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ABSTRACT 

The models developed to simulate the rainfall-runoff process can be broadly 

grouped under three categories, with increasing order of complexities involved as: i) 

empirical; ii) conceptual; and iii) physically based distributed models. The first category 

of models, namely the empirical models treat the hydrologic system (e.g. a catchment) as a 

black box and try to find relationship between historical inputs and the outputs without 

considering the physical laws operating Within it. The conceptual models, on the other 

hand, attempt to represent the known physical process occurring in the rainfall-runoff 

transformation in a simplified manner by way of linear/nonlinear mathematical 

formulations. The third category of models i.e. the physically based models, are too 

complex, data intensive and cumbersome to use. Typically, they involve solution of partial 

differential equations that represent the flow processes within the catchment. The kind of 

data required for use of the physically based distributed models is rarely available, even in 

the heavily instrumented research catchments. The physically based models and the 

conceptual models generally involve use of a number of parameters many of which are 

difficult to ascertain for catchments from different geographical and climatic regions. 

Even though many types of models are presently available for representing 

rainfall-runoff process, the problem still remains unresolved and it is perhaps for this 

reason that the alternative modeling approaches are still being sought. The system 

theoretic modeling approach has been added with a new dimension through adoption of 

the Artificial Neural Network (ANN) technique in rainfall-runoff modeling. Many studies 

utilizing ANNs are reported in literature because they possess desirable attributes of 

universal approximation and have the ability to learn from examples without the need for 

explicit physics. An ANN is a massively parallel distributed information processing 

system, capable of learning any nonlinear relationship and because of which it has 

emerged as a viable tool for the simulation and control of complicated, nonlinear dynamic 

systems. Different types of ANN structures are developed for solving various types of 

problems. 

The rainfall-runoff modeling using. ANNs would have to be classified as the 

empirical modeling. The application of the ANN for rainfall-runoff modeling on various 

time scales has been carried out by many researchers. In most of these studies, the ANN 



was used as an independent model and results obtained through its application were 

compared with those produced by the conventional models. In these studies the inputs to 

the ANN consisted of combinations of variable like current and antecedent rainfall and 

runoff values, temperature, snowmelt etc. 

It is very well established from these studies that, the rainfall information alone is 

not sufficient to estimate the runoff accurately from a catchment, as the state of the 

catchment i. e. the antecedent soil moisture condition in a catchment plays an important 

role in determining the amount of runoff generated from the given rainfall. While, it is 

well established that the inclusion of the recently observed discharges with the current and 

antecedent rainfalls as inputs to the ANN greatly enhances the forecasting ability of the 

neural networks in the updating case, the present study investigates whether good 

estimates of observed discharges enhance the flow simulation efficiency in the non-

updating case. 

The inclusion of discharges observed in the past as input to the ANN based rainfall-

runoff models makes it difficult to treat these models as cause-and-effect models. Such 

models are useful in forecasting problems but are not so useful in conceptualizing the 

catchment. The objective of the present study is to propose a modeling approach, which 

combines the linear/nonlinear models with the ANN so as to overcome the difficulties cited 

above, and explore the application of the neural networks for the non-updating flow 

simulation. The ANN model is therefore coupled with the system theoretic linear/nonlinear 

models such that output from these models forms an input to the ANN. The present study 

presents the ANN as a flexible nonlinear rainfall-runoff black box model, which is useful 

in sparse data scenario for the non-updating simulation of discharge from rainfall, using 

daily data for the case of isolated runoff events. An attempt is made to incorporate, as far 

as possible; the understanding of the physical process of runoff generation over a 

catchment in the ANN based rainfall-runoff modeling. The study also provides a viable 

alternative for the discharges observed in the past time periods, being used as one of the 

inputs to the ANN in most of the existing studies. 

A methodology is developed using the ANN for rainfall-runoff modeling over a 

catchment when the hydrologic applications require that the runoff be predicted with the 

help of rainfall information alone and without much understanding of the hydrologic 

dynamics of the catchment being investigated. The capability and effectiveness of the 

proposed methodology in sparse data scenarios is demonstrated. The daily rainfall and 
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runoff data from seven catchments located in different parts of the world, two of which are 

relatively large in size, are used in the present study. These catchments are i) Bird Creek 

(USA), ii) Brosna (Ireland), iii) Garrapatas (Colombia), iv) Kizu (Japan), v) Pampanga 

(Philippines), vi) Krishna (India), and vi) Narmada (India). 

Daily runoff and the corresponding rainfall data of the runoff events that occurred 

during the flood period only are modeled in the study as during flood period (monsoon 

season) high flows are experienced and modeling of which is important for flood 

forecasting, design and operation of water resources structures etc. The consideration of 

losses due to evaporation and evapotranspiration is important as the rainfall-runoff 

modeling carried out is on daily scale and the runoff events are spread over several days. 

The observed rainfall subtracted with the losses due to evaporation and evapotranspiration 

is called here as the Effective Rainfall, which is the actual rainfall that is contributing into 

the process of runoff generation over any catchment. Determination of the catchment 

memory length is the critical part of the system based rainfall-runoff modeling in which 

current and antecedent rainfall values are used as input. The memory of a catchment is 

determined adopting the two-step procedure consisting of i) correlation analysis, and ii) 

determination of ordinates of response function of the catchment. Appropriate 

linear/nonlinear model depending upon the size of the catchment is employed for 

determining the response function ordinates. The method of least squares and the 

smoothed least squares method are used in deriving the response functions for the different 

catchments. 

Two of the catchments being relatively large in size involve sub-divisions into 

smaller hydrologically homogeneous areas to account for the heterogeneity in the spatial 

distribution of rainfall. The application of the neural networks in case of large size 

catchments in the context of incorporating the distributed nature of input, i.e. the areal 

disaggregation of the rainfall is also demonstrated in the present study. 

An ANN model based on a feedforward neural network; with the logistic sigmoid 

function as the transfer function, and single hidden layer is used for modeling the daily 

rainfall-runoff relationship. The application of the three layer feedforward ANN is 

specifically made to account for the non-linearity present in the rainfall-runoff process. 

The non-linearity of the runoff distribution over all the catchment is verified by using the 

measure of non-linearity introduced by Rogers, known as the Standardized Peak 
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Discharge Distribution (SPDD). The ANN application involves two different input 

combinations: 

Case-I: Only the output of the linear/nonlinear model computed through the 

convolution of the derived response functions with the current and 

antecedent rainfalls is given as input to the ANN. 

Case-II: The current and antecedent rainfall values for the length equal to memory 

of the catchment are also supplied as input to the ANN in addition to the 

input used in Case-I. 

The output of the system based linear model is denoted by RIL and that of a 

nonlinear model by RIN. The total number of runoff events identified in a catchment are 

divided into two sets. About 70% of the data is used in training and the remaining values 

of the data (approximately 30% of data) are used as the testing set. A data normalization 

procedure is adopted before presenting the data to the ANN because, the logistic sigmoid 

used as the transfer function for neurons in the hidden and the output layers has bounded 

output range in the interval [0, 1]. The backpropagation algorithm involving a forward 

and the backward pass is used for training the network. The TRAINGDX function in 

M_ATLAB routines, which works on gradient descent method and uses the adaptive 

learning and momentum parameter, is used for training. The various input combinations to 

the ANN consisted of (i) Only rainfall (P); (ii) Output of linear model (RIL); (iii) Output of 

the nonlinear model (RN); (iv) P in combination with RIL; (v) P in combination with 

RIN; and (vi) P in combination with runoff observed in the previous time period (Q/./). 

The ANN with these different inputs is applied to each of the catchment. It was ensured 

that the trial and error process of training the ANN leads to an optimal network 

configuration having the best possible performance without the network getting 

overtrained. 

The performance of the models applied in the present study (the linear/nonlinear 

and the ANN models) is evaluated based on the various statistical and graphical criteria, 

which are indicative of the model performance. 

The results obtained demonstrate that the proposed alternative for discharges 

observed in the past in the form of the output of the linear/nonlinear models provides 

better system theoretical representation of the rainfall-runoff relationship on catchments 

from different parts of the world investigated in the study. The results of the ANN model 

application in case of large size catchments prove that it is worthwhile to consider separate 
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inputs into the sub-catchments (to a point) in order to improve the model efficiency. The 

input scenarios of P in combination with RIL or RIN are clearly superior to the RIL alone 

or RIN alone input scenario. Replacing the linear model with a nonlinear model did not 

result in any substantial improvement in the final results of the ANN, thus validating the 

claim that ANN completely takes care of the non-linearity existing in the rainfall-runoff 

relationship. The coupled SLM - ANN model with input scenario involving P in 

combination with RI is capable of producing reasonably satisfactory non-updated 

estimates of the outflows on most of the catchments. 

The response functions obtained for different catchments studied have physically 

realistic shapes. Parameterization of these response functions by using the discrete gamma 

function leads to the establishment of relations, albeit qualitatively, between these 

parameters and the catchment characteristics. So the proposed approach can possibly be 

extended to the catchments for which the gauge and discharge records are nonexistent. 

The ANNs trained on similar catchments can possibly be used for predicting the runoff 

over an ungauged catchment as the response function derived as above when convoluted 

with current and antecedent rainfalls in an ungauged catchment results in the estimates of 

runoff from a system based model which forms the input to a trained ANN as both are 

coupled. However, application of the proposed approach for runoff estimation could not 

. be tested in an ungauged catchment in the present study because of non-availability of 

elaborate data. 
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Chapter - 1 

INTRODUCTION 

1.1 GENERAL 

The subject of hydrology pertains to scientific study of water, its properties, 

distribution, and effects on the earth's surface, soil, and atmosphere (McCuen, 1997). The 

hydrologic cycle is enormously complex and intricate, as it involves various interlinked 

physical processes such as precipitation, evaporation, infiltration, runoff etc., most of 

which occur simultaneously. These processes also exhibit a high degree of spatial and 

temporal variability. Study of the hydrologic cycle has been a challenging task faced by 

the hydrologists over the years. In the absence of perfect knowledge about these processes 

due to the complexity involved, these processes are often represented in a simplified 

manner using systems concept (Chow et al., 1988). A system may be considered to be an 

ordered assembly of interconnected elements that transform, in a given time reference, 

certain measurable inputs into measurable outputs, both of which are expressed as a 

function of time (McCuen and Snyder, 1986). A physical or conceptual boundary 

separates a system from the rest of the world, which is referred to as the environment. 

Surface water hydrology deals with a part of the total hydrologic cycle, namely the 

catchment subsystem. The details of this subsystem are shown in Fig. 1.1. Unlike the 

hydrologic cycle, runoff generation process in a catchment is visualized as an open 

system, receiving the input and producing output (Dooge, 1973). Study of the rainfall-

runoff process occurring in a catchment is the main aim of the present study. The problem 

addressed in the present work is the development of a model for daily rainfall-runoff 

modeling employing the ANN technique, wherein explicit water balance components are 

not necessary to be considered. 

Many distinct decompositions of the rainfall-runoff process in a catchment are 

possible but the one represented in Fig. 1.1 has attracted more attention of the 

hydrologists, as it is helpful in finding relationship between the variables characterizing 

the input i.e. rainfall and the output i.e. runoff. Only rainfall input to the catchment is 

considered in the present study. The systems approach is one of the most popular methods 

of forecasting flows resulting from known rainfall over a catchment, as the true 



mathematical representation of the natural process is very difficult, particularly in sparse 

data scenarios. 

1.2 THE RAINFALL-RUNOFF PROCESS 

Catchment is a hydrologic system which, when applied with input in the form of 

rainfall generates its response in the form of storm runoff. The transformation of rainfall 

into runoff over a catchment is a complex hydrologic phenomenon on account of 

underlying nonlinear sub-processes. A proper understanding of the rainfall-runoff 

relationship at the catchment scale is important for water management studies, safe yield 

computation, and design of flood control structures (Anmala et aL, 2000). When the 

rainfall occurs over an area, the following processes take place. (see Fig. 1.1) 

i) 	Interception: This is that part of rainfall which is held back on the leaves of plants 

and over the vegetation on ground and later evaporates into the atmosphere. 

Surface Retention: Another part of the rainfall that is stored in the depressions on 

the earth surface or is retained under the vegetal cover, is called as the surface 

retention. In due course of time, it infiltrates into the ground and/or evaporates 

into the atmosphere. 

iii) Overland Flow: It is that portion of rainfall, which flows over the ground surface 

and meets the stream through gullies and rivulets. 

iv) Infiltration: It is the part of rainfall that immediately enters the soil surface, a 

portion of which is transpired into the atmosphere through the deep-rooted plants. 

The infiltrated water follows various paths. 

a) Soil Moisture: A portion of the infiltrated water is retained in the upper layer of 

the soil. Later a part of this is evaporated and the remaining part is transpired 

into the atmosphere through the plants. 

b) bite/flow: Another portion of the infiltrated water moves towards streams 

without reaching the ground water table and is called as the interflow. 

c) Base flow: Some part of the infiltrated water meets the groundwater table. A 

portion of this groundwater moves towards the streams and seeps into it 
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through the banks and bed and thus it also become runoff under favorable 

conditions called as the base flow. 

Each of this process varies in space and time, which makes the process of rainfall-

runoff transformation a complex one. 

Fig. 1.1 The Process of Rainfall-Runoff Transformation Over a Catchment 
(Kulandaiswamy, 1964) 

1.3 MODELING OF THE RAINFALL-RUNOFF PROCESS 

A model represents the system by a set of relationships amongst parameters and 

variables contemplating the similarity of the prototype with the model, but without identity 

(Singh, 1988). The models developed to simulate the rainfall-runoff process can be 

broadly grouped under three categories, with increasing order of complexities involved as: 

i) empirical; ii) conceptual; and iii) physically based distributed models (Dooge, 1977). 

The first category of models, namely the empirical models treat hydrologic system (e.g. a 

catchment) as a black box and try to find relationship between historical inputs and the 

outputs (Singh, 1988). In this approach, the continuity equation is expressed in a spatially 

lumped form without considering the physical laws operating within the catchment and 
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instead a general but simple relationship is assumed between rainfall amount and the 

discharges at the outlet of the catchment. In operational hydrology many situations exist, 

which demand the use of such simple, system theoretic models. 

The conceptual models, on the other hand, attempt to represent the known 

physical process occurring in the rainfall-runoff transformation in a simplified manner by 

way of linear/nonlinear mathematical formulations. The total process is divided into sub-

processes, which are conceptualized assuming quasi-physical relationships, with the model 

parameters representing the catchment characteristics. While conceptual models have 

proved their importance in understanding the hydrological processes, their implementation 

and calibration presents various difficulties. As a result the model prediction accuracy is 

found to be user dependent (Klemes, 1982). The third category of models i.e. the 

physically based or process based models, are too complex, data intensive and 

cumbersome to use. Typically, they involve solution of a system of partial differential 

equations that represents the flow processes within the catchment (Beven, 1985; Loague 

and Freeze, 1985). The kind of data required for use of the physically based distributed 

models is rarely available, even in heavily instrumented research catchments. Even by 

using current advanced computing capabilities the representation of a catchment in the 

physically based model is, at best, an approximation (Beven, 1987, 1989). Despite these 

limitations, the physically based models have proved to be very useful for many 

hydrologic problems when utilized appropriately and are currently undergoing large scale 

advancements. 

Even though many types of models are presently available for representing 

rainfall-runoff process, the problem still remains unresolved and it is perhaps for this 

reason that the alternative modeling approaches are still being sought. The system 

theoretic modeling approach has been added with a new dimension through adoption of 

the Artificial Neural Network (ANN) technique in rainfall-runoff modeling. The rainfall-

runoff modeling using ANNs would have to be classified as the empirical modeling. This 

approach is called a model as it has many features in common with other modeling 

approaches in hydrology. The process of determination of appropriate neural network 

architecture can be considered equivalent to the model selection in the conventional way. 

Similarly, the conventional steps of model calibration and validation can be identified with 
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network training and testing in the context of ANN applications (ASCE, 2000 a) . The 

ANNs are more versatile because there is a freedom in selecting the number of hidden 

layers and the number of nodes in each of these layers (Fausette, 1994). The advantages of 

ANN applications in hydrology are discussed by French et al. (1992). In the following 

paragraphs a brief review of ANNs and their application in modeling the rainfall-runoff 

process is presented. 

1.4 THE ARTIFICIAL NEURAL NETWORK 

An artificial neural network is a massively parallel distributed information 

processing system that has certain performance characteristics resembling biological 

neural networks of the human brain (Haykin, 1994). It is an interconnected assembly of 

simple processing elements, nodes, or neurons, which emulates the functioning of neurons 

in human brain. The processing of information takes place at these processing elements. 

The ANN is also described as a mathematical structure, which is capable of representing 

the arbitrary complex nonlinear process relating the input and the output of any system 

(Fausette, 1994). Therefore, the ANN has emerged as a viable tool for the simulation and 

control of complicated, nonlinear dynamic systems (Hsu et al., 1997 b). The connection 

weights, threshold and the number of neurons in hidden layer can be termed as the 

parameters of an ANN model, which are adjusted during training process (Campolo et al., 

1999). The network consists of an input layer, an output layer, and one or more number of 

hidden layers. The input layer receives the input variables whereas the output layer 

consists of model outputs i.e. values predicted by the network. The number of hidden 

layers and the number of neurons in each hidden layer are usually determined by a trial 

and error procedure. A typical three layer feedforward neural network, which is the most 

widely used, is shown in Fig. 1.2. All connections shown in the figure are feedforward i.e. 

they allow information to pass from one layer to the next layer. Nodes within a layer are 

not interconnected. The connection links run from one layer to the other but do not 
leapfrog layers. 

Many studies utilizing ANNs are reported in literature because they possess 

desirable attributes of universal approximation and have the ability to learn from examples 

without the need for explicit physics (Bishop, 1994; Hsu et al., 1995). Although several 
studies indicating the potential of ANN as a useful tool in hydrology are reported, the 
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disadvantages of ANNs should not be ignored. A major limitation of ANNs is the lack of 

physical concepts and relations. The successful application of an ANN depends both on the 

quality and the quantity of data available. A detailed description about ANN and its 

application to rainfall-runoff modeling is given in the next chapter. 

Fig.1.2 Configuration of Three Layer Feedforward ANN 

1.5 BACKGROUND OF THE STUDY 

The physically based models and the conceptual models generally involve use of a 

number of parameter of which many are either not yet readily available in the literature or 

are difficult to ascertain for catchments from different geographical and climatic regions. 

Also, such models become less reliable in their application for the scares data scenarios. 

The catchments are found mostly to be hydrologically nonlinear. Serious error in 

hydrologic design can occur when a catchment instead is assumed to be linear. The 

widespread usage of the unit hydrograph approach (Sherman, 1932) and other linear 

models cited in literature makes more intensive the need for checking the applicability of 
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linear models. The ANN based models are supposed - to effectively account for.. the 

non- linearity present in the process. Several studies on application of the ANN for rainfall-

runoff modeling on various time scales are reported in literature. A detailed review of 

these studies is presented in chapter 2. In most of these studies, the ANN was used as an 

independent model and results obtained through its application were compared with those 

produced by the conventional models. In these studies the inputs to the ANN consisted of 

combinations of variable such as current and antecedent rainfall and runoff values, 

temperature, snowmelt etc. It is well established from these studies that, the rainfall 

information alone is not sufficient to estimate the runoff accurately from a catchment as 

the state of the catchment i.e. the antecedent soil moisture condition plays an important 

role in determining the amount of runoff generated from the given rainfall. 

The studies carried out in the past involving use of ANN for runoff analysis have 

mainly dealt with flow updating and can be divided into two categories. The first category 

involves use of the observed discharge in the past as the only input to the ANN and runoff 

for next time step is forecasted. In the second category discharge observed in the past and 

other meteorological parameters such as current and antecedent rainfall, temperature, 

snowmelt etc. are used as input for forecasting the runoff in the next time step. 

Inclusion of discharge observed in the preceding time intervals as input to the ANN 

based rainfall-runoff models makes it difficult to treat these models as cause-and-effect 

models. Such models are useful in the forecasting but are not so useful in conceptualizing 

the catchment and synthesis of daily flow data series. 

1.6 OBJECTIVES OF THE PRESENT STUDY 

The objective of the present study is to propose a modeling approach which 

couples the system theoretic linear/nonlinear models with the ANN so as to overcome the 
difficulties cited above and explore the application of the neural networks for the non- , 

updating flow simulation. The ANN model is proposed to be coupled with the system 

theoretic linear/nonlinear models such that output from linear/nonlinear models forms one 
of the inputs to the ANN. The study presents the ANN as a flexible nonlinear rainfall-
runoff black box model for the simulation of isolated runoff events with single or multiple 

peaks, spread over several days. 

The specific objectives of the present study are: 

D To apply the ANN in its true context i.e. as a nonlinear model. 
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➢ To incorporate, as far as possible, the understanding of the physical process of 

runoff generation in ANN based rainfall-runoff modeling over a catchment. 

➢ To provide a viable alternative for the discharges observed in the previous time 

periods, being used as one of the inputs to the ANN in most of the existing studies. 

➢ To develop a methodology for rainfall-runoff modeling when the hydrologic 

applications require that the runoff be predicted with the help of rainfall 

information alone and without much analysis on the hydrologic dynamics of the 

catchment being investigated. 

➢ To demonstrate the capability and effectiveness of the proposed methodology in 

sparse data scenarios. 

➢ To demonstrate application of the neural networks in case of large size catchments 

in the context of incorporating the distributed nature of input, i.e. the areal 

disaggregation of the rainfall. 

1.7 PRESENTATION OF THE STUDY 

Chapter 1: Describes various approaches including ANN used for rainfall-runoff 

modeling. A brief description about the ANN is provided and the scope and objectives of 

the study are outlined. 

Chapter 2: First, a brief review of literature about the conventional approaches 

used for rainfall-runoff modeling is given in this chapter. It is followed by reviewing the 

application of ANN for various types of problems encountered in hydrology and water 

resources engineering. Then the studies involving application of ANN technique for 

rainfall-runoff modeling are reviewed in detail. The concluding remarks based on the 

review carried out are presented at the end. 

Chapter 3: Provides the description about all the catchments studied and duration 

of the data used. The steps involved in identification of a runoff event are outlined. The 

runoff events identified in case of each catchment and their corresponding durations in 

days are given in tabular form. The computation of the effective rainfall as adopted in the 

present study is also described in this chapter. 

Chapter 4: Presents various steps involved in the proposed methodology for daily 

rainfall-runoff modeling using the ANN. The steps involve correlation analysis, application 
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of linear/nonlinear model for determination of the response function of the catchment, and 

finally the application of the feedforward backpropagation ANN such that the output of the 

system based model forms one of the inputs to the ANN. The other inputs combinations 

given to the ANN are described and the procedure adopted for identification of the 

hydrologic non-linearity of the catchment and for parameterization of the response 

functions is outlined. Finally, various performance evaluation criteria used in the present 

study are described. 

Chapter 5: In this chapter first the results of the analysis for ascertaining the 

hydrologic non-linearity of the catchments are presented. This is followed by presentation 

the results of the linear and nonlinear models employed in the study as the auxiliary 

models, are presented in tabular and graphical form separately for, i) the catchments 

without sub-divisions; and ii) the catchments involving sub-divisions. The discussions on 

the results obtained are provided. Finally, the results of the parameterization of the 

response function are given. 

Chapter 6: This chapter presents the results of the coupled SLAI-ANN and 

nonlinear-ANN models. The results of these ANN models along with results of the ANN 

with other input combinations are provided in tabular and graphical form. This is followed 

by presentation of the discussions on these results and the inferences drawn from the 

analysis of the results. The structures of the best performing ANNs with some of the input 

combinations are depicted at the end. 

Chapter 7: The conclusions drawn from the study are summarized and the scope 

for future work is outlined in this chapter. 
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Chapter - 2 

REVIEW OF LITERATURE 

A vast amount of literature exists describing the rainfall-runoff process and various 

approaches adopted for it's modeling. The models available for simulating the rainfall-

runoff process vary considerably in their overall purpose, time base involved, size and 

nature of area that can be modeled, their conceptual basis, and in the mathematical 

strategies involved in their development. A critical review of literature related to the 

rainfall-runoff modeling is presented in this chapter. This encompasses review of various 

types of models applied for simulating the rainfall-runoff relationship along with the 

application of the artificial neural network technique for various types of problems 

encountered in hydrology in general and for rainfall-runoff modeling in particular. 

The transformation of rainfall into runoff over a catchment is a complex 

hydrologic phenomenon on account of variation of the parameters and the sub-processes 

involved over space and time. A number of models have been developed to simulate this 

process. These models are grouped into following categories based on decreasing order of 

the complexity of physical laws involved. 

i) The physically based distributed or process based models 

ii) The conceptual models 

iii) The empirical or black box models. 

The second and third category of models can be combined as the lumped models in 

which rainfall averaged over the catchment area is mostly used as the model input. 

Equation (2.1) expresses the relation between input, output, and the change in storage in 

the spatially lumped form of continuity equation for continuous time. A discrete time 

representation of Eq. (2.1) is given by Eq. (2.2) and the same is necessary, as the 

hydrologic data are available only at discrete time intervals. 

ds 
dt = 	- QN 	 (2.1) 

Si  = So  + 	— Q1) 
	

(2.2) 

where I and Q are the volumes of inflow and outflow respectively during a time interval.  

So is the initial storage and S., is the storage volume in j`" time interval (Chow el al., 1988). 
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In these equations, the physical laws operating within the catchment are not considered; 

instead a simple relationship between catchment rainfall and the discharge at the outlet of 

the catchment is assumed and the responses are derived on basin wide scale. 

2.1 PHYSICALLY BASED OR PROCESS BASED MODELS 

Ideally the rainfall-runoff process should be modeled by the physics based models, 

which account for the variation in parameter values over space and time by discritizing the 

catchment into smaller units. This process of discretization makes them spatially 

distributed and in turn such models are capable of predicting the model outputs at any 

point within the catchment unlike the lumped models, which provide the results only at the 

outlet of the catchment. The basis of these models is to use equations of conservation of 

mass, energy, and momentum to describe the movement of water over the land surface and 

through the unsaturated and saturated zones of soil and represent various processes 

involved in transforming the system input to the output. The resulting system of nonlinear 

partial differential equations is required to be solved numerically at all the computational 

grid points (Wood and O'Connell, 1985). These types of models are developed based on 

highest degree of physical information. The development of physically based distributed 

models is relatively recent, which mainly took place due to the developments in the field 

of computer technology and in the areas of remote sensing and the geographical 

information system. Some of the physically based models developed are: TOPMODEL 

(Beven and Kirkby, 1979), The Syste'me Hydrologique Europe'en (SHE) model (Abbott et 

al., 1986 a and b); The Institute of Hydrology Distributed Model (H/DM) (Beven et al., 

1987); and some other models like those proposed by Smith and Woolhiser (1971), 

Engman and Rogowski (1974), Ross et al. (1979), and Kutchment (1980). An historical 

perspective of the development of the catchment scale models is presented by Singh and 

Woolhiser (2002). They have provided a comprehensive review of the distributed as well 

as conceptual models dealing with integration of hydrologic process on the catchment to 

determine the catchment response. The components of the physically based distributed 

model, some of which also require calibration, are based on basic physical laws governing 

the different processes (Refsgaard et al., 1992). However, Beven (1989) emphasized that 

physically based models being process based, should be able to make prediction without 

calibration. Nevertheless, the application of such models in practice poses many kinds of 
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problems. The limitations of the process-based models were highlighted amongst others 

by Beven (1985, 1989) and Loague and Freeze (1985). Major limitations are listed below. 

i) Data intensive: Proper application of the physically based model requires use of 

vast amount of data, which may not be available for many catchments 

particularly for large catchments in developing countries. 

ii) Lumping at small scale: The application of distributed model over a catchment 

involves division of catchment into sub-areas, and lumping of the model 

parameters at this scale. Such a model is viewed as a lumped conceptual model 

rather than a distributed model. 

iii) Difficulty in calibration: As many parameters are involved, these interact with 

each other posing tremendous difficulties in model calibration. 

iv) Unknown boundary conditions: The initial and the boundary conditions 

particularly those related to soil moisture conditions are not known correctly and 

are also difficult to ascertain. 

v) Expensive to run: Short time steps may be necessary to maintain stable solution, 

and as the solution is found at each computational node at each time step, the 

number of calculations required can be very large. These models also require 

considerable expenditure in terms of programming, data preparation, and field 

experimentation.  

The limitations outlined above make the physically based models presently 

unsuitable for practical applications. Successful application of the physically based models 

in the field is also hampered due to the scale problems associated with the immeasurable 

spatial variability of rainfall and hydraulic properties of soil. 

2.2 CONCEPTUAL MODELS FOR RAINFALL-RUNOFF PROCESS 

The conceptual models for rainfall-runoff are based on hypothetical 

conceptualization of catchment by linear/nonlinear reservoirs. The main aim of such 

models is to simplify and simulate the major processes that contribute to the response of 

the catchment to the rainfall input. The complex physical process of rainfall-runoff 

transformation is conceptualized through semi-empirical processes involving interlinked 

storages and simple budgeting procedures. The mass balance between inputs and outputs 

is attempted at all times in these types of models. The level of representation of physical 
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information in such a model lies between that of the physical process based model and the 

black box model (Wood and O'Connell, 1985). 

Several conceptual models exist in literature simulating the rainfall-runoff process. 

Among the first were the models developed by Clarke (1945) and O'Kelly (1955), who 

proposed that the time area diagram if routed through a linear reservoir produces the unit 

hydrograph (UH) for the catchment. Nash (1957, 1959, 1960) developed a model based on 

a cascade of equal linear reservoirs for finding the instantaneous unit hydrograph (IUH) of 

a catchment. Dooge (1959) developed a general unit hydrograph theory assuming the 

catchment to be composed of parallel chains of linear reservoirs and linear stream 

channels. Kulandaiswamy (1964) gave a general storage equation governing the operation 

of the system, assuming that the catchment behavior can be described by analytical 

functions. In some of the conceptual models, the mathematical formulation of the physical 

processes involved is cumbersome resulting into a large number of parameters, and the 

interactions of these parameters is highly complicated e.g. Stanford Watershed Model 

(Crawford and Linsely, 1966). The conceptual rainfall-runoff models having varying 

degree of complexity are employed for modeling the rainfall-runoff relationship on daily 

basis. Some of these models are Streamflow Synthesis And Reservoir Regulation (SSARR) 

model developed by U.S. Army Corps of Engineers (Rockwood, 1982); Tank model, 

(Suguwara et at, 1983); ARNO (Arno river) model, (Todini, 1988), Sacramento Soil 

Moisture Accounting (SAC-SMA) model of National weather service river forecast system 

(Burnash et al., 1973). 

The conceptual models have proved their importance in understanding the 

hydrological processes. Successful application of these models depends on how well they 

are calibrated. Their calibration and implementation presents various difficulties. The 

difficulties with conceptual models are pointed out by Klemes, (1982); Duan et at, (1992) 

and others. Some of the limitations of the conceptual rainfall-runoff models are 

highlighted below. 

➢ This type of models require significant amount of data. 

➢ The unique optimal values for their parameters are difficult to obtain. 

➢ It is difficult to determine the sensitivity of the parameters and hence the 

sensitivity of model forecasts to factors such as errors in input and output data, 

model error, objective function used etc. 
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The nonlinear structural characteristics of conceptual rainfall-runoff models 

lead to the existence of multiple optima i.e. more than one solutions. 

> 

	

	These models also face problems like parameter interaction, non-convexity of 

response surface, and discontinuous derivatives. 

> 

	

	The model prediction accuracy is found to be user dependent as its use requires 

some degree of expertise and experience with the model. 

> 

	

	Very often the users are tempted to fit the model without seriously considering 

the parameter values, resulting in poor model performance during verification 

phase. 

Although, conceptual models provide results with reasonable accuracy, their use is 

restricted due to the above mentioned difficulties experienced in their calibration and 

implementation.  

2.3 LINEAR MODELS FOR EXCESS RAINFALL-DIRECT RUNOFF 
PROCESS 

The empirical or black box type of models establish a relationship between input 

and the output functions, without considering the complex physical laws governing the 

process of rainfall-runoff transformation. The limitations of the physically based 

distributed models and the conceptual models outlined above make it difficult to employ 

these models in many practical situations which is one of the reasons for the development 

of many black box or empirical models. The black-box type models, which have minimum 

computational requirements, are used for getting the solutions to the practical problems. 

The rational method was the first linear black box rainfall-runoff model (Mulvany, 

1850): The rational method presents the concept of time of concentration and its relation to 

peak flow but it fails to give time development of discharge. The development of 

empirical models gained a boost with the proposition of unit graph theory by Sherman 

(1932). He defined a unit graph or a unit hydrograph as: 

"A direct runoff hydrograph (DRH) resulting from unit amount of excess rainfall 

generated uniformly over the catchment area at a constant rate for an effective duration." 

A UH is a linear model that relates the excess rainfall (ER) to the direct runoff 

(DR), describing the response of a catchment. The assumptions regarding spatial and 

temporal uniformity of rainfall, validity of the principles of proportionality and 

superposition, and time invariance are basic in the concept of the UH theory. 
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The principles of linear system analysis form the basis for the UH method. 

Analysis based upon the Uh' concept has played an important role in rainfall-runoff 

modeling. The operation of a system, following the UH principles, in converting 

precipitation excess P(t) into the direct storm runoff ON is expressed by the following 

convolution integral; 
r=t 

0(0= IP(v) U(t—z- )dr 	 (2.3) 

where i is the dummy variable of integration and U(t) is the unit impulse response 

function ordinate at time t. This impulse response function is also known as the IUH of the 

catchment, which although a theoretical concept, is useful as it characterizes the response 

of the catchment to the rainfall without reference to the duration of rainfall. Due to this 

fact the IUH has been related to the geomorphological characteristics of the catchment 

(Rodrigue-Iturbe and Valdes, 1979; Gupta et al., 1980).  

