SIMULATION OF SOLUTE TRANSPORT IN
UNSTEADY STREAMFLOWS

A THESIS

Submitted in fulfilment of the
requirements for the award of the degree
‘ of

DOCTOR OF PHILOSOPHY
in

WATER RESOURCES DEVELOPMENT

By
SEEPANA BALA PRASAD

WATER RESOURCES DEVELOPMENT TRAINING CENTRE
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE-247 667 (INDIA)

SEPTEMBER, 2002



INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled
“SIMULATION OF SOLUTE TRANSPORT IN UNSTEADY STREAMFLOWS”
in fulfilment of the requirement for the award of the Degree of Doctor of Philosophy
and submitted in the Water Resources Development Training Centre, Indian Institute of
Technology, Roorkee, is an authentic record of my own work carried out during a
period from July 1999 to September 2002 under the supervision of Dr. U.C. Chaube,
Professor, WRDTC, Indian Institute of Technology, Roorkee, Dr. M. Perumal,
Associate Professor, Centre for Continuing Education, Indian Institute of Technology,
Roorkee, and Dr. C.S.P. Ojha, Associate Professor, Department of Civil Engineering,
Indian Institute of Technology, Roorkee.’

The matter presented in this thesis has not been submitted by me for the award
of any other degree of this or any other institute/university.

St )

(SEEPANA BALA PRASAD)

This is to certify that the above statement made by the candidate is correct to the
best of our knowledge.

@W/’“ lo- = | Rz late

(Dr. C.S.P. Ojha) (Dr. M. Perumal) (Dr. U. C. Chaube)

Assoc. Professor Assoc. Professor Professor

Dept. of Civil Engineering  Centre for Continuing Water Resources Dev.
Education Training Centre

Indian Institute of Technology Roorkee, Roorkee

Dated : September2.0 , 2002

The Ph. D. Viva-Voce examination of Seepana Bala Prasad, Research Scholar,
has been heldon U . \\ 2(/\) 2

%ﬂature of Supervisor(s) Signature ﬁ ure of External Examiner




ABSTRACT

The subject of pollutant mixing and its transport in streams has been at the
forefront of research for the determination of poilutant concentration aldng the river
course and for regulating disposal of pollutants in rivers. While abundant literature is
available for solute transport modelling under steady flow conditions, only a few
researchers have studied the problem of solute transport in rivers under unsteady
streamflow conditions. Majority of the studies available in literature employ complex
numerical aigorithms for solution of the governing equations of flow and solute
transport phenomena, which require river cross-section details at close spatial intervals,
in addition to flow and solute concentration measurements at those locations. The
existing models do not allow the integration of ﬂow. and solute transport model
parameters and simultaneous flow and solute routing. Further, existing transient storage
models for simulating solute transport in the presence of transient storage zones along
river reach require complex numerical solution algorithms. The present study attempts
to overcome the above limitations in modelling the longitudinal dispersion of solutes
under unsteady flow conditions using the following approach:

1. Simplification of the Advection-Dispersion (AD) equatibn for solute
transport modelling and coupling it with a flow routing model based on
the = Approximate Convection- ~ Diffusion (ACD) equation for
simultaneous routing of flow and solute.

2. Simplification of the governing equaﬁoris of the Transient Storage (TS)
model for solute transport modelliﬁg along the river reach and coupling
it with the flow routing model based on the ACD equation.

Important assumptions used in the development of this approach, are: i) the

flow in small reach length Ax is steady and uniform over a routing time interval At, but
varies from one time interval to the next interval, and ii) the concentration varies

linearly within a small reach length Ax.
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Similarity between the simplified form of the (AD) equation governing the
solute transport, and the Approximate Convection-Diffusion (ACD) equation (Perumél
and Ranga Raju, 1999) governing the flow transport is established. The similarity of the
simplified forms of the flow transport and solute transport equatiohs has enabled the
development of the AD-VPM model for studying solute transport in rivers under steady
flow conditions. The appropriatenesé of the AD-VPM model is first tested under steady
flow conditions by reproducing the analytical solution of the AD equation for a given
uniform pulse iﬁput and for different combinations of flow velocity (U) and dispersion
coefficient (DL).‘ It is found from the analysis of a number of numerical experiments
that analytical solution of the AD Amodel is closely reproduced by the proposed AD-
VPM model as indicated by the Nas‘h-Sutcliffe. criterion, 1 2 99% , when Dy < 415.64
U™ defining the applicability domain of the AD-VPM model. The proposed AD-VPM
model has also been verified under steady flow conditioné using 1) two laboratory test

“data, and ii) three field experiments data, (the Colorado River, the Rhine river, and the
Missouri river). The dispersion coefficient, which is a parameter in the AD-VPM model
is estimated using the relationship suggestéd by McQuivey and Keefer (1974) because
of its simplibity and accuracy. Satisfactory reproduction of the C-t curves demonstrates
the suitability of the AD-VPM model for its application under steady flow conditions,
within its applicability domain. |

The acceptable performance of the AD-VPM model for steady flow conditions,
has énabled to extend it for studying solute transport under unsteady flow conditions.
This is achieved by integrating the parameters of the AD-VPM model with the
parameters of the VPM flow routing model for simultaneous routing of the solute under
unsteady flow conditions. Numerical experiments on two hypothetical channels having
a width of 50m and 100m, characterised by different Manning’s roughness coefficient
and bed slope values, demonstrate the ability of the AD-VPM model 'for solute
transport by reproducing the results obtained' from the numerical solution of the

coupled Saint-Venant equations for flow routing and the AD equations (SVE-AD
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for an uniform pulse input, and ii) using two field experiments data ( Mimram river and
Uvas Creek). Since the form of the ATS model is same as that of the AD model, the
applicability criterion of the ATS-VPM model under steady flow conditions is
considered as the same as that obtained for the AD-VPM model with U repfaced by the
solute transport velocity (Us) and Dy, replaced by the ATS dispersion coefficient (D).

The ATS-VPM model has been extended to study solute transport in rivers
under unsteady flow conditions, following the same approach as adopted in the case of
AD-VPM model. Numerical experiments on three hypothetical channels of different
characteristics demonstrate the adf:quacy of the ATS-VPM model, by satisfactorily
simulating the C-t curves as obtained by the numerical algorithm solutions of the Saint-
Venant’s Equations and the TS equations (SVE-TS model). The ATS-VPM model has
also been verified for its applicability using the field experiments data of Huey creek
recorded under unsteady flow conditions (Runkel et al., 1998).

Based on the study it is concluded that the proposed AD-VPM and ATS-VPM
models simulate the solute transport in rivers and streams under steady as well as

unsteady flow conditions satisfactorily within their applicability ranges.
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A cross-sectional area of flow, L%
As storage zone cross-sectional area normal to the flow, [L?];
Az polynomial in z™; ' '
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B(z) polynomial in z; A
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Symbols

erfc(z) complimentary error function;
B ratio of the storage area to the main channel area;
X Von Karman’s coefficient;

W15, and w,; Muskingum coefficients for the exponential scheme;
¢, &,and &, Muskingum coefficients for flow routing;
w,,0,,and @, coefficients of the AD-VPM model routing equation;
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n Nash-Sutcliffe's criterion;
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.Chapter 1
INTRODUCTION

1.1 GENERAL

In recent yéars, with the increasing industrialisation and urbanisation,
generation of waste has increased manifold. Rivers have been traditionally used as
sinks for waste disposal with or without treatment. This has resulted in the
deterioration of water quality in many rivers in recent times because of the limited
capacity of these rivers to assimilate the pollutants without endangering the
associated ecosystem. Moreover, the inadvertent usage of fertilizers, pesticides and
herbicides in agriculture and their consequent deterioration in quality of return
flows is becoming an added problem while dealing with the water quality.
management of rivers. Therefore, to keep the waste disposal within the self-
purification capacity of a river, it is necessary to know the transport characteristics
of the pollutants disposed off into a river. Hence, acquisition of knowledge of the
pollutant transport in rivers has been at the forefront of research er determination
of pollutant conéentration along the river courses and for regulating disposal of '

pollutants in rivers. During the solute transport in a river, the flow of water may be

(i) steady and uniform, or (ii) steady and non-uniform or (iii) unsteady. Wastes in

water are generally characterised by various forms of pollutants. Solute is defined
as any dissolved substance or entity (pollutant such as pesticides, hydrocarbons,
trace elements etc.) in a fluid solvent (herein water). The solute transport along a
river course may be classified into three—~dimensional, two-dimensional and one-
dimensional processes based on the mixing mechanism. The solute transport process
is (i) three—dimensional in the near-field where the advection and dispersion occur

in vertical, transverse and longitudinal directions, (ii) two-dimensional in the mid-



field where the advection and dispersion are predominant in transverse and
longitudinal directions, and (iii) one-dimensional in the far-field where the
advection and dispersion are primarily important in longitudinal direction only.
Near-field and mid-field together are commonly referred to as advective zone or
initial mixing zone or convective zone and the far-field is commonly referred to as
dispersive zone or equilibrium zone. Present study deals with the study of one-
dimensional (longitudinal) transport of conservative solutes in rivers.

Over the past two decades, a number of approaches have been developed to
study the one-dimensional transport of pollutant in solute form in rivers (Taylor,
1954; Elder, 1959; Fischer, 1968; Banks, 1974; Beltaos, 1982; Jirka, 1982; Bencala
and Wélters, 1983; and Beer and Young, 1983).  Further, most of the studies on
solute transport to date pertain to the periods of low flow in which flow in rivers
may be assumed steady (Runkel et al., 1998).

This chapter presents (1) a brief description of solute transport studies in
rivers under steady flow conditions, (ii) the relevance of solute transport in rivers
under unsteady flow conditions, (iii) a brief description of solute transport studies
under unsteady flow conditions, and the scope of the present study, (iv) the

objectives of the présent study, and (v) the details of the organization of the thesis.

!

1.2 BACKGROUND

Brief background pertinent to the solute transport study is presented in the

following sections.

1.2.1 Studies on Solute Transport Under Steady Flow Conditions
Several researchers have studied solute transport in open channels under
steady flow conditions using Advection-Dispersion (AD) model and its

modifications (Elder, 1959; Fischer, 1968; Liu and Cheng, 1980; Beltaos, 1982,



Koussis, 1983, and Komatsu-et al.,, 1997). Experimental studies by Godfrey and
Frederick (1970), Nordin and Sabol (1974), and Day (1975) show that the AD
equation fails to simulate the observed concentration time profiles (C-t curves),
parﬁcular]y with long tails, of rivers with dead zones or transient storage zones. In
an attempt to explain the observed long tails in C-t curves, some researchers have
postulated Dead Zone (DZ) model (Thackston and Krenkel, 1967; and Valentine
and Wood, 1977), Transient Storage (TS) or One-dimensional Transport with
Inflow and Storage (OTIS) model (Bencala and Walters, 1983; and Runkel, 1998),
and Aggregated Dead Zone (ADZ) model (Beer and Young, 1983). Among these
alternative approaches, Transient Storage model is the one which suitably
inc'orporates the dead zone concept, considered as responsible for the development
of elongated tails in observed C-t curves (Bencala and Walters, 1983). The
analytical solution of the governing équations of the TS model is not possible
(Nordin and Troutman, 1980; and Czernuszenko and Rowinski, 1997). Complex
numerical solution schemes are necessary to solve the governing equations of the
TS model simultaneously. Therefore, it may be desirable in practice to have a
simplified model, which serves the same purpose as the TS model. In an attempt.to
simpiify the DZ model formulation, the ADZ model, which is a conceptual
approximation to the DZ model, was developed (Beer and Young, 1983).

The flow in rivers is usually non-uniform due to variations in channel
cross-sections, bed slope and channel roughness, which play an important role in
the flow transport and solute transport phenomena (Wallis, 1994). Recognising the
importance of streamflow variability on solute transport, Li and Zhou (1997),
Zoppou and Knight (1997), Guymer (1998), and Ranga Raju et al. (1997) studied
the longitudinal dispersion under steady and non-uniform flow conditions. Thus,
majority of the models developed so far is suitable for longitudinal dispersion of"

- solute under steady flow conditions only.



1.2.2 Need to Study Solute Transport in Rivers Under Unsteady Flow Conditions

Often the major mechanisms of water quality and ecological change in rivers
are closely linked to seasonal flow conditions in river (steady or unsteady flow) and
in-stream mixing mechanisms (Orlob, 1983). Several situations arise in practice in
which solute transport under unsteady flow conditions is important, such as

) Water quality disruptions‘ in rivers during storms resulting from a
combination of point discharges of accumulated urban waste and persistent
lateral inflow from non-point sources. .The input rates are often quite high
and of relatively short dur;uion. Further, the interaction of basin topography
and storm pattern may resuit in several flood waves during a storm. In order
to determine the permissible waste loads, it is necessary to predict the water
quality disruptions caused by storms (Bedford et al., 1983).

(i)  Streams affected by mine drainage and acid rain as well as large
geo-chemical changes occurring in response to rainfall and snowmelt events
(Runkel et al., 19983).

(iif)  Operation of water and wastewater treatment facilities wherein the operation
cost can be significantly reduced by planning the waste disposal in
accordance with the flow variation in a river. This is particularly important
during monsoon season and could be effectively utilised in situations where

it may be quite expensive to treat the wastewater from different sources.

1.2.3 Studies on Solute Transport Under Unsteady Flow Conditions

Modelling unsteady flow transport and associated river water quality is
essential in water resources and environmental studies for pursuing an effective
application of river water quality management and control (Orlob, 1983; and
Thomann and Mueller, 1987). Many researchers (Whitehead et al., 1979,1981;
Runkel, 1998; and Camacho, 2000) have foreseen the need, advantages, and

t



increased capabilities of developing a time-varying water quality perspective to
address intrinsically dynamic water quality problems. Flow and solute transport
models provide the time scales of system residence times that govern physical,
biological and chemical interactions. Therefore, rigor in the descriptions of solute
transport process under time varying flow condition should not be‘neglected or
underestimated. However, if the time varying flow is considered along with
transient storage mechanism in a river, then the governing equations become still
more complex. Therefore, it would be desirable to devélop simplified models
consideriné the effects of transient storage in solute transport process.

Studies on' longitudinal dispersion of pollutant under unsteady flow
conditions in rivers are much less compared to the studies of pollutant dispersion
during steady ﬂbw because of the complexities involved in modelling the
phenomena. During unsteady flow, pollutant transport is dominated by advection
process and solute concentrations are more of a consequence of advection, rather

than dispersion (Bedford et al., 1983). The problem of less understood pollutant

transport in time-varying flow regime was studied using coupled flow and transport

models (Keefer and Jobson, 1978; Price, 1982; Runkel et al., 1998; Gabriele and.

Perkins, 1998; and Camacho, 2000). Graf (1995), and Krein and Symader (2000)
studied the dispersion phenomena by performing field experiments during unsteady
flow. Pollutant transport phenomena under unsteady flow conditions requires better
description of the flow transport as ‘well. Accuracy of the -mass transport model
depends on the accuracy of the flow routing model. In flow routing studies the use
of simplified methods to model flow transport is sufficient for many field conditions
(NERC, 1975) besides the reason that these methods are simple to formulate, and
more suitable for operational purposes. Further, problems associated with numerical
solution techniques of the governing equations of the flow routing transport
problems, such as numerical instability, oscillations and mass conservation are

absent in simplified methods.

-



1.3 SCOPE OF THE PRESENT STUDY

A physically based flood routing method, popularly known as the
Muskingum method, has been widely used to model flood wave movement in
streams and rivers. Several investigators have studied the Muskingum method and
suggested its modifications (Cunge, 1969; Koussis, 1978, Ponce and Yevjevich,
1978; and Perumal, 1994a). Koussis et al., (1983) presented an approach to model
unsteady solute transport process in streams under steady flow conditions, using a
Muskingum type method derived on the basis of the concept of matching the
numerical dispersion with the pﬁysical diffusion of flood wave. Solute transport
modelling in unsteady streamflows necessitates the selection of an appropriate flow
routing model for proper understanding of the solute transport process. Variable
Parameter Muskingum method (Perumal, 1994a), derived directly from the Saint-
Venant Equations (SVE), is one such method which has been selected to route the
flow, in the present study. The solute transport process under unsteady streamflow
conditions can be studied appropriately, if the model structure adopted is same for
both flow and transport phenomena.

The model structures for solute routing and flow routing advocated by
Koussis (1983) are the same. However, there are logical errors in the development
of the solute routing method, which is derived using the concept of matched
diffusivity approach employed in the Muskingum flow routing method. The logical
errors arise due to the fact that while the concept of employing one-to-one
relationship between stage and discharge is résponsible for the development of flow
routing equation (Koussis, 1983), the same concept cannot be employed for solute
transport phenomenon, as there is no other variable available to relate with the
concentration, as in the case of flow with the stage. Further, the AD equation
governing the solute transport process has been developed using the analogy of the

Fick's law, which states that the mass flux is proportional to the concentration



gradient, implying that the concentration gradient induces diffusion. Hence,
adoption of a governing equation based on advection only (i.e. physical dispersion
is absent) to describe the solute transport process in a manner similar to that of the
governing equation describing the flow transport process as envisaged by Cunge
(1969) and Koussis.(l978), is not logically correct. Further, there are process
description inadequacies and application problems commonly associated with most
one-dimensional models that include the inability to simultaneously model solute
transport and unsteady flow processes. In particular, previous attempts often do not
clearly distinguish between different flow and solute transport residence times and
propagation velocities. One of the reasons that the existing methods do not allow
one to route both the flow and solute simultaneously, is that the flow and solute
transport phenomena are solved using different numerical schemes, and, thereby,

increasing the complexities.

1.4 OBJECTIVES OF THE STUDY
In the light of the scope for improvement of the existing methods of solute

transport modelling under unsteady streamflow conditions, the major objective of

the present study is to investigate the solute transport process in streams and rivers
under unsteady flow conditions by developing physically based simplified methods.

Only conservative solutes are considered in this study.

The following are the objectives of the present study: -

1. To develop a simplified Advection-Dispersion equation governing the solute
transport process in rivers under steady flow conditions, having a form same
as that of the Approximate Convection-Diffusion equation governing the
unsteady flow in riveré, and also to develop a solution algorithm for this
simplified equation.

2. To extend the abbve simplified model for simulating solute transport process

in rivers under unsteady flow conditions.



3. To derive a simplified transient Storage model having a form similar to that
of the Advection-Dispersion model, which is amenable to solution using
simplified algorithms, and

4. To develop a solution algorithm for this simplified transient storage model
for simulating solute transport in rivers under steady as well as unsteady

streamflow conditions.

1.5 ORGANISATION OF THE THESIS

The research work consists of development of simplified longitudinal
dispersion solute transport models with and without considering transient storage
mechanism in the transport process, under steady as well as unsteady flow
conditions. The ability of these models to simulate solute transport process under
unsteady flow conditions depends on the ability of the sub-components of these
models in simulating 1) the solute transport process under steady flow conditions,
and 2) the unsteady flow process in which the solute transport takes place. The
suitability of these models to serve the respective intended purposes is tested using
various data sets such as (i) hypothetical test data from analytical and numerical
solutions, (it) laboratory experimental data, and (iii) field data collected frﬁm
experiments conducted in rivers and streams. In order to make it easy to
comprehend the research work, models development and their extensions are
discussed in separate chapters alongwith the applicability analysis. Figure 1.1 shows
the modelling approach and its presentation in thesis.

The research work on solute transport in rivers under unsteady streamflow
conditions is presented in seven chapters as follows:
Chapter 1: In this chapter a general introduction of the investigations carried out
and background for the present research work is presented.
Chapter 2: Solute transport process is explained in brief. It is followed by literature
review focussing on the conservative solute transport under steady and unsteady

streamflow conditions. Study of the solute transport under unsteady flow



conditions, requires the use of the flow routing model. Therefore, literature on flow
routing, which is specifically relevant to the present study has been reviewed. Based
on the literature review, conclusions with regard to the need for this research study
are arrived at.

Chapter 3: In this chapter, an approximate Advection-Dispersion equation, which
governs conservative solute transport phenomenon under steady flow conditions has
been developed from the AD equation. Using this approximate Advection-
Dispersion equation, the solute routing equation having a form similar to that of the
VPM routing equation has been developed. The AD based VPM (hencefo‘rth,
abbreviated as AD-VPM) model has been studied for solute dispersion under steady.
flow conditions and tested using hypothetical, laboratory and field data.

Chapter 4: The AD-VPM model has been studied for solute transport under
unsteady streamflow conditions and tested using numerical solution of coupled
Saint-Venant Equations and AD (SVE-AD) model due to hypothetical input (SVE
for flow routing and AD for solute transport), and also using the data of Colorado
River.

Chapter S: An Approximate Transient Storage (ATS) model, which is a simplified
form of the TS model for solute transport modelling has been developed. The .
~ analytical solution of the ATS equation is presented. Based on the developed ATS
equation, solute routing equation similar to VPM (henceforth, abbreviated as ATS-

VPM) method has been developed.

Chépter 6: The applicability criterion of the ATS model is developed by simulating =~

the complete solution of the TS model using the ATS-VPM model. The developed
ATS-VPM model has been tested against the analytical solution of the ATS model
and the field data under steady flow conditions, and against the numerical solution
of SVE coupled with TS model for hypothetical input and the field data of Huey
creek under unsteady flow conditions.

Chapter 7: The conclusions based on the study are presented. Recommendations for

further research work are made.
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Chapter 2
LITERATURE REVIEW

2.1 GENERAL

In several branches of aquatic science, the need arises to predict the
concentration of solutes being transported in rivers. Solute transport in rivers
becomes one-dimensional when vertical and transverse concentration gradients are
relatively insignificant. One-dimensional solute transport (often referred as
longitudinal dispersion) involves two kinds of mechanisms, viz. advection and
dispersion. Over the past two decades, different one-dimensional approaches have
been developed that can represent the effects of solute transport phenomena in
rivers in distributed and lumped manner. But, still there is no unified and widely
adopted modelling approach to study the solute transport process. In this chapter,
the state-of-the-art of modelling of one-dimensional solute transport under steady
and unsteady flow conditions in streams is reviewed. As longitudinal dispersion of
solute under unsteady streamﬂow conditions is the main topic of research in the
present study, this subject matter is discussed in more details. The review has been-
classified into three main categories as follows:

1) Solute transport under steady streamflow condition,

if)  ‘Studies on dispersion-coefficient;-and-- -~ - - o e Ll

iii) *  Solute trahsport under unsteady streamflow condition

2.1.1 Solute Transport Process

In a stream, when pollutant or solute is disposed, it is carried away from
point of disposal by the current through a process termed advection, and it spreads
out because of the process of dispersion. Advection is the bodily movement of a

parcel of fluid resulting from an imposed current. Advection transports any solute
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that may be dissolved or suspended. The spreading of solute or tracer resulting from
the mixing of dissolved substances due to Brownian motion is termed as molecular
diffusion. Turbulence or eddy diffusion refers to mixing of dissolved and fine
particulate substances caused by microscale turbulence. The interaction of turbulent
diffusion with velocity gradients caused by shear forces in water body causes a
greater degree of mixing, known as dispersion. In flow region close to the point of
solute disposal, termed as near-field, advection and dispersion are important in all
three co-ordinate directions. In mid-field, once the solute has mixed uniformly over
the complete channel depth, vertical concentration gradients are not important. In
this mid-field zone the dispersibn becomes two-dimensional, i.e., varying in
longitudinal and transverse directions. In far-field; solute mixes uniformly over the
entire channel cross-section. Beyond that point, vertical and - transverse
concentration gradients become relatively negligible, and so the solute transport
process has been termed as one-dimensional or longitudinal dispersion. The laws of
conservation of water mass, momentum, energy and mass of water quality
constituents form the basis of most flow and water quality models. Reynolds
analogy states that transport of mass, momentum, and heat is analogous (Taylor,
1954). Taylor (1953,1954) studied the diffusion process in pipes based on Fick’s
law of diffusion and Reynolds analogy. Taylor's analysis led to the suggestion that
in stationary and homogeneous turbulence, turbulent diffusion ‘could also be
modelled using Fick's law analogy provided sufficient time has elapsed since solute
injection. Since turbulence in irregular natural channels is seldom homogeneous or
stationary, the theoretical models are only an approximation of reality. Based on
Fick’s gradient law analogy, the solute transport in near-field is governed by three-
dimensional advection-diffusion equation. In the mid-field, solute transport process
is governed by two- dimensional advection-dispersion equation, obtained by

averaging three-dimensional advection-diffusion equation over the depth. In the far-
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field, attention can be focused on the rate at which the cross-sectional averaged
concentration is advected downstream and dispersed longitudinally making it
predominantly a one-dimensional process (Rutherford, 1994). The time period
required for attaining uniform concentration distribution over the entire cross-
section is known as ‘initial mixing time’ or ‘convective time’, and the distance
traveled is known as ‘initial mixing zone or advective zone’. The period beyond
convective zone is known as dispersive period, and the zone is called as dispersive
zone or equilibrium zone,

One-dimensional solute transport (often termed as longitudinal dispersion)
has been modelled by averaging the three-dimensional advection-diffusion equation
over the entire channel cross-sectional area to yield the one-dimensional Advectiorz-

Dispersion equation in open channel (Orlob, 1983; and Rutherford, 1994),

€  ..& 16( Lg) 2l

U S
ot x A ox

where, C is the ensemble cross-sectional averaged concentration, [ML'3]; U is the
ensemble mean cross-sectional velocity, [LT']; A is the cross-sectional area, [L?];
and D is the longitudinal dispersion coefficient, (hence forth referred as dispersion

coefficient) [L>T™'], x and t are the longitudinal distance and temporal coordinates,

respectively;- ‘Using Eqn. 2.1) - the - advection-dispersion- equation- - for---one- - - - - .

dimensional solute transport in rivers under steady flow condition, i.e., when A, U,

and Dy are all constant with respect to time and distance, is expressed as

oC oC 0*C
—‘67 + qa :DL EZ— (22)

Equation (2.2) is generally referred as Advection-Dispersion (AD) equation. AD

equation represents two kinds of transport mechanism, viz., advection represented

by
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%% +U %% =0 2.3)
and dispersion represented by
%Ct— =D, %;g 2.4
Longitudinal dispersion arises because vertical and transverse shear carries
the solute downstream more slowly near bed and banks than in mid-channel.
Transverse shear velocity in a river channel makes a greater contribution to
longitudinal dispersion of solute compared to vertical shear (Fischer et al., 1979).
Following the study by Elder (1959), one-dimensional solute transport in
rivers has been mainly studied using AD model. But other models such as Cells-in-

Series (CIS) model, Dead Zone (DZ) model, Transient Storage (TS) model, and

Aggregate Dead Zone (ADZ) model have also been used.

2.2 SOLUTE TRANSPORT UNDER STEADY FLOW CONDITIONS
2.2.1 Advection-Dispersion Approach

In 1921 Taylor published a classic paper in which he made a theoretical
analysis of the spreading of a cloud of tracer particles released into stationary,
homogeneous turbulence. This analysis remains even today the key to quantify
turbulent diffusion. Taylor's analysis demonstrates that in stationary homogeneous
turbulence, the variance of the tracer cloud increases linearly with time at
aéymptotically large tirﬁés (Fischer et al,, 1979). The assumptions of the Fickian
model (Eqn. 2.2) are (Chatwin, 1980; and Chatwin and Allen, 1985):

1) The solute cloud has been evolving for a sufficiently long time,
ii) The turbulence is statistically stationary and homogeneous,
iify  The flow cross-section is independent of x and t, and

iv)  The solute is passive or it has no effect on the flow.
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Taylor’s concept was extended by Elder (1959) to describe the dispersion of
the pollutant or solute in the turbulent flow in open channels. Eqn. (2.2) has been
used to simulate the variation of concentration with time (C-t curve) by solving it

analytically and numerically.

2.2.1.1 Analytical solution

Analytical solution of the AD equation (Eqn. 2.2), for steady and uniform

flow conditions in a river, and for uniform step input boundary condition
(C(x,0)=0, and C(0,£)=C, ), popularly known as Ogata and Banks (1961) solution

is expressed as

Clx, z)_—{ fc( \/D_Lij+exp( ]erfc(;\;_m.ﬂ 2.5)

where erfc(z)is complimentary error function given by

erfe(z) 3 1- —427 J: exp (-&2)dE . (2.6)

Analytical solution of the AD equation for an impulse injection of conservative

solute mass M has been given as (Sayre, 1968)

M —-(x-Un)? :
A JaD. exp[. 2D, } 2.7

Analytical solution of the AD equation for uniform pulse input of duration, 1, is

Clx,t)=

given by Eqn. (2.5) for t < 7 and for t > 7; it is exptessed as- (Runkel; 1996) - -~ - -~ - .. -

cenCe 2D, 1 2/D, (t-1) |
2 x+U(t-1)
exp[ L][ef(zf_] f[z D.¢-0)|

Dispersion in open channel has been well studied by Fischer (1967,1968)

(2.8)

\

presenting the dispersion mechanism, the pollutant concentration response
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distribution (C-t curve), and the solution procedure to compute the dispersion
coefficient. Fischer (1967) first recognized the importance of transverse velocity
profiles. It was shown that longitudinal dispersion caused by the interaction of
transverse velocity gradients and concentration completely dominates those caused
by vertical velocity gradients. It has been shown (Fischer, 1968) that the one-
dimensional analysis is applicable only in the dispersive zone. Fischer (1968)
obtained analytical solution of the AD equation (Eqn. 2.2). The observed C-t curve
at a section located at a longitudinal distance ¥, from the solute injection section is
used as the initial tracer distribution. The C-t curve at a downstream section located
at a distance x, (x,>x,) from the solute injection section is predicted using the

solution given by Fischer (1968) and is expressed as

dr (2.9)

C(xz’t)=TC(xl:t)'exp[— {U(t-z —t—l —l+z)}2:| U

4DL (iz _ix) wﬁm
where, C(x,,?) is concentration of solute at a distance x, ana vat time t, C(x,,?)is
concentration of solute at a distance x, and at time t, U is the cross-sectional mean
flow velocity, 7, and 7, are mean times of passage of tracer cloud at measuring
stations located at longitudinal distance at x, and x, from the section of solute
injection, respectively.

Analytical solution of the AD equation can be obtained only by rﬁaking
simplified assumptions. A generalised closed-form solution to this equation is not
available. Due to mathematical complexities and availability of analytical solutions
for specific solute input conditions only, as discussed above, numerical methods

have been proposed by various researchers to solve the AD equation for practical

cases employing various discretisation schemes.

2.2.1.2 Numerical solution
The AD equation, given by Eqn. (2.2), is a linear parabolic partial

differential equation. Therefore, generally, the AD equation has been solved using
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finite difference numerical methods. However, numerical solution of this equation
is cumbersome and not accurate because of the generated numerical dispersion,
which may be several times greater than the physical dispersion, and thus the
solution may differ from the actual one. Numerical solutions have been given by
several investigators, based on combined operator approach (Bella and Dobbins,
1968; Stone and Brian, 1963; Keefer and Jobson, 1978; Jaque and Ball, 1994; and
Ranga Raju et.al., 1997), and split opérator approach (Holly and Preissmann, 1977,
Koussis, 1983; Li, 1990; Schohl and Holly,1991; and Komatsu et al., 1997). In split
operator approach, numerical solution of the AD equation is obtained through
independent solution of advection (Eqn. 2.3) and dispersion (Eqn.2.4) equations. In
combined operator .approach, advection and dispersion processes of the AD
equation (Eqn. 2.2) are solved together using a numerical method. Most of the
numerical methods which solve ‘the advective part of Eqn. (2.2) are generating
artificial numerical dispersion in addition to the physical dispersion, and also
causing oscillatory results (Jobson, 1980; and Islam and Chaudhry, 1997). Method
proposed by Koussis et al. (1983) is devoid of artificial dispersion problem and it is
able to simulate the advection dominatéd solute transport phenomena closely. As »
the solution approach adopted in the present study employs a routing equation of the
Muskingun{ type, sifnilar to the one used by Koussis et al. (1983), it ié pertinent to
dwell on the method proposed by Koussis et al. (i983) to solve AD'equation.
Koussis et al. (1983). .pr(");-).o;e-;i- a-. ;)r-o"cedﬁ-ré;o sdeé theAD .equ.ati;m kno{x—fﬁ“
as the Matched Advection Diffusion (MAD) scheme. It is based on the concept of
matching the numerical dispersion (obtained by solving Eqn. (2.2), assuming

dispersion coefficient equal to zero) with the physical dispersion given by the
quotient of 8°C/dx* . Koussis et al. (1983) obtained the following solute routing

equation in a form similar to that of the well known Muskingum flood routing
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equation given in the hydrology literature (Chow et al., 1988).
Ch =00 Cl + 0, O + 0y, C (2.10)

in which i and j are the space and time discretisation indices respectively.

Expressions for @,,,@,,,andw,; were given, based on the exponential scheme in

which the input variation was assumed linear over the routing time interval At, as

Wy, =1—§vﬁ‘~—ﬂc (2.11a)

Wy, =1—1;vﬂ° | (2.11b)
N N

. wm=ﬂc=e><p(—l_‘eJ (2.11¢)

where, N, is the Courant number, (=A#/K_ ) and 6, is the weighting parameter.

The travel time K, and 6, are expressed as

Ax g
s 212
T ( )
and _
-1
6, =1- N {ip| Do ¥ @+ N )U & 2.13)
2D, +(1-N.)U Ax »

Though the solution equation given by Eqn. (2.10) is able to closely
reproduce the specific analytical solution and some field observations (C-t curves)
as demonstrated by Koussis et al. (1983), there are logical errors involved in the
development of Eqn. (2.10). In mass transport process, the dispersive flux is
proportional to the concentration gradient. The AD equation governing the solute
transport process has been developed using the analogy of the Fick's law, which
states that the presence of concentration gradient induces dispersion. Hence, the

presence of concentration gradient 6C/dx implies the presence of dispersion.

Considering the presence of concentration gradient 8C/dx and absence of
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dispersion is not consistent with the logic of Fick's law. Further, the Matched
Advection Diffusion (MAD) scheme proposed by Koussis et al. (1983) follows a
concept similar to that employed in the Muskingum—Cungé method (Cunge, 1969)
for flood routing, in which it is assumed that there is a one-to-one relationship
between stage and discharge during the passage of floods. But the same concept is
not applicable for solute transport in rivers, as there is no second variable, like
stage, to relate with thé solute concentration, C. Hence, there are logical in
consistencies in the development of the solute routing method by Koussis (1983)
while adopting the concept employed in the flow routing advocated by Cunge
(1969). Koussis et al. (1983) claimed that his exponential numerical scheme of Eqn.
(2.2) is bettér than the fractional numerical scheme advocated by Cunge (1969).
Koussis et al. (1983) approach does not allow the usage of unequal temporal step
sizes, as the weighfing parameter is a function of spatial and temporal step sizes‘
(Eqn. 2.13).

Koussis et al. (1983) suggésted that his routing procedure could be used to
(i) approximately describe the AD processes in rivers with spatially variable
characteristics by adjusting scheme parameters through spatial averaging to reflect
changes in U, A, and Dy over individual segments, and (ii) to accommodate
variations of U with respect to time. But Koussis et al. (1983) did not consider th;ese
two extensio‘ns any further. |

Tﬁe théofetical éssumptions underlying th.é derivatidh of the AD ecv;ﬁati'or-xv -
ensures th?.t, at asymptotically long times, the concentration distribution is
Gaussian. The analytical or numerical solutions of the AD equation also result in
Gaussian distribution. However, many observed data at long distances from the
sources do not indicate a Gaussian shape as predicted by the AD model. The
deficiencies of the AD model stimﬁlated the investigators to develop alternative

approaches including modification of the AD equation.
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2.2.2 Cells-In-Series Model

As an éltemative to the AD model, Cells-in-Series (CIS) model has been
developed to study the longitudinal dispersion (Banks, 1974; Stefan and
Demetracopoulos, 1981; and Beltaos, 1982). The Cells-in-Series model
conceptualises the river reach under consideration to be consisting of cells arranged
in series having the same filling time 7,. The governing equation of the CIS model
is a first-order ordinary differential mass transport equation expressed as (Banks,

1974; and Stefan and Demetracopoulos, 1981)

dc,
dat

V

=0C-0C, 2.14)

where ¥ is the volume of each cell, [L*]; Qis the rate of flow, [LT>]; C, is inflow

concentration, C,, is average concentration in the cell. The basic assumption in CIS

model is that the solute in a cell is thoroughly mixed over the entire volume of the
cell. In other words, the outflow solute concentration of a cell is equal to the mean
solute concentration within the cell.

It was identified that the CIS model has a fixed relationship between nurﬂber
of cells, travel time of solute and dispersive properties (Beltaos, 1982; and
Rutherford, 1994). The CIS model describes the dispersion properties, but does not
reproduce the persistence skewness, which is usually observed in the C-t curves in
rivers. Unknown number of cells are required to represent observed advection and
dispersion characteristics in a single river reach. Stefan and Demetracopoulos
(1981) studied the comparison of the CIS model and AD model. Stefan and
Demetracopoulos (1981) also stated that further study on the relationships between
number of cells and river hydro-geometric characteristics is needed.

It is pertinent to point out herein that there exists a similarity between the
form of the governing equation of the well known Muskingum flood routing method

"
W
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and that of the characteristic reach of the CIS model. If the weighting factor is equal
to zero, the Muskingum method for flow routing gives an equation that is similar to
the governing equation of the CIS model (Eqn. 2.14). Therefore, it can be inferred
that the CIS model resembles as a special case of the Muskingum method, if rate of
inflow and outflow are replaced by the input and output concentrations and the

weighting factor is equal to zero.

Godfrey and Frederick (1970), Nordin and Sabol (1974), and Day (1975)
have investigated solute transport in rivers from an extensive series of experiments
in rivers. Based on the experimental results, it is concluded that the observed C-t
curves in most of the rivers are almost invariably skewed with steeper rising limbs
and elongated-tails. Moreover, in many solute transpoft experiments, it is observéd
that the variance of the C-t curves grows more rapidly, and the peak concentration
attehuates more rapidly than predicted by the one-dimensional AD model (Nordin
and Sabol, 1974; and Day, 1975). It is widely recognized that the AD model and the
~ CIS model fail to simulate the long tails that are, in general, common features of the
C-t curves observed in rivers. Hence, modified Fickian models have been developed

to simulate the observed C-t curves.

2.2.3 Modified Fickian Approach :

The failure of the AD and CIS models to simulate the observed
concentration time distributions (C-t curves) in natural channels stimulated’
researchers to mddify the AD model. Mugfi of the past research work has been
concerned with the development of appropriate modification in the AD equation to
account for the observed non-Gaussian behaviour of dispersants and solutes by
introducing one or more parameters in addition to the existing ones (Beltaos, 1980,
and Liu and Cheng, 1980). Chatwin (1980) incorporated higher-order moments into

the AD equation in order to quantify the skewness and kurtosis. But these models
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fail to simulate the long tails satisfactorily even with the additional parameters (Liu
and Cheng, 1980). A common method for simulating these long tails has been to
allow for ‘storage zones’ or ‘dead zones’ along the stream channel which has been

widely used in present day research.

2.2.4 Dead Zone Model

In an attempt to explain the skewness in observed C-t curves in rivers, some
researchers postulated Dead Zone Models (Thackston and Krenkel, 1967; Thackston |
and Schnelle, 1970; and Valentine and Wood, 1977). In these formulations, the
mechanism responsible for skewness has been incorporated in a dead zone equation
in addition to the modiﬁed AD equation. The dead zone models are by nature the |
modified Fickian models. The governing equations of the Dead Zone models are

(Nordin and Troutman, 1980; and Beer and Young, 1983)

ac, . oC, a°C,
= +U 5 =D,, 5 +a,I,(C,-C,) (2.152)
_a_g;i=adrd(ca—cd) (2.15b)

in which C, is the concentration in the main stream, C, is the concentration in the
dead zone, Dy, is the longitudinal dispersion coefﬁcient, a, is the mass exchange
coefficient between the main flow and the dead zone, [, is the ratio of the
interfacial area between the main stream and dead zone to the main stream volume,
and T, is the ratio of the interfacial area to the dead zone volume. The existence of
dead zones, the channel irrégularities and channel non-uniformity is responsible for
prolongation of the travel time of the solute cloud, if there is an exchange of the
solute between the main channel flow and the dead zones (Valentine and Wood,
1977, and Liu and Cheng, 1980). In a river reach with dead zone mechanism, the

solute transport velocity and the mean flow velocity are different, and the

relationship between these is given as (Valentine and Wood, 1977)
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s (2.16)

where = Ay,/y, (2.17)
¥,is the dead zone depth in the channel, and y,is the normal depth of flow in the

main channel.

2.2.5 Aggregated Dead Zone Model

Beer and Young (1983) Conceptualised Aggregated Dead Zone (ADZ)
modelling a;pproach to represent the advective and dispersive behaviour of a solute
in streams- with transient storage mechanism. The underlying concept in the
development of the ADZ model is that the dead zones are primarily responsible for
observed dispersion and, thus, the dispersion coefficient of the AD equation
characterising the longitudinal dispersion in the main channel no longer needs to
appear in the model. In the ADZ model, fundamental importance lies with the
residence time of the solute. The ADZ model. incorporates an advective time delay
parameter that is mainly responsible for solute advection.

In the ADZ model, each reach of the river has been ‘treated as being
composed of an advective cell in which the solute undergoes pure plug flow with a
concentration C, and then enters the mixing tank representing the aggregated dead
zones emerging with a concentration C,. (Fig.2.1). Governing equation of the ADZ
model is an ordinary differential delay equation expressed as (Beer and Young,
1983; and Rutherford, 1994):

d;" =0[C,(t-7,)-C,] (2.18)

V

where, T4 is the cell time delay. 7, is the ADZ residence time parameter, which is

equal to V/Q. The travel time (7) defines the total time a solute spends in the
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reach being advected and dispersed, given by 7 =7 +7,. Eqn. (2.18) can be written
in discrete form as (Beer and Young, 1983)

Co (k) = -a1 Co (k-1) + bo. C; (k-7q) (2.19)
where Co (k) and Co (k-1) are the output concentrations of the reach at times kAt
and (k-1) At. C; is the input concentration at the input section of the aggregate
dead zone. 14 is the time delay in an integral number of sampling instants

a; = -exp(-At/T,) and b, = 1+a,.

-River réach with Output
Input —P dea£ zones >
LT YO

|
Input Main channel reach, ADZ EO““"“
—{ responsible for advection, ———{ element — 5
(Time delay 1) (dispersion) | |
‘ |

Figure 2.1 Conceptualisation of the river reach (top) by the ADZ model
(bottom)

An important assumption made in the ADZ model is that the output
concentration C(t) is linearly related to the mean concentration of the solute in the

reach, C(t) (Lees et al., 2000).

