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Table B 1.1 Distribution of cross-sectional average dye concentration with time, 

Missouri River, November 1967 

Decatur Bridge 
(RR=0.882) 

Blair Bridge 
(RR=0.780) 

Ak-sar-ben Bridge 
(RR=0.775) 

Plattsmouth Bridge 
(RR=0.775) 

Time 
after 

injection 
(hr:min) 

Dye 
Concentr 

ation 
(ppb) 

Time 
after 

injection 
(hr:min) 

Dye 
Concentr 

ation 
(ppb) 

Time 
after 

injection 
(hr:min) 

Dye 
Concentr 

ation 
(ppb) 

Time 
after 

injection 
(hr:min) 

Dye 
Concentr 

ation 
' 	(ppb) 

10:30 0 20:59 0.01 28:33 0 34:02 0 
10:45 0.25 21:27 0.02 29:06 0.04 35:02 0.03 
11:00 0.80 21:51 0.22 29:32 0.11 36:02 0.15 
11:25 1.89 22:10 0.35 30:03 0.29 37:01 0.49 
11:36 2.32 22:30 - 0.60 30:33 0.53 38:02 1.00 
11:49 2.84 22:47 0.88 31:03 0.88 39:00 1.37 
11:58 3.21 23:01 1.09 31:32 1.16 40:00 1.64 
12:16 3.55 23:16 1.38 32:02 1.52 41:02 1.57 
12:35 3.92 23:52 1.88 32:33 1.79 42:02 1.39 
12:47 4.05 24:12 2.23 33:02 2.01 43:00 1.07 
13:03 4.03 24:34 2.45 34:02 2.09 44:30 0.62 
13:17 3.88 24:55 2.50 34:35 1.84 46:11 0.29 
13:33 3.64 25:27 2.52 35:05 1.73 47:58 0.15 
13:47 3.36 25:55 2.39 36:05 1.28 50:03 0.08 
14:03 3.10 26:24 2.10 37:03 0.88 52:05 0.06 
14:18 2.70 26:53 1.78 38:00 0.54 55:12 0.03 
14:33 2.38 27:46 1.20 39:01 0.32 59:06 0.02 
14:47 2.07 28:02 1.01 40:01 0.20 63:10 0.01 
15:02 1.64 28:33 0.74 41:01 0.13 66:58 0.01 
15:17 1.39 29:02 0.61 42:01 0.09 
15:32 1.12 29:35 0.42 43:02 0.07 
15:48 0.86 30:02 0.30 45:00 0.05 .  

16:03 0.72 30:32 0.21 47:10 0.03 
16:23 0.49 31:02 0.14 
16:43 0.37 32:03 0.09 
17:03 0.28 33:01 0.09 
17:22 0.19 34:04 0.06 
17:42 0.14 35:06 0.07 
18:04 0.11 36:03 0.05 
18:37 0.09 38:03 0.03 
19:02 0.08 40:02 0.02 
19:35 0.06 43:05 0.02 
20:02 0.06 
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Table B 1.3 The bed slope in different sub-reaches 

Rhine reach 
(km) Bottom slope 

496.8-744 2.3 x104  
744-837 1.6 x1-0-4—  
837-863 2.7 x10.5  

B 1.3 Colorado River Experiment. Data 

The dispersion data of this experiment conducted during steady and unsteady 

flow conditions have been obtained from, USGS, WRD, Tucson, AZ 85719. Graf 

(1995) has described the dye experiments conducted in the Grand Canyon reach, the 

Colorado River, during controlled steady and unsteady flow conditions, in May 

1991. At Lees Ferry gauging station, on 20th May 1991 at 11:35hrs, 63.5kg of 

Rhodamine WT dye was injected for the experiments conducted during steady 

streamflow. During these experiments, under steady flow conditions, concentration 

measurements were taken at Nautiloid Canyon, above the Little Colorado, below 

Nevill's Rapid, Mile 118 camp, National canyon, Pumpkin spring, and at Gneiss 

Canyon located at a downstream distances of 58 km, 98 km, 123 km, 189 km, 267 

km, 343 km, and 381 km from the tracer injection location respectively. The flow in 

Colorado River was maintained at an average rate of 428 m3/s by controlling the 

flow from the Glen canyon dam. 

During controlled unsteady flow conditions, Rhodamine WT dye was 

injected at Lees Ferry gauging station, on 6th  May 1991 at 13:05 hrs, 127kg.for the 

measurements of dispersion during unsteady flow. The time-concentration 

measurements are available at Nautloid Canyon (RK 57.7), at the Little Colorado 

above Desert View (RK 98.3), at Nevill's rapid (RK 123), at Mile 118 camp (RK 

189), at National Canyon (RK 267), and at Gneiss Canyon (RK 381) during 

unsteady flow. 

In Grand Canyon reach, observed hydrographs are available at Lees Ferry 

(RK 0;USGS 09380000), at above the Little Colorado river near Desert View (RK 
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98; USGS 0938100), at Phantom Ranch near Grand Canyon (RK 142; USGS 

09402500), at National Canyon near Supai (RK 267; RK 09404120) and at 

Diamond Creek near .peach springs (RK 362; USGS 09404200). 

The flow and dispersion data during steady and unsteady flow conditions are 

presented in floppy diskette attached. Files contain dispersion data collected at each 

site and have time, in decimal days, and dye concentration, in microgram per litre. 