When the input function is expressed as a series of pulses over successive short 

time intervals T, the linear input-output relationship given by Eq. (2.3) is expressed in the 

discrete form, in terms of the sampled pulse response by the following discrete 

convolution summation equation; 

0, =EP t-i÷i Ui +et 
i.1 

(2.4) 

where U, refers to the ordinate of the of pulse response, m is the memory length of the 

system which implies that the effect of any rainfall input P lasts only through m intervals 

of duration t and et  is the model error term or the residuals. Above equation when written 

for each of input-output values in a series yields n linear equations, which in vector-matrix 

form can be written as; 

EQ1 = [P] U + 1E1 	 (2.5) 

where Q is a (n, 1) column vector of the output runoff series, P is a (n, m) matrix of the 

input rainfall values, U is a (nt, I) column vector of the pulse response ordinates which are 

to be determined, and E is a (n, 1) column vector of model errors. When the data for 

calibration period are considerably longer than the memory of the length of the system the 

above equation represents an over determined system of linear equations and the vector U 

of the pulse response ordinates can be estimated by the method of ordinary least squares 
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(Snyder, 1955). Conventionally, the Eq. (2.5) is used without the inclusion of the error 

term and solved using the matrix inversion methods given by 

[U] 
[pTp]-1 [PT [Q] 	 (2.6) 

Several techniques of determination of optimal values of response function 

ordinates using various mathematical techniques have appeared in literature. A very 

exhaustive description of these methods is available in Singh (1988). These methods can 

be categorized as: i) methods of deriving UH for single storm event, and ii) methods of 

deriving UH from multistorm events. A brief review of these methods is presented in 

following paragraphs. 

2.3.1 Methods of Deriving UH for Single Storm Event 

Collin's method (1939), a trial and error procedure, was probably the first method 

to derive UH from a single complex storm. Various studies employing different 

mathematical techniques for determination of UH followed this and are widely reported, 

such as, method of least squares (MOLS), (Snyder, 1955; Newton and Vinyard, 1967); 

Harmonic analysis (O'Donnell, 1960); Fourier transform (Levi and Valdes, 1964; Blank et 
al., 1971; Sarma et al., 1973); Z-transform (Turner et al., 1989); Successive 

approximation (Bender and Roberson, 1961); Laplace transform (Chow, 1964); system of 

progressive ordinate estimating (Linsley et aL, 1958). 

Use of meixner function, which is a discrete time analog of Laguerre polynomials 

for determination of UH was suggested by Dooge (1965). Linear Programming (LP) with 

minimum sum of deviations was first applied by Eagleson et at (1966) to obtain optimum 
UH. The use of Nonlinear Programming (NLP) for the same was demonstrated by Mays 

and Taur (1982) and was extended by Unver and Mays (1984) to find optimal values of 

parameter relating to loss rate function and the UH. 

2.3.2 Methods of Deriving UH for Multi Storm Event 

A catchment should have only one and unique UH for given unit duration but 

separate analysis of record from several rainfall-runoff events produced different UHs due 
to the limitations of the UH technique and the noise in the ER data as argued by Diskin 

and Boneh (1975). Deininger (1969); Singh (1976); Diskin and Boneh (1980); and Mays 
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and Coles (1980) demonstrated the application of LP method for multistorm events. Non-

negativity constraint using least squares objective function in case of multistorm events 

was applied by Diskin and Boneh (1975). Mawdesley and Tagge (1981) used the 

Householder method proposed by Wilkinson (1965) to overcome difficulties encountered 

in the matrix inversion. 

Bree (1978), and Kitanidis and Bras (1979) presented technique to tackle the 

problem of collinearity encountered in identification of system parameters when 

multievents are analyzed. The oscillations in recession part of UH were also observed by 

Delleur and Rao, (1971); Papazafiriou, (1976). Bruen and Dooge (1984) tackled the 

problem of sensitivity of UH ordinates using the concept of ridge regression, which is 

same as adding uncorrelated white noise component to the inflow series. 	This 

methodology was suggested by Kutchment (1967), and is an efficient and robust method 

of estimating UH ordinates, which takes advantage of symmetric Toplitz structure of the 

coefficient matrix. Dooge and Bruen (1989) explored the feasibility of using the concept 

of condition number of the matrix as a basis for deciding the situations under which data 

error causes unacceptable instability in derived UHs. This condition number depends on 

the shape of the input time series and the method used for deriving the UH. In their study 

various methods of deriving UH were compared. Bruen and Dooge (1992 a and b) 

demonstrated the use of a priori information about UN shape in addition to rainfall-runoff 

data in determination of UH. Zhao et al. (1995) described a methodology to obtain an 

optimal ridge parameter for use in the least square (LS) method to estimate UH 

considering the unit volume constraint. The other method of estimating oscillation free UH 

with non-negative ordinates is the Bayesian method investigated by Rao and Tirtotjondro 

(1995), who used both real and synthetic data. 

2.3.3 Relating UH Parameters with the Catchment Characteristics 

Many researchers have worked on establishing the relationship between parameters 

of the UH or the IUH and the catchment characteristics. Clarke (1944), Snyder (1938) and 

Gray (1961) presented empirical methods of deriving synthetic UH using lag for 

streamfiow forecasting and related the hydrograph characteristics to catchment 

characteristics. The method of finding a synthetic UN based on dimensionless UH was 

given by SCS (1972). Dooge (1959) presented a general theory for the UH and used the 
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concept of linear channels and reservoirs in deriving a general equation for the UH. Nash 

(1959) used moments of IUH and related it with catchment characteristics. This 

methodology popularly known as the 'Nash Model', has been widely applied in generating 

UH for ungauged catchments from varying climatic regions of the world. 

Later on, some studies comparing the performance of the methods for 

determination of UH ordinate values have also been reported in the literature. Laurenson 

and O'Donnell (1969) discussed sensitivity of four methods of finding UH to data errors. 

Clarke (1973) reviewed the mathematical models used in hydrology and categorized them 

into four groups. Sarma et al. (1973) compared performance of five linear conceptual 

models for prediction of runoff from urban areas. Todini (1988) grouped the models on the 

basis of justification of approach for intended use. These studies have put forth the relative 

merits and demerits of various methods of deriving UH under different circumstances. 

2.4 LINEAR MODELS FOR TOTAL RAINFALL-TOTAL RUNOFF PROCESS 

Difficulties are encountered while deriving the effective rainfall and making the 

base flow separation for determination of the direct runoff in the analysis based on the UH 

theory. Alternative modeling approaches are available in literature which relate total 

rainfall and total runoff of a catchment in a manner similar to the UH procedure. Simplest 

of this type of model is called the Simple Linear Model (SLM) introduced in discrete form 

by Nash and Foley (1982). The form of the SLM is algebraically identical to that of UH 

concept [Eq. (2.4)] except for the difference that P is the total rainfall instead of the 

effective rainfall and U is the pulse response function of the catchment. Some differences 

arise due to larger time duration of the input and output functions (e.g. days) relative to the 

memory time of the system in SLM whereas, the event modeling is carried out in UH 

analysis (Kachroo, 1992). Such modeling approach overcomes the subjectivity involved in 

and the efforts required for determining the effective rainfall and the direct runoff. 

Ahsan and O'Connor (1994) used the output of a SLM as an index of the soil 

moisture state of the catchment. They termed it to be an elaborate form of the Antecedent 

Precipitation Index (API), which is the classic index of recent history of rainfall occurring 

over a catchment. The simulated output of the SLM was called by them as the rainfall 
index. The use of SLM alone is found to overestimate the low flows and underestimate the 

high flows. As per Ahsan and O'Connor (1994), the SLM. though naive and primitive, is 

convenient starting point in rainfall-runoff modeling.  
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Linear modeling of the departure of normal seasonal values of rainfall and 

discharge series was found to be an attractive method by Nash and Barsi, (1983); Kachroo 

et al. (1992) and many others. This modeling approach was termed as Linear Perturbation 

Model (LPM) (Nash and Barsi, 1983) and it is found to be successful for catchments 

exhibiting a high degree of seasonal variation. In the catchment having a relatively 

predictable seasonal variation, a considerable improvement over the conventional rainfall-

runoff models could be achieved by considering the relationship between the departures 

from the seasonal behavior of rainfall and discharge as input and output respectively, 

rather than using the total rainfall series as input and total runoff series as output (Kachroo 

et al., 1992). This technique was also applied by Liang and Nash (1988); and Kothyari et 

al. (1993) for flow forecasting. 

A major weakness of the above types of rainfall-runoff models is their inability to 

incorporate the spatial variation of rainfall over a catchment. Chow (1964) proposed that 

the catchment be divided into smaller sub-catchments. Each of which is subjected to 

separate hydrograph analysis and the catchment hydrograph can be obtained by routing the 

hydrographs for different tributaries. This methodology later gave rise to new type of 

models called as multiple input single output (MISO) models, which partially compensate 

the weakness cited above. The MISO models represent a catchment as an assembly of sub-

catchments of approximately uniform rainfall distribution. In such models the rainfall 

occurring in each hydrologically homogeneous sub-area of the catchment is treated as a 

separate input received in parallel by the overall catchment system. The MISO linear and 

nonlinear black box models have been studied in detail by Liang, (1988); Liang and Nash, 

(1988); Papamichail and Papazafiriou, (1992); Liang et al., (1994) among others. These 

models have been applied for flow forecasting at the outlet of medium and large size 

catchments. The linear MISO model for the catchment divided into J sub-areas can be 

given using the following equation.  
.1 	m 

Qt  = 	I 1)t÷ I  UP)  er 	 (2.7) 
i= t  

where, j= 1,2, ..., Jdesignates the sub-area. 

The models based on UH theory, the SLM and the LPM can be categorized as time 

invariant models, which is the simplest possible representation of a casual relationship 

between input and output function of time. The obvious complexities of the rainfall-

runoff process, which involves infiltration and is affected by soil moisture condition, 
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imply that such a representation is not adequate in describing the nonlinear transformation 

of rainfall into runoff The concept of nonlinearity is discussed next. 

2.5 CATCHMENT NON-LINEARITY 

If a hydrograph is analyzed, it can be deduced that a strong nonlinearity exists 

during rising limb, the peak, and the initial part of falling limb of the hydrograph. The 

recession, on the other hand, is more readily predictable by a linear operation on the 

antecedent input as it is less dependent on the distribution of input (Amorocho, 1963). 

Amorocho represented the hydrologic system using the functional series, considering the 

system to be nonlinear and suggested the absolute and unit linearity of hydrologic systems. 

The absolute linearity is defined as the ratio of linear term of the functional series to the 

summation of full series and should be equal to one for a system to be linear. 

Chow (1964) reviewed most of the earlier research on nonlinear runoff Later 

Clarke (1971) showed that, linearity in system theory sense is not necessarily equivalent to 

linearity in statistical sense. Most hydrologists used linearity in system theory sense with 

the exception of Amorocho (1963) whose model is linear in statistical regression sense but 

nonlinear in system theory sense. Rogers (1980, 1982) introduced a new way of measuring 

nonlinearity of a system known as the Standardized Peak Discharge Distribution (SPDD). 

As per him the slope of line that best fits the standardized peak discharge data is an 

indicator of nonlinearity of runoff distribution. 

log (Qp) = B + M log (V) 	 (2.8) 

where, Qp  is the peak discharge in ft3/sec, V is the volume of runoff in inches, and the log 
inverse of B is the peak discharge when runoff volume is one unit. Alternatively, 

following second order relation between peak and volume of runoff is also given. 

log (Q /V2) = B + log (V) 	 (2.9) 

where # = M - 2. The- regression slope of this SPDD model [Eq. (2.8)] is a catchment 

characteristic. A catchment is said to be linear if the value of M = 1.0 or alternatively if the 

value of 13 = -1.0. The values of slope less than this indicate the non-linearity of runoff 
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distribution or in other words the hydrologic non-linearity of the catchment. The 

catchments with similar values of slope could be homogeneous. This nonlinear SPDD 

relationship is applicable for any duration and no base flow separation is necessary. It is 

related to non-uniform distribution of infiltration capacities and storage conditions in a 

catchment. There is an assumption involved in SPDD relationship that the stage discharge 

relation of a gauge is consistent. 

Rogers and Zia (1982) applied this relation to large sized catchments. Mimikou 

(1983) attempted to relate slope and intercept of this relation to the catchment 

characteristics and found that the intercept was highly correlated with the catchment area, 

main stream length and average bed slope whereas, the slope M had a weak relationship. 

He stated that hydrologic non-linearity exists when runoff volumes are not directly 

proportional to rainfall volumes. As per Mimikou (1983) the R2  values of Eq. (2.8) reflect 

the degree of accuracy of peak discharge prediction from runoff volume. Singh and 

Aminian (1986) extended this study to large number of catchments from USA, Australia, 

Greece, and Italy using the direct runoff instead of total runoff as in case of Rogers (1980, 

1982). As per Mimikou, (1983) only peak discharge distribution [Eq. (2.8)] is necessary 

and sufficient for checking the hydrologic non-linearity of a catchment. The UH based 

procedures cannot be applied to catchments with value of M < 1.0 (Rogers and Zia, 1982). 

One more study discussing linearity vs. nonlinearity, which also gave alternative 

definitions for the same was carried out recently by Sivapalan et at, (2002). As per them 

two hydrologically different definitions of non-linearity exist in literature. The first 

definition is with respect to the dynamical property such as rainfall-runoff response of the 

catchment and the second definition is with respect to dependence of catchment statistical 

property, such as mean annual flood on the area of the catchment. They have 

recommended that the term nonlinearity should be used for dynamical response of the 

catchment i.e. the nonlinear dependence of dynamical hydrological response on rainfall 

inputs rather than the second definition. 

Various other measures of nonlinearity exist, such as Correlation Function, 

Coherence Function etc. (Singh, 1988). These concepts of non-linearity of runoff 

distribution existing in the catchment system have led to the development of nonlinear 

empirical models, which are discussed in brief in the next section. 
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2.6 NONLINEAR BLACK BOX MODELS FOR RAINFALL-RUNOFF 
PROCESS 

As early as in 1960, Minshall found that one UH could not adequately define the 

shape of hydrograph derived from a storm of unit duration and noted the variations in 

storage characteristics of the catchment with flood magnitude. The procedure of nonlinear 

analysis using the functional series was investigated by Amorocho and Orlob (1961) who 

applied the Volterra integral series (VIS) for analyzing the ER-DR relationship in a 
hydrologic system. Singh (1964) presented theory of nonlinear IUH to account for 
variations in IUH derived from different storms over a catchment. Amorocho and 

Brandstetter (1971) used meixner function to find nonlinear functional response function 

for a single storm event. Whereas, Diskin and Boneh (1973) developed computational 

technique for determining optimal kernel functions from multiple storms in discrete time. 

Many studies followed later taking the study by Amorocho and Orlob (1961) as base, such 

as, studies by Amorocho (1963); Amorocho and Hart (1965); Diskin and Boneh (1973); 

Papazafiriou (1976); Diskin et al. (1984), which considered various aspects of ER-DR 

relationship. A detailed discussion on methodology of functional series as applied to 

hydrologic system is available in Amorocho (1973). The improvement suggested by 

Helweg et al. (1982) in the functional series model by Amorocho and Brandstetter (1971) 

eliminated the trial and error procedure required for estimation of parameters. 

The kernel functions of the functional series model do not have any physical 

meaning and cannot assure physically realizable response. Muftuoglu (1984) proposed two 

nonlinear functional models that accounted for nonlinear storage and translation effects in 

a catchment, the kernel functions of which have physically realizable responses. The 

second order functional part (first term) and linear part (the second term) in his model 

given in Eq. (2.10) represent the direct runoff process and delayed flows respectively. The 

corresponding response functions are called two-dimensional finite period UH and the 
finite period UH. Muftuoglu (1984) used the nonlinear relation between total rainfall and 

total runoff instead of effective rainfall and direct runoff for modeling monthly flows in 

the model proposed by him. 
n 	n 	 1 

Q1 = 	 Ui:k Pt-i +1 Pt-k+I 	 U  i+n Pt-(i+n) +1 + et 
	 (2.10) 

	

i=1 k=i 	 i=1 
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This model was later modified and extended by Kothyari and Singh (1999) for 

large size catchment as a nonlinear MISO model. This model has the form given in the 

following equation. 

✓ n(1) n(1) 	 ✓  10 

Q, = 	 tl 	P,(!)4,+, 	t l,"„ 13,61)(i,„)+1 
1=1 i=1 k=i 	 1=1 i=1 

(2.11) 

The notations have the same meaning as in earlier equations. Liang et al. (1994) 

also developed a nonlinear MISO model using the concept of linearly varying gain factor. 

The functional series is a universal mathematical model for nonlinear black box systems, 

which produces a single output from a serial input (Muftuoglu, 1991). The nonlinear 

model of the kind of functional series has not been sought for MISO system; instead the 

hydrologists have resorted to conceptual modeling approach (Kachroo and Liang, 1992). 

The system theoretic modeling approach has been added with a new dimension through 

the application of artificial neural network (ANN) technique for rainfall-runoff modeling. 

The systems approach in general and nonlinear functional analysis in particular has 

recently undergone a renaissance largely due to adoption of techniques like ANN and 

genetic algorithms (Minns and Hall, 1996). The applications of ANN for modeling the 

process of conversion of rainfall in to runoff will be discussed in detail next, but before 

that a brief account of the ANN technique and its application in for the problems other than 

rainfall-runoff modeling in the area of hydrology and water resources engineering is 

presented. 

2.7 ARTIFICIAL NEURAL NETWORK THEORY 

The development of ANNs began approximately 50 years ago with the progress in 

neurobiology, which promoted research in simulating the neural behavior by building the 

mathematical models of neurons in the human brain. The first abstract model of a single 

idealized biological neuron was presented by McCulloch and Pitts, (1943). A law 

explaining the learning of a network of neurons was proposed by Hebb (1949). The first 

ANN namely the perceptron created by Rosenblatt (1958), consisted of neurons arranged 

within one active layer. Many ANN structures have been proposed and explored since 

then. The ANN technique has experienced a huge resurgence in last two decades after 

Hopfield (1982) introduced the idea of energy minimization in physics into neural 

networks. The ANN has an ability to identify the relationship among the input patterns, by 
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virtue of which it can solve large-scale complex problems such as pattern recognition, 

nonlinear modeling etc. The applications of ANNs can be seen in such diverse areas as 

image processing, biomedical engineering, electrical engineering, chemical engineering, 

computer science, physics, and others. 

As mentioned in chapter 1, the ANN is an interconnected assembly of simple 

neurons or nodes. It consists of an input layer, an output layer and one or more number of 

hidden layers. The input layer receives the input whereas the output layer produces model 

outputs through nonlinear operation carried out at different nodes. Each neuron in a layer 

operates in logical parallelism. Information is transmitted from one layer to other in serial 

operation (Hecht-Nielsen, 1990). A neural network is characterized by its architecture that 

represents the pattern of connection between nodes, its method of determining the 

connection weights, and the activation function (Fausett, 1994). The operation of an ANN 

is based on certain rules. A three layer feedforward ANN is shown in Fig. 1.2 as an 

illustrative example. The passing of signals between nodes in such a network takes place 

through connection links, which run from one layer to the next but do not leapfrog layers. 

Each connection link has an associated weight that represents its connection strength. Each 

node typically applies a nonlinear transformation to the input through an activation 

function and the output is derived (Caudill, 1987). 

2.8 MATHEMATICAL ASPECTS OF ANN 

A schematic diagram of a typical node of an ANN is depicted in Fig. 2.1. At each 

node in a layer of ANN the information is received, stored, processed, and communicated 

further to nodes in the next layer. The inputs to the ANN form an input vector X = 

xj,...,x,). The sequence of weights leading to the node form a weight vector W3  = (w,3, 

wn), where wv  represents the connection weight from the node in the preceding 

layer to the jill  node. The weights can be positive or negative. The positive weights are 

called excitory connections whereas negative weights are termed as inhibitory 

connections. The output of node j is obtained by computing the value of function f(.). 

This operation is defined as 

Y3  = 	b) 	 (2.12) 
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where b, is the threshold value or the bias associated with node which must be exceeded 

before the node can be activated. In other words, unless the strength of input (weighted 

sum) received by a node exceeds the threshold value, the output of the neuron is zero. The 

function 10 is called an activation function or a non-linearity function, which ensures 

conditioning or dampening of the actual response of a neuron. This function can be of 

different forms e.g., linear, step, ramp, logistic sigmoid, or bipolar sigmoid that determines 

the response of a node to the total input signal. The most commonly used form off() in 

Eq. (2.12) is the sigmoid function, given by 

 

1 
(2.13) 

1+e  

 

The sigmoid (shown in Fig. 2.2) is a bounded, monotonically increasing function that 

provides a graded, nonlinear response enabling the ANN to map any nonlinear process. It 

is continuous and differentiable everywhere (Hecht-Nielsen, 1990). This is particularly 

useful in the feedforward backpropagation ANN as the change in weights is accomplished 

using the derivative of the transfer function. The popularity of the sigmoid function is 

partially attributed to the simplicity of its derivative that is used during the training 

process. Figure 2.2 also shows the other transfer or activation functions used in the ANNs. 

Bias term 

Output 

Fig. 2.1 Schematic Diagram of a Node 
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Fig. 2.2 Different Transfer Functions Used in ANN 

2.9 CLASSIFICATION OF ANN 

The ANN can be classified in different ways such as 

(i) Based on the number of layers 

a) Single Layer Network (Hopfield nets) 

b) Bilayer Network (Carpenter/Grossberg Adaptive Resonance Networks) 

c) Multilayer network (Most Backpropagation Networks). 

(ii) Based on the direction of information flow 

a) Feedforward Networks 

b) Recurrent Networks 

The important ones among the above types of networks are reviewed below. 

2.9.1 Feedforvvard Backpropagation Network 

A feedforward ANN can have many layers. This type of network is most widely 

used along with the backpropagation (BP) algorithm employed for its training. The BP 

algorithm is a supervised learning algorithm in which the output error is fed back through 

the network. These types of networks are considered as universal approximator as they do 

not require any explicit mathematical relationship between the inputs and the outputs. The 

results of Hornik et al. (1989) show that the standard multilayer feedforward network with 

a single hidden layer with an arbitrary number of sigmoidal hidden nodes can approximate 
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any measurable function to any degree of accuracy. In addition, De Villars and Bernard 

(1993) showed that the ANN comprised of two hidden layers tend to be less robust and 

converges with less accuracy than its single layer counterpart. Due to these reasons 

feedforward networks find applications in a wide variety of problems, such as classifying 

patterns, grouping similar patterns, or finding solutions to constrained optimization 

problems etc. A three layer feedforward network along with BP algorithm is employed in 

the present study because such feedforward ANNs are found to have the best performance 

with regard to input-output function approximation (Hsu et al., 1995). 

The backpropagation algorithm was originally developed by Werbos (1974), but its 

powerfulness was not recognized and appreciated for many years. Rumejhart et al. (1986) 

rediscovered the algorithm and made it popular by demonstrating how to train the hidden 

neurons for a complex mapping problems. It is essentially a gradient descent technique 

that minimizes the network error function. To start the backpropagation learning process 

we need i) set of training patterns, input, and target; ii) value of learning rate; iii) 

termination criterion for the algorithm; iv) methodology for updating weights; v) the 

nonlinear transfer function; and vi) initial weight values (Kartalopoulos, 2000). The BP 

algorithm involves two steps. In the first step the process begins with application of the 

first input pattern and the corresponding target output. The input pattern is passed from the 

input layer to the output layer. The response at the output layer is compared with the 

target response and error (E) for this pattern is calculated. The algorithm now steps back 

and the weights are updated or modified iteratively using the steepest-gradient descent 

principle and the computed error is propagated backwards to each node. The connection 

weights are adjusted based on the following equation 

LIN 	aE(n). 6 x 	± a x dwu (n —1) 
	

(2.14) 

where, 
dwu(n) and dwu(n-1) = weight increments between node i and j during 

the nth  and (n-1)th  epoch. 
= learning rate 

a 	= momentum factor 

The momentum factor speeds up training in very flat regions of the error surface 

and helps in preventing the oscillations in the weights. A learning rate is used to increase 

the chance of avoiding the training process being trapped in local minima instead of the 
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global minima. The descent of the training process towards global minima along with the 

local minima present on the error surface is shown in Fig. 2.3. 

2.9.2 Recurrent Neural Networks 

Recurrent neural network (RNN) distinguishes itself from feedforward ANN in that 

it has at least one feedback loop, which could be local or global (Haykin, 1994). Fig. 2.4 

illustrates the structure of a RNN. The RNN architecture incorporates a multilayer 

perceptron (MLP) or a part of it and uses its mapping capability. Basically there are two 

functional uses of recurrent networks: i) associative memories and  ii) input output 

mapping networks (Haykin, 1994). Such networks typically use a spatial-temporal variant 

of backpropagation for training. Essentially, there are three ways by which memory can be 

introduced into static neural networks (Islam and Kothari, 2000). These are; i) Tapped 

delay line model: In these type of network past inputs are explicitly available to determine 

its response at a given point in time by virtue of which a temporal pattern is converted to a 

spatial pattern, which can then be learned through classic backpropagation, ii) Partial 

recurrent models: These models retain the past output of nodes, e.g. the output of the 

hidden layer neurons of a feedforward network can be used as inputs to the network along 

with the true input, iii) Fully recurrent models: These models employ full feedback 

connections between nodes (ASCE, 2000 a). The RNN structure requires less time for 

training due to the reduced number of network weights. 

2.9.3 Radial Basis Function Network 

Developed by Powell (1985), a Radial Basis Function (RBF) network is used for 

classification and approximation problems. It is a three-layer network in which, the only 

hidden layer performs a fixed nonlinear transformation with no adjustable parameters. The 

standard Euclidean distance is used to measure relative distance between input vector and 

the center at each node. The computed Euclidean distance is then transformed by a 

nonlinear function that determines the output of the nodes in the hidden layer (ASCE, 

2000 a). The primary difference between the RBF network and a backpropagation network 

is in the non-linearity associated with the hidden nodes (Fernando and Jaywardena, 1998). 
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The non-linearity in the error backpropagation (EBP) networks is implemented by a.  fixed 

activation function whereas in the RBF network, non-linearity is based on the training data 

(Mason et at, 1996). Learning in RBF network is carried out in two phases, first for 

hidden layer and then for output layer. However, the RBF network usually requires more 

data to achieve the same accuracy as the backpropagation networks (Hassoun, 1995). One 

more problem with the RBF networks is that, when the input patterns fall within close 

proximity to each other the basis functions may have overlapping receptive fields. 

2.9.4 Cascade Correlation Algorithm 

The cascade correlation algorithm, developed by Fahlman and Lebiere (1991), 

differs from other approaches in that it starts without any hidden nodes and the network 

grows during the training by adding new hidden units one by one, maximizing the impact 

of the new node and creating a multilayer structure (Karunanithi et at, 1994). Once a new 

hidden node has been added to the network, its input-side weights are frozen. A training 

cycle is divided into two phases. First, the output nodes are trained to minimize the total 

output error. Then a new node is inserted and connected to every output node and all 

previous hidden nodes.. The addition of new hidden nodes is continued until maximum 

correlation between the hidden nodes and error is attained. The network architecture is 

determined as a part of the training process. 

2.9.5 Self-Organizing Feature Maps 

Unlike feedforward and recurrent neural networks that are primarily used for 

approximation and classification, Self-Organizing Feature Maps (SOFMs) are typically 

used for projecting patterns from high dimensional to low-dimensional space. SOFM were 

originally proposed by Kohonen (1989, 1990). The neurons in this networks are placed at 

the nodes of lattice that is usually one or two-dimensional. The synaptic weights in the 

network are first initialized. This is followed by the processes such as: i) competition, ii) 

cooperation, iii) synaptiC adaptation (Haykin, 1994). When an input pattern is presented, 

it computes a matching value for each node in the competitive layer. The node that has 

the closest match to the input is identified as a winning unit (Hsu et al., 1998). 
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2.10 IMPORTANT ASPECTS OF ANN MODELING 

Although there are no fixed rules for developing an ANN, a general framework for 

its design is very well described in ASCE (2000 a) and (Kartalopoulos, 2000). Some of the 

points to be considered in the development of an ANN are: 

1. Selection of Input and Output Variables 

2. Data Normalization 

3. Designing a Network 

4. Training of the Network 

5. Strengths and Limitations 

The above points are reviewed in brief in the following paragraphs. 

2.10.1 Selection of Input and Output Variables 

The objective of an ANN is to generalize relationship given by the following 

equation 

r =f a") 
	

(2.15) 

Where, X1  is an n-dimensional input vector consisting of variables x1,.., x, 	, xn; and r is 

an m-dimensional output vector consisting of resulting variables of interest 	y,....., 

yin. In hydrological context the values of inputs x, can be causal variables such as rainfall, 

temperature, discharges or water levels for previous time period, evaporation, basin area, 

elevation, slopes, meteorological data, and so on. The values of outputs y, can be 

hydrological responses such as runoff, streamflow or ordinates of a hydrograph etc. 

Proper selection of input variables is very important, so that an ANN is able to map 

to the desired output vector successfully. In ANN modeling the set of variables that 

influence the system are not known a priori as in case of physically based models. So, in 

this sense of nonlinear process identification, an ANN should not be considered as a mere 

black box. Proper understanding of the physical process being modeled is an important 

prerequisite for successful application of ANNs (ASCE, 2000 a). A sensitivity analysis can 

be used to determine the relative importance of a variable when sufficient data is available 

(Maier and Dandy, 1996). The learning process slows down due to unnecessary patterns 

in the training dataset. 
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2.10.2 Data Normalization 

The data used in the hydrological studies are obtained either from field or through 

remote sensing. The data need to be normalized before being applied to an ANN. The 

applications involving use of ANN have stressed the importance of scaling the input/ 

output quantities before presenting them to the network. For problems exhibiting high 

non-linearity, the variables are scaled between range of [0, 1 j or some other suitable range. 

This kind of scaling tends to smooth the solution space and averages out some of the noise 

effects (ASCE, 2000 a). 

2.10.3 Designing a Network 

Design of the ANN is nothing but determination of the topology of the network and 

selecting a proper algorithm for its training. This is an important part of the process, 

which aims at providing an optimal ANN architecture such that it gives the best 

performance in terms of error minimization, and has minimum complexity (Kartalopoulos, 

2000). Minimal network can offer better generalized performance than more complex 

networks (Rumelhart et al., 1994). The numbers of neurons in the input and output layer 

are defined by the problem. The flexibility lies in selecting the number of hidden layers 

and the number of neurons in each of these hidden layers. This is a trial and error 

procedure aimed at deriving optimal architecture. Bishop (1995) provides an excellent 

review of approaches used for determining the network architecture with acceptable 

performance on the training and the generalization data. The algorithms used in deciding 

the size of network are categorized as follows. 

1) Pruning algorithms: These generally start with a large network and proceed by 

removing weights to which sensitivity of the error is minimal. 

2) Growing methods: Typically start with a small network and add nodes with full 

connectivity to nodes in the existing network (Haykin, 1994). 

2.10.4 Training the Network 

Training the network is very much similar to the calibrating the hydrologic model. 

The main objective of training is to produce desired set of outputs when a set of inputs is 

given to the ANN. The available data set is partitioned into training and testing datasets. It 

is important that the training dataset should contain sufficient patterns so that the network 
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can mimic the underlying relationship between input and output variables adequately. 

Each pass through the training data is called an epoch and during training process the ANN 

learns through overall change in weights accumulated over many epochs. Finally, the 

optimal weight matrices and bias vectors are found which minimize a predetermined error 

function, such as sum of squares of errors (Bishop, 1994). After proper training is 

accomplished, the ANN generates reasonable results given unknown inputs. The training 

process is stopped when no appreciable change in the values associated with the 

connection links is observed or some termination criterion is satisfied. 

However, there is the danger of overtraining a network in this fashion, which is 

also termed as overfitting. This happens when the network parameters are too fine-tuned 

to the training dataset. The network, in the process of trying to "learn" the underlying rule, 

has started to fit the "noise" component of the dataset. In other words, overtrained network 

memorizes the individual examples, rather than trends in the dataset as a whole. When 

this happens, the network performs very well during training, but fails to generalize when 

given an unknown input (Haykin, 1994). To prevent this, help of the testing dataset is 

taken to stop the training when the network begins to overtrain. Initially, error for both the 

training and testing datasets reduces. After an optimal amount of training has been 

achieved, the error for the training set continues to decrease, but that for the testing dataset 

begins to rise. This is an indication that further training may result in overfitting the 

training data by a network. The process of training is stopped at this time, and the set of 

weights are assumed to be optimal (ASCE, 2000 a). The ANN is now ready to be used as 

a predictive tool. 

2.10.5 Strengths and Limitations 

The following are some of the reasons why ANNs have become an attractive 

computational tool (ASCE, 2000 a): 

1. The ANNs are capable of recognizing the relation between the input and output 

variables without explicit physical consideration. 

2. The ANNs performance is not affected even if the training sets contain noise and 

errors. 

3.. 

	

	The ANNs are adaptable to solutions over time to compensate for changing 

circumstances. 
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One of the reasons that made ANNs an attractive tool for solving the problems in 

hydrology is the fact that the knowledge about these problems is far from perfect and 

many a times the problem is ill defined. Even the analysis using physically based models 

is not meaningful, as it has to rely on many assumptions. The ANNs model the non-

linearity in the underlying process without having to solve complex partial differential 

equations. There is no need to make assumptions about the mathematical from of the 

relationship between input and output, which is an inherent part of regression-based 

techniques. The ANNs perform with almost same accuracy even in the presence of noise in 

the inputs and outputs because of distributed processing taking place within the network. 

This, along with the nonlinear nature of the activation function, truly enhances the 

generalizing capabilities of ANNs and makes them desirable for a large class of problems 

in hydrology. 

There are three primary situations where ANNs are advantageous. 

1. Situations where only a few decisions are required to be taken from a massive 

amount of data. 

2. Situations where nonlinear mapping must be automatically acquired. 

3. Situations where a near optimal solution to an optimization problem is required 

very quickly. 

The successful application of the ANN for solving various problems encountered in 

hydrology has proved its potential. Nevertheless, its disadvantages should not be ignored. 