C()=DF. C(t) (2.20)

where DF is the dispersive fraction that defines the mixing characteristics of the
solute in the reach. It is important to note that in a continuously stirred tank reactor
(CSTR) or completely mixed cell, the concentration in the reactor is identical to the
output concentration, i.e., DF = 1. Interestingly if DF=1 and lag, t4 =0, the ADZ

formulations will reduce to the CIS model implying that the CIS model is a special
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case of the ADZ model. The ADZ river reach is considered as an imperfectly mixed
system in which the volume that can be considered as fully mixed volume is only a
fraction of the total réach volume V,. Serial or parallel connections of the first order
ADZ models may be required to describe the observed higher order transport
mechanisms (Young and Wallis, 1993). A generalised multi-order ADZ model,

consists of several first-order ADZ elements with different time constants (1/7,)

and time delay (t) are combined in series and/or parallel, in discrete form is given

by (Beer and Young, 1983)

B(z™
C,k)= AE ; C,(k-1) : (2.21)
where A(z"') and B(z™) are polynomials in z”! defined as
AE@Y=1+a 2" + 422" (2.222)
B(z!) =bo + byz! + --- + by 2™ , (2.22b)

z! is the backward shift operator, i.e., z' C(k) = C(k-1). n and m are respectively
the order of polynomials A(z") and B(z') which define the number of values of
Co(k) and C; (k-tq) needed to explain the observed C-t curves. C,(k) and C; (k-ta)
represent the concentrations at the appropriate upstream and downstream locations
of the channel. Aggregated Dead Zone model can explam solute transport in rivers
more satisfactorily compared to the AD equatlon w1th constant dispersion
coefficient, and the CIS model. The assumption of incomplete mixing implicit in the
residence time parameter T, is contrlbutmg to the ADZ model’s ability to describe
skewed distributibns

Rutherford (1994) interpreted the ADZ model as a variant of the CIS model.
The main difference between the CIS and ADZ models is that in the ADZ model a
pure time delay is introduced into the input concentration. The time delay
introduced in the ADZ model allows advection and dispersion to be decoupled. The

ADZ formulation is not derived from a detailed physical understanding of the
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mechanisms which cause dispersion, but rather is an intuitive description of the
combined effects of dead zones and advective transport (Rutherford, 1994). The
practical difficulty of the ADZ model is in the identification and estimation of the
number of model coefficients (Eqn. 2.22). It is not easy to interpret the physical
significance of the model coefficients, viz. cell residence time, cell time delay and
the number and arrangement of cells (Rutherford, 1994). Further work is needed
before model coefficient can be predicted from hydro-geometric channel

characteristics.

2.2.6 Transient Storage Model

Bencala and Walters (1983) presented the Transient Storage (TS) model
based on the inference that “ there is in fact a mechanism that presents itself as a
transient storage of solute mass along the length of the stream. Hence we do not
believe that a strict dead zone model is a physical description of the processes
occurring in mountain streams, but rather that the observed 'transient storage’ can
be empirically simulated using the identical equations”. Transient storage zones, on
the riverbed and on the riverbanks, may trap some part of the.solute temporarily and
release it at a later stage (Fig. 2.2). Delayed release of these trapped portions of
solute back into the main flow may result in the observed long tails and, thus, larger
skewness of the concentration-time curves at fixed locations. The“T'S model is an
extension of the dea_d zone model with the identical governing equations and
different interpretation of the temporary trapping and release- mechanism of solute
in rivers. Bencala (1983) further stated that "with the déad zone model, the
hydrologic system is separated into two interacting compariments: first, the flowing
stream channel and second, the storage zones which mix with the stream channel
water, but have no longitudinal velocity. The storage zones will include both, water

visible in the channel and water concealed from view in the coarse gravel and

cobble bed".

26



“((0007) ‘uturIop) :92AN0S) WISIUEBYIIW ITEA0)S JUAISUBL} AQ PIJIIJE JIALL PUE SWEII}S UX wa@ﬁﬁ.ﬁ.u 0§ 7' N3y

- (sonoit uy) o (sanoy uy)
w2435 BUOID uI)I25-S5013 UIY}IM
140dsupiy DNNDIPAY 5 SUONDDAI J2§SUDLY
: wnjodls
. _ Ao1d\o1upbaoc ul

2ds2intog
(12pows g 1)
22D44Nns
Dawsadw]

21q

27

! sonauy sa132uy S31}2Uly
3 12jsUDSy J12jsuoi} 124sUDI}
1245UDL}
wnaqinba

. woa1s uy
S2102ds 2)nj0g§

S2

AL L ETYYY Nesenese caved

y2y20d 2pIS mu%%%ﬁw.ﬁww

‘wo m,..z S

uDI2M



Transient Storage approach includes the effects of the transient storage in
longitudinal solute transport model using a first-order mass transfer equation in
which all underlying mechanisms have been averaged in a non-dimensional form.
The governing equations of the TS model, under steady and uniform flow

conditions, are (Bencala and Walters, 1983; Runkel and Chapra, 1993; and Seo and

Cheong, 2001).
oC oC o*C
_&-+U—éx_=D“—a—x-2_+a(_C: "C) (2.232)
oC A
' - C 2.23b
ot aAs( =€) ( )

where C, is the concentration in the storage zone [ML™>], Cis the concentration in

the main or active channel [ML?], A, is the storage zone cross-sectional area

normal to the flow [L?], o is the exchange coefficient [T"], Dy is the l[ongitudinal

dispersion coefficient in the main channel [L2T™), and x is longitudinal distance [L].

It is to be noted that the values of D, and Dy, are not the same. The following are the

assumptions involved in the development of the TS model (Bencala and Walter,

1983; and Runkel, 1998)

i)  There eXist storage zones and these are assumed to be stagnant relative to the
longitudinal flow of the stream.

i1) Within the storage zone, solute is uniformly and instantaneously distributed.

i)  The transport of solute between the storage zone and the main channel obeys
a first-order mass transfer type of exchange relationship. That is, the
exchange of solute between the main stream channel and a storage zone is

proportional to the difference in concentration between the stream and the

storage zone.
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Bencala and Walters (1983) solved Eqn. (2.23) using both the finite
difference and the finite element numerical methods. Runkel and Chapra (1993)
solved Eqn. (2.23) using CFank-Nicolson implicit numerical scheme by decoupling
Eqns. (2.23a) and (2.23b). However, as stated by Manson et al. (2001), solution of
the numerical scheme suggested by Runkel and Chapra (1993) give oscillatory
results when it is used to solve the advection dominated solute transport.

Lees e;t al. (2000) obtained an eﬁpression, which is same as Eqn. (2.16),

relating flow and solute transport velocities using a parameter B (S =Ag/A). The

dead zone model and transient storage model differ only in the interpretation of the
storage zone and the parameters describing the storage zone. Even though, TS
model can simulate the observed C-t curves, it is not possible to get an analytical

solution of the Eqn. (2.23) to compute the concentration C(x,f) (Nordin and

Troutman, 1980; and Czernuszenko .a-nd Rowinski, 1997). The model equations
need to be solved numeripally using efficient numerical schemes to obtain solutions.
Moreover, considerable uncértainty remains in determining the physically realistic
values of the parameters. It is not easy to 6btain unique calibration values of Dy, a,
and Bin a particulér channel reach (Rutherford, 1994). In additioh, it is not feasible
t‘% theoreticglly estimate o from hydro-geometric characteristics o_f a river._As more
number of parameters are involved, this may pose problem related to parametric
uncertainty. Therefore, its practical utility has been limited because of the
complexities involved in the estimation of parameters (Rutherford, 1994). Hence, it

is desirable to model solute transport in rivers affected by transient storage

mechanism using simplified equations.
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2.3 STUDIES ON DISPERSION COEFFICIENT
Dispersion coefficient, D of the AD equation is a parameter that represents

 the dispersive characteristics of a stream. It can be estimated using either theoretical

methods or empirical expressions, some of which are discussed below.

2.3.1 Theoretical Method

Elder (1959) derived an equation to compute the longitudinal dispersion
coefficient for an uniform flow in an infinitely wide open channel. Elder assumed
Von Karman's logarithmic velocity profile, and similarity between the momentum

transfer coefficient and mass transfer coefficient in the vertical direction as

D, = l:g-@i + %}yU.‘ (2.24)

K_3

where x is the Von Karman’s coefficient, and U,is the shear velocity. However,

further studies suggested that Eqn. (2.24) was not able to estimate the dispersion
coefficient in natural streams (McQuivey and Keefer, 1974; Fischer et al., 1979; and
Seo and Cheong, 1998). An alternative expression to compute the Dy, has been given

by (Fischer et al., 1979)
1 B 'y l‘B
D, =-—Iu' J——J.u'y dydydy (2.25)
A 0 0 sl 0

Y]

where u’is the deviation of velocity from the cross-sectional mean velocity, y is
the depth of flow, and ¢, is the transverse mixing coefficient. It is difficult to

estimate Dy, using Eqn. (2.25) because of the data requirements and accuracy needed
in the estimation of transverse mixing coefficient. Therefore, alternative methods as
discussed below have been suggested to estimate the dispersion coefficient based on

the observed C-t curves and hydro-geometric characteristics of a river.
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2.3.2 Determination of Dispersion Coefficient Using Concentration Curves
Dispersion coefficient, Dy can be estimated from observed C-t curves using
either the change of moment method (Fischer et al, 1979) or the routing procedure
(Fischer, 1968) or the diffusive transport method (Fischer, 1968). The change of
moment method is simple to use. However, it may not provide the physically
meaningful dispersion coefficient, because the variance of the C-t curve that is used
in the change of moment method gets significantly affected by the skewed
concentration distributions. Mathematically, the routing method is a convolution of
the input distribution with a linearised one-dimensional response function given by
Eqn. (2.9). The routing procedure gives better estimates of Dy compared to the
change of moment method, but its application is limited to the simplified form of
Eqn. (2.1). When U, A and D, are varying, this me_thod also cannot be used.
Diffusive transport method gives good results when: (i) the channel is uniform and
its geometry must be accurately defined (ii) measurement of concentrations is made
at sufficient number of points in the cross-section to adequately define the

concentration variation, and (iii) measurement of C, is accurate.

2.3.3 Empirical Relations for Dispersion Coefficient

Several investigators have proposed different empirical equations to estimate
Dy in terms of the known hydro-geometric characterisgiqs__ of a stream based on-
experimental studies. Empirical equations for the estimation of D., as recommended
by various investigators, are presented in Table 2.1. It is important to note that even
after four decades of research, till date, there is no generally acceptable expression
to estimate Dy..

Among the various empirical expressions developed, McQuivey and Keefer

(1974)’s expression (Sl. No. 9, Table 2.1) is simple for predicting longitudinal

dispersion coefficient. The similarity between the mathematical formulations of
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flow and solute transport was exploited for the development of the expression for

Dr. McQuivey and Keefer’s expression for Dy, predicts the measured or observed

values relatively well (Seo and Cheong, 1998) and is consistent with the observation

that the value of the dispersion coefficient increases with increase in discharge

(Rutherford, 1994). The standard error of estimation of Dy was referred as

approximately 30% (McQuivey and Keefer, 1974).

Table 2.1 The empirical equations for estimation of dispersion coefficient

SI. | Investigator E‘quation Remarks
No
1. | Taylor D= 10.1U,r ; where, r is the | Pipe flow, dispersion mainly
(1954) radius of the pipe due to diffusive transport.
2. | Elder (1959) | D =6.3U,y ; where, y is the | Wide  channel, considering
depth of flow ' Von Karman’s vertical log
velocity profile.
3. | Yotsukura DL=9.0t013.0 U,y | For hydraulically rough and
and Fiering : smooth boundary.
(1964)
4. | Fischer ., 1U2)92 Using data for smooth and
(1966) B <P yU. rough laboratory flume and
field data. o
5. | Thackston . Using both the laboratory and
and Krenkel | D, =7.25U.y (_) the field data.
(1967) ' e
6. | Sooky D.=K,+K'+K" Considering shape of the
(1969) ) U. y, stream  and velocity
K, =0-2222;T7 distribution. yy, is max depth in
x-section. a is proportionality
K' :laK U.ym ! K'=gaK" constant.
9 k is Von Karman constant.
7. | Sumer D=6.23 U,y | Considering  velocity profile
(1969) and vertical turbulent
: diffusion.
8. |Fukuoka and | |, s Considering the meandering
Sayre (1973) EUL=O'8[EC—] effect, r. is the radius of
* BY | curvature of bend and L is the
where, R is the Hydraulic | overall bend length measured
radius ‘along the centerline of the
channel.
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Table 2.1 (Contd...)

SL. | Investigator Equation Remarks
' No
9. | McQuivey D. =0.058_2 Based on data from 18 rivers |
and Keefer| - " s B using analogy between flow and
(1974) solute dispersion. S, = bed slope
and Qis'discharge.
10. | Jain (1976) _U'B? Considering shape of the stream,
LT EAUL k= 0.1 to 0.2 and increases with
Bly.
11. Bleglt7a80s D, ] é)z Used S_ooki'.’s finding. o is the
( ) RU. 2R proportionality constant.
12. | Liu (1978) 0 (U 2 Considering transverse diffusion
D, = s veffici =
LT R ( U ) coefficient, & = 0.23 yU,.
13. | Marivoet and | U B? Based on data from canals.
Craenenbroe | D1 =0.0021 U
ck (1986) i )
14. | Asai et al D, o By analysing field and lab data.
(1991) =20 (=
yU. R
15. | Ranga Raju ety 0.4p Using gradient search technique.
et.al, (1997) 2.5, e q, is the discharge per unit
-5 ( B )215 ( v ]4.82 527 width of channel.
F [
R U.

1 16. | Koussisand | gRS, 1 Used Von Karman's law of
Mirasol D, =¢ B velocity profiles. Mean $=0.6.
(1998) Y

17. | Seo and D, BY*(u 14 Used 56 river data sets.
Cheong —==5915| — o
(1998) yu. ) \U.
18 | Kezhong and | p BY' (U 025 | Using genetic algorithm.
Yu. (2000) L= 3.5(—-} (—J .
yU. Yy
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2.4 SOLUTE TRANSPORT UNDER UNSTEADY FLOW CONDITIONS

Majority of the studies to date relate to solute transport under steady flow |
conditions only. Attempts have also been made by few researchers to study the
transport process under non-uniform streamflow conditions (Li and Zhou, 1997,
Zoppou and Knight, 1997; and Guymer, 1998). Guymer (1998) studied the effects
of varying cross-section under different discharges. Variations of longitudinal
dispersion with discharge have been attributed to longitudinal changes of cross-
sectional area. Even in situations (chapter 1, section 1.2) where the assumption of
steady streamflow conditions does not hold good, steady streamflow condition has
been assumed in majority of models. Such models are unable to accurately simulate
the transport process under unsteady streamflow conditions. |

Solute transport under unsteady streamflow conditions deals with both flow
routing and solute transport .processes. Therefore, study of solute transport
phenomenon in streams under unsteady flow conditions require the knowledge of
flow variation with time. The accuracy of mass transport model under unsteady flow
condition would depend on the accuracy of the flow model. Hence, coupled flow
and solute routing models need to be developed. A brief review of the studies

available on the coupled flow and solute routing models is presented herein.

2.4.1 Flow Routing

Flow transport in a natural stream is a distributed process because geometric
characteristics of the channel, i.e., cross-sectional area, roughness coefficient and
bed slope, and flow conditions, i.e., discharge, depth, and velocity véry with
distance. It is well recognised that one-dimensional (1-D) models can provide
acceptable approximations of flgw transport in ‘a river (Price, 1982). Present work
concentrates on the study of one-dimensional flow modelling approaches that can be

potentially used with their correspondent one-dimensional solute transport
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modelling approaches for studying the solute transport phenomenon in streams
under unsteady flow conditions.

The governing partial differential equations for distributed one-dimensional
unsteady open channel flow are popularly known as the Saint-Venant Equations
(SVE).

The continuity equation without lateral flow is given as

99 %A _ (2.26)
ox ot

and the momentum equation is

g o Wy O T (2.27)

where, Q is the rate of flow, Sy is the friction slope, Sy is the bed slope, and g is the

acceleration due to gravity. Because of the complexities and numerical problems
involved in solving the complete Saint-Venant equations, simplified methods have
been develg)ped for flood routing studies. Hayami (1951) proposed a simplified
diffusive wave flow routing technique using convection-diffusive equation

expressed as

0 a1, 00 (2.28)

ot x 7 ot

where, ¢, is the wave celerity, and Dy is the flow diffusion coefficient expressed as

5 ok |
D, = 2.29
I 28 B (229)

° 3

Simplified methods have been considered to be important tools of flood
routing because of their simplicity in application, lesser data requirements for their
solution and practi;:al applicability. Among the simplified methods, the Muskingum
method and its modifications have been widely used in flood routing studies (Price,

1982). The governing equations of the Muskingum method are
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ds _

5-0,-0, (230)

Q, and Q, are rate of inflow and outflow respectively and S represents the storage
in the reach and is expressed as

S=K,[0,0, +0-6,)0,] @31)
where the parameter K , denotes the travel time, and 6, is the weighting parameter.
The routing equation is expressed as

@), =&@Q1); +6:(0) 1 +&5(o) - (232)
where (Q;), and (Q,),are the rate of inflow and outflow at time jAt respectively.
(Q),,and (Q,),., are the rate of inflow and outflow at time (j-1)At respectively,

where At is the routing time interval. The Muskingum coefficients &, ¢,and &, are

expressed as

~K.0, +At2
g = Lt (2.33a)
K .0, +At2
W (2.33b)
K,(1-6,)+At2
K.(1-6.)-At/2
§ KAt (2.33c)

&y =
K,(1-0,)+A2
The parameters K and 6, are expressed in terms of physical characteristics

of ﬂow and channel geometry (Cunge, 1969; and Koussis, 1978). The Muskingum
method has the defect of producing unrealistic initial outflow commonly referred to
as negative' or reduced flow. Ponce and Yevjevich (1978)_proposed a variable
parameter Muskingum method based on the matched diffusivity approach. The

technique of varying the parameters was not physically based in this method

(Perumal, 1994a).
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Perumal (1994a) developed a Variable Parameter Muskingum (VPM) flood
routing method based on the concept that during flood flow there exists a unique
relationship between the stage at a given section and the corresponding steady
discharge, occurring not at the same section, but somewhere downstream from that
section. In developing the VPM method, it has been assumed that the water surface

and discharge are varying linearly along the small reach length Ax. Perumal (1994a)

used the Saint-Venant equations to arrive at the expressions for the parameters X,
and 6,. The VPM method is a physically based method which has the advantage of

routing both stage and discharge simultaneously with systematic variation of
parameters from one time interval to another time interval.
Using the Saint-Venant equations, Perumal and Ranga Raju (1999) derived

the Approximate Convection-Diffusion (ACD) equation as:
ig_ma_Q,:o (2.34)

They stated that “ACD equation in discharge formulation enables one to develop a
Variable Parameter Muskingum (VPM) method as proposed by Perumal (1994a)
which has the inherent ability to model the physical diffusion of a flood wave,
without attribuiing the diffusion exhibited by it to any numerical scheme as

theorized by Cunge (1969)”.

2.4.2 Solute Routin“g

Under unsteady flow conditions in a river, the advection and dispersion of
flow and solﬁte occur simultaneously. The solute transport under unsteady flow
conditions in a river is an advection dominated process (Bedford et al.,, 1983).
Analysis of unsteady flow induced solute transport is a difficult problem requiring
the solution of coupled nonlinear equations. However, the analysis may be made

less complicated by adopting two step solution process: First, using the flow model
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to arrive at the unsteady flow information, which then is subsequently used for
solving the solute transport problem. This approach may be considered appropriate
as the flow transport process affects the solute transport process and not vice-versa.
Studies on solute transport under unsteady streamflow conditions are not many,
because of the complexities involved in modelling the phenomena. Some of the

available studies are reviewed in the following paragraphs.

2.4.2.1 Based on the advection-dispersion model

Keefer and Jobson (1978) studied the solute transport under unsteady flow
conditions coupling both flow and solute transport equations and solving them using
implicit finite difference numerical schemes. Flow model uses one—éiimensional
continuity equation and momentum equation for gradually varied flow. Forward
linear implicit scheme identical to Amein and Fang scheme (1970) was used for

flow modelling. Variant of Stone and Brian (1963) numerical scheme was used to

solve the transport equation is expressed as

(AC)  (AUC) _ o ( AD, gg)
ot dx ox o

(2.35)

In solving Eqn. (2. 37), DL = 0 was assumed as the numerical scheme adopted to
solve Eqn. (2.37) itself generated numerical dispersion which was more than the
physical dispersion introduced by Di. The velocities required in solute transport
simulations are computed from the flow model. The flow and solute transport
equations are solved using different numerical schemes.

Price (1982) presented numerical solution of the AD equation with lateral flow

oC 8C .. 8*C q
—+U—=D, —+-C 36
o ax  “axr A (2.36)

where, q is the lateral inflow or out flow per unit length normal to the direction of
flow. Considering C as the ratio of rate of mass flow past a section, M; to the rate of

flow at the section, C =M, /Q, and using

38



oA 80
oA 90 _ 237
o o 7 237)

in Eqn. (2.36) gives

oM, /U) N oM,
o . ox

AD, gT(M, /10) (2.38)

Equation (2.38) has been solved using a finite difference scheme similar to the one
used in the Variable Parameter Muskingum-Cunge (VPMC) method. The relation
between the weighting parameter of the Muskingum method and the dispersion
properties of solute is not clearly established. Price (1982) did not take into account
the variation}of flow on the dispersion coefficient. ‘

Graf (1995), and Krein and Syamder (2000) studied the solute transport
phenomenon under unsteady flow condition by conducting experiments in rivers.
Graf (1995) studied the dispersion process under steady and unsteady stream flow
conditions, by conducting experiments on Colorado River. To date, this is an unique
experiment conducted to study the effect‘of flow variations on solute transport
process.

Gabriele and Pefkins (1997) studied the metal transport for Aberjona river
watershed. Metal transport has been strongly influenced by different flow
components of Aberjona river watershed. Metal flux transport was modelled by
assigning metal concentration to each stream flow. It has been observed that three
‘stream flow components viz., quick flow, slow flow and base flow play a significant
role in determining the total transport of contaminants in the Aberjona River. The
Muskingum method was used to route the stream flow, the suspended sediments,
and the metals through channels. Gabriele and Perkins (1997) interpreted the

storage of the Muskingum method as a sum of two compartments: one

compartment, S;, a function of inflow (), only and the second compartment Sq

function of outflow O, only. Considering a pollutant mass, M, is being carried with
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inflow discharge Q, and outflow discharge Q,. C, denotes the concentration of
the input mass, C, denotes the concentration of the output mass, Mg, the mass of

solute in S; compartment and Mso is the mass of solute in So compartment, and the
total mass Ms is given by
Ms = Mg; + Mso (2.39)

By analogy with the flow system

dMg =
—_‘}t__QICI roo (2-40)
MS =Km6m(QIC1)+Km(l;9mXQOC0) (241)

where, K, is time between the centroids of the input and output mass flux
distributions and @, is the weighting parameter used to weigh the relative effects of

input and output on the mass stored in the reach. The finite difference solution of

Eqn. (2.40) combining with Eqn. (2.41) gives
@oCo ),-n =G,(0,C, ),-+1 +G,(0,C, )j +G,(0,C, ),- (2.42)
and G,,G,,and G; are the coefficients of Muskingum method for mass flux routing

expressed as

[ 1 2AD ] 2A'D,
G =|——-N., —— ,L +N 2.43a
LU e QMU Ax]/ {U,’:}‘ o " oAU Ax] &
[ = 2A'D ] 2AD,
G,=|—-N, +——= +N 2.43b
‘UM 00 Ax]/ {U,’I.‘ T QLU Ax} b
i 2AD
G, = -}.I + Ny - ———t [ 11+,+NC, 21,3D J C(2.430)
_Ux‘+1 ,-J_lU Ax U1+l Q:+1 U Ax
' 1 j+ j+) j j
A =Z(A,+, +AM + Al +AL) | (2.44)
1 j+l ! j j
U= {uts + Ui + U7+ UL (2.45)

40



where j denotes the time step, i denotes the space step, N, is inverse of Courant
speed,(At/Ax), A’ is mean of areas at four nodes i, i+, j, and j+1. U’ is mean of

velocities at four nodes i, it+1, j, and j+1.

Equation (2.42) is similar to the Muskingum routing equation for stream
ﬂo'w‘ They recognized that the contaminant mass flux distribution and thg
associated hydrograph do not travel at the same speed through a channel reach, and
relative effects of input and outputs on the solute and flow transport processes may
not be the same. Even after recognising the differences between velocity of
propagationbof solute cloud and flow hydrograph, Gabriele and Perkins (1997) have

chosen to set X m and 6, equal to the K, and €, values of Muskingum stream flow
routing method. In reality X,, # K, and 8, #6,. This is because of the differences

(i) betwéen velocity of flow propagation and that of solute transport, and

(ii) between the flow diffusion coefficient and the solute dispersion coefficient.

2.4.2.2 Based on the transient storage model

_ Runkel et al. (1998) presented an application of the TS solute transport
model under unsteady flow conditions for the Huey Cree'k, an Antarctic stream, The
modelling framework couples the kinematic wave flow routing approximation with
a TS model of solute transport. Flow equations are based on channel routing
algorithm of Alley and Smith (1982), as referred in Runkel et al. (1998). Time
varying discharges and cross-sectidhal areas comp-uted by means of the flow routing
model are used as input data to the one-dimensional solute transport model, which
Runkel (1998) termed as One-dimensiohal Transport with Inflow and Storage
(OTIS) model. The governing equations of transport model have been solved using
the Crank-Nicolson numerical scheme proposed by Runkel and Chapra (1993).
A tracer experiment under unsteady flow varying between 50 1t/s and 120 It/s was

performed in the Huey Creek by injecting a solution containing Lithium Chloride
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(LiCl) and Lithium Bromide (LiBr) at a constant rate for about 3.75 hours. Runkel
et al. (1998). obtained good calibration results of Lithium (Li) C-t curves at four
samplingvstations along a 1-km long stretch. The modelling framework proposed by
Runkel et al. (1998) does not allow simultaneous flow and solute routing. In this
approach, flow details need to be computed prior to the solute transport modelling.
As already stated, the numerical method used to solve the TS model equations
(Runkel and Chapra, 1993) fails to- give satisfactory results in advection dominated

dispersion process, which is prominent under unsteady flow condition.

2.4.2.3 Based on the ag'gregated.dead zone mddel

An extension of ‘ the ADZ solute transport model integrated with a
Multilinear Discrete Lag Cascade (MDLC) flow routing model, which has a
similarity with-the ADZ model, was devéloped by Camacho (2000) for the study of
longitudinal dispersion under unsteady flow conditions. The proposed MDLC-ADZ
modelling framework of Camacho, (2000), is a model involving two-parameter,
viz:, DF, the ratio of the residence time of solute to the total travel time of the solute
in the reach, and B, the solute lag coefficient. It works well during steady flow, but
fails to model dispersion during unsteady flow. Similarly, single-parameter (B)
model that works satisfactorily for dispersion studies during unsteady flow fails to
model dispersion during steady flow. As steady flow is a special case of unsteady
flow, the model applicable for dispersion during unsteady flow should also be
capable of modelling dispersion under steady flow conditions. The Camacho (2000)
model lacks this cabability. Moreover, the model used for dispersion studies during
unsteady flow results in amplified outflow peak concentrations which, is
contradictory to the characteristics of dispersion process of conservative solutes.
This implies that there is some deficiency in the Camacho's (2000) model. Camacho

(2000) even fails to suggest either a single or two-parameter model for the study

reach considered.
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2.5

CONCLUSIONS

Based on the review of literature presented in the preceding sections of

this study, certain conclusions which are relevant in the context of objectives

(Chapter 1, section 1.5) of this study have been drawn. These are stated below:

1.

In majority of the studies available in literature, one-dimensional solute
transport was modelled using the Advection-Dispersion equation under
steady streamflow conditions. Based on the AD equation, a finite
difference method similar to that of the Muskingum flow routing method
was proposed by Koussis et al. (1983) to study the solute transport in a
river under steady flow conditions. Though the model structures for flow
routing using the Muskingum method and for solute routing using the
Matched Advection Diffusion method advocated by Koussis et al. (1983)
are the same, there exist logical inconsistencies in the development of the
solute routing method, which is ‘based on thé concept of matched
advective diffusivity approach used in the flow routing method (Cunge,
1969). Koussis et al. (1983) assumed dispersion coefficient to be zero
implying absence of dispersion. However, at the same time considered
the presence of concentration gradient (0C/éx), which is inconsistgnt
with the logic of Fick's law. Further, the concept of one-to-one
relationship between stage and discharge used in the development of the
Muskingum-Cunge ﬂow. routing method is not applicable for the solute
routing method advocated by Koussis et al. (1983), as there is no second
variable, like stage to relate with the solute concentration.

Cells-In-Series (CIS) model was developed as an alternative to the AD

model. In the CIS model, there exists a fixed relationship between the

‘number of cells, the reach travel time, and the dispersive characteristics,

for a series of equal cells. This model is sensitive to the number of cells,

in which a river reach is divided.
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It has been widely recognized that the AD model and the CIS model fail
to simulate the long tail of the observed C-t curves in rivers. Hence, the
Dead Zone, the Transient Storage and the Aggregated Dead Zone models
were developed to simulate the long-tails of C-t curves observed in rivers
affected by transient storage mechanism.

Transient storage model is capable of simulating the observed C-t curves
even with long—tails satisfactorily. However, it is difficult, if at all
possible, to obtain an. analytical solution of the TS model for general
boundary conditions. Efficient numerical methods are required to solve
the governing equations of the TS model. It is not easy to obtain an
unique set of calibration values of Dy, o, and B in a particular channel
reach. It is also not possible to theoretically estimate o from hydro-
geometric characteristics of a river. Hence, the practical utility of the TS
model has been limited. Therefore, it is desirable to model solute
transport in rivers affected by tran;sient storage mechanism using
simplified équation.

Aggregated Dead Zone model is an approximation of the Dead Zone
model. It has also been interpreted as a variant of the CIS model. It
simulates the C-t curves observed in rivers satisfactorily. However, it is
.difﬁcult to identify and estimate the model coefficients. Moreover, it is
not easy to interpret the physical significance of the model coefficients.

In view of the problems stated above with the TS model and the ADZ
model, it is necessary to explore an alternative method for solute
transport in rivers affected by transient storage mechanism. The
alternative method should be reliable and also simple in comparison to

the TS and ADZ models.
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The modelling framework coupling flow and solute transport models was
used to study the one-dimensional solute transport under unsteady flow
conditions. The flow routing models were coupled either with the AD
equation (Keefer and Jobson, 1978, Price, 1982) or with the TS equations
(Runkel et al. 1998). However, the modelling framework does not allow
the integration of model parameters and simultaneous flow and solute
routing. Flow routing equations and solute routing equations were solved
using different numerical methods. Further, governing equations of the
TS model, when coupled with the flow routing equation increase the
complexities in the solution procedures. The numerical solution
procedure of the TS model used in the modelling framework, given by
Runkel and Chapra (1993), failed to model the advective domina_ted
dispersion phenomenon. Hence, there is need to evolve a model ‘wﬁich
integrates the parameters of flow trahsport and solute transport models,
and allows simultaneous routing of both flow and solute.

The Muskingum method was used to model both the flow and the solute
transport processes to study the dispersion under unsteady streamflow
conditions, because of the similarities in model structures and parameters
(Price, 1982; and Gabriele and Perkins, 1997). However, the
relationships between the model parameters of flow and solute transport,
such as U, Dy and D1, Have neither been clearly defined nor taken into
account while dealing with solute transport studies under time-varying
flows.

Flow routing in streams was modelled satisfactorily using the Variable
Parameter Muskingum method (Perumal, 1994b; and Perumal et al.,
2001) within the domain of its applicability. It may be worthwhile to

explore the use of the logic of the VPM method for developing a solute
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transport model for its applications under unsteady flow conditions. The
parameters of the VPM method are varied form one time interval to the
next time interval in a physically based manner, which may help in
integration of parameters of flow and solute transport.

A model used to study the dispersion under unsteady flow conditions
should be capable of simulating solute transport under steady flow
conditions also, as steady flow is a particular case of unsteady flow.
However, the Multilinear Discrete Lag Cascade-ADZ model (MDLC-
ADZ model) proposed by Camacho (2000) fails to do so. Further, an
application study of the model shows unnatural amplified routed peak
concentration at downstream locations over and above the corresponding
upstream peak concentrations. Therefore, a solute transport model, which
consistently simulates the solute transport process under steady and

unsteady flow conditions, is required to be developed.

46



Chapter 3

SOLUTE TRANSPORT MODELLING USING
APPROXIMATE ADVECTION-DISPERSION EQUATION:
STEADY FLOW CASE

3.1 GENERAL

In stream flow transport, laws of conservation of mass and conservation of
momentum are used to develop the flow routing model, whereas in solute transport,
law of conservation of mass and Fick's law of diffusion are used to develop the
- solute routing model. Reynolds analogy states that the transport of momentum,
mass and heat are analogous. Assuming flow transport and solute transport to be
one-dimensional, it may be stated that mathematical similarity exists between the
governing equations of the solute transport (Eqn.2.2) and the flow transport
(Eqn. 2.28). This similarity enabled Koussis et al. (1983) to develop a routing
equation for solute transport modelling which has the same form as that of the well
known Muskingum method used for flow routing (Cunge, 1969; and Koussis,
1978). The development of both of these physically based Muskingum flow routing
and the Muskingum type solute routing equations is based on the matched
diffusiv’ity approach, If was pointed out in Section-2.2 that unlike in the case of flow
routing, wherein a one-to-one relationship between stage and discharge is possible,
as postulated by Cunge (1969) implying absence of dispersion, the same logic is not
applicable for solute transport in rivers as no such one-to-one relationship exists
between the concentration and any other variable. Fuﬁher, the AD equation
~ governing the solute transport process has been developed using the analogy of the
Fick's law, which states that the mas_s flux is proportional to the concentration
gradient, implying that the concentration gradient induces diffusion. Hence,
adoption of a governing equation based on advection only (i.e., physical dispersion

is absent) to describe the solute transport process in a manner similar to that of the
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governing equation describing the flow transport process as envisaged by Cunge
(1969) and Koussis (1978) is not logically correct. Therefore, to overcome these
logical errors, the present study attempts to develop an alternative approach, for
developing the routing equation needed for studying the solute transport process.
Moreover, as the steady flow is a special case of unsteady flow, the model based on
VPM approach needs to be tested first for solute transport modelling under steady
flow conditions for verifying its appropriateness.

This chapter presents (i) the development of an approximate AD equation,
(ii) the formulation of the solute- routing equation, based on this approximate AD
equation, for studying longitudinal dispersion under steady flow condition, and
(iif) the applicability of the proposed model. The suitability of the proposed model

has been verified by testing it against a variety of available data.

32 DEVELOPMENT OF AN APPROXIMATE ADVECTION-
DISPERSION EQUATION

One-dimensional solute transport under steady flow condition in a uniform

channel is described by the AD equation expressed as (Rutherford, 1994).

(3.1)

where, Cis the cross-sectional average concentration of a conservative pollutant, U
is the cross sectional average velocity of flow, and Dy, is the longitudinal dispersion
coefficient. The one-dimensional Convection-Diffusion (CD) equation proposed by
Hayami (1951) to dgscribe the movement of flood waves in open channel is

expressed as

Q. & 0’0
—aT'i'CkS;:DfB;(T (3.2)
where, ¢, is the wave celerity, and D, is the flow diffusion coefficient given by
0 .
D, = 33
7 28,B G-3)
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where Q is the discharge. Sy is the bed slope and B is the top width of flow.

The similarity between Eqn. (3.1) and Eqn. (3.2) may be readily recognised
and it enables one to consider that the solution approach adopted for solving the
flow equation (Eqn. 3.2) may also be adopted for solving the AD equation
governing the solute transport process.

Variable Parameter Muskingum (VPM) model advocated by Perumal
(1994a) is an alternative to the physically based Muskingum methods proposed by
Cunge (1969) and Koussis (1978). The VPM model has been developed using the
Approximate Convection-Diffusion (ACD) equation (Perumal and Ranga Raju,
1999), which has been directly derived from the Saint-Venant equations. It has been
shown by Perumal gnd Ranga Raju (1999) that though the ACD equation has the
same form as that of the kinematic wave equation used in the development of the
physically based Muskingum methods (Cunge, 1969; and Koussis, 1978), it is
capable of accounting for physical dispersioh directly without attributing to any
numerical dispersion as has been done in the case of matched diffusivity based
approaches. In the present study a concept analogous to the one used in the
Approximate Convection-Diffusion (ACD) (Eqn. 2.34) equation is employed b_y
replacing the discharge variable with that of the concentration in the development of
a VPM type model for modelling the longitudinal dispersion of solute under steady
flow conditions in uniform channels and rivers. |

The following assumptions aré made in the development of the approximate
advection-dispersion equation considering steady ﬂoQ conditions

1. The flow is steady and uniform.

2. Solute concentration is varying linearly with x over a small reach length

Ax.
3. Longitudinal dispersion coefficient (Dy) is constant with reference to x

and t.
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For the development of the Approximate Advection-Dispersiqn gquatipn, Eqn. (3.1)
may be re-written as

2
%w%-mf}x—f =0 (34

Equation (3.4) may be modified by grouping the space differential terms together as

o€ y9Cu) _ (3.5)
ot ox
D, &C
here, C,, = C-—L— 3.6
where, C,, T (3.6)
1
M
' 3
C C,,! C C
I[ ¥ 3 (o]
1 —1—»,
< Ax/2 — P Axl2 ————| 2

M

Figure 3.1 Definition sketch of the Muskingum soluté routing reach

If C,,is considered as the concentration at the middle of the reach (at section
M as shown in the definition sketch), (Fig. 3.1), and C, is the concentration at a

section, which is located at a length L downstream of the mid-section of the reach,
denoted as section-(3) in Fig. 3.1, then using assumption (2), C,,can be expressed

as

Cy = C, -L%ii ; 3.7
and using the similarity between Eqns. (3.6) and (3.7), the dispersion coefficient D,
can be expressed as
(3.8)




Eqn. (3.8) is in confirmation with the interpretation of Graf (1998) that the
dispersion coefficient is the product of a characteristic length and velocity, and the
choice of the characteristic length, L and the dispersion coefficient, Dy must be
determined from relevant experiments. The assumption of linear variation of C

with x over the reach length, Ax, enables one to write

oC,, _oC (3.9)
x &x
Therefore, Eqn. (3.5) may be expressed as
oC .. .0C '
—+U— = 3.10
o e (3.10)

Equation (3.10) is termed as the Approximate Advection-Dispersion
“equation. The form of Eqn. (3.10) is similar to that of the ACD equation' (Eqn. 2.34)
proposed by Perumal and Ranga Raju (1999). Therefore, the solution algorithm of
the VPM model for flow routing is equally applicable to solve Eqn. (3.10) using the
solute concentration,C as a variable instead of discharge, Q. Perumal and Ranga
Raju (1999) derived the Approximate Convection-Diffusion (ACD) equation, which
has the inherent ability to model the physical diffusion of a flood wave dxrectly
without attributing the diffusion exhibited by it to any numerical scheme as
theorized by Cunge(1969).". Therefore, based on Eqns. (3.7) and (3.8), it can be
interpreted that there exists a relationship between the concentration at mid-section
and concentration at a distance L downstream from the mid-section in such a way
that it satisfies Eqn. (3.5), and, thereby, implicitly accounting for dispersion
analogous to the 'oné that exists in the ACD equation. Though the form of Eqn.
(3.10) is the same as that of the governing equation adopted by Koussis et al.

(1983), it ‘considers the presence of dispersion (i.e., D # 0) unlike that of the

governing equation of Koussis et al. (1983) which assumes that dispersion is absent

(i.e., D = 0). Hence, the proposed approach of arriving at the governing equation of
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the solute transport process is devoid of the logical error involved in the

corresponding approach of Koussis et al. (1983).

3.3 SOLUTE TRANSPORT MODEL FORMULATION
Applying Eqn. (3.10) at section (3) of Fig. 3.1 yields
oC

ot

+ Uig

=0 3.11
V% _ (3.11)

3
Due to the assumption of linear variation of concentration over the reach

considered, (9C/x)], may be expressed as

gl:il =.Ci___gl_ - (3.12)
x|y Ox|, Ax .

whereC, andC,denote the concentrations at the inlet and the outlet of the reach

respectively. Again using the assumption of linear variation of concentration within
the reach Ax, C, may be expressed as
C, -C,( A
C3=CO+-¢A;£(—2—-—L) ‘ | - (3.13)
Equation (3.13) may be rewritten in the form of weighted concentration by grouping
the input and output concentration terms together, as
C;=0,C, +(-8,)C, (3.14)

where, the weighting parameter G, is expressed as

1 K

O, =—-— 3.15

¢S5 (3.15)

in which, L = —* ‘ (3.16)
U

From Eqns. (3.15) and (3.16), 6, is expressed as

_1 D
€2 UAx

(3.17)

The ratio (D, /(UAx)) is termed as dispersion number. Inverse of dispersion number
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is termed as Peclet Number. Substituting Eqns (3.12) and (3.14) in Eqn. (3.11) and

changing the partial differential notation to total differential notation yields
d
Cr -Co =Ke—[8 C; +-0c)Co] (3.18)

where, K. denotes the average travel time of the solute cloud in moving from

section (1) to section (2) of Fig. 3.1, and it is expressed as

©AX
K, =3 (3.19)

The form of Eqn. (3.18) is the same as that of the governing equation of the
Muskingum method with the term corresponding to the Muskingum storage
expressed as:

'S, =K,[6.C,+1-6,)C,] : (3.20)
where, S. is the mass per unit discharge in .the reach. Using the analogy of the
governing equation of the Muskingum flow routing method, (Eqns. 2.30 to 2.33, in
Chapter 2) the solute routing equation may be derived from Eqn. (3.18) as

Co, =0,C; ; +0,C, . +0,Cp 3.21)
where, C, and C,; are the input ‘concentrations at time jAt and (j-1)#At
respectively; C, and C, . are the output concentrations at time jAt and (j-1)At

respectively, and @,,»,, and o, are the coefficients of the routing equation

expressed as

o == Kebe +Ai12 (.26
K, (1-8,)+At/2

o, = Kb +A1/2 (3.22b)
Ko (1-8,)+At/2

_K,(-6,)-At/2 (3.220

*TK.(1-6,)+At/2
The output C-t curve for any given input C-t curve can be obtained by using

the solute routing equation given by Eqn. (3.21) recursively. Since the approach
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employed in the development of the VPM model (Perumal, 1994a) has been used in
arriving at Eqn. (3.21), and considering that the VPM type model has been
developed using the Approximate Advection-Dispersion equation (Eqn. 3.10),
this model of solute routing may be called as AD-VPM model. Interestingly Cells-
in-Series (CIS) model proposed to study the solute transport in rivers (Banks, 1974),
also has the same dispersion concept as that of the proposed AD-VPM model. In
CIS model, it is assumed that the output concentration is equal to the concentration
in the cell or sub reach considered. However, in the AD-VPM model, the mass
storage per unit volume in the réach is a linear function of both input and output

concentrations (Eqn. 3.20). If 6,= 0, the AD-VPM model reduces to the CIS model.