Files are: 

Dispersion data during steady flow: 

nautsdy.dat, lcrsdy.dat, nevsdy.dat, m118sdy.dat, natusdy.dat, pumpsdy.dat, 

and gnssdy.dat, in downstream order. 

Dispersion data during steady flow: 

nautusdy.dat, lcrusdy.dat, nevusdy.dat, m118usdy.dat, natusdy.dat, and 

gnssdy.dat, in downstream order. 

Files (named with gauging station number) containing the hydrographs data at gauging 

station, in down stream order, are: 

9380000.txt, 9381000.txt, 9402500.txt, 9404120.txt, and 9404200.txt 

In the hydrograph data the first column specifies year, second column specifies the 

month number, third column specifies date, fourth column specifies time in min and the 

fourth column specifies the discharge in ft3/s. 

B 1.4 Mimram River Experiment Data 

A tracer experiment was conducted by Lees et al., (1998) on Mimram River 

near the Panshanger flow gauging flume in Hertfordshire, England. The reach is 

approximately 200 m long and is characterised by non-uniform cross-sections of 

sandy pebbled bed with heavy weed growth. A constant discharge of 0.251 m3/s was 

measured at the gauging flume during the tracer experiment. Approximately 10 kg 

of sodium chloride (NaCI) was gulp injected into the river upstream of the flume's 

hydraulic jump and the resulting tracer cloud was measured over time at three 
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sampling stations downstream as follows: Site A at 100 m downstream from 

injection point; site B at 40 m downstream from site A; and Site C at 50 m 

downstream from site B. Measurements of conductivity were taken at irregular time 

intervals at each section, and the concentration of NaCl was computed from the 

conductivity calibration curves. The recorded concentrations, interpolated over an 

uniform sampling interval of 10 seconds were plotted by Lees et al. (1998). The 

plotted C-t curves were digitized using Tracer software (Karolewski, 2001) and the 

data thus digitized were used in the present study. The data is given in the diskette 

with file name Mimram.dat 

B 1.5 Uvas Creek Experiment Data 

Bencala and Walter (1983) described the tracer experiments conducted in 

Uvas Creek, a mountain stream, by injecting chloride at a constant rate for three 

hours duration. A maximum concentration of 11.9 mg/L was reached at a short 

distance below injection point. The experiments were conducted in late summer 

during a period of low flow of 0.0125 m3/s. The overall slope is 0.03 m/m. 

Background concentration was measured to be 3.7 mg/l. The channel is highly 

irregular, composed of alternating pools and riffles. In riffle sections, the water is in 

contact with gravel and cobble bed and solute can easily enter the accessible void 

spaces. The observed C-t curves are available at a distance of 38m (station 1), 105m 

(station 2), 281m (station 3), 433m (Station 4), and 619m (station 5) from the tracer 

injection point. The time- concentration data used in the present study are given in 

Table B 1.4. 
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Table B 1.4 Time-concentration data from experiments on the Uvas Creek 
(Bencala and Walters, 1983) 

Distance from source 
= 381cm 

Distance from source 
= 1051cm 

Distance from source 
= 2811cm 

Time 
(hrs) 

Concentration 
(mg/1) 

Time 
(hrs) 

Concentration 
(Ingil) 

Time (hrs) Concentration 
(ng/1) 

7.933333 3.87 7.766667 3.72 7.8 3.69 
8.016667 3.76 8 3.66 8.333333 3.67 

8.5 3.67 8.083333 3.63 8.5 3.71 
8.533333 3.73 8.333333 3.72 8.666667 3.77 
8.566667 3.66 8.5 3.65 8.833333 3.7 

8.6 3.69 8.666667 3.65 9 3.73 
8.633333 3.73 8.75 3.79 9.166667 3.65 
8.666667 5.58 8.833333 3.91 9.333333 3.65 

8.7 8.44 8.916667 3.75 9.5 3.73 
8.766667 10.61 9 3.75 9.666667 3.68 

8.8 10.91 9.083333 4.16 9.833333 3.7 
8.833333 11.14 9.166667 5.49 10 3.83 
8.866667 11.22 9.25 7.15 10.16667 4.15 

8.9 11.41 9.333333 8.21 10.33333 5.36 
8.933333 .11.49 9.416667 9.39 10.5 6.75 
8.966667 11.49 9.5 10.2 10.66667 8.03 

9 11.61 9.583333 10.57 10.83333 8.71 
9.033333 11.49 9.666667 10.87 11 9.18 
9.066667 11.47 9.75 11.03 11.16667 9.49 

9.1 11.59 9.833333 11.22 11.33333 9.64 
9.133333 11.47 9.916667 11.22 11.5 9.74 
9.166667 11.47 10 11.26 11.66667 9.94 
9.233333 11.55 10.08333 11.22 11.83333 9.91 

9.3 11.47 10.16667 11.18 12 9,91 	---- 
9.366667 11.47 10.25 11.28 12.16667 9.95 
9.433333 11.43 10,33333 11.23 12.33333 9.94 

9.5 11.47 10.41667 11.24 12.5 9.94 
9.566667 11.47 10.5 11.4 12.66667 9.91 
9.633333 11.43 10.66667 11.4 12.83333 9.96 

9.7 10.99 10.83333 11.38 13 9.81 
9.766667 11.41 11 11.38 13.16667 9.36 

. 9.833333 11.48 11.16667 11.48 13.33333 8.29 
10 11.68 11.33333 11.51 13.5 7.02 

10.16667 11.63 11.5 11.4 13.66667 5.81 
10.33333 11.52 11.58333 11.51 13.83333 5.06 

10.5 11.54 11.66667 11.44 14 4.61 
10.66667 11.56 11.75 11..4 14.16667 4.33 
10.83333 11.37 11.83333 11.34 14.33333 4.15 

11 11.46 11.91667 11.16 14.5 4.07 
11.16667 11.4 12 10.95 14.66667 4 
11.33333 11.44 12.08333 10.45 14.83333 3.92 

11.5 10.23 12.16667 8.97 15 3.92 
11.53333 10.51  12.25 7.68 15.16667 3.9 
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Table 11 1.4 (Contd....) 