The ANN application may fail to produce satisfactory results as the success of an ANN 

application depends both on the quality and the quantity of data. Representing temporal 

variations is often achieved by including past inputs/outputs, which makes the resulting 

ANN structure more complicated. One of the major limitations of ANNs is that it lacks 

physical concepts and relations, which has been the point of criticism and the reasons for 

the skeptical attitude towards this methodology. Many times selection of the network 

architecture and training algorithm is dependent on the preference of the user, rather than 

on the physical aspects .of the problem being studied. ANNs fail to predict out of range 

values indicating that they are also not well suited for extrapolation. In addition to that 

determination of the network architecture and its parameters is trial and error process, 

which consumes a lot of time. 
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2.11 ANN APPLICATIONS IN HYDROLOGY AND WATER RESOURCES 
ENGINEERING 

Hydrologists are often confronted with the problems of prediction and estimation 

of runoff, precipitation, contaminant concentration, water stages, and many others. They 

attempt to provide rational answers to these problems. The process of problem solving 

becomes more complicated due to the fact that the understanding in many areas is far from 

perfect, paving way for empiricism to play an important role in modeling of these 

processes. The issues of spatial and temporal variation, errors in data etc. make the 

situation even worse. 

ANNs have been applied to solve large-scale complex problems like pattern 

recognition, nonlinear modeling, and others. Researchers in hydrology and water resources 

engineering have shown serious interest in using this technique only during the last 

decade. ANNs have the ability to extract relation between the inputs and outputs of a 

process without need of knowing explicitly the physics involved. This property of ANN 

has attracted many researchers and a significant growth in the interest of this 

computational mechanism took place due to the work by Rumelhart et al. (1986). An 

exhaustive review investigating the applications of ANN in various branches of hydrology 

and a comparison of the ANN and other modeling philosophies in hydrology is available in 

ASCE (2000 b). Since the early nineties, ANNs have been successfully used in problems in 

hydrology such as rainfall-runoff modeling, streamflow forecasting, ground water 

modeling, water quality, precipitation forecasting, hydrologic time series, reservoir 

operations, and others. In the following paragraphs, first various applications of ANN in 

the field of hydrology and water resource engineering other than rainfall-runoff modeling 

will be reviewed in brief and this will be followed by a detailed review of ANN 

applications for rainfall-runoff modeling. 

Among the first reported study in the field of hydrology employing ANN was by 

French et al. (1992) who used a three layer feedforward ANN to forecast rainfall. Navone 

and Ceccatto (1994) used ANN to predict monsoon rainfall over India. Rainfall prediction 

was also accomplished by Hsu et al. (1997 a, 1999) using the counter propagation network 

(CPN) developed by Hecht-Nielsen (1987). They transformed the satellite infrared images 

to corresponding rainfall rates with the use of CPN. A multilayer network with 
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backpropagation algorithm and SOFM were employed by Burian et al (2000) for 

disaggregation of hourly rainfall data into sub-hourly time increments. Sorooshian et al. 

(2000) evaluated the automated Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks (PERSIANN) system of estimation of 

tropical rainfall using satellite data. 

Applications of ANN for water quality modeling are also reported in literature. As 

the variable estimation in such problems is quite complex, the problem is suitable for ANN 

application. The ANN used by Rogers and Dowla (1994) was trained by a solute transport 

model for performing optimization studies in groundwater remediation. Maier and Dandy 

(1996) and Zhang and Stanley (1997) used the ANN for prediction of water quality 

parameters. Multiobjective optimization of water management in a river basis with ANN 

quality approach was studied by Wen and Lee (1998). ANN based identification of 

microbial contamination sources was carried out by Brion and Lingireddy (1999). 

Ranjithan et al. (1993) used a three layer feedforward network for groundwater 

reclamation. A new approach for nonlinear groundwater management using ANN was 

presented by Rogers and Dowla (1994) while, Johnson and Rogers (1995) applied ANN 

for locational analysis in groundwater remediation. 

A feedforward ANN was used for reservoir operation by Raman and Chandramouli 

(1996) and Jain et al. (1999). Coulibaly et al. (2000) introduced stopped training approach 

in training feedforward ANN whereas, Chandramouli and Raman (2001) analyzed a 

multireservoir system with dynamic programming and the ANN. 

ANN has been successfully applied by Zhu and Fujitha (1994) to forecast hourly 

flood discharges. Karunanithi et al. (1994); and Muttiah et al. (1997) used the cascade 

correlation neural network for the prediction of river flow. Imrie et al. (2000) also used the 

same type of ANN but added with a guidance system so as to improve its generalization. 

Sudheer et al (2000) employed the ANN to forecast daily runoff from an Indian river as a 

function of daily precipitation and some previous day's runoff values. The study by 

Thirumalaiah and Deo (2000) demonstrates the application of a feedforward ANN trained 

with the BP algorithm, the conjugate gradient, and the cascade correlation algorithm for 

real time forecasting of hourly flood runoff, daily river stage, and for predicting rainfall 

sufficiency over India. 
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Some typical applications of ANN for other problems encountered in hydrology are 

also reported. Raman and Sunilkumar (1995) employed ANN to model multivariate water 

resources time series and obtained comparable results with that of ARMA model. Hall and 

Minns (1998) and Hall et al. (2000) carried out the regional flood frequency analysis using 

MLP type neural networks. They also used ANNs to model relationships between 

catchment characteristics and parameters of flood frequency distributions at gauged sites 

and obtained superior results to those provided by traditional method. Hall and Minns 

(1999) employed a Kohonen network and C-means method for the classification of 

hydrologically homogeneous regions. Whereas, the classification of river basins in India 

was carried out using adaptive resonance theory (ART) network by Thandaveswara and 

Sajikumar (2000). The ART is an unsupervised competitive network used for clustering 

and follows incremental learning (Carpenter and Grossberg, 1987). Islam and Kothari 

(2000) examined the utility of three types of ANNs for characterization, estimation, and 

prediction of remotely sensed hydrologic processes and data found in multiple sources. 

Jain and Chalisgaonkar (2000) employed a three layer feedforward ANN for setting up 

stage discharge relations at two sites in the Narmada river basin in India. Ray and 

Klindworth (2000) applied the neural networks for assessing the contamination of private 

wells due to pesticide and nitrate. Analysis and quantification of spatial and temporal 

patterns of meteorological drought based on ANN was carried out by Shin and Salas 

(2000). Khalil et al. (2001) used the ANN based on the concepts and properties of groups 

for infilling the missing hydrological records whereas, Kumar et al. (2002) estimated the 

evapotranspiration by using the ANN. 

2.12 ANN APPLICATIONS IN RAINFALL-RUNOFF MODELING 

Determining the relationship between rainfall and runoff in a catchment is one of 

the most important problems faced by hydrologists and engineers. In addition to rainfall, 

runoff is dependent on numerous factors such as initial soil moisture, land use, catchment 

topography and geomorphology, evaporation, infiltration, distribution and duration of the 

rainfall, and so on. 
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A number of researchers have investigated the potential of neural networks in 

modeling the runoff based on rainfall and other meteorological inputs. The summarized 

description of the studies involving application of ANN in rainfall-runoff modeling is 

provided in Table 2.4. This table provides in nutshell the information about the type of 

ANN employed in these studies, the input parameters to the ANN considered, the output(s) 

predicted/forecasted, the scale of study, and the size of the catchment(s) studied. These 

studies are critically reviewed in the following paragraphs. 

Among the first was a preliminary study by Half et al. (1993) who used a three 

layer feedforward ANN to predict the hydrograph of storms using the observed rainfall 

hyetographs on the same basin. A total of five storm events were considered. Figure 2.5 

shows the results obtained by Halff et al. (1993) when first four events were used for 

training and the last event was used for testing the performance of the ANN used in their 

study. This study opened up several possibilities of application of neural networks for 

rainfall-runoff modeling. 

Hjelmfelt and Wang (1993) developed a neural network based on the unit 

hydrograph theory. They derived a composite runoff hydrograph for a catchment using the 

linear superposition. The resulting network reproduced the unit hydrograph better than the 

one obtained through the standard gamma function representation. Later, Hjelmfelt and 

Wang (1996) compared this method with a regular three layered feedforward 

backpropagation ANN. 

Smith and Eli (1995) investigated the potential of ANN to map different rainfall 

patterns into various runoff measures. They applied a BP neural network model to predict 

peak discharge and time to peak over a synthetic catchment, overlaid with tree-type 

drainage pattern, using simulated data generated by either a linear or a nonlinear reservoir 

model. A stochastic rainfall pattern generator was used to generate rainfall patterns 

required for the study. A rainfall depth of one unit was applied instantaneously at several 

cells on a random basis. The peak discharge and the time to peak were predicted well by 

the neural network, both during training and testing. 

Hsu et al. (1995) presented a procedure called Linear Least Squares Simplex 

(LLSSIM) for identifying the structure and parameters of a three layer feedforward ANN 
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They have attempted to enhance the training speed of the network by partitioning the 

weight space. The input hidden layer weights were estimated using a multistart downhill 

simplex nonlinear optimization algorithm, while the hidden output layer weights were 

estimated using optimal linear least squares estimation. The nonlinear portion of search is 

thereby confined to a smaller dimension space, resulting in acceleration of the training 

process and eliminating the probability of finding local minima. The performance of ANN 

was compared with the linear ARMAX time series model and the conceptual SAC-SMA 

model. The comparison of results obtained by them using the different models for one 

event is shown in Fig. 2.6. The LLSSIM is claimed to be a better algorithm than 

backpropagation or conjugate gradient techniques, especially in the absence of a good 

initial guess of weights. Though the study used data of rainfall and runoff on daily scale 

their main objective was to present a new algorithm for training the feedforward ANN. The 

inputs to the ANN consisted of the runoff observed in the past time periods. 

Lorrai and Sechi (1995) applied a two hidden layer network with the aim of 

reproducing river flows using both mean aerial and point rainfall, and temperature data 

from a catchment in Italy on monthly scale. The data for different 10 years period was 

used for training and testing. The results obtained by them are given in Table 2.1. It can be 

observed that the performance of the feedforward ANN applied, in terms of the coefficient 

of determination, is poor if the testing period is different than that of training. This could 

be due to the fact that no data for the runoff observed in the past time periods was used in 

the study. 

Carriere et al. (1996) developed a virtual runoff hydrograph system using a 

backpropagation RNN. The data from 45 laboratory experiments over a simulated 

catchment in the form of a tank under different conditions of slope and cover were used 

for this. 

The RBF networks were employed for rainfall-runoff modeling by Mason et al. 

(1996). They used the RBF network for accelerating the training procedure as compared 

with regular backpropagation techniques and found that, though RBF networks provided 

faster training such networks require solution of a the linear system of equations that may 

become ill conditioned, especially if a large number of cluster centers are chosen. 
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Table 2.1 Results Obtained in Terms Coefficient of Determination by Lorrai 
and Sechi (1995) 

Training Period 
Evaluation/Testing Period 

1946-55 1956-65 1966-75 

1946-55 0,899 0.480 0.685 

1956-65 0.597 0.699 0.472 

1966-75 0.559 0.454 0.864 

In their study, Minns and Hall (1996) point out the importance of standardization .  

The training data used by them consisted of model results from one storm sequence, and 

two such sequences were generated for testing using the Monte Carlo procedure. For each 

such storm sequence, the corresponding runoff sequence was constructed using a simple 

nonlinear model for flood estimation that allowed for different levels of non-linearity in 

the response. Minns and Hall used a three layer network with BP algorithm and found that 

ANNs performance was hardly influenced by the level of non-linearity. The performance 

of ANN dropped significantly whenever the network was required to predict out of range 

of the standardized values, suggesting that ANNs are not very good extrapolators. 

In another study, Hsu et al. (1997 b) compared a three layer feedforward ANN with 

a RNN for daily rainfall-runoff modeling. They have observed that the feedforward ANN 

needs a trial and error procedure to find the appropriate number of time delayed input 

variables to the model whereas the RNN was able to provide a representation of the 

dynamic internal feedback loops in the system, eliminating need for lagged inputs, 

resulting in a compact weight space. 

Shamseldin (1997) used the conjugate gradient method to train the feedforward 

network using daily average rainfall and runoff data from six catchments from different 

climatic conditions around the world. The ANN was given the same input as that of a 

simple linear model (SLM); a season based linear perturbation model (LPM), and a nearest 

neighbor linear perturbation model (NNLPM). The performance of ANNs was found to be 

better than the corresponding models during calibration and validation. The two parameter 
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gamma function was chosen to represent the impulse response of the rainfall series and its 

parameters were also estimated as part of the training process in his study. 

Dawson and Wilby (1998) also used a three layer backpropagation network to 

determine runoff over two flood prone catchments in UK. They were successful in 

constructing a robust model using ANN for predicting 15-minute flows with 6-hour lead 

time. Their results show that ANNs performance was almost same as that of the existing 

forecasting system, which required more information. The ANNs appeared to overestimate 

low flows compared with actual flows. Dawson and Wilby emphasized upon the need for 

deciding upon the optimum training period for using the ANN in real-time mode. They 

used the continuous record of runoff As per them accurate flood forecasting using ANNs 

requires, i) training of the ANN against selected events (i.e. individual flood hydrographs) 

contained in the total flow data set rather than the use of continuous record and ii) input 

variables which contain some memory of the antecedent catchment conditions. 

Fernando and Jayawardena (1998) used a different type of ANN namely the RBF 

network for flood forecasting on hourly basis. They illustrated the application of RBF 

networks using an orthogonal least squares (OLS) algorithm to model the rainfall-runoff 

process. The parameters of a RBF model are linear and the advantage of OLS algorithm is 

that, it is capable of synthesizing suitable network architecture and thus eliminates the 

time consuming trial and error procedure required in the MLP. The hourly data for 12 high 

flow events occurred in a very small sized Kamihonsha catchment in Japan were used in 

the study. The one-hour predictions of RBF network were compared with the 

backpropagation ANN and the ARMAX model. The RBF network with OLS algorithm 

approach produced forecasts with comparable accuracy to those by a backpropagation 

algorithm in terms of mean discharge predicted by the models and the root mean square 

error (RMSE), as can be seen from the results obtained by Fernando and Jayawardena 

(1998) reproduced in the Table 2.2. 

Hsu et al. (1998) tested a new type of neural network structure called self-

organizing feature map with linear output (SOLO) for forecasting daily streamflow from 

rainfall measurements. The SOLO structure is a hybrid structure linking SOFM with a 
locally linear output (LO) mapping and requires hundred fold less computational efforts 
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Table 2.2 Statistics of Model Predictions (Fernando and Jayawardena, 1998) 

Event 
No. 

Predicted 
Duration 

(Hr.) 

Mean Discharge 
(m3/s) 

RMS Error 
(% of Observed Mean) 

Observed RBF/OLS MLP/BP ARMAX RBF/OLS MLP/BP ARMAX 

l a 
 58 0.2643 0.2623 0.2686 0.2601 8.11 7.61 15.61 

2a  82 0.3508 0.3519 0.3520 0.3480 3.89 10.36 20.69 
3 41 0.2233 0.2244 0.2315 0.2234 11.99 9.61 15.57 
4 41 0.2368 0.2382 0.2459 0.3435 4,40 4.90 7.64 
5 36 0.3744 0.3641 0.3714 0.3648 11.31 14.49 21.11 
6 57 0.2886 0.2877 0.2914 0.2866 4.33 3.41 7.14 
7 51 0.2794 0.2763 0.2833 0.2787 7.25 7.17 12.35 
8 51 0.2779 0.2774 0.2837 0.2865 3.80 2.18 6.05 
9 98 0.3268 0.3267 0.3277 0.3239 4.85 4.06 7.84 

10 30 0.2328 0.2366 0.2430 0.2385 9.29 12.78 20.58 
11 96 0.2340 0.2322 0.2401 0.2332 3.51 4.25 8,16 
12 57 0.3324 0.3304 0.3334 0.3304 6.27 6.05 10.26 

a - Event used in training; RA1S- Root Mean Square 

than Time Delay Neural Network (7DNIV) and RNN models. Both TDNN and RNN require 

the solution of a nonlinear global optimization problem for accurate training of network 

parameters. The SOLO structure overcomes these difficulties. Its performance was 

compared with the TDNN and RNN structures. The RAISE performance of these different 

models is plotted in Fig. 2.7 against the total annual flow. It can be seen that the RAISE 

increases with the increasing total annual flow. The results indicated superior or equivalent 

performance of SOLO structure. The earlier studies (Hsu et al., 1995; Gupta et al., 1997) 

demonstrated the superior performance of TDNN in streamflow forecasting compared to 

complex physically based conceptual models. It can be seen from Fig. 2.7 that the SOLO 

model is able to consistently match all streamflow while the TDNN and RNN models tend 

to underestimate the low flows. 

Campolo et al. (1999) made use of distributed rainfall data observed at different 

raingauge stations for the prediction of water levels at the catchment outlet. The neural 

network was applied over a sub-basin of the river Tagliamento in Italy. The data used was 

rainfall observed at five raingauge stations and the hydrometer data at the outlet of the 

sub-basin for twenty flooding events. The scatter plots in Fig. 2.8 (a) show that the model 

results obtained by them were poor when only rainfall observations were used as the input. 

The main reason for this was stated to be the fact that the input information represented by 

zero rainfalls during the recession part is mapped into varying water levels, which could 
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not be learnt by the ANN model. The model accuracies were found to improve when the 

water levels observed in the recent past were also used as input as can be seen form Figs. 

2.8 (b) and (c) which show respectively the scatter plots when the water level information 

4 hours before and both, 4 and 2 hours before is also given as input to the ANN. The model 

predictions were accurate over 1 hour time horizon and the prediction accuracy of model 

decreased with increase in the prediction time horizon. This study demonstrates that for 

obtaining results with higher accuracy in rainfall-runoff modeling, the ANN must be 

provided with inputs, which correctly represent the soil moisture state of the catchment. 

Zealand et al. (1999) applied ANN model for streamflow forecasting over a 

catchment of area 19,270 km2  in Canada and used data for weekly averaged precipitation, 

temperature, and streamflow during 1965-85 for training and data from 1960-64 and 1986-

88 was used for testing. The streamflow was forecasted with one week and four weeks 

lead-time. The ANN proved to be a better model than the conventional one for both 

forecast lead times. Figures 2.9 (a) and (b) show the scatter plots for ANN model applied 

by Zealand et al., (1999) to the Namakan Lake with 1-week and 4-weeks lead-time. It can 

be seen from Fig. 2.9 (a) that the scatter for 1-week ahead forecast is less and all the points 

fall relatively close to the 45°  line whereas, the scatter is more for 4-weeks ahead forecast 

in Fig. 2.9 (b). 

Sajikumar and Thandaveswara (1999) used the temporal backpropagation neural 

network (TBP-NN) for monthly rainfall-runoff modeling in scarce data conditions. The 

TBP-NN resembles the standard backpropagation network except for having a linear finite 

impulse response filter for each connection. They used data from river Lee (U.K.) and 

river Thuthapuzha in Kerala (India). The ANN model was trained for different length of 

data. The input layer had only one neuron with the rescaled effective rainfall as input. The 

sum of delays used was equal to the memory length of the catchment studied. The results 

indicated improved performances of ANN in terms of accuracy and consistency over the 

Volterra type functional series model. 

Tokar and Johnson (1999) reported that ANN models had better predicting 

accuracy and flexibility in daily rainfall-runoff modeling compared with regression and 

simple conceptual models. They used ANN with daily data of precipitation, temperature 

and snowmelt equivalent (SW) as input to forecast daily runoff for the Little Patuxent river 
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in Maryland (USA). The selection of training data had a large impact on accuracy of 

prediction of the ANN used. Tokar and Johnson found that, the type of training data is 

more important than the length of the data for neural network to perform better. An 

interesting feature observed by them was that the ANN model predictions were poor when 

Qt _i was added as input in addition to the 13,1 . The reason for this was stated to be the fact 

that there existed very high correlation between 0,1 and PH values. Later Tokar and 

Markus (2000) extended this study for two more catchments and compared the ANN's 

performance with that of conceptual models in predicting catchment runoff. The results 

obtained by them indicated that ANNs are more powerful tools in modeling the rainfall-

runoff process for various time scales, topography, and climatic conditions than the other 

models studied. Modeling with ANN provided a systematic approach and reduced time 

spent on training as compared to the conceptual models. The performance of the ANN with 

Qt.1  as input was found to be best in one case study. 

Anmala et al. (2000) carried out comparison of the feedforward network, the RNN, 

and the empirical models for predicting runoff over three medium sized catchments in 

Kansas (USA). Their study is on monthly basis and only the data for rainfall and 

temperature was used as input to the ANN. No data for runoff observed in the past time 

periods was used. Various experiments by varying the size of data for training and testing 

were carried out. Also, various network architectures were tested and it was observed that 

RNN performed better in prediction mode due to the dynamic feature embedded in the 

recurrent neural networks architecture. Table 2.3 shows the results obtained by them in 

terms of coefficient of determination (R2 ) for different models employed by them. It can 

be seen from this table that the value of R2  for the feedforward ANN in validation is very 

poor because the state of the catchment is not getting reflected in the inputs given to the 

network. 

Tingsanchali and Gautam (2000) compared the performance of feedforward ANN 

model with Ot_i, Pt./ and T.1 as inputs in flood forecasting with the performance of two 

lumped conceptual hydrological models namely, the tank model and the Ned4r-

Afstainnnings Model (NAM) and the AR11/1A model and found it to be superior. The models 

were applied to the two river basins in Thailand having area of 6,250 and 2,200 Km2. 
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Table 2.3 Model Performance in Terms of R2  for Different Models Obtained 
by Anmala et al., (2000) 

Catchment Feedforward Network Recurrent Network Empirical Regression 

Calibration Validation Calibration Validation Calibration Validation 

El Dorado 0.92 0.59 0.93 0.77 0.82 0.61 

Marion 0.89 0.61 0.94 0.78 0.87 0.60 

Council Grove 0.88 0.65 0.94 0.81 0.88 0.61 

Zhang and Govindaraju (2000) demonstrated the applicability of a different type of 

network, namely, the modular neural network architecture to handle complex sets of 

rainfall-runoff data. They have utilized Bayesian concepts in deriving the training 

algorithm. A modular neural network (MNN) is a combination of different types of neural 

network with each network being designed for a specific task. This makes each module 

expert for a specific task and each module maps relationship in a subset of input space. A 

gating network receives the output from the expert modules. A weighted sum of the 

responses of experts forms the output of MNN with weights equal to outputs of gating 

network. The MNN was used for monthly runoff prediction based on monthly rainfall and 

temperature data. The data was partitioned into low, medium, and high flow events and 

was given to three expert network modules in the MNN. They observed improvement in 

the performance of MNN over the standard feedforward ANN. 

In their discussion on the paper by Tokar and Johnson (1999), Kumar and Minocha 

(2001) have pointed out that the most significant input parameter to ANN, namely the 

rainfall, is subject to large errors and stated that the excess rainfall (i.e. Total rainfall -

losses) instead of the total rainfall should be used as input to ANN or if total rainfall is to 

be used, then the connection weights relating total rainfall to runoff should vary with time 

so as to account for antecedent moisture conditions. The ANNs, which do not incorporate 

this, will yield poor results in validation stage. Kumar and Minocha suggested that the use 

of Kalman filter class of algorithm and the recursive least square algorithm may overcome 
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this difficulty. They have expected that the dynamic linear model might perform better 

than the ANN model used by Tokar and Johnson (1999). 

Hu et al. (2001) developed a new type of ANN namely Range Dependent Neural 

Network (RDNN) based on the clustering algorithm for obtaining better accuracy in 

prediction of hydrological time series. The performance of the RDNN was compared with 

the standard feedforward BP ANN for daily streamflow and annual reservoir inflow 

prediction using data from two catchments in China. They observed that the RDNN 

performed better than the BP network especially in reproducing the low flow events. 

Wright and Dastorani (2001) applied ANN for river flood prediction from 

ungauged catchments using catchment descriptors. A multilayer feedforward ANN was 

applied for flood forecasting over a karstic catchment by Xiong et al. (2001) and it was 

observed that the ANN was very much successful in simulating the highly nonlinear 

relationship between rainfall and runoff over a Karstic catchment. 

Birikundavyi et al. (2002) also investigated the feedforward ANN for forecasting 

daily . streamflows for Mistassibi river located in northern Quebec, Canada. The results 

obtained by them show that the ANN outperformed the deterministic model used for the 

same up to 5-day ahead forecasts. The data for daily streamflow observed in the past, 

temperature, rainfall depths, and computed snowmelt were used for training the ANN:.- 

Sivakumar et al. (2002) compared the performance of the phase-space 

reconstruction (PSR) and ANN approaches for forecasting the flows in the Chao Phraya 

river in Thailand (area = 1,10,569 Km2) for 1-day and 7-day ahead forecasts. They have 

noticed that the MLP used in the study was not suitable for runoff forecasting especially 

for longer lead times. For both the forecast lead-times, inputs to the MLP consisted of the 

daily observed streamflows values for past 7-days. The forecasts obtained by PSR 

approach were significantly better than the ANN approach for both the lead times because 

the PSR approach captures the important feature of the flow dynamics in a better way as it 

uses the local approximation against the global approximation being used in the ANN. The 

performance of the MLP was especially poor for 7-day lead-time. 

The ANN was used for a different purpose by Shamseldin et al. (1997) who 

employed a neural network for combining the estimated outputs of five different rainfall- 
CRRL 

 \ jr\  

Acc. NA •IAS . j . a. ) 	
50 

\Date  "  L*3.. 



runoff models to produce the combined estimated output. Such combined discharge was 

considered to be a better estimate of runoff than that obtained from individual models. 

Shamseldin and O'Connor (1999) extended this concept and developed a technique for real 

time combination of the outputs of different rainfall-runoff models called RTMOCM. 

Elshorbagy et al. (2000) developed a new statistical measure called pooled mean square 

error (PMSE) for comparing the performance of ANN with linear and nonlinear regression. 

From the review above it can be inferred that the ANN methodology has been 

reported to provide reasonably good solutions for complex systems encountered in 

hydrology that may be poorly defined or understood using mathematical equations. It can 

be seen that the problem of rainfall-runoff modeling has perhaps received the maximum 

attention by the ANN modelers. The nonlinear nature of the relationship, availability of 

long historical records, and the complexity of physically based models in this regard are 

some of the factors that have caused researchers to look at alternative models, and the 

ANNs have been a logical choice (Hsu et al., 1995). ASCE (2002 b) clubbed the studies 

involving use of ANN for rainfall-runoff modeling into two categories. 

(i) The first category includes studies where ANNs were trained and tested using the 

data similar to the existing models (e.g., Smith and Eli, 1995; Shamseldin, 1997). 

After completion of the training process, the ANNs would provide much faster 

responses than the original model especially when the existing models have 

complex structure. 

(ii) The second category includes the studies, which have used observed rainfall-runoff 

data. Most of the ANN applications to rainfall-runoff modeling fall into this 

category. 	Frequently supplementary inputs such as temperature, snowmelt 

equivalent, and historical streamflows have been included and the performance of 

ANN is compared with other empirical or conceptual type models. Such studies 

provide a more comprehensive evaluation of ANN performance and are capable of 

establishing ANNs as viable tools for modeling rainfall-runoff process. 

Alternatively, the studies pertaining to the streamflow forecasting and rainfall-

runoff modeling reviewed in this chapter can be grouped into following two categories. 
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(i) Studies in which ANN model uses only the discharges observed in the past as 

inputs and runoff in some future time is forecasted. 

(ii) Studies in which ANN model uses rainfall and other supplementary variables such 

as snowmelt, temperature etc. as inputs along with or without the discharges 

observed in the past. 

Observed discharge of previous time period has been used as an input in ANN 

models in the previous studies on the premise that it indirectly represents the soil moisture 

state of the catchment (Gautam et al., 2000). When the network inputs include the flows at 

previous time steps, the ANN could be considered to be modeling the change in flows 

rather than their absolute values (Minns and Hall, 1996). The use of runoff or river water 

level observed in the preceding time durations as one of the input to the ANN restricts such 

models from being applied to catchments which have scares data on discharge and/or 

water level. Most of the studies involving use of the discharge values observed in the 

previous time period thus involved updating and are used in flow forecasting only. 

However, if a good estimates of the discharges, derived by using any auxiliary model, are 

instead used as input to the ANN then there is a strong possibility of enhancing the flow 

simulation efficiency of the ANN models in the non-updating case. 

The only study of runoff analysis using ANN that stands apart from the rest is the 

study by Gautam et al. (2000), who attempted estimation of stream runoff from a very 

small sized area in Japan named Tono (area = 71.5 Ha), making use of soil moisture data. 

But such a study has inherent limitations of data availability. It is mentioned by Gautam et 

aL that their study area is one of the most extensively instrumented areas in the world and 

such data on spatial and temporal variation of soil moisture is mostly not available for 

rainfall-runoff modeling in a catchment. 

2.13 CONCLUDING REMARKS 

The review suggests that a wide variety of models ranging from simple black-box 

type to the complex physically based distributed ones are available in the literature for 

simulating the rainfall-runoff process and still the problem of runoff estimation on real 

time basis for forecasting and for synthesis of series of runoff in a variety of situations 
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continues to be an important topic of research. It is .however desirable that the process of 

providing a satisfactory answer to these problems should involve as minimum cost as 

possible. 

The physically based models for rainfall-runoff process have advantages over the 

other methods particularly when it is necessary to derive the spatially and temporally 

distributed information about runoff at the outlet and within various segments of the 

catchment area. But such models are found to have limitations related to data 

requirements, calibration, running cost etc., because of which these models are still not 

adopted for day-to-day use in practice. The conceptual models have problems associated 

with the parameter calibration and model application. (Duan et al. 1992). The empiricism 

involved in determining the excess precipitation and separating the base flow for getting 

the DRH in case of the UH based models make their application subjective. A catchment 

is generally hydrologically nonlinear. Use of a linear model such as UH therefore often 

results in gross underestimation or overestimation of peak runoff (Rogers, 1982). 

More recently the ANN based rainfall-runoff modeling has been practiced 

extensively due to the complexities involved in the conceptual modeling and physically 

based modeling of the rainfall-runoff process. From the studies involving use of ANN for 

modeling rainfall-runoff relationship reviewed above, it is evident that, inclusion of the 

runoff or the river stage observed in the past time periods as one of the input to the ANN is 

almost imperative for realistic simulation of the nonlinear rainfall-runoff relationship. The 

runoff or the river stage record observed in the past time period is considered to reflect the 

soil moisture state of the catchment. The soil moisture state of the catchment or the 

antecedent moisture condition (AMC) is the most important aspect that governs the 

generation of runoff from the rainfall over a catchment. It is however felt that the SLM can 

be considered as a convenient starting point in rainfall-runoff modeling using ANN and its 

output can be considered as an index for the state of the catchment. However, a major 

weakness of the lumped models is their inability to incorporate the spatial variation of 

rainfall and catchment heterogeneities especially in large sized catchments. 

The present study attempts to fill the gaps identified through literature review on 

rainfall-runoff modeling. A linear/nonlinear system theoretic model is used as an auxiliary 
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model and is coupled with an ANN model for predicting runoff over a catchment without 

the use of runoff and/or the water level observed in previous time step as one of the input 

to the ANN. The weakness in catchment level lumping of parameters is partially 

compensated in the proposed study by dividing the large catchment into smaller sub-

catchments having approximately uniform rainfall distribution and considering multiple 

input rainfall from these sub-catchments. In this modeling approach, the rainfall occurring 

in each hydrologically homogeneous sub-area of the catchment is treated as a separate 

input received in parallel by the overall catchment system. 

The study presents the ANN as a flexible nonlinear rainfall-runoff black-box 

model, which is useful in sparse data scenario for non-updating simulation of discharges 

from rainfall, using daily data for the case of isolated events. 
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Chapter - 3 

HYDROLOGIC DATA 

3d INTRODUCTION 

The modeling of rainfall-runoff relationship on various time scales is reported in 

the literature. The time scale varied from hourly, daily, monthly, or even seasonal or 

annual scale. The selection of time scale mainly depends upon the purpose of analysis and 

the availability of the data required for it. The present study deals with modeling of the 

rainfall-runoff process on daily scale because simulation of the daily runoff is required for 

many purposes such as the formulation of long range forecast, computation of water 

availability in planning and operation of water resources development projects etc. A daily 

rainfall-runoff model is also required in order to get a long-term series of daily runoff. 

Normally, longer the time period, simpler is the model as the problem of relating long-

term i.e. monthly or annual rainfall and runoff is easier due to the fact that over longer 

periods of time, the averaging of variety of storms tends to minimize the effects of rainfall 

intensity and antecedent moisture conditions on the volumetric relationship (Singh, 1982). 

The hydrologic data used in the present study are from two large size catchments 

in India involving sub-divisions into smaller homogeneous areas and five other catchments 

from different parts of the world, which do not involve any sub-division. For the two 

Indian catchments (details given later) the daily rainfall data for individual raingauge 

stations was available, whereas for the other catchments the areal average rainfall data on 

daily scale were available. The data on pan evaporation or evapotranspiration on daily 

scale were also available for all the catchments. The daily runoff values at the outlet of 

each catchment were available. Runoff and the corresponding rainfall data of the runoff 

events that occurred during the flood period only are used in present study. As during 

flood period (monsoon season) high flows are experienced and modeling of which is 

important for flood forecasting, and design and operation of water resources structures etc. 

An event based analysis rather than the analysis of continuous hydrologic record is carried 

out in the present study because, in such an approach, when different models are compared 

the ability of the models to predict streamflow from rainfall events gets more importance, 
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and the lack of ability of the model in predicting antecedent moisture conditions, 

following long inter storm periods does not become a handicap in any way (Loague and 

Freeze, 1985). 

3.2 EVENT IDENTIFICATION 

The runoff events used in calibration and in validation of the model are identified 

from the daily rainfall and runoff data. A runoff event can be single peaked or may have 

multiple peaks. The sample event identification is shown in the definition diagram given 

in Fig. 3.1. There are three steps involved in the process of event identification. i) to 

decide about the starting point of the event, ii) to fix the end point of the event, and iii) to 

see if the event is single peaked or has multiple peaks. 

The starting point: It is the time at which the observed runoff starts increasing and 

continues to rise with the passage of time to attain a significant peak daily runoff. 

Consideration of multiple peaks: This is based on the study of the temporal pattern and 

duration of the complex storms. 