Hence, it can be concluded that the CIS model is a special case of the proposed
model. Therefore, the dispersion built-in in the proposed model should not be
attributed to any numerical dispersion as has been done in the approach adopted by

Koussis et al. (1983).

The weighting parameter 6, depends on the dispersion coefficient, Dy,
(Eqn. 3.17). Therefore, estimation of 8, needs the estimation of Di. Todate, even

after four decades of research in this area there is no uniformly accepted equation to

compute D, without employing empiricism.

3.4 DETERMINATION OF THE DISPERSION COEFFICIENT

Dispersion coefficient, DL depends on flow and channel reach
characteristics. A number of empirical relationships are available to compute Dg
based on the flow and channel reach characteristics (Table 2.1 in Chapter 2). All the
empirical equations given in Table 2.1 link Dy only with flow and channel
characteristics implying that the flow induces dispersion of the solute. The major
objective of the présent work is to study the dispersion of solute under unsteady

flow conditions in rivers. Consequently, Dy, is related to flow diffusion coefficient,
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D, as (McQuivey and Keefer, 1974)
DL = ¢ Dy (3.23)
in which Dy is given by Eqn. (3.3). ¢ is the relational constant. During steady flow,

the discharge Q required to compute the value of Dy is constant and hence, Dy is

constant. During unsteady streamflow conditions, D, is a variable and, hence, Dy is
a variable. Eqn. (3.23) has been developed based on the similarity between the
diffusion equations governing the unsteady flow movement and the solute transport.
Seo and Cheong (1998) compared the observed dispersion coefficients with the
computed dispersion coefficients using the expressions presented by different
researchers and for different rivers. They stated that the dispersion coefficient
corhputed using Eqn. (3.23) proposed by McQuivey and Keefer (1974) gave
relatively accurate vallues close to the observed Dy, values. Hence, Eqn. (3.23) has
been chosen to computé D¢ in the proposed study.

The relational coefficient ¢ in Eqn. (3.23) has been determined using the Dy
obtained from the observed C-t curves at two successive sections of the reach under
consideration'and using the hydro-geometric characteristics of the channel. The ]?L
required in Eqn. (3.23) has been calibrated by simulating the C-t curve observed at. a
downstream section of the reach using the input C-t curve at the upstream section
and based on the close agreement between the observed and simulated C-t curves.
The Nash-Sutcliffe's criterion (Nash and Sutcliffe,. 1970), 1 in % has been used as a
measure of agreement between the simulated and the observed C-t curves. ASCE
task committee on definition of criteria for evaluation of the watershed models
(1993) has also recommended this criterion. The D estimated based on the
maximum value of Nash-Sutcliffe critei‘ion, has been used to arrive at the relational

coefficient, ¢. The value of the variance explained n is computed by
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n

Z(Cozu' _’é';i)z - (COb,i _Cc,i)2
n="= = X100 (3.24)

Z (COb,i - q)z
i=l

h

where, n is the total observed concentration ordinates;C,,, is the i" observed

concentration ordinate, C,is the i* computed concentration ordinate, C,,, is the

mean of the observed concentration ordinates. The value of ¢ (=0.116) suggested by

McQuivey and Keefer (1974) may be used to estimate the solute dispersion

coefficient, if observed C-t curves are not available.

3.5 ANALYSIS OF MODEL APPLICABILITY USING ANALYTICAL
SOLUTIONS |
The approximate AD equation (Eqn. 3.10) is obtained from the complete AD

equation (Eqn. 3.1) using the assumption of linear variation of concentration over
the reach Ax. Hence, the proposed approach considers the presence of Dy, while
approximating the AD equation‘ in contrast to the existing method considering that
the dispersion is absent (Koussis et al., 1983). In this section, the analysis of the
applicability of the proposed AD-VPM model is presented. In the present study
Nash-Sutcliffe criterion was ﬁsed as the criterion for evaluating the AD-VPM model

performance while verifying it against hypothetical, laboratory and field data.

3.5.1 Analysis of the Model Parameters

Given the physical dispersion coefficient, Dy solute routing can be
performed through proper adjustment of the routing parametersK, and 6,.
The advective velocity and the dispersion'coefﬂcient are sufficient to estimate
the routing coefficients @,,w,and @,. The C-t curves can be simulated using
Eqns. (3.21) and (3.22) for specified values of Ax and At and for known average
advective velocity and dispersion coefficient. As long as Dy, and U remain constant

for a given reach Ax, the value of K, and 6, would remain unchanged.

56



The reach travel time KC is a physically based parameter and it can be

determined using observed velocity and the reach length. As the reach travel time
increases, the residence time of the solute increases, leading to increase in

dispersion. The weighting parameter 6, varies with the characteristic length, L.

When the section (3) (Fig. 3.1) coincides with the outflow section, then L = Ax/2

and 8,.=0. If the section (3) coincides with the mid-section of the reach, then L =0
and @. =0.5, which leads to pure translation of C-t curve without any attenuation.
Dispersion increases when 6, decreases from the value of 0.5. The dispersion

process has been termed as advection dominated when the dispersion number

(=D, /(UAx)) is less than 0.2 (Koussis et al., 1983). The proposed AD-VPM model
is suitable for advection dominated dispersion phenomena. The parameter 6,

assumes negative values when the dispersion number is more than 0.5 (Eqn. 3.17).
In the proposed model, only Dy, is to be calibrated from the measured C-t curves. In |
solute transport phenomenon, it is always necessary to calibrate one or more model
parameters. There is no solute transport model that can be used without calibration
of one or more model parameters unlike in flow routing where model parameters

can be determined without any calibration process.

3.5.2 Applicability of the AD-VPM Model

The applicability of the model has been étudied based on the analytical
solution of the AD equation presented by Runkel (1996) for a given hypothetical
uniform pulse input. The hypothetical analytical solution is considered as the bench
mark svolution with which the proposed approximate model so]utidn is compared,
because it will not exhibit any noise as observed in real life data arising due to
conditions imposed on the system which are extraneous to the model assumptions.

Solute is, generally, disposed off into a river under three disposal or loading
scenarios. First one is a slug of solute instantaneously disposed off at the upstream

boundary, which generally happens during accidental ‘spill of waste substances.
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Second type is the one in which solute is disposed continuously and uniformly at
the upstream boundary for a finite duration of time, (i.e, uniform pulse input
loading case), which is the most general waste loading scenario. The third type of
pollutant disposal is the one in which the solute is disposed continuously and
uniformly over the cross-section of the channel at the upstream boundary (uniform
step input case). As the second type of input loading is the most common and
practically realizable scenario, the same is used in this study for evaluation of the
AD-VPM model using hypothetical data. Moreover, use of uniform pulse input to
obtain the analytical solution of the AD equation is preferred over that of the
uniform step input as it allows one to know all the characteristics of the C-t curves
such as magnitude of peak concentration, time to peak concentration, and the entire
profile of the C-t curve including ‘the rising and the receding limbs. This enables
one to understand in a better way the capabilities of .th.e proposed model in
reproducing all the characteristics of the C-t curve. The use of the uniform step
input for obtaining the analytical solution would not produce all the characteristics
of C-t curve such as magnitude of peak concentration and its time of occurrence,
and the receding limb profile. The agreement between the solutions using proposed
model and the analytical method is measured using the Nash-Sutcliffe's criterion,
(Nash and Sutcliffe, 1970) that is expressed using Eqn. (3.24). ‘

It is considered that the AD-VPM model is able to closely reproduce the
analytical solution, when n > 99%. Such a criterion adopted in this work for
evaluating the proposed .model in reproducing the analytical solutions may be
considered very stringent, when applied to field problems.

A hypothetical uniform pulse input of 100 mg/l for 2hrs duration is applied
to arrive at the analytical solution of AD equation for thke purpose of evaluating the
applicability of the AD-VPM model. Solution of the AD-VPM model for this input
is compared | with the respective analytical solutions obtained for different

combinations of velocities and dispersion coefficients. In these numerical
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experiments, the flow velocities used are the characteristics of those observed in
natural rivers as reported by Nordin and Sabol (1974) and Seo and Cheong (1998)
and the velocity varies in the range of 0.2m/s-1.75m/s. The dispersion coefficient
Dy, used in these experiments varies in the range of insignificant dispersion to those
values, which results in the values of m > 98%. Typical results showing the
comparison between the analytical solution and AD-VPM model solutions are
presented in Fig. 3.2.
Based on these numerical experiments it is observed that
(i)  For a given specified velocity of flow there exists a Dy, termed as
limiting D, When D; is greater than this limiting Dy, then the
performance of the AD-VPM model in reproducing the analytical
solution of AD model leads to poor agreement resulting in < 99%. It is
observed that as the velocity increases the value of the limiting Dy
increases. The velocities_ and their corresponding limiting dispersion

coefficients are reported in Table 3.1.

Table 3.1 Results showing vthe limiting D, estimated from numerical

experiments and determined using the applicability criterion

equation
S No Velocity | Limiting D% estimated | Limiting DLz(Eqn. 3.24)
e, (m/s) , (m/s) (m®/s)
1 0.20 27 26.40
2 0.35 70 69.00
3 .1 0.60 165 3 173.40
4 1.00 400 415.64
5 1.25 600 , 610.00
6 1.50 875 i 832.00
7 1.75 1100 1083.30
8 2.00 1555 1362.00
9 2.50 2100 2000.00
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Figure 3.2(i) Analytical solution and AD-VPM solution for U=0.35m/s, X=3km,
Nr=15. (a) Dr=32m?%/s, (b) DL=60m%/s, and (c) DL=120m%/s
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Figure 3.2(iv) Analyﬁca! solution and AD-VPM solution for pulse input at

different downstream distances for U=1.0m/s and Dy =250m"/s

(i)  The relationship between the velocity and the limiting Dy, is shown in
Fig. 3.3 demarcating the applicability domain of the model within which the
reproduction capability is measured with > 99%. The demarcating curve is
represented by the regression equation
Dy =416.64 U (3.25)
It is noted that Eqn. (3.25) is not dimensionally homogeneous. While

developing Eqn. (3.25), the objective was to get a better regression relationship to

define the applicability domain. This equation allows one to know the limiting
dispersion coefficient for an observed velocity, below which the performance of the
proposed model in reproducing the analytical solution of AD equation is with

n> 99%.

In addition, the relationship between the velocity and the limiting Dy, is
shown in Fig. 3.3 demarcating the applicability domain of the model within which

the reproduction capability is measured with n>98%.
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Figure 3.3 Applicability domain of the AD-VPM model

The velocities and their corresponding dispersion coefficients estimated from
the observed C-t curves of a number of natural rivers as reported in the literature
(McQuivey and Keefer, 1974; McCutcheon, 1989; Rutherford, 1994; and Seo and
Cheong, 1998) are plotted in Fig.3.3. It is inferred from Fig. 3.3 that most of the
estimated dispersion coefficients for different river reaches, correspolnding to the
observed velocities, are well within t.he applicable limits of the proposed AD-VPM
model, i.e., within the domain defining the applicability critérion, n>99% and a
very few observed values fall within the demarcation curves of n= 98% and
1n = 99%. Hence, it may be considered that the AD-VPM m‘odel is suitable for most
of the practical cases.

The applicability of Eqn. (3.25) in the extrapolation range was tested by
considering velocities beyond 1.75m/s, the upper limit of velocities used in
developing Eqn. (3.25). Two velocities of 2.0m/s and 2.5m/s were used for different
combinations of Dy, to arrive at the respective limiting values of Dy, similar to What
was carried out in the numerical experiments used in the develppment of

Eqn. (3.25). These experiments result in the limiting values of D_ = 1555 m%/s and
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D1=2100 m?%s respectively. The use of these velocities in Eqn. (3.25) yields the
limiting values of Dy=1362 m?s and 2000m?/s .respectively, which may be
considered as the close estimate of thé observed limiting Dy. This experiment
demonstrates the applicability of Eqn. (3.25) in the extrapolation range of the

velocity. The results are shown in Table 3.1.

3.5.3 Sensitivity Analysis
3.5.3.1 Sensitivity analysis of dispersion coefficient

The parameter 6, is a function of the spatial step size (Ax) and the

dispersion coefficient (D). Therefore, it is necessary to study the sensitivity of the |
solution for the variations in spatial step size and dispersion coefficient. The Dy
computed using Eqn. (3.23) has a standard error of estimate of approximately 30%
based on comparative data over a wide range of flow conditions for 18 streams and
40 time-of- travel studies (McQuivey and Keefer, 1974). Hence, in the present
study, the sensitivity of the solution of the AD-VPM model for the Variation of D
by an error less than 30% was studied. The sensitivity of the parameter Dy is studied
by varying it by = 20% from the true value. The numerical experiments show that =+
20% variation in the dispersion coefﬁéient does not affect the simulation results of
the AD-VPM model in reproducing the analytical bsolution. The results of the
sensitivity analysis for different given velocities (viz., 0.25m/s, 0.5m/s, 1.0m/s, and
1.5m/s) and dispersion coefficients are presented in Table 3.2 and the comparison of

the solutions are shown in Fig. 3.4.
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Table 3.2 Results of the sensitivity analysis for the dispersion coefficient

Velocity D, for an.al-ytical | _L(:)cat.ion fo¥m D, for the AD- Vafiance

(m/s) 501‘12“0" injection point VPM 2model explained (1)
(m"/s) (km) (m?/s) (%)

025 30 5 24 " 98.780

| 30 99.835

36 99.137

40 98.090

03 L 5 30 98.875

40 99.713

50 99.990

60 99.880

170 99.500

1.0 120 15 100 99.747

120 99.940

140 99.896

150 ~ 99.800

1.5 400 15 300 99.604

400 99.972

500 99.808

600 99.293

3.5.3.2 Sensitivity analysis of spatial step size

The sensitivity of the AD-VPM model for change in number of reaches was

studied for a given velocity U and dispersion coefficient Dy, taking into account the

applicability of the model governed by Eqn. (3.25). It was observed that the

performance of the AD-VPM model in reproducing the analytical solution improves

by using increased number of equal size sub-reaches in the given routing reach.

This may be due to the reasbn that, for smaller sub-reaches the validity of the

assumption of linear variation of concentration along x holds good. However, use of

more number of sub-reaches beyond a certain limit would not improve the

AD-VPM model capability in reproducing the analytical solution closely. The

hypothetical numerical experiments were conducted at velocities equal to 0.25 m/s,

0.5 m/s, 1.0 m/s and 1.5 m/s and the dispersion coefficients of 30 m*/s, 80 m?/s,
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200 m%s and 500 m%s respectively. The hypothetical numerical experimental
results are summarised in Table 3.3. The comparison of the analytical solution and
the AD-VPM model solution for different number of sub-reaches is shown in
Fig. 3.5 and the Nash- Sutcliffe criterion are given in Table 3.3.

This is an advantage of the proposed model over the Cells-In-Series model,

which is sensitive to the spatial step size.
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Table 3.3 The effect of variation of Ax on the solution of the AD-VPM model.

Velocify Disper§ion ‘Lc‘>cat.ion fr(?m No. of sub- n
coefficient injection point
(m/s) (m%s) (km) reaches (%)
0.25 30 5.0 5 84.313
7 . 96.168
8 97.892
10 99.238
12 99.655
15 99.835
20 99.879
0.50: 80 5.0 3 88.048
4 95.874
5 98.397
7 99.640
10 99.911
15 99.950
20 99.951
25 99.948
1.0 200 10.0 - 5 96.717
7 99.251
10 99.897 .

15 99.990
20 99.988
15.0 30 99.970

5 84.685
7 95.590
10 99.066
12 99.627
15 99.898
20 99.989
25 99.990
1.5 500 15.0 5 97.197
' - 7 99.391
10 99.910
15 99.989
20 99.986
30 99.974
40 "~ 99.970

69




3.5.4 Negative Initial Response

In flood routing, negative initial response is obtained while using the
Muskingum routing method, which is well documented in flood routing literatﬁre.
Even though there is a dip in the initial outflow, Muskingum flow routing method
has been used widely because of its simplicity. Perumal (1992) showed that the
assumption of linear variation of discharge with reference to x over a given reach is
responsible for the negative or reduced outflow at the beginning of the flood
hydrograph.

The AD-VPM model also produces an negative initial response as the
assumption.of linear variation of concentration with x within a small reach Ax is
used in the development of the solute routing equation, which has the same form as
that of the Muskingum flow routing equation. One may accept the negative initial

response, as long as it does not affect the practical utility of the results.

3.5.5 Mass Conservation

The AD-VPM model was tested for conservation of mass of solute based on
hypothetical numerical experiments conducted for varying values of velocity
ranging from 0.2m/s to 2.5m/s. The dispersion coefficient was varied for each
velocity within the applicable range of the model as governed by Eqn. (3.25). In all
cases, a hypothetical uniform pulse input with the concentration rate of 100 mg/l/sec
for a duration of 2 hrs was used. Based on the numerical experiments it is found thét

the mass is conserved with an error of less than 1% for the cases studied.

3.6 APPLICATIONS OF THE AD-VPM MODEL IN FIELD AND
LABORATORY TEST CASES
Any mpdel proposed to simulate the solute transport process needs to be
tested for its applications using a variety of data. Hence, the proposed model was

tested for its applications using hypothetical data, laboratory data and field data.
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Analysis of the model using hypothetical -test cases was presented in section 3.5.
However, the practical utility of the AD-VPM model can be demonstrated only if it
is tested using laboratory data and data collected from the tracer experiments
conducted in natural rivers. Two sets of laboratory experimental data (Fischer,
1966) and three sets of field experiments data (USGS Water Supply Paper, 1899-G,
Tracer studies data on Colorado and Rhine Rivers) were used for validating the
AD-VPM model.

Unlike the routing method of Koussis (1983), the AD-VPM model enables
one to use the obsgrved C-t curve measurements at unequal time intervals.
However, to estimate the Nash-Sutcliffe criterion (n) by the AD-VPM model in

. simulating the observed C -t curves, it is necessary to have observed concentration

values at the same time of the simulated concentration values. When this is not theai

case, it becomes necessary to arrive at the output C -t values by interpolating the
observed C-t values so that the simulated and observed concentrations are available

at the same time.

3.6.1 Laboratory Test Case
The data set of series 2600 and series 2700 from the laboratory experiments
conducted by Fischer (1966) are used for this test case. The details of the observed

data are presented in Appendix A.

3.6.1.1 Application to laboratory test case 1

Test case 1 refers to series 2600 containing C-t curves at four successive
sections at a distance 7.0m apart; viz., at 7.06m (section 1), at 14.06m (section 2), at
21.06m (sectic;n 3), and at 28.06 m (section 4). The mean velocity in the channel
was 0.269 m/s. The observed C-t data of series 2600 at section (2), (3), and (4) were
adjusted for conservation of mass as sh’ggested by Fischer (1966). These C-t curves,
thus adjusted for mass conservation were used for calibration and verification of the

AD-VPM model.
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In the data set of 2600 series, observed input C -t measurements were
available initially at 0.5 seconds time intervals (upto 26" second from the time of
release of dye) and later on at 1.0 second time intérvals. The observed timings of
the concentration measurements of this data series are | consistent with the
requirements of simulation, (using the observed C-t measurements at unequal time
intervals), as pointed out earlier. The Dy was determined by trial and error approach
using the following procedure:

The C -t curve at section (1) was routed through the reach, for an assumed
6, to arrive at the computed C -t curve at section (2). The §omputed and observed
C -t curves at section (2) were c;ompared using the Nash- Sutcliffe criterion as given
by Eqn. (3.24). This experiment was repeated for different 6, values, and that 6,
which results in the maximum value of variance explained was considered as the
best value. This 6, was used in the estimation of the best Dy, using Eqn. (3.17). The
summary of the results obtained in estimating the Dy, are shown in Table 3.4. The
best DL, thus obtained in this 2600 series laboratory test case using the above
procedure is 0.0096 m?%s. This Dy obtained from the calibration of C-t curve at
section (2) was used to simulate the C-t curves at section (3) and section (4) in the
verification mode. Figure 3.6 shows the simulated C-t curves and the cofresponding
observed C-t curves, in which results at section (2) were obtained in calibration
mode and that at sections (3) and (4) were obtained in verification mode. The AD-
VPM model is able to simulate the observed C-t curves at sections (3) and (4) in
verification mode, with Nash-Sutcliffe criterion () =99.395% and 99.651%
'respectively. It may be noted herein that the value of Dy, =0.0096 m%/s estimated by
the AD-VPM model is close to the value of D = 0.0117 m?/s obtained by Fischer
(1966). 1t is also seen from Table 3.4 that a minimum Ax ~ 0.40m is required to be -

- used for accurate reproduction of C-t curve at section (2).
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Figure 3.6 AD-VPM application to Fischer (1966) data series 2600

Table 3.4 Summary of the calibration results of Dy, for the data series 2600

laboratory experiments

No. of sub- p Dy Maximum value of 1
reac\hes = (m?s) (%)
7 0.3700 0.0350 68.48
10 0.3950 0.0198 84.27 -
14 0.4050 0.0128 95.20
18 0.4025 0.0102 99.04
21 0.3925 0.0096 99.61
22 0.3700 0.0111 99.42
23 0.3750 0.0102 99.56
24 0.3750 0.0098 99.52
28 0.3500 0.0100 99.21
30 0.3375 0.0102 99.06
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3.6.1.2 Application to laboratory test case 2

Test case 1 refers to series 2700 containing C-t curves at two sections at a
distance of 11.0m apart. The mean velocity of flow is 0.362m/s. The observed C-t
data were adjusted for conservation of mass as suggested by Fischer (1966). The
observed concentration measurements were available at unequal time intervals (0.5,
1.0 and 2.0 seconds). Even though, the AD-VPM model enables one to use the
observed C-t curves at unequal time intervals, the observed concentration
measurements at the output section were not available at the same time at which
simulated concentrations were obtained. Hence, itis necessary to arrive at the input
and output C-t values by interpolating the observed concentrations, so that
simulated and observed concentrations at the output section are available at the
same time.

The observed C -t curve at section (1) was considered as the input and the C-
t curve at section (2) was simulated using the procedure described in the analyses of
data set of series 2600 laboratory experiments. The summary of the results obtained
in estimating the Dy are shown in Table 3.5. The best dispersion coefficient, thus

obtained using the above procedure is 0.0225 m?/s.

Table 3.5 Summary of the calibration resu_lts of Dy, for the data series 2700

laboratory experiments

No. of sub-reaches 6, DZL gl mugaglught 1
(m/s) (%) |
10 0.400 0.0398 91.681
15 0.415 0.0225 98.948
20 0.390 0.0219 98.941
23 0.370 0.0225 . 98.365
24 0.365 0.0224 98.195
25 0355 | 0.0231 | 98.039
30 0.325 0.0232 97.427
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The simulated C-t curve could closely reproduce the corresponding
observed C-t curve at section (2). It may be noted herein that the Dy estimated by
the AD-VPM model is 0.0225 m?%/s, which is close to the value of Dy, = 0.0236 m?/s
estimated by Fisher (1966). The comparison of simulated and observed C -t curves

is shown in Fig. 3.7.
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Figure 3.7 AD-VPM application to Fischer (1966) data series 2700

3.6.2 Field Test Cases

In the present study, the data of three sets of tracer experiments conducted
on three rivers, viz., the Missouri River (Yotsukura et al., 1970), Colorado River
(Graf, 1995) and the Rhine River (Van Mazijk, personnel communication) were
used for evaluating the applicability of the AD-VPM model for studying solute
transport in natural rivers.

The C-t curves recorded at each sampling station were tested for mass
conservation against the input C-t curve. In all the cases, solute mass at each
location was computed using a trapezoidal integration approximation (Camacho,

2000) of the mass evaluated for continuous distribution as

M= [QCdi~ Y (Q0), | (3.26)
0 i=1
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The flow in each of these rivers was assumed to be steady during these tracer
experiments. The steady-state-gain (SSG), defined as the ratio of the area under

QC -t curve at a downstream location to the area under the input QC -t curve, is

used as an indication of mass gain or loss. SSG>1 is an indication of mass gaih and
SSG<1 is an indication of mass loss (Camacho, 2000).

The above method is generally useful when the details about the injection of
tracer are not available. If information about the amount of tracer injected,
discharge during injection and type of injection are available, then recovery ratio
method (Yotsukura et. al., 1970) may be used to determine mass loss or gain,
thereby, the concentration-time distribution can be adjusted appropriatel)‘r. Recovery
Ratio (RR) is defined as the ratio of the amount of dye or tracer actually recovered

at the cross-section to the total amount that was injected initially and is expressed as

TQCdt Z";(QC),. At

= ~ 2L v (3 .27)
I/IOC"J'(') I/10(:10

RR

where V,,and C,,are the volume and the concentration of injected solution

respectively.

3.6.2.1 Application to Missouri River

Yotsukura et al. (1970) conducted tracer experiments in a 227km reach of
Missouri River between Sioux city and Plattsmouth (Fig. 3.8). The C-t measurement
data are presented in Appendix B 1.1. Observed C-t curves of dye available at four
down stream samples locations: Decatur Highway Bridge (RK 1112), Blair
Highway Bridge (RK 1042.8), Ak-sar-ben Bridge in Omaha (RK 991.3) and
Plattsmouth Highway Bridge (RK 951) were used in the present test case. The
measured concentrations are compensated for dye loss that occurred in the stream at
each down stream dye sampling station using recovery ratio given by Yotsukura et
al. (1970). The recovery ratio ét Blair Highway bridge, Ak-sér-ben bridge and
Plattsmouth Highway bridge are 0.78, 0.775 and 0.775 respectively. Discharge in
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the reach varies from 883.5 m’/s to 977m’%/s and velocity varies from 1.19m/s to
1.84m/s. The slope of the entire reach is 0.0002. The observed hydraulic
characteristics are presented in Table 3.6. |
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Figure 3.8 Schematic Study reach, Missouri River between Sioux City, Iowa,
and Plattsmouth, Nebraska (Yotsukura et al., 1970)
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Table 3.6 Hydro-geometric characteristics of the Missouri River reach
(Yotsukura et al., 1970)

Station (distance | Discharge Area Velocity Width | Depth

inj efztoironndgsint) (m’/s) (m) (m/s) (m) (m)

Decatur bridge,

(65.658 km) 883.50 710.71 1.24 185.92 3.81

Blair Highway
Bridge, 97635 | 558.35 1.75 182.90 3.05
(134.37 km)

Ak-sar-ben
Bridge, 942.40 589.00 1.60 175.87 3.35
(186.67km)

Plattsmouth .
bridge, 962.20 523.41 1.84 178.30 2.93
(226.90 km)

The observed C-t curves available at Decatur Highway bridge, Blair
Highway bridge, Ak-sar-ben Highway bridge in Omaha, and at Plattsmouth
Highway bridge were used to test the AD-VPM model. The available observed
concéntration measurements at all the sampling stations are at irregular time
intervals. Hence, the interpolated values were used in ‘simulations without loosing
the observed concentration measurements as far as possible. Therefore, a temporal
time step of 900.0 seconds was used while simulating the observed C-t curve at
Blair bridge sampling station and 1800 seconds was used while simulating the C-t
curves at Ak-sar-ben bridge and Plattsmouth bridge sampling stations. The velocity
was varying in the entire reach with a minimum of 1.243 m/s at Decatur bridge to
1.84 m/s at Plattsmouth bridge. Hence, in each sub-reach average values of
hydraulic characteristics were computed and those were used in simulating the

observed C-t curves. The average velocity computed in the sub-reach between
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Decatur bridge and Blair bridge, sub-reach between Blair Highway bridge and
Ak-sar-ben bridge in Omaha, and in the sub-reach between Ak-sar-ben bridge and
Plattsmouth bridge were 1.496 m/s, 1.68 m/s and 1.72 m/s, respectively. Dispersion
coefficient was calibrated by simulating the C-t curve observed at Blair Highway
bridge using the AD-VPM model based on the procedure described in
section 3.6.1.1 while analysing series 2600 laboratory test data. The Dy, that gives
the maximum Nash-Sutcliffe criterion (n) was considered as the appropriate
dispersion coefficient. Based on the estimated D;, and flow and channel
characteristics of sub-reach Decatur bridge-Blair bridge, the relational coefficient ¢
was estimated using Eqn. (3.23) as 0.0651. The value of ¢ thus obtained was used to
estimate the Dy, for the subsequent reaches.

The C-t curves were simulated at Blair Highway bridge station in calibration
mode, and at Ak-sar-ben Highway bridge and at Plattsmouth bridge {n verification
mode. The C-t curve observed at Blair Highway bridge was taken as input for the
simulation of C-t curves at Ak-sar-ben Highway bridge and Plattsmouth bridge in
verification mode. The comparison of observed and corresponding simulated C-t
curves is shown in Fig. 3.9. Based on the studies it ma;' be concluded that the AD-
VPM model is able to simulate the observed C-t curves at all the sampling stations
downstream of Decatur bridge satisfactorily as indicated by the values of Nash-
Sutcliffe criterion (m) in Table 3.7. It is interesting to note that the variance
explained (=96.97%) obtained in simulating the observed C-t curves at Balir Bridge
in calibration model, is less in comparison with the variance explained in simulating
the observed C-t curves at Ak-sar-ben and Plattsmouth bridge (=99.81% and

99.20% respectively) in verification.
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Figure 3.9 Observed and simulated C-t curves at different downstream

stations in Missouri River

Table 3.7 Dispersion coefficient and Nash-Sutcliffe criterion for different sub-

reaches of Missouri River

Reach | Number | Reach | Average | Dispersion | n value
Sub-Reach length | of sub- | length | velocity coeff;cient (%)
(m) reaches (m) (m/s) (m°/s) '

Decatur bridge

B 68716.0 12 68716.0 | 1.496 820.0 96.93
Blair bridge

Blair bridge
To 522925 12 52292.5 | 1.680 867.0 99.81

Ak-sar-ben
bridge

Ak-sar-ben

bridgeto | 467075 | 12 | 467075 | 1.720 874.0 97.20
Plattsmouth
bridge
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3.6.2.2 Application to Rhine River

Dispersion studies under relatively steady flow conditions were conducted
extensively in the River Rhine (Van Mazijk, personnel communication). Figure 3.10
shows the schematic representation of the River Rhine along with locations of the
sampling stations used in the tracer experiments. The data was supplied by Dr.
Albert Van Mazijk of Delft University of Technology and the permission to use the
data in the present work was given by Dr. Mr. M. Meulenberg of Commission

International de L’Hydrologic du Bassion du Rhine (ICHR), The Netherlands.

NETHERLANDS

© Amsterdam

Dusseldorf RK759.60

Maastiont KON RKeso.s0  GERMANY
o
BELGIUM . Bonn®
eliege BadHonnef RK640.00
Koblenz RK590.35
Wiesbaden

® Dye-sampling site and river
kilometre (RK)
o City -

Figure 3.10 Schematic study area, channel discretisation and location of dye

sampling sites (Source: Camacho, 2000)

In the present work, the C-t curves available at the sampling stations
between Koblenz (RK 590.35) and Lobith (RK 863.3) were taken for testing the
applicability of the AD-VPM model. The C-t measurement data are presented in
Appendix B 1.2. The hydraulic and geometrical characteristics are presented in

Table 3.8 (Van Mazijk, personal communication).
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Table 3.8 Hydro-geometric characteristics of the Rhine River reach (Van

Mazijk, personnel communication)

Sub- |Sub-Reach| Velocity Area | Width

Reach Reach Length (m3/S) (m/s) . (mZ/S (m)
D (m)
2205 2.15 2142 1.42 1511.25 280
Koblenz

(RK590.35) 2301 12.5 2292 1.47 1359.39 | 330
To 2401 9.0 2287 1.25 1594.09 | 315
Bad Honnef (RK | 2402 -20.0 2287 1.22 1629.09 | 310

640.0
) 2501 6.0 2315 1.35 1711.42 | 310
2501 7.5 2315 1.35 1711.42 | 310
Bad Honnef (RK [~
640.0) 2502 12.5 2315 1.40 1652.71 | 445
To 2503 11.0 2315 1.44 1611.36 | 450
Koeln (RK 689.5) 2601 17.0 2375 1.47 1612.17 | 390

2602 1.5 2375 1.34 1771.06 | 410
2602 13.0 2375 1.34 1771.06 | 410
2603 13.5 2375 1.39 1709.8 395

Koeln (RK 689.5)

a2 2701 20.0 2408 1.35 1778.23 365
Dusseldorf (RK » :
759.60) 2702 5.2 2408 1.38 1743.82 325

2703 | 154 | 2408 | 136 | 177596 | 425
Dusseldorf (RK | 2703 2.4 2408 | 136 | 1775.96 | 425
759.60) 2801 18.8 2434 | 1.31 1863.66 | 300

To 2802 | 162 | 2434 | 1.15 ‘| 2114.09 | 300

Wesel (RK 814.0) [T9901 | 17.0 | 2407 | 120 | 2011.12 | 300
2902 | 13.0 | 2407 | 1.15 | 2099.22 | 300
Wesel (RK 814.0)| 3001 | 10.0 | 2409 | 1.08 | 223097 | 300
To 3001 | 149 | 2409 | 1.08 | 2230.97 | 300

Lobith (RK 863.3)| 3002 | 10.1 | 2409 | 1.08 | 2229.40 | 300
3101 1.3 2383 | 1.16 | 2041.02 | 340

82




The .observed C-t curves are available at Koblenz (RK 590.35), Bad Honnef
(RK 640), Koeln (RK 689.5), Dusseldorf (RK 759.6), Wesel (RK 814), and at
Lobith (RK 863.3). The observed concentration measurements were analysed for
conservation of mass. The results of mass conservation analysis are summarised in
Table 3.9. Based on the analysis for conservation of mass, the C-t curves at Wesel
and Lobith were modified. The C-t measurements at Wesgl and Lobith were divided

by 0.7980 and 0.6711 to account for the loss of mass of the tracer.

Table 3.9 Steady State Gain at sampling stations on Rhine River

Observed F
Measuring Station discharge SteaGy‘State
s ain
(m*/s)
Koblenz » 2142 Reference mass
Bad Honnef 2315 7 0.9734
Koeln 2375 0.9771
Dusseldorf 2408 0.9554
Wesel 2407 0.7980
Lobith 2383 0.6711

L]

The dispersion coefficient, D, was estimated by the 'AD-VPM model as
described in section 3.6.1.1 while testing the proposed model using 2600 series
- laboratory data. The Dy, that gives the maximum_ value of Nash-Sutcliffe criterion
(n) was considered as the appropriate dispersion coefficient. In this test case, the
C -t curves at the station Koblenz and Bad Honnef were taken to estimate the
dispersion coefficient. Based on the estimated reach averaged Dy and the average
flow and flow and channel characteristics of the reach between Koblenz to Bad‘
Honnef, the relational coefficient ¢ was estimated using Eqn.(3.23) as 0.116. The

value of ¢ thus estimated was used to determine the Dy for the subsequent sub-
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reaches using the Eqn. (3.23). The dispersion coefficients thus determined for
different sub-reaches are presented in Table 3.10.

Table 3.10 Dispersion Coefficients for different reaches of River Rhine

Reach Sub- Sub-Reach Dispersion
Reach ID Length Coefficient
(km) (m?/s)
Koblenz
(RK590.35)
To n 49.65 1844.60
Bad Honnef (RK
640.0)
Bad Honnef (RK| - 2501 75 1883.17
640.0) 2502 12.5 1311.87
To 2503 11.0 1297.29
K%‘;‘ggl)‘K 2601 17.0 1535.67
2602 1.5 1460.76
Koeln (RK 2602 13.0 1460.76
689.5) 2603 13.5 1516.24
i To 2701 20.0 1663.66
“S;‘;‘g%’(f)(RK 2702 52 1868.41
2703 15.4 2053.88
Dusseldorf (RK 2703 24 2053.88
759.60) 2801 18.8 2941.08
To 2802 16.2 2941.08
Weseh(RK 813-0f "S54 17.0 2908.46
Wesel (RK 2902 13.0 2908.46
814.0) 3001 10.0 17249.63
To 3001 14.9 17249.63
L"é’g‘ S‘K 3002 10.1 17249.63
’ 3101 1.3 15055.99

The C-t curves were simulated at Bad Honnef station (RK 640) in
calibration mode, and at Koeln (RK 689.5), Dusseldorf (RK 759.6), Wesel (RK

814), and at Lobith (RK 863.3) stations in verification mode. The C-t curve at
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station Koblenz (RK 590.35) was taken as the input for the simuiations in the reach
under consideration. Comparison. of the observed and simulated C-t curves for
Rhine River is shown in Fig. 3.11 and the results are summarised in Table 3.11. The
AD-VPM model is able to simulate the observed C -t curves at all sampling stations

downstream of Koblenz, except at Lobith, satisfactorily.
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Figure 3.11 Observed and simulated C-t curves at different downstream

stations in Rhine River

Table 3.11 Summary of the characteristics of the simulated and observed C-t

curves of the Rhine River

Observed Simulated by the AD-VPM
~ model | Nash-
Station at | Time to peak | Peak |Time to peak|  Peak Sutcliffe

concentra |concentra| concentra | concentra |Criterion (n)

~ tion tion tion - tion (%)

_(days) (ug/) (days) (ng/l)

Bad Honnef 4.427 0.570 4427 0.520 98.5

Koeln 4.844 0.530 4,844 0.489 98.2

Dusseldorf 5.386 0.400 - 5.469 0.446 92.0

Wesel 5.844 0.396 6.010 0.392 89.7

Lobith - 6.407 0.296 6.428 0.301 65.0
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3.6.2.3 Application to Colorado River

The data setv of the tracer studies conducted on the Colorado River (Graf| |
1995) were used to test the proposed AD-VPM model. Details of tracer
experiments, the research inflow hydrographs controlled at Glen Canyon Dam, and
available hydro-geometric channel characteristics for the sub-reaches of 380 km
reach have been discussed by Graf (1995). The C-t data are presented in Appendix

B 1. 3. The schematic diagram of the Colorado River reach is shown in Fig. 3.12.

Glen Canyon Dam

a Gaging station and river kilometre (RK) Peria
from dye injection site v o Glen Canyon
O Dye-sampling site h%e(z)': €M 1 USGS 09379910
8 Subreach number (RK-25)
¢ Nautiloid
b ?\Ne Canyon (RKS8)
Canyon above the
Lake W National 8 _/National ittle Colorado
Mead o Park Canyen 6 ver (RKS8)
%, (RK267)

Pumpkin Ranch
Springs (RK343) ~ (RK142)

Diamond Creek
(RK362)

3
%

Nevill's
Gneiss Canyon
(RK381) 10

Figure 3.12 Schematic study area, channel discretisation and location of dye

sampling sites of Colorado River (Graf, 1995)

During these experiments, under steady flow conditions, concentration
measurements available at Nautiloid Canyon, above the Little Colorado, below
Nevill’s Rapid, Mile 118 camp, National canyon, Pumpkin spring, and at Gneiss
Canyon located at a downstream distances of 58 km, 98 km, 123 km, 189 km, 267
km, 343 km, and 381 km from the tracer injection location respectively were used in

this test case. The mass conservation analysis results showed that the dye loss was
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insignificant at all the. sampling stations (Graf, 1995). Hence, the observed C-t
curves weré used in the present study without any modification for mass
conservation.

Reach averaged Dy was determined using the C-t curves at Nautiloid Canyon
(input C -t curve) and at the station above Little Colorado River by the proposed
" AD-VPM model as described in section 3.6.1.1. This dispersion coefficient was
used for the estimation'of the relational coefficient ¢ using Eqn. (3.23) as 0.072.
Using this value of ¢=0.072, the Dy, for each of the subsequent sub—reachés used in
the verification study was estimated from Eqn. (3.23). The observed reach length,
the velocity, and the estimated dispersion coefficient of each of the sub-reaches are

presented in Table 3. 12‘

Table 3.12 Dispersion coefficients for different sub-reaches of the Grand

Canyon reach in the Colorado River during steady flow

Length of | Dispersion
Reach reach Average Velocity Coefficient
(m/s) |
(m) (m?/s)
Nautiloid - above 40600.0 0.75 154.40
Little Colorado :
Above Little 24900.0 1.10 75.01
Colorado.-Nevills '
rapid
Nevill’s rapid - 66100.0 | 10.97 122.40
M118 camp
M118 camp - | -78600.0 1.10 135.56
National Canyon
National Canyon- 75700.0 | 1.10 204.86
Pumpkin spring
Pumpkin spring - 36900.0 1.00 132.31
Gneiss Canyon
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The C-t curve observed at Nautiloid was routed using the dispersion
coefficient Dy, calibrated in the above manner to estimate the C-t curves at the
downstream sampling stations in the Grand Canyon reach in verification mode. The

comparison of observed and simulated C-t curves is presented in Fig. 3.13.

Concentration (mg/l)

Time (days)

Figure 3.13 Observed and simulated C-t curves at different downstream

stations in River Colorado

The Nash-Sutcliffe criterion, 1 value estimated at all the sampling stations
were greater than 99% indicating the close reproduction of the observed C -t curves
at eaéh of these sampling stations. Such a good reproduction may be attributed to
the quality of the experiments conducted under controlled environment, keeping the
flow in the entire Grand Canyon reach as constant at approximately 428m’/s by
controlling the Glen Canyon dam releases. The following statement of Graf (1995)
confirms this inference

"the C-t data under steady flow fit a simple one-dimensional mixing model
without modification to account dead zone, better than data for many rivers for

which measurements are available."
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3.7 DISCUSSION OF RESULTS

The AD-VPM model is developed based on the concept (section 3.2 and 3.3)
used in the development of the VPM model. It is appropriate to bring out the fact
that the model formulated using Eqn. (3.19) to Eqn. (3.22) is th¢ same as that
proposed by Koussis et al. (1983). However, Koussis et al. (1983) obtained the

parametric  relationships for X, and 6. using the matched advective diffusivity

approach advocated by Cunge (1969). Further, the matched diffusivity approach of
Koussis et al. (1983) has been developed from the equatkion governing pure
advection only, without considering dispersion process, which is contrary to the
Fick's law governing the solute transport process in streams. Unlike in the case of
flow routing wherein a one-to-one relationship between stage and discharge is
possible, as postulated by Cunge (1969), implying absence of dispersion, the same
logic is not applicable for solute transport in rivers. The proposed approach in the -
present study is devoid of these logical errors. The advantage of the propdsed
approach is that it enables to extend the use of Eqn. (3.19) to Eqn. (3.22) for solute
transport modelling under unsteady flow conditions also, as discussed in Chapter 4.
This is due to the reason that the AD-VPM model enables the integration oftits

parameters K and 6, with K -and 8, of the VPM flow routing model.
In the Koussis et al. (1983) approach the weighting parameters 6. is a

function of Courant number (=UA#/Ax) and dispersion coefﬁéient (Eqn. 2.13).
Hence, to match the numerical dispersion generated in his model with a constant
physical dispersion coefficient, it is necessary to keep Ax and At at constant values
over the entire routing period (Eqn. 2.13). It is not possible to use unequal At

values, which will lead to change in 6, and, thereby, change in the dispersion

coefficient. Therefore, it is not possible to use the observed concentration

measurements, which are generally available at unequal time intervals. However, in
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the AD-VPM model the weighting parameter 6, is a function of the solute

dispersion coefficient, velocity and spatial step size (Eqn. 3.17). The change in

routing time interval At will not alter 6, and thereby the dispersion coefficient. In
the AD-VPM approach, the parameters XK. and 6, can be kept at a constant values
and the routing coefficients o,,»,and @, (Eqn. 3.22) can be varied for any change

in the time interval At over the routing period. Hence, the AD-VPM model can
handle situations where the observed concentration measurements are available at
unequal time intervals. This has been proved while validating the AD-VPM model
using series 2600 laboratory experimental data (section 3.6.1.1).'