Distance from source 
= 38km 

Distance from source 
= 1051(m 

Distance from source 
= 281km 

Time 
(hrs) 

Concentration 
(mg/1) 

Time 
(hrs) 

Concentration 
(mg/1) Time (hrs) Concentration 

(mg/1) 
11.56667 10.99 12.33333 6.31 15.33333 3.88 

11.6 11.22 12.41667 5.66 15.5 3.89 
11.63333 11.21 12.5 4.89 15.66667 3.85 
11.66667 9.05 12.58333 4.53 15.83333 3.83 

11.7 6.47 12.66667 4.24 16 3.91 
11.73333 5.22 12.75 4.1 16.16667 3.86 
11.76667 4.6 12.83333 3.94 16.33333 3.86 

11.8 4,28 12.91667 3,84 16,5 3.86 
11.83333 4.18 13 3.81 16.66667 3.91 
11.86667 4.01 13.08333 3.79 16.83333 3.88 

11.9 3.95 13.16667 3.75 17 ,3.87 
11.93333 3.93 13.25 3.75 17.36667 3.8 
11.96667 3.86 13.33333 3.78 17.86667 3.82 

12 3.85 13.41667 3.74 18.36667 3.75 
12.03333 3.96 13.5 3.74 19.36667 3.73 
12.06667 3.81 13.58333 3.77 20.36667 3.73 

12.1 3.79 13.66667 3.72 21.36667 3.75 
12.13333 3.76 13.75 3.72 22.36667 3.73 
12.16667 3.73 13.91667 3.75 23.36667 3.72 
12.23333 3.72 14.08333 3.71 24.36667 3.83 

12.3 3.71 14.25 3.71 25.36667 4 
12.36667 3.71 14.41667 3.72 26.36667 4 
12.43333 3.72 14.58333 3.73 27.36667 4.06 

12.5 3.71 14.75 3.68 28.36667 4.22 
12.56667 3.67 14.91667 3.7 29.36667 4.14 
12.63333 3.67 15.08333 3.76 30.36667 4.2 

12.7 3.7 15.25 3.7 31.36667 4.29 
12.76667 3.71 15.5 3.7 32.36667 4.24 
12.83333 3.71 15.75 3.68 33.36667 4.31 

13 3.67 16 3.68 34.36667 4.33 
13.16667 3.64 16.25 3.75 35.36667 4.22 
13.33333 3.66 16.5 3.69 36.36667 4.24 

13.5 3.64 16.75 3.66 37.36667 4.24 
13.66667 3.66 17 3.71 38.36667 4.2 
13.83333 3.64 17.5 3.79 . 

14 3.75 18.06667 3.72 
14.16667 3.68 19.06667 3.72 
14.33333 3.7 20.06667 3.7 
15.16667 3.7 21.06667 3.71 
15.68333 3.83 22.06667 3.71 
16.16667 3.74 23.06667 3.77 
16.68333 3.88 
17.16667 3.66 
17.68333 3.72 
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Time (hrs) Concentration 
(mg/1) 

Time 	Concentration 
(hrs) 
	

(nel) 
Concentration 

(mg/I) 
Time 
(hrs) 

Distance from source 
= 381cm 

Distance from source 
= 1051cm 

Distance from source 
= 2811cm 

18.68333 3.76 
19.68333 3.72 
20.68333 3.74 
21.68333 3:83 
22.68333 3.8 
23.68333 3.93 
24.68333 4.06 
25.68333 4.1 
26.68333 4.11 
27.68333 4.08 
28.68333 4.16 
29.68333 4.5 
30.68333 4.46 
31.68333 4.28 
32.68333 4.41 
33.68333 4.38 
34.68333 4.51 
35.68333 4.39 

Table B 1.4 (Contd...) 

B 1.6 Huey Creek Experiment Data 

A tracer-dilution experiment conducted in Huey Creek, in January 1992, 

to determine the extent and rate of hyporheic exchange was described by Runkel 

et al., (1998). A solution containing Lithium Chloride (LiCI) was injected into 

Huey Creek beginning at 11:25 hrs on 7th  January. The injection continued at a 

rate of 8.7 ml/s for X3.75 h. Injectate concentration of Lithium (Li) was 34 g/1. 