The end point: This point is decided based on either of the following conditions. 

i) When the value of the observed runoff (Q°) at that instance is less than 

that of the value of runoff at starting point (Qs). 

ii) The event is terminated even if the value of observed runoff at a time 

Q, > Qs, but in such cases the subsequent rise in the hydrograph is due 

to a different storm. 

The following paragraphs present the details about data availability and the 

preliminary analysis of the data carried out. First, the data used and description about the 

two large sized catchments from India is given, and this is followed by description of the 

other catchments. 
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3.3 THE NARMADA CATCHMENT 

The data for upper part of Narmada river catchment up to Jamtara gauge and 

discharge (G & D) site covering an area of 17,157 km2  are used. The river Narmada, the 

fifth largest basin of India, is a major river system in central India. It originates in the 

Maikala range near Amarkantak in Shandol district of Madhya Pradesh State of India at an 

elevation of 1057 m above mean sea level (rn.s.1.) and flows westwards over a length of 

1312 km traversing through Madhya Pradesh, Gujrat, and Maharashtra States and finally 

meets the Arabian sea. 

i) Location 

The catchment area lies between north latitudes 21°40' to 23°20' and east longitudes 

79°40' to 81°45'. Figure 3.2 shows the index map of the catchment along with the location 

of the raingauge stations in the catchment. Length of river up to Jamtara G&D site is 399 

km. The elevation of Jamtara is 360 m above m.s.l. 

ii) Climate 

The climate in the catchment area is humid and tropical, very hot in summer and 

cold in winter. The area receives most of the rainfall from the Southwest monsoon during 

the months of June to October, of which, July and August are the wettest months. The 

average annual rainfall of the catchment is 1480 mm. Maximum temperature is around 42°  

to 43°  C in the month of May whereas, the minimum is around 7°C in the month of 

December. The temperature during monsoon season ranges between 27.5°  C to 30°  C. 

iii) Topography 

The upper part of the Narmada catchment has a complex relief. The topography is 

hilly with forest cover having Sal and Teak wood trees. A large part of the catchment was 

under agriculture and forest during the period for which the data are available. The 

elevation in this area varies from 360m to 900m above m.s./. There are number of falls in 

head reaches of the river, and the basin is heavily dissected by the stream network. Two 

major tributaries river Burhnar at 248 km (near Mannot) and river Banjar at 287 km (near 

Mandla) join the river Narmada from left. The average riverbed slope up to Jamtara is 

1:740. The soil is loamy clay with 60% of area having red and yellow, 25% having deep 
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black, and the rest having medium black soil. The soil is derived from basalt and granite 

parent material with soil reaction being neutral to slightly alkaline. Vegetation observed 

in lower part includes a variety of crops. Scrub and bare soils are also observed. 

iv) Data Availability 

The daily rainfall data for the monsoon period (June to October) for the year 1981 

to 1990 for nine raingauge stations as shown in Fig. 3.2 were procured from the India 

Meteorological Department, Pune (India). The daily discharge data for the same duration 

at Jamtara G&D site was collected from the Central Water Commission, New Delhi. The 

discharge is gauged by current meters up to three times a day during monsoon period and 

the mean daily values are worked out by arithmetic averaging. The stage is read at hourly 

interval. Float gauging is used when the stage of the river is too high for current metering. 

The available data was processed by filling up the missing records. Although the original 

units of these discharge data were cumecs, they were converted to equivalent depth in 

millimeter over the entire area of the catchment. The consistency of the daily rainfall and 

discharge data was checked and was found to be satisfactory. 

v) Analysis of Data 

The analysis of the available daily runoff data for monsoon period for ten years 

was carried out and finally ten runoff events were identified. The first six events were used 

for calibration or training of the model and remaining four events were used for validation 

or testing purpose. Table 3.1 gives details about these runoff events identified in the 

Narmada catchment. The average rainfall was worked out for each rainfall-runoff event 

using the Thiessen polygon method and used in further analysis. 

3.3.1 Catchment Representation 

The Narmada catchment has been represented in three different ways for the 

purpose of providing rainfall input to the models. First, the entire catchment was 

considered as a single unit then it was divided into two sub-areas. The catchment was 

further sub-divided into three sub areas (A), (B), and (C) as shown by dotted lines in Fig. 

3.2. In the two input case one sub-division is as shown by (A) and the second sub-division 

comprises of the combined area of the sub-divisions (B) and (C) shown in 
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Table 3.1 Runoff Events Selected For The Narmada Catchment 

Catchment Calibration Period Duration 
(Days) 

Verification Period Duration 
(Days) 

River 

Narmada 

at Jamtara, 

India 

(1) July 19 — Aug. 14, 1981 27 (7) Sept. 08—Sept. 29, 1987 22 

(2) Aug. 8 — Sept 18, 1982 42 (8) July 20 — Aug. 19, 1988 31 

(3) Aug. 29 — Oct. 15, 1983 48 (9) July 12 — July 30, 1990 19 

(4) Aug. 7 — Sept. 18, 1984 43 (10) Aug. 27—Sept. 11, 1990 16 

(5) July 16 — Oct. 7, 1985 84 

(6) July 6 — Sept. 9, 1986 66 

Table 3.2 Runoff Events Selected For The Krishna Catchment 

Catchment Calibration Period Duration 
(Days) 

Verification Period Duration 
(Days) 

River 

Krishna at 

Galgali, 

India 

(1) June22 — Sept. 22, 1980 93 (7) July 17 — Sept. 08, 1986 54 

(2) June 26 — July 21, 1981 26 (8) July 02 — Aug. 4, 1987 34 

(3) June 22— July 12, 1983 21 (9) June 25 — Aug. 21, 1988 58 

(4) July 19— Sept. 10, 1983 54 (10) Sept. 10— Oct. 17, 1988 38 

(5) June 29 —Sept. 25, 1984 89 

(6) June 27 — Sept. 9, 1985 75 
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•Fig. 3.2. The sub-area demarcation exhibited in Fig. 3.2 was based on the hydro 

physiological homogeneities in the catchment as indicated by vegetation, slope, soil type 

and the long-term rainfall isohyetal maps for the catchment. The average rainfall for each 

sub area was computed separately using the Thiessen polygon method and this average 

rainfall in each sub-catchment is then considered as a parallel and separate lumped input to 

the models applied. 

3.4 THE KRISHNA CATCHMENT 

The upper and a part of middle sub-basin of Krishna river up to Galgali G&D site 

comprising of an area of 26,200 km2  is considered for analysis. The river Krishna is the 

second largest river in peninsular India. The river rises in the Mahadev ranges of the 

Western Ghats near Mahabaleshwar in Maharashtra State at an altitude of about 1337 m 

above 	After traversing a distance of about 1400 km, the river joins the bay of 

Bengal covering the States of Maharashtra, Karnataka and Andhra Pradesh. Six major 

tributaries join river Krishna up to the Galgali G&D site. These are: i) river Koyna; ii) 

river Warna, iii) river Panchganga; iv) river Dudhganga; and v) river Vedganga joining the 

river from southwest direction and river Agarani joining from north side of the river 

Krishna near Athani. 

i) Location 

The catchment area under study is located between north latitudes 16°  05' to 18°  

05' and east longitudes 73°  35' to 75°  40'. The catchment lies partly in Maharashtra and 

partly in the Karnataka State. Figure 3.3 shows the index map of the Krishna catchment 

with the locations of the raingauge stations marked on it. 

ii) Climate 

There are three seasons prevailing in the catchment viz. summer (March-May), 

monsoon (June-October), and winter (November-February). The monthly average 

maximum and minimum temperatures in the catchment are 31.2°C and 19.2°C 

respectively. The mean relative humidity is high, and the sky is heavily clouded during the 

southwest monsoon season. During the non-monsoon period the humidity is comparatively 

low and clear or lightly clouded sky prevails. The catchment lies in a low rainfall area; the 
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average annual rainfall is of the order of 600 mm. The climate of the catchment is . 

generally dry except during the monsoon season. 

iii) Topography 

The major part of the catchment varies from altitude of 914 m to 1219 m above 

m.s./. The catchment has flat to gently undulating terrain except for a few hillocks and 

valleys. The predominant rocks are limestones, shales, and quartzites. The alluvium is 

confined mainly to the deltaic regions of principal rivers. 

iv) Data Availability 

The daily discharge data at Galgali G&D site for monsoon season of the year 1981 

to 1988 were procured from the Central Water Commission, New Delhi. The data was 

checked for consistency and found to be satisfactory. The catchment has a good network 

of raingauge stations. The daily rainfall data for corresponding periods (for which the 

daily runoff data were available) were procured from the India Meteorological 

Department, Pune. The daily rainfall data for many stations was available but finally 

fifteen stations, which were functioning during all the period of the runoff events, were 

selected. Figure 3.3 shows location of raingauges. As can be seen from this figure, the two 

raingauge stations, namely Jath and Gadhinglaj are adjacent but just outside the boundary 

of the catchment. The other thirteen raingauge stations are situated within the catchment. 

vi) 	Analysis of Data 

The similar exercise of runoff events identification from the daily runoff data as in 

the case of Narmada catchment was carried out and ten runoff events were identified. The 

first six runoff events were considered as calibration events and remaining four events 

were utilized for the purpose of validation or testing. The runoff events identified in 

Krishna catchment are given in Table 3.2. The average rainfall was worked out using the 

Thiessen polygon method. 

3.4.1 Catchment Representation 

The entire Krishna catchment was considered as a single unit initially. It was then 

divided into two sub catchments (A) and (B) as indicated by dotted lines in Fig. 3.3. This 
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Table 3.3 	Runoff Events Selected For The Bird Creek Catchment 

Catchment Calibration Period Duration 
(Days) 

Verification Period Duration 
(Days) 

Bird Creek, 

(USA) 

(1) April 17-May 08, 1957 22 (9) May 01 - May 17, 1961 17 

(2) May 08 - May 30, 1957 23 (10) July 11-July 28, 1961 18 

(3) June 09-July 08, 1957 30 (11) Aug. 12-Aug. 21, 1961 10 

(4) May 16-May 31, 1959 16 (12) Sept. 11-Sept. 20, 1961 10 

(5) Sept. 29-Oct. 12, 1959 14 (13) Sept. 13-Sept. 24, 1962 12 

(6) April 11-April 27, 1960 17 

(7) May 04 - May 13, 1960 10 

(8) May 27 - June 06, 1960 11 

Table 3.4 	Runoff Events Selected For The Brosna Catchment 

Catchment Calibration Period 
Duration 

(D ay s) Verification Period 
Duration 
. (Days) 

Brosna 

(Ireland) 

(1) Jan. 06 - Feb. 20, 1969 46 (9) Nov. 22 - Dec. 20, 1975 29 

(2) Feb. 16 - Mar. 27, 1970 40 (10) Feb. 02-Mar. 30, 1977 57 

(3) April 11-May 29, 1970 49 (11) Jan. 26 - Feb. 20, 1978 26 

(4) Nov. 27-Dec. 27, 1973 31 (12) Nov. 30-Dec. 23, 1978 24 

(5) Jan. 01 - Jan. 25, 1974 24 

(6) Jan. 25 - Mar. 12, 1974 47 

(7) Sept. 01-,  Oct. 03, 1974 33 

(8) Jan. 05 - Feb. 15, 1975 42 



sub-division of the catchment into smaller sub-areas was based on the drainage pattern and 

other characteristics of the catchment similar to that described in case of the Narmada 

catchment. The third sub-division of the Krishna catchment was also attempted however 

the same could not finally be used in the ANN based modeling for the reasons explained in 

chapter 5. 

3.5 OTHER CATCHMENTS 

In addition to the two catchments from India described above, the data from the 

five other catchments namely, Bird Creek (USA), Brosna (Ireland), Garrapatas 

(Colombia), Kizu (Japan), and Pampanga (Philippines) are also utilized in the present 

study. For these catchments the average daily rainfall and the daily discharge data at the 

outlet of each of the catchment were available. The identification of runoff events from the 

daily runoff data was carried out in each of these catchments in a manner described earlier. 

These catchments are relatively small in size; hence sub-division of these catchments into 

smaller areas is not attempted. The catchments are located in various countries situated in 

different parts of the world and hence are having varying climatic conditions. 

3.5.1 The Bird Creek Catchment 

This catchment has an area of 2344 km2, and is located near Sperry, Oklahoma in 

USA. The catchment has rolling topography and moderately humid climate. The land-use 

land-cover conditions were such that about 80% of the area was grassland and a small part 

of area is covered under forest for the period for which the data is available. From the 

analysis of the available daily discharge data for the duration 1957-1962, a total of thirteen 

runoff events were identified. The first eight events, which occurred during 1957-1960, 

were utilized for calibration and the later five events, which occurred between 1961-1962, 

were used for the purpose of validation or testing in the present study. The runoff events 

selected in this catchment are listed in Table 3.3. 

3.5.2 The Brosna Catchment 

The Brosna catchment is located in Ireland and has an area of 1207 km2. The daily 

average rainfall and runoff data at Ferbane G & D site in this catchment for the duration 
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Table 3.5 	Runoff Events Selected For The Garrapatas Catchment 

Catchment Calibration Period Duration 
(Days) 

Verification Period Duration 
(Days) 

Garrapatas 
(Colombia) 

(1) Oct. 02 - Oct. 15, 1980 14 (11) Dec. 29, 83- Jan. 16, 84 19 

(2) Nov. 03-Nov. 23, 1980 21 (12) May 09 - May 23, 1984 15 

(3) April 15-May 09, 1981 25 (13) Sept. 16- Sept. 29, 1984 14 

(4) May 22-June 20, 1981 30 (14) Oct. 21- Dec. 06, 1984 47 

(5) Oct. 25 - Dec. 03, 1981 40 

(6) Dec. 30, 81 - Jan. 22, 82 24 

(7) Feb. 09 - Feb. 25, 1982 17 

(8)April 10-April 25, 1982 16 

(9) Nov. 03-Nov. 15, 1982 13 

(10) Nov. 25-Dec. 25, 1983 31 

Table 3.6 	Runoff Events Selected For The Kizu Catchment 

Catchment Calibration Period Duration Verification Period 
Days) 

 

Duration 
(Days) 

Kizu 
(Japan) 

(1) May 08-May 27, 1963 20 (11) May 31 - June 15, 1966 16 

(2) June 02 - June 27, 1963 26 (12) June 30 - July 24, 1966 25 

(3) June 24-July 06, 1964 13 (13) Aug. 12- Aug. 21, 1966 10 

(4) Sept. 2,0-Oct. 05, 1964 16 (14) Sept. 21- Oct. 06, 1966 16 

(5) Mar. 14 -Mar. 26, 1965 13 (15) July 06- July 17, 1966 12 

(6) April 29-May 14, 1965 16 

(7) May 26 - June 11, 1965 17 

(8) June 12 - July 17, 1965 36 

(9) July 20 - July 30, 1965 11 

(10) Sept. 07-Sept. 28, 1965 22 
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1969 to 1978 were available. After analyzing this data, a total of twelve number of runoff 

events were identified and the model calibration or training was done with the first eight 

events whereas the validation or testing is carried out with the last four runoff events. 

These runoff events are given in Table 3.4. 

3.5.3 The Garrapatas Catchment 

The Garrapatas catchment, located in Colombia, has an area of 1490 km2, The 

catchment is mountainous, forested, and has humid tropical climate. The average rainfall 

for the study period is 7.5 mm per day and the average discharge is about 3.83 mm per 

day. The daily discharge data at the La Union G&D site at the outlet of the Garrapatas 

catchment for duration 1980 to 1984 were available, from which fourteen runoff events 

were identified for use in the present study. The first ten events were used for calibration, 

whereas the remaining four events were employed for validation. The details of the runoff 

events used in this catchment are given in Table 3.5. 

3.5.4 The Kizu Catchment 

The Kizu catchment is located in Kinki region of Japan and is having an area of 

1445 km2. The terrain is hilly and forested and the climate is humid. The daily runoff data 

at the outlet of the catchment were available for the duration 1963 to 1966. Fifteen runoff 

events were identified from the analysis of this data. The first ten runoff events were used 

for calibration whereas the validation was carried out with the other five runoff events. 

Details of the runoff events identified in the Kizu catchment are given in Table 3.6. 

3.5.5 The Pampanga Catchment 

This catchment has an area of 5,273 km2  and it is located in Philippines. It has 

recorded an average rainfall of 4.6 mm per day and average runoff of 2.6 mm per day 

during the period 1974 to 1978 for which the daily rainfall and daily runoff data were 

available. The catchment is having humid climate and the area is partly covered with 

grassland. From the daily discharge data at Arayat G&D site located at the outlet of the 

Pampanga catchment ten runoff events were identified. The calibration was performed 

with the first six events and the last four events were used for validation purpose. These 

runoff events identified are described in Table 3.7. 
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The summarized description of all the catchments, the number of runoff events 

identified and used for calibration and validation purpose and the range of events in days 

in each catchment are given in Table 3.8. The Table 3.9 shows the values for the average 

daily rainfall and average daily runoff worked out separately for the calibration and 

validation periods for each of the catchment being studied. The length of the data used for 

calibration and validation purpose along with the duration of total data (in days) in all the 

catchments is also given in this table. The available period of synchronous rainfall-runoff 

for each catchment was split into two samples, the first used for training and the second 

used for testing various models applied in the present study. This partitioning was carried 

in such a way that approximately seventy percent of data is used for calibration/training of 

the model and the remaining thirty percent of the data used for testing the models. 

Table 3.7 	Runoff Events Selected For The Pampanga Catchment 

Catchment Calibration Period Duration 
(Days) 

Verification Period Duration 
(Days) 

Pampanga 
(Philippines) 

(1) June 09 — June 23, 1974 15  (7) July 30 — Aug. 20, 1976 22 

(2) July 12 — Aug. 08, 1974 28 (8) Sept. 29— Oct. 15, 1976 17 

(3) Aug. 13—Aug. 28, 1974 16 (9) Sept. 26— July 10, 1977 15 

(4) Oct. 10 — Oct. 28, 1974 19 (10) July 07— July 21, 1978 15 

(5) Oct. 18 —Nov. 18, 1975 32 

(6) May 20 — June 10, 1976 22 

3.6 DETERMINATION OF EFFECTIVE RAINFALL 

The consideration of losses due to evaporation and evapotranspiration is important 

in the present study as the rainfall-runoff modeling carried out is on daily scale and the 

rainfall-runoff events are spread over several days. The observed rainfall subtracted with 

the losses due to evaporation and evapotranspiration is called here as the Effective Rainfall 

(EFR), which is the actual rainfall that is contributing to the process of runoff generation 

over any catchment. For the two catchments involving sub-divisions the values of 

potential evapotranspiration (PET) were taken from (Rao et. al., 1976). 
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The PET is defined as, "The amount of water transpired in unit time by a short 

green crop, completely shading the ground, of uniform height and never short of water". 

The values of the PET as provided in (Rao et. al., 1976) are computed for number of 

places in India by using the Modified Penman's Method on monthly time scale. These 

values were converted to daily scale by dividing it by number of days in respective months 

and used in this study. 

The present study is limited to the monsoon period only, during which the climatic 

conditions are humid and the temperature variation during 24 hours is significantly less 

compared to hot and dry summer months. As the temperature and other climatological 

parameters in these months do not vary much during different years, the same value of 

PETs were utilized for obtaining the EFR values for all runoff events which occurred in 

different years. For Krishna catchment, the PET values at three locations in the catchment 

namely, Mahabaleshwar, Miraj and Kolhapur and one station just outside the catchment 

namely, Bijapur were available. The average daily values of PET for the catchment were 

worked out from these station PET values by taking the arithmetic average. The actual 

evapotranspiration taking place at any place is not at the PET rate but at a slightly lesser 

rate called the actual evapotranspiration (AET). The average PET values worked out above 

were then multiplied by a coefficient (C) < 1 so as to get the values of the AET. The 

coefficient C is different for every catchment studied. This AET values were then 

subtracted from the observed daily rainfall. (see Eq. 3.1 below) to get the required EFR 

values. The value of EFR is set to zero if the observed rainfall value is less than the AET. 

AET = 	 C * (Evaporation/Evapotranspiration)) 

Effective Rainfall (EFR) = (Observed Rainfall —AET) 	 (3.1) 

For Narmada catchment the monthly PET values at two places namely, Mandla 

and Jabalpur were available. The daily EFR values were worked out in a similar fashion 

as described above using Eq. (3.1). 

The daily average evaporation data were available for all the catchments without 

sub-divisions, except for the Kizu catchment, for which the daily evapotranspiration data 

were available. These data of evaporation or the evapotranspiration were used to derive 

the daily EFR values for the respective catchments. The value of C for all catchments was 

varied from 0.5 to 0.8 and the corresponding EFR values were worked out. Finally, the 
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value of C for which best results were obtained was selected and the corresponding EFR 

values are used in the analysis. Table 3.10 shows the values of the coefficient (C) adopted 

for all the catchments being studied. In case of the Bird Creek and Kizu catchments, the 

values of the coefficient derived were similar to that used by Kothyari et al. (1993). 

Table 3.9 Brief Description of The Data Used 

Catchment 
Total Number of Daily 

Runoff Values Used 
Average Rainfall 

(mm/day) 
Average Runoff 

(mm/day) 

Cal.*  Val.*  Total Cal. Val. Cal. Val. 

Krishna 358 184 542 9.33 8.81 5.74 4.96 

Narmada 310 88 398 10.36 12.93 4.92 6.99 

Bird Creek 143 67 210 8.27 8.92 4.66 4.04 

Brosna 312 136 448 3.25 3.25 2.32 2.34 

Garrapatas 231 95 326 9.69 9.23 6.42 6.76 

Kizu 190 79 270 8.63 8.27 6.38 6.46 

Pampanga 132 69 201 15.48 10.80 12.18 8.19 

*Cal. - Calibration; Val. - Validation 

Table 3.10 	The Value of The Coefficient (C) 

Sr. No. Catchment The Value of Coefficient (C) 

1 Narmada 0.80 

2 Krishna 0.80 

3 Bird Creek 0.60 

4 Brosna 0.60 

5 Garrapatas 0.60 

6 Kizu 0.80 

7 Pampanga 0.8.0 
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Chapter — 4 

MODELING APPROACH 

4.1 INTRODUCTION 

As described earlier in detail, various approaches for modeling the rainfall-runoff 

relationship exist in literature. These range from simple black box type approach to the 

complex physically based distributed modeling approach. Each of these approaches has its 

advantages and limitations. The black box type of approach mostly considers a catchment 

as a lumped system that receives rainfall as the input and produces output in the form of 

runoff at the catchment outlet. Such an approach although has been useful in the past but 

now it is considered to be limited in scope of application due to the over simplified 

representation of the complex process of runoff generation over a catchment. The 

physically based distributed models on the other hand involve solving the mathematical 

formulations describing the component sub-processes involved in the transformation of 

rainfall into runoff. This makes such models data intensive and expensive to run in terms 

of time and cost. The application of conceptual models also requires significant amount of 

data and calls for expertise as well as experience with the model. As outlined earlier in 

chapter 2 such factors pose various difficulties in operation of these models. 

In light of above, an approach is proposed in the present thesis for modeling the 

rainfall-runoff process that couples an auxiliary linear/nonlinear model with the ANN. It is 

a black box type of approach that requires minimum data and computational efforts. The 

proposed approach involves the application of ANN and is found to produce results with 

good accuracy. The studies reviewed in chapter 2 indicate that the ANN model fails to 

simulate the rainfall-runoff process satisfactorily in the absence of the information about 

the soil moisture state of catchment being given as one of the input. The runoff or the 

water level observed in the previous time period has been used in earlier studies for 

representation of the soil moisture state. This is termed as the updating flow simulation 

process. The disadvantages of using such inputs have been mentioned in chapter 2. The 

present study attempts to overcome the limitations of the existing ANN based rainfall-

runoff modeling by exploring new inputs to the ANN. The proposed methodology is 

applied to the daily rainfall-runoff data from various catchments from different climates. 
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4.2 METHODOLOGY 

The methodology to be used for application of proposed approach for modeling the 

daily rainfall-runoff relationship in non-updating mode is illustrated in the form of a 

flowchart in Fig. 4.1. This methodology is applied for daily rainfall-runoff modeling over 

seven catchments from different climatic regions. Out of these, two catchments being 

relatively large in size involve sub-divisions into smaller hydrologically homogeneous 

areas (see chapter 3) to account for the heterogeneity in the spatial distribution of rainfall. 

The overall procedure of modeling is similar in all the catchments in spite of their varying 

sizes, with the exception of the model to be used for determination of the response 

function of the catchment and the initial estimates of runoff. The selection of the model 

depends upon the size of the catchment. As can be seen from Fig. 4.1, the methodology 

involves various steps, the first of which is the correlation analysis between actual rainfall 

(Total rainfall — evapotranspiration) and total runoff values. From the correlation analysis, 

an approximate value of the memory of the catchment in units of days is arrived at. In the 

next step, which involves the selection of the model for determining the response function 

ordinates, the size of the catchment plays an important role as stated above. For relatively 

small sized catchments which do not involve any sub-division, the discrete form of SLM 

[Eq. (2.4)] and the nonlinear model expressed by Eq. (2.10) are used whereas, for the 

catchments having sub-divisions, a linear MISO and the nonlinear MISO given by Eqs. 

(2.7) and (2.11) respectively are employed. 

The shape of the derived response function and the corresponding value of the 

Nash-Sutcliffe efficiency (E2 ) (Nash and Sutcliffe, 1970) criterion were used to decide the 

final value of the catchment memory. The method of least squares (MOLS) or the 

smoothed least squares method is used for deriving the values of the vector of the response 

function ordinates. The next step in the modeling approach is the application of a three 

layer feedforward backpropagation ANN. The application of the three layer feedforward 

ANN is specifically made to account for the non-linearity present in the rainfall-runoff 

relationship. This feedforward ANN is known as a universal approximator, having the 

ability to learn the complex nonlinear relationship between any input and output. The ANN 

application involves two different input combinations as shown in Fig. 4.1. These are: 
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Case-I: Only the output of the auxiliary linear/nonlinear models computed through 

the convolution of the derived response function with the current and 

antecedent rainfalls is given as input to the ANN. 

Case-II: The current and antecedent rainfall values for the length equal to memory 

of the catchment are also supplied as input to the ANN in addition to the 

input used in Case-I. 

As outlined in chapter 2, the modeling with ANN involves various aspects. The 

data to be used needs to be normalized or resealed before being fed as input to the ANN. 

The process of calibration of the hydrological model is called as training in case of an 

ANN. This is a trial and error procedure in which the optimum number of neurons in the 

hidden layer(s) is decided in such a way that the resulting ANN has minimum complexity 

and maximum performance. The ANN does not identify the form of model, such as 

nonlinear reservoir etc. in hydrological modeling terms. However, the form of the model is 

implicit in the ANN within the distribution of weights, which is obtained automatically. 

The ANN outputs are the final computed runoff values. Steps involved in the modeling 

process as enumerated above are described in detail in the following paragraphs. 

4.3 DETERMINATION OF MEMORY OF THE CATCHMENT 

The catchment is a variable, nonlinear, distributed system that operates on rainfall 

to transform it into runoff. For simplicity it has often been assumed to be time invariant, 

lumped system, which receives excess/effective rainfall instead of total rainfall as input 

and produces runoff as output. The influence of the rainfall on runoff lasts for only a finite 

duration of time which is called as the 'memory of the catchment' or as 'precipitation 

influence history' (Muftuoglu, 1991). The value of memory of catchment may vary from a 

few days to several months and it depends on the physical properties and the size of the 

catchment. When a system has finite memory, its behavior, its state, and its output depend 

on the history of the system for previous length of time equal to the memory (Dooge, 

1973). Determination of the catchment memory length is the critical part of the system 

based rainfall-runoff modeling in which current and antecedent rainfall values are used as 

input. For determining the memory of a catchment a two-step procedure consisting of 

correlation analysis and determination of ordinates of response function of the catchment 

is adopted. These steps are discussed below. 
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4.3.1 Correlation Analysis 

This is the first step in the identification of the memory of the catchment. The 

cross-correlation analysis between the runoff and the precipitation computed using Eq. 

(3.1) is carried out. The cross correlation coefficients between total runoff and rainfall 

lagged by one day at a time are worked out. These correlation coefficients are expected to 

increase initially with the lag between precipitation and runoff and then decrease after 

reaching maximum, first rapidly then more slowly. The plot of such cross correlation 

coefficients vs. time lag is called as 'Cross Correlogram'. The minimum positive or zero 

of this plot indicates the total memory length while the peak of correlogram indicates 

prediction lead-time. The secondary peaks, if any, do not have significance and they are 

supposed to occur due to periodicities of precipitation auto-correlation and its effect on 

runoff (Muftuoglu, 1991). Fig. 4.2 below illustrates a sample cross correlogram obtained 

for one of the event in the Krishna catchment. 

Fig. 4.2 	A Sample Cross Correlogram 

For each runoff event selected for analysis, the cross correlogram as shown in Fig. 

4.2 is prepared from the correlation analysis between runoff and rainfall lagged by a day at 

a time resulting in a series of length of memory (m) values. These values are found to 

follow log-normal frequency distribution. The average of this frequency distribution is the 
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approximate value of m for that catchment. The value of m thus obtained is further refined 

considering the following criteria: 

a) The shape of the response function is physically realistic. 

b) The end ordinates of the response function are still much larger than the values of 

respective standard errors. 

c) Corresponding E2  value of Nash-Sutcliffe efficiency should be maximum. 

The procedure used for determining the response function is described below. 

4.3.2 Determination of the Response Function 

After deciding the approximate value of in, the next step in deciding upon its final 

value is determination of the response function for the catchment by making use of the 

appropriate linear/nonlinear model. As the present study involves modeling of daily 

rainfall-runoff relationship over small as well as large sized catchments, an appropriate 

auxiliary model depending upon the size of the catchment needs to be selected for 

determining the response function. 

Linear Model: 

For smaller sized catchments, which do not have any sub-divisions, the SLM is 

used for the reasons stated already in chapter 2. It is given by the Eq. (2.4) as 

Q, = 	+ et  
1=1 

where, U, denotes the discrete series of pulse response ordinates, which sum up to yield 

the gain factor, t denotes the time of the sampling interval (day), and el  designates the 

model output errors (i.e. the residuals). 

Conventionally Eq. (2.4) is used without the inclusion of the error term and is 

written in matrix form as 

[Q] = [Pl [U] 	 (4.1) 

Here Q is the column vector of runoff values (outputs), U is the column vector of response 

function ordinates, and P is the matrix of rainfall values (inputs) obtained using the 

approximate value of 171 derived above. As described in chapter 3 the set of runoff events 
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identified for every catchment are divided into two parts, the calibration set and the validation 

set. The matrices generated for individual events are stacked together vertically according to 

the number of events used for calibration and validation in order to make use of all the events 

which may have occurred at different times. 

The above model [Eq. (2.4)] is sufficient for small catchments where the rainfall 

distribution can be assumed to be uniform. The larger the catchment is, the higher is the 

probability of the assumption of uniform rainfall being violated. So, the large catchments are 

considered as assemblies of sub-catchments, each assumed to have a uniform rainfall 

distribution. Equation (2.4) when generalized for the catchment divided into J sub-areas is 

termed as a linear MISO model and is expressed by the Eq. (2.7) as 
m 

Qr = 	 +er 
i=/ 

where, j = 1,2, ..., J designates the number of the sub-area. 

For each sub-catchment in case of the large size catchments the rainfall input matrix 

[P] involves vertical stacking for taking care of the different events as explained above and 

adjacent horizontal stacking of different sub-catchment averaged rainfall values is performed 

for obtaining the complete matrix. The structure of the matrix [P] for the linear MISO model, 

for catchment divided into three sub areas is shown in Fig. 4.3. The superscript of P in this 

matrix denotes the sub-catchment number. 

The outflow components Q, from different sub-catchments are linearly additive 

(Liang and Nash, 1988) as given by the following equation 

= Qt")  + Q/2)  + 	 +Qt0 	 (4.2) 

The solution of Eq. (2.7) for calibration series of N discharge values can be written in matrix 

form as 

EQ1= Eel [WI [p(2)] [021 	 113(1 [Om] 	 (4.3) 

U° is [mo)  x 1] column vector of pulse response ordinates for jth  input series and the entire 

vector of [U] and [P] are given by 

U = [UM up) 	u(J),T and 

p = [p(1) p(2) 	 p(J) (4.4) 
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In which case, writing m = 	[U] results in Eq. (4.3). 

The response function ordinates (column vector [U]) are determined by using the 

MOLS and the matrix inversion method (Singh, 1994) given by Eq. (2.6) as 

lUi IPTET1  EQ1 

If some of the ordinates in the tail of the response function derived by using the 

MOLS are found to have negative values then the smoothed least squares method given by 

Eq. (4.5) (Bruen and Dooge, 1984) instead of the MOLS is used. This method, also known as 

ridge regression, involves a coefficient called the ridge parameter (Rp ) and is given by the 

following equation. 

[U] 	[Rp I  + pTp]-i [PT] [Q] 	 (4.5) 

where I is the identity matrix of the size [PT  PI and value of the coefficient Rp  is less than 

one. For Rp  = 1 above equation reduces to the MOLS. 

The adjustments in the approximate value of m decided earlier are done based on the 

shape of the derived response function of the catchment such that the criteria (a) to (c) 

discussed under section 4.3.1 are satisfied. 

Nonlinear Model: 

Alternatively, nonlinear model by Muftuoglu (1984) or by Kothyari and Singh (1999) 

are also used for deriving the response function of the catchment depending upon its size. The 

objective behind replacing a SLM with a nonlinear model is to see whether there is any 

improvement in the final results obtained by coupling a nonlinear model with the ANN, as the 

nonlinear model is expected to produce a better estimate (than SLM) of the soil moisture state 

or the antecedent flow conditions in the catchment. The discrete form of the nonlinear model 

applied for the catchments which do not have any sub-divisions is given by the Eq. (2.10) as 

n n 

Q, 	E E U i,k Pt-i+1 PI-k+1 	E U i+n Pt-(i+n)+I + er 
1=1 k=i 

where, n denotes the nonlinear part of the memory, / is the linear part, and the total memory 

m = (n + 1). 
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Equation (2.10) can also be expressed in the form of Eq. (4.1) by appropriately 

modifying the structure of the matrix [P]. In case of the above nonlinear model, the 

immediate and moderately delayed flows are nonlinearly related to the corresponding 

rainfalls while the delayed flows are related linearly with the corresponding rainfalls. The 

linear part follows the nonlinear one. The corresponding response functions for the nonlinear 

and linear part of the memory are called as two dimensional unit hydrograph and a finite 

period UH respectively. This structure of [P] matrix for the nonlinear model represented by 

Eq. (2.10) is shown in Fig. 4.4. The number of columns in such matrix are [n (n+1)/2 + — 

MN. For large size catchment divided into a number of sub-catchments, each of which having 

parallel rainfall input to the system, the Q values are related to the rainfalls by the Eq. (2.11) 

as 

	

.1 n(j) n(j) 	 .1 '0) 

	

Q, = 	EE 	u 	1 ),(! )k+, +EE 	N+1 

	

j=i i=1 k=i 	 j = 1 i = 1 

The notations in the above equation carry the same meaning as earlier. 