It is seen from Figs. 3.2 (i) to Fig. 3.2 (iii) that for a given velocity as the
value of D increases, the solution of the AD-VPM model deviates from the
analytical solution of AD equation. Proposed AD-VPM model reproduces the
analytical solution of the AD equation (Eqn.2.2) satisfactorily, if the dispersion
coefficient is within the applicability range of the proposed model (section 3.5.2). If
the dispersion coefficient is higher than the limiting dispersion coefficient for a
given velocity (Eqn. 3.25), then the proposed model fails to give satisfactory results
as seen in Fig. 3.14.

In solute transport studies, when obsérved C-t curves are not available, the
DL has to be estifnated using a suitable expression from among the expressions
available in the literature (Table 2.1). Generally, it is not possible to determine the
dispersion coefficient accurately in a river reach using any one of the empirical
expressions developed for estimating the Dy, as a function of the hydro-geometric
characteristics of the river. When error in estimation of Dy is within £ 20% , the
AD-VPM model can be used to simulate the downstream C-t curves satisfactorily,

as explained in section 3.5.3 (Fig. 3.4).
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Figure 3.14(i)  Analytical
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AD-VPM solutions for U=0.45m/s,

D1=227.6m?%/s, X=4.0km

——— Analytical soln.

--x--. AD-VPM soln. =

Time (hrs)

Figure 3.14(ii) Analytical and AD-VPM solutions for U=0.1m/s, D=54.7m?/s,

X=2.0km
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The AD-VPM model produces initial negative response, particularly at high
spatial step sizes. Reducing the spatial step size may reduce or eliminate this
problem. However, one may accept the initial reduced response, as long as it does
not affect the practical utility of the results.

The proposed AD-VPM model is verified under steady flow conditions by
simulating (i) the analytical solutions obtained for an uniform pulse input (ii) dsing
two laboratory test data (Fisher, 1966), and (iii) using three field experimental data
sets. The satisfactory performance of the AD-VPM model in the above cases
demonstrates the suitability of the proposed AD-VPM model for its application to
longitudinal dispersion studies in rivers.

The performance of the AD-VPM model in the Missouri River test case
(section 3.6.2.1) in reproducing the observed C-t curves in terms of Nash-Sutcliffe
criterion, (1) is found to be greater than 96%. The flow and channel characteristics
are not constant from one sampling station to another sampling station. Hence, the
sub-reach averaged flow and channel characteristics in each-sub-reach were used in
the simplations of the observed C-t curves. The satisfactory simulations of the
observed C -t curves using the AD-VPM model implies that the sub-reach averaged
hydro-geometric characteristics can be used as the representative values of the
respective sub-reaches. It is worth noting that the parameter Dy, obtained by the
AD-VPM model for Fischer's laboratory data and Missouri river data (Yotsukura et
al., 1970) closely correspond to the values of DL obtained by Fischer (1966) and
Yotsukura et al. (1970) respectively.

In the case of Rhine River, agreement between the simulated and observed
C-t curves at Lobith in verification mode is not satisfactory (Fig. 3.11 and
Table 3.11). This may be due to the fact that there is considerable loss of mass of
solute at Lobith. The observed C-t curve at Lobith is modified using a dividing
factor of 0.6771 based on the estimated loss of mass (Table 3.9), which is as high as

32%. Because of the considerable loss, there will be uncertainties involved in the
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modified C-t curves (Nordin and Troutman, 1980). The observed loss of mass of
solute at sampling station Wesel and Lobith may be due to some additional
mechanism that is responsible for considerable loss of mass, which is to be actually
accounted for while simulating the C-t curve at these sampling stations. Moreover,
the dispersion coefficient is too high (Table 3.10). The llarge dispersion may be due
to the presence of either dead zone or transient storage mechanism, or absorption or
a combination of these pfocesses. It was already stated that the proposed AD-VPM
model might not simulate such dispersion dominated solute transport process
satisfactorily (section 3.5.1).

In the Colorado River test case, the performance of the AD-VPM model in
simulating the observed C-t curves is good. The following may be the possible
reasons:

(i)  The dye loss was insignificant during each measurement, no adjustment
of C-t curve for loss of mass was reduired.

(i)  The flow from the dam is released under controlled condition to maintain
a steady flow of approximately 428 m®/s in channel during the entire
period of experimentation.

In Colorado River tracer experiments, the loss of mass of dye was”
insignificant unlike in the case of tracer experiments in other rivers where the loss
of mass was noted. The results demonstrate the ability of the AD-VPM model for
practical solute transport applications. It is noteworthy that the approach followed in
the present study allows one to extend it to the study of dispersion under unsteady

flow conditions.

3.8 CONCLUSIONS
In this chapter an equation termed as Approximate Advection-Dispersion
equation (Eqn. 3.10) has been developed, assuming linear variation of concentration

with x within a small reach length Ax. Using the Approximate Advection-
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Dispersion equation andladopting the concept used in the development of VPM flow
routing model, a model termed as AD-VPM model for solute routing has been
proposed (section 3.3). The proposed AD-VPM model is devoid of the logical
inconsistencies that exist in the Koussis et al. (1983) approach. The concept of the
VPM flow routing approach adopted in the development of the proposed AD-VPM
model enables one to use the observed input C-t measurements at unequal time
intervals in routing the solute concentration through a river reach. In the Koussis
approach it is not possible to use solute concentrations at unequal time intervals as
input, because the variation in time step size changes the dispersion coefficient
(Eqn. 2.13). It is found that the proposed AD-VPM model is capable of reproducing
the analytical solution of the AD equation for uniform pulse input with Nash-
Sutcliffe criterion () > 99% when Dy< 415.64 U""! (section 3.5.2). The analysis of
the model parameters is presented. It is observed that £20% variation in D, does not
affect the simulation results obtained by the AD-VPM model in reproducing the
analytical solution for a given dispersion coefficient. The sensitivity of the solution
of the AD-VPM model for a change in number of reaches has also been studied
(section 3.5.3.2). It is found that the decrease in size of sub-reach 1eng}h below a
particular Ax, in which the assumption of linear variation of concentration with x
holds well, would not influence the solution of the AD-VPM model. The practical
utility of this model is demonstrated by verifying its applicability, using laboratory
data (Fischer, 1996) and three sets of field data from experiments conducted on
Missouri River, Rhine River, and Colorado River. It is found that the proposed
model works satisfactorily to simulate the solute transport in these rivers.

The similarity of both the VPM flow routing model and the AD-VPM solute
transport model enables to integrate their parameters. This integration of parameters
is important while using the AD-VPM model to simulate the solute transport under

unsteady streamflow conditions. This extension is presented in the next chapter.
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Chapter 4 -

SOLUTE TRANSPORT MODELLING USING
APPROXIMATE ADVECTION-DISPERSION EQUATION:
UNSTEADY FLOW CASE

4.1 GENERAL

The solute transport under unsteady stream flow conditions is a combined
process of unsteady flow and unsteady solute movement. The flow diffusion aﬁd the
§olute dispersion models need to be coupled properly for simultaneous rbuting of
both the variables. In the. past, attempts have been made to couple both flow and |
solute routing models (Keefer and Jobson, 1978; Price, 1982; and Gabriele and
Perkins, 1997). However, deficiencies with the existing coupled.models (Section
2.42 in Chapter 2) such as improper integration of flow and solute movement
processes, use of complex solution approaches, and inability to link the model
parameters of both the processes necessitate the development of an alternate
approach that is reliable and less cumbersome. To overcome the above mentioned
deficiencies, the mathematical similarity between the convection-diffusion equation
(Eqn. 3.1, Hayami, 1951) governing the flood wave movement and the advectioni-.
dispersion equation (Eqn. 2.2) governing the solute dispersion process may be
favourably employed to develop a common solution structure suitable for modelling
both the processes. The AD-VPM model developed in Chapter 3 to study the soiute
transport process in rivers under steady flow conditions has a model structure
similar to that of the VPM model used for flood routing. This AD-VPM model can
be .extended to study the longitudinal dispersion of solute under unsteady
streamflow conditions.

This chapter presents (i) a brief description of the VPM model for flow

routing, (ii) establishing the linkage of parameters of the AD-VPM and the VPM
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models, and (iii) developing simultaneous routing procedure for flow and solute

dispersion. The proposed model is tested using hypothetical and field data.

4.2 MODEL DEVELOPMENT
The AD model governing the solute transport process in rivers with uniform

cross-section is described by equation (also see Eqn. 2.2)

oC . .oC o*C
V% " DiaE @

The flow routing model governing the flow movement in rivers with uniform
cross-section has the same form as that of the solute transport model, given by (also

see Eqn. 2.28)

Qi+ AaQ—_-D &Y (4.2)

The combined process of flow and solute movement in rivers under unsteady
flow condition may be modelled either by solving the above two equations
simultaneously or solving them one-by-one, first solving the flow equation to arrive
at the entire discharge hydrograph, which is subséq_uently used to solve the solute
transport equation to arrive at 4the C-t curve. The simultaneous solution of

Eqns.(4.2) and (4.1) to solve for the variables Qand C respectively at any time

using the numerical methods is cumbersome procedure. But the one-by-one
sequential solution approach is used in the current practices (Keefer and jobson,
1978). However, simultaneous solution of Eqns (4.1) and (4.2) may be arrived at

using the following approximate equations.

oC oC
—+U—=0 4.3
ot ox (4.3)
and |
%+c;‘%=0 4.4)

The solution of Eqn. (4.3) using the VPM type algorithm was demonstrated

in Chapter-3 to model the solute dispersion process under steady flow conditions.
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4.2.1 Solute Transport Simulation Under Unsteady Flow Conditions
The VPM method of flow routing is briefly described herein for the sake of
bringing out the similarity in the solution procedures of flow routing and solute

routing. Location of cross-sections referred in discharge routing may be seen from

the definition sketch given in Fig. 4.1.
1

—L—>,
< Ax/2— > ¢ Ax2 ———P{2

Figure 4.1 Definition sketch of the M-u'skingum flow routing reach

4.2.1.1 Flow Routing

The Variable Parameter Muskingum method proposed by Perumal (1994a) s
used in the present study for flow routing: £ |

The VPM flow routing parameters K. and €, have been expressed in terms

of physical properties of flow and channel geometry as
Ax

K, = 4.5)
[1+m[PaR/ay} }U3
oAldy |,
Qs[}_szj[PaR/ay] J
| ATy |,
T PaR/ oy o)
2505);3[14'”1[ aA/ay :LJU3Ax

where, R is the hydraulic radius, F,, is the Froude number at the middle of the

‘reach Ax, P is the wetted perimeter, m is a constant (=2/3 for Manning's friction
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law and =1/2 for Chezy friction law), and the suffix 3 refers to a section
downstream from the mid-section of the routing reach Ax under consideration

(Fig. 4.2). The above expressions of K ; and 8, can be written as

K= @7

Ci

in which c is the wave celerity, given by

POR/
c, ::I:lw:{ aA/aiyUU3 4.8)
and
1 D,
0, =—- 4.9
i g c, Ax (49)

in which Dy can be termed as the flow diffusion coefficient given by

s oo R/
Q{l-—m FM( —————aA/ayJM}
D, = (4.10)

(%),

The flow routing equation is expressed as

Q0); =&,(0)); +&(0) 1 +6:(00) 11 (4.11)

where (Q,), and (Q,),are the rate of inflow and outflow at time jAt, respectively.
(©,),.and (Qy),;., are the rate of inflow and outflow at time (j-1)At, respectively,

where At is the routing time interval. The Muskingum coefficients ¢,, &,and ¢, are

expressed as

1 .
K0, +A12
g = (4.12b)

&, X
S(1-0,)+AU2
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In the VPM flow routing, the parameters X, and 6, are constant during a

routing time interval At, but vary from one time interval to the next time interval in

accordance with the variation of flow.

4.2.1.2 Solute Routing

The solute routing model (AD-VPM) has been developed in Chapter-3 for
studying the solute movement in uniform channels and rivers under stéady flow
conditions. The routing equation and the associated parameter relationships are
expressed as

Coj=0,Cp+@,C, y+0,Cy (4.13)
where,C,, and C,,, are the inflow concentrations at time j'At and (j-1)At
respectively;C, ;andC,, ,, are the outflow concentrations at time jAt and (j-1)At

respectively;w,, ,, and o, are the coefficients of the routing equation expressed

as
L ~-K0 +At]2 (4.142)
'K (-0)+At/2 '
o K6, +At/2 (4.14b)
2 K, (1-6)+At/2 |
o - K-6,)-0t/2 (4.140)
> K,(1-6)+At/2 '
in which
Kc=%"— . (4.15)
and
1 D
9, =———Lk 4.16
¢ * 5 " Uhx (4.16)

The proposed AD-VPM model developed for steady flow conditions is
extended to study longitudinal dispersion of solute under unsteady streamflow

conditions. In extending this model, it is assumed that the stream flow in a river
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reach, Ax, is steady and uniform over a routing time interval At, but varies from one
time interval to the next time interval due to unsteady flow conditions. 'Based on
this assumption, Eqn. (4.13) to (4.16) can be used to study the longitudinal
dispersion of solute under unsteady streamflow conditions. The velocity at
section 3, as shown in Fig. 3.1, is used to compute the characteristic reach length, L
(Eqn. 3.16, section 3.3). Hence, during unsteady flow Eqn. (4.15) and Eqn. (4.16)

are expressed as

Ax
g =M 4.17
<=1, (4.17)
and
o= = Ds (4.18)
2 U,Ax 3

The solute transport model parameters K. and @, are kept constant during a
routing time interval At. But XK. and 6, are varied from one time interval to the

next time interval in accordance with the variation of flow. Thus, a variable
'pa_rameter solute routing model is developed which is similar to that adopted in
VPM flow routing model, wherein the model parameters K, and 6, are constant
during a routing time interval but vary from one time interval to the next time
interval.

The model structure of the VPM flow routing and the AD-VPM solute
routing being similar, it is now possible to simulate both the processes

simultaneously. To achieve this, the parameters of flow routing (X ,andé,), and
solute routing (X, and 6,) methods are interlinked. The reach travel time of flow
(X,), and that of solute cloud (X ) are estimated using Eqn. (4.7) and Eqn. (4.17)

respectively. The relationship between K and K, is obtained using Eqns. (4.7),

(4.8) and (4.17), as

K. =K, [1+m(PaR/ay) } (4.19)
Al ),
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In a similar manner, the relationship between 6, and 8. may be obtained using

Eqns. (4.9), (4.18) and (3.23) as

1 PoR/dy _
6. = ¢[l+m( e l](o.s 6,) (4.20)

Using Eqns. (3.23) and (4.10), the relationship between Dy, and D; can be expressed

as

o[ PORIYT
. ¢Q{“’”"“"[WH
- ,

25(%%,)

Using Eqns. (4.18) and (4.21), the parameterd,. can be expressed in terms of flow

(4.21)

and channel characteristics as

oo PRI
¢Q3[1 MFMt:aA/ayJM:I .
- 28,— U,Ax
Y,

In the proposed solute dispersion studies under unsteady flow conditions, the

‘necessary flow details such as ¢» Us, and Dy were obtained from the VPM flow

routing model and these are used to determine the solute routing parameters in a

routing time interval, At. The solution algorithm is depicted in Fig. 4.2.

43 EVALUATION OF THE MODEL

The AD-VPM model has been described in Chapter-3 and it was meant for
solute transport under steady flow conditions. The same is employed herein also,
but for solute transport under unsteady flow conditions. The AD-VPM solute
routing model is coupled with the VPM flow routing model for solute transport
under unsteady flow conditions. Hence, for satisfactory application of the model, it
should satisfy thé applicability criteria of both the VPM flow routing model and the

AD-VPM solute transport model.
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| Routing Step J =1 |

Estimate initial K and@ and K and 6, using Eqns. (4.5)
& (4.6) and Eqns. (4.19) & (4.22) using initial values of flow

=5

(Tteration step 1= 1 |

Estimate €, €; & €3,
-K.6,+4t/2 K.6,+AMt]2 K,(1-6,)-At/2
Do =—-"1 ; 6y ==Lt ) £y =it
K,(1-6,)+At/2 K,(1-8,)+1/2 K,(1-6,)+At/2
and ,,®, and w,using Eqns. (4.14)

e
Estimate (Qo)j =& (Ql)j +&,(0, )ja t & (Qo)f-l ;

Cyi=0C ; +0,C, ,  +w,C

ij-1 0,/-1

Estmate 0, = 0, (0), +(1-0,)(0),
4

Estimate yy using Newton-Raphson Method from Q, = Ay C; RT S3'%

= R P
Estimate Oy, = [(Q,) ;7o) 12

Estimate Fy = O~ (0A/0y))/g (An )’
]

Estimate, ys= yu + (Qy-0y;) / (0A/0y)l {1 + m [(POR/BY)/(OA/dy) I} Un

¥
[ Estimate A; corresponding to y; l

Y
| Estimate Us = 0,/A; |
4

Estimate revised K . and0 . and K and @, for the present routing
step using Eqns. (4.5) & (4.6) and Eqns. (4.19) & (4.22) respectively
T ,
| I=1+1 |
No l

< 1 IS1>2 7 |
g yes
Estimate y; = ym + (05 - O, )/( 0A/8y)lm {1+ m [(POR/Oy)/(0A/dy)]m } Un
!

No | IS 2N steps? |

1 yes

Figure. 4.2 The solution algorithm for the AD-VPM model under unsteady
streamflow conditions
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The hydrograph to be routed should satisfy the criterion |(1/So)(6y/6x)| <1 at

any time for successful application of VPM flow routing model with So and dy/dx

denoting channel bed slope and water surface slope respectively (Perumal, 1994b).

| In the development of the AD-VPM solute. routing'model under unsteady
flow conditions, it 1s assumed that the flow is steady during a routing time interval,
but varies from one time interval to the next. Hence, the applicability criterion of
- the AD-VPM model evaluated in Chapter 3 under steady flow conditions is
applicable here also. This applicability criterion is expressed as D;=415.64 U
Eqn. (3.25), and has been developed based on the ability of the AD-VPM model to
closely reproduce the analytical solution of the AD equation for uniform pulse .
input. Accuracy of the AD-\/PM model depends on the estimated dispersion
coefficient for a given velocity. If the estimated Dy is less than the limiting value of
Dy, obtained using Eqn. (3.25), at any time during routihg; the performance of the
proposed ‘AD-VPM model under unsteady flow conditions may be considered
accurate. |

| The experimental studies of solute transport under unsteady streamflow

conditions ‘in rivers are very few, perhaps, due to the following difficulties in

experimentation:
= Controlling flow variation in the river ‘to suit the experimental
requirement,
2. Simultaneous monitoring, and recording of discharges and

concentrations at regular time intervals at different downstream
sections from the point of injection of solute or tracer.

Further, it is not possible to -obtain an analytical solution of the system of
partial differential equations governing coupled flow and solute transport processes.
Hence, the proposed AD-VPM model for studying solute transport under unsteady

flow conditions needs to be tested by .simula'ting the numerical solution of the AD
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equation coupled with the Saint- Venant Equations (SVE), termed herein as the

SVE-AD solution for hypothetical data input.

4.3.1 Solution of the SVE-AD Model

To arrive at the benchmark solution of the SVE-AD model, the following
procedure was used:

A given hydrograph at the input section of a uniform rectangular cross-
section was routed to the desired location in the channel reach using the numerical

solution procedure of the Saint-Venant equations (Viessman et al., 1977) expressed

as:

%;1- + %xg =0 (continuity equation) (4.23)
and

S;=8,- %yx— - g—QA—%I—:- - i:%tg (momentum equation) (429

The resuits obtained by solving the SVE were used in solving the AD
equation to arrive at the benchmark S‘VE-AD solution using the following approach:
- Runkel (1998) used the Crank-Nicolson numerical metho\d to solve the
Transient Storage (TS) model equations (Eqns. 2.29a and 2.29b). These equations
converge to AD equation, if o and 3 are assumed to be zéro. Hence, the algorithm
suggested for solving the TS model can be used for AD model by assuming o0 = 0
and B=0. The 6scillation problems associated with Runkel solution (1998) were
avoided by maintaining the Peclet Number (P, = UAx/D;) sufficiently »iow, based
on the numerical experinients carried out durihg the study. Thus, the stable solution
obtained by} solving the SVE-AD equations was considered as the benchmark

solution needed for the evaluation of the solution of the AD-VPM model.
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The agreement between the solutions of the AD-VPM model and the SVE-
AD method is measured using the Nash-Sutcliffe criterion (n)(Nash and Sutcliffe,

1970) given by Eqn. (3.24).

4.3.2 Hypothetical Test Case

The numerical experiments were carried out by routing a given inflow
hydrograph and a given C-t curve in uniform rectangular channels using the SVE-
AD equations. The rectangular channels of 40km length with uniform width of 50 m
and 100 m were considered for hypothetical tests. The configurations of the

channels considered in the study are described in Table 4.1.

Table 4.1 Configurations of hypothetical channel

ChindliD & | 1§ Widih & Bed Slope (S.) Niafinigg's
(m) J . roughness (n)
C-1 50 0.0002 0.02
C-2 100 ©0.0002 0.02
C-3 50 0.0004 - 0.04
C-4 100 0.0004 0.04

The inflow hydrograph, defined by a four parameter Pearson Type-III

distribution was used in these numerical experiments and it is expressed as

| t # 148283
[(t)=Ib+(1p—1b)(7—J exp( ;,_'1 J (4.25)

where, Ty, is the initial steady flow (100 m%/s), I, is the peak flow (1000 m’/s), t, is

the time to peak (10 hr), and y is‘the skewness factor (1.15). Similarly, an input C-t

curve having the form of Pearson Type-III distribution expressed by the following

~ equation was used, as the input required for solute routing in the channel.
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1

£ e t-tl/1, _
C(t=C,+(,-C, )(;—J exp[ IPJ © o (4.26)
Ye—

cp

where, C,is the initial concentration (0 mg/l), C, is the peak concentration
(50 mg/l), tep is the time to peak (10hrs), and y_ is the skewness factor (1.15). The

same form of input was used by Camacho (2000) while studying the solute transport
in channels using the ADZ model under unsteady flow conditions. The inflow
hydrograph and the C-t curve applied at the same input point were simultaneously
routed through the channel usiné the proposed AD-VPM model. A routing time
interval of 15 min, was used in the numerical experiments. A value of $=0.116 was
used in the hypothetical test cases as it is recommended by McQuivey and Keefer
(1974) to compute the dispersion coefficient using Eqn. (3.23). An additional value
of ¢=0.058 was considered to evaluate the performance of the AD-VPM model
during advection dominated solute transport process, as dispersion during unsteady
flow is advection dominated phenomenon (Bedford et al., 1983). The accuracy of
the reproduction of C-t curve shape and size was evaluated using the Nash-Sutcliffe |
criterion given by Eqn. (3.24). The results are shown in Table 4.2. The comparison
of the solutions of the AD-VPM model with the corresponding benchmark solutionsl
is shown in Figs. 4.3 to 4.6. Typical range of velocities, the estimated Dy, values and
the limiting Dy, values computed using Eqn. (3.25) for these experiments are

summarised in Table 4.3.
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Figure 4.3(i)

SVE-AD and AD-VPM solutions for ¢ = 0.058, channel type C-1
at 10, 20 and 30km downstream from source of solute.
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Figure 4.3(ii) SVE-AD and AD-VPM solutions for ¢ = 0.116, channel type C-l

at 10, 20 and 30km downstream from source of solute.
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Figure 4.4(i) SVE-AD and AD-VPM solutions for ¢ = 0.058, channel type C-2
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Figure 4.4(ii)

SVE-AD and AD-VPM solutions for ¢ = 0.116, channel type C-2

at 20 and 30km downstream from source of solute.
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Figure 4.5(1) SVE-AD and AD-VPM solutions for ¢ = 0,058, channel type C-3 at

10, 20 and 30km downstream from source of solute.
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Figure 4.5(ii) SVE-AD and AD-VPM solutions for ¢ = 0.116, channel type C-3 at

10, 20 and 30km downstream from source of solute.
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Figure 4.6(i)

SVE-AD and AD-VPM solutions for ¢ = 0.058, channel type C-4
at 20 and 40km downstream from source of solute.
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Figure 4.6(if) SVE-AD and AD-VPM solutions for ¢ = 0.116, channel type C-4 at
20 and 40km downstream from source of solute.
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Table 4.2 Results showing the reproduction of peak concentration and its time
of occurrence for hypothetical test case

SVE-AD model AD-VPM model

Peak Peak Nash-

Channel Time to Tme to Sutcliffe
) Concentra Concentra ..

Type peak ; peak . Criterion
(hr) -tion (hr) -tion (% )
. (mg/l) ‘ (mg/1) _
C.1 0.058 14.75 48.40 14.75 48.13 99.22
0.116 14.75 46.95 14.75 46.34 98.81
c-2 0.058 16.00 48,46 16.00 48.23 '99.23
0.116 16.00 46.46 16.00 46.51 98.90
C-3 0.058 16.00 48.40 16.00 48.18 99.22
i 0.116 16.00 46.90 16.00 46.35 98.80
c4 0.058 17.50 48.59 17.50 48.34 99.44
e 0.116 17.50 47.07 17.50 46.73 99.04
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Table 4.3 The range of velocities, D, and limiting D, for the hypothetical

channels
Infl
nrow Outﬂc?w DL Limiting Dy
Type of|  velocity velocity (ms) (m¥/s)
channel (mV/s) (m/s) b - m
Min. | Max. | Min. | Max. Min. Max. | Min. | Max.
0.058 | 145 1450
C-2 0.80 | 2. 0.80 | 1.95 286 | 1406
03 0.116 | 290 2900
0.058 | 72.5 725
- ) . " . 19 .
C-4 0.65 1.62 0.65 1.55 0116 145 1450 9 | 952.6

An inflow hydrograph defined by Eqn. (4.25) was used in the numerical
experiments with the following characteristics: initial steady flow (I;=100 m’/s),
peak flow (If=500m3/s), time to peak (t,=10hrs) and skewness factor (y=1.15). The

C-t curve defined by Eqn. (4.26) with an initial concentration, C,=0 mg/l, peak
concentration C, = 50 mg/l, time to peak te, = 6hr, and, skewness factor ye=118,

was used as the input required for solute routing in the channels. These inflow
hydrograph and input C-t curve applied at the same input point were simultaneously
routed through the channels C-1 and C-3 using the proposed AD-VPM model for
solute transport under unsteady flow condition. A routing time interval of 15 min.
was used in the numerical experiments. The results are presented in Table 4.4 and
the comparison of the solutions of the AD-VPM model with the cdrresponding

benchmark SVE-AD solutions are shown in Figs. 4.7 and 4.8.

Table 4.4 Results showing the reproduction of peak concentration and its time
of occurrence for hypothetical test case for peak flow of 500m’/s
used in Eqn. (4.25) '
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SVE-AD method AD-VPM model Nash-
Channel Time to Peak Tme to Peak Sutcliffe
Type ¢ peak Concentra | peak | Concentr- | Criterion
(hr) -tion (hr) - ation (%)
C.1 0.058 12.50 43.76 12.75 42.91 99.03
0.116 12.50 38.98 12.75 38.12 98.80
C.3 0.058 14.25 43.85 14.25 42.43 99.67
0.116 14.00 38.56 14.50 37.57 99.38
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Figure 4.7(i) Flow details for channel type C-1 for Iy = 500m>/s along with input
C-t curve
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Figure 4.7(ii)) SVE-AD and AD-VPM solutions at 20 and 40km downstream from
source for channel type C-1 for the loading shown in Fig.4.7(i)
(a) ¢ =0,058, (b) ¢ =0.116

111



600 . 100
—o«— Inflow hydrograph T 90

0" ydrograp |
-—— SVE soln.

2 400 - .--e---VPM soln T70 §
£ 160 %
= ——Input Con. &
% 300 50 8
8 Lo E
g 200 - 130 8

100 T 20
L 10
0 T s T T T R 0
0 10 20 30 40 50 60 70
Time (hrs)

Figure 4.8(i) Flow details for channel type C-3 for I; = 500m®/s along with input
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Figure 4.8(ii)) SVE-AD and AD-VPM solutions at 20km and 40 km downstream
from source for channel type C-3 for the loading shown in Fig. 4.8(i).
(a) $ =0.058, (b) $ =0.116
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4.3.3 Mass Conservation

The AD-VPM model was tested for conservation of mass of solute based on the
hypothetical numerical experiments performed in rectangular channels with uniform
width of 50m and 00 m and for different channel configurations. The configurations of
the channels considered in the study are described in Table 4.1. In addition to the
channel types given in Table 4.1, rectangular channels with a width of 100m and
characterise:d by different bed slopes of 0.0006, 0.0008, and 0.002 and each having a
Manning's roughness coefficient of 0.04 were also used in these mass conservation
studies. In all the cases, a hypothetical input hydrograph and a C-t curve given by Eqn.
(4.25) and Eqn.(4.26), respectively, were ﬁsed. The value of peak flow equal to
1000m’/s was used in the Eqn. (4.25). In order to estimate the dispersion coefficient
required for solute transport studies the empirical relationship established by McQuivey
and Keefer, (1974) linking the ﬂov& diffusion coefficient to the solute dispersion
coefficient given in Eqn. (3.23) was used with a value of $=0.116. Additional
experiments were carried out with values of ¢¥0.058 and ¢=0.025. This was used to
know the perfonn.ance of the AD-VPM model under advection dominated dispersion,
as dispersion during unsteady flow is advéction ddminated phenomenon (Bedford et al.,
1982). The specific concern is that the numerical solution of the AD equation using a
given C-t curve as the boundary condition may not conserve mass given an unsteady
flow regime as shown in Figs. 4.11 to 4.13. To test the mass conservation,
concentration-discharge profiles were integrated with respect to time to determine the
mass passing a given sampling location (Runkel et al., 1998). The total solute mass was
computed from the integration of mass flow rate over time. The total mass, M passing

through the outflow section was estimated as
M= [oCdt =%(QC)At - 4.27)
5 i=1 '

where i is the discretisation index.

The area under the mass flow rate-time curve was determined by numerical
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integration using Eqn. (4.27). The results are summarised in Table 4.5. In all the test
cases it was found that the AD-VPM model under unsteady flow conserved mass with a
maximum error of 3.63% in channel type C-2. The loss of mass of solute is very less in
case of channels with flow characterised by kinematic wave phenomenon. If a diffusive
wave process governs the unsteady flow, the loss of mass is more compared to the
corresponding one during kinematic wave unsteady flow process (Table 4.5). The
complexities involved in the modelling of the longitudinal dispersion under unsteady
flow condition, which is a highly non-linear process, and the approximations involved
in the development of the AD-VPM model may be responsible for the loss of mass upto
3.63% (Table 4.5). However, the value is specific .and applicable to this case (C-1)
only. Based on the massAconservation analysis, it can be concluded that the proposed

AD-VPM model conserves mass satisfactorily within its applicability range.

Table. 4.5 Mass conservation results for solute transport under unsteady flow

conditions
: Relational Conservation of Mass (% error)
hannel
Channel type parar;:eter, Flow Solute
0.025 1.87
C-1 0.058 -0.10 2.51
0.116 3.63
0.025 1.41
C3 0.058 - 0.20 2.05
0.116 ' . 3.14
0.025 D 1.61
C-3 0.058 -0.13 . 2.27
0.116 : 3.39
0.025 1.02
£ 0.058 -0.28 1.63
0.116 2.69
C-5 0.025 0.59
_ - 0.058 0.89
(S0=0.0006,n =0.04) 0.116 -0.34 141
C-6 ouss | 0z
(S0=0.0008,n =0.04) 0.116 -0.34 0.54
C.7 0.025 : -0.46
_ _ 0.058 -0.28 -0.42
($0—0.002,n—0.04) 0.116 .0.37

114



4.3.4 Time of Release of Solute

The aspect of tirﬁe of release of solute at different time points since the
passing of the inflow hydrograph was investigated. The hypothetical channel of
100m width and the inflow hydrograph and input C-t curve used in section 4.3.2
were used in this case also. The studies have been made by injecting the
hypothetical C-t curve i) during rising limb (case A: t,,=7hr), ii) around the peak
flow (Case B: t,=10hr), and iii) during receding limb (Case C: (i) t,=7hr
(ii) tep=10hr), of the hydrograph. In Case A and Case B, both the input hydrograph
and the input C-t cu~r§/e start rising at the same time. In Case C, the input C-t curve
starts rising after 7hrs from that' of the input'hydrograph. These studies help in
deciding the time of disposal of stored or accumulated waste with less or no
treatment so as to utilise the dilﬁtion capabilities of time varying ﬂows in a river. It
is found that the disposal during the rising limb would result in maximum
.dispersion and thereby reducing the concentration compared to the disposal around
peak flow. Also, the residence time is less either in case A or case B loading
conditions in comparison with case C loading conditions. If the disposal is arouqd
the peak flow of hydrograph, the flushing time will be less thereby carrying the
solute at a faster rate in comparison with the disposal during rising limb or receding
limb of the hydrograph. The input hydrograph along with input concentration
distribution details are shown in Fig. 49 The solute transport simulation results are

summarised in Table 4.6 and shown in Figs. 4.10 to 4.13.
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input of solute for channel type C-2, $=0.058 (Case A)
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Figure 4.10(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from

input of solute for channel type C-4, $=0.116 (Case A).
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Figure 4.11(i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from
input of solute for channel type C-2, $=0.116 (Case B)
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Figure 4.12(i) SVE-AD and AD-VPM solutions at 20km and 40km d/s from
input of solute for channel type C-2, $=0.116 (Case C(i))
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Figure 4.12(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from
3 input of solute for channel type C-4, $=0.116 (Case C(i))
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Figure 4.13(ii) SVE-AD and AD-VPM solutions at 20km and 40km d/s from
input of solute for channel type C-4, $=0.116 (Case C(ii))
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Figure 4.13(iii) SVE-AD and AD-VPM model solutions at 20km and 40km d/s
from input of solute for channel type C-4, $=0.3 (Case A)
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Table 4.6 Results for the hypothetical channel with B=100m for different

hypothetical loading cases

44 COLORADO RIVER TEST CASE

SVE-AD solution AD-VPM model

Loading | Channel 0 Time to peak| - Peak Time to peak Peak
case type concentration|concentration|concentration|concentration

. (hr) (mg/l) (hr) (mg/l)

Case A| C-2 |0.058 13.00 46.40 13.25 45.36

0.116 13.00 42.73 13.50 41.40

C-4 [0.058 14.50 47.07 14.75 45.23

'0.116 14.75 42.45 15.00 41.24

CaseB | C-2 |0.058 16.00 48.46 16.00 48.23

0.116 | 16.00 - 46.46 16.25 46.51

C-4 |0.058 17.50 48.59 17.50 | 48.34

0.116 17,50 47.07 17.75 46.73

Case C-2 10.058 21.75 46 .91 21.50 46.81

€@ 0.116 |  22.00 44.34 21.50 44.11

C-4 10.058 23.75 47.30 23.50 47.25

: 0.116 24.00 44 .87 23.50 44 .87

Case C-2 |0.058 27.00 48.30 26.50 48.41

C(ip) 0.116 |  27.00 46.71 26.75 46.95

C-4 |0.058 2025 48.61 29.00 48.69

0.116 29.25 47.20 29.00 47.45

The available data from the experiments conducted in a 380km long Grand

Canyon reach of the Colorado River in May 1991 (Graf, 1995) was used to test the

proposed AD-VPM model. Details of tracer experiments, the controlled inflow

hydrographs released at Glen Canyon Dam, and available hydro-geometric channel

characteristics for the sub-reaches of Grand Canyon reach have been discussed by

Graf (1995). The experiments conducted in the Colorado River are useful for the

present study as simultaneous measurements of hydrographs and the C-t curves

enable the field testing of the proposed model. This unique experiment provides an

opportunity to explore the dispersion mechanism and its relation with the flow in
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rivers. The flow releases from Glen Canyon dam were controlled so as to provide
two flow conditions for research viz., steady and unsteady flow conditions. The
flow hydrographs during 5™ to 19™ May 1991 consist of variation of discharge |
ranging from 92 m*/s to 754 m*/s.

In Grand Canyon reach, observed hydrographs are available at Lees Ferry
(RK 0;USGS 09380000), at above the Little Colorado river near Desert View (RK
98, USGS 0938100), at Phantom Ranch near Grand Canyon (RK 142; USGS
09402500), at National Canyon near Supai (RK 267; USGS 09404120) and at
Diamond Creek near peach springs (RK 362; USGS 09404200). The hydrograph
data were given in Appendix B 1.3. The schematic diagram is shown in Fig. 3.12.
Discharge data at 15min. interval are available at all the above said sections.

The C-t curve measurements, during unsteady flow, available at Nautloid
Canyon (RK 57.7), at the Little Colorado above Desert View (RK 98.3), at Nevill’s
rapid (RK 123), at Mile 118 camp (RK 189), at National Canyon (RK 267), and at
Gneiss Canyon (RK 381) were used in the present test case. But the C-t curves at
Mile 118 camp and at National canyon were incompletely observed during the
unsteady flow resulting in absence of the leading edges. Simultaneous flow and dye
concentration measureménts are available .only at Little Colorado and National
canyon gauging stations. Figure 4.14 shows the observed flow hydrographs along
with observed C-t curves. It is important to ’notq that the observed C-t curves at
sampling stations durihg unsteady .ﬂows do not have thg long tails, and the same
was observed under steady flow condition also (Chapter 3). The absence of long
tails are indicative of 'the absence of the dead zone mechanism in the Grand Canyon

reach of the Colorado River.

Y

121



(i) at Nautiloid —Qm¥s e Concentration
800

700
2600 -
E500 -

£400 -
{%300 .
8200 -
100 -

0

Concentration(ug/l)

65 7 75 8 85 9 95 10 105 11 115 12

(1)) at Little Colorado  — Q,,m3/s RESTEN Concentration
800 ' -
1 700 -
<2 600 -
g
=500 -
£ 400 1
S 300 1 ]
2200 1 i - 4

100 1 J’ \

O ¥ 1 1 1 | U Ll ¥ I L 'l
65 7 75 8 85 9 95 10 105 11 115 12

1 19

l

T
o
S

O
Concentration(pg/l)

(iif) at Nevill's rapid —Qm¥s e Concentration
800 :
700 A
600 -
500 1
400 -
300
200
100 -

0 1 i /1 \ L 1 1 1 L i T 0

65 7 75 8 85 9 95 10 105 11 11.5 12
Time (days)

Discharge (m3/s)

Concentration(z.g/l)

Figure 4.14 . Observed hydrograph and the associated observed dye

concentration at the sampling sites during unsteady flow.,
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The channel characteristics of the Grand Canyon reach used in the analysis
were estimated corresponding to a discharge of 680 m*/sec (Graf, 1995). Based on
these characteristics, the Grand Canyon reach has been divided into 9 sub-reaches.
The details are summarised in Table 4.7 and Table 4.8.

Wiele and Smith (1996) presented a procedure to compute the representative
cross section using the observed cross-section measurements of Colorado River.
The cross-section measurements on Colorado River consist of a distance from the
left water edge and a corresponding depth. To average the cross-sections, each was
first normalized in the cross'-stre;m d‘irection by dividing the cross-stream location
by the water surface width so that the cross-stream dimension ranged from 0 to 1.
The depths at corresponding cross-stream fractions were then averaged. The width
was restored by multiplying the cross-stream fraction by the a'verage channel width.
Reach averaged representative trapezoidal sections (Camacho, 2000) are arrived at
for the irregular natural channel adopting the procedure proposed by'Wiele and
Smith (1996) for the large range of discharges observed. In the present study, reach
averaged trapezoidal secti‘ons arrived at by Camacho (2000) for the Grand Canyon
reach has been taken. The bed'wic‘lth and side slopes of narrow channel are 35m and
1(horizontal) in 3.16 (vertical) respectively. The bed width and side slopes of wide
channel are 48.75m and 1(horizontal) in S5.31(vertical) respectively. The
representative trapezoidal cross-sections were arrived at by Camacho(2000) using
the profiles measured at 199 sections along the Grand-Canyon reach. This may be
additional reasons for the differences in velocities in the natural river section and

assumed trapezoidal section of Camacho (2000).
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(Graf, 1995)

Table 4.7 Channel characteristics corresponding to the discharge of 680m*/s

rSe:lc):;) Length Be.d Slope Width Depth : \I\{r?ctl]t(l)l (t)(f Arc;a
o  Km) (m) (m) depth (m®)
2 57.7 | 0.00141 | 71.6 8.2 8.7 573
3 40.6 | 0.00126 | 106.1 6.1 17.4. | 642
4 249 | 0.00274 | 119.2 5.2 22.9 613
5 18.8 | 0.00195 | 59.1 8.8 6.7 517
6 473 | 0.00195 | 59.1 8.8 6.7 517
7 78.6 | 0.00151 | 63.4 7.6 8.3 468
8 757 | 0.00134 | 94.2 6.7 141 609
9 18.4 ° | 0.00161 | 71.6 9.1 7.9 661
10 18.5 | 0.00161 | 716 9,1 7.9 661

Table 4.8 Classification of the Grand Canyon reach, Colorado River

(Camacho, 2000)
Sub-
Classification | reach
Reach Sub-reach based on Identific
width*. ation
No.
Lees Ferry - Lees Ferry — Nautiloid Canyon Narrow 2
above Little e —
. ! Nautiloid Canyon — above .
Polorativen Little Colorado river ' _ 2
Above Little Above thtl:anlo.-Nevxll s Wide 4
. pi
_Colorado river -
Grand Canyon | Nevill’s rapid — Grand Canyon Narrow 5
Grand Canyon — Mile 118
Narrow 6
Grand Canyon - ~_camp
National Canyon Mile 118 camp — National Narrow ;
Canyon
National Cany.on - Pumpkin Wide 2
) spring
National
Canyon- Pumpkin spring-Diamond Narrow 9
Diamond creek creek :
Diamond creek- Gneiss Narrow 10

*The sub-reaches are classified as wide, if the top width > 85m, and narrbw, if top width < 85m
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Flow and solute routing were carried out using ‘the proposed AD-VPM model.
The agreement between observed and simulated distributions (for both hydrographs and
C-t curves) was measured using the Nash-Sutcliffe critexio;l (1). Flow details required
in solute routing under unsteady flow conditions were arrived at from flow simulations.
The hydrograph available for a longer duration is split into two parts; i) data set during
5%.11" May, 1991 and ii) data set during 13®-18" May, 1991. The first data set was
used for calibrating the Manning's n using the VPM flow routing model and the second

data set was used for verifying the same model using hydrograph simulations.