The C-t measurements are available at downstream distances of 9m (location 1), 

213m (location 2), 457m (location 3), 762m (location 4), and at 1052m (location 

4) from the point of injection of the LiCI injectate (Fig. 6.24). The inflow 

hydrograph data given by Runkel et al., (1998) are given in Table B 1.5. The 

time concentration data used in the present study are given in Table B 1.6. 
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Table B 1.5 Inflow Hydrograph for Huey creek (Runkel et al., 1998) 

Time 
(hrs) 

Discharge 
(ft3/s) 

Time 
(hrs) 

Discharge 
(ft3/s) 

0.00 0.28 18.25 1.6 
0.25 0.28 18.50 1.5 
0.50 0.24 18.75 1.3 
0.75 0.24 19.00 1.2 
1.00 0.22 19.25 1.1 
1.25 0.2 19.50 0.96 
1.50 0.2 19.75  0.84 
1.75 0.2 20.00 0.76 
2.00 0.2 20.25 0.7 
2.25 0.2 20.50 0.59 
2.50 0.19 20.75 0.42 
2.75 0.17 21.00 0.41 
3.00 0.17 21.25 0.38 
3.25 0.15 21.50 0.34 
3.50 0.15 21.75 0.34 
3.75 0.15 22.00 0.34 
4.00 0.15 22.25 0.34 
4.25 0.15 22.50 0.32 
4.50 0.15 22.75 0.32 
18.00 1.9769 _ 	23.00 0.32 

Table B 1.6 Distribution of cross-sectional average Li concentration with time, 

Huey creek (Runkel et al., 1998) 

Distance from 
source = 9m 

Distance from 
source =213 m 

Distance from 
source = 457 m 

Distance from 
source = 762.0m 

Distance from 
source =1052.0m 

Time 
(hr,m) 

Concentr 
ation 

(mg/1) 

Time 
(hr,m)  

Concentr 
ation 
(me/1) 

Time 
(hr,m)  

Concentr 
ation 
(mg/I) 

Time 
(hr,m)  

Concentr 
ation 
(mg/1) 

Time 
(hr,m)  

Concentr 
ation 

(mg/1) 
11:17 0.012 11:15 0.046 11:15 0.042 10:50 0.037 11:04 0.036 
11:20 0.052 11:25 0.02 11:30 0.011 11:10 0.037 11:15 0.004 
11:45 3.366 11:35 2.968 11:45 2.617 11:30 0.091 11:25 0.023 
11:55 2.807 11:45 3.093 12:00 2.500 11:45 0.067 11:35 0.011 
12:05 2.708 11:55 2.844 12:15 2.382 12:00 2.323 11:51 0.03 
12:15 2.596 12:05 2.67 12:30 2.289 12:15 2.174 12:05 1.843 
12:25 2.509 12:25 2.447 12:45 2.289 12:30 2.273 12:20 1.913 
12:45 2.404 12:35 2.496 13:00 2.312 12:45 2.078 12:33 1.867 
13:00 2.16 12:45 2.025 13:15 2.265 13:00 2.223 12:43 1.813 
13:30 2.11 12:55 2.422 13:30 2.289 13:15 2.198 12:52 1.937 
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Table B 1.6 Contd...) 

Distance from 
source = 9m 

Distance from 
source =213 m 

Distance from 
source = 457 m 

Distance from 
source = 762.0m 

Distance from 
source =1 052.0m 

Time Concentr Time Concentr Time Concentr Time Concentr Time Concentr 
(hr,m) ation 

(mei) 
(hr,m) ation 

(141) 
(hr,m) ation 

(mel) 
(hr,m) ation 

(mg/1) 
(hr,m) ation 

(mg/1) 
13:55 2.135 13:10 2.248 13:45 2.218 13:30 2.124 13:03 1.796 

14:10 2.248 13:25 2.273 14:00 2.148 13:45 2.031 13:13 1.82 
14:15 2.085 13:45 2.273 14:15 2.031 14:00 2.000 13:32 1.843 
14:30 2.248 14:05 2.323 14:30 2.171 14:15 1.937 13:43 1.937 
14:50 2.248 14:25 2.198 14:45 1.984 14:30 1.960 13:57 2.125 
15:12 0.097 15:20 0.172 15:00 2.054 14:45 2.007 14:12 1.96 
15:27 0.012 15:35 0.168 15:15 2.218 15:00 2.074 14:27 2.007 
15:55 0.06 15:45 0.162 15:30 0.511 15:15 2.099 14:42 1.937 
16:20 0.078 16:05 0.107 15:45 0.281 15:30 1.917 14:57 1.89 
16:35 0.084 16:25 0.054 16:00 0.254 15:45 0.493 15:12 1.843 
16:41 0.11 17:00 0.083 16:15 0.228 16:00 0.400 15:27 1.96 
16:52 0.072 0 16:30 0.188 16:15 0.289 15:42 1.08 

16:45 0.156 16:30 0.209 15:57 0.434 
17:07 0.112 16:45 0.256 16:12 0.358 

17:00 0.191 16:27 0.264 
17:15 0.184 16:42 0.228 
17:30 0.166 16:57 0.198 
17:45 0.135 17:12 0.181 _ 
18:00 0.141 17:27 0.178 
18:15 0.121 17:42 0.175 

17:57 0.15 
18:13 0.137 
18:33 0.156 
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APPENDIX - C 

FORTRAN PROGRAM LISTING 

c**************************************************************************************** 
C PROGRAM FOR SIMULTANEOUS FLOOD AND SOLUTE ROUTING BY AD-VPM METHOD 
c******************************4********************************************************* 
C DESCRIPTION OF VARIABLE NOTATIONS USED IN THE PROGRAM 
C M 	INFLOW HYDROGRz0H ORDINATES AT THE INLET OF EACH SUB-REACH 
C QOBS 	OBSERVED OUTFLOW HYDROGRAPH ORDINATE. 
C QCOM COMPUTED OUTFLOW HYDROGRAPH ORDINATE 
C YM 	COMPUTED STAGE AT THE MIDDLE OF THE SUB-REACH. 
C YOBS 	OBSERVED STAGE AT THE OUTLET OF THE REACH 
C YCOM COMPUTED STAGE AT THE OUTLET OF THE REACH 
C AIN I 	ORDINATE OF THE GIVEN INFLOW HYDROGRAPH 
C Y1 	COMPUTED STAGE CORRESPONDING TO AI 
C SIN 1 	STAGE CORRESPONDING TO GIVEN INFLOW AIN1 
C DYDXUP NON-DIMENSIONALISED WATER SURFACE SLOPE COMPUTED AT 
C 	 THE INLET OF THE REACH 
C DYDXI NON-DIMENSIONALISED WATER SURFACE SLOPE GIVEN AT THE C 