Equation (2.11) is termed as nonlinear MISO model. The procedure of application of 

the nonlinear MISO model remains identical as described in case of the linear MISO with the 

only exception that here the column vector [I_J°1 for jth  input series will be of the size [NN0) 

x 1]. The entire vector of [U] will be similar to that given by Eq. (4.4) 

Memory length of the catchment is thus ascertained adopting the procedure described 

above, The main emphasis at this step is on the shape of the derived response functions such 

that it is physically realistic. The response functions having physically realizable shapes can 

be expressed in parametric form. Such parameter values are found to have a strong 

relationship with the catchment characteristics such as physiography, land use, and soil 

characteristics. 

4.4 ASSESSMENT OF THE CATCHMENT NON-LINEARITY 

The assessment of non-linearity of a catchment carries importance in the background 

that the ANN based rainfall-runoff modeling is being carried out in the present study. The 

ANN, a nonlinear model is being used on the premise that it is capable of taking care of the 

non-linearity existing in the process of rainfall-runoff transformation over a catchment. 

Various measures of assessing the non-linearity of a catchment exist in literature as 

discussed under section 2.5 of chapter 2. Among these, the measure of non-linearity 

85 



introduced by Rogers (1980, 1982) known as the Standardized Peak Discharge Distribution 

(SPDD) is employed in the present study. Rogers (1980) proposed the relation between the 

peak discharge of the hydrograph and its volume given by Eq. (2.8) as 

log (Qp) = B + M log (V) 

Here B is the intercept of the straight line relation between log (Qp) and log (V) and M is the 

slope. The log inverse of B is the peak discharge when runoff volume is one unit. As per 

Rogers (1980), the slope of the line (M) that best fits the standardized peak discharge data is 

an indicator of the non-linearity of the runoff distribution. For a catchment to be linear the 

value of M should be equal to unity, while the catchment is said to be hydrologically 

nonlinear when the value of M is less than one. Mimikou (1983) pointed out that only SPDD 

measure is necessary and sufficient for checking the hydrologic linearity of a catchment, 

therefore the same is adopted in the present study. 

For making use of the SPDD measure in identification of non-linearity of runoff 

distribution over a catchment, the runoff events should be single peaked. The earlier works 

related to identification of the catchment non-linearity utilized single peaked flood 

hydrographs in hourly scale whereas in the present study this concept is extended to daily 

scale for single peaked runoff events spread over days and the relationship of the type of Eq. 

(2.8) is studied between the total runoff and the peak discharge. 

4.5 PROPOSED COUPLING OF AUXILIARY LINEAR/NONLINEAR MODELS 
AND THE ANN 

The review of literature on application of the ANN to rainfall-runoff modeling 

(description summarized in Table 2.4 of chapter 2) revealed that 

i) Providing only rainfall information to the ANN is not sufficient in simulating the 

nonlinear process of runoff generation over a catchment. 

ii) The input variables used should represent the soil moisture state of the catchment 

for very accurate estimation of runoff by the ANN. 

iii) The ANN was used as an independent model and its performance compared with 

some of the existing conceptual or black box models. 

The earlier applications, especially the studies that used the standard feedforward 

backpropagation ANN, involved the use of the observed values of runoff or river stage for the 
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previous time periods, as one of the input to the ANN. This type of modeling is the 

forecasting in updating mode. The variable 'runoff observed in the past time period (Q,_1)' 

used in these studies is representative of the soil moisture state of the catchment. The ANN 

based models, which use (Q,_ /) as input have drawbacks such as 

i) when the network inputs include the flows at previous time steps, the ANN could 

be considered to be modeling the change in flows rather than their absolute values 

(Minns and Hall, 1996). 

ii) it is difficult to use such models in scenarios having sparse data on runoff/ water 

level. 

To overcome these drawbacks an ANN based modeling approach is proposed in this 

study such that the estimated values of runoff by a auxiliary linear/nonlinear model through 

the convolution of the response function with the current and antecedent rainfall values are 

used as input to the ANN to represent the soil moisture state of the catchment. The structure 

of the proposed linkage between the auxiliary system-based linear/nonlinear model and the 

ANN (substantive model) is shown in Fig. 4.5. Thus the ANN, instead of being used as an 

independent model, is coupled with an auxiliary linear/nonlinear model such that it's output 

forms the input to the ANN used as a substantive model. Such modeling approach 

demonstrates the use of ANN in the non-updating flow simulation and is considered to be 

useful particularly in the scarce data scenarios. 

A three layer feedforward ANN as shown in Fig. 1.2 (chapter 1) is used in the present 

study. It is known as the universal mathematical approximator as it can learn any kind of 

nonlinear relationship between input and the output. This ANN is trained with the 

backpropagation algorithm using the adaptive learning rate and the momentum factor. The 

training process was monitored using the mean square error (mse) criteria, and it was ensured 

that the ANN does not get overtrained. 

The most commonly used transfer function for the neurons in the hidden layer(s) as 

well as the output layer is the logistic sigmoid which has a bounded range [0, 1]. The main 

reason for its use as a transfer function is that it is differentiable everywhere. Due to its 

bounded output range, the data used in ANN application needs to be resealed to this range. 

This logistic sigmoid (shown in Fig. 2.2) is used as a transfer function in this study. The 

procedure adopted for data normalization is described in the following sub-section. 
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Feed Forward 
Neural 
Network 
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Antecedent 
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Linear/ 
Nonlinear 
Model 

Substantive Model 

Fig. 4.5 	Schematic Showing Linkages between the Auxiliary Model and 
the ANN 

4.5.1 Normalization of Inputs for ANN 

Before the data is presented to the ANN, it must be standardized in order to restrict its 

range to the interval [0, 1]. The actual observed outputs of the network being outside this 

bounded range of neuron transfer function, need to be normalized or rescaled such that they 

fall within the bounded output range. This facilitates proper comparison between network 

outputs and rescaled actual observed outputs. It is observed that training slows down making 

the learning ineffective and inefficient if the rescaled values are near to the bounds because 

the derivative of the sigmoid function approaches zero very fast when the target value is near 

to 0 or 1 (Ooyen and Nichhuis, 1992). The significance of the standardization should not be 

under estimated because the BP algorithm requires that the weighted sum at any 

computational neuron should not blow up to a very large value leading to numerical error in 

the computation of logistic nonlinear output function (Minns and Hall, 1996). Keeping this in 

mind the observed discharges and the rainfall values are normalized as per the following 

equation. 

X,70.,,, =0.1 + 0.8 x 

 

(4.6) 
X max 
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where X„,-,„ is the normalized dimensionless variable, Xi  is the observed value of the variable, 

and X,„„ is the maximum value in the data set. This linear transformation bounded the 

variables in the range [0.1, 0.9]. 

4.5.2 Proposed Inputs to the ANN 

The review of literature showed that in the previous studies various types of inputs 

such as rainfall (P), temperature (T), runoff observed during previous days (Q,_1), snowmelt 

equivalent (SW) (if applicable) are given as input to the ANN for predicting runoff over a 

catchment. An important aspect of the earlier studies as seen in Table 2.4 is that there exists 

subjectivity in selecting the type and the length of input variables. For example in one study 

Qt-I, 	. •., Qi_ j are used as input whereas in another study only Qt j and Q1-2 are given as 

input to the ANN. Similar subjectivity can also be observed in case of other input variables 

such as P and T. In actual sense the 'sensitivity analysis' between the output and the input 

variables should guide this selection. However, the selection of the number of values for a 

variable used in many cases has been based on the discretion of the modeler, rather than 

based on the physical process of the rainfall-runoff being modeled. As per Dawson and 

Wilby, (1998) accurate flood forecasting using ANN requires input variables, which contain 

some memory of the antecedent catchment conditions. 

As the present study deals with modeling the total runoff and the rainfall that actually 

contributes to the process of runoff generation over a catchment (Total rainfall -

evapotranspiration), consideration of the memory of the catchment is important because the 

current time period runoff is the result of the rainfall that occurred in the past during the 

period equal to the memory of the catchment. Therefore, the rainfall values for the past time 

period equal to the length of memory of the catchment are given as one of the inputs to the 

ANN. 

As discussed above the state of catchment or the antecedent moisture conditions play 

an important role in converting the rainfall occurring over a catchment into runoff. As per 

Ahsan and O'Connor, (1994) the output of a SLM can be considered to represent the soil 

moisture state of the catchment. More popular way of bringing the state of catchment into 

ANN based modeling is providing the runoff or the water level observed in the past time 

period as input to the ANN. This approach has some limitations as pointed out earlier. 
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It is well known that rainfall-runoff transformation cannot be adequately described by 

a simple linear system such as the one represented by Eq. (2.4) due to the constraints of 

proportionality and time invariance. The coefficients Ui of Eq. (2.4) are not found to be 

constant but varying as a function of current and antecedent rainfalls (Amorocho, 1973, 

Muftouglu, 1984, Kothyari and Singh, 1999). This indicates that the relationship between 

rainfall and runoff is a nonlinear one (Amorocho and Orlob, 1961, Amorocho and 

Brandstetter, 1971). Therefore, the residuals i.e. differences between observed discharges and 

the discharges estimated by Eq. (2.4) do exhibit the evidence of persistence and seasonality 

i.e. time variance (Kachroo and Natale, 1992). Thus, Eq. (2.4) when used without inclusion 

of the error term shall compute the values, which are termed here as RIL given by Eq. (4.7) 

below. Similarly, the estimate of runoff obtained from Eq. (2.10) of the nonlinear model 

when used without the error term is called here as RIN (given by Eq. (4.8) below). These new 

type of inputs in the form of RIL, the output of the linear model or the RIN which is the 

estimate of runoff from nonlinear model, are given to the ANN for prediction of runoff over a 

catchment. 
m 

RIL = 	U, 
i=1 

n n 
RIN = kPi-i+.1 Pi-k+1 	E U i+n Pt-(i+n)+1 

1=1 k=i . i 
	

i=1 

These RIL and RIN values are also considered to be related non-linearly to the 

corresponding observed values of runoff. The ANN technique has been found to be very 

successful in representing the complex nonlinear relationship; the same is therefore used for 

transforming the RIL and the RIN values obtained through use of Eq. (4.7) and (4.8) into the 

Qt values as per Fig., 4.5. The following two cases of input combinations are considered. 

Case 1: Only RIL or RIN values are given as input to the ANN 

Case 2: Rainfall occurred during the catchment memory period is given as input to the ANN 

in addition to the RIL or RIN values. 

By way of considering these inputs to the ANN, an attempt is made in the present 

study to bring some physical aspects into the ANN based rainfall-runoff modeling. 

Alternatively, the estimates of runoff from the other models such as linear MISO and the 

(4.7) 

(4.8) 
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nonlinear MISO (Eqs. 2.7 and 2.11 respectively) are also supplied as input to the ANN in a 

similar fashion as described in case 1 and case 2 above. These estimates of runoff generated 

through the use of linear or nonlinear models (i.e. RIL and RIN values) are considered to 

represent the soil moisture state of the catchment. 

4.5.3 Training the Network 

The purpose of training is to obtain a generalized network for application in the daily 

rainfall-runoff modeling. It is a trial and error procedure. The criterion used for training is 

mean square error (mse). The ANN objective function surface is typically highly non convex 

with extensive regions that are insensitive to variation in values of network weights. This 

surface contains numerous multi local optima (Hsu et al., 1995). The error term is defined by 

(177Se = (Qi - Qi 
	 (4.9) 

i=1 

which is the error function (mse) for pattern A, 6, is the computed value of the runoff, and 

Q, is its corresponding observed value. After each pattern is presented error on that pattern 

gets computed and each weight is moved down the error gradient towards its minimum for 

that pattern and the total error over entire input pattern is computed similarly. 

During the training process the mse is minimized over number of epochs. The 

backpropagation algorithm used for the training involves a forward pass and a backward pass. 

In the forward pass the inputs pass through the hidden and output layer neurons, get 

multiplied with the connection weights and an output is produced at the output layer. This 

output is compared with the corresponding observed values and the error gets calculated. This 

error is then propagated backwards through modifications in the connection weights using the 

delta rule over number of epoch till the required mse is attained by the ANN. The BP 

algorithm uses derivatives of objective function with respect to weights in entire network to 

distribute the error among various neurons. Variation of the weight W, J  from node i to node j 
is calculated using the Eq. (2.14) as 

dwii(n) = x —aE + a xAwij  .(n – /) 
Ovid  

the notations in the above equation are explained in chapter 2. 
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As mentioned earlier the total number of runoff events identified in a catchment are 

divided into two sets. A training set contains about 70% of the data and the other, is the 

testing set containing remaining values (approximately 30% of data). Ideally a training data 

set should contain all the information required to be given to the ANN so as to learn the 

relationship between input and output and finally when proper training is accomplished the 

network should be able to simulate the output as close to the observed as possible. However, 

due availability of limited number of high flow events in the daily runoff data for the 

catchments, validation of the ANN models with a third independent dataset could not be 

performed. 

For ensuring proper training or in other words, to avoid any overtraining of the 

network, the help of the testing dataset is taken. First, a target mse for training is decided and 

the network is trained to this value of mse. Then with same configuration and weights the mse 

for the test dataset is computed. The output produced by network at testing is the scaled 

version of patterns stored during learning trials. In the next step the target mse during training 

is lowered and the training process is repeated. The test dataset is again given to this new 

ANN, which is having a set of weights that is different than that of the previous one and the 

corresponding mse is computed. If this mse during testing is reduced as compared to the 

earlier cycle, the above procedure of training and testing is repeated continuously reducing 

the target mse during training in small steps till it is observed that the mse during testing 

increases instead of reducing. This is an indication that the network is getting over trained, 

and if trained further with lower target mse it will perform very well during training but 

would fail to generalize when given an unknown input. This means that in trying to learn the 

relation between the data, the ANN has started to fit the noise (error), which may be present in 

the data. 

In a three layer feedforward network the number of neurons in the input and output 

layers are fixed by the problem being studied. In the present case there is only one neuron in 

the output layer corresponding to the observed runoff at the catchment outlet. The neurons in 

the input layer depend upon the input scenario studied. Though training involves trial land 

error and consumes a lot of time, a proper planning and execution of the process adopting a 

systematized procedure helps in reducing both the number of trials and the time involved. In 

general the training process involves two components. 
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i) Deciding upon the number of hidden layers 

ii) Deciding the number of neurons in the hidden layer(s) 

In this study only one hidden layer is found to be sufficient in mapping the rainfall-

runoff relationship. So the trials in training were reduced only to deciding the number of 

neurons in the hidden layer. This number should be optimal such that network remains simple 

and at the same time performs best in terms of the performance criteria. Too many hidden 

neurons will encourage each hidden neuron to memorize one of the input patterns and thereby 

diminish generalization capabilities of the ANN (Ranjithan et al., 1993). 

The process of arriving at optimal network configuration is started with selecting 

minimum number of neurons in hidden layer i.e. one. For this ANN configuration the entire 

training procedure is carried out as explained above and the performance of the network is 

noted. Then the number of hidden layer neuron is increased by one and the training cycle is 

repeated till the minimum possible mse in training is achieved without the network getting 

overtrained. If the performance of ANN improves then the process of adding neurons in the 

hidden layer is continued till no more improvement in the ANNs performance is noticed. 

Thus, the final ANN with optimal configuration having the best possible performance is 

derived. The finally selected ANN then becomes ready for prediction, as it has learned the 

input-output relationship. In case of ANN, the exact form of this relationship cannot be 

extracted from its structure, and also the fact that absolute value of individual weights cannot 

be interpreted to have any deeper physical meaning (Minns and Hall, 1996). 

The output of the ANN being in the range [0, 1] due to the use of the logistic sigmoid 

transfer function needs to be transformed back to the original domain. An inverse procedure 

of normalization is adopted for this. This facilitates proper comparison and presentation of 

results and also various performance assessing indices, or goodness of fit criteria could be 

computed based on these. 

4.6 ALTERNATE INPUTS TO THE ANN 

The methodology for the proposed modeling approach (shown in Fig. 4.1) 

considering two types of input cases is presented above. In addition to these the following 

other inputs to the ANN are also considered and the analysis is carried out for these. The 

performance of the ANN in these input scenarios is evaluated and compared with the other 

results obtained. 
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4.6.1 Only Rainfall (P) 

In this case the ANN is provided with only the values of the rainfall, which occurred 

during the period equal to the catchment memory as input for prediction of runoff at the 

outlet of a catchment. 

4.6.2 Qt-1  and Rainfall 

Another combination of input to the ANN consisted of the runoff observed in the 

previous time period (Qt_/) along with the rainfall that occurred during the length of the 

memory of a catchment. This has been the way of modeling the rainfall-runoff process using 

the ANN in updating mode. 

4.6.3 RIL, RILo_v, and Rainfall 

Alternatively, one more combination of inputs to the ANN selected in the present 

study is inclusion of the variable R/Lo_o i.e. the output from a system theoretic model for 

previous time period. This was given as input to the ANN in addition to the RIL alone as well 

as along with RIL and rainfall values equal to the length of memory of the catchment. 

The data used in training the ANN contains limited number of high flows due to which 

there could be a possibility that the ANN may not be able to learn the relation for high flows 

and it may result in underestimation of peak flows during testing. An attempt is also made to 

find out whether or not repeating the higher values in the training dataset (i.e. artificial 

generation of a new series for training) improves the performance of the ANN in matching the 

peaks during testing. 

4.7 PARAMETERIZATION OF THE RESPONSE FUNCTIONS 

The response functions derived using the SLM following the two-step procedure 

elaborated earlier can be expressed in parametric form by using the gamma function. The 

parameters of such a function can have relationship with the catchment characteristics. The 

continuous form of the gamma function is given by the following equation. 

U(t) = 	
1 	(I. 	e -t/K 

K 111V) K 
(4.11) 

where, U(t) = ordinates of the impulse response function 
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N — the shape parameter 

K = the scale parameter 

The above equation expresses the IUH of the Nash model (1957), which represents the 

catchment impulse response as the outflow obtained from routing volume of instantaneous 

excess rainfall input through a series of N successive linear reservoirs having equal delay 

time. The parameter N is a measure of catchment channel storage required to define shape of 

the IUH. Lower value of N tends to make peak higher i.e. less storage for attenuation of 

simulated peak flows. The scale parameter K reflects the dynamics of the rainfall-runoff 

process in a catchment. It is a function of velocity and varies from storm to storm and also in 

between storms. A smaller K value would indicate lower time to peak. Nash (1957) showed 

that the 1U11 has the form of the two parameter continuous gamma distribution given by Eq. 

(4.11). 

The response functions determined in the present study are having discrete form. The 

discrete analogy to the equal reservoir cascade model was presented by O'Connor (1976). He 

used the approach of interpreting the impulse response of a discrete system (represented by a 

difference equation) as the sampled pulse response of the continuous system. As per him a 

convolution summation can also be used in place of the difference equation for the system 

representation. The impulse response of the discrete model can be represented by following 

equation as per O'Connor (1976). 

lim + N) 	N 
U (171) = 

F (N)* F(m + 1)
p q ,,, for m -_?0 	 (4.12) 

where , p = 	
1 	K 

; q = 	 such that p + q = 1 
I + K 	1+ K 

The discrete form of the gamma function distribution i.e. Eq. (4.12) was fitted to the 

response functions of various catchments obtained in the present study and the values of the 

parameters N and K for the response function of each catchment were determined. Next a 

relation between each of these parameters and the characteristics of the catchment (e.g. area) 

was studied. Such a relationship if derived could be used for arriving at the values of the 

parameters namely N and K for a given catchment. 
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4.8 PERFORMANCE EVALUATION CRITERIA 

The performance of a model can be evaluated in terms of several criteria. Kachroo 

(1992) proposed three criteria for evaluation of a model. 

i) Accuracy: It is the ability of the model to reduce the calibration error 

ii) Consistency: Model consistency is checked by split sampling i.e. by breaking the 

record into two distinct periods, calibration and verification. The property of the 

model by which the level of accuracy and the estimates of parameter values 

persist through different samples of data is termed as consistency of the model. If 

calibration error is less than the verification error then there is lack of consistency 

in prediction. 

iii) Versatility: A versatile model is one, which is accurate and consistent when 

subject to diverse applications involving model evaluation criteria not directly 

based on the objective function used to calibrate the model. 

WMO (1975) has proposed various graphical verification criteria, such as 

i) Linear scale plot of simulated and observed hydrographs during calibration and 

validation period. 

ii) Double mass curve of simulated versus observed runoff volumes for verification 

period. 

iii) Flow duration curve for both simulated and observed daily discharges for 

verification period only. 

Scatter diagram of simulated versus observed flows for verification period. 

There exist a wide array of numerical performance indicators used in hydrological 

studies. Aitken (1973) listed some of these statistical measures and tests to express the 

agreement or disagreement between computed and observed flows. The various criteria used 

in performance evaluation of the hydrological models are given below. 

(1) Coefficient of Determination: It is used to measure degree of association between 

observed and estimated flows and is given by the equation 

R2 = 1(Q, - -6Y - E(Q,  
E(Q,- -02  

(4.13) 
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where R2  is the coefficient of determination, Q, are the observed discharge, Q is the mean 

of the observed discharges, and Q are the estimated discharges by the model. The first 

term in the numerator is called as the initial variation whereas the second term is called as 

the residual or unexplained variation (Aitken, 1973). High value of R2  indicates good 

model result whereas a low value denotes otherwise but it does not indicate existence of 

systematic errors. 

(2) Coefficient of Efficiency (E2 ): This coefficient is originally proposed by Nash and 

Sutcliffe (1970). It is analogous to the coefficient of determination in linear regression but 

not identical. It gives the proportion of variance of the observation accounted for by the 

model (Kitanidis and Bras, 1980). It is given by 

E2  = F̀ ) 	F 	 (4.14) 
Fn  

where, 

-N1  Q ; 	N= Number of data points 

and 	F 	 - Q1 

 = Measure of variability of observed and their mean i. e. the crudest possible 

prediction 

F = Measure of association between predicted and observed flows or an index of residual 

error which reflects the extent to which a model is successful in reproducing the 

observed discharges. 

In calibration the E2  is identical to R2  and varies between zero and one. In verification 

period the value of Q used is still the mean of calibration period i.e. the initial variance is 

calculated as the sum of squares of deviations in validation period from the mean of 

calibration period, because the E2  criterion expresses a comparison of model predictions 

with the no model situation. The only forecast which could be made for verification 

period is the mean value of discharges in calibration period. E2  may take negative values 

in validation. This coefficient can be used for comparing the relative performances of 

different models, say model (1) and model (2) as 
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e 2 = FI - F2  
F.) 

(4.15) 

In this equation F1  is the initial variance unaccounted for by model (1), which is 

subsequently accounted for by model (2), the initial variance of which is F2. 

(3) Mean Square Error (mse): Measures the residual variance. The optimal value for this is 

zero. It is computed using following equation 

/ mse =—Ev - y 	 (4.16) 
:=1 

The notations carry the sane meaning as stated earlier. 

(4) Percentage of Volume Error (VE): It measures the percent error in volume under the 

observed and the simulated hydrographs, summed over the data period. Ideal value for 

this parameter is 0.0. A positive value indicates underestimation, and negative value 

indicates overestimation. The equation used for its computation is as follows 

) 
VE (%) — 	0, - 

o, x100 	 (4.18) 

(5) The Magnitude and Time to Peak: The magnitude and time of peak of the hydrograph 

are very important characteristics. The predicted values' by a model are compared with 

that of observed and the error in time to peak and comparison of the predicted magnitude 

of peak compared with the observed. 

The performance of the models applied in the present study (the system theoretic and 

the ANN models) is evaluated based on the various numerical criteria listed above which are 

indicative of the model performance. The E2  being most widely used criterion for assessment 

of the model performance is also employed in the present study. RAISE is indicative of 

relative performance of different models for the same length of calibration and validation 

periods. If these periods are different then E2  is a better choice (Liang et al., 1994). The mse 

is used in assessing the 'performance of the ANN during training and testing. The %VE 

statistics and the error in magnitude and time to peak are also computed for calibration and 

validation events. Out of various graphical verification criteria stated above the scatter plots 
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for verification period are prepared and the coefficient of determination (R2 ) determined from 

these plots is used for comparison. The linear scale plots of simulated and observed 

hydrographs during calibration and validation period are prepared for visual comparison of 

the overall output predications by various models. 

4.9 CONCLUDING REMARKS 

The modeling approach proposed for the study is described. An attempt is made to 

couples the system theoretic linear/nonlinear model with the ANN for representation of the 

process of transformation of rainfall into runoff over a catchment in the non-updating mode. 

An alternative way of estimating the soil moisture state of the catchment is suggested for use 

in prediction of runoff using ANN. This is achieved by way of coupling a system-based model 

with the ANN such that along with the other variables output from it becomes one of the 

inputs to the ANN. The proposed approach attempts to overcome the limitations of the 

existing ANN based rainfall-runoff models involving flow updating. Appropriate statistical 

and graphical criteria are chosen for evaluation of the performance of the models applied. 
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Chapter — 5 
LINEAR AND NONLINEAR MODEL APPLICATION - 

RESULTS AND DISCUSSIONS 

5.1 INTRODUCTION 

The modeling approach proposed in the present study is applied for daily rainfall-

runoff modeling over seven catchments, ranging in size from 1,207 Km2  to 26, 200 Km2. 

First the two types of system based models are employed in the study. The Simple Linear 

Model VW and a Nonlinear Model are used in case of the smaller catchments, which do 

not involve any sub-divisions. For the two large sized catchments involving sub-divisions 

the Multiple Input Single Output (MISO) counterparts of the two models stated above are 

made use of This chapter presents the results obtained for the linear/nonlinear models 

applied during the study. Results obtained through the coupling of these models as 

auxiliary models with the ANN model are discussed in the next chapter. The model 

performance is assessed on the basis of various criteria discussed in chapter 4. A 

comprehensive discussion on the results obtained in each case is provided and finally the 

conclusions drawn from the analysis of results are stated. In addition to this, the results of 

the analysis carried out for assessing the hydrologic non-linearity of the catchments being 

studied are enumerated. The present chapter also describes the results of the exercise on 

parameterization of the response functions derived by using the SLM. 

The chapter is organized as follows: The results of the analysis for identification of 

hydrologic non-linearity of the catchment are presented first. This is followed by 

presentation of the results of the model application and discussion on these results. The 

presentation for, i) the catchments not involving sub-divisions; and ii) the catchments 

involving sub-divisions is made separately. Finally, the results obtained on the 

parameterization of the response function are provided. 

5.2 IDENTIFICATION OF THE HYDROLOGIC NON-LINEARITY 

As described in chapter 4, the exercise of assessing the hydrologic non-linearity of 

the different catchments studied is carried out by using the SPDD measure introduced by 

Rogers (1980). This relationship, given by Eq.(2.8), is between the peak discharge of a 
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ydrograph and its volume. The rainfall-runoff modeling using ANN carried out in the 

resent study uses both isolated as well as multi-peaked storm events for the analysis. 

Iowever, for the analysis of non-linearity only the single peaked runoff events are 

required to be used (Rogers, 1980). Such events are identified separately in each of the 

catchments and a relationship given by the Eq.(2.8) is determined in each case giving 

values of the slope of the best fit line M and the corresponding value of R2. The plots of 

log(Qp) vs. log(V) for the different catchments are shown in Figs. 5.1 (a) — (c). The Table 

5.1 gives the values of M and R2  obtained through this analysis. It may be noted that 

mostly high R2  value is obtained for relarionship between log(Qp) vs. log(V). It is observed 

that all the cathments are hydrologically nonlinear as the values of the slope parameter M 

are less than unity. The value of M is close to unity for the Pampanga catchment. The unit 

hydrograph approach of rainfall-runoff modeling would produce less accurate results 

when applied to the catchments having the value of M < 1.0. However, the coupling the 

linear model with the ANN is expected to produce better results for such hydrologically 

nonlinear catchments as discussed in the next chapter. 

Table 5.1 Results of The Non-Linearity Analysis 

Catchment Area 

(Km2) 
Slope 

Parameter (M) 

Coefficient of 

Determination (R2 ) 
Bird Creek 2,344 0.879 0.755 
Brosna 1,207 0.680 0.821 
Garrapatas 1,409 0.515 0.527 
Kizu 1,445 0.727 0.514 
Pampanga 5,273 0.971 0.809 
Krishna 26,200 0.626 0.832 
Narmada 17,157 0.567 0.530 
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Fig. 5.1 (a) Plots between log(Qp) and log(V) for Bird Creek, Brosna, and 
Garrapatas Catchments 
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5.3 DETERMINATION OF THE RESPONSE FUNCTION 

As outlined in the earlier chapter the memory length of a catchment is decided 

following a two-step procedure elaborated under section 4.3 (chapter 4). The shape of the 

response function derived along with other criteria mentioned in section 4.3.1 of chapter 4 

guided the final decision about the value of the memory length. of the cacthments. The 

SIM and the linear Multiple Input Single Output (MED) models are used first for 

deriving the response functions. The former model is used in case of the catchments which 

do not involve sub-divisions and the later is employed in case of the two large sized 

catchments which involve sub-divisions. Alternatively, the nonlinear model and its M/S0 

counterpart are also used in a similar fashion for deriving the responsd functions of the 

various catchments studied. 

5.3.1 Response Functions For Catchments Without Sub-Divisions 

The SLill [Eq. (2.4)] is used for obtaining the values of the response function 

ordinates (RFO) for the relatively smaller sized catchments. As explained earlier the 

MOLS and the matrix inversion method are used to derive the column vector [U] in Eq. 

(4.1). If some of the ordinates in the response function derived using the Method of Least 

Squares (MOLS) are found to have negative values then the smoothed least squares 

method given by Eq. (4.5) (Bruen and Dooge, 1984) instead of MOLS is used. The values 

of the ridge parameter (Rp) for the catchments in which the ridge regression has to be used 

are given in Table 5.2. The problem of negative RFOs was encountered only in two of the 

five catchments involving no subdivisions. The response functions obtained for the finally 

selected memory lengths for all these catchments are plotted in Figs. 5.2 (a) - (e). The 

values of the memory lengths (in days) for these catchments are also given in Table 5.2. 

Relatively large values of memory length m are obtained for Brosna, Garrapatas, and 

Pampanga catchments. Similar results for these catchments were obtained by O'Connor 

and Ahsan (1991), in a study, which made use of the perturbation models. These 

catchments have geological formations with characteristics of holding the rainwater for 

long time and then release it slowly. The physically realistic shapes (i.e. monotonically 

increasing or decreasing values) of the response function shown in Figs. 5.2 (a) - (e) may 
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be noted. Such shapes can also be parameterized by making use of the gamma function as 

shown in the later part of this chapter. 

The application of the nonlinear model [Eq. (2.10)] was also carried out in all the 

catchments by using different values for the nonlinear part of the memory n and the linear 

part of memory I. The derived values of the RFOs for these by the application of the 

nonlinear model with n = 1 are presented in Table 5.3. 

Table 5.2 	Memory Length and Ridge Parameter For Catchments Without 
Sub-Divisions (Linear Model) 

Name of The 

Catchment 

Length of Memory (m) 

(Days) 

Ridge Parameter 

(Re ) 

Bird Creek 07 0.0875 

Brosna 38 -- 

Garrapatas 20 -- 	-_  

Kizu 07 -- 

Pampanga 17 0.89 

5.3.2 Response Functions For Catchments Involving Sub-Divisions 

The two large sized catchments namely, the Krishna and the Narmada involve sub-

divisions into smaller areas. The reasons stating the need for such sub-divisions are 

already given in chapter 3. For these catchments the linear MISO model is employed for 

deriving the response functions. The values of the memory lengths finally chosen for the 

different sub-division scenarios in both the catchments are given in Table 5.4. Some of 

these scenarios involved use of the smoothed least squares method; the value of ridge 

parameter Rp  for the same is also given in this table. The map of the catchments showing 

different sub-divisions for the Narmada and the Krishna catchments are shown in Fig. 3.2 

and Fig. 3.3 respectively, The response functions as obtained for the finally selected 

memory lengths in case of Krishna catchment are shown in Figs. 5.3 (a) and (b) for one 

and two sub-division scenarios respectively. Whereas, Figs. 5.3 (c) - (e) illustrate the 

shapes of the response functions obtained for all the three sub-division scenarios in the 
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(Linear Model) 
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Narmada catchment. It can be seen from these Figs. 5.3(a) and (b) that the memory of 15 

days provided realistic shape for both the sub-division cases in the Krishna catchment. In 

case of the Narmada catchment for one sub-division scenario, memory of 6 days provided 

realistic shape of the response functions and also satisfied the other criteria used in 

selection of the memory lengths. When the catchment was divided into two sub-areas a 

value of 6 and 5 days for the sub-areas A and B (see Fig. 3.2, chapter 3) respectively was 

optimal. For the three sub-division scenario, combination of 6, 5, and 5 days of memory 

length for sub-areas A, B, and C (shown in Fig. 3.2) gave realistic shape and also satisfied 

the other criteria. The physically realistic shapes of these response functions may also be 

noted. Similar to the application of the nonlinear model in case of the catchments without 

any sub-divisions the RFOs for these two catchments were obtained by using the nonlinear 

MISO model [Eq. (2.11)] also. The values of the RFO obtained for the nonlinear MISO 

model (n = 1) are also presented in Table 5.3. 