4.4.1 Flow Routing
In flow routing apart from the available channel characteristics and
hydrographs, the Manning’s roughness coefficient, n had to be calibrated from the

available observed hydrographs.

4.4.1.1 Calibration and verification of roughness coefficient

The Variable Parameter Muskingum (VPM) model, was used to simulate the
flow transport through the entire Grand Canyon reach from-Lees Ferry to Diamond
Creek to calibrate the roughness coefficient. |

The observed hydrographs between 5" to 11" May 1991 were used to calibrate
Manning's n for all the reaches considéred. Manning’s n was calibrated based on
closest match between the observed and the simulated hydrographs at different
downstream sections by routing the inflow hydrograph observed at immediate upstream
section (Keefer and Jobson, 1978) for different values of Manning's n, vérying from
0.03 to 0.08. The selected value of Manning's n for each reach is within »the normal
range, generally observed in natural channels (Chow et al., 1988). The hydrographs
simulated in calibration mode are shown in Fig. 4.15. Using the calibrated Manning’s
n, the observed hydrographs between 13® to 18" May 1991 are simulated at
downstream sections of each reach in verification mode. The hydrographs simulated in
verification mode are shown in Fig. 4.16. The salient features of the calibration and

verification results are presented in Table 4.9.
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Table 4.9. Manning's roughness coefficient Calibration and verification results

| Nash-Sutcliffe criterion,
Reach Sub-reach Manning's n’ n (%)
Calibration | Verification
Lees Ferry- 2.Lees Ferry - 0.055
above Little " Nautiloid
Colo 3.Nautiloid- Little 0.064 98.46 98.10
Colo.
Above Little 4.above Little 0.062
Colo.- Grand Colo-Nevill’s
Canyon rapid 99.79 98.43
5.Nevill’s rapid'- 0.042 .
Grand Canyon ’
Grand Canyon | 6. Grand Canyon — 0.052
— National Mile 118
Canyon 7 Mile 118 o.00e 99.03 95.41
National Canyon
National 8.National 0.048
Canyon- Canyon-Pumpkin
Diamond . spring .
creek 9. Pumpkin spring- 0.046 99.34 97.69
Diamons creek
10. Diamond
creek- Gneiss 0046

4.4.2 Solute Routing

In solute transport studies it is necessary to use the observed velocities in the
natural river section. Hence, in solute transport studies under unsteady flow
conditions, Runkel, et al. (1998) adjusted the vgidths of the channel so that the
simulated velocities agreed with the observed velocities during single discharge
measurements of the unsteady flow event. The calibration adopted by Runkel et al.
(1998) resulted in dif’férences between the observed and simulated discharges and
cross-sectional areas.

In the present study, two representative trapezoidal cross-sections (one to
represent the wide channel and another to represent the narrow channel of the Grand

canyon reach as classified by Camacho (2000) and as shown in Table 4.7) were
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used for flow routing in the Grand Canyon reach of the Colorado River. The
observed hydrograph at a gauging location was used as inflow hydrograph for flow
routing in each of the immediate sub-reach of the Grand Canyon reach. The
Manning's n was calibrated so that the simulated discharge hydrographs agreed with
the observed discharge hydrographs at downstream of each of the sub-reaches of the
river. The usage of averaged frapezoidal cross-section representing the natural river
cross-section, and the calibration of Manning's n to match the simulated
hydrographs with observed hydrographs results in the velocity differences between
those observed in natural river and that is- estimated for the corresponding
representative trapezoidal section reaches. This can be observed from the velocity in
the trapezoidal section computed for each sub-reach at an approximate discharge.of
425m’/s during steady flow conditions in comparison with the velocity in the
respective sub-reach of the natural river section at a discharge of 425m’/s during
steady flow given by Graf (1995) presented in Table 4.10. Based on the results
presented in Table 4.10, it was observed that the velocity in the trapezoidal reach
section at 425m’/s is higher than the velocity observed in the corresponding natural
river reach.

Hence, a parameter y has been introduced to estimate the observed velocities
in the actual river from the velocities computed from the reach averaged trapezoidal
section using a relationship

U
L 4.28
(1+y) (.28)

a

where U, is the actual velocity measured in the river, U is the velocity estimated for
the trapezoidal cross section representafive reach. The velocity conversion
coefficient (y) is calibrated using observed flow and concentration time series from
the experiments conducted on Colorado river during controlled steady flow
conditions from 20" May, 1991. The parameter y calibrated during simulation of

dispersion under steady flow is summarised in Table 4.10.
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Table 4.10 The summary of calibrated values of y

Velocities observed | Velocity estimated in | Calibrat
Reach in natural channel at reach averaged ed value
~ 425 m’/s section at~425m’/s | of y
(m/s) (m/s)
Nautiloid-Above
Little Colorado 0.75 1.26 0.64
Above Little
Colorado-Nevill 1.00 ' 1.69 0.57
rapid '
Nevill rapid - Grand. 0.68
Cany.
J . 0.97 2.01
Grand .Cany. - Mile '
118 1.21
I&’I;L?ol:‘Nam“a] 1.10 1.87 | 7074
Nat. Canyon to 1.10 . 1.58 0.45
Pumpkin spring ' ' |
Pumpkin spring to .
daciss canyor] 1.00 1.96 0.86

The' AD-VPM model, with parameter values of y thus obtained under steady
flow condition, was used to simulate the C-t curves, in verification mode, for the
period of unsteady flow tracer experiments between 5™ and 13" May 1991. Both the
computed hydrograph from VPM flow routing and the observed C-t curve at
Nautiloid canyén were used as the inflow _hydrograph and the input C-t curve for the
VPM flow routing model and AD-VPM solute routing model respectively. Using
the AD-VPM model coupled with the VPM flow routing model, the C-t curves at
different downstream sampling stations were computed. The salient features of the
results obtained are summarised ih Tablev 4.11. The results of the MDLC-ADZ
model (Camacho,2000) are also presented in Table 4.‘1 1. The comparison between
the observed and computed C-t curveg is shown in Fig. 4.17. The computed C-t
curves using the MﬁLC-ADZ model afe also presented for comparing the results

with that of the AD-VPM model.
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Figure 4.17 Observed and computed C-t curves at different sampling locations

under unsteady flow conditions — Colorado River

The simulated results show that the AD-VPM model is able to reproduce the
characteristics of the observed C-t curves such as shape, peak c;oncentration, time of
travel to peak concentration and m, and thus validating the proposed AD-VPM
model. The Nash-Sutcliffe criterion, n estimated in simulating the C-t curves at
Mile 118 camp and National Canyon are not actually representative because of the
non-availability of the data in rising part of observed C-t curves. However, the
Nash-Sutcliffe criterion values at Mile 118 camp and National Canyon are estimated
to compare with the corfesponding values arrived at using MDLC-ADZ model by
Camacho (2000). The predicted peak concentrations and their time of occurrences
are matching closely with those of the observed C-t curves in comparison to the
simulation results of MDLC-ADZ model. The time of travel to peak concentration
at above Mile~ 118 camp is well predicted by the MDLC-ADZ model in comparison
with the AD-VPM model.
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Table 4.11. Observed and predicted dispersion characteristics during unsteady

streamflow in Colorado River

Observed AD-VPM model ADZ-MDLC model (Camacho,
, 2000)
Station | Time | Peak | Time | Peak n | Time | Peak | n," | o
to | concent- | to | concent- | ", to |concent-| . o
peak, | ration, | peak, | ration, (%) peak, | ration, (%) | (%)
(hr) | (ugh | (br) | (ug/) (br) | (ug/l)
?,?31‘: 32.00 | 13.40 13025| 1275 | 86.7 | 3095 | 14.45 | 70.0 | 46.3
Colo
Nr‘;‘;}(’js 3894 | 1094 (3794 | 1252 | 75.1 | 3895 | 14.08 | 865 | 83.1
Milel18) 53411 1014 |5466| 1032 | 848 | 5245 | 882 | 954 | 815
camp \ _
National | 76 501 974 | 7675 | 953 | 960 | 7445 | 966 | 672 | 800
Canyon
Greiss 110170 826 [103.25] 7.84 | 90.0 |102.45| 583 | 88.0 | 7738
Canyon :

* m, m2 are the Nash-Sutcliffe criterion for single and two-pararﬁeter MDLC-ADZ
(Camacho,2000) |

4.5

DISCUSSION OF RESULTS

model

The proposed AD-VPM model for solute routing under unsteady flow

conditions has the advantage of integration of the parameters of flow (X ,and 6,)

and solute transport (X, and 6.) models. Hence, it allows routing of the flow and

solute concentration simultaneously. This integration and simultaneous routing is

not possible in the approach suggested by Koussis et al. (1983), as (i) it is necessary

to adjust the spatial and temporal step sizes with the variations in flow diffusion

coefficient and transport dispersion coefficient accordingly, and (ii) the velocity that
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is to be used in computing the solute routing model parameters (K, and 6.) under

unsteady flow is not clearly identified. The AD-VPM model coupled with the VPM
method enables to overcome these problems. Unlike in the procedure adopted by
Gabriele and Perkins (1997), the AD-VPM model for solute transport coupled with
the VPM model for flow routing considers the solute transport velocity and the |
solute dispersion coefficient while routing the solute through the channel. The
proposed AD-VPM model provides the means to relate the solute transport

parameters, i.e., K, and Dy, to the flow and hydro-geometric characteristics of the

channel (Eqns. 4.19 and 4.21). The results shown in Fig. 4.3 to Fig. 4.8 illustrate
that the proposed AD-VPM model with integrated parameters is able to reproduce
the benchmark solution obtained using SVE-AD model satisfactorily within the

applicability range of the AD-VPM model and the VPM method.

4.5.1 Differences in Velocities of Flood Wave and Solute Cloud

Equations (4.7) and (4.17) reveal that the reach travel time of solute cloud is
more than that of ﬂow. Therefore, the solpte mass residence fime in a reach is more
compared to flood wave residence time for a given Ax. Based on these observations,
it can be inferred that the C-t curve travels with a lesser velocity compared to the
hydrograph during unsteady flow. Hence, C-t curves lag behind the corresponding
flow hydrographs during unsteady flow. It is interesting to note that the same
phenomenon has been observed in solute transport studies under unsteady
streamflow conditions in rivers (Glover and Johnson, 1974; McCutcheon, 1989;
Graf, 1995; Gabriele and Perkins, 1997; and Krien anﬂ Symander, 2000). Gabriele
and Perkins (1997) state that “the contaminant mass-flux distribution and

streamflow hydrograph do not travel at exactly the same speed through a channel

reach".
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4.5.2 Effect of Channel Type on Solute Transport

The solute transport under unsteady flow conditions has been studied using .
hypothetical inflow hydrographs and C-t curves in hypothetical channels as
illustrated in section 4.3.2 and 4.3.4. Based on the results given in Table 4.2 and 4.4
and shown in Figs. 4.3 to 4.8, it can be stated that the percentage of attenuation of
peak concentration is approximafely the same in C-2 and C-4 type channels. The
time of occurrence of peak concentration in channel type C-4 is delayed in case A,
case B, case C(i) and case C(ii) loading condmons by 1.5 hrs, 1.5 hr 1.0 hr and 2.5
hrs respectlvely in companson with the time of occurrences of peak concentrations
in channel type C-2 (Table 4.6). This implies that the solute residence time in
channel type C-4 is more than the solute residence time in channel type C-2, The
velocities in the channél C-2 ranging, ffom 0.804 to 2.04 m/s, are higher in
comparison with the velocities in channel C-4 ranging from, 0.652 m/s to 1.624 m/s.
(Table 4.3). This might be the reason for the delayed occurrence of peak
concentration at downstream distances in channel type C-4. It implies that if thve
velocity of flow is more the dispersion will be less and vice-versa. If the value of
dispersion coefficient exceeds its limiting value given by Eqn. (3.25) at any time,
then AD;VPM model solution starts devivating from the reference solution (Fig.

4.13(iii)).

4.5.3 Solute Transport in 'Colorado River

The AD-VPM model was used to simulate the observed C-t curves under
unsteady flow conditions in the Grand Canyon reach of the Colorado River (Fig.
4.17). A constant value of Manning's n for each of the sub-reaches of the Grand
Canyon reach was used in routing the hydrograph using the VPM flow routing
method. Based on the calibration and verification results, it is concluded that the

VPM method for flow routing gives good results for the calibrated Manning's n
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values, which are within the practical range stated in the literature (Chow et al,,
1988). Wiele and Smith (1996) proposed a variable roughness parameter in place of
constant Manning’s n, stating that a constant Manning's n will not predict the
hydrographs satisfactorily. However, VPM ﬂoW routing model used in the present
study simulates the observed hydrographs at different downstream stations using
constant Manning's n values satisfactorily (section 4.4.1). Moreover, the observed
hydrographs at different downstream stations in Grand Canyon reach were also
simulated with a value of Nash-SUtcliffe criterion, n > 98%, using constant
Mannign's n énd Multilinear Discrete Lag Cascade (MLDC) method (Camacho,
2000). Hence, it may be concluded that the observations drawn by Wiele and Smith
(1996) may be model specific and are not a géneralised conclusion,

From the results obtained using the MDLC-ADZ model (Camaého, 2000) in
solute routing under unsteady flow conditions, it is interesting to néte that a model
that gives satisfactory results in simulating dispersion under unsteady flow
condition fails to simulate the C-t curves under steady flow, and vice-versa. Steady
flow is a special case of unsteady flow, therefore a model applicable for solute
transport under unsteady flow condition should be applicable for solute transport
under steady flow condition also. MDLC-ADZ model presented by Camacho (2000)
lacks this characterisation. However, the proposed AD-VPM model in the present
-study works well for simulation of solute transport under both steady‘as well as
unsteady streamflow conditions.

Camacho (2000) used a parameter {8 to estimate the velocity in the natural
channel from the velocity obtained using a reach averaged trapezoidal section
(Eqn. 2.16) attributing the difference in these velocities to the transient storage

solute transport mechanism. It is widely recognised that the observed C-t curves are
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skewed particularly with long tails in streams in the presence of dead zones or
transient storage zones (Day, 1975; Bencala and Walter, 1983; and Young and
Wallis, 1992). Howe\;er, the observed C-t curves in Colorado river do not show any
long tails at any of the sampling stations, neither during steady flow nor during
unsteady flow. Further, Graf (1995) stated that " If the dead zones are present that
trap water for a sighiﬁcant length of time, then eitﬁer their volume is small enough
that they have no detectable effect on fluid transport in the main channel or they
have sufficiently disconnected from the mai‘n flow that very little exchange takes
place.” Hence, it cannot be claimed that the differences, between observed
velocities in river and computed velocities in reach averaged representative section,
are because of the dead zone or transient storage zone mechanism, which is
insignificant in the Grand Canyon reéch under consideration (Graf, 1995).

Hence, the velocity conversion cogfﬁciént (v) used in the present study is a
better representation to account for the velocity differences between observed in

natural channel and reach averaged channel section (section 4.4.2).

4.5.3.1 Variability of the dispersion coefficient

The variations in Dy due to variations of rate of flow and flow diffusion
process are well accounted for, because Dy is related to Dy that describes the flow
diffusion process. The solute dispersion coefficient is estimated from flow diffusion
coefficient using Eqn. (4.21). The relational coefficient ¢ in Eqn. (4.21) was
calibrated using the observed C-t curves under steady flow condition and is kept
constant for large variations of flow between 92 m’/s to 754 m>/s. Reasonably good
predictions of solute transport process under unsteady flow conditions are obtained
using a constant relational coefficient ¢. This implies that the assumption of a

constant relational coefficient ¢ is reasonable for the studied Grand Canyon reach.
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The key to the demonstrated success of the suitability of the proposed AD-VPM
model coupled with the VPM model for solute transport studies under unsteady
flow conditions can be attributed to the integrated parameterisation that enables the

computation of solute cloud travel time K and weighting factor 6. from hydro-

geometric channel characteristics and hydraulic variables.

4.6 CONCLUSIONS

In this chapter an integrated parameterisation of flow and solute transport is
presented. This enables the simultaneous routing of both the flow and solute
transport phenomena. The integration of parameters of flow and solute routing
models has been made by exploiting the similarity in model struéture and their
parameters. The routing procedure was presented in Fig 4.2. The reach travel time
K., and the weighting parameter, are physically based parameters. The limiting
conditions for the successful application of the AD-VPM model under unsteady
flow condition was presented. The aspect of time of release of solute so as to take
the advantage of dispersion capabilities of the varying river flow was studied. The
proposed AD-VPM solute routing model coupled with VPM flow routing method
was demonstrated for its applicability using hypothetical data and field data from
experiments conducted on the Colorado River. However, Advection-Dispersion
model cannot simulate the observed C-t curves in rivers in the presence of dead
zone or transient storage mechanism. Therefore, the proposed AD-VPM model also
cannot model the solute transport in the presence of the dead zone or transient
storage mechanism. Hence, a simplified Transient Storage model to simulate the
C-t curves observed in rivers in the presence of dead zone or transient storage zones

is presented in the next chapter.
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Chapter 5
DEVELOPMENT OF AN APPROXIMATE TRANSIENT
STORAGE MODEL

e ————

T

5.1 GENERAL

The bulk of the existing theories on solute dispersion in streams is based on
a gradient transfer process. Since late 1960s, it has beén realised that the classical
AD equation, with constant dispersion coefficient, is not able to simulate the
observed C-t curves, particularly with long tails. Hence, researchers (Thackston and
Krenkel, 1967; Day, 1975; Sabol and Nordin, 1978; and Liu and Chéng, 1980) have
been concerned with the development of a more appropriate theory for solute
transport in rivers accounting for long tails. Various theories have been propoéed to
overcome the shortcomings of the AD model in sim‘ulating the observed C-t curves.
One such theory considered that temporary entrapment of the solute mass in some
pockets of the channel is primarily responsible for the C-t curves with long tails. In
this theory, it was conceptualiséd that the solute transport process in a river reac_}}
takes place in two zones, viz., the main channel and a transient storage zone. The
main channel is defined as that portion of the stream in which advection and
dispe‘rsion are the dominant transport mechanisms. The transient storage zone
encompasses those zones adjacent to the main channel, on stream bed and bank
irregularities, representing relatively stagnant zones of water that are stationary in
comparison to the fast moving water of the main channel. Solute transport in this
transient storage zone is domin‘ated by the mechanism of dispersion. In recent years,
research has been focused to study the mechanism of solute transport in streams
with transient storage zone. Mechanism of temporary solute mass trapping within

the pockets, termed as dead zones or storage zones, of the channel has been thought
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to be significantly affecting the longitudinal dispersion process in rivers. Initially,
the transient storage zone acfs as sink to reduce the solute concentration in main
channel, as the concentration gradient is towards the transient storage zones. When
the concentration of solute in the main channel becomes less than the concentration
of solute in the transient storage zone, the solute mass from the transient storage
zone starts entering into the main channel. This produces the observed long tail in
the C-t curves. Based on this observation, Bencala andvWalters (1983) inferred that
" there is in fact a mechanism that presents itself as transient storage of solute mass
along the length of the stream. Hence, we do hot believe that a strict dead zone
model is physically descriptive of the processes occurring in mountain streams, but
rather that the observed ° transient storage’ can be empirically simulated using the
identical equations." Transient Storage model describing one-dimensional solute
transport in a steady, uniform river reach with transient storage zone has been
represented by the following governing equations (Bencala and Walters, 1983; and

Seo and Cheong, 2001) as

oC oC Cc

o e e ] C -C 5.1

61+Uax Dtsax2+a(s‘ ) (5.1)

oC. | |
i gt (B 52

ot aA,( ) 52)

where, C is the solute concentration in the main channel, Q is the volumetric flow
rate, A is the cross-sectional area of the channel, Dy is the main channel dispersion

coefficient of TS model, C,is the solute concentration in the storage zone, A;is the

representative cross-sectional area of the storage zone, and o. is the stream storage
exchange coefficient. Eqn. (5.2) and the coupling term a(C, — C) in Eqn. (5.1) are
deceptively éimple, for they embody several physical principles and constraints.
Storage zones are assumed to be stagnant relative to the longitudinal flow of the

stream and assumed to obey a first—order mass transfer exchange relationship. That
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is, the exchange of solute between the main stream channel and the storage zone is

prdportional to the difference in concentration of solute between the main channel

and the storage zone.

The TS model ideally describes a system with the following characteristics (Bencala

and Walters, 1983):

i) Solute concentration varies only in the longitudinal direction (i.e.,
concentration does not vary witﬁ depth or width).

ii)  There exists a storage zone that is not moving.

iii)  Within the storage zone, solute is instantaneously and ;.uniformly mixed.

iv)  The -difference in concentrations and an exchange coefficient simply
determine the transport of solute between the storage zone and the main |
channel.

The effect of transient storage on sqlute transport has been includedglllin
longitudinal transport models using the first order mass transfer equation in which
all underlying mechanism are arranged in model-parameters, such as exchange
coefficient (c) and ratio AJ/A.

The analytical solution of the transient storage model equations has not yet
been derived. However, solution of the transformed Transient Storage model
equations into the so called x-s image (Laplace) space using Laplace transform
method is available, which is inadequate to solve the governing system of partial
differential equations of TS ‘mod.ei énalytically in simple (x,f) plane (Nordin and
Troutman, 1980; CzernuSzenko and Rowinski,l 1997). Numerical solutions of
Eqns. (5.1) and (5.2) lack simplicity and require calibration of as many as three
parameters. The TS model has not been widely used perhaps because of the
complexities involved in the solution procedure and due to difficulties in estimating

the parameters of the model.

Corﬁplexities increase further when the TS model is coupled with flow
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routing model to study the solute transport under unsteady flow conditions. I_t is not
possible to solve both the flow routing model and the TS model equations using a
similar solution algorithm that enables simultaneous routing of flow and solute. So
far, the flow and transport model equations have been solved using different
numerical methods. The ADZ model, a simplified version of the Dlead Zone model
(Thackston and Krenkel, 1967; Valentine and Wood, 1977; and Sabol and Nordin
1978), has been developed to study the solute transport in rivers with transient
storage (Beer and Young, 1983). The governing equation of the ADZ model
resembles the governing equation of delayed Muskingum flow routing model
(Strupczewski and Napiorkowski, 1990). In ADZ model identification "and
estimation of parameters is equally complicated. Hence, an attempt has been made
in the present study to develop a simple TS model equation. The proposed equation
allows one to solve it either analytically or using simple numerical methods.

This chapter presents (i) the development of an Approximate Transient
~ Storage (ATS) model, (ii) the analytical solution of the developed ATS model
equation for impulse, uniform step and pulse input boundary conditions, and
(iif) Muskingum type solute routing formulation based on the ATS model under

steady and unsteady streamflow conditions.

5.2 DEVELOPMENT OF AN APPROXIMATE TRANSIENT STORAGE
MODEL
An Approximate Transient Storage model is developed using the governing
equations (5.1) and (5.2) of the TS model. Eqn. (5.2) can be re-written as

oC, _a

o =5 C-C) (53)

in which, #=A,/A

Using Eqn. (5.3), Eqn. (5.1) can be written as
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42 _p PC.

+U=—==D 5.4)
ot ox ¢
Differentiating Eqn. (5.1) with reference to t and rearranging the terms yields
oc, _1 9'C UdC  oC D, o°C
: +— +—= - (5.5)
o8 aof adtdx o a Otox
Substituting Eqn. (5.5) in Eqn. (5.4) and rearranging the terms gives
5C U aoC _ D o*C . a*C +U o*'C n BD, &C (5.6)
ot 1+/3 & 1+8 &' a(l+p) otox| a(l+p) ofox? ’

The expressions for §°C/dt* and 9°C/érdx in Eqn. (5.6) can be arrived at from the
following steps:
Differentiating Eqn. (5.4) with reference to x and rearranging the terms results in

2 2 <) 2
oee,_goc ol e HC, - | .

ot & o U o
Differentiating Eqn. (5.5) with reference to x gives an expression for (8°C, [ox of)
in Eqn. (5.7) as ’

Fc, |1 &€ U ¥C  &C D, dC
xdt a xot a oox’ Ooxdt o oxorx’

(5.8)

Substituting Eqn. (5.8) into Eqn. (5.7) and rearranging the terms, yields

2 2 3 3 3 4
*C _go* U 04 ) [6C+U6C]+D“6C+Dm B &'C

xdt 1+ &'  a(+p)|oxor’ oo’ | 1+8 & a (1+f) oxotox’
' (5.9)
Differentiating Eqn. (5.4) with reference to t yields
0°C o*'C o*C o’C
-=-U - 1 1Y 5.10
or ot Bx s o’ " o ox’ (.10)
Differentiating Eqn. (5.5) with reference to t, gives
2 3 3 2 4
o°C, _10C U8C o‘Cc D, 0°C (5.11)

.+ —
at  a o a ot*ox ot a or*ox?
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Substituting the expression for 0°C, /6t2 from Egn. (5.11) in Eqn. (5.10) and

rearranging the terms gives

0'C U 9C g 1&C o°C D, &C D, B &C

2 - - s tU |t 7T 252

ot 1+potox a(l+p)| o o“ox| 1+potx® a (1+p)ot ox
(5.12)

Substituting Eqn. (5.12) in Eqn. (5.6) and rearranging the terms, results in
i, U L |
o 1+ ox
D, &C B 8*C st ey lwe | s &C
L 7U * = 2 U il 2 7
1+8 ox* a(l+B) ot a’(1+p8)°| o or'ox | a(l+p)’ ox
gD, o'C
a*(1+ B)* orfoxt

(5.13)
Substituting the expression for 8°C/ox ¢ from Eqn. (5.9) into Eqn. (5.13), results
in |
Ll U
o 1+p o

D, L uvg ¢ p [fec _@c]. up [#c | ocC
{1 +8 " all+ By J o Qi+ p) {[ o Uatzax] R [8x612 r UaxataxJ}

2 3 3 : 2 4 ! 4
_UfD, e %8D, Wo't—--5'D, {ac+ Up  é'c J (5.14)

a(+B)Y o a(+B) atd a’(+p)|otext  (1+f) oxorae’

Neglecting third and fourth order derivatives in Eqn. (5.14), gives an equation

which is in a form similar to that of AD equation as

2n2 2
oc, U 6C=[DG+U,8 ]ac

= T e EE 5.15

o 1+p8 ox |1+F al+p)| ox? G-13)
Eqn. (5.15) can be written as

oC oC 0°C

> ~Z =p, = .

o "V o TP G 616
where,

U
1+ 4 G17)
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and

; Dts Uzﬂz
DLts [14—[3 + a(l+ﬂ)3] (5,18)

Equation (5.16) is termed as the Approximate Transient Storage (ATS) equation of

the ATS model. This is an approximation of TS model as third and fourth order
derivatives. of concentration are negligible. The term p2 / o?(1+PB)? appearing with
third and fourth order derivatives in Eqn. (5.14) has been used subsequently to

develop an applicability criterion of ATS model so that the simulations using this

ATS model are in close égreement with the TS model.

5.3 CHARACTERISTICS OF THE APPROXIMATE TRANSIENT

STORAGE MODEL

The ATS model is an approximation of the TS model. The assumptions used
in the development of the TS model also hold good for the ATS model. The
- governing equation (Eqn. 5.16) of the ATS model is in a form similar to that of the
AD equation (Eqn. 2.2). If § =0, and 'D,s‘= Dy, then Eqn. (5.16) gets reduced to
Eqn. (2.2). The ATS model enables bne to distinguish the role of the transient
- storage model parameters 8 and & on solute transport process in rivers. When there
is no exchange of solute between the main channel flow ahd transient storage zone
(a—0), the effect of transient storage zones on solute transport will be absent. This
situation was termed as frozen cloud phenomenon (Czernuszenko and Rowinski,
1997). Hence, B will influence the velocity of solute cloud Us only in the presence
of a, but oo will not alter the value of Us explicitly. In the ATS model, the
relationship between the solute fransport velocity and the flow velocity is obtained,
as given by Eqn. (5.17), directly from the governing equation itself without
involving the use of moment matching technique as has been done by Lees et al.
(2000).. Valentine and Wood (1977), Worman (2000), and Lees et al. (2000)
sugggsted the same relationship between U and Us as expressed by Eqn. (2.16) in
which B=AJ/A.
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In TS model, the dispersion is predominantly due to the rate of exchange of
solute between the main flow and storage zone represented by the exchange
coefficient o. It is seen from Eqn. (5.18) that the effect of Dy on dispersion of
solute may be incorporated in a and B so as to avoid the usage of D, explicitly. This
concept is indirectly used in the development of the ADZ modelling which was
conceptualized based on the Dead Zone model, where the effect of Dy, @, and B
were embodied in the dead zone residence time (Beer and Young, 1983) and
advection is incorporated using a time delay parameter, tq (section 2.2.5). Similarly,
the effects of a and B on dispersion of solute may be incorporated in Dys enabling
one to eliminate the theoretically less understood exchange coefficient a. This
concept is used in the present study of developing the ATS model, where the effect
of Dy; @, and B is embodied in a parameter Dy, in 2 way similar to Dy, of the, AD
fnodel. The ﬁarameter Dy s termed as the ATS dispersion coefficient.

Unlike the ADZ mbdel, which is conceptualised by neglecting the main
channel dispersive characteristics, thé governing equation of the ATS model has
been derived directly from the TS model. The ATS model gives a greater insight
into the dispersion mechanism of transient storage zone in comparison with the
ADZ model. In the TS modelling approach there is yet a rather poor understanding
of the role of exchange coefficient, a on the exchange of solute between the storage
zone and the overlying water, and it is not feasible to estindate a theoretically
(Rutherford, 1994). But the usage of a can be avoided In the ATS modelling by
lumping the effects of Dy, o, and B into the single parameter Dy, This also avoids
the estimation of Dy separately.

It may be inferred from Eqn. (5.18) that the parameters responsible for
dispersion, viz., Dy, B, and o are interrelated. Hence, it is possible to have different
combinations of these parameters that can simulate the solute transport in rivers in

the presence of transient storage. The same has been pointed out by Rutherford
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(1994) stating that "It is not easy to obtain a unique calibration of Dy, B, and a

from a set of tracer results.” As pointed out by Rutherford (1994), more research is

still needed to interpret the physical significance of the model parameters, since

comparatively few data sets have been analyzed and not enough information is

available for practitioneré.

5.3.1 AdvantageS of the model

The following are the advantages of the proposed ATS model (Eqn.5.16)

over the TS model's system of partial differential equations in the TS model (Eqns.

5.1and 5.2)

1.

The  ATS equation (Eqn. 5.16) is in a form similar to that of the AD
equation, which enables one to develop analytical solutions analogous to that
of AD equation (Eqn. 2.2)

The ATS equation can be solved using simple numerical methods, which
have already been used and tested to solve the AD equation, unlike the
complex numerical methods used to solve the governing equations of the TS
model.

The effect of individ_ual parameters U, B, a, and D on the overall dispersion
of the ATS model can be investigated based on Eqn. (5.18).

The number of parameters of the TS model can be reduced by replacing the
combined effects of U, o, B, and D, on dispersion with a single
representative parameter Dy, analogous to the dispersion coefficient Dy, of

the AD equation. This reduces the problems associated with parametric

‘uncertainty (because of the reduction in parameters) and estimation of a

unique calibration set of Dy, o, and B values of the TS model.
The ATS equation using the parameter Dy avoids the usage of exchange
coefficient o. This enables one to overcome the difficulty expressed by

Rutherford (1994) in estimation of model parameter, o that there is yet no

1%
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clear understanding of the rate of exchange between transient storage zone

and the overlying water and it is not feasible to theoretically estimate o from

physical characteristics of flow and channel.

The disadvantage of the ATS model is that it cannot reproduce the TS model
solutio‘n beyond a certain range of o and B because of the assumptions and
approximations involved in its development from the TS model equations. The
terms containing o and B, particularly o’ in the denominator, associated with the 3™
and higher order derivatives of concentration restrict the applicability of the ATS
model well within the applicability range of the TS model. In addition, further.
research is necessary to know the concehtration of the solute in the transient storage

zone using ATS model.

5.4 ANALYTICAL SOLUTION OF THE’APPROXIMATE TRANSIENT

STORAGE MODEL

The Transient Storage model cannot be solved to give an analytical solution
for the concentration C(x,t), However, the form of the ATS model enables one to
develop analytical solutions analogous to those corresponding to the AD equation-
developed for impulse input, step input, and pulse input boundary conditions under
steady flow conditions assuming U and Dy as constant. The analytical solution of
Eqn. (5.16), for steady and uniform flow conditions in a river, for uniform step
input boundary condition (C(x,0)=0, and C(0,1)=C,), (known as Ogata and

Banks (1961) solutions for the AD equation), has been given as

C(x,t) = %’{erfc(%} + exp(gs xJerfc[; +I;Js :JJ (5.19)

where, erfc(z)is complimentary error function given by Eqn.(2.5) Us and Dy are

given by Eqn. (5.17) and (5.18) respectively.
The analytical solution of the th. (5.16) for an impulse input of

conservative solute mass M is given as
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C(x,1) =

: 2
exp (x=U, 0 (5.20)
AJ4IID, ¢ 4D, ¢

The analytical solution of Eqn. (5.16) for uniform pulse input of duration, t, during

t <1 is given by Eqn (5.19) and during t > 1, it is given as

( . .

erfe x=U.t —erfe x-U,(rt-17) N
2Dy, ¢ 2\D,, (t-1)

= U, x o x+U,t o oy x+U,(t~-1)
D¢ 2D, ¢ 24D, (t-7) |

Based on the AD equation, a simplified Muskingum type solute routing model

C(x,t)=%’-< (5.21)

(AD-VPM model) was developed in Chapter 3. In a similar way, a simplified
Muskingum type solute routing model can be developed using the ATS model
equation for modellihg solute transport process in the presence of transient storage

zone along the river reach.

5.5 DEVELOPMENT OF MUSKINGUM SOLUTE TRANSPORT MODEL
The Approximate Transient Storage model enables the development of

4 Muskingum flow routing type solute transport model formulation based on the -

concept of the VPM method in a way as demonstrated for the case of the ADJ;I

equation (sections 3.2 and 3.3)

5.5.1 Solute Transport Model Formulation- Steady Streamflow Conditions

The assumptions made and the procedure followed to develop aﬁ
approximate AD equation (Eqn. 3.12) in section 3.2 of Chapter 3 can be adopted to
develop a simplified ATS equation as described below: |

Eqn. (5.16) can be written as

oc + o(U,C) _ 52(DLu_C_)_
ot ox ox?

(5.22)
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Figure 5.1 Definition sketch of the Muskingum solute routing reach

Assuming that the concentration varies linearly over a small reach length as shown

in the definition sketch Fig. 5.1, Eqn. (5.22) can be written as

oC - UI"" ax)
= 2 =0 5.23
ot — Ox (O.2)

In a way similar to Eqn. (3.8), the concentration at the middle of the reach C,, is

represented as

D, oC
C,=C-—ta— 5.24
% U, or £
using the th. (5.24), Eqn. (5.23) is expressed as
oC oc,, . ‘
—+U,—=%£=0 5.25

The linear variation of Cover the small reach enables one to write
(0C,, [2x)=(8C[ox). Then Eqn. (5.25) can be written as

oC oC
—+U.—=0 )
at+ e (5.26)

The form of Eqn. (5.26) is similar to the approximate Advection-Dispersion
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equation (Eqn.3.10) given in Chapter 3. The Muskingum type solute transport
model can be formulated based on Eqn (5.26), using the assumptions made in
section 3.2 of Chapter 3, and adopting the procedure similar to that presented based
on the approximate AD equation (Eqn. 3.10) in section 3.3 of Chapter 3. This
formulation is presented below: |

Assuming linear variation of the concentration (assumption 2, section' 3.2) and
applying E(}n. (5.26) at section 3, shown in Fig. 5.1, yields

dS. »
where C,and C,are the inflow and outflow concentrations, at a time step

respectively and S is the storage of mass per unit inflow rate analogous to the
storage of flow and is given by

Ses =Koy [ecmcl +(1- ecm )Co ] . ’ (5.28)

where, K, denotes the travel time and is expressed as
K, == (5.29)

8., denotes the weighting parameter and is expressed as

) =_1-_&~£=;_ \ (5.30)
2" U, Ax

Substituting the expression'for U, from Eqn. (5.17) and Dy from Eqn. (5.18), in

~ Eqns. (5.29) and (5.30) respectively gives

K, =%x-(1+ﬂ) | (5.31)
‘and
_1 | D, Ug* 1(1+p)
6o =3 [(l+ﬂ)+a(l+ ﬂ)’} Uhr (5.32)

th. (5.32) can also be written as
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22
. =l |p LA | L (5.33)
2 a |UAx

Using Eqn. (5.28) in Eqn. (5.27), the solute routing equation is expressed as
C,; =0,C,; +0,C 0 +0,4C, 1 (5.34)
where, C,, and C,,, are the inflow concentrations at time jAt and (j-1) At

respectively; C,; and C,,, are the outflow concentrations at time jAt and (j-1)At

0.j
respectively; and o,,,0,,, and @,,are the coefficients of the routing equation

expressed as

. -K,06.,. +At]2 (5353)
K, (1-6,)+At/2
= -Km‘em +At/2 (5:35b)
K, (1-6,)+At/2
_K,(1-6,)-At/2 (5.350)

W3 =
K, (1-8,)+At/2
It is interesting to see that if § = 0, the expressions for X, and 6, get

reduced to K, (Eqn. 3.21) and 8, (Eqn. 3.31). Eqns. (5.31) to (5.35) can be used to

study the solute dispersion under steady flow condition. Since the approach
employed in the development of the VPM method (Perumal, 1994a) has been used
in arriving at Eqn. (5.34), and considering that the proposed method has been
developed using the simplified Approximate Advection-Dispersion equation

(Eqn. 5.26), this method of solute routing may be called as ATS-VPM method.

5.5.2 Solute Transport Mo’dél Formulation- Unsteady Streamflow Conditions

Simultaneous routing of flow and solute using the AD-VPM was envisaged
in Chapter 4, based on the Approximate Advection-Dispersion equation of the
respective process, to study.the one-dimensional solute transport under unsteady

flow conditions. The VPM method was used to model the flow diffusion process.
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Similar assumptions and solution procedure can be adopted to study the solute
trarisport in rivers under unsteady streamflow conditions in the presence of the
‘transient storage mechanism affecting the solute transport. The parameters of the

AD-VPM solute routing method (K, and@.) were integrated with the parameters
of the VPM flow routing method (K, andé,) as described in section 4.2, Chapter
4. Ifx a similar manner the parameters of the ATS-VPM method (X, and 6,,) and
the parameters of the VPM flow routing fnethod (K, and6,) may be integrated,

and the parametric relationships thus obtained are expressed as (using Eqns. 5.31

and 4. 5)
= P(GR/%y) | |
K., —Kf[1+m GAIGY) }(Hﬂ) | ‘ (5.36)
and (using EAqns. 5.30 apd 4.9) [
. 1 D, b |
0.,=6,+ T (P&R/é‘y) 1+ p)D,, } (5.37)
1+m
c4ldy ),

e

However, the integration of 6, with 6, needs further studies, as unlike in

the case 6f AD-VPM method where Dy is directly related to Dj, Dy is not directly
related to Dy. The relationship between Dyys and Dy is not yet established. Dy
depends not only on the dispersion of the main channel flow, but also on the
dispersion due to storage zone fnechanism. Flow and solute can be routed
simultaneously because of the similarity in the model structure and the integration
of parameters of both the models. The algorithm of the ATS-VPM model coupled
with the VPM flow routing method to simulate the solute transport under unsteady
flow conditions in the presence of transient storage mechanism affecting dispersion

process is presented in Fig. 5.2.
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[ Routing Step J = 1 l
Y

Estimate initial K , and@ and K, and6, using Eqns. (4.5)
& (4.6) and Eqns. (5.31) & (5.32) and initial values of flow

bl I=]+

. | Iteration step =1 |

_ Estimate €, €2 & €,
K6 a2 o KGemi2 o K(-0,)-6112
& = s = » E4 =
APVNTK (-0 +ai2” K -8+ M2 T K, (1-6,)+A1/2
and ®,,@,, and @, using Eqn. (5.35)

Estimate (05), = 6(0)),; +&01),1 +65 (Qo);-l ‘

C,=0,C + wszcr it a)le3c

Estimate 0, = 6, (lQ,)J +(1-6,)(Q,),

Estimate yy; using Newton-Raphson Method from Q; = Ay C, (Ry) ™ S ;’2

‘
Estimate Oy = [J(LQJ ) ;¥ Qo) ) i 12

Estimate Fy = O,, 2 (0A/5y)\)/g A2,
1

Estimate, y3= ym + (03-0), ) / (0A/By)l {1 + m [(POR/By)/(BA/Oy)ja} Uns

¥
[ Estimate A, corresponding to y3 ]

Estimate revised K randd . and K, and 8., for the present routing
step using Eqns. (4.5) & (4.6) aﬁ Eqns. (5.31) & (5.32) respectively

I[=1+1 ‘I

| No '—_l_j
< —_ISI1>27

y_Yes
Estimate v; = vy + ((0p) , - O\, Y( OA/dy)y {1+ m [(POR/OY)/(BA/Oy)T }U

No [ ISI>Nsteps? |

Yes
STQOP
Figure 5.2 The solution algorithm of the ATS-VPM method under unsteady
streamsflow conditions
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56 CONCLUSIONS

Approximate Transient Storége (ATS) model has been developed from the
governing equations of the TS model. The merits and demerits of the ATS model
were discussed. The arnalytical solutions of the ATS model equation were presented
for impulse, pulse, and step input boundary conditions. The ATS-VPM solute
transport method was presented for studying the transport processes under steady
and unsteady streamflow conditions.

The comparison of the ATS model and the TS model, the applicability
ﬁfiterion of the ATS-VPM method and the applications of the proposed ATS-VPM

method are presented in the next chapter.
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Chapter 6
APPLICATIONS OF THE APPROXIMATE TRANSIENT
STORAGE MODEL

‘6.1 GENERAL

Several researchers have suggested that the transient storage mechanism in
natural channel is responsible for the skewed nature of solute concentration
variation with time in rivers. Transient Storage (TS) model has been used to model
the solute transport in rivers affected by transient storage mechanism. The TS model
divides the flow into two zones viz., the main stream in which the one-dimensional
equation given by Eqn. (5.1) gove.rns the solute transport process, and the transient
storage zone along the bed and banks, in which the solute is assumed to be
thoroughly mixed and the concentration is assumed to be uniform. Exchange of
solute takes place between the main channel flow and the transient storage zone.
These two processes are described using a set of governing equations given by
Eqns. (5.1) and (5.2) (Bencala and Walters, 1983).