INLET OF THE REACH (COMPUTED USING ST. VENANT'S EQNS.) 
C CI 	INPUT C-t CURVE ORDINATES AT INLET OF EACH SUB-REACH 
C COBS 	OBSERVED OUTPUT C-t CURVE ORDINATES 
C CINT 	ORDINATES OF THE INPUT C-t CURVE 
C CCOM 	COMPUTED OUTPUT C-t CURVE ORDINATE 
C DL 	DISPERSION COEFFICIENT 
C N 	TOTAL NUMBER OF INFLOW AND OUTFLOW VARIABLE 
C NP 	TOTAL NUMBER OF INPUT AND OUTPUT C-t ORDINATES (optional) 
C DT 	ROUTING INTERVAL 
C YIN 	INTIAL STAGE 
C Z 	SIDE SLOPES 
C B 	WIDTH OF THE CHANNEL 
C G 	ACCELERATION DUE TO GRAVITY 
C SO 	BED SLOPE 
C PI 	RELATIONAL COEFFICIENT 
C AN 	MANNING'S ROUGHNESS COEFFICIENT 
C NREACH NUMBER OF SUBREACHES USED IN THE GIVEN ROUTING REACH 
C FSQ 	SQUARE OF FROUDE NUMBER 
C R 	HYDRAULIC RADIUS 
C THETA WEIGHTING PARAMETER FOR FLOW ROUTING 
C AK 	REACH TRAVEL TIME FOR FLOW ROUTING 
C AKP 	REACH TRAVEL TIME FOR SOLUTE ROUTING 
C TETAM WEIGHTING PARAMETER FOR SOLUTE ROUTING 
C Psi 	Velocity conversion coefficient (optional) 
c**************************************************************************************** 

REAL 	AIN1(1000),Y1(1000),AI(1000),YM(200),DYDX(1000), YOBS(1000) 
REAL 	QCOM(995),YCOM(995),FUNC(200),DYDX1(995),QOBS(995),YOUT(200) 
REAL 	'YCOM1(1000), QCOM1(1000),SIN1(1000),DYDX1(1000),FUNC2(200) 
REAL 	DYDXUP(1000), aift(1000),SF(100),R1(100) 
REAL 	CI (1000), CINT (1000),COBS (1000),CCOM (1000),A3(1000), disp (1000) 

C 
OPEN (1,FILE='DYBYDX. DAT') 

C 
C FILE 'dybydx.dat' IS AN OUTPUT FILE AND IT DISPLAYS GIVEN INFLOW, COR 
C RESPONDING COMPUTED AND ST. VENANT'S SOLUTION NON- DIMENSIONAL 
C ISED WATER SURFACE SLOPES 
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C FILE 'vpm.dat' IS INPUT FILE AND IT STORES GIVEN INFLOW AND OUTFLOW 
C CORRESPONDING STAGE HYDROGRAPHS, INPUT AND OUTPUT CONCENTRATION 
C DISTRIBUTIONS, THE VALUES OF N, DT,YIN, B,G, SO, AN, TTL, NREACH, JUMP, PI, Z, and NP 
C 

OPEN (2,FILE=IVPM.DAT') 
C 
C FILE 'vpm.out' IS AN OUTPUT FILE WHICH DISPLAYS GIVEN INPUT VALUES 
C OF N, DT,YIN, B,G, SO, AN, TTL, NREACH, JUMP, PI, Z, AND NP, IT ALSO 
C DISPLAYS GIVEN INFLOW AND OUTLFOW HYDROGRAPH AND THE 
C CORESPONDING COMPUTED INFLOW AND OUTFLOW STAGE HYDROGRAPHS, 
C INPUT AND OUTPUT CONCENTRATIONS, COMPUTED AND OBSERVED 
C STAGE HYDROGRAPHS. SUM OF INFLOW, SUM OF OUTFLOW AND SUM OF 
C COMPUTED OUTFLOW ALONG WITH MEASURES FOR VARIANCE EXPLAINED AND ERROR 
C IN VOLUME ARE DISPLAYED. 
C 

OPEN (3,FILE='VPM.OUT') 
C 
C FILE ' akth.out' IS AN OUTPUT FILE WHICH DISPLAYS THE LAST SUBREACH 
C INFLOW AND THE CORRESPONDING COMPUTED MUSKINGUM WEIGHTING 
C PARAMETER. 
C 

OPEN (4,FILE=AKTH.OUT) 
C 
C FILE 'dydx.dat' IS AN INPUT FILE WHICH STORES NON-DIMENSIONALISED WATER SURFACE 
C SLOP COMPUTED USING ST. VENANT'S SOLUTION AT THE 
C INLET OF THE REACH 
C 