Further sub-division of the Narmada catchment i.e. more than three sub-divisions was 

not attempted because of the paucity of the well-distributed raingauge stations. An attempt 

of dividing the Krishna catchment in to three sub-catchments as represented by A, B, and 

C in Fig. 5.4 was made but could not be adopted finally for the further analysis. The 

reasons for this would be clear from Fig. 5.5, which shows the response functions obtained 

for the three sub-catchments into which the Krishna catchment was divided. It can be 

observed from this figure that the magnitude of the response function ordinates is very 

small and the response function for the third sub-catchment B has negative values. The 

presence of high correlation amongst the average rainfall values for the different sub-

catchments is considered to be the reason for the same. 

5.4 APPLICATION OF THE LINEAR AND NONLINEAR MODELS 

The linear and the nonlinear models are applied to all the catchments studied in 

their appropriate form depending upon whether the catchment involves sub-division or 

not. In the following sections, the results of application of these models to all the 

catchments in terms of statistical as well as the graphical performance indicators are 

presented and discussed. The statistical criteria used include E2  and R2  for data used for 

108 



0.15 0.06 

0.02 

Subarea (A) 

	 Subarea (B) 

0.05 

0.00 
1 2 3 4 5. 6 7 8 9 10 11 12 13 14 15 

Tirre (Day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Tirre (Day) 

0.20 0.15 - 

1 5 6 6 2 	3 	4 
Tirre (Day) 

2 	3 	4 
Tirre (Day) 

Subarea (A) 
- - -0 - • • Subarea (B) 

0.16 

— 0.12 
ca 
r- 

0.08 

0.04 

0.00 0.00 

Subarea (A) 
• • .11  • • • Subarea (B) 

Subarea (C) 

a) Krishna Catchment 	 b) Krishna Catchment 
(No Sub-Division Scenario) 

	
(Two Sub-Division Scenario) 

c) Narmada Catchment 	 d) Narmada Catchment 
(No Sub-Division Scenario) 	 (Two Sub-Division Scenario) 

e) Narmada Catchment (Three Sub-Division Scenario) 
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Table 5.4 	Memory Length and Ridge Parameter For Catchments With Sub- 
Divisions (Linear Model) 

Name. of The 

Catchment 

No. of Sub-Divisions Length of Memory (in) 

(Days) 

Ridge Parameter 

(Rn ) 

Krishna 
One 15 -- 

Two 15, 15 0.68 

Narmada 
One 06 -- 

Twci 06, 05 0.0175 

Three 06, 05, 05 0.0125 

Fig. 5.5 	The Response Functions for Three Sub-Divisions Scenario in Krishna 
Catchment 
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the calibration and verification periods whereas the graphical presentation include linear 

scale plots of simulated vs. observed runoff. These plots are prepared for all the events 

used for calibration and for validation but only the figures of those events that contain the 

highest of the daily peak discharges amongst all the storm events are presented as 

illustration. The scatter diagrams are prepared for the entire data used in the calibration 

and validation period. 

5.4.1 Linear and Nonlinear Model Application to Catchments Without Sub-
Divisions 

Linear Model: 

The performance of the SLM applied to the relatively small sized catchments in 

terms of E2  and R2  criteria is presented in Table 5.5. The SLM performed poorly in most of 

the cases except for the calibration data in Bird Creek, Kizu, and Pampanga catchments 

and for validation data in the Brosna catchment in terms of the Nash-Sutcliffe (E2 ) 

criterion. A similar trend in the performance of the SLM in terms of R2  criterion can be 

noted from this table. More discussion on the application of linear model results is 

presented at the end of the following section. 

Nonlinear Model: 

The nonlinear model application involved two different cases. First, the value of n 

was taken equal to unity and the results in each catchment are obtained. Then the value of 

n was increased to two. The nonlinear model with 12 = 2 was not applicable to two 

catchments namely Brosna and Pampanga as the RFO obtained for these with n = 2 had 

negative values. Value of n more than two was also used, but in that case the RFO 

obtained for all the catchments were found to have negative values. 

Table 5.6 presents the results of the nonlinear model for n = 1 and 2 in terms of E2, 

R2. For n = 1 the E2  values of the nonlinear model are almost similar to those obtained for 

the linear model with the exception of the Pampanga and Kizu catchments where some 

improvement in E2  values for the calibration and the validation data can be noted. A 
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significant increase in R2 value for nonlinear model over that for the linear model in case 

of Kizu catchment only could be observed. 

The Table 5.7 gives the details of the results obtained for the individual events 

used for calibration in each of the five catchments when the SLM and the nonlinear models 

are applied. The information about computed and observed volume of runoff (mm), the 

observed and predicted peak of daily discharges, and time to peak is provided in this table. 

It can be seen that the time to peak matched very well in most of the cases but in some 

events (event 5 in Pampanga catchment) the error in time to peak is more. The prediction 

of the peak daily discharges matched in a very few cases (event 3, 9, 10 in Garrapatas 

catchment; event 3 in Brosna catchment for example) but in other cases the SLAI and the 

nonlinear model has either under predicted or over predicted the peak runoff values. 

Similar kind of presentation of the results for individual events used for validation 

purpose is provided in Table 5.8. As can be seen from this table that a maximum error in 

prediction of time to peak is one day only. The peak of runoff value is well predicted only 

for two events in Brosna catchment but in other events either under prediction or the over 

prediction of the peak daily discharges can be seen. It is however noticed from Table 5.7 

and 5.8 that the relatively larger peaks are mostly under estimated by the SL.11/1 and the 

nonlinear models. This reveals the persistence present in the model residuals, which could 

not be accounted for by the nonlinear model used. The computed runoff volume is better 

only for a few events as the VE values were less than ± 10%. Larger error in volume 

prediction however can be noticed in some other events. The absolute VE values are 

smaller than 20% for many runoff events of calibration and validation. However, in a few 

cases the VE values are greater than 20%. 

Graphical Presentation: 

The performance of linear model in all the catchments without any sub-divisions is 

presented in the form of scatter diagrams for the validation period in Figs. 5.6 (a) — (e) and 

similar plots for the nonlinear model (n = 1) are shown in Figs. 5.7 (a) — (e). These plots 

are given for the entire data selected for validation in each of the catchment. It may be 

noted that the events used for validation are not used earlier for the purpose of calibration. 
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For the data used for calibration, relatively better results are generally obtained and hence 

these scatter plots are not shown here. The scatter plots shown in Figs. 5.6 and 5.7 clearly 

indicate that except for Brosna catchment the scatter is large and the points are shifted 

towards one side of the ideal line. This is an indication of the poor performance of the 

models indicating existence of persistence and time variance in error values and presence 

of the systematic errors. 

Figures 5.8(a) — (c) show as illustration the linear scale plots of the computed and 

observed runoff for calibration events containing the highest of the peak flows as 

illustration in each of the catchments studied. From the analysis of Figs. 5.8(a) — (c) and 

Table 5.7 it can be said that there is significant difference in the magnitude of peaks 

predicted by the linear model indicating its poor performance. These values are predicted 

with relatively greater degree of accuracy by the nonlinear model in Bird Creek, Kizu, and 

Pampanga catchments whereas in case of Brosna and Garrapatas the performance of linear 

and the nonlinear model in predicting magnitude of peak is almost the same. The analysis 

of the similar plots prepared for other events used for calibration (not shown) reveals that 

both the models have over predicted the low flows in almost all the cases. 

The linear scale plots of the observed and the computed runoff for one validation 

event containing the highest of the peak flows are shown as illustration in Figs. 5.9(a) — (c) 

for each of the catchment. The performance of both the linear and the nonlinear model 

with n =1 and n --- 2 (wherever applicable) is shown in these figures. Such linear scale 

plots (not shown here) prepared for all the other events used for validation indicate similar 

kind of results 
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Table 5.5 	Results of the Linear Model Application to Catchments 
Without Sub-Divisions 

Catchment 

E2  (%) 

. 

R2  

Cal
.
. Val . Cal. Val. 

Bird Creek 87.50 62.71 0.875 0.754 

Brosna 63.26 86.62 0.633 0.867 

Garrapatas 45.92 59.19 0.459 0.693 

Kizu 85.16 69.96 0.852 0.816 

Pampanga 80.30 66.58 0.803 0.813 

* Cal. -Calibration; Val. -Validation; 

Table 5.6 	Results of the Nonlinear Model Application to Catchments 
Without Sub-Divisions 

Catchment Nonlinear Model (n = 1) Nonlinear Model (n = 2) 

Er(%) R2  E2  (%) R2  

Cal*. Val * . Cal. Val. Cal. Val. Cal. Val. 

Bird Creek 86.13 68.67 0.861 0.754 83.93 74.49 0.839 0.753 

Brosna 63.22 86.78 0.632 0.868 N.A. < 

Garrapatas 46.43 58.19 0.464 0.685 38.82 55.34 0.388 0.667 

Kizu 88.60 71.10 0.886 0.831 86.87 69.19 0.869 0.747 

Pampanga 85.76 77.1 0.858 0.816 <---- 	N A. > 

* Cal. -Calibration; Val. -Validation; 
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Table 5.7 	Performance of Linear and Nonlinear Models For Catchments 
Without Sub-Divisions (Calibration Events) 

Runoff 
Event 
No. 

Runoff Volume (mm) Peak of Daily Discharges (mm) Time to Peak (Day) 

Obs. -  
Computed 

Obs. 
Computed 

Obs. 
Computed 

SLM Nonlinear SLAI Nonlinear SLM Nonlinear 
n=1 n =2 n =1 17 =2 n =1 n =2 

Bird Creek Cate nuent 
1 70.9 107 97.0 66.8 10.7 16.3 14.6 9.18 6 5 5 5 
2 153.7 134 122 92.0 22.6 15.0 13.7 10.0 19 18 18 19 
3 152.1 136 124 96.2 26.9 20.1 18.1 13.2 5 5 5 5 
4 34.5 60.2 55.0 37.5 8.3 8.7 7.7 5.7 12 12 12 13 
5 188.6 174 158 174 64.1 46.7 41.9 67.8 5 5 5 5 
6 20.2 25.9 23.5 16.3 6.4 9.5 8.5 5.4 4 5 5 5 
7 26.1 41,1 37.4 29.9 11.2 17.2 15.3 9.9 3 3 3 4 
8 20.2 33.6 30.6 21.2 9.2 11.2 10.0 6.5 

Brosna Catchment 
1 141.8 95.5 95.7 

N.A. 

6.9 4.6 4.7 

N.A. 

16 17 17 

N.A. 

2 67.5 76.6 76.9 4.9 4.6 4.7 7 7 7 
3 71.7 81.9 82.2 4.4 4.3 4.3 16 16 16 
4 70.6 78.1 78.3 4.6 5.1 5.1 5 5 5 
5 72.2 63.0 63.2 5.3 3.9 4.0 8 7 7 
6 112.8 98.6 98.9 5.9 4.3 4.4 7 7 7 
7 60.0 98.4 98.8 4.1 5.3 5.4 8 8 8 
8 126.0 115 115 6.1 5.3 5.4 19 19 19 

Garrap tas Catchment 
1 76.4 70.4 69.7 66.8 9.1 7.6 7.7 7.1 5 6 6 6 
2 131.2 105 105 106 10.7 8.0 8.0 7.4 6 5 8 8 
3 165.8 176 177 179 11.1 10.8 10.8 12.9 5 5 5 5 
4 206.2 176 176 174 17.5 10.5 10.5 11.2 6 6 6 6 
5 316.8 333 333 332 14.1 11.9 11.9 12.3 6 8 8 8 
6 138.1 100 100 98.0 11.3 7.6 7.7 6.9 11 11 11 11 
7 99.2 73.5 72.7 69.6 9.7 6.4 6.4 5.3 4 4 4 4 
8 96.7 136 136 137 8.9 11.4 11.4 11.1 8 10 10 10 
9 76.4 86.5 86.7 87.9 9.2 9.7 9.8 9.9 4 2 2 2 
10 177.2 173 172 168 8.6 8.1 8.2 7.5 13 13 13 13 

Kizu Catchment 
1 165.6 160 150 105 18.1 20.0 19.1 15.6 11 10 10 10 
2 158.1 101 95.7 70.0 18.5 19.5 19.1 12.4 3 3 3 3 
3 33.7 53.0 51.5 34.9 13.0 22.1 22.4 8.7 5 5 5 5 
4 53.9 78.3 73.2 51.0 13.4 17.7 16.5 11.7 6 6 6 6 
5 71.3 100 98.6 91.2 39.9 35.8 35.4 38.0 4 4 4 4 
6 72.6 61.7 57.6 42.2 16.9 16.5 17.0 11.2 6 6 6 5 
7 85.6 86.0 83.3 60.4 23.4 27.9 27.9 16.1 2 2 2 2 
8 204.6 195 183 126 15.8 18.8 18.2 12.2 10 10 10 9 
9 43.1 41.8 39.6 28.2 15.9 17.7 17.2 8..6 3 3 3 3 
10 328.9 320 331 354 95.2 79.3 80.2 101 12 12 12 i2 

Pampanga Catchment 
1 61.7 174 214 

N.A. 

17.9 22.8 30.7 

N.A. 

4 6 6 

N.A. 
2 152.2 197 234 17.3 18.9 25.5 10 12 11 
3 449.5 328 407 72.0 42.0 58.1 7 7 7 
4 255.9 196 239 36.7 21.0 28.6 11 11 10 
5 79.9 93.5 111 5.25 9.2 12.1 9 6 5 
6 609.2 508 608 72.7 56.5 74.6 

* Obs. - Observed; N.A. - Not Applicable 
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Table 5.8 	Performance of Linear and Nonlinear Models For Catchments 
Without Sub-Divisions (Validation Events) 

Runoff 

Event

No 

Runoff Volume 
(mm) 

Peak of Daily Discharges 
(mm) 

Time to Peak 
(Day) 

Obs.. 

Computed 

Obs. 

Computed 

Obs. 

Computed 

SLM Nonlinear SLAM Nonlinear SLIM Nonlinear 

n =1 n =2 n =1 n =2 n =1 n =2 

Bird Creek Catchment 

9 73.0 75.7 68.9 51.9 18.1 15.0 13.3 9.9 10 9 9 10 

10 58.3 98.0 89.2 66.8 18.6 21.7 19.6 13.9 6 6 6 6 

11 42.8 78.0 71.0 62.7 16.3 29.9 26.7 20.9 4 4 4 4 

12 68.3 64.5 58.7 51.0 27.4 26.4 23.5 17.8 5 4 4 4 

13 28.1 57.8 52.7 43.9 13.6 17.8 15.8 11.4 4 4 4 4 

Brosna Catchment 

9 39.2 43.0 43.2 

N.A. 

4.0 3.8 3.8 

N.A. 

11 11 11 

N.A. 6.6 5.3 5.3 22 22 22 10 155.1 145 146 

5.3 4.3 4.4 10 11 11 11 62.2 54.5 54.7 

5.9 5.8 5.9 16 16 16 12 62.4 74.7 74.9 

Garrapatas Catchment 

11 110.5 76.1 75.5 72.8 8.1 5.6 5.5 4.4 6 5 5 5 

12 74.3 81.7 81.0 79.2 9.2 8.2 8.3 7.6 5 5 5 5 

13 67,8 59.2 59.0 59.1 7.1 6.7 6.7 5.9 4 4 4 4 

14 389.4 347 346 348 15.1 10.4 10.4 10.1 12 13 13 13 

Kizu Catchment 

11 87.5 96.8 91.1 63.7 15.1 19.6 20.1 6.7 11 11 11 12 

12 208.4 156 158 135 35.2 41.0 41.3 32.7 10 10 10 10 

13 52.0 65.5 65.6 47.2 23.2 32.5 33.4 16.1 5 5 5 5 

14 71.8 69.6 66.6 51.9 15.6 20.1 19.0 15.2 5 4 4 4 

15 90.8 123, 119 92.3 20.2 28.0 27.9 14.9 7 7 7 7 

Pampanga Catchment 

7 105.7 135 163 

N.A. 

10.3 12.1 17.1 

N.A. 

14 14 14 

N.A. 8 94.8 87.3 100 11.1 11.2 15.3 3 4 4 

9 44.6 70.5 87.1 8.8 7.8 10.2 7 8 8 

10 319.6 193 242 6 7 6 60.6 25.6 35.9 

* Obs. - Observed; N.A. - Not Applicable 
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With No Sub-Divisions (Calibration Events) 

121 



Calibration Event 10[7-9-65 to 28-9-65] 
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Fig 5.8(b) 	Linear Scale Plots For Linear and Nonlinear Models For Catchments 
With No Sub-Divisions (Calibration Events) 
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Calibration Event 6 [20-5-76 to 10-6-76] 

	Observed 
	 Linear. 

a— Nonlinear 
Rainfall 

100 

80 

60 - 

40 

20 

0 

200 ,11,  

- 300 

- 400 

- 500 

3 5 7 9 11 13 15 17 19 21 
Time (Day) 

Validation Event 12[11-09-61 to 20-09-61] 
40 	 0 

20 
"5 

10 

- 100 

150 

	Observed 
	 Linear 
_____*._-- Nonlinear (n=1) 

12— Nonlinear (n=2) 
Rainfall 30 50 

1 2 3 4 5 6 7 8 9 10 

Time (Day) 

v) Pampanga Catchment 
Fig 5.8(c) 	Linear Scale Plots For Linear and Nonlinear Models For Catchments 

With No Sub-Divisions (Calibration Events) 

i) 	Bird Creek Catchment 
Fig. 5.9(a) 

	
Linear Scale Plots For Linear and Nonlinear Models For Catchments 
With No Sub-Divisions (Validation Events) 

123 



Validation Event 10 [2-2-77 to 30-3-77] 
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Validation Event 12 [30-6-66 to 24-7-66] 
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5.4.2 Application of Linear and Nonlinear Models to Catchments With Sub-
Divisions 

Linear Model: 

In case of the two large size catchments, which involve division of the catchment 

into small sub-areas, the linear MISO model given by Eq. (2.7) is employed first. The 

rainfall matrix [P] in the multiple input case has a typical structure as shown in Fig. 4.2, 

which involves vertical stacking of the data from different runoff events for a sub-

catchment and the horizontally adjacent stacking of such values for each sub-catchment. 

The matrix [P] was generated using a program developed using FORTRAN - 77 for the 

same. The results obtained in terms of E2  and R2  criteria by application of the linear MISO 

model to Krishna and Narmada catchments are given in Table 5.9. The E2  values for the 

validation data have shown an improvement for two sub-division scenario as compared to 

one sub-division scenario in the Krishna catchment. The linear MISO model performance 

in Narmada catchment shows that the value of E2  for both the calibration and the 

validation data have increased for two sub-division scenario than the one sub-division case 

but a slight decrease is observed for three sub-division scenario. The increase in the R2  

values for the validation has been consistent with the increase in the number of sub-

divisions studied. More results obtained through application of the linear MISO model are 

described later. 

Nonlinear Model: 

The nonlinear MISO model is applied in the Krishna and the Narmada catchments. 

The input rainfall matrix [P] having the structure as shown in Fig. 4.3 was generated by a 

program developed in FORTRAN — 77 for various values of n selected in the study. The 

results of the nonlinear MISO model in terms of E2  and R2  criteria application to Krishna 

and Narmada catchments are given in Table 5.10. The nonlinear MISO model with n = 2 

was inapplicable in case of two and three sub-division scenarios in the Narmada catchment 

owing to the negative values in the RFOs obtained. So a comparison of the performance of 

nonlinear MISO model with two different values of n is given for the Krishna catchment 

only. 
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As can be seen from Table 5.10 that the performance of nonlinear MISO model 

(with 17 = 1 and 2) during calibration in the Krishna catchment improved with respect to 

both £2  and R2  values with an increase in the number of sub-divisions. 

In the Narmada catchment the nonlinear MISO model performance improved with 

number of sub-divisions for the calibration data in terms of £2  and R2  statistics but for the 

data used for validation the performance has not similar consistency. The E2  value is 

higher for two sub-division scenario than for the one sub-division case but did not show 

such improvement for the three sub-division scenario. 

The Table 5.11 provides the results obtained through application of linear and 

nonlinear models for the individual events used for calibration and for validation in the 

Krishna catchment. The parameters used for assessing the performance of predicted runoff 

are the same as given in Table 5.7 and 5.8 in case of catchments without any sub-

divisions. In case of the Krishna catchment the predicted peak matched relatively closely 

with the observed in events 2, 5, and 6. The error in volume prediction indicated by the VE 

values varied from —0.7% to 14.4% for all but one event (no. 3) used for calibration, 

indicating relatively satisfactory performance of these models. But during validation 

period the error in volume prediction is large and gross over prediction of the runoff 

volume can be observed except foe event 7 for which the runoff volume is over predicted. 

For the Narmada catchment results for individual events are similarly presented in Table 

5.12. It can be seen from Tables 5.11 and 5.12 that the time to peak runoff has perfectly 

matched for most of the events in all the sub-division scenarios studied with some 

exceptions (for example event 10 in Krishna catchment and events 2, 6, 8 in Narmada 

catchment). In case of the Narmada catchment (see Table 5.12) the values of the peak of 

daily discharges is under predicted by both the models in all the sub-division cases 

particularly for the validation events. Also the predicted volume of runoff is less than the 

observed for the validation events except for the event number 10. 

Graphical Presentation: 

The scatter plots are prepared by using all the data of the validation events for the 

Krishna and Narmada catchments for the different sub-division scenarios studied. These 

are illustrated in Figs. 5.10 and 5.11 respectively for the Krishna and the Narmada 

catchments. The Figs. 5.10 (a) and (b) show that the scatter is almost similar for the one 

and two sub-divisions scenario for the linear MISO and the nonlinear MISO models. The 
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R2  values for validation in Table 5.9 and 5.10 for the two sub-divisions scenario are 

slightly less than for the one sub-division case. The observation of Fig. 5.11(a) for the 

linear MISO model in case of the Narmada catchment reveals that the scatter has 

progressively reduced with the number of sub-divisions and the corresponding R2  values 

are improved (see Table 5.9) but the same is not true for the scatter for nonlinear MISO 

model (n = 1) shown in Fig. 5.11 (b). 

The linear scale plots for one calibration and one validation event that contained 

the highest of the peak daily flows in the Krishna catchment are shown in Figs. 5.12 and 

5.13 respectively. A close study of Fig. 5.12 for one and two sub-division scenarios, and 

Table 5.11 indicate that the peak of the event is better predicted for the two sub-divisions 

by all the models than for the one sub-division scenario. The plots for the validation event 

9, given as illustration, in Fig. 5.13 also indicate similar model performance. In case of the 

Narmada catchment the plots for one validation event containing the peak flow is given as 

illustration in Figs. 5.14 (a) — (c). The performance in matching the peak has improved for 

the two sub-divisions scenario over the one sub-division scenario but it has not improved 

further for the three sub-divisions case. The VE statistic was also computed for all 

scenarios of the model applications in both the Krishna and the Narmada catchments. For 

Krishna catchment the absolute of VE values was less than 20% except for one runoff 

event both in calibration and validation. Likewise, the absolute of VE values was less than 

20% for most of the runoff events of the Narmada catchment. 
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Table 5.9 	Results of the Linear Model Application to Catchments 
With Sub-Divisions 

Catchment No. of 

Sub-Divisions 

E2  (%) R2  

Cal*. Val* . Cal. Val. 

Krishna One 86.77 85.92 0.875 0.877 

Two 85.26 87.00 0.871 0.869 

Narmada One 74.09 75.49 0.747 0.791 

Two 74.27 80.11 0.747 0.794 

Three 73.53 76.17 0.740 0.806 

* Cal. —Calibration; Val. —Validation 

Table 5.10 	Results of the Nonlinear Model Application to Catchments With 
Sub-Divisions 

Catchment No. of 

Sub- 

Divisions 

Nonlinear Model (n = 1) Nonlinear Model (n = 2) 

R2  E2  (%) R2  E2  (%) 

Cal* . Val*. Cal. Val. Cal. Val. Cal. Val. 

Krishna One 86.77 85.91 0.876 0.877 86.55 84.78 0.874 0.872 

Two 87.17 84.98 0.883 0.872 87.22 77.35 0.883 0.867 

Narmada One 76.44 76.53 0.779 0.807 81.09 74.04 0.828 0.774 

Two 77.04 80.03 0.782 0.791 N.A. 	. < 

Three 77.68 79.21 0.788 0.803 N.A. < 	 > 

* Cal. —Calibration; Val. —Validation; N.A. — Not Applicable 

129 



R
es

ul
ts

  o
f L

in
ea

r  
an

d
 N

on
lin

ea
r  

M
od

el
 A

pp
lic

a t
io

n  
to

  T
he

  K
r i

sh
na

  C
at

c h
m

en
t  

T
im

e  
to

  P
ea

k 
(D

ay
)  

N 
II 

N 
CA 

C
al

ib
ra

tio
n  

E
ve

nt
s  

V
al

id
at

io
n  

E
ve

nt
s  

1::1 C4 

14 
I I 
Z 

Ci) 
N Ce) 

1 
U) 

v--1 .■-•I 

S. Ct 
= .4  

N (2) 0 •.<1- 

, 

cf) 
rA ..0 

P
ea

k 
of

 D
ai

ly
  D

is
ch

ar
g e

s  (
m

m
)  

•11 
II 
Z 

N 
C') v) 

C> 
4 N 

,., 
N ,—. 

kr) 
N — 

00 
kr 

■•.0 
kr; 

■0 
4 

Ct 00 

rn 

t 
IC:I 

ON 
Cr; N 

■.0 
r-%: I-4 

"1' 
s r1 <f) 

 
CN1 
Ct■ ■•0 

t•-• 
ke'l 

N 
4 

0 
s 

0 
6 

It 
II 
Z 

N 
V) 

kr) Cri N 
CD 
N 

N 
N 

S 
00 

CD N kr) rn 
N 

CA 

CZ, 
Cr; N 

■D 
t-- r....1 

cr) 
t"-: e•••••I 

0., 
00 

v N 
kr; 4 

• O 
N 

CV 
00 

L
i n

ea
r  

N 

v) 
,:zi. 
,--/ N 

O\ 
cci ,--4 

,I 
cn ,--■ 

kr) 
v:5, 

cD 
4 

'0 
(r; 

cn 
Ni 

■C) 
t--.: 

CA 

00 
Cc N 

If 
t'■ 

N 
S ..... 00 

,tzt \O 
tr; 4 

0 N,—I: 

0 
Cs. 

N 
06 .--■ 

Cll 
CD■r..-1 

Cn 

v•••••I 
00 
kr; 1-1 

Cr, 
N 

0 
CV O■ *•••••I 

R
un

of
f V

ol
um

e  
(m

m
)  

eq 
II 
Z 

N 

r: c1) 

N 
■0 a■ kr) 

0 
Cs ■D •—■ 

S 
,--- Tt ,--, 

0 
v-; 
kr) cn 

N 
4 
0 .71- 

00 
c-, 
•zt-  cn 

•—■ 
DDi 
Cl N 

0 
c,- 
00 

01 
o; kr) 71- 

\•0 
o; cn --I 

C2) Cl) 

:Tr 
cn s kr) 

,r) 
v:i s ,---, 

•:f 
4 kr) --, 

C\ 
re; .4 cn 

N 
0: 00 cn 

,—, 
6 (r) cr) 

(TN 

Cl 
Cl 

N 

00 ■—■ 

71-  

kr) •cr 

kr) 

.rt. 

1■1 
II 
Z 

N 1 N 
ke- 
00 kr) 

kr) 
vi ■ID —1 

0', 
%.6 
re) —1 

l"-• 
00 
"Cr ce) 

t-- 
vi 
CT cn 

,..0 
t--: 
Cf) 
cf") 

YD 
kr) 
Cl 
N 

kr) 
N 
.1.  
gl- 

cn 

C/) 

CT 
00 
.0 tr) 

,--1 
kr; N —, 

M
CNi kr, --■ 

CT 
*-; 4 cn 

'71-  
t." 00 cn 

00 
CT N cn 

4 Cl 
Cl 

kr) 
00 N 

ON 
.6 
,:t• 

00 

i.., ct cl, 
C 
•Z 

N 

Q U) 

•71- 
00 4 kr) 

00 
,--I kr, --■ 

"ft 
.6 N --. 

00 
r:-. N 
Cr) 

00 
Ni N cn 

0\ 
00 —4 cn 

■0 
—, 
Cl 

O 
6 N —■ 

■•0 
.6 . 'I- 

0 
6 (,-) 

— 
. 	1 

00 
CT V:) 
V'1 

,-. 
kt-  
N --I 

cr) 
C■1 kr) 

CA 
•—; •:t. 
cn 

'Zr 
S 
00 cn 

N 
C,' 
N cn 

O\ 
cri Cl 
Cl 

kr) 
00 
S ,---1 

ON 
k.C5 7t• ,t. 

-1- 

.. 
. .21  

0 64
0.

4 

16
0.

0 N 
--■ -• — 

cr) 
cn 0 -,  

40
9.

4  ce) 
4 c.,-, 27

8.
6 

12
4.

9  

38
7.

2 N 
Ni 
Cl — 

	

c 	c 

	

= 	w 

	

. = 	r.,,,› 	4 

	

Ig 	^ 

* 
-  S

D
- 1

:  O
ne

  S
ub

-D
iv

is
io

n;
  S

D
-2

:  T
w

o  
Su

b-
D

iv
isi

on
s;  

**
 O

bs
.  -

  O
bs

er
ve

d  



R
es

u
lts

  o
f 

L
in

ea
r  

a
n

d  
N

o
nl

in
ea

r  
M

o
de
l A

pp
lic

at
io

n  
to

  N
ar

m
ad

a  
C

at
ch

m
en

t  
T

ab
le

  5
.1

2  

T
im

e  
to

  P
ea

k 
(D

ay
)  

N
on

lin
ea

r  
M

IS
O

 

CI) 

C
al

ib
ra

tio
n  

E
ve

n
ts

  

N

,--. 

Ca ,- . 

1--, O N N I /
-)  

V
al

id
at

io
n  

E
ve

nt
s  

' ,--4 
.-I 
..--. 

o-I 
r.--1 

Q 
V) 

,... C.N •--. 
\ C) .--I 

.--1 
•••■1 
v-i 

.--. 

I 

CI] 

--. N N Ir 
N 

O 
N 

c) r--- 
,.--, 

", 
.... 

---
n..-I 

L
in

ea
r  

M
IS

O
 

ci) 
,_.., 
—, --, 

.,--, 
N N aN N  .--, 

--, . 

N 

Cf) 

NM. kr) c) C7■ v:) 
.--4 

,-1 
il 

(=> 
1...-1 

CA 

,-•■ 
r.-I 

v--4 

..-. 

(,) 
a0 N c-n 

.... 
4-1 
N CS  

,,z) 
.--1 

—, 
n..-I 

...-1 
•■•1 

Pe
ak

 o
f D

ai
ly

  D
is

ch
ar

ge
s  (

m
m

)  

N
on

lin
ea

r  
M

IS
O

 

ci) 
—, h 4 

'ZI• 

O 
N 

c) rn 

E 

C) 
od ■6 

rZt 
ci) 

O h in 

C/1 

N 
in o 

L
in

ea
r  

M
IS

O
 CI ci) 

,r) 
(7) 

oo 
—, 

h 
o 

.1- 
cz:i,  cA c=3 

ci) , —■ h c-Ni 
gr)  

00 h 00 
— 

r--- d- 
ir 
— 

kr) 
.ri N 

co-\ 
O 
—, 

d- 
r-I 

CI; 
..0  4 N oc; cn 

•C-) 

in 
N 

N 

ts-: 
M 

t....• 

c) N 
kr) 

N 

R
un

of
f V

ol
um

e  
(m

m
)  

N
on

lin
ea

r  M
IS

O
 (,) 

6 
Cl) 

0 
.,- 
O 

if) 

,-,-; N 
N 

Cr) 

.6 
r--- 
— 

N. 

6 
rn 
ce) 

■c) 
rn 
on 

c:)., 
rn 
N 

Cr) 

r-: 
cr) 

(.1 

CZ 
CA 

\O

,1.-  

- 
0 

0 

Ni N N 

oo 

'r) 
I--- ,--I 

0.. 

0.1 

Cf) 
N 

N 

in 

rn 

\O  
,--4  

O 

N 

oo 

tri 

- 0 

,---1 

t---: 

N 

oo 

■6 r--: 

CA 
M 
N 

r-- 
.--■ 

rn 
Cel 

6 en 
('',1 

c) 
N 

Cr \ 
rri 
r.-- rn  

N 

Crl 

oo 

00 

oo 

L
in

ea
r  M

IS
O

 

M 

cep 

N 

--+ 
--- 

t--- 
4 
r•-) N 

cr, 
vi. 
r-- 
— 

rn 
ir; 
c) 
rn 

1.--- 
ci■ 
rn 
rn 

(r) 
■ri, 
in, 
N 

4 
r--: 
cr, 

ir) 
. 

' r--)  N 

\ 0 
--; 
oo 

C7N 
4 
cr, 

N 

C:=1 
— 

0 
4 ce) 
N 

\O 
4 oo 

Cfl 
kri --■ 
cn 

N 
00 7,- 
c•-) 

71- 
r--: kr> 
N 

tr) 
cri o 
•--( 

Cvl 
■.ci oo 
N 

kn 6  
1.-- 

4 
N o 
,..-1 

CA 
— 

00 

t--: 
4 
N 

N 

71-  
00 
—4 

CT 

O■ 
— 
c-r) 

'.C) 

,--, 
In 
re) 

I"--. 
N 
N 
N 

4 
1---. 

\O 

6  71- 
N 

0 
—; 
C" \ 

ke.  
0-■ 

cn 
St 
0 

c-n 
\C 
4 
N 
N 

N 

N 

0 
6 
r--- 
cn 

O■ 
,_., 
In 
rn 

\O 
v-4 ■r) 
N 

M 
1.-.-1 rn 
r--i 

(NI 
/-I —■ 
cr) 

00 

a■ 
kr> 
tr) t-- 

••••t 	'4'4  
0 	0 	• 
C. 	