In the present study, an Approximate Transient Storage (ATS) model
described by the Eqn. (5.16), has been developed in Chapter S for studying solute
transport process in rivers subjected to the TS process under steady as well as
unsteady flow conditions. The governmg equatlon of the ATS model was derived
from the TS model equations (Eqns. 5.1 and 5.2). Equatlon (5.16) incorporates the
effecfs of transient storage mechanism on flow velocity as Eqn. (5.17) and on
dispersion coefﬁ'cieht as described by th. (5.18). Based on the proposed ATS
model, the ATS-VPM model was developed (section 5.4).

This chapter is intended to evaluate the ATS model and the ATS-VPM

model in detail presenting (i) the cemparison between the solutions of the TS model
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and the ATS model (ii) the applicability of the ATS-VPM model, and (iii) the
applications of the ATS-VPM model under steady and unsteady streamflow

conditions.

6.2 COMPARISON OF THE TRANSIENT STORAGE AND THE
APPROXIMATE TRANSIENT STORAGE MODELS
In the development of the ATS model from the governing equations of the
TS model, it was assumed that the 3 and higher order derivatives of concentrations
are negligible. Hence, the ATS model is only an épproximation to the TS model. It

can be inferred from Eqn. (5.14) and the equation of the ATS model (Eqn. 5.16) that
the parameter B used in the TS model is responsible for the difference between the
velocity of solute cloud and that of the ﬂow.- The parameter f, defining the ratio of
the transient storage zone area to the main channel area, influences the dispersive
mechanism provided the exchange of solute between the main channel and the.
transient storage zone exists. The influence of Dy on dispersion of solute depends
on the rate of exchange of solute o, and B (Eqn. 5.18). In the TS modelling, the
dispersion of a sdlute in a river is contributed by the main channel flow and by the
transient storage zones. The parameters o and  governing the transient storage
mechanism are mainly responsible for the dispersion of solute, particularly under
low flow conditions. The rate of exchange .represented by the parameter o ranges
frorﬁ a value as low as 10%/s (Seo and Cheong, 2001) to a value of 0.0162/s (Runkel
et al.,, 1998). When a, is low, its effect on the disper_sion of solute would be more in
comparison with the corresponding effect of Dy ih ihe presence of transient storage
mechanism. This may be explained using Eqn. (5.18) in, which a is present in the

denominator of the second term of the right hand side of the equation.
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6.2.1 Applicability Analysis of the ATS Model

As the ATS model is an approximation to the TS model, it is necessary to
evaluate the applicability criterion under which the ATS model can reproduce the
- complete TS model solution. This has been studied based on the numerical solution
of the complete TS model equations (Eqns. 5.1 and 5.2) for a given hypothetical
uniform pulse input. The numerical solution of the TS model used in the present
study was obtained using the Crank-Nicolson model suggested by Runkel and
Chapra (1993). The numerical solution, thus obtained for the hypothetical input is
considered as the benchmark solution with which the analytical solution of the
proposed ATS model is compared. The analytical solution of the ATS model was
obtained using Eqns. (5.19) and (5.21) for uniform pulse input. The agreement
between the solutions of the ATS model andl the TS model is measured using the
Nash and Sutcliffe criterion, n given by Eqn. (3.24). i

In. general, the solutions of numerical models are compared with the
analytical solutions sc; as to know the performance of a numerical mddel. However,
in the present study the analytical solution of the ATS model is compafed with the
benchmark numerical solution of the TS model. Hence, it is considered that the‘ ATS
model is able to closely reproduce the numerical solution of the TS model, when
n>98%. However, criterion with 1<98% may also be adopted for applying the
model to field problems provided the results are. acceptable under prevailing field

conditions.

< The term [ﬂ/(a(l+ ﬁ))]2 that is associated with the 3™ order derivative of
concentration (Eqn. 5.14) inﬂuénces the close reproduction of the TS model by the
ATS model. When, [B/(a(1+B)J is considered to be insignificant, then the
solution of the TS model and that of the ATS model may not be significantly

different from each other. Therefore; the magnitude of.[ﬂ/(d(l+ ,B))]2 may be
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considered as the criterion for the applicability of the ATS model for the
satisfactory approximation of the TS model. For further discussion on this chapter

let it be expressed as A, i.e.,

[ 87
*‘[aaw)] 1)

The A is determined by reproducing the TS model results, obtained using

hypothetical data, by the ATS model for the same data. In this study, it is
considered that when the ATS model is able to closely reproduce the TS model
results with Nash-Sutcliffe critéric;n, 1 >98%, then the ATS model is an acceptable
approximatioﬁ of the TS model. |

A hypothetical uniform pulse input of 50 mg/! for 2 hrs. duration is applied
to arrive at the numerical solution of the TS model. The analytical solutibn of the
ATS model for this input is compared with the respective numerical solutions of TS
model obtained for different combinations of velocities, dispersion coefficients,
exchange coefficients and different values of 3. The value of U and B used in the
numerical experiments vary in the range of 0.125m/s to 1.0m/s, and 0.1 to 0.75
respectively. The value of B, generally ranges from 0.01 to 0.50 (Seo and Cheong,
2001), but values as high as 3.0 (Bencala and Walters, 1983) and 15.9 to 34.3
(Runkel et al., 1998) have also been reported in literature. However, Runkel et al.
(1998) stated that such high value of B might not be realistic. The value of o used in
fhese numerical -experiments ranges from 0.000025 /s to 0.0007/s. Since the
magnitude of A decides the closeness of the solution of the ATS model and the TS
model, it is obvious from Eqn. (5.14) that the value of Dy would have less or

insignificant effect in reducing the TS model to the ATS model. This inference can

be made from Eqn. (5.14) wherein Dy, is present in the terms [Uﬂ ’D, [(a(1+ ﬂ))’]

and [,BD“ / (a(l-{- ,B)’)] associated with the 3" order derivatives of C and these

terms containing Dy cannot magnify the 3" order derivatives of C, because of the
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presence of o in their denominator to an extent that influences the TS model
solution. Hence, a constant value of Dy =2.5 m*/s was used in the numerical
experiments. The comparisdn of both the ATS and TS models solutions are shown
in Figs. 6.1 to 6.6. The results are summarised in Table 6.1. Based on the numerical
experiments it is concluded that the ATS model can reproduce fhe TS model

solution with a n>98%, when the value of A < 10°,
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Figure 6.1 Solutions of ATS and TS models for U=0.125m/s, f=0.25 at x=2km
and 4km, a) o = 0.00025/s, b) o= 0.00035/s
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Figure 6.2 Solutions of ATS and TS models for «=0.000075/s, U=0.5m/s, $=0.05
at x=5 km and 10km .
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Figure 6.3 Solutions of ATS and TS models for a=0.0005/s, U=0.5m/s, $=0.5 at
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Figure 6.4 Solutions of ATS and TS models for o=0.00035/s, U=0.75m/s, $=0.25
at x=5 km
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Figure 6.5 Solutions of ATS and TS models for a=0.0006/s, U=0.75m/s, p=0.75
at x=5 km
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Figlire 6.6 Effect of oo on the solute tfansport in the presence of transient:.
storage zone mechanism for U=1.0m/s, B=0.75 at x=5 km
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Figure 6.7 Solutions of ATS and TS models for o=0.000075/s,U=0.125m/s,
B=0.25 at x=2 km |
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Table 6.1 Summary of the results. for the determination of limiting criterion of
ATS model to reproduce the TS model solution '

Velocity B a A ul
(m/s) (s (%)
0.125 0.000025 1.32E+07 0.94
0.1 0.00005 3.31E+06 0.98
0.000075 1.47E+06 0.99
0.0001 8.26E+05 0.99
0.00005 1.60E+07 0.89
0.000075 7.11E+06 0.94
0.25 0.0001 4.00E+06 0.97
0.00025 6.40E+05 0.99
0.000335 3.27E+05 0.99
0.25 0.1 0.00005 | 3.31E+06 0.96
0.000075 " 1.47E+06 0.98
. 0.000075 7.11E+06 0.89
0.25 0.0001 | 4.00E+06 0.96
0.00025 6.40E+06 0.99
0.0001 1.I1E+07 0.91
0.5 ~0.00025 1.78E+06 0.96
0.00C35 9.07E+05 0.98
0.0003 4.44E+05 0.99
05 "0.00001 2.27E+07 092
0.05 0.00003 2.52E+06 0.96
0.00005 9.07E+05 0.98
0.000075 4.03E+05 0.99
0.25 0.000235 6.40E+05 0.98
0.0003 1.23E+06 0.97
0.5 0.0004 6.94E+05 0.99
0.0005 4.44E+05 0.99
0.75 0.0004 1.15E+06 0.97
0.000535 6.07E+05 0.98
e 0.7H 0.0001 - 4.00E+06 0.90
0.25 0.00025 6.40E+05 0.98
0.00035 327E+05 | 0.99
0.00025 1.78E+06 0.98
0.5 —0.00035 " 9.07E+05 0.98
0.0005 4.44E+05 0.99
~0.0004 1.15E+06 |- 0.97
0.75 0.0005 7.35E+05 0.97
—0.0006 5.10E+05 0.98
1 0.000075 7.11E+06 Oscillatory
0.25 0.00025 6.40E+03 0.98
0.0005 | 1.60E+05 0.99
0.0003 1.23E+06 0.98
0.5 0.0004 6.94E+05 0.98
0.0005 4.44E+05 0.98
0.00025 2.94E+06 0.96
0.75 0.0004 - 1.15E+06 0.99
0.0007 3.75E+035 0.99
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6.3 Ai’PLICABILITY ANALYSIS OF THE ATS-VPM MODEL

In order to enable the 'application of the ATS model to field problems, it is
necessary to develop a solution algorithm based on the ATS equation. Using the
similarity between the ATS equation (Eqn. 5.16) and the AD equation (Eqn. 3.1), it
is considered appropriate to develop numerical solution algorithm using the
approach employed in the'devéldpment of the VPM model. Accordingly, the
ATS-VPM model, an approximation of the ATS model wés developed in a Way
similar to that of the AD-VPM model. The ATS model gefs.reduced to the AD
modlel, if B=0. Hence, the applicability criterion arrived at for the AD-VPM model
in reprodﬁcing the solution of AD equat;on (Section 3.5.2) can be adopted here also
to arrive at the applicability criterion of the ATS-VPM model for the close
reproduction of the anaiytical solutioh of the ATS model with Nash-Sutcliffe ™
criterion, N>99%. Using Eqn. (3.25), and Eqns. (5.17) and (5.18), thev relationship
between the solute cloud velocity U, B and the limiting Dy, describing the

boundary of the applicability domain expressed as

1N )
U g
D, =416.64 | —— 6.2

For a given value of U and P the value of the limiting Dy, for the successful
application of thé ATS-VPM model, can be determined using the Eqn. (6.2). The
limiting Dy obtained for a giyen velocity and‘ B allows one to know the domai‘n
within which the performance of the ATS-VPM model in reproducing the aﬁalytical
solution is satisfactory u‘siﬁg the Nash-Sutcliffe criterion (n) greater than 99%.
Using Eqn. (5.18) and Eqn. (6.2), the expression to compute the minimum value of
o above which the ATS-VPM model can reproduce the solution of the ATS model

can be arrived at, and is expressed as
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ﬂ2u2

-— 6.3
“ =D, A+B)Y-D (+4) (©.3)

The validity of Eqn. (6.3) was tested by computing the minimum value of o
and estimating the corresponding value of o by performing numerical experiments
for a given set of U, B, and Dy. The hypothetical uniform input of 100 mg/l for a
duration of 2hrs was used in the num¢rical experiments to arrive at the analytical
solution of the ATS model. The analytical solution of the ATS model was obtained
for-uniform pulse input using Eqns. (5.19) and (5.21). The agreement between the
solutions of the ATS model and'__ TS model is measured using the Nash and
Sutcliffe's criterion. The value of o thus obtained was close to the value of a
computed using Eqn. (6.3). The summary of the results is presented in Table 6.2.
The comparison between the solutions of the ATS-VPM model and the ATS model
is shown in Figs. 6.8 to 6.12. While conducting the numerical experiments based on
the hypothetical data for varying values of U, B and o (Table 6.2), it is found that
the ATS-VPM model conserves mass with an error of less than 1 % for all the cases
studied.

Because of the similarity between the AD-VPM and the ATS-VPM models,
the conclusions arrived from the studies of parameter sensitivity and the effect of
using different number of sub-reaches in a given routing reach, as described in
section 3.5 for the AD-VPM model are appl'icable for the ATS-VPM model also.

Hence, when there is a variatioﬁ of £ 20% in the value of Dy, the solution of the
| ATS-VPM model would not be affected significantly. This aspect can be observed

in Mimram River experimental test case presented in the next section.
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Table 6.2 Limiting value of o computed using Eqn. (6.3) and from Numerical
experiments for given U, 3, Dy, and limiting Dy,

Velocity | D Limiting a.from . a
B @/s) | (m? ;s) D%t, numencgl Expt. from‘qu]x.
_(m/s) ) (6.3) (s)
0.1 0.1 1 6.85 0.000013 0.0000126
' 5 6.85 0.000033 0.0000325
0.25 5 32.90 0.00002 0.0000166
15 32.90 0.000033 | 0.0000244
0.5 15 | 107.78 0.000022 0.000020
50 107.78 0.000031 0.0000301
100 107.78 0.00011 0.000111
0.75 50 215.76 | 0.000025 0.0000248
150 215.76 0.000054 0.0000532
X 200 215.76 0.00013 0.000125
1 =75 353.07 0.000027 0.0000264
200 353.07 0.000044 0.0000439
‘ 300 353.07 0.000095 0.0000935
1.25 | 100 517.32 0.00003 0.00002735
1.5 100 706.82 0.00003 0.0000274
500 706.82 0.00007 0.000067
0.3 0.25 7.5 2477 0.00014 0.000135
20 24.77 - 0.00026 0.000274
0.5 25 80.97 0.00017 _0.000166
- 75 80.97 0.0004 0.00044
1 100 265.25 0.00022 0.000218
200 265.25 0.00035 0.000368
1.5 25 | 531.02 0.00013 0.00018
75. 531.02 0.00015 0.000195
g0:5 0.25 1.5 19.35 0.00034 10.000323
' 20 19.35 0.00085 0.00077
0.5 10 63.38 0.00035 0.000327
25 63.38 0.0004 -0.000396
0.75 25 126.88 0.00038 0.000378
75 126.88 0.00055 0.000542
1 50 207.62 0.0004 0.000425
150 207.62 0.00065 0.000688
1.5 50 415.64 0.0004 0.000436
200 415.64 0.00075 0.00059
0.75 0.25 5 14.86 0.000575 0.000547
10 14.86 0.00075 0.000717
0.5 5 48.68 0.00057 0.000573
25 48.68 0.00077 0.000763
0.75 10 97.45 0.000625 0.000644
50 97.45 0.00086 0.000857
1 10 159.46 0.00065 0.000683
' 50 | 15946 ~0.0008 0.000802
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Figure 6.8 Solution of ATS model and ATS-VPM model for a=0.000075/s,
B = 0.1, U=0.7Sm/s, D=30m%/s, at x=4km and 8km
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Figure 6.9 Solution of ATS model and ATS-VPM model for a=0.00005/s,
B = 0.1, U=0.5m/s, D=7.5m’/s, at x=2km, 4km and 10km
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Figure 6.10 Solution of ATS model and ATS-VPM model for o=0.0002/s,
- B=0.3, U=0.5m/s, D;,=10m?/s, at x=2.6km and Skm
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Figure 6.11 Solution of ATS model and ATS-VPM model for a=0.0003/s,
3=0.5, U=1.0m/s, Dg,=2.5m2/s, at x=4km and 6km
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Figure 6.12 Solution of ATS model and ATS-VPM model for a=0.00025/s,
B=0.5, U=0.5m/s, D,=2.5m?/s, at x=2km and 4km

6.4 | APPLICATION OF THE ATS-VPM MODEL UNDER STEADY FLOW
CONDITIONS :
The applicability of the ATS-VPM model needs to be tested using

hypothetical data, and data from tracer experiments conducted in rivers. Analysis of
the model using hypothetical data was presented while conducting the numerical
experiments in section 6.3. Two sets of solute dispersion experiments, one on the
Mimram river (Lees et al, 1998) and another on the Uvas creek (Bencala and
‘Walters, 1983), were used to test the applicability of the ATS-VPM model for field

conditions.
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6.4.1 Application to Mimram River Tracer Experiment

A tracer experiment was conducted by Lees et al. (1998) in a reach length of
approximately 200 m on Mimram River near the Panshanger flow gauging flume in
Hertfordshire, England. The experimental details are given in Appendix B 1.3. The
available C-t measurements of this experiment at Site A at 100 m downstream from
injection point; site B at 40 m downstream from site A; and Site C at SO0 m
downstream from site B were used in this test case. The observed hydro-geometric
characteristics and the values of the parameters estimated by Lees et al. (2000) for

the reaches between sampling stations A and B, and stations B and C are presented

in Table 6.3.

Table 6.3 The hydro-geometric characteristics and the parameters for

Mimram tracer experiment (Lees et al., 2000)

Reach | Cross-section Tt D »
Reach | Length area 2 B g
(m) sz ) (In/S) (m /S) (S )
A-B 40 0.6798 0.3692 0.25 0.1896 | 0.0059
B-C 50 1.0150 0.2473 0.64 0.1785 | 0.0017

Using the parameter values estimated by Lees et al. (2000), the values of A,
Dy, and the limiting value of Dy, were computed to know whether these values fall
within the applicability domain of the ATS-VPM model. The computed values of A
and Dy and the limiting value of Dy for the observed velocity are shown in
Table 6.4. It can be inferred from these values that the ATS-VPM model can be

used to simulate the C-t curves observed from tracer experiments conducted on

Mimram River.

Table 6.4 The magnitude of A, D1 and Limiting Dy, based on the parameter

values given by Lees et al. (2000)- Mimram River

Dy | Limiting Dy
Reach A (m?/s) (m%/s)
A-B 0.73 x 10° | 0.70 56.0
B-C 794%x10° | 1.24 28.8
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Using the ATS-VPM model and the parameter values presented in Table 6.3,
which were estimated by Lees et al. (2000), the C-t curves at site B and at site C
were computed. The observed C-t curves at site A and B define the input C-t curves
for the reaches A-B and B-C respectively (Lees et al., 2000). The ATS-VPM model
was able to simulate the observed C-t curves at site B and at site C satisfactorily
with a m equal to 97.303% and 90.843% respectively. The comparison of the

observed and computed C-t curves at site B and site C are shown in Fig 6.13.
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Figure 6.13 Observed and simulated concentration at sites B and C using
ATS-VPM model and TS parameters given by Lees et al. (2000)-

Mimram River

It is important to note that the values of the parameters, viz., o, B and Dy
used for the simulations of the observed C-t curves were estimated by Lees et.al.
(2000) for the TS model simulations.

Estimation of the parameter values by one model and use of these in another
model of different structure rﬁay pose difficulties. Therefore, it seems prudent to
apply the same model for identification and prediction of a system (Koussis et al.,
1983). Hence, instead of using the parameter values estimated for the TS model by
Lees et al. (2000), the parameter § and Dy were estimated using the ATS-VPM
model. In estimating the values of parameters B and Dy, the C-t curves at sampling

sites A and B define the input concentration for reaches A-B and B-C respectively.
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The parameters were estimated by trial and error using the following procedure:

i)

if)

iif)

iv)

The value of B is varied from 0 to a value of 0.4, which is
approximately more than twice the value given by Lees et al. (2000).
For each value of B, the best Dy was determined using the following
procedure, which is the same as that adopted in section 3.6.1
(Chapter-3) to estimate the dispersion coefficient, Dy.:

The C -t curve at an input section is routed through the reach, for an
assumed @, to arrive at the computed C-t curve at output section.
The computed and “observed C-t curves at output section are
compared using the Nash-Sutcliffe criterion, n. This experiment is

repeated for varying 6, values, and that @, which results in the

maximum value of Nash-Sutcliffe criterion, n,‘ is considered as the
best value. This 8, was used in the estimation of the best Dy using
Eqn. (5.30).

The step (ii) was repeated for varying values of B.

The combination of B and Dy that result in maximum m was

considered to be the best set of parameter values.

The calibrated values of § and Dy in simulating the C-t curves at site B and

Site C are presented in Table 6.5. The best value of Dy for B=0 gives the Dy, of the

AD-VPM model. The C-t curves at sites B and C were computed for the estimated

value of Dp using the AD-VPM model. Comparison of the observed and the

simulated C-t curves using the AD-VPM model is shown in Fig 6.14. The C-t

curves at site B and site C were simulated using the ATS-VPM model with the

estimated values of the parameters B and Dy, and the compariSon of the observed

and simulated C-t curves is shown in Fig 6.15.
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Figure 6.14 Observed and simulated concentration at sites B and C using

AD-VPM model - Mimram River
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Figure 6.15 Observed and simulated concentration at sites B and C using

ATS-VPM model - Mimram River

Table 6.5 Estimated values of the parameter using the ATS-VPM model and
the values of nat site B and site C

Reach B ([I;%/‘;) (02) Remarks
A-B 0 0.554 | 94.788 | AD-VPM
0.1375 | 0.487 | 98.098 |ATS-VPM

B-C 0 0.696 | 85.275 | AD-VPM
10.2625 | 0.490 | 96.314 |ATS-VPM
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Using the ATS-VPM model and the value of p=0.1375 and Dy = 0.4869
m?/s obtained for the reach A-B during calibration (of C-t curve at site B, Table
6.5), t§ simulate the observed C-t curve at site C with the C-t curve at site B defines
the input concentration, gives a 1=94.005%. The simulated C-t curve at site C in

verification mode is shown in Fig. 6.15.

6.4.2 Application to Uvas Creek Tracer Experiment

Bencala and Walter (1983) described the tracer experiments conducted
in Uvas Creek, a mountain stream. The experiments were conducted during a period
of low flow of 0.0125 m%/s. The observed C-t curves at a distance of 38m
(station 1), 105m (station 2), 281m (station 3) from the tracer injection point were
used in the present test case. The C-t data used in this test case are presented in
Appendix B 1.5,

The significant feature of the concentration data is the extent of the long tails
present in the observed C-t curves. Bencala and Walters (1983) observed that the
AD model would not explain the tracer transport in Uvas creek that is dominated by
transient storage mechanism. Hence, they used the TS model to simulate the
transport of chloride in Uvas Creek River. For the application of the TS model, the
best fit model parameters were obtained in downstream sequence for each of the
five reaches between successive sampling iocations. Bencala and Walters (1983)
selected the model parameters by visually determining the set of parameters, which
yielded the best fit to the C-t curves. The parameter values thus estimated by
Bencala and Walters (1983) are presented in Table 6.6. The effective storage zone
area A, for Uvas creek is -greater than or equal to the main channel flow cross

sectional area A. This may be due to very low velocities of flow in the Uvas Creek
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(Table 6.7). Bencala and Walters (1983) stated that the following may be the
plausible reason for the high value of storage area compared to main channel area.
1. turbulent eddies generated by large-scale bottom irregularities,

2. large, but slowly moving recirculating zones along the sides of pools,
particularly located immediately downstream of the entrance to a pool
from a riffle section, |

3. small, but very rapidly mixing recirculating zones located behind flow
obstruction, particularly located in riffle sections where cobble, small

boulders, and vegetation commonly protrude through the ﬂow,»

4. side pockets of water effectively acting as dead ends for solute transport,
and
5. flow into, out of, and through coarse grével and cobble bed.

Table 6.6 The flow characteristics and simulation parameters of the

experiments in the Uvas creek (Bencala and Walters, 1983).

Reach | Discharge | Cross-sectional | D, | Storage zone | Exchange
range (m’/s) area, A (m?s) | Area, A, | coefficient o
(m) bt () (sec™)
0-38 0.0125 . 0.3 0.12 0 0
38-105 0.0125 0.42 0.15 )7 S 0
105-281 | 0.0133 0.36 0.24 0.36 0.3 x 10™
281-433 | 0.0136 0.41 031 { 041 0.1 x 10™
433-619 | 0.0140 0.52 0.40 1.56 0.45 x 10"

Using the parameters o, B, and D, (Table 6.6) estimated by Bencala and
Walters (1983), the parameters of the ATS-VPM model, i.e, Dis and B, the

applicability criterion given by A (Eqn. 6.1) and the limiting value of Dy (Eqn. 6.2)
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were computed to know whether these values are within the applicability domain of
the ATS-VPM model. The computed values of these parameters for the observed

velocity are shown in Table 6.7.

Table 6.7 ATS-VPM parameters and the limiting criterion values for Uvas

Creek.

Reach | Velocity | Dus it FE R, e .D.L\s

range of flow B ) (m?/s Limiting D,

(m) | (ms) m’/s) _ A

0-38 0.0417 0 | 6121 | 1.8052 0.066 0
38-105 0.0298 0 0.150 1.0156 0.148 0
105-281 0.0369 1.0 | 5.806 0.4478 12.96 2.78x108
281-433 0.0332 1.0 {-13.908 0.3724 37.35 2.50 x10°

1433-619 | 0.0269 3.0 | 2.365 0.0795 29.74 2.78x10®

The values of A computed for the Uvas creek reach after 105 m (station 2)
from the point of injection of tracer are much greater than the limiting value
(~10%) required for the successful application of the ATS model. Moreover, Dy
values estimated using Eqn. (5.18) for the reaches after station (2) were also found
to be higher than the values of limiting Dy required for the successful application
of the ATS-VPM model.

Based on the values of the A, Dy, and the limiting Dy, it can be inferred
that the ATS-VPM model is applicable to simulate the observed C-t curves in tracer
experiments conducted on Uvas creek upto a distance of 105m. Hence, the ATS-
VPM model is not applicable to simulate the solute transport after station (2), i.e.,
for simulating the observed C-t curves at station (3), (4) and (5). To demonstrate

this, the ATS-VPM model, with the parameter values estimated by Bencala and
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Walters (1983), was used to simulate the C-t curves at station (1), (2) and (3). In
these tracer experiments, performed for an uniform input of solute with a
concentration of 11.4 mg/l for duration of 3 hours was made. The same was used as
the input to the ATS-VPM model. The comparison of observed and simulated C-t

curves at stations (1), (2) and (3) are shown in Fig 6.16.
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Figure 6.16 Observed and simulated concentration-time profiles at different

sections d/s of the pulse injection-Uvas Creek

The results show that the ATS-VPM model can reproduce the observed C-t
curves at section (1) and (2) successfully with Nash-Sutcliffe criterion, n> 98%. As
stated eﬁrlier, the ATS-VPM model failed to simulate the observed C-t curve at
station (3) because the solute transport process ;n the reach after 105m from the
point of iqjection of dye is not within the applicability range of the ATS model.
Hehce, the ATS-VPM model, which is an approximation of the ATS model, is
applicable to simulate the solute transport upto the section located at 105m from the
injection point of solute. It is noted that the value of B in the reach upto 105m is O,

which implies the absence of TS mechanism. It was already stated that the
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ATS-VPM model get reduced to AD-VPM model for f=0. Hence, the AD-VPM

model is also applicable for the reach upto 105m.

6.5 APPLICATION OF THE ATS-VPM MODEL UNDER UNSTEADY

FLOW CONDITIONS .

The ATS-VPM model developed in seciion 5.5 is meant for solute transport
under steady flow conditions. The same may be suitably adopted for modelling
solute t.ransport under unsteady flow conditions also (section 5.6). This is achieved
by using the assum‘ption that the.ﬂow remains steady within a given routing timg
interval, but varies from one time interval to the next. The ATS-VPM model is
coupled with the VPM flow routing model for solute transport under unsteady flow
conditions. Hence, for the satisfactory application of the model, it should satisfy the
applicability criteria of both the VPM flow routing model and the ATS-VPM solute

transport model.
The hydrograph to be routed should satisfy the criterion I(l/So)ay/axld

at any time for successful application of VPM flow routing model (Perumal,
1994b). In the deQelopment of the ATS-VPM model under unsteady flow
conditions, it is assumed fhat the.ﬂ'ow is steady. dﬁring a routiﬁg time interval, but
varies from one time interval to the nefcf. Hence, the applicability criterion of the
ATS-VPM model evaluated in section 6.3 (Eqn. 6.2) under steady flow condition is
applicable here also.

Accurécy of the ATS-VPM model depends on the estimated dispersion
coefficient for a given velocity of flow and the parémeter B. If the estimated Dy is

less than the limiting value of Dy obtained using Eqn. (6.2) at any time during the
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routing, the performance of the proposed ATS-VPM model may be considered
accurate.

The experimental studies on solute transport under unsteady streamflow
conditions Lin rivers are very few, perhaps, due to difficulties in experimentation as
discussed in section v4.3.4Further, it is not possible to obtain an analytical solution of |
the system of partial differential equations governing the coupled flow (Saint-
Venant Equations). and sélute transport processes (TS model). Hence, the
application of the pfoposed ATS-VPM model for solute transport studies under
unsteady flow conditions needs to be tested-by simulating the numerical solution of
tﬁe TS model coupled with the Saint-Venant Equations (SVE), termed herein as the

SVE-TS model for hypothetical data input.

6.5.1 Solution of the SVE-TS Model

To arrive at the benchmark solution of the SVE-TS model, the following
procedure was used:

A giveﬁ hydrograph at the input section of a uniform rectangular cross-
section was routed to the desired location in the channel reach using the numerical
solution procedure of the Saint-Venant eqﬁatiohs (Viessman et al., 1977) given by
Eqns. (4.23) and (4.24). The results obtained by solving the SVE were used in
solving the TSVequation, to arrive at the benchmark SVE-TS solution.

The algorithm of Runkel (1998) was used fbr solving the TS model in the
present study. Tﬁe oscillation problems aésociated with Runkel solution (1998) have

been avoided by maintaining the Peclet Number (Pe =UAx/DL) sufficiently low,

based on numerical experiments carried out during the study. Thus, the stable

solution obtained by solving the SVE-TS model was considered as benchmark

178



solution needed for the evaluation of the solution of the ATS-VPM model. The
agreement between the solutions of the ATS-VPM médel and the SVE-TS model

was measured using the Nash-Sutcliffe criterion, n (Eqn. 3.24).

6.5.2 Hypothetical Test Studies
Rectangular channels having different channel configurations, but with a
uniform width of 100 m are considered for the hypothetical tests. The slope and

Manning's n of the channels used in these numerical experiments are given in

Table 6.8.

Table 6.8 Configurations of hypothetical channel

Channel Type | Bed Slope (S.) Manning's roughness (n)

1 0.0002 0.02
2 0.0004 0.04
3 0.0004 0.02

The inflow hydrograph and C-t curve used in these numerical experiments
was defined by Eqns (4.25) and =~ (4.26) respectively with the same values of
I, (=100 m%/s), I, (=1000 m’/s), t, (=10 hr.), and y (=1.15) for hydrograph, and C,
(=0 units), C, (= 50 units), te, (=10 hr.), and y (= 1.15) for C-t curve. The inflow

hydrograph and. the C-t curve are réuted through the channel for a reach length of
40km using the proposed ATS-VPM model. A routing time interval of 15 min. was
used in the numerical experiments. The accuracy in the reproduction of C-t curve
shape and size has been evaluated usihg the Nash-Sutcliffe criterion,n. The results

are given in Table 6.9 and the solutions of the SVE-TS and the ATS-VPM model

are compared in Figs. 6.17 to 6.23.
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Table 6.9 Peak concentration and it*s time of occurrence for hypothetical test

studies
SVE-TS model ATS-VPM model
B ¢ | Channel @  |Timetopeak| Peak |Iimefopeak] _ Peak
Type ) (hr) Concentra (hr) Concentra
: tion tion
0.025 1 0.00005 18.00 42.670 18.75 41,738
0.000075 18.25 44.212 18.50 43.819
0.0001 18.25 45.244 18.50 44,965
0.0003 18.25 47.772 18.25 47.455
2 0.00005 20.25 41.758 21.00 40.382
0.000075 20.50 43.632 20.75 43,140
0.0001 20.75 44 871 20.75 44,442
0.0003 20.75 47.916 20.25 47315
0.3 3 0.00005 16.25 44.175 16.75 43.301
‘ 0.000075 16.25 45.550 16.75 45.239
0.0001 16.50 46.529 16.50 46.299
0.0003 16.25 49.007 16.25 48.494
0.05 1 0.00005 18.00 41.940 18.75 40.870
e 0.000075 18.25 43.370 18.50 42.826
0.0001 18.25 44.319 . 18.50 43,916
0.0003 18.25 46.661 18.25 46,286
2 0.00005 20.50 40,978 - 21.00 40.080
0.000075 20.75 . 42.724 21.00 42.287
00001 2075 43.867 20.75 43,524
- 0.0003 20.50 46.677 20.50 46.280
3 0.00005] - 16,25 43.750 16,75 43.032
0.000075 16.50 45.690 16.75 44,943
0.0001 16.50 46.003 16.50 45,981
0.0003 16.50 48.322 16.50 48.155
,0.025 1 0.000075 19.50 39.030 20.50 37.731
0.0001 20.00 40.584 20.50 39.795
0.0003 20.00 45.209 - 20.00 45.105
A 0.0005] __ 20.00 46.819 19.75 46,380
2 0.000075 22.50 37.839 23.50 36.649
0.0001 23.00 39.673 23.25 38.880
0.0003] _ 23.00 45.3%6 275 44757
0.0005 23.00 46.941 - 22.50 46.220
.3 0.000075 17.25 . 40,742 18.00 39.472
0.5 0.0001 17.50 42.139 18.00 . 41.500
0.0003 17.75 46.901 1775 46.534
0.05 1 0.000075 19.50 38.366 20.50 36.900
0.0001 20.00 39.783 20.50 38.840
0.0003 20.25 44.282 20.25 43.776
0.0005 20.00 | 45.470 20,00 44,986
2 0.000075 22,75 37.133 23.50 35.982
0.0001 23.00 38.846 23.50 38.090
0.0003 23.25 44.079 23.00 43.568
00005 23.00 45,501 .75 44.932
3 0.000075] _ 17.25 40.340 18.00 39.209
0.0001 17.50 41.676 18.00 41.196
0.0003] 17.75 46.266 17.75 46.162
0.0005 17.75 47.500 17.50 47.291
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075 | 0025 0.000075]  20.75 33.526 22.50 31.160
0.0002] 2275 39.916 22.75 39.219
0.0003[ 2275 42241 22.50 41.664
0.0005] 2250 44.505 22.25 43.950

0.000075]  25.00 31913 26.50 29.955
0.0002[ 2675 39.249 26.50 38480
0.0003]  26.75 41.861 26.25 41.106
0.0005] 2675 44457 26.25 44.007

0.000075]  17.75 35.632 19.50 32.898
0.0002] 1950 41436 19.75 40981
0.0003| 19.50 43.805 19.50 43408
0.0005] 19.50 46.007 19.25 45612

0.05 0.000075]  20.75 32.994 22.50 30.527
0.0002[ 2275 38.915 275 38071
00003 2275 41014 2275 40311
0.0005] 2275 43.033 232.50 42.404

0.000075] _ 25.00 31.395 26.50 29.462
0.0002| 27.00 38.236 26.75 37.551
0.0003] 27.00 30.612 26.50 40,025
0.0005|  26.75 42.941 26.25 42363

0.000075]  17.75 35.300 19.50 32.698
0.0002] 19.50 40.876 19.75 30612
0.0003]  19.50 43.123 19.50 42974
0.0003] 19.50 45341 19.25 45121

1 0.025 0.0001] 2375 30.936 25.00 28.968
0.0002] 2550 36.205 25.50 35218
0.0003] 25.75 39.083 2525 38298
0.0005] 2575 42.093 2525 41395
00001} 2925 29.600 30.25 27894
0.0002[  31.00 35.419 30.50 34.423
0.0003] 3125 38.567 30.50 37.696
0.0005] 31.25 41.914 30.00 - 41.041
0.0001]  19.50 32.761 2125 30,601
00002 21.25 37.661 21.50 36.967
0.0003|  21.50 40.661 21.50 40.107
0.0005]  21.50 43.787 21.25 43249
0.05 0.0001] - 23.75 30421 | 25.00 28335
0.0002]  25.50 35.309 2550 34.183
00003 2575 37916 25.50 37015
0.0005]  25.75 40.588 25.25 39.821
0.0001]  29.25 29.097 30.25 27.409
0,0002]  31.00 34.539 30.50 33.614
0.0003] 3125 37.419 30.75 36.667
0.0005] 31.25 40.426 30.25 39.758
0.0001]  19.50 32.444 2125 30.400
0.0002] 2125 ~37.164 21.50 36.630
0.0003] 21.50 39.974 21.50 39.684
0.0005] 21.50 42.968 2125 42726
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Figure 6.17 Solutions of SVE-TS and ATS-VPM model for $=0.058, 3=0.3, at
x=20km and 40km d/s from solute source (Channel type-2)
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Figure 6.18 Solutions of SVE-TS and ATS-VPM model for o=0.000075/s,

$=0.058, B=0.5, at x=20km and 40km d/s from solute source
(Channel type-2)
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Figure 6.19 Solutions of SVE-TS and ATS-VPM model for a=0.0005s,

$=0.058, B=0.5, at x=20km and 40km d/s from solute source
(Channel type-2)
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Figure 6.20 Solutions of SVE-TS and ATS-VPM model for «=0.000075/s, $=0.3,
at x=20km and 40km d/s from solute source (Channel type-1)

183



—— SVE-TS soln.
—x— ATS-VPM soln.

0 10 20 30 40 50 60 70
Time (hrs)

Figure 6.21 Solutions of SVE-TS and ATS-VPM model for o=0.0001/s,
$=0.116, B=0.75, at x=20km and 40km d/s from solute source
_(Channel type-2)
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Figure 6.22 Solutions of SVE-TS and ATS-VPM model for ¢=0.025, B=0.5, at

x=20km and 40km d/s from solute source (Channel type-1)
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Figure 6.23 Solutions of SVE-TS and ATS-VPM model for o=0.0003/s,
$=0.05, B=0.75, at x=20km and 40km d/s from solute source

(Channel type-1)

6.5.3 Application to Huey Creek Tracer Experiment

A tracer-dilution experiment conducted in Huey Creek, in January 1992,
to determine the extent and rate of hyporheic exchange was described by Runkel
et al. (1998). The details are given in Appendix B 1.6, The C-t measurements
available at downstream distances of 9m (location 1), 213m (location 2), 457m
(loéation 3), 762m (location 4), and at 1052m (location 4) from the point of

injection of the LiCl injectate were used in the present test case (Fig. 6.24).

Glacier

X Injection site
e Tracer sampling site
a Parshall flume
A Single discharge measurement

A ‘ ‘ Lake Fryxell

Figure 6.24 Map of Huey Creek showing tracer sampling and streamflow
measurement stations (Runkel et al,, 1998)
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A Parshall flume provided a continuous stream flow record of Huey
Creek above the outlet to Lake Fryxell at 945 m. Stream flow measurements of
this site were fair to poor, with measurement errors potentially > 15% (von
Guerard et al. (1995) as referred in Runkel et al, 1998). Flume estimates of
stream flow varied from 50 to 120 1/s during the tracer addition. In addition to
this, discharge data measured and used by Runkel et al. (1998) at sites 213m,
457m and 610m (Fig. 6.24) was used in the preseﬁt study also. Field
observations of Huey creek indicated that the channel was approximately
rectangular (Runkel et al., 1998). Channel widths were available from the
discharge measurements. at sites 213m, 457m, and 610m (1.0, 1.2, and 1.2 m,
respectively). Averag}e channel widths used in the,rouﬁng model were adjusted
upward from 0.4 to 0.6m as part of thé calibration process. Widths were
adjusted such that simdlated velocities agreed with velocities observed du‘uring
the given discharges at sites 213m, 457m, and 610m. The dischérge, flow area

and velocity are shown in Table 6.10.

Table 6.10 Area and velocity at different locations given by Runkel et al. (19 98)

Gauging Location| Time Flow Area Velocity
(m) (hrs) (s) (m?) (m/s)
213 11.8 93.4 0.13 0.73
457 12+3m 101.9. | 0.12 0.85
610 12.7 - 96.3 0.12 0.79

Runkel et al. (1998) used surveyed cross-sections, bed-slopes and reach
lengths together with the point velocity measurements to back-ca]culate reach
estimates of the Manning's n required for the routing model. The bed slope,
channel width and the Manning's n for the various flow routing reaches given by

Runkel et al. (1998) are presented in Table 6.11.
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Table 6.11 Parameters used for flow routing (Runkel et al., 1998)

Reach Bed | Channel [Manning's
range Slope | width |roughness

" (m) (%) (m) (n)
0-9 9.1 1.4 0.100
9-213 | 12.3 1.4 0.100

213-457 | 6.9 1.6 0.061

457-610 | 5.0 1.8 0.054

610-762 | 5.2 1.8 0.054 '

792-945 | 4.0 1.8 0.054

945-1006 | . 1.9 1.8 | 0.054

1006-1052| 1.1 | 1.8 0.054

In the study, flow estimates from the Parshall ﬂurhe indicated substantial
variation in flow rate during the tracer addition. Failure to consider stream flow
variability would result in a flat concentration profile (plateau) during this
period (Runkel et al., 1998). Therefore, in the present study, the ATS-VPM
model, coupled with the VPM ﬂow routing model as described in section 5.5
wés used to simulate the solute transport in the Huey creek. In this modelling
framework, The VPM flow routing and ATS-VPM solute routing are carried out
simultaneously within each routing time interval. Runkel et al. (1998)
developed an inﬁow hydrograph at the upstréam boundary (the injection point,
at site Okm) using the observed downstream hydrograph at,site 945m.

Runkel et al. (1998) calibr'ated the TS model parameters for each reach
using the observed C-t measurements. The values of the parameters thus
estimated are presented in Table 6.12. Using these values of a, A, and Dys (Table
6.13), the parameters values of the ATS-VPM model, i.e., Dy and P are obtained.
The applicability criterion ‘7\ (Eqn. 6.1) and the value of limiting DL‘S (Eqn. 6.2)

were computed to know whether these values are within the applicability domain of
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the ATS-VPM model. The computed values of A and Dy, and the value of limiting

Dy (Eqn. 6.2) for the observed velocity are shown in Table 6.12 and Table 6.13.

Table 6.12 The TS model parameter values of the reaches of Huey Creek given
by Runkel et al., (1998)

Reach Storage zone B Exchange A
Range area, As (= AJA) | coefficient o
~ (m) (m) Min | Max | ) Min Max
0-213 0.20 1.1] 1.8 | 1.07x 107 | 2.37x10° | 3.61x10°
213-457 0.25 15| 24 | 543x10" | 1.22x10° | 1.69x10°
457-762 0.14 08| 14| 1.62x10% | 0.75x10° | 1.30x10°
762-1052 -3.07 15.9| 34.3 | 4.67x10* | 4.04x10° | 4.33x10°

Table 6.13 The computed values of Dps (Eqn. 5.18) and limiting D1y (Eqn. 6.2)

values for the reaches of Huey creek

Gauging | Velocity o B " Dy, (m%s) Limiting Dy, (m?/s)
Location (m¥s) )
(m) 7 Min | Max | Min Max Max Min
213 0.73 0.001070 1.1} 1.8 ~ 65.31 73.69 68.26 41.71
457 0.85 10.000543| 1.5 | 2.4 | 191.80 | 195.14 65.72 38.82
610 [ 0.79 |0.016200| 0.8 | 1.4 451 5.67 101.74 | 6248

Based on the computed values of A, Dus, and the limiting Dy, it can be

concluded that the ATS-VPM model is applicable for the reach upto a distance of

762.0m from the point of injection of solute in Huey Creek. Using the ATS-VPM

model for solute routing coupled with the VPM model for flow routing and the

values of parameters giveﬁ by Runkel et al. (1998), the C-t curves at 213m, 457m,

762m, and at 1052m were computed. The inflow hydrograph estimated by Runkel et

al. (1998), was used as the input for flow routing (Fig. 6.25). The observed C-t

curve at 9m (location 1) was used as the input for the computation of C-t curves.