OPEN (7, FILE=DYDX.DAT) 
C 
C FILE 'advpm.out' IS OUTPUT FILE WHICH GIVES THE VELOCITY AT SECTION 
C 3, DISPERSION COEFFICIENT AND THE WEIGHTING PARAMETER OF SOLUTE 
C ROUTING AD-VPM MODEL 
C 

OPEN (8,FILE='ADVPM.OUT) 
C 

G=9.81 
READ(2,*)N,DT,YIN,B,SO,TTL,NREACH,Z, PI, NP,AN, Psi 
WRITE(3,99) N,DT,YIN,B,SO,AN,TTL,NREACH,G,Z,PI,NR1,NP 

	

99 	FORMAT(15X,'NO. OF ORDIANTES=',I6/15X,'ROUTING TIME INTERVAL 

	

1 	(Sec)=',F8.2/15X,'INTIAL DEPTH(mts)=',F8.4/15X;CHANNEL WIDTH 

	

2 	(mts)=',F8.2/15X,'BED SLOPE(m/m)=',F6.4/15X,'MANNINGS ROUGHNESS 

	

3 	COEFF=',F6.3/15X,'TOTAL LENGTH OF THE REACH(m)=',F10.1/15X,'NO. 
4 OF SUB REACHES =', 15 /15X,'ACC.DUE TO GRA=', F6.3/15X,'Z=',F8.4/ 

	

5 	14X,'RELATIONAL PARA.=',F7.4/15X,'NO.OF REACHES=',I4/10X,'NP=',I4) 

READ(2,*) (AI(I),I=1,N+1) 
READ(2,*)(QOBS(I),I=1,N) 

READ(2,* )(CI(I),I=1,NP) 
READ(2,*)(COBS(I),I=1,NP) 
READ(7,890)(DYDX1(I),I=2,N+1) 

890 FORMAT(10F8.5) 
Z1= SQRT(1.0+Z*Z) 

C STORING OF ORIGINAL AI AND CI VALUES IN AIN1 AND CINT ARRAYS 
DO 6 I=1,N 
CINT(I)=CI(I) 

6 	AIN1(I)=AI(I) 
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C DO 8 I=I,NP 
C 8 CINT(I)=CI(I) 

DXP=TTL/NR1 
DX=TTL/NREACH 
WRITE(*,*)DX,DXP 
DX1=0.0 
WRITE (3, *)' MANNING'S n =', AN 

C DX1- LENGTH OF CUMULATIVE ROUTING REACH 

7 DX1=DX1+DX 
IF((DX1-1),GT.TTL)GOTO 26 

95 FORMAT (15X,'SUB-REACH LENGTH=',F12.2,',',F12.2) 
Y1(1)=YIN 
QIN=AI(1) 
CIN=CI(1) 
DADY=B+2*Z*YIN 
DL=PI*QJN/(2.*SO*DADY) 
PRA= (B*(B+2.0*Z*YIN)+2.0*ZI*Z*YIN* YIN)/((B+2.*Z*YIN)* 

1 (B+2.0*Z1*YIN)) 
VIN=QIN/B+Z*YIN)*YIN) 
AK = DX/((1+213.*PRA)*VIN) 
AKP=DXP/VIN 
FSQ = QIN*QIN*(B+2.*Z*YIN)/(G*((B+Z*YIN)*YIN)**3) 
R=(B+Z*YIN)*YIN/(3+2.*YIN*Z1) 
THETAN=QIN*(1-(4./9.)*FSQ*PRA*PRA) 
THETAD=2.*S0*(B+2.*Z*YIN)*(1+2./3.*PRA)*VIN*DX 
THETA = 0.5-(THETAN/THETAD) 
TETAM=0.5-DL/(VIN*DXP) 
CON ST= (1 ./AN)* S QRT(S0) 
QCOM(1)=QIN 
YCOM(1)=YIN 
CCOM(1)=CIN 
J=1 

YMID=YIN 
C COUNTER M IS USED FOR UPDATING THE PARAMETERS AT ANY TIME. 
5 M=0 

J=J+1 
9 CDIN=AK*(1.-THETA)+DT/2. 
C Cl, C2 AND C3 ARE COEFFICIENTS OF THE MUSKINGUM FLOW ROUTING EQUATION 

C1=(-AK*THETA+DT/2.)/CDIN 
C2=(AK*THETA+DT/2.)/CDIN 
C3=(AK*(1.0 THETA)-DT/2.)/CDIN 
PDIN=AKP*(1.-TETAM)+DT/2. 

C PK1, PK2 AND PK3 ARE THE COEFFICIENTS OF THE MUSKINGUM SOLUTE 
C ROUTING EQUATION 

PKI=(-AKP*TETAM+DT/2.)/PDIN 
PK2=(AKP*TETAM+DT/2.)/PDIN 
PK3=(AKP*(I.0 - TETAM)-DT/2.)/PDIN 
M=M+ I 

C COMPUTATION OF OUTFLOW 
QCOM (J)=C1*AI (J)+C2*AI (J-1)+C3*QCOM(J-1) 

C COMPUTATION OF OUTPUT CONCENTRATION 
CCOM(J)=PK1*CI(J)+ PK2*CI(J-1)+ PK3*CCOM(J-1) 

C COMPUTATION OF WEIGHTED OUTFLOW 
Q3 = QCOM(J)+THETA*(AI(J)-QCOM(J)) 
1=1 
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YM(I)=YMID 
C FINDING THE STAGE AT THE MIDDLE OF THE REACH 