> 

0 	

4 
0  

= 

C4 	W  

00 ON C'  ,_, 

0 

V 

O 

0 
■ 

0 

ri 

-2 

cr) 

C2 

0 

• 
• 

131 



a) Linear MISO Model 

b) Nonlinear MISO Model (n = 1) 

Fig. 5.10 	Scatter Plots For Validation in The Krishna Catchment 
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Fig. 5.11 	Scatter Plots For Validation in The Narmada Catchment 
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i) No Sub-Division Scenario 

ii) Two Sub-Division Scenario 

Linear Scale Plots For Validation Event in Krishna Catchment 
(Linear/Nonlinear Model) 

Fig. 5.13 
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5.5 PARAMETERIZATION OF THE RESPONSE FUNCTIONS 

The response functions obtained by using the SIN in case of all the catchments 

studied are expressed in the parametric form. As the response functions determined in the 

present study are having discrete form, the discrete form of the gamma function given by 

O'Connor (1976) is used. The values of the parameters N and K in the Eq. (4.12) were 

determined for each of the response function such that the parameterized shape matches as 

closely as possible with the derived response function. The peak and time to peak are the 

two important features to be matched. The values of the shape parameter (N) and the scale 

parameter (K) for the best possible match between the reproduced and the originally 

derived response function in each of the catchment are given in Table 5.13. 

The shapes of the derived response functions along with the fitted discrete gamma 

function, N and K values for which are given in Table 5.13, are plotted in Figs. 5.15 (a) -

(c). It can be observed from these figures that a close match between the derived and fitted 

shapes is attained in case of Pampanga and Krishna catchments, whereas for other 

catchments the match is relatively less accurate. 

As the parameters N and K are known to have relationship with the catchment 

characteristics, the relation of these parameters with the area of the catchment, which is 

the only characteristic available for most of the catchments studied, is investigated. It is 

noticed from Table 5.13 that the N values seem to vary directly with the size of the 

catchment. However, the K values are not related explicitly with the catchment area. 

Quantitative relationships for N and K are however not attempted because limited data on 

catchment characteristics was available for the catchment studied. 

Table 5.13 Parameter. Values For The Discrete Gamma Function 

Catchment Area (Km) 
Values of The Parameters 

N K 
Krishna 26,200 7.25 0.75 
Narmada 17,157 4.50 0.80 
Bird Creek 2,344 3.00 0.70 
Brosna 1,207 2.45 2.00 
Garrapatas 1,490 2.40 2,00 
Kizu 1,445 5.00 0.27 
Pampanga 5,273 4.55 1.40 
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Fig. 5.15(a) Match between the Derived and the Fitted Response Function for 
Bird Creek, Brosna, and Garrapatas Catchments 
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Fig. 5.15(b) Match between the Derived and the Fitted Response Function for 
Kizu and Pampanga Catchments 
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Fig. 5.15(c) Match between the Derived and the Fitted Response Function for 
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5.6 CONCLUDING REMARKS 

The response functions obtained are physically realistic in all the catchments 

studied. The non-linearity analysis reveals that all the catchments are hydrologically 

nonlinear. The results for the linear/nonlinear models applied to the catchments without 

sub-divisions indicate that the model performance (E2  values) are better for three 

catchments in calibration (Bird Creek, Kizu, and Pampanga) but during validation period 

these models did not perform as satisfactorily with an exception for the Brosna catchment. 

The peak of the daily flows is either under predicted or over predicted by these models, 

but the time to peak has matched in most of the cases. The absolute error in runoff volume 

prediction in most of the events is less than 20%. 

For the catchments involving sub-divisions the performance of the model applied 

has been mostly consistent with respect to the increase in the number of sub-divisions. The 

results of the exercise on parameterization of the derived response functions indicate that 

the match is reasonable mostly, and very good in three of the catchments studied. 

The results presented in this chapter have indicated the presence of significant 

hydrologic non-linearity in the rainfall-runoff data used in the study. The form of the 

nonlinear model used is found not to fully describe the non-linearity present in the data. 

The ANN models are considered to describe the nonlinear process in a better way. 

Therefore, the linear and nonlinear models used above are only considered as an auxiliary 

model (see Fig. 4.5). 

The output from such an auxiliary model is given as one of the inputs to the ANN 

model as next step in modeling approach. Estimates of the runoff by the auxiliary model 

are considered to be representative of the soil moisture state of the catchment. The runoff 

observed in the previous time periods was used for this purpose in the earlier studies 

involving the application of the ANN model. The use of the runoff observed in the 

previous time period is considered to be an updating process in the flow simulation and 

such models that use the past observations of runoff values as input to the ANN are 

considered to be modeling the change in flow rather than their absolute values. 

The performance of the ANN model, which is eventually used as the substantive 

model, with these and other input combinations applied to all the catchments is presented 

in the next chapter. 
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Chapter — 6 
ANN MODEL APPLICATION - RESULTS AND 

DISCUSSIONS 

6.1 INTRODUCTION 

As stated in the earlier chapters a system based linear/nonlinear model is used as 

an auxiliary model in the proposed approach and is coupled with a three layer feedforward 

ANN, that acts as the substantive model. Thus proposed linkage is depicted in Fig. 4.5 

(chapter 4). The application of the Simple Linear Model (SLM) and the Nonlinear Model 

in case of the catchments not involving any sub-divisions and the Multiple Input Single 

Output (MISO) counterparts of these two models for the two large sized catchments 

involving sub-divisions are already discussed in chapter 5. The employment of these 

models is followed by the application of a three layer feedforward backpropagation ANN 

such that the output of any of these auxiliary models is supplied as one of the inputs to the 

ANN. By providing such an input to the ANN the current soil moisture state of the 

catchment is utilized into the ANN based rainfall-runoff modeling. As already mentioned, 

the updating flow simulation carried out in the earlier studies involved use of the Q,..1 (i.e. 

the observed runoff in the previous time period) as one of the input to the ANN, which also 

describes the soil moisture state of the catchment. 

This chapter presents the results obtained for non-updating flow simulation using 

the ANN model applied for rainfall-runoff modeling over catchments with varying sizes 

and other characteristics. The ANN is being supplied with various alternative input 

combinations for predicting runoff at the outlet of the catchment as explained in detail in 

chapter 4. The discussions on the results obtained in the individual catchments are 

provided in this Chapter and finally the conclusions drawn from the analysis of results are 

stated. The results of the ANN model application and discussions on these results are 

provided separately for, i) the catchments involving no sub-divisions; and ii) the 

catchments involving sub-divisions. 

6.2 APPLICATION OF THE ANN MODEL 

As per the flowchart illustrated in Fig. 4.1 (chapter 4) after the application of the 

linear/nonlinear models, the next step in the proposed approach is the application of a 
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three layer feedforward backpropagation ANN for realistic estimation of runoff. This ANN 

is provided with the output of the linear/nonlinear models, which in other words is an 

estimate of the runoff for the current time period and it is assumed to represent the soil 

moisture state of the catchment. This is a new type of input to the ANN proposed in this 

study as an alternative to the observed discharges or water level in the previous time 

period being given as one of the input to the ANN by the earlier researchers. Almost all the 

ANN based rainfall-runoff modeling studies in general and those involving the application 

of the three layer feedforward ANN in particular invariably involved the use of Qt.]  as one 

of the input to the ANN . The limitations of using such input are outlined earlier. 

The output of the linear model given by Eq. (4.7) is denoted by RIL and that of the 

nonlinear model as per Eq. (4.8) is denoted by RIN. The overall procedure of the ANN 

model application to various catchments is similar irrespective of their sizes. A three layer 

feedforward ANN is used. It is trained with the backpropagation algorithm using the 

gradient descent method along with adaptive learning rate (s) and momentum factor (a). 

The addition of these two parameters improves the speed of convergence of the algorithm 

and also ensures that the algorithm does not get trapped in the local minima but attains the 

global minima (see Fig. 2.3). 

The reasons for using a feedforward ANN are already stated in the previous 

chapters. The logistic sigmoid [Eq. (2.13)] is used as the transfer function for neurons in 

the hidden and the output layers. The input data to the ANN is normalized in the range 
[0.1, 0.9] by using Eq. (4.6). 

The training of the ANN is carried out using the TRAINGDX function in MATLAB 

routines. It works on the gradient descent method and uses an adaptive learning rate and 

the momentum factor. The ANN implementation is carried out using MATLAB 5.1 version. 
The various input combinations to the ANN as described in chapter 4 consisted of the 
following (i) Only rainfall (P); (ii) RIL; (iii) RIN; (iv) RIL+P; (v) RIN +P; and (vi) Qt-3+P. 

The ANN with these different inputs is applied to each of the catchments. Every 

time in training the ANN it was ensured that the ANN does not get overtrained by using the 

data for training and testing. However, due availability of limited number of high flow 

events in the daily runoff data for the catchments, validation of the ANN models with a 
third independent dataset could not be performed. The mse criterion is used in training the 
network. Initially minimum number of nodes in the hidden layer (i.e. one) was selected 
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and this number was increased gradually till this trial and error process of training lead to 

an optimal network configuration having the best possible performance. 

In the following sections the results of the best performing ANNs with various 

input combinations as applied to the seven catchments studied are presented in tabular and 

graphical form and discussions on the results obtained is provided. First, the discussion on 

the performance of ANN model in each of the catchment in terms of the statistical 

indicators is provided. This is followed by the graphical presentations separately for i) The 

catchments without sub-divisions, and ii) The Krishna and the Narmada catchments, 

which involved sub-divisions. 

6.2.1 The Bird Creek Catchment 

The normalized data files for each of the input combinations supplied to the ANN 

have been prepared by adopting the procedure already explained. The memory of the Bird 

Creek catchment is 7 days (see Fig.5.2 (a)), so when only rainfall is given as input to the 

ANN, the input layer consisted of 7 neurons corresponding to Pt, Pt-I, Pt-2 	Pt-6. As 

described earlier, the training procedure is started with minimum (one) number of hidden 

nodes and this number is increased gradually. The three layer feedforward ANN with this 

input was found to have the best possible performance i.e. minimum mse in training and 

testing and correspondingly maximum value of E2  for four number of nodes in the hidden 

layer. Further addition of neurons in the hidden layer did not result in any improvement in 

the performance of the ANN model. When RIL or RIN i.e. the output of a linear or a 

nonlinear model respectively, was given as input to the ANN, the input layer consisted of 

only one neuron. Similarly, when RIL + P or RIN + P were the inputs to the ANN, the 

input layer had 8 neurons i.e. 7 for the rainfall values and one additional for the RIL or 

RIN values. 

The best performing ANN configurations for different input combinations applied 

to the Bird Creek catchment and their results are presented in Table 6.1. These results 

indicate that the ANN with RIL+P as input has the best performance amongst all in terms 

of E2  and R2  criteria both in training and testing. As expected, the ANN with only P as 

input performs poorly as compared with the other ANN models. Not much improvement is 

seen in the performance of the ANN when a nonlinear model instead of the linear model is 

coupled with the ANN. The RIN (11 = 2) input resulted in even lower values of E2  in 

training and testing compared to the case when RIN (n = 1) was used as the input. Similar 
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comments can be made by the comparison of performance of ANN with RIL + P, RIN + P 

(n = 1, 2), i.e. the performance for the ANN with RIL + P is the best in terns of the E2  

values. 

The reason for results of ANN model with RIN as input being not better than the 

ANN with RIL as input is that the ANN being a nonlinear model in itself accounts for the 

non-linearity involved in the rainfall-runoff process. One important thing can be noted in 

the Bird Creek catchment that the ANN with Qt_i + P as input has lower performance than 

that with PJL + P as input. The results obtained through the ANN application are also 

presented in graphical form and discussed later in this chapter .  

Table 6.1 	Results of ANN Applications for The Bird Creek Catchment 

Input Combination for 

ANN 

ANN 

Structure 
(I - H - 0) 

E2  (%) 
 

R2  

Training Testing Training Testing 

Only P 7-4-1 78.63 65.35 0.786 0.728 

RIL 1-3-1 89.25 74.46 0.893 0.748 

RIN (n = 1) 1-3-1 87.17 77.53 0.872 0.781 

RIN (n= 2) 1-3-1 87.47 33.35 0.876 0.670 

RIL +P 8-3-1 92.70 80.22 0.927 0.809 

RIN + P (n = 1) 8-3-1 90.05 73.65 0.902 0.748 

RIN + P (n= 2) 8-3-1 84.62 51.53 0.846 0.689 

0(t-I) + P 8-3-1 87.11 72.69 0.871 0.748 

* I — Number of neurons in input layer, H - Number of neurons in hidden layer, 0 - Number of neurons in output layer 

6.2.2 The Brosna Catchment 

In this catchment nonlinear model with n = 2 was inapplicable. So only the 

discussion about the performance of ANN model with the other input combinations is 

presented. The Brosna catchment has a large memory value i.e. 38 days (see Fig. 5.2 (b)), 
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the highest amongst all the catchments studied. Such observation on memory of the 

Brosna catchment is also made by O'Connor and Ahsan (1991). Difficulty was 

experienced when only P and RIL or RIN values with P was given as input in 

determination of the optimal performing network configuration because initially all the 38 

values of P were given as input to the ANN. Due to this the ANN structure became 

complicated and the learning rate slowed down greatly posing difficulties in training. To 

overcome this problem an alternative procedure of trial and error was chosen in which, the 

first 10 P values in backward time steps were given to ANN initially and the best 

performing network was derived. As next step, one more P value from the rest of the 

backward time step was added to the input and the procedure of training was repeated. 

This step was continued till such addition of P values resulted in further improvement in 

the ANNs performance. This procedure for only P as input has resulted in an ANN 

structure 25-5-1 as the best performing network. For RIL + P as input, a similar procedure 

was repeated and finally it was found that RIL along with 20 P values i.e. the ANN 

configuration 21-7-1 performed the best. So, for RN + P and Qt.i + P the same 20 values 

of P were given as input to the ANN along with RIN and Qt.] values. 

Table 6.2 presents the results of the best performing ANNs obtained for the Brosna 

catchment. The performance of ANN with RIL and RIN as input is very much similar in 

terms of £2  and R2  criteria both in training and testing. The E2  values for ANN with RIL + 

P or RIN + P are less as compared to that in the Bird Creek catchment. Nevertheless, the 

£2  values for ANN with RIL + P as input are improved over RIL as input. The relatively 

less satisfactory performance of the ANN models in the Brosna catchment may be due to 

the large memory length, which made the ANN structure complex and posed problems in 

identification of the best performing ANN. This case owing to its large memory may be 

looked upon as one of the limitation of the feedforward ANN used in the proposed 

approach in which the rainfall values for the duration equal to the memory of the 

catchment are given as input to the ANN for predicting the runoff. Even though the Brosna 

catchment is 1,207 km2  in areal extent, it has such large memory length because it is 

located in humid climatic conditions. The runoff events (see Table 3.4) identified also 

show that these events are having very long durations, 	40 days. This is due to the 

prevalent rainfall patterns and the humid climatic conditions in which the base flow 

contribution continues for a very long time (O'Connor and Ahsan, 1991). 
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6.2.3 The Garrapatas Catchment 

The results of the best performing ANNs with different input combinations applied 

to the Garrapatas catchment are presented in Table 6.3. The memory of this catchment is 

20 days so, when only P was given as input, the input layer of the three layer feedforward 

ANN consisted of 20 neurons as can be seen from the structures of the ANNs presented in 

Table 6.3. It can be noted from this table that all ANN models including the one with 

0,../-EP as input applied to the Garrapatas catchment performed less satisfactorily in testing 

as well as in training in terms of the E2  and R2  criteria. 

6.2.4 The Kizu Catchment 

As the memory for this catchment is 7 days when only P was the input to ANN the 

input layer had 7 neurons and the ANN with configuration 7-4-1 performed the best among 

all tried. The best performing ANN configurations for the different input combination 

applied to the Kizu catchment and the corresponding results obtained are presented in 

Table 6.4. A significant improvement when the ANN was supplied RIL + P as input over 

the ANN with RIL as input in terms of E2  and R2  values can be observed. The ANN with the 

input RIN + P (n = 1) performed better than RIL + P as input during testing. This result 

indicates that in the Kizu catchment the RIN values are better representative of the soil 

moisture state compared to the RIL values. When RIL and RIN are given as input to the 

ANN the E2  and R2  values are improved over those obtained for the ANN with only P as 

input, both during testing and training. 

6.2.5 The Pampanga Catchment 

The ANN with various input combinations was also applied in the Pampanga 

catchment. The nonlinear model with n = 2 was not applicable in this catchment due to 

the reasons already stated. The best performing ANN configurations and the results 

obtained for these are given in Table 6.5. The E2  values during testing for ANN with 
RIL+P and RIN + P as input are very much improved over those for ANN with RIL and 
RIN alone as input respectively. In training however the increase in the E2  values for the 

same is relatively less. The performance of ANN with RIL and RIN as input is better than 

that with only P as input in terms of E2  and R2  criteria both in training and testing. 
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Table 6.2 	Results of ANN Applications for The Brosna Catchment 

Input Combination for 

ANN 

ANN 

Structure 
(I - H - 0') 

E2  (%) R2  

Training Testing Training Testing 

Only P 25-5-1 76.91 53.14 0.767 0.806 

RIL 1-2-1 65.22 79.03 0.652 0.885 

RIN. (n = 1) 1-2-1 65.06 79.10 0.651 0.882 

RIN (n= 2) N.A. > 

RIL+ P 21-7-1 74.06 79.06 0.741 0.880 

RIN +P (n= 1) 21-7-1 79.09 74.03 0.791 0.866 

RIN + P (n= 2) N.A. 

0(t-1) + P 21-7-1 93.75 91.03 0.938 0.917 

*I—Number of neurons in input layer, H-Number of neurons in hidden layer, 0-Number of neurons in output layer; 
N.A.-Not Applicable 

Table 6.3 	Results of ANN Applications for The Garrapatas Catchment 

Input Combination for 

ANN 

ANN 

Structure 
. (1- ii-o) 

E2  (%) R2  

Training Testing Training Testing 

Only P 20-4-1 63.56 65.58 0.636 0.660 

RIL 1-2-1 60.32 67.43 0.603 0.707 

RIN (n = 1) 1-3-1 56.93 59.10 0.569 0.691 

RIN (n= 2) 1-3-1 53.07 56.05 0.531 0.665 

RIL+ P 21-7-1 57.26 73.00 0.573 0.681 

RIN +P (n= 1) 21-7-1 62.46 73.16 0.625 0.675 

RIN +P (n= 2)  21-4-1 62.46 72.25 0.625 0.663 

at-1) + P 21-3-1 77.03 82.32 0.770 0.784 

* I — Number of neurons in input layer, H - Number of neurons in hidden layer, 0 - Number of neurons in output layer 
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Table 6.4 	Results of ANN Applications for The Kizu Catchment 

Input Combination for 

ANN 

ANN 

Structure 
(I - H - 0 ) 

E2  CYO R2 

Training Testing Training Testing 

Only P 7-4-1 83.92 67.45 0.839 0.682 

RIL 1-3-1 88.25 72.72 0.882 0.764 

RIN (n = 1) 1-3-1 87.31 81.36 0.873 0.830 

RIN (n= 2) 1-3-1 89.39 73.07 0.894 0.736 

RIL + P 8-4-1 94.15 77.39 0.941 0.822 

RIN +P (n= 1) 8-3-1 94.37 80.00 0.944 0.851 

RIN + P (n= 2) 8-3-1 91.65 77.17 0.916 0.799 

0(t_i) + P 8-3-1 90.35 71.81 0.903 0.812 

* I — Number of neurons in input layer, H - Number of neurons in hidden layer, 0 - Number of neurons in output layer 

Table 6.5 	Results of ANN Applications for The Pampanga Catchment 

Input Combination for 
ANN 

ANN 
Structure 
0- H -0 

E2  CYO R2  

Training Testing Training Testing 
Only P 17-4-1 86.96 70.20 0.870 0.859 

RIL 1-3-1 89.88 70.28 0.899 0.923 

RIN (n = 1) 1-3-1 89.23 74.25 0.892 0.909 

RIN (n= 2) 
N.A. > 

RIL + P 18-3-1 91.07 77.53 0.911 0.894 

RIN +P (n= 1) 18-5-1 91.60 71.51 0.916 0.910 

RIN + P (n= 2) < N.A. 

	

0(r-1) 	P 

_ 	. _ 

18-6-1 99.08 95.15 0.991 0.953 

— um er of neurons in input layer, H-Number of neurons in hidden layer, 0-Number of neurons in output layer; 
N.A.-Not Applicable 
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6.2.6 Results For The Individual Runoff Events 

In the above sub-sections the results of the ANN with different input combinations 

applied to each of the catchments were presented that represented the entire dataset used 

for calibration/training and validation/testing. In this section the results obtained for the 

individual runoff events used in training and testing are presented. Details regarding the 

individual runoff events are presented in chapter 3. Table 6.6 provides the results obtained 

during training when the ANN was supplied RIL only and RIL + P values as inputs. The 

observed and computed values for the volume of runoff, the peak daily discharge, and 

time to peak for each event used in training is given in this table. It can be observed that 

the time to peak has matched almost perfectly for all the events in three catchments viz. 

Brosna, Garrapatas, and Kizu. In the Bird Creek and the Pampamga catchments also the 

time to peak is well matched by the ANN models except for 2 events in each of these 

catchments wherein the time to peak is simulated less accurately. The runoff volume 

predicted by the ANN model with RIL as input are more closer to the observed values than 

the corresponding values for the SLM given in Table 5.7 in particular for Garrapatas, Kizu, 

and Pampanga catchments. The absolute values of VE statistic for most of the runoff 

events (except those in the Bird Creek and the Pampanga catchment) were found to be 

smaller than 15%. The prediction of the peak daily runoff values has improved for events 

in Brosna, Kizu, and Pampanga catchments when RIL+P was supplied as input to the ANN 

as compared to the ANN with input only RIL. 

The results obtained for the runoff events used in testing the ANN models with the 

same inputs as described in Table 6.6 (i.e. RIL alone and RIL + P) are provided in Table 

6.7. It can be seen that the time to peak is predicted with a maximum error of only one day 

by the two ANN models for all the events except for two events in the Pampanga 

catchment. The .runoff volume prediction by the ANN model with RIL as input has 

improved over those by the SLM model (see Table 5.8) for most of the events listed in 

Table 6.7. In Bird Creek, Kizu, and Pampanga catchments the predicted peak by the ANN 

with the input RIL + P is more close to the observed values as compared to the results 

obtained by the ANN with RIL as input. 

A similar kind of results for the ANN with RIN alone and RIN + P as input (n = 1 

only) are presented in Tables 6.8 for the events used in training and in Table 6.9 for the 

events used in testing the ANN. As can be observed from the comparison of corresponding 

values of the parameters given in Tables 6.6 and 6.7 for ANN with RIL alone and RIL + P 
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Table 6.6 	Linear Model + ANN Results For Catchments Without Sub- 
Divisions (Calibration Events) 

Runoff 
Event 
No. 

Runoff Volume 
(nun) 

Peak of Daily Discharges 
(mm) 

Time to Peak 
(Day) 

Obs.•  
Computed 

Obs. 
Computed 

Obs. 
Computed 

RIL RIL + 
P 

RIL RIL + 
P 	- 

RIL RIL + 
P 

Bird Creek Catchment 
1 70.9 88.9 88.9 10.7 16.5 18.1 6 5 5 
2 153.7 108.8 116.2 22.6 14.5 13.4 19 18 18 
3 152.1 130.0 123.6 26.9 26.7 23.3 5 5 5 
4 34.5 48.8 41.3 8.3 5.7 5.8 12 12 12 
5 188.6 197.5 196.7 64.1 60.0 55.9 5 5 5 
6 20.2 29.8 20.5 6.4 6.2 .8.1 4 5 5 
7 26.1 41.9 38.5 11.2 19.0 16.6 3 , 3 3 
8 20.2 29.5 25.7 9.2 7.6 9.2 4 3 4 

Brosna Catchment 
1 141.8 93.7 104.3 6.9 4.3 5.5 16 17 17 
2 67.5 75.8 80.2 4.9 4.3 4.6 7 7 7 
3 71.7 86.8 89,3 4.4 4.1 4.2 16 16 16 
4 70.6 73.7 74.4 4.6 4.5 4.9 5 5 5 
5 72.2 60.5 67.7 5.3 3.8 4.3 8 7 7 
6 112.8 96.5 102.6 5.9 4.1 4.6 7 7 7 
7 60.0 92.9 85.6 4.1 4.6 4.0 8 8 9 
8 126.0 109.5 116.7 6.1 4.6 5.7 19 19 19 

Garrapatqs Catchment 
1 76.4 81.8 78.7 9.1 8.1 7.2 5 - 5 6 
2 131.2 117.9 118.7 10.7 8.0 7.4 6 5 5 
3 165.8 176.5 175.2 11.1 10.2 9.9 5 5 5 
4 206.2 187.6 187.0 17.5 10.4 9.7 6 6 6 
5 316.8 305.9 317.3 14.1 10.3 10.4 6 6 8 
6 138.1 124.9 117.6 11.3 7.3 .7.2 11 11 11 
7 99.2 91.5 86.4 9.7 6.8 6.5 4 4 4 
8 96.7 123.4 127.9 8.9 10.4 10.2 8 10 10 
9 76.4 88.7 87.4 9.2 9.7 9.0 4 2 2 	, 

10 177.2 185.1 187.2 8.6 7.9 7.6 13 13 13 
Kizu Catchment 

1 165.6 141 135 . 18.1 19.8 18.1 11 10 10 
2 158.1 113 112 18.5 19.1 16.7 3 3 3 
3 33.7 58.6 58.5 13.0 22.2 17.0 5 5 5 
4 53.9 78.7 75.9 13.4 16.9 12.5 6 6 6 
5 71.3 93.1 104.1 39.9 30.4 39.9 4 4 4 
6 72.6 69.0 67.4 16.9 15.2 13.0 6 6 6 
7 85.6 86.2 89.9 23.4 27.3 25.1 2 2 2 
8 204.6 186 185.6 15.8 18.2 15.2 10 10 10 
9 43.1 47.2 46.7 15.9 16.9 12.4 3 3 3 

10 328.9 329 340.4 95.2 97.0 95.0 12 12 12 
Pampanga Catchment 

1 61.7 156 160.4 17.9 24.6 24.1 4 6 6 
2 152.2 165 151.9 17.3 17.9 16.0 10 12 11 
3 449.5 390 379.7 72.0 61.9 63.8 7 7 7 
4 255.9 164 176.5 36.7 .21.3 28.5 11 11 10 
5 79.9 98.5 70.5 5.25 6.7 5.8 9 6 6 
6 609.2 636 643.8 72.7 73.1 72.5 8 8 8 

* Obs. - Observed 
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Table 6.7 	Linear Model + ANN Results For Catchments Without Sub- 
Divisions (Validation Events) 

Runoff 
Event 
No. 

Runoff Volume 
(mm) 

Peak of Daily Discharges 
(mm) 

Time to Peak 
(Day) 

Obs. 
Computed 

RIL + 
P 

Obs. 
Computed 

Obs. 
Computed 

RIL + 
P 

RIL RIL RIL + P RIL 

Bird Creek Catchment 

9 73.0 56.7 57.5 18.1 13.8 13.1 10 9 9 
10 58.3 66.6 78.8 18.6 15.7 19.7 6 6 6 
11 42.8 63.0 66.5 16.3 25.7 22.3 4 4 5 
12 68.3 49.9 55.5 27.4 19.0 20.7 5 4 5 
13 28.1 42.1 38.0 13.6 15.0 12.3 4 4 4 

Brosna Catchment 

9 39.2 43.4 41.5 4.00 3.4 3.5 11 11 11 
10 155.1 127.5 124.6 6.6 4.4 4.8 22 22 22 
11 62.2 49.6 50.4 5.3 3.9 4.1 10 11 11 
12 62.4 63.8 61.5 5.9 4.6 5.2 16 16 16 

Garrapatas Catchment 

11 110.5 100.6 83.2 8.1 6.9 5.5 6 5 5 
12 74.3 90.0 81.3 9.2 8.8 7.2 5 5 5 
13 67.8 71.3 64.1 7.1 7.0 6.0 4 4 4 
14 389.4 347.5 313.7 15.1 10.1 8.8 12 13 13 

Kizu Catchment 

11 87.5 90.5 89.3 15.1 19.2 14.7 11 11 11 
12 208.4 147.9 173.6 35.2 30.7 49.1 10 10 10 
13 52.0 61.6 67.7 23.2 29.6 31.5 5 5 5 
14 71.8 74.6 77.1 15.6 19.7 15.9 5 4 4 
15 90.8 113.5 104.3 20.2 27.5 20.2 7 7 7 

Pampanga Catchment 

7 105.7 106.5 98.1 10.3 9.3 10.8 14 14 14 
8 94.8 74.1 65.6 11.1 8.5 11.6 3 4 6 
9 44.6 58.8 55.5 8.8 5.7 6.2 7 8 10 
10 319.6 186.7 	 207.2 60.6 29.7 38.9 6 6 6 

*Obs. - Observed 
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Table 6.8 	Nonlinear Model + ANN Results For Catchments Without Sub- 
Divisions (Calibration Events) 

Runoff 
Event 
No. 

Runoff Volume 
(nun) 

Peak of Daily Discharges 
(mm) 

Time to Peak 
(Day) 

Obs.. 
Computed 

Obs. 
Computed 

Obs. 
Computed 

RIN PIN + 
P 

FUN RIN + 
P 

RIN RIN + 
P 

Bird Creek Catchment 
1 70.9 89.5 85.1 10.7 14.4 16.5 6 5 5 
2 153.7 114 105 22.6 13.4 11.7 19 18 19 
3 152.1 125 137 26.9 20.8 23.0 5 5 5 
4 34.5 48.7 46.0 8.3 8.1 6.4 12 12 13 
5 188.6 197 199 64.1 50.0 56.1 5 6 5 
6 20.2 21.4 30.5 6.4 8.7 7.2 4 	' 5 5 
7 26.1 36.0 43.5 11.2 15.0 16.0 3 3 3 
8 20.2 25.0 28.2 9.2 10.0 7.9 4 3 4 

Brosna Catchment 
1 141.8 98.4 109 6.9 4.5 5.7 16 17 17 
2 67.5 79.2 77.9 4.9 4.5 4.9 7 7 7 
3 71.7 90.6 89.8 4.4 .4.2 4.2 16 16 16 
4 70.6 77.5 76.6 4.6 5.0 4.6 5 5 5 
5 72.2 63.1 69.8 5.3 3.9 5.0 8 7 7 
6 112.8 101 101 5.9 4.2 4.9 7 7 7 
7 60.0 97.8 75.9 4.1 5.4 3.9 8 8 8 
8 126.0 114 121.1 6.1 5.4 5.7 19 19 19 

Garrapatas Catchment 
1 76.4 77.9 81.0 9.1 7.5 8.3 5 6 5 
2 131.2 117 120.5 10.7 8.0 8.4 6 8 5 
3 165.8 174 178.0 11.1 9.6 11.3 5 5 5 
4 206.2 185 187.3 17.5 9.6 11.0 6 6 6 
5 316.8 318 303.5 14.1 10.2 11.1 6 8 6 
6 138.1 122 128.5 11.3 7.5 7.9 11 11 11 
7 99.2 86.9 91.1 9.7 6.5 7.4 4 4 4 
8 96.7 129 122.4 8.9 9.9 9.9 8 10 10 
9 76.4 87.9 86.9 9.2 9.0 10.1 4 2 2 

10 177.2 184 184.7 8.6 7.8 7.8 13 13 13 
Kizu Catchment 	 ' 

1 165.6 156 133 18.1 15.1 16.4 11 10 10 
2 158.1 102 113 18.5 15.2 16.6 3 3 3 
3 33.7 54.7 58.5 13.0 16.4 18.2 5 5 5 
4 53.9 79.6 77.4 13.4 14.2 12.3 6 6 6 
5 71.3 97.7 100 39.9 28.4 37A 4 4 4 
6 72.6 64.5 68.4 16.9 14.3 14.4 6 6 6 
7 85.6 88.4 89.3 23.4 20.1 25.8 2 2 2 
8 204.6 201 185 15.8 14.8 15.1 10 10 10 
9 43.1 43.5 46.8 15.9 14.4 13.0 3 3 3 

10 328.9 312 345 95.2 78.2 95.2 12 12 12 
Pampanaa Catchment 

1 61.7 161 160 17.9 27.0 22.2 4 6 6 
2 152.2 173 161 17.3 19.5 23.2 10 11 11 
3 449.5 379 405 72.0 66.1 71.1 7 7 7 
4 255.9 169 150 36.7 23.7 17.6 11 10 9 
5 79.9 117 94 5.25 7.4 6.4 9 5 5 
6 609.2 610 630 72.7 73.5 76.4 8 8 8 

* Obs. - Observed 
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Table 6.9 	Nonlinear Model + ANN Results For Catchments Without Sub- 
Divisions (Validation Events) 

Runoff 
Event 
No. 

Runoff Volume 
(mm) 

Peak of Daily Discharges 
(mm) 

Time to Peak 
(Day) 

Obs.*  
Computed 

Obs. 
Computed 

Obs. 
Computed 

RN + 
P 

RIN RN + 
P 

RIN RN + 
P 

RIN 

Bird Creek Catchment 

9 73.0 49.8 54.4 18.1 11.4 11.7 10 9 10 
10 58.3 69.0 67.1 18.6 20.8 22.5 6 6 6 
11 42.8 62.9 67.5 16.3 21.2 25.4 4 4 4 
12 68.3 53.6 58.6 27.4 21.4 24.6 5 4 4 
13 28.1 44.4 46.4 13.6 17.2 14.6 4 4 4 

Brosna Catchment 

9 39.2 43.1 41.3 4.00 3.4 2.9 11 11 11 
10 155.1 127.1 122.1 6.6 4.5 4.9 22 22 22 
11 62.2 49.5 47.2 5.3 3.8 4.2 10 11 11 
12 62.4 64.2 59.6 5.9 5.2 5.3 16 16 16 

Garrapatas Catchment 

11 110.5 86.0 102.7 8.1 5.4 7.9 6 5 5 
12 74.3 81.1 96.7 9.2 7.6 10.3 5 5 5 
13 67.8 64.8 76.0 7.1 6.3 8.7 4 4 4 
14 389.4 320.2 373.5 15.1 8.7 10.6 12 13 13 

Kizu Catchment 

11 87.5 96.9 88.4 15.1 15.5 16.1 11 11 11 
12 208.4 163.9 174.0 35.2 40.4 46.3 10 10 10 
13 52.0 65.8 67.6 23.2 26.0 32.4 5 5 5 
14 71.8 70.8 74.2 15.6 15.1 15.3 5 4 4 
15 90.8 111.2 103.5 20.2 19.5 22.9 7 7 7,.. 