The results comparing the observed and simulated C-t curves at downstream

sampling locations are shown in Fig. 6.26.
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Figure 6.25 Inflow hydrograph for Huey creek at x=0m computed by Runkel
et al., (1998)
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Figure 6.26 Simulated and observed Li concentrations at d/s sampling

locations — Huey Creek
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6.6 DISCUSSION OF RESULTS
6.6.1 Solute Transport Under Steady Flow Conditions

The ATS model is a simplified approximation of the TS model. Hence, if the
assumptions made in its development are not satisfied, the ATS model fails to
reproduce the TS model solution satisfactorily. This can be observed from the
results of numerical experiments presented in Table 6.1 and Figs. 6.1 to 6.6 that, if
the magnitude of the applicability criterion, the A is within the approximate limiting
value of 10°, the ATS model can reproduce the numerical solution of the TS model
satisfactorily with Nash-Sutcliffe criterion being greater than 98%. When this
criterion is‘not satisfied, the analytical #olution of the ATS model fails to reproduce
the numerical solution of the TS model as seen in Fig. 6.7. The comparison between
the solutions of the ATS and TS models was not made for cases such as one shown
in Fig. 6.27, because the numerical method proposed by Runkel and Chapra (1993)

to solve the TS model produces oscillatory results.

Corcentration (mg/)

0 1 2 3 4 s 6 7 8
Time (hrs)

Figure 6.27 Numerical solution of TS model showing .oscillations during
advection dominated solute transport at x=5km for U=0.5m/s,
a=0.000075/s, B=0.25
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It is seen from Fig. 6.28 that (i) the value of Dy increases with increase in
for given values of U, Dy and a, and (ii) the value of Dy decreases as the value of
a. increases for given values of U, Dy, and B. It implies that for higher values of a
the effect of TS zones on the dispersion is less. This may-be attributed to the

phenomenon that at higher value of a the TS zones act as active part of the main

channel.
30000
: O

25000 1 —+—0.000005
= 20000 - ==-0,0000075
& L5000 ea---0,000025
£ —-»--0.000075

10000 - -x=-0.00025

5000 -

0 .
0 12 1.6

< .
Figure 6.28 Variation of Dy with the variation of B for different values of o

for a given value of U=1m/s, and D=10m?/s

Based on the results from numerical experiments presented in Table 6.2 and
Figs. 6.8 to 6.12, it can be observed that the ATS-VPM model reproduces the
solution of the ATS model when the value of Dy is less than the value of the
limiting Dy given by Eqn. (6.2). It is seen from Fig. 6.29 that the ATS-VPM model
fails to reproduce the solution of the ATS model as the value of Dy is more than
the value of limiting Dry. For a given set of values of U, a, and Dy, as the value of
B increases, the velocity of solute cloud decreases and Dy increases with decrease
in the magnitude of limiting Dyy. It implies that for a given U, o, and Dy as B
increases the applicability range of the ATS-VPM model in reproducing the solution

of ATS model decreases. Also for a given U and §, the magnitude of the limiting
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dispersion coefficient of the ATS-VPM model is less than that of the corresponding
AD-VPM model.
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Fig. 6.29(i) Solutions of ATS and ATS-VPM models for o=0.00001/s, B=0.1,
U=0.1m/s, and D=15.0m?%/s at a distance of x=1km and 2km
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Fig. 6.29(ii) Solutions of ATS and ATS-VPM models for a=0.000075/s, $=0.3,
U=0.5m/s, and Dgs=5.0m2/s at a distance of x=2km and 4km

The Mimram River tracer experimental test case demonstrates the
applicability of the ATS-VPM model to simulate the solute transport in rivers in the

presence of transient storage zones (Fig. 6.15). In Mimram river tracer experimental
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test case, the results show that the parameter values estimated using the observed
C-t curves for the reach A-B, when used in simulating the C-t curve at site C in
verification mode, closely reproduces the observed C-t curve at site C satisfactory
with 11=94.005%. Failure to consider the effect of transient storage zones would
results in relatively poor simulation results in comparison with those obtained
considering the transient storage zone effects (Table 6.5). The Mimram tracer
experimental test case demonstrates that the usage of o can be avoided in using the
ATS-VPM model. |

The AD-VPM model resul.ts obtained using the calibrated values of D, show
an agreement with the observed data at sites B and C with the n values of 94.79%
and 85.275% respectively. The ATS-VPM model results obtained using the values
of B and Dy estimated using the parameter values given by Lees et al. (2000) show
an agreement with the observed data at sites B and C with 1 values of 97.303% and
90.843% respectively. The ATS-VPM model results obtained using the calibrated
values of B and Dy (Table 6.5) show an agreement with the observed data at sites B
and C with n values of 98.10% and 96.319% respectively. This reveals that the
ATS-VPM model gives better results in comparison with the AD-VPM model for
the observations of Mimram experiments. The usage of parameters § and Dy
‘calibrated using the ATS-VPM model in the simulations of C-t curves gives good
results particularly at site C with a n value of 96.319% in compariso;x with that
obtained using the values of B, and Dy which is estimated from the values of U, «,
P and Dy given by Lees et al. (2000).

In Uvas Creek dye experim.ental test case, it was observed that the solute
transport phenomenon upto a distance of 105m from the injection point is not

affected by the transient storage mechanism. Hence, the C-t curves computed at

station (1) and (2) by the ATS-VPM model with $=0 are in good agreement with the
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observed C-t curves at the corresponding stations (Fig. 6.16). The C-t curves at
section (1) and (2) are arrived at using the values of the parameters given by
Bencala and Walters (1983). It is noted that the C-t curve computed by the
ATS-VPM model at section (3) fails to reproduce the observed C-t curve at the
same section (3). This is due to the reason that the applicability criterion estimated
for the reaches after 105m from the point of injection indicate the applicability of
the ATS model and Table 6.7 brings out this aspect. The low velocity (0.02692 m/s
to 0.03694 m/s), high values of B (1 to 3), and thek low value of exchange coefficient
(1x10° /s fo 4.5x107°/s) may be responsiblg for the failure of the ATS-VPM model
to simulate the solute transport in the reach after 105m from the point of injection of
tracer. The low exchange results in large dispersion because of higher solute
residence time in tra.nsient storage zones. As the value of a is low, the solute gets
trapped in the transient storage zone for larger time and it will be releasedAvery
slowly into the main channel (Fig.6.6). These low values of & associated with high
values of B may be responsible for substantially low interaction of solute between
main channel and the storage zone. This low interaction may be the reason for the
presence of considerable long tail concentration in C-t curves observed in tracer

experiments conducted on Uvas creek.

6.6.2 Solute Transport Under Unsteady Flow Conditions

Based on the results of the numerical experiments (Table 6.9 and Fig. 6 17 to
6.23), it was observed that the ATS-VPM model coupled with the VPM model of
flow routing is capable of reproducing the numerical solution of SVE-TS model
within the applicability range of the ATS-VPM model and the VPM flow routing
model as specified in section 6.5. The results of the numerical experiments carried

out (Table 6.9) reveal the following:
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For a given value of B and ¢, as the value of a increases, the accuracy of the
ATS-VPM model under unsteady flow condition in reproducing the solution
of the SVE-TS model increases (Figs. 6.17, 6.18, 6.19). Similarly, for a
given value of o and ¢, as the value of f increases, the accuracy of the ATS-
VPM model in reproducing the solution of the SVE-TS model decreases
(Figs. 6.17(a) and 6.18). This may be due to the fact 'that an increase in 3
decreases the solute velocity. This leads to the increase in residence time,
which in turn increases the dispersion of solute cloud.

In channel type 3, the peak concentrations at the location of 40km are
realised earlier in comparison with those realised in channel types 1 and 2 at
the same location. It implies that the solute massvis getting flushed out
quickly in channel type 3. This may be due to higher velocities of flow in
channel type 3 in comparison with the velocities observed in channel types 1
and 1. The realisation of shorter travel time of peak concentration at the
location of 40km in different channels used in the numerical experiments
follows, in general, the order, channel type 3, 1 and 2.

For a given value of bed slope So, as the Manning's roughness n increases,
the velocity decreases, thereby, the residence time of solute cloud increases.
Residence time of solute in a reach should be as less as possible so as to
reduce the effects of pollﬁting solute on the ecosystem of a river reach. The
realisation of longer residence time of solute cloud in channels follows, in
general, the order channel type 2, 1 and 3.

Based on the solutions of SVE-TS model, it can be inferred that the
attenuation of peak concéntration in rivers affected by transient storage
mechanism increases with increase in the value of o upto a limiting value of
peak concentration. Any further increase in the value of o results in decrease

in the % attenuation of peak concentration (Fig. 6.30)
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The ATS-VPM model can reproduce the benchmark SVE-TS model solution
for values of o greater than that produces mﬁximum attenuation of peak
concentration (Fig. 6.30). Within the applicability range of the ATS-VPM model, as
a increases the attenuation of peak concentration decréases. This characteristic may

- be attributed to the retention time of solute in the transient storage zone. There
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exists an o beyond which the transient storage zone acts as active part of the main
channel. The same is observed in Fig. 6.30, as attenuation is approximately constant
or the attenuation curve is asymptotic to the horizontal axis beyond a value of a,
making the effect of transient storage mechanism on dispersion is to be negligible.

Related to the aspect of conservation of mass, it can be observed from Figs.
6.17 and 6.21 that there is some gain in concentration. However, there is no gain in
mass even though it appears that there is some gain of concentration. Runkel et al.
(1998) stated that "The specific concern is that the numerical solution of the TS
equations using the concentratioﬁ boundary condition may not conserve mass given
an unsteady flow regime. To test the mass conservation, concentration-discharge
profiles were integrated with respect to time to determine the mass passing a given
sampling location. These integrated values agreed closely with the mass introduced
via the upstream condition ". The consgwation of mass was tested by Runkel et al.
(1998) for the modelling frame work suggested by him and it was found that it
conserves mass with a maximum error of 0.074%. (Runkel et al., 1998). As the
numerical solution of the TS model‘suggested by Runkel (1998) under unsteady
flow conditions is being reproduced by the ATS-VPM model! within its applicability
range, it can be concluded that the proposed ATS-VPM model also conserves mass
satisfactorily.

The Huey creek experimental test case results show that there is close
agreement between the observed and computed C-t curves at 213m, 451m, and
762m. The agreement between the observed and computed C-t curves at 1052m is
relatively poor because the ATS-VPM model is applicable in the reach upto 762m
only. The B in the last reach of Huey creek, varying between 15.9 to 34.3, is very
large. The actual storage zone area for the final reach might have been considerably

lower than the estimated value (Runkel et al, 1998). In the Huey Creek

experimental data (Runkel et al., 1998), the inflow hydrograph at the upstream
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boundary was developed based on the observed downstream flow data at site 945m.
This was required because a continuous record of the hydrograph at the upstream
boundary was not available. Errors might have been associated with the
development of inflow hydrograph based on the downstream data (Runkel et al.,
1998). Because of the errors in the estimated input flow hydrograph, the routed
hydrograph may have associated errors, which in turn affects the solute transport
estimates. To avoid any such errors, it is ﬁecessary to have simultaneous flow and
C-t measurements. i

In computing the C-t curves using the ATS-VPM model for Huey Creek
experimental data, the parameter o was used. The value of Dy was calculated using
Eqn. (5.18) and the available value of o, B and Dy estimated by Runkel et al. (1998)
so as to demonstrate the validity of the model proposed in the present study for the
field conditions.

Future efforts could consider modifications in the model that express the
transient storage parameters as a function of thé flow regifne. Several researchers
have noted that the value of the exchange coefficient increases. with increasing
streamflow (Harvey et al., 1986, and Morrice et al., '1997). The physical reason for
the inérease in oo with discharge may be due to the increase in stream velocity. At
higher stream velocities the exchange between the active channel and the transient
storage zone may be significant (Runkel et al., 1998). Harvey et al. (1996) and
Morrice et al. (1997) indicate that a decrease in tﬁe transient storage zone area and,
consequently the magnitude of B decreases with increasing streamflow (Runkel et
al., 1998). This decrease may be due to the reason that the storage zones at low flow
may become active parts of the main channel at high flow. Comparatively few data
sets are available and not enough information is available for practitioners (Lees et
al., 2000) to test these inferences. Hence, more research is needed to understand and

interpret the physical significance of the model parameters of TS and ATS models.
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6.7 CONCLUSIONS

In this chapter the comparison of the TS and ATS models was made. The
effect of a, B and Dy on solute transport in rivers affected by transient storage
mechanism was anaIysed based on the ATS model. The applicability criterion for the
ATS model to reproduce the TS model solution was presented. It was found that the
ATS model is capable of reproducing the numerical solution of the TS model with a
variance explained using Nash-Sutcliffe criterion, m >98% when A < 10°. The
_applicability of the ATS-VPM model to reproduce the solution of the ATS model
under steady flow conditions was.also presented. It was found that the ATS-VPM

model is capable of reproducing the ATS model solution with a Nash-Sutcliffe
criterion, > 99%, when the value of Dy is less than 416.64 [U/(1+ )], An

equation (Eqn. 6.3) to compute the exchange coefficient a, for a given value of U, B,
and Dy above which the ATS-VPM model can reproduce the ATS model solution
was presented. The practical utility of the ATS-VPM model under steady flow
conditions was demonstrated by verifying its applicability using field data from
experiments performed on Mimram River and Uvas Creek. It was also demonstrated
that when the applicability criterion is not satisfied, the model would fail to model the
solute transport in rivers affected by transient storage mechanism. The performance
of the ATS-VPM model for solute routing coupled with the VPM model for flow
roufing for solute transport under unsteady flow was evaluated using SVE-TS model
solutions obtained using hypothetical data. From }the numerical experiments, it was
found that the ATS-VPM model under unsteady flow conditions can reproduce the
SVE-TS model solution for values of a greater than that produces maximum
attenuation of peak concentration (Fig. 6.30). The practical utility of the ATS-VPM
model under unsteady flow conditions subjected to the satisfaction of its applicability
criterion, was demonstrated by using the data from expériments performed on Huey

Creek, an Antarctic stream.
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Chapter 7
CONCLUSIONS AND RECOMMENDATIONS

7.1  CONCLUSIONS
The present study stems from the recognition of the need for the development of

longitudinal solute dispersion models that adequately consider the governing flow
regime, and yet require cumbersome sofution algorithms. Accordingly, the problem of
solute transport process in rivers and stréeams under unsteady flow conditions is studied
by developing coupled flow routing and solute routing models based on simplified
governing equations of these processes. The simplification of the governing equations
sought in this study are those of the well known Advection-Dispersion model, and the
Transient Storage model which combinedly consider the solute dispersion due to"i;iain
channel flow, and due to the presence of stbrage zones in rivers. The modelling
approach proposed in this study is to develop first the simplified solute transport model
under steady flow conditions and then extend it to study the same process under
unsteady flow conditions. The capabilities of the developed models for stucjxing
longitudinal solute dispersion process under unsteady flow conditions are demons't;ated
using hypothetical, laboratory and field experimental data. The main findings of the
present study are as follows:

1. The evaluation of the existing model proposed by Koussis et al. (1983) for
solute transport modelling under steady flow conditions brings out .certain
logical inconsistencies in his approach. To overcome these inconsistencies, an
approximate Advection-Dispersion equation, based on the assumption of linear
variation of concentration along a small river reach length Ax, is developed.
Using this equation and the concept used in the development of the Variable

Parameter Muskingum (VPM) flow routing model, a mode! termed as AD-VPM
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model is developed. The suitability of the AD-VPM model is first studied for
dispersion under steady flow conditions against analytical solution of the
AD model, and for variety of data from laboratory experiments and field
experiments. It is found that the model is capable of reproducing observed C-t
profiles satisfactorily within the applicability range governed by the criterion Dy
<415.64 UM

A methodology for solute routing under unsteady flow conditions is presented
by integrating the parameters of the AD-VPM model and the VPM model. The
advantage of the proposed method is that it allows simultaneous routing of flow
ahd solute, as the model structure is similar for both the processes. The
appropriateness of the application of the AD-VPM model under unsteady flow
conditions has been then tested using hypothetical data obtained by solving the
Saint-Venant’s equations coupled with the AD equation (SVE-AD model). It
was found that AD-VPM model could closely reproduce the results obtained
from numerical solutions of the SVE-AD model and also could reproduce the
field experimental data of the Colorado River. Based on the proposed method’s
performance in the reproduction of the SVE-AD solutions and the observed C-t
curves in field experiments, it can be concluded that the proposed method is
suitable for simulation of solute transpdrt under unsteady flow conditions within
the applicability range defined previously.

An Approximate Transient Storage (ATS) model is developed from the
TS model equations which incorporate solute transport due to transient storage.
The ATS model has a form similar to that of the AD model, but incorporates the
transient storage parameters. Based on the developed governing equation of the

ATS model, analytical solution is presented in analogy to the analytical solution

of the AD model under steady flow conditions.
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4, The appropriateness of the ATS model under steady flow conditions is tested by
comparing the numerical solution of the TS model with the corresponding
analytical solution of the ATS model. 1t is found from the analysis that the
ATS model is able to closely simulate the TS model solution when magnitude
of B¥/(cw (1+B))* < 105, where o and B are the model parameters.

5. Using the similarity of the ATS model and the AD model, a model termed as
the ATS-VPM model is developed on the same lines as that of the AD-VPM
model. The appropriateness of the ATS-VPM model has been demonstrated
under steady flow conditions using the analytical solution of the ATS model and
a criterion (chapter 6) has been developed for the successful application of the
ATS-VPM model similar to that of the AD-VPM model, in 'repfoducing the
analytical solution of the ATS model. The suitability of the ATS-VPM model
was also demonstrated for field applications.

6. The procedure for the application of the ATS-VPM model for simulating solute
transport process under unsteady streamflow conditions was presented by
integrating its parameters with the VPM flow routing model. The suitability of
the ATS-VPM model for simulating solute fransport process under unsié%dy
streamflow conditions was demonstrated by reproducing the benchmark
solutions obtained from the numerical solutions of the Saint-Venant Equations
coupled with the TS model equations (SVE-TS model) and, subsequently, the
observed data from field experiments. The results of this study suggest the
suitability of the ATS-VPM model for its application to solute transport
modelling under unsteady streamflow conditions in the presence of transient
storage zones in the river reach.

Based on the study it can be concluded that the proposed AD-VPM and ATS-VPM

models simulate the solute transport in rivers and streams under steady as well as

unsteady flow conditions satisfactorily within their applicability ranges.
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72 RECOMMENDATIONS FOR FURTHER STUDY

Based on the present study, the following recommendations are made for further

studies:

1. The AD-VPM and ATS-VPM models proposed in the present study may be
extended to the simulation of non-conservative solute transport by properly
incorporating the first order decay phenomenon.

2. Expressions to compute $ and Dy using hydro-geometric characteristics of
rivers may be developed, which need the analysis of many experimental data

sets conducted on rivers,

203



REFERENCES

3.

4.

5.
6.
7.
8.

9,

10.

11.

12.

13.

14.

Alley, W. M., ard Smith, P. E. (1982). “Distributed routing rainfall-runoff
model.” Versiom [I, Computer Program Documentation, User’s Manual, US
Geological Survey, Open-File Report 82-344, NTSL Station, Mississippi.

Amein, M. M., and Fang, C. S. (1970). "Implicit flood routing in natural
channels." J. of Hipdraul. Div., ASCE, 96(12), 2481-2500.

Asai, K., Fujisaki, X., and Awaya, Y. (1991). "Effect of aspect ratio on
longitudinal dispersiom coefficient." in Environmental Hydraulics, Lee and
Cheung (Ed.), Vol2, Balkema, Rotterdam, The Netherlands. 493-498.

ASCE task committee on Definition of Criterion for Evaluation of Watershed
Models of the Watershed management, Irrigation and Drainage Division,

(1993). "Criteria. for evaluation of watershed models." J. of Irrig. and Drain.
Engrg., ASCE; 11%(3),429-442.

Banks, R.B. (1974). "A mixing cell model for longitudinal dispersion in open
channel." Water Ressour. Res., 10(2), 357-358.

- Bedford, K.W., Sykes, R.M,, and Libicki, C. (1983). "Dynamic advective water

quality mode! for rivers." J. of Envir. Engrg., ASCE, 109(3), 535-554.

Beer, T. and Young, P.C. (1983). "Longitudinal dispersion in natural streams."
J. of Envir. Eng., ASCE, 109(5), 1049-1067.

Bella, D.A., and Dobbins, W.E. (1968). "Difference modeling of stream
pollution." J. of Sanit. Engrg. Div., ASCE, 94(5), 995-1016.

Beltaos, S. (1978). "An interpretation of longitudinal dispersion data in rivers."
Report no. SER 78-3, Transportation and Surface Water Div., Alberta, Research
Council, Edmonton, Canada.

Beltaos, S. (1980). "Longitudinal dispersion in rivers." J. of Hydraul. Div.,
ASCE, 106(1), 151-172.

Beltaos, S. (1932). "Dnspersmn in tumbling ﬂow " J. of Hydraul. Div., ASCE,
108(1), 591-612.

“Bencala, K.E. (1983). "Simulation of solute transport in a mountain pool-and-
riffle stream: with a kinetic mass transfer model for sorption." Water Resour.
Res., 19(3), 732-738.

Bencala, K.E. and Walters, R.A. (1983). "Simulation of solute transport in a
mountain pool-and-riffle stream: A transient storage model." Water Resour.
Res., 19(3), 718-724.

Camacho, L. A. €2000). "Development of a hierarchical modelling framework
for solute transport under unsteady flow conditions in rivers.” Ph.D. thesis
submitted to University of London, Dept. of Civil and Envir. Engrg. Imperial
College of Science and Technology and Medicine, London.

204



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L
32.

Chatwin, P.C. (1980). "Presentation of longitudinal dispersion data." J. of
Hydraul. Engrg. Div., ASCE, 106(1), 71-82.

Chatwin, P.C. and Allen, C. M. (1985). "Mathematical models of dispersion in
rivers and estuaries." Annual Review of Fluid Mech., 17, 119-149.

Chow, V.T., Maidment, D.R., and Mays, L.W. (1988). Applied Hydrology.
McGraw-Hill Book Co., New york.

Cunge, J.A. (1969). "On the subject of a flood propagation computation method
(Muskingum method)." J. of Hydraul. Res., IAHR, 7(2), 205-230.

Czernuszenko, W., and Rowinski, P. M. (1997). "Properties of the dead zone
model of longitudinal dispersion in rivers." J. of Hydraul. Res., 35 (4), 491-504.

Day, T. J. (1975). "Longitudinal dispersion in natural channels." Water Resour.
Res., 11(6), 909-918.

Elder, J. W. (1959). "The dispersion of marked fluid in turbulent shear flow." J.
of Fluid Mech., 5(4), 544-560.

Fischer, H.B. (1966). "Longitudinal dispersion in laboratory and natural
streams.” Report No. KH-R-12, W.M Keck Laboratory of Hydraul. and Water
Resour., California Institute of Technology, California.

Fischer, H.B. (1967). "The mechanics of dispersion in natural streams." J. of
Hydraul. Engrg. Div., ASCE, 93(6), 187-216.

Fischer, H.B. (1968). "Dispersion predictions in natural streams." J. of Sanit.
Engrg. Div., ASCE, 94(5), 927-943.

Fischer, HB,, List, E.J., Koh, R.C.Y., Imberger, J. and Brooks, N.H. (1979).
Mixing in inland and coastal waters. Academic Press Inc., New York, NY.

Fukuoka, S., and Sayre, W. W. (1973). "Longitudinal dispersion in sinuous
channels." J. of Hydraul. Div., ASCE, 99(1), 195-218.

Gabriele, HM.S., and Perkins, F.E. (1997). "Watershed-specific model for

stream flow, sediment, and metal transport.” J. of Envir. Engrg.,, ASCE, 123(1),
61-70. ,

Glover, B. J., and Johnson, P. (1974). "Variations in the natural chemical

concentration of river water during flood flows and the lag effect.” J. of
Hydrology. 22, 303-316.

Godfrey, R.G., and Frederick,B.J. (1970). "Stream dispersion at selected sites.""
Professional paper 433K, U.S.Geological Survey, Washington, D.C.

Graf, J.B. (1995). “Measured and predicted velocity and longitudinal dispersion
at steady and unsteady flow, Colorado river, Glen Canyon Dam to Lake Mead.”
Water Resour. Bulletin, AWRA, 31 (2), 265-281.

Graf, W.H. (1998). Fluvial Hydraulics. John-Wiley & Sons, Chichester

Guymer, I. (1998). “Longitudinal dispersion in sinuous channel with changes in
shape.” J. of Hydraul. Engrg., ASCE,124(1), 33-40.

205



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Harvey, J.W., Wagner, B.J,, and Bencala, K.E. (1996). "Evaluating the
reliability of the stream tracer approach to characterize stream-subsurface water
exchange." Water Resour. Res., 32(8), 2441-2451.

Hayami, S. (1951). "On the propagation of flood waves." Bull.no.1, Disaster
Prevention Research Institute, Kyoto, Japan.

Holly, F. M., and Preissmann, A. (1977). “Accurate calculation of transport in
two dimensions.” J. of Hydraul. Div., ASCE, 103 (11),1259-1277.

Islam, MR., and Chaudhry, M. H. (1997). "Numerical solution of transport
equation for applications in environmental hydraulics and hydrology." J. of
Hydrology, 191,106-121.

Jain, S.C., (1976)."Longitudinal dispersion coefficient for streams." J. of Envir.
Engrg., ASCE, 102(2), 465-474.

Jaque, D.T., and Ball, J.E. (1994), "Numerical simulation of advection-diffusion
mass transport." J. of Hydroscience and Hydraul. Engrg., 11(2),.

Jirka, G.H. (1982). "Multiport diffusers for heat disposal: A summary." J. of
Hydraul. Div., ASCE, 108(12), 1425-1468.

Jobson, H. E. (1980). “Comment on 'A new collocation method for the solution
of the convection-dominated transport equation' by George E. Pinder and Allen
Shapiro." Water Resour. Res., 16(6) 1135-1136.

Karolewski, M. (2001). "Tracer 1.5." http://www ualberta.ca/~mkarol.

Keefer, T. N., and Jobson, H. E. (1978). "River transport modeling for unsteady
flow." J. of Hydraul. Div., ASCE, 104(5), 635-647.

Kezhong, H., and Yu, H. (2000). "A new empirical équation of longitudinal
dispersion coefficient." in Stochastic Hydraulics 2000, Wang and Hu (Eds),
Balkema, Rotterdam. ——

Komatsu, T. Ohgushi, K., and Asai, K. (1997)."Refined numerical scheme for
advective transport in diffusion simulation." J. of Hydraul. Engrg., ASCE,
123(1), 41-50.

Koussis, A. D. (1978). "Theoretical estimation of flood routing parameters."
J. of Hydraul. Div., ASCE, 104(1), 109-115.

Koussis, A.D., Saenz, M. A. and Tollis, I.G. (1983). "Pollution routing in
streams." J. of Hydraul. Engrg., ASCE, 109(12), 1636-1651.

Koussis, A.D. (1983). "Unified theory of flood and pollution routing in
streams." J. of Hydraul. Engrg., ASCE, 109(12), 1652-1664.

Koussis, A. D., and Rodriguez-Mirasol, J. (1998)."Hydraulic estimation of

dispersion coefficient for streams." J. of Hydraul. Engrg, ASCE,124(3),
317-320.

Krein, A., and Symader, W. (2000). "Pollutant sources and transport patterns
during natural and artificial flood events in the Olewiger Back and Kartel borns-
bach basins, Germany." Proceedings of symposium on the Role of Erosion and

206



50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Sediment Transport in nutrient and contaminant transfer held at Waterloo,
Canada, July 2000, IAHS publ. 263,167-173.

Lees, M. J., Camacho, L. A., and Chapra, S.C. (2000). "On the relationship of
transient storage and aggregated dead zone models of longitudinal solute
transport in streams." Water Resour. Res., 36(1), 213-224.

Lees, M. J., Camacho, L., and Whitehead, P. (1998). "Extension of the
QUASAR river water quality model to incorporate dead-zone mixing."
Hydrology and Earth System Sciences, 2, (2-3), 353-365.

Li, C.W. (1990). "Advection simulation by minimax-characteristics method."
J. of Hydraul. Div., ASCE,116(9), 1138-1143.

Li, S. G, and Zhou, X. (1997). “Stochastic theory for irregular stream
modelling. II: solute transport.” J. of Hydraul. Engrg., ASCE, 123(7), 610-616.

Liu, H. (1978). "Closure of 'Discussion on predicting dispersion coefficient of
streams." J. of Envir. Engrg. Div., ASCE, 104(4), 825-828.

Liu, H., and Cheng, A.H.D. (1980)."Modified Fickian model for prediction
dispersion." J. of Hydraul. Engrg. Div., ASCE, 106(6), 1021-1040,

Manson, J. R, Wallis, S.G., and Hope, D. (2001)."A comservative semi-
lagrangian transport model for rivers with transient storage zones." Water
Resour. Res., 37(12), 3321-3329.

Marivoet, J. L., and Craenenbroeck, W.V. (1986)."Longitudinal dispersion in
ship canals." J. of Hydraul. Res., 24(2), 123-133.

McCutcheon, S.C. (1989). Water quality modeling: Volume I transport and
surface exchange in rivers. CRC press, Inc. Boca Raton, Florida.

McQuivey, R.S., and Keefer, T.N. (1974). "Simple method for predictihg
dispersion in streams." J. of Envir. Engrg. Div., ASCE, 100(4), 997-1011.

Morrice, J. A., Valett, H. M., Dahm, C. N., and Campana, M.E. (1997).
"Alluvial characteristics, groundwater-surfacewater exchange and hydrological
retention in headwater streams."” Hydrological Processes, 11, 253-267.

Nash, JE, and Sutcliffe, J.V. (1970). "River flow forecasting through

conceptual models. Part I- a discussion of principles." J. of Hydrology, 10, 282-
290,

Natural Environment Research Council (1975). Flood studies report, Volume
ITI-Flood routing studies. London, UK.

Nordin, C. F., and Sabol, G. V. (1974). "Empirical data on longitudinal

dispersion in rivers." U.S Geological Survey Water Resources Investigations
20-74, Washington, D.C.

Nordin, C. F,, and Troutman, B.M. (1980)."Longitudinal dispersion in rivers:

The persistence of skewness in observed data." Water Resour. Res., 16(1),
123-128. '

207



65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

5.

76.

77.

78.

79.

Ogata, A., and Banks, R.B. (1961)."A solution of the differential equation of
longitudinal dispersion in porous media." Professional Paper no. 411-A, U.S.
Geological Survey.

Orlob, G.T. (Ed.) (1983). Mathematical modeling of water quality: streams,
lakes and reservoirs. John-Wiley & Sons, Chichester.

Perumal, M. (1992), "The cause of negative initial outflow with the Muskingum
method." Hydrological Sci. J., IAHS, 37(4), 391-401.

Perumal, M. (1994a). "Hydrodynamic derivation of a variable parameter
Muskingum method: 1. Theory and solution procedure." Hydrological Sci. J.,
IAHS, 39(5), 431-442.

Perumal, M. (1994b). "Hydrodynamic derivation of a variable parameter
Muskingum method: 2.Verification." Hydrological Sci. J., IAHS, 39(5),

- 443-458.

Perumal, M., and Ranga Raju, K.G. (1999). "Approximate Convection-
Diffusion equations." J. of Hydrol. Engrg., ASCE, 4(2), 160-164.

Perﬁmal; M, O'Connell, P;E., and Ranga Raju, K.G. (2001). " Field applications
of a Variable Parameter Muskingum method." J. of Hydrolog. Engrg., ASCE,
6(3), 196-207.

Ponce, V. M,, and Yevjevich, V. (1978). "Muskingum-Cunge method with
variable parameters." J. of Hydraul. Div., ASCE, 104 (12), 1663-1667.

Price, RK. (1982). "Flow routing for river regulation." in Gravel-bed rivers, by
Hey, R.D., Bathurst, J.C., and Thorne, C.R.(Eds.) John Wiley & Sons Ltd.,
603-632. r

Ranga Raju, K.G., Kothyari, U.C., and Ahmad, Z. (1997). "Dispersion of
conservative pollutant." Dept. of Civil Engrg. Univ. of Roorkee, Roorkee, India.

Runkel, R. L., and Chapra, S. C. (1993). "An efficient numerical solution of the
transient storage equations for solute transport in small streams." Water Resour.
Res., 29(1), 211-215.

Runkel, R.L. (1996)."Solution of the advection—dispersion equation: continuous
load of finite duration." J. of Envir. Engrg., ASCE, 122 (9), 830-832.

Runkel, R. L. (1998). "One dimensional transport with inflow and storage
(OTIS): A solute transport model for streams and rivers." USGS Water Resour.
Invest. Report No. 98-4018., Denver, Colorado.

Runkel, R. L., McKnight, D. M., and Andrews, E. D. (1998). "Analysis of
transient storage subject to unsteady flow: diel flow variation in an Antarctic
stream.” J. N. Am. Benthol. Soc., 17(2), 143-154.

Rutherford, J.C. (1994). River Mixing, John-Wiley & Sons, Chichester

208



80.
81.

82.

83.

84.

85.
86.

87.

88.
89.
9.
91,
92,
93,
9,
95.
9%.

97.

Sabol, G.V. and Nordin, C.F. (1978). "Dispersion in rivers as related to storage
zones." J. of Hydraul. Engrg. Div., ASCE, 104(5), 695-708. '

Sayre, W.W. (1968). "Dispersion of Mass in open channel flow." Hydraulic
papers No.3, Colorado State Univ., Fort Collins, Co.

Schohl, G.A,, and Holly, Jr. FM. (1991). "Cubic-spline interpolation in
lagrangian advection computation." J. of Hydraul. Engrg., ASCE, 117(2), 248-
253.

Seo, I. W., and Cheong, T.S.'(1998). "Predicting longitudinal dispersion
coefficient in Natural Streams." J. of Hydraul. Engrg., ASCE, 124 (1), 25-32.

Seo, I. W., and Cheong, T.S. (2001). "Moment-based calculation of parameters
for the storage zone model for river dispersion." J. of Hydraul. Engrg., ASCE,
127 (6), 453-465.

Sooky, A A. (1969). " Longitudinal dispersion in open channels." J. of Hydraul.
Div.; ASCE, 95(4), 1327-1345.

Stefan, H.G., and Demetracopoulos, A.C. (1981)."Cells-in-series simulation of
riverine transport." J of Hydraul. Div., ASCE, 107(6), 675-697.

Stone, H. L., and Brian, P.L.T. (1963)."Numerical solution of convective
transport problems." J. of American Institute of Chemical Engineers, 9(5), 681-
688.

Strupczewski, W.G., and Napiorkowski, J.J. (1990). "What is the distributed
delayed Muskingum model?." Hydrological Sci. J., IAHS, 35(1), 65-78.

Sumer, M. (1969). "On the longitudinal dispersion coefficient for a broad open
channel." J. of Hydraul. Res., 7(1), 129-135.

Taylor, G.I. (1921)."Diffusion by continuous movement." Proc. of the London
Mathematical Society, Series A, 196-211.

Taylor, G.I. (1953). "Dispersion of soluble matter in solvent flowing slowly
through a tube." Proc. Royal Society, London, series A, 219, 186-203.

Taylor, G.I (1954). "The dispersion of matter in turbulent flow through a pipe."
Proc. Royal Society, London, series A, _223, 446-468.

Thackston, E. L., and Krenkel, P. A, (1967)."Longitudinal mixing in natural
streams." J. of Sanit. Engrg. Div., ASCE, 93(5), 67-90.

Thackston, E. L., and Schnelle, K. B. Jr. (1970)."Predicting effects of dead
zones on stram mixing." J. of Sanit. Engrg. Div., ASCE, 96(2), 319-331.

Thomann, R.V., and Mueller, J.A. (1987). Principles of Surface Water Quality

Modelling and Control. Harper & Row Publishers, NewYork.

Valentine, EM. and Wood, LR. (1977). "Longitudinal dispersion with dead
zones." J. of Hydraul. Div., ASCE, 103(9), 975-990.

Viessmann Jr W., Knapp, JW., Lewis, G, L., and Harbaugh, T.E. (1977).
Introduction to Hydrology. IEP A Dun-Donnelley Publ., NewYork.

209



98.

99.

100.

101.

102.

103.

Von Guerard, P., McKnight, D. M., Harnish, R. A, Gartner, J. W. and
Andrews, E. D. (1995). “Streamflow, water-temperature, and specific-
conductance data for selected streams draining into Lake Fryxell, Lower Taylor
Valley, Victoria Land, Antarctica, 1990-92. USGS, Open File Report 94-545,
Denver, Colorado.

Wallis, S.G. (1994). "Simulation of solute transport in open' channel flow." in
Mixing and Transport in the Environment, Ed. By K. J. Beven, P. C. Chatwin
and J. H. Millbank., John Wiley & Sons Ltd. NewYork, 89-110.

Whitehead, P., Young, P.C., and Hornberger, G. (1979). "A systems model of
streamflow and water quality in the Bedford Ouse river system-I. Stream flow
modelling." Water Research, 13, 1155-1169.

Whitehead, P., Beck, B., and O’Connell, E. (1981). "A systems model of
streamflow and water quality in the Bedford Ouse river system-II. water quality
modelling." Water Research, 15, 1157-1171.

Wiele, SM., and Smith, J.D. (1996). "A reach-averaged model of diurnal
discharge wave propagation down the Colorado river through the Grand
Canyon." Water Resour. Res., 32 (5), 1375-1386.

Worman, A. (2000). "Comparison of models for transient storage of solutes in

104.

105.

106.

small streams.™ Water Resour. Res., 36(2), 455-468.

Yotsukura, N., Fischer, HB., and Sayre, W.W. (1970). "Measurement of
mixing characteristics of the Missouri river between Sioux City, Iowa and
Plattsmouth, Nebraska." Water Supply paper 1899-G, U.S.Geological Survey,
Washington.

Young, P. C,, “and Wallis, S. G. (1993). "Solute transport and disperswr;yon
channels.” in Channel Network Hydrology. Beven, K., and Kirkby, M. J. (Eds)
John Wiley & Sons Ltd.

Zoppou, C., and Knight, J. H., (1997). "Analytical solutions for advection and
advection- diffusion equations with spatially variable coefficients." J. of
Hydraul. Engrg., ASCE, 123 (2),144-148.

210



APPENDIX - A

DISPERSION DATA OF TESTS CONDUCTED IN
‘ LABORATORY CHANNELS

This appendix contains the data of the series 2600 and series 2700 experiments
conducted in laboratory flume by Fischer (1966). These experiments were conducted
in a 40m long rectangular laboratory flume having a width of 1.10m. Conservative

Rhodamine WT was used as the tracer for the experiments,

A 1.1 Laboratory Experiment Data-Series 2600

Series 2600 data of time-concentration measurements at four successive

sections at a distance 7.0m apart are given in Table Al.1.

Table A 1.1 Time-Con‘centration data -Series 2600

Distance from ~ Distance from Distance from Distance from
source = 7.06m source = 14.06m source = 21.06m source = 28.06m
Section-1 Section-2 Section-3 Section-4
Time Mean Time Mean | Time Mean Time Mean

from |Concentr| from |Concentr|{ from |Concentr| from |Concentr
release ation release ation release ation release ation
(sec) (CU)Y* (sec) | (CUY* | (sec) | (CU)* (sec) (CU)*
20.0 0.1 41 0.0 64 0.0 88 0.2
21.0 5.6 42 0.2 - 65 0.3 90 1.7
21.5 18.8 43 0.8 66 1.0 .92 6.6
22.0 449 44 4.0 67 - 2.1 94 20.3
22.5 75.7 45 148 68 5.6 96 45.5
23.0 102.1 46 36.9 69 13.2 98 74.8
23.5 105.4 47 66.3 70 26.9 100 95.0
24.0 96.3 48 83.9 71 435 102 98.4
24.5 82.0 49 94.0 72 63.5 104 87.2
25.0 69.5 50 944 73 83.7 106 68.7
25.5 574 51 87.3 74 97.0 108 48.0
26.0 46.0 52 76.9 75 104.2 110 31.6
27.0 289 53 63.4 76 104.9 112 19.0
28.0 16.3 54 492 77 99.2 114 10.5
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Table A 1.1 (Contd....)

Distance from

Distance from Distance from Distance from
source = 7.06m source = 14.06m source = 21.06m source = 28.06m
Section-1 Section-2 Section-3 Section-4
Time Mean Time Mean Time Mean Time Mean

from |Concéntr| from |Concentr| from |Concentr| from |Concentr
release | ation | release | ation | release | ation | release | ation
(sec) (CU)* (sec) (CU)* (sec) (CU)* (sec) (CU)*
29.0 83 55 36.6 78 879 - 116 5.7
30.0 4.7 56 25.0 79 73.4 118 3.7
31.0 2.7 57 16.9 80 60.6 120 2.3
32.0 14 58 11.0 82 392 122 1.3
33.0 0.5 59 7.1 84 23.6 124 1.0
340 Y 02 60 44 86 13.0 128 0.3
35.0 0.0 62 2.0 88 - 6.1 132 0.2
36.0 0.0 : 64 0.9 90 3.2
66 0.4 92 1.5
68 0.2 95 0.7
72 0.0 100 0.1
105 0.0

* concentration units as measured by Fischer (1966).
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A 1.2 Laboratory Experiment. Data-Series 2700

Series 2700 data of time- concentration measurements at two sections at a
distance of 11.0m apart are given in Table A 1.2.

Table A 1.2 Time-Concentration data -Series 2700

Distance from source =14.06m Distance from source = 25.06m
Section-1 Section-2
Time from Mean Time from Mean
release Concentration release Concentration
(sec) (CU)* (sec) (CU)*
32 0 57 0
33 1.5 59 0.7
34 16.2 . 61 13.4
34.5 31.2 62 314
35 _ 42 4 63 52.4
35.5 54 64 72.5
36 70 65 91.5
36.5 73.3 66 102.1
37 72.9 67 106.6
37.5 70.6 : ' 68 105.3
38 66 69 97.1
38.5 58.4 ' 70 843
39 51.7 71 71.6
39.5 46.3 72 61.4
40 41 73 50.6
41 343 | 74 41.1
42 25.6 75 B2
43 16.1 _ 76 25
44 10.9 77 18.4
46 , 4.7 79 10.3
48 J = 81 4.9
50 0.5 - 83
52 0.2 85 1
' 87 0.5
89 0.2

* concentration units as measured by Fischer (1966).
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APPENDIX - B

DISPERSION DATA OF TESTS CONDUCTED IN RIVER

In this appendix details of the data used in the present study from experiments
conducted on Missouri River (Yotsukura et al., 1970), Rhine River (Van Mazijk,
personnel communication), Colorado River (Graf, 1995), Mimram River (Lees et al.,
1998), Uvas Creek (Bencala and Walters, 1983) and Huey Creek (Runkel et al., 1998)

are presented.