R=(B+Z*YM(I))*YM(1)/(B+2.*YM(I)*Z1) 
FUNC(I)=Q3-CONST*R**(2d3.)*(B+Z*YM(I))*YM(I) 
1=2 
YM(I)=YMID+0.2*YIVIID 

10 	R=(B+Z*YM(I))*YM(I)/(B+2.*YM(I)*Z1) 
FUNC(I)=Q3-CONST*R**(2./3.)*(B+Z*YM(I))*YM(I) 
D YM=-FUNC(I)*(YM(I)-YM(I-1))/(FUNC(I)-FUNC (I-1)) 
YM(I+1)=YM(I)+DYM 
IF(ABSKYM(I+1)-YM(1))/YM(I+1)) .LT. 0.01) GOTO 30 
1=1+1 
GO TO 10 

30 YMID=YM(I+1) 
C COMPUTATION OF THE DISCHARGE AT THE MIDDLE OF THE REACH 

QMID=(AI(J)+QCOM(J))/2.0 
VM=QMID/((B+Z*YMID)*YMID) 

VNORM=Q3/((B+Z*YMID)*YMID) 
PRA=(B*(B+2.0*Z*YMID)+2.0*Z1*Z*YMID*YMID)/((B+2.*Z*YMID)* 

I (B+2,0*Z1*YMID)) 

C COMPUTATION OF THE SQUARE OF THE FROUDE NUMBER 
FSQ = QMID*QMID*(B+2.*Z*YMID)/(G*((B+Z*YMID)*YMID)**3) 
YCOM(J)=YMID+(QCOM(J)-QMID)/((B+2.*Z*YMID)*(1.+ 2./3.*PRA)*VM) 
Y3 = YMID+(Q3-QMID)/((B+2.*Z*YMID)*(1.4-  2./3.*PRA)*VM) 

C 	A3(j)=(3+Z*Y3)*Y3 
C COMPUTATION OF THE VELOCITY AT THE WIGHTED OUTFLOW SECTION 

V3=Q3/((B+Z*Y3)*Y3) 
C 23 FORMAT (1X,'VELOCITY3=',F15.6) 

PRA=(B*(B+2.0*Z*Y3)+2.0*Z1*Z*Y3*Y3)/((B+2.*Z*Y3)* 
1 (B+2.0*Z1*Y3)) 

DADY=B+2*Z*Y3 
C COMPUTATION OF DISPERSION COEFFICIENT USING WEIGHTED DISCHARGE 

DL=Pl*Q3/(2.*SO*DADY) 
C disp(j)=d1 
C a1fa=(a3(j)*disp(j)-a3(j-1)*disp(j-1))/(dx*a3(j)) 
C COMPUTATION OF VECLOCITY OF SOLUTE CLOUD 

V3M=V3 
C V3M=VNORM 
C v3m = v3/(1+psi) 

AKP=DXPN3M 
DADY=B+2*Z*Y3 

C DL=PI*Q3/(2.*SO*DADY) 
C COMPUTATION OF WAVE CELERITY OF THE REACH 

CEL=(1+2./3.*PRA)*V3 
C COMPUTATION OF PARAMETER AK,AKP,THETA, AND TETAM 

AK =--DX / CEL 
R=(B+Z*YMID)*YMID/(B+2.*YMID*Z1) 
THETAN=Q3*(1-(4./9.)*FSQ*PRA*PRA) 
THETAD=S0*(13+2.*Z*Y3)*(1+213.*PRA)*V3*DX 

C COMPUTATION OF DISPERSION COEFFICIENT AND WEIGHTING FACTOR FOR SOLUTE 
DL=PI*THETAN/(2.*SO*DADY) 

C DL=PI*Q3/(2.*SO*DADY) 
TETAM=0.5-DL/(V3M*DXP) 

C WRITING THE VALUES OF OUTFLOW, VELOCITY, DISPERSION COM' ICIENT 
C AND THE WEIGHTING COEFFICIENT 

WRITE (8,*) QCOM(J),V3M,DL,TETAM 
C GM = (QCOM(J)-AI(J))*THETAN/(THETAD*Q3) 
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GM =0. 
THETA=0.5-(THETAN/THETAD) * (0.5+0 .125* GM+(1./16.)* GM*GM+(51128. )* 

	

1 	GM**3+(7./256)*GM"4) 
YCOM(J)=YMID+(QCOM(J)-QMID)/((B+2.*Z*YMID)*(I.+ 2./3.*PRA)*VM) 

C COMPUTATION OF STAGE AT THE INLET OF THE REACH 
IF (DX1 .EQ. DX) THEN 

Y1(J)=2.*YMID-YCOM(J) 
ENDIF 

IF (M .LE. I) GOTO 9 

C COMPUTATION OF NON-DIMENSIONALISED WATER SURFACE SLOPE AT THE INLET OF 
C THE REACH 

VELUP=AI(J)/((B+Z*Y1(J))*Y1(J) 
PRA=(B*(B+2.0*Z*Y1(J))+2.0*Z1*Z*Y1(J)*Y1(J))/((B+2.*Z*Y1(J))* 

1 (B+2.0*ZI*Y1(J))) 
CELUP=(1+2./3.*PRA)*VELUP 
DYDXUP(J) = -(AI(J)-AI(J-1))/(S0*DT*B*CELUP**2) 

C CONVERTING AK INTO HOURS 
IF(DX1 .EQ. DX)AK1=AK/3600.0 

C WRITING INFLOW OF THE LAST REACH AND THE CORRESPONDING AK AND 
C THETA. 