Pampanv Catchment 

7 105.7 116.2 97.8 10.3 10.9 8.9 14 14 14 
8 94.8 80.9 75.9 11.1 9.5 9.2 3 4 3 
9 44.6 67.3 52.5 8.8 6.4 5.5 7 8 7 

10 319.6 194.5 186.8 60.6 35.9 36.0 6 6 6 

* Obs. - Observed 
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as input that the nonlinear — ANN coupled model performance is not much different than 

the SLA/I - ANN coupled model. Nevertheless, as improvement in the peak values predicted 

by the nonlinear - ANN coupled model over that predicted by the nonlinear model (n = 1) 

(see Tables 5.7 and 5.8) can be observed in training in general, and for Brosna and 

Garrapatas catchments, in particular. The performance of the ANN with RIL and RIN as 

input is almost same during testing in the Brosna catchment in terms of runoff volume and 

peak discharge prediction as can be noted from values given in Table 6.7 and 6.9. The 

ANN with RIL + P as input has performed better for the Bird creek and Pampanga 

catchments in terms of matching the peak than the ANN with RIN + P as input. The 

absolute values of VE statistic were however smaller than 20% in most of the results 

obtained through the ANN application. 

6.2.7 The Krishna Catchment 

The Krishna catchment involves sub-divisions. In the no sub-division scenario, the 

entire catchment is considered as a single unit and in the two sub-divisions scenario the 

catchment is divided into two sub-areas. The ANN application is carried out separately for 

both these scenarios. The best performing ANN configurations and the results obtained for 

this catchment are presented in Table 6.10. 

In case of the two sub-divisions scenario the output of the linear MISO or the 

nonlinear MISO is given as input to the ANN, because of which, the input layer in these 

cases consisted of two neurons as against one for the no sub-division scenario. The 

structure of the ANN for the other input combinations also changed in a similar fashion. 

The E2  values for two sub-divisions scenario are improved over the corresponding values 

for the no sub-division scenario both during training and testing with the exception of 

ANN with RIN (11 = 2) as input. The performance of all the ANN models in terms of E2  and 
R2  criteria is very good in this catchment. 

Similar to the observation made in case of other catchments, the E2  and R2  values 

for Krishna catchment during training and testing for ANN with RIL + P as input are larger 

than that for RIL alone as input. Similarly, the performance of ANN with RIN + P (n = 1, 
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2) is improved as compared to ANN with RIN (n = 1, 2) as input in both the sub-division 

scenarios studied. 

The comparison of E2  values given in Table 6.10 indicates that the performance of 

ANN with RIL and RIN (n =1, 2) as input is almost similar for the one sub-division 

scenario, whereas in the two sub-divisions scenario the E2  values for ANN with RIN (n = 1, 

2) as input are less than those for ANN with RIL as input. This is indicative of the fact that 

there is no any definite advantage of coupling a nonlinear model with the ANN in place of 

a linear model. As already stated, the ANN based models account for the non-linearity 

involved in the rainfall-runoff process and this task is better performed if the linear model 

is coupled with the ANN, i.e. when the RIL is supplied as input to the ANN. 

The results obtained for the individual runoff events used in calibration/training 

and validation/testing are also presented in tabular form for the Krishna catchment. The 

Table 6.11 presents the event wise results for the ANN with RIL and RIN (n = 1, 2) as input 

and the results from the ANN models with inputs RIL+P and RIN+ P (n = 1, 2) are 

presented in Table 6.12 for the different sub-division scenarios. 

With the RIL as input the volume of predicted runoff by the ANN matched more 

closely for the two sub-division scenario than in no sub-division scenario in 8 of the 10 

events listed in Table 6.11 whereas, this number for ANN with RIN (n = 1) as input is only 

5. For n = 2 the RIN input resulted in larger deviation in runoff volume prediction. Table 

6.11 shows that the time to peak is matched for five events in training and one event in 

testing by the ANN with RIL only as the input, whereas, for the ANN with RIN as input this 

number of events in calibration is 4 only. The similar kind of analysis of Table 6.12 

reveals that the ANN with RIL + P has predicted the time to peak accurately for more 

number of events than mentioned as above. 

The peak discharges predicted by the ANN with RIL + P as input are better than 

that predicted by the ANN with RIL as input for all events in training and for one event in 

testing as can be seen from corresponding values for both sub-division scenarios in Tables 

6.11 and 6.12. Comparison of the performance of the linear model (see Table 5.8) with the 

corresponding ANN coupled model in terms of matching peak daily discharges has 

improved for three events in validation/testing. There is however a marginal difference in 

the results obtained through ANN with RIL and RIN and between the results obtained by 

the ANN with RIL + P and RIN + P as inputs. In general, satisfactory results are obtained 

for most of the runoff events as can be seen from Tables 6.11 and 6.12. 
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6.2.8 The Narmada Catchment 

The Narmada catchment also involves sub-divisions. There are three different sub-

division scenarios studied in this catchment. First, the entire catchment was considered as 

one unit, called as no sub-division scenario, then the two sub-divisions scenario when the 

catchment was divided into two sub areas and the three sub-divisions scenario when it was 

further divided to three sub-areas. The catchment memory for all these cases is different 

(see Table 5.4) and accordingly the numbers of nodes in the input layer varied for the three 

scenarios. The structures of the best performing ANNs and their performance in this 

catchment are presented in Table 6.13. The nonlinear MISO model with n .= 2 is not 

applicable in the two and three sub-division scenarios in this catchment. 

The performance of the ANN with different inputs for two sub-divisions scenario is 

improved than the no sub-division case and it further improves for the three sub-divisions 

scenario as can be seen from the E2  and R2  values given in Table 6.13 with a few 

exceptions. This improvement with the increase in the number of sub-divisions vindicates 

the division of larger catchments into smaller homogeneous areas and the results reflect 

that the ANN is able to capture this type of disaggregated input and produce more 

satisfactory results. 

Another aspect of the results obtained which can be noticed from this table is that 

the ANNs performance with RIL + P as input in terms of E2  and R2  criteria is improved 

over the performance of ANN with RIL alone as input and the same is true for RIN + P 

and. RIN alone input cases. 

Another feature that is revealed by analysis of the results is that the E2  and R2  

values obtained for the ANN with RIN and RIN + P inputs are almost similar or less than 

the corresponding values for ANN with RIL only and RIL + P as input. This strengthens 

the statement made earlier that there are no definite advantages of coupling a nonlinear 

model instead of a linear model with the ANN as the ANN itself, being a nonlinear model, 

is capable of accounting for the non-linearity present in the rainfall-runoff relationship. 

Table 6.14 presents the event wise results for the coupled linear-ANN model 

applied to all the sub-division scenarios in the Narmada catchment. As can be seen from 

this table that observed and predicted values for the time fo peak are well matched. The 
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values of the predicted volume of runoff improved with the number of sub-divisions for 

the ANN with RIL as input in most of the events. Whereas, for the ANN with RIL P as 

input this matching improved for more number of events. In general the peak values are 

better predicted by the ANN models. 

A similar kind of results for the case of nonlinear model outputs given as input to 

the ANN are presented, for all the events used in training and testing, in Table 6.15. The 

results of such ANN model shows a similar trend as discussed above for the linear-ANN 

coupled model, with some minor changes of values for some of the events. 

Based on the analysis of the results in Tables 6.14 and 6.15 presented above it can 

be stated that the coupled linear-ANN model performance is quite satisfactory considering 

the information supplied to the ANN model for prediction of the daily runoff. Secondly, an 

improvement in the results with the increase in the number of sub-divisions can be 

observed in most of the events. 

The graphical results in terms of the scatter diagrams prepared with the entire set 

of data used in model testing and the linear scale plots for the training and testing events 

that contained the highest of the peak flows of the data used are presented in the remaining 

part of this chapter. 
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6.3 GRAPHICAL PRESENTATION OF THE RESULTS OF ANN 
APPLICATIONS 

In the above section the results of the ANN application with various input 

combinations are presented in tabular form in terms of the statistical indicators of model 

performance for each catchment separately. In this section the results from the ANN 

application are presented in the graphical form and these are analyzed and discussed. The 

ANN application involved eight different input combinations in a catchment. The graphical 

presentation for all these results is not given, as that would make the presentation very 

lengthy and complex. So for clarity in understanding, only the results of the best 

performing ANNs supplied with the input combinations identified in this study are 

presented here. 

The presentation is divided in two sub-sections. First, the results obtained by the ANN 

application in the catchments not having any sub-divisions are presented and this is 

followed by the presentation of results for different sub-division scenarios involved in the 

Krishna and the Narmada catchments. 

6.3.1 Results Obtained in Catchments Without Sub-Divisions 

Linear Model + ANN: 

Figures 6.1(a) - (c) present, as illustration, the linear scale plots of the observed and 

simulated runoff for one calibration event (containing the highest of the peak flow) in each 

of the five catchments studied. These figures show the results of ANN models with two 

separate input combinations; i) only RIL, and ii) RIL + P i.e. when the rainfall values over 

the memory length are also given as input to the ANN in addition to RIL values. It was 

observed from Figs. 6.1(a) - (c) and other such plots (not shown here) that the results of 

ANN with RIL + P as input are better than that with RIL only as input as the simulated 

hydrographs match more closely with the observed especially in terms of the magnitude 

and time to peak in most of the events. For the Garrapatas catchment the output of the 

ANN with RIL as input is marginally better than with RIL + P but it can be noted that both 

the models performed less satisfactorily in this catchment. 

A comparison of corresponding Figs. 6.1(a)-(c) with Figs. 5.8(a)-(c) in which the 

results of the system based linear model during calibration for the same events are 

presented shows that results of ANN models are much more improved over the results 
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obtained from the linear model. The comparison of the predicted values of peak discharges 

given in tables earlier also revealed similar results. 

The performance of the ANN with same inputs as above (RIL only and RIL + P) 

during testing is depicted as illustration, in the forms of linear scale plots of simulated and 

observed runoff vs. time in Figs. 6.2 (a) - (c) for the runoff events that contained the 

highest peak. These and other such figures (not shown here) showed that ANN with RIL + 

P as input mostly performed better than RIL only as input in predicting the magnitude of 

the peak flow. Similar figures showing the performance of the linear model in all these 

catchments for the same validation events are given in earlier chapter vide Figs. 5.9(a) -

(c). It can be noted that whereas the SLN1 in particular failed to predict the time to peak in 

Bird Creek and Pampanga catchments and also underestimated the peak flow in all cases 

(except in the Kizu catchment), both of these parameters are matched with more accuracy 

by the ANN with RIL only and RIL + P as inputs. The scatter diagrams prepared using the 

entire data for testing or validation period showing the performance of the ANN with RIL 

only and RIL + P as inputs are given in Figs. 6.3 (a) and (b) for all the catchments. It can 

be seen that the scatter for ANN with RIL + P as input is less in case of Bird Creek and 

Kizu catchments. This is also reflected from comparison of the R2  values given in Tables 

6.1 and 6.4 respectively. But in other three cases the scatter for the ANN with RIL + P as 

input is almost same or marginally more than with RIL only as input. When these plots are 

compared with Fig. 5.6, which shows similar plots for the linear model a definite shifting 

of the points closer to the ideal line by the application of the ANN models can be noticed. 

Nonlinear Model + ANN: 

The Figs. 6.4 (a) - (c) show the linear scale plots for the results obtained in training 

the ANN when the ANN is given RIN alone and RIN + P values as input i.e. when a 

nonlinear model is coupled with the ANN. When these plots are compared with the 

corresponding output of the nonlinear model shown in Fig, 5.8(a) - (c) a definite 

improvement in the results can be noticed, as the plots for the simulated runoff in case of 

ANN are closer to the observed one. The careful observation of Figs. 6.4(a) - (c) and Figs. 

6.1 (a) - (c) reveals that there is not much discernable difference between the simulated 

outputs for ANN with RIN+P and RIL + P as inputs whereas, the performance of ANN with 

RIN as input is less satisfactory than with RIL as input in case of Bird Creek, Kizu, and 

Pampanga catchments. 
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The comparison of outputs of the ANN with RIN only and RIN + P as inputs for 

validation dataset is presented by way of illustration in Figs. 6.5 (a) - (c) in the form of 

linear scale plots. It was noticed from these and other such plots that ANN with RIN + P as 

input performed better in matching the peak than the ANN with RIN as input in most of the 

cases. 

When Figs. 6.5 (a) - (c) are compared with Figs. 6.3 (a) - (c), which show the 

results of coupling a linear model with the ANN it was noticed that the output predicted by 

both the input combinations are more or less similar. In case of the Garrapatas and the 

Kizu catchments the ANN performance with RIN + P is better than RIL + P as input in 

predicting the peak flow. Whereas, in Bird Creek, Brosna, and Pampanga catchments the 

performance of ANN with RIL + P is better as compared to that with RIN + P as input. A 

similar comment for the comparative performance of ANN with RIL and RIN as inputs can 

also be made. 

Figures 6.6 (a) and (b) illustrate the scatter plots showing the performance of ANN 

with RIN only and RIN + P as inputs for the entire dataset used for validation in the five 

catchments. There is very marginal difference between these plots and corresponding plots 

shown in Figs. 6.3 (a) and (b). This again validates the statement that coupling a nonlinear 

model with ANN in place of the linear model could not attain much improvement in the 

final results. 

Data for the catchments described above have previously been used by many 

investigators for simulation of the continuous records of daily runoff (O'Connor and 

Ahsan, 1991, Ahsan and O'Connor, 1994, Shamseldin, 1997 and others). A direct 

comparison of the results obtained in the present study with those of the other 

investigators is not appropriate as only the isolated runoff events are utilized in this study. 

Nevertheless, it may be noted that higher E2  values are obtained for the flow simulation 

carried out in the present study than those obtained by other investigators. 

6.3.2 Results Obtained For The Krishna Catchment 

Linear Model + ANN: 

The ANN application in this catchment also involved similar kind of input 

combinations as discussed above. First the results of the ANN coupled with a linear MISO 

model applied to both the sub-division scenarios in Krishna catchment are presented. 
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Figure 6.7(a) shows by way of illustration the plots for runoff simulated by the ANN with 

RIL and RIL + P as input and the observed runoff vs. time for one event used in 

calibration/training that contains the highest of the peak flow for no sub-division and two 

sub-divisions scenarios. A comparative analysis of these two and other such plots (not 

shown here) for one sub-division and two sub-division scenarios shown in Fig. 6.7(a) 

indicated that the performance of the ANN with RIL + P as input is better in two sub-

divisions scenario as compared to that with the no sub-division scenario and in both the 

scenarios the output of ANN with RIL + P as input has matched more closely with the 

observed values than with RIL alone as the input. 

Similar kind of plots for one validation event that contained the highest of the peak 

flows are given in Fig. 6.7(b) as illustration. An improvement in the performance of ANN 

with RIL + P as input over RIL as stated above was be observed in this and other such 

figures too. The performance of the ANN has also improved with the number of sub-

divisions. 

The scatter diagrams, prepared using the entire data used for validation purpose in 

the Krishna catchment, exhibiting the performance of the ANN model with RIL alone and 

RIL + P as inputs are given for no sub-division and two sub-division scenarios in Fig. 6.8 

(a) and (b) respectively. A noticeable change in the scatter, becoming progressively more 

symmetric around the ideal line can be observed when it is compared with the Fig. 5.10(a) 

for the linear MISO model. When corresponding plots for other models given in Figs. 6.8 

(a) and (b) are compared, it was noticed that the scatter in case of Fig. 6.8 (b) i.e. for two 

sub-divisions scenario is more symmetric around the ideal line as compared with the 

corresponding case in no sub-division scenario. 

Nonlinear Model + ANN: 

In addition to the linear MISO, a nonlinear MISO was also coupled with the ANN 

and the results thus obtained are presented here. The outcome of this linkage is illustrated 

in the form of linear scale plots in Figs. 6.9 (a) and (b) respectively, for the same events as 

given above containing the highest of the peak flow. 

The close observation of these plots lead to the conclusion that the ANN coupled 

with a nonlinear MISO model performed almost equally well as that coupled with a linear 

MISO model. The scatter plots for the ANN with RIN and with RIN + P as inputs for no 
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sub-division and two sub-division scenarios are represented in Figs. 6.10 (a) and (b) so as 

to have a comparison of the two different model linkages proposed in the study. It can be 

seen that the corresponding plots shown in Figs. 6.10 (a) - (b) and Figs. 6.8 (a) and (b) are 

almost similar and without much noticeable difference between them. 

6.3.3 Results Obtained For The Narmada Catchment 

Similar to the Krishna catchment the ANN application in this catchment also 

involved the RIL, RIL + P; and RIN, RIN + P input combinations with the difference that 

the Narmada catchment involved an additional sub-division referred to as the three sub-

divisions scenario. 

Linear Model + ANN: 

The performance of ANN during training is better as can be seen from the figures 

earlier for the other catchments. So in case of the Narmada catchment only the results of 

the ANN model application for validation/testing events are presented. 

The Figs. 6.11(a) - (c) represent the linear scale plots of model simulated and 

observed runoff for ANN with RIL only and RIL + P as inputs in all the sub-division 

scenarios, as illustration, for the validation event containing the highest of the peak values. 

A progressive improvement in the match of the simulated runoff with the observed values 

can be noted from the comparison of plots for none, two, and three sub-division scenarios. 

The scatter diagrams for the ANN with RIL only and RIL + P as inputs for all the sub-

division scenarios are depicted in Fig. 6.12. The scatter for the linear MISO model for the 

same period is shown in the Fig. 5.11 (a). It can be observed that the scatter in this figure 

is more and a shift from the ideal line can be noted. This is an indication of persistence 

present in the error values of the model, which is supposed to be overcome by the ANN 

model as indicated by a more symmetrical scatter in Fig. 6.12 for ANN with RIL only and 

RIL + P as inputs for corresponding scenarios. It can also be noted that the scatter for 

three sub-divisions scenario in all the cases is minimum, which justifies the division of 

larger catchments into smaller areas to account for heterogeneity in the spatial distribution 

of rainfall over the large sized catchment. 
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Nonlinear Model + ANN: 

Similar to the plots shown in Figs. 6.11(a) - (c) for the best performing ANN 

models coupled to the linear MISO model, the plots for the linkage of the nonlinear MISO 

model with the ANN, showing the final outputs of best performing ANNs are shown in 

Figs. 6.13 (a) - (c). A similar kind of trend can be analyzed as in case of Figs. 6.11 (a) -

(c). It can also be observed from comparison of the Figs. 6.13 (a) — (c) and 6.11(a) — (c) 

that these figures are almost similar indicating that the final outcome of the ANN either 

coupled to the linear or nonlinear model is not much different. 

Figure 6.14 shows the scatter plots for the ANN with RIN only and RIN + P as 

inputs. This figure is found to be similar to Fig. 6.12 obtained in case of linear MISO 

model coupled with ANN the similar trend in the results obtained can be noted. 

6.4 PERFORMANCE OF ANN WITH OTHER INPUTS 

In addition to the new inputs proposed in the present study i.e. the output of the 

linear and the nonlinear models, the ANN was also applied with other input combinations, 

mentioned in section 4.6, in all the seven catchments. The results obtained for ANN with 

only P and Ot_i + P as inputs applied to each of the catchment are already presented in 

tables for the respective catchment along with the other results. 

It can be seen from these tables that the performance of the ANN with only P (i.e. 

rainfall values equal to the memory of the catchment) as.inout in terms of F2  

training and testing is inferior compared to all other ANN model results in case of Bird 

Creek, Kizu, Pampanga, and two and three sub-divisions scenario in the Narmada 

catchment. For other catchments the E2  values for only P as input lie between those 
obtained for RIL and RIL + P or between RIN and RIN + P as inputs. 

The ANN when given the previous day's runoff as input along with the rainfall 

values equal to the memory of the catchment, performed excellently as expected, with the 

E2  and R2  values in training and testing being the highest among all the other input 

combinations for all the catchment except for the Bird Creek and Kizu catchments in 

which the ANNs with other inputs perform better. 

Alternatively, some experiments were conducted to evaluate performance of the 

ANN with following input combinations. 

i) 	When RIL, RIL,_1, and P is given as input to the ANN 

170 



ii) 	Repetition of higher values in the dataset for RIL, RIL + P as inputs. 

The results obtained for these were not much different i.e. no improvement in the 

ANN results on account of some additional information being provided in the form of 

above two input combination was noticed. Hence these results are not reported. 

6.5 STUDY ON POSSIBLE USE OF THE ANN BASED MODELING IN THE 
UN GA UGED CATCHMENTS 

The results of the best performing ANN configurations for the various input 

combinations are provided in the above sections for the catchments with different sizes 

studied. The ANN configurations used for obtaining the reported results consisted of i) one 

number of hidden layer, ii) different number of neurons in the hidden layer, iii) weights of 

the connections links between input layer — hidden layer and between the hidden layer -

output layer along with the bias values for each of the node in the hidden and output layer. 

The information about the first two parameters for each of the ANN configuration that had 

the best possible performance for each input combination is provided earlier along with 

the results. In this section the information about the remaining parameters listed above is 

provided. The connection weights can have positive as well as negative values and so is 

the case with the bias values. The positive weights are called excitory connections whereas 

the negative weights are termed as inhibitory connections. The bias or the threshold value 

associated with node must be exceeded before the node can be activated. These values for 

the best performing ANNs when the RIL values are used as inputs are given in Figs. 6.15 

(a) - (e) by way of illustration for the five catchments not having any sub-divisions and for 

the two different sub-division scenarios in the Krishna catchment and for the three 

different sub-division scenarios in the Narmada catchment. When the rainfall values equal 

to the memory of the catchment are supplied as input to the ANN in addition to the above 

input the ANN structure became much more complicated owing to the long memory in 

some of the catchments and due to the sub-divisions involved in the two catchments. 

Therefore the ANN structures for these cases involve a large number of values for the 

connection weights making the presentation complex and hence these are not provided. 

As was seen in section 5.5 (chapter 5) the parameters of the gamma function could 

be related with the catchment characteristics. If such empirical regression relations are 

available then the RIL values can be determined by using the catchment characteristics and 

rainfall data. Thus obtained RIL values can be used as inputs to the ANN in a catchment 
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that is ungauged for discharges provided that somehow a trained ANN model is available 

for the ungauged catchment. For this purpose a qualitative study was made for 

identification of the relationship, if any, between the ANN weights and bias values shown 

in Figs. 6.15 (a) - (c) and the corresponding catchment areas. However, because of the 

wide variation, as can be seen from the Figs. 6.15 (a) - (c), in the values of weights and 

other parameters, the identification of such a relation was not possible. It is however 

hypothesized that if a trained ANN is available from a gauged and hydrologically similar 

catchment, that could possibly be used for generation of discharges from the empirically 

computed RIL values for the ungauged catchments. Data available in the present study was 

not found to be sufficient enough for investigating the hypothesis suggested above. 

6.6 CONCLUDING REMARKS 

An approach is presented for modeling the daily rainfall-runoff relationship by way 

of coupling a linear/nonlinear model as an auxiliary model with the ANN. The ANN is 

envisaged to account for non-linearity inherent in the process of rainfall-runoff 

transformation. The catchments studied are grouped into two categories based on there 

sizes, i) Those not involving any sub-divisions, ii) Those with sub-divisions. The sub-

division of larger catchments into smaller areas is carried out to account for the 

heterogeneity in the spatial distribution of the rainfall. 

These estimates of runoff by the auxiliary models are considered to represent the 

soil moisture state of the catchment. The earlier ANN based rainfall-runoff modeling has 
established the fact that the ANN fails to produce satisfactory results without the 

information about the soil moisture state of the catchment being given as one of the input, 

as the runoff generation over a catchment is controlled by the prevailing soil moisture 
status. 

By way of coupling the linear/nonlinear model with the ANN an alternative way of 

providing the information about the soil moisture state of the catchment is proposed. In the 

earlier studies involving use of the ANN for rainfall-runoff modeling, runoff or river water 

level observed in the previous time were used for representing the soil moisture state 

which then becomes the updating flow simulation process. The inputs proposed in the 

present study overcome the drawbacks associated with existing ANN based rainfall-runoff 

modeling and the application of the ANN for non-updating flow simulation is 

demonstrated. Such a linkage is found to provide a better system theoretical representation 
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of the rainfall-runoff relationship on catchments from varying climates investigated in the 

present study as demonstrated by the results presented. 

The alternative coupling of a nonlinear model with ANN in place of the linear 

model attempted in the present study did not result in much improvement in the final 

results obtained. This suggests that the assumption made in the study 'ANN being a 

nonlinear model takes care of the non-linearity present in the rainfall-runoff process' to 

be proper and the results obtained also validate this. 

The results obtained in case of the large sized catchments divided into smaller sub-

areas demonstrate that performance of the ANN models, in terms of E2  values and other 

parameters improve with the number of sub—divisions thus, justifying the division of 

larger catchments into smaller homogeneous areas for consideration of the inputs. This 

also demonstrates the ability of the ANN in understanding the change in the inputs with the 

increase in the number of sub-divisions. 

The linear response functions derived from the data are having physically 

realizable shapes. These shapes are parameterized using the discrete gamma functions, the 

parameters of which have relationship, albeit qualitative, with the catchment 

characteristics. Nevertheless, the present approach cannot be extended to the catchments 

that are ungauged for discharges because of non-availability of a trained ANN for such 

catchments. 
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i)  Bird Creek Catchment 

ii)  Brosna Catchment 

Calibration Event 1(6-1-69 to 20-2-69) 
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Fig.6.1(a) 	Linear Scale Plots For Calibration Event For Catchment Without Sub- 
Divisions (Linear Model + ANN) 
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Calibration Event 4 [22-5-81 to 20-6-81] 
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Fig. 6.1(b) 	Linear Scale Plots For Calibration Event For Catchment Without Sub- 

Divisions (Linear Model + ANN) 
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Calibration Event 6 [20-5-76 to 10-6-76] 

Validation Event 12[11-09-61 to 20-09-61] 

v) 	Pampanga Catchment 

Fig. 6.1(c) 	Linear Scale Plots For Calibration Event For Catchment Without Sub- 
Divisions (Linear Model + ANN) 

i) 	Bird Creek Catchment 

Fig. 6.2(a) 	Linear Scale Plots For Validation Event For Catchment Without Sub- 
Divisions (Linear Model + ANN) 
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Validation Event 10 [7-7-78 to 21-7-78] 
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Fig. 6.2(c) 	Linear Scale Plots For Validation Event For Catchment Without Sub- 
Divisions (Linear Model + ANN) 
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iv) Kizu Catchment 

v) Pampanga Catchment 

Fig. 6.3(b) 	Scatter Plots For Catchments Without Sub-Divisions 
(Validation — Linear Model + ANN) 
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Calibration Event 6 [20-5-76 to 10-6-76] 
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Linear Scale Plots For Validation Event For Catchment Without Sub- 
Divisions (Nonlinear Model + ANN) 
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Validation Event 12 [30-6-66 to 24-7-66] 
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Fig. 6.5(c) 	Linear Scale Plots For Validation Event For Catchment Without Sub- 
Divisions (Nonlinear Model + ANN) 
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i) Bird Creek Catchment 

ii) Brosna Catchment 

iii) Garrapatas Catchment 

Fig. 6.6(a) 	Scatter Plots For Catchments Without Sub-Divisions 
(Validation — Nonlinear Model + ANN) 
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Chapter - 7 

CONCLUSIONS 

7.1 INTRODUCTION 

An approach for modeling the rainfall-runoff process based on the application of 

an ANN is developed. The proposed approach couples the system based linear/nonlinear 

model and an ANN model. The advantages of the proposed approach include low cost and 

simplicity over the complex physically based models for the reason that measurement of 

precipitation and discharge can be obtained easily and cost effectively compared with the 

parameters such as soil characteristics, initial soil moisture, infiltration, ground water 

characteristics etc. required for most of the physically based and conceptual models. As 

the ANN model is calibrated using automated calibration techniques, it eliminates 

subjectivity involved in calibration and subsequent application of the conventional models. 

While it is well established that the inclusion of the observed discharges in 

previous time periods with the current and antecedent rainfalls as inputs to the ANN 

greatly enhances its runoff forecasting ability in the updating case, the present study 

establishes convincingly that realistic estimates of runoff are obtainable using the ANN 

even without making use of the observed discharge/water level data of previous time 

periods. The flow simulation efficiency of the proposed approach is high for the non-

updating flow simulation cases. Thus, present study demonstrates use of the ANN in a 

context that has not been used before. The broad and specific conclusions drawn on the 

basis of the study are stated below. 

7.2 BROAD CONCLUSIONS 

The study carried out with the objectives mentioned in chapter 1 lead to the broad 

conclusions as mentioned below. 

An approach for rainfall-runoff modeling on daily scale is proposed that uses ANN 

in a new perspective being coupled with the system based linear/nonlinear models 

for flow simulation in non-updating mode. 

The modeling of daily rainfall-runoff process presented in the study eliminates the 

subjectivity in determination of excess rainfall and base flow separation involved 
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in the UR based procedures used conventionally. This has been possible by 

consideration of rainfall for the memory length of a catchment as one of the inputs 

to the ANN based model. Thus, the rainfall-runoff process is modeled in such a 

way that the inputs supplied to the ANN have some relevance with the physical 

process being modeled. 

[7 	Losses due to evaporation and evapotranspiration have been accounted for as the 

rainfall-runoff modeling is carried out on daily scale and the simulated runoff 

events are spread over several days. 

(7 	The capability and effectiveness of the proposed methodology in sparse data 

scenario is demonstrated by using the daily rainfall and runoff data from seven 

catchments located in different parts of the world, two of which are relatively large 

in size. 

E7)' 	A viable alternative of providing the information about the soil moisture state of 

the catchment to the ANN in the form of the output of as auxiliary system based 

linear/nonlinear models is suggested. 

The ANN, when supplied with different inputs in two large sized catchments 

studied by way of sub-dividing these catchments into smaller areas resulted in 

improvement in the performance with the number of sub-divisions, thus 

demonstrating the capability of the ANN in understanding the distributed nature of 
inputs and producing appropriate results. 

The results obtained from the ANN model application in case of large size 

catchments prove that it is worthwhile to consider separate parallel inputs from the 

sub-catchments in order to account for the heterogeneity present in spatial 
distribution of rainfall data. 

7.3 SPECIFIC CONCLUSIONS 

The following specific conclusions are drawn on the basis of the study carried out. 

A. 	Non-Linearity Analysis 

The non-linearity analysis based on the SPDD measure carried out for daily runoff 
shows that all the catchments studied are hydrologically nonlinear, thus the 
application of the ANN to these is justified. 
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B. Auxiliary Model Application 

The response functions of the auxiliary linear/nonlinear models obtained in all the 

catchments are physically realistic. 

Gi 	The results from the application of auxiliary linear/nonlinear models indicate that 

such models are able to provide first approximate estimates for the runoff. The 

time to the peak of daily flows has been mostly well reproduced. However, the 

peak flows are either underestimated or overestimated by these models. Thus these 

models can very well serve as the auxiliary models, as they have ably reproduced 

the trend existing in the data. 

F—/ 	Parameterization of the response functions of auxiliary linear model by using the 

discrete gamma function lead to establishment of the relations, albeit qualitative, 

between these parameters and the catchment characteristics. 

C. The ANN Model Application 

ED 	The results obtained demonstrate that the proposed alternative for discharges 

observed in the past being used as one of the input to the ANN, in the form of the 

output of the auxiliary system based linear/nonlinear models, provides better 

system theoretical representation of the rainfall-runoff relationship on catchments 

from varying climates investigated in the study. 

When the output of the linear model (RIL) in combination with rainfall (P) or the 
output of a nonlinear model (RIN) in combination P is supplied as input to the 
ANN, its performance is clearly superior to the case when the output of a linear or 

nonlinear model alone is given as input to the ANN. 

The coupled SLIVI - ANN model with RIL in combination with P as input is capable 

of producing reasonably satisfactory non-updated estimates of the outflows on 

most of the catchments. 

Replacing the linear model with a nonlinear model does not result in substantial 

improvement in the final results of the ANN, thus validating the capability of the 
ANN in taking care of the non-linearity existing in the input-output relationship. 
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The coupled SLM-ANN model when supplied with the input RIL in combination 

with P has accurately estimated the time to peak runoff for various runoff events in 

all the catchments. The values of the peak and volume of runoff are also well 

simulated for most of the runoff events in all the catchments. 

F-1 	Accurate results could also be obtained through the proposed methodology for 

large sized catchments by sub-dividing them into smaller homogeneous areas to 

account for the heterogeneity in spatial distribution of rainfall. The application of 

the ANN in the context of disaggregated rainfall indicates that the model results 

improve with increase in the number of sub-divisions. However, the maximum 

number of sub-divisions attempted in the present study were limited because of the 

limited number of raingauge stations in a catchment resulting in some error in the 

areal averaging of rainfall. 

The research work carried out leads to the development of a cost effective 

methodology for runoff prediction that is simple to use, not catchment specific, and 

is capable of producing results with good accuracy. 

Vt7 	The algorithm used for training the ANN in the present study is widely available 

and used, so the proposed approach has no restrictions on its applicability and can 

be used almost in all the cases as desired. 

7.4 SCOPE FOR FUTURE WORK 

Several issues arise from this research that can be explored further. These issues 

can be stated as 

1. Alternative ANN structures can be used and their performance with the new inputs 
proposed in the study can be examined and compared with the feedforward ANN 
used in the present study. 

2. More efforts could be directed towards applying this approach to large number of 

catchments so that a more general relationship between the gamma function 

parameters and the catchment characteristics as attempted in the study could be 

established which may be helpful in extension of this approach to the ungauged 

catchments. For this purpose, the hypothesis that, the ANN model trained on 
hydrologically similar catchment can be applied to the catchment that is ungauged 
for discharge shall require thorough testing. 
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