B 1.1 Missouri River Experiment Data

Yotsukura et al., (1970) conducted tracer experiments in a 227km reach of
Missouri River between Sioux city and Plattsmouth A total of 272.16 kg. of
Rhodamine WT 20 percent solution was injected downstream from Combination
Bridge at Sioux City at about 17 hrs. November 13, 1967. Time-concentration
measurements of dye are available at four down stream sampling locations: Decatur
Highway Bridge (RK 1112), Blair Highway Bridge (RK 1042.8), Ak-sar-ben Bridge
in Omaha (RK 991.3) and Plattsmouth Highway Bridge (RK 951). The data consists
of cross-sectional average dye concentration as a function of time at each sampling
cross-section and are given in Table B 1.1.

B 1.2 Rhine River Experiment. Data

Dye experiments were conducted, in June 1991,(Van Mazijk, personnel
communication) in a relatively normal discharge range from 2140 m%/s to 2290
m’/s. The sampling stations, where the time-concentration measurements were taken
are located in a reach length of 273 km (Fig. 3.10). The observed data available at
the sampling stations between Koblenz (RK 590.35) and Lobith (RK 863.3) are
given in Table B 1.2. The bed slope in different sub-reaches is given in Table B 1.3.
(Note. The data of these experiments have been used in the present study with prior
permission from Dr. Mr. M. Meulenberg of Commission International de

L’Hydrologic du Bassion du Rhine (ICHR), The Netherlands.)
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Table B 1.1 Distribution of cross-sectional average dye concentration with time,

Missouri River, November 1967

215

Decatur Bridge Blair Bridge Ak-sar-ben Bridge | Plattsmouth Bridge
(RR=0.882) (RR=0.780) (RR=0.775) (RR=0.775)
Time Dye Time Dye Time Dye Time Dye

after |Concentr| after |Concentr| after |Concentr| after |Concentr
injection | ation |injection| ation |injection| ation |injection| ation
(hr:min) | (ppb) [ (hr:min) | (ppb) | (hrimin) | (ppb) | (hr:min) |" (ppb)

1030 |~ O 20:59 0.01 28.33 0 34.02 0

10:45 0.25 21:27 0.02 29:06 0.04 35.02 0.03

11:00 0.80 21:51 0.22 29:32 0.11 36:02 0.15

11:25 1.89 22:10 0.35 30:03 0.29 | 37:01 0.49

11:36 2.32 22:30 "0.60 30:33 0.53 38:02 1.00

11:49 2.84 22:47 0.88 31:03 0.88 39:00 1.37

11:58 kA | 23.01 1.09 31:32 1.16 40:00 1.64

12:16 3.55 23:16 1.38 32:02 1.52 41:02 1.57

12:35 IS 23:52 1.88 32:33 1.79 42:02 139

12:47 4.05 24:12 2.23 33.02 2.01 43:00 1.07

13:03 4.03 24:34 2.45 34:.02 2.09 44:30 0.62

13:17 3.88 24:55 2.50 34:35 1.84 46:11 0.29

13,33 3.64 25:27 2.52 35:05 1.73 47:58 0.15

13:47 3.36 25:55 2.39 36:05 1.28 50:03 0.08

1403 3.10 26:24 2.10 37.03 0.88 52:05 0.06

14:18 2.70 26:53 1.78 | 38:00 0.54 55:12 0.03

14:33 2.38 27:46 1.20 39:01 0.32 59:06 0.02

14:47 2.07 | 28:02 1.01. | 40:01 0.20 63:10 0.01

15:02 1.64 28:33 0.74 41:01 0.13 66:58 0.01

1517 | 139 | 29:02 | 0.61 | 42:01 | 0.9 '

15:32 | 112 | 2935 | 042 | 43:02 | 0.07

15:48 0.86 30:02 0.30 45:00 0.05.

16:03 0.72 30:32 0.21 47:10 0.03

16:23 049 | 31.02 0.14

16:43 0.37 32:03 0.09

17:03 0.28 33.01 0.09

17:22 0.19 34.04 .0.06

17:42 0.14 35:06 0.07

18:04 0.11 36:03 0.05

18:37 0.09 38:03 0.03

19:02 0.08 40:02 0.02

19:35 0.06 43.05 0.02

20:02 0.06
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Table B 1.3 The bed slope in different sub-reaches

Rhn(lli'r:;aCh Bottom slope
496.8-744 2.3 x10”
744-837 1.6x10™
837-863 2.7x10

B 1.3 Colorado River Experiment Data

The dispersion data of this experiment conducted during steady and unsteady
flow conditions have been obtained from, USGS, WRD, Tucson, AZ 85719. Graf
(1995) has described the dye experiments conducted in the Grand Canyon reach, the
Colorado River, during controlled steady and unsteady flow conditions, in May
1991. At Lees Ferry gauging station, on 20th May 1991 at 11:35hrs, 63.5kg of
Rhodamine WT.dye was injected for the experiments conducted during steady
streamflow. During these experiments, under steady flow conditions, concentration
measurements were taken at Nautiloid Canyon, above the Little Colorado, below
Nevill’s Rapid, Mile 118 camp, National canyon, Pumpkin spring, and at Gneiss
Canyon located at a downstream distances of 58 km, 98 km, 123 km, 189 km, 267
km, 343 km, and 381 km from the tracer injection location respectively. The flow in
Colorado River was maintained at an average rate of 428 m®/s by controlling the
flow from the Glen canyon dam.

During controlled unsteady flow conditions, Rhodamine WT dye was
injected at Lees Ferry gauging station, on 6™ May 1991 at 13:05 hrs, 127kg.for the
measurements of dispersion during unsteady flow. The time-concentration
measurements are available at Nautloid Canyon (RK 57.7), at the Little Colorado
above Desert View (RK 98.3), at Nevill’s rapid (RK 123), at Mile 118 camp (RK
189), at National Canyon (RK 267), and at Gneiss Canyon (RK 381) during
unsteady flow.

In Grand Canyon reach, observed hydrpgraphs are available at Lees Ferry

(RK 0;USGS 09380000), at above the Little Colorado river near Desert View (RK
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08; USGS 0938100), at Phantom Ranch near Grand Canyoh (RK 142; USGS
09402500), at National Canyon near Supai (RK 267; RK 09404120) and at
Diamond Creek near peach springs (RK 362; USGS 09404200).

The flow and dispersion data during steady and unsteady ﬂdw conditions are
presented in floppy diskette attached. Files contain dispersion data collected at each
site and have time, in decimal days, and dye concentration, in microgram per litre.
Files are:

Dispersion data during steady flow:
nautsdy.dat, lcrsdy.dat, nevsdy.dat, m118sdy.dat, natusdy.dat, pumpsdy.dat,
and gnssdy.dat, in downstream order.
Dispersion data during steady flow:
nautusdy.dat, lcrusdy.dat, nevusdy.dat, mll8usdy.dat, natusdy.dat, and
gnssdy.dat, in downstream order. ‘
Files (named with gauging station number) containing the hydrographs data at gauging
station, in down stream order, are:

9380000.txt, 9381000.txt, 9402500.txt, 9404120.txt, and 9404200.txt
In the hydrograph data the first column specifies year, second column specifies the
month number, third column specifies date, fourth column specifies time in min and the

fourth column specifies the discharge in ft'/s.

B 1.4 Mimram River Experiment Data

A tracer experiment was conducted by Lees et al., (1998) bn Mimram River
near the Panshanger ﬂow‘gauging flume in Hertfordshire, England. The reach is
approximately 200 m long and is characterised by non-uniform cross-sections of
sandy pebbled bed with heavy weed growth. A constant discharge of 0.251 m%/s was
measured at the gauging flume during the tracer experiment. Approximately 10 kg
of sodium chloride (NaCl) was gulp injected into the river upstream of the flume's

hydraulic jump and the resulting tracer cloud was measured over time at three
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sampling stations downstream as follows: Site A at 100 m downstream from
injection point; site B at 40 m downstream from site A; and Site C at 50 m
downstream from site B. Measurements of conductivity were taken at irregular time
intervals at each section, and the concentration of NaCl was computed from the
conductivity calibration curves. The recorded concentrations, interpolated over an
uniform sampling interval of 10 seconds were plotted by Lees et al. (1998). The
plotted C-t curves were digitized using Tracer software (Karolewski, 2001) and the
data thus digitized were used in the present study. The data is given in the diskette

with file name Mimram.dat

B 1.5 Uvas Creek Experiment Data

Bencala and Walter (1983) described the tracer experiments conducted in
Uvas Creek, a mountain stream, by injecting chloride at a constant rate for three
hours duration. A maximum concentration of 11.9 mg/L was reached at a short
distance below injection point. The experiments were conducted in late summer
during a period of low flow of 0.0125 m’/s. The overall slope is 0.03 m/m.
Background concentration was measured to be 3.7 mg/l. The channel is highly
irregular, compbsed of alternating pools and riffles. In riffle sections, the water is in
contact with gravel and cobble bed and solute can easily enter the accessible void
spaces. The observed C-t curves are available at a distance of 38m (station 1), 105m
(station 2), 281m (station 3), 433rﬁ (Station 4), and 619m (station 5) from the tracer

injection point. The time- concentration data used in the present study are given in

Table B 1.4.

221



Table B 1.4 Time-concentration data from experiments on the Uvas Creek

(Bencala and Walters, 1983)

222

Distance from source Distance from source Distance from source
= 38km = 105km =28 lkm
Time Concentration Time Concentration . Concentration
(hrs) (mg/) (hrs) mgn) | T ) | gy
7.933333 3.87 7.766667 3.72 7.8 3.69
8.016667 3.76 8 3.66 8.333333 3.67
85 . 3.67 8.083333 3.63 8.5 3.71
8.533333 373 8.333333 3.72 8.666667 3.77
8.566667 3.66 8.5 3.65 8.833333 3.7
8.6 3.69 8.666667 3.65 9 3.73
8.633333 3.73 8.75 3.79 9.166667 3.65
8.666667 5.58 8.833333 3.91 9.333333 3.65
8.7 8.44 8.916667 3.75 9.5 3.73
8.766667 10.61 9 3.75 9.666667 3.68
8.8 10.91 9.083333 4.16 0.833333 3.7
8.833333 11.14 9.166667 5.49 10 3.83
8.866667 C11.22 9.25 7.15 10.16667 - 4,15
8.9 11.41 9.333333 8.21 10.33333 5.36
8.933333 -11.49 9.416667 9.39 10.5 6.75
8.966667 11.49 9.5 - 10.2 10.66667 8.03
9 11.61 9.583333 10.57 10.83333 8.71
9.033333 11.49 9.666667 . 10.87 11 9.18
0.066667 11.47 9.75 11.03 11.16667 9.49
9.1 11.59 9.833333 11.22 11.33333 9.64
9.133333 11.47 9.916667 11.22 11.5 9.74
9.166667 11.47 10 11.26 11.66667 9.94
9.233333 11.55 10.08333 11.22 11.83333 9.91
9.3 11.47 10.16667 11.18 12 991  ~}

9.366667 11.47 10.25 11.28 12.16667 9.95
9,433333 11.43 10.33333 11.23 12.33333 9.94
9.5 11.47 10.41667 11.24 12.5 0.94
9.566667 1147 10.5 11.4 12.66667 9.91
9.633333 11.43 10.66667 11.4 12.83333 9.96
9.7 10.99 10.83333 11.38 : 13 9.81
9.766667 11.41 il 11.38 13.16667 9.36

19.833333 11.48 11.16667 11.48 13.33333 8.29
10 11.68 11.33333 11.51 13.5 7.02
10.16667 11.63 11.5 114 13.66667 5.81
10.33333 11.52 11.58333 11.51 13.83333 5.06
10.5 11.54 11.66667 11.44 14 461
10.66667 11.56 11.75 11.4 14.16667 433
10.83333 11.37 11.83333 11.34 14.33333 4.15
11 11.46 11.91667 11.16 14.5 4.07

11.16667 11.4 12 10.95 14.66667 4

11.33333 11.44 12.08333 10.45 14.83333 3.92
11.5 10.23 12.16667 8.97 15 3.92
11.53333 10.51 12.25 7.68 15.16667 39




Table B 1.4 (Contd....)

Distance from source Distance from source Distance from source
= 38km = 105km =281km
Time Concentration Time Concentration Time (hrs) Concentration
(hrs) (mg/l) (hrs) (mg/l) (mg/l)
11.56667 10.99 12.33333 6.31 15.33333 3.88
11.6 11.22 12.41667 5.66 15.5 3.89
11.63333 11.21 12.5 4.89 15.66667 3.85
11.66667 9.05 12.58333 4.53 15.83333 3.83
11.7 6.47 12.66667 4.24 16 3.91
11.73333 5.22 12.75 4.1 16.16667 3.86
11.76667 4.6 12.83333 3.94 16.33333 3.86
11.8 428 12.91667 3.84 16.5 3.86
11.83333 4.18 13 3.81 16.66667 3.91
11.86667 4.01 13.08333 3.79 16.83333 3.88
11.9 3.95 13.16667 3.75 17 3.87
11.93333 3.93 13.25 3.75 - 17.36667 3.8
11.96667 3.86 13.33333 3.78 17.86667 3.82
12 3.85 13.41667 3.74 18.36667 3.75
12.03333 3.96 13.5 3.74 19.36667 3.73
12.06667 3.81 | 13.58333 3.77 20.36667 3.73
12.1 3.79 13.66667 3.72 21.36667 3.75
12.13333 3.76 13.75 372 22.36667 3.73
12.16667 3.73 13.91667 3.75 23.36667 3.72
12.23333 3.72 14.08333 371 24.36667 3.83
123 3.71 14.25 371 25.36667 4
12.36667 3.71 14.41667 3.72 26.36667 4
12.43333 372 14.58333 3.73 27.36667 4.06
12.5 3.71 14.75 3.68 28.36667 422
12.56667 3.67 1491667 3.7 29.36667 4.14
12.63333 3.67 15.08333 3.76 30.36667 4.2
12,7 37 15.25 3.7 31.36667 4.29
12.76667 371 15.5 3.7 32.36667 4.24
12.83333 3.71 15.75 3.68 33.36667 431
13 % 3.67 16 3.68 34.36667 4.33
13.16667 3.64 1625 375 35.36667 422
13.33333 3.66 16.5 3.69 36.36667 4.24
13.5 3.64 16.75 . 3.66 37.36667 424
13.66667 3.66 17 3.71 38.36667 4.2
13.83333 3.64 17.5 3.79
14 3.75 18.06667 3.72
14.16667 3.68 19.06667 3.72
1433333 3.7 20.06667 3.7
15.16667 3.7 21.06667 3.71
15.68333 3.83 22.06667 3.71
16.16667 3.74 23.06667 3.77
16.68333 3.88
17.16667 3.66
17.68333 37
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Table B 1.4 (Contd...)

B 1.6 Huey Creek Experiment Data

Distance from source Distance from source Distance from source
= 38km = 105km =281km

Time Concentration Time ' Concentration| . Concentration
(hrs) (mg/) (ars) g | " O | g

18.68333 3.76

19.68333 3.72

20.68333 3.74

21.68333 3.83

22.68333 3.8

23.68333 3.93

24.68333 4.06

25.68333 4.1

26.68333 4.11

27.68333 4,08

28.68333 4,16

29.68333 4.5

30.68333 4.46

31.68333 . 428

32.68333 441

33.68333 438

34.68333 4.51

35.68333 439

A tracer-dilution experiment conducted in Huey Creek, in January 1992,

to determine the extent and rate of hyporheic exchange was described by Runkel .

et al., (1998). A solution containing Lithium Chloride (LiCl) was injected into

Huey Creek beginning at 11:25 hrs on 7™ January. The injection continued at a

rate of 8.7 ml/s for ~3.75 h. Injectate concentration of Lithium (Li) was 34 g/I.

The C-t measurements are available at downstream distances of 9m (location 1),

213m (location 2), 457m (location 3), 762m (location 4), and at 1052m (location

4) from the point of injection of the LiCl injectate (Fig. 6.24). The inflow

hydrograph data given by Runkel et al., (1998) are given in Table B 1.5. The

time concentration data used in the present study are given in Table B 1.6.
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Table B 1.5 Inflow Hydrograph for Huey creek (Runkel et al., 1998)

Time Discharge Time Discharge
(hrs) (#’/s) (hrs) (Rs)
0.00 0.28 18.25 1.6
0.25 0.28 18.50 15
0.50 0.24 18.75 13
0.75 0.24 19.00 1.2
1.00 0.22 19.25 1.1
1.25 0.2 19.50 0.96
1.50 0.2 19.75 0.84
1.75 0.2 20.00 0.76
2.00 0.2 20.25 0.7
2.25 0.2 20.50 0.59
2.50 0.19 20.75 0.42
2.75 0.17 21.00 0.41
3.00 0.17 21.25 0.38
3.25 0.15 21.50 0.34
3.50 0.15 21.75 0.34
3.75 0.15 22.00 0.34
4.00 0.15 22.25 0.34
425 0.15 22.50 0.32
4.50 0.15 22.75 0.32
18.00 1.9769 23.00 0.32

Table B 1.6 Distribution of cross-sectional average Li concentration with time,
Huey creek (Runkel et al., 1998)

Distance from Distance from Distance from Distance from Distance from
~ source = 9m source =213 m | source=457m | source=762.0m | source =1052.0m
Time {Concentr| Time |Concentr] Time |Concentr| Time {Concentr| Time |Concentr
(hr,m) ation (hr,m) ation (hr,m) ation (hr,m) ation (hr,m) ation
(mg/l) (mg/l) (mg/l) (mg/I) (mg/])
11:17 | 0.012 § 11:15 | 0.046 | 11:15 | 0.042 | 10:50 | 0.037 | 11:04 | 0.036
11:220 | 0.052 | 11:225 | 002 | 11130 § 0.011 | 11:10 | 0.037 | 11:15 | 0.004
11:45 | 3366 | 11:35 | 2968 | 11:45 | 2.617 | 11:30 | 0.091 | 11:25 | 0.023
11:55 | 2.807 | 11:45 | 3.093 | 12:00 | 2,500 | 11:45 | 0067 | 11:35 | 0.0}l
12:05 | 2.708 | 11:55 | 2.844 | 12:15 | 2.382 | 12:00 | 2323 | 11:51 | 0.03
12:15 | 2.596 | 12:05 | 2.67 | 12:30 | 2.289 | 12:15 | 2.174 | 12:05 | 1.843
12:25 | 2.509 | 12:25 | 2.447 | 12:45 | 2.289 | 12:30 | 2273 | 12:20 | 1913
1245 | 2.404 | 12:35 | 2.496 | 13:00 | 2.312 | 12:45 | 2.078 | 12:33 | 1.867
13:00 | 216 | 12:45 | 2.025 | 13:15 | 2.265 | 13:00 | 2.223 | 12:43 | 1.813
13:30 | 2.11 12:55 | 2422 | 13:30 | 2.289 | 13:15 | 2.198 | 12:52 | 1.937
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Table B 1.6 Contd...)

Distance from Distance from Distance from Distance from Distance from
source = 9m source =213 m source =457 m | source = 762.0m | source =1 052.0m

Time |Concentr| Time |[Concentr| Time |Concentr| Time |Concentr| Time |[Concentr
(hr,m) ation (hr,m) ation (hr,m) ation (hr,m) ation (hr,m) ation

(mg/1) (mg/l) (mg/l) (mg/1) (mg/)

13:55 | 2,135 | 13:10 | 2.248 | 13:45 | 2218 | 13:30 | 2.124 | 13:03 | 1.796

14:10 | 2.248 | 13:25 | 2.273 | 14:00 | 2.148 | 13:45 | 2.031 | 13:13 1.82

14:15 | 2.085 | 13:45 | 2273 | 14:15{ 2.031 | 14:.00 | 2.000 | 13:32 | 1.843

14:30 | 2.248 | 14:05 | 2323 | 14:30 | 2.171 | 1415 | 1.937 | 13:43 | 1.937

14:50 | 2248 | 14:25 | 2.198 | 14:45 | 1984 | 14:30 | 1.960 | 13:57 | 2.125

15:12 | 0.097 | 15:20 | 0.172 | 15:00 | 2.054 | 1445 | 2.007 | 14:12 1.96

15:27 | 0.012 | 15:35 | 0.168 | 15:15 | 2.218 | 15:00 | 2.074 | 14:27 | 2.007

15:55 0.06 15:45 | 0.162 | 15:30 [ 0511 | 15:15 | 2.099 | 14:42 | 1.937

16:20 | 0.078 | 16:05 | 0.107 | 15:45 0281 | 15:30 | 1917 | 14:57 1.89

16:35 | 0.084 | 16:25 | 0.054 | 16:00 [ 0.254 15:45 | 0.493 | 15:12 | 1.843

16:41 0.11 17:00 | 0.083 | 16:15 { 0.228 | 16:00 | 0.400 | 15:27 1.96

16:52 | 0.072 0 16:30 § 0.188 | 16:15 | 0.289 | 15:42 1.08

1645 | 0.156 | 16:30 | 0.209 | 15:57 | 0.434
17.07 | 0.112 | 16:45 | 0.256 | 16:12 | 0.358
17.00 | 0.191 | 16:27 | 0.264
17:15 | 0.184 | 16:42 | 0.228
17:.30 | 0.166 | 16:57 | 0.198

17:45 | 0.135 | 17:12 | 0.181
18:00 | 0.141 | 1727 | 0178
18:15 | 0.121 | 17:42 | 0.175

17:57 0.15
18:13 | 0.137
18:33 | 0.156
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APPENDIX - C

FORTRAN PROGRAM LISTING

C#***####**********#*###t***######*#**#***#****#*###**##*##*#t*tt##**#****#*#*t*#**t‘*t**

C PROGRAM FOR SIMULTANEOUS FLOOD AND SOLUTE ROUTING BY AD-VPM METHOD

C#*#*#t*###**********###t#####*t*‘**t***#**#*#*****##*#*#t*#*t*##*##t*#*#***#tt*###*****#

Al
QOBS
QCOM
™M
YOBS

- YCOM
AIN1
Y1
SIN1
DYDXUP

DYDX1

Cl
COBS
CINT
CCoOM
DL
N
NP
DT

YIN
4
B

G
SO
PI
AN
NREACH
FSQ
R
THETA
AK
AKP
TETAM
Psi

OO0 oo nn

QOO0 aO0O0n

REAL
REAL
REAL
REAL
REAL

O0O0O0O00

DESCRIPTION OF VARIABLE NOTATIONS USED IN THE PROGRAM

INFLOW HYDROGRA}‘H ORDINATES AT THE INLET OF EACH SUB-REACH
OBSERVED OUTFLOW HYDROGRAPH ORDINATE.

COMPUTED OUTFLOW HYDROGRAPH ORDINATE

COMPUTED STAGE AT THE MIDDLE OF THE SUB-REACH.

" OBSERVED STAGE AT THE OUTLET OF THE REACH

COMPUTED STAGE AT THE OUTLET OF THE REACH

ORDINATE OF THE GIVEN INFLOW HYDROGRAPH

COMPUTED STAGE CORRESPONDING TO Al

STAGE CORRESPONDING TO GIVEN INFLOW AIN1
NON-DIMENSIONALISED WATER SURFACE SLOPE COMPUTED AT
THE INLET OF THE REACH

NON-DIMENSIONALISED WATER SURFACE SLOPE GIVEN AT THE C
INLET OF THE REACH (COMPUTED USING ST. VENANT'S EQNS.)
INPUT C-t CURVE ORDINATES AT INLET OF EACH SUB-REACH
OBSERVED QUTPUT C-t CURVE ORDINATES

ORDINATES OF THE INPUT C-t CURVE

COMPUTED OUTPUT C-t CURVE ORDINATE

DISPERSION COEFFICIENT

TOTAL NUMBER OF INFLOW AND OUTFLOW VARIABLE

TOTAL NUMBER OF INPUT AND OUTPUT C-t ORDINATES (cptional)
ROUTING INTERVAL

INTIAL STAGE

SIDE SLOPES

WIDTH OF THE CHANNEL

ACCELERATION DUE TO GRAVITY

BED SLOPE

RELATIONAL COEFFICIENT

MANNING’S ROUGHNESS COEFFICIENT

NUMBER OF SUBREACHES USED IN THE GIVEN ROUTING REACH
SQUARE OF FROUDE NUMBER

HYDRAULIC RADIUS. .

WEIGHTING PARAMETER FOR FLOW ROUTING

REACH TRAVEL TIME FOR FLOW ROUTING

REACH TRAVEL TIME FOR SOLUTE ROUTING

WEIGHTING PARAMETER FOR SOLUTE ROUTING

Velocity conversion coefficient (optional)

*************t*#*#****#***##*************#***#**#***i************************#**********

AIN1(1000),Y1(1000),A1(1000), YM(200),DYDX(1000), YOBS(1000)
QCOM(995),YCOM(995),FUNC(200),DYDX1(995),QOBS(995), YOUT(200)

'YCOM1(1000), QCOM1(1000),SIN1(1000), DYDX1(1000), FUNC2(200)

DYDXUP(1000), aift(1000),SF(100),RI(100)
CI (1000), CINT (1000),COBS (1000),CCOM (1000),A3(1000), disp (1000)

FILE 'dybydx.dat' IS AN OUTPUT FILE AND IT DISPLAYS GIVEN INFLOW, COR
RESPONDING COMPUTED AND ST. VENANT'S SOLUTION NON- DIMENSIONAL
ISED WATER SURFACE SLOPES

OPEN (1,FILE='DYBYDX. DAT")
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FILE ‘'vpm.dat' IS INPUT FILE AND IT STORES GIVEN INFLOW AND OUTFLOW
CORRESPONDING STAGE HYDROGRAPHS, INPUT AND OUTPUT CONCENTRATION
DISTRIBUTIONS, THE VALUES OF N, DT,YIN, B,G, SO, AN, TTL, NREACH, JUMP, PI, Z, and NP

OPEN (2,FILE='"VPM.DAT")

FILE ‘vpmout IS AN OUTPUT FILE WHICH DISPLAYS GIVEN INPUT VALUES
OF N, DT)YIN, B,G, SO, AN, TTL, NREACH, JUMP, PI, Z, AND NP, IT ALSO
DISPLAYS  GIVEN  INFLOW  AND  OUTLFOW  HYDROGRAPH AND  THE
CORESPONDING COMPUTED INFLOW AND OUTFLOW STAGE HYDROGRAPHS,

INPUT AND  OUTPUT  CONCENTRATIONS, @ COMPUTED AND  OBSERVED
STAGE  HYDROGRAPHS. SUM OF INFLOW, SUM OF OUTFLOW AND SUM OF
COMPUTED OUTFLOW ALONG WITH MEASURES FOR VARIANCE EXPLAINED AND ERROR
IN VOLUME ARE DISPLAYED.

OPEN (3,FILE='VPM.OUT")
FILE ' akthout IS AN OUTPUT FILE WHICH DISPLAYS THE LAST SUBREACH
INFLOW AND THE CORRESPONDING COMPUTED MUSKINGUM WEIGHTING
PARAMETER.
OPEN (4,FILE='AKTH.OUT")
FILE 'dydx.dat' IS AN INPUT FILE WHICH STORES NON-DIMENSIONALISED WATER SURFACE
SLOP COMPUTED USING ST. VENANT'S SOLUTION AT THE
INLET OF THE REACH
OPEN (7, FILE='DYDX.DAT")
FILE ‘advpm.out IS OUTPUT FILE WHICH GIVES THE VELOCITY AT SECTION
3, DISPERSION COEFFICIENT AND THE WEIGHTING PARAMETER OF SOLUTE
ROUTING AD-VPM MODEL

OPEN (8,FILE='ADVPM.OUT")

@] OO0 oloXoNoXe! oXoloXoXe! OO0 QOO0

G=9.81

READ(2,*)N,DT,YIN,B,SO,TTL,NREACH,Z, PI, NP, AN, Psi

WRITE(3,99) N,DT,YIN,B,SO,AN,TTL,NREACH,G,Z PI,NR1,NP
99  FORMAT(15X,'NO. OF ORDIANTES=',16/15X,'ROUTING TIME INTERVAL
(Sec)='F8.2/15X,'INTIAL DEPTH(mts)=',F8.4/15X,'CHANNEL WIDTH
(mts)=",F8.2/15X,'BED SLOPE(m/m)='F6.4/15X,'MANNINGS ROUGHNESS
COEFF='F6.3/15X,'TOTAL LENGTH OF THE REACH(m)=",F10.1/15X,'NO.
OF SUB REACHES =, I5 /15X,'ACC.DUE TO GRA=', F6.3/15X,'Z="F8.4/
14X,'RELATIONAL PARA.="F7.4/15X,'NO.OF REACHES=',14/10X,'NP=',14)

[ QN N OV I NG Q.

READ(2,¥) (AI(1),I=1,N+1)
READ(2,*)(QOBS(I),I=1,N)

READ(2,* )(CI(I),]=1,NP)
READ(2,*)(COBS(I),I=1,NP)
READ(7,890)(DYDXI1(I),1=2,N+1)
890 FORMAT(10FS8.5)
Z1=SQRT(1.0+Z*Z) ‘
C STORING OF ORIGINAL Al AND CI VALUES IN AIN1 AND CINT ARRAYS
DO 6I=1,N
CINT())=CX(I)
6  AINI(D=AL()
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C DOS8I=1,NP
C 8 CINTM=CI(D)
DXP=TTL/NRI
DX=TTL/NREACH
WRITE(*,*)DX,DXP
DX1=0.0
WRITE (3, *)' MANNING'S n =, AN

C DXI- LENGTH OF CUMULATIVE ROUTING REACH

7 DX1=DXI1+DX
[F((DX1-1).GT.TTL)GOTO 26
95 FORMAT (15X,'SUB-REACH LENGTH='F12. 2,',',F12 2)
Y1(1)=YIN
QIN=AI(l)
CIN=CK(1)
DADY=B+2*Z*YIN
DL=PI*QIN/(2.*SO*DADY)
PRA=(B*(B+2.0*Z*YIN)+2.0*Z 1*Z*YIN* YIN)/((B+2.*Z* YIN)*
1 (B+2.0*Z1*YIN))
VIN=QIN/((B+Z*YIN)*YIN)
AK = DX/((1+2./3.*PRA)*VIN)
AKP=DXP/VIN
FSQ = QIN*QIN*(B+2.#Z*YIN)/(G*((B+Z*YIN)*YIN)**3)
R=(B+Z*YIN)*YIN/(B+2.*YIN*Z1)
THETAN=QIN*(1-(4./9.)*FSQ*PRA*PRA)
THETAD=2.#SO*(B+2.*Z*YIN)*(1+2./3.*PRA)*VIN*DX
THETA = 0.5-(THETAN/THETAD)
TETAM=0.5-DL/(VIN*DXP)
CONST=(1./AN)*SQRT(SO)
QCOM(1)=QIN
YCOM(1)=YIN
CCOM(1)=CIN
I=1
YMID=YIN
COUNTER M IS USED FOR UPDATING THE PARAMETERS AT ANY TIME.
M=0
J=J+1
CDIN=AK*(1.-THETA+DT/2.
C1, C2 AND C3 ARE. COEFFICIENTS OF THE MUSKINGUM FLOW ROUTING EQUATION

v

) o

C1=(-AK*THETA+DT/2.)/CDIN
C2=(AK*THETA+DT/2.)/CDIN
C3=(AK*(1.0 - THETA)-DT/2.)/CDIN
PDIN=AKP*(1.-TETAM)+DT/2.
C PKI, PK2 AND PK3 ARE THE COEFFICIENTS OF THE MUSKINGUM SOLUTE
C ROUTING EQUATION
PK1=(-AKP*TETAM+DT/2.)/PDIN
PK2=(AKP*TETAM+DT/2.)/PDIN
PK3=(AKP*(1.0 - TETAM)-DT/2.)/PDIN
M=M+1
C COMPUTATION OF OUTFLOW
QCOM (J)=C1*AI (J)+C2*Al (J-1)+C3*QCOM(J-1)
C COMPUTATION OF QUTPUT CONCENTRATION
CCOM(J)=PK1*CI(J)+ PK2*CI(J-1)+ PK3*CCOM(J-1)
C COMPUTATION OF WEIGHTED OUTFLOW
Q3 = QCOM()+THETA*(AI(J)-QCOM()
I=1
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YM(I)=YMID
C FINDING THE STAGE AT THE MIDDLE OF THE REACH
R=(B+Z*YM(D))*YM(I)/(B+2.*YM(I)*Z1)
FUNC()=Q3-CONST*R¥*(2./3.)¥(B+Z*YM(D))*YM(D)
I=2
YM(I)=YMID+0.2*YMID
10 R=B+Z*YMD)*YM)/B+2.¥YM()*Z1)
FUNC(®I)=Q3-CONST*R**#(2./3.)*(B+Z*YM(I))*YM(I)
DYM=-FUNC(I)*(YM(D)-YM(I-1))/(FUNC(D)-FUNC(-1))
YM(I+1)=YM(D)+DYM
IF(ABS((YM(I+1)-YM(D)) YM(I+1)) .LT. 0.01) GOTO 30
I=I+1
GO TO 10
30 YMID=YM(+1)
C COMPUTATION OF THE DISCHARGE AT THE MIDDLE OF THE REACH
QMID=(AI(J)+QCOM())/2.0
VM=QMID/((B+Z*YMID)*YMID)
VNORM=Q3/((B+Z*YMID)*YMID)
PRA=(B*(B+2.0*Z*YMID)+2.0*Z1#Z*YMID* YMID)/((B+2.*Z*YMID)*
1 (B+2.0%Z1¥YMID))

C COMPUTATION OF THE SQUARE OF THE FROUDE NUMBER
FSQ = QMID*QMID*(B+2.*Z*YMID)/(G*((B+Z*YMID)*YMID)**3)
YCOM@@)=YMID+HQCOM(J)-QMID)/((B+2.*Z*YMID)*(1.+ 2./3.*PRA)*VM)
Y3 = YMID+(Q3-QMID)/((B+2.*Z*YMID)*(1.+ 2./3.*PRA)*VM)
C A3(j)=(B+Z*Y3)*Y3
C COMPUTATION OF THE VELOCITY AT THE WIGHTED OUTFLOW SECTION
V3=Q3/((B+Z*Y3)*Y3) '
C23 FORMAT (1X,'VELOCITY3="F15.6)
PRA=(B*(B+2.0¥Z*Y3)+2.0%¥Z1 *Z*Y3*Y3)/((B+2.*2*Y3)*
1 (B+2.0¥Z1*Y3))
DADY=B+2*Z*Y3
COMPUTATION OF DISPERSION COEFFICIENT USING WEIGHTED DISCHARGE
DL=PI*Q3/(2.*SO*DADY) ‘
disp(j)=dl
alfa=(a3(j)*disp(j)-a3(j-1)*disp(j-1))/(dx*a3())
COMPUTATION OF VECLOCITY OF SOLUTE CLOUD
V3M=V3
V3M=VNORM
v3m = v3/(1+psi)
AKP=DXP/V3IM
DADY=B+2¥Z*Y3
DL=PI*Q3/(2.*SO*DADY)
COMPUTATION OF WAVE CELERITY OF THE REACH
CEL=(1+2./3.¥PRA)*V3
C COMPUTATION OF PARAMETER AK,AKP,THETA, AND TETAM
AK =DX/CEL -
R=(B+Z*YMID)*YMID/(B+2.*YMID*Z1)
THETAN=Q3*(1-(4./9.)*FSQ*PRA*PRA)
THETAD=SO*(B+2.¥Z*Y3)*(1+2./3.*PRA)*V3*DX
C COMPUTATION OF DISPERSION COEFFICIENT AND WEIGHTING FACTOR FOR SOLUTE
DL=PI*THETAN/(2.*SO*DADY)
C DL=PI*Q3/(2.*SO*DADY)
TETAM=0.5-DL/(V3M*DXP)
(C,E WRITING THE VALUES OF OUTFLOW, VELOCITY, DISPERSION COEFFICIENT
C

[oXe [oXOR®! @}

Qo

AND THE WEIGHTING COEFFICIENT
WRITE (8,*) QCOM(J),V3M,DL,TETAM
GM = (QCOM(J)-AI(N))*THETAN/(THETAD*Q3)
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GM =0.
THETA=0.5-(THETAN/THETAD)*(0.5+0.125*GM+(1./16.)*GM*GM+(5./128.)*
1 GM**3+(7./256)*GM**4)
YCOM(J)=YMID+QCOM(J)-QMID)/{(B+2.*Z* YMID)*(1.+ 2./3.*PRA)*VM)

C COMPUTATION OF STAGE AT THE INLET OF THE REACH
IF (DX1 .EQ. DX) THEN
Y1(J)=2.*YMID-YCOM(J)
ENDIF
IF (M .LE. 1) GOTO 9

C COMPUTATION OF NON-DIMENSIONALISED WATER SURFACE SLOPE AT THE INLET COF
C THE REACH

VELUP=AI()/((B+Z*Y 1Q)*Y1(J)
PRA=(B*(B+2.0*Z*Y 1())+2.0*Z *Z* Y 1(0)* Y1)/ (B+2.*Z*Y1()*
1 (BH2.0*ZI*Y1())
CELUP=(1+2./3.*PRA)*VELUP
DYDXUP()) = -(AI(J)-AI(J-1))(SO*DT*B*CELUP**2)
C CONVERTING AK INTO HOURS
[F(DX!1 .EQ. DX)AK1=AK/3600.0
C WRITING INFLOW OF THE LAST REACH AND THE CORRESPONDING AK AND
C THETA.
IF(OX!1 .EQ. DX) WRITE(4,*) J, AI(J),AK 1, THETA
DYDX(J)=(YCOM{)-Y 1(J))/DX
DYDX1()=DYDX({)/SO
WRITE(1,*)DYDX({J),DYDX1(})
IF(J LT.N) GOTO 5
C WRITING INFLOW AND CORRESPONDING NON-DIMENSIONALISED WATER SURFACE
C SLOPE OF THE St.VENANT'S SOLUTION AND PRESENT SOLUTION
IF (DX1 .eq. DX) WRITE(1,222) (J,AIN1(J), DYDXUP(J), DYDX(J), DYDX1()) 1 J=2N)
222 FORMAT (5X, I3,F8.0,2X,F10.6,5X,2F 10.6)

C OUTFLOW AND STAGE FROM THE SUB-REACH BECOMES INFLOW TO THE
C_ NEXT SUB-REACH
© DO28I=1N
Y1(D=YCOM()
CI()=CCOM()
28 AI(N=QCOM()

C CHECKING FOR THE COMPLETION OF THE ROUTING FOR THE LAST SUB-
C REACH

26 IF(DX1.LT.TTL) GOTO 7 . ;
C WRITING THE INFLOW, AND OBSERVED AND COMPUTED OUTFLOW AND
C STAGE

WRITE (3,*)NO. INFLOW OUTFLOW OBS YCOM'

WRITE (3,101)((J-1), AIN1(J), QCOM(J), QOBS(J), YCOM(), 3=1,N)
101 FORMAT (1X,1X,14,1X,4F12.5)
C WRITING THE COMPUTED OUTFLOW, INPUT CONCENTRATION, COMPUTED
C OUTPUT CONCENTRATION, AND OBSERVED CONCENTRATION AT OUTPUT SECTION

WRITE (3,111)((J-1),QCOM(J), CINT(J), CCOM(J), COBS(J), J=1,N)
1 FORMAT(1X,1X,14,1X,4F12.5)
C ENDIF
C COMPUTATION OF SUM OF INFLOW, OBSERVED OUTFLOW, COMPUTED
C OUTFLOW, INPUT, OUTPUT AND OBSERVED CONCENTRATIONS, AND Nash
C - Sutcliffe criterion and error in volume of flow. The mass conservation computation for solute under
C unsteady flow condition is not included

231



sumai=0.0
SUMQC=0.0
SUMQO=0.0
sumCI=0.0
SUMCC=0.0
SUMCO=0.0
D022 J=1N
SUMAI=SUMAI+AIN1(J)
SUMQC=SUMQC+QCOM(J)
SUMQO=SUMQO+QOBS(J)
SUMCI=SUMCI+CINT(J)
SUMCC=SUMCC+CCOM(J)
22 SUMCO=SUMCO+COBS(J)
AVECI=SUMCI/NP
AVECC=SUMCC/NP
AVECO=SUMCO/NP
AVEAI=SUMAUN
AVEQC=SUMQC/N
AVEQO=SUMQO/N
TOTVAR=0.0
RESVAR=0.0
TTCVAR=0.0
RSCVAR=0.0
DO 32 J=1N
TTCVAR=TTCVAR+(COBS(J)-AVECO)*(COBS(J)-AVECQO)
RSCVAR=RSCVAR+(COBS(J)-CCOM(J))*(COBS(J)-CCOM(J))
TOTVAR=TOTVAR+QOBS(J)-AVEQO)*(QOBS(J)-AVEQQ)
32 RESVAR=RESVAR+(QOBS(1)-QCOM())*(QOBS(J)-QCOM()))
VRCEXP=(TTCVAR-RSCVAR)/TTCVAR*100.0
CEVOL=(SUMCC-SUMCI)/SUMCI*100
VAREXP=(TOTVAR-RESVAR)/TOTVAR*100.0
EVOL=(SUMQC-SUMAI)/SUMAI*100
WRITE (3,102)SUMALSUMQC,SUMQO
102 FORMAT(15X,'SUMAI='F10.2,4X,'SUMQC="F10.2,3X,'SUMQO='F10.2)
WRITE (3,104)VAREXP,EVOL
104 FORMAT(15X,'VAREXP='F9.3,5X,'EVOL="F9.2,2X,'%ERR="F10.5)
C Nash-Sutcliffe criterion and error in mass given below is applicable for dispersion under steady flow only.
C For dispersion under unsteady flow compute inflow and out flow mass separately.
C
WRITE (3,77)SUMCIL,SUMCC,SUMCO
77 FORMAT(15X,'SUMCI='F10.3,4X,'SUMCC='F10.3,3X,'SUMCO="F10.3)
WRITE (3,78) VRCEXP,CEVOL
78 FORMAT(15X,'VRCEXP="F9.3,5X,'EVOL='F9.2,2X,'%ERR="F10.5)
Y1(1)=Y1(Q2)
c DO 106 I=1,N
c QCOM(I)=0.0
c “YCOM(D)=0.0
¢ 106 AI(I)=AINI(I)
CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)
CLOSE(7)
CLOSE(8)
STOP
END

1
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