IF(DX1 .EQ. DX) WRITE(4,*) J, AI(J),AK1,THETA 
DYDX(J)=(YCOM(J)-Y1(J))/DX 
DYDX I (J)=D YDX(J)/S0 
WRITE(1,*)DYDX(J),DYDX1(J) 

IF (J .LT. N) GOTO 5 
C WRITING INFLOW AND CORRESPONDING NON-DIMENSIONALISED WATER SURFACE 
C SLOPE OF THE St.VENANT'S SOLUTION AND PRESENT SOLUTION 

IF (DX1 .eq. DX) WRITE(1,222) (J,AIN1(J), DYDXUP(J), DYDX(J), DYDX1(J) 	1 J=2,N) 

	

222 	FORMAT (5X, 13,F8.0,2X,F10.6,5X,2F10.6) 

C OUTFLOW AND STAGE FROM THE SUB-REACH BECOMES INFLOW TO THE 
C NEXT SUB-REACH 

DO 28 I=1,N 
Y1(I)=YCOM(I) 
CI(I)=CCOM(I) 

28 AI(I)=QCOM(I) 

C CHECKING FOR THE COMPLETION OF THE ROUTING FOR THE LAST SUB- 
C REACH 

26 IF(DX1.LT.TTL) GOTO 7 
C WRITING THE INFLOW, AND OBSERVED AND COMPUTED OUTFLOW AND 
C STAGE 

WRITE (3,*)'N0. INFLOW OUTFLOW OBS YCOM' 
WRITE (3,101)((J-1), AIN1(J), QCOM(J), QOBS(J), YCOM(J), J=1,N) 

101 FORMAT (1X,1X,I4,1X,4F12.5) 
C WRITING THE COMPUTED OUTFLOW, INPUT CONCENTRATION, COMPUTED 
C OUTPUT CONCENTRATION, AND OBSERVED CONCENTRATION AT OUTPUT SECTION 

WRITE (3,111)((.1-1),QCOM(J), CINT(J), CCOM(J), COBS(J), J=1,N) 
111 FORMAT(1X,IX,I4,1X,4F12.5) 
C ENDIF 
C COMPUTATION OF SUM OF INFLOW, OBSERVED OUTFLOW, COMPUTED 
C OUTFLOW, INPUT, OUTPUT AND OBSERVED CONCENTRATIONS, AND Nash 
C - Sutcliffe criterion and error in volume of flow. The mass conservation computation for solute under 
C unsteady flow condition is not included 
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sumai=0.0 
SUMQC=0.0 
SUMQ0=0.0 
sumCI=0.0 
SUMCC=0.0 
SUMC0=0.0 
DO 22 J=1,N 
SUMAI= SUMAI+AIN I (J) 
SUMQC=SUMQC+QCOM(J) 
SUMQO=SUMQO+QOBS(J) 
SUMCI=SUMCI+CINT(J) 
SUMCC=SUMCC+CCOM(J) 

22 	SUMCO=SUMCO+COBS(J) 
AVECI=SUMCl/NP 
AVECC=SUMCC/NP 
AVECO=SUMCO/NP 
AVEAI=SUMAI/N 
AVEQC=SUMQC/N 
AVEQ0=SUMQ0/N 
TOTVAR=0.0 

RESVAR=0.0 
TTCVAR=0.0 
RSCVAR=0.0 
DO 32 .1=1,N 

ITCVAR=TICVAR+(COBS(J)-AVECO)*(COBS(J)-AVECO) 
RSCVAR=RSCVAR+(COBS(J)-CCOM(J))*(COBS(J)-CCOM(J)) 
TOTVAR=TOTVAR+(QOBS(J)-AVEQ0)*(QOBS(J)-AVEQ0) 

32 RESVAR=RESVAR+(QOBS(J)-QCOM(J))*(QOBS(J)-QCOM(J)) 
VRCEXP=(TTCVAR-RSCVAR)/TTCVAR*100.0 
CEVOL=(SUMCC-SUMCI)/SUMCI*100 
VAREXP=(TOTVAR-RESVAR)/TOTVAR*100.0 
EVOL=(SUMQC-SUMAI)/SUMAI*100 
WRITE (3,102)SUMAI,SUMQC,SUMQ0 

102 FORMAT(15X,'SUMAI=P10.2,4X,'SUMQC=',F10.2,3X,'SUMQ0=',F10.2) 
WRITE (3,104)VAREXP,EVOL 

104 FORMAT(15X,'VAREXP=',F9.3,5X,'EVOL=79.2,2X,'VoERR=',F10.5) 
C Nash-Sutcliffe criterion and error in mass given below is applicable for dispersion under steady flow only. 
C For dispersion under unsteady flow compute inflow and out flow mass separately. 
C 

WRITE (3,77)SUMCI,SUMCC,SUMCO 
77 	FORMAT(15X,'SUMCI=P10.3,4X,'SUMCC=',F10.3,3X,'SUMC0=',F10.3) 

WRITE (3,78)VRCEXP,CEVOL 
78 	FORMAT(15X,'VRCEXP=',F9.3,5X,'EVOL=P9.2,2X,IcYcERR=1,F10.5) 

Y1(1)=Y1(2) 
c 	DO 106 1=1,N 
c 	QCOM(I)=0.0 
c 	YCOM(I)=0.0 
c 106 AI(I)=AIN1(I) 

CLOSE(1) 
CLOSE(2) 

CLOSE(3) 
CLOSE(4) 

CLOSE(7) 
CLOSE(8) 
STOP 
END 
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